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ABSTRACT
In this paper we argue that developing information extrac-
tion (IE) programs using Datalog with embedded procedu-
ral extraction predicates is a good way to proceed. First,
compared to current ad-hoc composition using, e.g., Perl or
C++, Datalog provides a cleaner and more powerful way
to compose small extraction modules into larger programs.
Thus, writing IE programs this way retains and enhances the
important advantages of current approaches: programs are
easy to understand, debug, and modify. Second, once we
write IE programs in this framework, we can apply query
optimization techniques to them. This gives programs that,
when run over a variety of data sets, are more efficient than
any monolithic program because they are optimized based
on the statistics of the data on which they are invoked.
We show how optimizing such programs raises challenges
specific to text data that cannot be accommodated in the
current relational optimization framework, then provide ini-
tial solutions. Extensive experiments over real-world data
demonstrate that optimization is indeed vital for IE pro-
grams and that we can effectively optimize IE programs
written in this proposed framework.

1. INTRODUCTION
Suppose an application must extract structured informa-

tion (e.g., person names, paper titles, meetings) from a large
set of text documents. How should we develop and execute
such extraction (IE) programs? Given the wide variety of
real-world applications that must extract information from
text (e.g., [11, 13], see [3, 9, 12] for recent tutorials), pro-
viding efficient support for developing and executing IE pro-
grams has become increasingly important.

Unfortunately, even though several approaches have been
widely used to develop IE programs, none of them has been
very satisfying. Perhaps the most straightforward approach
is to employ an off-the-shelf, monolithic IE “blackbox.” This
approach however severely limits the expressiveness of IE
programs that can be developed. Hence, the most popu-
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lar approach today is to decompose an IE task into smaller
subtasks, apply off-the-shelf IE blackboxes (whenever ap-
propriate) or write hand-crafted code to solve each subtask,
“stitch” them together (e.g., using Perl, Java, C++), then
perform any necessary final processing. This approach is
very powerful, but generates large IE programs that are very
difficult to understand, debug, modify, and optimize.

In response, a recent approach has proposed composi-
tional frameworks for developing IE programs. A prime
example of such frameworks is UIMA [14]. UIMA proposes
an “object-oriented” language with standard object APIs.
This language allows developers to code each IE subtask as
an extraction object, then compose new extraction objects
from existing objects. UIMA represents each IE program
as a workflow whose nodes communicate via some commu-
nal “blackboards.” UIMA-like languages can make writing,
debugging, and modifying IE programs much easier. But op-
timizing IE programs written in such languages has proven
to be difficult, and so far no solution has been proposed, to
the best of our knowledge.

Optimization, however, is vital for any practical approach
to developing and executing IE programs. Many real-world
applications increasingly must run complex IE programs
over large data sets, and unoptimized programs often take
days or weeks to run, an unacceptably long time. As a con-
crete example, consider DBLife at dblife.cs.wisc.edu, a struc-
tured portal for the database community that we have been
developing [11]. For certain IE tasks in DBLife our unopti-
mized IE programs (written by stitching together multiple
modules) took more than a day over 110+ MB of data, an
unacceptable runtime because we have to rerun the IE pro-
grams every single day (over newly crawled data) to keep
DBLife fresh. Similar stories are reported at IBM Almaden
[22] and Yahoo! Research, and the importance of IE opti-
mization was also underscored in a recent KDD tutorial [3].
Optimization turns out to be crucial even when IE programs
take only hours to run, because it enables fast response time
for debugging and development.

Given the limitations of current approaches, in this paper
we argue that developing IE programs using Datalog with
embedded procedural predicates is a good way to proceed.
By this we mean Datalog programs that allow user-defined
predicates that are pieces of procedural code (e.g., in Perl,
Java, C++). Figure 1.a shows a tiny such program, which
extracts all titles and associated abstracts of talks from text
documents. Here docs(d) is an extensional predicate, as de-
fined in traditional Datalog. The other predicates however
are procedural predicates: pieces of code cleanly encapsulated



(a) σapproxMatch(d,“relevance feedback”)

extractAbstract(d,abstract)

σapproxMatch(abstract, “relevance feedback”)σimmBefore(title,abstract)

extractTitle(d,title)

docs(d)docs(d)

σapproxMatch(d,“relevance feedback”)

(c)

extractAbstract(d,abstract)

σapproxMatch(abstract, “relevance feedback”)σimmBefore(title,abstract)

extractTitle(d,title)

docs(d)docs(d)

(b)

titles(d,title) :- docs(d), extractTitle(d,title).
abstracts(d,abstract) :- docs(d), extractAbstract(d,abstract).
talks(d,title,abstract):- titles(d,title), abstracts(d,abstract),

immBefore(title,abstract), approxMatch(abstract,“relevance feedback”).

Figure 1: (a) An IE program in procedural Datalog, and

(b)-(c) its execution plans on two different data sets.

and “plugged” into the Datalog rule.
We argue that Datalog with embedded procedural pred-

icates is a good way to proceed for two important reasons.
First, as we mentioned earlier, people already write their IE
programs as collections of small programs that they stitch
together in ad-hoc ways. In our framework, these small
programs become the procedural predicates, and Datalog
becomes a much cleaner and more powerful way to combine
them than ad-hoc stitching. Thus, writing IE programs this
way retains and enhances the important advantages of cur-
rent approaches, such as being easy to understand, debug,
and modify.

The second important reason is that once we write IE
programs in this framework, we can apply query optimiza-
tion techniques to them. This gives programs that, when
run over a variety of data sets, are more efficient than any
monolithic program because they are optimized based on
the statistics of the data on which they are invoked. The
following example illustrates this point.

Example 1.1. Consider again the IE program p in Fig-
ure 1.a. Program p may be compiled into either the exe-
cution plan q1 of Figure 1.b or q2 of Figure 1.c. Given a
document d, plan q1 extracts all titles and abstracts from
d, then keep only those (title,abstract) pairs where the title
occurs immediately before the abstract. Finally, q1 retains
only talks whose abstracts contain “relevance feedback” (al-
lowing for misspellings and synonym matching). Plan q2 is
similar to q1, except that it discards a document d as soon
as it finds out that d does not contain “relevance feedback”,
on the ground that if d does not contain that phrase, then
abstracts extracted from d also cannot contain that phrase.

At first glance, it appears that q2 is more efficient than q1

because it can prune irrelevant documents early. However,
this truly depends on the selectivity of the selection operator
σapproxMatch(d,′′relevance feedback′′) and the runtime cost of
approxMatch. If a data set mentions “relevance feedback”
frequently (e.g., SIGIR proceedings), then the selection se-
lectivity is low. Since approxMatch is expensive, q2 can end
up being significantly worse than q1. On the other hand, if
a data set rarely mentions “relevance feedback” (e.g., SIG-
MOD proceedings), then q2 can significantly outperform q1.
Given IE programs written in our framework, we can gen-
erate such execution plans and select the appropriate one,
depending on the statistics collected over the data set.

In the rest of the paper we elaborate on the above two rea-
sons. We start by describing Xlog, an example of Datalog
with embedded procedural predicates, tailored for informa-
tion extraction. Next, we show that stitched-together IE

programs can be quickly written in Xlog, yielding programs
that mix procedural and declarative parts in a clean fash-
ion. We then show how to compile such a program into an
execution plan.

Next, we turn our attention to query optimization. Since
we are dealing with text, our optimization challenges are
somewhat different from the relational case in terms of (a)
what optimizations should be considered, (b) what statistics
should be gathered to support these optimizations, and (c)
what cost model should be used to choose alternatives. To
address these issues, we begin by showing that CPU time
often dwarfs IO time and hence plays a significant role in IE
programs. To reduce CPU time, we exploit three kinds of
text-centric actions that we observe IE programs often exe-
cute. Specifically, we propose three optimization techniques:
pushing down text properties prunes a text span as soon as
we detect that it cannot be useful for subsequent extraction,
scoping extraction significantly narrows text regions from
which we extract certain data, and indexing patterns allows
us to match a large number of text patterns efficiently.

We then describe a cost model that focuses on CPU time,
show how to collect statistics to estimate plan cost, then
show how to find a plan that employs the above optimization
techniques to minimize runtime.

Finally, we present extensive experiments over real-world
data that demonstrate that optimization is indeed vital for
IE programs and that we can drastically optimize IE pro-
grams written in this framework, often cutting their runtime
by orders of magnitude. We also briefly discuss experiments
with these techniques in DBLife, our live data portal.

In summary, our contributions are as follows:

• While Datalog with embedded procedural predicates
is not new, we show that it does provide a natural
framework to write IE programs. This framework re-
tains and enhances the advantages of current extrac-
tion approaches in ease of debugging, modifying, and
understanding.

• Unlike current extraction approaches, we show that
this framework is highly amenable to query optimiza-
tion. In particular, we describe three optimization
techniques that exploit text-centric actions that IE
programs often execute.

• We show how to estimate the plan cost (runtime), col-
lect statistics, and find a plan with minimal cost.

• We present extensive experiments that demonstrate
that optimization is indeed vital for IE programs, and
that we can significantly optimize IE programs written
in our framework, often by orders of magnitude.

2. RELATED WORK
Information Extraction: Information extraction from
text has received much attention in the database, AI, Web,
and KDD communities (e.g., [24, 25, 27, 28], see [3, 9, 12]
for recent tutorials). The vast majority of works improve ex-
traction accuracy (e.g., with novel techniques such as HMM
and CRF [9]), while some recent pioneering works improve
extraction time (e.g. [6, 18]). Most works develop basic IE
solutions that extract a single type of entity (e.g., person
names, publication title) or relation (e.g., advising, giving
talk). IE developers then commonly combine these solutions



– often as off-the-shelf IE “blackboxes” – with additional
procedural code into larger IE programs. Since such pro-
grams are rather difficult to develop, understand, and debug,
recent works have developed compositional IE frameworks,
such as UIMA and GATE [10, 14]. UIMA for example mod-
els extraction tasks as objects and standardizes object APIs
to enable “plug and play.”

UIMA-like languages can make writing and understand-
ing IE programs much easier. However, optimizing IE pro-
grams in such languages has proven to be difficult. A major
reason is that their IE semantics is often not well-defined.
For example, it is unclear whether an IE program in such
languages produces the same result if we change the execu-
tion order of certain rules or parts of the program workflow.
Sometimes it is also unclear what the program would pro-
duce if it involves certain recursions. This makes it difficult
to optimize, because we do not know what types of opti-
mization will have what effect on the program result. Our
work avoids this problem by building on the well-understood
semantics of Datalog.

Our work also relates to wrapper construction from Web
pages [19, 24]. Like UIMA and GATE, many works here
have also proposed rule-based or compositional solutions, to
enable fast development of wrappers. However, they have
not considered optimizing runtime, as our current work does.

Very recently, the work [22] also considers optimizing large-
scale IE programs. It proposes an algebraic approach and
considers text-centric optimizations that are complementary
to those considered in this paper.

Datalog Extension: The Lixto project [16] has also de-
veloped a Datalog extension to represent IE programs, but
only in the context of wrapper construction. Lixto focuses
on rapidly developing wrappers, not on optimizing runtime,
as we do. Its Datalog extension functions only as an internal
language for the wrapper system, not as a language for the
developers. Consequently, it does not allow embedded pro-
cedural predicates written by developers, as ours does. Re-
cent works have also proposed Datalog extensions for a vari-
ety of problems, including networking [20], software analysis
[26], diagnosis of distributed systems [1], and others [5, 21].
Our work shares the same spirit with these works in striv-
ing to make the applications more declarative, but focuses
specifically on information extraction.

Optimization: Several recent works (e.g. [6, 18]) have de-
veloped optimization techniques for IE, and have considered
optimizing extraction accuracy as well as runtime. However,
they consider only restricted IE settings, such as those with
a single IE “blackbox.” In contrast, we consider optimizing
IE programs that often involve multiple IE “blackboxes”,
with complex interaction among them, all within a declara-
tive framework. The work [18] introduces a method to prune
useless documents that do not contain certain words. Our
technique of pushing down text properties is more general
in that it can prune at finer granularity (e.g., text spans
created during the IE process) as well as in many novel con-
texts (e.g., those involving length conditions). The work [8]
quickly matches patterns against text documents by build-
ing an inverted index over the documents to reduce the num-
ber of documents considered for each pattern. In contrast,
we index the patterns to reduce the number of patterns we
consider for each document. Finally, our work also relates
to optimization techniques for memory databases (since IE

programs often operate largely in memory) [15, 23], and
user-defined predicates (e.g. [7]). These works however do
not consider text-centric optimization techniques, as we do
in this paper.

3. DATA AND QUERY MODEL
We now describe Xlog, as an example of Datalog languages

with embedded extraction predicates. We then use Xlog

to highlight the advantages of such languages over current
approaches for developing IE programs.

We start by briefly reviewing traditional Datalog [2]. A
Datalog program P consists of multiple rules. Each rule has
the form p :− q1, . . . , qn, where the p and qi are predicate
atoms. Each predicate atom is a predicate symbol applied
to its arguments, which are either constants or variables.
The rule must be safe in that any variable appearing in the
head (i.e., p) must also appear as an argument in the body
(i.e., q1, . . . , qn). Currently we do not consider rules with
negated predicates nor with recursion, leaving such exten-
sions as future work.

Each predicate atom in a rule is associated with a rela-
tion. We will use the terms “predicate atom”, “predicate”,
“relation”, “relation instance”, and “table” interchangeably,
when there is no ambiguity. A predicate is extensional if its
table has been provided to the Datalog program P . Other-
wise, it is intensional, and its table must be computed using
the rules in P . One of the head predicates of P is called a
query, in that its table is viewed as the output of P .

As an example, the following Datalog program returns
conflict-of-interest (COI) cases where two authors have writ-
ten a paper in the past two years:

coAuthor(a, b, y) :− write(a, p), write(b, p), paper(p, y).

coi(a, b, y) :− coAuthor(a, b, y), y ≥ 2005.

Here predicates write(a, p) and paper(p, y) are extensional,
whereas coAuthor(a, b, y) and coi(a, b, y) are intentional. The
first rule returns tuples (a, b, y) where a co-authors with b in
year y. The second rule retains only co-author pairs where
y ≥ 2005. Note that the query predicate coi(a, b, y) is de-
noted as coi(a, b, y).

3.1 The XLog Language
We now describe Xlog, using the tiny example in Figure 2,

which we will explain along the way.

Syntax: A key distinction of our setting, compared to
traditional Datalog, is that many steps of real-world IE is
inherently procedural. Furthermore, even when certain steps
coded as procedural can be made declarative, developers are
often reluctant to do so, because it would incur too much
effort. Consequently, to capture such steps, we introduce
the notion of a procedural predicate.

Definition 1 (Procedural predicate). Such a pred-
icate q has the form q(a1, . . . , an, b1, . . . , bm), where the ai

and bi are variables. Predicate q is associated with a side-
effect-free procedure g (e.g., written in C, Java) that takes as
input a tuple (u1, . . . , un), where ui is bound to ai, i ∈ [1, n],
and produces as output a set of tuples (u1, . . . , un, v1, . . . , vm).
Note that all tuples in this set agree on the first n elements:
u1, . . . , un. Let the union of all such sets of tuples be r.
Then we say that q is associated with relation r.

We will often refer to q as a p-predicate, to the ai as bound
or input arguments, to the bi as free or output arguments,



docs seedNamesDATABASES
D. Smith

Dr. Smith is a professor at …

SQL QUERIES
Jane Brown

Brown, J. Databases. 1998

(c)(b) (d)

Jane Brown

David Smith

d2

d1

(a)

R1:  titles(x,d) :- docs(d), lines(d,x,n), allCaps(x)=true, n<5.
R2:  names(y,d)  :- docs(d), seedNames(s), namePatterns(s,p), match(d,p,y).
R3:  authors(y,d):- docs(d), titles(x,d), names(y,d), distLine(x,y)<3.

d1 d2

Figure 2: (a) A sample Xlog program, and (b)-(d) sample data for the program.

and to g as a p-procedure. We will also use the terms “p-
predicate” and “p-procedure” interchangeably when there is
no ambiguity.

P-predicates are either built into Xlog, or provided by the
developer, with the types of their arguments specified. For
example, Figure 2 shows three such predicates: lines(d, x, n),
namePatterns(s, p), and match(d, p, y). The predicate
lines(d, x, n) for instance takes as input a document d, and
returns the set of all lines x in d, together with a number n
indicating that the line is the n-th line.

We define procedural functions, or p-function for short,
in a similar fashion. Figure 2 shows two such functions:
allCaps(x) and distLine(x, y). The function allCaps(x)
takes a line x and returns “true” if all characters in the
line are capitalized. Given two text spans x and y in a doc-
ument (see precise definitions below), distLine(x, y) returns
the distance between x and y, measured in lines.

The above examples suggest that a rule can be properly
evaluated only if its p-predicates and p-functions can obtain
their inputs. We call such rules well-formed. Formally,

Definition 2 (Well-formed rule). An Xlog rule
p :− q1, . . . , qn is well-formed if we can order q1, . . . , qn such
that for each literal qi, i ∈ [1, n] its bound arguments, if any,
already appear as free arguments of some literals preceding
qi in the ordering. Note that extensional and intentional
predicates contain only free arguments.

Another distinguishing aspect of our setting is that we
deal heavily with text. Hence, we make explicit several text-
related notions: strings, documents, spans, containment,
and IE predicates. Later we show how to exploit text prop-
erties involving these notions in optimizing an Xlog program.

Definition 3 (String, document, and span). A
string s is a sequence of characters. A document d is a tuple
(id,content) where id is a key, and content is a string that
represents the text content of the document. A span t is a
string within a document. Formally, t is represented as a
tuple (id,doc,start,end) where id is a key for t, doc is the id
of the document, and start and end refer to the starting and
ending positions of t in that document.

In Figure 2, d is a document variable, x is a span variable
(it refers to lines in documents), and so is y.

Definition 4 (Containment). We say a document d
contains a span s iff s.doc = d.id (where notation a.b refers
to element a of b). A span t contains a span s iff t.doc =
s.doc, t.start ≤ s.start, and t.end ≥ s.end.

Definition 5 (IE predicate). An IE predicate q ex-
tracts one or more output spans from a single input span.
Formally, q is a p-predicate q(a1, . . . , an, b1, . . . , bm), where
there exist i and j such that (a) ai is either a document or
a span variable, (b) bj is a span variable, and (c) for any
output tuple (u1, . . . , un, v1, . . . , vn), ui contains vj (i.e., q
extracts span vj from span ui).

In Figure 2, lines(d, x, n) is an IE predicate which, when
given a document d, returns all lines of d, together with
their numbering n. Also, match(d, p, y) is an IE predicate
that extracts all spans y (in a document d) that match an
input pattern p. On the other hand, namePatterns(s, p) is
not an IE predicate, because the sole input variable s is not
a document nor a span.

Finally, we define a special extensional predicate docs(d)
that we call the document predicate. The docs(d) predicate
contains all documents (e.g., Web pages, emails, reports,
etc.) from which we want to extract information. We now
can define Xlog as follows.

Definition 6 (Xlog program). An Xlog program P
consists of a set of Datalog rules where (a) rules can involve
p-predicates and p-functions, (b) rules are safe and well-
formed, (c) document predicate docs(d) appears in one or
more rules, and (d) all arguments ai of the query predicate
r(a1, . . . , ak) are span variables. We say that P extracts rela-

tion r(a1, . . . , ak) from the collection of documents docs(d).

Semantics: We can define the semantics of a rule in Xlog

in the same manner it is defined in traditional Datalog, using
associated relations. For instance, the least-model semantics
of Datalog states that whenever we replace each variable in
a rule r with a corresponding constant, if every tuple in the
rule body (obtained via the replacements of the variables)
belongs to the corresponding relation instance, then the tu-
ple generated for the rule head (again via the replacements)
also belongs to the corresponding relation. This semantics
applies directly to Xlog, given that we have defined the no-
tion of associated relations for p-predicates and p-functions
(see Definition 1). We have

Proposition 1. If p-predicates and p-functions are as-
sociated with finite relations, then the semantics of an Xlog

program is well-defined, in that the set of output tuples it
produces is finite and unique.

Example 3.1. To illustrate Xlog, we step through a con-
ceptual execution of the Xlog program P in Figure 2. Sec-
tion 4 describes how to generate execution plans for such
Xlog programs. Consider executing P over the data of Fig-
ure 2. Figure 2.b shows a table docs with two documents d1

and d2, whose contents are shown in Figure 2.c. For each
document di, rule R1 extracts its title, if any. R1 first calls
p-predicate lines(d, x, n) (i.e., calls its procedure) to segment
di into lines. It then retains only lines that are fully capi-
talized and are within the first four lines (i.e., allCaps(x) =
true and n < 5). The result is a table title(x, d) with two
tuples (“DATABASES′′, d1) and (“SQL QUERIES′′, d2).

Rule R2 then extracts all person names from the docu-
ments. First, it takes each seed name s in table seedNames
(Figure 2.d) and feeds the name into namePatterns(s, p) to
generate possible variants of s. For example, given “David
Smith”, namePatterns(s, p) may generate “David Smith”,
“D. Smith”, “Smith, D”, “Dr. Smith”, etc., each of which
is referred to as a pattern. Next, for each document di,



people(d,personMention) :- docs(d), personPatterns(personPattern),
match(d, personPattern, personMention).

conferences(d,conferenceMention) :- docs(d), confPatterns(confPattern),
match(d, confPattern, conferenceMention).

chairType(d,chairType,chairPosition) :- docs(d), chairTypePatterns(chairTypePattern),
match(d, chairTypePattern, chairType),
match(d, “(?i)(vice\W+)?(co-)?chair”, chairPosition),
isBefore(chairType, chairPosition),
distChar(chairType, chairPosition) < 20.

chair(d,personMention,conferenceMention,chairPosition,chairType):-
people(d, personMention), conferences(d, conferenceMention),
chairType(d, chairType, chairPosition),
isBefore(conferenceMention, chairType),
isBefore(chairPosition, personMention),
distChar(chairPosition, personMention) < 20.

Figure 3: A sample Xlog program in our experiments.

match(d, p, y) finds occurrences of the above patterns in di.
In d1 for example, match(d, p, y) may find “D. Smith” and
“Dr. Smith”. These occurrences are returned as person
names in variable y.

Finally, rule R3 examines all pairs of titles and person
names that occur in di, and retains only names that oc-
cur within 2 lines of a title. These names are returned
as the authors of document di. The final output are tuples
(“D. Smith”, d1) and (“Jane Brown”, d2).

Extension with Bulk P-Predicates: So far we have as-
sumed that each p-predicate q executes in a singleton man-
ner, in that each invocation of q takes as input a single value
for each bound argument. In practice, however, for perfor-
mance reasons developers often want to implement certain
p-predicates so that each invocation takes as input multiple
values, in a bulk manner.

To see why, consider evaluating rule R2 in Figure 2. If the
p-predicate match(d, p, y) is singleton, then we must invoke
match multiple times, once for each possible combination
of document d and pattern p. In contrast, if match is a
bulk p-predicate, then we only need to invoke match once,
with the input being all documents d in docs(d) and all pat-
terns p generated by namePatterns, and the output being
all occurrences of p in all documents d. In this case, since
match gets access to documents and patterns all at once, it
can execute certain optimizations that the singleton version
cannot (e.g., indexing the set of patterns to avoid unneces-
sary pattern matching, see Section 5.4).

For these reasons, we allow developers to implement p-
predicates as either singleton or bulk (or supply both imple-
mentations). Formally, we have

Definition 7 (Bulk p-predicate). Consider a
p-predicate q(a1, . . . , an, b1, . . . , bm) with an associated pro-
cedure g. The bulk version of q is associated with a procedure
g′ such that g′ takes input relations r1, . . . , rn and produces
as output a relation r = ∪(u1,...,un)∈r1✶···✶rn

g(u1, . . . , un).

It is easy to show that under the above definition, the seman-
tics of Xlog remains the same regardless of using singleton
or bulk versions.

Per-Document IE Tasks: IE tasks can be classified into
two groups. The first group extracts from each document
in isolation, e.g., extracting authors of a document as in
Figure 2, or publications from a Web page. The second
group extracts across documents, e.g., finding pairs (a, b)
where a is a professor homepage and b is the homepage of a
class taught by a.

Per-document IE tasks are pervasive (e.g., constituting
94% of IE tasks in the current DBLife system). Hence, as a
first step, in this paper we consider such IE tasks, leaving
across-document IE tasks for future research.

3.2 Benefits of Xlog-like Languages
We have applied Xlog to several IE tasks in the DBLife

system [11], and found it relatively easy to use. Given an IE
task, we first decomposed it into smaller tasks. For exam-
ple, we decomposed finding authors of documents into (a)
finding titles, (b) finding names, then (c) combining titles
and names and keeping those satisfying certain criteria.

Next, we wrote an Xlog program that reflects the above
decomposition, utilizing a set of built-in predicates and func-
tions, and “making up” other predicates and functions as we
went along. For example, we wrote rules R1−R3 in Figure 2,
where lines, allCaps, match, and distLine are built-in pred-
icates and functions, and docs and seedNames are exten-
sional predicates, defined over some tables. We made up
p-predicate namePatterns. Finally, we implemented made-
up predicates and functions (e.g., namePatterns as a Java
procedure). We iterated over the above steps until achieving
a satisfactory solution. Figure 3 shows a small Xlog program
that we wrote for DBLife and used in our experiments.

The above process suggests that Xlog is highly flexible.
Clearly any IE task can be expressed in Xlog, because in the
extreme we can just implement the entire task as a single
p-predicate. However, the more we decompose the IE task
(into smaller “pieces” and “stitching” them together using
Xlog), the more declarative the code becomes, the more we
can save on coding labor (e.g., by re-using built-in predicates
and functions), the easier it is to debug and understand the
code, and the more opportunities we have for optimization.

The current Xlog implementation already has a substan-
tial set of built-in p-predicates and p-functions that capture
common text related tasks. Figures 2-3 show examples of
such predicates and functions, and we omit their descrip-
tions for space reasons. However, we note that the current
set already allows us to write powerful IE tasks (see the ex-
periment section), and that this set is highly extensible, as
new predicates and functions become available.

Besides ease of use, another benefit of Xlog is a clean se-
mantics based on the well-understood Datalog semantics.
This is important as we seek to optimize Xlog programs,
or to extend the language. For instance, while it has been
difficult to understand the semantics of many current IE lan-
guages in the presence of recursion (which occurs in many
IE settings), extending Xlog to recursion should still result
in a well-defined language, based on the recursion semantics
of Datalog.

Finally, we note that, while not considered in depth in
this paper, IE programs in Xlog-like languages can also po-
tentially benefit from the wealth of relational technologies
developed in the past thirty years, to handle storage, query
processing, indexing, and optimization, all crucial issues to
large-scale IE development.

4. GENERATING EXECUTION PLANS
Given an Xlog program P , we now discuss how to create

a default physical execution plan h for P . (Section 5 shows
how to optimize h.) We begin by creating a logical plan
fragment for each rule in P , then combine these fragments
into a logical plan f for P . Next, we elaborate on f to
obtain a physical plan e. Finally, we modify e into h to



titles(x,d) :- docs(d), lines(d,x,n), n < 5, emailPatterns(p), match(d,p,e), distLine(x,e) <1.
(a)

lines(d,x,n) match(d,p,e)

docs(d) emailPatterns(p)

(b)

lines(d,x,n) match(d,p,e)

docs(d) emailPatterns(p)docs(d)

(c)

lines(d,x,n) match(d,p,e)

docs(d)

emailPatterns(p)docs(d)

5<nσ

1),(distLine ≤exσ
πx,d

(e)

lines(d,x,n) match(d,p,e)

docs(d) emailPatterns(p)docs(d)

5<nσ

1),(distLine ≤exσ
πx,d

(d)

Figure 4: Generating a logical plan fragment for an Xlog

rule.

take advantage of the per-document IE setting. Below we
explain these steps, using the program of the single rule in
Figure 4.a.

1. Create Plan Fragments for Rules: Let r be a
rule p : −q1, . . . , qn. A logical plan fragment for r is a tree
Tr, whose nodes are predicates in q1, . . . , qn or relational
operators, and whose edges denote the input dependencies
across the nodes.

To construct Tr, first we create a graph G that captures
the input dependencies of the p-predicates in r. G has n
nodes, one for each predicate qi, and a directed edge from
qi to qj if qj “needs” some data from qi (i.e., there is a
bound argument x in qj that appears in qi). Figure 4.b
shows graph G for the rule in Figure 4.a. Note that we
exclude from G all selection predicates, which are (n < 5)
and (distLine(x, e) ≤ 1) in this case.

Next, we convert G into a forest of trees, by duplicating
nodes that have more than one parent. Figure 4.c shows
the forest created for our example. We then join the trees
in the forest (using join operators) in some arbitrary order,
and add the necessary selection and projection operators, to
form plan fragment Tr. Figure 4.d shows the plan fragment
for our example.

2. Combine Plan Fragments into a Logical Plan f :

Let r1, . . . , rm be the rules in program P, and T1, . . . , Tm

be the corresponding plan fragments. We add union opera-
tors to union all fragments whose rules share the same head
predicate. Next, we compile the unions to form a logical
plan. This compilation step “unfolds” the intentional pred-
icates, by substituting them with their corresponding plan
fragments, and unifying variables (i.e., renaming variables)
if necessary. In our running example we have just one rule
(Figure 4.a). So this step does not happen, and the logical
plan f is the same plan mentioned earlier in Figure 4.d.

3. Compile f into a Physical Plan e: Next, we an-
notate the logical plan f . Since each document is read into
memory only once (see below) and most IE operations oper-
ate on documents in memory, we select scan as the method
to access the leaves, which are tables associated with exten-
sional predicates or the document collection docs(d), and
select nested loop for joins.

Next, we select a physical operator for each p-predicate q,
always selecting bulk when available, since the bulk version
is often more efficient than the singleton one due to built-in

optimizations. If we end up selecting a singleton version for
q (because bulk is not available), then we must modify the
subtree rooted at q. Specifically, let z1, . . . zk be the children
of q in this subtree. Since q is now singleton, it cannot take
as input z1, . . . , zk, which are relations. Hence, we must first
join the zi, then apply q to the join. Figure 4.e shows how
the subtree of match(d, p, e) has been modified (compared to
the same subtree in Figure 4.d) if match(d, p, e) is singleton.

4. Modify e into h for the Per-Document Setting:

Since we currently consider only IE tasks that process each
document in isolation (Section 3.1), we next modify e into
h to process documents sequentially. Plan h reads the first
document d1 from disk, applies the above physical plan e
to d1, outputs the result, reads the second document d2,
applies e to d2, and so on.

We then improve h in several ways. First, we read the ex-
tensional tables in for the first document, then cache them
in memory for subsequent ones. Second, e typically has
several portions that can be executed independently of any
document (e.g., any subtree not containing a document vari-
able d). Hence, we execute these portions only once, for the
first document, then cache the result for subsequent ones.
In the vast majority of per-document IE tasks, the average
document plus the document-dependent portion consume a
relatively small amount of memory. Hence, it is reasonable
to assume that the extensional tables and the document-
independent portions will fit in memory. Finally, we return
h as the default execution plan for the Xlog program P .

5. OPTIMIZING EXECUTION PLANS
We now present our current optimization solution. First,

we describe several important characteristics of IE programs.
Next, we propose three optimization methods that exploit
these characteristics. Finally, we describe how we embed
these methods in a cost-based optimization framework.

5.1 IE Program Characteristics
In many IE settings each document is read from disk into

memory only once (Section 3.1), then processed by many
expensive string operations (e.g., comparison, copy). As a
result, in such settings CPU time often dwarfs IO time (e.g.,
constituting 84%-99% of total runtime in our experiments
in Section 6). Consequently, we focus for now on reducing
CPU time. To do so, we exploit three kinds of text-centric
actions that we observe that IE programs often execute.

1. Creating Text Span Hierarchies: We observe that
IE plans often start with a long text span (i.e., an entire
document), then iteratively extract smaller and smaller text
spans from it. For example, an IE program may extract ti-
tles and person names – smaller spans – from a given docu-
ment. Another IE program may extract lines from a docu-
ment, then lists (e.g., “D. Smith, M. Jones”) from lines, then
author names from lists (e.g., “D. Smith”, “M. Jones”), and
so on.

In such a text span “hierarchy”, a property ps of a “higher-
level” span s often implies a property pt for a “lower-level”
span t that is related to s in some way. For example, suppose
t contains s. Then “s is set in italics” implies “t must contain
some italicized text.” Similarly, “s contains word w” implies
“t contains word w.” As another example, “the length of s
is 3” implies “the length of t is at least 3.”

Consequently, during the IE process, if t does not have
property pt, we do not have to extract s from t, thus saving



(a)

• allCaps(s)
• italics(s)
• bold(s)
• underline(s)
• containWord(s,w)
• lengthWord(s)
• lengthLine(s)

(b)

contain(s,t),  overlap(s,t),  distWord(s,t,n)

(c)

• italics(s) ∧ contain(s,t) → containItalics(t)
• italics(s) ∧ overlaps(s,t) → containItalics(t)
• (lengthWord(s) = 3) ∧ contain(s,t) → lengthWord(t) > 3
• containWord(s,w) ∧ contain(s,t) → containWord(t,w)

Figure 5: Sample (a) p-functions that capture text span

properties, (b) p-predicates that capture span relation-

ships, and (c) mappings across properties.

time. We call this optimization pushing down text properties.

2. Pruning Span Pairs via Location Conditions:

Components of real-world entities often appear in close prox-
imity in text documents. For example, an author name typ-
ically appears close to a title. The room number of a meet-
ing and the meeting time typically co-appear within a few
sentences, and so on. Exploiting this phenomenon, IE plans
often extract entity components as separate spans, then pair
the spans and prune those pairs that do not satisfy certain
location conditions, e.g., the spans must appear within the
same sentence, or the same paragraph, or at most k words
(or k lines) from each other, etc. For example, the plan in
Figure 2 extracts titles and names, then keeps only those
(title,name) pairs that occur within two lines of each other.

We can exploit such location conditions in optimization.
For example, we can extract titles first, then extract names,
but only within two lines of titles. If extracting names is
expensive (as it often is, see Section 6), then this strategy
can significantly reduce runtime, because it extracts names
from a smaller amount of text. We call this optimization
scoping.

3. Pattern Matching to Generate Text Spans: Real-
world entities are often described using some patterns in
text documents. Hence, pattern matching is pervasive in
information extraction [6, 8, 11, 28]. It is also very expen-
sive, and this expensive problem is seriously compounded
in large-scale IE tasks, where we often must match tens of
thousands of patterns against each document. For instance,
in DBLife, each day we must match 48,806 name patterns,
99,462 paper titles, and 246 organizations against approxi-
mately 10,000 documents, a process that takes more than a
day if executed in a straightforward fashion. The work [6]
describes other large-scale pattern matching examples.

Consequently, we believe that any practical IE optimizer
must optimize pattern matching. We describe one such op-
timization in this paper, which is called pattern indexing
and is based on the observation that a document typically
matches just a relatively small set of patterns.

We now describe the above three optimizations in detail.

5.2 Pushing Down Text Properties
In this optimization, recall that we push certain properties

of higher-level spans to lower-level ones, so that we can prune
lower-level spans that do not have such properties.

To do so, we first define P, a set of p-functions that cap-
ture span properties. Examples include allCaps(s) (true
iff all characters in s are capitalized), containWord(s, w)
(true iff s contains word w), and lengthWord(s) (returns
the length of s in words), etc. Figure 5.a shows examples of
property functions in the current Xlog implementation.

Next, we define R, a set of p-predicates that capture re-

lations between text spans. Examples include contain(s, t)
(true iff span s is contained within span t), and overlap(s, t)
(true iff s and t overlap), etc. Figure 5.b shows examples of
relation functions and predicates in the current Xlog imple-
mentation.

Now consider a plan fragment σc(s)[q(. . . , t, . . .)], where
(a) q is an operator whose input includes a span t and whose
output includes a span s, and (b) σc(s) is a selection con-
dition over s, being specified using text property functions
in P. Suppose that relationship r(s, t) holds, where r is
specified using predicates in R. Suppose further that there
exists a mapping c(s) ∧ r(s, t) → c′(t). Then we can push
down text property c(s), by inferring that t must satisfy the
condition c′(t).

Consequently, we can rewrite the plan fragment
σc(s)[q(. . . , t, . . .)] as σc(s)[q(. . . , σc′(t)t, . . .)]. This can po-
tentially reduce the number of spans t fed into operator q,
thereby reducing runtime. For example, consider plan frag-
ment F = σallCaps(x)[lines(d, x, n)]. Given the mapping

allCaps(x) ∧ contain(x, y) → containCaps(y)

we can rewrite F as σallCaps(x)[lines([σcontainCaps(d)d], x, n)].
Thus, the optimization of pushing down text properties

works as follows. Let M be a set of mappings. Given a triple
(P,R,M), for each plan fragment σc(s)[q(. . . , t, . . .)] in the
execution plan, check M to find an applicable mapping,
then use the mapping to rewrite the fragment, as described
above. Note however that just because we can rewrite a
plan fragment by pushing down some text properties does
not necessarily mean the new fragment will run faster. Our
cost-based optimizer (see Sections 5.5-5.6) will decide if a
rewriting can reduce runtime and should be carried out.

In the current Xlog implementation, we have defined a
triple (P,R,M) that covers all built-in functions and pred-
icates (see examples in Figure 5). This set however is easily
extensible: if a developer adds a new text property (as a p-
function) or a new span relationship (as a p-predicate), he
or she simply has to specify as many applicable mappings as
possible. Furthermore, if a developer employs a p-predicate
p in an IE program, he or she should specify span relation-
ships between p’s inputs and outputs, so that text properties
can be pushed from the output of p to its input.

5.3 Scoping Extractions
In scoping, recall from Section 5.1 that if a plan imposes

some location conditions on several spans, then we optimize
by finding one span first, then using its location to narrow
the region from which the other spans must be extracted. In
what follows for ease of exposition we will consider only two-
span cases, even though the optimization can be extended
to work with more than two spans. We start by defining

Definition 8 (Location function and predicate).
A p-function (p-predicate) f(s, t) is a location function (pred-
icate) if it can be used to impose a condition on the relative
text locations of input spans s and t. We refer to such con-
ditions as location conditions, and use L to denote the set of
all location functions and predicates that have been provided
to the optimizer.

For example, a location function is distLine(s, t), which
measures the distance in lines between s and t. A location
predicate is samePara(s, t), which returns true if s and t
are in the same paragraph. Next, we define
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docs(d)

seedNames(s)
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docs(d)
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σallCaps(x) ^ (n < 5)

docs(d)
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docs(d)V(x)
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Figure 6: Scoping extractions.

Definition 9 (Scoping procedure). The scoping pro-

cedure sp(s, c(s, t), r, r′) takes as input a span s, a condition
c(s, t) that involves only location functions and predicates in
L, and a span r. It outputs a minimal span r′ ⊆ r, such
that (a) for any span t that is contained in r, if c(s, t) is
true, then t is contained in r′, and (b) there does not exist
span r′′ that is strictly contained within r′ and yet satisfies
condition (a).

Now given a location condition c(s, t) in an IE plan, we can
either find s first, then scope t, or vice versa. Suppose we
opt to find s, then scope t. Scoping t means “inserting” a
scoping procedure as defined above into a location on the
extraction path of t, which specifies how t is extracted, from
document d (at a leaf of the IE plan) all the way to condition
c(s, t). Formally, we define

Definition 10 (Extraction path). Let t be a span
variable and c(s, t) be a location condition in an IE plan
e. Then the extraction path of t up to c(s, t) is a sequence
(a1, op1, a2, op2, . . . , an, opn, t, c(s, t)), such that a1 is docu-
ment d, operator op1 extracts span a2 from a1, operator op2

extracts span a3 from a2, and so on, until operator opn ex-
tracts t from an, then feeds t into condition c(s, t).

Consider for example the IE plan in Figure 6.a. In this plan,
distLine(x, y) < 3 is a location condition, and the extraction
path of y is (d, match(d, p, y), y, [distLine(x, y) < 3]).

Given the extraction path (a1, op1, . . . , an, opn, t, c(s, t)) of
t, we must insert the scoping procedure sp before an operator
opi. A reasonable solution is to insert sp before the first IE
predicate in the extraction path, based on the heuristic that
the sooner we can narrow the text region from which t will
be extracted, the more the IE plan can save.

The above solution however may not produce correct re-
sults. For example, in Figure 6.a, consider again the path
(d, match(d, p, y), y, [distLine(x, y) < 3]). Suppose we in-
sert the scoping procedure sp right before match(d, p, y),
and suppose that in this particular case, match returns out-
put only if span d is longer than 300 characters. If scope
procedure sp extracts a span r from d, where d is longer than
300 characters but r is shorter than 300 characters, inserting
sp into the plan may produce output that is different from
the original plan. Consequently, to ensure sound insertion,
we define

Definition 11 (Monotonic IE predicate). Con-
sider an IE predicate q that extracts spans a1, . . . , an from
span b. We say q is monotonic iff for any span b′ contained
in b, a span c contained in b′ is extracted by q(b′) iff c is
extracted by q(b).

We then insert the scoping procedure sp right before the
first monotonic IE predicate on the extraction path of t. If
such a predicate cannot be found, then we do not scope t.

p1 = “(Jeff\s|Jeffrey\s)\s*Ullman”
p2 = “(Jeff\s|Jeffrey\s)\s*Naughton”
p3 = “Laura\s\s*Haas”
p4 = “Peter\s\s*Haas”

d = “Homepage of Laura Haas”

(a) (b)

“Ullman”
“Peter\s”
“Naughton”
“Laura\s”
“Haas” p3, p4

p3

p2

p4

p1

AND
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\s
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AND

*OR
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(p1)

AND

AND

*“Peter\s”
\s

“Haas”(p4)

AND

AND

AND

*OR

“\s”
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“Jeff\s” “Jeffrey\s”

(p2)

AND

(c)

Figure 7: (a) A set of patterns p1 − p4 and a document

d, (b) an inverted index over p1 − p4, and (c) parse trees

for p1 − p4.

Theorem 1. If sp is inserted before a monotonic IE pro-
cedure on the extraction path of t, as described above, then
the modified IE plan is correct in that it produces the same
output as the original IE plan.

Note that if scope procedure sp is implemented in a single-
ton manner, it could potentially output many overlapping
text spans. For example, suppose that we have extracted
two adjacent lines x1 and x2 from document d. Then, invok-
ing sp(x, distLine(x, y) < 3, d, d′) with x1 and x2 as input
values for x will produce two overlapping spans d′

1 and d′

2.
Thus, if we insert sp into a plan such that another IE predi-
cate q extracts from d′ instead of d, q may process more text
than if it had simply processed the original document d.

Thus, we implement the scope procedure in a bulk manner
to merge overlapping output. First, given a set of spans S
and R, we produce a set of output spans R′ by invoking the
singleton scope sp(s, c(s, t), r, r′) for each pair of spans s ∈ S
and r ∈ R where r is contained in s. Then, for any two out-
put spans r′1 and r′2 in R′ that overlap, we replace r′1 and r′2
with a span r′1,2, where r′1,2.start = min(r′1.start, r′2.start),
r′1,2.end = max(r′1.end, r′2.end), and r′1,2.doc = r′1.doc =
r′2.doc. We repeat this process until no two spans in R′

overlap.
Finally, we incorporate the bulk scope procedure in an IE

plan with “virtual tables” that accumulate tuples in memory
as input for bulk scope procedures. To illustrate, consider
the plan in Figure 6.b. For each document d, we first evalu-
ate the left subtree of the join, producing all tuples (d, x, n)
where [allCaps(x) ∧ (n < 5)]. Next, the values for x are
stored in memory in virtual table V (x). Then, only after we
have completely evaluated the left subtree, we continue eval-
uating the rest of the plan, where the bulk scope procedure
sp(x, c, d, r) now reads values for x from V (x).

5.4 Optimizing Pattern Matching
We now discuss how to optimize pattern matching, as

encapsulated in operator match. The singleton version of
match takes a document d and a regular expression pattern
p, then returns all spans in d that match p. As we have
argued in Section 5.1, this version performs poorly when
given a large set of patterns, because it will try to match all
patterns in the set against an input document.

Hence, we design iMatch, a bulk version of match that
can match a large set of patterns P against a document ef-
ficiently. The key idea underlying iMatch is that each docu-
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Table 1: Statistics collected to estimate parameters in

the cost model.

ment d often matches only a small number of patterns in P .
Hence, by reducing the number of patterns considered per
document, iMatch can match patterns much more efficiently
than the singleton match.

Toward this goal, iMatch starts by building an inverted
index I over all patterns in P . Each entry of I has the
form (k, U), where the key k is a string, and U is the set
of all patterns in P such that k must appear in any string
that matches a pattern in U . For example, Figure 7.b shows
the inverted index for the four patterns p1−p4 in Figure 7.a
(note that we use “\s” to denote the space character). Here,
the key “Haas” maps to patterns p3 and p4 because any
string that matches these patterns must contain “Haas”.

Once index I is built, given a document d, iMatch scans
d to find K, the set of keys of I that appear in d. Finding
K can be done in time linear in the length of d, by building
a trie over the keys of I (see [4] for more details). Note that
building this trie is done only once, after constructing I.

Once iMatch finds K, it obtains Pd = ∪k∈K lookup(k, I),
where lookup(k, I) returns the set of all patterns that I
maps k to. Finally, iMatch searches d and returns spans
that match patterns in Pd. To illustrate, consider document
d in Figure 7.a. After scanning d, iMatch finds the keys
“Laura\s” and “Haas”. Looking up these keys in I yields
two patterns p3 and p4. Hence, iMatch searches d only for
occurrences of these two patterns, thus avoiding searching d
against p1 and p2.

The only issue left is building index I. To do so, for each
pattern p ∈ P , we construct a parse tree whose leaf nodes are
the maximal strings in p that do not contain special regular-
expression characters, and whose internal nodes correspond
to Boolean connectives (e.g., AND and OR), or the “*” con-
struct. Figure 7.c shows for example the parse trees of the
four patterns in Figure 7.a.

Next, given the parse tree for p, we find all leaf strings
S whose ancestors consist of only AND nodes. Since these
strings must occur in any text span that matches p, we index
p using these strings as keys in index I. If the parse tree for
p has no leaves whose ancestors consist of only AND nodes
(e.g. the parse tree for the pattern “A|B”), then we index p
using all leaf nodes as keys.

5.5 Plan Cost Estimation
We now describe how to estimate the runtime of an ex-

ecution plan. Section 5.6 describes how we enumerate and
select a plan with minimal runtime.

The runtime of any plan p consists of the runtime of the
internal nodes plus the runtime of the leaves. The runtime
of the leaves is simply the IO time – the time to read in the

documents and the extensional tables – and is the same for
all plans in our settings. Hence, we only need to estimate
the runtime of the internal nodes, each of which corresponds
to a relational or procedural operator.

5.5.1 Statistics and Cost Model
Let q be a p-predicate with input relations R1, . . . , Rn,

and output relation Rq. Then we estimate q’s output size
(i.e., the number of output tuples) as |Rq| = sq ·

Qn

i=1 |Ri|,
where sq is a selectivity factor that we will compute for q.
We also estimate q’s runtime as tq = wq ·

Qn

i=1 |Ri|, where wq

is a time factor, the average time q takes to process a tuple
in R1 ⊲⊳ . . . ⊲⊳ Rn. We estimate the output size and runtime
for each p-function, and the relational operators equi-join
and project in a similar fashion.

Estimating the output size and runtime for a selection is
more involved, and proceeds as follows. First we compute
(a) a selectivity factor s for all conditions of the form (a =
v), where a is a variable in the plan p, (b) a selectivity factor
s′ for all conditions of the form (a op v) where op is ≥, <,≤,
or >, and (c) a time-per-unit factor t that estimates the
average time it takes to process such a condition. We then
compute s, s′, and t for each p-function that can appear in
a selection condition, in a similar manner.

Now consider a selection f = σc1∧...∧cn
. Here each condi-

tion ci has the form (a op v) where a is a relational attribute
(e.g., n) or a procedural operation (e.g., allCaps(x)), op is
=,≥, <,≤, or >, and v is a scalar or Boolean value. Ex-
amples of ci include (n < 5) and (allCaps(x) = true). Let
U and V be the input and output relations of f , respec-
tively. Then, by making the simplifying assumption that
the conditions ci are independent, we estimate the size of V
to be |V | =

Qn

i=1 si · |U |, where si is the selectivity factor of
condition ci, estimated as above. Finally, we estimate the
runtime of f to be t(f) = |U | ·

Pn

i=1 t(ci), where t(ci) is the
time-per-unit factor of ci.

Let q be a procedural operator. So far we have estimated
the runtime and output size of q given its singleton version.
Since the bulk version of q may behave very differently from
the singleton version, if a user or developer supplies such a
bulk version, he or she can optionally define a cost model
specific for that version (as we do below with the bulk ver-
sion of the match operator). In the absence of any such cost
model, we employ the cost model of the singleton version to
estimate the cost of a bulk version.

Cost Model of IE Predicates: If q is an IE predicate,
then we know that q extracts span(s) a from some input span
b. In practice, the runtime of q often correlates strongly with
the length of b. Hence, instead of using the above cost model
for generic procedural operators, we can use a more accurate
cost model for q.

In this cost model, we compute wunit, the average time
that q spends processing one unit of the input span b. We
then estimate the runtime of q as t(q) = wunit·l(b)·

Qn

i=1 |Ri|,
where the Ri are the input relations of q, as before, and l(b)
is the average length of span b.

Let Rq be the output relation of q. We next estimate the
size of Rq as before. However, we now must also estimate
l(a), the average length of extracted span a, so that we can
use it to estimate the runtime of any other IE predicate that
extracts from a.

Modeling the Cost of match: Let P and D be the set
of input patterns and documents into match, respectively.



In the default cost model the runtime of match is estimated
as t(match) = wmatch · |P | · |D|, and the output size as
|Rmatch| = smatch · |P | · |D|. These estimations however do
not work well for the bulk version of match (Section 5.4).
There, using an inverted index, match checks a document for
a relatively small, on average constant, number of patterns.
Hence, its runtime per document stays relatively constant,
and so does its output size. For these reasons, we model
the runtime of match as t(match) = wmatch · |D|, and the
output size as |Rmatch| = smatch · |D|.

In summary, Table 1 shows the statistics (selectivity, time-
per-unit, average output span length) that we must estimate
in order to estimate the runtime of the operators and hence
the runtime of a plan. We now discuss how to estimate these
statistics.

5.5.2 Estimating Statistics
We start by randomly selecting a set of k documents from

the data set (to which later we want to apply the IE pro-
gram). Next, we execute an IE execution plan p over this set
to compute for each procedural or relational operator q the
values (Cq, Tq,V

a
q ), where Cq is the number of output tuples,

Tq is the total processing time (excluding time spent in the
descendant nodes), and Va

q is the total sum of the lengths of
each extracted text span attribute a (if q is an IE predicate).

We then compute the above statistics using these quanti-
ties, as shown in Table 1. For example, consider an IE pred-
icate x that takes as input two relations R and S, and sup-
pose that x extracts span a from span b. Then, we record Cx,
Tx, and Va

x , the number of output tuples of x, total runtime
of x, and the total sum of the span lengths of a, respectively.
We then estimate the selectivity factor of x as Cx/(CR · CS),
and the time-per-unit factor of x as Tx/(l(b) · CR · CS), where
l(b) is the average length of b. Also, we estimate the average
length of a as Va

x/Cx.
Finally, if we do not know the average document length

over all documents in the docs(d) relation (e.g. from prepro-
cessing the data), then we estimate this value as the average
length of the k randomly selected documents.

5.6 Plan Enumeration
As the final piece in the optimization puzzle, we describe

how to find a plan with minimal cost. The three optimiza-
tion techniques described earlier give us a set of rewrite rules.
A possible search strategy is to start with a default plan
pdefault, and exhaustively search the plan space S by re-
peatedly applying the rewrite rules. Then, we select the
plan with the lowest estimated runtime from S.

However, the plan space S is huge (exponential wrt the
number of nodes in the plan). Thus, we reduce the plan
space size as follows. First, we assume that we use the
iMatch algorithm for all match operators in the plan. Then,
we search the remaining plan space in a phased approach.
While this phased approach does not search the space ex-
haustively, in Section 6 we show empirically that this search
strategy can still significantly improve performance.

In the first phase, we search the space of possible sets of
scope operators that can be inserted into pdefault. Specif-
ically, for each condition c(s, t) in pdefault where s and t
are extracted from r and c(s, t) involves only location func-

tions and predicates, we can: (1) insert sp(s, c(s, t), r, r′),

(2) insert sp(t, c(s, t), r, r′), or (3) insert neither scope opera-
tor. This results in O(3n) candidate sets of scope operators,

SizeNumber of DocumentsData Set
3.2 MB294Homepages
5.5 KB90DBWorld
2.5 MB142Conferences

Find (X,Y) where person X is advising person Y.advise
Find (X,Y) where conference X is held during date Y.confDate

DescriptionIE Programs
Find (X,Y) where person X is affiliated with organization Y. affiliation
Find (X,Y) where topic X is discussed at conference Y.confTopic

Find (X,Y, Z) where person X is a chair of type Y at conference Z.chair

Table 2: Data sets and IE programs.

where n is the number of location conditions in pdefault.
Then, we test each candidate set T by inserting the scope
operators in T into pdefault, estimating the cost of the re-
sulting plan, and selecting the plan p′ with the lowest cost.
To avoid recomputing costs, we employ the dynamic opti-
mization technique of memoizing the cost of subplans [17].

Then, in the second phase we search the space of text
properties that can be pushed down. To do this, we re-
peatedly push down text properties in plan p′ until no more
properties can be pushed down. Then, for each new selection
σc′ introduced by pushing down text properties, we remove
σc′ from p′ if doing so lowers the estimated cost of p′.

6. EMPIRICAL EVALUATION
We now empirically show that optimization is vital for IE

programs, and that we can effectively optimize IE programs
written in our declarative framework.

Data Sets & IE Programs: Figure 2 describes the
three data sets and five IE programs used in our experi-
ment. The data sets Homepages, DBWorld, and Conferences

are taken from DBLife [11], and consist of researcher home-
pages, DBWorld messages, and conference homepages, re-
spectively. The five IE programs extract various academic
relationships (e.g., chairing a conference, working for a uni-
versity, etc.) and are converted from similar programs in
DBLife. Additionally, we experimented with a large IE pro-
gram running on a 116 MB one-day snapshot of DBLife data,
and will report this experiment below.

The Need For Optimization: We first examine the
need for optimizing extraction programs. Given the five
IE programs and three data sets described earlier, Figure 8
shows all fifteen scenarios of possible execution. In each sce-
nario we executed a program P on a data set D, and the four
bars show (from left to right) the runtime of unoptimized P
(i.e., the default execution plan in Section 4), P optimized
on Conferences, P optimized on DBWorld, and P optimized
on Homepages, respectively. A number on top of a bar indi-
cates the runtime (which exceeds the figure). P optimized
on Conferences for example means that we first run P over a
random sample of 40 documents from Conferences to collect
statistics, then optimize P using those statistics.

The results show that in all cases, optimized plans signif-
icantly outperform the unoptimized ones, cutting runtime
by 52-99%, thus underscoring the crucial importance of op-
timization for IE programs. In addition, out of the 15 cases,
optimizing on the same data set (e.g., optimized then run
both on D) runs significantly faster than optimizing on a dif-
ferent data set in 8 cases, by 3-78%, runs comparably in 6
cases, and runs worse in only 1 case (see executing affiliation

on Conferences). This result suggests that it is important
to optimize specifically for a data set before running an IE
program on that data set.
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Figure 8: Runtime of programs optimized for different

data sets.

Component Contributions: Next, we analyze the rel-
ative contributions of the three optimizations discussed in
this paper: pushing down text properties, scoping, and pat-
tern indexing with iMatch. To do so, for each program Q
and each data set D, we produced three optimized plans P ′

1,
P ′

2, and P ′

3, where each optimized plan was generated with-
out one of the three optimizations (e.g. optimize P without
considering pushing down text properties).

Figure 9 shows the runtime of these plans, as well as
those of the unoptimized default plan and the fully opti-
mized plan (i.e., with all three optimizations). The results
show that in 35 out of 45 cases, removing one of the opti-
mizations produces a plan that is inferior to the fully opti-
mized plan. Overall, the results suggest that all three op-
timizations make important contributions to reducing run-
time, and no optimization appears to dominate the others.

Zooming further into the results, we found that a very
large amount of runtime of unoptimized plans, namely 84-
99%, was CPU time, and most of this time was spent in
pattern matching. This suggests that reducing CPU time,
and in particular pattern matching time, is a promising di-
rection for optimizing IE programs.

However, it is interesting to note that we can significantly
reduce pattern matching time not just by optimizing the
pattern matching operator, as expected, but also simply
by reducing the amount of text that the matching oper-
ator must process. For example, consider executing chair

over the Conferences data set, where pattern matching takes
99.7% of the execution time in the unoptimized plan. In Fig-
ure 9 we see that even without optimizing pattern matching
(by using iMatch), we still managed to reduce runtime by
99%, simply by pushing down text properties and scoping
the documents before matching patterns over them.

In the next step, we want to know how well our optimized
pattern matching operator works. To do so, we compared
iMatch with the naive match algorithm and showed the re-
sults in Figure 10.a. We evaluated both algorithms over
Homepages, by varying the number of person name patterns
that must be matched. The results show that, while the
runtime of both algorithms grows linearly with respect to
the number of patterns, the runtime of iMatch grows much
more slowly, suggesting that iMatch can effectively match a
large number of patterns.
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Figure 9: The runtime of programs optimized without

one of the three optimizations.

Finally, we examine the importance of text-based param-
eters in our cost model. To do this, for each program P and
each data set D, we produced an optimized plan P ′ using a
modified cost model that did not differentiate IE predicates
(i.e. the modified cost model ignored the length of input
spans for IE predicates, see Section 5.5.1). In Figure 10.b,
we see that in 12 out of 15 cases, modeling text span length
results in a superior or comparable plan, suggesting that it
is indeed critical to model text properties when optimizing
IE programs.

Sensitivity Analysis: Figure 11 shows the runtime of
optimized IE plans for affiliation, confTopic, and confDate,
as we vary the number of documents over which we collect
statistics (before optimizing). The results show that in all
cases, we improve on the unoptimized plan by performing
optimization with default parameter values (without collect-
ing any statistics). However, in 7 out of 9 cases, collecting
statistics over as few as 10 documents already helps us find a
significantly better plan, further reducing runtime by 42%-
98%. In all cases, collecting statistics over more than 10 doc-
uments does not appear to further improve runtime. This
suggests that while collecting statistics is crucial for opti-
mization, we can do so with a relatively small number of
documents, thus incurring little overhead.

Declarative Extraction in DBLife: Finally, we tested
the practicality of our framework by converting several ex-
traction programs in DBLife into Xlog. These programs ex-
tract person and conference mentions and infer a variety of
relationships between them (e.g. person X is giving a talk
at conference Y ). In their original imperative form, these
programs took 7+ hours to run on a single day’s snapshot of
DBLife’s crawled data (9572 web pages, 116 MB). In 2005,
after 3 days of manually changing the code and evaluating
different optimizations (by a team of 2 graduate students),
we were able to manually optimize these programs and re-
duce their total runtime from 7 hours to 24 minutes.

Given the current declarative framework, we recently spent
3+ hours converting these programs into one Xlog program
Q. Q has 16 Xlog rules consisting of 47 predicates, out of
which 18 are p-functions and 5 are p-predicates. We then
optimized Q (using the current Xlog optimizer) and obtained
an execution plan that took 61 minutes on the same set of
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Figure 11: Runtime of programs optimized after col-

lecting statistics over varying numbers of documents.

data, which we found acceptable in the current DBLife con-
text. Thus, while anecdotal, this result does suggest that
automatic optimization with declarative IE can drastically
speed up development time, by eliminating tedious and la-
bor intensive manual optimization.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a declarative framework

for writing IE programs using Datalog with embedded ex-
traction predicates. In addition to being easier to write
and understand, we can also apply query optimization tech-
niques to IE programs written in Datalog, a feature that
is vital for any large-scale IE task. We provided initial so-
lutions to optimizing IE programs, and described extensive
experiments over real-world data to show the effectiveness of
our approach. As future work, we plan to extensively evalu-
ate the current framework, consider richer data models and
query languages, develop new optimization techniques, and
extend the current work to handle recursion and negation,
which commonly occur in extraction scenarios. We would
also like to explore implementation strategies for Xlog-like
languages, e.g., on top of the Coral [21] deductive system.
While such an implementation brings many potential bene-
fits, it also raises non-trivial challenges, as the current opti-
mization framework of Coral (and other open-source deduc-
tive systems) is not cost-based.
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