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ABSTRACT 
Several methods for implementing data- 

base queries expressed as logical rules are 
given and they are compared for efficiency. 
One method, called “magic sets,” is a 
general algorithm for rewriting logical rules 
so that they may be implemented bottom- 

UP (= forward chaining) in a way that 
cuts down on the irrelevant facts that are 
generated. The advantage of this scheme 
is that by working bottom-up, we can take 
advantage of efficient methods for doing 
massive joins. Two other methods are ad 
hoc ways of implementing “linear” rules, 
i.e., rules where at most one predicate in 
any body is recursive. These methods are 
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introduced not only because they could be 
the right way to implement certain queries, 
but because they illustrate the difficulty of 
proving anything concrete about optimal 
ways to evaluate queries. 

I. Introduction 

We assume that the reader is familiar with 
the notion of a logic program and with the 
notation of Prolog. We follow Prolog nota- 
tion, although we do not assume the left- 
to-right execution of literals that is inherent 
in that language. We also assume familiarity 
with the notation of rule/goal graphs defined 
in Ullman [1985]. In this paper we deal with 
Datalog, as in Maier and Warren [1985]. In 
Datalog, literals have no function symbols 
within them, so we have a greatly simpli- 
fied subcase of logic programs, but one that 
is very significant in the logic-and-databases 
school of thought, e.g., as expressed in Gal- 
laire and Minker 119781.. While all Datalog 
programs have finite minimum models, that 
finiteness is no guarantee of convergence of 
evaluation methods in the presence of recur- 
sion. In fact, Brough and Walker [1984] have 
shown that a top-down, left-to-right Data- 
log interpreter that only examines ancestor 
goals cannot be both complete and conver- 
gent. We also designate some predicates as 
database relations. The only clauses for such 



predicates are ground facts. We expect that 
a database relation predicate will be stored 
as a list of tuples in an underlying database 
system. 

Example 1: Let us introduce the logic pro- 
gram for “cousins at the same generation,” 
which will serve as a running example. It is a 
canonical example of a linear logic program. 
The rules in such programs have at most one 
occurrence of a recursive predicate, sg (same 
generation) in this case, in any body. The 
rules are: 

r1: sg(X, X). 
T-2: sg(X, Y) :- pm-(X, Xl), 

par(Y,Yl), sg(X1,Yl). 

We assume that par is a database 
relation, and par(U, V) means that V is a 
parent of U. The intention of sg(U, V) is 
that U and V are cousins, i.e., they have 
a common ancestor W, and there are lines 
of descent from W to U and V covering 
the same number of generations. Rule rr 
says that anyone is his own cousin, i.e., 
U = V = W and the descent is through zero 
generations. The only other way for X and 
Y to be cousins is expressed by 73, i.e., there 
are parents of X and Y that are cousins. 

We do not assume that the parenthood 
relationship is well organized by levels. It 
is possible that someone married his own 
granddaughter. Thus, we may not assume 
that the number of generations between 
two individuals is unique. In fact, we 
shall not even assume that the parenthood 
relation is acyclic. As we shall see, the 
proper algorithm to apply to these rules may 
depend on whether acyclicity of parenthood 
may be assumed. 0 

Let us focus on the query sg(u, IV), i.e., 
find all the cousins of a particular individual 
a. There are two obvious but expensive ways 
to implement the rules of Example 1. The 

first, top-down, or “backward chaining,” is 
the one Prolog would do. Actually, Prolog 
would run forever on rr and 1’2, but we 
can fix the problem by reordering goals, 
replacing r2 by 

rh: sg(X, Y) :- pur(X, Xl), 
sg(X1, Yl), pur(Y, Yl). 

However, given goal sg(u,W), the Pro- 
log program would consider each parent of a, 
say b and c. Recursively, it would find all b’s 
cousins, then all c’s cousins, and find all the 
children of both. As b and c may have many 
ancestors in common, we shall repeat much 
work finding those ancestors, and many in- 
dividuals may be cousins of both. Thus, it 
should not surprise one that the total run- + 
ning time of the Prolog program may be ex- 
ponential in the number of individuals in the 
database. The flaw with the naive applica- 
tion of backward chaining, as in Prolog, is 
that it seeks to discover “all proofs” rather 
than just “all answers.” Its use is more ap- 
propriate when only a single answer is de- 
sired, in which case finding one proof suffices 
for generating one answer. Our anticipated 
applications are biased towards all answers, 
and we want to avoid finding all proofs of 
those answers, if possible. 

The bottom-up, or “forward chaining” 
approach can also be very expensive. Here, 
we start by assuming only the facts in the 
database, i.e., the par relation. The initial 
estimate for nondatabase relations, sg in 
this example, is the empty set. We then 
apply the rules, substituting our current 
estimate for each relation in the bodies 
and computing, using the natural join and 
union, a relation for each predicate symbol 
appearing on the left side of one or more 
rules. We add the newly generated facts to 
the current estimate. (For our example, it 
suffices to use the newly created facts as the 
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next estimate, accumulating the final answer 
off to the side.) In our example, the first 
time through, rz yields nothing, because sg 
has no tuples yet. However, rr yields the set 
of all (X,X) p airs. It is not completely clear 
how the domain of X should be limited, but 
as there are no function symbols in our rules, 
it is always safe to limit a variable to the set 
of all values appearing in the database. 

On the second pass, rule rz now gives 
us all facts sg(U, V) where U and V have 
a parent in common. On the third pass 
we get all facts sg(U, V) where U and V 
have a grandparent in common, and so on. 
This process must converge in time that is 
polynomial in the number of individuals in 
the database, whereupon we can restrict the 
relation to those pairs whose first component 
is a, and extract the answer to our query 

4% w. 
While the polynomial time bound seems 

better than the exponential bound for the 
top-down method, either method could run 
faster ‘in practice on given data. More 
importantly, neither method is very good 
overall, since the top-down approach may 
repeatedly establish the same fact, and the 
bottom-up method may generate many facts 
that do not contribute in any way to the 
answer to the query. 

A variety of methods that are more 
efficient than either top-down or bottom up 
are known. The algorithms of McKay and 
Shapiro [1981], P ereira and Warren [1983], 
Lozinski [ 19841, and Van Gelder [1985] are 
“lazy evaluators” that do not attempt to 
establish a fact until some need for that 
fact has been found. Pereira and Warren 
call their method Earley deduction, and it is 
actually a method for full Prolog. Porter 
[S5] has shown that Early deduction is 
convergent and complete for Datalog. These 
algorithms are all dynamic, in the sense that 

they make decisions regarding relevance at 
run time. 

There is also an algorithm of Henschen 
and Naqvi [1984], which is run at compile 
time to generate an evaluator for a set of 
rules. The class of problems for which 
that algorithm is efficient probably does not 
extend beyond the linear rules, but it! will 
produce a fairly, efficient evaluator for the 
same-generation problem. 

The methods we shall discuss are com- 
pile-time algorithms to transform the rules 
into equivalent rules that can be imple- 
mented more efficiently bottom-up. Our 
first method, called “magic sets,” is an at- 
tempt to perform at compile time the op- 
timization performed by the first group of 
algorithms at run time. We cannot com- 
pare our performance with the run-time al- 
gorithms directly, although for linear rules 
we can see that our algorithm mimics the 
others. Finally, we give two more (“count- 
ing” and “reverse counting”) methods that 
are less generally applicable, but when they 
are useful, as in the same-generation prob- 
lem, they can be orders of magnitude more 
efficient than any of the methods mentioned 
above, including the “magic set” method. 

II. Magic Sets 

A desirable property of an algorithm for 
solving the sg rules is that it only discovers 
“relevant” sg facts. Intuitively, a fact is 
“relevant” if it might, depending on the 
database, be essential to the establishment 
of a fact that is in the answer. We’re 
not sure that this definition holds water, 
because there might be a very slow and 
stupid algorithm that rarely consults the 
database, and therefore may generate lots of 
facts that are in principle relevant because 
of our ignorance of what is really in the 
database. Another problem is that we are 
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operating in the “all answers” world. We 
may have to do some work to determine 
that certain proof trees are invalid for the 
current database, so we are convinced that 
we have not overlooked an answer. We do 
not know whether an evaluation scheme can 
be complete without generating some facts 
that are irrelevant to all answers, 

Notwithstanding these problems, the 
diagram of Fig. 1 suggests a plausible def- 
inition of the relevant sg facts for query 
sg(a,W). First, we see the cone of a, which 
is all ancestors of a. We must then generate 
all facts sg(b,c) such that b is in the cone; 
c may or may not be in the cone. We may 
generate all such pairs if we start with the 
pair sg(b, b) for every b in the cone, and we 
apply rule r2 bottom up. However, as we do 
so, we need not generate facts like sg(d, f), 
where neither d nor f are in the cone, be- 
cause such facts could never lead to a fact 
about a (or else d would be an ancestor of 
a, and therefore in the cone). On the other 
hand, given sg(b, c), we do want to establish 
s9(e, f), if park, b) ad par(f, 4 t 

One way to restrict our effort is to define 
the “magic set” for the first argument of the 
predicate sg. We do so by determining what 
values will ever appear as the first argument 
of sg during top-down evaluation of the goal 
s9(a, w. Starting with the fact that a 
can be a value for the first argument, we 
may observe rules rl and r2 and determine 
that the only way a value can appear as 
the first argument of sg is to be either a or 
the parent of a value that appears there. If 
we encounter a goal sg(b, IV), where. b is an 

t The reader should be aware that other methods 
to evaluate this query exist, and some of them, such 
as Henschen and Naqvi’s or the counting method to 
be described, work by computing something besides 
sg facts. Thus, we dannot even ascribe optimality to 
an algorithm that computes an apparently minimal 
set of sg facts. 

Fig. 1. Efficient computation of sg(a,W). 

ancestor of a, and apply r2, we will get the 
new goals 

par(b,Xl), par(W,Yl), sg(Xl,Yl). 

Thus, the first argument, Xl, of the new sg 
goal is a parent of b and hence an ancestor 
of a. In rules: 

r3: magic(a). 
r4: magic(U) :- magic(V), par(V,U). 

Thus, the set of b’s satisfying magic(b) is 

the cone of a in Fig. 1. While this analysis 
of possible values for the first argument for 
sg assumed top-down evaluation, we can use 
those values to filter bottom-up evaluation. 
Any proof tree used in bottom-up evaluation 
will be investigated going top-down. We can 
then rewrite rules rl and r2 to insist that 
values of the first argument of sg are in the 
magic set: 

r5: sg(X,X) :- magic(X). 
rg: sg(X,Y) :- magic(X), par(X,Xl), 

par(Y, Yl), sg(X1, Yl). 

We can show that rules r3, r4, rg, and 7‘6 
yield the same answer to the query sg(a, W) 
as rl and r-2. First, since there are no 
function symbols, and the rules ‘we all Horn 
clauses, the least fixed point of each set of 
rules is well defined and can be computed 



bottom-up. We must show that an answer 
W = ws produced in answer to the query 
sg(a, W) by rules ~1 and 7‘2 is also produced 
by the other set. It is an easy induction 
on the number of times ~2 is applied, that 
for every fact sg(b, c) inferred in the proof 
of sg(a,wo), magic(b) is true by 7‘3 and 
f-4. Once established, we observe that the 
addition of the literals magic(X) in rs and 
rg do not eliminate any facts that are needed 
to prove sg(a,wo). 

Rules 7-3 through rs were not quite 
pulled out of a hat, despite our use of 
the term “magic sets.” There is a general 
algorithm by which we replace a collection of 
rules by another collection that is normally 
more efficient. Sometimes, our algorithm 
decides that no transformation is desirable, 
and sometimes it makes a transformation to 
rules that run more slowly on the given data 
than the originals. 

Before the reader imagines that such a 
state of affairs is not worthy even of con- 
tempt, let us note that the problem of se- 
lecting the optimal way to evaluate rules is 
not as trivial as it might seem. Recent work 
of Bancilhon [1985a,b] tries to develop def- 
initions of “optimal” evaluators, but notes 
that even defining the term properly is hard, 
and there are almost no evaluators that meet 
his definition. In fact, we may observe that 
the situation in database query optimization 
is no better off, despite many years during 
which the problems have been considered, 
and despite the models being somewhat sim- 
pler. 

Example 2: It is conventional wisdom in- 
corporated into every optimizer for rela- 
tional algebra that selections should be done 
before joins; see Maier 119833 or Ullman 
[1982]. Thus, the expression 

XM(~E=‘JOTZ~ (ED w DM) 

would normally be evaluated by first select- 
ing the employee-department relation ED 
for employee = ‘Jones’, obtaining a set of 
departments Jones works for, then select- 
ing those departments from the department- 
manager relation DM and listing all the 
managers of those departments. However, it 
would be more efficient to evaluate the ex- 
pression as written if Jones were in many 
departments, and the DM relation were 
empty, or very small. Then, the supposedly 
inefficient way to evaluate would rapidly dis- 
cover that there were no tuples in ED w 
DM, while the efficient method would have 
to examine the ED relation and retrieve 
many departments. 0 

We conclude from Example 2 that it is 
unreasonable to expect proofs of optimality, 
or even superiority of one algorithm over 
another, in all cases. As with folk wisdom 
such as “push selections ahead of joins,” we 
must reason from what we believe to be 
typic& data to which the rules are applied 
and implement evaluation algorithms that 
perform well in what we regard as the typical 
case. 

Having justified somewhat our lack of 
optimality results, let us explore the idea be- 
hind magic sets. The general idea is to con- 
struct the rule/goal graph (Ullman [1985]), 
showing how bound arguments in the query, 
such as a in our example sg(u, W), propa- 
gate through the rules and predicates. Re- 
call from Ullman 11985) that the nodes of the 
rule/goal graph correspond to the predicate 
symbols and rules, and they have “adorn- 
ments” indicating which arguments of pred- 
icates are bound and which variables of rules 
are bound. Arcs lead to a predicate (goal) 
node from each rule with that predicate on 
the left side. Arcs lead to a rule node 
from each of the literals (= goals) on the 
right side of the rule. In each case the arcs 



only connect nodes where the adornments 
agree. There are some subtleties regarding 
the proper adornments of these nodes. In 
particular, in this paper we shall take ad- 
vantage of the sideways information pass- 
ing strategy explored in Sagiv and Ullman 
[1984]. 

Briefly, when evaluating a rule, we eval- 
uate’each of the goals on its right side, and 
we may do so in any order. Whatever or- 
der we pick, a variable that appears in a 
goal may be regarded as bound for all subse- 
quent goals, regardless of whether the adorn- 
ment of the rule node whose relation we 
are evaluating says the variable is bound or 
free. The intuitive justification for this as- 
sumption is that we may compute the re- 
lations for each goal in the chosen order, 
and join the relations as we proceed. Thus, 
any variable that has appeared in a prior 
goal has already had a limited set of pos- 
sible values determined for it. Suppose we 
have an algorithm that computes the rela- 
tionforsomegoalg(Xi ,..., X,,Yr; . . . . Ym) 
provided Xl,. . . , X, are bound, and the 
Xi’s have all appeared in previous goals. 
Then we may consider each tuple in the 
join of the relations for the previous goals, 
and from each tuple obtain bound values for 
Xl , . . . ,X,. We apply the hypothetical al- 
gorithm to compute the relation for g with 
this binding of the X; ‘s, and take the union 
over all bindings. The result will be those 
tuples in the relation for goal g that do not 
“dangle,” i.e., those tuples that actually may 
join with the relations for the other goals. 

Example 3: Figure 2 shows the rule/goal 
graph ‘for ~1 and r2 when the order of 
goals in r-2 is the one indicated in ri. The 
adornments of goal nodes indicate by b or 
f whether the various arguments of the 
predicate are bound or free. E.g., sgbf 
means predicate sg with the first argument 

bound and the second free, as in sg(u,W). 
For rule nodes, we indicate that variable X 
is bound by X/b, and that Y is free by Y/f, 
for example. 

A-/b 
Tl 

Fig. 2. Rule/goal graph for 
same-generation problem. 

For the moment, ignore the dashed lines 
and concentrate only on the solid lines, the 
arcs of the rule/goal graph. To understand 
the adornments on the predecessors of the ~2 
node, note that X is bound. Thus, we may 
first work on goal node par(X, Xl) with the 
first argument bound, and the result will be 
a set of values for Xl that will in fact be 
the parents of the individual to which X is 
bound. Then, for each such value of Xl we 
bind Xl to it in the call to goal sg(X1, Yl). 
Thus, we have another instance of sgbf, 
and it is the “sideways information passing” 
that lets us call sg recursively with the 
first argument bound each time, rather than 
winding up calling sg with both arguments 
free, as would be the case with a more naive 
algorithm. Finally, the call to sg binds 
Yl, and we use the bindings we get in a 
call to par(Y, Yl) with the second argument 
bound; this call corresponds to the goal node 
parf b, which is another predecessor of the r2 
node. cl 

If we examine the dashed lines in Fig. 2, 
we see a trace of what happens to a bound 



value. The initial bound value a is injected 
as the first argument of sg, shown by the 
dashed arrow at the top. This bound value 
becomes the value of X in rz, and X in 
rp becomes the first argument of par in the 
call represented by the node par”f in Fig. 2. 
That value gets translated by evaluation of 
the database relation par, i.e., we now have 
a set of values for the second argument of 
par. 

Those. values become bindings for Xl 
in the rule rz, and Xl becomes the first 
argument of sg. We could continue; the 
first argument of sg gets translated to a set 
of second arguments, which become values 
for Y 1 and the second argument of par. 
These are translated to values for the first 
argument of par, which through variable Y 
becomes the second argument of sg again. 
However, an important heuristic for the 
application of magic sets is that it doesn’t 
pay to translate through a relation that we 
are in the process of computing, for to do 
so requires that we solve the whole problem 
just to construct the magic set, which was 
supposed to be of help solving the prpblem. 

Focussing on the dashed loop in Fig. 2, 
we can construct the set of all values that can 
ever be the bound value of the first argument 
of sg in a tu@le that contributes to the 
answer. We shall give a formal and general 
algorithm shortly, but in this case we can 
easily see what is involved. We know that 
to begin, a is a possible value. This explains 
rule ra, magic(a). We also know that if V 
is a value that has been found useful, then 
following it around the loop, we find that all 
those U for which par(V, U) are also useful; 
this explains rule r4, magic(U) :- magic(V), 
par(V, V). We shall now formalize the above 
intuitive discussion. 

Algorithm 1: Modification, of rules by 
magic sets. 

INPUT: A portion of a rule/goal graph for a 
set of rules, one goal node of which is the 
query node. We assume the rules are Horn 
clauses and have no function symbols. We 
also assume the predicates are divided into 
those that are recursive and those that are 
not. We assume the nonrecursive predicates 
are not heads of rules, i.e., they are database 
relati0ns.t 

OUTPUT: A modification of the rules (per- 
haps no change) that is designed to permit 
efficient evaluation of the rules bottom-up. 

METHOD: First, note that since the input is 
a rule/goal graph, we may assume all deci- 
sions regarding the order of literals for side- 
ways information passing have been made; 
the effectiveness of magic sets depends on 
the choices made. For each goal node g 
whose predicate is recursive, we construct a 
relation magic,, which is the set of tuples of 
values (for those arguments that the adorn- 
ment of g says are bound) that can actually 
contribute to the answer to the query. Ob- 
serve that we are going to have several magic 
sets for a predicate that appears in several 
goal nodes. 

Let us assume temporarily that the 
rules are all linear recursive, and write a 
typical rule as 

r: p :- L, q, R 

Here, q is the recursive predicate in the 
body, L is the set of literals that are 
evaluated before q (for the purposes of 
sideways information passing), and R the set 
of literals evaluated later. 

Let g be a goal node corresponding to 

t In practice, these predicates could be defined 
by rules, but if so, they do not depend on the recur- 
sive predicates of the set of rules in question. This 
assumption corresponds to the query implements 
tion strategy in which we divide the predicates into 
strong components, and work on the strong compo- 
nents in the natural Ubottom-up” order. 
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predicate p with some adornment. Then g 
has a predecessor rule node corresponding to 
rule T, and that rule node has a predecessor h 
corresponding to the predicate q. Moreover, 
the adornment on h indicates an argument of 
q is bound exactly when the corresponding 
variable in r is bound. Such a binding comes 
from a bound argument of p (according to 
the adornment of g), or from the literals of 
L. 

Suppose that we have discovered that 
to answer the query we need to evaluate the 
relation for goal node g with tuple of bound 
values b, i.e., b is in magic,. Let Y be 
the list of arguments in r that appear in 
arguments of p that g says are bound (so b is 
a tuple of bindings for Y). Let X be the list 
of variables in r that appear in arguments 
of q that h says are bound. Then we may 
conclude that tuple c of bindings for X is 
in mug& if the bindingsin c are consistent 
with the bindings for b, plus some set of legal 
bindings for the variables in literals of LC. 
Formally, this condition can be expressed: 

mugiCh(x) :- c, mUgi$(Y). 

Notice that p and q have switched sides in 
the magic set rule, and the literals in R have 
disappeared. For example, if r is 

~(4 8 T) :- 44 v), e(U, V>, 
4% v, w7 f-w7 T) 

g is pbbf and h is q “f, then the new rule is 

mugich(s, v) :- d(R, u), 
e(U, V), mug&(X, S). 

We create such a magic set rule for each 
rule that has a recursive predicate in its 
body, and for each pair of goal nodes g and 
h related to the rule as above. We complete 
the magic set rules with 

mugicJa). 

where g is the goal node corresponding to 

the query, and a is the tuple of constants 
provided by the query. 

Next, we rewrite the original rules, as 
follows. First, we replace each recursive 
predicate by new predicates corresponding 
to its nodes in the rule/goal graph, i.e., we 
distinguish versions of a predicate by the 
possible sets of bound arguments with which 
it may be called. Second, we replace a rule 
such as p :- C, q, R, above, by 
1. Replacing p and q by all possible pairs 

of goal nodes g and h, related to each 
other and to p and q as above, and 

2. Adding literal magic,(Y) to the body; 
Y is the list of variables appearing 
in the argument positions of p that g 
asserts are bound. 

That is, the rule becomes: 

g :- magic,(Y), C, h, R. 

If the rule has no recursive predicate on 
the right, we still perform step (2), i.e., 
insertion of the magic set term on the right. 
Note that the “magic” rules do not refer to 
the recursive predicates. Thus, in bottom- 
up evaluation of the combined set of rules, 
we may choose to run the magic rules to 
completion first. 

The last point to be considered is 
what happens when there is more than one 
recursive literal in a rule body. If none of 
these appear in L, no change needs to be 
made. If C contains recursive literals, often 
we cannot do anything, and the algorithm 
simply fails to rewrite the given rules. The 
case where we can proceed is when none of 
the recursive literals in C is necessary to 
bind an argument of q. In that case, we 
can transfer the recursive literals from L to 
R, and proceed as above. We shall see in 
Example 5 a case where a rule with two 
recursive literals is not fatal. Cl 

Example 4: Let us consider again the 

a 



same-generation problem, but with the rules 
rewritten so the recursive call to sg occurs 
with its arguments in the reverse order. The 
rules are: 

r1: sg(X, X). 
T-7: sg(X, Y) :- par(X, Xl), 

par(Y, Y l), sg(Y1, Xl). 

The query is again sg(a, W). Figure 3 shows 
the relevant portion of the rule/goal graph. 

Fig. 3. Rule/goal graph for modified 
same-generation problem. 

Although there is only one recursive 
predicate, sg, there are two goal nodes for 
that predicate, one with the first argument 
bound and one for the second argument 
bound. Let us use magic1 for node sg’f and 
magic2 for sg f ‘. 

For the case in Algorithm 1 where g is 
sgbf and h is sg fb, the order of literals in 
r7 used for sideways information passing is 
par(X,Xl), sg(Y1, Xl), par(Y, Yl). Thus, 
L is par(X,Xl). The magic set rule is 
therefore: 

magicn(X1) :- par(X, Xl), magicl(X). 

Note that X is the argument of magic1 
because X is in the bound position of sg 
on the left of rr , and X 1 is the argument of 
magic2 because that is in the bound position 
of sg on the right. The rules for sg are 
modified into: . 

sgbf (X, X) :- magicl(X). 
sgbf (X, Y) :- mug&(X), par(X, Xl) 

par(Y, Yl), sgfb(Yl, Xl). 

Now, let g be sgf’ and h be sgbf. The 
order of the literals of r7 that provides the 
desired sideways information passing is 

par(Y, Yl), sg(YL Xl), par(X, X1) 

This order yields the magic set rule: 

and 

magicr(Y1) :- par(Y, Yl), magics(Y). 

the modified sg rules: 

sgfb(X, X) :- magicz(X). 
sgfb(X, Y) :- magicn(X), par(X, Xl), 

par(Y,Yl), sgbf(Yl,X1). 

Finally, the query node is sgbf, with the 
first argument bound to a. Thus we have the 
basis magic set rule: 

mug&(a). 

the seven rules, with some renaming of 
variables, are as follows. 

magicr(a). 
magiq(U) :- par(V, U), magics(V). 
magicz(U) :- par(V,U), magicl(V). 

sgbf (X, X) :- magicl(X). 
sgbf (X, Y) :- magicl(X), par(X, Xl), 

par(Y,Yl), sgfb(Yl, Xl). 

sgfb(X, X) :- magica( 
sgfb(X,Y) :- magiq(X), par(X,Xl), 

par(Y, Yl), sgbf (Yl, Xl). 

Notice that the two magic sets are almost 
identical, but the generations are counted 
modulo 2 starting with individual a, so 



they may not be the same set. A similar 
comment applies to the two versions of the 
sg predicate. q 
Example 5: The rule 

24% Y) :- 4-T a, q-T Jv, Pm U), 
P(W V), w, v, n 

is an example where a nontrivial magic set 
may exist, even though the rule is nonlinear. 
Suppose that the query node is pbf, and that 
this is the only node for p in the rule/goal 
graph. Also assume that the literals are to 
be evaluated in the order shown. For the 
literal ~(2, U) we let C = u(X, Z), b(X, IV), 
so we can write 

magicp(Z) :- a(X, Z), b(X, W), 
mugit+( 

Now consider the second literal for p, 
that is, p(W,V). It is preceded by an- 
other literal for p, but that literal, ~(2, U), 
has no variable in common with p(W, V). 
Thus, with respect to p(W, V) we cari ex- 
clude ~(2, i7) from C, so L again equals 
a(X, Z), &(X, IV). The magic set rule de- 
rived from the second occurrence of p is thus: 

magic,(W) :- a(X, Z), b(X, W), 
magicp(X). 

0 

Theorem 1: The modified rules produced 
by Algorithm 1 compute the same answer to 
the query as the original rules. 0 

III. The Counting Method 

If we review Fig. 1, we see that there is po- 
tential redundancy in our intent to calculate 
all pairs (b, c) such that b is in the cone, and 
sg(b, c). For example, a may have 100 an- 
cestors br , . . . , broo at the 10th generation, 
and we would therefore discover the follow- 
ing 100 facts: sg(bl, c), . . . , sg(broo, c). But 
any one of these facts is sufficient to deduce 

the fact that all lOth-generation descendants 
of c are same-generation cousins of a. 

The matter isn’t all that clearcut, be- 
cause b may be an ancestor of a at several 
different generations. If that is the case, the 
fact sg(b, c) serves several purposes at dif- 
ferent times, and replacing it by statements 
that c was a cousin of some ancestor of a at 
these various generations could increase our 
work rather than decrease it. 

The next section offers some compar- 
isons among various strategies, but the 
transformation we propose for the same- 
generation rules has intuitive appeal, and in 
fact we believe it is closely related to the 
Henschen-Naqvi algorithm. We shall not at- 
tempt to generalize the idea as we did for 
magic sets, but the following example should 
make the potential idea clear. 

While the magic set method, applied to 
rules rr and r2 computes the cone of a, as 
depicted in Fig. 1, we could, with a little 
more effort, compute for each member of the 
magic set the levels at which it appears, that 
is, the number ,of generations removed from 
a it is. Recall that an individual can appear 
on several levels. The rules to compute this 
information are: 

ancestor( a, 0). 
ancestor(X, I) :- par(Y, X), 

ance&or(Y, J), i.is J.+ 1. 

Now, we can compute a new predi- 
cate cousin(X, I), meaning that the Ith- 
generation descendants of X are cousins of 
a at the same generation. The rules are: 

cousin(X, I) :- ancestor(X, I). 
cousin(X, I) :- par(X, Y), 

cousin(Y, J), I is J - 1, I1 0. 
sg(a, X) :- cousin(X, 0). 

We call the idea that led to the above 
rules the counting method, and note that 
this method can answer the query sg(a, W) 
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correctly, but only if the parenthood relation 
is acyclic. If there are cycles, we never get 
finished computing the ancestor relation. If 
there are n individuals in the database, then 
one can show that I in the rules for ancestor 
and cousin can be limited to n2, but it is not 
always possible to consider only the first n 
generations. 

IV. The Reverse Counting Method 

Yet another method, called reverse counting, 
starts off by computing the magic set, 
forgetting about the levels at which each 
individual appears. Then, we consider each 
element b of the magic set, and we compute, 
for all i, the set of descendants of b at the 
ith generation. For those values of i for 
which the ith descendants of b contain a 
(recall a is the individual whose cousins we 
are computing), we add all descendants at 
level i to the set sg(a,X). That is, after 
computing the magic set for a, we create a 
predicate bdescendunt(X, I) for each b such 
that magic(b), with rules: 

bdescendunt(b, 0). 
bdescendant(X, I) :- 

bdescendunt(Y, J), 
par(X, Y), I is J + 1. 

Then we contribute to the solution by: 

sg(u, X) :- bdescendunt(u, I), 
bdescendunt(X, I). 

Remember that there is one set of the above 
rules for each value of b. 

Intuitively, the reason the reverse count- 
ing method can sometimes be more effi- 
cient than other methods is that by fo- 
cussing on one value of b at a time, it can 
compute all the relevant sg pairs not as 
pairs, but as a single set. Put anoth& way, 
if bdescendunt(c, ;) and bdescendunt(d, i), 
then sg(c,d) follows. However, if the set of 

ith descendants of all magic set members, or 
even all magic set members at a given height 
were computed in one group, the member- 
ship of two elements c and d in the set of 
desdendants at level i would not be sufficient 
to guarantee sg(c, d). Note that similarly to 
the counting method, reverse counting loops 
forever if the parenthood relation is cyclic. 

V. Comparisotis Among Methods 

First, let us note that the magic set method, 
like other compiled methods, cannot always 
compete with the dynamic methods like 
Those of McKay-Shapiro, Pereira & Warren, 
Lozinski, or Van Gelder. A simple example 
is the transitive closure rules 

t(X, Y) :- e(X, Y). 
t(X, Y) :- t(x, Z), t(2, Y). 

The magic set, counting, reverse counting, 
and Henschen-Naqvi methods are useless 
given the query t(u, W), because to find the 
possible values of 2, which all belong in the 
magic set, we have to compute t(a, Z), which 
is equivalent to the query. Yet the dynamic 
methods will correctly perform a breadth- 
first search from u. However, in some cases 
the magic set method is better than dynamic 
methods. For example, Lozinski’s method 
fails to compute only relevant facts when 
given the rules of Example 4. 

When we compare compiled methods 
we can make some interesting and concrete 
observations. In what follows, we use a pair 
of rules similar to the same-generation rules, 
but ones that allow us better control over the 
performance of the various algorithms. 

7-a: p(X,Y) :- q(X, Y). 
7-g: p(X,Y) :- f(X, Xl), p(Xl,Yl), 

s(Yl,Y). 

In what follows, it helps to see r as 
“going up”; if r(u, b), then we place b above 
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a and draw an arc a -+ b. We see Q as 
going sideways; if q(a, b) we place b to the 
right of a and draw an arc a ---) b. Finally, 
s represents down arcs, and when ~(a, b) 
is true, we place b below a and have and 
arc a + b. In the following examples we 
assume that whenever a selection has to be 
performed on a database relation, there is 
an index that let us perform that selection 
in time proportional to the size of the result 
(in particular, in constant time if the result 
has a single tuple). 

Example 6: This example shows that the 
magic set method can be worse than either 
the Henschen-Naqvi, counting, or reverse 
counting methods, even on linear rules. Let 
Q, r, and s be defined by the graph of Fig. 
4. That is, the database facts are 

r(a, bi) and r(bi, c) for 1 5 i 5 n. 
i: q(c,d). 
3. s(d, e;) and s(e;, f) for 1 5 i 5 n. 

The magic set for the query &a, IV) is 
{a,c,h,.. . , bn}. We then establish all facts 
p(bi,ei), taking Q(n”) time since there are 
n2 such facts. 

Fig. 4. Example where the Henschen-Naqvi 
method is most efficient. 

On the other hand, Henschen & Naqvi’s 
algorithm will establish in O(n) time the 
fact that {bl, . . . , bn) are the ancestors of 
a at generation 1, c is the only ancestor 

at generation 2, and find the only answer, 
W = f, in another O(n) time by walking 
down the right side of Fig. 4. The counting 
method behaves in essentially the same way. 

The reverse counting method computes 
the magic-set in O(n) time, and then for the 
member c, it finds in O(n) time that a istwo 
levels below c while f is the same number of 
levels below d and, hence, gets the answer 
W = f. In O(n) time it determines that c is 
the only member of the magic set that can 
produce an answer (since only c appears in 
q) and, so, W = f is the only answer. 0 

Example 7: Now we take up a family of 
databases for the same rules as Example 6, 
for which magic sets is more efficient than 
the other algorithms, The database consists 
Of: 

1. T(Ui,Ui+l) for 1 5 i < 72. 
2. 7’(U1,Ui) for 3 < i < n. 

3. Q(an, bn)- 

4. s(bi, bi-1) for 2 5 i 5 n. 
The case n = 5 is shown in Fig. 5. The 
dashed lines illustrate the p facts that we 
shall eventually infer. 

w-e-. 

Fig. 5. Example where magic 
sets is most efficient. 
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The magic set for query p(al, W) con- 
sists of all the ai’s, and it is computed in 
O(n) time. Once a, is in the magic set, 
we can use fs to establish p(a,,b,). Then 
on the next pass we establish ~(a,-1, b,-1) 
and p(ul, b,-1). On the next pass, we find 
both p(u n-2ybn-2) and P(N,&-2), and SO 

on. The total work is seen to be O(n). 
In comparison, Henschen-Naqvi and the 

counting method both take St(n2) time just 
to establish the ancestry of al. That is, the 
set of first-generation ancestors of al is 

the set of second-generation ancestors of al 
is 

i a3 9-v -3%) 

and so on. 
Interestingly, the reverse counting meth- 

od takes only O(n) time. After computing 
the magic set, this method finds in O(n) 
time that the ifh level below a, has two el- 
ements, namely, al and a,-;. The ilh level 
below bn consists exactly of b,-i and, so, the 
answers bn-1 , . . . , bl are found in O(n) time. 
In another O(n) time the reverse counting 
method determines that a, is the only mem- 
ber of the magic set that produces some an- 
swers. Cl 

Example 8: A similar example, shown in 
Fig. 6 for the case n = 5, demonstrates 
that counting can be much better than either 
the Henschen-Naqvi or the reverse counting 
methods. Here, the database is: 
1. r(Ui,Ui+l) for 1 < i < 12. 
2. g(ai, bi) for 2 5 i 5 n. 
3. s(bi, bi-1) for 2 5 i < n. 

Clearly, the counting method estab- 
lishes the facts that ai is an (i - l)st ancestor 
of al in O(n) time, and can also establish all 
the “cousin” facts, namely that bi is a cousin 
of al i-l generations removed, in O(n) time. 

a --hi 

1 t 
~4 Y b4 

t f 
w--& 
1 t 
a-b2 

a1 h 

Fig. 6. Example where counting 
is most efficient. 

Magic sets similarly works in time O(n). 
However, Henschen-Naqvi, given that bi is a 
cousin i generations removed, runs down the 
chain bi-l,w..,bl, and it does so for every 
i. Thus, Henschen-Naqvi must take fi(n2) 
time. The reverse counting method behaves 
in essentially the same way. 

Actually, we may be somewhat unfair 
to Henschen-Naqvi. If they retained the 
facts they had established “coming down” 
on earlier passes and compare new facts with 
them, then they could detect that the same 
chain was being followed repeatedly, and re- 
duce their running time on this example to 
O(n). In a sense, the counting strategy can 
be seen as an implementation of Henschen- 
Naqvi that energetically tries to avoid re- 
peating an inference. But neither algorithm 
deals specifically with the case that the rela- 
tion r has cycles, and it is not clear that we 
want to run either in cases where we could 
not guarantee P was acyclic, as we might ex- 
pect the parenthood relation of our earlier 
examples to be. q 

The performance of the four algorithms 
on the three families of databases described 
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in this section is summarized in the following 
table. 

Example 6 7 8 

Henschen-Naqvi n n2 n2 
Magic Sets n2 72 n 
Counting n n2 72 
Reverse Counting n n n2 

VI. Open Problems 

1. 

2. 

3. 

4. 

Can we modify the magic set idea so 
it applies to sets of rules that are 
nonlinear in a nontrivial way, such as 
the transitive closure rules mentioned at 
the beginning of Section V? 
How may the counting method and the 
reverse counting methods be general- 
ized from the same-generation example 
to arbitrary linear rules, in analogy with 
the way Algorithm 1 generalizes Exam- 
ple 3? What is the relationship between 
counting and Henschen and Naqvi’s al- 
gorithm? 
Can one characterize the rules and 
databases for which one algorithm is 
superior to another? 
Is there an algorithm that provably 
dominates the algorithms defined or ref- 
erenced in this paper on arbitrary rules 
and databases? The reader should re- 
view Example 2, because it points out 
the fact that we have to be careful 
with our definitions in order to rule 
out pathological databases. The “right” 
definition of the performance of an al- 
gorithm for evaluating queries in logical 
databases is itself an open problem. 
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