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Preface

This volume contains the proceedings of the 2012 Workshop on the Resurgence
of Datalog in Academia and Industry (Datalog 2.0 2012) held during September
11–13, 2012, in Vienna. Datalog 2.0 is a workshop for Datalog researchers, imple-
menters, and users. Its main aim is to bring everyone up to date and map out direc-
tions for future research.The first edition of this workshopwas held in Oxford, UK,
in March 2010. It was based on invitations only. Over the past few years, Datalog
has been resurrected as a lively topic with applications in many different areas of
computer science as well as industry. Owing to this renewed interest and increased
level of activity, we decided to open the workshop for submissions this year.

The call for papers resulted in 17 submissions. Each paper was reviewed by
at least three Program Committee members. The Program Committee accepted
12 papers, based on their technical merit and potential for stimulating discus-
sions. We also accepted one system description and one tutorial, which show the
influence of Datalog in industry and practice today.

In addition, the technical program included invited talks by Thomas Eiter
(Technische Universität Wien), Yuri Gurevich (Microsoft Research), Phokion Ko-
laitis (University of California at Santa Cruz and IBM Research - Almaden), Oege
de Moor (University ofOxford), andMarie-LaureMugnier (University ofMontpel-
lier). It also includes invited tutorials by Todd J. Green (University of California
at Davis and LogicBlox) and Axel Pollers (Siemens AG Austria). The Datalog 2.0
Workshop 2012 was collocated with two further events: the 6th International Con-
ference on Web Reasoning and Rule Systems (RR 2012) and the 4th International
Conference on Computational Models of Argument (COMMA 2012). The invited
talk by RobertKowalski (Imperial College, London)was shared by all three events.
Short abstracts of two invited talks are included in the front matter of this volume.
Extended abstracts are given in the main body of the proceedings.

The workshop would not have been possible without the support of many
people. First of all we would like to thank Georg Gottlob, the General Chair of
Datalog 2.0, for his advice and help in putting together the technical program.
We are very grateful to Markus Pichlmair (Technische Universität Wien) for
all his hard work in the local organization. We also acknowledge EasyChair as
a great tool that has significantly simplified the whole process from receiving
the submissions to producing the input for the proceedings. Finally, we would
like to thank all the authors who contributed to the workshop and the Program
Committee members for their effort to produce timely and wise reviews.

We hope that the success of Datalog 2.0 2012 will stimulate forthcoming
versions of this worskhop as well as renewed interest from the community in
Datalog and its applications.

September 2012 Pablo Barceló
Reinhard Pichler
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Paraconsistent Modular Answer Set

Programming (Abstract)

Thomas Eiter
Vienna University of Technology

eiter@kr.tuwien.ac.at

Paraconsistent reasoning is a well-studied approach to deal with inconsistency
in logical theories in a way such that inference does not explode. It has specifi-
cally been considered in the area of knowledge representation and reasoning for
a range of different formalisms, including also non-monotonic formalisms such
as logic programming. In the last years, there has been increasing interest in
datalog-based formalisms, including traditional Answer Set Programming, and
extensions of the formalisms to encompass modularity, possibly in a distributed
environment, have been conceived.

In this talk, we shall address the issue of paraconsistency for modular logic
programs in a datalog setting, under the answer set semantics for logic programs.
The two orthogonal aspects of modularity and paraconsistency for this seman-
tics, which is subsumed by Equilibrium Logic, may be approached on different
grounds. We shall consider developments on these aspects, including proposals
for modularity and paraconsistency of answer set programs developed at TU
Wien. For the latter particular emphasis is given to the issue of incoherence, i.e.,
non-existence of answer sets due to the lack of stability caused by cyclic depen-
dencies of an atom from its default negation. We shall then consider possible
combinations of the two aspects in a single formalism. In the course of this, we
shall discuss issues and challenges regarding semantics and evaluation, both in
theory and for practical concerns.

This work is a joint effort with Minh Dao-Tran, Michael Fink, Thomas Kren-
nwallner and others, and supported by the project P20841 “Modular HEX-
Programs” of the Austrian Science Fund (FWF).



A Retrospective on Datalog 1.0 (Abstract)

Phokion G. Kolaitis
University of California Santa Cruz & IBM Research - Almaden

kolaitis@cs.ucsc.edu

Datalog was introduced in the early 1980s as a database query language that
embodies a recursion mechanism on relational databases and, thus, overcomes
some of the inherent limitations in the expressive power of relational algebra
and relational calculus. In the ensuing decade, Datalog became the subject of an
in-depth investigation by researchers in database theory. This study spanned a
wide spectrum of topics, including query processing and optimization of Datalog
programs, the delineation of the expressive power and computational complexity
of Datalog queries, and the exploration of the semantics and the expressive
power of extensions of Datalog with comparison operators and negation. The
investigation of these topics entailed extensive interaction of database theory
with finite model theory and, in particular, with finite-variable logics and pebble
games suitable for analyzing the expressive power of Datalog and its variants.
From the early 1990s on, there has been a fruitful and far-reaching interaction
between Datalog and constraint satisfaction; this interaction, which continues
today, has contributed to the understanding of tractable cases of the constraint
satisfaction problem, but has also given rise to new results about the expressive
power and the computational complexity of Datalog queries.

The aim of this talk is to reflect on some of the aforementioned topics, high-
light selected results, and speculate on future uses and applications of Datalog.
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Domenico Saccà and Edoardo Serra
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LogicBlox, Platform and Language: A Tutorial

Todd J. Green, Molham Aref, and Grigoris Karvounarakis

LogicBlox, Inc,
1349 W Peachtree St NW,
Atlanta, GA 30309 USA

{todd.green,molham.aref,grigoris.karvounarakis}@logicblox.com

Abstract. The modern enterprise software stack—a collection of appli-
cations supporting bookkeeping, analytics, planning, and forecasting for
enterprise data—is in danger of collapsing under its own weight. The task
of building and maintaining enterprise software is tedious and laborious;
applications are cumbersome for end-users; and adapting to new com-
puting hardware and infrastructures is difficult. We believe that much
of the complexity in today’s architecture is accidental, rather than in-
herent. This tutorial provides an overview of the LogicBlox platform, a
ambitious redesign of the enterprise software stack centered around a
unified declarative programming model, based on an extended version of
Datalog.

1 The Enterprise Hairball

Modern enterprise applications involve an enormously complex technology stack
composed of many disparate systems programmed in a hodgepodge of program-
ming languages. We refer to this stack, depicted in Figure 1, as “the enterprise
hairball.”

First, there is an online transaction processing (OLTP) layer that performs
bookkeeping of the core business data for an enterprise. Such data could include
the current product catalog, recent sales figures, current outstanding invoices,
customer account balances, and so forth. This OLTP layer typically includes a
relational DBMS—programmed in a combination of a query language (SQL), a
stored procedure language (like PL/SQL or TSQL), and a batch programming
language like Pro*C—an application server, such as Oracle WebLogic [35], IBM
WebSphere [36], or SAP NetWeaver [26]—programmed in an object-oriented
language like Java, C#, or ABAP—and a web browser front-end, programmed
using HTML and Javascript.

In order to track the performance of the enterprise over time, a second business
intelligence (BI) layer typically holds five to ten years of historical information
that was originally recorded in the OLTP layer and performs read-only analy-
ses on this information. This layer typically includes another DBMS (or, more
commonly, a BI variant like Teradata [33] or IBM Netezza [25]) along with a BI
application server such as Microstrategy [23], SAP BusinessObjects [5], or IBM
Cognos [7], programmed using a vendor-specific declarative language. Data is

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Enterprise software components and technology stack example

moved from the transaction layer to the BI layer via so-called extract-transform-
load (ETL) tools that come with their own tool-specific programming language.

Finally, in order to plan the future actions of an enterprise, there is a planning
layer, which supports a class of read-write use cases for which the BI layer
is unsuitable. This layer typically includes a planning application server, like
Oracle Hyperion [13] or IBM Cognos TM1 [34], that are programmed using
a vendor-specific declarative language or a standard language like MDX [21],
and spreadsheets like Microsoft Excel that are programmed in a vendor-specific
formula language (e.g. A1 = B17 - D12) and optionally a scripting language like
VBA. In order to enhance or automate decisions made in the planning layer,
statistical predictive models are often prototyped using modeling tools like SAS,
Matlab, SPSS, or R, and then rewritten for production in C++ or Java so they
can be embedded in the OLTP or OLAP layers.

In summary, enterprise software developed according to the hairball model
must be programmed using a dozen or so different programming languages, run-
ning in almost as many system-scale components. Some of the languages are im-
perative (both object-oriented and not) and some are declarative (every possible
flavor). Most of the languages used are vendor-specific and tied to the component
in which they run (e.g. ABAP, Excel, R, OPL, etc.). Even the languages that are
based on open standards are not easily ported from one component to another
because of significant variations in performance or because of vendor specific
extensions (e.g., the same SQL query on Oracle will perform very differently
on DB2). Recent innovations in infrastructure technology for supporting much
larger numbers of users (Web applications) and big data (predictive analytics),
including NoSQL [28], NewSQL [27] and analytic databases, have introduced
even more components into the technology stack described above, and have not
helped reduce its overall complexity.

This complexity makes enterprise software hard to build, hard to implement,
and hard to change. Simple changes—like extending a product identifier by 3
characters or an employee identifier by 1 digit—often necessitate modifications
to most of the different components in the stack, requiring thousands of days of
person effort and costing many millions of dollars. An extreme example of the
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problems caused by this accidental complexity occurred in the lead-up to the
year 2000, where the simple problem of adding two digits to the year field (the
Y2K problem) cost humanity over $300 billion dollars [24].

Moreover, as a result of the time required for such changes, individuals within
an enterprise often resort to ad hoc, error-prone methods to perform the cal-
culations needed in order to make timely business decisions. For example, they
often roll their own extensions using spreadsheets, where they incompletely or
incorrectly implement such calculations based on copies of the data that is not
kept in sync with the OLTP database and thus may no longer accurately reflect
the state of their enterprise.

2 LogicBlox

To address these problems, the LogicBlox platform follows a different approach,
based on ruthless simplification and consolidation. Its main goal is to unify the
programming model for enterprise software development that combine transac-
tions with analytics, by using a single expressive, declarative language amenable
to efficient evaluation schemes, automatic parallelizations, and transactional se-
mantics. To achieve this goal, it employs DatalogLB, a strongly-typed, extended
form of Datalog [17,1] that is expressive enough to allow coding of entire enter-
prise applications (including business logic, workflows, user interface, statistical
modeling, and optimization tasks).

Datalog has, historically, been used as a toy language not intended for prac-
tical applications, so the choice of Datalog as a unifying language for enterprise
application development may be a bit surprising. One reason for its selection for
LogicBlox was that, in our experience, Datalog programs are easier to write and
understand by the target users of such systems (i.e., business consultants, not
Computer Science researchers), compared to languages such as Haskell [12] or
Prolog [17]. Moreover, with Datalog we are able to draw on a rich literature for
automatic optimizations and incremental evaluation strategies; the latter is of
paramount importance for enterprise applications, where small changes to the
input of a program are common, and need to be handled at interactive speeds.
Changes in an Excel-like spreadsheet application, for instance, need to be re-
flected immediately.

Today, the LogicBlox platform has matured to the point that it is being
used daily in mission-critical applications in some of the largest enterprises in
the world. In the tutorial, we present an overview of the language and plat-
form, covering standard Datalog features but emphasizing extensions to support
general-purpose programming and the development of various OLTP, BI and
planning components of enterprise applications. We also highlight some of the
engineering challenges in implementing our platform, which must support mixed
transactional and analytical workloads, high data volumes, and high numbers
of concurrent users, running applications which are executed—conceptually, at
least—entirely within the database system.
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3 The DatalogLB Language

The bulk of the tutorial will focus on Dataloglb, the lingua franca of the Log-
icBlox platform. We sketch some highlights of the language in this section.

Rules. Dataloglb rules are specified using a <- notation (instead of the tradi-
tional “:-”), as in the example below:

person(x) <- father(x,y).

person(x) <- mother(x,y).

grandfather(x,z) <- father(x,y), father(y,z) ; father(x,y), mother(y,z).

mother(x) <- parent(x,y), !father(x).

In this example, ; indicates disjunction while ! is used for negation1. Predicate
and variable names may use lower/upper case freely. The first two rules copy data
from the father and mother predicates into person. The third rule computes
the grandfather predicate, essentially as the union of two conjunctive queries.
Finally, the fourth rule specifies that all parents that are not fathers are mothers,
with negation interpreted under the stratified semantics.

Entity types and constraints. The main building-blocks of the Dataloglb type
system are entities, i.e., specially declared unary predicates corresponding to
some concrete object or abstract concept. The Dataloglb type system also in-
cludes various primitive types (e.g., numeric types, strings etc). For example,
the following Dataloglb program declares (using a -> notation) that person is
an entity:

person(x) -> .

Entities can have various properties, expressed through predicates with the cor-
responding entity as the type of some argument, e.g.,:

ssn[x] = y -> person(x), int[32](y).

name[x] = n -> person(x), string(n).

The first declaration says that ssn is a functional predicate mapping person

entities to integer-valued Social Security Numbers, while the second maps person
entities to string names.

Entities can be arranged in subtyping hierarchies, e.g., the following example
declares that male is a subtype of person:

male(x) -> person(x).

As expected, subtypes inherit the properties of their supertypes and can be
used wherever instances of their supertypes are allowed by the type system. For
example, according to the declarations above, a male also has an ssn and a name.

One can also use the -> notation to specify runtime integrity constraints, such
as that every parent relationship is also either a father or mother relationship,
but not both:
1 Not to be confused with the Prolog cut operator.
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(a)

sales_entry_form(f) -> form(f).

form_title[f] = "Sales Data Entry"

<- sales_entry_form(f).

component[f] = d, dropdown(d), label[d] = "item"

<- sales_entry_form(f).

submit_button[f] = b, label[b] = "submit"

<- sales_entry_form(f).

(b)

Fig. 2. A UIBlox form and an excerpt from its specification

parent(x,y) -> father(x,y), !mother(x,y) ; mother(x,y), !father(x,y).

As another example, the [] notation used earlier for the predicate ssn is just
syntactic sugar for the following type declaration and integrity constraint:

ssn(x,y) -> person(x), int[32](y).

ssn(x,y), ssn(x,z) -> y = z.

Updates and events. The needs of interactive applications motivate procedural
features in Dataloglb (inspired by previous work on Datalog with updates [2] and
states [16]). For instance, LogicBlox provides a framework for user interface (UI)
programming that allows the implementation of UIs over stored data through
Dataloglb rules. Apart from being able to populate the UI based on results of
Dataloglb programs, UI events are also handled through Dataloglb rules that
are executed in response to those events.

For example, consider a simple application in which managers are allowed to
use the form in Figure 2a to modify sales data for planning scenarios. This form,
including the title of the page, the values in the drop-down menu and the text on
the “submit” button, are generated by the Dataloglb rules shown in Figure 2b.

The selection of values for particular items from the drop-down menu, speci-
fying a UI view, also corresponds to a database view:

dropdown_values(d,i)

<- component[f] = d, sales_entry_form_user(f,u), modifiable_by(i,u).

UI events, such as when the submit button in Figure 2a is pushed, are represented
as predicates, and one can write rules—such as the one below—that are executed
when these events happen:

^sales[p,d,s] = v

<- +button_clicked(f,s),

sales_entry_form_user(f,u), dropdown_selected[f] = p,

date_fld_value[f,_] = d, num_fld_value[f,_] = v, manager(s,u).
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This is an example of what LogicBlox terms a delta rule2, used to insert data
into the edb predicate sales. In this body, the atom button clicked(f,s) is
preceded by the insert modifier “+”, which indicates an insertion to the cor-
responding predicate. As a result, the rule will only be fired when the submit
button is pushed and the corresponding fact is inserted in the button clicked

predicate. Similarly, the symbol “^” in the head is the upsert modifier, indicating
that if the corresponding key already exists in sales, its value should be updated
to the one produced by the rule, otherwise a new entry with this key-value pair
should be inserted.

Constructors. Dataloglb allows the invention of new values during program ex-
ecution through the use of constructors (aka Skolem functions [9]) in the heads
of rules. Dataloglb programs using recursion through constructors are not guar-
anteed to terminate on all inputs. For this reason, the Dataloglb compiler im-
plements a safety check that exploits the connection between Datalog evaluation
and the chase procedure [22], and warns if termination cannot be guaranteed.
(The same safety check is used for programs using recursion through arithmetic.)

Programming in the large. Enterprise applications written in Dataloglb can
contain tens of thousands of predicates and rules. To support such large-scale
projects, Dataloglb also supports organization of programs into modules and
reusable libraries.

Second-order existential quantifiers. Combinatorial optimization problems arise
in many enterprise applications. To support this class of problems, Dataloglb
allows predicates to be marked as existentially quantified, subject to specified
constraints, using the usual facilities of the language as a “syntax skin” for an
underlying solver. For instance, the following is a fragment of a program that
solves Sudoku puzzles via linear programming:

X[i,j,z,t,k]=v -> index(v), index(i), index(j), index(z),

index(t), number(k), v >= 0, v <= 1.

index(i), index(j), index(z), index(t), number(k) -> X[i,j,z,t,k]= _.

lang:solver:variable(‘X).

Obj[] = v -> float[64](v).

lang:solver:minimal(‘Obj).

Obj[] += X[x,y,z,t,k] * f[x,y,k].

In the example, X is the existentially-quantified predicate predicate, and Obj is
the objective function for the solver. (The last rule uses an aggregate syntax,
+=, inspired by the Dyna project [8].)

Provenance. Dataloglb includes an option to record provenance information [10]
during program evaluation and query [14] it afterwards, to facilitate debugging.

2 Not to be confused with the delta rules transformation used in semi-naive evaluation.
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BloxAnalysis. The BloxAnalysis feature of the platform allows one to import
Dataloglb programs as data in appropriate predicates in a LogicBlox workspace.
As a result, one can use Dataloglb programs to perform static analysis of Dat-
aloglb programs, as well as to rewrite them for optimization purposes.

4 Academic Collaborations

We will close the tutorial by highlighting successful collaborations with aca-
demics using LogicBlox as a motivating setting and research vehicle. These
collaborations have resulted in publications in diverse areas including declar-
ative networking [18], program analysis [4,3], distributed query evaluation [37],
software engineering and testing [31,20,19], data modeling [11] constraint han-
dling rules [30,29,6], magic sets transformations [32], and debugging Datalog
programs [15].
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Datalog: A Perspective and the Potential

Yuri Gurevich

Microsoft Research, Redmond, Washington, USA

What we see depends mainly on what we look for.

—John Lubbock

Abstract. Our main goal is to put Datalog into a proper logic perspec-
tive. It may be too early to put Datalog into a proper perspective from
the point of view of applications; nevertheless we discuss why Datalog
pops up so often in applications.

1 Introduction

Throughout our career, we came across Datalog many times, directly or indi-
rectly. This exposition is, in a sense, a summary of our experience. Here we are
interested in proper perspectives on Datalog from the point of view of logic and
applications. The exposition contains no new hard technical results.

A short §2 on preliminaries seeks to fix the terminology and make this exposi-
tion more self-contained. In §3, we recall the notion of global relations; first-order
and second-order formulas are, semantically, global relations. According to the
standard model-theoretic semantics of Datalog, known also as the fixed-point
semantics, Datalog queries are global relations as well. We also recall the proof-
theoretic semantics of Datalog queries, and we formulate how the two semantics
of Datalog are related.

The goal of the following §4–7 is to put Datalog into a proper logic perspective.
The global-relation view allows us to compare the expressive power of Datalog
with that of more traditional logics. Whether we speak about all structures
or only finite structures, Datalog has only trivial intersection with first-order
logic (§4) and constitutes only a tiny fragment of second-order logic (§5). There
is, however, a more traditional logic whose expressive power is exactly that of
Datalog; it is existential fixed-point logic (§7). The equiexpressivity result is
rather robust.

In applications, there is a growing interest in rule-based systems, and Datalog
emerges as a convenient and popular basis for such systems. One instructive ex-
ample is “Dedalus: Datalog in Time and Space” [3]. In §8, we illustrate the use
and limitations of Datalog for policy/trust management, and then we describe
an extension of Datalog, called primal infon logic, that overcomes indicated limi-
tations while preserving the feasibility of Datalog. To this end, Datalog is viewed
as a logic calculus without axioms. Primal infon logic extends that calculus with
axioms and more inference rules.

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 9–20, 2012.
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Is Datalog just a fleeting fashion or is there something objective in its coming
up again and again in different applications? Following a recent article [10], our
final section §9 gives an argument for the latter. It turns out that standard logic
systems (and even many non-logic systems) reduce to Datalog. While many of
these reductions are infeasible, some of them are rather practical and allow one
to exploit well-optimized Datalog tools.

2 Preliminaries

By default, first-order formulas are without equality or function symbols of pos-
itive arity, and a term is a variable or constant.

A (pure) Datalog program is built from atomic formulas of first-order logic.
The relation symbols of the program split into extensional and intensional ; ac-
cordingly the atomic formulas are extensional or intensional. The program itself
is a finite set of facts and rules. Facts are extensional atomic formulas, and rules
have the form

β0 : − α1, . . . , αk, β1, . . . , β� (1)

where all formulas αi are atomic and extensional, formulas βj are atomic and
intensional, and k, � may be zero. The implication form of (1) is a formula

(α1 ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧ β�) → β0, (2)

and the closed form of (1) is a sentence

∀x̄((α1 ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧ β�) → β0
)

(3)

where x̄ comprises the individual variables of (1). Similarly, the closed form of
a fact α(x̄) is the sentence ∀x̄ α(x̄).

A Datalog query Q is a pair (Π, γ) where Π is a Datalog program and γ an
intensional atomic formula. The extensional vocabulary of Π (resp. Q) comprises
the constants and extensional relation symbols in Π (resp. Q). The number of
distinct variables in γ is the arity of Q. Nullary queries are also known as ground
queries.

Example 1. Let Π1 be the Datalog program

E(x, 1)

E(2, 3)

T (3, x) : −
T (x, y) : − E(x, y)

T (x, y) : − T (x, z), T (z, y)

with two facts and three rules. Relation E is extensional, and relation T is
intensional. The extensional vocabulary of query (Π1, T (1, 4)) consists of the
constants 1, 2, 3, 4 and the relation symbol E. ��
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Let Π be a Datalog program, Υ the extensional vocabulary of Π and Υ ′ the
result of adding to Υ the intensional symbols of Π . The program Π gives rise
to an operator O that, given any Υ ′-structure B, does the following. For every
rule (1) of Π and every instantiation

ξβ0 : − ξα1, . . . , ξαk, ξβ1, . . . , ξβ�

of the variables of the rule with elements of B such that the ground atomic for-
mulas ξα1, . . . , ξαk, ξβ1, . . . , ξβ� hold in B, the operator O sets ξβ0 true (unless
it was true already in B). The result is an Υ ′-structure O(B) which is like B
except that the intensional relations might have grown.

Given any Υ -structure A modeling (the closed form of) the facts of Π , let
A0 be the Υ ′-expansion of A where all the intensional relations are empty,
An+1 = O(An), and A∗ be the limit of structures An so that, for every in-
tensional relation symbol R, the interpretation of R in A∗ is the union of its
interpretations in structures An. The intensional relations of A

∗ are the smallest
intensional relations closed under the rules of Π over A. In other words, they are
the smallest intensional relations that make the closed forms of the rules true.

Definition 2. A query (Π, γ(x̄)) is bounded if there exists a number n such
that, for every structure A, we have

{ā : An |= γ(ā)} = {ā : A∗ |= γ(ā)}. (4)

The query is bounded on a class C of structures if there exists n such that (4)
holds on all structures in C. ��

3 Proof-Theoretic and Model-Theoretic Semantics of
Datalog Programs and Queries

There are two different semantics of Datalog queries in the literature. It may be
useful to clarify what they are and how they are related.

3.1 Proof-Theoretic Semantics

View a given Datalog program Π as a deductive system. The axioms of Π are
its facts. Each rule (1) of Π gives rise to an inference rule

ξα1, . . . , ξαk, ξβ1, . . . , ξβ�

ξβ0
(5)

where ξ is an arbitrary substitution (of variables with terms). And there is one
additional inference rule, the substitution rule

ϕ

ξϕ
(6)

where ξ is again an arbitrary substitution.
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A nullary query (Π, γ) is an assertion that γ is Π-deducible. It is easy to see
that, in Example 1, T (1, 4) is not Π1-deducible.

Lemma 3. Let (Π, γ(x̄)) be a Datalog query, H a set of atomic formulas, and
γ(c̄) the result of replacing the variables x̄ with fresh constants c̄. Then

H �Π γ(x̄) ⇐⇒ H �Π γ(c̄).

Proof. =⇒. Use the substitution rule.
⇐=. Given a derivation of γ(c̄), replace the constants c̄ with fresh variables ȳ
and then use the substitution rule. ��

3.2 Model-Theoretical Semantics

Definition 4 ([14]). An r-ary (abstract) global relation R of vocabulary Υ
associates with any given Υ -structure A an r-ary relation RA on (the base set
of) A in such a way that

RηA = ηRA
for every isomorphism η from A to another Υ -structure. ��
Any first-order or second-order formula (without free 2nd order variables) ϕ is,
semantically, a global relation A |= ϕ. Model-theoretically, a Datalog query Q =
(Π, γ(x̄)) is also a global relationR; the vocabulary ofR is the extensional vocab-
ulary of Q, and the arity of R is the number of distinct individual variables in γ.
A relationRA(x̄) asserts that A |= γ(x̄) if Amodels the (closed form of the) facts
ofΠ and if the intensional relations over A are as in the definition of A∗ in §2.

We illustrate that global relation R on the example of a binary query
(Π1, T (x, y)) where Π1 is the the program of Example 1. Let G be an arbitrary
directed graph (V,E) with distinguished (and not necessarily distinct) elements
1, 2, 3. If E(2, 3) or ∀x E(x, 1) fails in G, then relation RG(x, y) is universally
true. If E(2, 3) and ∀x E(x, 1) hold in G, consider the closed forms

ρ1 = ∀x T (3, x)
ρ2 = ∀x, y (E(x, y) → T (x, y))

ρ3 = ∀x, y, z ((T (x, z) ∧ T (z, y)) → T (x, y))

of the rules of Π1. Interpret T as the least relation on V such that the expansion
G∗ = (V,E, T ) satisfies ρ1, ρ2 and ρ3. The relation RG(x, y) is G∗ |= T (x, y).

3.3 Relating the Two Semantics

Theorem 5. Let R be the global relation of a Datalog query (Π, γ(x̄)), F the
collection of the facts of Π and H a set of atomic formulas with relation symbols
different from the intensional symbols of Π. The following claims are equivalent.
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1. H �Π γ(x̄).
2. RA(x̄) is universally true in every structure A satisfying F ∪H.

Proof. Without loss of generality, we may assume that γ(x̄) is ground. Indeed,
instantiate the variables x̄ with fresh constants c̄. Now use Lemma 3 and the
obvious fact that RA(x̄) is universally true in a structure A if and only if RA(c̄)
holds in every expansion of A with constants c̄ (and the same base set).

1 → 2 is obvious.
2 → 1. We suppose that claim 1 fails and prove that claim 2 fails as well. Let Υ
be the extensional vocabulary of the query extended with that of H . Without
loss of generality, Υ contains at least one constant. Consider the Υ -structure A
on the Υ -constants where an extensional ground atomic formula α holds if and
only if it is an instantiation of a hypothesis or fact. It suffices to prove that RA
is false. Obviously the facts and hypotheses are universally true in A.

Let A′ be the expansion of A with the intensional relations of Π where an
intensional ground atomic formula β holds if and only if it is Π-deducible from
H . This instantiates intensional variables to the least values satisfying the closed
forms of the rules of Π . Taking into account that γ is not Π-deducible from H ,
it follows that RA fails. ��
One case of interest is H = ∅. Another one is where H is the positive diagram
Δ+(A) of a structure A such that A models F and every element of A is dis-
tinguished (a constant). Here Δ+(A) is the set of all ground atomic formulas in
the vocabulary of A that are true in A.

4 Datalog and First-Order Logic

There is a bit of confusion in the literature about the relation of Datalog and first-
order logic. “Query evaluation with Datalog is based on first order logic” [23].
“Datalog is declarative and is a subset of first-order logic” [19]. In fact, Datalog
is quite different from first-order logic. Datalog is all about recursion, and first-
order logic does not have any recursion (though recursion is available in some
first-order theories, e.g. arithmetic). We say that a Datalog query and a first-
order formula are equivalent if their global relations coincide. More generally,
the query and formula are equivalent on a class C of structures if their global
relations coincide on C.
Theorem 6. If a Datalog query is equivalent to a first-order formula then the
query is bounded and equivalent to a positive existential first-order formula.

Theorem 6 is a straightforward consequence of the compactness theorem [2,
Theorem 5]. Unfortunately the compactness argument involves infinite structures
of little relevance to Datalog applications. The finite version of Theorem 6 was
more challenging.
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Theorem 7 (Ajtai-Gurevich). If a Datalog query is equivalent to a first-order
formula on finite structures then, on finite structures, the query is bounded and
equivalent to a positive existential first-order formula.

Theorem 7 is fragile [2, §10] as far as extensions of Datalog are concerned. It was
generalized in [4] to some classes of finite structures. Later Benjamin Rossman
proved the powerful Homomorphism Preservation Theorem [21] that implies
Theorem 7.

5 Datalog and Second-Order Logic

Theorem 8. Every Datalog query (Π, γ) is equivalent to a second-order formula
Φ of the form ∀X̄∃ȳϕ where X̄ is a sequence of relation variables, ȳ is a sequence
of individual variables and ϕ is quantifier-free.

Again, the equivalence of a query and formula means that their global relations
coincide. The form ∀X̄∃ȳϕ is known as the strict ∀11 form where “strict” refers
to the fact that the first-order part is existential. Strict ∀11 formulas were studied
by logicians long before Datalog was introduced [20].

For illustration consider Datalog query (Π1, T (a, b)) where Π1 is the program
of Example 1 and a, b are fresh constants. Let F be the formula

(∀xE(1, x)) ∧ E(2, 3)

reflecting the facts of Π1 and let ρ1, ρ2 and ρ3 be the closed forms of the rules
of Π1, as in §3. Then the desired Φ is (the strict ∀11 formula equivalent to) the
formula

¬F ∨ ∀T ((ρ1 ∧ ρ2 ∧ ρ3) → T (a, b)
)

The converse of Theorem 8 is not true: non-3-colorability is expressible by a
strict ∀11 formula while it cannot be expressed by any Datalog query unless P
= NP [6]. The converse can be obtained by severely restricting the form of the
quantifier-free formula ϕ.

6 Liberal Datalog

The version of Datalog considered above is known as pure Datalog. It has been
generalized in numerous ways. In particular, Constraint Datalog is popular; see
for example [19] and references there. One very different generalization started
with article [14] where we defined and studied inflationary fixed points. Abiteboul
and Vianu used inflationary-fixed-point semantics to define an elegant version
of Datalog with negations [1] that was popularized by Ullman [22] and used e.g.
in [3]. One simple and most natural liberalization of pure Datalog is this:
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(a) Make extensional atomic formulas negatable, so that the facts of a pro-
gram are extensional atomic formulas or their negations, and rules have the
form (1) where α1, . . . , αk are extensional atomic formulas or their negations
and formulas βj are atomic and intensional.

While the positivity of intensional formulas is essential for the least-fixed-point
construction, the requirement that extensional formulas be positive has not been
essential above. The whole §3 remains valid under liberalization (a). Furthermore
Theorem 5 and its proof remain valid if “H is a set of atomic formulas” is
replaced with “H is a set of atomic formulas or their negations.” A new special
case of interest is where H is the diagram Δ(A) of a structure A on constants
that models F . Here Δ(A) is the set of all ground atomic formulas and their
negations in the vocabulary of A that are true in A.

A further liberalization of Datalog was introduced in [16], by the name Liberal
Datalog, and was studied in [8]. In addition to (a), there are two additional
liberalizations in Liberal Datalog.

(b) The extensional vocabulary of a program may contain function symbols of
any arity. Intensional formulas may contain extensional function symbols.

(c) Equality has its usual meaning and may occur in programs as an extensional
relation symbol.

Model-theoretically, liberal Datalog queries are global relations. Theorem 8 re-
mains valid for Liberal Datalog queries [6, Theorem 5].

7 Datalog, Liberal Datalog, and Existential Fixed-Point
Logic

We have seen that Datalog has a trivial intersection with first-order logic
and constitutes only a sliver of second-order logic. Existential fixed-point logic
(EFPL) was introduced as the right logic to formulate preconditions and post-
conditions of Hoare logic [6]. The same authors continued to investigate EFPL
in [7,8,9].

Theorem 9 ([8]). Every global relation expressible by an EFPL formula is ex-
pressible by a Liberal Datalog query, and the other way round.

Q: If you want a logic with the expressivity of Liberal Datalog, why not
declare Liberal Datalog a logic in its own right?

A: In traditional logics, like first-order logic or second-order logic, logic
operators are explicit and can be nested. EFPL is traditional from that
point of view. While in Datalog, pure or liberal, the fixed-point operation
is implicit and can’t be nested, in EFPL it is explicit and can be nested.

For the purpose of the following theorem, equality is considered part of logic and
therefore is not counted in the definition of the vocabulary of an EFPL formula.
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Theorem 10 (Blass-Gurevich). Every global relation expressible by an EFPL
formula without negations or function symbols of positive arity is expressible by
a pure Datalog query, and the other way round.

We explain how to prove Theorem 10 given the proof of Theorem 9. In the
proof of Theorem 9, given an EFPL formula ϕ, we construct a Datalog query
Q with the same global relation, and the other way round. The vocabulary of ϕ
coincides with the extensional vocabulary of Q; if one of them has no function
symbols of positive arity, neither does the other. If the given ϕ has no negation
then the constructed Q has no negation, and the other way round. However, the
construction of ϕ from Q makes use of equality. Equality is legal in EFPL but
pure Datalog does not have it. The problem arises how to deal with the equality
of ϕ in the construction of Q from ϕ. Pure Datalog does not have equality as
an extensional relation. But, since we need only positive occurrences of equality,
we can compute the equality as an intensional relation:

E(x, x) : −

The intensional relation E represents the equality of ϕ in the construction of Q.

8 Datalog, Policies and Primal Logic

The advent of cloud computing forces us to be more careful with policies and
trust. Numerous policies, that might have been implicit and vague in the world
of brick and mortar, need be explicit, precise and automated in the cloud. Many
policy rules are expressible in Datalog.

X can read File 13 :- Alice owns File 13,

Alice and X are friends.

But there are common policy rules that are not expressible in Datalog, primarily
because they involve quotations and trust implications.

X can read File 13 :- Alice owns File 13,

Alice said Friends(A,X),

Alice is trusted on Friends(A,X).

where Friends(A,X) is a more formal version of Alice and X are friends

and Alice is trusted on Friends(A,X) abbreviates the implication

(Alice said Friends(A, X))→ Friends(A, X).

Primal infon logic, introduced in [17], is a proof-theoretic extension of Datalog
that allows one to use quotations and nested implications. (Infons are statements
treated as pieces of information.)
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In the rest of this section, formulas are by default quantifier-free first-order
formulas without equality or function symbols of positive arity. Datalog rules (1)
will be viewed as implications (2) so that a Datalog program is a finite set of
formulas.

8.1 Proof-Theoretic Semantics of Datalog

As we have seen in §3, Datalog programs can be viewed as logic calculi, but there
is a broader proof-theoretic view of Datalog according to which Datalog itself is
a logic calculus. The logic calculus DL of pure Datalog has no axioms and just
three inference rules. One of them is the substitution rule (6). The other two are
the the following conjunction introduction rule and implication elimination rule:

ϕ ψ

ϕ ∧ ψ
ϕ ϕ→ ψ

ψ
.

We write H �DL ϕ to indicate that hypotheses H entail formula ϕ in DL.

Theorem 11. For any Datalog query (Π, γ), we have �Π γ ⇐⇒ Π �DL γ.

Proof. =⇒. To simulate a rule of Π , use conjunction introduction to derive the
body of the rule, and then use implication elimination to derive the head.
⇐=. Check by induction on the derivation length thatΠ entails onlyΠ-derivable
atomic formulas and their conjunctions.

The entailment problem for the ground fragment of DL, obtained from DL by
removing the substitution rule, is solvable in linear time [13].

8.2 Primal Infon Logic

The quote-free fragment of primal infon logic is obtained from DL by adding
an axiom � and the following conjunction elimination rules and implication
introduction rule:

ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

ϕ

ψ → ϕ
.

To form quotations, primal infon logic has countably infinite lists of variables
and constants of type Principal. The logic uses unary connectives p said1 where
p is a term of type Principal. A quotation prefix is a string of the form

p1 said p2 said . . . pk said.

Primal infon logic is given by the following logic calculus where pref ranges
over quotation prefixes.

1 Originally primal infon logic had two kinds of quotations p said ϕ and p implied ϕ
but later the second kind was removed.
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Axioms pref �

Inference rules

pref (x ∧ y)
prefx

pref (x ∧ y)
pref y

prefx pref y

pref (x ∧ y)
prefx pref (x→ y)

pref y

pref y

pref (x→ y)

The entailment problem for the ground fragment of primal logic, obtained from
primal logic by removing the substitution rule, is solvable in linear time [15,12].
This is important because, while policy rules typically have variables, deduc-
tion often deals with fully instantiated cases. An article [12] is being written to
become a standard initial reference for primal infon logic.

9 It All Reduces to Datalog

In a way, pure Datalog reflects the essence of deductive systems. By default, this
section follows [10].

Definition 12. A Hilbertian system (or an abstract Hilbertian deductive system)
is given by a set F of so-called formulas, a subset Ax ⊆ F of so-called axioms,
and a set Ru of so-called rules of inference 〈P, α〉 where P is a finite subset of
F and γ ∈ F .

Q: Why these “so-called”?

A: There are Hilbertian systems that do not look at all like logics. For
example, let F be the set of edges of a fixed digraph, Ax = ∅, and Ru
comprise the pairs 〈{(a, b), (b, c)}, (a, c)〉. Yet we’ll call the elements of
F , Ax and Ru formulas, axioms and rules respectively.

Theorem 13. For every Hilbertian system S there is a (possibly infinite) Dat-
alog program Π such that S-formulas are propositional symbols of Π and

H �S γ ⇐⇒ H �Π γ.

Definition 14. A Hilbertian system is substitutional if:

1. Formulas are certain finite strings in a specified alphabet.
2. The alphabet includes a countably infinite set of so-called variables, and

some (possibly none) of the non-variable symbols are so-called constants.
The variables and constants are terms.
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3. If α is a formula then the result ξα of replacing in α distinct variables x by
terms ξ(x) respectively is also a formula, and 〈{α}, ξα〉 is a rule of inference.
Such rules are substitution rules.

4. If 〈{α1, . . . , αn}, β〉 is a rule of inference that is not a substitution rule, then
〈{ξα1, . . . , ξαn}, ξβ〉 is also a rule of inference, for any substitution ξ. ��

The requirement 4 is often superfluous. For example, the inference rules of pri-
mal infon logic are closed under substitutions. Here is a simple example when
the requirement is essential. Consider a deductive system with axiom P (1), the

substitution rule and a rule
P (x)

Q(x)
. One may expect to derive Q(1), but it is not

derivable in the system.

Theorem 15. For every substitutional Hilbertian system S there is a (possibly
infinite) Datalog program Π such that Π treats any S-formula α with k distinct
variables as a relation symbol of arity k, and

H �S γ ⇐⇒ H �Π γ.

Theorem 16. There is an algorithm that converts any instance of the deriv-
ability problem for primal infon logic into an instance of the derivability problem
for pure Datalog, with the same answer.

A more practical algorithm for the same purpose is constructed in [5].

Acknowledgment. Many thanks to Andreas Blass, Carlos Cotrini and Phokion
Kolaitis for useful discussions.
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Existential Rules: A Graph-Based View
(Extended Abstract)

Marie-Laure Mugnier
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1 Introduction

We consider rules that allow to assert the existence of new individuals, an ability called
value invention in databases [AHV95]. These rules are of the form body → head,
where the body and the head are function-free conjunctions of atoms, and variables
that occur only in the head are existentially quantified, hence their name ∀∃-rules in
[BLMS09, BLM10] or existential rules in [BMRT11, KR11]. Existential rules have
long been studied in databases as high-level constraints called tuple generating depen-
dencies (TGDs) [BV84]. Recently, there has been renewed interest for these rules in the
context of ontology-based data access (OBDA), a new paradigm that seeks to exploit the
semantics encoded in ontologies while querying data. The deductive database language
Datalog could be seen as a natural candidate for expressing ontological knowledge in
this context, however its limitation is that it does not allow for value invention, since
all variables in a rule head necessarily occur in the rule body. Value invention has been
recognized as a necessary prerequisite in an open-world perspective, where all individ-
uals are not known a priori. It is in particular a feature of description logics (DLs),
well-known languages dedicated to ontological representation and reasoning. This pre-
requisite motivated the recent extension of Datalog to existential rules, which gave rise
to the Datalog +/- formalism [CGK08, CGL09].

Existential rules have indeed some particularly interesting features in the context of
OBDA. On the one hand, they generalize lightweight DLs dedicated to query answering
(DL-Lite [CGL+07] and EL [BBL05] families, and more generally Horn DLs) while
being more powerful and flexible [CGL09, BLM10, BMRT11]. In particular, they have
unrestricted predicate arity (while DLs consider unary and binary predicates only). This
allows for a natural coupling with database schemas, in which relations may have any
arity; moreover, adding pieces of information, for instance to take contextual knowl-
edge into account, is made easier, since these pieces can be added as new predicate
arguments. On the other hand, existential rules cover plain Datalog, while allowing for
incompleteness in the data.

Historically, we studied existential rules as part of another research line that seeks to
develop a knowledge representation and reasoning formalism based on (hyper)graphs.
This formalism is graph-based not only in the sense that all objects are defined as
graphs, while being equipped with a logical semantics, but also in the sense that rea-
soning relies on graph mechanisms, which are sound and complete with respect to
the logical semantics. This framework, presented thoroughly in [CM09], is rooted in
conceptual graphs [Sow84]. The logical translation of the graph rules yield exactly
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existential rules (and other Datalog+/- constructs, like constraints, have their equivalent
in this framework).

In this talk, we present a graph view of the existential rule framework and some re-
lated results. Generally speaking, seeing formulas as graphs or hypergraphs allows to
focus on their structure: paths, cycles or decompositions are then fundamental notions.
Two examples of results exploiting the graph structure will be detailed: the decidable
class of (greedy) bounded-treewidth sets of rules, which is based on the tree decom-
position of a graph, and a backward chaining mechanism based on subgraphs called
pieces.

2 The Logical Framework

An existential rule is a first-order formula R = ∀x∀y(B[x,y] → (∃zH [y, z])) where
B and H are conjunctions of atoms (without function symbol except constants). A fact
is the existential closure of a conjunction of atoms. Note that we extend the classical
notion of a fact as a ground atom in order to take existential variables produced by
rules into account. Moreover, this allows to cover naturally languages such as RDF/S,
in which a blank node is logically translated into an existentially quantified variable, or
basic conceptual graphs. In this talk, a knowledge base is composed of a set of facts,
seen as a single fact, and of existential rules (other components could be added, see e.g.
[CGL09] [BMRT11]). Query answering consists of computing the set of answers to a
query in the knowledge base. We consider conjunctive queries (CQs), which are the
standard basic queries. Boolean CQs have the same form as facts. The fundamental de-
cision problem associated with query answering can be expressed in several equivalent
ways, in particular as a Boolean CQ entailment problem: is a Boolean CQ logically en-
tailed by a knowledge base ? In the following this problem is refered as the “entailment”
problem.

A fundamental tool for query answering is homomorphism: given two facts/Boolean
queries F and Q seen as sets of atoms, a homomorphism h from Q to F is a substi-
tution of the variables in Q by terms in F such that h(Q) ⊆ F . It is well-known that
F logically entails Q iff there is a homomorphism from Q to F . Sound and complete
mechanisms for entailment with rules are obtained with classical paradigms, namely
forward chaining (also called bottom-up approach, and chase when applied to TGDs)
and backward chaining (also called top-down approach). Forward chaining enriches the
initial fact by applying rules —with rule application being based on homomorphism—
and checks if a fact can be derived to which the query maps by homomorphism. Back-
ward chaining uses the rules to rewrite the query in different ways —with rewriting
being based on unification— with the aim of producing a query that maps to the initial
fact by homomorphism. Note that, due to the existential variables in the rule heads, uni-
fication cannot operate atom by atom as it is classically done for Horn clauses, a more
complex operation is required.

3 The Graph-Based Framework

A set of atoms A can be seen as an ordered labeled hypergraph HA, whose nodes and
ordered hyperedges respectively encode the terms and the atoms from A. One may also
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encode A as an undirected bipartite graph which is exactly the incidence graph of HA
(it is a multigraph actually since there may be several edges between two nodes), where
one class of nodes encodes the terms and the other the atoms (see Figure 1): for each
atom p(t1, . . . , tk) in A, instead of a hyperedge, there is an atom node labeled by p and
this node is incident to k edges linking it to the nodes assigned to t1, . . . , tk. Each edge
is labeled by the position of the corresponding term in the atom. Therefore, all objects
of the preceding logical framework can be defined as graphical objects. In particular,
a fact or a query is encoded as a (hyper)graph and an existential rule can be seen as a
pair of (hyper)graphs or equivalently as a bicolored (hyper)graph. Entailment between
facts/queries is computed by a (hyper)graph homomorphism, which corresponds to the
homomorphism notion defined on formulas; entailment using rules relies on homomor-
phism in the same way as in the logical framework.

Example 1. Figure 1 pictures a fact F = siblingOf(a, b), a rule R = siblingOf
(X,Y ) → parentOf(Z,X) ∧ parentOf(Z, Y ) (quantifiers are omitted) with its
body in white and its head in gray, as well as the fact F ′ = sibblingOf(a, b) ∧
parentOf(Z0, a) ∧ parentOf(Z0, b) obtained by applying R to F , where Z0 is the
newly created existential variable. Note that it is not necessary to label nodes represent-
ing variables, the graph structure being sufficient to encode co-occurrences of variables.

Fig. 1. Graph Representation of facts and rules

As mentioned in the introduction, this graph-based framework can be seen as a specific
member of the conceptual graph fragments we have defined and developed. Conceptual
graphs are defined with respect to a vocabulary, which can be seen as a very basic ontol-
ogy. This vocabulary contains two finite (pre)ordered sets of concepts and of relations
with any arity —and it can be further enriched by relation signatures, concept disjoint-
ness assertions, etc. The orders are interpreted as a specialization relation. Concepts
and relations are logically translated into predicates and the specialization orders into
formulas of the form ∀x1 . . . xkp2(x1 . . . xk) → p1(x1 . . . xk) for p2 ≤ p1. A basic
conceptual graph is a bipartite multigraph where so-called concept nodes represent in-
stances of concepts (i.e., terms) and relation nodes represent relations between concept
instances (i.e., atoms). A concept node is labeled by a set of concepts (interpreted as a
conjunction) and a marker (which can be the generic marker �, referring to an unknown
individual, or a constant). A relation node is labeled by a relation. Concept labels are
partially ordered in a lattice obtained from the order on concepts and the order on mark-
ers (� is greater than all constants, which are pairwise incomparable). Homomorphism
takes the orders on labels into account: for all concept or relation node x, one must have
label(x) ≥ label(h(x)). This allows to take the ontology into account in a very efficient
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way as the label comparisons can be compiled then performed in constant time. Note
that the semantic web language RDFS can be encoded in the basic conceptual graph
fragment. Conceptual graph rules are defined as pairs of basic conceptual graphs.

The existential rule framework can thus be seen as a conceptual graph fragment
in which the vocabulary is restricted to a singleton concept set and a flat relation set.
Both have the same expressivity, since the orders on concepts and relations can be
encoded into the graphs —as if the rules translating these orders were applied in forward
chaining.

4 Procedures for Entailement with Existential Rules

The ability to generate existential variables, associated with arbitrarily complex con-
junctions of atoms, makes entailment undecidable in general. Since the birth of TGDs
various conditions of decidability have been exhibited. We focus here on two abstract
properties, which come with finite procedures based on forward and backward chaining
respectively, and for which the graph view is particularly relevant. These properties are
said to be abstract in the sense that they are not recognizable, i.e., deciding if a given
set of rules has the property is undecidable [BLM10]. However, they provide generic
algorithmic schemes that can be further customized for specific recognizable classes of
rules.

A set of rules R is said to have the bounded treewidth set (bts) property if for any
initial fact F , there is an integer b such that the treewidth of any fact derived from F
with R is bounded by b (property essentially introduced in [CGK08]). The treewidth
is defined with respect to a graph (the “primal graph”) associated with the hypergraph
encoding a fact. The decidability proof of entailment with bts rules does not provide
a halting algorithm (at least not directly). A subclass of bts has been defined recently,
namely greedy bts (gbts), which is equipped with a forward-chaining-like halting algo-
rithm [BMRT11, TBMR12]. For this class of rules a bounded width tree decomposition
of any derived fact can be built in a greedy way. The set of all possibly derived facts can
be encoded in such tree, however this tree may be infinite. An appropriate equivalence
relation on the nodes of this tree allows to build only a finite part of it. The gbts class is
very expressive, as it includes plain Datalog, (weakly) guarded rules [CGK08], frontier-
one (fr1) rules [BLMS09], and their generalizations (weakly / jointly) frontier-guarded
rules [BLM10, KR11]. The algorithm provided in [TBMR12] can be customized to run
in the “good” complexity class for these subclasses, which is important since some of
them have polynomial data complexity.

A set of rules is said to have the finite unification set (fus) property if the set of
rewritten queries restricted to its most general elements is finite. This class includes for
instance rules with atomic body (also called linear Datalog+/-), domain-restricted rules
and sticky(-join) rules [BLMS09, CGL09, CGP10a, CGP10b]. We propose a (sound
and complete) backward chaining mechanism which computes such minimal set of
rewritings when the rules are fus. Its originality lies in the rewriting step which is based
on a graph notion, that of a piece. Briefly, a piece is a subgraph (i.e., subset of atoms)
of the query that must be erased as a whole during a rewriting step (see [SM96] for the
first piece-based backward chaining on conceptual graph rules, [BLMS11] for a revised
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version dedicated to existential rules and [KLMT12] for an effective implementation).
We point out that the unification operation can take a preorder on predicates into ac-
count, similarly to conceptual graph operations, which can save an exponential number
of rewritings.

5 Conclusion

The existential framework in the context of OBDA is rather young and challenging
issues need to be solved before systems effectively able to deal with large amounts
data can be built. We believe that having a double view —logical and graphical— of
this framework is likely be fruitful. The logical view allows to connect to Datalog,
description logics and other logic-based knowledge representation and reasoning lan-
guages. The graph view allows to connect to studies in graph theory, or in other areas in
which (hyper)graphs structures have been particularly well-studied from an algorithmic
viewpoint, such as constraint programming. It also allows to relate directly to graph
representations of data, such as RDF/S triplestores, and other emerging graph-based
paradigms for data management.
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Abstract. In this tutorial we will give an overview of the W3C standard
query language for RDF – SPARQL – and its relation to Datalog as well
as on the interplay with another W3C standard closely related to Data-
log, the Rule Interchange Format (RIF). As we will learn – while these
three interplay nicely on the surface and in academic research papers
– some details within the W3C specs impose challenges on seamlessly
integrating Datalog rules and SPARQL.

1 SPARQL Official Semantics vs. Academia

The formal semantics of SPARQL in its original recommendation in 2008 [19]
has been very much inspired by academic results, such as by the seminal papers
of Pérez et al. [13,14]. Angles and Gutierrez [1] later showed that SPARQL –
as defined in those papers – has exactly the expressive power of non-recursive
safe Datalog with negation. Another translation from SPARQL to Datalog has
been presented in [15]. In the tutorial we will present the semantics of SPARQL,
starting with the semantics as per [14] as well as its translation to Datalog; we
will then discuss adaptions needed to be considered with regards to the official
W3C specification, particularly:

1. SPARQL’s multi-set semantics and solution modifiers
2. the treatment of complex expressions and errors in FILTERs
3. the treatment of FILTER expressions in OPTIONAL

Let us sketch briefly some reasons how these features affect the translation.

SPARQL’s multi-set semantics. While Datalog is set-based, SPARQL
queries – just like SQL – allow for duplicates in solutions. Since duplicates can
stem from only certain patterns, the translation to Datalog can be “fixed” to
cater for these; however, the translation becomes less elegant [18]. Likewise,
solution modifiers such as ORDER BY and LIMIT/OFFSET in SPARQL
have no straightforward equivalent within Datalog. Notably, multi-set se-
mantics has been considered in some earlier works about Datalog [12].

Complex expressions and errors in FILTERs. Unlike the semantics given
in [13], FILTERS in SPARQL have a 3-valued semantics for connectives such
as “&&” and “||”, to cater for errors. We will give some examples where these
make sense and discuss how the translation to Datalog can be adapted.
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FILTERs in OPTIONALs. Another specialty of the SPARQL semantics, as
noted by [1] outer joins in SPARQL – denoted by the OPTIONAL keyword
– are not compositional due to the fact that certain “non-safe” FILTERs
are possible, i.e., it is allowed that FILTERs refer to variables bound outside
the OPTIONAL pattern. While a rewriting of SPARQL queries with safe
FILTERS only is possible [1], a translation from SPARQL to Datalog could
also cater for this semantics directly.

2 SPARQL in Combination with Rules

In the second part of the tutorial, we will have a closer look at using SPARQL it-
self as a rules language in the spirit of Datalog, from academic approaches [20,17]
over practically motivated & implemented ones – such as SPIN [9] and R2R [4]
– to combinations within the W3C standards themselves, namely SPARQL in
combination with RIF. As for the latter, we will discuss both (i) whether or why
not the translation from SPARQL to Datalog as per [15] works with RIF [5,16]
and (ii) what a SPARQL query means in combination with a RIF rule set [8].

3 New Features in SPARQL1.1

Finally, we will discuss and sketch how translations to or a combinations with
Datalog style rules could be extended to new features of the upcoming SPARQL
1.1 recommendation [21], namely:

Aggregate functions. Aggregate functions will allow operations on the query
engine side such as counting, numerical min/max/average and so on, by
operating over columns of results. This feature is commonly known from
other query languages such as SQL, but also well investigated in terms of
extensions of Datalog, cf. for instance [7]. A proposal to extend SPARQL
with aggregates following these ideas for Datalog has been made in [17],
whereas the SPARQL1.1 working group rather follows the SQL design.

Subqueries. This feature will allow nesting the results of a SPARQL query
within another query. The SPARQL1.1 specification will only allow very
limited subqueries, whereas a discussion of further options for subqueries
within SPARQL has been presented by Angles and Gutierrez [2]; again we
will discuss where Datalog fits in the picture.

Project expressions. This feature will allow one to compute values from ex-
pressions within queries, rather than just returning terms appearing in the
queried RDF graph; built-ins within Datalog provide similar functionality.

Property paths. Many classes of queries over RDF graphs require traversing
hierarchical data structures and involve arbitrary-length paths. While such
queries over graph-based structures can be naturally expressed in languages
like Datalog, is was not possible to express such queries using the original
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SPARQL recommendation. The ability to formulate certain path queries
has now been added in SPARQL1.1 and again the design choices have been
influenced by discussions in academia [3,10].

Inferred results under different Entailment Regimes. The [8] specifies
various entailment regimes for SPARQL, particularly for RDF Schema,
OWL, and RIF; apart from the above-mentioned combination of SPARQL
with RIF, we will particularly discuss those entailment regimes that are most
closely related to Datalog, i.e. those based on the OWL fragments OWL 2
RL (which essentially includes RDF Schema [6]) and OWL 2 QL [11].

Acknowledgements. The presenter – who has been actively contributing to
both the RIF and SPARQL specifications – would like to thank all the members
of the RIF1 and SPARQL2 W3C working groups.
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14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems, 34(3), Article 16, 45 pages (2009)

15. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th World
Wide Web Conference (WWW 2007), Banff, Canada, pp. 787–796. ACM Press
(May 2007)

16. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-Ins 1.0. W3C recom-
mendation, W3C (May 2010), http://www.w3.org/TR/2010/rif-dtb/

17. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for Mapping Between RDF
Vocabularies. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 878–896. Springer, Heidelberg (2007)

18. Polleres, A., Schindlauer, R.: dlvhex-sparql: A SPARQL-compliant query engine
based on dlvhex. In: 2nd International Workshop on Applications of Logic Pro-
gramming to the Web, Semantic Web and Semantic Web Services (ALPSWS 2007),
Porto, Portugal. CEUR Workshop Proceedings, vol. 287, pp. 3–12. CEUR-WS.org.
(September 2007)

19. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3c rec-
ommendation, W3C (January 2008), http://www.w3.org/TR/rdf-sparql-query/

20. Schenk, S., Staab, S.: Networked graphs: A declarative mechanism for sparql rules,
sparql views and rdf data integration on the web. In: Proceedings WWW 2008,
Beijing, China, pp. 585–594. ACM Press (2008)

21. Seaborne, A., Harris, S.: SPARQL 1.1 Query Language. W3C working draft, W3C
(January 2012), http://www.w3.org/TR/sparql11-query/



Magic-Sets for Datalog with Existential Quantifiers

Mario Alviano, Nicola Leone, Marco Manna�,
Giorgio Terracina, and Pierfrancesco Veltri

Department of Mathematics, University of Calabria, Italy
{alviano,leone,manna,terracina,veltri}@mat.unical.it

Abstract. Datalog∃ is the extension of Datalog allowing existentially quantified
variables in rule heads. This language is highly expressive and enables easy and
powerful knowledge-modelling, but the presence of existentially quantified vari-
ables makes reasoning over Datalog∃ undecidable in the general case. Restricted
classes of Datalog∃, such as Shy, have been proposed in the literature with the
aim of enabling powerful, yet decidable query answering on top of Datalog∃ pro-
grams. However, in order to make such languages attractive it is necessary to
guarantee good performance for query answering tasks. This paper works in this
direction: improving the performance of query answering on Datalog∃. To this
end, we design a rewriting method extending the well-known Magic-Sets tech-
nique to any Datalog∃ program. We demonstrate that our rewriting method pre-
serves query equivalence on Datalog∃, and can be safely applied to Shy programs.
We therefore incorporate the Magic-Sets method in DLV∃, a system supporting
Shy. Finally, we carry out an experiment assessing the positive impact of Magic-
Sets on DLV∃, and the effectiveness of the enhanced DLV∃ system compared to
a number of state-of-the-art systems for ontology-based query answering.

1 Introduction

Datalog is one of the best-known rule-based languages, and extensions of it are used
in a wide context of applications. Datalog is especially useful in various Artificial In-
telligence applications as it allows for effective encodings of incomplete knowledge.
However, in recent years an important shortcoming of Datalog-based languages became
evident, especially in the context of Semantic Web applications: The language does not
permit the generation and the reasoning about unnamed individuals in an obvious way.
In particular, it is weak in supporting many cases of existential quantification needed in
the field of ontology-based query answering (QA), which is becoming more and more
a challenging task [11,13,9,17] attracting also interest of commercial companies.

As an example, big companies such as Oracle are adding ontological reasoning mod-
ules on top of their existing software. In this context, queries are not merely evaluated
on an extensional relational database D, but over a logical theory combining D with an
ontological theory Σ. More specifically, Σ describes rules and constraints for inferring
intensional knowledge from the extensional data stored in D. Thus, for a conjunctive
query (CQ) q, it is not only checked whetherD entails q, but rather whetherD∪Σ does.
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P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 31–43, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



32 M. Alviano et al.

A key issue in ontology-based QA is the design of the language that is provided
for specifying the ontological theory Σ. In this regard, Datalog± [9], the novel fam-
ily of Datalog-based languages proposed for tractable QA over ontologies, is arousing
increasing interest. This family, generalizing well-known ontology specification lan-
guages, is mainly based on Datalog∃, the natural extension of Datalog [1] that allows
∃-quantified variables in rule heads. Unfortunately, a major challenge for Datalog∃ is
decidability. In fact, without any restriction, QA over Datalog∃ is not decidable; thus,
the identification of subclasses for which QA is decidable is desirable.

Different Datalog∃ fragments have been proposed in the literature, which essentially
rely on four main syntactic paradigms called guardedness [8], weak-acyclicity [15],
stickiness [10] and shyness [18]. The complexity of QA on these fragments, which
offer different levels of expressivity, ranges from AC0 to EXP. Hence, optimization
techniques are crucial to make QA effectively usable in real world scenarios, especially
for those fragments providing high degrees of expressiveness.

The contribution of this paper goes exactly in this direction. We first focus on opti-
mization strategies for improving QA tasks over decidable Datalog∃ fragments, and
in particular on the well-known Magic-Sets optimization. We then focus on Shy, a
Datalog∃ class based on shyness, enabling tractable QA, offering a good balance be-
tween expressivity and complexity, and suitable for an efficient implementation.

The original Magic-Sets technique was introduced for Datalog [5]. Many authors
have addressed the issue of extending Magic-Sets to broader languages, including non-
monotonic negation [14], disjunctive heads [16,2], and uninterpreted function symbols
[12,3]. In order to bring Magic-Sets to the more general framework of Datalog∃, two
main difficulties must be faced: the first is, obviously, the presence of existentially quan-
tified variables; the second regards the correctness proof of a Magic-Sets rewriting. In
fact, while a Datalog program can be associated with a universal model that comprises
finitely many atoms, the universal model of a Datalog∃ program comprises in general
infinitely many atoms. These difficulties are faced and solved in this paper, whose main
contributions are as follows:

– We design a Magic-Sets rewriting algorithm handling existential quantifiers, and
thus suitable for Datalog∃ programs in general.

– We demonstrate that our Magic-Sets algorithm preserves query equivalence for any
Datalog∃ program.

– We show how Magic-Sets can be safely applied to Shy programs.
– We implement the Magic-Sets strategy in DLV∃, a bottom-up evaluator of CQs

over Shy programs.
– We experiment on QA over a well-known benchmark ontology, named LUBM. The

results evidence the optimization potential provided by Magic-Sets and confirm the
effectiveness of DLV∃, which outperforms all compared systems in the benchmark.

2 Datalog∃

In this section we introduce Datalog∃ programs and CQs, and we equip such structures
with a formal semantics.
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2.1 Preliminaries

The following notation will be used throughout the paper. We always denote by ΔC ,
ΔN , Δ∀ and Δ∃, countably-infinite pairwise-disjoint domains of terms called con-
stants, nulls, universal variables and existential variables, respectively; by Δ, the union
of these four domains; by t, a generic term; by c, d and e, constants; by ϕ, a null; by X

and Y, variables; by X and Y, sets of variables; by Π an alphabet of predicate symbols
each of which, say p, has a fixed nonnegative arity, denoted by arity(p); by a, b and c,
atoms being expressions of the form p(t1, . . . , tk), where p is a predicate symbol and
t1, . . . , tk is a tuple of terms (also denoted by t̄). Moreover, if the tuple of an atom con-
sists of only constants and nulls, then this atom is called ground; if T ⊆ ΔC ∪ΔN , then
base(T ) denotes the set of all ground atoms that can be formed with predicate symbols
in Π and terms from T ; if a is an atom, then pred(a) denotes the predicate symbol of
a; if ς is any formal structure containing atoms, then dom(ς) denotes all the terms from
ΔC ∪ΔN occurring in the atoms of ς .

A mapping is a function μ : Δ → Δ s.t. c ∈ ΔC implies μ(c) = c, and ϕ ∈ ΔN

implies μ(ϕ) ∈ ΔC∪ΔN . Let T be a subset of Δ. The application of μ to T , denoted by
μ(T ), is the set {μ(t) | t ∈ T }. The restriction of μ to T , denoted by μ|T , is the mapping
μ′ s.t. μ′(t) = μ(t) for each t ∈ T , and μ′(t) = t for each t /∈ T . In this case, we also
say that μ is an extension of μ′, denoted by μ ⊇ μ′. For an atom a = p(t1, . . . , tk), we
denote by μ(a) the atom p(μ(t1), . . . , μ(tk)). For a formal structure ς containing atoms,
we denote by μ(ς) the structure obtained by replacing each atom a of ς with μ(a). The
composition of a mapping μ1 with a mapping μ2, denoted by μ2 ◦ μ1, is the mapping
associating each t ∈ Δ to μ2(μ1(t)). Let ς1 and ς2 be two formal structures containing
atoms. A homomorphism from ς1 to ς2 is a mapping h s.t. h(ς1) is a substructure of ς2
(for example, if ς1 and ς2 are sets of atoms, h(ς1) ⊆ ς2). A substitution is a mapping σ
s.t. t ∈ ΔN implies σ(t) = t, and t ∈ ΔV implies σ(t) ∈ ΔC ∪ΔN ∪ {t}.

2.2 Programs and Queries

A Datalog∃ rule r is a finite expression of the following form:

∀X∃Y atom[X′∪Y]← conj[X] (1)

where (i)X ⊆ Δ∀ and Y ⊆ Δ∃ (next called ∀-variables and ∃-variables, respectively);
(ii)X′ ⊆ X; (iii) atom[X′∪Y] stands for an atom containing only and all the variables
in X′ ∪Y; and (iv) conj[X] stands for a conjunction of zero or more atoms contain-
ing only and all the variables in X. Constants are also allowed in r. In the following,
head(r) denotes atom[X′∪Y], and body(r) the set of atoms in conj[X]. Universal quan-
tifiers are usually omitted to lighten the syntax, while existential quantifiers are omitted
only if Y is empty. In the second case, r coincides with a standard Datalog rule. If
body(r) = ∅, then r is usually referred to as a fact. In particular, r is called existential
or ground fact according to whether r contains some ∃-variable or not, respectively. A
Datalog∃ program P is a finite set of Datalog∃ rules. We denote by preds(P ) ⊆ Π
the predicate symbols occurring in P , by data(P ) all the atoms constituting the ground
facts of P , and by rules(P ) all the rules of P being not ground facts. A predicate p ∈ Π
is called intentional if there is a rule r ∈ rules(P ) s.t. p = pred(head(r)); otherwise,
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p is called extensional. We denote by idb(P ) and edb(P ) the sets of the intentional and
extensional predicates occurring in P , respectively.

Example 1. The next rules belong to a Datalog∃ program hereafter called P-Jungle:

r1 : ∃Z pursues(Z,X) ← escapes(X)
r2 : hungry(Y) ← pursues(Y,X), fast(X)
r3 : pursues(X,Y) ← pursues(X,W), prey(Y)
r4 : afraid(X) ← pursues(Y,X), hungry(Y), strongerThan(Y,X).

This program describes a funny scenario where an escaping, yet fast animal X may in-
duce many other animals to be afraid. Data for P-Jungle could be escapes(gazelle),
fast(gazelle), prey(antelope), strongerThan(lion,antelope), and possi-
bly pursues(lion,gazelle). We will use P-Jungle as a running example. �

Given a Datalog∃ program P , a conjunctive query (CQ) q over P is a first-order expres-
sion of the form ∃Y conj[X∪Y], where X ⊆ Δ∀ are its free variables, Y ⊆ Δ∃, and
conj[X∪Y] is a conjunction containing only and all the variables in X∪Y and possibly
some constants. To highlight the free variables, we write q(X) instead of q. Query q is
called Boolean CQ (BCQ) if X = ∅. Moreover, q is called atomic if conj is an atom.
Finally, atoms(q) denotes the set of atoms in conj.

Example 2. Animals pursed by a lion and stronger than some other animal can be re-
trieved by means of a CQ ∃Y pursues(lion,X), strongerThan(X,Y). �

2.3 Semantics and Query Answering

Given a set S of atoms and an atom a, we say S entails a (S |= a for short) if there
is a substitution σ s.t. σ(a) ∈ S. Let P ∈ Datalog∃. A set M ⊆ base(ΔC ∪ ΔN )
is a model for P (M |= P ) if M |= σ|X(head(r)) for each r ∈ P of the form (1)
and substitution σ s.t. σ(body(r)) ⊆ M . Let mods(P ) denote the set of models of
P . Let M ∈ mods(P ). A BCQ q is true w.r.t. M (M |= q) if there is a substitution
σ s.t. σ(atoms(q)) ⊆ M . Analogously, the answer of a CQ q(X) w.r.t. M is the set
ans(q,M) = {σ|X : σ is a substitution ∧ M |= σ|X(q)}. The answer of a CQ q(X)
w.r.t. a program P is the set ansP (q) = {σ : σ ∈ ans(q,M) ∀M ∈ mods(P )}. Note
that for a BCQ q either ansP (q) = {σ|∅} or ansP (q) = ∅; in the first case we say that
q is cautiously true w.r.t. P , denoted by P |= q.

Query answering (QA) is the problem of computing ansP (q), where P is a Datalog∃

program and q a CQ. It is well-known that QA can be carried out by using a universal
model of P [15], that is, a model U of P s.t. for each M ∈ mods(P ) there is a ho-
momorphism h satisfying h(U) ⊆ M . In this regard, given a universal model U of P ,
for each CQ q(X) and for each substitution σ s.t. σ(X) ⊆ ΔC , it has been shown that
σ ∈ ansP (q) iff σ ∈ ans(q, U) [15]. However, although each Datalog∃ program admits
a universal model, deciding whether a substitution belongs to ansP (q) is undecidable
in the general case [15]. Finally, we mention the CHASE as a well-known procedure for
constructing a universal model for a Datalog∃ program. (See the extended version [4]
of this paper for details.)
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3 Magic-Sets for Datalog∃

The original Magic-Sets technique was introduced for Datalog [5]. In order to bring
it to the more general framework of Datalog∃, we have to face two main difficulties.
The first is that originally the technique was defined to handle ∀-variables only. How
does the technique have to be extended to programs containing ∃-variables? The sec-
ond difficulty, which is eventually due to the first one, concerns how to establish the
correctness of an extension of Magic-Sets to Datalog∃. In fact, any Datalog program
is characterized by a unique universal model of finite size. In this case, the correctness
of Magic-Sets can be established by proving that the universal model of the rewritten
program (modulo auxiliary predicates) is a subset of the universal model of the orig-
inal program and contains all the answers for the input query. On the other hand, a
Datalog∃ program may have in general many universal models of infinite size. Due to
this difference, it is more difficult to prove the correctness of a Magic-Sets technique.

The difficulty associated with the presence of ∃-variables is circumvented by means
of the following observation: A hypothetical top-down evaluation of a query over a
Datalog∃ program would only consider the rules whose head atoms unify with the
(sub)queries. Therefore, the Magic-Sets algorithm has to skip those rules whose head
atoms have some ∃-variables in arguments that are bound from the (sub)queries. Con-
cerning the second difficulty, we prove the correctness of the new Magic-Sets technique
by considering all models of original and rewritten programs, showing that the same set
of substitution answers is determined for the input query.

3.1 Magic-Sets Algorithm

Magic-Sets stem from SLD-resolution, which roughly acts as follows: Each rule r s.t.
σ(head(r)) = σ′(q), where σ and σ′ are two substitutions, is considered in a first
step. Then, the atoms in σ(body(r)) are taken as subqueries, and the procedure is iter-
ated. During this process, if a (sub)query has some arguments bound to constant val-
ues, this information is used to limit the range of the corresponding variables in the
processed rules, thus obtaining more targeted subqueries when processing rule bod-
ies. Moreover, bodies are processed in a certain sequence, and processing a body atom
may bind some of its arguments for subsequently considered body atoms. The specific
propagation strategy adopted in a top-down evaluation scheme is called sideways infor-
mation passing strategy (SIPS). Roughly, a SIPS is a strict partial order over the atoms
of each rule which also specifies how the bindings originate and propagate [6].

In order to properly formalize our Magic-Sets algorithm, we first introduce adorn-
ments, a convenient way for representing binding information for intentional predicates.

Definition 1 (Adornments). Let p be a predicate of arity k. An adornment for p is
a string α = α1 · · ·αk defined over the alphabet {b, f }. The i-th argument of p is
considered bound if αi = b, or free if αi = f (i ∈ [1..k]).

Binding information can be propagated in rule bodies according to a SIPS.
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Algorithm 1. MS(q,P )

Input : an atomic query q = g(u1, . . . , uk) and a Datalog∃ program P
Output: an optimized Datalog∃ program

1 begin
2 α := α1 · · ·αk , where αi = b if ui ∈ ΔC , and αi = f otherwise (i ∈ [1..k]);
3 S := {〈g, α〉}; D := ∅; Rmgc := {mgc(q, α)← }; Rmod := ∅;
4 while S �= ∅ do
5 〈p, α〉 := any element in S; S := S \ {〈p, α〉}; D := D ∪ {〈p, α〉};
6 foreach r ∈ rules(P ) s.t. head(r) = p(t1, . . . , tn) and

ti ∈ Δ∃ implies αi = f (i ∈ [1..k]) do
// a := p(t1, . . . , tn)

7 Rmod := Rmod ∪ {head(r)← mgc(a, α) ∧ body(r)};
8 foreach q(s1, . . . , sm) ∈ body(r) s.t. q ∈ idb(P ) do

// b := q(s1, . . . , sm)
9 B := {c ∈ body(r) | c ≺α

r b};
10 β := β1 · · ·βm, where βi = b if si ∈ ΔC ∪ fα

r (B), and
βi = f otherwise (i ∈ [1..k]);

11 Rmgc := Rmgc ∪ {mgc(b, β)←mgc(a, α) ∧B};
12 if 〈q, β〉 /∈ D then S := S ∪ {〈q, β〉};

13 return Rmgc ∪Rmod ∪ {a← | a ∈ data(P )};

Definition 2 (SIPS). Let r be a Datalog∃ rule and α an adornment for pred(head(r)).
A SIPS for r w.r.t.α is a pair (≺α

r , f
α
r ), where:≺α

r is a strict partial order over atoms(r)
s.t. a ∈ body(r) implies head(r) ≺α

r a; fα
r is a function assigning to each atom

a ∈ atoms(r) the subset of the variables in a that are made bound after processing
a; fα

r must guarantee that fα
r (head(r)) contains only and all the variables of head(r)

corresponding to bound arguments according to α.

The auxiliary atoms introduced by the algorithm are obtained as described below.

Definition 3 (Magic Atoms). Let a = p(t1, . . . , tk) be an atom andα be an adornment
for p. We denote by mgc(a, α) the magic atom mgc pα(t̄), where: t̄ contains all terms
in t1, . . . , tk corresponding to bound arguments according to α; and mgc pα is a new
predicate symbol (we assume that no standard predicate in P has the prefix “mgc ”).

We are now ready to describe the MS algorithm (Algorithm 1), associating each atomic
query q over a Datalog∃ program P with a rewritten and optimized program MS(q,P ).
(More complex queries can be encoded by means of auxiliary rules.) The algorithm uses
two sets, S and D, to store pairs of predicates and adornments to be propagated and
already processed, respectively. Magic and modified rules are stored in the sets Rmgc

and Rmod , respectively. The algorithm starts by producing the adornment associated
with the query (line 1), which is paired with the query predicate and put into S (line 2).
Moreover, the algorithm stores a ground fact named query seed into Rmgc (line 2). Sets
D and Rmod are initially empty (line 2).

After that, the main loop of the algorithm is repeated until S is empty (lines 3–11).
More specifically, a pair 〈p, α〉 is moved from S to D (line 4), and each rule r s.t.
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head(r) = a and pred(a) = p is considered (lines 5–11). Considered rules are con-
strained to comply with the binding information from α, that is, no existential variables
have to receive a binding during this process (line 5). The algorithm adds to Rmod a
rule named modified rule which is obtained from r by adding mgc(a, α) to its body.

Binding information from α are then passed to body atoms according to a specific
SIPS (lines 7–11). Specifically, for each body atom b = q(s̄), the algorithm determines
the set B of predecessor atoms in the SIPS (line 8), from which an adornment string β
for q is built (line 9). B and β are then used to generate a magic rule whose head atom is
mgc(b, β), and whose body comprises mgc(a, α) and atoms in B (line 10). Moreover,
the pair 〈q, β〉 is added to S unless it was already processed in a previous iteration (that
is, unless 〈q, β〉 ∈ D; line 11). Finally, the algorithm terminates returning the program
obtained by the union of Rmgc , Rmod and {a← | a ∈ data(P )} (line 12).

Example 3. Resuming program P-Jungle of Example 1, we now give an example of
the application of Algorithm 1. In particular, we consider SIPS s.t. atoms are totally
ordered from left-to-right and binding information is propagated whenever possible. In
this setting, Algorithm 1 run on query afraid(antelope) and P-Jungle yields the
following rewritten program:

mgc afraidb(antelope) ←
mgc pursuesfb(X) ← mgc afraidb(X)
mgc pursuesff ← mgc pursuesfb(Y)
mgc pursuesbf (Y) ← mgc hungryb(Y)
mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X)

∃Z pursues(Z,X) ← mgc pursuesfb(X), escapes(X)
∃Z pursues(Z,X) ← mgc pursuesff , escapes(X)
hungry(Y) ← mgc hungryb(Y), pursues(Y,X), fast(X)
pursues(X,Y) ← mgc pursuesfb(Y), pursues(X,W), prey(Y)
pursues(X,Y) ← mgc pursuesff , pursues(X,W), prey(Y)
pursues(X,Y) ← mgc pursuesbf (X), pursues(X,W), prey(Y)
afraid(X) ← mgc afraidb(X), pursues(Y,X), hungry(Y),

strongerThan(Y,X)

A detailed description is reported in the extended version [4] of this paper. �

3.2 Query Equivalence Result

We start by establishing a relationship between the model of P and those of MS(q,P ).
The relationship is given by means of the next definition.

Definition 4 (Magic Variant). Let I ⊆ base(ΔC ∪ ΔN ), and {vari(I)}i∈N be the
following sequence: var0(I) = I; for each i ≥ 0, vari+1(I) = vari(I) ∪ {a ∈ I |
∃α s.t. mgc(a, α) ∈ vari(I)} ∪ {mgc(a, α) | ∃r, σ s.t. r ∈ Rmgc ∧ σ(head(r)) =
mgc(a, α)∧σ(body(r)) ⊆ vari(I)}. The fixpoint of this sequence is denoted by var(I).

We point out that the magic variant of a set of atoms I comprises magic atoms and a
subset of I . Intuitively, these atoms are enough to achieve a model of MS(q,P ) if I is a
model of P . This intuition is formalized below and proven in the extended version [4]
of this paper.
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Lemma 1. If M |= P , then var(M) |= MS(q, P ).

The soundness of Algorithm 1 w.r.t. QA can be now established.

Theorem 1 (Soundness). If σ ∈ ans(q,MS(q, P )), then σ ∈ ansP (q).

Proof. Assumeσ ∈ ans(q,MS(q, P )). LetM |= P . By Lemma 1, var(M) |= MS(q, P ).
Since σ ∈ ans(q,MS(q, P )) by assumption, σ(q) ∈ var(M). Thus, σ(q) ∈M because
var(M) comprises magic atoms and a subset of M by construction. �
To prove the completeness of Algorithm 1 w.r.t. QA we identify a set of atoms that are
not entailed by the rewritten program but not due to the presence of magic atoms.

Definition 5 (Killed Atoms). Let M |= MS(q, P ). The set killed(M) is defined as
follows: {a ∈ base(Δ) \M | either pred(a) ∈ edb(P ), or ∃α s.t. mgc(a, α) ∈M}.
Since the falsity of killed atoms is not due to the Magic-Sets rewriting, one expects that
their falsity can also be assumed in the original program. This intuition is formalized
below and proven in the extended version [4] of this paper.

Lemma 2. If M |= MS(q, P ), M ′ |= P and M ′ ⊇M , then M ′ \ killed(M) |= P .

We can finally prove the completeness of Algorithm 1 w.r.t. QA, which then establishes
the correctness of Magic-Sets for queries over Datalog∃ programs.

Theorem 2 (Completeness). If σ ∈ ansP (q), then σ ∈ ans(q,MS(q, P )).

Proof. Assume σ ∈ ansP (q). Let M |= MS(q, P ). Let M ′ |= P and be s.t. M ′ ⊇ M .
By Lemma 2, M ′ \ killed(M) |= P . Since σ ∈ ansP (q) by assumption, σ(q) ∈ M ′ \
killed(M). Note that all instances of the query which are not in M are contained in
killed(M) because the query seed belongs to M . Thus, σ(q) ∈M holds. �

4 Magic-Sets for Shy Programs

Among various Datalog∃ subclasses making QA computable, we are going to focus on
Shy [18], an attractive Datalog∃ fragment which guarantees both easy recognizability
and efficient answering even to CQs. After recalling basic definitions and computational
results about Shy, we show how to guarantee shyness in the rewritten of a Shy program.

4.1 Shy Programs

Intuitively, the key idea behind Shy programs relays on the following shyness property:
During a chase execution on a Shy program P , nulls (propagated body-to-head in
ground rules) do not meet each other to join.

We now introduce the notion of null-set of a position in an atom. More precisely, ϕr
X

denotes the “representative” null that can be introduced by the ∃-variable X occurring
in rule r. (If 〈r, X〉 �= 〈r′, X′〉, then ϕr

X �= ϕr′
X′ .) Let P be a Datalog∃ program, a be

an atom, and X a variable occurring in a at position i. The null-set of position i in
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a w.r.t. P , denoted by nullset(i, a), is inductively defined as follows: In case a is the
head of some rule r ∈ P , nullset(i, a) is the singleton {ϕr

X} if X ∈ Δ∃; otherwise
(X ∈ Δ∀), nullset(i, a) is the intersection of every nullset(j,b) s.t. b ∈ body(r) and
X occurs at position j in b. In case a is not a head atom, nullset(i, a) is the union of
nullset(i, head(r)) for each r ∈ P s.t. pred(head(r)) = pred(a).

A representative null ϕ invades a variable X that occurs at position i in an atom a if
ϕ is contained in nullset(i, a). A variable X occurring in a conjunction conj is attacked
in conj by a null ϕ if each occurrence of X in conj is invaded by ϕ. A variable X is
protected in conj if it is attacked by no null.

Definition 6. Let Shy be the class of all Datalog∃ programs containing only shy rules,
where a rule r is called shy w.r.t. a program P if the following conditions are satisfied:

– If a variable X occurs in more than one body atom, then X is protected in body(r).
– If two distinct ∀-variables are not protected in body(r) but occur both in head(r)

and in two different body atoms, then they are not attacked by the same null. �
According to Definition 6, program P-Jungle of Example 1 is Shy. Let a1, . . . , a12
be the atoms of rules r1–r4 in left-to-right/top-to-bottom order, and nullset(1, a1) be
{ϕr1

Z }. To show the shyness of P-Jungle, we first propagate ϕr1
Z (head-to-body) to

nullset(1, a4), nullset(1, a7), and nullset(1, a10). Next, this singleton is propagated
(body-to-head) from a4, a7 and a3 to nullset(1, a3), nullset(1, a6) and nullset(1, a11),
respectively. Finally, we observe that rules r1–r3 are trivially shy, and that r4 also is
because variable Y is not invaded in a12 even if ϕr1

Z invades Y both in a10 and a11.
Shy enjoys the following notable computational properties:

– Checking whether a program is Shy is doable in polynomial-time.
– Query answering over Shy is polynomial-time computable in data complexity.1

4.2 Preserving Shyness in the Magic-Sets Rewriting

In Section 3, the correctness of MS has been established for Datalog∃ programs in
general. Our goal now is to preserve the desirable shyness property in the rewritten of
a Shy program. In fact, shyness is not preserved by MS per sé. Resuming Example
3, MS run on query afraid(antelope) and program P-Jungle may produce from
r4 a rule mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X), which assumes
hungry(ϕ) relevant whenever some pursues(ϕ,X) is derived, for any ϕ ∈ ΔN .
However, shyness guarantees that any extension of this substitution for r4 is actually
annihilated by strongerThan(Y,X), which thus enforces protection on Y. Unfortu-
nately, SIPS cannot represent this kind of information in general, and thus MS may yield
a non-shy program. Actually, the rewritten program in Example 3 is not shy because it
contains rule hungry(Y) ← mgc hungryb(Y), pursues(Y,X), fast(X).

The problem described above originates by the inability to represent in SIPS that
no join on nulls is required to evaluate Shy programs. We thus explicitly encode this
information in rules by means of the following transformation strategy: Let r be a rule

1 In this setting, data(P ) are the only input while q and rules(P ) are considered fixed.
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of the form (1) in a program P , and #dom be an auxiliary predicate not occurring in
P . We denote by r� the rule obtained from r by adding a body atom #dom(X) for each
protected variable X in body(r). Moreover, we denote by P � the program comprising
each rule r� s.t. r ∈ P , and each fact #dom(c)← s.t. c ∈ dom(P ). (Note that the
introduction of these facts is not really required because #dom can be treated as a built-
in predicate, thus introducing no computational overhead.)

Proposition 1. If P is Shy, then P � is shy as well and mods(P ) = mods(P �).

Now, for an atomic query q over a Shy program P , in order to preserve shyness, we
apply Algorithm 1 to P � and force SIPS to comply with the following restriction: Let
r ∈ P � and α be an adornment. For each a,b ∈ body(r) s.t. a ≺α

r b, and for each
variable X occurring in both a and b, SIPS (≺α

r , f
α
r ) is s.t. a ≺α

r #dom(X) ≺α
r b. (See

the extended version [4] of this paper for an example.)

Theorem 3. Let q be an atomic query. If P is Shy, then MS(q, P �) is Shy.

Proof. All arguments of magic predicates have empty null-sets. Indeed, each variable in
the head of a magic rule r either occurs in the unique magic atom of body(r), or appears
as the argument of a #dom atom. Consequently, all rules in Rmgc are shy. Moreover,
each rule in Rmod is obtained from a rule of P � by adding a magic atom to its body.
No attack can be introduced in this way because arguments of magic atoms have empty
null-sets. Thus, since the original rule is shy, the modified rule is also shy. �
In order to handle CQs of the form ∃Y conj[X∪Y], we first introduce a rule rq of the
form q(X)← conj. We then compute P ′ = MS(q(X), (P ∪ {rq})�) further restrict-
ing the SIPS for rq to not propagate bindings via attacked variables, that is, to be s.t.
Z ∈ fα

rq(conj) implies that Z is protected in conj (where α is the adornment for q).
After that, we remove from P ′ the rule associated with the query, thus obtaining a Shy
program P ′′. Finally, we evaluate the original query ∃Y conj[X∪Y] on program P ′′.

Table 1. Query evaluation time (seconds) of DLV∃ and improvements (IMP) of Magic-Sets

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14

lubm-10
DLV∃ 3.40 3.21 0.93 1.37 5.73 2.29 5.12 3.97 4.83 3.53 0.33 0.86 5.26 1.88
DLV∃+MS 1.83 1.95 0.63 0.39 1.20 0.48 2.95 1.08 3.45 2.54 0.08 0.85 0.76 1.88
IMP 46% 39% 32% 72% 79% 79% 42% 73% 29% 28% 76% 1% 86% 0%

lubm-30
DLV∃ 11.90 11.49 2.09 4.40 18.42 8.07 18.02 13.53 15.87 12.42 1.13 2.93 18.95 6.41
DLV∃+MS 6.20 6.28 1.44 1.28 3.91 1.67 9.85 3.11 11.82 7.95 0.24 2.85 2.42 6.23
IMP 48% 45% 31% 71% 79% 79% 45% 77% 26% 36% 79% 3% 87% 3%

lubm-50
DLV∃ 21.15 19.05 3.72 7.71 31.80 14.46 31.47 23.63 28.96 21.80 1.99 5.48 32.50 11.52
DLV∃+MS 10.86 11.39 2.42 2.23 6.36 3.03 16.32 5.23 20.30 14.10 0.39 5.32 4.13 11.49
IMP 49% 40% 35% 71% 80% 79% 48% 78% 30% 35% 80% 3% 87% 0%
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5 Experimental Results and Discussion

We incorporated Magic-Sets in DLV∃ [18], a system supporting QA over Shy. Empiri-
cal evidence of the effectiveness of the implemented system is provided by means of an
experiment on the well-known benchmark suite LUBM (see http://swat.cse.
lehigh.edu/projects/lubm/ ). It refers to a university domain and includes a synthetic
data generator, which we used to generate three increasing data sets, namely lubm-10,
lubm-30 and lubm-50. LUBM incorporates a set of 14 queries referred to as q1–q14,
where q2, q6, q9 and q14 contain no constants. Tests have been carried out on an Intel
Xeon X3430, 2.4 GHz, with 4 Gb Ram, running Linux Operating System. For each
query, we allowed 7200 seconds (two hours) or running time and 2 Gb of memory.

We first evaluated the impact of Magic-Sets on DLV∃. Specifically, we measured the
time taken by DLV∃ to answer the 14 LUBM queries with and without the application
of Magic-Sets. Results are reported in Table 1, where times do not include data parsing
and loading as they are not affected by Magic-Sets. On the considered queries, Magic-
Sets reduce running time of 50% in average, with a peak of 87% on q13. If only queries
with no constants are considered, the average improvement of Magic-Sets is 37%, while
the average improvement rises up to 55% for queries with at least one constant. We also
point out that the average improvement provided by Magic-Sets is always greater than
25% if q12 and q14 are not considered. Regarding these two queries, Magic-Sets do not
provide any improvement because the whole data sets are relevant for their evaluation.

Next, we compared DLV∃ enhanced by Magic-Sets with three state-of-the-art rea-
soners, namely Pellet [19], OWLIM-SE [7] and OWLIM-Lite [7]. Results are reported
in Table 2, where times include the total time required for query answering. We mea-
sured the total time, including data parsing and loading, because ontology reasoning

Table 2. Systems comparison: running time (sec.), solved queries (#s) and average time (G.Avg)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 #s G.Avg

lubm-10
DLV∃ 5 4 2 4 6 1 6 4 8 5 <1 1 6 2 14 2.87
Pellet 82 84 84 82 80 88 81 89 95 82 82 89 82 84 14 84.48
OWLIM-Lite 33 – 33 33 33 33 4909 70 – 33 33 33 33 33 12 53.31
OWLIM-SE 105 105 105 105 105 105 105 106 106 105 105 105 105 105 14 105.14

lubm-30
DLV∃ 16 13 7 14 21 3 21 12 25 18 <1 5 23 8 14 9.70
Pellet – – – – – – – – – – – – – – 0 –
OWLIM-Lite 107 – 107 106 107 106 – 528 – 107 106 106 107 106 11 123.18
OWLIM-SE 323 328 323 323 323 323 323 323 326 323 323 323 323 323 14 323.57

lubm-50
DLV∃ 27 23 12 23 35 6 34 22 42 31 <1 9 33 14 14 16.67
Pellet – – – – – – – – – – – – – – 0 –
OWLIM-Lite 188 – 190 187 189 188 – 1272 – 189 187 187 189 187 11 223.79
OWLIM-SE 536 547 536 536 536 537 536 536 542 536 536 536 536 537 14 537.35
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is usually performed in contexts where data and knowledge rapidly vary, even within
hours. DLV∃ significantly outperforms all other systems in all tested queries and data
sets. Comparing the other systems, OWLIM-Lite is in general faster than Pellet and
OWLIM-SE. Pellet is faster than OWLIM-SE on lubm-10, but it answered no tested
queries in the allotted time on lubm-30 and lubm-50.
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On the CRON Conjecture
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Abstract. Declarative networking is a recent approach to programming
distributed applications with languages inspired by Datalog. A recent
conjecture posits that the delivery of messages should respect causality
if and only if they are used in non-monotone derivations. We present
our results about this conjecture in the context of Dedalus, a Datalog-
variant for distributed programming. We show that both directions of
the conjecture fail under a strong semantical interpretation. But on a
more syntactical level, we can show that positive Dedalus programs can
tolerate non-causal messages, in the sense that they compute the correct
answer when messages can be sent into the past.

1 Introduction

In declarative networking, distributed computations and networking protocols
are modeled and programmed using formalisms based on Datalog [17]. Heller-
stein has made a number of intriguing conjectures concerning the expressiveness
of declarative networking [14, 15]. In the present paper, we are focusing on the
CRON conjecture (Causality Required Only for Non-monotonicity).

Causality stands for the physical constraint that an effect can only happen
after its cause. Applied to message delivery, this intuitively means that a sent
message can only be delivered in the future, not in the past. Now, the conjecture
relates the causal delivery of messages to the nature of the computations that
those messages participate in, like monotone versus non-monotone, and asks us
to think about the cases where causality is really needed.

There seem to be interesting real-world applications of the CRON conjecture,
one of which is crash recovery. During crash recovery, a program can read an
old checkpointed state and a log of received messages, which is disjoint from
that state. These messages could appear to come from the “future” when put
side-by-side with the old state because according to the old state, those messages
have yet to be sent. Then, it is not always clear how the program should combine
the old state and the message log, certainly if negation and more generally non-
monotone operations are involved. One can understand the CRON conjecture as
saying that during recovery, for non-monotone operations, messages from the log
should be read in causal order, like the order in which they are received, and they
should not be exposed all at once. From the other direction, if you know that
only monotone operations are involved, the recovery could perhaps become more
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efficient by reading the messages all at once. Distributed computations happen
often in large clusters of compute nodes, where failure of nodes is not uncommon
[21], and indeed distributed computing software should be robust against failures
[9]. We want to avoid restarting entire computations when only a few nodes fail,
and therefore it seems natural to use some lightweight crash recovery facility for
individual nodes that can still make the computation succeed, although perhaps
some partial results might have to be recomputed. The CRON conjecture could
help us better understand how such recovery facilities can be designed.

In this paper we formally investigate the CRON conjecture in the setting of
the language Dedalus, which is a Datalog-variant for distributed programming
[4, 5, 15]. It turns out that stable models [12] provide a way to reason about
non-causality, and we use this to formalize the CRON conjecture. A strong in-
terpretation of the conjecture posits that causality is not needed if and only if
the query computed by a Dedalus program is monotone. Neither the “if” nor
the “only if” direction holds, however, which is perhaps not entirely surprising
as we can do special tricks with negation. Therefore we have turned attention to
a more syntactic version of the conjecture, and there we indeed find that causal
message ordering is not needed for positive Dedalus programs in order to com-
pute meaningful results, if these programs already behave correctly in a causal
operational semantics.

This paper is organized as follows. Preliminaries on databases and Dedalus are
given in Sect. 2. In Sect. 3 we give an intuitive operational semantics for Dedalus.
The formalization of non-causality, the CRON conjecture, and the related results
are all in Sect. 4. We conclude in Sect. 5.

2 Preliminaries

2.1 Databases and Network

A database schema D is a nonempty finite set of pairs (R, k) where R is a relation
name and k ∈ N its associated arity. A relation name occurs at most once in a
database schema. We also write (R, k) as R(k).

We assume a countably infinite universe dom of atomic data values that
includes the set N of natural numbers. A fact f with predicate R is of the
form R(a1, . . . , ak) with ai ∈ dom for each i = 1, . . . , k. We say that a fact
R(a1, . . . , ak) is over a database schema D if R(k) ∈ D. A database instance I
over D is a set of facts over D.

A network N is a nonempty finite subset of dom. Intuitively, N represents a
set of identifiers of compute nodes involved in a distributed system. This model
is general enough to represent distributed computing on any network topology,
because we can restrict attention to programs where nodes only send messages
to nodes to which they are explicitly linked, as expressed by input relations.
Now, a distributed database instance H over N and a database schema D is a
total function mapping every node of N to a finite (normal) database instance
over D.
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2.2 Dedalus Programs

We now recall the language Dedalus, that can be used to describe distributed
computations [4, 5, 15]. Essentially, Dedalus is an extension of Datalog¬ to repre-
sent updateable memory for the nodes of a network and to provide a mechanism
for communication between these nodes. Here, we present Dedalus as Datalog¬

extended with annotations, which simplify the presentation.1

Let D be a database schema. Below, we write B{w̄}, where w̄ is a tuple of
variables, to denote any sequence β of atoms and negated atoms over database
schema D, such that the variables in β are precisely those in the tuple w̄. Also,
let R be a relation name in D. There are three types of Dedalus rules over D:
– A deductive rule is a normal Datalog¬ rule over D.
– An inductive rule is of the form

R(ū)• ← B{ū, v̄}.
– An asynchronous rule is of the form

R(ū) | y← B{ū, v̄, y}.
So, inductive and asynchronous rules are basically normal Datalog¬ rules with re-
spectively head-annotations “•” and “| y”, where y is a variable. For
asynchronous rules, the notation “| y” means that the derived head facts are
transferred (“piped”) to the node represented by y. Intuitively, deductive, induc-
tive and asynchronous rules express respectively local computation, updateable
memory, and message sending (cf. Sect. 3). We will only consider safe rules:
all variables of these rules occur in at least one positive body atom. Moreover,
because constants can always be represented by unary input relations, we will
assume that no values of dom occur in the rules. For technical simplicity, we
also assume that rule-bodies contain at least one positive atom.

To illustrate, if D = {R(2), S(1), T (2)}, then the following three rules are ex-
amples of, respectively, deductive, inductive and asynchronous rules over D:

T (u, v)← R(u, v), ¬S(v).
T (u, v)• ← R(u, v).

T (u, v) | y← R(u, v), S(y).

Definition 1. A Dedalus program over a schema D is a set of deductive, induc-
tive and asynchronous Dedalus rules over D, such that the set of deductive rules
is syntactically stratifiable.

Let P be a Dedalus program. We write sch(P) to denote the schema that P is
over. We define idb(P) ⊆ sch(P) to be the relations that occur in rule-heads
of P . We abbreviate edb(P) = sch(P) \ idb(P). An input for P is a distributed
database instance H over some network N and the schema edb(P).
1 These annotations correspond to syntactic sugar in the previous presentations of

Dedalus.
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3 Operational Semantics

Let P be a Dedalus program. Let H be an input distributed database instance
for P , over a network N . We give an operational semantics for Dedalus, which
respects causality. This operational semantics is in line with earlier formal work
on declarative networking [10, 19, 13, 6, 1]. In Sect. 4, we will contrast the opera-
tional semantics with a non-causal semantics, to formalize the CRON conjecture.

In this section we will sketch the most important concepts of the operational
semantics. The interested reader can consult the formal details in the appendix.
To represent a possible execution of P on input H , we use a run. A run consists
of configurations and transitions. A configuration describes for each node of
N the facts that it has stored locally (state), and also what messages are in
flight on the network. At the beginning, the start configuration assigns to each
node only its local input fragment in H , and there are no messages. Now, a
transition transforms one configuration into another: it selects one active node
x ∈ N to receive some messages addressed to x and to do a local computation.
Specifically, the active node x reads its old state together with the received
messages. The node then executes the deductive rules to “complete” these facts,
using the stratified semantics. We consider the resulting set D of deductive facts
as being “all” facts that x locally has during the transition. Next, the inductive
rules are given input D, and the derived facts are stored in the next state of x,
always together with the local input fragment of x in H (which is preserved).
Similarly, the asynchronous rules are also given input D, and the derived facts
are considered messages that are sent around the network. The first component
in these facts represents the addressee. The resulting configuration reflects all
these actions taken by x. Then, a runR is an infinite sequence of such transitions,
initially departing from the start configuration. Natural fairness conditions are
imposed: we consider only runs in which each node is made active an infinite
number of times and every sent message is eventually delivered. The operational
semantics closely corresponds to that of the language Webdamlog [1].

This operational semantics is highly nondeterministic because in each transi-
tion we can choose which node is made active and also what messages it receives
(from those that are in flight).

Assume a subset out(P) ⊆ idb(P), called the output schema, is selected: the
relation names in this schema designate the intended output of the program.
Following Marczak et al. [18], we define this output based on ultimate facts. In
a run R, we say that a fact f over schema out(P) is ultimate at some node x if
there is some transition after which f is present at x during every subsequent
transition of x once the deductive rules are executed. Thus, this is a fact that
will eventually always be present at x. The output of R, denoted output(R), is
the union of all ultimate facts over all nodes. In this definition we ignore what
node is responsible for what piece of the output, which follows the intuition of
cloud computing. Since the operational semantics is nondeterministic, there can
be different runs producing a different output. Program P is called consistent if
individually for every input distributed database instance H , every run produces
the same output, which we denote as outInst(P , H). This is an instance over
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out(P). Guaranteeing or deciding consistency in special cases is an important
research topic [1, 18, 7].

As some additional terminology, in a run, for each transition t, we define the
timestamp of the active node x during t to be the number of transitions of x that
come strictly before t. This can be thought of as the local (zero-based) clock of x
during t. For example, suppose we have the following sequence of active nodes:
x, y, y, x, x, etc. If we would write the timestamps next to the nodes, we get
this sequence: (x, 0), (y, 0), (y, 1), (x, 1), (x, 2), etc.

4 CRON Conjecture

Conjecture 1. Causality Required Only for Non-monotonicity (CRON) [15]:
Program semantics require causal message ordering if and only if the messages
participate in non-monotonic derivations.

The CRON conjecture talks about an intuitive notion of “causality” on mes-
sages. As mentioned in the introduction, causality here stands for the physical
constraint that an effect can only happen after its cause. Our operational se-
mantics respects causality because a message can only be delivered after it was
sent. When the delivery of one message causes another one to be sent, then the
second one is delivered in a later transition. For this reason, we want a new for-
malism to reason about non-causality, which entails sending messages into the
“past”. We introduce such a formalism in Sect. 4.1, and in Sect. 4.2 we look at
our formalizations of the CRON conjecture and the associated results.

4.1 Modeling Non-causality

In a previous work [3], we have shown that the operational semantics of Dedalus
is equivalent to a declarative semantics based on stable models [12]. There,
we described a causality transform that converts a Dedalus program to a pure
Datalog¬ program containing extra rules, called the causality rules. When the
stable model semantics is applied to this pure Datalog¬ program, these rules
enforce causality on message sending. For the current work, we will remove the
causality rules, and now stable models can represent non-causal message sending.

Let P be a Dedalus program. Below, we present the SZ-transformation that
transforms P into pureSZ(P), which is a pure Datalog¬ program that models the
distributed computation in a holistic fashion: the distributed data of a network
across all nodes and their local timestamps is modeled as facts of the form
R(x, s, ā), representing that the fact R(ā) is present at node x at its timestamp s.
In pureSZ(P), for asynchronous rules, we also use a rewriting technique inspired
by the work of Saccà and Zaniolo, who show how to express dynamic choice
under the stable model semantics [20].

In pureSZ(P), we will use relations of the following database schema:

Dtime = {time(1), tsucc(2), �=(2)} .
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We may assume that these relations are not in sch(P), which can be solved
with namespaces if needed. The relation ‘�=’ will be written in infix notation. We
consider only the following instance over Dtime:

Itime = {time(s), tsucc(s, s+ 1) | s ∈ N} ∪ {(s �= t) | s, t ∈ N : s �= t} .

This instance provides timestamps, together with a non-equality relation. Next,
we will specify pureSZ(P) incrementally. Let x, s, t and t′ be variables not yet
used in P . For any sequence L of atoms and negated atoms, let L⇑x,s denote the
sequence obtained by adding x and s as first and second components to each
atom in L (negated atoms stay negated).

For each deductive rule ‘R(ū) ← B{ū, v̄}’ in P , we add to pureSZ(P) the
following rule:

R(x, s, ū)← B{ū, v̄}⇑x,s. (1)

This expresses that deductively derived facts are directly visible within the same
step (of the same node) in which they were derived.

For each inductive rule ‘R(ū)• ← B{ū, v̄}’ in P , we add to pureSZ(P) the
following rule:

R(x, t, ū)← B{ū, v̄}⇑x,s, tsucc(s, t). (2)

This expresses that inductively derived facts appear in the next step of the same
node.

We will also assume that the following relation names are not in sch(P):
name All, and the names candR, chosenR and otherR for each name R in
idb(P). Now, for each asynchronous rule ‘R(ū) | y← B{ū, v̄, y}’ in P , we add to
pureSZ(P) the following rules, for which the intuition is given below:

candR(x, s, y, t, ū)← B{ū, v̄, y}⇑x,s, All(y), time(t). (3)

chosenR(x, s, y, t, ū)← candR(x, s, y, t, ū), ¬otherR(x, s, y, t, ū). (4)

otherR(x, s, y, t, ū)← candR(x, s, y, t, ū), chosenR(x, s, y, t
′, ū), t �= t′. (5)

R(y, t, ū)← chosenR(x, s, y, t, ū). (6)

A fact of the form All(x) means that x is a node of the network. Rule (3)
represents message sending: it derives messages by evaluating the original asyn-
chronous rule, verifies that the addressee of each message is in the network,
and it considers for each message all possible candidate arrival timestamps at
the addressee. In the derived facts, we include the sender’s location and send-
timestamp, the addressee’s location and arrival-timestamp, and the actual trans-
mitted data. Next, rules (4) and (5) together enforce under the stable model
semantics that precisely one arrival timestamp will be chosen for every sent
message, using the technique of [20]. Rule (6) models the actual arrival of mes-
sages, where the sender-information is projected away, and the data-tuple in
the message becomes part of the addressee’s state for relation R. We repeat
the above transformation for all asynchronous rules in P , and pureSZ(P) is now
completed. Remark: multiple asynchronous rules in P can have the same head
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predicate R, and after the above transformation, there can be multiple rules
with head predicates candR, chosenR, otherR and R.

Let H be an input for P , over a network N . We define

inputSZ(H) =
⋃

x∈N

⋃

s∈N

{R(x, s, ā) | R(ā) ∈ H(x)} ∪ {All(x) | x ∈ N} ∪ Itime .

Intuitively, in inputSZ(H), for each node its input facts are available at each of
its local timestamps; relation All represents the network; and all timestamps are
provided, together with a non-equality relation. Now, we call any stable model
M of pureSZ(P) on input inputSZ(H) an SZ-model of P on input H . Program
pureSZ(P) does not enforce causality on the messages in M since the arrival
timestamps can be chosen arbitrarily, even into the past.

Similar to [3], we only consider “fair” models, defined as follows. We say
that an SZ-model M is fair if for each pair (y, t) ∈ N × N there are only a
finite number of facts in M of the form chosenR(x, s, y, t, ā). This expresses that
every node receives only a finite number of messages at any given timestamp. We
focus on fair models because in reality a node always processes a finite number
of messages at each computation step.

We define the output of an SZ-model M , denoted output(M), as

⋃

R(k)∈out(P)

{R(ā) | ∃x ∈ N , ∃s ∈ N, ∀t ∈ N : t ≥ s⇒ R(x, t, ā) ∈M} .

Thus, we use the intuition of ultimate facts, as was used in the operational seman-
tics (cf. Sect. 3). Now, a consistent program P is called SZ-consistent if individ-
ually for every input distributed database instance H , every SZ-model M yields
the output outInst(P , H). Intuitively, if a consistent program is SZ-consistent,
then it also computes the same result when messages can be sent into the past.

4.2 Results

We have first formalized the CRON conjecture purely on the semantical level,
by relating causality to the monotonicity of the queries computed by Dedalus
programs. A query Q is a function from database instances over an input schema
D1 to database instances over an output schema D2. A Dedalus program P can
compute a query as follows: we say that P (distributedly) computes a query Q
if P is consistent and for every input instance I for Q, for every network N ,
for every partition H of I over N , we have outInst(P , H) = Q(I). To compute
non-monotone queries, every node needs its own identifier and the identifiers of
the other nodes, or equivalent information [6]. Therefore, we restrict attention
to Dedalus programs P for which {Id(1), Node(1)} ⊆ edb(P), where relation Id

is initialized to contain on every node the identifier of that node, and relation
Node is initialized to contain the identifiers of all nodes (including the local
node). These node identifiers are not considered part of the query input. In this
context, we have looked at the following formalization of the CRON conjecture:
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A Dedalus program computes a monotone query if and only if it is
SZ-consistent.

Both directions of this conjecture can be refuted by counterexamples. First, for
the if-direction, we give a Dedalus program that computes the non-monotone
emptiness query on a nullary relation S, that is, output “true” (encoded by a
nullary relation T ) if and only if S is empty (at all nodes):

empty(x) | y ← ¬S( ), Id(x), Node(y).
empty(y)• ← empty(y).

notDone( )← Node(y), ¬empty(y).
T ( )← Id(x), ¬notDone( ).

Here, the asynchronous rule lets each node broadcast its own identifier if its
relation S is empty. The inductive rule lets a node remember all received node
identifiers. The rules on the right let a node output T ( ) starting at the moment
that it has all identifiers (including its own). This program is consistent. There
are no causal message dependencies, so it does not really matter at what time a
node receives some identifier: in every SZ-model, after a while this node will still
have received and stored the identifier. Thus every SZ-model yields the output
T ( ) iff all nodes have an empty relation S. The program is SZ-consistent.

Second, for the only-if direction, we give a (contrived) Dedalus program that
computes the monotone non-emptiness query on a nullary relation S, that is,
output “true” if and only if S is not empty (on at least one node):

A( ) | x← S( ), Id(x).

A( )• ← A( ).

sentB( )• ← A( ).

B( ) | x← A( ), ¬sentB( ), Id(x).
T ( )← A( ), B( ).

T ( )• ← T ( ).

Here, when a node has a nonempty relation S, it sends A( ) to itself continuously.
On receipt of A( ), it stores this fact, and it sends B( ) to itself if it has not
previously done so. Thus, if a node sends A( ) then it sends B( ) precisely once.
When the B( ) is later received, it is paired with the stored A( ), producing the
fact T ( ) that is stored indefinitely. The program is consistent, but is however not
SZ-consistent, which we now explain. Let H be the input over singleton network
{z} with H(z) = {S( )}. On input H , we can exhibit an SZ-model M in which
A( )-facts arrive at node z starting at timestamp 1, which implies that sentB( )
will exist starting at timestamp 2. This implies that B( ) is sent precisely once in
M , namely, at timestamp 1. Now, the trick is to violate the causal dependency
between relations A and B, and to let B( ) arrive in the past, at timestamp 0 of
z, which is before any A( ) is received. Then the arriving B( ) cannot pair with
any stored or arriving A( ). Since B( ) itself is not stored, we have thus erased
the single chance of producing T ( ). Hence output(M) = ∅, and the program is
not SZ-consistent.

So, contrary to the CALM conjecture [15, 6, 22], a formalization of the CRON
conjecture that is situated purely on the semantical level does not seem to give
any results. A Dedalus program without negation is called positive. Our main
result now is that the following does hold:
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Theorem 1. Every positive, consistent Dedalus program is SZ-consistent.

Note that the converse direction of Theorem 1, to the effect that every
SZ-consistent Dedalus program is equivalent to a positive program, cannot hold
by our above counterexample for the if-direction. We sketch the proof of Theo-
rem 1. Let P be a positive, consistent Dedalus program, and let H be an input
for P . Let M be an SZ-model of P on H . To show output(M) ⊆ outInst(P , H),
we show output(M) ⊆ output(R) where R is the run of P on H that operates
in rounds: in every round all nodes empty their entire buffer, and this run satu-
rates towards the derivation of all “possible” deductive facts per node. To show
outInst(P , H) ⊆ output(M), we convert M to a run R in which we create no
more opportunities for messages to “join” in comparison to M . Concretely, we
make sure that in R we only send messages that are sent an infinite number
of times in M , which, by the “fairness” assumption on M , allows us to pick an
arrival time that is still represented by M . Hence, output(R) ⊆ output(M).

5 Discussion

In future work, we may want to understand better the spectrum of causality. We
have seen that for positive programs no causality at all is required, and perhaps
richer classes of programs can tolerate some relaxations of causality as well. We
would also like to investigate how the CRON conjecture can be concretely linked
to crash recovery applications, and the design of recovery mechanisms. It might
also be interesting to look at other local operational semantics for Dedalus,
besides the stratified semantics used here.
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Appendix

A Operational Semantics

Let P be a Dedalus program. LetH be an input distributed database instance for
P , over a network N . We define formally an operational semantics for Dedalus.

A.1 Subprograms

We split the program P into three subprograms, that contain respectively the
deductive, inductive and asynchronous rules. First, we define deducP to be the
Datalog¬ program consisting of precisely all deductive rules of P . Secondly, we
define inducP to be the Datalog¬ program consisting of all inductive rules of P
after the annotation “•” in their head is removed. Thirdly, we define asyncP to be
the Datalog¬ program consisting of precisely all rules ‘T (y, ū)← B{ū, y}’ where
‘T (ū) | y ← B{ū, y}’ is an asynchronous rule of P . The first component in the
rules of asyncP will represent the addressee of messages. The programs deducP ,
inducP and asyncP are just Datalog¬ programs over the schema sch(P), or a
sub-schema thereof. Moreover, deducP is syntactically stratifiable because the
deductive rules in P must be syntactically stratifiable. The semantics of these
subprograms is given below.

Let I be an instance over sch(P). We define the output of deducP on input I,
denoted as deducP(I), to be given by the stratified semantics [2]. This implies
I ⊆ deducP(I). We define the output of inducP on input I to be the set of facts
derived by the rules of inducP for all possible satisfying valuations in I, in just
one derivation step. This output is denoted as inducP〈I〉. The output of asyncP
on input I is defined in the same way as for inducP , except that we now use the
rules of asyncP instead of inducP . This output is denoted as asyncP〈I〉.

A.2 Configurations

A configuration ρ of P on input H is a pair (stρ, bfρ) where stρ is a function
that maps each node of N to a set of facts over sch(P), and bfρ is a function
that maps each node of N to a set of pairs of the form 〈i,f〉, where i ∈ N

and f is a fact over idb(P). The set stρ represents the state of each node. The
set bfρ, called (message) buffer, represents for each node all messages addressed
to that node but that are not yet received. The reason for having numbers i,
called send-tags, attached to facts in the image of bfρ is to differentiate between
multiple instances of the same message being sent at different moments (to the
same addressee), and these tags are not visible to the Dedalus program. The
start configuration of P on input H , denoted start(P , H), is the configuration ρ
defined for each x ∈ N as stρ(x) = H(x) and bfρ(x) = ∅.

A.3 Transitions and Runs

To transform one configuration ρa into another configuration ρb, we describe
transitions in each of which one active node does a local computation and
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possibly sends messages around the network. Such transitions can be chained
to form a run that describes a full execution of the Dedalus program on the
given input. As a small notational aid, for a set m of pairs of the form 〈i,f〉, we
define untag(m) = {f | ∃i ∈ N : 〈i,f〉 ∈ m}. Now, a transition with send-tag
i ∈ N is a five-tuple (ρa, x,m, i, ρb) such that ρa and ρb are configurations of P
on input H , x ∈ N , m ⊆ bfρa(x), and, letting

I = stρa(x) ∪ untag(m), D = deducP(I),
δi→y = {〈i, R(ā)〉 | R(y, ā) ∈ asyncP〈D〉} for each y ∈ N ,

for x and each y ∈ N \ {x} we have

stρb(x) = H(x) ∪ inducP〈D〉,
bfρb(x) = (bfρa(x) \m) ∪ δi→x,

stρb(y) = stρa(y),

bfρb(y) = bfρa(y) ∪ δi→y .

We say that this transition is of the active node x. The transition models that
the active node x reads its old state stρa(x) together with the received facts
in untag(m) (thus without the tags), and then completes this information with
subprogram deducP . Next, the state of x is changed to stρb(x), which always
contains the input facts of x, over schema edb(P), and it also includes all facts
derived by subprogram inducP , which is applied to the deductive fixpoint. This
represents that input facts are never lost, and that the facts over idb(P) that
are explicitly derived by inducP are remembered. Only the state of x changes.
The facts generated by asyncP are called messages. By the syntax of asyncP ,
these facts have an additional first component to indicate the addressee. For
each y ∈ N , the set δi→y contains all messages addressed to y: we drop the
addressee-component because it is now redundant, and we attach the send-tag i.
The set δi→y is added to the buffer of y. We ignore messages with an addressee
outside N .

A run R of P on input H is an infinite sequence of transitions, such that
(i) the very first configuration is start(P , H), (ii) the output configuration of
each transition is the input configuration for the next transition, and (iii) the
transition at ordinal i of the sequence uses send-tag i. The transition system is
highly non-deterministic because in each transition we can choose the active node
and also what messages to deliver. Note that messages with a valid addressee
are never lost.

It is natural to require certain “fairness” conditions on the execution of a
system [11, 8, 16]. A run R of P on H is called fair if (i) every node does an
infinite number of transitions, and (ii) every sent message is eventually delivered.
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Abstract. We propose an extension of Datalog that has “ordered pred-
icates” (lists/arrays of tuples instead of sets of tuples). We previously
suggested to specify output of Datalog programs declaratively by defin-
ing text pieces with their position. The proposal in the current paper
reaches significantly farther by making order a first class citizen in the
language. For database application programs, the output is an important
part of the program, and should be fully integrated into the declarative
language. However, order has many more applications besides specifying
output. For instance, SQL has recently been extended by ranking func-
tions, and aggregates over windows looping over sorted data — all this
is needed in Datalog, too.

1 Introduction

Currently, database application programs are usually developed in a combination
of two or more languages, e.g. PHP for programming and SQL for the database
queries and updates. While SQL is declarative, most languages used for the
programming part are not. However, SQL cannot be used for specifying complex
output (e.g., generating a web page), so the programming part is necessary.

The goal of deductive databases is that a single, declarative language is used
for programming and database tasks. The advantages of declarativity have been
shown in SQL: The productivity is higher (because the programs are shorter and
there is no need to think about efficient evaluation), and new technology (parallel
hardware, new data structures/algorithms) can be used for existing application
programs without changing them, because only the DBMS needs to be updated.

Although generating output is important in practice, it seems that there is
no really good solution for Datalog yet. The standard solution in Prolog with
a write-predicate is clearly non-declarative because it depends on the specific
evaluation order used in Prolog. Non-declarative output might be acceptable for
programs that do a complex calculation (specified declaratively), and contain
only a small part that prints the result in the end. However, for database ap-
plication programs, output is usually a significant part. Therefore, being able to
specify the output declaratively is important in this case.

A well-known solution to declarative output in logic programming is to use a
state argument as an accumulator pair (IOStateIn, IOStateOut in every pred-
icate with output). While this is a good solution for programmers who think
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“top-down” (if coupled with syntactic abbreviations and a determinism analysis
as in Mercury [1]), it contradicts a basic requirement in deductive databases:

– In deductive databases, one usually thinks bottom-up. Thus, it should be
possible to understand any kind of extended Datalog programs by applying
(some variant of) the usual TP (fixpoint) operator. I.e. a naive execution
of the rules in the direction of the arrow “←” should be possible. Given
this, using the state argument is simply no option: There could be infinitely
many possible states for the first body literal of a rule. Furthermore, it seems
natural that actions like output should be done in the head, not in the body.

– If Prolog is used for database applications, several solutions to a query are
usually generated via backtracking (e.g. a relation is specified as a set of
facts). But with the IO state solution, backtracking must be avoided (one
cannot backtrack over an already performed output). Thus predicates like
findall must be used, plus recursion over the produced list, even for really
simple queries. This does not seem adequate and would deter users new
to logic programming. Note that this is a consequence of the set-oriented
evaluation which is a classical characteristic of deductive databases.

In the same way, using monads as in functional languages [7] is not a solution that
fits to the classical Datalog bottom-up programming paradigm, and is therefore
no alternative.

The basic idea of our approach is that predicates canbe declared as ordered.This
can be semantically understood as introducing an additional, usually hidden argu-
ment that defines the order of the facts for the predicates (of course, there are often
more efficient implementations, which avoid actually storing such an argument).

If the order is not explicitly specified, the default for an ordered predicate
takes into account the order of the facts or rules and the possible order defined
for body literals (see Subsection 2.6). Thus, a sequence of facts becomes actually
a list or array. Experience shows that relational tables not seldom need extra
“position” columns for defining an order. Making this automatic and hidden
could simplify working with such data.

As in [2], output is done by defining a predicate output which contains text
pieces to be printed. With the ordered predicates of the current proposal, the
position information becomes implicit, and a simple example is:

ordered output/1.

output(’Hello, ’).

output(Name) ← name(Name).

output(’.\n’).

name(’Nina’).

Of course, with special syntactic abbreviations, output can be made still more
natural and easy (see the pattern syntax in Section 3).

But order has many more applications than just output, for instance

– ranking, top-n queries and window functions as recently added to SQL,
– list and array processing,
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– aggregation functions, and
– specification of algorithms that pass through a sequence of computation

states (i.e., more or less imperative algorithms).

The last two points appear already in LDL (XY-stratification) [8], but otherwise
our approach is quite different and in some aspects more general.

Whereas in [2], all ordering requirements for facts of predicates were only
implicitly derived from the requested ordering from the top output predicate,
now explicit sorting information can be specified for any predicate. This facil-
itates the design of reusable components, and it also corresponds to a recent
development in SQL. In SQL, top-n and window queries have recently become
important — every major DBMS has special support for them, although the
syntax is different in different systems. For instance, in Oracle it is possible to
retrieve the three employees with highest salary as follows:

SELECT ENAME, SAL

FROM (SELECT ENAME, SAL

FROM EMP

ORDER BY SAL DESC)

WHERE ROWNUM <= 3

This example is interesting, because it shows that a subquery, corresponding to a
view or a derived predicate, might need a defined order. In older SQL standards,
it was not possible to use ORDER BY in subqueries or view definitions. In our
proposal, the subquery corresponds to the following ordered predicate:

ordered emp_by_sal/2.

emp_by_sal<^Sal>(EName, Sal) ← emp(EName, Sal, Job).

In this case, the special ordering argument must be explicitly defined — this is
done in “<...>”. The “^” means “descending order”, i.e. the highest salary first
(the intuition is to think of “↑” instead of the default order “↓”).

Now a powerful function of the system is that it can condense any ordering
argument (possibly list-valued for several ordering criteria of different priority)
to a single integer (in an order-preserving manner). There are several methods
for doing this, but the default gives a simple array index:

answer(EName, Sal) ← emp_by_sal[N](EName, Sal) ∧ N≤ 3.

This syntax corresponds to the understanding that emp_by_sal is now an array,
and the array entries are records/facts.

The possibility to explicitly refer e.g. to the first, previous, next, and last
fact with respect to some order significantly increases the expressiveness of the
language. Of course, the construct is nonmonotonic, and already a check for the
first tuple gives the possibility to simulate negation.

2 Datalog with Ordering: Syntax and Semantics

We start with Datalog with stratified negation. Terms are constants or variables
(no function symbols). Rules must be range-restricted, i.e. variables that appear
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in the head literal or in a negative body literal must also appear in a positive
body literal. Of course, all this could be generalized, but those are questions
orthogonal to the issue of the current paper.

2.1 Declaration of Ordered Predicates

We assume that a subset of the predicates are declared as “ordered predicates”:

ordered p/n.

This makes predicate p of arity n an ordered predicate. When rules for p contain
explicit ordering specifications, a special declaration is not necessary. However,
there is also a default sort order for ordered predicates, and then it must be
made clear that this is not a normal predicate.

2.2 Order Specifications in the Head Literal

If the predicate in the head literal is an ordered predicate, an order specification
is expected after the predicate name and before the argument list. The order
specification is written in angle brackets <...>. It consists of an optional parti-
tioning part, and an ordering part. Partitioning is necessary if one wants to rank
the data values in several groups, e.g. the top 3 salaries for each job. This means
that the order on the facts is not a linear order, but there can be incomparable
facts. One can also view the predicate as a two-dimensional array, where the first
dimension is the partitioning value (e.g. the job), and the second is the position
in the defined order. With partitioning, it is possible to represent more than one
list in a predicate.

Order-Specification:

� <
�

�

�

�
�

� Part-Elem � |
�

�

�

�

�

�,
�

�

�

�

�

Order-Elem � >
�

�

�

�
�

�,
�

�

�

�

�

The partitioning part is a comma-separated list of partitioning elements, which
are simply terms. Two facts are comparable if they agree in the values for all
partitioning elements. Therefore, the sequence of the partitioning elements is not
important.

Part-Elem:

� Term �

The ordering part is a comma-separated list of order elements, which are

– terms, possibly marked with the “descending” operator ^ (inversing the sort
direction), or
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– the special marker “@”, which is replaced by the number of the current rule
(this permits to order facts by in the sequence in which they are written in
the program without having to use explicit numeric “labels” as in Basic).

The value of the first ordering element has highest priority in determining the
sort order of two facts, and only if it is equal, the value of the second ordering
element is considered, and so on (as in the ORDER BY clause of SQL).

Order-Elem:

� Term �

� @
�

�

�

�

�
� ^
�

�

�

�

�

2.3 Accessing the Sort Index in Body Literals

For body literals with an ordered predicate, one can optionally access the posi-
tion in the ordered list (the “array index”). However, if several facts have the
same ordering value (e.g. several employees with equal salary), this position (the
ROWNUM or ROW_NUMBER in SQL), is arbitrary (defined by the implementation).
Therefore, SQL introduced two more ranking functions:

– RANK counts the number of tuples/facts with an ordering value less than the
value in the current fact/tuple (and then adds 1, so that the first position
is 1 and not 0).

– DENSE_RANK counts the number of distinct ordering values less than the value
in the current fact/tuple (again, 1 is added).

We also permit to check for the last tuple and to get the index of the next tuple
(with respect to the row number, i.e. the standard array index):

EName Sal row_number rank dense_rank last next

Andrew 4000 1 1 1 false 2
Betty 3000 2 2 2 false 3
Chris 3000 3 2 2 false 4
Doris 2000 4 4 3 false 5
Eddy 1000 5 5 4 false 6
Fred 1000 6 5 4 true nil

All these functions can be accessed in a single pair of brackets, since these func-
tions can be determined in a single scan over the sorted list. The functions are
distinguished by a prefix in front of the index, only the row number has no prefix,
because it is most similar to an array index.
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Order-Position:

� [
�

�

�

�
� Index � ]

�

�

�

�
�

�

�
,

�

�

�

�

�

�

� rank:
�

�

�

�
� Index �

� dense_rank:
�

�

�

�
� Index �

� last
�

�

�

�
�

� next:
�

�

�

�
� Index �

�

An index is a variable or a positive integer constant:

Index: � Variable �

� Positive Integer

�

As an example, consider the following SQL query:

SELECT ENAME, SAL, RANK() OVER (ORDER BY SAL DESC)

FROM EMP

ORDER BY ENAME

This shows that more than one ordering might be necessary during the evaluation
of a query: First, the employee tuples must be sorted by salary in order to
compute the rank (position in that order), and then the tuples must be sorted
by employee name for output. This looks as follows in our Datalog extension:

emp_by_sal<^Sal>(EName, Sal) ← emp(EName, Sal, Job).

answer<EName>(EName, Sal, N) ← emp_by_sal[rank:N](EName, Sal).

Later, we will discuss a possibility to use an order specification directly in the
body literal, so that the auxillary predicate emp_by_sal can be avoided.

2.4 Stratification

It is not surprising that with recursion and the possibility to determine the first
literal, one can get contradictory/inconsistent situations:

p<10>(a) ← p[1](b).

p<20>(b).

If p(b) is the first element in the sorted list p, then p(a) is true, which then
would come first. But then p(b) is no longer the first element. This program has
no reasonable semantics and must be excluded. The solution is the same as in
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the case of negation: We require that there is a level mapping l, which assigns
positive integers to the predicates, such that for rules containing p[...](...)

in the body, and q in the head, l(q) > l(p). In any case, if p occurs in the body,
and q in the head, l(q) ≥ l(p).

The stratification ensures that it is possible to compute all facts about an
ordered predicate before the position of a fact can be determined. It is possible
to reduce the stratification requirements at least in the following cases:

– When the index position in the body is only used to determine an ordering
value in the head, the exact value is not important if this is the only rule
about the predicate, or the rule number is a sort criterion of higher priority.
Then any order-preserving values can be used, and recursion is possible.

– When it can be ensured that a recursive rule yields only facts that will get
a higher index than facts used in the body, also no contradiction can occur
(this is similar to XY-stratification in LDL).

However, in order to keep the explanations simple, we will assume the stratifi-
cation requirement in the following.

2.5 Evaluation

We propose a simple, “naive” evaluation method here in order to define clearly
the semantics of programs in our extended Datalog dialect. Of course, for real
query evaluation, many optimizations are possible (and needed in order to reach
acceptable performance). But space is not sufficient to treat this topic here.

Our approach consists of rewriting the rules, evaluating them in the order of
the stratification levels bottom-up, and having a special sorting and ranking step
between the fixpoint computations for each level. For every ordered predicate p
of arity n, two new predicates are introduced:

– p head of arity n+ 2, where the additional arguments are used for the par-
titioning and ordering values (stored as lists),

– p body of arity n+ 4, where the additional values are used for row_number
(normal index), rank, dense_rank, and next.

The rules are rewritten in the obvious way: The head literal

p〈a1, . . . , ak|b1, . . . , bm〉(t1, . . . , tn)
is translated to

p head([a1, . . . , ak], [b̄1, . . . , b̄m], t1, . . . , tn),
where b̄i is

– desc(b′i) if bi has the form ^b′i,
– the number of the current rule, if bi is “@”, and
– bi otherwise.

The body literal
p[a1, rank: a2, dense rank: a3, next: a4](t1, . . . , tn)

is translated to
p body(a1, a2, a3, a4, t1, . . . , tn),
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where for each part that is not used, an anonymous variable ai is inserted. If
last appears in the index, a4 = nil is added to the body of the rule (or nil is
directly inserted in the fourth argument position if next is not used).

Now the following algorithm can be used for query evaluation:

(1) Let the input program P be split into strata P1, . . . ,Pm;

(2) F := ∅; /* set of derived facts to be computed */
(3) for i = 1, . . . ,m {

(4) Let P′
i be the rewritten version of Pi;

(5) Compute the fixpoint Fi of TP′
i∪F;

(6) F := F ∪ {p(c1, . . . , cn) ∈ Fi | p is standard predicate of level i};
(7) foreach ordered predicate p of stratification level i {
(8) Sort the facts about p head in Fi by first arg., second arg.

(9) last a := nil; last b := nil; last fact := nil;
(10) foreach fact p head(a, b, c1, . . . , cn) in sorted sequence {

(11) if (a = last a) { /* new partition */
(12) rownum := 1; rank := 1; dense rank := 1;

(13) if (last fact = nil) insert last fact into F;
(14) } else { /* Not first row in partition */

(15) rownum++;

(16) if (b = last b) {
(17) rank = rownum;

(18) dense rank++;
(19) }

(20) insert last fact into F with 4th arg (nil)
(21) replaced by rownum;

(22) }

(23) last a := a; last b := b;
(24) last fact := p body(rownum, rank, dense rank, nil,
(25) c1, . . . , cn);
(26) }

(27) if (last fact = nil) insert last fact into F;
(28) }

(29) }

(30) Print tuples in F of main predicate (e.g. output body or answer body)
(31) without the first four added arguments, sorted by first arg.

The sorting requires some explanation. For the partitioning argument, no par-
ticular sort sequence is needed. It is only important that facts with the same
value in the partitioning argument appear next to each other. If the partitioning
argument is equal, the order argument determines the sort sequence. The order
argument is a list, and the first position, where the two lists differ, determines
the order of the two facts. If one list is a prefix of the other, the shorter list
comes first. Otherwise, the list elements are ordered as follows:
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– numbers come first (in the usual order),
– then strings (in alphabetic order),
– then terms desc(S), where S is a string (in inverse alphabetic order),
– then terms desc(N), where N is a number (in inverse numeric order).

If different types are compared, this is likely an error, and one could print a
warning. It is possible that distinct facts have identical ordering values: For the
functions rank and dense_rank this is important, for the function row_number

(and thus for output) the implementation can decide which fact to put first.

2.6 An Abbreviation: Default Order Specification

If a predicate is declared as ordered, but the head of a rule contains no order
specification, a default order specification is constructed as follows: First the
number of the rule, and then the index value of every body literal with an ordered
predicate in the body (in the order of occurrence in the body). E.g. consider

p(...) ← q(...) ∧ r(...) ∧ s(...).

If this is the i-th rule about p, and p, q, s are ordered predicates (while r is a
standard predicate), this rule is an abbreviation for

p<i,X,Y>(...) ← q[X](...) ∧ r(...) ∧ s[Y](...).

Here X and Y are the index positions of the facts used for the body literals with
ordered predicates — this order is reflected in the derived facts.

Note that this order corresponds to the order in which Prolog would compute
the p-facts (for non-recursive rules). Note also that rules become somewhat sim-
ilar to comprehension syntax [3]: One constructs a list in the body with ordered
predicates and can then add other conditions to filter the list elements.

If an ordered predicate is defined by a set of facts, without explicit order
specification, the default order is the order in which the facts are written down.

This abbreviation also fits to the understanding of a query (goal) as a rule
body: It suffices to translate

← L1 ∧ · · · ∧ Ln ∧ Ln+1 ∧ · · · ∧ Lm.
to

ordered answer/k.
answer(X1, . . . , Xk)← L1 ∧ · · · ∧ Ln ∧ Ln+1 ∧ · · · ∧ Lm.

where X1, . . . , Xk are the variables appearing in the query (“answer variables”).
Then the default order specification is used to automatically propagate orders
declared for the query literals to the result of the query.

3 Applications to Output

As mentioned in the introduction, output is done by defining an ordered predi-
cate “output” which contains text pieces to be printed in the defined order. Of
course, the predicate “output” is only the “main” predicate, which composes the
final document out of text fragments defined in many other ordered predicates.
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Suppose we want to generate an HTML-table with name and salary of the
employees, ordered first by salary (descending) and for equal salary by name.
Using standard rules with ordered predicates this is possible, but for longer texts,
it looks somewhat clumsy. Instead, we propose an “output pattern” syntax, in
which one can write any text (between the special symbols “(#” and “#)”), and
mark places in the text where argument values “<$>” or texts defined by other
predicates “<#>” should be inserted. Each pattern corresponds to a predicate.

sal_table(#

<table>

<tr><th>Employee</th><th>Salary</th></tr>

<#sal_table_row>

</table>

#).

sal_table_row<^Sal,EName>(#

<tr><td><$EName></td><td><$Sal></td></tr>

#) ← emp(EName, Sal, _).

This is automatically translated to standard rules with ordered predicates by
splitting the text of the pattern into pieces where something must be inserted.
Note that the piece numbers do not have to be written by the user, they are
automatically assigned by the system. Even if one writes the rules directly, piece
numbers can usually be avoided or replaced by “@” (current rule number).

sal_table<1>(’<table>\n’).

sal_table<2>(’<tr><th>Employee</th><th>Salary</th></tr>\n’).

sal_table<3,Pos>(Text) ← sal_table_row[Pos](Text).

sal_table<4>(’\n</table>\n’).

sal_table_row<^Sal, EName, 1>(’<tr><td>’) ← emp(Ename, Sal, _).

sal_table_row<^Sal, EName, 2>(EName) ← emp(Ename, Sal, _).

sal_table_row<^Sal, EName, 3>(’</td><td>’) ← emp(Ename, Sal, _).

sal_table_row<^Sal, EName, 4>(Sal) ← emp(Ename, Sal, _).

sal_table_row<^Sal, EName, 5>(’</td></tr>’) ← emp(Ename, Sal, _).

4 More Applications

The possibility to number facts and to compute the next number permits to
write loops over sets of facts. This can be used to write aggregation functions.
E.g., the following program computes the sum of all salaries.

emp_list<EName>(EName, Sal) ← emp(EName, Sal, Job).

sal_sum(1, 0).

sal_sum(N1, S1) ←
sal_sum(N, S),

emp_list[N,next:N1](EName, Sal),

S1 is S + Sal.

answer(S) ← sal_sum(nil, S).



66 S. Brass

5 Discussion of Alternatives

Quite often, the values used for ordering and partitioning are arguments of the
head literal, so they could be directly marked there: emp_list(EName, <^Sal>).
It would also be possible to declare sorting and partitioning in the “ordered”-
declaration for the predicate. However, this works only sometimes: E.g. for out-
put applications, there often is no explicit ordering argument, and each rule has
a different ordering specification. The solution proposed here is more general.

Instead of a single declaration “ordered”, one could consider many different
types of predicates. For instance, an “ordered_set” might eliminate duplicate
facts which differ only in the value of the hidden ordering argument (one could
use always the smallest/first ordering value) — this would be helpful for termi-
nation if one allows recursion. The converse case is when the hidden argument
is used only for duplicates, and no ordering is required.

User-defined orders could be permitted. Besides several chains of linear orders,
as in the current proposal, arbitrary partial orders could be used.

If one wants to determine the sequence number of a row, it looks nice if
the ordering specification can be done in the body literal, i.e. the top-earning
employees could be determined without an auxillary predicate:

answer(EName, Sal) ← emp<^Sal>[N](EName, Sal, Job) ∧ N≤ 3.

However, consider this case:

answer(EName, Sal)← emp<^Sal>[N](EName, Sal, Job) ∧
N≤ 3 ∧ programmer(Job).

programmer(’Programmer’).

The question is whether only programmers are considered when assigning row
numbers, or row numbers are assigned first, and then programmers are selected
(in which case the result may be empty when there is no programmer among the
top earning employees). The problem is that it is no longer sufficient to consider
a single assignment of values to variables when the rule is applied. Basically an
aggregation is done here in the body (one counts the number of higher earning
employees). The predicate findall in Prolog has a similar problem (∧ is not
commutative). A solution is to mark arguments that should not be used for the
purpose of determining row numbers, i.e. that are temporarily replaced by an
anonymous variable, and after the numbers are assigned, the original argument
is used (which can perform a selection or join). This can also be described by
introducing a temporary predicate for the call.

6 Related Work

Datalog with arrays was studied in [5,4], but there the arrays are terms and
the emphasis is on using the indexed memory access for efficiency. Datalog with
a multiset semantics for predicates (i.e. allowing duplicates) was investigated
in [6]. They use “colored sets” which is similar to an additional hidden argu-
ment. A database query language for more general collection types based on
comprehension syntax was discussed in [3].
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7 Conclusions

We proposed an extension of Datalog that permits to specify the order of facts
for predicates. If the vision of a deductive database as a declarative, integrated
system for developing database applications should come true, such an extension
is needed for two reasons: (1) The system must support more or less all features
of SQL, and SQL has not only ORDER BY, but also functions like RANK, which
permit to use order in conditions. (2) Output is an essential part of database
applications, and output is necessarily a sequence of text pieces. Actually, every
query result that consists of more than just a few rows will be easier to read and
understand if it is ordered in some reasonable way.

The proposed extension is also interesting for the following reasons: (3) It
permits to work on lists in a very direct and simple way, without structured
terms, and often without recursion. This might help the non-sophisticated user.
(4) For the power user, also loops over facts can be written, e.g. for computing
aggregation functions. In this way, the expressiveness of the language is extended.

A small prototype is being implemented that allows to experiment with the
language, see

http://www.informatik.uni-halle.de/~brass/order/

The prototype is also interesting because the input program is internally rep-
resented as a set of Datalog facts. Our long-term goal is to develop a Datalog-
to-C++ compiler written in Datalog. The constructs introduced in this paper,
especially for output, are necessary for this purpose.
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lastname@dis.uniroma1.it

Abstract. We study reasoning, and in particular query answering, over databases
with tuple-generating dependencies (TGDs). Our focus is on classes of TGDs for
which conjunctive query answering is first-order rewritable, i.e., can be reduced
to the standard evaluation of a first-order query over the database. In this paper,
we define the class of weakly recursive TGDs, and prove that this class comprises
and generalizes every previously known FOL-rewritable class of TGDs, under
fairly general assumptions on the form of the TGDs.

1 Introduction

A lot of interesting recent works on Datalog extensions [4,1,2,14,8,12,15] are based
on the idea of extending datalog rules with existential variables in rule heads. Rules
with existential variables correspond to tuple-generating dependencies, a well-known
form of database dependencies in database theory (see, e.g., [3]). In fact, the problem
of reasoning over datalog programs with existential variables in rule heads corresponds
to the problem of reasoning over a database with tuple-generating dependencies under
an open-world assumption: specifically, the semantics of a database D with a set P
of TGDs is given by the set of databases B corresponding to all the supersets of D
that satisfy the TGDs P . This implies that, differently from the standard closed-world
assumption of databases, the TGDs are not supposed to be necessarily satisfied by the
database D. Almost all the recent approaches to this problem focus on conjunctive
query answering under TGDs, i.e., the problem of answering a conjunctive query over
a database with TGDs. We recall that many other problems involving TGDs can be
reduced in a straightforward way to this problem, e.g., implication of TGDs, conjunctive
query containment under TGDs, etc.

In this paper we are interested in first-order rewritable TGDs, i.e., classes of TGDs
for which conjunctive query answering can be reduced to the evaluation of a first-
order query over the database. We believe that identifying expressive, yet first-order
rewritable classes of TGDs is very important not only from the theoretical viewpoint
but also from a practical one: indeed, restricting to such classes of TGDs allows in prin-
ciple for building efficient query answering systems that delegate data management to
standard relational database technology, in a way analogous to recent successful sys-
tems for ontology-based data access (e.g., [11]).

Several first-order rewritable classes of TGDs have been identified in the last years,
in particular: linear TGDs [9,4], multi-linear TGDs [5], sticky TGDs [6], sticky-join
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TGDs [7]. Multi-linear TGDs generalize linear TGDs, and sticky-join TGDs general-
ize sticky TGDs. However, multi-linear TGDs and sticky-join TGDs are incomparable
classes of TGDs. Moreover, acyclic TGDs, which are trivially first-order rewritable, are
not encompassed by the two above classes.

Our aim is to identify a broader class of TGDs that comprises all known FOL-
rewritable classes of TGDs, and in particular acyclic TGDs, multi-linear TGDs, and
sticky-join TGDs. In this paper, we reach the above goal under the restriction that TGDs
do not allow for occurrences of constants and repeated occurrences of a variable in the
same atom: we call simple TGDs the TGDs satisfying the above restriction.

More precisely, the contributions of the present paper are the following:

1. We define the class of weakly recursive TGDs (Section 3).
2. We prove that weakly recursive TGDs are first-order rewritable, by defining an

algorithm that is able to compute the first-order rewriting of conjunctive queries
over weakly recursive TGDs (Section 4) and proving termination of this algorithm
over weakly recursive TGDs (Section 5).

3. We prove that, under the restriction to simple TGDs, the class of weakly recursive
TGDs comprises and generalizes every previously known FOL-rewritable class of
TGDs, in particular, acyclic TGDs, linear TGDs, multi-linear TGDs, sticky TGDs,
sticky-join TGDs (Section 6).

2 Preliminaries: TGDs and Queries

Syntax We start from three pairwise disjoint alphabets: (i) a relational schema R,
where, as usual, every relation symbol r is associated with an arity, denoted by Arity(r),
which is a positive integer; (ii) a countably infinite domain of constants; (iii) a countably
infinite domain of variables. An atom is an expression of the form r(t1, . . . , tk) where
k = Arity(r) and where every ti is either a constant symbol or a variable symbol. A
database is a (possibly infinite) set of ground atoms. Given an atom γ, we denote by
Rel(γ) the relation symbol occurring in γ.

A tuple-generating dependency (TGD)R is an expression of the form β1, . . . , βn →
α1, . . . , αm, where α1, . . . , αm, β1, . . . , βn are atoms and m ≥ 1, n ≥ 1 (we omit the
existential quantification in the head of the rule). We call the expressionα1, . . . , αm the
head of R and call the expression β1, . . . , βn the body of R. Given a set P of TGDs,
the signature of P is the set of relation symbols occurring in P .

We call distinguished variables of R the variables occurring both in the head and
in the body of R. We call existential body variables of R the variables that occur only
in the body of R (we call such variables join variables of R if they occur in at least
two atoms of the body of R), and call existential head variables of R the variables that
occur only in the head of R.

In the following, we call FOL query any domain-independent first-order query. A
conjunctive query (CQ) is an existentially quantified conjunction of positive atoms (pos-
sibly with free variables): in this paper, we use a datalog notation for CQs, i.e., a CQ
q is an expression of the form q(x) :- α1, . . . , αn, where α1, . . . , αn is a sequence of
atoms, called the body of q, the variables x are the distinguished variables of q and ev-
ery variable of x occurs at least once in the body of q; the non-distinguished variables
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occurring in the body of q are called existential variables of q. The number of variables
of x is called the arity of q. A union of conjunctive queries (UCQ) is a set of CQs of the
same arity.

Semantics. We give the semantics of TGDs through first-order logic. We assume the
reader is familiar with the notion of first-order interpretation and evaluation ofa first-order
formula over an interpretation. We adopt the Unique Name Assumption, i.e., different
constant symbols are interpreted as different domain elements in every interpretation.

Given a TGD R of the form β1, . . . , βn → α1, . . . , αm and a database B, we say
that B satisfies R if the first-order interpretation IB (i.e., the first-order interpretation
isomorphic to B) satisfies the first-order sentence ∀x.β1 ∧ . . . ∧ βn → ∃y.α1 ∧ . . . ∧
αm, where x denotes all the variables occurring in the body of R and y denotes the
existential head variables of R. Given a set P of TGDs and a database D over the
signature of P , we say that a database B over the signature of P satisfies (P,D) if
B ⊇ D and B satisfies every TGD in P . Moreover, we denote by sem(P,D) the set of
all databases B over the signature of P such that B satisfies (P,D).

Let q be a FOL query and let B be a database. We denote by ans(q, B) the set of
tuples of constants c such that IB satisfies q(c), where q(c) is the first-order sentence
obtained from q by replacing its free variables with the constants c.

Let P be a set of TGDs, let q be a UCQ and let D be a database. We define the
certain answers to q over P and D, denoted by cert(q, P,D), as the set of tuples of
costants c such that c ∈ ⋂

B∈sem(P,D) ans(q, B).
Finally, we introduce the notion of first-order (FOL) rewritable set of TGDs. Let P

be a set of TGDs. We say that P is FOL-rewritable if, for every UCQ q, there exists a
FOL query q′ such that, for every database D, cert(q, P,D) = ans(q′, D).

In this paper, we restrict our attention to simple TGDs, i.e., TGDs of the above form
in which every atom does not contain occurrences of constants and does not contain
repeated occurrences of variables.

3 Weakly Recursive Simple TGDs

In this section we define weakly recursive (WR) simple TGDs.
A position σ is either an expression of the form r[i] or an expression of the form r[ ],

where r is a relation symbol (and is denoted by Rel(σ)), and i is an integer such that
1 ≤ i ≤ k, where k is the arity of r.

Let R be a TGD of the form β1, . . . , βn → α1, . . . , αm, and let α be an atom
of head(R). Then: (i) given a position r[ ], we say that α is R-compatible with r[ ]
if Rel(α) = r; (ii) given a position r[i], we say that α is R-compatible with r[i]
if Rel(α) = r and α[i] is a distinguished variable of R. Then, given an atom β of
the body and a variable x occurring in β in position i, we denote by Pos(x, β) the
position r[i].

Based on the above notions, we are now ready to define the position graph.

Definition 1. (Position Graph) Given a set P of TGDs, the position graph of P , de-
noted by PG(P ), is a triple 〈V,E, L〉 where V (the set of nodes of PG(P )) is a set
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of positions, E is a set of edges (pairs of nodes), and L is an edge labeling function
L : E → 2{m,s}. PG(P ) is inductively defined as follows:

– for every TGD R ∈ P of the form β1, . . . , βn → α1, . . . , αm and for every i such
that 1 ≤ i ≤ m, r[ ] ∈ V where r = Rel(αi);

– if σ ∈ V , then for every TGD R ∈ P and for every atom α of head(R) that is
R-compatible with σ:
1. for every atom β ∈ body(R):

(a) 〈σ, s[ ]〉 ∈ E, where s = Rel(β);
(b) for each existential body variable z of R occurring in β, 〈σ, σ′〉 ∈ E,

where σ′ = Pos(z, β);
(c) if σ is of the form r[i], then 〈σ, σ′′〉 ∈ E, where σ′′ = Pos(y, β) and y is

the variable occurring in α at position i;
(d) if there exists a distinguished variable of R that does not occur in β, then,

for every edge e added to E at points (a), (b), (c), m ∈ L(e);
2. if there exists an existential body variable x of R occurring in at least two

atoms of body(R), then for every edge e added to E at point 1, s ∈ L(e);
3. if σ is of the form r[i], y is the variable occurring in α at position i, and y

occurs in at least two atoms of body(R), then, for every edge e added to E at
point 1, s ∈ L(e).

We call m-edge is an edge e such that m ∈ L(e), and call s-edge an edge e such that
s ∈ L(e). We are now ready to define weakly recursive sets of TGDs.

Definition 2. (Weakly Recursive TGDs) A set of simple TGDs P is weakly recursive
(WR) if in PG(P ) there exists no cycle that contains both an m-edge and an s-edge.

Example 1. Let P be the following set of TGDs:

R1 = s(x,w, y), t(z) → r(x, y), p(y, z)
R2 = v(x, y), q(y) → s(x, z, y)
R3 = r(x, y) → v(x, y)

The position graph PG(P ) for P is displayed in Figure 1(a). Since there are no s-edges
in PG(P ), it immediately follows that P is a weakly recursive set of TGDs.

Example 2. Let P be the following set of TGDs:

R1 = s(x,w), t(y, z) → r(x, y, z)
R2 = p(x, y), v(y) → s(x, y)
R3 = r(x, y, z) → p(x, y), t(y, z)

The position graph PG(P ) for P is displayed in Figure 1(b). This graph contains a
cycle (highlighted by bold edges in the figure) that contains both an m-edge and an
s-edge. Consequently, P is not a weakly recursive set of TGDs.
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(a) The position graph of Example 1. (b) The position graph of Example 2.

Fig. 1. Postion graphs of Example 1 and Example 2

Essentially, the position graph of a set of TGDs P reflects the dependencies between
relations induced by the TGDs: there is an edge from position r[] to position s[] if r
occurs in the head of a TGD R and s occurs in the body of R. In addition, the position
graph marks its edges with the symbols s and e. An s-edge represents the introduction
of an existential join variable: e.g., if P contains the TGD s(x, y), t(y) → r(x), there
is an s-edge from position r[] to position s[] (and to position t[] too). Besides the above
“direct” (i.e., due to a single TGD) introduction of existential joins, the position graph
also considers an indirect introduction of existential join variables, through the propa-
gation of (non-join) existential variables through the nodes labeled by positions of the
form r[i]. For instance, in the above Example 2, variable w in R1 is a (non-join) exis-
tential body variable: for this reason, the node with position s[2] is added to the graph,
and since in R2 the distinguished variable y (which occurs at position s[2]) occurs in
two atoms in the body of R2, the outcoming edges of s[2] are marked as s-edges. That
is, position s[2] is split over two atoms by the TGD R2 (this is why we call such edges
s-edges). Finally, m-edges represent those situations in which a body atom of the TGD
misses distinguished variables of the TGD: e.g., in the TGD R1 of Example 1, the body
atom s(x,w, y) does not contain any occurence of the distinguished variable z: hence,
in the position graph of that example, the edge from p[] to s[] is marked as an m-edge.

Then, in the definition of weakly recursive TGDs, we identify “dangerous” cycles
(for the FOL-rewritability of queries) as those cycles of the position graph which con-
tain both an m-edge and an s-edge: as we will show later on, in the absence of one
of the two kinds of edges, a cycle in the position graph is not really able to affect the
FOL-rewritability property.

Finally, it can be easily verified that the problem of establishing whether a set of
simple TGDs is weakly recursive is in PTIME.

4 Query Rewriting for Weakly Recursive TGDs

In this section we present an algorithm that, given a UCQ Q and a set P of TGDs,
computes a FOL perfect rewriting of Q under P .
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The only purpose of this algorithm is to show FOL-rewritability of weakly recursive
TGDs. So, the algorithm is not optimized for minimizing the size of the query gener-
ated. The structure of the algorithm is very similar to known query rewriting techniques
for TGDs (in particular, [13,12]): the only novel and distinguishing feature of the al-
gorithm is the fact that it guarantees a fundamental property (Lemma 2) that in turn
implies termination of the execution of the algorithm over weakly recursive TGDs, as
we shall see in Section 5. Such a property is guaranteed by a restricted application of
the reduce step (described below).

The algorithm assumes that TGDs are single-head TGDs, i.e., TGDs of the form
β1, . . . , βn → α, in which only one atom occurs in the head of every TGD. This is not
a restriction, as shown in [3]: in fact, it is always possible to translate a set of TGDs into
a set of single-head TGDs by a polynomial transformationΦ of the TGDs, such that the
following property holds.

Lemma 1. For every set P of TGDs, for every FOL query q over the signature of P
and for every database D over the signature of P , cert(q, P,D) = cert(q, Φ(P ), D).
Moreover, P is weakly recursive iff Φ(P ) is weakly recursive.

Thus, in the rest of this section we assume that TGDs are simple TGDs of the form
β1, . . . , βn → α. We are now ready to present the algorithm WRQueryRewrite.

Algorithm WRQueryRewrite
Input: set of simple, single-head TGDs P , UCQ Q
Output: UCQ Q′

P ′ := P ;
Q′ := Normalize(Q);
Qnew := Q′;
repeat
Qaux := Q′;
QP := Qnew;
Qnew := ∅;
for each q ∈ QP do

for each g1, g2 ∈ body(q) do
if g1 and g2 unify and belong to the same join-connected component of q

then Qnew := Qnew ∪ {reduce(q, g1, g2)};
for each g ∈ body(q) do

for each R ∈ P ′ do
if R is applicable to g

then Qnew := Qnew ∪ {atom-rewrite(q, g,R)};
Qnew := Normalize(Qnew);
for each q ∈ Qnew do

if q is not equal to any query of Q′ up to variable renaming
then Q′ := Q′ ∪ {q};

until Q′ = Qaux;
return Q′

Due to space limitations, here we provide a brief description of the algorithm, and
refer the reader to [9,13,12] for more details. Given a UCQ Q and a set P of TGDs,
the algorithm tries to expandQ, generating new conjunctive queries. This is done using
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three different auxiliary sets of queries: Qnew, Qaux and QP , where Qnew is the set of
new CQs obtained in each iteration, Qaux is used to check whether the set of CQs has
changed during the iteration, and QP is the set of CQs that must be processed in each
iteration. The three main steps of the algorithm are the following:

Step 1: Query Normalization - For each query q ∈ Qnew, the algorithm scans all the
body atoms of q and checks if they are redundant, i.e., for each pair of atoms a1, a2 ∈
body(q), we say that a2 is redundant in q if the following condition hold: (i) Rel(a1) =
Rel(a2); (ii) there exists a renaming μ of the existential variables of q occurring only in
a2 such that every argument of μ(a2) that is not a non-join existential variable is equal
to the corresponding argument of a1. In this case, the atom a2 can be removed from
the query q without changing its semantics. This step is done at the beginning and is
repeated on the new CQs generated at every iteration. Given a UCQ Q, we denote by
Normalize(Q) the UCQ obtained by applying the above normalization step to Q.

Step 2: Reduction - For each normalized query q′ ∈ QP , the algorithm scans all the
body atoms of q′ and, for each pair of atoms a1, a2 ∈ body(q′), if they are unifiable,
applies their MGU to q. The resulting query, q′′, is added to the set of new queries
Qnew. Differently from previous techniques, the algorithm does not apply the above
reduction to every pair of unifiable atoms, but only considers pairs of atoms that belong
to the same join-connected component of the CQ (it can be shown that such a restriction
preserves completeness of the algorithm). A join-connected component of a CQ q is a
set of atoms of the body of q connected by existential join variables. E.g., the CQ
q(x, y) :- s(x, z, w), t(w, y, z′), u(y, v), r(v, v′, a) has two join-connected components:
s(x, z, w), t(w, y, z′) and u(y, v), r(v, v′, a).
Step 3: Atom Rewrite - Let R be a TGD and let q be a CQ. Let g be an atom appearing
in body(q). We say thatR is applicable to g if and only if: (i) there exists a most general
unifier (MGU) τ for head(R) and g (i.e., there exists a substitution of the variables that
makes head(R) and g equal); (ii) each existential head variable of R matches one non-
join existential variable of q. Let R be a TGD and let q be a CQ. Let g be a goal atom
appearing in body(q). If R is applicable to g, then we denote by atom-rewrite(q, g, R)
the query q′ obtained from q by first replacing g with body(R), and then applying
to the query the MGU τ for head(R) and g. Now, for each normalized query q′ ∈ QP ,
the algorithm scans all the body atoms g ∈ body(q′) and, for each TGD R ∈ P , if R
is applicable to g, adds the query atom-rewrite(q, g, R) to the set of new queries Qnew.
(This is the step that may be responsible for the non-termination of the algorithm.)

At the end of each iteration, the algorithm adds to Q′ all the queries in Qnew that
are not already in Q′ (up to variable renaming) and checks whether Q′ has changed,
i.e., whether it is equal to Qaux. If so, the algorithm goes on, starting a new iteration,
replacing the setQP withQnew, emptyingQnew and repeating the two steps; otherwise
it stops because a fixpoint has been reached.

The following theorem follows from correctness of the algorithm presented in [12]
and from the fact that the modifications of the present algorithm preserve completeness.

Theorem 1. Let P be a set of single-head TGDs and let Q be a UCQ
such that WRQueryRewrite(Q,P ) terminates. Let Q′ be the UCQ returned by
WRQueryRewrite(Q,P ). Then, Q′ is a perfect rewriting of Q with respect to P .
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5 FOL-Rewritability of Weakly Recursive TGDs

In this section we prove that the class of weakly recursive TGDs is FOL-rewritable. In
particular, we prove that the algorithm WRQueryRewrite(q, P ) always terminates if P
is a weakly recursive set of single-head TGDs.

We start by stating a fundamental property of the algorithm WRQueryRewrite. From
now on, we call ebj-variable an existential join variable of q that occurs in at least two
atoms of the body of q.

Lemma 2. Let P be a set of simple TGDs and let Q be a UCQ. If
WRQueryRewrite(Q,P ) does not terminate, then for every integer n there exists a CQ
q returned by WRQueryRewrite(Q,P ) such that q has at least one join-connected com-
ponent with more than n ebj-variables.

In the rest of this section, we prove that, if P is a weakly recursive set of TGDs, then
for every UCQ Q the number of ebj-variables in every join-connected component of
a CQ returned by WRQueryRewrite(Q,P ) is actually bounded, and therefore, by the
above lemma, the algorithm WRQueryRewrite(Q,P ) terminates. This in turn implies,
by Theorem 1, that weakly recursive TGDs are a FOL-rewritable class of TGDs.

To show that, we need to define the preliminary notions of CQ-tree (a tree whose
nodes are CQs and that represents an execution of the algorithm WRQueryRewrite),
CQ-path (a path in the CQ-tree), atom-path (a path in the CQ-tree that connects single
query atoms), and extended path (an extended notion of path in the graph PG(P )).

A rewriting action ξ is: either (i) the execution of an atom-rewrite step, and in this
case ξ has the form atom-rewrite(q, α,R), where q is a CQ, α is an atom of the body of
q, and R is a TGD of P ; or (ii) the execution of a reduce step, and in this case ξ has the
form reduce(q, α1, α2) where q is a CQ and α1, α2 are atoms of the body of q.

Given a CQ q, an atom α ∈ body(q), and a CQ q′ obtained from q by an atom-
rewrite action ξ that applies the TGD β1, . . . , βk → γ and produces the MGU μ, we
define succ(α, ξ, q) as follows: (i) if α is not the atom to which the atom-rewrite action
ξ is applied, then succ(α, ξ, q) = {μ(α)}; (ii) if α is the atom to which the atom-rewrite
action ξ is applied, then succ(α, ξ, q) = {μ(β1), . . . , μ(βk)}.

Given a CQ q, an atom α ∈ body(q), and a CQ q′ obtained from q by a reduce
action ξ that unifies the atoms α1, α2 of q producing the atom β and the MGU μ,
we define succ(α, ξ, q) as follows: (i) if α �= αi for every i such that 1 ≤ i ≤ 2,
then succ(α, ξ, q) = {μ(α)}; (ii) if α = αi for some i such that 1 ≤ i ≤ 2, then
succ(α, ξ, q) = {β}. Intuitively, the relation succ(α, ξ, q) associates every body atom
α of a CQ q with the transformation of such an atom obtained through the rewriting
action ξ.

Definition 3. Let P be a set of TGDs and let q be a CQ. We define the CQ-tree of q and
P , denoted by CQ-tree(q, P ), as the tree T , whose nodes are labeled with sets of atoms
and whose edges are labeled with action-labels and atom-labels, such that:

– body(q) is the label of the root of T ;
– there is an edge e from a node n1 (with label q1) to a node n2 (with label q2)

in T if and only if the CQ q2 appears in the UCQ Q′ returned by the algorithm
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WRQueryRewrite(q, P ), and q2 has been added by the algorithm to Q′ through a
rewriting action ξ applied to the CQ q1;

– the action-label of the above edge e is ξ;
– the atom-label of the above edge e is the set of pairs

⋃
α∈q1

⋃
β∈succ(α,ξ){〈α, β〉}.

Given a CQ-tree T , a CQ-path of T is a sequence q1, ξ1, q2, ξ2, . . . , qm−1, ξm−1, qm
such that: (1) every qi is a CQ and every ξi is a rewriting action of the algorithm; (2)
there exists a sequence of nodes n1, . . . , nm such that: (i) for every i ∈ {1, . . . ,m}, qi
is the label of ni in T ; (ii) for every i ∈ {1, . . . ,m − 1}, there is an edge from ni to
ni+1 in T with action-label ξi.

Given a CQ-tree T , an atom-path of T is a sequence α1, ψ1, α2, . . . , αn−1, ψn−1, αn

such that: (1) every αi is an atom and every ψi is either a rewriting action of the algo-
rithm or the symbol ident; (2) there exists a CQ-path q1, ξ1, q2, . . . , qn−1, ξn−1, qn in
T such that: (i) for every i such that 1 ≤ n, αi ∈ body(qi); (ii) for every i such that
1 ≤ n − 1, αi+1 ∈ succ(αi, ξi, qi); (iii) for every i such that 1 ≤ n − 1, ψi = ξi if
either ξ has the form atom-rewrite(q′, αi, R) or ξi has the form reduce(q′, β1, β2) and
αi ∈ {β1, β2}, otherwise ψi = ident.

We call extended path of PG(P ) a sequence of the form π′ = σ1, σ2, . . . , σn such
that every σi is a position, σ1 is a node of PG(P ) and, for every i such that 2 ≤ i ≤ n,
either 〈σi−1, σi〉 ∈ E or σi = σi−1.

Let α1, ψ1, α2, . . . , αn−1, ψn−1, αn be an atom-path in CQ-tree(q, T ), and let π′ =
σ1, σ2, . . . , σk be an extended path in PG(P ). We say that π′ maps to π if, for every i
such that 1 ≤ i ≤ k, Rel(σi) = Rel(αi) and, for every i such that 1 ≤ i ≤ k − 1, if
either ψi = ident or ψi is a reduce action then σi+1 = σi.

Let ξ be an atom-rewrite action of the form atom-rewrite(q, α,R) such that ξ returns
a CQ that contains an ebj-variable y that is not an ebj-variable in q. Then, we call ξ
an ebj-generating action. Observe that such atom-rewrite actions are the only ones that
introduce new ebj-variables in the CQ (since reduce actions can never introduce new
ebj-variables).

Lemma 3. Let P be a set of TGDs and let q be a CQ. If π = α1, ψ1, α2, ψ2, . . . , αn is
an atom-path in CQ-tree(q, P ), then there exists an extended path π′ = σ1, σ2, . . . , σn
in PG(P ) such that: (i) π′ maps to π; (ii) for every i such that 1 ≤ i ≤ n − 1 if ψi is
an ebj-generating action, then 〈σi, σi+1〉 is an s-edge of PG(P ).

Theorem 2. Let P be a set of TGDs and let Q be a UCQ. If the execution of
WRQueryRewrite(Q,P ) does not terminate, then there exists a cycle in PG(P ) con-
taining both an m-edge and an s-edge.

Proof (sketch). Suppose that the execution of WRQueryRewrite(Q,P ) does not termi-
nate. From Lemma 2 it follows that, for every integer n, there exists a CQ-path πn

cq ,
ending with a CQ qn, that contains at least n atom-rewrite actions that introduce at least
a new ebj-variable in the same join-connected component of qn.

Then, it is easy to see that the existence of the above CQ-paths πn
cq implies that,

for every integer n, there exists at least one atom-path π = q1, ξ1, q2, ξ2, . . . , qm of
CQ-tree(q, P ) containing n atom-rewrite actions introducing at least one new ebj-
variable in the CQ qm. Let us then assume that such an n is sufficiently large, in particu-
lar, n is greater than the number of edges in PG(P ). But then, from Lemma 3 it follows
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that there exists an extended path π′ = σ1, . . . , σm in PG(P ) such that π′ maps to π
and, for every i such that 1 ≤ i ≤ m − 1, if ξi is an atom-rewrite action introducing a
new ebj-variable in the CQ, then 〈σi, σi+1〉 is an s-edge of PG(P ). Now, consider the
path π′′ of PG(P ) obtained from π′ by deleting all the ident edges: then, π′′ is a path
of PG(P ) such that π′′ has at least n s-edges. But since n is greater than the number
of edges in PG(P ), it follows that there exists a cycle containing an s-edge in PG(P ).
Moreover, since n is arbitrarily large, we can assume w.l.o.g. that the above cycle is
repeated more than k times in π′′, where k is the maximum arity k of the relations oc-
curring in P (indeed, if in CQ-tree(q, P ) there were no atom-path π from which such a
path π′′ can be derived, we could immediately conclude that every join-connected com-
ponent in every CQ generated by the algorithm has a bounded number of ebj-variables,
thus contradicting Lemma 2).

Moreover, it can be shown that, if the above cycle in PG(P ) does not contain m-
edges, then the following property (*) holds: if yi is a new ebj-variable introduced (at
the i-th iteration of the above cycle) by the atom-rewrite action corresponding to the
i-th application of a TGD R (through the atom-rewrite step) such that yi occurs in a
join-connected component of qm (the final query of the atom-path), then every atom in
the above join-connected component contains at least one new ebj-variable introduced
in q at the i-th application of R.

As a consequence of Property (*), the number of applications of the above TGD R
is bounded by the maximum arity k of the relations occurring in P , thus contradicting
the above hypothesis that the above cycle of PG(P ) is repeated more than k times in
π′′. Therefore, the above cycle must also contain at least one m-edge, which implies
the thesis.

As a corollary of Theorem 2, we get that the execution of WRQueryRewrite(Q,P )
always terminates over weakly recursive TGDs. Therefore, from the above property,
Theorem 1, and Lemma 1, we obtain the following theorem.

Theorem 3. Every weakly recursive set of TGDs is FOL-rewritable.

6 Comparison

In this section we recall the definitions of some important classes of TGDs and we show
that the weakly recursive class comprises and generalizes every previously known FOL-
rewritable class of TGDs.

A TGD is linear [4] iff it contains only a singleton body atom (i.e., the TGD is of the
form β → α1, . . . , αn). As already noted in [4], the class of linear TGDs generalizes all
the DLs belonging to the DL-Lite family [10]. Moreover, linear TGDs are a particular
instance of the more general class of multi-linear TGDs. A TGD R is multi-linear [5]
if every variable that occurs in body(R) occurs in every atom of body(R).

Theorem 4. The class of weakly recursive simple TGDs strictly contains the class of
multi-linear simple TGDs.

Proof. From the definition of multi-linear TGDs, it immediately follows that, if P is a
set of multi-linear TGDs, then PG(P ) does not contain any m-edge. Therefore, P is
also weakly recursive. To prove that the containment is strict, we refer to Example 3.
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Another relevant FOL-rewritable class of TGDs, which is incomparable with the class
of multi-linear TGDs, is the class of sticky TGDs, presented in [6]. Moreover, sticky-join
TGDs [7] are a further generalization of the class of sticky TGDs, which encompasses
the class of linear TGDs but is incomparable with the class of multi-linear TGDs. For
the definition of sticky-join TGDs we refer to [7].

Theorem 5. The class of weakly recursive simple TGDs strictly contains the class of
sticky-join simple TGDs.

Proof (sketch). It can be easily verified that, if a set of simple TGDs P is sticky-join,
then the graph PG(P ) does not contain any s-edge, thus P is weakly recursive as well.
To prove that the containment is strict, we refer to Example 3.

Example 3. The following example presents a set P of TGDs that is weakly recursive
but neither sticky-join, nor multi-linear. Let P be the following set of TGDs:

R1 = s(x, y, z, v) → r(x, y, z)
R2 = t(x,w), r(x,w, y) → s(x, y, z, w)

As shown in Figure 2, the position graph PG(P ) does not contain any cycle with both
m-edges and s-edges, therefore P is weakly recursive.

On the other hand, it is easy to verify that P is not multi-linear, since in R2 the atom
t(x,w) does not contain all the distinguished variables of the head (in particular, x is
missing). Moreover, according to the sticky-join marking procedure on the expanded
set of TGDs P � (in this case P = P �) described in [7], the variable v is first marked in
R1, thus the variable w is also marked in R2 and, since w occurs in two distinct atoms,
P is not sticky-join.

Fig. 2. The position graph of Example 3

Finally, we focus on acyclic TGDs. A set P of TGDs is acyclic if its position graph
PG(P ) is acyclic. Of course, acyclic TGDs are trivially FOL-rewritable, since every
known query rewriting algorithm for TGDs terminates over such TGDs. However, nei-
ther the class of multi-linear TGDs nor the class of sticky-join TGDs encompasses the
class of acyclic TGDs. On the other hand, every set of acyclic TGDs is obviously also
weakly recursive.
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7 Conclusions

This work is a further step towards the definition of a maximal class of TGDs support-
ing efficient query answering, but there are many challenging issues that still need to
be tackled. First, we are working towards extending the results presented in this paper
to non-simple TGDs, i.e., TGDs with repeated variables within the same atom and with
constants. Actually, we have already identified a generalization of the present notion of
weakly recursive TGDs to this more general case. Then, we would like to generalize
the class of weakly recursive TGDs to other decidable, and possibly tractable, classes.
In particular, we believe that some of our results can pave the way towards the identifi-
cation of new classes of TGDs for which query answering is in PTIME with respect to
data complexity. Finally, the WRQueryRewrite algorithm presented in this paper had the
only purpose of showing that weakly recursive TGDs are FOL-rewritable. An impor-
tant issue towards the usage of weakly recursive TGDs in real applications is to define
optimizations of such a query rewriting algorithm.
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1 Introduction

The recent successful application of Datalog in a number of advanced projects, has
renewed the interest in Datalog-based systems for developing real-world applications.
Indeed, in the last few years Datalog has been successifully applied in many different ar-
eas of computer science, including: Artificial Intelligence, Data Extraction, Information
Integration and Knowledge Management. Interestingly, besides the scientific applica-
tions, Datalog-based systems were also applied for developing some industrial systems.
Nonetheless, in order to boost the adoption of Datalog-based technologies in the scien-
tific community and especially in industry, it is important to provide effective program-
ming tools, which support the activities of researchers and implementors and simplify
users’ interactions with Datalog systems. Indeed, development frameworks and tools
provide indispensable means for assisting and simplifying application development.
For this reason, the most popular programming languages and also commercial off-
of-the-shelf software products (e.g., DBMSs) are always complemented by Integrated
Development Environments (IDE) and Software Development Kits (SDK).

We have dealt with this issue, and we designed development tools for the Datalog-
based system DLV [1]. The language of DLV is an extension of Datalog allowing dis-
junction in rule heads, aggregate atoms, and both weak and strong constraints in rule
bodies [1]. DLV is widely considered a state-of-the-art implementation of Disjunctive
Datalog under the stable models semantics [2,3] (also called Answer Set Programming
(ASP) [4]), and it is undergoing an industrialization process [5] conducted by a spin-off
company named DLVSYSTEM s.r.l..

The development tools described in this paper are born from our experience in de-
veloping Datalog real-world applications (see. e.g., [6,7]) with DLV. In particular, while
implementing Datalog-based applications, we recognized two basic needs: (i) the avail-
ability of an IDE supporting Datalog program development (as it is customary for lan-
guages like C++ or Java); and (ii) the strong need of integrating Datalog programs
and solvers in the well-assessed software-development processes and platforms, which
are tailored for imperative/object-oriented programming languages. Indeed, complex
business-logic features can be developed with Datalog-based technologies at a lower
(implementation) price than in traditional imperative languages, and there are several
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additional advantages from a Software Engineering viewpoint, in flexibility, readabil-
ity, extensibility, ease of maintenance, etc. However, since Datalog is not a full general-
purpose language, logic programs must be embedded, at some point, in systems compo-
nents that are usually built by employing imperative/object-oriented programming lan-
guages, e.g., for developing visual user-interfaces. To respond to the above mentioned
needs, we have developed two tools:

1. ASPIDE [8]: a complete IDE for disjunctive Datalog programs, which integrates
a cutting-edge editing tool (featuring dynamic syntax highlighting, on-line syntax
correction, autocompletion, code-templates, quick-fixes, refactoring, etc.) with a
collection of user-friendly graphical tools for program composition, debugging,
profiling, database access, solver execution configuration and output-handling; and

2. JDLV [9]: a plug-in for the Eclipse platform that implements JASP , a hybrid lan-
guage that transparently supports a bilateral interaction between disjunctive Dat-
alog and Java. The Datalog program can access Java variables, and the results of
the evaluation are automatically stored in Java objects, possibly populating Java
collections, transparently. A key ingredient of JASP is the mapping between (col-
lections of) Java objects and Datalog facts, which can be customized by following
widely-adopted standards for Object-Relational Mapping (ORM).

These tools speed-up and empower the development of Datalog-based solutions and
their integration in the well-assessed development processes and platforms, which are
tailored for imperative/object-oriented programming languages.

2 ASPIDE

ASPIDE [8] supports the entire life-cycle of the development of Datalog-based applica-
tions, from (assisted) programs editing to application deployment. In the following we
overview the main features that make ASPIDE one of the most comprehensive devel-
opment environment for logic programming.1

Workspace organization. The system allows for organizing logic programs in projects
à la Eclipse, which are collected in a special directory (called workspace). ASPIDE
allows to manage logic programs in DLV syntax [1] and ASPCore [10]; other file types
can be added by providing input plugins (see below).

Advanced text editor. ASPIDE features an editor tailored for logic programs that of-
fers, besides the basic functionalities also text coloring, automatic completion, and pro-
gram refactorings.

Outline navigation. ASPIDE creates an outline view which graphically represents pro-
gram elements. Each item in the outline can be used to quickly access the corresponding
line of code (a very useful feature when dealing with long files).

Visual editor. The users can draw logic programs by exploiting a full graphical envi-
ronment that offers a QBE-like tool for building logic rules. The user can switch from
the text editor to the visual one (and vice-versa) thanks to a reverse-rengineering mech-
anism from text to graphical format.

1 For an exhaustive comparison among the available tools for logic programming see [8].
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Dependency graph. The system provides a graphical representation of several variants
of the (non-ground) dependency graphs associated with the project.

Dynamic code checking and errors highlighting. Programs are parsed while writing,
and both errors or possible warnings are immediately outlined.

Quick fixes and Code templates. The system suggests quick fixes to reported errors or
warnings, and provides support for assisted writing of rule patterns (guessing patterns,
etc.) by means of code templates that can be instantiated while writing.

Debugger and Profiler. ASPIDE embeds the debugging tool spock and the DLV Pro-
filer [11].

Unit Testing. The testing feature consists on a unit testing framework for logic pro-
grams in the style of JUnit. For an exhaustive description the testing language and the
graphical testing tool of ASPIDE we refer the reader to [12].

Annotation Management. ASPIDE supports annotations for indicating meta informa-
tion of programs like rule names, predicate name, arity, etc. Meta-information given
through annotations is exploited for auto-completion, test case composition, etc.

Schema Management and Interaction with Databases. ASPIDE simplifies access to
external databases by a graphical tool connecting to DBMSs via JDBC. The database
management of ASPIDE supports both DLV with ODBC interface and DLVDB [13].

Configuration of the execution and Presentation of the Results. The RunConfigura-
tion Dialog allows one to setup a DLV invocation; whereas the results are presented to
the user in a comfortable tabular representation and they can be also saved in text files
for subsequent analysis.

User-defined Plugins. ASPIDE can be extended with user defined plugins for handling:
(i) new input formats, (ii) program rewritings, and even (iii) customizing the visual-
ization/format of results. An input plugin can take care of input files that appear in
ASPIDE as a logic program, and an output plugin can handle the external conversion of
the computed results. A rewriting plugin may encode a procedure that can be applied to
rules in the editor.

Availability. ASPIDE is available for all the major operating systems, including Linux,
Mac OS and Windows, and can be downloaded from the system website
http://www.mat.unical.it/ricca/aspide.

3 JDLV

We overview in the following a new programming framework blending logic program-
ming with Java and its implementation as plug-in for the Eclipse platform [14], called
JDLV. JDLV is based on JASP [9], a hybrid language that transparently supports a bi-
lateral interaction between (disjunctive) Datalog and Java. A key ingredient ofJASP is
the mapping between (collections of) Java objects and ASP facts. JASP shares with
Object-Relational Mapping (ORM) frameworks, such as Hibernate and TopLink, the
structural issues of the impedance mismatch [15,16] problem. InJASP , Java Objects are
mapped to logic facts (and vice versa) by adopting a structural mapping strategy similar
to the one employed by ORM tools for retrieving/saving persistent objects from/to rela-
tional databases. JASP supports both a default mapping strategy, which fits the most
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common programmers’ requirements, and custom ORM specifications, which comply
with the Java Persistence API (JPA) [17], to perfectly suit enterprise application devel-
opment standards. In this section, we presentJASP by exploiting an example. We refer
the reader to [9] for a complete description of the language and its semantics.

Integrating Disjunctive Datalog with Java. The JASP code is very natural and in-
tuitive for a programmer skilled in both Disjunctive Datalog and Java; we introduce it
by exploiting an example program, in which a monolithic block of plain Datalog code
(called module) is embedded in a Java class, which is executed "in-place", i.e., the solv-
ing process is triggered at the end of the module specification. Consider the following
JASP code:

1 class GraphUtil {
public static Set<Colored> compute3Coloring(Set<Arc> arcs,

3 Set<String> nodes ){
Set<Colored> res = new HashSet<Colored>();

5 <# in=arcs::arc, nodes::node out=res::col
col(X,red) v col(X,green) v col(X,blue) :– node(X).

7 :– col(X,C), col(Y,C), arc(X,Y). #>
if_no_answerset { res = null; }

9 return res; }}

GraphUtil defines the method compute3Coloring(), that encompass a JASP-module to
computes a 3-coloring of the given graph. The parameters arcs and nodes are mapped
to corresponding predicates (Line 5) arc and node, respectively, whereas the local
variable res is mapped as output variable to the predicate col (Line 5). Intuitively,
when compute3Coloring() is invoked, Java objects are transformed into logic facts, by
applying a default ORM strategy. In this example, each string x in nodes is transformed
in unary facts node(x); similarly, each instance of Arc in the variable arcs produces a
binary fact, e.g., arc(from,to). These facts are input of the logic program, which is
evaluated "in-place". If no 3-coloring exists, the variable res is set to null (Line 8); else,
when the first result (called answer set [4]) is computed, for each fact col contained in
the solution a new object of the class Colored is created and added to res, which, in turn,
is returned by the method. Syntactically, JASP directly extends the syntax of Java by
few new keywords (e.g.,« <# »,« #> » ), in such a way that JASP module statements
are allowed in Java block statements. Concerning the syntax allowed within modules,
JASP is compliant with the language of DLV. The JASP’s default ORM strategy uses
compound keys, i.e., keys made of all basic attributes, and embedded values, for one to
one associations. This choice naturally fits the usual way of representing information in
Datalog, e.g., in the example, one fact models one node. Such mapping can be inverted
to obtain Java objects from logic facts. Although, this strategy poses (a few) restrictions
to Java specifications (e.g., such as non-recursive type definition, bean-like structure),
based on our experience, it is sufficient to handle common use cases.

In the example above we have employed the basic syntax of JASP . The language
supports also other advanced features conceived for easing the development of complex
applications, including: syntactic enhancements (e.g., named non-positional notation),
incremental programs (to enable building programs throughout the application), ac-
cess to Java variables (for accessign the Java environment), database table mappings
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(to directly access data stored in a DBMS), and complex mappings with JPA [17] an-
notations (for complex ORM). Indeed, JASP spouses the work done in the field ORM
and supports the standard JPA Java annotations for defining how Java classes map to
relations (logic predicates).
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Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, given the similarities satisfied by
values in a database, what values should be considered duplicates, and have to be
matched. On the basis of a chase-like procedure for MD enforcement, we can ob-
tain clean (duplicate-free) instances; actually possibly several of them. The clean
answers to queries (which we call the resolved answers) are invariant under the re-
sulting class of instances. In this paper, we investigate a query rewriting approach
to obtaining the resolved answers (for certain classes of queries and MDs). The
rewritten queries are specified in stratified Datalognot,s with aggregation. In addi-
tion to the rewriting algorithm, we discuss the semantics of the rewritten queries,
and how they could be implemented by means of a DBMS.

1 Introduction

For various reasons, databases may contain different coexisting representations of the
same external, real world entity. This can occur, for example, because of errors or be-
cause the data comes from different sources using different formats. Those “duplicates”
can be entire tuples or values within them. To obtain accurate information, in particu-
lar, query answers from the data, those tuples or values should be merged into a single
representation.

Identifying and merging duplicates is a process called entity (or duplicate) resolu-
tion (ER) [15, 9]. Matching dependencies (MDs) are a recent proposal for declarative
duplicate resolution [20, 21]. An MD expresses, in the form of a rule, that if the values
of certain attributes in a pair of tuples are similar, then the values of other attributes in
those tuples should be matched (or merged) into a common value.

For example, the MD R1[X1] ≈ R2[X2] → R1[Y1]
.
= R2[Y2] is a symbolic ex-

pression saying that, if an R1-tuple and R2-tuple have similar values for their attributes
X1, X2, then their values for attributes Y1, Y2 should be made equal. This is a dynamic
dependency, in the sense that its satisfaction is checked against a pair of instances: the
first one where the antecedent holds, and the second one where the identification of
values takes place. This semantics of MDs was sketched in [21].

In this paper we use a refinement of that original semantics that was put forth in [25]
(cf. also [26]). It improves wrt the latter in that it disallows changes that are irrelevant to

� Research supported by the NSERC Strategic Network on Business Intelligence (BIN ADC05)
and NSERC/IBM CRDPJ/371084-2008.
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the duplicate resolution process. Actually, [25] goes on to define the clean versions of
the original database instance D0 that contains duplicates. They are called the resolved
instances (RIs) of D0 wrt the given set M of matching dependencies. A resolved in-
stance is obtained as the fixed point of a chase-like procedure that starts from D0 and
iteratively applies or enforces the MDs from M . Each step of this chase generates a new
instance by making equal values that are identified as duplicates by the MDs.

In [25] it was shown that resolved instances always exist, and that they have certain
desirable properties. For example, the set of allowed changes is just restrictive enough
to prevent irrelevant changes, while still guaranteeing existence of resolved instances.
The resolved instances that minimize the overall number of attribute value changes
(associated to a same tuple identifier) wrt the original instance are called minimally
resolved instances (MRIs). On this basis, given a queryQ posed to a database instance
D0 that may contain duplicates, we define the resolved answers wrt Σ as the query
answers that are true of all the minimally resolved instances [25].

The concept of resolved query answer has similarities to that of consistent query an-
swer (CQA) in a database that fails to satisfy a set of integrity constraints [4, 11]. The
consistent answers are invariant under the repairs of the original instance. However,
data cleaning and CQA are different problems. For the former, we want to compute a
clean instance, determined by MDs; for the latter, the goal is obtaining semantically
correct query answers. MDs are not (static) ICs. In principle, we could see clean in-
stances as repairs, treating MDs similarly to static FDs. However, the existing repair
semantics do not capture the matchings as dictated by MDs (cf. [25, 26] for a more
detailed discussion).

In this paper, we investigate the problem of computing the resolved answers, simply
called resolved answer problem (RAP). The motivation for addressing this problem is
that even in a database instance containing duplicates, much or most of the data may be
duplicate-free. One can therefore obtain useful information from the instance without
having to perform data cleaning on the instance. This would be convenient if the user
does not want, or cannot afford, to go through a data cleaning process. In other situations
the user may not have write access to the data being queried, or any access to the data
sources, as in virtual data integration systems.

In [27] we identified classes of MDs and conjunctive queries for which RAP can
be solved in polynomial time in data complexity. Furthermore, a recursively-defined
predicate was introduced for identifying the sets of duplicate values within a database
instance. This predicate can be combined with a query, opening the ground for a query
rewriting approach to RAP.

In this paper we present a query rewriting methodology for the RAP problem (for the
identified classes of MDs and queries). It can be used to rewrite the original query Q
into a new queryQ′, in such a way that the latter, posed as usual to the original instance
D0, returns the resolved answers to the original query.

More precisely, we show that queries Q (in a restricted but broad class of con-
junctive queries) that expect to obtain resolved answers from a given dirty database D
can be rewritten into a (non-disjunctive) recursive Datalognot,s queryQ′ with stratified
negation and aggregation.Q′ posed to D returns the answers to Q. As expected, such
a query can be computed in polynomial time in the size of the initial database. The
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recursion arises from the fact that identifying duplicate values requires computing the
transitive closure of binary similarity operators. Transitivity is not assumed for similar-
ity operators, and in fact, common similarity relations used in practice, such as those
based on the edit distance and related string similarity metrics, are not transitive. Ag-
gregation is needed to enforce the minimality constraint, since this involves finding the
frequency of occurrence of values within a set of duplicates.

To the best of our knowledge, this is the first result on query rewriting in the context
of MD-based entity resolution. Furthermore, our rewritings into Datalog are non-trivial,
in the sense that they are not the result of translations into Datalog of first-order rewrit-
ings. Our rewriting uses in an essential manner the elements of the resulting Datalog
queries, namely recursion and aggregation. It is worth mentioning that the polynomial-
time rewritings for conjunctive queries proposed for consistent query answering have
been all been first-order (FO) [4, 18, 24, 31].

On the other hand, the general answer set programs that have been proposed as re-
pair programs [5, 7, 29, 19, 17], that specify database repairs and can be used for highly
expressive query rewritings, have a higher expressive power and complexity than Dat-
alog programs with stratified negation and aggregation.1 The attempts in [10] to obtain
lower complexity programs for CQA from repair programs for some tractable classes
of queries and constraints led back to FO rewritings. Thus classical, i.e. non-disjunctive
and stratified, Datalog was missed as an “intermediate” language for CQA.

This paper is organized as follows. In Section 2 we introduce basic concepts and
notation on MDs. In Section 3, we define the important concepts used in this paper, in
particular, (minimally) resolved instances and resolved answers to queries. Section 4
contains the main results of this paper, that includes a query rewriting algorithm for a
special case of the resolved query answer problem. Section 5 concludes the paper and
discusses related and future work. Proofs of results can be found in [27].

2 Preliminaries

We consider a relational schema S that includes an enumerable, possibly infinite do-
main U , and a finite set R of database predicates. Elements of U are represented by
lower case letters near the beginning of the alphabet. S determines a first-order (FO)
language L(S). An instance D for S is a finite set of ground atoms of the form R(ā),
with R ∈ R, say of arity n, and ā ∈ Un. R(D) denotes the extension of R in D.
Every predicate R ∈ S has a set of attribute, denoted attr(R). As usual, we sometimes
refer to attribute A of R by R[A]. We assume that all the attributes of a predicate are
different, and that we can identify attributes with positions in predicates, e.g. R[i], with
1 ≤ i ≤ n. If the ith attribute of predicate R is A, for a tuple t = (c1, . . . , cn) ∈ R(D),
tDR [A] (usually, simply tR[A] or t[A] if the instance is understood) denotes the value ci.
For a sequence Ā of attributes in attr(R), t[Ā] denotes the tuple whose entries are the
values of the attributes in Ā. Attributes have and may share subdomains of U .

In the rest of this section, we summarize some of the assumptions, definitions, nota-
tion, and results from two previous papers, [25] and [27], that we will need.

1 Under the common assumption that the polynomial hierarchy does not collapse.
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We will assume that every relation in an instance has an auxiliary attribute, a surro-
gate key, holding values that act as tuple identifiers. Tuple identifiers are never created,
destroyed or changed during the duplicate resolution process. They do not appear in
MDs, and are used to identify different versions of the same original tuple that result
from the matching process. We usually leave them implicit; and “tuple identifier at-
tributes” are commonly left out when specifying a database schema. However, when
explicitly represented, they will be the “first” attribute of the relation. For example, if
R ∈ R is n-ary, R(t, c1, . . . , cn) is a tuple with id t, and is usually written as R(t, c̄).
We usually use the same symbol for a tuple’s identifier as for the tuple itself. Tuple
identifiers are unique over the entire instance. Two instances over the same schema
that share the same tuple identifiers are said to be correlated, and they can be unam-
biguously compared tuple by tuple.

As expected, some of the attribute domains, say A, have a built-in binary similarity
relation ≈A ⊆ Dom(A) × Dom(A) that is reflexive and symmetric. Such a relation
can be extended to finite lists of attributes (or domains therefor), componentwise. For
single attributes or lists thereof, the similarity relation is is generically denoted with ≈.

A matching dependency (MD) [20] is an expression of the form

m : R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē], (1)

with Ā = (A1, ..., Ak), C̄ = (C1, ..., Ck′) lists of (different) attributes from attr(R);
and B̄ = (B1, ..., Bk), Ē = (E1, ..., Ek′ ) lists of attributes from attr(S).2

The set of attributes on the left-hand-side (LHS) of the arrow in m is denoted with
LHS(m). Similarly for the right-hand-side (RHS). In relation to (1), the attributes in a
corresponding pair (Ai, Bi) or (Ci, Ei) are assumed to share a common domain; and
in particular, a similarity relation ≈i. In consequence, the condition on the LHS of (1)
means that, for a pair of tuples t1 in R and t2 in S, t1[Ai] ≈i t2[Bi], 1 ≤ i ≤ k.
Similarly, the expression on the RHS means t1[Ai]

.
= t2[Bi], 1 ≤ i ≤ k′. Here,

.
=

means that the values should be updated to the same value.
Accordingly, the intended semantics of the MD in (1) is that, for an instance D, if

any pair of tuples, t1 ∈ R(D) and t2 ∈ S(D), satisfy the similarity conditions on the
LHS, then for the same tuples (or tuple ids), the attributes on the RHS have to take the
same values [21], possibly through updates that may lead to a new version of D.

We assume that all sets M of MDs are in standard form, i.e. for no two different
MDs m1,m2 ∈ M , LHS (m1) = LHS (m2). All sets of MDs can be put in this form.
MDs in a set M can interact in the sense that a matching enforced by one of them may
create new similarities that lead to the enforcement of another MD in M . This intuition
is captured through the MD-graph.

Definition 1. [26] Let M be a set of MDs in standard form. The MD-graph of M ,
denoted MDG(M), is a directed graph with a vertex m for each m ∈ M , and an edge
from m to m′ iff RHS(m)∩LHS (m′) �= ∅.3 If MDG(M) contains edges, M is called
interacting. Otherwise, it is called non-interacting (NI). �

2 We assume that the MDs are defined in terms of the same schema S .
3 That is, they share at least one corresponding pair of attributes.
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3 Matching Dependencies and Resolved Answers

Updates as prescribed by an MD m are not arbitrary. The updates based on m have to
be justified by m, as captured through the notion of modifiable value in an instance.

Definition 2. Let D be an instance, M a set of MDs, and P be a set of pairs (t, G),
where t is a tuple of D and G is an attribute of t. (a) For a tuple tR ∈ R(D) and C an
attribute of R, the value tDR [C] is modifiable wrt P if there exist S ∈ R, tS ∈ S(D), an
m ∈M of the form R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē], and a corresponding pair (C,E)

of (C̄, Ē) in m, such that (tS , E) ∈ P and one of the following holds:

1. tR[Ā] ≈ tS [B̄], but tR[C] �= tS [E].
2. tR[Ā] ≈ tS [B̄] and tS [E] is modifiable wrt P � {(tS , E)}.

(b) The value tDR [C] is modifiable if it is modifiable wrt V � {(tR, C)}, where V is the
set of all pairs (t, G) with t a tuple of D and G an attribute of t. �

Definition 2 is recursive. The base case occurs when either case 1 applies (with any
P) or when there is no tuple/attribute pair in P that can satisfy part (a). Notice that
recursion must terminate eventually, since the latter condition must be satisfied when P
is empty, and each recursive call reduces the size of P .

Example 1. Consider m : R[A] ≈ R[A] → R[B]
.
= R[B] on schema R[A,B], and

the following instance. Assume that the
only non-trivial similarities are a1 ≈ a2 ≈
a3 and b1 ≈ b2. Since a2 ≈ a3 and
c1 �= c3, t2[B] and t3[B] are modifiable
(base case). With case 2 of Definition 2,
since a1 ≈ a2, and t2[B] is modifiable,
we obtain that t1[B] is modifiable.

R(D) A B
t1 a1 c1
t2 a2 c1
t3 a3 c3
t4 b1 c3
t5 b2 c3

For t5[B] to be modifiable, it must be modifiable wrt {(ti, B) | 1 ≤ i ≤ 4}, and
via t4. According to case 2 of Definition 2, this requires t4[B] to be modifiable wrt
{(ti, B) | 1 ≤ i ≤ 3}. However, this is not the case since there is no ti, 1 ≤ i ≤ 3, such
that t4[A] ≈ ti[A]. Therefore t5[B] is not modifiable. A symmetric argument shows
that t4[B] is not modifiable. �

Definition 3. [25] Let D, D′ be correlated instances, and M a set of MDs. (D,D′)
satisfies M , denoted (D,D′) � M , iff: 1. For any pair of tuples tR ∈ R(D), tS ∈
S(D), if there exists an m ∈ M of the form R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē] and

tR[Ā] ≈ tS [B̄], then for the corresponding tuples (i.e. with same ids) t′R ∈ R(D′) and
t′S ∈ S(D′), it holds t′R[C̄] = t′S [Ē]. 2. For any tuple tR ∈ R(D) and any attribute G
of R, if tR[G] is non-modifiable, then t′R[G] = tR[G]. �

Intuitively, D′ in Definition 3 is a new version of D that is produced after a single
update. Since the update involves matching values (i.e. making them equal), it may pro-
duce “duplicate” tuples, i.e. that only differ in their tuple ids. They would possibly be
merged into a single tuple in the a data cleaning process. However, we keep the two
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versions. In particular, D and D′ have the same number of tuples. Keeping or eliminat-
ing duplicates will not make any important difference in the sense that, given that tuple
ids are never updated, two duplicates will evolve in exactly the same way as subsequent
updates are performed. Duplicate tuples will never be subsequently “unmerged”.

This definition of MD satisfaction departs from [21], which requires that updates
preserve similarities. Similarity preservation may force undesirable changes [25]. The
existence of the updated instance D′ for D is guaranteed [25]. Furthermore, wrt [21],
our definition does not allow unnecessary changes from D to D′. Definitions 2 and 3
imply that only values of attributes that appear to the right of the arrow in some MD are
subject to updates. Hence, they are called changeable attributes.4

Definition 3 allows us to define a clean instance wrt M as the result of a chase-like
procedure, each step being satisfaction preserving.

Definition 4. [25] (a) A resolved instance (RI) for D wrt M is an instance D′, such
that there are instances D1, D2, ...Dn with: (D,D1) � M , (D1, D2) � M ,..., (Dn−1,
Dn) � M , (Dn, D

′) � M , and (D′, D′) � M . We say D′ is stable. (b) D′ is a mini-
mally resolved instance (MRI) for D wrt M if it is a resolved instance that minimizes
the overall number of attribute value changes wrt D and in relation with the same tuple
ids. (c) MRI (D,M) denotes the class of MRIs of D wrt M . �

Example 2. Consider the MD R[A] ≈ R[A] → R[B]
.
= R[B] on predicate R, and the

instance D. It has several resolved instances, among them, four that

R(D) A B
t1 a1 c1
t2 a1 c2
t3 b1 c3
t4 b1 c4

R(D1) A B
t1 a1 c1
t2 a1 c1
t3 b1 c3
t4 b1 c3

R(D2) A B
t1 a1 c1
t2 a1 c1
t3 b1 c1
t4 b1 c1

minimize the number of changes. One of them is D1. A resolved instance that is not
minimal in this sense is D2. �

In this work, as in [25, 26], we are investigating what we could call “the pure case” of
MD-based entity resolution. It adheres to the original semantics outlined in [21], which
does not specify how the matchings are to be done, but only which values must be made
equal. That is, the MDs have implicit existential quantifiers (for the values in common).
The semantics we just introduced formally captures this pure case. We find situations
like this in other areas of data management, e.g. with referential integrity constraints,
tuple-generating dependencies in general [1], schema mappings in data exchange [8],
etc. It can be shown that an RI exists for any instance [25]. It follows immediately that
every instance has an MRI. A non-pure case that uses matching functions to realize the
matchings as prescribed by MDs is investigated in [13, 14, 6].

Definition 5. [25] Let Q(x̄) be a query expressed in the FO language L(S). A tuple
of constants ā from U is a resolved answer to Q(x̄) wrt the set M of MDs, denoted
D |=M Q[ā], iff D′ |= Q[ā], for every D′ ∈ MRI (D,M). ResAn(D,Q,M) is the set
of resolved answers to Q from D wrt M . �

4 Not to be confused with “modifiability”, that applies to tuples.
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Example 3. (example 1 cont.) Since the only MRI for the original instance D is R(D′)
= {〈t1, a1, c1〉, 〈t2, a2, c1〉, 〈t3, a3, c1〉, 〈t4, b1, c3〉, 〈t5, b2, c3〉}, the resolved answers
to the queryQ(x, y) : R(x, y) are {〈a1, c1〉, 〈a2, c1〉, 〈a3, c1〉, 〈b1, c3〉, 〈b2, c3〉}. �

4 Query Rewriting for Resolved Answers

In this section, we present a query rewriting method for retrieving the resolved answers
for certain classes of queries and sets of MDs. We provide an intuitive and informal
presentation of the rewritten queries. For details and a proof of correctness, see [27].

It has been shown in previous work that the problem of deciding resolved answers
(the resolved answer decision problem) is generally intractable in data [25, 26, 27].
However, there are tractable cases of this decision problem that are practically relevant
[27]. Two of those cases are considered here: that of non-interacting (NI) sets of MDs
(cf. Definition 1), and that of hit-set-cyclic (HSC) sets of MDs, that we now define.

Definition 6. A set M of MDs is hit-simple-cyclic iff the following hold: (a) In all
MDs in M and in all their corresponding pairs, the two attributes (and predicates) are
the same. (b) In all MDs m ∈M , at most one attribute in LHS(m) is changeable. (c)
Each vertex v1 in MDG(M) is on at least one cycle, or there is a vertex v2 on a cycle
with at least two vertices such that there is an edge from v1 to v2. �

Example 4. For schema R[A,C, F,G], consider the following set M of MDs:

m1 : R[A] ≈ R[A] → R[C,F,G]
.
= R[C,F,G],

m2 : R[C] ≈ R[C] → R[A,F,G]
.
= R[A,F,G].

Set M obviously satisfies (a) and (b) of Definition 6. Also, MDG(M) consists of a
single cycle through the two vertices, so M satisfies (c). M is then HSC.

Predicate R subject to the given M has two “keys”, R[A] and R[C]. Such relations
are common in practice. For example, R may be used in a database about people: R[A]
could be used for the person’s name, R[C] the address, and R[F ] and R[G] for non-
distinguishing information, e.g. gender and age. �

HSC sets have properties similar to those of NI sets wrt the resolved answer problem
[27]. For both classes, the value positions identified as duplicates are the same for all
MRIs, and they are characterized via equivalence classes of the tuple-attribute closure.

Definition 7. [27] Let M = {mi | i = 1, . . . , n} be a set of MDs, with mi : Ri[Āi] ≈i

Si[B̄i] → Ri[C̄i]
.
= Si[Ēi]. (a) The previous set of mi, denoted PS(mi), is the set

of all MDs mj ∈ M with a path in MDG(M) from mj to mi. (b) For an instance
D, and tuples ids t1, t2 for R,S, resp. (i.e. ids for tuples t1 ∈ R(D), t2 ∈ S(D)):
(t1, Ci) ≈′ (t2, Ei) :⇐⇒ t1[Āj ] ≈j t2[B̄j ], where (Ci, Ei) is a corresponding pair of
(C̄i, Ēi) in mi and mj ∈ PS (mi). (c) The tuple-attribute closure (TA closure) of M
wrt D, denoted TAM,D, is the reflexive, symmetric, and transitive closure of ≈′. �

Example 5. (example 4 continued) In this case, PS (m1) = PS (m2) = {m1,m2}.
Consider the instance D, where the only similarities are: ai ≈ aj , bi ≈ bj , di ≈ dj ,
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R(D) A B
t1 a1 d1
t2 a2 e2
t3 b1 e1
t4 b2 d2

ei ≈ ej , with i, j ∈ {1, 2}. The relations
(timod4+1, A) ≈′ (t(i+1)mod4+1, A) and
(timod4+1, B) ≈′ (t(i+1)mod4+1, B), 0 ≤
i ≤ 3, hold. The TA closure is given by
{TA(ti, x, tj , x) | 1 ≤ i, j ≤ 4, x ∈

{A,B}}. Notice that this relation involves just tuple ids and attributes. However, it
depends on D through the similarity conditions in (b) in the definition. �

For the set of MDs as in Definition 7, the TA closure can be specified by Datalog rules.
The database predicates in them have a first argument (attribute) to explicitly represent
the tuple id. More precisely, for 1 ≤ i ≤ n, for each corresponding pair (C,E) of
(C̄i, Ēi), and for each mj ∈ PS(mi), we have the rule:5

(t1, Ri[C]) ≈′ (t2, Si[E]) ← Ri(t1, x̄), Si(t2, ȳ), t1[Āj ] ≈j t2[B̄j ].

Additionally, for all attributes A of Ri and ids t of tuples in Ri, we have

TA(t, A, t, A)← Ri(t, x̄); (2)

similarly for Si. For arbitrary tuple ids t1, t2, and t3, and attributes A, B, and C,

TA(t1, A, t2, B) ← TA(t2, B, t1, A), (3)

TA(t1, A, t2, B) ← (t1, A) ≈′ (t2, B), (4)

TA(t1, A, t3, C) ← TA(t1, A, t2, B), (t2, B) ≈′ (t3, C). (5)

Rules (4) and (5) express that TA is the transitive closure of relation ≈′. Rules (2) and
(3), that TA is reflexive and symmetric. A related concept is the attribute closure.

Definition 8. [26] Let M be a set of MDs on schema S. (a) The symmetric binary
relation

.
=r relates attributes R[A], S[B] of S whenever there is an MD m in M where

R[A]
.
= S[B] appears in RHS(m). (b) The attribute closure of M is the reflexive,

symmetric, transitive closure of
.
=r. (c) ER[A] denotes the equivalence class of attribute

R[A] in the attribute closure of M . �

Example 6. Let M be the set of MDs: R[A] ≈1 S[B] → R[C]
.
= S[D], S[E] ≈2

T [F ] ∧ S[G] ≈ T [H ] → S[D,K]
.
= T [J, L], T [F ] ≈3 T [H ] → T [L,N ]

.
= T [M,P ].

The equivalence classes of Tat are ER[C] = {R[C], S[D], T [J ]}, ES[K] = {S[K],
T [L], T [M ]}, and ET [N ] = {T [N ], T [P ]}. �

It is easy to show that if (u1, A), (u2, B) are in the same equivalence class of tuple-
attribute closure, then A and B are in the same equivalence class of attribute closure.

Definition 9. Let M be a set of MDs and D and instance and a a data value. For an
equivalence class E of TAM,D, the frequency of a in E is the quantity freqD(a,E) :=
|{(t, A) | (t, A) ∈ E, t[A] = a in D}|. �

Proposition 1. [27] For M an NI or HSC set of MDs, and D an instance, each MRI for
D wrt M is obtained by setting, for each equivalence class E of TAM,D, all the values
for t[A], with (t, A) ∈ E, to a value a that maximizes freqD(a,E). �

5 Remember that the first argument in Ri, Si stands for the tuple id.
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Example 7. (example 5 continued) The two equivalence classes of TA closure are E1 =
{(ti, A) | 1 ≤ i ≤ 4} and E2 = {(ti, B) | 1 ≤ i ≤ 4}. All values in the A (B) column
of the table have frequency 1 in E1 (E2). Thus, there are 16 MRIs, obtained by setting
all values in each column to a common value chosen from those in the column. �

Proposition 1 tells us that the minimally resolved instances for an instance D can be
obtained by identifying most frequently occurring values. Thus, resolved query answers
from D can be computed by imposing this requirement on the original query. As a
consequence, the rewritten queries will become aggregate queries.

In Datalog notation, aggregate queries take the form P (ā, x̄,Agg(ū)) ← B(ȳ),
where P is answer collecting predicate, the body B(ȳ) represents a conjunction of
literals all of whose variables are among those in ȳ, ā is a list of constants, x̄∪ū ⊆ ȳ, and
Agg is an aggregate operator such as Count or Sum. The variables x̄ are the “group-by”
variables. That is, for each fixed value b̄ for x̄, aggregation is performed over all tuples
that make B x̄

b̄
, the instantiation of B on b̄ for x̄, true. Count(ū) counts the number of

distinct values of ū, while Sum(ū) sums over all ū, whether distinct or not.
Our query rewriting methodology for computing resolved answers will be applicable

to a certain class of conjunctive queries, the called UJCQ queries defined below. In [27]
a counterexample for the general applicability to all conjunctive queries is given.

Definition 10. [27] For a set M of MDs, a conjunctive query Q without built-ins is
an unchangeable join conjunctive query (UJCQ query) if there are no existentially
quantified variables in a join in Q in the position of a changeable attribute. For fixed,
M , UJCQ denotes this class of queries. �

In the rest of this paper we assume that the we have a fixed and finite set M of MDs
that satisfies the hypothesis of Proposition 1. The queries posed to the initial, possibly
non-resolved instance belong to UJCQ .

The rewritten queries will be in Datalognot,s [1], i.e. Datalog queries with stratified
negation and aggregation, and the built-ins �= and≤. For simplicity, the rewriting makes
use of tuple identifiers only. In the absence of such a surrogate key, whole tuples could
be used instead of identifiers.

Given a UJCQ queryQ, with answer predicate Q:

Q(x̄) ← R1(v̄1), R2(v̄2), ..., Rn(v̄n), (6)

the rewritten query Q′ is the conjunction of the rewritings Qi of each of the Ri, to be
given in (8) below, i.e.

Q′(x̄) ← Q1(v̄1), Q2(v̄2), ..., Qn(v̄n). (7)

Now, for a fixed atom Ri(v̄i) in (6), let C be the set of changeable attributes corre-
sponding to a free variable in v̄i, i.e. also appearing in Q(x̄). We denote the list of such
variables by v̄C .

If C is empty, then its rewriting becomes Qi(v̄i) ← Ri(v̄i). Intuitively, this is
because, by Definition 10, only attributes corresponding to free variables can participate
in joins, so changes to values of attributes corresponding to bound variables cannot
affect satisfaction of the body in (6).

Suppose C is non-empty, and consider Ri[A] ∈ C. From Proposition 1, deciding
whether or not all MRIs have the same value v for Ri[A] for a given tuple id t will
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involve finding the frequency of v in E for the equivalence class E of the TA closure to
which (t, Ri[A]) belongs. We introduce aggregation operators to express this count, of
values for attributes in ERi[A] (cf. the remark following Example 6).

We introduce a predicate CRi[A], with an attribute at the start of its attribute list
whose value is the attribute in ERi[A] over whose values aggregation is performed. For
an attribute A and list of variables v̄, we denote with vA the variable holding the value
for A. For each S[B] ∈ ERi[A], we have the rule

CRi[A](S[B], t1, vS[B],Count(t2)) ← TA(t1, Ri[A], t2, S[B]), Ri(t1, ū), S(t2, v̄),

in which all predicate arguments are variables except for the attribute labels S[B] and
Ri[A], that are constants.

In each tuple in the head predicate of the above expression, the value of the Count
expression is |{t | (t, S[B]) ∈ E, t[S[B]] = vS[B]}|, where E is the equivalence class
of the TA closure to which (t1, Ri[A]) belongs.

To find the frequency of the value of vS[B] in E, this count must be extended to all

attributes in ERi[A]. We introduce the predicate TotalRi[A] for this purpose:

TotalR[Ai](t, v,Sum(z)) ← CRi[A](x, t, v, z).

Tuples in TotalRi[A] specify in their last argument the frequency of v in the equivalence
class of the TA-closure to which (u,R[Ai]) belongs.

To compare these aggregate quantities for different values of v, we use the Compare
predicate:

CompareR[Ai](t, v) ← TotalRi[A](t, v, z1),Total
Ri[A](t, v′, z2), z1 ≤ z2, v

′ �= v.

Tuples in CompareRi[A] consist of a tuple identifier t in Ri and a value v for attribute
Ri[A]. For such a pair (t, v) there is another value v′ whose frequency in the equivalence
class of the TA closure to which (t, Ri[A]) belongs is at least as large as that of v.

In order for a value to be a “certain” for a given attribute Ri[A] in a given tuple,
the tuple and value must not occur as a tuple in CompareRi[A]. Let v̄′i be v̄i with all
variables in v̄C replaced with new variables. Then,

Qi(v̄i)← Ri(t, v̄
′
i),

∧

Ri[A]∈C

not CompareRi[A](t, vRi[A]),Total
Ri[A](t, vRi[A], z). (8)

Example 8. Consider the schemaR[ABC], S[EFG], U [HI]with non-interacting MDs:
R[A] ≈ S[E]→ R[B]

.
= S[F ], S[E] ≈ U [H ]→ S[F ]

.
= U [I ], and the UJCQ query:

Q(x, y, z) ← R(x, y, z), S(u, v, z), U(p, q). Since the S and U atoms have no free
variables holding the values of changeable attributes, they remain unchanged. There-
fore, the rewritten queryQ′ has the form

Q′ ← R′(x, y, z), S(u, v, z), U(p, q), (9)

where R′ is the rewritten form of R. The only free variable holding the value of a
changeable attribute is y. This variable corresponds to attribute R[B], which belongs to
the equivalence class ER[B] = {R[B], S[F ], U [I]}. Therefore, we have the rules:
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CR[B](R[B], t1, y,Count(t2))← TA(t1, R[B], t2, R[B]), R(t1, x
′, y′, z′), R(t2, x, y, z).

CR[B](S[F ], t1, y,Count(t2))← TA(t1, R[B], t2, S[F ]), R(t1, x
′, y′, z′), S(t2, x, y, z).

CR[B](U [I ], t1, y,Count(t2))← TA(t1, R[B], t2, U [I ]), R(t1, x
′, y′, z′), U(t2, x, y).

TotalR[B](t, y,Sum(u)) ← CR[B](x, t, y, u).

CompareR[B](t, y) ← TotalR[B](t, y, z1),Total
R[B](t, y′′, z2), z1 ≤ z2, y

′′ �= y.

The rewriting of R becomes

R′(x, y, z)← R(t, x, y′, z), not CompareR[B](t, y),TotalR[B](t, y, w). (10)

Thus, the rewriting of the original query is the stratified Datalog program [1] with ag-
gregation consisting of rules (9), (10), plus the five rules preceding (10). �

In order to obtain the resolved answers to a query on a possibly non-resolved instance
D, the resulting Datalog program can be run on D in polynomial time in the size of D.
Remarks on implementation and an example are included in an extended version [28].

5 Conclusions

This paper considered a novel approach based on query rewriting to the duplicate res-
olution problem within the framework of matching dependencies. The transformed
queries return the resolved answers to the original query, which are the answers that
are true in all minimally resolved instances.

We used minimal resolved instances (MRIs) as our model of a clean database. An-
other possibility is to use arbitrary, not necessarily minimal, resolved instances (RIs).
While MRIs have the advantage of being “closer” to the original instance than RIs, they
have the downside of being overly restrictive.

In practice, update values are typically chosen by applying a merging function to the
sets of duplicates [9, 13, 14], rather than by imposing a minimal change constraint. RIs
are more flexible in that they take into account all ways of choosing the update values
that lead to a clean database. We are currently investigating query answering over RIs,
identifying tractable cases of the problem that are not tractable for MRIs.

Matching dependencies first appeared in [20], and their semantics is given in [21].
The original semantics was refined in [13, 14], including the use of matching functions
(MFs) for matching two attribute values. The approach in [13, 14] uses a chase to define
clean instances. The MDs are applied one at a time to pairs of tuples, rather than all at
once to all tuples as in the present paper. Another important difference is that here we
do not use MFs to do a mathcing, but implicit existential quantifiers for the values in
common. When the update values are determined by the matching functions there is
no uncertainty arising from different possible choices for update values. Rather, the
different clean instances are produced by applying the MDs in different orders. Clean
answers are obtained by taking a glb (or lub) over the clean instances wrt a partial
ordering that is based on semantic domination of one value by another.

The alternative refinement of the semantics used in this paper was first introduced in
[25, 26]. A thorough complexity analysis, as well as the derivation of a query rewriting
algorithm for the resolved answer problem was done in [27].
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Our work in some ways resembles work on query answering over ontologies [16].
As in our duplicate resolution setting, a chase is applied repeatedly to an initial instance,
terminating in a “repaired” instance which is a fixed point of the chase rules. The set of
chase rules can include tuple generating dependencies (TGDs) and equality generating
dependencies (EGDs). Despite these similarities, our chase differs from those based on
EGDs and TGDs in that it does not generate new tuples, but modifies values in existing
tuples. Also, despite the fact that MDs are similar to EGDs, issues arise as a result of
the non-transitivity of similarity operators that do not occur in the case of EGDs.

In [3], Datalog is used for identifying groups of tuples that could be merged. How-
ever, they do not do the merging (a main contribution in our approach) or base their
approach on MDs. Actually, that work could be considered as complimentary to ours,
in the sense that, in essence, the authors address the problem of identifying similarities.
This is the starting point for the actual matchings that we address in this paper.
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Abstract. Logic programming has been considered a viable solution
for distributed computing since the Fifth Generation Computer Systems
project [8]. Nowadays, this line of thought is gaining new verve, pushed
by the need for new programming paradigms for addressing new emerg-
ing issues in distributed computing. We argue that a missing piece in
the current state-of-the-art is the capability to express statements about
the knowledge state of distributed nodes. In fact, reasoning about the
knowledge state of (group of) nodes has been demonstrated to be fun-
damental in order to design and analyze distributed protocols [7]. To
reach this goal, we designed Knowlog: Datalog¬ augmented with a set of
epistemic modal operators, allowing the programmer to directly express
what a node ”knows” instead of low level communication details.

1 Introduction

Since the Fifth Generation Computer Systems project [8], many authors have
stated how logic programming [10,9] could be used to express distributed pro-
grams’ specifications. New emerging trends that are arising nowadays provide
new chances for proving how logic programming can be used to tackle distributed
computing concerns. For instance, the tight coupling among distributed nodes
and the related overhead introduced by traditional mechanisms implementing
ACID properties starts to be considered unacceptable by cloud computing op-
erators [5]. To address these issues, monotonic logic programming has been em-
ployed to formally specify eventually consistent distributed programs [3].

Motivated by all these facts, our goal is to open a new direction in the investi-
gation on how Datalog could be adopted to implement distributed systems. We
conjecture, in fact, that a missing piece in the litterature exists: this is the possi-
bility to express in Datalog statements about the knowledge state of distributed
nodes. The ability to reason about the knowledge state of (group of) nodes has
been demonstrated to be a fundamental tool in multi-agent systems in order to
specify global behaviors and properties of protocols [7]. Therefore, inspired by
previous works in distributed logic programming [9,3] and knowledge-base pro-
grams for multi-agent systems [7], we develop Knowlog: Datalog¬ leveraged with
a set of epistemic modal operators. In this way programmers are able to directly
express nodes’ state of knowledge instead of low level communication details.
The advantage of this formalism is that it abstracts away all the mechanisms by
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which the knowledge is exchanged (message passing, shared memory, etc) and
permits to explicitly reason about the nodes’ state of knowledge. To support our
assertions, we describe an implementation of the two phase commit protocol.

The remainder of the paper is organized as follows: Section 2 contains some
preliminary notations about Datalog¬ and Datalog¬ augmented with a notion of
time. Section 3 describes what we intend for a distributed system and introduces
some concepts such as global state and run that will be used in Section 4 to
specify the modal operators K, E and D. In addition, Section 4 contains the
two phase commit protocol implementation in Knowlog. The paper finishes with
Section 5 which specifies Knowlog semantics, and conclusions.

2 Preliminaries

As usual, a Datalog¬ rule is an expression in the form:

H(ū)← B1(ū1), ..., Bn(ūn),¬C1(v̄1), ...,¬Cm(v̄m)

where H(ū), Bi(ūi) and Cj(v̄j) are atoms, H , Bi, Cj are relation names in
relname and ū, ūi, v̄j are tuples of appropriate arities. Tuples are composed by
terms and each term can be a constant in the domain dom or a variable in the
set var, with both dom and var disjoined from relname. In the followings we
will interchangeably use the words predicate, relation and table. A literal is an
atom (in this case we refer to it as positive) or the negation of an atom. We will
usually refer to a ground atom as a fact. We allow built-in predicates to appear
in the body of rules. Thus, we allow relation names such as =,�=,�, <, �, and
>. We also allow aggregate operations in rule heads in the form R(ū, Λ < μ̄ >)
with Λ one of the usual aggregate functions and < μ̄ > defining the grouping of
arguments μ̄. In this paper we assume each rule to be safe, i.e. every variable
occurring in a rule head appears in at least one positive literal of the rule body.
Then, a Datalog¬ program Π is a set of safe rules. As usual, we refer to idb(Π)
as the itensional part of the database schema, while we refer to the extensional
schema as edb(Π). Given a database schema R, a database instance is a finite
set I of facts.

As introductory example, we use the program depicted in Listing 1.1 where
we employed an edb relation link to specify the existence of a link between two
nodes. In addition, we employ an intensional relation path which is computed
starting from the link relation (r1) and recursively adding a new path when a
link exists from A to B and a path already exists from B to C (r2).

r1: path(X,Y):-link(X,Y).

r2: path(X,Z):-link(X,Y),path(Y,Z).

Listing 1.1. Simple Recursive Datalog Program

2.1 Time in Datalog¬

Distributed systems are not static, but evolving with time. Therefore it will be
useful to enrich Datalog¬ with a notion of time. For this purpose we follow the
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road traced by Dedalus0 [6]. Thus, starting with considering time isomorphic to
the set of natural numbers N0, a new schema RT is defined incrementing the
arity of each relation R ∈ R by one. By convention, the new extra term, called
time suffix, appears as the last attribute in every relation and has values in N0.
We will sometimes adopt the term timestamp to refer to the time suffix value.
In fact, each tuple can be viewed as timestamped with the evaluation step in
which it is valid. For conciseness we will employ the term time-step to denote an
evaluation step. By incorporating the time suffix term in the schema definition,
we now have multiple instances for each relation, one for each timestamp. In
this situation, with I[0] it is named the initial database instance comprising
at least all ground atoms existing at the initial time 0, while with I[n] the
instance at time-step n. In accordance with this approach, tuples by default
are considered ephemeral, i.e., they are valid only for one single time-step. In
order to make tuples persistent - i.e., once derived, for example at time-step
s, they will eventually last for every time-step t ≥ s - a new built-in relation
succ with arity two and ranging over the set of natural numbers is introduced.
succ(x, y) is interpreted true if y = x + 1. Program rules are then divided in
two sets: inductive and deductive. The former set contains all the rules employed
for transferring tuples through time-steps, while the latter encompasses rules
that are instantaneous, i.e, local into a single time-step. Some syntactic sugar
is adopted to better characterize rules: all time suffixes are omitted together
with the succ relation, and a next suffix is introduced in head relations to
characterize inductive rules. For a complete discussion on how to incorporate
time in Datalog¬, we refer the reader to [6].

In Listing 1.2 the simple program of the previous section is rewritten in or-
der to introduce the new formalism. Rule r1 is a persistency rule which moves
towards time-steps tuples that are not been explicitly deleted. To note that re-
lation del P is a not mandatory idb relation which contains all the facts of P
that must be deleted (will not appear in P at state t = s+ 1).

r1: link(X,Y)@next:-link(X,Y),¬del_link(X,Y).
r2: del_link(X,Y):-link_down(X,Y).

r3: path(X,Y):-link(X,Y).

r4: path(X,Z):-link(X,Y),path(Y,Z).

Listing 1.2. Inductive and Deductive Rules

3 Distributed Logic Programming

Before starting the discussion on how we leverage the language with epistemic
operators, we first introduce our distributed system model and how communica-
tion among nodes is performed. We define a distributed message-passing system
to be a non empty finite set N = {id1, id2, ..., idn} of share-nothing nodes joined
by bidirectional communication links. Each node identifier has a value in the
domain dom but, for simplicity, we assume that a node idi is identified by its
subscript i. Thus, in the followings we consider the set N = {1, ..., n} of node
identifiers, where n is the total number of nodes in the system.
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With adb we denote a new set of accessible relations encompassing all the
tables in which either facts are created remotely or they need to be delivered to
another node. These relations can be viewed as tables that are horizontally par-
titioned among nodes and through which nodes are able to communicate. Each
relation R ∈ adb contains a location specifier term [12]. This term maintains
the identifier of the node to which every new fact inserted into the relation R
belongs. Hence, the nature of adb relations can be considered twofold: for one
perspective they act as normal relations, but from another perspective they are
local buffers associated to relations stored in remote nodes. As pointed out in
[9,6], modeling communication using relations provides major advantages. For
instance, the disordered nature of sets appears particularly appropriate to repre-
sent the basic communication channel behavior by which messages are delivered
out of order.

Continuing with the same example of previous sections, we can now employ
it to actually program a distributed routing protocol. In order to describe the
example of Listing 1.3 we can imagine a real network configuration where each
node has the program locally installed, and where each link relation reflects the
actual state of the connection between nodes. For instance, we will have the fact
link(A,B) in node A instance if a communication link between A and node B
actually exists. The location specifier term is identified by the prefix @.

r1: link(X,Y)@next:-link(X,Y),¬del_link(X,Y).
r2: del_link(X,Y):-link_down(X,Y).

r3: path(@X,Y):-link(X,Y).

r4: path(@X,Z):-link(X,Y),path(@Y,Z).

Listing 1.3. Inductive and Deductive Rules

The semantics of the program of Listing 1.3 is the same of the previous sections’
ones, even though operationally it substantially differs. In fact, in this new ver-
sion, computation is performed simultaneously on multiple distributed nodes.
Communication is achieved through rule r4 which, informally, specifies that a
path from a generic node A to node C exists if there is a link from A to another
node B and this last knows that a path exists from B to C.

3.1 Local State, Global State and Runs

In every point in time, each node is in some particular local state encapsulating
all the information the node is in possess. The local state si of a node i ∈ N can
then be defined as a tuple (Πi, Ii) where Πi is the finite set of rules composing
node i’s program, and Ii ⊆ I[n]i is a set of facts belonging to node i. We define
the global state of a distributed system as a tuple (s1, ..., sn) where si is the
node i’s state. We define how global states may change over time through the
notion of run, which binds (real) time values to global states. If we assume time
values to be isomorphic to the set of natural numbers, we can define the function
r : N→ G where G = {S1× ...×Sn} with Si be the set of possible local states for
node i ∈ N . We refer to the a tuple (r, t) consisting of a run r and a time t as a
point. If r(t) = (s1, ..., sn) is the global state at point (r, t), we define ri(t) = si
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[7]. A system may have many possible runs, indicating all the possible ways the
global state of the system can evolve. We define a system as a set of runs. Using
this definition we are able to deal with a system not as a collection of interacting
nodes but, instead, directly modeling its behavior, abstracting away many low
level details. We think that this approach is particularly important in our scope
of maintaing in our language an high level of declarativity.

4 Reasoning about Knowledge in Distributed Systems

In the model we have developed so far, all computations that a node can ac-
complish are consequences of its local state. If we consider two runs of a system,
with global states respectively g = (s1, ..., sn) and g

′ = (s′1, ..., s′n), g and g′ are
indistinguishable for node i, and we will write g ∼i g

′ if i has the same local state
both in g and g′, i.e. si = s′i. It has been shown in [7] that a system S can be
viewed as a Kripke frame. A Kripke frame is a tuple F = (W,K1, ...,Kn) where
W is a non empty set of possible worlds (in our case a set of possible global
states) and Ki with i ∈ N is a binary relation in W ×W which is intended to
capture the accessibility relation according to node i: this is, (w, u) ∈ Ki if node
i consider world u possible given its information in world w. Or, in other words,
we want K to be equivalent to the ∼ relation, therefore maintaining the intuition
that a node i considers u possible in global state w if they are indistinguishable,
i.e., in both global states, node i has the same local state. In order to model this
situation, K must be an equivalence relation on W ×W .

To map each rule and fact to the global states in which they are true, we
define an interpreted system Γ as the tuple (S, π) with S a system over a set of
global states G and π an interpretation function which maps first-order clauses
to global states [7]. More formally, we build a structure over the Kripke frame
F in order to map each program Πi and each ground atom in Ii to the possible
worlds in which they are true. To reach this goal, we define a Kripke structure
M = (F , U, π) where F is a Kripke frame, U is the Herbrand Universe, π is
a function which maps every possible world to a Herbrant interpretation over
first-order clauses ΣΠ,I associated with the rules of the program Π and the
input instance I, and Π =

⋃n
i=1Πi, I =

⋃n
i=1 Ii[0]. To be precise, ΣΠ,I can be

constructed starting from the program Π and translating each rule ρ ∈ Π in
its first-order Horn clause form. This process creates the set of sentences ΣΠ .
To get the logical theory ΣΠ,I, starting from ΣΠ we add one sentence R(ū) for
each fact R(ū) in the instance [2,11]. A valuation v on M is now a function
that assign to each variable a value in U . In our settings both the interpretation
and the variables valuation are fixed. This means that v(x) is independent of
the state, and a constant c has the same meaning in every state in which exists.
Thus, constants and relation symbols in our settings are rigid designators [7,14].
Given a Kripke structure M, a world w ∈ W and a valuation v on M, the
satisfaction relation (M, w, v) |= ψ for a formula ψ ∈ ΣΠ,I is:

– (M,w, v) |= R(t1, ..., tn) with n = arity(R), iff (v(t1), ..., v(tn)) ∈ π(w)(R)
– (M,w, v) |= ¬ψ iif (M,w, v) |= ψ
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– (M,w, v) |= ψ ∧ φ iff (M,w, v) |= ψ and (M,w, v) |= φ
– (M,w, v) |= ∀ψ iif (M,w, v[x/a]) |= ψ for every a ∈ U with v[x/a] be a

substitution of x with a constant a

We use (M,w) |= ψ to denote that (M,w, v) |= ψ for every valuation v. It could
be also interesting to know not only whether certain formula ψ is true in a certain
world, but also the formulas that are true in all the worlds of W . In particular,
a formula ψ is valid in a structure M , and we write M |= ψ, if (M,w) |= ψ for
every world w in W . We say that ψ is valid, and write |= ψ, if ψ is valid in all
structures. We now introduce the modal operator Ki in order to express what a
node i ”knows”, namely which of the sentences in ΣΠ,I are known by the node
i. Given ψ ∈ ΣΠ,I, a world w in the Kripke structure M, the node i knows ψ
- we will write Kiψ - in world w if ψ is true in all the worlds that i considers
possible in w [7]. Formally:

(M, w, v) |= Kiψ iff for all w such that (w, u) ∈ Ki

This definition of knowledge has the following valid properties that are called
S5 :

1. Distributed Axiom: |= (Kiψ ∧Ki(ψ → φ))→ Kiφ
2. Knowledge Generalization Rule: For all structures M , if M |= ψ then M |=
Kiψ

3. Truth Axiom: |= Kiψ → ψ
4. Positive Introspection Axiom: |= Kiψ → KiKiψ
5. Negative Introspection Axiom: |= ¬Kiψ → Ki¬Kiψ

Informally, the first axiom allows us to distribute the epistemic operator Ki over
implication; the knowledge generalization rule instead says that if ψ is valid, then
so is Kiψ. This rule differ from the formula ψ → Kiψ, in the sense that the latter
tells that if ψ is true, then node i knows it, but a node does not necessarily know
all things that are true. Even though a process may not know all facts that are
true, axiom 3 says that if it knows a fact, then it is true. The last two properties
say that nodes can do introspection regarding their knowledge: they know what
they know and what they do not know [7].

4.1 Incorporating Knowledge: KnowlogK

In the previous section we described how knowledge assumptions can be ex-
pressed using first-order Horn clauses representing our program. We can now
move back to the rule form. We use symbols � and � to denote a (possibly
empty) sequence of modal operators Ki, with i specifying a node identifier.
Given a sentence in the modal Horn clause form, we use the following statement
to express it in a rule form:

�(H ← B1, ..., Bn,¬C1, ...,¬Cm) (1)

with n,m ≥ 0 and each positive literal in the form �R, while negative literals
are in the form ��R.
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Definition 1. The modal context � is the sequence - with the maximum length
of one - of modal operators K appearing in front of a rule.

We put some restriction on the sequence of operators permitted in �.

Definition 2. Given a (possibly empty) sequence of operators �, we say that �
is in restricted form if it does not contain KiKi subsequences.

Definition 3. A KnowlogK program is a set of rules in the form (1), containing
only (possibly empty) sequences of modal operators in the restricted form and
where the subscript i of each modal operator Ki can be a constant or a variable.

Informally speaking, given a KnowlogK program, with the modal context we are
able to assign to each node the rules the node is responsible for, while atoms
and facts residing in the node i are in the form Ki �R. In order to specify how
communication is achieved we define communication rules as follows:

Definition 4. A communication rule in KnowlogK is a rule where no modal
context is set and body atoms have the form Ki � R - they are all prefixed with
a modal operators pointing to the same node - while the head atom has the form
Kj �R′, with i �= j.

In this way, we are able to abstract away all the low level details about how
information is exchanged, leaving to the programmer just the task to specify
what a node should know, and not how.

The Two-Phase-Commit Protocol. Inspired by [4], we implemented the
two-phase-commit protocol (2PC) using the epistemic operator K. 2PC is used
to execute distributed transaction and it is divided in two phases: in the first
phase, called the voting phase, a coordinator node submits to all the transaction’s
participants the willingness to perform a distributed commit. Consequently, each
participant sends a vote to the coordinator, expressing its intention (a yes vote in
case it is ready, a no vote otherwise). In the second phase - namely the decision
phase - the coordinator collects all votes and decides if performing global commit
or abort. The decision is then issued to the participants which act accordingly. In
the 2PC implementation of Listing 1.4, we assume that our system is composed
by three nodes: one coordinator and two participants. We considerably simplify
the 2PC protocol by disregarding failures and timeouts actions, since our goal is
not an exhaustive exposition of the 2PC. In addition, we employ some syntactic
sugar to have a more clean code: we omit the modal context in each rule, and
instead we group rules in programs identified by a name and the identifier of the
node where the program should be installed. If the program must be installed on
multiple nodes, we permit to specify, as location, a relation ranging over node
identifiers.

\\Initialization at coordinator

#Program Initialization @C

r1: transaction(Tx_id,State)@next:-transaction(Tx_id,State),

¬Kcdel_transaction(Tx_id,State).
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r2: log(Tx_id,State)@next:-log(Tx_id,State).

r3: part_cnt(count<N>):-participants(N).

r4: transaction(Tx_id,State):-log(Tx_id,State).

r5: participants(P1).

r6: participants(P2).

\\Initialization at participants

#Program Initialization @participants

r7: transaction(Tx_id,State)@next:-transaction(Tx_id,State),

¬Kcdel_transaction(Tx_id,State).
r8: log(Tx_id,State)@next:-log(Tx_id,State).

\\Decision Phase at coordinator

#Program DecisionPhase @C

r9: yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r10: log(Tx_id,"commit")@next:-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,

State=="vote-req",transaction(Tx_id,State).

r11: log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",

transaction(Tx_id,State),State =="vote-req".

\\Voting Phase at participants

#Program VotingPhase @participants

r12: log(Tx_id,"prepare"):-State=="vote-req",Kctransaction(Tx_id,State).

r13: log("abort",Tx_id):-log(Tx_id,State),State=="prepare",db_status(Vote),

Vote=="no".

\\Decision Phase at participants

#Program DecisionPhase @participants

r14: log(Tx_id,"commit"):-log(Tx_id,State_l),State_l=="prepare",

State_t=="commit",Kctransaction(Tx_id,State_t).

r15: log(Tx_id,"abort"):-log(Tx_id,State_l),State_l=="prepare",

State_t=="abort",Kctransaction(Tx_id,State_t).

\\Communication
r16:Kxtransaction(Tx_id, State):-Kcparticipants(@X),Kctransaction(Tx_id,State).

r17: Kcvote(Vote,Tx_id,"sub1"):-Kp1log(Tx_id,State),State=="prepare",

Kp1db_status(Vote).

r18: Kcvote(Vote,Tx_id,"sub2"):-Kp2log(Tx_id,State),State=="prepare",

Kp2db_status(Vote).

Listing 1.4. Two Phase Commit Protocol

4.2 Incorporating Higher Levels of Knowledge: Knowlog

Rules r10, r11 of Listing 1.4 indicates that each participant, once written
"prepare" in the log, sends to the coordinator its status together with its iden-
tifier. Then, the votes are aggregated at coordinator side and the final decision
is issued. This process can also be seen in another way: the coordinator node
will deliver "commit" for transaction Tx id if it knows that every participant
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knows the fact vote("yes",Tx id); "abort" otherwise. Consequently, the deci-
sion phase at the coordinator will become as in Listing 1.5.

r10_a: log(Tx_id,"commit")@next:-Ks1vote("yes",Tx_id),Ks2vote("yes",Tx_id),

transaction(Tx_id,State),State=="vote-req".

r11_a: log(Tx_id,"abort")@next:-Kxvote(Vote,Tx_id),Vote=="no",

participants(X),transaction(Tx_id,State),State=="vote-req".

Listing 1.5. 2PC coordinator’s program revisited

We chose this new revisited form described in Listing 1.5 for a purpose, in
fact we want to show that other types of knowledge could be appealing to be
incorporated in our language. For example, a node could be interested not only
in knowing some fact, but also in knowing if every node in the system know
something (rule r1) or a new information is derived by combining the knowledge
belonging to different nodes (rule r2). The discussion about higher levels of
knowledge can be started pointing out that both rules in Listing 1.5 have a
common denominator: i.e., the notion of knowledge inside a group of nodes. In
fact, both the above mentioned rules are used to declare which is the state of
knowledge inside the group of participant nodes. Thus, given a non empty set
of nodes G, we can hence augment KnowlogK with modal operators EG and
DG, which respectively are informally stating that ”every node in the group G
knows” and ”it is distributed knowledge among the nodes in G”. From a more
operational point of view, EGψ states that the sentence ψ is replicated in all the
nodes belonging to G, while DGψ states that ψ is fragmented among the nodes
in G. We can easily extend the definition of satisfiability to handle the two new
types of knowledge just introduced. EGψ is true exactly if everyone in the group
G know ψ:

(M,w, v) |= EGψ iff (M,w, v) |= Kiψ for all i ∈ G
On the other side, a group G has distributed knowledge of ψ if the coalesced
knowledge of the members of G implies ψ. This is accomplished by eliminating
all worlds that some agent in G considers impossible:

(M,w, v) |= DGψ iff (M,u, v) |= ψ for all t that are (w, u) ∈
⋂

i∈G

Ri

Not surprisingly, for both EG and DG axioms analogous to the Knowledge Ax-
iom, Distribution Axiom, Positive Introspection Axiom, and Negative Introspec-
tion Axiom all hold. In addition, distributed knowledge of a group of size one is
the same as knowledge, so if G contains only one node i [7]:

|= D{i}ψ ↔ Kiψ

and the larger the subgroup, the greater the distributed knowledge of that sub-
group is :

|= DGψ → DG′ψ if G ⊆ G′

Before reformulating the definition of Knowlog and rewriting Listing 1.5 using
the new operators, we first update the definition 2 in order to incorporate the
new operators DG and EG.
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Definition 5. Given a (possibly empty) sequence of operators �, we say that
� is in restricted form if it does not contain either KiKi, DGDG or EG′EG′

subsequences, with i specifying a node identifier, G a group of nodes G ⊆ N and
G′ is singleton.

Definition 6. A Knowlog program is a KnowlogK program augmented with op-
erators EG and DG, with G ⊆ N and where the sequence of operators � is in
the restrict form of definition 5.

Listing 1.6 shows Knowlog version of Listing 1.5.

r10_b: log(Tx_id,"commit")@next:-Exvote("yes",Tx_id),participants(X),

transaction(Tx_id,State),State=="vote-req".

r11_b: log(Tx_id,"abort")@next:-Dxvote(Vote,Tx_id),Vote=="no",

participants(X),transaction(Tx_id,State),State=="vote-req".

Listing 1.6. Knowlog 2PC coordinator’s program

Operationally, EG is used when we want that a fact, to be considered true, is
correctly replicated in every node i ∈ G. On the other side, DG is employed
when facts that are fragmented inside multiple relations distributed in the node
enclosed in G must be assembled in one place for computation. Employing the
EG operator in the head of communication rules we are able to express the
sending of a message to multiple destinations, therefore emulating the multicast
primitive behavior.

Definition 7. A communication rule in Knowlog is a KnowlogK communica-
tion rule where the body may contains atoms both in the form DG � R and
EG � R, while head atoms may also have the form EG � R, with R a relation
and G ⊆ N .

As a future work we will investigate how the operator D can be used in front of
communication rule to implement data dissemination [15].

5 Knowlog Semantics

The first step towards the definition of the Knowlog semantics will be the spec-
ification of the reified version of Knowlog. For this purpose, we augment dom
with a new set of constants � which will encompass the modal operators sym-
bols. We also assume a new set of variables O that will range over the just
defined set of modal operator elements. We then construct RTK adding to each
relation R ∈ RT a new term called knowledge accumulator and a new set of
build-in relations K, D, E and ⊕. A tuple over the RTK schema will have the
form (k, t1, ..., tn, s) where k ∈ O ∪� identify the knowledge accumulator term,
s ∈ S ∪ N and t1, ..., tn ∈ var ∪ dom. Conversely, a tuple over adb relations,
i.e., relations in the head of at least one communication rule, will have the form
(k, l, t1, ..., tn, s), with l the location specifier term. If the knowledge operator
used in front of a non-adb relation is a constant, i.e. KsKrinput("value"), the
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reified version will be input(Y,"value",n),Y = Ks ⊕ Kr for example at time-
step n. The operator ⊕ is hence employed to concatenate epistemic operators.

Instead, in case the operator employes a variable to identify a particular node
(as in rule r10 a of Listing 1.5) or a set of nodes (as shown in rule r10 b of
Listing 1.6), we need to introduce in RTK relations K(X,Y), E(<X>,Y), and
D(<X>,Y) in order to help us in the effort of building the knowledge accumu-
lator term. The first term of the K relation is a node identifier i ∈ N (respec-
tively a set of node identifiers for relations E, and D) and the Y term is a value
in � determined by the relation name and the node identifier(s). So for ex-
ample, the reified version of Exvote("yes",Tx id),participants(X) will be
E(<X>,Y),vote(Y,"yes",Tx id,n),participants(X).

For what concern communication rules, the process is the same as above, but
this time we have to fill also the location specifier field of the head-relation. To
accomplish this, if the head relation R ∈ adb is in the form Ki�R(t1, ..., tn),
the reified version will be R(Ki�, i, t1, ..., tn, s). On the other side, if the head
relation is in the form EG�R(t1, ..., tn) the rule that includes it, is rewritten inm
rules, one for each node identifier in G, and each of them having the head relation
in the form Ki�R(t1, ..., tn) with i ∈ G. The reified version is then computed as
described above. Using this semantics, nodes are able to communicate using the
mechanism described in Section 3.

5.1 Operational Semantics

Given as input a Knowlog program Π in the reified version, first Π is separated
in two subset: Π l containing local rules (informally these are the rules that
the local nodes i knows) and Πr containing rules that must be installed in
remote nodes. These last are rules having as a modal context Kj with j, i ∈ N ,
i the identifier of the local node and i �= j. Following the delegation approach
illustrated in [1] given a program Πi local to node i ∈ N , we denote with
Πr

ij the remote rules in i related to node j and with Πj ← Πr
ij the action of

installing Πr
ij in j’s program. For what concern the evaluation of local rules, we

partition the local program Π l in inductive and deductive rule sets, respectively
Πi and Πd. Then a pre-processing step orders the deductive rules following the
dependency graph stratification. After this pre-processing step, the modelMΠ

is computed. In order to evaluate the stratified program Πd we use the semi-
naive algorithm depicted in [16]. To correctly evaluate rules and facts with modal
operators, the saturation (Sat) and the normalization (Norm) operators are used
to assist the immediate consequence operators TΠd [14]. This because Knowlog
facts and rules are labeled by modal operators and therefore the immediate
consequence operator must be enhanced in order to be employed in our context.
More precisely, given a Knowlog instance I as input, Sat(I) saturate facts in the
instances following operators’ properties. Lastly, the Norm operator converts to
restricted form the modal operators in TΠd(Sat(I)).
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6 Conclusion and Future Work

We have presented Knowlog, a programming language for distributed systems
based on Datalog¬ leveraged with a notion of time and modal operators. We
described the communication and knowledge model behind Knowlog and we
introduce as example, an implementation of the two phase commit protocol. As
a future work, we will incorporate in Knowlog the common knowledge operator
that has been proven to be linked to concepts such as coordination, agreement
and consistency [7]. The successive step will be the definition in Knowlog of
weaken forms of common knowledge such as eventual common knowledge.
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Abstract. Tracing why a “faulty” fact A is in the model M = P (I)
of program P on input I quickly gets tedious, even for small examples.
We propose a simple method for debugging and “logically profiling” P
by generating a provenance-enriched rewriting P̂ , which records rule fir-
ings according to the logical semantics. The resulting provenance graph
can be easily queried and analyzed using a set of predefined and ad-hoc
queries. We have prototypically implemented our approach for two differ-
ent Datalog engines (DLV and LogicBlox), demonstrating the simplicity,
effectiveness, and system-independent nature of our method.

1 Introduction

Developing declarative, rule-based programs can be surprisingly difficult in prac-
tice, despite (or because of) their declarative semantics. Possible reasons include
what Kunen long-ago called the PhD effect [10], i.e., that a PhD in logic seems
necessary to understand the meaning of certain logic programs (with negation).
Similarly, An Amateur’s Introduction to Recursive Query Processing [2] from the
early days of deductive databases, rather seems to be for experts only. So what
is the situation now, decades later, for a brave, aspiring Datalog 2.0 programmer
who wants to develop complex programs?

The meaning and termination behavior of a Prolog program P depends on,
among other things, the order of rules in P , the order of subgoals within rules,
and even (apparently minor) updates to base facts. Consider, e.g., the program
for computing the transitive closure of a directed graph, i.e., Ptc =

r1: tc(X,Y ) :− e(X,Y ).

r2: tc(X,Z) :− e(X,Y ), tc(Y, Z).

Seasoned logic programmers know that Ptc is not a correct way to compute the
transitive closure in Prolog.1 Under a more declarative Datalog semantics, on
the other hand, Ptc indeed is correct, since the result does not depend on rule
or subgoal order. The flip side, however, is that effective and practically useful

1 For I = {e(a, b), e(b, a)} the query ?-tc(c,X) correctly returns “No”, while the similar
?-tc(X,c) will not terminate! Prolog’s behavior gets worse when swapping rules r1
and r2, or when using left- or doubly-recursive variants P l

tc, P
d
tc, respectively.

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 111–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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procedural debugging techniques for Prolog, based on the box model [19], are
not available in Datalog. Instead, new debugging techniques are needed that are
solely based on the declarative reading of rules. In this paper, we develop such
a framework for declarative debugging and logic profiling.

Let M=P (I) be the model of P on input I. Bugs in P (or I) manifest them-
selves through unexpected answers (ground atoms) A ∈ M , or expected but
missing A /∈ M . The key idea of our approach is to rewrite P into a provenance-
enriched program P̂ , which records the derivation history of M=P (I) in an
extended model M̂=P̂ (I). A provenance graph G is then extracted from M̂ ,
which the user can explore further via predefined views and ad-hoc queries.

Use Cases Overview. Given an IDB atom A, our approach allows to answer
questions such as the following: What is the data lineage of A, i.e., the set of
EDB facts that were used in a derivation of A, and what is the rule lineage, i.e.,
the set of rules used to derive A? When chasing a bug or trying to locate a source
of inefficiency, a user can explore further details: What is the graph structure
GA of all derivations of A? What is the length of A, i.e., of shortest derivations,
and what is the weight, i.e., number of simple derivations (proof trees) of A?

For another example, assume the user encounters two “suspicous” atoms A
and B. It is easy to compute the common lineage GAB = GA ∩ GB shared
by A and B, or the lowest common ancestors of A and B, i.e., the rule firings
and ground atoms that occur “closest” to A and B in GAB, thus triangulating
possible sources of error, somewhat similar to ideas used in delta debugging [22].

Since nodes in GA are associated with relation symbols and rules, a user might
also want to compute other aggregates, i.e., not only at the level of GA (ground
atoms and firings), but at the level of (non-ground) rules and relation symbols,
respectively. Through this schema-level profiling, a user can quickly find the hot
(cold) spots in P , e.g., rules having the most (least) number of firings.

Running Example. Figure 1 gives an overview using a very simple example:
(a) depicts an input graph e, while (b) shows its transitive closure tc := e+. The
structure and number of distinct derivations of tc atoms from base edges in e
can be very different, e.g., when comparing the right-recursive Ptc (=P r

tc) above,
with left-recursive or doubly-recursive variants P l

tc or P d
tc, respectively.

The provenance graph G (or the relevant subgraph GA ⊆ G, given a goal
A) provides crucial information to answer the above use cases. Fig. 1(c) shows
the provenance graph for the computation of tc via P r

tc from above. Box nodes
represent rule firings, i.e., individual applications of the immediate consequence
operator TP , and connect all body atoms to the head atom via a unique firing
node. For the debug goal A = tc(a, b) the subgraph GA, capturing all possible
derivations of A, is highlighted (through filled nodes and bold edges).

Overview and Contributions. We present a simple method for debugging
and logically profiling a Datalog program P via a provenance-enriched rewriting
P̂ . The key idea is to extract from the extended model M̂ a provenance graph G
which is then queried, analyzed, and visualized by the user. Given a debug goalA,
relevant subgraphs GA can be obtained easily and further analyzed via a library
of common debug views and ad-hoc user queries. At the core of our approach
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(a) Input graph: edge relation e
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(b) Output: transitive closure tc = e+
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(c) Provenance graph G; highlighted subgraph Gtc(a,b); firing nodes r (boxes),

atom nodes A (ovals); edge types A
in→ r and r

out
�A (edge labels not shown)

Fig. 1. P r
tc-provenance graph for input e, with derivations of tc(a,b) highlighted in (c)

are rewritings that (i) capture rule firings, then (ii) reify them, i.e., turn them
into nodes in G (via Skolem functions), while (iii) keeping track of derivation
lengths using Statelog [11], a Datalog variant with states.2 The rewritten Statelog
program P̂ is state-stratified [13] and has ptime data complexity. We view the
simplicity and system-independence as an important benefit of our approach. We
have rapidly prototyped this approach for rather different Datalog engines, i.e.,
DLV [12] and LogicBlox [14], and are currently developing improved versions.
We also note a close relationship of our provenance graphs with provenance
semirings [8] (a detailed account is beyond the scope of this paper). Here our
focus is on presenting a simple, effective method for debugging and profiling
declarative rules for “mere mortals”.

2 Provenance Rewritings for Datalog

In this section, we present three Datalog rewritings P
F� · G� · S� P̂ for capturing

rule firings, graph generation, and Statelog evaluation, respectively. We assume
the reader is familiar with Datalog (e.g., see [1, 17]); the resulting Statelog
program P̂ has ptime data complexity and involves a limited (i.e., safe) form of
Skolem functions and state terms [13]. In the sequel, X̄ = X1, . . . , Xn denotes a
variable vector; lower case terms a, b, . . . denote constants.

2 Other state-oriented Datalog extensions include DatalognS [6] and XY-Datalog [21].
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Fig. 2. Subgraph with two rule firings fire1(a, b) and fire2(a, b, b), both deriving tc(a,b)

2.1 Recording Rule Firings: P
F� PF

The first rewriting (cf. Green et al. [9]), captures the provenance of rule firings.
Let r be a unique identifier of a rule in P . We assume r to be safe, i.e., every
variable in r must also occur positively in the body:

r : H(Ȳ ) :− B1(X̄1), . . . , Bn(X̄n)

Let X̄ :=
⋃

i X̄i include all variables in r, ordered, e.g., by occurrence in the body.
Since r is safe, Ȳ ⊆ X̄, i.e., the head variables are among the X̄. The rule r is
now replaced by two new rules in the rewritten program PF :

rin : firer(X̄) :− B1(X̄1), . . . , Bn(X̄n)

rout : H(Ȳ ) :− firer(X̄)

Thus PF records, for each r-satisfying instance x̄ of X̄, a unique fact: firer(x̄).

2.2 Graph Reification of Firings: PF G� PG

To facilitate querying the results of the previous step, we reify ground atoms and
firings as nodes in a labeled provenance graph G. For each pair of rules rin, rout
above, we add n rules (i = 1, . . ., n) to generate the in-labeled edges in G:

g( Bi(X̄i), in, firer(X̄) ) :− firer(X̄)

and one more rule for generating out-labeled edges in G as well:

g( firer(X̄), out, H(Ȳ ) ) :− firer(X̄)

Note the safe use of atoms as Skolem terms in the rule heads: for finitely many
rule firings firer(x̄), we obtain a finite number of in- and out-edges in G.

Example. After applying both transformations · F� · G� · to Ptc from above, the
rewritten program PG

tc can be executed, yielding a directed graph with labeled
edges g(v1, �, v2) in the enriched model M̂ . Figure 2 shows a subgraph with two
rule firings, both deriving the atom tc(a,b). Oval (yellow) nodes represent atoms
A and boxed (blue) nodes represent firings F . Arrows with solid heads and label
(*) are in-edges, while those with empty heads and label (+), represent out-
edges. Note that according to the declarative semantics, in (out) edges, model
logical conjunction “∧” (logical disjunction “∨”), respectively. Thus, w.r.t. their
incoming edges, boxed nodes are AND-nodes, while oval nodes are OR-nodes.3

3 In semiring parlance, they are product “⊗” and sum “⊕” nodes, respectively.
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2.3 Statelog Rewriting: PG S� PS

Statelog [11, 13] is a state-oriented Datalog variant for expressing active update
rules and declarative rules in a unified framework. The next rewriting simulates
a Statelog derivation in Datalog via a limited (safe) form of “state-generation”.
The key idea is to keep track of the firing rounds In+1 := TP (In) of the TP

operator (I0 := I is the input database). This provides a simple yet powerful
means to detect tuple rederivations, to identify unfounded derivations, etc.

First, replace all rules rin, rout above with their state-oriented counterparts:

rin : firer(S1, X̄) :− B1(S, X̄1), . . . , Bn(S, X̄n), next(S, S1).

rout : H(S, Ȳ ) :− firer(S, X̄).

The goal next(S, S1) is used for the safe generation of new states: The next state
s+1 is generated only if at least one atom A was new in state s :

next(0, 1) :− true.

next(S, S1) :− next( , S), new(S, A), S1 := S+ 1.

An atom A is newly derived if it is true in s+1, but not in the previous state s:

newAtom(S1, A) :− next(S, S1), g(S1, , out, A), ¬ g(S, , out, A).

Similarly, rule firing F is new if it is true in s+1, but not previously in s:

newFiring(S1, F ) :− next(S, S1), g(S1, F, out, ), ¬ g(S, F, out, ).

The n rules for generating in-edges are replaced with state-oriented versions:

g( S, Bi(X̄i), in, firer(X̄) ) :− firer(S, X̄)

and similarly, for the out-edge generating rules:

g( S, firer(X̄), out, H(Ȳ ) ) :− firer(S, X̄).

It is not difficult to see that the above rules are state-stratified (a form of lo-
cal stratification) and that the resulting program terminates after polynomially
many steps [13]: When no more new atoms (or firings) are derived in a state,
then the above rules for next can no longer generate new states, thus in turn
preventing rules of type rin from generating new firer(S1, X̄) atoms.

Example. When applying the transformations · F� · G� · S� · to the transitive
closure program P r

tc, a 4-ary graph g is created, with the additional Tp-round
counter in the first (state) argument position. Figure 3 shows the graphical
representation of g for our running example (observe the cycle in g, caused by
the cycle in the input e).

3 Debugging and Profiling Using Provenance Graphs

When debugging and profiling Datalog programs we typically employ all program

transformations P
F� · G� · S� P̂ , i.e., the enriched model M̂ contains the full

provenance graph relation g with state annotations.
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e(a,b) r1 [1]

r2 [3]

tc(a,b)
[1]e(b,c)

r2 [2] tc(b,b)
[2]

e(c,b)
r1 [1]

r2 [3]

tc(c,b)
[1]

Fig. 3. State-annotated provenance graph g for the derivation of tc(a,b). Annotations
[in brackets] show the firing round (i.e., state number) in which an atom was first
derived. To avoid clutter, we often depict firing nodes without their variable bindings.

3.1 Debugging Declarative Rules

If a Datalog program does not compute the expected model, it is very helpful
to understand how the model was derived, focusing in particular on certain
goal atoms during the debugging process. Since relation g captures all possible
derivations of the given program, we can define various queries and views on g
to support debugging.

Provenance Graph. The complete description of how a programwas evaluated
can be derived by just visualizing the whole provenance graph g, optionally
removing the state argument through projection:

ProvGraph(X,L,Y) :− g( ,X,L,Y).

Figure 1(c) shows the provenance graph for a transitive closure computation.
One can easily see how all transitive edges were derived and—by following the
edges backwards—one can see on which EDB facts and rules each edge depends.

Provenance Views. Since provenance graphs are large in practice, it is often
desirable to just visualize subgraphs of interest. The following debug view returns
all “upstream” edges, i.e., the provenance subgraph relevant for debug atom Q:

ProvView(Q,X,out,Q) :− ProvGraph(X,out,Q).
ProvView(Q,X,L,Y) :− ProvView(Q,Y, , ), ProvGraph(X,L,Y).

Figure 3 shows the result of this view for the debug goal Q = tc(a, b); the large
(goal-irrelevant) remainder of the graph is excluded. Fig. 1(c), in contrast, shows
the same query but now in the context of the whole provenance graph.

Computing the Length of Derivations. A typical question during debug-
ging is when and from which other facts a debug goal was derived. Such temporal
questions can be explained using a Statelog rewriting of the program. We an-
notate atoms and firings with a length attribute to record in which round they
were first derived. The length is defined as follows:

len(F ) := 1 + max{ len(A) | (A in→ F ) ∈ g } ; if F is a firing node

len(A) :=

{
min{ len(F ) | (F out→ A) ∈ g } ; if A is an IDB atom

0 ; if A is an EDB atom
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A rule firing F can only succeed one round after the last body atom (i.e., hav-
ing maximal length) has been derived. Conversely, the length of an atom A is
determined by its first derivation (i.e., having minimal length). The Statelog
rewriting captures evaluation rounds, so the state associated with a new firing
determines the length of the firing:

len(F,LenF) :− newFiring(S,F), LenF=S.

Similarly, the length of an atom is equal to the first round it was derived:

len(A,LenA) :− newAtom(S,A), LenA=S.

Fig. 4 shows a provenance graph with such length annotations.

3.2 Logic-Based Profiling

There are multiple ways to write a Datalog program that computes a desired
query result and the performance of these programs may vary significantly. For
example, consider an EDB with a linear graph e having 10 nodes. In addition
to the right-recursive program P r

tc, we consider the doubly-recursive variant P d
tc

with the rules: (1) tc(X,Y ) :− e(X,Y ) and (2) tc(X,Y ) :− tc(X,Z), tc(Z, Y ).
When computing tc, the two programs perform differently and we would like
to find the cause. In this section, we present queries for profiling measures of
Datalog programs that can help to answer such questions.

Counting Facts. When evaluating a Datalog program on an input EDB, a
number of IDB atoms are derived. We assume here that the resulting model
only contains desired facts, i.e., the program was already debugged with the
methods described earlier. We can use, e.g., the number of derived IDB atoms
as a baseline for profiling a program. It can be computed easily via aggregation:

DerivedFact(H) :− ProvGraph( ,out,H).
DerivedHeadCount(C) :− C = count{ H : DerivedFact(H) }.

Both P r
tc and P d

tc derive 45 facts for our small graph example, which is exactly
the number of transitive edges we are looking for.

Counting Firings. An important measure in declarative profiling is the num-
ber of rule firings needed to produce the final model. It can be computed from
the out-edges and another simple aggregation:

Firing(F) :− ProvGraph(F,out, ).
FiringCount(C) :− C = count{ F : Firing(F) }.

Using this measure we can see a clear difference between the two variants of the
transitive closure program. While the right-recursive program P r

tc uses 45 rule
firings to compute the model, the doubly-recursive variant P d

tc causes 129 rule
firings to derive the same 45 transitive edges. The reason is that P d

tc will use
all combinations of edges to derive a fact, while P r

tc extends paths only in one
direction, one edge at a time.

For better readability, Figure 4 shows the provenance graph for a smaller
input graph consisting of a 5-node linear chain. Nodes are annotated with their
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2
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tc(a,b)
[1]
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[2]
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[3]
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[1]
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2
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[1]
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e(d,e) 1
tc(d,e)
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(a) P r
tc: right-recursive

3

tc(a,d)
[3]

3

3
tc(a,e)
[3]

3
tc(b,e)
[3]

3

4

4

e(a,b) 1
tc(a,b)
[1]

e(b,c) 1
tc(b,c)
[1]

e(c,d) 1
tc(c,d)
[1]

e(d,e) 1
tc(d,e)
[1]

2

2

2

tc(a,c)
[2]

tc(b,d)
[2]

tc(c,e)
[2]

(b) P d
tc: doubly-recursive

Fig. 4. Provenance graphs with annotations for profiling P r
tc and P d

tc on a 5-node linear
graph P d

tc causes more rule firings than P r
tc and also derives facts in multiple ways.

Numbers denote len(F ) (in firing nodes) and len(A) (in atom nodes), respectively.

length, i.e., earliest possible derivation round. Note how some atom nodes in the
graph for P d

tc in Fig. 4(b) have more incoming edges (and derivations) than the
corresponding nodes in the P r

tc variant shown in Fig. 4(a).

Computing the Maximum Round. Another measure is the number of states
(TP rounds), needed to derive all conclusions. From the rewriting PS , we can
simply determine the final state:

MaxRound(MR) :− MR = max{ S : g(S, , , ) }.
This measure shows another clear difference between P r

tc and P d
tc: While P r

tc

requires 10 rounds to compute all transitive edges in our sample graph, P d
tc only

needs 6 rounds. Generally, the doubly-recursive variant requires significantly
fewer rounds, i.e., logarithmic in the size of the longest simple path in the graph
versus linear for the right-recursive implementation.

Counting Rederivations. To analyze the number of derivations in more detail,
we can use the Statelog rewriting PS to also capture temporals aspects. With
each application of the TP operator, some facts might be rederived. Note that, if
a fact is derived via different variable bindings in the body of a rule (or different
rules), the rederivation is captured already in firings. Rederivations occurring
during the fixpoint computation can be captured using the Statelog rewriting:
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ReDerivation(S,F) :− g(S,F,out,A), len(A,LenA), LenA < S.
ReDerivationCount(S,C) :− C = count{ F : ReDerivation(S,F) }.
ReDerivationTotal(T) :− T = sum{ C : ReDerivationCount(S,C) }.

When comparing the rederivation counts, the difference between the Ptc variants
is illuminated further. P r

tc rederives facts 285 times until the fixpoint is reached.
The double-recursive program P d

tc causes 325 rederivations.

Schema-Level Profiling. We can easily determine how many new facts per
relation are used in each round to derive new facts:

FactsInRound(S,R,A) :− g(S,A,in, ), RelationName(A,R).
FactsInRound(S1,R,A) :− g(S, ,out,A), next(S,S1), RelationName(A,R).
NewFacts(S,R,A) :− g(S, ,out,A), ¬FactsInRound(S,R,A), RelationName(A,R).
NewFactsCount(S,R,C) :− C = count{ A : NewFacts(S,R,A) }.

This allows us to “plot” the temporal evolution for our result relation R(= tc):
For P r

tc and S = 1, . . . , 9 the counts are C = 9, 8, 7, 6, 5, 4, 3, 2, 1, while for P r
tc and

S = 1, . . . , 5 we have C = 9, 8, 13, 14, 1. Although P d
tc requires fewer rounds than

P r
tc, its new fact count mostly increases over time, while for P r

tc, it decreases.

Confronting the Real-World. In practical implementations, the doubly-
recursive version P d

tc has horrible performance. For a representative, realistic
graph4 with 1710 nodes and 3936 edges, the right-recursive P r

tc runs in 2.6 sec,
while the doubly-recursive P d

tc takes 15.4 sec. Our metrics can easily explain
the discrepancy. The tc-fact count for both versions is 304,000, but the rule
firing count varies widely. Using our program rewriting and the profiling view
FiringCount(C), we discover that P d

tc has over 64 million different rule firings,
while P r

tc has under 566 thousand. One reason is that the doubly-recursive
rule tc(X,Y ) :− tc(X,Z), tc(Z, Y ) derives the same tc(X,Y ) fact many times
over. This practical example also illustrates the burden of declarative debugging:
Adding the profiling calculation to the right-recursive version, P r

tc only grows
the running time slightly, to 3 sec. Adding it to the doubly-recursive P d

tc how-
ever, yields a running time of 51.3 sec. This is due to the cost of storing more
than 64 million combinations of variables for rule firings.

4 GPAD Prototype Implementations

By design, our method of provenance-based debugging and profiling only relies on
the declarative reading of rules, i.e., is agnostic about implementation details or
evaluation techniques specific to the underlying Datalog engine. Indeed, parallel
with the development of the method, we have implemented two incarnations of

4 The specifics are secondary to our argument, but we list them for completeness. The
graph is the application-level call-graph and edges indicating whether a method can
call another) for the pmd program from the DaCapo benchmark suite, as produced
by a precise low-level program analysis. Timings are on a quad-core Xeon E5530
2.4GHz 64-bit machine (only one thread was active at a time) with plentiful RAM
(24GB) for the analysis, using LogicBlox Datalog ver. 3.7.10.
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a Graph-based Provenance Analyzer and Debugger, i.e., prototypes Gpad/dlv
and Gpad/lb, for declarative debugging with the DLV [12] and LogicBlox [14]
engines, respectively. Both prototypes “wrap” the underlying Datalog engine,
and outsource some processing aspects to a host language.

For example, Gpad/dlv uses Swi-Prolog [20] as a “glue” to automate (1)
rule rewritings, (2) invocation of DLV, followed by (3) result post-processing,
and (4) result visualization using Graphviz. We are actively developing Gpad
further and plan a public release in the near future.

5 Related Work

Work on declarative debugging, in particular in the form of algorithmic debugging
goes as far back as the 1980’s [18, 7]. Algorithmic debugging is an interactive
process where the user is asked to differentiate between the actual model of
the (presumeably buggy) program and the user’s intended model. Based on the
user’s input, the system then tries to locate the faulty rules in an interactive ses-
sion. Our approach differs in a number of aspects. First, algorithmic debugging
is usually based on a specific operational semantics, i.e., SLDNF resolution, a
top-down, left-to-right strategy with backtracking and negation-as-failure, which
differs significantly from the declarative Datalog semantics (cf. Section 1). More-
over, while our approach is applicable, in principle, in an interactive way, this
suggests a tighter coupling between the debugger and the underlying rule en-
gine. In contrast, our approach and its Gpad implementations do not require
such tight coupling, but instead treat the rule engine as a black box. In this way,
debugging becomes a post-mortem analysis of the provenance-enriched model
M̂ = P̂ (I) via simple yet powerful graph queries and aggregations.

Another approach, more closely related to ours, is the Datalog debugger [3],
developed for the DES system. Unlike prior work, and similar to ours, they do
not view derivations as SLD proof trees, but rather use a computation graph,
similar to our labeled provenance graph. Our approach differs in a number of
ways, e.g., our reification of derivations in a labeled graph allows us to use regular
path queries to navigate the provenance graph, locate (least) common ancestors
of buggy atoms, etc. Another difference is our use of Statelog for keeping track of
derivation rounds, which facilitates profiling of the model computation over time
(per firing round, identify the rules fired, the number of (re-)derivations per atom
or relation, etc.) Recent related work also includes work on trace visualization
for ASP [4], step-by-step execution of ASP programs [15], and an integrated
debugging environment for DLV [16].

Debugging and Provenance. Chiticariu et al. [5] present a tool for debugging
database schema mappings. They focus on the computation of derivation routes
from source facts to a target. The method includes the computation of minimal
routes, similar to shortest derivations in our graph. However, their approach
seems less conducive to profiling since, e.g., provenance information on firing
rounds is not available in their approach.

There is an intruigingly close relationship between provenance semirings, i.e.,
provenance polynomials and formal power series [8], and our labeled provenance
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graphs G. The semiring provenance of atom A is represented in the structure of
GA. Consider, e.g., Figure 2: the in-edges of rule firings correspond to a logical
conjunction “∧”, or more abstractly, the product operator “⊗” of the semiring.
Similarly, out-edges represent a disjunction “∨”, i.e., an abstract sum operator
“⊕”, mirroring the fact that atoms in general have multiple derivations. It is easy
to see that a fact A has an infinite number of derivations (proof trees) iff there is a
cycle in GA: e.g., the derivation of A = tc(a, b) in Figures 1 and 2 involves a cycle
through tc(b,b), tc(c,b), via two firings of r2. This also explains Prolog’s non-
termination (Section 1), which “nicely” mirrors the fact that there are infinitely
many proof trees. On the other hand, such cycles are not problematic in the
original Datalog evaluation of M = P (I) or in our extended provenance model
M̂ = P̂ (I), both of which can be shown to converge in polynomial time.

6 Conclusions

We have presented a framework for declarative debugging and profiling of Data-
log programs. The key idea is to rewrite a program P into P̂ , which records the
derivation history of M = P (I) in an extended model M̂ = P̂ (I). P̂ is obtained
from three simple rewritings for (1) recording rule firings, (2) reifying those
into a labeled graph, while (3) keeping track of derivation rounds in the style
of Statelog. After the rewritten program is evaluated, the resulting provenance
graph can be queried and visualized for debugging and profiling purposes.

We have illustrated the declarative profiling approach by analyzing different,
logically equivalent versions of the transitive closure program Ptc. The measures
obtained through logic profiling correlate with runtime measures for a large, real-
world example. Two prototypical systems Gpad/dlv and Gpad/lb have been
implemented, for DLV and LogicBlox, respectively; a public release is planned
for the near future. While we have presented our approach for positive Datalog
only, it is not difficult to see how it can be extended, e.g., for well-founded
Datalog. Indeed, the Gpad prototypes already support the handling of well-
founded negation through a simple Statelog encoding [11, 13].
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Abstract. Inconsistency management in knowledge bases is an important prob-
lem that has been studied for a long time. During the recent years, additional in-
terest in this topic has been sparked with the advent of the Semantic Web, which
has made this problem even more relevant, since inconsistencies are very likely
to occur in open environments such as the Web. Inconsistency-tolerant seman-
tics to query answering have therefore become of special interest for represen-
tation and reasoning formalisms for the Semantic Web. Datalog+/– is a family
of ontology languages that is in particular useful for representing and reason-
ing over lightweight ontologies in the Semantic Web. In this paper, we focus on
inconsistency-tolerant query answering under the intersection semantics in lin-
ear Datalog+/–, a sublanguage of Datalog+/– that generalizes the DL-Lite family
of tractable description logics (DLs). In particular, we show that query answer-
ing in linear Datalog+/– is first-order rewritable under this inconsistency-tolerant
semantics, and therefore very efficiently computable in the data complexity.

1 Introduction

It has been widely acknowledged in both the database and the Semantic Web commu-
nity that inconsistency is an issue that cannot be ignored. Knowledge bases in databases
and the Semantic Web in the form of ontologies are becoming increasingly popular, and
when integrating data from many different sources, either as a means to populate an on-
tology or simply to answer queries, integrity constraints are very likely to be violated in
practice. In this paper, we address the problem of handling inconsistency in ontologies
in databases and the Semantic Web, where scalability is an important issue.

We adopt the recently developed Datalog+/– family of ontology languages [5]. In
particular, we focus on the linear sublanguage of Datalog+/–, which guarantees the
first-order rewritability of conjunctive queries. Datalog+/– enables a modular rule-based
style of knowledge representation, and it can represent syntactical fragments of first-
order logic so that answering a BCQ Q under a set of Datalog+/– rules Σ for an input
database D is equivalent to the classical entailment check D ∪ Σ |= Q. Furthermore,
since we can realistically assume that the database D is the only really large object in
the input, we can leverage Datalog+/–’s properties of decidability of query answering
and good query answering complexity in the data complexity. These properties, together
with its expressive power, make Datalog+/– very useful in modeling real applications
such as ontology querying, Web data extraction, data exchange, ontology-based data
access, and data integration.

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 123–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The following example shows a simple Datalog+/– ontology; the language and stan-
dard semantics for query answering in Datalog+/– is recalled in the next section.

Example 1. Consider A (linear) Datalog+/– ontology KB =(D, ΣT ∪ ΣE ∪ ΣNC ) is
given by:

D = {directs(john, d1), directs(tom, d1), directs(tom, d2),
supervises(tom, john),works in(john, d1),works in(tom, d1)};

ΣT = {σ1 : works in(X,D) → emp(X), σ2 : directs(X,D) → emp(X),
σ3 : directs(X,D) → manager(X)};

ΣNC = {υ1 : supervises(X,Y ) ∧ manager(Y ) → ⊥,
υ2 : supervises(X,Y ) ∧ works in(X,D) ∧ directs(Y,D) → ⊥};

ΣE = {υ3 : directs(X,D) ∧ directs(X,D′) → D = D′}.

Here, the formulas in ΣT say that every person working for a department is an em-
ployee (σ1), that every person directing a department is an employee (σ2), and that
somebody directing a department is a manager (σ3). The formula υ1 in ΣNC states
that if X supervises Y , then Y cannot be a manager, while υ2 says that if Y is su-
pervised by someone in a department, then Y cannot direct that department. The for-
mula υ3 in ΣE states that the same person cannot direct two different departments.
As we show later, this ontology is inconsistent. For instance, the atom directs(john, d1)
triggers the application of σ3, producing manager(john), but that together with the atom
supervises(tom, john) (which belongs to D) violates the formula υ1.

The most accepted approach to query answering over possibly inconsistent databases
consists of finding consistent answers; this can be done on the fly during the query an-
swering process, or over a database that has been previously treated to excise the pieces
of information causing the inconsistencies. In general, consistent answers are very hard
to compute, even for restricted sets of integrity constraints [7], or for lightweight ontol-
ogy languages such as the description logics (DLs) in the DL-Lite family [14]. In this
paper, we focus on a particular inconsistency-tolerant semantics to query answering in
linear Datalog+/–, called the intersection semantics, which was introduced in [12] for
DL-Lite as a tractable sound approximation to consistent answers.

The main contribution of this paper is an algorithm for inconsistency-tolerant query
answering for linear Datalog+/– under the intersection semantics. Our approach is based
on query rewriting, i.e., a given query is rewritten into another query, which fully em-
beds any underlying ontological knowledge, and which, evaluated on the data, returns
the consistent answers under the intersection semantics. The result of this rewriting
process is a first-order (FO) query. FO-rewritability of queries is an important property,
since the rewritten query can immediately be translated into SQL. In this way, we re-
duce the problem of query answering over an ontology to the standard evaluation of an
SQL query in (possibly highly optimized) relational DBMSs.

2 Preliminaries

We briefly recall some basics on Datalog+/– [5], namely, on relational databases, (Bool-
ean) conjunctive queries ((B)CQs), tuple- and equality-generating dependencies (TGDs
and EGDs, respectively), negative constraints, and ontologies in Datalog+/–.
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Databases and Queries. We assume (i) an infinite universe of (data) constants Δ
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls ΔN (used as “fresh” Skolem terms, which are placeholders for unknown values,
and can thus be seen as variables), and (iii) an infinite set of variablesV (used in queries,
dependencies, and constraints). Different constants represent different values (unique
name assumption), while different nulls may represent the same value. We assume a
lexicographic order on Δ∪ΔN , with every symbol in ΔN following all symbols in Δ.
We denote by X sequences of variables X1, . . . , Xk with k � 0.

We assume a relational schema R, which is a finite set of predicate symbols (or
simply predicates). A term t is a constant, null, or variable. An atomic formula (or
atom) a has the form P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are
terms. We denote by var (a) the set of all variables in atom a and naturally extend this
notation to sets of atoms. A conjunction of atoms is often identified with the set of all
its atoms.

A database (instance)D for a relational schemaR is a (possibly infinite) set of atoms
with predicates from R and arguments from Δ. A conjunctive query (CQ) over R has
the form Q(X) = ∃Y Φ(X,Y), where Φ(X,Y) is a conjunction of atoms (possibly
equalities, but not inequalities) with the variables X and Y, and possibly constants, but
without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written as
the set of all its atoms, without quantifiers. Answers are defined via homomorphisms,
which are mappingsμ : Δ∪ΔN∪V → Δ∪ΔN∪V such that (i) c∈Δ implies μ(c)= c,
(ii) c∈ΔN implies μ(c)∈Δ ∪ ΔN , and (iii) μ is naturally extended to atoms, sets of
atoms, and conjunctions of atoms. The set of all answers to a CQ Q(X)= ∃YΦ(X,Y)
over a database D, denoted Q(D), is the set of all tuples t over Δ for which there exists
a homomorphism μ : X∪Y→Δ∪ΔN such that μ(Φ(X,Y))⊆D and μ(X)= t. The
answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff Q(D) �= ∅.

Tuple-Generating Dependencies. Tuple-generating dependencies describe constraints
on databases in the form of generalized Datalog rules with existentially quantified con-
junctions of atoms in rule heads. Given a relational schema R, a tuple-generating de-
pendency (TGD) σ is a first-order formula of the form ∀X∀Y Φ(X,Y)→∃ZΨ(X,Z),
where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms over R (without nulls), called
the body and the head of σ, denoted body(σ) and head(σ), respectively. Such σ is sat-
isfied in a database D for R iff, whenever there exists a homomorphism h that maps
the atoms of Φ(X,Y) to atoms of D, there exists an extension h′ of h that maps the
atoms of Ψ(X,Z) to atoms of D. We usually omit the universal quantifiers in TGDs.
Since TGDs can be reduced to TGDs with only single atoms in their heads, in the se-
quel, every TGD has w.l.o.g. a single atom in its head [3]. As we will see later, this
assumption is also valid for our treatment of inconsistency since it is solely based on
query answering. A TGD σ is guarded iff it contains an atom in its body that contains
all universally quantified variables of σ. A TGD σ is linear iff it contains only a single
atom in its body.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs Σ
on R, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The set



126 T. Lukasiewicz, M.V. Martinez, and G.I. Simari

of answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples a
such that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is
Yes, denoted D ∪Σ |=Q, iff ans(Q,D,Σ) �= ∅. Note that query answering under gen-
eral TGDs is undecidable [2], even when the schema and TGDs are fixed [3]. The two
problems of CQ and BCQ evaluation under TGDs are LOGSPACE-equivalent [10,9].
Moreover, the query output tuple (QOT) problem (as a decision version of CQ evalua-
tion) and BCQ evaluation are AC0-reducible to each other. Henceforth, we thus focus
only on BCQ evaluation, and any complexity results carry over to the other problems.
Decidability of query answering for the guarded case follows from a bounded tree-width
property. The data complexity of query answering in this case is P-complete.

Negative Constraints. Another crucial ingredient of Datalog+/– for ontological mod-
eling are negative constraints (or simply constraints) γ, which are first-order formulas
∀XΦ(X)→⊥, where Φ(X) (called the body of γ) is a conjunction of atoms (without
nulls and not necessarily guarded). We usually omit the universal quantifiers. Under the
standard semantics of query answering of BCQs Q in Datalog+/– with TGDs, adding
negative constraints is computationally easy, as for each ∀XΦ(X)→⊥ we only have to
check that the BCQ Φ(X) evaluates to false in D under Σ; if one of these checks fails,
then the answer to the original BCQ Q is true, otherwise the constraints can simply be
ignored when answering the BCQ Q.

Equality-Generating Dependencies (EGDs). A further important ingredient of Data-
log+/– for modeling ontologies are equality-generating dependencies (or EGDs) σ,
which are first-order formulas ∀XΦ(X) →Xi=Xj , where Φ(X), called the body
of σ, denoted body(σ), is a conjunction of atoms (without nulls and not necessarily
guarded) , and Xi and Xj are variables from X. Such σ is satisfied in a database D
for R iff, whenever there exists a homomorphismh such that h(Φ(X,Y))⊆D, it holds
that h(Xi)= h(Xj). We usually omit the universal quantifiers in EGDs. Adding EGDs
over databases with guarded TGDs along with negative constraints does not increase
the complexity of BCQ query answering as long as they are non-conflicting [5]. Intu-
itively, this ensures that, if the chase (not covered here for reasons of space; cf. [5] for
details) fails (due to strong violations of EGDs), then it already fails on the database D,
and if it does not fail, then whenever “new” atoms (from the logical point of view) are
created in the chase by the application of the EGD chase rule, atoms that are logically
equivalent to the new ones are guaranteed to be generated also in the absence of the
EGDs. This guarantees that EGDs do not have any impact on the chase with respect
to query answering. Non-conflicting EGDs can be expressed as negative constraints of
the form ∀XΦ(X), Xi �=Xj →⊥. In the following, for ease of presentation, all non-
conflicting EGDs are expressed as such special forms of negative constraints.

Datalog+/– Ontologies. A Datalog+/– ontologyKB =(D,Σ), where Σ=ΣT ∪ΣNC ,
consists of a database D, a finite set of TGDs ΣT , and a finite set of negative constraints
and non-conflicting EGDs ΣNC . We say KB is linear iff ΣT is linear. Example 1 il-
lustrates a simple linear Datalog+/– ontology, which is used in the sequel as a running
example.
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3 Inconsistency in Datalog+/– Ontologies

In this section, we define the notions of consistency for Datalog+/– ontologies and of
data repairs for inconsistent Datalog+/– ontologies. We also define consistent answers
based on such repairs and on the intersection of such repairs in Datalog+/–. We show
that BCQ answering under the consistent answer semantics is co-NP-complete in the
data complexity for guarded and linear Datalog+/– ontologies and that BCQ answering
under the intersection semantics is co-NP-complete in the data complexity for guarded
Datalog+/– ontologies. We also characterize the intersection semantics via the notion
of culprits, which are minimal inconsistent subsets of the database.

Definition 1 (Consistency). A Datalog+/– ontology KB = (D,Σ) is consistent iff
mods(D,Σ) �= ∅.

Note that if ΣNC = ∅, then mods(D,Σ) is not empty. Different works on inconsistency
handling in DLs allow for inconsistency to occur for different reasons. Depending on
the expressive power of the underlying formalism, some works allow for both termino-
logical axioms (TBox) and assertional axioms (ABox) to be inconsistent. In this work,
following the idea from database theory in which formulas in Σ are interpreted as in-
tegrity constraints expressing the semantics of the data contained in D, we assume that
Σ is itself consistent, and inconsistencies can only arise when D and Σ are considered
together.

In the area of relational databases, the notion of repair was used in order to identify
the consistent part of a possibly inconsistent database. A repair is a model of the in-
tegrity constraints that is minimal, i.e., “as close as possible” to the original database.
We now extend the notion of repairs from the database literature to Datalog+/– on-
tologies. Intuitively, data repairs for KB =(D,Σ) are subsets of D that satisfy all the
constraints in Σ and minimally differ from it in the set-inclusion sense.

Definition 2 (Data Repair). Let KB =(D,Σ) be a Datalog+/– ontology. Then, the
set D′ is a data repair for KB iff (i) D′ ⊆D, (ii) mods(D′, Σ) �= ∅, and (iii) there is no
other set D′′ ⊆D such that D′ ⊂D′′ and mods(D′′, Σ) �= ∅. We denote by DRep(KB)
the set of all data repairs for KB .

Example 2. The Datalog+/– ontology KB in Example 1 has four data repairs:

r1 = {directs(john, d1), directs(tom, d1),works in(john, d1),works in(tom, d1)},
r2 = {directs(john, d1), directs(tom, d2),works in(john, d1),works in(tom, d1)},
r3 = {supervises(tom, john), directs(tom, d1),works in(john, d1),works in(tom, d1)},
r4 = {supervises(tom, john), directs(tom, d2),works in(john, d1),works in(tom, d1)}.
In general, there can be several data repairs. The most widely accepted semantics for
querying a possibly inconsistent database is that of consistent answers [1], which are
the answers entailed in every ontology built from a data repair.

Definition 3 (Consistent Answers). Let KB =(D,Σ) be a Datalog+/– ontology, and
Q be a BCQ. Then, Yes is a consistent answer for Q to KB , denoted KB |=Cons Q, iff it
is an answer for Q to each KB ′ =(D′, Σ) with D′ ∈DRep(KB).
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Example 3. Consider again the linear Datalog+/– ontology KB in Example 1 and the
set of its data repairs in Example 2. The atom emp(john) can be derived from every
data repair (since each contains either works in(john, d1) or directs(john, d1)). Hence,
the BCQ Q= emp(john) evaluates to true under the consistent answer semantics.

Answering a query under the consistent answer semantics over a database with arbitrary
negative constraints (but without taking into account TGDs) is co-NP-complete in the
data complexity [8]. The same complexity result holds for BCQ query answering in the
DL-Lite families of ontologies [12]. So, since linear Datalog+/– generalizes DL-Lite [5],
the problem is at least as hard in our case. The next result shows that deciding consistent
answers on (guarded and) linear Datalog+/– ontologies is co-NP-complete in the data
complexity.

Theorem 1. Given a (guarded or) linear Datalog+/– ontology KB and a BCQ Q, de-
ciding whether KB |=Cons Q is co-NP-complete in the data complexity.

To avoid this intractability result, an alternative semantics that considers only the atoms
that are in the intersection of all data repairs has been presented in [12]. It yields a
unique way of repairing inconsistent DL-Lite ontologies, and the consistent answers are
intuitively the answers that can be obtained from that unique set. In the following, we
extend the intersection semantics to Datalog+/– ontologies.

Definition 4 (Intersection Semantics). Let KB =(D,Σ) be a Datalog+/– ontology,
and Q be a BCQ. Then, Yes is a consistent answer for Q to KB under the intersection
semantics, denoted KB |=ICons Q, iff it is an answer for Q to KBI =(DI , Σ), where
DI =

⋂ {D′ |D′ ∈ DRep(KB)}.

Example 4. Consider again the ontology KB =(D,Σ) of the running example. Ana-
lyzing the set of all its data repairs, it is not difficult to verify that DI = {works in(john,
d1), works in(tom, d1)}. Thus, Q = emp(tom) ∧ works in(john, d1) evaluates to true.
As shown in Example 3, Yes is a consistent answer for query Q = emp(john), however,
under the intersection semantics Q evaluates to false.

The following result shows that BCQ answering for guarded Datalog+/– ontologies
under the intersection semantics is co-NP-complete in the data complexity, and thus
harder than for DL-Lite, where it is polynomial [12].

Theorem 2. Given a guarded Datalog+/– ontology KB and a BCQ Q, deciding
whether KB |=ICons Q is co-NP-complete in the data complexity.

We now characterize the intersection semantics through the notion of culprits relative
to a set of negative constraints NC⊆ΣNC, which is informally a minimal (under set
inclusion) inconsistent subset of the database relative to NC.

Definition 5 (Culprit). Given a Datalog+/– ontology KB = (D,ΣT ∪ ΣNC) and
IC ⊆ ΣNC, a culprit in KB relative to IC is a set c ⊆ D such that mods(c,ΣT∪IC) = ∅,
and there is no c′ ⊂ c such that mods(c′, ΣT ∪ IC) = ∅. We denote by culprits(KB , IC)
(resp., culprits(KB)) the set of culprits in KB relative to IC (resp., IC = ΣNC).

Theorem 3 states that the answers to a query under the intersection semantics corre-
spond exactly to the (standard) answers obtained from D −⋃

c∈culprits(KB) c.
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Theorem 3. Let KB =(D,Σ) with Σ = ΣT ∪ΣNC be a Datalog+/– ontology, and Q
be a BCQ. Then, KB |=ICons Q iff (D − ⋃

c∈culprits(KB) c,ΣT ) |= Q.

4 Inconsistency-Tolerant Query Rewriting for Linear Datalog+/–

The first-order (FO) rewritability of queries over an ontology allows to transform them
into FO queries that can be executed over the database alone, i.e., the new queries embed
the dependencies and constraints of the ontology. Since an FO query can be translated
into an equivalent SQL expression, query answering can be delegated to a traditional
relational DBMS, thus exploiting any underlying optimizations. The sublanguage of
Datalog+/– with linear TGDs is FO-rewritable [4]. Recently, [6] presents a rewriting
algorithm, inspired by resolution in logic programming, which deals with so-called
sticky-join sets of TGDs, a class including sets of linear TGDs. However, this algorithm
corresponds to the standard (non-inconsistency-tolerant) semantics for query answer-
ing. More recently, [13] presents a rewriting procedure for inconsistency-tolerant query
answering in DL-LiteA ontologies under the intersection semantics; DL-LiteA belongs
to the DL-Lite family of tractable DLs, which can all be expressed in linear Datalog+/–
(with negative constraints). We now present a rewriting procedure for inconsistency-
tolerant query answering in linear Datalog+/– under the intersection semantics.

4.1 Preliminaries

Under standard query answering in Datalog+/–, a class of TGDs is FO-rewritable iff
for every set of TGDs Σ in that class, and every BCQ Q, there exists an FO query QΣ

such that (D,Σ) |= Q iff D |= QΣ , for every database D. In this work, we show
that the class of linear TGDs is FO-rewritable for consistent query answering under the
intersection semantics. This means that, for every set Σ composed of arbitrary sets ΣT

and ΣNC of linear TGDs and negative constraints, respectively, and every BCQ Q, there
exists an FO query QΣ such that (D,Σ) |=ICons Q iff D |= QΣ , for every database D.
Here, QΣ encodes the set of linear TGDs and the enforcement of the negative con-
straints so that they reflect the intersection semantics for query answering.

The rewriting of a BCQ Q relative to a set Σ of linear TGDs and negative constraints
is accomplished in two steps. First, we analyze how to rewrite the negative constraints
into Q in a way that the rewriting enforces the intersection semantics, i.e., KB |=ICons Q
iff D |= Q′, where Q′ is the rewriting of Q obtained by enforcing the constraints
in ΣNC. This is done independently of the set of linear TGDs. Second, both the query
and the negative constraints in ΣNC may need to be rewritten relative to the set of TGDs.
For this second part, we use Algorithm TGD-rewrite from [6].

Two atoms a and b unify iff there exists a substitution γ (called a unifier for a and b)
such that γ(a)= γ(b). A most general unifier (mgu) is a unifier for a and b, denoted γa,b,
such that for any other unifier γ for a and b, there exists a substitution γ′ such that γ =
γ′ ◦ γa,b. Note that mgus are unique up to variable renaming.

4.2 TGD-Free Case

We first focus on the FO rewriting of a BCQ Q relative to an ontology without TGDs
ΣNC by enforcing the negative constraints in ΣNC, i.e., on obtaining (D,ΣNC) |=ICons Q
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iff D |=Q′, where Q′ is the enforcement of ΣNC in Q. To capture the intersection se-
mantics, we have to establish a correspondence between the minimization of negative
constraints in the rewritingQ′ of Q and the minimization inherently encoded in culprits.
To this end, we introduce the normalization of negative constraints.

Definition 6. Let ΣNC be a set of negative constraints, υ∈ΣNC, and Q be a BCQ.
Let ∼v be an equivalence relation on the arguments in the body of v and the constants in
ΣNC and Q such that every equivalence class contains at most one constant. A normal-
ization instance of v relative to such ∼v is obtained from v by replacing every argument
in the body of v by a representative of its equivalence class (which is a constant if the
equivalence class contains a constant) and adding to the body the conjunction of all s �= t
for any two different representatives s and t such that s is a variable occurring in the
instance, and t is either a variable occurring in the instance or a constant in ΣNC and Q.
The normalization of υ, denoted N (υ), is the set of all such instances of v subject to
all equivalence relations ∼v. The normalization of ΣNC is N (ΣNC) =

⋃
υ∈ΣNC

N(υ).

Example 5. Consider the set of negative constraints ΣNC = {υ1 : p(U,U)→⊥, υ2 :
p(X, Y )∧ q(X)→⊥} and the BCQ Q = ∃Xq(X). Its normalization is N (ΣNC)=
{υ′

1 : p(U, U)→⊥, υ′
2 : p(X,X)∧ q(X)→⊥, υ′

3 : p(X,Y )∧ q(X)∧X �= Y →⊥}.

The following result shows that the normalization of negative constraints does not
change the culprits of an ontology, even in the additional presence of a set of TGDs
ΣT (where the constants in ΣT are considered in the same way as those in ΣNC and Q).

Lemma 1. Let KB = (D,ΣNC ∪ ΣT ) be a Datalog+/– ontology, and Q be a BCQ.
Then, culprits(KB , ΣNC ∪ΣT ) = culprits(KB ,N (ΣNC) ∪ΣT ).

The second step in the FO rewriting of a BCQ Q by enforcing the negative constraints
is to identify the set of normalized negative constraints that must be enforced in Q, i.e.,
the normalized negative constraints that must be satisfied so that only the consistent
answers under the intersection semantics are entailed from D.

Definition 7. Let ΣNC be a set of negative constraints, υ ∈N (ΣNC), and Q be a BCQ.
Then, υ needs to be enforced in Q iff there exists C ⊆Q, C �= ∅, such that C unifies with
B⊆ body(υ) via some mgu γC,B , and there exists no υ′ ∈ N (ΣNC) such that body(υ′)
maps isomorphically to B′ ⊂ body(υ).

Example 6. Consider the linear Datalog+/– ontologyKB from Example 1 and the BCQ
Q = supervises(tom, john). Then, υ′

1 : supervises(tom, john) ∧ manager(john) → ⊥
is a normalized instance of υ1 that must be enforced, and C1 = {supervises(tom, john)}
unifies with B1 = {supervises(tom, john)} via the mgu γC1,B1 = {}.

Example 7. Consider N (ΣNC) from Example 5, and the BCQ Q = ∃Xq(X). Then,
neither υ′

1 nor υ′
2 need to be enforced in Q, while υ′

3 needs to be enforced in Q.

Algorithm Enforcement (see Fig. 1) performs the rewriting of a queryQ by embedding
all negative constraints that must be enforced. The following example shows how the
algorithm works for the ontology KB and the BCQ Q from Example 1.
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Algorithm Enforcement(BCQ Q = ∃G, normalized set of negative constraints IC)
Here, G is a quantifier-free formula, and ∃G is the existential closure of G.

1. F := G;
2. for every υ ∈ IC do
3. for every C ⊆Q, C �= ∅, that unifies with B⊆ body(υ) via mgu γC,B do
4. if there is no υ′ ∈ IC such that body(υ′) maps isomorphically to B′ ⊂ body(υ) then
5. F := F ∧¬∃G ((

∧
X∈var(C) X = γC,B(X))∧γC,B(body(υ))) (where ∃G R is

the existential closure of R relative to all variables in R that are not in G);
6. return ∃F .

Fig. 1. Computing the enforcement of a normalized set of NCs IC relative to a BCQ Q

Example 8. Coming back to Example 6, the enforcement ofΣNC in Q= supervises(tom,
john) ∧ works in(tom, d1), returned by Algorithm Enforcement in Fig. 1, is given by
(Q∧ ¬manager(john)∧ ¬directs(john, d1)). Ignoring ΣT , we have (D,ΣNC) �|=ICons

Q, since Q �∈ DI = {directs(john, d1),works in(john, d1)}; DI is the intersection of
all data repairs in (D,ΣNC). As expected, D �|= Enforcement(Q,N (ΣNC)).

We now establish the correctness of Algorithm Enforcement. The following propo-
sition is used in the proof of the main correctness result in Theorem 4 below. It states
that to answer a query under the intersection semantics, it is only necessary to look at
the set of normalized negative constraints that need to be enforced in Q.

Proposition 1. Let KB = (D,ΣNC) be a Datalog+/– ontology without TGDs, and Q
be a BCQ. Let ΣQ ⊆ N (ΣNC) be the set of constraints that must be enforced in Q.
Then, KB |=ICons Q iff (D,ΣQ) |=ICons Q.

Theorem 4 shows the correctness of Algorithm Enforcement. It is important to note
that here we are now only assuming a Datalog+/– ontology of the form KB =(D,Σ)
whereΣ contains only negative constraints, i.e., no rewriting relative to TGDs is needed.
Though the above results are valid for general Datalog+/– ontologies, Theorem 4 only
holds for Datalog+/– ontologies that do not have TGDs.

Theorem 4. Let KB = (D,ΣNC) be a Datalog+/– ontology without TGDs, and Q be
a BCQ. Then, KB |=ICons Q iff D |= Enforcement(Q,N (ΣNC)).

4.3 General Case

We now concentrate on the general problem of rewriting a BCQ Q relative to a set of
negative constraints and linear TGDs ΣNC ∪ ΣT . To this end, we have to generalize
the enforcement of ΣNC in Q described in the previous section. The following result is
used to show that to enforce ΣNC in Q, it is possible to rewrite the body of the negative
constraints first and then to enforce the new set of negative constraints (containing all
possible rewritings of the negative constraints relative to ΣT ) in Q. It follows immedi-
ately from the soundness and completeness of Algorithm TGD-rewrite from [6].

Lemma 2. Let KB =(D,Σ) with Σ=ΣNC∪ΣT be a linear Datalog+/– ontology. Let
ΣRew be the set of all negative constraints F →⊥ such that F ∈TGD-rewrite(body(υ),
ΣT ) for some υ ∈ΣNC. Then, culprits(KB , Σ)= culprits(KB , ΣRew).
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Algorithm rewriteICons(BCQ Q, set of negative constraints and linear TGDs ΣNC ∪ΣT )
1. ΣRew := {F → ⊥ | F ∈TGD-rewrite(body(υ),ΣT ) for some υ ∈ ΣNC};
2. Qrw := TGD-rewrite(Q,ΣT );
3. out := ∅;
4. for each Q ∈ Qrw do
5. out := out ∪ Enforcement(Q,N (ΣRew));
6. return out.

Fig. 2. Rewriting a BCQ Q relative to a set of negative constraints and linear TGDs Σ under the
intersection semantics; see Fig. 1 for Algorithm Enforcement

As an immediate consequence, query answering in linear Datalog+/– under the inter-
section semantics is invariant to rewriting the negative constraints relative to the linear
TGDs. This result follows immediately from Lemma 2 and Theorem 3.

Proposition 2. Let KB =(D,Σ), Σ=ΣNC∪ΣT , be a linear Datalog+/– ontology. Let
ΣRew be the set of all negative constraints F →⊥ such that F ∈TGD-rewrite(body(υ),
ΣT ) for some υ ∈ΣNC. Then, KB |=ICons Q iff (D,ΣRew ∪ΣT ) |=ICons Q.

The following example illustrates the rewriting of the set of negative constraints in the
running example relative to a corresponding set of linear TGDs.

Example 9. Consider the negative constraint υ1 = supervises(X,Y )∧manager(Y )→⊥
from ΣNC in Example 1. Then, the rewriting of body(υ1) relative to ΣT is given by:

TGD-rewrite(body(υ1), ΣT ) = {rw1 : supervises(X,Y ) ∧ manager(Y ),
rw2 : supervises(X,Y ) ∧ directs(Y,D)} .

Similarly, TGD-rewrite(body(υ1), ΣT ) = {body(υ2)}, and TGD-rewrite(body(υ3),
ΣT ) = {body(υ3)}. (Recall that υ3 is treated as the negative constraint directs(X,D)∧
directs(X,D′)∧D �= D′ →⊥.) Hence, ΣRew = {rw1 → ⊥, rw2 → ⊥, υ2, υ3}.

Algorithm rewriteICons in Fig. 2 computes the rewriting of a BCQ Q relative to a set of
negative constraints and linear TGDs Σ=ΣNC ∪ΣT . The algorithm works as follows.
First, the rewriting of the bodies of the negative constraints in ΣNC are computed relative
to ΣT , using algorithm TGD-rewrite from [6]. Then, similarly, the rewriting of Q is
computed relative to ΣT . Finally, for each query in the rewriting of Q, the algorithm
enforces the normalization of the rewritten set of negative constraints. The following
example illustrates how Algorithm rewriteICons works.

Example 10. Consider again the BCQ Q=manager(john) to the linear Datalog+/– on-
tology Σ=ΣNC∪ΣT from Example 1. First, algorithm rewriteICons computes ΣRew,
the rewriting of ΣNC relative to ΣT , as shown in Example 9. Second,Q is rewritten rela-
tive to ΣT , obtainingQrw = {{manager(john)}, {directs(john, D)}}. Finally, for every
Q′ ∈Qrw, the algorithm computes Enforcement(Q′, ΣRew): for Q′ =manager(john),
we get Enforcement(Q′, ΣRew) = {Q1 = manager(john) ∧ ∀Y ¬supervises(john,
Y )} and for Q′ = {directs(john, D)}, Enforcement(Q′, ΣRew)= {Q2= directs(john,
D) ∧ ∀Y,X,D′¬supervises(john, Y ) ∧ ¬(supervises(X, john) ∧ works in(X, D)) ∧
¬(directs(john, D′) ∧D �= D′)}. Then, the output is out= {Q1, Q2} (= Q1 ∨Q2).
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Both Q1 and Q2 are false on the database D from Example 1, and so the consistent
answer for Q under the intersection semantics is false, which is correct, since DI =⋂

D′∈DRep(KB) D
′ = {works in(john, d1),works in(tom, d1)}, and thus KB �|=ICons Q.

The following theorem shows the correctness of Algorithm rewriteICons.

Theorem 5. Let KB =(D,Σ) with Σ=ΣNC ∪ ΣT be a linear Datalog+/– ontology,
and Q be a BCQ. Then, KB |=ICons Q iff D |= ∨

F∈rewriteICons(Q,Σ) F .

5 Related Work

In the database community, the fields of database repairing and consistent query an-
swering (CQA for short) have gained much attention since the work [1], which provided
a model-theoretic construct of a database repair: a repair of an inconsistent database is a
model of the set of integrity constraints that is minimal, i.e., “as close as possible” to the
original database. Arenas et al. [1] propose a method to compute consistent query an-
swers based on query rewriting that applies to FO queries without disjunction or quan-
tification, and databases with only binary universal integrity constraints without TGDs.
The rewriting applies to and produces FO queries. When a literal in the query can be
resolved with an integrity constraint, the resolvent forms a residue. All such residues
are then conjoined with the literal to form its expanded version. If a literal that has been
expanded appears in a residue, the residue has to be further expanded until no more
changes occur. A rewriting method for a larger subset of conjunctive queries but that is
limited to primary key FDs (a special case of EGDs) was proposed in [11]. The work [7]
summarizes the results of the area of CQA.

More recently, the work [12] studies the adaptation of CQA for DL-Lite ontologies.
In that work, the intersection semantics is presented as a sound approximation of consis-
tent answers that for the DL-Lite family is easier to compute, as well as the closed ABox
version for both of them, which considers the closure of the set of assertional axioms
(ABox, or extensional database) by the terminological axioms (TBox, or intensional
database). Later, in [13], the authors explore FO-rewritability of DL-Lite ontologies un-
der the intersection and closed ABox semantics. The data and combined complexity of
the semantics were studied in [14] for a wider spectrum of DLs. The rewritability re-
sults obtained in this paper for consistent answers under the intersection semantics for
linear Datalog+/– ontologies significantly generalize the previous work for DL-LiteA.
In [14], intractability results for query answering were found for EL⊥ under the in-
tersection semantics, and a non-recursive segment of that language was proved to be
computable in polynomial time. Note that these languages are incomparable with linear
Datalog+/– in the sense that neither subsumes the other.

6 Conclusion

In this paper, we have introduced inconsistency-tolerant query answering under the in-
tersection semantics in linear Datalog+/– ontologies. We have shown that query an-
swering in linear Datalog+/– is first-order rewritable under this inconsistency-tolerant
semantics, and therefore very efficiently computable in the data complexity.
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Abstract. Building on recent interest in distributed logic programming, we take
a model-theoretic approach to analyzing confluence of asynchronous distributed
programs. We begin with a model-theoretic semantics for Dedalus and intro-
duce the ultimate model, which captures non-deterministic eventual outcomes of
distributed programs. After showing the question of confluence undecidable for
Dedalus, we identify restricted sub-languages that guarantee confluence while
providing adequate expressivity. We observe that the semipositive restriction
Dedalus+ guarantees confluence while capturing PTIME, but show that its restric-
tion of negation makes certain simple and practical programs difficult to write. To
remedy this, we introduce DedalusS , a restriction of Dedalus that allows a kind of
stratified negation, but retains the confluence of Dedalus+ and similarly captures
PTIME.

1 Introduction

In recent years there has been optimism that declarative languages grounded in Datalog
can provide a clean foundation for distributed programming [1]. This has led to activity
in language and system design (e.g., [2–5]), as well as formal models for distributed
computation using such languages (e.g., [6–8]).

The bulk of this work has presented or assumed a formal operational semantics
based on transition systems and traces of input events. A model-theoretic semantics
for these languages has been notably absent. In a related paper [9], we developed a
model-theoretic semantics for Dedalus, a distributed logic language based on Datalog,
in which the “meaning” of a program is precisely the set of stable models [10] cor-
responding to all possible temporal permutations of messages. In [9], we show these
models equivalent to all possible executions in an operational semantics akin to those
in prior literature.

In this paper we take advantage of the availability of declarative semantics to ex-
plore the correctness of distributed programs. Specifically, we address the desire to
ensure deterministic program outcomes—confluence—in the face of inherently non-
deterministic timings of computation and messaging.

Using our model-theoretic semantics for Dedalus, we can reason about the set of pos-
sible outcomes of a distributed program, based on what we define as its ultimate models.
We also identify restricted sub-languages of Dedalus that ensure a model-theoretic no-
tion of confluence: the existence of a unique ultimate model for any program in that
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© Springer-Verlag Berlin Heidelberg 2012
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sub-language. The next question then is to identify a sub-language that ensures conflu-
ence without unduly constraining expressivity—both in terms of both computational
power, and the ability to employ familiar programming constructs.

A natural step in this direction is to restrict Dedalus to its semi-positive subset, a
language we call Dedalus+. This is inspired in part by the CALM theorem [11, 1, 12],
which established a connection between confluence and monotonicity. However, we
note that this restriction makes common distributed systems tasks difficult to achieve.

We achieve a more comfortable balance between expressive power, ease of pro-
gramming and guarantees of confluence in DedalusS , which admits a controlled use
of negation that draws inspiration from both stratified negation in logic programming,
and coordination protocols from distributed computing. We present the model-theoretic
semantics of DedalusS , and give it an operational semantics by compiling DedalusS

programs into stylized Dedalus programs that augment the original code with “coordi-
nation” rules that effectively implement distributed stratified evaluation. We believe the
result is practically useful—indeed, DedalusS corresponds closely to Bloom, a practical
programming we have used to implement a broad array of distributed systems [13].

Due to space restrictions, proofs and additional examples are available in [14].

2 Dedalus

Dedalus extends Datalog to model the critical semantic issue from asynchronous dis-
tributed computing: asynchrony across nodes. We use a restricted version of Sacca and
Zaniolo’s choice construct [10], interpreted under the stable model semantics, to model
program behaviors. Our use of the stable model semantics induces a potentially infi-
nite number of distinctions that are not meaningful in an “eventual” sense. Thus, we
introduce the ultimate model semantics as a representation of program output.

We begin this section by reviewing the syntax of Dedalus first presented in Alvaro
et al. [15]. We then review the model-theoretic semantics for Dedalus [9].

2.1 Syntax

Preliminaries. LetU be an infinite universe of values, with N = {0, 1, 2, . . .} ⊂ U.
A relation schema is a pair R(k) where R is a relation name and k its arity. A database

schema S is a set of relation schemas. Any relation name occurs at most once in a
database schema. We assume the existence of an order: every database schema contains
the relation schema <(2). Later, we will explain how < is populated.

A fact over a relation schema R(n) is a pair consisting of the relation name R and
an n-tuple (c1, . . . , cn), where each ci ∈ U. We denote a fact over R(n) by R(c1, ...,

cn). A relation instance for relation schema R(n) is a set of facts whose relation is R. A
database instance maps each relation schema R(n) to a corresponding relation instance
for R(n).

A rule ϕ consists of several distinct components: a head atom head(ϕ), a set pos(ϕ)
of positive body atoms, a set neg(ϕ) of negative body atoms, a set of inequalities ineq(ϕ)
of the form x < y, and a set of choice operators cho(ϕ) applied to the variables. The
conventional syntax for a rule is:
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head(ϕ)← f 1, . . . , f n,¬g 1, . . . ,¬g m, ineq(ϕ), cho(ϕ).

where fi ∈ pos(ϕ) for i = 1, . . . , n and gi ∈ neg(ϕ) for i = 1, . . . ,m.
Dedalus maintains the usual Datalog safety restrictions: every variable symbol V in

a rule must appear in some atom in pos. For readability, we will use the underscore
symbol ( ) to represent a variable that appears only once in a rule.

Spatial and Temporal Extensions. Given a database schema S, we use S+ to denote
the schema obtained as follows. For each relation schema r(n) ∈ (S \ {<}), we include a
relation schema rn+1 in S+. The additional column added to each relation schema is the
location specifier. By convention, the location specifier is the first column of the relation.
S+ also includes <(2), and a relation schema node(1): the finite set of node identifiers that
represents all of the nodes in the distributed system. We call S+ a spatial schema.

A spatial fact over a relation schema R(n) is a pair consisting of the relation name R
and an (n + 1)-tuple (d, c1, . . . , cn) where each ci ∈ U, d ∈ U, and node(d). We denote
a spatial fact over R(n) by R(d, c1, ..., cn). A spatial relation instance for a relation
schema r(n) is a set of spatial facts for r(n+1). A spatial database instance is defined
similarly to a database instance.

Given a database schema S, we use S∗ to denote the schema obtained as follows.
For each relation schema r(n) ∈ (S \ {<}) we include a relation schema r(n+2) in S∗. The
first additional column added is the location specifier, and the second is the timestamp.
By convention, the location specifier is the first column of every relation in S∗, and the
timestamp is the second. S∗ also includes <(2) (finite), node(1) (finite), time(1) (infinite)
and timeSucc(2) (infinite), We call S∗ a spatio-temporal schema.

A spatio-temporal fact over a relation schema R(n) is a pair consisting of the relation
name R and an (n + 2)-tuple (d, t, c1, . . . , cn) where each ci ∈ U, d ∈ U, t ∈ U, node(d),
and time(t). We denote a spatial fact over R(n) by R(d, t, c1, ..., cn).

A spatio-temporal relation instance for relation schema r(n) is a set of spatio-temporal
facts for r(n+2). A spatio-temporal database instance is defined similarly to a database
instance; in any spatio-temporal database instance, time(1) is mapped to the set contain-
ing a time(t) fact for all t ∈ N, and timeSucc(2) to the set containing a timeSucc(x,y) fact
for all y = x + 1, (x, y ∈ N).

We will use the notation f@t to mean the spatio-temporal fact obtained from the
spatial fact f by adding a timestamp column with the constant t.

A spatio-temporal rule over a spatio-temporal schema S∗ is a rule of one of the
following three forms:

p(L,T,W)← b1(L,T,X1), ..., bl(L,T,Xl), ¬c1(L,T,Y1), ..., ¬cm(L,T,Ym),

node(L), time(T), ineq(ϕ).
p(L,S,W)← b1(L,T,X1), ..., bl(L,T,Xl), ¬c1(L,T,Y1), ..., ¬cm(L,T,Ym),

node(L), time(T), timeSucc(T,S), ineq(ϕ).
p(D,S,W)← b1(L,T,X1), ..., bl(L,T,Xl), ¬c1(L,T,Y1), ..., ¬cm(L,T,Ym),

node(L), time(T), time(S), choice((L, T, B),(S)), node(D), ineq(ϕ).

In the rules above, B is a tuple containing all the distinct variable symbols in X1, . . . , Xl,
Y1, . . . , Ym. The variable symbols D and L may appear in any of W, X1, ..., Xl, Y1, ...,

Ym, whereas T and S may not. Head relation name p may not be time, timeSucc, or node.
Relations b1, ..., bl, c1, ..., cm may not be timeSucc, time, or <.

The first kind is a deductive rule, the second an inductive rule, and the last an asyn-
chronous rule. The last two kinds of rules are collectively called temporal rules.
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The use of a single location specifier and timestamp in rule bodies corresponds to
considering deductions that can be evaluated at a single node at a single point in time.

The choice construct is from Saccà and Zaniolo [10] and is used to model the fact that
the network may arbitrarily delay, re-order, and batch messages. We use the causality
rewrite of Alvaro et al. [9], which restricts choice in the following way: a message sent
by a node x at local timestamp s cannot cause another message to arrive in the past
of node x (i.e., at a time before local timestamp s). Intuitively, the causality constraint
rules out models corresponding to impossible executions, in which effects are perceived
before their causes. Full details about choice and the causality constraint are available
in a companion paper [9].

A Dedalus program is a finite set of causally rewritten spatio-temporal rules over
some spatio-temporal schema S∗.

Syntactic Sugar. The restrictions on timestamps and location specifiers suggest a nat-
ural syntactic sugar that omits boilerplate usage of timestamp attributes and location
specificers, as well as the use of node, time, timeSucc, and choice in rule bodies. Exam-
ple deductive, inductive, and asynchronous rules are shown below.

p(W)← b1(X1), ..., bl(Xl), ¬c1(Y1), ..., ¬cm(Ym).

p(W)@next← b1(X1), ..., bl(Xl), ¬c1(Y1), ..., ¬cm(Ym).

p(W)@async← b1(X1), ..., bl(Xl), ¬c1(Y1), ..., ¬cm(Ym).

In any rule, the body location specifier can be accessed by including a variable symbol
or constant prefixed with # as any body atom’s first argument. In asynchronous rules,
the head location specifier can be accessed in a similar manner in the head atom, as
shown in the following rule.
p(#D,L,W)@async← b(#L,D,W), ¬c(#L,L).
The head and body location specifiers are D and L respectively. D may appear in the

body, L may appear in the head, and L may appear duplicated in the body.

2.2 Semantics

We only consider Dedalus programs whose deductive rules are syntactically stratified.
An input schema SI for a Dedalus program P with spatio-temporal schema S∗ is a

subset of P’s spatial schema S+. Every input schema contains the node relation; we will
not explicitly mention the presence of node when detailing an input schema. A relation
in SI is called an EDB relation. All other relations are called IDB.

An EDB instance E is a spatial database instance that maps each EDB relation r to
a finite spatial relation instance for r. The active domain of an EDB instance E for a
program P is the set of constants appearing in E and P. Every EDB instance maps the <
relation to a total order over its active domain. We can view an EDB instance as a spatio-
temporal database instanceK . For every r(d,c1,...,cn) ∈ E, the fact r(d,t,c1,...,cn) ∈
K for all t ∈ N. Intuitively, EDB facts “exist at all timesteps.”

We refer to a Dedalus program together with an EDB instance as a Dedalus instance.
The behavior of a Dedalus program can be viewed as a mapping from EDB instances
to spatio-temporal database instances. We use the stable model semantics to describe
this mapping. Intuitively, there is a one to one correspondence between stable models
and values for timestamps for all messages that obey the causality rewrite [9].
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Example 1. Take the following Dedalus program with input schema {q}. Assume the
EDB instance is {node(n1), q(n1)}.
p(#L)@async← q(#L).

Let the power set of X be denoted P(X). For each S ∈ P(N \ {0}), where |S | = |N|, the
following are exactly the stable models: {node(n1)}∪ {p(n1,i) | i ∈ S }∪ {q(n1,i) | i ∈ N}.

Since q is part of the input schema, it is true at every time. Every time involves a
separate choice of time for p, which must be later than time 0. The causality constraint
rules out elements of the power set with finite cardinality [9].

Ultimate Models. Stable models highlight uninteresting temporal differences that may
not be “eventually” significant. Intuitively, there would be different stable models for
different message orderings, even when those orderings were not meaningful because
they represented some commutative operation. An example appears in Appendix F
of [14]. In order to rule out such behaviors from the output, we will define the con-
cept of an ultimate model to represent a program’s “output.”

An output schema for a Dedalus program P with spatio-temporal schema S∗ is a
subset of P’s spatial schema S+. We denote the output schema as SO.

Let �� map spatio-temporal database instances T to spatial database instances. For
every spatio-temporal fact r(p,t,c1,...,cn) ∈ T , the spatial fact r(p,c1,...,cn) ∈ ��T
if relation r is in SO and ∀s . (s ∈ N ∧ t < s) ⇒ (r(p,s,c1,...,cn) ∈ T ). The set of
ultimate models of a Dedalus instance I is {��(T ) | T is a stable model of I}. Intuitively,
an ultimate model contains exactly the facts in relations in the output schema that are
eventually always true in a stable model.

Note that an ultimate model is always finite because of the finiteness of the EDB,
the safety conditions on rules, the restrictions on the use of timeSucc and time, and the
prohibition on binding timestamps to non-timestamp attributes. A Dedalus program
only has a finite number of ultimate models for the same reason.

Example 2. For Example 1 with SO = {p}, there are two ultimate models: {} and {p(n1)}.
The latter corresponds to an element of the power set S such that ∃x .∀y . (y > x) ⇒
(y ∈ S ). The former corresponds to an element S that does not have this property.

3 Refining Dedalus

Dedalus can express a broad class of distributed systems but this flexibility comes at
a cost. As we have shown, a Dedalus program may have multiple ultimate models.
However, it is often desirable to ensure that a program has a single, deterministic output,
regardless of non-determinism in its behavior.

Example 3. A simple asynchronous marriage ceremony:
i do(X)@async← i do edb(X).
runaway()← ¬i do(bride), i do(groom).
runaway()← ¬i do(groom), i do(bride).
runaway()@next← runaway().
i do(X)@next← i do(X).
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The intended meaning of the program is that the marriage is off (runaway() is true) if one
party says “I do” and the other does not. However, the Dedalus program as given does
not match this specification. Any stable model where i do(groom) and i do(bride) dis-
agree in their first chosen timestamps yields an ultimate model containing runaway().
If the votes are assigned the same timestamp, the ultimate model does not contain
runaway(). See Appendix A of [14] for a version of this example involving asynchrony.

In this case, there is a preferred model where negation is not applied to a set until
its content has been fully determined. This is akin go the notion of a perfect model
in Datalog. Typically, a programmer would induce this preferred model by inserting
coordination code (e.g., voting or consensus between all communicating agents) to en-
sure that there are no outstanding messages in flight, before applying a summarizing
operation like negation.

In the remainder of this section, we explore the aspects of Dedalus that allow such
ambiguities and propose a restricted language Dedalus+ that rules them out (but com-
plicates the specification of programs). In Section 4, we consider a different language—
DedalusS —that allows relatively intuitive program specifications like our examples, but
narrows their interpretation to a single, “preferred” model.

3.1 Problems with Dedalus

A Dedalus program is confluent if, for every EDB instance, it has a single ultimate
model. A program that is not confluent is diffluent. Confluence is a desirable, albeit
conservative, correctness property for a distributed program. A program that is conflu-
ent produces deterministic output despite any non-deterministic behaviors that might
occur during its execution. For example, if we could show that a data replication pro-
tocol was confluent, we could prove a version of the commonly desired property that
all replicas be “eventually consistent” after all messages have been delivered [16, 17].
Confluence may be viewed as a specialization of the more general notion of consistency
of distributed state.

Lemma 1. Confluence of Dedalus programs is undecidable.

This result is hardly surprising, as confluence is defined over all EDB instances. Another
symptom of Dedalus being “too big” a language is its expressive power.

Lemma 2. Dedalus subsumes PSPACE.

3.2 Dedalus+

Distributed programs that produce non-deterministic output or have exponential run-
times are often undesirable. Since checking for confluence in Dedalus is undecidable,
we present a restriction of Dedalus that allows only confluent programs and prove that
it captures exactly PTIME.

A Dedalus program is semipositive if the ¬ symbol is only used on EDB relations. A
Dedalus program P has guarded asynchrony if for every relation p appearing in the head
of an asynchronous rule, the program P has a rule p(X)@next ← p(X). The language of
semipositive Dedalus programs with guarded asynchrony is called Dedalus+.
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To show that all Dedalus+ programs are confluent, we begin by showing that
Dedalus+ programs are temporally inflationary: if a stable model of a Dedalus+ in-
stance contains a spatio-temporal fact f@t, then it also contains f@t+1 (and thus the
ultimate model contains f).

Lemma 3. Dedalus+ programs are temporally inflationary.

Theorem 1. Dedalus+ programs are confluent.

Since a Dedalus+ program has a unique ultimate model, the specific choice of values
for timestamps does not affect the ultimate model. In particular, we can assume that the
timeSucc of the body timestamp is always chosen.

Corollary 1. Define A(P) to be the program transformation that converts every asyn-
chronous rule ϕ of Dedalus+ program P into an inductive rule by undoing the causality
and choice rewrites, dropping the choice operator, and adding timeSucc(T,S) to pos(ϕ).
Then, the ultimate model ofA(P) is the same as the ultimate model of P.

Of course, there are confluent Dedalus programs not in Dedalus+ (see Appendix E
of [14]). Not only are Dedalus+ programs confluent, but they also capture exactly
PTIME.

Lemma 4. Define the program transformation I(P) in the following way: in every in-
ductive rule of Dedalus+ program P—except any basic persistence rule for a relation
that appears in the head of an asynchronous rule—remove the timeSucc(T,S) body atom,
and replace all instances of the variable S with the variable T. The ultimate model of
I(P) is the same as the ultimate model of P.

Theorem 2. Dedalus+ captures exactly PTIME.

4 DedalusS

The marriage program from Example 3 uses IDB negation to determine the truth value
of runaway, and is thus not directly expressible in Dedalus+. To avoid using IDB
negation, we can rewrite the program to “push down” negation to the EDB relations
groom i do and bride i do, and then derive the runaway IDB relation positively as shown
in Example 4.

While the rewrite is straightforward, a majority of the program’s rules need to be
modified. Note that since Example 4 is in Dedalus+, it is confluent; therefore, it is not
subject to the non-deterministic output observed in the original program (Example 3).

Example 4. An asynchronous marriage ceremony without IDB negation:
i dont(X)@async← ¬i do edb(X).
runaway()← i dont(bride).
runaway()← i dont(groom).
runaway()@next← runaway().
i dont(X)@next← i dont(X).
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Programs involving negation of recursion, such as the distributed garbage collection
program presented in Appendix B of [14], present a more difficult problem, as negation
must be pushed down through recursion. The best known techniques for this may result
in unacceptable overhead as they involve doubling the arity of relations.

In general, the restriction of negation to EDB relations presents a significant barrier
to expressing practical programs. In this section, we introduce DedalusS , an extension
of Dedalus+ that allows stratified IDB negation. As one might expect, DedalusS retains
the benefits of Dedalus+. We provide an operational semantics for DedalusS , based on
the one for Dedalus [9], inspired by coordination protocols from distributed systems.

4.1 Safe IDB Negation

The stratified semantics for logic programs with negation is both intuitive and cor-
responds to common distributed systems practices: negation is not applied until the
negated relation is “done” being computed. After some preliminary definitions, we in-
troduce a semantics for stratifiable Dedalus programs.

The PDG of a Dedalus program P with spatio-temporal schema S∗ is a directed
graph with one node per relation; each node i has a label L(i). If node i represents
relation p, then L(i) = p. There is an edge from the node with label q to the node with
label p if relation p appears in the head of a rule with q in its body. If some rule with
p in the head and q in the body is asynchronous (resp. inductive), then the edge is said
to be asynchronous (resp. inductive). If some rule with p in the head has ¬q in its body,
then the edge is said to be negated. Collectively, asynchronous and inductive edges are
referred to as temporal edges. The PDG does not contain nodes for the node, timeSucc,
or time relations, or any relation introduced in the causality [9] or choice [10] rewrites.

DedalusS is the language of Dedalus programs with guarded asynchrony whose
PDG does not contain any cycles through negation. As is standard, a DedalusS program
can be partitioned into strata. The stratum of a relation r is the largest number of negated
edges on any path from r. Each stratum of an n-stratum DedalusS program can be
viewed as a Dedalus+ program. Stratum i’s program, Pi, consists of all rules whose
head relation is in stratum i. The output schema of Pi contains all relations in stratum
i + 1, and Pi’s EDB contains all relations in stratum j < i. P0’s EDB contains all EDB
relations. Pn’s output schema contains all relations in P’s output schema.

The ultimate model of a DedalusS program is the ultimate model Pn(. . . P1(P0(E)) . . .),
obtained by a stratum-order evaluation.

Since a DedalusS program is a straightforward composition of Dedalus+ programs,
we can apply several previous results. Note that DedalusS programs are temporally
inflationary.

Corollary 2. DedalusS programs are confluent.

Note that every Dedalus+ program is a DedalusS program, and every DedalusS pro-
gram has a constant number of strata in the size of its input. Thus we have:

Corollary 3. DedalusS programs capture exactly PTIME.
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4.2 Coordination Rewrite

While the model-theoretic semantics of DedalusS are clear, its negation semantics are
different than those of Dedalus. Thus, we cannot directly apply the correspondence to
a distributed operational semantics in Alvaro et al. [9]. Fortunately, we can rewrite any
DedalusS program to a Dedalus program.

Given a DedalusS program S , the coordination rewrite P(S ) of S is the Dedalus
program obtained by adding p done() to the body of any rule in S that contains a ¬p(...)
atom and adding rules to define p done() as described below.

We will see that p done() has the property that in any stable modelM if p done(l,t) ∈
M, then p done(l,s) ∈ M for all timestamps s > t. Furthermore, if p done(l,t) ∈ M,
then p(l,s,c1,...,cn) ∈ M implies that p(l,t,c1,...,cn) ∈ M for all timestamps s > t.
Intuitively, p done() is true when the content of p is sealed (henceforth unchanging).

A collapsed PDG of a Dedalus program P is the graph obtained by replacing each
strongly connected component of the PDG of P with a single node i, such that L(i) com-
prises the set of all relations from the component. If a strongly connected component
has any asynchronous edges, we call the resulting collapsed node async recursive. Each
node in the collapsed PDG whose label contains a relation names in SO is called an
output node. Note that a collapsed PDG is acyclic.

For EDB relations p, the rule for p done is p done(). For IDB relations p, we present
p done() for non-async-recursive nodes and async recursive nodes separately.

Non-Async-Recursive Nodes. For non-async-recursive nodes, we compute a done fact
for each rule, then collate these into a done fact for each relation. The done fact for a
deductive rule is true when all of the relations in the body of the rule are henceforth
unchanging. We assume guarded asynchrony applies to the rules in this section.

Let i be a non-async-recursive node. Repeat the following for each element of p ∈
L(i). Assume the rules in P with head relation p are numbered 1, . . . , ip.

The rule for p done() is: p done()← r1 done(), ..., rip done().

Let the nodes in the collapsed PDG connected via incoming edges to node i be de-
noted by E(i). Let the relations

⋃
k∈E(i) L(k) be named p1, . . . , piq . For each rule 1 ≤ j ≤

ip in P with head relation p, handle rule j according to the cases below.

Deductive: Add the rule: r j done()← p1 done(), ..., piq done().

Asynchronous: For an asynchronous rule, we need to ensure that there are no messages
that have not yet been delivered, before we derive r j done(). We do this by adding rules
to record all sent messages, and rules for receivers to send acknowledgements back to
senders. When a sender has received an acknowledgement for each sent message, and
there are no more messages to send, he indicates this to the receiver. In the vacuous
case where a sender has no messages to send to a receiver, he also indicates this to
the receiver. When a receiver has been notified by all nodes that there are no in-flight
messages, he can derive r j done(). The rules to express this protocol are in Appendix D
of [14].

Async Recursive Nodes. The difficulty with a relation p in an async recursive node
is that r is done when all messages have been received in the node, and all messages
have been received if p is done. To circumvent this circular dependency, we introduce a
specialized two-phase voting protocol.
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Consider an async recursive node i. Let the asynchronous rules with head relations
in L(i) be numbered 1, . . . , ip. Add the rule: all acki() ← r1 done(), ..., rip done().

For each rule j, add the rules for asynchronous rules shown in Appendix D of [14],
except for the last two rules. Instead write:

r j not done()← p j to send(X), ¬p j ack(X).
r j done()← ¬r j not done().

We perform a two-round voting protocol among the nodes; the node with the minimum
identifier is the master. We assume that guarded asynchrony does not apply to the rela-
tions in the head of any asynchronous rule in the following protocol. The rules shown
below begin the first round of voting. Nodes vote complete 1i if all acki is true—if they
have no outstanding unacknowledged messages. Votes are sent to the master.
not node min(L1)← node(L1), node(L2), L2 < L1.
node min(L)← ¬not node min(L), node(L).
start round 1i()← node min(#L,L), ¬round 1i().

round 1i()@next← start round 1i().

round 1i()@next← round 1i(), ¬start round 2i().

vote 1i(#N)@async← start round 1i(), node(N).

complete 1i(#M,N)@async← vote 1i(#N), all acki(#N), node min(#N,M).

incomplete 1i(#M,N)@async← vote 1i(#N), ¬all acki(#N), node min(#N,M).

To persist votes until round 1 begins again, these rules are instantiated for k = 1 and 2.
complete ki(N)@next← complete ki(N), ¬start round 1i().

incomplete ki(N)@next← incomplete ki(N), ¬start round 1i().

To count votes, we assume the following rules are instantiated for k = 1 and 2. Round
1 is restarted if some node votes incomplete 1i in round 1—i.e., it has an outstanding
unacknowledged message – or incomplete 2i in round 2.
recv ki(N)← complete ki(N).

recv ki(N)← incomplete ki(N).

not all recv ki()← node(N), ¬recv ki(N).

not all comp ki()← node(N), ¬complete ki(N).

start round 1i()← ¬not all recv ki(), not all comp ki().

Once a node has received a vote 1i vote solicitation, it starts keeping track of whether it
has sent any messages in the async recursive component; this information is erased if
another vote 1i solicitation is received. The causality constraint ensures that ¬all acki()

is true if a message is sent, as messages cannot be instantly acknowledged.
senti()← ¬all acki().

senti()@next← senti(), ¬vote 1i().

Round 2 is started by the master if no node has an outstanding message.
start round 2i()← ¬not all recv 1i(), ¬not all comp 1i(), node min(#L,L).

The voting for round 2 is shown below. Nodes vote incomplete 2i if they have sent any
messages since the last vote 1i solicitation. Recall that any incomplete 2i votes result in
the protocol restarting with round 1.
vote 2i(#N)@async← start round 2i(), node(N).

complete 2i(#M,N)@async← vote 2i(#N), all acki(#N), ¬senti(#N), node min(#N,M).

incomplete 2i(#M,N)@async← vote 2i(#N), senti(#N), node min(#N,M).

The entire async recursive node i is done when all nodes have voted complete 2i.
done recursioni()← ¬not all recv 2i(), ¬not all comp 2i().

Finally, for every relation p ∈ L(i), add the rule: p done() ← done recursioni().
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This program transformation produces a Dedalus+ program equivalent to any
DedalusS program. The rules for computing p done have the desired effect.

Lemma 5 (Sealing). Assume a DedalusS program S with relation p. The Dedalus pro-
gram P(S ) contains a relation p done with the following property: in any of its stable
modelsM, if p done(l,t) ∈ M, then p done(l,s) ∈ M for all timestamps s > t. Further-
more, if p done(l,t) ∈ M, then p(l,s,c1,...,cn) ∈ M implies that p(l,t,c1,...,cn) ∈
M for all timestamps s > t.

The above Lemma implies that the ultimate model of DedalusS program S is the same
as the ultimate model of Dedalus program P(S ), as relations in lower strata are com-
plete before higher strata rules are satisfiable. See Appendix C of [14] for an example
of applying the program transformation P.

In distributed systems, global computation barriers are commonly enforced by pro-
tocols based on voting: the two-phase commit protocol from distributed databases is a
straightforward example [18]. In the protocol from the program transformation P, ev-
ery agent responsible for a fragment of the global state must “vote” that every message
they send to the coordinator has been acknowledged. The coordinator must tally these
votes and ensure that the vote is unanimous for all agents. If the protocol completes
successfully, the coordinator may proceed past the barrier.

5 Related Work

The purely declarative semantics of Dedalus, based on the reification of logical time
into facts, are close in spirit and interpretation to Statelog [19], the languages proposed
by Cleary and Liu [20–22], and work in temporal deductive databases [23].

Significant recent work ([2–5]) has focused on using deductive database languages
extended with networking primitives to specify and implementing network protocols
and distributed systems. Theorem 1 resembles the correctness proof of “pipelined semi-
naive evaluation” for distributed Datalog presented by Loo et al. [24]. In general, how-
ever, the language extensions proposed in much of this prior work added expressivity
and domain applicability but compromised declarativity, making formal analysis diffi-
cult [25, 7].

Recently, Ameloot et al. explored Hellerstein’s CALM theorem using relational
transducers [6]. They proved that monotonic first-order queries are exactly those queries
that can be computed in a coordination-free fashion using transducers. Some of their as-
sumptions differ from ours—for example, they assume that all messages sent by a node
are multicast to a fixed neighbor set, whereas Dedalus permits arbitrary unicast.

Abiteboul et al. recently proposed Webdamlog [12], another distributed variant of
Datalog that bears many similarities to Dedalus. They demonstrate that Webdamlog
has an operational semantics similar to the operational semantics in Dedalus [9], and
provide conservative conditions for confluence based on a variant of (node-local) strati-
fication. Our work additionally provides a model-theoretic semantics for DedalusS that
corresponds to the operational semantics. DedalusS programs (which are guaranteed to
be confluent) also admit a broader use of negation—ensured via a synthesized coordi-
nation protocol—than the stratification conditions of Webdamlog.
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architecture for distributed storage systems. In: NSDI (2009)

4. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The
design and implementation of a declarative sensor network system. In: SenSys (2007)

5. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P.,
Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Communications of the
ACM 52(11), 87–95 (2009)

6. Ameloot, T.J., Neven, F., Van den Bussche, J.: Relational Transducers for Declarative Net-
working. In: PODS (2011)

7. Navarro, J.A., Rybalchenko, A.: Operational Semantics for Declarative Networking. In: Gill,
A., Swift, T. (eds.) PADL 2009. LNCS, vol. 5418, pp. 76–90. Springer, Heidelberg (2008)
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Abstract. The discovery, representation and reconstruction of Business
Networks (BN) from Network Mining (NM) raw data is a difficult prob-
lem for enterprises. This is due to e.g. complex business processes within
and across enterprise boundaries, heterogeneous technology stacks, and
fragmented data. To remain competitive, visibility into the enterprise and
partner networks on different, interrelated abstraction levels is desirable.

We present an approach to represent and reconstruct one part of the
BN - the (technical) integration networks - from NM raw data using
Datalog. The raw data expressed as integration network model is rep-
resented as Datalog facts, on which Datalog rules are applied to infer
and thus reconstruct the network. We have built a system that is used
to apply this approach to real-world enterprise landscapes and we report
on our experience with this system.

Keywords: Business Network, Datalog, Knowledge Representation, Linked
Data, Logic Programming, Network Inference, Network Mining.

1 Introduction

Enterprises are part of value chains consisting of business processes connecting
intra- and inter-enterprise participants. The network that connects these par-
ticipants with their technical, social and business relations is called a Business
Network. Even though this network is very important for the enterprise, there
are few - if any - people in the organization who understand this network as
the relevant data is hidden in heterogeneous enterprise system landscapes. To
change that, Network Mining (NM) systems are used to discover and extract raw
data [15] - be it technical data (e.g. configurations of integration products like
Enterprise Service Buses (ESB) [12]) or business data (e.g. information about
a supplier in a Supplier Relationship Management (SRM) product). The task
at hand is to reconstruct the “as-is” Business Networks from this incomplete,
fragmented, cross-domain NM data.

In the system description we present an approach to represent and recon-
struct the technical aspect of a Business Network, called Integration Network,
from discovered raw data using Datalog. We describe how the knowledge hidden
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in the NM raw data can be represented independent of their original domains as
integration model, for which we have chosen a relational representation. To com-
pute the network we use Datalog rule-based inference programs, which contain
rules to e.g. identify entity equivalences, compute edges and semantic references
and deal with human additions. We have validated our approach on simulated
integration network data and report our experience with the network inference
Datalog system in real-world enterprise networks.

In section 2 design principles and decisions are discussed. Section 3 sketches
the integration model and inference approach, and section 4 describes our expe-
rience with real-world customer landscape reconstruction. Section 5 concludes
with related work, before we summarize and give an outlook in section 6.

2 Design Principles and Decisions

The major design decisions taken were about finding a representation for an
integration model and a language to express inference algorithms. We needed
to select (1) an approach, which does not require to modify the system when
changing the inference programs or the integration model, (2) a well-understood
representation for information suitable for the inference approach, and (3) a suf-
ficiently powerful inference technique, simple enough to be used by our customers
and partners to define their own inference programs.

The necessity of (1) is derived from developing the inference programs in the
early prototypes. The domain of the data and the scope of inference evolved -
and it will continue to do so as more data sources are integrated and inference is
refined. Hence the lifecycle of the data model and of the inference programs needs
to be decoupled from that of the system. Since system landscapes and business
networks for large enterprises are very complex and many implementations need
customer-specific modifications or extensions both (2) and (3) are required. As
the relational model is a foundation for most business applications and is thus
well-understood by customers, it is a natural choice for (2). Consequently, we
initially considered SQL and its imperative extensions to express inference pro-
grams. However, as network analysis and inference are expressed more naturally
using recursive rules we moved towards logic programming languages like Prolog
or Datalog, choosing Datalog for its simpler semantics.

3 Network Representation and Inference Approach

The integration network model as virtual “as-is” enterprise landscape covers
a representative intersection of entities from the enterprise integration middle-
ware space [12]. Although this domain has many aspects, which are treated
differently in different system implementations, we identified a common integra-
tion model. The basic entities relevant for the inference are nodes, i.e. logical
entities like applications or tenants, called System, running on physical hosts,
and edges representing the communication between systems via messages, the
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MessageFlow. Technically, messages are exchanged over interfaces, Interface, and
channels, containing e.g. services, bindings and operations, which we represent as
IncomingConfiguration and OutgoingConfiguration. The inbound and outbound
configurations are considered separate entities, since they carry important infor-
mation about the message flows, thus helping to reconstruct the edges.

(a) Config. call graph (b) Call graph extension

Fig. 1. Outgoing and incoming configuration call graphs

The algorithm for computing integration networks consists of multiple steps,
which have been identified for a parallel analysis allowing it to scale across
large datasets of mined data. The inference mechanism is independent of the
specific integration and system domains. Unique systems and hosts are identified
by equivalence algorithms and semantic links between hosts and systems are
computed. Based on that, incoming and outgoing configurations are identified
(see Fig. 1(a)) and then used to reconstruct message flows through building
separate call graphs (see Fig. 1(b)) which are merged afterwards.

Listing 1.1. Message flow from outgoing configuration

msg flow (? s y s i d snd , ? s y s i d r e c v ) :−
ou tg o i ng d i s c (? s y s i d snd , ?RCONF) ,
r e c e i v e r d i s c (?RCONF, ? s y s i d r e c v ) .

Listing 1.1 shows a Datalog rule used to reconstruct message flows (msg flow)
within the call graph exploiting relations of unique entity identifiers of outgo-
ing call configurations of the sender (outgoing disc) and the receiver systems
(receiver disc). Then message flows are linked with application and integration
content and custom knowledge is integrated. With custom knowledge, the qual-
ity of the inference mechanism can be improved and information complemented
or enriched.
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4 Results and Experiences

For our system we developed a basic Datalog engine in Java/OSGi based on [18],
that allows to evaluate recursive rules and supports basic data types, compar-
isons and expressions. We applied the system to real-world customer landscapes
containing mediated communication through middleware systems, direct con-
nectivity, e.g. web services, and system landscape information. This real-world
validation allowed the evaluation of cross-middleware inference, combination of
embedded and mediated communication and fragmented information registered
in different domains. With that we showed that the NM auto-discovery and in-
ference is feasible and resulted in highly reliable results. Moreover, our system
is helpful in the everyday work of integration experts, since it gives an overview
of the complete “as-is” network, which is very difficult using existing middle-
ware tools. The system reduces the effort to document integration scenarios and
helps to answer questions where answers are difficult to find today. For instance,
when combining configuration and runtime data, it is possible to find unused
and possibly obsolete interfaces and flows. Hence several customers plan to use
this system in their upgrade projects of their middleware content, as it will
substantially save migration time and effort.

5 Related Work

Our network represention and inference approach are based on Datalog, which
is a well-researched topic [9, 18] that had its revival recently due to good par-
allelization capabilities, latest through [1, 11]. Even in the enterprise analytics
domain, Datalog has been applied, mainly through work of [3–5]. However, these
approaches address non-network inference domains.

In terms of the integration network model, [17] represents closest known re-
lated work, which defines a path algebra used to traverse arbitrary graphs. Simi-
larly we define nodes and edges with inbound and outbound connectors, however
different in terms of meaning and usage.

The linked (web) data research shares similar approaches and methodologies,
which have so far neglected linked enterprise data and mainly focused on RDF-
based approaches [7, 8]. Applications of Datalog in the area of linked data [6, 16]
and semantic web [14] show that it is used in the inference domain, however not
used for network inference.

6 Summary and Future Work

In this paper we define a modeling and inference approach to reconstruct in-
tegration networks from NM raw data using Datalog. The discovered raw data
is represented as Datalog facts to create a domain independent knowledge base
and applied rule-based inference representing a multi-step network inference ap-
proach. We applied our system to real-world enterprise networks.
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Future work will be conducted in several areas, among them extensions to
basic Datalog like constraints in Datalog [13] for model conformance checks,
pruning for efficient evaluation [2] and probability [10] to express levels of cer-
tainty of model instances.
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Abstract. Data exchange is the problem of migrating a data instance from a
source schema to a target schema such that the materialized data on the tar-
get schema satisfies the integrity constraints specified by: TGDs (Tuple Gen-
erating Dependencies), which are universal quantified formulas with additional
existential quantifiers, and EGDs (Equality Generating Dependencies), which
are universal quantified formulas enforcing the equality of two variables. This
paper presents a formulation of the data exchange problem using DATALOG
with choice, which is a non deterministic construct based on stable model se-
mantics. TGDs are represented by rules and a choice predicate is used to non-
deterministically select values for the existential variables. Every EGD can be
naturally represented by a goal rule. However, as in general it expresses a func-
tional dependency, in this case the goal rule can be replaced by a choice predicate
defining the functional dependency inside one of TGD rules. Although classical
certainty semantics for query answering in a data exchange setting can be also de-
fined for DATALOG with choice, this paper explores another direction: searching
for a solution for which a number of given “sensible” queries have uncertainty-
guaranteed answers. The paper discusses properties of privacy-preserving data
exchange and illustrates its complexity. Finally, EGDs are extended to express
count constraints (e.g, an employee may manage at most k departments instead
of only one) and the choice construct is therefore extended to implement count
constraints. The resulting setting can be used to define the exchange of aggregate
data.

Keywords: Datalog, Nondeterminism, Choice, Data Exchange, Privacy, Aggre-
gate Terms.

1 Introduction

Data exchange [6,1,7] is the problem of migrating a data instance from a source schema
to a target schema such that the materialized data on the target schema satisfies the
integrity constraints specified by it. The classical data exchange setting is: (S, T,Σst,
Σt), where S is the source relational database schema, T is the target schema, Σt are
dependencies on the target scheme T and Σst are source-to-target dependencies.

The dependencies in Σst map data from the source to the target schema and are TGD
(Tuple Generating Dependency), which have the following format: ∀X(φS(X) →
∃Y ψT (X,Y) ), where φS(X) and ψT (X,Y) are conjunctions of literals on S and
T , respectively, and X,Y are lists of variables.
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154 D. Saccà and E. Serra

Dependencies in Σt specify constraints on the target schema and can be either TGDs
or EGDs (Equality Generating Dependencies) – the latter ones have the form
∀X(ψT (X)→ x1 = x2 ), where x1 and x2 are variables in X.

As an example, consider a source schema S with one relation DeptEmp(dpt id,
mgr name, eid) listing departments with their managers and their employees. The tar-
get schema T has a relation Dept(dpt id, mgr id, mgr name) for departments and
their managers, and a separate relation for department employees Emp(eid, dpt id).
We assume that each (unique) manager of a department is employed by the same de-
partment and, therefore, cannot manage another department. The source-to-target and
target dependencies are:

Σst = { DeptEmp(d, n, e)→ ∃M ( Dept(d, M, n) ∧ Emp(e, d) ) }
Σt ={ Dept(d, m, n)→ Emp(m, d); Dept(d1, m, n) ∧ Dept(d2, m, n)→ d1 = d2;

Dept(d, m1, n1) ∧ Dept(d, m2, n2)→ m1 = m2 ∧ n1 = n2 }
where all low-case letter variables are universally quantified. The dependency in Σst

derives tuples in Dept for all departments, by adding suitable identifiers for their man-
agers, and tuples in Emp for all employees who are not manager. The first dependency
in Σt adds tuples in Emp for all managers, while the other two enforce the functional
dependencies (FDs) mgr id→ dpt id and dpt id→ mgr id mgr name.

Two problems must be dealt with in order to formulate data exchange dependencies
in DATALOG: (1) handling existential quantifiers in TGDs and (2) implementing EGDs.
In [18,15] existential quantifiers are removed using skolemization and in [11] EGDs are
reformulated using recursive positive logic rules.

In this paper we propose to use the expressive power of DATALOGwith choice ([17])
for recasting the data exchange setting in terms of a logic programming paradigm. In
particular, we implement existential quantifiers by the choice construct and EGDs by
goal rules. To get a flavor of our approach, we present the formulation of the above
example:

Dept(d, m, n)← DeptEmp(d, n, e),DM(m), choice((d, n, e), (m)).

Emp(e, d)← DeptEmp(d, n, e).

Emp(m, d)← Dept(d, m, n).

← Dept(d1, m, n), Dept(d2, m, n), d1 �= d2. (1)

← Dept(d, m1, n1), Dept(d, m2, n2), m1 �= m2. (2)

← Dept(d, m1, n1), Dept(d, m2, n2), n1 �= n2. (3)

where DM is the (possibly countably infinite) domain for manager identifiers. The
choice constructs implements the existential quantifier as it selects a unique man-
ager id for each triple (d, n, e). The goal rule 1 enforces the FD mgr id → dpt id

stated by the first EGD for it derives a contradiction if a same manager manages two
distinct departments. Accordingly, the goal rules 2 and 3 enforce the FD dpt id →
mgr id mgr name. It is interesting to note that all goal rules can be removed by just
rewriting the choice constructs in the first rule, that therefore becomes:

Dept(d, m, n)← DeptEmp(d, n, e),DM(m), choice((d), (m, n)), choice((m), (d)).
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We point out that the above rewriting is made possible because there exists exactly
one rule deriving tuples in Dept and, therefore, the FDs can be locally expressed by the
choice constructs.

The resulting DATALOG program is stratified modulo choice and, then, its so-called
choice models are in general multiple but the existence of at least one with finite size
as well as its computation in polynomial time is guaranteed [17,10,12]. The example
confirms that the choice is a powerful construct to define FDs and, therefore, it may
be very effective in implementing most of EGDs without using goal rules. In the case
EGDs must be instead implemented by a goal rule which a-posteriori enforces the cor-
rect choice, the existence of a choice model is not anymore guaranteed.

It is interesting to remark the correspondence between DATALOG program with strat-
ified choice and weakly acyclic set of TGDs. If this set is not weakly acyclic then the
corresponding DATALOG program with choice is not stratified so that, not only exis-
tence of a choice model is not anymore guaranteed, but there could exist a model with
infinite size.

We point out that the choice formulation does not provide a universal solution even
though, using suitable technicalities (e.g., adding nulls into the domains), one of the
choice model could be considered as the encoding of a universal solution. Note that a
universal solution is relevant for answering queries under the certain semantics. But,
in this paper we address the problem of privacy-preserving data exchange, so that we
are rather interested in guaranteeing “uncertainty” in query answering. To this end, we
analyze the complexity of the following problem for the case of finite domains: given a
number of (sensible) queries, decide whether each of such queries is true in at most half
of the choice models and false in the others. Not surprisingly, this problem is PP-hard
and in PSPACE.

Another problem that is dealt with in this paper is extending EGDs to increase their
expressive power. An EGD typically imposes a sort of functional dependency – for in-
stance, an employee manages at most one department. A natural extension is to express
that an employee manages at most k departments, where k is a given positive integer.
We show that count constraints introduced in [16] can be though of as powerful ex-
tensions of EGDs and, in addition, can be implemented by a suitable extension of the
choice, using set terms and the aggregate set count predicate. Obviously, the notion of
universal solution cannot be in general applied to count constraints.

Finally we show that set terms and count predicates can be exploited to implement
aggregate data exchange.

The paper is organized as follows. In Section 2 we present basic notation and back-
ground for DATALOG with choice. In Section 3 we illustrate how to define a data ex-
change setting using DATALOGwith choice. We then concentrate on privacy-preserving
data exchange in Section 4, illustrate the problem of guaranteing uncertainty in answer-
ing sensible queries and prove its complexity. In Section 5 we show that count con-
straints can be seen as extensions of EGDs and propose an extension of choice that
implements a typical count constraint. As count constraints are based on set terms, we
also illustrate how to use such terms to deal with aggregate data exchange. Finally we
draw the conclusion in Section 6.
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2 DATALOG with Choice

We assume that the reader is familiar with basic notions of relational databases, logic
programming and DATALOG [19,13,2].

We are given a universe U (which is a countable set of constant symbols) and a set S
of relation symbols with given finite arities. Let r be any relation symbol in S, say with
arity k: a tuple on r is any element of Uk, a relation on r is any finite set R of tuples
on r, and the set of all relations on r is denoted by inst(r). A (relational) database
scheme D is a set of different relation symbols r1, . . . , rm〉, with m > 0. A (relational)
databaseD on D is a set of relationsD(r1), . . . , D(rm), where for each i, 1 ≤ i ≤ m,
D(ri) ∈ inst(ri). The active domain of a database D, denoted by UD, is the set of all
constants occurring in D.

A logic program P is a finite set of rules c of the form H(c) ← B(c), where H(c)
is an atom (head of the rule) and B(c) is a conjunction of literals (body of the rule).
A rule with empty body is called a fact. The ground instantiation of P is denoted by
ground(P ); the Herbrand universe and the Herbrand base of P are denoted by UP

and BP , respectively. An interpretation is any subset of BP .
A DATALOG program is a logic program without functions symbols. Predicate sym-

bols can be either extensional (i.e., defined by the facts of a database — EDB predicate
symbols) or intensional (i.e., defined by the rules of the program — IDB predicate sym-
bols). A DATALOG program P has associated a relational database scheme DP , which
consists of all EDB predicate symbols of P . Given a database D on DP , the tuples
of D are seen as facts added to P ; so P on D yields the following logic program
PD = P ∪ {q(t). : q ∈ DP ∧ t ∈ D(q)}. Given an interpretation I and predicate
symbol r in PD, I(r) = {t : r(t) ∈ I}, i.e., if r is seen as a relation symbol, I(r) is a
relation on s.

A DATALOG¬ program is a DATALOG program with negation in the rule bodies.
Given a program P and an interpretation I , pos(P, I) denotes the positive DATALOG
program that is obtained from ground(P ) by (i) removing all rules for which there
exists a negative literal ¬A in the body with A is in I , and (ii) by removing all neg-
ative literals from the remaining rules. Finally, I is a (total) stable model [9] if I =
T∞

pos(P,I)(∅), which is the least fixpoint of the classical immediate consequence trans-
formation for the positive program pos(P, I).

The complexity of computing a stable model of PD is measured according to the
data complexity approach of [3,20] for which the program is assumed to be constant
while the database is variable. It is well known that computing a stable model of a
DATALOG¬ program P requires exponential time (unless P = NP). Actually, deciding
whether there exists a stable model or not is NP-complete [14].

A DATALOG¬ program with stratified negation (i.e. there is no recursion through
negation) is called DATALOG¬s. Computing the unique stable model (coinciding with
the stratified model) of a DATALOG¬s program P on a database D can be done in time
polynomial on the size of D.

A disciplined form of unstratified negation is the choice construct, which is used to
enforce functional dependency (FDs) constraints on rules of a logic program and to
introduce a form of nondeterminism. The formal semantics of the choice can be given
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in terms of stable model semantics [17]. A rule c with choice constructs, called a choice
rule, has the following general format:

c : A← B(Z), choice((X1), (Y1)), . . . , choice((Xk), (Yk)).

where, B(Z) denotes the conjunction of all the literals in the body of c that are not
choice constructs, and Xi, Yi, Z , 1 ≤ i ≤ k, denote vectors of variables occurring in
the body of c such thatXi∩Yi = ∅ andXi, Yi ⊆ Z . Each construct choice((Xi), (Yi))
prescribes that the set of all consequences derived from c, say R, must respect the FD
Xi → Yi. Observe that the FD is local in the sense that it holds inside the portion of
relation that is derived by the rule and not in other possible portions of it that could be
defined by other rules.

The formal semantics of choice is given in terms of stable models by replacing the
above choice c rule with the following rules:

1. Replace c with the rule (modified choice rule):

A← B(Z), chosenc(W ).

where W ⊆ Z is the list of all variables appearing in the choice goals, i.e. W =⋃
1≤j≤k Xj ∪ Yj .

2. Add the new rule (chosen rule):

chosenc(W )← B(Z), ¬diffChoicec(W ).

3. For each choice((Xi), (Yi)) (1 ≤ i ≤ k), add a new rule (diffChoice rule):

diffChoicec(W )← chosenc(W
′), Yi �= Y ′

i .

where (i) the list of variables W ′ is derived from W by replacing each V �∈ Xi

with a new variable V ′ (e.g. by priming those variables), and (ii) Yi �= Y ′
i is true if

V �= V ′, for some variable V ∈ Yi and its primed counterpart V ′ ∈ Y ′
i .

A DATALOG¬ program P with choice rules is called a choice program. The standard
version svP of P is the program obtained from P by applying the above transformation
to every choice rule. Given a databaseD, any stable model of svP (D) is called a choice
model of P (D). Moreover, we say that P is stratified modulo choice if, by considering
choice atoms as extensional atoms, the program results stratified. If P is stratified mod-
ulo choice, then the choice models of P (D) are in general multiple but the existence of
at least one as well as its computation in polynomial time is guaranteed [17,10,12].

Let DATALOG¬s,c denote the set of all DATALOG¬ programs that are stratified mod-
ulo choice. Observe that stable model semantics continues to hold also for a DATALOG¬

program with choice that is not in DATALOG¬s,c; however, both the existence of a stable
model and polynomial computability of one of them is not anymore guaranteed.

Given a program P in DATALOG¬s,c, a (bound) query goal over P is any ground
literal. In order to answer to a query several semantics are defined in [12] as for example
certain and possibility semantics. The answer of a query under certain semantics will
be true if such query is true in each model of the program, while under possibility
semantic, it will be true if the query is true in at least one model. The complexity of the
query response under two semantics are respectively coNP-complete and NP-complete.
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3 Data Exchange in Datalog with Choice

The classical data exchange setting (S, T,Σst, Σt) can be formulated by means of a
DATALOG program P with choice such that the source relational scheme S is the set of
EDB predicates, T is a subset of IDB predicates and the rules of P implement both Σst

andΣt. In addition we assume that a number of additional EDB predicates are available.
They store domain values that will be used in the target database (domain predicates).
We assume that each domain predicate has in general a finite number of elements but it
can also be a countably infinite set. Next we show how to represent Σst and Σt in the
case that the TGDs are weakly acyclic – informally, TGDs are weakly acyclic if there is
no recursion among positions passing through existentially quantified variables, where
a position is a pair of relation scheme symbol R and an attribute A of R (see [6,7] for a
formal definition).

Take any TGD in Σst ∪Σt, say

d : ∀X (φ(X)→ ∃Z ψ(X,Z) )

where φ(X) is a conjunctions of either EDB or IDB predicates, ψ(X,Z) is a conjunc-
tion of IDB predicates, say ψ1(X,Z)∧· · ·∧ψn(X,Z), X and Z are two lists of distinct
variables, every variable in X occurs in φ and possibly in ψ and every variable in Z oc-
curs in ψ. The following rules are associated to the dependency d:

exists choiced(X,Z)← φ(X),DZ(Z), choice((X), (Z)).

ψi(X,Z)← exists choiced(X,Z) 1 ≤ i ≤ n.
where exist choiced is a new IDB predicate symbol (obviously, not included among
the IDB predicates symbols of the target schema) andDZ is a conjunction of the domain
predicates for the variables Z.

For each EGD in Σt, say

∀X (φ(X)→ x1 = x2 )

where x1 and x2 are variables in X and φ(X) is a conjunctions of IDB predicates, we
introduce the constraint:

← φ(X) ∧ x1 �= x2.

Take the example presented in Section 1. The associated DATALOG program with
choice is:

exists choice(d, n, e, m̂)← DeptEmp(d, n, e),DM(m̂), choice((d, n, e), (m̂)). (4)

Dept(d, m, n)← exists choice(d, n, e, m). (5)

Emp(e, d)← exists choice(d, n, e, m). (6)

Emp(m, d)← Dept(d, m, n). (7)

← Dept(d1, m, n), Dept(d2, m, n), d1! = d2. (8)

← Dept(d, m1, n1), Dept(d, m2, n2), m1! = m2. (9)

← Dept(d, m1, n1), Dept(d, m2, n2), n1! = n2. (10)

where DM is the domain of manager ids – this domain can be countably infinite. As
the head of the rule 6 above does not contain any existential variable, it can be simply
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rewritten as: Emp(e, d)← DeptEmp(d, n, e). Then, we can fold the first two rules, thus
obtaining the rule:

Dept(d, M, n)← DeptEmp(d, n, e),DM(m), choice((d, n, e), (m)).

By performing some straightforward rewriting to push down the two goal rule con-
straints into the choice rule, we obtain the following DATALOG¬s,c program (with strat-
ified choice):

Dept(d, m, n)← DeptEmp(d, n, e),DM(m), choice((d), (m)), choice((m), (d)).

Emp(e, d)← DeptEmp(d, n, e).

Emp(m, d)← Dept(d, m, n).

Consider now the case of a data exchange setting with TGDs that are not weakly acyclic.
For instance, referring to our current example, assume that a manager is not anymore
obliged to be employed by its managed department and s/he can manage more than
one department. The constraint that any employee is employed by only one department
must be now explicitly declared. The source-to-target dependency set Σst is unchanged
whereas the target-to-target dependencies become:

Σt ={Dept(d, m, n)→ ∃D Emp(m, D); Emp(e, d)→ ∃ M ∃ N ( Dept(d, M, N) );
Dept(d, m1, n1) ∧ Dept(d, m2, n2)→ m1 = m2 ∧ n1 = n2;

Emp(e, d1) ∧ Emp(e, d2)→ d1 = d2}
The TGDs are not weakly acyclic. Let us show how to formulate this data exchange
example in DATALOG with choice.

Dept(d, m, n)← DeptEmp(d, n, e),DM(m), choice((d), (m)). (11)

Emp(e, d)← DeptEmp(d, n, e). (12)

Emp(m, D)← Dept(d, m, n),DD(D), choice((m), (D)). (13)

ExDept(d)← Dept(d, n, e). (14)

Dept(d, m, n)← Emp(e, d),¬ExDept(d),DM(m),DN(n), choice((d), (m, n)). (15)

where DD and DN are the domains of department ids and of manager names, respec-
tively. We have introduced negation in the last rule in order not to generate a new pair
(manager id, manager name) for an existing department. This program is not stratified
modulo choice and, then, and the theory of choice models does not apply. In summary,
known undecidability problems in handling TGDs that are not weakly acyclic have a
clear counterpart in the representation by DATALOG with choice: the program is not
stratified modulo choice.

Proposition 1. Let P be a DATALOG¬s,c program associated to a data exchange set-
ting ET = (S, T,Σst, Σt) with weakly acyclic TGDs. Then M is a choice model of P
if and only if there exists a solution RT of ET such that M(T ) = RT .

As proved in [12], given a bound query q and DATALOG¬s,c program with finite do-
mains:
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– deciding whether q is true under certain semantics (i.e., it is true in all choice mod-
els) is coNP-complete;

– deciding whether q is true under possible semantics (i.e., it is true in at least one
choice model) is NP-complete.

Recall that we are considering data complexity. We point out the results with weakly
acyclic TGDs also hold when the attribute domains are countably infinite: every choice
model is finite even though the number of choice models could be infinite.

4 Uncertainty-Guaranteed Query Answering for
Privacy-Preserving Data Exchange

A crucial issue in data exchange research is answering certain queries and, under this re-
spect, the notion of universal solution represents an important theoretical achievement.
This notion is (probably) lost when DATALOG with choice is used to define data ex-
change. Nevertheless, at the risk of being accused of heresy, we believe that answering
certain queries is not a “must” for data exchange. In fact, attracted by the dark (“don’t
care”) side of nondeterminism (typical of choice), once data have been migrated, we
accept to get answers from the transferred data without caring about certainty. Indeed,
during privacy-preserving data exchange setting, rather aiming for certainty, one could
have an opposite goal: defining a target schema for which answering a number of given
“sensible” queries is “uncertain”!

As an example, consider a source relation schema consisting of two relation schemes:
TI(T, I) and TSC(T, S, C)with attributes T (Transaction), I (Item), S (Store) and C (Cus-
tomer). The FD T → S C holds, thus a transaction is executed by exactly one costumer
in exactly one store. On the other hand, a transaction consists of a number of items.
The target relation schema comprises three relation schemes: T̂I(T, I), T̂SC(T, S, C) and
CM(C, M), where the attribute M stands for (Customer Care) Manager and the FD C→ M

holds. We are also given domain DM and DC for managers and customers.
We want to move data from the source to the target scheme but, for privacy reasons,

the associations between transactions and items must be perturbed (i.e., the transactions
IDs of the same store are permuted) and customers must be renamed. In addition we
want to assign a manager to each customer.

ex choice(t, t̂)←TSC(t, s, c), TSC(t̂, s, c), t �= t̂,

choice((t), (t̂)), choice((t̂), (t)). (16)

T̂I(t̂, i)←TI(t, i), ex choice(t, t̂). (17)

T̂SC(t̂, s, ĉ)←TSC(t, s, c), ex choice(t, t̂),DC(ĉ),

choice((c), (ĉ)), choice((ĉ), (c)). (18)

CM(c, m̂)←T̂SC(t, s, c),DM(m̂), choice((c), (m̂)). (19)

In the example we are not interested in finding certain answers. We rather want to be
guaranteed that “sensitive” queries do no give certain answers – for instance we have
perturbed data so that customers are renamed and they cannot be eventually recognized
from transaction ids.
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Let us assume that each domain predicate has a finite number of elements. We define
that a query q is α-uncertain, where α is a given non-negative value less than or equal
to 0.5, if q is true in at least (0.5 − α) × n and false in at least (0.5 − α) × n of the
n choice models - the smaller is α, the higher is uncertainty. It is not surprising that
complexity of uncertainty is higher than the one of certainty – recall that PP is is the
class of decision problems that can be solved by a nondeterministic Turing machine in
polynomial time, where the acceptance condition is that a majority (more than half) of
computation paths accept.

Proposition 2. Deciding whether q is α-uncertain is in PSPACE and PP-hard.

Proof. (Sketch) To see that the decision problem is in PSPACE, observe that we can
compute in deterministic polynomial space and non-deterministic polynomial time a
choice model. Then we can easily implement a mechanism to compute every choice
model and to count the number of them that make true the query. The PP-hardness
proof immediately derives from the capability of DATALOGwith choice to express SAT
under possibility semantics (see [12]): we only need to check that the majority of choice
models give a positive answer. �

Again we consider data complexity. We also stress that with infinite domains PSPACE
membership continues to hold whereas obviously PP hardness does not.

We are aware that data perturbation is not in general sufficient to guarantee that
private information is not disclosed and there an increasing amount of research investi-
gating this issue (see for instance [8,4]). Advanced privacy-preserving techniques can be
suitably applied while defining the data exchange setting using DATALOG with choice.

Observe that the high cost of deciding uncertainty is paid only for designing the
target relational scheme. Once data have been migrated, query answering becomes a
typical “deterministic” operation on a database, mostly implementable in polynomial
time.

5 Data Exchange with Count Aggregates

We now assume that, in addition to domain constants, the Herbrand universe includes
constant set terms defined as follows: given any list S of attributes, a constant set term
is a set of tuples (i.e., a table) over S. Given the attributes A and B with domains
{a1, a2, a3} and {b1, b2} respectively, examples of constant set terms on (A,B) are
{[a1, b1], [a2, b1], [a3, b2]} and {[a2, b1]}, while {[a1], [a3]} and {[a2]} are constant set
terms on (A).

A set term is either a constant set term or a formula term, defined as {X : ∃Yψ},
where X and Y are disjoint list of variables and ψ is conjunction of literals in which
variables in X occur free (similar notation for set terms and aggregate predicates has
been used in the dlv system [5]).

There is an interpreted function symbol count (denoted by #) that can be applied
to a set term T to return the number of tuples in T (i.e., the cardinality of the table
represented by T ).
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A count constraint C, as introduced in [16], is a formula of type:

∀X ( φ(X) → #({Y : ∃Zψ(X,Y,Z) }) ≤ β )

where X, Y and Z are disjoint lists of variables, X and Z can be empty, and β is an
integer term.

The above constraint can be written in DATALOG¬s,c as:

← φ(X) ∧#({Y : ∃Zψ(X,Y,Z) }) > β

Count constraints can be considered as extensions of EGDs. In fact, a generic EGD
∀X (φ(X)→ x1 = x2 ) can be formulated by the following count constraint:

∀X′ ( true→ #({y : φ(y,X′)} ) ≤ 1)

where X′ contains all variables in X except x1 and x2; moreover, y replaces both x1
and x2 in φ.

We now extend the choice construct to enforce a count constraint while making a
choice. To give a first intuition of our approach, we go back to the privacy-preserving
data exchange example of the previous section. Suppose now that we want to enforce
the constraint that each manager can take care of at most 10 customers:

← #({c : CM(c, m)}) > 10.

The above goal rule can be removed and the count constraint pushed down into the body
of rule 19 by adding a new choice construct:

CM(c, m)← T̂SC(t, s, c),DM(m), choice((c), (m)), choice((m), (c))[10]. (20)

The construct choice((M), (c))[10] is implemented by the following different version
of the diffChoice rule:

diffChoice(c, m)← chosen(c1, m), . . . , chosen(c10, m), c �= c1 �= · · · �= c10.

The availability of count aggregate operator can be exploited to perform aggregate data
exchange. For instance, in our running privacy-preserving data exchange example, we
may realize that disclosing the associations between customers and transactions can
cause a privacy breach despite data perturbation. So we may decide to exchange just the
quantity (number) of transactions made by a customer in every store, rather than to give
the whole list of renamed transactions. Then the relation scheme T̂SC(T, S, C) is replaced
by NSC(N, S, C), where the attribute N stores the number of transactions executed by
a customer in a store, and a new relation scheme TS(T, S) is added to preserve the
association between transactions and stores. Then rule 18 is replaced by the following
two rules:

NSC(n, s, ĉ)←n = #({t : TSC(t, s, c)}),DC(ĉ), choice((c), (ĉ)), choice((ĉ), (c)).

TS(t̂, s)←TSC(t, s, c), ex choice(t, t̂).

The example confirms that the combination of choice and count constraints represents
a powerful framework for defining aggregate privacy-preserving data exchange using
DATALOG. The choice by itself searches for “any” solution rather than for a general
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solution. The introduction of count constraints worsens the problem – extending the
notion of universal solution to data exchange with count constraints is a complicated
problem even for the classical setting and, probably, it is not feasible at all. But, as
we have argued throughout the paper, a universal solution is not the panacea for per-
forming data exchange and the more prosaic “don’t care” non determinism can be very
effective for solving the problem in some specific contexts such privacy-preserving data
exchange.

6 Conclusion

In this paper we have proposed to use DATALOG with choice to formulate a data ex-
change problem from a source to a target database schema. Classical data exchange
setting includes TGDs (Tuple Generating Dependencies), which are universal quan-
tified formulas with additional existential quantifiers, and EGDs (Equality Generating
Dependencies), which are universal quantified formulas enforcing the equality of two of
the quantified variables. Existential quantifiers in TGDs are implemented by the choice
construct, which non-deterministically select values for the existential variables. To ex-
press general EGDs we have used goal rules. However, as an EGD often expresses
functional dependencies, in this case the goal rule can be removed and the constraint
is alternatively expressed as an additional choice predicate into the body of some rule
implementing a TGD.

Concerning the semantics of query answering in the context of data exchange, we
have explored a direction opposite to the classical one, which is based on certainty se-
mantics: our goal is instead to find a mapping from the source to the target schema such
that a number of given “sensible” queries have uncertainty-guaranteed answers. We
have discussed properties of privacy-preserving data exchange and illustrated its com-
plexity. Finally, we have shown that EGDs are special cases of count constraints (e.g,
an employee can manage at most three departments instead of one) and we have ex-
tended the choice construct to implement such constraints. Finally, as count constraints
are based on set terms and the aggregate count operator on them, we have illustrated
how the overall setting can be used also to define aggregate data exchange.

Acknowledgments. The authors thank an anonymous reviewer for many useful and
constructive comments.

References
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12. Greco, S., Saccà, D., Zaniolo, C.: Extending stratified datalog to capture complexity classes
ranging from P to QH. Acta Inf. 37(10), 699–725 (2001)

13. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer-Verlag New York, Inc.,
Secaucus (1993)
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Abstract. We explore the design and implementation of a scalable Dat-
alog system using Hadoop as the underlying runtime system. Observing
that several successful projects provide a relational algebra-based pro-
gramming interface to Hadoop, we argue that a natural extension is to
add recursion to support scalable social network analysis, internet traffic
analysis, and general graph query. We implement semi-naive evaluation
in Hadoop, then apply a series of optimizations spanning fundamental
changes to the Hadoop infrastructure to basic configuration guidelines
that collectively offer a 10x improvement in our experiments. This work
lays the foundation for a more comprehensive cost-based algebraic opti-
mization framework for parallel recursive Datalog queries.

1 Introduction

The MapReduce programming model has had a transformative impact on data-
intensive computing, enabling a single programmer to harness hundreds or
thousands of computers for a single task, often after only a few hours of devel-
opment. When processing with thousands of computers, a different set of design
considerations can dominate: I/O scalability, fault tolerance, and programming
flexibility. The MapReduce model itself, and especially the open source imple-
mentation Hadoop [11], have become very successful by optimizing for these
considerations.

A critical success factor for MapReduce has been its ability to turn a “mere
mortal” java programmer into a distributed systems programmer. It raised the
level of abstraction for parallel, highly scalable data-oriented programming. But
it did not raise the level of abstraction high enough, evidently, because some
of the earliest and most successful projects in the Hadoop ecosystem provided
declarative languages on top of Hadoop. For example, HIVE provided an SQL
interface, and Yahoo’s Pig provided a language that closely resembles the rela-
tional algebra1.

MapReduce (as implemented in Hadoop) has proven successful as a com-
mon runtime for non-recursive relational algebra-based languages. Our thesis is

1 Relational algebra is not traditionally considered declarative, but Pig programs,
while syntactically imperative, can be optimized by the system prior to execution
and generally provide a significantly higher level of abstraction than MapReduce, so
we consider the term applicable.
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(a) all optimizations 

raw Hadoop overhead 

(d): (a) w/o diff cache 

(b): (a) w/o faster cache 
(c): (a) w/o project opt. 

(e): (a) w/o file combiner no optimizations 

Fig. 1. The cumulative effect of our optimizations on overall runtime. (a) All optimiza-
tions applied. (b) Relaxing the specialization of the cache for inner joins. (c) Relaxing
the optimization to eliminate the project operator. (d) Relaxing the diff cache opti-
mization (extrapolated).

that Hadoop, suitably extended, can also be successful as a common runtime
for recursive languages as required for graph analytics [18,7], AI and planning
applications [9], networking [14]. In previous work, our group extended Hadoop
with caching and scheduling features to avoid reprocessing loop-invariant data on
every iteration and to afford expression of multi-step loop bodies and various ter-
mination conditions. In this paper, we describe how this underlying framework,
appropriately extended and configured, can be used to implement a scalable
Datalog engine.

In this paper we present some engineering solutions for the semi-naive eval-
uation of a linear Datalog on Hadoop-based systems. The input to our system
is a Datalog query. The query is parsed, optimized, and compiled into a series
of MapReduce jobs, using an extended implemenation that directly supports
iteration [7]. Our semi-naive algorithm requires three relational operators: join,
duplicate elimination, and set difference, and each of them requires a separate
MR job. We consider a series of optimizations to improve on this basic strategy.

Figure 1 summarizes the cumulative effect of a series of optimizations designed
to improve on this basic strategy using a simple reachability query as a test case.
The dataset is a social network graph dataset with 1.4 billion unique edges. The
x-axis is the iteration number and the y-axis is the cumulative runtime: the high-
est point reached by a line indicates the total runtime of the job. Dashed lines
indicate extrapolation from incomplete experiments. Figure 1(a) gives the run-
time when all optimizations are applied, which is 10X-13X faster than Hadoop
itself (labeled no optimizations in the figure), and only about 40% higher than
the raw Hadoop overhead required to run two no-op jobs with degenerate Map
and Reduce functions (labeled raw Hadoop overhead in the figure.)

The optimizations are as follows. First, for join, we notice that one of the
relations in the join is loop invariant: using a previously developed cache for
Hadoop [7], we store this invariant relation at the reducers, thus avoiding the
expensive step of scanning and shuffling this relation at every datalog iteration.
The join cache is the most significant optimization; all experiments (a)-(e) in
Figure 1 use some form of join cache. Second, by specializing and indexing the
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cache to implement inner joins, we can avoid many unnecessary reduce calls
required by the original MapReduce semantics (Figure 1(b) show the effect of
relaxing this optimization). Third, we notice that the duplicate elimination and
difference can be folded into a single MR job: the newly generated tuples are
shuffled to the reducers, and the same reduce job both eliminates duplicates, and
checks if these tuples have already been discovered at previous iterations (Fig-
ure 1(c) shows the effect of relaxing this optimization). Fourth, with appropriate
extensions to support cache insertions during execution, we observe that the
cache framework can also be used to improve performance of the set difference
operator (Figure 1(d) shows the effect of relaxing this optimization). Finally, we
found it necessary to combine files after every job to minimize the number of
map tasks in the subsequent job (Figure 1(e) shows the effect of relaxing this
optimization).

In Section 3, we describe the implementation of semi-naive evaluation and the
optimizations we have applied. In Section 5, we analyze these optimizations to
understand their relative importance.

2 Related Work

This work is based on the MapReduce framework, which was first introduced
in [8]. In this project we build our system using the popular open source imple-
mentation of MapReduce, Hadoop.

There has been an extensive line of research on providing a higher level inter-
face to the MapReduce programming model and its implementation in Hadoop,
including Dryad [12], DryadLINQ, Hyracks [6], Boom [3] and PigLatin [16]. Of
these, only Hyracks provides some support for iterative queries, and they do not
expose a Datalog programming interface and do not explore logical optimizations
for iterative programs.

Parallel evaluation of logic systems including Datalog has been studied exten-
sively. Balduccini et al. explore vertical (data) and horizontal (rules) parallelism,
but evaluate their techniques only on small, artificial datasets [4]. Perri et al.
consider parallelism at three levels: components (strata), rules, and within a sin-
gle rule and show how to exploit these opportunities using modern SMP and
multicore machines [17]. We target several orders of magnitude larger datasets
(billions of nodes rather than tens of thousands) and have a very general model
of parallelism that subsumes all three levels explore by Perri.

Damásio and Ferreira consider algorithms for improving transitive closure on
large data, seeking to reduce the number of operations and iterations required.
They apply these techniques to semantic web datasets and evaluate them on
a single-site PostgreSQL system. The datasets contain up to millions of nodes,
still three orders of magnitude smaller than our target applications.

In addition to our work on HaLoop [7], there have been several other systems
providing iterative capabilities over a parallel data flow system. Pregel [15],
a system developed for graph processing using the BSP model, also supports
recursive operations. The Twister system [10] retains a MapReduce program-
ming model, but uses a pub-sub system as the runtime to make better use of
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main memory and improve performance. The Spark system [19] also makes bet-
ter use of main memory, but introduces a relational algebra-like programming
model along with basic loop constructs to control iteration. The Piccolo project
supports a message-passing programming model with global synchronization
barriers. The programmer can provide locality hints to ensure multiple tables are
co-partitioned. The Daytona project [5] at Microsoft Research provides iterative
capabilities over a MapReduce system implemented on the Azure cloud comput-
ing platform. These projects all assume an imperative programming model. We
explore a declarative programming model to reduce effort and expose automatic
optimization opportunities. The BOOM project [3] is a distributed datalog sys-
tem that provides extensions for temporal logic and distributed protocols. All
of these systems are potential runtimes for Datalog. Some, but not all, of our
optimizations will be applicable in these contexts as well.

A recent line of research examines recursive computations on MapReduce
theoretically. In this work [2], the authors discuss issues, problems and solutions
about an implementation of Datalog on the MapReduce framework. On a con-
tinuation of this work, the authors find a class of Datalog queries where it is
possible to drastically reduce (to a logarithmic number) the number of recursion
steps without significantly increasing the communication/replication cost.

3 Optimizing Semi-Naive Evaluation in Hadoop

Our basic execution model for Datalog in Hadoop is semi-naive evaluation. For
illustration, consider a simple reachability query:

A(x,y) :- R(x,y), x=1234

A(x,y) :- A(x,z), R(z,y)

A (fully) näıve execution plan MapReduce is intuitively very expensive. On each
iteration, the näıve plan requires one MR job for the join to find the next genera-
tion of results, a second job to project the result of the join and remove duplicate
answers, a third MR job to compute the union (with duplicate elimination) with
results discovered in previous iterations, and a fourth MR job to test for fixpoint.
The inputs to each of these jobs are potentially large, distributed datasets.

An improvement is semi-naive evaluation, captured as follows.

ΔA0 = σx=1234(R), i = 1

while ΔAi−1 is not empty:

Ai = (ΔA0 ∪ · · · ∪ΔAi−1)

ΔAi = πxy(ΔAi−1 ��z=z R)−Ai, i← i+ 1

The final result is the concatenation of the results of all previous iterations ΔAi.
There is no need to remove duplicates.
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Fig. 2. Semi-naive evaluation implemented in Hadoop. (a) R is loop invariant, but
gets loaded and shuffled on each iteration. (b) The extra mapreduce step to implement
the project operator can be avoided by extending the join and difference operators
appropriately. (c) Ai grows slowly and monotonically, but is loaded and shuffled on
each iteration.

In Hadoop, this execution plan involves only three MR jobs: one for the join
��z=z, one to compute the projection πxy and remove duplicates, and one to
compute the difference of the new results and all previous results. Computing
the union of all previous results does not require an independent MR job, and
in fact requires no work at all. The reason is that the input to a MR job is a set
of files that are logically concatenated, which is just what we need.

Figure 2 illustrates the optimization opportunities for each operator. At (a),
the EDB R is scanned and shuffled on every iteration even though it never
changes. At (b), the overhead of an extra MapReduce step to implement the
project operator can be folding duplicate elimination into the difference operator.
At (c), the result relation A grows slowly and monotonically, but is scanned and
shuffled on every iteration. In the remainder of this section, we describe how to
optimize these operations.

3.1 Join

The join ΔAi−1 ��z=z R is implemented as a reduce-side join as is typical in
Hadoop. The map phase hashes the tuples of both relations by the join key (and
optionally applies a selection condition if the query calls for it). The reduce phase
then computes the join for each unique key (the cross product of σz=kΔAi−1

and σz=kR for each key k). The join uses Hadoop’s secondary sort capabilities to
ensure that only σz=kΔAi−1 incurs memory overhead; σz=kR can be pipelined.
Skew issues can be addressed by using an out-of-core algorithm such as hybrid
hash join or by other common techniques.

The critical bottleneck with the join operation is that the entire relation R
must be scanned and shuffled on each and every iteration. In previous work
on HaLoop [7], we added a Reducer Input Cache (RIC) to avoid scanning and
shuffling loop-invariant relations (problem (a)). Specifically, HaLoop will cache
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the reducer inputs across all reduce nodes and create an index for the cached
data and stores it on local disk. Reducer inputs are cached during reduce function
invocation, so the tuples in the reducer input cache are sorted and grouped by
reducer input key. When a reducer processes a shuffled key and its values, it
searches the appropriate local reducer input cache to find corresponding keys
and values. An iterator that combines the shuffled data and the cached data is
then passed to the user-defined reduce function for processing. In the physical
layout of this cache, keys and values are separated into two files, and each key
has an associated pointer to its corresponding values. Since the cache is sorted
and accessed in sorted order, only one sequential scan must be made in the worst
case. Fault-tolerance was preserved by arranging for caches to be rebuilt when
failures occurred without having to rerun all previous iterations.

To be fully transparent with the original MapReduce semantics, all cached
keys, regardless of whether they appear in the mapper or not, should be passed
to the reducer for processing. However, the equijoin semantics used in Datalog
expose an optimization opportunity: Only those cached values that match a value
in the incoming mapper output need be extracted and passed to the reducer, for
significant savings (Figure 1(b)).

3.2 Difference

In Figure 2(b), the set difference operator compares the generated join output
to the loop’s accumulated result to ensure that only the newly discovered tuples
are output in the operation’s result. By default, the difference operation requires
the scanning and shuffling of all previous iterations’ results on every iteration.
As the number of iterations increases, both the number of (possibly small) files
accessed and the amount of data being reshuffled increases. Each file requires
a separate map task, so it is important to group the many small files before
computing the difference. The performance improvement of this configuration
detail is significant (Figure 2(d)).

Like the join operation, the difference operation in Figure 2(b) can benefit
from a cache. The previously discovered results need not be scanned and shuf-
fled on each iteration; instead, these values can be maintained in a cache and
updated on each iteration. We extended the original HaLoop caching framework
to support insertions during iterative processing, generalizing it for use with the
difference operator.

The difference operator uses the cache as follows. Each tuple is stored in
the cache as a key-value pair (t, i), where the key is the tuple t discovered by
the previous join operator and the value is the iteration number i for which
that tuple was discovered. On each iteration, the map phase of the difference
operator hashes the incoming tuples as keys with values indicating the current
iteration number. During the reduce phase, for each incoming tuple (from the
map phase), the cache is probed to find all instances of the tuples previously
discovered across all iterations. Both the incoming and cached data are passed
to the user-defined reduce function. Any tuples that were previously discovered
are suppressed in the output.
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For example, consider a reachability query. If a node t was discovered on
iteration 1, 4, 5, and 8, there would be four instances of t in the cache when the
reduce phase of iteration 8 executes. The reducer then would receive a list of five
key-value pairs: the pair (t, 8) from the map phase, and the pairs (t, 1), (t, 4),
(t, 5), (t, 8) from the cache. The reducer can then determine that the tuple had
been seen before, and therefore emit nothing. If the tuple had never before been
seen, then it would receive a singleton list (t,8) and would recognize that this
tuple should be included in ΔA9 and emit the tuple.

To avoid storing duplicate values in the cache, we leverage Haloop’s cache-
filtering functionality. When a reduce operation processes an individual value
associated with a key, Haloop invokes the user-defined isCache() routine to first
consult a hashtable of all tuples previously written to the cache during this it-
eration. We reduce the number of duplicates that must be considered by this
mechanism by using a combiner function on the map side. Combiners are a
common Hadoop idiom used to reduce the amount of communication between
mappers and reducers by pre-aggregating values. In this case, the combiner en-
sures that each mapper only produces each value once.

A limitation in the current Haloop cache implementation is that the cache is
rewritten completely on every iteration during which new tuples are discovered,
incurring significant IO overhead in some cases. A redesigned cache that avoids
this step is straightforward, but remains future work.

3.3 Project

The project operator at Figure 2(b) is implemented as a separate MapReduce
job. The two tasks accomplished in this job — column elimination and duplicate
row elimination — can be delegated to the join operator and the difference
operator, respectively.

Fig. 3. The “endgame” of a recursive computation. The number of new tuples discov-
ered peaks early (y-axis, log scale). Beyond iteration 25, less than 1000 new nodes are
discovered on each iteration though execution continues for hundreds of iterations.
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The difference operator naturally removes duplicates as a side effect of process-
ing. To remove columns, we have made a straightforward extension to the join
operator to provide a column-selecting join that is capable of removing columns.
Since it does not need to remove duplicates, this step can be performed entirely
in parallel and therefore incurs very little overhead.

By replacing sequences of Join→Project→Difference operations with sequences
of ColumnSelectingJoin→Difference, the system is able to eliminate a map-
reduce job per iteration for significant savings (Figure 1(c)).

4 Implementation

We have implemented a Datalog interpreter that converts schema and rules to a
sequence of MapReduce jobs. The Datalog query is converted into the relational
algebra, optimized (if desired), and then translated into a set of MapReduce jobs
that are configured through JobConf configuration parameters. A sample input
to the interpreter is seen below:

1) backend R[long, long, long] "btc".

2) res(x) :- R(1570650593L, b, x) .

3) res(y) :- res(z), R(z,b,y) .

4) ans res(y)

Line (1) specifies the schema for the R dataset, which consists of three columns of
type long, and backed by the Hadoop directory “btc.” Input directories can con-
tain either delimited text files or SequenceFiles. Lines (2–3) define rules available
for evaluating the query answer, specified on line (4).

5 Analysis and Evaluation

We evaluate our datalog system on the 2010 Billion Triple Challenge (BTC)
dataset, a large graph dataset (625GB uncompressed) with 2B nodes and 3.2B
quads. Queries are executed on a local 21-node cluster, consisting of 1 master
node and 20 slave nodes. The cluster consists of Dual Quad Core 2.66GHz and
2.00GHz machines with 16GB RAM, all running 64bit RedHat Enterprise Linux.
Individual MapReduce jobs are given a maximum Java heap space of 1GB.

The source of the BTC data is a web crawl of semantic data, and the ma-
jority of the nodes are associated with social network information. The graph is
disconnected, but Joslyn et al [13] found that the largest component accounts
for 99.8% of the distinct vertices in the graph.

As a result of these properties, recursive queries over this graph are challeng-
ing to optimize. In particular, they exhibit the endgame problem articulated by
Ullman et al [2]. To illustrate the problem, consider Figure 3 which shows the
number of nodes encountered by iteration number for a simple reachability query
(i.e., find all nodes connected to a particular node.) The x-axis is the iteration
number and the y-axis is the number of new nodes discovered in log-scale. The
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two datasets represent the size of the results of the join and difference operators.
The nodes encountered by the join operation are in red and the nodes that are
determined to not have not been previously discovered are in blue. The overall
shape of the curve is striking. In iteration 17, over 10 million new nodes are dis-
covered as the frontier passes through a well-connected region of the graph. By
iteration 21, however, the number of new nodes produced has dropped precipi-
tously. In ongoing work, we are exploring dynamic reoptimization techniques to
make both regimes efficient. In this paper, we focus on the core hadoop-related
system optimizations required to lay a foundation for that work.

In this evaluation, we consider the following questions:

– Join Cache: How much improvement can we expect from the reducer in-
put cache in the context of long-running recursive queries and semi-naive
evaluation?

– Diff Cache: How much improvement can we expect from an extended cache
subsystem suitable for use with the difference step of semi-naive evaluation?

– Equijoin semantics: If we optimize for equi-joins in the underlying subsys-
tem, how much improvement can we expect over the original MapReduce
semantics where every key from both relations must be processed?

To answer these questions, we consider a simple reachability query

A(y) :- R(startnode,y)

A(y) :- A(x),R(x,y)

where startnode is a literal value that refers to a single node id. This query re-
turns 29 million nodes in the result and runs for 254 iterations for the startnode
we have selected. The query is simple, but clearly demonstrates the challenges
of optimizing recursive queries in this context.

Unless otherwise noted in the text, the individual identifiers in the BTC2010
data set are hashed to long integer values and stored as SequenceFiles.

After 33 iterations, our cumulative running time for (2) Join→ Proj→ Diff is
less than 15% of the query time when no caches are used. Additionally, modifying
our operators to eliminate an unnecessary Hadoop job to implement the Project
operator reduces iteration time by more than 26 seconds per iteration. Over the
course of 254 iterations, this adds up to over 100 minutes of query time. After
33 iterations, the cumulative query time for (3) ColumnSelectingJoin → Diff is
less than 10% of the cacheless query’s execution time.

Figure 4 presents the per-operation contribution of the cumulative iteration
time for iterations 1-33. The three scenarios are (1) ColumnSelectingJoin→ Diff
with no caches, (2) Join → Proj→ Diff with both a join cache and a diff cache,
(3) ColumnSelectingJoin→ Diff with both a join cache and a diff cache, and (4)
and estimate of the minimum job overhead for running two no-op Hadoop jobs
on every iteration. With no caches used, the time is dominated by the join oper-
ation. With optimizations applied, the time approaches the minimum overhead
of Hadoop (about 18 seconds per job for our cluster and current configuration).
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Fig. 4. The total time spent in each op-
eration across iterations 1-33 (excluding
0) for three evaluation strategies. With-
out caching, the join operation dominates
execution time.

Fig. 5. Time to execute the join only.
The use of a cache to avoid re-scanning
and re-shuffling the loop-invariant data
on each iteration results in significant im-
provement (and also appears to decrease
variability). Gaps represent failed jobs.

Figure 5 shows the runtime of the join step only by iteration, both with and
without the cache enabled. On the first iteration, populating the cache incurs
some overhead. (We plot successful jobs only for clarity; gaps in the data repre-
sent inaccurate runtime measurements due to job failures.) On subsequent itera-
tions, the invariant graph relation need not be scanned and shuffled, resulting in
considerable savings. For our test query, the time for the join per iteration went
from approximately 700 seconds to approximately 30 seconds, and the overall
runtime of the query went from 50 hours to 5 hours (making these kind of jobs
feasible!)

In Figure 6, the cache subsystem has been extended to allow new nodes to
be added to it on each iteration. The y-axis shows the runtime of the difference
operator, and the x-axis is the iteration number. This capability was not available

Fig. 6. Time per iteration for the differ-
ence operator only. The cache improves
performance by about 20%.

Fig. 7. The per-iteration impact of special-
izing the cache for equijoin, which is safe
given our target lanaguage of datalog.
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in HaLoop and is used to improve semi-naive evaluation. Without the cache, each
iteration must scan more and more data, resulting in a (slow) increase in the per-
iteration runtime. With the cache, the increase in size has no discernible effect
on performance, and the performance of the operator improves by about 20%.
The outlier values were the result of failures. The fact that no failures occurred
when using the cache is not statistically significant.

The cache is specialized for the equijoin case, improving performance over the
original MapReduce semantics. Specifically, the original semantics dictates that
the reduce function must be called for every unique key, including all those keys
in the cache that do not have a corresponding joining tuple in ΔAi during semi-
naive evaluation. By exposing a datalog interface rather than raw MapReduce,
we free ourselves from these semantics and can only call the reduce function once
for each incoming key. In Figure 7, the effect of this specialization is measured
for the first few iterations.

6 Conclusions and Future Work

Informed by Hadoop’s success as a runtime for relational algebra-based lan-
guages, and bulding on our previous work on the HaLoop system for iterative
processing, we explore the suitability of Hadoop as a runtime for recursive Dat-
alog. We find that caching loop invariant data delivers an order of magnitude
speedup, while specialized implementations of the operators, careful configura-
tion of Hadoop for iterative queries, and extensions to the cache to support set
difference delivers another factor of 2 speedup.

We also find that the overhead of an individual Hadoop job is significant in
this context, as it amplified by the iterative processing (500+ Hadoop jobs are
executed to evaluate one query!) This overhead accounts for approximately half
of time of each iteration step after all optimizations are applied.

In future work on system optimizations, we are considering extensions to
Hadoop to optimize the caching mechanism and avoid unnecessary IO by using
a full-featured disk-based indexing libraryon each node in a manner similar to
HadoopDB [1]. We are also exploring the literature for new ways to mitigate the
startup overheaad of each Hadoop job by sharing VMs across jobs.

Perhaps more importantly, we are aggressively exploring cost-based algebraic
dynamic re-optimization techniques for parallel recursive queries, motivated in
particular by the endgame problem (Figure 3). While this paper explored Hadoop
in particular, our ongoing work is designed to produce optimization strategies
that will transcend any particular distributed runtime. To demonstrate this, we
are planning experiments that use more recent parallel runtimes that directly
support recursion [10,19].
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Abstract. Data Stream Management Systems (DSMS) have attracted
much interest from the database community, and extensions of relational
database languages were proposed for expressing continuous queries on
data streams. However, while relational databases were built on the solid
bedrock of logic, the same cannot be said for DSMS. Thus, a logic-based
reconstruction of DSMS languages and their unique computational model
is long overdue. Indeed, the banning of blocking queries and the fact
that stream data are ordered by their arrival timestamps represent ma-
jor new aspects that have yet to be characterized by simple theories. In
this paper, we show that these new requirements can be modeled us-
ing the familiar deductive database concepts of closed-world assumption
and explicit local stratification. Besides its obvious theoretical interest,
this approach leads to the design of a powerful version of Datalog for
data streams. This language is called Streamlog and takes the query
and application languages of DSMS to new levels of expressive power,
by removing the unnecessary limitations that severely impair current
commercial systems and research prototypes.

1 Introduction

Data stream management systems represent a vibrant area of new technology
for which researchers have extended database query languages to support con-
tinuous queries on data streams [4,3,8,10,18,7,12,20]. These database-inspired
approaches have produced remarkable systems and applications, but have yet to
deliver solid theoretical foundations for their data models and query languages—
particularly if we compare with the extraordinary ones on which the success of
relational databases was built. Logic provided the theoretical bedrock for rela-
tional databases from the very time in which they were introduced by E.F. Codd,
and this foundation was then refined, generalized and strengthened by the work
on database and logic, and Datalog, which delivered concepts and models of
great power and elegance [21,1,22].

Until now, DSMS researchers have made little use of logic-based concepts,
although these provide a natural formalism and simple solutions for many of
the difficult problems besetting this area, as we will show in this paper. In par-
ticular, we show that Reiter’s Closed World assumption [19] provides a natural
basis on which to study and formalize the blocking behavior of continuous query
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operators, whereby concepts such as local stratification can be used to achieve a
natural and efficient expression of recursive rules with non-monotonic constructs.

The paper is organized as follows. In the next section, we present a short dis-
cussion of related previous work and then, in Section 3, we explore the problem of
supporting order and recursion on single stream queries for both monotonic and
non-monotonic constructs. Thus, in Section 4, we introduce Streamlog, which is
basically Datalog with modified well-formedness rules for negation. These rules
guarantee both simple declarative semantics and efficient execution (Section 5).
Because of possible skews between their timestamps, multiple streams pose com-
plex challenges at the logical and implementation levels. We study this problem
in Section 6, where we propose a backtrack-oriented solution and show that its
benefits extend well beyond union.

2 Continuous Queries on Relational Data Streams

As described in various surveys [4,12], data streams can be modeled as append-
only relations on which the DSMS is asked to support standing queries (i.e.,
continuous queries). As soon as tuples arrive in the input stream, the DSMS
is expected to decide, in real time or quasi real-time, which additional results
belong to the query answer and promptly append them to the output stream.
This is an incremental computation model, where no output can be taken back;
therefore, the DSMS might have to delay returning an output tuple until it
is sure that the tuple belongs to the final output—a certainty that for many
queries is only reached after the DSMS has seen the whole input. The queries
showing this behavior, and operators causing it, are called blocking, and have
been characterized in [4] as follows: A blocking query operator is one that is
unable to produce the first tuple of the output until it has seen the entire input.
Clearly, blocking query operators are incompatible with the computation model
of DSMS and should be disallowed, whereas all non-blocking queries should
instead be allowed. However, many queries and operators, including essential
ones such as union, fall in-between and are only partially blocking; currently,
we lack simple rules to decide when, and to which extent, partially blocking
operators should be allowed and how they should be treated. Therefore, better
understanding and formal characterizations are badly needed.

The main previous results on blocking queries proved that non-monotonic
query operators are blocking, whereas monotonic operators are non-blocking
[17,13]. Given that negation and traditional aggregates are non-monotonic, most
current DSMS simply disallow them in queries, although this exclusion causes
major losses in expressive power [17]. However, a more sophisticated analysis
suggests that these losses are avoidable, since (i) the monotonicity notion used
in [17] is not the subset ordering used in databases and Horn clauses, and (ii)
previous research on deductive databases made great strides in coping with non-
monotonicity via concepts such as stratification and stable models [22].

Therefore, in this paper, we provide a reasoned reconstruction of the basic non-
monotonic theory of logic languages in the context of data streams, leading to the
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Fig. 1. Continuous Query Graphs

design of a concrete language called Streamlog. We will revisit the closed-world
assumption and adapt well-known concepts such as stratification to discover,
much to our surprise, that non-monotonic constructs dovetail with data stream
languages, enabling Streamlog to achieve great expressive power.

Queries on data streams are commonly visualized using workflow models such
as that of Figure 1, that show the pipelined execution used by the DSMS to im-
plement continuous queries. The boxes labelled Source at the left of our graph,
depict tuples coming from an external stream source or a database relation. For
instance in the first query, the source feeds incoming tuples to a buffer; then query
operator F1 takes the tuples from this buffer and feeds them to its output buffer
that supplies operator F2, and so on. As shown in Figure 1, some boxes might con-
sist of very simple operators, e.g., the relational algebra operators of projection,
selection and union. In general, however, the boxes can implement much more
complex functions, including pattern search operators or data mining tasks [20].
Complex functions can been written as user-defined aggregates written natively
in SQL [20], but Streamlog can also be quite effective in this role.

A key assumption is that operators are order-preserving. Thus, each operator
takes tuples from the front of its input queue and add the tuple(s) it produces,
if any to the tail of its output buffer. Thus, buffers might delay but not alter the
functions computed by simply feeding the output of one operator directly into the
input of the next. Thus, when the operators are defined by Streamlog rules, then
the semantics of our continuous query is defined by the logic program consisting of
(i) the goal defined by the Sink node (ii) the rules in the boxes feeding, directly or
indirectly, into the sink node, and (iii) the facts streaming from the source nodes
into said boxes and rules.

In this paper, we focus on data streams whose tuples are explicitly times-
tamped. More specifically, we will assume that the first column of our tuples
contain a timestamp that either (i) was created by the external device that cre-
ated the tuple (external timestamp) or (ii) it was added by the DSMS at the time
it received the tuple (internal timestamp). In either case, tuples are arranged and
processed by increasing values of their timestamps. Extending these results to
data streams that are not timestamped will be discussed in future papers.
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3 Single Stream Processing

The top query graph of Figure 1 shows the processing flow for a single stream,
while the one below it shows the processing of multiple streams. In both cases
we assume that timestamped data streams (i) enter each query operator in in-
creasing timestamp order and (ii) leave the query operator in the same order. As
we shall see, although (i) and (ii) represent two facets of the same problem, the
technical issues and opportunities they bring about are quite different. For (i)
consider the example of a stream of messages of the form msg(Time, MsgCode)

and say that we are looking for repeated occurrences of code “red” messages.
Then the following Datalog rule can be used to define multiple occurrences of
the same alarm code “X”:

Example 1. Repeated occurrences of the same alarm.

repeated(T, X)← msg(T, X), msg(T0, X), T > T0.

Thus, the final query goal ?repeated(T, red) will detect repeated occurrences
of code “red”, whereby an application might sound an alarm, which is triggered
for all but the first occurrence of code red.

The semantics of query Q on a stream, such as msg, is defined by the cumu-
lative answer that Q has returned until time τ . This cumulative answer at time
τ must be equal to the answer computed upon the database containing all the
data stream tuples with timestamp ≤ τ . In a blocking query, this equality only
holds at the end of the input, whereas for a continuous non-blocking query it
must hold for every instant in time.

Massive data streams over long periods can exceed the system storage ca-
pacity. In DSMS, this problem is addressed with windows or other synopses
[3]. Queries involving windows can be easily expressed using rules. For instance
if wsize(W) defines the window within which we detect repetitions, Example 1
becomes:

Example 2. Multiple occurrences within a window

windoweg(T2, red)← msg(T2, red), msg(T1, red),
T1 < T2, wsize(W), T2 ≤ T1+ W.

But, unlike in other DSMS [3], windows do not play a key role in our semantics.

The Importance of Order. Since query operators return sequences of tuples that
are fed into the next query operator, assuring the correct order of their output
sequences becomes critical. To illustrate this point, say that we modify Example
1, above, by keeping the body of the rule unchanged; but then we change the
head of the rule so that the timestamp of the former occurrence is used, rather
than the current one:

Example 3. Time-warped repetitions ?wrepeated(Time, X)

wrepeated(T0, X)← msg(T, X), msg(T0, X), T > T0.
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We immediately realize that there is a problem, since repetitions normally arrive
in an order that is different from that of their previous occurrences. For instance,
we might have that a message with code α arrives at time tα, followed by a mes-
sage with code β, which is then repeated immediately, while the first repetition
of α arrives 10 minutes later. Then, to produce tuples by increasing timestamps,
we will need to hold up the output for 10 minutes. Here too punctuation marks
and windows are effective palliatives to control the problem, but in general the
delay required can be unbound. The situation of unbound wait can be as bad as
that of blocking queries. For instance say that at some point, a rare color shows
up in our input stream, never to show up again. Then for any new color that has
its first occurrence after our rare color, no output can ever be generated until
the very end of the input. In a nutshell, rules such as that of Example 3 must be
disallowed, although they contain no negation or other nonmonotonic operators.

Negated Goals: The addition of order-inducing constraints in the rules offers
unexpected major benefits when dealing with negated goals. Say that we want
to detect the first occurrence of “code red” warning. For that, we only need
to make sure that once we receive such a message there is no identical other
message preceding it:

Example 4. First occurrence of code red: ?first(T, red).

first(T, X)← msg(T, X),¬previous(T, X).
previous(T, X)← msg(T0, X), T0 < T.

To find the second occurrence of code red we will start by finding one that follows
the first. Moreover there cannot be any other occurrence between this and the
first one:

Example 5. Second occurrence of code red ?second(T, red).

second(T2, Y)← first(T1, Y), msg(T2, Y), T2> T1,¬befr(T2, Y).
befr(T2, Y)← first(T1, Y), T1 < T2, msg(Tb, Y), Tb < T2, T1 < Tb.

These queries only use negation on events that, according to their timestamps,
are past event. Thus the queries can be answered in the present: they are non-
blocking. Therefore, they should be allowed by a DSMS compiler, which must
therefore be able to set them apart from other queries with negation which are
instead blocking.

For instance, a blocking query is the following one that finds the last occur-
rence of code-red alert:

Example 6. Last occurrence of code red: ?last(T, red).

last(T, Z)← msg(T, Z),¬next(T, Z).
next(T, Z)← msg(T1, Z), T1 > T.

This is obviously a blocking query, inasmuch as we do not have the information
needed to decide whether the current red-alert message is actually the final one,
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while messages are still arriving. Only when the data stream ends, we can make
such an inference: to answer this query correctly, we will have to wait till the
input stream has completed its arrival, and then we can use the standard CWA
to entail the negation that allows us to answer our query. But the standard
CWA assumption will not help us to conclude that our query is non-blocking.
We will instead exploit the timestamp ordering of the data streams to define a
Progressive Closing World Assumption (PCWA) that can be used in the task.
In our definition, we will also include traditional database facts and rules, since
these might also be used in continuous queries.

Progressive Closing World Assumption (PCWA): We consider a world con-
sisting of one timestamped-ordered stream and database facts. Once a fact
stream(T, . . .) is observed in the input stream, the PCWA allows us to assume
¬stream(T1, . . .), provided that T1 < T, and stream(T1, . . .) is not entailed by
our fact base augmented with the stream facts having timestamp ≤ T.

Therefore, our PCWA for a single data stream revises the standard CWA
of deductive databases with the provision that the world is in fact expanding
according to its timestamps. Therefore, we will also allow the standard notions of
entailment that guarantee consistency: besides the least models of Horn Clauses
these also include the perfect models of (locally) stratified programs.

In the next section, we derive from the PCWA simple conditions that ensure
syntactic well-formedness and efficient implementation for our programs.

4 Streamlog

In Streamlog, base predicates, derived predicates, and the query goal are all
timestamped in their first arguments. These will be called temporal, to distin-
guish them from non-timestamped database facts and predicates that might also
be used in the programs.

The same safety criteria used in Datalog can be used in Streamlog. Further-
more, we assume that timestamp variables are made safe by equality chains
equating their values to the timestamps in the base stream predicates. There-
fore, even if T 1 is safe, expressions such as T 2 = f(T 1) or T 2 = T 1 + 1 cannot
be used to deduce the safety of T 2. Only equality can be used for timestamp
arguments.

We can now propose obvious syntactic rules that will avoid blocking behavior
in the temporal rules of safe Streamlog programs.

– Strictly Sequential:A rule is said to be Strictly sequential when the timestamp
of its head is > than every timestamp in the body of the rule. A predicate
is strictly sequential when all the rules defining it are strictly sequential.

– Sequential: A rule is said to be sequential when it satisfies the following three
conditions:
(i) the timestamp of its head is equal to the timestamp of some positve goal,
(ii) the timestamp of its head is > or ≥ than the timestamps of the remaining
goals, and
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(iii) its negated goals are strictly sequential or have a timestamp that is <
than the timestamp of the head.

– A program is said to be sequential when all its rules are sequential or strictly
sequential.

The programs in Examples 4, and 5 are sequential, given that the predicates
previous and befr in their negated goals are strictly sequential.

Next observe that the programs in Examples 4, and 5 are stratified with
respect to negation with previous occupying a lower stratum than first, which
is in a stratum not higher than befr, which is in a stratum lower than second.

Stratified Datalog programs have a syntactic structure that is easy for a com-
piler to recognize and turn into an efficient implementation [22]. In fact, the
unique stable model of these programs, called the perfect model, can be com-
puted efficiently using a stratified iterated fixpoint [22]. Unfortunately stratified
programs do not allow negation or aggregates in recursive rules, and therefore,
are not conducive to efficient expression of algorithms such as shortest path.
Much previous research was devoted to overcoming this limitation. In particu-
lar, there is a class of programs called locally stratified programs that have a
unique stable model, called perfect model. Unfortunately, the stratification for a
locally stratified programs can only be verified against its instantiated version,
whereby supporting perfect models is, in general, an Π1

1-complete problem [9].
Overcoming this limitation and supporting negation or aggregates in recursion

has thus provided a major focus of topical research where progress has been very
slow. Therefore, we were pleasantly surprised to find out that the simple notion
of sequential programs for Streamlog avoids the non-monotonicity problems that
have hamstrung Datalog and frustrated generations of researchers. To illustrate
this point, let us first use the stratified program of Example 7 to express the
well-known shortest path problem. In this example, we use the paths computed
for previous timestamps to discard longer arcs in the incoming stream. We also
use a simple predicate lgr(T1, T2, T) whereby T is equal to the larger of the first
two arguments:

Example 7. Continuous shortest paths in graphs defined by stream of arcs.

path(T, X, Y, D)← arc(T, X, Y, D),¬shorter(T, X, Y, D).
shorter(T, X, Y, D)← path(T1, X, Y, D1), T1< T, D1 ≤ D.

path(T, X, Z, D)← path(T1, X, Y, D1), path(T2, Y, Z, D2),
lgr(T1, T2, T), D = D1+D2.

According to these rules, the arrival of one or more new arc will trigger addition
of new edges in path. Then these new edges can trigger the addition of additional
ones in recursive rule, where path appears twice. The differential fixpoint used
in this computation [22] will result in at least one of these two path goals to have
a timstamp equal to T—i.e., the larger of the two values is used to timestamp
new fact generated in the head. This quadratic expression of transitive closure
requires only the memorization of path; it is thus preferable to a linear rule that
uses both arc and path, both of which then require memorization.
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5 Declarative Semantics and Operational Semantics

Example 8 above, shows how to improve our rules by pushing negation into
recursion. The program so obtained is sequential, and therefore it has a formal
semantics and efficient implementation that are discussed after the example.

Example 8. Negation can be pushed inside recursion.

minpath(T, X, Y, D)← arc(T, X, Y, D),¬shorter(T, X, Y,D).
minpath(T, X, Z, D)← minpath(T1, X, Y, D1), minpath(T2, Y, Z, D1), lgr(T1, T2, T),

¬shorter(T, X, Z, D), D = D1+ D2.
shorter(T, X, Z, D)← minpath(T1, X, Z, D1), D≤ D1, T1 < T.

The timestamps in our data stream form a sequence that is unbound but finite.
We can denote them by their position in the sequence, and talk about the nth

timestamp, without fear of ambiguity. Then, sequential programs are locally
stratified by their timestamp values as discussed next. To prove this we will
construct the bistate equivalent of our program. The first step is a temporal
expansion, where a rule with a condition ≤ ( ≥) between temporal arguments, is
replaced by two rules: in the first rule, the temporal arguments are set to equal,
and in the other they are set to < (> S). Likewise, a rule with lgr is replaced
by three rules, resp. for =, < and>. Then we have the following rewriting:

1. In each rule, rename with the suffix new the head predicate and the body
predicates that have a timestamp equal to the that of the head,

2. Rename all the predicates in the body whose temporal argument is less than
that of the head by the suffix old

3. Remove the temporal arguments from the rules.

Thus, for Example 8 we obtain:

Example 9. Bistate represention for the program of Eample 8

minpath new(X, Y, D)← arc new(X, Y, D),¬shorter new(X, Y, D).
minpath new(X, Z, D)← minpath new(X, Y, D1), minpath new(Y, Z, D1),

¬shorter new(X, Z, D), D = D1+ D2.
minpath new(X, Z, D)← minpath old(X, Y, D1), minpath new(Y, Z, D1),

¬shorter new(X, Z, D), D = D1+ D2.
minpath new(X, Z, D)← minpath new(X, Y, D1), minpath old(Y, Z, D1),

¬shorter new(X, Z, D), D = D1+ D2.

shorter new(X, Z, D)← minpath old(X, Z, D1), D ≤ D1.

The program so obtained is stratifiable in several ways, including the following
one: we assign to stratum 0 all and only the predicates with suffix old, and the
predicates with suffix new are all in higher strata. For instance, we will assign
minpath old to level 0, and then shorter new, and arc new to level 1, and
minpath new to level 2. Thus here we have one stratum with old predicates,
and S = 2 strata for new predicates.



Logical Foundations of Continuous Query Languages for Data Streams 185

Now we can generate a local stratification based on the distinct temporal
values of the timestamps which form a finite sequence τ1, . . . , τn. In our case
minpath(0, . . .) will be asigned to stratum 0, shorter(τ1, . . .) and arc(τ1, . . .)
are assigned to stratum 1, and minpath(τ1, . . .) are assigned to stratum 2. Then
the process repeats with with temporal argument T2 being assigned as follows:
shorter(τ2, . . .) and arc(τ2, . . .) to stratum 3, and minpath(τ2, . . .) to stratum 4.
Thus, for our sequence τ1, . . . , τn we have 1+n×S strata, where a p new(τj, . . .)
that belonged to state k in the bistate version will now be assigned to stratum
j × S + k in the local stratification.

The computation of perfect model for the locally stratified program now be-
comes straightforward. Basically, we iterate over the following two steps for each
set of tuples arriving with a new timestamp: (i) the stratified bistate version of
the program is used to derive additional new values for the predicates, and (ii)
the old version is incremented with this newly derived atoms.

6 Multiple Streams

A much studied DSMS problem is how to best ensure that binary query oper-
ators, such as unions or joins, generate outputs sorted by increasing timestamp
values [14,5,6]. To derive a logic-based characterization of this problem, assume
that our msg stream is in fact built by combining the two message streams sensr1
and sensr2. For stored data, this operation requires a simple disjunction as fol-
lows:

Example 10. Disjunction expressing the union of two streams.

msg(T1, S1)← sensr1(T1, S1).
msg(T2, S2)← sensr2(T2, S2).

However even if sensr1 and sensr2 are ordered by their timestamps, this dis-
junction says nothing about the fact that the output should be ordered. Indeed,
assuring such an order represents a serious problem for a DSMS, due to the
time-skews that normally occur between different data streams. Thus, for the
union in Figure 1, when one of the two input buffers is empty, we cannot take
the first item from the other buffer, until we know what its timestamp value will
be. This problem has been extensively studied, but only at the implementation
level [14,5,6]. At the logical level the problem can be solved as follows:

Example 11. Union of synchronized streams.

msg(T1, S1)← sensr1(T1, S1),¬missing2(T1).
msg(T2, S2)← sensr2(T2, S2),¬missing1(T2).

Now we check that all the stream2 tuples (resp. the stream1 tuples) with times-
tamp less than T1 (resp. less than T2) added to msg:

missing2(T1)← sensr2(T2, S2), T2 < T1,¬msg(T2, S2).
missing1(T2)← sensr1(T1, S), T1 < T2,¬msg(T1, S1).
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The expression given in Example 11 is clearly better than the sort-merge ap-
proach proposed in the literature that can be described as follows:

Example 12. Union of unsynchronized streams by sort merging.

msg(T1, S1)← sensr1(T1, S1), sensr2(T2, ), T2 ≥ T1.
msg(T2, S2)← sensr2(T2, S2), sensr1(T1, ), T1 ≥ T2.

This expression is correct but not complete1. As a result, this operator might
have to enter an idle-waiting state that is akin to temporary blocking [5].

From the viewpoint of users, neither the solution in Example 11 nor that in
Example 12 are satisfactory. What users instead want is to write the simple rules
shown in Example 10 and let the system take care of time-skews. Therefore in
Streamlog, we will allow users to work under the Perfect Syncronization Assump-
tion (PSA), whereby the data streams of interest are perfectly synchronized. Un-
der PSA, we ca now extend the PCWAwe had previously defined for a single data
stream to a collection of N data streams streamj(T, . . .) , j = 1, . . . , N as fol-
lows: We can assume ¬streamj(Tj, . . .) iff for some i, 1 ≤ i ≤ N streami(Ti, . . .)
with Ti > Tj, and stream(Tj, . . .) is not entailed by our fact base augmented
with all the stream facts with timestamp ≤ Ti Since in reality PSA does not
hold, the DSMS is given the responsibility to enforce efficient policies and condi-
tions needed to ensure that queries return the same answers as those produced
under PSA. For instance, for the query at hand, the DSMS system might in
fact enforces conditions such as ¬missing2(T1) in the first rule of our union.
Efficient support of these PSA-emulating conditions requires the use of sophis-
ticated techniques, such as intelligent backtracking [5]. For instance in Figure
1, say that the lower buffer feeding the union has a tuple with timestamp t1,
while the other buffer is empty. Rather than waiting idly for the arrival of some
tuples in the empty buffer, we can backtrack to the previous operators feeding
the buffer. If a tuple with timestamp < t1 is found, it must be moved quickly
through the operators since this is the one that must pass through to the union
next. But if only tuples with timestamps > t1 are found, then the union operator
will be signalled (e.g., via punctuation marks) to let the tuple with timestamp
t1 to go through. Finally, if the buffer is empty, an additional backtracking step
will be performed to visit the buffer supplied by Source1, and so on. As dis-
cussed in [5], this backtracking approach can lead to significant improvements
in the response time of our DSMS. Although space limitations prevent us from
discussing this approach further, we observe that (i) while Streamlog is clearly
inspired by Datalog, its execution exploits Prolog’s backtracking mechanism,
and (ii) the techniques used to support PSA are also very useful to control and
expedite execution of single-stream queries.

To illustrate (ii), say that tempr(Time, Locat, Celcius) is the stream con-
taining the temperature readings of our sensors, from various locations. Then
the following rules could be used to continuously return each new temperature
maximum:

1 For instance, the sensr2 stream might have ended and the current clock is past T1.
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max(T, Loc, Cel)← tempr(T, Loc, Cel),¬hotter(T, Cel).
hotter(T1, C1)← tempr(T2,, C2), C2 ≥ C1, T2 ≤ T1.

Here the backtracking technique used to support NSA for union can be used to
detect that all the the tempr tuples with timestamp ≤ T have already arrived and
thus the query ?max(T, Loc, Celcius) can be answered at once without await-
ing for tuples with timestamps larger than T. Also, if we construct the bistate
equivalent of our rules we see that we obtain a stratified program, whereby the
original program is locally stratified and the efficient execution techniques pre-
viously discussed remain valid. Therefore we can relax the definition of Strictly
Sequential rules as follows:
Strictly Sequential: A rule is said to be Strictly sequential when the timestamp
of the head of the rule is > than the timestamp of each recursive goal and ≥ the
timestamps of the non-recursive goals.

This extension does not compromise the key properties of our sequential pro-
grams, for which the following properties hold2:

Theorem 1. If P is a Sequential Program then: (i) P is locally stratified, and
(ii) the unique stable model of P can be computed by repeating the iterated fixpoint
of its bistate version for each timestamp value.

For an additional example illustrating the uses of this generalization, let us return
to our shortest-path program in Example 8. When several arcs arrive with the
same timestamp, they might result in the addition of multiple paths between the
same node pair. Thus we could add an additional rule (and stratum) to select
the shortest among such paths that share the same timestamp.

7 Conclusion

While the results presented here are still preliminary, they show that logic can
bring sound theoretical foundations and superior expressive power to DSMS
languages which, currently, are dreadfully lacking in both. In terms of syntax,
Streamlog is just standard Datalog over timestamed predicates; however Stream-
log obtains the greater level of expressive power that negation (and aggregates) in
recursive rules entail by guaranteeing that simple sequentiality conditions holds
between the timestamped predicates in the rules. The use of standard Datalog
implies that the implementation techniques developed for XY-stratification [23]
can be used for Streamlog, and similar results are at hand for the many DSMS
that use continuous versions of SQL. This also sets our approach apart from
that proposed in [2] that relies on an explicit sequencing operator seq and an
operational semantics that is realized through a Prolog-based implementation.
2 The outline of the proof of this property is similar to that outlined in previous

section and it is based on a similar proof for XY-stratification presented in [22]. In
fact, the temporal arguments define an explicit stratification that is similar to that
of XY-stratified programs [23] and Statelog programs [15].
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