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Abstract. Modern statistical AI systems are quite large and complex;
this interferes with research, development, and education. We observe
that most of the computation involves solving systems of equations of
a certain kind. Specifically, recursive queries look up and aggregate rel-
evant or potentially relevant values. If the results of these queries are
memoized for reuse, the memos may need to be updated through change
propagation. In-memory database systems can do a lot to support this
work in a generic way. Through examples, we show that a wide variety
of AI algorithms can be concisely captured by writing down systems of
equations in an expressive declarative notation that generalizes Data-
log, independent of the many strategies that could be used to actually
solve those systems. We use these examples to motivate certain exten-
sions to Datalog, which are connected to functional and object-oriented
programming paradigms.

1 Why a New Data-Oriented Language for AI?

Modern AI systems are frustratingly big, making them time-consuming to en-
gineer and difficult to modify. In this paper, we describe our work toward a
declarative language that was motivated originally by various use cases in AI.1

Our goal is to make it easier to specify a wide range of new systems that are
more or less in the mold of existing AI systems. Our declarative language should
simplify inferential computation in the same way that the declarative language
of regular expressions has simplified string pattern matching and transduction.

⋆ This material is based on work supported by the National Science Foundation under
Grants No. 0347822 and 0964681 to the first author, and by a graduate fellowship
to the second author from the Human Language Technology Center of Excellence,
Johns Hopkins University. We thank Wren N. G. Thornton and John Blatz for
many stimulating discussions. We also thank Yanif Ahmad, Adam Teichert, Jason
Smith, Nicholas Andrews, and Veselin Stoyanov for timely comments on parts of the
presentation.

1 Our own AI research is mainly on natural language processing, but as we show here,
our observations and approach apply to other AI domains as well.

http://www.springerlink.com


All areas of AI have become data-intensive, owing in part to the perva-
siveness of statistical modeling and machine learning. A system’s extensional

data (inputs) include not only current sensory input but also background knowl-
edge, large collections of training examples, and parameters trained from past
experience. The intensional data (intermediate results and outputs) include
combinatorially many possible analyses and conclusions derived from the inputs.

Each AI system usually builds and maintains its own custom data structures,
so that it can efficiently query and update the current state of the system.
Although many conceptual ideas are reused across AI, each implemented system
tends to include its own specialized code for storage and inference, specialized to
the data and computations used by that system. This turns a small mathematical
abstraction into a large optimized implementation. It is difficult to change either
the abstract computation or the storage and execution strategy because they
are intertwined throughout the codebase. This also means that reusable general
strategies have to be instantiated anew for each implemented system, and cannot
even be easily described in an abstract way.

As an alternative, we are working to develop an appealing declarative lan-
guage, Dyna, for concise specification of algorithms, with a compiler that turns
such specifications into efficient code for storage and inference. Our goal is to
produce a language that practitioners will actually use.

The heart of this long paper is the collection of suggestive Dyna code ex-
amples in §3.1. Readers are thus encouraged to browse at their leisure through
Figures 1–12, which are relatively self-contained. Readers are also welcome to
concentrate on the main flow of the paper, skipping over details that have been
relegated for this reason to footnotes, figures, and appendices.

1.1 AI and Databases Today

Is a new language necessary? That is, why don’t AI researchers already use
database systems to manage their data [29]? After all, any procedural AI pro-
gram is free to store its data in an external database. It could use Datalog or
SQL to express queries against the current state of a database, perform some
procedural computation on the results, and then store the results back to the
database.

Unfortunately, there is rather little in most AI systems that looks like typical
database queries:

– Queries in a standard language like Datalog or SQL are not expressive enough
for any one query to capture the entire AI computation. These languages
allow only restricted ways to query and combine data. The restrictions are
intended to guarantee that each query terminates, runs in polynomial time,
and has a single well-defined answer. Yet the overall AI algorithm may not
be able to make those guarantees anyway—so the effect of the restrictions
is only to partition the algorithm artificially into many smaller queries. This
limits the opportunities for the database system itself to plan, rearrange,
and parallelize computations.



– It may be inefficient to implement the algorithm in terms of database queries.
Standard database implementations are good at large queries. They are in-
tended to handle large, usually disk-backed, long-lived, read-mostly datasets
that can be easily represented as tuples. Due to the high latency of disk
access, they focus on supporting computations on large sets of records at a
time. By contrast, AI systems typically work with lots of smaller, in-memory,
ephemeral, write-heavy data sets often accessed at the level of individual
records. For example, upon creating a promising hypothesis, the AI system
might try to score it or extend it or compute its consequences, which involves
looking up and storing individual records related to that specific hypothesis.
Channeling these record-at-a-time queries and updates through a standard
database would have considerable overhead. At the other extreme, one might
try to reorganize the computation into coarser set-at-a-time queries where
the database system will shine; but while such batch computations are a
better fit to disk-based database systems, and also have the advantage that
they can amortize work across many records, they may also do extra work
that would be skipped by record-at-a-time strategies (by materializing larger
relations that may include records that turn out not to be needed).

– Standard database languages do not support features for programming-in-
the-large, such as modules, structured objects, or inheritance.

In this setting, switching from a data structure library to a relational database
management system is likely to hurt performance without significantly reducing
the implementation burden.

1.2 A Declarative Alternative

Our approach instead eliminates most of the procedural program, instead spec-
ifying its computations declaratively. We build on Datalog to propose a con-
venient, elegantly concise notation for specifying the systems of equations that
relate intensional and extensional data. This is the focus of §2, beginning with
a review of ordinary Datalog in §2.1.

A program in our Dyna language specifies what we call a dynabase, which
is a kind of deductive database. Recall that a deductive database [38,168]
contains not only extensional relations but also rules (usually Datalog rules or
some other variant on Horn clauses) that define additional intensional relations.
Our term “dynabase” emphasizes that our deductive databases are dynamic:
they can be declaratively extended into new dynabases that have modified ex-
tensional data, with consequent differences in the intensional data. Also, one
dynabase can be defined in terms of others, supporting modularity (§2.7).

Because a Dyna program merely specifies a dynabase, it has no serial I/O
or side effects. How, then, are dynabases used in a procedural environment? A
running process written in one’s favorite procedural language, which does have
I/O and side effects, can create a dynabase and update it serially by adding
extensional data (§4.6). At any time, the process can query the dynabase to re-
trieve either the current extensional data, or intensional data that are defined



in terms of the extensional data. As the process updates the extensional data,
the intensional data that depend on it (possibly in other dynabases) are auto-
matically maintained, as in a spreadsheet.2 Carrying out the query and update
operations requires the “heavy computational lifting” needed in AI for search,
deduction, abduction, message passing, etc. However, the needed computations
are specified only declaratively and at a high level of abstraction. They are car-
ried out by the Dyna execution engine (eagerly or lazily) as needed to serve the
process.

Dyna extends Datalog in several ways. In particular, Dyna is Turing-complete,
so that the full computation needed by an AI system can be triggered by a single
query against a dynabase. It is not necessary to specify which data to look up
when, or whether or where to store the results. Essentially, a Dyna program is a
set of equational schemata that are similar to Datalog rules with (non-stratified)
negation and aggregation. These schemata together with the extensional data
define a possibly infinite system of equations, and the queriable “contents” of
the dynabase come from a solution to this system. We give a gentle introduction
in §2.3 and sketch a provisional semantics in the appendix (§A).

The ways in which Dyna relaxes Datalog’s restrictions are listed in §2.4. The
resulting Turing-completeness gives greater freedom to both the Dyna program-
mer and the execution model, along with greater responsibility. We justify these
and other extensions by way of various examples from AI in §3. Dyna also in-
cludes programming language features that improve its usability, such as typing,
function evaluation, encapsulation, inheritance, and reflection.

Finally, Dyna’s syntax for aggregation is very concise (even compared to other
logic notations, let alone explicit loops) because its provable items have arbitrary
values, not just truth values. Evaluating items in place makes it possible to write
equations quite directly, with arithmetic and nested function evaluation.

As Figures 1–12 illustrate, Dyna programs are startlingly short relative to
more traditional, procedural versions. They naturally support record-at-a-time
execution strategies (§2.6), as well as automatic differentiation (§3.1) and change
propagation (§4.3), which are practically very important. They are modular and
can be easily integrated with one another into larger programs (§2.7). Finally,
they do not specify any particular storage or execution strategies, leaving op-
portunities for both automatic and user-directed optimizations that preserve
correctness (§5.3).

1.3 Storage and Execution Strategies

We argue in §4.1 that traditional (procedural) approaches to statistical AI are
showing strain under modern workloads and that this declarative approach
stands to ease the burden of both research and development. We discuss in
the rest of §4 how Dyna addresses a number of practical difficulties in the AI

2 A procedural process will therefore see changes when it queries a dynabase again.
Alternatively, it may make a continuous query, whereby it is notified of updates to
the query result (§4.6).



community, giving more details in §4.6 of how to compute using declarative
dynabases in a procedural environment.

In this paper, we focus on the expressivity and uses of the Dyna language,
as a user of Dyna would. From this point of view, the underlying computation
order, indexing, and storage are distractions from a Dyna program’s fundamen-
tally declarative specification, and are relegated to an execution model—just as
ordinary Datalog or SQL is a declarative language that leaves query optimiza-
tion up to the database engine. Actually computing and updating intensional
data under a Dyna program may involve recursive internal queries and other
work. However, this happens in some implementation-dependent order that can
be tuned manually or automatically without affecting correctness.

The natural next questions are from an implementor’s point of view. They
concern this query and update planning, as well as physical design. How do
we systematize the space of execution strategies and optimizations? Given a
particular Dyna program and workload, can a generic Dyna engine discover
the algorithms and data structures that an expert would choose by hand? We
have been studying many interesting cases that are beyond the scope of this
paper. However, §5 briefly outlines some of the many issues regarding efficient
computation, beginning with an earlier prototype implementation.

By showing in this paper that Dyna is capable of describing a wide range of
computations, we mean to argue that finding efficient execution strategies for
Dyna constitutes a substantial general program of research on algorithms for AI

and logic programming.3 After all, one would like a declarative solution of a given
problem to exploit the relevant tricks used by the state-of-the-art procedural so-
lutions. But then it is necessary to generalize these tricks into strategies that can
be incorporated more generally into the Dyna runtime engine or encapsulated
as general Dyna-to-Dyna program transformations [67,46]. These strategies may
then be applied in new contexts. Building a wide range of tricks and strategies
into the Dyna environment also raises the issue of how to manually specify and
automatically tune strategies that work well on a particular workload.

2 Basic Features of the Language

Our goal in this section is to sketch just enough of Dyna that readers will be able
to follow our AI examples in the next section. After quickly reviewing Datalog,
we explain how Dyna augments Datalog by proving that terms have particular
values, rather than merely proving that they are true; by relaxing certain re-
strictions; and by introducing useful notions of encapsulation and inheritance.
Formal details are confined to an appendix (§A).

3 More restricted declarative problems already have communities that work on effi-
cient execution: propositional satisfiability, integer linear programming, queries and
physical design in relational databases, etc.



2.1 Background: Datalog

Datalog [37] is a language—a concrete syntax—for defining named, flat rela-
tions. The (slightly incorrect) statement “Two people are siblings if they share
a parent” can be precisely captured by a rule such as

sibling(A,B) :- parent(C,A), parent(C,B). (1)

which may be read as “A is a sibling of B if, for some C, C is a parent of A and C is
a parent of B.”4 Formally, capitalized identifiers such as A,B,C denote universally
quantified variables, and the above rule is really a schema that defines infinitely
many propositional implications such as

sibling(alice,bob) :- parent(charlie,alice),

parent(charlie,bob).
(2)

where alice, bob, and charlie are constants. (Thus, (2) is one of many possible
implications that could be used to prove sibling(alice,bob).) Rules can also
mention constants directly, as in

parent(charlie,alice).

parent(charlie,bob).
(3)

Since the rules (3) also happen to have no conditions (no “:- . . . ” part),
they are simply facts that directly specify part of the parent relation. Taking
a relational database view, they specify records in a two-column table (binary
relation) called parent. The rule (1) defines another two-column table, sibling,
by joining parent to itself on its first column and projecting that column out of
the result.

Informally, we may regard parent (3) as extensional and sibling (1) as in-
tensional, but Datalog as a language does not have to distinguish these cases.
Datalog also does not specify whether the sibling relation should be material-
ized or whether its individual records should merely be computed as needed.

As this example suggests, it is simple in Datalog to construct new relations
from old ones. Datalog rules can easily capture relational algebra operators such
as join, project, and select. They also permit recursive definitions. Datalog im-
poses the following syntactic restrictions to ensure that the defined relations are
finite [37]:

– Flatness: Terms in a rule must include exactly one level of parentheses.
This prevents recursive structure-building rules like

is_integer(zero).

is_integer(oneplus(X)) :- is_integer(X).
(4)

4 To guard against programming errors and to improve efficiency, one could declare
that the functors sibling and parent must each take two arguments, and that
these arguments must be persons. In Dyna, such type declarations are permitted
but optional. (Some omitted declarations can be inferred from other declarations.)



which would define an infinite number of facts such as
is_integer(oneplus(oneplus(oneplus(zero)))).

– Range restriction: Any variables that occur in a rule’s head (to the left
of :-) must also appear in its body (to the right of :-). This prevents rules
like

equal(X,X). (5)

which would define an infinite number of facts such as equal(31,31).

Pure Datalog also disallows built-in infinite relations, such as < on the integers.5

We will drop all these restrictions below.

2.2 Background: Datalog with Stratified Aggregation

Relations may range over numbers: for example, the variable S in
salary(alice,S) has numeric type. Some Datalog dialects (e.g., [167,217]) sup-
port numeric aggregation, which combines numbers across multiple proofs of
the same statement. As an example, if wparent(charlie, alice) = 0.75 means
that charlie is 75% likely to be a parent of alice, we might wish to define a
soft measure of siblinghood by summing over possible parents:6

wsibling(A,B) =
∑

C

wparent(C,A) · wparent(C,B). (6)

The sum over C is a kind of aggregation. The syntax for writing this in Datalog
varies by dialect; as an example, [47] would write the above fact and rule (6) as

parent(charlie,alice;0.75).

sibling(A,B;sum(Ma*Mb)) :- parent(C,A;Ma),

parent(C,B;Mb).

(7)

Datalog dialects with aggregation (or negation) often impose a further re-
quirement to ensure that the relations are well-defined [9,147]:

– Stratification: A relation that is defined using aggregation (or negation)
must not be defined in terms of itself. This prevents cyclic systems of equa-
tions that have no consistent solution (e.g., a :- not a) or multiple consis-
tent solutions (e.g., a :- not b and b :- not a).

We omit details here, as we will drop this restriction below.

5 However, it is common to allow relations like < in rules or queries that only use
them to select from finite relations, since then the results remain finite [199,37].

6 This sum cannot necessarily be interpreted as the probability of siblinghood (for
that, see related work in §2.5). We use definition (6) only to illustrate aggregation.



2.3 Dyna

Our language, Dyna, aims to readily capture equational relationships with a
minimum of fuss. In place of (7) for (6), we write more simply

parent(charlie,alice) = 0.75.

sibling(A,B) += parent(C,A) * parent(C,B).
(8)

The += carries out summation over variables in the body which are not in the
head, in this case C. For each A and B, the value of sibling(A,B) is being defined
via a sum over values of the other variables in the rule, namely C.

The key point is that a Datalog program proves items, such as
sibling(alice,bob), but a Dyna program also proves a value for each prov-
able item (cf. [112]). Thus, a Dyna program defines a partial function from items
to values. Values are numeric in this example, but in general may be arbitrary
ground terms.7

Non-provable items have no value and are said to be null. In general, null
items do not contribute to proofs of other items, nor are they retrieved by
queries.8

Importantly, only ground terms (variable-free terms) can be items (or val-
ues), so sibling(A,B) is not itself an item and cannot have values. Rather, the
+= rule above is in effect a schema that defines infinitely many grounded rules
such as

sibling(alice,bob) += parent(charlie,alice)

* parent(charlie,bob).
(9)

which contributes a summand to sibling(alice,bob) iff parent(charlie,bob)

and parent(charlie,alice) are both provable (i.e., have values).
The Dyna program may include additional rules beyond (8) that contribute

additional summands to sibling(alice,bob). All rules for the same item must
specify the same aggregation operator (or aggregator for short). In this case
that operator is += (summation), so sibling(alice,bob) is defined by sum-
ming the value of γ over all grounded rules of the form sibling(alice,bob)

+= γ such that γ is provable (non-null). If there are no such rules, then
sibling(alice,bob) is null (note that it is not 0).9

7 The statement f(a,b)=c may be regarded as equivalent to f_value(a,b,c)=true,
but the former version implies a functional dependency: f(a,b) will have at most
one value. The three-place relation f_value can be still refererenced using the Dyna
construction c is f(a,b), which enables queries in which c is bound; see footnote 24.
The limitation to a single value for f(a,b) involves no loss of generality, since this
value could be a tuple, or a second value could be defined as the value of g(a,b).

8 Dyna’s support for non-monotonic reasoning (e.g., Figure 5) does enable rules to
determine whether an item is null, or to look up such items. This is rarely necessary.

9 This modifies completion semantics [45] for our multi-valued setting. In the comple-
tion semantics for boolean logic programs, an item’s value is true if any of the γ’s
are true, and false otherwise. In our setting, the value is an aggregation over the γ’s



In the first line of (8), the aggregation operator is =, which simply returns its
single aggregand, if any (or gives an error if there are multiple aggregands). It
should be used for clarity and safety if only one aggregand is expected. Another
special aggregator we will see is :=, which chooses its latest aggregand, so that
the value of a := item is determined by the last rule (in program order) to
contribute an aggregand to it (it is an error for that rule to contribute multiple
aggregands).

However, most aggregators are like +=, in that they do not care about the
order of aggregands or whether there is more than one, but simply reduce the
multiset of aggregands with some associative and commutative binary operator
(e.g, +).10

Ordinary Datalog as in (1) can be regarded as the simple case where all prov-
able items have value true, the comma operator denotes boolean conjunction
(over the subgoals of a proof), and the aggregator :- denotes boolean disjunc-
tion (over possible proofs). Thus, true and null effectively form a 2-valued logic.
Semiring-weighted Datalog programs [87,69,90] correspond to rules like (8) where
+ and * denote the operations of a semiring.

2.4 Restoring Expressivity

Although our motivation comes from deductive databases, Dyna relaxes the
restrictions that Datalog usually imposes, making it less like Datalog and more
like the pure declarative fragment of Datalog’s ancestor Prolog.11 As we will see
in §3.1, relaxing these restrictions is important to support our use cases from
AI.

– Flatness: We drop this requirement so that Dyna can work with lists and
other nested terms and perform unbounded computations.12 However, this

if any are true, and null otherwise. (We cannot use false as a special value because
our values are not necessarily boolean, and even in the boolean case, our aggregator
is not necessarily disjunction. We did consider associating a default value with each
aggregator, such as the identity 0 for +=, but we found that it is often convenient
to distinguish this value from null; also, some aggregators have no natural default.
One can force a default 0 by adding the explicit rule sibling(A,B) += 0 to (8).)

10 An aggregation operator may transform the aggregands before reduction and the
result after reduction. This permits useful aggregators like mean= and argmax=. These
transformations, and reducing functions, may be defined in Dyna, allowing programs
to define their own aggregators.

11 Of course, Dyna goes beyond pure Prolog, most importantly by augmenting items
with values and by adding declarative mechanisms for situations that Prolog would
handle non-declaratively with the cut operator. We also consider a wider space of
execution strategies than Prolog’s SLD resolution.

12 For example, in computational linguistics, a parser’s hypotheses may be represented
by arbitrarily deep terms that are subject to unification [159,179]. This is because
some non-context-free grammar formalisms distinguish infinitely many types of lin-
guistic phrases [82,195,117,162,108,49,105,48], as do some parsing algorithms even
for context-free grammar [156].



makes it Turing-complete, so we cannot guarantee that Dyna programs will
terminate. That is the programmer’s responsibility.

– Range restriction: We drop this requirement primarily so that Dyna can
do default and non-monotonic reasoning, to support general function defini-
tions, and to simplify certain source-to-source program transformations [67].
However, this complicates Dyna’s execution model.

– Stratification: We drop this requirement because Dyna’s core uses include
many non-stratified design patterns such as recurrent neural networks, mes-
sage passing, iterative optimization, and dynamic programming. Indeed, the
examples in §3.1 are mainly non-stratified. These domains inherently rely on
cyclic systems of equations. However, as a result, some Dyna programs may
not converge to a unique solution (partial map from items to values) or even
to any solution.

The difficulties mentioned above are inevitable given our use cases. For exam-
ple, an iterative learning or optimization procedure in AI13 will often get stuck
in a local optimum, or fail to converge. The procedure makes no attempt to find
the global optimum, which may be intractable. Translating it to Dyna, we get a
non-stratified Dyna program with multiple supported models14 that correspond
to the local optima. Our goal for the Dyna engine is merely to mimic the origi-
nal AI method; hence we are willing to return any supported model, accepting
that the particular one we find (if any) will be sensitive to initial conditions
and procedural choices, as before. This is quite different from usual practice in
the logic programming community (see [158] for a review and synthesis), which
when it permits non-stratified programs at all, typically identifies their semantics
with one [83] or more [134] “stable models” or the intersection thereof [202,111],
although in general the stable models are computationally intractable to find.

A simple example of a non-stratified program (with at most one supported
model [171]) is single-source shortest paths,15 which defines the total cost from
the start vertex to each vertex V:

cost_to(start) min= 0.

cost_to(V) min= cost_to(U) + edge_cost(U,V).
(10)

The aggregator here is min= (analogous to += earlier) and the second rule ag-
gregates over values of U, for each V. The weighted directed graph is specified by

13 Such as expectation-maximization, gradient descent, mean-field inference, or loopy
belief propagation (see Figure 7).

14 A model (or interpretation) of a logic program P is a partial map J·K from items
to values. A supported model [9] is a fixpoint of the “immediate consequence”
operator TP associated with that program [201]. In our setting, this means that for
each item α, the value JαK (according to the model) equals the value that would be
computed for α (given the program rules defining α from other items and the values
of those items according to the model).

15 It is important that (10) is not stratified. [89] shows that shortest paths suffers
aysmptotic slowdown when it is recast in a stratified form. The stratified program
must compute all paths and then find the minimum cost total path.



the edge_cost items. These are to be provided as extensional input or defined
by additional rules (which could specify a very large or infinite graph).

Optional Typing The user is free in this example to choose any suitable ground
terms to name the graph’s vertices,16 since this version of the program does not
restrict the type of the arguments to cost_to and edge_cost. The untyped
variables U and V range over the entire Herbrand universe of ground terms. This
freedom might not be used in practice, since presumably edge_cost(U,V) is
defined (non-null) only for pairs of ground terms (U, V) that correspond to edges
in the graph. Thus cost_to(V) will be provable (non-null) only for ground terms
V that denote vertices reachable from start. Declaring types that restrict U and
V to some set of legal vertex names is optional in Dyna.

Evaluation The above example (10) also illustrates evaluation. The start

item refers to the start vertex and is evaluated in place, i.e., replaced by its value,
as in a functional language.17 The items in the body of line 2 are also evalu-
ated in place: e.g., cost_to("bal") evaluates to 20, edge_cost("bal","nyc")
evaluates to 100, and finally 20+100 evaluates to 120 (for details, see (28) and
footnote 82). This notational convention is not deep, but to our knowledge, it
has not been used before in logic programming languages.18 We find the ability
to write in a style close to traditional mathematics quite compelling.

2.5 Related Work

Several recent projects have developed probabilistic programming languages for
AI, based on logic (e.g., PRISM [214], ProbLog [166,113], Markov Logic [57]) or
functional programming (e.g., IBAL [160,164], Church [88]).

16 That is, vertices could be designated by built-in primitive terms such as inte-
gers (17), strings ("bal"), or lists ([1,2,3]); by compound terms (vertex(17) or
latitude_longitude(39.3,-76.6)); or by foreign objects that are handed as data
blobs to the Dyna runtime environment and treated within Dyna as primitive terms.

17 Notice that items and their values occupy the same universe of terms—they are not
segregated as in §2.2. Thus, the value of one item can be another item (a kind of
pointer) or a subterm of another item. For example, the value of start is used as a
subterm of cost_to(. . . ). As another example, extending (10) to actually extract a
shortest path, we define best_path(V) to have as its value a list of vertices:

best_path(V) ?= [U | best_path(U)]

whenever cost_to(V) == cost_to(U)

+ edge_cost(U,V).

(Here the construction [First | Rest] prepends an element to a list, as in Prolog.
The “free-choice” aggregator ?= allows the system to arbitrarily select any one of
the aggregands, hence arbitrarily breaks ties among equally short paths.)

18 With the exception of the hybrid functional-logic language Curry [98]. Curry is closer
to functional programming than to Datalog. Its logical features focus on nondeter-
minism in lazy evaluation, and it does not have aggregation.



Dyna is different in that it is not specifically probabilistic (see [66]). Of course,
Dyna items may take probabilities as their values, and the rules of the program
may enforce a probabilistic semantics. However, the value of a Dyna item can
be any numeric or non-numeric term. We will see useful examples in §3.1 where
numeric items do not represent probabilities but rather activations in a neural
network or counts of events in a dataset.

Even when working with probabilistic models, it is often desirable to com-
pute bounds on probabilities (for A* search [115]), approximate probabilities (the
target of many approximate inference algorithms), or unnormalized probabilities
as in Markov Random Fields [114]. All these quantities are defined by equations
that can be easily written in Dyna.

There are other logic programming formalisms in which provable terms are
annotated by general values that need not be probabilities (some styles are ex-
emplified by [112,87,77]). However, to our knowledge, all of these formalisms are
too restrictive for our purposes.

In general, AI languages or toolkits have usually been designed to enforce
the semantics of some particular modeling or algorithmic paradigm within AI.
(Non-probabilistic examples include COMET [99] and ECLiPSe [10] for com-
binatorial optimization, as well as OpenFST [7] for finite-state transduction.)
Dyna, by contrast, aims to be a more relaxed and general-purpose language
(like Prolog) that can accommodate all these paradigms. It is essentially a gen-
eral infrastructure layer: specific systems or toolkits could be written in Dyna,
or more focused languages could be compiled to Dyna. Dyna focuses on defining
relationships among data items and supporting efficient storage, queries, and
updates given these relationships. We believe that this work is actually respon-
sible for the bulk of the implementation and optimization effort in today’s AI
systems.

2.6 A First Execution Strategy

Before we turn to our AI examples, some readers may be wondering how pro-
grams might be executed. Consider the shortest-path program in (10). We wish
to find a fixed point of the system of equations that is given by those rules
(grounding their variables in all possible ways) together with the extensional
data.

We can employ a simple forward chaining strategy (see [69] for details and
pseudocode). The basic idea is to propagate updates from rule bodies to rule
heads, until the values of all items converge.19 We refer to items in a rule’s body
as antecedents and to the item in the rule’s head as the consequent.

At all times, we maintain a chart that maps the items proved so far to their
current values, and an agenda (or worklist) of updates that have not yet been
applied to the chart. Any changes to the extensional data are initially placed on
the agenda: in particular, the initial definitions of start and edge_cost items.

19 This is a record-at-a-time variant of semi-naive bottom-up evaluation.



A step of the algorithm consists of popping an update from the agenda,
applying it to the chart, and computing the effect that will have on other items.
For example, finding a new, shorter path to Baltimore may cause us to discover
a new, shorter path to other cities such as New York City. (Such a step is
sometimes called “relaxation” in the algorithms literature.)

Concretely, when updating cost_to("bal") to 20, we see that this item
pattern-matches one of the antecedents in the rule

cost_to(V) min= cost_to(U) + edge_cost(U,V). (11)

with the binding U="bal", and must therefore drive an update through this
rule. However, since the rule has two antecedents, the driver of the update,
cost_to("bal"), needs a passenger of the form edge_cost("bal",V) to com-
plete the update. We query the chart to find all such passengers. Suppose one re-
sult of our query edge_cost("bal",V) is edge_cost("bal","nyc")=100, which
binds V="nyc". We conclude that one of the aggregands of the consequent,
cost_to("nyc"), has been updated to 120. If that changes the consequent’s
value, we place an update to the consequent on the agenda.

This simple update propagation algorithm will be helpful to keep in mind
when studying the examples in Figures 1–12. We note, however, that there is a
rich space of execution strategies. See §4.6 and §5.2 for further discussion.

2.7 Multiple Interacting Dynabases

So far we have considered only one dynabase at a time. However, using multiple
interacting dynabases is useful for encapsulation, inheritance, and “what if”
analysis where one queries a dynabase under changes to its input items.

Readers interested mainly in AI will want to skip the artificial example in this
section and move ahead to §3, returning here if needed when multiple dynabases
come into play partway through §3.1 (in Figure 7 and especially Figures 11
and 12).

All code fragments in this section are part of the definition of a dynabase
that we call δ. We begin by defining some ordinary items of δ:

three = 3.

e = { pigs += 100. % we have 100 adult pigs
pigs += piglets. % and any piglets we have are also pigs

}.

(12)

In δ, the value of three is 3 and the value of e is a particular dynabase ε. Just
as 3 is a numeric literal in the program that specifies a number, the string
{. . . } is an dynabase literal that specifies a literal dynabase ε. One could
equivalently define e via

e = $load("pigpen"). (13)



where the file pigpen.dyna consists of “pigs += 100. pigs += piglets.” or
a compiled equivalent, and thus $load("pigpen") evaluates to ε.20 (If the file is
edited, however, then the values of $load("pigpen") and e will auto-update.)

Since ε does not declare its items pigs and piglets to be private, our rules
in δ can refer to them as e.pigs and e.piglets, which evaluate to 100 and
null. More precisely, e evaluates in place within the expression e.pigs, and the
resulting expression ε.pigs looks up the value of item pigs in dynabase ε.

Storing related items like pigs and piglets in their own dynabase ε can
be a convenient way to organize them. Dynabases are first-class terms of the
language, so one may use them in item names and values. For example, this
definition of matrix transposition

transpose(Matrix) = { element(I,J) = Matrix.element(J,I). }. (14)

defines for each dynabase µ an item transpose(µ) whose value is also a dyn-
abase. Each of these dynabases is an encapsulated collection of many elements.
Notice that transpose resembles an object-oriented function that takes an ob-
ject as an argument and returns an object.

However, the real power of dynabases comes from the ability to extend them.
Remember that a dynabase is a dynamic deductive database: ε.pigs is defined in
terms of ε.piglets and is supposed to increase when ε.piglets does. However,
ε.piglets cannot actually change because ε in our example is an immutable
constant. So where does the dynamism come in? How can another dynabase, or
a procedural program, supply new input to ε once it has defined or loaded it?

The answer: We can use ε as a template for a new dynabase ϕ, extended
with new external input to piglets (and pigs). Continuing our definition of δ:

f = new e. % f is a new pigpen ϕ that inherits all rules of ε
f.pigs += 20. % but has 20 extra adult pigs
f.piglets := three. % and exactly three piglets

(15)

These rules are written as part of the definition of δ (the owner21 of the new
dynabase ϕ) and supply new aggregands 20 and 3 to ϕ’s versions of pigs and
piglets.

20 Reserved-word functors start with $, to avoid interference with user names of items.
21 Because δ invoked the new operator that created ϕ, δ is said to own ϕ. This is why

δ is permitted to have rules that extend ϕ with additional aggregands as shown in
(15). Ownership is reflexive and transitive.

By contrast, it would be an error for δ to have a rule of the form e.pigs += 1

or transpose(Matrix).foo += 1. . . , since the values of e and transpose(Matrix)

are dynabases that δ does not own. (Literal dynabases are not owned by anyone,
since they are not created by extension.) In functional programming terms, δ cannot
modify the result of the transpose function, which may have other users, although
it could create its own private extension of it.

Similarly, it would be an error for the dynabase literal in (14) to include a rule
such as Matrix.x +=. . . , because that literal does not own the dynabase bound by
Matrix. Such a rule would attempt to modify items of µ as a “side effect” of “calling”
transpose(µ); it is unclear what such a side effect would mean, since transpose(µ)
is not a procedure that is called on certain dynabases µ, but rather is a universal
definition for all µ.



The parent dynabase ε remains unchanged, but its extension ϕ has items
pigs and piglets with values 123 and 3, just as if it had been defined in the
first place via22

f = { pigs += 100.

pigs += piglets.

pigs += 20.

piglets := δ.three. }

(16)

The important point is that setting f.piglets to have the same value as three
also affected f.pigs, since ε defined pigs in terms of piglets and this relation-
ship remains operative in any extension of ε, such as f’s value ϕ.

A procedural user of the dynabase ε can use the same strategy to specify
extensional input in the form of new aggregands. After creating ϕ as a new
extension of ε, it can repeatedly increment ϕ.pigs (because its aggregation op-
erator is +=) and repeatedly replace ϕ.piglets (because its aggregation operator
is :=, as defined in §2.3). These updates affect only ϕ, not ε.23 The procedural
user can interleave these updates to ϕ with queries against the updated versions
(see §1).

We will see in §3.1 how extension supports encapsulation, reuse, and “what
if” analysis. Furthermore, a dynabase and its extensions will typically share most
of their rules, and many of their items will have the same values, so they can
share some computation and storage.

Interactions among dynabases can be quite flexible. Consider a final example.
Let us complete the definition of δ with additional rules

g = new e.

offspring = g.pigs / three. % all pigs have babies
g.piglets := offspring. % who are piglets

(17)

This creates a loop by feeding 1
3 of g’s “output item” pigs back into g’s “input

item” piglets, via an intermediate item offspring that is not part of g at all.
The result is that g.pigs and g.piglets converge to 150 and 50 (e.g., via the
forward chaining algorithm of §2.6). This is a correct solution to the system of
equations specified by (12) and (17), which state that there are 100 more pigs
than piglets and 1

3 as many piglets as pigs:

δ.three = 3

γ.pigs = 100 + γ.piglets

δ.offspring = γ.pigs/δ.three

γ.piglets = δ.offspring

22 Except that the rules of ϕ do not literally refer to δ (as (16) does), but rather to
“my owner” (in the sense of footnote 21). This is important because if δ′ is a further
extension of δ, it will reuse the entire definition of δ, so δ′.f.piglets will depend
on δ′.three, not δ.three. See §A for details.

23 Although the situation is asymmetric: any updates to ε would be inherited by its
extension ϕ.



We will see practical uses of multiple dynabases for encapsulation (Figure 7),
modularity (Figure 11), and backtracking search (Figure 12). The connection
between dynabases and object-oriented programming is discussed in §4.4. More
formal discussion of the overall language semantics, with particular attention to
dynabase extension, can be found in the appendix (§A).

3 Design Patterns in AI

Given the above sketch, we return to the main argument of the paper, namely
that Dyna is an elegant declarative notation for capturing the logical structure
of computations in modern statistical AI.

Modern AI systems can generally be thought of as observing some input and
recovering some (hidden) structure of interest:

– We observe an image and recover some description of the scene.
– We observe a sentence of English and recover a syntax tree, a meaning rep-

resentation, a translation into Chinese, etc.
– We are given a goal and recover the best plan to achieve it.
– We observe some facts expressed in a knowledge representation language

and recover some other facts that can be logically deduced or statistically
guessed from them.

Typically, one defines a discrete or continuous space of possible structures,
and learns a scoring function or probability distribution over that space. Given a
partially observed structure, one either tries to recover the best-scoring comple-
tion of that structure, or else queries the probability distribution over all possible
completions. Either way, the general problem is sometimes called structured

prediction or simply inference.

3.1 Brief AI Examples in Dyna

We will show how to implement several AI patterns in Dyna. All the examples in
this section are brief enough that they are primarily pedagogical—they could be
used to teach and experiment with these basic versions of well-known methods.

Real systems correspond to considerably larger Dyna programs that modify
and combine such techniques. Real systems must also fill in problem-specific
details. Rather than being handed a graph, circuit, set of constraints, set of
proof rules, context-free grammar, finite-state automaton, cost model, etc., they
would define it themselves using additional Dyna rules.

Each of the code examples below is in a self-contained figure, with details
in the captions. Each example defines a dynabase that is initially empty, in the
sense that all items are null. Nonetheless, the dynabase specifies relations among
items. One may then extend it, adding observed structure (the input) and the
parameters of the scoring function (the model) as extensional data. This causes
results to spring into being as intensional data defined by the rules, and one may
read them out.
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Fig. 1: A small acyclic neural network. The activation xn at each node n is a
nonlinear function f , such as a sigmoid or threshold function, of a weighted sum

of activations at n’s parent nodes: xn
def

= f
(

∑

(n′,n)∈E xn′wn′,n + bn

)

. The three

layers shown here are the traditional input, hidden, and output nodes, with wn′,n

values represented by arrow thickness.

Arithmetic Circuits One simple kind of system is an arithmetic circuit. A
classic example in AI is a neural network (Figure 1). In the Dyna implementation
(Figure 2), the network topology is specified by defining the values of the weight
items.

As in the shortest-path program (10), the items that specify the topology
may be either provided directly at runtime (as extensional data), or defined by
additional Dyna rules (as intensional data). Figure 3 gives an attractive example
of a concise intensional definition.

Notice that line 3 of Figure 2 is a typical matrix-vector product. It is sparse
because the neural-network topology is a sparse graph. Sparse products are
very common in AI. In particular, sparse dot products are used both in com-
puting similarity and in linear or log-linear models [52]. A dot product like
score(Structure) += weight(Feature)*strength(Feature,Structure) re-
sembles line 3, and can benefit from using complex feature names, just as Fig-
ure 3 used complex node names.

A rather different example of arithmetic computation is shown in Figure 4,
a dynabase that maintains probability estimates based on the counts of events.
Some other commonly used arithmetic formulas in AI include distances, kernel
functions, and probability densities.

24 These names are not items but appear in the rule as unevaluated terms. However,
the expressions X+I and Y+J are evaluated in place, so that the rule is equivalent to

weight(hidden(X,Y), pixel(X2,Y2)) = shared_weight(I,J)

whenever X2 is X+I, Y2 is Y+I.

where in general, the condition γ is α has value true if γ is the value of item α,
and is null otherwise. For example, 97 is 95+2 has value true.



sigmoid(X) = 1 / (1 + exp(-X)).

output(Node) = sigmoid(input(Node)).

input(Node) += output(Child) * weight(Child,Node).

error += (output(Node) - target(Node))**2.

Fig. 2: A general neural network in Dyna. Line 1 defines the sigmoid func-
tion over all real numbers X. In Line 2, that function is applied to the
value of input(Node), which is evaluated in place. Line 3 sums over all in-
coming edges to Node. Those edges are simply the (Child,Node) pairs for
which weight(Child,Node) is defined. Additional summands to some of the
input(Node) items may be supplied to this dynabase at runtime; this is how
i1, i2, i3, i4 in Figure 1 would get their outside input. Finally, Line 4 evaluates er-
ror by summing over just those nodes for which target(Node) has been defined,
presumably the output nodes oj .

weight(hidden(X,Y), pixel(X+I,Y+J)) = shared_weight(I,J).

Fig. 3: One layer of a neural network topology for vision, to be used with Figure 2.
Each hidden node hidden(X,Y) is connected to a 5× 5 rectangle of input nodes
pixel(X+I,Y+J) for I, J ∈ {−2,−1, 0, 1, 2}, using a collection of 25 weights that
are reused across spatial positions (X,Y). The shared_weight(I,J) items should
be defined (non-null) only for I, J ∈ {−2,−1, 0, 1, 2}. This rule then connects
nodes with related names, such as such as hidden(75,95) and pixel(74,97).

This rule exploits the fact that the node names are structured objects.24

By using structured names, we have managed to specify an infinite network in a
single line (plus 25 weight definitions). Only a finite portion of this network will
actually be used by Figure 2, assuming that the image (the collection of pixel
items) is finite.

Training of Arithmetic Circuits To train a neural network or log-linear
model, one must adjust the weight parameters to reduce error. This requires
a numerical optimization routine. Recall from §1.2 that any numerical adjust-
ments to weight items in the dynabase of Figure 2 will automatically affect
the intensional output items and error item. An optimizer written in a con-
ventional procedural language can take advantage of this, repeatedly adjusting
weight items in this dynabase and observing how error changes in response.
Or the optimization code could be written in Dyna itself: add an explicit time
argument T to all terms, and write Dyna rules that define the weights at time
step T+1 in terms of some items computed at time step T.

To decide how to adjust the weights, common optimization methods actually
need to consult more than just the current error: they need to query the gradi-
ent of error with respect to the parameters. How can they obtain the gradient?
Automatic differentiation can be written very naturally as a source-to-source



count(X,Y) += 0 whenever is_event(X), is_event(Y). % default
count(X) += count(X,Y).

count += count(X).

% Maximum likelihood estimates
mle_prob(X) = count(X) / count.

mle_prob(X,Y) = count(X,Y) / count(Y).

% Good-Turing smoothed estimates [149]
gt_prob(X) = total_mle_prob(count(X)+1) / n(count(X)).

gt_prob(X,Y) = total_mle_prob(count(X)+1,Y) / n(count(X),Y).

% Used by Good-Turing: How many events X occurred R times, or
% cooccurred R times with Y, and what is their total probability?
n(R) += 0. n(R) += 1 whenever R==count(X).

n(R,Y) += 0. n(R,Y) += 1 whenever R==count(X,Y).

total_mle_prob(R) += mle_prob(X) whenever R==count(X).

total_mle_prob(R,Y) += mle_prob(X,Y) whenever R==count(X,Y).

Fig. 4: Estimating conditional probabilities p(x) and p(x | y), based on counts
of x with y. The user can simply increment count(x,y) whenever x is observed
together with y, and the probability estimates will update (see §4.3).

The user should also set is_event(x) to true for each possible event x, to
ensure that even never-observed events will have a defined count (of 0) and will
be allocated some probability; n(0) counts the number of never-observed events.
The final four lines could be written more concisely; e.g., the first of them as
n(count(X)) += 1. The final two lines should be optimized [67], e.g., the first
of them is equivalent to total_mle_prob(R) = (R/count)*n(R).

transformation on Dyna programs, automatically augmenting Figure 2 with rules
that compute the gradient by back-propagation [69]. The gradient can then be
used by other Dyna rules or queried by a procedural optimizer. Alternatively,
the execution engine of our prototype Dyna implementation natively supports
[69] computing gradients, via tape-based automatic differentiation in the reverse
mode [91]; it is designed to produce exact gradients even of incomplete compu-
tations.

Theorem Proving Of course, logic and logic programming have a long history
in symbolic AI. Traditional systems for knowledge representation and reasoning
(KRR) are all automated theorem provers, from SHRDLU [209] to the on-going
Cyc expert system [121] and description logic systems [11] such as OWL for
the semantic web [138]. They all explicitly compute the entailments of a set of
axioms obtained from human input or derived by other theorem provers (e.g.,
OWL web services).



fly(X) := false.

fly(X) := true if bird(X).

fly(X) := false if penguin(X).

fly(bigbird) := false.

Fig. 5: An example of non-monotonic reasoning: all birds fly, other than Sesame
Street’s Big Bird, until such time as they are proved or asserted to be penguins.
Recall from §2.3 that the := aggregator is sensitive to rule ordering, so that
where the later rules apply at all, they override the earlier rules. The first rule is
a “default rule” that is not range-restricted (see §2.1): it proves infinitely many
items that unify with a pattern (here the very simple pattern X).

Logical languages like Dyna support these patterns naturally. The extensional
items are axioms, the intensional ones are theorems, and the inference rules are
the rules of the program. For example, one of the most basic and general inference
rules is modus ponens, which states “From the propositions ‘A implies B’ and
A, you may derive the proposition B.” In logic, this rule is often written as

A ⇒ B A
B

with the antecedents above the line and the consequents below. This corresponds
to a Dyna or Prolog rule26

B :- implies(A,B), A. (18)

Dyna also naturally handles some forms of default and non-monotonic rea-
soning [19], via := rules like those in Figure 5. A related important use of default
patterns in AI is “lifted inference” [182] for Markov Logic Networks [170], where
additional (non-default) computation is necessary only for individuals about
whom additional (non-default) facts are known. Yet another use in AI is de-
fault arcs of various kinds in deterministic finite-state automata over large or
unbounded alphabets [7,153,15].27

26 Datalog does not suffice, if we wish A and B to range over arbitrary terms and not
merely atoms, as in systems like KRL [23].

27 At a given state of the automaton, one can concisely specify some default transitions,
but then override these defaults in selected cases. For example, to mimic the special
ρ and φ arcs supported by the OpenFST toolkit [7],

arc(q,Letter) := r. % single default: ρ arc from state q to state r

arc(q,"x") := s. % override default: on input letter "x", go to s instead

arc(q,Letter) := arc(r,Letter). % inherited defaults: φ arc from q to r

arc(q,"x") := s. % override default: on input letter "x", go to s instead

This concise intensional structure can be exploited directly within an algorithm such
as the forward-backward algorithm, the Viterbi algorithm, or automaton intersec-



Some emerging KRR systems embrace statistics and draw probable inferences
rather than certain ones. Simple early approaches included [163,151,146]. More
recent examples include ProbLog [166,113] and Markov Logic Networks [170,6].
Their computations can typically be described in Dyna by using items with
real-number values.

Message Passing Many AI algorithms come down to solving (or approximately
solving) a system of simultaneous equations, often by iterating to convergence.
In fact, the neural network program of Figure 2 already requires iteration to
convergence in the case of a cyclic (“recurrent”) network topology [208].

Such iterative algorithms are often known as “message passing” algorithms,
because they can be regarded as negotiating a stable configuration of the items’
values. Updates to one item trigger updates to related items—easily handled
in Dyna since update propagation is exactly what our basic forward-chaining
algorithm does (§2.6). When the updates can flow around cycles, the system is
not stratified and has no guarantee of a unique fixed point, as warned in §2.4.

Message passing algorithms seek possible, likely, or optimal values of random
variables under a complex set of hard or soft constraints. Figure 6 and Figure 7
show two interesting examples in Dyna: arc consistency (with boolean values)
and loopy belief propagation (with unnormalized probabilities as the values).28

Other important examples include alternating optimization algorithms such as
expectation-maximization and mean-field. Finally, Markov chain Monte Carlo
(MCMC) and simulated annealing algorithms can also be regarded as message
passing algorithms, although in this case the updates are randomized (see (23)
below).

Dynamic Programming Dyna began [68,69] as a language for dynamic pro-
gramming (hence the name). The connection of dynamic programming to logic
programming has been noted before (e.g., [92]). Fundamentally, dynamic pro-
gramming is about solving subproblems and reusing stored copies of those solu-
tions to solve various larger subproblems. In Dyna, the subproblems are typically
named by items, whose values are their solutions. An efficient implementation
of Dyna will typically store these solutions for reuse,29 whether by backward

tion. However, nontrivial rearrangements of the standard algorithm can be needed
to avoid materializing all transitions from state q. An efficient implementation of
Dyna would have to discover these optimizations.

28 Twists on these programs give rise to other popular local consistency algorithms
(bounds consistency, i-consistency) and propagation algorithms (generalized belief
propagation, survey propagation).

29 This support for reuse is already evident in our earlier examples, even though they
would not traditionally be regarded as dynamic programming. For example, the
activation of node h1 in Figure 1 (represented by some output item in Figure 2)
takes some work to compute, but once computed, it is reused in the computation of
each node oj . Similarly, each count n(R) or n(R,Y) in Figure 4 is reused to compute
many smoothed probabilities.



% For Var:Val to be possible, Val must be in-domain, and
% also supported by each Var2 that is co-constrained with Var.
% The conjunctive aggregator &= is like universal quantification over Var2.
possible(Var:Val) &= in_domain(Var:Val).

possible(Var:Val) &= supported(Var:Val, Var2).

% Var:Val is supported by Var2 only if it is still possible
% for Var2 to take some value that is compatible with Val.
% The disjunctive aggregator |= is like existential quantification over Val2.
supported(Var:Val, Var2)

|= compatible(Var:Val, Var2:Val2) & possible(Var2:Val2).

% If consistent ever becomes false, we have detected unsatisfiability:
% some variable has no possible value.
non_empty(Var) |= false. % default (if there are no possible values)
non_empty(Var) |= possible(Var:Val). % Var has a possible value
consistent &= non_empty(Var) whenever is_var(Var).

% each Var in the system has a possible value

Fig. 6: Arc consistency for constraint programming [55]. The goal is to rule out
some impossible values for some variables, using a collection of unary constraints
(in_domain) and binary constraints (compatible) that are given by the prob-
lem and/or tested during backtracking search (see Figure 12). The “natural”
forward-chaining execution strategy for this Dyna program corresponds to the
classical, asymptotically optimal AC-4 algorithm [142].

Var:Val is syntactic sugar for an ordered pair, similar to pair(Var,Val)

(the : has been declared as an infix functor). The program will determine
whether possible(Var:Val). The user should define is_var(Var) as true for
each variable, and in_domain(Var:Val) as true for each value Val that Var

should consider. To express a binary constraint between the variables Var and
Var2, the user should define compatible(Var:Val, Var2:Val2) to be true

or false for each value pair Val and Val2, according to whether the con-
straint lets these variables simultaneously take these values. This ensures that
supported(Var:Val,Var2) will be true or false (rather than null) and so will
contribute a conjunct to line 2.



% Belief at each variable based on the messages it receives from constraints.
belief(Var:Val) *= message(Con, Var:Val).

% Belief at each constraint based on the messages it receives from variables
% and the preferences of the constraint itself.
belief(Con:Asst) = messages_to(Con:Asst) * constraint(Con:Asst).

% To evaluate a possible assignment Asst to several variables, look at messages
% to see how well each variable Var likes its assigned value Asst.Var.
messages_to(Con:Asst) *= message(Var:(Asst.Var), Con).

% Message from a variable Var to a constraint Con. Var says that it plausibly
% has value Val if Var independently believes in that value (thanks to other

% constraints, with Con’s own influence removed via division).
message(Var:Val, Con) := 1. % initial value, will be overridden
message(Var:Val, Con) := belief(Var:Val) / message(Con, Var:Val).

% Messages from a constraint Con to a variable Var.
% Con says that Var plausibly has value Val if Con independently
% believes in one or more assignments Asst in which this is the case.
message(Con, Var:Val) += belief(Con:Asst) / message(Var:Val, Con)

whenever Asst.Var == Val.

Fig. 7: Loopy belief propagation [157,137] in Dyna. Variables and constraints
can be named by arbitrary terms. Each variable Var maintains a belief about its
value, in the form of relative probabilities of the possible values Val. Similarly,
each constraint Con over a set of variables maintains a belief about the correct
joint assignment of values to those variables, in the form of relative probabilities
of the possible assignments Asst.

Assignments are slightly complicated because we allow a single constraint
to refer to arbitrarily many variables (in contrast to Figure 6, which assumed
binary constraints). A specific assignment is a map from variable names (terms
such as color, size) to their values (e.g., red, 3). It is convenient to represent
this map as a small sub-dynabase, Asst, whose elements are accessed by the .

operator: for example, Asst.color == red and Asst.size == 3.
As input, the user must define constraint so that each constraint gives

non-negative values to each assignment, with assignments getting larger values
to the extent that they are preferred by the constraint. Every variable should
have at least one constraint to specify its domain (analogous to in_domain in
Figure 6).

A message to or from a variable specifies a relative probability for each value
of that variable. Since messages are proved circularly from one another, we need
to initialize some messages to 1 in order to start propagation; but these initial
values are overridden thanks to the := aggregator, which selects its “latest”
aggregand and hence prefers the aggregand from line 5 (once defined) to the
initial aggregand from line 4. Note: For simplicity, this version of the program
glosses over minor issues of message normalization and division by 0.



chaining that lazily memoizes values in a table (as in XSB [210] and other tabled
Prologs), or by forward chaining that eagerly accumulates values into a chart
(as in the Dyna prototype [69]; see §2.6).

A traditional dynamic programming algorithm can be written directly in
Dyna as a set of recurrence equations. A standard first example is the Fibonacci
sequence, whose runtime goes from exponential to linear in N if one stores enough
of the intermediate values:

fib(N) := fib(N-1) + fib(N-2). % general rule
fib(0) := 1. % exceptions for base cases
fib(1) := 1.

(19)

As a basic AI example, consider context-free parsing with a CKY-style al-
gorithm [211].30 The Dyna program in Figure 8 consists of 3 rules that di-
rectly and intuitively express how a parse is recursively built up by combining
adjacent phrases into larger phrases, under the guidance of a grammar. The
forward-chaining algorithm of §2.6 allows newly built or updated phrases (from
the agenda) to combine with existing phrases that are adjacent to them (stored
in the chart), known as agenda-based parsing [179].

We will return to this example in §3.2. The reader is encouraged to figure
out why it is not a stratified program, despite being based on the stratified CKY
algorithm.31 Replacing the += aggregator with max= (compare (10)) would make
it find the probability of the single best parse, instead of the total probability of
all parses [87].

It is equally easy to implement other (more complicated) algorithms for syn-
tactic natural-language parsing and syntax-directed translation,32 and many of

30 The connection between parsing and logic programming has been discussed by
[159,20,179,87,107,69], among others. Program transformations on declaratively
specified parsing algorithms are explained by [141,180,67,104,46]. ADP [85] is a dif-
ferent declarative approach to (context-free) parsing and related problems, using
annotated grammars.

31 Answer: In Figure 8, phrase(X,I,J) may contribute cyclically to its own proof
(like the item b in Figure 13). An extreme example: if one asserts the cyclic input
word("blah",0,0)=1, that program becomes a recurrent quadratic system in vari-
ables of the form phrase(X,0,0). This is actually useful: goal now gives the total
probability of all strings of the form blah blah blah. . . (given length=0).

In general, stratification fails in the presence of unary grammar productions, which
may form cycles such as X → Y and Y → X. (While unary cycles may be eliminated by
preprocessing the grammar [67], the program for preprocessing is itself not stratified.)

CKY (Figure 8) does not allow unary productions—but binary productions
act like unary productions if one child is a phrase of width 0, and the imple-
mentation in Figure 8 does not rule out width-0 phrases. Width-0 phrases may
arise when the input is a cyclic finite-state automaton instead of a string, as in
the word("blah",0,0) example. They may also arise from the useful non-range-
restricted rule word(epsilon,I,I), which says that the empty string ǫ can be found
anywhere in the input sentence.

32 Some common machine translation approaches are based on synchronous gram-
mars or tree transducers, and generalize Figure 8. An item of the form



% A single word is a phrase (given an appropriate grammar rule).
phrase(X,I,J) += rewrite(X,W) * word(W,I,J).

% Two adjacent phrases make a wider phrase (given an appropriate rule).
phrase(X,I,J) += rewrite(X,Y,Z) * phrase(Y,I,Mid) * phrase(Z,Mid,J).

% An phrase of the appropriate type covering the whole sentence is a parse.
goal += phrase(start_nonterminal,0,length).

Fig. 8: Probabilistic context-free parsing in Dyna (the “inside algorithm”).
phrase(X,I,J) is provable if there might be a constituent of type X from
position I to position J of the input sentence. More specifically, the value of
phrase(X,I,J) is the probability that nonterminal symbol X would expand into
the substring that stretches from I to J. It is defined using += to sum over all
ways of generating that substring (considering choices of Y, Z, Mid). Thus, goal
is the probability of generating the input sentence, summing over all parses.

The extensional input consists of a sentence and a grammar.
word("spring",5,6)=1 means that "spring" is the sixth word of the sentence;
while length=30 specifies the number of words. rewrite("S","NP","VP")=0.9
means that any copy of nonterminal S has a priori probability 0.9 of expanding
via the binary grammar production S → NP VP; while start_nonterminal="S"
specifies the start symbol of the grammar.

Dyna’s uses so far have been in this domain (see §5.1, with a number of code
examples in [67,69]). In natural language processing, active areas of research
that make heavy use of parsing-like dynamic programs include machine transla-
tion [41,42,106,161,178,216], information extraction [177,119,213], and question-
answering systems [54,36,205,144]. There is a tremendous amount of experimen-
tation with models and algorithms in these areas and in parsing itself. A recent
direction in machine vision attempts to parse visual scenes in a similar way
[215,78]: just as a sentence is recursively divided into labeled phrases formed by
composition of grammar rules applied to sub-phrases, a scene may be recursively
divided into labeled objects formed from sub-objects.

Other dynamic programming algorithms are also straightforward in Dyna,
such as the optimal strategy in a game tree or a Markov Decision Process (Fig-
ure 9), variations on weighted edit distance (Figure 10) and multiple sequence
alignment in bioinformatics, or the intersection or composition of two finite-state
automata (see [46] for Dyna code).

phrase(X,I1,J1,I2,J2) then represents a hypothesis that there is a phrase of type
X from position I1 to position J1 of a given French sentence, which correponds to
the substring from I2 to position J2 in the English translation.

Sikkel [180] formulated a wide variety of parsing algorithms using inference rules
that could be written directly in Dyna. More recently, Lopez [131] has done the same
for a variety of statistical machine translation systems, and the GENPAR C++ class
library [32] aids implementation of some such systems in a generic way.



% The optimal value function V .
value(State) max= value(State,Action).

% The optimal action-value function Q.
% Note: The value of p(s, a, s′) is a conditional transition probability, P (s′ | s, a).
value(State,Action) += reward(State,Action).

value(State,Action) += γ * p(State,Action,NewState) * value(NewState).

% The optimal policy function π. The free-choice aggregator ?= is used
% merely to break ties as in footnote 17.
best_action(State) ?= Action if value(State) == value(State,Action).

Fig. 9: Finding the optimal policy in an infinite-horizon Markov decision pro-
cess, using value iteration. The reward and transition probability functions can
be sensitive to properties of the states, or to their structured names as in Fig-
ure 3. The optimal value of a State is the expected total reward that an agent
will earn if it follows the optimal policy from that State (where the reward at
t steps in the future is discounted by a factor of γt). The optimal value of a
(State,Action) pair is the expected total reward that the agent will earn by
first taking the given Action—thereby earning a specified reward and stochas-
tically transitioning to a new state—and thereafter following the optimal policy
to earn further reward.

The mutual recurrence between V and Q interleaves two different aggrega-
tors: max= treats optimization by the agent, while += computes an expectation to
treat randomness in the environment. This “expectimax” strategy is appropriate
for acting in a random environment, in contrast to the “minimax” strategy using
max= and min= that is appropriate when acting against an adversarial opponent.
The final line with ?= merely extracts the optimal policy once its value is known.

Processing Pipelines It is common for several algorithms and models to work
together in a larger AI system. Connecting them is easy in Dyna: one algorithm’s
input items can be defined by the output of another algorithm or model, rather
than as extensional input. The various code and data resources can be provided
in separate dynabases (§2.7), which facilitates sharing, distribution, and reuse.

For example, Figure 11a gives a version of Figure 8’s parser that conveniently
accepts its grammar and input in the form of other dynabases. Figure 11b illus-
trates how this setup allows painless scripting.

Figure 11c shows how the provided grammarmay be an interesting component
in its own right if it does not merely list weighted productions but computes

them using additional Dyna rules (analogous to the neural network example
in Figure 3). The particular example in Figure 11c constructs a context-free
grammar from weights. It is equally easy to write Dyna rules that construct a



% Base case: distance between two empty strings.
dist([],[]) = 0.

% Recursive cases.
dist([X|Xs], Ys ) min= delete_cost(X) + dist(Xs,Ys).

dist( Xs, [Y|Ys]) min= insert_cost(Y) + dist(Xs,Ys).

dist([X|Xs],[Y|Ys]) min= subst_cost(X,Y) + dist(Xs,Ys).

% Part of the cost function.
substcost(L,L) = 0. % cost of 0 to align any letter to itself

Fig. 10: Weighted edit distance between two strings. This example illustrates
items whose names are arbitrarily deep terms: each dist name encodes two
strings, each being an list of letters. As in Prolog, the syntactic sugar [X|Xs]

denotes a list of length > 0 that is composed of a first element X and a remainder
list Xs.

We pay some cost for aligning the first 0 or 1 letters from one string
with the first 0 or 1 letters from the other string, and then recurse to find
the total cost of aligning what is left of the two strings. The choice of
how many initial letters to align is at lines 2–4: the program tries all three
choices and picks the one with the minimum cost. Reuse of recursive subprob-
lems keeps the runtime quadratic. For example, if all costs not shown are 1,
then dist([a,b,c,d], [s,b,c,t,d]) has value 2. This is obtained by opti-
mally choosing the line with subst_cost(a,s) at the first recursive step, then
subst_cost(b,b), subst_cost(c,c), insert_cost(t), subst_cost(d,d), for
a total cost of 1+0+0+1+0.

grammar’s productions by transforming another grammar,33 or that specify an
infinitely large grammar.34

Not only grammar but also input may be defined using rules. For example,
the input sequence of words may be derived from raw text or speech signal using
a structured prediction system—a tokenizer, morphological analyzer, or auto-
matic speech recognizer. A generalization is that such a system, instead of just
producing a single “best guess” word sequence, can often be made to produce a
probability distribution over possible word sequences, which is more informative.
This distribution is usually represented as a “hypothesis lattice”—a probabilis-
tic finite-state automaton that may generate exponentially or infinitely many

33 For example, one can transform an arbitrary weighted context-free grammar into
Chomsky Normal Form for use with Figure 11a, or coarsen a grammar for use as an
A* heuristic [115].

34 For example, the non-range-restricted rule rewrite(X/Z,X/Y,Y/Z). encodes the in-
finitely many “composition” rules of combinatory categorial grammar [179], in which
a complex nonterminal such as s/(pp/np) denotes an incomplete sentence (s) that
is missing an incomplete prepositional phrase (pp) that is in turn missing a noun
phrase (np).



phrase(X,I,J) += grammar.rewrite(X,W) * input.word(W,I,J).

phrase(X,I,J) += grammar.rewrite(X,Y,Z) * phrase(Y,I,Mid)

* phrase(Z,Mid,J).

goal += phrase(grammar.start_nonterminal,0,input.length).

(a) A parser like that of Figure 8, except that its input items are two dynabases (denoted
by grammar and input) rather than many separate numbers (denoted by rewrite(. . .),
word(. . .), etc.).

% Specialize (a) into an English-specific parser.
english_parser = new $load("parser"). % parser.dyna is given in (a)
english_parser.grammar = $load("english_grammar"). % given in (c)

% Parse a collection of English sentences by providing different inputs.
doc = $load("document").
parse(K) = new english_parser.

parse(K).input = doc.sentence(K).

% The total log-probability of the document, ignoring sentences for which
% no parse was found.
logprob += log(parse(K).goal).

(b) An illustration of how to use the above parser. This declarative “script” does not
specify the serial or parallel order in which to parse the sentences, whether to retain
or discard the parses, etc. All dynabases parse(K) share the same grammar, so the rule
probabilities do not have to be recomputed for each sentence. A good grammar will obtain
a comparatively high logprob; thus, the logprob measure can be used for evaluation or
training. (Alternative measures that consider the correct parses, if known, are almost as
easy to compute in Dyna.)

% Define the unnormalized probability of the grammar production X → Y Z

% as a product of feature weights.
urewrite(X,Y,Z) *= left_child_weight(X,Y).

urewrite(X,Y,Z) *= right_child_weight(X,Z).

urewrite(X,Y,Z) *= sibling_weight(Y,Z).

urewrite(X,Y,Y) *= twin_weight. % when the two siblings are identical
urewrite(X,Y,Z) *= 1. % default in case no features are defined

% Normalize into probabilities that can be used in PCFG parsing:
% many productions can rewrite X but their probabilities should sum to 1.
urewrite(X) += urewrite(X,Y,Z)

whenever nonterminal(Y), nonterminal(Z).

rewrite(X,Y,Z) = urewrite(X,Y,Z) / urewrite(X).

(c) Constructing a dense grammar for use by the above programs, with probabilities given
by a conditional log-linear model. With k grammar nonterminals, this scheme specifies k3

rule probabilities with only O(k2) feature weights to be learned from limited data [18].
Just as for neural nets, these weights may be trained on observed data. For example,
maximum likelihood estimation would try to maximize the resulting logprob in 11b.

Fig. 11: A modular implementation of parsing.



possible sequences, assigning some probability to each sequence. The parser of
Figure 11a can handle this kind of nondeterministic input without modification.
Instead of word("spring",5,6)=1, the parser’s input dynabase would contain
items like word("spring",state(32),state(38))=0.3, meaning that when the
automaton is in state(32), it has probability 0.3 of emitting the word "spring"

and transitioning to state(38). The only effect on the parser is that I, J, and
Mid in Figure 11a now range over states in an automaton instead of positions in
a sentence.

At the other end of the parsing process, the parse output can be passed
downstream to subsequent modules such as information extraction. Again, it is
not necessary to use only the single most likely output (parse tree). The down-
stream customer can analyze all the phrase items in the dynabase of Figure 11a
to exploit high-probability patterns in the entire distribution over parse trees
[177,213].

As discussed in the caption for Figure 11c, the training of system parameters
can be made to feed back through this processing pipeline of dynabases [63].
Thus, in summary, hypotheses can be propagated forward through a pipeline
(joint prediction) and gradients can be propagated backward (joint training).
Although this is generally understood in the natural language processing commu-
nity [79], it is surprisingly rare for papers to actually implement joint prediction
or joint training, because of the extra design and engineering effort, particularly
when integrating non-trivial modules by different authors. Under Dyna, doing
so should be rather straightforward.

Another advantage to integrating the phases of a processing pipeline is that
integration can speed up search. The phases can interactively negotiate an ex-
act or approxiate solution to the joint prediction problem—various techniques
include alternating optimization (hill-climbing), Gibbs sampling, coarse-to-fine
inference, and dual decomposition. However, these techniques require system-
atic modifications to the programs that specify each phase, and are currently
underused because of the extra implementation effort.

Backtracking Search Many combinatorial search situations require backtrack-
ing exploration of a tree or DAG. Some variants include beam search, game-tree
analysis, the DPLL algorithm for propositional satisfiability, and branch-and-
bound search in settings such as Integer Linear Programming.

It is possible to construct a search tree declaratively in Dyna. Since a node
in a search tree shares most properties with its children, a powerful approach is
to represent each node as a dynabase, and each of its child nodes as a modified
extension of that dynabase (see §2.7).

We illustrate this in Figure 12 with an elegant DPLL-style program for solv-
ing NP-hard satisfiability problems. Each node of the search tree runs the arc-
consistency program of Figure 6 to eliminate some impossible values for some
variables, using a message-passing local consistency checker. It “then” probes a
variable nextvar, by constructing for each of its remaining possible values Val a
child dynabase in which nextvar is constrained to have value Val. The child dyn-



% Freely choose an unassigned variable nextvar, if any exists.
% For each of its values Val that is still possible after arc consistency,
% create a clone of the current dynabase, called child(Val).
nextvar ?= Var whenever unassigned(Var). % free choice of nextvar
child(Val) = new $self if possible(nextvar:Val). % create several extensions

% Further constrain each child(Val) via additional extensional input,
% so that it will only permit value Val for nextvar,
% and so that it will choose a new unassigned variable to assign next.
child(Val).possible(nextvar:Val2) &= (Val==Val2)

whenever possible(nextvar:Val).

child(Val).unassigned(nextvar) &= false. % nextvar has been assigned

% We are satisfiable if Figure 6 has not already proved consistent to be false,
% and also at least one of our children (if we have any) is satisfiable.
consistent &= some_child_consistent.

some_child_consistent |= child(nextvar:Val).consistent.

% usually is true or false, but is null at a leaf (since nextvar is null)

Fig. 12: Determining the satisfiability of a set of constraints, using backtrack-
ing search interleaved with arc consistency. These rules extend the program of
Figure 6—which rules out some impossible values for some variables, and which
sometimes detects unsatisfiability by proving that consistent is false. Here,
we strengthen consistent with additional conjuncts so that it fully checks for
satisfiability. Lines 1–2 choose a single variable nextvar (using the “free-choice”
aggregator ?=) and guess different values for it in child dynabases. We place
constraints into the child at lines 3–4 and read back the result (whether that
child is satisfiable) at line 6.

abase copies the parent, but thanks to the added constraint, the arc-consistency
algorithm can pick up where it left off and make even more progress (eliminate
even more values). That reduces the number of grandchildren the child needs to
probe. The recursion terminates when all variables are constrained.

One good execution strategy for this Dyna program would resemble the ac-
tual DPLL method, with

– a reasonable variable ordering strategy to select nextvar;
– each child dynabase created by a temporary modification of the parent, which

is subsequently undone;
– running arc consistency at a node to completion before constructing any

children, since quickly eliminating values or proving unsatisfiability can rule
out the need to examine some or all children;

– skipping a node’s remaining children once consistent has been proved
false (by arc consistency) or true (by finding a consistent child).

However, the program itself is purely declarative and admits other strategies,
such as parallel ones.



A simple modification to the program will allow it to solve MAX-SAT-style
problems using branch-and-bound.35 In this case, a more breadth-first variant
such as A* or iterative deepening will often outperform the pure depth-first
DPLL strategy. All these strategies can be proved correct from the form of the
Dyna program.36

Local Search and Sampling While the search tree constructed above was ex-
haustive, a similar approach can be used for heuristic sequential search strategies:
greedy local search, stochastic local search, particle filtering, genetic algorithms,
beam search, and survey-inspired decimation. Each configuration considered at
time T can be described by a dynabase that extends a configuration from time
T-1 with some modifications. As with our arc consistency example, rules in the
dynabase will automatically compute any consequences of these modifications.
Thus, they update any intensional data, including the score of the configuration
and the set of available next moves.

The same remarks apply to Monte Carlo sampling methods such as Gibbs
sampling and Metropolis-Hastings, which are very popular for Bayesian learning
and inference. A random walk program is shown later as (23).

3.2 Proofs and Proof Forests

It is useful to connect Dyna, whose items have weights or values, to the tradi-
tional notion of proofs in unweighted logic programming.

Datalog can be regarded as defining proof trees. Figures 13a–13b show a
collection of simple inference rules (i.e., a program) and two proof trees that

35 The goal is to find a maximum-scoring joint assignment to the variables, subject to
the constraints. The score of a given assignment is found by summing the subscore
values (as specified by the user) of the several Var:Val pairs in the assignment.

In Figure 6 and Figure 12, replace consistent (a boolean item aggregated by &=)
by score (a real-valued item aggregated by min=). In Figure 6, just as consistent
computes a boolean upper bound on satisfiability, score computes a numeric upper
bound on the best achievable score:

subscore(Var) max= −∞.

subscore(Var) max= subscore(Var:Val) whenever possible(Var:Val).

upper_bound += subscore(Var) whenever is_var(Var).

score min= upper_bound.

Then in Figure 12, score is reduced to be the best score actually achieved by any
child:

score min= best_child_score.

best_child_score max= child(nextvar:Val).score.

36 For example, it is easy to see that upper_bound at each node n (once it has converged)
is indeed an upper bound on the score of the node (so can be used as an admissible
heuristic for A*). It can further be proved that as long as this bound is smaller than
the current value of best_child_score at an ancestor of n whose score was queried,
then exploring the children of n further cannot affect the query result.



can be constructed from them. As a more meaningful example, Figures 14–15
show inference rules for context-free CKY parsing (unweighted versions of the
rules in Figure 8) and two proof trees that can be constructed using them.37

These proof trees are isomorphic to the parse trees in Figure 16. In other words,
a parser is really trying to prove that the input string can be generated by the
grammar. By exploring the proof trees, we can see the useful hidden derivational
structures that record how the string could have been generated, i.e., the possible
parses.38

A Datalog program may specify a great many proof trees, but thanks to
shared substructure, the entire collection may be represented as a packed for-

est. The hypergraph in Figure 13c shows the packed forest of all proofs licensed
by the program in Figure 13a. Some vertices here have multiple incoming hyper-
edges, indicating that some items can be proved in multiple ways. The number
of proofs therefore explodes combinatorially with the in-degree of the vertices.39

In fact, the forest in Figure 13c, being cyclic, contains infinitely many proof
trees for b. Even an acylic forest may contain a number of proof trees that is
exponential in the size of the hypergraph.

Indeed, a Datalog program can be regarded simply as a finite specification
of a proof forest. If the rules in the program do not contain variables, then the
program is actually isomorphic to the proof forest, with the items correspond-
ing to nodes and the rules corresponding to hyperedges. Rules with variables,
however, give rise to infinitely many nodes (not merely infinitely many proofs).

3.3 From Logical Proofs to Generalized Circuits

To get a view of what Dyna is doing, we now augment our proof forests to allow
items (vertices) to have values (Figure 13e). This yields what we will call gener-
alized circuits. Like an arithmetic (or boolean) circuit, a generalized circuit is
a directed graph in which the value at each node α is a specified function of the
values at the 0 or more nodes that point to α. Finding a consistent solution to
these equations (or enough of one to answer particular value queries) is challeng-
ing and not always possible, since Dyna makes it possible to define circuits that
are cyclic and/or infinite, including infinite fan-in or fan-out from some nodes.
(Arithmetic circuits as traditionally defined must be finite and acyclic.)

We emphasize that our generalized circuits are different from weighted proof
forests, which attach weights to the individual proof trees of an item and then
combine those to get the item’s weight. In particular, the common setup of

37 To obtain the CKY proof trees, we must add facts that specify the words and gram-
mar rules. In other words, we must augment the CKY program with the extensional
input.

38 The mapping from proof trees (derivation trees) to syntactic parse trees (derived
trees) is generally deterministic but is not always as transparent as shown here. For
example, a semantics-preserving transformation of the Dyna program [141,67,104]
would change the derivation trees but not the derived trees.

39 Although a has only one incoming edge, it has two proof trees, one in which p is
proved from y and the other (shown in Figure 13b) in which p is proved from z.
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(a) A set of inference rules, and their encoding
in Datalog. Axioms are written as inference
rules with no antecedents.
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(b) Two proof trees using these
rules. When an item is proved
by an inference rule from 0 or
more antecedent items, its vertex
has an incoming hyperedge from
its antecedents’ vertices. Hyper-
edges with only 1 antecedent are
drawn as ordinary edges (with-
out • at the center). Hyperedges
with 0 antecedents (to f, x, y, z)
are not drawn.
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(c) The proof forest
containing all possible
proofs. In contrast,
each hypergraph in 13b
shows only a single
proof from this forest,
with each copy of an
item selecting only a
single incoming hyper-
edge from the forest,
and cycles from the
forest unrolled to a
finite depth.

a += x + p.

b += p.

b += b / f.

p *= y.

p *= z.

f = 4.

x = 1.

y = 2.

z = 3.

(d) A set of numeric
recurrence relations
that are analogous to
the unweighted infer-
ence rule in Figure 13a.
We use Dyna’s syntax
here.

a = 7 b =
+
8

• = 7 • = 2

x = 1 p =
∗

6 f = 4

y = 2 z = 3

(e) A generalized arithmetic circuit
with the same shape as the proof
forest in Figure 13c. The weight
labellings are consistent with 13d.
Each node (including the • nodes) is
computed from its predecessors.

Fig. 13: Some examples of proof trees and proof forests, using hypergraphs
(equivalently, AND-OR graphs). Named nodes in the graphs represent items,
and • nodes represent intermediate expressions.



iwj X → w

iXj

iYj jZk X → Y Z

iXk

Fig. 14: The two proof rules necessary to support context-free grammars with
unary productions and binary rewrites. w denotes a word from the input sentence
and X a symbol of the grammar. Subscripts denote the object’s span (which part
of the sentence they cover).
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3NP5 PP → P NP

2PP5 VP → V PP
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N → Time 0Time1

0N1

N → flies 1flies2

1N2 NP → N N

0NP2

.
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2V3
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.

3NP4 VP → V NP

2VP5 S → NP VP

0S5

Fig. 15: Two example proofs that “Time flies like an arrow.” is an English sen-
tence, using the rules in Figure 14. This is traditional notation, but the hyper-
graphs of Figure 13 are more flexible because they would be able to show reuse
of subgoals within a single proof, as well as making it possible to show packed
forests of multiple proofs with shared substructure, as in Figure 13c.

semiring-weighted deduction is a special case of weighted proof forests that
is strictly less general than our circuits. In semiring-weighted deduction [87],
the weight of each proof tree is a product of weights of the individual rules
or facts in the tree. The weight of an item is the sum of the weights of all
its proofs. It is required that the chosen product operation ⊗ distributes over
the chosen sum operation ⊕, so that the weights form a semiring under these
operations. This distributive property is what makes it possible to sum over the
exponentially many proofs using a compact generalized circuit like Figure 8 (the
inside algorithm) that is isomorphic to the proof forest and computes the weight
of all items at once.

Our original prototype of Dyna (§5.1) was in fact limited to semiring-weighted
deduction (which is indeed quite useful in parsing and related applications). Each
program chose a single semiring (⊕,⊗); each rule in the program had to multiply
its antecedent values with ⊗ and had to aggregate these products using ⊕=.

However, notice that most of our useful AI examples in §3.1 actually fall
outside this form. They mix several aggregation operators within a program,
sometimes including non-commutative aggregators like :=, and it is sometimes
important that they define the aggregation of 0 items to be null, rather than
requiring the aggregator to have an identity element and using that element.
They also use additional non-linear operations like division and exponentiation.
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Fig. 16: Two example parse trees of the sentence “Time flies like an arrow” [116].
These are isomorphic to the proofs in Figure 15 (upside down) and correspond
to different meanings of the sentence. The first conveys information about how
time passes; the second tree says that flies of a certain species (“time flies”) are
fond of an arrow.

As a result, it is not possible to regard each of our AI examples as simply
an efficient way to sum over exponentially many proofs of each output item. For
example, because of the sigmoid function in Figure 2, the distributive property
from semiring-weighted programs like Figure 8 does not apply there. One cannot
regard the activation value of an output node in a neural network as a sum over
the values of many individual proofs of that output node.40 That is, a generalized
circuit does not necessarily fall apart into disjoint trees the way that a weighted
forest does. Rather, the computations are tangled together. In the neural network
example, computing intermediate sums at the hidden nodes is important not only
for dynamic programming efficiency (as it is in the semiring-weighted program
of Figure 8) but also for correctness. The sigmoid function at each node really
does need to apply to the sum, not to each summand individually.

We remark that even generalized circuits are not a convenient representation
for all Dyna programs. The rule f(0) += g(1) generates a single edge in a
generalized circuit. However, the rule f(start) += g(end), where start and
end are evaluated, would generate edges to f(x) (for every x that is a possible
value of start) from start, end, and g(y) (for every y that is a possible value of
end). Typically this leads to infinitely many edges, only one of which is actually
“active” in a given solution to the program.

Despite all this freedom, Dyna programs are not simply arbitrary systems of
equations. A Dyna program cannot directly constrain x3 + y3 = z3 in real or
integer unknowns x, y, z. Rather, each equation in a Dyna system constrains a
single item (unknown) to equal some function of the items in the program, as in
any circuit. (This arises from Dyna’s use of single-headed rules, similar to Horn
clauses.) Furthermore, every item has exactly one “defining constraint” of this

40 Each proof of o1 in Figure 1 would be a separate path of length 2, from some input
node through some hidden node to o1.



sort (obtained by aggregating across multiple rules).41 So one cannot formulate
x3 + y3 = z3 by writing u = x3 + y3 and u = z3 (which would give two defining
constraints). Nor can one formulate it by writing s = s+ (x3 + y3 − z3), a legal
Dyna program that might appear to imply x3 + y3 − z3 = 0, but whose unique
solution is actually that x, y, z, s are all null, since each of x, y, z (having no
defining rules) has a defining constraint that it is the aggregation of 0 aggregands.

3.4 The Role of Proofs in AI

We close this section with a broader perspective on why proof trees, forests, and
their generalizations should be so useful in AI, as seen in the examples of §3.1.

Abductive AI systems attempt to explain the observed data by reconstruct-
ing one or more stories about how the observation was generated. We assume
that there is some true (but hidden) derivation (y) whose structure, if we knew
it, would reveal the true structure of the observed data (x), be it a sentence, a
scene, etc. Any derivation is a proof that the observed data could indeed have
been generated somehow. We seek likely derivations because they reveal struc-
ture that is informative for additional processing.

In natural language parsing, for example, our model is a probabilistic gram-
mar [24], our observation is a sentence, and we seek to derive a grammatical
explanation for the sentence; recall Figures 14–16. In a general system of con-
straints, we partially observe a set of random variables, and we seek an explana-
tion of the pattern of observed values by fleshing out the other random variables
in a consistent way; recall Figures 6–7.

Often, the search for a derivation will yield many possible alternatives, which
are then ranked by a scoring function, such as the joint probability distribution
p(x,y).

Deductive AI systems, on the other hand, draw conclusions from obser-
vations rather than seeking to explain the observations. This involves proving
that these conclusions follow from the evidence. Examples of deductive sys-
tems include neural networks, traditional knowledge representation and reason-
ing (KRR), constraint programming, and deductive or probabilistic databases.
These systems may have parameters which control how and which inferences
are made and how much weight is assigned to them. AI systems for KRR have
received attention as information integration systems, drawing conclusions from
distributed pools of resources, an approach that has not been much investigated
elsewhere in AI.

Despite the difference in direction of the causal relationship between inputs
and outputs for abductive and deductive reasoning, they are computationally
very similar. In statistical AI, abductive systems correspond to generative

models p(x,y). and deductive systems correspond to discriminative mod-

els p(y | x). Generative and discriminative models can have the same inference
algorithm, with modest changes in how the model parameters are trained.

41 As mentioned earlier, this generalizes the completion semantics of [45], which treats
a logic program as defining each boolean item with an “if and only if” constraint.



In both kinds of system, exposing the proof trees (or circuits) is useful because
this naturally justifies the system’s conclusions and tracks the provenance of
data [26,30,31]. For machines, analyzing the set of proof trees facilitates decision
making, abductive construction of theories, sensitivity analysis, and statistical
learning. Being able to track and reason about the set of proof trees of a given
conclusion may also be useful to humans [14], including the researchers who are
trying to analyze and improve the AI system, as well as end users who may not
fully trust the AI system but would still like it to generate hypotheses and call
their attention to pertinent supporting data.

4 Practical AI and Logic Programming

Given an applied problem, one would like to experiment with a broad range of
models, exact or approximate inference algorithms, decision procedures, training
procedures for the model parameters and system heuristics, and storage and
execution plans.

Dyna supports the common computational core for all this—mechanisms for
maintaining a possibly infinite and possibly cyclic network of related items that
are named by structured terms. Its job is to store and index an item’s value, to
query for related items and aggregate their values (including planning of complex
queries), to maintain the item’s value and propagate changes to related items,
and to back-propagate gradient information.

In this section, we expand on our argument from §1 that a fast and scalable
implementation of Dyna would be of practical use to the AI community.

4.1 What’s Wrong with Current AI Practices

Current AI practices, especially in our target area of natural-language process-
ing and machine learning, suffer from a large distance between specification
and implementation. Typical specifications are a handful of recurrence relations
(though not as short as the examples in this paper). Creative graduate students
can easily dream up innovative systems at the specification level. Implementa-
tions, however, are typically imperative and by necessity include storage and
inference code.

Large Extensional Data Modern statistical methods mine large corpora of
data and produce sizable models. It is not atypical to process billions of words
and extract models with millions of constants and hundreds of millions of rela-
tions between those constants.42

42 The WaCKy corpora [13] are web-derived text collections of 1–2 billion words for
English, German, and Italian. In 2006, Google released a list of common up-to-5-word
sequences appearing in over a trillion words of English text; the resulting data set
had 13,588,391 constants and 3,795,790,711 relations of various arities among them
[81]. Statistical machine translation systems are often based on induced (learned)
models of linguistic structure; a current system for English-Urdu grammar extraction
produced a grammar with 42,235,002 rules [22], and Arabic-English systems are an



Knowledge bases and information integration pose additional problems of
scale.43 As statistical methods gain popularity in other computational fields,
the large-data problem spreads.44 Storage and indexing structures are becoming
extremely relevant, as are approximation and streaming techniques.

Large Intensional Effort As we have seen, even when extensional data is
small, modern AI systems often have large computations over intermediate quan-
tities. For many algorithms, the (weighted) proof forests may be exponentially or
unboundedly large. Here, efficient inference algorithms, prioritization, and query
planning become critical for managing execution time.

Typical modern AI systems have, with large investments of time (Table 1),
painfully hand-tuned their inference engines for the particular cases at hand.
Insights and optimizations at the runtime level are typically viewed as engineer-
ing details secondary to the AI work itself; it is quite standard to elide such
“details” from publications, even though they may make up the majority of the
work itself! In some cases, even the code is not released or becomes unavailable.
Together, the net effect is that, despite the proliferation of systems, moving out-
side the bounds of a system’s preconceived use cases entails working around or
writing an entirely new system without any real documentation about what has
or has not worked in the past, only an incomplete library of code examples.

This problem is not unique to statistical AI. Bioinformaticians have proposed
a declarative approach to specifying regular and context-free sequence analyzers
[85], because procedural bioinformatics programs can be hard to work with:

Because they are written in terms of recurrences that reflect not only the
logic of the problem, but also other kinds of concerns: Representation
of data, order of computation, time and space efficiency issues. These

order of magnitude larger (Kevin Knight, p.c.). As of early 2010, the Linguistic Data
Consortium [124] offers 650 gigabytes of speech, 244 gigabytes of text, 14 gigabytes
of video, and 6 gigabytes of lexicographic data. Large-corpus techniques are entering
adjacent fields, including machine vision; the LabelMe project as of 2006 had 111,490
labeled polygons in their dataset of images and videos [174].

43 The DBPedia [21] knowledge base, as of release 3.5.1, includes more than 3.4 million
objects, 1.5 million of which participate in their ontology. The ResearchCyc release
of Cyc [121,120] claims more than half a million concepts in their ontology, with five
million assertions across 26,000 relationships. The aggregate Open Data Movement
[196] claims that the collective dataset is 13.1 billion RDF triples with 142 million
RDF links. Open Mind Common Sense [181,125] project has over a million simple
English natural language statements in its database.

44 For example, the NCBI GenBank [17] is a curated database of all publicly avail-
able DNA sequences; at last count, it measured 254,698,274,519 base-pairs (across
156,874,659 sequence records) in total. Operational logs for large-scale systems are
a rich source of data for abductive data mining [97]: AT&T accumulates logs of all
calls carried across its network ([97] estimates the rate at roughly 300 million calls
per day for roughly 100 million customers, in 2000); search engine companies are
secretive about their rates of traffic, but one estimate [50] suggests that Google saw
87 billion queries in December 2009.



Package Files SLOC Language Application area

SRILM 285 48967 C++ Language modeling
Charniak parser 266 42464 C++ Parsing
Stanford parser 417 134824 Java Parsing
cdec 178 21265 C++ Machine translation
Joshua 486 68160 Java Machine translation
MOSES 351 37703 C++ Machine translation
GIZA++ 122 15958 C++ Bilingual alignment

OpenFST 157 20135 C++ Weighted FSAs & FSTs
NLTK 200 46256 Python NLP education
HTK 111 81596 C Speech recognition
MALLET 620 77155 Java Conditional Random Fields
GRMM 90 12926 Java Graphical model add-on
Factorie 164 12139 Scala Graphical models

Table 1: A selection of popular NLP and machine learning systems (top) and
toolkits (bottom) showing number of source files, source lines of code (SLOC),
primary implementation language, and functionality. Statistics were generated
from the most recent stable release as of this writing using SLOCCount [207].

things one should not have to worry about when trying to understand a
problem. [4]

In short, modern AI systems typically consist of large bodies of imperative
code, specialized for the purpose at hand. Regardless of programmer intent,
there is relatively little cross-system code reuse. The obvious solution is to de-
velop reusable code libraries (known as toolkits) to support common develop-
ment patterns. However, even the best and most flexible of these toolkits are
themselves large, and invariably are not general enough for all purposes.45 Ta-
ble 1 shows a selection of released AI systems and toolkits and their code-base
sizes.

Uncaught Bugs The size of these coding efforts is not only a barrier to
progress, but also likely affects correctness. The potential for uncaught bugs
was recognized early in statistical AI. Statistical AI methods have many moving
parts, and tend to produce some kind of quantitative result that is used to evalu-
ate the method. The results are not expected to be perfect, since the problems are
inherently hard and the statistical models usually cannot achieve human-level

45 For example, the OpenFST toolkit [7] for weighted finite-state automata is beau-
tifully designed and implemented by the leading researchers in the area and has
a great many uses. Even so, it happens not to support various patterns that have
come up from time to time in our own research on finite-state methods: infinite
alphabets, intensionally specified topologies, mixed storage disciplines, parameter
training, machines with 3 or more tapes, parallel and A* algorithms, and non-finite-
state extensions.



performance even at their best. This makes it very difficult to detect errors.
Methods that appear to be producing “reasonable” results sometimes turn out
to work even better (and occasionally worse) when bugs in the implementation
are later noticed and fixed.

Diverse Data Resources The AI community is distributed over many geo-
graphic locations, and many AI researchers produce data for others to share.
The difficulty in using this vast sea of resources is that they tend to be provided
in idiosyncratic formats. Trying out a new dataset often requires understanding
a new encoding scheme, parsing a new file format, and building one’s own data
structures for random access.

Cyc [121,120] is an attempt to capture an ontology of the world from human
editors. DBPedia [21] is a large-scale, community effort to extract and redis-
tribute structured information from Wikipedia. LabelMe [174] is an attempt to
collect manually annotated bounding polygons and labels of objects from real-
world images.

There exists a small industry of building natural language databases specif-
ically for AI research, with an biannual international Conference on Linguistic
Resources and Evaluation (LREC). The Linguistic Data Consortium [124] serves
as a distribution center for much of this work and has collected or produced
over 470 artifacts (nearing a terabyte of total data [101]) since its creation in
1992. Curated resources for natural language processing range from unanno-
tated but parallel corpora (e.g., Europarl [118]), compressed representations of
the entire (English) World-Wide Web (e.g., Google’s N-gram collection [81]),
manually-annotated treebanks of text and/or speech (perhaps the most famous
being the Penn Treebank Project [133]), to lexicographic databases (e.g., Celex
[12], WordNet [140,75], its generalization EuroWordNet [204], and the successor
Global WordNet Association [86]).

Many researchers also produce (generally small) annotated datasets for their
own use, and release them on request to facilitate comparative work.46 Re-
searchers also share the parameters of their statistical models, often trained
from data at huge CPU cost.

Diverse Code Resources Many AI resources are in the form of code rather
than data. It can be very valuable to build on the systems of others, and there
are principled ways to do so. At present, however, software engineering consid-
erations strongly discourage any deep integration of systems that were built in
different labs. Using code resources can require wrestling with portability issues
and unfamiliar APIs. Furthermore, the APIs are usually insufficiently powerful
for a user to query or influence the internal hypotheses and features of someone
else’s system.

Why would that be desirable? §3.1 already discussed processing pipelines,
where tools earlier in the pipeline (such as a speech recognizer or parser) analyze

46 Amazon Mechanical Turk [8] has been used to cheaply produce very experiment-
specific corpora (see the recent workshop [34]).



or transform the input in a way that can greatly aid later tools (such as an
information extraction system [25]). Ideally, one would like the systems in the
pipeline to work together to agree on a common high-quality output and common
parameters. However, this generally requires the ability for systems to query one
another or pass messages to one another [79].

It is also valuable to integrate several AI systems that are attempting the
same task, since they may have different strengths. One method is to run the
systems separately and combine their outputs in some heuristic way [110]. How-
ever, again, deeper negotiation among the systems is desirable. If the different
systems are willing to score one another’s hypotheses, their preferences can be
combined in various ways—such as a mixture of experts, where different models
are weighted differently on different parts of the input space [102], or a prod-
uct of experts, which attempts to find an output that is scored highly by all
models [100]. A recently emerging theme, therefore, is the development of prin-
cipled methods for coordinating the work of multiple combinatorial algorithms
[61,186,59,173].

Ad Hoc Experimental Management AI researchers spend considerable time
managing computational experiments. It is usual to compare multiple systems,
compare variants of a system, tune system parameters, graph performance across
different types and amounts of data, and so forth. Common practice is to run
programs at the Unix command line and to store results in files, perhaps writing
scripts to manage the process. Sometimes one keeps intermediate results in files
for reuse or manual analysis. It can be difficult to keep all the files organized,
up to date, and track their provenance.

Breck [28] describes the problem, explains why it is not easily handled with
makefiles, and presents a new tool for the purpose: “zymake is a high-level lan-
guage for running complex sets of experiments. The user writes a zymakefile,
mostly consisting of parameterized shell commands, and zymake determines the
dependency structure and executes the commands in the appropriate order.”

zymake systematically names the output files that result from different ex-
perimental settings, but does not otherwise manage the output data. For power
users, the R language for statistical computing [165] can be an excellent way to
flexibly store and explore structured experimental results. However, R focuses
on analyzing extensional data. One must still write other code to create those
data—i.e., to invoke the experiments and convert the results to R format.

4.2 Declarative Programming to the Rescue

The above problems are intensifying as AI research grows in size, scope, and
sophistication. They have motivated our attempt to design a unified declarative
solution that hides some of the complexity. We would like it to be easy again to
simply try out good ideas.

Promising declarative languages based on Datalog have recently been con-
structed for other domains, such as sensor networks [43,51,129,130] and business
data management [127,128].



Why does a declarative approach fit for AI as well? We believe that the
business of AI is deriving hypotheses and conclusions from data (§3.4), and that
these are fundamentally declarative problems—what to conclude can be specified
without any commitment to how to conclude it, e.g., the order of computation.
The Dyna approach has something to contribute toward solving each of the
challenges of the previous section:

Large Extensional Data We expect that most access by AI programs to large
extensional data stores could be supported by traditional on-disk database tech-
nology, such as B-trees, index structures, and standard query planning methods.
AI programs can automatically exploit this technology if they are written in a
Datalog-derived language with an appropriate implementation.

Large Intensional Effort The computational load of AI programs such as those
in §3.1 consists mainly of database queries and updates. Dyna provides an ex-
ecutable language for specifying these algorithms, making them concise enough
to publish within a paper.

Our hope is that the details omitted from these concise programs—the stor-
age and inference policies—can be efficiently handled in a modular, reusable
way across problems, eventually with automatic optimization and performance
tuning. Even basic strategies like those in §2.6 sometimes correspond closely to
current practice, and are often asymptotically optimal [136]. We are deeply in-
terested in systematizing existing tricks of the trade and making them reusable
across problems,47 as well as pushing in new directions (§5).

Quality Control Smaller programs should have fewer bugs. We also hope that
Dyna will allow some attractive paradigms for inspecting and debugging what a
system is doing (§4.5).

Diverse Data Resources We hope that dynabases can provide a kind of natu-
ral interchange format for data resources. They allow flexible representation of
typed, structured data (see §4.4), and Dyna offers an attractive query language
that can be integrated directly into arbitrary computations. It is conceptually
straightforward to convert existing data resources into collections of Dyna facts
that can be stored and queried as in Datalog.48

Ultimately, one could support remote connection to dynabases via the web
(§4.7), with Uniform Resource Identifiers and a standard approach to versioning.
The Semantic Web project would like to connect diverse resources across the web

47 E.g., an alternative to using a software library such as OpenFST (footnote 45) would
be to define the same finite-state computations in Dyna, which can capture them
concisely, and which as a programming language is more expressive. The challenge
is to abstract out the implementation tricks of OpenFST and incorporate them into
the Dyna execution engine, in a general way, so that they will automatically apply
to the resulting finite-state Dyna programs (not to mention other programs).

48 In fact, we are working on flexible syntactic sugar that may make it possible to
directly interpret some existing file formats as Dyna programs.



into one large, interlinked ontology. We agree that there is a vast pool of data
“out there” to draw upon, and believe that Datalog and its extensions are a
strong approach for querying it [122,203].

LogicBlox [127] has already demonstrated that Datalog makes an excellent
language for information warehousing, integration, and management, at scale
within enterprises. We hope to follow in their footsteps.

Diverse Code Resources Dynabases are a useful format for code resources as well.
We do not claim that wrapping Java code (for example) in a dynabase interface
(§4.7) will improve its API. However, computational resources that are natively
written in the Dyna language do have advantages as components of larger AI
systems. First, they can more easily expose their internal hypotheses to be flex-
ibly queried and influenced by another component. Second, query optimization
can take place across the dynabase boundary, as can automatic differentiation.
Third, we suspect that Dyna programs are simply easier for third parties to un-
derstand and modify manually when necessary. They can also be manipulated
by program transformation; for example, [46] shows how to combine two Dyna
programs into a product-of-experts model.

Ad Hoc Experimental Management Dyna suggests an elegant solution to running
collections of experiments. Figure 11b gives a hint of how one could create a
parametric family of dynabases that vary input data, training data, experimental
parameters, and even the models and algorithms. The dynabases are named by
structured terms. Each dynabase holds the results of some experiment, including
all intermediate computations, and can track the provenance of all computations
(by making the hyperedges of proof forests visible as items). Some computations
would be automatically shared across related dynabases.

Using dynabases to store experimental results is quite flexible, since dyn-
abases can be structured and nested, and since the Dyna language can be used
to query, aggregate, analyze, and otherwise explore their contents.

In principle, this collection of dynabases may be infinite, representing an
infinite variety of parameter settings. However, the contents of a dynabase would
be materialized only when queried. Which materialized intermediate and final
results are stored for later use, versus being discarded and recreated on demand,
would depend on the dynabase’s chaining and memoization policies (see §5.2),
as declared by the user or chosen by the system to balance storage, latency, and
total runtime.

4.3 Uses of Change Propagation in AI

Recall that dynabases implement dynamic algorithms: their intensional items
update automatically in response to changes in their extensional input. This
corresponds to “view maintenance” in databases [93,94], and to “self-adjusting
computation” [1,3] in functional languages.



We observe that this kind of change propagation is widely useful in AI
algorithms. Internally, many algorithms simply propagate changes until conver-
gence (see the discussion of message passing in §3.1). In addition, AI systems
frequently experiment with slight variants of their parameters or inputs for train-
ing, validation, or search.

Optimization of Discrete or Continuous Parameters Training a data-
driven system typically runs the system on a fixed set of training examples. It
tries different parameter settings in order to maximize an objective measure of
system performance. A change to an individual parameter may affect relatively
few of the training examples. Thus, the ability to quickly recompute the objective
function in response to such small changes can significantly speed up training
[152].

k-Fold Cross Validation The dual situation occurs when the parameters are
held fixed and the training data are varied. Systems often use cross-validation to
tune some high-level parameters of a model. For example, a language model is a
probability distribution over the strings of a language, and is usually trained on
as much data as possible. “Smoothing parameters” that affect how much prob-
ability mass is reserved for events that have not been seen in the training data
(cf. Figure 4). To evaluate a particular choice of smoothing parameters, cross-
validation partitions the available training data into k “folds,” and evaluates the
method’s performance on each fold when the language model is trained on the
other k−1 folds. This requires training k different language models. However, it
should not be necessary to build each model from scratch. Rather, one can train
a master model on the full dataset, and then create variants by removing each
fold in turn. This removal should not require recomputing all counts and proba-
bilities of the model, particularly when k is large. For example, “leave-one-out”
training takes each sentence to be a separate fold.

Search and Sampling §3.1 already described how change propagation was
useful in backtracking search, local search, and sampling. In all of these cases,
some tiny change is made to the configuration of the system, and all the con-
sequences must be computed. For example, in the DPLL backtracking search
of Figure 12, constraining a single additional variable may have either small or
large effects on reducing the possibilities for other variables, thanks to the arc
consistency rules.

Control and Streaming-Data Systems Systems that process real-world data
have obvious reasons for their inputs to change: time passes and more data is
fed in. Monitoring the results is why commercial database engines such as Or-
acle have begun to support continuous queries, where the caller is continually
notified of any changes to the query result. (This is analogous to functional reac-
tive programming [74] in the functional programming world.) The Dyna version



of continuous queries is discussed in §4.6 below. Example applications include
business intelligence (e.g., LogicBlox [127]); stream processing for algorithmic eq-
uities trading (e.g., DBToaster [5]); user interfaces (e.g., Dynasty [70] and Fruit
[53]); declarative animation (e.g., Fran [74]); query planners and optimizers (see
§5.3); and even (incremental) compilers [33].

In an AI system—for example, medical decision support—sensors may con-
tinously gather information from the world, users may state new facts or needs,
and information integration may keep track of many large, dynamic datasets at
other locations. We would like a system to absorb such changes and draw con-
clusions about the state of the world. Furthermore, it should draw conclusions
about desirable actions—actions such as notifying a human user of significant
changes, controlling physical actuators, seeking more information, or carrying
out more intensive computation. A running process can monitor these recom-
mended actions and carry them out.

4.4 Modularity

Part of the vision of §4.2 is that Dyna should make it possible to manage data
and computational resources from many quarters—all expressed as dynabases.
In this section and the next, we give some additional details of how multiple
dynabases interact, following on §2.7.

Although Dyna has a pure declarative semantics, dynabases resemble classes
in object-oriented languages. Items correspond to member functions, and exten-
sion of dynabases corresponds to class inheritance.

More specifically, Dyna is a prototype-based language like Self or JavaScript
[123,200,62], in which there is no distinction between objects and classes. Objects
inherit directly from other objects. In Dyna, this is accomplished with the new

operator.

Each new dynabase is fully specified at creation time, similar to classes in
[143]. It cannot be modified, but its extensions can be. As with Newspeak classes
[27], each dynabase has its own view of the world: there is no implicit top-level
scope over the system and there is no static state. All imports and information
passing are explicit.

Like objects, dynabases can support information hiding by declaring their
type. The type of a dynabase δ specifies which of its items are output items

and which are input items (some items may be neither or both). Other user-
defined dynabases may only query δ’s output items. The transitive owners of δ
(see footnote 21) may only provide new aggregands to δ’s input items.49

Furthermore, the dynabase’s type may guarantee particular value types for
the output items, and may require particular aggregand types and aggregation
operators for the input items.

49 In the execution engine, however, dynabases must be able to communicate through a
wider interface (§4.6). For example, in (17), a backward-chaining execution strategy
for γ.piglets would require it to query δ.offspring, which may be private in δ.



Type declarations sometimes enable significant optimizations. For example,
input-only items do not have to be stored, as long as they pass updates along
to their consequents. Thus, a dynabase that computes aggregate statistics on
streaming data does not have to store the data stream.

4.5 Debugging Declarative Programs

One may wonder how to debug a declarative program, without printing a confus-
ing trace of its execution. Statistical AI programs can easily have uncaught bugs
(§4.1), and it is important to understand where the results are coming from.

Fortunately, declarative programs that abstract away from the order of com-
putation should make debugging easier, not harder. It is possible to query a
dynabase to find out any of the intermediate results. If those results are not
currently memoized by the dynabase, they will be recomputed on demand using
Dyna rules that define them.

This makes it possible to trace the provenance of any suspicious compu-
tation.50 Dynasty [70] is a tool we have built for browsing through potentially
infinite hypergraphs (see §3.2), using animated graph layout. Other alternatives
would an outline-like GUI, a command-line query interface, a natural language
interface [14].

Suspicious computations themselves can be identified by writing Dyna rules
that detect whether assertions fail,51 or other worrisome conditions hold, any-
where in the dynabase. Such rules may aggregate with |= to detect any instance
of the condition, or max= to find the worst instance. Tracing back from such
detections will identify the particular items that triggered them.

Dyna is additionally amenable to “what if?” debugging. A user may, without
impacting the original computation, extend the dynabase and experimentally
modify some items (in the extension) in order to observe how other items would
respond.

Figuring out why a declarative program is slow may be harder than figur-
ing out why it gives the answer that it does, since the execution strategies are
ordinarily hidden from the user. Fortunately, we plan to expose some internal
activity through “voodoo items” in the dynabase (see §5.3), so it is possible to
inspect this activity by aggregating voodoo items to form a runtime profile of
program activity, by looking at the query plans that are internally produced,
and by tracing queries and updates that match user-specified conditions. (Such
traces could be animated: the user would augment the Dyna program by defin-
ing new items that specify some visual rendering of the scene in terms of the
existing items and voodoo items. A visualization process would monitor the dyn-
abase’s updates to these visual items, and update its rendering accordingly as
the computation evolves.)

50 Though non-stratified programs may end up having only cyclic proofs at convergence.
To truly answer “Why?” in such circumstances requires additional logging of the
execution of the system, e.g., tracing the provenance of timestamped items.

51 Rules of this sort can also be used for integrity constraints. That is, assertions can
fail because of “bugs” in the extensional data, rather than in the program.



4.6 Modes: Interacting with the Procedural World

As a pure declarative language, Dyna has no I/O operations. Hence, all in-
teraction with the world must take place via processes that build or acquire
dynabases and interact with them.52 We sketch the design in this section.

A Dyna program’s rules only specify some dynabase δ of a particular type,
a mathematical object that semantically defines values for various items.

However, a Dyna compiler or runtime environment offers a well-typed pro-
cedural API to δ. The allowed signature of this API is known as δ’s mode.53

Where a dynabase’s type defines what kinds of items it exposes in principle, a
dynabase’s mode defines how it can interact in practice with user processes in
the procedural world:

– Query modes: What kinds of queries will δ answer about its items?

– Update modes: What kinds of update messages can pass through δ’s items?

The dynabase’s full API can be used internally. The public methods of the API
are the means by which running user processes interact with it.

From a declarative point of view, the mode system is regrettable: one would
prefer to simply allow any query or update that is consistent with δ’s type. One
might think that arbitrary queries and updates could be handled at runtime
using an interpreter or a just-in-time compiler. But a mode system still improves
efficiency, because the system can avoid overhead if it can be sure that certain
queries and updates will never occur. The more important reason for a mode
system is that some queries and updates are simply not supportable—or not
supportable by a given implementation of Dyna—because it is not possible to
find an execution plan for them.54 By having each dynabase declare particular
modes that are supported (and keep information about their efficiency), we make
it possible to do mode checking and query planning at a global level: a query or
update mode can be (efficiently) supported if it has an execution plan in terms
of other (efficiently) supported modes.

Every Dyna program declares a mode as well as a type, although as far as
possible these are inferred automatically. Since this paper is not about execution,
we only give a rough sketch of the mode system, and do not discuss explicit
declaration syntax.

52 Rather like the handling of I/O in [76].
53 Here we are using the term “mode” collectively. Just as the type of a dynabase is

a signature that specifies how all of its items are typed, the mode of a dynabase
specifies how of its queries and updates are moded.

54 One cause of this problem is that foreign dynabases (see §4.7 below) tend to offer
only limited modes—since other modes might be difficult to implement, or might
risk producing infinitely many results (see footnote 5). These foreign dynabases are
beyond Dyna’s control, so execution plans cannot possibly access them in ways that
they do not support.



Query and Update Modes A query mode describes both the form of the
query and the form of the response to it, which correspond respectively to the
argument and return types of a query method in the API. For example, the
dynabase (19) might have a mode to support ground queries such as fib(99),
but it might not have a mode for the free query fib(N), which is a request to
find all Fibonacci numbers fib(0)=1, fib(1)=1, fib(2)=2, etc.

Some query modes may support continuous queries [126]. The continuous
query API allows the querying process to register a listener that will eventually
be notified of any future updates to the result of the query, for example as a
result of updates to the extensional data [5]. Continuous monitoring is necessary
to support the reactive applications discussed in §4.3, such as user interfaces,
robotics, stream processing, and medical decision support.

Finally, each query mode also specifies whether its queries are complete or
incomplete queries. A complete query should give results consistent with the
fixpoint semantics of the dynabase (see footnote 14 and the appendix). An in-
complete query [126] may return a faster, provisional result. While this result
may be incorrect, incomplete queries are usually continuous—so that the query-
ing process will listen for updates to this provisional result, which eventually
approaches the correct value as forward-chaining computation proceeds.

Incomplete queries play an important role in the internal inference algo-
rithms (see §5.2). Some external applications may prefer (continuous) incom-
plete queries because early information can be useful: for example, declarative
animation or debugging may wish to track the intermediate states of the sys-
tem as inference proceeds. Finally, some query modes may only be supported
via incomplete queries. The dynabase (19) can more easily support fib(N) as
a continuous incomplete query, initially returning all Fibonacci numbers that
have already been computed, and gradually generating updates to this set as
new Fibonacci numbers are discovered through forward chaining.

What about update modes? An update mode corresponds to an API method
that can be called to apply a specific kind of update to an item or a set of items.
In a typical forward chaining approach (§2.6), the update may be pushed onto
the dynabase’s agenda for later processing. The update mode also determines
the signature of the listener methods that can register with a continuous query.
These listeners will be called with the update when it is popped from the agenda.

Public API The public methods of the API are restricted by δ’s type. They
may be called by processes that use δ. The public part of the API is restricted
to permit only

– those queries that examine the output items of δ;
– those update listeners that monitor the output items of δ;
– those update application methods that increment δ’s input items with new

extensional aggregands, using those items’ proper aggregation operators.55

55 By providing such aggregands, a process acts as if it were a transitive owner of δ
(footnote 21), incrementally specifying new rules that place new aggregands in δ.



Full API From now on, we focus on the mode’s full API, which may be called
internally by a Dyna runtime engine and perhaps also by a privileged debugger.
While it is less restrictive than the public API, it still may not support all
conceivable query modes and update modes.

As an example, δ’s mode may support the query f(3,4,5), which looks up
the value of that term, but not support f(3,Y,Y), which looks up the value of
f(3,Y,Y) for all ground terms Y such that f(3,Y,Y) is not null.

The full API’s query methods for output items will be available in the public
API. So will its update methods for input items, when they use the proper
aggregators.

Mode Checking If δ has a query mode that handles the query f(3,Y,Y),
then Dyna must be able to construct a query plan for that query. If this plan
needs to recursively query the antecedents of the rules defining f(3,Y,Y), then
it must do so using their query modes. If no such plan cannot be found (this may
be checked at compile time), then we have a mode failure: the Dyna program
defining δ should not have declared that it can support this query mode.

Similarly, if δ declares some update mode for f(. . .), then to avoid a mode
failure, Dyna must be able to construct an appropriate update plan. This plan
may require updating consequents of f(. . .) after querying their other antecedents
(i.e., the “passenger queries” of §2.6). These propagated updates and passenger
queries must similarly be licensed by declared update and query modes.

A program may pass type checking (so it specifies a mathematically well-
defined dynabase of the declared type) and yet fail mode checking (meaning
that the dynabase’s declared mode cannot be realized in the procedural world).
For the program to pass mode checking, the Dyna implementation must be able
to come up with plans (possibly inefficient ones) that fully implement its declared
query and update modes. We will briefly discuss such plans in §5.2.

Static checking of query modes is a key design feature of the Mercury pure
logic programming language [139,155]. However, Mercury does not support for-
ward chaining, so there are no update modes.

Form of Query Results Non-ground queries, whether issued by a user process
or by the execution engine, may in general have complex answers. For example,
the query f(3,Y,Z) might return the tiny program

f(3,0,1) := " ".

f(3,Y,Y) := "foo". % a default, used for Y 6∈ {5,8}
f(3,5,5) := "bar". % later := aggregands override earlier ones
f(3,8,8) := $null. % special aggregand says f(3,8,8) has no value

(20)

Thus, a process can only call these update methods if it holds a capability that
transitively owns δ. If not, it can create an extension of δ, which simultaneously
creates a capability that owns the extension. The process may use this capability to
modify the extension, and share the capability with other processes.



which specifies a string value (or explicit lack of value) for each of infinitely many
items that match the query.56

In general, the result of a non-ground query against δ is a partial function
(from provable items that match the query to their values), so it must in general
be returned as a list of rules—i.e., a Dyna program. But how complicated are
these programs allowed to get? After all, would a caller know what to do with the
infinite result (20)? Would it be able to handle an even more complex program,
such as (21)?

f(3,Y,Z) += Y*2 if h(Y) < Z. % non-constant rule body
g(3,Y,Y) += 1. % summation across rules
h(Y) = . . . % auxiliary definition

(21)

Indeed, what stops Dyna from simply returning the original defining rules of δ
as the answer to any query against δ, leaving the caller to do all the work?

The general answer is that each query mode is a well-typed method call that
not only specifies the form of the queries that it will handle, but also guarantees

the form of its result (as in Mercury [155]). For example, a particular query mode
might promise to accept any query of the form f(x,y,z) where x is an integer
constant, and return a finite set of rules of the form f(x,y,z′) = v, where y has
not been specialized and z′ and v are integer constants. Furthermore, it might
promise to return this set of rules as an array of (z′, v) pairs sorted by z′. A query
plan or a user process may wish to invoke this query mode if it is prepared to
process such a result.

Form of Updates Like a query result, an update may be complex in the
general case. Roughly speaking, it too is a program—a list of Dyna rules that
supply new aggregands to items. Why? First, non-ground update rules such as
a(X) += 1 and perhaps even a(X) += X*2 are necessary for execution strate-
gies that forward-chain non-range-restricted rules. Second, updates consisting
of multiple rules are sometimes needed to make explicit the required order of
multiple updates to the same item.57 Finally, a large update consisting of rules
that affect many different items can improve efficiency by allowing set-at-a-time
update processing.

A complication is that the updates to an item do not in general respect
the aggregation operator of the item. For example, one might expect that the
cost_to items in (10) can only decrease over time, since additional aggregands

56 The constant $null in this example is an ordinary value (not null), but has special
meaning to the := aggregator. If the last aggregand of := is $null, then the result
of aggregation is null, as if there were no aggregands. Beyond allowing (20), this
convention enables a dynabase’s owner to retract any := item by supplying a $null
aggregand to it (just as it can change that item’s value to x by supplying a new x

aggregand).
57 Order is significant when the aggregator is :=, or when the updates use different

aggregators (see next paragraph) that do not commute with each other. Often these
rules can be consolidated, simplifying the update program before it is applied.



would be provided via min=. This is indeed true for a constant graph [56]. How-
ever, if we wish to declare update modes for the edge_cost input items that
allow them to be increased or retracted (changed to null), then it is possible
for cost_to items to increase or retract in response, so the dynabase needs to
declare these update modes as well.

Even an apparently innocuous program may have multiple update modes.
For example, the following program uses only a single aggregator:

a += b(X)*X.

a += sqrt(c). % square root, which is the culprit here
b(X) += . . .
c += . . .

(22)

Let us also suppose that b(X) and c only have += update modes. Increments to
b(X) items can be multiplied by X and passed on as += updates to a, thanks to
the distributive property. However, increments to c will have to yield := updates
to the aggregands of a and ultimately to a itself.58

Flow Control A process that is using a dynabase δ is not required to listen to
the updates that δ produces. It can choose whether or not to register listeners
for those updates.

However, another dynabase ϕ that is defined in terms of δ may have to
monitor δ’s updates. We suspect that in some circumstances, this is too expensive
or is actively undesirable. We therefore expect to provide some “flow control”
mechanisms that define snapshots of ϕ in terms of snapshots of δ.

In one setting, δ is constantly changing and the computations in ϕ cannot
keep up. Queries against ϕ (other than incomplete queries) may never be able to
return. Even if they do return, two queries to ϕ may return inconsistent results
because the world has changed in between. Thus, a process using ϕ may want to

58 The reader may wonder we do not try to convert all updates to += updates. It is
true that a := 7 operator to be applied to 5 could be converted to a += 2 update,
at the cost of a subtraction, but this conversion is only valid if the update is applied
immediately (before 5 changes), and is only possible because + happens to have an
inverse operator (whereas min does not).

Conversely, the reader may wonder why not we do not just use := or “delete and
rederive” [94] updates everywhere, as is common [3]. The answer is that += updates
can be more efficient in some situations. First, since they commute with each other,
we are free to apply them in any order via the agenda. Second, updates of the form
+= sparse vector are more efficient than the equivalent := dense vector. Third, +=
updates defer work (computing the sum) that may turn out to be unnecessary, and
they can be usefully prioritized by update size. Fourth, if b(X) values do not support
any queries (e.g., they are input-only items that aggregate streaming data) and only
support the update mode +=, then an implementation can entirely avoid storing the
many b(X) values, simply passing updates through to a. This is not possible if we
need to support := updates to b(X) items—such update strategies need access to
old values of b(X) items (but storing all the streaming data is impractical).



temporarily stall updates to ϕ from δ, to temporarily obtain a consistent picture
of δ’s world and the ϕ world that results from it (similar to “single-answer
semantics” [212]).

In another setting, ϕ contains model parameters or summary statistics that
have been derived from a large training dataset δ. These intensional data were
computed at considerable cost. One would like to permanently detach a stan-
dalone version of ϕ that can be regarded as a stable resource in its own right.
It should no longer depend on δ, even if δ’s mode says that δ may broadcast
updates. Otherwise, any update from δ could cause considerable recomputation
in ϕ. Moreover, it would not be possible to send ϕ overseas without keeping a
remote connection that listens for updates to δ. Note that for ϕ to be detached,
it must compute and store all items that depend on δ.

4.7 Foreign Dynabases

So far, we have assumed that a dynabase is defined by specifying a Dyna pro-
gram: that is, a dynabase literal that contains declarative rules with a particular
semantics. These are native dynabases.

However, a procedural dynabase object could also be implemented in other
ways, as long as it still declares an API as in §4.6.59 We refer to this as a
foreign dynabase. Note that a foreign dynabase may be constant, or it may
declare update modes that allow it to broadcast and/or receive changes.

All dynabases—native and foreign—can communicate about data because
queries, results, and updates are all represented as terms, which exist in a single
universe shared by all dynabases.

Typically, a Dyna program would make use of a foreign dynabase to serve its
needs. For example, foreign dynabases can provide Dyna programs with access
to data resources, by wrapping existing static files or dynamic services in a
dynabase interface.

Foreign dynabases can also provide access to computational resources such
as specialized numerical solvers. The access pattern is as in Figure 11b, with
the role of the parser played by a foreign dynabase rather than Figure 11a. For
example, a Dyna program could give a matrix or a set of constraints to the input
items of a foreign solver dynabase, and then write further rules that make use
of the foreign solver’s resulting output items. Furthermore, some foreign solvers
may be able to accept incremental updates to the input items, and use dynamic
algorithms to rapidly determine find the resulting updates to the output items.
Such dynamic algorithms exist for many matrix and graph computations, and
can be packaged up using update modes in a dynabase API.

59 We have discussed the interface only abstractly. The actual programming interface
might use any convenient message-passing API that allows two dynabase objects to
communicate (within a process, between processes, or over the web), transmitting
the terms in a message via pointers into shared memory or serialization. There is
a vast array of technologies to support such inter-process communication and web
services.



How does a Dyna program get access to a foreign dynabase? Recall that
$load("filename") evaluates to an existing dynabase that is backed by a disk
file. A similar expression might evaluate to a foreign dynabase whose API is
handled by a web service, a persistent daemon, a new object created within the
current process, or a new process that is spawned as a side effect of evaluation.

Even simple arithmetic in Dyna is ultimately handled by a foreign dynabase.
When δ evaluates the item 20+100 (as in (10)), of course it uses procedural code
to do that addition. This procedural code is ultimately accessed by querying a
standard $builtin dynabase—not written in Dyna—in which the item 20+100

has value 120.60 To enable a wider range of Dyna programs and execution strate-
gies to survive mode checking (§4.6), the $builtin dynabase should also support
certain non-ground query modes for relations like +.61

Another useful example is a random dynabase, which maps each structured
term in the Herbrand universe to an independent random number uniformly
distributed on [0, 1]. Conceptually, this dynabase is infinite, but it is materialized
on demand. Query results are stored for reuse if necessary so that the dynabase
remains stable. Here is a simple random walk in two dimensions, where r is a
random dynabase. Exactly one of x or y changes at each time step:

point(T) = new point(T-1). % copy old point
point(T).x += r.dx(T) if r.flip(T) < 0.5. % adjust x
point(T).y += r.dy(T) if r.flip(T) >= 0.5. % or y (but never both)

(23)

A Markov chain Monte Carlo algorithm like Gibbs sampling can be implemented
using time-indexed dynabases in this way. In general, only the useful statistics

60 For 20+100 to have value 120 in δ as well, dynabase literals must be assumed to
extend $builtin, or to begin with a standard prelude that imports items from
$builtin, something like $builtin=$load("builtin"). X =$builtin.X.

61 For example, the rule f(Y+2)=g(Y) requires addition as expected when forward-
chaining an update to g(95), but would require subtraction when backward-chaining
a query to f(97). Technically, the rule desugars into f(Z)=g(Y) whenever Z is Y+2

(see (28) in the appendix), which results in queries of the form Z is 95+2 for forward-
chaining and 97 is Y+2 for backward-chaining. The latter is an inverse query that
asks for provable items matching a particular non-ground term (Y+2) and having a
particular value. Hence, the backward-chaining strategy requires $builtin to invert
the addition operator.

In the case of the neural network topology of Figure 3, all reasonable execution
strategies appear to require inverse arithmetic queries 97 is Y+2, in order to answer
the internal query —weight(hidden(X,Y),pixel(74,97))— (“what hidden nodes does
the input pixel(74,97) connect to?”) using the fact that shared_weight(-1,2) is
provable. (See footnote 24.)

This kind of inverse arithmetic is commonly encountered in logic programming.
Such queries cause Prolog to fail at runtime, cause Mercury to fail at compile time
(thanks to static analysis), and are supported in constraint logic programming [10],
which can even handle 97 is Y+J by delaying the constraint for later manipula-
tion and checking. Our expectation is that Dyna will support 97 is Y+2 but not
97 is Y+J.



computed from the random walk should be output items of the dynabase, so that
the system is not required to remember all of the points or random numbers
along the random walk, nor r itself. In this case, an efficient implementation
could simply modify point(T-1) in place to obtain point(T).

5 Execution Strategies

Dyna is, fundamentally, an attempt to find a set of broadly useful computational
abstractions. Although its design has been inspired by a range of use cases in
statistical AI, expanding outward from parsing, it is not designed with a par-

ticular AI application in mind but rather hopes to unify common techniques
across applications. Dyna attempts to follow in the fine tradition of “fast Pro-
logs” such as XSB [210], Mercury [139], and IISProlog [154] by providing an
expressive, usable, efficient substrate upon which to experiment with declarative
specifications.

5.1 Dyna 1

Our first prototype of Dyna [69,68] was a single-dynabase, agenda-driven, forward-
chaining, semiring-weighted Datalog that allowed non-stratified aggregation, non-
flat terms, and change propagation. Rules in Dyna 1 remained range-restricted,
and the whole program had to be within one semiring (see §3.3) as in [87].
The implementation supported provenance queries and reverse-mode automatic
differentiation.

A Dyna 1 program compiled into C++ classes that could be called by a
procedural program.62 The compiler generated custom pattern-matching code
and data indices suitable to run the general forward-chaining strategy of §2.6 on
the particular rules of the input program, where the indices supported the query
modes required for passenger queries against the chart. A non-standard priority
function to order the updates on the agenda (see §5.2) could be specified in C++
by the user. The compiler generated custom classes to represent the different
types of terms, and stored both the terms and the indices in hash tables.

For simplicity, the Dyna program was transformed before compilation into
a binarized form where each rule had at most two antecedents. This folding

transformation effectively chose a fixed join order for multi-way joins. The inter-
mediate items introduced by the folding transformation had to be materialized
and stored in the chart at runtime, like all items.

Despite this one-size-fits-all approach, which limited expressiveness and speed
[69], Dyna 1 was asymptotically efficient [136], and has been used successfully
in many novel papers on statistical AI (on parsing [183,60,185,72,64,71], gram-
mar induction [58,192,191,189], machine translation [73,187,46,109], finite state
methods [176,190,193,63], and others [184,188]) as well as in classroom instruc-
tion [194,65].

62 This approach resembles (e.g.) the convex optimization “parser-solvers” of [135],
which also consume high-level descriptions of problems and emit specialized solvers.



The present paper constitutes an overview of the next version of Dyna, which
is currently under development. The new language design is much more expres-
sive and will support the various examples in this paper. The storage and exe-
cution strategies will also be much more flexible. We are investigating support
for specifying data layout (and indexing) and declarative control of execution.
In the rest of this section, we touch briefly on some of these topics.

5.2 Beyond Forward Chaining

In §2.6, we showed how a shortest-path program in Dyna (10) would be executed
by a pure forward-chaining strategy. We now sketch several reasons why addi-
tional strategies are necessary or desirable. (In §5.3, we will discuss in slightly
more detail how such strategies can be specified.)

Prioritization Even executing this simple, range-restricted, semiring-weighted
program becomes more complex if we wish to be as efficient as Dijkstra’s shortest-
path algorithm [56]. To match that behavior, we must prioritize the updates on
the agenda by the update value. We should also carry out updates at push time
rather than pop time (a strategy that is correct, efficient, and space-saving for
this program, because min is idempotent, but not for all programs).

Convergence Dijkstra’s algorithm also exploits the fact that with the priori-
tization above, cost_to("nyc") converges as soon as we pop the first update
to it (provided that the graph is static and has no negative-weight edges). Rec-
ognizing this early convergence63 can enable us to respond quickly to a specific
query cost_to("nyc") rather than waiting until the agenda is empty.

Generalized Updating We noted earlier (§4.6) that when a Dyna program is
not semiring-weighted, updates on the agenda do not always simply increment
some item’s value using its aggregation operator. We must be able to process
updates of other sorts, consistent with update mode declarations: replace, re-
tract, increment, invalidate, delete-and-rederive, etc. This can require additional
data structures (e.g., to rapidly change or retract aggregands to min= without
recomputing the minimum from scratch).

We must also choose which types of updates to generate, consistent with
update mode declarations. Constructing these updates may require exploiting
arithmetic identities such as distributivity, idempotence, additive inverses, anni-
hilators, etc. For example, the result of max= can be maintained with a priority
queue, and strategies can rely on the fact that max is idempotent. By contrast,
maintaining += requires a slightly larger data structure, and must avoid double-
counting because + is not idempotent; however, it can take advantage of subtrac-
tion to remove summands, whereas max does not have a corresponding inverse

63 This is a special case of A* search, and is related to the branch-and-bound strategy
in footnote 36.



operator. The |= aggregator only needs to keep track of whether it has at least
one aggregand and at least one true aggregand (see footnote 65).

There is a substantial recent literature on update propagation, spanning de-
ductive databases [16], relational databases [172], streaming data [5], logic pro-
gramming [175], and functional programming [3]. We believe that our general
setting presents interesting new challenges for update propagation (in particu-
lar, non-ground updates, non-replacement updates, mode restrictions on plans,
and the desire to match the performance of hand-built algorithms by exploiting
in-memory data structures and arithmetic properties of the aggregators).

Backward Chaining and Memoization Rather than computing all provable
items and storing all of them in the chart, we may wish to reduce computa-
tion and storage space by computing some of them only on demand (backward
chaining).64

Once an item’s value (or null) is computed on demand by backward chaining,
that value (or null) may be permanently or temporarily memoized by storing
it in the chart for reuse [197,206]. In our view, the role of forward chaining (§2.6)
is to keep any such memos up to date when their transitive antecedents change
(e.g., because the extensional data change).65

Exploiting this insight, we can use a chart that stores memos for some ar-
bitrary subset of the items [210,2], while saying nothing about other items. At
a given time, some memos may be out of date, but in that case, there will be
updates pending on the agenda that will eventually result in correcting them via
forward chaining. We allow memos to be discarded at any time.66

The natural strategy for maintaining such a chart is a mixture of backward
chaining (to query unmemoized items) and forward chaining (to update memos).
Pure backward and forward chaining are the extreme cases where nothing and
everything are memoized, respectively. In the latter case, all memos are initially
null, and forward chaining is needed to revise them. We omit the (interesting)
details here. To instantiate such a strategy for a specific set of Dyna rules, the

64 Backward chaining is lazy computation, which answers a query about a rule’s con-
sequent (head item) by combining the results of various queries about its antecedents
(body items). By contrast, forward chaining (§2.6) is eager computation, which
propagates updates from a rule’s antecedents to its consequents, using an agenda.

65 Note that when one of the aggregands to an item is an annihilator (e.g., true for
|=, 0 for *=, or −∞ for min=), updates to the other aggregands do not need to be
reported: they will have no effect on the annihilated value. This is a generalization
of short-circuit boolean evaluation and the “watched literals” trick of [145,84].

66 This approach is more flexible than previous work, to our knowledge. Still, partial
materialization has been previously investigated in several pure-language systems.
∆ML [3] is a version of ML augmented to support change propagation, and mech-
anisms have been proposed for both coarse and fine-grained control over its memo
tables [2]. LolliMon [132] and Ciao [44] allow forward and backward chaining in
the same program, but only in different strata. DSN [43] allows the programmer to
specify sizes of memo stores, but apparently does not ensure that information is not
lost.



Dyna execution engine must come up with specific query plans and update plans
that also satisfy the mode declarations of §4.6.

Indexing A query first checks whether its answer is memoized in the (finite)
chart. Indexing the chart can speed up this search. An index is really a memoized
query that can be used as part of a larger query plan, but which like any memo
must be kept up to date by forward chaining during its lifetime. We wish to
choose optimal indices that balance the cost of queries with the cost of index
maintenance

For example, when forward-chaining (10), it is necessary to query
edge_cost("bal",V) whenever cost_to("bal") is updated. These frequent
passenger queries are much faster when edge_cost is indexed on its first ar-
gument.67 Furthermore, this index is cheap to maintain because the edge_cost
relation that defines the graph rarely changes. By contrast, there is little need to
speed up the passenger query cost_to("bal"), since it only arises when some
edge_cost("bal",v) changes.

We can also allow partial indices. A single entry within the edge_cost index
above, such as the list of out-edges of "bal", is really just a memo storing the
result of a particular non-ground query, edge_cost("bal",V). Like any memo,
it must be kept up to date, which requires extra forward chaining (i.e., index
maintenance). However, like any memo, it can always be individually flushed,
since it could be recomputed later on demand.

Query Planning Finally, we wish to choose optimized query plans to instanti-
ate rules during backward and forward chaining. This is the point at which the
connection to Datalog is perhaps most relevant. For example, there are several
strategies for handling the 3-way join in the parsing program of Figure 8.68 In
the DPLL program of Figure 12, the order in which one searches for a true

value among the disjuncts of |= (“value ordering”) can be crucial, as can the
free choice of a next variable by ?= (“variable ordering”).

Query planning is more complicated in Dyna than in Datalog. The plan
(e.g., a particular nested-loop join order) must be chosen such that the recursive
queries will have modes that are supported by the dynabases receiving them
and produce results that are useful to the query plan. Recall that the result of
a recursive query is not necessarily a finite, materialized relation, but may itself
be an intensional relation defined by a Dyna program (§4.6).

Storage Within a particular dynabase, certain types of terms are frequently
constructed, stored, and accessed. An implementation can benefit from iden-

67 Or better yet, stored as a graph adjacency-list structure, with the interned string
"bal" directly storing a list of weighted edges to its neighbors.

68 Furthermore, one could choose a “subset-at-a-time” strategy such as processing all
items of the form phrase(X,i,j) as a group. This is actually common in parsing
algorithms. It increases the space of join strategies since every query or update now
has additional free variables, such as X.



tifying these common types and storing them in dedicated classes with more
compact layout, interning, function specialization for operations like unification,
and so on.

Program Transformation In some cases it is possible to transform the Dyna
program into another Dyna program that is asymptotically more efficient, using
a variety of techniques that we reviewed, extended, or proposed in [67].69

5.3 Controlling Execution

The previous section illustrates the range of storage and execution strategies
available for Dyna programs. This raises the question of how to describe and
select specific strategies. User-defined pragmas or flags would be one approach.
However, it can be more efficient to adapt the strategies to a particular workload.

We are developing declarative mechanisms that allow a Dyna program to
reflect on itself and control its own execution. We use the term voodoo com-

putation for these occult interactions. A dynabase may define some special
voodoo output items70 whose values are consulted by a Dyna runtime imple-
mentation and affect its choices about how to perform other computations. The
value might change over time as the item receives update messages.

Typically, a voodoo output item is a structured term that describes how
to handle some other item,71 update, query, rule, etc. in the dynabase. For
example, if α is an item being computed by backward chaining, then the Dyna
runtime implementation may want to know what query plan to use and whether
to memoize the result. If α is being updated by forward chaining, then the
runtime may want to know which update modes are preferred (when there is a
choice) and where to prioritize the update on the agenda.

To answer these questions, the system will query the dynabase’s voodoo
items.72 A Dyna programmer is free to write any Dyna rules to define the values

69 As well as other strategies, such as hierarchical A* search [77] (roughly a general-
ization of the magic sets transform to certain weighted min= programs); the branch-
and-bound technique we discussed in footnote 36 (which is related to the magic
conditions transform of [148]); and surely others yet to be discovered.

70 Recall from §4.4 that a dynabase’s output items are intended to be read by others,
while input items are intended to be written by others.

71 The handling of voodoo items themselves might be dictated by yet more voodoo
items. The regress ends where voodoo items are undefined, or defined by very simple
rules that require no planning, at which point default strategies can be applied.

72 A complication is that the system may want information about a non-ground term
such as a rule, a non-ground query, a non-ground entry in the chart, a class of terms
that match a particular pattern, an index, etc. Unfortunately, in §2.3 we noted
that the value relationship is between pairs of ground terms. To allow assertions
and reasoning about non-ground terms, we employ a new kind of primitive Dyna
object, the frozen term. Frozen terms are in one-to-one correspondence with the
full universe of Dyna terms, but they are regarded as unanalyzed primitive objects



of these items. Notice that a single rule may define the values of many voodoo
items. For example, something like73

$priority(phrase(X,I,J)) = I-J. % a negative integer (24)

says that updates to narrower phrases should have higher priority on the agenda
than updates to wider phrases. This is a well-known parsing strategy, essentially
the CKY algorithm [211].

The voodoo rules become more interesting if they depend on the data. For
example, in place of the simple rule (24), the priorities of updates to CKY’s
various phrase items may be determined by a dynamic-programming analysis of
the entire input sentence [35,96,169,115,39,77]—which can be written directly in
Dyna. Clever prioritization of this sort can result in much faster convergence to
the correct answer; examples include A* or best-first search.

As another example, the choice of a query plan might depend on aggregate
statistics of the data such as cardinalities, selectivities, and histograms—which,
again, can be easily maintained by Dyna. Dyna’s prioritized agenda means that
some of these statistics can be kept up to date more aggressively than oth-
ers, allowing the system to vary between the traditional extremes of proactive
(scheduled) and reactive (eager) strategies [95,40].

Voodoo rules may also depend on the current or historical system state.
Such state can be exposed through voodoo input items that are automatically
updated by the system as it executes. For example, the estimated cost of a query
plan or the estimated future value of a memo may depend in part on factors such
as which indices are currently memoized, where various data currently reside in
the memory hierarchy, and how long various operations have taken in the recent
past. As another example, whether the result of a complete query is considered
to have converged sufficiently may depend on summary statistics derived from
the current contents of the agenda.

In general, the essential idea of voodoo items is that a dynabase that spec-
ifies some expensive computation can define some cheaper computations which
may guide the runtime through its execution. We are considering the design
of voodoo items to help control memoization policies, indexing policies, storage
layout, pruning of updates [150,103] (a common technique that improves speed
at the expense of accuracy), and partitioning of the computation across a clus-
ter. Finally, we are interested in using AI techniques—reinforcement learning
and other search and learning methods—to help identify the best policies for a
particular program and workload.

and therefore as ground (variable-free). We provide operators that freeze and melt
terms according to this one-to-one correspondence.

73 In this context, the phrase(X,I,J) item names are not replaced by their values
but are treated simply as terms. The system uses only incomplete queries (§4.6) to
consult $priority items, in order to avoid a Catch-22 where the agenda must be
used to create the priorities on the agenda.



6 Conclusion

We have described our work towards a general-purpose weighted logic program-
ming language that is powerful enough to address the needs of statistical AI.
Our claim is that modern AI systems can be cleanly specified using such a lan-
guage, and that much of the implementation burden can be handled by general
mechanisms related to logical deduction, database queries, and change propaga-
tion. In our own research in natural language processing, we have found a simple
prototype of the language [69] to be very useful, enabling us to try out a range
of ideas that we otherwise would have rejected as too time-consuming. The new
version aims to support a greater variety of execution strategies across a broader
range of programs, including the example programs we have illustrated here.

A Formal Semantics

For the interested reader, this appendix sketches a provisional formal seman-
tics for the version of Dyna described in this paper. (We have not proved its
correctness.) Obtaining the behavior outlined in §2.7 requires particular care.

Terms Dyna’s universe of terms is similar to Prolog’s, with small extensions.
A term is a primitive term, a structure, or a variable. A primitive term is a
number, a string, a foreign object,74 a literal dynabase, or a foreign dynabase.75

A structure is a functor such as sibling paired with a list of zero or more
terms, known as the arguments. The special functor ⋄ is not available in the
Dyna language and is used to construct extended dynabases (see below).

A term is a ground term if it is either a primitive term or a structure
whose arguments are ground terms. G denotes the set of all ground terms (the
Herbrand universe), and Gstruct the set of all ground structures.

Some examples of ground terms as they would be written in Dyna’s surface
syntax are

– "nyc" (a string literal)

– alice (a structure with 0 arguments)

– sibling(bob,dave) (a structure with > 0 arguments, or “compound term”)

– 3+4*5 (syntactic sugar equivalent to ’+’(3,’*’(4,5)))

– a += 100 (syntactic sugar equivalent to ’+=’(a,100))

– {a+=100. b(X)=a*X.} (a literal dynabase; again, this is a ground term)

– transpose({element(I,I)=1.}) (a structure with a dynabase argument)

74 Allowing foreign objects to appear in items’ names or values allows dynabases to
store and manipulate arbitrary objects passed in from the procedural world. It also
permits extending the built-in primitives beyond numbers and strings.

75 Footnote 72 discusses an extension to another kind of primitive term, the frozen

term.



Term Types and Groundings A type is a subset of G. An untyped variable76

such as X has the unrestricted type G. A typed variable ranges over only ground
terms of its type; for example, int Y is a typed variable that ranges over integers.

If τ is a possibly non-ground term, then Gτ—the set of groundings of
τ—consists of the ground terms that can be obtained by consistently replac-
ing each variable that occurs in τ with some ground term of the appropriate
type. For example, if τ = f(X,g(X,int Y)), then Gτ contains the grounding
f(s(z),g(s(z),3)).

Dyna’s type system [198] permits all types of the form Gτ (note that this
includes constants and product types), as well as finite unions of other types
(i.e., sum types), recursive types such as lists, and primitive types (integers,
strings, foreign primitive types, and dynabase types as sketched in §4.4).

Types are useful to improve the efficiency of storage and unification, to catch
programming errors (see footnote 80), and occasionally to explicitly restrict the
groundings of a rule.

Dynabases A dynabase is either a foreign dynabase or a native dynabase. A
foreign dynabase is not implemented in the Dyna language but provides the
same interface as if it were (§4.7). A native dynabase is either a literal dynabase
or an extended dynabase. A literal dynabase specifies a totally ordered multiset
of rulesRδ as well as optional declarations. An extended dynabase arises when
one dynabase δ uses the construction new ε.77 As detailed later, the resulting
extended dynabase ϕ is a 4-tuple of terms having the form ⋄(ε,δ,·,·). Its first
two arguments are the parent ε and the owner δ (see §2.7). In general, we will
refer to the first two arguments of an extended dynabase ϕ via the accessors ↑pϕ
and ↑oϕ, which are undefined if ϕ is not an extended dynabase.78

Valuations For each dynabase δ, it is possible to determine from declarations
an item type Iδ ⊆ Gstruct and a valuation type Vδ ⊆ Iδ×G.79 This determines
which items might be defined in δ and what types their values have. An item
α ∈ Iδ is said to have value type Vδ(α) = {γ ∈ G : (α, γ) ∈ Vδ} in the dynabase
δ. (The term α may have a different value type in other dynabases where it is
also an item.)

76 As in Datalog and Prolog, variables are denoted by capitalized identifiers.
77 Any extension of δ that calls new on the same ε will own a different extension of ε.
78 The dynabase literal in (14) appears to refer to a variable outside the literal. How-

ever, we treat this rule as syntactic sugar for

transpose(Matrix) = new {element(I,J) = $arg(1).element(J,I).}.
transpose(Matrix).$arg(1) = Matrix.

which involves a true dynabase literal. Notice that the new operator creates a sepa-
rate extension of the literal dynabase for each grounding of the rule (each value of
Matrix).

79 Type declarations may be omitted, in which case they will be inferred from the
stated declarations and rules.



Each dynabase δ provides a valuation function J·Kδ : Iδ → G, which is a
partial function that maps items to their values. This function defines the correct
results for queries against the dynabase. The function must be consistent with
the dynabase’s valuation type, in the sense that for all α ∈ Iδ, either JαKδ is
undefined (i.e., α is null) or else JαKδ ∈ Vδ(α).

80

Constraints on Valuation A native dynabase’s valuation function J·Kδ is de-
fined by rules and declarations that specify, for each item α ∈ Iδ, an aggregation
operator ⊕α = that produces values in Vδ(α), and a collection of 0 or more
aggregands Aδ(α) ⊆ G, as defined below.

The sequence of rules R̄δ is totally ordered. The aggregand collection Aδ(α)
is a multiset (allowing multiple instances of the same aggregand value) under a
total preorder (which is like a total ordering but permits ties). The aggregation
operator ⊕α= may refer to the ordering of its aggregands Aδ(α), and in par-
ticular, := does so. We define later how to identify the rules and aggregands;
the declarations of aggregation operators are ordinarily inferred from the surface
form of the rules.

More precisely, the rules and declarations constrain rather than define the
valuation function: JαKδ is constrained to equal the result of aggregating Aδ(α)
with ⊕α=, or to be undefined if this result is null. As mentioned in §2.4 and §3.3,
Dyna cannot guarantee that there is a unique solution to this set of constraints.
Thus, queries against the dynabase are permitted to use any valuation function
J·Kδ that satisfies the constraints: that is, any supported model [9]. For consis-
tency, multiple queries to the same dynabase must consult the same valuation
function—this is the “single-answer semantics” of [212]. If no consistent valu-
ation function exists, then queries must use a relaxed valuation function that
satisfies the constraints on a maximal subset of the items, and maps the other
items to an error value.81

Errors are in general treated like ordinary values. In addition to the above
case, aggregators may also produce error values, as may queries to foreign dyn-
abases such as $builtin (see §4.7). For example, it is an error for = to have more
than one aggregand, or to divide by zero. Aggregating error values, or evaluating
items such as 2*error that contain error values, generally produces further error
values. However, it is possible to define versions of operations that can recover
from certain errors: for example, if an error is disjoined with true or multiplied
by 0, the result may be an ordinary value. This resembles catching of exceptions.

80 If α 6∈ Iδ, it is a type error for a program to try to evaluate JαKδ or contribute
aggregands to it. It is also a type error to violate the additional information hiding
constraints imposed by the declared type of δ (§4.4).

81 Suppose δ is defined by the rules a=a+1 and b=2. The only maximal consistent relaxed
valuation function has JaKδ = error, JbKδ = 2. It is possible that querying a or even
b on this dynabase will fail to terminate; but in general, better execution algorithms
will terminate (quickly) on a wider range of queries.



Queries The valuation function J·Kδ is used to answer queries against the dyn-
abase δ, both queries made by an external process and those needed internally
during forward or backward chaining. A ground query requests the value JαKδ
of a single item α. A non-ground query requests the values of all groundings
of a term τ whose values are defined: that is, it requests the restriction of the
valuation function J·Kδ to the domain Gτ . A general query requests the re-
striction of J·Kδ to a particular subset of the valuation type Vδ; e.g., the query
"bar" is f(6,Y) requests all (item, value) pairs where the item grounds f(6,Y)
and has value "bar". This allows “inverse queries” that constrain the value as
well as the item, which is sometimes necessary during inference (see footnote 61).

Rule Normal Forms While Dyna supports a flexible syntax for writing rules,
internally rules have a uniform representation. The transformation from surface
syntax to internal form proceeds in three stages: (1) a conversion to an admin-

istrative normal form [80], (2) a rewrite that prepares rules for inheritance
and ownership, and finally (3) a rewrite that gives unique names to new objects.
We will illustrate with a few small examples.

Administrative Normal Form Evaluated subterms that appear in the head or
body are now desugared by identifying these expressions and making their evalu-
ations explicit as preconditions in the rule body.82 Recall that the precondition
γ is α means that γ is the value of α.

1. For example, the simple rule

sum += f(X) whenever X > 5. (25)

is rewritten to

sum += true is X > 5, F is f(X), F. (26)

2. Consider the rule from (10)

cost_to(V) min= cost_to(U)+edge_cost(U,V). (27)

Making nested evaluations explicit, this becomes

cost_to(V) min= A is cost_to(U),

B is edge_cost(U,V), C is A+B, C.
(28)

3. Here is a more complex rule in which the head and body items are in other
dynabases, and in which there is evaluation within the head:

db(g(I)).f(X) += db2(I,J).h(X). (29)

82 Dyna’s surface syntax allows syntactic operators and declarations that affect the
de-sugaring process by explicitly suppressing or forcing evaluation, something like
LISP’s quote, eval, and macro or NLAMBDA forms. The details need not concern
us here.



is, in administrative normal form,

DB.f(X) += DB is db(G), G is g(I),

DB2 is db2(I,J), H is DB2.h(X), H.
(30)

4. To see how a rule with new transforms, consider

c(I,J) = pair(new I, new I). (31)

The new expressions evaluate, yielding

c(I,J) = N1 is new I,

N2 is new I, pair(N1,N2).
(32)

Parametric Normal Form To support inheritance and ownership of dynabases, as
in §2.7, our rules are further normalized to be parametric over dynabases. This
form allows the same rule to participate in defining multiple dynabases. The
head item never contains ., but all body items do. The conversion to parametric
normal form introduces three special variables that were not permitted in ad-
ministrative normal form. They will be bound to particular dynabases when the
rule is used, as described later. The special variables are _E (“evaluation”—the
dynabase that evaluates body items by default), _D (“destination”—the dyn-
abase that receives the head item), and _M (“match”—the dynabase that was
originally defined by a literal dynabase or an owner to receive the head item,
before any extension).

To convert an administrative normal form rule into parametric normal form,

– Make body evaluations not qualified with . instead qualified with _E..
– Case-analyse the head:

• If the head is of the form V.τ , replace it with τ and add the precondition
that _M = V.

• Otherwise, add the precondition that _D = _E.

Continuing the examples from above,

1. The rule from (26), having no . in the head, becomes

sum += _D = _E, true is _E.(X > 5), F is _E.f(X), F. (33)

2. (10)’s normal form (28) similarly is rewritten as

cost_to(V) min= _D = _E, A is _E.cost_to(U),

B is _E.edge_cost(U,V),

C is _E.(A+B), C.

(34)

3. Since (30) does not have a . in the head, it is rewritten thus:

f(X) += DB = _M, G is _E.g(I),

DB is _E.db(G), DB2 is _E.db2(I,J),

H is DB2.h(X), H.

(35)

4. Our last example, (32), has a head without . and has no body evaluations,
so its parametric normal form is very close to its ANF:

c(I,J) = _D = _E, N1 is new I,

N2 is new I, pair(N1,N2).
(36)



Diamond Normal Form Finally, suppose the rule r appears in the parametric
normal form rule sequence Rδ, where δ is a dynabase literal. Each operation
new p in r is replaced with a construction of a particular extended dynabase
using ⋄. The ⋄ structure must capture the parent p and owner _E as well as
uniquely identifying which new in δ this is, and values of other variables in the
rule (Vs). For example, c(I,J) in (35) defines a pair of distinct new dynabases,
each with its own name, for each of the (I, J) pairs. Similarly, in line 2 of
Figure 12, a single new creates a separately extensible child(Val) for each Val.

– Let [V1, V2, . . .] be a list of all variables in r except those for which r has
a precondition of the form V is new · and also excluding _D, _E, and _M.

– Add a precondition Vs = [V1, V2, . . .] to r, where Vs is a fresh variable.
– Replace each precondition of the form Ni is new p (where p is either a

variable or a dynabase literal value) with the following version:
Ni = ⋄(p,_E,n,Vs), where n is a unique identifier for this particular new

token.83

Our examples without new are unchanged; if (36) is the only rule in the dynabase
literal ϕ that contains it, then it might be rewritten as

c(I,J) = _D = _E, N1 is ⋄(I,_E,[ϕ,1],[I,J]),
N2 is new ⋄(I,_E,[ϕ,2],[I,J]), pair(N1,N2).

(37)

Collecting Rules For A Dynabase To obtain the constraints on a native
dynabase δ’s valuation function, we must collect the set of rules R̄δ that might
contribute aggregands to its items. Each dynabase literal δ specifies a finite
sequence of rules, Rδ, which we assume to be in diamond normal form. For any
native dynabase δ, we must collect the relevant rules by recursively traversing
its parent and owner, supplying preconditions which specify _D, _E and _M. In
the following algorithm, when recursively collecting the rules of γ because they
are relevant to δ, we concatenate rules from ↑p γ, then Rγ , then rules from ↑oγ.

For all δ, we define R̄δ as R̄p
δ,δ,δ(δ), which collects all the rules of δ.

This invokes the parent rule collection function R̄p. In general, R̄p
δ,ε,µ(γ)

denotes the set of rules from γ for which δ, ε, and µ can jointly play the roles
of _D, _E and _M, respectively, when γ is δ or one of its transitive parents. We
compute it as the ordered concatenation of

1. R̄p
δ,ε,↑pµ

(↑p γ), if ↑p γ is defined,
2. rules from Rγ , with additional preconditions _D = δ, _E = ε, and _M = µ.
3. and, if ↑oγ is defined, R̄o

δ,↑oγ,µ
(↑oγ).

The final step above invokes the owner rule collection function R̄o. In general,
R̄o has the same meaning as R̄p when γ is reachable from δ by following parent
and/or owner links, but is not δ or one of its transitive parents. We compute it
as the ordered concatenation of
83 One such identifier is a triple of δ, the rule r’s position within δ, and the position

within the rule of the new being rewritten.



1. R̄o
δ,ε,µ(↑p γ), if ↑p γ is defined,

2. rules from Rγ , with additional preconditions _D = δ, _E = ε, and _M = µ.
3. and, if ↑oγ is defined, R̄o

δ,↑oγ,µ′(↑oγ), where, if µ matches ⋄(ϕ,ε,n,Vs), µ′ is

⋄(ϕ,γ,n,Vs),84 or µ otherwise.

Aggregands Each dynabase δ has a finite sequence of rules R̄δ, as defined by
the above collection. Contributions to an aggregand collection Aδ(α) are totally
preordered by γ1 . γ2 iff R1 ≤ R2 in the sequence R̄δ, where Ri is the unique
rule that contributed the aggregand instance γi to the collection.

Each grounding of a normal-form rule in R̄δ has the form

α ⊕α= β1, . . . , βk, γ.

where γ ∈ G is a ground term. This grounding contributes γ to the collection of
aggregands Aδ(α) iff all the conditions βi are true (in which case, α ∈ Iε).

Each precondition βi has one of the following forms:

– γi is ϕi.αi, where γi ∈ G and αi ∈ Iϕi
. This condition is true iff γi =

JαiKϕi
.

– γi=γ
′
i, where γi, γ

′
i ∈ G. This condition is true iff γi = γ′

i.
85

Note that the constraints on J·Kδ may refer to J·Kϕ, because of the interpre-
tation of γi is ϕ.αi preconditions. Furthermore, (17) shows that J·Kδ and J·Kϕ
may depend cyclically on each other. Thus, in general it is necessary to solve
constraints jointly across multiple dynabases. In other words, to answer queries
against δ, one must solve for portions of the two-place valuation function J·K·,
which defines the value of all items in all dynabases.
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