
146 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING, VOL I , NO 1 , MARCH 1989

What You Always Wanted to Know About Datalog
(And Never Dared to Ask)

STEFAN0 CERI, GEORG GOTTLOB, AND LETIZIA TANCA

Abstract-Datalog is a database query language based on the logic
programming paradigm; it has been designed and intensively studied
over the last five years. We present the syntax and semantics of Datalog
and its use for querying a relational database. Then, we classify opti-
mization methods for achieving efficient evaluations of Datalog que-
ries, and present the most relevant methods. Finally, we discuss var-
ious exhancements of Datalog, currently under study, and indicate what
is still needed in order to extend Datalog’s applicability to the solution
of real-life problems. The aim of this paper is to provide a survey of
research performed on Datalog, also addressed to those members of
the database community who are not too familiar with logic program-
ming concepts.

Zndex Terms-Deductive databases, logic programming, recursive
queries, relational databases, query optimization.

I. INTRODUCTION
ecent years have seen substantial efforts in the direc- R tion of merging artificial intelligence and database

technologies for the development of large and persistent
knowledge bases. An important contribution towards this
goal comes from the integration of logic programming and
databases. The focus has been mostly concentrated by the
database theory community on well-formalized issues,
like the definition of a new rule-based language, called
Datalog, specifically designed for interacting with large
databases; and the definition of optimization methods for
various types of Datalog rules, together with the study of
their efficiency [1201, [151, [161. In parallel, various ex-
perimental projects have shown the feasibility of Datalog
programming environments [1191, [24], [88].

Present efforts in the integration of artificial intelligence
and databases take a much more basic and pragmatic ap-
proach; in particular, several attempts fall in the category
of “loose coupling,” where existing AI and DB environ-
ments are interconnected through ad-hoc interfaces. In
other cases, AI systems have solved persistency issues by
developing intemal databases for their tools; but these in-

Manuscript received March 1, 1989. This paper is based on Parts I1 and
I11 of the book by S . Ceri, G. Gottlob, and L. Tanca, Logic Programming
and Databases (New York: Springer-Verlag. to be published).

S. Ceri is with the Dipartimento di Matematica, Universita di Modena,
Modena, Italy.

G. Gottlob is with the Institut fur Angenwandte Informatik, TU, Wien,
Austria.

L. Tanca is with the Dipartimento di Elettronica, Politecnico di Milano,
Milano, Italy.

IEEE Log Number 8928 155.
‘The term “Datalog” was also used by Maier and Warren in 1821 to

denote a subset of Prolog.

temal databases typically do not allow data sharing and
recovery, thus do not properly belong to current database
technology [26]. The spread and success of such en-
hanced AI systems, however, indicate that there is a great
need for them.

Loose coupling has been attempted in the area of Logic
Programming and databases as well, by interconnecting
Prolog systems to relational databases 1421, t2.51, 1461,
[MI, [331, P71.

Although interesting results have been achieved, most
studies indicate that simple interfaces are too inefficient;
an enhancement in efficiency is achieved by intelligent
interfaces [64], [33]. This indicates that loose coupling
might in fact solve today’s problems, but on the long
range, strong integration is required. More generally, we
expect that knowledge base management systems will
provide direct access to data and will support rule-based
interaction as one of the programming paradigms. Da-
talog is a first step in this direction.

The reaction of the database community to Datalog has
often been marked by skepticism; in particular, the im-
mediate or even future practical use of research on so-
phisticated rule-based interactions has been questioned
[94]. Nevertheless, we do expect that Datalog’s experi-
ence, properly filtered, will teach important lessons to re-
searchers involved in the development of knowledge base
systems. The purpose of this paper is to give a self-con-
tained survey of the research that has been performed re-
cently on Datalog. More exhaustive treatments can be
found in the books [34], [1221, and [92]. Other interesting
survey papers, approaching the subject from different per-
spectives, are [53] and [loo].

This paper is organized as follows. In Section I1 we
present the foundations of Datalog: the syntactic structure
and the semantics of Datalog programs. In Section I11 we
explain how Datalog is used as a query language over re-
lational databases; in particular, we indicate how Datalog
can be immediately translated to equations of relational
algebra. In Section IV we present a taxonomy of the var-
ious optimization methods, emphasizing the distinction
between program transformation and evaluation methods.
In Section V , we present a survey of evaluation methods
and program transformation techniques, selecting the most
representative ones within the classes outlined in Section
IV. In Section VI, we present several formal extensions
given to the Datalog language to enhance its expressive-
ness, and we survey some of the current research projects

1041-4347/89/0300-0146$01 .OO 0 1989 IEEE

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERI et al.: DATALOG 147

in this area. Finally, in Section VI1 we attempt an evalu-
ation of what will be required in Datalog in order to be-
come more attractive and usable.

11. DATALOG: SEMANTICS AND EVALUATION
PARADIGMS

In this section we define the syntax of the Datalog query
language and explain its logical semantics. We give a
model-theoretic characterization of Datalog programs and
show how they can be evaluated in a bottom-up fashion.
This evaluation corresponds to computing a least fixpoint.
Finally, we briefly mention another evaluation paradigm
called “top-down evaluation, ” and compare Datalog to
the well-known logic programming language Prolog.

A. The Syntax of Datalog Programs
Datalog is in many respects a simplified version of gen-

eral Logic Programming 1781. A logic program consists
of a finite set offacts and rules. Facts are assertions about
a relevant piece of the world, such as: “John is the father
of Harry”. Rules are sentences which allow us to deduce
facts from other facts. An example of a rule is: “If X is
a parent of Y and if Y is a parent of 2, then X is a grand-
parent of Z”. Note that rules, in order to be general, usu-
ally contain variables (in our case, X , Y, and 2). Both
facts and rules are particular forms of knowledge.

In the formalism of Datalog both facts and rules are
represented as Horn clauses of the general shape

Lo :- L1, . . . , L,

where each L, is a literal of the form p I (t l , . . . , t k ,) such
that p I is a predicate symbol and the t, are terms. A term
is either a constant or a variable.* The left-hand side
(LHS) of a Datalog clause is called its head and the right-
hand side (RHS) is called its body. The body of a clause
may be empty. Clauses with an empty body represent
facts; clauses with at least one literal in the body represent
rules.

The fact “John is the father of Bob”, for example, can
be represented as father(bob, john). The rule “If X is a
parent of Y and if Y is a parent of Z, then X is a grand-
parent of Z” can be represented as

grandpar(Z, X) : - par(Y, X) , par(Z , Y) .

Here the symbols par and grandpar are predicate sym-
bols, the symbols john and bob are constants, and the
symbols X , Y , and Z are variables. We will use the fol-
lowing notational convention: constants and predicate
symbols are strings beginning with a lower-case charac-
ter; variables are strings beginning with an upper-case
character. Note that for a given Datalog program it is al-
ways clear from the context whether a particular nonvari-
able symbol is a constant or a predicate symbol. We re-
quire that all literals with the same predicate symbol are

of the same arity, i.e., that they have the same number of
arguments. A literal, fact, rule, or clause which does not
contain any variables is called ground.

Any Datalog program P must satisfy the following
safety conditions.

Each fact of P is ground.
Each variable which occurs in the head of a rule of

These conditions guarantee that the set of all facts that
P must also occur in the body of the same rule.

can be derived from a Datalog program is finite.

B. Datalog and Relational Databases
In the context of general Logic Programming it is usu-

ally assumed that all the knowledge (facts and rules) rel-
evant to a particular application is contained within a sin-
gle logic program P. Datalog, on the other hand, has been
developed for applications which use a large number of
facts stored in a relational database. Therefore, we will
always consider two sets of clauses: a set of ground facts,
called the Extensional Database (EDB), physically stored
in a relational database, and a Datalog program P called
the Inzp ional Database (ZDB) . 3 The predicates occur-
ring in the EDB and in P are divided into two disjoint sets:
the EDB-predicates, which are all those occurring in the
extensional database and the IDB-predicates, which occur
in P but not in the EDB. We require that the head predi-
cate of each clause in P be an IDB-predicate. EDB-pred-
icates may occur in P, but only in clause bodies.

Ground facts are stored in a relational database; we as-
sume that each EDB-predicate r corresponds to exactly
one relation R of our database such that each fact r (cI ,
. . . , ck) of the EDB is stored as a tuple < cl , . . . , e, >
of R.

Also the IDB-predicates of P can be identified with re-
lations, called IDB-relations, or also derived relations,
defined through the program P and the EDB. IDB rela-
tions are not stored explicitly, and correspond to rela-
tional views. The materialization of these views, i.e., their
effective (and efficient) computation, is the main task of
a Datalog compiler or interpreter.

As an example of a relational EDB, consider a database
El consisting of two relations with respective schemes
PERSON (NAME) and PAR (CHILD, PARENT). The first
contains the names of persons and the second expresses a
parent relationship between persons. Let the actual in-
stances of these relations have the following values:

PERSON = { < ann > , < bertrand > , < Charles > ,
< dorothy > , < evelyn > , < p e d > ,
< george > , < hilary > }

PAR = { < dorothy, george > , < evelyn, george > ,
< bertrand, dorothy > , < ann, dorothy > ,
< ann, hilaly > , < Charles, evelyn > 1.

’Note that in general Logic Programming, a term can also be a complex
nested structure made of function symbols, constants, and variables. Ex-
tensions of Datalog to cover such complex terms are outlined in Section
VI. is harmless.

‘In the literature an IDB is usually defined as a set of rules. Here the
Datalog program P may also contain facts. This terminological extension

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

148 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1 . NO. 1, MARCH 1989

These relations express the set of ground facts E = {per-
son (ann), person (bertrand), . . . , par (dorothy, george),
. . . , par(charles, evelyn)}.

Let P I be a Datalog program consisting of the following
clauses:

rl: sgc(X, X) :- person(X).

r2: s g c (X , Y) :- p a r (X , XI), sgc(X1, Y I) , p a r (Y , ~ 1) .

Due to rule r l , the derived relation SGC will contain a
tuple < p , p > for each personp. Rule r2 is recursive and
states that two persons are same generation cousins when-
ever they have parents which are in turn same generation
cousins. Further examples of tuples belonging to SGC are:
< dorothy, evelyn > , < Charles, ann > , and < ann,
Charles > .

Note that program PI can be considered as a query
against the EDB E l , producing as answer the relation
SGC. In this setting, the distinction between the two sets
of clauses, E and P , makes yet more sense. Usually a
database (in our case the EDB) is considered as a time-
varying collection of information. A query (in our case,
a program P) , on the other hand, is a time-invariant map-
ping which associates a result to each possible database
state. For this reason we will formally define the seman-
tics of a Datalog program P as a mapping from database
states to result states. The database states are collections
of EDB-facts and the result states are IDB-facts.

Usually Datalog programs define large IDB-relations.
It often happens that a user is interested in a subset of
these relations. For instance, he or she might want to know
the same generation cousins of Ann only rather than all
same generation cousins of all persons in the database. To
express such an additional constraint, one can specify a
goal to a Datalog program. A goal is a single literal pre-
ceded by a question mark and a dash, for example, in our
case, ?-sgc(ann, X) . Goals usually serve to formulate ad
hoc queries against a view defined by a Datalog program.

C. The Logical Semantics of Datalog
Each Datalog fact F can be identified with an atomic

formula F* of First-Order Logic. Each Datalog rule R of
the form Lo : - L 1 , . . . , L, represents a first-order for-
mula R* of the form V X , , . . . VX,(L1 A . . . A L, * Lo) ,
where X I , . . . , X , are all the variables occurring in R. A
set S of Datalog clauses corresponds to the conjunction
S* of all formulas C* such that C E S.

The Herbrand Base HB is the set of all facts that we
can express in the language of Datalog, i.e., all literals
of the form P (c 1 , . . . , ck) such that all ci are constants.
Furthermore, let EHB denote the extensional part of the
Herbrand base, i.e., all literals of HB whose predicate is
an EDB-predicate and, accordingly, let ZHB denote the set
of all literals of HB whose predicate is an IDB-predicate.
If S is a finite set of Datalog clauses, we denote by
cons (S) the set of all facts that are logical consequences
of s*.

The semantics of a Datalog program P can now be de-
scribed as a mapping 3np from EHB to IHB which to each
possible extensional database E C EHB associates the set

3np (E) of intensional ‘ ‘result facts” defined by 3np (E)
= cons (P U E) f l ZHB.

Let K and L be two literals (not necessarily ground).
We say that K subsumes L , denoted by K D L, if there
exists a substitution 0 of variables such that KO = L , i.e.,
if 0 applied to K yields L. If K D L we also say that L is
an instance of K . For example, q (a , b , b) and q (c , c, c)
are both instances of q (X , Y, Y) , but q (b , b , a) is not.

When a goal “?- G” is given, then the semantics of
the program P with respect to this goal is a mapping 3np,
from EHB to ZHB defined as follows

V E G E H B 3 n p , G (E) = { H I H E ~ ~ ~ (E) A G > H } .

D. The Model Theory of Datalog
Model theory is a branch of mathematical logic which

defines the semantics of formal systems, by considering
their possible interpretations, i.e., the different intended
meanings that the used symbols and formulas may as-
sume. Early developments of general model theory date
back to works of Lowenheim [79], Skolem [1131, and GO-
del [56]. A comprehensive exposition is given in [39].
The model theoretic characterization of general logic the-
ories often requires the use of quite sophisticated tools of
modern algebra [83]. The model theory of Horn clause
systems and logic programs, however, is less difficult. It
has been developed in [125], [l l] and is also explained
in [78]. Datalog, being a simplified version of Logic Pro-
gramming, can be described very easily in terms of model
theory.

An interpretation (in the context of Datalog) consists
of an assignment of a concrete meaning to constant and
predicate symbols. A Datalog clause can be interpreted in
several different ways. A clause may be true under a cer-
tain interpretation and false under another one. If a clause
C is true under a given interpretation, we say that this
interpretation satisfies C .

The concept of logical consequence, in the context of
Datalog, can be defined as follows: a fact F follows log-
ically from a set S of clauses, iff each interpretation sat-
isfying every clause of S also satisfies F. If F follows from
S, we write S E F.

Note that this definition captures quite well our intuitive
understanding of logical consequence. However, since
general interpretations are quite unhandy objects, we will
limit ourselves to consider interpretations of a particular
type, called Herbrand Interpretations. The recognition
that we may forget about all other interpretations is due
to the famous logicians Lowenheim, Skolem, and Her-
brand.4

A Herbrand interpretation assigns to each constant
symbol “itself‘ ’ , i .e., a lexicographic entity. Predicate
symbols are assigned predicates ranging over constant
symbols. Thus, two nonidentical Herbrand interpretations
differ only in the respective interpretations of the predi-
cate symbols. For instance, one Herbrand interpretation
may satisfy the fact 1 (t , q) and another one may not sat-

4Actually, Herbrand interpretations can be defined in the much more
general context of Clausal Logic [39], (801 and Logic Programming [125],
1781.

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERI et al.: DATALOG 149

isfy this fact. For this reason, any Herbrand interpretation
can be identified with a subset 5 of the Herbrand base HB.
This subset contains all the ground facts which are true
under the interpretation. Thus, a ground fact p (c, , . . . ,
c,) is true under the interpretation 5 iff p (c, , . . . , c,) E
5 . A Datalog rule of the form &: -L,, . . . , L, is true
under 5 iff for each substitution 8 which replaces variables
by constants, whenever Ll0 E 5 A . . . A L,8 E 5, then it
also holds that LOB E 9.

A Herbrand interpretation which satisfies a clause C or
a set of clauses S is called a Herbrand model for C or,
respectively, for S.

Consider, for example, the Herbrand interpretations
4 , = {person (john) , person (jack) , person (j im) ,
sgc(john, john), par(j im, john), par(jack, john),
sgc (john, john), sgc (jack , jack), sgc (j im, j im)} . Ob-
viously, 5, is not a Herbrand model of the program P,
given in Section 11-B. Let 5, = 5, U {sgc(j im, jack),
sgc(jack, j im)} . It is easy to see that 9, is a Herbrand
model of P,.

The set cons (S) of all consequence facts of a set S of
Datalog clauses can thus be characterized as follows:
cons (S) is the set of all ground facts which are satisfied
by each Herbrand model of S. Since a ground fact F is
satisfied by a Herbrand interpretation 9 iff F E 9, cons (S)
is equal to the intersection of all Herbrand models of S.
Summarized

cons(S) = { F E H B (S E F }

= fl { 5 15 is a Herbrand model of S}.

Let 9, and 5, be two Herbrand models of S. It is easy to
see that their intersection 9* fl $J2 is also a Herbrand
model of S. More generally, it can be shown that the in-
tersection of an arbitrary (possibly infinite) number of
Herbrand models of S always yields a Herbrand model of
S. This property is called the model intersection property.
Note that the model intersection property not only holds
for Datalog clauses, but for a more general type of clause
called definite Horn clauses [1251, [78].

From the model intersection property it follows, in par-
ticular, that for each set S of Datalog clauses, cons (S) is
a Herbrand model of S . Since cons (S) is a subset of any
other Herbrand model of S, we call c o n s (S) the least
Herbrand model of S.

Up to here nothing has been said about how c o n s (S)
can be computed. The following subsections as well as
Sections 111-V deal with this problem. In the rest of this
section we will remain at a quite abstract level and we

ber theory) is faced with considerable problems such as
consistency and incompleteness issues [S I , [57] , the
proof theoretic analysis of subformalisms of first-order
logic, such as Logic Programming or Datalog, is easier
and much less ambitious, and is more oriented towards
algorithmic issues.

In this section we show how Datalog rules can be used
to produce new facts from given facts. We define the no-
tion of “fact inference” and introduce a proof-theoretic
framework which allows one to infer all ground facts
which are consequences of a finite set of Datalog clauses.

Consider a Datalog rule R of the form Lo : - L I , . . . ,
L, and a list of ground facts F , , . . . , F,. If a substitution
8 exists such that for each 1 5 i I n Lie = Fi then, from
rule R and from the facts F , , . . . , F,, we can infer in one
step the fact LOO. The inferred fact may be either a new
fact or it may be already known.

What we have just described is a general inference rule,
which produces new Datalog facts from given Datalog
rules and facts. We refer to this rule as the Elementary
Production Principle (EPP). In some sense, EPP can be
considered as being a meta-rule, since it is independent
of any particular Datalog rules, and treats them just as
syntactic entities.

For example, consider the Datalog rule rl of program
P, :

r , : sgc(X, X) :- person(X).

From this rule and from the fact person (george) we can
infer in one step sgc(george, george). The substitution
used here was 8 = { X + george} . Now recall the second
rule of P ,

r,: sgc(X, Y) :- par(& XI), sgc(X1, YI), par(Y , YI)

and consider the facts par(dorothy, george), sgc (george,
george), and par (evelyn, george). By applying EPP and
using the substitution 8 = { X + doruthy, Y + evelyn,
X I + george, Yl + george}, we infer in one step
sgc (dorothy, evelyn).

Let S be a set of Datalog clauses. Informally, a ground
fact F can be inferred from S, denoted by S I- F iff either
F E S or F can be obtained by applying the inference rule
EPP a finite number of times. The relationship “ t- ” is
more precisely defined by the following recursive rules:

St- F i f F E S .
S t- F if a rule R E S and ground facts F,, . . . , F,

exist such that V l 5 i 5 n S Fi and F can be inferred
in one step by the application of EPP to R and F , , . . . ,
r-

will not care about implementation and storage issues. In
particular, we will ignore that a set S of Datalog clauses
may consist of program clauses and of EDB-clauses. The
problem of retrieving facts from an EDB is deferred to
Sections 111-V.

rn’
The sequence of applications of EPP which is used to

infer a ground fact F from S is called a proof of F from
S. Any proof can be represented as a proof tree with dif-
ferent levels and with the derived fact F at the top.

Let SI denote the set of all clauses present in our ex-
ample-program P1 and in our example-database E , , i .e.,
SI = PI U E,. It is easy to see that SI F- sgc(ann,
Charles). The corresponding proof-tree is depicted in
Fig. 1 .

Now that we have a proof-theoretic framework which
allows us to infer new ground facts from an original set

E. The Proof Theory of Datalog
Proof theory is concerned with the analysis of logical

inference. As a branch of mathematical logic, this disci-
pline was founded by Hilbert [60]. While the investiga-
tion of relevant extensions of first-order logic (e.g., num-

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

150 IEEE TRANSACTIONS

I r’

Fig. 1 . Proof tree of sgc (ann, charles).

of Datalog clauses S, let us compare this approach to the
model-theoretic approach presented in the last subsection.
The following important theorem holds.

Soundness and Completeness Theorem: Let S be a set
of Datalog clauses and let F be a ground fact. S I- F iff
S E F.

A proof of this theorem can be found in [34].
In order to check whether EPP applies to a rule R of the

form Lo : - LI , . . . , L, and to a (ordered) list of ground
facts F 1 , . . . , F,,, one has to find an appropriate substi-
tution 8 such that for each 1 I i I n Lie = Fi. Such a
substitution can be found by matching each L, in the rule
body against the corresponding fact Fi. Such a matching
either fails or provides a ‘‘local’’ substitution Bi for all
variables occurring in Li. If at least one matching fails or
if the local substitutions are not mutually compatible be-
cause they assign different constants to the same variable,
then EPP does not apply. If all matchings are successful
and if the substitutions are all compatible, then we obtain
the global substitution 8 by forming the union of all local
substitutions 8 = U - U 8,. (Note that matching is
a particular form of unification [34] .)

There exists a very simple method of computing
cons (S) for each finite set of Datalog clauses:

FUNCTION INFER(S)
INPUT: a finite set S of Datalog clauses
OUTPUT: cons(S)
BEGIN
w := s;
WHILE EPP applies to some rule and facts of W

producing a new ground fact F $ W
DO W : = W U { F } ;
RETURN(W f l HB) / * all facts of W, but not the rules

*/
END.

The INFER algorithm always terminates and produces as
output ajinite set of facts cons (S). If we assume that the
arities of all predicates that may occur in a Datalog pro-
gram are bound by a constant, then the output of the IN-
FER algorithm and its runtime are both polynomial in the
size of its input S.

The order in which INFER generates new facts corre-
sponds to the bottom-up order of proof trees. For this rea-
son, the principle underlying INFER is called bottom-up
evaluation. In the terminology of artificial intelligence this

ON KNOWLEDGE AND DATA ENGINEERING, VOL. I , NO. I . MARCH 1989

principle is also referred to as forward chaining, because
the Datalog rules are processed forward, i.e., in the sense
of the logical implication sign, from premises to conclu-
sions.

F. Fixpoint Characterization of Cons (S)
Let us show that the set cons (S) can be characterized

as the least fixpoint of a mapping Ts from 6 (H B) to
6 (H B) , where 6 (H B) denotes the powerset of HB.

If S is a set of Datalog clauses, then let infer1 (S) de-
note the set of all ground facts which can be inferred in
one step from the rules and facts of S through EPP. Fur-
thermore, let FACTS(S) denote the set of all facts of S
and let RULES(S) denote the set of all rules of S . Ob-
viously, we have S = FACTS(S) U R U L E S (S) .

The transformation Ts associated to S is a mapping from
6 (H B) to 6 (H B) defined as follows:

VW E H B : T s (W) = W U FACTS(S)

U inferl(RULES(S) U W).

It is easy to see that any Herbrand interpretation 9 G HB
is a Herbrand model of S iff 9 is ajixpoint of T,, i.e.,
Ts(9) = 9. In particular, the least Herbrand model
cons (S) is the least jixpoint of Ts.

cons (S) can be computed by least jixpoint iteration,
i.e., by computing in order, T s (0) , T s (T s (0)) ,
T s (T s (T s (0 > > > , * * , until one term is equal to its pre-
decessor. This final term is cons (S), the least fixpoint of
S. This computation is quite similar to the INFER algo-
rithm, however, instead of adding one new fact at each
iteration step, a set of new facts are added: all those new
facts which can be inferred in one step from the old ones.

There exists even a transformation Th which is some-
what less complicated than Ts and has the same least fix-
point

VW c H B : T k (W) = FACTS(S)

U inferZ(RULES(S) U w).

Thus, T i differs from Ts by the omission of the term Win
the union.

Although both Ts and Tk have the same least fixpoint
cons (S), they do not have the same set of fixpoints. In
particular, not all Herbrand models of S are fixpoints of
Tk.

G. Top-Down Evaluation of Datalog Goals

The top-down method is a radically different way of
evaluating Datalog programs. Proof trees are constructed
from the top to the bottom. This method is particularly
appropriate when a goal is specified together with a Da-
talog program.

Consider the program PI and the EDB El of our “same-
generation” example. Assume that the goal ?-sgc (ann,
X) is specified. One possibility of finding the required
answers is to compute first the entire set cons (PI U El)
by bottom-up evaluation and then throw away all facts
which are not subsumed by our goal. This would be a

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERl er U / . : DATALOG 151

noticeable waste of energy, since we would derive much
more facts than necessary.

The other possibility is to start with the goal and con-
struct proof trees from the top to the bottom by applying
EPP “backwards”. In the context of artificial intelligence
such methods are also referred to as backward chaining.
The general principle of backward chaining is described
in [1141 and in [34].

In Section V of this paper we will present a top-down
method for evaluating Datalog programs against an EDB.
This method, called the Query-Subquery approach
(QSQ), implicitly constructs all proof trees for a given
goal in a recursive fashion.

Also the well-known programming language Prolog
[45] is based on the principle of backward chaining. How-
ever, as we outline in the next subsection, the semantics
of Prolog differs from that of Datalog.

H . Datalog and Prolog
From the syntactical point of view, Datalog is a subset

of Prolog; hence each set of Datalog clauses could be
parsed and executed by a Prolog interpreter. However,
Datalog and Prolog differ in their semantics.

While Datalog, as a simplified version of general Logic
Programming [78], has a purely declarative semantics, the
meaning of Prolog programs is defined by an operational
semantics, i.e., by the specification of how Prolog pro-
grams must be executed. A Prolog program is processed
according to a resolution strategy which uses a depth-first
search method with backtracking for constructing proof
trees and respects the order of the clauses and literals as
they appear in the program [45]. This strategy does not
guarantee termination. The termination of a recursive
Prolog program depends strongly on the order of the rules
in the program, and on the order of the literals in the rules.

Consider, for example, the program Pi consisting of
the following clauses:

r ; : sgc(X, Y) : - sgc(X1, Yl), par(X, X l) , par(Y, Y1).

ri: sgc (X , X) :- person(X).

Note that this program differs from program P1 of Section
11-B only by the order of the rules, and of literals in the
rule bodies. From a Datalog viewpoint, the order of
clauses and literals is totally irrelevant, hence P ; , as a
Datalog program, is equivalent to PI. On the other hand,
if we submit P,’ and the EDB El to a Prolog interpreter
and activate it, say, with the goal “?-sgc(ann, X) ” , then
we would run into infinite recursion without getting any
result.

Prolog has several system predicates, such as the cut,
which render the language even more procedural. It is,
however, a very rich and flexible programming language
which has gained enormous popularity over the last years.

It is possible to couple Prolog to an external database.
A Prolog interpreter can then distinguish between IDB and

to retrieve a matching tuple from mass memory. Due to
the procedural semantics of Prolog, which prescribes a
particular order of visiting goals and subgoals, the re-
quired interaction between the interpreter and the external
database is of the type one-tuple-at-a-time. This method
of accessing mass storage data is quite inefficient com-
pared to the set-oriented methods used by high-level query
languages. Several enhanced coupling mechanisms have
been proposed [a], [33], but no one takes full advantage
of set-oriented techniques. This is probably not possible
without compromising Prolog’s semantics.

It is the aim of the next section to show that Datalog is
well suited for set-oriented techniques.

111. DATALOG Is REALLY A DATABASE LANGUAGE

Although expressing queries and views in Datalog is
quite intuitive and fascinating from the user’s viewpoint,
we should not forget that the aim of database query lan-
guages like Datalog is providing access to large quantities
of data stored in mass memory. Thus, in order to enable
an easy integration between Datalog and database man-
agement systems, we need to relate the logic program-
ming formalism to the most common database languages.
We have chosen relational algebra as such a data retrieval
language. This section provides an informal description
of the translation of Datalog programs and goals into re-
lational algebra.

A. Translation of Datalog Queries into Relational
Algebra

Each clause of a Datalog program is translated, by a
syntax-directed translation algorithm, into an inclusion
relationship of relational algebra. The set of inclusion re-
lationships that refer to the same predicate is then inter-
preted as an equation of relational algebra. Thus, we say
that a Datalog program gives rise to a system of algebraic
equations. Each IDB-predicate of the Datalog program
corresponds to a variable relation; each EDB-predicate of
the Datalog program corresponds to a constant relation.
Determining a solution of the system corresponds to de-
termining the value of the variable relations which satisfy
the system of equations [61], [63]. The translation from
Datalog to relational algebra is described in [28], [34],
and [122].

Let us consider a Datalog clause C : p (a l , . . . , a,) : -
41 (P I , . . . , Pk), . . . qm(P,, . . . , O h) . The translation
associates to C an inclusion relationship Expr(Q , , . . . ,
Q,) E P , among the relations P , Q l , . . . , Q, that cor-
respond to predicates p , q l , . . . , q,,5 with the convention
that relation attributes are named by the number of the
corresponding argument in the related predicate. For ex-
ample, the Datalog rules of program P1 from Section 11:

r , : sgc(X, X) :- person(X).

r2: sgc(X, Y) : - p a r (X , XI), sgc(X1, Yl) , par(Y , Y1)

EDB-predicates. When an EDB goal is encountered dur-
ing the execution O f a Prolog program, the interpreter tries 5Note that some of the q, might be p itself, yielding a recursive rule

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

-

152 IEEE TRANSACTIONS O N K N O W L E D G E A N D DATA ENCi lNEtRING. VOL I , NO I , M A R C H 1989

are translated into the inclusion relationships:

((PAR w SGC) w PAR) E SGC
2 = 1 4 = 2

HI, I PERSON C SGC

The rationale of the translation is that literals with com-
mon variables give rise to joins, while the head literal
determines the projection. Details of translation rules can
be found in 1281. Note that, in order to obtain a two-col-
umn relation SGC in the second inclusion relationship, we
have performed a double projection of the unique column
of relation PERSON.

For each IDB predicate p , we now collect all the inclu-
sion relationships of the type Expr, (Q , , . . . , Qm) C P,
and generate an algebraic equation having P as LHS, and
the union of all the left-hand sides of the inclusion rela-
tionships as RHS:

P E x P ~ I (Q I , . . . > Q m) U E x P ~ , (Q I , . . . 9 e m) . . .

U ExPrm,,(Ql, . . . 2 e m) .

For instance, from the above inclusion relationships we
obtain the following equation:

HI, , ((PAR W SGC) W PAR)
2 = I 4 = 2

U II,.l PERSON = SGC

Note that the transformation of several disequations into
one equation really captures the minimality requirement
contained in the least Herbrand model semantics of a Da-
talog program. In fact, it expresses the fact that we are
only interested in those ground facts that are conse-
quences of our program.

We also translate logic goals into algebraic queries.
Input Datalog goals are translated into projections and se-
lections over one variable relation of the system of alge-
braic equations. For example, the logic goal “?-p (X). ”
is equivalent to the algebraic query “P”, and “? -q (a ,
X)”. is equivalent to “a, =.e”.
B. The Expressive Power of Datalog

The system produced by the above translation includes
all the classical relational operations, with the exception
of difference; we say that it is written in positive rela-
tional algebra, RA’. It can be easily shown that each de-
fining expression of RAt can also be translated into a Da-
talog program [34]. This means that Datalog is at least as
expressive as RAt; in fact, Datalog is strictly more ex-
pressive than RA+ because in Datalog it is possible to ex-
press recursive queries, which are not expressible in RA’.

However, there are expressions in full relational alge-
bra that cannot be expressed by Datalog programs. These
are the queries that make use of the diference operator.
For example, given two binary relations R and S, there is
no Datalog rule defining R - S. Fig. 2 graphically rep-
resents the situation. We will see in Section VI that these
expressions can be captured by enriching pure Datalog
with the use of logical negation (1).

Note also that, even though Datalog is syntactically a
subset of first-order logic, strictly speaking they are not

Fig. 2 . The expressive power of Datalog

comparable. Indeed, the semantics of Datalog is based on
the choice of a specific model (the least Herbrand model),
while first-order logic does not a priori require a partic-
ular choice of the model. Interesting tractations of the
problem of the expressive power of relational query lan-
guages can be found in 101 and [2].

IV. THE OPTIMIZATION PROBLEM: AN OVERVIEW
In this section we provide a classification of efficient

methods for evaluating Datalog goals. A systematic over-
view of methods is required, since optimization can be
achieved using a variety of techniques, and understanding
their relationships is not obvious.

We classify optimization methods according to the for-
malism, to the search strategy, to the objective of the op-
timization, and to the type of considered information.

A. Logic and Algebraic Formalism
It comes out from Section I11 that programs in Datalog

can equivalently be expressed as systems of equations of
RA’. So, we consider two alternative formalisms, that we
regard, respectively, as logic and algebraic, and we dis-
cuss optimization methods that belong to both worlds.

We emphasize the convenience of mapping to the al-
gebraic formalism, as this allows reusing classical results,
such as conjunctive query optimization, common sub-
expression analysis, and the quantitative determination of
costs associated to each operation of relational algebra
~ 9 1 , ~341, [w.
B. Search Strategy

We recall from Section I1 that the evaluation of a Da-
talog goal can be performed in two different ways: bot-
tom-up, starting from the existing facts and inferring new
facts, or rather top-down, trying to verify the premises
which are needed in order for the conclusion to hold.

In fact, these two evaluation strategies represent differ-
ent interpretations of a rule. Bottom-up evaluations con-
sider rules as productions, that apply the initial program
to the EDB, and produce all the possible consequences of
the program, until no new fact can be deduced. Bottom-
up methods can naturally be applied in a set-oriented fash-
ion, i .e . , taking as input the entire relations of the EDB.
This is a desirable feature in the Datalog context, where
large quantities of data must be retrieved from mass mem-
ory. On the other hand, bottom-up methods do not take
immediate advantage of the selectivity due to the exis-
tence of arguments bound to constants in the goal predi-
cate.

In top-down evaluation, instead, rules are seen as prob-
lem generators. Each goal is considered as a problem that

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERl et al.: DATALOG

Formdtsm

153

logic vs. relational algebra

must be solved. The initial goal is matched with the left-
hand side of some rule, and generates other problems cor-
responding to the right-hand side predicates of that rule;
this process is continued until no new problems are gen-
erated. In this case, if the goal contains some bound ar-
gument, then only facts that are somehow related to the
goal constants are involved in the computation. Thus, this
evaluation mode already performs a relevant optimization
because the computation automatically disregards many
of the facts which are not useful for producing the result.
On the other hand, in top-down methods it is more natural
to produce the answer one-tuple-at-a-time, and this is an
undesirable feature in Datalog.

If we restrict our attention to the top-down approach,
we can further distinguish two search methods: breadth-
first or depth-jirst. With the depth-first approach, we face
the disadvantage that the order of literals in rule bodies
strongly affects the performance of methods. This hap-
pens in Prolog, where not only efficiency, but even ter-
mination of programs is affected by the left-to-right order
of subgoals in the rule bodies. Instead, Datalog goals seem
more naturally executed through breadth-first techniques,
as the result of the computation is neither affected by the
order of predicates within the right-hand sides (RHS) of
rules, nor by the order of rules within the program.

C. Objectives of Optimization Methods
Our third classification criterion is based on the differ-

ent objectives of optimization methods: some methods
perform program transformation, namely, transforming a
program into another program which is written in the same
formalism, but yields a more efficient computation when
one applies an evaluation method to it; we refer to these
as rewriting methods. Given a goal G and a program P ,
the rewritten program P’ is equivalent to P with respect
to G, as it produces the same result. Formally, recalling
the definition of X p , of Section 11, two programs P and
P‘ are equivalent with respect to a goal G iff 3np,G =

These methods contrast with the pure evaluation meth-
ods, which propose effective evaluation strategies, where
the optimization is performed during the evaluation itself.

D. Type of Considered Information
Optimization methods differ in the type of information

used in the optimization.
Syntactic optimization is the most widely used; it deals

with those transformations to a program which descend
from the program’s syntactic features. In particular, we
distinguish two kinds of structural properties. One is the
analysis of the program structure, and in particular the
type of rules which constitute the program. For example,
some methods exploit the linearity (see Section V) of the
rules to produce optimized forms of evaluation. The sec-
ond one is the structure of the goal, and in particular the
selectivity that comes from goal constants. These two ap-
proaches are not mutually exclusive: it is possible to build
syntactic methods which combine both cases.

Semantic optimization, instead, concerns the use of ad-
ditional semantic knowledge about the database in order

X P ’ , G .

7h”sa l order

Objective

Approach

Structure

CRITERION 1 ALTERNATIVES I

depth-first vs. breadth-first

rewriting vs. pure evaluation

syntactic vs. semantic

rule structure vs. coal structure

BOTTOM-UP

1611. 1151
Semi-naive [IS]

Henschen~Naqvi 1591

LOGIC ALGEBRAIC

Constant reduction
Magic Counling 1106)

Stahc filtering 168)

(b)
Fig. 3 . Classification of evaluation and optimization methods.

to produce an efficient answer to a query; the combination
of the query with additional semantic information is per-
formed automatically. Semantic methods are often based
on integrity constraints, which express properties of valid
databases. For instance, a constraint might state that “all
intercontinental j ights directed to Milan land in Mal-
pensa airport”. This constraint can be used to produce
the answer of a goal asking for “the arrival airport of the
intercontinental j ight A2747 from New York to Milan ”
without accessing the EDB. Although we think that se-
mantic optimization has the potential for significant im-
provements of query processing strategies, we do not fur-
ther consider semantic optimization methods in this paper:
various approaches to semantic optimization are proposed
in the literature; among others; see [70], [36].

E. Classijication of Evaluation and Optimization
Methods

Fig. 3(a) summarizes classification criteria for Datalog
optimization methods; they concern the search strategy
(bottom-up or top-down), the objective (rewriting or pure
evaluation), and the formalism (logic or algebraic). By
combining approaches and excluding some alternatives
that do not correspond to relevant classes of methods, we
obtain four classes, each including rather homogeneous
methods:

1) top-down evaluation methods
2) bottom-up evaluation methods
3) logic rewriting methods
4) algebraic rewriting methods.
Fig. 3(b) shows some of the most well-known evalua-

tion and optimization methods present in the literature.
This list is not exhaustive for obvious brevity reasons; we
apologize to authors whose methods are omitted. In the
next section we survey informally some of these methods.

Finally, we expect optimization methods to satisfy three
important properties.

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

O N KNOWLEDGE ANI) D A I A ENGINEERING. VOI.. I . VO. I . h lAKCH 1089

Methods must be sound: they should not include in
the result tuples which do not belong to it.

Methods must be complete: they must produce all the
tuples of the result.

Methods must terminate: the computation should be
performed in finite time.

Although we omit to present formal proofs, all the
methods surveyed in the next section satisfy all these
properties.

v . S U R V E Y OF EXECUTION METHODS AND

OPI.IMI%ATION TECHNIQIJES
In this section we present methods for optimizing a Da-

talog program, i.e., for generating efficiently the actual
set of tuples which satisfy a given goal for a given set of
Datalog rules. In order to do this, we first present a bot-
tom-up naive evaluation method (called the Gauss-Seidel
method), and discuss briefly its sources of inefficiency.
Then, we examine how to reduce these sources of ineffi-
ciency: we introduce the Semi-Naive approach which im-
proves a bottom-up computation of linear rules, and we
present a top-down efficient strategy, called Query-
Subquery. Then, we present two of the most known re-
writing methods, Magic Sets and Counting, which are
used to optimize the behavior of bottom-up computations.
Finally, we briefly overview other optimization methods.

A . Bottom- Up Eiuluation
The Gauss-Seidel method is an algebraic version of the

nni~be riwfuLition paradigm, which is present in many dif-
ferent forms in the literature 1131, 1851, [41], [86], 1871.
The method is also well known in numerical analysis,
where it is used for determining the iterative solution (f i x -
point) of systems of equations. Assume the following sys-
tem C of relational equations:

R, = E , (R , , . . . , R,), (i = 1 , . . . , n) .

The Gauss-Seidel method proceeds as follows: initially,
the variable relations Ri are set equal to the empty set.
Then, the computation Ri := ,?;(RI, . . . , R,,), (i = 1,
. . . , n) is iterated until all the Ri do not change between
two consecutive iterations (namely, until the Ri have
reached a j xpo in t) . At the end of the computation, the
value assumed by the variable relations R, is the solution
of the system E.

GAUSS-SEIDEL METHOD
INPUT:

Extensional Database EDB.
OUTPUT:

. . . ,R,,.
METHOD:
FORI ' :== l T O n D O R i : = D;
REPEAT

A system of algebraic equations E, and an

The values of the variable relations R I ,

cond : = true;
Fori := 1 TO n DO

BEGIN
S : = R I ;

Ri := Ei(R,, . . . , Rn);
IF R, # S THEN cond : = false;
END;

UNTIL cond;
FOR i : = 1 TO n DO OUTPUT(R,).
ENDMETHOD

Note that step "Ri : = E;(R I , . . . , R,)" of the Gauss-
Seidel algorithm has the same effect as the application of
rule EPP of Section 11. However, instead of acting on sin-
gle tuples, here we apply algebraic operations simultu-
neously to entire relations.

Variants of the Gauss-Seidel method are the Jcicobi
method and the Chaotic method 1281. The latter is ob-
tained by computing the various algebraic expressions not
in a strict sequential order. Different versions of the cha-
otic method yield the so-called lazy and data$ow evalu-
ations, that correspond to starting the evaluation of com-
putable relations, respectively, at the latest or at the
earliest convenience.

The Gauss-Seidel method has two sources of ineffi-
ciency.

a) Several tuples are computed multiple times during
the iteration process. In particular, during the iterative
evaluation of a relation R, tuples belonging to relations
R") will also belong to all subsequent relations R"), j 2
i , until the fixpoint is reached.

b) The method produces the entire result relations. If
the goal contains constant arguments, they are selected
only at the end. In this way, several tuples are computed
without being really required, and eliminated by the final
selection.

Inefficiencies due to observation a) above are partially
eliminated through the semi-naive methods discussed in
the remainder of this subsection; inefficiencies due to ob-
servation b) above are dealt with by evaluation methods
(like querysubquery) and rewriting methods (like magic
sets, counting, etc.), discussed in the next subsections.

Semi-naive evaluation is a bottom-up technique de-
signed for eliminating redundancy in the evaluation of tu-
ples at different iterations. Several versions of this method
can also be found in the literature [13], [28], 1201.

Consider the Gauss-Seidel algorithm, applied to solve
a single equation on variable R. Let R'k' be the temporary
value of relation R at iteration step k . The differential of
R at step k of the iteration is defined as

D'k) = R(k) - R(k-1).

The differential term, expressing the new tuples of R (k J at
each iteration k , is exactly what we would like to use at
each iteration, instead of the entire relation R'";; this is
legal with linear eqiiations. An equation of relational al-
gebra

R = E (R)

is linear with respect to R if it verifies the following prop-
erty :

E (R ' U R ") = E (R ') U E (R ")

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERI et al . : DATALOG 155

for any two relations R‘ and R f f having the same arity as
R. Note that linearity is ensured if only one occurrence of
R appears in the expression E (R) . The differential of R
at step k of the iteration is simply E (D (R)) :

E (D (~)) = E (R ‘ ~) - ~ (k - 1)) = E (R (~)) - ~ (~ (k - 1))

so that one can compute R (k + l) = E (R (k ’) as the union

E(R‘k - I)) U E(D‘k’).

The advantage of this formula is that, at each iteration k ,
we need to compute E(D‘k ’) rather than E (R (k ’) . This
can be generalized to systems of equations (see [29],

Extensions of this method, the general semi-naive, and
the pseudo-rewriting semi-naive (discussed, among oth-
ers, in [34], [135], and [63]) enable a less efficient appli-
cation of a similar approach to nonlinear equations.

~ 3 1) .

B . Top-Down Evaluation
The query-subquery (QSQ) algorithm [129] is an effi-

cient top-down evaluation algorithm, optimizing the be-
havior of backward-chaining methods as described in Sec-
tion 11.

The objective of the QSQ method is to access the min-
imum number of facts needed in order to determine the
answer. In order to do this, the fundamental notion of
subquery is introduced. A goal, together with a program,
determines a query. Literals in the body of any one of the
rules defining the goal predicate are subgoals of the given
goal. Thus, a subgoal, together with the program, yields
a subquery; this definition applies recursively to subgoals
of rules which are subsequently activated. In order to an-
swer the query, each goal is expanded in a list of subgoals,
which are recursively expanded in their turn.

The method maintains two sets: a set P of answer tu-
ples, containing answers to the main goal and answers to
intermediate subqueries, which is represented by a set of
temporary relations (one relation for each IDB-predi-
cate); and a set Q of current subqueries (or subquery in-
stances), which contains all the subgoals that are cur-
rently under consideration.

Thus, the function of the QSQ algorithm is twofold:
generating new answers and generating new subqueries
that must be answered. There are two versions of the QSQ
algorithm, an iterative one (QSQI) and a recursive one
(QSQR). The difference between the two concerns which
of these two functions has priority over the other: QSQI
privileges the production of answers, thus, when a new
subquery is encountered, it is suspended until the end of
the production of all the possible answers that do not re-
quire using the new subquery. QSQR behaves in the op-
posite way: whenever a new subquery is found, it is re-
cursively expanded and the answering to the current
subquery is postponed to when the new subquery has been
completely solved.

At the end of the computation, P includes the answer
to the goal; hence, as in the Gauss-Seidel method, it is

required to perform (una tantum) the final selection. How-
ever, the reader should notice that the QSQ method uses
the information about constants in the goal, hence, the
size of P and of all the relations involved in the compu-
tations is comparatively much smaller than the size of all
the relations involved in the Gauss-Seidel computation.

This algorithm can be compared to the Prolog inferen-
tial machine, which is also top-down. The comparison is
purely indicative, based on the idea of using a Prolog in-
ferential machine to execute a Datalog program. We note
that Prolog acts one-tuple-at-a-time, while QSQ is set-ori-
ented, as it processes whole relations. In this sense, QSQ
is appropriate for database processing. Also, QSQ is
breadth-first and always terminates, while Prolog is depth-
first and may instead not terminate in some cases.

The query-subquery algorithm was introduced by
Vieille in [1281. The version introduced in that paper was
found to be incomplete. The author [129], [130] and oth-
ers [93], [1001 have subsequently provided corrections or
complete versions of the algorithm. A detailed description
of the method can be found in [34].

C. Magic Sets
The method of the magic sets is a logical rewriting

method which transforms a program into a larger one,
containing some more rules that define new IDB predi-
cates. These IDB predicates serve as constraints, which
force the program variables to satisfy some additional
conditions. Thus, during bottom-up computation, the vari-
ables of the modified rules may assume only some of the
values that were instead allowed for variables of the orig-
inal rules. In most cases, this makes the new program
more efficient.

Details about this algorithm can be found in [141, [171,
[22], [34]. We show here a significant example, and make
some comments on the rewritten program. Consider again
the program PI with the goal ?-sgc(ann, X) . After the
magic sets transformation, the program becomes:

r ; : sgc(X, X) : - person(X).

r;: sgc (X , Y) :- mugic(Xl) , par(X, X l) ,

sgc(X1, Yl), par(Y, Yl).

r; : magic (ann).

r4: magic(X1) : - magic(X) , par(X, X l) .

Let us first notice what has happened to the initial pro-
gram: two new rules have been added, and one rule has
been modified. Let us consider this rule (r ;) . A new lit-
eral has been added to its body: magic (X I). The presence
of this new literal forces the argument X 1 of the EDB
relation PAR to assume only some specific values, i .e . ,
values which also belong to the IDB relation MAGIC.

Let us now see how this new relation is defined. The
first rule (r i) simply says that the constant ann belongs
to it. Rule ri says that, if X 1 is in MAGIC, and X is a
parent of X 1 , then also X is in MAGIC. The result of the

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I , NO. I . MARCH 1989

computation of relation MAGIC is

MAGIC = { < ann > , < dorothy > ,
< hilary > , < george > }.

Thus, the IDB relation MAGIC contains all the ancestors
ofann. The tuples of the relation MAGIC defined by the
magic rules form the magic set. It is often called the cone
of ann, referring to the fact that, starting from ann, the
ancestors grow “fanning out” like a cone. By imposing
that, in r ; , XI must belong to relation MAGIC, we are
imposing that, in the computation of Ann’s cousins at the
same generation, we only have to consider those other
pairs of same generation cousins whose first element is an
ancestor of Ann.

This example can be used to introduce the idea of
sideways information passing (SIP) [22]. Intuitively,
given a certain rule and a literal in the rule body with
some bound argument(s), one can use the knowledge
about the relation corresponding to this literal to obtain
bindings for uninstantiated variables in other argument
positions. This process can be iterated for each literal in
the rule body, and recursively on other IDB-predicates.
Thus, known information (bindings to constants) is passed
sideways within the rule body. As we have seen in Section
V-B, this is the normal behavior of top-down evaluation
methods, for instance QSQ.

After the magic sets transformation, the resulting pro-
gram can be evaluated by a simple algorithm like Gauss-
Seidel or semi-naive, still taking advantage of the binding
passing strategy. However, the application of a bottom-
up computation method to the rewritten program may pro-
duce more tuples than exactly those of the goal answer,
as it includes all the same generation pairs of all people
belonging to the cone of ann. Thus, as in QSQ, the re-
sulting relation must be finally selected to obtain the an-
swer.

The magic sets method has been extended by Sacca’
and Zaniolo to a class of queries to logic programs that
contain function symbols [1051. A more sophisticated
technique called “Supplementary Magic Sets”, has been
introduced by Beeri and others [22], whose virtue is to
eliminate some repeated computations. Another improve-
ment of the magic set method is proposed in [99], where
top-down evaluation is completely mimicked by bottom-
up, using a semi-naive evaluation of rewritten rules; the
rule rewriting uses initial goal bindings in a very sophis-
ticated way; for instance, goals like p (X , X) , give rise to
the binding of the two occurrences of variables X to each
other. This was not covered by the original magic sets
method.

D. Counting
The Counting method is a rewriting method based on

the knowledge of the goal bindings; the method includes
the computation of the magic set, but each element of the
magic set is complemented by additional information ex-
pressing its “distance” from the goal constant. The

counting method was also first presented in [14]; an im-
proved version was introduced in [22].

Consider again the program P I used as an example of
the magic set method in the previous subsection. The
magic set method restricts the computation to the ances-
tors of ann; for each of these elements, the counting
method maintains the information whether it is one of
ann’s parents (distance l) , ann’s grandparents (distance
2), ann’s grand-grandparents (distance 3), etc. The re-
written program contains the computation of these dis-
tances. At this point, computation may be restricted, re-
spectively, to the children of ann’s parents, to the
grandchildren of ann’s grandparents, to the grand-grand-
children of ann’s grand-grandparents, etc.

The following is the result of applying the counting
transformation to the output of the magic sets method:

sgc’(X, X , I) :- person(X), integer(1).

sgc‘(X, Y , I) :- counting

sgc ’ (X l , Y1

I = J - 1.

counting(ann, 0) .
counting (X I , I) : - counting

I = J + 1.

With the goal:
? - sgc’(ann, Y , 0) .

With some liberality, we use built-in predicates for ad-
dition and subtraction, that will be discussed in Section
VI-A. The reader can observe that the counting predicate
increments generation levels from ann upwards, marking
the level of each element of the magic set, whereas the
sgc’ predicate decrements generation levels. The goal se-
lects only the sgc pairs of level 0, i.e., those at the same
level as ann. At each step, among the tuples of the magic
set, the program only uses the tuples that have the appro-
priate distance from ann.

The application of the counting method has the poten-
tial for improving the efficiency of the computation, but
clearly the method does not terminate when the database
is cyclic (as the increment of the counting variable is not
arrested). Thus, the counting method applies to acyclic
databases only. A further hypothesis is that the program
be linear, with at most one recursive rule for each predi-
cate.

In order to improve the applicability of the counting
method whenever it is not known a priori whether the
database is cyclic, Sacca’ and Zaniolo have introduced
[1061 the “magic counting method”, which constantly
monitors the counting computation in order to determine
whether the underlying database is cyclic; if so, it switches
to the magic set computation.

E. The Method of Henschen and Naqvi
One of the earliest pure evaluation methods proposed

in the literature was developed by Henschen and Naqvi

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERl rf a1 : DATALOG 157

[59]; the method applies to linear Datalog programs with
goals that contain bound arguments.

This method produces an iterative program that evalu-
ates the goal through several steps. Each step produces
some of the answer tuples, and, at the same time, com-
putes symbolically a new expression that has to be eval-
uated at the following step. The method is based on a
‘‘functional’’ interpretation of predicates: we can view
any predicate p having at least two arguments as a set
function from some of its arguments to the remaining
ones, associating to each set S of values of its first argu-
ments a set S ’ of values of its second arguments; for in-
stance, i f p is a binary predicate, we denote by f p the func-
tional mapping

S ‘ = f p (S) = (y l x ~ S and p (x , y) } .

With this notation, one can also perform the composition
of predicate functions, in the usual mathematical sense.
This can be applied to the solution of linear Datalog pro-
grams, by considering the bound arguments as the func-
tion’s domains. We exemplify the method of Henschen-
Naqvi on program P I , with the goal: ?-sgc(a, X) .

fperson (a) U f r a p (f p m m (h u r (a) 1)
U f r a p (f r a p (r b = ~ s ~ ~ . (f p a r (f p a r (a))))) U * * *

where fperJon denotes a unary function returning all per-
sons, f P u r is the set function from the first to the second
argument of the relation PAR, andf,,, is the set function
from the second to the first argument of the relation PAR.

The most interesting feature of the method of Henschen
and Naqvi is that it integrates two kinds of computation:
at a certain step, some tuples of the answer are computed,
but also some symbolic manipulation is performed. The
first kind of computation is typical of pure evaluation
methods, the second is characteristic of rewriting meth-
ods.

Substantially the same functional interpretation of pred-
icates is given in a more general form by Gardarin and De
Maidreville in [52], who propose a method for evaluating
queries as function series, where the functions involved
correspond to the functional interpretation of the predi-
cates. Follow-up work can be found in [54].

F. Other Eficient Evaluation Methods
Several other methods can be found in the literature;

most of them share some characteristics with the methods
presented above.

Static Filtering is a rewriting method introduced by Ki-
fer and Lozinskii in [68]. In this method, a bottom-up
evaluation is viewed as aflow of tuples through a graph
derived from the program, called relation-axiom graph,
with two types of nodes: relation nodes, associated to
predicates, and axiom nodes, associated to rules. Com-
putation is ideally preformed inside axiom nodes.

When the goal has some bound arguments, those tuples
produced during the graph traversal which do not satisfy

the bindings can be eliminated at the end of the compu-
tation; the idea of the method is that of “cutting” off use-
less tuples from the computation at an earlier stage of their
flow towards the goal node. This is achieved by imposing
conditions on predicate arguments, called jilrers, to the
output edges of each relation node; the expressions of fil-
ters are derived from the goal bindings, and propagated
along the graph by a push operation.

A similar approach was presented by Devanbu and
Agrawal in [47], but restricting the application to linear
rules with only one occurrence of the recursive predicate
in the RHS. Another interesting (pure evaluation) algo-
rithm (the Apex method) was previously introduced by
Lozinskii in [SI]. The first method for pushing selections
into recursive expressions was proposed by Aho and U11-
man in a seminal paper [lo] ; the static filtering technique
can be considered as a generalization of that concept.

Another generalization of [101 is presented by Ceri and
Tanca in [29], by introducing the pair of methods Vuri-
able Reduction and Constant Reduction which apply to
generic systems of algebraic equations. Both methods
push the initial selections so as to use their “filtering”
ability as soon as possible; the two methods act either by
rewriting equations into equivalent ones with different
(smaller) variables or by reducing the size of involved re-
lations prior to the equations’ evaluation. These methods
are part of a structured approach to the optimization of
systems of algebraic equations derived from logic pro-
grams, presented in [29].

An idea similar to magic sets is exhibited in the Alex-
ander Method, published in [l o l l ; the method consists of
rewriting the rules for each recursive predicate so that they
represent, respectively, problems and solutions for the
predicate; all new rules obtained are evaluated bottom-up,
but the evaluation of the problem rules simulates in fact
top-down evaluation and allows binding passing among
subgoals.

There are also other possible approaches to optimiza-
tion. One of them is the method for redundancy elimina-
tion of Sagiv: in [lo71 an algorithm is presented for min-
imizing the size (in terms of number of rules in the
program and of number of atoms in a rule) of a Datalog
program under a decidable condition called uniform
equivalence. Another kind of optimization is achieved by
Ramakrishnan and others, in [98], where the objective of
optimization is pushing projections, rather than selec-
tions, in the body of a Datalog rule. This means deleting
some argument positions in the literals of the rule body,
which also has, sometimes, the effect of making some
rules redundant for the computation.

A comparative evaluation of the performance of meth-
ods presented prior to 1986 is presented by Bancilhon and
Ramakrishnan [15]. The study uses a benchmark which
includes only few, conventional programs; it excludes
cyclic databases, which are quite common. However, this
paper remains one of the few quantitative approaches to
the comparison of optimization methods; we think that
this topic deserves a much more thorough treatment, al-

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. I. MARCH 1989

though achieving a comparative evaluation of methods’
performance is extremely difficult due to the variety and
inherent complexity of methods and to the continuous ev-
olution of the field.

G. Computing Transitive Closures Eficiently
Computing transitive closures efficiently has been rec-

ognized as a significant subproblem of the efficient com-
putation of general recursive queries [621, [7]-[9], 11231.
In fact, many proposals of other extensions to the rela-
tional query languages in ‘‘nontraditional” directions in-
clude this operation [8], [102], [58], [136]. Thus, an in-
dependent area of research has been developed which
studies the efficient implementation of transitive closures
improving the naive and semi-naive methods. The effi-
cient methods are mainly concerned with transitive clo-
sures of binary relations representing graphs and trees,
very often making use of sparse matrices to represent
them.

In [62], a logarithmic technique is applied in order to
build more efficient iterations. The paper provides an in-
teresting study of performance on tree-shaped databases,
showing that logarithmic techniques perform much better
than the traditional ones (as it could be expected). In [7] ,
direct algorithms are proposed, which are based on stud-
ies performed in different contexts [108], [109], [131],
[132]. The name “direct” algorithm descends from the
fact that the length of the computation does not depend
on the length of paths in the underlying graph. Several
research efforts have also been directed towards the par-
allel computation of transitive closures. In these propos-
als, the computation of transitive closures is performed
on several processors at the same time; the significant
problem is avoiding maintaining too many duplicates, and
to perform too many duplicate computations on different
processors. Two such algorithms were proposed in [1241.
Other significant papers are [9] and 1671.

VI. EXTENSIONS OF PURE DATALOG
The Datalog syntax we have been considering so far

corresponds to a very restricted subset of first-order logic
and is often referred to as pure Datalog. Several exten-
sions of pure Datalog have been proposed in the literature
or are currently under investigation. The most important
of these extensions are built-in predicates, negation, and
complex objects.

A . Built-In Predicates
Built-in predicates (or “built-ins”) are expressed by

special predicate symbols such as > , < , 1, 5 , =, #
with a predefined meaning. These symbols can occur in
the right-hand side of a Datalog rule; they are usually
written in infix notation.

Consider, for example, the following program P2 con-
sisting of a single rule where par is an EDB predicate:

P2: sibling(X, Y) : - par(Z , X), par(Z, Y) , X + Y.

The meaning of this program is obvious. By use of the
inequality built-in predicate we avoid that a person is con-
sidered as his own sibling.

From a formal point of view, built-ins can be consid-
ered as EDB-predicates with a different physical realiza-
tion than ordinary EDB-predicates: they are not explicitly
stored in the EDB but are implemented as procedures
which are evaluated during the execution of a Datalog
program. However, built-ins correspond in most cases to
inJnite relations, and this may endanger the safety of Da-
talog programs.

Safety means that a Datalog program should always
have a finite output, i.e., the intensional relations defined
by a Datalog program must be finite. It is easy to see that
safety can be guaranteed by requiring that each variable
occurring as argument of a built-in predicate in a rule body
must also occur in an ordinary predicate of the same rule
body, or must be bound by an equality (or a sequence of
equalities) to a variable of such an ordinary predicate or
to a constant. Here, by “ordinary predicate”, we mean a
nonbuilt-in predicate.

During the evaluation of a Datalog rule with built-in
predicates, the following principle has to be observed: de-
fer the evaluation of a built-in predicate until all argu-
ments of this predicate are bound to constants. An excep-
tion to this principle can (sometimes should) be made for
the equality predicate. An equality should be evaluated as
soon as one of its two arguments is a constant or is bound
to a constant.

In a similar way, arithmetical built-in predicates can
be used. For instance, a predicate plus (X, Y, Z) may be
used for expressing X + Y = Z , where the variables X,
Y , and Z are supposed to range over a numeric domain.
During the evaluation of a rule body, such a predicate can
be evaluated as soon as bindings for its “input variables”
(here X and Y) are provided.

Finally, let us remark that when Datalog rules are trans-
formed into algebraic equations, then many built-in pred-
icates can be expressed through join conditions. The above
defined program P,, for instance, is translated into the
following equation of relational algebra:

SIB = IT 2,4(PAR w1=1, - ,2+2 PAR)

where SIB and PAR denote the relations corresponding to
the predicates sibling and parent , respectively.

B. Incorporating Negation into Datalog: The Problem
In pure Datalog, the negation sign ‘‘ 1 ” is not allowed

to appear. However, by adopting the Closed World As-
sumption (CWA), we may infer negative facts from a set
of pure Datalog clauses.

Note that the CWA is not a universally valid logical
rule, but just a principle that one may or may not adopt,
depending on the semantics given to a language. In the
context of Datalog, the CWA can be formulated as fol-
lows:

CWA: If a fact does not logically follow from a set of

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

159 CERl et al.: DATALOG

Datalog clauses, then we conclude that the negation of
this fact is true.

Negative Datalog facts are positive ground literals pre-
ceded by the negation sign, for instance, 1 sgc(bertrand,
hilary). Note that this negative fact follows by the CWA
from P , U E , , since sgc(bertrand, hilary) does not fol-
low from Pi U E,. If F denotes a negative ground fact,
then 1 F I denotes its positive counterpart. For example:
I 1 sgc(bertrand, hilary) I = sgc(bertrand, hilary).

The CWA applied to pure Datalog allows us to deduce
negative facts from a set S of Datalog clauses. It does not,
however, allow us to use these negative facts in order to
deduce some further facts. In real life, it is often neces-
sary to express rules whose premises contain negative in-
formation, for instance: “ i f X is a student and X is not a
graduate student, then X is an undergraduate student”. In
pure Datalog, there is no way to represent such a rule.

Note that in relational algebra an expression corre-
sponding to the above rule can be formulated with ease
by use of the set-difference operator “-”. Assume that
a one-column relation STUD contains the names of all stu-
dents and another one-column relation GRAD contains the
names of all graduate students. Then we obtain the rela-
tion UND of all undergraduate students by simply sub-
tracting GRAD from STUD, thus

UND = STUD - GRAD.

Our intention is now to extend pure Datalog by allowing
negated literals in rule bodies. Assume that the unary
predicate symbols stud, und, and grad represent the prop-
erties of being a student, an undergraduate, and a gradu-
ate, respectively. Our rule could then be formulated as
follows:

und(X) :- s tud(X) , 1 grad(X).

More formally, let us define Datalog’ as the language
whose syntax is that of Datalog except that negated lit-
erals are allowed in rule bodies. Accordingly, a Datalog’
clause is either a positive (ground) fact or a rule where
negative literals are allowed to appear in the body. For
safety reasons we also require that each variable occurring
in a negative literal of a rule body also occurs in a positive
literal of the same rule body.

In order to discuss the semantics of Datalog’ pro-
grams, we first generalize the notion of the Herbrand
Model (see Section 11-D) to cover negation in rule bodies.

Let 9 be a Herbrand interpretation, i.e., a subset of the
Herbrand base HB. Let F denote a positive or negative
Datalog fact.

(“ is a positive fact and F E 9, or
F is satisfied in 9 iff

LF is a negative fact and IF 1 g! 9.

Now, let R be a Datalog’ rule of the form : - Li,
. . . , L, and let 9 be a Herbrand interpretation. R is sat-
isfied in 9 iff for each ground substitution O for R , when-
ever it holds that for all 1 5 i I n , Lie is satisfied in 9,

then it also holds that LOO is satisfied in 9. (Note that LOO
is satisfied in 9 iff LOO E 4, since LOO is positive.)

Let S be a set of Datalog’ clauses. A Herbrand inter-
pretation 9 is a Herbrand model of S iff all facts and rules
of S are satisfied in 9.

In analogy to pure Datalog, we require that the set of
all positive facts derivable from a set S of Datalog’
clauses be a minimal model of S . However, a set S of
Datalog: clauses may have more than one minimal Her-
brand model. For instance, if S, = {boring (chess) : -
1 interesting (chess)}, then S has two minimal Herbrand
models: Ha = {interesting(chess)) and Hb = {bor-
ing (chess) } .

The existence of several minimal Herbrand models for
a set of Datalog’ clauses entails difficulties in defining
the semantics of Datalog’ programs: which of the differ-
ent minimal Herbrand models should be chosen? Note also
that the model minimality requirement is inconsistent with
the CWA. By the CWA both facts 1 boring(chess) and
1 interesting(chess) can be deduced from the above set
S, . Thus, neither of the models Ha and Hb are consistent
with the CWA.

In the following we describe a policy which is com-
monly referred to as stratijied evaluation of Datalog’
programs, or simply as stratijied Datalog’. This policy
permits us to select a distinguished minimal Herbrand
model in a very natural and intuitive way by approximat-
ing the CWA. However, as we will see later, this method
does not apply to all Datalog’ programs, but only to par-
ticular subclass; the so-called stratijied programs [371,
[121. Note also that this technique can be used in the more
general context of Logic Programming with negation [121
as well.

C. Stratijied Datalog’
This policy of choosing a particular Herbrand model,

and thus of determining the semantics of a Datalog’ pro-
gram is guided by the following intuition: when evaluat-
ing a rule with one or more negative literals in the body,
first evaluate the predicates corresponding to these nega-
tive literals. Then the CWA is “locally” applied to these
predicates.

For instance, the clause set S, , as defined above, would
be evaluated as follows: before trying to evaluate the
predicate boring, we evaluate the predicate interesting
which occurs negatively in the rule body. Since there are
no rules and facts in S, allowing us to deduce any fact of
the form interesting(a), the set of positive answers to
this predicate is empty. In particular, interesting (chess)
cannot be derived. Hence, by applying the CWA “lo-
cally” to the interesting predicate, we derive 1 interest-
ing (chess). Now we evaluate the unique rule of s, and get
boring (chess). Thus, the computed Herbrand model is Hb
= (boring (chess)}.

When several rules occur in a Datalog’ program, then
the evaluation of a rule body may engender the evaluation
of subsequent rules. These rules may contain in turn neg-

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1 , NO. 1, MARCH 1989

ative literals in their bodies and so on. Thus, it is required
that before evaluating a predicate in a rule head, it is al-
ways possible to completely evaluate all the predicates
which occur negatively in the rule body or in the bodies
of some subsequent rules and all those predicates which
are needed in order to evaluate these negative predicates.

If a program fulfills this condition it is called stratzjied.
Any stratified program P can be partitioned into disjoint
sets of clauses P = P’ U . . . U Pi U . . . U P called
strata, such that each IDB-predicate of P has its defining
clauses within one stratum and P’ contains only clauses
with either no negative literals or with negative literals
corresponding to EDB-predicates and each stratum P’
contains only clauses whose negative literals correspond
to predicates defined in lower strata. The partition of P
into P’ . . . P“ is called a stratijication of P .

Assume a stratified program P with given stratification
P’ . . . P“ has to be evaluated against an EDB E. The
evaluation is done stratum-by-stratum as follows. First,
P’ is evaluated by applying the CWA locally to the EDB,
i.e., by assuming 1 p (c , , . . . , ck) for each k-ary EDB-
predicate p and constants c1, . . . , ck where p(c1, . . . ,
c k) E . Then the other strata are evaluated in ascending
order. During the evaluation of each stratum P i , the result
of the previous computations is used and the CWA is made
“locally” for all EDB-predicates and for all predicates
defined by lower strata.

Consider, for example, the following program P,,
where d is the only EDB-predicate:

r4: r (X , Y) : - d (Y , X) .

r5: s (X , Y) :- q (X , Z) , q (Y , T) , X + Y

A stratification of P , ~ is: P: = { r 4 } , ~ , 2 = { r2, r3, r 5 } , e = { rl } . Assume P, is evaluated over the EDB E, =
{ d (a , b) , d (b , c), d (e , e) } . The evaluation of the first
stratum produces the new facts: r (b , a) , r (c , b) , r (e ,
e) . The computation of the second stratum yields the fol-
lowing additional facts: q (a , b) , q (b , c), q (a , c) , s (a ,
b) , s (b , a) . Finally, by evaluating the third stratum we

Note that a stratified program has, in general, several
different stratifications. The program P,, for example, has
the following alternative stratification: P: = { r4 } , P: =
{ r2, r3 }, Pa = { r l , r5 } . However, it can be shown [12]
that all stratifications are equivalent, i .e., the result of the
evaluation of a stratified Datalog’ program P is indepen-
dent of the stratification used.

It is easy to decide whether a given Datalog’ program
is stratified by analyzing the Extended Dependency Graph
EDG (P) of P . The nodes of EDG (P) consist of the IDB-
predicate symbols occurring in P. There is a (directed)
edge < p , q > in EDG(P) iff the predicate symbol q oc-
curs positively or negatively in a body of a rule whose

g e t p (b , a) .

head predicate is p . Furthermore, the edge < p , q > is
marked with a “ 1 ” sign iff there exists at least one rule
R with head predicate p such that q occurs negatively in
the body of R. The extended dependency graph EDG (P,)
of the program P, is depicted in Fig. 4.

A Datalog’ program P is stratified iff EDG(P) does
not contain any cycle involving an edge labeled with
“ 1 ”. If P is stratified, then it is quite easy to construct
a particular stratification for P from E D G (P) [34]. An-
other method for constructing a stratification is given in
[122].

It can be shown that the strata-by-strata evaluation of a
stratified program P on the base of an underlying EDB E
always produces a minimal Herbrand model of P U EDB.
This model is also called the Perjiect Model and can be
characterized in a purely nonprocedural way [12], [95].
Local stratijication, a refinement of stratification, is pro-
posed in [95].

D. InJationary Evaluation and Expressive Power of
Datalog ’ Programs

Another evaluation paradigm for Datalog ’ programs
has been proposed recently in [4], [72]. This method,
called injationary evaluation, has the advantage of ap-
plying to all Datalog’ programs and not just stratified Da-
talog ’ programs.

Let P be a Datalog’ program and E an EDB. The in-
flationary evaluation of P on E is performed iteratively so
that all rules of P are processed in parallel at each step.
From the EDB and the facts already derived, new facts
are derived by applying the rules of P. These new facts
are added to the result at the end of each step. At each
step, the CWA is made temporarily during the evaluation
of the rule bodies: it is assumed that the negation of all
facts not yet derived is valid. The procedure terminates
when no more additional facts can be derived.

Consider, for example, the following nonstratified pro-
gram Pi, where d is the only EDB-predicate:

rl : s (X) :- p (X) , q (X) , i r (X) .

r2: p (X) :- d (X) , 1 q (X) .

r3: q (X) :- d (X) , 1 p (X) .

r4: r (X) :- d (X) , d(b) .

Assume that this program is evaluated inflationarily
against an EDB Ei = { d (a) } . During the first iteration
step, rule r2 produces the new fact p (a) , and rule r3 pro-
duces the new fact q (a) . During the second iteration step,
rule r1 produces the new fact s (a) . Since no further facts
are derivable, the procedure stops with the result { p (a) ,

It is easy to see the inflationary evaluation of a Da-
talog’ program P corresponds to the computation of a
least fixpoint [72], [34]. Furthermore, the result united to
E is a Herbrand model of P U E. However, in general,
it is not a minimal Herbrand model. For instance, in the
above example the computed Herbrand model is { d (a) ,
p (a) , q (a) , s (a) } , but this model is not minimal since

4 (a) , s (a) > .

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERI et al . : DATALOG 161

i/

Fig. 4. Extended dependency graph EDG(P,)

{ d (a) , q (a) } and { d (a) , p (a) } are smaller Herbrand
models of Pi U Ei.

Just as for pure Datalog programs, one can specify a
goal together with a Datalog’ program. In that case,
again, the output consists of all those derived IDB-facts
which are subsumed by the given goal. It can be shown
[4], [7 11, [72], that for each stratified Datalog’ program
P with goal G there exists a Datalog’ program P‘ such
that the output of the stratified computation of P on any
EDB E w.r.t. G is equal to the output of the inflationary
computation of P‘ on E w.r.t. G. This means that infla-
tionary Datalog’ is at least as expressive as stratified Da-
talog’ . Moreover, there exist programs whose inflation-
ary evaluation (w.r.t. a given goal) cannot be simulated
by any strata-by-strata computation of a stratified Da-
talog’ program. Thus, inflationary Datalog’ is compu-
tationally strictly more expressive than stratified Da-
talog’ . Furthermore, it has been shown that inflationary
Datalog’ has the same expressive power as Fixpoint Logic
on Finite Structures, a well-known formalism obtained by
extending first-order logic with a least fixpoint operator
for positive first-order formulas [6].

It is also easy to see that stratified Datalog’ is in turn
strictly more expressive than pure Datalog [4]. Fig. 5
shows the hierarchy of expressiveness of the different lan-
guages and formalisms presented in this paper. More in-
formation on this subject can be found in [38].

We finish our discussion on incorporating negation into
Datalog by giving a brief survey on other relevant work
on this topic.

A different approach for defining the meaning of logic
programs with negation is based on a proposal of Clark
[44]. He essentially considers the completion of a logic
program by viewing the definitions of derived predicates
as logical equivalences rather than logical implications.
The semantics of a logic program with negation can then
be defined as a minimal model of its completion. This
approach was discussed by Sheperdson [1 lo], [11 11 and
Lloyd [78]. Fitting [49] and Kunen [74] refined this ap-
proach by using three-valued logic: in their setting, a fact
can be true, false, or undefined. In the context of Datalog
these approaches are not completely satisfactory.

A recently introduced and very promising approach,
also based on three-valued logic, is the well-founded se-
mantics by Van Gelder, Ross, and Schlipf [126]. Their
method nicely extends the stratified approach to arbitrary

(= nonrecursive
Recursive Datalog) ((, queries

d’

Stratified Datalogy

Fig. 5 . Hierarchy of expressiveness of different versions of Datalog

logic programs with negation. In particular, every strati-
fied program is semantically characterized by a total
model, i.e., a model such that each fact of the Herbrand
base has either truth value “true” or “false”. This model
coincides with the perfect model mentioned above. Non-
stratified programs, on the other hand, can be character-
ized by partial models, where single facts may assume
truth value “undejined.” A fixpoint method for comput-
ing the well-founded partial model is given in [1271, while
resolution-based procedural semantics for well-founded
negation is provided in [103]. Further important papers
related to well-founded semantics are [27], where the re-
lationship to logical constructivism is investigated, and
[961.

E. Complex Objects

The “objects” handled by pure Datalog programs cor-
respond to the tuples of relations which in turn are made
of attribute values. Each attribute value is atomic, i .e . ,
not composed of sub-objects; thus the underlying data
model consists of relations in first normal form. This
model has the advantage of being both mathematically
simple and easy to implement. On the other hand, several
new application areas (such as computer-aided design, of-
fice automation, and knowledge representation) require
the storage and manipulation of (deeply nested) structured
objects of high complexity. Such complex objects cannot
be represented as atomic entities in the normalized rela-
tional model but are broken into several autonomous ob-
jects. This implies a number of severe problems of con-
ceptual and technical nature.

For this reason, the relational model has been extended
in several ways to allow the compact representation of
complex objects. Datalog can be extended accordingly.
The main features that are added to Datalog in order to
represent and manipulate complex objects are finction
symbols as a glue for composing objects from sub-objects
and set constructors for being able to build objects which
are collections of other objects. Function symbols are
“uniterpreted”, i.e., they do not have any predefined
meaning. Usually one also adds a number of predefined
functions for manipulating sets and elements of sets to the
standard vocabulary of Datalog.

There exist several different approaches for incorporat-
ing the concept of a complex structured object into the

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING, VOL. I , NO. I , MARCH 1989

formalism of Datalog [1331, [1191, [75]. One of the most
well-known approaches has been developed within the
LDL (Logic Data Language) Project, carried out at MCC,
Austin, TX. The notation for representing sets and related
issues used in this subsection is the one of LDL.

Examples of complex facts involving function symbols
and sets are:

person (name(joe, berger), birthdate (1956, june, 30),

children ({mar, sarah, j im})).
person (name(joe, coker), birthdate (1956,,june, 30),

children ({bill, sarah })).
person (name(bebe, suong), birthdate (1958, may, 5) ,

children ({ j im, mar, sarah })) .
Here name, birthdate, and children are function symbols.

Variables may represent atomic objects (i.e., constants)
or compound objects. The following rule relates the last
names of all persons having the same birthdate and the
same first name:

similar(X, Y) : - person(name(2, X) , B , C) ,

person(name(2, Y) , B , 0).

By this rule, we can derive, for instance, the new fact
similar (berger, coker).

Two sets are considered equal iff they contain the same
elements, independently of the order in which these ele-
ments appear. The following rule defines a predicate
eqchilds (X , Y) stating that X and Y are the names of per-
sons whose children have exactly the same first names:

eqchilds (X , Y) : - person (X , B, C), person (Y, D , C).

By this rule we can derive, for instance, eqchilds
(name (joe , berger) , name (bebe, suong)) .

LDL offers several built-in predicates and functions for
handling sets. The most important are:

member(t , S), a built-in predicate for expressing that
t is an element of the set S . Notice that t can be a complex
term and may contain sets as components.

union(S, A , B) , a built-in predicate for expressing
the S = A U B .

Sets can be introduced not only by enumeration but also
by grouping. Grouping allows us to define a set in a rule
head by indicating the properties of its elements in the
corresponding rule body. The following rule, for in-
stance, defines the set of all persons (identified by their
last name) who have a child called Sarah.

sarahpar (< X >) : -
person(nume(A, X) , B, C) , member(saruh, C) .

This rule generates the new fact sarahpar({ berger,
coker, suong }).

Using complex objects in Datalog is not as easy as it
might appear. Several problems have to be taken into con-
sideration. First of all, the use of function symbols may

endanger the safety of programs. It is undecidable whether
a Datalog program with function symbols has a finite or
an infinite result. The simplest solution is to leave the re-
sponsibility to the programmer. A similar problem is the
finiteness of sets. Furthermore, not all Datalog programs
with sets have a well-defined semantics. In particular, one
should avoid self-referential set definitions such as
p (< X >) : - p (X). Such definitions come close to Rus-
sell’s paradox. A large class of programs free of self-ref-
erence, called admissible programs, is defined in [21].
Note also that the test whether two terms (or literals) in-
volving sets match is a computationally hard problem.
This is a particular case of theory unification [116].

Another interesting problem is the consistency problem
for monovalued data functions. A monovalued data func-
tion f is an evaluable function symbol, interpreted as a
mathematical function. Such functions can be defined by
the rules of a logic program. However, the unicity of the
function value must be ensured. References [3], [76], and
[77] deal with this problem.

A Logic Programming language for data manipulation
such as LDL should be conceived in accordance with an
appropriate data model which formalizes the storage and
retrieval principles and the manipulation primitives that a
DBMS offers for the objects referenced by the language.
Pure Datalog, for instance, can be based on the relational
model in first normal form (nowadays often called t h e j a t
relational model) because the concept of a literal nicely
matches the one of a tuple in a relation and because the
single evaluation steps of a Datalog program can be trans-
lated into appropriate sequences of relational operations.
On the other hand, Logic Programming languages dealing
with structured objects such as LDL require more com-
plex data models.

Quite a number of extensions of the relational model
have been developed in the last years in order to allow the
storage and manipulation of complex objects. The most
famous ones are the NF2 model by Jaeschke and Schek
[66], the model of nested relations by Fisher and Thomas
[48], the model of Abiteboul and Been [l], [2] (which is
more general than the former two models), the “Franco-
Armenian Data model” FAD by Bancilhon, Briggs,
Khoshafian, and Valduriez [19] (based on a calculus for
complex objects by Bancilhon and Khoshafian [18]).
ALGRES, a quite powerful data-model for complex ob-
jects, supports an extended relational algebra augmented
with a fixpoint operator, and thus is an ideal base for im-
plementing interpreters or compilers for logic data lan-
guages with complex objects [30], [31].

An excellent overview and comparison of data models
for complex objects is given in [11.

F. An Overview of Research Prototypes
We mention here some of the research prototypes cur-

rently under development based on the language Datalog
(or its variations).

The LDL project is under development at Microelec-
tronics and Computer Technology Corporation (MCC),

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERI er al.: DATALOG I63

Austin, TX. The project’s goal is to implement an inte-
grated system for processing queries in Logic Data Lan-
guage (LDL), a language which extends Datalog. We
gave some examples of the most significant constructs of
LDL in Section VI. A general overview of the LDL proj-
ect can be found in [43]. Features for dealing with com-
plex terms in LDL are presented by Zaniolo [133]; a lan-
guage overview is given by Tsur and Zaniolo [119]; the
treatment of sets and negation is formally presented by
Beeri et al. [21]; other papers on the subject are [19] and
[73]. An excellent description of the LDL language and
of related features is given in [92].

The NAIL! project (Not Another Implementation of
Logic!) is under development at Stanford University with
the support of NSF and IBM. NAIL! processes queries in
Datalog, but interfaces a conventional SQL database sys-
tem (running on IBM PC/RT). An overview of the NAIL!
project is presented by Morris, Ullman, and Van Gelder
in [88]; an update can be found in [89]. Various kinds of
algorithms applied in the prototype are discussed in [90]
and [121].

The KIWI Esprit project, sponsored by the EEC, is a
joint effort for the development of knowledge bases, pro-
grammed through an object-oriented language (OOPS) ,
and interfaced to an existing relational database. The Ad-
vanced Database Interface (ADE) of KIWI is developed
jointly by the University of Calabria, CRAI, and ENI-
DATA (Italy). A general overview of KIWI and ADE can
be found in [106al. The mini-magic variation to the magic
set approach, used in KIWI, is described by Sacca’ and
Zaniolo [1041.

The ALGRES Project, under development in the frame
of the METEOR Esprit project, is also sponsored by the
EEC. The ALGRES project extends the relational model
to support nonnormalized relations and a fixpoint opera-
tor, and supports Datalog as programming language.
ALGRES is a joint effort of the Politecnico di Milano and
of TXT-Techint (Italy). A general overview of the
ALGRES Project can be found in a paper by Ceri, Crespi-
Reghizzi et al. [32]. Other papers are [30] and [31].

Other relevant research projects which deal with rule-
based computations are POSTGRES, under development
at Berkeley University [1171, and the 5th GENERATION
Project [50], [91], under development at the Institute for
New Generation Computer Technology (ICOT), Tokio,
Japan. More details about the above-mentioned projects
can be found in [34]. Other recent overviews of the proj-
ects on databases and logic were presented by Zaniolo
[1341 on a dedicated issue of IEEE-Data Engineering and
by Gardarin and Simon [53] on TSI.

VII. CONCLUSIONS
There are no doubts that Datalog theory has been nicely

developed in the last five years, through the flourishing of
many elegant contributions. The main attraction of Da-
talog is the possibility of dealing, within a unique for-
malism, with nonrecursive expressions (or views) as well
as with recursive ones. Although this area is still very

active, we feel that some basic understanding has been
established, thus allowing for systematic treatment.

One of the major challenges that Datalog research has
still to meet is to convince the knowledge base community
of the practical merits of this theory. The weaknesses of
Datalog work have been indicated as follows.

a) Very few applications have been shown which can
take full advantage of Datalog’s expressive power. In par-
ticular, no useful applications have been reported so far
for nonlinear or mutually recursive rules.

b) Datalog is not considered as a programming lan-
guage, but rather as a “pure” computational paradigm.
For instance, Datalog does not provide support for writ-
ing user’s interfaces, and does not support quite useful
programming tools, such as modularization and struc-
tured types.

c) Datalog does not compromise its clean declarative
style in any way; while sometimes it is required that the
programmer may take control on inference processing, by
stating the order and method of execution of rules. This
is typical, for instance, of many expert systems shells.

d) Datalog systems have been considered, until now,
as closed worlds, that do not talk to other systems; while
the current trend is towards supporting heterogeneous sys-
tems.

Some of the above criticisms are in fact well founded,
and provide an indication of the directions in which we
expect Datalog to move in order to become fully appli-
cable. Datalog research will have to consider with great
care the advances in other research areas; in particular,
we have indicated in Section VI that Datalog can be ex-
tended to support complex terms; this is a first step to-
wards the development of new language paradigms which
use some of the concepts from object-oriented databases.
The foundation of such an evolution have already been
placed by Beeri [23] and Abiteboul and Kanellakis [5];
this work has shown that rule-based and object-oriented
approaches are not in opposition, but rather they are ca-
pable of providing useful programming concepts to each
other.

In summary, we expect that supporting rule computa-
tion will be one of the ingredients of future knowledge
base systems; Datalog research has provided exact meth-
ods and a fairly good understanding for approaching this
issue.

REFERENCES
S. Abiteboul and S. Gmmbach, “Bases de donnees et objets com-
plexes,” Tech. Sci. Inform., vol. 6, no. 5 , 1987.
S. Abiteboul and C. Beeri, “On the power of languages for the
manipulation of complex objects,” in Proc. Inr. Workshop Theory
Appl. Nested Relations Complex Objects, Darmstadt, West Ger-
many, abstract, 1987.
S. Abiteboul and R . Hull, “Data functions, datalog and negation,”
in Proc. ACM-SIGMOD Conf., 1988.
S. Abiteboul and V. Vianu, “Procedural and declarative database
update languages,” in Proc. ACM SIGMOD-SIGACT Symp. Prin-
ciples Database Sysr., 1988, pp. 240-250.
S . Abiteboul and P. C. Kanellakis, “Object identity as a query
language primitive, ” manuscript, 1989.
P. Aczel, “An introduction to inductive definitions,” in The Hand-

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

I64 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I , NO. I . MARCH 1989

book of Mathematical Logic, J . Banvise, Ed. Amsterdam, The
Netherlands: North-Holland, 1977, pp. 739-782.

[7] R. Agrawal and H. V. Jagadish, “Direct algorithms for computing
the transitive closure of database relations,” in Proc. 13th Int.
Conf. Very Large Databases, Brighton, U.K., 1987.

[8] -, “Alpha: An extension of relational algebra to express a class
of recursive queries,” in Proc. IEEE 3rd Int. Conf. Data Eng.,
Los Angeles, CA, Feb. 1987.

[9] -, “Multiprocessor transitive closure algorithms,’’ Data Eng.
(Special Issue on Databases for Parallel and Distributed Systems),
vol. 12. Mar. 1989.

[IO] A. V. Aho and J. D. Ullman, “University of data retrieval lan-
guages,” presented at the 6th ACM Symp. Principles Program-
ming Languages, San Antonio, TX, Jan. 1979.

[111 K. R. Apt and M. H. VanEniden, “Contributions to the theory of
logic programming,” J . ACM, vol. 29, no. 3, 1982.

[121 C. Apt, H. Blair, and A. Walker, “Towards a theory of declarative
knowledge,” IBMRes. Rep. RC 11681, Apr. 1986.

[I31 F . Bancilhon, “Naive evaluation of recursively defined relations,”
in On Knowledge Based Management Systems-Integrating Data-
base and AI Systems, Brodie and Mylopoulos, Eds. New York:
Springer-Verlag, 1985.

[I41 F. Bancilhon, D. Maier, Y . Sagiv, and J . D. Ullman, “Magic sets
and other strange ways to implement logic programs,” in Proc.
ACM SIGMOD-SIGAT Symp. Principles Database Syst., Cam-
bridge, MA, Mar. 1986.

[I51 F . Bancilhon and R. Ramakrishnan, “An amateur’s introduction
to recursive query processing,” in Proc. ACM-SIGMOD Conf.,
May 1986.

1161 -, “Performance evaluation of data intensive logic programs,”
in Foundations of Deductive Databases and Logic Programming,
J. Minker, Ed.

[17] F. Bancilhon, D. Maier, Y . Sagiv, and J . D. Ullman, “Magic sets:
Algorithms and examples,” manuscript, 1986.

[I81 F. Bancilhon and S . Khoshafian, “A calculus for complex ob-
jects,” in Proc. SIGMOD 86, 1986.

[I91 F. Bancilhon, T . Briggs, S . Khoshafian, and P. Valduriez, “FAD,
A powerful and simple database language,” in Proc. 13th Int. Conf.
Very Large Data Bases, Brighton, U.K., 1987.

[20] R. Bayer, “Query evaluation and recursion in deductive database
systems,” manuscript, 1985.

[21] C. Beeri, et al . , “Sets and negation in a logical database language
(LDLl),” in Proc. ACM SIGMOD-SIGACT Symp. Principles Da-
tabase Syst., San Diego, CA, Mar. 1987.

[22] C. Beeri and R. Ramakrishnan, “On the power of magic,” in Proc.
ACM SIGMOD-SIGACT Symp. Principles Database Syst., San
Diego, CA, Mar. 1987.

[23] C. Beeri, “Data models and languages for databases,” in Proc.
2nd Int. Conf. Database Theory, Bruges, Belgium, 1988; and in
LNCS 326. New York: Springer-Verlag. 1988.

[24] J . Bocca, H. Decker, J.-M. Nicolas, L. Vielle, and M. Wallace,
“Some steps toward a DBMS-based KBMS,” in Proc. IFIP World
Conf., Dublin, 1986.

[25] J . Bocca, “On the evaluation strategy of EDUCE,” in Proc. ACM-
SIGMOD Conf., Washington, DC, May 1986.

[26] M. L. Brodie, “Future intelligent information systems: AI and da-
tabase technologies working together,” in Readings in Artijicial
Intelligence and Databases. San Mateo, CA: Morgan Kaufman,
1988.

[27] F . Bry, “Logic programming as constructivism: A formalization
and its application to databases,” in 8th ACM Symp. Principles
Database Syst. (PODS), Mar. 1989, pp. 34-50.

[28] S . Ceri, G. Gottlob, and L. Lavazza, “Translation and optimiza-
tion of logic queries: the algebraic approach,” in Proc. 12th Int.
Conf. Very Large Data Bases, Kyoto, Aug. 1986.

[29] S . Ceri and L. Tanca, “Optimization of systems of algebraic equa-
tions for evaluating Datalog queries,” in Proc. 13th Int. Con$ Very
Large Data Bases, Brighton, U.K., Sept. 1987.

[30] S . Ceri, S . Crespi Reghizzi, G. Gottlob, F. Lamperti, L. Lavazza,
L. Tanca, and R. Zicari, “The ALGRES project,” in Proc. Int.
Con$ Extending Database Technol. (EDBT88), Venice, 1988.

[31] S . Ceri, S . Crespi-Reghizzi, L. Lavazza, and R. Zicari,
“ALGRES: A system for the specification and prototyping of com-
plex databases,” Dip. Elettronica, Politecnico di Milano, Int. Rep.

[32] S. Ceri, S . Crespi-Reghizzi, G. Lamperti, L. Lavazza, and R. Zi-
cari, “ALGRES: An advanced database system for complex ap-
plications,” IEEE Software, to be published.

Washington, DC, 1986.

87-018, 1987.

[33] S . Ceri, G. Gottlob, and G. Wiederhold, “Efficient database ac-
cess through Prolog,” IEEE Trans. Software Eng., Feb. 1989.

[34] S . Ceri, G. Gottlob, and L. Tanca, Logic Programming and Da-
tabases. New York: Springer-Verlag, to be published.

[35] U. S. Chakravarthy, J. Minker, and J. Grant, “Semantic query
optimization: Additional constraints and control strategies,” in
Proc. 1st Int. Conf. Expert Database Syst., L. Kerschberg, Ed.,
Charleston, 1986; and in Expert Database Systems. Menlo Park,
CA: Benjamin-Cummings, 1987.

[36] U. S . Chakravarthy, J . Grant, and J . Minker, “Foundations of se-
mantic query optimization for deductive databases,” in Proc. Int.
Workshop Foundations Deductive Databases Logic Programming,
J . Minker, Ed., Aug. 1986.

[37] A. Chandra and D. Harel, “Horn clause queries and generaliza-
tions,” J . Logic Programming, vol. 1, pp. 1-15, 1985.

[38] A. Chandra, “A theory of database queries,” in Proc. ACM SIG-
MOD-SIGACT Symp. Principles Database Syst., Mar. 1988.

[39] C. L. Chang and R. C. Lee, Symbolic Logic and Mechanical Theo-
rem Proving. New York: Academic, 1973.

[40] C. C. Chang and H. J . Keisler, Model Theory. Amsterdam, The
Netherlands. 1977.

[41] C. Chang, “On the evaluation of queries containing derived rela-
tions in relational databases,” in Advances in Database Theory,
Vol. I , H. Gallaire, J . Minker, and J . M. Nicholas, Eds. New
York: Plenum, 1981.

[42] C. L. Chang and A. Walker, “PROSQL: A Prolog programming
interface with SQLiDS,” in Proc. First Workshop Expert Data-
base Syst., Kiawah Island, SC, Oct. 1984; and in Expert Database
Systems, L. Kerschberg, Ed. Menlo Park, CA: Benjamin-Cum-
mings, 1986.

[43] D. Chimenti, T . O’Hare, R. Krishnamurthy, S . Naqvi, S . Tsur,
C. West, and C. Zaniolo, “An overview of the LDL system,”
Special Issue on Databases and Logic, IEEE Data Engineering,
vol. IO , Dec. 1987.

[44] K. L. Clark, “Negation as failure,” in Logicand Databases. New
York: Plenum, 1978.

[45] W. F . Clocksin and C. S . Mellish, Programming in Prolog. New
York: Springer-Verlag, 1981.

[46] F. Cuppens and R. Demolombe, “A PROLOG-relational DBMS
interface using delayed evaluation,” presented at the Workshop on
Integration of Logic Programming and Databases, Venice, Dec.
1986.

[47] P. Devanbu and R. Agrawal, “Moving selections into fixpoint
queries,” manuscript, Bell Labs, Murray Hill, NJ, 1986.

[48] P. Fischer and S . Thomas, “Operators for non-first-normal-form
relations,” in Proc. 7th Int. Comput. Sofrware Appl. Conf., Chi-
cago, IL, 1983.

[49] M. Fitting, “A Kripke-Kleene semantics for logic programs,” J .
Logic Programming, vol. 2, pp. 295-312, 1985.

[50] K. Fuchi, “Revisiting original philosophy of fifth generation com-
puter project,” presented at the Int. Conf. Fifth Generation Com-
put. Syst., 1984.

[SI] H. Gallaire and J . Minker, Eds, Logic and Databases. New York:
Plenum, 1978.

[52] G. Gardarin and C. De Maindreville, “Evaluation of database re-
cursive logic programs as recurrent function series,’’ in Proc. ACM-
SIGMOD Conf., Washington, DC, May 1986.

[53] G. Gardarin and E. Simon, “Les systemes de gestion de bases se
donnees deductives,” Technique et Science Informatiques, vol. 6,
1987.

[54] G. Gardarin, “Magic functions: A technique to optimize extended
datalog recursive programs,” in Proc. 13th Conf. Very Large Da-
tabases, Brighton, U.K., 1987.

[55] G. Gentzen, “Die Wiederspruchsfreiheit der reinen Zahlentheo-
rie,” Math. Annalen, vol. 112, pp. 493-565, 1936.

[56] K. Godel, “Die Vollstandigkeit der Axiome des logischen Funk-
tionenkalkiils,” Monatsheftefur Mathematik und Physik, vol. 37,

[57] -, “Uber formal unentscheidbare Satze der Principia Mathe-
matica und venvandter Systeme I,” Monatshefte fur Mathematik
und Physik, vol. 38, pp. 173-198, 1931.

[58] A. Guttman, “New features for relational database systems to sup-
port CAD applications,” Ph.D. dissertation, Dep. Comput. Sci.,
Univ. California, Berkeley, June 1984.

[59] L. J . Henschen and S . A. Naqvi, “On compiling queries in recur-
sive first order databases,” J . ACM, vol. 31, no. 1, 1984.

[60] D. Hilbert, “Axiomatisches Denken,” Mathematische Annalen 78,
pp. 405-415, 1918.

pp. 349-360, 1930.

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

CERl er al . : DATALOG 165

(611 Y. E . Ioannidis and E. Wong, “An algebraic approach to recursive
inference,” Electron. Res. Lab., Univ. Califomia, Berkeley, Int.
Rep. UCB/ERL M85/92, 1985.

[62] Y. E. Ioannidis, “On the computation of the transitive closure of
relational operators,” in Proc. 12th Int. Con$ Very Large Data-
bases, Kyoto, Japan, 1986.

[63] Y. E. Ioannidis and E. Wong, “Transforming non-linear recursion
into linear recursion,” manuscript, 1987.

[64] Y. E. Ioannidis, J. Chen, M. A. Friedman, and M. M. Tsangaris,
“BERMUDA-An architectural perspective on interfacing Prolog
to a database machine,” Dep. Comput. Sci., Univ. Wisconsin,
Tech. Rep. 723, Oct. 1987.

[65] H. Itoh, “Research and development on knowledge base systems
at ICOT,” in Proc. 12th Int. Conf. Very Large Data Bases, Kyoto,
Japan, Aug. 1986.

[66] B. Jaeschke and H. J. Schek, “Remarks on the algebra of non first
normal form relations,” in Proc. ACM SICMOD-SICACT
Symp. Principles Database Syst., Los Angeles, CA, 1982,

[67] J. F. Jenq and S . Sahni, “All pairs shortest paths on a hypercube
multiprocessor,” in Proc. IEEE Inf. Con$ Parallel Processing,
Aug. 1987.

[68] M. Kifer and E. L. Lozinskii, “Filtering data flow in deductive
databases,” in Proc. 1st Int. Con$ Database Theory, Roma, Sept.
1986.

[69] W. Kim, D. S . Reiner, and D. S. Batory, Query Processing in
Database Systems.

[70] J. King, “Quist: A system for semantic query optimization in re-
lational databases,” in Proc. 7th Int. Con$ Very Large Data Bases,
Cannes, 1981.

[71] Ph.G. Kolaitis, “On the expressive power of stratified datalog pro-
grams,” Stanford Univ., Stanford, CA, preprint, Nov. 1987.

[72] Ph.G. Kolaitis and Ch.H. Papadimitriou, “Why not negation by
fixpoint?,” in Proc. ACM SIGMOD-SICACT Symp. Principles Da-
tabase Syst., 1988, pp. 231-239.

[73] R. Krishnamurthy and C. Zaniolo, “Optimization in a logic based
language for knowledge and data intensive applications,” in Proc.
Int. Con5 Extending Database Technol. (EDBT88). Venice, 1988;
and LNCS, No. 303.

1741 K. Kunen, “Negation in logic programming,” J . Logic Program-
ming, vol. 4 , pp. 289-308, 1987.

[75] G. M. Kuper, “Logic programming with sets,” in Proc. ACM
SICMOD-SICACT Symp. Principles Database Syst., 1987, pp. 11-
20.

[76] E. Lambrichts, P. Nees, J. Paredaens, P. Peelman, and L. Tanca,
“MilAnt: An extension of datalog with complex objects, functions
and negation,” Dep. Comput. Sci., Univ. Antwerp, Int. Rep.,
1988.

[77] E. Lambrichts, P. Nees, J. Paredaens, P. Peelman, and L. Tanca,
“Integration of functions in the fixpoint semantics of rule based
systems,” in Proc. 2nd Symp. Math. Fundamentals Database The-
ory, Visegrad, Hungary, June 1989; and LNCS. New York:
Springer-Verlag, 1989.

[78] J. W. Lloyd, Foundations of Logic Programming, 2nd extended

1791 L . Lowenheim, “Uber Moglichkeiten im Relativkalkul,” Mathe-
mathische Annalen, vol. 76, pp. 447-470, 1915.

[80] D. W. Loveland, Automafed Theorem Proving: A Logical Basis.
Amsterdam, The Netherlands: North-Holland, 1978.

[81] E. Lozinskii, “Evaluating queries in deductive databases by gen-
erating,” in Proc. Int. Joint Con$ Art$cial Intell. , 1985.

[82] D. Maier and D. S. Warren, Computing with Logic. Menlo Park,
CA: Benjamin-Cummings, 1988.

[83] A. I. Malcev, Algebraic Systems. New York: Springer-Verlag,
1973.

[84] V. Mannino, P. Chu, and T. Sager, “Statistical profile estimation
in database systems,” ACM Comput. Surveys, vol. 20, Sept. 1988.

[85] D. McKay and S. Shapiro, “Using active connection graphs for
reasoning with recursive rules,’’ in Proc. 7th Int. Joint Con$ Ar-
@cia1 Infell. , 1981.

[86] G. Marque-Pucheu, “Algebraic structure of answers in a recursive
logic data-base,’’ Acta Inform., 1983.

[87] G. Marque-Pucheu, J. M. Gallausiaux, and G . Jomier; “lnterfac-
ing Prolog and relational database management systems,” New Ap-
plications ofDatabases, Gardarin and Gelenbe, Eds. New York:
Academic, 1984.

[88] K . Morris, J. D. Ullman, and A. Van Gelder, “Design overview

pp. 124-138.

New York: Springer-Verlag, 1985.

New York: Springer-Verlag, 1988.

ed. New York: Springer-Verlag, 1987. I

of the Nail! system,” in Proc. Int. Con5 Logic Programming.
New York: Academic, 1986.

[89] K. Moms, J. Naughton, Y. Saraiya, J. Ullman, and A. Van Gelder,
“YAWN! (Yet another window on NAIL!).” Special Issue on Da-
tabases and Logic, IEEE Datu Eng., vol. 10, Dec. 1987.

[90] K. A. Morris, “An algorithm for ordering subgoals in Nail!,” in
Proc. ACM SIGNOD-SIGACT Symp. Principles Database S y s t . ,
Austin, TX, 1988.

[91] K . Murakami, T . Kakuta, N. Miyazaki, S. Shibayama, and H.
Yokota, “A relational database machine, first step to knowledge
base machine,” in Proc. loth Symp. Comput. Architecfure, June
1983.

[92] S . Naqvi and S. Tsur, A Logical Language for Data und Knowl-
edge Bases.

[93] W. Nejdl, “Recursive strategies for answering recursive queries-
the RQA/FQI strategy,” in Proc. 13th Int. Con5 Very Large Data
Bases, Brighton, U.K., Sept. 1987.

[94] E. Neuhold and M. Stonebraker, “Future directions in DBMS re-
search,” Int. Comput. Sci. Inst., Berkeley, CA, TR 88-01, May
1988.

1951 T. Przymusinski, “On the semantics of stratified deductive data-
bases,” in Proc. Workshop Foundations Deductive Databases
Logic Programming, Washington, DC, 1986, pp, 433-443.

[96] -, “Every logic program has a natural stratification and an it-
erated least fixed point model,” in 8th ACM Symp. Principles Da-
tabase Syst. (PODS) , Mar. 1989, pp. 11-21,

1971 Quintus Computer Systems Inc., Mountain View, CA, Quinrus
Prolog Data Base Interface Manual, version 1, June 29. 1987.

[98] R . Ramakrishnan, C. Beeri, and R. Knshnamurty. “Optimizing
existential Datalog queries,” in Proc. ACM SIGMOD-SICACT
Symp. Principles of Database Syst . , Austin, TX, Mar. 1988.

[99] -, “Magic templates, A spellbinding approach to logic evalua-
tion,” in Proc. Logic Programming Conf., Aug. 1988.

[IOO] D. Roelants, “Recursive rules in logic databases,” Philips Res.
Lab., Bruxelles, Rep. R513, Mar. 1987, submitted for publication.

[l o l l J. Rohmer, R. Lescoeur, and J. M. Kerisit, “The Alexander
method: technique for the processing of recursive axioms in de-
ductive databases,” in New Generation Computing, vol. 4 . New
York: Springer-Verlag, 1986.

[I021 A. Rosenthal, S . Heiler, U. Dayal, and F. Manola, “Traversal
recursion: A practical approach to supporting recursive applica-
tions,” in Proc. ACM SIGMOD 1986 Int. Cotif: Management of
Data, Washington, DC, May 1986.

[IO31 K. A. Ross, “A procedural semantics for well founded negation in
logic programs,” in 8th ACM Symp. Principles Database Syst.
(PODS), Mar. 1989, pp. 22-32.

[IO41 D. Sacca’ and C. Zaniolo, “On the implementation of a simple
class of logic queries for databases,” in Proc. ACM I986 SIC-
MOD-SIGACT Symp. Principles Database Syst., Cambridge. MA,
Mar. 1986.

[1051 -, “Implementing recursive logic queries with function sym-
bols,” MCC Tech. Rep. DB-401-86, Dec. 1986.

[lo61 -, “Magic counting methods,” in Pror. ACM-SIGMOD Con.f.,
San Francisco, CA, May 1987.

[106a] D. Sacca, M. Dispinziezi, A. Mecchia, C . Pizzuti, C . Del Gracco,
and P. Naggar, “The advanced database environment of the KIWI
system,” Special Issue on Databases and Logic, IEEE Data En-
gineering, vol. 10, no. 4 , Dec. 1987.

[lo71 Y. Sagiv, “Optimizing Datalog programs,” in Proc. ACM 1987
SIGMOD-SIGACT Symp. Principles Database Syst., San Diego,
CA, Mar. 1987.

[IO81 L. Schmitz, “An improved transitive closure algorithm,” Com-
put . , vol. 30, 1983.

[I091 C. P. Schnorr, “An algorithm for transitive closure with linear
expected time,” SIAM J . Comput., vol. 7, May 1978.

[110] J . C. Shepherdson, “Negation as Failure 11,” J . Logic Prograrn-
ming, vol. 2 , no. 3, pp. 185-202, 1985.

[I l l] -, “Negation in logic programming,” in Foundations of De-
ductive Databases and Logic Programming, J. Minker, Ed. Los

[I121 0. Shmueli, and Sh. Naqvi, “Set grouping and layering in Horn
clause programs,” in Proc. Int. Con5 Logic Programming, 1987,

[I 131 T. Skolem, “Logisch-kombinatorische Untersuchungen iiber die
Erfullbarkeit oder Beweisbarkeit mathematischer Satze nebst ei-
nem Theoreme uber dichte Mengen,” Skrifter utRit av Videnskaps-
selskapet i Kristiana, I , Mat-Nut. Klasse, no. 4 , 1920.

New York: Computer Science Press, 1989.

Altos, CA, 1988, pp. 19-88.

pp. 152-177.

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I , NO. I , MARCH 1989

[I141 D. E. Smith, M. R . Genesereth, and M. L. Ginsberg, “Controlling
recursive inference,” Arti$cal Intell., vol. 30, no. 3, 1986.

[I 151 L. Sterling and E. Shapiro, The Art of Prolog. Cambridge, MA:
M.I.T. Press, 1986.

[I 161 M. E. Stickel, “A unification algorithm for associative commuta-
tive functions,” JACM, vol. 28, July 1981.

(1171 M. Stonebraker and L. A. Rowe, Eds., “The Postgres papers,”
Univ. Calif, Berkeley, Mem. UCB/ERL M86/86, June 1987 (re-
vised version).

[I 181 L. Tanca, “Optimization of recursive logic queries to relational
databases” (in Italian) Ph.D. dissertation, Politecnico di Milano
and Universita’ di Napoli, 1988.

[I 191 S . Tsur and C. Zaniolo, “LDL: A logic-based query language,”
in Proc. 12th Int. Con6 Very Large Data Bases, Kyoto, Japan,
1986.

[I201 J. D. Ullman, “Implementation of logic query languages for da-
tabases,” ACM Trans. Database Syst., vol. 10, no. 3, 1985.

11211 J . D. Ullman and A. Van Gelder, “Testing applicability of top-
down capture rules,” Stanford Univ., Stanford, CA, Int. Rep.
STAN-CS-85.1046; and ACM-J., to be published.

[1221 J . D. Ullman, Principles of Databases and Knowledge-Base Sys-
tems, Volume I.

[I231 P. Valduriez and H. Boral, “Evaluation of recursive queries using
join indices,” in Proc. 1st Int. Con5 Expert Database Syst.,
Charleston, SC. 1986.

[I241 P. Valduriez and S . Khoshafian, “Parallel evaluation of the tran-
sitive closure of a database relation.” Int. J . Parallel Program-
ming, vol. 17, Feb. 1988.

[1251 M. Van Emden and R. Kowalski, “The semantics of predicate logic
as a programming language,” J . ACM, vol. 4, Oct. 1976.

[I261 A. Van Gelder, A. Ross, and J. S . Schlipf, “The well-founded
semantics for general logic programs,” in 7th ACM Symp. Prin-
ciples Database Syst. (PODS), Mar. 1988, pp. 221-230.

[I271 A. Van Gelder. “The alternating fixpoint of logic programs with
negation,” in 8th ACM Symp. Principles Darabase Syst. (PODS),
Mar. 1989, pp. 1-10,

[I281 L. Vieille, “Recursive axioms in deductive databases: The Query-
Subquery approach,” in Proc. Int. Con6 Expert Database Syst.,
L. Kerschberg, Ed., Charleston, 1986.

[129] -, “A database complete proof procedure based on SLD reso-
lution,” ECRC, Munich, West Germany, Int. Rep. IR-KB-40,
Nov. 1986.

[I301 -, “From QSQ to QoSaQ: Global optimization of recursive
queries,” in Proc. 2nd Int. Con5 Expert Database Syst., L.
Kerschberg, Ed., Tyson Corner, 1988.

11311 H. S . Warren, “A modification of Warshall’s algorithm for the
transitive closure of binary relations,” Commun. ACM, vol. 18,
Apr. 1975.

[I321 S . Warshall, “A theorem on boolean matrices,” J . ACM, vol. 9 ,
June 1962.

[I331 C . Zaniolo, “The representation and deductive retrieval of com-
plex objects,” in Proc. 11th Int. Con6 Very Large Data Bases,
Aug. 1985.

[I341 -, Special Issue on Databases and Logic, IEEE Data Eng., vol.
10, Dec. 1987.

[I351 C. Zaniolo and D. Sacca’, “Rule rewriting methods for efficient
evaluation of Horn logic,” MCC Tech. Rep. DB-084-87, 1987.

[I361 M. M. Zloof, “Query-by-example: Operations on the transitive
closure,” IBM, Yorktown Heights, NY, RC 5526, 1975.

Potomac, MD: Computer Science, 1988.

Stefano Ceri I S a Professor of Computer Science
at the Dipartimento di Matematica, University of
Modena, Modena, Italy, and Visiting Professor at
Stanford University, Stanford, CA, during the
summer terms Until 1986 he was with the Dipar-
timento di Elettronica, Politecnico di Milano,
Milan, Italy. His research interests include dis-
tributed databases, deductive and object-oriented
databases, database design, medical databases,
and the use of databases in software engineering
HP i s the author of numerous articles in these areas

and coauthor of the book, Distributed Databases, Principles and Systems
(New York: McGraw-Hill). He has been an active participant of several
joint projects between the university and industry, sponsored by the Na-
tional Research Council of Italy, the NSF, and Esprit (EEC)

Dr Ceri is a member of ACM, Vice-chairman of the IEEE Technical
Committee on Data Engineering, and Associate Editor of the journals, ACM
Trunm-trons on Database Svstems and Distributed Computing

Georg Gottlob received the Dipl.-Ing. degree and
the Doctorate in computer science from the Tech-
nical University of Vienna, Vienna, Austria.

From 1982 to 1984 he served as a Research As-
sociate at the Politecnico di Milano, Milan, Italy,
and from 1985 to 1988 he was a Staff‘ Scientist at
the Institute for Applied Mathematics, Italian Na-
tional Research Council (C.N.R.) , Genoa. During
the Summers of 1985 and 1987, he lectured and
performed research at Stanford University, Stan-
ford. CA. Presentlv he is a Professor of Computer

Science at the Technical University of Vienna, where he directs the Data-
base and Expert-System Subdivision. His research interests are in the fields
of databases, expert-systems, and applied mathematical logic.

Dr. Gottlob is a member of ACM, the IEEE Computer Society, and the
Kurt Goedel Society.

Letizia Tanca received the Ph.D. degree in ap-
plied mathematics and computer science from the
Politecnico di Milano, Milan, Italy, in 1988.

Prior to working towards the Ph.D. degree, she
worked in industry as a Software Designer. At
present she is Postdoctorate Fellow at the Politec-
nico di Milano. Her main research interests are
the treatment of negative and functional informa-
tion in relational and deductive databases and ex-
tensions to the relational data model (in Milan)
within the proiect Algres (an extended relational - -

environment for manipulating complex objects). She is also collaborating
with Prof. Paredaens of the University of Antwerp (UIA), on the project
of a rule-based language for manipulating complex objects and functions.
She has written a book on the integration of Relational Databases andLogic
Programming, coauthored with S . Ceri and G. Gottlob (New York: Sprin-
ger-Verlag, to be published).

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore. Restrictions apply.

