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1 Database Systems

Alice: I thought this was a theory book.

Vittorio: Yes, but good theory needs the big picture.

Sergio: Besides, what will you tell your grandfather when he asks what you study?

Riccardo: You can’t tell him that you’re studying the fundamental implications of

genericity in database queries.

Computers are now used in almost all aspects of human activity. One of their main

uses is to manage information, which in some cases involves simply holding data for

future retrieval and in other cases serving as the backbone for managing the life cycle of

complex financial or engineering processes. A large amount of data stored in a computer

is called a database. The basic software that supports the management of this data is

called a database management system (dbms). The dbms is typically accompanied by a

large and evergrowing body of application software that accesses and modifies the stored

information. The primary focus in this book is to present part of the theory underlying

the design and use of these systems. This preliminary chapter briefly reviews the field of

database systems to indicate the larger context that has led to this theory.

1.1 The Main Principles

Database systems can be viewed as mediators between human beings who want to use

data and physical devices that hold it (see Fig. 1.1). Early database management was based

on explicit usage of file systems and customized application software. Gradually, princi-

ples and mechanisms were developed that insulated database users from the details of the

physical implementation. In the late 1960s, the first major step in this direction was the de-

velopment of three-level architecture. This architecture separated database functionalities

into physical, logical, and external levels. (See Fig. 1.2. The three views represent various

ways of looking at the database: multirelations, universal relation interface, and graphical

interface.)

The separation of the logical definition of data from its physical implementation is

central to the field of databases. One of the major research directions in the field has

been the development and study of abstract, human-oriented models and interfaces for

specifying the structure of stored data and for manipulating it. These models permit the

user to concentrate on a logical representation of data that resembles his or her vision

of the reality modeled by the data much more closely than the physical representation.

3
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DBMS

Figure 1.1: Database as mediator between humans and data

Several logical data models have been developed, including the hierarchical, network,

relational, and object oriented. These include primarily a data definition language (DDL)

for specifying the structural aspects of the data and a data manipulation language (DML)

for accessing and updating it. The separation of the logical from the physical has resulted

in an extraordinary increase in database usability and programmer productivity.

Another benefit of this separation is that many aspects of the physical implementa-

tion may be changed without having to modify the abstract vision of the database. This

substantially reduces the need to change existing application programs or retrain users.

The separation of the logical and physical levels of a database system is usually called

the data independence principle. This is arguably the most important distinction between

file systems and database systems.

The second separation in the architecture, between external and logical levels, is also

important. It permits different perspectives, or views, on the database that are tailored to

specific needs. Views hide irrelevant information and restructure data that is retained. Such

views may be simple, as in the case of automatic teller machines, or highly intricate, as in

the case of computer-aided design systems.

A major issue connected with both separations in the architecture is the trade-off

between human convenience and reasonable performance. For example, the separation

between logical and physical means that the system must compile queries and updates

directed to the logical representation into “real” programs. Indeed, the use of the relational

model became widespread only when query optimization techniques made it feasible. More

generally, as the field of physical database optimization has matured, logical models have

become increasingly remote from physical storage. Developments in hardware (e.g., large

and fast memories) are also influencing the field a great deal by continually changing the

limits of feasibility.
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View 2 View 3View 1

External Level

Physical Level

Logical Level

Figure 1.2: Three-level architecture of database systems

1.2 Functionalities

Modern dbms’s include a broad array of functionalities, ranging from the very physical

to the relatively abstract. Some functionalities, such as database recovery, can largely be

ignored by almost all users. Others (even among the most physical ones, such as indexing)

are presented to application programmers in abstracted ways.

The primary functionalities of dbms’s are as follows:

Secondary storage management: The goal of dbms’s is the management of large amounts

of shared data. By large we mean that the data is too big to fit in main memory. Thus an

essential task of these systems is the management of secondary storage, which involves

an array of techniques such as indexing, clustering, and resource allocation.

Persistence: Data should be persistent (i.e., it should survive the termination of a particular

database application so that it may be reused later). This is a clear divergence from

standard programming, in which a data structure must be coded in a file to live beyond

the execution of an application. Persistent programming languages (e.g., persistent

C++) are now emerging to overcome this limitation of programming languages.
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Concurrency control: Data is shared. The system must support simultaneous access to

shared information in a harmonious environment that controls access conflicts and

presents a coherent database state to each user. This has led to important notions such

as transaction and serializability and to techniques such as two-phase locking that

ensure serializability.

Data protection: The database is an invaluable source of information that must be protected

against human and application program errors, computer failures, and human mis-

use. Integrity checking mechanisms focus on preventing inconsistencies in the stored

data resulting, for example, from faulty update requests. Database recovery and back-

up protocols guard against hardware failures, primarily by maintaining snapshots of

previous database states and logs of transactions in progress. Finally, security control

mechanisms prevent classes of users from accessing and/or changing sensitive infor-

mation.

Human-machine interface: This involves a wide variety of features, generally revolving

around the logical representation of data. Most concretely, this encompasses DDLs

and DMLs, including both those having a traditional linear format and the emerging

visual interfaces incorporated in so-called fourth-generation languages. Graphically

based tools for database installation and design are popular.

Distribution: In many applications, information resides in distinct locations. Even within

a local enterprise, it is common to find interrelated information spread across several

databases, either for historical reasons or to keep each database within manageable

size. These databases may be supported by different systems (interoperability) and

based on distinct models (heterogeneity). The task of providing transparent access to

multiple systems is a major research topic of the 1990s.

Compilation and optimization: A major task of database systems is the translation of the

requests against the external and logical levels into executable programs. This usually

involves one or more compilation steps and intensive optimization so that performance

is not degraded by the convenience of using more friendly interfaces.

Some of these features concern primarily the physical data level: concurrency control,

recovery, and secondary storage management. Others, such as optimization, are spread

across the three levels.

Database theory and more generally, database models have focused primarily on

the description of data and on querying facilities. The support for designing application

software, which often constitutes a large component of databases in the field, has gen-

erally been overlooked by the database research community. In relational systems appli-

cations can be written in C and extended with embedded SQL (the standard relational

query language) commands for accessing the database. Unfortunately there is a signif-

icant distance between the paradigms of C and SQL. The same can be said to a cer-

tain extent about fourth-generation languages. Modern approaches to improving appli-

cation programmer productivity, such as object-oriented or active databases, are being

investigated.
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1.3 Complexity and Diversity

In addition to supporting diverse functionalities, the field of databases must address a

broad variety of uses, styles, and physical platforms. Examples of this variety include the

following:

Applications: Financial, personnel, inventory, sales, engineering design, manufacturing

control, personal information, etc.

Users: Application programmers and software, customer service representatives, secre-

taries, database administrators (dba’s), computer gurus, other databases, expert sys-

tems, etc.

Access modes: Linear and graphical data manipulation languages, special purpose graphi-

cal interfaces, data entry, report generation, etc.

Logical models: The most prominent of these are the network, hierarchical, relational,

and object-oriented models; and there are variations in each model as implemented

by various vendors.

Platforms: Variations in host programming languages, computing hardware and operating

systems, secondary storage devices (including conventional disks, optical disks, tape),

networks, etc.

Both the quality and quantity of variety compounds the complexity of modern dbms’s,

which attempt to support as much diversity as possible.

Another factor contributing to the complexity of database systems is their longevity.

Although some databases are used by a single person or a handful of users for a year or

less, many organizations are using databases implemented over a decade ago. Over the

years, layers of application software with intricate interdependencies have been developed

for these “legacy” systems. It is difficult to modernize or replace these databases because

of the tremendous volume of application software that uses them on a routine basis.

1.4 Past and Future

After the advent of the three-level architecture, the field of databases has become increas-

ingly abstract, moving away from physical storage devices toward human models of in-

formation organization. Early dbms’s were based on the network and hierarchical models.

Both provide some logical organization of data (in graphs and trees), but these representa-

tions closely mirror the physical storage of the data. Furthermore, the DMLs for these are

primitive because they focus primarily on navigation through the physically stored data.

In the 1970s, Codd’s relational model revolutionized the field. In this model, humans

view the data as organized in relations (tables), and more “declarative” languages are pro-

vided for data access. Indexes and other mechanisms for maintaining the interconnection

between data are largely hidden from users. The approach became increasingly accepted

as implementation and optimization techniques could provide reasonable response times in

spite of the distance between logical and physical data organization. The relational model

also provided the initial basis for the development of a mathematical investigation of data-

bases, largely because it bridges the gap between data modeling and mathematical logic.
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Historically dbms’s were biased toward business applications, and the relational model

best fitted the needs. However, the requirements for the management of large, shared

amounts of data were also felt in a variety of fields, such as computer-aided design and

expert systems. These new applications require more in terms of structures (more complex

than relations), control (more dynamic environments), and intelligence (incorporation of

knowledge). They have generated research and developments at the border of other fields.

Perhaps the most important developments are the following:

Object-oriented databases: These have come from the merging of database technology,

object-oriented languages (e.g., C++), and artificial intelligence (via semantic models).

In addition to providing richer logical data structures, they permit the incorporation of

behavioral information into the database schema. This leads to better interfaces and a

more modular perspective on application software; and, in particular, it improves the

programmer’s productivity.

Deductive and active databases: These originated from the fusion of database technology

and, respectively, logic programming (e.g., Prolog) and production-rule systems (e.g.,

OPS5). The hope is to provide mechanisms that support an abstract view of some

aspects of information processing analogous to the abstract view of data provided by

logical data models. This processing is generally represented in the form of rules and

separated from the control mechanism used for applying the rules.

These two directions are catalysts for significant new developments in the database field.

1.5 Ties with This Book

Over the past two decades, database theory has pursued primarily two directions. The

principal one, which is the focus of this book, concerns those topics that can meaningfully

be discussed within the logical and external layers. The other, which has a different flavor

and is not discussed in this book, is the elegant theory of concurrency control.

The majority of this book is devoted to the study of the relational model. In particular,

relational query languages and language primitives such as recursion are studied in depth.

The theory of dependencies, which provides the formal foundation of integrity constraints,

is also covered. In the last part of the book, we consider more recent topics whose theory is

generally less well developed, including object-oriented databases and behavioral aspects

of databases.

By its nature, theoretical investigation requires the careful articulation of all assump-

tions. This leads to a focus on abstract, simplified models of much more complex practical

situations. For example, one focus in the early part of this book is on conjunctive queries.

These form the core of the select-from-where clause of the standard language in database

systems, SQL, and are perhaps the most important class of queries from a practical stand-

point. However, the conjunctive queries ignore important practical components of SQL,

such as arithmetic operations.

Speaking more generally, database theory has focused rather narrowly on specific

areas that are amenable to theoretical investigation. Considerable effort has been directed

toward the expressive power and complexity of both query languages and dependencies, in

which close ties with mathematical logic and complexity theory could be exploited. On the
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other hand, little theory has emerged in connection with physical query optimization, in

which it is much more difficult to isolate a small handful of crucial features upon which a

meaningful theoretical investigation can be based. Other fundamental topics are only now

receiving attention in database theory (e.g., the behavioral aspects of databases).

Theoretical research in computer science is driven both by the practical phenomena

that it is modeling and by aesthetic and mathematical rigor. Although practical motiva-

tions are touched on, this text dwells primarily on the mathematical view of databases and

presents many concepts and techniques that have not yet found their place in practical sys-

tems. For instance, in connection with query optimization, little is said about the heuristics

that play such an important role in current database systems. However, the homomorphism

theorem for conjunctive queries is presented in detail; this elegant result highlights the es-

sential nature of conjunctive queries. The text also provides a framework for analyzing a

broad range of abstract query languages, many of which are either motivated by, or have

influenced, the development of practical languages.

As we shall see, the data independence principle has fundamental consequences for

database theory. Indeed, much of the specificity of database theory, and particularly of the

theory of query languages, is due to this principle.

With respect to the larger field of database systems, we hope this book will serve a dual

purpose: (1) to explain to database system practitioners some of the underlying principles

and characteristics of the systems they use or build, and (2) to arouse the curiosity of

theoreticians reading this book to learn how database systems are actually created.

Bibliographic Notes

There are many books on database systems, including [Dat86, EN89, KS91, Sto88, Ull88,

Ull89b, DA83, Vos91]. A (now old) bibliography on databases is given in [Kam81]. A

good introduction to the field may be found in [KS91], whereas [Ull88, Ull89b] provides

a more in-depth presentation.

The relational model is introduced in [Cod70]. The first text on the logical level of

database theory is [Mai83]. More recent texts on the subject include [PBGG89], which

focuses on aspects of relational database theory; [Tha91], which covers portions of de-

pendency theory; and [Ull88, Ull89b], which covers both practical and theoretical aspects

of the field. The reader is also referred to the excellent survey of relational database the-

ory in [Kan88], which forms a chapter of the Handbook of Theoretical Computer Science

[Lee91].

Database concurrency control is presented in [Pap86, BHG87]. Deductive databases

are covered in [Bid91a, CGT90]. Collections of papers on this topic can be found in

[Min88a]. Collections of papers on object-oriented databases are in [BDK92, KL89,

ZM90]. Surveys on database topics include query optimization [JK84a, Gra93], deductive

databases [GMN84, Min88b, BR88a], semantic database models [HK87, PM88], database

programming languages [AB87a], aspects of heterogeneous databases [BLN86, SL90],

and active databases [HW92, Sto92]. A forthcoming book on active database systems is

[DW94].

http://portal.acm.org/citation.cfm?id=362685


2 Theoretical Background

Alice: Will we ever get to the real stuff?

Vittorio: Cine nu cunoaşte lema, nu cunoaşte teorema.

Riccardo: What is Vittorio talking about?

Sergio: This is an old Romanian saying that means, “He who doesn’t know the

lemma doesn’t know the teorema.”

Alice: I see.

This chapter gives a brief review of the main theoretical tools and results that are used in

this volume. It is assumed that the reader has a degree of maturity and familiarity with

mathematics and theoretical computer science. The review begins with some basics from

set theory, including graphs, trees, and lattices. Then, several topics from automata and

complexity theory are discussed, including finite state automata, Turing machines, com-

putability and complexity theories, and context-free languages. Finally basic mathematical

logic is surveyed, and some remarks are made concerning the specializing assumptions

typically made in database theory.

2.1 Some Basics

This section discusses notions concerning binary relations, partially ordered sets, graphs

and trees, isomorphisms and automorphisms, permutations, and some elements of lattice

theory.

A binary relation over a (finite or infinite) set S is a subset R of S × S, the cross-

product of S with itself. We sometimes write R(x, y) or xRy to denote that (x, y) ∈ R.

For example, if Z is a set, then inclusion (⊆) is a binary relation over the power set

P(Z) of Z and also over the finitary power set Pfin(Z) of Z (i.e., the set of all finite subsets

of Z). Viewed as sets, the binary relation ≤ on the set N of nonnegative integers properly

contains the relation < on N.

We also have occasion to study n-ary relations over a set S; these are subsets of Sn,

the cross-product of S with itself n times. Indeed, these provide one of the starting points

of the relational model.

A binary relation R over S is reflexive if (x, x) ∈ R for each x ∈ S; it is symmetric if

(x, y) ∈ R implies that (y, x) ∈ R for each x, y ∈ S; and it is transitive if (x, y) ∈ R and

(y, z) ∈ R implies that (x, z) ∈ R for each x, y, z ∈ S. A binary relation that is reflexive,

symmetric, and transitive is called an equivalence relation. In this case, we associate to

each x ∈ S the equivalence class [x]R = {y ∈ S | (x, y) ∈ R}.

10
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An example of an equivalence relation on N is modulo for some positive integer n,

where (i, j) ∈ modn if the absolute value |i − j | of the difference of i and j is divisible

by n.

A partition of a nonempty set S is a family of sets {Si | i ∈ I } such that (1) ∪i∈ISi = S,

(2) Si ∩ Sj = ∅ for i �= j , and (3) Si �= ∅ for i ∈ I . If R is an equivalence relation on S, then

the family of equivalence classes over R is a partition of S.

Let E and E′ be equivalence relations on a nonempty set S. E is a refinement of E′

if E ⊆ E′. In this case, for each x ∈ S we have [x]E ⊆ [x]E′, and, more precisely, each

equivalence class of E′ is a disjoint union of one or more equivalence classes of E.

A binary relation R over S is irreflexive if (x, x) �∈ R for each x ∈ S.

A binary relation R is antisymmetric if (y, x) �∈ R whenever x �= y and (x, y) ∈ R.

A partial order of S is a binary relation R over S that is reflexive, antisymmetric, and

transitive. In this case, we call the ordered pair (S, R) a partially ordered set. A total order

is a partial order R over S such that for each x, y ∈ S, either (x, y) ∈ R or (y, x) ∈ R.

For any set Z, the relation⊆ over P(Z) is a partially ordered set. If the cardinality |Z|
of Z is greater than 1, then this is not a total order. ≤ on N is a total order.

If (S, R) is a partially ordered set, then a topological sort of S (relative toR) is a binary

relation R′ on S that is a total order such that R′ ⊇ R. Intuitively, R′ is compatible with R

in the sense that xRy implies xR′y.

Let R be a binary relation over S, and P be a set of properties of binary relations. The

P-closure of R is the smallest binary relation R′ such that R′ ⊇ R and R′ satisfies all of the

properties in P (if a unique binary relation having this specification exists). For example, it

is common to form the transitive closure of a binary relation or the reflexive and transitive

closure of a binary relation. In many cases, a closure can be constructed using a recursive

procedure. For example, given binary relation R, the transitive closure R+ of R can be

obtained as follows:

1. If (x, y) ∈ R then (x, y) ∈ R+;

2. If (x, y) ∈ R+ and (y, z) ∈ R+ then (x, z) ∈ R+; and

3. Nothing is in R+ unless it follows from conditions (1) and (2).

For an arbitrary binary relation R, the reflexive, symmetric, and transitive closure of R

exists and is an equivalence relation.

There is a close relationship between binary relations and graphs. The definitions and

notation for graphs presented here have been targeted for their application in this book. A

(directed) graph is a pairG= (V ,E), where V is a finite set of vertexes andE ⊆ V ×V . In

some cases, we define a graph by presenting a set E of edges; in this case, it is understood

that the vertex set is the set of endpoints of elements of E.

A directed path in G is a nonempty sequence p = (v0, . . . , vn) of vertexes such

that (vi, vi+1) ∈ E for each i ∈ [0, n − 1]. This path is from v0 to vn and has length n.

An undirected path in G is a nonempty sequence p = (v0, . . . , vn) of vertexes such that

(vi, vi+1) ∈ E or (vi+1, vi) ∈ E for each i ∈ [0, n− 1]. A (directed or undirected) path is

proper if vi �= vj for each i �= j . A (directed or undirected) cycle is a (directed or undi-

rected, respectively) path v0, . . . , vn such that vn = v0 and n > 0. A directed cycle is proper

if v0, . . . , vn−1 is a proper path. An undirected cycle is proper if v0, . . . , vn−1 is a proper
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path and n > 2. If G has a cycle from v, then G has a proper cycle from v. A graph

G = (V ,E) is acyclic if it has no cycles or, equivalently, if the transitive closure of E

is irreflexive.

Any binary relation over a finite set can be viewed as a graph. For any finite set Z, the

graph (P(Z),⊆) is acyclic. An interesting directed graph is (M,L), where M is the set of

metro stations in Paris and (s1, s2) ∈ L if there is a train in the system that goes from s1 to

s2 without stopping in between. Another directed graph is (M,L′), where (s1, s2) ∈ L
′ if

there is a train that goes from s1 to s2, possibly with intermediate stops.

Let G= (V ,E) be a graph. Two vertexes u, v are connected if there is an undirected

path in G from u to v, and they are strongly connected if there are directed paths from u

to v and from v to u. Connectedness and strong connectedness are equivalence relations

on V . A (strongly) connected component of G is an equivalence class of V under (strong)

connectedness. A graph is (strongly) connected if it has exactly one (strongly) connected

component.

The graph (M,L) of Parisian metro stations and nonstop links between them is

strongly connected. The graph ({a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)})
is connected but not strongly connected.

The distance d(a, b) of two nodes a, b in a graph is the length of the shortest path

connecting a to b [d(a, b)=∞ if a is not connected to b]. The diameter of a graph G is

the maximum finite distance between two nodes in G.

A tree is a graph that has exactly one vertex with no in-edges, called the root, and no

undirected cycles. For each vertex v of a tree there is a unique proper path from the root to

v. A leaf of a tree is a vertex with no outedges. A tree is connected, but it is not strongly

connected if it has more than one vertex. A forest is a graph that consists of a set of trees.

Given a forest, removal of one edge increases the number of connected components by

exactly one.

An example of a tree is the set of all descendants of a particular person, where (p, p′)

is an edge if p′ is the child of p.

In general, we shall focus on directed graphs, but there will be occasions to use

undirected graphs. An undirected graph is a pair G = (V ,E), where V is a finite set of

vertexes and E is a set of two-element subsets of V , again called edges. The notions of

path and connected generalize to undirected graphs in the natural fashion.

An example of an undirected graph is the set of all persons with an edge {p, p′} if p

is married to p′. As defined earlier, a tree T = (V ,E) is a directed graph. We sometimes

view T as an undirected graph.

We shall have occasions to label the vertexes or edges of a (directed or undirected)

graph. For example, a labeling of the vertexes of a graph G= (V ,E) with label set L is a

function λ : V → L.

Let G= (V ,E) and G′ = (V ′, E′) be two directed graphs. A function h : V → V ′ is a

homomorphism from G to G′ if for each pair u, v ∈ V , (u, v) ∈ E implies (h(u), h(v)) ∈
E′. The function h is an isomorphism from G to G′ if h is a one-one onto mapping from

V to V ′, h is a homomorphism from G to G′, and h−1 is a homomorphism from G′ to G.

An automorphism on G is an isomorphism from G to G. Although we have defined these

terms for directed graphs, they generalize in the natural fashion to other data and algebraic

structures, such as relations, algebraic groups, etc.
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Consider the graph G = ({a, b, c, d, e}, {(a, b), (b, a), (b, c), (b, d), (b, e), (c, d),
(d, e), (e, c)}). There are three automorphisms on G: (1) the identity; (2) the function that

maps c to d , d to e, e to c and leaves a, b fixed; and (3) the function that maps c to e, d to

c, e to d and leaves a, b fixed.

Let S be a set. A permutation of S is a one-one onto function ρ : S→ S. Suppose that

x1, . . . , xn is an arbitrary, fixed listing of the elements of S (without repeats). Then there is

a natural one-one correspondence between permutations ρ on S and listings xi1, . . . , xin
of elements of S without repeats. A permutation ρ′ is derived from permutation ρ by

an exchange if the listings corresponding to ρ and ρ′ agree everywhere except at some

positions i and i + 1, where the values are exchanged. Given two permutations ρ and ρ′,

ρ′ can be derived from ρ using a finite sequence of exchanges.

2.2 Languages, Computability, and Complexity

This area provides one of the foundations of theoretical computer science. A general

reference for this area is [LP81]. References on automata theory and languages include, for

instance, the chapters [BB91, Per91] of [Lee91] and the books [Gin66, Har78]. References

on complexity include the chapter [Joh91] of [Lee91] and the books [GJ79, Pap94].

Let # be a finite set called an alphabet. A word over alphabet # is a finite sequence

a1 . . . an, where ai ∈ #, 1 ≤ i ≤ n, n ≥ 0. The length of w = a1 . . . an, denoted |w|, is n.

The empty word (n= 0) is denoted by ǫ. The concatenation of two words u= a1 . . . an and

v = b1 . . . bk is the word a1 . . . anb1 . . . bk, denoted uv. The concatenation of u with itself

n times is denoted un. The set of all words over # is denoted by #∗. A language over # is

a subset of #∗. For example, if # = {a, b}, then {anbn | n≥ 0} is a language over #. The

concatenation of two languages L and K is LK = {uv | u ∈ L, v ∈ K}. L concatenated

with itself n times is denoted Ln, and L∗ =
⋃

n≥0 L
n.

Finite Automata

In databases, one can model various phenomena using words over some finite alphabet.

For example, sequences of database events form words over some alphabet of events. More

generally, everything is mapped internally to a sequence of bits, which is nothing but a word

over alphabet {0, 1}. The notion of computable query is also formalized using a low-level

representation of a database as a word.

An important type of computation over words involves acceptance. The objective is

to accept precisely the words that belong to some language of interest. The simplest form

of acceptance is done using finite-state automata (fsa). Intuitively, fsa process words by

scanning the word and remembering only a bounded amount of information about what

has already been scanned. This is formalized by computation allowing a finite set of states

and transitions among the states, driven by the input. Formally, an fsa M over alphabet #

is a 5-tuple 〈S,#, δ, s0, F 〉, where

• S is a finite set of states;

• δ, the transition function, is a mapping from S ×# to S;
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• s0 is a particular state of S, called the start state;

• F is a subset of S called the accepting states.

An fsa 〈S,#, δ, s0, F 〉 works as follows. The given input word w = a1 . . . an is read one

symbol at a time, from left to right. This can be visualized as a tape on which the input word

is written and an fsa with a head that reads symbols from the tape one at a time. The fsa

starts in state s0. One move in state s consists of reading the current symbol a in w, moving

to a new state δ(s, a), and moving the head to the next symbol on the right. If the fsa is in

an accepting state after the last symbol in w has been read, w is accepted. Otherwise it is

rejected. The language accepted by an fsa M is denoted L(M).

For example, let M be the fsa

〈{even,odd}, {0, 1}, δ, even, {even}〉, with

δ 0 1

even even odd

odd odd even

The language accepted by M is

L(M)= {w | w has an even number of occurrences of 1}.

A language accepted by some fsa is called a regular language. Not all languages are

regular. For example, the language {anbn | n ≥ 0} is not regular. Intuitively, this is so

because no fsa can remember the number of a’s scanned in order to compare it to the

number of b’s, if this number is large enough, due to the boundedness of the memory.

This property is formalized by the so-called pumping lemma for regular languages.

As seen, one way to specify regular languages is by writing an fsa accepting them.

An alternative, which is often more convenient, is to specify the shape of the words in the

language using so-called regular expressions. A regular expression over # is written using

the symbols in # and the operations concatenation, ∗ and +. (The operation + stands

for union.) For example, the foregoing language L(M) can be specified by the regular

expression ((0∗10∗)2)∗ + 0∗. To see how regular languages can model things of interest

to databases, think of employees who can be affected by the following events:

hire, transfer, quit, fire, retire.

Throughout his or her career, an employee is first hired, can be transferred any number of

times, and eventually quits, retires, or is fired. The language whose words are allowable

sequences of such events can be specified by a regular expression as hire (transfer)∗ (quit

+ fire + retire). One of the nicest features of regular languages is that they have a dual

characterization using fsa and regular expressions. Indeed, Kleene’s theorem says that a

language L is regular iff it can be specified by a regular expression.

There are several important variations of fsa that do not change their accepting power.

The first allows scanning the input back and forth any number of times, yielding two-way
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automata. The second is nondeterminism. A nondeterministic fsa allows several possible

next states in a given move. Thus several computations are possible on a given input.

A word is accepted if there is at least one computation that ends in an accepting state.

Nondeterministic fsa (nfsa) accept the same set of languages as fsa. However, the number

of states in the equivalent deterministic fsa may be exponential in the number of states of

the nondeterministic one. Thus nondeterminism can be viewed as a convenience allowing

much more succinct specification of some regular languages.

Turing Machines and Computability

Turing machines (TMs) provide the classical formalization of computation. They are also

used to develop classical complexity theory. Turing machines are like fsa, except that

symbols can also be overwritten rather than just read, the head can move in either direction,

and the amount of tape available is infinite. Thus a move of a TM consists of reading

the current tape symbol, overwriting the symbol with a new one from a specified finite

tape alphabet, moving the head left or right, and changing state. Like an fsa, a TM can

be viewed as an acceptor. The language accepted by a TM M , denoted L(M), consists

of the words w such that, on input w, M halts in an accepting state. Alternatively, one

can view TM as a generator of words. The TM starts on empty input. To indicate that

some word of interest has been generated, the TM goes into some specified state and then

continues. Typically, this is a nonterminating computation generating an infinite language.

The set of words so generated by some TM M is denoted G(M). Finally, TMs can also

be viewed as computing a function from input to output. A TM M computes a partial

mapping f from #∗ to #∗ if for each w ∈ #∗: (1) if w is in the domain of f , then M

halts on input w with the tape containing the word f (w); (2) otherwise M does not halt on

input w.

A function f from #∗ to #∗ is computable iff there exists some TM computing it.

Church’s thesis states that any function computable by some reasonable computing device

is also computable in the aforementioned sense. So the definition of computability by TMs

is robust. In particular, it is insensitive to many variations in the definition of TM, such

as allowing multiple tapes. A particularly important variation allows for nondeterminism,

similar to nondeterministic fsa. In a nondeterministic TM (NTM), there can be a choice of

moves at each step. Thus an NTM has several possible computations on a given input (of

which some may be terminating and others not). A word w is accepted by an NTM M if

there exists at least one computation of M on w halting in an accepting state.

Another useful variation of the Turing machine is the counter machine. Instead of a

tape, the counter machine has two stacks on which elements can be pushed or popped.

The machine can only test for emptiness of each stack. Counter machines can also define

all computable functions. An essentially equivalent and useful formulation of this fact is

that the language with integer variables i, j, . . . , two instructions increment(i) and decre-

ment(i), and a looping construct while i > 0 do, can define all computable functions on the

integers.

Of course, we are often interested in functions on domains other than words—integers

are one example. To talk about the computability of such functions on other domains, one

goes through an encoding in which each element d of the domain is represented as a word
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enc(d) on some fixed, finite alphabet. Given that encoding, it is said that f is computable if

the function enc(f )mapping enc(d) to enc(f (d)) is computable. This often works without

problems, but occasionally it raises tricky issues that are discussed in a few places of this

book (particularly in Part E).

It can be shown that a language is L(M) for some acceptor TM M iff it is G(M)

for some generator TM M . A language is recursively enumerable (r.e.) iff it is L(M) [or

G(M)] for some TM M . L being r.e. means that there is an algorithm that is guaranteed to

say eventually yes on input w if w ∈ L but may run forever if w �∈ L (if it stops, it says no).

Thus one can never know for sure if a word is not in L.

Informally, saying that L is recursive means that there is an algorithm that always

decides in finite time whether a given word is in L. If L= L(M) and M always halts, L is

recursive. A language whose complement is r.e. is called co-r.e. The following useful facts

can be shown:

1. If L is r.e. and co-r.e., then it is recursive.

2. L is r.e. iff it is the domain of a computable function.

3. L is r.e. iff it is the range of a computable function.

4. L is recursive iff it is the range of a computable nondecreasing function.1

As is the case for computability, the notion of recursive is used in many contexts that

do not explicitly involve languages. Suppose we are interested in some class of objects

called thing-a-ma-jigs. Among these, we want to distinguish widgets, which are those

thing-a-ma-jigs with some desirable property. It is said that it is decidable if a given thing-

a-ma-jig is a widget if there is an algorithm that, given a thing-a-ma-jig, decides in finite

time whether the given thing-a-ma-jig is a widget. Otherwise the property is undecidable.

Formally, thing-a-ma-jigs are encoded as words over some finite alphabet. The property of

being a widget is decidable iff the language of words encoding widgets is recursive.

We mention a few classical undecidable problems. The halting problem asks if a given

TM M halts on a specified input w. This problem is undecidable (i.e., there is no algorithm

that, given the description of M and the input w, decides in finite time if M halts on w).

More generally it can be shown that, in some precise sense, all nontrivial questions about

TMs are undecidable (this is formalized by Rice’s theorem). A more concrete undecidable

problem, which is useful in proofs, is the Post correspondence problem (PCP). The input

to the PCP consists of two lists

u1, . . . , un; v1, . . . , vn;

of words over some alphabet # with at least two symbols. A solution to the PCP is a

sequence of indexes i1, . . . , ik, 1≤ ij ≤ n, such that

ui1 . . . uik = vi1 . . . vik.

1 f is nondecreasing if |f (w)| ≥ |w| for each w.



2.2 Languages, Computability, and Complexity 17

The question of interest is whether there is a solution to the PCP. For example, consider the

input to the PCP problem:

u1 u2 u3 u4 v1 v2 v3 v4

aba bbb aab bb a aaa abab babba.

For this input, the PCP has the solution 1, 4, 3, 1; because

u1u4u3u1 = ababbaababa = v1v4v3v1.

Now consider the input consisting of just u1, u2, u3 and v1, v2, v3. An easy case analysis

shows that there is no solution to the PCP for this input. In general, it has been shown that

it is undecidable whether, for a given input, there exists a solution to the PCP.

The PCP is particularly useful for proving the undecidability of other problems. The

proof technique consists of reducing the PCP to the problem of interest. For example,

suppose we are interested in the question of whether a given thing-a-ma-jig is a widget.

The reduction of the PCP to the widget problem consists of finding a computable mapping

f that, given an input i to the PCP, produces a thing-a-ma-jig f (i) such that f (i) is a

widget iff the PCP has a solution for i. If one can find such a reduction, this shows that it

is undecidable if a given thing-a-ma-jig is a widget. Indeed, if this were decidable then one

could find an algorithm for the PCP: Given an input i to the PCP, first construct the thing-

a-ma-jig f (i), and then apply the algorithm deciding if f (i) is a widget. Because we know

that the PCP is undecidable, the property of being a widget cannot be decidable. Of course,

any other known undecidable problem can be used in place of the PCP.

A few other important undecidable problems are mentioned in the review of context-

free grammars.

Complexity

Suppose a particular problem is solvable. Of course, this does not mean the problem has a

practical solution, because it may be prohibitively expensive to solve it. Complexity theory

studies the difficulty of problems. Difficulty is measured relative to some resources of

interest, usually time and space. Again the usual model of reference is the TM. SupposeL is

a recursive language, accepted by a TMM that always halts. Let f be a function on positive

integers. M is said to use time bounded by f if on every input w, M halts in at most f (|w|)
steps. M uses space bounded by f if the amount of tape used by M on every input w is at

most f (|w|). The set of recursive languages accepted by TMs using time (space) bounded

by f is denoted TIME(f ) (SPACE(f )). Let F be a set of functions on positive integers.

Then TIME(F) =
⋃

f∈F TIME(f ), and SPACE(F) =
⋃

f∈F SPACE(f ). A particularly

important class of bounding functions is the polynomials Poly. For this class, the following

notation has emerged: TIME(Poly) is denoted ptime, and SPACE(Poly) is denoted pspace.

Membership in the class ptime is often regarded as synonymous to tractability (although,

of course, this is not reasonable in all situations, and a case-by-case judgment should be

made). Besides the polynomials, it is of interest to consider lower bounds, like logarithmic

space. However, because the input itself takes more than logarithmic space to write down, a
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separation of the input tape from the tape used throughout the computation must be made.

Thus the input is given on a read-only tape, and a separate worktape is added. Now let

logspace consist of the recursive languages L that are accepted by some such TM using

on input w an amount of worktape bounded by c × log(|w|) for some constant c.

Another class of time-bounding functions we shall use is the so-called elementary

functions. They consist of the set of functions

Hyp= {hypi | i ≥ 0}, where
hyp0(n)= n

hypi+1(n)= 2hypi(n).

The elementary languages are those in TIME(Hyp).

Nondeterministic TMs can be used to define complexity classes as well. An NTM

uses time bounded by f if all computations on input w halt after at most f (|w|) steps. It

uses space bounded by f if all computations on input w use at most f (|w|) space (note

that termination is not required). The set of recursive languages accepted by some NTM

using time bounded by a polynomial is denoted np, and space bounded by a polynomial

is denoted by npspace. Are nondeterministic classes different from their deterministic

counterparts? For polynomial space, Savitch’s theorem settles the question by showing

that pspace = npspace (the theorem actually applies to a much more general class of space

bounds). For time, things are more complicated. Indeed, the question of whether ptime

equals np is the most famous open problem in complexity theory. It is generally conjectured

that the two classes are distinct.

The following inclusions hold among the complexity classes described:

logspace⊆ ptime⊆ np⊆ pspace⊂ TIME(Hyp)= SPACE(Hyp).

All nonstrict inclusions are conjectured to be strict.

Complexity classes of languages can be extended, in the same spirit, to complexity

classes of computable functions. Here we look at the resources needed to compute the

function rather than just accepting or rejecting the input word.

Consider some complexity class, sayC = TIME(F). Such a class contains all problems

that can be solved in time bounded by some function in F . This is an upper bound, so

C clearly contains some easy and some hard problems. How can the hard problems be

distinguished from the easy ones? This is captured by the notion of completeness of a

problem in a complexity class. The idea is as follows: A language K in C is complete

in C if solving it allows solving all other problems in C, also within C. This is formalized

by the notion of reduction. Let L and K be languages in C. L is reducible to K if there

is a computable mapping f such that for each w, w ∈ L iff f (w) ∈K . The definition of

reducibility so far guarantees that solving K allows solving L. How about the complexity?

Clearly, if the reduction f is hard then we do not have an acceptance algorithm in C.

Therefore the complexity of f must be bounded. It might be tempting to use C as the

bound. However, this allows all the work of solving L within the reduction, which really

makes K irrelevant. Therefore the definition of completeness in a class C requires that the

complexity of the reduction function be lower than that for C. More formally, a recursive
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language is complete in C by C′ reductions if for each L ∈ C there is a function f in C′

reducing L to K . The class C′ is often understood for some of the main classes C. The

conventions we will use are summarized in the following table:

Type of Completeness Type of Reduction

p completeness logspace reductions

np completeness ptime reductions

pspace completeness ptime reductions

Note that to prove that a problem L is complete in C by C′ reductions, it is sufficient

to exhibit another problem K that is known to be complete in C by C′ reductions, and a C′

reduction from K to L. Because the C′-reducibility relation is transitive for all customarily

used C′, it then follows that L is itself C complete by C′ reductions. We mention next a

few problems that are complete in various classes.

One of the best-known np-complete problems is the so-called 3-satisfiability (3-SAT)

problem. The input is a propositional formula in conjunctive normal form, in which each

conjunct has at most three literals. For example, such an input might be

(¬x1 ∨ ¬x4 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4) ∧ (¬x4 ∨ x3 ∨ ¬x1).

The question is whether the formula is satisfiable. For example, the preceding formula

is satisfied with the truth assignment ξ(x1) = ξ(x2) = false, ξ(x3) = ξ(x4) = true. (See

Section 2.3 for the definitions of propositional formula and related notions.)

A useful pspace-complete problem is the following. The input is a quantified propo-

sitional formula (all variables are quantified). The question is whether the formula is true.

For example, an input to the problem is

∃x1∀x2∀x3∃x4[(¬x1 ∨ ¬x4 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4) ∧ (¬x4 ∨ x3 ∨ ¬x1)].

A number of well-known games, such as GO, have been shown to be pspace complete.

For ptime completeness, one can use a natural problem related to context-free gram-

mars (defined next). The input is a context-free grammar G and the question is whether

L(G) is empty.

Context-Free Grammars

We have discussed specification of languages using two kinds of acceptors: fsa and TM.

Context-free grammars (CFGs) provide different approach to specifying a language that

emphasizes the generation of the words in the language rather than acceptance. (Nonethe-

less, this can be turned into an accepting mechanism by parsing.) A CFG is a 4-tuple

〈N,#, S, P 〉, where

• N is a finite set of nonterminal symbols;

• # is a finite alphabet of terminal symbols, disjoint from N ;
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• S is a distinguished symbol of N , called the start symbol;

• P is a finite set of productions of the form ξ → w, where ξ ∈N and w ∈ (N ∪#)∗.

A CFG G = 〈N,#, S, P 〉 defines a language L(G) consisting of all words in #∗ that

can be derived from S by repeated applications of the productions. An application of the

production ξ → w to a word v containing ξ consists of replacing one occurrence of ξ by

w. If u is obtained by applying a production to some word v, this is denoted by u⇒ v, and

the transitive closure of⇒ is denoted ∗⇒. Thus L(G)= {w | w ∈#∗, S ∗⇒ w}. A language

is called context free if it is L(G) for some CFG G. For example, consider the grammar

〈{S}, {a, b}, S, P 〉, where P consists of the two productions

S→ ǫ,

S→ aSb.

Then L(G) is the language {anbn | n ≥ 0}. For example the following is a derivation of

a2b2:

S⇒ aSb⇒ a2Sb2 ⇒ a2b2.

The specification power of CFGs lies between that of fsa’s and that of TMs. First,

all regular languages are context free and all context-free languages are recursive. The

language {anbn | n≥ 0} is context free but not regular. An example of a recursive language

that is not context free is {anbncn | n ≥ 0}. The proof uses an extension to context-free

languages of the pumping lemma for regular languages. We also use a similar technique in

some of the proofs.

The most common use of CFGs in the area of databases is to view certain objects as

CFGs and use known (un)decidability properties about CFGs. Some questions about CFGs

known to be decidable are (1) emptiness [is L(G) empty?] and (2) finiteness [is L(G)

finite?]. Some undecidable questions are (3) containment [is it true that L(G1)⊆ L(G2)?]

and (4) equality [is it true that L(G1)= L(G2)?].

2.3 Basics from Logic

The field of mathematical logic is a main foundation for database theory. It serves as the

basis for languages for queries, deductive databases, and constraints. We briefly review the

basic notions and notations of mathematical logic and then mention some key differences

between this logic in general and the specializations usually considered in database theory.

The reader is referred to [EFT84, End72] for comprehensive introductions to mathematical

logic, and to the chapter [Apt91] in [Lee91] and [Llo87] for treatments of Herbrand models

and logic programming.

Although some previous knowledge of logic would help the reader understand the

content of this book, the material is generally self-contained.
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Propositional Logic

We begin with the propositional calculus. For this we assume an infinite set of proposi-

tional variables, typically denoted p, q, r, . . . , possibly with subscripts. We also permit

the special propositional constants true and false. (Well-formed) propositional formulas

are constructed from the propositional variables and constants, using the unary connective

negation (¬) and the binary connectives disjunction (∨), conjunction (∧), implication (→),

and equivalence (↔). For example, p, (p ∧ (¬q)) and ((p ∨ q)→ p) are well-formed

propositional formulas. We generally omit parentheses if not needed for understanding a

formula.

A truth assignment for a set V of propositional variables is a function ξ : V →
{true, false}. The truth value ϕ[ξ ] of a propositional formula ϕ under truth assignment ξ

for the variables occurring in ϕ is defined by induction on the structure of ϕ in the natural

manner. For example,

• true[ξ ]= true;

• if ϕ = p for some variable p, then ϕ[ξ ]= ξ(p);

• if ϕ = (¬ψ) then ϕ[ξ ]= true iff ψ[ξ ]= false;

• (ψ1 ∨ ψ2)[ξ ]= true iff at least one of ψ1[ξ ]= true or ψ2[ξ ]= true.

If ϕ[ξ ]= true we say that ϕ[ξ ] is true and that ϕ is true under ξ (and similarly for false).

A formula ϕ is satisfiable if there is at least one truth assignment that makes it true,

and it is unsatisfiable otherwise. It is valid if each truth assignment for the variables in ϕ

makes it true. The formula (p ∨ q) is satisfiable but not valid; the formula (p ∧ (¬p)) is

unsatisfiable; and the formula (p ∨ (¬p)) is valid.

A formula ϕ logically implies formula ψ (or ψ is a logical consequence of ϕ), denoted

ϕ |= ψ if for each truth assignment ξ , if ϕ[ξ ] is true, then ψ[ξ ] is true. Formulas ϕ and ψ

are (logically) equivalent, denoted ϕ ≡ ψ , if ϕ |= ψ and ψ |= ϕ.

For example, (p ∧ (p→ q)) |= q. Many equivalences for propositional formulas are

well known. For example,

(ϕ1 → ϕ2)≡ ((¬ϕ1) ∨ ϕ2); ¬(ϕ1 ∨ ϕ2)≡ (¬ϕ1 ∧ ¬ϕ2);

(ϕ1 ∨ ϕ2) ∧ ϕ3 ≡ (ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3); ϕ1 ∧ ¬ϕ2 ≡ ϕ1 ∧ (ϕ1 ∧ ¬ϕ2);

(ϕ1 ∨ (ϕ2 ∨ ϕ3))≡ ((ϕ1 ∨ ϕ2) ∨ ϕ3).

Observe that the last equivalence permits us to view ∨ as a polyadic connective. (The same

holds for ∧.)

A literal is a formula of the form p or ¬p (or true or false) for some propositional

variable p. A propositional formula is in conjunctive normal form (CNF) if it has the form

ψ1 ∧ · · · ∧ ψn, where each formula ψi is a disjunction of literals. Disjunctive normal form

(DNF) is defined analogously. It is known that if ϕ is a propositional formula, then there

is some formula ψ equivalent to ϕ that is in CNF (respectively DNF). Note that if ϕ is in

CNF (or DNF), then a shortest equivalent formula ψ in DNF (respectively CNF) may have

a length exponential in the length of ϕ.



22 Theoretical Background

First-Order Logic

We now turn to first-order predicate calculus. We indicate the main intuitions and concepts

underlying first-order logic and describe the primary specializations typically made for

database theory. Precise definitions of needed portions of first-order logic are included in

Chapters 4 and 5.

First-order logic generalizes propositional logic in several ways. Intuitively, proposi-

tional variables are replaced by predicate symbols that range over n-ary relations over an

underlying set. Variables are used in first-order logic to range over elements of an abstract

set, called the universe of discourse. This is realized using the quantifiers ∃ and ∀. In ad-

dition, function symbols are incorporated into the model. The most important definitions

used to formalize first-order logic are first-order language, interpretation, logical implica-

tion, and provability.

Each first-order language L includes a set of variables, the propositional connectives,

the quantifiers ∃ and ∀, and punctuation symbols “)”, “(”, and “,”. The variation in first-

order languages stems from the symbols they include to represent constants, predicates,

and functions. More formally, a first-order language includes

(a) a (possibly empty) set of constant symbols;

(b) for each n≥ 0 a (possibly empty) set of n-ary predicate symbols;

(c) for each n≥ 1 a (possibly empty) set of n-ary function symbols.

In some cases, we also include

(d) the equality symbol ≈, which serves as a binary predicate symbol,

and the propositional constants true and false. It is common to focus on languages that are

finite, except for the set of variables.

A familiar first-order language is the language LN of the nonnegative integers, with

(a) constant symbol 0;

(b) binary predicate symbol ≤;

(c) binary function symbols +,×, and unary S (successor);

and the equality symbol.

Let L be a first-order language. Terms of L are built in the natural fashion from con-

stants, variables, and the function symbols. An atom is either true, false, or an expres-

sion of the form R(t1, . . . , tn), where R is an n-ary predicate symbol and t1, . . . , tn are

terms. Atoms correspond to the propositional variables of propositional logic. If the equal-

ity symbol is included, then atoms include expressions of the form t1 ≈ t2. The family

of (well-formed predicate calculus) formulas over L is defined recursively starting with

atoms, using the Boolean connectives, and using the quantifiers as follows: If ϕ is a for-

mula and x a variable, then (∃xϕ) and (∀xϕ) are formulas. As with the propositional case,

parentheses are omitted when understood from the context. In addition, ∨ and∧ are viewed

as polyadic connectives. A term or formula is ground if it involves no variables.

Some examples of formulas in LN are as follows:
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∀x(0 ≤ x), ¬(x ≈ S(x)),

¬∃x(∀y(y ≤ x)), ∀y∀z(x ≈ y × z→ (y ≈ S(0) ∨ z≈ S(0))).

(For some binary predicates and functions, we use infix notation.)

The notion of the scope of quantifiers and of free and bound occurrences of variables

in formulas is now defined using recursion on the structure. Each variable occurrence in an

atom is free. If ϕ is (ψ1 ∨ ψ2), then an occurrence of variable x in ϕ is free if it is free as

an occurrence of ψ1 or ψ2; and this is extended to the other propositional connectives. If ϕ

is ∃yψ , then an occurrence of variable x �= y is free in ϕ if the corresponding occurrence is

free in ψ . Each occurrence of y is bound in ϕ. In addition, each occurrence of y in ϕ that is

free in ψ is said to be in the scope of ∃y at the beginning of ϕ. A sentence is a well-formed

formula that has no free variable occurrences.

Until now we have not given a meaning to the symbols of a first-order language and

thereby to first-order formulas. This is accomplished with the notion of interpretation,

which corresponds to the truth assignments of the propositional case. Each interpretation

is just one of the many possible ways to give meaning to a language.

An interpretation of a first-order language L is a 4-tuple I = (U, C,P,F) where U

is a nonempty set of abstract elements called the universe (of discourse), and C, P , and F

give meanings to the sets of constant symbols, predicate symbols, and function symbols.

For example, C is a function from the constant symbols into U , and P maps each n-ary

predicate symbol p into an n-ary relation over U (i.e., a subset of Un). It is possible for

two distinct constant symbols to map to the same element of U .

When the equality symbol denoted ≈ is included, the meaning associated with it

is restricted so that it enjoys properties usually associated with equality. Two equivalent

mechanisms for accomplishing this are described next.

Let I be an interpretation for language L. As a notational shorthand, if c is a constant

symbol in L, we use cI to denote the element of the universe associated with c by I. This

is extended in the natural way to ground terms and atoms.

The usual interpretation for the language LN is IN, where the universe is N; 0 is

mapped to the number 0; ≤ is mapped to the usual less than or equal relation; S is mapped

to successor; and + and × are mapped to addition and multiplication. In such cases, we

have, for example, [S(S(0)+ 0))]IN ≈ 2.

As a second example related to logic programming, we mention the family of Her-

brand interpretations ofLN. Each of these shares the same universe and the same mappings

for the constant and function symbols. An assignment of a universe, and for the constant

and function symbols, is called a preinterpretation. In the Herbrand preinterpretation for

LN, the universe, denoted ULN
, is the set containing 0 and all terms that can be constructed

from this using the function symbols of the language. This is a little confusing because the

terms now play a dual role—as terms constructed from components of the language L, and

as elements of the universe ULN
. The mapping C maps the constant symbol 0 to 0 (consid-

ered as an element of ULN
). Given a term t in U , the function F(S) maps t to the term S(t).

Given terms t1 and t2, the function F(+) maps the pair (t1, t2) to the term+(t1, t2), and the

function F(×) is defined analogously.

The set of ground atoms of LN (i.e., the set of atoms that do not contain variables)

is sometimes called the Herbrand base of LN. There is a natural one-one correspondence
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between interpretations of LN that extend the Herbrand preinterpretation and subsets of

the Herbrand base of LN. One Herbrand interpretation of particular interest is the one

that mimics the usual interpretation. In particular, this interpretation maps ≤ to the set

{(t1, t2) | (t
IN

1 , t
IN

2 ) ∈ ≤IN}.
We now turn to the notion of satisfaction of a formula by an interpretation. The

definition is recursive on the structure of formulas; as a result we need the notion of variable

assignment to accommodate variables occurring free in formulas. Let L be a language and

I an interpretation of L with universe U . A variable assignment for formula ϕ is a partial

function µ : variables of L→ U whose domain includes all variables free in ϕ. For terms t ,

tI,µ denotes the meaning given to t by I, using µ to interpret the free variables. In addition,

if µ is a variable assignment, x is a variable, and u ∈ U , then µ[x/u] denotes the variable

assignment that is identical to µ, except that it maps x to u. We write I |= ϕ[µ] to indicate

that I satisfies ϕ under µ. This is defined recursively on the structure of formulas in the

natural fashion. To indicate the flavor of the definition, we note that I |= p(t1, . . . , tn)[µ] if

(t
I,µ
1 , . . . , t

I,µ
n ) ∈ pI; I |= ∃xψ[µ] if there is some u ∈ U such that I |= ψ[µ[x/u]]; and

I |= ∀xψ[µ] if for each u ∈ U , I |= ψ[µ[x/u]]. The Boolean connectives are interpreted

in the usual manner. If ϕ is a sentence, then no variable assignment needs to be specified.

For example, IN |= ∀x∃y(¬(x ≈ y) ∨ x ≤ y); IN �|= S(0)≤ 0; and

IN |= ∀y∀z(x ≈ y × z→ (y ≈ S(0) ∨ z≈ S(0)))[µ]

iff µ(x) is 1 or a prime number.

An interpretation I is a model of a set 7 of sentences if I satisfies each formula in 7.

The set 7 is satisfiable if it has a model.

Logical implication and equivalence are now defined analogously to the propositional

case. Sentence ϕ logically implies sentence ψ , denoted ϕ |= ψ , if each interpretation that

satisfies ϕ also satisfies ψ . There are many straightforward equivalences [e.g., ¬(¬ϕ)≡ ϕ

and ¬∀xϕ ≡ ∃x¬ϕ]. Logical implication is generalized to sets of sentences in the natural

manner.

It is known that logical implication, considered as a decision problem, is not recursive.

One of the fundamental results of mathematical logic is the development of effective

procedures for determining logical equivalence. These are based on the notion of proofs,

and they provide one way to show that logical implication is r.e. One style of proof,

attributed to Hilbert, identifies a family of inference rules and a family of axioms. An

example of an inference rule is modus ponens, which states that from formulas ϕ and

ϕ→ ψ we may conclude ψ . Examples of axioms are all tautologies of propositional logic

[e.g., ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ) for all formulas ϕ and ψ], and substitution (i.e., ∀xϕ→
ϕxt , where t is an arbitrary term and ϕxt denotes the formula obtained by simultaneously

replacing all occurrences of x free in ϕ by t). Given a family of inference rules and axioms,

a proof that set 7 of sentences implies sentence ϕ is a finite sequence ψ0, ψ1, . . . , ψn = ϕ,

where for each i, either ψi is an axiom, or a member of 7, or it follows from one or more

of the previous ψj ’s using an inference rule. In this case we write 7 ⊢ ϕ.

The soundness and completeness theorem of Gödel shows that (using modus ponens

and a specific set of axioms) 7 |= ϕ iff 7 ⊢ ϕ. This important link between |= and ⊢
permits the transfer of results obtained in model theory, which focuses primarily on in-
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terpretations and models, and proof theory, which focuses primarily on proofs. Notably,

a central issue in the study of relational database dependencies (see Part C) has been the

search for sound and complete proof systems for subsets of first-order logic that correspond

to natural families of constraints.

The model-theoretic and proof-theoretic perspectives lead to two equivalent ways of

incorporating equality into first-order languages. Under the model-theoretic approach, the

equality predicate ≈ is given the meaning {(u, u) | u ∈ U} (i.e., normal equality). Under

the proof-theoretic approach, a set of equality axioms EQL is constructed that express the

intended meaning of ≈. For example, EQL includes the sentences ∀x, y, z(x ≈ y ∧ y ≈
z→ x ≈ z) and ∀x, y(x ≈ y→ (R(x)↔ R(y)) for each unary predicate symbol R.

Another important result from mathematical logic is the compactness theorem, which

can be demonstrated using Gödel’s soundness and completeness result. There are two

common ways of stating this. The first is that given a (possibly infinite) set of sentences

7, if 7 |= ϕ then there is a finite 7′ ⊆7 such that 7′ |= ϕ. The second is that if each finite

subset of 7 is satisfiable, then 7 is satisfiable.

Note that although the compactness theorem guarantees that the 7 in the preceding

paragraph has a model, that model is not necessarily finite. Indeed, 7 may only have

infinite models. It is of some solace that, among those infinite models, there is surely at least

one that is countable (i.e., whose elements can be enumerated: a1, a2, . . .). This technically

useful result is the Löwenheim-Skolem theorem.

To illustrate the compactness theorem, we show that there is no set 9 of sentences

defining the notion of connectedness in directed graphs. For this we use the language L

with two constant symbols, a and b, and one binary relation symbol R, which corresponds

to the edges of a directed graph. In addition, because we are working with general first-

order logic, both finite and infinite graphs may arise. Suppose now that 9 is a set of

sentences that states that a and b are connected (i.e., that there is a directed path from

a to b in R). Let # = {σi | i > 0}, where σi states “a and b are at least i edges apart from

each other.” For example, σ3 might be expressed as

¬R(a, b) ∧ ¬∃x1(R(a, x1) ∧ R(x1, b)).

It is clear that each finite subset of 9 ∪# is satisfiable. By the compactness theorem

(second statement), this implies that 9 ∪# is satisfiable, so it has a model (say, I). In I,

there is no directed path between (the elements of the universe identified by) a and b, and

so I �|=9. This is a contradiction.

Specializations to Database Theory

We close by mentioning the primary differences between the general field of mathematical

logic and the specializations made in the study of database theory. The most obvious

specialization is that database theory has not generally focused on the use of functions

on data values, and as a result it generally omits function symbols from the first-order

languages used. The two other fundamental specializations are the focus on finite models

and the special use of constant symbols.

An interpretation is finite if its universe of discourse is finite. Because most databases



26 Theoretical Background

are finite, most of database theory is focused exclusively on finite interpretations. This is

closely related to the field of finite model theory in mathematics.

The notion of logical implication for finite interpretations, usually denoted |=fin, is

not equivalent to the usual logical implication |=. This is most easily seen by considering

the compactness theorem. Let 7 = {σi | i > 0}, where σi states that there are at least i

distinct elements in the universe of discourse. Then by compactness, 7 �|= false, but by the

definition of finite interpretation, 7 |=fin false.

Another way to show that |= and |=fin are distinct uses computability theory. It is

known that |= is r.e. but not recursive, and it is easily seen that |=fin is co-r.e. Thus if they

were equal, |= would be recursive, a contradiction.

The final specialization of database theory concerns assumptions made about the uni-

verse of discourse and the use of constant symbols. Indeed, throughout most of this book

we use a fixed, countably infinite set of constants, denoted dom (for domain elements).

Furthermore, the focus is almost exclusively on finite Herbrand interpretations over dom.

In particular, for distinct constants c and c′, all interpretations that are considered satisfy

¬c ≈ c′.

Most proofs in database theory involving the first-order predicate calculus are based

on model theory, primarily because of the emphasis on finite models and because the link

between |=fin and ⊢ does not hold. It is thus informative to identify a mechanism for

using traditional proof-theoretic techniques within the context of database theory. For this

discussion, consider a first-order language with set dom of constant symbols and predicate

symbols R1, . . . , Rn. As will be seen in Chapter 3, a database instance is a finite Herbrand

interpretation I of this language. Following [Rei84], a family #I of sentences is associated

with I. This family includes the axioms of equality (mentioned earlier) and

Atoms: Ri($a) for each $a in RI
i .

Extension axioms: ∀$x(Ri($x)↔ ($x ≈ $a1 ∨ · · · ∨ $x ≈ $am)), where $a1, . . . , $am is a listing of

all elements of RI
i , and we are abusing notation by letting ≈ range over vectors of

terms.

Unique Name axioms: ¬c ≈ c′ for each distinct pair c, c′ of constants occurring in I.

Domain Closure axiom: ∀x(x ≈ c1 ∨ · · · ∨ x ≈ cn), where c1, . . . , cn is a listing of all

constants occurring in I.

A set of sentences obtained in this manner is termed an extended relational theory.

The first two sets of sentences of an extended relational theory express the specific

contents of the relations (predicate symbols) of I. Importantly, the Extension sentences en-

sure that for any (not necessarily Herbrand) interpretation J satisfying #I, an n-tuple is in

RJ
i iff it equals one of the n-tuples in RI

i . The Unique Name axiom ensures that no pair of

distinct constants is mapped to the same element in the universe of J , and the Domain Clo-

sure axiom ensures that each element of the universe of J equals some constant occurring

in I. For all intents and purposes, then, any interpretation J that models #I is isomorphic

to I, modulo condensing under equivalence classes induced by ≈J . Importantly, the fol-

lowing link with conventional logical implication now holds: For any set Ŵ of sentences,

I |= Ŵ iff #I ∪ Ŵ is satisfiable. The perspective obtained through this connection with clas-
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sical logic is useful when attempting to extend the conventional relational model (e.g., to

incorporate so-called incomplete information, as discussed in Chapter 19).

The Extension axioms correspond to the intuition that a tuple $a is in relation R only

if it is explicitly included in R by the database instance. A more general formulation of

this intuition is given by the closed world assumption (CWA) [Rei78]. In its most general

formulation, the CWA is an inference rule that is used in proof-theoretic contexts. Given

a set # of sentences describing a (possibly nonconventional) database instance, the CWA

states that one can infer a negated atom R($a) if # �⊢ R($a) [i.e., if one cannot prove R($a)
from # using conventional first-order logic]. In the case where # is an extended relational

theory this gives no added information, but in other contexts (such as deductive databases)

it does. The CWA is related in spirit to the negation as failure rule of [Cla78].
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Alice: What is a relation?

Vittorio: You studied that in math a long time ago.

Sergio: It is just a table.

Riccardo: But we have several ways of viewing it.

Adatabase model provides the means for specifying particular data structures, for con-

straining the data sets associated with these structures, and for manipulating the data.

The specification of structure and constraints is done using a data definition language

(DDL), and the specification of manipulation is done using a data manipulation language

(DML). The most prominent structures that have been used for databases to date are graphs

in the network, semantic, and object-oriented models; trees in the hierarchical model; and

relations in the relational model.

DMLs provide two fundamental capabilities: querying to support the extraction of data

from the current database; and updating to support the modification of the database state.

There is a rich theory on the topic of querying relational databases that includes several

languages based on widely different paradigms. This theory is the focus of Parts B, D,

and E, and portions of Part F of this book. The theory of database updates has received

considerably less attention and is touched on in Part F.

The term relational model is actually rather vague. As introduced in Codd’s seminal

article, this term refers to a specific data model with relations as data structures, an al-

gebra for specifying queries, and no mechanisms for expressing updates or constraints.

Subsequent articles by Codd introduced a second query language based on the predicate

calculus of first-order logic, showed this to be equivalent to the algebra, and introduced the

first integrity constraints for the relational model—namely, functional dependencies. Soon

thereafter, researchers in database systems implemented languages based on the algebra

and calculus, extended to include update operators and to include practically motivated

features such as arithmetic operators, aggregate operators, and sorting capabilities. Re-

searchers in database theory developed a number of variations on the algebra and calculus

with varying expressive power and adapted the paradigm of logic programming to provide

a third approach to querying relational databases. The story of integrity constraints for the

relational model is similar: A rich theory of constraints has emerged, and two distinct but

equivalent perspectives have been developed that encompass almost all of the constraints

that have been investigated formally. The term relational model has thus come to refer to

the broad class of database models that have relations as the data structure and that incor-

porate some or all of the query capabilities, update capabilities, and integrity constraints

28
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mentioned earlier. In this book we are concerned primarily with the relational model in

this broad sense.

Relations are simple data structures. As a result, it is easy to understand the concep-

tual underpinnings of the relational model, thus making relational databases accessible to

a broad audience of end users. A second advantage of this simplicity is that clean yet pow-

erful declarative languages can be used to manipulate relations. By declarative, we mean

that a query/program is specified in a high-level manner and that an efficient execution of

the program does not have to follow exactly its specification. Thus the important practical

issues of compilation and optimization of queries had to be overcome to make relational

databases a reality.

Because of its simplicity, the relational model has provided an excellent framework

for the first generation of theoretical research into the properties of databases. Fundamental

aspects of data manipulation and integrity constraints have been exposed and studied in a

context in which the peculiarities of the data model itself have relatively little impact. This

research provides a strong foundation for the study of other database models, first because

many theoretical issues pertinent to other models can be addressed effectively within the

relational model, and second because it provides a variety of tools, techniques, and research

directions that can be used to understand the other models more deeply.

In this short chapter, we present formal definitions for the data structure of the rela-

tional model. Theoretical research on the model has grown out of three different perspec-

tives, one corresponding most closely to the natural usage of relations in databases, another

stemming from mathematical logic, and the third stemming from logic programming. Be-

cause each of these provides important intuitive and notational benefits, we introduce no-

tation that encompasses the different but equivalent formulations reflecting each of them.

3.1 The Structure of the Relational Model

An example of a relational database is shown in Fig. 3.11. Intuitively, the data is represented

in tables in which each row gives data about a specific object or set of objects, and rows

with uniform structure and intended meaning are grouped into tables. Updates consist

of transformations of the tables by addition, removal, or modification of rows. Queries

allow the extraction of information from the tables. A fundamental feature of virtually all

relational query languages is that the result of a query is also a table or collection of tables.

We introduce now some informal terminology to provide the intuition behind the

formal definitions that follow. Each table is called a relation and it has a name (e.g.,

Movies). The columns also have names, called attributes (e.g, Title). Each line in a table is

a tuple (or record). The entries of tuples are taken from sets of constants, called domains,

that include, for example, the sets of integers, strings, and Boolean values. Finally we

distinguish between the database schema, which specifies the structure of the database;

and the database instance, which specifies its actual content. This is analogous to the

standard distinction between type and value found in programming languages (e.g., an

1 Pariscope is a weekly publication that lists the cultural events occurring in Paris and environs.
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Movies Title Director Actor

The Trouble with Harry Hitchcock Gwenn

The Trouble with Harry Hitchcock Forsythe

The Trouble with Harry Hitchcock MacLaine

The Trouble with Harry Hitchcock Hitchcock

· · · · · · · · ·

Cries and Whispers Bergman Andersson

Cries and Whispers Bergman Sylwan

Cries and Whispers Bergman Thulin

Cries and Whispers Bergman Ullman

Location Theater Address Phone Number

Gaumont Opéra 31 bd. des Italiens 47 42 60 33

Saint André des Arts 30 rue Saint André des Arts 43 26 48 18

Le Champo 51 rue des Ecoles 43 54 51 60

· · · · · · · · ·

Georges V 144 av. des Champs-Elysées 45 62 41 46

Les 7 Montparnassiens 98 bd. du Montparnasse 43 20 32 20

Pariscope Theater Title Schedule

Gaumont Opéra Cries and Whispers 20:30

Saint André des Arts The Trouble with Harry 20:15

Georges V Cries and Whispers 22:15

· · · · · · · · ·

Les 7 Montparnassiens Cries and Whispers 20:45

Figure 3.1: The CINEMA database

identifier X might have type record A : int, B : bool endrecord and value record A : 5,

B : true endrecord).

We now embark on the formal definitions. We assume that a countably infinite set att

of attributes is fixed. For a technical reason that shall become apparent shortly, we assume

that there is a total order ≤att on att. When a set U of attributes is listed, it is assumed that

the elements of U are written according to ≤att unless otherwise specified.

For most of the theoretical development, it suffices to use the same domain of values

for all of the attributes. Thus we now fix a countably infinite set dom (disjoint from att),

called the underlying domain. A constant is an element of dom. When different attributes

should have distinct domains, we assume a mapping Dom on att, where Dom(A) is a set

called the domain of A.
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We assume a countably infinite set relname of relation names disjoint from the pre-

vious sets. In practice, the structure of a table is given by a relation name and a set of

attributes. To simplify the notation in the theoretical treatment, we now associate a sort

(i.e., finite set of attributes) to each relation name. (An analogous approach is usually taken

in logic.) In particular, we assume that there is a function sort from relname to Pfin(att)

(the finitary powerset of att; i.e., the family of finite subsets of att). It is assumed that sort

has the property that for each (possibly empty) finite set U of attributes, sort−1(U) is infi-

nite. This allows us to use as many relation names of a given sort as desired. The sort of a

relation name is simply sort(R). The arity of a relation name R is arity(R)= |sort(R)|.
A relation schema is now simply a relation name R. We sometimes write this as R[U ]

to indicate that sort(R)= U , or R[n], to indicate that arity(R)= n. A database schema is a

nonempty finite set R of relation names. This might be written R = {R1[U1], . . . , Rn[Un]}
to indicate the relation schemas in R.

For example, the database schema CINEMA for the database shown in Fig. 3.1 is

defined by

CINEMA= {Movies, Location, Pariscope}

where relation names Movies, Location, and Pariscope have the following sorts:

sort(Movies) = {Title, Director, Actor}

sort(Location) = {Theater, Address, Phone Number}

sort(Pariscope)= {Theater, Title, Schedule}.

We often omit commas and set brackets in sets of attributes. For example, we may write

sort(Pariscope)= Theater Title Schedule.

The formalism that has emerged for the relational model is somewhat eclectic, be-

cause it is intimately connected with several other areas that have their own terminology,

such as logic and logic programming. Because the slightly different formalisms are well

entrenched, we do not attempt to replace them with a single, unified notation. Instead we

will allow the coexistence of the different notations; the reader should have no difficulty

dealing with the minor variations.

Thus there will be two forks in the road that lead to different but largely equivalent

formulations of the relational model. The first fork in the road to defining the relational

model is of a philosophical nature. Are the attribute names associated with different relation

columns important?

3.2 Named versus Unnamed Perspectives

Under the named perspective, these attributes are viewed as an explicit part of a database

schema and may be used (e.g., by query languages and dependencies). Under the unnamed
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perspective, the specific attributes in the sort of a relation name are ignored, and only the

arity of a relation schema is available (e.g., to query languages).

In the named perspective, it is natural to view tuples as functions. More precisely, a

tuple over a (possibly empty) finite set U of attributes (or over a relation schema R[U ])

is a total mapping u from U to dom. In this case, the sort of u is U , and it has arity |U |.
Tuples may be written in a linear syntax using angle brackets—for example, 〈A : 5, B : 3〉.
(In general, the order used in the linear syntax will correspond to ≤att, although that is not

necessary.) The unique tuple over ∅ is denoted 〈〉.
Suppose that u is a tuple overU . As usual in mathematics, the value of u on an attribute

A in U is denoted u(A). This is extended so that for V ⊆ U , u[V ] denotes the tuple v over

V such that v(A)= u(A) for each A ∈ V (i.e., u[V ]= u|V , the restriction of the function

u to V ).

With the unnamed perspective, it is more natural to view a tuple as an element of a

Cartesian product. More precisely, a tuple is an ordered n-tuple (n ≥ 0) of constants (i.e.,

an element of the Cartesian product domn). The arity of a tuple is the number of coordinates

that it has. Tuples in this context are also written with angle brackets (e.g., 〈5, 3〉). The ith

coordinate of a tuple u is denoted u(i). If relation name R has arity n, then a tuple over R

is a tuple with arity arity(R).

Because of the total order ≤att, there is a natural correspondence between the named

and unnamed perspectives. A tuple 〈A1 : a1, A2 : a2〉 (defined as a function) can be viewed

(assuming A1 ≤att A2) as an ordered tuple with (A1 : a1) as a first component and (A2 : a2)

as a second one. Ignoring the names, this tuple may simply be viewed as the ordered tuple

〈a1, a2〉. Conversely, the ordered tuple t = 〈a1, a2〉 may be interpreted as a function over

the set {1, 2} of integers with t (i)= ai for each i. This correspondence will allow us to blur

the distinction between the two perspectives and move freely from one to the other when

convenient.

3.3 Conventional versus Logic Programming Perspectives

We now come to the second fork in the road to defining the relational model. This fork

concerns how relation and database instances are viewed, and it is essentially independent

of the perspective taken on tuples. Under the conventional perspective, a relation or relation

instance of (or over) a relation schema R[U ] (or over a finite set U of attributes) is a

(possibly empty) finite set I of tuples with sort U . In this case, I has sort U and arity

|U |. Note that there are two instances over the empty set of attributes: {} and {〈〉}.
Continuing with the conventional perspective, a database instance of database schema

R is a mapping I with domain R, such that I(R) is a relation over R for each R ∈ R.

The other perspective for defining instances stems from logic programming. This

perspective is used primarily with the ordered-tuple perspective on tuples, and so we focus

on that here. Let R be a relation with arity n. A fact over R is an expression of the form

R(a1, . . . , an), where ai ∈ dom for i ∈ [1, n]. If u = 〈a1, . . . , an〉, we sometimes write

R(u) for R(a1, . . . , an). Under the logic-programming perspective, a relation (instance)

over R is a finite set of facts over R. For a database schema R, a database instance is a

finite set I that is the union of relation instances over R, for R ∈ R. This perspective on
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instances is convenient when working with languages stemming from logic programming,

and it permits us to write database instances in a convenient linear form.

The two perspectives provide alternative ways of describing essentially the same data.

For instance, assuming that sort(R) = AB and sort(S) = A, we have the following four

representations of the same database:

Named and Conventional

I (R)= {f1, f2, f3}
f1(A)= a f1(B)= b

f2(A)= c f2(B)= b

f3(A)= a f3(A)= a

I (S)= {g}
g(A)= d

Unnamed and Conventional

I (R)= {〈a, b〉, 〈c, b〉, 〈a, a〉}
I (S) = {〈d〉}

Named and Logic Programming

{R(A : a, B : b), R(A : c, B : b), R(A : a, B : a), S(A : d)}

Unnamed and Logic Programming

{R(a, b), R(c, b), R(a, a), S(d)}.

Because relations can be viewed as sets, it is natural to consider, given relations of the

same sort, the standard set operations union (∪), intersection (∩), and difference (−) and

the standard set comparators ⊂, ⊆, =, and �=. With the logic-programming perspective on

instances, we may also use these operations and comparators on database instances.

Essentially all topics in the theory of relational database can be studied using a fixed

choice for the two forks. However, there are some cases in which one perspective is much

more natural than the other or is technically much more convenient. For example, in a

context in which there is more than one relation, the named perspective permits easy and

natural specification of correspondences between columns of different relations whereas

the unnamed perspective does not. As will be seen in Chapter 4, this leads to different but

equivalent sets of natural primitive algebra operators for the two perspectives. A related

example concerns those topics that involve the association of distinct domains to different

relation columns; again the named perspective is more convenient. In addition, although

relational dependency theory can be developed for the unnamed perspective, the motivation

is much more natural when presented in the named perspective. Thus during the course

of this book the choice of perspective during a particular discussion will be motivated

primarily by the intuitive or technical convenience offered by one or the other.

In this book, we will need an infinite set var of variables that will be used to range

over elements of dom. We generalize the notion of tuple to permit variables in coordinate

positions: a free tuple over U or R[U ] is (under the named perspective) a function u from

U to var ∪ dom. An atom over R is an expression R(e1, . . . , en), where n= arity(R) and
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ei is term (i.e., ei ∈ var ∪ dom for each i ∈ [1, n]). Following the terminology of logic

and logic programming, we sometimes refer to a fact as a ground atom.

3.4 Notation

We generally use the following symbols, possibly with subscripts:

Constants a, b, c

Variables x, y

Sets of variables X, Y

Terms e

Attributes A,B,C

Sets of attributes U,V,W

Relation names (schemas) R, S;R[U ], S[V ]

Database schemas R, S

Tuples t, s

Free tuples u, v,w

Facts R(a1, . . . , an), R(t)

Atoms R(e1, . . . , en), R(u)

Relation instances I, J

Database instances I, J
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Alice: Shall we start asking queries?

Sergio: Very simple ones for the time being.

Riccardo: But the system will answer them fast.

Vittorio: And there is some nice theory.

In this chapter we embark on the study of queries for relational databases, a rich topic

that spans a good part of this book. This chapter focuses on a limited but extremely

natural and commonly arising class of queries called conjunctive queries. Five equivalent

versions of this query family are presented here: one from each of the calculus and datalog

paradigms, two from the algebra paradigm, and a final one that has a more visual form.

In the context of conjunctive queries, the three nonalgebraic versions can be viewed as

minor syntactic variants of each other; but these similarities diminish as the languages are

generalized to incorporate negation and/or recursion. This chapter also discusses query

composition and its interaction with user views, and it extends conjunctive queries in a

straightforward manner to incorporate union (or disjunction).

The conjunctive queries enjoy several desirable properties, including, for example,

decidability of equivalence and containment. These results will be presented in Chapter 6,

in which a basic tool, the Homomorphism Theorem, is developed. Most of these results

extend to conjunctive queries with union.

In the formal framework that we have developed in this book, we distinguish between

a query, which is a syntactic object, and a query mapping, which is the function defined by

a query interpreted under a specified semantics. However, we often blur these two concepts

when the meaning is clear from the context. In the relational model, query mappings

generally have as domain the family of all instances of a specified relation or database

schema, called the input schema; and they have as range the family of instances of an

output schema, which might be a database schema or a relation schema. In the latter case,

the relation name may be specified as part of the syntax of the query or by the context, or

it may be irrelevant to the discussion and thus not specified at all. We generally say that

a query (mapping) is from (or over) its input schema to its output schema. Finally, two

queries q1 and q2 over R are equivalent, denoted q1 ≡ q2, if they have the same output

schema and q1(I)= q2(I) for each instance I over R.

This chapter begins with an informal discussion that introduces a family of simple

queries and illustrates one approach to expressing them formally. Three versions of con-

junctive queries are then introduced, and all of them have a basis in logic. Then a brief

37
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(4.1) Who is the director of “Cries and Whispers”?

(4.2) Which theaters feature “Cries and Whispers”?

(4.3) What are the address and phone number of the Le Champo?

(4.4) List the names and addresses of theaters featuring a Bergman film.

(4.5) Is a film directed by Bergman playing in Paris?

(4.6) List the pairs of persons such that the first directed the second in a movie, and vice versa.

(4.7) List the names of directors who have acted in a movie they directed.

(4.8) List pairs of actors that acted in the same movie.

(4.9) On any input produce 〈“Apocalypse Now”, “Coppola”〉 as the answer.

(4.10) Where can I see “Annie Hall” or “Manhattan”?

(4.11) What are the films with Allen as actor or director?

(4.12) What films with Allen as actor or director are currently featured at the Concorde?

(4.13) List all movies that were directed by Hitchcock or that are currently playing at the Rex.

(4.14) List all actors and director of the movie “Apocalypse Now.”

Figure 4.1: Examples of conjunctive queries, some of which require union

digression is made to consider query composition and database views. The algebraic per-

spectives on conjunctive queries are then given, along with the theorem showing the equiv-

alence of all five approaches to conjunctive queries. Finally, various forms of union and

disjunction are added to the conjunctive queries.

4.1 Getting Started

To present the intuition of conjunctive queries, consider again the CINEMA database of

Chapter 3. The following correspond to conjunctive queries:

(4.1) Who is the director of “Cries and Whispers”?

(4.2) Which theaters feature “Cries and Whispers”?

(4.3) What are the address and phone number of the Le Champo?

These and other queries used in this section are gathered in Fig. 4.1. Each of the queries

just given calls for extracting information from a single relation. In contrast, queries (4.4)

through (4.7) involve more than one relation.

In queries (4.1–4.4 and 4.6–4.9), the database is asked to find values or tuples of values

for which a certain pattern of data holds in the database, and in query (4.5) the database is

asked whether a certain pattern of data holds. We shall see that the patterns can be described

simply in terms of the existence of tuples that are connected to each other by equality

of some of their coordinates. On the other hand, queries (4.10) through (4.14) cannot be

expressed in this manner unless some form of disjunction or union is incorporated.
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Example 4.1.1 Consider query (4.4). Intuitively, we express this query by stating that

if there are tuples r1, r2, r3 respectively in relations

Movies, Pariscope, Location such that

the Director in r1 is “Bergman”

and the Titles in tuple r1 and r2 are the same

and the Theaters in tuple r2 and r3 are the same

then we want the Theater and Address coordinates from tuple r3.

In this formulation we essentially use variables that range over tuples. Although this is the

basis of the so-called (relational) tuple calculus (see Exercise 5.23 in the next chapter),

the focus of most theoretical investigations has been on the domain calculus, which uses

variables that range over constants rather than tuples. This also reflects the convention

followed in the predicate calculus of first-order logic. Thus we reformulate the preceding

query as

if there are tuples 〈xt i, “Bergman”, xac〉, 〈xth, xt i, xs〉, and 〈xth, xad, xp〉,
respectively, in relations Movies, Pariscope, and Location

then include the tuple 〈Theater : xth, Address : xad〉 in the answer,

where xt i, xac, . . . are variables. Note that the equalities specified in the first formula-

tion are achieved implicitly in the second formulation through multiple occurrences of

variables.

The translation of this into the syntax of rule-based conjunctive queries is now ob-

tained by

ans(xth, xad)←Movies(xt i, “Bergman”, xac), Pariscope(xth, xt i, xs),

Location(xth, xad, xp)

where ans (for “answer”) is a relation over {Theater,Address}. The atom to the left of the

← is called the rule head, and the set of atoms to the right is called the body.

The preceding rule may be abbreviated as

ans(xth, xad)←Movies(xt i, “Bergman”, _), Pariscope(xth, xt i, _),

Location(xth, xad, _)

where _ is used to replace all variables that occur exactly once in the rule. Such variables

are sometimes called anonymous.

In general, a rule-based conjunctive query is a single rule that has the form illustrated

in the preceding example. The semantics associated with rule-based conjunctive queries

ensures that their interpretation corresponds to the more informal expressions given in the

preceding example. Rule-based conjunctive queries can be viewed as the basic building

block for datalog, a query language based on logic programming that provides an elegant

syntax for expressing recursion.

A second paradigm for the conjunctive queries has a more visual form and uses tables

with variables and constants. Although we present a more succinct formalism for this
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Movies Title Director Actor

_The Seventh Seal Bergman

Pariscope Title Schedule

_The Seventh Seal

Theater

_Rex

Location Address Phone number

P._1 bd. Poissonnière

Theater

P._Rex

Figure 4.2: A query in QBE

paradigm later in this chapter, we illustrate it in Fig. 4.2 with a query presented in the syntax

of the language Query-By-Example (QBE) (see also Chapter 7). The identifiers starting

with a _ designate variables, and P. indicates what to output. Following the convention

established for QBE, variable names are chosen to reflect typical values that they might

take. Note that the coordinate entries left blank correspond, in terms of the rule given

previously, to distinct variables that occur exactly once in the body and do not occur in

the head (i.e., to anonymous variables).

The third version of conjunctive queries studied in this chapter is a restriction of the

predicate calculus; as will be seen, the term conjunctive query stems from this version. The

fourth and fifth versions are algebraic in nature, one for the unnamed perspective and the

other for the named perspective.

4.2 Logic-Based Perspectives

In this section we introduce and study three versions of the conjunctive queries, all stem-

ming from mathematical logic. After showing the equivalence of the three resulting query

languages, we extend them by incorporating a capability to express equality explicity,

thereby yielding a slightly more powerful family of languages.

Rule-Based Conjunctive Queries

The rule-based version of conjunctive queries is now presented formally. As will be seen

later, the rule-based paradigm is well suited for specifying queries from database schemas

to database schemas. However, to facilitate the comparison between the different variants

of the conjunctive queries, we focus first on rule-based queries whose targets are relation

schemas. We adopt the convention of using the name ans to refer to the name of the target

relation if the name itself is unimportant (as is often the case with relational queries).
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Definition 4.2.1 Let R be a database schema. A rule-based conjunctive query over R

is an expression of the form

ans(u)← R1(u1), . . . , Rn(un)

where n ≥ 0, R1, . . . , Rn are relation names in R; ans is a relation name not in R; and

u, u1, . . . , un are free tuples (i.e., may use either variables or constants). Recall that if

v = 〈x1, . . . , xm〉, then ‘R(v)’ is a shorthand for ‘R(x1, . . . , xm)’. In addition, the tuples

u, u1, . . . , un must have the appropriate arities (i.e., u must have arity of ans, and ui must

have the arity of Ri for each i ∈ [1, n]). Finally, each variable occurring in u must also

occur at least once in u1, . . . , un. The set of variables occurring in q is denoted var(q).

Rule-based conjunctive queries are often more simply called rules. In the preceding

rule, the subexpression R1(u1), . . . , Rn(un) is the body of the rule, and ‘ans(u)’ is the

head. The rule here is required by the definition to be range restricted (i.e., each variable

occurring in the head must also occur in the body). Although this restriction is followed in

most of the languages based on the use of rules, it will be relaxed in Chapter 18.

Intuitively, a rule may be thought of as a tool for deducing new facts. If one can find

values for the variables of the rule such that the body holds, then one may deduce the

head fact. This concept of “values for the variables in the rules” is captured by the notion

of “valuation.” Formally, given a finite subset V of var, a valuation ν over V is a total

function ν from V to the set dom of constants. This is extended to be identity on dom and

then extended to map free tuples to tuples in the natural fashion.

We now define the semantics for rule-based conjunctive queries. Let q be the query

given earlier, and let I be an instance of R. The image of I under q is

q(I)= {ν(u) | ν is a valuation over var(q) and ν(ui) ∈ I(Ri),

for each i ∈ [1, n]}.

The active domain of a database instance I, denoted adom(I), is the set of all constants

occurring in I, and the active domain adom(I ) of relation instance I is defined analogously.

In addition, the set of constants occurring in a query q is denoted adom(q). We use

adom(q, I) as an abbreviation for adom(q) ∪ adom(I).

Let q be a rule and I an input instance for q. Because q is range restricted, it is easily

verified that adom(q(I)) ⊆ adom(q, I) (see Exercise 4.2). In other words, q(I) contains

only constants occurring in q or in I. In particular, q(I) is finite, and so it is an instance.

A straightforward algorithm for evaluating a rule q is to consider systematically all

valuations with domain the set of variables occurring in q, and range the set of all constants

occurring in the input or q. More efficient algorithms may be achieved, both by performing

symbolic manipulations of the query and by using auxiliary data structures such as indexes.

Such improvements are considered in Chapter 6.

Returning to the intuition, under the usual perspective a fundamental difference be-

tween the head and body of a rule R0 ← R1, . . . , Rn is that body relations are viewed as

being stored, whereas the head relation is not. Thus, referring to the rule given earlier, the

values of relations R1, . . . , Rn are known because they are provided by the input instance
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I. In other words, we are given the extension of R1, . . . , Rn; for this reason they are called

extensional relations. In contrast, relation R0 is not stored and its value is computed on

request by the query; the rule gives only the “intension” or definition of R0. For this reason

we refer to R0 as an intensional relation. In some cases, the database instance associated

with R1, . . . , Rn is called the extensional database (edb), and the rule itself is referred to

as the intensional database (idb). Also, the defined relation is sometimes referred to as an

idb relation.

We now present the first theoretical property of conjunctive queries. A query q over R

is monotonic if for each I, J over R, I⊆ J implies that q(I)⊆ q(J). A query q is satisfiable

if there is some input I such that q(I) is nonempty.

Proposition 4.2.2 Conjunctive queries are monotonic and satisfiable.

Proof Let q be the rule-based conjunctive query

ans(u)← R1(u1), . . . , Rn(un).

For monotonicity, let I ⊆ J, and suppose that t ∈ q(I). Then for some valuation ν over

var(q), ν(ui) ∈ I(Ri) for each i ∈ [1, n], and t = ν(u). Because I ⊆ J, ν(ui) ∈ J(Ri) for

each i, and so t ∈ q(J).
For satisfiability, let d be the set of constants occurring in q, and let a ∈ dom be new.

Define I over the relation schemas R of the rule body so that

I(R)= (d ∪ {a})arity(R)

[i.e., the set of all tuples formed from (d ∪ {a}) having arity arity(R)]. Finally, let ν map

each variable in q to a. Then ν(ui) ∈ I(Ri) for i ∈ [1, n], and so ν(u) ∈ q(I). Thus q is

satisfiable.

The monotonicity of the conjunctive queries points to limitations in their expressive

power. Indeed, one can easily exhibit queries that are nonmonotonic and therefore not

conjunctive queries. For instance, the query “Which theaters in New York show only

Woody Allen films?” is nonmonotonic.

We close this subsection by indicating how rule-based conjunctive queries can be used

to express yes-no queries. For example, consider the query

(4.5) Is there a film directed by Bergman playing in Paris?

To provide an answer, we assume that relation name ans has arity 0. Then applying the rule

ans()←Movies(x, “Bergman”, y),Pariscope(z, x,w)

returns the relation {〈〉} if the answer is yes, and returns {} if the answer is no.
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Tableau Queries

If we blur the difference between a variable and a constant, the body of a conjunctive

query can be seen as an instance. This leads to a formulation of conjunctive queries called

“tableau”, which is closest to the visual form provided by QBE.

Definition 4.2.3 The notion of tableau over a schema R (R) is defined exactly as was

the notion of instance over R (R), except that both variables and constants may occur. A

tableau query is simply a pair (T, u) [or (T , u)] where T is a tableau and each variable in

u also occurs in T. The free tuple u is called the summary of the tableau query.

The summary tuple u in a tableau query (T, u) represents the tuples included in the

answer to the query. Thus the answer consists of all tuples u for which the pattern described

by T is found in the database.

Example 4.2.4 Let T be the tableau

Movies Title Director Actor

xt i “Bergman” xac

Pariscope Theater Title Schedule

xth xt i xs

Location Theater Address Phone Number

xth xad xp

The tableau query (T, 〈Theater : xth, Address : xad〉) expresses query (4.4). If the un-

named perspective on tuples is used, then the names of the attributes are not included in u.

The notion of valuation is extended in the natural fashion to map tableaux1 to in-

stances. An embedding of tableau T into instance I is a valuation ν for the variables oc-

curring in T such that ν(T)⊆ I. The semantics for tableau queries is essentially the same

as for rule-based conjunctive queries: The output of (T, u) on input I consists of all tuples

ν(u) where ν is an embedding of T into I.

Aside from the fact that tableau queries do not indicate a relation name for the an-

swer, they are syntactically close to the rule-based conjunctive queries. Furthermore, the

alternative perspective provided by tableaux lends itself to the development of several nat-

ural results. Perhaps the most compelling of these arises in the context of the chase (see

1 One tableau, two tableaux.



44 Conjunctive Queries

Chapter 8), which provides an elegant characterization of two conjunctive queries yielding

identical results when the inputs satisfy certain dependencies.

A family of restricted tableaux called typed have been used to develop a number of

theoretical results. A tableau query q = (T , u) under the named perspective, where T is

over relation schema R and sort(u)⊆ sort(R), is typed if no variable of T or t is associated

with two distinct attributes in q. Intuitively, the term ‘typed’ is used because it is impossible

for entries from different attributes to be compared. The connection between typed tableaux

and conjunctive queries in the algebraic paradigm is examined in Exercises 4.19 and

4.20. Additional results concerning complexity issues around typed tableau queries are

considered in Exercises 6.16 and 6.21 in Chapter 6. Typed tableaux also arise in connection

with data dependencies, as studied in Part C.

Conjunctive Calculus

The third formalism for expressing conjunctive queries stems from predicate calculus. (A

review of predicate calculus is provided in Chapter 2, but the presentation of the calculus

in this and the following chapter is self-contained.)

We begin by presenting conjunctive calculus queries that can be viewed as syntactic

variants of rule-based conjunctive queries. They involve simple use of conjunction and

existential quantification. As will be seen, the full conjunctive calculus, defined later,

allows unrestricted use of conjunction and existential quantification. This provides more

flexibility in the syntax but, as will be seen, does not increase expressive power.

Consider the conjunctive query

ans(e1, . . . , em)← R1(u1), . . . , Rn(un).

A conjunctive calculus query that has the same semantics is

{e1, . . . , em | ∃x1, . . . , xk(R1(u1) ∧ · · · ∧ Rn(un))},

where x1, . . . , xk are all the variables occurring in the body and not the head. The sym-

bol∧ denotes conjunction (i.e., “and”), and ∃ denotes existential quantification (intuitively,

∃x . . . denotes “there exists an x such that . . .”). The term ‘conjunctive query’ stems from

the presence of conjunctions in the syntax.

Example 4.2.5 In the calculus paradigm, query (4.4) can be expressed as follows:

{xth, xad | ∃xt i ∃xac ∃xs ∃xp (Movies(xt i, “Bergman”, xac)

Pariscope(xth, xt i, xs)

Location(xth, xad, xp))}.

Note that some but not all of the existentially quantified variables play the role of anony-

mous variables, in the sense mentioned in Example 4.1.1.

The syntax used here can be viewed as a hybrid of the usual set-theoretic notation,
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used to indicate the form of the query output, and predicate calculus, used to indicate what

should be included in the output. As discussed in Chapter 2, the semantics associated with

calculus formulas is a restricted version of the conventional semantics found in first-order

logic.

We now turn to the formal definition of the syntax and semantics of the (full) conjunc-

tive calculus.

Definition 4.2.6 Let R be a database schema. A (well-formed) formula over R for the

conjunctive calculus is an expression having one of the following forms:

(a) an atom over R;

(b) (ϕ ∧ ψ), where ϕ and ψ are formulas over R; or

(c) ∃xϕ, where x is a variable and ϕ is a formula over R.

In formulas we permit the abbreviation of ∃x1 . . . ∃xn by ∃x1, . . . , xn.

The usual notion of “free” and “bound” occurrences of variables is now defined. An

occurrence of variable x in formula ϕ is free if

(i) ϕ is an atom; or

(ii) ϕ = (ψ ∧ ξ) and the occurrence of x is free in ψ or ξ ; or

(iii) ϕ = ∃yψ , x and y are distinct variables, and the occurrence of x is free in ψ .

An occurrence of x in ϕ is bound if it is not free. The set of free variables in ϕ, denoted

free(ϕ), is the set of all variables that have at least one free occurrence in ϕ.

Definition 4.2.7 A conjunctive calculus query over database schema R is an expression

of the form

{e1, . . . , em | ϕ},

where ϕ is a conjunctive calculus formula, 〈e1, . . . , em〉 is a free tuple, and the set of

variables occurring in 〈e1, . . . , em〉 is exactly free(ϕ). If the named perspective is being

used, then attributes can be associated with output tuples by specifying a relation name R

of arity m. The notation

{〈e1, . . . , em〉 : A1 . . . Am | ϕ}

can be used to indicate the sort of the output explicitly.

To define the semantics of conjunctive calculus queries, it is convenient to introduce

some notation. Recall that for finite set V ⊂ var, a valuation over V is a total function ν

from V to dom. This valuation will sometimes be viewed as a syntactic expression of the

form

{x1/a1, . . . , xn/an},
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where x1, . . . , xn is a listing of V and ai = ν(xi) for each i ∈ [1, n]. This may also be

interpreted as a set. For example, if x is not in the domain of ν and c ∈ dom, then ν ∪ {x/c}
denotes the valuation with domain V ∪ {x} that is identical to ν on V and maps x to c.

Now let R be a database schema, ϕ a conjunctive calculus formula over R, and ν a

valuation over free(ϕ). Then I satisfies ϕ under ν, denoted I |= ϕ[ν], if

(a) ϕ = R(u) is an atom and ν(u) ∈ I(R); or

(b) ϕ = (ψ ∧ ξ) and2 I |= ψ[ν|free(ψ)] and I |= ξ [ν|free(ξ)]; or

(c) ϕ = ∃xψ and for some c ∈ dom, I |= ψ[ν ∪ {x/c}].

Finally, let q = {e1, . . . , em | ϕ} be a conjunctive calculus query over R. For an in-

stance I over R, the image of I under q is

q(I)= {ν(〈e1, . . . , en〉) | I |= ϕ[ν] and ν is a valuation over free(ϕ)}.

The active domain of a formula ϕ, denoted adom(ϕ), is the set of constants occurring

in ϕ; and as with queries q, we use adom(ϕ, I) to abbreviate adom(ϕ) ∪ adom(I). An easy

induction on conjunctive calculus formulas shows that if I |= ϕ[ν], then the range of ν is

contained in adom(I) (see Exercise 4.3). This implies, in turn, that to evaluate a conjunctive

calculus query, one need only consider valuations with range contained in adom(ϕ, I) and,

hence, only a finite number of them. This pleasant state of affairs will no longer hold when

disjunction or negation is incorporated into the calculus (see Section 4.5 and Chapter 5).

Conjunctive calculus formulas ϕ and ψ over R are equivalent if they have the same

free variables and, for each I over R and valuation ν over free(ϕ) = free(ψ), I |= ϕ[ν]

iff I |= ψ[ν]. It is easily verified that if ϕ and ψ are equivalent, and if 9 ′ is the result of

replacing an occurrence of ϕ by ψ in conjunctive calculus formula 9, then 9 and 9 ′ are

equivalent (see Exercise 4.4).

It is easily verified that for all conjunctive calculus formulas ϕ, ψ , and ξ , (ϕ ∧ ψ) is

equivalent to (ψ ∧ ϕ), and (ϕ ∧ (ψ ∧ ξ)) is equivalent to ((ϕ ∧ ψ) ∧ ξ). For this reason,

we may view conjunction as a polyadic connective rather than just binary.

We next show that conjunctive calculus queries, which allow unrestricted nesting

of ∃ and ∧, are no more powerful than the simple conjunctive queries first exhibited,

which correspond straightforwardly to rules. Thus the simpler conjunctive queries provide

a normal form for the full conjunctive calculus. Formally, a conjunctive calculus query

q = {u | ϕ} is in normal form if ϕ has the form

∃x1, . . . , xm(R1(u1) ∧ · · · ∧ Rn(un)).

Consider now the two rewrite (or transformation) rules for conjunctive calculus queries:

Variable substitution: replace subformula

∃x ψ by ∃y ψx
y ,

2 ν|V for variable set V denotes the restriction of ν to V .
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if y does not occur in ψ , where ψx
y denotes the formula obtained by replacing all free

occurrences of x by y in ψ .

Merge-exists: replace subformula

(∃y1, . . . , ynψ ∧ ∃z1, . . . , zmξ) by ∃y1, . . . , yn, z1, . . . , zm(ψ ∧ ξ)

if {y1, . . . , yn} and {z1, . . . , zm} are disjoint, none of {y1, . . . , yn} occur (free or bound)

in ξ , and none of {z1, . . . , zm} occur (free or bound) in ψ .

It is easily verified (see Exercise 4.4) that (1) application of these transformation rules to a

conjunctive calculus formula yields an equivalent formula, and (2) these rules can be used

to transform any conjunctive calculus formula into an equivalent formula in normal form.

It follows that:

Lemma 4.2.8 Each conjunctive calculus query is equivalent to a conjunctive calculus

query in normal form.

We now introduce formal notation for comparing the expressive power of query lan-

guages. Let Q1 and Q2 be two query languages (with associated semantics). Then Q1 is

dominated by Q2 (or, Q1 is weaker than Q2), denoted Q1 ⊑Q2, if for each query q1 in Q1

there is a query q2 in Q2 such that q1 ≡ q2. Q1 and Q2 are equivalent, denoted Q1 ≡Q2,

if Q1 ⊑Q2 and Q2 ⊑Q1.

Because of the close correspondence between rule-based conjunctive queries, tableau

queries, and conjunctive calculus queries in normal form, the following is easily verified

(see Exercise 4.15).

Proposition 4.2.9 The rule-based conjunctive queries, the tableau queries, and the

conjunctive calculus are equivalent.

Although straightforward, the preceding result is important because it is the first of

many that show equivalence between the expressive power of different query languages.

Some of these results will be surprising because of the high contrast between the languages.

Incorporating Equality

We close this section by considering a simple variation of the conjunctive queries pre-

sented earlier, obtained by adding the capability of explicitly expressing equality between

variables and/or constants. For example, query (4.4) can be expressed as

ans(xth, xad)←Movies(xt i, xd, xac), xd = “Bergman”,

Pariscope(xth, xt i, xs), Location(xth, xad, xp)

and query (4.6) can be expressed as

ans(y1, y2)←Movies(x1, y1, z1), Movies(x2, y2, z2), y1 = z2, y2 = z1.
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It would appear that explicit equalities like the foregoing can be expressed by con-

junctive queries without equalities by using multiple occurrences of the same variable or

constant. Although this is basically true, two problems arise. First, unrestricted rules with

equality may yield infinite answers. For example, in the rule

ans(x, y)← R(x), y = z

y and z are not tied to relation R, and there are infinitely many valuations satisfying the

body of the rule. To ensure finite answers, it is necessary to introduce an appropriate notion

of range restriction. Informally, an unrestricted rule with equality is range restricted if the

equalities require that each variable in the body be equal to some constant or some variable

occurring in an atom R(ui); Exercise 4.5 explores the notion of range restriction in more

detail. A rule-based conjunctive query with equality is a range-restricted rule with equality.

A second problem that arises is that the equalities in a rule with equality may cause

the query to be unsatisfiable. (In contrast, recall that rules without equality are always

satisfiable; see Proposition 4.2.2.) Consider the following query, in which R is a unary

relation and a, b are distinct constants.

ans(x)← R(x), x = a, x = b.

The equalities present in this query require that a = b, which is impossible. Thus there

is no valuation satisfying the body of the rule, and the query yields the empty relation on

all inputs. We use q∅:R,R (or q∅ if R and R are understood) to denote the query that maps

all inputs over R to the empty relation over R. Finally, note that one can easily check if the

equalities in a conjunctive query with equality are unsatisfiable (and hence if the query is

equivalent to q∅). This is done by computing the transitive closure of the equalities in the

query and checking that no two distinct constants are required to be equal. Each satisfiable

rule with equality is equivalent to a rule without equality (see Exercise 4.5c).

One can incorporate equality into tableau queries in a similar manner by adding sep-

arately a set of required equalities. Once again, no expressive power is gained if the

query is satisfiable. Incorporating equality into the conjunctive calculus is considered in

Exercise 4.6.

4.3 Query Composition and Views

We now present a digression that introduces the important notion of query composition

and describe its relationship to database views. A main result here is that the rule-based

conjunctive queries with equality are closed under composition.

Consider a database R = {R1, . . . , Rn}. Suppose that we have a query q (in any of the

preceding formalisms). Conceptually, this can be used to define a relation with new relation

name S1, which can be used in subsequent queries as any ordinary relation from R. In

particular, we can use S1 in the definition of a new relation S2, and so on. In this context, we

could call each of S1, S2, . . . intensional (in contrast with the extensional relations of R).

This perspective on query composition is expressed most conveniently within the rule-
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based paradigm. Specifically, a conjunctive query program (with or without equality) is a

sequence P of rules having the form

S1(u1)← body1

S2(u2)← body2

...

Sm(um)← bodym,

where each Si is distinct and not in R; and for each i ∈ [1,m], the only relation names

that may occur in bodyi are R1, . . . , Rn and S1, . . . , Si−1. An instance I over R and the

program P can be viewed as defining values for all of S1, . . . , Sm in the following way:

For each i ∈ [1,m], [P(I)](Si) = qi([P(I)]), where qi is the ith rule and defines relation Si
in terms of I and the previous Sj ’s. If P is viewed as defining a single output relation, then

this output is [P(I)](Sm). Analogous to rule-based conjunctive queries, the relations in R

are called edb relations, and the relations occurring in rule heads are called idb relations.

Example 4.3.1 Let R = {Q,R} and consider the conjunctive query program

S1(x, z)←Q(x, y), R(y, z,w)

S2(x, y, z)← S1(x,w), R(w, y, v), S1(v, z)

S3(x, z)← S2(x, u, v),Q(v, z).

Figure 4.3 shows an example instance I for R and the values that are associated to S1, S2, S3

by P(I).

It is easily verified that the effect of the first two rules of P on S2 is equivalent to the

effect of the rule

S2(x, y, z)←Q(x1, y1), R(y1, z1, w1), x = x1, w = z1,

R(w, y, v),Q(x2, y2), R(y2, z2, w2), v = x2, z= z2.

Alternatively, expressed without equality, it is equivalent to

S2(x, y, z)← Q(x, y1), R(y1, w,w1), R(w, y, v),Q(v, y2), R(y2, z, w2).

Note how variables are renamed to prevent undesired “cross-talk” between the different

rule bodies that are combined to form this rule. The effect of P on S3 can also be expressed

using a single rule without equality (see Exercise 4.7).

It is straightforward to verify that if a permutation P ′ of P (i.e., a listing of the elements

of P in a possibly different order) satisfies the restriction that relation names in a rule

body must be in a previous rule head, then P ′ will define the same mapping as P . This

kind of consideration will arise in a richer context when stratified negation is considered in

Chapter 15.
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Q R S1 S2 S3

1 2 1 1 1 1 3 1 1 1 1 2

2 1 2 3 1 2 1 1 1 3 2 2

2 2 3 1 2 2 3 2 1 1

4 4 1 2 1 3

Figure 4.3: Application of a conjunctive query program

Example 4.3.2 Consider the following program P :

T (a, x)← R(x)

S(x)← T (b, x).

Clearly, P always defines the empty relation S, so it is not equivalent to any rule-based

conjunctive query without equality. Intuitively, the use of the constants a and b in P masks

the use of equalities, which in this case are contradictory and yield an unsatisfiable query.

Based on the previous examples, the following is easily verified (see Exercise 4.7).

Theorem 4.3.3 (Closure under Composition) If conjunctive query program P defines

final relation S, then there is a conjunctive query q, possibly with equality, such that on

all input instances I, q(I) = [P(I)](S). Furthermore, if P is satisfiable, then q can be

expressed without equality.

The notion of programs is based on the rule-based formalism of the conjunctive

queries. In the other versions introduced previously and later in this chapter, the notation

does not conveniently include a mechanism for specifying names for the output of inter-

mediate queries. For the other formalisms we use a slightly more elaborate notation that

permits the specification of these names. In particular, all of the formalisms are compatible

with a functional, purely expression-based paradigm:

let S1 = q1 in

let S2 = q2 in

...

let Sm−1 = qm−1 in

qm

and with an imperative paradigm in which the intermediate query values are assigned to

relation variables:
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S1 := q1;

S2 := q2;

...

Sm−1 := qm−1;

Sm := qm.

It is clear from Proposition 4.2.9 and Theorem 4.3.3 that the conjunctive calculus and

tableau queries with equality are both closed under composition.

Composition and User Views

Recall that the top level of the three-level architecture for databases (see Chapter 1) consists

of user views (i.e., versions of the data that are restructured and possibly restricted images

of the database as represented at the middle level). In many cases these views are specified

as queries (or query programs). These may be materialized (i.e., a physical copy of the view

is stored and maintained) or virtual (i.e., relevant information about the view is computed

as needed). In the latter case, queries against the view generate composed queries against

the underlying database, as illustrated by the following example.

Example 4.3.4 Consider the view over schema {Marilyn, Champo-info} defined by the

following two rules:

Marilyn(xt)←Movies(xt, xd, “Monroe”)

Champo-info(xt, xs, xp)← Pariscope(“Le Champo”, xt, xs),

Location(“Le Champo”, xa, xp).

The conjunctive query “What titles in Marilyn are featured at the Le Champo at 21:00?”

can be expressed against the view as

ans(xt)←Marilyn(xt), Champo-info(xt, “21:00”, xp).

Assuming that the view is virtual, evaluation of this query is accomplished by con-

sidering the composition of the query with the view definition. This composition can be

rewritten as

ans(xt)←Movies(xt, xd, “Monroe”),

Pariscope(“Le Champo”, xt, “21:00”)

Location(“Le Champo”, xa, xp).

An alternative expression specifying both view and query now follows. (Expressions

from the algebraic versions of the conjunctive queries could also be used here.)
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Marilyn := {xt | ∃xd(Movies(xt, xd, “Monroe”))};

Champo-info := {xt, xs, xp | ∃xa(Location(“Le Champo”, xt, xs)

∧ Location(“Le Champo”, xa, xp)};

ans := {xt |Marilyn(xt) ∧ ∃xp(Champo-info(xt, “21:00”, xp))}.

This example illustrates the case in which a query is evaluated over a single view;

evaluation of the query involves a two-layer composition of queries. If a series of nested

views is defined, then query evaluation can involve query compositions having two or more

layers.

4.4 Algebraic Perspectives

The use of algebra operators provides a distinctly different perspective on the conjunctive

queries. There are two distinct algebras associated with the conjunctive queries, and they

stem, respectively, from the named, ordered-tuple perspective and the unnamed, function-

based perspective. After presenting the two algebras, their equivalence with the conjunctive

queries is discussed.

The Unnamed Perspective: The SPC Algebra

The algebraic paradigm for relational queries is based on a family of unary and binary oper-

ators on relation instances. Although their application must satisfy some typing constraints,

they are polymorphic in the sense that each of these operators can be applied to instances

of an infinite number of arities or sorts. For example, as suggested in Chapter 3, the union

operator can take as input any two relation instances having the same sort.

Three primitive algebra operators form the unnamed conjunctive algebra: selection,

projection, and cross-product (or Cartesian product). This algebra is more often referred

to as the SPC algebra, based on the first letters of the three operators that form it. (This

convention will be used to specify other algebras as well.) An example is given before the

formal definition of these operators.

Example 4.4.1 We show how query (4.4) can be built up using the three primitive

operators. First we use selection to extract the tuples of Movies that have Bergman as

director.

I1 := σ2=“Bergman”(Movies)

Next a family of “wide” (six columns wide, in fact) tuples is created by taking the cross-

product of I1 and Pariscope.

I2 := I1 × Pariscope
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Another selection is performed to focus on the members of I2 that have first and fifth

columns equal.

I3 := σ1=5(I2)

In effect, the cross-product followed by this selection finds a matching of tuples from I1

and Pariscope that agree on the Title coordinates.

At this point we are interested only in the theaters where these films are playing, so

we use projection to discard the unneeded columns, yielding a unary relation.

I4 := π4(I3)

Finally, this is paired with Location and projected on the Theater and Address columns to

yield the answer.

I5 := π2,3(σ1=2(I4 × Location))

The development just given uses SPC expressions in the context of a simple imperative

language with assignment. In the pure SPC algebra, this query is expressed as

π2,3(σ1=2(π4(σ1=5(σ2=“Bergman”(Movies)× Pariscope))× Location)).

Another query that yields the same result is

π4,8(σ4=7(σ1=5(σ2=“Bergman”(Movies× Pariscope× Location)))).

This corresponds closely to the conjunctive calculus query of Example 4.2.5.

Although the algebraic operators have a procedural feel to them, algebraic queries are

used by most relational database systems as high-level specifications of desired output.

Their actual implementation is usually quite different from the original form of the query,

as will be discussed in Section 6.1.

We now formally define the three operators forming the SPC algebra.

Selection: This can be viewed as a “horizontal” operator. The two primitive forms are

σj=a and σj=k, where j, k are positive integers and a ∈ dom. [In practice, we usually

surround constants with quotes (“ ”).] The operator σj=a takes as input any relation

instance I with arity ≥ j and returns as output an instance of the same arity. In

particular,

σj=a(I )= {t ∈ I | t (j)= a}.

The operator σj=k for positive integers j, k is defined analogously for inputs with arity

≥ max{j, k}. This is sometimes called atomic selection; generalizations of selection

will be defined later.
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Projection: This “vertical” operator can be used to delete and/or permute columns of a

relation. The general form of this operator is πj1,...,jn, where j1, . . . , jn is a possibly

empty sequence of positive integers (the empty sequence is written [ ]), possibly with

repeats. This operator takes as input any relation instance with arity≥max{j1, . . . , jn}
(where the max of ∅ is 0) and returns an instance with arity n. In particular,

πj1,...,jn(I )= {〈t (j1), . . . , t (jn)〉 | t ∈ I }.

Cross-product (or Cartesian product): This operator provides the capability for combining

relations. It takes as inputs a pair of relations having arbitrary arities n and m and

returns a relation with arity n + m. In particular, if arity(I ) = n and arity(J ) = m,

then

I × J = {〈t (1), . . . , t (n), s(1), . . . , s(m)〉 | t ∈ I and s ∈ J }.

Cross-product is associative and noncommutative and has the nonempty 0-ary relation

{〈〉} as left and right identity. Because it is associative, we sometimes view cross-product

as a polyadic operator and write, for example, I1 × · · · × In.

We extend the cross-product operator to tuples in the natural fashion—that is u× v is

a tuple with arity = arity(u)+ arity(v).

The SPC algebra is the family of well-formed expressions containing relation names

and one-element unary constants and closed under the application of the selection, projec-

tion, and cross-product operators just defined. Each expression is considered to be defined

over a given database schema and has an associated output arity. We now give the formal,

inductive definition.

Let R be a database schema. The base SPC (algebra) queries and output arities are

Input relation: Expression R; with arity equal to arity(R).

Unary singleton constant: Expression {〈a〉}, where a ∈ dom; with arity equal to 1.

The family of SPC (algebra) queries contains all base SPC queries and, for SPC queries

q1, q2 with arities α1, α2, respectively,

Selection: σj=a(q1) and σj=k(q1) whenever j, k ≤ α1 and a ∈ dom; these have arity α1.

Projection: πj1,...,jn(q1), where j1, . . . , jn ≤ α1; this has arity n.

Cross product: q1 × q2; this has arity α1 + α2.

In practice, we sometimes use brackets to surround algebraic queries, such as [R×
σ1=a(S)](I). In addition, parentheses may be dropped if no ambiguity results.

The semantics of these queries is defined in the natural manner (see Exercise 4.8).

The SPC algebra includes unsatisfiable queries, such as σ1=a(σ1=b(R)), where

arity(R)≥ 1 and a �= b. This is equivalent to q∅.

As explored in Exercise 4.22, permitting as base SPC queries constant queries that are

not unary (i.e., expressions of the form {〈a1〉, . . . , 〈an〉}) yields expressive power greater

than the rule-based conjunctive queries with equality. This is also true of selection for-

mulas in which disjunction is permitted. As will be seen in Section 4.5, these capabilities
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are subsumed by including an explicit union operator into the SPC algebra. Permitting

negation in selection formulas also extends the expressive power of the SPC algebra (see

Exercise 4.27b).

Before leaving SPC algebra, we mention three operators that can be simulated by the

primitive ones. The first is intersection (∩), which is easily simulated (see Exercise 4.28).

The other two operators involve generalizations of the selection and cross-product oper-

ators. The resulting algebra is called the generalized SPC algebra. We shall introduce a

normal form for generalized SPC algebra expressions.

The first operator is a generalization of selection to permit the specification of multiple

conditions. A positive conjunctive selection formula is a conjunction F = γ1 ∧ · · · ∧ γn
(n≥ 1), where each conjunct γi has the form j = a or j = k for positive integers j, k and

a ∈ dom; and a positive conjunctive selection operator is an expression of the form σF ,

where F is a positive conjunctive selection formula. The intended typing and semantics

for these operators is clear, as is the fact that they can be simulated by a composition of

selections as defined earlier.

The second operator, called equi-join, is a binary operator that combines cross-product

and selection. A (well-formed) equi-join operator is an expression of the form ⊲⊳F where

F = γ1 ∧ · · · ∧ γn (n≥ 1) is a conjunction such that each conjunct γi has the form j = k.

An equi-join operator ⊲⊳F can be applied to any pair I, J of relation instances, where the

arity(I )≥ the maximum integer occurring on the left-hand side of any equality in F , and

arity(J ) ≥ the maximum integer occurring on the right-hand side of any equality in F .

Given an equi-join expression I ⊲⊳F J , let F ′ be the result of replacing each condition

j = k in F by j = arity(I )+ k. Then the semantics of I ⊲⊳F J is given by σF ′(I × J ). As

with cross-product, equi-join is also defined for pairs of tuples, with an undefined output if

the tuples do not satisfy the conditions specified.

We now develop a normal form for SPC algebra. We stress that this normal form is

useful for theoretical purposes and, in general, represents a costly way to compute the

answer of a given query (see Chapter 6).

An SPC algebra expression is in normal form if it has the form

πj1,...,jn({〈a1〉} × · · · × {〈am〉} × σF (R1 × · · · × Rk)),

where n ≥ 0; m ≥ 0; a1, . . . , am ∈ dom; {1, . . . , m} ⊆ {j1, . . . , jn}; R1, . . . , Rk are rela-

tion names (repeats permitted); and F is a positive conjunctive selection formula.

Proposition 4.4.2 For each (generalized) SPC query q there is a generalized SPC query

q ′ in normal form such that q ≡ q ′.

The proof of this proposition (see Exercise 4.12) is based on repeated application of the

following eight equivalence-preserving SPC algebra rewrite rules (or transformations).

Merge-select: replace σF (σF ′(q)) by σF∧F ′(q).

Merge-project: replace π$j(π$k(q)) by π$l(q), where li = kji for each term li in $l.

Push-select-through-project: replace σF (π$j(q)) by π$j(σF ′(q)), where F ′ is obtained from

F by replacing all coordinate values i by ji.
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Push-select-through-singleton: replace σ1=j(〈a〉 × q) by 〈a〉 × σ(j−1)=a(q).

Associate-cross: replace ((q1× · · · × qn)× q) by (q1× · · · qn× q), and replace (q × (q1×
· · · qn)) by (q × q1 × · · · qn).

Commute-cross: replace (q × q ′) by π$j $j ′(q
′× q), where $j = arity(q ′)+ 1, . . . , arity(q ′)+

arity(q), and $j ′ = 1, . . . , arity(q ′).

Push-cross-through-select: replace (σF (q)× q ′) by σF (q × q ′), and replace (q × σF (q
′))

by σF ′(q × q ′), where F ′ is obtained from F by replacing all coordinate values i by

i + arity(q).

Push-cross-through-project: replace (π$j(q)× q ′) by π$j(q × q ′), and replace (q × π$j(q
′))

by π $j ′(q × q ′), where $j ′ is obtained from $j by replacing all coordinate values i by

i + arity(q).

For a set S of rewrite rules and algebra expressions q, q ′, write q→S q ′, or simply

q→ q ′ if S is understood from the context, if q ′ is the result of replacing a subexpression

of q according to one of the rules in S. Let ∗→S denote the reflexive, transitive closure

of→S .

A family S of rewrite rules is sound if q→S q ′ implies q ≡ q ′. If S is sound, then

clearly q ∗→S q ′ implies q ≡ q ′.

It is easily verified that the foregoing set of rewrite rules is sound and that for each SPC

query q there is a normal form SPC query q ′ such that q ′ is in normal form, and q ∗→ q ′

(see Exercise 4.12).

In Section 6.1, we describe an approach to optimizing the evaluation of conjunctive

queries using rewrite rules. For example, in that context, the merge-select and merge-

project transformations are helpful, as are the inverses of the push-cross-through-select

and push-cross-through-project.

Finally, note that an SPC query may require, as the result of transitivity, the equality

of two distinct constants. Thus there are unsatisfiable SPC queries equivalent to q∅. This is

analogous to the logic-based conjunctive queries with equality. It is clear, using the normal

form, that one can check whether an SPC query is q∅ by examining the selection formula

F . The set of SPC queries that are not equivalent to q∅ forms the satisfiable SPC algebra.

The Named Perspective: The SPJR Algebra

In Example 4.4.1, the relation I3 was constructed using selection and cross-product by the

expression σ1=5(I1 × Pariscope). As is often the case, the columns used in this selection

are labeled by the same attribute. In the context of the named perspective on tuples, this

suggests a natural variant of the cross-product operator (and of the equi-join operator) that

is called natural join and is denoted by ⊲⊳. Informally, the natural join requires the tuples

that are concatenated to agree on the common attributes.
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Example 4.4.3 The natural join of Movies and Pariscope is

Movies ⊲⊳ Pariscope

= {u with sort Title Director Actor Theater Schedule |

for some v ∈Movies and w ∈ Pariscope,

u[Title Director Actor]= v and u[Theater Title Schedule]= w}

= π1,2,3,4,6(Movies ⊲⊳1=2 Pariscope)

(assuming that the sort of the last expression corresponds to that of the previous expres-

sion). More generally, using the natural analog of projection and selection for the named

perspective, query (4.4) can be expressed as

πTheater,Address((σDirector=“Bergman′′(Movies) ⊲⊳ Pariscope) ⊲⊳ Location).

As suggested by the preceding example, natural join can be used in the named context

to replace certain equi-joins arising in the unnamed context. However, a problem arises if

two relations sharing an attribute A are to be joined but without forcing equality on the A

coordinates, or if a join is to be formed based on the equality of attributes not sharing the

same name. For example, consider the query

(4.8) List pairs of actors that acted in the same movie.

To answer this, one would like to join the Movies relation with itself but matching only on

the Title column. This will be achieved by first creating a copy Movies′ of Movies in which

the attribute Director has been renamed to Director′ and Actor to Actor′; joining this with

Movies; and finally projecting onto the Actor and Actor′ columns. Renaming is also needed

for query (4.6) (see Exercise 4.11).

The named conjunctive algebra has four primitive operators: selection, essentially as

before; projection, now with repeats not permitted; (natural) join; and renaming. It is thus

referred to as the SPJR algebra. As with the SPC algebra, we define the individual operators

and then indicate how they are combined to form a typed, polymorphic algebra. In each

case, we indicate the sorts of input and output. If a relation name is needed for the output,

then it is assumed to be chosen to have the correct sort.

Selection: The selection operators have the form σA=a and σA=B , where A,B ∈ att and

a ∈ dom. These operators apply to any instance I with A ∈ sort(I ) [respectively,

A,B ∈ sort(I )] and are defined in analogy to the unnamed selection, yielding an

output with the same sort as the input.

Projection: The projection operator has the form πA1,...,An, n ≥ 0 (repeats not permitted)

and operates on all inputs having sort containing {A1, . . . , An}, producing output with

sort {A1, . . . , An}.

(Natural) join: This operator, denoted ⊲⊳, takes arbitrary inputs I and J having sorts V and
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W , respectively, and produces an output with sort equal to V ∪W . In particular,

I ⊲⊳ J = {t over V ∪W | for some v ∈ I and w ∈ J,

t[V ]= v and t[W ]= w}.

When sort(I )= sort(J ), then I ⊲⊳ J = I ∩ J , and when sort(I ) ∩ sort(J )= ∅, then

I ⊲⊳ J is the cross-product of I and J . The join operator is associative, commutative, and

has the nonempty 0-ary relation {〈〉} as left and right identity. Because it is associative, we

sometimes view join as a polyadic operator and write, for example, I1 ⊲⊳ · · · ⊲⊳ In.

As with cross-product and equi-join, natural join is extended to operate on pairs of

tuples, with an undefined result if the tuples do not match on the appropriate attributes.

Renaming: An attribute renaming for a finite set U of attributes is a one-one mapping from

U to att. An attribute renaming f for U can be described by specifying the set of pairs

(A, f (A)), where f (A) �= A; this is usually written as A1A2 . . . An→ B1B2 . . . Bn to

indicate that f (Ai)= Bi for each i ∈ [1, n] (n ≥ 0). A renaming operator for inputs

over U is an expression δf , where f is an attribute renaming for U ; this maps to

outputs over f [U ]. In particular, for I over U ,

δf (I )= {v over f [U ] | for some u ∈ I, v(f (A))= u(A) for each A ∈ U}.

Example 4.4.4 Let I, J be the two relations, respectively over R, S, given in Fig. 4.4.

Then I ⊲⊳ J , σA=1(I ), δBC→B ′A(J ), and πA(I ) are also shown there. Let K be the one-

tuple relation 〈A : 1, C : 9〉. Then πA,B(I ⊲⊳ K) coincides with σA=1(I ) and J ⊲⊳ K =
{〈A : 1, B : 8, C : 9〉}.

The base SPJR algebra queries are:

Input relation: Expression R; with sort equal to sort(R).

Unary singleton constant: Expression {〈A : a〉}, where a ∈ dom; with sort A.

The remainder of the syntax and semantics of the SPJR algebra is now defined in analogy

to those of the SPC algebra (see Exercise 4.8).

Example 4.4.5 Consider again Fig. 4.4. Let I be the instance over {R, S} such that

I(R) = I and I(S) = J . Then [R] is a query and the answer to that query, denoted

R(I), is just I . Figure 4.4 also gives the values of S(I), [R ⊲⊳ S](I), [σA=1(R)](I),

[δBC→B ′A(S)](I), and [πA(R)](I). Let KA = {〈A : 1〉} and KC = {〈C : 9〉}. Then [KA]

and [KC] are constant queries, and [KA ⊲⊳KC] is a query that evaluates (on all inputs) to

the relation K of Example 4.4.4.

As with the SPC algebra, we introduce a natural generalization of the selection oper-

ator for the SPJR algebra. In particular, the notions of positive conjunctive selection for-

mula and positive conjunctive selection operator are defined for the context in complete
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R A B S B C [R ⊲⊳ S] A B C

1 2 2 3 1 2 3

4 2 2 5 1 2 5

6 6 6 4 4 2 3

7 7 8 9 4 2 5

1 7 6 6 4

1 6 1 6 4

[σA=1(R)] A B [δBC→B ′A(S)] B ′ A [πA(R)] A

1 2 2 3 1

1 7 2 5 4

1 6 6 4 6

8 9 7

Figure 4.4: Examples of SPJR operators

analogy to the unnamed case. Including this operator yields the generalized SPJR algebra.

A normal form result analogous to that for the SPC algebra is now developed. In

particular, an SPJR algebra expression is in normal form if it has the form

πB1,...,Bn({〈A1 : a1〉} ⊲⊳ · · · ⊲⊳ {〈Am : am〉} ⊲⊳ σF (δf1(R1) ⊲⊳ · · · ⊲⊳ δfk(Rk))),

where n ≥ 0; m ≥ 0; a1, . . . , am ∈ dom; each of A1, . . . , Am occurs in B1, . . . , Bn; the

Ai’s are distinct; R1, . . . , Rk are relation names (repeats permitted); δfj is a renaming

operator for sort(Rj) for each j ∈ [1, k] and no Ai’s occur in any δfj (Rj); the sorts

of δf1(R1), . . . , δfk(Rk) are pairwise disjoint; and F is a positive conjunctive selection

formula. The following is easily verified (see Exercise 4.12).

Proposition 4.4.6 For each (generalized) SPJR query q, there is a generalized SPJR

query q ′ in normal form such that q ≡ q ′.

The set of SPJR queries not equivalent to q∅ forms the satisfiable SPJR algebra.

Equivalence Theorem

We now turn to the main result of the chapter, showing the equivalence of the various

formalisms introduced so far for expressing conjunctive queries. As shown earlier, the three

logic-based versions of the conjunctive queries are equivalent. We now show that the SPC

and SPJR algebras are also equivalent to each other and then obtain the equivalence of the

algebraic languages and the three logic-based languages.
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Lemma 4.4.7 The SPC and SPJR algebras are equivalent.

Crux We prove the inclusion SPC algebra ⊑ SPJR algebra; the converse is similar (see

Exercise 4.14). Let q be the following normal form SPC query:

πj1,...,jn({〈a1〉} × · · · × {〈am〉} × σF (R1 × · · · × Rk)).

We now describe an SPJR query q ′ that is equivalent to q; q ′ has the following form:

πAj1
,...,Ajn

({〈A1 : a1〉} ⊲⊳ · · · ⊲⊳ {〈Am : am〉} ⊲⊳ σG(δf1(R1) ⊲⊳ · · · ⊲⊳ δfk(Rk))).

We use the renaming functions so that the attributes of δft(Rt) are As, . . . , As′, where

s, . . . , s′ are the coordinate positions of Rt in the expression R1 × · · · × Rk and modify F

into G accordingly. In a little more detail, for each r ∈ [1, k] let β(t)=m+#t
s=0arity(Rs),

and let Am+1, . . . , Aβ(k) be new attributes. For each t ∈ [1, k], choose δft so that it maps

the ith attribute of Rt to the attribute Aβ(t−1)+i. To define G, first define the function γ from

coordinate positions to attribute names so that γ (j)= Am+j , extend γ to be the identity on

constants, and extend it further in the natural manner to map unnamed selection formulas

to named selection formulas. Finally, set G= γ (F ). It is now straightforward to verify that

q ′ ≡ q.

It follows immediately from the preceding lemma that the satisfiable SPC algebra and

the satisfiable SPJR algebra are equivalent.

The equivalence between the two algebraic languages and the three logic-based lan-

guages holds with a minor caveat involving the empty query q∅. As noted earlier, the SPC

and SPJR algebras can express q∅, whereas the logic-based languages cannot, unless ex-

tended with equality. Hence the equivalence result is stated for the satisfiable SPC and

SPJR algebras.

Theorem 4.3.3 (i.e., the closure of the rule-based conjunctive queries under composi-

tion) is used in the proof of this result. The closures of the SPC and SPJR algebras under

composition are, of course, immediate.

Theorem 4.4.8 (Equivalence Theorem) The rule-based conjunctive queries, tableau

queries, conjunctive calculus queries, satisfiable SPC algebra, and satisfiable SPJR algebra

are equivalent.

Proof The proof can be accomplished using the following steps:

(i) satisfiable SPC algebra ⊑ rule-based conjunctive queries; and

(ii) rule-based conjunctive queries ⊑ satisfiable SPC algebra.

We briefly consider how steps (i) and (ii) might be demonstrated; the details are left

to the reader (Exercise 4.15). For (i), it is sufficient to show that each of the SPC algebra

operations can be simulated by a rule. Indeed, then the inclusion follows from the fact that

rule-based conjunctive queries are closed under composition by Theorem 4.3.3 and that
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satisfiable rules with equality can be expressed as rules without equality. The simulation of

algebra operations by rules is as follows:

1. P ×Q, where P and Q are not constant relations, corresponds to ans($x, $y)←
P($x),Q($y), where $x and $y contain no repeating variables; in the case when P

(Q) are constant relations, $x ($y) are the corresponding constant tuples.

2. σF (R) corresponds to ans($x)← R(σF ($y)), where $y consists of distinct variables,

σF ($y) denotes the vector of variables and constants obtained by merging variables

of $y with other variables or with constants according to the (satisfiable) selection

formula F , and $x consists of the distinct variables in σF ($y).

3. πj1...jn(R) corresponds to ans(xj1 . . . xjn)← R(x1 . . . xm), where x1, . . . , xm are

distinct variables.

Next consider step (ii). Let ans($x)← R1($x1), . . . , Rn($xn) be a rule. There is an equiv-

alent SPC algebra query in normal form that involves the cross-product of R1, . . . , Rn, a

selection reflecting the constants and repeating variables occurring in $x1, . . . , $xn, a fur-

ther cross-product with constant relations corresponding to the constants in $x, and finally

a projection extracting the coordinates corresponding to $x.

An alternative approach to showing step (i) of the preceding theorem is explored in

Exercise 4.18.

4.5 Adding Union

As indicated by their name, conjunctive queries are focused on selecting data based on

a conjunction of conditions. Indeed, each atom added to a rule potentially adds a further

restriction to the tuples produced by the rule. In this section we consider a natural mech-

anism for adding a disjunctive capability to the conjunctive queries. Specifically, we add

a union operator to the SPC and SPJR algebras, and we add natural analogs of it to the

rule-based and tableau-based paradigms. Incorporating union into the conjunctive calculus

raises some technical difficulties that are resolved in Chapter 5. This section also consid-

ers the evaluation of queries with union and introduces a more restricted mechanism for

incorporating a disjunctive capability.

We begin with some examples.

Example 4.5.1 Consider the following query:

(4.10) Where can I see “Annie Hall” or “Manhattan”?

Although this cannot be expressed as a conjunctive query (see Exercise 4.22), it is easily

expressed if union is added to the SPJR algebra:

πTheater(σTitle=“Annie Hall”(Pariscope) ∪ σTitle=“Manhattan”(Pariscope)).
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An alternative formulation of this uses an extended selection operator that permits disjunc-

tions in the selection condition:

πTheater(σTitle=“Annie Hall”∨Title=“Manhattan”(Pariscope)).

As a final algebraic alternative, this can be expressed in the original SPJR algebra but

permitting nonsingleton constant relations as base expressions:

πTheater(Pariscope ⊲⊳ {〈Title: “Annie Hall”〉, 〈Title: “Manhattan”〉}).

The rule-based formalism can accommodate this query by permitting more than one rule

with the same relation name in the head and taking the union of their outputs as the answer:

ans(xt)← Pariscope(xt, “Annie Hall”, xs)

ans(xt)← Pariscope(xt, “Manhattan”, xs).

Consider now the following query:

(4.11) What are the films with Allen as actor or director?

This query can be expressed using any of the preceding formalisms, except for the SPJR

algebra extended with nonsingleton constant relations as base expressions (see Exer-

cise 4.22).

Let I1, I2 be two relations with the same arity. As standard in mathematics, I1 ∪ I2

is the relation having this arity and containing the union of the two sets of tuples. The

definition of the SPCU algebra is obtained by extending the definition of the SPC algebra

to include the union operator. The SPJRU algebra is obtained in the same fashion, except

that union can only be applied to expressions having the same sort.

The SPCU and SPJRU algebras can be generalized by extending the selection oper-

ator (and join, in the case of SPC) as before. We can then define normal forms for both

algebras, which are expressions consisting of one or more normal form SPC (SPJR) ex-

pressions combined using a polyadic union operator (see Exercise 4.23). As suggested by

the previous example, disjunction can also be incorporated into selection formulas with no

increase in expressive power (see Exercise 4.22).

Turning now to rule-based conjunctive queries, the simplest way to incorporate the

capability of union is to consider sets of rules all having the same relation name in the

head. These queries are evaluated by taking the union of the output of the individual rules.

This can be generalized without increasing the expressive power by incorporating

something analogous to query composition. A nonrecursive datalog program (nr-datalog

program) over schema R is a set of rules
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S1 ← body1

S2 ← body2

...

Sm← bodym,

where no relation name in R occurs in a rule head; the same relation name may appear

in more than one rule head; and there is some ordering r1, . . . , rm of the rules so that the

relation name in the head of ri does not occur in the body of a rule rj whenever j ≤ i.

The term ‘nonrecursive’ is used because recursion is not permitted. A simple example

of a recursive rule is

ancestor(x, z)← parent(x, y), ancestor(y, z).

A fixpoint operator is used to give the semantics for programs involving such rules. Recur-

sion is the principal topic of Part D.

As in the case of rule-based conjunctive query programs, the query is evaluated on

input I by evaluating each rule in (one of) the order(s) satisfying the foregoing property and

forming unions whenever two rules have the same relation name in their heads. Equality

atoms can be added to these queries, as they were for the rule-based conjunctive queries.

In general, a nonrecursive datalog program P over R is viewed as having a database

schema as target. Program P can also be viewed as mapping from R to a single relation

(see Exercise 4.24).

Turning to tableau queries, a union of tableaux query over schema R (or R) is an

expression of the form ({T1, . . . ,Tn}, u), where n≥ 1 and (Ti, u) is a tableau query over

R for each i ∈ [1, n]. The semantics of these queries is obtained by evaluating the queries

(Ti, u) independently and then taking the union of their results. Equality is incorporated

into these queries by permitting each of the queries (Ti, u) to have equality.

We can now state (see Exercise 4.25) the following:

Theorem 4.5.2 The following have equivalent expressive power:

1. the nonrecursive datalog programs (with single relation target),

2. the SPCU queries,

3. the SPJRU queries.

The union of tableau queries is weaker than the aforementioned languages with union.

This is essentially because the definition of union of tableau queries does not allow separate

summary rows for each tableau in the union. With just one summary row, the nonrecursive

datalog query

ans(a)←

ans(b)←

cannot be expressed as a union of tableaux query.
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As with conjunctive queries, it is easy to show that the conjunctive queries with union

and equality are closed under composition.

Union and the Conjunctive Calculus

At first glance, it would appear that the power of union can be added to the conjunctive

calculus simply by permitting disjunction (denoted ∨) along with conjunction as a binary

connective for formulas. This approach, however, can have serious consequences.

Example 4.5.3 Consider the following “query”:

q = {x, y, z | R(x, y) ∨ R(y, z)}.

Speaking intuitively, the “answer” of q on nonempty instance I will be (using a slight abuse

of notation)

q(I )= (I × dom) ∪ (dom× I ).

This is an infinite set of tuples and thus not an instance according to the formal definition.

Informally, the query q of the previous example is not “safe.” This notion is one of

the central topics that needs to be resolved when using the first-order predicate calculus as

a relational query language, and it is studied in Chapter 5. We return there to the issue of

adding union to the conjunctive calculus (see also Exercise 4.26).
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Exercises

Exercise 4.1 Express queries (4.1–4.3) and (4.5–4.9) as (a) rule-based conjunctive queries,
(b) conjunctive calculus queries, (c) tableau queries, (d) SPC expressions, and (e) SPJR expres-
sions.

Exercise 4.2 Let R be a database schema and q a rule.

(a) Prove that q(I) is finite for each instance I over R.

(b) Show an upper bound, given instance I of R and output arity for conjunctive query q,
for the number of tuples that can occur in q(I). Show that this bound can be achieved.

Exercise 4.3 Let R be a database schema and I an instance of R.

(a) Suppose that ϕ is a conjunctive calculus formula over R and ν is a valuation for
free(ϕ). Prove that I |= ϕ[ν] implies that the image of ν is contained in adom(I).

(b) Prove that if q is a conjunctive calculus query over R, then only a finite number
of valuations need to be considered when evaluating q(I). (Note: The presence of
existential quantifiers may have an impact on the set of valuations that need to be
considered.)

Exercise 4.4

(a) Let ϕ and ψ be equivalent conjunctive calculus formulas, and suppose that 9 ′ is the
result of replacing an occurrence of ϕ by ψ in conjunctive calculus formula 9. Prove
that 9 and 9 ′ are equivalent.

(b) Prove that the application of the rewrite rules rename and merge-exists to a conjunc-
tive calculus formula yields an equivalent formula.

(c) Prove that these rules can be used to transform any conjunctive calculus formula into
an equivalent formula in normal form.

Exercise 4.5

(a) Formally define the syntax and semantics of rule-based conjunctive queries with
equality and conjunctive calculus queries with equality.

(b) As noted in the text, logic-based conjunctive queries with equality can generally
yield infinite answers if not properly restricted. Give a definition for range-restricted

rule-based and conjunctive calculus queries with equality that ensures that queries
satisfying this condition always yield a finite answer.

(c) Prove for each rule-based conjunctive query with equality q that either q ≡ q∅ or
q ≡ q ′ for some rule-based conjunctive query q ′ without equality. Give a polynomial
time algorithm that decides whether q ≡ q∅, and if not, constructs an equivalent rule-
based conjunctive query q ′.

(d) Prove that each rule-based conjunctive query with equality but no constants is equiv-
alent to a rule-based conjunctive query without equality.

Exercise 4.6 Extend the syntax of the conjunctive calculus to include equality. Give a syn-
tactic condition that ensures that the answer to a query q on I involves only constants from
adom(q, I) and such that the answer can be obtained by considering only valuations whose
range is contained in adom(q, I).

Exercise 4.7 Give a proof of Theorem 4.3.3.
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Exercise 4.8

(a) Give a formal definition for the semantics of the SPC algebra.

(b) Give a formal definition for the syntax and semantics of the SPJR algebra.

Exercise 4.9 Consider the algebra consisting of all SPJR queries in which constants do not
occur.

(a) Define a normal form for this algebra.

(b) Is this algebra closed under composition?

(c) Is this algebra equivalent to the rule-based conjunctive queries without constants or
equality?

Exercise 4.10 Under the named perspective, a selection operator is constant based if it has
the form σA=a, where A ∈ att and a ∈ dom. Prove or disprove: Each SPJR algebra expression
is equivalent to an SPJR algebra expression all of whose selection operators are constant based.

Exercise 4.11 Prove that queries (4.6 and 4.8) cannot be expressed using the SPJ algebra (i.e.,
that renaming is needed).

Exercise 4.12

(a) Prove that the set of SPC transformations presented after the statement of Proposi-
tion 4.4.2 is sound (i.e., preserves equivalence).

(b) Prove Proposition 4.4.2.

(c) Prove that each SPJR query is equivalent to one in normal form. In particular, exhibit
a set of equivalence-preserving SPJR algebra transformations used to demonstrate
this result.

Exercise 4.13

(a) Prove that the nonempty 0-ary relation is the left and right identity for cross product
and for natural join.

(b) Prove that for a fixed relation schema S, there is an identity for union for relations
over S. What if S is not fixed?

(c) Let S be a relational schema. For the binary operations α ∈ {⊲⊳,∪}, does there exist
a relation I such that IαJ = I for each relation J over S?

Exercise 4.14 Complete the proof of Lemma 4.4.7 by showing the inclusion SPJR algebra ⊑
SPC algebra.

Exercise 4.15

(a) Prove Proposition 4.2.9.

(b) Complete the proof of Theorem 4.4.8.

Exercise 4.16 Consider the problem of defining restricted versions of the SPC and SPJR
algebras that are equivalent to the rule-based conjunctive queries without equality. Find natural
restricted versions, or explain why they do not exist.

Exercise 4.17 Let q be a tableau query and q ′ the SPC query corresponding to it via the trans-
lation sketched in Theorem 4.4.8. If q has r rows and q ′ has j joins of database (nonconstant)
relations, show that j = r − 1.
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♠Exercise 4.18

(a) Develop an inductive algorithm that translates a satisfiable SPC query q into a tableau
query by associating a tableau query to each subquery of q.

(b) Do the same for SPJR queries.

(c) Show that if q is a satisfiable SPC (SPRJ) query with n joins (not counting joins
involving constant relations), then the tableau of the corresponding tableau query
has n+ 1 rows.

♠Exercise 4.19 [ASU79b] This exercise examines the connection between typed tableaux and
a subset of the SPJ algebra. A typed restricted SPJ algebra expression over R is an SPJR algebra
expression that uses only [R] as base expressions and only constant-based selection (i.e., having
the form σA=a for constant a), projection, and (natural) join as operators.

(a) Describe a natural algorithm that maps typed restricted SPJ queries q over R into
equivalent typed tableau queries q ′ = (T , u) over R, where |T | = (the number of
join operations in q) + 1.

(b) Show that q = ({〈x, y1〉, 〈x1, y1〉, 〈x1, y〉}, 〈x, y〉) is not the image of any typed re-
stricted SPJ query under the algorithm of part (a).

⋆ (c) [ASSU81] Prove that the tableau query q of part (b) is not equivalent to any typed
restricted SPJ algebra expression.

Exercise 4.20 [ASU79b] A typed tableau query q = (T , u) with T over relation R is repeat

restricted if

1. If A ∈ sort(u), then no variable in πA(T )− {u(A)} occurs more than once in T .

2. If A �∈ sort(u), then at most one variable in πA(T ) occurs more than once in T .

Prove that if q = (T , u) is a typed repeat-restricted tableau query over R, then there is a typed
restricted SPJ query q ′ such that the image of q ′ under the algorithm of Exercise 4.19 part (a) is
q.

Exercise 4.21 Extend Proposition 4.2.2 to include disjunction (i.e., union).

Exercise 4.22 The following query is used in this exercise:

(4.15) Produce a binary relation that includes all tuples 〈t , “excellent”〉 where t is a movie
directed by Allen, and all tuples 〈t , “superb”〉 where t is a movie directed by Hitch-
cock.

(a) Show that none of queries (4.10–4.15) can be expressed using the SPC or SPJR
algebras.

A positive selection formula for the SPC and SPJR algebras is a selection formula as before,
except that disjunction can be used in addition to conjunction. Define the S+PC algebra to be
the SPC algebra extended to permit arbitrary positive selection operators; and define the S+PJR

algebra analogously.

(b) Determine which of queries (4.10–4.15) can be expressed using the S+PJR algebra.

Define the SPC-1* algebra to be the SPC algebra, except that nonsingleton unary constant
relations can be used as base queries; and define the SPC-n* algebra to be the SPC algebra,
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except that nonsingleton constant relations of arbitrary arity can be used as base queries. Define
the SPJR-1∗ and SPJR-n∗ algebras analogously.

(c) Determine which of queries (4.10–4.15) can be expressed using the SPJR-1∗ and
SPJR-n∗ algebras.

(d) Determine the relative expressive powers of the S+PC, SPC-1∗, SPC-n∗, and SPCU
algebras.

Exercise 4.23 Give precise definitions for normal forms for the SPCU and SPJRU algebras,
and prove that all expressions from these algebras have an equivalent in normal form.

Exercise 4.24 An nr-datalog program P is in normal form if all relation names in rule heads
are identical. Prove that each nonrecursive datalog query with single relation target has an
equivalent in normal form.

Exercise 4.25 Prove Theorem 4.5.2.

⋆Exercise 4.26 Recall the discussion in Section 4.5 about disjunction in the conjunctive
calculus.

(a) Consider the query q = {x|ϕ(x)}, where

ϕ(x)≡ R(x) ∧ ∃y, z(S(y, x) ∨ S(x, z)).

Let I be an instance over {R, S}. Using the natural extension of the notion of satisfies

to disjunction, show for each subformula of ϕ with form ∃ωψ , and each valuation ν

over free(∃ωψ) with range contained in adom(I) that: there exists c ∈ dom such that
I |= ψ[ν ∪ {w/c}] iff there exists c ∈ adom(I) such that I |= ψ[ν ∪ {w/c}]. Conclude
that this query can be evaluated by considering only valuations whose range is
contained in adom(I).

(b) The positive existential (relational) calculus is the relational calculus query language
in which query formulas are constructed using∧,∨, ∃. Define a condition on positive
existential calculus queries that guarantees that the answer involves only constants
from adom(q, I) and such that the answer can be obtained by considering only
valuations whose range is contained in adom(q, I). Extend the restriction for the case
when equality is allowed in the calculus.

(c) Prove that the family of restricted positive existential calculus queries defined in the
previous part has expressive power equivalent to the rule-based conjunctive queries
with union and that this result still holds if equality is added to both families of
queries.

Exercise 4.27

(a) Consider as an additional algebraic operation, the difference. The semantics of
q − q ′ is given by [q − q ′](I) = q(I) − q ′(I). Show that the difference cannot be
simulated in the SPCU or SPJRU algebras. (Hint: Use the monotonicity property of
these algebras.)

(b) Negation can be added to (generalized) selection formulas in the natural way—that
is, if γ is a selection formula, then so is (¬γ ). Give a precise definition for the
syntax and semantics of selection with negation. Prove that the SPCU algebra cannot
simulate selections of the form σ¬1=2(R) or σ¬1=a(R).
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Exercise 4.28 Show that intersection can be expressed in the SPC algebra.

⋆Exercise 4.29

(a) Prove that there is no redundant operation in the set χ = {σ, π,×,∪} of unnamed
algebra operators (i.e., for each operator α in the set, exhibit a schema and an
algebraic query q over that schema such that q cannot be expressed with χ − {α}).

(b) Prove the analogous result for the set of named operators {σ, π, ⊲⊳, δ,∪}.

Exercise 4.30 An inequality atom is an expression of the form x �= y or x �= a, where x, y

are variables and a is a constant. Assuming that the underlying domain has a total order, a
comparison atom is an expression of the form xθy, xθa, or aθx, where θ ranges over <, ≤, >,
and ≥.

(a) Show that the family of rule-based conjunctive queries with equality and inequality
strictly dominates the family of rule-based conjunctive queries with equality.

(b) Assuming that the underlying domain has a total order, describe the relationships
between the expressive powers of the family of rule-based conjunctive queries with
equality; the family of rule-based conjunctive queries with equality and inequality;
the family of rule-based conjunctive queries with equality and comparison atoms;
and the family of rule-based conjunctive queries with equality, inequality, and com-
parison atoms.

(c) Develop analogous extensions and results for tableau queries, the conjunctive calcu-
lus, and SPC and SPJR algebras.

⋆Exercise 4.31 For some films, we may not want to store any actor name. Add to the domain a
constant ⊥ meaning unknown information. Propose an extension of the SPJR queries to handle
unknown information (see Chapter 19).



5 Adding Negation: Algebra

and Calculus

Alice: Conjunctive queries are great. But what if I want to see a movie that

doesn’t feature Woody Allen?

Vittorio: We have to introduce negation.

Sergio: It is basically easy.

Riccardo: But the calculus is a little feisty.

As indicated in the previous chapter, the conjunctive queries, even if extended by union,

cannot express queries such as the following:

(5.1) What are the Hitchcock movies in which Hitchcock did not play?

(5.2) What movies are featured at the Gaumont Opera but not at the Gaumont les

Halles?

(5.3) List those movies for which all actors of the movie have acted under Hitchcock’s

direction.

This chapter explores how negation can be added to all forms of the conjunctive queries

(except for the tableau queries) to provide the power needed to express such queries. This

yields languages in the various paradigms that have the same expressive power. They in-

clude relational algebra, relational calculus, and nonrecursive datalog with negation. The

class of queries they express is often referred to as the first-order queries because relational

calculus is essentially first-order predicate calculus without function symbols. These lan-

guages are of fundamental importance in database systems. They provide adequate power

for many applications and at the same time can be implemented with reasonable efficiency.

They constitute the basis for the standard commercial relational languages, such as SQL.

In the case of the algebras, negation is added using the set difference operator, yielding

the language(s) generally referred to as relational algebra (Section 5.1). In the case of

the rule-based paradigm, we consider negative literals in the bodies of rules, which are

interpreted as the absence of the corresponding facts; this yields nonrecursive datalog¬

(Section 5.2).

Adding negation in the calculus paradigm raises some serious problems that require

effort and care to resolve satisfactorily. In the development in this chapter, we proceed in

two stages. First (Section 5.3) we introduce the calculus, illustrate the problematic issues of

“safety” and domain independence, and develop some simple solutions for them. We also

show the equivalence between the algebra and the calculus at this point. The material in this

section provides a working knowledge of the calculus that is adequate for understanding

the study of its extensions in Parts D and E. The second stage in our study of the calculus

70
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(Section 5.4) focuses on the important problem of finding syntactic restrictions on the

calculus that ensure domain independence.

The chapter concludes with brief digressions concerning how aggregate functions can

be incorporated into the algebra and calculus (Section 5.5), and concerning the emerging

area of constraint databases, which provide a natural mechanism for representing and

manipulating infinite databases in a finite manner (Section 5.6).

From the theoretical perspective, the most important aspects of this chapter include

the demonstration of the equivalence of the algebra and calculus (including a relatively

direct transformation of calculus queries into equivalent algebra ones) and the application

of the classical proof technique of structural induction used on both calculus formulas and

algebra expressions.

5.1 The Relational Algebras

Incorporating the difference operator, denoted ‘−’, into the algebras is straightforward. As

with union and intersection, this can only be applied to expressions that have the same sort,

in the named case, or arity, in the unnamed case.

Example 5.1.1 In the named algebra, query (5.1) is expressed by

πTitleσDirector=“Hitchcock”(Movies)− πTitleσActor=“Hitchcock”(Movies).

The unnamed relational algebra is obtained by adding the difference operator to the

SPCU algebra. It is conventional also to permit the intersection operator, denoted ‘∩’ in

this algebra, because it is simulated easily using cross-product, select, and project or using

difference (see Exercise 5.4). Because union is present, nonsingleton constant relations

may be used in this algebra. Finally, the selection operator can be extended to permit

negation (see Exercise 5.4).

The named relational algebra is obtained in an analogous fashion, and similar gener-

alizations can be developed.

As shown in Exercise 5.5, the family of unnamed algebra operators {σ, π,×,∪,−} is

nonredundant, and the same is true for the named algebra operators {σ, π, ⊲⊳, δ,∪,−}. It

is easily verified that the algebras are not monotonic, nor are all algebra queries satisfiable

(see Exercise 5.6). In addition, the following is easily verified (see Exercise 5.7):

Proposition 5.1.2 The unnamed and named relational algebras have equivalent

expressive power.

The notion of composition of relational algebra queries can be defined in analogy

to the composition of conjunctive queries described in the previous chapter. It is easily

verified that the relational algebras, and hence the other equivalent languages presented in

this chapter, are closed under composition.
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5.2 Nonrecursive Datalog with Negation

To obtain a rule-based language with expressive power equivalent to the relational algebra,

we extend nonrecursive datalog programs by permitting negative literals in rule bodies.

This yields the nonrecursive datalog with negation also denoted nonrecursive datalog¬

and nr-datalog¬.

A nonrecursive datalog¬ (nr-datalog¬) rule is a rule of the form

q : S(u)← L1, . . . , Ln,

where S is a relation name, u is a free tuple of appropriate arity, and each Li is a literal [i.e.,

an expression of the form R(v) or ¬R(v), where R is a relation name and v is a free tuple

of appropriate arity and where S does not occur in the body]. This rule is range restricted

if each variable x occurring in the rule occurs in at least one literal of the form R(v) in

the rule body. Unless otherwise specified, all datalog¬ rules considered are assumed to be

range restricted.

To give the semantics of the foregoing rule q, let R be a relation schema that includes

all of the relation names occurring in the body of the rule q, and let I be an instance of R.

Then the image of I under q is

q(I)= {ν(u) | ν is a valuation and for each i ∈ [1, n],

ν(ui) ∈ I(Ri), if Li = Ri(ui), and

ν(ui) �∈ I(Ri), if Li =¬Ri(ui)}.

In general, this image can be expressed as a difference q1 − q2, where q1 is an SPC query

and q2 is an SPCU query (see Exercise 5.9).

Equality may be incorporated by permitting literals of the form s = t and s �= t for

terms s and t . The notion of range restriction in this context is defined as it was for rule-

based conjunctive queries with equality. The semantics are defined in the natural manner.

To obtain the full expressive power of the relational algebras, we must consider sets

of nr-datalog¬ rules; these are analogous to the nr-datalog programs introduced in the

previous chapter. A nonrecursive datalog¬ program (with or without equality) over schema

R is a sequence

S1 ← body1

S2 ← body2

...

Sm← bodym

of nr-datalog¬ rules, where no relation name in R occurs in a rule head; the same relation

name may appear in more than one rule head; and there is some ordering r1, . . . , rm of

the rules so that the relation name in the head of a rule ri does not occur in the body

of a rule rj whenever j ≤ i. The semantics of these programs are entirely analogous to
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the semantics of nr-datalog programs. An nr-datalog¬ query is a query defined by some

nr-datalog¬ program with a specified target relation.

Example 5.2.1 Assume that each movie in Movies has one director. Query (5.1) is

answered by

ans(x)←Movies(x, “Hitchcock”, z),

¬Movies(x, “Hitchcock”, “Hitchcock”).

Query (5.3) is answered by

Hitch-actor(z)←Movies(x, “Hitchcock”, z)

not-ans(x)←Movies(x, y, z), ¬Hitch-actor(z)

ans(x)←Movies(x, y, z), ¬not-ans(x).

Care must be taken when forming nr-datalog¬ programs. Consider, for example, the fol-

lowing program, which forms a kind of merging of the first two rules of the previous

program. (Intuitively, the first rule is a combination of the first two rules of the preceding

program, using variable renaming in the spirit of Example 4.3.1.)

bad-not-ans(x)←Movies(x, y, z), ¬Movies(x′, “Hitchcock”, z),

Movies(x′, “Hitchcock”, z′),

ans(x)←Movies(x, y, z), ¬bad-not-ans(x)

Rather than expressing query (5.3), it expresses the following:

(5.3′) (Assuming that all movies have only one director) list those movies for which all

actors of the movie acted in all of Hitchcock’s movies.

It is easily verified that each nr-datalog¬ program with equality can be simulated by

an nr-datalog¬ program not using equality (see Exercise 5.10). Furthermore (see Exer-

cise 5.11), the following holds:

Proposition 5.2.2 The relational algebras and the family of nr-datalog¬ programs that

have single relation output have equivalent expressive power.

5.3 The Relational Calculus

Adding negation in the calculus paradigm yields an extremely flexible query language,

which is essentially the predicate calculus of first-order logic (without function symbols).

However, this flexibility brings with it a nontrivial cost: If used without restriction, the

calculus can easily express queries whose “answers” are infinite. Much of the theoretical

development in this and the following section is focused on different approaches to make
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the calculus “safe” (i.e., to prevent this and related problems). Although considerable effort

is required, it is a relatively small price to pay for the flexibility obtained.

This section first extends the syntax of the conjunctive calculus to the full calculus.

Then some intuitive examples are presented that illustrate how some calculus queries can

violate the principle of “domain independence.” A variety of approaches have been devel-

oped to resolve this problem based on the use of both semantic and syntactic restrictions.

This section focuses on semantic restrictions. The first step in understanding these

is a somewhat technical definition based on “relativized interpretation” for the semantics

of (arbitrary) calculus queries; the semantics are defined relative to different “underlying

domains” (i.e., subsets of dom). This permits us to give a formal definition of domain

independence and leads to a family of different semantics for a given query.

The section closes by presenting the equivalence of the calculus under two of the se-

mantics with the algebra. This effectively closes the issue of expressive power of the calcu-

lus, at least from a semantic point of view. One of the semantics for the calculus presented

here is the “active domain” semantics; this is particularly convenient in the development of

theoretical results concerning the expressive power of a variety of languages presented in

Parts D and E.

As noted in Chapter 4, the calculus presented in this chapter is sometimes called the

domain calculus because the variables range over elements of the underlying domain of

values. Exercise 5.23 presents the tuple calculus, whose variables range over tuples, and

its equivalence with the domain calculus and the algebra. The tuple calculus and its variants

are often used in practice. For example, the practical languages SQL and Quel can be

viewed as using tuple variables.

Well-Formed Formulas, Revisited

We obtain the relational calculus from the conjunctive calculus with equality by adding

negation (¬), disjunction (∨), and universal quantification (∀). (Explicit equality is needed

to obtain the full expressive power of the algebras; see Exercise 5.12.) As will be seen, both

disjunction and universal quantification can be viewed as consequences of adding negation,

because ϕ ∨ ψ ≡¬(¬ϕ ∧ ¬ψ) and ∀xϕ ≡¬∃x¬ϕ.

The formal definition of the syntax of the relational calculus is a straightforward

extension of that for the conjunctive calculus given in the previous chapter. We include

the full definition here for the reader’s convenience. A term is a constant or a variable. For

a given input schema R, the base formulas include, as before, atoms over R and equality

(inequality) atoms of the form e = e′ (e �= e′) for terms e, e′. The (well-formed) formulas

of the relational calculus over R include the base formulas and formulas of the form

(a) (ϕ ∧ ψ), where ϕ and ψ are formulas over R;

(b) (ϕ ∨ ψ), where ϕ and ψ are formulas over R;

(c) ¬ϕ, where ϕ is a formula over R;

(d) ∃xϕ, where x is a variable and ϕ a formula over R;

(e) ∀xϕ, where x is a variable and ϕ a formula over R.

As with conjunctive calculus,
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∃x1, x2, . . . , xmϕ abbreviates ∃x1∃x2 . . . ∃xmϕ, and

∀x1, x2, . . . , xmϕ abbreviates∀x1∀x2 . . .∀xmϕ.

It is sometimes convenient to view the binary connectives∧ and∨ as polyadic connectives.

In some contexts, e �= e′ is viewed as an abbreviation of ¬(e = e′).

It is often convenient to include two additional logical connectives, implies (→) and

is equivalent to (↔). We view these as syntactic abbreviations as follows:

ϕ→ ψ ≡¬ϕ ∨ ψ

ϕ↔ ψ ≡ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).

The notions of free and bound occurrences of variables in a formula, and of free(ϕ)

for formula ϕ, are defined analogously to their definition for the conjunctive calculus. In

addition, the notion of relational calculus query is defined, in analogy to the notion of

conjunctive calculus query, to be an expression of the form

{〈e1, . . . , em〉 : A1, . . . , Am | ϕ}, in the named perspective,

{e1, . . . , em | ϕ}, in the unnamed perspective,

or if the sort is understood from the context,

where e1, . . . , em are terms, repeats permitted, and where the set of variables occurring in

e1, . . . , em is exactly free(ϕ).

Example 5.3.1 Suppose that each movie has just one director. Query (5.1) can be ex-

pressed in the relational calculus as

{xt | ∃xaMovies(xt , “Hitchcock”, xa) ∧

¬Movies(xt , “Hitchcock”, “Hitchcock”)}.

Query (5.3) is expressed by

{xt | ∃xd, xa Movies(xt, xd, xa) ∧

∀ya (∃ydMovies(xt, yd, ya)

→∃zt Movies(zt , “Hitchock”, ya))}.

The first conjunct ensures that the variable xt ranges over titles in the current value of

Movies, and the second conjunct enforces the condition on actors of the movie identified

by xt .

“Unsafe” Queries

Before presenting the alternative semantics for the relational calculus, we present an in-

tuitive indication of the kinds of problems that arise if the conventional definitions from

predicate calculus are adapted directly to the current context.
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The fundamental problems of using the calculus are illustrated by the following ex-

pressions:

(unsafe-1) {x | ¬Movies(“Cries and Whispers”, “Bergman”, x)}

(unsafe-2) {x, y |Movies(“Cries and Whispers”, “Bergman”, x)

∨ Movies(y, “Bergman”, “Ullman”)}.

If the usual semantics of predicate calculus are adapted directly to this context, then

the query (unsafe-1) produces all tuples 〈a〉 where a ∈ dom and 〈“Cries and Whispers”,

“Bergman”, a〉 is not in the input. Because all input instances are by definition finite, the

query yields an infinite set on all input instances. The same is true of query (unsafe-2), even

though it does not use explicit negation.

An intuitively appealing approach to resolving this problem is to view the different

relation columns as typed and to insist that variables occurring in a given column range

over only values of the appropriate type. For example, this would imply that the answer to

query (unsafe-1) is restricted to the set of actors. This approach is not entirely satisfactory

because query answers now depend on the domains of the types. For example, different

answers are obtained if the type Actor includes all and only the current actors [i.e., persons

occurring in πActor(Movies)] or includes all current and potential actors. This illustrates

that query (unsafe-1) is not independent of the underlying domain within which the query

is interpreted (i.e., it is not “domain independent”). The same is true of query (unsafe-2).

Even if the underlying domain is finite, users will typically not know the exact contents

of the domains used for each variable. In this case it would be disturbing to have the result

of a user query depend on information not directly under the user’s control. This is another

argument for permitting only domain-independent queries.

A related but more subtle problem arises with regard to the interpretation of quantified

variables. Consider the query

(unsafe-3) {x | ∀yR(x, y)}.

The answer to this query is necessarily finite because it is a subset of π1(R). However, the

query is not domain independent. To see why, note that if y is assumed to range over all

of dom, then the answer is always the empty relation. On the other hand, if the underlying

domain of interpretation is finite, it is possible that the answer will be nonempty. (This

occurs, for example, if the domain is {1, . . . , 5}, and the input for R is {〈3, 1〉, . . . 〈3, 5〉}.)
So again, this query depends on the underlying domain(s) being used (for the different

variables) and is not under the user’s control.

There is a further difficulty of a more practical nature raised by query (unsafe-3).

Specifically, if the intuitively appealing semantics of the predicate calculus are used, then

the naive approach to evaluating quantifiers leads to the execution of potentially infinite

procedures. Although the proper answer to such queries can be computed in a finite manner

(see Theorem 5.6.1), this is technically intricate.

The following example indicates how easy it is to form an unsafe query mistakenly in

practice.
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Example 5.3.2 Recall the calculus query answering query (5.3) in Example 5.3.1. Sup-

pose that the first conjunct of that query is omitted to obtain the following:

{xt | ∀ya(∃ydMovies(xt, yd, ya)

→∃ztMovies(zt , “Hitchcock”, ya))}.

This query returns all titles of movies that have the specified property and also all elements

of dom not occurring in πTitle(Movies). Even if xt were restricted to range over the set of

actual and potential movie titles, it would not be domain independent.

Relativized Interpretations

We now return to the formal development. As the first step, we present a definition that will

permit us to talk about calculus queries in connection with different underlying domains.

Under the conventional semantics associated with predicate calculus, quantified vari-

ables range over all elements of the underlying domain, in our case, dom. For our purposes,

however, we generalize this notion to permit explicit specification of the underlying domain

to use (i.e., over which variables may range).

A relativized instance over schema R is a pair (d, I), where I is an instance over R and

adom(I)⊆ d⊆ dom. A calculus formula ϕ is interpretable over (d,I) if adom(ϕ)⊆ d. In

this case, if ν is a valuation over free(ϕ) with range contained in d, then I satisfies ϕ for ν

relative to d, denoted I |=d ϕ[ν], if

(a) ϕ = R(u) is an atom and ν(u) ∈ I(R);

(b) ϕ = (s = s′) is an equality atom and ν(s)= ν(s′);

(c) ϕ = (ψ ∧ ξ) and1 I |=d ψ[ν|free(ψ)] and I |=d ξ [ν|free(ξ)];

(d) ϕ = (ψ ∨ ξ) and I |=d ψ[ν|free(ψ)] or I |=d ξ [ν|free(ξ)];

(e) ϕ =¬ψ and I �|=d ψ[ν] (i.e., I |=d ψ[ν] does not hold);

(f) ϕ = ∃xψ and for some c ∈ d, I |=d ψ[ν ∪ {x/c}]; or

(g) ϕ = ∀xψ and for each c ∈ d, I |=d ψ[ν ∪ {x/c}].

The notion of “satisfies . . . relative to” just presented is equivalent to the usual notion

of satisfaction found in first-order logic, where the set d plays the role of the universe of

discourse in first-order logic. In practical database settings it is most natural to assume that

the underlying universe is dom; for this reason we use specialized terminology here.

Recall that for a query q and input instance I, we denote adom(q) ∪ adom(I) by

adom(q, I), and the notation adom(ϕ, I) for formula ϕ is defined analogously.

We can now define the relativized semantics for the calculus. Let R be a schema,

q = {e1, . . . , en | ϕ} a calculus query over R, and (d, I) a relativized instance over R. Then

1 ν|V for variable set V denotes the restriction of ν to V .
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the image of I under q relative to d is

qd(I)= {ν(〈e1, . . . , en〉) | I |=d ϕ[ν],

ν is a valuation over free(ϕ) with range⊆ d}.

Note that if d is infinite, then this image may be an infinite set of tuples.

As a minor generalization, for arbitrary d ⊆ dom, the image of q on I relative to d is

defined by2

qd(I)= qd∪adom(q,I)(I).

Example 5.3.3 Consider the query

q = {x | R(x) ∧ ∃y(¬R(y) ∧ ∀z(R(z) ∨ z= y))}

Then

qdom(I )= {} for any instance I over R

q{1,2,3,4}(J1)= {} for J1 = {〈1〉, 〈2〉} over R

q{1,2,3,4}(J2)= J2 for J2 = {〈1〉, 〈2〉, 〈3〉} over R

q{1,2,3,4}(J3)= {} for J3 = {〈1〉, 〈2〉, 〈3〉, 〈4〉} over R

q{1,2,3,4}(J4)= J4 for J4 = {〈1〉, 〈2〉, 〈3〉, 〈5〉} over R.

This illustrates that under an interpretation relative to a set d, a calculus query q on input I

may be affected by |d− adom(q, I)|.

It is important to note that the semantics of algebra and datalog¬ queries q evaluated

on instance I are independent of whether dom or some subset d satisfying adom(q, I)⊆
d⊆ dom is used as the underlying domain.

The Natural and Active Domain Semantics for Calculus Queries

The relativized semantics for calculus formulas immediately yields two important seman-

tics for calculus queries. The first of these corresponds most closely to the conventional

interpretation of predicate calculus and is thus perhaps the intuitively most natural seman-

tics for the calculus.

Definition 5.3.4 For calculus query q and input instance I, the natural (or unrestricted)

interpretation of q on I, denoted qnat(I), is qdom(I) if this is finite and is undefined other-

wise.

2 Unlike the convention of first-order logic, interpretations over an empty underlying domain are
permitted; this arises only with empty instances.
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The second interpretation is based on restricting quantified variables to range over the

active domain of the query and the input. Although this interpretation is unnatural from the

practical perspective, it has the advantage that the output is always defined (i.e., finite). It

is also a convenient semantics for certain theoretical developments.

Definition 5.3.5 For calculus query q and input instance I, the active domain interpre-

tation of q on I, denoted qadom(I), is qadom(q,I)(I). The family of mappings obtained from

calculus queries under the active domain interpretation is denoted CALCadom.

Example 5.3.6 Recall query (unsafe-2). Under the natural interpretation on input the

instance I shown in Chapter 3, this query yields the undefined result. On the other hand,

under the active domain interpretation this yields as output (written informally) ({actors

in “Cries and Whispers”} × adom(I)) ∪ (adom(I) × {movies by Bergman featuring

Ullman}), which is finite and defined.

Domain Independence

As noted earlier, there are two difficulties with the natural interpretation of the calculus

from a practical point of view: (1) it is easy to write queries with undefined output, and (2)

even if the output is defined, the naive approach to computing it may involve consideration

of quantifiers ranging over an infinite set. The active domain interpretation solves these

problems but generally makes the answer dependent on information (the active domain)

not readily available to users. One approach to resolving this situation is to restrict attention

to the class of queries that yield the same output on all possible underlying domains.

Definition 5.3.7 A calculus query q is domain independent if for each input instance I,

and each pair d, d′ ⊆ dom, qd(I)= qd′(I). If q is domain independent, then the image of q

on input instance I, denoted simply q(I), is qdom(I) [or equivalently, qadom(I)]. The family

of mappings obtained from domain-independent calculus queries is denoted CALCdi.

In particular, if q is domain independent, then the output according to the natural

interpretation can be obtained by computing the active domain interpretation. Thus,

Lemma 5.3.8 CALCdi ⊑ CALCadom.

Example 5.3.9 The two calculus queries of Example 5.3.1 are domain independent, and

the query of Example 5.3.2 is not (see Exercise 5.15).

Equivalence of Algebra and Calculus

We now demonstrate the equivalence of the various languages introduced so far in this

chapter.
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Theorem 5.3.10 (Equivalence Theorem) The domain-independent calculus, the calcu-

lus under active domain semantics, the relational algebras, and the family of nr-datalog¬

programs that have single-relation output have equivalent expressive power.

Proposition 5.2.2 shows that nr-datalog¬ and the algebras have equivalent expressive

power. In addition, Lemma 5.3.8 shows that CALCdi ⊑ CALCadom. To complete the proof,

we demonstrate that

(i) algebra ⊑ CALCdi (Lemma 5.3.11)

(ii) CALCadom ⊑ algebra (Lemma 5.3.12).

Lemma 5.3.11 For each unnamed algebra query, there is an equivalent domain-indepen-

dent calculus query.

Proof Let q be an unnamed algebra query with arity n. We construct a domain-

independent query q ′ = {x1, . . . , xn | ϕq} that is equivalent to q. The formula ϕq is con-

structed using an induction on subexpressions of q. In particular, for subexpression E of

q, we define ϕE according to the following cases:

(a) E is R for some R ∈ R: ϕE is R(x1, . . . , xarity(R)).

(b) E is {u1, . . . , um}, where each uj is a tuple of arity α: ϕE is

(x1 = u1(1) ∧ · · · ∧ xα = u1(α)) ∨ · · · ∨ (x1 = um(1) ∧ · · · ∧ xα = um(α)).

(c) E is σF (E1): ϕE is ϕE1 ∧ ψF , where ψF is the formula obtained from F by

replacing each coordinate identifier i by variable xi.

(d) E is πi1,...,in(E1): ϕE is

∃yi1, . . . , yin((x1 = yi1 ∧ · · · ∧ xn = yin) ∧ ∃yj1 . . . ∃yjlϕE1(y1, . . . , yarity(E1))),

where j1, . . . , jl is a listing of [1, arity(E1)]− {i1, . . . , in}.

(e) E is E1 × E2: ϕE is ϕE1 ∧ ϕE2(xarity(E1)+1, . . . , xarity(E1)+arity(E2)).

(f) E is E1 ∪ E2: ϕE is ϕE1 ∨ ϕE2.

(g) E is E1 − E2: ϕE is ϕE1 ∧ ¬ϕE2.

We leave verification of this construction and the properties of q ′ to the reader (see Exer-

cise 5.13a).

Lemma 5.3.12 For each calculus query q, there is a query in the unnamed algebra that is

equivalent to q under the active domain interpretation.

Crux Let q = {x1, . . . , xn | ϕ} be a calculus query over R. It is straightforward to develop

a unary algebra query Eadom such that for each input instance I,
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Eadom(I)= {〈a〉 | a ∈ adom(q, I)}.

Next an inductive construction is performed. To each subformula ψ(y1, . . . , ym) of ϕ this

associates an algebra expression Eψ with the property that (abusing notation slightly)

{y1, . . . , ym | ψ}adom(q,I)(I)= Eψ(I) ∩ (adom(q, I))m.

[This may be different from using the active domain semantics on ψ , because we may have

adom(ψ, I) ⊂ adom(q, I).] It is clear that Eϕ is equivalent to q under the active domain

semantics.

We now illustrate a few cases of the construction of expressions Eψ and leave the

rest for the reader (see Exercise 5.13b). Suppose that ψ is a subformula of ϕ. Then Eψ is

constructed in the following manner:

(a) ψ(y1, . . . , ym) is R(t1, . . . , tl), where each ti is a constant or in $y: Then Eψ ≡
π$k(σF (R)), where $k and F are chosen in accordance with $y and $t .

(b) ψ(y1, y2) is y1 �= y2: Eψ is σ1�=2(Eadom × Eadom).

(c) ψ(y1, y2, y3) is ψ ′(y1, y2)∨ψ ′′(y2, y3): Eψ is (Eψ ′ ×Eadom)∪ (Eadom×Eψ ′′).

(d) ψ(y1, . . . , ym) is ¬ψ ′(y1, . . . , ym): Eψ is (Eadom × · · · × Eadom)− Eψ ′.

5.4 Syntactic Restrictions for Domain Independence

As seen in the preceding section, to obtain the natural semantics for calculus queries,

it is desirable to focus on domain independent queries. However, as will be seen in the

following chapter (Section 6.3), it is undecidable whether a given calculus query is domain

independent. This has led researchers to develop syntactic conditions that ensure domain

independence, and many such conditions have been proposed.

Several criteria affect the development of these conditions, including their generality,

their simplicity, and the ease with which queries satisfying the conditions can be translated

into the relational algebra or other lower-level representations. We present one such con-

dition here, called “safe range,” that is relatively simple but that illustrates the flavor and

theoretical properties of many of these conditions. It will serve as a vehicle to illustrate

one approach to translating these restricted queries into the algebra. Other examples are

explored in Exercises 5.25 and 5.26; translations of these into the algebra are considerably

more involved.

This section begins with a brief digression concerning equivalence preserving rewrite

rules for the calculus. Next the family CALCsr of safe-range queries is introduced. It is

shown easily that the algebra ⊑ CALCsr . A rather involved construction is then presented

for transforming safe-range queries into the algebra. The section concludes by defining a

variant of the calculus that is equivalent to the conjunctive queries with union.
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1 ϕ ∧ ψ ↔ ψ ∧ ϕ

2 ψ1 ∧ · · · ∧ ψn ∧ (ψn+1 ∧ ψn+2) ↔ ψ1 ∧ · · · ∧ ψn ∧ ψn+1 ∧ ψn+2

3 ϕ ∨ ψ ↔ ψ ∨ ϕ

4 ψ1 ∨ · · · ∨ ψn ∨ (ψn+1 ∨ ψn+2) ↔ ψ1 ∨ · · · ∨ ψn ∨ ψn+1 ∨ ψn+2

5 ¬(ϕ ∧ ψ) ↔ (¬ϕ) ∨ (¬ψ)
6 ¬(ϕ ∨ ψ) ↔ (¬ϕ) ∧ (¬ψ)
7 ¬(¬ϕ) ↔ ϕ

8 ∃xϕ ↔ ¬∀x¬ϕ
9 ∀xϕ ↔ ¬∃x¬ϕ

10 ¬∃xϕ ↔ ∀x¬ϕ
11 ¬∀xϕ ↔ ∃x¬ϕ
12 ∃xϕ ∧ ψ ↔ ∃x(ϕ ∧ ψ) (x not free in ψ)

13 ∀xϕ ∧ ψ ↔ ∀x(ϕ ∧ ψ) (x not free in ψ)

14 ∃xϕ ∨ ψ ↔ ∃x(ϕ ∨ ψ) (x not free in ψ)

15 ∀xϕ ∨ ψ ↔ ∀x(ϕ ∨ ψ) (x not free in ψ)

16 ∃xϕ ↔ ∃yϕxy (y not free in ϕ)

17 ∀xϕ ↔ ∀yϕxy (y not free in ϕ)

Figure 5.1: Equivalence-preserving rewrite rules for calculus formulas

Equivalence-Preserving Rewrite Rules

We now digress for a moment to present a family of rewrite rules for the calculus. These

preserve equivalence regardless of the underlying domain used to evaluate calculus queries.

Several of these rules will be used in the transformation of safe-range queries into the

algebra.

Calculus formulas ϕ,ψ over schema R are equivalent, denoted ϕ ≡ ψ , if for each I

over R, d ⊆ dom, and valuation ν with range ⊆ d

I |=d∪adom(ϕ,I) ϕ[ν] if and only if I |=d∪adom(ψ,I) ψ[ν].

(It is verified easily that this generalizes the notion of equivalence for conjunctive calculus

formulas.)

Figure 5.1 shows a number of equivalence-preserving rewrite rules for calculus for-

mulas. It is straightforward to verify that if ψ transforms to ψ ′ by a rewrite rule and if ϕ′

is the result of replacing an occurrence of subformula ψ of ϕ by formula ψ ′, then ϕ′ ≡ ϕ

(see Exercise 5.14).

Note that, assuming x �∈ free(ψ) and y �∈ free(ϕ),

∃xϕ ∧ ∀yψ ≡ ∃x∀y(ϕ ∧ ψ)≡ ∀y∃x(ϕ ∧ ψ).

Example 5.4.1 Recall from Chapter 2 that a formula ϕ is in prenex normal form (PNF)

if it has the form %1x1 . . .%nxnψ , where each %i is either ∀ or ∃, and no quantifiers occur

in ψ . In this case, ψ is called the matrix of formula ϕ.
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A formula ψ without quantifiers or connectives → or ↔ is in conjunctive normal

form (CNF) if it has the form ξ1 ∧ · · · ∧ ξm (m≥ 1), where each conjunct ξj has the form

L1∨ · · · ∨Lk (k ≥ 1) and where eachLl is a literal (i.e., atom or negated atom). Similarly, a

formula ψ without quantifiers or connectives→ or↔ is in disjunctive normal form (DNF)

if it has the form ξ1 ∨ · · · ∨ ξm, where each disjunct ξj has the form L1 ∧ · · · ∧ Lk where

each Ll is a literal (i.e., atom or negated atom).

It is easily verified (see Exercise 5.14) that the rewrite rules can be used to transform

an arbitrary calculus formula into an equivalent formula that is in PNF with a CNF matrix,

and into an equivalent formula that is in PNF with a DNF matrix.

Safe-Range Queries

The notion of safe range is presented now in three stages, involving (1) a normal form

called SRNF, (2) a mechanism for determining how variables are “range restricted” by

subformulas, and (3) specification of a required global property of the formula.

During this development, it is sometimes useful to speak of calculus formulas in terms

of their parse trees. For example, we will say that the formula (R(x) ∧ ∃y(S(y, z)) ∧
¬T (x, z)) has ‘and’ or ∧ as a root (which has an atom, an ∃, and a ¬ as children).

The normalization of formulas puts them into a form more easily analyzed for

safety without substantially changing their syntactic structure. The following equivalence-

preserving rewrite rules are used to place a formula into safe-range normal form (SRNF):

Variable substitution: This is from Section 4.2. It is applied until no distinct pair of quan-

tifiers binds the same variable and no variable occurs both free and bound.

Remove universal quantifiers: Replace subformula ∀$xψ by ¬∃$x¬ψ . (This and the next

condition can be relaxed; see Example 5.4.5.)

Remove implications: Replace ψ→ ξ by ¬ψ ∨ ξ , and similarly for↔.

Push negations: Replace

(i) ¬¬ψ by ψ

(ii) ¬(ψ1 ∨ · · · ∨ ψn) by (¬ψ1 ∧ · · · ∧ ¬ψn)

(iii) ¬(ψ1 ∧ · · · ∧ ψn) by (¬ψ1 ∨ · · · ∨ ¬ψn)

so that the child of each negation is either an atom or an existentially quantified

formula.

Flatten ‘and’s, ‘or’s, and existential quantifiers: This is done so that no child of an ‘and’

is an ‘and,’ and similarly for ‘or’ and existential quantifiers.

The SRNF formula resulting from applying these rules to ϕ is denoted SRNF(ϕ). A formula

ϕ (query {$e | ϕ}) is in SRNF if SRNF(ϕ)= ϕ.

Example 5.4.2 The first calculus query of Example 5.3.1 is in SRNF. The second calcu-

lus query is not in SRNF; the corresponding SRNF query is



84 Adding Negation: Algebra and Calculus

{xt | ∃xd, xaMovies(xt, xd, xa)∧

¬∃ya(∃ydMovies(xt, yd, ya)

∧ ¬∃ztMovies(zt , “Hitchcock”, ya))}.

Transforming the query of Example 5.3.2 into SRNF yields

{xt | ¬∃ya(∃ydMovies(xt, yd, ya)

∧ ¬∃ztMovies(zt , “Hitchcock”, ya))}.

We now present a syntactic condition on SRNF formulas that ensures that each variable

is “range restricted,” in the sense that its possible values all lie within the active domain of

the formula or the input. If a quantified variable is not range restricted, or if one of the

free variables is not range restricted, then the associated query is rejected. To make the

definition, we first define the set of range-restricted variables of an SRNF formula using

the following procedure, which returns either the symbol⊥, indicating that some quantified

variable is not range restricted, or the set of free variables that is range restricted.

Algorithm 5.4.3 (Range restriction (rr))

Input: a calculus formula ϕ in SRNF

Output: a subset of the free variables of ϕ or3 ⊥

begin

case ϕ of

R(e1, . . . , en) : rr(ϕ)= the set of variables in {e1, . . . , en};

x = a or a = x : rr(ϕ)= {x};

ϕ1 ∧ ϕ2 : rr(ϕ)= rr(ϕ1) ∪ rr(ϕ2);

ϕ1 ∧ x = y : rr(ϕ)=

{

rr(ψ) if {x, y} ∩ rr(ψ)= ∅,

rr(ψ) ∪ {x, y} otherwise;

ϕ1 ∨ ϕ2 : rr(ϕ)= rr(ϕ1) ∩ rr(ϕ2);

¬ϕ1 : rr(ϕ)= ∅;

∃$xϕ1 : if $x ⊆ rr(ϕ1)

then rr(ϕ)= rr(ϕ1)− $x

else return ⊥

end case

end

3 In the following, for eachZ,⊥∪Z =⊥∩Z =⊥−Z = Z−⊥=⊥. In addition, we show the case
of binary ‘and’s, etc., but we mean this to include polyadic ‘and’s, etc. Furthermore, we sometimes
use ‘$x’ to denote the set of variables occurring in $x.
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Intuitively, the occurrence of a variable x in a base relation or in an atom of the

form x = a restricts that variable. This restriction is propagated through ∧, possibly lost

in ∨, and always lost in ¬. In addition, each quantified variable must be restricted by the

subformula it occurs in.

A calculus query {u | ϕ} is safe range if rr(SRNF(ϕ))= free(ϕ). The family of safe-

range queries is denoted by CALCsr .

Example 5.4.4 Recall Examples 5.3.1 and 5.4.2. The first query of Example 5.3.1 is safe

range. The first query of Example 5.4.2 is also safe range. However, the second query of

Example 5.4.2 is not because the free variable xt is not range restricted by the formula.

Before continuing, we explore a generalization of the notion of safe range to permit

universal quantification.

Example 5.4.5 Suppose that formula ϕ has a subformula of the form

ψ ≡ ∀$x(ψ1($x)→ ψ2($y)),

where $x and $y might overlap. Transforming into SRNF (and assuming that the parent of ψ

is not ¬), we obtain

ψ ′ ≡¬∃$x(ψ1($x) ∧ ¬ψ2($y)).

Now rr(ψ ′) is defined iff

(a) rr(ψ1)= $x, and

(b) rr(ψ2) is defined.

In this case, rr(ψ ′)= ∅. This is illustrated by the second query of Example 5.3.1, that was

transformed into SRNF in Example 5.4.2.

Thus SRNF can be extended to permit subformulas that have the form of ψ without

materially affecting the development.

The calculus query constructed in the proof of Lemma 5.3.11 is in fact safe range. It

thus follows that the algebra ⊑ CALCsr .

As shown in the following each safe range query is domain independent (Theo-

rem 5.4.6). For this reason, if q is safe range we generally use the natural interpretation

to evaluate it; we may also use the active domain interpretation.

The development here implies that all of CALCsr , CALCdi, and CALCadom are equiv-

alent. When the particular choice is irrelevant to the discussion, we use the term relational

calculus to refer to any of these three equivalent query languages.
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From Safe Range to the Algebra

We now present the main result of this section (namely, the translation of safe-range queries

into the named algebra). Speaking loosely, this translation is relatively direct in the sense

that the algebra query E constructed for calculus query q largely follows the structure of

q. As a result, evaluation of E will in most cases be more efficient than using the algebra

query that is constructed for q by the proof of Lemma 5.3.12.

Examples of the construction used are presented after the formal argument.

Theorem 5.4.6 CALCsr ≡ the relational algebra. Furthermore, each safe-range query

is domain independent.

The proof of this theorem involves several steps. As seen earlier, the algebra ⊑
CALCsr . To prove the other direction, we develop a translation from safe-range queries

into the named algebra. Because the algebra is domain independent, this will also imply

the second sentence of the theorem.

To begin, let ϕ be a safe-range formula in SRNF. An occurrence of a subformula ψ in

ϕ is self-contained if its root is ∧ or if

(i) ψ = ψ1 ∨ · · · ∨ ψn and rr(ψ)= rr(ψ1)= · · · = rr(ψn)= free(ψ);

(ii) ψ = ∃$xψ1 and rr(ψ)= free(ψ1); or

(iii) ψ =¬ψ1 and rr(ψ)= free(ψ1).

A safe-range, SRNF formula ϕ is in4 relational algebra normal form (RANF) if each

subformula of ϕ is self-contained.

Intuitively, if ψ is a self-contained subformula of ϕ that does not have ∧ as a root, then

all free variables in ψ are range restricted within ψ . As we shall see, if ϕ is in RANF, this

permits construction of an equivalent relational algebra query Eϕ using an induction from

leaf to root.

We now develop an algorithm RANF-ALG that transforms safe-range SRNF formulas

into RANF. It is based on the following rewrite rules:

(R1) Push-into-or: Consider the subformula

ψ = ψ1 ∧ · · · ∧ ψn ∧ ξ,

where

ξ = ξ1 ∨ · · · ∨ ξm.

Suppose that rr(ψ)= free(ψ), but rr(ξ1 ∨ · · · ∨ ξm) �= free(ξ1 ∨ · · · ∨ ξm). Nondeter-

ministically choose a subset i1, . . . , ik of 1, . . . , n such that

ξ ′ = (ξ1 ∧ ψi1 ∧ · · · ∧ ψik) ∨ · · · ∨ (ξm ∧ ψi1 ∧ · · · ∧ ψik)

4 This is a variation of the notion of RANF used elsewhere in the literature; see Bibliographic Notes.
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satisfies rr(ξ ′) = free(ξ ′). (One choice of i1, . . . , ik is to use all of 1, . . . , n; this

necessarily yields a formula ξ ′ with this property.) Letting {j1, . . . , jl} = {1, . . . , n} −
{i1, . . . , ik}, set

ψ ′ = SRNF(ψj1 ∧ · · · ∧ ψjl ∧ ξ ′).

The application of SRNF to ξ ′ only has the effect of possibly renaming quantified

variables5 and of flattening the roots of subformulas ξp ∧ ψi1 ∧ · · · ∧ ψik, where ξp
has root ∧; analogous remarks apply. The rewrite rule is to replace subformula ψ by

ψ ′ and possibly apply SRNF to flatten an ∨, if both l = 0 and the parent of ψ is ∨.

(R2) Push-into-quantifier: Suppose that

ψ = ψ1 ∧ · · · ∧ ψn ∧ ∃$xξ,

where rr(ψ)= free(ψ), but rr(ξ) �= free(ξ). Then replace ψ by

ψ ′ = SRNF(ψj1 ∧ · · · ∧ ψjl ∧ ∃$xξ
′),

where

ξ ′ = ψi1 ∧ · · · ∧ ψik ∧ ξ

and where rr(ξ ′)= free(ξ ′) and {j1, . . . , jl} = {1, . . . , n} − {i1, . . . , ik}. The rewrite

rule is to replace ψ by ψ ′ and possibly apply SRNF to flatten an ∃.

(R3) Push-into-negated-quantifier: Suppose that

ψ = ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ,

where rr(ψ)= free(ψ), but rr(ξ) �= free(ξ). Then replace ψ by

ψ ′ = SRNF(ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ
′),

where

ξ ′ = ψi1 ∧ · · · ∧ ψik ∧ ξ

and where rr(ξ ′)= free(ξ ′) and {i1, . . . , ik} ⊆ {1, . . . , n}. That ψ ′ is equivalent to ψ

follows from the observation that the propositional formulas p ∧ q ∧ ¬r and p ∧ q ∧
¬(p ∧ r) are equivalent. The rewrite rule is to replace ψ by ψ ′.

The algorithm RANF-ALG for applying these rewrite rules is essentially top-down

and recursive. We sketch the algorithm now (see Exercise 5.19).

5 It is assumed that under SRNF renamed variables are chosen so that they do not occur in the full
formula under consideration.
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Algorithm 5.4.7 (Relational Algebra Normal Form (RANF-ALG))

Input: a safe-range calculus formula ϕ in SRNF

Output: a RANF formula ϕ′ = RANF(ϕ) equivalent to ϕ

begin

while some subformula ψ (with its conjuncts possibly reordered) of ϕ satisfies the

premise of R1, R2, or R3

do

case R1: (left as exercise)

R2: (left as exercise)

R3: Let ψ = ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ
and ψi1, . . . , ψik satisfy the conditions of R3;

α := RANF(ψ1 ∧ · · · ∧ ψn);

β := RANF(SRNF(ψi1 ∧ · · · ∧ ψik ∧ ξ));

ψ ′ := α ∧ ¬∃$xβ;

ϕ := result of replacing ψ by ψ ′ in ϕ;

end case

end while

end

The proof that these rewrite rules can be used to transform a safe-range SRNF for-

mula into a RANF formula has two steps (see Exercise 5.19). First, a case analysis can

be used to show that if safe-range ϕ in SRNF is not in RANF, then one of the rewrite

rules (R1, R2, R3) can be applied. Second, it is shown that Algorithm 5.4.7 terminates.

This is accomplished by showing that (1) each successfully completed call to RANF-ALG

reduces the number of non-self-contained subformulas, and (2) if a call to RANF-ALG on

ψ invokes other calls to RANF-ALG, the input to these recursive calls has fewer non-self-

contained subformulas than does ψ .

We now turn to the transformation of RANF formulas into equivalent relational algebra

queries. We abuse notation somewhat and assume that each variable is also an attribute.

(Alternatively, a one-one mapping var-to-att : var→ att could be used.) In general, given

a RANF formula ϕ with free variables x1, . . . , xn, we shall construct a named algebra

expression Eϕ over attributes x1, . . . , xn such that for each input instance I, Eϕ(I) =
{x1, . . . , xn | ϕ}(I). (The special case of queries {e1, . . . , en | ϕ}, where some of the ei are

constants, is handled by performing a join with the constants at the end of the construction.)

A formula ϕ is in modified relational algebra normal form (modified RANF) if it is

RANF, except that each polyadic ‘and’ is ordered and transformed into binary ‘and’s,

so that atoms x = y (x �= y) are after conjuncts that restrict one (both) of the variables

involved and so that each free variable in a conjunct of the form ¬ξ occurs in some

preceding conjunct. It is straightforward to verify that each RANF formula can be placed

into modified RANF. Note that each subformula of a modified RANF formula is self-

contained.

Let RANF formula ϕ be fixed. The construction of Eϕ is inductive, from leaf to root,

and is sketched in the following algorithm. The special operator diff, on inputs R and S

where att(S)⊂ att(R), is defined by



5.4 Syntactic Restrictions for Domain Independence 89

R diff S = R − (R ⊲⊳ S).

(Many details of this transformation, such as the construction of renaming function f ,

projection list $k, and selection formula F in the first entry of the case statement, are left to

the reader; see Example 5.4.9 and Exercise 5.19.)

Algorithm 5.4.8 (Translation into the Algebra)

Input: a formula ϕ in modified RANF

Output: an algebra query Eϕ equivalent to ϕ

begin

case ϕ of

R($e) δf (π$k(σF (R)))

x = a {〈x : a〉}

ψ ∧ ξ if ξ is x = x, then Eψ

if ξ is x = y (with x, y distinct), then

σx=y(Eψ), if {x, y} ⊆ free(ψ)

σx=y(Eψ ⊲⊳ δx→yEψ), if x ∈ free(ψ) and y �∈ free(ψ)

σx=y(Eψ ⊲⊳ δy→xEψ), if y ∈ free(ψ) and x �∈ free(ψ)

if ξ is x �= y, then σx �=y(Eψ)

if ξ =¬ξ ′, then

Eψ diff Eξ ′, if free(ξ ′)⊂ free(ψ)

Eψ − Eξ ′, if free(ξ ′)= free(ψ)

otherwise, Eψ ⊲⊳ Eξ

¬ψ {〈〉} − Eψ

(in the case that ¬ψ does not have ‘and’ as parent)

ψ1 ∨ · · · ∨ ψn Eψ1 ∪ · · · ∪ Eψn

∃x1, . . . , xnψ(x1, . . . , xn, y1, . . . , ym)

πy1,...,ym(Eψ)

end case

end

Finally, let q = {x1, . . . , xn | ϕ} be safe range. Because the transformations used for

SRNF and RANF are equivalence preserving, without loss of generality we can assume

that ϕ is in modified RANF. To conclude the proof of Theorem 5.4.6, it must be shown

that q and Eϕ are equivalent. In fact, it can be shown that for each instance I and each d

satisfying adom(q, I)⊆ d⊆ dom,

qd(I)= Eϕ(I).
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This will also yield that q is domain independent.

Let I and d be fixed. A straightforward induction can be used to show that for each

subformula ψ(y1, . . . , ym) of ϕ and each variable assignment ν with range d,

I |=d ψ[ν]⇔ 〈ν(y1), . . . , ν(ym)〉 ∈ Eψ(I)

(see Exercise 5.19.) This completes the proof of Theorem 5.4.6.

Example 5.4.9 (a) Consider the query

q1 = {〈a, x, y〉 : A1A2A3 | ∃z(P (x, y, z) ∨ [R(x, y)∧

([S(z) ∧ ¬T (x, z)] ∨ [T (y, z)])])}.

The formula of q1 is in SRNF. Transformation into RANF yields

∃z(P (x, y, z) ∨ [R(x, y) ∧ S(z) ∧ ¬T (x, z)] ∨ [R(x, y) ∧ T (y, z)]).

Assuming the schemas P [B1B2B3], R[C1C2], S[D], and T [F1F2], transformation of this

into the algebra yields

E = πx,y(δB1B2B3→xyz(P )

∪ ((δC1C2→xy(R) ⊲⊳ δD→z(S)) diff δF1F2→yz(T ))

∪ (δC1C2→xy(R) ⊲⊳ δF1F2→yz(T ))).

Finally, an algebra query equivalent to q1 is

{〈A1 : a〉} ⊲⊳ δxy→A2A3(E).

(b) Consider the query

q2 = {x | ∃y[R(x, y) ∧ ∀z(S(z, a)→ T (y, z))

∧ ∃v,w(¬T (v,w) ∧ w = b ∧ v = x)]}.

Transforming to SRNF, we have

∃y[R(x, y) ∧ ¬∃z(S(z, a) ∧ ¬T (y, z)) ∧ ∃v,w(¬T (v,w) ∧ w = b ∧ v = x)].

Transforming to RANF and reordering the conjunctions, we obtain

∃y[∃v,w(R(x, y)∧w = b∧v = x∧¬T (v,w))∧¬∃z(R(x, y)∧S(z, a)∧¬T (y, z))].

Assuming schemas R[A1, A2], S[B1, B2], and T [C1, C2], the equivalent algebra query is

obtained using the program
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E1 := (δA1A2→xy(R) ⊲⊳ {〈w : b〉});

E2 := (σv=x(E1 ⊲⊳ δx→v(E1))) diff δC1C2→vw(T );

E3 := πx,y(E2);

E4 := πx,y(δA1A2→xy(R) ⊲⊳ δB1→z(πB1(σB2=a(S))) diff δC1C2→yz(T ));

E5 := πx(E3 − E4).

The Positive Existential Calculus

In Chapter 4, disjunction was incorporated into the rule-based conjunctive queries, and

union was incorporated into the tableau, SPC, and SPJR queries. Incorporating disjunction

into the conjunctive calculus was more troublesome because of the possibility of infi-

nite “answers.” We now apply the tools developed earlier in this chapter to remedy this

situation.

A positive existential (calculus) query is a domain-independent calculus query q =
{e1, . . . , en | ϕ}, possibly with equality, in which the only logical connectives are ∧, ∨,

and ∃. It is decidable whether a query q with these logical connectives is domain inde-

pendent; and if so, q is equivalent to a safe-range query using only these connectives (see

Exercise 5.16). The following is easily verified.

Theorem 5.4.10 The positive existential calculus is equivalent to the family of conjunc-

tive queries with union.

5.5 Aggregate Functions

In practical query languages, the underlying domain is many-sorted, with sorts such as

boolean, string, integer, or real. These languages allow the use of comparators such as ≤
between database entries in an ordered sort and “aggregate” functions such as sum, count,

or average on numeric sorts. In this section, aggregate operators are briefly considered.

In the next section, a novel approach for incorporating arithmetic constraints into the

relational model will be addressed.

Aggregate operators operate on collections of domain elements. The next example

illustrates how these are used.

Example 5.5.1 Consider a relation Sales[Theater, Title, Date, Attendance], where a

tuple 〈th, ti, d, a〉 indicates that on date d a total of a people attended showings of movie

ti at theater th. We assume that {Theater, Title, Date} is a key, i.e., that two distinct tuples

cannot share the same values on these three attributes. Two queries involving aggregate

functions are

(5.4) For each theater, list the total number of movies that have been shown there.

(5.5) For each theater and movie, list the total attendance.



92 Adding Negation: Algebra and Calculus

Informally, the first query might be expressed in a pidgin language as

{〈th,c〉 | th is a theater occurring in Sales

and c = |πTitle(σTheater=th(Sales))|}

and the second as

{〈th, ti, s〉 | 〈th, ti〉 is a theater-title pair appearing in Sales

and s is the sum that includes each occurrence of each a-value in

σTheater=th∧Title=t i(Sales)}

A subtlety here is that this second query cannot be expressed simply as

{〈th, ti, s〉 | 〈th, ti〉 is a theater-title pair appearing in Sales

and s =#{a ∈ πAttendance(σTheater=th∧Title=ti(Sales))}}

since a value a has to be counted as many times as it occurs in the selection. This sug-

gests that a more natural setting for studying aggregate functions would explicitly include

bags (or multisets, i.e., collections in which duplicates are permitted) and not just sets, a

somewhat radical departure from the model we have used so far.

The two queries can be expressed as follows using aggregate functions in an algebraic

language:

πTheater; count(Title)(Sales)

πTheater,Title; sum(Attendance)(Sales).

We now briefly present a more formal development. To simplify, the formalism is

based on the unnamed perspective, and we assume that dom = N, i.e., the set of non-

negative integers. We stay within the relational model although as noted in the preceding

example, a richer data model with bags would be more natural. Indeed, the complex value

model that will be studied in Chapter 20 provides a more appropriate context for consider-

ing aggregate functions.

We shall adopt a somewhat abstract view of aggregate operators. An aggregate func-

tion f is defined to be a family of functions f1, f2, . . . such that for each j ≥ 1 and each

relation schema S with arity(S)≥ j , fj : Inst(S)→ N. For instance, for the sum aggregate

function, we will have sum1 to sum the first column and, in general, sumi to sum the ith

one. As in the case of sum, we want the fi to depend only on the content of the column

to which they are applied, where the “content” includes not only the set of elements in the

column, but also the number of their occurrences (so, columns are viewed as bags). This

requirement is captured by the following uniformity property imposed on each aggregate

function f :

Suppose that the ith column of I and the j th of J are identical, i.e., for each a,

there are as many occurrences of a in the ith column of I and in the j th column of

J . Then fi(I )= fj(J ).
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All of the commonly arising aggregate functions satisfy this uniformity property. The

uniformity condition is also used when translating calculus queries with aggregates into

the algebra with aggregates.

We next illustrate how aggregate functions can be incorporated into the algebra and

calculus (we do not discuss how this is done for nr-datalog¬, since it is similar to the alge-

bra.) Aggregate functions are added to the algebra using an extended projection operation.

Specifically, the projection function for aggregate function f on relation instance I is de-

fined as follows:

πj1,...,jm;f (k)(I )= {〈aj1, . . . , ajm, fk(σj1=aj1∧···∧jm=ajm
(I ))〉 | 〈a1, . . . , an〉 ∈ I }.

Note that the aggregate function fk is applied separately to each group of tuples in I

corresponding to a different possible value for the columns j1, . . . , jm.

Turning to the calculus, we begin with an example. Query (5.5) can be expressed in

the extended calculus as

{th, ti, s | ∃d1, a1(Sales(th, ti, d1, a1)

∧ s = sum2{d2, a2 | Sales(th, ti, d2, a2)})}

where sum2 is the aggregate function summing the second column of a relation. Note that

the subexpression {d2, a2 | Sales(th, ti, d2, a2)} has free variables th and ti that do not occur

in the target of the subexpression. Intuitively, different assignments for these variables will

yield different values for the subexpression.

More formally, aggregate functions are incorporated into the calculus by permitting

aggregate terms that have the form fj{$x | ψ}, where f is an aggregate function, j ≤
arity($x) and ψ is a calculus formula (possibly with aggregate terms). When defining the

extended calculus, care must be taken to guarantee that aggregate terms do not recursively

depend on each other. This can be accomplished with a suitable generalization of safe

range. This generalization will also ensure that free variables occurring in an aggregate

term are range restricted by a subformula containing it. It is straightforward to define

the semantics of the generalized safe-range calculus with aggregate functions. One can

then show that the extensions of the algebra and safe-range calculus with the same set of

aggregate functions have the same expressive power.

5.6 Digression: Finite Representations of Infinite Databases

Until now we have considered only finite instances of relational databases. As we have

seen, this introduced significant difficulty in connection with domain independence of

calculus queries. It is also restrictive in connection with some application areas that involve

temporal or geometric data. For example, it would be convenient to think of a rectangle in

the real plane as an infinite set of points, even if it can be represented easily in some finite

manner.

In this short section we briefly describe some recent and advanced material that uses

logic to permit the finite representation of infinite databases. We begin by presenting an

alternative approach to resolving the problem of safety, that permits queries to have answers
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that are infinite but finitely representable. We then introduce a promising generalization of

the relational model that uses constraints to represent infinite databases, and we describe

how query processing can be performed against these in an efficient manner.

An Alternative Resolution to the Problem of Safety

As indicated earlier, much of the research on safety has been directed at syntactic restric-

tions to ensure domain independence. An alternative approach is to use the natural inter-

pretation, even if the resulting answer is infinite. As it turns out, the answers to such queries

are recursive and have a finite representation.

For this result, we shall use a finite set d ⊂ dom, which corresponds intuitively to the

active domain of a query and input database; and a setC = {c1, . . . , cm} ofm distinct “new”

symbols, which will serve as placeholders for elements of dom − d. Speaking intuitively,

the elements of C sometimes act as elements of dom, and so it is not appropriate to view

them as simple variables.

A tuple with placeholders is a tuple t = 〈t1, . . . , tn〉, where each ti is in d ∪ C. The

semantics of such t relative to d are

semd(t)= {ρ(t) | ρ is a one-one mapping from d ∪ C

that leaves d fixed and maps C into dom− d}.

The following theorem, stated without proof, characterizes the result of applying an

arbitrary calculus query using the natural semantics.

Theorem 5.6.1 Let q = {e1, . . . , en | ϕ} be an arbitrary calculus query, such that each

quantifier in ϕ quantifies a distinct variable that is not free in ϕ. Let C = {c1, . . . , cm} be

a set of m distinct “new” symbols not occurring in dom, but viewed as domain elements,

where m is the number of distinct variables in ϕ. Then for each input instance I,

qdom(I)= ∪{semadom(q,I)(t) | t ∈ qadom(q,I)∪C(I)}.

This shows that if we apply a calculus query (under the natural semantics) to a finite

database, then the result is recursive, even if infinite. But is the set of infinite databases

described in this manner closed under the application of calculus queries? The affirmative

answer is provided by an elegant generalization of the relational model presented next (see

Exercise 5.31).

Constraint Query Languages

The following generalization of the relational model seems useful to a variety of new

applications. The starting point is to consider infinite databases with finite representations

based on the use of constraints. To begin we define a generalized n-tuple as a conjunction

of constraints over n variables. The constraints typically include =, �=, ≤, etc. In some

sense, such a constraint can be viewed as a finite representation of a (possibly infinite) set

of (normal) n-tuples (i.e., the valuations of the variables that satisfy the constraint).
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Example 5.6.2 Consider the representation of rectangles in the plane. Suppose first that

rectangles are given using 5-tuples (n, x1, y1, x2, y2), where n is the name of the rectangle,

(x1, y1) are the coordinates of the lower left corner, and (x2, y2) are the coordinates of the

upper right. The set of points 〈u, v〉 in such a rectangle delimited by x1, y1, x2, y2 is given

by the constraint

x1 ≤ u≤ x2 ∧ y1 ≤ v ≤ y2.

Now the names of intersecting rectangles from a relation R are given by

{〈n1, n2〉 | ∃ x1, y1, x2, y2, x
′
1, y

′
1, x

′
2, y

′
2, u, v

(R(n1, x1, y1, x2, y2) ∧ (x1 ≤ u≤ x2 ∧ y1 ≤ v ≤ y2)∧

R(n2, x
′
1, y

′
1, x

′
2, y

′
2) ∧ (x′1 ≤ u≤ x′2 ∧ y′1 ≤ v ≤ y′2))}.

This is essentially within the framework of the relational model presented so far, except

that we are using an infinite base relation ≤. There is a level of indirection between the

representation of a rectangle (a, x1, y1, x2, y2) and the actual set of points that it contains.

In the following constraint formalism, a named rectangle can be represented by a

“generalized tuple” (i.e., a constraint). For instance, the rectangle of name a with corners

(0.5, 1.0) and (1.5, 5.5) is represented by the constraint

z1 = a ∧ 0.5≤ z2 ∧ z2 ≤ 1.5 ∧ 1.0 ≤ z3 ∧ z3 ≤ 5.5.

This should be viewed as a finite syntactic representation of an infinite set of triples. A

triple 〈z1, z2, z3〉 satisfying this constraint indicates that the point of coordinates (z2, z3) is

in a rectangle with name z1.

One can see a number of uses in allowing constraints in the language. First, con-

straints arise naturally for domains concerning measures (price, distance, time, etc.). The

introduction of time has already been studied in the active area of temporal databases (see

Section 22.6). In other applications such as spatial databases, geometry plays an essential

role and fits nicely in the realm of constraint query languages.

One can clearly obtain different languages by considering various domains and vari-

ous forms of constraints. Relational calculus, relational algebra, or some other relational

languages can be extended with, for instance, the theory of real closed fields or the the-

ory of dense orders without endpoints. Of course, a requirement is the decidability of the

resulting language.

Assuming some notion of constraints (to be formalized soon), we now define some-

what more precisely the constraint languages and then illustrate them with two examples.

Definition 5.6.3 A generalized n-tuple is a finite conjunction of constraints over vari-

ables x1, . . . , xn. A generalized instance of arity n is a finite set of generalized n-tuples

(the corresponding formula is the disjunction of the constraints).
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Suppose that I is a generalized instance. We refer to I as a syntactic database and to

the set of conventional tuples represented by I as the semantic database.

We now present two applications of this approach, one in connection with the reals

and the other with the rationals.

We assume now that the constants are interpreted over a real closed field (e.g., the

reals). The constraints are polynomial inequality constraints [i.e., inequalities of the form

p(x1, . . . , xn)≥ 0, where p is a polynomial]. Two 3-tuples in this context are

(3.56× x2
1 + 4.0× x2 ≥ 0) ∧ (x3 − x1 ≥ 0)

(x1 + x2 + x3 ≥ 0).

One can evaluate queries algebraically bottom-up (i.e., at each step of the computation,

the result is still a generalized instance). This is a straightforward consequence of Tarski’s

decision procedure for the theory of real closed fields. A difficulty resides in projection

(i.e., quantifier elimination). The procedure for projection is extremely costly in the size of

the query. However, for a fixed query, the complexity in the size of the syntactic database

is reasonable (in nc).

We assume now that the constants are interpreted over a countably infinite set with a

binary relation ≤ that is a dense order (e.g., the rationals). The constraints are of the form

xθy or xθc, where x, y are variables, c is a constant, and θ is among ≤, <,=. An example

of a 3-tuple is

(x1 ≤ x2) ∧ (x2 < x3).

Here again, a bottom-up algebraic evaluation is feasible. Indeed, evaluation is in ac0

in the size of the syntactic database (for a fixed query).

In the remainder of this book, we consider standard databases and not generalized

ones.
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Exercises

Exercise 5.1 Express queries (5.2 and 5.3) in (1) the relational algebras, (2) nonrecursive
datalog¬, and (3) domain-independent relational calculus.

Exercise 5.2 Express the following queries against the CINEMA database in (1) the relational
algebras, (2) nonrecursive datalog¬, and (3) domain-independent relational calculus.

(a) Find the actors cast in at least one movie by Kurosawa.

(b) Find the actors cast in every movie by Kurosawa.

(c) Find the actors cast only in movies by Kurosawa.

(d) Find all pairs of actors who act together in at least one movie.

(e) Find all pairs of actors cast in exactly the same movies.

(f) Find the directors such that every actor is cast in one of his or her films.

(Assume that each film has exactly one director.)

Exercise 5.3 Prove or disprove (assuming X ⊆ sort(P )= sort(Q)):

(a) πX(P ∪Q)= πX(P ) ∪ πX(Q);

(b) πX(P ∩Q)= πX(P ) ∩ πX(Q).

Exercise 5.4

(a) Give formal definitions for the syntax and semantics of the unnamed and named
relational algebras.

(b) Show that in the unnamed algebra ∩ can be simulated using (1) the difference oper-
ator −; (2) the operators ×, π, σ .

(c) Give a formal definition for the syntax and semantics of selection operators in the un-
named algebra that permit conjunction, disjunction, and negation in their formulas.
Show that these selection operators can be simulated using atomic selection opera-
tors, union, intersect, and difference.

⋆ (d) Show that the SPCU algebra, in which selection operators with negation in the
formulas are permitted, cannot simulate the difference operator.

⋆ (e) Formulate and prove results analogous to those of parts (b), (c), and (d) for the named
algebra.

Exercise 5.5

(a) Prove that the unnamed algebra operators {σ, π,×,∪,−} are nonredundant.

(b) State and prove the analogous result for the named algebra.

Exercise 5.6

(a) Exhibit a relational algebra query that is not monotonic.

(b) Exhibit a relational algebra query that is not satisfiable.
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Exercise 5.7 Prove Proposition 5.1.2 (i.e., that the unnamed and named relational algebras
have equivalent expressive power).

Exercise 5.8 (Division) The division operator, denoted ÷, is added to the named algebra as
follows. For instances I and J with sort(J )⊆ sort(I ), the value of I ÷ J is the set of tuples
r ∈ πsort(I )−sort(J )(I ) such that ({r} ⊲⊳ J ) ⊆ I . Use the division to express algebraically the
query, “Which theater is featuring all of Hitchcock’s movies?”. Describe how nr-datalog¬ can
be used to simulate division. Describe how the named algebra can simulate division. Is division
a monotonic operation?

Exercise 5.9 Show that the semantics of each nr-datalog¬ rule can be described as a difference
q1 − q2, where q1 is an SPJR query and q2 is an SPJRU query.

Exercise 5.10 Verify that each nr-datalog¬ program with equality can be simulated by one
without equality.

Exercise 5.11 Prove Proposition 5.2.2. Hint: Use the proof of Theorem 4.4.8 and the fact that
the relational algebra is closed under composition.

⋆Exercise 5.12 Prove that the domain-independent relational calculus without equality is
strictly weaker than the domain-independent relational calculus. Hint: Suppose that calculus
query q without equality is equivalent to {x | R(x) ∧ x �= a}. Show that q can be translated into
an algebra query q ′ that is constructed without using a constant base relation and such that all
selections are on base relation expressions. Argue that on each input relation I over R, each
subexpression of q ′ evaluates to either In for some n ≥ 0, or to the empty relation for some
n≥ 0.

Exercise 5.13

(a) Complete the proof of Lemma 5.3.11.

(b) Complete the proof of Lemma 5.3.12.

Exercise 5.14

(a) Prove that the rewrite rules of Figure 5.1 preserve equivalence.

(b) Prove that these rewrite rules can be used to transform an arbitrary calculus formula
into an equivalent formula in PNF with CNF matrix. State which rewrite rules are
needed.

(c) Do the same as (b), but for DNF matrix.

(d) Prove that the rewrite rules of Figure 5.1 are not complete in the sense that there
are calculus formulas ϕ and ψ such that (1) ϕ ≡ ψ , but (2) there is no sequence of
applications of the rewrite rules that transforms ϕ into ψ .

Exercise 5.15 Verify the claims of Example 5.3.9.

Exercise 5.16

(a) Show that each positive existential query is equivalent to one whose formula is in
PNF with either CNF or DNF matrix and that they can be expressed in the form
{e1, . . . , en | ψ1 ∨ · · · ∨ ψm}, where each ψj is a conjunctive calculus formula with
free(ψj) = the set of variables occurring in e1, . . . , en. Note that this formula is safe
range.
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(b) Show that it is decidable, given a relational calculus query q (possibly with equality)
whose only logical connectives are ∧, ∨, and ∃, whether q is domain independent.

(c) Prove Theorem 5.4.10.

Exercise 5.17 Use the construction of the proof of Theorem 5.4.6 to transform the following
into the algebra.

(a) {〈 〉 | ∃x(R(x) ∧ ∃y(S(x, y) ∧ ¬∃z(T (x, y, a))))}

(b) {w, x, y, z | (R(w, x, y) ∨ R(w, x, z)) ∧ (R(y, z,w) ∨ R(y, z, x))}

Exercise 5.18 For each of the following queries, indicate whether it is domain independent
and/or safe range. If it is not domain independent, give examples of different domains yielding
different answers on the same input; and if it is safe range, translate it into the algebra.

(a) {x, y | ∃z[T (x, z) ∧ ∃wT (w, x, y)] ∧ x = y}

(b) {x, y | [x = a ∨ ∃z(R(y, z))] ∧ S(y)}

(c) {x, y | [x = a ∨ ∃z(R(y, z))] ∧ S(y) ∧ T (x)}

(d) {x | ∀y(R(y)→ S(x, y))}

(e) {〈〉 | ∃x∀y(R(y)→ S(x, y))}

(f) {x, y | ∃zT (x, y, z) ∧ ∃u, v([(R(u) ∨ S(u, v)) ∧ R(v)]
→ [∃w(T (x,w, v) ∧ T (u, v, y))])}

⋆Exercise 5.19 Consider the proof of Theorem 5.4.6.

(a) Give the missing parts of Algorithm 5.4.7.

(b) Show that Algorithm 5.4.7 is correct and terminates on all input.

(c) Give the missing parts of Algorithm 5.4.8 and verify its correctness.

(d) Given q = {〈x1, . . . , xn〉 | ϕ} with ϕ in modified RANF, show for each instance I and
each d satisfying adom(q, I)⊆ d⊆ dom that qd(I)= Eϕ(I).

Exercise 5.20 Consider the proof of Theorem 5.4.6.

(a) Present examples illustrating how the nondeterministic choices in these rewrite rules
can be used to help optimize the algebra query finally produced by the construction of
the proof of this lemma. (Refer to Chapter 6 for a general discussion of optimization.)

(b) Consider a generalization of rules (R1) and (R2) that permits using a set of indexes
{j1, . . . , jl} ⊆ {1, . . . , n} − {i1, . . . , ik}. What are the advantages of this generaliza-
tion? What restrictions must be imposed to ensure that Algorithm 5.4.8 remains
correct?

Exercise 5.21 Develop a direct proof that CALCadom ⊑ CALCsr . Hint: Given calculus query
q, first build a formula ξadom(x) such that I |= ξadom(x)[ν] iff ν(x) ∈ adom(q, I). Now perform
an induction on subformulas.

⋆Exercise 5.22 [Coh86] Let R have arity n. Define the gen(erator) operator so that for instance
I of R, indexes 1≤ i1 < · · ·< ik ≤ n, and constants a1, . . . , ak,

geni1:a1,...,ik:ak
(I )= πj1,...,jl(σi1=a1∧···∧ik=ak(I )),

where {j1, . . . , jl} is a listing in order of (some or all) indexes in {1, . . . , n} − {i1, . . . , ik}. Note
that the special case of gen1:b1,...,n:bn

(I ) can be viewed as a test of 〈b1, . . . , bn〉 ∈ I ; and gen[ ](I )
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is a test of whether I is nonempty. In some research in AI, the primitive mechanism for accessing
relations is based on generators that are viewed as producing a stream of tuples as output. For
example, the query {〈x, y, z〉 | R(x, y) ∧ S(y, z)} can be computed using the algorithm

for each tuple 〈x, y〉 generated by gen1:x,2:y(R)

for each value 〈z〉 generated by gen1:y(S)

output 〈x, y, z〉
end for each

end for each

Develop an algorithm for translating calculus queries into programs using generators.
Describe syntactic restrictions on the calculus that ensure that your algorithm succeeds.

♠Exercise 5.23 [Cod72b] (Tuple calculus.) We use a set tvar of sorted tuple variables. The
tuple calculus is defined as follows. If t is a tuple variable and A is an attribute in the sort of t ,
t.A is a term. A constant is also a term. The atomic formulas are either of the form R(t) with
the appropriate constraint on sorts, or e = e′, where e, e′ are terms. Formulas are constructed as
in the standard relational calculus. For example, query (5.1) is expressed by the tuple calculus
query

{t : title | ∃s: title, director, actor[Movie(s) ∧ t.title= s.title

∧ s.director = “Hitchcock”]

∧ ¬∃u: title, director, actor[Movie(u) ∧ u.title= s.title

∧ u.actor = “Hitchcock”]}.

Give a formal definition for the syntax of the tuple calculus and for the relativized interpretation,
active domain, and domain-independent semantics. Develop an analog of safe range. Prove the
equivalence of conventional calculus and tuple calculus under all of these semantics.

Exercise 5.24 Prove that the relational calculus and the family of nr-datalog¬ programs with
single-relation output have equivalent expressive power by using direct simulations between the
two families.

♠Exercise 5.25 [Top87] Let R be a database schema, and define the binary relation gen(erates)
on variables and formulas as follows:

gen(x, ϕ) if ϕ = R(u) for some R ∈ R and x ∈ free(ϕ)

gen(x,¬ϕ) if gen(x, pushnot(¬ϕ))
gen(x, ∃yϕ) if x, y are distinct and gen(x, ϕ)

gen(x,∀yϕ) if x, y are distinct and gen(x, ϕ)

gen(x, ϕ ∨ ψ) if gen(x, ϕ) and gen(x, ψ)

gen(x, ϕ ∧ ψ) if gen(x, ϕ) or gen(x, ψ),

where pushnot(¬ϕ) is defined in the natural manner to be the result of pushing the negation
into the next highest level logical connective (with consecutive negations cancelling each other)
unless ϕ is an atom (using the rewrite rules 5, 6, 7, 10, and 11 from Fig. 5.1). A formula ϕ is
allowed

(i) if x ∈ free(ϕ) then gen(x, ϕ);

(ii) if for each subformula ∃yψ of ϕ, gen(y, ψ) holds; and
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(iii) if for each subformula ∀yψ of ϕ, gen(y,¬ψ) holds.

A calculus query is allowed if its formula is allowed.

(a) Exhibit a query that is allowed but not safe range.

⋆ (b) Prove that each allowed query is domain independent.

In [VanGT91, EHJ93] a translation of allowed formulas into the algebra is presented.)

⋆Exercise 5.26 [Nic82] The notion of “range-restricted” queries, which ensures domain inde-
pendence, is based on properties of the normal form equivalents of queries. Let q = {�x | ϕ} be
a calculus query, and let ϕDNF = �%y(D1 ∨ · · · ∨Dn) be the result of transforming ϕ into PNF
with DNF matrix using the rewrite rules of Fig. 5.1; and similarly let ϕCNF = �%z(C1∧ · · · ∧Cm)

be the result of transforming ϕ into PNF with CNF matrix. The query q is range restricted if

(i) each free variable x in ϕ occurs in a positive literal (other than x = y) in every Di;

(ii) each existentially quantified variable x in ϕDNF occurs in a positive literal (other than
x = y) in every Di where x occurs; and

(iii) each universally quantified variable x in ϕCNF occurs in a negative literal (other than
x �= y) in every Cj where x occurs.

Prove that range-restricted queries are domain independent. (In [VanGT91] a translation of the
range-restricted queries into the algebra is presented.)

Exercise 5.27 [VanGT91] Suppose that R[Product, Part] holds project numbers and the parts
that are used to make them, and S[Supplier, Part] holds supplier names and the parts that they
supply. Consider the queries

q1 = {x | ∀y(R(100, y)→ S(x, y))}

q2 = {〈〉 | ∃x∀y(R(100, y)→ S(x, y))}

(a) Prove that q1 is not domain independent.

(b) Prove that q2 is not allowed (Exercise 5.25) but it is range restricted (Exercise 5.26)
and hence domain independent.

(c) Find an algebra query q ′ equivalent to q2.

Exercise 5.28 [Klu82] Consider a database schema with relations Dept[Name, Head, Col-

lege], Faculty[Name, Dname], and Grad[Name, MajorProf , GrantAmt], and the query

For each department in the Letters and Science College, compute the total graduate
student support for each of the department’s faculty members, and produce as output a
relation that includes all pairs 〈d, a〉where d is a department in the Letters and Science
College, and a is the average graduate student support per faculty member in d .

Write algebra and calculus queries that express this query.

Exercise 5.29 We consider constraint databases involving polynomial inequalities over the re-
als. Let I1 = {(9x

2
1 + 4x2 ≥ 0)} be a generalized instance over AB, where x1 ranges over A and

x2 ranges over B, and let I2 = {(x3− x1 ≥ 0)} over AC. Express πBC(I1 ⊲⊳ I2) as a generalized
instance.

⋆Exercise 5.30 Recall Theorem 5.6.1.
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(a) Let finite d ⊂ dom be fixed, C be a set of new symbols, and t be a tuple with
placeholders. Describe a generalized tuple (in the sense of constraint databases) t ′

whose semantics are equal to semd(t).

(b) Show that the family of databases representable by sets of tuples with placeholders
is closed under the relational calculus.

♠Exercise 5.31 Prove Theorem 5.6.1.

Exercise 5.32 [Mai80] (Unrestricted algebra) For this exercise we permit relations to be finite
or infinite. Consider the complement operator c defined on instances I of arity n by I c =
domn − I . (The analogous operator is defined for the named algebra.) Prove that the calculus
under the natural interpretation is equivalent to the algebra with operators {σ, π,×,∪,c }.

⋆Exercise 5.33 A total mapping τ from instances over R to instances over S is C-generic for
C ⊆ dom, iff for each bijection ρ over dom that is the identity on C, τ and ρ commute. That
is, τ(ρ(I))= ρ(τ(I)) for each instance I of R. The mapping τ is generic if it is C-generic for
some finite C ⊆ dom. Prove that each relational algebra query is generic—in particular, that
each algebra query q is adom(q)-generic.

♠Exercise 5.34 Let R be a unary relation name. A hyperplane query over R is a query of the
form σF (R × · · · × R) (with 0 or more occurrences of R), where F is a conjunction of atoms
of the form i = j , i �= j , i = a, or i �= a (for indexes i, j and constant a). A formula F of this
form is called a hyperplane formula. A hyperplane-union query over R is a query of the form
σF (R × · · · × R), where F is a disjunction of hyperplane formulas; a formula of this form is
called a hyperplane-union formula.

(a) Show that if q is an algebra query over R, then there is an n ≥ 0 and a hyperplane-
union query q ′ such that for all instances I over R, if |I | ≥ n and adom(I ) ∩
adom(q)= ∅, then q(I )= q ′(I ).

The query even is defined over R as follows: even(I ) = {〈〉} (i.e., yes) if |I | is even; and
even(I )= {} (i.e., no) otherwise.

(b) Prove that there is no algebra query q over R such that q ≡ even.

Exercise 5.35 [CH80b] (Unsorted algebra) An h-relation (for heterogeneous relation) is a
finite set of tuples not necessarily of the same arity.

(a) Design an algebra for h-relations that is at least as expressive as relational algebra.

⋆ (b) Show that the algebra in (a) can be chosen to have the additional property that if
q is a query in this algebra taking standard relational input and producing standard
relational output, then there is a standard algebra query q ′ such that q ′ ≡ q.

♠Exercise 5.36 [IL84] (Cylindric algebra) Let n be a positive integer, R[A1, . . . , An] a relation
schema, and C a (possibly infinite) set of constants. Recall that a Boolean algebra is a 6-tuple
(B,∨,∧, ,⊥,⊤), where B is a set containing ⊥ and ⊤; ∨,∧ are binary operations on B; and

is a unary operation on B such that for all x, y, z ∈ B:

(a) x ∨ y = y ∨ x;

(b) x ∧ y = y ∧ x;

(c) x ∨ (y ∧ z)= (x ∨ y) ∧ (x ∨ z);

(d) x ∧ (y ∨ z)= (x ∧ y) ∨ (x ∧ z);
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(e) x ∧ ⊥=⊥;

(f) x ∨ ⊤=⊤;

(g) x ∧ x =⊥;

(h) x ∨ x =⊤; and

(i) ⊥ �= ⊤.

For a Boolean algebra, define x ≤ y to mean x ∧ y = x.

(a) Show that 〈RC,∪,∩,
c ,∅, Cn〉 is a Boolean algebra where RC is the set of all (pos-

sibly infinite) R-relations over constants in C and c denotes the unary complement

operator, defined so that I c = Cn − I . In addition, show that I ≤ J iff I ⊆ J .

Let the diagonals dij be defined by the statement, “for each i, j , dij = σAi=Aj
(Cn)”; and let the

ith cylinder Ci be defined for each I by the statement, “CiI is the relation over RC defined by

CiI = {t | πA1...Ai−1Ai+1...An(t) ∈ πA1...Ai−1Ai+1...An(I ) and t (Ai) ∈ C}.”

(b) Show the following properties of cylindric algebras: (1) Ci∅ = ∅; (2) x ≤ Cix; (3)
Ci(x ∩ Ciy)= Cix ∩ Ciy; (4) CiCjx = CjCix; (5) dii = Cn; (6) if i �= j and i �= k,
then djk = Ci(dji ∩ dik); (7) if i �= j , then Ci(dij ∩ x) ∩ Ci(dij ∩ x)= ∅.

(c) Let h be the mapping from any (possibly infinite) relation S with sort(S)⊂ A1 . . . An

with entries in C to a relation over R obtained by extending each tuple in S to
A1 . . . An in all possible ways with values in C. Prove that (1) h(R1 ⊲⊳ R2)= h(R1)∩
h(R2) and (2) if A1 ∈ sort(R), then h(πA1

(R))= C1h(R1).



6 Static Analysis and

Optimization

Alice: Do you guys mean real optimization?

Riccardo: Well, most of the time it’s local maneuvering.

Vittorio: But sometimes we go beyond incremental reform . . .

Sergio: . . . with provably global results.

This chapter examines the conjunctive and first-order queries from the perspective of

static analysis (in the sense of programming languages). It is shown that many prop-

erties of conjunctive queries (e.g., equivalence, containment) are decidable although they

are not decidable for first-order queries. Static analysis techniques are also applied here in

connection with query optimization (i.e., transforming queries expressed in a high-level,

largely declarative language into equivalent queries or machine instruction programs that

are arguably more efficient than a naive execution of the initial query).

To provide background, this chapter begins with a survey of practical optimization

techniques for the conjunctive queries. The majority of practically oriented research and

development on query optimization has been focused on variants of the conjunctive queries,

possibly extended with arithmetic operators and comparators. Because of the myriad fac-

tors that play a role in query evaluation, most practically successful techniques rely heavily

on heuristics.

Next the chapter presents the elegant and important Homomorphism Theorem, which

characterizes containment and equivalence between conjunctive queries. This leads to

the notion of tableau “minimization”: For each tableau query there is a unique (up to

isomorphism) equivalent tableau query with the smallest number of rows. This provides a

theoretical notion of true optimality for conjunctive queries. It is also shown that deciding

these properties and minimizing conjunctive queries is np-complete in the size of the input

queries.

Undecidability results are then presented for the first-order queries. Although related

to undecidability results for conventional first-order logic, the proof techniques used here

are necessarily different because all instances considered are finite by definition. The

undecidability results imply that there is no hope of developing an algorithm that performs

optimization of first-order queries that is complete. Only limited optimization of first-order

queries involving difference is provided in most systems.

The chapter closes by returning to a specialized subset of the conjunctive queries based

on acyclic joins. These have been shown to enjoy several interesting properties, some

yielding insight into more efficient query processing.

Chapter 13 in Part D examines techniques for optimizing datalog queries.

105
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6.1 Issues in Practical Query Optimization

Query optimization is one of the central topics of database systems. A myriad of factors

play a role in this area, including storage and indexing techniques, page sizes and paging

protocols, the underlying operating system, statistical properties of the stored data, statis-

tical properties of anticipated queries and updates, implementations of specific operators,

and the expressive power of the query languages used, to name a few. Query optimization

can be performed at all levels of the three-level database architecture. At the physical level,

this work focuses on, for example, access techniques, statistical properties of stored data,

and buffer management. At a more logical level, algebraic equivalences are used to rewrite

queries into forms that can be implemented more efficiently.

We begin now with a discussion of rudimentary considerations that affect query pro-

cessing (including the usual cost measurements) and basic methods for accessing relations

and implementing algebraic operators. Next an optimization approach based on algebraic

equivalences is described; this is used to replace a given algebraic expression by an equiva-

lent one that can typically be computed more quickly. This leads to the important notion of

query evaluation plans and how they are used in modern systems to represent and choose

among many alternative implementations of a query. We then examine intricate techniques

for implementing multiway joins based on different orderings of binary joins and on join

decomposition.

The discussion presented in this section only scratches the surface of the rich body of

systems-oriented research and development on query optimizers, indicating only a handful

of the most important factors that are involved. Nothing will be said about several factors,

such as the impact of negation in queries, main-memory buffering strategies, and the

implications of different environments (such as distributed, object oriented, real time, large

main memory, and secondary memories other than conventional disks). In part due to the

intricacy and number of interrelated factors involved, little of the fundamental theoretical

research on query optimization has found its way into practice. As the field is maturing,

salient aspects of query optimization are becoming isolated; this may provide some of the

foothold needed for significant theoretical work to emerge and be applied.

The Physical Model

The usual assumption of relational databases is that the current database state is so large

that it must be stored in secondary memory (e.g., on disk). Manipulation of the stored

data, including the application of algebraic operators, requires making copies in primary

memory of portions of the stored data and storing intermediate and final results again

in secondary memory. By far the major time expense in query processing, for a single-

processor system, is the number of disk pages that must be swapped in and out of primary

memory. In the case of distributed systems, the communication costs typically dominate

all others and become an important focus of optimization.

Viewed a little more abstractly, the physical level of relational query implementation

involves three basic activities: (1) generating streams of tuples, (2) manipulating streams
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of tuples (e.g., to perform projections), and (3) combining streams of tuples (e.g., to per-

form joins, unions, and intersections). Indexing methods, including primarily B-trees and

hash indexes, can be used to reduce significantly the size of some streams. Although not

discussed here, it is important to consider the cost of maintaining indexes and clusterings

as updates to the database occur.

Main-memory buffering techniques (including the partitioning of main memory into

segments and paging policies such as deleting pages based on policies of least recent use

and most recent use) can significantly impact the number of page I/Os used.

Speaking broadly, an evaluation plan (or access plan) for a query, a stored database

state, and a collection of existing indexes and other data structures is a specification of a

sequence of operations that will compute the answer to the query. The term evaluation

plan is used most often to refer to specifications that are at a low physical level but

may sometimes be used for higher-level specifications. As we shall see, query optimizers

typically develop several evaluation plans and then choose one for execution.

Implementation of Algebraic Operators

To illustrate the basic building blocks from which evaluation plans are constructed, we now

describe basic implementation techniques for some of the relational operators.

Selection can be realized in a straightforward manner by a scan of the argument

relation and can thus be achieved in linear time. Access structures such as B-tree indexes

or hash tables can be used to reduce the search time needed to find the selected tuples. In

the case of selections with single tuple output, this permits evaluation within essentially

constant time (e.g., two or three page fetches). For larger outputs, the selection may take

two or three page fetches per output tuple; this can be improved significantly if the input

relation is clustered (i.e., stored so that all tuples with a given attribute value are on the

same or contiguous disk pages).

Projection is a bit more complex because it actually calls for two essentially differ-

ent operations: tuple rewriting and duplicate elimination. The tuple rewriting is typically

accomplished by bringing tuples into primary memory and then rewriting them with coor-

dinate values permuted and removed as called for. This may yield a listing of tuples that

contains duplicates. If a pure relational algebra projection is to be implemented, then these

duplicates must be removed. One strategy for this involves sorting the list of tuples and

then removing duplicates; this takes time on the order of n log n. Another approach that is

faster in some cases uses a hash function that incorporates all coordinate values of a tuple.

Because of the potential expense incurred by duplicate elimination, most practical re-

lational languages permit duplicates in intermediate and final results. An explicit command

(e.g., distinct) that calls for duplicate elimination is typically provided. Even in languages

that support a pure algebra, it may be more efficient to leave duplicates in intermediate

results and perform duplicate elimination once as a final step.

The equi-join is typically much more expensive than selection or projection because

two relations are involved. The following naive nested loop implementation of ⊲⊳F will

take time on the order of the product n1 × n2 of the sizes of the input relations I1, I2:
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J := ∅;

for each u in I1

for each v in I2

if u and v are joinable then J := J ∪ {u ⊲⊳F v}.

Typically this can be improved by using the sort-merge algorithm, which independently

sorts both inputs according to the join attributes and then performs a simultaneous scan of

both relations, outputting join tuples as discovered. This reduces the running time to the

order of max(n1 log n1 + n2 log n2, size of output).

In many cases a more efficient implementation of join can be accomplished by a vari-

ant of the foregoing nested loop algorithm that uses indexes. In particular, replace the inner

loop by indexed retrievals to tuples of I2 that match the tuple of I1 under consideration.

Assuming that a small number of tuples of I2 match a given tuple of I1, this computes the

join in time proportional to the size of I1. We shall consider implementations of multiway

joins later in this section and again in Section 6.4. Additional techniques have been devel-

oped for implementing richer joins that include testing, e.g., relationships based on order

(≤).

Cross-product in isolation is perhaps the most expensive algebra operation: The output

necessarily has size the product of the sizes of the two inputs. In practice this arises only

rarely; it is much more common that selection conditions on the cross-product can be used

to transform it into some form of join.

Query Trees and Query Rewriting

Alternative query evaluation plans are usually generated by rewriting (i.e., by local trans-

formation rules). This can be viewed as a specialized case of program transformation. Two

kinds of transformations are typically used in query optimization: one that maps from the

higher-level language (e.g., the algebra) into the physical language, and others that stay

within the same language but lead to alternative, equivalent implementations of a given

construct.

We present shortly a family of rewriting rules that illustrates the general flavor of this

component of query optimizers (see Fig. 6.2). Unlike true optimizers, however, the rules

presented here focus exclusively on the algebra. Later we examine the larger issue of how

rules such as these are used to find optimal and near-optimal evaluation plans.

We shall use the SPC algebra, generalized by permitting positive conjunctive selection

and equi-join. A central concept used is that of query tree, which is essentially the parse

tree of an algebraic expression. Consider again Query (4.4), expressed here as a rule:

ans(xth, xad)←Movies(xt i, “Bergman”, xac), Pariscope(xth, xt i, xs),

Location(xth, xad, xp).

A naive translation into the generalized SPC algebra yields

q1 = π4,8σ2=“Bergman”((Movies ⊲⊳1=2 Pariscope) ⊲⊳4=1 Location).
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σ2=“Bergman”

(a) (b)

Figure 6.1: Two query trees for Query (4.4) from Chapter 4

The query tree of this expression is shown in Fig. 6.1(a).

To provide a rough idea of how evaluation costs might be estimated, suppose now that

Movies has 10,000 tuples, with about 5 tuples per movie; Pariscope has about 200 tuples,

and Location has about 100 tuples. Suppose further that in each relation there are about 50

tuples per page and that no indexes are available.

Under a naive evaluation of q1, an intermediate result would be produced for each

internal node of q1’s query tree. In this example, then, the join of Movies and Pariscope

would produce about 200× 5 = 1000 tuples, which (being about twice as wide as the input

tuples) will occupy about 40 pages. The second equi-join will yield about 1000 tuples that

fit 18 to a page, thus occupying about 55 pages. Assuming that there are four Bergman

films playing in one or two theaters each, the final answer will contain about six tuples.

The total number of page fetches performed here is about 206 for reading the input relations

(assuming that no indexes are available) and 95 for working with the intermediate relations.

Additional page fetches might be required by the join operations performed.

Consider now the query q2 whose query tree is illustrated in Fig. 6.1(b). It is easily

verified that this is equivalent to q1. Intuitively, q2 was formed from q1 by “pushing”

selections and projections as far “down” the tree as possible; this generally reduces the

size of intermediate results and thus of computing with them.
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In this example, assuming that all (i.e., about 20) of Bergman’s films are in Movies, the

selection on Movies will yield about 100 tuples; when projected these will fit onto a single

page. Joining with Pariscope will yield about six tuples, and the final join with Location

will again yield six tuples. Thus only one page is needed to hold the intermediate results

constructed during this evaluation, a considerable savings over the 95 pages needed by the

previous one.

It is often beneficial to combine several algebraic operators into a single implemented

operation. As a general rule of thumb, it is typical to materialize the inputs of each equi-

join. The equi-join itself and all unary operations directly above it in the query tree are

performed before output. The dashed ovals of Fig. 6.1(b) illustrate a natural grouping that

can be used for this tree. In practical systems, the implementation and grouping of operators

is typically considered in much finer detail.

The use of different query trees and, more generally, different evaluation plans can

yield dramatically different costs in the evaluation of equivalent queries. Does this mean

that the user will have to be extremely careful in expressing queries? The beauty of query

optimization is that the answer is a resounding no. The user may choose any representation

of a query, and the system will be responsible for generating several equivalent evaluation

plans and choosing the least expensive one. For this reason, even though the relational

algebra is conceptually procedural, it is implemented as an essentially declarative language.

In the case of the algebra, the generation of evaluation plans is typically based on the

existence of rules for transforming algebraic expressions into equivalent ones. We have

already seen rewrite rules in the context of transforming SPC and SPJR expressions into

normal form (see Propositions 4.4.2 and 4.4.6). A different set of rules is useful in the

present context due to the focus on optimizing the execution time and space requirements.

In Fig. 6.2 we present a family of representative rewrite rules (three with inverses) that

can be used for performing the transformations needed for optimization at the logical level.

In these rules we view cross-product as a special case of equi-join in which the selection

formula is empty. Because of their similarity to the rules used for the normal form results,

several of the rules are shown only in abstract form; detailed formulation of these, as well

as verification of their soundness, is left for the reader (see Exercise 6.1). We also include

the following rule:

Simplify-identities: replace π1,...,arity(q)q by q; replace σi=iq by q; replace q × {〈〉} by q;

replace q × {} by {}; and replace q ⊲⊳1=1∧···∧arity(q)=arity(q)q by q.

Generating and Choosing between Evaluation Plans

As suggested in Fig. 6.2, in most cases the transformations should be performed in a certain

direction. For example, the fifth rule suggests that it is always desirable to push selections

through joins. However, situations can arise in which pushing a selection through a join is

in fact much more costly than performing it second (see Exercise 6.2). The broad variety

of factors that influence the time needed to execute a given query evaluation plan make

it virtually impossible to find an optimal one using purely analytic techniques. For this

reason, modern optimizers typically adopt the following pragmatic strategy: (1) generate

a possibly large number of alternative evaluation plans; (2) estimate the costs of executing
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σF (σF ′(q)) ↔ σF∧F ′(q)

π�j(π�k(q)) ↔ π�l(q)

σF (π�l(q)) ↔ π�l(σF ′(q))

q1 ⊲⊳ q2 ↔ q2 ⊲⊳ q1

σF (q1 ⊲⊳G q2) → σF (q1) ⊲⊳G q2

σF (q1 ⊲⊳G q2) → q1 ⊲⊳G σF ′(q2)

σF (q1 ⊲⊳G q2) → q1 ⊲⊳G′ q2

π�l(q1 ⊲⊳G q2) → π�l(q1) ⊲⊳G′ q2

π�l(q1 ⊲⊳G q2) → q1 ⊲⊳G′ π�k(q2)

Figure 6.2: Rewriting rules for SPC algebra

them; and (3) select the one of lowest cost. The database system then executes the selected

evaluation plan.

In early work, the transformation rules used and the method for evaluation plan genera-

tion were essentially intermixed. Motivated in part by the desire to make database systems

extensible, more recent proposals have isolated the transformation rules from the algo-

rithms for generating evaluation plans. This has the advantages of exposing the semantics

of evaluation plan generation and making it easier to incorporate new kinds of information

into the framework.

A representative system for generating evaluation plans was developed in connection

with the Exodus database toolkit. In this system, techniques from AI are used and, a set

of transformation rules is assumed. During processing, a set of partial evaluation plans is

maintained along with a set of possible locations where rules can be applied. Heuristics are

used to determine which transformation to apply next, so that an exhaustive search through

all possible evaluation plans can be avoided while still having a good chance of finding an

optimal or near-optimal evaluation plan. Several of the heuristics include weighting factors

that can be tuned, either automatically or by the dba, to reflect experience gained while

using the optimizer.

Early work on estimating the cost of evaluation plans was based essentially on

“thought experiments” similar to those used earlier in this chapter. These analyses use

factors including the size of relations, their expected statistical properties, selectivity fac-

tors of joins and selections, and existing indexes. In the context of large queries involving

multiple joins, however, it is difficult if not impossible to predict the sizes of intermediate

results based only on statistical properties. This provides one motivation for recent research

on using random and background sampling to estimate the size of subquery answers, which

can provide more reliable estimates of the overall cost of an evaluation plan.

Sideways Information Passing

We close this section by considering two practical approaches to implementing multiway

joins as they arise in practical query languages.

Much of the early research on practical query optimization was performed in con-

nection with the System R and INGRES systems. The basic building block of the query
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languages used in these systems (SQL and Quel, respectively) takes the form of “select-

from-where” clauses or blocks. For example, as detailed further in Chapter 7, Query (4.4)

can be expressed in SQL as

select Theater, Address

from Movies, Location, Pariscope

where Director = “Bergman”

and Movies.Title = Pariscope.Title

and Pariscope.Theater = Location.Theater.

This can be translated into the algebra as a join between the three relations of the from

part, using join condition given by the where and projecting onto the columns mentioned

in the select. Thus a typical select-from-where block can be expressed by an SPC query as

π�j(σF (R1 × · · · × Rn)).

With such expressions, the System R query optimizer pushes selections that affect a

single relation into the join and then considers evaluation plans based on left-to-right joins

that have the form

(. . . (Ri1 ⊲⊳ Ri2) ⊲⊳ · · · ⊲⊳ Rin)

using different orderings Ri1, . . . , Rin. We now present a heuristic based on “sideways in-

formation passing,” which is used in the System R optimizer for eliminating some possible

orderings from consideration. Interestingly, this heuristic has also played an important role

in developing evaluation techniques for recursive datalog queries, as discussed in Chap-

ter 13.

To describe the heuristic, we rewrite the preceding SPC query as a (generalized) rule

that has the form

(∗) ans(u)← R1(u1), . . . , Rn(un), C1, . . . , Cm,

where all equalities of the selection condition F are incorporated by using constants and

equating variables in the free tuples u1, . . . , un, and the expressions C1, . . . , Cm are con-

ditions in the selection condition F not captured in that way. (This might include, e.g.,

inequalities and conditions based on order.) We shall call the Ri(ui)’s relation atoms and

the Cj ’s constraint atoms.

Example 6.1.1 Consider the rule

ans(z)← P(a, v),Q(b,w, x), R(v,w, y), S(x, y, z), v ≤ x,

where a, b denote constants. A common assumption in this case is that there are few values

for v such that P(a, v) is satisfied. This in turn suggests that there will be few triples

(v,w, y) satisfying P(a, v) ∧ R(v,w, y). Continuing by transitivity, then, we also expect

there to be few 5-tuples (v,w, y, x, z) that satisfy the join of this with S(x, y, z).
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6-3.eps

S(x, y, z)

R(v, w, y)

P(a, v) Q(b, w, x)

Figure 6.3: A sip graph

More generally, the sideways information passing graph, or sip graph, of a rule ρ that

has the form (∗) just shown has vertexes the set of relation atoms of a rule, and includes

an undirected edge between atoms Ri(ui), Rj(uj) if ui and uj have at least one variable in

common. Furthermore, each node with a constant appearing is specially marked. The sip

graph for the rule of Example 6.1.1 is shown in Fig. 6.3.

Let us assume that the sip graph for a rule ρ is connected. In this case, a sideways

information passing strategy (sip strategy) for ρ is an ordering A1, . . . , An of the atoms in

the rule, such that for each j > 1, either

(a) a constant occurs in Aj ;

(b) Aj is a relational atom and there is at least one i < j such that {Ai, Aj} is an

edge of the sip graph of (ρ); or

(c) Aj is a constraint atom and each variable occurring in Aj occurs in some atom

Ai for i < j .

Example 6.1.2 A representative sample of the several sip strategies for the rule of Ex-

ample 6.1.1 is as follows:

P(a, v),Q(b,w, x), v ≤ x,R(v,w, y), S(x, y, z)

P (a, v), R(v,w, y), S(x, y, z), v ≤ x,Q(b,w, x)

Q(b,w, x), R(v,w, y), P (a, v), S(x, y, z), v ≤ x.

A sip strategy for the case in which the sip graph of rule ρ is not connected is a set

of sip strategies, one for each connected component of the sip graph. (Incorporation of

constraint atoms whose variables lie in distinct components is left for the reader.) The

System R optimizer focuses primarily on joins that have connected sip graphs, and it

considers only those join orderings that correspond to sip strategies. In some cases a more

efficient evaluation plan can be obtained if an arbitrary tree of binary joins is permitted;

see Exercise 6.5. While generating sip strategies the System R optimizer also considers
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alternative implementations for the binary joins involved and records information about

the orderings that the partial results would have if computed. An additional logical-level

technique used in System R is illustrated in the following example.

Example 6.1.3 Let us consider again the rule

ans(z)← P(a, v), R(v,w, y), S(x, y, z), v ≤ x,Q(b,w, x).

Suppose that a left-to-right join is performed according to the sip strategy shown. At

different intermediate stages certain variables can be “forgotten,” because they are not used

in the answer, nor are they used in subsequent joins. In particular, after the third atom the

variable y can be projected out, after the fourth atom v can be projected out, and after the

fifth atom w and x can be projected out. It is straightforward to formulate a general policy

for when to project out unneeded variables (see Exercise 6.4).

Query Decomposition: Join Detachment and Tuple Substitution

We now briefly discuss the two main techniques used in the original INGRES system for

evaluating join expressions. Both are based on decomposing multiway joins into smaller

ones.

While again focusing on SPC queries of the form

π�j(σF (R1 × · · · × Rn))

for this discussion, we use a slightly different notation. In particular, tuple variables rather

than domain variables are used. We consider expressions of the form

(∗∗) ans(s)← R1(s1), . . . , Rn(sn), C1, . . . , Cm, T ,

where s, s1, . . . , sn are tuple variables; C1, . . . , Cn are Boolean conditions referring to

coordinates of the variables s1, . . . , sn (e.g., s1.3 = s4.1 ∨ s2.4 = a); and T is a target

condition that gives a value for each coordinate of the target variable s. It is generally

assumed that none of C1, . . . , Cn has ∧ as its parent connective.

A condition Cj is called single variable if it refers to only one of the variables si. At

any point in the processing it is possible to apply one or more single-variable conditions to

some Ri, thereby constructing an intermediate relation R′i that can be used in place of Ri.

In the INGRES optimizer, this is typically combined with other steps.

Join detachment is useful for separating a query into two separate queries, where the

second refers to the first. Consider a query that has the specialized form

(†)

ans(t)← P1(p1), . . . , Pm(pm), C1, . . . , Ck, T ,

Q(q),

R1(r1), . . . , Rn(rn),D1, . . . , Dl,
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where conditions C1, . . . , Ck, T refer only to variables t, p1, . . . , pm, q and D1, . . . , Dl

refer only to q, r1, . . . , rn. It is easily verified that this is equivalent to the sequence

temp(q)←Q(q), R1(r1), . . . , Rn(rn),D1, . . . , Dl

ans(t)← P1(p1), . . . , Pm(pm), temp(q), C1, . . . , Ck, T .

In this example, variable q acts as a “pivot” around which the detachment is performed.

More general forms of join detachment can be developed in which a set of variables serves

as the pivot (see Exercise 6.6).

Tuple substitution chooses one of the underlying relations Rj and breaks the n-variable

join into a set of (n− 1)-variable joins, one for each tuple in Rj . Consider again a query

of form (∗∗) just shown. The tuple substitution of this on Ri is given by the “program”

for each r inRi do

ans(s) +← R1(s1), . . . , Ri−1(si−1), Ri+1(si+1), . . . , Rn(sn),

(C1, . . . , Cm, T )[si/r].

Here we use +← to indicate that ans is to accumulate the values stemming from all tuples

r in (the value of) Ri; furthermore, r is substituted for si in all of the conditions.

There is an obvious trade-off here between reducing the number of variables in the join

and the number of tuples in Ri. In the INGRES optimizer, each of the Ri’s is considered as a

candidate for forming the tuple substitution. During this process single-variable conditions

may be applied to the Ri’s to decrease their size.

6.2 Global Optimization

The techniques for creating evaluation plans presented in the previous section are essen-

tially local in their operation: They focus on clusters of contiguous nodes in a query tree. In

this section we develop an approach to the global optimization of conjunctive queries. This

allows a transformation of an algebra query that removes several joins in a single step, a

capability not provided by the techniques of the previous section. The global optimization

technique is based on an elegant Homomorphism Theorem.

The Homomorphism Theorem

For two queries q1, q2 over the same schema R, q1 is contained in q2, denoted q1 ⊆
q2, if for each I over R, q1(I) ⊆ q2(I). Clearly, q1 ≡ q2 iff q1 ⊆ q2 and q2 ⊆ q1. The

Homomorphism Theorem provides a characterization for containment and equivalence of

conjunctive queries.

We focus here on the tableau formalism for conjunctive queries, although the rule-

based formalism could be used equally well. In addition, although the results hold for

tableau queries over database schemas involving more than one relation, the examples

presented focus on queries over a single relation.

Recall the notion of valuation—a mapping from variables to constants extended to be

the identity on constants and generalized to free tuples and tableaux in the natural fashion.
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(a) (b) (c) (d)

q0 = (T0, 〈x, y〉) q1 = (T1, 〈x, y〉) q2 = (T2, 〈x, y〉) qω = (Tω, 〈x, y〉)

Figure 6.4: Tableau queries used to illustrate the Homomorphism Theorem

Valuations are used in the definition of the semantics of tableau queries. More generally, a

substitution is a mapping from variables to variables and constants, which is extended to be

the identity on constants and generalized to free tuples and tableaux in the natural fashion.

As will be seen, substitutions play a central role in the Homomorphism Theorem.

We begin the discussion with two examples. The first presents several simple examples

of the Homomorphism Theorem in action.

Example 6.2.1 Consider the four tableau queries shown in Fig. 6.4. By using the Ho-

momorphism Theorem, it can be shown that q0 ⊆ q1 ⊆ q2 ⊆ qω.

To illustrate the flavor of the proof of the Homomorphism Theorem, we argue infor-

mally that q1 ⊆ q2. Note that there is substitution θ such that θ(T2)⊆ T1 and θ(〈x, y〉)=
〈x, y〉 [e.g., let θ(x1)= θ(x2)= x1 and θ(y1)= θ(y2)= y1]. Now suppose that I is an in-

stance over AB and that t ∈ q1(I ). Then there is a valuation ν such that ν(T1) ⊆ I and

ν(〈x, y〉)= t . It follows that θ ◦ ν is a valuation that embeds T2 into I with θ ◦ ν(〈x, y〉)=
t , whence t ∈ q2(I ).

Intuitively, the existence of a substitution embedding the tableau of q2 into the tableau

of q1 and mapping the summary of q2 to the summary of q1 implies that q1 is more re-

strictive than q2 (or more correctly, no less restrictive than q2.) Surprisingly, the Homo-

morphism Theorem states that this is also a necessary condition for containment (i.e., if

q ⊆ q ′, then q is more restrictive than q ′ in this sense).

The second example illustrates a limitation of the techniques discussed in the previous

section.

Example 6.2.2 Consider the two tableau queries shown in Fig. 6.5. It can be shown that

q ≡ q ′ but that q ′ cannot be obtained from q using the rewrite rules of the previous section

(see Exercise 6.3) or the other optimization techniques presented there.
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q = (T, u) q′ = (T ′, u)

Figure 6.5: Pair of equivalent tableau queries

Let q = (T, u) and q ′ = (T′, u′) be two tableau queries over the same schema R. A

homomorphism from q ′ to q is a substitution θ such that θ(T′)⊆ T and θ(u′)= u.

Theorem 6.2.3 (Homomorphism Theorem) Let q = (T, u) and q ′ = (T′, u′) be tab-

leau queries over the same schema R. Then q ⊆ q ′ iff there exists a homomorphism from

(T′, u′) to (T, u).

Proof Suppose first that there exists a homomorphism θ from q ′ to q. Let I be an instance

over R. To see that q(I) ⊆ q ′(I), suppose that w ∈ q(I). Then there is a valuation ν that

embeds T into I such that ν(u)= w. It is clear that θ ◦ ν embeds T′ into I and θ ◦ ν(u′)= w,

whence w ∈ q ′(I) as desired.

For the opposite inclusion, suppose that q ⊆ q ′ [i.e., that (T, u)⊆ (T′, u′)]. Speaking

intuitively, we complete the proof by applying both q and q ′ to the “instance” T. Because

q will yield the free tuple u, q ′ also yields u (i.e., there is an embedding θ of T′ into T that

maps u′ to u). To make this argument formal, we construct an instance IT that is isomorphic

to T.

Let V be the set of variables occurring in T. For each x ∈ V , let ax be a new distinct

constant not occurring in T or T′. Let µ be the valuation mapping each x to ax, and

let IT = µ(T). Because µ is a bijection from V to µ(V ), and because µ(V ) has empty

intersection with the constants occurring in T, the inverse µ−1 of µ is well defined on

adom(IT).

It is clear that µ(u) ∈ q(IT), and so by assumption, µ(u) ∈ q ′(IT). Thus there is a

valuation ν that embeds T′ into IT such that ν(u′) = µ(u). It is now easily verified that

ν ◦ µ−1 is a homomorphism from q ′ to q.

Permitting a slight abuse of notation, we have the following (see Exercise 6.8).

Corollary 6.2.4 For tableau queries q = (T, u) and q ′ = (T′, u′), q ⊆ q ′ iff u ∈ q ′(T).



118 Static Analysis and Optimization

We also have

Corollary 6.2.5 Tableau queries q, q ′ over schema R are equivalent iff there are

homomorphisms from q to q ′ and from q ′ to q.

In particular, if q = (T, u) and q ′ = (T′, u′) are equivalent, then u and u′ are identical

up to one-one renaming of variables.

Only one direction of the preceding characterization holds if the underlying domain is

finite (see Exercise 6.12). In addition, the direct generalization of the theorem to tableau

queries with equality does not hold (see Exercise 6.9).

Query Optimization by Tableau Minimization

Although the Homomorphism Theorem yields a decision procedure for containment and

equivalence between conjunctive queries, it does not immediately provide a mechanism,

given a query q, to find an “optimal” query equivalent to q. The theorem is now applied to

obtain just such a mechanism.

We note first that there are simple algorithms for translating tableau queries into

(satisfiable) SPC queries and vice versa. More specifically, given a tableau query, the

corresponding generalized SPC query has the form π�j(σF (R1 × · · · × Rk)), where each

component Ri corresponds to a distinct row of the tableau. For the opposite direction, one

algorithm for translating SPC queries into tableau queries is first to translate into the normal

form for generalized SPC queries and then into a tableau query. A more direct approach

that inductively builds tableau queries corresponding to subexpressions of an SPC query

can also be developed (see Exercise 4.18). Analogous remarks apply to SPJR queries.

The goal of the optimization presented here is to minimize the number of rows in

the tableau. Because the number of rows in a tableau query is one more than the number

of joins in the SPC (SPJR) query corresponding to that tableau (see Exercise 4.18c), the

tableau minimization procedure provides a way to minimize the number of joins in SPC

and SPJR queries.

Surprisingly, we show that an optimal tableau query equivalent to tableau query q can

be obtained simply by eliminating some rows from the tableau of q.

We say that a tableau query (T, u) is minimal if there is no query (S, v) equivalent to

(T, u) with |S|< |T| (i.e., where S has strictly fewer rows than T).

We can now demonstrate the following.

Theorem 6.2.6 Let q = (T, u) be a tableau query. Then there is a subset T′ of T such

that q ′ = (T′, u) is a minimal tableau query and q ′ ≡ q.

Proof Let (S, v) be a minimal tableau that is equivalent to q. By Corollary 6.2.5, there

are homomorphisms θ from q to (S, v) and λ from (S, v) to q. Let T′ = θ ◦ λ(S). It is

straightforward to verify that (T′, u)≡ q and |T′| ≤ |S|. By minimality of (S, v), it follows

that |T′| = |S|, and (T′, u) is minimal.

Example 6.2.7 illustrates how one might minimize a tableau by hand.
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R A B C

u1 x2 y1 z

u2 x y1 z1

u3 x1 y z1

u4 x y2 z2

u5 x2 y2 z

u x y z

Figure 6.6: The tableau (T , u)

Example 6.2.7 Let R be a relation schema of sort ABC and (T , u) the tableau over R

in Fig. 6.6. To minimize (T , u), we wish to detect which rows of T can be eliminated.

Consider u1. Suppose there is a homomorphism θ from (T , u) onto itself that eliminates

u1 [i.e., u1 �∈ θ(T )]. Because any homomorphism on (T , u) is the identity on u, θ(z)= z.

Thus θ(u1) must be u5. But then θ(y1) = y2, and θ(u2) ∈ {u4, u5}. In particular, θ(z1) ∈
{z2, z}. Because u3 involves z1, it follows that θ(u3) �= u3 and θ(y) �= y. But the last

inequality is impossible because y is in u so θ(y) = y. It follows that row u1 cannot be

eliminated and is in the minimal tableau. Similar arguments show that u2 and u3 cannot

be eliminated. However, u4 and u5 can be eliminated using θ(y2) = y1, θ(z2) = z1 (and

identity everywhere else). The preceding argument emphasizes the global nature of tableau

minimization.

The preceding theorem suggests an improvement over the optimization strategies de-

scribed in Section 6.1. Specifically, given a (satisfiable) conjunctive query q, the following

steps can be used:

1. Translate q into a tableau query.

2. Minimize the number of rows in the tableau of this query.

3. Translate the result into a generalized SPC expression.

4. Apply the optimization techniques of Section 6.1.

As illustrated by Examples 6.2.2, 6.2.7, and 6.2.8, this approach has the advantage of

performing global optimizations that typical query rewriting systems cannot achieve.

Example 6.2.8 Consider the relation schema R of sort ABC and the SPJR query q

over R:

πAB(σB=5(R)) ⊲⊳ πBC(πAB(R) ⊲⊳ πAC(σB=5(R))).
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R A B C

x 5 z1

x1 5 z2

x1 5 z

u x 5 z

Figure 6.7: Tableau equivalent to q

The tableau (T , u) corresponding to it is that of Fig. 6.7. To minimize (T , u), we wish to

find a homomorphism that ”folds” T onto a subtableau with minimal number of rows. (If

desired, this can be done in several stages, each of which eliminates one or more rows.)

Note that the first row cannot be eliminated because every homomorphism is the identity

on u and therefore on x. A similar observation holds for the third row. However, the second

row can be eliminated using the homomorphism that maps z2 to z and is the identity

everywhere else. Thus the minimal tableau equivalent to (T , u) consists of the first and

third rows of T . An SPJR query equivalent to the minimized tableau is

πAB(σB=5(R)) ⊲⊳ πBC(σB=5(R)).

Thus the optimization procedure resulted in saving one join operation.

Before leaving minimal tableau queries, we present a result that describes a strong

correspondence between equivalent minimal tableau queries. Two tableau queries (T, u),

(T′, u′) are isomorphic if there is a one-one substitution θ that maps variables to variables

such that θ((T, u)) = (T′, u′). In other words, (T , u) and (T ′, u′) are the same up to

renaming of variables. The proof of this result is left to the reader (see Exercise 6.11).

Proposition 6.2.9 Let q = (T, u) and q ′ = (T′, u′) be minimal and equivalent. Then q

and q ′ are isomorphic.

Complexity of Tableau Decision Problems

The following theorem shows that determining containment and equivalence between

tableau queries is np-complete and tableau query minimization is np-hard.

Theorem 6.2.10 The following problems, given tableau queries q, q ′, are np-complete:

(a) Is q ⊆ q ′?

(b) Is q ≡ q ′?

(c) Suppose that the tableau of q is obtained by deleting free tuples of the tableau of

q ′. Is q ≡ q ′ in this case?
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These results remain true if q, q ′ are restricted to be single-relation typed tableau queries

that have no constants.

Proof The proof is based on a reduction from the “exact cover” problem to the different

tableau problems. The exact cover problem is to decide, given a set X = {x1, . . . , xn} and

a collection S = {S1, . . . , Sm} of subsets of X such that ∪S =X, whether there is an exact

cover of X by S (i.e., a subset S ′ of S such that each member of X occurs in exactly one

member of S ′). The exact cover problem is known to be np-complete.

We now sketch a polynomial transformation from instances E = (X,S) of the exact

cover problem to pairs qE, q
′
E

of typed tableau queries. This construction is then applied

in various ways to obtain the np-completeness results. The construction is illustrated in

Fig. 6.8.

Let E = (X,S) be an instance of the exact cover problem, where X = {x1, . . . , xn} and

S = {S1, . . . , Sm}. Let A1, . . . , An, B1, . . . , Bm be a listing of distinct attributes, and let R

be chosen to have this set as its sort. Both qE and q ′
E

are over relation R, and both queries

have as summary t = 〈A1 : a1, . . . , An : an〉, where a1, . . . , an are distinct variables.

Let b1, . . . , bm be an additional set of m distinct variables. The tableau TE of qE has n

tuples, each corresponding to a different element of X. The tuple for xi has ai for attribute

Ai; bj for attribute Bj for each j such that xi ∈ Sj ; and a new, distinct variable for all other

attributes.

Let c1, . . . , cm be an additional set of m distinct variables. The tableau T ′
E

of q ′
E

has m

tuples, each corresponding to a different element of S. The tuple for Sj has ai for attribute

Ai for each i such that xi ∈ Sj ; cj ′ for attribute Bj ′ for each j ′ such that j ′ �= j ; and a new,

distinct variable for all other attributes.

To illustrate the construction, let E = (X,S) be an instance of the exact cover problem,

where X = {x1, x2, x3, x4} and S = {S1, S2, S3} where

S1 = {x1, x3}

S2 = {x2, x3, x4}

S3 = {x2, x4}.

The tableau queries qξ and q ′ξ corresponding to (X,S) are shown in Fig. 6.8. (Here the

blank entries indicate distinct, new variables.) Note that ξ = (X,S) is satisfiable, and

q ′ξ ⊆ qξ .

More generally, it is straightforward to verify that for a given instance ξ = (X,S) of

the exact cover problem, X has an exact cover in S iff q ′ξ ⊆ qξ . Verification of this, and of

parts (b) and (c) of the theorem, is left for Exercise 6.16.

A subclass of the typed tableau queries for which containment and equivalence is

decidable in polynomial time is considered in Exercise 6.21.

Although an np-completeness result often suggests intractability, this conclusion may

not be warranted in connection with the aforementioned result. The complexity there is

measured relative to the size of the query rather than in terms of the underlying stored
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(a)

R A1

a1

qξ

A2 A3 A4 B1 B2 B3

a1

a2

a3

a4

b1

b1

b2

b2

b2

b3

b3

a2 a3 a4

(b)

R A1

a1

q ′ξ

A2 A3 A4 B1 B2 B3

a1

a2 a3

c1

c1

c2

c2

c3

a2 a3 a4

a2

a3

a4

a4

c3

Figure 6.8: Tableau queries corresponding to an exact cover

data. Given an n-way join, the System R optimizer may potentially consider n! evaluation

strategies based on different orderings of the n relations; this may be exponential in the size

of the query. In many cases, the search for a minimal tableau (or optimal left-to-right join)

may be justified because the data is so much larger than the initial query. More generally,

in Part D we shall examine both “data complexity” and “expression complexity,” where the

former focuses on complexity relative to the size of the data and the latter relative to the

size of queries.

6.3 Static Analysis of the Relational Calculus

We now demonstrate that the decidability results for conjunctive queries demonstrated in

the previous section do not hold when negation is incorporated (i.e., do not hold for the first-

order queries). In particular, we present a general technique for proving the undecidability

of problems involving static analysis of first-order queries and demonstrate the undecid-

ability of three such problems.

We begin by focusing on the basic property of satisfiability. Recall that a query q

is satisfiable if there is some input I such that q(I) is nonempty. All conjunctive queries

are satisfiable (Proposition 4.2.2), and if equality is incorporated then satisfiability is not

guaranteed but it is decidable (Exercise 4.5). This no longer holds for the calculus.

To prove this result, we use a reduction of the Post Correspondence Problem (PCP)

(see Chapter 2) to the satisfiability problem. The reduction is most easily described in terms

of the calculus; of course, it can also be established using the algebras or nr-datalog¬.

At first glance, it would appear that the result follows trivially from the analogous re-

sult for first-order logic (i.e., the undecidability of satisfiability of first-order sentences).

There is, however, an important difference. In conventional first-order logic (see Chap-

ter 2), both finite and infinite interpretations are considered. Satisfiability of first-order sen-

tences is co-recursively enumerable (co-r.e.) but not recursive. This follows from Gödel’s

Completeness Theorem. In contrast, in the context of first-order queries, only finite in-

stances are considered legal. This brings us into the realm of finite model theory. As will
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be shown, satisfiability of first-order queries is recursively enumerable (r.e.) but not recur-

sive. (We shall revisit the contrast between conventional first-order logic and the database

perspective, i.e., finite model theory, in Chapters 9 and 10.)

Theorem 6.3.1 Satisfiability of relational calculus queries is r.e. but not recursive.

Proof To see that the problem is r.e., imagine a procedure that, when given query q over

R as input, generates all instances I over R and tests q(I)= ∅ until a nonempty answer is

found.

To show that satisfiability is not recursive, we reduce the PCP to the satisfiability

problem. In particular, we show that if there were an algorithm for solving satisfiability,

then it could be used to construct an algorithm that solves the PCP.

Let P = (u1, . . . , un; v1, . . . , vn) be an instance of the PCP (i.e., a pair of sequences of

nonempty words over alphabet {0,1}). We describe now a (domain independent) calculus

query qP = {〈〉 | ϕP} with the property that qP is satisfiable iff P has a solution.

We shall use a relation schema R having relations ENC(ODING) with sort [A,B,

C,D,E] and SYNCH(RONIZATION) with sort [F,G]. The query qP shall use constants

{0, 1, $, c1, . . . , cn, d1, . . . , dn}. (The use of multiple relations and constants is largely a

convenience; the result can be demonstrated using a single ternary relation and no con-

stants. See Exercise 6.19.)

To illustrate the construction of the algorithm, consider the following instance of the

PCP:

u1 = 011, u2 = 011, u3 = 0; v1 = 0, v2 = 11, v3 = 01100.

Note that s = (1, 2, 3, 2) is a solution of this instance. That is,

u1u2u3u2 = 0110110011= v1v2v3v2.

Figure 6.9 shows an input instance Is over R which encodes this solution and satisfies the

query qP constructed shortly.

In the relation ENC of this figure, the first two columns form a cycle, so that the 10

tuples can be viewed as a sequence rather than a set. The third column holds a listing of the

word w = 0110110011 that witnesses the solution to P ; the fourth column describes which

words of sequence (u1, . . . , un) are used to obtain w; and the fifth column describes which

words of sequence (v1, . . . , vn) are used. The relation SYNCH is used to synchronize the

two representations of w by listing the pairs corresponding to the beginnings of new u-

words and v-words.

The formula ϕP constructed now includes subformulas to test whether the various

conditions just enumerated hold on an input instance. In particular,

ϕ = ϕENC-key ∧ ϕcycle ∧ ϕSYNCH-keys ∧ ϕu-encode ∧ ϕv-encode ∧ ϕu-v-synch,

where, speaking informally,
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ENC A B C D E SYNCH F G

$ a1 0 c1 d1 $ $

a1 a2 1 c1 d2 a3 a1

a2 a3 1 c1 d2 a6 a3

a3 a4 0 c2 d3 a7 a8

a4 a5 1 c2 d3

a5 a6 1 c2 d3

a6 a7 0 c3 d3

a7 a8 0 c2 d3

a8 a9 1 c2 d2

a9 $ 1 c2 d2

Figure 6.9: Encoding of a solution to PCP

ϕENC-key: states that the first column of ENC is a key; that is, each value occurring in the

A column occurs in exactly one tuple of ENC.

ϕcycle: states that constant $ occurs in a cycle with length > 1 in the first two columns of

ENC. (There may be other cycles, which can be ignored.)

ϕSYNCH-keys: states that both the first and second columns of SYNCH are keys.

ϕu-encode: states that for each value x occurring in the first column of SYNCH, if tuple

〈x1, y1, z1, ci, dj1〉 is in ENC, then there are at least |ui| − 1 additional tuples in ENC

“after” this tuple, all with value ci in the fourth coordinate, and if these tuples are

〈x2, y2, z2, ci, dj2〉, . . . , 〈xk, yk, zk, ci, djk〉

then z1 . . . zk = ui; none of x2, . . . , xk occurs in the first column of SYNCH; and if

yk �= $, then the A value “after” xk occurs in the first column of SYNCH.

ϕv-encode: is analogous to ϕu-encode.

ϕu-v-synch: states that (1) 〈$, $〉 is in SYNCH; (2) if a tuple 〈x, y〉 is in SYNCH, then the

associated u-word and v-word have the same index; and (3) if a tuple 〈x, y〉 is in

SYNCH , and either x or y are not the “maximum” A value occurring in F or G, then

there exists a tuple 〈x′, y′〉 in SYNCH, where x′ is the first A value “after” x occurring

in F and y′ is the first A value “after” y occurring in G. Finding the A values “after”

x and y is done as in ϕu-encode.

The constructions of these formulas are relatively straightforward; we give two of them

here and leave the others for the reader (see Exercise 6.19). In particular, we let

ψ(x, y)= ∃p, q, r ENC(x, y, p, q, r)

and set
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ϕcycle = ∃x(ψ(x, $) ∧ ¬(x = $)) ∧ ∃y(ψ($, y) ∧ ¬(y = $))∧

∀x((∃yψ(x, y))→ (∃zψ(z, x)))∧

∀x((∃yψ(y, x))→ (∃zψ(x, z)))∧

∀x, y1, y2(ψ(y1, x) ∧ ψ(y2, x)→ y1 = y2).

If ENC satisfies ϕENC−key ∧ ϕcycle, then the first two coordinates of ENC hold one or more

disjoint cycles, exactly one of which contains the value $.

Parts (1) and (2) of ϕu-v-synch are realized by the formula

SYNCH($, $)∧

∀x, y(SYNCH(x, y)→

∃s, p, r, t, p′, q((ENC(x, s, p, c1, r) ∧ ENC(y, t, p′, q, d1))∨

(ENC(x, s, p, c2, r) ∧ ENC(y, t, p′, q, d2))∨

...

(ENC(x, s, p, cn, r) ∧ ENC(y, t, p′, q, dn)))).

Verifying that the query qP is satisfiable if and only if P has a solution is left to the

reader (see Exercise 6.19).

The preceding theorem can be applied to derive other important undecidability results.

Corollary 6.3.2

(a) Equivalence and containment of relational calculus queries are co-r.e. and not

recursive.

(b) Domain independence of a relational calculus query is co-r.e. and not recursive.

Proof It is easily verified that the two problems of part (a) and the problem of part (b)

are co-r.e. (see Exercise 6.20). The proofs of undecidability are by reduction from the

satisfiability problem. For equivalence, suppose that there were an algorithm for deciding

equivalence between relational calculus queries. Then the satisfiability problem can be

solved as follows: For each query q = {x1, . . . , xn | ϕ}, this is unsatisfiable if and only if it

is equivalent to the empty query q∅. This demonstrates that equivalence is not decidable.

The undecidability of containment also follows from this.

For domain independence, let ψ be a sentence whose truth value depends on the

underlying domain. Then {x1, . . . , xn | ϕ ∧ ψ} is domain independent if and only if ϕ is

unsatisfiable.

The preceding techniques can also be used to show that “true” optimization cannot be

performed for the first-order queries (see Exercise 6.20d).
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6.4 Computing with Acyclic Joins

We now present a family of interesting theoretical results on the problem of computing the

projection of a join. In the general case, if both the data set and the join expression are al-

lowed to vary, then the time needed to evaluate such expressions appears to be exponential.

The measure of complexity here is a combination of both “data” and “expression” com-

plexity, and is somewhat non-standard; see Part D. Interestingly, there is a special class

of joins, called acyclic, for which this evaluation is polynomial. A number of interesting

properties of acyclic joins are also presented.

For this section we use the named perspective and focus exclusively on flat project-join

queries of the form

q = πX(R1 ⊲⊳ · · · ⊲⊳ Rn)

involving projection and natural join. For this discussion we assume that R = R1, . . . , Rn

is a fixed database schema, and we use I= (I1, . . . , In) to refer to instances over it.

One of the historical motivations for studying this problem stems from the pure univer-

sal relation assumption (pure URA). An instance I = (I1, . . . , In) over schema R satisfies

the pure URA if I = (πR1(I ), . . . , πRn(I )) for some “universal” instance I over ∪n
j=1Rj .

If I satisfies the pure URA, then I can be stored, and queries against the corresponding

instance I can be answered using joins of components in I. The URA will be considered

in more depth in Chapter 11.

Worst-Case Results

We begin with an example.

Example 6.4.1 Let n > 0 and consider the relations Ri[AiAi+1], i ∈ [1, n − 1], as

shown in Fig. 6.10(a). It is easily seen that the natural join of R1, . . . , Rn−1 is exponential

in n and thus exponential in the size of the input query and data.

Now suppose that n is odd. Let Rn be as in Fig. 6.10(b), and consider the natural join of

R1, . . . , Rn. This is empty. On the other hand, the join of any i of these for i < n has size

exponential in i. It follows that the algorithms of the System R and INGRES optimizers

take time exponential in the size of the input and output to evaluate this query.

The following result implies that it is unlikely that there is an algorithm for computing

projections of joins in time polynomial in the size of the query and the data.

Theorem 6.4.2 It is np-complete to decide, given project-join expression q0 over R,

instance I of R, and tuple t , whether t ∈ q0(I). This remains true if q0 and I are restricted

so that |q0(I)| ≤ 1.

Proof The problem is easily seen to be in np. For the converse, recall from Theo-

rem 6.2.10(a) that the problem of tableau containment is np-complete, even for single-
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Ri Ai Ai+1 Rn An A1

0 a 0 a

0 b 0 b

1 a 1 a

1 b 1 b

a 0 a 0

a 1 a 1

b 0 b 0

b 1 b 1

(a) (b)

Figure 6.10: Relations to illustrate join sizes

relation typed tableaux having no constants. We reduce this to the current problem. Let

q = (T , u) and q ′ = (T ′, u′) be two typed constant-free tableau queries over the same rela-

tion schema. Recall from the Homomorphism Theorem that q ⊆ q ′ iff there is a homomor-

phism of q ′ to q, which holds iff u ∈ q ′(T ).

Assume that the sets of variables occurring in q and in q ′ are disjoint. Without loss

of generality, we view each variable occurring in q to be a constant. For each variable

x occurring in q ′, let Ax be a distinct attribute. For free tuple v = (x1, . . . , xn) in T ′, let

Iv over Ax1, . . . , Axn be a copy of T , where the ith attribute is renamed to Axi . Letting

u′ = 〈u′1, . . . , u
′
m〉, it is straightforward to verify that

q ′(T )= πAu′
1
,...,Au′m

(⊲⊳{Iv | v ∈ T ′}).

In particular, u ∈ q ′(T ) iff u is in this projected join.

To see the last sentence of the theorem, let u= 〈u1, . . . , um〉 and use the query

πAu′
1
,...,Au′m

(⊲⊳{Iv | v ∈ T ′} ⊲⊳ {〈Au′
1

: u1, . . . , Au′m
: um〉}).

Theorem 6.2.10(a) considers complexity relative to the size of queries. As applied

in the foregoing result, however, the queries of Theorem 6.2.10(a) form the basis for

constructing a database instance {Iv | v ∈ T ′}. In contrast with the earlier theorem, the

preceding result suggests that computing projections of joins is intractable relative to the

size of the query, the stored data, and the output.

Acyclic Joins

In Example 6.4.1, we may ask what is the fundamental difference between R1 ⊲⊳ · · · ⊲⊳
Rn−1 and R1 ⊲⊳ · · · ⊲⊳ Rn? One answer is that the relation schemas of the latter join form a

cycle, whereas the relation schemas of the former do not.

We now develop a formal notion of acyclicity for joins and four properties equivalent
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to it. All of these are expressed most naturally in the context of the named perspective for

the relational model. In addition, the notion of acyclicity is sometimes applied to database

schemas R= {R1, . . . , Rn} because of the natural correspondence between the schema R

and the join R1 ⊲⊳ · · · ⊲⊳ Rn.

We begin by describing four interesting properties that are equivalent to acyclicity.

Let R = {R1, . . . , Rn} be a database schema, where each relation schema has a different

sort. An instance I of R is said to be pairwise consistent if for each pair j, k ∈ [1, n],

πRj
(Ij ⊲⊳ Ik)= Ij . Intuitively, this means that no tuple of Ij is “dangling” or “lost” after

joining with Ik. Instance I is globally consistent if for each j ∈ [1, n], πRj
(⊲⊳I)= Ij (i.e.,

no tuple of Ij is dangling relative to the full join). Pairwise consistency can be checked in

ptime, but checking global consistency is np-complete (Exercise 6.25). The first property

that is equivalent to acyclicity is:

Property (1): Each instance I that is pairwise consistent is globally consistent.

Note that the instance for schema {R1, . . . , Rn−1} of Example 6.4.1 is both pairwise and

globally consistent, whereas the instance for {R1, . . . , Rn} is pairwise but not globally

consistent.

The second property we consider is motivated by query processing in a distributed

environment. Suppose that each relation of I is stored at a different site, that the join ⊲⊳I is

to be computed, and that communication costs are to be minimized. A very naive algorithm

to compute the join is to send each of the Ij to a specific site and then form the join. In

the general case this may cause the shipment of many unneeded tuples because they are

dangling in the full join.

The semi-join operator can be used to alleviate this problem. Given instances I, J over

R, S, then semi-join of I and J is

I ⊲< J = πR(I ⊲⊳ J ).

It is easily verified that I ⊲⊳ J = (I ⊲< J) ⊲⊳ J = (J ⊲< I) ⊲⊳ I . Furthermore there are

many cases in which computing the join in one of these ways can reduce data transmission

costs if I and J are at different nodes of a distributed database (see Exercise 6.24).

Suppose now that R satisfies Property (1). Given an instance I distributed across the

network, one can imagine replacing each relation Ij by its semi-join with other relations of

I. If done cleverly, this might be done with communication cost polynomial in the size of

I, with the result of the replacements satisfying pairwise consistency. Given Property (1),

all relations can now be shipped to a common site, safe in the knowledge that no dangling

tuples have been shipped.

More generally, a semi-join program for R is a sequence of commands

Ri1 := Ri1 ⊲< Rj1;

Ri2 := Ri2 ⊲< Rj2;

...

Rip := Rip ⊲< Rjp;
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R1 A B C R2 B C D E R3 B C D G R4 C D E F

0 3 2 3 2 1 0 3 2 1 4 2 1 1 4

0 1 2 1 2 3 0 1 2 3 2 2 3 0 1

3 1 2 1 3 1 0 1 3 1 0 3 1 0 2

1 1 3 1 3 1 1 3 1 0 3

Figure 6.11: Instance for Example 6.4.3

(In practice, the original values of Rij would not be overwritten; rather, a scratch copy

would be made.) This is a full reducer for R if for each instance I over R, applying this

program yields an instance I′ that is globally consistent.

Example 6.4.3 Let R = {ABC,BCDE,BCDG,CDEF } = {R1, R2, R3, R4} and con-

sider the instance I of R shown in Fig. 6.11. I is not globally consistent; nor is it pairwise

consistent.

A full reducer for this schema is

R2 := R2 ⊲< R1;

R2 := R2 ⊲< R4;

R3 := R3 ⊲< R2;

R2 := R2 ⊲< R3;

R4 := R4 ⊲< R2;

R1 := R1 ⊲< R2;

Note that application of this program to I has the effect of removing the first tuple from

each relation.

We can now state the second property:

Property (2): R has a full reducer.

It can be shown that the schema {R1, . . . , Rn−1} of Example 6.4.1 has a full reducer,

but {R1, . . . , Rn} does not (see Exercise 6.26).

The next property provides a way to view a schema as a tree with certain properties.

A join tree of a schema R is an undirected tree T = (R, E) such that

(i) each edge (R,R′) is labeled by the set of attributes R ∩ R′; and

(ii) for every pair R,R′ of distinct nodes, for each A ∈ R ∩ R′, each edge along the

unique path between R and R′ includes label A.

Property (3): R has a join tree.

For example, two join trees of the schema R of Figure 6.11 are T1 = (R, {(R1, R2),

(R2, R3), (R2, R4)}) and T2 = (R, {(R1, R3), (R3, R2), (R2, R4)}). (The edge labels are not

shown.)
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(a)

(c)

A

B C

R1[AB], R2[BC], R3[AC]

T1[ABC], T2[BCD], T3[ABD], T4[ACD]

(b)

A

C E

S1[ABC], S2[CDE], S3[AFE], S4[ACE]

B F

D

A

B D

C

Figure 6.12: Three schemas and their hypergraphs

The fourth property we consider focuses entirely on the database schema R and is

based on a simple algorithm, called the GYO algorithm.1 This is most easily described in

terms of the hypergraph corresponding to R. A hypergraph is a pair F = (V , F ), where

V is a set of vertexes and F is family of distinct nonempty subsets of V , called edges

(or hyperedges). The hypergraph of schema R is the pair (U,R), where U = ∪R. In what

follows, we often refer to a database schema R as a hypergraph. Three schemas and their

hypergraphs are shown in Fig. 6.12.

A hypergraph is reduced if there is no pair f, f ′ of distinct edges with f a proper

subset of f ′. The reduction of F = (V , F ) is (V , F − {f ∈ F | ∃f ′ ∈ F with f ⊂ f ′}).
Suppose that R is a schema and I over R satisfies the pure URA. If Rj ⊂ Rk, then Ij =

1 This is so named in honor of M. Graham and the team C. T. Yu and M. Z. Ozsoyoglu, who
independently came to essentially this algorithm.
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πRj
(Ik), and thus Ij holds redundant information. It is thus natural in this context to assume

that R, viewed as a hypergraph, is reduced.

An ear of hypergraph F = (V , F ) is an edge f ∈ F such that for some distinct f ′ ∈ F ,

no vertex of f − f ′ is in any other edge or, equivalently, such that f ∩ (∪(F − {f }))⊆ f ′.

In this case, f ′ is called a witness that f is an ear. As a special case, if there is an edge f

of F that intersects no other edge, then f is also considered an ear.

For example, in the hypergraph of Fig. 6.12(b), edge ABC is an ear, with witness ACE.

On the other hand, the hypergraph of Fig. 6.12(a) has no ears.

We now have

Algorithm 6.4.4 (GYO Algorithm)

Input: Hypergraph F = (V , F )

Output: A hypergraph involving a subset of edges of F

Do until F has no ears:

1. Nondeterministically choose an ear f of F .

2. Set F := (V ′, F − {f }), where V ′ = ∪(F − {f }).

The output of the GYO algorithm is always reduced.

A hypergraph is empty if it is (∅,∅). In Fig. 6.12, it is easily verified that the output

of the GYO algorithm is empty for part (b), but that parts (a) and (c) have no ears and so

equal their output under the algorithm. The output of the GYO algorithm is independent of

the order of steps taken (see Exercise 6.28).

We now state the following:

Property (4): The output of the GYO algorithm on R is empty.

Speaking informally, Example 6.4.1 suggests that an absence of cycles yields Prop-

erties (1) to (4), whereas the presence of a cycle makes these properties fail. This led

researchers in the late 1970s to search for a notion of acyclicity for hypergraphs that

both generalized the usual notion of acyclicity for conventional undirected graphs and was

equivalent to one or more of the aforementioned properties. For example, the conventional

notion of hypergraph acyclicity from graph theory is due to C. Berge; but it turns out that

this condition is necessary but not sufficient for the four properties (see Exercise 6.32).

We now define the notion of acyclicity that was found to be equivalent to the four

aforementioned properties. Let F = (V , F ) be a hypergraph. A path in F from vertex v to

vertex v′ is a sequence of k ≥ 1 edges f1, . . . , fk such that

(i) v ∈ f1;

(ii) v′ ∈ fk;

(iii) fi ∩ fi+1 �= ∅ for i ∈ [1, k − 1].

Two vertexes are connected in F if there is a path between them. The notions of connected

pair of edges, connected component, and connected hypergraph are now defined in the

usual manner.

Now let F = (V , F ) be a hypergraph, and U ⊆ V . The restriction of F to U , denoted

F |U , is the result of forming the reduction of (U, {f ∩ U | f ∈ F } − {∅}).
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Let F = (V , F ) be a reduced hypergraph, let f, f ′ be distinct edges, and let g =
f ∩ f ′. Then g is an articulation set of F if the number of connected components of F |V−g

is greater than the number of connected components of F . (This generalizes the notion of

articulation point for ordinary graphs.)

Finally, a reduced hypergraph F = (V , F ) is acyclic if for each U ⊆ V , if F |U is

connected and has more than one edge then it has an articulation set; it is cyclic otherwise.

A hypergraph is acyclic if its reduction is.

Note that if F = (V , F ) is an acyclic hypergraph, then so is F |U for each U ⊆ V .

Property (5): The hypergraph corresponding to R is acyclic.

We now present the theorem stating the equivalence of these five properties. Addi-

tional equivalent properties are presented in Exercise 6.31 and in Chapter 8, where the

relationship of acyclicity with dependencies is explored.

Theorem 6.4.5 Properties (1) through (5) are equivalent.

Proof We sketch here arguments that (4)⇒ (2)⇒ (1)⇒ (5)⇒ (4). The equivalence of

(3) and (4) is left as Exercise 6.30(a).

We assume in this proof that the hypergraphs considered are connected; generalization

to the disconnected case is straightforward.

(4)⇒ (2): Suppose now that the output of the GYO algorithm on R = {R1, . . . , Rn} is

empty. Let S1, . . . , Sn be an ordering of R corresponding to a sequence of ear removals

stemming from an execution of the GYO algorithm, and let Ti be a witness for Si for

i ∈ [1, n − 1]. An induction on n (“from the inside out”) shows that the following is a

full reducer (see Exercise 6.30a):

T1 := T1 ⊲< S1;

T2 := T2 ⊲< S2;

...

Tn−1 := Tn−1 ⊲< Sn−1;

Sn−1 := Sn−1 ⊲< Tn−1;

...

S2 := S2 ⊲< T2;

S1 := S1 ⊲< T1;

(2)⇒ (1): Suppose that R has a full reducer, and let I be a pairwise consistent instance

of R. Application of the full reducer to I yields an instance I′ that is globally consistent.

But by pairwise consistency, each step of the full reducer leaves I unchanged. It follows

that I = I′ is globally consistent.

(1) ⇒ (5): This is proved by contradiction. Suppose that there is a hypergraph that

satisfies Property (1) but violates the definition of acyclic. Let R = {R1, . . . , Rn} be such a

hypergraph where n is minimal among such hypergraphs and where the size of U = ∪R is

minimal among such hypergraphs with n edges.
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I A1 A2 . . . Ap B1 . . . Bq

1 0 . . . 0 1 . . . 1

0 1 . . . 0 2 . . . 2

...
...

...
...

...
...

...

0 0 . . . 1 p . . . p

Figure 6.13: Instance for proof of Theorem 6.4.5

It follows easily from the minimality conditions that R is reduced. In addition, by

minimality no vertex (attribute) in U is in only one edge (relation schema).

Consider now the schema R′ = {R2 − R1, . . . , Rn − R1}. Two cases arise:

Case 1: R′ is connected. Suppose that R1 = {A1, . . . , Ap} and U − R1 = {B1 . . . , Bq}.
Consider the instance I over U shown in Fig. 6.13. Define I = {I1, . . . , In} so that

Ij = πRj
(I ) for j ∈ [2, n], and

I1 = πR1(I ) ∪ {〈0, 0, . . . , 0〉}.

Using the facts that R′ is connected and that each vertex of R occurs in at least two edges,

it is straightforward to verify that I is pairwise consistent but not globally consistent, which

is a contradiction (see Exercise 6.30b).

Case 2: R′ is not connected. Choose a connected component of R′ and let {S1, . . . , Sk} be

the set of edges of R− {R1} involved in that connected component. Let S = ∪k
i=1Si and let

R′1 = R1 ∩ S. Two subcases arise:

Subcase 2.a: R′1 ⊆ Sj for some j ∈ [1, k]. If this holds, then R′1 ∩ Sj is an articulation

set for R, which is a contradiction (see Exercise 6.30b).

Subcase 2.b: R′1 �⊆ Sj for each j ∈ [1, k]. In this case R′′ = {S1, . . . , Sk, R
′
1} is a reduced

hypergraph with fewer edges than R. In addition, it can be verified that this hypergraph

satisfies Property (1) (see Exercise 6.30b). By minimality of n, this implies that R′′ is

acyclic. Because it is connected and has at least two edges, it has an articulation set. Two

nested subcases arise:

Subcase 2.b.i: Si ∩ Sj is an articulation pair for some i, j . We argue in this case that

Si ∩ Sj is an articulation pair for R. To see this, let x ∈ R′1− (Si ∩ Sj) and let y be a vertex

in some other component of R′′|S−{Si∩Sj }. Suppose that Ri1, . . . , Ril is a path in R from

y to x. Let Rip be the first edge in this path that is not in {S1, . . . , Sk}. By the choice of

{S1, . . . , Sk}, Rip = R1. It follows that there is a path from y to x in R′′|S−{Si∩Sj }, which

is a contradiction. We conclude that R has an articulation pair, contradicting the initial

assumption in this proof.

Subcase 2.b.ii: R′1 ∩ Si is an articulation pair for some i. In this case R1 ∩ Si is an

articulation pair for R (see Exercise 6.30b), again yielding a contradiction to the initial

assumption of the proof.
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(5) ⇒ (4): We first show inductively that each connected reduced acyclic hypergraph

F with at least two edges has at least two ears. For the case in which F has two edges, this

result is immediate. Suppose now that F = (V , F ) is connected, reduced, and acyclic, with

|F |> 2. Let h= f ∩ f ′ be an articulation set of F . Let G be a connected component of

F |V−h. By the inductive hypothesis, this has at least two ears. Let g be an ear of G that is

different from f − h and different from f ′− h. Let g′ be an edge of F such that g = g′− h.

It is easily verified that g′ is an ear of F (see Exercise 6.30b). Because F |V−h has more

than two connected components, it follows that F has at least two ears.

Finally, suppose that F = (V , F ) is acyclic. If there is only one edge, then the GYO

algorithm yields the empty hypergraph. Suppose that it has more than one edge. If F is

not reduced, the GYO algorithm can be applied to reduce it. If F is reduced, then by the

preceding argument F has an ear, say f . Then a step of the algorithm can be applied to

yield F |∪(F−{f }). This is again acyclic. An easy induction now yields the result.

Recall from Theorem 6.4.2 that computing projections of arbitrary joins is probably

intractable if both query and data size are considered. The following shows that this is not

the case when the join is acyclic.

Corollary 6.4.6 If R is acyclic, then for each instance I over R, the expression

πX(⊲⊳I) can be computed in time polynomial in the size of IR, the input, and the output.

Proof Because the computation for each connected component of R can be performed

separately, we assume without loss of generality that R is connected. Let R=(R1, . . . , Rn)

and I = (I1, . . . , In). First apply a full reducer to I to obtain I′ = (I ′1, . . . , I
′
n). This takes

time polynomial in the size of the query and the input; the result is globally consistent; and

⊲⊳ II= ⊲⊳ II′.

Because R is acyclic, by Theorem 6.4.5 there is a join tree T for R. Choose a root

for T , say R1. For each subtree Tk of T with root Rk �= R1, let Xk =X ∩ (∪{R | R ∈ Tk}),
and Zk = Rk∩ (the parent of Rk). Let Jk = I ′k for k ∈ [1, n]. Inductively remove nodes Rk

and replace instances Jk from leaf to root of T as follows: Delete node Rk with parent Rm

by replacing Jm with Jm ⊲⊳ πXkZk
Jk. A straightforward induction shows that immediately

before nonleaf node Rk is deleted, then Jk = πXkRk
(⊲⊳Rl∈Tk I

′
l ). It follows that at the end

of this process the answer is πXJ1 and that at each intermediate stage each instance Jk has

size bounded by |I ′k| · |πX(⊲⊳IIk)| (see Exercise 6.33).
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Exercises

Exercise 6.1

(a) Give detailed definitions for the rewrite rules proposed in Section 6.1. In other words,
provide the conditions under which they preserve equivalence.

(b) Give the step-by-step description of how the query tree of Fig. 6.1(a) can be trans-
formed into the query tree of Fig. 6.1(b) using these rewrite rules.
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Exercise 6.2 Consider the transformation σF (q1 ⊲⊳G q2)→ σF (q1) ⊲⊳G q2 of Fig. 6.2. De-
scribe a query q and database instance for which applying this transformation yields a query
whose direct implementation is dramatically more expensive than that of q.

Exercise 6.3

(a) Write generalized SPC queries equivalent to the two tableau queries of Exam-
ple 6.2.2.

(b) Show that the optimization of this example cannot be achieved using the rewrite rules
or multiway join techniques of System/R or INGRES discussed in Section 6.1.

(c) Generate an example analogous to that of Example 6.2.2 that shows that even for
typed tableau queries, the rewrite rules of Section 6.1 cannot achieve the optimiza-
tions of the Homomorphism Theorem.

Exercise 6.4 Present an algorithm that identifies when variables can be projected out during
a left-to-right join of a sip strategy.

Exercise 6.5 Describe a generalization of sip strategies that permits evaluation of multiway
joins according to an arbitrary binary tree rather than using only left-to-right join processing.
Give an example in which this yields an evaluation plan more efficient than any left-to-right
join.

Exercise 6.6 Consider query expressions that have the form (†) mentioned in the discussion
of join detachment in Section 6.1.

(a) Describe how the possibility of applying join detachment depends on how equali-
ties are expressed in the conditions (e.g., Is there a difference between using con-
ditions ‘x.1= y.1, y.1= z.1’ versus ‘x.1= z.1, z.1= y.1’?). Describe a technique
for eliminating this dependence.

(b) Develop a generalization of join detachment in which a set of variables serves as the
pivot.

Exercise 6.7 [WY76]

(a) Describe some heuristics for choosing the atom Ri(si) for forming a tuple substitu-
tion. These may be in the context of using tuple substitution and join detachment for
the resulting subqueries, or they may be in a more general context.

(b) Develop a query optimization algorithm based on applying single-variable condi-
tions, join detachment, and tuple substitution.

Exercise 6.8 Prove Corollary 6.2.4.

Exercise 6.9

(a) State the direct generalization of Theorem 6.2.3 for tableau queries with equality,
and show that it does not hold.

(b) State and prove a correct generalization of Theorem 6.2.3 that handles tableau
queries with equality.

Exercise 6.10 For queries q, q ′, write q ⊂ q ′ to denote that q ⊆ q ′ and q �≡ q ′. The meaning
of q ⊃ q ′ is defined analogously.
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(a) Exhibit an infinite set {q0, q1, q2, . . .} of typed tableau queries involving no constants
over a single relation with the property that q0 ⊂ q1 ⊂ q2 ⊂ . . . .

(b) Exhibit an infinite set {q ′0, q
′
1, q

′
2, . . .} of (possibly nontyped) tableau queries involv-

ing no constants over a single relation such that q ′i �⊆ q ′j and q ′j �⊆ q ′i for each pair
i �= j .

(c) Exhibit an infinite set {q ′′0 , q
′′
1 , q

′′
2 , . . .} of (possibly nontyped) tableau queries involv-

ing no constants over a single relation with the property that q ′′0 ⊃ q ′′1 ⊃ q ′′2 ⊃ . . . .

(d) Do parts (b) and (c) for typed tableau queries that may contain constants.

⋆ (e) [FUMY83] Do parts (b) and (c) for typed tableau queries that contain no constants.

Exercise 6.11 [CM77] Prove Proposition 6.2.9.

Exercise 6.12

(a) Prove that if the underlying domain dom is finite, then only one direction of the
statement of Theorem 6.2.3 holds.

(b) Let n > 1 be arbitrary. Exhibit a pair of tableau queries q, q ′ such that under the
assumption that dom has n elements, q ⊆ q ′, but there is no homomorphism from q ′

to q. In addition, do this using typed tableau queries.

(c) Show for arbitrary n > 1 that Theorem 6.2.6 and Proposition 6.2.9 do not hold if
dom has n elements.

Exercise 6.13 Let R be a relation schema of sort ABC. For each of the following SPJR queries
over R, construct an equivalent tableau (see Exercise 4.19), minimize the tableau, and construct
from the minimized tableau an equivalent SPJR query with minimal number of joins.

(a) πAC[πAB(R) ⊲⊳ πBC(R)] ⊲⊳ πA[πAC(R) ⊲⊳ πCB(R)]

(b) πAC[πAB(R) ⊲⊳ πBC(R)] ⊲⊳ πAB(σB=8(R)) ⊲⊳ πBC(σA=5(R))

(c) πAB(σC=1(R)) ⊲⊳ πBC(R) ⊲⊳ πAB[σC=1(πAC(R)) ⊲⊳ πCB(R)]

♠Exercise 6.14 [SY80]

(a) Give a decision procedure for determining whether one union of tableaux query
is contained in another one. Hint: Let the queries be q = ({T1, . . . ,Tn}, u) and
q ′ = ({S1, . . . ,Sm}, v); and prove that q ⊆ q ′ iff for each i ∈ [1, n] there is some
j ∈ [1,m] such that (Ti, u)⊆ (Sj , v). (The case of queries equivalent to q∅ must be
handled separately.)

A union of tableaux query ({T1, . . . ,Tn}, u) is nonredundant if there is no distinct pair i, j such
that (Ti, u)⊆ (Tj , u).

(b) Prove that if ({T1, . . . ,Tn}, u) and ({S1, . . . ,Sm}, v) are nonredundant and equiva-
lent, then n=m; for each i ∈ [1, n] there is a j ∈ [1, n] such that (Ti, u)≡ (Sj , v);
and for each j ∈ [1, n] there is a i ∈ [1, n] such that (Sj , v)≡ (Ti, u).

(c) Prove that for each union of tableaux query q there is a unique (up to renaming)
equivalent union of tableaux query that has a minimal total number of atoms.

Exercise 6.15 Exhibit a pair of typed restricted SPJ algebra queries q1, q2 over a relation R

and having no constants, such that there is no conjunctive query equivalent to q1 ∪ q2. Hint: Use
tableau techniques.
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♠Exercise 6.16 [SY80]

(a) Complete the proof of part (a) of Theorem 6.2.10.

(b) Prove parts (b) and (c) of that theorem. Hint: Given ξ and qξ = (Tξ , t) and q ′ξ =
(T ′ξ , t) as in the proof of part (a), set q ′′ξ = (Tξ ∪ T ′ξ , t). Show that ξ is satisfiable iff

q ′′ξ ≡ q ′ξ .

(c) Prove that it is np-hard to determine, given a pair q, q ′ of typed tableau queries over
the same relation schema, whether q is minimal and equivalent to q ′. Conclude that
optimizing conjunctive queries, in the sense of finding an equivalent with minimal
number of atoms, is np-hard.

Exercise 6.17 [ASU79b] Prove Theorem 6.2.10 using a reduction from 3-SAT (see Chapter 2)
rather than from the exact cover problem.

Exercise 6.18 [ASU79b]

(a) Prove that determining containment between two typed SPJ queries of the form
πX(⊲⊳

n
i=1(πXi

R)) is np-complete. Hint: Use Exercise 6.16.

(b) Prove that the problem of finding, given an SPJ query q of the form πX(⊲⊳
n
i=1

(πXi
R)), an SPJ query q ′ equivalent to q that has the minimal number of join

operations among all such queries is np-hard.

Exercise 6.19

(a) Complete the proof of Theorem 6.3.1.

(b) Describe how to modify that proof so that qP uses no constants.

(c) Describe how to modify the proof so that no constants and only one ternary relation is
used. Hint: Speaking intuitively, a tuple t = 〈a1, . . . , a5〉 of ENC can be simulated as
a set of tuples {〈bt, b1, a1〉, . . . , 〈bt, b5, a5〉}, where bt is a value not used elsewhere
and b1, . . . , b5 are values established to serve as integers 1, . . . , 5.

(d) Describe how, given instance P of the PCP, to construct an nr-datalog¬ program that
is satisfiable iff P has a solution.

Exercise 6.20 This exercise develops further undecidability results for the relational calculus.

(a) Prove that containment and equivalence of range-safe calculus queries are co-r.e.

(b) Prove that domain independence of calculus queries is co-r.e. Hint: Theorem 5.6.1 is
useful here.

(c) Prove that containment of safe-range calculus queries is undecidable.

(d) Show that there is no algorithm that always halts and on input calculus query q gives
an equivalent query q ′ of minimum length. Conclude that “complete” optimization
of the relational calculus is impossible. Hint: If there were such an algorithm, then it
would map each unsatisfiable query to a query with formula (of form) ¬(a = b).

♠Exercise 6.21 [ASU79a, ASU79b] In a typed tableau query (T , u), a summary variable is
a variable occurring in u. A repeated nonsummary variable for attribute A is a nonsummary
variable in πA(T ) that occurs more than once in T . A typed tableau query is simple if for each
attribute A, there is a repeated nonsummary variable in πA(T ), then no other constant or variable
in πA(T ) occurs more than once πA(T ). Many natural typed restricted SPJ queries translate into
simple tableau queries.
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(a) Show that the tableau query over R[ABCD] corresponding to

πAC(πAB(R) ⊲⊳ πBC(R)) ⊲⊳ (πAB(R) ⊲⊳ πBD(R))

is not simple.

(b) Exhibit a simple tableau query that is not the result of transforming a typed restricted
SPJ query under the algorithm of Exercise 4.19.

(c) Prove that if (T , u) is simple, T ′ ⊆ T , and (T ′, u) is a tableau query, then (T ′, u) is
simple.

(d) Develop an O(n4) algorithm that, on input a simple tableau query q, produces a
minimal tableau query equivalent to q.

(e) Develop an O(n3) algorithm that, given simple tableau queries q, q ′, determines
whether q ≡ q ′.

(f) Prove that testing containment for simple tableau queries is np-complete.

♠Exercise 6.22 [SY80] Characterize containment and equivalence between queries of the form
q1 − q2, where q1, q2 are SPCU queries. Hint: First develop characterizations for the case in
which q1, q2 are SPC queries.

Exercise 6.23 Recall from Exercise 5.9 that an arbitrary nonrecursive datalog¬ rule can be
described as a difference q1 − q2, where q1 is an SPC query and q2 is an SPCU query.

(a) Show that Exercise 5.9 cannot be strengthened so that q2 is an SPC query.

(b) Show that containment between pairs of nonrecursive datalog¬ rules is decidable.
Hint: Use Exercise 6.22.

(c) Recall that for each nr-datalog program P with a single-relation target there is an
equivalent nr-datalog program P ′ such that all rule heads have the same relation name
(see Exercise 4.24). Prove that the analogous result does not hold for nr-datalog¬

programs.

Exercise 6.24

(a) Verify that I ⊲⊳ J = (I ⊲< J) ⊲⊳ J .

(b) Analyze the transmission costs incurred by the left-hand and right-hand sides of this
equation, and describe conditions under which one is more efficient than the other.

Exercise 6.25 [HLY80] Prove that the problem of deciding, given instance I of database
schema R, whether I is globally consistent is np-complete.

Exercise 6.26 Prove the following without using Theorem 6.4.5.

(a) The database schema R = {AB,BC,CA} has no full reducer.

(b) For arbitrary n > 1, the schema {R1, . . . , Rn−1} of Example 6.4.1 has a full reducer.

(c) For arbitrary (odd or even) n > 1, the schema {R1, . . . , Rn} of Example 6.4.1 has no
full reducer.

Exercise 6.27

(a) Draw the hypergraph of the schema of Example 6.4.3.

(b) Draw the hypergraph of Fig. 6.12(b) in a fashion that suggests it to be acyclic.
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Exercise 6.28 Prove that the output of Algorithm 6.4.4 is independent of the nondeterministic
choices.

Exercise 6.29 As originally introduced, the GYO algorithm involved the following steps:

Nondeterministically perform either step,

until neither can be applied

1. If v ∈ V is in exactly one edge f ∈ F

then F := (V − {v}, (F − {f } ∪ {f − {v}})− {∅}).
2. If f ⊆ f ′ for distinct f, f ′ ∈ F ,

then F := (V , F − {f }).

The result of applying the original GYO algorithm to a schema R is the GYO reduction of R.

(a) Prove that the original GYO algorithm yields the same output independent of the
nondeterministic choices.

(b) [FMU82] Prove that Algorithm 6.4.4 given in the text yields the empty hypergraph
on R iff the GYO reduction of R is the empty hypergraph.

Exercise 6.30 This exercise completes the proof of Theorem 6.4.5.

(a) [BG81] Prove that (3)⇔ (4).

(b) Complete the other parts of the proof.

Exercise 6.31 [BFMY83] R has the running intersection property if there is an ordering
R1, . . . , Rn of R such that for 2 ≤ i ≤ n there exists ji < i such that Ri ∩ (R1 ∪ · · · ∪ Ri−1)⊆
Rji . In other words, the intersection of each Ri with the union of the previous R′js is contained
in one of these. Prove that R has the running intersection property iff R is acyclic.

Exercise 6.32 [BFMY83] A Berge cycle in a hypergraph F is a sequence (f1, v1, f2, v2, . . . ,

fn, vn, fn+1) such that

(i) v1, . . . , vn are distinct vertexes of F ;

(ii) f1, . . . , fn are distinct edges of F , and fn+1 = f1;

(iii) n≥ 2; and

(iv) vi ∈ fi ∩ fi+1 for i ∈ [1, n].

A hypergraph is Berge cyclic if it has a Berge cycle, and it is Berge acyclic otherwise.

(a) Prove that Berge acyclicity is necessary but not sufficient for acyclicity.

(b) Show that any hypergraph in which two edges have two nodes in common is Berge
cyclic.

Exercise 6.33 [Yan81] Complete the proof of Corollary 6.4.6.



7 Notes on Practical

Languages

Alice: What do you mean by practical languages?

Riccardo: select from where.

Alice: That’s it?

Vittorio: Well, there are of course lots of bells and whistles.

Sergio: But basically, this forms the core of most practical languages.

In this chapter we discuss the relationship of the abstract query languages discussed

so far to three representative commercial relational query languages: Structured Query

Language (SQL), Query-By-Example (QBE), and Microsoft Access. SQL is by far the

dominant relational query language and provides the basis for languages in extensions of

the relational model as well. Although QBE is less widespread, it illustrates nicely the

basic capabilities and problems of graphic query languages. Access is a popular database

management system for personal computers (PCs) and uses many elements of QBE.

Our discussion of the practical languages is not intended to provide a complete de-

scription of them, but rather to indicate some of the similarities and differences between

theory and practice. We focus here on the central aspects of these languages. Many fea-

tures, such as string-comparison operators, iteration, and embeddings into a host language,

are not mentioned or are touched on only briefly.

We first present highlights of the three languages and then discuss considerations that

arise from their use in the real world.

7.1 SQL: The Structured Query Language

SQL has emerged as the preeminent query language for mainframe and client-server rela-

tional dbms’s. This language combines the flavors of both the algebra and the calculus and

is well suited for the specification of conjunctive queries.

This section begins by describing how conjunctive queries are expressed using SQL.

We then progress to additional features, including nested queries and various forms of

negation.

Conjunctive Queries in SQL

Although there are numerous variants of SQL, it has become the standard for relational

query languages and indeed for most aspects of relational database access, including data

definition, data modification, and view definition. SQL was originally developed under the

142
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name Sequel at the IBM San Jose Research Laboratory. It is currently supported by most

of the dominant mainframe commercial relational systems, and increasingly by relational

dbms’s for PCs.

The basic building block of SQL queries is the select-from-where clause. Speaking

loosely, these have the form

select <list of fields to select>

from <list of relation names>

where <condition>

For example, queries (4.1) and (4.4) of Chapter 4 are expressed by

select Director

from Movies

where Title = ‘Cries and Whispers’;

select Location.Theater, Address

from Movies, Location, Pariscope

where Director = ‘Bergman’

and Movies.Title = Pariscope.Title

and Pariscope.Theater = Location.Theater;

In these queries, relation names themselves are used to denote variables ranging over

tuples occurring in the corresponding relation. For example, in the preceding queries, the

identifier Movies can be viewed as ranging over tuples in relation Movies. Relation name

and attribute name pairs, such as Location.Theater, are used to refer to tuple components;

and the relation name can be dropped if the attribute occurs in only one of the relations in

the from clause.

The select keyword has the effect of the relational algebra projection operator, the

from keyword has the effect of the cross-product operator, and the where keyword has the

effect of the selection operator (see Exercise 7.3). For example, the second query translates

to (using abbreviated attribute names)

πL.T h,A( σD=‘Bergman’∧M.T i=P.T i∧P.T h=L.T h(Movies× Location× Pariscope)).

If all of the attributes mentioned in the from clause are to be output, then * can be used

in place of an attribute list in the select clause. In general, the where condition may include

conjunction, disjunction, negation, and (as will be seen shortly) nesting of select-from-

where blocks. If the where clause is omitted, then it is viewed as having value true for all

tuples of the cross-product. In implementations, as suggested in Chapter 6, optimizations

will be used; for example, the from and where clauses will typically be merged to have the

effect of an equi-join operator.

In SQL, as with most practical languages, duplicates may occur in a query answer.
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Technically, then, the output of an SQL query may be a bag (also called “multiset”)—

a collection whose members may occur more than once. This is a pragmatic compromise

with the pure relational model because duplicate removal is rather expensive. The user may

request that duplicates be removed by inserting the keyword distinct after the keyword

select.

If more than one variable ranging over the same relation is needed, then variables can

be introduced in the from clause. For example, query (4.7), which asks for pairs of persons

such that the first directed the second and the second directed the first, can be expressed as

select M1.Director,M1.Actor

from Movies M1,Movies M2

where M1.Director =M2.Actor

and M1.Actor =M2.Director;

In the preceding example, the Director coordinate of M1 is compared with the Actor

coordinate of M2. This is permitted because both coordinates are (presumably) of type

character string. Relations are declared in SQL by specifying a relation name, the attribute

names, and the scalar types associated with them. For example, the schema for Movies

might be declared as

create table Movies

(Title character[60]

Director character[30]

Actor character[30]);

In this case, Title and Director values would be comparable, even though they are character

strings of different lengths. Other scalar types supported in SQL include integer, small

integer, float, and date.

Although the select-from-where block of SQL has a syntactic flavor close to the re-

lational calculus (but using tuple variables rather than domain variables), from a technical

perspective the SQL semantics are firmly rooted in the algebra, as illustrated by the follow-

ing example.

Example 7.1.1 Let {R[A], S[B], T [C]} be a database schema, and consider the follow-

ing query:

select A

from R, S, T

where R.A= S.B or R.A= T .C;

A direct translation of this into the SPJR algebra extended to permit disjunction in selection

formulas (see Exercise 4.22) yields
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πA(σA=B∨A=C(R × S × T )),

which yields the empty answer if S is empty or if T is empty. Thus the foregoing SQL

query is not equivalent to the calculus query:

{x | R(x) ∧ (S(x) ∨ T (x))}.

A correct translation into the conjunctive calculus (with disjunction) query is

{w | ∃x, y, z(R(x) ∧ S(y) ∧ T (z) ∧ x = w ∧ (x = y ∨ x = z))}.

Adding Set Operators

The select-from-where blocks of SQL can be combined in a variety of ways. We describe

first the incorporation of the set operators (union, intersect, and difference). For example,

the query

(4.14) List all actors and director of the movie “Apocalypse Now.”

can be expressed as

(select Actor Participant

from Movies

where Title = ‘Apocalypse Now’)

union

(select Director Participant

from Movies

where Title = ‘Apocalypse Now’);

In the first subquery the output relation uses attribute Participant in place of Actor. This

illustrates renaming of attributes, analogous to relation variable renaming. This is needed

here so that the two relations that are unioned have compatible sort.

Although union, intersect, and difference were all included in the original SQL, only

union is in the current SQL2 standard developed by the American National Standards

Institute (ANSI). The two left out can be simulated by other mechanisms, as will be seen

later in this chapter.

SQL also includes a keyword contains, which can be used in a selection condition to

test containment between the output of two nested select-from-where expressions.

Nested SQL Queries

Nesting permits the use of one SQL query within the where clause of another. A simple

illustration of nesting is given by this alternative formulation of query (4.4):
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select Theater

from Pariscope

where Title in

(select Title

from Movies

where Director = ‘Bergman’);

The preceding example tests membership of a unary tuple in a unary relation. The

keyword in can also be used to test membership for arbitrary arities. The symbols < and

> are used to construct tuples from attribute expressions. In addition, because negation is

permitted in the where clause, set difference can be expressed. Consider the query

List title and theater for movies being shown in only one theater.

This can be expressed in SQL by

select Title, Theater

from Pariscope

where 〈Title, Theater〉 not in

(select P1.Title, P1.Theater

from Pariscope P1, Pariscope P2

where P1.Title = P2.Title

and not (P1.Theater = P2.Theater));

Expressing First-Order Queries in SQL

We now discuss the important result that SQL is relationally “complete,” in the sense that

it can express all relational queries expressible in the calculus. Recall from Chapter 5 that

the family of nr-datalog¬ programs is equivalent to the calculus and algebra. We shall show

how to simulate nr-datalog¬ using SQL. Intuitively, the result follows from the facts that

(a) each rule can be simulated using the select-from-where construct;

(b) multiple rules defining the same predicate can be simulated using union; and

(c) negation in rule bodies can be simulated using not in.

We present an example here and leave the formal proof for Exercise 7.4.

Example 7.1.2 Consider the following query against the CINEMA database:

Find the theaters showing every movie directed by Hitchcock.

An nr-datalog¬ program expressing the query is
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Pariscope′(xth, xtitle)← Pariscope(xth, xtitle, xsch)

Bad_th(xth) ←Movies(xtitle,Hitchcock, xact),

Location(xth, xloc, xph),

¬Pariscope′(xth, xtitle)

Answer(xth) ← Location(xth, xloc, xph),¬Bad_th(xth).

In the program, Bad_th holds the list of “bad” theaters, for which one can find a movie by

Hitchcock that the theater is not showing. The last rule takes the complement of Bad_th

with respect to the list of theaters provided by Location.

An SQL query expressing an nr-datalog¬ program such as this one can be constructed

in two steps. The first is to write SQL queries for each rule separately. In this example, we

have

Pariscope′: select Theater, Title

from Pariscope;

Bad_th: select Theater

from Movies, Location

where Director = ‘Hitchcock’

and 〈Theater, Title〉 not in

(select *

from Pariscope′);

Answer: select Theater

from Location

where Theater not in

(select *

from Bad_th);

The second step is to combine the queries. In general, this involves replacing nested

queries by their definitions, starting from the answer relation and working backward. In

this example, we have

select Theater

from Location

where Theater not in

(select Theater

from Movies, Location

where Director = ‘Hitchcock’

and 〈Theater, Title〉 not in

(select Theater, Title

from Pariscope));

In this example, each idb (see Section 4.3) relation that occurs in a rule body occurs
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negatively. As a result, all variables that occur in the rule are bound by edb relations, and

so the from part of the (possibly nested) query corresponding to the rule refers only to

edb relations. In general, however, variables in rule bodies might be bound by positively

occurring idb relations, which cannot be used in any from clause in the final SQL query.

To resolve this problem, the nr-datalog¬ program should be rewritten so that all positively

occurring relations in rule bodies are edb relations (see Exercise 7.4a).

View Creation and Updates

We conclude our consideration of SQL by noting that it supports both view creation and

updates.

SQL includes an explicit mechanism for view creation. The relation Champo-info from

Example 4.3.4 is created in SQL by

create view Le Champo as

select Pariscope.Title, Schedule, Phone

from Pariscope, Location

where Pariscope.Theater = ‘Le Champo’

and Location.Theater = ‘Le Champo.’

Views in SQL can be accessed as can normal relations and are useful in building up

complex queries.

As a practical database language, SQL provides commands for updating the database.

We briefly illustrate these here; some theoretical aspects concerning updates are presented

in Chapter 22.

SQL provides three primitive commands for modifying the contents of a database—

insert, delete, and update (in the sense of modifying individual tuples of a relation).

The following can be used to insert a new tuple into the Movies database:

insert into Movies

values (‘Apocalypse Now,’ ‘Coppola,’ ‘Duvall’);

A set of tuples can be deleted simultaneously:

delete Movies

where Director = ‘Hitchcock’;

Tuple update can also operate on sets of tuples (as illustrated by the following) that

might be used to correct a typographical error:

update Movies

set Director = ‘Hitchcock’

where Director = ‘Hickcook’;
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The ability to insert and delete tuples provides an alternative approach to demon-

strating the relational completeness of SQL. In particular, subexpressions of an algebra

expression can be computed in intermediate, temporary relations (see Exercise 7.6). This

approach does not allow the same degree optimization as the one based on views because

the SQL interpreter is required to materialize each of the intermediate relations.

7.2 Query-by-Example and Microsoft Access

We now turn to two query languages that have a more visual presentation. The first, Query-

by-Example (QBE), presents a visual display for expressing conjunctive queries that is

close to the perspective of tableau queries. The second language, Access, is available on

personal computers; it uses elements of QBE, but with a more graphical presentation of

join relationships.

QBE

The language Query-By-Example (QBE) was originally developed at the IBM T. J. Watson

Research Center and is currently supported as part of IBM’s Query Management Facility.

As illustrated at the beginning of Chapter 4, the basic format of QBE queries is fundamen-

tally two-dimensional and visually close to the tableau queries. Importantly, a variety of

features are incorporated into QBE to give more expressive power than the tableau queries

and to provide data manipulation capabilities. We now indicate some features that can be

incorporated into a QBE-like visual framework. The semantics presented here are a slight

variation of the semantics supported for QBE in IBM’s product line.

As seen in Fig. 4.2, which expresses query (4.4), QBE uses strings with prefix _ to

denote variables and other strings to denote constants. If the string is preceded by P., then

the associated coordinate value forms part of the query output. QBE framework can provide

a partial union capability by permitting the inclusion in a query of multiple tuples having a

P. prefix in a single relation. For example, Fig. 7.1 expresses the query

(4.12) What films with Allen as actor or director are currently featured at the Concorde?

Under one natural semantics for QBE queries, which parallels the semantics of conjunctive

queries and of SQL, this query will yield the empty answer if either σDirector=“Allen”Movies

or σActor=“Allen”Movies is empty (see Example 7.1.1).

QBE also includes a capability of condition boxes, which can be viewed as an exten-

sion of the incorporation of equality atoms into tableau queries.

QBE does not provide a mechanism analogous to SQL for nesting of queries. It is hard

to develop an appropriate visual representation of such nesting within the QBE framework,

in part due to the lack of scoping rules. More recent extensions of QBE address this issue

by incorporating, for example, hierarchical windows. QBE also provides mechanisms for

both view definition and database update.

Negation can be incorporated into QBE queries in a variety of ways. The use of data-

base update is an obvious mechanism, although not especially efficient. Two restricted
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Movies Title Director Actor

_X

_Y

Allen

Allen

Pariscope Title Schedule

P._X

P._Y

Theater

Concorde

Concorde

Figure 7.1: One form of union in QBE

Movies Title Director Actor

_Z Bergman

Pariscope Title Schedule

_Z

Theater

P._champio ¬Concorde

¬

Figure 7.2: A query with negation in QBE

forms of negation are illustrated in Fig. 7.2, which expresses the following query: (assum-

ing that each film has only one director) what theaters, other than the Concorde, feature a

film not directed by Bergman? The ¬ in the Pariscope relation restricts attention to those

tuples with Theater coordinate not equal to Concorde, and the ¬ preceding the tuple in the

Movies relation is analogous to a negative literal in a datalog rule and captures a limited

form of ¬∃ from the calculus; in this case it excludes all films directed by Bergman. When

such negation is used, it is required that all variables that occur in a row preceded by ¬ also

appear in positive rows. Other restricted forms of negation in QBE include using negative

literals in condition boxes and supporting an operator analogous to relational division (as

defined in Exercise 5.8).

The following example shows more generally how view definition can be used to

obtain relational completeness.

Example 7.2.1 Recall the query and nr-datalog¬ program of Example 7.1.2. As with

SQL, the QBE query corresponding to an nr-datalog¬ will involve one or more views for

each rule (see Exercise 7.5). For this example, however, it turns out that we can compute

the effect of the first two rules with a single QBE query. Thus the two stages of the full

query are shown in Fig. 7.3, where the symbol I. indicates that the associated tuples are

to be inserted into the answer. The creation of the view Bad_th is accomplished using the
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Movies Title Director Actor

_xtitle Hitchcock

Pariscope Title Schedule

_xtitle

Theater

_xth

Location Theater Address Phone

_xth

¬

I.VIEW Bad_th I. Theater

_xthI.

Stage I:

Location Theater Address Phone

_xth

Stage II:

Answer Theater

_xthI.

Bad_th Theater

_xth¬

Figure 7.3: Illustration of relational completeness of QBE

expression I.VIEWBad_th I., which both creates the view and establishes the attribute

names for the view relation.

Microsoft Access: A Query Language for PCs

A number of dbms’s for personal computers have become available over the past few years,

such as DBASE IV, Microsoft Access, Foxpro, and Paradox. Several of these support a

version of SQL and a more visual query language. The visual languages have a flavor

somewhat different from QBE. We illustrate this here by presenting an example of a query

from the Microsoft Access dbm’s.

Access provides an elegant graphical mechanism for constructing conjunctive queries.

This includes a tabular display to indicate the form and content of desired output tuples,

the use of single-attribute conditions within this display (in the rows named “Criteria” and

“or”), and a graphical presentation of join relationships that are to hold between relations

used to form the output. Fig. 7.4 shows how query (4.4) can be expressed using Access.
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SelectQuery: Query4

Movies

Title

Director

Actor

Pariscope

Theater

Title

Schedule

Field

Table

Sort

Show

Criteria

Or

Theater

Location

Address

Location

Director

Movies

“Bergman”

Location

Theater

Address

Phone

Figure 7.4: Example query in Access

(Although not shown in the figure, join conditions can also be expressed using single-

attribute conditions represented as text.)

Limited forms of negation and union can be incorporated into the condition part of an

Access query. For more general forms of negation and union, however, the technique of

building views to serve as intermediate relations can be used.

7.3 Confronting the Real World

Because they are to be used in practical situations, the languages presented in this chapter

incorporate a number of features not included in their formal counterparts. In this section

we touch on some of these extensions and on fundamental issues raised by them. These in-

clude domain independence, the implications of incorporating many-sorted atomic objects,

the use of arithmetic, and the incorporation of aggregate operators.

Queries from all of the practical languages described in this chapter are domain inde-

pendent. This is easily verified from the form of queries in these languages: Whenever a

variable is introduced, the relation it ranges over is also specified. Furthermore, the specific

semantics associated with or’s occurring in where clauses (see Example 7.1.1) prevent the

kind of safety problem illustrated by query unsafe-2 of Section 5.3.

Most practical languages permit the underlying domain of values to be many-sorted—

for example, including distinct scalar domains for the types integer, real, character string,

etc., and some constructed types, such as date, in some languages. (More recent systems,

such as POSTGRES, permit the user to incorporate abstract data types as well.) For most

of the theoretical treatment, we assumed that there was one underlying domain of values,

dom, which was shared equally by all relational attributes. As noted in the discussion of
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SQL, the typing of attributes can be used to ensure that comparisons make sense, in that

they compare values of comparable type. Much of the theory developed here for a single

underlying domain can be generalized to the case of a many-sorted underlying domain (see

Exercise 7.8).

Another fundamental feature of practical query languages is that they offer value

comparators other than equality. Typically most of the base sorts are totally ordered. This

is the case for the integers or the strings (under the lexicographical ordering). It is therefore

natural to introduce ≤,≥, <,> as comparators. For example, to ask the query, “What can

we see at the Le Champo after 21:00,” we can use

ans(xt)← Pariscope(“Le Champo,”xt, xs), xs > “21:00”;

and, in the algebra, as

πTitle(σTheater=“Le Champo”∧Schedule>“21:00”Pariscope).

Exercise 4.30 explores the impact of incorporating comparators into the conjunctive

queries. Many languages also incorporate string-comparison operators.

Given the presence of integers and reals, it is natural to incorporate arithmetic oper-

ators. This yields a fundamental increase in expressive power: Even simple counting is

beyond the power of the calculus (see Exercise 5.34).

Another extension concerns the incorporation of aggregate operators into the practical

languages (see Section 5.5). Consider, for example, the query, “How many films did

Hitchcock direct?”. In SQL, this can be expressed using the query

select count(distinct Title)

from Movies

where Director = ‘Hitchcock’;

(The keyword distinct is needed here, because otherwise SQL will not remove duplicates

from the projection onto Title.) Other aggregate operators typically supported in practical

languages include sum, average, minimum, and maximum.

In the preceding example, the aggregate operator was applied to an entire relation.

By using the group by command, aggregate operators can be applied to clusters of tuples,

each common values on a specified set of attributes. For example, the following SQL query

determines the number of movies directed by each director:

select Director, count(distinct Title)

from Movies

group by Director;

The semantics of group by in SQL are most easily understood when we study an extension

of the relational model, called the complex object (or nested relation) model, which models

grouping in a natural fashion (see Chapter 20).
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Exercises

Exercise 7.1 Write SQL, QBE, and Access queries expressing queries (4.1 to 4.14) from
Chapter 4. Start by expressing them as nr-datalog¬ programs.

Exercise 7.2 Consider again the queries (5.2 and 5.3) of Chapter 5. Express these in SQL,
QBE, and Access.

Exercise 7.3 Describe formally the mapping of SQL select-from-where blocks into the SPJR
algebra.

♠Exercise 7.4

(a) Let P be an nr-datalog¬ program. Describe how to construct an equivalent program
P ′ such that each predicate that occurs positively in a rule body is an edb predicate.

(b) Develop a formal proof that SQL can simulate nr-datalog¬.

Exercise 7.5 Following Example 7.2.1, show that QBE is relationally complete.

Exercise 7.6

(a) Assuming that R and S have compatible sorts, show how to compute in SQL the
value of R − S into the relation T using insert and delete.

(b) Generalize this to show that SQL is relationally complete.
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Exercise 7.7 In a manner analogous to Exercise 7.6, show that Access is relationally complete.

⋆Exercise 7.8 The intuition behind the typed restricted PSJ algebra is that each attribute has a
distinct type whose elements are incomparable with the types of other attributes. As motivated
by the practical query languages, propose and study a restriction of the SPJR algebra analo-
gous to the typed restricted PSJ algebra, but permitting more than one attribute with the same
type. Does the equivalence of the various versions of the conjunctive queries still hold? Can
Exercise 6.21 be generalized to this framework?
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Dependency

Alice: Your model reduces the most interesting information to something flat and

boring.

Vittorio: You’re right, and this causes a lot of problems.

Sergio: Designing the schema for a complex application is tough, and it is easy to

make mistakes when updating a database.

Riccardo: Also, the system knows so little about the data that it is hard to obtain

good performance.

Alice: Are you telling me that the model is bad?

Vittorio: No, wait, we are going to fix it!

This chapter begins with an informal discussion that introduces some simple dependen-

cies and illustrates the primary motivations for their development and study. The two

following sections of the chapter are devoted to two of the simple kinds of dependencies;

and the final section introduces the chase, an important tool for analyzing these dependen-

cies and their effect on queries.

Many of the early dependencies introduced in the literature use the named (as op-

posed to unnamed) perspective on tuples and relations. Dependency theory was one of the

main reasons for adopting this perspective in theoretical investigations. This is because de-

pendencies concern the semantics of data, and attribute names carry more semantics than

column numbers. The general view of dependencies based on logic, which is considered

in Chapter 10, uses the column-number perspective, but a special subcase (called typed)

retains the spirit of the attribute-name perspective.

8.1 Motivation

Consider the database shown in Fig. 8.1. Although the schema itself makes no restrictions

on properties of data that might be stored, the intended application for the schema may

involve several such restrictions. For example, we may know that there is only one director

associated with each movie title, and that in Showings, only one movie title is associated

with a given theater-screen pair.1 Such properties are called functional dependencies (fd’s)

because the values of some attributes of a tuple uniquely or functionally determine the

values of other attributes of that tuple. In the syntax to be developed in this chapter, the

1 Gone are the days of seeing two movies for the price of one!

159
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Movies Title Director Actor

The Birds Hitchcock Hedren

The Birds Hitchcock Taylor

Bladerunner Scott Hannah

Apocalypse Now Coppola Brando

Showings Theater Screen Title Snack

Rex 1 The Birds coffee

Rex 1 The Birds popcorn

Rex 2 Bladerunner coffee

Rex 2 Bladerunner popcorn

Le Champo 1 The Birds tea

Le Champo 1 The Birds popcorn

Cinoche 1 The Birds Coke

Cinoche 1 The Birds wine

Cinoche 2 Bladerunner Coke

Cinoche 2 Bladerunner wine

Action Christine 1 The Birds tea

Action Christine 1 The Birds popcorn

Figure 8.1: Sample database illustrating simple dependencies

dependency in the Movies relation is written as

Movies : Title→ Director

and that of the Showings relation is written as

Showings : Theater Screen→ Title.

Technically, there are sets of attributes on the left- and right-hand sides of the arrow, but

we continue with the convention of omitting set braces when understood from the context.

When there is no confusion from the context, a dependency R : X→ Y is simply

denoted X→ Y . A relation I satisfies a functional dependency X→ Y if for each pair

s, t of tuples in I ,

πX(s)= πX(t) implies πY (s)= πY (t).

An important notion in dependency theory is implication. One can observe that any

relation satisfying the dependency
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(a) Title→ Director

also has to satisfy the dependency

(b) Title,Actor → Director.

We will say that dependency (a) implies dependency (b).

A key dependency is an fd X→ U , where U is the full set of attributes of the relation.

It turns out that dependency (b) is equivalent to the key dependency Title, Actor → Title,

Director, Actor.

A second fundamental kind of dependency is illustrated by the relation Showings. A

tuple (th, sc, ti, sn) is in Showings if theater th is showing movie ti on screen sc and if

theater th offers snack sn. Intuitively, one would expect a certain independence between the

Screen-Title attributes, on the one hand, and the Snack attribute, on the other, for a given

value of Theater. For example, because (Cinoche, 1, The Birds, Coke) and (Cinoche, 2,

Bladerunner, wine) are in Showings, we also expect (Cinoche, 1, The Birds, wine) and

(Cinoche, 2, Bladerunner, Coke) to be present. More precisely, if a relation I has this

property, then

I = πTheater,Screen,Title(I ) ⊲⊳ πTheater,Snack(I ).

This is a simple example of a join dependency (jd) which is formally expressed by

Showings : ⊲⊳[{Theater, Screen,Title}, {Theater, Snacks}].

In general, a jd may involve more than two attribute sets. Multivalued dependency

(mvd) is the special case of jd’s that have at most two attribute sets. Due to their naturalness,

mvd’s were introduced before jd’s and have several interesting properties, which makes

them worth studying on their own.

As will be seen later in this chapter, the fact that the fd Title→ Director is satisfied by

the Movies relation implies that the jd

⊲⊳[{Title,Director}, {Title,Actor}]

is also satisfied. We will also study such interaction between fd’s and jd’s.

So far we have considered dependencies that apply to individual relations. Typically

these dependencies are used in the context of a database schema, in which case one has

to specify the relation concerned by each dependency. We will also consider a third fun-

damental kind of dependency, called inclusion dependency (ind) and also referred to as

“referential constraint.” In the example, we might expect that each title currently being

shown (i.e., occurring in the Showings relation) is the title of a movie (i.e., also occurs in

the Movies relation). This is denoted by

Showings[Title]⊆Movies[Title].
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In general, ind’s may involve sequences of attributes on both sides. Inclusion dependencies

will be studied in depth in Chapter 9.

Data dependencies such as the ones just presented provide a formal mechanism for

expressing properties expected from the stored data. If the database is known to satisfy a

set of dependencies, this information can be used to (1) improve schema design, (2) protect

data by preventing certain erroneous updates, and (3) improve performance. These aspects

are considered in turn next.

Schema Design and Update Anomalies

The task of designing the schema in a large database application is far from being trivial,

so the designer has to receive support from the system. Dependencies are used to provide

information about the semantics of the application so that the system may help the user

choose, among all possible schemas, the most appropriate one.

There are various ways in which a schema may not be appropriate. The relations

Movies and Showings illustrate the most prominent kinds of problems associated with fd’s

and jd’s:

Incomplete information: Suppose that one is to insert the title of a new movie and its direc-

tor without knowing yet any actor of the movie. This turns out to be impossible with

the foregoing schema, and it is an insertion anomaly. An analogue for deletion, a dele-

tion anomaly, occurs if actor Marlon Brando is no longer associated with the movie

“Apocalypse Now.” Then the tuple 〈Apocalypse Now, Coppola, Brando〉 should be

deleted from the database. But this has the additional effect of deleting the association

between the movie “Apocalypse Now” and the director Coppola from the database,

information that may still be valid.

Redundancy: The fact that Coke can be found at the Cinoche is recorded many times.

Furthermore, suppose that the management of the Cinoche decided to sell Pepsi in-

stead of Coke. It is not sufficient to modify the tuple 〈Cinoche, 1, The Birds, Coke〉
to 〈Cinoche, 1, The Birds, Pepsi〉 because this would lead to a violation of the jd. We

have to modify several tuples. This is a modification anomaly. Insertion and deletion

anomalies are also caused by redundancy.

Thus because of a bad choice for the schema, updates can lead to loss of information,

inconsistency in the data, and more difficulties in writing correct updates. These problems

can be prevented by choosing a more appropriate schema. In the example, the relation

Movies should be “decomposed” into two relations M-Director[Title, Director] and M-

Actor[Title, Actor], where M-Director satisfies the fd Title → Director. Similarly, the

relation Showings should be replaced by two relations ST-Showings[Theater, Screen, Title]

and S-Showings[Theater, Snack], where ST-Showings satisfies the fd Theater, Screen →
Title. This approach to schema design is explored in Chapter 11.

Data Integrity

Data dependencies also serve as a filter on proposed updates in a natural fashion: If a

database is expected to satisfy a dependency σ and a proposed update would lead to the
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violation of σ , then the update is rejected. In fact, the system supports transactions. During

a transaction, the database can be in an inconsistent state; but at the end of a transaction,

the system checks the integrity of the database. If dependencies are violated, the whole

transaction is rejected (aborted); otherwise it is accepted (validated).

Efficient Implementation and Query Optimization

It is natural to expect that knowledge of structural properties of the stored data be useful in

improving the performances of a system for a particular application.

At the physical level, the satisfaction of dependencies leads to a variety of alternatives

for storage and access structures. For example, satisfaction of an fd or jd implies that a

relation can be physically stored in decomposed form. In addition, satisfaction of a key

dependency can be used to reduce indexing space.

A particularly striking theoretical development in dependency theory provides a

method for optimizing conjunctive queries in the presence of a large class of dependencies.

As a simple example, consider the query

ans(d, a)←Movies(t, d, a′),Movies(t, d ′, a),

which returns tuples 〈d, a〉, where actor a acted in a movie directed by d . A naive imple-

mentation of this query will require a join. Because Movies satisfies Title→ Director, this

query can be simplified to

ans(d, a)←Movies(t, d, a),

which can be evaluated without a join. Whenever the pattern of tuples {〈t, d, a′〉, 〈t, d ′, a〉}
is found in relation Movies, it must be the case that d = d ′, so one may as well use just the

pattern {〈t, d, a〉}, yielding the simplified query. This technique for query optimization is

based on the chase and is considered in the last section of this chapter.

8.2 Functional and Key Dependencies

Functional dependencies are the most prominent form of dependency, and several elegant

results have been developed for them. Key dependencies are a special case of functional

dependencies. These are the dependencies perhaps most universally supported by relational

systems and used in database applications. Many issues in dependency theory have nice

solutions in the context of functional dependencies, and these dependencies lie at the origin

of the decomposition approach to schema design.

To specify a class of dependencies, one must define the syntax and the semantics of

the dependencies of concern. This is done next for fd’s.

Definition 8.2.1 If U is a set of attributes, then a functional dependency (fd) over U is

an expression of the form X→ Y , where X, Y ⊆ U . A key dependency over U is an fd of

the form X→ U . A relation I over U satisfies X→ Y , denoted I |=X→ Y , if for each
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pair s, t of tuples in I , πX(s)= πX(t) implies πY (s)= πY (t). For a set F of fd’s, I satisfies

F, denoted I |=F, if I |= σ for each σ ∈F.

A functional dependency over a database schema R is an expression R : X→ Y ,

where R ∈ R and X→ Y is a dependency over sort(R). These are sometimes referred

to as tagged dependencies, because they are “tagged” by the relation that they apply to.

The notion of satisfaction of fd’s by instances over R is defined in the obvious way. In the

remainder of this chapter, we consider only relational schemas. All can be extended easily

to database schemas.

The following simple property provides the basis for the decomposition approach to

schema design. Intuitively, it says that if a certain fd holds in a relation, one can store

instead of the relation two projections of it, without loss of information. More precisely,

the original relation can be reconstructed by joining the projections. Such joins have been

termed “lossless joins” and will be discussed in some depth in Section 11.2.

Proposition 8.2.2 Let I be an instance over U that satisfies X→ Y and Z = U −XY .

Then I = πXY (I ) ⊲⊳ πXZ(I ).

Proof The inclusion I ⊆ πXY (I ) ⊲⊳ πXZ(I ) holds for all instances I . For the opposite

inclusion, let r be a tuple in the join. Then there are tuples s, t ∈ I such that πXY (r) =
πXY (s) and πXZ(r)= πXZ(t). Because πX(r)= πX(t), and I |=X→ Y , πY (r)= πY (t).

It follows that r = t , so r is in I .

Logical Implication

In general, we may know that a set F of fd’s is satisfied by an instance. A natural question

is, What other fd’s are necessarily satisfied by this instance? This is captured by the

following definition.

Definition 8.2.3 Let F and Ŵ be sets of fd’s over an attribute set U . Then F (logically)

implies Ŵ, denoted F |=U Ŵ or simply F |= Ŵ, if U is understood from the context, if for

all relations I over U , I |= F implies I |= Ŵ. Two sets Ŵ,F are (logically) equivalent,

denoted Ŵ ≡F, if Ŵ |=F and F |= Ŵ.

Example 8.2.4 Consider the set F1 = {A→ C,B → C,CD→ E} of fd’s over {A,B,

C,D,E}. Then2 a simple argument allows to show that F1 |= AD→ E. In addition, F1 |=
CDE → C. In fact, ∅ |= CDE → C (where ∅ is the empty set of fd’s).

Although the definition just presented focuses on fd’s, this definition will be used in

connection with other classes of dependencies studied here as well.

2 We generally omit set braces from singleton sets of fd’s.
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The fd closure of a set F of fd’s over an attribute set U , denoted F∗,U or simply F∗ if

U is understood from the context, is the set

{X→ Y |XY ⊆ U and F |=X→ Y }.

It is easily verified that for any set F of fd’s over U and any sets Y ⊆ X ⊆ U , X→
Y ∈ F∗,U . This implies that the closure of a set of fd’s depends on the underlying set of

attributes. It also implies that F∗,U has size greater than 2|U |. (It is bounded by 22|U | by

definition.) Other properties of fd closures are considered in Exercise 8.3.

Determining Implication for fd’s Is Linear Time

One of the key issues in dependency theory is the development of algorithms for testing

logical implication. Although a set F of fd’s implies an exponential (in terms of the number

of attributes present in the underlying schema) number of fd’s, it is possible to test whether

F implies an fd X→ Y in time that is linear in the size of F and X→ Y (i.e., the space

needed to write them).

A central concept used in this algorithm is the fd closure of a set of attributes. Given

a set F of fd’s over U and attribute set X ⊆ U , the fd closure of X under F, denoted

(X,F)∗,U or simply X∗ if F and U are understood, is the set {A ∈ U | F |= X→ A}. It

turns out that this set is independent of the underlying attribute set U (see Exercise 8.6).

Example 8.2.5 Recall the set F1 of fd’s from Example 8.2.4. Then A∗ = AC, (AB)∗ =
ABC, and (AD)∗ = ACDE. The family of subsets X of U such that X∗ =X is {∅, C,D,E,

AC,BC,CE,DE,ABC,ACE,ADE,BCE, BDE,CDE,ABCE,ACDE, BCDE,ABCDE}.

The following is easily verified (see Exercise 8.4):

Lemma 8.2.6 Let F be a set of fd’s and X→ Y an fd. Then F |=X→ Y iff Y ⊆X∗.

Thus testing whether F |= X→ Y can be accomplished by computing X∗. The fol-

lowing algorithm can be used to compute this set.

Algorithm 8.2.7

Input: a set F of fd’s and a set X of attributes.

Output: the closure X∗ of X under F.

1. unused :=F;

2. closure :=X;

3. repeat until no further change:

if W → Z ∈ unused and W ⊆ closure then

i. unused := unused − {W → Z};
ii. closure := closure ∪ Z

4. output closure.
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Proposition 8.2.8 On input F and X, Algorithm 8.2.7 computes (X,F)∗.

Proof Let U be a set of attributes containing the attributes occurring in F or X, and let

result be the output of the algorithm. Using properties established in Exercise 8.5, an easy

induction shows that result ⊆X∗.

For the opposite inclusion, note first that for attribute sets Y,Z, if Y ⊆ Z then Y ∗ ⊆ Z∗.

Because X ⊆ result, it now suffices to show that result∗ ⊆ result. It is enough to show that

if A ∈ U − result, then F �|= result → A. To show this, we construct an instance I over U

such that I |=F but I �|= result → A for A ∈ U − result. Let I = {s, t}, where πresult(s)=
πresult(t) and s(A) �= t (A) for each A ∈ U − result. (Observe that this uses the fact that the

domain has at least two elements.) Note that, by construction, for each fd W → Z ∈F, if

W ⊆ result then Z ⊆ result. It easily follows that I |=F. Furthermore, for A ∈ U − result,

s(A) �= t (A), so I �|= result → A. Thus F �|= result → A, and result∗ ⊆ result.

The algorithm provides the means for checking whether a set of dependencies implies

a single dependency. To test implication of a set of dependencies, it suffices to test inde-

pendently the implication of each dependency in the set. In addition, one can check that

the preceding algorithm runs in time O(n2), where n is the length of F and X. As shown

in Exercise 8.7, this algorithm can be improved to linear time. The following summarizes

this development.

Theorem 8.2.9 Given a set F of fd’s and a single fd σ , determine whether F |= σ can

be decided in linear time.

Several interesting properties of fd-closure sets are considered in Exercises 8.11 and

8.12.

Axiomatization for fd’s

In addition to developing algorithms for determining logical implication, the second funda-

mental theme in dependency theory has been the development of inference rules, which can

be used to generate symbolic proofs of logical implication. Although the inference rules do

not typically yield the most efficient mechanisms for deciding logical implication, in many

cases they capture concisely the essential properties of the dependencies under study. The

study of inference rules is especially intriguing because (as will be seen in the next section)

there are several classes of dependencies for which there is no finite set of inference rules

that characterizes logical implication.

Inference rules and algorithms for testing implication provide alternative approaches

to showing logical implication between dependencies. In general, the existence of a finite

set of inference rules for a class of dependencies is a stronger property than the existence

of an algorithm for testing implication. It will be shown in Chapter 9 that

• the existence of a finite set of inference rules for a class of dependencies implies the

existence of an algorithm for testing logical implication; and
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• there are dependencies for which there is no finite set of inference rules but for which

there is an algorithm to test logical implication.

We now present the inference rules for fd’s.

FD1: (reflexivity) If Y ⊆X, then X→ Y .

FD2: (augmentation) If X→ Y , then XZ→ YZ.

FD3: (transitivity) If X→ Y and Y → Z, then X→ Z.

The variables X, Y,Z range over sets of attributes. The first rule is sometimes called an

axiom because it is degenerate in the sense that no fd’s occur in the antecedent.

The inference rules are used to form proofs about logical implication between fd’s,

in a manner analogous to the proofs found in mathematical logic. It will be shown that

the resulting proof system is “sound” and “complete” for fd’s (two classical notions to be

recalled soon). Before formally presenting the notion of proof, we give an example.

Example 8.2.10 The following is a proof of AD→ E from the set F1 of fd’s of Exam-

ple 8.2.4.

σ1 : A→ C ∈F1,

σ2 : AD→ CD from σ1 using FD2,

σ3 : CD→ E ∈F1,

σ4 : AD→ E from σ2 and σ3 using FD3.

Let U be a set of attributes. A substitution for an inference rule ρ (relative to U ) is

a function that maps each variable appearing in ρ to a subset of U , such that each set

inclusion indicated in the antecedent of ρ is satisfied by the associated sets. Now let F be a

set of fd’s over U and σ an fd over U . A proof of σ from F using the set I = {FD1, FD2,

FD3} is a sequence of fd’s σ1, . . . , σn = σ (n≥ 1) such that for each i ∈ [1, n], either

(a) σi ∈F, or

(b) there is a substitution for some rule ρ ∈ I such that σi corresponds to the conse-

quent of ρ, and such that for each fd in the antecedent of ρ the corresponding fd

is in the set {σj | 1≤ j < i}.

The fd σ is provable from F using I (relative to U ), denoted F I⊢ σ or F ⊢ σ if I is

understood from the context, if there is a proof of σ from F using I.

Let I be a set of inference rules. Then

I is sound for logical implication of fd’s if F I⊢ σ implies F |= σ ,

I is complete for logical implication of fd’s if F |= σ implies F I⊢ σ .

We will generalize these definitions to other dependencies and other sets of inference

rules.

In general, a finite sound and complete set of inference rules for a class C of depen-

dencies is called a (finite) axiomatization of C. In such a case, C is said to be (finitely)

axiomatizable.

We now state the following:
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Theorem 8.2.11 The set {FD1, FD2, FD3} is sound and complete for logical implica-

tion of fd’s.

Proof Suppose that F is a set of fd’s over an attribute set U . The proof of soundness

involves a straightforward induction on proofs σ1, . . . , σn from F, showing that F |= σi

for each i ∈ [1, n] (see Exercise 8.5).

For the proof of completeness, we show that F |= X→ Y implies F ⊢ X→ Y . As

a first step, we show that F ⊢ X→ X∗ using an induction based on Algorithm 8.2.7. In

particular, let closurei be the value of closure after i iterations of step 3 for some fixed

execution of that algorithm on input F and X. We set closure0 = X. Suppose inductively

that a proof σ1, . . . , σki of X→ closurei has been constructed. [The case for i = 0 follows

from FD1.] Suppose further that W → Z is chosen for the (i + 1)st iteration. It follows

that W ⊆ closurei and closurei+1 = closurei ∪Z. Extend the proof by adding the following

steps:

σki+1 = W → Z in F

σki+2 = closurei →W by FD1

σki+3 = closurei → Z by FD3

σki+4 = closurei → closurei+1 by FD2

σki+5 = X→ closurei+1 by FD3

At the completion of this construction we have a proof σ1, . . . , σn of X→ X∗. By

Lemma 8.2.6, Y ⊆X∗. Using FD1 and FD3, the proof can be extended to yield a proof of

X→ Y .

Other inference rules for fd’s are considered in Exercise 8.9.

Armstrong Relations

In the proof of Proposition 8.2.8, an instance I is created such that I |=F but I �|=X→ A.

Intuitively, this instance witnesses the fact that F �|= X→ A. This raises the following

natural question: Given a set F of fd’s over U , is there a single instance I that satisfies

F and that violates every fd not in F∗? It turns out that for each set of fd’s, there is such an

instance; these are called Armstrong relations.

Proposition 8.2.12 If F is a set of fd’s over U , then there is an instance I such that,

for each fd σ over U , I |= σ iff σ ∈F∗.

Crux Suppose first that F �|= ∅→ A for any A (i.e., ∅∗ = ∅). For each set X ⊆ U sat-

isfying X = X∗, choose an instance IX = {sX, tX} such that sX(A)= tX(A) iff A ∈ X. In

addition, choose these instances so that adom(IX) ∩ adom(IY )= ∅ for X �= Y . Then

∪{IX |X ⊂ U and X =X∗}

is an Armstrong relation for F.
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If ∅∗ �= ∅, then the instances IX should be modified so that πA(IX)= πA(IY ) for each

X, Y and A ∈ ∅∗.

In some applications, the domains of certain attributes may be finite (e.g., Sex con-

ventionally has two values, and Grade typically consists of a finite set of values). In such

cases, the construction of an Armstrong relation may not be possible. This is explored in

Exercise 8.13.

Armstrong relations can be used in practice to assist the user in specifying the fd’s for

a particular application. An interactive, iterative specification process starts with the user

specifying a first set of fd’s. The system then generates an Armstrong relation for the fd’s,

which violates all the fd’s not included in the specification. This serves as a worst-case

counterexample and may result in detecting additional fd’s whose satisfaction should be

required.

8.3 Join and Multivalued Dependencies

The second kind of simple dependency studied in this chapter is join dependency (jd),

which is intimately related to the join operator of the relational algebra. As mentioned in

Section 8.1, a basic motivation for join dependency stems from its usefulness in connection

with relation decomposition. This section also discusses multivalued dependency (mvd), an

important special case of join dependency that was historically the first to be introduced.

The central results and tools for studying jd’s are different from those for fd’s. It has

been shown that there is no sound and complete set of inference rules for jd’s analogous

to those for fd’s. (An axiomatization for a much larger family of dependencies will be

presented in Chapter 10.) In addition, as shown in the following section, logical implication

for jd’s is decidable. The complexity of implication is polynomial for a fixed database

schema but becomes np-hard if the schema is considered part of the input. (An exact

characterization of the complexity remains open.)

The following section also presents an interesting correspondence between mvd’s and

acyclic join dependencies (i.e., those based on joins that are acyclic in the sense introduced

in Chapter 6).

A major focus of the current section is on mvd’s; this is because of several positive

results that hold for them, including axiomatizability of fd’s and mvd’s considered together.

Join Dependency and Decomposition

Before defining join dependency, we recall the definition of natural join. For attribute set

U , sets X1, . . . , Xn ⊆ U , and instances Ij over Xj for j ∈ [1, n], the (natural) join of the

Ij ’s is

⊲⊳nj=1 {Ij} = {s over ∪Xj | πXj
(s) ∈ Ij for each j ∈ [1, n]}.

A join dependency is satisfied by an instance I if it is equal to the join of some of its

projections.
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Definition 8.3.1 A join dependency (jd) over attribute set U is an expression of the form

⊲⊳[X1, . . . , Xn], where X1, . . . , Xn ⊆ U and ∪n
i=1Xi = U . A relation I over U satisfies

⊲⊳[X1, . . . , Xn] if I = ⊲⊳nj=1 {πXj
(I )}.

A jd σ is n-ary if the number of attribute sets involved in σ is n. As discussed earlier,

the relation Showings of Fig. 8.1 satisfies the 2-ary jd

⊲⊳[{Theater, Screen,Title}, {Theater, Snacks}].

The 2-ary jd’s are also called multivalued dependencies (mvd’s). These are often denoted

in a style reminiscent of fd’s.

Definition 8.3.2 If U is a set of attributes, then a multivalued dependency (mvd) over

U is an expression of the form X→→ Y , where X, Y ⊆ U . A relation I over U satisfies

X→→ Y if I |= ⊲⊳[XY,X(U − Y )].

In the preceding definition, it would be equivalent to write ⊲⊳[XY, (U − Y )]; we

choose the foregoing form to emphasize the importance of X. For instance, the jd

⊲⊳[{Theater, Screen,Title}, {Theater, Snack}]

can be written as an mvd using

Theater →→ Screen,Title, or equivalently, Theater →→ Snack.

Exercise 8.16 explores the original definition of satisfaction of an mvd.

Figure 8.2 shows a relation schema SDT and an instance that satisfies a 3-ary jd. This

relation focuses on snacks, distributors, and theaters. We assume for this example that a

tuple (s, d, p, t) is in SDT if the conjunction of the following predicates is true:

P1(s, d, p): Snack s is supplied by distributor d at price p.

P2(d, t): Theater t is a customer of distributor d.

P3(s, t): Snack s is bought by theater t .

Under these assumptions, each instance of SDT must satisfy the jd:

⊲⊳[{Snack,Distributor,Price}, {Distributor,Theater}, {Snack,Theater}].

For example, this holds for the instance in Fig. 8.2. Note that if tuple 〈coffee, Smart, 2.35,

Cinoche〉 were removed, then the instance would no longer satisfy the jd because 〈coffee,

Smart, 2.35〉, 〈coffee, Cinoche〉, and 〈Smart, Cinoche〉 would remain in the appropriate

projections. We also expect the instances of SDT to satisfy Snack, Distributor → Price.

It can be argued that schema SDT with the aforementioned constraint is unnatural

in the following sense. Intuitively, if we choose such a schema, the presence of a tuple
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SDT Snack Distributor Price Theater

coffee Smart 2.35 Rex

coffee Smart 2.35 Le Champo

coffee Smart 2.35 Cinoche

coffee Leclerc 2.60 Cinoche

wine Smart 0.80 Rex

wine Smart 0.80 Cinoche

popcorn Leclerc 5.60 Cinoche

Figure 8.2: Illustration of join dependency

〈s, d, p, t〉 seems to indicate that t buys s from d . If we wish to record just the information

about who buys what, who sells what, and who sells to whom, a more appropriate schema

would consist of three relations SD[Snack, Distributor, Price], ST [Snack, Theater], and

DT [Distributor, Theater] corresponding to the three sets of attributes involved in the

preceding jd. The jd then guarantees that no information is lost in the decomposition

because the original relation can be reconstructed by joining the projections.

Join Dependencies and Functional Dependencies

The interaction of fd’s and jd’s is important in the area of schema design and user interfaces

to the relational model. Although this is explored in more depth in Chapter 11, we present

here one of the first results on the interaction of the two kinds of dependencies.

Proposition 8.3.3 Let U be a set of attributes, {X, Y,Z} be a partition of U , and F be

a set of fd’s over U . Then F |= ⊲⊳[XY,XZ] iff either F |=X→ Y or F |=X→ Z.

Crux Sufficiency follows immediately from Proposition 8.2.2. For necessity, suppose that

F does not imply either of the fd’s. Then Y − X∗ �= ∅ and Z − X∗ �= ∅, say C ∈ Y − X∗

and C′ ∈ Z −X∗. Consider the two-element instance I = {u, v} where, u(A)= v(A)= 0

if A is in X∗ and u(A)= 0, v(A)= 1 otherwise. Clearly, I satisfies F and one can verify

that πXY (I ) ⊲⊳ πXZ(I ) contains a tuple w with w(C)= 0 and w(C′)= 1. Thus w is not in

I , so I violates ⊲⊳[XY,XZ].

Axiomatizations

As will be seen later (Theorem 8.4.12), there is a decision procedure for jd’s in isolation,

and for jd’s and fd’s considered together. Here we consider axiomatizations, first for jd’s in

isolation and then for fd’s and mvd’s taken together.

We state first the following result without proof.

Theorem 8.3.4 There is no axiomatization for the family of jd’s.



172 Functional and Join Dependency

In contrast, there is an axiomatization for the class of fd’s and multivalued dependen-

cies. Note first that implication for fd’s is independent of the underlying set of attributes

(i.e., if F ∪ {σ } is a set of fd’s over U and V ⊇ U , then F |= σ relative to U iff F |= σ rel-

ative to V ; see Exercise 8.6). An important difference between fd’s and mvd’s is that this is

not the case for mvd’s. Thus the inference rules for mvd’s must be used in connection with

a fixed underlying set of attributes, and a variable (denoted U ) referring to this set is used

in one of the rules.

The following lists the four rules for mvd’s alone and an additional pair of rules needed

when fd’s are incorporated.

MVD0: (complementation) If X→→ Y , then X→→ (U − Y ).

MVD1: (reflexivity) If Y ⊆X, then X→→ Y .

MVD2: (augmentation) If X→→ Y , then XZ→→ YZ.

MVD3: (transitivity) If X→→ Y and Y →→ Z, then X→→ (Z − Y ).

FMVD1: (conversion) If X→ Y , then X→→ Y .

FMVD2: (interaction) If X→→ Y and XY → Z, then X→ (Z − Y ).

Theorem 8.3.5 The set {FD1, FD2, FD3, MVD0, MVD1, MVD2, MVD3, FMVD1,

FMVD2} is sound and complete for logical implication of fd’s and mvd’s considered

together.

Crux Soundness is easily verified. For completeness, let an underlying set U of attributes

be fixed, and assume that F �⊢ σ , where σ =X→ Y or σ =X→→ Y .

The dependency set of X is dep(X)= {Y ⊆ U |F ⊢X→→ Y }. One first shows that

1. dep(X) is a Boolean algebra of sets for U .

That is, it contains U and is closed under intersection, union, and difference (see Exer-

cise 8.17). In addition,

2. for each A ∈X+, {A} ∈ dep(X),

where X+ denotes {A ∈ U |F ⊢X→ A}.
A dependency basis of X is a family {W1, . . . ,Wm} ⊆ dep(X) such that (1) ∪n

i=1Wi =
U ; (2) Wi �= ∅ for i ∈ [1, n]; (3) Wi ∩Wj = ∅ for i, j ∈ [1, n] with i �= j ; and (4) if

W ∈ dep(X), W �= ∅, and W ⊆Wi for some i ∈ [1, n], then W =Wi. One then proves

that

3. there exists a unique dependency basis of X.

Now construct an instance I over U that contains all tuples t satisfying the following

conditions:

(a) t (A)= 0 for each A ∈X+.

(b) If Wi is in the dependency basis and Wi �= {A} for each A ∈X+, then t (B)= 0

for all B ∈Wi or t (B)= 1 for all B ∈Wi.

It can be shown that I |=F but I �|= σ (see Exercise 8.17).
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This easily implies the following (see Exercise 8.18):

Corollary 8.3.6 The set {MVD0, MVD1, MVD2, MVD3} is sound and complete for

logical implication of mvd’s considered alone.

8.4 The Chase

This section presents the chase, a remarkable tool for reasoning about dependencies that

highlights a strong connection between dependencies and tableau queries. The discussion

here is cast in terms of fd’s and jd’s, but as will be seen in Chapter 10, the chase generalizes

naturally to a broader class of dependencies. At the end of this section, we explore impor-

tant applications of the chase technique. We show how it can also be used to determine

logical implication between sets of dependencies and to optimize conjunctive queries.

The following example illustrates an intriguing connection between dependencies and

tableau queries.

Example 8.4.1 Consider the tableau query (T , t) shown in Fig. 8.3(a). Suppose the

query is applied only to instances I satisfying some set F of fd’s and jd’s. The chase is

based on the following simple idea. If ν is a valuation embedding T into an instance I

satisfying F, ν(T ) must satisfy F. Valuations that do not satisfy F are therefore of no use.

The chase is a procedure that eliminates the useless valuations by changing (T , t) itself so

that T , viewed as an instance, satisfies F. We will show that the tableau query resulting

from the chase is then equivalent to the original on instances satisfying F. As we shall see,

this can be used to optimize queries and test implication of dependencies.

Let us return to the example. Suppose first that F = {B → D}. Suppose (T , t) is

applied to an instance I satisfying F. In each valuation embedding T into I , it must be

the case that z and z′ are mapped to the same constant. Thus in this context one might as

well replace T by the tableau where z= z′. This transformation is called “applying the fd

B→D” to (T , t). It is easy to see that the resulting tableau query is in fact equivalent to

the identity, because T contains an entire row of distinguished variables.

Consider next an example involving both fd’s and jd’s. Let F consist of the following

two dependencies over ABCD: the jd ⊲⊳[AB,BCD] and the fd A→ C. In this example we

argue that for each I satisfying these dependencies, (T , t)(I )= I or, in other words, in the

context of input instances that satisfy the dependencies, the query (T , t) is equivalent to

the identity query ({t}, t).
Let I be an instance over ABCD satisfying the two dependencies. We first explain

why (T , t)(I ) = (T ′, t)(I ) for the tableau query (T ′, t) of Fig. 8.3(b). It is clear that

(T ′, t)(I )⊆ (T , t)(I ), because T ′ is a superset of T . For the opposite inclusion, suppose

that ν is a valuation for T with ν(T ) ⊆ I . Then, in particular, both ν(〈w, x, y, z′〉) and

ν(〈w′, x, y′, z〉) are in I . Because I |= ⊲⊳[AB,BCD], it follows that ν(〈w, x, y′, z〉) ∈ I .

Thus ν(T ′)⊆ I and ν(t) ∈ (T ′, t)(I ). The transformation from (T , t) to (T ′, t) is termed

“applying the jd ⊲⊳[AB,BCD],” because T ′ is the result of adding a member of πAB(T ) ⊲⊳
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Figure 8.3: Illustration of the chase

πBCD(T ) to T . We shall see that, by repeated applications of a jd, one can eventually

“force” the tableau to satisfy the jd.

The tableau T ′′ of Fig. 8.3(c) is the result of chasing (T ′, t) with the fd A→ C (i.e.,

replacing all occurrences of y′ by y). We now argue that (T ′, t)(I ) = (T ′′, t)(I ). First,

by Theorem 6.2.3, (T ′, t)(I )⊇ (T ′′, t)(I ) because there is a homomorphism from (T ′, t)

to (T ′′, t). For the opposite inclusion, suppose now that ν(T ′) ⊆ I . This implies that ν

embeds the first tuple of T ′′ into I . In addition, because ν(〈w, x, y, z′〉) and ν(〈w, x, y′, z〉)
are in I and I |= A→ C, it follows that ν(y) = ν(y′). Thus ν(〈w′, x, y, z〉) = ν(〈w′, x,
y′, z〉) ∈ I , and ν(〈w, x, y, z〉)= ν(〈w, x, y′, z〉) ∈ I , [i.e., ν embeds the second and third

tuples of T ′′ into I , such that ν(T ′′) ⊆ I ]. Note that (T ′′, t) is the result of identifying a

pair of variables that caused a violation of A→ C in T ′. We will see that by repeated

applications of an fd, one can eventually “force” a tableau to satisfy the fd. Note that

in this case, chasing with respect to A→ C has no effect before chasing with respect to

⊲⊳[AB,BCD].

Finally, note that by the Homomorphism Theorem 6.2.3 of Chapter 6, (T ′′, t) ≡
({t}, t). It follows, then, that for all instances I that satisfy {A→ C, ⊲⊳[AB,BCD]}, (T , t)

and ({t}, t) yield the same answer.

Defining the Chase

As seen in Example 8.4.1, the chase relates to equivalence of queries over a family of

instances satisfying certain dependencies. For a family F of instances over R, we say

that q1 is contained in q2 relative to F , denoted q1 ⊆F q2, if q1(I) ⊆ q2(I) for each

instance I in F . We are particularly interested in families F that are defined by a set F of

dependencies (in the current context, fd’s and jd’s). Let F be a set of (functional and join)

dependencies over R. The satisfaction family of F, denoted sat(R, F) or simply sat(F) if

R is understood from the context, is the family

sat(F)= {I over R | I |=F}.
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Query q1 is contained in q2 relative to F, denoted q1 ⊆F q2, if q1 ⊆sat(F) q2. Equivalence

relative to a family of instances (≡F) and to a set of dependencies (≡F) are defined

similarly.

The chase is a general technique that can be used, given a set of dependencies F,

to transform a tableau query q into a query q ′ such that q ≡F q ′. The chase is defined as a

nondeterministic procedure based on the successive application of individual dependencies

from F, but as will be seen this process is “Church-Rosser” in the sense that the procedure

necessarily terminates with a unique end result. As a final step in this development, the

chase will be used to characterize equivalence of conjunctive queries with respect to a set

F of dependencies (≡F).

In the following, we let R be a fixed relation schema, and we focus on sets F of fd’s

and jd’s over R and tableau queries with no constants over R. The entire development can

be generalized to database schemas and conjunctive queries with constants (Exercise 8.27)

and to a considerably larger class of dependencies (Chapter 10).

For technical convenience, we assume that there is a total order ≤ on the set var. Let

R be a fixed relation schema and suppose that (T , t) is a tableau query over R. The chase

is based on the successive application of the following two rules:

fd rule: Let σ =X→ A be an fd over R, and let u, v ∈ T be such that πX(u)= πX(v) and

u(A) �= v(A). Let x be the lesser variable in {u(A), v(A)} under the ordering ≤, and

let y be the other one (i.e., {x, y} = {u(A), v(A)} and x < y). The result of applying

the fd σ to u, v in (T , t) is the tableau query (θ(T ), θ(t)), where θ is the substitution

that maps y to x and is the identity elsewhere.

jd rule: Let σ =⊲⊳[X1, . . . , Xn] be a jd over R, let u be a free tuple over R not in T , and

suppose that u1, . . . , un ∈ T satisfy πXi
(ui)= πXi

(u) for i ∈ [1, n]. Then the result of

applying the jd σ to (u1, . . . , un) in (T , t) is the tableau query (T ∪ {u}, t).

Following the lead of Example 8.4.1, the following is easily verified (see Exer-

cise 8.24a).

Proposition 8.4.2 Suppose that F is a set of fd’s and jd’s over R, σ ∈ F, and q is a

tableau query over R. If q ′ is the result of applying σ to some tuples in q, then q ′ ≡F q.

A chasing sequence of (T , t) by F is a (possibly infinite) sequence

(T , t)= (T0, t0), . . . , (Ti, ti), . . .

such that for each i ≥ 0, (Ti+1, ti+1) (if defined) is the result of applying some dependency

in F to (Ti, ti). The sequence is terminal if it is finite and no dependency in F can be

applied to it. The last element of the terminal sequence is called its result. The notion

of satisfaction of a dependency is extended naturally to tableaux. The following is an

important property of terminal chasing sequences (Exercise 8.24b).

Lemma 8.4.3 Let (T ′, t ′) be the result of a terminal chasing sequence of (T , t) by F.

Then T ′, considered as an instance, satisfies F.
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Because the chasing rules do not introduce new variables, it turns out that the chase

procedure always terminates. The following is easily verified (Exercise 8.24c):

Lemma 8.4.4 Let (T , t) be a tableau query over R and F a set of fd’s and jd’s over R.

Then each chasing sequence of (T , t) by F is finite and is the initial subsequence of a

terminal chasing sequence.

An important question now is whether the results of different terminal chasing se-

quences are the same. This turns out to be the case. This property of chasing sequences is

called the Church-Rosser property. We provide the proof of the Church-Rosser property

for the chase at the end of this section (Theorem 8.4.18).

Because the Church-Rosser property holds, we can define without ambiguity the result

of chasing a tableau query by a set of fd’s and jd’s.

Definition 8.4.5 If (T , t) is a tableau query over R and F a set of fd’s and jd’s over R,

then the chase of (T , t) by F, denoted chase(T , t, F), is the result of some (any) terminal

chasing sequence of (T , t) by F.

From the previous discussion, chase(T , t, F) can be computed as follows. The depen-

dencies are picked in some arbitrary order and arbitrarily applied to the tableau. Applying

an fd to a tableau query q can be performed within time polynomial in the size of q. How-

ever, determining whether a jd can be applied to q is np-complete in the size of q. Thus the

best-known algorithm for computing the chase is exponential (see Exercise 8.25). However,

the complexity is polynomial if the schema is considered fixed.

Until now, besides the informal discussion in Section 8.1, the chase remains a purely

syntactic technique. We next state a result that shows that the chase is in fact determined

by the semantics of the dependencies in F and not just their syntax.

In the following proposition, recall that by definition, F ≡ F′ if F |= F′ and F′ |=
F. The proof, which we omit, uses the Church-Rosser property of the chase (see also

Exercise 8.26).

Proposition 8.4.6 Let F and F′ be sets of fd’s and jd’s over R, and let (T , t) be a

tableau query over R. If F ≡F′, then chase(T , t, F) and chase(T , t, F′) coincide.

We next consider several important uses of the chase that illustrate the power of this

technique.

Query Equivalence

We consider first the problem of checking the equivalence of tableau queries in the presence

of a set of fd’s and jd’s. This allows, for example, checking whether a tableau query can

be replaced by a simpler tableau query when the dependencies are satisfied. Suppose now

that (T ′, t ′) and (T ′′, t ′′) are two tableau queries and F a set of fd’s and jd’s such that

(T ′, t ′)≡F (T ′′, t ′′). From the preceding development (Proposition 8.4.2), it follows that
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chase(T ′, t ′, F)≡F (T ′, t ′)≡F (T ′′, t ′′)≡F chase(T ′′, t ′′, F).

We now show that, in fact, chase(T ′, t ′, F)≡ chase(T ′′, t ′′, F). Furthermore, this condi-

tion is sufficient as well as necessary.

To demonstrate this result, we first establish the following more general fact.

Theorem 8.4.7 Let F be a family of instances over relation schema R that is closed

under isomorphism, and let (T1, t1), (T2, t2), (T
′

1, t
′
1), and (T ′2, t

′
2) be tableau queries over

R. Suppose further that for i = 1, 2,

(a) (T ′i , t
′
i)≡F (Ti, ti) and

(b) T ′i , considered as an instance, is in F .3

Then (T1, t1)⊆F (T2, t2) iff (T ′1, t
′
1)⊆ (T ′2, t

′
2).

Proof The if direction is immediate. For the only-if direction, suppose that (T1, t1)⊆F

(T2, t2). It suffices by the Homomorphism Theorem 6.2.3 to exhibit a homomorphism that

embeds (T ′2, t
′
2) into (T ′1, t

′
1). Because T ′1, considered as an instance, is in F ,

t ′1 ∈ (T ′1, t
′
1)(T

′
1)⇒ t ′1 ∈ (T1, t1)(T

′
1)⇒ t ′1 ∈ (T2, t2)(T

′
1)⇒ t ′1 ∈ (T ′2, t

′
2)(T

′
1).

It follows that there is a homomorphism h such that h(T ′2) ⊆ T ′1 and h(t ′2) = t ′1. Thus

(T ′1, t
′
1)⊆ (T ′2, t

′
2). This completes the proof.

Together with Lemma 8.4.3, this implies the following:

Theorem 8.4.8 Let (T1, t1) and (T2, t2) be tableau queries over R and F a set of fd’s

and jd’s over R. Then

1. (T1, t1)⊆F (T2, t2) iff chase(T1, t1, F)⊆ chase(T2, t2, F).

2. (T1, t1)≡F (T2, t2) iff chase(T1, t1, F)≡ chase(T2, t2, F).

Query Optimization

As suggested in Example 8.4.1, the chase can be used to optimize tableau queries in the

presence of dependencies such as fd’s and jd’s. Given a tableau query (T , t) and a set F of

fd’s and jd’s, chase(T , t, F) is equivalent to (T , t) on all instances satisfying F. A priori, it

is not clear that the new tableau is an improvement over the first. It turns out that the chase

using fd’s can never yield a more complicated tableau and, as shown in Example 8.4.1,

can yield a much simpler one. On the other hand, the chase using jd’s may yield a more

complicated tableau, although it may also produce a simpler one.

We start by looking at the effect on tableau minimization of the chase using fd’s.

In the following, we denote by min(T , t) the tableau resulting from the minimization of

3 More precisely, T ′ considered as an instance is in F means that some instance isomorphic to T ′ is
in F .
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the tableau (T , t) using the Homomorphism Theorem 6.2.3 for tableau queries, and by

|min(T , t)| we mean the cardinality of the tableau of min(T , t).

Lemma 8.4.9 Let (T , t) be a tableau query and F a set of fd’s. Then |min(chase(T , t,

F))| ≤ |min(T , t)|.

Crux By the Church-Rosser property of the chase, the order of the dependencies used in

a chase sequence is irrelevant. Clearly it is sufficient to show that for each tableau query

(T ′, t ′) and σ ∈F, |min(chase(T ′, t ′, σ ))| ≤ |min(T ′, t ′)|. We can assume without loss of

generality that σ is of the form X→ A, where A is a single attribute.

Let (T ′′, t ′′) = chase(T ′, t ′, {X→ A}), and let θ be the chase homomorphism of a

chasing sequence for chase(T ′, t ′, {X→ A}), i.e., the homomorphism obtained by com-

posing the substitutions used in that chasing sequence (see the proof of Theorem 8.4.18).

We will use here the Church-Rosser property of the chase (Theorem 8.4.18) as well as a

related property stating that the homomorphism θ , like the result, is also the same for all

chase sequences (this follows from the proof of Theorem 8.4.18).

By Theorem 6.2.6, there is some S ⊆ T ′ such that (S, t ′) is a minimal tableau query

equivalent to (T ′, t ′); we shall use this as the representative of min(T ′, t ′). Let h be a

homomorphism such that h(T ′, t ′)= (S, t ′). Consider the mapping f on (T ′′, t ′′) defined

by f (θ(x))= θ(h(x)), where x is a variable in (T ′, t ′). If we show that f is well defined,

we are done. [If f is well defined, then f is a homomorphism from (T ′′, t ′′) to θ(S, t ′)=
(θ(S), t ′′), and so (T ′′, t ′′) ⊇ θ(S, t ′). On the other hand, the θ(S) ⊆ θ(T ′) = T ′′, and

so (T ′′, t ′′) ⊆ θ(S, t ′). Thus, (T ′′, t ′′) ≡ θ(S, t ′) = θ(min(T ′, t ′)), and so |min(T ′′, t ′′)| =
|min(θ(min(T ′, t ′)))| ≤ |θ(min(T ′, t ′))| ≤ |min(T ′, t ′)|.]

To see that f is well defined, suppose θ(x)= θ(y). We have to show that θ(h(x))=
θ(h(y)). Consider a terminal chasing sequence of (T ′, t ′) using X→ A, and (u1, v1), . . . ,

(un, vn) as the sequence of pairs of tuples used in the sequence, yielding the chase homo-

morphism θ . Consider the sequence (h(u1), h(v1)), . . . , (h(un), h(vn)). Clearly if X→ A

can be applied to (u, v), then it can be applied to (h(u), h(v)), unless h(u(A))= h(v(A)).

Let (h(ui1), h(vi1)), . . . , (h(uik), h(vik)) be the subsequence of these pairs for which X→
A can be applied. It can be easily verified that there is a chasing sequence of (h(T ′), t ′)

using X→ A that uses the pairs (h(ui1), h(vi1)), . . . , (h(uik), h(vik)), with chase homo-

morphism θ ′. Note that for all x′, y′, if θ(x′)= θ(y′) then θ ′(h(x′))= θ ′(h(y′)). In particu-

lar, θ ′(h(x))= θ ′(h(y)). Because h(T ′)⊆ T ′, θ ′ is the chase homomorphism of a chasing

sequence σ1, . . . , σk of (T ′, t ′). Let θ ′′ be the chase homomorphism formed from a termi-

nal chasing sequence that extends σ1, . . . , σk. Then θ ′′(h(x))= θ ′′(h(y)). Finally, by the

uniqueness of the chase homomorphism, θ ′′ = θ , and so θ(h(x))= θ(h(y)) as desired. This

concludes the proof.

It turns out that jd’s behave differently than fd’s with respect to minimization of

tableaux. The following shows that the chase using jd’s may yield simpler but also more

complicated tableaux.
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Figure 8.4: Minimization and the chase using jd’s

Example 8.4.10 Consider the tableau query (T , t) shown in Fig. 8.4(a) and the jd σ =⊲⊳
[AB,BCD]. Clearly (T , t) is minimal, so |min(T , t)| = 2. Next consider chase(T , t, σ ). It

is easy to check that 〈w, x, y, z〉 ∈ chase(T , t, σ ), so chase(T , t, σ ) is equivalent to the

identity and

|min(chase(T , t, σ ))| = 1.

Next let (T ′, t ′) be the tableau query in Fig. 8.4(b) and σ =⊲⊳[AB,CD]. Again (T ′, t ′) is

minimal. Now chase(T ′, t ′, σ ) is represented in Fig. 8.4(c) and is minimal. Thus

|min(chase(T ′, t ′, σ ))| = 4 > |min(T ′, t ′)|.

Despite the limitations illustrated by the preceding example, the chase in conjunction

with tableau minimization provides a powerful optimization technique that yields good

results in many cases. This is illustrated by the following example and by Exercise 8.28.

Example 8.4.11 Consider the SPJ expression

q = πAB(πBCD(R) ⊲⊳ πACD(R)) ⊲⊳ πAD(R),

where R is a relation with attributes ABCD. Suppose we wish to optimize the query on

databases satisfying the dependencies

F = {B→D,D→ C, ⊲⊳[AB,ACD]}.

The tableau (T , t) corresponding to q is represented in Fig. 8.5(a). Note that (T , t)

is minimal. Next we chase (T , t) using the dependencies in F. The chase using the

fd’s in F does not change (T , t), which already satisfies them. The chase using the jd
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(c) The tableau query

(T ′′, t′′) = chase(T′, t′, {B → D, D → C})
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(d) The tableau query

(T′′′, t′′′) = min(T′′, t′′)

Figure 8.5: Optimization of SPJ expressions by tableau minimization and the chase

⊲⊳[AB,ACD] yields the tableau (T ′, t ′) in Fig. 8.5(b). Now the fd’s can be applied to

(T ′, t ′) yielding the tableau (T ′′, t ′′) in Fig. 8.5(c). Finally (T ′′, t ′′) is minimized to

(T ′′′, t ′′′) in Fig. 8.5(d). Note that (T ′′′, t ′′′) satisfies F, so the chase can no longer be ap-

plied. The SPJ expression corresponding to (T ′′′, t ′′′) is πABD(πBCD(R) ⊲⊳ πACD(R)). Thus,

the optimization of q resulted in saving one join operation. Note that the new query is not

simply a subexpression of the original. In general, the shape of queries can be changed

radically by the foregoing procedure.

The Chase and Logical Implication

We consider a natural correspondence between dependency satisfaction and conjunctive

query containment. This correspondence uses tableaux to represent dependencies. We will

see that the chase provides an alternative point of view to dependency implication.

First consider a jd σ =⊲⊳[X1, . . . , Xn]. It is immediate to see that an instance I

satisfies σ iff qσ (I )⊆ qid(I ), where

qσ = [X1] ⊲⊳ · · · ⊲⊳ [Xn]



8.4 The Chase 181

and qid is the identity query. Both qσ and qid are PSJR expressions. We can look at

alternative formalisms for expressing qσ and qid . For instance, the tableau query of σ is

(Tσ , t), where for some t1, . . . , tn,

• t is a free tuple over R with a distinct variable for each coordinate,

• Tσ = {t1, . . . , tn},

• πXi
(ti)= πXi

(t) for i ∈ [1, n], and

• the other coordinates of the ti’s hold distinct variables.

It is again easy to see that qσ = (Tσ , t), so I |= σ iff (Tσ , t)(I )⊆ ({t}, t)(I ).
For fd’s, the situation is only slightly more complicated. Consider an fd σ ′ =X→ A

over U . It is easy to see that I |= σ ′ iff (Tσ ′, tσ ′)(I )⊆ (Tσ ′, t
′
σ ′
)(I ), where

X A (U − AX) X A (U − AX)

Tσ ′ u x v1 u x v1

u x′ v2 u x′ v2

tσ ′ x x′ t ′
σ ′

x x

where u, v1, v2 are vectors of distinct variables and x, x′ are distinct variables occurring in

none of these vectors. The tableau query of σ ′ is (Tσ ′, tσ ′).

Again observe that (Tσ ′, tσ ′), (Tσ , tσ ) can be expressed as PSJR expressions, so fd

satisfaction also reduces to containment of PSJR expressions. It will thus be natural to

look more generally at all dependencies expressed as containment of PSJR expressions.

In Chapter 10, we will consider the general class of algebraic dependencies based on

containment of these expressions.

Returning to the chase, we next use the tableau representation of dependencies to

obtain a characterization of logical implication (Exercise 8.29). This result is generalized

by Corollary 10.2.3.

Theorem 8.4.12 Let F and {σ } be sets of fd’s and jd’s over relation schema R, let

(Tσ , tσ ) be the tableau query of σ , and let T be the tableau in chase(Tσ , tσ , F). Then

F |= σ iff

(a) σ =X→ A and |πA(T )| = 1, that is, the projection over A of T is a singleton;

or

(b) σ = ⊲⊳[X1, . . . , Xn] and tσ ∈ T .

This implies that determining logical implication for jd’s alone, and for fd’s and jd’s

taken together, is decidable. On the other hand, tableau techniques are also used to obtain

the following complexity results for logical implication of jd’s (see Exercise 8.30).



182 Functional and Join Dependency

Theorem 8.4.13

(a) Testing whether a jd and an fd imply a jd is np-complete.

(b) Testing whether a set of mvd’s implies a jd is np-hard.

Acyclic Join Dependencies

In Section 6.4, a special family of joins called acyclic was introduced and was shown to

enjoy a number of desirable properties. We show now a connection between those results,

join dependencies, and multivalued dependencies.

A jd ⊲⊳[X1, . . . , Xn] is acyclic if the hypergraph corresponding to [X1, . . . , Xn] is

acyclic (as defined in Section 6.4).

Using the chase, we show here that a jd is acyclic iff it is equivalent to a set of mvd’s.

The discussion relies on the notation and techniques developed in the discussion of acyclic

joins in Section 6.4.

We shall use the following lemma.

Lemma 8.4.14 Let σ = ⊲⊳X be a jd over U , and let X, Y ⊆ U be disjoint sets. Then the

following are equivalent:

(i) σ |=X→→ Y ;

(ii) there is no Xi ∈ X such that Xi ∩ Y �= ∅ and Xi ∩ (U −XY) �= ∅;

(iii) Y is a union of connected components of the hypergraph X|U−X.

Proof Let Z = U − XY . Let τ denote the mvd X→→ Y , and let (Tτ , tτ ) be the tableau

query corresponding to τ . Let Tτ = {tY , tZ}where tY [XY ]= tτ [XY ] and tZ[XZ]= tτ [XZ]

and distinct variables are used elsewhere in tY and tZ.

We show now that (i) implies (ii). By Theorem 8.4.12, tτ ∈ T = chase(Tτ , tτ , σ ). Let

Xi ∈ X. Suppose that t is a new tuple created by an application of σ during the computation

of T . Then t[Xi] agrees with t ′[Xi] for some already existing tuple. An induction implies

that tτ [Xi]= tY [Xi] or tτ [Xi]= tZ[Xi]. Because tY and tZ agree only on X, this implies

that Xi cannot intersect with both Y and Z.

That (ii) implies (iii) is immediate. To see that (iii) implies (i), consider an applica-

tion of the jd ⊲⊳X on Tτ , where Xi ∈ X is associated with tY if Xi − X ⊆ Y , and Xi

is associated with tZ otherwise. This builds the tuple tτ , and so by Theorem 8.4.12, σ |=
X→→ Y .

We now have the following:

Theorem 8.4.15 A jd σ is acyclic iff there is a set F of mvd’s that is equivalent to σ .

Proof (only if) Suppose that σ =⊲⊳X over U is acyclic. By Theorem 6.4.5, this implies

that the output of the GYO algorithm on X is empty. Let X1, . . . , Xn be an enumeration

of X in the order of an execution of the GYO algorithm. In particular, Xi is an ear of the

hypergraph formed by {Xi+1, . . . , Xn}.
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For each i ∈ [1, n − 1], let Pi = ∪j∈[1,i]Xj and Qi = ∪j∈[i+1,n]Xj . Let F = {[Pi ∩
Qi]→→Qi | i ∈ [1, n − 1]}. By Lemma 8.4.14 and the choice of sequence X1, . . . , Xn,

σ |= F. To show that F |= σ , we construct a chasing sequence of (Tσ , tσ ) using F that

yields tσ . This chase shall inductively produce a sequence t1, . . . , tn of tuples, such that

ti[Pi]= tσ [Pi] for i ∈ [1, n].

We begin by setting t1 to be the tuple of Tσ that corresponds to X1. Then t1[P1] =
tσ [P1] because P1 =X1. More generally, given ti with i ≥ 1, the mvd [Pi ∩Qi]→→Qi on

ti and the tuple corresponding to Xi+1 can be used to construct tuple ti+1 with the desired

property. The final tuple tn constructed by this process is tσ , and so F |= σ as desired.

(if) Suppose that σ =⊲⊳X over U is equivalent to the set F of mvd’s but that σ is

not acyclic. From the definition of acyclic, this implies that there is some W ⊆ U such that

Y= X|W has no articulation pair. Without loss of generality we assume that Y is connected.

Let Y= {Y1, . . . , Ym}. Suppose that s1, . . . are the tuples produced by some chasing

sequence of (Tσ , tσ ). We argue by induction that for each k ≥ 1, sk[W ] ∈ πW (Tσ ). Suppose

otherwise, and let sk be the first where this does not hold. Suppose that sk is the result of

applying an mvd X→→ Y in F. Without loss of generality we assume that X ∩ Y = ∅.

Let Z = U − XY . Because sk results from X→→ Y , there are two tuples s′ and s′′ either

in Tσ or already produced, such that sk[XY ] = s′[XY ] and sk[XZ] = s′′[XZ]. Because

sk is chosen to be least, there are tuples ti and tj in Tσ , which correspond to Xi and Xj ,

respectively, such that s′[W ]= ti[W ] and s′′[W ]= tj [W ].

Because ti and tj correspond to Xi and Xj , for each attribute A ∈ U we have ti[A]=
tj [A] iff A ∈Xi ∩Xj . Thus X ∩W ⊆Xi ∩Xj .

Because sk[W ] �= ti[W ], W − XZ �= ∅, and because sk[W ] �= tj [W ], W − XY �= ∅.

Now, by Lemma 8.4.14, because X→→ Y is implied by σ , there is no Xk ∈ X such

that Xk ∩ Y �= ∅ and Xk ∩ Z �= ∅. It follows that Y|W−X is disconnected. Finally, let

Y = Xi ∩W and Y ′ = Xj ∩W . Because X ∩W ⊆ Xi ∩ Xj , it follows that Y ∩ Y ′ is an

articulation set for Y, a contradiction.

We conclude with a complexity result about acyclic jd’s. The first part follows from

the proof of the preceding theorem and the fact that the GYO algorithm runs in polynomial

time. The second part, stated without proof, is an interesting converse of the first part.

Proposition 8.4.16

(a) There is a ptime algorithm that, given an acyclic jd σ , produces a set of mvd’s

equivalent to σ .

(b) There is a ptime algorithm that, given a set F of mvd’s, finds a jd equivalent to

F or determines that there is none.

The Chase Is Church-Rosser

To conclude this section, we provide the proof that the results of all terminal chasing

sequences of a tableau query q by a set F of fd’s and jd’s are identical. To this end, we

first introduce tools to describe correspondences between the free tuples occurring in the

different elements of chasing sequences.



184 Functional and Join Dependency

Let (T , t)= (T0, t0), . . . , (Tn, tn) be a chasing sequence of (T , t) by F. Then for each

i ∈ [1, n], the chase homomorphism for step i, denoted θi, is an assignment with domain

var(Ti) defined as follows:

(a) If (Ti+1, ti+1) is the result of applying the fd rule to (Ti, ti), which replaces all

occurrences of variable y by variable x, then θi+1 is defined so that θi+1(y)= x

and θi+1 is the identity on var(Ti)− {y}.

(b) If (Ti+1, ti+1) is the result of applying the jd rule to (Ti, ti), then θi+1 is the

identity on var(Ti).

The chase homomorphism of this chasing sequence is θ = θ1 ◦ · · · ◦ θn. If w ∈ (T ∪ {t}),
then the tuple corresponding to w in (Ti, ti) is wi = θ1 ◦ · · · ◦ θi(w). It may arise that

ui = vi for distinct tuples u, v in T . Observe that θ1 ◦ · · · ◦ θi(T ) ⊆ Ti and that, because

of the jd rule, the inclusion may be strict.

We now have the following:

Lemma 8.4.17 Suppose that I |= F, ν is a substitution over var(T ), ν(T ) ⊆ I , and

(T0, t0), . . . , (Tn, tn) is a chasing sequence of (T , t) by F. Then

ν(wi)= ν(w) for each i ∈ [1, n] and each w ∈ (T ∪ {t}),

and ν(Ti)⊆ I for each i ∈ [1, n].

Crux Use an induction on the chasing sequence (Exercise 8.24d).

Observe that this also holds if I is a tableau over R that satisfies F. This is used in the

following result.

Theorem 8.4.18 Let (T , t) be a tableau query over R and F a set of fd’s and jd’s over

R. Then the results of all terminal chasing sequences of (T , t) by F are identical.

Proof Let (T ′, t ′) and (T ′′, t ′′) be the results of two terminal chasing sequences on (T , t)

using F, and let θ ′, θ ′′ be the chase homomorphisms of these chasing sequences. For each

tuple w ∈ T , let w′ denote the tuple of T ′ that corresponds to w, and similarly for w′′, T ′′.

By construction, θ ′′(T ) ⊆ T ′′ and θ ′′(t) = t ′′. Because T ′′ |= F and θ ′′(T ) ⊆ T ′′,

θ ′′(T ′) ⊆ T ′′ by Lemma 8.4.17 considering the chasing sequence leading to T ′. The

same argument shows that θ ′′(w′) = w′′ for each w in T and θ ′′(t ′) = t ′′. By symmetry,

θ ′(T ′′)⊆ T ′, θ ′(w′′)= w′ for each w in T and θ ′(t ′′)= t ′.

We next prove that

(*) θ ′′ is an isomorphism from (T ′, t ′) to (T ′′, t ′′).

Let w′′ be in T ′′ for some w in T . Then

θ ′ ◦ θ ′′(w′′)= θ ′′(θ ′(w′′))= θ ′′(w′)= w′′.
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Observe that each variable x in var(T ′′) occurs in w′′, for some w in T . Thus θ ′ ◦ θ ′′ is the

identity over var(T ′′). We therefore have

θ ′ ◦ θ ′′(T ′′)= T ′′.

By symmetry, θ ′′ ◦ θ ′ is the identity over var(T ′) and

θ ′′ ◦ θ ′(T ′)= T ′.

Thus |T ′′| = |T ′|. Because θ ′′(T ′) ⊆ T ′′, θ ′′(T ′) = T ′′ and θ ′′ is an isomorphism from

(T ′, t ′) to (T ′′, t ′′), so (*) holds.

To conclude, we prove that

(**) θ ′′ is the identity over var(T ′).

We first show that for each pair x, y of variables occurring in T ,

(†) θ ′′(x)= θ ′′(y) iff θ ′(x)= θ ′(y).

Suppose that θ ′′(x) = θ ′′(y). Then for some tuples u, v ∈ T and attributes A,B, we

have u(A) = x, v(B) = y and u′′(A) = θ ′′(x) = θ ′′(y) = v′′(B). Next θ ′(x) = u′(A) and

θ ′(y) = v′(B). Because θ ′ is an isomorphism from (T ′′, t ′′) to (T ′, t ′) and θ ′(u′′) =
u′, θ ′(v′′) = v′, it follows that u′(A) = v′(B). Hence θ ′(x) = u′(A) = v′(B) = θ ′(y) as

desired. The if direction follows by symmetry.

Now let x ∈ var(T ′). To prove (**) and the theorem, it now suffices to show that

θ ′′(x)= x. Let

A′ = {y ∈ var(T ) | θ ′(y)= θ ′(x)},

A′′ = {y ∈ var(T ) | θ ′′(y)= θ ′′(x)}.

First (†) implies that A′ = A′′. Furthermore, an induction on the chasing sequence

for (T ′, t ′) shows that for each z ∈A′, θ ′(z) is the least (under the ordering on var) ele-

ment of A′, and similarly for (T ′′, t ′′). Thus θ ′ and θ ′′ map all elements of A′ and A′′ to

the same variable z. Because x ∈ var(T ′), it follows that z = x so, in particular, θ ′(x)=
θ ′′(x)= x.
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Exercises

Exercise 8.1 Describe the set of fd’s, mvd’s, and jd’s that are tautologies (i.e., dependencies
that are satisfied by all instances) for a relation schema R.



Exercises 187

Exercise 8.2 Let F1 be as in Example 8.2.4. Prove that F1 |= AD→ E and F1 |= CDE → C.

Exercise 8.3 Let U be a set of attributes, and let F,Ŵ be sets of dependencies over U . Show
that

(a) F ⊆F∗.

(b) (F∗)∗ =F∗.

(c) If Ŵ ⊆F, then Ŵ∗ ⊆F∗.

State and prove analogous results for fd closures of attribute sets.

Exercise 8.4 Prove Lemma 8.2.6.

Exercise 8.5 Let U be a set of attributes and F a set of fd’s over U . Prove the soundness of
FD1, FD2, FD3 and show that

If F ⊢X→ Y and F ⊢X→ Z, then F ⊢X→ YZ.

Exercise 8.6 Let F be a set of fd’s over U .

(a) Suppose that X ⊆ U and U ⊆ V . Show that (X,F)∗,U = (X,F)∗,V . Hint: Use the
proof of Proposition 8.2.8.

(b) Suppose that XY ⊆ U , and U ⊆ V . Show that F |=U X→ Y iff F |=V X→ Y .

♠Exercise 8.7 [BB79] Describe how to improve the efficiency of Algorithm 8.2.7 to linear time.
Hint: For each unused fd W → Z in F, record the number attributes of W not yet in closure.
To do this efficiently, maintain a list for each attribute A of those unused fd’s of F for which A

occurs in the left-hand side.

Exercise 8.8 Give a proof of AB → F from F = {AB → C,A→ D,CD→ EF } using
{FD1, FD2, FD3}.

Exercise 8.9 Prove or disprove the soundness of the following rules:

FD4: (pseudo-transitivity) If X→ Y and YW → Z, then XW → Z.

FD5: (union) If X→ Y and X→ Z, then X→ YZ.

FD6: (decomposition) If X→ YZ, then X→ Y .

MVD4: (pseudo-transitivity) If X→→ Y and YW →→ Z, then XW →→ Z − Y .

MVD5: (union) If X→→ Y and X→→ Z, then X→→ YZ.

MVD6: (decomposition) If X→→ Y and X→→ Z, then X→→ Y ∩ Z, X→→ Y − Z, and
X→→ Z − Y .

bad-FD1: If XW → Y and XY → Z, then X→ (Z −W).

bad-MVD1: If X→→ Y and Y →→ Z, then X→→ Z.

bad-FMVD1: If X→→ Y and XY → Z, then X→ Z.

(The use of the hint is optional.)

Exercise 8.10 Continuing with Exercise 8.9,

(a) [BFH77] Find a two-element subset of {FD1, FD2, FD3, FD4, FD5, FD6} that is
sound and complete for inferring logical implication of fd’s.
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(b) Prove that there is exactly one two-element subset of {FD1, FD2, FD3, FD4, FD5,
FD6} that is sound and complete for inferring logical implication of fd’s.

Exercise 8.11 [Arm74] Let U be a fixed set of attributes. An attribute set X ⊆ U is saturated

with respect to a set F of fd’s over U if X =X∗. The family of saturated sets of F with respect
to U is satset(F)= {X ⊆ U |X is saturated with respect to F}.

(a) Show that satset = satset(F) satisfies the following properties:

S1: U ∈ satset.

S2: If Y ∈ satset and Z ∈ satset, then Y ∩ Z ∈ satset.

⋆ (b) Suppose that satset is a family of subsets of U satisfying properties (S1) and (S2).
Prove that satset = satset(Ŵ) for some set Ŵ of fd’s over U . Hint: Use Ŵ = {Y → Z|
for each X ∈ satset, if Y ⊆X then Z ⊆X}.

Exercise 8.12 Let F and Ŵ be sets of fd’s over U . Using the notation of Exercise 8.11,

(a) Show that satset(F ∪ Ŵ)= satset(F) ∩ satset(Ŵ).

(b) Show that satset(F∗ ∩ Ŵ∗) = satset(F) ∧ satset(Ŵ), where for families F,G, the
wedge of F and G is F ∧ G = {X ∩ Y |X ∈ F and Y ∈ G}.

(c) For V ⊆ U , define πVF = {X→ Y ∈F |XY ⊆ V }. For V ⊆ U characterize satset

(πV (F
∗)) (where this family is defined with respect to V ).

Exercise 8.13

(a) Exhibit a set F1 of fd’s over {A,B} such that each Armstrong relation for F has at
least three distinct values occurring in the A column. Exhibit a set F2 of fd’s over
{A,B,C} such that each Armstrong relation for F has at least four distinct values
occurring in the A column.

(b) [GH83, BDFS84] Let F be a set of fd’s over U . Recall the notion of saturated set
from Exercise 8.11. For an instance I over U , the agreement set of I is agset(I )=
{X ⊆ U | ∃ s, t ∈ I such that s(A)= t (A) iff A ∈ X}. For a family F of subsets of
U , the intersection closure of F is intclo(F) = {∩n

i=1Xi | n ≥ 0 and each Xi ∈ F}
(where the empty intersection is defined to be U ). Prove that I is an Armstrong
relation for F iff intclo(agset(I ))= satset(F).

Exercise 8.14 [Mai80] Let F be a set of fd’s over U , X→ Y ∈F, and let A be an attribute.
A is extraneous in X→ Y with respect to F if either

(a) (F − {X→ Y }) ∪ {X→ (Y − A)} |=X→ Y ; or

(b) (F − {X→ Y }) ∪ {(X − A)→ Y } |=X→ Y .

Develop an O(n2) algorithm that takes as input a set F of fd’s and produces as output a set
F′ ≡F, where F′ has no extraneous attributes.

Exercise 8.15 Show that there is no set F of jd’s and fd X→ A such that F |=X→ A. Hint:

Show that for any instance I there exists an instance I ′ such that I ⊆ I ′ and I ′ |= F. Then
choose I violating X→ A.

Exercise 8.16 [Fag77b, Zan76] This exercise refers to the original definition of mvd’s. Let U
be a set of attributes and X, Y ⊆ U . Given an instance I over U and a tuple x ∈ πX(I ), the image
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of x on Y in I is the set imageY (x, I )= πY (σX=x(I )) of tuples over Y . Prove that I |=X→→ Y

iff

for each x ∈ πX(I ) and each z ∈ imageZ(x, I ), imageY (x, I )= imageY (xz, I ),

where Z = U −XY and xz denotes the tuple w over XZ such that πX(w)= x and πZ(w)= z.

⋆Exercise 8.17 [BFH77] Complete the proof of Theorem 8.3.5. Hint: Of course, the inference
rules can be used when reasoning about I . The following claims are also useful:

Claim 1: If A ∈X+, then I |= ∅→ A.

Claim 2: If A,B ∈Wi for some i ∈ [1, n], then I |= A→ B.

Claim 3: For each i ∈ [1, n], I |= ∅→→Wi.

Exercise 8.18 Prove Corollary 8.3.6.

Exercise 8.19 [Kan91] Consider the following set of inference rules:

MVD7: X→→ U −X.

MVD8: If Y ∩ Z = ∅, X→→ Y , and Z→→W , then X→→W − Y .

FMVD3: If Y ∩ Z = ∅, X→→ Y , and Z→W , then X→ Y ∩W .

Prove that {MVD7, MVD2, MVD8} are sound and complete for inferring implication for
mvd’s, and that {FD1, FD2, FD3, MVD7, MVD2, MVD8, FMVD1, FMVD3} are sound and
complete for inferring implication for fd’s and mvd’s considered together.

Exercise 8.20 [Bee80] Let F be a set of fd’s and mvd’s, and let m(F)= {X→→ Y | X→→
Y ∈F} ∪ {X→→ A | A ∈ Y for some X→ Y ∈F}. Prove that

(a) F |=X→ Y implies m(F) |=X→→ Y ; and

(b) F |=X→→ Y iff m(F) |=X→→ Y .

Hint: For (b) do an induction on proofs using the inference rules.

Exercise 8.21 For sets F and Ŵ of dependencies over U , F implies Ŵ for two-element in-

stances, denoted F |=2 Ŵ, if for each instance I over U with |I | ≤ 2, I |=F implies I |= Ŵ.

(a) [SDPF81] Prove that if F ∪ {σ } is a set of fd’s and mvd’s, then F |=2 σ iff F |= σ .

(b) Prove that the equivalence of part (a) does not hold if jd’s are included.

(c) Exhibit a jd σ such that there is no set F of mvd’s with σ ≡F.

♠Exercise 8.22 [SDPF81] This exercise develops a close connection between fd’s and mvd’s,
on the one hand, and a fragment of propositional logic, on the other. Let U be a fixed set of
attributes. We view each attribute A ∈ U as a propositional variable. For the purposes of this
exercise, a truth assignment is a mapping ξ : U → {T , F } (where T denotes true and F denotes
false). Truth assignments are extended to mappings on subsets X of U by ξ(X)= ∧A∈Xξ(A). A
truth assignment ξ satisfies an fd X→ Y , denoted ξ |=X→ Y , if ξ(X)= T implies ξ(Y )= T .
It satisfies an mvd X→→ Y , denoted ξ |= X→→ Y , if ξ(X)= T implies that either ξ(Y )= T

or ξ(U − Y ) = T . Given a set F ∪ {σ } of fd’s and mvd’s, F implies σ in the propositional

calculus, denoted F |=prop σ , if for each truth assignment ξ , ξ |=F implies ξ |= σ . Prove that
for all sets F ∪ {σ } of fd’s and mvd’s, F |= σ iff F |=prop σ .
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⋆Exercise 8.23 [Bis80] Exhibit a set of inference rules for mvd’s that are sound and complete
in the context in which an underlying set of attributes is not fixed.

♠Exercise 8.24

(a) Prove Proposition 8.4.2.

(b) Prove Lemma 8.4.3.

(c) Prove Lemma 8.4.4. What is the maximum size attainable by the tableau in the result
of a terminal chasing sequence?

(d) Prove Lemma 8.4.17.

♠Exercise 8.25

(a) Describe a polynomial time algorithm for computing the chase of a tableau query by
F, assuming that F contains only fd’s.

(b) Show that the problem of deciding whether a jd can be applied to a tableau query is
np-complete if the schema is considered variable, and polynomial if the schema is
considered fixed. Hint: Use Exercise 6.16.

(c) Prove that it is np-hard, given a tableau query (T , t) and a set F of fd’s and jd’s, to
compute chase(T , t, F) (this assumes that the schema is part of the input and thus
not fixed).

(d) Describe an exponential time algorithm for computing the chase by a set of fd’s and
jd’s. (Again the schema is not considered fixed.)

Exercise 8.26 Prove Proposition 8.4.6. Hint: Rather than modifying the proof of Theo-
rem 8.4.18, prove as a lemma that if F |= σ , then chase(T , t, F)= chase(T , t, F ∪ {σ }).

Exercise 8.27

(a) Verify that the results concerning the chase generalize immediately to the context in
which database schemas as opposed to relation schemas are used.

(b) Describe how to generalize the chase to tableau in which constants occur, and state
and prove the results about the chase and tableau queries. Hint: If the chase procedure
attempts to equate two distinct constants (a situation not occurring before), we obtain
a particular new tableau, called Tfalse, which corresponds to the query producing an
empty result on all input instances.

Exercise 8.28 For each of the following relation schemas R, SPJ expressions q over R, and
dependencies F over R, simplify q knowing that it is applied only to instances over R satisfying
F. Use tableau minimization and the chase.

(a) sort(R) = ABC, q = πAC(πAB(σA=2(R) ⊲⊳ πBC(R)) ⊲⊳ πAB(σB=8(R) ⊲⊳ πBC(R)),
F = {A→ C,B→ C}

(b) sort(R)= ABCD, q = πBC(R) ⊲⊳ πABD(R), F = {B→→ CD, B→→D}

(c) sort(R)= ABCD, q = πABD(R) ⊲⊳ πAC(R), F = {A→ B,B→→ C}.

♠Exercise 8.29 Prove Theorem 8.4.12.

♠Exercise 8.30 Prove Theorem 8.4.13(a) [BV80a] and Theorem 8.4.13(b) [FT83].

Exercise 8.31 [MMS79] Describe an algorithm based on the chase for

(a) computing the closure of an attribute set X under a set F of fd’s and jd’s (where the
notion of closure is extended to include all fd’s implied by F); and
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(b) computing the dependency basis (see Section 8.3) of a set X of attributes under a set
F of fd’s and jd’s (where the notion of dependency basis is extended to include fd’s
in the natural manner).

Exercise 8.32 [GH86] Suppose that the underlying domain dom has a total order ≤. Let
U = {A1, . . . , An} be a set of attributes. For each X ⊆ U , define the partial order ≤X over the
set of tuples of X by t ≤X t ′ iff t (A) ≤ t ′(A) for each A ∈ X. A sort set dependency (SSD)
over U is an expression of the form s(X), where X ⊆ U . An instance I over U satisfies s(X),
denoted I |= s(X), if ≤X is a total order on πX(I ).

(a) Show that the following set of inference rules is sound and complete for finite logical
implication between SSDs:

SSD1: If A is an attribute, then s(A).
SSD2: If s(X) and Y ⊆X, then s(Y ).
SSD3: If s(X), s(Y ) and s(X △ Y ), then s(XY) [where X △ Y denotes (X −
Y ) ∪ (Y −X), i.e., the symmetric difference of X and Y ].

(b) Exhibit a polynomial time algorithm for inferring logical implication between sets
of SSDs.

(c) Describe how SSDs might be used in connection with indexes.
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Vittorio: Fd’s and jd’s give some structure to relations.

Alice: But there are no connections between them.

Sergio: Making connections is the next step . . .

Riccardo: . . . with some unexpected consequences.

The story of inclusion dependencies starts in a manner similar to that for functional

dependencies: Implication is decidable (although here it is pspace-complete), and

there is a simple set of inference rules that is sound and complete. But the story becomes

much more intriguing when functional and inclusion dependencies are taken together.

First, the notion of logical implication will have to be refined because the behavior of

these dependencies taken together is different depending on whether infinite instances are

permitted. Second, both notions of logical implication are nonrecursive. And third, it can

be proven in a formal sense that no “finite” axiomatization exists for either notion of logical

implication of the dependencies taken together. At the end of this chapter, two restricted

classes of inclusion dependencies are discussed. These are significant because they arise in

modeling certain natural relationships such as those encountered in semantic data models.

Positive results have been obtained for inclusion dependencies from these restricted classes

considered with fd’s and other dependencies.

Unlike fd’s or jd’s, a single inclusion dependency may refer to more than one relation.

Also unlike fd’s and jd’s, inclusion dependencies are “untyped” in the sense that they

may call for the comparison of values from columns (of the same or different relations)

that are labeled by different attributes. A final important difference from fd’s and jd’s is

that inclusion dependencies are “embedded.” Speaking intuitively, to satisfy an inclusion

dependency the presence of one tuple in an instance may call for the presence of another

tuple, of which only some coordinate values are determined by the dependency and the first

tuple. These and other differences will be discussed further in Chapter 10.

9.1 Inclusion Dependency in Isolation

To accommodate the fact that inclusion dependencies permit the comparison of values from

different columns of one or more relations, we introduce the following notation. Let R be a

relation schema and X = A1, . . . , An a sequence of attributes (possibly with repeats) from

R. For an instance I of R, the projection of I onto the sequence X, denoted I [X], is the

n-ary relation {〈t (A1), . . . , t (An)〉 | t ∈ I }.
The syntax and semantics of inclusion dependencies is now given by the following:

192



9.1 Inclusion Dependency in Isolation 193

Definition 9.1.1 Let R be a relational schema. An inclusion dependency (ind) over R

is an expression of the form σ = R[A1, . . . , Am]⊆ S[B1, . . . , Bm], where

(a) R, S are (possibly identical) relation names in R,

(b) A1, . . . , Am is a sequence of distinct attributes of sort(R), and

(c) B1, . . . , Bm is a sequence of distinct attributes of sort(S).

An instance I of R satisfies σ , denoted I |= σ , if

I(R)[A1, . . . , Am]⊆ I(S)[B1, . . . , Bm].

Satisfaction of a set of ind’s is defined in the natural manner.

To illustrate this definition, we recall an example from the previous chapter.

Example 9.1.2 There are two relations: Movies with attributes Title, Director, Actor and

Showings with Theater, Screen, Title, Snack; and we have an ind

Showings[Title]⊆Movies[Title].

The generalization of ind’s to permit repeated attributes on the left-or right-hand side

is considered in Exercise 9.4.

The notion of logical implication between sets of ind’s is defined in analogy with that

for fd’s. (This will be refined later when fd’s and ind’s are considered together.)

Rules for Inferring ind Implication

The following set of inference rules will be shown sound and complete for inferring logical

implication between sets of ind’s. The variables X, Y , and Z range over sequences of

distinct attributes; and R, S, and T range over relation names.

IND1: (reflexivity) R[X]⊆ R[X].

IND2: (projection and permutation) If R[A1, . . . , Am]⊆ S[B1, . . . , Bm], then R[Ai1,

. . . , Aik]⊆ S[Bi1, . . . , Bik] for each sequence i1, . . . , ik of distinct integers in

{1, . . . , m}.

IND3: (transitivity) If R[X]⊆ S[Y ] and S[Y ]⊆ T [Z], then R[X]⊆ T [Z].

The notions of proof and of provability (denoted ⊢) using these rules are defined in

analogy with that for fd’s.

Theorem 9.1.3 The set {IND1, IND2, IND3} is sound and complete for logical impli-

cation of ind’s.

Proof Soundness of the rules is easily verified. For completeness, let F be a set of ind’s

over database schema R = {R1, . . . , Rn}, and let σ = Ra[A1, . . . , Am]⊆ Rb[B1, . . . , Bm]
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be an ind over R such that F |= σ . We construct an instance I of R and use it to demonstrate

that F ⊢ σ .

To begin, let s′ be the tuple over Ra such that s′(Ai)= i for i ∈ [1,m] and s′(B)= 0

otherwise. Set I(Ra)= {s
′} and I(Rj)= ∅ for j �= a. We now apply the following rule to I

until it can no longer be applied.

(∗)

If Ri[C1, . . . , Ck]⊆ Rj [D1, . . . , Dk] ∈F and t ∈ I(Ri), then add

u to I(Rj), where u(Dl)= t (Cl) for l ∈ [1, k] and u(D)= 0 for D

�∈ {D1, . . . , Dk}.

Application of this rule will surely terminate, because all tuples are constructed from

a set of at most m+ 1 values. Clearly the result of applying this rule until termination is

unique, so let J be this result.

Remark 9.1.4 This construction is reminiscent of the chase for join dependencies. It

differs because the ind’s may be embedded. Intuitively, an ind may not specify all the

entries of the tuples we are adding. In the preceding rule (∗), the same value (0) is always

used for tuple entries that are otherwise unspecified.

It is easily seen that J |=F. Because F |= σ , we have J |= σ . To conclude the proof,

we show the following:

(∗∗)

If for some Rj in R, u ∈ J(Rj), integer q, and distinct attributes

C1, . . . , Cq in sort(Rj), u(Cp) > 0 for p ∈ [1, q], then

F ⊢ Ra[Au(C1), . . . , Au(Cq)]⊆ Rj [C1, . . . , Cq].

Suppose that (∗∗) holds. Let s′′ be a tuple of J(Rb) such that s′′[B1, . . . , Bm] =
s′[A1, . . . , Am]. (Such a tuple exists because J |= σ .) Use (∗∗) with Rj = Rb, q = m,

C1, . . . , Cq = B1, . . . , Bm.

To demonstrate (∗∗), we show inductively that it holds for all tuples of J by considering

them in the order in which they were inserted. The claim holds for s in J(Ra) by IND1.

Suppose now that

• I′ is the instance obtained after k applications of the rule for some k ≥ 0;

• the claim holds for all tuples in I′; and

• u is added to Rj by the next application of rule (∗), due to the ind Ri[C1, . . . , Ck]⊆
Rj [D1, . . . , Dk] ∈F and tuple t ∈ I′(Ri).

Now let {E1, . . . , Eq} be a set of distinct attributes in sort(Rj) with u(Ep) > 0 for p ∈
[1, q]. By the construction of u in (*), {E1, . . . , Eq} ⊆ {D1, . . . , Dk}. Choose the mapping

ρ such that Dρ(p) = Ep for p ∈ [1, q]. Because Ri[C1, . . . , Ck] ⊆ Rj [D1, . . . , Dk] ∈ F,

IND2 yields

F ⊢ Ri[Cρ(1), . . . , Cρ(q)]⊆ Rj [E1, . . . , Eq].
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By the inductive assumption,

F ⊢ Ra[At (Cρ(1)), . . . , At (Cρ(q))]⊆ Ri[Cρ(1), . . . , Cρ(q)].

Thus, by IND3,

F ⊢ Ra[At (Cρ(1)), . . . , At (Cρ(q))]⊆ Rj [E1, . . . , Eq].

Finally, observe that for each p, t (Cρ(p))= u(Dρ(p))= u(Ep), so

F ⊢ Ra[Au(E1), . . . , Au(Eq)]⊆ Rj [E1, . . . , Eq].

Deciding Logical Implication for ind’s

The proof of Theorem 9.1.3 yields a decision procedure for determining logical implication

between ind’s. To see this, we use the following result:

Proposition 9.1.5 Let F be a set of ind’s over R and Ra[A1, . . . , Am]⊆ Rb[B1, . . . ,

Bm]. Then F |= Ra[A1, . . . , Am] ⊆ Rb[B1, . . . , Bm] iff there is a sequence Ri1[
�C1], . . . ,

Rik[
�Ck] such that

(a) Rij ∈ R for j ∈ [1, k];

(b) �Cj is a sequence of m distinct attributes in sort(Rij ) for j ∈ [1, k];

(c) Ri1[ �C1]= Ra[A1, . . . , Am];

(d) Rik[
�Ck]= Rb[B1, . . . , Bm];

(e) Rij [
�Cj ]⊆ Rij+1[

�Cj+1] can be obtained from an ind in F by one application of

rule IND2, for j ∈ [1, (k − 1)].

Crux Use the instance J constructed in the proof of Theorem 9.1.3. Working backward

from the tuple s′′ in J(Rb), a chain of relation-tuple pairs (Rij , sj) can be constructed so

that each of 1, . . . , m occurs exactly once in sj , and sj+1 is inserted into I as a result of sj
and IND2.

Based on this, it is straightforward to verify that the following algorithm determines

logical implication between ind’s. Note that only ind’s of arity m are considered in the

algorithm.

Algorithm 9.1.6

Input: A set F of ind’s over R and ind Ra[A1, . . . , Am]⊆ Rb[B1, . . . , Bm].

Output: Determine whether F |= Ra[A1, . . . , Am]⊆ Rb[B1, . . . , Bm].

Procedure: Build a set E of expressions of the form Ri[C1, . . . , Cm] as follows:

1. E := {Ra(A1, . . . , Am)}.



196 Inclusion Dependency

2. Repeat until Rb[B1, . . . , Bm] ∈ E or no change possible:

If Ri[C1, . . . , Cm] ∈ E and

Ri[C1, . . . , Cm]⊆ Rj [D1, . . . , Dm]

can be derived from an ind of F by one application of IND2, then insert

Rj [D1, . . . , Dm] into E .

3. If Rb[B1, . . . , Bm] ∈ E then return yes; else return no.

As presented, the preceding algorithm is nondeterministic and might therefore take

more than polynomial time. The following result shows that this is indeed likely for any

algorithm for deciding implication between ind’s.

Theorem 9.1.7 Deciding logical implication for ind’s is pspace-complete.

Crux Algorithm 9.1.6 can be used to develop a nondeterministic polynomial space pro-

cedure for deciding logical implication between ind’s. By Savitch’s theorem (which states

that pspace = npspace), this can be transformed into a deterministic algorithm that runs in

polynomial space. To show that the problem is pspace-hard, we describe a reduction from

the problem of linear space acceptance.

A (Turing) machine is linear bounded if on each input of size n, the machine does not

use more that n tape cells. The problem is the following:

Linear Space Acceptance (LSA) problem

Input: The description of a linear bounded machine M and an input word x;

Output: yes iff M accepts x.

The heart of the proof is, given an instance (M, x) of the LSA problem, to construct a

set F of ind’s and an ind σ such that F |= σ iff x is accepted by M .

Let M = (K, Ŵ,K, s, h) be a Turing machine with states K , alphabet Ŵ, transition

relation K, start state s, and accepting state h; and let x = x1 . . . xn ∈ Ŵ∗ have length n.

Configurations of M are viewed as elements of Ŵ∗KŴ+ with length n+ 1, where the

placement of the state indicates the head position (the state is listed immediately left of

the scanned letter). Observe that transitions can be described by expressions of the form

α1, α2, α3 → β1, β2, β3 with α1, . . . , β3 in (K ∪ Ŵ). For instance, the transition

“if reading b in state p, then overwrite with c and move left”

corresponds to a, p, b→ p, a, c for each a in Ŵ. Let χ be the set of all such expressions

corresponding to transitions of M .

The initial configuration is sx. The final configuration is h � bn for some particular letter

� b, iff M accepts x.

The ind’s of F are defined over a single relation R. The attributes of R are {Ai,j | i ∈
(K ∪Ŵ), j ∈ {1, 2, . . . , n+ 1}} . The intuition here is that the attribute Ap,j corresponds to

the statement that the j th symbol in a given configuration is p. To simplify the presentation,

attribute Aa,k is simply denoted by the pair (a, k).
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The ind σ is

R[(s, 1), (x1, 2), . . . , (xn, n+ 1)]⊆ R[(h, 1), (� b, 2), . . . , (� b, n+ 1)].

The ind’s in F correspond to valid moves of M . In particular, for each j ∈ [1, n− 1], F

includes all ind’s of the form

R[(α1, j), (α2, j + 1), (α3, j + 2), �A ]⊆ R[(β1, j), (β2, j + 1), (β3, j + 2), �A ],

where α1, α2, α3 → β1, β2, β3 is in χ , and �A is an arbitrary fixed sequence that lists all

of the attributes in Ŵ × {1, . . . , j − 1, j + 3, . . . , n + 1}. Thus each ind in F has arity

3+ (n− 2)|Ŵ|, and |F| ≤ n|K|.
Although the choice of �A permits the introduction of many ind’s, observe that the

construction is still polynomial in the size of the linear space automaton problem (M, x).

Using Proposition 9.1.5, it is now straightforward to verify that F |= σ iff M has an

accepting computation of x.

Although the general problem of deciding implication for ind’s is pspace-complete,

naturally arising special cases of the problem have polynomial time solutions. This

includes the family of ind’s that are at most k-ary (ones in which the sequences of at-

tributes have length at most some fixed k) and ind’s that have the form R[ �A ]⊆ S[ �A ] (see

Exercise 9.10). The latter case arises in examples such as Grad − Stud[Name,Major]⊆
Student[Name,Major]. This theme is also examined at the end of this chapter.

9.2 Finite versus Infinite Implication

We now turn to the interaction between ind’s and fd’s, which leads to three interesting

phenomena. The first of these requires a closer look at the notion of logical implication.

Consider the notion of logical implication used until now: F logically implies σ if for

all relation (or database) instances I, I |= F implies I |= σ . Although this notion is close

to the corresponding notion of mathematical logic, it is different in a crucial way: In the

context of databases considered until now, only finite instances are considered. From the

point of view of logic, the study of logical implication conducted so far lies within finite

model theory.

It is also interesting to consider logical implication in the traditional mathematical

logic framework in which infinite database instances are permitted. As will be seen shortly,

when fd’s or ind’s are considered separately, permitting infinite instances has no impact on

logical implication. However, when fd’s and ind’s are taken together, the two flavors of

logical implication do not coincide.

The notion of infinite relation and database instances is defined in the natural manner.

An unrestricted relation (database) instance is a relation (database) instance that is either

finite or infinite. Based on this, we now redefine “unrestricted implication” to permit

infinite instances, and we define “finite logical implication” for the case in which only

finite instances are considered.
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R A B R A B

1 0 1 1

2 1 2 1

3 2 3 2

4 3 4 3

...
...

...
...

(a) (b)

Figure 9.1: Instances used for distinguishing |=fin and |=unr

Definition 9.2.1 A set F of dependencies over R implies without restriction a depen-

dency σ , denoted F |=unr σ , if for each unrestricted instance I of R, I |=F implies I |= σ .

A set F of dependencies over R finitely implies a dependency σ , denoted F |=fin σ , if for

each (finite) instance I of R, I |=F implies I |= σ .

If finite and unrestricted implication coincide, or if the kind of implication is under-

stood from the context, then we may use |= rather than |=fin or |=unr. This is what we

implicitly did so far by using |= in place of |=fin.

Of course, if F |=unr σ , then F |=fin σ . The following shows that the converse need

not hold:

Theorem 9.2.2

(a) There is a set F of fd’s and ind’s and an ind σ such that F |=fin σ but F �|=unr σ .

(b) There is a set F of fd’s and ind’s and an fd σ such that F |=fin σ but F �|=unr σ .

Proof For part (a), let R be binary with attributes A,B; let F = {A→ B,R[A]⊆ R[B]};
and let σ be R[B]⊆ R[A]. To see that F |=fin σ , let I be a finite instance of R that satisfies

F. Because I |= A→ B, |πA(I )| ≥ |πB(I )| and because I |= R[A] ⊆ R[B], |πB(I )| ≥
|πA(I )|. It follows that |πA(I )| = |πB(I )|. Because I is finite and πA(I )⊆ πB(I ), it fol-

lows that πB(I )⊆ πA(I ) and I |= R[B]⊆ R[A].

On the other hand, the instance shown in Fig. 9.1(a) demonstrates that F �|=unr σ .

For part (b), let F be as before, and let σ be the fd B→ A. As before, if I |=F, then

|πA(I )| = |πB(I )|. Because I |= A→ B, each tuple in I has a distinct A-value. Thus the

number of B-values occurring in I equals the number of tuples in I . Because I is finite,

this implies that I |= B → A. Thus F |=fin σ . On the other hand, the instance shown in

Fig. 9.1(b) demonstrates that F �|=unr σ .

It is now natural to reconsider implication for fd’s, jd’s, and inds taken separately

and in combinations. Are unrestricted and finite implication different in these cases? The

answer is given by the following:
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Theorem 9.2.3 Unrestricted and finite implication coincide for fd’s and jd’s considered

separately or together and for ind’s considered alone.

Proof Unrestricted implication implies finite implication by definition. For fd’s and jd’s

taken separately or together, Theorem 8.4.12 on the relationship between chasing and

logical implication can be used to obtain the opposite implication. For ind’s, Theorem 9.1.3

shows that finite implication and provability by the ind inference rules are equivalent. It

is easily verified that these rules are also sound for unrestricted implication. Thus finite

implication implies unrestricted implication for ind’s as well.

The notion of finite versus unrestricted implication will be revisited in Chapter 10,

where dependencies are recast into a logic-based formalism.

Implication Is Undecidable for fd’s + ind’s

As will be detailed in Chapter 10, fd’s and ind’s (and most other relational dependencies)

can be represented as sentences in first-order logic. By Gödel’s Completeness Theorem

implication is recursively enumerable for first-order logic. It follows that unrestricted im-

plication is r.e. for fd’s and ind’s considered together. On the other hand, finite implication

for fd’s and ind’s taken together is co-r.e. This follows from the fact that there is an effec-

tive enumeration of all finite instances over a fixed schema; if F �|=fin σ , then a witness of

this fact will eventually be found. When unrestricted and finite implication coincide, this

pair of observations is sufficient to imply decidability of implication; this is not the case

for fd’s and ind’s.

The Word Problem for (Finite) Monoids

The proof that (finite) implication for fd’s and ind’s taken together is undecidable uses a

reduction from the word problem for monoids, which we discuss next.

A monoid is a set with an associative binary operation ◦ defined on it and an identity

element ε. Let Ŵ be a finite alphabet and Ŵ∗ the free monoid generated by Ŵ (i.e., the

set of finite words with letters in Ŵ with the concatenation operation). Let E = {αi = βi |
i ∈ [1..n]} be a finite set of equalities, and let e be an additional equality α = β, where

αi, βi, α, β ∈ Ŵ∗. Then E (finitely) implies e, denoted E |=unr e (E |=fin e), if for each

(finite) monoid M and homomorphism h : Ŵ∗→M , if h(αi)= h(βi) for each i ∈ [1..n],

then h(α) = h(β). The word problem for (finite) monoids is to decide, given E and e,

whether E |=unr e (E |=fin e). Both the word problem for monoids and the word problem

for finite monoids are undecidable.

Using this, we have the following:

Theorem 9.2.4 Unrestricted and finite implication for fd’s and ind’s considered together

are undecidable. In particular, let F range over sets of fd’s and ind’s. The following sets

are not recursive:

(a) {(F, σ ) | σ an ind and F |=unr σ }; {(F, σ ) | σ an ind and F |=fin σ };
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(b) {(F, σ ) | σ an fd and F |=unr σ }; and {(F, σ ) | σ an fd and F |=fin σ }.

Crux We prove (a) using a reduction from the word problem for (finite) monoids to the

(finite) implication problem for fd’s and ind’s. The proof of part (b) is similar and is left for

Exercise 9.5. We first consider the unrestricted case.

Let Ŵ be a fixed alphabet. Let E = {αi = βi | i ∈ [1, n]} be a set of equalities over Ŵ∗,

and let e be another equality α = β. A prefix is defined to be any prefix of αi, βi, α, or

β (including the empty string ε, and full words α1, β1, etc.). A single relation R is used,

which has attributes

(i) Aγ , for each prefix γ ;

(ii) Ax, Ay, Axy;

(iii) Aya, for each a ∈ Ŵ; and

(iv) Axya, for each a ∈ Ŵ;

where x and y are two fixed symbols.

To understand the correspondence between constrained relations and homomorphisms

over monoids, suppose that there is a homomorphism h from Ŵ∗ to some monoid M .

Intuitively, a tuple of R will hold information about two elements h(x), h(y) of M (in

columns Ax, Ay, respectively) and their product h(x) ◦ h(y) = h(xy) (in column Axy).

For each a in Ŵ, tuples will also hold information about h(ya) and h(xya) in columns

Aya, Axya. More precisely, the instance IM,h corresponding to the monoid M and the

homomorphism h : Ŵ∗→M is defined by

IM,h = {tu,v | u, v ∈ Ŵ∗},

where for each u, v ∈ Ŵ∗, tu,v is the tuple such that

tu,v(Ax)= h(u), tu,v(Aγ )= h(γ ), for each prefix γ ,

tu,v(Ay)= h(v), tu,v(Aya)= h(va), for each a ∈ Ŵ,

tu,v(Axy)= h(uv), tu,v(Axya)= h(uva), for each a ∈ Ŵ.

Formally, to force the correspondence between the relations and homomorphisms over

monoids, we use a set F of dependencies. In other words, we wish to find a set F of

dependencies that characterizes precisely the instances over R that correspond to some

homomorphism h from Ŵ∗ to some monoid M . The key to the proof is that this can be

done using just fd’s and ind’s. Strictly speaking, the dependencies of (8) in the following

list are not ind’s because an attribute is repeated in the left-hand side. As discussed in

Exercise 9.4(e), the set of dependencies used here can be modified to a set of proper ind’s

that has the desired properties. In addition, we use fd’s with an empty left-hand side, which

are sometimes not considered as real fd’s. The use of such dependencies is not crucial. A

slightly more complicated proof can be found that uses only fd’s with a nonempty left-hand

side. The set F is defined as follows:
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1. ∅→ Aγ for each prefix γ ;

2. AxAy → Axy;

3. Ay → Aya, for each a ∈ Ŵ;

4. R[Aε]⊆ R[Ay];

5. R[Aγ , Aγ a]⊆ R[Ay, Aya], for each a ∈ Ŵ and prefix γ ;

6. R[Axy, Axya]⊆ R[Ay, Aya], for each a ∈ Ŵ;

7. R[Ax, Aya, Axya]⊆ R[Ax, Ay, Axy], for each a ∈ Ŵ;

8. R[Ay, Aε, Ay]⊆ R[Ax, Ay, Axy]; and

9. R[Aαi]⊆ R[Aβi], for each i ∈ [1, n].

The ind σ is R[Aα]⊆ R[Aβ].

Let I be an instance satisfying �. Observe that I has to satisfy a number of implied

properties. In particular, one can verify that I also satisfies the following property:

R[Axya]⊆ R[Aya]⊆ R[Ay]= R[Axy]⊆ R[Ax]

and that adom(I )⊆ I [Ax].

We now show that � |=unr σ iff E |=unr e. We first show that E �|=unr e implies

� �|=unr σ . Suppose that there is a monoid M and homomorphism h : Ŵ∗→M that sat-

isfies the equations of E but violates the equation e. Consider IM,h defined earlier. It is

straightforward to verify that I |=� but I �|= σ .

For the opposite direction, suppose now that E |=unr e, and let I be a (possibly infinite)

instance of R that satisfies �. To conclude the proof, it must be shown that I [Aα]⊆ I [Aβ].

(Observe that these two relations both consist of a single tuple because of the fd’s with an

empty left-hand-side.)

We now define a function h : Ŵ∗→ adom(I ). We will prove that h is a homomorphism

from Ŵ∗ to a free monoid whose elements are h(Ŵ∗) and that satisfies the equations of E

(and hence, e). We will use the fact that the monoid satisfies e to derive that I [Aα]⊆ I [Aβ].

We now give an inductive definition of h and show that it has the property that h(v) ∈
I [Ay] for each v ∈ Ŵ∗.

Basis: Set h(ε) to be the element in I [Aε]. Note that h(ε) is also in I [Ay] because R[Aε]⊆
R[Ay] ∈�.

Inductive step: Given h(v) and a ∈ Ŵ, let t ∈ I be such that t[Ay]= h(v). Define h(va)=
t (Aya). This is uniquely determined because Ay → Aya ∈ �. In addition, h(va) ∈
I [Ay] because R[Ax, Aya, Axya]⊆ R[Ax, Ay, Axy] ∈�.

We next show by induction on v that

(†) 〈h(u), h(v), h(uv)〉 ∈ I [Ax, Ay, Axy] for each u, v ∈ Ŵ∗.

For a fixed u, the basis (i.e., v = ε) is provided by the fact that h(u) ∈ I [Ay] and the

ind R[Ay, Aε, Ay]⊆ R[Ax, Ay, Axy] ∈�. For the inductive step, let 〈h(u), h(v), h(uv)〉 ∈
I [Ax, Ay, Axy] and a ∈ Ŵ. Let t ∈ I be such that t[Ax, Ay, Axy] = 〈h(u), h(v), h(uv)〉.
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Then by construction of h, h(va)= t (Aya), and from the ind R[Axy, Axya]⊆ R[Ay, Aya],

we have h(uva) = t (Axya). Finally, the ind R[Ax, Aya, Axya] ⊆ R[Ax, Ay, Axy] implies

that 〈h(u), h(va), h(uva)〉 ∈ I [Ax, Ay, Axy] as desired.

Define the binary operation ◦ on h(Ŵ∗) as follows. For a, b ∈ h(Ŵ∗), let

a ◦ b = c if for some t ∈ I , t[Ax, Ay, Axy]= 〈a, b, c〉.

There is such a tuple by (†) and c is uniquely defined because Ax, Ay → Axy ∈ �. Fur-

thermore, by (†), for each u, v, h(u) ◦ h(v)= h(uv). Thus for h(u), h(v), h(w) in h(Ŵ∗),

(h(u) ◦ h(v)) ◦ h(w)= h(uvw)= (h(u) ◦ h(v)) ◦ h(w),

and

h(u) ◦ h(ε)= h(u)

so (h(Ŵ∗), ◦) is a monoid. In addition, h is a homomorphism from the free monoid over Ŵ∗

to the monoid (h(Ŵ∗), ◦).
It is easy to see that I [Aαi] = {h(αi)} and I [Aβi] = {h(βi)} for i ∈ [1, n]. Let i be

fixed. Because R[Aαi] ⊆ R[Aβi], h(αi) = h(βi). Because E |=unr e, h(α) = h(β). Thus

I [Aα]= {h(α)} = {h(β)} = I [Aβ]. It follows that I |=unr R[Aα]⊆ R[Aβ] as desired.

This completes the proof for the unrestricted case. For the finite case, note that every-

thing has to be finite: The monoid is finite, I is finite, and the monoid h[Ŵ∗] is finite. The

rest of the argument is the same.

The issue of decidability of finite and unrestricted implication for classes of dependen-

cies is revisited in Chapter 10.

9.3 Nonaxiomatizability of fd’s + ind’s

The inference rules given previously for fd’s, mvd’s and ind’s can be viewed as “inference

rule schemas,” in the sense that each of them can be instantiated with specific attribute sets

(sequences) to create infinitely many ground inference rules. In these cases the family of

inference rule schemas is finite, and we informally refer to them as “finite axiomatizations.”

Rather than formalizing the somewhat fuzzy notion of inference rule schema, we focus

in this section on families R of ground inference rules. A (ground) axiomatization of a

family S of dependencies is a set of ground inference rules that is sound and complete for

(finite or unrestricted) implication for S. Two properties of an axiomatization R will be

considered, namely: (1) R is recursive, and (2) R is k-ary, in the sense (formally defined

later in this section) that each rule in R has at most k dependencies in its condition.

Speaking intuitively, if S has a “finite axiomatization,” that is, if there is a finite

family R′ of inference rule schemas that is sound and complete for S, then R′ specifies

a ground axiomatization for S that is both recursive and k-ary for some k. Two results are

demonstrated in this section: (1) There is no recursive axiomatization for finite implication
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of fd’s and ind’s, and (2) there is no k-ary axiomatization for finite implication of fd’s and

ind’s. It is also known that there is no k-ary axiomatization for unrestricted implication of

fd’s and ind’s. The intuitive conclusion is that the family of fd’s and ind’s does not have a

“finite axiomatization” for finite implication or for unrestricted implication.

To establish the framework and some notation, we assume temporarily that we

are dealing with a family F of database instances over a fixed database schema R =

{R1, . . . , Rn}. Typically, F will be the set of all finite instances over R, or the set of all

(finite or infinite) instances over R. All the notions that are defined are with respect to F .

Let S be a family of dependencies over R. (At present, S would be the set of fd’s and ind’s

over R.) Logical implication |= among dependencies in S is defined with respect to F in

the natural manner. In particular, |=unr and |=fin are obtained by letting F be the set of

unrestricted or finite instances.

A (ground) inference rule over S is an expression of the form

ρ = if S then s,

where S ⊆ S and s ∈ S.

Let R be a set of rules over R. Then R is sound if each rule in R is sound. Let

� ∪ {σ } ⊆ S be a set of dependencies over R. A proof of σ from � using R is a finite

sequence σ1, . . . , σn = σ such that for each i ∈ [1, n], either (1) σi ∈ �, or (2) for some

rule ‘if S then s’ in R, σi = s and S ⊆ {σ1, . . . , σi−1}. We write � ⊢R σ (or � ⊢ σ if R is

understood) if there is a proof of σ from � using R. Clearly, if each rule in R is sound,

then � ⊢ σ implies � |= σ . The set R is complete if for each pair (�, σ ), � |= σ implies

� ⊢R σ . A (sound and complete) axiomatization for logical implication is a set R of rules

that is sound and complete.

The aforementioned notions are now generalized to permit all schemas R. In particular,

we consider a set R of rules that is a union ∪{RR | R is a schema}. The notions of sound,

proof, etc.can be generalized in the natural fashion.

Note that with the preceding definition, every set S of dependencies has a sound and

complete axiomatization. This is provided by the set R of all rules of the form

if S then s,

where S |= s. Clearly, such trivial axiomatizations hold no interest. In particular, they are

not necessarily effective (i.e., one may not be able to tell if a rule is in R, so one may not be

able to construct proofs that can be checked). It is thus natural to restrict R to be recursive.

We now present the first result of this section, which will imply that there is no

recursive axiomatization for finite implication of fd’s and ind’s. In this result we assume

that the dependencies in S are sentences in first-order logic.

Proposition 9.3.1 Let S be a class of dependencies. If S has a recursive axiomatization

for finite implications, then finite implication is decidable for S.

Crux Suppose that S has a recursive axiomatization. Consider the set
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Implic= {(S, s) | S ⊆ S, s ∈ S, and S |=fin s}.

First note that the set Implic is r.e.; indeed, let R be a recursive axiomatization for S. One

can effectively enumerate all proofs of implication that use rules in R. This allows one to

enumerate Implic effectively. Thus Implic is r.e. We argue next that Implic is also co-r.e.

To conclude that a pair (S, s) is not in Implic, it is sufficient to exhibit a finite instance

satisfying S and violating s. To enumerate all pairs (S, s) not in Implic, one proceeds as

follows. The set of all pairs (S, s) is clearly r.e., as is the set of all instances over a fixed

schema. Repeat for all positive integers n the following. Enumerate the first n pairs (S, s)

and the first n instances. For each (S, s) among the n, check whether one of the n instances

is a counterexample to the implication S |= s, in which case output (S, s). Clearly, this

procedure enumerates the complement of Implic, so Implic is co-r.e. Because it is both r.e.

and co-r.e., Implic is recursive, so there is an algorithm testing whether (S, s) is in Implic.

It follows that there is no recursive axiomatization for finite implication of fd’s and

ind’s. [To see this, note that by Theorem 9.2.4, logical implication for fd’s and ind’s is

undecidable. By Proposition 9.3.1, it follows that there can be no finite axiomatization for

fd’s and ind’s.] Because implication for jd’s is decidable (Theorem 8.4.12), but there is no

axiomatization for them (Theorem 8.3.4), the converse of the preceding proposition does

not hold.

Speaking intuitively, the preceding development implies that there is no finite set

of inference rule schemas that is sound and complete for finite implication of fd’s and

ind’s. However, the proof is rather indirect. Furthermore, the approach cannot be used in

connection with unrestricted implication, nor with classes of dependencies for which finite

implication is decidable (see Exercise 9.9). The notion of k-ary axiomatization developed

now shall overcome these objections.

A rule ‘if S then s’ is k-ary for some k ≥ 0 if |S| = k. An axiomatization R is k-ary if

each rule in R is l-ary for some l ≤ k. For example, the instantiations of rules FD1 and

IND1 are 0-ary, those of rules FD2 and IND2 are 1-ary, and those of FD3 and IND3

are 2-ary. Theorem 9.3.3 below shows that there is no k-ary axiomatization for finite

implication of fd’s and ind’s.

We now turn to an analog in terms of logical implication of k-ary axiomatizability.

Again let S be a set of dependencies over R, and let F be a family of instances over R. Let

k ≥ 0. A set Ŵ ⊆ S is:

closed under implication with respect to S if σ ∈ Ŵ whenever

(a) σ ∈ S and (b) Ŵ |= σ

closed under k-ary implication with respect to S if σ ∈ Ŵ whenever

(a) σ ∈ S, and for some � ⊆ Ŵ, (b1) � |= σ and (b2) |�| ≤ k.

Clearly, if Ŵ is closed under implication, then it is closed under k-ary implication for each
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k ≥ 0, and if Ŵ is closed under k-ary implication, then it is closed under k′-ary implication

for each k′ ≤ k.

Proposition 9.3.2 Let R be a database schema, S a set of dependencies over R, and

k ≥ 0. Then there is a k-ary axiomatization for S iff whenever Ŵ ⊆ S is closed under k-ary

implication, then Ŵ is closed under implication.

Proof Suppose that there is a k-ary axiomatization for S, and let Ŵ ⊆ S be closed under

k-ary implication. Suppose further that Ŵ |= σ for some σ ∈ S. Let σ1, . . . , σn be a proof

of σ from Ŵ using R. Using the fact that R is k-ary and that Ŵ is closed under k-ary

implication, a straightforward induction shows that σi ∈ Ŵ for i ∈ [1, n].

Suppose now that for each Ŵ ⊆ S, if Ŵ is closed under k-ary implication, then Ŵ is

closed under implication. Set

R= {‘if S then s’ | S ⊆ S, s ∈ S, |S| ≤ k, and S |= s}.

To see that R is complete, suppose that Ŵ |= σ . Consider the set Ŵ∗ = {γ | Ŵ ⊢R γ }. From

the construction of R, Ŵ∗ is closed under k-ary implication. By assumption it is closed

under implication, and so Ŵ ⊢R σ as desired.

In the following, we consider finite implication, so F is the set of finite instances.

Theorem 9.3.3 For no k does there exist a k-ary sound and complete axiomatization

for finite implication of fd’s and ind’s taken together. More specifically, for each k there

is a schema R for which there is no k-ary sound and complete axiomatization for finite

implication of fd’s and ind’s over R.

Proof Let k ≥ 0 be fixed. Let R = {R0, . . . , Rk} be a database schema where sort(Ri)=
{A,B} for each i ∈ [0, k]. In the remainder of this proof, addition is always done modulo

k + 1. The dependencies � =�a ∪�b and σ are defined by

(a) �a = {Ri : A→ B | i ∈ [0, k]};

(b) �b = {Ri[A]⊆ Ri+1[B] | i ∈ [0, k]}; and

(c) σ = R0[B]⊆ Rk[A].

Let Ŵ be the union of � with all fd’s and ind’s that are tautologies (i.e., that are satisfied by

all finite instances over R).

In the remainder of the proof, it is shown that (1) Ŵ is not closed under finite impli-

cation, but (2) Ŵ is closed under k-ary finite implication. Proposition 9.3.2 will then imply

that the family of fd’s and ind’s has no k-ary sound and complete axiomatization for R.

First observe that Ŵ does not contain σ , so to show that Ŵ is not closed under finite

implication, it suffices to demonstrate that � |=fin σ . Let I be a finite instance of R that

satisfies �. By the ind’s of �, |I(Ri)[A]| ≤ |I(Ri+1)[B]| for each i ∈ [0, k], and by the fd’s

of �, |I(Ri)[B]| ≤ |I(Ri)[A]| for each i ∈ [0, k]. From this we obtain
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|I(R0)[A]| ≤ |I(R1)[B]| ≤ |I(R1)[A]|

≤ . . .

≤ |I(Rk)[B]| ≤ |I(Rk)[A]| ≤ |I(R0)[B]| ≤ |I(R0)[A]|.

In particular, |I(Rk)[A]| = |I(R0)[B]|. Since I is finite and we have I(Rk)[A]⊆ I(R0)[B]

and |I(Rk)[A]| = |I(R0)[B]|, it follows that I(R0)[B]⊆ I(Rk)[A] as desired.

We now show that Ŵ is closed under k-ary finite implication. Suppose that $⊆ Ŵ has

no more than k elements (|$| ≤ k). It must be shown that if γ is an fd or ind and $ |=fin γ ,

then γ ∈ Ŵ. Because � contains k + 1 ind’s, any subset $ of Ŵ that has no more than k

members must omit some ind δ of �. We shall exhibit an instance I such that I |= γ iff

γ ∈ Ŵ − {δ}. (Thus I will be an Armstrong instance for Ŵ − {δ}.) It will then follow that

Ŵ − {δ} is closed under finite implication. Because $⊆ Ŵ − {δ}, this will imply that for

each fd or ind γ , if $ |=fin γ , then Ŵ − {δ} |=fin γ , so γ ∈ Ŵ.

Because � is symmetric with regard to ind’s, we can assume without loss of generality

that δ is the ind Rk[A] ⊆ R0[B]. Assuming that N × N is contained in the underlying

domain, define I so that

I(R0)= {〈(0, 0), (0, k + 1)〉, 〈(1, 0), (1, k + 1)〉, 〈(2, 0), (1, k + 1)〉}

and for each i ∈ [1, k],

I(Ri)= {〈(0, i), (0, i − 1)〉, 〈(1, i), (1, i − 1)〉, . . . ,

〈(2i + 1, i), (2i + 1, i − 1)〉, 〈(2i + 2, i), (2i + 1, i − 1)〉}.

Figure 9.2 shows I for the case k = 3.

We now show for each fd and ind γ over R that I |= γ iff γ ∈ Ŵ− δ. Three cases arise:

1. γ is a tautology. Then this clearly holds.

2. γ is an fd that is not a tautology. Then γ is equivalent to one of the following for

some i ∈ [0, k]:

Ri : A→ B, Ri : B→ A,

Ri : ∅→ A, Ri : ∅→ B,

or Ri : ∅→ AB.

If γ is Ri : A→ B, then γ ∈ Ŵ and clearly I |= γ . In the other cases, γ �∈ Ŵ and

I �|= γ .

3. γ is an ind that is not a tautology. Considering now which ind’s I satisfies, note

that the only pairs of nondisjoint columns of relations in I are

I(R0)[A], I(R1)[B];

I(R1)[A], I(R2)[B]; . . . ;

I(Rk−1)[A], I(Rk)[B].

Furthermore, I �|= Ri+1[B]⊆ Ri[A] for each i ∈ [0, k]; and I |= Ri[A]⊆ Ri+1[B].

This implies that I |= γ iff γ ∈ Ŵ − {δ}, as desired.
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I(R0) A B I(R1) A B

(0,0) (0,4) (0,1) (0,0)

(1,0) (1,4) (1,1) (1,0)

(2,0) (1,4) (2,1) (2,0)

(3,1) (3,0)

(4,1) (3,0)

I(R2) A B I(R3) A B

(0,2) (0,1) (0,3) (0,2)

(1,2) (1,1) (1,3) (1,2)

(2,2) (2,1) (2,3) (2,2)

(3,2) (3,1) (3,3) (3,2)

(4,2) (4,1) (4,3) (4,2)

(5,2) (5,1) (5,3) (5,2)

(6,2) (5,1) (6,3) (6,2)

(7,3) (7,2)

(8,3) (7,2)

Figure 9.2: An Armstrong relation for Ŵ − δ

In the proof of the preceding theorem all relations used are binary, and all fd’s and ind’s

are unary, in the sense that at most one attribute appears on either side of each dependency.

In proofs that there is no k-ary axiomatization for unrestricted implication of fd’s and ind’s,

some of the ind’s used involve at least two attributes on each side. This cannot be improved

to unary ind’s, because there is a 2-ary sound and complete axiomatization for unrestricted

implication of unary ind’s and arbitrary fd’s (see Exercise 9.18).

9.4 Restricted Kinds of Inclusion Dependency

This section explores two restrictions on ind’s for which several positive results have been

obtained. The first one focuses on sets of ind’s that are acyclic in a natural sense, and the

second restricts the ind’s to having only one attribute on either side. The restricted depen-

dencies are important because they are sufficient to model many natural relationships, such

as those captured by semantic models (see Chapter 11). These include subtype relationships

of the kind “every student is also a person.”

This section also presents a generalization of the chase that incorporates ind’s. Be-

cause ind’s are embedded, chasing in this context may lead to infinite chasing sequences.

In the context of acyclic sets of ind’s, however, the chasing sequences are guaranteed

to terminate. The study of infinite chasing sequences will be taken up in earnest in

Chapter 10.
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Ind’s and the Chase

Because ind’s may involve more than one relation, the formal notation of the chase must be

extended. Suppose now that R is a database schema, and let q = (T, t) be a tableau query

over R. The fd and jd rules are generalized to this context in the natural fashion.

We first present an example and then describe the rule that is used for ind’s.

Example 9.4.1 Consider the database schemas consisting of two relation schemas P,Q

with sort(P )= ABC, sort(Q)= DEF, the dependencies

Q[DE]⊆ P [AB] and P : A→ B,

and the tableau T shown in Fig. 9.3. Consider T1 and T2 in the same figure. The tableau

T1 is obtained by applying to T the ind rule given after this example. The intuition is that

the tuples 〈x, yi〉 should also be in the P -relation because of the ind. Then T2 is obtained

by applying the fd rule. Tableau minimization can be applied to obtain T3.

The following rule is used for ind’s.

ind rule: Let σ = R[X]⊆ S[Y ] be an ind, let u ∈ T(R), and suppose that there is no free

tuple v ∈ T(S) such that v[Y ]= u[X]. In this case, we say that σ is applicable to R(u).

Let w be a free tuple over S such that w[Y ]= u[X] and w has distinct new variables in

all coordinates of sort(S)− Y that are greater than all variables occurring in q. Then

“the” result of applying σ to R(u) is (T′, t), where

• T′(P )= T(P ) for each relation name P ∈ R − {S}, and

• T′(S)= T(S) ∪ {w}.

For a tableau query q and a set � of ind’s, it is possible that two terminal chasing

sequences end with nonisomorphic tableau queries, that there are no finite terminal chas-

ing sequences, or that there are both finite terminal chasing sequences and infinite chasing

sequences (see Exercise 9.12). General approaches to resolving this problem will be con-

sidered in Chapter 10. In the present discussion, we focus on acyclic sets of ind’s, for which

the chase always terminates after a finite number of steps.

Acyclic Inclusion Dependencies

Definition 9.4.2 A family � of ind’s over R is acyclic if there is no sequence Ri[Xi]⊆
Si[Yi] (i ∈ [1, n]) of ind’s in � where for i ∈ [1, n], Ri+1 = Si for i ∈ [1, n − 1], and

R1 = Sn. A family � of dependencies has acyclic ind’s if the set of ind’s in � is acyclic.

The following is easily verified (see Exercise 9.14):

Proposition 9.4.3 Let q be a tableau query and � a set of fd’s, jd’s, and acyclic ind’s

over R. Then each chasing sequence of q by � terminates after an exponentially bounded

number of steps.
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Figure 9.3: Chasing with ind’s

For each tableau query q and set � of fd’s, jd’s, and acyclic ind’s, let chase(q,�)

denote the result of some arbitrary chasing sequence of q by �. (One can easily come up

with some syntactic strategy for arbitrarily choosing this sequence.)

Using an analog to Lemma 8.4.3, one obtains the following result on tableau query

containment (an analog to Theorem 8.4.8).

Theorem 9.4.4 Let q, q ′ be tableau queries and � a set of fd’s, jd’s, and acyclic ind’s

over R. Then q ⊆� q ′ iff chase(q,�)⊆ chase(q ′, �).

Next we consider the application of the chase to implication of dependencies. For

database schema R and ind σ = R[X] ⊆ S[Y ] over R, the tableau query of σ is qσ =
({R(uσ )}, 〈uσ 〉), where uσ is a free tuple all of whose entries are distinct. For example,

given R[ABCD], S[EFG], and σ = R[BC] ⊆ S[GE], qσ = ({R(x1, x2, x3, x4)}, 〈x1, x2,



210 Inclusion Dependency

x3, x4〉). In analogy with Theorem 8.4.12, we have the following for fd’s, jd’s, and acyclic

ind’s.

Theorem 9.4.5 Let � be a set of fd’s, jd’s, and acyclic ind’s over database schema R

and let T be the tableau in chase(qσ , �). Then � |=unr σ iff

(a) For fd or jd σ over R, T satisfies the conditions of Theorem 8.4.12.

(b) For ind σ = R[X] ∈ S[Y ], uσ [X] ∈ T(S)[Y ].

This yields the following:

Corollary 9.4.6 Finite and unrestricted implication for sets of fd’s, jd’s, and acyclic

ind’s coincide and are decidable in exponential time.

An improvement of the complexity here seems unlikely, because implication of an ind

by an acyclic set of ind’s is np-complete (see Exercise 9.14).

Unary Inclusion Dependencies

A unary inclusion dependency (uind) is an ind in which exactly one attribute appears on

each side. The uind’s arise frequently in relation schemas in which certain columns range

over values that correspond to entity types (e.g., if SS# is a key for the Person relation and

is also used to identify people in the Employee relation).

As with arbitrary ind’s, unrestricted and finite implication do not coincide for fd’s

and uind’s (proof of Theorem 9.2.2). However, both forms of implication are decidable

in polynomial time. In this section, the focus is on finite implication. We present a sound

and complete axiomatization for finite implication of fd’s and uind’s (but in agreement with

Theorem 9.3.3, it is not k-ary for any k).

For uind’s considered in isolation, the inference rules for ind’s are specialized to

yield the following two rules, which are sound and complete for (unrestricted and finite)

implication. Here A, B, and C range over attributes and R, S, and T over relation names:

UIND1: (reflexivity) R[A]⊆ R[A].

UIND2: (transitivity) If R[A]⊆ S[B] and S[B]⊆ T [C], then R[A]⊆ T [C].

To capture the interaction of fd’s and uind’s in the finite case, the following family of

rules is used:

C: (cycle rules) For each positive integer n,

if





R1 : A1 → B1,

R2[A2]⊆ R1[B1],

. . . ,

Rn : An→ Bn, and

R1[A1]⊆ Rn[Bn]

then





R1 : B1 → A1,

R1[B1]⊆ R2[A2],

. . . ,

Rn : Bn→ An, and

Rn[Bn]⊆ R1[A1].
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The soundness of this family of rules follows from a straightforward cardinality argument.

More generally, we have the following (see Exercise 9.16):

Theorem 9.4.7 The set {FD1, FD2, FD3, UIND1, UIND2} along with the cycle rules

(C) is sound and complete for finite implication of fd’s and uind’s. Furthermore, finite

implication is decidable in polynomial time.
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Exercises

Exercise 9.1 Complete the proof of Proposition 9.1.5.

Exercise 9.2 Complete the proof of Theorem 9.1.7.

Exercise 9.3 [CFP84] (In this exercise, by a slight abuse of notation, we allow fd’s with
sequences rather than sets of attributes.) Demonstrate the following:

(a) If | �A| = | �B|, then {R[ �A �C]⊆ S[ �B �D], S : �B→ �D} |=unr R : �A→ �C.
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(b) If | �A| = | �B|, then {R[ �A �C]⊆ S[ �B �D], R[ �A �E]⊆ S[ �B �F ], S : �B→ �D} |=unr R[ �A �C �E]
⊆ S[ �B �D �F ].

(c) Suppose that | �A| = | �B|; � = {R[ �A �C] ⊆ S[ �B �D], R[ �A �E] ⊆ S[ �B �D], S : �B → �D};
and I |=�. Then u[ �C]= u[ �E] for each u ∈ I(R).

Exercise 9.4 As defined in the text, we require in ind R[A1, . . . , Am]⊆ S[B1, . . . , Bm] that
the Ai’s and Bi’s are distinct. A repeats-permitted inclusion dependency (rind) is defined as was
inclusion dependency, except that repeats are permitted in the attribute sequences on both the
left- and right-hand sides.

(a) Show that if � is a set of ind’s, σ a rind, and � |=unr σ , then σ is equivalent to an
ind.

(b) Exhibit a set � of ind’s and fd’s such that � |=unr R[AB]⊆ S[CC]. Do the same for
R[AA]⊆ R[BC].

♠ (c) [Mit83a] Consider the rules

IND4: If R[A1A2]⊆ S[BB] and R[ �C]⊆ T [ �D], then R[ �C ′]⊆ T [ �D], where �C ′

is obtained from �C by replacing one or more occurrences of A2 by A1.

IND5: If R[A1A2]⊆ S[BB] and T [ �C]⊆ R[ �D], then T [ �C]⊆ R[ �D′], where �D′

is obtained from �D by replacing one or more occurrences of A2 by A1.

Prove that the inference rules {IND1, IND2, IND3, IND4, IND5} are sound and
complete for finite implication of sets of rind’s.

(d) Prove that unrestricted and finite implication coincide for rind’s.

(e) A left-repeats-permitted inclusion dependency (l-rind) is a rind for which there are no
repeats on the right-hand side. Given a set � ∪ {σ } of l-rind’s over R, describe how
to construct a schema R′ and ind’s �′ ∪ {σ ′} over R′ such that � |= σ iff �′ |= σ ′

and � |=fin σ iff �′ |=fin σ
′.

(f) Do the same as in part (e), except for arbitrary rind’s.

Exercise 9.5 [CV85] Prove part (b) of Theorem 9.2.4. Hint: In the proof of part (a), extend
the schema of R to include new attributes Aα′, Aβ ′, and Ay′; add dependencies Ay → Ay′,
R[Aα, Aα′]⊆ R[Ay, Ay′], R[Aβ, Aβ ′]⊆ R[Ay, Ay′]; and use Aα′→ Aβ ′ as σ .

Exercise 9.6

(a) Develop an alternative proof of Theorem 9.3.3 in which δ is an fd rather than an ind.

(b) In the proof of Theorem 9.3.3 for finite implication, the dependency σ used is an ind.
Using the same set �, find an fd that can be used in place of σ in the proof.

Exercise 9.7 Prove that there is no k for which there is a k-ary sound and complete axiomati-
zation for finite implication of fd’s, jd’s, and ind’s.

⋆Exercise 9.8 [SW82] Prove that there is no k-ary sound and complete set of inference rules
for finite implication of emvd’s.

Exercise 9.9 Recall the notion of sort-set dependency (ssd) from Exercise 8.32.

(a) Prove that finite and unrestricted implication coincide for fd’s and ssd’s considered
together. Conclude that implication for fd’s and ssd’s is decidable.



Exercises 213

⋆ (b) [GH86] Prove that there is no k-ary sound and complete set of inference rules for
finite implication of fd’s (key dependencies) and ssd’s taken together.

Exercise 9.10

(a) [CFP84] A set of ind’s is bounded by k if each ind in the set has at most k attributes
on the left-hand side and on the right-hand side. Show that logical implication for
bounded sets of ind’s is decidable in polynomial time.

(b) [CV83] An ind is typed if it has the form R[ �A ]⊆ S[ �A ]. Exhibit a polynomial time
algorithm for deciding logical implication between typed ind’s.

Exercise 9.11 Suppose that some attribute domains may be finite.

(a) Show that {IND1, IND2, IND3} remains sound in the framework.

(b) Show that if one-element domains are permitted, then {IND1, IND2, IND3} is not
complete.

(c) Show for each n > 0 that if all domains are required to have at least n elements, then
{IND1, IND2, IND3} is not complete.

Exercise 9.12 Suppose that no restrictions are put on the order of application of ind rules in
chasing sequences.

(a) Exhibit a tableau query q and a set � of ind’s and two terminal chasing sequences of
q by � that end with nonisomorphic tableau queries.

(b) Exhibit a tableau query q and a set � of ind’s, a terminal chasing sequence of q by
�, and an infinite chasing sequence of q by �.

(c) Exhibit a tableau query q and a set � of ind’s such that q has no finite terminal
chasing sequence by �.

♠Exercise 9.13 [JK84b] Recall that for tableau queries q and q ′ and a set � of fd’s and jd’s
over R, q ⊆� q ′ if for each instance I that satisfies �, q(I )⊆ q ′(I ). In the context of ind’s, this
containment relationship may depend on whether infinite instances are permitted or not. For
tableau queries q, q ′ and a set � of dependencies over R, we write q ⊆�,fin q

′ (q ⊆�,unr q
′) if

q(I)⊆ q ′(I) for each finite (unrestricted) instance I that satisfies �.

(a) Show that if � is a set of fd’s and jd’s, then ⊆�,fin and ⊆�,unr coincide.

(b) Exhibit a set � of fd’s and ind’s and tableau queries q, q ′ such that q ⊆�,fin q
′ but

q �⊆�,unr q
′.

Exercise 9.14

(a) Prove Proposition 9.4.3.

(b) Prove Theorem 9.4.4.

(c) Let q be a tableau query and � a set of fd’s, jd’s, and ind’s over R, where the set of
ind’s in � is acyclic; and suppose that q ′, q ′′ are the final tableaux of two terminal
chasing sequences of q by � (where the order of rule application is not restricted).
Prove that q ≡ q ′.

(d) Prove Theorem 9.4.5.

(e) Prove Corollary 9.4.6.

Exercise 9.15
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(a) Exhibit an acyclic set � of ind’s and a tableau query q such that chase(q,�) is
exponential in the size of � and q.

(b) [CK86] Prove that implication of an ind by an acyclic set of ind’s is np-complete.
Hint: Use a reduction from the problem of Permutation Generation [GJ79].

(c) [CK86] Recall from Exercise 9.10(b) that an ind is typed if it has the form R[ �A]⊆
S[ �A]. Prove that implication of an ind by a set of fd’s and an acyclic set of typed
ind’s is np-hard. Hint: Use a reduction from 3-SAT.

♠Exercise 9.16 [CKV90] In this exercise you will prove Theorem 9.4.7. The exercise begins by
focusing on the unirelational case; for notational convenience we omit the relation name from
uind’s in this context.

Given a set � of fd’s and uind’s over R, define G(�) to be a multigraph with node set R
and two colors of edges: a red edge from A to B if A→ B ∈ �, and a black edge from A to
B is B ⊆ A ∈ �. If A and B have red (black) edges in both directions, replace them with an
undirected red (black) edge.

(a) Suppose that� is closed under the inference rules. Prove thatG(�) has the following
properties:

1. Nodes have red (black) self-loops, and the red (black) subgraph of G(�) is
transitively closed.

2. The subgraphs induced by the strongly connected components of G(�)

contain only undirected edges.
3. In each strongly connected component, the red (black) subset of edges

forms a collection of node disjoint cliques (the red and black partitions of
nodes could be different).

4. If A1 . . . Am→ B is an fd in � and A1, . . . , Am have common ancestor A
in the red subgraph of G(�), then G(�) contains a red edge from A to B.

(b) Given a set � of fd’s and uind’s closed under the inference rules, use G(�) to build
counterexample instances that demonstrate that � �⊢ σ implies � �|=fin σ for fd or
uind σ .

(c) Use the rules to develop a polynomial time algorithm for inferring finite implication
for a set of fd’s and uind’s.

(d) Generalize the preceding development to arbitrary database schemas.

Exercise 9.17

(a) Let k > 1 be an integer. Prove that there is a database schema R with at least one
unary relation R ∈ R, and a set � of fd’s and ind’s such that

(i) for each I |=�, |I(R)| = 0 or |I(R)| = 1 or |I(R)| ≥ k.
(ii) for each l ≥ k there is an instance Il |=� with |I(R)| = l.

(b) Prove that this result cannot be strengthened so that condition (i) reads
(i) (i′) for each I |=�, |I(R)| = 0 or |I(R)| = 1 or |I(R)| = k.

♠Exercise 9.18 [CKV90]

(a) Show that the set of inference rules containing {FD1, FD2, FD3, UIND1, UIND2}
and

FD-UIND1: If ∅→ A and R[B]⊆ R[A], then ∅→ B.

FD-UIND1: If ∅→ A and R[B]⊆ R[A], then R[A]⊆ R[B].



Exercises 215

is sound and complete for unrestricted logical implication of fd’s and uind’s over a
single relation schema R.

(b) Generalize this result to arbitrary database schemas, under the assumption that in all
instances, each relation is nonempty.
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Alice: fd’s, jd’s, mvd’s, ejd’s, emvd’s, ind’s—it’s all getting very confusing.

Vittorio: Wait! We’ll use logic to unify it all.

Sergio: Yes! Logic will make everything crystal clear.

Riccardo: And we’ll get a better understanding of dependencies that make sense.

The dependencies studied in the previous chapters have a strong practical motivation

and provide a good setting for studying two of the fundamental issues in dependency

theory: deciding logical implication and constructing axiomatizations.

Several new dependencies were introduced in the late 1970s and early 1980s, some-

times motivated by practical examples and later motivated by a desire to understand funda-

mental theoretical properties of unirelational dependencies or to find axiomatizations for

known classes of dependencies. This process culminated with a rather general perspec-

tive on dependencies stemming from mathematical logic: Almost all dependencies that

have been introduced in the literature can be described as logical sentences having a sim-

ple structure, and further syntactic restrictions on that structure yield natural subclasses

of dependencies. The purpose of this chapter is to introduce this general class of depen-

dencies and its natural subclasses and to present important results and techniques obtained

for them.

The general perspective is given in the first section, along with a simple application of

logic to obtain the decidability of implication for a large class of dependencies. It turns out

that the chase is an invaluable tool for analyzing implication; this is studied in the second

section. Axiomatizations for important subclasses have been developed, again using the

chase; this is the topic of the third section. We conclude the chapter with a provocative

alternative view of dependencies stemming from relational algebra.

The classes of dependencies studied in this chapter include complex dependencies that

would not generally arise in practice. Even if they did arise, they are so intricate that they

would probably be unusable—it is unlikely that database administrators would bother to

write them down or that software would be developed to use or enforce them. Nevertheless,

it is important to repeat that the perspective and results discussed in this chapter have served

the important function of providing a unified understanding of virtually all dependencies

raised in the literature and, in particular, of providing insight into the boundaries between

tractable and intractable problems in the area.

216
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10.1 A Unifying Framework

The fundamental property of all of the dependencies introduced so far is that they essen-

tially say, “The presence of some tuples in the instance implies the presence of certain other

tuples in the instance, or implies that certain tuple components are equal.” In the case of

jd’s and mvd’s, the new tuples can be completely specified in terms of the old tuples, but

for ind’s this is not the case. In any case, all of the dependencies discussed so far can be

expressed using first-order logic sentences of the form

(∗) ∀x1 . . .∀xn [ ϕ(x1, . . . , xn)→∃z1 . . . ∃zkψ(y1, . . . , ym) ],

where {z1, . . . , zk} = {y1, . . . , ym} − {x1, . . . , xn}, and where ϕ is a (possibly empty) con-

junction of atoms and ψ a nonempty conjunction. In both ϕ and ψ , one finds relation

atoms of the form R(w1, . . . , wl) and equality atoms of the form w = w′, where each of

the w,w′, w1, . . . , wl is a variable.

Because we generally focus on sets of dependencies, we make several simplifying as-

sumptions before continuing (see Exercise 10.1a). These include that (1) we may eliminate

equality atoms from ϕ without losing expressive power; and (2) we can also assume with-

out loss of generality that no existentially quantified variable participates in an equality

atom in ψ . Thus we define an (embedded) dependency to be a sentence of the foregoing

form, where

1. ϕ is a conjunction of relation atoms using all of the variables x1, . . . , xn;

2. ψ is a conjunction of atoms using all of the variables z1, . . . , zk; and

3. there are no equality atoms in ψ involving existentially quantified variables.

A dependency is unirelational if at most one relation name is used, and it is multire-

lational otherwise. To simplify the presentation, the focus in this chapter is almost exclu-

sively on unirelational dependencies. Thus, unless otherwise indicated, the dependencies

considered here are unirelational.

We now present three fundamental classifications of dependencies.

Full versus embedded: A full dependency is a dependency that has no existential quanti-

fiers.

Tuple generating versus equality generating: A tuple-generating dependency (tgd) is a

dependency in which no equality atoms occur; an equality-generating dependency

(egd) is a dependency for which the right-hand formula is a single equality atom.

Typed versus untyped: A dependency is typed if there is an assignment of variables to

column positions such that (1) variables in relation atoms occur only in their assigned

position, and (2) each equality atom involves a pair of variables assigned to the same

position.

It is sometimes important to distinguish dependencies with a single atom in the right-

hand formula. A dependency is single head if the right-hand formula involves a single

atom; it is multi-head otherwise.

The following result is easily verified (Exercise 10.1b).
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Figure 10.1: Dependencies

Proposition 10.1.1 Each (typed) dependency is equivalent to a set of (typed) egd’s

and tgd’s.

It is easy to classify the fd’s, jd’s, mvd’s, ejd’s, emvd’s and ind’s studied in Chapters 8

and 9 according to the aforementioned dimensions. All except the last are typed. During the

late 1970s and early 1980s the class of typed dependencies was studied in depth. In many

cases, the results obtained for dependencies and for typed dependencies are equivalent.

However, for negative results the typed case sometimes requires more sophisticated proof

techniques because it imposes more restrictions.

A classification of dependencies along the three axes is given in Fig. 10.1. The gray

square at the lower right indicates that each full multihead tgd is equivalent to a set of

single-head tgd’s. The intersection of ind’s and jd’s stems from trivial dependencies. For

example, R[AB]⊆ R[AB] and ⊲⊳[AB] over relation R(AB) are equivalent [and are syn-

tactically the same when written in the form of (∗)].

There is a strong relationship between dependencies and tableaux. Tableaux provide

a convenient notation for expressing and working with dependencies. (As will be seen in

Section 10.4, the family of typed dependencies can also be represented using a formalism

based on algebraic expressions.) The tableau representation of two untyped egd’s is shown

in Figs. 10.2(a) and 10.2(b). These two egd’s are equivalent. Note that all egd’s can be

expressed as a pair (T , x = y), where T is a tableau and x, y ∈ var(T ). If (T , x = y) is

typed, unirelational, and x, y are in the A column of T , then this is referred to as an A-egd.

Parts (c) and (d) of Fig. 10.2 show two full tgd’s that are equivalent. This is especially

interesting because, considered as tableau queries, (T ′, t) properly contains (T , t) (see

Exercise 10.4). As suggested earlier, each full tgd is equivalent to some set of full single-

head tgd’s. In the following, when considering full tgd’s, we will assume that they are

single head.

Part (e) of Fig. 10.2 shows a typed tgd that is not single head. To represent these within
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Figure 10.2: Five dependencies

the tableau notation, we use an ordered pair (T1, T2), where both T1 and T2 are tableaux.

This tgd is not equivalent to any set of single-head tgd’s (see Exercise 10.6b).

Finite versus Unrestricted Implication Revisited

We now reexamine the issues of finite versus unrestricted implication using the logical

perspective on dependencies. Because all of these lie within first-order logic, |=fin is co-r.e.

and |=unr is r.e. (see Chapter 2). Suppose that � = {σ1, . . . , σn} is a set of dependencies and

{σ } a dependency. Then � |=unr σ (� |=fin σ ) iff there is no unrestricted (finite) model of

σ1 ∧ · · · ∧ σn ∧¬σ . If these are all full dependencies, then they can be rewritten in prenex

normal form, where the quantifier prefix has the form ∃∗∀∗. (Here each of the σi is uni-

versally quantified, and ¬σ contributes the existential quantifier.) The family of sentences

that have a quantifier prefix of this form (and no function symbols) is called the initially ex-

tended Bernays-Schönfinkel class, and it has been studied in the logic community since the

1920s. It is easily verified that finite and unrestricted satisfiability coincide for sentences

in this class (Exercise 10.3). It follows that finite and unrestricted implication coincide for

full dependencies and, as discussed in Chapter 9, it follows that implication is decidable.
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On the other hand, because fd’s and uind’s are dependencies, we know from Theorem 9.2.4

that the two forms of implication do not coincide for (embedded) dependencies, and both

are nonrecursive. Although not demonstrated here, these results have been extended to the

family of embedded multivalued dependencies (emvd’s).

To summarize:

Theorem 10.1.2

1. For full dependencies, finite and unrestricted implication coincide and are decid-

able.

2. For (typed) dependencies, finite and unrestricted implication do not coincide and

are both undecidable. In fact, this is true for embedded multivalued dependencies.

In particular, finite implication is not r.e., and unrestricted implication is not co-r.e.

10.2 The Chase Revisited

As suggested by the close connection between dependencies and tableaux, chasing is an in-

valuable tool for characterizing logical implication for dependencies. In this section we first

use chasing to develop a test for logical implication of arbitrary dependencies by full depen-

dencies. We also present an application of the chase for determining how full dependencies

are propagated to views. We conclude by extending the chase to work with embedded de-

pendencies. In this discussion we focus almost entirely on typed dependencies, but it will

be clear that the arguments can be modified to the untyped case.

Chasing with Full Dependencies

We first state without proof the natural generalization of chasing by fd’s and jd’s (Theo-

rem 8.4.12) to full dependencies (see Exercise 10.8). In this context we begin either with a

tableau T , or with an arbitrary tgd (T , T ′) or egd (T , x = y). The notion of applying a full

dependency to this is defined in the natural manner. Lemma 8.4.17 and the notation devel-

oped for it generalize naturally to this context, as does the following analog of Theorem

8.4.18:

Theorem 10.2.1 If � is a set of full dependencies and T is a tableau (τ a dependency),

then chasing T (τ) by � yields a unique finite result, denoted chase(T ,�) (chase(τ,�)).

Logical implication of (full or embedded) dependencies by sets of full dependencies

will now be characterized by a straightforward application of the techniques developed in

Section 8.4 (see Exercise 10.8). A dependency τ is trivial if

(a) τ is an egd (T , x = x); or

(b) τ is a tgd (T , T ′) and there is a substitution θ for T ′ such that θ(T ′)⊆ T and θ

is the identity on var(T ) ∩ var(T ′).

Note that if τ is a full tgd, then (b) simply says that T ′ ⊆ T .



10.2 The Chase Revisited 221

A dependency τ is a tautology for finite (unrestricted) instances if each finite (unre-

stricted) instance of appropriate type satisfies τ—that is, if ∅ |=fin τ (∅ |=unr τ ). It is easily

verified that a dependency is a tautology iff it is trivial.

The following now provides a simple test for implication by full typed dependencies:

Theorem 10.2.2 Let � be a set of full typed dependencies and τ a typed dependency.

Then � |= τ iff chase(τ,�) is trivial.

Recall that the chase relies on a total order ≤ on var. For egd (T , x = y) we assume

that x < y and that these are the least and second to least variables appearing in the tableau;

and for full tgd (T , t), t (A) is least in T (A) for each attribute A. Using this convention, we

can obtain the following:

Corollary 10.2.3 Let � be a set of full typed dependencies.

(a) If τ = (T , x = y) is a typed egd, then � |= τ iff x and y are identical or y �∈
var(chase(T ,�)).

(b) If τ = (T , t) is a full typed tgd, then � |= τ iff t ∈ chase(T ,�).

Using the preceding results, it is straightforward to develop a deterministic exponential

time algorithm for testing implication of full dependencies. It is also known that for both

the typed and untyped cases, implication is complete in exptime. (Note that, in contrast,

logical implication for arbitrary sets of initially extended Bernays-Schöfinkel sentences is

known to be complete in nondeterministic exptime.)

Dependencies and Views

On a bit of a tangent, we now apply the chase to characterize the interaction of full

dependencies and user views. Let R = {R1, . . . , Rn} be a database schema, where Rj has

associated set �j of full dependencies for j ∈ [1, n]. Set � = {Ri : σ | σ ∈�i}. Note that

the elements of � are tagged by the relation name they refer to. Suppose that a view is

defined by algebraic expression E : R → S[V ]. It is natural to ask what dependencies will

hold in the view. Formally, we say that R : � implies E : σ , denoted R : � |= E : σ , if E(I)

satisfies σ for each I that satisfies �. The notion of R : � |= E : Ŵ for a set Ŵ is defined in

the natural manner.

To illustrate these notions in a simple setting, we state the following easily verified

result (see Exercise 10.10).

Proposition 10.2.4 Let (R[U ], �) be a relation schema where � is a set of fd’s and

mvd’s, and let V ⊆ U . Then

(a) R : � |= [πV (R)] : X→ A iff � |=X→ A and XA⊆ V .

(b) R : � |= [πV (R)] : X→→ Y iff � |=X→→ Z for some X ⊆ V and Y = Z ∩ V .

Given a database schema R, a family � of tagged full dependencies over R, a view
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expression E mapping R to S[V ], and a full dependency γ , is it decidable whether

R : � |= E : γ ? If E ranges over the full relational algebra, the answer is no, even if the

only dependencies considered are fd’s.

Theorem 10.2.5 It is undecidable, given database schema R, tagged fd’s �, algebra

expression E : R → S and fd σ over S, whether R : � |= E : σ .

Proof Let R = {R[U ], S[U ]}, σ = R : ∅→ U and � = {σ }. Given two algebra expres-

sions E1, E2 : S→ R, consider

E = R ∪ [E1(S)− E2(S)] ∪ [E2(S)− E1(S)]

Then R : � |= E : σ iff E1 ≡ E2. This is undecidable by Corollary 6.3.2.

In contrast, we now present a decision procedure, based on the chase, for inferring

view dependencies when the view is defined using the SPCU algebra.

Theorem 10.2.6 It is decidable whether R : � |= E : γ , if E is an SPCU query and

� ∪ {γ } is a set of (tagged) full dependencies.

Crux We prove the result for SPC queries that do not involve constants, and leave the

extension to include union and constants for the reader (Exercise 10.12).

Let E : R → S[V ] be an SPC expression, where S �∈ R. Recall from Chapter 4 (The-

orem 4.4.8; see also Exercise 4.18) that for each such expression E there is a tableau

mapping τE = (T, t) equivalent to E.

Assume now that � is a set of full dependencies and γ a full tgd. (The case where γ is

an egd is left for the reader.) Let the tgd γ over S be expressed as the tableau (W,w). Create

a new free instance Z out of (T, t) and W as follows: For each tuple u ∈W , set Tu = ν(T)

where valuation ν maps t to u, and maps all other variables in T to new distinct variables.

Set Z= ∪u∈WTu. It can now be verified that R : � |= E : γ iff w ∈ E(chase(Z, �)).

In the case where� ∪ {γ } is a set of fd’s and mvd’s and the view is defined by an SPCU

expression, testing the implication of a view dependency can be done in polynomial time,

if jd’s are involved the problem is np-complete, and if full dependencies are considered the

problem is exptime-complete.

Recall from Section 8.4 that a satisfaction family is a family sat(R, �) for some set �

of dependencies. Suppose now that SPC expression E : R[U ]→ S[V ] is given, and that �

is a set of full dependencies over R. Theorem 10.2.6, suitably generalized, shows that the

family Ŵ of full dependencies implied by � for view E is recursive. This raises the natural

question: Does E(sat(R,�))= sat(Ŵ), that is, does Ŵ completely characterize the image

of sat(R,�) under E? The affirmative answer to this question is stated next. This result

follows from the proof of Theorem 10.2.6 (see Exercise 10.13).
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Theorem 10.2.7 If � is a set of full dependencies over R and E : R → S is an SPC

expression without constants, then there is a set Ŵ of full dependencies over S such that

E(sat(R, �))= sat(S, Ŵ).

Suppose now that E : R[U ]→ S[V ] is given, and � is a finite set of dependencies.

Can a finite set Ŵ be found such that E(sat(R,�))= sat(S, Ŵ)? Even in the case where

E is a simple projection and � is a set of fd’s, the answer to this question is sometimes

negative (Exercise 10.11c).

Chasing with Embedded Dependencies

We now turn to the case of (embedded) dependencies. From Theorem 10.1.2(b), it is

apparent that we cannot hope to generalize Theorem 10.2.2 to obtain a decision procedure

for (finite or unrestricted) implication of dependencies. As initially discussed in Chapter 9,

the chase need not terminate if dependencies are used. All is not lost, however, because we

are able to use the chase to obtain a proof procedure for testing unrestricted implication of

a dependency by a set of dependencies.

For nonfull tgd’s, we shall use the following rule. We present the rule as it applies to

tableaux, but it can also be used on dependencies.

tgd rule: Let T be a tableau, and let σ = (S, S′) be a tgd. Suppose that there is a valuation

θ for S that embeds S into T , but no extension θ ′ to var(S) ∪ var(S′) of θ such that

θ ′(S′)⊆ T . In this case σ can be applied to T .

Let θ1, . . . , θn be a list of all valuations having this property. For each i ∈ [1, n],

(nondeterministically) choose a distinct extension, i.e., an extension θ ′i to var(S) ∪
var(S′) of θi such that each variable in var(S′) − var(S) is assigned a distinct new

variable greater than all variables in T . (The same variable is not chosen in two

extensions θ ′i, θ
′
j , i �= j .)

The result of applying σ to T is T ∪ {θ ′i(S
′) | i ∈ [1, n]}.

This rule is nondeterministic because variables not occurring in T are chosen for the

existentially quantified variables of σ . We assume that some fixed mechanism is used for

selecting these variables when given T , (S, S′), and θ .

The notion of a chasing sequence T = T1, T2, . . . of a tableau (or dependency) by a

set of dependencies is now defined in the obvious manner. Clearly, this sequence may be

infinite.

Example 10.2.8 Let � = {τ1, τ2, τ3}, where
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Figure 10.3: Parts of a chasing sequence

We show here only the relevant variables of τ1, τ2, and τ3; all other variables are

assumed to be distinct. Here τ3 ≡ B→D.

In Fig. 10.3, we show some stages of a chasing sequence that demonstrates that

� |=unr A→D. To do that, the chase begins with the tableau {〈x1, x2, x3, x4〉, 〈x1, x5, x6,

x7〉}. Figure 10.3 shows the results of applying τ1, τ3, τ2, τ3 in turn (left to right). This

sequence implies that � |=unr A→D, because variables x4 and x7 are identified.

Consider now the typed tgd’s:
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The chasing sequence of Fig. 10.3 also implies that � |=unr τ4, because (x10, x2, x6,

x4) is in the second tableau. On the other hand, we now argue that � �|=unr τ5. Consider

the chasing sequence beginning as the one shown in Fig. 10.3, and continuing by applying

the sequence τ1, τ3, τ2, τ3 repeatedly. It can be shown that this chasing sequence will not

terminate and that (x1, x2, x6, v) does not occur in the resulting infinite sequence for any

variable v (see Exercise 10.16). It follows that � �|=unr τ5; in particular, the infinite result

of the chasing sequence is a counterexample to this implication. On the other hand, this

chasing sequence does not alone provide any information about whether � |=fin τ5. It can

be shown that this also fails.

To ensure that all relevant dependencies have a chance to influence a chasing sequence,

we focus on chasing sequences that satisfy the following conditions:

(1) Whenever an egd is applied, it is applied repeatedly until it is no longer

applicable.

(2) No dependency is “starved” (i.e., each dependency that is applicable infinitely

often is applied infinitely often).

Even if these conditions are satisfied, it is possible to have two chasing sequences of a

tableau T by typed dependencies, where one is finite and the other infinite (see Exer-

cise 10.14).

Now consider an infinite chasing sequence T1 = T , T2, . . . . Let us denote it by T ,�.

Because egd’s may be applied arbitrarily late in T ,�, for each n, tuples of Tn may be

modified as the result of later applications of egd’s. Thus we cannot simply take the union

of some tail Tn, Tn+1, . . . to obtain the result of the chase. As an alternative, for the chasing

sequence T ,� = T1, T2, . . . , we define

chase(T ,�)= {u | ∃n ∀m> n(u ∈ Tm)}.

This is nonempty because (1) the “new” variables introduced by the tgd rule are always

greater than variables already present; and (2) when the egd rule is applied, the newer

variable is replaced by the older one.

By generalizing the techniques developed, it is easily seen that the (possibly infinite)

resulting tableau satisfies all dependencies in�. More generally, let� be a set of dependen-

cies and σ a dependency. Then one can show that � |=unr σ iff for some chasing sequence

σ,� of σ using �, chase(σ,�) is trivial. Furthermore, it can be shown that

• if for some chasing sequence σ,� of σ using �, chase(σ,�) is trivial, then it is so

for all chasing sequences of σ using �; and

• for each chasing sequence σ,� = T1, . . . , Tn, . . . of σ using�, chase(σ,�) is trivial

iff Ti is trivial for some i.

This shows that, for practical purposes, it suffices to generate some chasing sequence of σ

using � and stop as soon as some tableau in the sequence becomes trivial.
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10.3 Axiomatization

A variety of axiomatizations have been developed for the family of dependencies and for

subclasses such as the full typed tgd’s. In view of Theorem 10.1.2, sound and complete

recursively enumerable axiomatizations do not exist for finite implication of dependencies.

This section presents an axiomatization for the family of full typed tgd’s and typed egd’s

(which is sound and complete for both finite and unrestricted implication). A generalization

to the embedded case (for unrestricted implication) has also been developed (see Exercise

10.21). The axiomatization presented here is closely related to the chase. In the next

section, a very different kind of axiomatization for typed dependencies is discussed.

We now focus on the full typed dependencies (i.e., on typed egd’s and full typed

tgd’s). The development begins with the introduction of a technical tool for forming the

composition of tableaux queries. The axiomatization then follows.

Composition of Typed Tableaux

Suppose that τ = (T , t) and σ = (S, s) are two full typed tableau queries over relation

schema R. It is natural to ask whether there is a tableau query τ • σ corresponding to the

composition of τ followed by σ—that is, with the property that for each instance I over R,

(τ • σ)(I )= σ(τ(I ))

and, if so, whether there is a simple way to construct it. We now provide an affirmative

answer to both questions. The syntactic composition of full typed tableau mappings will

be a valuable tool for combining pairs of full typed tgd’s in the axiomatization presented

shortly.

Let T = {t1, . . . , tn} and S = {s1, . . . , sm}. Suppose that tuple w is in σ(τ(I )). Then

there is an embedding ν of s1, . . . , sm into τ(I ) such that ν(s)= w. It follows that for each

j ∈ [1,m] there is an embedding µj of T into I , with µj(t)= ν(sj). This suggests that the

tableau of τ • σ should have mn tuples, with a block of n tuples for each sj .

To be more precise, for each j ∈ [1,m], let Tsj be θj(T ), where θj is a substitution that

maps t (A) to sj(A) for each attribute A of R and maps each other variable of T to a new,

distinct variable not used elsewhere in the construction. Now set

[S](T , t)≡ ∪{Tsj | j ∈ [1,m]} and τ • σ ≡ ([S](T , t), s).

The following is now easily verified (see Exercise 10.18):

Proposition 10.3.1 For full typed tableau queries τ and σ over R, and for each instance

I of R, τ • σ(I)= σ(τ(I )).

Example 10.3.2 The following table shows two full typed tableau queries and their

composition.
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It is straightforward to verify that the syntactic operation of composition is associative.

Suppose that τ and σ are full typed tableau queries. It can be shown by simple chasing

arguments that {τ, σ } and {τ • σ } are equivalent as sets of dependencies. It follows that full

typed tgd’s are closed under finite conjunction, in the sense that each finite set of full typed

tgd’s over a relation schema R is equivalent to a single full typed tgd. This property does

not hold in the embedded case (see Exercise 10.20).

An Axiomatization for Full Typed Dependencies

For full typed tgd’s, τ = (T , t) and σ = (S, s), we say that τ embeds into σ denoted

τ →֒ σ , if there is a substitution ν such that ν(T )⊆ S and ν(t)= s. Recall from Chapter 4

that τ ⊇ σ (considered as tableau queries) iff τ →֒ σ . As a result we have that if τ →֒ σ ,

then τ |= σ , although the converse does not necessarily hold. Analogously, for A-egd’s

τ = (T , x = y) and σ = (S, v = w), we define τ →֒ σ if there is a substitution ν such that

ν(T )⊆ S, and ν({x, y})= {v,w}. Again, if τ →֒ σ , then τ |= σ .

We now list the axioms for full typed tgd’s:

FTtgd1: (triviality) For each free tuple t without constants, ({t}, t).

FTtgd2: (embedding) If τ and τ →֒ σ , then σ .

FTtgd3: (composition) If τ and σ , then τ • σ .

The following rules focus exclusively on typed egd’s:

Tegd1: (triviality) If x ∈ var(T ), then (T , x = x).

Tegd2: (embedding) If τ and τ →֒ σ , then σ .

The final rules combining egd’s and full typed tgd’s use the following notation. Let

R[U ] be a relation schema. For A ∈ U , A denotes U − {A}. Given typed A-egd τ =
(T , x = y) over R, define free tuples ux, uy such that ux(A)= x, uy(A)= y and ux[A]=
uy[A] consists of distinct variables not occurring in T . Define two full typed tgd’s τx =
(T ∪ {uy}, ux) and τy = (T ∪ {ux}, uy).



228 A Larger Perspective

FTD1: (conversion) If τ = (T , x = y), then τx and τy.

FTD2: (composition) If (T , t) and (S, x = y), then ([S](T , t), x = y).

We now have the following:

Theorem 10.3.3 The set {FTtgd1, FTtgd2, FTtgd3, Tegd1, Tegd2, FTD1, FTD2}

is sound and complete for (finite and unrestricted) logical implication of full typed

dependencies.

Crux Soundness is easily verified. We illustrate completeness by showing that the FTtgd

rules are complete for tgd’s. Suppose that � |= τ = (T , t), where � is a set of full typed

tgd’s and (T , t) is full and typed. By Theorem 10.2.2 there is a chasing sequence of T by

� yielding T ′ with t ∈ T ′. Let σ1, . . . , σn (n ≥ 0) be the sequence of elements of � used

in the chasing sequence. It follows that t ∈ σn(. . . (σ1(T ) . . .), and by Proposition 10.3.1,

t ∈ (σ1 • · · · • σn)(T ). This implies that (σ1 • · · · • σn) →֒ (T , t). A proof of τ from � is

now obtained by starting with σ1 (or ({s}, s) if n= 0), followed by n− 1 applications of

FTtgd3 and one application of FTtgd2 (see Exercise (10.18b).

The preceding techniques and the chase can be used to develop an axiomatization of

unrestricted implication for the family of all typed dependencies.

10.4 An Algebraic Perspective

This section develops a very different paradigm for specifying dependencies based on the

use of algebraic expressions. Surprisingly, the class of dependencies formed is equivalent to

the class of typed dependencies. We also present an axiomatization that is rooted primarily

in algebraic properties rather than chasing and tableau manipulations.

We begin with examples that motivate and illustrate this approach.

Example 10.4.1 Let R[ABCD] be a relation schema. Consider the tgd τ of Fig. 10.4 and

the algebraic expression

πAC(πAB(R) ⊲⊳ πBC(R))⊆ πAC(R).

It is straightforward to verify that for each instance I over ABCD,

I |= τ iff πAC(πAB(I ) ⊲⊳ πBC(I ))⊆ πAC(I ).

Now consider dependency σ . One can similarly verify that for each instance I over

ABCD,

I |= σ iff πAC(πAB(I ) ⊲⊳ πBC(I ))⊆ πAC(πAD(I ) ⊲⊳ πCD(I )).
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Figure 10.4: Dependencies of Example 10.4.1

The observation of this example can be generalized in the following way. A project-

join (PJ) expression is an algebraic expression over a single relation schema using only

projection and natural join. We describe next a natural recursive algorithm for translating

PJ expressions into tableau queries (see Exercise 10.23). (This algorithm is also implicit in

the equivalence proofs of Chapter 4.)

Algorithm 10.4.2

Input: a PJ expression E over relation schema R[A1, . . . , An]

Output: a tableau query (T , t) equivalent to E

Basis: If E is simply R, then return ({〈x1, . . . , xn〉}, 〈x1, . . . , xn〉).

Inductive steps:

1. If E is πX(q) and the tableau query of q is (T , t), then return (T , πX(t)).

2. Suppose E is q1 ⊲⊳ q2 and the tableau query of qi is (Ti, ti) for i ∈ [1, 2].

Let X be the intersection of the output sorts of q1 and q2. Assume without

loss of generality that the two tableaux use distinct variables except that

t1(A)= t2(A) for A ∈X. Then return (T1 ∪ T2, t1 ⊲⊳ t2).

Suppose now that (T , T ′) is a typed dependency with the property that for some free

tuple t , (T , t) is the tableau associated by this algorithm with PJ expression E, and (T ′, t) is

the tableau associated with PJ expression E′. Suppose also that the only variables common

to T and T ′ are those in t . Then for each instance I , I |= (T , T ′) iff E(I)⊆ E′(I ).

This raises three natural questions: (1) Is the family of PJ inclusions equivalent to the

set of typed tgd’s? (2) If not, can this paradigm be extended to capture all typed tgd’s? (3)

Can this paradigm be extended to capture typed egd’s as well as tgd’s?

The answer to the first question is no (see Exercise 10.24).

The answer to the second and third questions is yes. This relies on the notion

of extended relations and extended project-join expressions. Let R[A1, . . . , An] be a

relation schema. For each i ∈ [1, n], we suppose that there is an infinite set of at-

tributes A1
i , A

2
i , . . . , called copies of Ai. The extended schema of R is the schema

R[A1
1, . . . , A

1
n, A

2
1, . . . , A

2
n, . . .]. For an instance I of R, the extended instance of R corre-

sponding to I , denoted I , has one “tuple” u for each tuple u ∈ I , where u(A
j

i )= u(Ai) for

each i ∈ [1, n] and j > 0.

An extended project-join expression over R is a PJ expression over R such that a
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Figure 10.5: tgd and egd of Example 10.4.3

projection operator is applied first to each occurrence ofR. (This ensures that the evaluation

and the result of such expressions involve only finite objects.) Given two extended PJ

expressions E and E′ with the same target sort, and instance I over R, E(I) ⊆e E
′(I )

denotes E(I)⊆ E′(I ).

An algebraic dependency is a syntactic expression of the form E ⊆e E
′, where E and

E′ are extended PJ expressions over a relation schema R with the same target sort. An

instance I over R satisfies E ⊆e E
′ if E(I)⊆e E

′(I )—that is, if E(I)⊆ E′(I ).

This is illustrated next.

Example 10.4.3 Consider the dependency τ of Fig. 10.5. Let

E = πACD1(R) ⊲⊳ πC1D1(R) ⊲⊳ πA1C1D(R).

Here we use A,A1, . . . to denote different copies the attribute A, etc.

It can be shown that, for each instance I over ABCD, I |= τ iff E1(I )⊆e E2(I ), where

E1 = πACD(E)

E2 = πACD(πAB1(R) ⊲⊳ πB1CD(R)).

(See Exercise 10.25).

Consider now the functional dependency A→ BC over ABCD. This is equivalent to

πABC(R) ⊲⊳ πAB1C1(R)⊆e πABCB1C1(R).

Finally, consider σ of Fig. 10.5. This is equivalent to F1 ⊆e F2, where

F1 = πAA1(E)

F2 = πAA1(R).

We next see that algebraic dependencies correspond precisely to typed dependencies.

Theorem 10.4.4 For each algebraic dependency, there is an equivalent typed depen-

dency, and for each typed dependency, there is an equivalent algebraic dependency.
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Crux Let R[A1, . . . , An] be a relation schema, and let E ⊆e E
′ be an algebraic depen-

dency over R, where E and E′ have target sort X. Without loss of generality, we can

assume that there is k such that the sets of attributes involved in E and E′ are contained

in Û = {A1
1, . . . , A

1
n, . . . , A

k
1, . . . , A

k
n}. Using Algorithm 10.4.2, construct tableau queries

τ = (T , t) and τ ′ = (T ′, t ′) over Û corresponding to E and E′. We assume without loss of

generality that τ and τ ′ do not share any variables except that t (A)= t ′(A) for each A ∈X.

Consider T (over Û ). For each tuple s ∈ T and j ∈ [1, k],

• construct an atom R(x1, . . . , xn), where xi = s(A
j

i ) for each i ∈ [1, n];

• construct atoms s(A
j

i )= s(A
j ′

i ) for each i∈ [1, n] and j, j ′ satisfying

1≤ j < j ′ ≤ k.

Let ϕ(x1, . . . , xp) be the conjunction of all atoms obtained from τ in this manner. Let

ψ(y1, . . . , yq) be constructed analogously from τ ′. It can now be shown (Exercise 10.26)

that E ⊆e E
′ is equivalent to the typed dependency

∀x1 . . . xp(ϕ(x1, . . . , xp)→∃z1 . . . zrψ(y1, . . . , yq)),

where z1, . . . , zr is the set of variables in {y1, . . . , yq} − {x1, . . . , xp}.
For the converse, we generalize the technique used in Example 10.4.3. For each at-

tribute A, one distinct copy of A is used for each variable occurring in the A column.

An Axiomatization for Algebraic Dependencies

Figure 10.6 shows a family of inference rules for algebraic dependencies. Each of these

rules stems from an algebraic property of join and project, and only the last explicitly uses

a property of extended instances. (It is assumed here that all expressions are well formed.)

The use of these rules to infer dependencies is considered in Exercises 10.31, and

10.32.

It can be shown that:

Theorem 10.4.5 The family {AD1, . . . , AD8} is sound and complete for inferring

unrestricted implication of algebraic dependencies.

To conclude this discussion of the algebraic perspective on dependencies, we consider

a new operation, direct product, and the important notion of faithfulness.

Faithfulness and Armstrong Relations

We show now that sets of typed dependencies have Armstrong relations,1 although these

may sometimes be infinite. To accomplish this, we first introduce a new way to combine

instances and an important property of it.

1 Recall that given a set � of dependencies over some schema R, an Armstrong relation for � is an
instance I over R that satisfies � and violates every dependency not implied by �.



232 A Larger Perspective

AD1: (Idempotency of Projection)

(a) πX(πYE)=e πXE

(b) πsort(E)E =e E

AD2: (Idempotency of Join)

(a) E ⊲⊳ πXE =e E

(b) πsort(E)(E ⊲⊳ E
′)⊆e E

AD3: (Monotonicity of Projection)

If E ⊆e E
′ then πXE ⊆e πXE

′

AD4: (Monotonicity of Join)

If E ⊆e E
′, then E ⊲⊳ E′′ ⊆e E

′ ⊲⊳ E′′

AD5: (Commutativity of Join)

E ⊲⊳ E′ =e E
′ ⊲⊳ E

AD6: (Associativity of Join)

(E ⊲⊳ E′) ⊲⊳ E′′ =e E ⊲⊳ (E
′ ⊲⊳ E′′)

AD7: (Distributivity of Projection over Join)

Suppose that X ⊆ sort(E) and Y ⊆ sort(E′). Then

(a) πX∪Y (E ⊲⊳ E
′)⊆e πX∪Y (E ⊲⊳ πYE

′).

(b) If sort(E) ∩ sort(E′)⊆ Y , then equality holds in (a).

AD8: (Extension)

If X ⊆ sort(R) and A,A′ are copies of the same attribute, then

πAA′R ⊲⊳ πAXR =e πAA′XR.

Figure 10.6: Algebraic dependency axioms

Let R be a relation schema of arity n. We blur our notation and use elements of

dom × dom as if they were elements of dom. Given tuples u = 〈x1, . . . , xn〉 and v =
〈y1, . . . , yn〉, we define the direct product of u and v to be

u⊗ v = 〈(x1, y1), . . . , (xn, yn)〉.

The direct product of two instances I, J over R is

I ⊗ J = {u⊗ v | u ∈ I, v ∈ J }.

This is generalized to form k-ary direct product instances for each finite k. Furthermore,

if J is a (finite or infinite) index set and {Ij | j ∈ J } is a family of instances over R, then

⊗{Ij | j ∈ J } denotes the (possibly infinite) direct product of this family of instances.

A dependency σ is faithful if for each family {Ij | j ∈ J } of nonempty instances,

⊗{Ij | j ∈ J } |= σ if and only if ∀j ∈ J , Ij |= σ.

(The restriction that the instances be nonempty is important—if this were omitted then no

nontrivial dependency would be faithful.)

The following holds because the ⊗ operator commutes with project, join, and “exten-

sion” (see Exercise 10.29).
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Proposition 10.4.6 The family of typed dependencies is faithful.

We can now prove that each set of typed dependencies has an Armstrong relation.

Theorem 10.4.7 Let � be a set of typed dependencies over relation R. Then there is a

(possibly infinite) instance I� such that for each typed dependency σ over R, I� |= σ iff

� |=unr σ .

Proof Let Ŵ be the set of typed dependencies over R not in �∗. For each γ ∈ Ŵ, let

Iγ be a nonempty instance that satisfies � but not γ . Then ⊗{Iγ | γ ∈ Ŵ} is the desired

relation.

This result cannot be strengthened to yield finite Armstrong relations because one can

exhibit a finite set of typed tgd’s with no finite Armstrong relation.
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That investigation is extended in [Hul85], where it is shown that if � is a family of
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Exercises

Exercise 10.1

(a) Show that for each first-order sentence of the form (∗) of Section 10.1, there exists
an equivalent finite set of dependencies.

(b) Show that each dependency is equivalent to a finite set of egd’s and tgd’s.

Exercise 10.2 Consider the tableaux in Example 10.3.2. Give σ • σ . Compare it (as a map-
ping) to σ . Give σ • τ . Compare it (as a mapping) to τ • σ .

Exercise 10.3 [DG79] Let ϕ be a first-order sentence with equality but no function symbols
that is in prenex normal form and has quantifier structure ∃∗∀∗. Prove that ϕ has an unrestricted
model iff it has a finite model.

Exercise 10.4 This exercise concerns the dependencies of Fig. 10.2.

(a) Show that (S, x = z) and (S ′, x = z) are equivalent.

(b) Show that (T , t) and (T ′, t) are equivalent, but that (T , t) ⊂ (T ′, t) as tableau
queries.

Exercise 10.5 Let R[ABC] be a relation scheme. We construct a family of egd’s over R as
follows. For n≥ 0, let

Tn = {〈xi, yi, z2i〉, 〈xi, yi+1, z2i+1〉 | i ∈ [0, n]}

and set τn = (Tn, z0 = z2n+1). Note that τ0 ≡ A→ C.
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(a) Prove that as egd’s, τi ≡ τj for all i, j > 0.

(b) Prove that τ0 |= τ1, but not vice versa.

Exercise 10.6

(a) [FUMY83] Prove that there are exactly three distinct (up to equivalence) full typed
single-head tgd’s over a binary relation. Hint: See Exercise 10.4.

(b) Prove that there is no set of single-head tgd’s that is equivalent to the typed tgd
(T1, T2) of Fig. 10.2.

(c) Exhibit an infinite chain τ1, τ2, . . . of typed tgd’s over a binary relation where each
is strictly weaker than the previous (i.e., such that τi |= τi+1 but τi+1 �|= τi for each
i ≥ 1).

⋆Exercise 10.7 [FUMY83] Let U = {A1, . . . , An} be a set of attributes.

(a) Consider the full typed single-head tgd (full template dependency) τstrongest =
({t1, . . . , tn}, t), where ti(Ai)= t (Ai) for i ∈ [1, n], and all other variables used are
distinct. Prove that τstrongest is the “strongest” template dependency for U , in the
sense that for each (not necessarily full) template dependency τ overU , τstrongest |= τ .

(b) Let τweakest be the template dependency (S, s), where s(Ai) = xi for i ∈ [1, n] and
where S includes all tuples s ′ over U that satisfy (1) s ′(Ai)= xi or yi for i ∈ [1, n],
and (2) s ′(Ai) �= xi for at least one i ∈ [1, n]. Prove that τweakest is the “weakest” full
template dependency U , in the sense that for each nontrivial full template depen-
dency τ over U , τ |= τweakest.

(c) For V ⊆ U , a template dependency over U is V -partial if it can be expressed as a
tableau (T , t), where t is over V . For V ⊆ U exhibit a “weakest” V -partial template
dependency.

Exercise 10.8 [BV84c] Prove Theorems 10.2.1 and 10.2.2.

Exercise 10.9 Prove that the triviality problem for typed tgd’s is np-complete. Hint: Use a
reduction from tableau containment (Theorem 6.2.3).

Exercise 10.10

(a) Prove Proposition 10.2.4.

(b) Develop an analogous result for the binary natural join.

Exercise 10.11 Let R[ABCDE] and S[ABCD] be relation schemas, and let V = ABCD. Con-
sider � = {A→ E,B→ E,CE →D}.

(a) Describe the set Ŵ of fd’s implied by � on πV (R).

(b) [GZ82] Show that sat(πV (R,�)) �= sat(S, Ŵ). Hint: Consider the instance J =
{〈a, b1,

c, d1〉, 〈a, b, c1, d2〉, 〈a1, b, c, d3〉} over S.

⋆ (c) [Hul84] Show that there is no finite set ϒ of full dependencies over S such that
πV (sat(R,�))= sat(S,ϒ) Hint: Say that a satisfaction family F over R has rank
n if F = sat(R, Ŵ) for some Ŵ where the tableau in each dependency of Ŵ has ≤ n

elements. Suppose that πV (sat(R,�)) has rank n. Exhibit an instance J over V with
n+ 1 elements such that (a) J �∈ πV (sat(R,�)), and (b) J satisfies each dependency
σ that is implied for πV (R) by �, and that has ≤ n elements in its tableau. Conclude
that J ∈ sat(V , Ŵ), a contradiction.
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⋆ (d) [Hul84] Develop a result for mvd’s analogous to part (c).

Exercise 10.12 [KP82] Complete the proof of Theorem 10.2.6 for the case where � is a set of
full dependencies and γ is a full tgd. Show how to extend that proof (a) to the case where γ is
an egd; (b) to include union; and (c) to permit constants in the expression E. Hint: For (a), use
the technique of Theorem 8.4.12; for (b) use union of tableaux, but permitting multiple output
rows; and for (c) recall Exercise 8.27b.

Exercise 10.13 [Fag82b] Prove Theorem 10.2.7.

Exercise 10.14 Exhibit a typed tgd τ and a set � of typed dependencies such that � |= τ , and
there are two chasing sequences of τ by �, both of which satisfy conditions (1) and (2), in the
definition of chasing for embedded dependencies in Section 10.2, where one sequence is finite
and the other is infinite.

Exercise 10.15 Consider these dependencies:

A B C

x

y

z

z

x

τ2

y

τ3

A B C

x y

x z

τ1

y z

AC → B

(a) Starting with input T = {〈1, 2, 3〉, 〈1, 4, 5〉}, perform four steps of the chase using
these dependencies.

(b) Prove that {τ1, τ2, τ3} �|=unr A→ B.

⋆Exercise 10.16

(a) Prove that the chasing sequence of Example 10.2.8 does not terminate; then use this
sequence to verify that � �|=unr τ5.

(b) Show that � �|=fin τ5.

(c) Exhibit a set �′ of dependencies and a dependency σ ′ such that the chasing sequence
of σ ′ with �′ is infinite, and such that �′ �|=unr σ

′ but �′ |=fin σ
′.

♠Exercise 10.17 [BV84c] Suppose that T ,� is a chasing sequence. Prove that chase(T ,�)

satisfies �.

Exercise 10.18 [BV84a] (a) Prove Proposition 10.3.1. (b) Complete the proof of Theo-
rem 10.3.3.

Exercise 10.19 [FUMY83] This exercise uses the direct product construction for combining
full typed tableau mappings. Let R be a fixed relation schema of arity n. The direct product
of free tuples and tableaux is defined as for tuples and instances. Given two full typed tgd’s
τ = (T , t) and τ ′ = (T ′, t ′) over relation schema R, their direct product is

τ ⊗ τ ′ = (T ⊗ T ′, t ⊗ t ′).

(a) Let τ, σ be full typed single-head tgd’s over R. Prove that τ ⊗ σ is equivalent to
{τ, σ }.
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(b) Are τ ⊗ σ and τ • σ comparable as tableau queries under ⊆, and, if so, how?

(c) Show that the family of typed egd’s that have equality atoms referring to the same
column of R is closed under finite conjunction.

Exercise 10.20 [FUMY83]

(a) Let τ and τ ′ be typed tgd’s. Prove that τ |=unr τ
′ iff τ |=fin τ

′. Hint: Show that chasing
will terminate in this case.

(b) Prove that there is a pair τ, τ ′ of typed tgd’s for which there is no typed tgd τ ′′

equivalent to {τ, τ ′}. Hint: Assume that typed tgd’s were closed under conjunction in
this way. Use part (a).

⋆Exercise 10.21 [BV84a] State and prove an axiomatization theorem for the family of typed
dependencies.

Exercise 10.22 [SU82] Exhibit a set of axioms for template dependencies (i.e., typed single-
head tgd’s), and prove that it is sound and complete for unrestricted logical implication.

Exercise 10.23 Prove that Algorithm 10.4.2 is correct. (See Exercise 4.18a).

Exercise 10.24

(a) Consider the full typed tgd

τ = ({〈x, y ′〉, 〈x ′, y ′〉, 〈x ′, y〉}, 〈x, y〉).

Prove that there is no pair E,E′ of (nonextended) PJ expressions such that τ is
equivalent to E ⊆ E′ [i.e., such that I |= τ iff E(I)⊆ E′(I )].

(b) Let τ be as in Fig. 10.5. Prove that there is no pair E,E′ of (nonextended) PJ
expressions such that τ is equivalent to E ⊆ E′.

Exercise 10.25 In connection with Example 10.4.3,

(a) Prove that τ is equivalent to E1 ⊆e E2.

(b) Prove that A→ BC is equivalent to πABC(R) ⊲⊳ πAB1C1(R)⊆e πABCB1C1(R).

(c) Prove that σ is equivalent to F1 ⊆e F2.

⋆Exercise 10.26 Complete the proof of Theorem 10.4.4.

Exercise 10.27 An extended PJ expression E is shallow if it has the form πX(R) or the form
πX(πY1

(R) ⊲⊳ · · · ⊲⊳ πYn(R)). An algebraic dependency E ⊆e E
′ is shallow if E and E′ are

shallow. Prove that every algebraic dependency is equivalent to a shallow one.

Exercise 10.28 [Fag82b] A dependency σ is upward faithful (with respect to direct products)
if, for each family of nonempty instances {Ij | j ∈ J },

∀j ∈ J , Ij |= σ implies ⊗ {Ij | j ∈ J } |= σ.

Analogously, σ is downward faithful if

⊗{Ij | j ∈ J } |= σ implies ∀j ∈ J , Ij |= σ.
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(a) Show that the constraint

∀x, y, y ′, z, z′(R(x, y, z) ∧ R(x, y ′, z′)→ (y = y ′ ∨ z= z′))

is downward faithful but not upward faithful.

(b) Show that the constraint

∀x, y, z(R(x, y) ∧ R(y, z)→ R(x, z))

is upward faithful but not downward faithful.

Exercise 10.29 [Fag82b, YP82] Prove Proposition 10.4.6.

Exercise 10.30 [Fag82b] The direct product operator ⊗ is extended to instances of database
schema R = {R1, . . . , Rn} by forming, for each i ∈ [1, n], a direct product of the relation
instances associated with Ri. Let R = {P [A],Q[A]} be a database schema. Show that the empty
set of typed dependencies over R has no Armstrong relation. Hint: Find typed dependencies
σ1, σ2 over R such that ∅ |= (σ1 ∨ σ2) but ∅ �|= σ1 and ∅ �|= σ2.

⋆Exercise 10.31 [YP82] Let R[ABCD] be a relation schema. The pseudo-transitivity rule for
multivalued dependencies (Chapter 8) implies, given A→→ B and B →→ C, that A→→ C.
Express this axiom in the paradigm of algebraic dependencies. Prove it using axioms {AD1,
. . . , AD7} (without using extended relations).

⋆Exercise 10.32 Infer the three axioms for fd’s from rules {A1, . . . , A8}.

Exercise 10.33 [YP82] Prove that {A1, . . . , A8} is sound.
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When the only tool you have is a hammer,

everything begins to look like a nail.

—Anonymous

Alice: Will we use a hammer for schema design?

Riccardo: Sure: decomposition, semantic modeling, . . .

Vittorio: And each provides nails to which the data must fit.

Sergio: The more intricate the hammer, the more intricate the nail.

We have discussed earlier applications of dependencies in connection with query

optimization (Section 8.4) and user views (Section 10.2). In this chapter, we briefly

consider how dependencies are used in connection with the design of relational database

schemas.

The problem of designing database schemas is complex and spans the areas of cog-

nitive science, knowledge representation, software practices, implementation issues, and

theoretical considerations. Due to the interaction of these many aspects (some of them in-

tegrally related to how people think and perceive the world), we can only expect a relatively

narrow and somewhat simplistic contribution from theoretical techniques. As a result, the

primary focus of this chapter is to introduce the kinds of formal tools that are used in the

design process; a broader discussion of how to use these tools in practice is not attempted.

The interested reader is referred to the Bibliographic Notes, which indicate where more

broad-based treatments of relational schema design can be found.

In the following discussion, designing a relational schema means coming up with a

“good” way of grouping the attributes of interest into tables, yielding a database schema.

The choice of a schema is guided by semantic information about the application data

provided by the designer. There are two main ways to do this, and each leads to a different

approach to schema design.

Semantic data model: In this approach (Section 11.1), the application data is first described

using a model with richer semantic constructs than relations. Such models are called

“semantic data models.” The schema in the richer model is then translated into a

relational schema. The hope is that the use of semantic constructs will naturally lead

to specifying good schemas.

Refinement of relational schema: This approach (Section 11.2) starts by specifying an

initial relational schema, augmented with dependencies (typically fd’s and mvd’s). The

design process uses the dependencies to improve the schema. But what is it that makes

240
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one schema better than another? This is captured by the notion of “normal form” for

relational schemas, a central notion in design theory.

Both of these approaches focus on the transformation of a schema S1 into a relational

schema S2. Speaking in broad terms, three criteria are used to evaluate the result of this

transformation:

(1) Preservation of data;

(2) Desirable properties of S2, typically described using normal forms; and

(3) Preservation of “meta-data” (i.e., information captured by schema and depen-

dencies).

Condition (1) requires that information not be lost when instances of S1 are represented in

S2. This is usually formalized by requiring that there be a “natural” mapping τ : Inst(S1)→
Inst(S2) that is one-to-one. As we shall see, the notion of “natural” can vary, depending on

the data model used for S1.

Criterion (2) has been the focus of considerable research, especially in connection with

the approach based on refining relational schemas. In this context, the notion of relational

schema is generalized to incorporate dependencies, as follows: A relation schema is a pair

(R,�), where R is a relation name and � is a set of dependencies over R. Similarly, a

database schema is a pair (R, �), where R is a database schema as before, and � is a set of

dependencies over R. Some of these may be tagged by a single relation (i.e., have the form

Rj : σ , where σ is a dependency over Rj ∈ R). Others, such as ind’s, may involve pairs

of relations. More generally, some dependencies might range over the full set of attributes

occurring in R. (This requires a generalization of the notion of dependency satisfaction,

which is discussed in Section 11.3.)

With this notation established, we return to criterion (2). In determining whether one

relational schema is better than another, the main factors that have been considered are

redundancy in the representation of data and update anomalies. Recall that these were

illustrated in Section 8.1, using the relations Movies and Showings. We concluded there

that certain schemas yielded undesirable behavior. This resulted from the nature of the

information contained in the database, as specified by a set of dependencies.

Although the dependencies are in some sense the cause of the problems, they also

suggest ways to eliminate them. For example, the fd

Movies: Title→ Director

suggests that the attribute Director is a characteristic of Title, so the two attributes be-

long together and can safely be represented in isolation from the other data. It should be

clear that one always needs some form of semantic information to guide schema design;

in the absence of such information, one cannot distinguish “good” schemas from “bad”

ones (except for trivial cases). As will be seen, the notion of normal form captures some

characteristics of “good” schemas by guaranteeing that certain kinds of redundancies and

update anomalies will not occur. It will also be seen that the semantic data model approach

to schema design can lead to relational schemas in normal form.
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In broad terms, the intuition behind criterion (3) is that properties of data captured by

schema S1 (e.g., functional or inclusion relationships) should also be captured by schema

S2. In the context of refining relational schemas, a precise meaning will be given for this

criterion in terms of “preservation” of dependencies. We shall see that there is a kind of

trade-off between criteria (2) and (3).

The approach of refining relational schemas typically makes a simplifying assump-

tion called the “pure universal relation assumption” (pure URA). Intuitively, this states that

the input schema S1 consists of a single relation schema, possibly with some dependen-

cies. Section 11.3 briefly considers this assumption in a more general light. In addition, the

“weak” URA is introduced, and the notions of dependency satisfaction and query interpre-

tation are extended to this context.

This chapter is more in the form of a survey than the previous chapters, for several

reasons. As noted earlier, more broad-based treatments of relational schema design may

be found elsewhere and require a variety of tools complementary to formal analysis. The

tools presented here can at best provide only part of the skeleton of a design methodology

for relational schemas. Normal forms and the universal relation assumption were active

research topics in the 1970s and early 1980s and generated a large body of results. Some

of that work is now considered somewhat unfashionable, primarily due to the emergence

of new data models. However, we mention these topics briefly because (1) they lead to

interesting theoretical issues, and (2) we are never secure from a change of fashion.

11.1 Semantic Data Models

In this section we introduce semantic data models and describe how they are used in rela-

tional database design. Semantic data models provide a framework for specifying database

schemas that is considerably richer than the relational model. In particular, semantic mod-

els are arguably closer than the relational model to ways that humans organize information

in their own thinking. The semantic data models are precursors of the recently emerging

object-oriented database models (presented in a more formal fashion in Chapter 21) and

are thus of interest in their own right.

As a vehicle for our discussion, we present a semantic data model, called loosely the

generic semantic model (GSM). (This is essentially a subset of the IFO model, one of the

first semantic models defined in a formal fashion.) We then illustrate how schemas from

this model can be translated into relational schemas. Our primary intention is to present

the basic flavor of the semantic data model approach to relational schema design and some

formal results that can be obtained. The presentation itself is somewhat informal so that the

notation does not become overly burdensome.

In many practical contexts, the semantic model used is the Entity-Relationship model

(ER model) or one of its many variants. The ER model is arguably the first semantic data

model that appeared in the literature. We use the GSM because it incorporates several

features of the semantic modeling literature not present in the ER model, and because the

GSM presents a style closer to object-oriented database models.
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GSM Schemas

Figure 11.1 shows the schema CINEMA-SEM from the GSM, which can be used to

represent information on movies and theaters. The major building blocks of such schemas

are abstract classes, attributes, complex value classes, and the ISA hierarchy; these will be

considered briefly in turn.

The schema of Fig. 11.1 shows five classes that hold abstract objects: Person, Direc-

tor, Actor, Movie, and Theater. These correspond to collections of similar objects in the

world. There are two kinds of abstract class: primary classes, shown using diamonds, and

subclasses shown using circles. This distinction will be clarified further when ISA relation-

ships are discussed.

Instances of semantic schemas are constructed from the usual printable classes (e.g.,

string, integer, float, etc.) and “abstract” classes. The printable classes correspond to (sub-

sets of) the domain dom used in the relational model. The printable classes are indicated

using squares; in Fig. 11.1 we have labeled these to indicate the kind of values that popu-

late them. Conceptually, the elements of an abstract class such as Person are actual persons

in the world; in the formal model internal representations for persons are used. These inter-

nal representations have come to be known as object identifiers (OIDs). Because they are

internal, it is usually assumed that OIDs cannot be presented explicitly to users, although

programming and query languages can use variables that hold OIDs. The notion of instance

will be defined more completely later and is illustrated in Example 11.1.1 and Fig. 11.2.

Attributes provide one mechanism for representing relationships between objects and

other objects or printable values; they are drawn using arrows. For example, the Person

class has attributes name and citizenship, which associate strings with each person object.

These are examples of single-valued attributes. (In this schema, all attributes are assumed

to be total.) Multivalued attributes are also allowed; these map each object to a set of

objects or printable values and are denoted using arrows with double heads. For example,

acts_in maps actors to the movies that they have acted in. It is common to permit inverse

constraints between pairs of attributes. For example, consider the relationship between

actors and movies. It can be represented using the multivalued attribute acts_in on Actor

or the multivalued attribute actors on Movie. In this schema, we assume that the attri-

butes acts_in and actors are constrained to be inverses of each other, in the sense that

m ∈ acts_in(a) iff a ∈ actor(m). A similar constraint is assumed between the attributes

associating movies with directors.

In the schema CINEMA-SEM, the Pariscope node is an example of a complex value

class. Members of the underlying class are triples whose coordinates are from the classes

Theater, Time, and Movie, respectively. In the GSM, each complex value is the result of

one application of the tuple construct. This is indicated using a node of the form ⊗, with

components indicated using dashed arrows. The components of each complex value can be

printable, abstract, or complex values. However, there cannot be a directed cycle in the set

of edges used to define the complex values. As suggested by the attribute price, a complex

value class may have attributes. Complex value classes can also serve as the range of an

attribute, as illustrated by the class Award.

Complex values are of independent interest and are discussed in some depth in Chap-

ter 20. Complex values generally include hierarchical structures built from a handful of
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Address PhoneName

Theater Time

Pariscope

Title

Citizen-
ship

Name

Person

Award

PrizeName

Movie Director

Acts_in

Actors

Price

Actor

Figure 11.1: The schema CINEMA-SEM in the Generic Semantic Model
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basic constructors, including tuple (as shown here) set, and sometimes others such as bag

and list. Rich complex value models are generally incorporated into object-oriented data

models and into some semantic data models. Some constructs for complex values, such as

set, cannot be simulated directly using the pure relational model (see Exercise 11.24).

The final building block of the GSM is the ISA relationship, which represents set

inclusion. In the example schema of Fig. 11.1, the ISA relationships are depicted by double-

shafted arrows and indicate that the set of Director is a subset of Person, and likewise

that Actor is a subset of Person. In addition to indicating set inclusion, ISA relationships

indicate a form of subtyping relationship, or inheritance. Specifically, if class B ISA class

A, then each attribute of A is also relevant (and defined for) elements of class B. In the

context of semantic models, this should be no surprise because the elements of B are

elements of A.

In the GSM, the graph induced by ISA relationships is a directed acyclic graph (DAG).

The root nodes are primary abstract classes (represented with diamonds), and all other

nodes are subclass nodes (represented with circles). Each subclass node has exactly one

primary node above it. Complex value classes cannot participate in ISA relationships.

In the GSM, the tuple and multivalued attribute constructs are somewhat redundant: A

multivalued attribute is easily simulated using a tuple construct. Such redundancy is typical

of semantic models: The emphasis is on allowing schemas that correspond closely to the

way that users think about an application. On a bit of a tangent, we also note that the tuple

construct of GSM is close to the relationship construct of the ER model.

GSM Instances

Let S be a GSM schema. It is assumed that a fixed (finite or infinite) domain is associated

to each printable class in S. We also assume a countably infinite set obj of OIDs.

An instance of S is a function I whose domain is the set of primary, subclass, and

complex value classes of S and the set of attributes of S. For primary class C, I(C) is a

finite set of OIDs, disjoint from I(C′) for each other primary class C′. For each subclass

D, I(D) is a set of OIDs, such that the inclusions indicated by the ISA relationships of S

are satisfied. For complex value class C with components D1, . . . , Dn, I(C) is a finite set

of tuples 〈d1, . . . , dn〉, where di ∈ I(Di) if Di is an abstract or complex value class, and di
is in the domain of Di if Di is a printable class. For a single-valued attribute f from C to

C′, I(f ) is a function from I(C) to I(C′) (or to the domain of C′, if C′ is printable). For a

multivalued attribute f from C to C′, I(f ) is a function from I(C) to finite subsets of I(C′)

(or the domain of C′, if C′ is printable). Given instance I, attribute f from C to C′, and

object o in I(C), we often write f (o) to denote [I(f )](o).

Example 11.1.1 Part of a very small instance I1 of CINEMA-SEM is shown in

Fig. 11.2. The values of complex value Award, the attributes award, address, and phone

are not shown. The symbols o1, o2, etc., denote OIDs.

Consider an instance I′ that is identical to I1, except that o2 is replaced by o8 ev-

erywhere. Because OIDs serve only as internal representations that cannot be accessed
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I1(Person)= name(o1)= Alice citizenship(o1)= Great Britain

{o1, o2, o3} name(o2)= Allen citizenship(o2)= United States

name(o3)= Keaton citizenship(o3)= United States

I1(Director)= {o2} directed(o2)= {o4, o5}

I1(Actor)= {o2, o3} acts_in(o2)= {o4, o5}
acts_in(o3)= {o5}

I1(Movie)= {o4, o5} title(o4)= Take the Money

and Run

title(o5)= Annie Hall

director(o4)= o2 actors(o4)= {o2}
director(o5)= o2 actors(o5)= {o2, o3}

I1(Theater)= {o6} name(o6)= Le Champo

I1(Pariscope)= price(〈o6, 20:00, o4〉)= 30FF

{〈o6, 20:00, o4〉}

Figure 11.2: Part of an instance I1 of CINEMA-SEM

explicitly, I1 and I′ are considered to be identical in terms of the information that they

represent.

Let S be a GSM schema. An OID isomorphism is a function µ that is a permutation on

the set obj of OIDs and leaves all printables fixed. Such functions are extended to Inst(S)

in the natural fashion. Two instances I and I′ are OID equivalent, denoted I ≡OID I′, if

there is an OID isomorphism µ such that µ(I)= I′. This is clearly an equivalence relation.

As suggested by the preceding example, if two instances are OID equivalent, then they

represent the same information. The formalism of OID equivalence will be used later when

we discuss the relational simulation of GSM.

The GSM is a very basic semantic data model, and many variations on the semantic

constructs included in the GSM have been explored in the literature. For example, a variety

of simple constraints can be incorporated, such as cardinality constraints on attributes

and disjointness between subclasses (e.g., that Director and Actor are disjoint). Another

variation is to require that a class be “dependent” on an attribute (e.g., that each Award

object must occur in the image of some Actor) or on a complex value class. More complex

constraints based on first-order sentences have also been explored. Some semantic models

support different kinds of ISA relationships, and some provide “derived data” (i.e., a form

of user view incorporated into the base schema).
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Translating into the Relational Model

We now describe an approach for translating semantic schemas into relational database

schemas. As we shall see, the semantics associated with the semantic schema will yield

dependencies of various forms in the relational schema.

A minor problem to be surmounted is that in a semantic model, real-world objects

such as persons can be represented using OIDs, but printable classes must be used in the

pure relational model. To resolve this, we assume that each primary abstract class has a

key, that is, a set {k1, . . . , kn} of one or more attributes with printable range such that for

each instance I and pair o, o′ of objects in the class, o = o′ iff k1(o)= k1(o
′) and . . . and

kn(o)= kn(o
′). (Although more than one key might exist for a primary class, we assume

that a single key is chosen.) In the schema CINEMA-SEM, we assume that (person_)

name is the key for Person, that title is the key for Movie, and that (theater_)name is the

key for Theater. (Generalizations of this approach permit the composition of attributes to

serve as part of a key; e.g., including in the key for Movie the composition director ◦ name,

which would give the name of the director of the movie.)

An alternative to the use of keys as just described is to permit the use of surrogates.

Informally, a surrogate of an object is a unique, unchanging printable value that is associ-

ated with the object. Many real-world objects have natural surrogates (e.g., Social Security

number for persons in the United States or France; or Invoice Number for invoices in a

commercial enterprise). In other cases, abstract surrogates can be used.

The kernel of the translation of GSM schemas into relational ones concerns how ob-

jects in GSM instances can be represented using (tuples of) printables. For each class C

occurring in the GSM schema, we associate a set of relational attributes, called the repre-

sentation of C, and denoted rep(C). For a printable class C, rep(C) is a single attribute hav-

ing this sort. For abstract class C, rep(C) is a set of attributes corresponding to the key at-

tributes of the primary class above C. For a complex value class C = [C1, . . . , Cm], rep(C)

consists of (disjoint copies of) all of the attributes occurring in rep(C1), . . . , rep(Cm).

Translation of a GSM schema into a relation schema is illustrated in the following

example.

Example 11.1.2 One way to simulate schema CINEMA-SEM in the relational model

is to use the schema CINEMA-REL, which has the following schema:

Person [name, citizenship]

Director [name]

Actor [name]

Acts_in [name, title]

Award [prize, year]

Has_Award [name, prize, year]

Movie [title, director_name]

Theater [theater_name, address, phone]

Pariscope [theater_name, time, title, price]
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Person name citizenship Movie title director_name

Alice Great Britain Take the Money and Run Allen

Allen United States Annie Hall Allen

Keaton United States

Pariscope theater_name time title price

Le Champo 20:00 Take the Money and Run 30FF

Figure 11.3: Part of a relational instance I2 that simulates I1

Figure 11.3 shows three relations in the relational simulation I2 of the instance I1 of

Fig. 11.2.

In schema CINEMA-REL, both Actor and Acts_in are included in case there are one

or more actors that did not act in any movie. For similar reasons, Acts_in and Has_Award

are separated.

In contrast, we have assumed that each person has a citizenship (i.e., that citizenship is

a total function). If not, then two relations would be needed in place of Person. Analogous

remarks hold for directors, movies, theaters, and Pariscope objects.

In schema CINEMA-REL, we have not explicitly provided relations to represent the

attributes directed of Director or actors of Movie. This is because both of these are inverses

of other attributes, which are represented explicitly (by Movie and Acts_in, respectively).

If we were to consider the complex value class Awards of CINEMA-SEM to be

dependent on the attribute award, then the relation Award could be omitted.

Suppose that I is an instance of CINEMA-SEM and that I′ is the simulation of I.

The semantics of CINEMA-SEM, along with the assumed keys, imply that I′ will satisfy

several dependencies. This includes the following fd’s (in fact, key dependencies):

Person : name→ citizenship

Movie : title→ director_name

Theater : theater_name→ address, phone

Pariscope : theater_name, time, title→ price

A number of ind’s are also implied:

Director[name] ⊆ Person[name]

Actor[name] ⊆ Person[name]

Movie[director_name] ⊆ Director[name]

Acts_in[name] ⊆ Actor[name]

Acts_in[title] ⊆ Movie[title]

Has_Award[name] ⊆ Actor[name]
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Has_Award[prize, year] ⊆ Award[prize, year]

Pariscope[theater_name] ⊆ Theater[theater_name]

Pariscope[title] ⊆ Movie[title]

The first group of ind’s follows from ISA relationships; the second from restrictions on

attribute ranges; and the third from restrictions on the components of complex values. All

but one of the ind’s here are unary, because all of the keys, except the key for Award, are

based on a single attribute.

Preservation of Data

Suppose that S is a GSM schema with keys for primary classes, and (R, � ∪ Ŵ) is a

relational schema that simulates it, constructed in the fashion illustrated in Example 11.1.2,

where � is the set of fd’s and Ŵ is the set of ind’s. As noted in criterion (1) at the beginning

of this chapter, it is desirable that there be a natural one-to-one mapping τ from instances

of S to instances of (R, � ∪ Ŵ). To formalize this, two obstacles need to be overcome.

First, we have not developed a query language for the GSM. (In fact, no query language

has become widely accepted for any of the semantic data models. In contrast, some query

languages for object-oriented database models are now gaining wide acceptance.) We shall

overcome this obstacle by developing a rather abstract notion of “natural” for this context.

The second obstacle stems from the fact that OID-equivalent GSM instances hold

essentially the same information. Thus we would expect OID-equivalent instances to map

to the same relational instance.1 To refine criterion (1) for this context, we are searching

for a one-to-one mapping from Inst(S)/≡OID into Inst(R, � ∪ Ŵ).

A mapping τ : Inst(S)→ Inst(R, � ∪Ŵ) is OID consistent if I≡OID I′ implies τ(I)=
τ(I′). In this case, we can view τ as a mapping with domain Inst(S)/≡OID. The mapping

τ preserves the active domain if for each I ∈ Inst(S), adom(τ (I))= adom(I). [The active

domain of a GSM instance I, denoted adom(I), is the set of all printables that occur in I.]

The following can be verified (see Exercise 11.3):

Theorem 11.1.3 (Informal) Let S be a GSM schema with keys for primary classes,

and let (R, � ∪ Ŵ) be a relational simulation of S. Then there is a function τ : Inst(S)→
Inst(R, � ∪ Ŵ) such that τ is OID consistent and preserves the active domain, and such

that τ : Inst(S)/≡OID → Inst(R, � ∪ Ŵ) is one-to-one and onto.

Properties of the Relational Schema

We now consider criteria (2) and (3) to highlight desirable properties of relational schemas

that simulate GSM schemas.

1 When artificial surrogates are used to represent OIDs in the relational database, one might have to
use a notion of an “equivalent” relational database instances as well.
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Criterion (2) for schema transformations concerns desirable properties of the target

schema. We now describe three such properties resulting from the transformation of GSM

schemas into relational ones.

Suppose again that S is a GSM schema with keys, and (R, � ∪ Ŵ) is a relational

simulation of it. We assume as before that no constraints hold for S, aside from those

implied by the constructs in S and the keys.

The three properties are as follows:

1. First, � is equivalent to a family of key dependencies; in the terminology of the

next section, this means that each of the relation schemas obtained is in Boyce-

Codd Normal Form (BCNF). Furthermore, the only mvd’s satisfied by relations in

R are implied by �, and so the relation schemas are in fourth normal form (4NF).

2. Second, the family Ŵ of ind’s is acyclic (see Chapter 9). That is, there is no

sequence R1[X1] ⊆ R2[Y1], R2[X2] ⊆ R3[Y2], . . . , Rn[Xn] ⊆ R1[Yn] of ind’s in

the set. By Theorem 9.4.5, this implies that logical implication can be decided

for (� ∪ Ŵ) and that finite and unrestricted implication coincide.

3. Finally, each ind R[X]⊆ S[Y ] in Ŵ key based. That is, Y is a (minimal) key of S

under �.

Together these properties present a number of desirable features. In particular, depen-

dency implication is easy to check. Given a database schema R and sets � of fd’s and Ŵ

of ind’s over R, � and Ŵ are independent if (1) for each fd σ over R, (� ∪ Ŵ) |= σ im-

plies � |= σ , and (2) for each ind γ over R, (� ∪ Ŵ) |= γ implies Ŵ |= γ . Suppose that S

is a GSM schema and that (R, � ∪ Ŵ) is a relational simulation of S. It can be shown

that the three aforementioned properties imply that � and Ŵ are independent

(see Exercise 11.4).

To conclude this section, we consider criterion (3). This criterion concerns the preser-

vation of meta-data. We do not attempt to formalize this criterion for this context, but it

should be clear that there is a close correspondence between the dependencies in � ∪ Ŵ

and the constructs used in S. In other words, the semantics of the application as expressed

by S is also captured, in the relational representation, by the dependencies � ∪ Ŵ.

The preceding discussion assumes that no dependency holds for S, aside from those

implied by the keys and the constructs in S. However, in many cases constraints will be

incorporated into S that are not directly implied by the structure of S. For instance, recall

Example 11.1.2, and suppose that the fd Pariscope : theater_name, time→ price is true for

the underlying data. The relational simulation will have to include this dependency and, as

a result, the resulting relational schema may be missing some of the desirable features (e.g.,

the family of fd’s is not equivalent to a set of keys and the schema is no longer in BCNF).

This suggests that a semantic model might be used to obtain a coarse relational schema,

which might be refined further using the techniques for improving relational schemas

developed in the next section.
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11.2 Normal Forms

In this section, we consider schema design based on the refinement of relational schemas

and normal forms, which provide the basis for this approach. The articulation of these

normal forms is arguably the main contribution of relational database theory to the realm of

schema design. We begin the discussion by presenting two of the most prominent normal

forms and a design strategy based on “decomposition.” We then develop another normal

form that overcomes certain technical problems of the first two, and describe an associated

design strategy based on “synthesis.” We conclude with brief comments on the relationship

of ind’s with decomposition.

When all the dependencies in a relational schema (R, �) are considered to be tagged,

one can view the database schema as a set {(R1, �1), . . . , (Rn, �n)}, where each (Rj , �j)

is a relation schema and theRj ’s are distinct. In particular, an fd schema is a relation schema

(R,�) or database schema (R, �), where � is a set of tagged fd’s; this is extended in

the natural fashion to other classes of dependencies. Much of the work on refinement of

relational schemas has focused on fd schemas and (fd + mvd) schemas. This is what we

consider here. (The impact of the ind’s is briefly considered at the end of this section.)

A normal form restricts the set of dependencies that are allowed to hold in a relation

schema. The main purpose of the normal forms is to eliminate at least some of the redun-

dancies and update anomalies that might otherwise arise. Intuitively, schemas in normal

form are “good” schemas.

We introduce next two kinds of normal forms, namely BCNF and 4NF. (We will

consider a third one, 3NF, later.) We then consider techniques to transform a schema into

such desirable normal forms.

BCNF: Do Not Represent the Same Fact Twice

Recall the schema (Movies[T (itle), D(irector), A(actor)], {T →D}) from Section 8.1. As

discussed there, the Movies relation suffers from various anomalies, primarily because

there is only one Director associated with each Title but possibly several Actors. Suppose

that (R[U ], �) is a relation schema, � |=X→ Y , Y �⊆X and � �|=X→ U . It is not hard

to see that anomalies analogous to those of Movies can arise in R. Boyce-Codd normal

form prohibits this kind of situation.

Definition 11.2.1 A relation schema (R[U ], �) is in Boyce-Codd normal form (BCNF)

if � |=X→ U whenever � |=X→ Y for some Y �⊆X. An fd schema (R, �) is in BCNF

if each of its relation schemas is.

BCNF is most often discussed in cases where � involves only functional dependen-

cies. In such cases, if (R,�) is in BCNF, the anomalies of Section 8.1 do not arise. An

essential intuition underlying BCNF is, “Do not represent the same fact twice.”

The question now arises: What does one do with a relation schema (R,�) that is

not in BCNF? In many cases, it is possible to decompose this schema into subschemas

(R1, �1), . . . , (Rn, �n) without information loss. As a simple example, Movies can be

decomposed into



252 Design and Dependencies

{
(Movie_director[TD], {T → D}),
(Movie_actors[TA],∅)

}

A general framework for decomposition is presented shortly.

4NF: Do Not Store Unrelated Information in the Same Relation

Consider the relation schema (Studios[N(ame), D(irector), L(ocation)], {N →→D|L}). A

tuple 〈n, d, l〉 is in Studios if director d is employed by the studio with name n and if

this studio has an office in location l. Only trivial fd’s are satisfied by all instances of

this schema, and so it is in BCNF. However, update anomalies can still arise, essentially

because the D and L values are independent from each other. This gives rise to the following

generalization of BCNF2:

Definition 11.2.2 A relation schema (R[U ], �) is in fourth normal form (4NF) if

(a) whenever � |=X→ Y and Y �⊆X, then � |=X→ U

(b) whenever � |=X→→ Y and Y �⊆X, then � |=X→ U .

An (fd + mvd) schema (R, �) is in 4NF if each of its relation schemas is.

It is clear that if a relation schema is in 4NF, then it is in BCNF. It is easily seen that

Studios can be decomposed into two 4NF relations, without loss of information and that the

resulting relation schemas do not have the update anomalies mentioned earlier. An essential

intuition underlying 4NF is, “Do not store unrelated information in the same relation.”

The General Framework of Decomposition

One approach to refining relational schemas is decomposition. In this approach, it is usually

assumed that the original schema consists of a single wide relation containing all attributes

of interest. This is referred to as the pure universal relation assumption, or pure URA. A

relaxation of the pure URA, called the “weak URA,” is considered briefly in Section 11.3.

The pure URA is a simplifying assumption, because in practice the original schema is

likely to consist of several tables, each with its own dependencies. In that case, the design

process described for the pure URA is applied separately to each table. We adopt the pure

URA here. In this context, the schema transformation produced by the design process con-

sists of decomposing the original table into smaller tables by using the projection operator.

(In an alternative approach, selection is used to yield so-called horizontal decompositions.)

We now establish the basic framework of decompositions. Let (U [Z], �) be a relation

schema. A decomposition of (U [Z], �) is a database schema R = {R1[X1], . . . , Rn[Xn]}
with dependencies Ŵ, where ∪{Xj | j ∈ [1, n]} = Z. (The relation name ‘U ’ is used to

suggest that it is a “universal” relation.) In the sequel, we often use relation names U (Ri)

and attribute sets Z (Xi), interchangeably if ambiguity does not arise.

2 The motivation behind the names of several of the normal forms is largely historical; see the
Bibliographic Notes.
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We now consider the three criteria for schema transformation in the context of decom-

position. As already suggested, criterion (2) is evaluated in terms of the normal forms. With

regard to the preservation of data (1), the “natural” mapping from R to R is obtained by

projection: The decomposition mapping of R is the function πR : Inst(U)→ Inst(R) such

that for I ∈ inst(U), we have πR(I )(Rj) = πRj
(I ). Criterion (1) says that the decompo-

sition should not lose information when I is replaced by its projections (i.e., it should be

one-to-one).

A natural property implying that a decomposition is one-to-one is that the original

instance can be obtained by joining the component relations. Formally, a decomposition

is said to have the lossless join property if for each instance I of (U,�) the join of the

projections is the original instance, i.e., ⊲⊳ (πR(I))= I. It is easy to test if a decomposition

R = {R1, . . . , Rn} of (U,�) has the lossless join property. Consider the query q(I ) =
πR1(I ) ⊲⊳ · · · ⊲⊳ πRn(I ). The lossless join property means that q(I )= I for every instance

I over (U,�). But q(I )= I simply says that I satisfies the jd ⊲⊳ [R]. Thus we have the

following:

Theorem 11.2.3 Let (U,�) be a (full dependencies) schema and R a decomposition for

(U,�). Then R has the lossless join property iff � |=⊲⊳ [R].

The preceding implication can be tested using the chase (see Chapter 8), as illustrated

next.

Example 11.2.4 Recall the schema (Movies[TDA], {T → D}). As suggested earlier,

a decomposition into BCNF is R = {TD,TA}. This decomposition has the lossless join

property. The tableau associated with the jd σ =⊲⊳ [TD,TA] is as follows:

Tσ T D A

t d a1

t d1 a

tσ t d a

Consider the chase of 〈Tσ , tσ 〉 with {T →D}. Because the two first tuples agree on the T

column, d and d1 are merged because of the fd. Thus 〈t, d, a〉 ∈ chase(Tσ , tσ , {T →D}).
Hence T → D implies the jd σ , so R has the lossless join property. (See also Exer-

cise 11.9.)

Referring to the preceding example, note that it is possible to represent information in

R that cannot be directly represented in Movies. Specifically, in the decomposed schema we

can represent a movie with a director but no actors and a movie with an actor but no director.

This indicates, intuitively, that a decomposed schema may have more information capacity
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than the original (see Exercise 11.23). In practice, this additional capacity is exploited; in

fact, it provides part of the solution of so-called deletion anomalies.

Remark 11.2.5 In the preceding example, we used the natural join operator to recon-

struct decompositions. Interestingly, there are cases in which the natural join does not

suffice. To show that a decomposition is one-to-one, it suffices to exhibit an inverse to

the projection, called a reconstruction mapping. If � is permitted to include very general

constraints expressed in first-order logic that may not be dependencies per se, then there

are one-to-one decompositions whose reconstruction mappings are not the natural join (see

Exercise 11.20).

We now consider criterion (3), the preservation of meta-data. In the context of decom-

position, this is formalized in terms of “dependency preservation”: Given schema (U,�),

which is replaced by a decomposition R = {R1, . . . , Rn}, we would like to find for each j

a family Ŵj of dependencies over Rj such that ∪jŴj is equivalent to the original �. In the

case where � is a set of fd’s, we can make this much more precise. For V ⊆ U , let

πV (�)= {X→ A |XA⊆ V and � |=X→ A},

let Ŵj = πXj
(�), and let Ŵ = ∪jŴj . Obviously, � |= Ŵ. (See Proposition 10.2.4.) Intu-

itively, Ŵ consists of the dependencies in �∗ that are local to the relations in the decom-

position R. The decomposition R is said to be dependency preserving iff Ŵ ≡�. In other

words, � can be enforced by the dependencies local in the decomposition. It is easy to see

that the decomposition of Example 11.2.4 is dependency preserving.

Given an fd schema (U,�) and V ⊆ U , πV (�) has size exponential in V , simply

because of trivial fd’s. But perhaps there is a smaller set of fd’s that is equivalent to

πV (�). A cover of a set Ŵ of fd’s is a set Ŵ′ of fd’s such that Ŵ′ ≡ Ŵ. Unfortunately, in

some cases the smallest cover for a projection πV (�) is exponential in the size of � (see

Exercise 11.11).

What about projections of sets of mvd’s? Suppose that � is a set of fd’s and mvd’s

over U . Let V ⊆ U and

πmvd
V (�)= {[X→→ (Y ∩ V )|(Z ∩ V )] | [X→→ Y |Z] ∈�∗ and X ⊆ V }.

Consider a decomposition R of (U,�). Viewed as constraints on U , the sets πmvd
Rj

(�) are

now embedded mvd’s. As we saw in Chapter 10, testing implication for embedded mvd’s

is undecidable. However, the issue of testing for dependency preservation in the context of

decompositions involving fd’s and mvd’s is rather specialized and remains open.

Fd’s and Decomposition into BCNF

We now present a simple algorithm for decomposing an fd schema (U,�) into BCNF

relations. The decomposition produced by the algorithm has the lossless join property but

is not guaranteed to be dependency preserving.

We begin with a simple example.
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Example 11.2.6 Consider the schema (U,�), where U has attributes

TITLE D_NAME TIME PRICE

TH_NAME ADDRESS PHONE

and � contains

FD1 : TH_NAME → ADDRESS,PHONE

FD2 : TH_NAME,TIME,TITLE → PRICE

FD3 : TITLE → D_NAME

Intuitively, schema (U,�) represents a fragment of the real-world situation represented by

the semantic schema CINEMA-SEM.

A first step toward transforming this into a BCNF schema is to decompose using FD1,

to obtain the database schema
{
({TH_NAME,ADDRESS,PHONE}, {FD1}),

({TH_NAME,TITLE,TIME,PRICE,D_NAME}, {FD2,FD3})

}

Next FD3 can be used to split the second relation, obtaining





({TH_NAME,ADDRESS,PHONE}, {FD1})

({TITLE,D_NAME}, {FD3})

({TH_NAME,TITLE,TIME,PRICE}, {FD2})





which is in BCNF. It is easy to see that this decomposition has the lossless join property

and is dependency preserving. In fact, in this case, we obtain the same relational schema

as would result from starting with a semantic schema.

We now present the following:

Algorithm 11.2.7 (BCNF Decomposition)

Input: A relation schema (U,�), where � is a set of fd’s.

Output: A database schema (R, Ŵ) in BCNF

1. Set (R, Ŵ) := {(U,�)}.

2. Repeat until (R, Ŵ) is in BCNF:

(a) Choose a relation schema (S[V ], L) ∈ R that is not in BCNF.

(b) Choose nonempty, disjoint X, Y,Z ⊂ V such that

(i) XYZ = V ;

(ii) L |=X→ Y ; and

(iii) L �|=X→ A for each A ∈ Z.

(c) Replace (S[V ], L) in R by (S1[XY ], πXY (L)) and (S2[XZ], πXZ(L)).

(d) If there are (S[V ], L), (S′[V ′], L′) in R with V ⊆ V ′, then remove

S([V ], L) from R.
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It is easily seen that the preceding algorithm terminates [each iteration of the loop elim-

inates at least one violation of BCNF among finitely many possible ones]. The following

is easily verified (see Exercise 11.10):

Theorem 11.2.8 The BCNF Decomposition Algorithm yields a BCNF schema and a

decomposition that has the lossless join property.

What is the complexity of running the BCNF Decomposition Algorithm? The main

expenses are (1) examining subschemas (S[V ], L) to see if they are in BCNF and, if not,

finding a way to decompose them; and (2) computing the projections of L. (1) is polyno-

mial, but (2) is inherently exponential (see Exercise 11.11). This suggests a modification

to the algorithm, in which only the relational schemas S[V ] are computed at each stage,

but L= πV (�) is not. However, the problem of determining, given fd schema (U,�) and

V ⊆ U , whether (V , πV (�)) is in BCNF is co-np-complete (see Exercise 11.12). Interest-

ingly, a polynomial time algorithm does exist for finding some BCNF decomposition of an

input schema (U,�) (see Exercise 11.13).

When applying BCNF decomposition to the schema of Example 11.2.6, the same

result is achieved regardless of the order in which the dependencies are applied. This is

not always the case, as illustrated next.

Example 11.2.9 Consider (ABC, {A→ B,B→ C}). This has two BCNF decompo-

sitions

R1 = {(AB, {A→ B}), (BC, {B→ C})}

R2 = {(AB, {A→ B}), (AC,∅)}.

Note that R1 is dependency preserving, but R2 is not.

Fd’s, Dependency Preservation, and 3NF

It is easy to check that the schemas in Examples 11.2.4, 11.2.6, and 11.2.9 have depen-

dency-preserving decompositions into BCNF. However, this is not always achievable, as

shown by the following example.

Example 11.2.10 Consider a schema Lectures[C(ourse), P(rofessor), H(our)], where

tuple 〈c, p, h〉 indicates that course c is taught by professor p at hour h. We assume that

Hour ranges over weekday-time pairs (e.g., Tuesday at 4PM) and that a given course may

have lectures during several hours each week. Assume that the following two dependencies

are to hold:

� =

{
C→ P

PH → C

}
.

In other words, each course is taught by only one professor, and a professor can teach only

one course at a given hour.
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The schema (Lectures, �) is not in BCNF because � |= C→ P , but � �|= C→ H .

Applying the BCNF Decomposition Algorithm yields R = {(CP, {C→ P }), (CH,∅)}.
It is easily seen that {CP : C→ P } �|=�, and so this decomposition does not preserve

dependencies. A simple case analysis shows that there is no BCNF decomposition of

Lectures that preserves dependencies.

This raises the question: Is there a less restrictive normal form for fd’s so that a lossless

join decomposition that preserves dependencies can always be found? The affirmative

answer is based on “third normal form” (3NF). To define it, we need some auxiliary

notions. Suppose that (R[U ], �) is an fd schema. A superkey of R is a set X ⊆ U such

that � |=X→ U . A key of R is a minimal superkey. A key attribute is an attribute A ∈ U

that is in some key of R. We now have the following:

Definition 11.2.11 An fd schema (U,�) is in third normal form (3NF) if whenever

X→ A is a nontrivial fd implied by �, then either X is a superkey or A is a key attribute.

An fd schema (R, �) is in 3NF if each of its components is.

Example 11.2.12 Recall the schema (Lectures,{C→ P,PH → C}) described in Exam-

ple 11.2.10. Here PH is a key, so P is a key attribute. Thus the schema is in 3NF.

A 3NF Decomposition Algorithm can be defined in analogy to the BCNF Decompo-

sition Algorithm. We present an alternative approach, generally referred to as “synthesis.”

Given a set � of fd’s, a minimal cover of � is a set �′ of fd’s such that

(a) each dependency in �′ has the form X→ A, where A is an attribute;

(b) �′ ≡�;

(c) no proper subset of �′ implies �; and

(d) for each dependency X→ A in �′, there is no Y ⊂X such that � |= Y → A.

A minimal cover can be viewed as a reduced representative for a set of fd’s. It is straight-

forward to develop a polynomial time algorithm for producing a minimal cover of a set of

fd’s (see Exercise 11.16).

We now have the following:

Algorithm 11.2.13 (3NF Synthesis)

Input: A relation schema (U,�), where � is a set of fd’s that is a minimal cover. We

assume that each attribute of U occurs in at least one fd of �.

Output: An fd schema (R, Ŵ) in 3NF

1. If there is an fd X→ A in �, where XA= U , then output (U,�).

2. Otherwise

(a) for each fd X→ A in �, include the relational schema (XA, {X→ A})
in the output schema (R, Ŵ); and
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(b) choose a key X of U under �, and include (X,∅) in the output.

A central aspect of this algorithm is to form a relation XA for each fd X→ A in �.

Intuitively, then, the output relations result from combining or “synthesizing” attributes

rather than decomposing the full attribute set.

The following is easily verified (see Exercise 11.17):

Theorem 11.2.14 The 3NF Synthesis Algorithm decomposes a relation schema into a

database schema in 3NF that has the lossless join property and preserves dependencies.

Several improvements to the basic 3NF Synthesis Algorithm can be made easily. For

example, different schemas obtained in step (2.a) can be merged if they come from fd’s with

the same left-hand side. Step (2.b) is not needed if step (2.a) already produced a schema

whose set of attributes is a superkey for (U,�). In many practical situations, it may be

appropriate to omit step (2.b) of the algorithm. In that case, the decomposition preserves

dependencies but does not necessarily satisfy the lossless join property.

In the preceding algorithm, it was assumed that each attribute of U occurs in at

least one fd of �. Obviously, this may not always be the case, for example, the attribute

A_NAME in Example 11.2.15b does not participate in fd’s. One approach to remedy this

situation is to introduce symbolic fd’s. For instance, in that example one might include

the fd TITLE, A_NAME → ω1, where ω1 is a new attribute. One relation produced by the

algorithm will be {TITLE,A_NAME, ω1}. As a last step, attributes such as ω1 are removed.

In Example 11.2.9 we saw that the output of a BCNF decomposition may depend on

the order in which fd’s are applied. In the case of the preceding algorithm for 3NF, the

minimal cover chosen greatly impacts the final result.

Mvd’s and Decomposition into 4NF

A fundamental problem with BCNF decomposition and 3NF synthesis as just presented is

that they do not take into account the impact of mvd’s.

Example 11.2.15 (a) The schema (Studios[N(ame), D(irector), L(ocation)], {N →→
D|L}) is in BCNF and 3NF but has update anomalies. The mvd suggests a decomposition

into ({Name,Director}, {Name,Location}).
(b) A related issue is that BCNF decompositions may not separate attributes that

intuitively should be separated. For example, consider again the schema of Example 11.2.6,

but suppose that the attribute A_NAME is included to denote actor names. Following the

same decomposition steps as before, we obtain the schema





({TH_NAME,ADDRESS,PHONE}, {FD1}),

({TITLE,D_NAME}, {FD3}),

({TH_NAME,TITLE,TIME,PRICE,A_NAME}, {FD2})




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which can be further decomposed to





({TH_NAME,ADDRESS,PHONE}, {FD1}),

({TITLE,D_NAME}, {FD3}),

({TH_NAME,TITLE,TIME,PRICE}, {FD2}),

({TH_NAME,TITLE,TIME,A_NAME},∅)





Although there is a connection in the underlying data between TITLE and A_NAME,

the last relation here is unnatural. If we assume that the mvd TITLE →→ A_NAME is

incorporated into the original schema, we can further decompose the last relation and apply

a step analogous to (2d) of the BCNF Decomposition Algorithm to obtain





({TH_NAME,ADDRESS,PHONE}, {FD1}),

({TITLE,D_NAME}, {FD3}),

({TH_NAME,TITLE,TIME,PRICE}, {FD2}),

({TITLE,A_NAME},∅)





Fourth normal form (4NF) was originally developed to address these kinds of situa-

tions. As suggested by the preceding example, an algorithm yielding 4NF decompositions

can be developed along the lines of the BCNF Decomposition Algorithm. As with BCNF,

the output of 4NF decomposition is a lossless join decomposition that is not necessarily

dependency preserving.

A Note on Ind’s

In relational schema design starting with a semantic data model, numerous ind’s are typ-

ically generated. In contrast, the decomposition and synthesis approaches for refining re-

lational schemas as presented earlier do not take ind’s into account. It is possible to in-

corporate ind’s into these approaches, but the specific choice of ind’s is dependent on the

intended semantics of the target schema.

Example 11.2.16 Recall the schema (Movies[TDA], {T →D}) and decomposition into

(R1[TD], {T →D}) and (R2[TA],∅).

(a) If all movies must have a director and at least one actor, then bothR1[T ]⊆ R2[T ]

and R2[T ]⊆ R1[T ] should be included. In this case, the mapping from Movies

to its decomposed representation is one-to-one and onto.

(b) If the fd T →D is understood to mean that there is a total function from movies

to directors, but movies without actors are permitted, then the ind R2[T ] ⊆
R1[T ] should be included.
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(c) Finally, suppose the fd T →D is understood to mean that each movie has at

most one director (i.e., it is a partial function), and suppose that a movie can

have no actor. Then an additional relation R3[T ] should be added to hold the

titles of all movies, along with ind’s R1[T ]⊆ R3[T ] and R2[T ]⊆ R3[T ].

More generally, what if one is to refine a relational schema (R, � ∪ Ŵ), where � is

a set of tagged fd’s and mvd’s and Ŵ is a set of ind’s? It may occur that there is an ind

Ri[X] ⊆ Rj [Y ], and either X or Y is to be “split” as the result of a decomposition step.

The desired semantics of the target schema can be used to select between a variety of

heuristic approaches to preserving the semantics of this ind. If Ŵ consists of unary ind’s,

such splitting cannot occur. Speaking intuitively, if the ind’s of Ŵ are key based, then the

chances of such splitting are reduced.

11.3 Universal Relation Assumption

In the preceding section, we saw that the decomposition and synthesis approaches to

relational schema design assume the pure URA. This section begins by articulating some

of the implications that underly the pure URA. It then presents the “weak URA,” which

provides an intuitively natural mechanism for viewing a relational database instance I as if

it were a universal relation.

Underlying Assumptions

Suppose that an fd schema (U [Z], �) is given and that decomposition or synthesis will

be applied. One of several different database schemas might be produced, but presumably

all of them carry roughly the same semantics. This suggests that the attributes in Z can

be grouped into relation schemas in several different ways, without substantially affecting

their underlying semantics. Intuitively, then, it is the attributes themselves (along with the

dependencies in �), rather than the attributes as they occur in different relation schemas,

that carry the bulk of the semantics in the schema. The notion that the attributes can

represent a substantial portion of the semantics of an application is central to schema design

based on the pure URA.

When decomposition and synthesis were first introduced, the underlying implications

of this notion were not well understood. Several intuitive assumptions were articulated

that attempted to capture these implications. We describe here two of the most important

assumptions. Any approach to relational schema design based on the pure URA should also

abide by these two assumptions.

Universal Relation Scheme Assumption: This states that if an attribute name appears in two

or more places in a database schema, then it refers to the same entity set in each place.

For example, an attribute name Number should not be used for both serial numbers and

employee numbers; rather two distinct attribute names Serial# and Employee# should

be used.

Unique Role Assumption: This states that for each set of attributes there is a unique rela-
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tionship between them. This is sometimes weakened to say that there may be several

relationships, but one is deemed primary. This is illustrated in the following example.

Example 11.3.1 (a) Recall in Example 11.2.15(b) that D_NAME and A_NAME were

used for director and actor names, respectively. This is because there were two possible

relationships between movies and persons.

(b) For a more complicated example, consider a schema for bank branches that in-

cludes attributes for B(ranch), L(oan), (checking) A(ccount), and C(ustomer). Suppose

there are four relations

BL, which holds data about branches and loans they have given

BA, which holds data about branches and checking accounts they provide

CL, which holds data about customers and loans they have

CA, which holds data about customers and checking accounts they have.

This design does not satisfy the unique role assumption, mainly because of the cycle in the

schema. For example, consider the relationship between branches and customers. In fact,

there are two relationships—via loans and via accounts. Thus a request for “the” data in the

relationship between banks and customers is somewhat ambiguous, because it could mean

tuples stemming from either of the two relationships or from the intersection or union of

both of them.

One solution to this ambiguity is to “break” the cycle. For example, we could replace

the Customer attribute by the two attributes L-C(ustomer) and A-C(ustomer). Now the user

can specify the desired relationship by using the appropriate attribute.

The Weak Universal Relation Assumption

Suppose that schema (U,�) has decomposition (R, Ŵ) (with R = {R1, . . . , Rn}). When

studying decomposition, we focused primarily on instances I of (R, Ŵ) that were the image

of some instance I of (U,�) under the decomposition mapping πR. In particular, such

instances I are globally consistent. [Recall from Chapter 6 that instance I is globally

consistent if for each j ∈ [1, n], πRj
(⊲⊳ I) = I(Rj); i.e., no tuple of I(Rj) is dangling

relative to the full join.] However, in many practical situations it might be useful to use

the decomposed schema R to store instances I that are not globally consistent.

Example 11.3.2 Recall the schema (Movies[TDA], {T →D}) from Example 11.2.4 and

its decomposition {TD,TA}. Suppose that for some movie the director is known, but no

actors are known. As mentioned previously, this information is easily stored in the decom-

posed database, but not in the original. The impossibility of representing this information

in the original schema was one of the anomalies that motivated the decomposition in the

first place.

Suppose that fd schema (U,�) has decomposition (R, Ŵ)= {(R1, Ŵ1), . . . , (Rn, Ŵn)}.
Suppose also that I is an instance of R such that (1) I(Rj) |= Ŵj for each j , but (2) I is
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Figure 11.4: Instances illustrating weak URA

not necessarily globally consistent. Should I be considered a “valid” instance of schema

(R, Ŵ)? More generally, given a schema (U,�), a decomposition R of U , and a (not

necessarily globally consistent) instance I over R, how should we define the notion of

“satisfaction” of � by I?

The weak universal relation assumption (weak URA) provides one approach for an-

swering this question. Under the weak URA, we say that I satisfies � if there is some

instance J ∈ sat (U,�) such that I(Rj) ⊆ πRj
(J ) for each j ∈ [1, n]. In this case, J is

called a weak instance for I.

Example 11.3.3 Let U = {ABCD}, � = {A→ B,BC →D}, and R = {AB,BC,ACD}.
Consider the three instances of R shown in Fig. 11.4. The instance I1 satisfies � under the

weak URA, because J1 = {〈a, b, c, d〉} is a weak instance.

On the other hand, I2, which contains I1, does not satisfy � under the weak URA. To

see this, suppose that J2 is a weak instance for I2. Then J2 must contain the following (not

necessarily distinct) tuples:

t1 = 〈a, b, c1, d1〉

t2 = 〈a
′, b, c2, d2〉

t3 = 〈a3, b, c, d3〉

t4 = 〈a, b4, c, d〉

t5 = 〈a
′, b5, c, d

′〉

where the subscripted constants may be new. Because J2 |= A→ B, by considering the
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pairs 〈t1, t4〉 and 〈t2, t5〉, we see that b4 = b5 = b. Next, because J2 |= BC→D, and by

considering the pair 〈t4, t5〉, we have that d = d ′, a contradiction.

Finally, I3 does satisfy � under the weak URA.

As suggested by the preceding example, testing whether an instance I over R is a

weak instance of (U,�) for a set of fd’s � can be performed using the chase. To do that, it

suffices to construct a table over U by padding the tuples from each Rj with distinct new

variables. The resulting table is chased with the dependencies in �. If the chase fails, there

is no weak instance for I. On the other hand, a successful chase provides a weak instance

for I by simply replacing each remaining variable with a distinct new constant.

This yields the following (see Exercise 11.27):

Theorem 11.3.4 Let � be a set of fd’s over U and R a decomposition of U . Testing

whether I over R satisfies � under the weak URA can be performed in polynomial time.

Of course, the chasing technique can be extended to arbitrary egd’s, although the

complexity jumps to exptime-complete.

What about full tgd’s? Recall that full tgd’s can always be satisfied by adding new

tuples to an instance. Let � be a set of full dependencies. It is easy to see that I satisfies �

under the weak URA iff I satisfies �∗ ∩ {σ | σ is an egd} under the weak URA.

Querying under the Weak URA

Let (U,�) be a schema, where� is a set of full dependencies, and let R be a decomposition

ofU . Let us assume the weak URA, and suppose that database instance I over R satisfies�.

How should queries against I be answered? One approach is to consider the query against

all weak instances for I and then take the intersection of the answers. That is,

qweak(I)= ∩{q(I ) | I is a weak instance of I}.

We develop now a constructive method for computing qweak.

Given instance I of R, the representative instance of I is defined as follows: For each

component Ij of I, let I ′j be the result of extending Ij to be a free instance over U by

padding tuples with distinct variables. Set I ′ = ∪{I ′j | j ∈ [1, n]}. Now apply the chase

using � to obtain the representative instance rep(I, �) (or the empty instance, if two

distinct constants are to be identified). Note that some elements of rep(I, �) may have

variables occurring in them.

For X ⊆ U , let π↓X(rep(I, �)) denote the set of tuples (i.e., with no variables present)

in πX(rep(I, �)). The following can now be verified (see Exercise 11.28).

Proposition 11.3.5 Let (U,�), R and I be as above, and let X ⊆ U . Then

(a) [πX]weak(I)= π↓X(rep(I, �)).

(b) If � is a set of fd’s, then [πX]weak(I) can be computed in ptime.
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This proposition provides the basis of a constructive method for evaluating an arbitrary

algebra query q under the weak URA. Furthermore, if � is a set of fd’s, then evaluating q

will take time at most polynomial in the size of the input instance. This approach can be

generalized to the case where � is a set of full dependencies but computing the projection

is exptime-complete.

Bibliographic Notes

The recent book [MR92] provides an in-depth coverage of relational schema design, in-

cluding both the theoretical underpinnings and other, less formal factors that go into good

design. Extensive treatments of the topic are also found in [Dat86, Fv89, Ull88, Vos91].

References [Ken78, Ken79, Ken89] illustrate the many difficulties that arise in schema de-

sign, primarily with a host of intriguing examples that show how skilled the human mind

is at organizing diverse information and how woefully limiting data models are.

Surveys of semantic data models include [Bor85, HK87, PM88], and the book [TL82];

[Vos91] includes a chapter on this topic. Prominent early semantic data models include the

Entity-Relationship (ER) model [Che76] (see also [BLN86, MR92, TYF86]), the Func-

tional Data Model [Shi81, HK81], the Semantic Data Model [HM81], and the Semantic

Binary Data Model [Abr74]. An early attempt to incorporate semantic data modeling con-

structs into the relational model is RM/T [Cod79]; more recently there have been various

extensions of the relational model to incorporate object-oriented data modeling features

(e.g., [SJGP90]). Many commercial systems support “tuple IDs,” which can be viewed

as a form of OID. Galileo [ACO85], Taxis [MBW80], and FQL [BFN82] are program-

ming languages that support constructs stemming from semantic data models. The IFO

[AH87] model is a relatively simple, formal semantic data model that subsumes the struc-

tural components of the aforementioned semantic models and several others. Reference

[AH87] clarifies issues concerning ISA hierarchies in semantic schemas (see also [BLN86,

Cod79, DH84] and studies the propagation of updates.

Reference [Che76] describes a translation of the ER model into the relational model, so

that the resulting schema is in BCNF. From a practical perspective, this has become widely

accepted as the method of choice for designing relational schemas; [TYF86] provides

a subsequent perspective on this approach. There has also been considerable work on

understanding the properties of relational schemas resulting from ER schemas and mapping

relational schemas into ER ones. Reference [MR92] provides an in-depth discussion of this

area.

Reference [LV87] presents a translation from a semantic to the relational model

and studies the constraints implied for the relational schema, including cardinality con-

straints. The logical implication of constraints within a semantic model schema is studied

in [CL94]. References [Lie80, Lie82] study the relationship of schemas from the network

and relational models.

At a fundamental level, an important aspect of schema design is to replace one schema

with another that can hold essentially the same information. This raises the issue of de-

veloping formal methods for comparing the relative information capacity of different

schemas. Early work in this direction for the relational model includes [AABM82] and

[BMSU81] (see Exercise 11.22). More abstract work is found in [HY84, Hul86] (see Ex-

ercises 11.23 and 11.24), which forms the basis for Theorem 11.1.3. Reference [MS92]



Bibliographic Notes 265

provides justification for translations from the Entity-Relationship model into the relational

model using notions of relative information capacity. Formal notions of relative informa-

tion capacity have also been applied in the context of schema integration and translation

[MIR93] and heterogeneous databases [MIR94]. A very abstract framework for comparing

schemas from different data models is proposed in [AT93].

The area of normal forms and relational database design was studied intensively in the

1970s and early 1980s. Much more complete coverage of this topic than presented here may

be found in [Dat86, Mai83, Ull88, Vos91]. We mention some of the most important papers

in this area. First normal form [Cod70] is actually fundamental to the relational model: A

relation is in first normal form (1NF) if each column contains atomic values. In Chapter 20

this restriction shall be relaxed to permit relations some of whose columns themselves

hold relations (which again may not be in first normal form). References [Cod71, Cod72a]

raised the issue of update anomalies and initiated the search for normal forms that prevent

them by introducing second and third normal forms. The definition of 3NF used here is

from [Zan82]. (Second normal form is less restrictive than third normal form.) Boyce-

Codd normal form (BCNF) was introduced in [Cod74] to provide a normal form simpler

than 3NF. Another improvement of 3NF is proposed in [LTK81]. Fourth normal form

was introduced in [Fag77b]; Example 11.2.15 is inspired from that reference. Even richer

normal forms include project-join normal form (PJ/NF) [Fag79] and domain-key normal

form [Fag81].

In addition to introducing second and third normal form, [Cod72a] initiated the

search for normalization algorithms by proposing the first decomposition algorithms. This

spawned other research on decomposition [DC72, RD75, PJ81] and synthesis [BST75,

Ber76b, WW75]. The fact that these two criteria are not equivalent was stressed in [Ris77],

where it is proposed that both be attempted. Early surveys on these approaches to rela-

tional design include [BBG78, Fag77a, Ris78]. Algorithms for synthesis into 3NF include

[Ber76b, BDB79], for decomposition into BCNF include [TF82], and for decomposition

into 4NF include [Fag77b]. Computational issues raised by decompositions are studied in

[LO78, BB79, FJT83, TF82] and elsewhere. Reference [Got87] presents a good heuristic

for finding covers of the projection of a set of fd’s. The 3NF Synthesis Algorithm presented

in this chapter begins with a minimal cover of a set of fd’s; [Mai80] shows that minimal

covers can be found in polynomial time.

The more formal study of decompositions and their properties was initiated in [Ris77],

which considered decompositions into two-element sets and proposed the notion of inde-

pendent components; and [AC78], which studied decompositions with lossless joins and

dependency preservation. This was extended independently to arbitrary decompositions

over fd’s by [BR80] and [MMSU80]. Lossless join was further investigated in [Var82b]

(see Exercise 11.20).

The notion that not all integrity constraints specified in a schema should be considered

for the design process was implicit in various works on semantic data modeling (e.g.,

[Che76, Lie80, Lie82]). It was stated explicitly in connection with relational schema design

in [FMU82, Sci81]. An extensive application of this approach to develop an approach to

schema design that incorporates both fd’s and mvd’s is [BK86].

A very different form of decomposition, called horizontal decomposition, is intro-

duced in [DP84]. This involves splitting a relation into pieces, each of which satisfies a

given set of fd’s.



266 Design and Dependencies

The universal relation assumption has a long history; the reader is directed to [AA93,

MUV84, Ull89b] for a much more complete coverage of this topic than found in this chap-

ter. The URA was implicit in much of the early work on normal forms and decompositions;

this was articulated more formally in [FMU82, MUV84]. The weak URA was studied in

connection with query processing in [Sag81, Sag83], and in connection with fd satisfac-

tion in [Hon82]. Proposition 11.3.5(a) is due to [MUV84] and part (b) is due to [Hon82];

the extension to full dependencies is due to [GMV86]. Reference [Sci86] presents an in-

teresting comparison of the relational model with inclusion dependencies to a variant of

the universal relation model and shows an equivalence when certain natural restrictions are

imposed.

A topic related to the URA is that of universal relation interfaces (URI); these attempt

to present a user view of a relational database in the form of a universal relation. An

excellent survey of research on this topic is found in [MRW86]; see also [AA93, Osb79,

Ull89b].

Exercises

Exercise 11.1

(a) Extend the instance of Example 11.1.1 for CINEMA-SEM so that it has at least two
objects in each class.

(b) Let CINEMA-SEM′ be the same as CINEMA-SEM, except that a complex value
class Movie_Actor is used in CINEMA-SEM in place of the attributes acted_in and
has_actors. How would the instance you constructed for part (a) be represented in
CINEMA-SEM′?

Exercise 11.2

(a) Suppose that in CINEMA-SEM some theaters do not have phones. Describe how the
simulation CINEMA-REL can be changed to reflect this (without using null values).
What dependencies are satisfied?

(b) Do the same for the case where some persons may have more than one citizenship.

Exercise 11.3

(a) Describe a general algorithm for translating GSM schemas with keys into relational
ones.

(b) Verify Theorem 11.1.3.

(c) Verify that the relational schema resulting from a GSM schema is in 4NF and has
acyclic and key-based ind’s.

♠Exercise 11.4 [MR88, MR92] Let R be a relational database schema, � a set of tagged fd’s
for R, and Ŵ a set of ind’s for R. Assume that (R, �) is in BCNF and that Ŵ is acyclic and
consists of key-based ind’s (as will arise if R is the simulation of a GSM schema). Prove that �
and Ŵ are independent. Hint: Show that if I is an instance of R satisfying �, then no fd can be
applied during chasing of I by (� ∪ Ŵ). Now apply Theorem 9.4.5.

Exercise 11.5 [Fag79] Let (R,�) be a relation schema, and let �′ be the set of key depen-
dencies implied by �. Show that R is in 4NF iff each nontrivial mvd implied by � is implied
by �′.
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Exercise 11.6 [DF92] A key dependency X→ U is simple if X is a singleton.

(a) Suppose that (R,�) is in BCNF, where � may involve both fd’s and mvd’s. Suppose
further that (R,�) has at least one simple key. Prove that (R,�) is in 4NF.

(b) Suppose that (R,�) is in 3NF and that each key of � is simple. Prove that (R,�) is
in BCNF.

A schema (R,�) is in project-join normal form (PJ/NF) if each JD σ implied by � is implied
by the key dependencies implied by �.

(a) Show that if (R,�) is in 3NF and each key of � is simple, then (R,�) is in PJ/NF.

Exercise 11.7 Let (U,�) be a schema, where � contains possibly fd’s, mvd’s, and jd’s. Show
that (a) (U,�) is in BCNF implies (U,�) is in 3NF; (b) (U,�) is in 4NF implies (U,�) is in
BCNF; (c) (U,�) is in PJ/NF implies (U,�) is in 4NF.

Exercise 11.8 [BR80, MMSU80] Prove Theorem 11.2.3.

Exercise 11.9 Recall the schema (Movies[TDA],{T →D}). Consider the decomposition R1 =
{(TD, {T →D}), (DA,∅)}.

(a) Show that this does not have the lossless join property.

⋆ (b) Show that this decomposition is not one-to-one. That is, exhibit two distinct instances
I, I ′ of (Movies, {T →D}) such that πR1

(I )= πR1
(I ′).

Exercise 11.10 Verify Theorem 11.2.8. Hint: To prove the lossless join property, use repeated
applications of Proposition 8.2.2.

Exercise 11.11 [FJT83] For each n≥ 0, describe an fd schema (U,�) and V ⊆ U , such that
� has ≤ 2n+ 1 dependencies but the smallest cover for πV (�) has at least 2n elements.

Exercise 11.12

(a) Let (U [Z], Ŵ) be an fd schema. Give a polynomial time algorithm for determining
whether this relation schema is in BCNF. (In fact, there is a linear time algorithm.)

(b) [BB79] Show that the following problem is co-np-complete. Given fd schema
(R[U ], �) and V ⊆ U , determine whether (V , πV (�)) is in BCNF. Hint: Reduce
to the hitting set problem [GJ79].

⋆Exercise 11.13 [TF82] Develop a polynomial time algorithm for finding BCNF decompo-
sitions. Hint: First show that each two-attribute fd schema is in BCNF. Then show that if
(S[V ], L) is not in BCNF, then there are A,B ∈ V such that (V − AB)→ A.

Exercise 11.14 Recall the schema Showings[Th(eater), Sc(reen), Ti(tle), Sn(ack)] of Sec-
tion 8.1, which satisfies the fd Th,Sc → Ti and the mvd Th →→ Sc,Ti | Sn. Consider the two
decompositions

R1 = {{Th, Sc,Ti}, {Th, Sn}}

R2 = {{Th, Sc,Ti}, {Th, Sc, Sn}}.

Are they one-to-one? dependency preserving? Describe anomalies that can arise if either of
these decompositions is used.

Exercise 11.15 [BB79] Verify that the schema of Example 11.2.10 has no BCNF decomposi-
tion that preserves dependencies.
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Exercise 11.16 [Mai80] Develop a polynomial time algorithm that finds a minimal cover of a
set of fd’s.

Exercise 11.17 Prove Theorem 11.2.14.

Exercise 11.18 [Mai83] Show that a schema (R[U ], �) with 2n attributes and 2n fd’s can
have as many as 2n keys.

Exercise 11.19 [LO78] Let (S[V ], L) be an fd schema. Show that the following problem is
np-complete: Given A ∈ V , is there a nontrivial fd Y → A implied by L, where Y is not a
superkey and A is not a key attribute?

⋆Exercise 11.20 [Var82b] For this exercise, you will exhibit an example of a schema (R,�),
where � consists of dependencies expressed in first-order logic (which may not be embedded
dependencies) and a decomposition R of R such that R is one-to-one but does not have the
lossless join property.

Consider the schema R[ABCD]. Given t ∈ I ∈ inst(R), t[A] is a key element for AB in I

if there is no s ∈ I with t[A]= s[A] and t[B] �= s[B]. The notion of t[C] being a key element

for CD is defined analogously. Let � consist of the constraints

(i) ∃t ∈ I such that both t[A] and t[C] are key elements.

(ii) If t ∈ I , then t[A] is a key element or t[C] is a key element.

(iii) If s, t ∈ I and s[A] or t[C] is a key element, then the tuple u is in I , where u[AB]=
s[AB] and u[CD]= t[CD].

Let R = {R1[AB], R2[CD]} be a decomposition of (R,�).

(a) Show that the decomposition R for (R,�) is one-to-one.

(b) Exhibit a reconstruction mapping for R. (The natural join will not work.)

Exercise 11.21 This and the following exercise provide one kind of characterization of the
relative information capacity of decompositions of relation schemas. Let U be a set of attributes,
let α = {X1, . . . , Xn} be a nonempty family of subsets of U , and let X = ∪ni=1Xi. The project-

join mapping determined by α, denoted PJα, is a mapping from instances over U to instances
over ∪ni=1Xi defined by PJα(I )= ⊲⊳ni=1 (πXi

(I )). α is full if ∪ni=1 = U , in which case PJα is a
full project-join mapping.

Prove the following for instances I and J over U :

(a) πX(I )⊆ PJα(I )
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(b) PJα(PJα(I ))= PJα(I )

(c) if I ⊆ J then PJα(I )⊆ PJα(J ).

⋆Exercise 11.22 [BMSU81] Let U be a set of attributes. If α = {X1, . . . , Xn} is a nonempty
full family of subsets of U , then Fixpt(α) denotes {I over U | PJα(I )= I } (see the preceding
exercise). For α and β nonempty full families of subsets of U , β covers α, denoted α ( β, if
for each set X ∈ α there is a set Y ∈ β such that X ⊆ Y . Prove for nonempty full families α, β
of subsets of U that the following are equivalent:

(a) α ( β

(b) PJα(I )⊇ PJβ(I ) for each instance I over U

(c) Fixpt(α)⊆ Fixpt(β).

Exercise 11.23 Given relational database schemas S and S′, we say that S′ dominates S using
the calculus, denoted S (calc S′, if there are calculus queries q : Inst(S)→ Inst(S′) and q ′ :
Inst(S′)→ Inst(S) such that q ◦ q ′ is the identity on Inst(S). Let schema R = (ABC, {A→ B})
and the decomposition R = {(AB, {A→ B}), (AC,∅)}. (a) Verify that R (calc R. (b) Show that
R �(calc R. Hint: For schemas S and S′, S′ dominates S absolutely, denoted S(abs S′, if there is
some n ≥ 0 such that for each finite subset d ⊆ dom with |d| ≥ n, |{I ∈ Inst(S) | adom(I) ⊆
d}| ≤ |{I ∈ Inst(S′) | adom(I) ⊆ d}|. Show that S (calc S′ implies S (abs S′. Then show that
R �(abs R.

⋆Exercise 11.24 [HY84] Let A and B be relational attributes. Consider the complex value type
T = 〈A, {B}〉, where each instance of T is a finite set of pairs having the form 〈a, b̂〉, where
a ∈ dom and b̂ is a finite subset of dom. Show that for each relational schema R, R (abs T and
T �(abs R. (See Exercise 11.23 for the definition of (abs.)

♠Exercise 11.25 [BV84b, CP84]

(a) Let (U,�) be a (full dependencies) schema and R an acyclic decomposition of U (in
the sense of acyclic joins). Then πR is one-to-one iff R has the lossless join property.
Hint: First prove the result for the case where the decomposition has two elements
(i.e., it is based on an mvd). Then generalize to acyclic decompositions, using an
induction based on the GYO algorithm.

(b) [CKV90] Show that (a) can be generalized to include unary ind’s in �.

Exercise 11.26 [Hon82] Let (U,�) be an fd schema and R= {R1, . . . , Rn} a decomposition
of U . Consider the following notions of “satisfaction” by I over R of �:

I |=1 �: if Ij |= πRj (�) for each j ∈ [1, n].
I |=2 �: if ⊲⊳ I |=�.
I |=3 �: if I= πR(I ) for some I over U such that I |=�.

(a) Show that |=1 and |=2 are incomparable.

(b) Show that if R preserves dependencies, then |=1 implies |=2.

(c) What is the relationship of |=1 and |=2 to |=3?

(d) What is the relationship of all of these to the notion of satisfaction based on the weak
URA?

♠Exercise 11.27 [Hon82] Prove Theorem 11.3.4.

Exercise 11.28 [MUV84, Hon82] Prove Proposition 11.3.5.
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D Datalog and Recursion

In Part B, we considered query languages ranging from conjunctive queries to first-order

queries in the three paradigms: algebraic, logic, and deductive. We did this by enriching

the conjunctive queries first with union (disjunction) and then with difference (negation).

In this part, we further enrich these languages by adding recursion. First we add recursion

to the conjunctive queries, which yields datalog. We study this language in Chapter 12.

Although it is too limited for practical use, datalog illustrates some of the essential aspects

of recursion. Furthermore, most existing optimization techniques have been developed for

datalog.

Datalog owes a great debt to Prolog and the logic-programming area in general. A

fundamental contribution of the logic-programming paradigm to relational query languages

is its elegant notation for expressing recursion. The perspective of databases, however, is

significantly different from that of logic programming. (For example, in databases datalog

programs define mappings from instances to instances, whereas logic programs generally

carry their data with them and are studied as stand-alone entities.) We adapt the logic-

programming approach to the framework of databases.

We study evaluation techniques for datalog programs in Chapter 13, which covers

the main optimization techniques developed for recursion in query languages, including

seminaive evaluation and magic sets.

Although datalog is of great theoretical importance, it is not adequate as a practi-

cal query language because of the lack of negation. In particular, it cannot express even

the first-order queries. Chapters 14 and 15 deal with languages combining recursion and

negation, which are proper extensions of first-order queries. Chapter 14 considers the issue

of combining negation and recursion. Languages are presented from all three paradigms,

which support both negation and recursion. The semantics of each one is defined in fun-

damentally operational terms, which include datalog with negation and a straightforward,

fixpoint semantics. As will be seen, the elegant correspondence between languages in the

three paradigms is maintained in the presence of recursion.

Chapter 15 considers approaches to incorporating negation in datalog that are closer

in spirit to logic programming. Several important semantics for negation are presented,

including stratification and well-founded semantics.
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12 Datalog

Alice: What do we see next?

Riccardo: We introduce recursion.

Sergio: He means we ask queries about your ancestors.

Alice: Are you leading me down a garden path?

Vittorio: Kind of—queries related to paths in a graph call for recursion

and are crucial for many applications.

For a long time, relational calculus and algebra were considered the database languages.

Codd even defined as “complete” a language that would yield precisely relational

calculus. Nonetheless, there are simple operations on data that cannot be realized in the

calculus. The most conspicuous example is graph transitive closure. In this chapter, we

study a language that captures such queries and is thus more “complete” than relational

calculus.1 The language, called datalog, provides a feature not encountered in languages

studied so far: recursion.

We start with an example that motivates the need for recursion. Consider a database

for the Parisian Metro. Note that this database essentially describes a graph. (Database

applications in which part of the data is a graph are common.) To avoid making the

Metro database too static, we assume that the database is describing the available metro

connections on a day of strike (not an unusual occurrence). So some connections may

be missing, and the graph may be partitioned. An instance of this database is shown in

Fig. 12.1.

Natural queries to ask are as follows:

(12.1) What are the stations reachable from Odeon?

(12.2) What lines can be reached from Odeon?

(12.3) Can we go from Odeon to Chatelet?

(12.4) Are all pairs of stations connected?

(12.5) Is there a cycle in the graph (i.e., a station reachable in one or more stops from

itself)?

Unfortunately, such queries cannot be answered in the calculus without using some a

1 We postpone a serious discussion of completeness until Part E, where we tackle fundamental issues
such as “What is a formal definition of data manipulation (as opposed to arbitrary computation)?
What is a reasonable definition of completeness for database languages?”
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Links Line Station Next Station

4 St.-Germain Odeon

4 Odeon St.-Michel

4 St.-Michel Chatelet

1 Chatelet Louvre

1 Louvre Palais-Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

9 Pont de Sevres Billancourt

9 Billancourt Michel-Ange

9 Michel-Ange Iena

9 Iena F. D. Roosevelt

9 F. D. Roosevelt Republique

9 Republique Voltaire

Figure 12.1: An instance I of the Metro database

priori knowledge on the Metro graph, such as the graph diameter. More generally, given a

graph G, a particular vertex a, and an integer n, it is easy to write a calculus query finding

the vertexes at distance less than n from a; but it seems difficult to find a query for all

vertexes reachable from a, regardless of the distance. We will prove formally in Chapter 17

that such a query is not expressible in the calculus. Intuitively, the reason is the lack of

recursion in the calculus.

The objective of this chapter is to extend some of the database languages considered

so far with recursion. Although there are many ways to do this (see also Chapter 14), we

focus in this chapter on an approach inspired by logic programming. This leads to a field

called deductive databases, or database logic programming, which shares motivation and

techniques with the logic-programming area.

Most of the activity in deductive databases has focused on a toy language called dat-

alog, which extends the conjunctive queries with recursion. The interaction between nega-

tion and recursion is more tricky and is considered in Chapters 14 and 15. The importance

of datalog for deductive databases is analogous to that of the conjunctive queries for the

relational model. Most optimization techniques for relational algebra were developed for

conjunctive queries. Similarly, in this chapter most of the optimization techniques in de-

ductive databases have been developed around datalog (see Chapter 13).

Before formally presenting the language datalog, we present informally the syntax and

various semantics that are considered for that language. Following is a datalog program

PT C that computes the transitive closure of a graph. The graph is represented in relation G

and its transitive closure in relation T :

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).



Datalog 275

Observe that, except for the fact that relation T occurs both in the head and body of the

second rule, these look like the nonrecursive datalog rules of Chapter 4.

A datalog program defines the relations that occur in heads of rules based on other

relations. The definition is recursive, so defined relations can also occur in bodies of rules.

Thus a datalog program is interpreted as a mapping from instances over the relations

occurring in the bodies only, to instances over the relations occurring in the heads. For

instance, the preceding program maps a relation over G (a graph) to a relation over T (its

transitive closure).

A surprising and elegant property of datalog, and of logic programming in general, is

that there are three very different but equivalent approaches to defining the semantics. We

present the three approaches informally now.

A first approach is model theoretic. We view the rules as logical sentences stating a

property of the desired result. For instance, the preceding rules yield the logical formulas

∀x, y(T (x, y) ← G(x, y))(1)

∀x, y, z(T (x, y) ← (G(x, z) ∧ T (z, y))).(2)

The result T must satisfy the foregoing sentences. However, this is not sufficient to deter-

mine the result uniquely because it is easy to see that there are many T s that satisfy the

sentences. However, it turns out that the result becomes unique if one adds the following

natural minimality requirement: T consists of the smallest set of facts that makes the sen-

tences true. As it turns out, for each datalog program and input, there is a unique minimal

model. This defines the semantics of a datalog program. For example, suppose that the

instance contains

G(a, b),G(b, c),G(c, d).

It turns out that T (a, d) holds in each instance that obeys (1) and (2) and where these three

facts hold. In particular, it belongs to the minimum model of (1) and (2).

The second proof-theoretic approach is based on obtaining proofs of facts. A proof of

the fact T (a, d) is as follows:

(i) G(c, d) belongs to the instance;

(ii) T (c, d) using (i) and the first rule;

(iii) G(b, c) belongs to the instance;

(iv) T (b, d) using (iii), (ii), and the second rule;

(v) G(a, b) belongs to the instance;

(vi) T (a, d) using (v), (iv), and the second rule.

A fact is in the result if there exists a proof for it using the rules and the database facts.

In the proof-theoretic perspective, there are two ways to derive facts. The first is to

view programs as “factories” producing all facts that can be proven from known facts.

The rules are then used bottom up, starting from the known facts and deriving all possible

new facts. An alternative top-down evaluation starts from a fact to be proven and attempts

to demonstrate it by deriving lemmas that are needed for the proof. This is the underlying
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intuition of a particular technique (called resolution) that originated in the theorem-proving

field and lies at the core of the logic-programming area.

As an example of the top-down approach, suppose that we wish to prove T (a, d). Then

by the second rule, this can be done by proving G(a, b) and T (b, d). We know G(a, b), a

database fact. We are thus left with proving T (b, d). By the second rule again, it suffices

to prove G(b, c) (a database fact) and T (c, d). This last fact can be proven using the first

rule. Observe that this yields the foregoing proof (i) to (vi). Resolution is thus a particular

technique for obtaining such proofs. As detailed later, resolution permits variables as well

as values in the goals to be proven and the steps used in the proof.

The last approach is the fixpoint approach. We will see that the semantics of the

program can be defined as a particular solution of a fixpoint equation. This approach leads

to iterating a query until a fixpoint is reached and is thus procedural in nature. However,

this computes again the facts that can be deduced by applications of the rules, and in that

respect it is tightly connected to the (bottom-up) proof-theoretic approach. It corresponds

to a natural strategy for generating proofs where shorter proofs are produced before longer

proofs so facts are proven “as soon as possible.”

In the next sections we describe in more detail the syntax, model-theoretic, fixpoint,

and proof-theoretic semantics of datalog. As a rule, we introduce only the minimum

amount of terminology from logic programming needed in the special database case. How-

ever, we make brief excursions into the wider framework in the text and exercises. The

last section deals with static analysis of datalog programs. It provides decidability and

undecidability results for several fundamental properties of programs. Techniques for the

evaluation of datalog programs are discussed separately in Chapter 13.

12.1 Syntax of Datalog

As mentioned earlier, the syntax of datalog is similar to that of languages introduced in

Chapter 4. It is an extension of nonrecursive datalog, which was introduced in Chapter 4.

We provide next a detailed definition of its syntax. We also briefly introduce some of the

fundamental differences between datalog and logic programming.

Definition 12.1.1 A (datalog) rule is an expression of the form

R1(u1)← R2(u2), . . . , Rn(un),

where n ≥ 1, R1, . . . , Rn are relation names and u1, . . . , un are free tuples of appropriate

arities. Each variable occurring in u1 must occur in at least one of u2, . . . , un. A datalog

program is a finite set of datalog rules.

The head of the rule is the expression R1(u1); and R2(u2), . . . , Rn(un) forms the body.

The set of constants occurring in a datalog program P is denoted adom(P ); and for an

instance I, we use adom(P, I) as an abbreviation for adom(P ) ∪ adom(I).

We next recall a definition from Chapter 4 that is central to this chapter.
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Definition 12.1.2 Given a valuation ν, an instantiation

R1(ν(u1))← R2(ν(u2)), . . . , Rn(ν(un))

of a rule R1(u1)← R2(u2), . . . , Rn(un) with ν is obtained by replacing each variable x by

ν(x).

Let P be a datalog program. An extensional relation is a relation occurring only

in the body of the rules. An intensional relation is a relation occurring in the head of

some rule of P . The extensional (database) schema, denoted edb(P ), consists of the

set of all extensional relation names; whereas the intensional schema idb(P ) consists

of all the intensional ones. The schema of P , denoted sch(P ), is the union of edb(P )

and idb(P ). The semantics of a datalog program is a mapping from database instances

over edb(P ) to database instances over idb(P ). In some contexts, we call the input data

the extensional database and the program the intensional database. Note also that in the

context of logic-based languages, the term predicate is often used in place of the term

relation name.

Let us consider an example.

Example 12.1.3 The following program Pmetro computes the answers to queries (12.1),

(12.2), and (12.3):

St_Reachable(x, x) ←

St_Reachable(x, y) ← St_Reachable(x, z),Links(u, z, y)

Li_Reachable(x, u) ← St_Reachable(x, z),Links(u, z, y)

Ans_1(y) ← St_Reachable(Odeon, y)

Ans_2(u) ← Li_Reachable(Odeon, u)

Ans_3() ← St_Reachable(Odeon,Chatelet)

Observe that St_Reachable is defined using recursion. Clearly,

edb(Pmetro)= {Links},

idb(Pmetro)= {St_Reachable,Li_Reachable,Ans_1,Ans_2,Ans_3}

For example, an instantiation of the second rule of Pmetro is as follows:

St_Reachable(Odeon,Louvre)← St_Reachable(Odeon,Chatelet),

Links(1,Chatelet,Louvre)
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Datalog versus Logic Programming

Given the close correspondence between datalog and logic programming, we briefly high-

light the central differences between these two fields. The major difference is that logic

programming permits function symbols, but datalog does not.

Example 12.1.4 The simple logic program Pleq is given by

leq(0, x)←

leq(s(x), s(y))← leq(x, y)

leq(x,+(x, y))←

leq(x, z)← leq(x, y), leq(y, z)

Here 0 is a constant, s a unary function sysmbol, + a binary function sysmbol, and leq a

binary predicate. Intuitively, s might be viewed as the successor function, + as addition,

and leq as capturing the less-than-or-equal relation. However, in logic programming the

function symbols are given the “free” interpretation—two terms are considered nonequal

whenever they are syntactically different. For example, the terms +(0, s(0)),+(s(0), 0),

and s(0) are all nonequal. Importantly, functional terms can be used in logic programming

to represent intricate data structures, such as lists and trees.

Observe also that in the preceding program the variable x occurs in the head of the

first rule and not in the body, and analogously for the third rule.

Another important difference between deductive databases and logic programs con-

cerns perspectives on how they are typically used. In databases it is assumed that the

database is relatively large and the number of rules relatively small. Furthermore, a da-

talog program P is typically viewed as defining a mapping from instances over the edb

to instances over the idb. In logic programming the focus is different. It is generally as-

sumed that the base data is incorporated directly into the program. For example, in logic

programming the contents of instance Link in the Metro database would be represented

using rules such as Link(4, St.-Germain,Odeon)←. Thus if the base data changes, the

logic program itself is changed. Another distinction, mentioned in the preceding example,

is that logic programs can construct and manipulate complex data structures encoded by

terms involving function symbols.

Later in this chapter we present further comparisons of the two frameworks.

12.2 Model-Theoretic Semantics

The key idea of the model-theoretic approach is to view the program as a set of first-

order sentences (also called a first-order theory) that describes the desired answer. Thus

the database instance constituting the result satisfies the sentences. Such an instance is

also called a model of the sentences. However, there can be many (indeed, infinitely

many) instances satisfying the sentences of a program. Thus the sentences themselves

do not uniquely identify the answer; it is necessary to specify which of the models is
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the intended answer. This is usually done based on assumptions that are external to the

sentences themselves. In this section we formalize (1) the relationship between rules and

logical sentences, (2) the notion of model, and (3) the concept of intended model.

We begin by associating logical sentences with rules, as we did in the beginning of this

chapter. To a datalog rule

ρ : R1(u1)← R2(u2), . . . , Rn(un)

we associate the logical sentence

∀x1, . . . , xm(R1(u1)← R2(u2) ∧ · · · ∧ Rn(un)),

where x1, . . . , xm are the variables occurring in the rule and ← is the standard logical

implication. Observe that an instance I satisfies ρ, denoted I |= ρ, if for each instantiation

R1(ν(u1))← R2(ν(u2)), . . . , Rn(ν(un))

such that R2(ν(u2)), . . . , Rn(ν(un)) belong to I, so does R1(ν(u1)). In the following, we

do not distinguish between a rule ρ and the associated sentence. For a program P , the

conjunction of the sentences associated with the rules of P is denoted by �P .

It is useful to note that there are alternative ways to write the sentences associated with

rules of programs. In particular, the formula

∀x1, . . . , xm(R1(u1)← R2(u2) ∧ · · · ∧ Rn(un))

is equivalent to

∀x1, . . . , xq(∃xq+1, . . . , xm(R2(u2) ∧ · · · ∧ Rn(un))→ R1(u1)),

where x1, . . . , xq are the variables occurring in the head. It is also logically equivalent to

∀x1, . . . , xm(R1(u1) ∨ ¬R2(u2) ∨ · · · ∨ ¬Rn(un)).

This last form is particularly interesting. Formulas consisting of a disjunction of liter-

als of which at most one is positive are called in logic Horn clauses. A datalog program

can thus be viewed as a set of (particular) Horn clauses.

We next discuss the issue of choosing, among the models of �P , the particular model

that is intended as the answer. This is not a hard problem for datalog, although (as we shall

see in Chapter 15) it becomes much more involved if datalog is extended with negation.

For datalog, the idea for choosing the intended model is simply that the model should not

contain more facts than necessary for satisfying �P . So the intended model is minimal in

some natural sense. This is formalized next.

Definition 12.2.1 Let P be a datalog program and I an instance over edb(P ). A model

of P is an instance over sch(P ) satisfying �P . The semantics of P on input I, denoted

P(I), is the minimum model of P containing I, if it exists.
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Station

Odeon

St.-Michel

Chatelet

Louvres

Palais-Royal

Tuileries

Concorde

Ans_1 Line

4

1

Ans_2

〈 〉

Ans_3

Figure 12.2: Relations of Pmetro(I)

For Pmetro as in Example 12.1.3, and I as in Fig. 12.1, the values of Ans_1, Ans_2, and

Ans_3 in P(I) are shown in Fig. 12.2.

We briefly discuss the choice of the minimal model at the end of this section.

Although the previous definition is natural, we cannot be entirely satisfied with it at

this point:

• For given P and I, we do not know (yet) whether the semantics of P is defined (i.e.,

whether there exists a minimum model of �P containing I).

• Even if such a model exists, the definition does not provide any algorithm for

computing P(I). Indeed, it is not (yet) clear that such an algorithm exists.

We next provide simple answers to both of these problems.

Observe that by definition, P(I) is an instance over sch(P ). A priori, we must consider

all instances over sch(P ), an infinite set. It turns out that it suffices to consider only those

instances with active domain in adom(P, I) (i.e., a finite set of instances). For given P and

I, let B(P, I) be the instance over sch(P ) defined by

1. For each R in edb(P ), a fact R(u) is in B(P, I) iff it is in I; and

2. For each R in idb(P ), each fact R(u) with constants in adom(P, I) is in B(P, I).

We now verify that B(P, I) is a model of P containing I.

Lemma 12.2.2 Let P be a datalog program and I an instance over edb(P ). Then B(P, I)

is a model of P containing I.

Proof Let A1 ← A2, . . . , An be an instantiation of some rule r in P such that A2, . . . ,

An hold in B(P, I). Then consider A1. Because each variable occurring in the head of r

also occurs in the body, each constant occurring in A1 belongs to adom(P, I). Thus by

definition 2 just given, A1 is in B(P, I). Hence B(P, I) satisfies the sentence associated

with that particular rule, so B(P, I) satisfies �P . Clearly, B(P, I) contains I by definition 1.
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Thus the semantics of P on input I, if defined, is a subset of B(P, I). This means that

there is no need to consider instances with constants outside adom(P, I).

We next demonstrate that P(I) is always defined.

Theorem 12.2.3 Let P be a datalog program, I an instance over edb(P ), and X the set

of models of P containing I. Then

1. ∩X is the minimal model of P containing I, so P(I) is defined.

2. adom(P (I))⊆ adom(P, I).

3. For each R in edb(P ), P(I)(R)= I(R).

Proof Note that X is nonempty, because B(P, I) is in X . Let r ≡ A1 ← A2, . . . , An be

a rule in P and ν a valuation of the variables occurring in the rule. To prove (1), we show

that

(*) if ν(A2), . . . , ν(An) are in ∩X then ν(A1) is also in ∩X .

For suppose that (*) holds. Then ∩X |= r , so ∩X satisfies �P . Because each instance in X

contains I, ∩X contains I. Hence ∩X is a model of P containing I. By construction, ∩X

is minimal, so (1) holds.

To show (*), suppose that ν(A2), . . . , ν(An) are in ∩X and let K be in X . Because

∩X ⊆K, ν(A2), . . . , ν(An) are in K. Because K is in X , K is a model of P , so ν(A1) is

in K. This is true for each K in X . Hence ν(A1) is in ∩X and (*) holds, which in turn

proves (1).

By Lemma 12.2.2, B(P, I) is a model of P containing I. Therefore P(I)⊆ B(P, I).

Hence

• adom(P (I))⊆ adom(B(P, I))= adom(P, I), so (2) holds.

• For each R in edb(P ), I(R) ⊆ P(I)(R) [because P(I) contains I] and P(I)(R) ⊆
B(P, I)(R)= I(R); which shows (3).

The previous development also provides an algorithm for computing the semantics

of datalog programs. Given P and I, it suffices to consider all instances that are subsets of

B(P, I), find those that are models of P and contain I, and compute their intersection. How-

ever, this is clearly an inefficient procedure. The next section provides a more reasonable

algorithm.

We conclude this section with two remarks on the definition of semantics of datalog

programs. The first explains the choice of a minimal model. The second rephrases our

definition in more standard logic-programming terminology.

Why Choose the Minimal Model?

This choice is the natural consequence of an implicit hypothesis of a philosophical nature:

the closed world assumption (CWA) (see Chapter 2).

The CWA concerns the connection between the database and the world it models.
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Clearly, databases are often incomplete (i.e., facts that may be true in the world are not

necessarily recorded in the database). Thus, although we can reasonably assume that a

fact recorded in the database is true in the world, it is not clear what we can say about

facts not explicitly recorded. Should they be considered false, true, or unknown? The CWA

provides the simplest solution to this problem: Treat the database as if it records complete

information about the world (i.e., assume that all facts not in the database are false). This

is equivalent to taking as true only the facts that must be true in all worlds modeled by

the database. By extension, this justifies the choice of minimal model as the semantics of

a datalog program. Indeed, the minimal model consists of the facts we know must be true

in all worlds satisfying the sentences (and including the input instance). As we shall see,

this has an equivalent proof-theoretic counterpart, which will justify the proof-theoretic

semantics of datalog programs: Take as true precisely the facts that can be proven true

from the input and the sentences corresponding to the datalog program. Facts that cannot

be proven are therefore considered false.

Importantly, the CWA is not so simple to use in the presence of negation or disjunction.

For example, suppose that a database holds {p ∨ q}. Under the CWA, then both ¬p and

¬q are inferred. But the union {p ∨ q,¬p,¬q} is inconsistent, which is certainly not the

intended result.

Herbrand Interpretation

We relate briefly the semantics given to datalog programs to standard logic-programming

terminology.

In logic programming, the facts of an input instance I are not separated from the

sentences of a datalog program P . Instead, sentences stating that all facts in I are true

are included in P . This gives rise to a logical theory �P,I consisting of the sentences in �P

and of one sentence P(u) [sometimes written P(u)←] for each fact P(u) in the instance.

The semantics is defined as a particular model of this set of sentences. A problem is that

standard interpretations in first-order logic permit interpretation of constants of the theory

with arbitrary elements of the domain. For instance, the constants Odeon and St.-Michel

may be interpreted by the same element (e.g., John). This is clearly not what we mean

in the database context. We wish to interpret Odeon by Odeon and similarly for all other

constants. Interpretations that use the identity function to interpret the constant symbols

are called Herbrand interpretations (see Chapter 2). (If function symbols are present,

restrictions are also placed on how terms involving functions are interpreted.) Given a set

Ŵ of formulas, a Herbrand model of Ŵ is a Herbrand interpretation satisfying Ŵ.

Thus in logic programming terms, the semantics of a program P given an instance I

can be viewed as the minimum Herbrand model of �P,I.

12.3 Fixpoint Semantics

In this section, we present an operational semantics for datalog programs stemming from

fixpoint theory. We use an operator called the immediate consequence operator. The oper-

ator produces new facts starting from known facts. We show that the model-theoretic se-
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mantics, P(I), can also be defined as the smallest solution of a fixpoint equation involving

that operator. It turns out that this solution can be obtained constructively. This approach

therefore provides an alternative constructive definition of the semantics of datalog pro-

grams. It can be viewed as an implementation of the model-theoretic semantics.

Let P be a datalog program and K an instance over sch(P ). A fact A is an immediate

consequence for K and P if either A ∈K(R) for some edb relation R, or A← A1, . . . , An

is an instantiation of a rule in P and each Ai is in K. The immediate consequence operator

of P , denoted TP , is the mapping from inst(sch(P )) to inst(sch(P )) defined as follows.

For each K, TP (K) consists of all facts A that are immediate consequences for K and P .

We next note some simple mathematical properties of the operator TP over sets of

instances. We first define two useful properties. For an operator T ,

• T is monotone if for each I, J, I⊆ J implies T (I)⊆ T (J).

• K is a fixpoint of T if T (K)=K.

The proof of the next lemma is straightforward and is omitted (see Exercise 12.9).

Lemma 12.3.1 Let P be a datalog program.

(i) The operator TP is monotone.

(ii) An instance K over sch(P ) is a model of �P iff TP (K)⊆K.

(iii) Each fixpoint of TP is a model of �P ; the converse does not necessarily hold.

It turns out that P(I) (as defined by the model-theoretic semantics) is a fixpoint of TP .

In particular, it is the minimum fixpoint containing I. This is shown next.

Theorem 12.3.2 For each P and I, TP has a minimum fixpoint containing I, which

equals P(I).

Proof Observe first that P(I) is a fixpoint of TP :

• TP (P (I))⊆ P(I) because P(I) is a model of P ; and

• P(I) ⊆ TP (P (I)). [Because TP (P (I)) ⊆ P(I) and TP is monotone, TP (TP (P (I)))

⊆ TP (P (I)). Thus TP (P (I)) is a model of �P . Because TP preserves the contents

of the edb relations and I⊆ P(I), we have I⊆ TP (P (I)). Thus TP (P (I)) is a model

of �P containing I. Because P(I) is the minimum such model, P(I)⊆ TP (P (I)).]

In addition, each fixpoint of TP containing I is a model of P and thus contains P(I) (which

is the intersection of all models of P containing I). Thus P(I) is the minimum fixpoint of

P containing I.

The fixpoint definition of the semantics of P presents the advantage of leading to a

constructive definition of P(I). In logic programming, this is shown using fixpoint theory

(i.e., using Knaster-Tarski’s and Kleene’s theorems). However, the database framework

is much simpler than the general logic-programming one, primarily due to the lack of

function symbols. We therefore choose to show the construction directly, without the

formidable machinery of the theory of fixpoints in complete lattices. In Remark 12.3.5
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we sketch the more standard proof that has the advantage of being applicable to the larger

context of logic programming.

Given an instance I over edb(P ), one can compute TP (I), T
2
P (I), T

3
P (I), etc. Clearly,

I⊆ TP (I)⊆ T 2
P (I)⊆ T 3

P (I) . . .⊆ B(P, I).

This follows immediately from the fact that I ⊆ TP (I) and the monotonicity of TP . Let N

be the number of facts in B(P, I). (Observe that N depends on I.) The sequence {T i
P (I)}i

reaches a fixpoint after at most N steps. That is, for each i ≥ N , T i
P (I) = T N

P (I). In

particular, TP (T
N
P (I))= T N

P (I), so T N
P (I) is a fixpoint of TP . We denote this fixpoint by

T ω
P (I).

Example 12.3.3 Recall the program PT C for computing the transitive closure of a

graph G:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

Consider the input instance

I= {G(1, 2),G(2, 3),G(3, 4),G(4, 5)}.

Then we have

TPT C(I )= I ∪ {T (1, 2), T (2, 3), T (3, 4), T (4, 5)}

T 2
PT C

(I )= TPT C(I ) ∪ {T (1, 3), T (2, 4), T (3, 5)}

T 3
PT C

(I )= T 2
PT C

(I ) ∪ {T (1, 4), T (2, 5)}

T 4
PT C

(I )= T 3
PT C

(I ) ∪ {T (1, 5)}

T 5
PT C

(I )= T 4
PT C

(I ).

Thus T ω
PT C

(I )= T 4
PT C

(I ).

We next show that T ω
P (I) is exactly P(I) for each datalog program P .

Theorem 12.3.4 Let P be a datalog program and I an instance over edb(P ). Then

T ω
P (I)= P(I).

Proof By Theorem 12.3.2, it suffices to show that T ω
P (I) is the minimum fixpoint of TP

containing I. As noted earlier,

TP (T
ω
P (I))= TP (T

N
P (I))= T N

P (I)= T ω
P (I).



12.3 Fixpoint Semantics 285

where N is the number of facts in B(P, I). Therefore T ω
P (I) is a fixpoint of TP that con-

tains I.

To show that it is minimal, consider an arbitrary fixpoint J of TP containing I. Then

J ⊇ T 0
P (I)= I. By induction on i, J ⊇ T i

P (I) for each i, so J ⊇ T ω
P (I). Thus T ω

P (I) is the

minimum fixpoint of TP containing I.

The smallest integer i such that T i
P (I)= T ω

P (I) is called the stage for P and I and is

denoted stage(P, I). As already noted, stage(P, I)≤N = |B(P, I)|.

Evaluation

The fixpoint approach suggests a straightforward algorithm for the evaluation of datalog.

We explain the algorithm in an example. We extend relational algebra with a while operator

that allows us to iterate an algebraic expression while some condition holds. (The resulting

language is studied extensively in Chapter 17.)

Consider again the transitive closure query. We wish to compute the transitive closure

of relation G in relation T . Both relations are over AB. This computation is performed by

the following program:

T :=G;

while q(T ) �= T do T := q(T );

where

q(T )=G ∪ πAB(δB→C(G) ⊲⊳ δA→C(T )).

(Recall that δ is the renaming operation as introduced in Chapter 4.)

Observe that q is an SPJRU expression. In fact, at each step, q computes the im-

mediate consequence operator TP , where P is the transitive closure datalog program in

Example 12.3.3. One can show in general that the immediate consequence operator can be

computed using SPJRU expressions (i.e., relational algebra without the difference opera-

tion). Furthermore, the SPJRU expressions extended carefully with a while construct yield

exactly the expressive power of datalog. The test of the while is used to detect when the

fixpoint is reached.

The while construct is needed only for recursion. Let us consider again the nonrecur-

sive datalog of Chapter 4. Let P be a datalog program. Consider the graph (sch(P ), EP ),

where 〈S, S′〉 is an edge in EP if S′ occurs in the head of some rule r in P and S occurs in

the body of r . Then P is nonrecursive if the graph is acyclic. We mentioned already that

nr-datalog programs are equivalent to SPJRU queries (see Section 4.5). It is also easy to

see that, for each nr-datalog program P , there exists a constant d such that for each I over

edb(P ), stage(P, I) ≤ d . In other words, the fixpoint is reached after a bounded number

of steps, dependent only on the program. (See Exercise 12.29.) Programs for which this

happens are called bounded. We examine this property in more detail in Section 12.5.

A lot of redundant computation is performed when running the preceding transitive

closure program. We study optimization techniques for datalog evaluation in Chapter 13.
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Remark 12.3.5 In this remark, we make a brief excursion into standard fixpoint theory

to reprove Theorem 12.3.4. This machinery is needed when proving the analog of that

theorem in the more general context of logic programming. A partially ordered set (U,≤)
is a complete lattice if each subset has a least upper bound and a greatest lower bound,

denoted sup and inf , respectively. In particular, inf (U) is denoted⊥ and sup(U) is denoted

⊤. An operator T on U is monotone iff for each x, y ∈ U , x ≤ y implies T (x)≤ T (y). An

operator T on U is continuous if for each subset V , T (sup(V )) = sup(T (V )). Note that

continuity implies monotonicity.

To each datalog program P and instance I, we associate the program PI consisting

of the rules of P and one rule R(u)← for each fact R(u) in I. We consider the complete

lattice formed with (inst(sch(P )),⊆) and the operator TPI
defined by the following: For

each K, a fact A is in TPI
(K) if A is an immediate consequence for K and PI. The operator

TPI
on (inst(sch(P )),⊆) is continuous (so also monotone).

The Knaster-Tarski theorem states that a monotone operator in a complete lattice

has a least fixpoint that equals inf ({x | x ∈ U, T (x) ≤ x}). Thus the least fixpoint of TPI

exists. Fixpoint theory also provides the constructive definition of the least fixpoint for

continuous operators. Indeed, Kleene’s theorem states that if T is a continuous operator on

a complete lattice, then its least fixpoint is sup({Ki | i ≥ 0}) where K0 =⊥ and for each

i > 0, Ki = T (Ki−1). Now in our case, ⊥= ∅ and

∅ ∪ TPI
(∅) ∪ · · · ∪ T i

PI
(∅) ∪ · · ·

coincides with P(I).

In logic programming, function symbols are also considered (see Example 12.1.4). In

this context, the sequence of {T i
PI
(I)}i>0 does not generally converge in a finite number

of steps, so the fixpoint evaluation is no longer constructive. However, it does converge in

countably many steps to the least fixpoint ∪{T i
PI
(∅) | i ≥ 0}. Thus fixpoint theory is useful

primarily when dealing with logic programs with function symbols. It is an overkill in the

simpler context of datalog.

12.4 Proof-Theoretic Approach

Another way of defining the semantics of datalog is based on proofs. The basic idea is that

the answer of a program P on I consists of the set of facts that can be proven using P and

I. The result turns out to coincide, again, with P(I).

The first step is to define what is meant by proof . A proof tree of a fact A from I and

P is a labeled tree where

1. each vertex of the tree is labeled by a fact;

2. each leaf is labeled by a fact in I;

3. the root is labeled by A; and

4. for each internal vertex, there exists an instantiation A1 ← A2, . . . , An of a rule

in P such that the vertex is labeled A1 and its children are respectively labeled

A2, . . . , An.

Such a tree provides a proof of the fact A.
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(a)  Datalog proof (b)  Context-free derivation

S(1,6)

R(5,a,6)T(1,5)

T(3,5)R(1,a,2) R(2,b,3)

R(3,a,4) R(4,a,5)

rule 2

rule 1

rule 3

S

aT

Ta b

a a

Figure 12.3: Proof tree

Example 12.4.1 Consider the following program:

S(x1, x3)← T (x1, x2), R(x2, a, x3)

T (x1, x4)← R(x1, a, x2), R(x2, b, x3), T (x3, x4)

T (x1, x3)← R(x1, a, x2), R(x2, a, x3)

and the instance

{R(1, a, 2), R(2, b, 3), R(3, a, 4), R(4, a, 5), R(5, a, 6)}.

A proof tree of S(1, 6) is shown in Fig. 12.3(a).

The reader familiar with context-free languages will notice the similarity between

proof trees and derivation trees in context-free languages. This connection is especially

strong in the case of datalog programs that have the form of the one in Example 12.4.1.

This will be exploited in the last section of this chapter.

Proof trees provide proofs of facts. It is straightforward to show that a fact A is in P(I)

iff there exists a proof tree for A from I and P . Now given a fact A to prove, one can look

for a proof either bottom up or top down.

The bottom-up approach is an alternative way of looking at the constructive fixpoint

technique. One begins with the facts from I and then uses the rules to infer new facts, much

like the immediate consequence operator. This is done repeatedly until no new facts can be

inferred. The rules are used as “factories” producing new facts from already proven ones.

This eventually yields all facts that can be proven and is essentially the same as the fixpoint

approach.

In contrast to the bottom-up and fixpoint approaches, the top-down approach allows

one to direct the search for a proof when one is only interested in proving particular facts.
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For example, suppose the query Ans_1(Louvre) is posed against the program Pmetro of

Example 12.1.3, with the input instance of Fig. 12.1. Then the top-down approach will

never consider atoms involving stations on Line 9, intuitively because they are are not

reachable from Odeon or Louvre. More generally, the top-down approach inhibits the

indiscriminate inference of facts that are irrelevant to the facts of interest.

The top-down approach is described next. This takes us to the field of logic program-

ming. But first we need some notation, which will remind us once again that “To bar an

easy access to newcomers every scientific domain has introduced its own terminology and

notation” [Apt91].

Notation

Although we already borrowed a lot of terminology and notation from the logic-program-

ming field (e.g., term, fact, atom), we must briefly introduce some more.

A positive literal is an atom [i.e., P(u) for some free tuple u]; and a negative literal is

the negation of one [i.e., ¬P(u)]. A formula of the form

∀x1, . . . , xm(A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bp),

where the Ai, Bj are positive literals, is called a clause. Such a clause is written in clausal

form as

A1, . . . , An← B1, . . . , Bp.

A clause with a single literal in the head (n= 1) is called a definite clause. A definite clause

with an empty body is called a unit clause. A clause with no literal in the head is called a

goal clause. A clause with an empty body and head is called an empty clause and is denoted

. Examples of these and their logical counterparts are as follows:

definite T (x, y)← R(x, z), T (z, y) T (x, y) ∨ ¬R(x, z) ∨ ¬T (z, y)
unit T (x, y)← T (x, y)

goal ← R(x, z), T (z, y) ¬R(x, z) ∨ ¬T (z, y)
empty false

The empty clause is interpreted as a contradiction. Intuitively, this is because it corresponds

to the disjunction of an empty set of formulas.

A ground clause is a clause with no occurrence of variables.

The top-down proof technique introduced here is called SLD resolution. Goals serve

as the basic focus of activity in SLD resolution. As we shall see, the procedure begins

with a goal such as ← St_Reachable(x,Concorde), Li_Reachable(x, 9). A correct an-

swer of this goal on input I is any value a such that St_Reachable(a,Concorde) and

Li_Reachable(a, 9) are implied by �Pmetro,I
. Furthermore, each intermediate step of the

top-down approach consists of obtaining a new goal from a previous goal. Finally, the

procedure is deemed successful if the final goal reached is empty.

The standard exposition of SLD resolution is based on definite clauses. There is a
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subtle distinction between datalog rules and definite clauses: For datalog rules, we imposed

the restriction that each variable that occurs in the head also appears in the body. (In

particular, a datalog unit clause must be ground.) We will briefly mention some minor

consequences of this distinction.

As already introduced in Remark 12.3.5, to each datalog program P and instance I,

we associate the program PI consisting of the rules of P and one rule R(u)← for each

fact R(u) in I. Therefore in the following we ignore the instance I and focus on programs

that already integrate all the known facts in the set of rules. We denote such a program PI

to emphasize its relationship to an instance I. Observe that from a semantic point of view

P(I)= PI(∅).

This ignores the distinction between edb and idb relations, which no longer exists for PI.

Example 12.4.2 Consider the program P and instance I of Example 12.4.1. The rules

of PI are

1. S(x1, x3)← T (x1, x2), R(x2, a, x3)

2. T (x1, x4)← R(x1, a, x2), R(x2, b, x3), T (x3, x4)

3. T (x1, x3)← R(x1, a, x2), R(x2, a, x3)

4. R(1, a, 2)←

5. R(2, b, 3)←

6. R(3, a, 4)←

7. R(4, a, 5)←

8. R(5, a, 6)←

Warm-Up

Before discussing SLD resolution, as a warm-up we look at a simplified version of the

technique by considering only ground rules. To this end, consider a datalog program PI

(integrating the facts) consisting only of fully instantiated rules (i.e., with no occurrences

of variables). Consider a ground goal g ≡

← A1, . . . , Ai, . . . , An

and some (ground) rule r ≡ Ai ← B1, . . . , Bm in PI. A resolvent of g with r is the ground

goal

← A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An.

Viewed as logical sentences, the resolvent of g with r is actually implied by g and r .

This is best seen by writing these explicitly as clauses:
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R(5,a,6)

S(1,6) ← T(1,5), R(5,a,6)

R(2,b,3), T(3,5), R(5,a,6)

T(1,5) ← R(1,a,2), R(2,b,3), T(3,5)

T(3,5), R(5,a,6)

R(1,a,2) ←

R(5,a,6)

R(2,b,3) ← 

R(4,a,5), R(5,a,6)

T(3,5) ← R(3,a,4), R(4,a,5)

R(5,a,6)

R(3,a,4) ←

R(4,a,5) ← 

R(5,a,6) ←

← S(1,6)

← T(1,5),

← R(1,a,2),

← R(2,b,3),

← T(3,5),

← R(3,a,4),

← R(4,a,5),

← R(5,a,6)

←

Figure 12.4: SLD ground refutation

(¬A1 ∨ · · · ∨ ¬Ai ∨ · · · ∨ ¬An) ∧ (Ai ∨ ¬B1 ∨ · · · ∨ ¬Bm)

⇒ (¬A1 ∨ · · · ∨ ¬Ai−1 ∨ ¬B1 ∨ · · · ∨ ¬Bm ∨ ¬Ai+1 ∨ · · · ∨ ¬An).

In general, the converse does not hold.

A derivation from g with PI is a sequence of goals g ≡ g0, g1, . . . such that for each

i > 0, gi is a resolvent of gi−1 with some rule in PI. We will see that to prove a fact A, it

suffices to exhibit a refutation of ← A—that is, a derivation

g0 ≡← A, g1, . . . , gi, . . . , gq ≡ .

Example 12.4.3 Consider Example 12.4.1 and the program obtained by all possible

instantiations of the rules of PI in Example 12.4.2. An SLD ground refutation is shown

in Fig. 12.4. It is a refutation of ← S(1, 6) [i.e. a proof of S(1, 6)].

Let us now explain why refutations provide proofs of facts. Suppose that we wish to

prove A1 ∧ · · · ∧ An. To do this we may equivalently prove that its negation (i.e. ¬A1 ∨
· · · ∨ ¬An) is false. In other words, we try to refute (or disprove) ← A1, . . . , An. The

following rephrasing of the refutation in Fig. 12.4 should make this crystal clear.
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Example 12.4.4 Continuing with the previous example, to prove S(1, 6), we try to refute

its negation [i.e.,¬S(1, 6) or← S(1, 6)]. This leads us to considering, in turn, the formulas

Goal Rule used

¬S(1, 6) (1)

⇒ ¬T (1, 5) ∨ ¬R(5, a, 6) (2)

⇒ ¬R(1, a, 2) ∨ ¬R(2, b, 3) ∨ ¬T (3, 5) ∨ ¬R(5, a, 6) (4)

⇒ ¬R(2, b, 3) ∨ ¬T (3, 5) ∨ ¬R(5, a, 6) (5)

⇒ ¬T (3, 5) ∨ ¬R(5, a, 6) (3)

⇒ ¬R(3, a, 4) ∨ ¬R(4, a, 5) ∨ ¬R(5, a, 6) (6)

⇒ ¬R(4, a, 5) ∨ ¬R(5, a, 6) (7)

⇒ ¬R(5, a, 6) (8)

⇒ false

At the end of the derivation, we have obtained a contradiction. Thus we have refuted

¬S(1, 6) [i.e., proved S(1, 6)].

Thus refutations provide proofs. As a consequence, a goal can be thought of as a query.

Indeed, the arrow is sometimes denoted with a question mark in goals. For instance, we

sometimes write

?- S(1, 6) for ← S(1, 6).

Observe that the process of finding a proof is nondeterministic for two reasons: the

choice of the literal A to replace and the rule that is used to replace it.

We now have a technique for proving facts. The benefit of this technique is that it is

sound and complete, in the sense that the set of facts in P(I) coincides with the facts that

can be proven from PI.

Theorem 12.4.5 Let PI be a datalog program and ground(PI) be the set of instantiations

of rules in PI with values in adom(P, I). Then for each ground goal g, PI(∅) |= ¬g iff there

exists a refutation of g with ground(PI).

Crux To show the “only if,” we prove by induction that

(**)
for each ground goal g, if T i

PI
(∅) |= ¬g,

there exists a refutation of g with ground(PI).

(The “if” part is proved similarly by induction on the length of the refutation. Its proof is

left for Exercise 12.18.)

The base case is obvious. Now suppose that (**) holds for some i ≥ 0, and let

A1, . . . , Am be ground atoms such that T i+1
PI

(∅) |= A1 ∧ · · · ∧ Am. Therefore each Aj is

in T i+1
PI

(∅). Consider some j . If Aj is an edb fact, we are back to the base case. Otherwise
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R(x2,a,x)

S(x1,x3) ← T(x1,x2), R(x2,a,x3)

R(y2,b,x3), T(x3,x2), R(x2,a,x)

T(x1,x4) ← R(x1,a,x2), R(x2,b,x3), T(x3,x4)

T(x3,x2), R(x2,a,x)

R(1,a,2) ←

R(x2,a,x)

R(2,b,3) ← 

R(z2,a,x2), R(x2,a,x)

T(x1,x3) ← R(x1,a,x2), R(x2,a,x3)

R(x2,a,x)

R(3,a,4) ←

R(4,a,5) ← 

R(5,a,6) ←

← S(1,x)

← T(1,x2),

← R(1,a,y2),

← R(2,b,x3),

← T(3,x2),

← R(3,a,z2),

← R(4,a,x2),

← R(5,a,x)

←

Figure 12.5: SLD refutation

there exists an instantiation Aj ← B1, . . . , Bp of some rule in PI such that B1, . . . , Bp are

in T i
PI
(∅). The refutation of ← Aj with ground(PI) is as follows. It starts with

← Aj

← B1, B2 . . . , Bp.

Now by induction there exist refutations of ← Bn, 1 ≤ n ≤ p, with ground(PI). Using

these refutations, one can extend the preceding derivation to a derivation leading to the

empty clause. Furthermore, the refutations for each of the Aj ’s can be combined to obtain

a refutation of← A1, . . . , Am as desired. Therefore (**) holds for i + 1. By induction, (**)

holds.

SLD Resolution

The main difference between the general case and the warm-up is that we now handle

goals and tuples with variables rather than just ground ones. In addition to obtaining the

goal , the process determines an instantiation θ for the free variables of the goal g, such

that PI(∅) |= ¬θg. We start with an example: An SLD refutation of← S(1, x) is shown in

Fig. 12.5.

In general, we start with a goal (which does not have to be ground):
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← A1, . . . , Ai, . . . , An.

Suppose that we selected a literal to be replaced [e.g., Ai =Q(1, x2, x5)]. Any rule used

for the replacement must have Q for predicate in the head, just as in the ground case. For

instance, we might try some rule

Q(x1, x4, x3)← P(x1, x2), P (x2, x3),Q(x3, x4, x5).

We now have two difficulties:

(i) The same variable may occur in the selected literal and in the rule with two

different meanings. For instance, x2 in the selected literal is not to be confused

with x2 in the rule.

(ii) The pattern of constants and of equalities between variables in the selected literal

and in the head of the rule may be different. In our example, for the first attribute

we have 1 in the selected literal and a variable in the rule head.

The first of these two difficulties is handled easily by renaming the variables of the rules.

We shall use the following renaming discipline: Each time a rule is used, a new set of

distinct variables is substituted for the ones in the rule. Thus we might use instead the rule

Q(x11, x14, x13)← P(x11, x12), P (x12, x13),Q(x13, x14, x15).

The second difficulty requires a more careful approach. It is tackled using unification,

which matches the pattern of the selected literal to that of the head of the rule, if possible.

In the example, unification consists of finding a substitution θ such that θ(Q(1, x2, x5))=
θ(Q(x11, x14, x13)). Such a substitution is called a unifier. For example, the substitu-

tion θ(x11) = 1, θ(x2) = θ(x14) = θ(x5) = θ(x13) = y is a unifier for Q(1, x2, x5) and

Q(x11, x14, x13), because θ(Q(1, x2, x5)) = θ(Q(x11, x14, x13)) = Q(1, y, y). Note that

this particular unifier is unnecessarily restrictive; there is no reason to identify all of

x2, x3, x4, x5.

A unifier that is no more restrictive than needed to unify the atoms is called a most

general unifier (mgu). Applying the mgu to the rule to be used results in specializing the

rule just enough so that it applies to the selected literal. These terms are formalized next.

Definition 12.4.6 Let A,B be two atoms. A unifier for A and B is a substitution θ such

that θA= θB. A substitution θ is more general than a substitution ν, denoted θ →֒ ν, if

for some substitution ν′, ν = θ ◦ ν′. A most general unifier (mgu) for A and B is a unifier

θ for A,B such that, for each unifier ν of A,B, we have θ →֒ ν.

Clearly, the relation →֒ between unifiers is reflexive and transitive but not antisym-

metric. Let ≈ be the equivalence relation on substitutions defined by θ ≈ ν iff θ →֒ ν and

ν →֒ θ . If θ ≈ ν, then for each atom A, θ(A) and ν(A) are the same modulo renaming of

variables.
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Computing the mgu

We now develop an algorithm for computing an mgu for two atoms. Let R be a relation

of arity p and R(x1, . . . , xp), R(y1, . . . , yp) two literals with disjoint sets of variables.

Compute ≡, the equivalence relation on var ∪ dom defined as the reflexive, transitive

closure of: xi ≡ yi for each i in [1, p]. The mgu of R(x1, . . . , xp) and R(y1, . . . , yp) does

not exist if two distinct constants are in the same equivalence class. Otherwise their mgu is

the substitution θ such that

1. If z≡ a for some constant a, θ(z)= a;

2. Otherwise θ(z)= z′, where z′ is the smallest (under a fixed ordering on var) such

that z≡ z′.

We show that the foregoing computes an mgu.

Lemma 12.4.7 The substitution θ just computed is an mgu for R(x1, . . . , xp) and

R(y1, . . . , yp).

Proof Clearly, θ is a unifier for R(x1, . . . , xp) and R(y1, . . . , yp). Suppose ν is another

unifier for the same atoms. Let ≡ν be the equivalence relation on var ∪ dom defined by

x ≡ν y iff ν(x) = ν(y). Because ν is a unifier, ν(xi) = ν(yi). It follows that xi ≡ν yi, so

≡ refines≡ν. Then the substitution ν′ defined by ν′(θ(x))= ν(x), is well defined, because

θ(x)= θ(x′) implies ν(x)= ν(x′). Thus ν = θ ◦ ν′ so θ →֒ ν. Because this holds for every

unifier ν, it follows that θ is an mgu for the aforementioned atoms.

The following facts about mgu’s are important to note. Their proof is left to the reader

(Exercise 12.19). In particular, part (ii) of the lemma says that the mgu of two atoms, if it

exists, is essentially unique (modulo renaming of variables).

Lemma 12.4.8 Let A,B be atoms.

(i) If there exists a unifier for A,B, then A,B have an mgu.

(ii) If θ and θ ′ are mgu’s for A,B then θ ≈ θ ′.

(iii) Let A,B be atoms with mgu θ . Then for each atom C, if C = θ1A = θ2B for

substitutions θ1, θ2, then C = θ3(θ(A))= θ3(θ(B)) for some substitution θ3.

We are now ready to rephrase the notion of resolvent to incorporate variables. Let

g ≡← A1, . . . , Ai, . . . , An, r ≡ B1 ← B2, . . . , Bm

be a goal and a rule such that

1. g and r have no variable in common (which can always be ensured by renaming

the variables of the rule).

2. Ai and B1 have an mgu θ .
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Then the resolvent of g with r using θ is the goal

← θ(A1), . . . , θ(Ai−1), θ(B2), . . . , θ(Bm), θ(Ai+1), . . . , θ(An).

As before, it is easily verified that this resolvent is implied by g and r .

An SLD derivation from a goal g with a program PI is a sequence g0 = g, g1, . . . of

goals and θ0, . . . of substitutions such that for each j , gj is the resolvent of gj−1 with

some rule in PI using θj1. An SLD refutation of a goal g with PI is an SLD derivation

g0 = g, . . . , gq = with PI.

We now explain the meaning of such a refutation. As in the variable-free case, the

existence of a refutation of a goal ← A1, . . . , An with PI can be viewed as a proof of the

negation of the goal. The goal is

∀x1, . . . , xm(¬A1 ∨ · · · ∨ ¬An)

where x1, . . . , xm are the variables in the goal. Its negation is therefore equivalent to

∃x1, . . . , xm(A1 ∧ · · · ∧ An),

and the refutation can be seen as a proof of its validity. Note that, in the case of datalog

programs (where by definition all unit clauses are ground), the composition θ1 ◦ · · · ◦ θq
of mgu’s used while refuting the goal yields a substitution by constants. This substitution

provides “witnesses” for the existence of the variables x1, . . . , xm making true the conjunc-

tion. In particular, by enumerating all refutations of the goal, one could obtain all values

for the variables satisfying the conjunction—that is, the answer to the query

{〈x1, . . . , xm〉 | A1 ∧ · · · ∧ An}.

This is not the case when one allows arbitrary definite clauses rather than datalog rules, as

illustrated in the following example.

Example 12.4.9 Consider the program

S(x, z)←G(x, z)

S(x, z)←G(x, y), S(y, z)

S(x, x)←

that computes in S the reflexive transitive closure of graphG. This is a set of definite clauses

but not a datalog program because of the last rule. However, resolution can be extended to

(and is indeed in general presented for) definite clauses. Observe, for instance, that the goal

← S(w,w) is refuted with a substitution that does not bind variable w to a constant.

SLD resolution is a technique that provides proofs of facts. One must be sure that

it produces only correct proofs (soundness) and that it is powerful enough to prove all
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true facts (completeness). To conclude this section, we demonstrate the soundness and

completeness of SLD resolution for datalog programs.

We use the following lemma:

Lemma 12.4.10 Let g ≡← A1, . . . , Ai, . . . , An and r ≡ B1 ← B2, . . . , Bm be a goal and

a rule with no variables in common, and let

g′ ≡← A1, . . . , Ai−1, B2, . . . , Bm, Ai+1, . . . , An.

If θg′ is a resolvent of g with r using θ , then the formula r implies:

r ′ ≡¬θg′→¬θg

= θ(A1 ∧ · · · ∧ Ai−1 ∧ B2 ∧ · · · ∧ Bm ∧ Ai+1 ∧ · · · ∧ An)→ θ(A1 ∧ · · · ∧ An).

Proof Let J be an instance over sch(P ) satisfying r and let valuation ν be such that

J |= ν[θ(A1) ∧ · · · ∧ θ(Ai−1) ∧ θ(B2) ∧ · · · ∧ θ(Bm) ∧ θ(Ai+1) ∧ · · · ∧ θ(An)].

Because

J |= ν[θ(B2) ∧ · · · ∧ θ(Bm)]

and J |= B1 ← B2, . . . , Bm, J |= ν[θ(B1)]. That is, J |= ν[θ(Ai)]. Thus

J |= ν[θ(A1) ∧ · · · ∧ θ(An)].

Hence for each ν, J |= νr ′. Therefore J |= r ′. Thus each instance over sch(P ) satisfying r

also satisfies r ′, so r implies r ′.

Using this lemma, we have the following:

Theorem 12.4.11 (Soundness of SLD resolution) Let PI be a program and g ≡←
A1, . . . , An a goal. If there exists an SLD-refutation of g with PI and mgu’s θ1, . . . , θq ,

then PI implies

θ1 ◦ · · · ◦ θq(A1 ∧ · · · ∧ An).

Proof Let J be some instance over sch(P ) satisfying PI. Let g0 = g, . . . , gq = be an

SLD refutation of g with PI and for each j , let gj be a resolvent of gj−1 with some rule in

PI using some mgu θj . Then for each j , the rule that is used implies ¬gj → θj(¬gj−1) by

Lemma 12.4.10. Because J satisfies PI, for each j ,

J |= ¬gj → θj(¬gj−1).
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Clearly, this implies that for each j ,

J |= θj+1 ◦ · · · ◦ θq(¬gj)→ θj ◦ · · · ◦ θq(¬gj−1).

By transitivity, this shows that

J |= ¬gq → θ1 ◦ · · · ◦ θq(¬g0),

and so

J |= true→ θ1 ◦ · · · ◦ θq(¬g).

Thus J |= θ1 ◦ · · · ◦ θq(A1 ∧ · · · ∧ An).

We next prove the converse of the previous result (namely, the completeness of SLD

resolution).

Theorem 12.4.12 (Completeness of SLD resolution) Let PI be a program and g ≡←
A1, . . . , An a goal. If PI implies ¬g, then there exists a refutation of g with PI.

Proof Suppose that PI implies ¬g. Consider the set ground(PI) of instantiations of rules

in PI with constants in adom(P, I). Clearly, ground(PI)(∅) is a model of PI, so it satisfies

¬g. Thus there exists a valuation θ of the variables in g such that ground(PI)(∅) satisfies

¬θg. By Theorem 12.4.5, there exists a refutation of θg using ground(PI).

Let g0 = θg, . . . , gp = be that refutation. We show by induction on k that for each

k in [0, p],

(†) there exists a derivation g′0 = g, . . . , g′k with PI such that gk = θkg
′
k for some θk.

For suppose that (†) holds for each k. Then for k = p, there exists a derivation g′1 =
g, . . . , g′p with PI such that = gp = θpg

′
p for some θp, so g′p = . Therefore there exists

a refutation of g with PI.

The basis of the induction holds because g0 = θg = θg′0. Now suppose that (†) holds

for some k. The next step of the refutation consists of selecting some atom B of gk and

applying a rule r in ground(PI). In g′k select the atom B ′ with location in g′ corresponding

to the location of B in gk. Note that B = θkB
′. In addition, we know that there is rule

r ′′ = B ′′← A′′1 . . . A
′′
n in PI that has r for instantiation via some substitution θ ′′ (such

a pair B ′, r ′′ exists although it may not be unique). As usual, we can assume that the

variables in g′k are disjoint from those in r ′′. Let θk ⊕ θ ′′ be the substitution defined by

θk ⊕ θ ′′(x)= θk(x) if x is a variable in g′k, and θk ⊕ θ ′′(x)= θ ′′(x) if x is a variable in r ′′.

Clearly, θk ⊕ θ ′′(B ′)= θk ⊕ θ ′′(B ′′)= B so, by Lemma 12.4.8 (i), B ′ and B ′′ have some

mgu θ . Let g′k+1 be the resolvent of g′k with r ′′, B ′ using mgu θ . By the definition of mgu,

there exists a substitution θk+1 such that θk ⊕ θ ′′ = θ ◦ θk+1. Clearly, θk+1(g
′
k+1) = gk+1

and (†) holds for k + 1. By induction, (†) holds for each k.
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← S(1,x)

← T(1,x2),  R(x2,a,x)

1:x1/1,x3/x

2:x1/1,x2/y2,x4/x2

← R(1,a,y2), R(y2,b,x3),  T(x3,x2),  R(x2,a,x)

3:x1/x3,x2/z2,x3/x2

← R(1,a,y2),  R(y2,b,x3), R(x3,a,z2), T(z3,x2), R(x2,a,x)

← R(2,b,x3),  R(x3,a,z2), R(z2,a,x2), R(x2,a,x)

5:x3/3

4:y2/2

← R(3,a,z2),  R(z2,a,x2), R(x2,a,x)

6:z2/4

← R(4,a,x2),  R(x2,a,x)

7:x2/5

← R(5,a,x)

8:x/6

Infinite

subtree

← R(1,a,y2),  R(y2,a,x2), R(x2,a,x)

← R(1,a,1),  R(1,a,x2), R(x2,a,x)

4:y2/1

no possible derivation

3:x1/1,x2/y2,x3/x2

2

Figure 12.6: SLD tree

SLD Trees

We have shown that SLD resolution is sound and complete. Thus it provides an adequate

top-down technique for obtaining the facts in the answer to a datalog program. To prove that

a fact is in the answer, one must search for a refutation of the corresponding goal. Clearly,

there are many refutations possible. There are two sources of nondeterminism in searching

for a refutation: (1) the choice of the selected atom, and (2) the choice of the clause to unify

with the atom. Now let us assume that we have fixed some golden rule, called a selection

rule, for choosing which atom to select at each step in a refutation. A priori, such a rule

may be very simple (e.g., as in Prolog, always take the leftmost atom) or in contrast very

involved, taking into account the entire history of the refutation. Once an atom has been

selected, we can systematically search for all possible unifying rules. Such a search can be

represented in an SLD tree. For instance, consider the tree of Fig. 12.6 for the program in

Example 12.4.2. The selected atoms are represented with boxes. Edges denote unifications

used. Given S(1, x), only one rule can be used. Given T (1, x2), two rules are applicable

that account for the two descendants of vertex T (1, x2). The first number in edge labels

denotes the rule that is used and the remaining part denotes the substitution. An SLD tree

is a representation of all the derivations obtained with a fixed selection rule for atoms.
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There are several important observations to be made about this particular SLD tree:

(i) It is successful because one branch yields .

(ii) It has an infinite subtree that corresponds to an infinite sequence of applications

of rule (2) of Example 12.4.2.

(iii) It has a blocking branch.

We can now explain (to a certain extent) the acronym SLD. SLD stands for selection

rule-driven linear resolution for definite clauses. Rule-driven refers to the rule used for

selecting the atom. An important fact is that the success or failure of an SLD tree does not

depend on the rule for selecting atoms. This explains why the definition of an SLD tree

does not specify the selection rule.

Datalog versus Logic Programming, Revisited

Having established the three semantics for datalog, we summarize briefly the main differ-

ences between datalog and the more general logic-programming (lp) framework.

Syntax: Datalog has only relation symbols, whereas lp uses also function symbols. Datalog

requires variables in rule heads to appear in bodies; in particular, all unit clauses are

ground.

Model-theoretic semantics: Due to the presence of function symbols in lp, models of lp

programs may be infinite. Datalog programs always have finite models. Apart from

this distinction, lp and datalog are identical with respect to model-theoretic semantics.

Fixpoint semantics: Again, the minimum fixpoint of the immediate consequence operator

may be infinite in the lp case, whereas it is always finite for datalog. Thus the fixpoint

approach does not necessarily provide a constructive semantics for lp.

Proof-theoretic semantics: The technique of SLD resolution is similar for datalog and lp,

with the difference that the computation of mgu’s becomes slightly more complicated

with function symbols (see Exercise 12.20). For datalog, the significance of SLD

resolution concerns primarily optimization methods inspired by resolution (such as

“magic sets”; see Chapter 13). In lp, SLD resolution is more important. Due to the

possibly infinite answers, the bottom-up approach of the fixpoint semantics may not

be feasible. On the other hand, every fact in the answer has a finite proof by SLD

resolution. Thus SLD resolution emerges as the practical alternative.

Expressive power: A classical result is that lp can express all recursively enumerable (r.e.)

predicates. However, as will be discussed in Part E, the expressive power of datalog

lies within ptime. Why is there such a disparity? A fundamental reason is that function

symbols are used in lp, and so an infinite domain of objects can be constructed from a

finite set of symbols. Speaking technically, the result for lp states that if S is a (possibly

infinite) r.e. predicate over terms constructed using a finite language, then there is an

lp program that produces for some predicate symbol exactly the tuples in S. Speaking

intuitively, this follows from the facts that viewed in a bottom-up sense, lp provides

composition and looping, and terms of arbitrary length can be used as scratch paper
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(e.g., to simulate a Turing tape). In contrast, the working space and output of range-

restricted datalog programs are always contained within the active domain of the input

and the program and thus are bounded in size.

Another distinction between lp and datalog in this context concerns the nature of

expressive power results for datalog and for query languages in general. Specifically,

a datalog program P is generally viewed as a mapping from instances of edb(P )

to instances of idb(P ). Thus expressive power of datalog is generally measured in

comparison with mappings on families of database instances rather than in terms of

expressing a single (possibly infinite) predicate.

12.5 Static Program Analysis

In this section, the static analysis of datalog programs is considered.2 As with relational

calculus, even simple static properties are undecidable for datalog programs. In particular,

although tableau homomorphism allowed us to test the equivalence of conjunctive queries,

equivalence of datalog programs is undecidable in general. This complicates a systematic

search for alternative execution plans for datalog queries and yields severe limitations

to query optimization. It also entails the undecidability of many other problems related

to optimization, such as deciding when selection propagation (in the style of “pushing”

selections in relational algebra) can be performed, or when parallel evaluation is possible.

We consider three fundamental static properties: satisfiability, containment, and a new

one, boundedness. We exhibit a decision procedure for satisfiability. Recall that we showed

in Chapter 5 that an analogous property is undecidable for CALC. The decidability of

satisfiability for datalog may therefore be surprising. However, one must remember that,

although datalog is more powerful than CALC in some respects (it has recursion), it is less

powerful in others (there is no negation). It is the lack of negation that makes satisfiability

decidable for datalog.

We prove the undecidability of containment and boundedness for datalog programs

and consider variations or restrictions that are decidable.

Satisfiability

Let P be a datalog program. An intensional relation T is satisfiable by P if there exists

an instance I over edb(P ) such that P(I)(T ) is nonempty. We give a simple proof of the

decidability of satisfiability for datalog programs. We will soon see an alternative proof

based on context-free languages.

We first consider constant-free programs. We then describe how to reduce the general

case to the constant-free one.

To prove the result, we use an auxiliary result about instance homomorphisms that is of

some interest in its own right. Note that any mapping θ from dom to dom can be extended

to a homomorphism over the set of instances, which we also denote by θ .

2 Recall that static program analysis consists of trying to detect statically (i.e., at compile time)
properties of programs.
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Lemma 12.5.1 Let P be a constant-free datalog program, I, J two instances over sch(P ),

q a positive-existential query over sch(P ), and θ a mapping over dom. If θ(I)⊆ J, then

(i) θ(q(I))⊆ q(J), and (ii) θ(P (I))⊆ P(J).

Proof For (i), observe that q is monotone and that q ◦ θ ⊆ θ ◦ q (which is not necessary

if q has constants). Because TP can be viewed as a positive-existential query, a straightfor-

ward induction proves (ii).

This result does not hold for datalog programs with constants (see Exercise 12.21).

Theorem 12.5.2 The satisfiability of an idb relation T by a constant-free datalog pro-

gram P is decidable.

Proof Suppose that T is satisfiable by a constant-free datalog program P . We prove that

P(Ia)(T ) is nonempty for some particular instance Ia. Let a be in dom. Let Ia be the

instance over edb(P ) such that for each R in edb(P ), Ia(R) contains a single tuple with a

in each entry. Because T is satisfiable by P , there exists I such that P(I)(T ) �= ∅. Consider

the function θ that maps every constant in dom to a. Then θ(I) ⊆ Ia. By the previous

lemma, θ(P (I)) ⊆ P(Ia). Therefore P(Ia)(T ) is nonempty. Hence T is satisfiable by P

iff P(Ia)(T ) �= ∅.

Let us now consider the case of datalog programs with constants. Let P be a datalog

program with constants. For example, suppose that b, c are the only two constants occur-

ring in the program and thatR is a binary relation occurring inP . We transform the problem

into a problem without constants. Specifically, we replace R with nine new relations:

R⋆⋆, Rb⋆, Rc⋆, R⋆b, R⋆c, Rbc, Rcb, Rbb, Rcc.

The first one is binary, the next four are unary, and the last four are 0-ary (i.e., are proposi-

tions). Intuitively, a factR(x, y) is represented by the factR⋆⋆(x, y) if x, y are not in {b, c};
R(b, x) with x not in {b, c} is represented by Rb⋆(x), and similarly for Rc⋆, R⋆b, R⋆c. The

fact R(b, c) is represented by proposition Rbc(), etc. Using this kind of transformation for

each relation, one translates program P into a constant-free program P ′ such that T is sat-

isfiable by P iff Tw is satisfiable by P ′ for some string w of ⋆ or constants occurring in P .

(See Exercise 12.22a.)

Containment

Consider two datalog programs P,P ′ with the same extensional relations edb(P ) and

a target relation T occurring in both programs. We say that P is included in P ′ with

respect to T , denoted P ⊆T P
′, if for each instance I over edb(P ), P(I)(T )⊆ P ′(I)(T ).

The containment problem is undecidable. We prove this by reduction of the containment

problem for context-free languages. The technique is interesting because it exhibits a

correspondence between proof trees of certain datalog programs and derivation trees of

context-free languages.
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We first illustrate the correspondence in an example.

Example 12.5.3 Consider the context-free grammar G = (V ,�,�, S), where V =
{S, T }, S is the start symbol, � = {a, b}, and the set � of production rules is

S→ T a

T → abT | aa.

The corresponding datalog program PG is the program of Example 12.4.1. A proof tree

and its corresponding derivation tree are shown in Fig. 12.3.

We next formalize the correspondence between proof trees and derivation trees.

A context-free grammar is a (⋆) grammar if the following hold:

(1) G is ǫ free (i.e., does not have any production of the form X→ ǫ, where ǫ

denotes the empty string) and

(2) the start symbol does not occur in any right-hand side of a production.

We use the following:

Fact It is undecidable, given (⋆) grammars G1,G2, whether L(G1)⊆ L(G2).

For each (⋆) grammar G, let PG, the corresponding datalog program, be constructed

(similar to Example 12.5.3) as follows: Let G = (V ,�,�, S). We may assume without

loss of generality that V is a set of relation names of arity 2 and � a set of elements from

dom. Then idb(PG)= V and edb(PG)= {R}, where R is a ternary relation. Let x1, x2, . . .

be an infinite sequence of distinct variables. To each production in �,

T → C1 . . . Cn,

we associate a datalog rule

T (x1, xn+1)← A1, . . . , An,

where for each i

• if Ci is a nonterminal T ′, then Ai = T ′(xi, xi+1);

• if Ci is a terminal b, then Ai = R(xi, b, xi+1).

Note that, for any proof tree of a fact S(a1, an) using PG, the sequence of its leaves is

(in this order)

R(a1, b1, a2), . . . , R(an−1, bn−1, an),

for some a2, . . . , an−1 and b1, . . . , bn−1. The connection between derivation trees ofG and

proof trees of PG is shown in the following.
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Proposition 12.5.4 Let G be a (⋆) grammar and PG be the associated datalog pro-

gram constructed as just shown. For each a1, . . . , an, b1, . . . , bn−1, there is a proof tree

of S(a1, an) from PG with leaves R(a1, b1, a2), . . . , R(an−1, bn−1, an) (in this order) iff

b1 . . . bn−1 is in L(G).

The proof of the proposition is left as Exercise 12.25. Now we can show the following:

Theorem 12.5.5 It is undecidable, given P,P ′ (with edb(P ) = edb(P ′)) and T ,

whether P ⊆T P
′.

Proof It suffices to show that

(‡)
for each pair G1,G2 of (⋆) grammars,

L(G1)⊆ L(G2)⇔ PG1 ⊆S PG2.

Suppose (‡) holds and T containment is decidable. Then we obtain an algorithm to decide

containment of (⋆) grammars, which contradicts the aforementioned fact.

Let G2,G2 be two (⋆) grammars. We show here that

L(G1)⊆ L(G2)⇒ PG1 ⊆S PG2.

(The other direction is similar.) Suppose that L(G1)⊆ L(G2). Let I be over edb(PG1) and

S(a1, an) be in PG1(I). Then there exists a proof tree of S(a1, an) from PG1 and I, with

leaves labeled by facts

R(a1, b1, a2), . . . , R(an−1, bn−1, an),

in this order. By Proposition 12.5.4, b1 . . . bn−1 is in L(G1). Because L(G1) ⊆ L(G2),

b1 . . . bn−1 is inL(G2). By the proposition again, there is a proof tree of S(a1, an) from PG2

with leaves R(a1, b1, a2), . . . , R(an−1, bn−1, an), all of which are facts in I. Thus S(a1, an)

is in PG2(I), so PG1 ⊆S PG2.

Note that the datalog programs used in the preceding construction are very particular:

They are essentially chain programs. Intuitively, in a chain program the variables in a rule

body form a chain. More precisely, rules in chain programs are of the form

A0(x0, xn)← A1(x0, x1), A2(x1, x2), . . . , An(xn−1, xn).

The preceding proof can be tightened to show that containment is undecidable even for

chain programs (see Exercise 12.26).

The connection with grammars can also be used to provide an alternate proof of the

decidability of satisfiability; satisfiability can be reduced to the emptiness problem for

context-free languages (see Exercise 12.22c).

Although containment is undecidable, there is a closely related, stronger property

which is decidable—namely, uniform containment. For two programs P,P ′ over the same
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set of intensional and extensional relations, we say that P is uniformly contained in P ′,

denoted P ⊆ P ′, iff for each I over sch(P ), P(I) ⊆ P ′(I). Uniform containment is a

sufficient condition for containment. Interestingly, one can decide uniform containment.

The test for uniform containment uses dependencies studied in Part D and the fundamental

chase technique (see Exercises 12.27 and 12.28).

Boundedness

A key problem for datalog programs (and recursive programs in general) is to estimate the

depth of recursion of a given program. In particular, it is important to know whether for a

given program the depth is bounded by a constant independent of the input. Besides being

meaningful for optimization, this turns out to be an elegant mathematical problem that has

received a lot of attention.

A datalog program P is bounded if there exists a constant d such that for each I over

edb(P ), stage(P, I) ≤ d . Clearly, if a program is bounded it is essentially nonrecursive,

although it may appear to be recursive syntactically. In some sense, it is falsely recursive.

Example 12.5.6 Consider the following two-rule program:

Buys(x, y)← Trendy(x),Buys(z, y) Buys(x, y)← Likes(x, y)

This program is bounded because Buys(z,y) can be replaced in the body by Likes(z,y),

yielding an equivalent recursion-free program. On the other hand, the program

Buys(x, y)← Knows(x, z),Buys(z, y) Buys(x, y)← Likes(x, y)

is inherently recursive (i.e., is not equivalent to any recursion-free program).

It is important to distinguish truly recursive programs from falsely recursive (bounded)

programs. Unfortunately, boundedness cannot be tested.

Theorem 12.5.7 Boundedness is undecidable for datalog programs.

The proof is by reduction of the PCP (see Chapter 2). One can even show that bound-

edness remains undecidable under strong restrictions, such as that the programs that are

considered (1) are constant-free, (2) contain a unique recursive rule, or (3) contain a unique

intensional relation. Decidability results have been obtained for linear programs or chain-

rule programs (see Exercise 12.31).
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foundations are due to Robinson [Rob65]. SLD resolution was developed in [vEK76].

These form the basis of logic programming introduced by Kowalski [Kow74] and

[CKRP73] and led to the language Prolog. Nice presentations of the topic can be found

in [Apt91, Llo87]. Standard SLD resolution is more general than that presented in this

chapter because of the presence of function symbols. The development is similar except

for the notion of unification, which is more involved. A survey of unification can be found

in [Sie88, Kni89].

The programming language Prolog proposed by Colmerauer [CKRP73] is based on

SLD resolution. It uses a particular strategy for searching for SLD refutations. Vari-

ous ways to couple Prolog with a relational database system have been considered (see

[CGT90]).

The undecidability of containment is studied in [CGKV88, Shm87]. The decidability

of uniform containment is shown in [CK86, Sag88]. The decidability of containment for

monadic programs is studied in [CGKV88]. The equivalence of recursive and nonrecursive

datalog programs is shown to be decidable in [CV92]. The complexity of this problem is

considered in [CV94].

Interestingly, bounded recursion is defined and used early in the context of universal

relations [MUV84]. Example 12.5.6 is from [Nau86]. Undecidability results for bound-

edness of various datalog classes are shown in [GMSV87, GMSV93, Var88, Abi89]. De-

cidability results for particular subclasses are demonstrated in [Ioa85, Nau86, CGKV88,

NS87, Var88].

Boundedness implies that the query expressed by the program is a positive existential

query and therefore is expressible in CALC (over finite inputs). What about the converse?

If infinite inputs are allowed, then (by a compactness argument) unboundedness implies

nonexpressibility by CALC. But in the finite (database) case, compactness does not hold,

and the question remained open for some time. Kolaitis observed that unboundedness does

not imply nonexpressibility by CALC over finite structures for datalog with inequalities

(x �= y). (We did not consider comparators �=, <,≤, etc. in this chapter.) The question

was settled by Ajtai and Gurevich [AG89], who showed by an elegant argument that no

unbounded datalog program is expressible in CALC, even on finite structures.

Another decision problem for datalog concerns arises from the interaction of datalog

with functional dependencies. In particular, it is undecidable, given a datalog program P ,
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set � of fd’s on edb(P ), and set Ŵ of fd’s on idb(P ) whether P(I) |= Ŵ whenever I |=�

[AH88].

The expressive power of datalog has been investigated in [AC89, ACY91, CH85,

Shm87, LM89, KV90c]. Clearly, datalog expresses only monotonic queries, commutes

with homomorphisms of the database (if there are no constants in the program), and can be

evaluated in polynomial time (see also Exercise 12.11). It is natural to wonder if datalog

expresses precisely those queries. The answer is negative. Indeed, [ACY91] shows that the

existence of a path whose length is a perfect square between two nodes is not expressible

in datalog�= (datalog augmented with inequalities x �= y), and so not in datalog. This

is a monotonic, polynomial-time query commuting with homomorphisms. The parallel

complexity of datalog is surveyed in [Kan88].

The function symbols used in logic programming are interpreted over a Herbrand do-

main and are prohibited in datalog. However, it is interesting to incorporate arithmetic func-

tions such as addition and multiplication into datalog. Such functions can also be viewed

as infinite base relations. If these are present, it is possible that the bottom-up evaluation

of a datalog program will not terminate. This issue was first studied in [RBS87], where

finiteness dependencies were introduced. These dependencies can be used to describe how

the finiteness of the range of a set of variables can imply the finiteness of the range of

another variable. [For example, the relation +(x, y, z) satisfies the finiteness dependen-

cies {x, y}❀ {z}, {x, z}❀ {y}, and {y, z}❀ {x}.] Safety of datalog programs with infinite

relations constrained by finiteness dependencies is undecidable [SV89]. Various syntac-

tic conditions on datalog programs that ensure safety are developed in [RBS87, KRS88a,

KRS88b, SV89]. Finiteness dependencies were used to develop a safety condition for the

relational calculus with infinite base relations in [EHJ93]. Safety was also considered in

the context of data functions (i.e., functions whose extent is predefined).

Exercises

Exercise 12.1 Refer to the Parisian Metro database. Give a datalog program that yields, for
each pair of stations (a, b), the stations c such that c is reachable (1) from both a and b; and (2)
from a or b.

Exercise 12.2 Consider a database consisting of the Metro and Cinema databases, plus a
relation Theater-Station giving for each theater the closest metro station. Suppose that you live
near the Odeon metro station. Write a program that answers the query “Near which metro station
can I see a Bergman movie?” (Having spent many years in Los Angeles, you do not like walking,
so your only option is to take the metro at Odeon and get off at the station closest to the theater.)

Exercise 12.3 (Same generation) Consider a binary relation Child_of , where the intended
meaning of Child_of (a, b) is that a is the child of b. Write a datalog program computing the
set of pairs (c, d), where c and d have a common ancestor and are of the same generation with
respect to this ancestor.

Exercise 12.4 We are given two directed graphs Gblack and Gwhite over the same set V of
vertexes, represented as binary relations. Write a datalog program P that computes the set of
pairs (a, b) of vertexes such that there exists a path from a to b where black and white edges
alternate, starting with a white edge.
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Exercise 12.5 Suppose we are given an undirected graph with colored vertexes represented
by a binary relation Color giving the colors of vertexes and a binary relation Edge giving the
connection between them. (Although Edge provides directed edges, we ignore the direction, so
we treat the graph as undirected.) Say that a vertex is good if it is connected to a blue vertex
(blue is a constant) or if it is connected to an excellent vertex. An excellent vertex is a vertex
that is connected to an outstanding vertex and to a red vertex. An outstanding vertex is a vertex
that is connected to a good vertex, an excellent one, and a yellow one. Write a datalog program
that computes the excellent vertexes.

Exercise 12.6 Consider a directed graph G represented as a binary relation. Show a datalog
program that computes a binary relation T containing the pairs (a, b) for which there is a path
of odd length from a to b in G.

Exercise 12.7 Given a directed graph G represented as a binary relation, write a datalog
program that computes the vertexes x such that (1) there exists a cycle of even length passing
through x; (2) there is a cycle of odd length through x; (3) there are even- and odd-length cycles
through x.

Exercise 12.8 Consider the following program P :

R(x, y)←Q(y, x), S(x, y)

S(x, y)←Q(x, y), T (x, z)

T (x, y)←Q(x, z), S(z, y)

Let I be a relation over edb(P ). Describe the output of the program. Now suppose the first rule
is replaced by R(x, y)←Q(y, x). Describe the output of the new program.

Exercise 12.9 Prove Lemma 12.3.1.

Exercise 12.10 Prove that datalog queries are monotone.

Exercise 12.11 Suppose P is some property of graphs definable by a datalog program. Show
that P is preserved under extensions and homomorphisms. That is, if G is a graph satisfying P ,
then (1) every supergraph of G satisfies P and (2) if h is a graph homomorphism, then h(G)
satisfies P .

Exercise 12.12 Show that the following graph properties are not definable by datalog
programs:

(i) The number of nodes is even.

(ii) There is a nontrivial cycle (a trivial cycle is an edge 〈a, a〉 for some vertex a).

(iii) There is a simple path of even length between two specified nodes.

Show that nontrivial cycles can be detected if inequalities of the form x �= y are allowed in rule
bodies.

♠Exercise 12.13 [ACY91] Consider the query perfect square on graphs: Is there a path (not
necessarily simple) between nodes a and b whose length is a perfect square?

(i) Prove that perfect square is preserved under extension and homomorphism.

(ii) Show that perfect square is not expressible in datalog.

Hint: For (ii), consider “words” consisting of simple paths from a to b, and prove a pumping
lemma for words “accepted” by datalog programs.
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Exercise 12.14 Present an algorithm that, given the set of proof trees of depth i with a program
P and instance I, constructs all proof trees of depth i + 1. Make sure that your algorithm
terminates.

Exercise 12.15 Let P be a datalog program, I an instance of edb(P ), and R in idb(P ). Let u
be a vector of distinct variables of the arity of R. Demonstrate that

P(I)(R)= {θR(u) | there is a refutation of ← R(u) using PI and

substitutions θ1, . . . θn such that θ = θ1 ◦ · · · ◦ θn}.

Exercise 12.16 (Substitution lemma) Let PI be a program, g a goal, and θ a substitution. Prove
that if there exists an SLD refutation of θg with PI and ν, there also exists an SLD refutation of
g with PI and θ ◦ ν.

Exercise 12.17 Reprove Theorem 12.3.4 using Tarski’s and Kleene’s theorems stated in Re-
mark 12.3.5.

Exercise 12.18 Prove the “if part” of Theorem 12.4.5.

Exercise 12.19 Prove Lemma 12.4.8.

⋆Exercise 12.20 (Unification with function symbols) In general logic programming, one can
use function symbols in addition to relations. A term is then either a constant in dom, a variable
in var, or an expression f (t1, . . . , tn), where f is an n-ary function symbol and each ti is a term.
For example, f (g(x, 5), y, f (y, x, x)) is a term. In this context, a substitution θ is a mapping
from a subset of var into the set of terms. Given a substitution θ , it is extended in the natural
manner to include all terms constructed over the domain of θ . Extend the definitions of unifier
and mgu to terms and to atoms permitting terms. Give an algorithm to obtain the mgu of two
atoms.

Exercise 12.21 Prove that Lemma 12.5.1 does not generalize to datalog programs with
constants.

Exercise 12.22 This exercise develops three alternative proofs of the generalization of Theo-
rem 12.5.2 to datalog programs with constants. Prove the generalization by

(a) using the technique outlined just after the statement of the theorem

(b) making a direct proof using as input an instance IC∪{a}, where C is the set of all
constants occurring in the program and a is new, and where each relation in I contains
all tuples constructed using C ∪ {a}

(c) reducing to the emptiness problem for context-free languages.

♠Exercise 12.23 (datalog �=) The language datalog �= is obtained by extending datalog with a
new predicate �= with the obvious meaning.

(a) Formally define the new language.

(b) Extend the least-fixpoint and minimal-model semantics to datalog �=.

⋆ (c) Show that satisfiability remains decidable for datalog �= and that it can be tested in
exponential time with respect to the size of the program.

⋆Exercise 12.24 Which of the properties in Exercise 12.12 are expressible in datalog �=?

Exercise 12.25 Prove Proposition 12.5.4.
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Exercise 12.26 Prove that containment of chain datalog programs is undecidable. Hint: Mod-
ify the proof of Theorem 12.5.5 by using, for each b ∈ �, a relation Rb such that Rb(x, y) iff
R(x, b, y).

Exercise 12.27 Prove that containment does not imply uniform containment by exhibiting two
programs P,Q over the same edb’s and with S as common idb such that P ⊆S Q but P �⊆Q.

♠Exercise 12.28 (Uniform containment [CK86, Sag88]) Prove that uniform containment of two
datalog programs is decidable.

Exercise 12.29 Prove that each nr-datalog program is bounded.

♠Exercise 12.30 [GMSV87, Var88] Prove Theorem 12.5.7. Hint: Reduce the halting problem
of Turing machines on an empty tape to boundedness of datalog programs. More precisely, have
the edb encode legal computations of a Turing machine on an empty tape, and have the program
verify the correctness of the encoding. Then show that the program is unbounded iff there are
unbounded computations of the machine on the empty tape.

Exercise 12.31 (Boundedness of chain programs) Prove decidability of boundedness for chain
programs. Hint: Reduce testing for boundedness to testing for finiteness of a context-free
language.

♠Exercise 12.32 This exercise demonstrates that datalog is likely to be stronger than positive
first order extended by generalized transitive closure.

(a) [Coo74] Recall that a single rule program (sirup) is a datalog program with one
nontrivial rule. Show that the sirup

R(x)← R(y), R(z), S(x, y, z)

is complete in ptime. (This has been called variously the graph accessibility problem
and the blue-blooded water buffalo problem; a water buffalo is blue blooded only if
both of its parents are.)

(b) [KP86] Show that the in some sense simpler sirup

R(x)← R(y), R(z), T (y, x), T (x, z)

is complete in ptime.
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(c) [Imm87b] The generalized transitive closure operator is defined on relations with
arity 2n so that TC(R) is the output of the datalog program

ans(x1, . . . , x2n)← R(x1, . . . , x2n)

ans(x1, . . . , xn, z1, . . . , zn)← R(x1, . . . , xn, y1, . . . , yn),

ans(y1, . . . , yn, z1, . . . , zn)

Show that the positive first order extended with generalized transitive closure is in
logspace.



13 Evaluation of Datalog

Alice: I don’t mean to sound naive, but isn’t it awfully expensive to answer

datalog queries?

Riccardo: Not if you use the right bag of tricks . . .

Vittorio: . . . and some magical wisdom.

Sergio: Well, there is no real need for magic. We will see that the evaluation is

much easier if the algorithm knows where it is going and takes advantage

of this knowledge.

The introduction of datalog led to a flurry of research in optimization during the late

1980s and early 1990s. A variety of techniques emerged covering a range of different

approaches. These techniques are usually separated into two classes depending on whether

they focus on top-down or bottom-up evaluation. Another key dimension of the techniques

concerns whether they are based on direct evaluation or propose some compilation of the

query into a related query, which is subsequently evaluated using a direct technique.

This chapter provides a brief introduction to this broad family of heuristic techniques.

A representative sampling of such techniques is presented. Some are centered around

an approach known as “Query-Subquery”; these are top down and are based on direct

evaluation. Others, centered around an approach called “magic set rewriting,” are based

on an initial preprocessing of the datalog program before using a fairly direct bottom-up

evaluation strategy.

The advantage of top-down techniques is that selections that form part of the initial

query can be propagated into the rules as they are expanded. There is no direct way to take

advantage of this information in bottom-up evaluation, so it would seem that the bottom-

up technique is at a disadvantage with respect to optimization. A rather elegant conclusion

that has emerged from the research on datalog evaluation is that, surprisingly, there are

bottom-up techniques that have essentially the same running time as top-down techniques.

Exposition of this result is a main focus of this chapter.

Some of the evaluation techniques presented here are intricate, and our main emphasis

is on conveying the essential ideas they use. The discussion is centered around the pre-

sentation of the techniques in connection with a concrete running example. In the cases of

Query-Subquery and magic sets rewriting, we also informally describe how they can be ap-

plied in the general case. This is sufficient to give a precise understanding of the techniques

without becoming overwhelmed by notation. Proofs of the correctness of these techniques

are typically lengthy but straightforward and are left as exercises.
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Figure 13.1: Instance I0 for RSG example

13.1 Seminaive Evaluation

The first stop on our tour of evaluation techniques is a strategy for improving the effi-

ciency of the bottom-up technique described in Chapter 12. To illustrate this and the other

techniques, we use as a running example the program “Reverse-Same-Generation” (RSG)

given by

rsg(x, y)← flat(x, y)

rsg(x, y)← up(x, x1), rsg(y1, x1), down(y1, y)

and the sample instance I0 illustrated in Fig. 13.1. This is a fairly simple program, but it

will allow us to present the main features of the various techniques presented throughout

this chapter.

If the bottom-up algorithm of Chapter 12 is used to compute the value of rsg on input

I0, the following values are obtained:

level 0: ∅

level 1: {〈g, f 〉, 〈m, n〉, 〈m, o〉, 〈p,m〉}

level 2: {level 1} ∪ {〈a, b〉, 〈h, f 〉, 〈i, f 〉, 〈j, f 〉, 〈f, k〉}

level 3: {level 2} ∪ {〈a, c〉, 〈a, d〉}

level 4: {level 3}

at which point a fixpoint has been reached. It is clear that a considerable amount of

redundant computation is done, because each layer recomputes all elements of the previous

layer. This is a consequence of the monotonicity of the TP operator for datalog programs P .

This algorithm has been termed the naive algorithm for datalog evaluation. The central idea

of the seminaive algorithm is to focus, to the extent possible, on the new facts generated at

each level and thereby avoid recomputing the same facts.

Consider the facts inferred using the second rule of RSG in the consecutive stages of
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the naive evaluation. At each stage, some new facts are inferred (until a fixpoint is reached).

To infer a new fact at stage i + 1, one must use at least one fact newly derived at stage i.

This is the main idea of seminaive evaluation. It is captured by the following “version” of

RSG, called RSG′:

.1
rsg(x, y)← flat(x, y)

.i+1
rsg (x, y)← up(x, x1),.i

rsg(y1, x1), down(y1, y)

where an instance of the second rule is included for each i ≥ 1. Strictly speaking, this is

not a datalog program because it has an infinite number of rules. On the other hand, it is

not recursive.

Intuitively, .i
rsg contains the facts in rsg newly inferred at the ith stage of the naive

evaluation. To see this, we note a close relationship between the repeated applications of

TRSG and the values taken by the .i
rsg. Let I be a fixed input instance. Then

• for i ≥ 0, let rsgi = T iRSG(I)(rsg) (i.e., the value of rsg after i applications of TRSG

on I); and

• for i ≥ 1, let δirsg = RSG′(I)(.i
rsg) (i.e., the value of .i

rsg when TRSG′ reaches a

fixpoint on I).

It is easily verified for each i ≥ 1 that T i−1
RSG′(I)(.

i
rsg)= ∅ and T i

RSG′(I)(.
i
rsg)= δirsg. Fur-

thermore, for each i ≥ 0 we have

rsgi+1 − rsgi ⊆ δi+1
rsg ⊆ rsgi+1.

Therefore RSG(I)(rsg) = ∪1≤i(δ
i
rsg). Furthermore, if j satisfies δ

j
rsg ⊆ ∪i<jδ

i
rsg,

then RSG(I)(rsg) = ∪i<jδ
i
rsg, that is, only j levels of RSG′ need be computed to find

RSG(I)(rsg). Importantly, bottom-up evaluation of RSG′ typically involves much less re-

dundant computation than direct bottom-up evaluation of RSG.

Continuing with the informal development, we introduce now two refinements that

further reduce the amount of redundant computation. The first is based on the observation

that when executing RSG′, we do not always have δi+1
rsg = rsgi+1 − rsgi. Using I0, we

have 〈g, f 〉 ∈ δ2
rsg but not in rsg2 − rsg1. This suggests that the efficiency can be further

improved by using rsgi − rsgi−1 in place of .i
rsg in the body of the second “rule” of RSG′.

Using a pidgin language that combines both datalog and imperative commands, the new

version RSG′′ is given by

{

.1
rsg(x, y) ← flat(x, y)

rsg1 := .1
rsg

}











tempi+1
rsg (x, y) ← up(x, x1),.i

rsg(y1, x1), down(y1, y)

.i+1
rsg := tempi+1

rsg − rsgi

rsgi+1 := rsgi ∪.i+1
rsg











(where an instance of the second family of commands is included for each i ≥ 1).
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The second improvement to reduce redundant computation is useful when a given idb

predicate occurs twice in the same rule. To illustrate, consider the nonlinear version of the

ancestor program:

anc(x, y)← par(x, y)

anc(x, y)← anc(x, z), anc(z, y)

A seminaive “version” of this is

{

.1
anc(x, y) ← par(x, y)

anc1 := .1
anc

}



















tempi+1
anc (x, y) ← .i

anc(x, z), anc(z, y)

tempi+1
anc (x, y) ← anc(x, z),.i

anc(z, y)

.i+1
anc := tempi+1

anc − anci

anci+1 := anci ∪.i+1
anc



















Note here that both .i
anc and anci are needed to ensure that all new facts in the next level

are obtained.

Consider now an input instance consisting of par(1, 2), par(2, 3). Then we have

.1
anc = {〈1, 2〉, 〈2, 3〉}

anc1 = {〈1, 2〉, 〈2, 3〉}

.2
anc = {〈1, 3〉}

Furthermore, both of the rules for temp2
anc will compute the join of tuples 〈1, 2〉 and 〈2, 3〉,

and so we have a redundant computation of 〈1, 3〉. Examples are easily constructed where

this kind of redundancy occurs for at an arbitrary level i > 0 (see Exercise 13.2).

An approach for preventing this kind of redundancy is to replace the two rules for

tempi+1 by

tempi+1(x, y)←.i
anc(x, z), anci−1(z, y)

tempi+1(x, y)← anci(x, z),.i
anc(z, y)

This approach is adopted below.

We now present the seminaive algorithm for the general case. Let P be a datalog

program over edb R and idb T. Consider a rule

S(u)← R1(v1), . . . , Rn(vn), T1(w1), . . . , Tm(wm)

in P , where the Rk’s are edb predicates and the Tj ’s are idb predicates. Construct for each

j ∈ [1,m] and i ≥ 1 the rule
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tempi+1
S (u)← R1(v1), . . . , Rn(vn),

T i1 (w1), . . . , T
i
j−1(wj−1),.

i
Tj
(wj), T

i−1
j+1(wj+1), . . . , T

i−1
m (wm).

Let P i
S represent the set of all i-level rules of this form constructed for the idb predicate S

(i.e., the rules for tempi+1
S , j in [1,m]).

Suppose now that T1, . . . , Tl is a listing of the idb predicates of P that occur in the

body of a rule defining S. We write

P i
S(I, T

i−1
1 , . . . , T i−1

l , T i1 , . . . , T
i
l ,.

i
T1
, . . . , .i

Tl
)

to denote the set of tuples that result from applying the rules in P i
S to given values for input

instance I and for the T i−1
j , T ij , and .i

Tj
.

We now have the following:

Algorithm 13.1.1 (Basic Seminaive Algorithm)

Input: Datalog program P and input instance I

Output: P(I)

1. Set P ′ to be the rules in P with no idb predicate in the body;

2. S0 := ∅, for each idb predicate S;

3. .1
S := P ′(I)(S), for each idb predicate S;

4. i := 1;
5. do begin

for each idb predicate S, where T1, . . . , Tl
are the idb predicates involved in rules defining S,

begin

Si := Si−1 ∪.i
S;

.i+1
S := P i

S(I, T
i−1

1 , . . . , T i−1
l , T i1 , . . . , T

i
l ,.

i
T1
, . . . , .i

Tl
)− Si;

end;

i := i + 1

end

until .i
S = ∅ for each idb predicate S.

6. s := si, for each idb predicate S.

The correctness of this algorithm is demonstrated in Exercise 13.3. However, it is

still doing a lot of unnecessary work on some programs. We now analyze the structure

of datalog programs to develop an improved version of the seminaive algorithm. It turns

out that this analysis, with simple control of the computation, allows us to know in advance

which predicates are likely to grow at each iteration and which are not, either because they

are already saturated or because they are not yet affected by the computation.

Let P be a datalog program. Form the precedence graph GP for P as follows: Use

the idb predicates in P as the nodes and include edge (R,R′) if there is a rule with head

predicate R′ in which R occurs in the body. P is recursive if GP has a directed cycle. Two

predicates R and R′ are mutually recursive if R = R′ or R and R′ participate in the same
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cycle of GP. Mutual recursion is an equivalence relation on the idb predicates of P , where

each equivalence class corresponds to a strongly connected component of GP. A rule of P

is recursive if the body involves a predicate that is mutually recursive with the head.

We now have the following:

Algorithm 13.1.2 (Improved Seminaive Algorithm)

Input: Datalog program P and edb instance I

Output: P(I)

1. Determine the equivalence classes of idb(P) under mutual recursion.

2. Construct a listing [R1], . . . , [Rn] of the equivalence classes, according to a topo-

logical sort of GP (i.e., so that for each pair i < j there is no path in GP from Rj
to Ri).

3. For i = 1 to n do

Apply Basic Seminaive Algorithm to compute the values of predicates in [Ri],

treating all predicates in [Rj ], j < i, as edb predicates.

The correctness of this algorithm is left as Exercise 13.4.

Linear Datalog

We conclude this discussion of the seminaive approach by introducing a special class of

programs.

Let P be a program. A rule in P with head relation R is linear if there is at most

one atom in the body of the rule whose predicate is mutually recursive with R. P is linear

if each rule in P is linear. We now show how the Improved Seminaive Algorithm can be

simplified for such programs.

Suppose that P is a linear program, and

ρ : R(u)← T1(v1), . . . , Tn(vn)

is a rule in P , where Tj is mutually recursive with R. Associate with this the “rule”

.i+1
R (u)← T1(v1), . . . ,.

i
Tj
(vj), . . . , Tn(vn).

Note that this is the only rule that will be associated by the Improved Seminaive Algorithm

with ρ. Thus, given an equivalence class [Tk] of mutually recursive predicates of P , the

rules for predicates S in [Tk] use only the .i
S, but not the Si. In contrast, as seen earlier,

both the .i
S and Si must be used in nonlinear programs.

13.2 Top-Down Techniques

Consider the RSG program from the previous section, augmented with a selection-based

query:
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rsg(x, y)← flat(x, y)

rsg(x, y)← up(x, x1), rsg(y1, x1), down(y1, y)

query(y)← rsg(a, y)

where a is a constant. This program will be called the RSG query. Suppose that seminaive

evaluation is used. Then each pair of rsg will be produced, including those that are not

used to derive any element of query. For example, using I0 of Fig. 13.1 as input, fact

rsg(f, k)will be produced but not used. A primary motivation for the top-down approaches

to datalog query evaluation is to avoid, to the extent possible, the production of tuples that

are not needed to derive any answer tuples.

For this discussion, we define a datalog query to be a pair (P, q), where P is a datalog

program and q is a datalog rule using relations of P in its body and the new relation query

in its head. We generally assume that there is only one rule defining the predicate query,

and it has the form

query(u)← R(v)

for some idb predicate R.

A fact is relevant to query (P, q) on input I if there is a proof tree for query in which

the fact occurs. A straightforward criterion for improving the efficiency of any datalog

evaluation scheme is to infer only relevant facts. The evaluation procedures developed in

the remainder of this chapter attempt to satisfy this criterion; but, as will be seen, they do

not do so perfectly.

The top-down approaches use natural heuristics to focus attention on relevant facts. In

particular, they use the framework provided by SLD resolution. The starting point for these

algorithms (namely, the query to be answered) often includes constants; these have the

effect of restricting the search for derivation trees and thus the set of facts produced. In the

context of databases without function symbols, the top-down datalog evaluation algorithms

can generally be forced to terminate on all inputs, even when the corresponding SLD-

resolution algorithm does not. In this section, we focus primarily on the query-subquery

(QSQ) framework.

There are four basic elements of this framework:

1. Use the general framework of SLD resolution, but do it set-at-a-time. This permits

the use of optimized versions of relational algebra operations.

2. Beginning with the constants in the original query, “push” constants from goals to

subgoals, in a manner analogous to pushing selections into joins.

3. Use the technique of “sideways information passing” (see Chapter 6) to pass

constant binding information from one atom to the next in subgoals.

4. Use an efficient global flow-of-control strategy.

Adornments and Subqueries

Recall the RSG query given earlier. Consider an SLD tree for it. The child of the root would

be rsg(a, y). Speaking intuitively, not all values for rsg are requested, but rather only those
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with first coordinate a. More generally, we are interested in finding derivations for rsg

where the first coordinate is bound and the second coordinate is free. This is denoted by

the expression rsgbf , where the superscript ‘bf ’ is called an adornment.

The next layer of the SLD tree will have a node holding flat(a, y) and a node holding

up(a, x1), rsg(y1, x1), down(y1, y). Answers generated for the first of these nodes are

given by π2(σ1 = ‘a’(flat)). Answers for the other node can be generated by a left-to-right

evaluation. First the set of possible values for x1 is J = π2(σ1 = ‘a’(up)). Next the possible

values for y1 are given by {y1 | 〈y1, x1〉 ∈ rsg and 〈x1〉 ∈ J } (i.e., the first coordinate

values of rsg stemming from second coordinate values in J ). More generally, then, this

calls for an evaluation of rsgf b, where the second coordinate values are bound by J .

Finally, given y1 values, these can be used with down to obtain y values (i.e., answers

to the query).

As suggested by this discussion, a top-down evaluation of a query in which con-

stants occur can be broken into a family of “subqueries” having the form (Rγ , J ), where

γ is an adornment for idb predicate R, and J is a set of tuples that give values for the

columns bound by γ . Expressions of the form (Rγ , J ) are called subqueries. If the RSG

query were applied to the instance of Fig. 13.1, the first subquery generated would be

(rsgf b, {〈e〉, 〈f 〉}). As we shall see, the QSQ framework is based on a systematic evalu-

ation of subqueries.

Let P be a datalog program and I an input instance. Suppose that R is an idb predicate

and γ is an adornment for R (i.e., a string of b’s and f ’s having length the arity of R). Then

bound(R, γ ) denotes the coordinates of R bound in γ . Let t be a tuple over bound(R, γ ).

Then a completion for t in Rγ is a tuple s such that s[bound(R, γ )] = t and s ∈ P(I)(R).
The answer to a subquery (Rγ , J ) over I is the set of all completions of all tuples in J .

The use of adornments within a rule body is a generalization of the technique of

sideways information passing discussed in Chapter 6. Consider the rule

(*) R(x, y, z)← R1(x, u, v), R2(u,w,w, z), R3(v,w, y, a).

Suppose that a subquery involvingRbfb is invoked. Assuming a left-to-right evaluation, this

will lead to subqueries involving R
bff

1 , R
bffb

2 , and R
bbfb

3 . We sometimes rewrite the rule as

Rbfb(x, y, z)← R
bff

1 (x, u, v), R
bffb

2 (u,w,w, z), R
bbfb

3 (v,w, y, a)

to emphasize the adornments. This is an example of an adorned rule. As we shall see, the

adornments of idb predicates in rule bodies shall be used to guide evaluations of queries

and subqueries. It is common to omit the adornments of edb predicates.

The general algorithm for adorning a rule, given an adornment for the head and an

ordering of the rule body, is as follows: (1) All occurrences of each bound variable in

the rule head are bound, (2) all occurrences of constants are bound, and (3) if a variable

x occurs in the rule body, then all occurrences of x in subsequent literals are bound.

A different ordering of the rule body would yield different adornments. In general, we

permit different orderings of rule bodies for different adornments of a given rule head. (A

generalization of this technique is considered in Exercise 13.19.)

The definition of adorned rule also applies to situations in which there are repeated
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variables or constants in the rule head (see Exercise 13.9). However, adornments do not

capture all of the relevant information that can arise as the result of repeated variables

or constants that occur in idb predicates in rule bodies. Mechanisms for doing this are

discussed in Section 13.4.

Supplementary Relations and QSQ Templates

A key component of the QSQ framework is the use of QSQ templates which store appropri-

ate information during intermediate stages of an evaluation. Consider again the preceding

rule (*), and imagine attempting to evaluate the subquery (Rbfb, J ). This will result in calls

to the generalized queries (R
bff

1 , π1(J )), (R
bffb

2 ,K), and (R
bbfb

3 , L) for some relations K

and L that depend on the evaluation of the preceding queries. Importantly, note that rela-

tion K relies on values passed from both J and R1, and L relies on values passed from

R1 and R2. A QSQ template provides data structures that will remember all of the values

needed during a left-to-right evaluation of a subquery.

To do this, QSQ templates rely on supplementary relations. A total of n+ 1 supple-

mentary relations are associated to a rule body with n atoms. For example, the supplemen-

tary relations sup0, . . . , sup3 for the rule (*) with head adorned by Rbfb are

Rbfb(x, y, z)← R
bff

1 (x, u, v), R
bffb

2 (u,w,w, z), R
bbfb

3 (v,w, y, a)

↑ ↑ ↑ ↑

sup0[x, z] sup1[x, z, u, v] sup2[x, z, v,w] sup3[x, y, z]

Note that variables serve as attribute names in the supplementary relations. Speaking in-

tuitively, the body of a rule may be viewed as a process that takes as input tuples over the

bound attributes of the head and produces as output tuples over the variables (bound and

free) of the head. This determines the attributes of the first and last supplementary relations.

In addition, a variable (i.e., an attribute name) is in some supplementary relation if it is has

been bound by some previous literal and if it is needed in the future by some subsequent

literal or in the result.

More formally, for a rule body with atoms A1, . . . , An, the set of variables used as

attribute names for the ith supplementary relation is determined as follows:

• For the 0th (i.e., zeroth) supplementary relation, the attribute set is the set X0 of

bound variables of the rule head; and for the last supplementary relation, the attribute

set is the set Xn of variables in the rule head.

• For i ∈ [1, n− 1], the attribute set of the ith supplementary relation is the set Xi of

variables that occur both “before” Xi (i.e., occur in X0, A1, . . . , Ai) and “after” Xi
(i.e., occur in Ai+1, . . . , An, Xn).

The QSQ template for an adorned rule is the sequence (sup0, . . . , supn) of relation

schemas for the supplementary relations of the rule. During the process of QSQ query

evaluation, relation instances are assigned to these schemas; typically these instances

repeatedly acquire new tuples as the algorithm runs. Figure 13.2 shows the use of QSQ

templates in connection with the RSG query.
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Figure 13.2: Illustration of QSQ framework

The Kernel of QSQ Evaluation

The key components of QSQ evaluation are as follows. Let (P, q) be a datalog query and

let I be an edb instance. Speaking conceptually, QSQ evaluation begins by constructing

an adorned rule for each adornment of each idb predicate in P and for the query q. In

practice, the construction of these adorned rules can be lazy (i.e., they can be constructed

only if needed during execution of the algorithm). Let (P ad, qad) denote the result of this

transformation.

The relevant adorned rules for the RSG query are as follows:

1. rsgbf (x, y)← flat(x, y)

2. rsg fb(x, y)← flat(x, y)
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3. rsgbf (x, y)← up(x, x1), rsg fb(y1, x1), down(y1, y)

4. rsg fb(x, y)← down(y1, y), rsgbf (y1, x1), up(x, x1).

Note that in the fourth rule, the literals of the body are ordered so that the binding of y in

down can be “passed” via y1 to rsg and via x1 to up.

A QSQ template is constructed for each relevant adorned rule. We denote the j th

(counting from 0) supplementary relation of the ith adorned rule as sup ij . In addition, the

following relations are needed and will serve as variables in the QSQ evaluation algorithm:

(a) for each idb predicate R and relevant adornment γ the variable ans_Rγ , with

same arity as R;

(b) for each idb predicate R and relevant adornment γ , the variable input_Rγ with

same arity as bound(R, γ ) (i.e., the number of b’s occurring in γ ); and

(c) for each supplementary relation sup ij , the variable sup ij .

Intuitively, input_Rγ will be used to form subqueries (Rγ , input_Rγ ). The completion

of tuples in input_Rγ will go to ans_Rγ . Thus ans_Rγ will hold tuples that are in P(I)(R)

and were generated from subqueries based on Rγ .

A QSQ algorithm begins with the empty set for each of the aforementioned relations.

The query is then used to initialize the process. For example, the rule

query(y)← rsg(a, y)

gives the initial value of {〈a〉} to input_rsgbf . In general, this gives rise to the subquery

(Rγ , {t}), where t is constructed using the set of constants in the initial query.

There are essentially four kinds of steps in the execution. Different possible orderings

for these steps will be considered. The first of these is used to initialize rules.

(A) Begin evaluation of a rule: This step can be taken whenever there is a rule with

head predicate Rγ and there are “new” tuples in a variable input_Rγ that have not yet

been processed for this rule. The step is to add the “new” tuples to the 0th supplementary

relation for this rule. However, only “new” tuples that unify with the head of the rule are

added to the supplementary relation. A “new” tuple in input_Rγ might fail to unify with

the head of a rule defining R if there are repeated variables or constants in the rule head

(see Exercise 13.9).

New tuples are generated in supplementary relations sup ij in two ways: Either some

new tuples have been obtained for sup ij−1 (case B); or some new tuples have been obtained

for the idb predicate occurring between sup ij−1 and sup ij (case C).

(B) Pass new tuples from one supplementary relation to the next: This step can be taken

whenever there is a set T of “new” tuples in a supplementary variable sup ij−1 that have not

yet been processed, and sup ij−1 is not the last supplementary relation of the corresponding

rule. Suppose that Aj is the atom in the rule immediately following sup ij−1.
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Two cases arise:

(i) Aj is Rγ (u) for some edb predicate R. Then a combination of joins and pro-

jections on R and T is used to determine the appropriate tuples to be added to

sup ij .

(ii) Aj is Rγ (u) for some idb predicate R. Note that each of the bound variables in

γ occurs in sup ij−1. Two actions are now taken.

(a) A combination of joins and projections on ans_Rγ (the current value

for R) and T is used to determine the set T ′ of tuples to be added to

sup ij .

(b) The tuples in T [bound(R, γ )] − input_Rγ are added to input_Rγ .

(C) Use new idb tuples to generate new supplementary relation tuples: This step is

similar to the previous one but is applied when “new” tuples are added to one of the idb

relation variables ans_Rγ . In particular, suppose that some atom Aj with predicate Rγ

occurs in some rule, with surrounding supplementary variables sup ij−1 and sup ij . In this

case, use join and projection on all tuples in sup ij−1 and the “new” tuples of ans_Rγ to

create new tuples to be added to sup ij .

(D) Process tuples in the final supplementary relation of a rule: This step is used to

generate tuples corresponding to the output of rules. It can be applied when there are “new”

tuples in the final supplementary variable supin of a rule. Suppose that the rule predicate is

Rγ . Add the new tuples in supin to ans_Rγ .

Example 13.2.1 Figure 13.2 illustrates the data structures and “scratch paper” relations

used in the QSQ algorithm, in connection with the RSG query, as applied to the instance of

Fig. 13.1. Recall the adorned version of the RSG query presented on page 321. The QSQ

templates for these are shown in Fig. 13.2. Finally, the scratch paper relations for the input-

and ans-variables are shown.

Figure 13.2 shows the contents of the relation variables after several steps of the

QSQ approach have been applied. The procedure begins with the insertion of 〈a〉 into

input_rsgbf ; this corresponds to the rule

query(y)← rsg(a, y)

Applications of step (A) place 〈a〉 into the supplementary variables sup1
0 and sup3

0. Step

(B.i) then yields 〈a, e〉 and 〈a, f 〉 in sup3
1. Because ans_rsgf b is empty at this point,

step (B.ii.a) does not yield any tuples for sup3
2. However, step (B.ii.b) is used to insert 〈e〉

and 〈f 〉 into input_rsgf b. Application of steps (B) and (D) on the template of the second

rule yield 〈g, f 〉 in ans_rsgf b. Application of steps (C), (B), and (D) on the template

of the third rule now yield the first entry in ans_rsgbf . The reader is invited to extend

the evaluation to its conclusion (see Exercise 13.10). The answer is obtained by applying

π2σ 1 = ‘a’ to the final contents of ans_rsgbf .
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Global Control Strategies

We have now described all of the basic building blocks of the QSQ approach: the use of

QSQ templates to perform information passing both into rules and sideways through rule

bodies, and the three classes of relations used. A variety of global control strategies can

be used for the QSQ approach. The most basic strategy is stated simply: Apply steps (A)

through (D) until a fixpoint is reached. The following can be shown (see Exercise 13.12):

Theorem 13.2.2 Let (P, q) be a datalog query. For each input I, any evaluation of QSQ

on (P ad, qad) yields the answer of (P, q) on I.

We now present a more specific algorithm based on the QSQ framework. This algo-

rithm, called QSQ Recursive (QSQR) is based on a recursive strategy. To understand the

central intuition behind QSQR, suppose that step (B) described earlier is to be performed,

passing from supplementary relation supij−1 across an idb predicate Rγ to supplementary

relation supij . This may lead to the introduction of new tuples into supij by step (B.ii.a) and

to the introduction of new tuples into input_Rγ by step (B.ii.b). The essence of QSQR is

that it now performs a recursive call to determine the Rγ values corresponding to the new

tuples added to input_Rγ , before applying step (B) or (D) to the new tuples placed into

supij .

We present QSQR in two steps: first a subroutine and then the recursive algorithm

itself. During processing in QSQR, the global state includes values for ans_Rγ and

input_Rγ for each idb predicate R and relevant adornment γ . However, the supplementary

relations are not global—local copies of the supplementary relations are maintained by

each call of the subroutine.

Subroutine Process subquery on one rule

Input: A rule for adorned predicate Rγ , input instance I, a QSQR “state” (i.e., set of values

for the input- and ans-variables), and a set T ⊆ input_Rγ . (Intuitively, the tuples in T

have not been considered with this rule yet).

Action:

1. Remove from T all tuples that do not unify with (the appropriate coordinates of)

the head of the rule.

2. Set sup0 := T . [This is step (A) for the tuples in T .]

3. Proceed sideways across the body A1, . . . , An of the rule to the final supplemen-

tary relation supn as follows:

For each atom Aj
(a) If Aj has edb predicate R′, then apply step (B.i) to populate supj .

(b) If Aj has idb predicate R′δ, then apply step (B.ii) as follows:

(i) Set S := supj−1[bound(R′, δ)] − input_R′δ.

(ii) Set input_R′δ := input_R′δ ∪ S. [This is step (B.ii.b).]

(iii) (Recursively) call algorithm QSQR on the query (R′δ, S).
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[This has the effect of invoking step (A) and its consequences

for the tuples in S.]

(iv) Use supj−1 and the current value of global variable ans_R′δ

to populate supj . [This includes steps (B.ii.a) and (C).]

4. Add the tuples produced for supn into the global variable ans_Rγ . [This is step

(D).]

The main algorithm is given by the following:

Algorithm 13.2.3 (QSQR)

Input: A query of the form (Rγ , T ), input instance I, and a QSQR “state” (i.e., set of values

for the input- and ans-variables).

Procedure:

1. Repeat until no new tuples are added to any global variable:

Call the subroutine to process subquery (Rγ , T ) on each rule defining R.

Suppose that we are given the query

query(u)← R(v)

Let γ be the adornment of R corresponding to v, and let T be the singleton relation

corresponding to the constants in v. To find the answer to the query, the QSQR algorithm is

invoked with input (Rγ , T ) and the global state where input_Rγ = T and all other input-

and ans-variables are empty. For example, in the case of the rsg program, the algorithm is

first called with argument (rsgbf , {〈a〉}) , and in the global state input_rsgbf = {〈a〉}. The

answer to the query is obtained by performing a selection and projection on the final value

of ans_Rγ .

It is straightforward to show that QSQR is correct (Exercise 13.12).

13.3 Magic

An exciting development in the field of datalog evaluation is the emergence of techniques

for bottom-up evaluation whose performance rivals the efficiency of the top-down tech-

niques. This family of techniques, which has come to be known as “magic set” techniques,

simulates the pushing of selections that occurs in top-down approaches. There are close

connections between the magic set techniques and the QSQ algorithm. The magic set tech-

nique presented in this section simulates the QSQ algorithm, using a datalog program that

is evaluated bottom up. As we shall see, the magic sets are basically those sets of tuples

stored in the relations input_Rγ and supij of the QSQ algorithm. Given a datalog query

(P, q), the magic set approach transforms it into a new query (Pm, qm) that has two im-

portant properties: (1) It computes the same answer as (P, q), and (2) when evaluated using

a bottom-up technique, it produces only the set of facts produced by top-down approaches
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rsgbf (x, y) ← input_rsgbf (x), flat(x, y)(s1.1)

rsgf b(x, y) ← input_rsgf b(y), flat(x, y)(s2.1)

sup3
1(x, x1) ← input_rsgbf (x), up(x, x1)(s3.1)

sup3
2(x, y1) ← sup3

1(x, x1), rsgf b(y1, x1)(s3.2)

rsgbf (x, y) ← sup3
2(x, y1), down(y1, y)(s3.3)

sup4
1(y, y1) ← input_rsgf b(y), down(y1, y)(s4.1)

sup4
2(y, x1) ← sup4

1(y, y1), rsgbf (y1, x1)(s4.2)

rsgf b(x, y) ← sup4
2(y, x1), up(x, x1)(s4.3)

input_rsgbf (x1) ← sup3
1(x, x1)(i3.2)

input_rsgf b(y1)← sup4
1(y, y1)(i4.2)

input_rsgbf (a) ←(seed)

query(y) ← rsgbf (a, y)(query)

Figure 13.3: Transformation of RSG query using magic sets

such as QSQ. In particular, then, (Pm, qm) incorporates the effect of “pushing” selections

from the query into bottom-up computations, as if by magic.

We focus on a technique originally called “generalized supplementary magic”; it is

perhaps the most general magic set technique for datalog in the literature. (An earlier

form of magic is considered in Exercise 13.18.) The discussion begins by explaining how

the technique works in connection with the RSG query of the previous section and then

presents the general algorithm.

As with QSQ, the starting point for magic set algorithms is an adorned datalog query

(P ad, qad). Four classes of rules are generated (see Fig. 13.3). The first consists of a family

of rules for each rule of the adorned program P ad . For example, recall rule (3) (see p. 321)

of the adorned program for the RSG query presented in the previous section:

rsgbf (x, y)← up(x, x1), rsgf b(y1, x1), down(y1, y).

We first present a primitive family of rules corrresponding to that rule, and then apply some

optimizations.
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sup3
0(x) ← input_rsgbf (x)(s3.0’)

sup3
1(x, x1)← sup3

0(x), up(x, x1)(s3.1’)

sup3
2(x, y1)← sup3

1(x, x1), rsgf b(y1, x1)(s3.2)

sup3
3(x, y) ← sup3

2(x, y1), down(y1, y)(s3.3’)

rsgbf (x, y) ← sup3
3(x, y)(S3.4’)

Rule (s3.0’) corresponds to step (A) of the QSQ algorithm; rules (s3.1’) and (s3.3’) cor-

respond to step (B.i); rule (s3.2) corresponds to steps (B.ii.a) and (C); and rule (s3.4’)

corresponds to step (D). In the literature, the predicate input_rsgf b has usually been de-

noted as magic_rsgf b and supij as supmagicij . We use the current notation to stress the

connection with the QSQ framework. Note that the predicate rsgbf here plays the role of

ans_rsgbf there.

As can be seen by the preceding example, the predicates sup3
0 and sup3

3 are essentially

redundant. In general, if the ith rule defines Rγ , then the predicate supi0 is eliminated, with

input_Rγ used in its place to eliminate rule (3.0’) and to form

(s3.1) sup3
1(x, x1)← input_rsgbf (x), up(x, x1).

Similarly, the predicate of the last supplementary relation can be eliminated to delete rule

(s3.4’) and to form

(s3.3) rsgbf (x, y)← sup3
2(x, y1), down(y1, y).

Therefore the set of rules (s3.0’) through (s3.4’) may be replaced by (s3.1), (s3.2), and

(s3.3). Rules (s4.1), (s4.2), and (s4.3) of Fig. 13.3 are generated from rule (4) of the adorned

program for the RSG query (see p. 321). (Recall how the order of the body literals in that

rule are reversed to pass bounding information.) Finally, rules (s1.1) and (s2.1) stem from

rules (1) and (2) of the adorned program.

The second class of rules is used to provide values for the input predicates [i.e.,

simulating step (B.ii.b) of the QSQ algorithm]. In the RSG query, one rule for each of

input_rsgbf and input_rsgf b is needed:

input_rsgbf (x1)← sup3
1(x, x1)(i3.2)

input_rsgf b(y1)← sup4
1(y, y1).(i4.2)

Intuitively, the first rule comes from rule (s3.2). In other words, it follows from the second

atom of the body of rule (3) of the original adorned program (see p. 321). In general, an

adorned rule with k idb atoms in the body will generate k input rules of this form.

The third and fourth classes of rules include one rule each; these initialize and conclude

the simulation of QSQ, respectively. The first of these acts as a “seed” and is derived from

the initial query. In the running example, the seed is

input_rsgbf (a)← .
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The second constructs the answer to the query; in the example it is

query(y)← rsgbf (a, y).

From this example, it should be straightforward to specify the magic set rewriting of an

adorned query (P ad, qad) (see Exercise 13.16a).

The example showed how the “first” and “last” supplementary predicates sup3
0 and

sup3
4 were redundant with input_rsgbf and rsgbf , respectively, and could be eliminated.

Another improvement is to merge consecutive sequences of edb atoms in rule bodies as

follows. For example, consider the rule

(i) Rγ (u)← R
γ1

1 (u1), . . . , R
γn
n (un)

and suppose that predicate Rk is the last idb relation in the body. Then rules (si.k), . . . ,

(si.n) can be replaced with

(si.k′′) Rγ (u)← supik−1(vk−1), R
γk
k (uk), R

γk+1

k+1 (uk+1), . . . , R
γn
n (un).

For example, rules (s3.2) and (s3.3) of Fig. 13.3 can be replaced by

(s3.2′′) rsgbf (x, y)← sup3
1(x, x1), rsgf b(y1, x1), down(y1, y).

This simplification can also be used within rules. Suppose that Rk and Rl are idb

relations with only edb relations occurring in between. Then rules (i.k), . . . , (i.l − 1) can

be replaced with

(si.k′′) supil−1(vl−1)← supik−1(vk−1), R
γk
k (uk), R

γk+1

k+1 (uk+1), . . . , R
γl−1

l−1 (ul−1).

An analogous simplification can be applied if there are multiple edb predicates at the

beginning of the rule body.

To summarize the development, we state the following (see Exercise 13.16):

Theorem 13.3.1 Let (P, q) be a query, and let (Pm, qm) be the query resulting from the

magic rewriting of (P, q). Then

(a) The answer computed by (Pm, qm) on any input instance I is identical to the

answer computed by (P, q) on I.

(b) The set of facts produced by the Improved Seminaive Algorithm of (Pm, qm) on

input I is identical to the set of facts produced by an evaluation of QSQ on I.

13.4 Two Improvements

This section briefly presents two improvements of the techniques discussed earlier. The

first focuses on another kind of information passing resulting from repeated variables

and constants occurring in idb predicates in rule bodies. The second, called counting, is

applicable to sets of data and rules having certain acyclicity properties.
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Repeated Variables and Constants in Rule Bodies (by Example)

Consider the program Pr :

T (x, y, z) ← R(x, y, z)(1)

T (x, y, z) ← S(x, y,w), T (w, z, z)(2)

query(y, z)← T (1, y, z)

Consider as input the instance I1 shown in Fig. 13.4(a). The data structures for a QSQ

evaluation of this program are shown in Fig. 13.4(b). (The annotations ‘$2 = $3’, ‘$2 = $3

= 4’, etc., will be explained later.)

A magic set rewriting of the program and query yields

T bff (x, y, z) ← input_T bff (x), R(x, y, z)

sup2
1(x, y,w) ← input_T bff (x), S(x, y,w)

T bff (x, y, z) ← sup2
1(x, y,w), T

bff (w, z, z)

input_T bff (w)← sup2
1(x, y,w)

input_T bff (1) ←

query(y, z) ← T bff (1, y, z).

On input I1, the query returns the empty instance. Furthermore, the SLD tree for this

query on I1 shown in Fig. 13.5, has only 9 goals and a total of 13 atoms, regardless of the

value of n. However, both the QSQ and magic set approach generate a set of facts with size

proportional to n (i.e., to the size of I1).

Why do both QSQ and magic sets perform so poorly on this program and query? The

answer is that as presented, neither QSQ nor magic sets take advantage of restrictions

on derivations resulting from the repeated z variable in the body of rule (2). Analogous

examples can be developed for cases where constants appear in idb atoms in rule bodies.

Both QSQ and magic sets can be enhanced to use such information. In the case of

QSQ, the tuples added to supplementary relations can be annotated to carry information

about restrictions imposed by the atom that “caused” the tuple to be placed into the leftmost

supplementary relation. This is illustrated by the annotations in Fig. 13.4(b). First consider

the annotation ‘$2 = $3’ on the tuple 〈3〉 in input_T bff . This tuple is included into input_

T bff because 〈1, 2, 3〉 is in sup2
1, and the next atom considered is T bff (w, z, z). In particular,

then, any valid tuple (x, y, z) resulting from 〈3〉 must have second and third coordinates

equal. The annotation ‘$2 = $3’ is passed with 〈3〉 into sup1
0 and sup2

0.

Because variable y is bound to 4 in the tuple 〈3, 4, 5〉 in sup2
1, the annotation ‘$2 =

$3’ on 〈3〉 in sup2
0 “transforms” into ‘$3 = 4’ on this new tuple. This, in turn, implies the

annotation ‘$2 = $3 = 4’ when 〈5〉 is added to input_T bff and to both sup1
0 and sup2

0.

Now consider the tuple 〈5〉 in sup1
0, with annotation ($2 = $3 = 4). This can generate a

tuple in sup1
1 only if 〈5, 4, 4〉 is in R. For input I1 this tuple is not in R, and so the annotated
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(a)  Sample input instance I1
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Figure 13.4: Behavior of QSQ on program with repeated variables
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← T(1, y, z)

← R(1, y, z)

×

← S(1, y, w1), T(w1, z, z)

← T(3, z, z)

← R(3, z, z)

×

← S(3, z, w2), T(w2, z, z)

← T(5, 4, 4)

← R(5, 4, 4)

×

← S(5, 4, w3), T(w3, 4, 4)

×

Figure 13.5: Behavior of SLD on program with repeated variables

tuple 〈5〉 in sup1
0 generates nothing (even though in the original QSQ framework many

tuples are generated). Analogously, because there is no tuple 〈5, 4, w〉 in S, the annotated

tuple 〈5〉 of sup2
0 does not generate anything in sup2

1. This illustrates how annotations can

be used to restrict the facts generated during execution of QSQ.

More generally, annotations on tuples are conjunctions of equality terms of the form

‘$i = $j ’ and ‘$i = a’ (where a is a constant). During step (B.ii.b) of QSQ, annotations

are associated with new tuples placed into relations input_Rγ . We permit the same tuple

to occur in input_Rγ with different annotations. This enhanced version of QSQ is called

annotated QSQ. The enhancement correctly produces all answers to the initial query, and

the set of facts generated now closely parallels the set of facts and assignments generated

by the SLD tree corresponding to the QSQ templates used.

The magic set technique can also be enhanced to incorporate the information cap-

tured by the annotations just described. This is accomplished by an initial preprocessing

of the program (and query) called “subgoal rectification.” Speaking loosely, a subgoal cor-

responding to an idb predicate is rectified if it has no constants and no repeated variables.

Rectified subgoals may be formed from nonrectified ones by creating new idb predicates

that correspond to versions of idb predicates with repeated variables and constants. For

example, the following is the result of rectifying the subgoals of the program Pr :

T (x, y, z) ← R(x, y, z)

T (x, y, z) ← S(x, y,w), T$2=$3(w, z)

T$2=$3(x, z)← R(x, z, z)

T$2=$3(x, z)← S(x, z,w), T$2=$3(w, z)
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query(y, z)← T (1, y, z)

query(z, z) ← T$2=$3(1, z).

It is straightforward to develop an iterative algorithm that replaces an arbitrary datalog

program and query with an equivalent one, all of whose idb subgoals are rectified (see Exer-

cise 13.20). Note that there may be more than one rule defining the query after rectification.

The magic set transformation is applied to the rectified program to obtain the final

result. In the preceding example, there are two relevant adornments for the predicate T$2=$3

(namely, bf and bb).

The following can be verified (see Exercise 13.21):

Theorem 13.4.1 (Informal) The framework of annotated QSQ and the magic set trans-

formation augmented with subgoal rectification are both correct. Furthermore, the set of

idb predicate facts generated by evaluating a datalog query with either of these techniques

is identical to the set of facts occurring in the corresponding SLD tree.

A tight correspondence between the assignments in SLD derivation trees and the

supplementary relations generated both by annotated QSQ and rectified magic sets can be

shown. The intuitive conclusion drawn from this development is that top-down and bottom-

up techniques for datalog evaluation have essentially the same efficiency.

Counting (by Example)

We now present a brief sketch of another improvement of the magic set technique. It is

different from the previous one in that it works only when the underlying data set is known

to have certain acyclicity properties.

Consider evaluating the following SG query based on the Same-Generation program:

sg(x, y) ← flat(x, y)(1)

sg(x, y) ← up(x, x1), sg(x1, y1), down(y1, y)(2)

query(y)← sg(a, y)

on the input Jn given by

Jn(up) = {〈a, bi〉 | i ∈ [1, n]} ∪ {〈bi, cj〉 | i, j ∈ [1, n]}

Jn(flat) = {〈ci, dj〉 | i, j ∈ [1, n]}

Jn(down)= {〈di, ej〉 | i, j ∈ [1, n]} ∪ {〈ei, f 〉 | i ∈ [1, n]}.

Instance J2 is shown in Fig. 13.6.

The completed QSQ template on input J2 for the second rule of the SG query is shown

in Fig. 13.7(a). (The tuples are listed in the order in which QSQR would discover them.)

Note that on input Jn both sup2
1 and sup2

2 would contain n(n+ 1) tuples.

Consider now the proof tree of SG having root sg(a, f ) shown in Fig. 13.8 (see

Chapter 12). There is a natural correspondence of the children at depth 1 in this tree with the

supplementary relation atoms sup2
0(a), sup2

1(a, b1), sup2
2(a, e1), and sup2

3(a, f ) generated
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d
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e
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flat

up
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Figure 13.6: Instance J2 for counting

by QSQ; and between the children at depth 2 with sup2
0(b1), sup2

1(b1, c1), sup2
2(b1, d1), and

sup2
3(b1, e1).

A key idea in the counting technique is to record information about the depths at which

supplementary relation atoms occur. In some cases, this permits us to ignore some of the

specific constants present in the supplementary atoms. You will find that this is illustrated

in Fig. 13.7(b). For example, we show atoms count_sup2
0(1, a), count_sup2

1(1, b1), count_

sup2
2(1, e1), and count_sup2

3(1, f ) that correspond to the supplementary atoms sup2
0(a),

sup2
1(a, b1), sup2

2(a, e1), and sup2
3(a, f ). Note that, for example, count_sup2

1(2, c1) corre-

sponds to both sup2
1(b1, c1) and sup2

1(b2, c1).

More generally, the modified supplementary relation atoms hold an “index” that indi-

cates a level in a proof tree corresponding to how the atom came to be created. Because

of the structure of SG, and assuming that the up relation is acyclic, these modified supple-

mentary relations can be used to find query answers. Note that on input Jn, the relations

countsup2′

1 and count_sup2′

2 hold 2n tuples each rather than n(n+ 1), as in the original QSQ

approach.

We now describe how the magic set program associated with the SG query can be

transformed into an equivalent program (on acyclic input) that uses the indexes suggested

by Fig. 13.7(b). The magic set rewriting of the SG query is given by

sgbf (x, y) ← input_sgbf (x), flat(x, y)(s1.1)

sup2
1(x, x1)← input_sgbf (x), up(x, x1)(s2.1)

sup2
2(x, y1)← sup2

1(x, x1), sgbf (x1, y1)(s2.2)

sgbf (x, y) ← sup2
2(x, y1), down(y1, y)(s2.3)
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(a)  Completed QSQ template for sgbf on input J2
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(b)  Alternative QSQ “template,” using indices
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b
1

b
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Figure 13.7: Illustration of intuition behind counting

input_sgbf (x1)← sup2
1(x, x1)(i2.2)

input_sgbf (a) ←(seed)

query(y) ← sgbf (a, y).(query)

The counting version of this is now given. (In other literature on counting, the seed is

initialized with 0 rather than 1.)
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Figure 13.8: A proof tree for sg(a, f )

count_sgbf (I, y) ← count_input_sgbf (I, x), flat(x, y)(c-s1.1)

count_sup2
1(I, x1) ← count_input_sgbf (I, x), up(x, x1)(c-s2.1)

count_sup2
2(I, y1) ← count_sup2

1(I, x1), count_sgbf (I + 1, y1)(c-s2.2)

count_sgbf (I, y) ← count_sup2
2(I, y1), down(y1, y)(c-s2.3)

count_input_sgbf (I + 1, x1)← count_sup2
1(I, x1)(c-i2.2)

count_input_sgbf (1, a) ←(c-seed)

query(y) ← count_sgbf (1, y)(c-query)

In the preceding, expressions such as I + 1 are viewed as a short hand for using a variable

J in place of I + 1 and including J = I + 1 in the rule body.

In the counting version, the first coordinate of each supplementary relation keeps track

of a level in a proof tree rather than a specific value. Intuitively, when “constructing”

a sequence of supplementary atoms corresponding to a given level of a proof tree, each

idb atom used must have been generated from the next deeper level. This is why count_

sgbf (I + 1, y1) is used in rule (c-s2.2). Furthermore, rule (c-i2.2) initiates the “construc-

tion” corresponding to a new layer of the proof tree.

The counting program of the preceding example is not safe, in the sense that on

some inputs the program may produce an infinite set of tuples in some predicates (e.g.,

count_sup2
1). For example, this will happen if there is a cycle in the up relation reachable

from a. Analogous situations occur with most applications of counting. As a result, the

counting technique can only be used where the underlying data set is known to satisfy

certain restrictions.
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This preceding example is a simple application of the general technique of counting.

A more general version of counting uses three kinds of indexes. The first, illustrated in the

example, records information about levels of proof trees. The second is used to record

information about what rule is being expanded, and the third is used to record which

atom of the rule body is being considered (see Exercise 13.23). A description of the kinds

of programs for which the counting technique can be used is beyond the scope of this

book. Although limited in applicability, the counting technique has been shown to yield

significant savings in some contexts.

Bibliographic Notes

This chapter has presented a brief introduction to the research on heuristics for datalog

evaluation. An excellent survey of this work is [BR88a], which presents a taxonomy of

different techniques and surveys a broad number of them. Several books provide substantial

coverage of this area, including [Bid91a, CGT90, Ull89b]. Experimental results comparing

several of the techniques in the context of datalog are described in [BR88b]. An excellent

survey on deductive database systems, which includes an overview of several prototype

systems that support datalog, is presented in [RU94].

The naive and seminaive strategies for datalog evaluation underlie several early inves-

tigations and implementations [Cha81b, MS81]; the seminaive strategy for evaluation is

described in [Ban85, Ban86], which also propose various refinements. The use of T i−1 and

T i in Algorithm 13.1.1 is from [BR87b]. Reference [CGT90] highlights the close relation-

ship of these approaches to the classical Jacobi and Gauss-Seidel algorithms of numerical

analysis.

An essential ingredient of the top-down approaches to datalog evaluation is that of

“pushing” selections into recursions. An early form of this was developed in [AU79],

where selections and projections are pushed into restricted forms of fixpoint queries (see

Chapter 14 for the definition of fixpoint queries).

The Query-Subquery (QSQ) approach was initially presented in [Vie86]; the indepen-

dently developed method of “extension tables” [DW87] is essentially equivalent to this.

The QSQ approach is extended in [Vie88, Vie89] to incorporate certain global optimiza-

tions. An extension of the technique to general logic programming, called SLD-AL, is

developed in [Vie87a, Vie89]. Related approaches include APEX [Loz85], Earley Deduc-

tion [PW80, Por86], and those of [Nej87, Roe87]. The connection between context-free

parsing and datalog evaluation is highlighted in [Lan88].

The algorithms of the QSQ family are sometimes called “memo-ing” approaches,

because they use various data structures to remember salient inferred facts to filter the work

of traditional SLD resolution.

Perhaps the most general of the top-down approaches uses “rule/goal” graphs [Ull85];

these potentially infinite trees intuitively correspond to a breadth-first, set-at-a-time execu-

tion of SLD resolution. Rule/goal graphs are applied in [Van86] to evaluate datalog queries

in distributed systems. Similar graph structures have also been used in connection with gen-

eral logic programs (e.g., [Kow75, Sic76]). A survey of several graph-based approaches is

[DW85].

Turning to bottom-up approaches, the essentially equivalent approaches of [HN84] and



336 Evaluation of Datalog

[GdM86] develop iterative algebraic programs for linear datalog programs. [GS87] extends

these. A more general approach based on rewriting iterative algebra programs is presented

in [CT87, Tan88].

The magic set and counting techniques originally appeared for linear datalog in

[BMSU86]. Our presentation of magic sets is based on an extended version called “gen-

eralized supplementary magic sets” [BR87a, BR91]. That work develops a general notion

of sideways information passing based on graphs (see Exercise 13.19), and develops both

magic sets and counting in connection with general logic programming. The Alexander

method [RLK86, Ker88], developed independently, is essentially the same as general-

ized supplementary magic sets for datalog. This was generalized to logic programming in

[Sek89]. Magic set rewriting has also been applied to optimize SQL queries [MFPR90].

The counting method is generalized and combined with magic sets in [SZ86, SZ88].

Supplementary magic is incorporated in [BR91]. Analytic comparisons of magic and

counting for selected programs are presented in [MSPS87].

Another bottom-up technique is Static Filtering [KL86a, KL86b]. This technique

forms a graph corresponding to the flow of tuples through a bottom-up evaluation and then

modifies the graph in a manner that captures information passing resulting from constants

in the initial query.

Several of the investigations just mentioned, including [BR87a, KL86a, KL86b, Ull85,

Vie86], emphasize the idea that sideways information passing and control are largely

independent. Both [SZ88] and [BR91] describe fairly general mechanisms for specifying

and using alternative sideways information passing and related message passing. A more

general form of sideways information passing, which passes bounding inequalities between

subgoals, is studied in [APP+86]. A formal framework for studying the success of pushing

selections into datalog programs is developed in [BKBR87].

Several papers have studied the connection between top-down and bottom-up evalua-

tion techniques. One body of the research in this direction focuses on the sets of facts gener-

ated by the top-down and bottom-up techniques. One of the first results relating top-down

and bottom-up is from [BR87a, BR91], where it is shown that if a top-down technique

and the generalized supplementary magic set technique use a given family of sideways

information passing techniques, then the sets of intermediate facts produced by both tech-

niques correspond. That research is conducted in the context of general logic programs that

are range restricted. These results are generalized to possibly non-range-restricted logic

programs in the independent research [Ram91] and [Sek89]. In that research, bottom-up

evaluations may use terms and tuples that include variables, and bottom-up evaluation of

rewritten programs uses unification rather than simple relational join. A close correspon-

dence between top-down and bottom-up evaluation for datalog was established in [Ull89a],

where subgoal rectification is used. The treatment of Program Pr and Theorem 13.4.1 are

inspired by that development. This close correspondence is extended to arbitrary logic

programs in [Ull89b]. Using a more detailed cost model, [SR93] shows that bottom-up

evaluation asymptotically dominates top-down evaluation for logic programs, even if they

produce nonground terms in their output.

A second direction of research on the connection between top-down and bottom-up

approaches provides an elegant unifying framework [Bry89]. Recall in the discussion of

Theorem 13.2.2 that the answer to a query can be obtained by performing the steps of



Exercises 337
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Chapter 15) include [BPR87, Ros91, SI88, KT88].

Another important direction of research has been the parallel evaluation of datalog

programs. Heuristics are described in [CW89b, GST90, Hul89, SL91, WS88, WO90].

A novel approach to answering datalog queries efficiently is developed in [DT92,

DS93]. The focus is on cases in which the same query is asked repeatedly as the under-

lying edb is changing. The answer of the query (and additional scratch paper relations)

is materialized against a given edb state, and first-order queries are used incrementally to

maintain the materialized data as the underlying edb state is changed.

A number of prototype systems based on variants of datalog have been developed,

incorporating some of the techniques mentioned in this chapter. They include DedGin

[Vie87b, LV89], NAIL! [Ull85, MUV86, MNS+87], LDL [NT89], ALGRES [CRG+88],

NU-Prolog [RSB+87], GLUE-NAIL [DMP93], and CORAL [RSS92, RSSS93]. Descrip-

tions of projects in this area can also be found in [Zan87], [RU94].

Exercises

Exercise 13.1 Recall the program RSG′ from Section 13.1. Exhibit an instance I such that on
this input, δirsg �= ∅ for each i > 0.

Exercise 13.2 Recall the informal discussion of the two seminaive “versions” of the nonlinear
ancestor program discussed in Section 13.1. Let P1 denote the first of these, and P2 the second.
Show the following.

(a) For some input, P2 can produce the same tuple more than once at some level beyond
the first level.

(b) If P2 produces the same tuple more than once, then each occurrence corresponds to
a distinct proof tree (see Section 12.5) from the program and the input.

(c) P1 can produce a given tuple twice, where the proof trees corresponding to the two
occurrences are identical.

Exercise 13.3 Consider the basic seminaive algorithm (13.1.1).
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(a) Verify that this algorithm terminates on all inputs.

(b) Show that for each i ≥ 0 and each idb predicate S, after the ith execution of the
loop the value of variable Si is equal to T iP (I)(S) and the value of .i+1

S is equal

to T i+1
P (I)(S)− T iP (I)(S).

(c) Verify that this algorithm produces correct output on all inputs.

(d) Give an example input for which the same tuple is generated during different loops
of the algorithm.

Exercise 13.4 Consider the improved seminaive algorithm (13.1.2).

(a) Verify that this algorithm terminates and produces correct output on all inputs.

(b) Give an example of a program P for which the improved seminaive algorithm pro-
duces fewer redundant tuples than the basic seminaive algorithm.

Exercise 13.5 Let P be a linear datalog program, and let P ′ be the set of rules associated with
P by the improved seminaive algorithm. Suppose that the naive algorithm is performed using P ′

on some input I. Does this yield P(I)? Why or why not? What if the basic seminaive algorithm
is used?

Exercise 13.6 A set X of relevant facts for datalog query (P, q) and input I is minimal if (1)
for each answer β of q there is a proof tree for β constructed from facts in X, and (2) X is
minimal having this property. Informally describe an algorithm that produces a minimal set of
relevant facts for a query (P, q) and input I and is polynomial time in the size of I.

Exercise 13.7 [BR91] Suppose that program P includes the rule

ρ : S(x, y)← S1(x, z), S2(z, y), S3(u, v), S4(v,w),

where S3, S4 are edb relations. Observe that the atoms S3(u, v) and S4(v,w) are not connected
to the other atoms of the rule body or to the rule head. Furthermore, in an evaluation of P on
input I, this rule may contribute some tuple to S only if there is an assignment α for u, v,w such
that {S3(u, v), S4(v,w)}[α] ⊆ I. Explain why it is typically more efficient to replace ρ with

ρ ′ : S(x, y)← S1(x, z), S2(z, y)

if there is such an assignment and to delete ρ from P otherwise. Extend this to the case when
S3, S4 are idb relations. State a general version of this heuristic improvement.

Exercise 13.8 Consider the adorned rule

Rbf (x,w)← S
bf

1 (x, y), S
bf

2 (y, z), T
ff

1 (u, v), T
bf

2 (v,w).

Explain why it makes sense to view the second occurrence of v as bound.

Exercise 13.9 Consider the rule

R(x, y, y)← S(y, z), T (z, x).

(a) Construct adorned versions of this rule for Rff b and Rf bb.
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(b) Suppose that in the QSQ algorithm a tuple 〈b, c〉 is placed into input_Rf bb. Explain
why this tuple should not be placed into the 0th supplementary relation for the second
adorned rule constructed in part (a).

(c) Exhibit an example analogous to part (b) based on the presence of a constant in the
head of a rule rather than on repeated variables.

Exercise 13.10

(a) Complete the evaluation in Example 13.2.1.

(b) Use Algorithm 13.2.3 (QSQR) to evaluate that example.

⋆Exercise 13.11 In the QSQR algorithm, the procedure for processing subqueries of the form
(Rγ , S) is called until no global variable is changed. Exhibit an example datalog query and input
where the second cycle of calls to the subqueries (Rγ , S) generates new answer tuples.

♠Exercise 13.12 (a) Prove Theorem 13.2.2. (b) Prove that the QSQR algorithm is correct.

⋆Exercise 13.13 The Iterative QSQ (QSQI) algorithm uses the QSQ framework, but without
recursion. Instead in each iteration it processes each rule body from left to right, using the values
currently in the relations ans_Rγ when computing values for the supplementary relations.
As with QSQR, the variables input_Rγ and ans_Rγ are global, and the variables for the
supplementary relations are local. Iteration continues until there is no change to the global
variables.

(a) Specify the QSQI algorithm more completely.

(b) Give an example where QSQI performs redundant work that QSQR does not.

Exercise 13.14 [BR91] Consider the following query based on a nonlinear variant of the
same-generation program, called here the SGV query:

(a) sgv(x, y)← flat(x, y)

(b) sgv(x, y)← up(x, z1), sgv(z1, z2), flat(z2, z3), sgv(z3, z4), down(z4, y)
query(y)← sgv(a, y)

Give the magic set transformation of this program and query.

Exercise 13.15 Give examples of how a query (Pm, qm) resulting from magic set rewriting
can produce nonrelevant and redundant facts.

♠Exercise 13.16

(a) Give the general definition of the magic set rewriting technique.

(b) Prove Theorem 13.3.1.

Exercise 13.17 Compare the difficulties, in practical terms, of using the QSQ and magic set
frameworks for evaluating datalog queries.

⋆Exercise 13.18 Let (P, q) denote the SGV query of Exercise 13.14. Let (Pm, qm) denote the
result of rewriting this program, using the (generalized supplementary) magic set transformation
presented in this chapter. Under an earlier version, called here “original” magic, the rewritten
form of (P, q) is (P om, qom):



340 Evaluation of Datalog

sgvbf (x, y) ← input_sgvbf (x), flat(x, y)(o-m1)

sgvbf (x, y) ← input_sgvbf (x), up(x, z1), sgvbf (z1, z2),(o-m2)

flat(z2, z3), sgvbf (z3, z4), down(z4, y)

input_sgvbf (z1)← input_sgvbf (x), up(x, z1)(o-i2.2)

input_sgvbf (z3)← input_sgvbf (x), up(x, z1), sgvbf (z1, z2),(o-i2.4)

flat(z2, z3)

input_sgv(a) ←(o-seed)

query(y) ← sgvbf (a, y)(o-query)

Intuitively, the original magic set transformation uses the relations input_Rγ , but not supple-
mentary relations.

(a) Verify that (P om, qom) is equivalent to (P, q).

(b) Compare the family of facts computed during the executions of (Pm, qm) and
(P om, qom).

(c) Give a specification for the original magic set transformation, applicable to any
datalog query.

⋆Exercise 13.19 Consider the adorned rule

Rbbf (x, y, z)← T
bf

1 (x, s), T
bf

2 (s, t), T
bf

3 (y, u), T
bf

4 (u, v), T
bbf

5 (t, v, z).

A sip graph for this rule has as nodes all atoms of the rule and a special node exit, and
edges (R, T1), (T1, T2), (R, T3), (T3, T4), (T2, T5), (T4, T5), (T5, exit). Describe a family of
supplementary relations, based on this sip graph, that can be used in conjunction with the QSQ
and magic set approaches. [Use one supplementary relation for each edge (corresponding to
the output of the tail of the edge) and one supplementary relation for each node except for R
(corresponding to the input to this node—in general, this will equal the join of the relations for
the edges entering the node).] Explain how this may increase efficiency over the left-to-right
approach used in this chapter. Generalize the construction. (The notion of sip graph and its use
is a variation of [BR91].)

♠Exercise 13.20 [Ull89a] Specify an algorithm that replaces a program and query by an equiv-
alent one, all of whose idb subgoals are rectified. What is the complexity of this algorithm?

♠Exercise 13.21

(a) Provide a more detailed specification of the QSQ framework with annotations, and
prove its correctness.

(b) [Ull89b, Ull89a] State formally the definitions needed for Theorem 13.4.1, and prove
it.

Exercise 13.22 Write a program using counting that can be used to answer the RSG query
presented at the beginning of Section 13.2.
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count_sgvbf (I,K,L, y) ← count_input_sgvbf (I,K,L, x), flat(x, y)(c-s1.1)

count_sup2
1(I,K,L, z1) ← count_input_sgvbf (I,K,L, x), up(x, z1)(c-s2.1)

count_sup2
2(I,K,L, z2) ← count_sup2

1(I,K,L, z1),(c-s2.2)

count_sgvbf (I + 1, 2K + 2, 5L+ 2, z2)

count_sup2
3(I,K,L, z3) ← count_sup2

2(I,K,L, z2), flat(z2, z3)(c-s2.3)

count_sup2
4(I,K,L, z4) ← count_sup2

3(I,K,L, z3),(c-s2.4)

count_sgvbf (I + 1, 2K + 2, 5L+ 4, z4),

count_sgvbf (I,K,L, y) ← count_sup2
4(I,K,L, z4), down(z4, y)(c-s2.5)

count_input_sgvbf (I + 1, 2K + 2, 5L+ 2, z1)(c-i2.2)

← count_sup2
1(I,K,L, z1)

count_input_sgvbf (I + 1, 2K + 2, 5L+ 4, z3)(c-i2.4)

← count_sup2
3(I,K,L, z3)

count_input_sgvbf (1, 0, 0, a)←(c-seed)

query(y) ← count_sgvbf (1, 0, 0, y)(c-query)

Figure 13.9: Generalized counting transformation on SGV query

⋆Exercise 13.23 [BR91] This exercise illustrates a version of counting that is more general
than that of Exercise 13.22. Indexed versions of predicates shall have three index coordinates
(occurring leftmost) that hold:

(i) The level in the proof tree of the subgoal that a given rule is expanding.

(ii) An encoding of the rules used along the path from the root of the proof tree to the
current subgoal. Suppose that there are k rules, numbered (1), . . . , (k). The index
for the root node is 0 and, given index K , if rule number i is used next, then the next
index is given by kK + i.

(iii) An encoding of the atom occurrence positions along the path from root to the current
node. Assuming that l is the maximum number of idb atoms in any rule body, this
index is encoded in a manner similar to item (ii).

A counting version of the SGV query of Exercise 13.14 is shown in Fig. 13.9. Verify that this is
equivalent to the SGV query in the case where there are no cycles in up or down.



14 Recursion and Negation

Vittorio: Let’s combine recursion and negation.

Riccardo: That sounds hard to me.

Sergio: It’s no problem, just add fixpoint to the calculus, or while to the algebra.

Riccardo: That sounds hard to me.

Vittorio: OK—how about datalog with negation?

Riccardo: That sounds hard to me.

Alice: Riccardo, you are recursively negative.

The query languages considered so far were obtained by augmenting the conjunctive

queries successively with disjunction, negation, and recursion. In this chapter, we

consider languages that provide both negation and recursion. They allow us to ask queries

such as, “Which are the pairs of metro stops which are not connected?”. This query is not

expressible in relational calculus and algebra or in datalog.

The integration of recursion and negation is natural and yields highly expressive lan-

guages. We will see how it can be achieved in the three paradigms considered so far: al-

gebraic, logic, and deductive. The algebraic language is an extension of the algebra with

a looping construct and an assignment, in the style of traditional imperative programming

languages. The logic language is an extension of the calculus in which recursion is provided

by a fixpoint operator. The deductive language extends datalog with negation.

In this chapter, the semantics of datalog with negation is defined from a purely compu-

tational perspective that is in the spirit of the algebraic approach. More natural and widely

accepted model-theoretic semantics, such as stratified and well-founded semantics, are pre-

sented in Chapter 15.

As we consider increasingly powerful languages, the complexity of query evaluation

becomes a greater concern. We consider two flavors of the languages in each paradigm:

the inflationary one, which guarantees termination in time polynomial in the size of the

database; and the noninflationary one, which only guarantees that a polynomial amount

of space is used.1 In the last section of this chapter, we show that the polynomial-time-

bounded languages defined in the different paradigms are equivalent. The set of queries

they define is called the fixpoint queries. The polynomial-space-bounded languages are also

equivalent, and the corresponding set of queries is called the while queries. In Chapter 17,

we examine in more detail the expressiveness and complexity of the fixpoint and while

queries. Note that, in particular, the polynomial time and space bounds on the complexity

1 For comparison, it is shown in Chapter 17 that CALC requires only logarithmic space.

342
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of such queries imply that there are queries that are not fixpoint or while queries. More

powerful languages are considered in Chapter 18.

Before describing specific languages, we present an example that illustrates the prin-

ciples underlying the two flavors of the languages.

Example The following is based on a version of the well-known “game of life,” which

is used to model biological evolution. The game starts with a set of cells, some of which

are alive and some dead; the alive ones are colored in blue or red. (One cell may have two

colors.) Each cell has other cells as neighbors. Suppose that a binary relation Neighbor

holds the neighbor relation (considered as a symmetric relation) and that the information

about living cells and their color is held in a binary relation Alive (see Fig. 14.1). Suppose

first that a cell can change status from dead to alive following this rule:

A dead cell becomes alive if it has at least two neighbors that are alive(α)

and have the same color. It then takes the color of the “parents.”

The evolution of a particular population for the Neighbor graph of Fig. 14.1(a) is given in

Fig. 14.1(b). Observe that the sets of tuples keep increasing and that we reach a stable state.

This is an example of inflationary iteration.

Now suppose that the evolution also obeys the second rule:

(β) A live cell dies if it has more than three live neighbors.

The evolution of the population with the two rules is given in Fig. 14.1(c). Observe that

the number of tuples sometimes decreases and that the computation diverges. This is an

example of noninflationary iteration.

All languages that we consider use a fixed set of relation schemas throughout the com-

putation. At any point in the computation, intermediate results contain only constants from

the input database or that are specified in the query. Suppose the relations used in the

computation have arities r1, . . . , rk, the input database contains n constants, and the query

refers to c constants. Then the number of tuples in any intermediate result is bounded by
∑k

i=1(n + c)ri , which is a polynomial in n. Thus such queries can be evaluated in poly-

nomial space. As will be seen when the formal definitions are in place, this implies that

each noninflationary iteration, and hence each noninflationary query, can be evaluated in

polynomial space, whether or not it terminates. In contrast, the inflationary semantics en-

sures termination by requiring that a tuple can never be deleted once it has been inserted.

Because there are only polynomially many tuples, each such program terminates in poly-

nomial time.

To summarize, the inflationary languages use iteration based on an “inflation of tu-

ples.” In all three paradigms, inflationary queries can be evaluated in polynomial time, and

the same expressive power is obtained. The noninflationary languages use noninflation-

ary or destructive assignment inside of iterations. In all three paradigms, noninflationary

queries can be evaluated in polynomial space, and again the same expressive power is
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Neighbor

a e

b e

c e

d e

(a) Neighbor

Alive Alive Alive

a blue a blue a blue

b red b red b red

c blue c blue c blue . . .

d red d red d red

e blue e blue

e red e red

(b) Inflationary evolution

Alive Alive Alive Alive Alive

a blue a blue a blue a blue a blue

b red b red b red b red b red . . .

c blue c blue c blue c blue c blue

d red d red d red d red d red

e blue e blue

e red e red

(c) Noninflationary evolution

Figure 14.1: Game of life

obtained. (We note, however, that it remains open whether the inflationary and the non-

inflationary languages have equivalent expressive power; we discuss this issue later.)

14.1 Algebra + While

Relational algebra is essentially a procedural language. Of the query languages, it is the

closest to traditional imperative programming languages. Chapters 4 and 5 described how it

can be extended syntactically using assignment (:=) and composition (;) without increasing

its expressive power. The extensions of the algebra with recursion are also consistent with
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the imperative paradigm and incorporate a while construct, which calls for the iteration

of a program segment. The resulting language comes in two flavors: inflationary and

noninflationary. The two versions of the language differ in the semantics of the assignment

statement. The noninflationary version was the one first defined historically, and we discuss

it next. The resulting language is called the while language.

Noninflationary Semantics

Recall from Chapter 4 that assignment statements can be incorporated into the algebra

using expressions of the form R := E, where E is an algebra expression and R a relational

variable of the same sort as the result of E. (The difference from Chapter 4 is that it is no

longer required that each successive assignment statement use a distinct, previously unused

variable.) In the while language, the semantics of an assignment statement is as follows:

The value of R becomes the result of evaluating the algebra expression E on the current

state of the database. This is the usual destructive assignment in imperative programming

languages, where the old value of a variable is overwritten.

While statements have the form

while change do

begin

〈loop body〉
end

There is no explicit termination condition. Instead a loop runs as long as the execution

of the body causes some change to some relation (i.e., until a stable state is reached). At

the end of this section, we consider the introduction of explicit terminating conditions and

see that this does not affect the language in an essential manner.

Nesting of loops is permitted. A while program is a finite sequence of assignment or

while statements. The program uses a finite set of relational variables of specified sorts,

including the names of relations in the input database. Relational variables that are not in

the input database are initialized to the empty relation. A designated relational variable

holds the output to the program at the end of the computation. The image (or value) of

program P on I, denoted P(I), is the value finally assigned to the designated variable if P

terminates on I; otherwise P(I) is undefined.

Example 14.1.1 (Transitive Closure) Consider a binary relation G[AB], specifying

the edges of a graph. The following while program computes in T [AB] the transitive

closure of G.

T :=G;
while change do

begin

T := T ∪ πAB(δB→C(T ) ⊲⊳ δA→C(G));

end

A computation ends when T becomes stable, which means that no new edges were

added in the current iteration, so T now holds the transitive closure of G.
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Example 14.1.2 (Add-Remove) Consider again a binary relation G specifying the

edges of a graph. Each loop of the following program

• removes from G all edges 〈a, b〉 if there is a path of length 2 from a to b, and

• inserts an edge 〈a, b〉 if there is a vertex not directly connected to a and b.

This is iterated while some change occurs. The result is placed into the binary relation T .

In addition, the binary relation variables ToAdd and ToRemove are used as “scratch paper.”

For the sake of readability, we use the calculus with active domain semantics whenever this

is easier to understand than the corresponding algebra expression.

T :=G;

while change do

begin

ToRemove := {〈x, y〉 | ∃z(T (x, z) ∧ T (z, y))};
ToAdd := {〈x, y〉 | ∃z(¬T (x, z) ∧ ¬T (z, x) ∧ ¬T (y, z) ∧ ¬T (z, y))};
T := (T ∪ ToAdd)− ToRemove;

end

In the Transitive Closure example, the transitive closure query always terminates. This

is not the case for the Add-Remove query. (Try the graph {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}.) The

halting problem for while programs is undecidable (i.e., there is no algorithm that, given

a while program P , decides whether P halts on each input; see Exercise 14.2). Observe,

however, that for a pair (P, I), one can decide whether P halts on input I because, as argued

earlier, while computations are in pspace.

Inflationary Semantics

We define next an inflationary version of the while language, denoted by while+. The

while+ language differs with while in the semantics of the assignment statement. In particu-

lar, in while+, assignment is cumulative rather than destructive: Execution of the statement

assigning E to R results in adding the result of E to the old value of R. Thus no tuple is

removed from any relation throughout the execution of the program. To distinguish the cu-

mulative semantics from the destructive one, we use the notation P += e for the cumulative

semantics.

Example 14.1.3 (Transitive Closure Revisited) Following is a while+ program that

computes the transitive closure of a graph represented by a binary relation G[AB]. The

result is obtained in the variable T [AB].

T +=G;

while change do

begin

T += πAB(δB→C(T ) ⊲⊳ δA→C(G));

end
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This is almost exactly the same program as in the while language. The only difference is

that because assignment is cumulative, it is not necessary to add the content of T to the

result of the projection.

To conclude this section, we consider alternatives for the control condition of loops.

Until now, we based termination on reaching a stable state. It is also common to use explicit

terminating conditions, such as tests for emptiness of the form E = ∅, E �= ∅, or E �= E′,

where E,E′ are relational algebra expressions. The body of the loop is executed as long as

the condition is satisfied. The following example shows how transitive closure is computed

using explicit looping conditions.

Example 14.1.4 We use another relation schema oldT also of sort AB.

T +=G;
while (T − oldT ) �= ∅ do

begin

oldT += T ;

T += πAB(δB→C(T ) ⊲⊳ δA→C(G));

end

In the program, oldT keeps track of the value of T resulting from the previous iteration

of the loop. The computation ends when oldT and T coincide, which means that no new

edges were added in the current iteration, so T now holds the transitive closure of G.

It is easily shown that the use of such termination conditions does not modify the

expressive power of while, and the use of conditions such as E �= E′ does not modify the

expressive power of while+ (see Exercise 14.5).

In Section 14.4 we shall see that nesting of loops in while queries does not increase

expressive power.

14.2 Calculus + Fixpoint

Just as in the case of the algebra, we provide inflationary and noninflationary extensions of

the calculus with recursion. This could be done using assignment statements and while

loops, as for the algebra. Indeed, we used calculus notation in Example 14.1.2 (Add-

Remove). Instead we use an equivalent but more logic-oriented construct to augment the

calculus. The construct, called a fixpoint operator, allows the iteration of calculus formulas

up to a fixpoint. In effect, this allows defining relations inductively using calculus formulas.

As with while, the fixpoint operator comes in a noninflationary and an inflationary flavor.

For the remainder of this chapter, as a notational convenience, we use active domain

semantics for calculus queries. In addition, we often use a formula ϕ(x1, . . . , xn) as an

abbreviation for the query {x1, . . . , xn | ϕ(x1, . . . , xn)}. These two simplifications do not

affect the results developed.
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Partial Fixpoints

The noninflationary version of the fixpoint operator is considered first. It is illustrated in

the following example.

Example 14.2.1 (Transitive Closure Revisited) Consider again the transitive closure

of a graph G. The relations Jn holding pairs of nodes at distance at most n can be defined

inductively using the single formula

ϕ(T )=G(x, y) ∨ T (x, y) ∨ ∃ z(T (x, z) ∧G(z, y))

as follows:

J0 = ∅;

Jn = ϕ(Jn−1), n > 0.

Here ϕ(Jn−1) denotes the result of evaluating ϕ(T ) when the value of T is Jn−1. Note

that, for each input G, the sequence {Jn}n≥0 converges. That is, there exists some k for

which Jk = Jj for every j > k (indeed, k is the diameter of the graph). Clearly, Jk holds

the transitive closure of the graph. Thus the transitive closure of G can be defined as the

limit of the foregoing sequence. Note that Jk = ϕ(Jk), so Jk is also a fixpoint of ϕ(T ). The

relation Jk thereby obtained is denoted by µT (ϕ(T )). Then the transitive closure of G is

defined by

µT (G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))).

By definition, µT is an operator that produces a new relation (the fixpoint Jk) when applied

to ϕ(T ). Note that, although T is used in ϕ(T ), T is not a database relation but rather a

relation used to define inductively µT (ϕ(T )) from the database, starting with T = ∅. T is

said to be bound to µT . Indeed, µT is somewhat similar to a quantifier over relations. Note

that the scope of the free variables of ϕ(T ) is restricted to ϕ(T ) by the operator µT .

In the preceding example, the limit of the sequence {Jn}n≥0 happens to exist and is in

fact the least fixpoint of ϕ. This is not always the case; the possibility of nontermination

is illustrated next (and Exercise 14.4 considers cases in which a nonminimal fixpoint is

reached).

Example 14.2.2 Consider

ϕ(T )= (x = 0 ∧ ¬T (0) ∧ ¬T (1)) ∨ (x = 0 ∧ T (1)) ∨ (x = 1 ∧ T (0)).

In this case the sequence {Jn}n≥0 is ∅, {〈0〉}, {〈1〉}, {〈0〉}, . . . (i.e., T flip-flops between zero

and one). Thus the sequence does not converge, and µT (ϕ(T )) is not defined. Situations

in which µ is undefined correspond to nonterminating computations in the while language.

The following nonterminating while program corresponds to µT (ϕ(T )).
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T := {〈0〉};
while change do

begin

T := {〈0〉, 〈1〉} − T ;

end

Because µ is only partially defined, it is called the partial fixpoint operator. We now

define its syntax and semantics in more detail.

Partial Fixpoint Operator Let R be a database schema, and let T [m] be a relation

schema not in R. Let S denote the schema R ∪ {T }. Let ϕ(T ) be a formula using T and

relations in R, with m free variables. Given an instance I over R, µT (ϕ(T )) denotes the

relation that is the limit, if it exists, of the sequence {Jn}n≥0 defined by

J0 = ∅;

Jn = ϕ(Jn−1), n > 0,

where ϕ(Jn−1) denotes the result of evaluating ϕ on the instance Jn−1 over S whose

restriction to R is I and Jn−1(T )= Jn−1.

The expression µT (ϕ(T )) denotes a new relation (if it is defined). In turn, it can be

used in more complex formulas like any other relation. For example, µT (ϕ(T ))(y, z) states

that 〈y, z〉 is in µT (ϕ(T )). If µT (ϕ(T )) defines the transitive closure ofG, the complement

of the transitive closure is defined by

{〈x, y〉 | ¬ µT (ϕ(T ))(x, y)}.

The extension of the calculus with µ is called partial fixpoint logic, denoted CALC+µ.

Partial Fixpoint Logic CALC+µ formulas are obtained by repeated applications of

CALC operators (∃,∀,∨,∧,¬) and the partial fixpoint operator, starting from atoms. In

particular, µT (ϕ(T ))(e1, . . . , en), where T has arity n, ϕ(T ) has n free variables, and the

ei are variables or constants, is a formula. Its free variables are the variables in the set

{e1, . . . , en} [thus the scope of variables occurring inside ϕ(T ) consists of the subformula

to which µT is applied]. Partial fixpoint operators can be nested. CALC+µ queries over a

database schema R are expressions of the form

{〈e1, . . . , en〉 | ξ},

where ξ is a CALC+µ formula whose free variables are those occurring in e1, . . . , en. The

formula ξ may use relation names in addition to those in R; however, each occurrence P

of such relation name must be bound to some partial fixpoint operator µP . The semantics

of CALC+µ queries is defined as follows. First note that, given an instance I over R and a

sentence σ in CALC+µ, there are three possibilities: σ is undefined on I; σ is defined on I
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and is true; and σ is defined on I and is false. In particular, given an instance I over R, the

answer to the query

q = {〈e1, . . . , en〉 | ξ}

is undefined if the application of some µ in a subformula is undefined. Otherwise the

answer to q is the n-ary relation consisting of all valuations ν of e1, . . . , en for which

ξ(ν(e1), . . . , ν(en)) is defined and true. The queries expressible in partial fixpoint logic

are called the partial fixpoint queries.

Example 14.2.3 (Add-Remove Revisited) Consider again the query in Example

14.1.2. To express the query in CALC+µ, a difficulty arises: The while program initializes

T to G before the while loop, whereas CALC+µ lacks the capability to do this directly.

To distinguish the initialization step from the subsequent ones, we use a ternary relation Q

and two distinct constants: 0 and 1. To indicate that the first step has been performed, we

insert in Q the tuple 〈1, 1, 1〉. The presence of 〈1, 1, 1〉 in Q inhibits the repetition of the

first step. Subsequently, an edge 〈x, y〉 is encoded in Q as 〈x, y, 0〉. The while program in

Example 14.1.2 is equivalent to the CALC+µ query

{〈x, y〉 | µQ(ϕ(Q))(x, y, 0)}

where

ϕ(Q)=
[¬Q(1, 1, 1) ∧ [(G(x, y) ∧ z= 0) ∨ (x = 1 ∧ y = 1 ∧ z= 1)]]

∨
[Q(1, 1, 1) ∧ [(x = 1 ∧ y = 1 ∧ z= 1) ∨

((z= ((z= 0) ∧Q(x, y, 0) ∧ ¬∃w(Q(x,w, 0) ∧Q(w, y, 0))) ∨
((z= ((z= 0) ∧ ∃w(¬Q(x,w, 0) ∧ ¬Q(w, x, 0) ∧

¬Q(y,w, 0) ∧ ¬Q(w, y, 0)))]].

Clearly, this query is more awkward than its counterpart in while. The simulation highlights

some peculiarities of computing with CALC+µ.

In Section 14.4 it is shown that the family of partial fixpoint queries is equivalent to

the while queries. In the preceding definition of µT (ϕ(T )), the scope of all free variables

in ϕ is defined by µT . For example, if T is binary in the following

∃y(P (y) ∧ µT (ϕ(T , x, y))(z, w)),

then ϕ(T , x, y) has free variables x, y. According to the definition, y is not free in

µT (ϕ(T , x, y))(z, w) (the free variables are z,w). Hence the quantifier ∃y applies to the

y in P(y) alone and has no relation to the y in µT (ϕ(T , x, y))(z, w). To avoid confusion,

it is preferable to use distinct variable names in such cases. For instance, the preceding
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sentence can be rewritten as

∃y(P (y) ∧ µT (ϕ(T , x
′, y′))(z, w)).

A variant of the fixpoint operator can be developed that permits free variables under the

fixpoint operator, but this does not increase the expressive power (see Exercise 14.11).

Simultaneous Induction

Consider the following use of nested partial fixpoint operators, where G,P , and Q are

binary:

µP (G(x, y) ∧ µQ(ϕ(P,Q))(x, y)).

Here ϕ(P,Q) involves both P and Q. This corresponds to a nested iteration. In each

iteration i in the computation of {Jn}n≥0 over P , the fixpoint µQ(ϕ(P,Q)) is recomputed

for the successive values Ji of P .

In contrast, we now consider a generalization of the partial fixpoint that permits simul-

taneous iteration over two or more relations. For example, let R be a database schema and

ϕ(P,Q) and ψ(P,Q) be calculus formulas using P and Q not in R, such that the arity

of P (respectively Q) is the number of free variables in ϕ (ψ). On input I over R, one can

define inductively the sequence {Jn}n≥0 of relations over {P,Q} as follows:

J0(P )= ∅

J0(Q)= ∅

Jn(P )= ϕ(Jn−1(P ), Jn−1(Q))

Jn(Q)= ψ(Jn−1(P ), Jn−1(Q)).

Such a mutually recursive definition of Jn(P ) and Jn(Q) is referred to as simultaneous

induction. If the sequence {Jn(P ), Jn(Q)}n≥0 converges, the limit is a fixpoint of the map-

ping on pairs of relations defined by ϕ(P,Q) and ψ(P,Q). This pair of values for P and

Q is denoted by µP,Q(ϕ(P,Q),ψ(P,Q)), and µP,Q is a simultaneous induction partial

fixpoint operator. The value for P in µP,Q is denoted by µP,Q(ϕ(P,Q),ψ(P,Q))(P )

and the value for Q by µP,Q(ϕ(P,Q),ψ(P,Q))(Q). Clearly, simultaneous induction

definitions like the foregoing can be extended for any number of relations. Simultaneous

induction can simplify certain queries, as shown next.

Example 14.2.4 (Add-Remove by Simultaneous Induction) Consider again the

query Add-Remove in Example 14.2.3. One can simplify the query by introducing an

auxiliary unary relation Off , which inhibits the transfer of G into T after the first step

in a direct fashion. T and Off are defined in a mutually recursive fashion by ϕOff and ϕT ,

respectively:
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ϕOff (x)= x = 1

ϕT (x, y)= [¬Off (1) ∧G(x, y)]

∨ [Off (1) ∧ ¬∃z(T (x, z) ∧ T (z, y)) ∧

(T (x, y) ∨ ∃z(¬T (x, z) ∧ ¬T (z, x) ∧ ¬T (y, z) ∧ ¬T (z, y))].

The Add-Remove query can now be written as

{〈x, y〉 | µOff ,T (ϕOff (Off , T ), ϕT (Off , T ))(T )(x, y)}.

It turns out that using simultaneous induction instead of regular fixpoint operators

does not provide additional power. For example, a CALC+µ formula equivalent to the

query in Example 14.2.4 is the one shown in Example 14.2.3. More generally, we have

the following:

Lemma 14.2.5 For some n, let ϕi(R1, . . . , Rn) be CALC formulas, i in [1..n], such

that µR1,...,Rn(ϕ1(R1, . . . , Rn), . . . , ϕn(R1, . . . , Rn)) is a correct formula. Then for each

i ∈ [1, n] there exist CALC formulas ϕ′i(Q) and tuples !ei of variables or constants such

that for each i,

µR1,...,Rn(ϕ1(R1, . . . , Rn), . . . , ϕn(R1, . . . , Rn))(Ri)≡ µQ(ϕ
′
i(Q))( !ei).

Crux We illustrate the construction with reference to the query of Example 14.2.4. In-

stead of using two relations Off and T , we use a ternary relation Q that encodes both Off

and T . The extra coordinate is used to distinguish between tuples in T and tuples in Off .

A tuple 〈x〉 in Off is encoded as a tuple 〈x, 1, 1〉 in Q. A tuple 〈x, y〉 in T is encoded as a

tuple 〈x, y, 0〉 in Q. The final result is obtained by selecting from Q the tuples where the

third coordinate is 0 and projecting the result on the first two coordinates.

Note that the use of the tuples !ei allows one to perform appropriate selections and

projections on µQ(ϕ
′
i(Q)) necessary for decoding. These selections and projections are

essential and cannot be avoided (see Exercise 14.17c).

Inflationary Fixpoint

The nonconvergence in some cases of the sequence {Jn}n≥0 in the semantics of the par-

tial fixpoint operator is similar to nonterminating computations in the while language with

noninflationary semantics. The semantics of the partial fixpoint operator µ is essentially

noninflationary because in the inductive definition of Jn, each step is a destructive assign-

ment. As with while, we can make the semantics inflationary by having the assignment at

each step of the induction be cumulative. This yields an inflationary version of µ, denoted

by µ+ and called the inflationary fixpoint operator, which is defined for all formulas and

databases to which it is applied.
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Inflationary Fixpoint Operators and Logic The definition of µ+
T (ϕ(T )) is identical to

that of the partial fixpoint operator except that the sequence {Jn}n≥0 is defined as follows:

J0 = ∅;

Jn = Jn−1 ∪ ϕ(Jn−1), n > 0.

This definition ensures that the sequence {Jn}n≥0 is increasing: Ji−1 ⊆ Ji for each i > 0.

Because for each instance there are finitely many tuples that can be added, the sequence

converges in all cases.

Adding µ+ instead of µ to CALC yields inflationary fixpoint logic, denoted by

CALC+µ+. Note that inflationary fixpoint queries are always defined.

The set of queries expressible by inflationary fixpoint logic is called the fixpoint

queries. The fixpoint queries were historically defined first among the inflationary lan-

guages in the algebraic, logic, and deductive paradigms. Therefore the class of queries

expressible in inflationary languages in the three paradigms has come to be referred to as

the fixpoint queries.

As a simple example, the transitive closure of a graph G is defined by the following

CALC+µ+ query:

{〈x, y〉 | µ+
T (G(x, y) ∨ ∃z(T (x, z) ∧G(z, y))(x, y)}.

Recall that datalog as presented in Chapter 12 uses an inflationary operator and yields

the minimal fixpoint of a set of rules. One may also be tempted to assume that an inflation-

ary simultaneous induction of the form µ+
P,Q(ϕ(P,Q),ψ(P,Q)) is equivalent to a system

of equational definitions of the form

P = ϕ(P,Q)

Q= ψ(P,Q)

and that it computes the unique minimal fixpoint for P and Q. However, one should

be careful because the result of the inflationary fixpoint computation is only one of the

possible fixpoints. As illustrated in the following example, this may not be minimal or

the “naturally” expected fixpoint. (There may not exist a unique minimal fixpoint; see

Exercise 14.4.)

Example 14.2.6 Consider the equation

T (x, y) =G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))

CT (x, y)=¬T (x, y).

One is tempted to believe that the fixpoint of these two equations yields the complement of

transitive closure. However, with the inflationary semantics
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J0(T ) = ∅

J0(CT )= ∅

Jn(T ) = Jn−1(T ) ∪ {〈x, y〉 |G(x, y) ∨ Jn−1(T )(x, y)

∨ ∃z(Jn−1(T )(x, z) ∧G(z, y))}

Jn(CT )= Jn−1(CT ) ∪ {〈x, y〉 | ¬Jn−1(T )(x, y)}

leads to saturating CT at the first iteration.

Positive and Monotone Formulas

Making the fixpoint operator inflationary by definition is not the only way to guarantee

polynomial-time termination of the fixpoint iteration. An alternative approach is to restrict

the formulas ϕ(T ) so that convergence of the sequence {Jn}n≥0 associated with µT (ϕ(T ))

is guaranteed. One such restriction is monotonicity. Recall that a query q is monotone if

for each I, J, I ⊆ J then q(I)⊆ q(J). One can again show that for such formulas, a least

fixpoint always exists and that it is obtained after a finite (but unbounded) number of stages

of inductive applications of the formula.

Unfortunately, monotonicity is an undecidable property for CALC. One can also re-

strict the application of fixpoint to positive formulas. This was historically the first track

that was followed and presents the advantage that positiveness is a decidable (syntactic)

property. It is done by requiring that T occur only positively in ϕ(T ) (i.e., under an even

number of negations in the syntax tree of the formula). All formulas thereby obtained are

monotone, and so µT (ϕ(T )) is always defined (see Exercise 14.10).

It can be shown that the approach of inflationary fixpoint and the two approaches

based on fixpoint of positive or monotone formulas are equivalent (i.e., the sets of queries

expressed are identical; see Exercise 14.10).

Fixpoint Operators and Circumscription

In some sense, the fixpoint operators act as quantifiers on relational variables. This is some-

what similar to the well-known technique of circumscription studied in artificial intelli-

gence. Suppose ψ(T ) is a calculus sentence (i.e., no free variables) that uses T in addition

to relations from a database schema R. The circumscription of ψ(T ) with respect to T ,

denoted here by circT (ψ(T )), can be thought of as an operator defining a new relation,

starting from the database. More precisely, let I be an instance over R. Then circT (ψ(T ))

denotes the relation containing all tuples belonging to every relation T such that (1) ψ(T )

holds for I, and (2) T is minimal under set inclusion2 with this property. Consider now a

fixpoint query. As stated earlier, fixpoint queries can be expressed using just fixpoint op-

erators µT applied to formulas positive in T (i.e., T always appears in ϕ under an even

number of negations). We claim that µT (ϕ(T ))= circT (ϕ
′(T )), where ϕ′(T ) is a sentence

2 Other kinds of minimality have also been considered.
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obtained from ϕ(T ) as follows:

ϕ′(T )= ∀x1, . . .∀xn(ϕ(T , x1, . . . , xn)→ T (x1, . . . , xn)),

where the arity of T is n. To see this, it is sufficient to note that µT (ϕ(T )) is the unique

minimal T satisfying ϕ′(T ). This uses the monotonicity of ϕ(T ) with respect to T , which

follows from the fact that ϕ(T ) is positive in T (see Exercise 14.10). Although computing

with circumscription is generally intractable, the fixpoint operator on positive formulas

can always be evaluated in polynomial time. Thus the fixpoint operator can be viewed as a

tractable restriction of circumscription.

14.3 Datalog with Negation

Datalog provides recursion but no negation. It defines only monotonic queries. Viewed

from the standpoint of the deductive paradigm, datalog provides a form of monotonic

reasoning. Adding negation to datalog rules permits the specification of nonmonotonic

queries and hence of nonmonotonic reasoning.

Adding negation to datalog rules requires defining semantics for negative facts. This

can be done in many ways. The different definitions depend to some extent on whether da-

talog is viewed in the deductive framework or simply as a specification formalism like any

other query language. In this chapter, we examine the latter point of view. Then datalog

with negation can essentially be viewed as a subset of the while or fixpoint queries and

can be treated similarly. This is not necessarily appropriate in the deductive framework.

For instance, the basic assumptions in the reasoning process may require that once a fact is

assumed false at some point in the inferencing process, it should not be proven true at a later

point. This idea lies at the core of stratified and well-founded semantics, two of the most

widely accepted in the deductive framework. The deductive point of view is considered in

depth in Chapter 15.

The semantics given here for datalog with negation follows the semantics given in

Chapter 12 for datalog, but does not correspond directly to the semantics for nonrecursive

datalog¬ given in Chapter 5. The semantics in Chapter 5 is inspired by the stratified

semantics but can be simulated by (either of) the semantics presented in this chapter.

As in the previous section, we consider both inflationary and noninflationary versions

of datalog with negation.

Inflationary Semantics

The inflationary language allows negations in bodies of rules and is denoted by datalog¬.

Like datalog, its rules are used to infer a set of facts. Once a fact is inferred, it is never

removed from the set of true facts. This yields the inflationary character of the language.

Example 14.3.1 We present a datalog¬ program with input a graph in binary re-

lation G. The program computes the relation closer(x, y, x′, y′) defined as follows:
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closer(x, y, x′, y′) means that the distance d(x, y) from x to y in G is smaller than the

distance d(x′, y′) from x′ to y′ [d(x, y) is infinite if there is no path from x to y].

T (x, y) ←G(x, y)

T (x, y) ← T (x, z),G(z, y)

closer(x, y, x′, y′)← T (x, y),¬T (x′, y′)

The program is evaluated as follows. The rules are fired simultaneously with all applicable

valuations. At each such firing, some facts are inferred. This is repeated until no new facts

can be inferred. A negative fact such as ¬T (x′, y′) is true if T (x′, y′) has not been inferred

so far. This does not preclude T (x′, y′) from being inferred at a later firing of the rules.

One firing of the rules is called a stage in the evaluation of the program. In the preceding

program, the transitive closure of G is computed in T . Consider the consecutive stages

in the evaluation of the program. Note that if the fact T (x, y) is inferred at stage n, then

d(x, y)= n. So if T (x′, y′) has not been inferred yet, this means that the distance between

x and y is less than that between x′ and y′. Thus if T (x, y) and ¬T (x′, y′) hold at some

stage n, then d(x, y)≤ n and d(x′, y′) > n and closer(x, y, x′, y′) is inferred.

The formal syntax and semantics of datalog¬ are straightforward extensions of those

for datalog. A datalog¬ rule is an expression of the form

A← L1, . . . , Ln,

where A is an atom and each Li is either an atom Bi (in which case it is called positive) or

a negated atom ¬Bi (in which case it is called negative). (In this chapter we use an active

domain semantics for evaluating datalog¬ and so do not require that the rules be range

restricted; see Exercise 14.13.)

A datalog¬ program is a nonempty finite set of datalog¬ rules. As for datalog pro-

grams, sch(P ) denotes the database schema consisting of all relations involved in the pro-

gram P ; the relations occurring in heads of rules are the idb relations of P , and the others

are the edb relations of P .

The semantics of datalog¬ that we present in this chapter is an extension of the fixpoint

semantics of datalog. Let K be an instance over sch(P ). Recall that an (active domain)

instantiation of a rule A← L1, . . . , Ln is a rule ν(A)← ν(L1), . . . , ν(Ln), where ν is a

valuation that maps each variable into adom(P,K). A factA′ is an immediate consequence

for K and P if A′ ∈ K(R) for some edb relation R, or A′ ← L′
1, . . . , L

′
n is an instantiation

of a rule in P and each positive L′
i is a fact in K, and for each negative L′

i = ¬A′
i, A

′
i �∈

K. The immediate consequence operator of P , denoted ŴP , is now defined as follows. For

each K over sch(P ),

ŴP (K)= K ∪ {A | A is an immediate consequence for K and P }.

Given an instance I over edb(P ), one can compute ŴP (I), Ŵ
2
P (I), Ŵ

3
P (I), etc. As suggested

in Example 14.3.1, each application of ŴP is called a stage in the evaluation. From the
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definition of ŴP , it follows that

ŴP (I)⊆ Ŵ2
P (I)⊆ Ŵ3

P (I)⊆ . . . .

As for datalog, the sequence reaches a fixpoint, denoted Ŵ∞
P (I), after a finite number of

steps. The restriction of this to the idb relations (or some subset thereof) is called the image

(or answer) of P on I.

An important difference with datalog is that Ŵ∞
P (I) is no longer guaranteed to be a

minimal model of P containing I, as illustrated next.

Example 14.3.2 Let P be the program

R(0)←Q(0),¬R(1)

R(1)←Q(0),¬R(0).

Let I = {Q(0)}. Then P(I)= {Q(0), R(0), R(1)}. Although P(I) is a model of P , it is not

minimal. The minimal models containing I are {Q(0), R(0)} and {Q(0), R(1)}.

As discussed in Chapter 12, the operational semantics of datalog based on the im-

mediate consequence operator is equivalent to the natural semantics based on minimal

models. As shown in the preceding example, there may not be a unique minimal model for

a datalog¬ program, and the semantics given for datalog¬ may not yield any of the minimal

models. The development of a natural model-theoretic semantics for datalog¬ thus calls for

selecting a natural model from among several possible candidates. Inevitably, such choices

are open to debate; Chapter 15 presents several alternatives.

Noninflationary Semantics

The language datalog¬ has inflationary semantics because the set of facts inferred through

the consecutive firings of the rules is increasing. To obtain a noninflationary variant, there

are several possibilities. One could keep the syntax of datalog¬ but make the seman-

tics noninflationary by retaining, at each stage, only the newly inferred facts (see Exer-

cise 14.16). Another possibility is to allow explicit retraction of a previously inferred fact.

Syntactically, this can be done using negations in heads of rules, interpreted as deletions

of facts. We adopt this solution here, in part because it brings our language closer to some

practical languages that use so-called (production) rules in the sense of expert and active

database systems. The resulting language is denoted by datalog¬¬, to indicate that nega-

tions are allowed in both heads and bodies of rules.

Example 14.3.3 (Add-Remove Visited Again) The following datalog¬¬ program

computes in T the Add-Remove query of Example 14.1.2, given as input a graph G.



358 Recursion and Negation

T (x, y) ←G(x, y),¬off (1)

off (1) ←

¬T (x, y)← T (x, z), T (z, y), off (1)

T (x, y) ←¬T (x, z),¬T (z, x),¬T (y, z),¬T (z, y), off (1)

Relation off is used to inhibit the first rule (initializing T to G) after the first step.

The immediate consequence operator ŴP and semantics of a datalog¬¬ program are

analogous to those for datalog¬, with the following important proviso. If a negative literal

¬A is inferred, the fact A is removed, unless A is also inferred in the same firing of

the rules. This gives priority to inference of positive over negative facts and is somewhat

arbitrary. Other possibilities are as follows: (1) Give priority to negative facts; (2) interpret

the simultaneous inference of A and ¬A as a “no-op” (i.e., including A in the new instance

only if it is there in the old one); and (3) interpret the simultaneous inference of A and

¬A as a contradiction that makes the result undefined. The chosen semantics has the

advantage over possibility (3) that the semantics is always defined. In any case, the choice

of semantics is not crucial: They yield equivalent languages (see Exercise 14.15).

With the semantics chosen previously, termination is no longer guaranteed. For in-

stance, the program

T (0) ← T (1)

¬T (1)← T (1)

T (1) ← T (0)

¬T (0)← T (0)

never terminates on input T (0). The value of T flip-flops between {〈0〉} and {〈1〉}, so no

fixpoint is reached.

Datalog¬¬ and Datalog¬ as Fragments of CALC+µ and CALC+µ+

Consider datalog¬¬. It can be viewed as a subset of CALC+µ in the following manner.

Suppose thatP is a datalog¬¬ program. The idb relations defined by rules can alternately be

defined by simultaneous induction using formulas that correspond to the rules. Each firing

of the rules corresponds to one step in the simultaneous inductive definition. For instance,

the simultaneous induction definition corresponding to the program in Example 14.3.3 is

the one in Example 14.2.4. Because simultaneous induction can be simulated in CALC+µ

(see Lemma 14.2.5), datalog¬¬ can be simulated in CALC+µ. Moreover, notice that only a

single application of the fixpoint operator is used in the simulation. Similar remarks apply

to datalog¬ and CALC+µ+. Furthermore, in the inflationary case it is easy to see that the

formula can be chosen to be existential (i.e., its prenex normal form3 uses only existential

3 A CALC formula in prenex normal form is a formula Q1x1 . . .Qkxkϕ where Qi, 1 ≤ i ≤ k are
quantifiers and ϕ is quantifier free.
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quantifiers). The same can be shown in the noninflationary case, although the proof is more

subtle. In summary (see Exercise 14.18), the following applies:

Lemma 14.3.4 Each datalog¬¬ (datalog¬) query is equivalent to a CALC+µ (CALC+µ+)

query of the form

{ !x | µ(+)T (ϕ(T ))(!t)},

where

(a) ϕ is an existential CALC formula, and

(b) !t is a tuple of variables or constants of appropriate arity and !x is the tuple of

distinct free variables in !t .

The Rule Algebra

The examples of datalog¬ programs shown in this chapter make it clear that the semantics

of such programs is not always easy to understand. There is a simple mechanism that

facilitates the specification by the user of various customized semantics. This is done by

means of the rule algebra, which allows specification of an order of firing of the rules

as well as firing up to a fixpoint in an inflationary or noninflationary manner. For the

inflationary version RA+ of the rule algebra, the base expressions are individual datalog¬

rules; the semantics associated with a rule is to apply its immediate consequence operator

once in a cumulative fashion. Union (∪) can be used to specify simultaneous application of

a pair of rules or more complex programs. The expression P ;Q specifies the composition

of P and Q; its semantics is to execute P once and then Q once. Inflationary iteration of

program P is called for by (P )+. The noninflationary version of the rule algebra, denoted

RA, starts with datalog¬ rules, but now with a noninflationary, destructive semantics, as

defined in Exercise 14.16. Union and composition are generalized in the natural fashion,

and the noninflationary iterator, denoted ∗, is used.

Example 14.3.5 Let P be the set of rules

T (x, y)←G(x, y)

T (x, y)← T (x, z),G(z, y)

and let Q consist of the rule

CT (x, y)←¬T (x, y).

TheRA+ program (P )+;Q computes inCT the complement of the transitive closure ofG.

It follows easily from the results of Section 14.4 that RA+ is equivalent to datalog¬,

and RA is equivalent to noninflationary datalog¬ and hence to datalog¬¬ (Exercise 14.23).

Thus an RA+ program can be compiled into a (possibly much more complicated) datalog¬
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program. For instance, the RA+ program in Example 14.3.5 is equivalent to the datalog¬

program in Example 14.4.2. The advantage of the rule algebra is the ease of expressing

various semantics. In particular, RA+ can be used easily to specify the stratified and well-

founded semantics for datalog¬ introduced in Chapter 15.

14.4 Equivalence

The previous sections introduced inflationary and noninflationary recursive languages with

negation in the algebraic, logic, and deductive paradigms. This section shows that the infla-

tionary languages in the three paradigms, while+, CALC+µ+, and datalog¬, are equivalent

and that the same holds for the noninflationary languages while, CALC+µ, and datalog¬¬.

This yields two classes of queries that are central in the theory of query languages: the fix-

point queries (expressed by the inflationary languages) and the while queries (expressed by

the noninflationary languages). This is summarized in Fig. 14.2, at the end of the chapter.

We begin with the equivalence of the inflationary languages because it is the more

difficult to show. The equivalence of CALC+µ+ and while+ is easy because the languages

have similar capabilities: Program composition in while+ corresponds closely to formula

composition in CALC+µ+, and the while change loop of while+ is close to the inflationary

fixpoint operator of CALC+µ+. More difficult and surprising is the equivalence of these

languages with datalog¬, because this much simpler language has no explicit constructs

for program composition or nested recursion.

Lemma 14.4.1 CALC+µ+ and while+ are equivalent.

Proof We consider first the simulation of CALC+µ+ queries by while+. Let {〈x1,. . . ,xm〉 |
ξ(x1,. . . ,xm)} be a CALC+µ+ query over an input database with schema R. It suffices to

show that there exists a while+ program Pξ that defines the same result as ξ(x1, . . . , xm) in

some m-ary relation Rξ . The proof is by induction on the depth of nesting of the fixpoint

operator in ξ , denoted d(ξ). If d(ξ)= 0 (i.e., ξ does not contain a fixpoint operator), then

ξ is in CALC and Pξ is

Rξ += Eξ ,

where Eξ is the relational algebra expression corresponding to ξ . Now suppose the state-

ment is true for formulas with depth of nesting of the fixpoint operator less than d(d > 0).

Let ξ be a formula with d(ξ)= d .

If ξ = µQ(ϕ(Q))(f1, . . . , fk), then Pξ is

Q += ∅;

while change do

begin

Eϕ;

Q += Rϕ
end;

Rξ += π(σ(Q)),
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where π(σ(Q)) denotes the selection and projection corresponding to f1, . . . , fk.

Suppose now that ξ is obtained by first-order operations from k formulas ξ1, . . . , ξk,

each having µ+ as root. Let Eξ(Rξ1, . . . , Rξk) be the relational algebra expression corre-

sponding to ξ , where each subformula ξi = µQ(ϕ(Q))(e
i
1, . . . , e

i
ni
) is replaced by Rξi . For

each i, let Pξi be a program that produces the value of µQ(ϕ(Q))(e
i
1, . . . , e

i
ni
) and places

it into Rξi . Then Pξ is

Pξ1; . . . ; Pξk;

Rξ += Eξ(Rξ1, . . . , Rξk).

This completes the induction and the proof that CALC+µ+ can be simulated by while+.

The converse simulation is similar (Exercise 14.20).

We now turn to the equivalence of CALC+µ+ and datalog¬. Lemma 14.3.4 yields the

subsumption of datalog¬ by CALC+µ+. For the other direction, we simulate CALC+µ+

queries using datalog¬. This simulation presents two main difficulties.

The first involves delaying the firing of a rule until after the completion of a fixpoint

by another set of rules. Intuitively, this is hard because checking that the fixpoint has been

reached involves checking the nonexistence rather than the existence of some valuation,

and datalog¬ is more naturally geared toward checking the existence of valuations. The

solution to this difficulty is illustrated in the following example.

Example 14.4.2 The following datalog¬ program computes the complement of the tran-

sitive closure of a graph G. The example illustrates the technique used to delay the firing

of a rule (computing the complement) until the fixpoint of a set of rules (computing the

transitive closure) has been reached (i.e., until the application of the transitivity rule yields

no new tuples). To monitor this, the relations old-T , old-T -except-final are used. old-T

follows the computation of T but is one step behind it. The relation old-T -except-final

is identical to old-T but the rule defining it includes a clause that prevents it from firing

when T has reached its last iteration. Thus old-T and old-T -except-final differ only in the

iteration after the transitive closure T reaches its final value. In the subsequent iteration,

the program recognizes that the fixpoint has been reached and fires the rule computing the

complement in relation CT . The program is

T (x, y) ←G(x, y)

T (x, y) ←G(x, z), T (z, y)

old-T (x, y) ← T (x, y)

old-T -except-final(x, y)← T (x, y), T (x′, z′), T (z′, y′),¬T (x′, y′)

CT (x, y) ←¬T (x, y), old-T (x′, y′),

¬old-T -except-final(x′, y′)

(It is assumed that G is not empty; see Exercise 14.3.)
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The second difficulty concerns keeping track of iterations in the computation of a

fixpoint. Given a formula µ+
T (ϕ(T )), the simulation of ϕ itself may involve numerous re-

lations other than T , whose behavior may be “sabotaged” by an overly zealous application

of iteration of the immediate consequence operator. To overcome this, we separate the in-

ternal computation of ϕ from the external iteration over T , as illustrated in the following

example.

Example 14.4.3 Let G be a binary relation schema. Consider the CALC+µ+ query

µ+
good(φ(good))(x), where

φ = ∀y (G(y, x)→ good(y)).

Note that the query computes the set of nodes in G that are not reachable from a cycle

(in other words, the nodes such that the length of paths leading to them is bounded). One

application of ϕ(good) is achieved by the datalog¬ program P :

bad(x) ←G(y, x),¬good(y)

delay ←

good(x)← delay,¬bad(x)

Simply iterating P does not yield the desired result. Intuitively, the relations delay and bad,

which are used as “scratch paper” in the computation of a single iteration of µ+, cannot be

reinitialized and so cannot be reused to perform the computation of subsequent iterations.

To surmount this problem, we essentially create a version of P for each iteration of

ϕ(good). The versions are distinguished by using “timestamps.” The nodes themselves

serve as timestamps. The timestamps marking iteration i are the values newly introduced

in relation good at iteration i − 1. Relations delay and delay-stamped are used to delay

the derivation of new tuples in good until bad and bad-stamped (respectively) have been

computed in the current iteration. The process continues until no new values are introduced

in an iteration. The full program is the union of the three rules given earlier, which perform

the first iteration, and the following rules, which perform the iteration with timestamp t :

bad-stamped(x, t)←G(y, x),¬good(y), good(t)

delay-stamped(t) ← good(t)

good(x) ← delay-stamped(t),¬bad-stamped(x, t).

We now embark on the formal demonstration that datalog¬ can simulate CALC+µ+.

We first introduce some notation relating to the timestamping of a program in the sim-

ulation. Let m ≥ 1. For each relation schema Q, let Q be a new relational schema with

arity(Q)= arity(Q)+m. If (¬)Q(e1, . . . , en) is a literal and !z an m-tuple of distinct vari-

ables, then (¬)Q(e1, . . . , en)[!z] denotes the literal (¬)Q(e1, . . . , en, z1, . . . , zm). For each

program P and tuple !z, P [!z] denotes the program obtained from P by replacing each literal

A by A[!z]. Let P be a program and B1, . . . , Bq a list of literals. Then P // B1, . . . , Bq is

the program obtained by appending B1, . . . , Bq to the bodies of all rules in P .
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To illustrate the previous notation, consider the program P consisting of the following

two rules:

S(x, y)← R(x, y)

S(x, y)← R(x, z), S(z, y).

Then P [z] // ¬T (x,w, y) is

S(x, y, z)← R(x, y, z),¬T (x,w, y)

S(x, y, z)← R(x, z, z), S(z, y, z),¬T (x,w, y).

Lemma 14.4.4 CALC+µ+ and datalog¬ are equivalent.

Proof As seen in Lemma 14.3.4, datalog¬ is essentially a fragment of CALC+µ+, so

we just need to show the simulation of CALC+µ+ by datalog¬. The proof is by structural

induction on the CALC+µ+ formula. The core of the proof involves a control mechanism

that delays firing certain rules until other rules have been evaluated. Therefore the induction

hypothesis involves the capability to simulate the CALC+µ+ formula using a datalog¬

program as well as to produce concomitantly a predicate that only becomes true when the

simulation has been completed. More precisely, we will prove by induction the following:

For each CALC+µ+ formula ϕ over a database schema R, there exists a datalog¬ program

prog(ϕ) whose edb relations are the relations in R, whose idb relations include resultϕ
with arity equal to the number of free variables in ϕ and a 0-ary relation doneϕ such that

for every instance I over R,

(i) [prog(ϕ)(I)](resultϕ)= ϕ(I), and

(ii) the 0-ary predicate doneϕ becomes true at the last stage in the evaluation of

prog(ϕ) on I.

We will assume, without loss of generality, that no variable of ϕ occurs free and bound,

or bound to more than one quantifier, that ϕ contains no ∀ or ∨, and that the initial query

has the form {x1, . . . , xn | ξ}, where x1, . . . , xn are distinct variables. Note that the last

assumption implies that (i) establishes the desired result.

Suppose now that ϕ is an atom R(!e). Let !x be the tuple of distinct variables occurring

in !e. Then prog(ϕ) consists of the rules

doneϕ ←

resultϕ(!x)← R(!e).

There are four cases to consider for the induction step.

1. ϕ = α ∧ β. Without loss of generality, we assume that the idb relations of

prog(α) and prog(β) are disjoint. Thus there is no interference between prog(α)

and prog(β). Let !x and !y be the tuples of distinct free variables of α and β, re-

spectively, and let !z be the tuple of distinct free variables occurring in !x or !y.
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Then prog(ϕ) consists of the following rules:

prog(α)

prog(β)

resultϕ(!z)← doneα, doneβ, resultα(!x), resultβ(!y)

doneϕ ← doneα, doneβ.

2. ϕ = ∃ x(ψ). Let !y be the tuple of distinct free variables of ψ , and let !z be the tuple

obtained from !y by removing the variable x. Then prog(ϕ) consists of the rules

prog(ψ)

resultϕ(!z)← doneψ, resultψ(!y)

doneϕ ← doneψ .

3. ϕ = ¬(ψ). Let !x be the tuple of distinct free variables occurring in ψ . Then

prog(ϕ) consists of

prog(ψ)

resultϕ(!x)← doneψ,¬resultψ(!x)

doneϕ ← doneψ .

4. ϕ = µS(ψ(S))(!e). This case is the most involved, because it requires keeping

track of the iterations in the computation of the fixpoint as well as bookkeeping

to control the value of the special predicate doneϕ. Intuitively, each iteration

is marked by timestamps. The current timestamps consist of the tuples newly

inserted in the previous iteration. The program prog(ϕ) uses the following new

auxiliary relations:

Relation fixpointϕ contains µS(ψ(S)) at the end of the computation, and

resultϕ contains µS(ψ(S))(!e).
Relation runϕ contains the timestamps.

Relation usedϕ contains the timestamps introduced in the previous stages

of the iteration. The active timestamps are in runϕ − usedϕ.

Relation not-finalϕ is used to detect the final iteration (i.e., the iteration that

adds no new tuples to fixpointϕ). The presence of a timestamp in usedϕ −
not-finalϕ indicates that the final iteration has been completed.

Relations delayϕ and not-emptyϕ are used for timing and to detect an empty

result.

In the following, !y and !t are tuples of distinct variables with the same arity as S. We

first have particular rules to perform the first iteration and to handle the special case of an

empty result:
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prog(ψ)

fixpointϕ(!y)← resultψ(!y), doneψ

delayϕ ← doneψ

not-emptyϕ ← resultψ(!y)

doneϕ ← delayϕ,¬not-emptyϕ.

The remainder of the program contains the following rules:

• Stamping of the database and starting an iteration: For each R in ψ different from S

and a tuple !x of distinct variables with same arity as R,

R(!x,!t)← R(!x), fixpointϕ(!t)

runϕ(!t)← fixpointϕ(!t)

S(!y,!t)← fixpointϕ(!y), fixpointϕ(!t).

• Timestamped iteration:

prog(ψ)[!t]//runϕ(!t),¬usedϕ(!t)

• Maintain fixpointϕ, not-lastϕ, and usedϕ:

fixpointϕ(!y) ← doneψ(!t), resultψ(!y,!t),¬usedϕ(!t)

not-finalϕ(!t)← doneψ(!t), resultψ(!y,!t),¬fixpointϕ(!y)

usedϕ(!t) ← doneψ(!t)

• Produce the result and detect termination:

resultϕ(!z)← fixpointϕ(!e)

where !z is the tuple of distinct variables in !e,

doneϕ ← usedϕ(!t),¬not-finalϕ(!t).

It is easily verified by inspection that prog(ϕ) satisfies (i) and (ii) under the induction

hypothesis for cases (1) through (3). To see that (i) and (ii) hold in case (4), we carefully

consider the stages in the evaluation of progϕ. Let I be an instance over the relations

in ψ other than S; let J0 = ∅ be over S; and let Ji = Ji−1 ∪ ψ(Ji−1) for each i > 0.

Then µS(ψ(S))(I)= Jn for some n such that Jn = Jn−1. The program progϕ simulates the

consecutive iterations of this process. The first iteration is simulated using progψ directly,

whereas the subsequent iterations are simulated by progψ timestamped with the tuples

added at the previous iteration. (We omit consideration of the case in which the fixpoint

is ∅; this is taken care of by the rules involving delayϕ and not-emptyϕ.)
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We focus on the stages in the evaluation of progϕ corresponding to the end of the

simulation of each iteration of ψ . The stage in which the simulation of the first iteration

is completed immediately follows the stage in which doneψ becomes true. The subsequent

iterations are completed immediately following the stages in which

∃!t(doneψ(!t) ∧ ¬usedϕ(!t))

becomes true. Thus let k1 be the stage in which doneψ becomes true, and let ki (2 < i ≤ n)

be the successive stages in which

∃!t(doneψ(!t) ∧ ¬usedϕ(!t))

is true. First note that

• at stage k1

{!y | resultψ(!y)} = ψ(J0);

• at stage k1 + 1

fixpointϕ = J1.

For i > 1 it can be shown by induction on i that

• at stage ki (i ≤ n)

{ !t | doneψ(!t) ∧ ¬usedϕ(!t)} = ψ(Ji−2)− Ji−2 = Ji−1 − Ji−2

{ !y | doneψ(!t) ∧ resultψ(!y,!t) ∧ ¬usedϕ(!t)} = ψ(Ji−1);

{ !t | doneψ(!t) ∧ resultψ(!y,!t) ∧ ¬fixpointϕ(!y)} = ψ(Ji−1)− Ji−1 = Ji − Ji−1;

• at stage ki + 1 (i < n)

fixpointϕ = Ji−1 ∪ ψ(Ji−1)= Ji,

usedϕ = not-lastϕ = doneψ = Ji−1;

• at stage ki + 2 (i < n)

{ !t | runϕ(!t) ∧ ¬usedϕ(!t)} = Ji − Ji−1,

{ !x | R(!x,!t) ∧ runϕ(!t) ∧ ¬usedϕ(!t)} = I(R),

{ !x | S(!x,!t) ∧ runϕ(!t) ∧ ¬usedϕ(!t)} = Ji.

Finally, at stage kn + 1

usedϕ = Jn−1,
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not-lastϕ = Jn−2,

fixpointϕ = Jn = µS(ψ(S))(I),

and at stage kn + 2

resultϕ = µS(ψ(S))(!z)(I),

doneϕ = true.

Thus (i) and (ii) hold for progϕ in case (4), which concludes the induction.

Lemmas 14.4.1 and 14.4.4 now yield the following:

Theorem 14.4.5 while+, CALC+µ+, and datalog¬ are equivalent.

The set of queries expressible in while+, CALC+µ+, and datalog¬ is called the fixpoint

queries. An analogous equivalence result can be proven for the noninflationary languages

while, CALC+µ, and datalog¬¬. The proof of the equivalence of CALC+µ and datalog¬¬

is easier than in the inflationary case because the ability to perform deletions in datalog¬¬

facilitates the task of simulating explicit control (see Exercise 14.21). Thus we can prove

the following:

Theorem 14.4.6 while, CALC+µ, and datalog¬¬ are equivalent.

The set of queries expressible in while, CALC+µ, and datalog¬¬ is called the while

queries. We will look at the fixpoint queries and the while queries from a complexity

and expressiveness standpoint in Chapter 17. Although the spirit of our discussion in this

chapter suggested that fixpoint and while are distinct classes of queries, this is far from

obvious. In fact, the question remains open: As shown in Chapter 17, fixpoint and while

are equivalent iff ptime = pspace (Theorem 17.4.3).

The equivalences among languages discussed in this chapter are summarized in

Fig. 14.2.

Normal Forms

The two equivalence theorems just presented have interesting consequences for the under-

lying extensions of datalog and logic. First they show that these languages are closed under

composition and complementation. For instance, if two mappings f, g, respectively, from

a schema S to a schema S′ and from S′ to a schema S′′ are expressible in datalog¬(¬),

then f ◦ g and ¬f are also expressible in datalog¬(¬). Analogous results are true for

CALC+µ(+).

A more dramatic consequence concerns the nesting of recursion in the calculus and

algebra. Consider first CALC+µ+. By the equivalence theorems, this is equivalent to

datalog¬, which, in turn (by Lemma 14.3.4), is essentially a fragment of CALC+µ+.

This yields a normal form for CALC+µ+ queries and implies that a single application of
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Languages Class of queries

while+

inflationary CALC +µ+ fixpoint

datalog¬

while

noninflationary CALC +µ while

datalog¬¬

Figure 14.2: Summary of language equivalence results

the inflationary fixpoint operator is all that is needed. Similar remarks apply to CALC+µ

queries. In summary, the following applies:

Theorem 14.4.7 Each CALC+µ(+) query is equivalent to a CALC+µ(+) query of the

form

{ !x | µ(+)T (ϕ(T ))(!t)},

where ϕ is an existential CALC formula.

Analogous normal forms can be shown for while(+) (Exercise 14.22) and for RA(+)

(Exercise 14.24).

14.5 Recursion in Practical Languages

To date, there are numerous prototypes (but no commercial product) that provide query and

update languages with recursion. Many of these languages provide semantics for recursion

in the spirit of the procedural semantics described in this chapter. Prototypes implementing

the deductive paradigm are discussed in Chapter 15.

SQL 2-3 (a norm provided by ISO/ANSII) allows select statements that define a table

used recursively in the from and where clauses. Such recursion is also allowed in Starburst.

The semantics of the recursion is inflationary, although noninflationary semantics can be

achieved using deletion. An extension of SQL 2-3 is ESQL (Extended SQL). To illustrate

the flavor of the syntax (which is typical for this category of languages), the following

is an ESQL program defining a table SPARTS (subparts), the transitive closure of the

table PARTS. This is done using a view creation mechanism.

create view SPARTS as

select *

from PARTS

union
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select P1.PART, P2.COMPONENT

from SPARTS P1, PARTS P2

where P1.COMPONENT = P2.PART ;

This is in the spirit of CALC+µ+. With deletion, one can simulate CALC+µ. The system

Postgres also provides similar iteration up to a fixpoint in its query language POSTQUEL.

A form of recursion closer to while and while+ is provided by SQL embedded in full

programming languages, such as C+SQL, which allows SQL statements coupled with C

programs. The recursion is provided by while loops in the host language.

The recursion provided by datalog¬ and datalog¬¬ is close in spirit to production-rule

systems. Speaking loosely, a production rule has the form

if 〈condition〉 then 〈action〉.

Production rules permit the specification of database updates, whereas deductive rules usu-

ally support only database queries (with some notable exceptions). Note that the deletion in

datalog¬¬ can be viewed as providing an update capability. The production-rule approach

has been studied widely in connection with expert systems in artificial intelligence; OPS5

is a well-known system that uses this approach.

A feature similar to recursive rules is found in the emerging field of active databases.

In active databases, the rule condition is often broken into two pieces; one piece, called the

trigger, is usually closely tied to the database (e.g., based on insertions to or deletions from

relations) and can be implemented deep in the system.

In active database systems, rules are recursively fired when conditions become true in

the database. Speaking in broad terms, the noninflationary languages studied in this chapter

can be viewed as an abstraction of this behavior. For example, the database language RDL1

is close in spirit to the language datalog¬¬. (See also Chapter 22 for a discussion of active

databases.)

The language Graphlog, a visual language for queries on graphs developed at the

University of Toronto, emphasizes queries involving paths and provides recursion specified

using regular expressions that describe the shape of desired paths.
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Exercises

Exercise 14.1 (Game of life) Consider the two rules informally described in Example 14.1.

(a) Express the corresponding queries in datalog¬(¬), while(+), and CALC+µ(+).

(b) Find an input for which a vertex keeps changing color forever under the second rule.

Exercise 14.2 Prove that the termination problem for a while program is undecidable (i.e., that
it is undecidable, given a while query, whether it terminates on all inputs). Hint: Use a reduction
of the containment problem for algebra queries.

Exercise 14.3 Recall the datalog¬¬ program of Example 14.4.2.

(a) After how many stages does the program complete for an input graph of diameter n?

(b) Modify the program so that it also handles the case of empty graphs.

(c) Modify the program so that it terminates in order of log(n) stages for an input graph
of diameter n.

Exercise 14.4 Recall the definition of µT (ϕ(T )).

(a) Exhibit a formula ϕ such that ϕ(T ) has a unique minimal fixpoint on all inputs, and
µT (ϕ(T )) terminates on all inputs but does not evaluate to the minimal fixpoint on
any of them.
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(b) Exhibit a formula ϕ such that µT (ϕ(T )) terminates on all inputs but ϕ does not have
a unique minimal fixpoint on any input.

Exercise 14.5

(a) Give a while program with explicit looping condition for the query in Exam-
ple 14.1.2.

(b) Prove that while(+) with looping conditions of the form E = ∅, E �= ∅, E = E′,
and E �= E′, where E,E′ are algebra expressions, is equivalent to while(+) with the
change conditions.

Exercise 14.6 Consider the problem of finding, given two graphs G,G′ over the same vertex
set, the minimum set X of vertexes satisfying the following conditions: (1) For each vertex v,
if all vertexes v′ such that there is a G-edge from v′ to v are in X, then v is in X; and (2) the
analogue for G′-edges. Exhibit a while program and a fixpoint query that compute this set.

Exercise 14.7 Recall the CALC+µ+ query of Example 14.4.3.

(a) Run the query on the input graph G:
{〈a, b〉, 〈c, b〉, 〈b, d〉, 〈d, e〉, 〈e, f 〉, 〈f, g〉, 〈g, d〉, 〈e, h〉, 〈i, j〉, 〈j, h〉}.

(b) Exhibit a while+ program that computes good.

(c) Write a program in your favorite conventional programming language (e.g., C or
LISP) that computes the good vertexes of a graph G. Compare it with the database
queries developed in this chapter.

(d) Show that a vertex a is good if there is no path from a vertex belonging to a cycle to
a. Using this as a starting point, propose an alternative algorithm for computing the
good vertexes. Is your algorithm expressible in while? In fixpoint?

⋆Exercise 14.8 Suppose that the input consists of a graph G together with a successor relation
on the vertexes of G [i.e., a binary relation succ such that (1) each element has exactly one
successor, except for one that has none; and (2) each element in the binary relation G occurs in
succ].

(a) Give a fixpoint query that tests whether the input satisfies (1) and (2).

(b) Sketch a while program computing the set of pairs 〈a, b〉 such that the shortest path
from a to b is a prime number.

(c) Do (b) using a while+ query.

Exercise 14.9 (Simultaneous induction) Prove Lemma 14.2.5.

♠Exercise 14.10 (Fixpoint over positive formulas) Let ϕ(T ) be a formula positive in T (i.e.,
each occurrence of T is under an even number of negations in the syntax tree of ϕ). Let R be
the set of relations other than T occurring in ϕ(T ).

(a) Show that ϕ(T ) is monotonic in T . That is, for all instances I and J over R ∪ {T }
such that I(R) = J(R) and I(T ) ⊆ J(T ),

ϕ(I) ⊆ ϕ(J).

(b) Show that µT (ϕ(T )) is defined on every input instance.

(c) [GS86] Show that the family of CALC+µ queries with fixpoints only over positive
formulas is equivalent to the CALC+µ+ queries.
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⋆Exercise 14.11 Suppose CALC+µ+ is modified so that free variables are allowed under
fixpoint operators. More precisely, let

ϕ(T , x1, . . . , xn, y1, . . . , ym)

be a formula where T has arity n and the xi and yj are free in ϕ. Then

µT ,x1,...,xn(ϕ(T , x1, . . . , xn, y1, . . . , ym))(e1, . . . , en)

is a correct formula, whose free variables are the yj and those occurring among the ei. The
fixpoint is defined with respect to a given valuation of the yj . For instance,

∃z∃w(P (z) ∧ µT ,x,y(ϕ(T , x, y, z))(u,w))

is a well-formed formula. Give a precise definition of the semantics for queries using this
operator. Show that this extension does not yield increased expressive power over CALC+µ+.
Do the same for CALC+µ.

Exercise 14.12 Let G be a graph. Give a fixpoint query in each of the three paradigms that
computes the pairs of vertexes such that the shortest path between them is of even length.

Exercise 14.13 Let datalog
¬(¬)
rr denote the family of datalog¬(¬) programs that are range

restricted, in the sense that for each rule r and each variable x occurring in r , x occurs in a
positive literal in the body of r . Prove that datalog¬rr ≡ datalog¬ and datalog¬¬rr ≡ datalog¬¬.

Exercise 14.14 Show that negations in bodies of rules are redundant in datalog¬¬ (i.e., for
each datalog¬¬ program P there exists an equivalent datalog¬¬ program Q that uses no nega-
tions in bodies of rules). Hint: Maintain the complement of each relation R in a new relation
R′, using deletions.

♠Exercise 14.15 Consider the following semantics for negations in heads of datalog¬¬ rules:

(α) the semantics giving priority to positive over negative facts inferred simultaneously
(adopted in this chapter),

(β) the semantics giving priority to negative over positive facts inferred simultaneously,

(γ ) the semantics in which simultaneous inference of A and ¬A leads to a “no-op” (i.e.,
including A in the new instance only if it is there in the old one), and

(δ) the semantics prohibiting the simultaneous inference of a fact and its negation by
making the result undefined in such circumstances.

For a datalog¬¬ program P , let Pξ , denote the program P with semantics ξ ∈ {α, β, γ, δ}.

(a) Give an example of a program P for which Pα, Pβ , Pγ , and Pδ define distinct queries.

(b) Show that it is undecidable, for a given program P , whether Pδ never simultaneously
infers a positive fact and its negation for any input.

(c) Let datalog¬¬ξ denote the family of queries Pξ for ξ ∈ {α, β, γ }. Prove that data-

log¬¬α ≡ datalog¬¬β ≡ datalog¬¬γ .

(d) Give a syntactic condition on datalog¬¬ programs such that under the δ semantics
they never simultaneously infer a positve fact and its negation, and such that the
resulting query language is equivalent to datalog¬¬α .
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Exercise 14.16 (Noninflationary datalog¬) The semantics of datalog¬ can be made noninfla-
tionary by defining the immediate consequence operator to be destructive in the sense that only
the newly inferred facts are kept after each firing of the rules. Show that, with this semantics,
datalog¬ is equivalent to datalog¬¬.

⋆Exercise 14.17 (Multiple versus single carriers)

(a) Consider a datalog¬ program P producing the answer to a query in an idb relation
S. Prove that there exists a program Q with the same edb relations as P and just one
idb relation T such that, for each edb instance I,

[P(I)](S) = π(σ([Q(I)](T ))),

where σ denotes a selection and π a projection.

(b) Show that the projection π and selection σ in part (a) are indispensable. Hint: Sup-
pose there is a datalog¬ program with a single edb relation computing the comple-
ment of transitive closure of a graph. Reach a contradiction by showing in this case
that connectivity of a graph is expressible in relational calculus. (It is shown in Chap-
ter 17 that connectivity is not expressible in the calculus.)

(c) Show that the projection and selection used in Lemma 14.2.5 are also indispensable.

⋆Exercise 14.18

(a) Prove Lemma 14.3.4 for the inflationary case.

(b) Prove Lemma 14.3.4 for the noninflationary case. Hint: For datalog¬¬, the straight-
forward simulation yields a formula µT (ϕ(T ))(!x), where ϕ may contain negations
over existential quantifiers to simulate the semantics of deletions in heads of rules
of the datalog¬¬ program. Use instead the noninflationary version of datalog¬ de-
scribed in Exercise 14.16.

Exercise 14.19 Prove that the simulation in Example 14.4.3 works.

Exercise 14.20 Complete the proof of Lemma 14.4.1 (i.e., prove that each while+ program
can be simulated by a CALC+µ+ program).

⋆Exercise 14.21 Prove the noninflationary analogue of Lemma 14.4.4 (i.e., that datalog¬¬ can
simulate CALC+µ). Hint: Simplify the simulation in Lemma 14.4.4 by taking advantage of the
ability to delete in datalog¬¬. For instance, rules can be inhibited using “switches,” which can
be turned on and off. Furthermore, no timestamping is needed.

Exercise 14.22 Formulate and prove a normal form for while+ and while, analogous to the
normal forms stated for CALC+µ+ and CALC+µ.

Exercise 14.23 Prove that RA+ is equivalent to datalog¬ and RA is equivalent to noninfla-
tionary datalog¬, and hence to datalog¬¬. Hint: Use Theorems 14.4.5 and 14.4.6 and Exer-
cise 14.16.

Exercise 14.24 Let the star height of anRA program be the maximum number of occurrences
of ∗ and + on a path in the syntax tree of the program. Show that each RA program is equivalent
to an RA program of star height one.



15 Negation in Datalog

Alice: I thought we already talked about negation.

Sergio: Yes, but they say you don’t think by fixpoint.

Alice: Humbug, I just got used to it!

Riccardo: So we have to tell you how you really think.

Vittorio: And convince you that our explanation is well founded!

As originally introduced in Chapter 12, datalog is a toy language that expresses many

interesting recursive queries but has serious shortcomings concerning expressive

power. Because it is monotonic, it cannot express simple relational algebra queries such

as the difference of two relations. In the previous chapter, we considered one approach

for adding negation to datalog that led to two procedural languages—namely, inflationary

datalog¬ and datalog¬¬. In this chapter, we take a different point of view inspired by non-

monotonic reasoning that attempts to view the semantics of such programs in terms of a

natural reasoning process.

This chapter begins with illustrations of how the various semantics for datalog do not

naturally extend to datalog¬. Two semantics for datalog¬ are then considered. The first,

called stratified, involves a syntactic restriction on programs but provides a semantics that

is natural and relatively easy to understand. The second, called well founded, requires

no syntactic restriction on programs, but the meaning associated with some programs

is expressed using a 3-valued logic. (In this logic, facts are true, false, or unknown.)

With respect to expressive power, well-founded semantics is equivalent to the fixpoint

queries, whereas the stratified semantics is strictly weaker. A proof-theoretic semantics

for datalog¬, based on negation as failure, is discussed briefly at the end of this chapter.

15.1 The Basic Problem

Suppose that we want to compute the pairs of disconnected nodes in a graph G (i.e., we

are interested in the complement of the transitive closure of a graph whose edges are given

by a binary relation G). We already know how to define the transitive closure of G in a

relation T using the datalog program PT C of Chapter 12:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

To define the complement CT of T , we are naturally tempted to use negation as we

374
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did in Chapter 5. Let PT Ccomp be the result of adding the following rule to PT C:

CT (x, y)←¬T (x, y).

To simplify the discussion, we generally assume an active domain interpretation of

datalog¬ rules.

In this example, negation appears to be an appealing addition to the datalog syntax.

The language datalog¬ is defined by allowing, in bodies of rules, literals of the form

¬Ri(ui), where Ri is a relation name and ui is a free tuple. In addition, the equality

predicate is allowed, and ¬= (x, y) is denoted by x �= y.

One might hope to extend the model-theoretic, fixpoint, and proof-theoretic semantics

of datalog just as smoothly as the syntax. Unfortunately, things are less straightforward

when negation is present. We illustrate informally the problems that arise if one tries to

extend the least-fixpoint and minimal-model semantics of datalog. We shall discuss the

proof-theoretic aspect later.

Fixpoint Semantics: Problems

Recall that, for a datalog program P , the fixpoint semantics of P on input I is the unique

minimal fixpoint of the immediate consequence operator TP containing I. The immediate

consequence operator can be naturally extended to a datalog¬ program P . For a program

P , TP is defined as follows1: For each K over sch(P ), A is TP (K) if A ∈ K|edb(P ) or

if there exists some instantiation A← A1, . . . , An of a rule in P for which (1) if Ai is a

positive literal, thenAi ∈ K; and (2) ifAi =¬Bi where Bi is a positive literal, then Bi �∈ K.

[Note the difference from the immediate consequence operator ŴP defined for datalog¬ in

Section 14.3: ŴP is inflationary by definition, (that is, K ⊆ ŴP (K) for each K over sch(P ),

whereas TP is not.] The following example illustrates several unexpected properties that

TP might have.

Example 15.1.1

(a) TP may not have any fixpoint. For the propositional program P1 = {p←¬p},
TP1 has no fixpoint.

(b) TP may have several minimal fixpoints containing a given input. For example,

the propositional program P2 = {p←¬q, q←¬p} has two minimal fixpoints

(containing the empty instance): {p} and {q}.

(c) Consider the sequence {T iP (∅)}i>0 for a given datalog¬ program P . Recall that

for datalog, the sequence is increasing and converges to the least fixpoint of TP .

In the case of datalog¬ , the situation is more intricate:

1. The sequence does not generally converge, even if TP has a least fix-

point. For example, let P3 = {p←¬r; r ←¬p;p←¬p, r}. Then

1 Given an instance J over a database schema R with S ⊆ R, J|S denotes the restriction of J to S.
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TP3 has a least fixpoint {p} but {T iP3
(∅)}i>0 alternates between ∅ and

{p, r} and so does not converge (Exercise 15.2).

2. Even if {T iP (∅)}i>0 converges, its limit is not necessarily a minimal

fixpoint of TP , even if such fixpoints exist. To see this, let P4 = {p←
p, q ← q, p←¬p, q ←¬p}. Now {T iP4

(∅)}i>0 converges to {p, q}
but the least fixpoint of TP4 equals {p}.

Remark 15.1.2 (Inflationary fixpoint semantics) The program P4 of the preceding ex-

ample contains two rules of a rather strange form: p← p and q← q. In some sense, such

rules may appear meaningless. Indeed, their logical forms [e.g., (p ∨¬p)] are tautologies.

However, rules of the form R(x1, . . . , xn)← R(x1, . . . , xn) have a nontrivial impact on

the immediate consequence operator TP . If such rules are added for each idb relation R,

this results in making TP inflationary [i.e., K ⊆ TP (K) for each K], because each fact

is an immediate consequence of itself. It is worth noting that in this case, {T iP (I)}i>0 al-

ways converges and the semantics given by its limit coincides with the inflationary fixpoint

semantics for datalog¬ programs exhibited in Chapter 14.

To see the difference between the two semantics, consider again program PT Ccomp.

The sequence {T iPT Ccomp
(I )}i>0 on input I over G converges to the desired answer (the

complement of transitive closure). With the inflationary fixpoint semantics, CT becomes

a complete graph at the first iteration (because T is initially empty) and PT Ccomp does not

compute the complement of transitive closure. Nonetheless, it was shown in Chapter 14 that

there is a different (more complicated) datalog¬ program that computes the complement of

transitive closure with the inflationary fixpoint semantics.

Model-Theoretic Semantics: Problems

As with datalog, we can associate with a datalog¬ program P the set �P of CALC

sentences corresponding to the rules of P . Note first that, as with datalog,�P always has at

least one model containing any given input I. B(P, I) is such a model. [Recall that B(P, I),

introduced in Chapter 12, is the instance in which the idb relations contain all tuples with

values in I or P .]

For datalog, the model-theoretic semantics of a program P was given by the unique

minimal model of �P containing the input. Unfortunately, this simple solution no longer

works for datalog¬, because uniqueness of a minimal model containing the input is not

guaranteed. Program P2 in Example 15.1.1(b) provides one example of this: {p} and {q}
are distinct minimal models of P2. As another example, consider the program PT Ccomp

and an input I for predicate G. Let J over sch(PT Ccomp) be such that J(G)= I , J(T )⊇ I ,

J(T ) is transitively closed, and J(CT )= {〈x, y〉 | x, y occur in I, 〈x, y〉 �∈ J(T )}. Clearly,

there may be more than one such J, but one can verify that each one is a minimal model of

�PT Ccomp
satisfying J(G)= I .

It is worth noting the connection between TP and models of �P : An instance K over

sch(P ) is a model of �P iff TP (K)⊆ K. In particular, every fixpoint of TP is a model of

�P . The converse is false (Exercise 15.3).

When for a program P , �P has several minimal models, one must specify which
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among them is the model intended to be the solution. To this end, various criteria of

“niceness” of models have been proposed that can distinguish the intended model from

other candidates. We shall discuss several such criteria as we go along. Unfortunately, none

of these criteria suffices to do the job. Moreover, upon reflection it is clear that no criteria

can exist that would always permit identification of a unique intended model among several

minimal models. This is because, as in the case of program P2 of Example 15.1.1(b), the

minimal models can be completely symmetric; in such cases there is no property that would

separate one from the others using just the information in the input or the program.

In summary, the approach we used for datalog, based on equivalent least-fixpoint

or minimum-model semantics, breaks down when negation is present. We shall describe

several solutions to the problem of giving semantics to datalog¬ programs. We begin with

the simplest case and build up from there.

15.2 Stratified Semantics

This section begins with the restricted case in which negation is applied only to edb rela-

tions. The semantics for negation is straightforward in this case. We then turn to stratified

semantics, which extends this simple case in an extremely natural fashion.

Semipositive Datalog¬

We consider now semipositive datalog¬ programs, which only apply negation to edb rela-

tions. For example, the difference of R and R′ can be defined by the one-rule program

Diff (x)← R(x),¬R′(x).

To give semantics to ¬R′(x), we simply use the closed world assumption (see Chapter 2):

¬R′(x) holds iff x is in the active domain and x �∈ R′. Because R′ is an edb relation, its

content is given by the database and the semantics of the program is clear. We elaborate on

this next.

Definition 15.2.1 A datalog¬ program P is semipositive if, whenever a negative literal

¬R′(x) occurs in the body of a rule in P , R′ ∈ edb(P ).

As their name suggests, semipositive programs are almost positive. One could elimi-

nate negation from semipositive programs by adding, for each edb relation R′, a new edb

relation R′ holding the complement of R′ (with respect to the active domain) and replacing

¬R′(x) by R′(x). Thus it is not surprising that semipositive programs behave much like

datalog programs. The next result is shown easily and is left for the reader (Exercise 15.7).

Theorem 15.2.2 Let P be a semipositive datalog¬ program. For every instance I over

edb(P ),

(i) �P has a unique minimal model J satisfying J|edb(P )= I.

(ii) TP has a unique minimal fixpoint J satisfying J|edb(P )= I.
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(iii) The minimum model in (i) and the least fixpoint in (ii) are identical and equal to

the limit of the sequence {T iP (I)}i>0.

Remark 15.2.3 Observe that in the theorem, we use the formulation “minimal model

satisfying J|edb(P ) = I,” whereas in the analogous result for datalog we used “minimal

model containing I.” Both formulations would be equivalent in the datalog setting because

adding tuples to the edb predicates would result in larger models because of monotonicity.

This is not the case here because negation destroys monotonicity.

Given a semipositive datalog¬ program P and an input I, we denote by P semi−pos(I)

the minimum model of �P (or equivalently, the least fixpoint of TP ) whose restriction to

edb(P ) equals I.

An example of a semipositive program that is neither in datalog nor in CALC is given

by

T (x, y)←¬G(x, y)

T (x, y)←¬G(x, z), T (z, y).

This program computes the transitive closure of the complement of G. On the other hand,

the foregoing program for the complement of transitive closure is not a semipositive pro-

gram. However, it can naturally be viewed as the composition of two semipositive pro-

grams: the program computing the transitive closure followed by the program computing

its complement. Stratification, which is studied next, may be viewed as the closure of semi-

positive programs under composition. It will allow us to specify, for instance, the compo-

sition just described, computing the complement of transitive closure.

Syntactic Restriction for Stratification

We now consider a natural extension of semipositive programs. In semipositive programs,

the use of negation is restricted to edb relations. Now suppose that we use some defined

relations, much like views. Once a relation has been defined by some program, other

programs can subsequently treat it as an edb relation and apply negation to it. This simple

idea underlies an important extension to semipositive programs, called stratified programs.

Suppose we have a datalog¬ program P . Each idb relation is defined by one or more

rules of P . If we are able to “read” the program so that, for each idb relation R′, the portion

of P defining R′ comes before the negation of R′ is used, then we can simply compute

R′ before its negation is used, and we are done. For example, consider program PT Ccomp

introduced at the beginning of this chapter. Clearly, we intended for T to be defined by the

first two rules before its negation is used in the rule defining CT . Thus the first two rules

are applied before the third. Such a way of “reading” P is called a stratification of P and

is defined next.

Definition 15.2.4 A stratification of a datalog¬ program P is a sequence of datalog¬

programs P 1, . . . , P n such that for some mapping σ from idb(P ) to [1..n],

(i) {P 1, . . . , P n} is a partition of P .
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(ii) For each predicate R, all the rules in P defining R are in P σ(R) (i.e., in the same

program of the partition).

(iii) If R(u)← . . . R′(v) . . . is a rule in P , and R′ is an idb relation, then σ(R′) ≤
σ(R).

(iv) If R(u)← . . .¬R′(v) . . . is a rule in P , and R′ is an idb relation, then σ(R′) <

σ(R).

Given a stratification P 1, . . . , P n of P , each P i is called a stratum of the stratification, and

σ is called the stratification mapping.

Intuitively, a stratification of a program P provides a way of parsing P as a sequence of

subprograms P 1, . . . , P n, each defining one or several idb relations. By (iii), if a relationR′

is used positively in the definition of R, then R′ must be defined earlier or simultaneously

with R (this allows recursion!). If the negation of R′ is used in the definition of R, then by

(iv) the definition of R′ must come strictly before that of R.

Unfortunately, not every datalog¬ program has a stratification. For example, there is

no way to “read” program P2 of Example 15.1.1 so that p is defined before q and q before

p. Programs that have a stratification are called stratifiable. Thus P2 is not stratifiable. On

the other hand, PT Ccomp is clearly stratifiable: The first stratum consists of the first two

rules (defining T ), and the second stratum consists of the third rule (defining CT using T ).

Example 15.2.5 Consider the program P7 defined by

r1 S(x)← R′
1(x),¬R(x)

r2 T (x)← R′
2(x),¬R(x)

r3 U(x)← R′
3(x),¬T (x)

r4 V (x)← R′
4(x),¬S(x),¬U(x).

Then P7 has 5 distinct stratifications, namely,

{r1}, {r2}, {r3}, {r4}

{r2}, {r1}, {r3}, {r4}

{r2}, {r3}, {r1}, {r4}

{r1, r2}, {r3}, {r4}

{r2}, {r1, r3}, {r4}.

These lead to five different ways of reading the program P7. As will be seen, each of these

yields the same semantics.

There is a simple test for checking if a program is stratifiable. Not surprisingly, it

involves testing for an acyclicity condition in definitions of relations using negation. Let P

be a datalog¬ program. The precedence graph GP of P is the labeled graph whose nodes

are the idb relations of P . Its edges are the following:
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PTCcomp: T CT

+

–
P2: P Q

–

–

P7: S U

–

V

T

–

–

Figure 15.1: Precedence graphs for PCT , P2, and P7

• If R(u)← . . . R′(v) . . . is a rule in P , then 〈R′, R〉 is an edge in GP with label +
(called a positive edge).

• If R(u)← . . .¬R′(v) . . . is a rule in P , then 〈R′, R〉 is an edge in GP with label −
(called a negative edge).

For example, the precedence graphs for program PT Ccomp, P2, and P7 are represented

in Fig. 15.1. It is straightforward to show the following (proof omitted):

Lemma 15.2.6 Let P be a program with stratification σ . If there is a path from R′ to R in

GP, then σ(R′)≤ σ(R); and if there is a path from R′ to R in GP containing some negative

edge, then σ(R′) < σ(R).

We now show how the precedence graph of a program can be used to test the stratifia-

bility of the program.

Proposition 15.2.7 A datalog¬ program P is stratifiable iff its precedence graph GP

has no cycle containing a negative edge.

Proof Consider the “only if” part. Suppose P is a datalog¬ program whose precedence

graph has a cycle R1, . . . Rm, R1 containing a negative edge, say from Rm to R1. Suppose,

toward a contradiction, that σ is a stratification mapping for P . By Lemma 15.2.6, σ(R1) <

σ(R1), because there is a path from R1 to R1 with a negative edge. This is a contradiction,

so no stratification mapping σ exists for P .

Conversely, suppose P is a program whose precedence graph GP has no cycle with

negative edges. Let ≺ be the binary relation among the strongly connected components of

GP defined as follows: C ≺ C′ if C �= C′ and there is a (positive or negative) edge in GP

from some node of C to some node of C′.

We first show that

(*) ≺ is acyclic.

Suppose there is a cycle in ≺. Then by construction of ≺, this cycle must traverse two

distinct strongly connected components, say C,C′. Let A be in C. It is easy to deduce

that there is a path in GP from some vertex in C′ to A and from A to some vertex in C′.
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Because C′ is a strongly connected component of GP, A is in C′. Thus C ⊆ C′, so C = C′,

a contradiction. Hence (*) holds.

In view of (*), the binary relation ≺ induces a partial order among the strongly

connected components of GP, which we also denote by ≺, by abuse of notation. Let

C1, . . . , Cn be a topographic sort with respect to ≺ of the strongly connected components

of GP; that is, C1 . . . Cn is the set of strongly connected components of GP and if Ci ≺ Cj ,

then i ≤ j . Finally, for each i, 1 ≤ i ≤ n, let Qi consist of all rules defining some rela-

tion in Ci. Then Q1, . . . ,Qn is a stratification of P . Indeed, (i) and (ii) in the definition

of stratification are clearly satisfied. Conditions (iii) and (iv) follow immediately from the

construction of GP and ≺ and from the hypothesis that GP has no cycle with negative edge.

Clearly, the stratifiability test provided by Proposition 15.2.7 takes time polynomial in

the size of the program P .

Verification of the following observation is left to the reader (Exercise 15.4).

Lemma 15.2.8 Let P 1, . . . , P n be a stratification of P , and let Q1, . . . ,Qm be ob-

tained as in Proposition 15.2.7. If Qj ∩ P i �= ∅, then Qj ⊆ P i. In particular, the partition

Q1, . . . ,Qm of P refines all other partitions given by stratifications of P .

Semantics of Stratified Programs

Consider a stratifiable program P with a stratification σ = P 1, . . . , P n. Using the strat-

ification σ , we can now easily give a semantics to P using the well-understood semi-

positive programs. Notice that for each program P i in the stratification, if P i uses the

negation of R′, then R′ ∈ edb(P i) [note that edb(P i) may contain some of the idb rela-

tions of P ]. Furthermore, R′ is either in edb(P ) or is defined by some P j preceding P i

[i.e., R′ ∈ ∪j<iidb(P j)]. Thus each program P i is semipositive relative to previously de-

fined relations. Then the semantics of P is obtained by applying, in order, the programs

P i. More precisely, let I be an instance over edb(P ). Define the sequence of instances

I0 = I

Ii = Ii−1 ∪ P
i(Ii−1|edb(P i)), 0 < i ≤ n.

Note that Ii extends Ii−1 by providing values to the relations defined by P i; and that

P i(Ii−1|edb(P i)), or equivalently, P i(Ii−1), is the semantics of the semipositive program

P i applied to the values of its edb relations provided by Ii−1. Let us denote the final

instance In thus obtained by σ(I). This provides the semantics of a datalog¬ program under

a stratification σ .

Independence of Stratification

As shown in Example 15.2.5, a datalog¬ program can have more than one stratification.

Will the different stratifications yield the same semantics? Fortunately, the answer is yes.
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To demonstrate this, we use the following simple lemma, whose proof is left to the reader

(Exercise 15.10).

Lemma 15.2.9 Let P be a semipositive datalog¬ program and σ a stratification for P .

Then P semi−pos(I)= σ(I) for each instance I over edb(P ).

Two stratifications of a datalog¬ program are equivalent if they yield the same seman-

tics on all inputs.

Theorem 15.2.10 Let P be a stratifiable datalog¬ program. All stratifications of P are

equivalent.

Proof Let GP be the precedence graph of P and σGP
=Q1, . . . ,Qn be a stratification

constructed from GP as in the proof of Theorem 15.2.7. Let σ = P 1, . . . , P k be a stratifi-

cation of P . It clearly suffices to show that σ is equivalent to σGP
. The stratification σGP

is used as a reference because, as shown in Lemma 15.2.8, its strata are the finest possible

among all stratifications for P .

As in the proof of Theorem 15.2.7, we use the partial order ≺ among the strongly

connected components of GP and the notation introduced there. Clearly, the relation ≺ on

the Ci induces a partial order on theQi, which we also denote by ≺ (Qi ≺Qj if Ci ≺ Cj ).

We say that a sequence Qi1, . . . ,Qir of some of the Qi is compatible with ≺ if for every

l < m it is not the case that Qim ≺Qil .

We shall prove that

1. If σ ′ and σ ′′ are permutations of σGP
that are compatible with ≺, then σ ′ and σ ′′

are equivalent stratifications of P .

2. For each P i, 1 ≤ i ≤ k, there exists σi =Qi1, . . . ,Qir such that σi is a stratifica-

tion of P i, and the sequence Qi1, . . . ,Qir is compatible with ≺.

3. σ1, . . . , σk is a permutation of Q1, . . . ,Qn compatible with ≺.

Before demonstrating these, we argue that the foregoing statements (1 through 3) are

sufficient to show that σ and σGP
are equivalent. By statement 2, each σi is a stratification

of P i. Lemma 15.2.9 implies that P i is equivalent to σi. It follows that σ = P 1, . . . , P k is

equivalent to σ1, . . . , σk which, by statement 3, is a permutation of σGP
compatible with

≺. Then σ1, . . . , σk and σGP
are equivalent by statement 1, so σ and σGP

are equivalent.

Consider statement 1. Note first that one can obtain σ ′′ from σ ′ by a sequence of

exchanges of adjacent Qi,Qj such that Qi �≺Qj and Qj �≺Qi (Exercise 15.9). Thus it

is sufficient to show that for every such pair, Qi,Qj is equivalent to Qj ,Qi. Because

Qi �≺Qj and Qj �≺Qi, it follows that no idb relation of Qi occurs in Qj and conversely.

Then Qi ∪Qj is a semipositive program [with respect to edb(Qi ∪Qj)] and both Qi,Qj

and Qj ,Qi are stratifications of Qi ∪Qj . By Lemma 15.2.9, Qi,Qj and Qj ,Qi are both

equivalent to Qi ∪Qj (as a semipositive program), so Qi,Qj and Qj ,Qi are equivalent.

Statement 2 follows immediately from Lemma 15.2.8.

Finally, consider statement 3. By statement 2, each σi is compatible with ≺. Thus it

remains to be shown that, if Qm occurs in σi, Q
l occurs in σj , and i < j , then Ql �≺Qm.
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Note that Ql is included in P j , and Qm is included in P i. It follows that for all relations R

defined by Qm and R′ defined by Ql, σ(R) < σ(R′), where σ is the stratification function

of P 1, . . . , P k. Hence R′ �≺ R so Ql �≺Qm.

Thus all stratifications of a given stratifiable program are equivalent. This means

that we can speak about the semantics of such a program independently of a particular

stratification. Given a stratifiable datalog¬ program P and an input I over edb(P ), we

shall take as the semantics of P on I the semantics σ(I) of any stratification σ of P . This

semantics, well defined by Theorem 15.2.10, is denoted by P strat(I). Clearly, P strat(I) can

be computed in time polynomial with respect to I.

Now that we have a well-defined semantics for stratified programs, we can verify that

for semipositive programs, the semantics coincides with the semantics already introduced.

If P is a semipositive datalog¬ program, then P is also stratifiable. By Lemma 15.2.9,

P semi−pos and P strat are equivalent.

Properties of Stratified Semantics

Stratified semantics has a procedural flavor because it is the result of an ordering of the

rules, albeit implicit. What can we say about P strat(I) from a model-theoretic point of

view? Rather pleasantly, P strat(I) is a minimal model of �P containing I. However, no

precise characterization of stratified semantics in model-theoretic terms has emerged. Some

model-theoretic properties of stratified semantics are established next.

Proposition 15.2.11 For each stratifiable datalog¬ program P and instance I over

edb(I),

(a) P strat(I) is a minimal model of �P whose restriction to edb(P ) equals I.

(b) P strat(I) is a minimal fixpoint of TP whose restriction to edb(P ) equals I.

Proof For part (a), let σ = P 1, . . . , P n be a stratification of P and I an instance over

edb(P ). We have to show that P strat(I) is a minimal model of �P whose restriction to

edb(P ) equals I. Clearly, P strat(I) is a model of �P whose restriction to edb(P ) equals I.

To prove its minimality, it is sufficient to show that, for each model J of �P ,

(**) if I ⊆ J ⊆ P strat(I) then J = P strat(I).

Thus suppose I ⊆ J ⊆ P strat(I). We prove by induction on k that

(†) P strat(I)|sch(∪i≤kP
i)= J|sch(∪i≤kP

i)

for each k, 1 ≤ k ≤ n. The equality of P strat(I) and J then follows from (†) with k = n.

For k = 1, edb(P 1)⊆ edb(P ) so

P strat(I)|edb(P 1)= I|edb(P 1)= J|edb(P 1).

By the definition of stratified semantics and Theorem 15.2.2, P strat(I)|sch(P 1) is the
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minimum model of �P 1 whose restriction to edb(P 1) equals P strat(I)|edb(P 1). On the

other hand, J|sch(P 1) is also a model of �P 1 whose restriction to edb(P 1) equals

P strat(I)|edb(P 1). From the minimality of P strat(I)|sch(P 1), it follows that

P strat(I)|sch(P 1)⊆ J|sch(P 1).

From (**) it then follows that P strat(I)|sch(P 1) = J|sch(P 1), which establishes (†) for

k = 1. For the induction step, suppose (†) is true for k, 1 ≤ k < n. Then (†) for k + 1 is

shown in the same manner as for the case k = 1. This proves (†) for 1 ≤ k ≤ n. It follows

that P strat(I) is a minimal model of �P whose restriction to edb(P ) equals I.

The proof of part (b) is left for Exercise 15.12.

There is another appealing property of stratified semantics that takes into account the

syntax of the program in addition to purely model-theoretic considerations. This property

is illustrated next.

Consider the two programs

P5 = {p←¬q}

P6 = {q←¬p}

From the perspective of classical logic, �P5
and �P6

are equivalent to each other and to

{p ∨ q}. However, TP5
and TP6

have different behavior: The unique fixpoint of TP5
is {p},

whereas that of TP6
is {q}. This is partially captured by the notion of “supported” as follows.

Let datalog¬ program P and input I be given. As with pure datalog, J is a model of

P iff J ⊇ TP (J). We say that J is a supported model if J ⊆ TP (J) (i.e., if each fact in J is

“justified” or supported by being the head of a ground instantiation of a rule in P whose

body is all true in J). (In the context of some input I, we say that J is supported relative

to I and the definition is modified accordingly.) This condition, which has both syntactic

and semantic aspects, captures at least some of the spirit of the immediate consequence

operator TP . As suggested in Remark 15.1.2, its impact can be annulled by adding rules of

the form p← p.

The proof of the following is left to the reader (Exercise 15.13).

Proposition 15.2.12 For each stratifiable program P and instance I over edb(P ),

P strat(I) is a supported model of P relative to I.

We have seen that stratification provides an elegant and simple approach to defining

semantics of datalog¬ programs. Nonetheless, it has two major limitations. First, it does

not provide semantics to all datalog¬ programs. Second, stratified datalog¬ programs are

not entirely satisfactory with regard to expressive power. From a computational point of

view, they provide recursion and negation and are inflationary. Therefore, as discussed

in Chapter 14, one might expect that they express the fixpoint queries. Unfortunately,

stratified datalog¬ programs fall short of expressing all such queries, as will be shown

in Section 15.4. Intuitively, this is because the stratification condition prohibits recursive
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application of negation, whereas in other languages expressing fixpoint this computational

restriction does not exist.

For these reasons, we consider another semantics for datalog¬ programs called well

founded. As we shall see, this provides semantics to all datalog¬ programs and expresses

all fixpoint queries. Furthermore, well-founded and stratified semantics agree on stratified

datalog¬ programs.

15.3 Well-Founded Semantics

Well-founded semantics relies on a fundamental revision of our expectations of the answer

to a datalog¬ program. So far, we required that the answer must provide information on the

truth or falsehood of every fact. Well-founded semantics is based on the idea that a given

program may not necessarily provide such information on all facts. Instead some facts may

simply be indifferent to it, and the answer should be allowed to say that the truth value

of those facts is unknown. As it turns out, relaxing expectations about the answer in this

fashion allows us to provide a natural semantics for all datalog¬ programs. The price is

that the answer is no longer guaranteed to provide total information.

Another aspect of this approach is that it puts negative and positive facts on a more

equal footing. One can no longer assume that ¬R(u) is true simply because R(u) is not

in the answer. Instead, both negative and positive facts must be inferred. To formalize this,

we shall introduce 3-valued instances, in which the truth value of facts can be true, false,

or unknown.

This section begins by introducing a largely declarative semantics for datalog¬ pro-

grams. Next an equivalent fixpoint semantics is developed. Finally it is shown that stratified

and well-founded semantics agree on the family of stratified datalog¬ programs.

A Declarative Semantics for Datalog¬

The aim of giving semantics to a datalog¬ program P will be to find an appropriate

3-valued model I of �P . In considering what appropriate might mean, it is useful to

recall the basic motivation underlying the logic-programming approach to negation as

opposed to the purely computational approach. An important goal is to model some form

of natural reasoning process. In particular, consistency in the reasoning process is required.

Specifically, one cannot use a fact and later infer its negation. This should be captured in

the notion of appropriateness of a 3-valued model I, and it has two intuitive aspects:

• the positive facts of I must be inferred from P assuming the negative facts in I; and

• all negative facts that can be inferred from I must already be in I.

A 3-valued model satisfying the aforementioned notion of appropriateness will be

called a 3-stable model of P . It turns out that, generally, programs have several 3-stable

models. Then it is natural to take as an answer the certain (positive and negative) facts that

belong to all such models, which turns out to yield, in some sense, the smallest 3-stable

model. This is indeed how the well-founded semantics of P will be defined.
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Example 15.3.1 The example concerns a game with states, a, b, . . . . The game is be-

tween two players. The possible moves of the games are held in a binary relation moves. A

tuple 〈a, b〉 in moves indicates that when in state a, one can choose to move to state b. A

player loses if he or she is in a state from which there are no moves. The goal is to compute

the set of winning states (i.e., the set of states such that there exists a winning strategy for

a player in this state). These are obtained in a unary predicate win.

Consider the input K with the following value for moves:

K(moves)= {〈b, c〉, 〈c, a〉, 〈a, b〉, 〈a, d〉, 〈d, e〉, 〈d, f 〉, 〈f, g〉}

Graphically, the input is represented as

b c

a d f g

e

It is seen easily that there are indeed winning strategies from states d (move to e) and

f (move to g). Slightly more subtle is the fact that there is no winning strategy from any of

states a, b, or c. A given player can prevent the other from winning, essentially by forcing

a nonterminating sequence of moves.

Now consider the following nonstratifiable program Pwin:

win(x)← moves(x, y),¬win(y)

Intuitively, Pwin states that a state x is in win if there is at least one state y that one can

move to from x, for which the opposing player loses. We now exhibit a 3-valued model J

of Pwin that agrees with K on moves. As will be seen, this will in fact be the well-founded

semantics of Pwin on input K. Instance J is such that J(moves)= K(moves) and the values

of win-atoms are given as follows:

true win(d),win(f )

false win(e),win(g)

unknown win(a),win(b),win(c)

We now embark on defining formally the well-founded semantics. We do this in three

steps. First we define the notion of 3-valued instance and extend the notion of truth value

and satisfaction. Then we consider datalog and show the existence of a minimum 3-valued

model for each datalog program. Finally we consider datalog¬ and the notion of 3-stable

model, which is the basis of well-founded semantics.

3-valued Instances Dealing with three truth values instead of the usual two requires

extending some of the basic notions like instance and model. As we shall see, this is

straightforward. We will denote true by 1, false by 0, and unknown by 1/2.
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Consider a datalog¬ program P and a classical 2-valued instance I. As was done in the

discussion of SLD resolution in Chapter 12, we shall denote by PI the program obtained

from P by adding to P unit clauses stating that the facts in I are true. Then P(I)= PI(∅).
For the moment, we shall deal with datalog¬ programs such as these, whose input is

included in the program. Recall that B(P ) denotes all facts of the form R(a1, . . . , ak),

where R is a relation and a1, . . . , ak constants occurring in P . In particular, B(PI) =

B(P, I).

Let P be a datalog¬ program. A 3-valued instance I over sch(P ) is a total mapping

from B(P ) to {0, 1/2, 1}. We denote by I1, I1/2, and I0 the set of atoms in B(P )whose truth

value is 1, 1/2, and 0, respectively. A 3-valued instance I is total, or 2-valued, if I1/2 = ∅.

There is a natural ordering ≺ among 3-valued instances over sch(P ), defined by

I ≺ J iff for each A ∈ B(P ), I(A)≤ J(A).

Note that this is equivalent to I1 ⊆ J1 and I0 ⊇ J0 and that it generalizes containment for

2-valued instances.

Occasionally, we will represent a 3-valued instance by listing the positive and negative

facts and omitting the undefined ones. For example, the 3-valued instance I, where I(p)=
1, I(q)= 1, I(r)= 1/2, I(s)= 0, will also be written as I = {p, q,¬s}.

Given a 3-valued instance I, we next define the truth value of Boolean combinations

of facts using the connectives ∨,∧,¬,←. The truth value of a Boolean combination α of

facts is denoted by Î(α), defined by

Î(β ∧ γ ) = min{Î(β), Î(γ )}

Î(β ∨ γ ) = max{Î(β), Î(γ )}

Î(¬β) = 1 − Î(β)

Î(β← γ )= 1 if Î(γ )≤ Î(β), and 0 otherwise.

The reader should be careful: Known facts about Boolean operators in the 2-valued

context may not hold in this more complex one. For instance, note that the truth value of

p← q may be different from that of p ∨¬q (see Exercise 15.15). To see that the preceding

definition matches the intuition, one might want to verify that with the specific semantics

of ← used here, the instance J of Example 15.3.1 does satisfy (the ground instantiation

of) Pwin,K. That would not be the case if we define the semantics of ← in a more standard

way; by using p← q ≡ p ∨ ¬q.
A 3-valued instance I over sch(P ) satisfies a Boolean combination α of atoms in B(P )

iff Î(α)= 1. Given a datalog(¬) program P , a 3-valued model of �P is a 3-valued instance

over sch(P ) satisfying the set of implications corresponding to the rules in ground(P ).

Example 15.3.2 Recall the program Pwin of Example 15.3.1 and the input instance K

and output instance J presented there. Consider these ground sentences:

win(a)← moves(a, d),¬win(d)

win(a)← moves(a, b),¬win(b).
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The first is true for J, because Ĵ(¬win(d))= 0, Ĵ(moves(a, d))= 1, Ĵ(win(a))= 1/2, and

1/2 ≥ 0. The second is true because Ĵ(¬win(b))= 1/2, Ĵ(moves(a, b))= 1, Ĵ(win(a))=
1/2, and 1/2 ≥ 1/2.

Observe that, on the other hand,

Ĵ(win(a) ∨ ¬(moves(a, b) ∧ ¬win(b)))= 1/2.

3-valued Minimal Model for Datalog We next extend the definition and semantics of

datalog programs to the context of 3-valued instances. Although datalog programs do not

contain negation, they will now be allowed to infer positive, unknown, and false facts.

The syntax of a 3-extended datalog program is the same as for datalog, except that the

truth values 0, 1/2, and 1 can occur as literals in bodies of rules. Given a 3-extended

datalog program P , the 3-valued immediate consequence operator 3-TP of P is a mapping

on 3-valued instances over sch(P ) defined as follows. Given a 3-valued instance I and

A ∈ B(P ), 3-TP (I)(A) is

1 if there is a rule A← body in ground(P ) such that Î(body)= 1,

0 if for each rule A← body in ground(P ), Î(body)= 0 (and, in particular, if there is

no rule with A in head),

1/2 otherwise.

Example 15.3.3 Consider the 3-extended datalog program P = {p← 1/2; p← q, 1/2;

q← p, r; q← p, s; s← q; r ← 1}. Then

3-TP ({¬p,¬q,¬r,¬s})= {¬q, r,¬s}

3-TP ({¬q, r,¬s}) = {r,¬s}

3-TP ({r,¬s}) = {r}

3-TP ({r}) = {r}.

In the following, 3-valued instances are compared with respect to ≺. Thus “least,”

“minimal,” and “monotonic” are with respect to ≺ rather than the set inclusion used for

classical 2-valued instances. In particular, note that the minimum 3-valued instance with

respect to ≺ is that where all atoms are false. Let ⊥ denote this particular instance.

With the preceding definitions, extended datalog programs on 3-valued instances

behave similarly to classical programs. The next lemma can be verified easily (Exer-

cise 15.16):

Lemma 15.3.4 Let P be a 3-extended datalog program. Then

1. 3−TP is monotonic and the sequence {3-T iP (⊥)}i>0 is increasing and converges

to the least fixpoint of 3-TP ;
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2. P has a unique minimal 3-valued model that equals the least fixpoint of 3-TP .

The semantics of an extended datalog program is the minimum 3-valued model of P .

Analogous to conventional datalog, we denote this by P(⊥).

3-stable Models of Datalog¬

We are now ready to look at datalog¬ programs and formally define 3-stable models of a

datalog¬ program P . We “bootstrap” to the semantics of programs with negation, using the

semantics for 3-extended datalog programs described earlier. Let I be a 3-valued instance

over sch(P ). We reduce the problem to that of applying a positive datalog program, as

follows. The positivized ground version of P given I, denoted pg(P, I), is the 3-extended

datalog program obtained from ground(P ) by replacing each negative premise ¬A by

Î(¬A) (i.e., 0, 1, or 1/2). Because all negative literals in ground(P ) have been replaced by

their truth value in I, pg(P, I) is now a 3-extended datalog program (i.e, a program without

negation). Its least fixpoint pg(P, I)(⊥) contains all the facts that are consequences of P

by assuming the values for the negative premises as given by I. We denote pg(P, I)(⊥)
by conseqP (I). Thus the intuitive conditions required of 3-stable models now amount to

conseqP (I)= I.

Definition 15.3.5 Let P be a datalog¬ program. A 3-valued instance I over sch(P ) is

a 3-stable model of P iff conseqP (I) = I.

Observe an important distinction between conseqP and the immediate consequence

operator used for inflationary datalog¬. For inflationary datalog¬, we assumed that ¬Awas

true as long as A was not inferred. Here we just assume in such a case that A is unknown

and try to prove new facts. Of course, doing so requires the 3-valued approach.

Example 15.3.6 Consider the following datalog¬ program P :

p←¬r

q←¬r, p

s←¬t

t ← q,¬s

u←¬t, p, s

The program has three 3-stable models (represented by listing the positive and negative

facts and leaving out the unknown facts):

I1 = {p, q, t,¬r,¬s,¬u}

I2 = {p, q, s,¬r,¬t,¬u}

I3 = {p, q,¬r}

Let us check that I3 is a 3-stable model of P . The program P ′ = pg(P, I3) is
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p← 1

q← 1, p

s← 1/2

t ← q, 1/2

u← 1/2, p, s

The minimum 3-valued model of pg(P, I3) is obtained by iterating 3-TP ′(⊥) up to

a fixpoint. Thus we start with ⊥ = {¬p,¬q,¬r,¬s,¬t,¬u}. The first application of

3-TP ′ yields 3-TP ′(⊥)= {p,¬q,¬r,¬t,¬u}. Next (3-TP ′)2(⊥)= {p, q,¬r,¬t}. Finally

(3-TP ′)3(⊥)= (3-TP ′)4(⊥)= {p, q,¬r}. Thus

conseqP (I3)= pg(P, I3)(⊥)= (3-TP ′)3(⊥)= I3,

and I3 is a 3-stable model of P .

The reader is invited to verify that in Example 15.3.1, the instance J is a 3-stable model

of the program Pwin,K for the input instance K presented there.

As seen from the example, datalog¬ programs generally have several 3-stable models.

We will show later that each datalog¬ program has at least one 3-stable model. Therefore

it makes sense to let the final answer consist of the positive and negative facts belonging

to all 3-stable models of the program. As we shall see, the 3-valued instance so obtained is

itself a 3-stable model of the program.

Definition 15.3.7 Let P be a datalog¬ program. The well-founded semantics of P is

the 3-valued instance consisting of all positive and negative facts belonging to all 3-stable

models of P . This is denoted by Pwf (∅),or simply, Pwf . Given datalog¬ program P and

input instance I, P
wf

I (∅) is denoted Pwf (I).

Thus the well-founded semantics of the program P in Example 15.3.6 is Pwf (∅) =
{p, q,¬r}. We shall see later that in Example 15.3.1, P

wf
win(K)= J.

A Fixpoint Definition

Note that the preceding description of the well-founded semantics, although effective, is

inefficient. The straightforward algorithm yielded by this description involves checking

all possible 3-valued instances of a program, determining which are 3-stable models, and

then taking their intersection. We next provide a simpler, efficient way of computing the

well-founded semantics. It is based on an “alternating fixpoint” computation that converges

to the well-founded semantics. As a side-effect, the proof will show that each datalog¬

program has at least one 3-stable model (and therefore the well-founded semantics is

always defined), something we have not proven. It will also show that the well-founded

model is itself a 3-stable model, in some sense the smallest.

The idea of the computation is as follows. We define an alternating sequence {Ii}i≥0 of

3-valued instances that are underestimates and overestimates of the facts known in every
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3-stable model of P . The sequence is as follows:

I0 =⊥

Ii+1 = conseqP (Ii).

Recall that ⊥ is the least 3-valued instance and that all facts have value 0 in ⊥. Also note

that each of the Ii just defined is a total instance. This follows easily from the following

facts (Exercise 15.17):

• if I is total, then conseqP (I) is total; and

• the Ii are constructed starting from the total instance ⊥ by repeated applications of

conseqP .

The intuition behind the construction of the sequence {Ii}i≥0 is the following. The

sequence starts with ⊥, which is an overestimate of the negative facts in the answer (it

contains all negative facts). From this overestimate we compute I1 = conseqP (⊥), which

includes all positive facts that can be inferred from ⊥. This is clearly an overestimate of

the positive facts in the answer, so the set of negative facts in I1 is an underestimate of the

negative facts in the answer. Using this underestimate of the negative facts, we compute

I2 = conseqP (I1), whose positive facts will now be an underestimate of the positive facts

in the answer. By continuing the process, we see that the even-indexed instances provide

underestimates of the positive facts in the answer and the odd-indexed ones provide under-

estimates of the negative facts in the answer. Then the limit of the even-indexed instances

provides the positive facts in the answer and the limit of the odd-indexed instances provides

the negative facts in the answer. This intuition will be made formal later in this section.

It is easy to see that conseqP (I) is antimonotonic. That is, if I ≺ J, then conseqP (J)≺
conseqP (I) (Exercise 15.17). From this and the facts that ⊥ ≺ I1 and ⊥ ≺ I2, it immedi-

ately follows that, for all i > 0,

I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1.

Thus the even subsequence is increasing and the odd one is decreasing. Because there

are finitely many 3-valued instances relative to a given program P , each of these se-

quences becomes constant at some point. Let I∗ denote the limit of the increasing sequence

{I2i}i≥0, and let I∗ denote the limit of the decreasing sequence {I2i+1}i≥0. From the afore-

mentioned inequalities, it follows that I∗ ≺ I∗. Moreover, note that conseqP (I∗)= I∗ and

conseqP (I
∗)= I∗. Finally let I∗∗ denote the 3-valued instance consisting of the facts known

in both I∗ and I∗; that is,

I∗∗(A)=

{
1 if I∗(A)= I∗(A)= 1

0 if I∗(A)= I∗(A)= 0 and

1/2 otherwise.

Equivalently, I∗∗ = (I∗)
1 ∪ (I∗)0. As will be seen shortly, I∗∗ = Pwf (∅). Before proving this,

we illustrate the alternating fixpoint computation with several examples.
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Example 15.3.8

(a) Consider again the program in Example 15.3.6. Let us perform the alternat-

ing fixpoint computation described earlier. We start with I0 = ⊥ = {¬p,¬q,
¬r,¬s,¬t,¬u}. By applying conseqP , we obtain the following sequence of

instances:

I1 = {p, q,¬r, s, t, u},

I2 = {p, q,¬r,¬s,¬t,¬u},

I3 = {p, q,¬r, s, t, u},

I4 = {p, q,¬r,¬s,¬t,¬u}.

Thus I∗ = I4 = {p, q,¬r,¬s,¬t,¬u} and I∗ = I3 = {p, q,¬r, s, t, u}. Finally

I∗∗ = {p, q,¬r}, which coincides with the well-founded semantics of P com-

puted in Example 15.3.6.

(b) Recall now Pwin and input K of Example 15.3.1. We compute I∗∗ for the program

Pwin,I. Note that for I0 the value of all move atoms is false, and for each j ≥ 1,

Ij agrees with the input K on the predicate moves; thus we do not show the move

atoms here. For the win predicate, then, we have

I1 = {win(a),win(b),win(c),win(d),¬win(e),win(f ),¬win(g)}

I2 = {¬win(a),¬win(b),¬win(c),win(d),¬win(e),win(f ),¬win(g)}

I3 = I1

I4 = I2.

Thus

I∗ = I2 = {¬win(a),¬win(b),¬win(c),win(d),¬win(e),win(f ),¬win(g)}

I∗ = I1 = {win(a),win(b),win(c),win(d),¬win(e),win(f ),¬win(g)}

I∗∗ = {win(d),¬win(e),win(f ),¬win(g)},

which is the instance J of Example 15.3.1.

(c) Consider the database schema consisting of a binary relation G and a unary

relation good and the following program defining bad and answer:

bad(x) ←G(y, x),¬good(y)

answer(x)←¬bad(x)

Consider the instance K over G and good, where

K(G) = {〈b, c〉, 〈c, b〉, 〈c, d〉, 〈a, d〉, 〈a, e〉}, and

K(good)= {〈a〉}.

We assume that the facts of the database are added as unit clauses to P , yielding

PK. Again we perform the alternating fixpoint computation for PK. We start with
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I0 =⊥ (containing all negated atoms). Applying conseqPK
yields the following

sequence {Ii}i>0:

bad answer

I0 ∅ ∅

I1 {¬a, b, c, d, e} {a, b, c, d, e}

I2 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d,¬e}

I3 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d, e}

I4 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d, e}

We have omitted [as in (b)] the facts relating to the edb predicates G and good,

which do not change after step 1.

Thus I∗∗ = I∗ = I∗ = I3 = I4. Note that P is stratified and its well-founded

semantics coincides with its stratified semantics. As we shall see, this is not

accidental.

We now show that the fixpoint construction yields the well-founded semantics for

datalog¬ programs.

Theorem 15.3.9 For each datalog¬ program P ,

1. I∗∗ is a 3-stable model of P .

2. Pwf (∅)= I∗∗.

Proof For statement 1, we need to show that conseqP (I
∗
∗)= I∗∗. We show that for every

fact A, if I∗∗(A)= ǫ ∈ {0, 1/2, 1}, then conseqP (I
∗
∗)(A)= ǫ. From the antimonotonicity of

conseqP , the fact that I∗ ≺ I∗∗ ≺ I∗ and conseqP (I∗)= I∗, conseqP (I
∗)= I∗, it follows that

I∗ ≺ conseqP (I
∗
∗)≺ I∗. If I∗∗(A)= 0, then I∗(A)= 0 so conseqP (I

∗
∗)(A)= 0; similarly for

I∗∗(A)= 1. Now suppose that I∗∗(A)= 1/2. It is sufficient to prove that conseqP (I
∗
∗)(A)≥

1/2. [It is not possible that conseqP (I
∗
∗)(A) = 1. If this were the case, the rules used to

infer A involve only facts whose value is 0 or 1. Because those facts have the same value

in I∗ and I∗, the same rules can be used in both pg(P, I∗) and pg(P, I∗) to infer A, so

I∗(A)= I∗(A)= I∗∗(A)= 1, which contradicts the hypothesis that I∗∗(A)= 1/2.]

We now prove that conseqP (I
∗
∗)(A) ≥ 1/2. By the definition of I∗∗, I∗(A) = 0 and

I∗(A)= 1. Recall that conseqP (I∗)= I∗, so conseqP (I∗)(A)= 1. In addition, conseqP (I∗)

is the limit of the sequence {3-T ipg(P,I∗)}i>0. Let stage(A) be the minimum i such that

3-T ipg(P,I∗)(A)= 1. We prove by induction on stage(A) that conseqP (I
∗
∗)(A) ≥ 1/2. Sup-

pose that stage(A) = 1. Then there exists in ground(P ) a rule of the form A←, or

one of the form A←¬B1, . . . ,¬Bn, where I∗(Bj) = 0, 1 ≤ j ≤ n. However, the first

case cannot occur, for otherwise conseqP (I
∗)(A) must also equal 1 so I∗(A) = 1 and

therefore I∗∗(A) = 1, contradicting the fact that I∗∗(A) = 1/2. By the same argument,

I∗(Bj) = 1, so I∗∗(Bj) = 1/2, 1 ≤ j ≤ n. Consider now pg(P, I∗∗). Because I∗∗(Bj) =
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1/2, 1 ≤ j ≤ n, the second rule yields conseqP (I
∗
∗)(A)≥ 1/2. Now suppose that the state-

ment is true for stage(A)= i and suppose that stage(A)= i + 1. Then there exists a rule

A← A1 . . . Am¬B1 . . .¬Bn such that I∗(Bj)= 0 and 3-T ipg(P,I∗)(Ak)= 1 for each j and

k. Because I∗(Bj)= 0, I∗∗(Bj)≤ 1/2 so I∗∗(¬Bj)≥ 1/2. In addition, by the induction hy-

pothesis, conseqP (I
∗
∗)(Ak)≥ 1/2. It follows that conseqP (I

∗
∗)(A)≥ 1/2, and the induction

is complete. Thus conseqP (I
∗
∗)= I∗∗ and I∗∗ is a 3-stable model of P .

Consider statement 2. We have to show that the positive and negative facts in I∗∗ are

those belonging to every 3-stable model M of P . Because I∗∗ is itself a 3-stable model of

P , it contains the positive and negative facts belonging to every 3-stable model of P . It

remains to show the converse (i.e., that the positive and negative facts in I∗∗ belong to every

3-stable model of P ). To this end, we first show that for each 3-stable model M of P and

i ≥ 0,

(‡) I2i ≺ M ≺ I2i+1.

The proof is by induction on i. For i = 0, we have

I0 =⊥≺ M.

Because conseqP is antimonotonic, conseqP (M) ≺ conseqP (I0). Now conseqP (I0) = I1

and because M is 3-stable, conseqP (M)= M. Thus we have

I0 ≺ M ≺ I1.

The induction step is similar and is omitted.

By (‡), I∗ ≺ M ≺ I∗. Now a positive fact in I∗∗ is in I∗ and so is in M because I∗ ≺ M.

Similarly, a negative fact in I∗∗ is in I∗ and so is in M because M ≺ I∗.

Note that the proof of statement 2 above formalizes the intuition that the I2i provide

underestimates of the positive facts in all acceptable answers (3-stable models) and the

I2i+1 provide underestimates of the negative facts in those answers. The fact that Pwf (∅)
is a minimal model of P is left for Exercise 15.19.

Variations of the alternating fixpoint computation can be obtained by starting with

initial instances different from ⊥. For example, it may make sense to start with the content

of the edb relations as an initial instance. Such variations are sometimes useful for technical

reasons. It turns out that the resulting sequences still compute the well-founded semantics.

We show the following:

Proposition 15.3.10 Let P be a datalog¬ program. Let {Ii}i≥0 be defined in the same

way as the sequence {Ii}i≥0, except that I0 is some total instance such that

⊥≺ I0 ≺ Pwf (∅).

Then
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I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1

and (using the same notation as before),

I
∗
∗ = Pwf (∅).

Proof Let us compare the sequences {Ii}i≥0 and {Ii}i≥0. Because I0 ≺ Pwf (∅) and I0 is

total, it easily follows that I0 ≺ I∗. Thus ⊥= I0 ≺ I0 ≺ I∗. From the antimonotonicity of

the conseqP operator and the fact that conseq2
P (I∗)= I∗, it follows that I2i ≺ I2i ≺ I∗ for

all i, i ≥ 0. Thus I∗ = I∗. Then

I
∗
= conseqP (I∗)= conseqP (I∗)= I∗

so I
∗
∗ = I∗∗ = Pwf (∅).

As noted earlier, the instances in the sequence {Ii}i≥0 are total. A slightly different

alternating fixpoint computation formulated only in terms of positive and negative facts

can be defined. This is explored in Exercise 15.25.

Finally, the alternating fixpoint computation of the well-founded semantics involves

looking at the ground rules of the given program. However, one can clearly compute the

semantics without having to explicitly look at the ground rules. We show in Section 15.4

how the well-founded semantics can be computed by a fixpoint query.

Well-Founded and Stratified Semantics Agree

Because the well-founded semantics provides semantics to all datalog¬ programs, it does

so in particular for stratified programs. Example 15.3.8(c) showed one stratified program

for which stratified and well-founded semantics coincide. Fortunately, as shown next,

stratified and well-founded semantics are always compatible. Thus if a program is stratified,

then the stratified and well-founded semantics agree.

A datalog¬ program P is said to be total if Pwf (I) is total for each input I over edb(P ).

Theorem 15.3.11 If P is a stratified datalog¬ program, then P is total under the well-

founded semantics, and for each 2-valued instance I over edb(P ), Pwf (I)= P strat(I).

Proof Let P be stratified, and let input I0 over edb(P ) be fixed. The idea of the proof is

the following. Let J be a 3-stable model of PI0. We shall show that J = P strat(I0). This will

imply that P strat(I0) is the unique 3-stable model for PI0. In particular, it contains only the

positive and negative facts in all 3-stable models of PI0 and is thus Pwf (I0).

For the proof, we will need to develop some notation.

Notation for the stratification: Let P 1, . . . , P n be a stratification of P . Let P 0 = ∅I0 (i.e.,

the program corresponding to all of the facts in I0). For each k in [0, n],

let Sk = idb(P k) (S0 is edb(P ));

S[0,k] = ∪i∈[0,k]Si; and
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Ik = (P 1 ∪ · · · ∪ P k)strat(I0)= In|S[0,k] (and, in particular, P strat(I0)= In).

Notation for the 3-stable model: Let P̂ = pg(PI0, J). Recall that because J is 3-stable for

PI0,

J = conseq
P̂
(J)= lim

i≥0
3-T i

P̂
(∅).

For each k in [0, n],

• let Jk = J|S[0,k]; and

• P̂ k+1 = pg(P k+1
Jk

, Jk)= pg(P k+1
Jk

, J).

[Note that pg(P k+1
Jk

, Jk)= pg(P k+1
Jk

, J) because all the negations in P k+1 are over predi-

cates in S[0,k].]

To demonstrate the result, we will show by induction on k ∈ [0, n] that

(*) ∃lk ≥ 0 such that ∀i ≥ 0, Jk = 3-T
lk+i

P̂
(∅) | S[0,k] = Ik.

Clearly, for k = n, (*) demonstrates the result.

The case where k = 0 is satisfied by setting l0 = 1, because J0 = 3-T 1+i

P̂
(∅)|S0 = I0

for each i ≥ 0.

Suppose now that (*) is true for some k ∈ [0, n− 1]. Then for each i ≥ 0, by the choice

of P̂ k+1, the form of P k+1, and (*),

(1) T i
P k+1(Ik)|Sk+1 ⊆ 3-T i+1

P̂ k+1
(∅)|Sk+1 ⊆ T i+1

P k+1(Ik)|Sk+1.

(Here and later, ⊆ denotes the usual 2-valued containment between instances; this is well

defined because all instances considered are total, even if J is not.) In (1), the 3-T i+1

P̂ k+1

and T i+1
P k+1 terms may not be equal, because the positive atoms of Ik = Jk are available

when applying TP k+1 the first time but are available only during the second application of

3-T
P̂ k+1. On the other hand, the T i

P k+1 and 3-T i+1

P̂ k+1
terms may not be equal (e.g., if there is

a rule of the form A← in P k+1).

By (1) and finiteness of the input, there is some m≥ 0 such that for each i ≥ 0,

(2) In|Sk+1 = T m+i
P k+1(Ik)|Sk+1 = 3-T m+i

P̂ k+1
(∅)|Sk+1.

This is almost what is needed to complete the induction, except that P̂ k+1 is used instead

of P̂ . However, observe that for each i ≥ 0,

(3) 3-T i
P̂
(∅)|Sk+1 ⊆ 3-T i

P̂ k+1
(∅)|Sk+1

because 3-T i
P̂
(∅)|S[0,k] ⊆ Jk for each i ≥ 0 by the induction hypothesis. Finally observe

that for each i ≥ 0,

(4) 3-T i
P̂ k+1

(∅)|Sk+1 ⊆ 3-T
i+lk
P̂

(∅)|Sk+1
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because 3-T
lk

P̂
(∅)|S[0,k] contains all of the positive atoms of Jk.

Then for each i ≥ 0 we have

3-T m+i
P̂ k+1

(∅)|Sk+1 ⊆ 3-T
m+i+lk
P̂

(∅)|Sk+1 by (4)

⊆ 3-T
m+i+lk
P̂ k+1

(∅)|Sk+1 by (3)

⊆ 3-T m+i
P̂ k+1

(∅)|Sk+1 by (2).

It follows that

(5) 3-T m+i
P̂ k+1

(∅)|Sk+1 = 3-T
m+i+lk
P̂

(∅)|Sk+1.

Set l(k+1) = lk +m. Combining (2) and (5), we have, for each i ≥ 0,

J|Sk+1 = 3-T
l(k+1)+i

P̂
(∅)|Sk+1 = In|Sk+1.

Together with the inductive hypothesis, we obtain for each i ≥ 0 that

J|S[0,k+1] = 3-T
l(k+1)+i

P̂
(∅)|S[0,k+1] = In|S[0,k+1],

which concludes the proof.

As just seen, each stratifiable program is total under the well-founded semantics. How-

ever, as indicated by Example 15.3.8(b), a datalog¬ program P may yield a 3-valued model

Pwf (I) on some inputs. Furthermore, there are programs that are not stratified but whose

well-founded models are nonetheless total (see Exercise 15.22). Unfortunately, there can

be no effective characterization of those datalog¬ programs whose well-founded semantics

is total for all input databases (Exercise 15.23). One can find sufficient syntactic conditions

that guarantee the totality of the well-founded semantics, but this quickly becomes a te-

dious endeavor. It has been shown, however, that for each datalog¬ program P, one can

find another program whose well-founded semantics is total on all inputs and that produces

the same positive facts as the well-founded semantics of P.

15.4 Expressive Power

In this section, we examine the expressive power of datalog¬ with the various semantics

for negation we have considered. More precisely, we focus on semipositive, stratified, and

well-founded semantics. We first look at the relative power of these semantics and show

that semipositive programs are weaker than stratified, which in turn are weaker than well

founded. Then we look at the connection with languages studied in Chapter 14 that also

use recursion and negation. We prove that well-founded semantics can express precisely

the fixpoint queries.

Finally we look at the impact of order on expressive power. An ordered database

contains a special binary relation succ that provides a successor relation on all constants
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in the active domain. Thus the constants are ordered by succ and in fact can be viewed

as integers. The impact of assuming that a database is ordered is examined at length

in Chapter 17. Rather surprisingly, we show that in the presence of order, semipositive

programs are as powerful as programs with well-founded semantics. In particular, all three

semantics are equivalent and express precisely the fixpoint queries.

We begin by briefly noting the connection between stratified datalog¬ and relational

calculus (and algebra). To see that stratified datalog¬ can express all queries in CALC,

recall the nonrecursive datalog¬ (nr-datalog¬) programs introduced in Chapter 5. Clearly,

these are stratified datalog¬ programs in which recursion is not allowed. Theorem 5.3.10

states that nr-datalog¬ (with one answer relation) and CALC are equivalent. It follows that

stratified datalog¬ can express all of CALC. Because transitive closure of a graph can be

expressed in stratified datalog¬ but not in CALC (see Proposition 17.2.3), it follows that

stratified datalog¬ is strictly stronger than CALC.

Stratified Datalog Is Weaker than Fixpoint

Let us look at the expressive power of stratified datalog¬. Computationally, stratified pro-

grams provide recursion and negation and are inflationary. Therefore one might expect that

they express the fixpoint queries. It is easy to see that all stratified datalog¬ are fixpoint

queries (Exercise 15.28). In particular, this shows that such programs can be evaluated in

polynomial time. Can stratified datalog¬ express all fixpoint queries? Unfortunately, no.

The intuitive reason is that in stratified datalog¬ there is no recursion through negation, so

the number of applications of negation is bounded. In contrast, fixpoint queries allow re-

cursion through negation, so there is no bound on the number of applications of negation.

This distinction turns out to be crucial. We next outline the main points of the argument,

showing that stratified datalog¬ is indeed strictly weaker than fixpoint.

The proof uses a game played on so-called game trees. The game is played on a given

tree. The nodes of the tree are the possible positions in the game, and the edges are the

possible moves from one position to another. Additionally, some leaves of the tree are

labeled black. The game is between two players. A round of the game starting at node

x begins with Player I making a move from x to one of its children y. Player II then makes

a move from y, etc. The game ends when a leaf is reached. Player I wins if Player II picks

a black leaf. For a given tree (with labels), Player I has a winning strategy for the game

starting at node x if he or she can win starting at x no matter how Player II plays. We are

interested in programs determining whether there is such a winning strategy.

The game tree is represented as follows. The set of possible moves is given by a binary

relation move and the set of black nodes by a unary relation black. Consider the query

winning (not to be confused with the predicate win of Example 15.3.1), which asks if Player

I has a winning strategy starting at the root of the tree. We will define a set of game trees G

such that

(i) the query winning on the game trees in G is definable by a fixpoint query, and

(ii) for each stratified program P , there exist game treesG,G′ ∈ G such that winning

is true on G and false on G′, but P cannot distinguish between G and G′.

Clearly, (ii) shows that the winning query on game trees is not definable by a stratified
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datalog¬ program. The set G of game trees is defined next. It consists of the Gl,k and G′
l,k

defined by induction as follows:

• G0,k andG′
0,k have no moves and just one node, labeled black inG0,k and not labeled

in G′
0,k.

• Gi+1,k consists of a copy of G′
i,k, k disjoint copies of Gi,k, and a new root di+1. The

moves are the union of the moves in the copies of G′
i,k and Gi,k together with new

moves from the root di+1 to the roots of the copies. The labels remain unchanged.

• G′
i+1,k consists of k + 1 disjoint copies of Gi,k and a new root d ′i+1 from which

moves are possible to the roots of the copies of Gi,k.

The game treesG4,1 andG′
4,1 are represented in Fig. 15.2. It is easy to see that winning

is true on the game trees G2i,k and false on game trees G′
2i,k, i > 0 (Exercise 15.30).

We first note that the query winning on game trees in G can be defined by a fixpoint

query. Consider

ϕ(T )= (∃y)[Move(x, y) ∧ (∀z)(Move(y, z)→ Black(z))]

∨ (∃y)[Move(x, y) ∧ (∀z)(Move(y, z)→ T (z))].

G
4.1

G′
4.1

Root

Root

Figure 15.2: Game trees
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It is easy to verify that winning is defined by µT (ϕ(T ))(root), where root is the root of the

game tree (Exercise 15.30). Next we note that the winning query is not expressible by any

stratified datalog¬ program. To this end, we use the following result, stated without proof.

Lemma 15.4.1 For each stratified datalog¬ program P , there exist i, k such that

P(Gi,k)(winning)= P(G′
i,k)(winning).

The proof of Lemma 15.4.1 uses an extension of Ehrefeucht-Fraissé games (the games

are described in Chapter 17). The intuition of the lemma is that, to distinguish between

Gi,k and G′
i,k for i and k sufficiently large, one needs to apply more negations than the

fixed number allowed by P . Thus no stratified program can distinguish between all the

Gi,k and G′
i,k. In particular, it follows that the fixpoint query winning is not equivalent to

any stratified datalog¬ program. Thus we have the following result, settling the relationship

between stratified datalog¬ and the fixpoint queries.

Theorem 15.4.2 The class of queries expressible by stratified datalog¬ programs is

strictly included in the fixpoint queries.

Remark 15.4.3 The game tree technique can also be used to prove that the number of

strata in stratified datalog¬ programs has an impact on expressive power. Specifically, let

Strati consist of all queries expressible by stratified datalog¬ programs with i strata. Then it

can be shown that for all i, Strati ⊂ Strati+1. In particular, semipositive datalog¬ is weaker

than stratified datalog¬.

Well-Founded Datalog¬ Is Equivalent to Fixpoint

Next we consider the expressive power of datalog¬ programs with well-founded semantics.

We prove that well-founded semantics can express precisely the fixpoint queries. We begin

by showing that the well-founded semantics can be computed by a fixpoint query. More

precisely, we show how to compute the set of false, true, and undefined facts of the answer

using a while+ program (see Chapter 14 for the definition of while+ programs).

Theorem 15.4.4 Let P be a datalog¬ program. There exists a while+ program w with

input relations edb(P ), such that

1. w contains, for each relation R in sch(P ), three relation variables Rǫanswer, where

ǫ ∈ {0, 1/2, 1};

2. for each instance I over edb(P ), u ∈ w(I)(Rǫanswer) iff Pwf (I)(R(u)) = ǫ, for

ǫ ∈ {0, 1/2, 1}.

Crux Let P be a datalog¬ program. The while+ program mimics the alternating fix-

point computation of Pwf . Recall that this involves repeated applications of the operator

conseqP , resulting in the sequence
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I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1.

Recall that the Ii are all total instances. Thus 3-valued instances are only required to

produce the final answer from I∗ and I∗ at the end of the computation, by one last first-

order query.

It is easily verified that while+ can simulate one application of conseqP on total

instances (Exercise 15.27). The only delicate point is to make sure the computation is

inflationary. To this end, the program w will distinguish between results of even and odd

iterations of conseqP by having, for each R, an odd and even version R0
odd and R1

even. R0
odd

holds at iteration 2i + 1 the negative facts of R in I2i+1, and R1
even holds at iteration 2i

the positive facts of R in I2i. Note that both R0
odd and R1

even are increasing throughout the

computation.

We elaborate on the simulation of the operator conseqP on a total instance I. The

programw will have to distinguish between facts in the input I, used to resolve the negative

premises of rules in P , and those inferred by applications of 3-TP . Therefore for each

relation R, the while+ program will also maintain a copy R̄even and R̄odd to hold the facts

produced by consecutive applications of 3-TP in the even and odd cases, respectively. More

precisely, the R̄odd hold the positive facts inferred from input I2i represented in R1
even, and

the R̄even hold the positive facts inferred from input I2i+1 represented in R0
odd. It is easy

to write a first-order query defining one application of 3-TP for the even or odd cases.

Because the representations of the input are different in the even and odd cases, different

programs must be used in the two cases. This can be iterated in an inflationary manner,

because the set of positive facts inferred in consecutive applications of 3-TP is always

increasing. However, the R̄odd and R̄even have to be initialized to ∅ at each application

of conseqP . Because the computation must be inflationary, this cannot be done directly.

Instead, timestamping must be used. The initialization of the R̄odd and R̄even is simulated

by timestamping each relation with the current content ofR1
even andR0

odd, respectively. This

is done in a manner similar to the proofs of Chapter 14.

We now exhibit a converse of Theorem 15.4.4, showing that any fixpoint query can es-

sentially be simulated by a datalog¬ program with well-founded semantics. More precisely,

the positive portion of the well-founded semantics yields the same facts as the fixpoint

query.

Example 15.4.6 illustrates the proof of this result.

Theorem 15.4.5 Let q be a fixpoint query over input schema R. There exists a datalog¬

program P such that edb(P )= R, P has an idb relation answer, and for each instance I

over R, the positive portion of answer in Pwf (I) coincides with q(I).

Crux We will use the definition of fixpoint queries by iterations of positive first-order

formulas. Let q be a fixpoint query. As discussed in Chapter 14, there exists a CALC

formula ϕ(T ), positive in T , such that q is defined by µT (ϕ(T ))(u), where u is a vector of

variables and constants. Consider the CALC formula ϕ(T ). As noted earlier in this section,

there is an nr-datalog¬ program Pϕ with one answer relation R′ such that Pϕ is equivalent
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to ϕ(T ). Because ϕ(T ) is positive in T , along any path in the syntax tree of ϕ(T ) ending

with atom T there is an even number of negations. This is also true of paths in GPϕ .

Consider the precedence graph GPϕ of Pϕ. Clearly, one can construct Pϕ such that

each idb relation except T is used in the definition of exactly one other idb relation, and

all idb relations are used eventually in the definition of the answer R′. In other words, for

each idb relation R other than T , there is a unique path in GPϕ from R to R′. Consider the

paths from T to some idb relation R in Pϕ. Without loss of generality, we can assume that

all paths have the same number of negations (otherwise, because all paths to T have an

even number of negations, additional idb relations can be introduced to pad the paths with

fewer negations, using rules that perform redundant double negations). Let the rank of an

idb relation R in Pϕ be the number of negations on each path leading from T to R in GPϕ .

Now let P be the datalog¬ program obtained from Pϕ as follows:

• replace the answer relation R′ by T ;

• add one rule answer(v)← T (u),where v is the vector of distinct variables occurring

in u, in order of occurrence.

The purpose of replacing R′ by T is to cause program Pϕ to iterate, yielding µT (ϕ(T )).

The last rule is added to perform the final selection and projection needed to obtain the

answer µT (ϕ(T ))(u). Note that, in some sense, P is almost stratified, except for the fact

that the result T is fed back into the program.

Consider the alternating fixpoint sequence {Ii}i≥0 in the computation of Pwf (I). Sup-

pose R′ has rank q in Pϕ, and let R be an idb relation of Pϕ whose rank in Pϕ is r ≤ q.

Intuitively, there is a close correspondence between the sequence {Ii}i≥0 and the iterations

of ϕ, along the following lines: Each application of conseqP propagates the correct result

from relations of rank r in Pϕ to relations of rank r + 1. There is one minor glitch, how-

ever: In the fixpoint computation, the edb relations are given, and even at the first iteration,

their negation is taken to be their complement; in the alternating fixpoint computation, all

negative literals, including those involving edb relations, are initially taken to be true. This

results in a mismatch. To fix the problem, consider a variation of the alternating fixpoint

computation of Pwf (I) defined as follows:

I0 = I ∪ ¬.{R(a1, . . . , an) | R ∈ idb(P ), R(a1, . . . , an) ∈ B(P, I)}

Ii+1 = conseqP (Ii).

Clearly, ⊥≺ I0 ≺ P
wf (I). Then, by Proposition 15.3.10, I

∗
∗ = P

wf (I).

Now the following can be verified by induction for each idb relation R of rank r:

For each i, (Iiq+r)
1 contains exactly the facts of R true in Pϕ(ϕ

i(∅)).

Intuitively, this is so because each application of conseqP propagates the correct result

across one application of negation to an idb predicate. Because R′ has rank q, it takes q

applications to simulate a complete application of Pϕ. In particular, it follows that for each

i, (Iiq)
1 contains in T the facts true in ϕi(∅).

Thus (I∗)
1 contains in T the facts true in µT (ϕ(T )). Finally answer is obtained by a

simple selection and projection from T using the last rule in P and yields µT (ϕ(T ))(u).
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In the preceding theorem, the positive portion of answer for Pwf (I) coincides with

q(I). However, Pwf (I) is not guaranteed to be total (i.e., it may contain unknown facts).

Using a recent result (not demonstrated here), a program Q can be found such that Qwf

always provides a total answer, and such that the positive facts of Pwf and Qwf coincide

on all inputs.

Recall from Chapter 14 that datalog¬ with inflationary semantics also expresses pre-

cisely the fixpoint queries. Thus we have converged again, this time by the deductive data-

base path, to the fixpoint queries. This bears witness, once more, to the naturalness of this

class. In particular, the well-founded and inflationary semantics, although very different,

have the same expressive power (modulo the difference between 3-valued and 2-valued

models).

Example 15.4.6 Consider the fixpoint query µgood(ϕ(good))(x), where

ϕ(good)= ∀y(G(y, x)→ good(y)).

Recall that this query, also encountered in Chapter 14, computes the “good” nodes of the

graph G (i.e., those that cannot be reached from a cycle). The nr-datalog¬ program Pϕ
corresponding to one application of ϕ(good) is the one exhibited in Example 15.3.8(c):

bad(x)←G(y, x),¬good(y)

R′(x) ←¬bad(x)

Note that bad is negative in Pϕ and has rank one, and good is positive. The answer R′ has

rank two. The program P is as follows:

bad(x) ←G(y, x),¬good(y)

good(x) ←¬bad(x)

answer(x)← good(x)

Consider the input graph

G= {〈b, c〉, 〈c, b〉, 〈c, d〉, 〈a, d〉, 〈a, e〉}.

The consecutive values of ϕi(∅) are

ϕ(∅) = {a},

ϕ2(∅)= {a, e},

ϕ3(∅)= {a, e}.

Thus µgood(ϕ(good))(x) yields the answer {a, e}. Consider now the alternating fixpoint

sequence in the computation of Pwf on the same input (only the positive facts of bad and

good are listed, because G does not change and answer = good).
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bad good

I0 ∅ ∅

I1 {b, c, d, e} {a, b, c, d, e}

I2 ∅ {a}

I3 {b, c, d} {a, b, c, d, e}

I4 ∅ {a, e}

I5 {b, c, d} {a, b, c, d, e}

I6 ∅ {a, e}

Thus

ϕ(∅) = (I2)
1(good),

ϕ2(∅)= (I4)
1(good)

and

(I4)
1(answer)= µgood(ϕ(good))(x).

The relative expressive power of the various languages discussed in this chapter is

summarized in Fig. 15.3. The arrows indicate strict inclusion. For a view of these languages

in a larger context, see also Figs. 18.4 and 18.5 at the end of Part E.

The Impact of Order

Finally we look at the impact of order on the expressive power of the various datalog¬

semantics. As we will discuss at length in Chapter 17, the assumption that databases are

ordered can have a dramatic impact on the expressive power of languages like fixpoint

or while. The datalog¬ languages are no exception. The effect of order is spectacular.

With this assumption, it turns out that semipositive datalog¬ is (almost) as powerful as

stratified datalog¬ and datalog¬ with well-founded semantics. The “almost” comes from a

well-founded semantics datalog¬ ≡ fixpoint semantics datalog¬

⇑
stratified datalog¬

⇑
semipositive datalog¬

⇑
datalog

Figure 15.3: Relative expressive power of datalog(¬) languages
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technicality concerning the order: We also need to assume that the minimum and maximum

constants are explicitly given. Surprisingly, these constants, which can be computed with

a first order query if succ is given, cannot be computed with semipositive programs (see

Exercise 15.29).

The next lemma states that semipositive programs express the fixpoint queries on

ordered databases with min and max (i.e., databases with a predicate succ providing a

successor relation among all constants, and unary relations min and max containing the

smallest and the largest constant).

Lemma 15.4.7 The semipositive datalog¬ programs express precisely the fixpoint

queries on ordered databases with min and max.

Crux Let q be a fixpoint query over database schema R. Because q is a fixpoint query,

there is a first-order formula ϕ(T ), positive in T , such that q is defined by µT (ϕ(T ))(u),

where u is a vector of variables and constants. Because T is positive in ϕ(T ), we can

assume that ϕ(T ) is in prenex normal formQ1x1Q2x2 . . .Qkxk(ψ), whereψ is a quantifier

free formula in disjunctive normal form and T is not negated in ψ . We show by induction

on k that there exists a semipositive datalog¬ program Pϕ with an idb relation answerϕ
defining µT (ϕ(T )) [the last selection and projection needed to obtain the final answer

µT (ϕ(T ))(u) pose no problem]. Suppose k = 0 (i.e., ϕ = ψ). Then Pϕ is the nr-datalog¬

program corresponding to ψ , where the answer relation is T . Because ψ is quantifier free

and T is not negated in ψ , Pϕ is clearly semipositive. Next suppose the statement is true

for some k ≥ 0, and let ϕ(T ) have quantifier depth k + 1. There are two cases:

(i) ϕ = ∃xψ(x, v), where ψ has quantifier depth k. Then Pϕ contains the rules

of Pψ , where T is replaced in heads of rules by a new predicate T ′ and one

additional rule

T (v)← T ′(x, v).

(ii) ϕ = ∀xψ(x, v), where ψ has quantifier depth k. Then Pϕ consists, again, of Pψ ,

where T is replaced in heads of rules by a new predicate T ′, with the following

rules added:

R′(x, v) ← T ′(x, v),min(x)

R′(x′, v)← R′(x, v), succ(x, x′), T ′(x′, v)

T (v) ← R′(x, v),max(x),

where R′ is a new auxiliary predicate. Thus the program steps through all x’s

using the successor relation succ, starting from the minimum constant. If the

maximum constant is reached, then T ′(x, v) is satisfied for all x, and T (v) is

inferred.

This completes the induction.

As we shall see in Chapter 17, fixpoint expresses on ordered databases exactly the
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queries computable in time polynomial in the size of the database (i.e., qptime). Thus we

obtain the following result. In comparing well-founded semantics with the others, we take

the positive portion of the well-founded semantics as the answer.

Theorem 15.4.8 Stratified datalog¬ and datalog¬ with well-founded semantics are

equivalent on ordered databases and express exactly qptime. They are also equivalent to

semipositive datalog¬ on ordered databases with min and max and express exactly qptime.

15.5 Negation as Failure in Brief

In our presentation of datalog in Chapter 12, we saw that the minimal model and least

fixpoint semantics have an elegant proof-theoretic counterpart based on SLD resolution.

One might naturally wonder if such a counterpart exists in the case of datalog¬. The

answer is yes and no. Such a proof-theoretic approach has indeed been proposed and

is called negation as failure. This was originally developed for logic programming and

predates stratified and well-founded semantics. Unfortunately, the approach has two major

drawbacks. The first is that it results in a proof-building procedure that does not always

terminate. The second is that it is not the exact counterpart of any other existing semantics.

The semantics that has been proposed as a possible match is “Clark’s completion,” but the

match is not perfect and Clark’s completion has its own problems. We provide here only a

brief and informal presentation of negation as failure and the related Clark’s completion.

The idea behind negation as failure is simple. We would like to infer a negative fact

¬A ifA cannot be proven by SLD resolution. Thus¬Awould then be proven by the failure

to prove A. Unfortunately, this is generally noneffective because SLD derivations may be

arbitrarily long, and so one cannot check in finite time2 that there is no proof of A by SLD

resolution. Instead we have to use a weaker notion of negation by failure, which can be

checked. This is done as follows. A fact ¬A is proven if all SLD derivations starting from

the goal ← A are finite and none produces an SLD refutation for ← A. In other words,

A finitely fails. This procedure applies to ground atoms A only. It gives rise to a proof

procedure called SLDNF resolution. Briefly, SLDNF resolution extends SLD resolution as

follows. Refutations of positive facts proceed as for SLD resolution. Whenever a negative

ground goal←¬A has to be proven, SLD resolution is applied to← A, and ¬A is proven

if the SLD resolution finitely fails for ← A. The idea of SLDNF seems appealing as the

proof-theoretic version of the closed world assumption. However, as illustrated next, it

quickly leads to significant problems.

Example 15.5.1 Consider the usual program PTC for transitive closure of a graph:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y)

2 Because databases are finite, one can develop mechanisms to bound the expansion. We ignore this
aspect here.
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Consider the instance I where G has edges {〈a, b〉, 〈b, a〉, 〈c, a〉}. Clearly, {〈a, c〉} is not

in the transitive closure of G, and so not in T , by the usual datalog semantics. Suppose

we wish to prove the fact ¬T (a, c), using negation as failure. We have to show that SLD

resolution finitely fails on T (a, c), with the preceding program and input. Unfortunately,

SLD resolution can enter a negative loop when applied to ← T (a, c). One obtains the

following SLD derivation:

1. ← T (a, c);

2. ←G(a, z), T (z, c), using the second rule;

3. ← T (b, c), using the fact G(a, b);

4. ←G(b, z), T (z, c) using the second rule;

5. ← T (a, c) using the fact G(b, a).

Note that the last goal is the same as the first, so this can be extended to an infinite

derivation. It follows that SLD resolution does not finitely fail on ← T (a, c), so SLDNF

does not yield a proof of ¬T (a, c). Moreover, it has been shown that this does not depend

on the particular program used to define transitive closure. In other words, there is no

datalog¬ program that under SLDNF can prove the positive and negative facts true of the

transitive closure of a graph.

The preceding example shows that SLDNF can behave counterintuitively, even in

some simple cases. The behavior is also incompatible with all the semantics for negation

that we have discussed so far. Thus one cannot hope for a match between SLDNF and these

semantics.

Instead a semantics called Clark’s completion has been proposed as a candidate match

for negation as failure. It works as follows. For a datalog¬ program P , the completion of

P, comp(P), is constructed as follows. For each idb predicate R, each rule

ρ : R(u)← L1(v1), . . . , Ln(vn)

defining R is rewritten so there is a uniform set of distinct variables in the rule head and so

all free variables in the body are existentially quantified:

ρ′ : R(u′)←∃v′(x1 = t1 ∧ · · · ∧ xk = tk ∧ L1(v1) ∧ · · · ∧ Ln(vn)).

(If the head of ρ has distinct variables for all coordinates, then the equality atoms can be

avoided. If repeated variables or constants occur, then equality must be used.) Next, if the

rewritten rules for R are ρ′1, . . . , ρ
′
l , the completion of R is formed by

∀u′(R(u′)↔ body(ρ′1) ∨ · · · ∨ body(ρ′l)).

Intuitively, this states that ground atom R(w) is true iff it is supported by one of the rules

defining R. Finally the completion of P is the set of completions of all idb predicates of P ,

along with the axioms of equality, if needed.
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The semantics of P is now defined by the following: A is true iff it is a logical conse-

quence of comp(P ). A first problem now is that comp(P ) is not always consistent; in fact,

its consistency is undecidable. What is the connection between SLDNF and Clark’s com-

pletion? Because SLDNF is consistent (it clearly cannot prove A and ¬A) and comp(P )

is not so always, SLDNF is not always complete with respect to comp(P ). For consistent

comp(P ), it can be shown that SLDNF resolution is sound. However, additional conditions

must be imposed on the datalog¬ programs for SLDNF resolution to be complete.

Consider again the transitive closure program PTC and input instance I of Exam-

ple 15.5.1. Then the completion of T is equivalent to

T (x, y)↔G(x, y) ∨ ∃z(G(x, z) ∧ T (z, y)).

Note that neither T (a, c) nor ¬T (a, c) are consequences of comp(PTC,I).

In summary, negation as failure does not appear to provide a convincing proof-

theoretic counterpart to the semantics we have considered. The search for more successful

proof-theoretic approaches is an active research area. Other proposals are described briefly

in the Bibliographic Notes.

Bibliographic Notes

The notion of a stratified program is extremely natural. Not surprisingly, it was proposed

independently by quite a few investigators [CH85, ABW88, Lif88, VanG86]. The inde-

pendence of the semantics from a particular stratification (Theorem 15.2.10) was shown in

[ABW88].

Research on well-founded semantics, and the related notion of a 3-stable model, has

its roots in investigations of stable and default model semantics. Although formulated

somewhat differently, the notion of a stable/default model is equivalent to that of a total

3-stable model [Prz90]. Stable model semantics was introduced in [GL88], and default

model semantics was introduced in [BF87, BF88]. Stable semantics is based on Moore’s

autoepistemic logic [Moo85], and default semantics is based on Reiter’s default logic

[Rei80]. The equivalence between autoepistemic and default logic in the general case has

been shown in [Kon88]. The equivalence between stable model semantics and default

model semantics was shown in [BF88].

Several equivalent definitions of the well-founded semantics have been proposed. The

definition used in this chapter comes from [Prz90]. The alternating fixpoint computation

we described is essentially the same as in [VanG89]. Alternative procedures for computing

the well-founded semantics are exhibited in [BF88, Prz89]. Historically, the first definition

of well-founded semantics was proposed in [VanGRS88, VanGRS91]. This is described in

Exercise 15.24.

The fact that well-founded and stratified semantics agree on stratifiable datalog¬ pro-

grams (Theorem 15.3.11) was shown in [VanGRS88].

Both the stratified and well-founded semantics were originally introduced for general

logic programming, as well as the more restricted case of datalog. In the context of logic

programming, both semantics have expressive power equivalent to the arithmetic hierarchy

[AW88] and are thus noneffective.

The result that datalog¬ with well-founded semantics expresses exactly the fixpoint



Bibliographic Notes 409

queries is shown in [VanG89]. Citation [FKL87] proves that for every datalog¬ program P

there is a total datalog¬ program Q such that the positive portions of Pwf (I) and Qwf (I)

coincide for every I. The fact that stratified datalog¬ is weaker than fixpoint, and therefore

weaker than well-founded semantics, was shown in [Kol91], making use of earlier results

from [Dal87] and [CH82]. In particular, Lemma 15.4.1 is based on Lemma 3.9 in [CH82].

The result that semipositive datalog¬ expresses qptime on ordered databases with min and

max is due to [Pap85].

The investigation of negation as failure was initiated in [Cla78], in connection with

general logic programming. In particular, SLDNF resolution as well as Clark’s completion

are introduced there. The fact that there is no datalog¬ program for which the positive and

negative facts about the transitive closure of the graph can be proven by SLDNF resolution

was shown in [Kun88]. Other work related to Clark’s completion can be found in [She88,

Llo87, Fit85, Kun87].

Several variations of SLDNF resolutions have been proposed. SLS resolution is in-

troduced in [Prz88] to deal with stratified programs. An exact match is achieved between

stratified semantics and the proof procedure provided by SLS resolution. Although SLS

resolution is effective in the context of (finite) databases, it is not so when applied to general

logic programs, with function symbols. To deal with this shortcoming, several restrictions

of SLS resolution have been proposed that are effective in the general framework [KT88,

SI88].

Several proof-theoretic approaches corresponding to the well-founded semantics have

been proposed. SLS resolution is extended from stratified to arbitrary datalog¬ programs

in [Prz88], under well-founded semantics. Independently, another extension of SLS res-

olution called global SLS resolution is proposed in [Ros89], with similar results. These

proposals yield noneffective resolution procedures. An effective procedure is described in

[BL90].

In [SZ90], an interesting connection between nondeterminism and stable models of a

program (i.e., total 3-stable models; see also Exercise 15.20) is pointed out. Essentially,

it is shown that the stable models of a datalog¬ program can be viewed as the result

of a natural nondeterministic choice. This uses the choice construct introduced earlier

in [KN88]. Another use of nondeterminism is exhibited in [PY92], where an extension

of well-founded semantics is provided, which involves the nondeterministic choice of a

fixpoint of a datalog¬ program. This is called tie-breaking semantics. A discussion of

nondeterminism in deductive databases is provided in [GPSZ91].

Another semantics in the spirit of well-founded is the valid model semantics intro-

duced in [BRSS92]. It is less conservative than well-founded semantics, in the sense that

all facts that are positive in well-founded semantics are also positive in the valid model

semantics, but the latter generally yields more positive facts than well-founded semantics.

There are a few prototypes (but no commercial system) implementing stratified

datalog¬. The language LDL [NT89, BNR+87, NK88] implements, besides the strati-

fied semantics for datalog¬, an extension to complex objects (see also Chapter 20). The

implementation uses heuristics based on the magic set technique described in Chapter 13.

The language NAIL! (Not Yet Another Implementation of Logic!), developed at Stan-

ford, is another implementation of the stratified semantics, allowing function symbols

and a set construct. The implementation of NAIL! [MUG86, Mor88] uses a battery of

evaluation techniques, including magic sets. The language EKS [VBKL89], developed at



410 Negation in Datalog

ECRC (European Computer-Industry Research Center) in Munich, implements the strat-

ified semantics and extensions allowing quantifiers in rule bodies, aggregate functions,

and constraint specification. The CORAL system [RSS92, RSSS93] provides a database

programming language that supports both imperative and deductive capabilities, including

stratification. An implementation of well-founded semantics is described in [CW92].

Nicole Bidoit’s survey on negation in databases [Bid91b], as well as her book on da-

talog [Bid91a], provided an invaluable source of information and inspired our presentation

of the topic.

Exercises

Exercise 15.1

(a) Show that, for datalog¬ programs P , the immediate consequence operator TP is not
always monotonic.

(b) Exhibit a datalog¬ program P (using negation at least once) such that TP is mono-
tonic.

(c) Show that it is decidable, given a datalog¬ program P , whether TP is monotonic.

Exercise 15.2 Consider the datalog¬ program P3 = {p←¬r; r←¬p;p←¬p, r}. Verify
that TP3

has a least fixpoint, but TP3
does not converge when starting on ∅.

Exercise 15.3

(a) Exhibit a datalog¬ program P and an instance K over sch(P ) such that K is a model
of $P but not a fixpoint of TP .

(b) Show that, for datalog¬ programs P , a minimal fixpoint of TP is not necessarily a
minimal model of $P and, conversely, a minimal model of $P is not necessarily a
minimal fixpoint of TP .

Exercise 15.4 Prove Lemma 15.2.8.

Exercise 15.5 Consider a database for the Parisian metro and bus lines, consisting of two re-
lations Metro[Station, Next-Station] and Bus[Station, Next-Station]. Write stratifiable datalog¬

programs to answer the following queries.

(a) Find the pairs of stations 〈a, b〉 such that one can go from a to b by metro but not by
bus.

(b) A pure bus path from a to b is a bus itinerary from a to b such that for all consecutive
stops c, d along the way, one cannot go from c to d by metro. Find the pairs of
stations 〈a, b〉 such that there is a pure bus path from a to b.

(c) Find the pairs of stations 〈a, b〉 such that b can be reached from a by some combina-
tion of metro or bus, but not by metro or bus alone.

(d) Find the pairs of stations 〈a, b〉 such that b can be reached from a by some combina-
tion of metro or bus, but there is no pure bus path from a to b.

(e) The metro is useless in a bus path from a to b if by taking the metro at any interme-
diate point c one can return to c but not reach any other station along the path. Find
the pairs of stations 〈a, b〉 such that the metro is useless in all bus paths connecting
a and b.
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Exercise 15.6 The semantics of stratifiable datalog¬ programs can be extended to infinite
databases as follows. Let P be a stratifiable datalog¬ program and let σ = P 1 . . . P n be a
stratification for P . For each (finite or infinite) instance I over edb(P ), σ(I) is defined similarly
to the finite case. More precisely, consider the sequence

I0 = I

Ii = P
i(Ii−1|edb(P i))

where

P i(Ii−1|edb(P i))= ∪j>0T
j

Pi
(Ii−1|edb(P i)).

Note that the definition is now noneffective because P i(Ii−1|edb(P i)) may be infinite.
Consider a database consisting of one binary relation succ providing a successor relation on

an infinite set of constants. Clearly, one can identify these constants with the positive integers.

(a) Write a stratifiable datalog¬ program defining a unary relation prime containing all
constants in succ corresponding to primes.

(b) Write a stratifiable datalog¬ program P defining a 0-ary relation Fermat, which is
true iff Fermat’s Last Theorem3 is true. (No shortcuts, please: The computation of
the program should provide a proof of Fermat’s Last Theorem, not just coincidence
of truth value!)

Exercise 15.7 Prove Theorem 15.2.2.

Exercise 15.8 A datalog¬ program is nonrecursive if its precedence graph is acyclic. Show
that every nonrecursive stratifiable datalog¬ program is equivalent to an nr-datalog¬ program,
and conversely.

Exercise 15.9 Let (A,<) be a partially ordered set. A listing a1, . . . , an of the elements in
A is compatible with < iff for i < j it is not the case that aj < ai. Let σ ′, σ ′′ be listings of A
compatible with<. Prove that one can obtain σ ′′ from σ ′ by a sequence of exchanges of adjacent
elements al, am such that al �< am and am �< al.

Exercise 15.10 Prove Lemma 15.2.9.

Exercise 15.11 (Supported models) Prove that there exist stratified datalog¬ programs P1, P2

such that sch(P1)= sch(P2), $P1
≡$P2

, and there is a minimal model I of $P1
such that I is a

supported model for P1, but not for P2. (In other words, the notion of supported model depends
not only on $P , but also on the syntax of P .)

Exercise 15.12 Prove part (b) of Proposition 15.2.11.

Exercise 15.13 Prove Proposition 15.2.12.

♠Exercise 15.14 [Bid91b] (Local stratification) The following extension of the notion of strat-
ification has been proposed for general logic programs [Prz86]. This exercise shows that local
stratification is essentially the same as stratification for the datalog¬ programs considered in this
chapter (i.e., without function symbols).

3 Fermat’s Last Theorem: There is no n > 2 such that the equation an + bn = cn has a solution in the
positive integers.



412 Negation in Datalog

A datalog¬ program P is locally stratified iff for each I over edb(P ), ground(PI) is strat-
ified. [An example of a locally stratified logic program with function symbols is {even(0)←;
even(s(x))←¬even(x)}.] The semantics of a locally stratified program P on input I is the
semantics of the stratified program ground(PI).

(a) Show that, if the rules of P contain no constants, then P is locally stratified iff it is
stratified.

(b) Give an example of a datalog¬ program (with constants) that is locally stratified but
not stratified.

(c) Prove that, for each locally stratified datalog¬ program P , there exists a stratified
datalog¬ program equivalent to P .

Exercise 15.15 Let α and β be propositional Boolean formulas (using ∧,∨,¬,→). Prove the
following:

(a) If α and β are equivalent with respect to 3-valued instances, then they are equivalent
with respect to 2-valued instances.

(b) If α and β are equivalent with respect to 2-valued instances, they are not necessarily
equivalent with respect to 3-valued instances.

Exercise 15.16 Prove Lemma 15.3.4.

Exercise 15.17 Let P be a datalog¬ program. Recall the definition of positivized ground
version of P given I, denoted pg(P, I), where I is a 3-valued instance. Prove the following:

(a) If I is total, then pg(P, I) is total.

(b) Let {Ii}i≥0 be the sequence of instances defined by

I0 =⊥

Ii+1 = pg(P, Ii)(⊥)= conseqP (Ii).

Prove that

I0 ≺ I2 · · · ≺ I2i ≺ I2i+2 ≺ · · · ≺ I2i+1 ≺ I2i−1 ≺ · · · ≺ I1.

Exercise 15.18 Exhibit a datalog¬ program that yields the complement of the transitive clo-
sure under well-founded semantics.

Exercise 15.19 Prove that for each datalog¬ program P and instance I over edb(P ), Pwf (I)
is a minimal 3-valued model of P whose restriction to edb(P ) equals I.

♠Exercise 15.20 A total 3-stable model of a datalog¬ program P is called a stable model of P

[GL88] (also called a default model [BF87, BF88]).

(a) Provide examples of datalog¬ programs that have (1) no stable models, (2) a unique
stable model, and (3) several stable models.

(b) Show that Pwf is total iff all 3-stable models are total.

(c) Prove that, if Pwf is total, then P has a unique stable model, but the converse is false.

♠Exercise 15.21 [BF88] Let P be a datalog¬ program and I an instance over edb(P ). Prove
that the problem of determining whether PI has a stable model is np-complete in the size of PI.
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Exercise 15.22 Give an example of a datalog¬ program P such that P is not stratified but
Pwf is total.

⋆Exercise 15.23 Prove that it is undecidable if the well-founded semantics of a given datalog¬

program P is always total. That is, it is undecidable whether, for each instance I over

edb(P ), P
wf

I is total.

♠Exercise 15.24 [VanGRS88] This exercise provides an alternative (and historically first) defi-
nition of well-founded semantics. LetL be a ground literal. The complement of L is¬A ifL= A
and A if L=¬A. If I is a set of ground literals, we denote by ¬.I the set of complements of the
literals in I. A set I of ground literals is consistent iff I ∩¬.I= ∅. Let P be a datalog¬ program.
The immediate consequence operator TP of P is extended to operate on sets of (positive and
negative) ground literals as follows. Let I be a set of ground literals. TP (I) consists of all literals
A for which there is a ground rule of P , A← L1, . . . , Lk, such that Li ∈ I for each i. Note that
TP can produce an inconsistent set of literals, which therefore does not correspond to a 3-valued
model. Now let I be a set of ground literals and J a set of positive ground literals. J is said to be
an unfounded set of P with respect to I if for each A ∈ J and ground rule r of P with A in the
head, at least one of the following holds:

• the complement of some literal in the body of r is in I; or

• some positive literal in the body of r is in J.

Intuitively, this means that if all atoms of I are assumed true and all atoms in J are assumed
false, then no atom of J is true under one application of TP .

Let the greatest unfounded set of P with respect to I be the union of all unfounded sets of
P with respect to I, denoted UP (I). Next consider the operator WP on sets of ground literals
defined by

WP (I)= TP (I) ∪ ¬.UP (I).

Prove the following:

(a) The greatest unfounded set UP (I) of P with respect to I is an unfounded set.

(b) The operator WP is monotonic (with respect to set inclusion).

(c) The least fixpoint of WP is consistent.

(d) The least fixpoint of WP equals Pwf .

♠Exercise 15.25 [VanG89] Let P be a datalog¬ program. If I is a set of ground literals, let
P(I) = T ωP (I), where TP is the immediate consequence operator on sets of ground literals

defined in Exercise 15.24. Furthermore, P(I) denotes the complement of P(I) [i.e., B(P, I)−
P(I)]. Consider the sequence of sets of negative facts defined by

N0 = ∅,

Ni+1 =¬.P (¬.P (Ni)).

The intuition behind the definition is the following. N0 is an underestimate of the set of negative
facts in the well-founded model. Then P(N) is an underestimate of the positive facts, and the
negated complement ¬.P (N) is an overestimate of the negative facts. Using this overestimate,
one can infer an overestimate of the positive facts, P(¬.P (N)). Therefore¬.P (¬.P (N)) is now
a new underestimate of the negative facts containing the previous underestimate. So {Ni}i≥0 is
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an increasing sequence of underestimates of the negative facts, which converges to the negative
facts in the well-founded model. Formally prove the following:

(a) The sequence {Ni}i≥0 is increasing.

(b) Let N be the limit of the sequence {Ni}i≥0 and K = N∪P(N). Then K = Pwf .

(c) Explain the connection between the sequence {Ni}i≥0 and the sets of negative facts
in the sequence {Ii}i≥0 defined in the alternating fixpoint computation of Pwf in the
text.

(d) Suppose the definition of the sequence {Ni}i≥0 is modified such that N0 = ¬.B(P )
(i.e., all facts are negative at the start). Show that for each i ≥ 0, Ni =¬.(I2i)

0.

Exercise 15.26 Let P be a datalog¬ program. Let TP be the immediate consequence operator
on sets of ground literals, defined in Exercise 15.24, and let T̄P be defined by T̄P (I)= I∪ TP (I).
Given a set I of ground literals, let P(I) denote the limit of the increasing sequence {T̄ iP (I)}i>0.
A set I− of negative ground literals is consistent with respect to P if P(I−) is consistent. I−

is maximally consistent with respect to P if it is maximal among the sets of negative literals
consistent with P . Investigate the connection between maximal consistency, 3-stable models,
and well-founded semantics:

(a) Is ¬.I0 maximally consistent for every 3-stable model I of P ?

(b) Is P(I−) a 3-stable model of P for every I− that is maximally consistent with respect
to P ?

(c) Is ¬.(Pwf )0 the intersection of all sets I− that are maximally consistent with respect
to P ?

Exercise 15.27 Refer to the proof of Lemma 15.4.4.

(a) Outline a proof that conseqP can be simulated by a while+ program.

(b) Provide a full description of the timestamping technique outlined in the proof of
Lemma 15.4.4.

Exercise 15.28 Show that every query definable by stratified datalog¬ is a fixpoint query.

Exercise 15.29 Consider an ordered database (i.e., with binary relation succ providing a
successor relation on the constants). Prove that the minimum and maximum constants cannot
be computed using a semipositive program.

⋆Exercise 15.30 Consider the game trees and winning query described in Section 15.4.

(a) Show that winning is true on the game trees G2i,k and false on the game trees G′2i,k,
for i > 0.

(b) Prove that the winning query on game trees is defined by the fixpoint query exhibited
in Section 15.4.
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E Expressiveness and

Complexity

Various query languages were presented in Parts B and D. Simple languages like

conjunctive queries were successively augmented with various constructs such as

union, negation, and recursion. The primary motivation for defining increasingly powerful

languages was the need to express useful queries not captured by the simpler languages. In

the presentation, the process was primarily example driven. The following chapters present

a more advanced and global perspective on query languages. In addition to their ability to

express specific queries, we consider more broadly the capability of languages to express

queries of a given complexity. This leads to establishing formal connections between

languages and complexity classes of queries. This approach lies on the border between

databases, complexity theory, and logic. It is related to characterizations of complexity

classes in terms of various logics.

The basic framework for the formal development is presented in Chapter 16, in which

we discuss the notion of a query and produce a formal definition. It turns out that it

is relatively easy to define languages expressing all queries. Such languages are called

complete. However, the real challenge for the language designer is not simply to define

increasingly powerful languages. Instead an important aspect of language design is to

achieve a good balance between expressiveness and the complexity of evaluating queries.

The ideal language would allow expression of most useful queries while guaranteeing that

all queries expressible in the language can be evaluated with reasonable complexity. To

formalize this, we raise the following basic question: How does one evaluate a query

language with respect to expressiveness and complexity? In an attempt to answer this

question, we discuss the issue of sizing up languages in Chapter 16.

Chapter 17 considers some of the classes of queries discussed in Part B from the

viewpoint of expressiveness and complexity. The focus is on the relational calculus of

Chapter 5 and on its extensions fixpoint and while defined in Chapter 14. We show the

connection of these languages to complexity classes. Several techniques for showing the

nonexpressibility of queries are also presented, including games and 0-1 laws.

Chapter 17 also explores the intriguing theoretical implications of one of the basic as-

sumptions of the pure relational model—namely, that the underlying domain dom consists

of uninterpreted, unordered elements. This assumption can be viewed as a metaphor for

the data independence principle, because it implies using only logical properties of data as

415
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opposed to the underlying implementation (which would provide additional information,

such as an order).

Chapter 18 presents highly expressive (and complex) languages, all the way up to com-

plete languages. In particular, we discuss constructs for value invention, which are similar

to the object creation mechanisms encountered in object languages (see Chapter 21).

For easy reference, the expressiveness and complexity of relational query languages

are summarized at the end of Chapter 18.



16 Sizing Up Languages

Alice: Do you ever worry about how hard it is to answer queries?

Riccardo: Sure—my laptop can only do conjunctive queries.

Sergio: I can do the while queries on my Sun.

Vittorio: I don’t worry about it—I have a Cray in my office.

This chapter lays the groundwork for the study of the complexity and expressiveness

of query languages. First the notion of query is carefully reconsidered and formally

defined. Then, the complexity of individual queries is considered. Finally definitions that

allow comparison of query languages and complexity classes are developed.

16.1 Queries

The goal of Part E is to develop a general understanding of query languages and their

capabilities. The first step is to formulate a precise definition of what constitutes a query.

The focus is on a fairly high level of abstraction and thus on the mappings expressible by

queries rather than on the syntax used to specify them. Thus, unlike Part B, in this part we

use the term query primarily to refer to mappings from instances to instances rather than to

syntactic objects. Although there are several correct definitions for the set of permissible

queries, the one presented here is based on three fundamental assumptions: well-typedness,

computability, and genericity.

The first assumption involves the schemas of the input and the answer to a query. A

query is over a particular database schema, say R. It takes as input an instance over R

and returns as answer a relation over some schema S. In principle, it is conceivable that

the schema of the result may be data dependent. However, to simplify, it is assumed here

(as in most query languages) that the schema of the result is fixed for a given query. This

assumption is referred to as well-typedness. Thus, for us, a query is a partial mapping from

inst(R) to inst(S) for fixed R and S. By allowing partially defined mappings, we account

for queries expressed by programs that may not always terminate.

Because we are only interested in effective queries, we also make the natural assump-

tion that query mappings are computable. Query computability is defined using classical

models of computation, such as Turing machines (TM). The basic idea is that the query

must be “implementable” by a TM. Thus there must exist a TM that, given as input a nat-

ural encoding of a database instance on the tape, produces an encoding of the output. The

formalization of these notions requires some care and is done next.

417
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P Q

a b c c

b a

(a)

P[0#1][1#0]Q[10#10]

(b)

Figure 16.1: An instance I and its TM encoding with respect to α = abc

The first question in developing the formalization is, How can input and output in-

stances be represented on a TM tape that has finite alphabet when the underlying domain

dom is infinite? We resolve this by using standard encodings for dom. As we shall see later

on, although this permits us to use conventional complexity theory in our study of query

language expressiveness, it also takes us a bit outside of the pure relational model.

We focus on encodings of both dom and of subsets of dom, and we use the symbols 0

and 1. Let d⊆ dom and let α = {d0, d1, . . . , di, . . .} be an enumeration of d. The encoding

of d relative to α is the function encα, which maps di to the binary representation of i (with

no leading zeros) for each di ∈ d. Note that |encα(di)| ≤ ⌈log i⌉ for each i.

We can now describe the encoding of instances. Suppose that a set d ⊆ dom, enu-

meration α for d, source schema R = {R1, . . . , Rm}, and target schema S are given. The

encoding of instances of R uses the alphabet {0, 1, [, ], #} ∪R ∪ {S}. An instance I over R

with adom(I)⊆ d is encoded relative to α as follows:

1. encα(〈a1, . . . , ak〉) is [encα(a1)# . . . #encα(ak)].

2. encα(I(R)), for R ∈ R, is R encα(t1) . . . encα(tl), where t1, . . . , tl are the tuples in

I(R) in the lexicographic order induced by the enumeration α.

3. encα(I)= encα(I(R1)) . . . encα(I(Rm)).

Example 16.1.1 Let R = {P,Q}, I be the instance over R in Fig. 16.1(a), and let α =
abc. Then encα(I) is shown in Fig. 16.1(b).

Let α be a fixed enumeration of dom. In this case the encoding encα described earlier

is one-to-one on instances and thus has an inverse enc−1
α when considered as a mapping

on instances. We are now ready to formalize the notion of computability relative to an

encoding of dom.

Definition 16.1.2 Let α be an enumeration of dom. A mapping q from inst(R) to

inst(S) is computable relative to α if there exists a TM M such that for each instance I

over R
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(a) if q(I) is undefined, then M does not terminate on input encα(I), and

(b) if q(I) is defined, M halts on input encα(I) with output encα(q(I)) on the tape.

As will be seen shortly, the third assumption about queries (namely, genericity) will

permit us to reformulate the preceding definition to be independent of the encoding of

dom used. Before introducing that notion, we consider more carefully the representation

of database instances on TM tapes. In some sense, TM encodings on the tape are similar

to the internal representation of the database on some physical storage. In both cases, the

representation contains more information than the database itself. In the case of the TM

representation, the extra information consists primarily of the enumeration α of constants

necessary to define encα. In the pure relational model, this kind of information is not part of

the database. Instead, the database is an abstraction of its internal (or TM) representation.

This additional information can be viewed as noise associated with the internal representa-

tion and thus should not have any visible impact for the user at the conceptual level. This is

captured by the data independence principle in databases, which postulates that a database

provides an abstract interface that hides the internal representation of data.

We can now state the intuition behind the third and last requirement of queries, which

formalizes the data independence principle. Although computations performed on the in-

ternal representation may take advantage of all information provided at this level, it is ex-

plicitly prohibited, in the definition of a query, that the result depend on such information.

(In some cases this restriction may be relaxed; see Exercise 16.4.)

For example, consider a database that consists of a binary relation specifying the edges

of a directed graph. Consider a query that returns as answer a subset of the vertexes in the

graph. One can imagine queries that extract (1) all vertexes with positive in-degree, or (2)

all vertexes belonging to some cycle, or (3) the first vertex of the graph as presented in the

TM tape representation. Speaking intuitively, (1) and (2) are independent of the internal

representation used, whereas (3) depends on it. Queries such as (3) will be excluded from

the class of queries.

The property that a query depends only on information provided by the input instance

is called genericity and is formalized next. The idea is that the constants in the database

have no properties other than the relationships with each other specified by the database.

(In particular, their internal representation is irrelevant.) Thus the database is essentially un-

changed if all constants are consistently renamed. Of course, a query can always explicitly

name a finite set of constants, which can then be treated differently from other constants.

(The set of such constants is the set C in Definition 16.1.3.)

A permutation of dom is a one-to-one, onto mapping from dom to dom. As done

before, each mapping ρ over dom is extended to tuples and database instances in the

obvious way.

Definition 16.1.3 Let R and S be database schemas, and let C be a finite set of con-

stants. A mapping q from inst(R) to inst(S) is C-generic iff for each I over R and each

permutation ρ of dom that is the identity on C, ρ(q(I))= q(ρ(I)). When C is empty, we

simply say that the query is generic.
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The previous definition is best visualized using the following commuting diagram:

I
q

−→ q(I)�ρ
�ρ

ρ(I)
q

−→ ρ(q(I))= q(ρ(I)).

In other words, a query is C-generic if it commutes with permutations (that leave C fixed).

Genericity states that the query is insensitive to renaming of the constants in the

database (using the permutation ρ). It uses only the relationships among constants provided

by the database and is independent of any other information about the constants. The set C

specifies the exceptional constants named explicitly in the query. These cannot be renamed

without changing the effect of the query.

Permutations ρ for which ρ(I)= I are of special interest. Such ρ are called automor-

phisms for I. If ρ is an automorphism for I and ρ(a)= b, this says intuitively that a and

b cannot be distinguished using the structure of I. Let q be a generic query, I an instance,

and ρ an automorphism for I. Then, by genericity,

ρ(q(I))= q(ρ(I))= q(I),

so ρ is also an automorphism for q(I). In particular, a generic query cannot distinguish

between constants that are undistinguishable in the input (see Exercise 16.5). Of course,

this is not the case if the query explicitly names some constants.

We illustrate these various aspects of genericity in an example.

Example 16.1.4 Consider a database over a binary relation G holding the edges of a

directed graph. Let I be the instance {〈a, b〉, 〈b, a〉, 〈a, c〉, 〈b, c〉}.
Let σ be the CALC query

{〈x〉 | ∃yG(x, y)}.

Note that σ(I)= {〈a〉, 〈b〉}. Let ρ be the permutation defined by ρ(a)= b, ρ(b)= c, and

ρ(c) = d . Then ρ(I) = {〈b, c〉, 〈c, b〉, 〈b, d〉, 〈c, d〉}. Genericity requires that σ(ρ(I)) =
{〈b〉, 〈c〉}. This is true in this case.

Note also that a and b are undistinguishable in I. Formally, the renaming ρ defined by

ρ(a)= b, ρ(b)= a, and ρ(c)= c has the property that ρ(I)= I and thus is an automor-

phism of I. Let q be a generic query onG. By genericity of q, either a and b both belong to

q(I), or neither does. Thus a generic query cannot distinguish between a and b. Of course,

this is not true forC-generic queries (forC nonempty). For instance, let qb = π1(σ2=b(G)).

Now qb is {b}-generic, and qb(I)= {〈a〉}. Thus qb distinguishes between a and b.

It is easily verified that if a database mapping q is C-generic, then for each input

instance I, adom(q(I))⊆ C ∪ adom(I) (see Exercise 16.1).
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In most cases we will ignore the issue of constants in queries because it is not central.

Note that a C-generic query can be viewed as a generic query by including the constants in

C in the input, using one relation for each constant. For instance, the {b}-generic query qb
overG in Example 16.1.4 is reduced to a generic query q ′ over {G,Rb}, where Rb = {〈b〉},
defined as follows:

q ′ = π1(σ2=3(G× Rb)).

In the following, we will usually assume that queries have no constants unless explicitly

stated.

Suppose now that α and β are two enumerations of dom and that a generic mapping

q from R to S is computed by a TM M using encα. It is easily verified that the same query

is computed by M if encβ is used in place of encα (see Exercise 16.2). This permits us to

adopt the following notion of computable, which is equivalent to “computable relative to

enumeration α” in the case of generic queries. This definition has the advantage of relying

on finite rather than infinite enumerations.

Definition 16.1.5 A generic mapping q from inst(R) to inst(S) is computable if there

exists a TM M such that for each instance I over R and each enumeration α of adom(I),

(a) if q(I) is undefined, then M does not terminate on input encα(I), and

(b) if q(I) is defined, M halts on input encα(I) with output encα(q(I)) on the tape.

We are now ready to define queries formally.

Definition 16.1.6 Let R be a database schema and S a relation schema. A query from

R to S is a partial mapping from inst(R) to inst(S) that is generic and computable.

Note that all queries discussed in previous chapters satisfy the preceding definition

(modulo constants in queries).

Queries and Query Languages

We are usually interested in queries specified by the expressions (i.e., syntactic queries

or programs) of a given query language. Given an expression E in query language L, the

mapping between instances thatE describes is called the effect ofE. Depending on the lan-

guage, there may be several alternative semantics (e.g., inflationary versus noninflationary)

for defining the query expressed by an expression. A related issue concerns the specifica-

tion of the output schema of an expression. In calculus-based languages, the output schema

is unambiguously specified by the form of the expression. The situation is more ambigu-

ous for other languages, such as datalog and while. Programs in these languages typically

manipulate several relations and may not specify explicitly which is to be taken as the an-

swer to the query. In such cases, the concepts of input, output, and temporary relations

may become important. Thus, in addition to semantically significant input and output re-

lations, the programs may use temporary relations whose content is immaterial outside the
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computation. We will state explicitly which relations are temporary and which constitute

the output whenever this is not clear from the context.

A query language or computing device is called complete if it expresses all queries.

We will discuss such languages in Chapter 18.

16.2 Complexity of Queries

We now develop a framework for measuring the complexity of queries. This is done by

reference to TMs and classical complexity classes defined using the TM model.

There are several ways to look at the complexity of queries. They differ in the param-

eters with respect to which the complexity is measured. The two main possibilities are as

follows:

• data complexity: the complexity of evaluating a fixed query for variable database

inputs; and

• expression complexity: the complexity of evaluating, on a fixed database instance,

the various queries specifiable in a given query language.

Thus in the data complexity perspective, the complexity is with respect to the database

input and the query is considered constant. Conversely, with expression complexity, the

database input is fixed and the complexity is with respect to the size of the query expression.

Clearly, the measures provide different information about the complexity of evaluating

queries. The usual situation is that the size of the database input dominates by far the size

of the query, and so data complexity is typically most relevant. This is the primary focus of

Part E, and we use the term complexity to refer to data complexity unless otherwise stated.

The complexity of queries is defined based on the recognition problem associated with

the query. For a query q, the recognition problem is as follows: Given an instance I and a

tuple u, determine if u belongs to the answer q(I). To be more precise, the recognition

problem of a query q is the language

{encα(I)#encα(u) | u ∈ q(I), α an enumeration of adom(I)}.

The (data) complexity of q is the (conventional) complexity of its recognition problem.

Technically, the complexity is with respect to the size of the input [i.e., the length of the

word encα(I)#encα(u)]. Because for an instance I the size (number of tuples) in I is closely

related to the length of encα(I) (see Exercise 16.12), the size of I is usually taken as the

measure of the input.

For each Turing time or space complexity class c, one can define a corresponding

complexity class of queries, denoted by qc . The class of queries qc consists of all queries

whose recognition problem is in c. For example, the class qptime consists of all queries

for which the recognition problem is in ptime.

There is another way to define the complexity of queries that is based on the com-

plexity of actually constructing the result of the query rather than the recognition problem

for individual tuples. The two definitions are in most cases interchangeable (see Exer-

cise 16.13). In particular, for complexity classes insensitive to a polynomial factor, the
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definitions are equivalent. In general, the definition based on constructing the result dis-

tinguishes between a query with a large answer and one with a small answer, which is

irrelevant to the definition based on recognition. On the other hand, the definition based

on constructing the result may not distinguish between easy and hard queries with large

results.

Example 16.2.1 Consider a database consisting of one binary relation G and the three

queries cross, path, and self on G defined as follows:

cross(G)= π1(G)× π2(G),

path(G) = {〈x, y〉 | x and y are connected by a path in G},

self (G) =G.

Consider first cross and path. Both have potentially large answers, but cross is clearly

easier than path, even though the time complexity of constructing the result is O(n2) for

both cross and path. The time complexity of the recognition problem is O(n) for cross

and O(n2) for path. Thus the measure based on constructing the result does not detect

a difference between cross and path, whereas this is detected by the complexity of the

recognition problem. Next consider cross and self . The time complexity of the recognition

problem is in both cases O(n), but the complexity of computing the result is O(n) for self

whereas it is O(n2) for cross. Thus the complexity of the recognition problem does not

distinguish between cross and self , although cross can potentially generate a much larger

answer. This difference is detected by the complexity of constructing the result.

In Part E, we will use the definition of query complexity based on the associated

recognition problem.

16.3 Languages and Complexity

In the previous section we studied a definition of the complexity of an individual query.

To measure the complexity of a query language L, we need to establish a correspondence

between

• the class of queries expressible in L, and

• a complexity class qc of queries.

Expressiveness with Respect to Complexity Classes

The most straightforward connection between L and a class of queries qc is when L and

qc are precisely the same.1 In this case, it is said that L expresses qc. In every case, each

query in L has complexity c, and conversely L can express every query of complexity c.

1 By abuse of notation, we also denote by L the set of queries expressible in L.
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Ideally, one would be able to perform complexity-tailored language design; that is,

for a desired complexity c, one would design a language expressing precisely qc. Unfor-

tunately, we will see that this is not always possible. In fact, there are no such results for

the pure relational model for complexity classes of polynomial time and below, that are of

most interest. We consider this phenomenon at length in the next chapter. Intuitively, the

shapes of classes of queries of low complexity do not match those of classes of queries de-

fined by any known language. Therefore we are led to consider a less straightforward way

to match languages to complexity classes.

Completeness with Respect to Complexity Classes

Consider a language L that does not correspond precisely to any natural complexity class

of queries. Nonetheless we would like to say something about the complexity of queries in

L. For instance, we may wish to guarantee that all queries in L lie within some complexity

class c, even though L may not express all of qc. For the bound to be meaningful, we

would also like that c is, in some sense, a tight upper bound for the complexity of queries

in L. In other words, L should be able to express at least some queries that are among

the hardest in qc. The property of a problem being hardest in a complexity class c is

captured, in complexity theory, by the notion of completeness of the problem in the class

(see Chapter 2). By extension to a language, this leads to the following:

Definition 16.3.1 A language L is complete with respect to a complexity class c if

(a) each query in L is also in qc, and

(b) there exists a query in L for which the associated recognition problem is com-

plete with respect to the complexity class c.

As in the classical definition of completeness of a problem in a complexity class,

we qualify, when necessary, the notion of a completeness in a complexity class by the

complexity of the reduction. For instance, L is logspace complete with respect to c qualifies

(b) by stating that the query expressible in L whose recognition problem is complete in c

is in fact logspace complete in c.

In some sense, completeness without expressiveness says something negative about

the language L. L can express some queries that are as hard as any query in qc; on the

other hand, there may be easy queries in qc that are not expressible in L. This may at first

appear contradictory because L expresses some queries that are complete in c, and any

problem in c can be reduced to the complete problem. However, there is no contradiction.

The reduction of the “easy” query to the complete query may be computationally easy but

nevertheless not expressible in L. Examples of this situation involve the familiar languages

fixpoint and while. As will be shown in Section 17.3, these languages are complete in ptime

and pspace, respectively. However, neither can express the simple parity query on a unary

relation R:

even(R)= true if |R| is even, and false otherwise.
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Complexity and Genericity

To conclude this chapter, we consider the delicate impact of genericity on complexity.

The foregoing query even illustrates a fundamental phenomenon relating genericity to the

complexity of queries. As stated earlier, even cannot be computed by fixpoint or by while,

both of which are powerful languages. The difficulty in computing even is due to the lack

of information about the elements of the set. Because the database only provides a set

of undifferentiated elements, genericity implies that they are treated uniformly in queries.

This rules out the straightforward solution of repeatedly extracting one arbitrary element

from the set until the set is empty while keeping a binary counter: How does one specify

the first element to be extracted?

On the other hand, consider the problem of computing even with a TM. The additional

information provided by the encoding of the input on the tape makes the problem trivial

and allows a linear-time solution.

This highlights the interesting fact that genericity may complicate the task of com-

puting a query, whereas access to the internal representation may simplify this task con-

siderably. Thus this suggests a trade-off between genericity and complexity. This can be

formalized by defining complexity classes based on a computing device that is generic by

definition in place of a TM. Such a device cannot take advantage of the representation of

data in the same manner as a TM, and it treats data generically at all points in the com-

putation. It can be shown that even is hard with respect to complexity measures based on

such a device. The query even will be used repeatedly to illustrate various aspects of the

complexity of queries.
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Exercises

Exercise 16.1 Let q be a C-generic mapping. Show that, for each input instance I, adom(q(I))

⊆ C ∪ adom(I).

Exercise 16.2 (Genericity) Let q be a generic database mapping from R to S.

(a) Let α and β be enumerations of dom, and suppose that M computes q using encα.
Prove that for each instance I over R,

encα ◦M ◦ enc−1
α = encβ ◦M ◦ enc−1

β .

Conclude that M computes q using encβ .

(b) Verify that the definitions of computable relative to α and computable are equivalent
for generic database mappings.

⋆Exercise 16.3 Let R be a database schema and S a relation schema.

(a) Prove that it is undecidable to determine, given TM M that computes a mapping q
from inst(R) to inst(S) relative to enumeration α of dom, whether q is generic.

(b) Show that the set of TMs that compute queries from R to S is co-r.e.

Exercise 16.4 In many practical situations the underlying domains used (e.g., strings, inte-
gers) have some structure (e.g., an ordering relationship that is visible to both user and imple-
mentation). For each of the following, develop a natural definition for generic and exhibit a
nongeneric query, if there is one.

(a) dom is partitioned into several sorts dom1, . . . ,domn.

(b) dom has a dense total order ≤. [A total order ≤ is dense if ∀x, y(x < y→∃z(x <
z ∧ z < y)).]

(c) dom has a discrete total order ≤. [A total order ≤ is discrete if ∀x[∃y(x < y→
∃z(x < z ∧ ¬∃w(x < w ∧ w < z))) ∧ ∃y(y < x→∃z(z < x ∧ ¬∃w(z < w ∧ w <
x)))].]

(d) dom is the set of nonnegative integers and has the usual ordering ≤.

Exercise 16.5 Let q be a C-generic query, and let I be an input instance. Let ρ be an automor-
phism of I that is the identity on C, and let a, b be constants in I, such that ρ(a)= b. Show that
a occurs in q(I) iff b occurs in q(I).

The next several exercises use the following notions. Let R be a database schema. Let k be
a positive integer and I an instance over R. 8I

k denotes the set of k-tuples that can be formed

using just constants in I. Define the following relation ≡I
k on 8I

k: u ≡
I
k v iff there exists an

automorphism ρ of I such that ρ(u)= v. The k-type index of I, denoted #k(I), is the number of
equivalence classes of ≡I

k.



Exercises 427

Exercise 16.6 (Equivalence induced by automorphisms) Let R be a database schema and I an
instance of R.

(a) Show that ≡I
k is an equivalence relation on 8I

k.

(b) Let q be a generic query on R, whose output is a k-ary relation. Show that q(I) is a
union of equivalence classes of ≡I

k.

♠Exercise 16.7 (Type index) Let G be a binary relation schema corresponding to the edges of
a directed graph. Show the following:

(a) The k-type index of a complete graph is a constant independent of the size of the
graph, as long as it has at least k vertexes.

(b) The k-type index of graphs consisting of a simple path is polynomial in the size of
the graph.

(c) [Lin90, Lin91] The k-type index of a complete binary tree is polynomial in the depth

of the tree.

Exercise 16.8 Let k, n be integers, 0< n < k, and I an instance over schema R.

(a) Show how to compute ≡I
n from ≡I

k.

(b) Prove that #n(I) < #k(I), unless I has just one constant.

⋆Exercise 16.9 (Fixpoint queries and type index) Let ϕ be a fixpoint query on database schema
R. Show that there exists a polynomial p such that, for each instance I over R, ϕ on input I

terminates after at most p(#k(I)) steps, for some k > 0.

♠Exercise 16.10 (Fixpoint queries on special graphs) Show that every fixpoint query terminates
in

(a) constant number of steps on complete graphs;

(b) [Lin90, Lin91] p(log(|I|)) number of steps on complete binary trees I, for some
polynomial p. Hint: Use Exercises 16.7 and 16.9.

♠Exercise 16.11 [Ban78, Par78] Let R be a schema, I a fixed instance over R, and a1, . . . , an
an enumeration of adom(I). For each automorphism ρ on I, let tρ = 〈ρ(a1), . . . , ρ(an)〉, and let

auto(I)= {tρ | ρ an automorphism of I}.

(a) Prove that there is a CALC query q with no constants (depending on I) such that
q(I)= auto(I).

(b) Prove that for each relation schema S and instance J over S with adom(J ) ⊆
adom(I),

there is a CALC query q with no constants

(depending on I and J )

such that q(I)= J
iff

for each automorphism ρ of I, ρ(J )= J .

A query language is called bp-complete if it satisfies the “if” direction of part (b).
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Exercise 16.12 (Tape encoding of instances) Let I be a nonempty instance of a database
schema R. Let nc be the number of constants in I, nt the number of tuples, and α an enumeration
of the constants in I. Show that there exist integers k1, k2, k3 depending only on R such that

(a) nc ≤ k1nt ≤ |encα(I)|,

(b) |encα(I)| ≤ k2nt log(nt),

(c) |encα(I)| ≤ (nc)
k3.

Exercise 16.13 (Recognition versus construction complexity) Let f be a time or space bound
for a TM, and let q be a query. The notation r-complexity abbreviates the complexity based on
recognition, and a-complexity stands for complexity based on constructing the answer. Show
the following:

(a) If the time r-complexity of q is bounded by f , then there exists k, k > 0, such that
the time a-complexity of q is bounded by nkf , where n is the number of constants
in the input instance.

(b) If the space r-complexity of q is bounded by f , then there exists k, k > 0, such that
the space a-complexity of q is bounded by nk+ f , where n is the number of constants
in the input instance.

(c) If the time a-complexity of q is bounded by f , then there exists k, k > 0, such that
the time r-complexity of q is bounded by kf .

(d) If the space a-complexity of q is bounded by f , then the space r-complexity of q is
bounded by f .

Exercise 16.14 (Data complexity of algebra) Determine the time and space complexity of
each of the relational algebra operations (show the lowest complexity you can).

⋆Exercise 16.15

(a) Develop an algorithm for computing the transitive closure of a graph that uses only
the information provided by the graph (i.e., a generic algorithm).

(b) Develop algorithms for a TM to compute the transitive closure of a graph (starting
from a standard encoding of the graph on the tape) that use as little time (space) as
you can manage.

(c) Write a datalog program defining the transitive closure of a graph so that the number
of stages in the bottom-up evaluation is as small as you can manage.



17 First Order, Fixpoint,

and While

Alice: I get it, now we’ll match languages to complexity classes.

Sergio: It’s not that easy—data independence adds some spice.

Riccardo: You can think of it as not having order.

Vittorio: It’s a lot of fun, and we’ll play some games along the way.

In Chapter 16, we laid the framework for studying the expressiveness and complexity

of query languages. In this chapter, we evaluate three of the most important classes of

languages discussed so far—CALC, fixpoint, and while—with respect to expressiveness

and complexity. We show that CALC is in logspace and ac0, that fixpoint is complete in

ptime, and that while is complete in pspace.1 We also investigate the impact of the presence

of an ordering of the constants in the input.

We first show that CALC can be evaluated in logspace. This complexity result partly

explains the success of relational database systems: Relational queries can be evaluated

efficiently. Furthermore, it implies that these queries are within nc and thus that they have a

high potential of intrinsic parallelism (not yet fully exploited in actual systems). We prove

that CALC queries can be evaluated in constant time in a particular (standard) model of

parallel computation based on circuits.

While looking at the expressive power of CALC and the other two languages, we

study their limitations by examining queries that cannot be expressed in these languages.

This leads us to introduce important tools that are useful in investigating the expressive

power of query languages. We first present an elegant characterization of CALC based on

Ehrenfeucht-Fraissé games. This is used to show limitations in the expressive power of

CALC, such as the nonexpressibility of the transitive closure query on a graph. A second

tool related to expressiveness, which applies to all languages discussed in this chapter,

consists of proving 0-1 laws for languages. This powerful approach, based on probabilities,

allows us to show that certain queries (such as even) are not expressible in while and thus

not in fixpoint or CALC.

As discussed in Section 16.3, there are simple queries that these languages cannot ex-

press (e.g., the prototypical example of even). Together with the completeness of fixpoint

and while in ptime and pspace, respectively, this suggests that there is an uneasy relation-

ship between these languages and complexity classes. As intimated in Section 16.3, the

problem can be attributed to the fact that a generic query language cannot take advantage

of the information provided by the internal representation of data used by Turing machines,

1 ac0 and nc are two parallel complexity classes defined later in this chapter.
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such as an ordering of the constants. For instance, the query even is easily expressible in

while if an order is provided.

A fundamental result of this chapter is that fixpoint expresses exactly qptime under

the assumption that queries can access an order on the constants. It is especially surprising

that a complexity class based on such a natural resource as time coincides with a logic-

based language such as fixpoint. However, this characterization depends on the order in

a crucial manner, and this highlights the importance of order in the context of generic

computation. No language is known that expresses qptime without the order assumption;

and the existence of such a language remains one of the main open problems in the theory

of query languages.

This chapter concludes with two recent developments that shed further light on the

interplay of order and expressiveness. The first shows that a while query on an unordered

database can be reduced to a while query on an ordered database via a fixpoint query. The

fixpoint query produces an ordered database from a given unordered one by grouping tuples

into a sequence of blocks that are never split in the computation of the while query; the

blocks can then be thought of as elements of an ordered database. This also allows us to

clarify the connection between fixpoint and while: They are distinct, unless ptime = pspace.

The second recent development considers nondeterminism as a means for overcoming

limitations due to the absence of ordering of the domain. Several nondeterministic exten-

sions of CALC, fixpoint, and while are shown.

The impact of order is a constant theme throughout the discussion of expressive power.

As discussed in Chapter 16, the need to consider computation without order is a conse-

quence of the data independence principle, which is considered important in the database

perspective. Therefore computation with order is viewed as a metaphor for an (at least

partial) abandonment of the data independence principle.

17.1 Complexity of First-Order Queries

This section considers the complexity of first-order queries and shows that they are in

qlogspace. This result is particularly significant given its implications about the parallel

complexity of CALC and thus of relational languages in general. Indeed, logspace ⊆ nc.

As will be seen, this means that every CALC query can be evaluated in polylogarithmic

time using a polynomial number of processors. Moreover, as described in this section, a

direct proof shows the stronger result that the first-order queries can in fact be evaluated in

ac0. Intuitively, this says that first-order queries can be evaluated in constant time with a

polynomial number of processors.

We begin by showing the connection between CALC and qlogspace.

Theorem 17.1.1 CALC is included in qlogspace.

Proof Let ϕ be a query in CALC over some database schema R. We will describe a TM

Mϕ, depending on ϕ, that solves the recognition problem for ϕ and uses a work tape with

length logarithmic in the size of the read-only input tape.

Suppose that Mϕ is started with input encα(I)#encα(u) for some instance I over R,
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some enumeration α of the constants, and some tuple u over adom(I) whose arity is the

same as that of the result of ϕ. Mϕ should accept the input iff u ∈ ϕ(I). We assume w.l.o.g.

that ϕ is in prenex normal form. We show by induction on the number of quantifiers of ϕ

that the computation can be performed using k · log(|encα(I)#encα(u)|) cells of the work

tape, for some constant k.

Basis. If ϕ has no quantifiers, then all the variables of ϕ are free. Let ν be the valuation

mapping the free variables of ϕ to u. Mϕ must determine whether I |= ϕ[ν]. To determine

the truth value of each literal L under ν occurring in ϕ, one needs only scan the input

tape looking for ν(L). This can be accomplished by considering each tuple of I in turn,

comparing it with relevant portions of u. For each such tuple, the address of the beginning

of the tuple should be stored on the tape along with the offset to the current location of the

tuple being scanned. This can be accomplished within logarithmic space.

Induction. Now suppose that each prenex normal form CALC formula with less than

n quantifiers can be evaluated in logspace, and let ϕ be a prenex normal form formula

with n quantifiers. Suppose ϕ is of the form ∃x ψ . (The case when ϕ is of the form ∀x ψ
is similar.)

All possible values of x are tried. If some value is found that makes ψ true, then

the input is accepted; otherwise it is rejected. The values used for x are all those that

appear on the input tape in the order in which they appear. To keep track of the current

value of x, one needs log(nc) work tape cells, where nc is the number of constants in I.

Because nc is less than the length of the input, the number of cells needed is no more than

log(|encα(I)#encα(u)|). The problem is now reduced to evaluating ψ for each value of x.

By the induction hypothesis, this can be done using k · log(|encα(I)#encα(u)|) work tape

cells for some k. Thus the entire computation takes (k + 1) log(|encα(I)#encα(u)|) work

tape cells; which concludes the induction.

Unfortunately, CALC does not express all of qlogspace. It will be shown in Sec-

tion 17.3 that even, although clearly in qlogspace, is not a first-order query.

We next consider informally the parallel complexity of CALC. We are concerned with

two parallel complexity classes: nc and ac0. Intuitively, nc is the class of problems that

can be solved using polynomially many processors in time polynomial in the logarithm of

the input size; ac0 also allows polynomially many processors but only constant time. The

formal definitions of nc and ac0 are based on a circuit model in which time corresponds to

the depth of the circuit and the number of gates corresponds to its size. The circuits use and,

or, and not gates and have unbounded fan-in.2 Thus ac0 is the class of problems definable

using circuits where the depth is constant and the size polynomial in the input.

The fact that the complexity of CALC is logspace implies that its parallel complexity

is nc, because it is well known that logspace ⊆ nc. However, one can prove a tighter

result, which says that the parallel complexity of CALC is in fact ac0. So only constant

time is needed to evaluate CALC queries. More than any other known complexity result on

CALC, this captures the fundamental intuition that first-order queries can be evaluated in

2 The fan-in is the number of wires going into a gate.
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parallel very efficiently and that they represent, in some sense, primitive manipulations of

relations.

We sketch only the proof and leave the details for Exercise 17.2.

Theorem 17.1.2 Every CALC query is in ac0.

Crux Let us first provide an intuition of the result independent of the circuit model. We

will use the relational algebra. We will argue that each of the operations π, σ,×,−,∪ can

be performed in constant parallel time using only polynomially many processors.

Let e be an expression in the algebra over some database schema R. Consider the

following infinite space of processors. There is one processor for each pair 〈f, u〉, where f

is a subexpression of e and u is a tuple of the same arity as the result of f , using constants

from dom. Let us denote one such processor by pf,u. Note that, in particular, for each

relation nameQ occurring in f and each u of the arity ofQ, pQ,u is one of the processors.

Each processor has two possible states, true or false, indicating whether u is in the result

of f .

At the beginning, all processors are in state false. An input instance is specified by

turning on the processors corresponding to tuples in the input relations (i.e., processors

pR,u if u is in input relation R). The result consists of the tuples u for which pe,u is in

state true at the end of the computation. For a given input, we are only concerned with the

processors formed from tuples with constants occurring in the input. Clearly, no more than

polynomially many processors will be relevant during the computation.

It remains to show that each algebra operation takes constant time. Consider, for

instance, cross product. Suppose f × g is a subexpression of e. To compute f × g, the

processors pf,u and pg,v send the message true to processor p(f×g),uv if their state is

true. Processor p(f×g),uv goes to state true when receiving two true messages. The other

operations are similar. Thus e is evaluated in constant time in our informal model of parallel

computation.

To formalize the foregoing intuition using the circuit model, one must construct,

for each n, a circuit Bn that, for each input of length n consisting of an encoding over

the alphabet {0, 1} of an instance I and a tuple u, outputs 1 iff u ∈ e(I). The idea for

constructing the circuit is similar to the informal construction in the previous paragraph

except that processors are replaced by wires (edges in the graph representing the circuit)

that carry either the value 1 or 0. Moreover, each Bn has polynomial size. Thus only wires

that can become active for some input are included. Figure 17.1 represents fragments of

circuits computing some relational operations. In the figure, f is the cross product of g

and h (i.e., g × h); f ′ is the difference g − h; and f ′′ is the projection of h on the first

coordinate. Observe that projection is the most tricky operation. In the figure, it is assumed

that the active domain consists of four constants. Note also that because of projection, the

circuits have unbounded fan-in.

We leave the details of the construction of the circuits Bn to the reader (see Exer-

cise 17.2). In particular, note that one must use a slightly more cumbersome encoding than

that used for Turing machines because the alphabet is now restricted to {0, 1}.
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[f ′, [b, c]][f, [a, b, a, b]] [f ′′, [a]]

and and or

not

[g, [a, b]] [h, [a, b]] [g, [b, c]] [h, [b, c]] [h, [a, a]] [h, [a, d]][h, [a, c]][h, [a, b]]

Figure 17.1: Some fragments of circuits

One might naturally wonder if CALC expresses all queries in ac0. It turns out that

there are queries in ac0 that are not first order. This is demonstrated in Section 17.4.

17.2 Expressiveness of First-Order Queries

We have seen that first-order queries have desirable properties with respect to complexity.

However, there is a price to pay for this in terms of expressiveness: There are many useful

queries that are not first order. Typical examples of such queries are even and transitive

closure of a graph. This section presents an elegant technique based on a two-player game

that can be used to prove that certain queries (including even and transitive closure) are

not first order. Although the game we describe is geared toward first-order queries, games

provide a general technique that is used in conjunction with many other languages.

The connection between CALC sentences and games is, intuitively, the following.

Consider as an example a CALC sentence of the form

∀x1 ∃x2 ∀x3 ψ(x1, x2, x3).

One can view the sentence as a statement about a game with two players, 1 and 2, who

alternate in picking values for x1, x2, x3. The sentence says that Player 2 can always force

a choice of values that makes ψ(x1, x2, x3) true. In other words, no matter which value

Player 1 chooses for x1, Player 2 can pick an x2 such that, no matter which x3 is chosen

next by Player 1, ψ(x1, x2, x3) is true.

The actual game we use, called the Ehrenfeucht-Fraissé game, is slightly more in-

volved, but is based on a similar intuition. It is played on two instances. Suppose that R is

a database schema. Let I and J be instances over R, with disjoint sets of constants. Let r be
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∧

∃z∃y

P(x, z)R(x, y)

∀x

Figure 17.2: A syntax tree

a positive integer. The game of length r associated with I and J is played by two players

called Spoiler and Duplicator, making r choices each. Spoiler starts by picking a constant

occurring in I or J, and Duplicator picks a constant in the opposite instance. This is re-

peated r times. At each move, Spoiler has the choice of the instance and a constant in it,

and Duplicator must respond in the opposite instance.

Let ai be the ith constant picked in I (respectively, bi in J). The set of pairs {(a1, b1),

. . . , (ar, br)} is a round of the game. The subinstance of I generated by {a1, . . . , ar},
denoted I/{a1, . . . , ar}, consists of all facts in I using only these constants, and similarly

for J, {b1, . . . , br} and J/{b1, . . . , br}.
Duplicator wins the round {(a1, b1), . . . , (ar, br)} iff the mapping ai→ bi is an iso-

morphism of the subinstances I/{a1, . . . , ar} and J/{b1, . . . , br}.
Duplicator wins the game of length r associated with I and J if he or she has a winning

strategy (i.e., Duplicator can always win any game of length r on I and J, no matter

how Spoiler plays). This is denoted by I ≡r J. Note that the relation ≡r is an equivalence

relation on instances over R (see Exercise 17.3).

Intuitively, the equivalence I≡r J says that I and J cannot be distinguished by looking

at just r constants at a time in the two instances. Recall that the quantifier depth of a CALC

formula is the maximum number of quantifiers in a path from the root to a leaf in the

representation of the sentence as a tree. The main result of Ehrenfeucht-Fraissé games is

that the ability to distinguish among instances using games of length r is equivalent to the

ability to distinguish among instances using some CALC sentence of quantifier depth r .

Example 17.2.1 Consider the sentence ∀x (∃y R(x, y) ∧ ∃z P (x, z)). Its syntax tree is

represented in Fig. 17.2. The sentence has quantifier depth 2. Note that, for a sentence in

prenex normal form, the quantifier depth is simply the number of quantifiers in the formula.

The main result of Ehrenfeucht-Fraissé games, stated in Theorem 17.2.2, is that if I

and J are two instances such that Duplicator has a winning strategy for the game of length

r on the two instances, then I and J cannot be distinguished by any CALC sentence of
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quantifier depth r . Before proving this theorem, we note that the converse of that result

also holds. Thus if two instances are undistinguishable using sentences of quantifier depth

r , then they are equivalent with respect to ≡r . Although interesting, this is of less use as a

tool for proving expressibility results, and we leave it as a (nontrivial!) exercise. The main

idea is to show that each equivalence class of ≡r is definable by a sentence of quantifier

depth r (see Exercises 17.9 and 17.10).

Theorem 17.2.2 Let I and J be two instances over a database schema R. If I≡r J, then

for each CALC sentence ϕ over R with quantifier depth r , I and J both satisfy ϕ or neither

does.

Crux Suppose that I |= ϕ and J �|= ϕ for some ϕ of quantifier depth r . We prove that

I �≡r J. We provide only a sketch of the proof in an example.

Let ϕ be the sentence ∀x1 ∃x2 ∀x3 ψ(x1, x2, x3), where ψ has no quantifiers, and let I

and J be two instances such that I |= ϕ, J �|= ϕ. Then

I |= ∀x1 ∃x2 ∀x3 ψ(x1, x2, x3) and J |= ∃x1 ∀x2 ∃x3 ¬ψ(x1, x2, x3).

We will show that Spoiler can prevent Duplicator from winning by forcing the choice

of constants a1, a2, a3 in I and b1, b2, b3 in J such that I |= ψ(a1, a2, a3) and J |=
¬ψ(b1, b2, b3). Then the mapping ai→ bi cannot be an isomorphism of the subinstances

I/{a1, a2, a3} and J/{b1, b2, b3}, contradicting the assumption that Duplicator has a win-

ning strategy. To force this choice, Spoiler always picks “witnesses” corresponding to the

existential quantifiers in ϕ and ¬ϕ (note that the quantifier for each variable is either ∀ in

ϕ and ∃ in ¬ϕ, or vice versa).

Spoiler starts by picking a constant b1 in J such that

J |= ∀x2 ∃x3 ¬ψ(b1, x2, x3).

Duplicator must respond by picking a constant a1 in I. Due to the universal quantification

in ϕ,

I |= ∃x2 ∀x3 ψ(a1, x2, x3),

regardless of which a1 was picked. Next Spoiler picks a constant a2 in I such that

I |= ∀x3 ψ(a1, a2, x3).

Regardless of which constant b2 in J Duplicator picks,

J |= ∃x3 ¬ψ(b1, b2, x3).

Finally Spoiler picks b3 in J such that J |= ¬ψ(b1, b2, b3); Duplicator picks some a3 in I,

and I |= ψ(a1, a2, a3).



436 First Order, Fixpoint, and While
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a1 a3
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Figure 17.3: Two undistinguishable graphs

Theorem 17.2.2 provides an important tool for proving that certain properties are not

definable by CALC. It is sufficient to exhibit, for each r , two instances Ir and Jr such that

Ir has the property, Jr does not, and Ir ≡r Jr . In the next proposition, we illustrate the use

of this technique by showing that graph connectivity, and therefore transitive closure, is

not expressible in CALC.

Proposition 17.2.3 Let R be a database schema consisting of one binary relation. Then

the query conn defined by

conn(I)= true iff I is a connected graph

is not expressible in CALC.

Crux Suppose that there is a CALC sentence ϕ checking graph connectivity. Let r be

the quantifier depth of ϕ. We exhibit a connected graph Ir and a disconnected graph Jr
such that Ir ≡r Jr . Then, by Theorem 17.2.2, the two instances satisfy ϕ or none does, a

contradiction.

For a sufficiently large n (depending only on r; see Exercise 17.5), the graph Ir consists

of a cycle B of 2n nodes and the graph Jr of two disjoint cycles B1 and B2 of n nodes each

(see Fig. 17.3). We outline the winning strategy for Duplicator. The main idea is simple:

Two nodes a, a′ in Ir that are far apart behave in the same way as two nodes b, b′ in Jr that

belong to different cycles. In particular, Spoiler cannot take advantage of the fact that a, a′

are connected but b, b′ are not. To do so, Spoiler would have to exhibit a path connecting a

to a′, which Duplicator could not do for b and b′. However, Spoiler cannot construct such

a path because it requires choosing more than r nodes.

For example, if Spoiler picks an element a1 in Ir , then Duplicator picks an arbitrary

element b1, say in B1. Now if Spoiler picks an element b2 in B2, then Duplicator picks an

element a2 in Ir far from a1. Next, if Spoiler picks a b3 in B1 close to b1, then Duplicator

picks an element a3 in Ir close to a1. The graphs are sufficiently large that this can proceed
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for r moves with the resulting subgraphs isomorphic. The full proof requires a complete

case analysis on the moves that Spoiler can make.

The preceding technique can be used to show that many other properties are not

expressible in CALC—for instance, even, 2-colorability of graphs, or Eulerian graphs

(i.e., graphs for which there is a cycle that passes through each edge exactly once) (see

Exercise 17.7).

17.3 Fixpoint and While Queries

That transitive closure is not expressible in CALC has been the driving force behind ex-

tending relational calculus and algebra with recursion. In this section we discuss the ex-

pressiveness and complexity of the two main extensions of these languages with recursion:

the fixpoint and while queries.

It is relatively easy to place an upper bound on the complexity of fixpoint and while

queries. Recall that the main distinction between languages defining fixpoint queries and

those defining while queries is that the first are inflationary and the second are not (see

Chapter 14). It follows that fixpoint queries can be implemented in polynomial time and

while queries in polynomial space. Moreover, these bounds are tight, as shown next.

Theorem 17.3.1

(a) The fixpoint queries are complete in ptime.

(b) The while queries are complete in pspace.

Crux The fact that each fixpoint query is in ptime follows immediately from the infla-

tionary nature of languages defining the fixpoint queries and the fact that the total number

of tuples that can be built from constants in a given instance is polynomial in the size of

the instance (see Chapter 14). For while, inclusion in pspace follows similarly (see Ex-

ercise 17.11). The completeness follows from an important result that will be shown in

Section 17.4. The result, Theorem 17.4.2, states that if an order on the constants of the do-

main is available, fixpoint expresses exactly qptime and while expresses exactly qpspace.

The completeness then follows from the fact that there exist problems that are complete in

ptime and problems that are complete in pspace (see Exercise 17.11).

The Parity Query

As was the case for the first-order queries, fixpoint and while do not match precisely with

complexity classes of queries. Although they are powerful, neither fixpoint nor while can

express certain simple queries. The typical example is the parity query even on a unary

relation. We next provide a direct proof that while (and therefore fixpoint) cannot express

even. The result also follows using 0-1 laws, which are presented later. We present the

direct proof here to illustrate the proof technique of hyperplanes.
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Proposition 17.3.2 The query even is not a while query.

Proof Let R be a unary relation. Suppose that there exists a while program w that

computes the query even on input R. We can assume, w.l.o.g., that R contains a unary

relation ans so that, on input I, w(I)(ans)= ∅ if |I| is even, and w(I)= I otherwise. Let R

be the schema of w (so R contains R and ans). We will reach a contradiction by showing

that the computation of w on a given input is essentially independent of its size. More

precisely, for n large enough, the computations of w on all inputs of size greater than n

will in some sense be identical. This contradicts the fact that ans should be empty at the

end of some computations but not others.

To show this, we need a short digression related to computations on unary relations.

We assume here that w does not use constants, but the construction can be generalized to

that case (see Exercise 17.14). Let I be an input instance and k an integer. We consider a

partition of the set of k-tuples with entries in adom(I) into hyperplanes based on patterns of

equalities and inequalities between components as follows. For each equivalence relation

≃ over {1, . . . , k}, the corresponding hyperplane is defined by3

H≃(I)= {〈u1, . . . , uk〉 | for each i, j ∈ [1, k],

ui, uj ∈ adom(I) and ui = uj ⇔ i ≃ j}.

For instance, let adom(I)= {a, b, c}, k = 3 and

≃= {〈1, 1〉, 〈2, 2〉, 〈1, 2〉, 〈2, 1〉, 〈3, 3〉}.

Then

H≃(I)= {〈a, a, b〉, 〈a, a, c〉, 〈b, b, a〉, 〈b, b, c〉, 〈c, c, a〉, 〈c, c, b〉}.

Finally there are two 0-ary hyperplanes, denoted true and false, that evaluate to {〈〉} and {},
respectively.

We will see that a while computation cannot distinguish between two k-tuples in the

same hyperplane, and so intermediate relations of arity k will always consist of a union of

hyperplanes.

Now consider the while programw. We assume that the condition guarding each while

loop has the form R �= ∅ for some R ∈ R, and that in each assignment R := E, E involves

a single application of some unary or binary algebra operator. We label the statements of

the program so we can talk about the program state (i.e., the label) after some number of

computation steps on input I. We include two labels in a while statement in the following

manner:

label1 while 〈condition〉 do label2 〈statement〉.

3 Note that, in logic terminology, ≃ corresponds to the notion of equality type, and hyperplanes
correspond to realizations of equality types.
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LetN be the maximum arity of any relation in R. To conclude the proof, we will show

by induction on the steps of the computation that there is a number bw such that for each

input I with size ≥N , w terminates on I after exactly bw steps. Furthermore,

(*) for each step m ≤ bw, there exists a label jm and for each relation T of arity k a set

ET ,m of equivalence relations over {1, . . . , k} such that for each input I of size greater

than N

1. the control is at label jm after m steps of the computation; and

2. each T then contains ∪{H≃(I) | ≃ in ET ,m}.

To see that this yields the result, suppose that it is true. Then for each I with size ≥ N , w

terminates with ans always empty or always nonempty, regardless of whether the size of I

is even or odd (a contradiction).

The claim follows from an inductive proof of (*). It is clear that this holds at the

0th step. At the start of the computation, all T are empty except for the input unary

relation R, which contains all constants and so consists of the hyperplane H≃, where

≃= {〈1, 1〉}. Suppose now that (*) holds for each step less than m and that the program

has not terminated on any I with size ≥ N . We prove that (*) also holds for m. There are

two cases to consider:

• Label jm−1 occurs before the keyword while. By induction, the relation controlling

the loop is empty after the (m− 1)st step, for all inputs large enough, or nonempty for

all such inputs. Thus at step m, the control will be at the same label for all instances

large enough, so (*1) holds. No relations have been modified, so (*2) also holds.

• Otherwise jm−1 labels an assignment statement. Then after the (m − 1)st step, the

control will clearly be at the label of the next statement for all instances large enough,

so (*1) holds. With regard to (*2), we consider the case where the assignment is

T :=Q1 ×Q2 for some variables T , Q1, and Q2; the other relation operators are

handled in a similar fashion (see Exercise 17.12). By induction, (*2) holds for all

relations distinct from T because they are not modified. Consider T . After step m,

T contains

⋃
{H≃1(I) | ≃1 in EQ1,m−1} ×

⋃
{H≃2(I) | ≃2 in EQ2,m−1} =

⋃
{H≃1(I)×H≃2(I) | ≃1 in EQ1,m−1,≃2 in EQ2,m−1}.

Let k, l be the arities of Q1,Q2, respectively, and for each ≃2 in EQ2,m−1, let

≃+k2 = {(x + k, y + k) | (x, y) ∈ ≃2}.

For an arbitrary binary relation γ ⊆ [1, k+ l]× [1, k+ l], let γ ∗ denote the reflexive,

symmetric, and transitive closure of γ . For ≃1,≃2 in EQ1,m−1, EQ2,m−1, respec-

tively, set
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≃1 ⊗≃2 = {(≃1 ∪ ≃
+k
2 ∪A)∗ |A⊆ [1, k]× [k + 1, k + l],

and for all i, i′, j, j ′ such that [i, j ] ∈A

and [i′, j ′] ∈A, i ≃1 i
′ iff j ≃+k2 j ′}.

It is straightforward to verify that for each pair≃1,≃2 inEQ1,m−1, EQ2,m−1, respec-

tively, and I with size ≥N ,

H≃1(I)×H≃2(I)=H≃1⊗≃2(I).

Note that this uses the assumption that the size of I is greater than N , the maximum

arity of relations in w. It follows that

ET ,m =
⋃
{≃1 ⊗≃2 | ≃1 in EQ1,m−1 and ≃2 in EQ2,m−1}.

Thus (*2) also holds for T at step m, and the induction is completed.

The hyperplane technique used in the preceding proof is based on the fact that in the

context of a (sufficiently large) unary relation input, there are families of tuples (in this

case the different hyperplanes) that “travel together” and hence that the intermediate and

final results are unions of these families of tuples. Although there are other cases in which

the technique of hyperplanes can be applied (see Exercise 17.15), in the general case the

input is not a union of hyperplanes, and so the members of a hyperplane do not travel

together. However, there is a generalization of hyperplanes based on automorphisms that

yields the same effect. Recall that an automorphism of I is a one-to-one mapping ρ on

adom(I) such that ρ(I)= I. For fixed I, consider the following equivalence relation ≡I
k on

k-tuples of adom(I): u ≡I
k v iff there exists an automorphism ρ of I such that ρ(u)= v.

(See Exercises 16.6 and 16.7 in the previous chapter.) It can be shown that if w is a while

query (without constants), then the members of equivalence classes ≡I
k travel together

when w is executed on input I. More precisely, suppose that J is an instance obtained at

some point in the computation of w on input I. The genericity of while programs implies

that if ρ is an automorphism of I, it is also an automorphism of J. Thus for each k-tuple u in

some relation of J and each v such that u ≡I
k v, v also belongs to that relation. Thus each

relation in J of arity k is a union of equivalence classes of ≡I
k. The equivalence relation ≡I

k

will be used in our development of 0-1 laws, presented next.

0-1 Laws

We now develop a powerful tool that provides a uniform approach to resolving in the

negative a large spectrum of expressibility problems. It is based on the probability that a

property is true in instances of a given size. We shall prove a surprising fact: All properties

expressible by a while query are “almost surely” true, or “almost surely” false. More

precisely, we prove the result for while sentences:
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Definition 17.3.3 A sentence is a total query that is Boolean (i.e., returns as answer

either true or false).

Let q be a sentence over some schema R. For each n, let µn(q) denote the fraction of

instances over R with entries in {1, . . . , n} that satisfy q. That is,

µn(q)=
|{I | q(I)= true and adom(I)= {1, . . . , n}}|

|{I | adom(I)= {1, . . . , n}}|
.

Definition 17.3.4 A sentence q is almost surely true (false) if limn→∞µn(q) exists and

equals 1 (0). If every sentence in a language L is almost surely true or almost surely false,

the language L has a 0-1 law.

To simplify the discussion of 0-1 laws, we continue to focus exclusively on constant-

free queries (see Exercise 17.19).

We will show that CALC, fixpoint, and while sentences have 0-1 laws. This provides

substantial insight into limitations of the expressive power of these languages and can

be used to show that they cannot express a variety of properties. For example, it follows

immediately that even is not expressible in either of these languages. Indeed, µn(even) is 1

if n is even and 0 if n is odd. Thus µn(even) does not converge, so even is not expressible

in a language that has a 0-1 law.

While 0-1 laws provide an elegant and powerful tool, they require the development

of some nontrivial machinery. Interestingly, this is one of the rare occasions when we will

need to consider infinite instances even though we aim to prove something about finite

instances only.

We start by proving that CALC has a 0-1 law and then extend the result to fixpoint

and while. For simplicity, we consider only the case when the input to the query is a binary

relation G (representing edges in a directed graph with no edges of the form 〈a, a〉). It is

straightforward to generalize the development to arbitrary inputs (see Exercise 17.19).

We will use an infinite set A of CALC sentences called extension axioms, which refer

to graphs. They say, intuitively, that every subgraph can be extended by one node in all

possible ways. More precisely, A contains, for each k, all sentences of the form

∀x1 . . .∀xk((
∧

i �=j

(xi �= xj))⇒∃y(
∧

i

(xi �= y) ∧ connections(x1, . . . , xk; y))),

where connections(x1, . . . , xk; y) is some conjunction of literals containing, for each xi,

one of G(xi, y) or ¬G(xi, y), and one of G(y, xi) or ¬G(y, xi). For example, for k = 3,

one of the 26 extension axioms is

∀x1, x2, x3 ((x1 �= x2 ∧ x2 �= x3 ∧ x3 �= x1)⇒

∃y (x1 �= y ∧ x2 �= y ∧ x3 �= y ∧

G(x1, y) ∧ ¬G(y, x1) ∧ ¬G(x2, y) ∧ ¬G(y, x2) ∧G(x3, y) ∧G(y, x3)))

specifying the pattern of connections represented in Fig. 17.4.



442 First Order, Fixpoint, and While

x1 x2 x3

y

Figure 17.4: A connection pattern

A graph G satisfies this particular extension axiom if for each triple x1, x2, x3 of

distinct vertexes inG, there exists a vertex y connected to x1, x2, x3, as shown in Fig. 17.4.

Note that A consists of an infinite set of sentences and that each finite subset of A is

satisfied by some infinite instance. (The instance is obtained by starting from one node and

repeatedly adding nodes required by the extension axioms in the subset.) Then by the com-

pactness theorem there is an infinite instance satisfying all of A, and by the Löwenheim-

Skolem theorem (see Chapter 2) there is a countably infinite instance R satisfying A.

The following lemma shows that R is unique up to isomorphism.

Lemma 17.3.5 If R and P are two countably infinite instances over G satisfying all

sentences in A, then R and P are isomorphic.

Proof Suppose that a1a2 . . . is an enumeration of all constants in R, and b1b2 . . . is an

enumeration of those in P . We construct an isomorphism between R and P by alternat-

ingly picking constants from R and from P . We construct sequences ai1 . . . aik . . . and

bi1 . . . bik . . . such that aik → bik is an isomorphism from R to P . The procedure for pick-

ing the kth constants aik and bik in these sequences is defined inductively as follows. For the

base case, let ai1 = a1 and bi1 = b1. Suppose that sequences ai1 . . . aik and bi1 . . . bik have

been defined. If k is even, let aik+1 be the first constant in a1, a2, . . . that does not occur so

far in the sequence. Let σk be the sentence in A describing the way aik+1 extends the sub-

graph with nodes ai1 . . . aik. Because P also satisfies σk, there exists a constant b in P that

extends the subgraph bi1 . . . bik in the same manner. Let bik+1 = b. If k is odd, the procedure

is reversed (i.e., it starts by choosing first a new constant from b1, b2, . . .). This back-and-

forth procedure ensures that (1) all constants from both R and P occur eventually among

the chosen constants, and (2) the mapping aik → bik is an isomorphism.

Thus the foregoing proof shows that there exists a unique (up to isomorphism) count-

able graph R satisfying A. This graph, studied extensively by Rado [Rad64] and others,

is usually referred to as the Rado graph. We can now prove the following crucial lemma.

The key point is the equivalence between (a) and (c), called the transfer property: It relates

satisfaction of a sentence by the Rado graph to the property of being almost surely true.

Lemma 17.3.6 Let R be the Rado graph and σ a CALC sentence. The following are

equivalent:

(a) R satisfies σ ;
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(b) A implies σ ; and

(c) σ is almost surely true.

Proof (a)⇒ (b): Suppose (a) holds but (b) does not. Then there exists some instance P

satisfying A but not σ . Because P satisfies A, P must be infinite. By the Lowënheim-

Skolem theorem (see Chapter 2), we can assume that P is countable. But then, by

Lemma 17.3.5, P is isomorphic to R. This is a contradiction, because R satisfies σ but P

does not.

(b)⇒ (c): It is sufficient to show that each sentence in A is almost surely true.

Suppose this is the case and A implies σ . By the compactness theorem, σ is implied

by some finite subset A′ of A. Because every sentence in A′ is almost surely true, the

conjunction
∧

A′ of these sentences is almost surely true. Because σ is true in every

instance where
∧

A′ is true, µn(σ )≥ µn(
∧

A′), so µn(σ ) converges to 1 and σ is almost

surely true.

It remains to show that each sentence in A is almost surely true. Consider the following

sentence σk in A:

∀x1 . . .∀xk((
∧

i �=j

(xi �= xj))→∃y(
∧

i

(xi �= y) ∧ connections(x1, . . . , xk; y))).

Then ¬σk is the sentence

∃x1 . . . ∃xk((
∧

i �=j

(xi �= xj)) ∧

∀y(
∧

i

(xi �= y)→¬connections(x1, . . . , xk; y))).

We will show the following property on the probability that an instance with n constants

does not satisfy σk:

(**) µn(¬σk)≤ n · (n− 1) · . . . · (n− k) · (1−
1

22k
)(n−k).

Because limn→∞[n · (n− 1) · . . . · (n− k) · (1− 1
22k )

(n−k)]= 0, it follows that limn→∞µn
(¬σk)= 0, so ¬σk is almost surely false, and σk is almost surely true.

Let N be the number of instances with constants in {1, . . . , n}. To prove (**), observe

the following:

1. For some fixed distinct a1, . . . , ak, b in {1, . . . , n}, the number of I satisfying some

fixed literal in connections(a1, . . . , ak; b) is 1
2
·N .

2. For some fixed distinct a1, . . . , ak, b in {1, . . . , n}, the number of I satisfying

connections(a1, . . . , ak; b) is 1
22k ·N (because there are 2k literals in connections).

3. The number of I not satisfying connections(a1, . . . , ak; b) is therefore

N − 1
22k ·N = (1−

1
22k ) ·N .
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4. For some fixed a1, . . . , ak in {1, . . . , n}, the number of I satisfying

∀y(
∧

i

(ai �= y)→¬connections(a1, . . . , ak; y))

is (1 − 1
22k )

n−k · N [because there are (n − k) ways of picking b distinct from

a1, . . . , ak)].

5. The number of I satisfying ¬σk is thus at most

n · (n− 1) · . . . · (n− k) · (1−
1

22k
)(n−k) ·N

(from the choices of a1, . . . , ak). Hence (**) is proven.

(See Exercise 17.16.)

(c)⇒ (a): Suppose that R does not satisfy σ (i.e., R |= ¬σ ). Because (a)⇒ (c), ¬σ
is almost surely true. Then σ cannot be almost surely true (a contradiction).

The 0-1 law for CALC follows immediately.

Theorem 17.3.7 Each sentence in CALC is almost surely true or almost surely false.

Proof Let σ be a CALC sentence. The Rado graph R satisfies either σ or ¬σ . By the

transfer property [(a)⇒ (c) in Lemma 17.3.6], σ is almost surely true or ¬σ is almost

surely true. Thus σ is almost surely true or almost surely false.

The 0-1 law for CALC can be extended to fixpoint and while. We prove it next for

while (and therefore fixpoint). Once again the proof uses the Rado graph and extends the

transfer property to the while sentences.

Theorem 17.3.8 Every while sentence is almost surely true or almost surely false.

Proof We use as a language for the while queries the partial fixpoint logic CALC+µ.

The main idea of the proof is to show that every CALC+µ sentence that is defined on all

instances is in fact equivalent almost surely to a CALC sentence, and so by the previous

result is almost surely true or almost surely false. We show this for CALC+µ sentences.

By Theorem 14.4.7, we can consider w.l.o.g. only sentences involving one application of

the partial fixpoint operator µ. Thus consider a CALC+µ sentence ξ of the form

ξ = ∃,x (µT (ϕ(T ))(,t))

over schema R, where

(a) ϕ is a CALC formula, and

(b) ,t is a tuple of variables or constants of appropriate arity, and ,x is the tuple of

distinct free variables in ,t .
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(We need the existential quantification for binding the free variables. An alternative is to

have constants in ,t but, as mentioned earlier we do not consider constants when discussing

0-1 laws.)

Essentially, a computation of a query ξ consists of iterating the CALC formula ϕ until

convergence occurs (if ever). Consider the sequence {ϕi(I)}i>0, where I is an input. If I

is finite, the sequence is periodic [i.e., there exist N and p such that, for each n ≥ N ,

ϕn(I) = ϕn+p(I)]. If p = 1, then the sequence converges (it becomes constant at some

point); otherwise it does not. Now consider the sequence {ϕi(R)}i>0, where R is the Rado

graph. Because the set of constants involved is no longer finite, the sequence may or may

not be periodic. A key point in our proof is the observation that the sequence {ϕi(R)}i>0 is

indeed periodic, just as in the finite case.

To see this, we use a technique similar to the hyperplane technique in the proof of

Lemma 17.3.5. Let k be some integer. We argue next that for each k, there is a finite number

of equivalence classes of k-tuples induced by automorphisms of R. For each pair u, v of k-

tuples with entries in adom(R), let u ≡R
k v iff there exists an automorphism ρ of R such

that ρ(u)= v.

Let u≃R
k v if both the patterns of equality and the patterns of connection within u and

v are identical. More formally, for each u= 〈a1, . . . , ak〉, v = 〈b1, . . . , bk〉 (where ai and

bi are constants in R), u≃R
k v if

• for each i, j , ai = aj iff bi = bj , and

• for each i, j , 〈ai, aj〉 is an edge in R iff 〈bi, bj〉 is an edge in R.

We claim that

u ≡R
k v iff u≃R

k v.

The “only if” part follows immediately from the definitions. For the “if” part, suppose that

u≃R
k v. To show that u≡R

k v, we must build an automorphism ρ of R such that ρ(u)= v.

This is done by a back-and-forth construction, as in Lemma 17.3.5, using the extension

axioms satisfied by R (see Exercise 17.18).

Because there are finitely many patterns of connection and equality among k vertexes,

there are finitely many equivalence classes of≃R
k , so of≡R

k . Due to genericity of the while

computation, each ϕi(R) is a union of such equivalence classes (see Exercise 16.6 in the

previous chapter). Thus there must exist m, l, 0 ≤ m < l, such that ϕm(R) = ϕl(R). Let

N =m and p = l −m. Then for each n≥N , ϕn(R)= ϕn+p(R). It follows that:

(1) {ϕi(R)}i>0 is periodic.

Using this fact, we show the following:

(2) The sequence {ϕi(R)}i>0 converges.

(3) The sentence ξ is equivalent almost surely to some CALC sentence σ .

Before proving these, we argue that (2) and (3) will imply the statement of the theorem.

Suppose that (2) and (3) holds. Suppose also that σ is false in R. By Lemma 17.3.6, σ is

almost surely false. Then µn(ξ) ≤ µn(ξ �≡ σ) + µn(σ ) and both µn(ξ �≡ σ) and µn(σ )
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converge to 0, so limn→∞(µn(ξ)) = 0. Thus ξ is also almost surely false. By a similar

argument, ξ is almost surely true if σ is true in R.

We now prove (2). Let$ij be the CALC sentence stating that ϕi and ϕj are equivalent.

Suppose {ϕi(R)}i>0 does not converge. Thus the period of the sequence is greater than 1,

so there exist m, j, l,m < j < l, such that

ϕm(R)= ϕl(R) �= ϕj(R).

Thus R satisfies the CALC sentence

χ =$ml ∧ ¬$mj .

Let I range over finite databases. Because ξ is defined on all finite inputs, {ϕi(I)}i≥0

converges. On the other hand, by the transfer property (Lemma 17.3.6), χ is almost surely

true. It follows that the sequence {ϕi(I)}i>0 diverges almost surely. In particular, there exist

finite I for which {ϕi(I)}i>0 diverges (a contradiction).

The proof of (3) is similar. By (1) and (2), the sequence {ϕi(R)}i>0 becomes constant

after finitely many iterations, say N . Then ξ is equivalent on R to the CALC sentence σ =
∃,x(ϕN(,t)). Suppose R satisfies ξ . Thus R satisfies σ . Furthermore, R satisfies $N(N+1)

because {ϕi(R)}i>0 becomes constant at the N th iteration. Thus R satisfies σ ∧$N(N+1).

By the transfer property for CALC, σ ∧ $N(N+1) is almost surely true. For each finite

instance I where $N(N+1) holds, {ϕi(I)}i>0 converges after N iterations, so ξ is equiva-

lent to σ . It follows that ξ is almost surely equivalent to σ . The case where R does not

satisfy ξ is similar.

Thus we have shown that while sentences have a 0-1 law. It follows immediately

that many queries, including even, are not while sentences. The technique of 0-1 laws has

been extended successfully to languages beyond while. Many languages that do not have

0-1 laws are also known, such as existential second-order logic (see Exercise 17.21). The

precise border that separates languages that have 0-1 laws from those that do not has yet to

be determined and remains an interesting and active area of research.

17.4 The Impact of Order

In this section, we consider in detail the impact of order on the expressive power of query

languages. As mentioned at the beginning of this chapter, we view the assumption of order

as, in some sense, suspending the data independence principle in a database. Because

data independence is one of the main guiding principles of the pure relational model, it

is important to understand its consequences in the expressiveness and complexity of query

languages.

As illustrated by the even query, order can considerably affect the expressiveness of a

language and the difficulty of computing some queries. Without the order assumption, no

expressiveness results are known for the complexity classes of ptime and below; that is, no
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P succ

b a c a b

b b d b c

c a d c d

d b a

Figure 17.5: An ordered instance

languages are known that express precisely the queries of those complexity classes. With

order, there are numerous such results. We present two of the most prominent ones.

At the end of this section, we present two recent developments that further explore

the interplay of order and expressiveness. The first is a normal form for while queries that,

speaking intuitively, separates a while query into two components: one unordered and the

second ordered. The second development increases expressive power on unordered input

by introducing nondeterminism in queries.

We begin by making the notion of an ordered database more precise. A database is

said to be ordered if it includes a designated binary relation succ that provides a successor

relation on the constants occurring in the database. A query on an ordered database is a

query whose input database schema contains succ and that ranges only over the ordered

instances of the input database schema.

Example 17.4.1 Consider the database schema R = {P, succ}, where P is ternary. An

ordered instance of R is represented in Fig. 17.5. According to succ, a is the first constant,

b is the successor of a, c is the successor of b, and d is the successor of c. Thus a, b, c, d

can be identified with the integers 1, 2, 3, 4, respectively.

We now consider the power of fixpoint and while on ordered databases. In particular,

we prove the fundamental result that fixpoint expresses precisely qptime on ordered data-

bases, and while expresses precisely qpspace on ordered databases. This shows that order

has a far-reaching impact on expressiveness, well beyond isolated cases such as the even

query. More broadly, the characterization of qptime by fixpoint (with the order assump-

tion) provides an elegant logical description of what have traditionally been considered

the tractable problems. Beyond databases, this is significant to both logic and complexity

theory.

Theorem 17.4.2

(a) Fixpoint expresses qptime on ordered databases.

(b) While expresses qpspace on ordered databases.

Proof Consider (a). We have already seen that fixpoint ⊆ qptime (see Exercise 17.11),

and so it remains to show that all qptime queries on ordered databases are expressible in

fixpoint. Let q be a query on a database with schema R that includes succ, such that q is
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in qptime on the ordered instances of R. Thus there is a polynomial p and Turing machine

M ′ that, on input enc(I)#enc(u), terminates in time p(|enc(I)#enc(u)|) and accepts the

input iff u ∈ q(I). (In this section, encodings of ordered instances are with respect to the

enumeration of constants provided by succ; see also Chapter 16.) Because q(I) has size

polynomial in I, a TMM can be constructed that runs in polynomial time and that, on input

enc(I), produces as output enc(q(I)). We now describe the construction of a CALC+µ+

query qM that is equivalent to q on ordered instances of R.

The fixpoint query qM we construct, when given ordered input I, will operate in three

phases: (α) construct an encoding of I that can be used to simulate M; (β) simulate M;

and (γ ) decode the output of M . A key point throughout the construction is that qM is

inflationary, and so it must compute without ever deleting anything from a relation. Note

that this restriction does not apply to (b), which simplifies the simulation in that case.

We next describe the encoding used in the simulation of M . The encoding is centered

around a relation that holds the different configurations reached by M .

Representing a tape. Because the tape is infinite, we only represent the finite portion,

polynomial in length, that is potentially used. We need a way to identify each cell of the

tape. Let nc be the number of constants in I. Because M runs in polynomial time, there

is some k such that M on input enc(I) takes time ≤ nkc, and thus ≤ nkc tape cells (see also

Exercise 16.12 in the previous chapter). Consider the world of k-tuples with entries in the

constants from I. Note that there are nkc such tuples and that they can be lexicographically

ordered using succ. Thus each cell can be uniquely identified by a k-tuple of constants

from I. One can define by a fixpoint query a 2k-ary relation succk providing the successor

relation on k-tuples, in the lexicographic order induced by succ (see Exercise 17.23a). The

ordered k-tuples thus allow us to represent a sequence of cells and hence M’s tape.

Representing all the configurations. Note that one cannot remove the tuples represent-

ing old configurations of M due to the inflationary nature of fixpoint computations. Thus

one represents all the configurations in a single relation. To distinguish a particular config-

uration (e.g., that at time i, i ≤ nkc), k-columns are used as timestamp. Thus to keep track of

the sequence of configurations in a computation of M , one can use a (2k + 2)-ary relation

RM where

1. the first k columns serve as a timestamp for the configuration,

2. the next k identify the tape cells,

3. column (2k + 1) holds the content of the cell, and

4. column (2k + 2) indicates the state and position of the head.

Note that now we are dealing with a double encoding: The database is encoded on the tape,

and then the tape is encoded back into RM .

To illustrate this simple but potentially confusing situation, we consider an example.

Let R = {P, succ}, and let I be the ordered instance of R represented in Fig. 17.5. Then

enc(I) is represented in Fig. 17.6. We assume, without loss of generality, that symbols

in the tape alphabet and the states of M are in dom. Parts of the first two configurations

are represented in the relation shown in Fig. 17.7. The representation assumes that k = 4,

so the arity of the relation is 10. Because this is a single-volume book, only part of the

relation is shown. More precisely, we show the first tuples from the representation of the
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P[1#0#10][1#1#11][10#0#11][11#1#0]succ[0#1][1#10][10#11]

Figure 17.6: Encoding of I and u on a TM tape

first two configurations. It is assumed that the original state is s and the head points to

the first cell of the tape; and that in that state, the head moves to the right, changing P to

0, and the machine goes to state r . Observe that the timestamp for the first configuration

is 〈a, a, a, a〉, and 〈a, a, a, b〉 for the second. Observe also the numbering of tape cells:

〈a, a, a, a〉, . . . , 〈a, a, c, d〉, etc.

We can now describe the three phases of the operation of qM more precisely: For a

given ordered instance I, qM

(α) computes, in RM , a representation of the initial configuration of M on input enc(I);

(β) computes, also in RM , the sequence of consecutive configurations of M until termina-

tion; and

(γ ) decodes the final tape contents of M , as represented in RM , into the output

relation.

We sketch the construction of the fixpoint queries realizing (α) and (β) here, and we leave

(γ ) as an exercise (17.23).

Consider phase (α). Recall that each constant is encoded on the tape of M as the

binary representation of its rank in the successor relation succ (e.g., c as 10). To perform

the encoding of the initial configuration, it is useful first to construct an auxiliary relation

that provides the encoding of each constant. Because there are nc constants, the code of

each constant requires ≤ ⌈log(nc)⌉ bits, and thus less than nc bits. We can therefore use a

ternary relation constant_coding to record the encoding. A tuple 〈x, y, z〉 in that relation

indicates that the kth bit of the encoding of constant x is z, where k is the rank of constant y

in the succ relation. For instance, the relation constant_coding corresponding to the succ in

Fig. 17.5 is represented in Fig. 17.8. The tuples 〈c, a, 1〉 and 〈c, b, 0〉 indicate, for instance,

that c is encoded as 10. It is easily seen that constant_coding is definable from succ by a

fixpoint query (see Exercise 17.23b).

With relation constant_coding constructed, the task of computing the encoding of

I and u into RM is straightforward. We will illustrate this using again the example in

Fig. 17.5. To encode relation P , one steps through all 3-tuples of constants and checks if a

tuple in P has been reached. To step through the 3-tuples, one first constructs the successor

relation succ3 on 3-tuples. The first tuple in P that is reached is 〈b, a, c〉. Because this

is the first tuple encoded, one first inserts into RM the identifying information for P (the

first tuple in Fig. 17.7). This proceeds, yielding the next tuples in Fig. 17.7. The binary

representation for each of b, a, c is obtained from relation constant_coding. This proceeds

by moving to the next 3-tuple. It is left to the reader to complete the details of the fixpoint

query constructing RM (see Exercise 17.23c). Several additional relations have to be used

for bookkeeping purposes. For instance, when stepping through the tuples in succ3, one

must keep track of the last tuple that has been processed.

We next outline the construction for (β). One must simulate the computation of M

starting from the initial configuration represented in RM . To construct a new configuration

from the current one, one must simulate a move of M . This is repeated until M reaches
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RM

a a a a a a a a P s

a a a a a a a b [ 0

a a a a a a a c 1 0

a a a a a a a d # 0

a a a a a a b a 0 0

a a a a a a b b # 0

a a a a a a b c 1 0

a a a a a a b d 0 0

a a a a a a c a ] 0

a a a a a a c b [ 0

a a a a a a c c 1 0

a a a a a a c d # 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

a a a b a a a a 0 0

a a a b a a a b [ r

a a a b a a a c 1 0

a a a b a a a d # 0

a a a b a a b a 0 0

a a a b a a b b # 0

a a a b a a b c 1 0

a a a b a a b d 0 0

a a a b a a c a ] 0

a a a b a a c b [ 0

a a a b a a c c 1 0

a a a b a a c d # 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Figure 17.7: Coding of part of the (first two) configurations

a final state (accepting or rejecting), which, as we assumed earlier, happens after at most

nkc steps. The iteration can be performed using the fixpoint operator in CALC + µ+. Each

step consists of defining the new configuration from the current one, timestamping it, and

adding it to RM . This can be done with a CALC formula. For instance, suppose the current

state of M is q, the content of the current cell is 0, and the corresponding move of M is to

change 0 to 1, move right, and change states from q to r . Suppose also that
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constant_coding

a a 0

b a 1

c a 1

c b 0

d a 1

d b 1

Figure 17.8: The relation constant_coding corresponding to a,b,c,d

• ,t is the timestamp (in the example this is a 4-tuple) identifying the current configu-

ration,

• RM contains the tuple 〈,t, ,j, 0, q〉, where ,j specifies a tape cell (in the example again

with a 4-tuple), and

• ,t ′ is the next timestamp and ,j ′ the next cell [i.e., succk(,t, ,t ′) and succk(,j, ,j ′)].

The tuples describing the new configuration of M are

(a) 〈,t ′,,i, x, y〉 if ,i �= ,j , ,i �= ,j ′ and 〈,t,,i, x, y〉 ∈ RM ;

(b) 〈,t ′, ,j, 1, 0〉;

(c) 〈,t ′, ,j ′, x, r〉 if 〈,t, ,j ′, x, 0〉 ∈ RM .

In other words, (a) says that the cells other than the j th cell and the next cell remain

unchanged; (b) says that the content of cell j changes from 0 to 1, and the head no longer

points to the j th cell; finally, (c) says that the head points to the right adjacent cell, the

new state is r , and the content of that cell is unchanged. Clearly, (a) through (c) can be

expressed by a CALC formula (Exercise 17.23d). One such formula is needed for each

move of M , and the formula corresponding to the finite set of possible moves is obtained

by their disjunction.

We have outlined queries that realize (α) and (β) (i.e., perform the encoding needed

to runM and then simulate the run ofM). Using these fixpoint queries and their analog for

phase (γ ), it is now easy to construct the fixpoint query qM that carries out the complete

computation of q. This completes the proof of (a).

The construction for (b) is similar. The difference lies in the fact that a while computa-

tion need not be inflationary, unlike fixpoint computations. This simplifies the simulation.

For instance, only the tuples corresponding to the current configuration of M are kept in

RM (Exercise 17.24).

Although ptime is considered synonymous with tractability in many circumstances,

complexity classes lower than ptime are most useful in practice in the context of potentially

large databases. There are numerous results that extend the logical characterization of

qptime to lower complexity classes for ordered databases. For instance, by limiting the

fixpoint operator in fixpoint to simpler operators based on various forms of transitive
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closure, one can obtain languages expressing qlogspace and qnlogspace on ordered

databases.

Theorem 17.4.2 implies that the presence of order results in increased expressive

power for the fixpoint and while queries. For these languages, this is easily seen (for in-

stance, even can be expressed by fixpoint when an order is provided). For weaker lan-

guages, the impact of order may be harder to see. For instance, it is not obvious whether

the presence of order results in increased expressive power for CALC. The query even is of

no immediate help, because it cannot be expressed by CALC even in the presence of order

(Exercise 17.8). However, a more complicated query based on even can be used to show

that CALC does indeed become more expressive with an order (Exercise 17.27). Because

the CALC queries on ordered instances remain in ac0, this shows in particular that there

are queries in ac0 that CALC cannot express.

From Chaos to Order: A Normal Form for While

We next discuss informally a normal form for the while queries that provides a bridge be-

tween computations without order and computations with order. This helps us understand

the impact of order and the cost of computation without order.

The normal form says, intuitively, that each while query on an unordered instance can

be reduced to a while query over an ordered instance via a fixpoint query. More precisely,

a while program in the normal form consists of two phases. The first is a fixpoint query

that performs an analysis of the input. It computes an equivalence relation on tuples that

is a congruence with respect to the rest of the computation, in that equivalent tuples are

treated identically throughout the computation. Thus each equivalence class is treated as

an indivisible block of tuples that is never split later in the computation. The fixpoint

query outputs the equivalence classes in some order, so that each class can be thought of

abstractly as an integer. The second phase consists of a while query that can be viewed as

computing on an ordered database obtained by replacing each equivalence class produced

in the analysis phase by its corresponding integer.

The normal form also allows the clarification of the relationship between fixpoint

and while. Because on ordered databases the two languages express qptime and qpspace,

respectively, the languages are equivalent on ordered databases iff ptime = pspace. What

about the relationship of these languages without the order assumption? It turns out that the

normal form can be used to extend this result to the general case when no order is present.

We do not describe the normal form in detail, but we provide some intuition on how a

query on an unordered database reduces to a query on an ordered database.

Consider a while program q and a particular instance. There are only finitely many

CALC queries that are used in q, and the number of their variables is bounded by some

integer, say k. To simplify, assume that the input instance consists of a single relation I

of arity k and that all relations used in q also have arity k. We can further assume that all

queries used in assignment statements are either conjunctive queries or the single algebra

operations −,∪, and that no relation name occurs twice in a query. For a query ϕ in q,

ϕ(R1, . . . , Rn) indicates that R1, . . . , Rn are the relation names occurring in ϕ.

Consider the set J of k-tuples formed with the constants from I . First we can distin-

guish between tuples based on their presence in (or absence from) I . This yields a first par-
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tition of J . Now using the conjunctive queries occurring in q, we can iteratively refine this

partition in the following way: If for some conjunctive query ϕ(R1, . . . , Rn) occurring in

q and some blocks B1, . . . , Bn of the current partition ϕ(B1, . . . , Bn) and ¬ϕ(B1, . . . , Bn)

have nonempty intersection with some block B ′ of the current partition, we refine the par-

tition by splitting the block B ′ into B ′ ∩ ϕ(B1, . . . , Bn) and B ′ ∩ ¬ϕ(B1, . . . , Bn). This is

repeated until no further refinement occurs, yielding a final partition of J . Furthermore, the

blocks can be numbered as they are produced, which provides an ordering 〈J1, . . . , Jm〉 of

the blocks of the partition. The entire computation can be performed by a fixpoint query

constructed from q.

It is important to note that two tuples u, v in one block of the final partition cannot be

separated by the computation of q on input I (i.e., at each step of this computation, each

relation either contains both u and v or none). In other words, each relation contains a union

of blocks of the final partition. Then one can reduce the original computation to an abstract

computation q ′ on the integers by replacing the ith block of the partition by integer i. Thus

the original query q can be rewritten as the composition of a fixpoint query f followed by

a while query q ′ that essentially operates on an ordered input.

Using this normal form, one can show the following:

Theorem 17.4.3 While = fixpoint iff ptime = pspace.

Crux The “only if” part follows from Theorem 17.4.2. The normal form is used for the

“if” part as follows. Suppose ptime = pspace. Then qptime = qpspace. Let q be a while

query. By the normal form, q = f q ′, where f is a fixpoint query and q ′ is a while query

whose computation is isomorphic to that of a while query on an ordered domain. Because

q ′ is in pspace and pspace = ptime, q ′ is in ptime. By Theorem 17.4.2(a), there exists a

fixpoint query f ′ equivalent to q ′ on the ordered domain. Thus q is equivalent to ff ′ and

is a fixpoint query.

An Alternative to Order: Nondeterminism

Results such as Theorem 17.4.2 show that the presence of order can solve some of the

problems of expressiveness of query languages. This can be interpreted as a trade-off

between expressiveness and the data independence provided by the abstract interface to

the database system. We conclude this section by considering an alternative to order for

increasing expressive power. It is based on the use of nondeterminism.

We will use the following terminology. A deterministic query is a classical query that

always produces at most one output for each input instance. A nondeterministic query is a

query that may have more than one possible outcome on a given input instance. Generally

we assume that all possible outcomes are acceptable as answers to the query. For example,

the query “Find one cinema showing Casablanca” is nondeterministic.

Consider again the query even, which is not expressible by fixpoint or while. The query

even is easily computed by fixpoint in the presence of order (see Exercise 17.25). Another

way to circumvent the difficulty of computing even is to relax the determinism of the query

language. If one could choose, whenever desired, an arbitrary element from the set, this

would provide another way of enumerating the elements of the set and computing even.
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Figure 17.9: An application of witness

The drawback is that, with such a nondeterministic construct in the language, determinism

of queries can no longer be guaranteed.

The trade-offs based on order and nondeterminism are not unrelated, as it may seem

at first. Suppose that an order is given. As argued earlier, this comes down to suspending

the data independence principle and accessing the internal representation. In general, the

computation may depend on the particular order accessed. Then at the conceptual level,

where the order is not visible, the mapping defined by the query appears as nondeterminis-

tic. Different outcomes are possible for the same conceptual-level view of the input. Thus

the trade-offs based on order and on relaxing determinism are intimately connected.

To illustrate this, we exhibit nondeterministic versions of the while(+) and

CALC+µ(+) queries. In both cases we obtain exactly the (deterministic and nondeter-

ministic) queries computable in polynomial space (time). Analogous results can be shown

for lower complexity classes of queries.

Consider first the algebraic setting. We introduce a new operator called witness that

provides the nondeterminism. To illustrate the use of this operator, consider the relation I

in Fig. 17.9. An application of witnessB to I may lead to several results [i.e., witnessB(I )

is either I1, I2, I3 or I4]. Intuitively, for each x occurring in the A column, witnessB
selects some tuple 〈x, y〉 in I , thus choosing nondeterministically a B value y for x.

More generally, for each relation J over some schema U =XY , X ∩ Y = ∅, witnessY (I )

selects one tuple 〈,x, ,y〉 for each 〈,x〉 occurring inGX(J ). Observe that from this definition,

witnessU(J ) selects one tuple in J (if any).

It is also possible to describe the semantics of the witness operator using functional

dependencies: For each instance J over some schema XY , X ∩ Y = ∅, a possible result

of witnessY (J ) is a maximal subinstance J ′ of J satisfying X→ Y (i.e., such that the

attributes in X form a key).

The witness operator provides, more generally, a uniform way of obtaining nondeter-

ministic counterparts for traditional deterministic languages.

The extension of while(+) with witness is denoted by while(+)+W . Following is a

useful example that shows that an arbitrary order can be constructed using the witness

operator.

Example 17.4.4 Consider an input instance over some unary relation schema R. The

following while+W query defines all possible successor relations on the constants from
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R succ max
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Figure 17.10: Some steps in the computation of an ordering

the input (i.e., each run constructs some ordering of the constants from the input; we use

the unnamed perspective):

succ := witness12(σ1�=2(R × R));
max := π2(succ); R := R − (π1(succ) ∪ π2(succ));

while change do

begin

succ := succ ∪ witness12(max × R);
max := π2(succ)− π1(succ);

R := R − max

end

The result is constructed in a binary relation succ. A unary relation max contains the current

maximum element in succ. Some steps of a possible computation on input R = {a, b, c, d}
are shown in Fig. 17.10: (a) shows the state before the loop is first entered, (b) the state

after the first execution of the loop, and (c) the final state. Note that the output is empty if

R contains fewer than two constants. It is of interest to observe that the program uses only

the ability of witness to pick an arbitrary tuple from a relation.

This query can also be expressed in while++W . (See Exercise 17.31.)

To continue with the nondeterministic languages, we next consider the language
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CALC+µ(+). The nondeterminism is again provided by a logical operator called wit-

ness4 and denoted W . Suppose ϕ(,x, ,y) is a formula with free variables ,x, ,y. Intuitively,

W ,yϕ(,x, ,y) indicates that one “witness” ,yx is chosen for each ,x satisfying ∃ ,y ϕ(,x, ,y).
For example, if R consists of the relation I in Fig. 17.9, the formula WyR(x, y) defines

the possible answers I1, I2, I3, I4 in the same figure. [Thus WyR(x, y) is equivalent to

witnessB(R).] More precisely, for each formula ϕ(,x, ,y) (where ,x and ,y are vectors of the

variables that are free in ϕ),W ,yϕ(,x, ,y) is a formula (where the ,y remain free) defining the

set of relations I such that for some J defined by ϕ: I⊆ J; and for each ,x for which 〈,x, ,y〉
is in J for some ,y, there exists a unique ,yx such that 〈,x, ,yx〉 is in I.

The extension of CALC+µ(+) with the witness operator is denoted by

CALC+µ(+)+W . Following is a useful example that shows that an arbitrary order

can be constructed using CALC+µ++W .

Example 17.4.5 Consider the (unary) relation schemaR of Example 17.4.4. The follow-

ing CALC+µ++W query defines, on each instance I of R, all possible successor relations

on the constants in I . (The output is empty if I contains fewer than two constants.) The

query uses a binary relation schema succ, which is used to construct the successor relation

iteratively. The query is µ+succ(ϕ(succ))(x, y), where ϕ = ϕ1 ∨ ϕ2 and

ϕ1(x, y)=¬∃x∃y(succ(xy)) ∧ Wxy(R(x) ∧ R(y) ∧ x �= y),

ϕ2(x, y)=Wy(R(y) ∧ ¬∃z(succ(yz) ∨ succ(zy))) ∧ ∃z(succ(zx)) ∧ ¬∃z(succ(xz)).

The formula ϕ1 initializes the iteration when succ is empty; ϕ2 adds to succ a tuple

〈x, y〉, where y is an arbitrarily chosen element of I(R) not yet in succ and x is the current

maximum element in succ.

The ability of while++W and CALC+µ++W to define nondeterministically a suc-

cessor relation on the constants suggests that the impact of nondeterminism on expressive

power is similar to that of order. This is confirmed by the following result.

Theorem 17.4.6 The set of deterministic queries that are expressed by while++W or

CALC+µ++W is qptime.

Proof It is easy to verify that each deterministic query expressed by while+ +W is in

qptime. Conversely, let q be a query in qptime. By Theorem 17.4.2, there exists a while+

query w that expresses q if a successor relation succ on the constants is given. Then the

while++W query expressing q consists of the following:

(i) construct a successor relation succ on the constants, as in Example 17.4.5;

(ii) apply query w to the input instance together with succ.

4 The witness operator is related to Hilbert’s ε-symbol [Lei69], but its semantics is different. In
particular, the ε-symbol does not yield nondeterminism.
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An analogous result holds for while+W and CALC+µ+W . Specifically, the set of

deterministic queries expressible by these languages is precisely qpspace.

Note that Theorem 17.4.6 does not provide a language that expresses precisely

qptime, because nondeterministic queries can also be expressed and it is undecidable if

a while++W or CALC+µ++W query defines a deterministic query (Exercise 17.32). In-

stead the result shows the power of nondeterministic constructs and so points to a trade-off

between expressive power and determinism.
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Figure 17.11: Encoding of an instance and tuple
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Exercises

Exercise 17.1 Consider the CALC query on a database schema with one binary relation G:

ϕ = {x | ∃y∀z(G(x, y) ∧ ¬G(z, x))}.

Consider the instance I overG and tuple encoded on a Turing input tape, as shown in Fig. 17.11.
Describe in detail the computation of the Turing machine Mϕ, outlined in the proof of Theo-
rem 17.1.1, on this input.

♠Exercise 17.2 Prove Theorem 17.1.2.

Exercise 17.3 Prove that ≡r is an equivalence relation on instances.

Exercise 17.4 Outline the crux of Theorem 17.2.2 for the case where

ϕ = ∀x (∃y (R(xy)) ∨ ∀z (R(zx))).

(Note that the quantifier depth of ϕ is 2, so this case involves games with two moves.)

⋆Exercise 17.5 Provide a complete description of the winning strategy outlined in the crux of
Proposition 17.2.3. Hint: For the game with r moves, choose cycles of size at least r(2r+1− 1).
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Exercise 17.6 Extend Proposition 17.2.3 by showing that connectivity of graphs is not first-
order definable even if an order ≤ on the constants is provided. More precisely, let R be the
database schema consisting of two binary relations G and ≤. Let I≤ be the family of instances
I over R such that I(≤) provides a total order on the constants of I(G). Outline a proof that there
is no CALC sentence σ such that, for each I ∈ I≤,

σ(I) is true iff I(G) is a connected graph.

♠Exercise 17.7 [Kol83] Use Ehrenfeucht-Fraissé games to show that the following properties
of graphs are not first-order definable:

(i) the number of vertexes is even;

(ii) the graph is 2-colorable;

(iii) the graph is Eulerian (i.e., there exists a cycle that passes through each edge exactly
once).

⋆Exercise 17.8 Show that the property that the number of elements in a unary relation is even
is not first-order definable even if an order on the constants is provided.

The following two exercises lead to a proof of the converse of Theorem 17.2.2. It states that
instances that are undistinguishable by CALC sentences of quantifier depth r are equivalent
with respect to ≡r . This is shown by proving that each equivalence class of ≡r is definable
by a special CALC sentence of quantifier depth r , called the r-type of the equivalence class.
Intuitively, the r-type sentence describes all patterns that can be detected by playing games of
length r on pairs of instances in the equivalence class.

To define the r-types, one first defines formulas with m free variables, called (m, r)-types.
An r-type is defined as a (0, r)-type. The set of (m, r)-types is defined by backward induction
on m as follows.

An (r, r)-type consists of all satisfiable formulas ϕ with variables x1, . . . , xr such that ϕ is
a conjunction of literals overR and for each i1, . . . , ik, either R(xi1, . . . , xik) or ¬R(xi1, . . . , xik)
is in ϕ. Suppose the set of (m+ 1, r)-types has been defined. Each set S of (m+ 1, r)-types
gives rise to one (m, r)-type defined by

∨
{ ∃xm+1 ϕ | ϕ ∈ S} ∨

∨
{∀xm+1 (¬(ϕ)) | ϕ �∈ S}.

♠Exercise 17.9 [Kol83] Let r and m be positive integers such that 0 ≤m≤ r . Prove that

(a) every (m, r)-type is a CALC formula with free variables x1, . . . , xm and quantifier
depth (r −m);

(b) there are only finitely many distinct (m, r)-types; and

(c) for every instance I and sequence a1, . . . , am of constants in I, there is exactly one
(m, r)-type ϕ such that I satisfies ϕ(a1, . . . , am).

♠Exercise 17.10 [Kol83] Prove that each equivalence class of ≡r is definable by a CALC
sentence of quantifier depth r . Hint: For a given equivalence class of ≡r , consider an instance
in the class and the unique r-type satisfied by the instance.

Exercise 17.11 Complete the proof of Theorem 17.3.1; specifically show that

(a) fixpoint ⊆ qptime and while ⊆ qpspace, and
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(b) fixpoint is complete in ptime and while is complete in pspace.

Exercise 17.12 In the proof of Proposition 17.3.2, the case of assignments of the form T :=
Q1×Q2 was discussed. Describe the constructions needed for the other algebra operators. Point
out where the assumption that the size of I is greater than N is used.

⋆Exercise 17.13 Prove that the while queries collapse to CALC on unary relation inputs. More
precisely, let R be a database schema consisting of unary relations. Show that for each while

query w on R there exists a CALC query ϕ equivalent to it. Hint: Use the same approach as in
the proof of Proposition 17.3.2 to show that there is a constant bound on the length of runs of a
given while program on unary inputs.

⋆Exercise 17.14 Describe how to generalize the proof of Proposition 17.3.2 so that it handles
while queries that have constants. In particular, describe how the notion of hyperplanes needs
to be generalized.

Exercise 17.15 Recall the technique of hyperplanes used in the proof of Proposition 17.3.2.

(a) LetD ⊆ dom be finite. For a relation schemaR, the cross-product instance ofR over
D is IR×D =D × · · · ×D (arity of R times). The cross-product instance of database

schema R over D is the instance IR
×D, where IR

×D(R)= I
R
×D for each R ∈ R. Let P

be a datalog¬ program with no constants, input schema R, and output schema S with
arity k. Prove that there is an N > 0 and a set EP of equivalence relations over [1, k]
such that for each set D ⊆ dom: if |D| ≥N then

P(IR
×D)=

⋃
{H≃(D) |≃ ∈ EP }.

(b) Prove (a) for datalog¬¬ programs.

(c) Generalize your proofs to permit constants in P .

Exercise 17.16 In the proof of Lemma 17.3.6, prove more formally the bound on µn(¬σk).
Prove that its limit is 0 when n goes to∞.

Exercise 17.17 Determine whether the following properties of graphs are almost surely true
or whether they are almost surely false.

(a) Existence of a cycle of length three

(b) Connectivity

(c) Being a tree

Exercise 17.18 Prove that there is a finite number of equivalence classes of k-tuples induced
by automorphisms of the Rado graph. Hint: Each class is completely characterized by the
pattern of connection and equality among the coordinates of the k-tuple. To see this, show that
for all tuples u and v satisfying this property, one can construct an automorphism ρ of the Rado
graph such that ρ(u)= v. The automorphism is constructed using the extension axioms, similar
to the proof of Lemma 17.3.5.

♠Exercise 17.19 Describe how to generalize the development of 0-1 laws for arbitrary input
and for queries involving constants.

Exercise 17.20 Prove or disprove: The properties expressible in fixpoint are exactly the ptime

properties that have a 0-1 law.
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Exercise 17.21 The language existential second-order logic, denoted (∃SO), consists of sen-
tences of the form ∃Qi . . . ∃Qkσ , whereQi are relations and σ is a first-order sentence using the
relations Qi (among others). Show that ∃SO does not have a 0-1 law. Hint: Exhibit a property
expressible in ∃SO that is neither almost surely true nor almost surely false.

⋆Exercise 17.22 Infinitary logic with finitely many variables, denoted Lω∞ω, is an extension of
CALC that allows formulas with infinitely long conjunctions and disjunctions but using only
a finite number of variables. Show that each while query can be expressed in Lω∞ω. Hint: Start
with a specific example, such as transitive closure.

Exercise 17.23 The following refer to the proof of Theorem 17.4.2.

(a) Describe a fixpoint query that, given a successor relation succ on constants, con-
structs a 2k-ary successor relation succk on k-tuples of constants, in the lexicograph-
ical order induced on k-tuples by succ.

(b) Show that the relation constant_coding can be defined from succ using a fixpoint

query.

(c) Complete the details of the construction of RM by a fixpoint query.

(d) Describe in detail the CALC formula corresponding to the move of M considered in
the proof of Theorem 17.4.2.

(e) Describe in detail the CALC formula used to perform phase γ in the computation of
qM .

(f) Show where the proof of Theorem 17.4.2 breaks down if it is not assumed that the
input instance is ordered.

Exercise 17.24 Spell out the differences in the proofs of (a) and (b) in Theorem 17.4.2.

Exercise 17.25 Write a fixpoint query that computes the parity query even on ordered data-
bases.

Exercise 17.26 Consider queries of the form

Does the diameter of G have property P?

where P is an exptime property of the integers (i.e., a property that can be checked, for integer
n, in time exponential in log n, or polynomial in n). Show that each query as above is a fixpoint

query.

♠Exercise 17.27 [Gur] This exercise shows that there is a query expressible in CALC in the
presence of order that is not expressible in CALC without order. Let R = {D, S}, where D is
unary and S is binary. Consider an instance I of R. Suppose the second column of I(S) contains
only constants from I(D). Then one can view each constant s in the first column of I(S) as
denoting a subset of I(D), namely {x | S(s, x)}. Call an instance I of R good if for each subset
of I(D), there exists a constant representing it. In other words, for each subset T of I(D), there
exists a constant s such that

T = {x | S(s, x)}.

Consider the query q defined by q(I) = true iff I is a good input and |I(D)| is even.

(a) Show that q is not expressible by CALC.
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(b) Show that q is expressible on instances extended with an order relation ≤ on the
constants.

(c) Note that in (b), an order is used instead of the usual successor relation on constants.
Explain the difficulty of proving (b) if a successor relation is used instead of ≤.

Hint: For (a), use Ehrenfeucht-Fraissé games. Consider (b). To check that the input is good,
check that (1) all singleton subsets of I(D) are represented, and (2) if T1 and T2 are represented,
so is T1 ∪ T2. To check evenness of |I(D)| on good inputs, define first from ≤ a successor
relation succD on the constants in I(D); then check that there exists a subset T of I(D) consisting
of the even constants according to succD and that the last element in succD is in T .

♠Exercise 17.28 (Expression complexity [Var82a])

(a) Show that the expression complexity of CALC is within pspace. That is, consider a
fixed instance I and tuple u, and a TMMI,u depending on I and u that, given as input
some standard encoding of a query ϕ in CALC, decides if u ∈ ϕ(I). Show that there
is such a TMMI,u whose complexity is within pspace with respect to |enc(ϕ)|, when
ϕ ranges over CALC.

(b) Prove that in terms of expression complexity, CALC is complete in pspace. Hint:

Use a reduction to quantified propositional calculus (see Chapter 2 and [GJ79]).

(c) Let CALC− consist of the quantifier-free queries in CALC. Show that the expression
complexity of CALC− is within logspace.

Exercise 17.29 Show that

(a) Wx(WyR(x, y)) is not equivalent5 to Wxyϕ(x, y);

(b) Wx(WyR(x, y)) is not equivalent to Wy(WxR(x, y)).

Exercise 17.30 Write a CALC+µ++W formula defining the query even.

Exercise 17.31 Express the query of Example 17.4.4 in while++W .

♠Exercise 17.32 [ASV90] Show that it is undecidable whether a given CALC+µ++W formula
defines a deterministic query. Hint: Use the undecidability of satisfiability of CALC sentences.

♠Exercise 17.33 [AV91a, AV91c]. As seen, the witness operator can be used to obtain nonde-
terministic versions of while(+) and CALC+µ(+). One can obtain nondeterministic versions of
datalog¬(¬) as follows. The syntax is the same, except that heads of rules may contain several
literals, and equality may be used in bodies of rules. The rules of the program are fired one rule
at a time and one instantiation at a time. The nondeterminism is due to the choice of rule and
instantiation used in each firing. The languages thus obtained are denoted N -datalog¬(¬).

(a) Prove that N-datalog¬¬ is equivalent to CALC+µ+W and while+W and expresses
all nondeterministic queries computable in polynomial space.6

(b) Show that N-datalog¬ cannot compute the query P − πA(Q), whereQ is of sort AB
and P of sort A.

5 Two formulas are equivalent iff they define the same set of relations for each given instance.
6 This includes qpspace, the deterministic queries computable in polynomial space.
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(c) Let N-datalog¬∀ be the language obtained by extending N-datalog¬ with universal
quantification in bodies of rules. For example, the program

answer(x) ← ∀y[P(x),¬Q(x, y)]

computes the query P − πA(Q). Prove that N-datalog¬∀ is equivalent to
CALC+µ++W and while++W and expresses all nondeterministic queries com-
putable in polynomial time.

(d) Prove that N-datalog¬ and N-datalog¬∀ are equivalent on ordered databases.

♠Exercise 17.34 (Dynamic choice operator [CGP93]) The following extension of datalog �=

with a variation of the choice operator (see Bibliographic Notes) is introduced in [CGP93].
Datalog �= programs are extended by allowing atoms of the form choice(X,Y) in rules of bodies,
where X and Y are disjoint sets of variables occurring in regular atoms of the rule. Several
choice atoms can appear in one rule. The language obtained is called datalog �=+choice. The
semantics is the following. The choice atoms render the immediate consequence operator of
a datalog �=+choice program P nondeterministic. In each application of TP , a subset of the
applicable valuations is chosen so that for each rule containing an occurrence choice(X,Y), the
functional dependency X→ Y holds. That is, one instantiation for the Y variables is chosen
for each instantiation of the X variables. Moreover, the nondeterministic choices operated at
each application of TP for a given occurrence of a choose atom extend the choices made in
previous applications of TP for that atom. (Thus choose has a more global nature than the
witness operator.) Although negation is not used in datalog�=+choice, it can be simulated. The
following datalog �=+choice program computes in P̄ the complement of a nonempty relation P
with respect to a universal relation T of the same arity [CGP93]:

TAG(X, 0) ← P(X)

TAG(X, 1) ← T (X),COMP(Y, 0)

COMP(X, I)← TAG(X, I), choose(X, I)

P̄ (X) ← COMP(X, 1)

The role of choose in the preceding program is simple. When first applied, it associates with
each X in P the tag I = 0. At the second application, it chooses a tag of 0 or 1 for all tuples in
T . However, tuples in P have already been tagged by 0 in the previous application of choose,
so the tuples tagged by 1 are precisely those in the complement.

(a) Exhibit a datalog�=+choice program that, given as input a unary relation P , defines
nondeterministically the successor relations on the constants in P .

(b) Show that every N-datalog¬ query is expressible in datalog �=+choice (see Exer-
cise 17.33).

(c) Prove that datalog �=+choice expresses exactly the nondeterministic queries com-
putable in polynomial time.

♠Exercise 17.35 [Daw93, Hel92] As shown in this chapter, the fixpoint queries fall short of
expressing all of qptime. For example, they cannot express even. A natural idea is to enrich
the fixpoint queries with additional constructs in the hope of obtaining a language expressing
exactly qptime. This exercise explores one (unsuccessful) possibility, which consists of adding
some finite set of ptime oracles to the fixpoint queries.
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A property of instances over some database schema R is a subset of inst(R) closed under
isomorphisms of dom. Let Q be a finite set of properties, each of which can be checked in ptime.
Let while+(Q) be the extension of while+ allowing loops of the form while q(R1, . . . , Rn) do,
where q ∈Q and R1, . . . , Rn are relation variables compatible with the schema of q. Intuitively,
this allows us to ask whether R1, . . . , Rn have property q. Clearly, while+(Q) generally has
more power than while+. For example, the query even is trivially expressible in while+({even}).
One might wonder if there is choice of Q such that while+(Q) expresses exactly qptime.

(a) Show that for every finite set Q of ptime properties, there exists a single ptime

property q such that while+(Q)≡ while+({q}).

(b) Let while+1 ({q}) denote all while+({q}) programs whose input is one unary relation.
Let ptime[k] denote the set of properties whose time complexity is bounded by some
polynomial of degree k. Show that, for each ptime property q, the properties of unary
relations definable in while+1 ({q}) are in ptime[k] for some k depending only on
q. Hint: Show that for each while+1 ({q}) program there exist N > 0 and properties
q1, . . . , qm of integers where each qi(n) can be checked in time polynomial in n, such
that the program is equivalent to a Boolean combination of tests n≥ j, n= j, qi(n),
where n is the size of the input, 0 ≤ j ≤ N and 1 ≤ i ≤ m. Use the hyperplane
technique developed in the proof of Proposition 17.3.2.

(c) Prove that there is no finite set Q of ptime properties such that while+(Q) expresses
qptime. Hint: Use (a), (b), and the fact that ptime[k] ⊂ ptime by the time hierarchy
theorem.
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Languages

Alice: I still cannot check if I have an even number of shoes.

Riccardo: This will not stand!

Sergio: We now provide languages that do just that.

Vittorio: They can also express any query you can think of.

In previous chapters, we studied a number of powerful query languages, such as the

fixpoint and while queries. Nonetheless, there are queries that these languages cannot

express. As pointed out in the introduction to Chapter 14, fixpoint lies within ptime, and

while within pspace. The complexity bound implies that there are queries, of complexity

higher than pspace, that are not expressible in the languages considered so far. Moreover,

we showed simple, specific queries that are not in fixpoint or while, such as the query even.

In this chapter, we exhibit several powerful languages that have no complexity bound

on the queries they can express. We build up toward languages that are complete (i.e.,

they express all queries). Recall that the notion of query was made formal in Chapter 16.

Basically, a query is a mapping from instances of a fixed input schema to instances of a

fixed answer schema that is computable and generic. Recall that, as a consequence, answers

to queries contain only constants from the input (except possibly for some fixed, finite set

of new constants).

We begin with a language that extends while by providing arbitrary computing power

outside the database; this yields a language denoted whileN , in the style of embedded

relational languages like C+SQL. This would seem to provide the simplest cure for the

computational limitations of the languages exhibited so far. There is no complexity bound

on the queries whileN can express. Surprisingly, we show that, nonetheless, whileN is not

complete. In fact, whileN cannot express certain simple queries, including the infamous

query even. Intuitively, whileN is not complete because the external computation has lim-

ited interaction with the database. Complete languages are obtained by overcoming this

limitation. Specifically, we present two ways to do this: (1) by extending while with the

ability to create new values in the course of the computation, and (2) by extending while

with an untyped version of relational algebra that allows relations of variable arity.

For conciseness, in this chapter we do not pursue the simultaneous development of

languages in the three paradigms—algebraic, logic, and deductive. Instead we choose to

focus on the algebraic paradigm. However, analogous languages could be developed in the

other paradigms (see Exercise 18.22).

466
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18.1 WhileN—while with Arithmetic

The language while is the most powerful of the languages considered so far. We have seen

that it lies within pspace. Thus it does not have full computing power. Clearly, a complete

language must provide such power. In this section, we consider an extension of while that

does provide full computing power outside the database. Nonetheless, we will show that

the resulting language is not complete; it is important to understand why this is so before

considering more exotic ways of augmenting languages.

The extension of while that we consider allows us to perform, outside the database,

arbitrary computations on the integers. Specifically, the following are added to the while

language:

(i) integer variables, denoted i, j, k, . . . ;

(ii) the integer constant 0 (zero);

(iii) instructions of the form increment(i), decrement(i), where i is an integer variable;

(iv) conditional statements of the form if i = 0 then s else s′, where i is an integer

variable and s, s′ are statements in the language;

(v) loops of the form while i > 0 do s, where i is an integer variable and s a program.

The semantics is straightforward. All integer variables are initialized to zero. The

semantics of the while change construct is not affected by the integer variables (i.e., the

loop is executed as long as there is a change in the content of a relational variable).

The resulting language is denoted by whileN .

Because the language whileN can simulate an arbitrary number of counters, it is

computationally complete on the integers (see Chapter 2). More precisely, the following

holds:

Fact For every computable function f (i1, . . . , ik) on integers, there exists a whileN pro-

gram wf that computes f (i1, . . . , ik) for every integer initialization of i1, . . . , ik. In partic-

ular, wf stops on input i1, . . . , ik iff f is defined on (i1, . . . , ik).

In view of this fact, one can use in whileN programs, whenever convenient, statements

of the form n := f (i1, . . . , ik), where n, i1, . . . , ik are integer variables and f is a com-

putable function on the integers. This is used in the following example.

Example 18.1.1 Let G be a binary relation with attributes AB. Consider the query on

the graph G:

square(G)= ∅ if the diameter of G is a perfect square, and G otherwise.

The following whileN program computes square(G) (the output relation is answer; it is

assumed that G �= ∅):

i := 0; T :=G;
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while change do

begin

T := T ∪ πAB(δB→C(T ) ⊲⊳ δA→C(G));

increment(i);

end;

j := f (i);
answer :=G;

if j > 0 then answer := ∅.

where f is the function such that f (x)= 1 if x is a perfect square and f (x)= 0 otherwise.

(Clearly, f is computable.) Note that, after execution of the while loop, the value of i is the

diameter of G.

It turns out that the preceding program can been expressed in while alone, and even

fixpoint, without the need for arithmetic (see Exercise 18.2). However, this is clearly not

the case in general. For instance, consider the whileN program obtained by replacing f in

the preceding program by some arbitrary computable function.

Despite its considerable power, whileN cannot express certain simple queries, such

as even. There are several ways to show this, just as we did for while. Recall that, in

Chapter 17, it was shown that while has a 0-1 law. It turns out that whileN also has a

0-1 law, although proving this is beyond the scope of this book. Thus there are many

queries, including even, that whileN cannot express. One can also give a direct proof

that even cannot be expressed by whileN by extending straightforwardly the hyperplane

technique used in the direct proof that while cannot express even (Proposition 17.3.2, see

Exercise 18.3).

As in the case of other languages we considered, order has a significant impact on the

expressiveness of whileN . Indeed, whileN is complete on ordered databases.

Theorem 18.1.2 The language whileN expresses all queries on ordered databases.

Crux Let q be a query on an ordered database with schema R. Let I denote an input

instance over R and α the enumeration of constants in I given by the relation succ. By the

definition of query, there exists a Turing machineMq that, given as input encα(I), produces

as output encα(q(I)) (whenever q is defined on I). Because whileN manipulates integers,

we wish to encode I as an integer rather than a Turing machine tape. This can be done easily

because each word over some finite alphabet with k symbols (with some arbitrary order

among the symbols) can be viewed as an integer in base k. For any instance J, let enc∗α(J)

denote the integer encoding of J obtained by viewing encα(J) as an integer. It is easy to see

that there is a computable function fq on the integers such that fq(enc
∗
α(I))= enc

∗
α(q(I))

whenever q is defined on I. Furthermore, because whileN can express any computable

function over the integers (see the preceding Fact), there exists a whileN program wfq(i)

that computes fq . It is left to show that whileN can compute enc∗α(I) and can decode q(I)

from enc∗α(q(I)). Recall that, in the proof of Theorem 17.4.2, it was shown that while can

compute a relational representation of encα(I) and, conversely, it can decode q(I) from

the representation of encα(q(I)). A slight modification of that construction can be used to
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S R

a b a b α

a c a c β

c a c a γ

Figure 18.1: An application of new

show that whileN can compute the desired integer encoding and decoding. Thus a whileN
program computes q in three phases:

1. compute enc∗α(I);

2. compute fq(enc
∗
α(I))= enc

∗
α(q(I));

3. compute q(I) from enc∗α(q(I)).

18.2 Whilenew—while with New Values

Recall that, as discussed in the introduction to Chapter 14, while cannot go beyond pspace

because (1) throughout the computation it uses only values from the input, and (2) it uses

relations of fixed arity. The addition of integers as in whileN is one way to break the space

barrier. Another is to relax (1) or (2). Relaxing (1) is done by allowing the creation of new

values not present in the input. Relaxing (2) yields an extension of while with untyped

algebra (i.e., an algebra of relations with variable arities). In this and the next section, we

describe two languages obtained by relaxing (1) and (2) and prove their completeness.

We first present the extension of while denoted whilenew, which allows the creation of

new values throughout the computation. The language while is modified as follows:

(i) There is a new instruction R := new(S), where R and S are relational variables

and arity(R)= arity(S)+ 1;

(ii) The looping construct is of the form while R do s, whereR is a relational variable.

The semantics of (i) is as follows: Relation R is obtained by extending each tuple of S

by one distinct new value from dom not occurring in the input, the current state, or in the

program. For example, if the value of S is the relation in Fig. 18.1, then R is of the form

shown in that figure. The values α, β, γ are distinct new values1 in dom.

The semantics of while R do s is that statement s is executed while R is nonempty.

We could have used while change instead because each looping construct can simulate the

other. However, in our context of value invention, it is practical to have the more direct

control on loops provided by while R.

1 If arity(S)= 0, then R is unary and contains one new value if S = {〈〉} and is empty if S = ∅. This
allows the creation of values one by one. One might wonder if this kind of one-by-one value creation
is sufficient. The answer is negative. The language with one-by-one value creation is equivalent to
whileN (see Exercise 18.6).
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Note that the new construct is, strictly speaking, nondeterministic. The new values

are arbitrary, so several possible outcomes are possible depending on the choice of values.

However, the different outcomes differ only in the choice of new values. This is formalized

by the following:

Lemma 18.2.1 Let w be a whilenew program with input schema R, and let R be a relation

variable in w. Let I be an instance over R, and let J, J ′ be two possible values of R at the

same point during the execution of w on I. Then there exists an isomorphism ρ from J to

J ′ that is the identity on the constants occurring in I or w.

The proof of Lemma 18.2.1 is done by a straightforward induction on the number of

steps in a partial execution of w on I (Exercise 18.7).

Recall that our definition of query requires that the answer be unique (i.e., the query

must be deterministic). Therefore we must consider only whilenew programs whose an-

swer never contains values introduced by the new statements. Such programs are called

well-behaved whilenew programs. It is possible to give a syntactic restriction on whilenew

programs that guarantees good behavior, can be checked, and yields a class of programs

equivalent to all well-behaved whilenew programs (see Exercises 18.8 and 18.9).

We wish to show that well-behaved whilenew programs can express all queries. First

we have to make sure that well-behaved whilenew programs do in fact express queries. This

is shown next.

Lemma 18.2.2 Each well-behaved whilenew program with input schema R and output

schema answer expresses a query from inst(R) to inst(answer).

Proof We need to show that well-behaved whilenew programs define mappings from

inst(R) to inst(answer) (i.e., they are deterministic with respect to the final answer). Com-

putability and genericity are straightforward. Let w be a well-behaved whilenew program

with input schema R and output answer. Let I, I ′ be two possible values of answer after

the execution of w on an instance I of R. By Lemma 18.2.1, there exists an isomorphism

ρ from I to I ′ that is the identity on values in I or w. Because w is well behaved, answer

contains only values from I or w. Thus ρ is the identity and I = I ′.

Note that although well-behaved programs are deterministic with respect to their final

answer, they are not deterministic with respect to intermediate results that may contain new

values.

We next show that well-behaved whilenew programs express all queries. The basic idea

is simple. Recall that whileN is complete on ordered databases. That is, for each query q,

there is a whileN program w that, given an enumeration of the input values in a relation

succ, computes q. If, given an input, we were able to construct such an enumeration,

we could then simulate whileN to compute any desired query. Because of genericity, we

cannot hope to construct one such enumeration. However, constructing all enumerations

of values in the input would not violate genericity. Both whilenew and the language with

variable arities considered in the next section can compute arbitrary queries precisely in

this fashion: They first compute all possible enumerations of the input values and then
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simulate a whileN program on the ordered database corresponding to each enumeration.

These computations yield the same result for all enumerations because queries are generic,

so the result is independent of the particular enumeration used to encode the database (see

Chapter 16).

Before proving the result, we show how we can construct all the possible enumerations

of the elements in the active domain of the input.

Representation

Let I be an instance over R. Let Success be the set of all binary relations defining a

successor relation over adom(I). We can represent all the enumerations in Success with

a 3-ary relation:

succ=
⋃

I∈Success

I × {αI },

where {αI | I ∈ Success} is a set of distinct new values. [Each such αI is used to denote

a particular enumeration of adom(I).] For example, Fig. 18.2 represents an instance I and

the corresponding succ.

Computation of succ

We now argue that there exists a whilenew program w that, given I, computes succ. Clearly,

there is a whilenew program that, given I, produces a unary relation D containing all values

in I. Following is a whilenew program wsucc that computes the relation succ starting from

D (using a query q explained next):

I succ ŝucc

a b a b α1 a b a b c

a c b c α1 b c a b c

c a a c α2 a c a c b

c b α2 c b a c b

b a α3 b a b a c

a c α3 a c b a c

b c α4 b c b c a

c a α4 c a b c a

c a α5 c a c a b

a b α5 a b c a b

c b α6 c b c b a

b a α6 b a c b a

Figure 18.2: An example of succ and ŝucc
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succ := new(σ1�=2(D ×D));
8 := q;

while 8 do

begin

S := new(8);

succ :=

{
〈x, y, α′〉

∣∣∣∣∣
∃α, x′, y′[S(x′, y′, α, α′) ∧ succ(x, y, α)]

∨ ∃α[S(x, y, α, α′)]

}
;

8 := q;

end

The intuition is that we construct in turn enumerations of subsets of size 2, 3, etc., until

we obtain the enumerations of D. (To simplify, we assume that D contains more than two

elements.) An enumeration of a subset of D consists of a successor (binary) relation over

that subset. As mentioned earlier, the program associates a marking (invented value) with

each such successor relation.

During the computation, succ contains the successor relation of subsets of size i

computed so far. A triple 〈a, b, α〉 indicates that b follows a in enumeration denoted α.

The first instruction computes the enumerations of subsets of size 2 (i.e., the distinct

pairs of elements of D) and marks them with new values. At each iteration, 8 indicates

for each enumeration the elements that are missing in this enumeration. More precisely,

relation 8 must contain the following set of triples:

{
〈a, b, α〉

∣∣∣∣∣
b does not occur in the successor relation corresponding to α

and the last element of α is a.

}

The relational query q computes the set8 given a particular relation succ. If8 is not empty,

for each α a new value α′ is created for each element missing in α (i.e., the enumeration

α is extended in all possible ways with each of the missing elements). This yields as many

new enumerations from each α as missing elements.

This is iterated until 8 becomes empty, at which point all enumerations are complete.

Note that if D contains n elements, the final result succ contains n! enumerations.

Theorem 18.2.3 The well-behaved whilenew programs express all queries.

Crux Let q be a query from inst(R) to inst(answer). Assume the query is generic (i.e.,

C-generic with C = ∅). The proof is easily modified for the case when the query is

C-generic with C �= ∅. It is sufficient to observe that

(*)
for each whileN program,

there exists an equivalent well-behaved whilenew program.

Suppose that (*) holds. Let wsucc be the whilenew program computing succ from given

I over R. By Theorem 18.1.2 and (*), there exists a whilenew program w(succ) that com-

putes q using a successor relation succ. We construct another whilenew program w(succ)

that computes q given I and succ. Intuitively, w(succ) is run in parallel for all possible
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enumerations succ provided by succ. All computations produce the same result and are

placed in answer. The computations for different enumerations in succ are identified by

the α marking the enumeration in succ. To this end, each relation R of arity k in w(succ)

is replaced by a relation R of arity k + 1. The extended database relations are first initial-

ized by statements of the form R := R × π3(succ). Next the instructions of w(succ) are

modified as follows:

• R := {〈u〉 | φ(u)} becomes R := {〈u, α〉 | ∃y∃zsucc(y, z, α) ∧ φ(u, α)}, where

φ(u, α) is obtained from φ(u) by replacing each atom S(v) by S(v, α);

• while change do remains unchanged.

Finally the instruction answer := π1..n(answer), where n= arity(answer), is appended at

the end of the program. The following can be shown by induction on the steps of a partial

execution of w(succ) on I (Exercise 18.10):

(**) At each point in the computation of w(succ) on I, the set of tuples in relation R

marked with α coincides with the value of R at the same point in the computation

when w(succ) is run on I and succ is the successor relation corresponding to α.

In particular, at the end of the computation of w(succ) on I,

answer =
⋃

α

w(α)(I)× {α},

where α ranges over the enumeration markers. Because w(α)(I)= q(I) for each α, it fol-

lows that answer contains q(I) at the end of the computation. Thus query q is computable

by a well-behaved whilenew program.

Thus it remains to show (*). Integer variables are easily simulated as follows. An

integer variable i is represented by a binary variable Ri. If i contains the integer n, then

Ri contains a successor relation for n+ 1 distinct new values:

{〈αj , αj+1〉 | 0 ≤ j < n}.

(The integer 0 is represented by an empty relation and the integer 1 by a singleton

{〈α0, α1〉}.) It is easy to find a whilenew program for increment and decrement of i.

We showed that well-behaved whilenew programs are complete with respect to our

definition of query. Recall that whilenew programs that are not well behaved can compute

a different kind of query that we excluded deliberately, which contains new values in the

answer. It turns out, however, that such queries arise naturally in the context of object-

oriented databases, where new object identifiers appear in query results (see Chapter 21).

This requires extending our definition of query. In particular, the query is nondeterministic

but, as discussed earlier, the different answers differ only in the particular choice of new

values. This leads to the following extended notion of query:

Definition 18.2.4 A determinate query is a relation Q from inst(R) to inst(answer)

such that
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ψ3

ψ0 ψ2

ψ1

b a{a, b}    ⇒

Figure 18.3: A query not expressible in whilenew

• Q is computable;

• if 〈I, J 〉 ∈Q and ρ is a one-to-one mapping on constants, then 〈ρ(I), ρ(J )〉 ∈Q;

and

• if 〈I, J 〉 ∈Q and 〈I, J ′〉 ∈Q, then there exists an isomorphism from J to J ′ that is

the identity on the constants in I .

A language is determinate complete if it expresses only determinate queries and all deter-

minate queries.

Let Q be a determinate query. If 〈I, J 〉 ∈Q and ρ is a one-to-one mapping on con-

stants leaving I fixed, then 〈I, ρ(J )〉 ∈Q.

The question arises whether whilenew remains complete with respect to this ex-

tended notion of query. Surprisingly, the answer is negative. Each whilenew query is

determinate. However, we exhibit a simple determinate query that whilenew cannot ex-

press. Let q be the query with input schema R = {S}, where S is unary, and output G,

where G is binary. Let q be defined as follows: For each input I over S, if I = {a, b}
then q(I )= {〈ψ0, ψ1〉, 〈ψ1, ψ2〉, 〈ψ2, ψ3〉, 〈ψ3, ψ0〉, 〈ψ0, b〉, 〈ψ1, a〉, 〈ψ2, b〉, 〈ψ3, a〉} for

some new elements ψ0, ψ1, ψ2, ψ3, and q(I )= ∅ otherwise (Fig. 18.3).

Theorem 18.2.5 The query q is not expressible in whilenew.

Proof The proof is by contradiction. Suppose w is a whilenew program expressing q.

Consider the sequence of steps in the execution of w on an input I = {a, b}. We can

assume without loss of generality that no invented value is ever deleted from the data-

base (otherwise modify the program to keep all invented values in some new unary rela-

tion). For each invented value occurring in the computation, we define a trace that records

how the value was invented and uniquely identifies it. More precisely, trace(α) is de-

fined inductively as follows. If α is a constant, then trace(α) = 〈α〉. Suppose α is a new

value created at step i with a new statement associating it with tuple 〈x1, . . . , xk〉. Then

trace(α)= 〈i, trace(x1), . . . , trace(xk)〉. Clearly, one can extend trace to tuples and rela-
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tions in the natural manner. It is easily shown (Exercise 18.11) by induction on the number

of steps in a partial execution of w on I that

(†) trace(α)= trace(β) iff α = β;

(‡) for each instance J computed during the execution of w on input I , trace(J ) is closed

under each automorphism ρ of I . In particular, for each α occurring in J , ρ(trace(α))

equals trace(β) for some β also occurring in J .

Consider now trace(q(I )) and the automorphism ρ of I [and therefore of trace(q(I ))]

defined by ρ(a) = b, ρ(b) = a. Note that ρ2 = id (the identity) and ρ = ρ−1. Consider

ρ(trace(ψ0)). Because 〈ψ0, b〉 ∈ q(I ), it follows that 〈trace(ψ0), b〉 ∈ trace(q(I )). Be-

cause ρ(b)= a, it further follows that 〈ρ(trace(ψ0)), a〉 ∈ trace(q(I )) so ρ(trace(ψ0)) is

either trace(ψ1) or trace(ψ3). Suppose ρ(trace(ψ0))= trace(ψ1) (the other case is simi-

lar). From the fact that ρ is an automorphism of trace(q(I )) it follows that ρ(trace(ψ3))=
trace(ψ0), ρ(trace(ψ2)) = trace(ψ3), and ρ(trace(ψ1)) = trace(ψ2). Consider now ρ2.

First, because ρ2 = id , ρ2(trace(ψi)) = trace(ψi), 0 ≤ i ≤ 3. On the other hand,

ρ2(trace(ψ0)) = ρ(ρ(trace(ψ0))) = ρ(trace(ψ1)) = trace(ψ2). This is a contradiction.

Hence q cannot be computed by whilenew.

The preceding example shows that the presence of new values in the answer raises

interesting questions with regard to completeness. There exist languages that express all

queries with invented values in answers (see Exercise 18.14 for a complex construct that

leads to a determinate-complete language). Value invention is common in object-oriented

languages, in the form of object creation constructs (see Chapter 21).

18.3 Whileuty—An Untyped Extension of while

We briefly describe in this section an alternative complete language obtained by relaxing

the fixed-arity requirement of the languages encountered so far. This relaxation is done

using an untyped version of relational algebra instead of the familiar typed version. We will

obtain a language allowing us to construct relations of variable, data-dependent arity in the

course of the computation. Although strictly speaking they are not needed, we also allow

integer variables and integer manipulation, as in whileN . Intuitively, it is easy to see why

this yields a complete language. Variable arities allow us to construct all enumerations of

constants in the input, represented by sufficiently long tuples containing all constants. The

ability to construct the enumerations and manipulate integers yields a complete language.

The first step in defining the untyped version of while is to define an untyped version

of relational algebra. This means that operations must be defined so that they work on

relations of arbitrary, unknown arity. Expressions in the untyped algebra are built from

relation variables and constants and can also use integer variables and constants. Let i, j

be integer variables, and for each integer k, let ∅k denote the empty relation of arity k.

Untyped algebra expressions are built up using the following operations:

• If e, e′ are expressions, then e ∩ e′ and e ∪ e′ are expressions; if arity(e)= arity(e′)

the semantics is the usual; otherwise the result is ∅0.
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• If e is an expression, then ¬e is an expression; the complement is with respect to the

active domain (not including the integers).

• If e, f are expressions, then e× f is an expression; the semantics is the usual cross-

product semantics.

• If e is an expression, then σi=j(e) is an expression, where i, j are integer variables

or constants; if arity(e)≥ max{i, j} the semantics is the usual; otherwise the result

is ∅0.

• If e is an expression, then πij(e) is an expression, where i, j are integer variables or

constants; if i ≤ j and arity(e)≥ max{i, j}, this projects e on columns i through j ;

otherwise the result is ∅|j−i|.

• If e is an expression, then exij(e) is an expression; if arity(e) ≥ max{i, j}, this

exchanges in each tuple in the result of e the i and j coordinates; otherwise the

result is ∅0.

We may also consider an untyped version of tuple relational calculus (see Exer-

cise 18.15).

We can now define whileuty programs. They are concatenations of statements of the

form

• i := j , where i is an integer variable and j an integer variable or constant.

• increment(i), decrement(i), where i is an integer variable.

• while i > 0 do t, where i is an integer variable and t a program.

• R := e, where R is a relational variable and e an untyped algebra expression; the

semantics here is that R is assigned the content and arity of e.

• while R do t, where R is a relational variable and t a program; the semantics is that

the body of the loop is repeated as long as R is nonempty.

All relational variables that are not database relations are initialized to ∅0; integer variables

are initialized to 0.

Example 18.3.1 Following is a whileuty program that computes the arity of a nonempty

relation R in the integer variable n:

S0 := {〈〉}; S1 := S0 ∪ R; S2 :=¬S1;

while S2 do

begin

n := n+ 1;

S0 := S0 ×D;

S1 := S0 ∪ R;

S2 :=¬S1;

end

where D abbreviates an algebra expression computing the active domain [e.g., π11(R) ∪
¬π11(R)]. The program tries out increasing arities for R starting from 0. Recall that
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whenever R and S0 have different arities, the result of S0 ∪R is ∅0. This allows us to detect

when the appropriate arity has been found.

Remark 18.3.2 There is a much simpler set of constructs that yields the same power as

whileuty. In general, programs are much harder to write in the resulting language, called QL,

than in whileuty. One can show that the set of constructs of QL is minimal. The language QL

is described next; it does not use integer variables. QL expressions are built from relational

variables and constant relations as follows (D denotes the active domain):

• equal is an expression denoting {〈a, a〉 | a ∈D}.

• e ∩ e′ and¬e are defined as for whileuty; the complement is with respect to the active

domain.

• If e is an expression, then e ↓ is an expression; this projects out the last coordinate

of the result of e (and is ∅0 if the arity is already zero).

• If e is an expression, then e ↑ is an expression; this produces the cross-product of e

with D.

• If e is an expression, then e ∼ is an expression; if arity(e)≥ 2, then this exchanges

the last two coordinates in each tuple in the result of e. Otherwise the answer is ∅0.

Programs are built by concatenations of assignment statements (R := e) and while state-

ments (while R do s). The semantics of the while is that the loop is iterated as long as R is

nonempty.

We leave it to the reader to check that QL is equivalent to whileuty (Exercise 18.17).

We briefly describe the simulation of integers by QL. Let Z denote the constant 0-ary

relation {〈〉}. We can have Z represent the integer 0 and Z ↑n represent the integer n. Then

increment(n) is simulated by one application of ↑, and decrement(n) is simulated by one

application of ↓. A test of the form x = 0 becomes e ↓= ∅, where e is the untyped algebra

expression representing the value of x. Thus we can simulate arbitrary computations on the

integers.

Recall that our definition of query requires that both the input and output be instances

over fixed schemas. On the other hand, in whileuty relation arities are variable, so in general

the arity of the answer is data dependent. This is a problem analogous to the one we

encountered with whilenew, which generally produces new values in the result. As in the

case of whilenew, we can define semantic and syntactic restrictions on whileuty programs

that guarantee that the programs compute queries. Call a whileuty program well behaved if

its answer is always of the same arity regardless of the input. Unfortunately, it can be shown

that it is undecidable if a whileuty program is well behaved (Exercise 18.19). However, there

is a simple syntactic condition that guarantees good behavior and covers all well-behaved

programs. A whileuty program with answer relation answer is syntactically well behaved if

the last instruction of the program is of the form answer := πmn(R), wherem, n are integer

constants. Clearly, syntactic good behavior guarantees good behavior and can be checked.

Furthermore, it is obvious that each well-behaved whileuty program is equivalent to some

syntactically well-behaved program (Exercise 18.19).
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We now prove the completeness of well-behaved whileuty programs.

Theorem 18.3.3 The well-behaved whileuty programs express all queries.

Crux It is easily verified that all well-behaved whileuty programs define queries. The proof

that every query can be expressed by a well-behaved whileuty program is similar to the

proof of Theorem 18.2.3. Let q be a query with input schema R. We proceed in two steps:

First construct all orderings of constants from the input. Next simulate the whileN program

computing q on the ordered database corresponding to each ordering. The main difference

with whilenew lies in how the orderings are computed. In whileuty, we use the arbitrary arity

to construct a relation R< containing sufficiently long tuples each of which provides an

enumeration of all constants. This is done by the following whileuty program, where D

stands for an algebra expression computing the active domain:

R< := ∅0;

C :=D; arityC := 1;

while C do

begin

R< := C;

C := C ×D; increment(arityC);

for i := 1 to (arityC − 1) do

C := C ∩ ¬σi=arity(C)(C);

end

Clearly, the looping construct f or i := 1 to . . . can be easily simulated. If the size of D

is n, the result of the program is the set of n-tuples with distinct entries in adom(D). Note

that each such tuple t in R< provides a complete enumeration of the constants in D. Next

one can easily construct a whileuty program that constructs, for each such tuple t in R<, the

corresponding successor relation. More precisely, one can construct

ŝucc=
⋃

t∈R<

succt × {t},

where succt = {〈t (i), t (i + 1)〉 | 1≤ i < n} (see Fig. 18.2 and Exercise 18.20).

Untyped languages allow us to relax the restriction that the output schema is fixed.

This may have a practical advantage because in some applications it may be necessary to

have the output schema depend on the input data. However, in such cases one would likely

prefer a richer type system rather than no typing at all.

The overall results on the expressiveness and complexity of relational query languages

are summarized in Figs. 18.4 and 18.5. The main classes of queries and their inclusion

structure are represented in Fig. 18.4 (solid arrows indicate strict inclusion; the dotted

arrow indicates strict inclusion if ptime �= pspace). Languages expressing each class of

queries are listed in Fig. 18.5, which also contains information on complexity (first with-

out assumptions, then with the assumption of an order on the database). In Fig. 18.5,



Bibliographic Notes 479

Conjunctive queries

Positive-existential

All queries

While

Fixpoint

Stratified datalog¬

Semipositive datalog¬

Datalog

First order

Figure 18.4: Main classes of queries

CALC(∃,∧) denotes the conjunctive calculus and CALC(∃,∧,∨) denotes the positive-

existential calculus.
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The first complete language proposed was the language QL of Chandra and Harel [CH80b].

Chandra also considered a language equivalent to whileN , which he called LC [Cha81a].

It was shown that LC cannot compute even. Several other primitives are considered in

[Cha81a] and their power is characterized. The language whilenew was defined in [AV90],

where its completeness was also shown.

The languages considered in this chapter can be viewed as formalizing practical lan-

guages, such as C+SQL or O2C, used to develop database applications. These languages

combine standard computation (C) with database computation (SQL in the relational world

or O2 in the object-oriented world). In this direction, several computing devices were de-

fined in [AV91b], and complexity-theoretic results are obtained using the devices. First

an extension of Turing machines with a relational store, called relational machine, was

shown to be equivalent to whileN . A further extension of relational machines equivalent to

whilenew and whileuty, called generic machine, was also defined. In the generic machine,
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Class of Complexity

queries Languages Complexity with order

conjunctive CALC(∃,∧) ⊂ logspace ⊂ logspace

SPJR algebra ⊂ ac0 ⊂ ac0

positive- CALC(∃,∧,∨)
existential SPJUR algebra ⊂ logspace ⊂ logspace

nr-datalog ⊂ ac0 ⊂ ac0

datalog datalog ⊂ monotonic ⊂ monotonic

ptime ptime

semipositive semipositive datalog¬ ⊂ ptime = ptime

datalog¬ (with min, max)

first order CALC

ALG ⊂ logspace ⊂ logspace

nr-stratified datalog¬ ⊂ ac0 ⊂ ac0

stratified stratified datalog¬ ⊂ ptime = ptime

datalog¬

fixpoint CALC+µ+

while+

datalog¬ (fixpoint and

well-founded semantics) ⊂ ptime = ptime

while CALC+µ
while

datalog¬¬ (fixpoint semantics) ⊂ pspace = pspace

all queries whileuty no bound no bound

whilenew

Figure 18.5: Languages and complexity

parallelism is used to allow simultaneous computations with all possible successor rela-

tions.

Queries with new values in their answers were first considered in [AK89], in the con-

text of an object-oriented deductive language with object creation, called IQL. The notion

of determinate query [VandBGAG92] is a recasting of the essentially equivalent notion of

db transformation, formulated in [AK89]. In [AK89], the query in Theorem 18.2.5 is also

exhibited, and it is shown that IQL without duplicate elimination cannot express it. Because

IQL is more powerful than whilenew, their result implies the result of Theorem 18.2.5. The

issue of completeness of languages with object creation was further investigated in [AP92,

VandBG92, VandBGAG92, VandBP95, DV91, DV93].



Exercises 481

Finally it is easy to see that each (determinate) query can be computed in some natural

nondeterministic extension of whilenew (e.g., with the witness operator of Chapter 17)

[AV91c]. However, such programs may be nondeterministic so they do not define only

determinate queries.

Exercises

Exercise 18.1 Let G be a graph. Consider a query “Does the shortest path from a to b in G

have property P?” where G is a graph, P is a recursive property of the integers, and a, b are
two particular vertexes of the graph. Show that such a query can be expressed in whileN .

Exercise 18.2 Prove that the query in Example 18.1.1 can be expressed (a) in while; (b) in
fixpoint.

Exercise 18.3 Sketch a direct proof that even cannot be expressed by whileN by extending the
hyperplane technique used in the proof of Proposition 17.3.2.

♠Exercise 18.4 [AV94] Consider the language L augmenting whileN by allowing mixing of
integers with data. Specifically, the following instruction is allowed in addition to those of
whileN : R := {〈i1, . . . , ik〉}, where R is a k-ary relation variable and i1, . . . , ik are integer vari-
ables. It is assumed that the domain of input values is disjoint from the integers. Comple-
ment (or negation) is taken with respect to the domain formed by all values in the database or
program, including the integer values present in the database. The well-behaved L programs
are those whose outputs never contain integers. Show that well-behaved L and whileN are
equivalent.

Exercise 18.5 Complete the proof of Theorem 18.1.2.

♠Exercise 18.6 [AV90] Consider a variation of the language whilenew where the R := new(S)

instruction is replaced by the simpler instruction “R := new” where R is unary. The semantics
of this instruction is that R is assigned a singleton {〈α〉}, where α is a new value. Denote the
new language by whileunary-new.

(a) Show that each query expressible in whileN is also expressible in whileunary-new.
Hint: Use new values to represent integers. Specifically, to represent the integers up
to n, construct a relation succint containing a successor relation on n new values. The
value of rank i with respect to succ represents integer i.

(b) Show that each query expressible in whileunary-new is also expressible in whileN .
Hint: Again establish a correspondence between new values and integers. Then use
Exercise 18.4.

Exercise 18.7 Prove Lemma 18.2.1.

Exercise 18.8 Prove that it is undecidable if a given whilenew program is well behaved.

⋆Exercise 18.9 In this exercise we define a syntactic restriction on whilenew programs that
guarantees good behavior. Let w be a whilenew program. Without loss of generality, we can
assume that all instructions contain at most one algebraic operation among ∪,−, π,×, σ . Let
the not-well-behaved set of w, denoted Bad(w), be the smallest set of pairs of the form 〈R, i〉,
where R is a relation in w and 1≤ i ≤ arity(R), such that
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(a) if S := new(R) is an instruction in w and arity(S)= k, then 〈S, k〉 ∈ Bad(w);

(b) if S := T ∪R is inw and 〈T , i〉 ∈ Bad(w) or 〈R, i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w);

(c) if S := T − R is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w);

(d) if S := T × R is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w); and if 〈R, j〉 ∈
Bad(w), then 〈S, arity(T )+ j〉 ∈ Bad(w);

(e) if S := πi1...ik(T ) is in w and 〈T , ij〉 ∈ Bad(w), then 〈S, j〉 ∈ Bad(w);

(f) if S := σcond(T ) is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w).

A whilenew program w is syntactically well behaved if

{〈answer, i〉 | 1≤ i ≤ arity(answer)} ∩ Bad(w)= ∅.

(a) Outline a procedure to check that a given whilenew program is syntactically well
behaved.

(b) Show that each syntactically well-behaved whilenew program is well behaved.

(c) Show that for each well-behaved whilenew program, there exists an equivalent syn-
tactically well-behaved whilenew program.

Exercise 18.10 Prove (*) in the proof of Theorem 18.2.3.

Exercise 18.11 Prove (†) and (‡) in the proof of Theorem 18.2.5.

Exercise 18.12 Consider the query q exhibited in the proof of Theorem 18.2.5. Let q2 be the
query that, on input I = {a, b}, produces as answer two copies of q(I ). More precisely, for each
ψi in q(I ), let ψ ′i be a distinct new value. Let q ′(I ) be obtained from q(I ) by replacing ψi by
ψ ′i , and let q2(I )= q(I ) ∪ q

′(I ). Prove that q2 can be expressed by a whilenew program.

♠Exercise 18.13 [DV91, DV93] Consider the instances I, J of Fig. 18.6. Consider a query q
that, on input of the same pattern as I , returns J (up to an arbitrary choice of distinct β, θi) and
otherwise returns the empty instance. Show that q is not expressible in whilenew.

♠Exercise 18.14 (Choose [AK89]) Let whilechoose
new be obtained by augmenting whilenew with the

following (determinate) choose construct. A program w may contain the instruction choose(R)

for some unary relation R. On input I, when choose(R) is applied in a state J, the next state J′

is defined as follows:

(a) if for each a, b in J(R), there is an automorphism of J that is the identity over
adom(I, w) and maps a to b, J′ is obtained from J by eliminating one arbitrary
element in J(R);

(b) otherwise J′ is just J.

Show that whilechoose
new is determinate complete.

Exercise 18.15 One may consider an untyped version of tuple relational calculus. Untyped
relations are used just like typed relations, except that terms of the form t (i) are allowed, where
t is a tuple variable and i an integer variable. Equivalence of queries now means that the queries
yield the same answers given the same relations and values for the integer variables. Show that
untyped relational calculus and untyped relational algebra are equivalent.

Exercise 18.16 Show that exij is not redundant in the untyped algebra.
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α1 a ψ1

α1 b ψ1

α1 b ψ2

α1 c ψ2

α1 c ψ3

α1 d ψ3

α1 d ψ4

α1 a ψ4

α2 a ψ5

α2 b ψ5

α2 b ψ6

α2 c ψ6

α2 c ψ7

α2 d ψ7

α2 d ψ8

α2 a ψ8

3⇒

β a θ1

β b θ1

β b θ2

β c θ2

β c θ3

β d θ3

β d θ4

β a θ4

I J

Figure 18.6: Another query not expressible in whilenew

♠Exercise 18.17 Sketch a proof that whileuty and the language QL described in Remark 18.3.2
are equivalent.

Exercise 18.18 Write a QL program computing the transitive closure of a binary relation.

♠Exercise 18.19 This exercise concerns well-behaved whileuty programs. Show the following:

(a) It is undecidable whether a given whileuty program is well behaved.

(b) Each syntactically well-behaved whileuty program is well behaved.

(c) For each well-behaved whileuty program, there exists an equivalent syntactically
well-behaved whileuty program.

Exercise 18.20 Write a whileuty program that constructs the relation ŝucc fromR< in the proof
of Theorem 18.3.3.

♠Exercise 18.21 [AV91b] Prove that any query on a unary relation computed by a whilenew

or whileuty program in polynomial space is in FO. (For the purpose of this exercise, define the
space used in a program execution as the maximum number of occurrences of constants in some
instance produced in the execution of the program.) Note that, in particular, even cannot be
computed in polynomial space in these languages.

♠Exercise 18.22 [AV91a] Consider the following extension of datalog¬¬ with the ability to
create new values. The rules are of the same form as datalog¬¬ rules, but with a different
semantics than the active domain semantics used for datalog¬¬. The new semantics is the
following. When rules are fired, all variables that occur in heads of rules but do not occur
positively in the body are assigned distinct new values, not present in the input database,
program, or any of the other relations in the program. A distinct value is assigned for each
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applicable valuation of the variables positively bound in the body in each firing. This is similar
to the new construct in whilenew. For example, one firing of the rule

R(x, y, α)← P(x, y)

has the same effect as the R := new(P ) instruction in whilenew. The resulting extension of
datalog¬¬ is denoted datalog¬¬new. The well-behaved datalog¬¬new programs are those that never
produce new values in the answer. Sketch a proof that well-behaved datalog¬¬new programs ex-
press all queries.
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F Finale

In this part, we consider four advanced topics. Two of them (incomplete information and

dynamic aspects) have been studied for a while, but for some reason (perhaps their diffi-

culty) they have never reached the maturity of more established areas such as dependency

theory. Interest in the other two topics (complex values and object databases) is more re-

cent, and our understanding of them is rudimentary. In all cases, no clear consensus has

yet emerged. Our choice of material, as well as our presentation, are therefore unavoid-

ably more subjective than in other parts of this book. However, the importance of these

issues for practical systems, as well as the interesting theoretical issues they raise, led us to

incorporate a discussion of them in this book.

In Chapter 19, we address the issue of incomplete information. In many database

applications, the knowledge of the real world is incomplete. It is crucial to be able to handle

such incompleteness and, in particular, to be able to ask queries and perform updates.

Chapter 19 surveys various models of incomplete databases, research directions, and some

results.

In Chapter 20, we present an extension of relations called complex values. These are

obtained from atomic elements using tuple and set constructors. The richer structure allows

us to overcome some limitations of the relational model in describing complex data. We

generalize results obtained for the relational model; in particular, we present a calculus

and an equivalent algebra.

Chapter 21 looks at another way to enrich the relational model by introducing a num-

ber of features borrowed and adapted from object-oriented programming, such as objects,

classes, and inheritance. In particular, objects consist of a structural part (a data reposi-

tory) and a behavioral part (pieces of code). Thus the extended framework encompasses

behavior, a notion conspicuously absent from relational databases.

Chapter 22 deals with dynamic aspects. This is one of the less settled areas in data-

bases, and it raises interesting and difficult questions. We skim through a variety of issues:

languages and semantics for updates; updating views; updating incomplete information;

and active and temporal databases.

A comprehensive vision of the four areas discussed in Part F is lacking. The reader

should therefore keep in mind that some of the material presented is in flux, and its

importance pertains more to the general flavor than the specific results.
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19 Incomplete Information

Somebody: What are we doing next?

Alice: Who are we? Who are you?

Somebody: We are you and the authors of the book, and I am one of them. This is an

instance of incomplete information.

Somebody: It’s not much, but we can still tell that surely one of us is Alice and that

there are possibly up to three “Somebodies” speaking.

In the previous parts, we have assumed that a database always records information that

is completely known. Thus a database has consisted of a completely determined finite

instance. In reality, we often must deal with incomplete information. This can be of many

kinds. There can be missing information, as in “John bought a car but I don’t know which

one.” In the case of John’s car, the information exists but we do not have it. In other

cases, some attributes may be relevant only to some tuples and irrelevant to others. Alice is

single, so the spouse field is irrelevant in her case. Furthermore, some information may be

imprecise: “Heather lives in a large and cheap apartment,” where the values of large and

cheap are fuzzy. Partial information may also arise when we cannot completely rely on the

data because of possible inconsistencies (e.g., resulting from merging data from different

sources).

As soon as we leave the realm of complete databases, most issues become much more

intricate. To deal with the most general case, we need something resembling a theory of

knowledge. In particular, this quickly leads to logics with modalities: Is it certain that John

lives in Paris? Is it possible that he may? What is the probability that he does? Does John

know that Alice is a good student? Does he believe so? etc.

The study of knowledge is a fascinating topic that is outside the scope of this book.

Clearly, there is a trade-off between the expressivity of the model for incomplete informa-

tion used and the difficulty of answering queries. From the database perspective, we are

primarily concerned with identifying this trade-off and understanding the limits of what is

feasible in this context. The purpose of this chapter is to make a brief foray into this topic.

We limit ourselves mostly to models and results of a clear database nature. We consider

simple forms of incompleteness represented by null values. The main problem we examine

is how to answer queries on such databases. In relation to this, we argue that for a represen-

tation system of incomplete information to be adequate in the context of a query language,

it must also be capable of representing answers to queries. This leads to a desirable closure

property of representations of incomplete information with respect to query languages. We

observe the increase of complexity resulting from the use of nulls.

We also consider briefly two approaches closer to knowledge bases. The first is based
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on the introduction of disjunctions in deductive databases, which also leads to a form of

incompleteness. The second is concerned with the use of modalities. We briefly mention

the language KL, which permits us to talk about knowledge of the world.

19.1 Warm-Up

As we have seen, there are many possible kinds of incomplete information. In this section,

we will focus on databases that partially specify the state of the world. Instead of com-

pletely identifying one state of the world, the database contents are compatible with many

possible worlds. In this spirit, we define an incomplete database simply as a set of possible

worlds (i.e., a set of instances). What is actually stored is a representation of an incomplete

database. Choosing appropriate representations is a central issue.

We provide a mechanism for representing incomplete information using null values.

The basic idea is to allow occurrences of variables in the tuples of the database. The

different possible values of the variables yield the possible worlds.

The simplest model that we consider is the Codd table (introduced by Codd), or table

for short. A table is a relation with constants and variables, in which no variable occurs

twice. More precisely, let U be a finite set of attributes. A table T over U is a finite set of

free tuples over U such that each variable occurs at most once. An example of a table is

given in Fig. 19.1. The figure also illustrates an alternative representation (using @) that is

more visual but that we do not adopt here because it is more difficult to generalize.

The preceding definition easily extends to database schemas. A database table T over

a database schema R is a mapping over R such that for each R in R, T(R) is a table

over sort (R). For this generalization, we assume that the sets of variables appearing in

each table are pairwise disjoint. Relationships between the variables can be stated through

R A B C R A B C

0 1 x 0 1 @

y z 1 @ @ 1

2 0 v 2 0 @

Table T Alternative representation of T

R A B C R A B C R A B C R A B C

0 1 2 0 1 2 0 1 2 0 1 1

2 0 1 3 0 1 2 0 1 2 0 1

2 0 0 2 0 5 2 0 0

I1 I2 I3 I4

Figure 19.1: A table and examples of corresponding instances
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global conditions (which we will introduce in the next section). In this section, we will

focus on single tables, which illustrate well the main issues.

To specify the semantics of a table, we use the notion of valuation (see Chapter 4). The

incomplete database represented by a table is defined as follows:

rep(T )= {ν(T ) | ν a valuation of the variables in T }.

Consider the table T in Fig. 19.1. Then I1, . . . , I4 all belong to rep(T ) (i.e., are possible

worlds).

The preceding definition assumes the Closed World Assumption (CWA) (see Chap-

ter 2). This is because each tuple in an instance of ref (T ) must be justified by the presence

of a particular free tuple in T . An alternative approach is to use the Open World Assumption

(OWA). In that case, the incomplete database of T would include all instances that contain

an instance of rep(T ). In general, the choice of CWA versus OWA does not substantially

affect the results obtained for incomplete databases.

We now have a simple way of representing incomplete information. What next? Nat-

urally, we wish to be able to query the incomplete database. Exactly what this means is

not clear at this point. We next look at this issue and argue that the simple model of tables

has serious shortcomings with respect to queries. This will naturally lead to an extension

of tables that models more complicated situations.

Let us consider what querying an incomplete database might mean. Consider a table T

and a query q. The table T represents a set of possible worlds rep(T ). For each I ∈ rep(T ),

q would produce an answer q(I ). Therefore the set of possible answers of q is q(rep(T )).

This is, again, an incomplete database. The answer to q should be a representation of this

incomplete database.

More generally, consider some particular representation system (e.g., tables). Such a

system involves a language for describing representations and a mapping rep that associates

a set of instances with each representation. Suppose that we are interested in a particular

query language L (e.g., relational algebra). We would always like to be capable of repre-

senting the result of a query in the same system. More precisely, for each representation T

and query q, there should exist a computable representation q(T ) such that

rep(q(T ))= q(rep(T )).

In other words, q(T ) represents the possible answers of q [i.e., {q(I ) | I ∈ rep(T )}].
If some representation system τ has the property described for a query language L, we

will say that τ is a strong representation system for L. Clearly, we are particularly interested

in strong representation systems for relational algebra and we shall develop such a system

later.

Let us now return to tables. Unfortunately, we quickly run into trouble when asking

queries against them, as the following example shows.

Example 19.1.1 Consider T of Fig. 19.1 and the algebraic query σA=3(T ). There is no

table representing the possible answers to this query. A possible answer (e.g., for I1) is

the empty relation, whereas there are nonempty possible answers (e.g., for I2). Suppose
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that there exists a table T ′ representing the set of possible answers. Either T ′ is empty and

σA=3(I2) is not in rep(T ′); or T ′ is nonempty and the empty relation is not in rep(T ′). This

is a contradiction, so no such T ′ can exist.

The problem lies in the weakness of the representation system of tables; we will

consider richer representation systems that lead to a complete representation system for

all of relational algebra. An alternative approach is to be less demanding; we consider this

next and present the notion of weak representation systems.

19.2 Weak Representation Systems

To relax our expectations, we will no longer require that the answer to a query be a

representation of the set of all possible answers. Instead we will ask which are the tuples

that are surely in the answer (i.e., that belong to all possible answers). (Similarly, we may

ask for the tuples that are possibly in the answer (i.e., that belong to some possible answer).

We make this more precise next.

For a table T and a query q, the set of sure facts, sure(q, T ), is defined as

sure(q, T )= ∩{q(I ) | I ∈ rep(T )}.

Clearly, a tuple is in sure(q, T ) iff it is in the answer for every possible world. Observe

that the sure tuples in a table T [i.e., the tuples in every possible world in rep(T )] can be

computed easily by dropping all free tuples with variables. One could similarly define the

set poss(q, T ) of possible facts.

One might be tempted to require of a weak system just the ability to represent the

set of tuples surely in the answer. However, the definition requires some care due to

the following subtlety. Suppose T is the table in Fig. 19.1 and q the query σA=2(R),

for which sure(q, T ) = ∅. Consider now the query q ′ = πAB(R) and the query q ◦ q ′.
Clearly, q ′(sure(q, T ))= ∅; however, sure(q ′(q(rep(T )))= {〈2, 0〉}. So q ◦ q ′ cannot be

computed by first computing the tuples surely returned by q and then applying q ′. This

is rather unpleasant because generally it is desirable that the semantics of queries be

compositional (i.e., the result of q ◦ q ′ should be obtained by applying q ′ to the result

of q). The conclusion is that the answer to q should provide more information than just

sure(q, T ); the incomplete database it specifies should be equivalent to q(rep(T )) with

respect to its ability to compute the sure tuples of any query in the language applied to it.

This notion of equivalence of two incomplete databases is formalized as follows.

If L is a query language, we will say that two incomplete databases I,J are L

equivalent, denoted I ≡L J , if for each q in L we have

∩{q(I ) | I ∈ I} = ∩{q(I ) | I ∈ J }.

In other words, the two incomplete databases are undistinguishable if all we can ask for is

the set of sure tuples in answers to queries in L.

We can now define weak representation systems. Suppose L is a query language. A
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representation system is weak for L if for each representation T of an incomplete database,

and each q in L, there exists a representation denoted q(T ) such that

rep(q(T ))≡L q(rep(T )).

With the preceding definition, q(T ) does not provide precisely sure(q, T ) for tables

T . However, note that sure(q, T ) can be obtained at the end simply by eliminating from

the answer all rows with occurrences of variables.

The next result indicates the power of tables as a weak representation system.

Theorem 19.2.1 Tables form a weak representation system for selection-projection (SP)

[i.e., relational algebra limited to selection (involving only equalities and inequalities) and

projection]. If union or join are added, tables no longer form a weak representation system.

Crux It is easy to see that tables form a weak representation system for SP queries.

Selections operate conservatively on tables. For example,

σcond(T )= {t | t ∈ T and cond(ν(t)) holds

for all valuations ν of the variables in t}.

Projections operate like classical projections. For example, if T is again the table in

Fig. 19.1, then

σA=2(T )= {〈2, 0, v〉}

and

(πAB(R) ◦ σA=2(R))(T )= {〈2, 0〉}.

Let us show that tables are no longer a weak representation system if join or union are

added to SP. Consider join first. So the query language is now SPJ. Let T be the table

R A B C

a x c

a′ x′ c′

where x, x′ are variables and a, a′, c, c′ are constants.

Let q = πAC(R) ⊲⊳ πB(R). Suppose there is table W such that

rep(W)≡SPJ q(rep(T )),

and consider the query q ′ = πAC(πAB(R) ⊲⊳ πBC(R)). Clearly, sure(q ◦ q ′, T ) is
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A C

a c

a′ c

a c′

a′ c′

Therefore sure(q ′,W) must be the same. Because 〈a′, c〉 ∈ sure(q ′,W), for each valua-

tion ν of variables in W there must exist tuples u, v ∈W such that u(A) = a′, v(C) =
c, ν(u)(B)= ν(v)(B). Let ν be a valuation such that ν(z) �= ν(y) for all variables z, y, z �=
y. If u= v, then u(A)= a′ and u(C)= c so 〈a′, c〉 ∈ sure(πAC(R),W). This cannot be be-

cause, clearly, 〈a′, c〉 �∈ sure(πAC(R), q(rep(T ))). So, u �= v. Because ν(u)(B)= ν(v)(B)
andW has no repeated variables, it follows that u(B) and v(B) equal some constant k. But

then 〈a′, k〉 ∈ sure(πAB(R),W), which again cannot be because one can easily verify that

sure(πAB(R), q(rep(T )))= ∅.

The proof that tables do not provide a weak representation system for SPU follows

similar lines. Just consider the table T

R A B

x b

and the query q outputting two relations: σA=a(R) and σA �=a(R). It is easily seen that there

is no pair of tablesW1,W2 weakly representing q(rep(T ))with respect to SPU. To see this,

consider the query q ′ = πB(W1 ∪W2). The details are left to the reader (Exercise 19.7).

Naive Tables

The previous result shows the limitations of tables, even as weak representation systems.

As seen from the proof of Theorem 19.2.1, one problem is the lack of repeated variables.

We next consider a first extension of tables that allows repetitions of variables. It will

turn out that this will provide a weak representation system for a large subset of relational

algebra.

A naive table is like a table except that variables may repeat. A naive table is shown

in Fig. 19.2. Naive tables behave beautifully with respect to positive existential queries

(i.e., conjunctive queries augmented with union). Recall that, in terms of the algebra, this

is SPJU.

Theorem 19.2.2 Naive tables form a weak representation system for positive relational

algebra.

Crux Given a naive table T and a positive query q, the evaluation of q(T ) is extremely

simple. The variables are treated as distinct new constants. The standard evaluation of q is

then performed on the table. Note that incomplete information yields no extra cost in this

case. We leave it to the reader to verify that this works.
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R A B C

0 1 x

x z 1

2 0 v

Figure 19.2: A naive table

Naive tables yield a nice representation system for a rather large language. But the

representation system is weak and the language does not cover all of relational algebra. We

introduce in the next section a representation that is a strong system for relational algebra.

19.3 Conditional Tables

We have seen that Codd tables and naive tables are not rich enough to provide a strong

representation system for relational algebra. To see what is missing, recall that when we

attempt to represent the result of a selection on a table, we run into the problem that

the presence or absence of certain tuples in a possible answer is conditioned by certain

properties of the valuation. To capture this, we extend the representation with conditions

on variables, which yields conditional tables. We will show that such tables form a strong

representation system for relational algebra.

A condition is a conjunct of equality atoms of the form x = y, x = c and of inequality

atoms of the form x �= y, x �= c, where x and y are variables and c is a constant. Note that

we only use conjuncts of atoms and that the Boolean true and false can be respectively

encoded as atoms x = x and x �= x.

If formula P is a condition, we say that a valuation ν satisfies P if its assignment of

constants to variables makes the formula true.

Conditions may be associated with table T in two ways: (1) A global condition PT is

associated with the entire table T ; (2) a local condition ϕt is associated with one tuple t of

table T . A conditional table (c-table for short) is a triple (T ,PT , ϕ), where

• T is a table,

• PT is a global condition,

• ϕ is a mapping over T that associates a local condition ϕt with each tuple t of T .

A c-table is shown in Fig. 19.3. If we omit listing a condition, then it is by default the atom

true. Note also that conditions PT and ϕt for t in T may contain variables not appearing

respectively in T or t .

For our purposes, the global conditions in c-tables could be distributed at the tuple level

as local conditions. However, they are convenient as shorthand and when dependencies are

considered.

For brevity, we usually refer to a c-table (T ,PT , ϕ) simply as T . A given c-table T

represents a set of instances as follows (again adopting the CWA):
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J4 A B

0 1

0 3

J3 A B

0 1

J2 A B

0 1

1 0

J1 A B

0 1

0 0

T ′ A B

0 1

1 x

y x

z = z

y = 0

x ≠ y

x ≠ 2, y ≠ 2

Figure 19.3: A c-table and some possible instances

rep(T )= {I | there is a valuation ν satisfying PT such that relation I

consists exactly of those facts ν(t) for which ν satisfies ϕt}.

Consider the table T ′ in Fig. 19.3. Then J1, J2, J3, J4 are obtained by valuating x, y, z

to (0,0,0), (0,1,0), (1,0,0), and (3,0,0), respectively.

The next example illustrates the considerable power of the local conditions of c-tables,

including the ability to capture disjunctive information.

Example 19.3.1 Suppose we know that Sally is taking math or computer science (CS)

(but not both) and another course; Alice takes biology if Sally takes math, and math or

physics (but not both) if Sally takes physics. This can be represented by the following

c-table:

Student Course

(x �= math) ∧ (x �= CS)

Sally math (z= 0)

Sally CS (z �= 0)

Sally x

Alice biology (z= 0)

Alice math (x = physics) ∧ (t = 0)

Alice physics (x = physics) ∧ (t �= 0)
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Observe that there may be several c-table representations for the same incomplete

database. Two representations T , T ′ are said to be equivalent, denoted T ≡ T ′, if rep(T )=
rep(T ′). Testing for equivalence of c-tables is not a trivial task. Just testing membership

of an instance in rep(T ), apparently a simpler task, will be shown to be np-complete. To

test equivalence of two c-tables T and T ′, one must show that for each valuation ν of the

variables in T there exists a valuation ν′ for T ′ such that ν(T )= ν′(T ′), and conversely.

Fortunately, it can be shown that one need only consider valuations to a set C of constants

containing all constants in T or T ′ and whose size is at most the number of variables in the

two tables (Exercise 19.11). This shows that equivalence of c-tables is decidable.

In particular, finding a minimal representation can be hard. This may affect the com-

putation of the result of a query in various ways: The complexity of computing the answer

may depend on the representation of the input; and one may require the result to be some-

what compact (e.g., not to contain tuples with unsatisfiable local conditions).

It turns out that c-tables form a strong representation system for relational algebra.

Theorem 19.3.2 For each c-table T over U and relational algebra query q over U , one

can construct a c-table q(T ) such that rep(q(T ))= q(rep(T )).

Crux The proof is straightforward and is left as an exercise (Exercise 19.13). The exam-

ple in Fig. 19.4 should clarify the construction.1 For projection, it suffices to project the

columns of the table. Selection is performed by adding new conjuncts to the local condi-

tions. Union is represented by the union of the two tables (after making sure that they use

distinct sets of variables) and choosing the appropriate local conditions. Join and intersec-

tion involve considering all pairs of tuples from the two tables. For difference, we consider

a tuple in the first table and add a huge conjunct stating that it does not match any tuple

from the second table (disjunctions may be used as shorthand; they can be simulated using

new variables, as illustrated in Example 19.3.1).

To conclude this section, we consider (1) languages with recursion, and (2) depen-

dencies. In both cases (and for related reasons) the aforementioned representation system

behaves well. The presentation is by examples, but the formal results can be derived easily.

Languages with Recursion

Consider an incomplete database and a query involving fixpoint. For instance, consider the

table in Fig. 19.5. The representation tc(T ) of the answer to the transitive closure query tc

is also given in the same figure. One can easily verify that

rep(tc(T ))= tc(rep(T )).

This can be generalized to arbitrary languages with iteration. For example, consider a

c-table T and a relational algebra query q that we want to iterate until a fixpoint is reached.

1 The representations in the tables can be simplified; they are given in rough form to illustrate the
proof technique.
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T1 B C

x c

T2 B C

y c

z w

(y = b)

πB(T2) B

y

z

(y = b)

T3 A B

a y

σB=b(T1        T3) A

a (y = x) ∧ (y = b)

B

y

C

c

T1 ∪ T2 B C

x c

T1        T3 A

a (y = x)

B

y

C

c

y c

z w

(y = b)

T1 – T2 B C

x c

x c

x c

(y ≠ b) ∧ (w ≠ c)

x c

(y = b) ∧ (x ≠ b) ∧ (x ≠ z)

(y = b) ∧ (x ≠ b) ∧ (w ≠ c)

(y ≠ b) ∧ (x ≠ z)

Figure 19.4: Computing with c-tables

Then we can construct the sequence of c-tables:

q(T ), q2(T ), . . . , q i(T ), . . . .

Suppose now that q is a positive query. We are guaranteed to reach a fixpoint on

every single complete instance. However, this does not a priori imply that the sequence

of representations {q i(T )}i>0 converges. Nonetheless, we can show that this is in fact the

case. For some i,

rep(q i(T ))= rep(q i+1(T )).
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T A B tc(T ) A B

a b a b

x c x c

c d c d

a c x = b

x d

c c x = d

a d x = b

Figure 19.5: Transitive closure of a table

(See Exercise 19.17.) It can also be shown easily that for such i, every I ∈ rep(q i(T ))

is a fixpoint of q. The proof is by contradiction: Suppose there is I ∈ rep(q i(T )) such

that q(I ) �= I , and consider one such I with a minimum number of tuples. Because

rep(q i(T )) = rep(q i+1(T )), I = q(J ) for some J ∈ rep(q i(T )). Because q is positive,

J ⊆ I ; so because q(I ) �= I , J ⊂ I . This contradicts the minimality of I . So q i(T )) is

indeed the desired answer.

Thus to find the table representing the result, it suffices to compute the sequence

{q i(T )}i>0 and stop when two consecutive tables are equivalent.

Dependencies

In Part B, we studied dependencies in the context of complete databases. We now recon-

sider dependencies in the context of incomplete information. Suppose we are given an

incomplete database (i.e., a set I of complete databases) and are told, in addition, that

some set $ of dependencies is satisfied. The question arises: How should we interpret the

combined information provided by I and by $?

The answer depends on our view of the information provided by an incomplete data-

base. Dependencies should add to the information we have. But how do we compare in-

complete databases with respect to information content? One common-sense approach, in

line with our discussion so far, is that more information means reducing further the set

of possible worlds. Thus an incomplete database I (i.e., a set of possible worlds) is more

informative than J iff I ⊂ J . In this spirit, the natural use of dependencies would be to

eliminate from I those possible worlds not satisfying $. This makes sense for egd’s (and

in particular fd’s).

A different approach may be more natural in the context of tgd’s. This approach stems

from a relaxation of the CWA that is related to the OWA. Let I be an incomplete database,

and let $ be a set of dependencies. Recall that tgd’s imply the presence of certain tuples

based on the presence of other tuples. Suppose that for some I ∈ I, a tuple t implied by a

tgd in $ is not present in I . Under the relaxation of the CWA, we conclude that t should

be viewed as present in I , even though it is not represented explicitly. More generally, the

chase (see Chapter 8), suitably generalized to operate on instances rather than tableaux,
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I1 I2 I3 J1 J2

A B C A B C A B C A B C A B C

a b c e f g a b c a b c e f g

a b′ c′ e f ′ g′ g b h a b′ c′ e f ′ g′

e f g′ a b c′ e f g

e f ′ g a b′ c e f ′ g

Figure 19.6: Incomplete databases and dependencies

can be used to complete the instance by adding all missing tuples implied by the tgd’s in

$. (See Exercise 19.18.)

In fact, the chase can be used for both egd’s and tgd’s. In contrast to tgd’s, the effect of

chasing with egd’s (and, in particular, fd’s) may be to eliminate possible worlds that violate

them. Note that tuples added by tgd’s may lead to violations of egd’s. This suggests that an

incomplete database I with a set $ of dependencies represents

{chase(I,$) | I ∈ I and the chase of I by $ succeeds}.

For example, consider Fig. 19.6, which shows the incomplete database I = {I1, I2, I3}.
Under this perspective, the incorporation of the dependencies $ = {A→→ B,B→ A} in

this incomplete database leads to J = {J1, J2}.
Suppose now that the incomplete database I is represented as a c-table T . Can the

effect of a set $ of full dependencies on T be represented by another c-table T ′? The

answer is yes, and T ′ is obtained by extending the chase to c-tables in the straightforward

way. For example, a table T1 and its completion T2 by $ = {A→→ B,C→D} are given

in Fig. 19.7. The reader might want to check that

chase$(rep(T1))= rep(T2).

T1 A B C D T2 A B C D

a b c d a b c d

x e y g x e y g

a b c z a b y g (x = a)

a e c d (x = a)

Figure 19.7: c-tables and dependencies
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19.4 The Complexity of Nulls

Conditional tables may appear to be a minor variation from the original model of complete

relational databases. However, we see next that the use of nulls easily leads to intractability.

This painfully highlights the trade-off between modeling power and resources.

We consider some basic computational questions about incomplete information data-

bases. Perhaps the simplest question is the possibility problem: “Given a set of possible

worlds (specified, for instance, by a c-table) and a set of tuples, is there a possible world

where these tuples are all true?” A second question is the certainty problem: “Given a set

of possible worlds and a set of tuples, are these tuples all true in every possible world?”

Natural variations of these problems involve queries: Is a given set of tuples possibly (or

certainly) in the answer to query q?

Consider a (c-) table T , a query q, a relation I , and a tuple t . Some typical questions

include the following:

(Membership) Is I a possible world for T [i.e., I ∈ rep(T )]?

(Possibility) Is t possible [i.e., ∃I ∈ rep(T )(t ∈ I )]?

(Certainty) Is t certain [i.e., ∀I ∈ rep(T )(t ∈ I )]?

(q-Membership) Is I a possible answer for q and T [i.e., I ∈ q(rep(T ))]?

(q-Possibility) Is t possibly in the answer [i.e., ∃I ∈ rep(T )(t ∈ q(I ))]?

(q-Certainty) Is t certainly in the answer [i.e., ∀I ∈ rep(T )(t ∈ q(I ))]?

Finally we may consider the following generalizations of the q-membership problem:

(q-Containment) Is T contained in q(T ′) [i.e., rep(T )⊆ q(rep(T ′))]?

(q, q ′-Containment) Is q(T ) contained in q ′(T ) [i.e., rep(q(T ))⊆ rep(q ′(T ))]?

The crucial difference between complete and incomplete information is the large num-

ber of possible valuations for the latter case. Because of the finite number of variables in a

set of c-tables, only a finite number of valuations are nonisomorphic (see Exercise 19.10).

However, the number of such valuations may grow exponentially in the input size. By sim-

ple reasoning about all valuations and by guessing particular valuations, we have some

easy upper bounds. For a query q that can be evaluated in polynomial time on complete

databases, deciding whether I ∈ q(rep(T )), or whether I is a set of possible answers, can

be answered in np; checking whether q(rep(T ))= {I }, or if I is a set of certain tuples, is

in co-np.

To illustrate such complexity results, we demonstrate one lower bound concerning the

q-membership problem for (Codd) tables.

Proposition 19.4.1 There exists a positive existential query q such that checking, given

a table T and a complete instance I , whether I ∈ q(rep(T )) is np-complete.

Proof The proof is by reduction of graph 3-colorability. For simplicity, we use a query

mapping a two-relation database into another two-relation database. (An easy modification

of the proof shows that the result also holds for databases with one relation. In particular,
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increase the arity of the largest relation, and use constants in the extra column to encode

several relations into this one.)

We will use (1) an input schema R with two relations R, S of arity 5 and 2, respec-

tively; (2) an output schema R′ with two relations R′, S′ of arity 3 and 1, respectively; and

(3) a positive existential query q from R to R′. The query q [returning, on each input I over

R, two relations q1(I) and q2(I) over R′ and S′] is defined as follows:

q1 = {〈x, z, z
′〉 | ∃y([∃vw(R(x, y, v,w, z) ∨ R(v,w, x, y, z))]

∧ [∃vw(R(x, y, v,w, z′) ∨ R(v,w, x, y, z′))])}

q2 = {z | ∃xyvw(R(x, y, v,w, z) ∧ S(y,w))}.

For each input G= (V ,E) to the graph 3-colorability problem, we construct a table

T over the input schema R and an instance I′ over the output schema R′, such that G is

3-colorable iff I′ ∈ q(rep(T)).

Without loss of generality, assume that G has no self-loops and that E is a binary

relation, where we list each edge once with an arbitrary orientation.

Let V = {ai | i ∈ [1..n]} and E = {(bj , cj) | j ∈ [1..m]}. Let {xj | j ∈ [1..m]} and

{yj | j ∈ [1..m]} be two disjoint sets of distinct variables. Then T and I′ are constructed

as follows:

(a) T(R)= {tj | j ∈ [1..m]}, where tj is the tuple 〈bj , xj , cj , yj , j〉;

(b) T(S)= {〈i, j〉 | i, j ∈ {1, 2, 3}, i �= j};

(c) I′(R′)= {〈a, j, k〉 | a ∈ {bj , cj} ∩ {bk, ck}, where each (b, c) pair is an edge in

E }; and

(d) I′(S′)= {j | j ∈ [1..m]}.

Intuitively, for each tuple in I(R), the second column contains the color of the vertex in

the first column, and the fourth column contains the color of the vertex in the third column.

The edges are numbered in the fifth column. The role of query q2 is to check whether this

provides an assignment of the three colors {1, 2, 3} to vertexes such that the colors of the

endpoints of each edge are distinct. Indeed, q2 returns the edges z for which the colors

y,w of its endpoints are among {1, 2, 3}. So if q(I)(S′)= I′(S′), then all edges have color

assignments among {1, 2, 3} to their endpoints. Next query q1 checks whether a vertex is

assigned the same color consistently in all edges where it occurs. It returns the 〈x, z, z′〉,
where x is a vertex, z and z′ are edges, x occurs as an endpoint, and x has the same color

assignment y in both z and z′. So if q1(I)(R
′)= I′(R′), it follows that the color assignment

is consistent everywhere for all vertexes.

For example, consider the graph G given in Fig. 19.8; the corresponding I′ and T

are exhibited in Fig. 19.9. Suppose that f is a 3-coloring of G. Consider the valuation σ

defined by σ(xj)= f (bj) and σ(yj)= f (cj) for all j . It is easily seen that I′ = q(σ (T )).

Moreover, it is straightforward to show that G is 3-colorable iff I′ is in q(rep(T)).
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1 2

2 3

3 4

4 1

3 1

Figure 19.8: Graph G

T(R) T(S) I′(R′) I′(S′)

1 x1 2 y1 1 1 2 1 1 1 1

2 x2 3 y2 2 1 3 1 1 4 2

3 x3 4 y3 3 2 1 1 1 5 3

4 x4 1 y4 4 2 3 1 4 1 4

3 x5 1 y5 5 3 1 1 4 4 5

3 2 1 4 5

2 1 1

2 1 2

2 2 1

2 2 2
...

4 3 3

4 3 4

4 4 3

4 4 4

Figure 19.9: Encoding for the reduction of 3-colorability

19.5 Other Approaches

Incomplete information often arises naturally, even when the focus is on complete data-

bases. For example, the information in a view is by nature incomplete, which in particular

leads to problems when trying to update the view (as discussed in Chapter 22); and we

already considered relations with nulls in the weak universal relations of Chapter 11.

In this section, we briefly present some other aspects of incomplete information. We

consider some alternative kinds of null values; we look at disjunctive deductive databases;

we mention a language that allows us to address directly in queries the issue of incom-

pleteness; and we briefly mention several situations in which incomplete information arises

naturally, even when the database itself is complete. An additional approach to representing

incomplete information, which stems from using explicit logical theories, will be presented

in connection with the view update problem in Chapter 22.
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Other Nulls in Brief

So far we have focused on a specific kind of null value denoting values that are unknown.

Other forms of nulls may be considered. We may consider, for instance, nonexisting nulls.

For example, in the tuple representing a CEO, the field DirectManager has no meaning

and therefore contains a nonexisting null. Nonexisting nulls are at the core of the weak

universal model that we considered in Chapter 11.

It may also be the case that we do not know for a specific field if a value exists. For

example, if the database ignores the marital status of a particular person, the spouse field

is either unknown or nonexisting. It is possible to develop a formal treatment of such no-

information nulls. An incomplete database consists of a set of sets of tuples, where each set

of tuples is closed under projection. This closure under projection indicates that if a tuple

is known to be true, the projections of this tuple (although less informative) are also known

to be true. (The reader may want to try, as a nontrivial exercise, to define tables formally

with such nulls and obtain a closure theorem analogous to Theorem 19.3.2.)

For each new form of null values, the game is to obtain some form of representation

with clear semantics and try to obtain a closure theorem for some reasonable language

(like we did for unknown nulls). In particular, we should focus on the most important

algebraic operations for accessing data: projection and join. It is also possible to establish

a lattice structure with the different kinds of nulls so that they can be used meaningfully in

combination.

Disjunctive Deductive Databases

Disjunctive logic programming is an extension of standard logic programming with rules

of the form

A1 ∨ · · · ∨ Ai← B1, . . . , Bj ,¬C1, . . . ,¬Ck.

In datalog, the answer to a query is a set of valuations. For instance, the answer to a query

←Q(x) is a set of constants a such that Q(a) holds. In disjunctive deductive databases,

an answer may also be a disjunctionQ(a) ∨Q(b).
Disjunctions give rise to new problems of semantics for logic programs. Although in

datalog each program has a unique minimal model, this is no longer the case for datalog

with disjunctions. For instance, consider the database consisting of a single statement

{Q(a) ∨Q(b)}. Then there are clearly two minimal models: {Q(a)} and {Q(b)}. This

leads to semantics in terms of sets of minimal models, which can be viewed as incomplete

databases. We can develop a fixpoint theory for disjunctive databases, extending naturally

the fixpoint approach for datalog. To do this, we use an ordering over sets of minimal

interpretations (i.e., sets I of instances such that there are no I, J in I with I ⊂ J ).

Definition 19.5.1 Let I,J be sets of minimal interpretations. Then

J ⊑ I iff ∀I ∈ I (∃J ∈ J (J ⊆ I )).
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Consider the following immediate consequence operator. Let P be a datalog program

with disjunctions, and let I be a set of minimal interpretations. A new set J of interpre-

tations is obtained as follows. For each I in I, stateP (I ) is the set of disjunctions of the

form A1 ∨ · · · ∨ Ai that are immediate consequences of some facts in I using P . Then J

is the set of of instances J such that for some I ∈ I, J is a model of stateP (I ) contain-

ing I . Clearly, J is not a set of minimal interpretations. The immediate consequence of I,

denoted TP (I), is the set of minimal interpretations in J . Now consider the sequence

I0 = ∅

Ii = TP (Ii−1).

It is easy to see that the sequence {Ii}i≥0 is nondecreasing with respect to the ordering ⊑,

so it becomes constant at some point. The semantics of P is the limit of the sequence.

When negation is introduced, the situation, as usual, becomes more complicated. How-

ever, it is possible to extend semantics, such as stratified and well founded, to disjunctive

deductive databases.

Overall, the major difficulty in handling disjunction is the combinatorial explosion it

entails. For example, the fixpoint semantics of datalog with disjunctions may yield a set of

interpretations exponential in the input.

Logical Databases and KL

The approach to null values adopted here is essentially a semantic approach, because the

meaning of an incomplete database is a set of possible instances. One can also use a

syntactic, proof-theoretic approach to modeling incomplete information. This is done by

regarding the database as a set of sentences, which yields the logical database approach.

As discussed in Chapter 2, in addition to statements about the real world, logical

databases consider the following:

1. Uniqueness axioms: State that distinct constants stand for distinct elements in the

real world.

2. Domain closure axiom: Specify the universe of constants.

3. Completion axiom: Specify that no fact other than recorded holds.

Missing in both the semantic and syntactic approaches is the ability to make more

refined statements about what the database knows. Such capabilities are particularly im-

portant in applications where the real world is slowly discovered through imprecise data.

In such applications, it is general impossible to wait for a complete state to answer queries,

and it is often desirable to provide the user with information about the current state of

knowledge of the database.

To overcome such limitations, we may use languages with modalities. We briefly

mention one such language: KL. The language KL permits us to distinguish explicitly

between the real world and the knowledge the database has of it. It uses the particular

modal symbolK . Intuitively, whereas the sentence ϕ states the truth of ϕ in the real world,

Kϕ states that the database knows that ϕ holds.

For instance, the fact that the database knows neither that Alice is a student nor that
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she is not is expressed by the statement

¬KStudent(Alice) ∧ ¬K(¬Student(Alice)).

The following KL statement says that there is a teacher who is unknown:

∃x(Teacher(x) ∧ ¬K(Teacher(x))).

This language allows the database to reason and answer queries about its own knowledge

of the world.

Incomplete Information in Complete Databases

Incomplete information often arises naturally even when the focus is on complete data-

bases. The following are several situations that naturally yield incomplete information:

• Views: Although a view of a database is usually a complete database, the information

it contains is incomplete relative to the whole database. For a user seeing the view,

there are many possible underlying databases. So the view can be seen as a rep-

resentation for the set of possible underlying databases. The incompleteness of the

information in the view is the source of the difficulty in view updating (see Chap-

ter 22).

• Weak universal relations: We have already seen how relations with nulls arise in the

weak universal relations of Chapter 11.

• Nondeterministic queries: Recall from Chapter 17 that nondeterministic languages

have several possible answers on a given input. Thus we can think of nondeter-

ministic queries as producing as an answer a set of possible worlds (see also Ex-

ercise 19.20).

• Semantics of negation: As seen in Chapter 15, the well-founded semantics for

datalog¬ involves 3-valued interpretations, where some facts are neither true nor

false but unknown. Clearly, this is a form of incomplete information.
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Exercises

Exercise 19.1 Consider the c-table in Example 19.3.1. Give the c-tables for the answers to
these queries: (1) Which students are taking Math? (2) Which students are not taking Math? (3)
Which students are taking Biology? In each case, what are the sets of sure and possible tuples
of the answer?

Exercise 19.2 Consider the c-table T ′ in Fig. 19.3. Show that each I in rep(T ′) has two tuples.
Is T ′ equivalent to some 2-tuple c-table?

Exercise 19.3 Consider the naive table in Fig. 19.2. In the weak representation system de-
scribed in Section 19.1, compute the naive tables for the answers to the queries σA=C(R),
πAB(R) ⊲⊳ πAC(R). What are the tuples surely in the answers to these queries?

Exercise 19.4 A ternary c-table T represents a directed graph with blue, red, and yellow
edges. The first two columns represent the edges and the last the colors. Some colors are
unknown. The local conditions are used to enforce that a blue edge cannot follow a red one
on a path. Give a datalog query q stating that there is a cycle with no two consecutive edges of
the same color. Give c-tables such that (1) there is surely such a cycle; and (2) there may be one
but it is not sure. In each case, compute the table strongly representing the answer to q.

Exercise 19.5 Let T be the Codd table in Fig. 19.1. Compute strong representations of the
results of the following queries, using c-tables: (a) σA=3(R); (b) q1 = δBC→AB(πBC(R)); (c)
q1 ∪ πAB(R); (d) q1 ∩ πAB(R); (e) q1 − πAB(R); (f) q1 ⊲⊳ πBC(R).

Exercise 19.6 Consider the c-table T4 = T1 ∪ T2 of Fig. 19.4. Compute a strong representation
of the transitive closure of T4.

Exercise 19.7 Complete the proof that Codd tables are not a weak representation system with
respect to SPU, in Theorem 19.2.1.

Exercise 19.8 Example 19.1.1 shows that one cannot strongly represent the result of a selec-
tion on a table with another table. For which operations of relational algebra applied to tables is
it possible to strongly represent the result?

Exercise 19.9 Prove that naive tables are not a weak representation system for relational
algebra.

Exercise 19.10 Prove that, given a c-table T without constants, rep(T ) is the closure under
isomorphism of a finite set of instances. Extend the result for the case with constants.

Exercise 19.11 Provide an algorithm for testing equivalence of c-tables.

⋆Exercise 19.12 Show that there exists a datalog query q such that, given a naive table T and
a tuple t , testing whether t is possibly in the answer is np-complete.

Exercise 19.13 Prove Theorem 19.3.2.

Exercise 19.14 Prove that for each c-table T1 and each set of fd’s and mvd’s, there exists a
table T2 such that chase�(rep(T1))= rep(T2). Hint: Use the chase on c-tables.

⋆Exercise 19.15 Show that there is a query q in polynomial time for which deciding, given I
and a c-table T , (a) whether I ∈ q(rep(T )), or whether I is possible, are np-complete; and (b)
whether q(rep(T ))⊆ {I }, or whether I is certain, are co-np-complete.
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Exercise 19.16 Give algorithms to compute, for a c-table T and a relational algebra query q,
the set of tuples sure(q, T ) surely in the answer and the set of tuples poss(q, T ) possibly in the
answer. What is the complexity of your algorithms?

Exercise 19.17 Let T be a c-table and q a positive existential query of the same arity as T .
Show that the sequence q i(T ) converges [i.e., that for some i, q i(T )≡ q i+1(T )]. Hint: Show
that the sequence converges in at most m stages, where m=max{i | q i(I )= q i+1(I ), I ∈ I}
and where I is a finite set of relations representing the nonisomorphic instances in rep(T ).

Exercise 19.18 Describe how to generalize the technique of chasing by full dependencies
to apply to instances rather than tableau. If an egd can be applied and calls for two distinct
constants to be identified, then the chase ends in failure. Show that for instance I , if the chase
of I by � succeeds, then chase(I,�) |=�.

Exercise 19.19 Show that for datalog programs with disjunctions in heads of rules, the se-
quence {Ii}i≥0 of Section 19.5 converges. What can be said about the limit in model-theoretic
terms?

♠Exercise 19.20 [ASV90] There is an interesting connection between incomplete information
and nondeterminism. Recall the nondeterministic query languages based on the witness operator
W , in Chapter 17. One can think of nondeterministic queries as producing as an answer a
set of possible worlds. In the spirit of the sure and possible answers to queries on incomplete
databases, one can define for a nondeterministic query q the deterministic queries sure(q) and
poss(q) as follows:

sure(q)(I )= ∩{J | J ∈ q(I )}

poss(q)(I )= ∪{J | J ∈ q(I )}

Consider the language FO +W , where a program consists of a finite sequence of assignment
statements of the form R := ϕ, where ϕ is a relational algebra expression or an application ofW
to a relation. Let sure(FO+W) denote all deterministic queries that can be written as sure(q)

for some FO+W query q, and similarly for poss(FO+W). Prove that

(a) poss(FO+W)=np, and

(b) sure(FO+W)=co-np.
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Alice: Complex values?

Riccardo: We could have used a different title: nested relations, complex objects,

structured objects . . .

Vittorio: . . . N1NF, NFNF, NF2, NF2, V-relation . . . I have seen all these names

and others as well.

Sergio: In a nutshell, relations are nested within relations; something like

Matriochka relations.

Alice: Oh, yes. I love Matriochkas.

A lthough we praised the simplicity of the data structure in the relational model, this

simplicity becomes a severe limitation when designing many practical database ap-

plications. To overcome this problem, the complex value model has been proposed as a

significant extension of the relational one. This extension is the topic of this chapter.

Intuitively, complex values are relations in which the entries are not required to be

atomic (as in the relational model) but are allowed to be themselves relations. The data

structure in the relational model (the relation) can be viewed as the result of applying to

atomic values two constructors: a tuple constructor to make tuples and a set constructor

to make sets of tuples (relations). Complex values allow the application of the tuple and

set constructor recursively. Thus they can be viewed as finite trees whose internal nodes

indicate the use of the tuple and finite set constructors. Clearly, a relation is a special kind

of complex value: a set of tuples of atomic values.

At the schema level, we will specify a set of complex sorts (or types). These indicate

the structure of the data. At the instance level, sets of complex values corresponding to

these sorts are provided. For example, we have the following:

Sort Complex Value

dom a

{dom} {a, b, c}
〈A : dom, B : dom〉 〈A : a, B : b〉
{〈A : dom, B : dom〉} {〈A : a, B : b〉, 〈A : b, B : a〉}
{{dom}} {{a, b}, {a}, { }}

An example of a more involved complex value sort and of a value of that sort is shown

in Fig. 20.1(a). The tuple constructor is denoted by × and the set constructor by ∗. An

508
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(b)  Another representation of the same value

Figure 20.1: Complex value

alternative representation more in the spirit of our representations of relations is shown in

Fig. 20.1(b). Another complex value (for a CINEMA database) is shown in Fig. 20.2.

We will see that, whereas it is simple to add the tuple constructor to the traditional

relational data model, the set constructor requires a number of interesting new ideas. There

are similarities between this set construct and the set constructs used in general-purpose

programming languages such as Setl.

In this chapter, we introduce complex values and present a many-sorted algebra and

an equivalent calculus for complex values. The focus is on the use of the two constructors

of complex values: tuples and (finite) sets. (Additional constructors, such as list, bags, and
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Figure 20.2: The CINEMA database revisited (with additional data shown)

union, have also been incorporated into complex values but are not studied here.) After in-

troducing the algebra and calculus, we present examples of these interesting languages. We

then comment on the issues of expressive power and complexity and describe equivalent

languages with fixpoint operators, as well as languages in the deductive paradigm. Finally

we briefly examine a subset of the commercial query language O2SQL that provides an

elegant SQL-style syntax for querying complex values.

The theory described in this chapter serves as a starting point for object-oriented data-

bases, which are considered in Chapter 21. However, key features of the object-oriented

paradigm, such as objects and inheritance, are still missing in the complex value frame-

work and are left for Chapter 21.
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20.1 Complex Value Databases

Like the relational model, we will use relation names in relname, attributes in att, and

constants in dom. The sorts are more complex than for the relational model. Their abstract

syntax is given by

τ = dom | 〈B1 : τ, . . . , Bk : τ 〉 | {τ },

where k ≥ 0 and B1, . . . , Bk are distinct attributes. Intuitively, an element of dom is a

constant; an element of 〈B1 : τ1, . . . , Bk : τk〉 is a k-tuple with an element of sort τi in entry

Bi for each i; and an element of sort {τ } is a finite set of elements of sort τ .

Formally, the set of values of sort τ (i.e., the interpretation of τ ), denoted [[τ]], is defined

by

1. [[dom]]= dom,

2. [[{τ }]]= {{v1, . . . , vj} | j ≥ 0, vi ∈ [[τ]], i ∈ [1, j ]}, and

3. [[〈B1 : τ1, . . . , Bk : τk〉]]= {〈B1 : v1, . . . , Bk : vk〉 | vj ∈ [[τj]], j ∈ [1, k]}.

An element of a sort is called a complex value. A complex value of the form

〈B1 : a1, . . . , Bk : ak〉 is said to be a tuple, whereas a complex value of the form

{a1, . . . , aj} is a set.

Remark 20.1.1 For instance, consider the sort

{〈A : dom, B : dom, C : {〈A : dom, E : {dom}〉}〉}

and the value

{ 〈A : a, B : b, C : { 〈A : c, E : {}〉,

〈A : d,E : {}〉}〉,

〈A : e, B : f,C : { }〉 }

of that sort. This is yet again the value of Fig. 20.1. It is customary to omit dom and for

instance write this sort {〈A,B,C : {〈A,E : {}〉}〉}.
As mentioned earlier, each complex value and each sort can be viewed as a finite

tree. Observe the tree representation. Outgoing edges from tuple vertexes are labeled; set

vertexes have a single child in a sort and an arbitrary (but finite) number of children in a

value.

Finally note that (because of the empty set) a complex value may belong to more than

one sort. For instance, the value of Fig. 20.1 is also of sort

{〈A : dom, B : dom, C : {〈A : dom, E : {{dom}}〉}〉}.

Relational algebra deals with sets of tuples. Similarly, complex value algebra deals

with sets of complex values. This motivates the following definition of sorted relation (this
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definition is frequently a source of confusion):

A (complex value) relation of sort τ is a finite set of values of sort τ .

We use the term relation for complex value relation. When we consider the classical

relational model, we sometimes use the phrase flat relation to distinguish it from complex

value relation. It should be clear that the flat relations that we have studied are special cases

of complex value relations.

We must be careful in distinguishing the sort of a complex value relation and the sort

of the relation viewed as one complex value. For example, a complex value relation of sort

〈A,B,C〉 is a set of tuples over attributes ABC. At the same time, the entire relation can be

viewed as one complex value of sort {〈A,B,C〉}. There is no contradiction between these

two ways of viewing a relation.

We now assume that the function sort (of Chapter 3) is from relname to the set of

sorts. We also assume that for each sort, there is an infinite number of relations having that

sort.

Note that the sort of a relation is not necessarily a tuple sort (it can be a set sort). Thus

relations do not always have attributes at the top level. Such relations whose sort is a set

are essentially unary relations without attribute names.

A (complex value) schema is a relation name; and a (complex value) database schema

is a finite set of relation names. A (complex value) relation over relation name R is a

finite set of values of sort sort(R)—that is, a finite subset of [[sort (R)]]. A (complex value

database) instance I of a schema R is a function from R such that for each R in R, I(R) is

a relation over R.

Example 20.1.2 To illustrate this definition, an instance J of {R1, R2, R3} where

sort(R1)= sort(R3)= 〈A : dom, B : {〈A1 : dom, A2 : dom〉}〉 and

sort(R2)= 〈A : dom, A1 : dom, A2 : dom〉

is shown in Fig. 20.3.

Variations

To conclude this section, we briefly mention some variations of the complex value model.

The principal one that has been considered is the nested relation model. For nested rela-

tions, set and tuple constructors are required to alternate (i.e., set of sets and tuple with a

tuple component are prohibited). For instance,

τ1 = 〈A,B,C : {〈D,E : {〈F,G〉}〉}〉 and

τ2 = 〈A,B,C : {〈E : {〈F,G〉}〉}〉

are nested relation sorts whereas
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Figure 20.3: A database instance

τ3 = 〈A,B,C : 〈D,E : {〈F,G〉}〉〉 and

τ4 = 〈A,B,C : {{〈F,G〉}}〉

are not. (For τ3, observe two adjacent tuple constructors; there are two set constructors

for τ4.)

The restriction imposed on the structure of nested relations is mostly cosmetic. A more

fundamental constraint is imposed in so-called Verso-relations (V-relations).

As with nested relations, set and tuple constructors in V-relations are required to

alternate. A relation is defined recursively to be a set of tuples, such that each component

may itself be a relation but at least one of them must be atomic. The foregoing sort τ1 would

be acceptable for a V-relation whereas sort τ2 would not because of the sort of tuples in the

C component.

A further (more radical) assumption for V-relations is that for each set of tuples, the

atomic attributes form a key. Observe that as a consequence, the cardinality of each set in

a V-relation is bounded by a polynomial in the number of atomic elements occurring in the

V-relation. This bound certainly does not apply for a relation of sort {dom} (a set of sets)

or for a nested relation of sort

〈A : {〈B : dom〉}〉,

which is also essentially a set of sets. The V-relations are therefore much more limited data

structures. (See Exercise 20.1.) They can be viewed essentially as flat relational instances.
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20.2 The Algebra

We now define a many-sorted algebra, denoted ALGcv (for complex values). Like relational

algebra, ALGcv is a functional language based on a small set of operations. This section first

presents a family of core operators of the algebra and then an extended family of operators

that can be simulated by them. At the end of the section we introduce an important subset

of ALGcv, denoted ALGcv−.

The Core of ALGcv

Let I, I1, I2, . . . be relations of sort τ, τ1, τ2, . . . respectively. It is important to keep in mind

that a relation of sort τ is a set of values of sort τ .

Basic set operations: If τ1 = τ2, then I1 ∩ I2, I1 ∪ I2, I1 − I2, are relations of sort τ1, and

their values are defined in the obvious manner.

Tuple operations: If I is a relation of sort τ = 〈B1 : τ1, . . . , Bk : τk〉, then

• σγ (I ) is a relation of sort τ .

The selection condition γ is (with obvious restrictions on sorts) of the form Bi = d ,

Bi = Bj , Bi ∈ Bj or Bi = Bj .C, where d is a constant, and it is required in the last

case that τj be a tuple sort with a C field. Then

σγ (I )= {v | v ∈ I, v |= γ },

where |= is defined by

〈. . . , Bi : vi, . . .〉 |= Bi = d if vi = d,

〈. . . , Bi : vi, . . . , Bj : vj , . . .〉 |= Bi = Bj if vi = vj , and

〈. . . , Bi : vi, . . . , Bj : vj , . . .〉 |= Bi ∈ Bj if vi ∈ vj .

〈. . . , Bi : vi, . . . , Bj : 〈. . . , C : vj , . . .〉, . . .〉 |= Bi = Bj .C if vi = vj .

• πB1,...,Bl(I ), l ≤ k is a relation of sort 〈B1 : τ1, . . . , Bl : τl〉 with

πB1,...,Bl(I )= { 〈B1 : v1, . . . , Bl : vl〉 |

∃vl+1, . . . , vk(〈B1 : v1, . . . , Bk : vk〉 ∈ I )}.

Constructive operations

• powerset(I ) is a relation of sort {τ } and

powerset(I )= {v | v ⊆ I }.

• If A1, . . . , An are distinct attributes, tup_createA1...An(I1, . . . , In) is of sort 〈A1 :

τ1, . . . , An : τn〉, and

tup_createA1,...,An(I1, . . . , In)= {〈A1 : v1, . . . , An : vn〉 | ∀i (vi ∈ Ii)}.
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• set_create(I ) is of sort {τ }, and set_create(I )= {I }.

Destructive operations

• If τ = {τ ′}, then set_destroy(I ) is a relation of sort τ ′ and

set_destroy(I )= ∪I = {w | ∃v ∈ I, w ∈ v}.

• If I is of sort 〈A : τ ′〉, tup_destroy(I ) is a relation of sort τ ′, and

tup_destroy(I )= {v | 〈A : v〉 ∈ I }.

We are now prepared to define the (core of the) language ALGcv. Let R be a database

schema. A query returns a set of values of the same sort. By analogy with relations, a query

of sort τ returns a set of values of sort τ . ALGcv queries and their answers are defined as

follows. There are two base cases:

Base values: For each relation name R in R, R is an algebraic query of sort sort(R). The

answer to query R is I(R).

Constant values: For each element a, {a} is a (constant) algebraic query of sort dom. The

answer to query {a} is simply {a}.

Other queries of ALGcv are obtained as follows. If q1, q2, . . . are queries, γ is a selection

condition, and A1, . . . are attributes,

q1 ∩ q2, q1 ∪ q2, q1 − q2,

σγ (q1), πA1,...,Ak(q1), tup_createA1,...,Ak(q1, . . . , qk),

powerset(q1), tup_destroy(q1), set_destroy(q1),

set_create(q1)

are queries if the appropriate restrictions on the sorts apply. (Note that because of the

sorting constraints, tup_destroy and set_destroy cannot both be applicable to a given q1.)

The sort of a query and its answer are defined in a straightforward manner.

To illustrate these definitions, we present two examples. We then consider other alge-

braic operators that are expressible in the algebra. In Section 20.4 we provide several more

examples of algebraic queries.

Example 20.2.1 Consider the instance J of Fig. 20.3. Then one can find in Fig. 20.4

J1 = [σA=d2(R1)](J), J2 = πB(J1),

J3 = tup_destroy(J2), J4 = set_destroy(J3),

J5 = powerset(J4), J6 = tup_createC(J4).

Also observe that

J5 = [powerset(set_destroy(tup_destroy(πB(σA=d2(R1))))](J).
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Figure 20.4: Algebraic operations

Example 20.2.2 In this example, we illustrate the destruction and construction of a

complex value. Consider the relation

I = {〈A : a, B : {b, c}, C : 〈A : d, B : {e, f }〉〉}.

Then

[(πA ◦ tup_destroy)

∪ (πB ◦ tup_destroy ◦ set_destroy)

∪ (πC ◦ tup_destroy ◦ πA ◦ tup_destroy)

∪ (πC ◦ tup_destroy ◦ πB ◦ tup_destroy ◦ set_destroy)](I )

= {a, b, c, d, e, f }.
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We next reconstruct I from singleton sets:

I = tup_createA,B,C({a}, set_create({b} ∪ {c}),

tup_createA,B({d}, set_create({e} ∪ {f }))).

Additional Algebraic Operations

There are infinite possibilities in the choice of algebraic operations for complex values.

We chose to incorporate in the core algebra only a few basic operations to simplify the

formal presentation and the proof of the equivalence between the algebra and calculus.

However, making the core too reduced would complicate that proof. (For example, the

operator set_create can be expressed using the other operations but is convenient in the

proof.) We now present several additional algebraic operations. It is important to note that

all these operations can be expressed in complex value algebra. (In that sense, they can

be viewed as macro operations.) Furthermore, all but the nest operator can be expressed

without using the powerset operator.

We first generalize constant queries.

Complex constants: It is easy to see that the technique of Example 20.2.2 can be gener-

alized. So instead of simply {a} for a atomic, we use as constant queries arbitrary

complex value sets.

We also generalize relational operations.

Renaming: Renaming can be computed using the other operations, as illustrated in Sec-

tion 20.4 (which presents examples of queries).

Cross-product: For i in [1,2], let Ii be a relation of sort

τi = 〈B
i
1 : τ i1, . . . , B

i
ji

: τ iji〉

and let the attribute sets in τ1, τ2 be disjoint. Then I1 × I2 is the relation defined by

sort(I1 × I2)= 〈B
1
1 : τ 1

1 , . . . , B
1
j1

: τ 1
j1
, B2

1 : τ 2
1 , . . . , B

2
j2

: τ 2
j2
〉

and

I1 × I2 = { 〈B
1
1 : x1

1, . . . , B
1
j1

: x1
j1
, B2

1 : x2
1, . . . , B

2
j2

: x2
j2
〉 |

〈B i1 : xi1, . . . , B
i
ji

: xiji〉 ∈ Ii for i ∈ [1, 2] }.

It is easy to simulate cross-product using the operations of the algebra. This is also

illustrated in Section 20.4.

Join: This can be defined in the natural manner and can be simulated using cross-product,

renaming, and selection.

It should now be clear that complex value algebra subsumes relational algebra when

applied to flat relations. We also have new set-oriented operations.
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N-ary set_create: We introduced tup_create as an n-ary operation. We also allow n-ary

set_create with the meaning that

set_create(I1, . . . , In)≡ set_create(I1) ∪ · · · ∪ set_create(In).

Singleton: This operator transforms a set of values {a1, . . . , an} into a set {{a1}, . . . , {an}}
of singletons.

Nest, unnest: Less primitive interesting operations such as nest, unnest can be considered.

For example, for J of Fig. 20.3 we have

unnestB(J(R1))= J(R2) and

nestB=(A1A2)(J(R2))= J(R3).

More formally, suppose that we have R and S with sorts

sort(R)= 〈A1 : τ1, . . . , Ak : τk, B : {〈Ak+1 : τk+1, . . . , An : τn〉}〉

sort(S)= 〈A1 : τ1, . . . , Ak : τk, Ak+1 : τk+1, . . . , An : τn〉.

Then for instances I of R and J of S, we have

unnestB(I )= {〈A1 : x1, . . . , An : xn〉 | ∃y

〈A1 : x1, . . . , Ak : xk, B : y〉 ∈ I and 〈Ak+1 : xk+1, . . . , An : xn〉 ∈ y}

nestB=(Ak+1,...,An)(J )= {〈A1 : x1, . . . , Ak : xk, B : y〉 |

∅ "= y = {〈Ak+1 : xk+1, . . . , An : xn〉 | 〈A1 : x1, . . . , An : xn〉 ∈ J }}.

Observe that

unnestB(nestB=(A1A2)(J(R2)))= J(R2).

nestB=(A1A2)(unnestB(J(R1))) "= J(R1).

This is indeed not an isolated phenomenon. Unnest is in general the right inverse of

nest (nestB=α ◦ unnestB is the identity), whereas unnest is in general not information

preserving (one-to-one) and so has no right inverse (see Exercise 20.8).

Relational projection and selection were filtering operations in the sense that intu-

itively they scan a set and keep only certain elements, possibly modifying them in a uniform

way. The filters in complex value algebra are more general. Of course, we shall allow

Boolean expressions in selection conditions. More interestingly, we also allow set com-

parators in addition to ∈, such as ∋,⊂,⊆,⊃,⊇ and negations of these comparators (e.g.,

"∈). The inclusion comparator ⊆ plays a special role in the calculus. We will see in Sec-

tion 20.4 how to simulate selection with ⊆.

Selection is a predicative filter in the sense that a predicate allows us to select some

elements, leaving them unchanged. Other filters, such as projection, are map filters. They

transform the elements. Clearly, one can combine both aspects and furthermore allow more

complicated selection conditions or restructuring specifications. For instance, suppose I is
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a set of tuples of sort

〈A : dom, B : 〈C : 〈E : {dom}, E′ : dom〉, C′ : {dom}〉〉.

We could use an operation that first filters all the values matching the pattern

〈A : x, B : 〈C : 〈E : y,E′ : z〉, C′ : {x}〉〉;

and then transforms them into

〈A : (y ∪ {x}), B : y, C : z〉.

This style of operations is standard in functional languages (e.g., apply-to-all in fp).

Remark 20.2.3 As mentioned earlier, all of the operations just introduced are express-

ible in ALGcv. We might also consider an operation to iterate over the elements of a set

in some order. Such an operation can be found in several systems. As we shall see in Sec-

tion 20.6, iteration is essentially expressible within ALGcv. On the other hand, an iteration

that depends on a specific ordering of the underlying domain of elements cannot be simu-

lated using ALGcv unless the ordering is presented as part of the input.

In the following sections, we (informally) call extended algebra the algebra consisting

of the operations of ALGcv and allowing complex constants, renaming, cross-product, join,

n-ary set_create, singleton, nest, and unnest.

An important subset of ALGcv, denoted ALGcv−, is formed from the core operators of

ALGcv by removing the powerset operator and adding the nest operator. As will be seen in

Section 20.7, although the nest operator has the ability to construct sets, it is much weaker

than powerset. When restricted to nested relations, the language ALGcv− is usually called

nested relation algebra.

20.3 The Calculus

The calculus is modeled after a standard, first-order, many-sorted calculus. However, as

we shall see, calculus variables may denote sets, so the calculus will permit quantification

over sets (something normally considered to be a second-order feature). For complex

value calculus, the separation between first and second order (and higher order as well)

is somewhat blurred. As with the algebra, we first present a core calculus and then extend

it. The issues of domain independence and safety are also addressed.

For each sort, we assume the existence of a countably infinite set of variables of that

sort. A variable is atomic if it ranges over the sort dom. Let R be a schema. A term is an

atomic element, a variable, or an expression x.A, where x is a tuple variable and A is an

attribute of x. We do not consider (yet) fancier terms. A positive literal is an expression of

the form
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R(t), t = t ′, t ∈ t ′, or t ⊆ t ′,

where R ∈ R, t, t ′ are terms and the appropriate sort restrictions apply.1 Formulas are

defined from atomic formulas using the standard connectives and quantifiers:∧,∨,¬,∀, ∃.

A query is an expression {x | ϕ}, where formula ϕ has exactly one free variable (i.e. x). We

sometimes denote it by ϕ(x). The calculus is denoted CALCcv.

The following example illustrates this calculus.

Example 20.3.1 Consider the schema and the instance of Fig. 20.3. We can verify that

J(R2) is the answer on instance J to the query

{x | ∃y, z, z′, u, v,w (R1(y) ∧ y.A= u ∧ y.B = z

∧ z′ ∈ z ∧ z′.A1 = v ∧ z
′.A2 = w

∧ x.A= u ∧ x.A1 = v ∧ x.A2 = w) },

where the sorts of the variables are as follows:

sort(x)= 〈A,A1, A2〉, sort(y)= 〈A,B : {〈A1, A2〉}〉,

sort(u)= sort(v)= sort(w)= dom, sort(z′)= 〈A1, A2〉,

sort(z)= {〈A1, A2〉}.

We could also have used an unsorted alphabet of variables and sorted them inside the

formula, as in

{x : 〈A,A1, A2〉 | ∃y : 〈A,B : {〈A1, A2〉}〉,

z : {〈A1, A2〉}, z
′ : 〈A1, A2〉,

u : dom, v : dom, w : dom

(R1(y) ∧ y.A= u ∧ y.B = z

∧ z′ ∈ z ∧ z′.A1 = v ∧ z
′.A2 = w

∧ x.A= u ∧ x.A1 = v ∧ x.A2 = w) }.

The key difference with relational calculus is the presence of the predicates ∈ and ⊆,

which are interpreted as the standard set membership and inclusion. Another difference (of

a more cosmetic nature) is that we allow only one free variable in relation atoms and in

query formulas. This comes from the stronger sorts: A variable may represent an n-tuple.

The answer to a query q on an instance I, denoted q(I), is defined as for the relational

model. As in the relational case, we may define various interpretations, depending on the

underlying domain of base values used. As with relational calculus, the basis for defining

the semantics is the notion

I satisfies ϕ for ν relative to d.

1 Strictly speaking, the symbols =,⊆ and ∈ are also many sorted.



20.3 The Calculus 521

[Recall that ν is a valuation of the free variables of ϕ and d is an arbitrary set of elements

containing adom(ϕ, I).]

Consider the definition of this notion in Section 5.3. Cases (a) through (g) remain valid

for the complex object calculus. We have to consider two supplementary cases. Recall that

for equality, we had case (b):

(b) I |=d ϕ[ν] if ϕ = (s = s′) and ν(s)= ν(s′).

In the same spirit, we add

I |=d ϕ[ν] if ϕ = (s ∈ s′) and ν(s) ∈ ν(s′)(h-1)

I |=d ϕ[ν] if ϕ = (s ⊆ s′) and ν(s)⊆ ν(s′).(h-2)

This formally states that ∈ is interpreted as set membership and ⊆ as set inclusion (in the

same sense that as = is interpreted as equality).

The issues surrounding domain independence for relational calculus also arise with

CALCcv. We develop a syntactic condition ensuring domain independence, but we also

occasionally use an active domain interpretation.

Extensions

As in the case of the algebra, we now consider extensions of the calculus that can be

simulated by the core syntax just given.

The standard abbreviations used for relational calculus, such as the logical connectives

→,←,↔, can be incorporated into CALCcv. Using these connectives, it is easy to see the

nonminimality of the calculus: Each literal x ⊆ y can be replaced by ∀z(z ∈ x→ z ∈ y),
where z is a fresh variable.

Arity In the core calculus, only relation atoms of the form R(t) are permitted. Suppose

that the sort of R is 〈A1 : τ1, . . . , An : τn〉 for some n. Then R(u1, . . . , un) is a shorthand

for

∃y(R(y) ∧ y.A1 = u1 ∧ · · · ∧ y.An = un),

where y is a new variable. In particular, if R0 is a relation of sort 〈 〉 (n= 0), observe that

the only value of that sort is the empty tuple. Thus a variable y of that sort has only one

possible value, namely 〈 〉. Thus for such y, we can use the following expression:

R0( ) for ∃y(R0(y)).

Constructed Terms Next we allow constructed terms in the calculus such as

{x, b}, x.A.C, 〈B1 : a, B2 : y〉.

More formally, if t1, . . . , tk are terms and B1, . . . , Bk are distinct attributes, then 〈B1 :

t1, . . . , Bk : tk〉 is a term. Furthermore, if the ti are of the same sort, {t1, . . . , tk} is a term;
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and if t1 is a tuple term with attribute C, then t1.C is a term. The sorts of terms are defined

in the obvious way. Note that a term may have several sorts because of the empty set. (We

ignore this issue here.)

The use of constructed terms can be viewed as syntactic sugaring. For instance, sup-

pose that the term {a, y} occurs in a formula ψ . Then ψ is equivalent to

∃x(ψ ′ ∧ ∀z(z ∈ x↔ (z= a ∨ z= y))),

where ψ ′ is obtained from ψ by replacing the term {a, y} by x (a fresh variable).

Complex Terms We can also view relations as terms. For instance, if R is a relation of

sort 〈A,B〉, then R can be used in the language as a term of sort {〈A,B〉}. We may then

consider literals such as x ∈ R, which is equivalent to R(x); or more complex ones such as

S ∈ T , which essentially means

∃y(T (y) ∧ ∀x(x ∈ y↔ S(x))).

The previous extension is based on the fact that a relation (in our context) can be

viewed as a complex value. This is again due to the stronger sort system. Now the answer

to a query q is also a complex value. This suggests considering the use of queries as terms

of the language. We consider this now: A query q ≡ {y | ψ(y)} is a legal term that can be

used in the calculus like any other term. More generally, we allow terms of the form

{y | ψ(y, y1, . . . , yn)},

where the free variables of ψ are y, y1, . . . , yn. Intuitively, we obtain queries by providing

bindings for y1, . . . , yn. We will call such an expression a parameterized query and denote

it q(y1, . . . , yn) (where y1, . . . , yn are the parameters).

For instance, suppose that a formula liked(x, y) computes the films y that person x

liked; and another one saw(x, y) computes those that x has seen. The set of persons who

liked all the films that they saw is given by

{ x | {y | liked(x, y)} ⊆ {y | saw(x, y)} }.

The following form of literals will play a particular role when we study safety for this

calculus:

x = {y | ψ(y, y1, . . . , yn)},

x′ ∈ {y | ψ(y, y1, . . . , yn)}, and

x′′ ⊆ {y | ψ(y, y1, . . . , yn)},

where y is a free variable of ψ . Like the previous extensions, the parameterized queries

can be viewed simply as syntactic sugaring. For instance, the three last formulas are,

respectively, equivalent to
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∀y(y ∈ x↔ ψ),

∃y(x′ = y ∧ ψ), and

∀y(y ∈ x′′→ ψ).

In the following sections, we (informally) call extended calculus the calculus consist-

ing of CALCcv extended with the abbreviations described earlier (such as constructed and

complex terms and, notably, parameterized queries).

20.4 Examples

We illustrate the previous two sections with a series of examples. The queries in the

examples apply to schema {R, S} with

sort(R)= 〈A : dom, A′ : dom〉,

sort(S)= 〈B : dom, B ′ : {dom}〉.

For each query, we give an algebraic and a calculus expression.

Example 20.4.1 The union of R and a set of two constant tuples is given by

{r | R(r) ∨ r = 〈A : 3, A′ : 5〉 ∨ r = 〈A : 0, A′ : 0〉}

or

R ∪ {〈A : 3, A′ : 5〉, 〈A : 0, A′ : 0〉}.

Example 20.4.2 The selection of the tuples from S, where the first component is a

member of the second component, is obtained with

{s | S(s) ∧ s.B ∈ s.B ′} or σB∈B ′(S).

Example 20.4.3 The (classical) cross-product of R and S is the result of

{t | ∃r, s(R(r) ∧ S(s) ∧ t = 〈A : r.A,A′ : r.A′, B : s.B, B ′ : s.B ′〉)}

or

πAA′BB′(σA=A′′.A(σA′=A′′.A′(σB=B ′′.B(σB ′=B ′′.B ′(q))))),

where q is
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tup_createAA′BB′A′′B ′′(tup_destroy(πA(R)),

tup_destroy(πA′(R)),

tup_destroy(πB(S)),

tup_destroy(πB ′(S)), R, S).

Example 20.4.4 The join of R and S on A = B. This query is the composition of the

cross-product of Example 20.4.3, with a selection. In Example 20.4.3, let the formula

describing the cross-product be ϕ3 and let (R × S) be the algebraic expression. Then the

(A= B) join of R and S is expressed by

{t | ϕ3(t) ∧ t.A= t.B} or σA=B(R × S).

Example 20.4.5 The renaming of the attributes ofR toA1, A2 is obtained in the calculus

by

{t | ∃r(R(r) ∧ t.A1 = r.A ∧ t.A2 = r.A
′)}

with t of sort 〈A1 : dom, A2 : dom〉. In the algebra, it is given by

πA1A2(σA0.A=A1(σA0.A
′=A2

(tup_createA0A1A2

(R, tup_destroy(πA(R)), tup_destroy(πA′(R)))))).

Example 20.4.6 Flattening S means producing a set of flat tuples, each of which con-

tains the first component of a tuple of S and one of the elements of the second component.

This is the unnest operation unnestB ′(·) in the extended algebra, or in the calculus

{t | ∃s(S(s) ∧ t.B = s.B ∧ t.C ∈ s.B ′)},

where t is of sort 〈B,C〉. In the core algebra, this is slightly more complicated. We first

obtain the set of values occurring in the B ′ sets using

E1 = tup_createC(set_destroy(tup_destroy(πB ′(S)))).

We can next compute (E1× S) (using the same technique as in Example 20.4.3). Then the

desired query is given by

πBC(σC∈B ′(E1 × S)).

Flattening can be extended to sorts with arbitrary nesting depth.

Example 20.4.7 The next example is a selection using ⊆. Consider a relation T of sort

〈C : {dom}, C′ : {dom}〉. We want to express the query
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{t | T (t) ∧ t.C ⊆ t.C′}

in the algebra. We do this in stages:

F1 = σC′′∈C(T × tup_createC′′(set_destroy(tup_destroy(πC(T ))))),

F2 = σC′′∈C′(F1),

F3 = F1 − F2,

F4 = T − πCC′(F3).

Observe that

1. A tuple 〈C : U,C′ : V,C′′ : u〉 is in F1 if 〈C : U,C′ : V 〉 is in T and u is in U .

2. A tuple 〈C : U,C′ : V,C′′ : u〉 is in F2 if 〈C : U,C′ : V 〉 is in T and u is in U and

V .

3. A tuple 〈C : U,C′ : V,C′′ : u〉 is in F3 if 〈C : U,C′ : V 〉 is in T and u is inU − V .

4. A tuple 〈C : U,C′ : V 〉 is in F4 if it is in T and there is no u in U − V (i.e.,

U ⊆ V ).

Example 20.4.8 This example illustrates the use of nesting and of sets. Consider the

algebraic query

nestC=(A) ◦ nestC′=(A′) ◦ σC=C′ ◦ unnestC ◦ unnestC′(R).

It is expressed in the calculus by

{〈x, y〉 | ∃u(x ∈ u ∧ y ∈ u

∧ u= {x′ | R(x′, y)}

∧ u= {y′ | {x′ | R(x′, y′)} = u})}.

A consequence of Theorem 20.7.2 is that this query is expressible in relational calculus or

algebra. It is a nontrivial exercise to obtain a relational query for it. (See Exercise 20.24.)

Example 20.4.9 Our last example highlights an important difference between the flat

relational calculus and CALCcv. As shown in Proposition 17.2.3, the flat calculus cannot

express the transitive closure of a binary relation. In contrast, the following CALCcv query

does:

{y | ∀x(closed(x) ∧ contains_R(x)→ y ∈ x)},

where

• closed(x)≡

∀u, v,w(〈A : u,A′ : v〉 ∈ x ∧ 〈A : v,A′ : w〉 ∈ x→ 〈A : u,A′ : w〉 ∈ x);
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• contains_R(x)≡ ∀z(R(z)→ z ∈ x);

• sort(x)= {sort(R)}, sort(y)= sort(z)= sort(R); and

sort(u)= sort(v)= sort(w)= dom.

Intuitively, the formula specifies the set of pairs y such that y belongs to each binary re-

lation x containing R and transitively closed. This construction will be revisited in Sec-

tion 20.6.

20.5 Equivalence Theorems

This section presents three results that compare the complex value algebra and calculus.

First we establish the equivalence of the algebra and the domain-independent calculus.

Next we develop a syntactic safeness condition for the calculus and show that it does not

reduce expressive power. Finally we develop a natural syntactic condition on CALCcv that

yields a subset equivalent to ALGcv−.

Our first result is as follows:

Theorem 20.5.1 The algebra and the domain independent calculus for complex values

are equivalent.

In the sketch of the proof, we present a simulation of the core algebra by the extended

calculus and the analogous simulation in the opposite direction. An important component

of this proof—namely, that the extended algebra (calculus) is no stronger than the core

algebra (calculus)—is left for the reader (see Exercises 20.6, 20.7, 20.8, 20.10, and 20.11).

From Algebra to Calculus

We now show that for each algebra query, there is a domain-independent calculus query

equivalent to it.

Let q be a named algebra query. We construct a domain-independent query {x | ϕq}
equivalent to q. The formula ϕq is constructed by induction on subexpressions of q. For a

subexpression E of q, we define ϕE as follows:

(a) E is R for some R ∈ R: ϕE is R(x).

(b) E is {a}: ϕE is x = a.

(c) E is σγ (E1): ϕE is ϕE1(x) ∧ Ŵ, where Ŵ is

x.Ai = x.Aj if γ ≡ Ai = Aj ; x.Ai = a if γ ≡ Ai = a;

x.Ai ∈ x.Aj if γ ≡ Ai ∈ Aj ; x.Ai = x.Aj .C if γ ≡ Ai = Aj .C.

(d) E is πAi1,...,Aik(E1): ϕE is

∃y(x = 〈Ai1 : y.Ai1, . . . , Aik : y.Aik〉 ∧ ϕE1(y)).
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(e) For the basic set operations, we have

ϕE1∩E2(x)= ϕE1(x) ∧ ϕE2(x),

ϕE1∪E2(x)= ϕE1(x) ∨ ϕE2(x),

ϕE1−E2(x)= ϕE1(x) ∧ ¬ϕE2(x).

(f) E is powerset(E1): ϕE is x ⊆ {y | ϕE1(y)}.

(g) E is set_destroy(E1): ϕE is ∃y(x ∈ y ∧ ϕE1(y)).

(h) E is tup_destroy(E1): ϕE is ∃y(〈A : x〉 = y ∧ ϕE1(y)), where A is the name of

the field (of y).

(i) E is tup_createA1,...,An(E1, . . . , En): ϕE is

∃y1, . . . , yn(x = 〈A1 : y1, . . . , An : yn〉 ∧ ϕE1(y1) ∧ · · · ∧ ϕEn(yn)).

(j) E is set_create(E1): x = {y | ϕE1(y)}.

We leave the verification of this construction to the reader (see Exercise 20.13). The

domain independence of the obtained calculus query follows from the fact that algebra

queries are domain independent.

From Calculus to Algebra

We now show that for each domain-independent query, there is a named algebra query

equivalent to it.

Let q = {x | ϕ} be a domain-independent query over R. As in the flat relational case,

we assume without loss of generality that associated with each variable x occurring in q

(and also variables used in the following proof) is a unique, distinct attribute Ax in att. We

use the active domain interpretation for the query, denoted as before with a subscript adom.

The crux of the proof is to construct, for each subformula ψ of ϕ, an algebra formula

Eψ that has the property that for each input I,

Eψ(I)= {y | ∃x1, . . . , xn(y = 〈Ax1 : x1, . . . , Axn : xn〉 ∧ ψ(x1, . . . , xn))}adom(I),

where x1, . . . , xn is a listing of free(ψ).

This construction is accomplished in three stages.

Computing the Active Domain The first step is to construct an algebra query Eadom

having sort dom such that on input instance I, Eadom(I) = adom(q, I). The construction

of Eadom is slightly more intricate than the similar construction for the relational case. We

prove by induction that for each sort τ , there exists an algebra operation Fτ that maps a set

I of values of sort τ to adom(I ). This induction was not necessary in the flat case because

the base relations had fixed depth. For the base case (i.e., τ = dom), it suffices to use for

Fτ an identity operation (e.g., tup_createA ◦ tup_destroy). For the induction, the following

cases occur:
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1. τ is 〈A1 : τ1, . . . , An : τn〉 for n≥ 2. Then Fτ is

F〈A1:τ1〉(πA1) ∪ · · · ∪ F〈An:τn〉(πAn).

2. τ is 〈A1 : τ1〉. Then Fτ is Fτ1(tup_destroy).

3. τ is {τ1}. Then Fτ is Fτ1(set_destroy).

Now consider the schema R. Then for each R in R, Fsort(R) maps a relation I over R to

adom(I ). Thus adom(q, I) can be computed with the query

Eadom = Fsort(R1)(R1) ∪ · · · ∪ Fsort(Rm)(Rm) ∪ {a1} ∪ · · · ∪ {ap},

where R1, . . . , Rm is the list of relations in R and a1, . . . , ap is the list of elements occur-

ring in q.

Constructing Complex Values In the second stage, we prove by induction that for each

sort τ , there exists an algebra query Gτ that constructs the set of values I of sort τ such

that adom(I )⊆ adom(q, I). For τ = dom, we can use Eadom. For the induction, two cases

occur:

1. τ is 〈A1 : τ1, . . . , An : τn〉. Then Gτ is tup_createA1,...,An(Gτ1, . . . ,Gτn).

2. τ is {τ1}. Then Gτ is powerset(Gτ1).

Last Stage We now describe the last stage, an inductive construction of the queries Eψ
for subformulas ψ of ϕ. We assume without loss of generality that the logical connectives

∨ and ∀ do not occur in ϕ. The proof is similar to the analogous proof for the flat case.

We also assume that relation atoms in ϕ do not contain constants or repeated variables. We

only present the new case (the standard cases are left as Exercise 20.13). Let ψ be x ∈ y.

Suppose that x is of sort τ , so y is of sort {τ }. The set of values of sort τ (or {τ }) within the

active domain is returned by query Gτ , or G{τ }. The query

σAx∈Ay(tup_createAx,Ay(Gτ ,G{τ }))

returns the desired result.

Observe that with this construction, Eϕ returns a set of tuples with a single attribute

Ax. The query q is equivalent to tup_destroy(Eϕ).

As we did for the relational model, we can define a variety of syntactic restrictions of

the calculus that yield domain-independent queries. We consider such restrictions next.

Safe Queries

We now turn to the development of syntactic conditions, called safe range, that ensure

domain independence. These conditions are reminiscent of those presented for relational

calculus in Chapter 5. As we shall see, a variant of safe range, called strongly safe range,

will yield a subset of CALCcv, denoted CALCcv−, that is equivalent to ALGcv−.
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We could define safe range on the core calculus. However, such a definition would be

cumbersome. A much more elegant definition can be given using the extended calculus.

In particular, we consider here the calculus augmented with (1) constructed terms and (2)

parameterized queries.

Recall that intuitively, if a formula is safe range, then each variable is bounded, in the

sense that it is restricted by the formula to lie within the active domain of the query or the

input. We now define the notions of safe formulas and safe terms. To give these definitions,

we define the set of safe-range variables of a formula using the following procedure, which

returns either the symbol ⊥ (which indicates that some quantified variable is not bounded)

or the set of free variables that are bounded. In this discussion, we consider only formulas

in which universal quantifiers do not occur.

In the following procedure, if several rules are applicable, the one returning the largest

set of safe-range variables (which always exists) is chosen.

procedure safe-range (sr)

input: a calculus formula ϕ

output: a subset of the free variables of ϕ or ⊥. (In the following, for each Z, ⊥ ∪ Z =
⊥ ∩ Z =⊥− Z = Z −⊥=⊥.)

begin

(pred is a predicate in {=,∈,⊆})
if for some parameterized query {x | ψ} occurring as a term in ϕ, x "∈ sr(ψ) then

return ⊥
case ϕ of

R(t) : sr(ϕ)= free(t);

(t pred t ′ ∧ ψ) : if ψ is safe and free(t ′)⊆ free(ψ)

then sr(ϕ)= free(t) ∪ free(ψ);

t pred t ′ : if free(t ′)= sr(t ′) then sr(ϕ)= free(t ′) ∪ free(t);

else sr(ϕ)= ∅;

ϕ1 ∧ ϕ2 : sr(ϕ)= sr(ϕ1) ∪ sr(ϕ2);

ϕ1 ∨ ϕ2 : sr(ϕ)= sr(ϕ1) ∩ sr(ϕ2);

¬ϕ1 : sr(ϕ)= ∅;

∃xϕ1 : if x ∈ sr(ϕ1)

then sr(ϕ)= sr(ϕ1)− {x}
else return ⊥

end;

We say that a formula ϕ is safe if sr(ϕ)= free(ϕ); and a query q is safe if its associated

formula is safe.

It is important to understand how new sets are created in a safe manner. The next

example illustrates two essential techniques for such creation.
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Example 20.5.2 Let R be a relation of sort 〈A,B〉. The powerset of R can be obtained

in a safe manner with the query

{x | x ⊆ {y | R(y)}}.

For {y | R(y)} is clearly a safe query (by the first case). Now letting t ≡ x, t ′ ≡ {y | R(y)},
the formula is safe (by the third case).

Now consider the nesting of the B column of R. It is achieved by the following query:

{x | x = 〈z, {y | R(z, y)}〉 ∧ ∃y′(R(z, y′))}.

Let t ≡ x, t ′ ≡ 〈z, {y | R(z, y)}〉 and ψ ≡ ∃y′(R(z, y′)). First note that sr(R(z, y)) con-

tains y, so the parameterized query {y | R(z, y)} can be used safely. Next the formula ψ is

safe. Finally the only free variable in t ′ is z, which is also free in ψ . Thus x is safe range

(by the second case) and the query is safe.

As detailed in Section 20.7, the complex value algebra and calculus can express

mappings with complexity corresponding to arbitrarily many nestings of exponentiation.

In contrast, as discussed in that section, the nested relation algebra ALGcv−, which uses

the nest operator but not powerset, has complexity in ptime. Interestingly, there is a minor

variation of the safe-range condition that yields a subset of the calculus equivalent to

ALGcv−. Specifically, a formula is strongly safe range if it is safe range and the inclusion

predicate does not occur in it. In the previous example, the nesting is strongly safe range

whereas powerset is not.

We now have the following:

Theorem 20.5.3

(a) The safe-range calculus, the domain-independent calculus, and ALGcv coincide.

(b) The strongly safe-range calculus and ALGcv− coincide.

Crux Consider (a). By inspection of the construction in the proof that ALGcv ⊑ CALCcv,

each algebra query is equivalent to a safe-range calculus query. Clearly, each safe-range

calculus query is a domain-independent calculus query. We have already shown that each

domain-independent calculus query is an algebra query.

Now consider (b). Observe that in the proof that ALGcv ⊑ CALCcv, ⊆ is used only

for powerset. Thus each query in ALGcv− is a strongly safe-range query. Now consider

a strongly safe-range query; we construct an equivalent algebra query. We cannot use the

construction from the proof of the equivalence theorem, because powerset is crucial for

constructing complex domains. However, we can show that this can be avoided using the

ranges of variables. (See Exercise 20.16.) More precisely, the brute force construction of

the domain of variables using powerset is replaced by a careful construction based on the

strongly safe-range restriction. The remainder of the proof stays unchanged.
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Because of part (b) of the previous result, we denote the strongly safe-range calculus

by CALCcv−.

20.6 Fixpoint and Deduction

Example 20.4.9 suggests that the complex value algebra and calculus can simulate itera-

tion. In this section, we examine iteration in the spirit of both fixpoint queries and datalog.

In both cases, they do not increase the expressive power of the algebra or calculus. How-

ever, they allow us to express certain queries more efficiently.

Fixpoint for Complex Values

Languages with fixpoint semantics were considered in the context of the relational model

to overcome limitations of relational algebra and calculus. In particular, we observed

that transitive closure cannot be computed in relational calculus. However, as shown by

Example 20.4.9, transitive closure can be expressed in the complex value algebra and

calculus. Although transitive closure can be expressed in that manner, the use of powerset

seems unnecessarily expensive. More precisely, it can be shown that any query in the

complex value algebra and calculus that expresses transitive closure uses exponential space

(assuming the straightforward evaluation of the query). In other words, the blowup caused

by the powerset operator cannot be avoided. On the other hand, a fixpoint construct allows

us to express transitive closure in polynomial space (and time). It is thus natural to develop

fixpoint extensions of the calculus and algebra.

We can provide inflationary and noninflationary extensions of the calculus with recur-

sion. As in the relational case, an inflationary fixpoint operator µ+T allows the iteration of a

CALCcv formula ϕ(T ) up to a fixpoint. This essentially permits the inductive definition of

relations, using calculus formulas. The calculus CALCcv augmented with the inflationary

fixpoint operator is defined similarly to the flat case (Chapter 14) and yields CALCcv+µ+.

We only consider the inflationary fixpoint operator. (Exercise 20.19 explores the noninfla-

tionary version.)

Theorem 20.6.1 CALCcv + µ+ is equivalent to ALGcv and CALCcv.

The proof of this theorem is left for Exercise 20.18. It involves simulating a fixpoint

in a manner similar to Example 20.4.9.

Before leaving the fixpoint extension, we show how powerset can be computed by iter-

ating a ALGcv− formula to a fixpoint. (We will see later that powerset cannot be computed

in ALGcv− alone.)

Example 20.6.2 Consider a relation R of sort dom (i.e., a set of atomic elements). The

powerset of R is computed by {x | µT (ϕ(T ))(x)}, where T is of sort {dom} and

ϕ(T )(y)≡ [y = ∅ ∨ ∃x′, y′(R(x′) ∧ T (y′) ∧ y = y′ ∪ {x′}.]
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This formula is in fact equivalent to a query in ALGcv−. (See Exercise 20.15.) For example,

suppose that R contains {2, 3, 4}. The iteration of ϕ yields

J0 = ∅
J1 = ϕ(∅) = {∅}
J2 = ϕ(J1) = J1 ∪ {{2}, {3}, {4}}
J3 = ϕ(J2) = J2 ∪ {{2, 3}, {2, 4}, {3, 4}}
J4 = ϕ(J3) = J3 ∪ {{2, 3, 4}},

and J4 is a fixpoint and coincides with powerset({2, 3, 4}).

Datalog for Complex Values

We now briefly consider an extension of datalog to incorporate complex values. The basic

result is that the extension is equivalent to the complex value algebra and calculus. We

also consider a special grouping construct, which can be used for set construction in this

context.

In the datalog extension considered here, the predicates ⊆ and ∈ are permitted. A rule

is safe range if each variable that appears in the head also appears in the body, and the

body is safe (i.e., the conjunction of the literals of the body is a safe formula). We assume

henceforth that rules are safe. Stratified negation will be used. The language is illustrated

in the following example.

Example 20.6.3 The input is a relation R of sort 〈A,B : {〈C,C′〉}〉. Consider the query

defining an idb relation T , which contains the tuples of R, with the B-component re-

placed by its transitive closure. Let us assume that we have a ternary relation ins, where

ins(w, y, z) is interpreted as “z is obtained by inserting w into y.” We show later how to

define this relation in the language. The program consists of the following rules:

S(x, y)← R(x, y)(r1)

S(x, z)← S(x, y), u ∈ y, v ∈ y, u.C′ = v.C, ins(〈u.C, v.C′〉, y, z)(r2)

S′(x, z)← S(x, z), S(x, z′), z⊆ z′, z "= z′(r3)

T (x, z)← S(x, z),¬S′(x, z).(r4)

The first two rules compute in S pairs corresponding to pairs from R, such that the second

component of a pair contains the corresponding component from the pair in R and possibly

additional elements derived by transitivity. Obviously, for each pair 〈x, y〉 of R, there is a

pair 〈x, z〉 in S, such that z is the transitive closure of y, but there are other tuples as well.

To answer the query, we need to select for each x the unique tuple 〈x, z〉 of S, where z is

maximal.2 The third rule puts into S′ tuples 〈x, z〉 such that z is not maximal for that x. The

last rule then selects those that are maximal, using negation.

2 We assume, for simplicity, that the first column of R is a key. It is easy to change the rules for the
case when this does not hold.
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We now show the program that defines ins for some given sort τ (the variables are of

sort {τ } except for w, which is of sort τ ):

super(w, y, z) ← w ∈ z, y ⊆ z

not-min-super(w, y, z)← super(w, y, z), super(w, y, z′), z′ ⊆ z, z′ "= z

ins(w, y, z) ← super(w, y, z),¬not-min-super(w, y, z)

Note that the program is sort specific only through its dependence on the sorts of the

variables. The same program computes ins for another sort τ ′, if we assume that the sort of

w is τ ′ and that of the other variables is {τ ′}. Note also that the preceding program is not

safe. To make it safe, we would have to use derived relations to range restrict the various

variables.

We note that although we used ⊆ in the example as a built-in predicate, it can be

expressed using membership and stratified negation.

The proof of the next result is omitted but can be reconstructed reasonably easily using

the technique of Example 20.6.3.

Theorem 20.6.4 A query is expressible in datalogcv with stratified negation if and only

if it is expressible in CALCcv.

The preceding language relies heavily on negation to specify the new sets. We could

consider more set-oriented constructs. An example is the grouping construct, which is

closely related to the algebraic nest operation. For instance, in the language LDL, the rule:

S(x, 〈y〉)← R(x, y)

groups in S, for each x, all the y’s related to it in R (i.e., S is the result of the nesting of R

on the second coordinate).

The grouping construct can be used to simulate negation. Consider a query q whose

input consists of two unary relations R, S not containing some particular element a and

that computes R − S. Query q can be answered by the following LDL program:

Temp(x, a)← R(x)

Temp(x, x)← S(x)

T (x, 〈y〉) ← Temp(x, y)

Res(x) ← T (x, {a})

Note that for an x in R − S, we derive T (x, {a}); but for x in R ∩ S, we derive

T (x, {x, a}) "= T (x, {a}) because a is not in R.

From the previous example, it is clear that programs with grouping need not be mono-

tone. This gives rise to semantic problems similar to those of negation. One possiblity,

adopted in LDL, is to define the semantics of programs with grouping analogously to strat-

ification for negation.
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20.7 Expressive Power and Complexity

This section presents two results. First the expressive power and complexity of ALGcv/

CALCcv is established—it is the family of queries computable in hyperexponential time.

Second, we consider the expressive power of ALGcv−/CALCcv− (i.e., in algebraic terms

the expressive power of permitting the nest operator, but not powerset). Surprisingly, we

show that the nest operator can be eliminated from ALGcv− queries with flat input/ouput.

Complex Value Languages and Elementary Queries

We now characterize the queries in ALGcv in terms of the set of computable queries in a

certain complexity class. First the notion of computable query is extended to the complex

value model in the straightforward manner. The complexity class of interest is the class of

elementary queries, defined next.

The hyperexponential functions hypi for i in N are defined by

1. hyp0(m)=m; and

2. hypi+1(m)= 2hypi(m) for i ≥ 0.

A query is an elementary query if it is a computable query and has hyperexponential time

data complexity3 w.r.t. the database size. By database size we mean the amount of space

it takes to write the content of the database using some natural encoding. Note that, for

complex value databases, size can be very different from cardinality. For example, the

database could consist of a single but very large complex value.

It turns out that a query is in ALGcv/CALCcv iff it is an elementary query.

Theorem 20.7.1 A query is in ALGcv/CALCcv iff it is an elementary query.

Crux It is trivial to see that each query in ALGcv/CALCcv is elementary. All operations

can be evaluated in polynomial time in the size of their arguments except for powerset,

which takes exponential time.

Conversely, let q be of complexity hypn. We show how to compute it in CALCcv.

Suppose first that an enumeration of adom(I) is provided in some binary relation succ.

(We explain later how this is done.) We prove that q can then be computed in CALCcv+µ+.

LetX0 = adom(I ) and for each i, Xi = powerset(Xi−1). Observe that for eachXi, we can

provide an enumeration as follows: First succ provides the enumeration for X0; and for

each i, we define V <i U for U,V in Xi if there exists x in U − V such that each element

larger than x (under <i−1) is in both or neither of U,V . Clearly, there exists a query in

CALCcv+µ+ that constructs Xn and a binary relation representing <n.

Now we view each element of Xn as an atomic element. The input instance together

with Xn and the enumeration can be seen as an ordered database with size the order of

hypn. Query q is now polynomial in this new (much larger) instance. Finally we can easily

3 We are concerned exclusively with the data complexity. Observe that when considering the union
of hyperexponential complexities, time and space coincide.
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extend to complex values the result from the flat case that CALC+µ+ can express qptime

on ordered databases (Theorem 17.4.2). Thus CALCcv+µ+ can also express all qptime

queries on ordered complex value databases, so q can be computed in CALCcv+µ+ using

<n on Xn. By Theorem 20.6.1, CALCcv+µ+ is equivalent to CALCcv, so there exists a

CALCcv query ϕ computing q if an (arbitrary) enumeration of the active domain is given

in some binary relation succ.

To conclude the proof, it remains to remove the restriction on the existence of an

enumeration of the active domain. Let ϕ′ be the formula obtained from ϕ by replacing

1. succ by some fresh variable y (the sort of y is set of pairs); and

2. each literal succ(t, t ′) by 〈t, t ′〉 ∈ y.

Then q can be computed by

∃y(ϕ′ ∧ ψ).

where ψ is the CALCcv formula stating that y is the representation in a binary relation of

an enumeration of the active domain. (Observe that it is easy to state in CALCcv that the

content of a binary relation is an enumeration.)

On the Power of the nest Operator

The set-height of a complex sort is the maximum number of set constructors in any branch

of the sort. We can exhibit hierarchies of classes of queries in CALCcv based on the set-

height of the sorts of variables used in the query. For example, consider all queries that

take as input a flat relational schema and produce as output a flat relation. Then for each

n > 0, the family of CALCcv queries using variables that have sorts with set-height ≤ n is

strictly weaker than the family of CALCcv queries using variables that have sorts with set-

height ≤ n+ 1. A similar hierarchy exists for ALGcv, based on the sorts of intermediate

types used. Intuitively, these results follow from the use of the powerset operator, which

essentially provides an additional exponential amount of scratch paper for each additional

level of set nesting.

The bottom of this hierarchy is simply relational calculus. Recall that ALGcv− can use

the nest operator but not the powerset operator. It is thus natural to ask, Where do ALGcv−/

CALCcv− (assuming flat input and output) lie relative to the relational calculus and the first

level of the hierarchy? Rather surprisingly, it turns out that the nest operator alone does

not increase expressive power. Specifically, we show now that with flat input and output,

ALGcv−/CALCcv− is equivalent to relational calculus.

Theorem 20.7.2 Let ϕ be a CALCcv−/ALGcv− query over a relational database schema

R with output of relational sort S. Then there exists a relational calculus query ϕ′ equivalent

to ϕ.

Crux The basic intuition underlying the proof is that with a flat input in CALCcv− or

ALGcv−, each set constructed at an intermediate stage can be identified by a tuple of atomic
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values. In terms of ALGcv−, the intuitive reason for this is that sets can be created only in

two ways:

• by nest, which builds a relation whose nonnested coordinates form a key for the

nested one, and

• by set_create, which can build only singleton sets.

Thus all created sets can be identified using some flat key of bounded length. The sets

can then be simulated in the computation by their flat representations. The proof consists

of

• providing a careful construction of the flat representation of the sets created in the

computation, which reflects the history of their creation; and

• constructing a new query, equivalent to the original one, that uses only the flat

representations of sets.

The details of the proof are omitted.

Observe that an immediate consequence of the previous result is that transitive closure

or powerset are not expressible in ALGcv−.

Remark 20.7.3 The previous results focus on relational queries. The same technique

can be used for nonflat inputs. An arbitrary input I can be represented by a flat database

If of size polynomial in the size of the input. Now an arbitrary ALGcv− query on I can be

simulated by a relational query on If to yield a flat database representing the result. Finally

the complex object result is constructed in polynomial time. This shows in particular that

ALGcv− is in ptime.

20.8 A Practical Query Language for Complex Values

We conclude our discussion of languages for complex values with a brief survey of a frag-

ment of the query language O2SQL supported by the commercial object-oriented database

system O2 (see Chapter 21). This fragment provides an elegant syntax for accessing and

constructing deeply nested complex values, and it has been incorporated into a recent in-

dustrial standard for object-oriented databases.

For the first example we recall the query

(4.3) What are the address and phone number of the Le Champo?

Using the CINEMA database (Fig. 3.1), this query can be expressed in O2SQL as

element select tuple ( t.address, t.phone )

from t in Location

where t.name = “Le Champo”
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The select-from-where clause has semantics analogous to those for SQL. Unlike SQL, the

select part can specify an essentially arbitrary complex value, not just tuples. A select-

from-where clause returns a set4; the keyword element here is a desetting operator that

returns a runtime error if the set does not have exactly one element.

The next example illustrates how O2SQL can work inside nested structures. Recall the

complex value shown in Fig. 20.2, which represents a portion of the CINEMA database.

Let the full complex value be named Films. The following query returns all movies for

which the director does not participate as an actor.

select m.Title

from f in Films

m in f.Movies

where f.Director not in select a

from a in m.Actors

O2SQL also provides a mechanism for collapsing nested sets. Again using the complex

value Films of Fig. 20.2, the following gives the set of all directors that have not acted in

any Hitchcock film.

select f.Director

from f in Films

where f.Director not in flatten select m.Actors

from g in Films

m in g.Movies

where g.Director = “Hitchcock”

Here the inner select-from-where clause returns a set of sets of actors. The keyword flatten

has the effect of forming the union of these sets to yield a set of actors.

We conclude with an illustration of how O2SQL can be used to construct a deeply

nested complex value. The following query builds, from the complex value Films of

Fig. 20.2, a complex value of the same type that holds information about all movies for

which the director does not serve as an actor.

select tuple ( Director: f.Director,

Movies: select tuple ( Title: m.Title,

Actors: select a

from a in m.Actors )

from m in f.Movies

where f.Director not in m.Actors )

from f in Films

4 In the full language O2SQL, a list or bag might also be returned; we do not discuss that here.
Furthermore, we do not include the keyword unique in our queries, although technically it should be
included to remove duplicates from answer sets.
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The proof of Theorem 20.7.2 outlined in this chapter suggests a strong connection between

ALGcv− and the V-relation model.

Reference [BTBW92] introduces a rich family of languages for complex objects,

extended to include lists and bags, that is based on structural recursion. One language in this

family corresponds to the nested algebra presented in this chapter. Using this, an elegant

family of generalizations of Theorem 20.7.2 is developed in [Won93].

An extension of complex values, called formats [HY84], includes a marked union

construct in addition to tuple and finitary set. Abstract notions of relative information

capacity are developed there; for example, it can be shown that two complex value types

have equivalent information capacity iff they are isomorphic.

Exercises

Exercise 20.1 (V-relations) Consider the schema R of sort

〈A,B : {〈C,D〉}〉.

Furthermore, we impose the fd A→ B (more precisely, the generalization of a functional
dependency). (a) Prove that for each instance I of R, the size of I is bounded by a polynomial
in adom(I ). (b) Show how the same information can be naturally represented using two flat
relations. (One suffices with some coding.) (c) Formalize the notion of V-relation of Section 20.1
and generalize the results of (a) and (b).

Exercise 20.2 Consider a (flat) relation R of sort

name age address car child_name child_age

and the multivalued dependency name age address→→ car. Prove that the same information
can be stored in a complex value relation of sort

〈name, age, address, cars : {dom}, children : {〈child_name, child_age〉}〉

Discuss the advantages of this alternative representation. (In particular, show that for the same
data, the size of the instance in the second representation is smaller. Also consider update
anomalies.)

Exercise 20.3 Consider the value

{ 〈A : a, B : 〈A : {a, b}, B : 〈A : a〉〉, C : 〈 〉〉,

〈A : a, B : 〈A : {}, B : 〈A : a〉〉, C : 〈 〉〉 }.

Show how to construct it in the core algebra from {a} and {b}.

Exercise 20.4 Prove that for each complex value relation I , there exists a constant query in
the core algebra returning I .
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Exercise 20.5 Let R be a database schema consisting of a relation R of sort

〈A : dom, B : 〈A : {dom}, B : 〈A : dom〉〉, C : 〈 〉〉;

and let τ = {〈A : dom, B : {{dom}}〉}.

(a) Give a query computing for each I over R, adom(I).

(b) Give a query computing the set of values J of sort τ such that adom(J )⊆ adom(I).

Exercise 20.6 Prove that set_create can be expressed using the other operations of the core
algebra. Hint: Use powerset.

Exercise 20.7 Formally define the following operations: (a) renaming, (b) singleton, (c)
cross-product, and (d) join. In each case, prove that the operation is expressible in ALGcv.
Which of these can be expressed without powerset?

Exercise 20.8 (Nest,unnest)

(a) Show that nest is expressible in ALGcv.

(b) Show that unnest is expressible in ALGcv without using the powerset operator.

(c) Prove that unnestA is a right inverse of nestA=(A1...Ak) and that unnestA has no right
inverse.

Exercise 20.9 (Map) The operation mapC,q is applicable to relations of sort τ where τ is of
the form {〈C : {τ ′}, . . .〉} and q is a query over relations of sort τ ′. For instance, let

I = {〈C : I1, C
′ : J1〉, 〈C : I2, C

′ : J2〉, 〈C : I3, C
′ : J3〉}.

Then

mapC,q(I )= {〈C : q(I1), C
′ : J1〉, 〈C : q(I2), C

′ : J2〉, 〈C : q(I3), C
′ : J3〉}.

(a) Give an example of map and show how the query of this example can be expressed
in ALGcv.

(b) Give a formal definition of map and prove that the addition of map does not change
the expressive power of the algebra.

Exercise 20.10 Show how to express

{x | {y | liked(x, y)} = {y | saw(x, y)}}

in the core calculus.

Exercise 20.11 The calculus is extended by allowing terms of the form z ∪ z′ and z − z′ for
each set term z, z′ of identical sort. Prove that this does not modify the expressive power of the
language. More generally, consider introducing in the calculus terms of the form q(t1, . . . , tn),
where q is an n-ary algebraic operation and the ti are set terms of appropriate sort.

Exercise 20.12 Give five queries on the CINEMA database expressed in ALGcv. Give the
same queries in CALCcv.
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Exercise 20.13 Complete the proof that ALGcv ⊑ CALCcv for Theorem 20.5.1. Complete the
proof of “Last Stage” for Theorem 20.5.1.

Exercise 20.14 This exercise elaborates the simulation of CALCcv by ALGcv presented in the
proof of Theorem 20.5.1. In particular, give the details of

(a) the construction of Eadom

(b) the construction of Gτ for each τ

(c) the last stage of the construction.

Exercise 20.15 Show that the query in Example 20.6.2 is strongly safe range (e.g., give a
query in ALGcv− or CALCcv− equivalent to it).

Exercise 20.16 Show that every strongly safe-range query is in ALGcv− [one direction of (b)
of Theorem 20.5.3].

Exercise 20.17 Sketch a program expressing the query even in CALCcv+µ+.

Exercise 20.18 Prove that CALCcv+µ+ =ALGcv.

Exercise 20.19 Define a while language based on ALGcv. Show that it does not have more
power than ALGcv.

Exercise 20.20 Consider a query q whose input consists of two relations blue, red of sort
〈A,B〉 (i.e., consists of two graphs). Query q returns a relation of sort 〈A,B : {dom}〉 with the
following meaning. A tuple 〈x,X〉 is in the result if x is a vertex and X is the set of vertexes y
such that there exists a path from x to y alternating blue and red edges. Prove in one line that q is
expressible in ALGcv. Show how to express q in some complex value language of this chapter.

Exercise 20.21 Generalize the construction of Example 20.6.2 to prove Theorem 20.6.1.

Exercise 20.22 Datalog with stratified negation was shown to be weaker than datalog with
inflationary negation. Is the situation similar for datalogcv with negation?

Exercise 20.23 Exhibit a query that is not expressible in CALCcv− but is expressible in
CALCcv, and one that is not expressible in CALCcv.

Exercise 20.24 Give a relational calculus formula or algebra expression for the query in
Example 20.4.8.

⋆Exercise 20.25 Recall the language whileN from Chapter 18. The language allows assign-
ments of relational algebra expressions to relational variables, looping, and integer arithmetic.
Let whilecv

N be like whileN , except that the relational algebra expressions are in ALGcv. Prove
that whilecv

N can express all queries from flat relations to flat relations.
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Minkisi are complex objects clearly not the product of a momentary im-

pulse. . . . To do justice to objects, a theory of them must be as complex as

them.1

—Wyatt MacGaffey in Astonishment and Power

Alice: What is a Minkisi?

Sergio: It is an African word that translates somewhat like “things that do things.”

Vittorio: It is art, religion, and magic.

Riccardo: Oh, this sounds to me very object oriented!

In this chapter, we provide a brief introduction to object-oriented databases (OODBs). A

complete coverage of this new and exciting area is beyond the scope of this volume; we

emphasize the new modeling features of OODBs and some of the preliminary theoretical

research about them. On the one hand, we shall see that some of the most basic issues con-

cerning OODBs, such as the design of query languages or the analysis of their expressive

power, can be largely resolved using techniques already developed in connection with the

relational and complex value models. On the other hand, the presence of new features (such

as object identifiers) and methods brings about new questions and techniques.

As mentioned previously, the simplicity of the data structure in the relational model

often hampers its use in many database applications. A relational representation can ob-

scure the intention and intricate semantics of a complex data structure (e.g., for holding the

design of a VLSI chip or an airplane wing). As we shall see, OODBs remedy this situation

by borrowing a variety of data structuring constructs from the complex value model (Chap-

ter 20) and from semantic data models (considered in Chapter 11). At a more fundamental

level, the relational data model and all of the data models presented so far impose a sharp

distinction between data storage and data processing: The DBMS provides data storage,

but data processing is provided by a host programming language with a relatively simple

language such as SQL embedded in it. OODBs permit the incorporation of behavioral por-

tions of the overall data management application directly into the database schema, using

methods in the sense of object-oriented programming languages.

This chapter begins with an informal presentation of the underlying constructs of

OODBs. Next a formal definition for a particular OODB model is presented. Two direc-

tions of theoretical research into OODBs are then discussed. First a family of languages

1 Reprinted with permission. Smithsonian Institution Press ©1993.
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for data access is presented, with an emphasis on how the languages interact with the novel

modeling constructs (of particular interest is the impact of generalizing the notion of com-

plete query language to accommodate the presence of object identifiers, OIDs). Next two

languages for methods are described. The first is an imperative language allowing us to

specify methods with side effects.2 The second language brings us to a functional perspec-

tive on methods and database languages and allows us to specify side-effect-free methods.

In both cases, we present some results on type safety and expressive power. Checking type

safety is generally undecidable; we identify a significant portion of the functional language,

monadic method schemas, for which type safety is decidable. With respect to expressive

power, the imperative language is complete in an extended sense formalized in this chapter.

The functional language expresses precisely qptime on ordered inputs and so turns out to

express the by-now-famous fixpoint queries. The chapter concludes with a brief survey of

additional research issues raised by OODBs.

21.1 Informal Presentation

Object-oriented database models stem from a synthesis of three worlds: the complex value

model, semantic database models, and object-oriented programming concepts. At the time

of writing, there is not widespread agreement on a specific OODB model, nor even on what

components are required to constitute an OODB model. In this section, we shall focus on

seven important ingredients of OODB models:

1. objects and object identifiers;

2. complex values and types;

3. classes;

4. methods;

5. ISA hierarchies;

6. inheritance and dynamic binding;

7. encapsulation.

In this section, we describe and illustrate these interrelated notions informally; a more

formal definition is presented in the following section. We will also briefly discuss alterna-

tives.

As a running example for this discussion, we shall use the OODB schema specified in

Fig. 21.1. This schema is closely related to the semantic data model schema of Fig. 11.1,

which in turn is closely related to the CINEMA example of Chapter 3.

As discussed in Chapter 11, a significant shortcoming of the relational model is that

it must use printable values, often called keys, to refer to entities or objects-in-the-world.

As a simple example, suppose that the first and last names of a person are used as a key

to identify that person. From a physical point of view, it is then cumbersome to refer to

a person, because the many bytes of his or her name must be used. A more fundamental

2 Methods are said to have side-effects if they cause updates to the database.
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(* schema and base definitions *)

create schema PariscopeSchema ;

create base PariscopeBase;

(* class definitions *)

class Person

type tuple ( name: string, citizenship: string, gender: string );

class Director inherit Person

type tuple ( directs: set ( Movie ) );

class Actor inherit Person

type tuple ( acts_in: { Movie },

award: { tuple ( prize: string, year: integer ) } );

class Actor_Director inherit Director, Actor

class Movie

type tuple ( title: string, actors: set ( Actor );

director: Director );

class Theater

type tuple ( name: string, address: string, phone: string );

(* name definitions *)

name Pariscope: set ( tuple ( theater: Theater, time: string, price: integer,

movie: Movie ) );

name Persons_I_like: set ( Person );

name Actors_I_like, Actors_you_like: set ( Actor );

name My_favorite_director : Director

(* method definitions *)

method get_name in class Person : string

{ if (gender = “male”)

return “Mr.” + self.name;

else

return “Ms.” + self.name }

method get_name in class Director : string

{ return ( “Director” + self.name ) };

method get_name in class Actor_Director : string

{ return ( “Director” + self.name ) };

(* we assume here that ‘+’ denotes a string concatenation operator *)

Figure 21.1: An OODB Schema
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problem arises if the person changes his or her name (e.g., as the result of marriage). When

performing this update, conceptually there is a break in the continuity in the representation

of the person. Furthermore, care must be taken to update all tuples (typically arising in a

number of different relations) that refer to this person, to reflect the change of name.

Following the spirit of semantic data models, OODB models permit the explicit rep-

resentation of physical and conceptual objects through the use of object identifiers (OIDs).

Conceptually, a unique OID is assigned to each object that is represented in the database,

and this association between OID and object remains fixed, even as attributes of the ob-

ject (such as name or age) change in value. The use of objects and OIDs permits OODBs

to share information gracefully; a given object o is easily shared by many other objects

simply by referencing the OID of o. This is especially important in the context of updates;

for example, the name of a person object o need be changed in only one place even if o is

shared by many parts of the database.

In an OODB, a complex value is associated with each object. This complex value may

involve printables and/or OIDs (i.e., references to the same or other objects). For example,

each object in the class Movie in Fig. 21.1 has an associated triple whose second coordinate

contains a set of OIDs corresponding to actors. In this section, we focus on complex values

constructed using the tuple and set construct. In practical OODB models, other constructs

are also supported (including, for example, bags and lists). Some commercial OODBs are

based on an extension of C++ that supports persistence; in these models essentially any

C++ structure can serve as the value associated with an object.

Objects that have complex values with the same type may be grouped into classes, as

happens in semantic data models. In the running example, these include Person, Director,

and Movie. Classes also serve as a natural focal point for associating some of the behavioral

(or procedural) components of a database application. This is accomplished by associating

with each class a family of methods for that class. Methods might be simple (e.g., produc-

ing the name of a person) or arbitrarily complex (e.g., displaying a representation of an

object to a graphical interface or performing a stress analysis of a proposed wing design).

A method has a name, a signature, and an implementation. The name and signature serve

as an external interface to the method. The implementation is typically written in a (pos-

sibly extended) programming language such as C or C++. The choice of implementation

language is largely irrelevant and is generally not considered to be part of the data model.

As with semantic models, OODB models permit the organization of classes into a

hierarchy based on what have been termed variously ISA, specialization, or class-subclass

relationships. The term hierarchy is used loosely here: In many cases any directed acyclic

graph (DAG) is permitted. In Fig. 21.1 the ISA hierarchy has Director and Actor as (im-

mediate) specializations of Person and Actor_Director as a specialization of both Director

and Actor. Following the tradition of object-oriented programming languages, a virtual

class any is included that serves as the unique root of the ISA hierarchy.

In OODB models, there are two important implications of the statement that class c′

is a subclass of c. First it is required that the complex value type associated with c′ be a

subtype (in the sense formally defined later) of the complex value type associated with c.

Second it is required that if there is a method with name m associated with c, then there is

also a method with name m associated with c′. In some cases, the implementation (i.e., the

actual code) of m for c′ is identical to that for c; in this case the code of m for c′ need not
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be explicitly specified because it is inherited from c. In other cases, the implementation

of m for c′ is different from that for c; in which case we say that the implementation of

m for c′ overrides the implementation of m for c. (See the different implementations for

method get_name in Fig. 21.1.) The determination of what implementation is associated

with a given method name and class is called method resolution. A method is invoked with

respect to an object o, and the class to which o belongs determines which implementation

is to be used. This policy is called dynamic binding. As we shall see, the interaction of

method calls and dynamic binding in general makes type checking for OODB schemas

undecidable. (It is undecidable to check whether such a schema would lead to a runtime

type error; on the other hand, it is clearly possible to find decidable sufficient conditions

that will guarantee that no such error can arise.)

In the particular OODB model presented here, both values (in the style of complex

values) and objects are supported. For example, in Fig. 21.1 a persistent set of triples

called Pariscope is supported (see also Fig. 11.1). The introduction of values not directly

associated with OIDs is a departure from the tradition of object-oriented programming, and

not all OODBs in the literature support it. However, in databases the use of explicit values

often simplifies the design and use of a schema. Their presence also facilitates expressing

queries in a declarative manner.

The important principle of encapsulation in object orientation stems from the field

of abstract data types. Encapsulation is used to provide a sharp boundary between how

information about objects is accessed by database users and how that information is actu-

ally stored and provided. The principle of encapsulation is most easily understood if we

distinguish two categories of database use: dba mode, which refers to activities unique to

database administrators (including primarily creating and modifying the database schema),

and user mode, which refers to activities such as querying and updating the actual data in

the database. Of course, some users may operate in both of these modes on different occa-

sions. In general, application software is viewed as invoked from the user mode.

Encapsulation requires that when in user mode, a user can access or modify infor-

mation about a given object only by means of the methods defined for that object; he or

she cannot directly examine or modify the complex value or the methods associated with

the object. In particular, then, essentially all application software can access objects only

through their methods. This has two important implications. First, as long as the same set

of methods is supported, the underlying implementation of object methods, and even of the

complex value representation of objects, can be changed without having to modify any ap-

plication software. Second, the methods of an object often provide a focused and abstracted

interface to the object, thus making it simpler for programmers to work with the objects.

In object-oriented programming languages, it is typical to enforce encapsulation ex-

cept in the special case of rewriting method implementations. In some OODB models, there

is an important exception to this in connection with query languages. In particular, it is

generally convenient to permit a query language to examine explicitly the complex values

associated with objects.

The reader with no previous exposure to object-oriented languages may now be utterly

overwhelmed by the terminology. It might be helpful at this point to scan through a book

or manual about an object-oriented programming language such as C++, or an OODB such
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as O2 or ObjectStore. This will provide numerous examples and the overall methodology

of object-oriented programming, which is beyond the scope of this book.

21.2 Formal Definition of an OODB Model

This section presents a formal definition of a particular OODB model, called the generic

OODB model. (This model is strongly influenced by the IQL and O2 models. Many fea-

tures are shared by most other OODB models. While presenting the model, we also discuss

different choices made in other models.) The presentation essentially follows the preced-

ing informal one, beginning with definitions for the types and class hierarchy and then

introducing methods. It concludes with definitions of OODB schema and instance.

Types and Class Hierarchy

The formal definitions of object, type, and class hierarchy are intertwined. An object

consists of a pair (identifier, value). The identifiers are taken from a specific sort containing

OIDs. The values are essentially standard complex values, except that OIDs may occur

within them. Although some of the definitions on complex values and types are almost

identical to those in Chapter 20, we include them here to make precise the differences from

the object-oriented context. As we shall see, the class hierarchy obeys a natural restriction

based on subtyping.

To start, we assume a number of atomic types and their pairwise disjoint corresponding

domains: integer, string, bool, float. The set dom of atomic values is the (disjoint) union

of these domains; as before, the elements of dom are called constants. We also assume an

infinite set obj= {o1, o2, . . .} of object identifiers (OIDs), a set class of class names, and a

set att of attribute names. A special constant nil represents the undefined (i.e., null) value.

Given a set O of OIDs, the family of values over O is defined so that

(a) nil, each element of dom, and each element of O are values over O; and

(b) if v1, . . . , vn are values over O, and A1, . . . , An distinct attributes names, the

tuple [A1 : v1, . . . , An : vn] and the set {v1, . . . , vn} are values over O.

The set of all values over O is denoted val(O). An object is a pair (o, v), where o is an

OID and v a value.

In general, object-oriented database models also include constructors other than tuple

and set, such as list and bag; we do not consider them here.

Example 21.2.1 Letting oid7, oid22, etc. denote OIDs, some examples of values are as

follows:

[theater : oid7, time : “16:45”, price : 45, movie : oid22]

{“H. Andersson”, “K. Sylwan”, “I. Thulin”, “L. Ullman”}

[title : “The Trouble with Harry”, director : oid77,

actors : {oid81, oid198, oid265, oid77}]
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An example of an object is

(oid22 , [title :“The Trouble with Harry”, director : oid77,

actors : {oid81, oid198, oid265, oid77}])

As discussed earlier, objects are grouped in classes. All objects in a class have complex

values of the same type. The type corresponding to each class is specified by the OODB

schema.

Types are defined with respect to a given set C of class names. The family of types

over C is defined so that

1. integer, string, bool, float, are types;

2. the class names in C are types;

3. if τ is a type, then3 {τ } is a (set) type;

4. if τ1, . . . , τn are types and A1, . . . , An distinct attribute names,

then [A1 : τ1, . . . , An : τn] is a (tuple) type.

The set of types over C together with the special class name any are denoted types(C).

(The special name any is a type but may not occur inside another type.) Observe the close

resemblance with types used in the complex value model.

Example 21.2.2 An example of a type over the classes of the schema in Fig. 21.1 is

[name : string, citizenship : string, gender : string]

One may want to give a name to this type (e.g., Person_type). Other examples of types

(with names associated to them) include

Director_type = [name : string, citizenship : string, gender : string,

directs : {Movie}]

Theater_type = [name : string, address : string, phone : string]

Pariscope_type= [theater : Theater, time : string, price : integer, movie : Movie]

Movie_type = [title : string, actors : {Actor}, director : Director]

Award_type = [prize : string, year : integer]

In an OODB schema we associate with each class c a type σ(c), which dictates the

type of objects in this class. In particular, for each object (o, v) in class c, v must have the

exact structure described by σ(c).

3 In Fig. 21.1 we use keywords set and tuple as syntactic sugar when specifying the set and tuple
constructors.
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Recall from the informal description that an OODB schema includes an ISA hierarchy

among the classes of the schema. The class hierarchy has three components: (1) a set

of classes, (2) the types associated with these classes, and (3) a specification of the ISA

relationships between the classes. Formally, a class hierarchy is a triple (C, σ,≺), where

C is a finite set of class names, σ a mapping from C to types(C), and ≺ a partial order

on C.

Informally, in a class hierarchy the type associated with a subclass should be a refine-

ment of the type associated with its superclass. For example, a class Student is expected to

refine the information on its superclass Person by providing additional attributes. To cap-

ture this notion, we use a subtyping relationship (≤) that specifies when one type refines

another.

Definition 21.2.3 Let (C, σ,≺) be a class hierarchy. The subtyping relationship on

types(C) is the smallest partial order ≤ over types(C) satisfying the following conditions:

(a) if c ≺ c′, then c ≤ c′;

(b) if τi ≤ τ
′
i for each i ∈ [1, n] and n≤m, then

[A1 : τ1, . . . , An : τn, . . . , Am : τm]≤ [A1 : τ ′1, . . . , An : τ ′n];

(c) if τ ≤ τ ′, then {τ } ≤ {τ ′}; and

(d) for each τ , τ ≤ any (i.e., any is the top of the hierarchy).

A class hierarchy (C, σ,≺) is well formed if for each pair c, c′ of classes, c ≺ c′ implies

σ(c)≤ σ(c′).

By way of illustration, it is easily verified that

Director_type≤ Person_type Director_type "≤Movie_type.

Thus the schema obtained by adding the constraint Director ≺Movie would not be well

formed.

Henceforth we consider only well-formed class hierarchies.

Example 21.2.4 Consider the class hierarchy (C, σ,≺) of the schema of Fig. 21.1. The

set of classes is

C = {Person,Director, Actor, Actor_Director, Theater, Movie}

with Actor ≺ Person, Director ≺ Person, Actor_Director ≺ Director, Actor_Director ≺
Actor, and (referring to Example 21.2.2 for the definitions of Person_type, Theater_type,

etc.)
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σ(Person) = Person_type,

σ (Theater) = Theater_type,

σ (Movie) =Movie_type,

σ (Director) = Director_type,

σ (Actor) = [name : string, citizenship : string,

gender : string, acts_in : {Movie},

award : {Award_type}]

σ(Actor_Director)= [name : string, citizenship : string,

gender : string, acts_in : {Movie},

award : {Award_type}, directs : {Movie}]

The use of type names here is purely syntactic. We would obtain the same schema if we

replaced, for instance, Person_type with the value of this type.

Observe that σ(Director)≤ σ(Person) and σ(Actor)≤ σ(Person), etc.

The Structural Semantics of a Class Hierarchy

We now describe how values can be associated with the classes and types of a class

hierarchy. Because the values in an OODB instance may include OIDs, the semantics of

classes and types must be defined simultaneously. The basis for these definitions is the

notion of OID assignment, which assigns a set of OIDs to each class.

Definition 21.2.5 Let (C, σ,≺) be a (well-formed) class hierarchy. An OID assignment

is a function π mapping each name in C to a disjoint finite set of OIDs. Given OID

assignment π , the disjoint extension of c is π(c), and the extension of c, denoted π∗(c),

is ∪{π(c′) | c′ ∈ C, c′ ≺ c}.

If π is an OID assignment, then π∗(c′) ⊆ π∗(c) whenever c′ ≺ c. This should be

understood as a formalization of the fact that an object of a subclass c′ may be viewed

also as an object of a superclass c of c′. From the perspective of typing, this suggests that

operations that are type correct for members of c are also type correct for members of c′.

Unlike the case for many semantic data models, the definition of OID assignment for

OODB schemas implies that extensions of classes of an ISA hierarchy without common

subclasses are necessarily disjoint. In particular, extensions of all leaf classes of the hierar-

chy are disjoint (see Exercise 21.2). This is a simplifying assumption that makes it easier to

associate objects to classes. There is a unique class to whose disjoint extension each object

belongs.

The semantics for types is now defined relative to a class hierarchy (C, σ,≺) and

an OID assignment π . Let O = ∪{π(c) | c ∈ C}, and define π(any) = O. The disjoint

interpretation of a type τ , denoted dom(τ ), is given by

(a) for each atomic type τ , dom(τ ) is the usual interpretation of that type;

(b) dom(any) is val(O);
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(c) for each c ∈ C, dom(c)= π∗(c) ∪ {nil};

(d) dom({τ })= {{v1, . . . , vn} | n≥ 0, and vi ∈ dom(τ ), i ∈ [1, n]}; and

(e) dom([A1 : τ1, . . . , Ak : τk])= {[A1 : v1, . . . , Ak : vk] | vi ∈ dom(τi), i ∈ [1, k]}.

Remark 21.2.6 In the preceding interpretation, the type determines precisely the struc-

ture of a value of that type. It is interesting to replace (e) by

(e′)

dom([A1 : τ1, . . . , Ak : τk])=

{[A1 : v1, . . . , Ak : vk, Ak+1 : vk+1, . . . Al : vl] |

vi ∈ dom(τi), i ∈ [1, k], vj ∈ val(O), j ∈ [k + 1, l]}.

Under this alternative interpretation, for each τ, τ ′ in types(C), if τ ′ ≤ τ then dom(τ ′)⊆
dom(τ ). This is why this is sometimes called the domain-inclusion semantics. From a

data model viewpoint, this presents the disadvantage that in a correctly typed database

instance, a tuple may have a field that is not even mentioned in the database schema. For

this reason, we do not adopt the domain-inclusion semantics here. On the other hand, from

a linguistic viewpoint it may be useful to adopt this more liberal semantics in languages to

allow variables denoting tuples with more attributes than necessary.

Adding Behavior

The final ingredient of the generic OODB model is methods. A method has three compo-

nents:

(a) a name

(b) a signature

(c) an implementation (or body).

There is no problem in specifying the names and signatures of methods in an OODB

schema. To specify the implementation of methods, a language for methods is needed.

We do not consider specific languages in the generic OODB model. Therefore only names

and signatures of methods are specified at the schema level in this model. In Section 21.4,

we shall consider several languages for methods and shall therefore be able to add the

implementation of methods to the schema.

Without specifying the implementation of methods, the generic OODB model speci-

fies their semantics (i.e., the effect of each method in the context of a given instance). This

effect, which is a function over the domains of the types corresponding to the signature of

the method, is therefore specified at the instance level.

We assume the existence of an infinite set meth of method names. Let (C, σ,≺) be

a class hierarchy. For method name m, a signature of m is an expression of the form

m : c × τ1 × · · · × τn−1 → τn, where c is a class name in C and each τi is a type over

C. This signature is associated with the class c; we say that methodm applies to objects of

class c and to objects of classes that inherit m from c. It is common for the same method

name to have different signatures in connection with different classes. (Some restrictions

shall be specified later.) The notion of signature here generalizes the one typically found in
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object-oriented programming languages, because we permit the τi’s to be types rather than

only classes.

It is easiest to describe the notions of overloading, method inheritance, and dynamic

binding in terms of an example. Consider the methods defined in the schema of Fig. 21.1.

All three share the name get_name. The signatures are given by

get_name : Person→ string

get_name : Director → string

get_name : Actor_Director → string

Note that get_name has different implementations for these classes; this is an example of

overloading of a method name.

Recall that Actor is a subclass of Person. According to the informal discussion, if

get_name applies to elements of Person, then it should also apply to members of Actor.

Indeed, in the object-oriented paradigm, if a method m is defined for a class c but not for

a subclass c′ of c (and it is not defined anywhere else along a path from c′ to c), then the

definition of m for c′ is inherited from c. In particular, the signature of m on c′ is identical

to the one of m for c, except that the first c is replaced by c′. The implementation of m

for c′ is identical to that for c. In the schema of Fig. 21.1, the signature of get_name for

Actor is

get_name : Actor → string

and the implementation is identical to the one for Person. The determination of the correct

method implementation to use for a given method name m and class c is called method

resolution; the selected implementation is called the resolution of m for c.

Suppose that π is an OID assignment, that oid25 is in the extension π∗(Person) of

Person, and that get_name is called on oid25. What implementation of get_name will

be used? In our OODB model we shall use dynamic binding (also called late binding,

or value-dependent binding). This means that the specific implementation chosen for

get_name on oid25 depends on the most specific class that oid25 belongs to, that is, the

class c such that oid25 ∈ π(c).
(An alternative to dynamic binding is static binding, or context-dependent binding.

Under this discipline, the implementation used for get_name depends on the type associ-

ated with the variable holding oid25 at the point in program where get_name is invoked.

This can be determined at compile time, and so static binding is generally much cheaper

than dynamic binding. In the language C++, the default is static binding, but dynamic bind-

ing can be obtained by using the keyword virtual when specifying the method.)

Consider a call m(o, v1, . . . , vn−1) to method m. This is often termed a message,

and o is termed the receiver. As described here, the implementation of m associated

with this message depends exclusively on the class of o. To emphasize the importance

of the receiver for finding the actual implementation, in some languages the message is

denoted o→ m[v1, . . . vn−1]. In some object-oriented programming languages, such as

CommonLoops (an object-oriented extension of LISP), the implementation depends on
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Figure 21.2: Unambiguous definition

all of the parameters of the call, not just the first. This is also the approach of the method

schemas introduced in Section 21.4.

The set of methods applicable to an object is called the interface of the object. As noted

in the informal description of OODB models, in most cases objects are accessed only via

their interface; this philosophy is called encapsulation.

As part of an OODB schema, a set M of method signatures is associated to a class

hierarchy (C, σ,≺). Note that a signature m : c × τ1 × · · · × τn−1 → τn can be viewed

as giving a particular meaning to m for class c, at least at a syntactic level. Because of

inheritance, a meaning for method m need not be given explicitly for each class of C nor

even for subclasses of a class for which m has been given a meaning. However, we make

two restrictions on the family of method signatures: The set M is well formed if it obeys

the following two rules:

Unambiguity: If c is a subclass of c′ and c′′ and there is a definition ofm for c′ and c′′, then

there is a definition ofm for a subclass of c′ and c′′ that is either c itself, or a superclass

of c. (See Fig. 21.2.)

Covariance4: If m : c × τ1 × · · · × τn→ τ and m : c′ × τ ′1 × · · · × τ
′
m→ τ ′ are two defi-

nitions and c ≺ c′, then n=m for each i, τi ≤ τ
′
i and τ ≤ τ ′.

The first rule prevents ambiguity resulting from the presence of two method implemen-

tations both applicable for the same object. A primary motivation for the second rule is

intuitive: We expect the argument and result types of a method on a subclass to be more

refined than those of the method on a superclass. This also simplifies the writing of type-

correct programs, although type checking leads to difficulties even in the presence of the

covariance assumption (see Section 21.4).

Database Schemas and Instances

We conclude this section by presenting the definitions of schemas and instances in the

generic OODB model. An important subtlety here will be the role of OIDs in instances

4 In type theory, contravariance is used instead. Contravariance is the proper notion when functions
are passed as arguments, which is not the case here.
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as placeholders; as will be seen, the specific OIDs present in an instance are essentially

irrelevant.

As indicated earlier, a schema describes the structure of the data that is stored in

a database, including the types associated with classes and the ISA hierarchy and the

signature of methods (i.e., the interfaces provided for objects in each class).

In many practical OODBs, it has been found convenient to allow storage of complex

values that are not associated with any objects and that can be accessed directly using

some name. This also allows us to subsume gracefully the capabilities of value-based

models, such as relations and complex values. It also facilitates writing queries. To reflect

this feature, we allow a similar mechanism in schemas and instances. Thus schemas may

include a set of value names with associated types. Instances assign values of appropriate

type to the names. Method implementations, external programming languages, and query

languages may all use these names (to refer to their current values) or a class name (to

refer to the set of objects currently residing in that class). In this manner, named values and

class names are analogous to relation names in the relational model and to complex value

relation names in the complex value model.

In the schema of Fig. 21.1, examples of named values are Pariscope (holding a set

of triples); Persons_I_like, Actors_I_like, and Actors_you_like (referring to sets of person

objects and actor objects; and, finally, My_favorite_director (referring to an individual

object as opposed to a set). These names can be used explicitly in method implementations

and in external query and programming languages.

We now have the following:

Definition 21.2.7 A schema is a 5-tuple S= (C, σ,≺,M,G) where

• G is a set of names disjoint from C;

• σ is a mapping from C ∪G to types(C);

• (C, σ,≺) is a well-formed class hierarchy5; and

• M is a well-formed set of method signatures for (C, σ,≺).

An instance of an OODB schema populates the classes with OIDs, assigns values to

these OIDs, gives meaning to the other persistent names, and assigns semantics to method

signatures. The semantics of method signatures are mappings describing their effect. From

a practical viewpoint, the population of the classes, the values of objects, and the values of

names are kept extensionally; whereas the semantics of the methods are specified by pieces

of code (intensionally). However, we ignore the code of methods for the time being.

Definition 21.2.8 An instance of schema (C, σ,≺,M,G) is a 4-tuple I= (π, ν, γ, µ),
where

(a) π is an OID assignment (and let O = ∪{π(c) | c ∈ C});

(b) ν maps each OID in O to a value in val(O) of correct type [i.e., for each c and

o ∈ π(c), ν(o) ∈ dom(σ (c))];

5 By abuse of notation, we use here and later σ instead of σ |C.
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(c) γ associates to each name in G of type τ a value in dom(τ );

(d) µ assigns semantics to method names in agreement with the method signatures

inM . More specifically, for each signature m : c × *α→ τ ,

µ(m : c × *α→ τ) : dom(c × *α)→ dom(τ );

that is, µ(m : c × *α→ τ) is a partial function from dom(c × *α) to dom(τ ).

Recall that a method m can occur with different signatures in the same schema. The

mapping µ can assign different semantics to each signature of m. The function µ(m :

c × *α→ τ) is only relevant on objects associated with c and subclasses of c for which

m is not redefined.

In the preceding definitions, the assignment of semantics to method signatures is

included in the instance. As will be seen in Section 21.4, if method implementations

are included in the schema, they induce the semantics of methods at the instance level

(this is determined by the semantics of the particular programming language used in the

implementation).

Intuitively, it is generally assumed that elements of the atomic domains have univer-

sally understood meaning. In contrast, the actual OIDs used in an instance are not relevant.

They serve essentially as placeholders; it is only their relationship with other OIDs and

constants that matters. This arises in the practical perspective in two ways. First, in most

practical systems, OIDs cannot be explicitly created, examined, or manipulated. Second,

in some object-oriented systems, the actual OIDs used in a physical instance may change

over the course of time (e.g., as a result of garbage collection or reclustering of objects).

To capture this aspect of OIDs in the formal model, we introduce the notion of OID

isomorphism. Two instances I, J are OID isomorphic, denoted I ≡OID J, if there exists a

bijection on dom∪ obj that maps obj to obj, is the identity on dom, and transforms I into J.

To be precise, the term object-oriented instance should refer to an equivalence class under

OID isomorphism of instances as defined earlier. However, it is usually more convenient to

work with representatives of these equivalence classes, so we follow that convention here.

Remark 21.2.9 In the model just described, a class encompasses two aspects:

1. at the schema level, the class definition (its type and method signatures); and

2. at the instance level, the class extension (the set of objects currently in the class).

It has been argued that one should not associate explicit class extensions with classes. To

see the disadvantage of class extensions, consider object deletion. To be removed from

the database, an object has to be deleted explicitly from its class extension. This is not

convenient in some cases. For instance, suppose that the database contains a class Polygon

and polygons are used only in figures. When a polygon is no longer used in any figure of

the current database, it is no longer of interest and should be deleted. We would like this

deletion to be implicit. (Otherwise the user of the database would have to search all possible

places in which a reference to a polygon may occur to be able to delete a polygon.)

To capture this, some OODBs use an integrity constraint, which states that
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every object should be accessible from some named value.

This integrity constraint is enforced by an automatic deletion of all objects that become

unreachable from the named values. In the polygon example, this approach would allow

defining the class Polygon, thus specifying the structure and methods proper to polygons.

However, the members of class Polygon would only be those polygons that are currently

relevant. Relevance is determined by membership in (or accessibility from) the named

values (e.g., My-Figures, Your-Figures) that refer to polygons. From a technical viewpoint,

this involves techniques such as garbage collection.

In these OODBs, the set of objects in a class is not directly accessible. For this

reason, the corresponding models are sometimes called models without class extension.

Of course, it is always possible, given a schema, to compute the class extensions or to

adapt object creation in a given class to maintain explicitly a named value containing that

class extension. In these OODBs, the named values are also said to be roots of persistence,

because the persistence of an object is dependent on its accessibility from these named

values.

21.3 Languages for OODB Queries

This section briefly introduces several languages for querying OODBs. These queries

are formulated against the database as a whole; unlike methods, they are not associated

with specific classes. In the next section, we will consider languages intended to provide

implementations for methods.

In describing the OODB query languages, we emphasize how OODB features are

incorporated into them. The first language is an extension of the calculus for complex

values, which incorporates such object-oriented components as OIDs, different notions

of equality, and method calls. The second is an extension of the while language, initially

introduced in Chapter 14. Of primary interest here is the introduction of techniques for

creating new OIDs as part of a query. At this point we examine the notion of completeness

for OODB access languages. We also briefly look at a language introducing a logic-based

approach to object creation. Finally, we mention a practical language, O2SQL. This is a

variant of SQL for OODBs that provides elegant object-oriented features.

Although the languages discussed in this section do provide the ability to call methods

and incorporate the results into the query processing and answer, we focus primarily

on access to the extensional structural portion of the OODB. The intensional portion,

provided by the methods, is considered in the following section. Also, we largely ignore the

important issue of typing for queries and programs written in these languages. The issue of

typing is considered, in the context of languages for methods, in the next section.

An Object-Oriented Calculus

The object-oriented calculus presented here is a straightforward generalization of the com-

plex value calculus of Chapter 20, extended to incorporate objects, different notions of

equality, and methods.



21.3 Languages for OODB Queries 557

Let (C, σ,≺,M,G) be an OODB schema, and let us ignore the object-oriented fea-

tures for a moment. Each name inG can be viewed as a complex value; it is straightforward

to generalize the complex value calculus to operate on the values referred to by G. (The

fact that in the complex value model all relations are sets whereas some names in G might

refer to nonset values requires only a minor modification of the language.)

Let us now consider objects. OIDs may be viewed as elements of a specific sort.

If viewed in isolation from their associated values, this suggests that the only primitive

available for comparing OIDs is equality. Recall from the schema of Fig. 21.1 the names

Actors_I_like and Actors_you_like. The query6

(21.1) ∃x, y(x ∈ Actors_I_like ∧ y ∈ Actors_you_like ∧ x = y)

asks whether there is an actor we both like. To obtain the names of such actors, we need

to introduce dereferencing, a mechanism to obtain the value of an object. Dereferencing is

denoted by ↑. The following query yields the names of actors we both like:

(21.2) {y | ∃x(x ∈ Actors_I_like ∧ x ∈ Actors_you_like ∧ x ↑ .name= y)}

In the previous query, x ↑ denotes the value of x, in this case, a tuple with four fields. The

dot notation (.) is used as before to obtain the value of specific fields.

In query (21.1), we tested two objects for equality, essentially testing whether they

had the same OID. Although it does not increase the expressive power of the language, it

is customary to introduce an alternative test for equality, called value equality. This tests

whether the values of two objects are equal regardless of whether their OIDs are distinct.

To illustrate, consider the three objects having Actor_type:

(oid50, [name : “Martin”, citizenship : “French”, gender : “male”,

award : { }, acts_in : {oid33}])

(oid51, [name : “Martin”, citizenship : “French”, gender : “male”,

award : { }, acts_in : {oid33}])

(oid52, [name : “Martin”, citizenship : “French”, gender : “male”,

award : { }, acts_in : {oid34}])

Then oid50 and oid51 are value equal, whereas oid50 and oid52 are not. Yet another

form of equality is deep equality. If oid33 and oid34 are value equal, then oid50 and

oid52 are deep equal. Intuitively, two objects are deep equal if the (possibly infinite) trees

obtained by recursively replacing each object by its value are equal. The infinite trees that

we obtain are called the expansions. They present some regularity; they are regular trees

(see Exercise 21.10).

The notion of deep equality highlights a major difference between value-based and

object-based models. In a value-based model (such as the relational or complex value

6 In this example, if name is a key for Actor, then one can easily obtain an equivalent query not using
object equality; this may not be possible if there is no key for Actor.
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models), the database can be thought of as a collection of (finite) trees. The connections

between trees arise as a result of the contents of atomic fields. That is, they are implicit

(e.g., the same string may appear twice). In the object-oriented world, a database instance

can be thought of as graph. Paths in the database are more explicit. That is, one may

view an (oid, value) pair as a form of logical pointer and a path as a sequence of pointer

dereferencing.

This graph-based perspective leads naturally to a navigational form of data access

(e.g., using a sequence such as o ↑ .director ↑ .citizenship to find the citizenship of the

director of a given movie object o). This has led some to view object-oriented models as

less declarative than value-based models such as the relational model. This is inaccurate,

because declarativeness is more a property of access languages than models. Indeed, the

calculus for OODBs described here illustrates that a highly declarative language can be

developed for the OODB model.

We conclude the discussion of the object-oriented calculus by incorporating meth-

ods. For this discussion, it is irrelevant how the methods are specified or evaluated; this

evaluation is external to the query. The query simply uses the method invocations as or-

acles. Method resolution uses dynamic binding. The value of an expression of the form

m(t1, . . . , tn) under a given variable assignment ν is obtained by evaluating (externally)

the implementation of m for the class of ν(t1) on input ν(t1, . . . , tn). In this context, it

is assumed that m has no side-effects. Although not defined formally here, the following

illustrates the incorporation of methods into the calculus:

(21.3) {y | ∃x(x ∈ Persons_I_like ∧ y = get_name(x))}

If the set Persons_I_like contains Bergman and Liv Ullman, the answer would be

{“Ms. Ullman”, “Liv Ullman”}

The use of method names within the calculus raises a number of interesting typing and

safety issues that will not be addressed here.

Object Creation and Completeness

Relational queries take relational instances as input and produce relational instances as

output. The preceding calculus fails to provide the analogous capability because the output

of a calculus query is a set of values or objects. Two features are needed for a query

language to produce the full-fledged structural portion of an object-oriented instance: the

ability to create OIDs, and the ability to populate a family of named values (rather than

producing a single set).

We first introduce an extension of the while language of Chapter 14 that incorporates

both of these capabilities. This language leads naturally to a discussion of completeness of

OODB access languages. After this we mention a second approach to object creation that

stems from the perspective of logic programming.

The extension of while introduced here is denoted whileobj . It will create new OIDs in

a manner reminiscent of how the language whilenew of Chapter 18 invented new constants.
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The language whileobj incorporates object-oriented features such as dereferencing

and method calls, as in the calculus. To illustrate, we present a whileobj program that

collects all actors reachable from an actor I like—Liv Ullman. In this query, v_movies and

v_directors serve as variables, and reachable serves as a new name that will hold the output.

reachable := {x | x ∈ Actors_I_like ∧ x ↑ .name= “Liv Ullman”};
v_movies := { }; v_directors := { };
while change do

begin

reachable := reachable ∪ {x | ∃y(y ∈ v_movies ∧ x ∈ y ↑ .actors)};
v_directors := v_directors

∪ {x | ∃y(y ∈ v_movies ∧ x ∈ y ↑ .director)};
v_movies := v_movies

∪{x | ∃y(y ∈ reachable ∧ x ∈ y ↑ .acts_in)}
∪{x | ∃y(y ∈ v_directors ∧ x ∈ y ↑ .directs)};

end;

We now introduce object creation. The operator new works as follows. It takes as input

a set of values (or objects) and produces one new OID for each value in the set. As a simple

example, suppose that we want to objectify the quadruples in the named value Pariscope

of the schema of Fig. 21.1. This may be accomplished with the commands

add_class Pariscope_obj

type tuple (theater : Theater, time : string, price : integer,movie : Movie);
Pariscope_obj := new(Pariscope)

Of course, the new operator can be used in conjunction with arbitrary expressions that yield

a set of values, not just a named value.

The new operator used here is closely related to the new operator of the language

whilenew of Chapter 18. Given that whileobj has iteration and the ability to create new

OIDs, it is natural to ask about the expressive power of this language. To set the stage,

we introduce the following analogue of the notion of (computable) query, which mimics

the one of Chapter 18. The definition focuses on the structural portion of the OODB model;

methods are excluded from consideration.

Definition 21.3.1 Let R and S be two OODB schemas with no method signatures. A

determinate query is a relationQ from inst(R) to inst(S) such that

(a) Q is computable;

(b) (Genericity) if 〈I, J〉 ∈Q and ρ is a one-to-one mapping on constants, then

〈ρ(I), ρ(J)〉 ∈Q;

(c) (Functionality) if 〈I, J〉 ∈Q, and 〈I, J′〉 ∈Q, then J and J′ are OID isomorphic;

and

(d) (Well defined) if 〈I, J〉 ∈Q and 〈I′, J′〉 is OID isomorphic to 〈I, J〉, then 〈I′, J′〉 ∈
Q.

A language is determinate complete (for OODBs) if it expresses exactly the determinate

queries.
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The essential difference between the preceding definition and the definition of deter-

minate query in Chapter 18 is that here only OIDs can be created, not constants. Parts (c)

and (d) of the definition ensure that a determinate query Q can be viewed as a function

from OID equivalence classes of instances over R to OID equivalence classes of instances

over S. So OIDs serve two purposes here: (1) They are used to compute in the same way

that invented values were used to break the polynomial space barrier; and (2) they are now

essential components of the data structure and in particular of the result. With respect to

(2), an important aspect is that we are not concerned with the actual value of the OIDs,

which motivates the use of the equivalence relation. (Two results are viewed as identical if

they are the same up to the renaming of the OIDs.)

Like whilenew, whileobj is not determinate complete. There is an elegant characteriza-

tion of the determinate queries expressible in whileobj. This result, which we state next,

uses a local characterization of input-output pairs of whileobj programs. That characteriza-

tion is in the spirit of the notion of bp-completeness, relating input-output pairs of relational

calculus queries (see Exercise 16.11). For each input-output pair 〈I, J 〉, the characteriza-

tion of whileobj queries requires a simple connection between the automorphism group of

I and that of J . For an instance K , let Aut(K) denote the set of automorphisms of K . For

a pair of instances K,K ′, Aut(〈K,K ′〉) denotes the bijections on adom(K ∪K ′) that are

automorphisms of both K and K ′.

Theorem 21.3.2 A determinate query q is expressible in whileobj iff for each input-

output pair 〈I, J 〉 in q there exists a mapping h from Aut(I ) to Aut(〈I, J 〉) such that for

each τ, µ ∈ Aut(I ),

(i) τ and h(τ) coincide on I ;

(ii) h(τ ◦ µ)= h(τ) ◦ h(µ); and

(iii) h(idI )= id〈I,J 〉.

The “only if” part of the theorem is proven by an extension of the trace technique

developed in the proof of Theorem 18.2.5 (Exercise 21.14). The “if” part is considerably

more complex and is based on a group-theoretic argument.

A mapping h just shown is called an extension homomorphism from Aut(I ) to

Aut(〈I, J 〉). To see an example of the usefulness of this characterization, consider the

query q in Fig. 21.3. Recall that q was shown as not expressible in the language whilenew

by Theorem 18.2.5. The language whileobj is more powerful than whilenew, so in principle

it may be able to express that query. However, we show that this is not the case, so whileobj

is not determinate complete.

Proposition 21.3.3 Query q (of Fig. 21.3) is not expressible in whileobj.

Proof Let 〈I, J 〉 be the input-output pair of Fig. 21.3. The proof is by contradiction.

Suppose there is a whileobj query that produces J on input I . By Theorem 21.3.2, there

is an extension homomorphism h from Aut(I ) to Aut(〈I, J 〉). Let µ be the automorphism

of I exchanging a and b. Note that µ−1 = µ, so µ ◦ µ= idI . Consider h(µ)(ψ0). Clearly,

h(µ)(ψ0) ∈ {ψ1, ψ3}. Suppose h(µ)(ψ0) = ψ1 (the other case is similar). Then clearly,
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ψ3

ψ0 ψ2

ψ1

b a{a, b}    ⇒

Figure 21.3: A query not expressible in whileobj

h(µ)(ψ1)= ψ2. Consider now h(µ ◦ µ)(ψ0). We have, on one hand,

h(µ ◦ µ)(ψ0)= (h(µ) ◦ h(µ))(ψ0)

= h(µ)(ψ1)

= ψ2

and on the other hand

h(µ ◦ µ)(ψ0)= h(idI )(ψ0)

= id〈I,J 〉(ψ0)

= ψ0,

which is a contradiction because ψ0 "= ψ2. So q is not expressible in whileobj.

It is possible to obtain a language expressing all determinate queries by adding to

whileobj a choose operator that allows the selection (nondeterministically but in a determi-

nate manner) of one object out of a set of objects that are isomorphic (see Exercise 18.14).

However, this is a highly complex construct because it requires the ability to check for

isomorphism of graphs. The search for simpler, local constructs that yield a determinate-

complete language is an active area of research.

A Logic-Based Approach to Object Creation

We now briefly introduce an alternative approach for creating OIDs that stems from the

perspective of datalog and logic programming. Suppose that a new OID is to be created for

each pair 〈t, m〉, where movie m is playing at theater t according to the current value of

Pariscope. Consider the following dataloglike rule:

1. create_tm_object(x, t,m)← Pariscope(t, s,m)

Note that x occurs in the rule head but not in the body, so the rule is not safe. Intuitively,

we would like to attach semantics to this rule so that a new OID is associated to x for each
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distinct pair of (t, m) values. Using the symbol ∃! to mean “exists a unique,” the following

versions of (1) intuitively captures the semantics.

2. ∀t∀m∃!x∀s[create_tm_object(x, t,m)← Pariscope(t, s,m)]

3. ∀t∀m∃!x[create_tm_object(x, t,m)←∃s(Pariscope(t, s,m))]

This suggests that Skolem functions might be used. Specifically, let ftm be a function

symbol associated with the predicate create_tm_object. We rewrite (2) as

∀t∀m∀s[create_tm_object(ftm(t, m), t,m)← Pariscope(t, s,m)]

or, leaving off the universal quantifiers as traditional in datalog,

4. create_tm_object(ftm(t, m), t,m)← Pariscope(t, s,m)

Under this approach, the Skolem terms resulting from rule (4) are to be interpreted

as new, distinct OIDs. Under some formulations of the approach, syntactic objects such

as ftm(oid7, oid22) (where oid7 is the OID of some theater and oid22 the OID of some

movie) serve explicitly as OIDs. Under other formulations, such syntactic objects are

viewed as placeholders during an intermediate stage of query evaluation and are (nonde-

terministically) replaced by distinct new OIDs in the final stage of query evaluation (see

Exercise 21.13).

The latter approach to OID creation, incorporated into complex value datalog ex-

tended to include also OID dereferencing, yields a language equivalent to whileobj . As

with whileobj , this language is not determinate complete.

A Practical Language for OODBs

We briefly illustrate some object-oriented features of the language O2SQL, which was

introduced in Section 20.8. Several examples are presented there, that show how O2SQL

can be used to access and construct deeply nested complex values. We now indicate how

the use of objects and methods is incorporated into the language. It is interesting to note that

methods and nested complex values are elegantly combined in this language, which has the

appearance of SQL but is essentially based on the functional programming paradigm.

For this example, we again assume the complex value Films of Fig. 20.2, but we

assume that Age is a method defined for the class Person (and thus for Director).

select tuple (f.Director, f.Director.Age)

from f in Films

where f.Director not in flatten select m.Actors

from g in Films,

m in g.Movies

where g.Director = “Hitchcock”

(Recall that here the inner select-from-where clause returns a set of sets of actors. The

keyword flatten has the effect of forming the union of these sets to yield a set of actors.)
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21.4 Languages for Methods

So far, we have used an abstraction of methods (their signature) and ignored their imple-

mentations. In this section, we present two abstract programming languages for specifying

method implementations. Method implementations will be included in the specification

of methods in OODB schemas. In studying these languages, we emphasize two impor-

tant issues: type safety and expressive power. This focus largely motivates our choice of

languages and the particular abstractions considered.

The first language is an imperative programming language. The second, method

schemas, is representative of a functional style of database access. In the first language,

we will gather a number of features present in practical object-oriented database languages

(e.g., side-effect, iteration, conditionals). We will see that with these features, we get (as

could be expected) completeness, and we pay the obvious price for it: the undecidability

of many questions, such as type safety. With method schemas, we focus on the essence

of inheritance and methods. We voluntarily consider a limited language. We see that the

undecidability of type safety is a consequence of recursion in method calls. (We obtain

decidability in the restricted case of monadic methods.) With respect to expressiveness,

we present a surprising characterization of qptime in terms of a simple language with

methods.

For both languages, we study type safety and expressive power. We begin by dis-

cussing briefly the meaning of these notions in our context, and then we present the two

languages and the results.

An OODB schema S (with method implementations assigned to signatures) is type

safe if for each instance I of S and each syntactically correct method call on I, the execution

of this method does not result in a runtime type error (an illegal method call). When

the imperative programming language is used in method implementations, type safety is

undecidable. (It is possible, however, to obtain decidable sufficient conditions for type

safety.) For method schemas, type safety remains undecidable. Surprisingly, type safety

is decidable for monadic method schemas.

To evaluate the expressive power of OODB schemas using a particular language for

method implementation, a common approach is to simulate relational queries and then

ask what family of relational queries can be simulated. If OID creation is permitted, then

all computable relational queries can be simulated using the imperative language. The

expressive power of imperative methods without OID creation depends on the complex

types permitted in OODB schemas. We also present a result for the expressive power of

method schemas, showing that the family of method schemas using an ordered domain of

atomic elements expresses exactly qptime.

A Model with Imperative Methods

To consider the issue of type safety in a general context, we present the imperative (OODB)

model, which incorporates imperative method implementations. This model simplifies the

OODB model presented earlier by assuming that the type of each class is a tuple of values

and OIDs. However, a schema in this model will include an assignment of implementations

to method signatures.
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The syntax for method implementations is

par: u1, . . . , un;

var: x1, . . . , xl;

body: s1; . . . ; sq;
return x1

where the ui’s are parameters (n ≥ 1), the xj ’s are internal variables (l ≥ 1), and for each

p ∈ [1, q], sp is a statement of one of the following forms (where w, y, z range over

parameters and internal variables):

Basic operations

(i) w := self.

(ii) w := self.a for some field name a.

(iii) w := y.

(iv) w := m(y, . . . , z), for some method name m.

(v) self.a := w, for some field name a.

Class operations

(vi) w := new(c), where c is a class.

(vii) delete(c, w), where c is a class.

(viii) for eachw in c do s′1; . . . ; s
′
t end, where c is a class and s′1, . . . , s

′
t are statements

having forms from this list.

Conditional

(ix) if yθz then s, where θ is = or "= and s is a statement having a form in this list

except for the conditional.

It is assumed that all internal variables are initialized before used to some default value

depending on their type. The intended semantics for the forms other than (viii) should

be clear. (Here clear does not mean “easy to implement.” In particular, object deletion

is complex because all references to this object have to be deleted.) The looping construct

executes for each element of the extension (not disjoint extension) of class c. The execution

of the loop is viewed as nondeterministic, in the sense that the particular ordering used for

the elements of c is not guaranteed by the implementation. In general, we focus on OODB

schemas in which different orders of execution of the loops yield OID-equivalent results

(note, however, that this property is undecidable, so it must be ensured by the programmer).

An imperative schema is a 6-tuple S= (C, σ,≺,M,G,µ), where (C, σ,≺,M,G) is

a schema as before; where the range of σ is tuples of atomic and class types; and where µ

is an assignment of implementations to signatures. The notion of instance for this model is

defined in the natural fashion.

It is straightforward to develop operational semantics for this model, where the execu-

tion of a given method call might be successful, nonterminating, or aborted (as the result

of a runtime type error) (Exercise 21.15a).
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Type Safety in the Imperative Model There are two ways that a runtime type error can

arise: (1) if the type of the result of an execution of method m does not lie within the type

specified by the relevant method signature of m; or (2) if a method is called on a tuple

of parameters that does not satisfy the domain part of the appropriate signature of m. We

assume that the range of all method signatures is any, and thus we focus on case (2).

A schema S is type safe if for each instance over S and each m(o, v1, . . . , vn) method

call that satisfies the signature of m associated with the class of o, execution of this call is

either successful or nonterminating.

Given a Turing machine M , it is easy to develop a schema S in this model that can

simulate the operation ofM on a suitable encoding of an input tape (Exercise 21.15c). This

shows that such schemas are computationally powerful and implies the usual undecidabil-

ity results. With regard to type safety, it is easy to verify the following (Exercise 21.16):

Proposition 21.4.1 It is undecidable, given an imperative schema S, whether S is type

safe. This remains true, even if in method implementations conditional statements and the

new operator are prohibited and all methods are monadic (i.e., have only one argument).

A similar argument can be used to show that it is undecidable whether a given method

terminates on all inputs. Finally, a method m′ on class c′ is reachable from method m on

class c in OODB schema S if there is some instance I of S and some tuple o, v1, . . . with

o in c such that the execution of m(o, v1, . . .) leads to a call of m′ on some object in c′.

Reachability is also undecidable for imperative schemas.

Expressive Power of the Imperative Model

As discussed earlier, we measure the expressive power of OODB schemas in terms of the

relational queries they can simulate. A relational schema R = {R1, . . . , Rn} is simulated

by an OODB schema S of this model if there are leaf classes c1, . . . , cn in S, where the

number of attributes of ci is the arity of Ri for i ∈ [1, n] and where the type of each of

these attributes is atomic. We focus on instances in which no null values appear for such

attributes. Let R be a relational schema and S be an OODB schema that simulates R. An

instance I of R is simulated by instance J of S if for each tuple *v ∈ I(Ri) there is exactly

one object o in the extension of ci such that the value associated with o is *v and all other

classes of S are empty. Following this spirit, it is straightforward to define what it means

for a method call in schema S to simulate a relational query from R to relation schema R.

We consider only schema S for which different orders of evaluation of the looping

construct yield the same final result (i.e., generic mappings). We now have the following

(see Exercise 21.20):

Theorem 21.4.2 The family of generic queries corresponding to imperative schemas

coincides with the family of all relational queries.

The preceding result relies on the presence of the new operator. It is natural to ask

about the expressive power of imperative schemas that do not support new. As discussed in

Exercise 21.21, the expressive power depends on the complex types permitted for objects.
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Note also that imperative schemas can express all determinate queries. This uses the

nondeterminism of the for each construct. Naturally, nondeterministic queries that are not

determinate can also be expressed.

Method Schemas

We now present an abstract model for side-effect-free methods, called method schemas.

In this model, we focus almost exclusively on methods and their implementations. Two

kinds of methods are distinguished: base and composite. The base methods do not have

implementations: Their semantics is specified explicitly at the instance level. The imple-

mentations of composite methods consist of a composition of other methods.

We now introduce method schemas. In the next definition, we make the simplifying

assumption that there are no named values (only class names) in database schemas. In

fact, data is only stored in base methods. In the following, σ[ ] denotes the type assign-

ment σ[ ](c)= [ ] for every class c. Because the type assignment provides no information

in method schemas (it is always σ[ ]), this assignment is not explicitly specified in the

schemas.

Definition 21.4.3 A method schema is a 5-tuple S = (C,≺,Mbase,Mcomp, µ), where

(C, σ[ ],≺) is a well-formed class hierarchy,Mbase ∪Mcomp is a well-formed set of method

signatures for (C, σ[ ],≺), and

• no method name occurs in bothMbase andMcomp;

• each method signature inMcomp is of the formm : c1, . . . , cn→ any (method signa-

tures forMbase are unrestricted, i.e., can have any class as range);

• µ is an assignment of implementations to the method signatures of Mcomp, as fol-

lows: For a signature m : c1, . . . , cn→ any inMcomp, µ(m : c1, . . . , cn→ any) is a

term obtained by composing methods inMbase andMcomp.

An example of an implementation for a method m : c1, c2 → any is

m(x, y)≡m1(m2(x),m1(x, y)).

The semantics of methods is defined in the obvious way. For instance, to computem(o, o′),

one computes first o1 =m2(o) and then o2 =m1(o, o
′); the result is m1(o1, o2). The range

of composite methods is left unspecified (it is any) because it is determined by the do-

main and the method implementation as a composition of methods. Because the range of

composite methods is always any, we will sometimes only specify their domain.

Let S = (C,≺,Mbase,Mcomp, µ) be a method schema. An instance of S is a pair

I = (π, ν), where π is an OID assignment for (C,≺) and where ν assigns a semantics

to the base methods. Note the difference from the imperative schemas of the previous

section, where π together with the method implementations was sufficient to determine

the semantics of methods. In contrast, the semantics of the base methods must be specified

in instances of method schemas.
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Inheritance of method implementations for method schemas is defined slightly differ-

ently from that for the OODB model given earlier. Specifically, given an n-ary method m

and invocationm(o1, . . . , on), where oi is in disjoint class ci for i ∈ [1, n], the implementa-

tion form is inherited from the implementation of signaturem : c′1, . . . , c
′
n→ c′, where this

is the unique signature that is pointwise least above c1, . . . , cn. [Otherwise m is undefined

on input (o1, . . . , on).]

An important special case is when methods take just one argument. Method schemas

using only such methods are called monadic. To emphasize the difference, unrestricted

method schemas are sometimes called polyadic.

Example 21.4.4 Consider the following monadic method schema. The classes in the

schema are

class c

class c′ ≺ c

The base method signatures are

method m1 : c→ c′

method m2 : c→ c

method m2 : c′→ c′

method m3 : c′→ c

The composite method definitions are

method m : c =m2(m2(m1(x)))

method m′ : c =m3(m
′(m2(x)))

method m′ : c′ =m1(x)

Note that m′ is recursive and that calls to m′ on elements in c′ break the recursion.

Type Safety for Method Schemas As before, a method schema S is type safe if for each

instance I of S no method call on I leads to a runtime type error.

The following example demonstrates that the schema of Example 21.4.4 is not type

safe. Note how the interpretation ν for base methods can be viewed as an assignment of

values for objects.

Example 21.4.5 Recall the method schema of Example 21.4.4. An instance of this is

I= (π, ν), where7

π(c)= {p, q}

π(c′)= {r}

7 We write ν(m1)(p) rather than ν(m1, c)(p) to simplify the presentation.
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and

ν(m1)(p)= r ν(m2)(p)= q
ν(m1)(q)l =⊥ ν(m2)(q)= r ν(m3)(r)= p.
ν(m1)(r)= r ν(m2)(r)= r

Consider the execution of m(p). This calls for the computation of m2(m2(m1(p)))=
m2(m2(r)) = r . Thus the execution is successful. On the other hand, m′(p) leads to

a runtime type error: m′(p) = m3(m
′(m2(p))) = m3(m

′(q)) = m3(m3(m
′(m2(q)))) =

m3(m3(m
′(r))) = m3(m3(m1(r))) = m3(m3(r)) = m3(p), which is undefined and raises

a runtime type error. Thus the schema is not type safe.

It turns out that type safety of method schemas permitting polyadic methods is un-

decidable (Exercise 21.19). Interestingly, type safety is decidable for monadic method

schemas. We now sketch the proof of this result.

Theorem 21.4.6 It is decidable in polynomial time whether a monadic method schema

is type safe.

Crux Let S = (C,≺,Mbase,Mcomp, µ) be a monadic method schema. We construct a

context-free grammar (see Chapter 2) that captures possible executions of a method call

over all instances of S. The grammar is GS = (Vn, Vt, A, P ), where the set Vt of terminals

is the set of base method names (denotedNbase) along with the symbols {〈error〉, 〈ignore〉},
and the set Vn of nonterminals includes start symbol A and

{[c,m, c′] | c, c′ are classes, and m is a method name}

The set P of production rules includes

(i) A→ [c,m, c′], if m is a composite method name and it is defined at c or a

superclass of c.

(ii) [c,m, c′]→ 〈error〉, if m is not defined at c or a superclass of c.

(iii) [c,m, c′]→m, ifm is a base method name, the resolution ofm for c ism : c1 →
c2, and c′ ≺ c2. (Note that c′ = c2 is just a particular case.)

(iv) [c,m, c]→ ǫ, if m is a composite method name and the resolution of m for c is

the identity mapping.

(v) [c,m, cn]→ [c,m1, c1][c1,m2, c2] . . . [cn−1,mn, cn], if m is a composite met-

hod, m on c resolves to a method with implementation mn(mn−1(. . . (m2

(m1(x))) . . .)), and c1, . . . , cn are arbitrary classes.

(vi) [c,m, c′]→ 〈ignore〉, for all classes c, c′ and method names m.

Given a successful execution of a method callm(o), it is easy to construct a word in L(GS)

of the form m1 . . . mn, where the mi’s list the sequence of base methods called during the

execution. On the other hand, if the execution ofm(o) leads to a runtime error, a word of the

formm1 . . . mi〈error〉 . . . can be formed. The terminal 〈ignore〉 can be used in cases where
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a nonterminal [c,m, c′] arises, such that m is a base method name and c′ is outside the

range of m for c. The productions of type (vi) are permitted for all nonterminals [c,m, c′],

although they are needed only for some of them.

It can be shown that S is type safe iff

L(GS) ∩N
∗
base〈error〉V ∗t = ∅.

Because it can be tested if the intersection of a context-free language with a regular lan-

guage is empty, the preceding provides an algorithm for checking type safety. However, a

modification of the grammar GS is needed to obtain the polynomial time test (see Exer-

cise 21.18).

Expressive Power of Method Schemas We now argue that method schemas (with or-

der) simulate precisely the relational queries in qptime. The object-oriented features are

not central here: The same result can be shown for functional data models without such

features.

As for imperative schemas, we show that method schemas can simulate relational

queries. The encoding of these queries assumes an ordered domain, as is traditional in the

world of functional programming.

A relational database is encoded as follows:

(a) a class elem contains objects representing the elements of the domain, and it has

zero as a subclass containing a unique element, say 0;

(b) a function pred, which is included as a base method,8 provides the predecessor

function over elem ∪ zero [pred(0) is, for instance, 0]; a base method 0 returns

the least element and another base method N the largest object in elem;

(c) to have the Booleans, we think of 0 as the value false and all objects in elem as

representations of true;

(d) an n-ary relation R is represented by an n-ary base method mR of signature

mR : elem, . . . , elem→ elem, the characteristic function of R. [For a tuple t ,

mR(t) is true iff t is in R.]

Next we represent queries by composite methods. A query q is computed by method

mq if mq(t) is true (not in zero) iff t is in the answer to query q.

The following illustrates how to compute with this simple language.

Example 21.4.7 Consider relation R with R = {R(1, 1), R(1, 2)}. The class zero is

populated with the object 0 and the class elem with 1, 2. The base method pred is defined

by pred(2) = 1, pred(0) = pred(1) = 0. The base method mR is defined by mR(1, 1) =
mR(1, 2)= 1 and mR(x, y)= 0 otherwise.

8 The function pred is a functional analog of the relation succ, which we have assumed is available
in every ordered database (a successor function could also have been used).
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Recall that each object in class elem is viewed as true and object 0 as false. We can

code the Boolean function and as follows:

for x, y in zero, zero and(x, y)≡ 0

for x, y in elem, zero and(x, y)≡ 0

for x, y in zero, elem and(x, y)≡ 0

for x, y in elem, elem and(x, y)≡N.

The other standard Boolean functions can be coded similarly. We can code the intersection

between two binary relations R and S with and(mR(x, y),mS(x, y)). As a last example,

the projection of a binary relation R over the first coordinate can be coded by a method

πR,1 defined by

πR,1 ≡m(x,N),

where m is given by

for x, y in elem, zero m(x, y)≡mR(x, y)

for x, y in elem, elem m(x, y)≡ or(mR(x, y),m(x, pred(y))).

We now state the following:

Theorem 21.4.8 Method schemas over ordered databases express exactly qptime.

Crux As indicated in the preceding example, we can construct composite methods for the

Boolean operations and , or , and not . For each k, we can also construct k k-ary functions

predik for i ∈ [1, k] that compute for each k tuple u the k components of the predecessor (in

lexicographical ordering) of u. Indeed, we can simulate an arbitrary relational operation

and more generally an arbitrary inflationary fixpoint. To see this, consider the transitive

closure query. It is computed with a method tc defined (informally) as follows. Intuitively,

a method tc(x, y) asks, “Is 〈x, y〉 in the transitive closure?” Execution of tc(x, y) first calls

a methodm1(x, y,N), whose intuitive meaning is “Is there a path of lengthN from x to y?”

This will be computed by asking whether there is a path of lengthN − 1 (a recursive call to

m1), etc. This can be generalized to a construction that simulates an arbitrary inflationary

fixpoint query. Because the underlying domain is ordered, we have captured all qptime

queries. The converse follows from the fact that there are only polynomially many possible

method calls in the context of a given instance, and each method call in this model can

be answered in qptime. Moreover, loops in method calls can be detected in polynomial

time; calls giving rise to loops are assumed to output some designated special value. (See

Exercise 21.25.)

We have presented an object-oriented approach in the applicative programming style.

There exists another important family of functional languages based on typed λ calculi.

It is possible to consider database languages in this family as well. These calculi present
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additional advantages, such as being able to treat functions as objects and to use higher-

order functions (i.e., functions whose arguments are functions).

21.5 Further Issues for OODBs

As mentioned at the beginning of this chapter, the area of OODB is relatively young and

active. Much research is needed to understand OODBs as well as we understand relational

databases. A difficulty (and richness) is that there is still no well-accepted model. We

conclude this chapter with a brief look at some current research issues for OODBs. These

fall into two broad categories: advanced modeling features and dynamic aspects.

Advanced Modeling Features

This is not an exhaustive list of new features but a sample of some that are being studied:

Views: Views are intended to increase the flexibility of database systems, and it is natu-

ral to extend the notion of relational view to the OODB framework. However, unlike

relational views, OODB views might redefine the behavior of objects in addition to

restructuring their associated types. There are also significant issues raised by the pres-

ence of OIDs. For example, to maintain incrementally a materialized view with created

OIDs, the linkage between the base data and the created OIDs must be maintained.

Furthermore, if the view is virtual, then how should virtual OIDs be specified and

manipulated?

Object roles: The same entity may be involved in several roles. For instance, a director

may also be an actor. It is costly, if not infeasible, to forecast all cases in which this

may happen. Although not as important in object-oriented programming, in OODBs it

would be useful to permit the same object to live in several classes (a departure from

the disjoint OID assignment from which we started) and at least conceptually maintain

distinct repositories, one for each role. This feature is present in some semantic data

models; in the object-oriented context, it raises a number of interesting typing issues.

Schema design: Schema design techniques (e.g., based on dependencies and normal forms)

have emerged for the relational model (see Chapter 11). Although the richer model in

the OODB provides greater flexibility in selecting a schema, there is a concomitant

need for richer tools to facilitate schema design. The scope of schema design is en-

larged in the OODB context because of the interaction of methods within a schema

and application software for the schema.

Querying the schema: In many cases, information may be hidden in an OODB schema.

Suppose, for example, that movies were assigned categories such as “drama,” “west-

ern,” “suspense,” etc. In the relational model, this information would typically be rep-

resented using a new column in the Movies relation. A query such as “list all categories

of movie that Bergman directed” is easily answered. In an OODB, the category infor-

mation might be represented using different subclasses of the Movie class. Answering

this query now requires the ability of the query language to return class names, a fea-

ture not present in most current systems.
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Classification: A related problem concerns how, given an OODB schema, to classify

new data for this schema. This may arise when constructing a view, when merging

two databases, or when transforming a relational database into an OODB one by

objectifying tuples. The issue of classification, also called taxonomic reasoning, has

a long history in the field of knowledge representation in artificial intelligence, and

some research in this direction has been performed for semantic and object-oriented

databases.

Incorporating deductive capabilities: The logic-programming paradigm has offered a

tremendous enhancement of the relational model by providing an elegant and (in

many cases) intuitively appealing framework for expressing a broad family of queries.

For the past several years, researchers have been developing hybrids of the logic-

programming and object-oriented paradigms. Although it is very different in some

ways (because the OO paradigm has fundamentally imperative aspects), the perspec-

tive of logic programming provides alternative approaches to data access and object

creation.

Abstract data types: As mentioned earlier, OODB systems come equipped with several

constructors, such as set, list, or bag. It is also interesting to be able to extend the

language and the system with application-specific data types. This involves language

and typing issues, such as how to gracefully incorporate access mechanisms for the

new types into an existing language. It also involves system issues, such as how to

introduce appropriate indexing techniques for the new type.

Dynamic Issues

The semantics of updates in relational systems is simple: Perform the update if the result

complies with the dependencies of the schema. In an OODB, the issue is somewhat trickier.

For instance, can we allow the deletion of an object if this object is referred to somewhere in

the database (the dangling reference problem)? This is prohibited in some systems, whereas

other systems will accept the deletion and just mark the object as dead. Semantically, this

results in viewing all references to this object as nil.

Another issue is object migration. It is easy to modify the value of an object. But

changing the status of an object is more complicated. For example, a person in the database

may act in a movie and overnight be turned into an actor. In object-oriented programming

languages, objects are often not allowed to change classes. Although such limitations also

exist in most present OODBs, object migration is an important feature that is needed in

many database applications. One approach, followed by some semantic data models, is

to permit objects to be associated with multiple classes or roles and also permit them to

migrate to different classes over time. This raises fundamental issues with regard to typing.

For example, how do we treat a reference to the manager of a department (that should be of

type Employee) when he or she leaves the company and is turned into a “normal” person?

Finally, as with the relational model, we need to consider evolution of the schema

itself. The OODB context is much richer than the relational, because there are many more

kinds of changes to consider: the class hierarchy, the type of a class, additions or deletions

of methods, etc.
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Exercises

Exercise 21.1 Construct an instance for the schema of Fig. 21.1 that corresponds to the
CINEMA instance of Chapter 3.

Exercise 21.2 Suppose that the class Actor_Director were removed from the schema of
Fig. 21.1. Verify that in this case there is no OID assignment for the schema such that there
is an actor who is also a director.

Exercise 21.3 Design an OODB schema for a bibliography database with articles, book
chapters, etc. Use inheritance where possible.

Exercise 21.4 Exhibit a class hierarchy that is not well formed.

Exercise 21.5 Add methods to the schema of Fig. 21.1 so that the resulting family of methods
violates rules unambiguous and covariance.

Exercise 21.6 Show that testing whether I ≡OID J is in np and at least at hard as the graph
isomorphism problem (i.e., testing whether two graphs are isomorphic).

Exercise 21.7 Give an algorithm for testing value equality. What is the data complexity of
your algorithm?

Exercise 21.8 In this exercise, we consider various forms of equality. Value equality as dis-
cussed in the text is denoted =1. Two objects o, o′ are 2-value equal, denoted o=2 o

′, if replac-
ing each object in ν(o) and ν(o′) by its value yields values that are equal. The relations =i for
each i are defined similarly. Show that for each i, =i+1 refines =i. Let n be a positive integer.
Give a schema and an instance over this schema such that for each i in [1, n], =i and =i+1 are
different.

Exercise 21.9 Design a database schema to represent information about persons, including
males and females with names and husbands and wives. Exhibit a cyclic instance of the schema
and an object o that has an infinite expansion. Describe the infinite tree representing the expan-
sion of o.

⋆Exercise 21.10 Consider a database instance I over a schema S. For each o in I, let expand(o)

be the (possibly infinite) tree obtained by replacing each object by its value recursively. Show
that expand(o) is a regular tree (i.e., that it has a finite number of distinct subtrees). Derive from
this observation an algorithm for testing deep equality of objects.

Exercise 21.11 In this exercise, we consider the schema S with a single class c that has type
σ(c)= [A : c, B : string]. Exhibit an instance I over S and two distinct objects in I that have the
same expansion. Exhibit two distinct instances over S with the same set of object expansions.

Exercise 21.12 Sketch an extension of the complex value algebra to provide an algebraic
simulation of the calculus of Section 21.3. Give algebraic versions of the queries of that section.

♠Exercise 21.13 Recall the approach to creating OIDs by extending datalog to use Skolem
function symbols. Consider the following programs:

T (f1(x, y), x)← S(x, y) T (f3(x, y), x)← S(x, y)

T (f2(x, y), x)← S(x, y) T (f3(y, x), x)← S(x, y)

T (f1(x, y), y)← S(x, y), S(y, x) T (f4(x, y), x)← S(x, y), S(y, x)

P Q
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(a) Two programs P1, P2 involving Skolem terms such as the foregoing are exposed

equivalent, denoted P1 ∼exp P2, if for each input instance I having no OIDs, P1(I)=
P2(J). Show that P ∼exp Q does not hold.

(b) Following the ILOG languages [HY92], given an instance J possibly with Skolem
terms, an obscured version of J is an instance J′ obtained from J by replacing each
distinct nonatomic Skolem term with a new OID, where multiple occurrences of a
given Skolem term are replaced by the same OID. (Intuitively, this corresponds to
hiding the history of how each OID was created.) Two programs P1, P2 are obscured

equivalent, denoted P1 ∼obs P2, if for each input instance I having no OIDs, if J1 is
an obscured version of P1(I) and J2 is an obscured version of P2(I), then J1 ≡OID J2.
Show that P ∼obs Q.

(c) Let P and Q be two nonrecursive datalog programs, possibly with Skolem terms in
rule heads. Prove that it is decidable whether P ∼exp Q. Hint: Use the technique for
testing containment of unions of conjunctive queries (see Chapter 4).

⋆ (d) A nonrecursive datalog program with Skolem terms in rule heads has isolated OID

invention if in each target relation at most one column can include nonatomic Skolem
terms (OID). Give a decision procedure for testing whether two such programs are
obscured equivalent. (Decidability of obscured equivalence of arbitrary nonrecursive
datalog programs with Skolem terms in rule heads remains open.)

♠Exercise 21.14 [VandBGAG92] Prove the “only if” part of Theorem 21.3.2. Hint: Associate
traces to new object id’s, similar to the proof of Theorem 18.2.5. The extension homomorphism
is obtained via the natural extension to traces of automorphisms of the input.

Exercise 21.15 [HTY89]

(a) Define an operational semantics for the imperative model introduced in Section 21.4.

(b) Describe how a method in this model can simulate a whileloop of arbitrary length.
Hint: Use a class c with associated type tuple(a : c, . . .), and let c′ ≺ c. Construct
the implementation of method m on c so that on input o if the loop is to continue,
then it creates a new object o′ in c, sets o.a = o′, and calls m on o′. To terminate the
loop, create o′ in c′, and define m on c′ appropriately.

(c) Show how the computation of a Turing machine can be simulated by this model.

Exercise 21.16 Prove Proposition 21.4.1. Hint: Use a reduction from the PCP problem, sim-
ilar in spirit to the one used in the proof of Theorem 6.3.1. The effect of conditionals can be
simulated by putting objects in different classes and using dynamic binding.

Exercise 21.17 Describe how monadic method schemas can be simulated in the imperative
model.

Exercise 21.18 [AKRW92]

(a) Verify that the grammar GS described in the proof of Theorem 21.4.6 has the stated
property.

(b) How big is GS in terms of S?

(c) Find a variation of GS that has size polynomial in the size of S. Hint: Break produc-
tion rules having form (v) into several rules, thereby reducing the overall size of the
grammar.
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(d) Complete the proof of the theorem.

Exercise 21.19 [AKRW92]

⋆ (a) Show that it is undecidable whether a polyadic method schema is type safe. Hint: You
might use undecidability results for program schemas (see Bibliographic Notes), or
you might use a reduction from the PCP.

⋆ (b) A schema is recursion free if there are no two methods m,m′ such that m occurs in
some code for m′ and conversely. Show that type safety is decidable for recursion-
free method schemas.

Exercise 21.20

(a) Complete the formal definition of an imperative schema simulating a relational
query.

(b) Prove Theorem 21.4.2.

♠Exercise 21.21

(a) Suppose that the imperative model were extended to include types for classes that
have one level of the set construct (so tuple of set of tuple of atomic of class types is
permitted) and that the looping construct is extended to the sets occurring in these
types. Assume that the new command is not permitted. Prove that the family of
relational queries that this model can simulate is qpspace. Hint: Intuitively, because
the looping operates object at a time, it permits the construction of a nondeterministic
ordering of the database.

(b) Suppose that n levels of set nesting are permitted in the types of classes. Show that
this simulates qexpn−1space.

Exercise 21.22

(a) Describe how the form of method inheritance used for polyadic method schemas can
be simulated using the originally presented form of method inheritance, which is
based only on the class of the first argument.

(b) Suppose that a base method mR in an instance of a polyadic method schema is used
to simulate an n-ary relation R. In a simulation of this situation by an instance of a
conventional OODB schema, how many OIDs are present in the class on which mR
is simulated?

Exercise 21.23 Show how to encode or , not , and equal using method schemas.

Exercise 21.24 Show how to encode predik and the join operation using method schemas.

♠Exercise 21.25 [HKR93] Prove Theorem 21.4.8. Hint: Show first that method schemas can
simulate relational algebra and then inflationary fixpoint. For the fixpoint, you might want to
use predk. For the other direction, you might want to simulate method schemas over ordered
databases by inflationary fixpoint.
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Alice: How come we’ve waited so long to talk about something so important?

Riccardo: Talking about change is hard.

Sergio: We’re only starting to get a grip on it.

Vittorio: And still have a long way to go.

A t a fundamental level, updating a database is essentially imperative programming.

However, the persistence, size, and long life cycle of a database lead to perspec-

tives somewhat different from those found in programming languages. In this chapter, we

briefly examine some of these differences and sketch some of the directions that have been

explored in this area. Although it is central to databases, this area has received far less at-

tention from the theoretical research community than other topics addressed in this book.

The discussion in this chapter is intended primarily to give an overview of the important is-

sues raised concerning the dynamic aspects of databases. It therefore emphasizes examples

and intuitions much more than results and proofs.

This chapter begins by examining database update languages, including a simple

language that corresponds to the update capabilities of practical languages such as SQL,

and more complex ones expressed within a logic-based framework. Next optimization and

semantic properties of transactions built from simple update commands are considered,

including a discussion of the interaction of transactions and static integrity constraints.

The impact of updates in richer contexts is then considered. In connection with views,

we examine the issue of how to propagate updates incrementally from base data to views

and the much more challenging issue of propagating an update on a view back to the

base data. Next updates for incomplete information databases are considered. This includes

both the conditional tables studied in Chapter 19 and more general frameworks in which

databases are represented using logical theories.

The emerging field of active databases is then briefly presented. These incorporate

mechanisms for automatically responding to changes in the environment or the database,

and they often use a rule-based paradigm of specifying the responses.

This chapter concludes with a brief discussion of temporal databases, which support

the explicit representation of the time dimension and thus historical information.

A broad area related to dynamic aspects of databases (namely, concurrency control)

will not be addressed. This important area concerns mechanisms to increase the throughput

of a database system by interleaving multiple transactions while guaranteeing that the

semantics of the individual transactions is not lost.

579
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22.1 Update Languages

Before embarking on a brief excursion into update languages, we should answer the fol-

lowing natural question: Why are update languages necessary? Could we not use query

languages to specify updates?

The difference between query and update languages is subtle but important. To specify

an update, we could indeed define the new database as the answer to a query posed against

the old database. However, this misses an essential characteristic of updates: Most often,

they involve small changes to the current database. Query languages are not naturally suited

to speak explicitly about change. In contrast, update languages use as building blocks

simple statements expressing change, such as insertions, deletions, and modifications of

tuples in the database.

In this section, we outline several formal update languages and point to some theoret-

ical issues that arise in this context.

Insert-Delete-Modify Transactions

We begin with a simple procedural language to specify insertions, deletions, and modifica-

tions. Most commercial relational systems provide at least these update capabilities.

To simplify the presentation, we suppose that the database consists of a single relation

schema R. Everything can be extended to the multirelational case. An insertion is an

expression ins(t), where t is a tuple over att(R). This inserts the tuple t into R. [We

assume set-based semantics, under which ins(t) has no effect if t is already present in

R.] A deletion removes from R all tuples satisfying some stated set of conditions. More

precisely, a condition is an (in)equality of the form A= c or A "= c, where A ∈ att(R) and

c is a constant. A deletion is an expression del(C), where C is a finite set of conditions.

This removes from R all tuples satisfying each condition in C. Finally, a modification is

an expression mod(C→ C′), where C,C′ are sets of conditions, with C′ containing only

equalities A = c. This selects all tuples in R satisfying C and then, for each such tuple

and each A= c in C′, sets the value of A to c. An update over R is an insertion, deletion,

or modification over R. An IDM transaction (for insert, delete, modify) over R is a finite

sequence of updates over R. This is illustrated next.

Example 22.1.1 Consider the relation schema Employee with attributes N (Name), D

(Department), R (Rank). The following IDM transaction fires the manager of the parts

department, transfers the manager of the sales department to the parts department, and

hires Moe as the new manager for the sales department:

del({D = parts, R = manager});

mod({D = sales, R = manager} → {D = parts});

ins(Moe, sales,manager)

The same update can be expressed in SQL as follows:

delete from Employee
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where D = “parts” and R = “manager”;

update Employee

set D = “parts”

where D = “sales” and R = “manager”;

insert into Employee values 〈 “Moe”,“sales”,“manager”〉

As for queries, a question of central interest to update languages is optimization. To

see how IDM transactions can be optimized, it is useful to understand when two such

transactions are equivalent. It turns out that equivalence of IDM transactions has a sound

and complete axiomatization. Following are some simple axioms:

mod(C→ C′); del(C′) ≡ del(C); del(C′)

ins(t);mod(C→ C′) ≡ mod(C→ C′); ins(t ′)

where t satisfies C and {t ′} = mod(C→ C′)({t})

and a slightly more complex one:

del(C3);mod(C1 → C3);mod(C2 → C1);mod(C3 → C2)

≡ del(C3);mod(C2 → C3);mod(C1 → C2);mod(C3 → C1),

where C1, C2, C3 are mutually exclusive sets of conditions.

We can define criteria for the optimization of IDM transactions along two main lines:

Syntactic: We can take into account the length of the transaction as well as the kind of

operations involved (for example, it may be reasonable to assume that insertions are

simpler than modifications).

Semantic: This can be based on the number of tuple operations actually performed when

the transaction is applied.

Various definitions are possible based on the preceeding criteria. It can be shown that

there exists a polynomial-time algorithm that optimizes IDM transactions, with respect

to a reasonable definition based on syntactic and semantic criteria. The syntactic criteria

involve the number of insertions, deletions, and modifications. The semantic criteria are

based on the number of tuples touched at runtime by the transaction. We omit the details

here.

Example 22.1.2 Consider the IDM transaction over a relational schema R of sort AB:

mod({A "= 0, B = 1} → {B = 2}); ins(0, 1); ins(3, 2);

mod({A= 0, B = 1} → {B = 2});mod({A "= 0, B = 0} → {B = 1});

mod({A= 0, B = 0} → {B = 1});mod({A "= 0, B = 2} → {B = 0});

mod({A= 0, B = 2} → {B = 0}); del({A "= 0, B = 0}).

Assuming that insertions are less expensive than deletions, which are less expensive than

modifications, an optimal IDM transaction equivalent to the foregoing is
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del({A "= 0, B = 1}); del({A "= 0, B = 2});

mod({A= 0, B = 1} → {B = 2});

mod({B = 0} → {B = 1});

mod({A= 0, B = 2} → {B = 0});

ins(0, 0).

Thus the six modifications, one deletion, and two insertions of the original transaction were

replaced by three modifications, two deletions, and one insertion.

Another approach to optimization is to turn some of the axioms of equivalence into

simplification rules, as in

mod(C→ C′); del(C′)⇒ del(C); del(C′).

It can be shown that such a set of simplification rules can be used to optimize a restricted

set of IDM transactions that satisfy a syntactic acyclicity condition. For the other transac-

tions, applications of the simplification rules yield a simpler, but not necessarily optimal,

transaction. The simplification rules have the advantage that they are local and can be eas-

ily applied even online, whereas the complete optimization algorithm is global and has to

know the entire transaction in advance.

Rule-Based Update Languages

The IDM transactions provide a simple update language of limited power. This can be

extended in many ways. One possibility is to build another procedural language based

on tuple insertions, deletions, and modifications, which includes relation variables and

an iterative construct. Another, which we illustrate next, is to use a rule-based approach.

For example, consider the language datalog¬¬ described in Chapter 17, with its fixpoint

semantics. Recall that rules allow for both positive and negative atoms in heads of rules;

consistently with the fixpoint semantics, the positive atoms can be viewed as insertions

of facts and the negative atoms as deletions of facts. For example, the following program

removes all cycles of length one or two from the graph G:

¬G(x, y)←G(x, y),G(y, x).

In the usual fixpoint semantics, rules are fired in parallel with all possible instantiations

for the variables. This yields a deterministic semantics. Some practical rule-based update

languages take an alternative approach, which yields a nondeterministic semantics: The

rules are fired one instantiation at a time. With this semantics, the preceeding program

provides some orientation of the graph G. Note that generally there is no way to obtain an

orientation of a graph deterministically, because a nondeterministic choice of edges to be

removed may be needed.

A deterministic language expressing all updates can be obtained by extending

datalog¬¬ with the ability to invent new values, in the spirit of the language whilenew
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in Chapter 18. This can be done in the manner described in Exercise 18.22. The same

language with nondeterministic semantics can be shown to express all nondeterministic

updates.

The aforementioned languages yield a bottom-up evaluation procedure. The body of

the rule is first checked, and then the actions in the head are executed. Another possibility

is to adopt a top-down approach, in the spirit of the assert in Prolog. Here the actions

to be taken are specified in rule bodies. A good example of this approach is provided

by Dynamic Logic Programming (DLP). Interestingly, this language allows us to test

hypothetical conditions of the form “Would ϕ hold if t was inserted?” This, and the

connection of DLP with Prolog, is illustrated next.

Example 22.1.3 Consider a database schema with relations ES of sort Emp,Sal (em-

ployees and their salaries), ED of sort Emp,Dep (employees and their departments), and

DA of sort Dep,Avg (average salary in each department).

Suppose that an update is intended to hire John in the toys department with a salary of

200K , under the condition that the average salary of the department stays below 50K . In

the language DLP, this update is expressed by

〈hire(emp1, sal1, dep1)〉 ←

〈+ES(emp1, sal1)〉(〈+ED(emp1, dep1)〉(DA(dep1, avg1) & avg1< 50k)).

(Other rules are, of course, needed to define DA.) A call hire(John,200K,Toys) hires John in

the toys department only if, after hiring him, the average salary of the department remains

below 50K . The+ symbol indicates an insertion. Here the conditions in parentheses should

hold after the two insertions have been performed; if not, then the update is not realized.

Testing a condition under the assumption of an update is a form of hypothetical reasoning.

It is interesting to contrast the semantics of DLP with that of Prolog. Consider the

following Prolog program:

:− assert(ES(john, 200)), assert(ED(john, toys)),

DA(toys,Avg1),Avg1< 50.

In this program, the insertions into ES and ED will be performed even if the conditions are

not satisfied afterward. (The reader familiar with Prolog is encouraged to write a program

that has the desired semantics.)

A similar top-down approach to updates is adopted in Logical Data Language (LDL).

Updates concern not only instances of a fixed schema. Sometimes the schema itself

needs to be changed (e.g., by adding an attribute). Some practical update languages include

constructs for schema change. The main problem to be resolved is how the existing data

can be fit to the new schema.

In deductive databases, some relations are defined using rules. Occasionally these

definitions may have to be changed, leading to updates of the “rule base.” There are

languages that can be used to specify such updates.



584 Dynamic Aspects

22.2 Transactional Schemas

Typically, database systems restrict the kinds of updates that users can perform. There are

three main ways of doing this:

(a) Specify constraints (say, fd’s) that the database must satisfy and reject any update

that leads to a violation of the constraints.

(b) Restrict the updates themselves by only allowing the use of a set of prespecified,

valid updates.

(c) Permit users to request essentially arbitrary updates, but provide an automatic

mechanism for detecting and repairing constraint violations.

Object-oriented databases essentially embrace option (b); updates are performed only

by methods specified at the schema level, and it is assumed that these will not violate the

constraints (see Chapter 21). Both options (a) and (b) are present in the relational model.

Several commercial systems can recognize and abort on violation of simple constraints

(typically key and simple inclusion dependencies). However, maintenance of more com-

plex constraints is left to the application software. Option (c) is supported by the emerging

field of active databases, which is discussed in the following section.

We now briefly explore some issues related to approach (b) in connection with the

relational model. To illustrate the issues, we use simple procedures based on IDM transac-

tions. The procedures we use are parameterized IDM transactions, obtained by allowing

variables in addition to constants in conditions of IDM transactions. The variables are used

as parameters. A database schema R together with a finite set of parameterized IDM trans-

actions over R is called an IDM transactional schema.

Example 22.2.1 Consider a database schema R with two relations, TA (Teaching Assis-

tant) of sort Name,Course, and PHD (Ph.D. student) of sort Name, Address. The following

IDM-parameterized transactions allow the hiring and firing of TAs (subscripts indicate the

relation to which each update applies):

hire(x, y, z)= delTA(Name= x); insTA(x, y)

delPHD(Name= x); insPHD(x, z)

fire(x) = delTA(Name= x)

The pair T= 〈R, {hire, fire}〉 is an IDM transactional schema. Note in this simple example

that once a name n is incorporated into the PHD relation, it can never be removed.

Clearly, we could similarly define transactional schemas in conjunction with any up-

date language.

Suppose T is an IDM transactional schema. To apply the parameterized transactions,

values must be supplied to the variables. A transaction obtained by replacing the variables

of a parameterized transaction t in T by constants is a call to t . The only updates allowed

by an IDM transactional schema are performed by calls to its parameterized transactions.
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The set of instances that can be generated by such calls (starting from the empty instance)

is denoted Gen(T).

Transactional schemas offer an approach for constraint enforcement, essentially by

preventing updates that violate them. So it is important to understand to what extent they

can do so. First we need to clarify the issue. Suppose T is an IDM transactional schema

and � is a set of constraints over a database schema R; Sat(�) denotes all instances over

R satisfying �. If T is to replace �, we would expect the following properties to hold:

• soundness of T with respect to �: Gen(T)⊆ Sat(�); and

• completeness of T with respect to �: Gen(T)⊇ Sat(�).

Thus T is sound and complete with respect to � iff it generates precisely the instances

satisfying �.

Example 22.2.2 Consider again the IDM transactional schema T in Example 22.2.1. Let

� be the following constraints:

TA : Name → Course

PHD : Name→ Address

TA[Name] ⊆ PHD[Name]

It is easily seen that T in Example 22.2.1 is sound and complete with respect to �. That is,

Gen(T)= Sat(�) (Exercise 22.7).

This example also highlights a limitation in the notion of completeness: It can be seen

that there are pairs I and J of instances in Sat(�) where I cannot be transformed into J

using T. In other words, there are valid database states I and J such that when in state I,

J is never reachable. Such forbidden transitions are also a means of enriching the model,

because we can view them as temporal constraints on the database evolution. We will return

to temporal constraints later in this chapter.

Of course, the ability of transaction schemas to replace constraints depends on the

update language used. For IDM transactional schemas, we can show the following (Exer-

cise 22.8):

Theorem 22.2.3 For each database schema R and set� of fd’s and acyclic inclusion de-

pendencies over R, there exists an IDM transactional schema T that is sound and complete

with respect to �.

Thus IDM transactional schemas are capable of replacing a significant set of con-

straints. The kind of difficulty that arises with more general constraints is illustrated next.

Example 22.2.4 Consider a relation R of sort ABC and the following set � of

constraints:
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• the embedded join dependency

∀xyzx′y′z′(R(xyz) ∧ R(x′y′z′)⇒∃z′′R(xy′z′)),

• the functional dependency AB→ C,

• the inclusion dependency R[A] ⊆ R[C],

• the inclusion dependency R[B] ⊆ R[A],

• the inclusion dependency R[A] ⊆ R[B].

It is easy to check that, for each relation satisfying the constraints, the number of con-

stants in the relation is a perfect square (n2, n ≥ 0). Thus there are unbounded gaps be-

tween instances in Sat(�). There is no IDM transactional schema T such that Sat(�)=
Gen(T), because the gaps cannot be crossed using calls to parameterized transactions with

a bounded number of parameters. Moreover, this problem is not specific to IDM trans-

actional schemas; it arises with any language in which procedures can only introduce a

bounded number of new constants into the database at each call.

Another natural question relating updates and constraints is, What about checking

soundness and/or completeness of IDM transactional schemas with respect to given con-

straints? Even in the case of IDM transactional schemas, such questions are generally unde-

cidable. There is one important exception: Soundness of IDM transactional schemas with

respect to fd’s is decidable. These questions are explored in Exercise 22.12.

22.3 Updating Views and Deductive Databases

We now turn to the impact of updates on views. Views are an important aspect of databases.

The interplay between views and updates is intricate. We can mention in particular two

important issues. One is the view maintenance problem: A view has been materialized and

the problem is to maintain it incrementally when the database is updated. An important

variation of this is in the context of deductive databases when the view consists of idb

relations. The other is known as the view update problem: Given a view and an update

against a view, the problem is to translate the update into a corresponding update against

the base data. This section considers these two issues in turn.

View Maintenance

Suppose that a base schema B and view schema V are given along with a (total) view map-

ping f : Inst(B)→ Inst(V). Suppose further that a materialized view is to be maintained

[i.e., whenever the base database holds an instance IB , then the view schema should be

holding f (IB)].

For this discussion, an update for a schema R is considered to be a mapping from

Inst(R) to Inst(R). If constraints are present, it is assumed that an update cannot map to

instances violating the constraints. The updates considered here might be based on IDM

transactions or might be more general. We shall often speak of “the” update µ that maps
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IV I′V

IB I′B

f f

v

µ

Figure 22.1: Relationship of views and updates

instance I to instance I′, and by this we shall mean the set of insertions and deletions that

need to be made to I to obtain I′.

Suppose that the base database B is holding IB and that update µ maps this to I′B (see

Fig. 22.1). A naive way to keep the view up to date is to simply compute f (I′B). However,

I′B is typically large relative to the difference between IV and I′V . It is thus natural to search

for more efficient ways to find the update ν that maps IV to I′V = f (µ(IB)). This is the

view maintenance problem.

There are generally two main components to solutions of the view maintenance prob-

lem. The first involves developing algorithms to test whether an update to the base data can

affect the view. Given such an algorithm, an update is said to be irrelevant if the algorithm

certifies that the update cannot affect the view, and it is said to be relevant otherwise.

Example 22.3.1 Let the base database schema be B= (R[AB], S[BC]), and consider

the following views:

V1 = (R ⊲⊳ σC>50S)

V2 = πAR

V3 = R ⊲⊳ S

V4 = πAC(R ⊲⊳ S).

Inserting 〈b, 20〉 into S cannot affect views V1 or V2. On the other hand, whether or not this

insertion affects V3 or V4 depends on the data already present in the database.

Various algorithms have been developed for determining relevance with varying de-

grees of precision. A useful technique involves maintaining auxiliary information, as illus-

trated next.

Example 22.3.2 Recall view V2 of Example 22.3.1, and suppose that R currently holds
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R A B

a 20

a 30

a′ 80

Deleting 〈a, 20〉 has no impact on the view, whereas deleting 〈a′, 80〉 has the effect of

deleting 〈a′〉 from the view. One way to monitor this is to maintain a count on the number

of distinct ways that a value can arise; if this count ever reaches 0, then the value should be

deleted from the view.

The other main component of solutions to the view maintenance problem concerns the

development of incremental evaluation algorithms. This is closely related to the seminaive

algorithm for evaluating datalog programs (see Chapter 13).

Example 22.3.3 Recall view V3 from Example 22.3.1, and let I+R and I+S denote sets

of tuples that are to be inserted into R and S, respectively. It is easily verified that

(R ∪I+R) ⊲⊳ (S ∪I
+
S )= (R ⊲⊳ S) ∪ (R ⊲⊳I

+
S ) ∪ (I

+
R ⊲⊳ S) ∪ (I

+
R ⊲⊳I

+
S ).

Thus the new join can be found by performing three (typically smaller) joins followed by

some unions.

It is relatively straightforward to develop incremental evaluation expressions, such as

in the preceeding example, for all of the relational algebra operators (see Exercise 22.13).

In some cases, these expressions can be refined by using information about constraints,

such as key and functional dependencies, on the base data.

Incremental Update of Deductive Views

The view maintenance problem has also been studied in connection with views constructed

with (stratified) datalog(¬). In general, the techniques used are analogous to those discussed

earlier but are generalized to incorporate recursion. In the context of stratified datalog¬,

various heuristics have been adapted from the field of belief revision for incrementally

maintaining supports (i.e., auxiliary information that holds the justifications for the pres-

ence of a fact in the materialized output of the program).

An interesting research direction that has recently emerged focuses on the ability of

first-order queries to express incremental updates on views defined using datalog. The

framework for these problems is as follows. The base schema B and view schema V are

as before, except that V contains only one relation and the view f is defined in terms of

a datalog program P . A basic question is, Given P , is there a first-order query ϕ such

that ϕ(IB, IV ,+R(t))= P(IB ∪ {R(t)}) for each choice of IB , IV = P(IB) and insertion

+R(t) where R ∈ B? If this holds, then P is said to be first-order incrementally definable

(FOID) (without auxiliary relations).
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Example 22.3.4 Consider a binary relationG[AB] and the usual datalog program P that

computes the transitive closure of G in T [AB]. Suppose that I is an instance of G, and J

is P(I). Suppose that tuple 〈a, b〉 is inserted into I . Then a tuple 〈a′, b′〉 will be inserted

into J iff one of the following occurs:

(a) a′ = a and b = b′;

(b) a′ = a and 〈b, b′〉 ∈ J ;

(c) 〈a′, a〉 ∈ J and b = b′; or

(d) 〈a′, a〉 ∈ J and 〈b, b′〉 ∈ J .

The preceeding conditions can clearly be specified by a first-order query. It easily follows

that P is FOID (see Exercise 22.21).

Several variations of FOIDs have been studied. These include FOIDs with auxiliary

relations (i.e., that permit the maintenance of derived relations not in the original data-

log program) and FOIDs that support incremental updates for sets of insertions and/or

deletions. FOIDs have been found for a number of restricted classes of datalog programs.

However, it remains open whether there is a datalog program that is not FOID with auxil-

iary relations.

Basic Issues in View Update

The view update problem is essentially the inverse of the view maintenance problem.

Referring again to Fig. 22.1, the problem now is, Given IB , IV , and update ν on IV , find an

update µ so that the diagram commutes.

The first obvious problem here is the potential for ambiguity.

Example 22.3.5 Recall the view V2 of Example 22.3.1. Suppose that the base value of

R is {〈a, b〉} (and the base value of S is ∅). Thus the view holds {〈a〉}. Now consider an

update ν to the view that inserts 〈a′〉. Some possible choices for µ include

(a) Insert 〈a′, b〉 into R.

(b) Insert 〈a′, b′〉 into R for some b′ ∈ dom.

(c) Insert {〈a′, b′〉 | b′ ∈X} into R, where X is a finite subset of dom.

(d) Insert 〈a′, b′〉 into R for some b′ ∈ dom, and replace 〈a, b〉 by 〈a, b′〉.

Possibility (d) seems undesirable, because it affects a tuple in a base relation that is,

intuitively speaking, independent of the view update. Possibilities (a) and (b) seem more

appealing than (c), but (c) cannot be ruled out. In any case, it is clear that there are a large

number of updates µ that correspond to ν.

The fundamental problem, then, is how to select one update µ to the base data given

that many possibilities may exist. One approach to resolving the ambiguity involves exam-

ining the intended semantics of the database and the view.
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Example 22.3.6 Consider a schema Employee[Name, Department, Team_position],

which records an employee’s department and the position he or she plays in the corpo-

rate baseball league. It is assumed that Name is a key. The value “no” indicates that the

employee does not play in the league. It is assumed that Name is a key. Consider the views

defined by

Sales = σDepartment=“Sales”(Employee)

Baseball = πEmployee,Team_position(σTeam_position "=“no”(Employee))

Typically, if tuple 〈“Joe”, “Sales”, “shortstop”〉 is deleted from the Sales view, then

this tuple should also be deleted from the underlying Employee relation. In contrast, if

tuple 〈“Joe”, “shortstop”〉 is deleted from the Baseball view, it is typically most natural to

replace the underlying tuple 〈“Joe”, d , “shortstop”〉 in Employee by 〈“Joe”, d , “no”〉 (i.e.,

to remove Joe from the baseball league rather than forcing him out of the company).

As just illustrated, the correct translation of a view update can easily depend on the

semantics associated with the view as well as the syntactic definition. Research in this

area has developed notions of update translations that perform a minimal change to the

underlying database. Algorithms that generate families of acceptable translations of views

have been developed, so that the database administrator may choose at view definition time

the most appropriate one.

Another issue in view update is that a requested update may not be permitted on the

view, essentially because of constraints implicit to the view definition and algorithm for

choosing translations of updates.

Example 22.3.7 Recall the view V4 of Example 22.3.1, and suppose that the base data

is

R A B S B C

a 20 20 c

a′ 20 20 c′

In this case the view contains {〈a, c〉, 〈a, c′〉, 〈a′, c〉, 〈a′, c′〉}.
Suppose that the user requests that 〈a, c〉 be deleted. Typically, this deletion is mapped

into one or more deletions against the base data. However, deleting R(a, 20) results in a

side-effect (namely, the deletion of 〈a, c′〉 from the view). Deletion of S(20, c) also yields

a side-effect.

Formal issues surrounding such side-effects of view updates are largely unexplored.
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Complements of Views

We now turn to a more abstract formulation of the view update problem. Although it is

relatively narrow, it provides an interesting perspective.

In this framework, a view over a base schema B is defined to be a (total) function f

from Inst(B) into some set. In practice this set is typically Inst(V) for some view schema V;

however, this is not required for this development. [The proof of Theorem 22.3.10, which

presents a completeness result, uses a view whose range is not Inst(V) for any schema V.]

A binary relation ≤ on views is defined so that f ≤ g if for all base instances I and I′,

g(I) = g(I′) implies f (I) = f (I′). Intuitively, f ≤ g if g can distinguish more instances

that f . For view f , let ≡f be the equivalence relation on Inst(B) defined by I ≡f I′ iff

f (I)= f (I′). It is clear that f ≤ g iff ≡g is a refinement of ≡f and thus ≤ can be viewed

as a partial order on the equivalence relations over Inst(B).

Two views f, g are equivalent, denoted f ≡ g, if f ≤ g and g ≤ f . This is an equiva-

lence relation on views. In the following, the focus is primarily on the equivalence classes

under ≡. Let ⊤ denote the view that is simply the identity, and let ⊥ denote a view that

maps every base instance to ∅. It is clear that (the equivalence classes represented by)

⊤ and ⊥ are the maximal and minimal elements of the partial order ≤. We use cross-

product as a binary operator to create views: The product of views f and g is defined so

that (f × g)(I) = (f (I), g(I)). View g is a complement of view f if f × g ≡ ⊤. Intu-

itively, this means that the base relations can be completely identified if both f and g are

available. Clearly, each view f has a trivial complement: ⊤.

Example 22.3.8 (a) Let B= {R[ABC]} along with the fd R : A→ B, and consider the

view f = πABR. Let g = πACR. It follows from Proposition 8.2.2 that g is a complement

of f .

(b) Let B= {R[AB]} and f = πAR. As mentioned earlier, ⊤ is a complement of f .

It turns out that there are other complements of f , but they cannot be expressed using the

relational algebra (see Exercise 22.25).

(c) Let B = {Employee(Name, Salary, Bonus, Total_pay)}, with the constraints that

Name is a key and that for each tuple 〈n, s, b, t〉 in Employee we have s + b = t . Consider

the view f = πName,Salary(Employee). Consider the views

g1 = πName,Bonus(Employee)

g2 = πName,Total_pay(Employee).

Both g1 and g2 are complements of f .

Thus each view has at least one complement (namely,⊤) and may have more than one

minimal complement.

In some cases, complements can be used to resolve ambiguity in the view update

problem in the following way. Suppose that view f has complement g, and suppose

that IV = f (IB) and update ν on IV are given. An update µ is a g-translation of ν if

f (µ(IB)) = ν(f (IB)) and g(µ(IB)) = g(IB) (see Fig. 22.2). Intuitively, a g-translation
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( f(IB), g(IB)) (v( f(IB)), g(IB))

IB I′B

f × g ( f × g)–1

v

µ

Figure 22.2: Properties of a g-translation µ of view update ν on view f

accomplishes the update but leaves g(IB) fixed. By the properties of complements, for an

update ν there is at most one g-translation of ν.

Example 22.3.9 (a) Recall the base schema {R[ABC]}, view f , and complement g of

Example 22.3.8(a). Suppose that 〈a, b〉 is in the view, and consider the update ν on the

view that modifies 〈a, b〉 to 〈a, b′〉. The update µ defined to modify all tuples 〈a, b, c〉 of

R into 〈a, b′, c〉 is a g-translation of ν. On the other hand, given an insertion or deletion ν

to the view, there is no g-translation of ν.

(b) Recall the base schema, view f , and complementary views g1 and g2 of Exam-

ple 22.3.8(c). Suppose that 〈Joe, 200, 50, 250〉 is in Employee. Consider the update ν that

replaces 〈Joe, 200〉 by 〈Joe, 210〉 in the view. Consider the updates

µ1 = replace 〈Joe, 200, 50, 250〉 by 〈Joe, 210, 50, 260〉

µ2 = replace 〈Joe, 200, 50, 250〉 by 〈Joe, 210, 40, 250〉.

Then µ1 is the g1-translation of ν, and µ2 is the g2-translation of ν.

Finally, we state a result showing that a restricted class of view updates can be trans-

lated into base updates using complementary views. To this end, we focus on updates of a

schema R that are total functions from Inst(R) to Inst(R). A family U of updates on R is

said to be complete if

(a) it is closed under composition (i.e., if µ and µ′ are in U , then so is µ ◦ µ′);

(b) it is closed under inverse in the following sense: ∀I ∈ inst(R) ∀µ ∈ U ∃µ′ ∈ U
such that µ′(µ(I))= I.

Intuitively, condition (b) says that a user can always undo an update just made. It is certainly

natural to focus on complete sets of updates.

Let base schema B and view f be given, and let Uf be a family of updates on

the view. Let UB denote the family of all updates on the base schema. A translator for

Uf is a mapping t : Uf → UB such that for each base instance IB and update ν ∈ Uf ,

f (t (ν)(IB))= ν(f (IB)). Clearly, solving the view update problem consists of coming up

with a translator.
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If g is a complement for f , then a translator t is a g-translator if t (ν) is a g-translation

of ν for each ν ∈ Uf .

We can now state the following (see Exercise 22.26):

Theorem 22.3.10 Let base schema B and view f be given, and let Uf be a complete set

of updates on the view. Suppose that t is a translator for Uf . Then there is a complement g

of f such that t is a g-translator for Uf .

Thus to find a translator for a complete set of view updates, it is sufficient to specify an

appropriate complementary view g and take the corresponding g-translator. The theorem

says that one can find such g if a translator exists at all.

The preceeding framework provides an abstract, elegant perspective on the view up-

date problem. Forming bridges to the more concrete frameworks in which views are defined

by specific languages (e.g., relational algebra) remains largely unexplored.

22.4 Updating Incomplete Information

In a sense, an update to a view is an incompletely specified update whose completion must

be determined or selected. In this section, we consider more general settings for studying

updates and incomplete information.

First we return to the conditional tables of Chapter 19 and show a system for updating

such databases. We then introduce formulations of incomplete information that use theories

(i.e., sets of propositional or first-order sentences) to represent the (partial) knowledge

about the world. Among other benefits, this approach offers an interesting alternative to

resolving the view update problem. This section concludes by comparing these approaches

to belief revision.

Updating Conditional Tables

The problems posed by updating a c-table are similar to those raised by queries. A rep-

resentation T specifies a set of possible worlds rep(T ). Given an update u, the possible

outcomes of the update are

u(rep(T ))= {u(I) | I ∈ rep(T )}.

As for queries, it is desirable to represent the result in the same representation system. If

the representation system is always capable of representing the answer to any update in a

language L, it is a strong representation system with respect to L.

Let us consider c-tables and simple insertions, deletions, and modifications, as in

the language of IDM transactions. We know from Chapter 19 that c-tables form a strong

representation system for relational algebra; and it is easily seen that IDM transactions

can be expressed in the algebra (see Exercise 22.3). It follows that c-tables are a strong

representation system for IDM transactions. In other words, for each c-table T and IDM

transaction t , there exists a c-table t(T ) such that rep(t(T ))= t (rep(T )).
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Example 22.4.1 Consider the c-table in Example 19.3.1. Insertions ins(t) are straight-

forward: t is simply inserted in the table. Consider the deletion d = del({Student =
Sally,Course= Physics}). The c-table t(T ) representing the result of the deletion is

Student Course

Sally

Sally

Sally

Alice

Alice

Alice

(x ≠ Math) ∧ (x ≠ CS)

Math

CS

x

Biology

Math

Physics

(z = 0)

(z ≠ 0)

(x ≠ Physics)

(z = 0)

(x = Physics) ∧ (t = 0)

(x = Physics) ∧ (t ≠ 0)

Consider again the original c-table T in Example 19.3.1 and the modification

m= mod({Student = Sally,Course=Music} → {Course= Physics}).

The c-table m(T ) representing the result of the modification is

Student Course

Sally

Sally

Sally

Sally

Alice

Alice

Alice

(x ≠ Math) ∧ (x ≠ CS)

Math

CS

Physics

x

Biology

Math

Physics

(z = 0)

(z ≠ 0)

(x = Music)

(x ≠ Music)

(z = 0)

(x = Physics) ∧ (t = 0)

(x = Physics) ∧ (t ≠ 0)

In the context of incomplete information, it is natural to consider updates that them-

selves have partial information. For c-tables, it seems appropriate to define updates with

the same kind of incomplete information, using tuples with variables subject to conditions.

We can define extensions of insertions, deletions, and modifications in this manner. It can

be shown that c-tables remain a strong representation system for such updates.

Representing Databases Using Logical Theories

Conditional tables provide a stylized, restricted framework for representing incomplete

information and are closed under a certain class of updates. We now turn to more general

frameworks for representing and updating incomplete information. These are based on

representing databases as logical theories.

Given a logical theory T (i.e., set of sentences), the set of models of T is denoted
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by Mod(T). In our context, each model corresponds to a different possible instance. If

|Mod(T)|> 1, then T can be viewed as representing incomplete information.

In general, these approaches use the open world assumption (OWA). Recall from

Chapter 2 that under the closed world assumption (CWA), a fact is viewed as false unless it

can be proved from explicitly stated facts or sentences. In contrast, under the OWA if a fact

is not implied or contradicted by the underlying theory, then the fact may be true or false.

As a simple example, consider the theory T = {p} over a language with two propositional

constants p and q. Under the CWA, there is only one model of T (namely, {p}), but under

the OWA, there are two models (namely, {p} and {p, q}).

Model-Based Approaches to Updating Theories

One natural approach to updating a logical theory T is model based; it focuses on how

proposed updates affect the elements of Mod(T). Given an update u and instance I, let

u(I) denote the set of possible instances that could result from applying u to I. We use a set

for the result to accommodate the case in which u itself involves incomplete information.

Now let T be a theory and u an update. Under the model-based approach, the result

u(T) of applying u to T should be a theory T′ such that

Mod(T′)= ∪{u(I) | I ∈Mod(T)}.

Example 22.4.2

(a) Consider the theory T= {p ∧ q}, where p and q are propositional constants, and

the update [insert¬p]. There is only one model of T (namely, {p, q}). If we take

the meaning of insert¬p to be “make p false and leave other things unchanged,”

then updating this model yields the single model {q}. Thus the result of applying

[insert ¬p] to T yields the theory {q}.

(b) Consider T′ = {p ∨ q} and the update [insert ¬p]. The models of T′ and the

impact of the update are given by

{p} /−→ ∅

{q} /−→ {q}

{p, q} /−→ {q}.

Thus the result of applying the update to T′ is {¬p}.

The approach to updating c-tables presented earlier falls within the model-based par-

adigm (see Exercise 22.14). A family of richer model-based frameworks that supports null

values and disjunctive updates has also been developed. An interesting dimension of vari-

ation in this approach concerns how permissive or restrictive a given update semantics is.

This essentially amounts to considering how many models are associated with u(I) for

given update u and instance I. As a simple example, consider starting with an empty data-

base I∅ and the update [insert (p ∨ q)]. Under a restrictive semantics, only {p} and {q}
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are in u(I∅), but under a permissive semantics, {p, q} might also be included. The update

semantics for c-tables given earlier is very permissive: All possible models corresponding

to an update are included in the result.

Formula-Based Approaches to Updating Theories

Another approach to updating theories is to apply updates directly to the theories them-

selves. As we shall see, a disadvantage of this approach is that the same update may have

a different effect on equivalent but distinct theories. On the other hand, this approach does

allow us to assign priorities to different sentences (e.g., so that constraints are given higher

priority than atomic facts).

We consider two forms of update: [insert ϕ] and [delete ϕ], where ϕ is a sentence (i.e.,

no free variables). Given theory T, a theory T′ accomplishes the update [insert ϕ] for T if

ϕ ∈ T′, and it accomplishes [delete ϕ] for T if1 ϕ "∈ T′∗. Observe that there is a difference

between [insert ¬ϕ] and [delete ϕ]: In the former case ¬ϕ is true for all models of T′,

whereas in the latter case ϕ may hold in some model of T′.

In general, we are interested in accomplishing an update for T with minimal impact

on T. Given theory T, we define a partial order ≤T on theories with respect to the degree

of change from T. In particular, we define T′ ≤T T′′ if T− T′ ⊂ T− T′′, or if T− T′ =
T − T′′ and T′ − T ⊆ T′′ − T. Intuitively, T′ ≤T T′′ if T′ has fewer deletions (from T)

than T′′, or both T′ and T′′ have the same deletions but T′ has no more insertions than T′′.

(Exercise 22.16 considers the opposite ordering, where insertions are given priority over

deletions.)

Intuitively, we are interested in theories T′ that accomplish a given update u for T and

are minimal under ≤T. We say that such theories T′ accomplish u for T minimally. The

following characterizes such theories (see Exercise 22.15):

Proposition 22.4.3 Let T, T′ be theories and ϕ a sentence. Then

(a) T′ accomplishes [delete ϕ] for T minimally iff T′ is a maximal subset of T that

is consistent with ¬ϕ.

(b) T′ ∪ ϕ accomplishes [insert ϕ] for T minimally iff T′ is a maximal subset of T

that is consistent with ϕ.

Thus T′ accomplishes [delete ϕ] for T minimally iff T′ ∪¬ϕ accomplishes [insert ¬ϕ]

for T minimally.

The following example shows that equivalent but distinct theories can be affected

differently by updates.

Example 22.4.4 (a) Consider the theory T0 = {p, q} and the update [insert ¬p]. Then

{¬p, q} is the unique minimal theory that accomplishes this update.

1 For a theory S, the (logical) closure of S, denoted S∗, is the set of all sentences implied by S.
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(b) Let T1 = {p ∧ q} and consider [insert ¬p]. The unique minimal theory that ac-

complishes this update for T1 is {¬p} [i.e., (∅ ∪ {¬p})]. Note how this differs from the

model-based update in Example 22.4.2(a).

A problem at this point is that, in general, there are several theories that minimally

accomplish a given update. Thus an update to a theory may yield a set of theories, and so

the framework is not closed under updates. Given a set T1,T2, . . . , we would like to find a

theory T whose models are exactly the union of all models of the set of theories. In general,

it is not clear that there is a theory that has this property. However, if there is only a finite

number of theories that are possible answers, then we can use the disjunction operator
∨

defined by

∨

{Ti | i ∈ [1, n]} = {τ1 ∨ · · · ∨ τn | τi ∈ Ti for i ∈ [1, n]}.

It is easily verified that Mod(
∨

{Ti | i ∈ [1, n]}) = ∪{Mod(Ti) | i ∈ [1, n]}. Of course,

there is a great likelihood of a combinatorial explosion if the disjunction operator is applied

repeatedly.

Assigning Priorities to Sentences

We now explore a mechanism for giving priority to some sentences in a theory over other

sentences. Let n ≥ 0 be fixed. A tagged sentence is a pair (i, ϕ), where i ∈ [0, n] and ϕ

is a sentence. A tagged theory is a set of tagged sentences. Given tagged theory T and

i ∈ [1, n], Ti denotes {ϕ | (i, ϕ) ∈ T}.
The partial order for comparing theories is extended in the following natural fashion.

Given tagged theories T, T′ and T′′, define T′ ≤T T′′ if for some i ∈ [1, n] we have

Tj − T′j = Tj − T′′j , for each j ∈ [1, i − 1]

and

Ti − T′i ⊂ Ti − T′′i

or we have

Tj − T′j = Tj − T′′j , for each j ∈ [1, n]

and

T′ − T⊂ T′′ − T.

Intuitively, T′ ≤T T′′ if the deletions of T′ and T′′ agree up to some level i and then T′

has fewer deletions at level i; or if the deletions match and T′ has fewer insertions. In this

manner, higher priority is given to the sentences having lower numbers.
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Example 22.4.5 Consider a relation R[ABC] that satisfies the functional dependency

A→ B, and consider the instance

R A B C

a b c

a b c′

a′ b′ c′′

a′′ b′ c′′′

We now construct a tagged theory T to represent this situation and show how changing a

B value of a tuple is accomplished.

We assume three tag values and describe the contents of T0, T1, and T2 in turn. T0

holds the functional dependency and the unique name axiom (see Chapter 2). That is,

{

(0,∀x, y, y′, z, z′(R(x, y, z) ∧ R(x, y′, z′)→ y = y′)),
(0, a "= a′), (0, a "= a′′), . . . , (0, a "= b), . . . , (0, c′′ "= c′′′)

}

T1 holds the following existential sentences:











(1, ∃x(R(a, x, c))),
(1, ∃x(R(a, x, c′))),
(1, ∃x(R(a′, x, c′′))),
(1, ∃x(R(a′′, x, c′′′)))











Finally, T2 holds











(2, R(a, b, c)),

(2, R(a, b, c′)),

(2, R(a′, b′, c′′)),

(2, R(a′′, b′, c′′′))











Consider now the update u = [insert ϕ], where ϕ = ∃yR(a, b′′, y). Intuitively, this

insertion should replace all 〈a, b〉 pairs occurring in πABR by 〈a, b′′〉. More formally, it is

easy to verify that the unique tagged theory (up to choice of i) that accomplishes u is (see

Exercise 22.17)

{(i, ϕ)} ∪ T0 ∪ T1 ∪











(2, R(a, b′′, c))

(2, R(a, b′′, c′))

(2, R(a′, b′, c′′))

(2, R(a′′, b′, c′′′))











Thus the choice of sentences and tags included in the theory can influence the result

of an update.
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The approach of tagged theories can also be used to develop a framework for accom-

plishing view updates. The underlying database and the view are represented using a tagged

theory, and highest priority is given to ensuring that the complement of the view remains

fixed. Exercise 22.18 explores a simple example of this approach.

In the approach described here, a set of theories is combined using the disjunction

operator. In this case, multiple deletions can lead to an exponential blowup in the size

of the underlying theory, and performing insertions is np-hard (see Exercise 22.19). This

provided one motivation for developing a generalization of the approach, in which families

of theories, called flocks, are used to represent a database with incomplete information.

Update versus Revision

The idea of representing knowledge using theories is not unique to the field of databases.

The field of belief revision takes this approach and considers the issue of revising a knowl-

edge base. Here we briefly compare the approaches to updating database theories described

earlier with those found in belief revision.

A starting point for belief revision theory is the set of rationality postulates of Al-

chourrón, Gärdenfors, and Makinson, often referred to as the AGM postulates. These

present a general family of guidelines for when a theory accomplishes a revision, and they

include postulates such as

(R1) If T′ accomplishes [insert ϕ] for T, then T′ |= ϕ.

(R2) If ϕ is consistent with T, then the result of [insert ϕ] on T should be equivalent to

T ∪ {ϕ}.

(R3) If T≡ T′ and ϕ ≡ ϕ′, then the result of [insert ϕ] on T is equivalent to the result of

[insert ϕ′] on T′.

(This is a partial listing of the eight AGM postulates.) Other postulates focus on maintain-

ing satisfiability, relationships between the effects of different updates, and capturing some

aspects of minimal change.

It is clear from postulate (R3) that the formula-based approaches to updating database

theories do not qualify as belief revision systems. The relationship of the formula-based

approaches and belief revision is largely unexplored.

A key difference between belief revision and the model-based approach to updating

database theories stems from different perspectives on what a theory T is intended to

represent. In the former context, T is viewed as a set of beliefs about the state of the world.

If a new fact ϕ is to be inserted, this is a modification (and, it is hoped, improvement) of

our knowledge about the state of the world, but the world itself is considered to remain

unchanged. In contrast, in the model-based approaches, the theory T is used to identify a

set of worlds that are possible given the limited information currently available. If a fact ϕ

is inserted, this is understood to mean that the world itself has been modified. Thus T is

modified to identify a different set of possible worlds.

Example 22.4.6 Suppose that the world of interest is a room with a table in it. There is

an abacus and a (hand-held, electronic) calculator in the room. Let proposition a mean that
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the abacus is on the table, and let proposition c mean that the calculator is on the table.

Finally, let T be (a ∧ ¬c) ∨ (¬a ∧ c).
From the perspective of belief revision, T indicates that according to our current

knowledge, either the abacus or the calculator is on the table, but not both. Suppose that

we are informed that the calculator is on the table (i.e., [insert c]). This is viewed as

additional knowledge about the unchanging world. Combining T with c, we obtain the new

theory T1 = ((a ∧¬c)∨ (¬a ∧ c))∧ c ≡ (¬a ∧ c). [Note that this outcome is required by

postulate (R2).]

From the model-based perspective, T indicates that either the world is {a} or it is {c}.
The request [insert c] is understood to mean that the world has been modified so that c has

become true. This can be envisioned in terms of having a robot enter the room and place the

calculator on the table (if it isn’t already there) without reporting on the status of anything

except that the robot has been successful. As a result, the world {a} is replaced by {a, c},
and the world {c} is replaced by itself. The resulting theory is T2 = c (which is interpreted

under the OWA).

A set of postulates for updates, analogous to the AGM postulates for revision, has been

developed. The postulate analogous to (R2) is

(U2) If T implies ϕ, then the result of [insert ϕ] on T should be equivalent to T.

This is strictly weaker than (R2). Other postulates enforce the intuition that the effect of

an update on a possible model is independent of the other possible models of a theory,

maintaining satisfiability and relationships between the effects of different updates.

22.5 Active Databases

As we have seen, object orientation provides one paradigm for incorporating behavioral

information into a database schema. This has the effect of separating a portion of the be-

havioral information from the application software and providing a more structured repre-

sentation and organization for that portion. In this section, we briefly consider a second,

essentially orthogonal, paradigm for separating a portion of the behavioral information

from the application software. This emerging paradigm, called activeness, stems from a

synthesis of techniques from databases, on the one hand, and expert systems and artificial

intelligence, on the other.

Active databases generally support the automatic triggering of updates in response to

internal or external events (e.g., a clock tick, a user-requested update, or a change in a

sensor reading). In a manner reminiscent of expert systems, forward chaining of rules is

generally used to accomplish the response. However, there are several differences between

classical expert systems and active databases. At the conceptual and logical level, the

differences are centered around the expressive power of rule conditions and the semantics

of rule application. (Some active database systems, such as POSTGRES, also support a

form of backward chaining or query rewriting; this is not considered here.)

Active databases have been shown to be useful in a variety of areas, including con-
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Suppliers Sname Address Prices Part Sname Price

The Depot 1210 Broadway nail The Depot .02

Builder’s Mart 100 Main bolt The Depot .05

bolt Builder’s Mart .04

nut Builder’s Mart .03

Figure 22.3: Sample instance for active database examples

straint maintenance, incremental update of materialized views, mapping view updates to

the base data, and supporting database interoperability.

Rules and Rule Application

There are three distinguishing components in an active database: (1) a subsystem for

monitoring events, (2) a set of rules, often called a rule base, and (3) a semantics for rule

application, typically called an execution model.

Rules typically have the following so-called ECA form:

on 〈event〉 if 〈condition〉 then 〈action〉.

Depending on the system and application, the event may range over external phenomena

and/or over internal events (such as a method call or inserting a tuple to a relation). Events

may be atomic or composite, where these are built up from atomic events using, say, regular

expressions or a process algebra. Events may be essentially Boolean or may return a tuple

of values that indicate what triggered the event.

Conditions typically involve parameters passed in by the events, and the contents of the

database. As will be described shortly, several systems permit conditions to look at more

than one version of the database state (e.g., corresponding to the state before the event and

the state after the event). In some systems, events are not explicitly specified; essentially

any change to the database makes the event true and leads to testing of all rule conditions.

In principle, the action may be a call to an arbitrary routine. In many cases in relational

systems, the action will involve a sequence of insertions, deletions, and modifications; and

in object-oriented systems it will involve one or more method calls. Note that this may in

turn trigger other rules.

The remainder of this discussion focuses on the relational model. A short example is

given, followed by a brief discussion of execution models.

Example 22.5.1 Suppose that the Inventory database includes the following relations:

Suppliers[Sname,Address]

Prices[Part, Sname,Price]
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Suppliers and the parts they supply are represented in Suppliers and Prices, respectively. It

is assumed that Sname is a key of Suppliers and Part, Sname is a key of Prices. An example

instance is shown in Fig. 22.3.

We now list some example rules. These rules are written in a pidgin language that

uses tuple variables. The variable T ranges over sets of tuples and is used to pass them

from the condition to the action. As detailed shortly, both (r1) considered in isolation and

the set (r2.a) . . . (r2.d) taken together can be used to enforce the inclusion dependency

Prices[Sname] ⊆ Suppliers[Sname].

(r1) on true

if Prices(p) and p.Sname �∈ πSname(Suppliers)

then Prices := Prices − {p}

(r2.a) on delete Sname(s)

if T := σSname=s.Sname(Prices) is not empty

then Prices := Prices − T

(r2.b) on modify Sname(s)

if old(s).Sname �= new(s).Sname

and T = σSname=old(s).Sname(Prices)

then set p.Sname = new(s).Sname

for each p in Prices

where p ∈ T

(r2.c) on insert Prices(p)

if 〈p.Sname〉 �∈ πSname(Suppliers)

then issue supplier_warning(p)

(r2.d) on modify Prices(p)

if 〈new(p).Sname〉 �∈ πSname(Suppliers)

then issue supplier_warning(new(p))

Consider rule (r1). If ever a state arises that violates the inclusion dependency, then the

rule deletes violating tuples from the Prices relation. The event of (r1) is always true; in

principle the database must check the condition whenever an update is made. It is easy to

see in this case that such checking need only be done if the relations Supplies or Prices are

updated, and so the event “on Supplies or Prices is updated” could be incorporated into

(r1). Although this does not change the effect of the rule, it provides a hint to the system

about how to implement it efficiently.

Rules (r2.a) . . . (r2.d) form an alternative mechanism for enforcing the inclusion

dependency. In this case, the cause of the dependency violation determines the reaction

of the system. Here a deletion from (r2.a) or modification (r2.b) to Suppliers will result

in deletions from or modifications to Prices. In (r2.b), variable s ranges over tuples that

have been modified, old(s) refers to the original value of the tuple, and new(s) refers to the

modified value. On the other hand, changes to Prices that cause a violation [rules (r2.c) and
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(r2.d)] call a procedure supplier_warning; this might abort the transaction and warn the

user or dba of the constraint violation, or it might attempt to use heuristics to modify the

offending Sname value.

Execution Models

Until now, we have considered rules essentially in isolation from each other. A fundamental

issue concerns the choice of an execution model, which specifies how and when rules will

be applied. As will be seen, a wide variety of execution models are possible. The true

semantics of a rule base stems both from the rules themselves and from the execution model

for applying them.

We assume for this discussion that there is only one user of the system, or that a

concurrency control protocol is enforced that hides the effect of other users.

Suppose that a user transaction t = c1; . . . ; cn is issued, where each of the ci’s is an

atomic command. In the absence of active database rules, application of t will yield a

sequence

I0, I1, . . . , In

of database states, starting with the original state I0 and where each state Ii+1 is the result

of applying ci+1 to state Ii. If rules are present, then a different sequence of states might

arise.

One dimension of variation between execution models concerns when rules are fired.

Under immediate firing, a rule is essentially fired as soon as its event and condition become

true; under deferred firing, rule application is delayed until after the state In is reached; and

under concurrent firing, a separate process is spawned for the rule action and is executed

concurrently with other processes. In the most general execution models, each rule is

assigned its own coupling mode (i.e., immediate, deferred, or concurrent), which may be

further refined by associating a coupling mode between event and condition testing and

between condition testing and action execution.

We now examine the semantics of immediate and deferred firing in more detail. We

assume for this discussion that the event of each rule is simply true.

To illustrate immediate firing, suppose that a rule r with action d1; . . . ; dm is triggered

(i.e., its condition has become true) in state I1 of the preceeding sequence of states. Then

the sequence of databases states might start with

I0, I1, I
′
1, I

′
2, . . . , I

′
m, . . . ,

where I′
1 is the result of applying d1 to I1 and I′

j+1 is the result of applying dj+1 to I′
j .

After I′
m, the command c2 would be applied. The semantics of intermediate rule firing

is in fact more complex, for two reasons. First, another rule might be triggered during

the execution of the action of the first triggered rule. In general, this calls for a recursive

style of rule application, where the command sequences of each triggered rule are placed

onto a stack. Second, several rules might be triggered at the same time. One approach in
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this case is to assume that the rules are ordered and that rules triggered simultaneously

are considered in that order. Another approach is to fire simultaneously-triggered rules

concurrently; essentially this has the effect of firing them in a nondeterministic order.

In the case of deferred firing, the full user transaction is completed before any rules are

fired, and each rule action is executed in its entirety before another rule action is initiated.

This gives rise to a sequence of states having the form

Iorig, Iuser, I2, I3, . . . , I
curr,

where now Iorig is the original state, Iuser is the result of applying the user-requested

transaction, and the states I2, I3, . . . , I
curr are the results of applying the actions of fired

rules. The sequence shown here might be extended if additional rules are to be fired.

Several intricacies arise. As before, the order of rule firing must be considered if

multiple rules are triggered at a given state. Recall the (r2) rules of Example 22.5.1, whose

events where based on transitions between some former state and some latter state. What

states should be used? It is natural to use Icurr as the latter state. With regard to the former

state, some systems advocate using Iorig, whereas other systems support the use of one of

the intermediate states (where the choice may depend on a complex condition).

Suppose that two rules r and r ′ are triggered at some state Icurr = Ii and that r is fired

first to reach state Ii+1. The event and/or condition of r ′ may no longer be true. This raises

the question, Should r ′ be fired? A consensus has not emerged in the literature.

As should be clear from the preceeding discussion, there is a wide variety of choices

for execution models. A more subtle dimension of flexibility concerns the expressive power

of rule events and conditions: In addition to accessing the current state, should they be

able to access one or more previous ones? Several prototype active database systems have

been implemented; each uses a different execution model, and several permit access to

both current and previous states. It has been argued that different execution models may be

appropriate for different applications. This has given rise to systems that include a choice

of execution models and to languages that permit the specification of customized execution

models. An open problem at the time this book was written is to develop a natural syntax

that can be used to specify easily a broad range of execution models, including a substantial

subset of those described in the literature.

The while languages studied in Part E can serve as the kernel of an active database.

These languages do not use events; restrict rule actions to insertions, deletions, and value

creation; and examine only the current state in a rule firing sequence. If value creation is

supported, then these languages are complete for database mappings and so in some sense

can simulate all active databases. However, richer rules and execution models permit the

possibility of developing rule bases that enforce a desired set of policies in a more intuitive

fashion than a while program.

An Execution Model That Reaches a Unique Fixpoint

It should be clear that whatever execution model and form for rules is selected, most

questions about the behavior of an active database are undecidable. It is thus interesting

to consider more restricted execution models that behave in predictable ways. We now

present one such execution model, called the accumulating model; this forms a portion of
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the execution model of AP5, a main-memory active database system that has been used in

research for over a decade.

To describe the accumulating execution model, we first introduce the notion of a delta.

Let R = {R1, . . . , Rn} be a database schema. An atomic update over R is an expression of

the form +Ri(t) or −Ri(t), where i ∈ [1, n] and t is a tuple having the arity of Ri. A delta

over R is a finite set of atomic updates over R that does not contain both +R(t) and −R(t)

for any R and t or the special value fail. (Modifies could also be incorporated into deltas,

but we do not consider that here.) A delta not containing the value fail is consistent. For

delta �, we define

�+ = {R(t) | +R(t) ∈�}

�− = {R(t) | −R(t) ∈�}.

Given instance I and consistent delta � over R, the result of applying � to I is

apply(I,�)= (I ∪�+)−�− = (I −�−) ∪�+.

Finally, the merge of two consistent deltas �1,�2 is defined by

�1&�2 =

{

�1 ∪�2 if this is consistent

fail otherwise.

The accumulating execution model uses deferred rule firing. Each rule action is viewed

as producing a consistent delta. The user-requested transaction is also considered to be the

delta �0. Thus a sequence of states

Iorig = I0, I
user = I1, I2, I3, . . . , I

curr

is produced, where Iuser = apply(Iorig,�0) and, more generally, Ii+1 = apply(Ii,�i) for

some �i produced by a rule firing.

At this point the accumulating model is quite generic. We now restrict the model

and develop some interesting theoretical properties. First we assume that rules have only

conditions and actions (i.e., that the event part is always true). Second, as noted before, we

assume that the action of each rule can be viewed as a delta. Furthermore, we assume that

these deltas use only constants from Iorig (i.e., there is no invention of constants). Third

we insist that for each i ≥ 0, �0& . . .&�i is consistent. More precisely, we modify the

execution model so that if for some i we have �0& . . .&�i = fail, then the execution is

aborted. For each i ≥ 0, let �′
i =�0& . . .&�i.

Suppose that we are now in state Icurr with delta�curr. We assume that rule conditions

can access only Iorig and �curr. (If the rule conditions have the power of, for example, the

relational calculus, this means they can in effect access Icurr.) Given rule r , state I, and

delta�, the effect of r on I and�, denoted effect(r, I,�), is the delta corresponding to the

firing of r on I and �, if the condition of r is satisfied, and is ∅ otherwise.

Execution proceeds as follows. The sequence �′
0,�

′
1, . . . is constructed sequentially.

At the ith step, if there is no rule whose condition is satisfied by Iorig and�′
i, then execution

terminates successfully. Otherwise a rule r with condition satisfied by Iorig and �′
i is



606 Dynamic Aspects

selected nondeterministically. If �′
i&effect(r, Iorig,�′

i) is fail, then execution terminates

with an abort; otherwise set �′
i+1 =�′

i&effect(r, Iorig,�′
i) and continue.

A natural question at this point is, Will execution always terminate? It is easy to see

that it does, because constants are not invented and the sequence of deltas being constructed

is monotonically increasing under set containment.

It is also natural to ask, Does the order of rule firing affect the outcome? In general, the

answer is yes. We now develop a semantic condition on rules that ensures independence of

rule firing order. A rule r is monotonic if for each instance I and pair �1 ⊆�2 of deltas,

effect(r, I,�1)⊆ effect(r, I,�2). The following can now be shown (see Exercise 22.23):

Theorem 22.5.2 If each rule in a rule base is monotonic, then the outcome of the

accumulating execution model on this rule base is independent of rule firing order.

Monitoring Events and Conditions

In Example 22.5.1, the events that triggered rules were primitive, in the sense that each

one corresponded to an atomic occurrence of some phenomenon. There has been recent

interest in developing languages for specifying and recognizing composite events, which

might involve the occurrence of several primitive events. For example, composite event

specification is supported by the ODE system, a recently released prototype object-oriented

active database system. The ODE system supports a rich language for specifying composite

events, which has essentially the power of regular expressions (see also Section 22.6

for examples of composite events specified by regular expressions). An implementation

technique based on finite state automata has been developed for recognizing composite

events specified in this language.

Other formalisms can also be used for specifying composite events (e.g., using Petri

nets or temporal logics). There appears to be a trade-off between the expressiveness of trig-

gers in rules and conditions. For example, some Petri-net-based languages for composite

events can be simulated using additional relations and rules based on simple events. The

details of such trade-offs are largely unexplored.

22.6 Temporal Databases and Constraints

Classical databases model static aspects of data. Thus the information in the database

consists of data currently true in the world. However, in many applications, information

about the history of data is just as important as static information. When history is taken

into account, queries can ask about the evolution of data through time; and constraints may

restrict the way changes occur. We briefly discuss these two aspects.

Temporal Databases

Suppose we are interested in a database over some schema R. Thus we wish to model and

query information about the content of the database through time. Conceptually, we can

associate to each time t the state It of the database at time t . Thus the database appears as a
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sequence of states—snapshots—indexed by some time domain. Two basic questions come

up immediately:

• What is the meaning of It? Primarily two possible answers have been proposed. The

first is that It represents the data that was true in the world at time t ; this view of time

is referred to as valid time. The second possibility is that time represents the moment

when the information was recorded in the database; this is called transaction time.

Clearly, using valid time requires including time as a first-class citizen in the

data model. In many applications transaction time might be hidden and dealt with

by the system; however, in time-critical applications, such as air-traffic control or

monitoring a power plant, transaction time may be important and made explicit. A

particular database may use valid time, transaction time, or both. In our discussion,

we will consider valid time only.

• What is the time domain? This can be discrete (isomorphic to the integers), contin-

uous (isomorphic to the reals), or dense and countable (isomorphic to the rationals).

In databases, time is usually taken to be discrete, with some fixed granularity for

the time unit. However, several distinct time domains with different granularities

are often used (e.g., years, months, days, hours, etc.). The time domain is usually

equipped with a total order and sometimes with arithmetic operations. A temporal

variable now may be used to refer to the present time.

To query a temporal database, relational languages must be extended to take into

account the time coordinate. To say that a tuple u is in relation R at time t , we could simply

extend R with one temporal coordinate and write R(u, t). Then we could use CALC or

ALG on the extended relations. This is illustrated next.

Example 22.6.1 Consider the CINEMA database, indexed by a time domain consisting

of dates of the form month/day/year. The query

“What were the movies shown at La Pagode in May, 1968?”

is expressed in CALC by

{m | ∃s, t (Pariscope(La Pagode,m, s, t) ∧ 5/1/68 ≤ t ≤ 5/31/68)}.

The query

“Since when has La Pagode been showing the current movie?”

is expressed by

{t | ∃m[∃s(Pariscope(“La Pagode”,m, s,now))∧

since(t, m) ∧ ∀t ′′(since(t ′′,m)→ t ≤ t ′′)]},

where
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since(t, m)= ∀t ′[t ≤ t ′ ≤ now → ∃s′(Pariscope(“La Pagode”,m, s′, t ′))].

Classical logics augmented with a temporal coordinate have been studied extensively,

mostly geared toward specification and verification of concurrent programs. Such logics

are usually referred to as temporal logics. There is a wealth of mathematical machinery

developed around temporal logics; unfortunately, little of it seems to apply directly to

databases.

Although the view of a temporal database as a sequence of instances is conceptually

clean, it is extremely inefficient to represent a temporal database in this manner. In prac-

tice, this information is summarized in a single database in which data is timestamped to

indicate the time of validity. The timestamps can be placed at the tuple level or at the at-

tribute level. Typically, timestamps are unions of intervals of the temporal domain. Such

representations naturally lead to nested structures, as in the nested relation, semantic, and

object-oriented data models.

Example 22.6.2 Figure 22.4 is a representation of temporal information about Pari-

scope using attribute timestamps with nested relations. It would also be natural to represent

this using a semantic or object-oriented model.

The same information can be represented by timestamping at the tuple level, as

follows:

Pariscope Theater Title Schedule

La Pagode Sleeper 19:00 [5/1/68–5/31/68]

La Pagode Sleeper 19:00 [7/15/74–7/31/74]

La Pagode Sleeper 19:00 [12/1/93–now]

La Pagode Sleeper 22:00 [8/1/74–8/14/75]

La Pagode Sleeper 22:00 [10/1/93–11/30/93]

La Pagode Psycho 19:00 [8/1/93–11/30/93]

La Pagode Psycho 22:00 [2/15/78–10/14/78]

La Pagode Psycho 22:00 [12/1/93–now]

Kinopanorama Sleeper 19:30 [4/1/90–10/31/90]

Kinopanorama Sleeper 19:30 [2/1/92–8/31/92]

In this representation, the time intervals are more fragmented. This may have some draw-

backs. For example, retrieving the information about when “Sleeper” was playing at La

Pagode (using a selection and projection) yields time intervals that are more fragmented

than needed. To obtain a more concise representation of the answer, we must merge some

of these intervals.

Note also the difference between the timestamps and the attribute Schedule, which

also conveys some temporal information. The value of Schedule is user defined, and the

database may not know that this is temporal information. Thus from the point of view of
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Theater

[5/1/68–5/31/68]

[7/15/74–8/14/75]

[10/1/93–now]

La Pagode

Sleeper

[2/15/78–10/14/78]

[8/1/93–now]
Psycho

Kinopanorama

Pariscope Title

[5/1/68–5/31/68]

[7/15/74–7/31/74]

[12/1/93–now]

19:00

Schedule

[8/1/74–8/14/75]

[10/1/93–11/30/93]
22:00

[8/1/93–11/30/93]19:00

[2/15/78–10/14/78]

[12/1/93–now]
22:00

[4/1/90–10/31/90]

[2/1/92–8/31/92]
Sleeper

[4/1/90–10/31/90]

[2/1/92–8/31/92]
19:30

Figure 22.4: A representation of temporal information using attribute timestamps with
nested relations

the temporal database, the value of Schedule is treated just like any other nontemporal value

in the database.

Much of the research in temporal databases has been devoted to finding extensions of

SQL and other relational languages suitable for temporal queries. Most proposals assume

some representation based on tuple timestamping by intervals and introduce intuitive lin-

guistic constructs to compare and manipulate these temporal intervals. Sometimes this is

done without explicit reference to time, in the spirit of modal operators in temporal logic.

One such operator is illustrated next.

Example 22.6.3 Several temporal extensions of SQL use a when clause to express a

temporal condition. For example, consider the query on the CINEMA database:

“Find the pairs of theaters that have shown some movie at the same date and hour.”

This can be expressed using the when clause as follows:
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select t1.theater, t2.theater

from Pariscope t1 t2
where t1.title= t2.title and t1.schedule= t2.schedule

when t1.interval overlaps t2.interval

The when clause is true for tuples t1, t2 iff the intervals indicating their validity have

nonempty intersection. Other Boolean tests on intervals include before, after, during, fol-

lows, precedes, etc., with the obvious semantics. The expressive power of such constructs

is not always well elucidated in the literature, beyond the fact that they can clearly be ex-

pressed in CALC. A review of the many constructs proposed in the literature on temporal

databases is beyond the scope of this book. For the time being, it appears that a single

well-accepted temporal language is far from emerging, although there are several major

prototypes.

Temporal Deductive Databases

An interesting recent development involves the use of deductive databases in the temporal

framework, yielding temporal extensions of datalog. This can be used in two main ways.

• As a specification mechanism: Datalog-like rules allow the specification of some

temporal databases in a concise fashion. In particular, this allows us to specify

infinite temporal databases, with both past and future information.

• As a query mechanism: Rules can be used to express recursive temporal queries.

Example 22.6.4 We first illustrate the use of rules in the specification of an infinite tem-

poral database. The database holds information on a professor’s schedule—more precisely,

the times she meets her two Ph.D. students. The facts

meets-first(Emma, 0), follows(Emma, John), follows(John,Emma)

say that the professor’s first meeting is with Emma, and then John and Emma take turns.

Consider the rules

meets(x, t) ← meets-first(x, t)

meets(y, t + 1)← meets(x, t), follows(x, y)

The rules define the following infinite sequence of facts providing the professor’s schedule:

meets(Emma, 0)

meets(John, 1)

meets(Emma, 2)

meets(John, 3)

...
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Another way to use temporal rules is for querying. Consider the query

“Find the times t such that La Pagode showed ‘Sleeper’ on date t and continued

to show it at least until the Kinopanorama started showing it.”

The answer (given in the unary relation until) is defined by the following stratified program:

date(x, y, t)← Pariscope(x, y, s, t)

until(t) ← date(“Kinopanorama”, “Sleeper”, t + 1),

¬ date(“Kinopanorama”, “Sleeper”, t),

date(“La Pagode”, “Sleeper”, t)

until(t) ← date(“La Pagode”, “Sleeper”, t), until(t + 1)

The expressiveness of several datalog-like temporal languages and the complexity of

query evaluation using such languages are active areas of research.

Temporal Constraints

Classical constraints in relational databases are static: They speak about properties of the

data seen at some moment in time. This does not allow modeling the behavior of data.

Temporal (or dynamic) constraints place restrictions on how the data changes in time. They

can arise in the context of classical databases as well as in temporal databases. In temporal

databases, we can specify restrictions on the sequence of time-indexed instances using

temporal logics (extensions of CALC, or modal logics). These are essentially Boolean

(yes/no) temporal queries. For example, we might require that “La Pagode” not be a first-

run theater (i.e., every movie shown there must have been shown in some other theater at

some earlier time). An important question is how to enforce such constraints efficiently. A

step in this direction is suggested by the following example.

Example 22.6.5 Suppose that Pariscope is extended with a time domain ranging over

days, as in Example 22.6.1. The constraint that “La Pagode” is not a first-run theater can

be expressed in CALC as

∀m, s, t (Pariscope(“La Pagode”,m, s, t)

→ ∃x, s′, t ′(Pariscope(x,m, s′, t ′) ∧ x �= “La Pagode” ∧ t ′ < t))

A naive way to enforce this constraint involves maintaining the full history of the

relation Pariscope; this would require unbounded storage. A more efficient way involves

storing only the current value of Pariscope and maintaining a unary relation Shown_

Before[Title], which holds all movie titles that have been shown in the past at a theater

other than “La Pagode.” Note that the size of Shown_Before is bounded by the number of

titles that have occurred through the history of the database but is independent of how long

the database has been in existence. (Of course, if a new title is introduced each day, then

Shown_Before will have size comparable to the full history.)
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A systematic approach has been developed to maintain temporal constraints in this

fashion.

For classical databases, in which no history is kept, temporal constraints can only

involve transitions from the current instance to the next; this gives rise to a subset of

temporal constraints, called transition constraints

For instance, a transition constraint can state that “salaries do not decrease” or that

“the new salary of an employee is determined by the old salary and the seniority.” Such

transition constraints are by far the most common kind of temporal constraint considered

for databases. We discuss some ways to specify transition constraints. Clearly, these can

be stated using a temporal version of CALC that can refer to the previous and next state. A

notion of identity similar to object identity is useful here; otherwise we may have difficulty

speaking about the old and new versions of some tuple or entity. Such identity may be

provided by a key, assuming that it does not change in time.

Besides CALC, transition constraints may be stated in various other ways, including

• pre- and postconditions associated with transitions;

• extensions of classical static constraints, such as dynamic fd’s;

• computational constraints on sequences of consecutive versions of tuples.

Restrictions on updates—say, by transactional schemas—also induce temporal con-

straints. For instance, consider again the transactional schema in Example 22.2.1. It can be

verified that all possible sequences of instances obtained by calls to the transactions of that

schema satisfy the temporal constraint:

“Nobody can be a PhD student without having been a TA at some point.”

The following less desirable temporal constraint is also satisfied:

“Once a PhD student, always a PhD student.”

Overall, the connection between canned updates and temporal constraints remains largely

unexplored.

A related means of specifying temporal constraints is to identify a set of update events

and impose restrictions on valid sequences of events. This can be done using regular

expressions. For example, suppose that the events concerning an employee are

hire, transfer, promote, raise, fire, retire

The valid sequences of events are all prefixes of sequences specified by the regular

expression

hire[(transfer)+ (promote + ǫ)(raise)]∗[(retire)+ (fire)]

Thus an employee is first hired, receives some number of promotions and raises, may be

transferred, and finally either retires or is fired. Everybody who is promoted must also
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receive a raise, but raises may be received even without promotion. Such constraints appear

to be particularly well suited to object-oriented databases, in which events can naturally be

associated with method invocations. Some active databases (Section 22.5) can also enforce

constraints on sequences of events.
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teroperability [CW93, Cha94, Wie92]. Another functionality associated with some active

databases is query rewriting [SJGP90], whereby a query q might be transformed into a

related query q ′ before being executed.

As discussed in Section 22.5 (see also [HJ91b, HW92, Sto92]), each of the active

database systems described in the literature uses a different approach for event specification

and a different execution model. The execution models of several active database systems

are specified using deltas, either implicitly or explicitly [Coh86, SKdM92, WF90]. The

Heraclitus language [HJ91a, JH91, GHJ+93] elevates deltas to be first-class citizens in a

database programming language based on C and the relational model, thereby enabling the

specification, and thus implementation, of a wide variety of execution models. Execution

models that support immediate, deferred, and concurrent firing include [BM91, HLM88,

MD89].
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The accumulating execution model forms part of the semantics of the AP5 active

database model [Coh86, Coh89] (see also [HJ91a]). Theorem 22.5.2 is from [ZH90], which

goes on to present syntactic conditions on rules that ensure the Church-Rosser property for

rule bases that are not necessarily monotonic.

An early investigation of composite events in connection with active databases is

[DHL91]. Reference [GJS92c] describes the event specification language of the ODE

active database system [GJ91]. Reference [GJS92b] presents the equivalence of ODE’s

composite event specification language and regular expressions, and [GJS92a] develops an

implementation technique based on finite state automata for recognizing composite events

in the case where parameters are omitted. Reference [GD94] uses an alternative formalism

for composite events based on Petri nets and can support parameters.

A crucial issue with regard to efficient implementation of active databases is determin-

ing incrementally when a condition becomes true. Early work in this area is modeled after

the RETE algorithm from expert systems [For82]. Enhancements of this technique biased

toward active database applications include [WH92, Coh89]. Reference [CW90] describes

a mechanism for analyzing rule conditions to infer triggers for them.

There is a vast amount of literature on temporal databases. The volume [TCG+93]

provides a survey of current research in the area. In particular, several temporal exten-

sions of SQL can be found there. Bibliographies on temporal databases are provided in

[Sno90, Soo91]. A survey of temporal database research, emphasizing theoretical aspects,

is provided in [Cho94]. Deductive temporal databases are presented in [BCW93]. Exam-

ple 22.6.4 is from [BCW93].

Specification of transition constraints by pre- and postconditions is studied in [CCF82,

CF84]. Transition constraints based on a dynamic version of functional dependencies are

investigated in [Via87], where the interaction between static and dynamic fd’s is discussed.

Constraints of a computational flavor on sequences of objects (object histories) are con-

sidered in [Gin93]. Temporal constraints specified by regular languages of events (where

the events refer to object migration in object-oriented databases) are studied in [Su92].

References [Cho92a, LS87] develop the approach of “history-less” checking of temporal

constraints, as illustrated in Example 22.6.5. This technique is applied to testing real-time

temporal constraints in [Cho92b], providing one approach to monitoring complex events

in an active database system.

Temporal databases are intimately related to temporal logic. Informative overviews of

temporal logic can be found in [Eme91, Gal87].

A survey of dynamic aspects in databases is provided in [Abi88].

Exercises

Exercise 22.1 Show that there are updates expressible by IDM transactions that are not ex-
pressible by ID transactions (i.e., transactions with just insertions and deletions).

Exercise 22.2 Prove the soundness of the equivalence axioms
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mod(C → C ′)del(C ′)≡ del(C)del(C ′)

ins(t)mod(C → C ′) ≡ mod(C → C ′)ins(t ′)

where t satisfies C and {t ′} = mod(C → C ′)({t})

and

del(C3)mod(C1 → C3)mod(C2 → C1)mod(C3 → C2)

≡ del(C3)mod(C2 → C3)mod(C1 → C2)mod(C3 → C1),

where C1, C2, C3 are mutually exclusive sets of conditions.

Exercise 22.3 Show that, for each IDM transaction, there exists a CALC query defining
the same result but that the converse is false. Characterize the portion of CALC (or ALG)
expressible by IDM transactions.

Exercise 22.4 [AV88b] Show that for every IDM transaction there exists an equivalent IDM
transaction of the form td; tm; ti, where td is a sequence of deletions, tm is a sequence of
modifications, and ti is a sequence of insertions.

♠ Exercise 22.5 [VV92] Let t1, . . . tk be IDM transactions over the same relation R. A schedule

s for t1, . . . , tk is an interleaving of the updates in the ti’s, such that the updates of each ti occur
in s in the same order as in ti. The schedule s is serializable if it is equivalent to tσ(1) . . . tσ(k)
for some permutation σ of {1, . . . , k}.

(a) Prove that checking whether a schedule s for a set of IDM transactions t1, . . . , tk is
serializable is np-complete with respect to the size of s.

(b) Show that checking the serializability of a schedule can be done in polynomial time
if the transactions contain no modifications.

♠ Exercise 22.6 [KV90a] Supposem boxesB1, . . . , Bm are given. Initially, each boxBi is either
empty or contains some balls. Balls can be moved among boxes by any sequence of moves,
m(Bj , Bk), each of which consists of putting the entire contents of box Bj into box Bk. Suppose
that the balls must be redistributed among boxes according to a given mapping f from boxes
to boxes [f (Bj) = Bk means that the contents of box Bj must wind up in box Bk after the
redistribution].

(a) Show that redistribution according to a given mapping f cannot always be accom-
plished by a sequence of moves. If it can, the mapping f is called realizable. Char-
acterize realizable redistribution mappings.

(b) A parallel schedule of moves is a partially ordered set of moves (M ,≤) such that in-
comparable moves commute. (Thus incomparable moves are independent and can be
executed in parallel.) A parallel schedule takes time t if the depth of the partial order
is t . Show that the problem of testing if a parallel schedule of moves accomplishes
the redistribution in minimal time (according to a realizable redistribution mapping)
is np-complete with respect to m.

(c) Show that testing if a parallel schedule accomplishes the redistribution in time within
one unit from the minimal time can be done in time polynomial in m.

(d) What is the connection between moving balls and IDM transactions?

Exercise 22.7 Recall the transaction schema T of Example 22.2.1 and the set of constraints
in Example 22.2.2.
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(a) Prove that T is sound and complete with respect to  .

(b) Exhibit instances I and J in Sat( ), where I cannot be transformed into J using T.

(c) Write a transactional schema T′ that is sound and complete for , such that whenever
I, J are in Sat( ), there is a transformation from I to J using T′. (Do not use a T′

that completely empties the database to make a change involving only one student.)

Exercise 22.8 [AV89] Prove Theorem 22.2.3.

Exercise 22.9 Prove the statements in Example 22.2.4.

♠ Exercise 22.10 [AV89]

(a) Prove that it is undecidable whether I ∈ Gen(T) for given IDM transactional schema
T and instance I over a database schema. Hint: Reduce the question of whether
w ∈ L(M) for a word w and Turing machineM to the preceeding problem.

(b) Show that (a) becomes decidable if T is an ID transactional schema (no modifica-
tions). Hint: For I ∈ Gen(T), find a bound on the number of calls to transactions in
T needed to reach I and on the number of constants used in these calls.

(c) Prove that it is undecidable whether Gen(T)= Gen(T′) for given IDM transactional
schemas T and T′.

♠ Exercise 22.11 [AV89]

(a) Show that there is a relation schema R and a join dependency g over R such that
Sat({g}) �= Gen(T) for each IDM transactional schema T over R.

(b) Prove that there is a database schema R and a set  of inclusion dependencies over
R, such that Sat( ) �= Gen(T) for each IDM transactional schema T over R.

♠ Exercise 22.12 [AV89] Prove that it is undecidable whether Gen(T) equals all instances over
R for given IDM transaction schema T over R. What does this say about the decidability of
soundness and completeness of IDM transaction schemas with respect to sets of constraints?

Exercise 22.13 [QW91] Develop expressions for incremental evaluation of the relational alge-
bra operators, analogous to the expression for join in Example 22.3.3. Consider both insertions
and deletions from the base relations.

Exercise 22.14 Recast c-tables in terms of first-order theories. Observe that the approach to
updating c-tables is model based. Given a theory T corresponding to a c-table and an update,
describe how to change T in accordance with the update. Hint: To represent c-tables using a
theory, you will need to use variations of the equality, extension, unique name, and closure
axioms mentioned at the end of Chapter 2.

Exercise 22.15 Prove Proposition 22.4.3.

Exercise 22.16 [FUV83] Given theory T, define T′ �T T′′ if T′ − T ⊂ T′′ − T, or if T′ − T =

T′′ − T and T − T′ ⊆ T − T′′. Thus �T is like ≤T, except that insertions are given priority over
deletions.

Let T be a closed theory, ϕ a sentence not in T, and T′ a closed theory that accomplishes
[insert ϕ] for T. Show that {ϕ}∗ �T T′.

Exercise 22.17 [FUV83] Verify the claim of Example 22.4.5.

Exercise 22.18 [FUV83] Let R[ABC] be a relation schema with functional dependency A→

B, and let I be the instance of Example 22.4.5.
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Consider the view f over S[AB] defined by πAB(R). A complement of this view is
πAC(R). The idea of keeping this complement unchanged while updating the view is captured
by the sentences











∃x(R(a, x, c)),

∃x(R(a, x, c′))

∃x(R(a′, x, c′′))

∃x(R(a′′, x, c′′′))











Let T0 be that set of sentences. Let T1 include the functional dependency and the unique name
axioms. Finally, let T2 include the four atoms of I. Verify that there is a unique tagged theory
that accomplishes the view update [insert S(a, b′′)] with minimal change.

Exercise 22.19 [FUV83] Show that under the formula-based approach to updating theories
presented in Section 22.4,

(a) A sequence of deletions can lead to an exponential blowup in the size of the theory.

(b) Determining the result of an insertion is np-hard.

Exercise 22.20 [DT92, DS93] Give a formal definition of FOID and of FOID with auxiliary
relations. Include the cases in which sets of insertions and/or deletions are permitted.

♠ Exercise 22.21 [DT92]

(a) Verify the claim of Example 22.3.4, that the transitive closure query is FOID.

(b) Consider the datalog program

R(z)← R(x), S(x, y, z)

R(z)← R(y), S(x, y, z)

R(x)← T (x)

An intuitive interpretation of this is that the variables range over nodes in a graph,
and the predicate S(a, b, c) indicates that nodes a and b are connected by an or-gate
to node c. The relation R contains all nodes that have value true, assuming that the
nodes in the input relation T are initially set to true.

Prove that there is a FOID with auxiliary relations for R. Hint: Define a new
derived relationQ that holds paths of nodes with value true.

(c) Prove that there is no FOID without auxiliary relations for R.

⋆ (d) A regular chain program consists of a finite set of chain rules of the form

R(x, z)← R1(x, y1), R2(y1, y2), . . . , Rn(yn−1, z),

where the only idb predicate occurring in the body (if any) is Rn. Show that each
regular chain program is FOID with auxiliary relations. In particular, describe an
algorithm that produces, for each regular chain program defining a predicate R, a
first-order query with auxiliary relations that incrementally evaluates the program.

Exercise 22.22 Specify in detail an active database execution model based on immediate rule
firing.

Exercise 22.23 [ZH90] Recall the accumulating execution model for active databases.
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(a) Exhibit a rule base for which the outcome of execution depends on the order of rule
firing.

(b) Prove Theorem 22.5.2.

⋆Exercise 22.24 [HJ91a] Recall that in the accumulating semantics, rule conditions can access
Iorig and �curr. Consider an alternative semantics that differs from the accumulating semantics
only in that the rule conditions can access only Iorig and Icurr. Suppose that rule conditions have
the expressive power of the relational calculus (and in the case of the accumulating semantics,
the ability to access the sets �+

R = {R(t) | +R(t) ∈�} and �−
R = {R(t) | −R(t) ∈�}). Show

that the accumulating semantics is more expressive than the alternative semantics. Hint: It is
possible that �curr may have “redundant” elements, e.g., an update +R(t), where R(t) ∈ Iorig.
Such redundant elements are not accessible to the alternative semantics.

Exercise 22.25 Consider a base schema B = {R[AB]} and a view f = πAR, as in Exam-
ple 22.3.8(b).

(a) Describe a complement g of f that is not equivalent to ⊤.

(b) Show that each complement g of f expressible in the relational algebra is equivalent
to ⊤.

Exercise 22.26 [BS81] Prove Theorem 22.3.10. Hint: Consider the equivalence relation on
Inst(B) defined by I ≡ I′ iff ∃ update ν ∈ Uf such that I′ = t (ν)(I). Now define the mapping
g : Inst(I)→ Inst(I)/≡ so that g(I) is the equivalence class of I under ≡.
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Paris, 1983.

[Dal87] E. Dalhaus. Skolem normal forms concerning the least fixpoint. In E. Börger, editor,

Computation Theory and Logic, vol. 270, pages 101–106. Springer-Verlag, Berlin, LNCS,

1987.

[Dat81] C. J. Date. Referential integrity. In Proc. of Intl. Conf. on Very Large Data Bases,

pages 2–12, 1981.

[Dat86] C. J. Date. An Introduction to Database Systems. Addison-Wesley, Reading, MA, 1986.

[Daw93] A. Dawar. Feasible Computation through Model Theory. Ph.D. thesis, University of

Pennsylvania, 1993.

[Day89] U. Dayal. Queries and views in an object-oriented data model. In Proc. of Intl. Workshop

on Database Programming Languages, pages 80–102, 1989.

[DB82] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational

views. ACM Trans. on Database Systems, 8(3):381–416, 1982.

[DC72] C. Delobel and R. C. Casey. Decomposition of a database and the theory of boolean

switching functions. IBM J. Research and Development, 17(5):370–386, 1972.

[DD89] L. M. L. Delcambre and K. C. Davis. Automatic validation of object-oriented database

structures. In Proc. IEEE Intl. Conf. on Data Engineering, pages 2–9, 1989.

[Dec86] H. Decker. Extending and restricting deductive databases. Technical Report KB-21, ECRC,

Munich, 1986.

[Del78] C. Delobel. Normalization and hierarchical dependencies in the relational data model. ACM

Trans. on Database Systems, 3(3):201–222, 1978.

[Dem82] R. Demolombe. Syntactical characterization of a subset of domain independent formulas.

Technical Report, ONERA–CERT, Toulouse, 1982.

[DF92] C. J. Date and R. Fagin. Simple conditions for guaranteeing higher normal forms in

relational databases. ACM Trans. on Database Systems, 17:465–476, 1992.

[DG79] B. S. Dreben and W. D. Goldfarb. The Decision Problem: Solvable Classes of

Qualificational Formulas. Addison-Wesley, Reading, MA, 1979.

[DH84] U. Dayal and H. Y. Hwang. View definition and generalization for database integration in a

multidatabase system. IEEE Trans. on Software Engineering, SE-10(6):628–644, 1984.

[DHL91] U. Dayal, M. Hsu, and R. Ladin. A transaction model for long-running activities. In Proc.

of Intl. Conf. on Very Large Data Bases, pages 113–122, 1991.

[DiP69] R. A. DiPaola. The recursive unsolvability of the decision problem for a class of definite

formulas. J. ACM, 16(2):324–327, 1969.



Bibliography 633

[DM86a] E. Dahlhaus and J. A. Makowsky. Computable directory queries. In 11th CAAP 86,

pages 254–265, Springer-Verlag, Berlin, LNCS 214, 1986.

[DM86b] A. D’Atri and M. Moscarini. Recognition algorithms and design methodologies for

acyclic database. In P. C. Kanellakis and F. Preparata, editors, Schemes Advances in Computing

Research, vol. 3, pages 164–185. JAI Press, Inc., Greenwich, CT, 1986.

[DM92] E. Dalhaus and J. A. Makowsky. Query languages for hierarchic databases. Information

and Computation, 101(1):1–32, November 1992.

[DMP93] M. A. Derr, S. Morishita, and G. Phipps. Design and implementation of the Glue-Nail

database system. In Proc. ACM SIGMOD Symp. on the Management of Data, pages 147–156,

1993.

[dMS88] C. de Maindreville and E. Simon. Modelling non-deterministic queries and updates in

deductive databases. In Proc. of Intl. Conf. on Very Large Data Bases, 1988.

[Don92] G. Dong. Datalog expressiveness of chain queries: Grammar tools and characterizations.

In Proc. ACM Symp. on Principles of Database Systems, pages 81–90, 1992.

[DP84] P. DeBra and J. Paredaens. Horizontal decompositions for handling exceptions to functional

dependencies. In H. Gallaire, J. Minker, and J. -M. Nicolas, editors, Advances in Database

Theory, vol. 2, pages 123–144. Plenum Press, New York, 1984.

[dR87] M. de Rougemont. Second-order and inductive definability of finite structures. Zeitschr.

Math. Logik und Grundlagen d. Math., 33:47–63, 1987.

[DS91] G. Dong and J. Su. Object behaviors and scripts. In Proc. of Intl. Workshop on Database

Programming Languages, pages 27–30, 1991.

[DS92] G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by first-

order queries. Technical Report TRCS 92-18, University of California, Santa Barbara, 1992. To

appear in Information and Computation.

[DS93] G. Dong and J. Su. First-order incremental evaluation of datalog queries (extended abstract).

In Proc. of Intl. Workshop on Database Programming Languages, 1993.

[DST93] G. Dong, J. Su, and R. Topor. Nonrecursive incremental evaluation of datalog queries.

Technical Report, Department of Computer Science, University of Melbourne, Australia, 1993.

To appear in Annals of Mathematics and Artificial Intelligence.

[DT92] G. Dong and R. Topor. Incremental evaluation of datalog queries. In Proc. of Intl. Conf. on

Database Theory, pages 282–296, 1992.

[DV91] K. Denninghoff and V. Vianu. The power of methods with parallel semantics. In Proc. of

Intl. Conf. on Very Large Data Bases, pages 221–232, 1991.

[DV93] K. Denninghoff and V. Vianu. Database method schemas and object creation. In Proc. ACM

Symp. on Principles of Database Systems, pages 265–275, 1993.

[DW85] S. W. Dietrich and D. S. Warren. Dynamic programming strategies for the evaluation of

recursive queries. Technical Report TR 85-31, Computer Science Department, SUNY at Stony

Brook, New York, 1985.

[DW87] S. W. Dietrich and D. S. Warren. Extension tables: Memo relations in logic programming.

In Proc. of the Symposium on Logic Programming, 1987.

[DW94] U. Dayal and J. Widom. Active Database Systems. Morgan Kaufmann Publishers, Inc., Los

Altos, CA. In preparation, to appear in 1994.

[EFT84] H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag, Berlin,

1984.

[EGM94] T. Eiter, G. Gottlob, and H. Mannila. Adding disjunction to Datalog. In Proce. ACM

Symp. on Principles of Database Systems, pages 267–278, 1994.



634 Bibliography

[EHJ93] M. Escobar-Molano, R. Hull, and D. Jacobs. Safety and translation of calculus queries

with scalar functions. In Proc. ACM Symp. on Principles of Database Systems, pages 253–264,

1993.

[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem for formalized

theories. Fund. Math., 49:129–141, 1961.

[Eme91] E. A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook of

Theoretical Computer Science, pages 997–1072. Elsevier, Amsterdam, 1991.

[EN89] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings

Publishing Co., Menlo Park, CA, 1989.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York, 1972.

[Esw76] K. P. Eswaran. Aspects of a trigger subsystem in an integrated data base system. In

Proceedings of the 2nd International Conference in Software Engineering, San Francisco, CA,

pages 243–250, 1976.

[ESW78] R. Epstein, M. Stonebraker, and E. Wong. Distributed query processing in a relational

database system. In Proc. ACM SIGMOD Symp. on the Management of Data, pages 169–180,

1978.

[Fag72] R. Fagin. Probabilities on finite models. Notices of the American Mathematical Society,

October: A714, 1972.

[Fag75] R. Fagin, Monadic generalized spectra. Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, 21:89–96, 1975.

[Fag76] R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–58, 1976.

[Fag77a] R. Fagin. The decomposition versus synthetic approach to relational database design. In

Proc. of Intl. Conf. on Very Large Data Bases, pages 441–446, 1977.

[Fag77b] R. Fagin. Multivalued dependencies and a new normal form for relational databases. ACM

Trans. on Database Systems, 2:262–278, 1977.

[Fag79] R. Fagin. Normal forms and relational database operators. In Proc. ACM SIGMOD Symp.

on the Management of Data, pages 153–160, 1979.

[Fag81] R. Fagin. A normal form for relational databases that is based on domains and keys. ACM

Trans. on Database Systems, 6(3):387–415, 1981.

[Fag82a] R. Fagin. Armstrong databases. In Proc. IBM Symp. on Mathematical Foundations of

Computer Science, 1982.

[Fag82b] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985, 1982.

[Fag83] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM,

30(3):514–550, 1983.

[Fag93] R. Fagin. Finite-model theory—A personal perspective. Theoretical Computer Science,

116:3–31, 1993.

[FC85] A. L. Furtado and M. A. Casanova. Updating relational views. In W. Kim, D. S. Reiner, and

D. S. Batory, editors, Query Processing in Database Systems. Springer-Verlag, Berlin, 1985.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT

Press, Cambridge, MA, 1995.

[Fit85] M. Fitting. A Kripke-Kleene semantics of logic programs. Logic Programming, 4:295–312,

1985.

[FJT83] P. C. Fischer, J. H. Jou, and D. M. Tsou. Succinctness in dependency systems. Theoretical

Computer Science, 24:323–329, 1983.

[FKL97] J. Flum, M. Kubierschky, and B. Ludaescher. Total and partial well-founded datalog

coincide. To appear, Proc. of Intl. Conf. on Database Theory, 1997.



Bibliography 635

[FKUV86] R. Fagin, G. Kuper, J. D. Ullman, and M. Y. Vardi. Updating logical databases. In

P. C. Kanellakis and F. Preparata, editors, Advances in Computing Research, vol. 3, pages 1–18.

JAI Press, Inc., Greenwich, CT, 1986.

[FM92] J. A. Fernandez and J. Minker. Semantics of disjunctive deductive databases. In Proc. of

Intl. Conf. on Database Theory, pages 21–50. Springer-Verlag, Berlin, LNCS 646, 1992.

[FMU82] R. Fagin, A. O. Mendelzon, and J. D. Ullman. A simplified universal relational assumption

and its properties. ACM Trans. on Database Systems, 7(3):343–360, 1982.

[FNS91] C. Faloutsos, R. Ng, and T. Sellis. Predictive load control for flexible buffer allocation. In

Proc. of Intl. Conf. on Very Large Data Bases, pages 265–274, 1991.

[For81] C. L. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie-Mellon

University, 1981.

[For82] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence, 19:17–37, 1982.
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[SZ90] D. Saccà and C. Zaniolo. Stable models and non-determinism in logic programs with

negation. In Proc. ACM Symp. on Principles of Database Systems, pages 205–217, 1990.

[Tan88] L. Tanca. Optimization of Recursive Logic Queries to Relational Databases. Ph.D. thesis,

Politecnico di Milano and Universita’ di Napoli, 1988.

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J. Math,

5(2):285–309, 1955.

[TCG+93] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal

Databases – Theory, Design, and Implementation. Benjamin/Cummings Publishing Co., Menlo

Park, CA, 1993.

[TF82] D. -M. Tsou and P. C. Fischer. Decomposition of a relation scheme into Boyce-Codd normal

form. SIGACT News, 14(3):23–29, 1982.

[TF86] S. J. Thomas and P. C. Fischer. Nested relational structures. In P. C. Kanellakis and

F. Preparata, editors, Advances in Computing Research, vol. 3, pages 269–307. JAI Press, Inc.,

Greenwich, CT, 1986.

[Tha91] B. Thalheim. Dependencies in Relational Databases. Teubner Verlagsgesellschaft, Stuttgart

and Leipzig, 1991.



654 Bibliography

[TK84] V. A. Talanov and V. V. Knyazev. The asymptotic truth value of infinite formulas. In

All-union seminar on discrete mathematics and its applications, pages 56–61, 1984.

[TL82] D. C. Tsichritzis and F. H. Lochovsky. Data Models. Prentice-Hall, Englewood Cliffs, NJ,

1982.

[Tod77] S. Todd. Automatic constraint maintenance and updating defined relations. In B. Gilchrist,

editor, Proc. IFIP 77, pages 145–148. North Holland, Amsterdam, 1977.

[Top87] R. Topor. Domain independent formulas and databases. Theoretical Computer Science,

52(3):281–307, 1987.

[Top91] R. Topor. Safe database queries with arithmetic relations. Technical Report, Computer

Science Department, University of Melbourne, 1991. Abstract appears as Safe Database

Queries with Arithmetic Relations, Proc. 14th Australian Computer Science Conf., Sydney,

1991, pp. 1–13.

[TS88] R. W. Topor and E. A. Sonenberg. On domain independent databases. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming, pages 217–240. Morgan

Kaufmann, Inc., Los Altos, CA, 1988.

[TT52] A. Tarski and F. B. Thompson. Some general properties of cylindric algebras. Bulletin of

the AMS, 58:65, 1952.

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. on

Computing, 13(3):566–579, 1984.

[TYF86] T. J. Teorey, D. Yand, and J. P. Fry. A logical design methodology for relational databases

using the extended entity-relationship model. In ACM Computing Surveys, pages 197–222,

1986.

[UG88] J. D. Ullman and A. Van Gelder. Parallel complexity of logical query programs.

Algorithmica, 3(1):5–42, 1988.

[Ull82a] J. D. Ullman. The U.R. strikes back. In Proc. ACM Symp. on Principles of Database

Systems, pages 10–22, 1982.

[Ull82b] J. D. Ullman. Principles of Database Systems, 2d ed. Computer Science Press, Rockville,

MD, 1982.

[Ull85] J. D. Ullman. Implementation of logical query languages for databases. ACM Trans. on

Database Systems, 10(3):289–321, 1985.

[Ull88] J. D. Ullman. Principles of Database and Knowledge Base Systems, vol. I . Computer

Science Press, Rockville, MD, 1988.

[Ull89a] J. D. Ullman. Bottom-up beats top-down for datalog. In Proc. ACM Symp. on Principles of

Database Systems, pages 140–149, 1989.

[Ull89b] J. D. Ullman. Principles of Database and Knowledge Base Systems, vol. II: The New

Technologies. Computer Science Press, Rockville, MD, 1989.

[Van86] A. Van Gelder. A message passing framework for logical query evaluation. In Proc. ACM

SIGMOD Symp. on the Management of Data, pages 155–165, 1986.

[VandB93] J. Van den Bussche. Formal Aspects of Object Identity. Ph.D. thesis, University of

Antwerp, 1993.

[VandBG92] J. Van den Bussche and D. Van Gucht. Semi-determinism. In Proc. ACM Symp. on

Principles of Database Systems, pages 191–201, 1992. (Full version to appear in Journal of

Computer and System Sciences.)

[VandBGAG92] J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On the



Bibliography 655

completeness of object-creating query languages. In IEEE Conf. on Foundations of Computer

Science, pages 372–379, 1992.

[VandBP95] J. Van den Bussche and J. Paredaens. The expressive power of complex values in

object-based data models. In Information and Computation, 120:220–236, August, 1995.

[VanG86] A. Van Gelder. Negation as failure using tight derivations for general logic programs. In

IEEE Symp. on Logic Programming, pages 127–139, 1986.

[VanG89] A. Van Gelder. The alternating fixpoint of logic programs with negation. In Proc. ACM

Symp. on Principles of Database Systems, pages 1–11, 1989.

[VanGRS88] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. In Proc. ACM Symp. on Principles of Database Systems, pages 221–230, 1988.

[VanGRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. J. ACM, 38:620–650, 1991.

[VanGT91] A. Van Gelder and R. Topor. Safety and translation of relational calculus queries. ACM

Trans. on Database Systems, 16:235–278, 1991.

[Var81] M. Y. Vardi. The decision problem for database dependencies. Inf. Proc. Letters, 12(5):251–

254, 1981.

[Var82a] M. Y. Vardi. The complexity of relational query languages. In Proc. ACM SIGACT Symp.

on the Theory of Computing, pages 137–146, 1982.

[Var82b] M. Y. Vardi. On decomposition of relational databases. In IEEE Conf. on Foundations of

Computer Science, pages 176–185, 1982.

[Var83] M. Y. Vardi. Inferring multivalued dependencies from functional and join dependencies.

Acta Informatica, 19:305–324, 1983.

[Var84] M. Y. Vardi. The implication and finite implication problems for typed template

dependencies. Journal of Computer and System Sciences, 28:3–28, 1984.

[Var85] M. Y. Vardi. Querying logical databases. In Proc. ACM Symp. on Principles of Database

Systems, pages 57–65, 1985.

[Var86a] M. Y. Vardi. On the integrity of databases with incomplete information. In Proc. ACM

Symp. on Principles of Database Systems, pages 252–266, 1986.

[Var86b] M. Y. Vardi. Querying Logical Databases. J. Computer and Systems Sciences, 33,

pages 142–160, 1986.

[Var87] M. Y. Vardi. Fundamentals of dependency theory. In E. Borger, editor, Trends in Theoretical

Computer Science, pages 171–224. Computer Science Press, Rockville, MD, 1987.

[Var88] M. Y. Vardi. Decidability and undecidablity results for boundedness of linear recursive

queries. In Proc. ACM Symp. on Principles of Database Systems, pages 341–351, 1988.

[Vas79] Y. Vassiliou. Null values in database management, A denotational semantics approach. In

Proc. ACM SIGMOD Symp. on the Management of Data, pages 162–169, 1979.

[Vas80] Y. Vassiliou. A Formal Treatment of Imperfect Information in Data Management. Ph.D.

thesis, University of Toronto, 1980.

[VBKL89] L. Vieille, P. Bayer, V. Kuchenoff, and A. Lefebvre. Eks-v1: A short overview. In Proc.

ACM SIGMOD Symp. on the Management of Data, 1989. Technical exhibition.

[vEK76] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming

language. J. ACM, 23(4):733–742, 1976.

[Ver89] J. Verso. Verso: a database machine based on non-1nf relations. In H. Schek, S. Abiteboul,

P. Fisher, editors, Nested Relations and Complex Objects, LNCS, page 361. Springer-Verlag,

Berlin, 1989.



656 Bibliography

[Via87] V. Vianu. Dynamic functional dependencies and database aging. J. ACM, 34(1):28–59,

1987.

[Via88] V. Vianu. Database survivability under dynamic constraints. Acta Informatica, 25:55–84,

1988.

[Vie86] L. Vieille. Recursive axioms in deductive databases: The Query/Subquery approach. In

L. Kerschberg, editor, Proc. First Intl. Conf. on Expert Database Systems, pages 179–193,

1986.

[Vie87a] L. Vieille. A database-complete proof procedure based on sld-resolution. In Proc. of the

Fourth Intl. Conf. on Logic Programming, pages 74–103, 1987.

[Vie87b] L. Vieille. Recursion in deductive databases: DedGin, a recursive query evaluator. In Des

Bases de Données aux Bases de Connaissances, Sophia-Antipolis, France, 1987. Also available

as Technical Report TR-KB-14, ECRC, Munich.

[Vie88] L. Vieille. From QSQ towards QaSSaQ: Global optimization of recursive queries. In

L. Kerschberg, editor, Proc. Second Intl. Conf. on Expert Database Systems, pages 421–436,

1988.

[Vie89] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science,

69:1–53, 1989.

[Vos91] G. Vossen. Data Models, Database Languages and Database Management Systems.

Addison-Wesley, Wokingham, England, 1991.

[VV92] V. Vianu and G. Vossen. Conceptual-level concurrency control for relational update

transactions. Theoretical Computer Science, 95:1–42, 1992.

[WF90] J. Widom and S. J. Finkelstein. Set-oriented production rules in relational database systems.

In Proc. ACM SIGMOD Symp. on the Management of Data, pages 259–264, 1990.

[WH92] Y. -W. Wang and E. N. Hanson. A performance comparison of the Rete and TREAT

algorithms for testing database rule conditions. In IEEE Conf. on Data Engineering, pages 88–

97, 1992.

[WHW90] S. Widjojo, R. Hull, and D. S. Wile. A specificational approach to merging persistent

object bases. In A. Dearle, G. Shaw, and S. Zdonik, editors, Implementing Persistent Object

Bases: Proc. of Fourth Intl. Workshop on Persistent Object Systems, pages 267–278. Morgan

Kaufmann, Inc., Los Altos, CA, 1990.

[Wie92] G. Wiederhold. Mediators in the architecture of future information systems. IEEE

Computer, 25(3):38–49, March 1992.

[Win86] M. Winslett. A model-theoretic approach to updating logical databases. In Proc. ACM

Symp. on Principles of Database Systems, pages 224–234, 1986.

[Win88] M. Winslett. A framework for comparison of update semantics. In Proc. ACM Symp. on

Principles of Database Systems, pages 315–324, 1988.

[WO90] O. Wolfson and A. Ozeri. A new paradigm for parallel and distributed rule-processing. In

Proc. ACM SIGMOD Symp. on the Management of Data, pages 133–142, 1990.

[Won93] L. Wong. Normal forms and conservative properties for query languages over collection

types. In Proc. ACM Symp. on Principles of Database Systems, pages 26–36, 1993.

[WS88] O. Wolfson and A. Silberschatz. Distributed processing of logic programming. In Proc.

ACM SIGMOD Symp. on the Management of Data, pages 329–336, 1988.

[WW75] C. P. Wang and H. H. Wedekind. Segment synthesis in logical data base design. IBM J.

Res. and Develop., 19:71–77, 1975.



Bibliography 657

[WY76] E. Wong and K. Youssefi. Decomposition—A strategy for query processing. ACM Trans.

on Database Systems, 1(3):223–241, 1976.

[Yan81] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of Intl. Conf. on Very

Large Data Bases, pages 82–94, 1981.

[YC84] C. T. Yu and C. C. Chang. Distributed query processing. ACM Computing Surveys, 16,

1984.
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functional paradigm, 50
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conjunctive normal form (CNF), 21, 83
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program, 49
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constraint, 186
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CWA. See Closed World Assumption.

cylindric algebra

vs. relational algebra, 96, 103

dangling reference, 999, 572

data complexity, 122, 422–423

data definition language (DDL), 4, 28

data function, 306

data independence principle, 4, 9

data integrity, 162

data manipulation language (DML), 4, 28

data model. See database model.

data storage, 106

database access functional paradigm, 571
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conventional perspective, 32

logic-programming perspective, 32

database logic, 97

database management system, 3

database model, 4, 7, 28

complex value, 508–541

directory, 97

Entity-Relationship (ER), 242

functional, 574

Functional Data Model, 264
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Logical Data Model (LDM), 97

network, 28, 97

object-oriented, 28; See object-oriented database.

relational, 28–34
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with dependencies, 241, 251

datalog, 39, 273–310

bottom-up, 312–316, 324–335

vs. top-down, 311, 327, 336

boundedness, 285, 304, 309

vs. first-order, 306

chain program, 303, 305, 309

clause, 288
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ground, 288
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complex value, 532, 533
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and domain independence, 97

evaluation, 112, 311–337

adorned rule, 318, 321
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Alexander method, 336

algebraic approaches, 336
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APEX, 335

bottom-up, 312–316, 324–335

bound coordinate, 318
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counting, 327, 331–335, 336, 341

direct evaluation, vs. pre-compilation, 317
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extension tables, 335

factoring, 337
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generalizations to logic programming, 336

generalized supplementary magic set rewriting,
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Iterative Query-Subquery (QSQI), 339

left-to-right, 318

magic set rewriting, vs. QSQ, 311, 324–335,
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parallel, 337

pre-compilation, vs. direct evaluation, 317

Query-Subquery (QSQ), 311, 317–324, 335,
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Recursive Query-Subquery (QSQR), 323–324,
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algorithm, 312–316, 335
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SLD-AL, 335

stratification, 337

supplementary relation, 319–320

top-down, 316–324
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linear program, 305, 316

linear rule, 316
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generalized supplementary, 325, 336

original, 340

vs. QSQ, 324
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and undecidability, 306, 308–311
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SLDNF resolution, 406
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nonrecursive, 70, 72–73
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stratified semantics, 377–385

independence of stratification, 382
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on ordered databases, 406

precedence graph, 379
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stratification, 378

stratification mapping, 378

vs. Fermat’s Last Theorem, 411
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supported model, 384, 411
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valid model semantics, 409

well-founded, 374
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3-valued model, 387

alternating fixpoint, 390, 408, 413

global SLS-resolution, 409
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DDL, 28; See data definition language.
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deductive temporal query language, 610

deep equality, 557, 575

default logic, 408

definite clause, 288

definite query, 97
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dynamic, 234

embedded, 192, 217, 233

embedded implicational (eid), 233

embedded join (ejd), 218, 233

embedded multivalued (emvd), 218, 220, 233

equality-generating (egd), 217–228

extended transitive, 234

faithful, 232, 233, 239

finiteness, 306

full, 217

functional (fd), 28, 159, 163–169, 163, 186, 218,

250, 257, 260

general, 234

generalized dependency constraints, 234

generalized mutual, 234

implication

in view, 221

implication of, 160, 164, 193, 197

implicational (id), 233

implied, 234

inclusion (ind), 161, 192–211, 193, 218, 250

acyclic, 207, 208–210, 211, 250

key-based, 250, 260

typed, 213

unary (uind), 210–211

inference rule, 166, 172, 193, 227, 231

ground, 203

join (jd), 161, 169–173, 170, 218

key, 157, 163–169, 163, 267

logical implication of, 160, 164

finite, 197

unrestricted, 197

multivalued (mvd), 161, 169–173, 170, 186, 218

mutual, 233

named vs. unnamed perspectives, 159

order, 234

partition, 234

projected join, 233

and query optimization, 163

satisfaction, 160

satisfaction by tableau, 175

satisfaction family, 174

and semantic data models, 249–253

and schema design, 253–262

single-head vs. multi-head, 217

sort set, 191, 213, 234

subset, 233

tagged, 164, 221, 241

template, 233, 236

transitive, 234

trivial, 220

tuple-generating (tgd), 217–228

typed, 159

vs. untyped, 192, 217

unirelational, 217

and update anomalies, 162

and views, 221, 222

vs. first-order logic, 159, 234

vs. integrity constraint, 157

vs. tableaux, 218, 234

dependency basis, 172

dependency preserving decomposition, 254

dependent class, 246

dereferencing, 557, 558

derivation, 290
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derived data, 246

determinate-completeness, 474, 561, 574

determinate query, 474, 559

diameter, 12

diff, 88

difference, 33, 36, 68

in relational algebra, 71

and SPCU algebra, 136

in SQL, 146

vs. negation, 70

direct product, 232, 238

directory model, 97

disjunction, 38

in conjunctive queries, 37, 38, 61, 64

flatten, 83

and negation, 74

in selection formulas, 62

disjunctive deductive database, 502

disjunctive normal form (DNF), 21, 83

disk, 106

distinct in SQL, 107, 145, 154

distributed database

query optimization, 128

division in relational algebra, 99

DML, 4, 28

DNF, 83

dom, 30, 72

Dom(·), 30

domain

active, 46

in relational model, 29, 30

scalar, 153

time, 607

underlying, 74

domain calculus, 74

vs. tuple calculus, 39

Domain Closure axiom, 26

domain independence, 70, 74, 75–77, 79, 81–97

and algebra, 78

complex value, 526

and datalog, 97

and dependencies, 97

with functions, 97

and nr-datalog¬, 78

with order, 97

practical query languages, 153

relational calculus, 81

syntactic restrictions, 81–91

undecidability, 97, 125

vs. active domain semantics, 79

domain-inclusion semantics, 551

domain-key normal form, 265

dominance of query languages (⊑), 47

DOOD. See deductive object-oriented database.

duplicate elimination, 107

distinct, 107

duplicate tuples, 144

dynamic aspect of object-oriented database, 572

dynamic binding, 543, 546, 552

dynamic choice operator, 464

Dynamic Logic Programming (DLP), 583, 613

ear of hypergraph, 130

Earley Deduction, 335

edb, 42, 49, 277

edge of hypergraph, 130

egd, 217–228

A-egd, 218

Ehrenfeucht-Fraissé games, 433–437, 460

eid, 233

ejd, 218

EKS, 410

elementary functions, 18

elementary query, 534

embedded dependency, 192, 217

embedded implicational dependency (eid), 233

embedded join dependency (ejd), 218

embedded multivalued dependency (emvd), 218,

220, 233

embedding of tableau, 43

empty clause, 288

emvd, 218, 220, 233

encα,, 418

encapsulation, 543, 546, 553

entity, 543

Entity-Relationship (ER) model, 242, 264

equality atom, 217

equality-generating dependency (egd), 217–228

A-egd, 218

equi-join, 55, 108

physical implementation, 107–108

in SQL, 144

vs. natural join, 57

equivalence

algebraic, 106

calculus formulas, 82

conjunctive calculus formulas, 46

conjunctive queries, 47, 60, 64, 82, 105

decidability, 118

conjunctive queries with union, 63

differences of SPCU queries, 140

finite and unrestricted implicaton for full

dependencies, 220, 234

first-order languages, 36, 80, 96

first-order queries, 74



Index 669

undecidability, 125

of full typed and algebraic dependencies, 231

of hypergraph properties, 132

nr-datalog¬ and relational algebras, 73

queries, 37

relative to dependencies, 176, 177

query languages, 47

relational algebras, 71

SPC and SPJR algebras, 60

equivalence class, 10

equivalence relation, 10

Equivalence Theorem

conjunctive query languages, 60

conjunctive query languages with union, 63

first-order languages, 80

ER model, 242

ESQL, 368, 370

evaluable query, 97

evaluation

of conjunctive queries, 56

datalog, 112, 311–337

evaluation plan, 107, 108, 110, 135

generating, 110–111

parameterized, 135

exact cover problem, 121

existential quantification, 44

flatten, 83

vs. universal, 74

Exodus

and optimization, 135

and query evaluation plans, 111

expert system vs. conjunctive queries, 135

expression complexity, 122, 422–423, 463

expressive power of object-oriented database, 569,

577

extended relational theory, 26

extension axioms, 26

extension tables, 335

extensional database edb, 42, 49, 279

extensional relation, 42, 48, 277

F-logic, 574

fact, 32

factoring, 337

faithful dependency, 232, 233, 239

vs. typed, 233

fd, 28, 159, 160, 163–169, 163, 186, 218. See

functional dependency

fd closure

algorithm, 165

of set of attributes, 165

of set of fd’s, 165

fd rule in chasing, 175

fd-schema, 251

field, real closed, 97

file systems, 3

filter, 518

finitary power set, 10

finite interpretation, 26

finite logical implication, 197–202, 219

vs. unrestricted, 197

finite model theory, 123, 197

finite representation of infinite database, 93–96, 97

finite-state automata, 13

finitely implies, 198

finiteness dependency, 306

first normal form, 265

first-order incremental definability, 588, 613

first-order language, 70–98

Equivalence Theorem, 80

and undecidability, 122–126

vs. SQL, 147–149, 155

first-order logic, 22, 35

vs. conjunctive queries, 40

vs. constraints, 234

vs. dependencies, 159, 234

vs. integrity constraints, 186

vs. relational calculus, 77, 105, 123, 136

first-order predicate calculus, 22, 35

first-order queries, 70–98, 70

and dependencies in views, 222

equivalence, 74

expressiveness, 433–437

Ehrenfeucht-Fraissé games, 433–437, 460

on ordered databases, 462

logspace complexity, 430–431

parallel complexity, 431–433

static analysis, 105, 122–126

and undecidability, 105, 122–126

fixpoint

complex value, 531–532

datalog, 276

incomplete database, 495

semantics of datalog¬, 390

fixpoint of an operator, 283

fixpoint queries, 342, 367

on ordered databases, 447

ptime complexity, 437

vs. while queries, 453

flatten, 524

FOID, 588

format model, 539

formula, 22

conjunctive calculus, 45

conjunctive normal form (CNF), 83
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formula (continued)

disjunctive normal form (DNF), 83

interpretable, 77

matrix of, 82

prenex normal form (PNF), 82

relational calculus, 74–75

4NF, 252, 252, 259

fourth normal form (4NF), 252, 252, 259

Foxpro, 152

FQL, 264

free(·), 45, 75

free coordinate

in datalog evaluation, 318

free tuple, 33

free variable occurrence, 23, 45, 75

fsa. See finite-state automata.

full dependency, 217

full reducer, 129, 136

full tuple generating dependency, 218

full typed dependencies

axiomatization, 227–228

function-based perspective on tuples, 32

Functional Data Model, 264

functional dependency (fd), 28, 163–169, 163, 186,

218

agreement set, 188

axiomatization, 166–168

with mvd’s, 172–173

vs. ind’s, 192, 202–207, 211

and chasing, 175

closure, 165

cover, 254

and decomposition, 162, 164, 171, 253–262, 255

dynamic, 615

independent of ind’s, 250

logical implication

with ind’s, 192, 199–202

linear time, 165

satisfies, 163

saturated set, 188

and synthesis, 260–261

and two-element instances, 189

vs. decomposition, 164, 171

vs. join dependency, 171, 178

vs. multivalued dependency, 171

vs. propositional logic, 186, 189

vs. semantic data model, 249–253

vs. unrestricted implication, 199

vs. propositional logic, 189

functional paradigm, 569

functional query language, 569

GP , 379

Galileo, 264

game-of-life, 343

garbage collection, 556

Gauss-Seidel algorithm, 335

generalized instance, 95

generalized SPC algebra, 55

generalized SPJR algebra, 59

generalized tuple, 94, 95

generic OODB model, 547–556

generic semantic model (GSM), 242–250

genericity, 103, 419–421, 419, 425

globally consistent join, 128, 136, 261

GLUE-NAIL, 337

goal clause, 288

Gödel Completeness Theorem, 123, 136

graph, 11

graphical query language, 150–153

Graphlog, 369, 370

ground, 22

ground atom, 34

ground clause, 288

ground inference rule, 203

group by in SQL, 154

grouping, 533

GSM, 242–250

GYO algorithm, 130, 136

GYO reduction, 141

hash index, 107

head of rule, 39, 41, 276

Heraclitus, 614

Herbrand interpretations, 23

Herbrand model

datalog, 282

hierarchy model, 28, 97

homomorphism, 12

of tableau queries, 117, 127, 136

Homomorphism Theorem, 37, 105, 115–118, 117,

127, 136, 177, 178

Horn clause, 279

hyp, 18

hyperedge, 130

hypergraph, 130

acyclic, 132

articulation set, 132

connected, 132

cyclic, 132

of database schema, 130

ear, 130

edge, 130

GYO algorithm, 130
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path, 132

reduced, 130

hyperplane, 438

I1, I1/2, I0, 387

I∗,I∗,I∗
∗, 391

idb, 42, 49, 277

IDM transaction, 580–582, 613, 615–617

axiomatization, 581

condition, 580

deletion, 615

insertion, 615

modification, 615

optimization, 581

parallelization, 616

schedule, 616

serializability, 616

simplification rules, 582

IDM transactional schema, 584, 613, 617

vs. constraints, 585–586

completeness, 617

soundness, 617

vs. fd’s, 585

vs. inclusion dependencies, 585, 617

vs. jd’s, 617

IFO, 242, 264

ILOG, 576

image of calculus query, 78

immediate consequence operator, 282

imperative method, 564–566, 573

implementation

cross product, 108

equi-join, 107–108

multi-way join, 111–115

physical, 106–108

projection, 107

relational algebra, 107–108

selection, 107

implication

and chase, 180–182, 186

closed under, 204

closed under k-ary, 204

of dependencies, 158, 160, 164, 195

in view, 221

of fd’s and ind’s, 192

finite, 197–199, 226

finite vs. unrestricted, 202, 219, 234

of functional dependencies, 186

of ind’s, 192, 195–197

for two-element instances, 189

unrestricted, 197–199

vs. fd’s and ind’s, 199–202

implicational dependency (id), 233

implies. See implication.

finitely, 198

without restriction, 198

inclusion dependency (ind), 161, 192–211, 193, 218,

253

acyclic, 208, 210, 211, 250

vs. implication, 210

axiomatization, 193–195, 211

vs. fd’s, 192, 202–207, 211

and chasing, 208

independent of fd’s, 250

key-based, 250, 260

logical implication, 192, 195–197

with fd’s, 192, 199–202

repeats-permitted, 212

restricted classes, 192

satisfies, 193

typed, 211

vs. referential integrity, 211

vs. semantic data model, 207

vs. unrestricted implication, 199

incomplete database, 487–507

c-table, 493

update, 593–594

complexity, 499

fixpoint, 495

logical theory, 594–600

and nondeterminism, 507

table, 488

incomplete information

and update anomalies, 162

incremental update. See first-order incremental

definability.

ind, 161; See inclusion dependency.

ind-rule in chasing, 208

independent component, 265

indexing, 106, 107

inequality atom

in selections, 69

inequality in constraint databases, 96

inference rule, 24, 158

ground, 202, 203

schema, 202

substitution, 167

inference rules

for fd’s and mvd’s, 172–173, 186

for functional dependency, 166–168, 186

for inclusion dependency, 193–195

proof using, 167

provable using, 167

for unary inds, 210, 215

vs. algorithm for testing implication, 166
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inference rules (continued)

vs. axiom, 167

infinitary logic, 458, 459, 462

infinite database, 97

finite representation, 36, 93–96, 97

infinite tree, 575

inflationary datalog¬, 356

inflationary fixpoint logic (CALC+µ+), 352,

353–354

inflationary fixpoint operator (µ+), 353

information capacity

relative, 265, 268–269

INGRES, 34, 111, 155

distributed, 135

query optimizer, 114–115, 127, 135, 137

inheritance, 546, 552, 553, 567, 573–575, 577

semantic data model, 245

input schema of query, 37

insert in SQL, 149

insertion, 580

insertion anomaly, 162

instance

complex value, 512

database, 29

conventional perspective, 32

logic-programming perspective, 32

generalized, 95

GSM, 245

object-oriented database, 554, 555

relation

conventional perspective, 32

logic-programming perspective, 32

relativized, 77

semantic data model, 245

unrestricted, 197

instantiation, 277

integrity constraint, 6, 28, 157, 186

vs. first-order logic, 186, 234

intended model, 279

intensional database (id6), 42, 49, 279

intensional relation, 42, 48, 277

interpretable formula, 77

interpretation, 23

active domain, 79

natural, 78

relativized, 74, 77–78

unrestricted, 78

intersection, 33

in relational algebra, 71

and SPC algebra, 55, 69

in SQL, 146

vs. join, 58

invented value, 469

IQL, 573

irreflexive, 11

ISA, 543, 545

semantic data model, 245

isomorphic tableau queries, 120

isomorphism, 12

OID, 555

iterate, 518

Iterative QSQ (QSQI), 339

Jacobi algorithm, 335

jd, 161, 169–173, 218. See join dependency

jd rule, in chasing, 175

join, 55,57

acyclic, 105, 126, 128–135, 136

algorithms for binary join, 135

complex value, 517

decomposition, 106, 114

equi-join, 55, 57, 108

implementation, 111–115

left-to-right evaluation, 112

lossless, 164, 253

multi-way, 106, 108, 135

natural, 56, 57, 169

vs. equi-join, 57

pairwise consistent, 128, 136

physical implementation, 107–108

semi-join, 128, 135

in SQL, 144

tuple substitution, 115, 135

vs. cross product, 58

vs. intersection, 58

vs. tableau, 64

join decomposition, 114–115

join dependency (jd), 161, 169–173, 170, 218

acyclic, 169, 182–183, 186

and mvd’s, 182

and chasing, 175

complexity of implication, 169

and decomposition, 169–171

embedded, 233

Gentzen-style axiomatization, 186

n-ary, 170

projected, 233

satisfies, 170

vs. axiomatization, 171, 186

vs. functional dependency, 169, 171, 178

vs. multi-valued dependency, 170, 182

vs. natural join, 169

vs. SPJR algebra, 181

vs. unrestricted implication, 199
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join detachment, 114, 135

join tree, 130, 136

k-ary axiomatization, 202, 204

key, 257, 543

attribute, 257

in semantic data model, 247

key dependency, 163

simple, 267

vs. functional dependency, 161

key-based inclusion dependency, 250, 260

KL, 503

Knaster-Tarski’s Theorem, 286

lambda-calculus, 574

language (formal), 13–20

late binding, 552

LDL, 337, 409, 533, 538, 613

update language, 583

left-to-right evaluation

datalog, 318

join, 112

linear bounded Turing machine, 196

linear datalog, 305, 316

linear programming, 97

Lisp, 573

literal, 21

in nr-datalog¬ rule, 72

local stratification, 411

logic. See mathematical logic.

temporal, 612, 619

three-valued, 389–391

logic programming, 97

constraints, 97

object-oriented database, 572

vs. datalog, 35

logic-programming perspective on relations, 32, 33

Logical Data Model (LDM), 97

logical database, 503

logical implication, 21

and chase, 180–182, 186

closed under, 204

closed under k-ary, 204

of dependencies, 160, 164, 193

in view, 221

of fd’s, 165, 186

of fd’s and ind’s, 192

finite, 197–199

vs. unrestricted, 202, 219, 234

full dependencies

complexity, 221

of ind’s, 192, 195–197

of mvd’s,172–173

unrestricted, 197–199

logical level of three-level architecture, 106

logical theory and updates, 594

logspace complexity

of first-order queries, 430–431

lossless join, 164, 253

Löwenheim-Skolem theorem, 25

magic set rewriting, 311, 324–335

generalized supplementary, 325, 336

original, 340

vs. QSQ, 324, 327

main-memory buffering, 106, 107

many-sorted query language, 153–154

map, 540

map filter, 518

materizialized view, 51

mathematical logic, 20–27

matrix of formula, 82

maximum in SQL, 154

memo-ing, 335

message, 552

method, 543, 551

languages, 563–571

method resolution, 546, 552

method schema, 563, 566–571

monadic, 543, 563, 565, 567, 568, 577

polyadic, 567, 568, 577

mgu, 295

Microsoft Access, 36, 143, 150, 152–153, 155

minimal cover, 257

minimal tableau query, 118

minimization of tableau queries, 105, 119, 136

minimum in SQL, 154

minimum model, 275

modal operator, 503

model, 24

database, 28

datalog, 279

relational, 28–34

semantic data, 243, 245–253, 267

modification, 580

modification anomaly, 162

modified RANF, 88

modus ponens, 24

monadic datalog program, 305

monadic method schema, 543, 563, 565, 567, 568,

577

monoid, 199

monotone operator, 283
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monotonic query, 42

monotonicity

and conjunctive queries, 42

and relational algebra, 71, 98

most general unifier (mgu), 293

multi-head dependency, 217

multi-way join

decomposition, 114–115

detachment, 114, 135

implementation, 106, 108, 111–115, 135

left-to-right evaluation, 112

tuple substitution, 115, 135

multiset, 92, 136, 145

multivalued dependency (mvd), 161, 169–173, 170,

186, 218

and acyclic jd’s, 182

axiomatization with fd’s, 172–173

dependency basis, 172

embedded, 218, 220, 233

original definition, 189

satisfies, 170

and two-element instances, 189

vs. functional dependency, 171

vs. join dependency, 170

vs. propositional logic, 189

mutual recursion, 315

mvd, See multivalued dependency.

N-datalog¬(¬), 463

N1NF. See nested relation.

NAIL!, 337, 409

naive evaluation

of datalog, 312

of SPC query, 109

naive table, 492

named perspective, 31, 32

and dependencies, 159

projection, 57

relational algebra, 71

selection, 57

SPJR algebra, 56–59, 57

tuple, 32

vs. unnamed perspective, 32

named value, 554, 556

root of persistence, 556

natural interpretation, 78

natural join, 56, 57, 169

polyadic, 58

vs. equi-join, 57

vs. join dependency, 169

natural semantics of relational calculus, 78, 79

nc, 96, 431

negation, 36

in Microsoft Access, 153

pushing, 83

in QBE, 150

in selections, 68

in SQL, 143

stratified, 49

vs. set difference, 70

Negation as Failure, 27, 406

negative literal, 288

nest, 518

nested loop implementation of join, 107, 108

nested relation, 512

algebra, 519

nested SQL query, 143, 146–147

network model, 28, 97

new, 559

NF2. See nested relation.

no-information null, 502

non-existing null, 502

nondeterminism, 15

semantics of negation, 409

nondeterministic query. See query, nondeterministic.

noninflationary datalog¬, 357

nonrecursive (nr) datalog

with negation, 70, 72–73

program, 72

nonrecursive datalog program, 62

normal form, 158

Boyce-Codd (BCNF), 250,251

decomposition algorithm, 255

conjunctive (CNF), 83

conjunctive calculus, 46–47

disjunctive (DNF), 83

domain-key, 265

first, 265

fourth (4NF), 252, 252, 259

nr-datalog, 68

prenex (PNF), 82

project-join (PJ/NF), 265, 267

relational algebra (RANF), 86, 97

relational schema, 251–259, 265

safe-range (SRNF), 83

SPC algebra, 55

SPCU algebra, 62

SPJR algebra, 59

SPJRU algebra, 62

third (3NF), 257

decomposition algorithm, 257

synthesis algorithm, 257

now, 607

np, 18

np-complete, 105, 121, 122, 127
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np-hard, 121

npspace, 18

nr-datalog, 62

normal form, 68

nr-datalog¬, 70, 72–73

and domain independence, 78

with equality, 72, 73

equivalence to first-order languages, 80

literal, 72

program, 72

query, 73

range restricted, 72

with equality, 72

rule, 72

semantics, 72

translation into SQL, 147–149

and undecidability, 122–126

NU-Prolog, 337

null value, 488

O2, 562, 573

O2SQL, 510, 536–537, 562

obj, 547

object, 246, 543, 545, 547, 573

object creation, 573; See object-oriented database,

object creation.

object equality, 557

object history, 615

object identifier (OID), 473, 543, 545–547

semantic data model, 243

object migration, 572, 613, 615

object-oriented data model, 28, 245, 477, 546

object-oriented database, 8, 242, 473, 542–578

calculus, 557–558

class, 545

class hierarchy, 549

well formed, 549

classification, 572, 575

completeness, 560–561, 560, 574

complex value, 545

consistency, See, object-oriented database, type

safety

context-dependent binding, 552

covariance, 553

dangling reference, 999, 572

dba mode, 546

deductive, 575

deep equality, 557, 575

dereferencing, 557, 558, 559

determinate query, 559

domain-inclusion semantics, 551

dynamic aspect, 572

dynamic binding, 543, 546, 552

encapsulation, 543, 546, 553

expansion of value, 558

formal definition, 547–555

generic OODB model, 547–556

ILDG, 580

imperative methods, 564–566, 573

expressive power, 565–566, 577

inheritance, 546, 552, 553, 567, 573–575, 577

instance, 554, 555

IQL, 573

ISA, 543, 545

languages for methods, 563–571

late binding, 552

logic programming, 572, 574

message, 552

method, 551

signature, 551

well formed, 553

method resolution, 546, 552

method schema, 563, 566–571

expressive power, 569–571

monadic, 543, 563, 565, 567, 568, 577

polyadic, 567, 568, 577

named value, 554, 556

object, 543, 545, 547, 573

object creation, 558–562, 573, 574

object equality, 557

object identifier, 543, 545, 547

object migration, 572

OID assignment, 550

OID isomorphism, 555, 560

overriding, 546

parallelism, 573

query semi-deterministic, 574

query language, 556–563

querying schema, 572

reachability, 565

receiver, 552

role, 571

schema, 554

schema design, 571

specialization, 545

static binding, 552

subtyping relationship, 549

type, 548

disjoint interpretation, 550

semantics, 550

type safety, 563, 565, 567, 573

user mode, 546

value, 547

value equality, 557

value-dependent binding, 552



676 Index

object-oriented database (continued)

view, 571

object-oriented programming languages, 573

object-orienteddatabase

consistency. See object-oriented database,type

safety.

ODE, 615

OID

-assignment, 550

-equivalence, 246

-isomorphism, 246, 560

semantic data model, 243

OODB, 242; See object-oriented database.

Open World Assumption (OWA), 489, 497, 595

operator

continuous, 286

monotone, 283

OPS5, 369, 370

optimization

conjunctive queries, 36, 105

using chase, 163

using dependencies, 163

datalog, 36, 112, 311–337

and Exodus, 135

in practical systems, 105, 106–115

relational algebra, 106

transaction, 581

using chase, 177–180

or-sets, 505

ORACLE, 34, 155

ordered database, 397, 447

output schema of query, 37

overriding, 546

OWA, 489, 497, 595

P(I), 280, 378, 383, 387

pg(P, I), 389

Pwf , 390

page fetch, 107

page size, 106

paging protocol, 106

pairwise consistent join, 128, 136

Paradox, 152, 155

parallel complexity

classes of circuits, 431

of first-order queries, 431–433

parameterized IDM transaction, 584

call, 584

parametrized query, 522

paramodulation vs. chase, 186

parity query

not first-order, 460

not in while, 437

partial fixpoint logic (CALC+µ), 348, 349–352

partial fixpoint operator (µ), 349

partial order, 11

partially ordered set, 11

path in hypergraph, 132

PCP, 16

and satisfiability of relational calculus, 123

permutation, 13

physical implementation, 106–108

cross product, 108

equi-join, 107–108

projection, 107

relational algebra, 107–108

selection, 107

physical level

of three-level architecture, 106

physical model of relational database, 106–107

PNF, 82

polyadic

conjunction, 46, 75, 83

disjunction, 75, 83

existential quantification, 83

natural join, 58

polyadic method schema, 567, 568, 577

polynomial inequalities constraint, 96, 97

positive existential calculus, 91, 97

decidability, 99

positive literal, 288

positive selection formula, 67

poss(T ), 490

Post Correspondence Problem (PCP), 16

and satisfiability of relational calculus, 123

POSTGRES, 153, 600

powerset, 514

precedence graph

in datalog evaluation, 315

in datalog¬, 379

negative edge, 380

positive edge, 380

predicate, 277

prenex normal form (PNF), 82

procedural vs. declarative, 35, 53

product

Cartesian, 52

cross, 52, 54, 58, 108, 144

direct, 235, 240

production rule system, 369

program schema, 574

project-join expression

extended, 229

project-join normal form (PJ/NF), 267

project-join query, flat, 126
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projection, 52

and aggregate functions, 93

named perspective, 57

physical implementation, 107

pushing, 109

in SQL, 144

unnamed perspective, 54

proof, 24

using inference rules, 167

proof tree, 286

propositional calculus, 21

propositional logic, 21

vs. fd’s and mvd’s, 186, 189

pspace, 17

pspace complexity

of while queries, 437

pspace-complete, 196

PI, 286

ptime, 17

ptime complexity

of fixpoint queries, 437

pure universal relation assumption (URA), 126, 130,

242, 252

pushing

negation, 83

projection, 109

selection, 109, 335

qadom, 79

qd(·), 78

qnat(·), 78

qc, 422

QL, 477

qptime, 406, 422

QSQ, 311, 317–324, 335

annotated, 330

completion, 318

Iterative (QSQI), 339

Recursive (QSQR), 323–324

algorithm, 324

template, 319–320

vs. magic set rewriting, 324, 327

QSQI, 339

QSQR, 323–324

algorithm, 324

Quel, 74, 112, 155

query, 421

complexity, 422–423

data complexity, 422–423

expression complexity, 422–423, 463

composition, 48–52, 71

computability, 417–421

conjunctive, 36, 37–64

conjunctive calculus, 44–47

containment relative to dependencies, 37, 177

definite, 97

determinate, 474

equivalence, 37

relative to dependencies, 176, 177

first-order, 70

genericity, 419–421, 419, 425

C-genericity, 419–420

input schema, 37

with invented values, 469

monotonic, 42

nondeterministic, 453–457

CALC+µ(+) +W , 456

choice operator, 458

dynamic choice operator, 464

N-datalog¬(¬), 463

while(+) +W , 454, 456

witness operator, 454–456

nr-datalog¬, 73

optimization, 36, 105–115, 112, 313–339

output schema, 37

parametrized, 522

project-join, flat, 126

relational calculus, 75

satisfiable, 42

schema query, 572

semi-deterministic, 574

statistical properties, 106

tableau, 43–44, 43

union-of-tableaux, 139

untyped, 475

vs. implementation, 110

vs. query mapping, 37

vs. update, 28

well-typedness, 417

yes-no, 42

query composition, 37

query decomposition, 114–115

query evaluation

cost model, 106, 108–110

naive, 109

in practical systems, 106–115

query evaluation plan, 107, 108, 110, 135

and Exodus, 111

generating, 110–111

parameterized, 135

query language

aggregate operators, 153, 154, 155

with arithmetic, 153, 154

associative, 35

BP-completeness, 428
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query language (continued)

completeness, 466

completeness in a class, 424

conjunctive queries, 36, 37–64

with union, 36, 37, 38

constraint, 94–98

declarative, 29, 558

vs. procedural, 35, 53

determinate-completeness, 474

disjunction, 37, 38

dominated by (⊑), 47

embedded, 466

C+SQL, 466

whileN , 467

equivalence (≡), 47

expressive power, 106, 427

graphical, 150–153

inflationary semantics, 342–344

many-sorted, 153–154

navigational, 558

noninflationary semantics, 342–344

object-oriented, 556–563

practical, 143–155

relational algebra, 28, 35, 36

relational calculus, 28, 35, 36

set-at-a-time, 35

static analysis, 36, 105, 122–126, 306–311

temporal, 606–613

three paradigms, 35–36

Query Management Facility (QMF), 155

query mapping vs. query, 37

query optimization, 36, 105

cost model, 106, 108–110

distributed database, 128

evaluation plan, 107, 108, 110–111, 135

and Exodus, 111

in INGRES, 114–115

join detachment, 114, 135

local vs. global, 115, 117

and negation, 106

in practical systems, 106–115

program transformation, 108

query rewriting, 108–110

query tree, 108–110, 108

and relational calculus, 126

rewrite rule, 110

and sampling, 111

in System R, 112–114

by tableau minimization, 118–120

tuple substitution, 115, 135

using chase, 163, 177–180

using dependencies, 163

query rewriting, 108–110

query tree, 108–110, 108

Query-By-Example (QBE), 36, 40, 43, 143,

150–152, 155

condition box, 150

and domain independence, 153

and first-order languages, 151

negation, 150

relationally complete, 151

view definition, 151

vs. tableau queries, 150

Query-Subquery (QSQ), 311, 317–324, 335

annotated, 330

completion, 318

Iterative (QSQI), 339

Recursive (QSQR), 323–324

algorithm, 324

template, 319–320

vs. magic set rewriting, 324, 327

R[·], 31

r.e.. See recursively enumerable.

Rado graph, 442, 461

RANF, 86, 97

algorithm, 88

modified, 88

range restricted

algorithm, 84

calculus query, 97

calculus variable, 83, 84

conjunctive query, with equality, 41, 48

formula, 102

nr-datalog¬, 72

with equality, 65, 72

rule, 41

range separable query, 97

rank, 402

RDL, 369, 370

real closed field, 96, 97

receiver, 552

reconstruction mapping, 254

rectangle, representation, 95

rectified subgoal in datalog evaluation, 328,

330–331, 336

recursive (formal) language, 16

Recursive QSQ (QSQR), 323–324

algorithm, 324

recursively enumerable, 16

reduced hypergraph, 130

redundancy and update anomalies, 162

referential integrity constraint vs. inclusion

dependency, 161, 213

reflexive relation, 10
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refutation, 290

regular language, 14

regular tree, 558, 575

relation

complex value, 512

extended, 229

extensional, 42, 48

intensional, 42, 48

relation (instance), 29

conventional perspective, 32

logic-programming perspective, 32, 33

over empty attribute set, 32

unrestricted, 197

relation atom, 112, 217

relation schema, 31

with dependencies, 241

relational algebra, 28, 35, 36, 70, 71, 81

aggregate operators, 97

with bags, 136

complement operator, 103, 104

composition, 71

conjunctive, 52–61

division, 99

and domain independence, 78

equivalence to first-order languages, 80

equivalences, 106

implementation, 106, 107–108

and monotonicity, 71, 98

named, 64, 71

named conjunctive, 56–59

optimization, 106, 126

in practical systems, 105, 106–115

physical implementation, 106–115

and satisfiability, 98

semi-join, 128, 135

SPC, 52–56, 108, 118

SPCU, 62, 97, 136

SPJR, 56,–59, 118

vs. join dependency, 181

SPJRU, 62

translation into calculus, 80

typed restricted SPJ, 156

and undecidability, 122–126

unnamed, 71

unnamed conjunctive, 52–56

unrestricted, 103

untyped algebra, 475

relational algebra normal form (RANF), 86, 97

algorithm, 88

modified, 88

relational calculus, 28, 35, 36, 64, 70, 73–91, 85

active domain semantics, 74, 79

aggregate operators, 97

allowed query, 97, 101–102

base formula, 74

conjunctive, 45

conjunctive normal form (CNF), 83

and counting, 154

disjunctive normal form (DNF), 83

domain calculus, 39, 74

domain independence, 70, 74, 75–77, 79, 81–97

equivalence to first-order languages, 80

evaluable query, 97

formula, 74–75

equivalence, 82

parse tree, 83

image of query, 78

inequalities constraint, 96, 97

natural semantics, 78, 79

negation, 70–71

polynomial inequalities constraint, 96

positive existential, 68, 91, 97

prenex normal form (PNF), 82

query, 75

and query optimization, 126

range restricted

range separable query, 97

algorithm, 84

formula, 102

query, 97, 102

variable, 83, 84

relational algebra normal form (RANF), 86, 97

relativized interpretation, 74, 77–78

rewrite rule, 82

for RANF, 86–87

for SRNF, 83

safe DRC query, 97

safe query, 64, 97

safe-range, 81, 85, 83–85, 97

normal form (SRNF), 83

safety, 70, 75–77

and satisfiability, 123

semantics, relativized, 77

simulation of PCP, 123

static analysis, 105, 122–126

syntax, 74

translation into algebra, 97

active domain case, 80

safe-range case, 81, 86–91

tuple calculus, 39, 74, 101

and undecidability, 36, 97, 105, 122–126, 136

unrestricted semantics, 78

unsafe, 75

vs. first-order logic, 77, 105, 123, 136

vs. select-from-where clause, 145

relational completeness, 96
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relational completeness (continued)

QBE, 151

SQL, 147

vs. Turing computability, 96

relational model, 28–34

relative information capacity, 265, 268–269, 539

relativized instance, 77

relativized interpretation, 74, 77–78

relevant fact, 317

relname, 31

renaming

attribute, 58

complex value, 517, 524

operator, 57, 58

SPJR algebra, 57

rep(T ), 489

repeat restricted tableau query, 67

representation system

strong, 489

weak, 490

representative instance, 263

resolution, 186, 552

vs. chase, 186

resolution theorem proving, 136

resolvent, 289, 294

RETE, 600

Reverse-Same-Generation (RSG)

program, 312

query, 317

revision vs. update, 599–600

rewrite rule

conjunctive calculus, 46

normal form vs. query optimization, 110

for optimization, 108, 110

relational calculus, 82

SRNF, 83

sound, 56

SPC algebra, 55–56, 110

SPJR algebra, 110

SRNF to RANF, 86–87

rewriting, query, 108–110

role, 571

root of persistence, 556

rule, 41

active database, 605

anonymous variable, 39

body, 39, 41

head, 39, 41

nr-datalog¬, 72

range restricted, 72

semantics, 72

range-restricted, 41

semantics, 41

update language, 582

rule-based conjunctive query, 39, 40–42, 41

with equality, 48

semantics, 41

with union, 62

rule-goal graph, 335

running intersection property, 141

safe, 64

DRC query, 97

query, 97

safe-range, 85

and aggregate functions, 93

complex value, 528

normal form (SRNF), 83

query, 97

relational calculus, 81, 83–85

and universal quantification, 85

safety, 70, 75–77

in SQL, 153

Same-Generation (SG)

program, 331

query, 331

Variant (SGV), 339

sampling in query optimization, 111

sat(R,  ), sat( ), 174

satisfaction, 24

conjunctive calculus formula, 46

relative to a domain, 77

satisfaction family, 174, 186, 222

satisfiability

and conjunctive queries, 42

datalog, 300

and first-order queries, 123

and relational algebra, 71, 98

and relational calculus, 123

satisfiable formula, 21

satisfiable query, 42

satisfiable SPC algebra, 56

satisfiable SPJR algebra, 59

satisfy

dependency, 160

by tableau, 175

functional dependency, 163

inclusion dependency, 193

join dependency, 170

multivalued dependency, 170

saturated set, 188

scalar domain, 153

schema

complex value, 512

database, 29, 31
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object-oriented database, 554

query, 572

relation, 31

schema design

decomposition, 162, 251–259, 252

object-oriented database, 571

synthesis, 257–258

SDD-1, 135

select-from-where clause, 112, 144

vs. projection, 144

vs. relational calculus, 145

selection, 52, 57

constant based, 66

named perspective, 57

physical implementation, 107

positive conjunctive, 55, 58

pushing, 109, 335

in SQL, 144

unnamed perspective, 53

selection formula

atomic, 53

disjunction, 62

inequality atom, 69

with negation, 68

positive, 67

positive conjunctive, 55, 58, 108

selection rule, 298

Semantic Binary Data Model, 264

semantic data model, 28, 157, 192, 240, 242–250,

264, 542

abstract class, 243

attribute, 243

multi-valued, 243

single-valued, 243

class, 243

complex value, 243

derived data, 246

Entity-Relationship (ER), 242

and functional dependencies, 249–253

generic (GSM), 242

inheritance, 245

instance, 245

ISA, 245

object identifier (OID), 243

printable class, 243

and rfelational model, 249–253

and schema design, 247–250

subclass, 243

vs. inclusion dependencies, 207, 251–253

semantics

conjunctive calculus, 45

conjunctive query, 41

nr-datalog¬ program, 72

nr-datalog¬ rule, 72

relational calculus

active domain, 79

natural, 78, 79

unrestricted, 78

rule-based conjunctive query, 41

SPC algebra, 54

SPJR algebra, 58

tableau query, 43

semi-deterministic query, 574

semi-join, 128, 135

program, 129

seminaive datalog evaluation, 312–316, 335

basic algorithm, 315

improved algorithm, 316

semipositive datalog, 377

sentence, 23

Sequel, 144

set comprehension, 538

set constructor, 508, 509

set difference, 68

in relational algebra, 71

and SPCU algebra, 136

vs. negation, 70

set membership, 514

set-at-a-time, 35

set_create, 515

set_destroy, 515

sideways information passing, 111, 112–114

in datalog evaluation, 318, 336, 340

graph, 113, 340

strategy, 113

signature, method, 551

simple key dependency, 267

simple tableau query, 140

simultaneous induction, 351

single rule programs (sirups), 305, 309

single-head dependency, 217

singleton, 518

sip graph, 113, 340

sip strategy, 113

sirup, 305–309

SLD datalog evaluation, 289–298

SLD-AL, 335

SLD-resolution, 295; See datalog, SLD-resolution.

datalog¬, 406

SLD-tree, 298, 317

SLDNF resolution, 406

SLS resolution, 409

sort

complex value, 511

of instance, 32

of relation name, 31
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sort (continued)

of tuple, 32

sort(·), 31

sort set dependency, 191

vs. axiomatization with fds, 213

sort-merge implementation of join, 108

sound axiomatization, 167

spatial database, 95

SPC algebra, 52–56, 54, 108

base query, 54

generalized, 55

intersection, 55, 69

normal form, 55

rewrite rule, 55–56, 110

satisfiable, 56

unary singleton constant, 54

with union, 62

vs. SPJR algebra, 60

vs. tableau queries, 118

SPCU algebra, 62, 97

and dependencies in views, 222

and difference, 136, 140

normal form, 62

specialization, 545

SPJ algebra,

typed restricted, 64, 67

SPJR algebra, 56–59, 57

base query, 58

generalized, 59

natural join, 56

normal form, 59

renaming, 57

rewrite rule, 110

satisfiable, 59

unary singleton constant, 58

with union, 62

vs. join dependency, 181

vs. SPC algebra, 60

vs. tableau queries, 118

SPJRU algebra, 62

normal form, 62

SQL, 2–3, 36, 70, 74, 112, 143–150, 155, 336, 370,

372, 536, 574

bags, 145, 155

and conjunctive queries, 143–146

contains, 146

count, 154

create, 145

delete, 149

distinct, 145, 154

and domain independence, 153

duplicate tuples, 144

from, 144

group by, 154

insert, 149

and negation, 143

nested query, 143–147

in personal computer DBMSs, 152

relationally complete, 147, 150

safety, 153

scalar types, 145

select, 144

set operators, 146

simulation of nr-datalog¬, 147–149

translation to algebra, 112

update, 149

update language, 580

views, 149

vs. cross product, 144

vs. first-order queries, 147–149, 155

vs. relational calculus, 145

vs. Sequel, 144

where, 144

SRNF, 83

stable model, 408, 413

stage(P, I), 285

Starburst, 368, 370

static analysis

conjunctive queries, 105, 115–122

datalog queries, 306–311

first-order queries, 105, 122–126

of queries, 36

relational calculus, 105, 122–126

static binding, 552

stored data, statistical properties, 106

stratified datalog¬, 378

stratified negation, 49

stratified semantics, 377–385. See datalog¬,

stratified semantics

stream of tuples, 106, 135

strongly-safe-range

complex value, 530

structured object. See complex value.

Structured Query Language (SQL), 143. See SQL

subclass, 545

semantic data model, 243

subquery

in datalog evaluation, 318

substitution, 24, 116

vs. valuation, 116

subsumption, 136

subtyping relationship, 549

succ, 397

sum, 91, 92

in SQL, 154

summary of tableau query, 43
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superkey, 257

supplementary relation, 319–320

supported model, 384, 411

sure(T ), 490

surrogate, 247, 573

Sybase, 155

symmetric, 10

synthesis, 257–258

vs. decomposition, 258, 265

System R, 111

query optimizer, 112, 113–114, 122, 127, 135,

137

TP , 375

table, 488–500; See Codd-table, naive table, c-table.

tableau, 43

complexity, 121–122

composition, 226–227

embedding, 43

typed, 44

vs. dependencies, 218, 234

vs. join, 64

tableau minimization, 105, 118–120, 136

and chasing, 177–180

vs. condensation, 136

vs. local optimization, 117

vs. number of joins, 118

vs. resolution theorem proving, 136

tableau query, 43–44, 43

chasing, 173, 186

complexity, 111–122

composition, 226

containment, 121–122

difference, 64

with equality, 48

of an fd, 181

homomorphism, 117, 127, 136

isomorphic, 120

of a jd, 181

minimal, 118

minimization, 119

repeat restricted, 67

semantics, 43

simple, 140

summary, 43

typed, 64, 121, 136

union-of-tableaux query, 63, 64, 139

vs. dependencies, 64

vs. QBE, 150

vs. SPC algebra, 118

vs. SPJR algebra, 118

tagged dependency, 164, 221, 241

Tarski’s Algebraization Theorem, 96

Taxis, 264

taxonomic reasoning, 572, 575

template dependency, 233, 236

temporal constraint, 611–613

history-less checking, 615

temporal database, 95, 606–613

query language, 607–611

deductive, 610

TSQL, 609

representation, 608–609

temporal CALC, 607

temporal constraint, 611–613

on events, 612, 615

object histories, 615

object migration, 613

vs. transactional schemas, 612

time domain, 607

now, 607

transaction time, 607

transition constraint, 612

dynamic fd’s, 615

pre/post conditions, 615

valid time, 607

temporal logic, 608, 615

temporal query language, 607–611

term, 22, 34

complex value, 519

tgd, 217–228

tgd-rule in chasing, 223

third normal form (3NF), 257

3-TP , 388

3-satisfiability, 19

3NF, 257

3NF Algorithm, 257

3-valued instance, 386, 387, 388, 389

three-level architecture, 3

logical level, 106

physical level, 106

3-SAT, 139

TI Open Object-Oriented Data Base, 135

timestamp, 401

top-down datalog evaluation, 316–324

vs. bottom-up, 311, 327, 336

topological sort, 11

total instance, 387

total order, 11

total program, 395

TP , 283

transaction time, 607

transactional schema, 584–586, 584, 617

Gen(T), 585

IDM transactional schema, 584, 613, 617
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transactional schema (continued)

parameterized IDM transaction, 584

vs. constraints, 585–586

completeness, 585

soundness, 585

vs. methods, 584

vs. temporal constraints, 612

transformation rule.See rewrite rule.

transition constraint, 612

transitive, 10

transitive closure query

generalized, 310

not first-order, 436

tree, 12

truth assignment, 21

TSQL, 609

tup_create, 514

tup_destroy, 515

tuple, 29

free, 33

generalized, 94, 95

named perspective, 32

with placeholders, 94

unnamed perspective, 32

tuple calculus, 74, 101

vs. domain calculus, 39

tuple generating dependency (tgd)

full, 218

tuple rewriting, 107

tuple substitution, 115, 135

tuple-generating dependency (tgd), 217–228

Turing machine, 15

linear bounded, 196

two-element instances

vs. fd’s and mvd’s, 189

two-way automata, 15

type in object-oriented database, 548

type safety, 563, 565, 567, 573

typed dependency, 159

vs. faithful, 233

vs. untyped, 217

typed inclusion dependency, 211

typed restricted SPJ algebra, 64, 67, 156

typed tableau, 44

query, 64, 121, 136

types(C), 548

unary inclusion dependency (uind), 207, 210–211

undecidability

of properties of datalog queries, 306, 308

of properties of first-order queries, 105, 122–126

of implication for embedded dependencies, 220,

234

of implication for emvds, 220

of implication of fds and inds, 199, 211

underlying domain, 74

unfounded set, 413

unification, 293

uniform containment, 304

union, 33, 37, 38

in conjunctive queries, 61–64

in Microsoft Access, 153

in relational algebra, 71

in rule-based conjunctive queries, 62

in SQL, 146

union-of-tableaux query, 63, 64, 139

unique name axioms, 26

unique role assumption, 261

unirelational dependency, 217

unit clause, 288

universal quantification

removing, 83

and safe-range, 85

vs. existential quantification, 74

universal relation

assumption (URA), 137, 266

pure, 126, 130, 242, 252

weak, 261–264, 262

interface, 266

scheme assumption (URSA), 260

unique role assumption, 261

universe, 23

universe of discourse, 77

Unix, 155

unknown value, 488

unnamed perspective

on relations, 32

projection, 54

relational algebra, 71

selection, 53

SPC algebra, 52–56, 54

tuple, 32

vs. named perspective, 32

unnest, 518

unrestricted instance, 197

unrestricted interpretation, 78

unrestricted logical implication, 197–202, 219

vs. finite, 197

vs. functional dependency, 199

vs. inclusion dependency, 199

vs. join dependency, 199

unrestricted relational algebra, 103

unrestricted semantics of relational calculus, 78

untyped dependency, 192
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vs. typed, 217

untyped relational algebra, 475

update

in SQL, 149–150

statistical properties, 106

vs. revision, 599–600

vs. query, 28

update in SQL, 149

update anomalies, 162, 241

and incomplete information, 162

and redundancy, 162

update language, 580–583

completeness, 583

IDM transaction, 580–582, 615–617

deletion, 615

insertion, 615

modification, 615

rule-based, 582–583

datalog¬¬, 582

Dynamic Logic Programming (DLP), 583, 613

LDL, 583

SQL, 580

URA, 126, 130, 137

pure, 242, 252

weak, 261–264, 262

URSA, 260

user view. See view.

V-relation, 513

val(O), 547

valid, 21

valid model semantics, 409

valid time, 607

valuation, 41

as syntactic expression, 45

of tableau, 43

vs. substitution, 116

value equality, 557

var, 33, 41

variable, 33

anonymous, 39, 44

bound occurrence, 45, 75

free occurrence, 45, 75

variable assignment, 24

variable substitution

rewrite rule, 46, 83

view, 4

complement, 583

and dependencies, 222

maintenance, 586–588, 586

materialized, 51

object-oriented database, 571

in QBE, 151

and query composition, 51–52

in SQL, 149

update, 586, 589–593

complement of views, 591–593

virtual, 51

weak instance, 262

weak universal model, 502

weak universal relation assumption (URA), 261–

264, 262

well-formed formula

conjunctive calculus, 45

relational calculus, 74–75

well-founded semantics, 385–397

where in SQL vs. selection, 144

while, 344–346, 345

while queries, 342, 367

normal form, 452–453

on ordered databases, 447

pspace complexity, 437

vs. fixpoint queries, 453

while+, 346, 346–347

while(+) +W , 456

while(+)+W , 454

whileN , 467

completeness on ordered databases, 468

whilenew, 469

completeness, 470–473

not determinate-complete, 474

well-behaved, 470

whileobj , 559

whileuty, 475

completeness, 478

well-behaved, 477

witness operator, 454–456

word problem for monoids, 199

yes-no query, 42

0-1 law, 441

for CALC, 441–444

for while, 444–446
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