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Abstract
This paper describes the use of a powerful graph query language for
querying programs, and a novel combination of transformations for
generating efficient implementations of the queries. The language
supports graph path expressions that allow convenient use of both
vertices and edges of arbitrary kinds as well as additional global
and local parameters in graph paths. Our implementation method
combines transformation to Datalog, recursion conversion, demand
transformation, and specialization, and finally generatesefficient
analysis programs with precise complexity guarantees. This com-
bination improves anO(V E) time complexity factor using previ-
ous methods toO(E), whereV andE are the numbers of graph
vertices and edges, respectively. We also describe implementations
and experiments that confirm the analyzed complexities.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Constraint and logic lan-
guages, Very high level languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns; D.3.4
[Programming Languages]: Processors—Optimization; F.2.2 [
Analysis of Algorithms and Problems Complexity]: Nonnumerical
Algorithms and Problems—Computations on discrete structures;
F.3.2 [Logics and Meanings of Programs]: Semantics of program-
ming languages—Programanalysis; H.2.3 [Information Systems]:
Database Management—Query languages; H.2.4 [Information
Systems]: Systems—Query processing, Rule-based databases

General Terms Languages, Performance

Keywords Complexity analysis, Datalog, demand-driven evalua-
tion, graph query languages, program analysis, program transfor-
mation, optimization

1. Introduction
Graph queries can be used to express many problems from different
areas, including program analysis in particular. Such queries can
help find bugs [12], detect malicious virus patterns [8], report secu-
rity violations [25], check temporal safety properties [3], etc. Effi-
cient hand-written implementations for program analyses are diffi-
cult to develop, verify, and maintain, and query languages for spec-
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ifying such analysis problems are desirable for ensuring the cor-
rectness of analyses while reducing the effort of implementations.
However, higher-level query languages often lack efficientimple-
mentations or complexity guarantees. An automated approach to
generating efficient implementations with complexity guarantees is
needed for practical uses of such languages.

This paper describes the use of a powerful graph query language
for querying programs, and a novel combination of transforma-
tions for automatically generating efficient implementations of the
queries. We show that a wide range of program analysis problems
can be expressed using queries in the language. The languagesup-
ports graph path expressions that allow convenient use of both ver-
tices and edges of arbitrary kinds as well as additional global and
local parameters in graph paths. Our implementation methodfor
the language combines transformation to Datalog, recursion con-
version, hypothesis permutation, demand transformation,and spe-
cialization, and finally generates efficient analysis programs with
precise complexity guarantees.

The first step of our method transforms a graph query into a set
of rules and a query in Datalog. Datalog is an important rule-based
language for inference using facts in databases. Much research has
been done on implementation of Datalog [1]. Top-down computa-
tion starts from the query, generates subqueries using the hypothe-
ses of the rules whose conclusions match the query, and does so
repeatedly until the subqueries match the given facts. Bottom-up
computation matches existing facts with hypotheses of rules, gen-
erates new facts from conclusions of rules whose hypothesesmatch
existing facts, and does so repeatedly until desired facts or all facts
are inferred. In particular, there is a method for generating optimal
algorithm and data structures specialized for the rules forbottom-
up computation, and calculating complexities for the generated pro-
grams [20]. However, this method may infer facts that are notrel-
evant to answering a given query, and hence may be unnecessarily
expensive.

To solve the problem of inferring facts not relevant to answer-
ing a given query, we perform a transformation similar to thewell-
known magic-set transformation [4], which transforms a given set
of rules into a new set of rules that infer only facts relevantto the
query. We call itdemand transformation, because the transforma-
tion makes the computation driven by demand. Demand transfor-
mation may reduce the number of inferred facts, and therefore the
complexity, asymptotically. However, its effectiveness is affected
drastically by the form of recursion in recursive rules, andby the
order of hypotheses. To solve this problem, before demand trans-
formation, we first perform recursion conversion, which generates
different forms of recursive rules. We then generate different per-
mutations of hypothesis orders of the rules.

Recursion conversion, hypothesis permutation, and demand
transformation yield different versions of a set of rules. The com-
plexity of each version is calculated automatically using the method
in [20]. The version that has the best complexity is then chosen.
Choosing the best complexity is impossible in general, so our



method chooses the versions that have provably better complex-
ity than the rest. Using heuristics, the method succeeds in choosing
a single set of rules for all the graph query examples we have en-
countered.

The above transformations may result in a set of rules that con-
tain unnecessary predicates, rules, and constant arguments. Spe-
cialization, also known as partial evaluation [16], is usedto remove
these unnecessary parts. It does not reduce asymptotic timecom-
plexity, but may reduce both the memory usage and running time by
a constant factor, and moreover, may produce rules that are much
smaller and simpler. Finally, we generate an efficient program from
the final set of rules, together with the calculated complexity, using
the method in [20].

This combination of transformations improves anO(V E) time
complexity factor using previous methods toO(E), whereV andE
are the numbers of graph vertices and edges, respectively. We show
precise time complexity analysis for an example program analy-
sis problem using this method. We also describe implementations
of the example analysis problem and experiments for analyzing a
set of programs of varying sizes, and confirm the calculated com-
plexities. Additionally, we compare our results against XSB [24],
a state-of-the-art top-down evaluation engine that employs tabling
strategies, and bddbddb [15], a bottom-up Datalog evaluation en-
gine that employs binary decision diagrams for storing and manip-
ulating relations. For both systems, tight complexity guarantees are
not available, and we demonstrate that they show different behavior
with respect to different forms of rules without a method of prede-
termining the best form.

Even though the graph query language and most of the trans-
formations to Datalog were proposed before [19], and similar lan-
guages have been used for program transformations [27], this paper
is the first substantial use of the language to give precise complexity
analyses for program analyses that are more complex than analy-
ses possible without the power of the language [18]. We also show
that our novel combination of transformations is necessaryfor gen-
erating efficient implementations that are both asymptotically bet-
ter, and with better constants than possible before [19, 26]. Finally,
we conduct the first substantial experimental evaluation ofdifferent
combinations of transformations that our method uses, and com-
pare them with implementations of rules in XSB and bddbddb.

The rest of the paper is organized as follows. Section 2 de-
scribes the graph query language, the Datalog language, andthe
cost model. Section 3 shows that a variety of program analyses can
be expressed in the language. Section 4 describes the transforma-
tions and their combination. Section 5 discusses implementation
and experiments. Section 6 compares with related work and con-
cludes.

2. Language and cost model

Graph query language. We use a graph query language that can
specify the existence of paths with various properties proposed
in [19]. For our examples, we use the language to query the control-
flow graphs of programs. We consider control-flow graphs whose
vertices correspond to program points, and labeled edges corre-
spond to operations. We use edge labels that reflect only infor-
mation relevant to the analysis of interest. Consider an assignment
statementa = 5 in a program. If we are interested in analyzing
reaching definitions, then this statement may be represented by the
labeldef(a), indicating a definition of (i.e., assignment to)a. One
may use several abstractions to represent one statement, therefore
multiple edges between two vertices are possible. For the statement
x = y + 1, edges can correspond to the definition ofx, and the us-
age ofy. We denote the entry point of a program asstart.

Many analyses can be performed on a control-flow graph. For
example, the use of an uninitialized variable in a program can be
determined by finding a path starting from the entry point in the
program such that a variable is never initialized but eventually used
on the path.

The graph query language supports graph path expressions that
allow convenient use of both vertices and edges of arbitrarykind
as well as additional global and local parameters in graph paths.
Figure 1 gives a grammar of the language.

query → var,...,var: pexp
pexp → path

| pexp∧ pexp| pexp∨ pexp| ¬pexp
path → ov epath ov ... epath ov

ov → [v] | ǫ

epath → label
| epath∧ epath| epath∨ epath| ¬epath
| epath*| epath epath| epath∧ constraint
| local var,...,var: path

label → p(a1,...,ak ) |
v, p, a → const| var |

constraint : boolean expression
var : identifiers (denoted by letterst to z)

const : literals

Figure 1. Grammar for the graph query language.

A graph query consists of a list of variables to be returned and
a path expression. A path expression is a path or a conjunction,
disjunction, or negation of path expressions. A path is a sequence
of edge paths separated by optional vertices. An edge path isan
edge label; a conjunction, disjunction, or negation of edgepaths;
a repetition (denoted *) of an edge path, a concatenation of edge
paths, an edge path with a constraint, or a path with local variables.
Repetition of an edge path means a concatenation of any number of
the edge paths. Negation of an edge path means the nonexistence
of the edge path. A path with local variables means that local
variables in the path may take different values each time thepath
is repeated. An edge label is a predicate with arguments or a
wildcard label (denoted). A wildcard label holds for any edge. A
vertex, predicate, or argument is a variable, constant, or awildcard
variable. A wildcard variable (denoted) is treated like a local
variable.

The meaning of a graph query is all the values of return vari-
ables such that the path expression holds.

Datalog rules and queries.Datalog is a declarative language for
defining facts and rules that are used to infer new facts from given
facts [1]. A Datalog rule is of the form:

p(x1, ..., xk) : −p1(x11, ..., x1k1
), ..., ph(xh1, ..., xhkh

).

whereh is a natural number, eachpi (respectivelyp) is a predi-
cate ofki (respectivelyk) arguments, eachxij andxi is either a
constant or a variable, and variables inxi’s must be a subset of the
variables inxij ’s. A predicate with arguments is called anatom. If
h = 0, then there are nopi’s or xij ’s, andxi’s must be constants,
in which casep(x1, ..., xk) is called afact. An atom on the right
side of a rule is called ahypothesis, and the atom on the left side is
called theconclusion.

Datalog can be extended with negation and constraints. We use
Datalog withstratifiednegation, i.e., the conclusion of any rule and
a negated hypothesis of any rule are not mutually recursive.The set
of rules generated from any query in the graph query languagewe
use is guaranteed to be stratified. A hypothesis that is not negated is
called a positive hypothesis.We use constraints where eachvariable
occurring in a constraint is bound by a positive hypothesis.

A Datalog rule isunsafeif there is a variable argument of the
conclusion that does not appear as an argument of a positive hy-



pothesis. Unsafe Datalog rules are expensive for bottom-upcompu-
tation, since values of variables that appear in the conclusion and
not in positive hypotheses cannot be determined by matchingex-
isting facts with hypotheses, and each such variable may take all
constants in the facts.

The meaning of a rule is that if there is a substitution of vari-
ables in the rule with constants such that all positive hypotheses
instantiated using the substitution are facts, all negative hypotheses
instantiated using the substitution are not facts, and the constraints
hold under the substitution, then the instantiated conclusion is a
fact.

A query is of the formq(y1, .., yk)?, whereq is a predicate of
k arguments. The meaning of a query given a set of Datalog rules
and facts is the set of all facts ofq that are given or can be inferred
using the rules, restricted by the constants in the query, ifany.

For ease of presentation, in our examples, letterst to z denote
variables, and all other symbols are constants.

Graph queries and Datalog facts.Since we transform our queries
to Datalog, we need to represent the graph data as Datalog facts.
For each edge labelp(a1,...,ak) between verticesx andy, the
corresponding Datalog fact isp(x,y,a1,...,ak).

Cost model. Optimal bottom-up computation of the meaning of
a set of Datalog rules [20] takes time proportional to the number
of combinations of facts that make all positive hypotheses true for
each rule, plus the number of given facts since given facts must
be read in. If there are negated hypotheses in a rule, negation
is performed as a lookup, and constraints are checked after the
substitution. We split each rule into rules of at most two positive
hypotheses, since this yields better time complexity.

When expressing time complexity, we useV and E to refer
to the number of vertices and edges, respectively, in the control-
flow graph. For an edge labell, we use#l to refer to the num-
ber of edges in the graph labeled withl. Similarly, we use#p
to denote the number of facts for a Datalog predicatep.We use
#p.i1,..,in/j1,...,jm to denote the maximum number of com-
binations of different values of thei1,...,in th arguments of the facts
of predicatep (given or inferred), given any fixed value for the
j1,...,jm th arguments.

3. Applications of graph queries
We show a variety of program analysis problems specified as graph
queries, and illustrate the power of the language with queries that
use different language features. The queries are shown in Figure 2
and explained below.

(i) Uninitialized variables. We use this example as our running
example. An edge corresponding to the definition of a variablex is
labeleddef(x), and an edge corresponding to the use of a variable
x is labeleduse(x). The query shown in Figure 2 returns the set of
pairs of program pointw and variablex such thatx is not defined
or used beforew, and used for the first time atw.

(ii) Hash values in a map. In Java, it is illegal to change the
hash value of an object while it is in a HashMap [6]. We use
add/rem map(x,y) to denote adding/removingy to/from mapx,
andchange hash(x) to denote changing the hash value ofx. The
query shown in Figure 2 returns the set of program pointsw at
which an object’s hash is changed after it has been added to a
HashMap and not removed subsequently.

(iii) Expensive loops. Concatenation to a string is an expensive
computation if done repeatedly. We useconcat(x,y) to represent
the operation that concatenatesy to x. The query shown in Figure
2 returns the set of pairs of program pointw and variablex, such

that a string is concatenated tox after program pointw, and there
is a loop containing the program pointw.

Examples (i) to (iii) show that variables on vertices make the
analyses powerful by adding both the flexibility of returning arbi-
trary information from the graph, and relating vertices in the query.

(iv) Live branches. The semantics of MATLAB implies that an
if-branch with a sets as the condition is taken ifs is nonempty and
all elements ofs are positive numbers. Dead-code elimination for
if-branches is possible if the branch can never be taken. Thequery
shown in Figure 2 returns the set of program pointsw such that the
if-branch atw is not removable by dead-code elimination. This is
done by finding a path in the program such that all elements added
to a setx are guaranteed to be positive. We useadd(x,y) to denote
the addition ofy to setx, andif(x) to denote an if-branch with
conditionx.

This example shows that the use of local variables in queries
helps imposing properties on each edge in a path while ensuring
global properties at the same time.

Many more examples can be shown, but we do not show them
here since they are not conceptually different. Such examples in-
clude the specification of malicious virus patterns [8], security vio-
lations in programs and operating systems [2, 7, 25], and temporal
safety properties [3].

4. Generating efficient implementations
To generate an efficient implementation for a graph query, our
method does (i) transformation to Datalog, (ii) recursion conver-
sion and hypotheses permutation, (iii) demand transformation, (iv)
specialization, and (v) program generation. The generation takes
as input the graph query and the graph data, and produces effi-
cient implementations and corresponding complexity guarantees.
We demonstrate the steps on our running example, the uninitialized
variables query.

Step 1: Transformation to Datalog. This step transforms a graph
query into a set of rules and a query in Datalog extended with
negation and constraints. The resulting rules naturally capture the
query structure, and are subsequently drastically optimized and
efficiently implemented.

(1) Preprocessing.The query is preprocessed as follows. (i) If
there is any edge label, whose predicate isand which has no ar-
guments, then that label is replaced by the labeledge(). The facts
are updated as follows: for each pair of verticesx andy such that
there is a factp(x,y,a1,...,ak), a factedge(x,y) is introduced.
(ii) For all remaining occurrences of, each occurrence is replaced
with a new local variable, distinct for each occurrence. (iii) After
these are applied, if there is any edge labelv(a1,...,ak), wherev
is a variable, then this label is replaced withlabel(v,a1,...,ak).
The facts are updated as follows: for each factp(x,y,a1,...,ak).
given, a new factlabel(p,x,y,a1,...,ak) is added.

(2) Construction of rules.The query is recursively processed
to obtain Datalog rules and a query. For this task, a functionf
is defined that maps the query to a Datalog query, and that maps
subexpressions of the query to atoms. Also, rules are added to an
initially empty setR during the application off . Given a query
q preprocessed as above,f(q) returns a Datalog query, and upon
return,R contains the set of rules. We use two new variablesvs

andvt that do not appear in the query for insertion as source and
target vertices, respectively.

• For an edge labele of form p(a1, ..., ak), f(e) =
p(vs,vt,a1,...,ak). For example, assuming we usey andz
for vs andvt, f(def(x)) = def(y,z,x).



(i) Uninitialized vars (ii) Hash values in a map

w, x : [start]
(¬(def(x) ∨ use(x)))∗

[w]
use(x)

w : [start]
∗

add map(x, y)
(¬rem map(x, y))∗

[w]
change hash(y)

(iii) Expensive loops (iv) Live branches

w, x : [start]
∗

[w]
concat(x, )
∗

[w]

w : [start]
(¬add(x, ))∗

(add(x, y) ∧ y > 0)
(local z : ((add(x, z) ∧ z > 0) ∨ ¬add(x, )))∗

[w]
if(x)

Figure 2. Example queries for program analysis.

• For a constraintc, a fresh predicate namepc is used.f(c) =
pc(v1,...,vn), wherev1,...,vn are the variables inc.

• For an edge pathe,

if e is of form e1 ∧ ...∧ en, and eachf(ei) =
pi(vi1,...,viki

), thenf(e) =p(v1,...,vk), wherep is a
fresh predicate name, andv1,...,vk is the subsequence of
v11,...,vnkn

that are variables and appear anywhere else in
the query excepte. In this case, the following rule is added
to R:

p(v1,...,vk) :- p1(v11,...,v1k1
), ...,

pn(vn1,...,vnkn
).

if e is of form e1 ∨ ... ∨ en, thenf(e) is exactly as for the
conjunction case above. However, in this case,n rules of the
following form are added toR:

p(v1,...,vk) :- pi(vi1,...,viki
).

For example,f(def(x) ∨ use(x)) = defuse(y,z,x),
and the following rules are added toR:

defuse(y,z,x) :- def(y,z,x). (R1)
defuse(y,z,x) :- use(y,z,x). (R2)

if e is of form ¬e1, andf(e1) = p1(v11,...,v1k1
), then

f(e) = p(v1,...,vk), wherep is a fresh predicate name,
andv1,...,vk is the subsequence ofv11,...,v1k1

that are vari-
ables and appear anywhere else in the query excepte. In this
case, the following rule is added toR:

p(v1,...,vk) :- not p1(v11,...,v1k1
).

For example,f(¬(def(x) ∨ use(x))) = ndu(y,z,x),
and the following rule is added toR:

ndu(y,z,x) :- not defuse(y,z,x). (R3)

if e is of form e1∗, andf(e1) = p1(v11,...,v1k1
), then

f(e) = p(vs,vt,v1,...,vk), wherep is a fresh predicate
name, andv1,...,vk is the subsequence ofv13,...,v1k1

that
are variables and appear anywhere else in the query except
e. In this case, the following two rules are added toR, where
vf is a fresh variable:

p(vs,vs,v1,...,vk).
p(vs,vt,v1,...,vk) :- p(vs,vf,v1,...,vk),

p1(vf,vt,v13,...,vnk1
).

For example,f((¬(def(x) ∨ use(x)))∗) =
ndus(y,z,x), and the following fact and rule are added to
R:

ndus(y,y,x). (R4)
ndus(y,z,x) :- ndus(y,t,x), ndu(t,z,x). (R5)

if e is of form e1e2...en, andf(ei) =
pi(vi1,...,viki

), thenf(e) = p(vs,vt,v1,...,vk), where
p is a fresh predicate name, andv1,...,vk is the subsequence
of v11,...,vnkn

that are variables and appear anywhere else
in the query excepte. The following rule is added toR,
where eachvfi is a fresh variable.

p(vs,vt,v1,...,vk) :- p1(vs,vf2,v13,...,v1k1
),

p2(vf2,vf3,v23,...,v2k2
),

...,
pn(vfn,vt,vn3,...,vnkn

).

if e is of formlocal var1, ..., varn : e1, andf(e1) =
p1(v11,...,v1k1

), thenf(e) = p(v1,...,vk), wherep is
a fresh predicate name, andv1,...,vk is the subsequence of
v11,...,v1k1

that are variables and not invar1, ..., varn. The
following rule is added toR:

p(v1,...,vk) :- p1(v11,...,v1k1
).

• For a pathe of form ov1 e1 ... ovn en ovn+1, a placeholder
vertex with a fresh variable name is inserted for each optional
vertex ovi that is not specified. For example, in our running
example, a placeholder vertex[u] is inserted at the end of the
query. After this, if eachf(ei) =pi(vi1,...,viki

), thenf(e) =
p(v1,...,vk), wherep is a fresh predicate name, andv1,...,vk

is the subsequence ofv11,...,vnkn
that are variables and appear

anywhere else in the query excepte. The following rule is added
to R:

p(v1,...,vk) :- p1(ov1,ov2,v13,...,v1k1
), ...,

pn(ovn,ovn+1,vn3,...,vnkn
).



For example, if we denote the path expression in the running
querype, thenf(pe) = result(w,x), and the following rule
is added toR:

result(w,x) :- ndus(start,w,x), use(w,u,x). (R6)

• For a path expressione, if e is a negation, conjunction or
disjunction of path expressions, then we proceed preciselyas
we did for the negation, conjunction and disjunction cases for
edge paths.

• For a queryq in the formvar1, ..., varn : p, we definef(q) =
f(p)?. For the running example, if we denote the queryq, then
f(q) = result(w,x)?.

(3) Postprocessing.Postprocessing removes unsafe rules. First,
for each atom generated for constraints, we replace the atomwith
the constraint it was generated for. Then, if any rule in the result
is unsafe, we perform the following: (i) For each pair of vertices
x andy such that there is a factp(x,y,a1,...,an), we introduce
a factedge(x,y). Also, for each constantc that appears in the
facts as arguments, we introduce a factany(c). (ii) For each rule
whose conclusion has arguments that are not bound by positive hy-
potheses, for each unbound argumenta, if a is among the first two
arguments of the conclusion (saya1 anda2), we add a hypothesis
edge(a1,a2), otherwise we add a hypothesisany(a). Finally, we
remove any duplicate hypotheses added. For the running example,
rules(R3) and(R4) are modified to obtain the final set of rules
below.

defuse(y,z,x) :- def(y,z,x). (R1)
defuse(y,z,x) :- use(y,z,x). (R2)

ndu(y,z,x) :- edge(y,z), any(x), (R3)
not defuse(y,z,x).

ndus(y,y,x) :- edge(y,z), any(x). (R4)
ndus(y,z,x) :- ndus(y,t,x), ndu(t,z,x). (R5)
result(w,x) :- ndus(start,w,x), use(w,u,x). (R6)

The time complexity of computation using each rule is given in
the left column of Figure 3. The bottleneck is the complexityfor
(R5),O(V ×#ndu); since#ndu is bounded byO(E×#any) based
on(R3), this complexity isO(V × E×#any).

Step 2: Recursion conversion and hypothesis permutation.This
step generates different forms of the rules from Step 1 with the
same semantics. It is essential because different forms of rules
may have drastically different running time and space usageafter
demand transformation and specialization in the subsequent steps.

This step first performs recursion conversion to obtain both
left- and right-recursive forms of recursive rules. This uses the
transformations described previously [26]. For example, for (R5),
an alternative rule with the same semantics is:

ndus(y,z,x) :- ndu(y,t,x), ndus(t,z,x). (R5’)

This step then permutes hypotheses that are not constraintsor nega-
tions in each rule; constraints and negations are placed immediately
after all of their arguments are bound. For example, for(R6), an al-
ternative rule with a different order of hypotheses is:

result(w,x) :- use(w,u,x), ndus(start,w,x). (R6’)

Finally, a new set of rules is generated for each combinationof
different recursive forms of rules and different permutation of hy-
potheses in rules. We avoid unnecessary combinations usingthree
heuristics described below.

1. For a recursively defined predicatep, if there is a hypothesis
whose predicate isp and its first argument is a constant, then we

Original rules After demand transformation
(R1) O(#def) (R1) O(#def)
(R2) O(#use) (R2) O(#use)
(R3) O(E×#any) (R3d) O(E×#dem2.2/1)
(R4) O(E×#any) (R4d) O(#dem)
(R5) O(V ×#ndu) (R5d1) O(#ndu)

(R5d2) O(#ndu)
(R6) O(#use) (R6d) O(#use)

Figure 3. Time complexities for the original rules and the rules
after demand transformation.

only generate the left-recursive form for the recursive rule that
definesp, and respectively if the second argument is a constant,
then we only generate the right-recursive form. These formsare
asymptotically better to use, since after demand transformation,
the chosen recursive form will be asymptotically faster than the
alternative form.

2. Among two permutations in each rule, if the predicate of one of
the hypothesesh1 is a predicate for which facts are given, and
the predicate of the other hypothesish2 is a predicate defined
by rules, then we always order the hypotheses so thath1 is first
andh2 is second. This reduces the time complexity, since after
demand transformation, the demand forh2 will be stricter.

3. If the positive hypotheses of the original rule do not share any
variables, then we use the given order. This is due to the factthat
the join of these hypotheses costs the same in either direction
when no variables are shared, so we can ignore the alternative
order.

For the running example, there are two choices of recursion
forms, and 16 hypothesis orders for each form. Thus, 32 different
versions exist. Using heuristic 1 above, we obtain only the left-
recursive form(R5), not (R5’) since the predicate of the first
hypothesis of(R6) is ndus and its first argument is a constant
(start). Using heuristic 2, we obtain only the reversed hypothesis
order for(R6), i.e.,(R6’), sinceuse is a predicate for which facts
are given, andndus is a predicate defined by rules. Using heuristic
3, we use the given orders for(R3) and(R4) since their positive
hypotheses do not share any variables. Therefore, we are left with
only one ordering for each rule.

Step 3: Demand transformation. This step performs, for each
rule set obtained from Step 2, demand transformation. It adds new
rules and new hypotheses to original rules so that only factsrelevant
to answering the query are inferred. This uses a novel transforma-
tion that achieves the same effect as magic set transformation [4],
but is much simpler since the rules generated from graph queries
are of a particular form. It is the center piece of our method and is
described in detail in the next section.

After demand transformation, we calculate the complexity of
each transformed rule set, and choose the one with the best com-
plexity via comparison of the obtained formulas. Comparingthe
time complexity of two sets of rules is not possible in general, but
for all the graph query examples we have encountered, it is possible
to choose one set of rules with the best complexity. In case multiple
rule sets have non-comparable complexities, the method proceeds
on all rule sets, and the output contains multiple programs with dif-
ferent complexities.

For the running example, the resulting set of rules with the best
complexity is for the original set of rules but with(R6) replaced by
(R6’). It contains(R1), (R2), and the following rules; recall that
rules are split into rules with at most two positive hypotheses each:



ndu(y,z,x) :- dem2(z,x), edge(y,z), (R3d)
not defuse(y,z,x).

ndus(y,y,x) :- dem(y,y,x). (R4d)
split(y,z,t,x) :- dem(y,z,x), ndu(t,z,x). (R5d1)

ndus(y,z,x) :- split(y,z,t,x), (R5d2)
ndus(y,t,x).

result(w,x) :- use(w,u,x), (R6d)
ndus(start,w,x).

dem(start,w,x) :- use(w,u,x). (D1)
dem(y,t,x) :- split(y,z,t,x). (D2)
dem2(z,x) :- dem(y,z,x). (D3)

The time complexity of the resulting rules is given in the right
column of Figure 3. It is reduced asymptotically, includingdrop-
ping anO(V ) factor from(R5), and the reduction of allO(#any)
factors to tighter factors. The bottleneck complexity is reduced to
O(E×#dem2.2/1) from O(V × E×#any).

Step 4: Specialization.This step applies specialization and deter-
ministic unfolding to the result from Step 3, to remove unnecessary
predicates, arguments, and rules. Specialization uses a simplified
version of partial evaluation, as described previously [26].

For specialization, we define a functionf that takes an atom
p(a1,...,ak) as an argument, and returnspf(v1,...,vl), wherepf

is a fresh name, andv1,...,vl is the subsequence ofa1,...,ak that
are variables. For a set of rulesR, and a queryq?, we addq to a
queueQ. For each atoma in Q, for each rule inR of the formc
:- h1,..., hn such that there exist two substitutionsθ andθ′ such
thatθ(c) = θ′(a), we perform two steps. First, for eachhi, we add
θ(hi) to Q. Second, we add the following rule to the output:

θ(c) :- f(θ(h1)), ..., f(θ(hn)). (Rs)

We also unfold hypotheses. For each ruler of the form c
:- h1, ..., hn, for each hypothesishi, if there is only one rule
of the form c’ :- h’ for which there is a substitutionθ such
that θ(hi) = c’, we replacehi in r with θ(h’). Unfolding a
hypothesis whose predicate is defined by more than one rule may
decrease space, but increase time by a constant factor sincethe size
of the rules become larger. We compare the performance of two
unfolding strategies in the experiments section. A decision needs to
be made for when to stop unfolding. We choose to stop unfolding
at each recursive predicate, and we only unfold hypotheses that
are defined by one rule, because it guarantees improvements in
both time and space. This unfolding scheme is called deterministic
unfolding [16].

This step does not reduce the asymptotic complexity, but re-
duces both running time and space by constant factors. For the run-
ning example, the resulting rules are(R1), (R2), and the follow-
ing:

ndu(y,z,x) :- dem_s(z,x), edge(y,z), (R3ds)
not defuse(y,z,x).

ndus_s(start,x) :- dem_s(start,x). (R4ds)
split_s(z,t,x) :- dem_s(z,x), ndu(t,z,x). (R5d1s)

ndus_s(z,x) :- split_s(z,t,x), (R5d2s)
ndus_s(t,x).

result(w,x) :- use(w,u,x), ndus_s(w,x).(R6ds)
dem_s(w,x) :- use(w,u,x). (D1s)
dem_s(t,x) :- split_s(z,t,x). (D2s)

This step removes the predicatedem2 and rule(D3) that defines it;
the first argument of predicatedem in rules(R4d), (R5d1), (D1),
and(D2); the first argument of predicatesplit in rules(R5d2)
and(D2); and the first argument of predicatendus in rules(R4d),
(R5d2), and(R6d).

Specialization applied after demand transformation does not
change the asymptotic time complexity. However, when it is effec-

tive, it (i) reduces the space used by the computation by removing
arguments of predicates that are guaranteed to be constants, (ii) re-
duces the time by a constant factor, and (iii) makes the resulting set
of rules smaller and simpler.

Step 5: Program generation.This step generates efficient imple-
mentations with specialized data structures for the set of rules from
Step 4. This uses the method by Liu and Stoller [20]. It guarantees
that the generated implementation has the analyzed complexity. For
the running example, the generated program in Python is 171 lines,
and the generated program in C++ is 3534 lines.

We have shown that the application of the above five steps, and
the order in which they are applied are crucial in obtaining efficient
implementations for graph queries. After obtaining a set ofDatalog
rules, and a query whose set of answers are equivalent to the graph
query, we use Datalog optimizations to asymptotically reduce the
complexity of the resulting rules, and finally generate an efficient
implementation of the optimized rules.

5. Demand transformation
Not all facts are needed for answering a query. Top-down evalua-
tion does a query-driven, left-to-right evaluation of the rules, avoid-
ing inferring facts not needed in this process for answeringthe
query. Demand transformation transforms a set of rules and aquery
into a new set of rules, such that all the facts that can be inferred
from the new set of rules contain only facts that would be inferred
in a top-down evaluation of the original rules. It adds new rules that
define needed facts for each hypothesis in each rule, and addshy-
potheses to the original rules to restrict computation to infer only
needed facts.

Given a setR of rules and a queryq?, we first create a dummy
rulex :- q.with a fresh predicatex, and add this rule to a workset
W of needed rules. We take rules out ofW , one at a time, to process
until it is empty. For ruler, from W , of the formc :- h1, h2,
..., hn, we do the two steps below for each hypothesishi.

Step 1determines needed facts forhi. If some arguments ofhi

are constants or are variables that occur also to the left ofhi in r,
then we denote thema1,...,ak , and add the following rule to the set
of resulting rules:

demandhi
(a1,...,ak) :- h1, h2, ... , hi−1. (D*)

wheredemandhi
is a fresh predicate.

Step 2restricts computation using rules that define the predicate
of hi. For each ruler′ in R of the formc’ :- h’1, ..., h’n, if
there is a substitutionθ such thatθ(hi) = c’, we create a new rule
(Rd) as follows:

c’ :- θ(demandhi
(v1,...,vk)), h’1, ... , h’n. (Rd)

Then, we remove, from(Rd), eachh’i such that its predicate
is edge or any, and all of its variable arguments appear in
θ(demandhi

(v1,...,vk)). These hypotheses can be removed since
they are now bound by the new hypothesis, and safety is preserved
by that hypothesis. We add(Rd) to the output andW .

For the running example, the query isresult(w,x)?. For rule
(R6’), step 1 adds the rule(D1), shown below, and step 2 inserts a
first hypothesis in(R5) to obtain(R5d) below, which is then split
into rules(R5d1) and(R5d2) as shown before:

dem(start,w,x) :- use(w,u,x). (D1)
ndus(y,z,x) :- dem(y,z,x), ndus(y,t,x), (R5d)

ndu(t,z,x).

Demand transformation is akin to several transformations,the
most well-known being magic set transformation (MST) [4]. De-
mand transformation differs from MST by the absence of annota-
tions for given predicates. Demand transformation does notalways



preserve stratification of negation, and methods are proposed [21]
to always yield stratified rules. In the following theorem, we show
that for rules generated for graph queries, the rules obtained after
demand transformation contain only stratified negation.

Theorem 1. Let R andq be the set of rules and query obtained
from a graph query as described, and letR′ be the set of rules
obtained after demand transformation ofR with respect toq. Both
R andR′ contain only stratified negation.

Proof. For a rule generated from an expressione in a graph query,
if the rule has a negated hypothesis, the negated predicate refers to
a predicate for a subexpression ofe, therefore the negation is strat-
ified for all rules inR. In R′, we add positive demand hypotheses
to rules, and rules that define the predicates of demand hypotheses.
The added hypotheses cannot violate stratification since they are
positive. The rules that define the demand predicates only contain
positive hypotheses, since the last hypothesis of a rule cannot ap-
pear as the hypothesis of those rules, and a negated hypothesis is
always the last hypothesis of a rule if it exists. Therefore,the added
rules inR′ cannot violate stratification.

There are two reasons for demand transformation’s success in
reducing asymptotic complexity for graph queries. Focusing on
our examples for program analysis, first, most queries for program
analyses start from the entry point of the program, which is acon-
stant. Other constants occasionally occur in edge labels inqueries.
Having constant vertices significantly reduces the complexity of
transitive closure after demand transformation is applied. Secondly,
edge andany hypotheses are usually removed after demand trans-
formation, since demand hypotheses usually bind the arguments of
those hypotheses. The effect depends heavily on the form of recur-
sion and order of hypotheses.

Note that specialization may be applied without applying de-
mand transformation first. There are cases when demand transfor-
mation without specialization obtains better asymptotic complex-
ity than specialization without demand transformation. However, if
specialization alone provides the same complexity as demand trans-
formation, then it is more preferable to obtain the set of rules from
specialization since the rules become simpler and smaller.In our
running example, applying specialization directly to(R5) would
yield (R5d1s) and(R5d2s), but demand transformation and spe-
cialization applied in order also yields the same rules.

Theorem 2 shows that when specialization yields rules with the
same complexity as demand transformation, demand transforma-
tion and specialization applied in sequence yields the sameset of
rules as only applying specialization.

We say that a set of rulesRS obtained by specializingR is
simpler than R if there is a predicatep such that for every rule
r that definesp in R, its counterparts inRS have fewer variables in
arguments thanr. We say that a set of rulesR is in no-copy normal
form, if there is no rule inR with only one hypothesis such that the
argument list of the conclusion is a permutation of the argument list
of the hypothesis.

Theorem 2. For any specialization methodS, if S obtains a set
of rulesRS that is simpler than the original set of rulesR, and is
in no-copy normal form, then there is a form of recursion and an
ordering of hypotheses ofR, sayR′, such that demand transforma-
tion, S, and unfolding applied in sequence toR′ producesRS .

Proof. If RS is simpler thanR, then there is a constantc in R
that is propagated to a ruler by S to specializer by removing
an argumentv. This means thatv always takes the valuec in r
due to the hypotheses that refer to it. Therefore, there is a form
of recursion and an ordering of hypothesis ofR, sayR′, such that
demand transformation will add a demand hypothesis that bindsv

in r, due to its assignment toc at the hypotheses referring to it,
and the rule that defines that demand predicate will reflect that v
takes the valuec. WhenS is applied to the rules obtained after
demand transformation toR′, and unfolding is performed, the rule
that defines the demand predicate is unfolded, and then the obtained
constant from unfolding is propagated, and unnecessary constants
and rules are eliminated. As a result, demand transformation, S,
and unfolding applied in sequence toR′ producesRS .

6. Experiments
We have implemented the method described in Python. As the final
output of our method, the implementation emits both Python code,
and Patton [23] code that is transformed automatically to C++ code
by Patton, which is finally compiled by GCC.

We show the results of experiments using the running example
on the control-flow graphs of six benchmark programs of varying
size written in Python. The programschunk, bdb, tarfile,andpickle
are from the Python library;Fortran is a Fortran2003 implementa-
tion; RBACis an implementation of an RBAC (Role Based Access
Control) standard. In some figures, we omit one of the programs to
avoid label overlapping. The experiments were conducted ona 3.0
GHz Intel Q9650 with 4 GB of memory, running SuSE Linux, and
using Python 2.6.1 and GCC 4.3.3.

Running time and memory usage of the generated implementa-
tions. We have shown via automatic complexity analysis that the
rules obtained after Step 1 in Section 4 are asymptotically worse
than the final set of rules. The implementation of those rulesonly
completes the smallest benchmark in 9.2 seconds, and cannotcom-
plete the rest of the benchmarks in less than 10 minutes.

The complexity of the set of rules obtained after the transforma-
tions isO(E×#dem2.2/1). A systematic manual analysis of the
rules reveals that#dem2.2/1 is bounded by the number of vari-
ables in scope at a program point, since the first argument of#dem2
is a program point, and the second argument only takes the vari-
ables that can reach that program point via edges. We computed
the average number of variables in scope (s) at each point using
static analysis for each program, and the line with plus markers in
Figure 4 shows the running times of set of rules with respect to
E×s. The resulting plot is almost linear as expected; we think that
the deviations from linearity are due to the fact that the benchmarks
do not exhibit worst-case time complexity.

Specialization after demand transformation reduces running
time and memory usage by a constant factor, and the decision for
when to stop unfolding affects the running time and memory usage.
In Figures 4 and 5,unfolding 1denotes only unfolding predicates
defined by one rule, andunfolding 2denotes unfolding predicates
defined by possibly multiple rules with only one hypothesis.

Figure 4 shows the running time of the set of rules at different
implementation stages.Unfolding 1 has the best running time, since
it avoids duplicate inference for predicates defined by onlyone rule.
On average, compared to the rules after demand transformation,
specialization with unfolding 1 reduces running time by 17%.

Figure 5 shows the memory usage of the implementations at dif-
ferent implementation stages. We obtain the memory usage ofgen-
erated Python implementations, since memory profiling for Python
is very precise using Heapy1. As expected, all steps show a constant
decrease in memory usage, and unfolding 2 uses the least mem-
ory, since it removes the most rules. On average, compared tothe
rules after demand transformation, specialization with unfolding 2
reduces memory usage by 26%.

Comparison with state-of-the-art top-down and bottom-up sys-
tems. We have shown that recursion conversion and hypothesis

1 Available at http://guppy-pe.sourceforge.net
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Figure 4. Running time of the implementation of rules in C++ at
different implementation stages.
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Figure 5. Memory usage of the implementation of rules in Python
at different implementation stages.

permutation are important steps before demand transformation and
specialization are applied for bottom-up computation. This is also
true for top-down systems. A prominent top-down evaluationen-
gine with tabling is XSB [24]. There is no known systematic analy-
sis to find the best combination of form of recursion and hypothesis
order for top-down evaluation in the literature, and we confirmed
this by consulting the main developer of XSB [30].

We generated all recursion forms and hypothesis permutations
for the running example, and manually ran and timed all bench-
marks for all combinations in XSB. In general, the number of such
combinations is exponential in program size. Among 32 possible
combinations for our running example, 16 versions do not complete
the benchmarks in less than 10 minutes, and all versions are slower
than our generated code in C++. Note that our code generatorsare
implemented for proof-of-concept, and they are not optimized for
constants in contrast to the effort put into the developmentof a
mature system like XSB. Figure 6 shows the running time of our
generated code, the running time of the rules and query generated

in Step 1 of Section 4 in XSB, and the running time of the manually
found best version for XSB.

A bottom-up evaluation engine that has been used to solve large
problems is bddbddb [15]. bddbddb does not employ any trans-
formations for efficiency, but employs binary decision diagrams
(BDDs) to store and manipulate the relations. It does not provide
any complexity guarantees for a set of Datalog rules. We conducted
experiments on bddbddb using both the original set of rules gener-
ated, and the rules yielded by our combination of transformations.

As expected, bddbddb shows asymptotically worse behavior on
the original set of rules. On the final set of rules, we observed that
the performance of bddbddb is highly dependent on the several op-
tions provided, especially the ordering of variables in theBDDs.
We used the provided option of using machine learning to auto-
matically find the best variable order, and also manually tried all
13 variable orderings possible. There is a large discrepancy be-
tween the results, using the worst variable ordering is up to6 times
slower, and using the automated variable ordering is up to 1.8 times
slower than the manually obtained best result. The running times
are shown in Figure 6.

Our experiments show that despite the large amount of effort
spent to find the version of rules for minimum running time in XSB
and bddbddb, the code automatically generated by our combination
of transformations outperforms these systems. For all examples
we have encountered, our method succeeds in finding the version
of rules with the best complexity among all versions in less than
a second. The complexity analysis provided by our method is
confirmed by the actual running times, whereas such analysisis
not available in the state-of-the-art systems compared.

7. Related work and conclusion
The design and implementation of graph query languages for pro-
gram analysis has been studied extensively. These include lan-
guages for both static analysis and runtime monitoring. Thestudy
of programs as relational data has been first proposed by Lin-
ton [17] with a language called QUEL. However, early query lan-
guages such as QUEL did not allow recursion and showed poor
performance due to lack of optimization. Several other languages
such as JQuery [29] and ASTLOG [9] have demonstrated better
performance, but they lack support for specifying path properties
in forms of regular expressions with parameters. We compareour
work with several languages and implementations below.

Manual implementations. One of the most popular program
analysis tools is FindBugs [12], which is used to find bugs in Java
programs. FindBugs only supports the specification of bug patterns
via manual implementations. However, the 355 different types of
bugs that can be found by the tool are well-documented, and out of
the 17 common bugs described, we can express 16 of them in the
language we use. The only one that cannot be expressed is for abug
that involves counting the number of occurrences of an edge;such
aggregation operators are currently missing in the query language
we use. Integrating the language we use and our method into a tool
such as FindBugs would make it easier to add new analyses to the
tool. Such analyses could then be clearly specified, and the efficient
implementation can be automatically provided by our method.

Path queries. Regular path queries have been used in program
analysis, e.g. in [10]. Parametric regular path queries [18] are
regular-expression-like queries that allow the use of parameters,
but do not support vertices and local parameters. Therefore, the
language of parametric regular path queries is a strict subset of
the query language proposed in [19] and used in this paper. The
language we use also strictly contains Condate [28]. The query
language of Blast [5] is also a path query language for software
verification, however it operates only on a particular kind of graph



Programs # of facts Our method XSB bddbddb
Python C++ Generated Manual Generated Manual

chunk 367 57 12 36098 47 18354 454
bdb 926 664 110 - 215 145240 1027

RBAC 4701 2289 384 - 702 - 2296
Fortran 2890 2795 454 - 765 - 630
pickle 3201 4673 784 - 968 - 2477
tarfile 4300 10136 1724 - 3151 - 4416

Figure 6. Running time in milliseconds of implementations generatedby our method, of the generated rules in XSB, and of the manually
found best version of these rules in XSB, and similarly for bddbddb. - denotes incompletion in 10 minutes.

generated from the program, whereas the language we use can
work with different graphs generated from the same program.

More powerful languages.PQL [14] is a more powerful program
query language and is also transformed into Datalog rule. How-
ever, its implementation does not perform rule transformations as
we do in this paper, or provide complexity guarantees. The result-
ing Datalog rules from a PQL query are evaluated using bddbddb, a
BDD-based implementation of Datalog. However, as shown in Sec-
tion 6, transformations affect the running time of the resulting rules
significantly, and the BDD-based implementation of Datalogdoes
not provide any complexity bounds and shows irregular behavior.

PQL is more powerful in the sense that it allows arbitrary query
declarations which are Datalog-like, rather than only graph expres-
sions. It is less expressive in the sense that it does not allow arbi-
trary variables on vertices for return or reuse. Since Datalog rules
are generated from PQL, our combination of transformationsfor
Datalog can be used in conjunction to provide better complex-
ity with precise complexity guarantees. This also applies to sys-
tems that use Datalog directly to query source code such as Code-
Quest [11]. Additionally, since our implementation first transforms
graph queries into Datalog, we can easily add support for Datalog
in the graph query language too.

Transformations for Datalog rules. Many transformations for
Datalog rules have been studied for efficient implementation. We
employ a bottom-up implementation strategy for obtaining time
complexity guarantees as described in [20]. In contrast to bottom-
up, top-down strategies have the advantage of being driven by the
demand in the query, but do not provide complexity guarantees.
For bottom-up implementations, demand driven computationcan
be mimicked by the magic-set transformation [4]. Our demand
transformation has the same effect.

Specialization of rules [16] may also help reduce time complex-
ity of rules. However, the effectiveness of demand transformation
and specialization highly depends on the type of recursion in the
rules. The effectiveness of demand transformation also depends on
the ordering of hypotheses. Hristova [13] gives a detailed method
for obtaining hypotheses orders that yield efficient implementa-
tions, and provides several applications of the method. However,
it does not perform recursion conversion or specializationas stud-
ied in [22, 26]. Tekle et al. [26] combines recursion conversion
and specialization for optimization, but does not employ demand
transformation, and therefore can be ineffective when specializa-
tion alone is not sufficient. We use recursion conversion, hypothesis
permutation, demand transformation, specialization, andprogram
generation in order, to obtain both asymptotic speedups andreduce
memory usage and running times by constant factors.

Conclusion and future work. The graph query language demon-
strated with applications in this paper allows many queriesto be
written much more easily and clearly than in Datalog. This isshown
in the running example, where a simple query corresponds to sev-
eral Datalog rules. Our work is novel in (1) the use of a graph query

language to effectively describe different program analyses, (2) the
combination of transformations that optimizes the runningtime of
the query, and automatically generates implementations with time
complexity guarantees.

We have experimentally shown that the code generated by our
method adheres to the calculated complexities, and outperforms
state-of-the-art Datalog evaluation engines — XSB [24], a top-
down evaluation engine, and bddbddb [15], a bottom-up evaluation
engine that employs BDDs — even after significant manual effort
to find the rules with the minimum running time for these engines.
Therefore, using the graph query language in conjunction with our
combination of transformations is a powerful tool for clearly spec-
ifying program analysis problems, and obtaining efficient imple-
mentations with precise complexity guarantees.

Future work includes further use of the graph query language
and the implementation method for security and provenance appli-
cations, and possible extensions of the language.
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