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Abstract

This paper describes the use of a powerful graph query layejioa
querying programs, and a novel combination of transformnatfor
generating efficient implementations of the queries. Thglage
supports graph path expressions that allow convenientiuisetio
vertices and edges of arbitrary kinds as well as additiofaiaj
and local parameters in graph paths. Our implementatioihadet
combines transformation to Datalog, recursion conversiemand
transformation, and specialization, and finally generatésient
analysis programs with precise complexity guarantees &tim-
bination improves a®(V E) time complexity factor using previ-
ous methods t@(E), whereV and E are the numbers of graph
vertices and edges, respectively. We also describe impitatiens
and experiments that confirm the analyzed complexities.
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1. Introduction

Graph queries can be used to express many problems fromediffe
areas, including program analysis in particular. Such igaaran
help find bugs [12], detect malicious virus patterns [8]ortgecu-
rity violations [25], check temporal safety properties, [8fc. Effi-
cient hand-written implementations for program analysesifi-
cult to develop, verify, and maintain, and query languagesgpec-
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ifying such analysis problems are desirable for ensurimgcbr-
rectness of analyses while reducing the effort of implemons.
However, higher-level query languages often lack efficiemle-
mentations or complexity guarantees. An automated apprtzac
generating efficient implementations with complexity qurdees is
needed for practical uses of such languages.

This paper describes the use of a powerful graph query lajggua
for querying programs, and a novel combination of transéerm
tions for automatically generating efficient implemerdas of the
queries. We show that a wide range of program analysis prable
can be expressed using queries in the language. The langupge
ports graph path expressions that allow convenient usetbfuso-
tices and edges of arbitrary kinds as well as additionalajlabd
local parameters in graph paths. Our implementation metbod
the language combines transformation to Datalog, recursim-
version, hypothesis permutation, demand transformatiod,spe-
cialization, and finally generates efficient analysis paogs with
precise complexity guarantees.

The first step of our method transforms a graph query into a set
of rules and a query in Datalog. Datalog is an important hased
language for inference using facts in databases. Muchn&sbas
been done on implementation of Datalog [1]. Top-down comput
tion starts from the query, generates subqueries usingythette-
ses of the rules whose conclusions match the query, and does s
repeatedly until the subqueries match the given facts.oBotip
computation matches existing facts with hypotheses okrgen-
erates new facts from conclusions of rules whose hypothmeath
existing facts, and does so repeatedly until desired faci tacts
are inferred. In particular, there is a method for genegaiptimal
algorithm and data structures specialized for the ruled&tom-
up computation, and calculating complexities for the gatest pro-
grams [20]. However, this method may infer facts that areralot
evant to answering a given query, and hence may be unneigssar
expensive.

To solve the problem of inferring facts not relevant to answe
ing a given query, we perform a transformation similar towed-
known magic-set transformation [4], which transforms aegiset
of rules into a new set of rules that infer only facts relewarthe
query. We call itdemand transformatigrbecause the transforma-
tion makes the computation driven by demand. Demand transfo
mation may reduce the number of inferred facts, and thezefor
complexity, asymptotically. However, its effectivenessaifected
drastically by the form of recursion in recursive rules, dydthe
order of hypotheses. To solve this problem, before demaamsir
formation, we first perform recursion conversion, which gr@tes
different forms of recursive rules. We then generate diffeiper-
mutations of hypothesis orders of the rules.

Recursion conversion, hypothesis permutation, and demand
transformation yield different versions of a set of rulekeTcom-
plexity of each version is calculated automatically usheymethod
in [20]. The version that has the best complexity is then ehos
Choosing the best complexity is impossible in general, so ou



method chooses the versions that have provably better eaxmpl
ity than the rest. Using heuristics, the method succeedsinging

a single set of rules for all the graph query examples we have e
countered.

The above transformations may result in a set of rules that co
tain unnecessary predicates, rules, and constant argsinime-
cialization, also known as partial evaluation [16], is ugetemove
these unnecessary parts. It does not reduce asymptotictme
plexity, but may reduce both the memory usage and runnireyibiyn
a constant factor, and moreover, may produce rules that ach m
smaller and simpler. Finally, we generate an efficient pgogfrom
the final set of rules, together with the calculated compjexsing
the method in [20].

This combination of transformations improves@(V E) time
complexity factor using previous methods¥F), whereV andFE
are the numbers of graph vertices and edges, respectivelghdw
precise time complexity analysis for an example prograniyana
sis problem using this method. We also describe implemientat
of the example analysis problem and experiments for anajyai
set of programs of varying sizes, and confirm the calculatea-c
plexities. Additionally, we compare our results againsBxa4],

a state-of-the-art top-down evaluation engine that engplailing
strategies, and bddbddb [15], a bottom-up Datalog evalnath-
gine that employs binary decision diagrams for storing aadipx
ulating relations. For both systems, tight complexity gueees are
not available, and we demonstrate that they show differehatior
with respect to different forms of rules without a method méqe-
termining the best form.

Many analyses can be performed on a control-flow graph. For
example, the use of an uninitialized variable in a program e
determined by finding a path starting from the entry pointha t
program such that a variable is never initialized but evalhtwsed
on the path.

The graph query language supports graph path expressins th
allow convenient use of both vertices and edges of arbitkargt
as well as additional global and local parameters in grapghspa
Figure 1 gives a grammar of the language.

query — var,...,var: pexp
pexp — path
| PexpA pexp| pexpV pexp| —pexp
path — ov epath ov ... epath ov
oV — [Vl ]e
epath — label
| epathA epath| epathv epath| —epath
| epath*| epath epathepathA constraint
| localvar,...,var: path
label  — p(as,...a) | -
v,p,a — const| var| -
constraint : boolean expression
var identifiers (denoted by lettetsto z)
const literals

Figure 1. Grammar for the graph query language.

A graph query consists of a list of variables to be returnedi an
a path expression. A path expression is a path or a conjumctio
disjunction, or negation of path expressions. A path is aisege

Even though the graph query language and most of the trans-of edge paths separated by optional vertices. An edge path is

formations to Datalog were proposed before [19], and sintala-
guages have been used for program transformations [23h#puer
is the first substantial use of the language to give precisgptaxity
analyses for program analyses that are more complex thdy-ana
ses possible without the power of the language [18]. We d&lews
that our novel combination of transformations is necesfaigen-
erating efficient implementations that are both asympaditidbet-
ter, and with better constants than possible before [19 R264lly,
we conduct the first substantial experimental evaluatiatiftérent
combinations of transformations that our method uses, anu c
pare them with implementations of rules in XSB and bddbddb.

The rest of the paper is organized as follows. Section 2 de-

scribes the graph query language, the Datalog languagethand
cost model. Section 3 shows that a variety of program anslyse
be expressed in the language. Section 4 describes thednanasf
tions and their combination. Section 5 discusses impleatiemt
and experiments. Section 6 compares with related work and co
cludes.

2. Language and cost model

Graph query language. We use a graph query language that can
specify the existence of paths with various properties psep

in [19]. For our examples, we use the language to query thiaen
flow graphs of programs. We consider control-flow graphs w&hos
vertices correspond to program points, and labeled edges-co
spond to operations. We use edge labels that reflect only-info
mation relevant to the analysis of interest. Consider aigasgent
statement: = 5 in a program. If we are interested in analyzing
reaching definitions, then this statement may be repredénytéhe
labeldef (a), indicating a definition of (i.e., assignment t@)One
may use several abstractions to represent one statemeratfaie
multiple edges between two vertices are possible. For #teraent

x =y + 1, edges can correspond to the definitior:pénd the us-
age ofy. We denote the entry point of a programsasart.

edge label; a conjunction, disjunction, or negation of epaths;
a repetition (denoted *) of an edge path, a concatenatiordgé e
paths, an edge path with a constraint, or a path with locédbkes.
Repetition of an edge path means a concatenation of any mahbe
the edge paths. Negation of an edge path means the nonesisten
of the edge path. A path with local variables means that local
variables in the path may take different values each timeptieg
is repeated. An edge label is a predicate with arguments or a
wildcard label (denoted). A wildcard label holds for any edge. A
vertex, predicate, or argument is a variable, constantwaidzard
variable. A wildcard variable (denoted is treated like a local
variable.

The meaning of a graph query is all the values of return vari-
ables such that the path expression holds.

Datalog rules and queries.Datalogis a declarative language for
defining facts and rules that are used to infer new facts friveng
facts [1]. A Datalog rule is of the form:

D1y k)t —P1(T115 ooy Ty )y oees ph(xh17"'7‘rhkh)'

whereh is a natural number, eagh (respectivelyp) is a predi-
cate ofk; (respectivelyk) arguments, each;; andz; is either a
constant or a variable, and variablescifs must be a subset of the
variables inz;;'s. A predicate with arguments is called atom If
h = 0, then there are np;’s or z;;'s, andz;’s must be constants,
in which casep(z1, ..., z%) is called afact An atom on the right
side of a rule is called hypothesisand the atom on the left side is
called theconclusion

Datalog can be extended with negation and constraints. W/e us
Datalog withstratifiednegation, i.e., the conclusion of any rule and
a negated hypothesis of any rule are not mutually recurfive set
of rules generated from any query in the graph query languege
use is guaranteed to be stratified. A hypothesis that is yatted is
called a positive hypothesis. We use constraints whereveaible
occurring in a constraint is bound by a positive hypothesis.

A Datalog rule isunsafeif there is a variable argument of the
conclusion that does not appear as an argument of a positive h



pothesis. Unsafe Datalog rules are expensive for bottornupu-
tation, since values of variables that appear in the cormariusnd
not in positive hypotheses cannot be determined by matahing
isting facts with hypotheses, and each such variable magy atk
constants in the facts.

The meaning of a rule is that if there is a substitution of vari
ables in the rule with constants such that all positive hiypsés
instantiated using the substitution are facts, all negdtixpotheses
instantiated using the substitution are not facts, and dimstcaints
hold under the substitution, then the instantiated commius a
fact.

A query is of the formg(y, .., yx)?, whereq is a predicate of

that a string is concatenatedtoafter program pointv, and there
is a loop containing the program poimt

Examples (i) to (iii) show that variables on vertices make th
analyses powerful by adding both the flexibility of retumpiarbi-
trary information from the graph, and relating verticeshia tjuery.

(iv) Live branches. The semantics of MATLAB implies that an
if-branch with a set as the condition is taken ifis nonempty and
all elements of are positive numbers. Dead-code elimination for
if-branches is possible if the branch can never be takengukey
shown in Figure 2 returns the set of program pointsuch that the
if-branch atw is not removable by dead-code elimination. This is

k arguments. The meaning of a query given a set of Datalog rules done by finding a path in the program such that all elementsdadd

and facts is the set of all facts gfthat are given or can be inferred
using the rules, restricted by the constants in the queayyif

For ease of presentation, in our examples, lettesz denote
variables, and all other symbols are constants.

Graph queries and Datalog facts.Since we transform our queries
to Datalog, we need to represent the graph data as Dataltgy fac
For each edge labgl(ai,...,ar) between vertices andy, the
corresponding Datalog factjs(x,y,a1,...,ax) -

Cost model. Optimal bottom-up computation of the meaning of
a set of Datalog rules [20] takes time proportional to the bem
of combinations of facts that make all positive hypotheses for
each rule, plus the number of given facts since given factstmu
be read in. If there are negated hypotheses in a rule, negatio
is performed as a lookup, and constraints are checked diter t
substitution. We split each rule into rules of at most twoifees
hypotheses, since this yields better time complexity.

When expressing time complexity, we useand E' to refer
to the number of vertices and edges, respectively, in théraen
flow graph. For an edge label we use#1 to refer to the num-
ber of edges in the graph labeled with Similarly, we use#p
to denote the number of facts for a Datalog predigat®e use
#p.i1,..,in/j1,..-» jm t0 denote the maximum number of com-
binations of different values of thi ,...,i,, th arguments of the facts
of predicatep (given or inferred), given any fixed value for the
j1,--jmth arguments.

3. Applications of graph queries

We show a variety of program analysis problems specifiedashgr
queries, and illustrate the power of the language with gsetiat
use different language features. The queries are showmgirrd-R
and explained below.

(i) Uninitialized variables. We use this example as our running
example. An edge corresponding to the definition of a vagialid
labeleddef (), and an edge corresponding to the use of a variable
x is labeledise (x) . The query shown in Figure 2 returns the set of
pairs of program pointv and variabler such thatc is not defined

or used beforev, and used for the first time at.

(ii) Hash values in a map. In Java, it is illegal to change the
hash value of an object while it is in a HashMap [6]. We use
add/remmap(z,y) to denote adding/removing to/from mapz,
andchange hash(z) to denote changing the hash valuerofThe
query shown in Figure 2 returns the set of program pointat

which an object’s hash is changed after it has been added to a

HashMap and not removed subsequently.

(iiiy Expensive loops. Concatenation to a string is an expensive
computation if done repeatedly. We usencat (x,y) to represent
the operation that concatenaiet x. The query shown in Figure
2 returns the set of pairs of program pointand variabler, such

to a setr are guaranteed to be positive. We agé(z,y) to denote
the addition ofy to setz, andif(x) to denote an if-branch with
conditionz.

This example shows that the use of local variables in queries
helps imposing properties on each edge in a path while ergsuri
global properties at the same time.

Many more examples can be shown, but we do not show them
here since they are not conceptually different. Such exasnipk
clude the specification of malicious virus patterns [8],us&yg vio-
lations in programs and operating systems [2, 7, 25], angoeah
safety properties [3].

4. Generating efficient implementations

To generate an efficient implementation for a graph query, ou
method does (i) transformation to Datalog, (ii) recursiamweer-

sion and hypotheses permutation, (iiij) demand transfaomativ)
specialization, and (v) program generation. The generatikes

as input the graph query and the graph data, and produces effi-
cient implementations and corresponding complexity guaes.

We demonstrate the steps on our running example, the atirtil
variables query.

Step 1: Transformation to Datalog. This step transforms a graph
query into a set of rules and a query in Datalog extended with
negation and constraints. The resulting rules naturalptura the
query structure, and are subsequently drastically opéichiand
efficiently implemented.

(1) PreprocessingThe query is preprocessed as follows. (i) If
there is any edge label, whose predicate &d which has no ar-
guments, then that label is replaced by the ladagle () . The facts
are updated as follows: for each pair of vertiaeandy such that
there is a facp (x,y,a1,...,ax), a factedge (x,y) is introduced.

(i) For all remaining occurrences of each occurrence is replaced
with a new local variable, distinct for each occurrencé). Aifter
these are applied, if there is any edge lab@l , ..., axr), wherev

is a variable, then this label is replaced witlibel (v, a1, ...,az).
The facts are updated as follows: for each tatt,y,a1,...,ax) .
given, a new facltabel (p,x,y,a1,...,ax) iS added.

(2) Construction of rulesThe query is recursively processed
to obtain Datalog rules and a query. For this task, a funcfion
is defined that maps the query to a Datalog query, and that maps
subexpressions of the query to atoms. Also, rules are added t
initially empty setR during the application off. Given a query
q preprocessed as abovi(g) returns a Datalog query, and upon
return, R contains the set of rules. We use two new variakles
andv; that do not appear in the query for insertion as source and
target vertices, respectively.

¢ For an edge label of form p(a1, ..., ax), f(e) =
p(vs,ve,a1,...,a;). For example, assuming we ugeand z
for vs andvy, f(def (x)) =def(y,z,x).



() Uninitialized vars

(ii) Hash values in a map

w,r: [start] w: [start]
(—(def(x) V use(x)))* _*
[w] add.-map(z, y)
use(z) E—\rem_map(m,y))*
change_hash(y)

(iiiy Expensive loops (iv) Live branches

((add(z,2) A 2z > 0) V —add(z,-)))*

w,r: [start] w: [start]
- (~add(z, ))*
[w] (add(z,y) Ay > 0)
concat(z, ) (local z:
= [w]
[w] if(z)

Figure 2. Example queries for program analysis.

¢ For a constraint, a fresh predicate name is used.f(c) =
pe(v1,...,vn), Wherevy,...,v, are the variables in.

e For an edge path,

if eis of forme; A ... A e, and eaclf (e;) =
pi (Vi1,..., ik, ), then f(e) =p(vi,...,v&), wherep is a
fresh predicate name, and,...v« is the subsequence of
Vii,...¥nk, thatare variables and appear anywhere else in
the query except. In this case, the following rule is added
to R:
P, Vi) i= P1 Vi1, s Vikg ) s oons
Pn(an,---,Vnkn) .

if eis of forme; Vv ...V en, thenf(e) is exactly as for the
conjunction case above. However, in this caseiles of the
following form are added tdz:

PV, Vi) i= Pi(Vit, e ik ) -

For example,f(def(z) V use(x)) = defuse(y,z,x),
and the following rules are added it

(R1)
(R2)

defuse(y,z,x)
defuse(y,z,x)

:- def(y,z,x).
;- use(y,z,x).

if e is of form —e1, andf(e1) = p1(vi1,...,v1k, ), then
f(e) =p(v1,...,vk), wherep is a fresh predicate name,
andvy,...vy is the subsequence of,...v1x, thatare vari-
ables and appear anywhere else in the query excépthis
case, the following rule is added f&

P(Vi,..sVE) = not p1(Vit,...,Vik, ) -

For example f(—(def (z) V use(z))) = ndu(y,z,x),
and the following rule is added t&:

ndu(y,z,x)

if e is of form eix, and f(e1) = p1(vi1,...,v1g, ), then
f(e) = plvs,ve,v1,...,v&), Wherep is a fresh predicate
name, andri,...vx is the subsequence ofs,...v1x, that

:- not defuse(y,z,x). (R3)

p(Vsst :Vly---:vk) .
PV, Ve, V1,0 Vi) 1= P(Ve,Vf, V1,0, VR,

P1(Vy, Ve, V13, s Viky ) -

For examplef((—(def (z) V use(z)))*) =
ndus (y,z,x), and the following fact and rule are added to
R:

(R4)
(R5)

ndus(y,y,x).
ndus(y,z,x) :- ndus(y,t,x), ndu(t,z,x).
if eis of formeies...en, andf(e;) =

pi (Vi1 ..., Vi, ), thenf(e) = p(vs,ve,vi,...,vi), Where

pis a fresh predicate name, and...,v is the subsequence
of vi1,...vnk, thatare variables and appear anywhere else
in the query except. The following rule is added tdv,
where eaclvy; is a fresh variable.

= p1(Vs,Vyp2,V13,.00,Vikg ),
P2(Vy2,Vy3,V23,..0, V2R, ) s

PV, Vi, V1, Vi)

.

Pn(an,Vt,ani,---,Vnkn) .

if eis of formlocal var,...,var, : e1, andf(e1) =
p1(Vi1,..., V1K, ), thenf(e) = p(v1,...,vk), Wherep is

a fresh predicate name, and,...yv; is the subsequence of
vii,...¥1k, thatare variables and notimry, ..., var,. The
following rule is added tdR:

PV, Vi) i= P Vi1, Vg ) .

e For a pathe of form ovi e; ... ovy, en 0vny1, @ placeholder
vertex with a fresh variable name is inserted for each option
vertex ov; that is not specified. For example, in our running
example, a placeholder vert¢x is inserted at the end of the
query. After this, if eactf (e;) =pi (vi1,...,vix;), thenf(e) =

p(v1,...,vk), Wherep is a fresh predicate name, angd...,vy

are variables and appear anywhere else in the query except

e. Inthis case, the following two rules are addedovhere

vy is a fresh variable:

P(Vi,., VE)

is the subsequence of1,...v,, thatare variables and appear
anywhere else in the query excepThe following rule is added
to R:

= p1(OV1,0V2, Vi3, e, Viky ) s wons
pn(OVn,OVn+1 :aniy---yvnkn) .



For example, if we denote the path expression in the running
querype, thenf(pe) = result(w,x), and the following rule
is added taR:

result(w,x) :- ndus(start,w,x), use(w,u,x). (R6)

e For a path expression, if e is a negation, conjunction or
disjunction of path expressions, then we proceed precely
we did for the negation, conjunction and disjunction cases f
edge paths.

¢ For a query in the formwars, ...,var, : p, we definef(q) =
f(p)7. For the running example, if we denote the querthen
f(q) = result(w,x)?.

(3) Postprocessind?ostprocessing removes unsafe rules. First,
for each atom generated for constraints, we replace the witim
the constraint it was generated for. Then, if any rule in #sult
is unsafe, we perform the following: (i) For each pair of ie¥s
x andy such that there is a fagl(x,y,a1,...,a,), we introduce
a factedge (x,y). Also, for each constant that appears in the
facts as arguments, we introduce a fasy (c). (i) For each rule
whose conclusion has arguments that are not bound by pokitiv
potheses, for each unbound argumenif a is among the first two
arguments of the conclusion (say andaz), we add a hypothesis
edge(a1,a2), otherwise we add a hypothesisy (a) . Finally, we
remove any duplicate hypotheses added. For the runningmgam
rules (R3) and (R4) are modified to obtain the final set of rules
below.

defuse(y,z,x) :- def(y,z,x). (R1)

defuse(y,z,x) :- use(y,z,x). (R2)

ndu(y,z,x) :- edge(y,z), any(x), (R3)
not defuse(y,z,x).

ndus(y,y,x) :- edge(y,z), any(x). (R4)

ndus(y,z,x) :- ndus(y,t,x), ndu(t,z,x). (R5)

result(w,x) :- ndus(start,w,x), use(w,u,x). (R6)

The time complexity of computation using each rule is given i
the left column of Figure 3. The bottleneck is the complefity
(R5),O(V x#ndu); since#ndu is bounded by) (E x #any) based
on (R3), this complexity iSO(V x Ex#any).

Step 2: Recursion conversion and hypothesis permutationThis
step generates different forms of the rules from Step 1 with t
same semantics. It is essential because different formsile$ r
may have drastically different running time and space usdige
demand transformation and specialization in the subsegtegrs.
This step first performs recursion conversion to obtain both

left- and right-recursive forms of recursive rules. Thiesighe
transformations described previously [26]. For exampule (R5),

an alternative rule with the same semantics is:

ndus(y,z,x) :- ndu(y,t,x), ndus(t,z,x). (R5)

This step then permutes hypothesesthat are not constaiméga-
tions in each rule; constraints and negations are placeevately
after all of their arguments are bound. For example(f#®), an al-
ternative rule with a different order of hypotheses is:

result(w,x) :- use(w,u,x), ndus(start,w,x). (R6’)

Finally, a new set of rules is generated for each combinaiifon
different recursive forms of rules and different permutatof hy-
potheses in rules. We avoid unnecessary combinations tivieg
heuristics described below.

1. For a recursively defined predicaieif there is a hypothesis
whose predicate igand its first argumentis a constant, then we

Original rules After demand transformation
(R1) | O(#def) (R1) O(#def)
(R2) | O(#use) (R2) O(#use)
(R3) | O(Ex#any) | (R3d) O(Ex#dem2.2/1)
(R4) | O(Ex#any) | (R4d) O(#dem)
(RB) | O(V x#ndu) | (RBd1) | O(#ndu)
(R5d2) | O(#ndu)
(R6) | O(#use) (R64d) O(#use)

Figure 3. Time complexities for the original rules and the rules
after demand transformation.

only generate the left-recursive form for the recursive thiat
defineg, and respectively if the second argument is a constant,
then we only generate the right-recursive form. These faras
asymptotically better to use, since after demand transftiom,

the chosen recursive form will be asymptotically fastenttize
alternative form.

. Among two permutations in eachrule, if the predicate & oh
the hypotheseh, is a predicate for which facts are given, and
the predicate of the other hypotheaisis a predicate defined
by rules, then we always order the hypotheses sdithé first
andhs is second. This reduces the time complexity, since after
demand transformation, the demand &erwill be stricter.

. If the positive hypotheses of the original rule do not shemy
variables, then we use the given order. This is due to thetfatt
the join of these hypotheses costs the same in either directi
when no variables are shared, so we can ignore the alteznativ
order.

For the running example, there are two choices of recursion
forms, and 16 hypothesis orders for each form. Thus, 32rdiffie
versions exist. Using heuristic 1 above, we obtain only t&fe |
recursive form(R5), not (R5’) since the predicate of the first
hypothesis of(R6) is ndus and its first argument is a constant
(start). Using heuristic 2, we obtain only the reversed hypothesis
order for (R6), i.e., (R6°), sinceuse is a predicate for which facts
are given, anddus is a predicate defined by rules. Using heuristic
3, we use the given orders fgr3) and (R4) since their positive
hypotheses do not share any variables. Therefore, we angithf
only one ordering for each rule.

Step 3: Demand transformation. This step performs, for each
rule set obtained from Step 2, demand transformation. It aav
rules and new hypothesesto original rules so that only fatesant
to answering the query are inferred. This uses a novel tamsi-
tion that achieves the same effect as magic set transfamg],
but is much simpler since the rules generated from graphiegier
are of a particular form. It is the center piece of our method ia
described in detail in the next section.

After demand transformation, we calculate the complexity o
each transformed rule set, and choose the one with the best co
plexity via comparison of the obtained formulas. Comparting
time complexity of two sets of rules is not possible in gehdrat
for all the graph query examples we have encountered, itssipte
to choose one set of rules with the best complexity. In cadgptau
rule sets have non-comparable complexities, the methazbprs
on all rule sets, and the output contains multiple prograitis af-
ferent complexities.

For the running example, the resulting set of rules with thetb
complexity is for the original set of rules but wittké) replaced by
(R6). It contains(R1), (R2), and the following rules; recall that
rules are split into rules with at most two positive hypotesach:



ndu(y,z,x) :- dem2(z,x), edge(y,z), (R3d)
not defuse(y,z,x).
ndus(y,y,x) :- dem(y,y,x). (R4d)
split(y,z,t,x) :- dem(y,z,x), ndu(t,z,x). (R5d1)
ndus(y,z,x) :- split(y,z,t,x), (R5d2)
ndus(y,t,x).
result(w,x) :- use(w,u,x), (R64)
ndus(start,w,x).
dem(start,w,x) :- use(w,u,x). (D1)
dem(y,t,x) :- split(y,z,t,x). (D2)
dem2(z,x) :- dem(y,z,x). (D3)

The time complexity of the resulting rules is given in thehtig
column of Figure 3. It is reduced asymptotically, includishgp-
ping anO(V') factor from (R5), and the reduction of alD (#any)
factors to tighter factors. The bottleneck complexity idueed to
O(Ex#dem2.2/1) from O(V x Ex#any).

Step 4: Specialization. This step applies specialization and deter-
ministic unfolding to the result from Step 3, to remove uressary
predicates, arguments, and rules. Specialization uses@ifsed
version of partial evaluation, as described previously.[26

For specialization, we define a functighthat takes an atom
p(ai,...,ax) asan argument, and retums(vi, ..., v;), wherep ¢
is a fresh name, and,...v; is the subsequence af,...a; that
are variables. For a set of rulég and a queng?, we addq to a
queueQ. For each atona in @, for each rule inR of the formc
:- hi,..., h, suchthatthere existtwo substitutiohandd’ such
thatd(c) = 0'(a), we perform two steps. First, for eath we add
6(h;) to Q. Second, we add the following rule to the output:

0(c) := f(0(h1)), .., f(O(hn)).

We also unfold hypotheses. For each ruleof the form c
:= h;, .., h,, for each hypothesis;, if there is only one rule
of the form ¢’ :- h’ for which there is a substitutiod such
that 6(h;) = c’, we replaceh; in r with 6(h’). Unfolding a
hypothesis whose predicate is defined by more than one rie ma
decrease space, butincrease time by a constant factoitbssize

(Rs)

tive, it (i) reduces the space used by the computation by vérgo
arguments of predicates that are guaranteed to be congtames
duces the time by a constant factor, and (iii) makes thetiagudet
of rules smaller and simpler.

Step 5: Program generation. This step generates efficient imple-
mentations with specialized data structures for the setle§rfrom
Step 4. This uses the method by Liu and Stoller [20]. It guizes
that the generated implementation has the analyzed coityplear
the running example, the generated program in Python isid&4, |
and the generated program in C++ is 3534 lines.

We have shown that the application of the above five steps, and
the order in which they are applied are crucial in obtainifiigient
implementations for graph queries. After obtaining a s@athlog
rules, and a query whose set of answers are equivalent tadpé g
query, we use Datalog optimizations to asymptotically cedthe
complexity of the resulting rules, and finally generate ditieht
implementation of the optimized rules.

5. Demand transformation

Not all facts are needed for answering a query. Top-dowrueval
tion does a query-driven, left-to-right evaluation of thées, avoid-
ing inferring facts not needed in this process for answetireg
query. Demand transformation transforms a set of rules ajueey
into a new set of rules, such that all the facts that can berade
from the new set of rules contain only facts that would berneig
in a top-down evaluation of the original rules. It adds nelesuhat
define needed facts for each hypothesis in each rule, andngdds
potheses to the original rules to restrict computation ferionly
needed facts.

Given a setR of rules and a query?, we first create a dummy
rulex :- q. with afresh predicate, and add this rule to a workset
W of needed rules. We take rules oufdf, one at a time, to process
until it is empty. For ruler, from W, of the formc :- h;, hs,
..., hp, we do the two steps below for each hypothasis

Step 1determines needed facts foy. If some arguments aof;
are constants or are variables that occur also to the left of r,

of the rules become larger. We compare the performance of two then we denote them ,...ax, and add the following rule to the set

unfolding strategies in the experiments section. A denia®eds to
be made for when to stop unfolding. We choose to stop unfgldin
at each recursive predicate, and we only unfold hypothdsss t
are defined by one rule, because it guarantees improvenents i
both time and space. This unfolding scheme is called detéstia
unfolding [16].

This step does not reduce the asymptotic complexity, but re-
duces both running time and space by constant factors. Eouth
ning example, the resulting rules at1), (R2), and the follow-

ing:

ndu(y,z,x) :- dem_s(z,x), edge(y,z), (R3ds)
not defuse(y,z,x).
ndus_s(start,x) :- dem_s(start,x). (R4ds)

dem_s(z,x), ndu(t,z,x). (R5dls)
split_s(z,t,x), (R5d2s)
ndus_s(t,x).

use(w,u,x), ndus_s(w,x) . (R6ds)
use(w,u,x). (D1s)
split_s(z,t,x). (D2s)

split_s(z,t,x) :-
ndus_s(z,x) :-

result(w,x) :-
dem_s(w,x) :-—
dem_s(t,x) :-

This step removes the predicaten2 and rule(D3) that defines it;
the first argument of predicatem in rules (R4d), (R5d1), (D1),
and (D2); the first argument of predicatplit in rules (R5d2)
and(D2); and the first argument of predicatéus in rules (R4d),
(R5d2),and (R6d).

Specialization applied after demand transformation doms n
change the asymptotic time complexity. However, when iffisce

of resulting rules:

demandy, (ai,...,ar) :— hi, ha, ..., hi—1. (D*)

wheredemandy,; is a fresh predicate.

Step 2restricts computation using rules that define the predicate
of h;. For each rule”’ in R of the formc’ :- h’y, ..., h’y,if
there is a substitutiofisuch tha#(h;) = c’, we create a new rule
(Rd) as follows:

¢’ :- 0O(demandp,(v1,...,vk)), h’1, ... , h’,. (Rd)

Then, we remove, from(Rd), eachh’; such that its predicate

is edge or any, and all of its variable arguments appear in
f(demandy, (v1,...,vx) ). These hypotheses can be removed since
they are now bound by the new hypothesis, and safety is peder
by that hypothesis. We adkd) to the output andiV’.

For the running example, the queryrissult (w,x) 7. For rule
(R6), step 1 adds the ruléd1), shown below, and step 2 inserts a
first hypothesis in(R5) to obtain(R6d) below, which is then split
into rules(R5d1) and (R5d2) as shown before:

(D1)
(R5d)

:— use(w,u,x).
:— dem(y,z,x), ndus(y,t,x),
ndu(t,z,x).

dem(start,w,x)
ndus(y,z,x)

Demand transformation is akin to several transformatitmes,
most well-known being magic set transformation (MST) [4g-D
mand transformation differs from MST by the absence of amnot
tions for given predicates. Demand transformation doesys



preserve stratification of negation, and methods are pexpXl]
to always yield stratified rules. In the following theorerre show
that for rules generated for graph queries, the rules obtaaiter
demand transformation contain only stratified negation.

Theorem 1. Let R andq be the set of rules and query obtained
from a graph query as described, and Bt be the set of rules
obtained after demand transformation Bfwith respect tq;. Both

R and R’ contain only stratified negation.

Proof. For a rule generated from an expressidn a graph query,

if the rule has a negated hypothesis, the negated predéefets to

a predicate for a subexpressioreptherefore the negation is strat-
ified for all rules inR. In R’, we add positive demand hypotheses
to rules, and rules that define the predicates of demand hgpes.
The added hypotheses cannot violate stratification sineg dne
positive. The rules that define the demand predicates omtago
positive hypotheses, since the last hypothesis of a rulaataap-
pear as the hypothesis of those rules, and a negated hyjzathes
always the last hypothesis of a rule if it exists. Thereftire,added
rules inR’ cannot violate stratification. |

There are two reasons for demand transformation’s suceess i
reducing asymptotic complexity for graph queries. Focysim
our examples for program analysis, first, most queries fogyam
analyses start from the entry point of the program, whichdsrm
stant. Other constants occasionally occur in edge labejaénmies.
Having constant vertices significantly reduces the conifylef
transitive closure after demand transformation is appeatondly,
edge andany hypotheses are usually removed after demand trans-
formation, since demand hypotheses usually bind the argteoé
those hypotheses. The effect depends heavily on the forecaf+
sion and order of hypotheses.

Note that specialization may be applied without applying de
mand transformation first. There are cases when demanddrans
mation without specialization obtains better asymptotimplex-
ity than specialization without demand transformationweeer, if
specialization alone provides the same complexity as ddnans-
formation, then it is more preferable to obtain the set césiffom
specialization since the rules become simpler and smatieyur
running example, applying specialization directly @®5) would
yield (R6d1s) and (R5d2s), but demand transformation and spe-
cialization applied in order also yields the same rules.

Theorem 2 shows that when specialization yields rules whigh t
same complexity as demand transformation, demand tranafor
tion and specialization applied in sequence yields the ssehef
rules as only applying specialization.

We say that a set of ruleBs obtained by specializindg is
simplerthan R if there is a predicat® such that for every rule
r that defineg in R, its counterparts ilkRs have fewer variables in
arguments than. We say that a set of ruldg is in no-copy normal
form, if there is no rule inR with only one hypothesis such that the
argument list of the conclusion is a permutation of the arguintist
of the hypothesis.

Theorem 2. For any specialization methofl, if S obtains a set
of rulesRs that is simpler than the original set of ruld®, and is

in no-copy normal form, then there is a form of recursion and a
ordering of hypotheses &, sayR’, such that demand transforma-
tion, S, and unfolding applied in sequence®) producesRs.

Proof. If Rg is simpler thanR, then there is a constantin R
that is propagated to a rube by S to specializer by removing
an argumenb. This means that always takes the valuein r
due to the hypotheses that refer to it. Therefore, there mma f
of recursion and an ordering of hypothesisiifsay R’, such that
demand transformation will add a demand hypothesis thatshin

in r, due to its assignment to at the hypotheses referring to it,
and the rule that defines that demand predicate will reflextt:th
takes the value. When S is applied to the rules obtained after
demand transformation tB’, and unfolding is performed, the rule
that defines the demand predicate is unfolded, and then thimetd
constant from unfolding is propagated, and unnecessastants
and rules are eliminated. As a result, demand transforma$ip
and unfolding applied in sequencef® producesks. a

6. Experiments

We have implemented the method described in Python. As tak fin
output of our method, the implementation emits both Pytradec
and Patton [23] code that is transformed automatically te €ade

by Patton, which is finally compiled by GCC.

We show the results of experiments using the running example
on the control-flow graphs of six benchmark programs of vayyi
size written in Python. The prograrakunk, bdb, tarfileandpickle
are from the Python libraryortranis a Fortran2003 implementa-
tion; RBACis an implementation of an RBAC (Role Based Access
Control) standard. In some figures, we omit one of the program
avoid label overlapping. The experiments were conductea 0
GHz Intel Q9650 with 4 GB of memory, running SuSE Linux, and
using Python 2.6.1 and GCC 4.3.3.

Running time and memory usage of the generated implementa-
tions. We have shown via automatic complexity analysis that the
rules obtained after Step 1 in Section 4 are asymptoticatlyses
than the final set of rules. The implementation of those ratdg
completes the smallest benchmark in 9.2 seconds, and caomet
plete the rest of the benchmarks in less than 10 minutes.

The complexity of the set of rules obtained after the tramsés
tions isO(E x#dem2.2/1). A systematic manual analysis of the
rules reveals thatdem2.2/1 is bounded by the number of vari-
ables in scope at a program point, since the first argumeti«af2
is a program point, and the second argument only takes the var
ables that can reach that program point via edges. We coahpute
the average number of variables in scopedt each point using
static analysis for each program, and the line with plus markn
Figure 4 shows the running times of set of rules with respect t
E x s. The resulting plot is almost linear as expected; we thiak th
the deviations from linearity are due to the fact that thechemarks
do not exhibit worst-case time complexity.

Specialization after demand transformation reduces nghni
time and memory usage by a constant factor, and the decision f
when to stop unfolding affects the running time and memoages
In Figures 4 and 5ynfolding 1denotes only unfolding predicates
defined by one rule, ananfolding 2denotes unfolding predicates
defined by possibly multiple rules with only one hypothesis.

Figure 4 shows the running time of the set of rules at differen
implementation stages. Unfolding 1 has the best running;tiimce
it avoids duplicate inference for predicates defined by onlyrule.

On average, compared to the rules after demand transfamati
specialization with unfolding 1 reduces running time by 17%

Figure 5 shows the memory usage of the implementations-at dif
ferent implementation stages. We obtain the memory usagerof
erated Python implementations, since memory profiling fahén
is very precise using HeahyAs expected, all steps show a constant
decrease in memory usage, and unfolding 2 uses the least mem-
ory, since it removes the most rules. On average, comparéxto
rules after demand transformation, specialization witfolding 2
reduces memory usage by 26%.

Comparison with state-of-the-art top-down and bottom-up ys-
tems. We have shown that recursion conversion and hypothesis

1 Available at http://guppy-pe.sourceforge.net
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Figure 5. Memory usage of the implementation of rules in Python
at different implementation stages.

permutation are important steps before demand transfamand
specialization are applied for bottom-up computation sTi&ialso
true for top-down systems. A prominent top-down evaluaton
gine with tabling is XSB [24]. There is no known systematialyn
sis to find the best combination of form of recursion and higpsis
order for top-down evaluation in the literature, and we comdid
this by consulting the main developer of XSB [30].

We generated all recursion forms and hypothesis permatatio
for the running example, and manually ran and timed all bench
marks for all combinations in XSB. In general, the numbenafts
combinations is exponential in program size. Among 32 [iessi
combinations for our running example, 16 versions do notgleta
the benchmarks in less than 10 minutes, and all versionsavers
than our generated code in C++. Note that our code gene@®rs
implemented for proof-of-concept, and they are not optidifor
constants in contrast to the effort put into the developnoéra
mature system like XSB. Figure 6 shows the running time of our
generated code, the running time of the rules and query gtter

in Step 1 of Section 4 in XSB, and the running time of the malgual
found best version for XSB.

A bottom-up evaluation engine that has been used to solge lar
problems is bddbddb [15]. bddbddb does not employ any trans-
formations for efficiency, but employs binary decision dags
(BDDs) to store and manipulate the relations. It does notigeo
any complexity guarantees for a set of Datalog rules. We woied
experiments on bddbddb using both the original set of rueeg
ated, and the rules yielded by our combination of transftiona.

As expected, bddbddb shows asymptotically worse behawior o
the original set of rules. On the final set of rules, we obsthat
the performance of bddbddb is highly dependenton the skewgra
tions provided, especially the ordering of variables in BizDs.

We used the provided option of using machine learning to-auto
matically find the best variable order, and also manualbdtrll

13 variable orderings possible. There is a large discrepaee
tween the results, using the worst variable ordering is ptimes
slower, and using the automated variable ordering is uBttirhes
slower than the manually obtained best result. The runnimgs
are shown in Figure 6.

Our experiments show that despite the large amount of effort
spentto find the version of rules for minimum running time IBEX
and bddbddb, the code automatically generated by our catibin
of transformations outperforms these systems. For all pkssn
we have encountered, our method succeeds in finding theowersi
of rules with the best complexity among all versions in ldsmt
a second. The complexity analysis provided by our method is
confirmed by the actual running times, whereas such analysis
not available in the state-of-the-art systems compared.

7. Related work and conclusion

The design and implementation of graph query languageséor p
gram analysis has been studied extensively. These inchmle |
guages for both static analysis and runtime monitoring. Stbdy

of programs as relational data has been first proposed by Lin-
ton [17] with a language called QUEL. However, early query-la
guages such as QUEL did not allow recursion and showed poor
performance due to lack of optimization. Several other leggs
such as JQuery [29] and ASTLOG [9] have demonstrated better
performance, but they lack support for specifying path progs

in forms of regular expressions with parameters. We compare
work with several languages and implementations below.

Manual implementations. One of the most popular program
analysis tools is FindBugs [12], which is used to find bugsaive]
programs. FindBugs only supports the specification of buigpes

via manual implementations. However, the 355 differenesy/pf
bugs that can be found by the tool are well-documented, ahafou
the 17 common bugs described, we can express 16 of them in the
language we use. The only one that cannot be expressed ibtigr a
that involves counting the number of occurrences of an esigeh
aggregation operators are currently missing in the queryuage

we use. Integrating the language we use and our method intd a t
such as FindBugs would make it easier to add new analyses to th
tool. Such analyses could then be clearly specified, andficeat
implementation can be automatically provided by our method

Path queries. Regular path queries have been used in program
analysis, e.g. in [10]. Parametric regular path querie§ gre
regular-expression-like queries that allow the use of petars,
but do not support vertices and local parameters. Theretbee
language of parametric regular path queries is a strict etutfs
the query language proposed in [19] and used in this paper. Th
language we use also strictly contains Condate [28]. Theyque
language of Blast [5] is also a path query language for soéwa
verification, however it operates only on a particular kifidi@aph



Our method XSB bddbddb
Programs | # of facts Python | C++ | Generated| Manual | Generated| Manual

chunk 367 57 12 36098 47 18354 454

bdb 926 664 110 - 215 145240 1027
RBAC 4701 2289 384 - 702 - 2296
Fortran 2890 2795 454 - 765 - 630
pickle 3201 4673 784 - 968 - 2477
tarfile 4300 10136 | 1724 - 3151 - 4416

Figure 6. Running time in milliseconds of implementations generdtgdur method, of the generated rules in XSB, and of the ménual
found best version of these rules in XSB, and similarly fodlbddb. - denotes incompletion in 10 minutes.

generated from the program, whereas the language we use camanguage to effectively describe different program aredy§?) the

work with different graphs generated from the same program.

More powerful languages. PQL [14] is a more powerful program
query language and is also transformed into Datalog rulev-Ho
ever, its implementation does not perform rule transfoionatas
we do in this paper, or provide complexity guarantees. Thelte
ing Datalog rules from a PQL query are evaluated using bdolfaid
BDD-based implementation of Datalog. However, as showreitr S
tion 6, transformations affect the running time of the résglrules
significantly, and the BDD-based implementation of Datalogs
not provide any complexity bounds and shows irregular bieinav

PQL is more powerful in the sense that it allows arbitraryrgue
declarations which are Datalog-like, rather than only grexpres-
sions. It is less expressive in the sense that it does nat alibi-
trary variables on vertices for return or reuse. Since Datalles
are generated from PQL, our combination of transformatfons
Datalog can be used in conjunction to provide better complex
ity with precise complexity guarantees. This also applesys-
tems that use Datalog directly to query source code such ds-Co
Quest[11]. Additionally, since our implementation firgtnisforms
graph queries into Datalog, we can easily add support foalDgt
in the graph query language too.

Transformations for Datalog rules. Many transformations for
Datalog rules have been studied for efficient implemematie
employ a bottom-up implementation strategy for obtainimget
complexity guarantees as described in [20]. In contrasbton-
up, top-down strategies have the advantage of being driyeheb
demand in the query, but do not provide complexity guaramtee
For bottom-up implementations, demand driven computatem
be mimicked by the magic-set transformation [4]. Our demand
transformation has the same effect.

Specialization of rules [16] may also help reduce time caxypl
ity of rules. However, the effectiveness of demand tramsé&dion
and specialization highly depends on the type of recursiotné
rules. The effectiveness of demand transformation alsermi#pon
the ordering of hypotheses. Hristova [13] gives a detailedhod
for obtaining hypotheses orders that yield efficient imperta-
tions, and provides several applications of the method. é¥ew
it does not perform recursion conversion or specializati®stud-
ied in [22, 26]. Tekle et al. [26] combines recursion conigrs
and specialization for optimization, but does not emplogndad
transformation, and therefore can be ineffective when igpza-
tion alone is not sufficient. We use recursion conversiopotiyesis
permutation, demand transformation, specialization, @nodram
generation in order, to obtain both asymptotic speedupsedute
memory usage and running times by constant factors.

Conclusion and future work. The graph query language demon-
strated with applications in this paper allows many quetdebe
written much more easily and clearly than in Datalog. Thihiswn
in the running example, where a simple query correspondswto s
eral Datalog rules. Our work is novel in (1) the use of a grajéry

combination of transformations that optimizes the runnimg of
the query, and automatically generates implementatiotis time
complexity guarantees.

We have experimentally shown that the code generated by our
method adheres to the calculated complexities, and owotpesf
state-of-the-art Datalog evaluation engines — XSB [24]pp-t
down evaluation engine, and bddbddb [15], a bottom-up exialo
engine that employs BDDs — even after significant manuateffo
to find the rules with the minimum running time for these eregin
Therefore, using the graph query language in conjunctidim edr
combination of transformations is a powerful tool for clgapec-
ifying program analysis problems, and obtaining efficienple-
mentations with precise complexity guarantees.

Future work includes further use of the graph query language
and the implementation method for security and provenappk-a
cations, and possible extensions of the language.
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