
146 IEEE TRANSACTIONS ON KNOWLEDGE A N D  DATA ENGINEERING, VOL I ,  NO 1 ,  MARCH 1989 

What You Always Wanted to Know About Datalog 
(And Never Dared to Ask) 

STEFAN0 CERI, GEORG GOTTLOB, AND LETIZIA TANCA 

Abstract-Datalog is a database query language based on the logic 
programming paradigm; it has been designed and intensively studied 
over the last five years. We present the syntax and semantics of Datalog 
and its use for querying a relational database. Then, we classify opti- 
mization methods for achieving efficient evaluations of Datalog que- 
ries, and present the most relevant methods. Finally, we discuss var- 
ious exhancements of Datalog, currently under study, and indicate what 
is still needed in order to extend Datalog’s applicability to the solution 
of real-life problems. The aim of this paper is to provide a survey of 
research performed on Datalog, also addressed to those members of 
the database community who are not too familiar with logic program- 
ming concepts. 

Zndex Terms-Deductive databases, logic programming, recursive 
queries, relational databases, query optimization. 

I. INTRODUCTION 
ecent years have seen substantial efforts in the direc- R tion of merging artificial intelligence and database 

technologies for the development of large and persistent 
knowledge bases. An important contribution towards this 
goal comes from the integration of logic programming and 
databases. The focus has been mostly concentrated by the 
database theory community on well-formalized issues, 
like the definition of a new rule-based language, called 
Datalog, specifically designed for interacting with large 
databases; and the definition of optimization methods for 
various types of Datalog rules, together with the study of 
their efficiency [ 1201, [ 151, [ 161. In parallel, various ex- 
perimental projects have shown the feasibility of Datalog 
programming environments [ 1191, [24], [88]. 

Present efforts in the integration of artificial intelligence 
and databases take a much more basic and pragmatic ap- 
proach; in particular, several attempts fall in the category 
of “loose coupling,” where existing AI and DB environ- 
ments are interconnected through ad-hoc interfaces. In 
other cases, AI systems have solved persistency issues by 
developing intemal databases for their tools; but these in- 
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‘The term “Datalog” was also used by Maier and Warren in 1821 to 

denote a subset of Prolog. 

temal databases typically do not allow data sharing and 
recovery, thus do not properly belong to current database 
technology [26]. The spread and success of such en- 
hanced AI systems, however, indicate that there is a great 
need for them. 

Loose coupling has been attempted in the area of Logic 
Programming and databases as well, by interconnecting 
Prolog systems to relational databases 1421, t2.51, 1461, 
[MI, [331, P71. 

Although interesting results have been achieved, most 
studies indicate that simple interfaces are too inefficient; 
an enhancement in efficiency is achieved by intelligent 
interfaces [64], [33]. This indicates that loose coupling 
might in fact solve today’s problems, but on the long 
range, strong integration is required. More generally, we 
expect that knowledge base management systems will 
provide direct access to data and will support rule-based 
interaction as one of the programming paradigms. Da- 
talog is a first step in this direction. 

The reaction of the database community to Datalog has 
often been marked by skepticism; in particular, the im- 
mediate or even future practical use of research on so- 
phisticated rule-based interactions has been questioned 
[94]. Nevertheless, we do expect that Datalog’s experi- 
ence, properly filtered, will teach important lessons to re- 
searchers involved in the development of knowledge base 
systems. The purpose of this paper is to give a self-con- 
tained survey of the research that has been performed re- 
cently on Datalog. More exhaustive treatments can be 
found in the books [34], [ 1221, and [92]. Other interesting 
survey papers, approaching the subject from different per- 
spectives, are [53] and [loo]. 

This paper is organized as follows. In Section I1 we 
present the foundations of Datalog: the syntactic structure 
and the semantics of Datalog programs. In Section I11 we 
explain how Datalog is used as a query language over re- 
lational databases; in particular, we indicate how Datalog 
can be immediately translated to equations of relational 
algebra. In Section IV we present a taxonomy of the var- 
ious optimization methods, emphasizing the distinction 
between program transformation and evaluation methods. 
In Section V ,  we present a survey of evaluation methods 
and program transformation techniques, selecting the most 
representative ones within the classes outlined in Section 
IV. In Section VI, we present several formal extensions 
given to the Datalog language to enhance its expressive- 
ness, and we survey some of the current research projects 
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in this area. Finally, in Section VI1 we attempt an evalu- 
ation of what will be required in Datalog in order to be- 
come more attractive and usable. 

11. DATALOG: SEMANTICS AND EVALUATION 
PARADIGMS 

In this section we define the syntax of the Datalog query 
language and explain its logical semantics. We give a 
model-theoretic characterization of Datalog programs and 
show how they can be evaluated in a bottom-up fashion. 
This evaluation corresponds to computing a least fixpoint. 
Finally, we briefly mention another evaluation paradigm 
called “top-down evaluation, ” and compare Datalog to 
the well-known logic programming language Prolog. 

A. The Syntax of Datalog Programs 
Datalog is in many respects a simplified version of gen- 

eral Logic Programming 1781. A logic program consists 
of a finite set offacts and rules. Facts are assertions about 
a relevant piece of the world, such as: “John is the father 
of Harry”. Rules are sentences which allow us to deduce 
facts from other facts. An example of a rule is: “If X is 
a parent of Y and if Y is a parent of 2, then X is a grand- 
parent of Z”. Note that rules, in order to be general, usu- 
ally contain variables (in our case, X ,  Y,  and 2).  Both 
facts and rules are particular forms of knowledge. 

In the formalism of Datalog both facts and rules are 
represented as Horn clauses of the general shape 

Lo :-  L1, . . . , L, 

where each L, is a literal of the form p I  ( t l ,  . . . , t k , )  such 
that p I  is a predicate symbol and the t, are terms. A term 
is either a constant or a variable.* The left-hand side 
(LHS) of a Datalog clause is called its head and the right- 
hand side (RHS) is called its body. The body of a clause 
may be empty. Clauses with an empty body represent 
facts; clauses with at least one literal in the body represent 
rules. 

The fact “John is the father of Bob”, for example, can 
be represented as father(bob, john). The rule “If X is a 
parent of Y and if Y is a parent of Z, then X is a grand- 
parent of Z” can be represented as 

grandpar(Z, X )  : - par( Y,  X ) ,  par(Z ,  Y ) .  

Here the symbols par and grandpar are predicate sym- 
bols, the symbols john and bob are constants, and the 
symbols X ,  Y ,  and Z are variables. We will use the fol- 
lowing notational convention: constants and predicate 
symbols are strings beginning with a lower-case charac- 
ter; variables are strings beginning with an upper-case 
character. Note that for a given Datalog program it is al- 
ways clear from the context whether a particular nonvari- 
able symbol is a constant or a predicate symbol. We re- 
quire that all literals with the same predicate symbol are 

of the same arity, i.e., that they have the same number of 
arguments. A literal, fact, rule, or clause which does not 
contain any variables is called ground. 

Any Datalog program P must satisfy the following 
safety conditions. 

Each fact of P is ground. 
Each variable which occurs in the head of a rule of 

These conditions guarantee that the set of all facts that 
P must also occur in the body of the same rule. 

can be derived from a Datalog program is finite. 

B. Datalog and Relational Databases 
In the context of general Logic Programming it is usu- 

ally assumed that all the knowledge (facts and rules) rel- 
evant to a particular application is contained within a sin- 
gle logic program P. Datalog, on the other hand, has been 
developed for applications which use a large number of 
facts stored in a relational database. Therefore, we will 
always consider two sets of clauses: a set of ground facts, 
called the Extensional Database (EDB), physically stored 
in a relational database, and a Datalog program P called 
the Inzp ional  Database (ZDB) . 3  The predicates occur- 
ring in the EDB and in P are divided into two disjoint sets: 
the EDB-predicates, which are all those occurring in the 
extensional database and the IDB-predicates, which occur 
in P but not in the EDB. We require that the head predi- 
cate of each clause in P be an IDB-predicate. EDB-pred- 
icates may occur in P,  but only in clause bodies. 

Ground facts are stored in a relational database; we as- 
sume that each EDB-predicate r corresponds to exactly 
one relation R of our database such that each fact r (  cI ,  
. . . , ck)  of the EDB is stored as a tuple < cl ,  . . . , e, > 
of R. 

Also the IDB-predicates of P can be identified with re- 
lations, called IDB-relations, or also derived relations, 
defined through the program P and the EDB. IDB rela- 
tions are not stored explicitly, and correspond to rela- 
tional views. The materialization of these views, i.e., their 
effective (and efficient) computation, is the main task of 
a Datalog compiler or interpreter. 

As an example of a relational EDB, consider a database 
El consisting of two relations with respective schemes 
PERSON (NAME) and PAR (CHILD, PARENT). The first 
contains the names of persons and the second expresses a 
parent relationship between persons. Let the actual in- 
stances of these relations have the following values: 

PERSON = { < ann > , < bertrand > , < Charles > , 
< dorothy > , < evelyn > , < p e d  > , 
< george > , < hilary > } 

PAR = { < dorothy, george > , < evelyn, george > , 
< bertrand, dorothy > , < ann, dorothy > , 
< ann, hilaly > , < Charles, evelyn > 1. 

’Note that in general Logic Programming, a term can also be a complex 
nested structure made of function symbols, constants, and variables. Ex- 
tensions of Datalog to cover such complex terms are outlined in Section 
VI. is harmless. 

‘In the literature an IDB is usually defined as a set of rules. Here the 
Datalog program P may also contain facts. This terminological extension 
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These relations express the set of ground facts E = {per- 
son (ann), person (bertrand), . . . , par (dorothy, george), 
. . . , par(charles, evelyn)}. 

Let P I  be a Datalog program consisting of the following 
clauses: 

rl:  sgc(X, X )  :-  person(X).  

r2: s g c ( X ,  Y )  :- p a r ( X ,  XI),  sgc(X1, Y I ) , p a r ( Y ,  ~ 1 ) .  

Due to rule r l ,  the derived relation SGC will contain a 
tuple < p ,  p > for each personp. Rule r2 is recursive and 
states that two persons are same generation cousins when- 
ever they have parents which are in turn same generation 
cousins. Further examples of tuples belonging to SGC are: 
< dorothy, evelyn > , < Charles, ann > , and < ann, 
Charles > . 

Note that program PI  can be considered as a query 
against the EDB E l ,  producing as answer the relation 
SGC. In this setting, the distinction between the two sets 
of clauses, E and P ,  makes yet more sense. Usually a 
database (in our case the EDB) is considered as a time- 
varying collection of information. A query (in our case, 
a program P ) ,  on the other hand, is a time-invariant map- 
ping which associates a result to each possible database 
state. For this reason we will formally define the seman- 
tics of a Datalog program P as a mapping from database 
states to result states. The database states are collections 
of EDB-facts and the result states are IDB-facts. 

Usually Datalog programs define large IDB-relations. 
It often happens that a user is interested in a subset of 
these relations. For instance, he or she might want to know 
the same generation cousins of Ann only rather than all 
same generation cousins of all persons in the database. To 
express such an additional constraint, one can specify a 
goal to a Datalog program. A goal is a single literal pre- 
ceded by a question mark and a dash, for example, in our 
case, ?-sgc(ann, X ) .  Goals usually serve to formulate ad 
hoc queries against a view defined by a Datalog program. 

C. The Logical Semantics of Datalog 
Each Datalog fact F can be identified with an atomic 

formula F* of First-Order Logic. Each Datalog rule R of 
the form Lo : - L 1 ,  . . . , L, represents a first-order for- 
mula R* of the form V X , ,  . . . VX,(L1 A . . . A L, * Lo) ,  
where X I ,  . . . , X ,  are all the variables occurring in R. A 
set S of Datalog clauses corresponds to the conjunction 
S* of all formulas C* such that C E S.  

The Herbrand Base HB is the set of all facts that we 
can express in the language of Datalog, i.e.,  all literals 
of the form P (  c 1 ,  . . . , ck)  such that all ci are constants. 
Furthermore, let EHB denote the extensional part of the 
Herbrand base, i.e., all literals of HB whose predicate is 
an EDB-predicate and, accordingly, let ZHB denote the set 
of all literals of HB whose predicate is an IDB-predicate. 
If S is a finite set of Datalog clauses, we denote by 
cons (S ) the set of all facts that are logical consequences 
of s*. 

The semantics of a Datalog program P can now be de- 
scribed as a mapping 3np from EHB to IHB which to each 
possible extensional database E C EHB associates the set 

3np ( E ) of intensional ‘ ‘result facts” defined by 3np ( E  ) 
= cons ( P  U E )  f l  ZHB. 

Let K and L be two literals (not necessarily ground). 
We say that K subsumes L ,  denoted by K D L,  if there 
exists a substitution 0 of variables such that KO = L ,  i.e., 
if 0 applied to K yields L.  If K D L we also say that L is 
an instance of K .  For example, q ( a ,  b ,  b )  and q ( c ,  c, c )  
are both instances of q ( X ,  Y, Y ) ,  but q ( b ,  b ,  a )  is not. 

When a goal “?- G” is given, then the semantics of 
the program P with respect to this goal is a mapping 3np, 
from EHB to ZHB defined as follows 

V E G  E H B 3 n p , G ( E ) =  { H I H E ~ ~ ~ ( E ) A G > H } .  

D. The Model Theory of Datalog 
Model theory is a branch of mathematical logic which 

defines the semantics of formal systems, by considering 
their possible interpretations, i.e., the different intended 
meanings that the used symbols and formulas may as- 
sume. Early developments of general model theory date 
back to works of Lowenheim [79], Skolem [ 1131, and GO- 
del [56]. A comprehensive exposition is given in [39]. 
The model theoretic characterization of general logic the- 
ories often requires the use of quite sophisticated tools of 
modern algebra [83]. The model theory of Horn clause 
systems and logic programs, however, is less difficult. It 
has been developed in [125], [ l l ]  and is also explained 
in [78]. Datalog, being a simplified version of Logic Pro- 
gramming, can be described very easily in terms of model 
theory. 

An interpretation (in the context of Datalog) consists 
of an assignment of a concrete meaning to constant and 
predicate symbols. A Datalog clause can be interpreted in 
several different ways. A clause may be true under a cer- 
tain interpretation and false under another one. If a clause 
C is true under a given interpretation, we say that this 
interpretation satisfies C .  

The concept of logical consequence, in the context of 
Datalog, can be defined as follows: a fact F follows log- 
ically from a set S of clauses, iff each interpretation sat- 
isfying every clause of S also satisfies F.  If F follows from 
S, we write S E F.  

Note that this definition captures quite well our intuitive 
understanding of logical consequence. However, since 
general interpretations are quite unhandy objects, we will 
limit ourselves to consider interpretations of a particular 
type, called Herbrand Interpretations. The recognition 
that we may forget about all other interpretations is due 
to the famous logicians Lowenheim, Skolem, and Her- 
brand.4 

A Herbrand interpretation assigns to each constant 
symbol “itself‘ ’ , i .e.,  a lexicographic entity. Predicate 
symbols are assigned predicates ranging over constant 
symbols. Thus, two nonidentical Herbrand interpretations 
differ only in the respective interpretations of the predi- 
cate symbols. For instance, one Herbrand interpretation 
may satisfy the fact 1 ( t ,  q )  and another one may not sat- 

4Actually, Herbrand interpretations can be defined in the much more 
general context of Clausal Logic [39], (801 and Logic Programming [125], 
1781. 
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isfy this fact. For this reason, any Herbrand interpretation 
can be identified with a subset 5 of the Herbrand base HB. 
This subset contains all the ground facts which are true 
under the interpretation. Thus, a ground fact p ( c, ,  . . . , 
c,) is true under the interpretation 5 iff p ( c, ,  . . . , c,) E 
5 .  A Datalog rule of the form &: -L,, . . . , L, is true 
under 5 iff for each substitution 8 which replaces variables 
by constants, whenever Ll0 E 5 A . . . A L,8 E 5, then it 
also holds that LOB E 9. 

A Herbrand interpretation which satisfies a clause C or 
a set of clauses S is called a Herbrand model for C or, 
respectively, for S. 

Consider, for example, the Herbrand interpretations 
4 , = {person ( john) ,  person ( jack) ,  person ( j im) ,  
sgc(john, john),  par( j im,  john),  par( jack,  john), 
sgc (john, john),  sgc ( jack ,  jack),  sgc ( j im, j im)}  . Ob- 
viously, 5, is not a Herbrand model of the program P,  
given in Section 11-B. Let 5, = 5, U {sgc(j im,  jack), 
sgc( jack,  j im)}  . It is easy to see that 9, is a Herbrand 
model of P,. 

The set cons (S ) of all consequence facts of a set S of 
Datalog clauses can thus be characterized as follows: 
cons (S ) is the set of all ground facts which are satisfied 
by each Herbrand model of S. Since a ground fact F is 
satisfied by a Herbrand interpretation 9 iff F E 9, cons ( S ) 
is equal to the intersection of all Herbrand models of S. 
Summarized 

cons(S)  = { F E  H B ( S  E F }  

= fl { 5 15 is a Herbrand model of S}. 

Let 9, and 5, be two Herbrand models of S. It is easy to 
see that their intersection 9* fl $J2 is also a Herbrand 
model of S. More generally, it can be shown that the in- 
tersection of an arbitrary (possibly infinite) number of 
Herbrand models of S always yields a Herbrand model of 
S. This property is called the model intersection property. 
Note that the model intersection property not only holds 
for Datalog clauses, but for a more general type of clause 
called definite Horn clauses [ 1251, [78]. 

From the model intersection property it follows, in par- 
ticular, that for each set S of Datalog clauses, cons (S ) is 
a Herbrand model of S .  Since cons (S ) is a subset of any 
other Herbrand model of S, we call c o n s ( S )  the least 
Herbrand model of S. 

Up to here nothing has been said about how c o n s ( S )  
can be computed. The following subsections as well as 
Sections 111-V deal with this problem. In the rest of this 
section we will remain at a quite abstract level and we 

ber theory) is faced with considerable problems such as 
consistency and incompleteness issues [ S I ,  [57] ,  the 
proof theoretic analysis of subformalisms of first-order 
logic, such as Logic Programming or Datalog, is easier 
and much less ambitious, and is more oriented towards 
algorithmic issues. 

In this section we show how Datalog rules can be used 
to produce new facts from given facts. We define the no- 
tion of “fact inference” and introduce a proof-theoretic 
framework which allows one to infer all ground facts 
which are consequences of a finite set of Datalog clauses. 

Consider a Datalog rule R of the form Lo : - L I ,  . . . , 
L, and a list of ground facts F , ,  . . . , F,. If a substitution 
8 exists such that for each 1 5 i I n Lie = Fi then, from 
rule R and from the facts F , ,  . . . , F,, we can infer in one 
step the fact LOO. The inferred fact may be either a new 
fact or it may be already known. 

What we have just described is a general inference rule, 
which produces new Datalog facts from given Datalog 
rules and facts. We refer to this rule as the Elementary 
Production Principle (EPP). In some sense, EPP can be 
considered as being a meta-rule, since it is independent 
of any particular Datalog rules, and treats them just as 
syntactic entities. 

For example, consider the Datalog rule rl  of program 
P,  : 

r , :  sgc(X, X )  :-  person(X).  

From this rule and from the fact person (george) we can 
infer in one step sgc(george, george). The substitution 
used here was 8 = { X  + george} . Now recall the second 
rule of P ,  

r,: sgc(X, Y )  :-  par(& XI), sgc(X1, YI), par( Y ,  YI) 

and consider the facts par(dorothy, george), sgc (george, 
george), and par (evelyn, george). By applying EPP and 
using the substitution 8 = { X  + doruthy, Y + evelyn, 
X I  + george, Yl + george}, we infer in one step 
sgc (dorothy, evelyn). 

Let S be a set of Datalog clauses. Informally, a ground 
fact F can be inferred from S, denoted by S I- F iff either 
F E S or F can be obtained by applying the inference rule 
EPP a finite number of times. The relationship “ t- ” is 
more precisely defined by the following recursive rules: 

St- F i f F E S .  
S t- F if a rule R E S and ground facts F,, . . . , F, 

exist such that V l  5 i 5 n S Fi and F can be inferred 
in one step by the application of EPP to R and F , ,  . . . , 
r- 

will not care about implementation and storage issues. In 
particular, we will ignore that a set S of Datalog clauses 
may consist of program clauses and of EDB-clauses. The 
problem of retrieving facts from an EDB is deferred to 
Sections 111-V. 

rn’ 
The sequence of applications of EPP which is used to 

infer a ground fact F from S is called a proof of F from 
S. Any proof can be represented as a proof tree with dif- 
ferent levels and with the derived fact F at the top. 

Let SI denote the set of all clauses present in our ex- 
ample-program P1 and in our example-database E , ,  i .e.,  
SI = PI U E,. It is easy to see that SI F- sgc(ann, 
Charles). The corresponding proof-tree is depicted in 
Fig. 1 .  

Now that we have a proof-theoretic framework which 
allows us to infer new ground facts from an original set 

E. The Proof Theory of Datalog 
Proof theory is concerned with the analysis of logical 

inference. As a branch of mathematical logic, this disci- 
pline was founded by Hilbert [60]. While the investiga- 
tion of relevant extensions of first-order logic (e.g., num- 
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I r’ 

Fig. 1 .  Proof tree of sgc (ann, charles). 

of Datalog clauses S, let us compare this approach to the 
model-theoretic approach presented in the last subsection. 
The following important theorem holds. 

Soundness and Completeness Theorem: Let S be a set 
of Datalog clauses and let F be a ground fact. S I- F iff 
S E F. 

A proof of this theorem can be found in [34]. 
In order to check whether EPP applies to a rule R of the 

form Lo : - LI ,  . . . , L, and to a (ordered) list of ground 
facts F 1 ,  . . . , F,,, one has to find an appropriate substi- 
tution 8 such that for each 1 I i I n Lie = Fi. Such a 
substitution can be found by matching each L, in the rule 
body against the corresponding fact Fi. Such a matching 
either fails or provides a ‘‘local’’ substitution Bi for all 
variables occurring in Li. If at least one matching fails or 
if the local substitutions are not mutually compatible be- 
cause they assign different constants to the same variable, 
then EPP does not apply. If all matchings are successful 
and if the substitutions are all compatible, then we obtain 
the global substitution 8 by forming the union of all local 
substitutions 8 = U - U 8,. (Note that matching is 
a particular form of unification [34] .) 

There exists a very simple method of computing 
cons ( S  ) for each finite set of Datalog clauses: 

FUNCTION INFER(S) 
INPUT: a finite set S of Datalog clauses 
OUTPUT: cons(S) 
BEGIN 
w := s; 
WHILE EPP applies to some rule and facts of W 

producing a new ground fact F $ W 
DO W : =  W U { F } ;  
RETURN( W f l  HB) / * all facts of W, but not the rules 

*/ 
END. 

The INFER algorithm always terminates and produces as 
output ajinite set of facts cons ( S  ). If we assume that the 
arities of all predicates that may occur in a Datalog pro- 
gram are bound by a constant, then the output of the IN- 
FER algorithm and its runtime are both polynomial in the 
size of its input S. 

The order in which INFER generates new facts corre- 
sponds to the bottom-up order of proof trees. For this rea- 
son, the principle underlying INFER is called bottom-up 
evaluation. In the terminology of artificial intelligence this 
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principle is also referred to as forward chaining, because 
the Datalog rules are processed forward, i.e., in the sense 
of the logical implication sign, from premises to conclu- 
sions. 

F. Fixpoint Characterization of Cons ( S  ) 
Let us show that the set cons ( S  ) can be characterized 

as the least fixpoint of a mapping Ts from 6 ( H B )  to 
6 ( H B ) ,  where 6 ( H B )  denotes the powerset of HB. 

If S is a set of Datalog clauses, then let infer1 (S ) de- 
note the set of all ground facts which can be inferred in 
one step from the rules and facts of S through EPP. Fur- 
thermore, let FACTS( S ) denote the set of all facts of S 
and let RULES(S)  denote the set of all rules of S .  Ob- 
viously, we have S = FACTS(S)  U R U L E S ( S ) .  

The transformation Ts associated to S is a mapping from 
6 ( H B )  to 6 ( H B )  defined as follows: 

VW E H B : T s ( W )  = W U FACTS(S) 

U inferl(RULES(S) U W). 

It is easy to see that any Herbrand interpretation 9 G HB 
is a Herbrand model of S iff 9 is ajixpoint of T,, i.e., 
Ts( 9 )  = 9. In particular, the least Herbrand model 
cons ( S ) is the least jixpoint of Ts. 

cons (S ) can be computed by least jixpoint iteration, 
i.e., by computing in order, T s ( 0 ) ,  T s ( T s ( 0 ) ) ,  
T s ( T s ( T s ( 0 > > > ,  * * , until one term is equal to its pre- 
decessor. This final term is cons ( S  ), the least fixpoint of 
S. This computation is quite similar to the INFER algo- 
rithm, however, instead of adding one new fact at each 
iteration step, a set of new facts are added: all those new 
facts which can be inferred in one step from the old ones. 

There exists even a transformation Th which is some- 
what less complicated than Ts and has the same least fix- 
point 

VW c H B : T k ( W )  = FACTS(S) 

U inferZ(RULES(S) U w). 

Thus, T i  differs from Ts by the omission of the term Win 
the union. 

Although both Ts and Tk have the same least fixpoint 
cons ( S  ), they do not have the same set of fixpoints. In 
particular, not all Herbrand models of S are fixpoints of 
Tk. 

G. Top-Down Evaluation of Datalog Goals 

The top-down method is a radically different way of 
evaluating Datalog programs. Proof trees are constructed 
from the top to the bottom. This method is particularly 
appropriate when a goal is specified together with a Da- 
talog program. 

Consider the program PI and the EDB El of our “same- 
generation” example. Assume that the goal ?-sgc (ann, 
X )  is specified. One possibility of finding the required 
answers is to compute first the entire set cons (PI U El ) 
by bottom-up evaluation and then throw away all facts 
which are not subsumed by our goal. This would be a 
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noticeable waste of energy, since we would derive much 
more facts than necessary. 

The other possibility is to start with the goal and con- 
struct proof trees from the top to the bottom by applying 
EPP “backwards”. In the context of artificial intelligence 
such methods are also referred to as backward chaining. 
The general principle of backward chaining is described 
in [ 1141 and in [34]. 

In Section V of this paper we will present a top-down 
method for evaluating Datalog programs against an EDB. 
This method, called the Query-Subquery approach 
(QSQ), implicitly constructs all proof trees for a given 
goal in a recursive fashion. 

Also the well-known programming language Prolog 
[45] is based on the principle of backward chaining. How- 
ever, as we outline in the next subsection, the semantics 
of Prolog differs from that of Datalog. 

H .  Datalog and Prolog 
From the syntactical point of view, Datalog is a subset 

of Prolog; hence each set of Datalog clauses could be 
parsed and executed by a Prolog interpreter. However, 
Datalog and Prolog differ in their semantics. 

While Datalog, as a simplified version of general Logic 
Programming [78], has a purely declarative semantics, the 
meaning of Prolog programs is defined by an operational 
semantics, i.e., by the specification of how Prolog pro- 
grams must be executed. A Prolog program is processed 
according to a resolution strategy which uses a depth-first 
search method with backtracking for constructing proof 
trees and respects the order of the clauses and literals as 
they appear in the program [45]. This strategy does not 
guarantee termination. The termination of a recursive 
Prolog program depends strongly on the order of the rules 
in the program, and on the order of the literals in the rules. 

Consider, for example, the program Pi consisting of 
the following clauses: 

r ; :  sgc(X, Y )  : - sgc(X1, Yl), par(X,  X l ) ,  par( Y, Y1). 

ri: sgc (X ,  X )  :- person(X).  

Note that this program differs from program P1 of Section 
11-B only by the order of the rules, and of literals in the 
rule bodies. From a Datalog viewpoint, the order of 
clauses and literals is totally irrelevant, hence P ; ,  as a 
Datalog program, is equivalent to PI. On the other hand, 
if we submit P,’ and the EDB El to a Prolog interpreter 
and activate it, say, with the goal “?-sgc(ann, X ) ” ,  then 
we would run into infinite recursion without getting any 
result. 

Prolog has several system predicates, such as the cut, 
which render the language even more procedural. It is, 
however, a very rich and flexible programming language 
which has gained enormous popularity over the last years. 

It is possible to couple Prolog to an external database. 
A Prolog interpreter can then distinguish between IDB and 

to retrieve a matching tuple from mass memory. Due to 
the procedural semantics of Prolog, which prescribes a 
particular order of visiting goals and subgoals, the re- 
quired interaction between the interpreter and the external 
database is of the type one-tuple-at-a-time. This method 
of accessing mass storage data is quite inefficient com- 
pared to the set-oriented methods used by high-level query 
languages. Several enhanced coupling mechanisms have 
been proposed [a], [33], but no one takes full advantage 
of set-oriented techniques. This is probably not possible 
without compromising Prolog’s semantics. 

It is the aim of the next section to show that Datalog is 
well suited for set-oriented techniques. 

111. DATALOG Is REALLY A DATABASE LANGUAGE 

Although expressing queries and views in Datalog is 
quite intuitive and fascinating from the user’s viewpoint, 
we should not forget that the aim of database query lan- 
guages like Datalog is providing access to large quantities 
of data stored in mass memory. Thus, in order to enable 
an easy integration between Datalog and database man- 
agement systems, we need to relate the logic program- 
ming formalism to the most common database languages. 
We have chosen relational algebra as such a data retrieval 
language. This section provides an informal description 
of the translation of Datalog programs and goals into re- 
lational algebra. 

A. Translation of Datalog Queries into Relational 
Algebra 

Each clause of a Datalog program is translated, by a 
syntax-directed translation algorithm, into an inclusion 
relationship of relational algebra. The set of inclusion re- 
lationships that refer to the same predicate is then inter- 
preted as an equation of relational algebra. Thus, we say 
that a Datalog program gives rise to a system of algebraic 
equations. Each IDB-predicate of the Datalog program 
corresponds to a variable relation; each EDB-predicate of 
the Datalog program corresponds to a constant relation. 
Determining a solution of the system corresponds to de- 
termining the value of the variable relations which satisfy 
the system of equations [61], [63]. The translation from 
Datalog to relational algebra is described in [28], [34], 
and [122]. 

Let us consider a Datalog clause C : p  ( a l ,  . . . , a,) : - 
41 ( P I ,  . . . , Pk), . . . qm( P,, . . . , O h ) .  The translation 
associates to C an inclusion relationship Expr( Q , ,  . . . , 
Q,) E P ,  among the relations P ,  Q l ,  . . . , Q, that cor- 
respond to predicates p ,  q l ,  . . . , q,,5 with the convention 
that relation attributes are named by the number of the 
corresponding argument in the related predicate. For ex- 
ample, the Datalog rules of program P1 from Section 11: 

r , :  sgc(X, X )  :- person(X).  

r2: sgc(X,  Y )  : - p a r ( X ,  XI), sgc(X1, Yl) ,  par( Y ,  Y1) 

EDB-predicates. When an EDB goal is encountered dur- 
ing the execution O f  a Prolog program, the interpreter tries 5Note that some of the q, might be p itself, yielding a recursive rule 
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are translated into the inclusion relationships: 

( (PAR w SGC) w PAR) E SGC 
2 = 1  4 = 2  

HI, I PERSON C SGC 

The rationale of the translation is that literals with com- 
mon variables give rise to joins, while the head literal 
determines the projection. Details of translation rules can 
be found in 1281. Note that, in order to obtain a two-col- 
umn relation SGC in the second inclusion relationship, we 
have performed a double projection of the unique column 
of relation PERSON. 

For each IDB predicate p ,  we now collect all the inclu- 
sion relationships of the type Expr, ( Q , ,  . . . , Qm)  C P,  
and generate an algebraic equation having P as LHS, and 
the union of all the left-hand sides of the inclusion rela- 
tionships as RHS: 

P E x P ~ I ( Q I ,  . . . > Q m )  U E x P ~ , ( Q I ,  . . . 9 e m ) .  . . 

U ExPrm,,(Ql, . . . 2 e m ) .  

For instance, from the above inclusion relationships we 
obtain the following equation: 

HI, , ( (PAR W SGC) W PAR) 
2 =  I 4 = 2  

U II,.l PERSON = SGC 

Note that the transformation of several disequations into 
one equation really captures the minimality requirement 
contained in the least Herbrand model semantics of a Da- 
talog program. In fact, it expresses the fact that we are 
only interested in those ground facts that are conse- 
quences of our program. 

We also translate logic goals into algebraic queries. 
Input Datalog goals are translated into projections and se- 
lections over one variable relation of the system of alge- 
braic equations. For example, the logic goal “?-p ( X  ). ” 
is equivalent to the algebraic query “P”, and “? -q (a ,  
X)”. is equivalent to “a, =.e”. 
B. The Expressive Power of Datalog 

The system produced by the above translation includes 
all the classical relational operations, with the exception 
of difference; we say that it is written in positive rela- 
tional algebra, RA’. It can be easily shown that each de- 
fining expression of RAt can also be translated into a Da- 
talog program [34]. This means that Datalog is at least as 
expressive as RAt;  in fact, Datalog is strictly more ex- 
pressive than RA+ because in Datalog it is possible to ex- 
press recursive queries, which are not expressible in RA’. 

However, there are expressions in full relational alge- 
bra that cannot be expressed by Datalog programs. These 
are the queries that make use of the diference operator. 
For example, given two binary relations R and S, there is 
no Datalog rule defining R - S. Fig. 2 graphically rep- 
resents the situation. We will see in Section VI that these 
expressions can be captured by enriching pure Datalog 
with the use of logical negation ( 1 ). 

Note also that, even though Datalog is syntactically a 
subset of first-order logic, strictly speaking they are not 

Fig. 2 .  The expressive power of Datalog 

comparable. Indeed, the semantics of Datalog is based on 
the choice of a specific model (the least Herbrand model), 
while first-order logic does not a priori require a partic- 
ular choice of the model. Interesting tractations of the 
problem of the expressive power of relational query lan- 
guages can be found in 101 and [2]. 

IV. THE OPTIMIZATION PROBLEM: AN OVERVIEW 
In this section we provide a classification of efficient 

methods for evaluating Datalog goals. A systematic over- 
view of methods is required, since optimization can be 
achieved using a variety of techniques, and understanding 
their relationships is not obvious. 

We classify optimization methods according to the for- 
malism, to the search strategy, to the objective of the op- 
timization, and to the type of considered information. 

A. Logic and Algebraic Formalism 
It comes out from Section I11 that programs in Datalog 

can equivalently be expressed as systems of equations of 
RA’. So, we consider two alternative formalisms, that we 
regard, respectively, as logic and algebraic, and we dis- 
cuss optimization methods that belong to both worlds. 

We emphasize the convenience of mapping to the al- 
gebraic formalism, as this allows reusing classical results, 
such as conjunctive query optimization, common sub- 
expression analysis, and the quantitative determination of 
costs associated to each operation of relational algebra 
~ 9 1 ,  ~341, [w. 
B. Search Strategy 

We recall from Section I1 that the evaluation of a Da- 
talog goal can be performed in two different ways: bot- 
tom-up, starting from the existing facts and inferring new 
facts, or rather top-down, trying to verify the premises 
which are needed in order for the conclusion to hold. 

In fact, these two evaluation strategies represent differ- 
ent interpretations of a rule. Bottom-up evaluations con- 
sider rules as productions, that apply the initial program 
to the EDB, and produce all the possible consequences of 
the program, until no new fact can be deduced. Bottom- 
up methods can naturally be applied in a set-oriented fash- 
ion, i .e . ,  taking as input the entire relations of the EDB. 
This is a desirable feature in the Datalog context, where 
large quantities of data must be retrieved from mass mem- 
ory. On the other hand, bottom-up methods do not take 
immediate advantage of the selectivity due to the exis- 
tence of arguments bound to constants in the goal predi- 
cate. 

In top-down evaluation, instead, rules are seen as prob- 
lem generators. Each goal is considered as a problem that 
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must be solved. The initial goal is matched with the left- 
hand side of some rule, and generates other problems cor- 
responding to the right-hand side predicates of that rule; 
this process is continued until no new problems are gen- 
erated. In this case, if the goal contains some bound ar- 
gument, then only facts that are somehow related to the 
goal constants are involved in the computation. Thus, this 
evaluation mode already performs a relevant optimization 
because the computation automatically disregards many 
of the facts which are not useful for producing the result. 
On the other hand, in top-down methods it is more natural 
to produce the answer one-tuple-at-a-time, and this is an 
undesirable feature in Datalog. 

If we restrict our attention to the top-down approach, 
we can further distinguish two search methods: breadth- 
first or depth-jirst. With the depth-first approach, we face 
the disadvantage that the order of literals in rule bodies 
strongly affects the performance of methods. This hap- 
pens in Prolog, where not only efficiency, but even ter- 
mination of programs is affected by the left-to-right order 
of subgoals in the rule bodies. Instead, Datalog goals seem 
more naturally executed through breadth-first techniques, 
as the result of the computation is neither affected by the 
order of predicates within the right-hand sides (RHS) of 
rules, nor by the order of rules within the program. 

C. Objectives of Optimization Methods 
Our third classification criterion is based on the differ- 

ent objectives of optimization methods: some methods 
perform program transformation, namely, transforming a 
program into another program which is written in the same 
formalism, but yields a more efficient computation when 
one applies an evaluation method to it; we refer to these 
as rewriting methods. Given a goal G and a program P ,  
the rewritten program P’ is equivalent to P with respect 
to G,  as it produces the same result. Formally, recalling 
the definition of X p ,  of Section 11, two programs P and 
P‘ are equivalent with respect to a goal G iff 3np,G = 

These methods contrast with the pure evaluation meth- 
ods, which propose effective evaluation strategies, where 
the optimization is performed during the evaluation itself. 

D. Type of Considered Information 
Optimization methods differ in the type of information 

used in the optimization. 
Syntactic optimization is the most widely used; it deals 

with those transformations to a program which descend 
from the program’s syntactic features. In particular, we 
distinguish two kinds of structural properties. One is the 
analysis of the program structure, and in particular the 
type of rules which constitute the program. For example, 
some methods exploit the linearity (see Section V) of the 
rules to produce optimized forms of evaluation. The sec- 
ond one is the structure of the goal, and in particular the 
selectivity that comes from goal constants. These two ap- 
proaches are not mutually exclusive: it is possible to build 
syntactic methods which combine both cases. 

Semantic optimization, instead, concerns the use of ad- 
ditional semantic knowledge about the database in order 

X P ’ , G .  

7h”sa l  order 

Objective 

Approach 

Structure 

CRITERION 1 ALTERNATIVES I 

depth-first vs. breadth-first 

rewriting vs. pure evaluation 

syntactic vs. semantic 

rule structure vs. coal structure 

BOTTOM-UP 

1611. 1151 
Semi-naive [IS] 

Henschen~Naqvi 1591 

LOGIC ALGEBRAIC 

Constant reduction 
Magic Counling 1106) 

Stahc filtering 168) 

(b) 
Fig. 3 .  Classification of evaluation and optimization methods. 

to produce an efficient answer to a query; the combination 
of the query with additional semantic information is per- 
formed automatically. Semantic methods are often based 
on integrity constraints, which express properties of valid 
databases. For instance, a constraint might state that “all 
intercontinental j ights directed to Milan land in Mal- 
pensa airport”. This constraint can be used to produce 
the answer of a goal asking for “the arrival airport of the 
intercontinental j ight  A2747 from New York to Milan ” 
without accessing the EDB. Although we think that se- 
mantic optimization has the potential for significant im- 
provements of query processing strategies, we do not fur- 
ther consider semantic optimization methods in this paper: 
various approaches to semantic optimization are proposed 
in the literature; among others; see [70], [36]. 

E. Classijication of Evaluation and Optimization 
Methods 

Fig. 3(a) summarizes classification criteria for Datalog 
optimization methods; they concern the search strategy 
(bottom-up or top-down), the objective (rewriting or pure 
evaluation), and the formalism (logic or algebraic). By 
combining approaches and excluding some alternatives 
that do not correspond to relevant classes of methods, we 
obtain four classes, each including rather homogeneous 
methods: 

1) top-down evaluation methods 
2) bottom-up evaluation methods 
3) logic rewriting methods 
4) algebraic rewriting methods. 
Fig. 3(b) shows some of the most well-known evalua- 

tion and optimization methods present in the literature. 
This list is not exhaustive for obvious brevity reasons; we 
apologize to authors whose methods are omitted. In the 
next section we survey informally some of these methods. 

Finally, we expect optimization methods to satisfy three 
important properties. 
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Methods must be sound: they should not include in 
the result tuples which do not belong to it. 

Methods must be complete: they must produce all the 
tuples of the result. 

Methods must terminate: the computation should be 
performed in finite time. 

Although we omit to present formal proofs, all the 
methods surveyed in the next section satisfy all these 
properties. 

v .  S U R V E Y  OF EXECUTION METHODS AND 

OPI.IMI%ATION TECHNIQIJES 
In this section we present methods for optimizing a Da- 

talog program, i.e., for generating efficiently the actual 
set of tuples which satisfy a given goal for a given set of 
Datalog rules. In order to do this, we first present a bot- 
tom-up naive evaluation method (called the Gauss-Seidel 
method), and discuss briefly its sources of inefficiency. 
Then, we examine how to reduce these sources of ineffi- 
ciency: we introduce the Semi-Naive approach which im- 
proves a bottom-up computation of linear rules, and we 
present a top-down efficient strategy, called Query- 
Subquery. Then, we present two of the most known re- 
writing methods, Magic Sets and Counting, which are 
used to optimize the behavior of bottom-up computations. 
Finally, we briefly overview other optimization methods. 

A .  Bottom- Up Eiuluation 
The Gauss-Seidel method is an algebraic version of the 

nni~be riwfuLition paradigm, which is present in many dif- 
ferent forms in the literature 1131, 1851, [41], [86], 1871. 
The method is also well known in numerical analysis, 
where it is used for determining the iterative solution ( f i x -  
point) of systems of equations. Assume the following sys- 
tem C of relational equations: 

R, = E , ( R , ,  . . . , R,), ( i  = 1 ,  . . . , n ) .  

The Gauss-Seidel method proceeds as follows: initially, 
the variable relations Ri are set equal to the empty set. 
Then, the computation Ri := ,?;(RI, . . . , R,,), ( i  = 1,  
. . . , n )  is iterated until all the Ri do not change between 
two consecutive iterations (namely, until the Ri have 
reached a j xpo in t ) .  At the end of the computation, the 
value assumed by the variable relations R, is the solution 
of the system E.  

GAUSS-SEIDEL METHOD 
INPUT: 

Extensional Database EDB. 
OUTPUT: 

. . .  ,R,,. 
METHOD: 
FORI ' :== l T O n D O R i : =  D; 
REPEAT 

A system of algebraic equations E, and an 

The values of the variable relations R I ,  

cond : = true; 
Fori := 1 TO n DO 

BEGIN 
S : =  R I ;  

Ri := Ei(R,, . . . , Rn); 
IF R, # S THEN cond : = false; 
END; 

UNTIL cond; 
FOR i : = 1 TO n DO OUTPUT(R,). 
ENDMETHOD 

Note that step "Ri  : = E;(  R I ,  . . . , R,)" of the Gauss- 
Seidel algorithm has the same effect as the application of 
rule EPP of Section 11. However, instead of acting on sin- 
gle tuples, here we apply algebraic operations simultu- 
neously to entire relations. 

Variants of the Gauss-Seidel method are the Jcicobi 
method and the Chaotic method 1281. The latter is ob- 
tained by computing the various algebraic expressions not 
in a strict sequential order. Different versions of the cha- 
otic method yield the so-called lazy and data$ow evalu- 
ations, that correspond to starting the evaluation of com- 
putable relations, respectively, at the latest or at the 
earliest convenience. 

The Gauss-Seidel method has two sources of ineffi- 
ciency. 

a) Several tuples are computed multiple times during 
the iteration process. In particular, during the iterative 
evaluation of a relation R,  tuples belonging to relations 
R") will also belong to all subsequent relations R" ), j 2 
i ,  until the fixpoint is reached. 

b) The method produces the entire result relations. If 
the goal contains constant arguments, they are selected 
only at the end. In this way, several tuples are computed 
without being really required, and eliminated by the final 
selection. 

Inefficiencies due to observation a) above are partially 
eliminated through the semi-naive methods discussed in 
the remainder of this subsection; inefficiencies due to ob- 
servation b) above are dealt with by evaluation methods 
(like querysubquery) and rewriting methods (like magic 
sets, counting, etc.), discussed in the next subsections. 

Semi-naive evaluation is a bottom-up technique de- 
signed for eliminating redundancy in the evaluation of tu- 
ples at different iterations. Several versions of this method 
can also be found in the literature [13], [28], 1201. 

Consider the Gauss-Seidel algorithm, applied to solve 
a single equation on variable R. Let R'k' be the temporary 
value of relation R at iteration step k .  The differential of 
R at step k of the iteration is defined as 

D'k) = R(k) - R(k-1). 

The differential term, expressing the new tuples of R ( k J  at 
each iteration k ,  is exactly what we would like to use at 
each iteration, instead of the entire relation R'";; this is 
legal with linear eqiiations. An equation of relational al- 
gebra 

R = E ( R )  

is linear with respect to R if it verifies the following prop- 
erty : 

E ( R '  U R " )  = E ( R ' )  U E ( R " )  
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for any two relations R‘ and R f f  having the same arity as 
R. Note that linearity is ensured if only one occurrence of 
R appears in the expression E ( R ) .  The differential of R 
at step k of the iteration is simply E ( D (  R ) ) :  

E ( D ( ~ ) )  = E ( R ‘ ~ )  - ~ ( k - 1 ) )  = E ( R ( ~ ) )  - ~ ( ~ ( k - 1 )  ) 

so that one can compute R ( k + l )  = E ( R ( k ’ )  as the union 

E(R‘k - I ) )  U E(D‘k’). 

The advantage of this formula is that, at each iteration k ,  
we need to compute E(D‘k ’ )  rather than E ( R ( k ’ ) .  This 
can be generalized to systems of equations (see [29], 

Extensions of this method, the general semi-naive, and 
the pseudo-rewriting semi-naive (discussed, among oth- 
ers, in [34], [135], and [63]) enable a less efficient appli- 
cation of a similar approach to nonlinear equations. 

~ 3 1 ) .  

B .  Top-Down Evaluation 
The query-subquery (QSQ)  algorithm [129] is an effi- 

cient top-down evaluation algorithm, optimizing the be- 
havior of backward-chaining methods as described in Sec- 
tion 11. 

The objective of the QSQ method is to access the min- 
imum number of facts needed in order to determine the 
answer. In order to do this, the fundamental notion of 
subquery is introduced. A goal, together with a program, 
determines a query. Literals in the body of any one of the 
rules defining the goal predicate are subgoals of the given 
goal. Thus, a subgoal, together with the program, yields 
a subquery; this definition applies recursively to subgoals 
of rules which are subsequently activated. In order to an- 
swer the query, each goal is expanded in a list of subgoals, 
which are recursively expanded in their turn. 

The method maintains two sets: a set P of answer tu- 
ples, containing answers to the main goal and answers to 
intermediate subqueries, which is represented by a set of 
temporary relations (one relation for each IDB-predi- 
cate); and a set Q of current subqueries (or subquery in- 
stances), which contains all the subgoals that are cur- 
rently under consideration. 

Thus, the function of the QSQ algorithm is twofold: 
generating new answers and generating new subqueries 
that must be answered. There are two versions of the QSQ 
algorithm, an iterative one (QSQI) and a recursive one 
(QSQR). The difference between the two concerns which 
of these two functions has priority over the other: QSQI 
privileges the production of answers, thus, when a new 
subquery is encountered, it is suspended until the end of 
the production of all the possible answers that do not re- 
quire using the new subquery. QSQR behaves in the op- 
posite way: whenever a new subquery is found, it is re- 
cursively expanded and the answering to the current 
subquery is postponed to when the new subquery has been 
completely solved. 

At the end of the computation, P includes the answer 
to the goal; hence, as in the Gauss-Seidel method, it is 

required to perform (una tantum) the final selection. How- 
ever, the reader should notice that the QSQ method uses 
the information about constants in the goal, hence, the 
size of P and of all the relations involved in the compu- 
tations is comparatively much smaller than the size of all 
the relations involved in the Gauss-Seidel computation. 

This algorithm can be compared to the Prolog inferen- 
tial machine, which is also top-down. The comparison is 
purely indicative, based on the idea of using a Prolog in- 
ferential machine to execute a Datalog program. We note 
that Prolog acts one-tuple-at-a-time, while QSQ is set-ori- 
ented, as it processes whole relations. In this sense, QSQ 
is appropriate for database processing. Also, QSQ is 
breadth-first and always terminates, while Prolog is depth- 
first and may instead not terminate in some cases. 

The query-subquery algorithm was introduced by 
Vieille in [ 1281. The version introduced in that paper was 
found to be incomplete. The author [129], [130] and oth- 
ers [93], [ 1001 have subsequently provided corrections or 
complete versions of the algorithm. A detailed description 
of the method can be found in [34]. 

C. Magic Sets 
The method of the magic sets is a logical rewriting 

method which transforms a program into a larger one, 
containing some more rules that define new IDB predi- 
cates. These IDB predicates serve as constraints, which 
force the program variables to satisfy some additional 
conditions. Thus, during bottom-up computation, the vari- 
ables of the modified rules may assume only some of the 
values that were instead allowed for variables of the orig- 
inal rules. In most cases, this makes the new program 
more efficient. 

Details about this algorithm can be found in [ 141, [ 171, 
[22], [34]. We show here a significant example, and make 
some comments on the rewritten program. Consider again 
the program PI with the goal ?-sgc(ann, X ) .  After the 
magic sets transformation, the program becomes: 

r ; :  sgc(X,  X )  : - person(X).  

r;: sgc (X ,  Y) :- mugic(Xl ) ,  par(X,  X l ) ,  

sgc(X1, Yl), par(Y, Yl). 

r; : magic (ann ). 

r4: magic(X1) : - magic(X) ,  par(X,  X l ) .  

Let us first notice what has happened to the initial pro- 
gram: two new rules have been added, and one rule has 
been modified. Let us consider this rule ( r ; ) .  A new lit- 
eral has been added to its body: magic ( X I  ). The presence 
of this new literal forces the argument X 1  of the EDB 
relation PAR to assume only some specific values, i .e . ,  
values which also belong to the IDB relation MAGIC. 

Let us now see how this new relation is defined. The 
first rule ( r i  ) simply says that the constant ann belongs 
to it. Rule ri says that, if X 1  is in MAGIC, and X is a 
parent of X 1 ,  then also X is in MAGIC. The result of the 

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore.  Restrictions apply. 



156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I ,  NO. I .  MARCH 1989 

computation of relation MAGIC is 

MAGIC = { < ann > , < dorothy > , 
< hilary > , < george > }. 

Thus, the IDB relation MAGIC contains all the ancestors 
ofann.  The tuples of the relation MAGIC defined by the 
magic rules form the magic set. It is often called the cone 
of ann, referring to the fact that, starting from ann, the 
ancestors grow “fanning out” like a cone. By imposing 
that, in r ; ,  XI must belong to relation MAGIC, we are 
imposing that, in the computation of Ann’s cousins at the 
same generation, we only have to consider those other 
pairs of same generation cousins whose first element is an 
ancestor of Ann. 

This example can be used to introduce the idea of 
sideways information passing (SIP) [22]. Intuitively, 
given a certain rule and a literal in the rule body with 
some bound argument(s), one can use the knowledge 
about the relation corresponding to this literal to obtain 
bindings for uninstantiated variables in other argument 
positions. This process can be iterated for each literal in 
the rule body, and recursively on other IDB-predicates. 
Thus, known information (bindings to constants) is passed 
sideways within the rule body. As we have seen in Section 
V-B, this is the normal behavior of top-down evaluation 
methods, for instance QSQ. 

After the magic sets transformation, the resulting pro- 
gram can be evaluated by a simple algorithm like Gauss- 
Seidel or semi-naive, still taking advantage of the binding 
passing strategy. However, the application of a bottom- 
up computation method to the rewritten program may pro- 
duce more tuples than exactly those of the goal answer, 
as it includes all the same generation pairs of all people 
belonging to the cone of ann. Thus, as in QSQ, the re- 
sulting relation must be finally selected to obtain the an- 
swer. 

The magic sets method has been extended by Sacca’ 
and Zaniolo to a class of queries to logic programs that 
contain function symbols [ 1051. A more sophisticated 
technique called “Supplementary Magic Sets”, has been 
introduced by Beeri and others [22], whose virtue is to 
eliminate some repeated computations. Another improve- 
ment of the magic set method is proposed in [99], where 
top-down evaluation is completely mimicked by bottom- 
up, using a semi-naive evaluation of rewritten rules; the 
rule rewriting uses initial goal bindings in a very sophis- 
ticated way; for instance, goals like p ( X ,  X ) ,  give rise to 
the binding of the two occurrences of variables X to each 
other. This was not covered by the original magic sets 
method. 

D. Counting 
The Counting method is a rewriting method based on 

the knowledge of the goal bindings; the method includes 
the computation of the magic set, but each element of the 
magic set is complemented by additional information ex- 
pressing its “distance” from the goal constant. The 

counting method was also first presented in [14]; an im- 
proved version was introduced in [22]. 

Consider again the program P I  used as an example of 
the magic set method in the previous subsection. The 
magic set method restricts the computation to the ances- 
tors of ann; for each of these elements, the counting 
method maintains the information whether it is one of 
ann’s parents (distance l ) ,  ann’s grandparents (distance 
2), ann’s grand-grandparents (distance 3), etc. The re- 
written program contains the computation of these dis- 
tances. At this point, computation may be restricted, re- 
spectively, to the children of ann’s parents, to the 
grandchildren of ann’s grandparents, to the grand-grand- 
children of ann’s grand-grandparents, etc. 

The following is the result of applying the counting 
transformation to the output of the magic sets method: 

sgc’(X, X ,  I )  :-  person(X),  integer(1). 

sgc‘(X, Y ,  I )  :-  counting 

sgc ’ ( X l  , Y1 

I = J -  1. 

counting(ann, 0 ) .  
counting ( X I ,  I )  : - counting 

I = J +  1. 

With the goal: 
? - sgc’(ann, Y ,  0 ) .  

With some liberality, we use built-in predicates for ad- 
dition and subtraction, that will be discussed in Section 
VI-A. The reader can observe that the counting predicate 
increments generation levels from ann upwards, marking 
the level of each element of the magic set, whereas the 
sgc’ predicate decrements generation levels. The goal se- 
lects only the sgc pairs of level 0, i.e., those at the same 
level as ann. At each step, among the tuples of the magic 
set, the program only uses the tuples that have the appro- 
priate distance from ann. 

The application of the counting method has the poten- 
tial for improving the efficiency of the computation, but 
clearly the method does not terminate when the database 
is cyclic (as the increment of the counting variable is not 
arrested). Thus, the counting method applies to acyclic 
databases only. A further hypothesis is that the program 
be linear, with at most one recursive rule for each predi- 
cate. 

In order to improve the applicability of the counting 
method whenever it is not known a priori whether the 
database is cyclic, Sacca’ and Zaniolo have introduced 
[ 1061 the “magic counting method”, which constantly 
monitors the counting computation in order to determine 
whether the underlying database is cyclic; if so, it switches 
to the magic set computation. 

E. The Method of Henschen and Naqvi 
One of the earliest pure evaluation methods proposed 

in the literature was developed by Henschen and Naqvi 
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[59]; the method applies to linear Datalog programs with 
goals that contain bound arguments. 

This method produces an iterative program that evalu- 
ates the goal through several steps. Each step produces 
some of the answer tuples, and, at the same time, com- 
putes symbolically a new expression that has to be eval- 
uated at the following step. The method is based on a 
‘‘functional’’ interpretation of predicates: we can view 
any predicate p having at least two arguments as a set 
function from some of its arguments to the remaining 
ones, associating to each set S of values of its first argu- 
ments a set S ’  of values of its second arguments; for in- 
stance, i f p  is a binary predicate, we denote by f p  the func- 
tional mapping 

S ‘  = f p ( S )  = ( y l x ~ S  and p ( x , y ) } .  

With this notation, one can also perform the composition 
of predicate functions, in the usual mathematical sense. 
This can be applied to the solution of linear Datalog pro- 
grams, by considering the bound arguments as the func- 
tion’s domains. We exemplify the method of Henschen- 
Naqvi on program P I ,  with the goal: ?-sgc(a,  X ) .  

fperson ( a ) U f r a p  ( f p m m  ( h u r  ( a  ) 1) 
U f r a p  ( f r a p ( r b = ~ s ~ ~ . ( f p a r ( f p a r ( a ) ) ) ) )  U * * * 

where fperJon denotes a unary function returning all per- 
sons, f P u r  is the set function from the first to the second 
argument of the relation PAR, andf,,, is the set function 
from the second to the first argument of the relation PAR. 

The most interesting feature of the method of Henschen 
and Naqvi is that it integrates two kinds of computation: 
at a certain step, some tuples of the answer are computed, 
but also some symbolic manipulation is performed. The 
first kind of computation is typical of pure evaluation 
methods, the second is characteristic of rewriting meth- 
ods. 

Substantially the same functional interpretation of pred- 
icates is given in a more general form by Gardarin and De 
Maidreville in [52], who propose a method for evaluating 
queries as function series, where the functions involved 
correspond to the functional interpretation of the predi- 
cates. Follow-up work can be found in [54]. 

F. Other Eficient Evaluation Methods 
Several other methods can be found in the literature; 

most of them share some characteristics with the methods 
presented above. 

Static Filtering is a rewriting method introduced by Ki- 
fer and Lozinskii in [68]. In this method, a bottom-up 
evaluation is viewed as aflow of tuples through a graph 
derived from the program, called relation-axiom graph, 
with two types of nodes: relation nodes, associated to 
predicates, and axiom nodes, associated to rules. Com- 
putation is ideally preformed inside axiom nodes. 

When the goal has some bound arguments, those tuples 
produced during the graph traversal which do not satisfy 

the bindings can be eliminated at the end of the compu- 
tation; the idea of the method is that of “cutting” off use- 
less tuples from the computation at an earlier stage of their 
flow towards the goal node. This is achieved by imposing 
conditions on predicate arguments, called jilrers, to the 
output edges of each relation node; the expressions of fil- 
ters are derived from the goal bindings, and propagated 
along the graph by a push operation. 

A similar approach was presented by Devanbu and 
Agrawal in [47], but restricting the application to linear 
rules with only one occurrence of the recursive predicate 
in the RHS. Another interesting (pure evaluation) algo- 
rithm (the Apex method) was previously introduced by 
Lozinskii in [SI]. The first method for pushing selections 
into recursive expressions was proposed by Aho and U11- 
man in a seminal paper [ lo] ;  the static filtering technique 
can be considered as a generalization of that concept. 

Another generalization of [ 101 is presented by Ceri and 
Tanca in [29], by introducing the pair of methods Vuri- 
able Reduction and Constant Reduction which apply to 
generic systems of algebraic equations. Both methods 
push the initial selections so as to use their “filtering” 
ability as soon as possible; the two methods act either by 
rewriting equations into equivalent ones with different 
(smaller) variables or by reducing the size of involved re- 
lations prior to the equations’ evaluation. These methods 
are part of a structured approach to the optimization of 
systems of algebraic equations derived from logic pro- 
grams, presented in [29]. 

An idea similar to magic sets is exhibited in the Alex- 
ander Method, published in [ l o l l ;  the method consists of 
rewriting the rules for each recursive predicate so that they 
represent, respectively, problems and solutions for the 
predicate; all new rules obtained are evaluated bottom-up, 
but the evaluation of the problem rules simulates in fact 
top-down evaluation and allows binding passing among 
subgoals. 

There are also other possible approaches to optimiza- 
tion. One of them is the method for redundancy elimina- 
tion of Sagiv: in [lo71 an algorithm is presented for min- 
imizing the size (in terms of number of rules in the 
program and of number of atoms in a rule) of a Datalog 
program under a decidable condition called uniform 
equivalence. Another kind of optimization is achieved by 
Ramakrishnan and others, in [98], where the objective of 
optimization is pushing projections, rather than selec- 
tions, in the body of a Datalog rule. This means deleting 
some argument positions in the literals of the rule body, 
which also has, sometimes, the effect of making some 
rules redundant for the computation. 

A comparative evaluation of the performance of meth- 
ods presented prior to 1986 is presented by Bancilhon and 
Ramakrishnan [15]. The study uses a benchmark which 
includes only few, conventional programs; it excludes 
cyclic databases, which are quite common. However, this 
paper remains one of the few quantitative approaches to 
the comparison of optimization methods; we think that 
this topic deserves a much more thorough treatment, al- 
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though achieving a comparative evaluation of methods’ 
performance is extremely difficult due to the variety and 
inherent complexity of methods and to the continuous ev- 
olution of the field. 

G. Computing Transitive Closures Eficiently 
Computing transitive closures efficiently has been rec- 

ognized as a significant subproblem of the efficient com- 
putation of general recursive queries [621, [7]-[9], 11231. 
In fact, many proposals of other extensions to the rela- 
tional query languages in ‘‘nontraditional” directions in- 
clude this operation [8], [102], [58], [136]. Thus, an in- 
dependent area of research has been developed which 
studies the efficient implementation of transitive closures 
improving the naive and semi-naive methods. The effi- 
cient methods are mainly concerned with transitive clo- 
sures of binary relations representing graphs and trees, 
very often making use of sparse matrices to represent 
them. 

In [62], a logarithmic technique is applied in order to 
build more efficient iterations. The paper provides an in- 
teresting study of performance on tree-shaped databases, 
showing that logarithmic techniques perform much better 
than the traditional ones (as it could be expected). In [ 7 ] ,  
direct algorithms are proposed, which are based on stud- 
ies performed in different contexts [108], [109], [131], 
[132]. The name “direct” algorithm descends from the 
fact that the length of the computation does not depend 
on the length of paths in the underlying graph. Several 
research efforts have also been directed towards the par- 
allel computation of transitive closures. In these propos- 
als, the computation of transitive closures is performed 
on several processors at the same time; the significant 
problem is avoiding maintaining too many duplicates, and 
to perform too many duplicate computations on different 
processors. Two such algorithms were proposed in [ 1241. 
Other significant papers are [9] and 1671. 

VI. EXTENSIONS OF PURE DATALOG 
The Datalog syntax we have been considering so far 

corresponds to a very restricted subset of first-order logic 
and is often referred to as pure Datalog. Several exten- 
sions of pure Datalog have been proposed in the literature 
or are currently under investigation. The most important 
of these extensions are built-in predicates, negation, and 
complex objects. 

A .  Built-In Predicates 
Built-in predicates (or “built-ins”) are expressed by 

special predicate symbols such as > , < , 1, 5 ,  =, # 
with a predefined meaning. These symbols can occur in 
the right-hand side of a Datalog rule; they are usually 
written in infix notation. 

Consider, for example, the following program P2 con- 
sisting of a single rule where par is an EDB predicate: 

P2: sibling(X, Y )  : -  par(Z ,  X), par(Z,  Y ) ,  X + Y. 

The meaning of this program is obvious. By use of the 
inequality built-in predicate we avoid that a person is con- 
sidered as his own sibling. 

From a formal point of view, built-ins can be consid- 
ered as EDB-predicates with a different physical realiza- 
tion than ordinary EDB-predicates: they are not explicitly 
stored in the EDB but are implemented as procedures 
which are evaluated during the execution of a Datalog 
program. However, built-ins correspond in most cases to 
inJnite relations, and this may endanger the safety of Da- 
talog programs. 

Safety means that a Datalog program should always 
have a finite output, i.e., the intensional relations defined 
by a Datalog program must be finite. It is easy to see that 
safety can be guaranteed by requiring that each variable 
occurring as argument of a built-in predicate in a rule body 
must also occur in an ordinary predicate of the same rule 
body, or must be bound by an equality (or a sequence of 
equalities) to a variable of such an ordinary predicate or 
to a constant. Here, by “ordinary predicate”, we mean a 
nonbuilt-in predicate. 

During the evaluation of a Datalog rule with built-in 
predicates, the following principle has to be observed: de- 
fer the evaluation of a built-in predicate until all argu- 
ments of this predicate are bound to constants. An excep- 
tion to this principle can (sometimes should) be made for 
the equality predicate. An equality should be evaluated as 
soon as one of its two arguments is a constant or is bound 
to a constant. 

In a similar way, arithmetical built-in predicates can 
be used. For instance, a predicate plus (X, Y, Z )  may be 
used for expressing X + Y = Z ,  where the variables X, 
Y ,  and Z are supposed to range over a numeric domain. 
During the evaluation of a rule body, such a predicate can 
be evaluated as soon as bindings for its “input variables” 
(here X and Y )  are provided. 

Finally, let us remark that when Datalog rules are trans- 
formed into algebraic equations, then many built-in pred- 
icates can be expressed through join conditions. The above 
defined program P,, for instance, is translated into the 
following equation of relational algebra: 

SIB = IT 2,4(PAR w1=1, - ,2+2  PAR) 

where SIB and PAR denote the relations corresponding to 
the predicates sibling and parent , respectively. 

B. Incorporating Negation into Datalog: The Problem 
In pure Datalog, the negation sign ‘‘ 1 ” is not allowed 

to appear. However, by adopting the Closed World As- 
sumption (CWA), we may infer negative facts from a set 
of pure Datalog clauses. 

Note that the CWA is not a universally valid logical 
rule, but just a principle that one may or may not adopt, 
depending on the semantics given to a language. In the 
context of Datalog, the CWA can be formulated as fol- 
lows: 

CWA: If a fact does not logically follow from a set of 
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Datalog clauses, then we conclude that the negation of 
this fact is true. 

Negative Datalog facts are positive ground literals pre- 
ceded by the negation sign, for instance, 1 sgc(bertrand, 
hilary). Note that this negative fact follows by the CWA 
from P ,  U E , ,  since sgc(bertrand, hilary) does not fol- 
low from Pi U E,.  If F denotes a negative ground fact, 
then 1 F I denotes its positive counterpart. For example: 
I 1 sgc(bertrand, hilary) I = sgc(bertrand, hilary). 

The CWA applied to pure Datalog allows us to deduce 
negative facts from a set S of Datalog clauses. It does not, 
however, allow us to use these negative facts in order to 
deduce some further facts. In real life, it is often neces- 
sary to express rules whose premises contain negative in- 
formation, for instance: “ i f X  is a student and X is not a 
graduate student, then X is an undergraduate student”. In 
pure Datalog, there is no way to represent such a rule. 

Note that in relational algebra an expression corre- 
sponding to the above rule can be formulated with ease 
by use of the set-difference operator “-”. Assume that 
a one-column relation STUD contains the names of all stu- 
dents and another one-column relation GRAD contains the 
names of all graduate students. Then we obtain the rela- 
tion UND of all undergraduate students by simply sub- 
tracting GRAD from STUD, thus 

UND = STUD - GRAD. 

Our intention is now to extend pure Datalog by allowing 
negated literals in rule bodies. Assume that the unary 
predicate symbols stud, und, and grad represent the prop- 
erties of being a student, an undergraduate, and a gradu- 
ate, respectively. Our rule could then be formulated as 
follows: 

und(X)  :- s tud(X) ,  1 grad(X).  

More formally, let us define Datalog’ as the language 
whose syntax is that of Datalog except that negated lit- 
erals are allowed in rule bodies. Accordingly, a Datalog’ 
clause is either a positive (ground) fact or a rule where 
negative literals are allowed to appear in the body. For 
safety reasons we also require that each variable occurring 
in a negative literal of a rule body also occurs in a positive 
literal of the same rule body. 

In order to discuss the semantics of Datalog’ pro- 
grams, we first generalize the notion of the Herbrand 
Model (see Section 11-D) to cover negation in rule bodies. 

Let 9 be a Herbrand interpretation, i.e.,  a subset of the 
Herbrand base HB. Let F denote a positive or negative 
Datalog fact. 

(“ is a positive fact and F E 9, or 
F is satisfied in 9 iff 

LF is a negative fact and IF 1 g! 9. 

Now, let R be a Datalog’ rule of the form : - Li,  
. . . , L, and let 9 be a Herbrand interpretation. R is sat- 
isfied in 9 iff for each ground substitution O for R ,  when- 
ever it holds that for all 1 5 i I n ,  Lie is satisfied in 9, 

then it also holds that LOO is satisfied in 9. (Note that LOO 
is satisfied in 9 iff LOO E 4,  since LOO is positive.) 

Let S be a set of Datalog’ clauses. A Herbrand inter- 
pretation 9 is a Herbrand model of S iff all facts and rules 
of S are satisfied in 9. 

In analogy to pure Datalog, we require that the set of 
all positive facts derivable from a set S of Datalog’ 
clauses be a minimal model of S .  However, a set S of 
Datalog: clauses may have more than one minimal Her- 
brand model. For instance, if S,  = {boring (chess) : - 
1 interesting (chess)}, then S has two minimal Herbrand 
models: Ha = {interesting(chess)) and Hb = {bor- 
ing (chess) } . 

The existence of several minimal Herbrand models for 
a set of Datalog’ clauses entails difficulties in defining 
the semantics of Datalog’ programs: which of the differ- 
ent minimal Herbrand models should be chosen? Note also 
that the model minimality requirement is inconsistent with 
the CWA. By the CWA both facts 1 boring(chess) and 
1 interesting(chess) can be deduced from the above set 
S, .  Thus, neither of the models Ha and Hb are consistent 
with the CWA. 

In the following we describe a policy which is com- 
monly referred to as stratijied evaluation of Datalog’ 
programs, or simply as stratijied Datalog’. This policy 
permits us to select a distinguished minimal Herbrand 
model in a very natural and intuitive way by approximat- 
ing the CWA. However, as we will see later, this method 
does not apply to all Datalog’ programs, but only to par- 
ticular subclass; the so-called stratijied programs [ 371, 
[ 121. Note also that this technique can be used in the more 
general context of Logic Programming with negation [ 121 
as well. 

C. Stratijied Datalog’ 
This policy of choosing a particular Herbrand model, 

and thus of determining the semantics of a Datalog’ pro- 
gram is guided by the following intuition: when evaluat- 
ing a rule with one or more negative literals in the body, 
first evaluate the predicates corresponding to these nega- 
tive literals. Then the CWA is “locally” applied to these 
predicates. 

For instance, the clause set S, ,  as defined above, would 
be evaluated as follows: before trying to evaluate the 
predicate boring, we evaluate the predicate interesting 
which occurs negatively in the rule body. Since there are 
no rules and facts in S, allowing us to deduce any fact of 
the form interesting(a), the set of positive answers to 
this predicate is empty. In particular, interesting (chess) 
cannot be derived. Hence, by applying the CWA “lo- 
cally” to the interesting predicate, we derive 1 interest- 
ing (chess). Now we evaluate the unique rule of s, and get 
boring (chess). Thus, the computed Herbrand model is Hb 
= (boring (chess)}. 

When several rules occur in a Datalog’ program, then 
the evaluation of a rule body may engender the evaluation 
of subsequent rules. These rules may contain in turn neg- 
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ative literals in their bodies and so on. Thus, it is required 
that before evaluating a predicate in a rule head, it is al- 
ways possible to completely evaluate all the predicates 
which occur negatively in the rule body or in the bodies 
of some subsequent rules and all those predicates which 
are needed in order to evaluate these negative predicates. 

If a program fulfills this condition it is called stratzjied. 
Any stratified program P can be partitioned into disjoint 
sets of clauses P = P’ U . . . U Pi U . . . U P called 
strata, such that each IDB-predicate of P has its defining 
clauses within one stratum and P’ contains only clauses 
with either no negative literals or with negative literals 
corresponding to EDB-predicates and each stratum P’ 
contains only clauses whose negative literals correspond 
to predicates defined in lower strata. The partition of P 
into P’ . . . P“ is called a stratijication of P .  

Assume a stratified program P with given stratification 
P’ . . . P“ has to be evaluated against an EDB E. The 
evaluation is done stratum-by-stratum as follows. First, 
P’ is evaluated by applying the CWA locally to the EDB, 
i.e., by assuming 1 p (c , ,  . . . , ck) for each k-ary EDB- 
predicate p and constants c1, . . . , ck where p(  c1, . . . , 
c k )  E .  Then the other strata are evaluated in ascending 
order. During the evaluation of each stratum P i ,  the result 
of the previous computations is used and the CWA is made 
“locally” for all EDB-predicates and for all predicates 
defined by lower strata. 

Consider, for example, the following program P,, 
where d is the only EDB-predicate: 

r4: r ( X ,  Y ) :  - d (  Y ,  X ) .  

r5: s ( X ,  Y )  :-  q ( X ,  Z ) ,  q ( Y ,  T ) ,  X + Y 

A stratification of P , ~  is: P: = { r 4 } ,  ~ , 2  = { r2,  r3, r 5 } ,  e = { rl } .  Assume P, is evaluated over the EDB E, = 
{ d ( a ,  b ) ,  d ( b ,  c), d ( e ,  e ) } .  The evaluation of the first 
stratum produces the new facts: r ( b ,  a ) ,  r ( c ,  b ) ,  r ( e ,  
e ) .  The computation of the second stratum yields the fol- 
lowing additional facts: q ( a ,  b ) ,  q (b ,  c), q ( a ,  c ) ,  s ( a ,  
b ) ,  s ( b ,  a ) .  Finally, by evaluating the third stratum we 

Note that a stratified program has, in general, several 
different stratifications. The program P,, for example, has 
the following alternative stratification: P: = { r4 } , P: = 
{ r2,  r3 }, Pa = { r l ,  r5 } . However, it can be shown [12] 
that all stratifications are equivalent, i .e.,  the result of the 
evaluation of a stratified Datalog’ program P is indepen- 
dent of the stratification used. 

It is easy to decide whether a given Datalog’ program 
is stratified by analyzing the Extended Dependency Graph 
EDG ( P )  of P .  The nodes of EDG ( P )  consist of the IDB- 
predicate symbols occurring in P. There is a (directed) 
edge < p ,  q > in EDG(P)  iff the predicate symbol q oc- 
curs positively or negatively in a body of a rule whose 

g e t p ( b ,  a ) .  

head predicate is p .  Furthermore, the edge < p ,  q > is 
marked with a “ 1 ” sign iff there exists at least one rule 
R with head predicate p such that q occurs negatively in 
the body of R. The extended dependency graph EDG (P,) 
of the program P, is depicted in Fig. 4. 

A Datalog’ program P is stratified iff EDG( P )  does 
not contain any cycle involving an edge labeled with 
“ 1 ”. If P is stratified, then it is quite easy to construct 
a particular stratification for P from E D G ( P )  [34]. An- 
other method for constructing a stratification is given in 
[122]. 

It can be shown that the strata-by-strata evaluation of a 
stratified program P on the base of an underlying EDB E 
always produces a minimal Herbrand model of P U EDB. 
This model is also called the Perjiect Model and can be 
characterized in a purely nonprocedural way [12], [95]. 
Local stratijication, a refinement of stratification, is pro- 
posed in [95]. 

D. InJationary Evaluation and Expressive Power of 
Datalog ’ Programs 

Another evaluation paradigm for Datalog ’ programs 
has been proposed recently in [4], [72]. This method, 
called injationary evaluation, has the advantage of ap- 
plying to all Datalog’ programs and not just stratified Da- 
talog ’ programs. 

Let P be a Datalog’ program and E an EDB. The in- 
flationary evaluation of P on E is performed iteratively so 
that all rules of P are processed in parallel at each step. 
From the EDB and the facts already derived, new facts 
are derived by applying the rules of P. These new facts 
are added to the result at the end of each step. At each 
step, the CWA is made temporarily during the evaluation 
of the rule bodies: it is assumed that the negation of all 
facts not yet derived is valid. The procedure terminates 
when no more additional facts can be derived. 

Consider, for example, the following nonstratified pro- 
gram Pi,  where d is the only EDB-predicate: 

rl :  s ( X )  :- p ( X ) ,  q ( X ) ,  i r ( X ) .  

r2: p ( X )  :- d ( X ) ,  1 q ( X ) .  

r3: q ( X )  :- d ( X ) ,  1 p ( X ) .  

r4: r ( X )  :- d ( X ) ,  d(  b ) .  

Assume that this program is evaluated inflationarily 
against an EDB Ei = { d ( a ) } .  During the first iteration 
step, rule r2 produces the new fact p ( a ) ,  and rule r3 pro- 
duces the new fact q (  a ) .  During the second iteration step, 
rule r1 produces the new fact s ( a ) .  Since no further facts 
are derivable, the procedure stops with the result { p ( a ) ,  

It is easy to see the inflationary evaluation of a Da- 
talog’ program P corresponds to the computation of a 
least fixpoint [72], [34]. Furthermore, the result united to 
E is a Herbrand model of P U E. However, in general, 
it is not a minimal Herbrand model. For instance, in the 
above example the computed Herbrand model is { d ( a ) ,  
p ( a ) ,  q ( a ) ,  s ( a ) } ,  but this model is not minimal since 

4 ( a ) ,  s ( a ) > .  
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i/ 

Fig. 4. Extended dependency graph EDG(P,) 

{ d ( a ) ,  q ( a ) }  and { d ( a ) ,  p ( a ) }  are smaller Herbrand 
models of Pi U Ei. 

Just as for pure Datalog programs, one can specify a 
goal together with a Datalog’ program. In that case, 
again, the output consists of all those derived IDB-facts 
which are subsumed by the given goal. It can be shown 
[4], [7 11, [72], that for each stratified Datalog’ program 
P with goal G there exists a Datalog’ program P‘ such 
that the output of the stratified computation of P on any 
EDB E w.r.t. G is equal to the output of the inflationary 
computation of P‘ on E w.r.t. G. This means that infla- 
tionary Datalog’ is at least as expressive as stratified Da- 
talog’ . Moreover, there exist programs whose inflation- 
ary evaluation (w.r.t. a given goal) cannot be simulated 
by any strata-by-strata computation of a stratified Da- 
talog’ program. Thus, inflationary Datalog’ is compu- 
tationally strictly more expressive than stratified Da- 
talog’ . Furthermore, it has been shown that inflationary 
Datalog’ has the same expressive power as Fixpoint Logic 
on Finite Structures, a well-known formalism obtained by 
extending first-order logic with a least fixpoint operator 
for positive first-order formulas [6]. 

It is also easy to see that stratified Datalog’ is in turn 
strictly more expressive than pure Datalog [4]. Fig. 5 
shows the hierarchy of expressiveness of the different lan- 
guages and formalisms presented in this paper. More in- 
formation on this subject can be found in [38]. 

We finish our discussion on incorporating negation into 
Datalog by giving a brief survey on other relevant work 
on this topic. 

A different approach for defining the meaning of logic 
programs with negation is based on a proposal of Clark 
[44]. He essentially considers the completion of a logic 
program by viewing the definitions of derived predicates 
as logical equivalences rather than logical implications. 
The semantics of a logic program with negation can then 
be defined as a minimal model of its completion. This 
approach was discussed by Sheperdson [ 1 lo], [ 11 11 and 
Lloyd [78]. Fitting [49] and Kunen [74] refined this ap- 
proach by using three-valued logic: in their setting, a fact 
can be true, false, or undefined. In the context of Datalog 
these approaches are not completely satisfactory. 

A recently introduced and very promising approach, 
also based on three-valued logic, is the well-founded se- 
mantics by Van Gelder, Ross, and Schlipf [126]. Their 
method nicely extends the stratified approach to arbitrary 

(= nonrecursive 
Recursive Datalog) ( (, queries 

d’ 

Stratified Datalogy 

Fig. 5 .  Hierarchy of expressiveness of different versions of Datalog 

logic programs with negation. In particular, every strati- 
fied program is semantically characterized by a total 
model, i.e., a model such that each fact of the Herbrand 
base has either truth value “true” or “false”. This model 
coincides with the perfect model mentioned above. Non- 
stratified programs, on the other hand, can be character- 
ized by partial models, where single facts may assume 
truth value “undejined.” A fixpoint method for comput- 
ing the well-founded partial model is given in [ 1271, while 
resolution-based procedural semantics for well-founded 
negation is provided in [103]. Further important papers 
related to well-founded semantics are [27], where the re- 
lationship to logical constructivism is investigated, and 
[961. 

E. Complex Objects 

The “objects” handled by pure Datalog programs cor- 
respond to the tuples of relations which in turn are made 
of attribute values. Each attribute value is atomic, i .e . ,  
not composed of sub-objects; thus the underlying data 
model consists of relations in first normal form. This 
model has the advantage of being both mathematically 
simple and easy to implement. On the other hand, several 
new application areas (such as computer-aided design, of- 
fice automation, and knowledge representation) require 
the storage and manipulation of (deeply nested) structured 
objects of high complexity. Such complex objects cannot 
be represented as atomic entities in the normalized rela- 
tional model but are broken into several autonomous ob- 
jects. This implies a number of severe problems of con- 
ceptual and technical nature. 

For this reason, the relational model has been extended 
in several ways to allow the compact representation of 
complex objects. Datalog can be extended accordingly. 
The main features that are added to Datalog in order to 
represent and manipulate complex objects are finction 
symbols as a glue for composing objects from sub-objects 
and set constructors for being able to build objects which 
are collections of other objects. Function symbols are 
“uniterpreted”, i.e.,  they do not have any predefined 
meaning. Usually one also adds a number of predefined 
functions for manipulating sets and elements of sets to the 
standard vocabulary of Datalog. 

There exist several different approaches for incorporat- 
ing the concept of a complex structured object into the 
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formalism of Datalog [ 1331, [ 1191, [75]. One of the most 
well-known approaches has been developed within the 
LDL (Logic Data Language) Project, carried out at MCC, 
Austin, TX. The notation for representing sets and related 
issues used in this subsection is the one of LDL. 

Examples of complex facts involving function symbols 
and sets are: 

person (name( joe, berger), birthdate ( 1956, june, 30), 

children ( {mar,  sarah, j im} )). 
person (name( joe, coker), birthdate ( 1956,,june, 30), 

children ( {bill, sarah } )). 
person (name( bebe, suong), birthdate ( 1958, may, 5) ,  

children ( { j im, mar, sarah } )) . 
Here name, birthdate, and children are function symbols. 

Variables may represent atomic objects (i.e., constants) 
or compound objects. The following rule relates the last 
names of all persons having the same birthdate and the 
same first name: 

similar(X, Y )  : -  person(name(2, X ) ,  B ,  C ) ,  

person(name(2, Y ) ,  B ,  0). 

By this rule, we can derive, for instance, the new fact 
similar (berger, coker ). 

Two sets are considered equal iff they contain the same 
elements, independently of the order in which these ele- 
ments appear. The following rule defines a predicate 
eqchilds ( X ,  Y )  stating that X and Y are the names of per- 
sons whose children have exactly the same first names: 

eqchilds ( X ,  Y )  : - person ( X ,  B,  C ), person ( Y,  D ,  C ). 

By this rule we can derive, for instance, eqchilds 
( name ( joe ,  berger ) , name ( bebe, suong ) ) . 

LDL offers several built-in predicates and functions for 
handling sets. The most important are: 

member( t ,  S ), a built-in predicate for expressing that 
t is an element of the set S .  Notice that t can be a complex 
term and may contain sets as components. 

union(S, A ,  B ) ,  a built-in predicate for expressing 
the S = A U B .  

Sets can be introduced not only by enumeration but also 
by grouping. Grouping allows us to define a set in a rule 
head by indicating the properties of its elements in the 
corresponding rule body. The following rule, for in- 
stance, defines the set of all persons (identified by their 
last name) who have a child called Sarah. 

sarahpar ( < X > ) : - 
person(nume(A, X ) ,  B,  C ) ,  member(saruh, C ) .  

This rule generates the new fact sarahpar( { berger, 
coker, suong } ). 

Using complex objects in Datalog is not as easy as it 
might appear. Several problems have to be taken into con- 
sideration. First of all, the use of function symbols may 

endanger the safety of programs. It is undecidable whether 
a Datalog program with function symbols has a finite or 
an infinite result. The simplest solution is to leave the re- 
sponsibility to the programmer. A similar problem is the 
finiteness of sets. Furthermore, not all Datalog programs 
with sets have a well-defined semantics. In particular, one 
should avoid self-referential set definitions such as 
p ( < X > ) : - p ( X  ). Such definitions come close to Rus- 
sell’s paradox. A large class of programs free of self-ref- 
erence, called admissible programs, is defined in [21]. 
Note also that the test whether two terms (or literals) in- 
volving sets match is a computationally hard problem. 
This is a particular case of theory unification [116]. 

Another interesting problem is the consistency problem 
for monovalued data functions. A monovalued data func- 
tion f is an evaluable function symbol, interpreted as a 
mathematical function. Such functions can be defined by 
the rules of a logic program. However, the unicity of the 
function value must be ensured. References [3], [76], and 
[77] deal with this problem. 

A Logic Programming language for data manipulation 
such as LDL should be conceived in accordance with an 
appropriate data model which formalizes the storage and 
retrieval principles and the manipulation primitives that a 
DBMS offers for the objects referenced by the language. 
Pure Datalog, for instance, can be based on the relational 
model in first normal form (nowadays often called t h e j a t  
relational model) because the concept of a literal nicely 
matches the one of a tuple in a relation and because the 
single evaluation steps of a Datalog program can be trans- 
lated into appropriate sequences of relational operations. 
On the other hand, Logic Programming languages dealing 
with structured objects such as LDL require more com- 
plex data models. 

Quite a number of extensions of the relational model 
have been developed in the last years in order to allow the 
storage and manipulation of complex objects. The most 
famous ones are the NF2 model by Jaeschke and Schek 
[66], the model of nested relations by Fisher and Thomas 
[48], the model of Abiteboul and Been [l], [2] (which is 
more general than the former two models), the “Franco- 
Armenian Data model” FAD by Bancilhon, Briggs, 
Khoshafian, and Valduriez [19] (based on a calculus for 
complex objects by Bancilhon and Khoshafian [18]). 
ALGRES, a quite powerful data-model for complex ob- 
jects, supports an extended relational algebra augmented 
with a fixpoint operator, and thus is an ideal base for im- 
plementing interpreters or compilers for logic data lan- 
guages with complex objects [30], [31]. 

An excellent overview and comparison of data models 
for complex objects is given in [ 11. 

F. An Overview of Research Prototypes 
We mention here some of the research prototypes cur- 

rently under development based on the language Datalog 
(or its variations). 

The LDL project is under development at Microelec- 
tronics and Computer Technology Corporation (MCC), 
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Austin, TX. The project’s goal is to implement an inte- 
grated system for processing queries in Logic Data Lan- 
guage (LDL), a language which extends Datalog. We 
gave some examples of the most significant constructs of 
LDL in Section VI. A general overview of the LDL proj- 
ect can be found in [43]. Features for dealing with com- 
plex terms in LDL are presented by Zaniolo [133]; a lan- 
guage overview is given by Tsur and Zaniolo [119]; the 
treatment of sets and negation is formally presented by 
Beeri et al. [21]; other papers on the subject are [19] and 
[73]. An excellent description of the LDL language and 
of related features is given in [92]. 

The NAIL! project (Not Another Implementation of 
Logic!) is under development at Stanford University with 
the support of NSF and IBM. NAIL! processes queries in 
Datalog, but interfaces a conventional SQL database sys- 
tem (running on IBM PC/RT). An overview of the NAIL! 
project is presented by Morris, Ullman, and Van Gelder 
in [88]; an update can be found in [89]. Various kinds of 
algorithms applied in the prototype are discussed in [90] 
and [121]. 

The KIWI Esprit project, sponsored by the EEC, is a 
joint effort for the development of knowledge bases, pro- 
grammed through an object-oriented language (OOPS) , 
and interfaced to an existing relational database. The Ad- 
vanced Database Interface (ADE) of KIWI is developed 
jointly by the University of Calabria, CRAI, and ENI- 
DATA (Italy). A general overview of KIWI and ADE can 
be found in [ 106al. The mini-magic variation to the magic 
set approach, used in KIWI, is described by Sacca’ and 
Zaniolo [ 1041. 

The ALGRES Project, under development in the frame 
of the METEOR Esprit project, is also sponsored by the 
EEC. The ALGRES project extends the relational model 
to support nonnormalized relations and a fixpoint opera- 
tor, and supports Datalog as programming language. 
ALGRES is a joint effort of the Politecnico di Milano and 
of TXT-Techint (Italy). A general overview of the 
ALGRES Project can be found in a paper by Ceri, Crespi- 
Reghizzi et al. [32]. Other papers are [30] and [31]. 

Other relevant research projects which deal with rule- 
based computations are POSTGRES, under development 
at Berkeley University [ 1171, and the 5th GENERATION 
Project [50], [91], under development at the Institute for 
New Generation Computer Technology (ICOT), Tokio, 
Japan. More details about the above-mentioned projects 
can be found in [34]. Other recent overviews of the proj- 
ects on databases and logic were presented by Zaniolo 
[ 1341 on a dedicated issue of IEEE-Data Engineering and 
by Gardarin and Simon [53] on TSI. 

VII. CONCLUSIONS 
There are no doubts that Datalog theory has been nicely 

developed in the last five years, through the flourishing of 
many elegant contributions. The main attraction of Da- 
talog is the possibility of dealing, within a unique for- 
malism, with nonrecursive expressions (or views) as well 
as with recursive ones. Although this area is still very 

active, we feel that some basic understanding has been 
established, thus allowing for systematic treatment. 

One of the major challenges that Datalog research has 
still to meet is to convince the knowledge base community 
of the practical merits of this theory. The weaknesses of 
Datalog work have been indicated as follows. 

a) Very few applications have been shown which can 
take full advantage of Datalog’s expressive power. In par- 
ticular, no useful applications have been reported so far 
for nonlinear or mutually recursive rules. 

b) Datalog is not considered as a programming lan- 
guage, but rather as a “pure” computational paradigm. 
For instance, Datalog does not provide support for writ- 
ing user’s interfaces, and does not support quite useful 
programming tools, such as modularization and struc- 
tured types. 

c) Datalog does not compromise its clean declarative 
style in any way; while sometimes it is required that the 
programmer may take control on inference processing, by 
stating the order and method of execution of rules. This 
is typical, for instance, of many expert systems shells. 

d) Datalog systems have been considered, until now, 
as closed worlds, that do not talk to other systems; while 
the current trend is towards supporting heterogeneous sys- 
tems. 

Some of the above criticisms are in fact well founded, 
and provide an indication of the directions in which we 
expect Datalog to move in order to become fully appli- 
cable. Datalog research will have to consider with great 
care the advances in other research areas; in particular, 
we have indicated in Section VI that Datalog can be ex- 
tended to support complex terms; this is a first step to- 
wards the development of new language paradigms which 
use some of the concepts from object-oriented databases. 
The foundation of such an evolution have already been 
placed by Beeri [23] and Abiteboul and Kanellakis [5]; 
this work has shown that rule-based and object-oriented 
approaches are not in opposition, but rather they are ca- 
pable of providing useful programming concepts to each 
other. 

In summary, we expect that supporting rule computa- 
tion will be one of the ingredients of future knowledge 
base systems; Datalog research has provided exact meth- 
ods and a fairly good understanding for approaching this 
issue. 

REFERENCES 
S.  Abiteboul and S.  Gmmbach, “Bases de donnees et objets com- 
plexes,” Tech. Sci. Inform., vol. 6, no. 5 ,  1987. 
S.  Abiteboul and C. Beeri, “On the power of languages for the 
manipulation of complex objects,” in  Proc. Inr. Workshop Theory 
Appl. Nested Relations Complex Objects, Darmstadt, West Ger- 
many, abstract, 1987. 
S. Abiteboul and R .  Hull, “Data functions, datalog and negation,” 
in Proc. ACM-SIGMOD Conf., 1988. 
S.  Abiteboul and V.  Vianu, “Procedural and declarative database 
update languages,” in Proc. ACM SIGMOD-SIGACT Symp. Prin- 
ciples Database Sysr., 1988, pp. 240-250. 
S .  Abiteboul and P. C. Kanellakis, “Object identity as a query 
language primitive, ” manuscript, 1989. 
P. Aczel, “An introduction to inductive definitions,” in The Hand- 

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore.  Restrictions apply. 



I64 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I ,  NO. I .  MARCH 1989 

book of Mathematical Logic, J .  Banvise, Ed. Amsterdam, The 
Netherlands: North-Holland, 1977, pp. 739-782. 

[7] R. Agrawal and H. V. Jagadish, “Direct algorithms for computing 
the transitive closure of database relations,” in Proc. 13th Int. 
Conf. Very Large Databases, Brighton, U.K., 1987. 

[8] -, “Alpha: An extension of relational algebra to express a class 
of recursive queries,” in Proc. IEEE 3rd Int. Conf. Data Eng., 
Los Angeles, CA, Feb. 1987. 

[9] -, “Multiprocessor transitive closure algorithms,’’ Data Eng. 
(Special Issue on Databases for Parallel and Distributed Systems), 
vol. 12. Mar. 1989. 

[IO] A. V. Aho and J.  D. Ullman, “University of data retrieval lan- 
guages,” presented at the 6th ACM Symp. Principles Program- 
ming Languages, San Antonio, TX, Jan. 1979. 

[ 111 K. R. Apt and M. H.  VanEniden, “Contributions to the theory of 
logic programming,” J .  ACM, vol. 29, no. 3, 1982. 

[ 121 C. Apt, H. Blair, and A. Walker, “Towards a theory of declarative 
knowledge,” IBMRes. Rep. RC 11681, Apr. 1986. 

[I31 F .  Bancilhon, “Naive evaluation of recursively defined relations,” 
in On Knowledge Based Management Systems-Integrating Data- 
base and AI Systems, Brodie and Mylopoulos, Eds. New York: 
Springer-Verlag, 1985. 

[I41 F. Bancilhon, D. Maier, Y .  Sagiv, and J .  D. Ullman, “Magic sets 
and other strange ways to implement logic programs,” in Proc. 
ACM SIGMOD-SIGAT Symp. Principles Database Syst., Cam- 
bridge, MA, Mar. 1986. 

[I51 F .  Bancilhon and R. Ramakrishnan, “An amateur’s introduction 
to recursive query processing,” in Proc. ACM-SIGMOD Conf., 
May 1986. 

1161 -, “Performance evaluation of data intensive logic programs,” 
in Foundations of Deductive Databases and Logic Programming, 
J. Minker, Ed. 

[17] F. Bancilhon, D. Maier, Y .  Sagiv, and J .  D. Ullman, “Magic sets: 
Algorithms and examples,” manuscript, 1986. 

[I81 F. Bancilhon and S .  Khoshafian, “A calculus for complex ob- 
jects,” in Proc. SIGMOD 86, 1986. 

[I91 F. Bancilhon, T .  Briggs, S .  Khoshafian, and P. Valduriez, “FAD, 
A powerful and simple database language,” in Proc. 13th Int. Conf. 
Very Large Data Bases, Brighton, U.K., 1987. 

[20] R. Bayer, “Query evaluation and recursion in deductive database 
systems,” manuscript, 1985. 

[21] C. Beeri, et al . ,  “Sets and negation in a logical database language 
(LDLl),” in Proc. ACM SIGMOD-SIGACT Symp. Principles Da- 
tabase Syst., San Diego, CA, Mar. 1987. 

[22] C. Beeri and R. Ramakrishnan, “On the power of magic,” in Proc. 
ACM SIGMOD-SIGACT Symp. Principles Database Syst., San 
Diego, CA, Mar. 1987. 

[23] C. Beeri, “Data models and languages for databases,” in Proc. 
2nd Int. Conf. Database Theory, Bruges, Belgium, 1988; and in 
LNCS 326. New York: Springer-Verlag. 1988. 

[24] J .  Bocca, H. Decker, J.-M. Nicolas, L. Vielle, and M. Wallace, 
“Some steps toward a DBMS-based KBMS,” in Proc. IFIP World 
Conf., Dublin, 1986. 

[25] J .  Bocca, “On the evaluation strategy of EDUCE,” in Proc. ACM- 
SIGMOD Conf., Washington, DC, May 1986. 

[26] M. L. Brodie, “Future intelligent information systems: AI and da- 
tabase technologies working together,” in Readings in Artijicial 
Intelligence and Databases. San Mateo, CA: Morgan Kaufman, 
1988. 

[27] F .  Bry, “Logic programming as constructivism: A formalization 
and its application to databases,” in 8th ACM Symp. Principles 
Database Syst. (PODS), Mar. 1989, pp. 34-50. 

[28] S .  Ceri, G. Gottlob, and L. Lavazza, “Translation and optimiza- 
tion of logic queries: the algebraic approach,” in Proc. 12th Int. 
Conf. Very Large Data Bases, Kyoto, Aug. 1986. 

[29] S .  Ceri and L. Tanca, “Optimization of systems of algebraic equa- 
tions for evaluating Datalog queries,” in Proc. 13th Int. Con$ Very 
Large Data Bases, Brighton, U.K., Sept. 1987. 

[30] S .  Ceri, S .  Crespi Reghizzi, G. Gottlob, F. Lamperti, L. Lavazza, 
L. Tanca, and R. Zicari, “The ALGRES project,” in Proc. Int. 
Con$ Extending Database Technol. (EDBT88),  Venice, 1988. 

[31] S .  Ceri, S .  Crespi-Reghizzi, L. Lavazza, and R. Zicari, 
“ALGRES: A system for the specification and prototyping of com- 
plex databases,” Dip. Elettronica, Politecnico di Milano, Int. Rep. 

[32] S.  Ceri, S .  Crespi-Reghizzi, G. Lamperti, L. Lavazza, and R. Zi- 
cari, “ALGRES: An advanced database system for complex ap- 
plications,” IEEE Software, to be published. 

Washington, DC, 1986. 

87-018, 1987. 

[33] S .  Ceri, G. Gottlob, and G. Wiederhold, “Efficient database ac- 
cess through Prolog,” IEEE Trans. Software Eng., Feb. 1989. 

[34] S .  Ceri, G. Gottlob, and L. Tanca, Logic Programming and Da- 
tabases. New York: Springer-Verlag, to be published. 

[35] U. S.  Chakravarthy, J. Minker, and J. Grant, “Semantic query 
optimization: Additional constraints and control strategies,” in 
Proc. 1st Int. Conf. Expert Database Syst., L. Kerschberg, Ed., 
Charleston, 1986; and in Expert Database Systems. Menlo Park, 
CA: Benjamin-Cummings, 1987. 

[36] U. S .  Chakravarthy, J .  Grant, and J .  Minker, “Foundations of se- 
mantic query optimization for deductive databases,” in Proc. Int. 
Workshop Foundations Deductive Databases Logic Programming, 
J .  Minker, Ed., Aug. 1986. 

[37] A. Chandra and D. Harel, “Horn clause queries and generaliza- 
tions,” J .  Logic Programming, vol. 1, pp. 1-15, 1985. 

[38] A. Chandra, “A theory of database queries,” in Proc. ACM SIG- 
MOD-SIGACT Symp. Principles Database Syst., Mar. 1988. 

[39] C. L. Chang and R. C. Lee, Symbolic Logic and Mechanical Theo- 
rem Proving. New York: Academic, 1973. 

[40] C. C.  Chang and H. J .  Keisler, Model Theory. Amsterdam, The 
Netherlands. 1977. 

[41] C. Chang, “On the evaluation of queries containing derived rela- 
tions in relational databases,” in Advances in Database Theory, 
Vol. I ,  H. Gallaire, J .  Minker, and J .  M. Nicholas, Eds. New 
York: Plenum, 1981. 

[42] C.  L. Chang and A. Walker, “PROSQL: A Prolog programming 
interface with SQLiDS,” in Proc. First Workshop Expert Data- 
base Syst., Kiawah Island, SC, Oct. 1984; and in Expert Database 
Systems, L. Kerschberg, Ed. Menlo Park, CA: Benjamin-Cum- 
mings, 1986. 

[43] D. Chimenti, T .  O’Hare, R. Krishnamurthy, S .  Naqvi, S .  Tsur, 
C. West, and C.  Zaniolo, “An overview of the LDL system,” 
Special Issue on Databases and Logic, IEEE Data Engineering, 
vol. IO ,  Dec. 1987. 

[44] K. L. Clark, “Negation as failure,” in Logicand Databases. New 
York: Plenum, 1978. 

[45] W. F .  Clocksin and C. S .  Mellish, Programming in Prolog. New 
York: Springer-Verlag, 1981. 

[46] F. Cuppens and R. Demolombe, “A PROLOG-relational DBMS 
interface using delayed evaluation,” presented at the Workshop on 
Integration of Logic Programming and Databases, Venice, Dec. 
1986. 

[47] P.  Devanbu and R. Agrawal, “Moving selections into fixpoint 
queries,” manuscript, Bell Labs, Murray Hill, NJ, 1986. 

[48] P. Fischer and S .  Thomas, “Operators for non-first-normal-form 
relations,” in Proc. 7th Int. Comput. Sofrware Appl. Conf., Chi- 
cago, IL, 1983. 

[49] M. Fitting, “A Kripke-Kleene semantics for logic programs,” J .  
Logic Programming, vol. 2, pp. 295-312, 1985. 

[50] K. Fuchi, “Revisiting original philosophy of fifth generation com- 
puter project,” presented at the Int. Conf. Fifth Generation Com- 
put. Syst., 1984. 

[SI] H. Gallaire and J .  Minker, Eds, Logic and Databases. New York: 
Plenum, 1978. 

[52] G. Gardarin and C. De Maindreville, “Evaluation of database re- 
cursive logic programs as recurrent function series,’’ in Proc. ACM- 
SIGMOD Conf., Washington, DC, May 1986. 

[53] G. Gardarin and E. Simon, “Les systemes de gestion de bases se 
donnees deductives,” Technique et Science Informatiques, vol. 6,  
1987. 

[54] G. Gardarin, “Magic functions: A technique to optimize extended 
datalog recursive programs,” in Proc. 13th Conf. Very Large Da- 
tabases, Brighton, U.K.,  1987. 

[55] G. Gentzen, “Die Wiederspruchsfreiheit der reinen Zahlentheo- 
rie,” Math. Annalen, vol. 112, pp. 493-565, 1936. 

[56] K. Godel, “Die Vollstandigkeit der Axiome des logischen Funk- 
tionenkalkiils,” Monatsheftefur Mathematik und Physik, vol. 37, 

[57] -, “Uber formal unentscheidbare Satze der Principia Mathe- 
matica und venvandter Systeme I,” Monatshefte fur Mathematik 
und Physik, vol. 38, pp. 173-198, 1931. 

[58] A. Guttman, “New features for relational database systems to sup- 
port CAD applications,” Ph.D. dissertation, Dep. Comput. Sci., 
Univ. California, Berkeley, June 1984. 

[59] L. J .  Henschen and S .  A. Naqvi, “On compiling queries in recur- 
sive first order databases,” J .  ACM, vol. 31, no. 1, 1984. 

[60] D. Hilbert, “Axiomatisches Denken,” Mathematische Annalen 78, 
pp. 405-415, 1918. 

pp. 349-360, 1930. 

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore.  Restrictions apply. 



CERl er al . :  DATALOG 165 

(611 Y. E .  Ioannidis and E. Wong, “An algebraic approach to recursive 
inference,” Electron. Res. Lab., Univ. Califomia, Berkeley, Int. 
Rep. UCB/ERL M85/92, 1985. 

[62] Y. E. Ioannidis, “On the computation of the transitive closure of 
relational operators,” in Proc. 12th Int. Con$ Very Large Data- 
bases, Kyoto, Japan, 1986. 

[63] Y. E. Ioannidis and E. Wong, “Transforming non-linear recursion 
into linear recursion,” manuscript, 1987. 

[64] Y. E. Ioannidis, J. Chen, M. A. Friedman, and M. M. Tsangaris, 
“BERMUDA-An architectural perspective on interfacing Prolog 
to a database machine,” Dep. Comput. Sci., Univ. Wisconsin, 
Tech. Rep. 723, Oct. 1987. 

[65] H.  Itoh, “Research and development on knowledge base systems 
at ICOT,” in Proc. 12th Int. Conf. Very Large Data Bases, Kyoto, 
Japan, Aug. 1986. 

[66] B. Jaeschke and H. J. Schek, “Remarks on the algebra of non first 
normal form relations,” in Proc. ACM SICMOD-SICACT 
Symp. Principles Database Syst.,  Los Angeles, CA, 1982, 

[67] J. F. Jenq and S .  Sahni, “All pairs shortest paths on a hypercube 
multiprocessor,” in Proc. IEEE Inf. Con$ Parallel Processing, 
Aug. 1987. 

[68] M. Kifer and E. L. Lozinskii, “Filtering data flow in deductive 
databases,” in Proc. 1st Int. Con$ Database Theory, Roma, Sept. 
1986. 

[69] W. Kim, D. S .  Reiner, and D.  S. Batory, Query Processing in 
Database Systems. 

[70] J. King, “Quist: A system for semantic query optimization in re- 
lational databases,” in Proc. 7th Int. Con$ Very Large Data Bases, 
Cannes, 1981. 

[71] Ph.G. Kolaitis, “On the expressive power of stratified datalog pro- 
grams,” Stanford Univ., Stanford, CA, preprint, Nov. 1987. 

[72] Ph.G. Kolaitis and Ch.H. Papadimitriou, “Why not negation by 
fixpoint?,” in Proc. ACM SIGMOD-SICACT Symp. Principles Da- 
tabase Syst.,  1988, pp. 231-239. 

[73] R. Krishnamurthy and C. Zaniolo, “Optimization in a logic based 
language for knowledge and data intensive applications,” in Proc. 
Int. Con5 Extending Database Technol. (EDBT88).  Venice, 1988; 
and LNCS, No. 303. 

1741 K. Kunen, “Negation in logic programming,” J .  Logic Program- 
ming, vol. 4 ,  pp. 289-308, 1987. 

[75] G. M. Kuper, “Logic programming with sets,” in Proc. ACM 
SICMOD-SICACT Symp. Principles Database Syst.,  1987, pp. 11- 
20. 

[76] E. Lambrichts, P. Nees, J. Paredaens, P. Peelman, and L. Tanca, 
“MilAnt: An extension of datalog with complex objects, functions 
and negation,” Dep. Comput. Sci., Univ. Antwerp, Int. Rep., 
1988. 

[77] E. Lambrichts, P. Nees, J. Paredaens, P. Peelman, and L. Tanca, 
“Integration of functions in the fixpoint semantics of rule based 
systems,” in Proc. 2nd Symp. Math. Fundamentals Database The- 
ory, Visegrad, Hungary, June 1989; and LNCS. New York: 
Springer-Verlag, 1989. 

[78] J. W. Lloyd, Foundations of Logic Programming, 2nd extended 

1791 L .  Lowenheim, “Uber Moglichkeiten im Relativkalkul,” Mathe- 
mathische Annalen, vol. 76, pp. 447-470, 1915. 

[80] D. W. Loveland, Automafed Theorem Proving: A Logical Basis. 
Amsterdam, The Netherlands: North-Holland, 1978. 

[81] E. Lozinskii, “Evaluating queries in deductive databases by gen- 
erating,” in Proc. Int. Joint Con$ Art$cial Intell. ,  1985. 

[82] D. Maier and D. S.  Warren, Computing with Logic. Menlo Park, 
CA: Benjamin-Cummings, 1988. 

[83] A.  I. Malcev, Algebraic Systems. New York: Springer-Verlag, 
1973. 

[84] V. Mannino, P. Chu, and T. Sager, “Statistical profile estimation 
in database systems,” ACM Comput. Surveys, vol. 20, Sept. 1988. 

[85] D. McKay and S. Shapiro, “Using active connection graphs for 
reasoning with recursive rules,’’ in Proc. 7th Int. Joint Con$ Ar- 
@cia1 Infell. ,  1981. 

[86] G. Marque-Pucheu, “Algebraic structure of answers in a recursive 
logic data-base,’’ Acta Inform., 1983. 

[87] G. Marque-Pucheu, J. M.  Gallausiaux, and G .  Jomier; “lnterfac- 
ing Prolog and relational database management systems,” New Ap- 
plications ofDatabases, Gardarin and Gelenbe, Eds. New York: 
Academic, 1984. 

[88] K .  Morris, J. D. Ullman, and A. Van Gelder, “Design overview 

pp. 124-138. 

New York: Springer-Verlag, 1985. 

New York: Springer-Verlag, 1988. 

ed. New York: Springer-Verlag, 1987. I 

of the Nail! system,” in Proc. Int.  Con5 Logic Programming. 
New York: Academic, 1986. 

[89] K. Moms,  J. Naughton, Y. Saraiya, J. Ullman, and A. Van Gelder, 
“YAWN! (Yet another window on NAIL!).” Special Issue on Da- 
tabases and Logic, IEEE Datu Eng., vol. 10, Dec. 1987. 

[90] K. A. Morris, “An algorithm for ordering subgoals in Nail!,” in 
Proc. ACM SIGNOD-SIGACT Symp. Principles Database S y s t . ,  
Austin, TX, 1988. 

[91] K .  Murakami, T .  Kakuta, N. Miyazaki, S. Shibayama, and H.  
Yokota, “A relational database machine, first step to knowledge 
base machine,” in Proc. loth Symp. Comput. Architecfure, June 
1983. 

[92] S .  Naqvi and S. Tsur, A Logical Language for  Data und Knowl- 
edge Bases. 

[93] W. Nejdl, “Recursive strategies for answering recursive queries- 
the RQA/FQI strategy,” in Proc. 13th Int.  Con5 Very Large Data 
Bases, Brighton, U.K., Sept. 1987. 

[94] E. Neuhold and M. Stonebraker, “Future directions in DBMS re- 
search,” Int. Comput. Sci. Inst., Berkeley, CA, TR 88-01, May 
1988. 

1951 T. Przymusinski, “On the semantics of stratified deductive data- 
bases,” in Proc. Workshop Foundations Deductive Databases 
Logic Programming, Washington, DC, 1986, pp, 433-443. 

[96] -, “Every logic program has a natural stratification and an it- 
erated least fixed point model,” in 8th ACM Symp. Principles Da- 
tabase Syst. (PODS) ,  Mar. 1989, pp. 11-21, 

1971 Quintus Computer Systems Inc., Mountain View, CA, Quinrus 
Prolog Data Base Interface Manual, version 1, June 29. 1987. 

[98] R .  Ramakrishnan, C.  Beeri, and R. Knshnamurty. “Optimizing 
existential Datalog queries,” in Proc. ACM SIGMOD-SICACT 
Symp. Principles of Database Syst . ,  Austin, TX, Mar. 1988. 

[99] -, “Magic templates, A spellbinding approach to logic evalua- 
tion,” in Proc. Logic Programming Conf., Aug. 1988. 

[IOO] D. Roelants, “Recursive rules in logic databases,” Philips Res. 
Lab., Bruxelles, Rep. R513, Mar. 1987, submitted for publication. 

[ l o l l  J. Rohmer, R. Lescoeur, and J. M. Kerisit, “The Alexander 
method: technique for the processing of recursive axioms in de- 
ductive databases,” in New Generation Computing, vol. 4 .  New 
York: Springer-Verlag, 1986. 

[I021 A. Rosenthal, S .  Heiler, U.  Dayal, and F. Manola, “Traversal 
recursion: A practical approach to supporting recursive applica- 
tions,” in Proc. ACM SIGMOD 1986 Int. Cotif: Management of 
Data, Washington, DC, May 1986. 

[IO31 K. A. Ross, “A procedural semantics for well founded negation in  
logic programs,” in 8th ACM Symp. Principles Database Syst. 
(PODS), Mar. 1989, pp. 22-32. 

[IO41 D. Sacca’ and C.  Zaniolo, “On the implementation of a simple 
class of logic queries for databases,” in Proc. ACM I986 SIC- 
MOD-SIGACT Symp. Principles Database Syst.,  Cambridge. MA, 
Mar. 1986. 

[ 1051 -, “Implementing recursive logic queries with function sym- 
bols,” MCC Tech. Rep. DB-401-86, Dec. 1986. 

[lo61 -, “Magic counting methods,” in Pror. ACM-SIGMOD Con.f., 
San Francisco, CA, May 1987. 

[106a] D. Sacca, M. Dispinziezi, A. Mecchia, C .  Pizzuti, C .  Del Gracco, 
and P. Naggar, “The advanced database environment of the KIWI 
system,” Special Issue on Databases and Logic, IEEE Data En- 
gineering, vol. 10, no. 4 ,  Dec. 1987. 

[lo71 Y. Sagiv, “Optimizing Datalog programs,” in Proc. ACM 1987 
SIGMOD-SIGACT Symp. Principles Database Syst.,  San Diego, 
CA, Mar. 1987. 

[IO81 L. Schmitz, “An improved transitive closure algorithm,” Com- 
put . ,  vol. 30, 1983. 

[I091 C. P. Schnorr, “An algorithm for transitive closure with linear 
expected time,” SIAM J .  Comput., vol. 7, May 1978. 

[110] J .  C.  Shepherdson, “Negation as Failure 11,”  J .  Logic Prograrn- 
ming, vol. 2 ,  no. 3, pp. 185-202, 1985. 

[ I l l ]  -, “Negation in logic programming,” in Foundations of De- 
ductive Databases and Logic Programming, J. Minker, Ed. Los 

[I121 0. Shmueli, and Sh. Naqvi, “Set grouping and layering in Horn 
clause programs,” in Proc. Int. Con5 Logic Programming, 1987, 

[ I  131 T. Skolem, “Logisch-kombinatorische Untersuchungen iiber die 
Erfullbarkeit oder Beweisbarkeit mathematischer Satze nebst ei- 
nem Theoreme uber dichte Mengen,” Skrifter utRit av Videnskaps- 
selskapet i Kristiana, I ,  Mat-Nut. Klasse, no. 4 ,  1920. 

New York: Computer Science Press, 1989. 

Altos, CA, 1988, pp. 19-88. 

pp. 152-177. 

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore.  Restrictions apply. 



166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I ,  NO. I ,  MARCH 1989 

[I141 D. E. Smith, M. R .  Genesereth, and M. L. Ginsberg, “Controlling 
recursive inference,” Arti$cal Intell., vol. 30, no. 3, 1986. 

[ I  151 L. Sterling and E. Shapiro, The Art of Prolog. Cambridge, MA: 
M.I.T. Press, 1986. 

[ I  161 M. E. Stickel, “A unification algorithm for associative commuta- 
tive functions,” JACM, vol. 28, July 1981. 

(1171 M. Stonebraker and L. A.  Rowe, Eds., “The Postgres papers,” 
Univ. Calif, Berkeley, Mem. UCB/ERL M86/86, June 1987 (re- 
vised version). 

[ I  181 L. Tanca, “Optimization of recursive logic queries to relational 
databases” (in Italian) Ph.D. dissertation, Politecnico di Milano 
and Universita’ di Napoli, 1988. 

[ I  191 S .  Tsur and C.  Zaniolo, “LDL: A logic-based query language,” 
in Proc. 12th Int. Con6 Very Large Data Bases, Kyoto, Japan, 
1986. 

[I201 J. D. Ullman, “Implementation of logic query languages for da- 
tabases,” ACM Trans. Database Syst., vol. 10, no. 3, 1985. 

11211 J .  D. Ullman and A. Van Gelder, “Testing applicability of top- 
down capture rules,” Stanford Univ., Stanford, CA, Int. Rep. 
STAN-CS-85.1046; and ACM-J., to be published. 

[ 1221 J .  D. Ullman, Principles of Databases and Knowledge-Base Sys- 
tems, Volume I. 

[I231 P. Valduriez and H. Boral, “Evaluation of recursive queries using 
join indices,” in Proc. 1st  Int. Con5 Expert Database Syst., 
Charleston, SC. 1986. 

[I241 P. Valduriez and S .  Khoshafian, “Parallel evaluation of the tran- 
sitive closure of a database relation.” Int. J .  Parallel Program- 
ming, vol. 17, Feb. 1988. 

[ 1251 M. Van Emden and R. Kowalski, “The semantics of predicate logic 
as a programming language,” J .  ACM, vol. 4,  Oct. 1976. 

[I261 A. Van Gelder, A.  Ross, and J. S .  Schlipf, “The well-founded 
semantics for general logic programs,” in 7th ACM Symp. Prin- 
ciples Database Syst. (PODS), Mar. 1988, pp. 221-230. 

[I271 A. Van Gelder. “The alternating fixpoint of logic programs with 
negation,” in 8th ACM Symp. Principles Darabase Syst. (PODS), 
Mar. 1989, pp. 1-10, 

[I281 L.  Vieille, “Recursive axioms in deductive databases: The Query- 
Subquery approach,” in Proc. Int. Con6 Expert Database Syst., 
L. Kerschberg, Ed., Charleston, 1986. 

[129] -, “A database complete proof procedure based on SLD reso- 
lution,” ECRC, Munich, West Germany, Int. Rep. IR-KB-40, 
Nov. 1986. 

[I301 -, “From QSQ to QoSaQ: Global optimization of recursive 
queries,” in Proc. 2nd Int. Con5 Expert Database Syst., L. 
Kerschberg, Ed., Tyson Corner, 1988. 

11311 H. S .  Warren, “A modification of Warshall’s algorithm for the 
transitive closure of binary relations,” Commun. ACM, vol. 18, 
Apr. 1975. 

[I321 S .  Warshall, “A theorem on boolean matrices,” J .  ACM, vol. 9 ,  
June 1962. 

[I331 C .  Zaniolo, “The representation and deductive retrieval of com- 
plex objects,” in Proc. 11th Int. Con6 Very Large Data Bases, 
Aug. 1985. 

[I341 -, Special Issue on Databases and Logic, IEEE Data Eng., vol. 
10, Dec. 1987. 

[I351 C. Zaniolo and D. Sacca’, “Rule rewriting methods for efficient 
evaluation of Horn logic,” MCC Tech. Rep. DB-084-87, 1987. 

[I361 M. M. Zloof, “Query-by-example: Operations on the transitive 
closure,” IBM, Yorktown Heights, NY, RC 5526, 1975. 

Potomac, MD: Computer Science, 1988. 

Stefano Ceri I S  a Professor of Computer Science 
at the Dipartimento di Matematica, University of 
Modena, Modena, Italy, and Visiting Professor at 
Stanford University, Stanford, CA, during the 
summer terms Until 1986 he was with the Dipar- 
timento di Elettronica, Politecnico di Milano, 
Milan, Italy. His research interests include dis- 
tributed databases, deductive and object-oriented 
databases, database design, medical databases, 
and the use of databases in software engineering 
HP i s  the author of numerous articles in these areas 

and coauthor of the book, Distributed Databases, Principles and Systems 
(New York: McGraw-Hill). He has been an active participant of several 
joint projects between the university and industry, sponsored by the Na- 
tional Research Council of Italy, the NSF, and Esprit (EEC) 

Dr Ceri is a member of ACM, Vice-chairman of the IEEE Technical 
Committee on Data Engineering, and Associate Editor of the journals, ACM 
Trunm-trons on Database Svstems and Distributed Computing 

Georg Gottlob received the Dipl.-Ing. degree and 
the Doctorate in computer science from the Tech- 
nical University of Vienna, Vienna, Austria. 

From 1982 to 1984 he served as a Research As- 
sociate at the Politecnico di Milano, Milan, Italy, 
and from 1985 to 1988 he was a Staff‘ Scientist at 
the Institute for Applied Mathematics, Italian Na- 
tional Research Council (C.N.R.) ,  Genoa. During 
the Summers of 1985 and 1987, he lectured and 
performed research at Stanford University, Stan- 
ford. CA. Presentlv he is a Professor of Computer 

Science at the Technical University of Vienna, where he directs the Data- 
base and Expert-System Subdivision. His research interests are in the fields 
of databases, expert-systems, and applied mathematical logic. 

Dr. Gottlob is a member of ACM, the IEEE Computer Society, and the 
Kurt Goedel Society. 

Letizia Tanca received the Ph.D. degree in ap- 
plied mathematics and computer science from the 
Politecnico di Milano, Milan, Italy, in 1988. 

Prior to working towards the Ph.D. degree, she 
worked in industry as a Software Designer. At 
present she is Postdoctorate Fellow at the Politec- 
nico di Milano. Her main research interests are 
the treatment of negative and functional informa- 
tion in relational and deductive databases and ex- 
tensions to the relational data model (in Milan) 
within the proiect Algres (an extended relational - -  

environment for manipulating complex objects). She is also collaborating 
with Prof. Paredaens of the University of Antwerp (UIA), on the project 
of a rule-based language for manipulating complex objects and functions. 
She has written a book on the integration of Relational Databases andLogic 
Programming, coauthored with S .  Ceri and G. Gottlob (New York: Sprin- 
ger-Verlag, to be published). 

Authorized licensed use limited to: University of Minnesota. Downloaded on February 17,2010 at 18:13:49 EST from IEEE Xplore.  Restrictions apply. 


