
Datalog and Emerging Applications: An Interactive Tutorial

Shan Shan Huang
LogicBlox, Inc.

Atlanta, GA USA
ssh@logicblox.com

Todd J. Green
Dept. of Computer Science

University of California, Davis
Davis, CA USA

green@cs.ucdavis.edu

Boon Thau Loo
Dept. of CIS

University of Pennsylvania
Philadelphia, PA USA

boonloo@cis.upenn.edu

ABSTRACT

We are witnessing an exciting revival of interest in recur-
sive Datalog queries in a variety of emerging application do-
mains such as data integration, information extraction, net-
working, program analysis, security, and cloud computing.
This tutorial briefly reviews the Datalog language and recur-
sive query processing and optimization techniques, then dis-
cusses applications of Datalog in three application domains:
data integration, declarative networking, and program anal-
ysis. Throughout the tutorial, we use LogicBlox, a commer-
cial Datalog engine for enterprise software systems, to allow
the audience to walk through code examples presented in
the tutorial.

Categories and Subject Descriptors

H.2.3 [Database Management]: Query languages

General Terms

Languages

Keywords

Datalog, recursive query processing, data integration, declar-
ative networking, program analysis

1. INTRODUCTION
Mainstream interest in Datalog in the database systems

community flourished in the eighties and early nineties, but
a perceived lack of compelling applications at the time [39]
ultimately forced Datalog research into a long dormancy. In
recent years, however, Datalog has suddenly re-emerged at
the center of a wide range of new applications, including
data integration [26, 17, 22], declarative networking [29, 28,
27], program analysis [13], information extraction [19, 38],
network monitoring [5], security [31, 25], and cloud com-
puting [7]. A common thread across these systems is the
use of the Datalog language as a higher level abstraction
for querying graphs and relational structures, efficient re-
cursive query execution and incremental view maintenance
techniques based on the relational model, and formal rea-
soning and analysis. Each application domain takes the core
Datalog language and then further customizes and extends

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

the core language and implementation techniques to meet
its particular needs.

As the list of applications above indicates, interest today
in Datalog extends well beyond the core database commu-
nity. Indeed, the successful Datalog 2.0 Workshop held in
March 2010 at Oxford University attracted over 100 atten-
dees from a wide range of areas (including databases, pro-
gramming languages, verification, security, and AI). More-
over, there has also been a surprising resurgence in commer-

cial interest in Datalog, led by startups such as Lixto [19]
(information extraction), LogicBlox [3] (enterprise decision
automation) and Semmle [4] (program analysis).

We feel that the time is right for a “re-introduction” of
the mainstream database systems community to Datalog,
as seen through the lens of these recent developments. The
tutorial first briefly reviews the Datalog language and recur-
sive query processing and optimization techniques, covering
the basics but emphasizing features and techniques beyond
“classical”Datalog which are vital for practical applications.
The tutorial will focus on discussing three applications of
Datalog in emerging domains from the list above: data inte-
gration and exchange, declarative networking, and program
analysis. We also include a case study of the LogicBlox sys-
tem.

Compared to prior surveys [10, 14, 36] and textbook pre-
sentations [6, 12, 40], we can present our material from the
perspective of modern, practical applications and commer-
cial systems, several of which have significantly more mature
and complete Datalog implementations (including optimiza-
tions) compared to the state-of-the-art of a decade ago. This
tutorial accompanies our own survey paper of Datalog from
a modern perspective [21].

A unique feature of the tutorial is its interactive nature:
we plan to distribute software and academic licenses of the
LogicBlox system, along with Datalog programs correspond-
ing to the examples used throughout the tutorial.

2. REVIEW OF FOUNDATIONS
The tutorial will begin with a brief review of the founda-

tions of Datalog, with a focus on language and semantics,
query processing, and optimizations. Given the scope of the
topics covered, we will necessarily assume prior familiarity
with the basics of Datalog, and will cover the foundational
material at a brisk pace. In addition, we limit the scope of
the presentation by focusing on key aspects that are useful
in today’s practical systems.

Throughout, the presentation will include running exam-
ples that can be executed interactively by participants using



LogicBlox. We briefly touch upon language extensions, but
defer the bulk of the discussion to the second half of the
tutorial, when we discuss extensions in the context of their
motivating applications.

3. APPLICATIONS AND SYSTEMS
The bulk of the tutorial will focus on emerging Datalog-

based applications and systems. We present three repre-
sentative application domains: data integration, declarative
networking, and program analysis. In each domain, we high-
light language extensions, runtime considerations, and use
cases. We also survey advanced features of academic and
commercial systems.

3.1 Data Integration
Broadly speaking, the goal of data integration [26] is to

provide mechanisms for tying together collections of
databases with heterogeneous schemas, semantic
mismatches, and varying capabilities so that they can be
accessed and used as an integrated unit. In the classical
data integration scenario, we are given a source database
schema (or schemas), a target schema, a collection of schema

mappings relating source and target schemas, and a source
database instance (or instances). In virtual data integra-

tion [18], we are also given a query over the target schema.
The goal is to reformulate the query so that it can be an-
swered over the source databases. In data exchange [17], the
goal is to compute a target database instance so that queries
over the target schema can be answered directly.

Schema mappings are typically specified using tuple gen-

erating dependencies [11]. These are logical constraints that
correspond very naturally to Datalog rules, provided we en-
rich Datalog with Skolem terms to play the role of
existentially-quantified variables in schema mappings. Both
virtual and materialized data integration then become just
special cases of Datalog query evaluation. However, a signif-
icant issue in this extension is that termination is no longer
guaranteed. A variety of syntactic restrictions guaranteeing
termination in ptime have been proposed. We present one
such notion called weak acyclicity [16, 17].

3.2 Declarative Networking
Declarative networking is based on the observation that

recursive queries are a natural fit for expressing network
protocols, which themselves are based on recursive relations
among nodes in the network. Intuitively, one can view the
forwarding tables generated by network protocols as the out-
put of distributed recursive queries over changing input net-
work state (network links, nodes, operator policies, etc.),
and the query results need to be kept consistent with the
changing network state.

Using a few representative routing protocol examples, we
will describe theNetwork Datalog [27] language used in declar-
ative networking. In comparison to traditional Datalog, Net-
work Datalog is enhanced to capture typical network reali-
ties including distribution, link-layer constraints on commu-
nication (and hence deduction), and soft-state semantics.

We also present the pipelined semi-näıve evaluation [27]
strategy, which relaxes semi-näıve’s requirement of synchro-
nized “lock-step” iterations, and enables query evaluation to
work much more efficiently in an asynchronous distributed
setting. Finally, we introduce a provenance-based
approach [32] for incremental recursive maintenance that

needs far less bandwidth than DRed in a distributed set-
ting.

3.3 Program Analysis
Program analysis covers a broad range of analyses, from

data-flow and control-flow, to pointer analysis, to static code
structure. The results of these analyses are used for opti-
mization, bug discovery, enforcement of coding standards,
etc. Program analyses are highly recursive in nature, mak-
ing Datalog a natural fit. For instance, in points-to analysis,
the heap locations pointed to by a variable are the union of
its direct heap allocations assignments with the locations
pointed to by its aliases.

We discuss two recent tools, .QL [23] and Doop [13]. We
show that Datalog can be effectively used to describe at
a high level otherwise complex algorithms. We also show
that non-trivial (e.g. non-linear) recursion is necessary in
program analysis. Furthermore, we show that a Datalog
implementation of pointer analysis (as in Doop) can out-
perform highly hand-tuned implementations in lower level
imperative languages like Java.

3.4 Commercial and Academic Systems
We discuss two active commercial systems, LogicBlox [3]

and Semmle [4], and conclude with a (partial) overview of
(past and present) academic projects. We highlight their
distinguishing features.

LogicBlox and Semmle each use novel, non-trivial type
systems to catch likely programming errors and aid query
optimization [15]. Both systems support module mecha-
nisms. LogicBlox additionally supports meta-programming,
a reusability feature that has proven useful both within the
company, and in areas such as security and distributed query
processing [31]. LogicBlox also supports an update lan-
guage, Skolem terms, user-defined functions, and integrity
constraints.

We also review two important academic systems from the
“classical age”of Datalog research, Coral [35] and LDL++ [9].
Each supports advanced forms of recursion through nega-
tion. Furthermore, LDL++ supports a syntax for user-
defined aggregations such that, if they can be shown to be
monotone, then their use in recursion is unrestricted. In ad-
dition to a module mechanism, LDL++ also implements a
limited form of meta-programming. Finally, we highlight the
ongoing BOOM project, based on a Datalog dialect called
Dedalus [8]. Designed for distributed programming, a major
novelty of Dedalus is its explicit representation of time.

4. OPEN ISSUES
We close the tutorial with a brief sampling of open chal-

lenges.

Datalog evaluation on emerging architectures. The end
of Moore’s Law has stimulated the emergence of new com-
puting architectures. GPUs and FPGAs are readily avail-
able in commodity hardware [2], and even on the cloud as
services [1]. Techniques have been proposed for query pro-
cessing using GPUs [20, 24] and FPGAs [34, 33]. However,
little has been done to address the challenges of evaluating
recursive queries on these new architectures.



Datalog as a general purpose programming language.
Datalog has traditionally been viewed as a query processing
language. Recently, however, Datalog has been used for gen-
eral purpose computing, such as describing security proto-
cols [31], or building the entire enterprise application stack.
These new applications place interesting demands on both
the expressiveness and performance of Datalog. Efficient im-
plementations of advanced forms of recursion through nega-
tion [37], and explicit representations of time [30], remain to
be demonstrated.

Extensions, safety, and complexity. Related to the last
point, practical applications invariably require extensions to
the core language, such as arithmetic or Skolem functions,
but these extensions destroy Datalog’s attractive guarantees
of ptime termination. This phenomenon has been examined
in a number of papers, but our understanding remains far
from complete. We point out some gaps in the literature
and argue for a renewed push to close them.

Biographies

Shan Shan Huang is the lead of compiler development
at LogicBlox, Inc. Her work focuses on enriching Datalog
with features necessary for building large enterprise applica-
tions, while keeping an vigilant eye on maintaining proper
semantics and efficient evaluation.

Todd J. Green is an Assistant Professor of Computer Sci-
ence at the University of California, Davis. His research
interests include data integration, data provenance, incom-
plete and probabilistic databases, query optimization, semi-
structured data, and streaming data processing.

Boon Thau Loo is an Assistant Professor in the Com-
puter and Information Science department at the University
of Pennsylvania. His research focuses on distributed data
management systems, Internet-scale query processing, and
the application of data-centric techniques and formal meth-
ods to the design, analysis and implementation of networked
systems.

5. REFERENCES

[1] Amazon High Performance Computing Clusters.
http://aws.amazon.com/ec2/hpc-applications.
Accessed Dec 2010.

[2] Intel Atom E600C with FPGA. http:
//www.intel.com/design/intarch/atom/index.htm.
Accessed Dec 2010.

[3] LogicBlox. http://www.logicblox.com. Accessed Dec
2010.

[4] Semmle. http://www.semmle.com. Accessed Dec 2010.

[5] Abiteboul, S., Abrams, Z., Haar, S., and Milo,

T. Diagnosis of Asynchronous Discrete Event
Systems—Datalog to the Rescue! In PODS (2005).

[6] Abiteboul, S., Hull, R., and Vianu, V.

Foundations of Databases. Addison-Wesley, 1995.

[7] Alvaro, P., Condie, T., Conway, N., Elmeleegy,

K., Hellerstein, J. M., and Sears, R. Boom
analytics: exploring data-centric, declarative
programming for the cloud. In EuroSys (2010).

[8] Alvaro, P., Marczak, W., Conway, N.,

Hellerstein, J. M., Maier, D., and Sears, R. C.

Dedalus: Datalog in time and space. Tech. Rep.
UCB/EECS-2009-173, EECS Department, University
of California, Berkeley, Dec 2009.

[9] Arni, F., Ong, K., Tsur, S., Wang, H., and

Zaniolo, C. The deductive database system LDL++.
TPLP 3, 1 (2003), 61–94.

[10] Bancilhon, F., and Ramakrishnan, R. An
amateur’s introduction to recursive query processing
strategies. SIGMOD Rec. 15, 2 (1986), 16–52.

[11] Beeri, C., and Vardi, M. Y. A proof procedure for
data dependencies. J. ACM 31, 4 (1984), 718–741.

[12] Bidoit, N. Bases de Données Déductives:

Présentation de Datalog. Armand Colin, 1992.

[13] Bravenboer, M., and Smaragdakis, Y. Strictly
declarative specification of sophisticated points-to
analyses. In OOPSLA (2009).

[14] Ceri, S., Gottlob, G., and Tanca, L. What you
always wanted to know about datalog (and never
dared to ask). TKDE 1, 1 (1989), 146–166.

[15] de Moor, O., Sereni, D., Avgustinov, P., and

Verbaere, M. Type inference for datalog and its
application to query optimisation. In PODS (2008).

[16] Deutsch, A., and Tannen, V. Reformulation of xml
queries and constraints. In ICDT (2003), pp. 225–241.

[17] Fagin, R., Kolaitis, P. G., Miller, R. J., and

Popa, L. Data exchange: semantics and query
answering. TCS 336, 1 (2005), 89–124.

[18] Genesereth, M. R. Data Integration: The Relational

Logic Approach. Morgan & Claypool Publishers, 2010.

[19] Gottlob, G., Koch, C., Baumgartner, R.,

Herzog, M., and Flesca, S. The Lixto data
extraction project: back and forth between theory and
practice. In PODS (2004).

[20] Govindaraju, N., Gray, J., Kumar, R., and

Manocha, D. GPUTeraSort: high performance
graphics co-processor sorting for large database
management. In SIGMOD (2006).

[21] Green, T. J., Huang, S. S., and Loo, B. T.

Datalog and recursive query processing. Foundations
and Trends in Databases (2011). In preparation.

[22] Green, T. J., Karvounarakis, G., Ives, Z. G.,

and Tannen, V. Update exchange with mappings
and provenance. In VLDB (2007).

[23] Hajiyev, E., Verbaere, M., and de Moor, O.

Codequest: Scalable source code queries with datalog.
In ECOOP (2006).

[24] He, B., Lu, M., Yang, K., Fang, R.,

Govindaraju, N. K., Luo, Q., and Sander, P. V.

Relational query coprocessing on graphics processors.
ACM TODS 34 (December 2009).

[25] Jim, T. SD3: A Trust Management System With
Certified Evaluation. In IEEE Symposium on Security

and Privacy (May 2001).

[26] Lenzerini, M. Data integration: A theoretical
perspective. In PODS (2002), pp. 233–246.

[27] Loo, B. T., Condie, T., Garofalakis, M., Gay,

D. E., Hellerstein, J. M., Maniatis, P.,

Ramakrishnan, R., Roscoe, T., and Stoica, I.

Declarative networking: Language, execution and
optimization. In SIGMOD (2006).



[28] Loo, B. T., Condie, T., Hellerstein, J. M.,

Maniatis, P., Roscoe, T., and Stoica, I.

Implementing declarative overlays. In SOSP (2005).

[29] Loo, B. T., Hellerstein, J. M., Stoica, I., and

Ramakrishnan, R. Declarative routing: extensible
routing with declarative queries. In SIGCOMM

(2005).

[30] Ludäscher, B., May, W., and Lausen, G. Nested
transactions in a logical language for active rules. In
LID (1996).

[31] Marczak, W. R., Huang, S. S., Bravenboer, M.,

Sherr, M., Loo, B. T., and Aref, M. Secureblox:
customizable secure distributed data processing. In
SIGMOD (2010).

[32] Mengmeng Liu and Nicholas Taylor and

Wenchao Zhou and Zachary Ives and Boon

Thau Loo. Recursive Computation of Regions and
Connectivity in Networks. In ICDE (2009).

[33] Mueller, R., Teubner, J., and Alonso, G. Data
processing on FPGAs. PVLDB 2, 1 (August 2009).

[34] Mueller, R., Teubner, J., and Alonso, G.

Glacier: a query-to-hardware compiler. In SIGMOD

(2010).

[35] Ramakrishnan, R., Srivastava, D., Sudarshan,

S., and Seshadri, P. The CORAL deductive system.
The VLDB Journal 3, 2 (1994), 161–210.

[36] Ramakrishnan, R., and Ullman, J. D. A Survey of
Research on Deductive Database Systems. JLP 23, 2
(1993).

[37] Ross, K. A syntactic stratification condition using
constraints. In ILPS (1994).

[38] Shen, W., Doan, A., Naughton, J., and

Ramakrishnan, R. Declarative information
extraction using datalog with embedded extraction
predicates. In VLDB (2007).

[39] Stonebraker, M., and Hellerstein, J. M., Eds.
Readings in Database Systems, Third Edition. Morgan
Kaufmann, 1998.

[40] Ullman, J. D. Principles of Database and

Knowledge-Base Systems, vol. II. W. H. Freeman &
Co., 1990.


