
MAGIC SETS AND OTHER STRANGE WAYS
TO IMPLEMENT LOGIC PROGRAMS

(Extended Abstract)
Francois Bancilhon

MCC
David Maierl

Oregon Graduate Center
Yehoshua Sagiv2

Jeffrey D. Ullman3
St anford University

ABSTRACT
Several methods for implementing data-

base queries expressed as logical rules are
given and they are compared for efficiency.
One method, called “magic sets,” is a
general algorithm for rewriting logical rules
so that they may be implemented bottom-

UP (= forward chaining) in a way that
cuts down on the irrelevant facts that are
generated. The advantage of this scheme
is that by working bottom-up, we can take
advantage of efficient methods for doing
massive joins. Two other methods are ad
hoc ways of implementing “linear” rules,
i.e., rules where at most one predicate in
any body is recursive. These methods are

1 Work supported by NSF grant IST-83-51730,
cosponsored by Tektronix Foundation, Intel, Mentor
Graphics, DEC, Servio Logic Corp., IBM, Xerox and
Beaverton Chamber of Commerce.

20n a leave of absence from Hebrew Univer-
sity. Work supported by a grant of AT&T Founda-
tion and a grant of IBM Corp.

SWork supported by NSF grant IST-84-12791
and a grant of IBM Corp.

Permission to copy without lee all or part of this material is granted
provided Out the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publi&on and its date appear. and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise..or to republish, rquim a fee and/or specific permission.

0 1986 ACM-0-89791-179-2/86/0300-0001 $00.75

introduced not only because they could be
the right way to implement certain queries,
but because they illustrate the difficulty of
proving anything concrete about optimal
ways to evaluate queries.

I. Introduction

We assume that the reader is familiar with
the notion of a logic program and with the
notation of Prolog. We follow Prolog nota-
tion, although we do not assume the left-
to-right execution of literals that is inherent
in that language. We also assume familiarity
with the notation of rule/goal graphs defined
in Ullman [1985]. In this paper we deal with
Datalog, as in Maier and Warren [1985]. In
Datalog, literals have no function symbols
within them, so we have a greatly simpli-
fied subcase of logic programs, but one that
is very significant in the logic-and-databases
school of thought, e.g., as expressed in Gal-
laire and Minker 119781.. While all Datalog
programs have finite minimum models, that
finiteness is no guarantee of convergence of
evaluation methods in the presence of recur-
sion. In fact, Brough and Walker [1984] have
shown that a top-down, left-to-right Data-
log interpreter that only examines ancestor
goals cannot be both complete and conver-
gent. We also designate some predicates as
database relations. The only clauses for such

predicates are ground facts. We expect that
a database relation predicate will be stored
as a list of tuples in an underlying database
system.

Example 1: Let us introduce the logic pro-
gram for “cousins at the same generation,”
which will serve as a running example. It is a
canonical example of a linear logic program.
The rules in such programs have at most one
occurrence of a recursive predicate, sg (same
generation) in this case, in any body. The
rules are:

r1: sg(X, X).
T-2: sg(X, Y) :- pm-(X, Xl),

par(Y,Yl), sg(X1,Yl).

We assume that par is a database
relation, and par(U, V) means that V is a
parent of U. The intention of sg(U, V) is
that U and V are cousins, i.e., they have
a common ancestor W, and there are lines
of descent from W to U and V covering
the same number of generations. Rule rr
says that anyone is his own cousin, i.e.,
U = V = W and the descent is through zero
generations. The only other way for X and
Y to be cousins is expressed by 73, i.e., there
are parents of X and Y that are cousins.

We do not assume that the parenthood
relationship is well organized by levels. It
is possible that someone married his own
granddaughter. Thus, we may not assume
that the number of generations between
two individuals is unique. In fact, we
shall not even assume that the parenthood
relation is acyclic. As we shall see, the
proper algorithm to apply to these rules may
depend on whether acyclicity of parenthood
may be assumed. 0

Let us focus on the query sg(u, IV), i.e.,
find all the cousins of a particular individual
a. There are two obvious but expensive ways
to implement the rules of Example 1. The

first, top-down, or “backward chaining,” is
the one Prolog would do. Actually, Prolog
would run forever on rr and 1’2, but we
can fix the problem by reordering goals,
replacing r2 by

rh: sg(X, Y) :- pur(X, Xl),
sg(X1, Yl), pur(Y, Yl).

However, given goal sg(u,W), the Pro-
log program would consider each parent of a,
say b and c. Recursively, it would find all b’s
cousins, then all c’s cousins, and find all the
children of both. As b and c may have many
ancestors in common, we shall repeat much
work finding those ancestors, and many in-
dividuals may be cousins of both. Thus, it
should not surprise one that the total run- +
ning time of the Prolog program may be ex-
ponential in the number of individuals in the
database. The flaw with the naive applica-
tion of backward chaining, as in Prolog, is
that it seeks to discover “all proofs” rather
than just “all answers.” Its use is more ap-
propriate when only a single answer is de-
sired, in which case finding one proof suffices
for generating one answer. Our anticipated
applications are biased towards all answers,
and we want to avoid finding all proofs of
those answers, if possible.

The bottom-up, or “forward chaining”
approach can also be very expensive. Here,
we start by assuming only the facts in the
database, i.e., the par relation. The initial
estimate for nondatabase relations, sg in
this example, is the empty set. We then
apply the rules, substituting our current
estimate for each relation in the bodies
and computing, using the natural join and
union, a relation for each predicate symbol
appearing on the left side of one or more
rules. We add the newly generated facts to
the current estimate. (For our example, it
suffices to use the newly created facts as the

2

next estimate, accumulating the final answer
off to the side.) In our example, the first
time through, rz yields nothing, because sg
has no tuples yet. However, rr yields the set
of all (X,X) p airs. It is not completely clear
how the domain of X should be limited, but
as there are no function symbols in our rules,
it is always safe to limit a variable to the set
of all values appearing in the database.

On the second pass, rule rz now gives
us all facts sg(U, V) where U and V have
a parent in common. On the third pass
we get all facts sg(U, V) where U and V
have a grandparent in common, and so on.
This process must converge in time that is
polynomial in the number of individuals in
the database, whereupon we can restrict the
relation to those pairs whose first component
is a, and extract the answer to our query

4% w.
While the polynomial time bound seems

better than the exponential bound for the
top-down method, either method could run
faster ‘in practice on given data. More
importantly, neither method is very good
overall, since the top-down approach may
repeatedly establish the same fact, and the
bottom-up method may generate many facts
that do not contribute in any way to the
answer to the query.

A variety of methods that are more
efficient than either top-down or bottom up
are known. The algorithms of McKay and
Shapiro [1981], P ereira and Warren [1983],
Lozinski [19841, and Van Gelder [1985] are
“lazy evaluators” that do not attempt to
establish a fact until some need for that
fact has been found. Pereira and Warren
call their method Earley deduction, and it is
actually a method for full Prolog. Porter
[S5] has shown that Early deduction is
convergent and complete for Datalog. These
algorithms are all dynamic, in the sense that

they make decisions regarding relevance at
run time.

There is also an algorithm of Henschen
and Naqvi [1984], which is run at compile
time to generate an evaluator for a set of
rules. The class of problems for which
that algorithm is efficient probably does not
extend beyond the linear rules, but it! will
produce a fairly, efficient evaluator for the
same-generation problem.

The methods we shall discuss are com-
pile-time algorithms to transform the rules
into equivalent rules that can be imple-
mented more efficiently bottom-up. Our
first method, called “magic sets,” is an at-
tempt to perform at compile time the op-
timization performed by the first group of
algorithms at run time. We cannot com-
pare our performance with the run-time al-
gorithms directly, although for linear rules
we can see that our algorithm mimics the
others. Finally, we give two more (“count-
ing” and “reverse counting”) methods that
are less generally applicable, but when they
are useful, as in the same-generation prob-
lem, they can be orders of magnitude more
efficient than any of the methods mentioned
above, including the “magic set” method.

II. Magic Sets

A desirable property of an algorithm for
solving the sg rules is that it only discovers
“relevant” sg facts. Intuitively, a fact is
“relevant” if it might, depending on the
database, be essential to the establishment
of a fact that is in the answer. We’re
not sure that this definition holds water,
because there might be a very slow and
stupid algorithm that rarely consults the
database, and therefore may generate lots of
facts that are in principle relevant because
of our ignorance of what is really in the
database. Another problem is that we are

3

operating in the “all answers” world. We
may have to do some work to determine
that certain proof trees are invalid for the
current database, so we are convinced that
we have not overlooked an answer. We do
not know whether an evaluation scheme can
be complete without generating some facts
that are irrelevant to all answers,

Notwithstanding these problems, the
diagram of Fig. 1 suggests a plausible def-
inition of the relevant sg facts for query
sg(a,W). First, we see the cone of a, which
is all ancestors of a. We must then generate
all facts sg(b,c) such that b is in the cone;
c may or may not be in the cone. We may
generate all such pairs if we start with the
pair sg(b, b) for every b in the cone, and we
apply rule r2 bottom up. However, as we do
so, we need not generate facts like sg(d, f),
where neither d nor f are in the cone, be-
cause such facts could never lead to a fact
about a (or else d would be an ancestor of
a, and therefore in the cone). On the other
hand, given sg(b, c), we do want to establish
s9(e, f), if park, b) ad par(f, 4 t

One way to restrict our effort is to define
the “magic set” for the first argument of the
predicate sg. We do so by determining what
values will ever appear as the first argument
of sg during top-down evaluation of the goal
s9(a, w. Starting with the fact that a
can be a value for the first argument, we
may observe rules rl and r2 and determine
that the only way a value can appear as
the first argument of sg is to be either a or
the parent of a value that appears there. If
we encounter a goal sg(b, IV), where. b is an

t The reader should be aware that other methods
to evaluate this query exist, and some of them, such
as Henschen and Naqvi’s or the counting method to
be described, work by computing something besides
sg facts. Thus, we dannot even ascribe optimality to
an algorithm that computes an apparently minimal
set of sg facts.

Fig. 1. Efficient computation of sg(a,W).

ancestor of a, and apply r2, we will get the
new goals

par(b,Xl), par(W,Yl), sg(Xl,Yl).

Thus, the first argument, Xl, of the new sg
goal is a parent of b and hence an ancestor
of a. In rules:

r3: magic(a).
r4: magic(U) :- magic(V), par(V,U).

Thus, the set of b’s satisfying magic(b) is

the cone of a in Fig. 1. While this analysis
of possible values for the first argument for
sg assumed top-down evaluation, we can use
those values to filter bottom-up evaluation.
Any proof tree used in bottom-up evaluation
will be investigated going top-down. We can
then rewrite rules rl and r2 to insist that
values of the first argument of sg are in the
magic set:

r5: sg(X,X) :- magic(X).
rg: sg(X,Y) :- magic(X), par(X,Xl),

par(Y, Yl), sg(X1, Yl).

We can show that rules r3, r4, rg, and 7‘6
yield the same answer to the query sg(a, W)
as rl and r-2. First, since there are no
function symbols, and the rules ‘we all Horn
clauses, the least fixed point of each set of
rules is well defined and can be computed

bottom-up. We must show that an answer
W = ws produced in answer to the query
sg(a, W) by rules ~1 and 7‘2 is also produced
by the other set. It is an easy induction
on the number of times ~2 is applied, that
for every fact sg(b, c) inferred in the proof
of sg(a,wo), magic(b) is true by 7‘3 and
f-4. Once established, we observe that the
addition of the literals magic(X) in rs and
rg do not eliminate any facts that are needed
to prove sg(a,wo).

Rules 7-3 through rs were not quite
pulled out of a hat, despite our use of
the term “magic sets.” There is a general
algorithm by which we replace a collection of
rules by another collection that is normally
more efficient. Sometimes, our algorithm
decides that no transformation is desirable,
and sometimes it makes a transformation to
rules that run more slowly on the given data
than the originals.

Before the reader imagines that such a
state of affairs is not worthy even of con-
tempt, let us note that the problem of se-
lecting the optimal way to evaluate rules is
not as trivial as it might seem. Recent work
of Bancilhon [1985a,b] tries to develop def-
initions of “optimal” evaluators, but notes
that even defining the term properly is hard,
and there are almost no evaluators that meet
his definition. In fact, we may observe that
the situation in database query optimization
is no better off, despite many years during
which the problems have been considered,
and despite the models being somewhat sim-
pler.

Example 2: It is conventional wisdom in-
corporated into every optimizer for rela-
tional algebra that selections should be done
before joins; see Maier 119833 or Ullman
[1982]. Thus, the expression

XM(~E=‘JOTZ~ (ED w DM)

would normally be evaluated by first select-
ing the employee-department relation ED
for employee = ‘Jones’, obtaining a set of
departments Jones works for, then select-
ing those departments from the department-
manager relation DM and listing all the
managers of those departments. However, it
would be more efficient to evaluate the ex-
pression as written if Jones were in many
departments, and the DM relation were
empty, or very small. Then, the supposedly
inefficient way to evaluate would rapidly dis-
cover that there were no tuples in ED w
DM, while the efficient method would have
to examine the ED relation and retrieve
many departments. 0

We conclude from Example 2 that it is
unreasonable to expect proofs of optimality,
or even superiority of one algorithm over
another, in all cases. As with folk wisdom
such as “push selections ahead of joins,” we
must reason from what we believe to be
typic& data to which the rules are applied
and implement evaluation algorithms that
perform well in what we regard as the typical
case.

Having justified somewhat our lack of
optimality results, let us explore the idea be-
hind magic sets. The general idea is to con-
struct the rule/goal graph (Ullman [1985]),
showing how bound arguments in the query,
such as a in our example sg(u, W), propa-
gate through the rules and predicates. Re-
call from Ullman 11985) that the nodes of the
rule/goal graph correspond to the predicate
symbols and rules, and they have “adorn-
ments” indicating which arguments of pred-
icates are bound and which variables of rules
are bound. Arcs lead to a predicate (goal)
node from each rule with that predicate on
the left side. Arcs lead to a rule node
from each of the literals (= goals) on the
right side of the rule. In each case the arcs

only connect nodes where the adornments
agree. There are some subtleties regarding
the proper adornments of these nodes. In
particular, in this paper we shall take ad-
vantage of the sideways information pass-
ing strategy explored in Sagiv and Ullman
[1984].

Briefly, when evaluating a rule, we eval-
uate’each of the goals on its right side, and
we may do so in any order. Whatever or-
der we pick, a variable that appears in a
goal may be regarded as bound for all subse-
quent goals, regardless of whether the adorn-
ment of the rule node whose relation we
are evaluating says the variable is bound or
free. The intuitive justification for this as-
sumption is that we may compute the re-
lations for each goal in the chosen order,
and join the relations as we proceed. Thus,
any variable that has appeared in a prior
goal has already had a limited set of pos-
sible values determined for it. Suppose we
have an algorithm that computes the rela-
tionforsomegoalg(Xi ,..., X,,Yr; Ym)
provided Xl,. . . , X, are bound, and the
Xi’s have all appeared in previous goals.
Then we may consider each tuple in the
join of the relations for the previous goals,
and from each tuple obtain bound values for
Xl , . . . ,X,. We apply the hypothetical al-
gorithm to compute the relation for g with
this binding of the X; ‘s, and take the union
over all bindings. The result will be those
tuples in the relation for goal g that do not
“dangle,” i.e., those tuples that actually may
join with the relations for the other goals.

Example 3: Figure 2 shows the rule/goal
graph ‘for ~1 and r2 when the order of
goals in r-2 is the one indicated in ri. The
adornments of goal nodes indicate by b or
f whether the various arguments of the
predicate are bound or free. E.g., sgbf
means predicate sg with the first argument

bound and the second free, as in sg(u,W).
For rule nodes, we indicate that variable X
is bound by X/b, and that Y is free by Y/f,
for example.

A-/b
Tl

Fig. 2. Rule/goal graph for
same-generation problem.

For the moment, ignore the dashed lines
and concentrate only on the solid lines, the
arcs of the rule/goal graph. To understand
the adornments on the predecessors of the ~2
node, note that X is bound. Thus, we may
first work on goal node par(X, Xl) with the
first argument bound, and the result will be
a set of values for Xl that will in fact be
the parents of the individual to which X is
bound. Then, for each such value of Xl we
bind Xl to it in the call to goal sg(X1, Yl).
Thus, we have another instance of sgbf,
and it is the “sideways information passing”
that lets us call sg recursively with the
first argument bound each time, rather than
winding up calling sg with both arguments
free, as would be the case with a more naive
algorithm. Finally, the call to sg binds
Yl, and we use the bindings we get in a
call to par(Y, Yl) with the second argument
bound; this call corresponds to the goal node
parf b, which is another predecessor of the r2
node. cl

If we examine the dashed lines in Fig. 2,
we see a trace of what happens to a bound

value. The initial bound value a is injected
as the first argument of sg, shown by the
dashed arrow at the top. This bound value
becomes the value of X in rz, and X in
rp becomes the first argument of par in the
call represented by the node par”f in Fig. 2.
That value gets translated by evaluation of
the database relation par, i.e., we now have
a set of values for the second argument of
par.

Those. values become bindings for Xl
in the rule rz, and Xl becomes the first
argument of sg. We could continue; the
first argument of sg gets translated to a set
of second arguments, which become values
for Y 1 and the second argument of par.
These are translated to values for the first
argument of par, which through variable Y
becomes the second argument of sg again.
However, an important heuristic for the
application of magic sets is that it doesn’t
pay to translate through a relation that we
are in the process of computing, for to do
so requires that we solve the whole problem
just to construct the magic set, which was
supposed to be of help solving the prpblem.

Focussing on the dashed loop in Fig. 2,
we can construct the set of all values that can
ever be the bound value of the first argument
of sg in a tu@le that contributes to the
answer. We shall give a formal and general
algorithm shortly, but in this case we can
easily see what is involved. We know that
to begin, a is a possible value. This explains
rule ra, magic(a). We also know that if V
is a value that has been found useful, then
following it around the loop, we find that all
those U for which par(V, U) are also useful;
this explains rule r4, magic(U) :- magic(V),
par(V, V). We shall now formalize the above
intuitive discussion.

Algorithm 1: Modification, of rules by
magic sets.

INPUT: A portion of a rule/goal graph for a
set of rules, one goal node of which is the
query node. We assume the rules are Horn
clauses and have no function symbols. We
also assume the predicates are divided into
those that are recursive and those that are
not. We assume the nonrecursive predicates
are not heads of rules, i.e., they are database
relati0ns.t

OUTPUT: A modification of the rules (per-
haps no change) that is designed to permit
efficient evaluation of the rules bottom-up.

METHOD: First, note that since the input is
a rule/goal graph, we may assume all deci-
sions regarding the order of literals for side-
ways information passing have been made;
the effectiveness of magic sets depends on
the choices made. For each goal node g
whose predicate is recursive, we construct a
relation magic,, which is the set of tuples of
values (for those arguments that the adorn-
ment of g says are bound) that can actually
contribute to the answer to the query. Ob-
serve that we are going to have several magic
sets for a predicate that appears in several
goal nodes.

Let us assume temporarily that the
rules are all linear recursive, and write a
typical rule as

r: p :- L, q, R

Here, q is the recursive predicate in the
body, L is the set of literals that are
evaluated before q (for the purposes of
sideways information passing), and R the set
of literals evaluated later.

Let g be a goal node corresponding to

t In practice, these predicates could be defined
by rules, but if so, they do not depend on the recur-
sive predicates of the set of rules in question. This
assumption corresponds to the query implements
tion strategy in which we divide the predicates into
strong components, and work on the strong compo-
nents in the natural Ubottom-up” order.

7

predicate p with some adornment. Then g
has a predecessor rule node corresponding to
rule T, and that rule node has a predecessor h
corresponding to the predicate q. Moreover,
the adornment on h indicates an argument of
q is bound exactly when the corresponding
variable in r is bound. Such a binding comes
from a bound argument of p (according to
the adornment of g), or from the literals of
L.

Suppose that we have discovered that
to answer the query we need to evaluate the
relation for goal node g with tuple of bound
values b, i.e., b is in magic,. Let Y be
the list of arguments in r that appear in
arguments of p that g says are bound (so b is
a tuple of bindings for Y). Let X be the list
of variables in r that appear in arguments
of q that h says are bound. Then we may
conclude that tuple c of bindings for X is
in mug& if the bindingsin c are consistent
with the bindings for b, plus some set of legal
bindings for the variables in literals of LC.
Formally, this condition can be expressed:

mugiCh(x) :- c, mUgi$(Y).

Notice that p and q have switched sides in
the magic set rule, and the literals in R have
disappeared. For example, if r is

~(4 8 T) :- 44 v), e(U, V>,
4% v, w7 f-w7 T)

g is pbbf and h is q “f, then the new rule is

mugich(s, v) :- d(R, u),
e(U, V), mug&(X, S).

We create such a magic set rule for each
rule that has a recursive predicate in its
body, and for each pair of goal nodes g and
h related to the rule as above. We complete
the magic set rules with

mugicJa).

where g is the goal node corresponding to

the query, and a is the tuple of constants
provided by the query.

Next, we rewrite the original rules, as
follows. First, we replace each recursive
predicate by new predicates corresponding
to its nodes in the rule/goal graph, i.e., we
distinguish versions of a predicate by the
possible sets of bound arguments with which
it may be called. Second, we replace a rule
such as p :- C, q, R, above, by
1. Replacing p and q by all possible pairs

of goal nodes g and h, related to each
other and to p and q as above, and

2. Adding literal magic,(Y) to the body;
Y is the list of variables appearing
in the argument positions of p that g
asserts are bound.

That is, the rule becomes:

g :- magic,(Y), C, h, R.

If the rule has no recursive predicate on
the right, we still perform step (2), i.e.,
insertion of the magic set term on the right.
Note that the “magic” rules do not refer to
the recursive predicates. Thus, in bottom-
up evaluation of the combined set of rules,
we may choose to run the magic rules to
completion first.

The last point to be considered is
what happens when there is more than one
recursive literal in a rule body. If none of
these appear in L, no change needs to be
made. If C contains recursive literals, often
we cannot do anything, and the algorithm
simply fails to rewrite the given rules. The
case where we can proceed is when none of
the recursive literals in C is necessary to
bind an argument of q. In that case, we
can transfer the recursive literals from L to
R, and proceed as above. We shall see in
Example 5 a case where a rule with two
recursive literals is not fatal. Cl

Example 4: Let us consider again the

a

same-generation problem, but with the rules
rewritten so the recursive call to sg occurs
with its arguments in the reverse order. The
rules are:

r1: sg(X, X).
T-7: sg(X, Y) :- par(X, Xl),

par(Y, Y l), sg(Y1, Xl).

The query is again sg(a, W). Figure 3 shows
the relevant portion of the rule/goal graph.

Fig. 3. Rule/goal graph for modified
same-generation problem.

Although there is only one recursive
predicate, sg, there are two goal nodes for
that predicate, one with the first argument
bound and one for the second argument
bound. Let us use magic1 for node sg’f and
magic2 for sg f ‘.

For the case in Algorithm 1 where g is
sgbf and h is sg fb, the order of literals in
r7 used for sideways information passing is
par(X,Xl), sg(Y1, Xl), par(Y, Yl). Thus,
L is par(X,Xl). The magic set rule is
therefore:

magicn(X1) :- par(X, Xl), magicl(X).

Note that X is the argument of magic1
because X is in the bound position of sg
on the left of rr , and X 1 is the argument of
magic2 because that is in the bound position
of sg on the right. The rules for sg are
modified into: .

sgbf (X, X) :- magicl(X).
sgbf (X, Y) :- mug&(X), par(X, Xl)

par(Y, Yl), sgfb(Yl, Xl).

Now, let g be sgf’ and h be sgbf. The
order of the literals of r7 that provides the
desired sideways information passing is

par(Y, Yl), sg(YL Xl), par(X, X1)

This order yields the magic set rule:

and

magicr(Y1) :- par(Y, Yl), magics(Y).

the modified sg rules:

sgfb(X, X) :- magicz(X).
sgfb(X, Y) :- magicn(X), par(X, Xl),

par(Y,Yl), sgbf(Yl,X1).

Finally, the query node is sgbf, with the
first argument bound to a. Thus we have the
basis magic set rule:

mug&(a).

the seven rules, with some renaming of
variables, are as follows.

magicr(a).
magiq(U) :- par(V, U), magics(V).
magicz(U) :- par(V,U), magicl(V).

sgbf (X, X) :- magicl(X).
sgbf (X, Y) :- magicl(X), par(X, Xl),

par(Y,Yl), sgfb(Yl, Xl).

sgfb(X, X) :- magica(
sgfb(X,Y) :- magiq(X), par(X,Xl),

par(Y, Yl), sgbf (Yl, Xl).

Notice that the two magic sets are almost
identical, but the generations are counted
modulo 2 starting with individual a, so

they may not be the same set. A similar
comment applies to the two versions of the
sg predicate. q
Example 5: The rule

24% Y) :- 4-T a, q-T Jv, Pm U),
P(W V), w, v, n

is an example where a nontrivial magic set
may exist, even though the rule is nonlinear.
Suppose that the query node is pbf, and that
this is the only node for p in the rule/goal
graph. Also assume that the literals are to
be evaluated in the order shown. For the
literal ~(2, U) we let C = u(X, Z), b(X, IV),
so we can write

magicp(Z) :- a(X, Z), b(X, W),
mugit+(

Now consider the second literal for p,
that is, p(W,V). It is preceded by an-
other literal for p, but that literal, ~(2, U),
has no variable in common with p(W, V).
Thus, with respect to p(W, V) we cari ex-
clude ~(2, i7) from C, so L again equals
a(X, Z), &(X, IV). The magic set rule de-
rived from the second occurrence of p is thus:

magic,(W) :- a(X, Z), b(X, W),
magicp(X).

0

Theorem 1: The modified rules produced
by Algorithm 1 compute the same answer to
the query as the original rules. 0

III. The Counting Method

If we review Fig. 1, we see that there is po-
tential redundancy in our intent to calculate
all pairs (b, c) such that b is in the cone, and
sg(b, c). For example, a may have 100 an-
cestors br , . . . , broo at the 10th generation,
and we would therefore discover the follow-
ing 100 facts: sg(bl, c), . . . , sg(broo, c). But
any one of these facts is sufficient to deduce

the fact that all lOth-generation descendants
of c are same-generation cousins of a.

The matter isn’t all that clearcut, be-
cause b may be an ancestor of a at several
different generations. If that is the case, the
fact sg(b, c) serves several purposes at dif-
ferent times, and replacing it by statements
that c was a cousin of some ancestor of a at
these various generations could increase our
work rather than decrease it.

The next section offers some compar-
isons among various strategies, but the
transformation we propose for the same-
generation rules has intuitive appeal, and in
fact we believe it is closely related to the
Henschen-Naqvi algorithm. We shall not at-
tempt to generalize the idea as we did for
magic sets, but the following example should
make the potential idea clear.

While the magic set method, applied to
rules rr and r2 computes the cone of a, as
depicted in Fig. 1, we could, with a little
more effort, compute for each member of the
magic set the levels at which it appears, that
is, the number ,of generations removed from
a it is. Recall that an individual can appear
on several levels. The rules to compute this
information are:

ancestor(a, 0).
ancestor(X, I) :- par(Y, X),

ance&or(Y, J), i.is J.+ 1.

Now, we can compute a new predi-
cate cousin(X, I), meaning that the Ith-
generation descendants of X are cousins of
a at the same generation. The rules are:

cousin(X, I) :- ancestor(X, I).
cousin(X, I) :- par(X, Y),

cousin(Y, J), I is J - 1, I1 0.
sg(a, X) :- cousin(X, 0).

We call the idea that led to the above
rules the counting method, and note that
this method can answer the query sg(a, W)

IO

correctly, but only if the parenthood relation
is acyclic. If there are cycles, we never get
finished computing the ancestor relation. If
there are n individuals in the database, then
one can show that I in the rules for ancestor
and cousin can be limited to n2, but it is not
always possible to consider only the first n
generations.

IV. The Reverse Counting Method

Yet another method, called reverse counting,
starts off by computing the magic set,
forgetting about the levels at which each
individual appears. Then, we consider each
element b of the magic set, and we compute,
for all i, the set of descendants of b at the
ith generation. For those values of i for
which the ith descendants of b contain a
(recall a is the individual whose cousins we
are computing), we add all descendants at
level i to the set sg(a,X). That is, after
computing the magic set for a, we create a
predicate bdescendunt(X, I) for each b such
that magic(b), with rules:

bdescendunt(b, 0).
bdescendant(X, I) :-

bdescendunt(Y, J),
par(X, Y), I is J + 1.

Then we contribute to the solution by:

sg(u, X) :- bdescendunt(u, I),
bdescendunt(X, I).

Remember that there is one set of the above
rules for each value of b.

Intuitively, the reason the reverse count-
ing method can sometimes be more effi-
cient than other methods is that by fo-
cussing on one value of b at a time, it can
compute all the relevant sg pairs not as
pairs, but as a single set. Put anoth& way,
if bdescendunt(c, ;) and bdescendunt(d, i),
then sg(c,d) follows. However, if the set of

ith descendants of all magic set members, or
even all magic set members at a given height
were computed in one group, the member-
ship of two elements c and d in the set of
desdendants at level i would not be sufficient
to guarantee sg(c, d). Note that similarly to
the counting method, reverse counting loops
forever if the parenthood relation is cyclic.

V. Comparisotis Among Methods

First, let us note that the magic set method,
like other compiled methods, cannot always
compete with the dynamic methods like
Those of McKay-Shapiro, Pereira & Warren,
Lozinski, or Van Gelder. A simple example
is the transitive closure rules

t(X, Y) :- e(X, Y).
t(X, Y) :- t(x, Z), t(2, Y).

The magic set, counting, reverse counting,
and Henschen-Naqvi methods are useless
given the query t(u, W), because to find the
possible values of 2, which all belong in the
magic set, we have to compute t(a, Z), which
is equivalent to the query. Yet the dynamic
methods will correctly perform a breadth-
first search from u. However, in some cases
the magic set method is better than dynamic
methods. For example, Lozinski’s method
fails to compute only relevant facts when
given the rules of Example 4.

When we compare compiled methods
we can make some interesting and concrete
observations. In what follows, we use a pair
of rules similar to the same-generation rules,
but ones that allow us better control over the
performance of the various algorithms.

7-a: p(X,Y) :- q(X, Y).
7-g: p(X,Y) :- f(X, Xl), p(Xl,Yl),

s(Yl,Y).

In what follows, it helps to see r as
“going up”; if r(u, b), then we place b above

11

a and draw an arc a -+ b. We see Q as
going sideways; if q(a, b) we place b to the
right of a and draw an arc a ---) b. Finally,
s represents down arcs, and when ~(a, b)
is true, we place b below a and have and
arc a + b. In the following examples we
assume that whenever a selection has to be
performed on a database relation, there is
an index that let us perform that selection
in time proportional to the size of the result
(in particular, in constant time if the result
has a single tuple).

Example 6: This example shows that the
magic set method can be worse than either
the Henschen-Naqvi, counting, or reverse
counting methods, even on linear rules. Let
Q, r, and s be defined by the graph of Fig.
4. That is, the database facts are

r(a, bi) and r(bi, c) for 1 5 i 5 n.
i: q(c,d).
3. s(d, e;) and s(e;, f) for 1 5 i 5 n.

The magic set for the query &a, IV) is
{a,c,h,.. . , bn}. We then establish all facts
p(bi,ei), taking Q(n”) time since there are
n2 such facts.

Fig. 4. Example where the Henschen-Naqvi
method is most efficient.

On the other hand, Henschen & Naqvi’s
algorithm will establish in O(n) time the
fact that {bl, . . . , bn) are the ancestors of
a at generation 1, c is the only ancestor

at generation 2, and find the only answer,
W = f, in another O(n) time by walking
down the right side of Fig. 4. The counting
method behaves in essentially the same way.

The reverse counting method computes
the magic-set in O(n) time, and then for the
member c, it finds in O(n) time that a istwo
levels below c while f is the same number of
levels below d and, hence, gets the answer
W = f. In O(n) time it determines that c is
the only member of the magic set that can
produce an answer (since only c appears in
q) and, so, W = f is the only answer. 0

Example 7: Now we take up a family of
databases for the same rules as Example 6,
for which magic sets is more efficient than
the other algorithms, The database consists
Of:

1. T(Ui,Ui+l) for 1 5 i < 72.
2. 7’(U1,Ui) for 3 < i < n.

3. Q(an, bn)-

4. s(bi, bi-1) for 2 5 i 5 n.
The case n = 5 is shown in Fig. 5. The
dashed lines illustrate the p facts that we
shall eventually infer.

w-e-.

Fig. 5. Example where magic
sets is most efficient.

12

The magic set for query p(al, W) con-
sists of all the ai’s, and it is computed in
O(n) time. Once a, is in the magic set,
we can use fs to establish p(a,,b,). Then
on the next pass we establish ~(a,-1, b,-1)
and p(ul, b,-1). On the next pass, we find
both p(u n-2ybn-2) and P(N,&-2), and SO

on. The total work is seen to be O(n).
In comparison, Henschen-Naqvi and the

counting method both take St(n2) time just
to establish the ancestry of al. That is, the
set of first-generation ancestors of al is

the set of second-generation ancestors of al
is

i a3 9-v -3%)

and so on.
Interestingly, the reverse counting meth-

od takes only O(n) time. After computing
the magic set, this method finds in O(n)
time that the ifh level below a, has two el-
ements, namely, al and a,-;. The ilh level
below bn consists exactly of b,-i and, so, the
answers bn-1 , . . . , bl are found in O(n) time.
In another O(n) time the reverse counting
method determines that a, is the only mem-
ber of the magic set that produces some an-
swers. Cl

Example 8: A similar example, shown in
Fig. 6 for the case n = 5, demonstrates
that counting can be much better than either
the Henschen-Naqvi or the reverse counting
methods. Here, the database is:
1. r(Ui,Ui+l) for 1 < i < 12.
2. g(ai, bi) for 2 5 i 5 n.
3. s(bi, bi-1) for 2 5 i < n.

Clearly, the counting method estab-
lishes the facts that ai is an (i - l)st ancestor
of al in O(n) time, and can also establish all
the “cousin” facts, namely that bi is a cousin
of al i-l generations removed, in O(n) time.

a --hi

1 t
~4 Y b4

t f
w--&
1 t
a-b2

a1 h

Fig. 6. Example where counting
is most efficient.

Magic sets similarly works in time O(n).
However, Henschen-Naqvi, given that bi is a
cousin i generations removed, runs down the
chain bi-l,w..,bl, and it does so for every
i. Thus, Henschen-Naqvi must take fi(n2)
time. The reverse counting method behaves
in essentially the same way.

Actually, we may be somewhat unfair
to Henschen-Naqvi. If they retained the
facts they had established “coming down”
on earlier passes and compare new facts with
them, then they could detect that the same
chain was being followed repeatedly, and re-
duce their running time on this example to
O(n). In a sense, the counting strategy can
be seen as an implementation of Henschen-
Naqvi that energetically tries to avoid re-
peating an inference. But neither algorithm
deals specifically with the case that the rela-
tion r has cycles, and it is not clear that we
want to run either in cases where we could
not guarantee P was acyclic, as we might ex-
pect the parenthood relation of our earlier
examples to be. q

The performance of the four algorithms
on the three families of databases described

13

in this section is summarized in the following
table.

Example 6 7 8

Henschen-Naqvi n n2 n2
Magic Sets n2 72 n
Counting n n2 72
Reverse Counting n n n2

VI. Open Problems

1.

2.

3.

4.

Can we modify the magic set idea so
it applies to sets of rules that are
nonlinear in a nontrivial way, such as
the transitive closure rules mentioned at
the beginning of Section V?
How may the counting method and the
reverse counting methods be general-
ized from the same-generation example
to arbitrary linear rules, in analogy with
the way Algorithm 1 generalizes Exam-
ple 3? What is the relationship between
counting and Henschen and Naqvi’s al-
gorithm?
Can one characterize the rules and
databases for which one algorithm is
superior to another?
Is there an algorithm that provably
dominates the algorithms defined or ref-
erenced in this paper on arbitrary rules
and databases? The reader should re-
view Example 2, because it points out
the fact that we have to be careful
with our definitions in order to rule
out pathological databases. The “right”
definition of the performance of an al-
gorithm for evaluating queries in logical
databases is itself an open problem.

References

F. Bancilhon [1985a]. “Performance of rule
based systems,” unpublished manuscript,

MCC, Austin, TX.

F. Bancilhon [1985b]. “Naive evaluation of
recursively defined relations,” unpublished
manuscript, MCC, Austin, TX.

D. Brough and A. Walker [1984]. “Some
practical properties of logic programming
interpreters,” Proc. Japan FGCS84 Conf,
November 1984, pp. 149-156.

H. Gal&e and J. Minker (eds.) [1978].
Logic and Databases, Plenum, New York.

E. L. Lozinski [1984]. “Inference by generat-
ing and structuring of deductive databases,”
Report 84-11, Dept. of CS, Hebrew Univ.

D. Maier [1983]. The Theory of Relationa
Databases, Computer Science Press, Rock-
ville, Md.

D. Maier and D. S. Warren [1985]. htro-
duction to Logic Programming, unpublished
memorandum, Oregon Graduate Center.

D. McKay and S. Shapiro [1981]. “Using
active connection graphs for reasoning with
recursive rules,” Proc. 7th IJCAI, pp. 368-
374.

F. C. N. Pereira and D. H. D. Warren [1983].
“Parsing as deductions,” Proc. 21st Meeting
of the ACL, June 1983.

H. H. Porter, III [1985]. “Earley de-
ductions,” unpublished manuscript, Oregon
Graduate Center.

Y. Sagiv and J. D. Ullman [1984]. “Com-
plexity of a top-down capture rule,” STAN-
CS-84-1009, Dept. of CS, Stanford Univ..

J. D. Ullman 119821. Principles of Database
Systems, Computer Science Press, Rock-
ville, Md.

J. D. Ullman [1985]. “Implementation of
logical query languages for databases,” ACM
%,ns. on database Systems 10:3, pp. 289-

14

321.

A. Van Gelder [1985]. “A Message Passing
F’ramework for Logical Query Evaluation,”
Tech. Report, Dept. of CS, Stanford Univ.

