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Abstract 

Data management is growing in complexity as large-scale applications take advantage of the loosely 

coupled resources brought together by grid middleware and by abundant storage capacity. Metadata 

describing the data products used in and generated by these applications is essential to disambiguate the 

data and enable reuse. Data provenance, one kind of metadata, pertains to the derivation history of a data 

product starting from its original sources. 

The provenance of data products generated by complex transformations such as workflows is of 

considerable value to scientists. From it, one can ascertain the quality of the data based on its ancestral 

data and derivations, track back sources of errors, allow automated re-enactment of derivations to update 

a data, and provide attribution of data sources. Provenance is also essential to the business domain where 

it can be used to drill down to the source of data in a data warehouse, track the creation of intellectual 

property, and provide an audit trail for regulatory purposes. 

In this paper we create a taxonomy of data provenance techniques, and apply the classification to current 

research efforts in the field. The main aspect of our taxonomy categorizes provenance systems based on 

why they record provenance, what they describe, how they represent and store provenance, and ways to 

disseminate it. Our synthesis can help those building scientific and business metadata-management 

systems to understand existing provenance system designs. The survey culminates with an identification 

of open research problems in the field. 

1 Introduction 

The growing number and size of computational and data resources coupled with uniform access 

mechanisms provided by a common Grid middleware stack is allowing scientists to perform advanced 

scientific tasks in collaboratory environments. Large collaboratory scientific projects such as the Large 

Hadron Collider [1] and Sloan Digital Sky Survey (SDSS) [2] generate terabytes of data whose 

complexity is managed by data grids. This data deluge mandates the need for rich and descriptive 

metadata to accompany the data in order to understand it and reuse it across partner organizations. 

Business users too are having to work with data from third-parties and from across the enterprise that are 

aggregated within a data warehouse. Dash-boarding tools that help analysts with forecasting and trend 

prediction operate on these  data silos and it is essential for these data mining tasks to have metadata 

describing the data properties [3]. Provenance is one kind of metadata which tracks the steps by which the 

data was derived and can provide significant value addition in such data intensive scenarios.  

Provenance (also referred to as lineage, pedigree, parentage, genealogy, and filiation) can been described 

in various terms depending on where it is being applied. Buneman et al [4] define data provenance in the 

context of database systems as the description of the origins of data and the process by which it arrived at 

the database. Lanter [5] refers to lineage of derived products in geographic information systems (GIS) as 

information that describes materials and transformations applied to derive the data. Provenance can be 

associated not just with data products, but with the process(es) that enabled the creation of the data as 

well. Greenwood et al [6] expand Lanter’s definition of provenance and view it as metadata recording the 

process of experiment workflows, annotations, and notes about experiments. For the purposes of this 

paper, we define data provenance to be information that helps determine the derivation history of a data 

product, starting from its original sources. We use the term data product or dataset to refer to data in any 

form, such as files, tables, and virtual collections. The two important features of the provenance of a data 
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product are the ancestral data product(s) from which this data product evolved, and the process of 

transformation of these ancestral data product(s), possibly through workflows, that helped derive this data 

product. 

In this paper, we provide a detailed view of current data provenance research in the scientific and business 

domains. Based on a survey of the literature on provenance, we develop a taxonomy of provenance 

techniques to assist us in analyzing and comparing efforts in this sphere at the conceptual level. 

Subsequently, we apply this systematic to contrast nine key provenance systems and concepts that have 

been proposed or are under active research. We present some early publications that have laid the 

foundation for provenance and provide a historical context for approaching the problem. But a significant 

portion of the survey is devoted to current challenges that are driving research in this field. Our synthesis 

can help those managing scientific and business metadata to understand existing provenance system 

designs and incorporate provenance into their data processing framework. We conclude with a discussion 

of open research problems and challenges to managing provenance. 

While data provenance has been gaining interest in the recent past due to unique desiderata introduced by 

distributed data in Grids, few sources are available in the literature that compare across approaches. Bose 

et al [7] survey lineage retrieval systems, workflow systems, and collaborative environments, with the 

goal of proposing a meta-model for a systems architecture for lineage retrieval. Our taxonomy based on 

usage, subject, representation, storage, and dissemination more fully captures the unique characteristics of 

these systems. Miles et al [8] study use cases for recording provenance in e-science experiments for the 

purposes of defining the technical requirements for a provenance architecture. We prescribe no particular 

model but instead discuss extant models for lineage management that can guide future provenance 

management systems. Two recent workshops on data provenance, derivation, and annotation [9, 10] 

brought forth positions papers on current research in this subject. Some online bibliographies on 

provenance also exist [11, 12].  

This survey is structured as follows. In section 2, we provide background information that motivate the 

need for provenance, and discuss data processing frameworks in which provenance plays a role. In 

section 3, we present the provenance taxonomy we developed drawn from the papers we surveyed. We 

apply this taxonomy in section 4 to compare and contrast nine projects that taken together give a 

comprehensive overview of research in this field. In section 5, we identify open research problems and 

challenge in the field and conclude with a summary of our survey in section 6. 

2 Background 

2.1 Motivating Domains for Provenance 

Provenance finds its use in academic and research organizations, as well as in business establishments, 

but the data organization is different in both these domains. In the following sub-sections, we motivate the 

necessity of provenance for these application domains, and bring out the differences in the way 

provenance is collected and used in them. 

2.1.1 Scientific Domain 

Data used in the scientific field can be ad hoc and driven by individual researchers or small scientific 

communities. However, the scientific field is moving towards more collaborative research and 

organizational boundaries are beginning to disappear in the face of dynamically created Virtual 

Organizations (VO) [13]. Sharing data and metadata across organizations is essential in such a 

collaborative environment, leading to a convergence on common schemes to ensure compatibility. 

Despite this, scientists consistently deal with greater heterogeneity in data and metadata than business 

users. Issues of trust, quality, and copyright of data are significant when using third-party data in such a 

loosely connected network, and provenance metadata can address some of these concerns. 

Scientific domains use provenance in different forms and for various purposes. Scientific publications are 

a common form of representing the provenance of experimental data and results. Increasingly, Digital 
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Object Identifiers (DOIs) [14] are used to cite these data used in experiments so that the papers can relate 

the experimental process and analysis – which form the data’s lineage – to the actual data used and 

produced. Some scientific fields find it valuable to go beyond this and store lineage information in a 

machine accessible and understandable form so that the experimental methods may be validated more 

easily.  

GIS standards suggest that metadata about quality of datasets should include a description of the lineage 

of the data product [15]. The Spatial Data Transfer Standard (SDTS) [16] specifies that lineage should 

contain, among others, a description of the source material from which the data was derived, the 

transformations used to derive it, references to the control information (such as permanent geodetic 

reference points [17]) used, and mathematical transformations of coordinates used. Recording lineage 

helps the user of the data product to decide if the data meets the requirements of their application [18]. 

Materials engineers choose materials for the design of critical components, such as for an airplane, based 

on the statistical analysis of test data provided on the material [19]. It is critical to establish the pedigree 

of this data since bad data can have disastrous consequences during manufacturing and in the product’s 

performance. It can also help to locate sources of faulty components in case a system fails at a later stage. 

Presence of transformation history promotes the sharing of biological and biomedical data in life sciences 

research [20, 21]. Provenance of the data provides such information and, analogous to citations in 

publications, serves to acknowledge its author. Provenance gives a context in which to use the data, and 

allows automated validation and revision of derived data when the base data is updated. Knowledge of 

provenance is also relevant from the perspective of regulatory mechanisms to protect intellectual 

property. For example, the United Nations Environment Program is proposing a provenance certificate for 

genetically modified biological resources to protect the genetic resources of countries from being 

exploited [22].  

Astronomical sky surveys, such as the Palomar Digital Sky Survey (DPODSS) [23] and Sloan Digital Sky 

Survey (SDSS) project [24] make uniform astronomical data available publicly through online digital 

archives. This allows astronomers to run their mining algorithms and visualization tools on these 

federated datasets and publish their validated results [25]. In such a collective effort that uses data 

integrated from third-party sources, recording the provenance of the results can help astronomers estimate 

the trust placed in them [24]. 

With a growing number of datasets available in the public domain beyond the confines of a single 

organization, it has become increasingly important to determine the veracity and quality of these datasets. 

The above examples support this view. It does not suffice to have an abstract notion that a dataset is from 

a reliable source, but this has to be backed by a detailed history of the data that will allow the user to 

apply their own metrics to determine if the data is acceptable. Lineage information about the data can 

provide semantic meaning to it and help integrate it within the local data processing framework of the 

scientist. Identifying the source of the data also helps to credit the creator of the data. 

2.1.2 Business Domain 

Business users traditionally work with an organized data schema, where the structure and semantics of the 

data in use is shared across the corporation [26]. Even business-to-business (B2B) data communication 

relies on clearly established schemes for data interchange [27] and usually with trusted partners. These 

factors contrast with the scientific domain and make it easier for businesses to trust the data source. Yet, a 

large proportion of businesses deal with bad quality data, and this is accentuated when they are 

aggregated from different parts of the enterprise into a data warehouse [28]. Sources of bad data need to 

be identified and corrected to maintain the data quality and avoid costly errors in business forecasting.  

Data warehouses provide an integrated view across historical data from multiple sources while retaining 

the depth of the data and summarized information on it [29]. Analysts use business intelligence and 

business analytics tools to mine this data and assist in decision-making. A process of extracting, 
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cleansing, and transformation steps are applied to data from multiple operational databases and external 

sources to identity relevant information and normalize their representation before being loaded into the 

warehouse [30, 31]. This consolidated view in the data warehouse is updated frequently to reflect the 

changes in the source databases, and maintain its consistency and timeliness [32]. 

In a warehouse environment, lineage information is used to trace the data in the warehouse view back to 

the source from which it was generated [33]. This can be challenging given that the warehouse data is 

built upon layers of data views, with one layer derived from data in layers below it [34]. Lineage aids the 

data analyst in “drilling through” to the source of a particular data item in the view and explore additional 

characteristics of the data source not available in the data warehouse [35, 36]. Additionally, it helps to 

trace faulty data back to the source of errors in order to apply the relevant correction to it [37]. From a 

database theory perspective, this operation is similar to the view deletion problem [38] which involves 

locating the source data which should be modify in order to delete data appearing in a view. 

2.2 Data Processing Architectures 

Provenance information for a data product is centered on two concepts: the ancestral data products and 

the transformations that they underwent to produce that data. It is convenient to conceptualize the data 

products and transformations in the form of a graph (more specifically, a directed acyclic graph or DAG), 

with nodes representing the data products and the edges the transformation processes1. Data processing 

architecture refers to the means by which these processes execute, consume data products, and bring 

about the transformation of the data. Bose et al [7] use data processing system as a means to categorize 

lineage retrieval systems. We consider the architecture used for data processing as more of an 

implementation artifact independent of our provenance taxonomy, but do describe some of the distinctive 

ways in which provenance is collected in them. 

2.2.1 Service-oriented Architecture 

Computational Grids are powerful platforms that help teams of researchers to collaborate and solve 

challenging problems on widely distributed resources in a relatively seamless manner [39]. Grid 

frameworks provide service and component based programming models for building applications that run 

on the Grid [40]. Web services and Grid computing together provide a service-oriented platform for data 

processing that is popular with the scientific community. 

A service-oriented architecture usually allows a transformation graph, such as a DAG described earlier, to 

be specified in the form of a workflow document written in languages like WSFL [41] or BPEL [42]. The 

transformation processes are modeled as web or Grid services and the data products are the inputs and 

outputs to these services (Figure 1). The provenance for datasets involved in the workflow can be 

determined by tracing the execution of the workflow and identifying the input and output data products to 

each service by means of logical or physical IDs. These traces can be automatically generated by the 

workflow engine and later annotated by the users to provide additional metadata on the data product. 

Static information available about the workflow can be combined with the runtime details to form the 

provenance, though this may not be possible in the case of dynamic workflows that are programmed to 

adapt with current external conditions [43]. If the workflow trace is not collected by the workflow engine, 

the distributed nature of services puts the onus on each service provider and client to generate a log of 

their invocation that is aggregated to form the provenance trace for the workflow. This requires agreement 

on some standard way to record and share the provenance [44]. The lineage techniques of Chimera [45], 

myGrid [46], CMCS [47], and PASOA [44] presented in this survey use a service-oriented architecture. 

 

 

                                                      

1 Alternatively, we can also conceptualize the data products as vertices in the DAG with processes being the edges. 

The two are inverse representations of the same information. 
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2.2.2 Database Architecture 

In a database architecture, update queries and functions form the data processing component that 

transform the data. A data product in a relational database can be a view, a table, a tuple, an attribute, or a 

data item of even finer granularity in the database. It can also be a pointer to an external data resource 

such as a file [48]. In this architecture, a data product’s lineage can be traced back through a series of 

functions and update query requests. 

Data warehouses are an archetype for a data processing system using databases and benefit from tracking 

lineage as discussed in section 2.1.2. Warehouses import data through extraction, cleansing, and 

transformation steps modeled as queries over multiple data sources. In addition to the typical relational 

operators like select, project, and join, these queries can invoke user-defined functions that are 

implemented as stored procedure calls. From this rich capability, one can construct intricate dataflow 

graphs that are executed by the database as part of the query (Figure 2). This gives a capability analogous 

to workflows in the service-oriented architecture. The lineage of query results in a database can be 

denoted using annotations on attributes in the databases [49]. These lineage annotations encode 

information about the data source and the query that created them [50]. Databases can also use query 

inversion and function inversion techniques to trace the lineage from a data item back to its source [4, 51]. 

These annotation and inversion techniques are discussed further in section 3.3.1. 

Not all queries and user-defined functions are capable of being inverted, and this restricts the usefulness 

and accuracy of the provenance. Databases are also more rigid when it comes to adding ad hoc 

annotations to data. There may also be problems when tracing lineage of externally linked data sources, 

such as files, that are processed outside the database, and the lineage chain may disconnect at this 

boundary [48]. Federated databases pose additional challenges for tracking provenance due to the source 

transparency they provide over heterogeneous data [52]. Lineage for these heterogeneous data source will 

be disparate and there should be a way of making lineage for them also transparent. The lineage 

techniques of Tioga [53], P. Buneman [4], and Trio [54] presented in this survey use a database 

architecture. 

2.2.3 Other Data Processing Architectures 

In addition to service-oriented and database architectures, command processing architectures and script- 

based architectures are also used, though less frequently [7]. Users in a command-processing model 

interact with the data processing system through commands entered in a shell interface or batch executed 

from files. These commands can perform transformations on data products managed by the data 

management subsystem. The shell interface usually has a provision to log the commands that are executed 

along with their associated inputs and outputs to enable debugging [55]. Lineage information can be 

collected from these log files analogous to the workflow trace in the workflow architecture, with 

additional metadata explicitly provided by the user. This provenance metadata may be stored in the data 

management subsystem along with the data products. Command processing systems are not in common 

use but their relevance to this survey lies in that early investigations into data lineage were performed by 

D. P. Lanter [55] on such command systems for use in GIS. 

Scripting architecture is more contemporary and is popularly used by the scientific community to execute 

their processing applications. They provide a modular programming model, and are easy to learn and use. 

Scripting environments, such as Matlab, Jython, and Perl, provide powerful libraries to enable advanced 

tasks such as interacting with databases [56], and composing and invoking web services workflows [57]. 

Inputs and outputs to scripts are through command-line parameters or loaded from an input list file 

containing the arguments to the script. A “workflow” script or a separate workflow application can invoke 

various scripts in succession to perform complex scientific experiments. Data flow between scripts is 

accomplished by passing references to datasets files as part of the script parameter or by embedding the 

dataset location within the code. Scripts use internal commands or external libraries to log their execution, 

and this may be extended to generate lineage information about data products used and created within the 
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scripting framework. Special libraries can be used to construct provenance metadata [58] and the logs 

from individual scripts in the workflow amalgamated to construct the lineage for the data products 

participating in the workflow. The onus is on the script-writer to provide the metadata about its activity 

that will go towards determining the provenance of the datasets. Application frameworks that retain the 

flexibility of scripting while providing automated recording of provenance during their execution would 

ease the burden on the script-writer. The lineage techniques of ESSW [58] presented in this survey use a 

service-oriented architecture. 

3 Taxonomy of Provenance Techniques 

Different approaches have been taken to support data provenance requirements for individual domains. In 

this section, we present a taxonomy of these techniques from a conceptual level with brief discussions on 

their pros and cons. A summary of the taxonomy is given in Figure 3. Each of the five main headings is 

discussed in turn. 

3.1 Application of Provenance 

Provenance systems may be constructed to support a number of uses [59, 60], and Goble [61] summarizes 

several applications of provenance information as follows: 

• Data Quality: Lineage can be used to estimate data quality and data reliability based on the source 

data and transformations [20]. It can also provide proof statements on data derivation [62]. 

• Audit Trail: Provenance can be used to trace the audit trail of data [63], determine resource usage [6], 

and detect errors in data generation  [37]. 

• Replication Recipes: Detailed provenance information can allow repetition of data derivation, help 

maintain its currency [63], and be a recipe for replication [64]. 

• Attribution: Pedigree can establish the copyright and ownership of data, enable its citation [20], and 

determine liability in case of erroneous data. 

• Informational: A generic use of lineage is to query based on lineage metadata for data discovery. It 

can also be browsed to provide a context to interpret data. 

We expand on and more clearly define these applications below for the purposes of our classification. 

3.1.1 Data Quality 

Provenance about a dataset enables its user to evaluate its quality for their application. Data quality of 

source data is important since errors introduced by faulty data tend to inflate as they propagate to data 

derived from them [65]. This issue is even more acute when using data available off public archives, as is 

common in genomics [20, 66]. The level of detail included in the provenance determines the extent to 

which the quality of the data can be estimated. Rudimentary lineage metadata about the data, such as the 

transformation applied to create it or the source of its parent data, can assist the data user in establishing 

the authenticity of the data and avoid spurious sources. If certified semantic knowledge of the pedigree is 

available, it is possible to automatically evaluate it based on quality metrics that are defined and provide a 

quality score using modeling techniques [65, 67, 68]. 

3.1.2 Audit Trail 

Provenance can serve as a means to audit the data and the process by which it was produced. Such 

information can be important when establishing patents on drug discovery or for accounting purposes for 

businesses [8, 69]. This can also be used to optimize the derivation process [45], and collect statistics to 

account for resource usage [6]. Lineage in the form of a runtime trace of execution can help in verifying if 

any exceptions took place in data creation. A recurrent use of provenance is to backtrack and locate the 

source data or process that is the cause of errors found in derived data and apply relevant corrections [37]. 

3.1.3 Replication Recipes 
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Provenance information includes the steps used to derive a particular dataset and can be thought of as a 

recipe for creating that data [64]. If the provenance contains sufficient detail on the operations, data 

sources, and parameters, it may be possible to repeat the derivation. Repeatability entails the availability 

of similar resources as was available when the original data was created. The derivation may be repeated 

to maintain the currency of derived data when then source data changes or if the processing modules were 

modified. Such a re-enactment can be controlled to repeat just those sections affected by the change in 

base data or process [8]. This is similar to the view maintenance problem is databases where database 

views derived from underlying source tables and views need to be updated when the source tuples change 

[4, 70]. It may be possible and cost effective to use provenance as a means of replicating the data instead 

of transporting it or storing it. For the derived data to be physically identical, several dependencies may 

have to be met such as access to the same source data, processes, and processing environment. In some 

cases like a stochastic experimental run, such a byte-for-byte replication may be impossible but a 

semantically equivalent data product could be generated [64]. Such properties can be extended to 

compare two datasets by just comparing their lineage, rolling back changes, and reverse engineering the 

data.  

3.1.4 Attribution 

Pedigree can help ascertain the ownership of the source data used to generate a certain data. Users can 

look up the derivation tree to see the creators of the source data and verify its copyright [71]. Similarly, 

creators of intellectual property can look down the lineage chain to see who are using data that they 

created. Citations are an important part of publication in science and lineage acts as one form of citation 

when publishing scientific datasets. It can also be used as a means of assigning liability in case of errors 

in the dataset [60]. 

3.1.5 Informational 

A generic use of provenance is as a metadata description that can be the basis for datasets discovery, say 

by searching based on source data or a processing step used to generate them. Such queries can locate 

data of interest and avoid duplication of effort if the same derivation has already been performed. 

Annotations provided along with provenance can help to interpret the data in the context it was intended, 

especially for archived data that are used long after they are generated [72]. This helps to unambiguously 

assimilate data into the user’s application domain. Provenance can also be browsed as a derivation tree or 

in other graphical forms, and act as a starting point for exploring other metadata about the data and 

processes. 

3.2 Subject of Provenance 

Provenance information can be collected about different resources present in the data processing system 

and at various levels of detail. It may be more applicable to collect provenance about certain types of data 

products than on others, based on the importance of the data or the cost of collecting provenance for it 

[60]. We classify provenance systems on the basis of the subject that the provenance describes and its 

granularity. 

3.2.1 Data vs. Process Oriented Provenance 

The provenance techniques we surveyed focus on data, but this data lineage can either be available 

explicitly or deduced indirectly. In an explicit model, which we term a data-oriented model, lineage 

metadata is specifically gathered about the data product. One can delineate the provenance metadata 

about the data product from metadata concerning other resources. For example, a DAG of transformation 

steps that derived a data product can be ascribed as its lineage, and this DAG is precisely associated with 

just that dataset without having to derive it from some external source. This contrasts to a process-

oriented, or indirect, model where the deriving processes are the primary entities for which provenance is 

collected, and the data provenance is determined by inspecting the inputs and outputs of these processes. 

For instance, myGrid [73] collects provenance information in the form of a workflow trace centerd 

around the services in the workflow, and this is used to derive the data provenance of datasets generated 
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during the workflow’s execution [74]. Depending on the application context in which provenance is 

captured, either of these methods may be used [75]. There may not even be any clear distinction on 

whether provenance is recorded about the process or data, and may rather have the ability to extract either 

forms of provenance. 

3.2.2 Granularity of provenance 

The usefulness of provenance to a certain domain is linked to the level of granularity at which it is 

collected. The domain requirements can call for provenance to be recorded on attributes or tuples in a 

database that represent individual pixels [53] or array elements [76]. Alternatively, files in a collection 

generated by the same experimental run can have similar provenance and it may suffice to store a 

statistical aggregate of the provenance for all files in the collection [77]. Data products that are a subset of 

a parent dataset [78] may share their provenance with the parent or sibling and yet be different as a whole. 

Some domains require provenance to be stored at multiple levels of granularity and this calls for a flexible 

approach to be taken by the provenance system. The use of abstract datasets [64, 74], that refer to data 

irrespective of granularity or format, are increasing in use and provide such flexibility. This makes the 

provenance collection independent of the granularity or representation of the dataset. The cost of 

collecting and representing provenance can be inverse to its granularity and this will play a role in the 

granularity needed.  

3.3 Representation of Provenance 

Different techniques can be used to denote provenance information, some of which are dependent on the 

underlying data processing system. The manner in which provenance is represented has implications on 

the costs for recording it and the richness of its usage. We classify provenance systems according to the 

schemes used for representing provenance, the contents of their lineage, and the semantic details 

incorporated. 

3.3.1 Scheme for Storing Provenance 

The two major approaches to representing provenance information use either annotations or inversion. In 

the former, metadata comprising of the derivation history of a data product is collected as annotations and 

descriptions about sources data and processes. This is an eager form [50] of representation in that 

provenance is pre-computed and readily usable as metadata. Alternatively, the inversion method uses the 

property by which some derivations can be inverted to find the input data supplied to derive the output 

data [38, 51]. Examples of such derivations include queries and user-defined functions in databases that 

can be inverted automatically or by explicit functions. The derivation queries are used to create an inverse 

query that operates on the output data and auxiliary data to identify the source data. Similarly, inverse 

functions defined for user-defined functions take the results of the user-defined functions as parameter 

and return their input data. The inversion technique is related to the view updation and view deletion 

problem in databases where in order to update or delete a view, we need to identify the source tables that 

need to be modified. 

While formal techniques are available to determine the inverse query of a relational query, they are 

restricted to a certain class of relational queries and are not universally applicable. Similarly, not all user-

defined functions have inverse functions. The advantage of the inversion method is its (arguably) compact 

representation of the provenance, compared to annotation method, whereby an entire class of derived data 

can be represented concisely using a single inverse query or function. But annotations give more 

flexibility in the richness of provenance metadata and the provenance need not be computed “just-in-

time” like in the inversion method. 

3.3.2 Contents of Provenance 

Lineage information provided by the inversion method is sparse and limited to the derivation history of 

the data. It stores just the query or process that created the derived data (“why” the data was created) and 

they serve to identify just the source data that created the derived data (“where” they originated from) [4, 
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54]. Annotations, on the other hand, can be richer and, in addition to the derivation history, often 

including the parameters passed to the derivation processes, the versions of the workflows that will enable 

reproduction of the data, or even related publication references. These may be sufficient to repeat the 

derivation process or reproduce the derived data. It is a moot point on where the boundary between 

provenance information and generic metadata lies. In some cases, there is little to distinguish the two and 

provenance is subsumed into the general metadata infrastructure. 

3.3.3 Provenance Format: Syntactic Structure and Semantic Information 

There is no metadata standard for lineage representation across disciplines and, due to their diverse needs, 

it is a challenge for a suitable one to evolve [79]. Many current provenance systems that use annotations 

have adopted XML for representing the lineage information [44, 46, 47, 80]. The benefits of this are 

apparent given that many of them use a service-based architecture where XML is the primary format for 

message exchange. The format for representing lineage in the inversion method is less relevant since it is 

likely to be dependent on the query format (such as SQL in relational databases) or the user-defined 

function used to process the data. 

Some of the annotations also capture semantic information within provenance using domain ontologies in 

languages like RDF and OWL [46, 47]. Ontologies clearly establish the concepts and relationships used 

in the provenance metadata and provide portable contextual information. Encoding of semantic 

knowledge allows an enhanced use of provenance, and helps to reason about and provide proof statements 

about the lineage of the data [62, 81]. The flipside to this is the effort involved in defining domain 

ontologies and giving a semantic description to each data and process in the system. 

3.4 Provenance Storage 

Provenance information can grow to be larger than the data it describes if the data is fine-grained and 

provenance information rich. So the manner in which the provenance metadata is stored is important to its 

scalability. Provenance can be tightly coupled to the data it describes and located in the same data storage 

system or even be embedded within the data file. Some data formats such as Flexible Image Transport 

System (FITS) [82] and Spatial Data Transfer Standard (SDTS) [16] allow the use of metadata headers, 

and lineage can be one such header entry. Such approaches ease maintaining the integrity of provenance, 

but make it harder to publish and search just the provenance. Provenance can also be stored separately 

with other metadata or simply by itself. In maintaining provenance, we should consider if it is immutable, 

whether it should be versioned when the data is modified, or if it should be updated to reflect the modified 

state of its predecessors [61]. If the data’s version changes due to an update to its deriving process or 

source data, the provenance information for the new version of the data can overlap significantly with the 

previous version, providing possiblities to optimize the storage [83]. The provenance collection and 

storage repository also determines the trust one places in the provenance and if any provenance mediation 

services are required [8]. 

3.4.1 Scalability 

Provenance systems can scale with the number of datasets, their granularity, the depth of the lineage 

(generations of ancestral data), their geographical distribution, and the user base. The number of datasets 

for which provenance is to be recorded is domain dependent and related to the granularity of the dataset, 

and the number of datasets increase as the granularity decreases. As the stages required to derive a dataset 

grows, the depth of its lineage correspondingly increases. It may be required to recursively inspect the 

provenance of each of its ancestral data in order to assemble the complete provenance for a dataset. The 

cost for gathering these increases exponentially with the depth of provenance1, and is accentuated if the 

                                                      

1 We can consider the provenance for a dataset as being derived by an inverted DAG where the dataset is at the root 

and the deriving datasets and processes (its ancestors) are its child nodes (refer to Figure 1). As the depth of this 

graph increases, the number of child nodes (ancestral data) increases exponentially.  
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provenance of the ancestral data sources is geographically distributed across multiple repositories [64, 

84]. 

The inversion method used to represent provenance scales well with the number of datasets and their 

granularity since an inverse function or query identifies the provenance for an entire class of data [53]. 

The amount of auxiliary source data required to find the provenance by this method is a crucial factor in 

ensuring its scalability [38, 51]. The inversion method is not well suited if the auxiliary data is 

geographically distributed as the inverse query needs to fetch them before it is executed. Database 

optimization techniques can make the inverse query efficient and the computed provenance can be cached 

to avoid repeating the query, provided provenance is immutable.  

Annotations may not scale well for fine-grained data as the complete provenance for the data may outsize 

the storage space required for the data itself [53]. Even for coarse-grained data, the size of annotation 

increases exponentially as the depth of lineage increases. However, one can reduce storage needs in the 

annotation method by recording just the immediately preceding transformation step that creates the data 

and recursively inspect the provenance information of those ancestors for the complete history.  

3.4.2 Provenance Overhead 

Management of provenance incurs costs for its collection and for its storage. The size of provenance 

information may exceed that of data’s and the storage cost of rich provenance can be significant. Less 

frequently used provenance information can be archived to reduce storage overhead [60], or a demand-

supply model based on usefulness can retain provenance for those frequently used. Such a model can 

promote better provenance description to be stored with the data since datasets with rich provenance is 

likely to be used frequently and hence persisted. 

If provenance depends on users manually adding annotations instead of automatically collecting it, the 

burden on the user may prevent complete provenance from being collected. While it may not be possible 

to automate the collection of certain forms of provenance (such as inverses for a user-defined function), 

instrumented data management middleware should be able to generate provenance during the data 

creation process. Automation allows provenance to be stored in a standard, machine accessible form that 

can be shared and queried. These tools can also relate context information available in the system to 

provide semantic value to provenance. 

3.5 Provenance Dissemination  

In order to use provenance, a system should allow rich and diverse means to access it. A common way of 

disseminating provenance data is through a derivation graph that users can browse and inspect. Additional 

metadata about the datasets in the provenance can also be provided through such a tool to enhance its 

usefulness. Users can also search for datasets based on their provenance metadata, such as to locate all 

datasets generated by a executing an erroneous workflow or to find the owners of all source data used to 

derive a certain data. If semantic provenance information is available, results of queries over provenance 

can automatically feed input datasets for a workflow at runtime. The derivation history of datasets can be 

used to replicate data at another site, or update it if a dataset is stale due to changes made to its ancestors. 

Provenance retrieval APIs can additionally allow users to implement their own mechanism of usage. 

4 Survey of Data Provenance Techniques 

In our survey of data provenance, we identified nine major works that, taken together, provide a 

comprehensive overview of research in this field. While additional works on provenance were reviewed, 

they were discarded because the treatment of provenance is incidental, not the prime research focus, or 

presented use-cases and concepts without a design or prototype. While Lanter et al and Woodruff et al 

provide a historical basis of lineage in scientific systems, the rest of the projects represent current research 

on data provenance. A summary of their characteristics can be found in Table 1. 
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4.1 Lanter, D. P. (Lineage Information Program) 

Lanter made pioneering contributions in the early 1990’s to the study of lineage in GIS applications. 

Lineage gives a notion of the quality of GIS datasets based on the source data that went into deriving it 

[5]. This quality indication helps GIS users to determine the fitness of use of the data for their application 

[55]. GIS applications use a cartographic model to transform and derive spatial layers. These spatial 

layers form the basic dataset in GIS, and have metadata attributes that describe the transformation 

algorithm, the properties of the layers, and the intended use of the data. The attributes follow cartographic 

standards for spatial data set, such as the Spatial Data Transfer Standard (SDTS), that have associated 

quality and lineage statements. 

Lanter designed a Lineage Information Program (LIP) [5, 55] for spatial databases that models lineage as 

a semantic network. A semantic network is a bi-directional knowledge representation graph where nodes 

and edges are given domain-specific semantic meaning [55]. For the GIS domain, nodes represent map 

layers and edges denote a parent-child relationship between layers such that a child layer is derived from 

the parent layer through some processing steps. Layers that do not have parents are source layers and they 

originate from outside the database. Product layers do not have children and are the end result of a GIS 

application. Intermediate layers are generated in the process of transforming source layers to a product 

layers. In addition to parent-child links, LIP uses a data structure called frame which describes the 

metadata of a spatial layer. Three types of frames are available: source frame, containing quality 

information about the source layers, such as scale and projection; command frame, with the commands 

used to derive intermediate and product layers; and product frames that has metadata specific to the 

product layers, like the release date and manager.  

Users transform and create layers by the executing commands in a spatial database shell [55]. LIP 

intercepts these data manipulation commands before they reach the spatial database and parses them to 

identify the input and output layers affected by this command. It then records the relationship between the 

layers by creating a parent-child link between them and associates a command frame, containing the 

executed shell command, with the output layer [5]. LIP follows a data-oriented provenance technique 

since the parent-child link directly relates the two data layers, and the command frame containing the 

derivation step is tied to the derived spatial layer. Source and product frames are populated by users when 

they import source layers or export product layers from the spatial database respectively. The granularity 

for LIP is at the level of spatial layers. The frames and the parent-child links of the semantic network are 

stored in a meta-database separate from the spatial database. LIP is intended for use with individual 

spatial databases and does not address scalability as an issue. 

Information in the lineage meta-database can be interrogated interactively using command-line queries, 

and LIP traverses the stored semantic network to answer the queries. Users can, for example, query for 

the complete lineage of a layer in the database or locate all layers derived from a certain source layer. The 

lineage information for a layer can be used to regenerate it automatically if its ancestral layers were 

modified [85]. As an extension to this, the storage space for a spatial database can be optimized by 

removing all derived data layers and retaining only the source layers, with the derived layers being 

generated just-in-time when requested for [86]. Lineage can also identify equivalent layers in order to 

remove redundancy in the database [85]. 

4.2 Chimera & the Virtual Data Grid (VDG) 

Chimera [45] is a prototype implementation of a Virtual Data Grid (VDG) that manages the derivation 

and analysis of data objects in collaboratory environments [64]. Chimera provides a generic solution for 

scientific communities, such as high-energy physics (GriPhyN) and astronomy (SDSS), which have data-

intensive needs. Chimera tracks provenance in the form of the data derivation steps for datasets and uses 

it for on-demand regeneration of derived data (“virtual data”), comparison of datasets, and audit of data 

derivations [45]. 
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Chimera uses a process-oriented model to record provenance. Users construct workflows (called 

derivation graphs or DAGs) using a high-level Virtual Data Language (VDL) [45, 64]. The VDL 

conforms to a schema that represents data products as abstract typed datasets and their materialized 

replicas that are available at a physical location. Datasets can be files, tables, and objects of varying 

granularity (though the prototype supports only files), and the type determines their structure and 

representation. Computational process templates, called transformations, are scripts in the file system (in 

future, web services) that transform typed datasets [64]. The parameterized instance of the 

transformations, called derivations, can be connected to form workflows that consume and produce 

replicas. These derivation workflows are scheduled and executed on the Grid using Globus Toolkit v2, 

whereupon they create invocation objects for each derivation in the workflow. The invocation records are 

automatically annotated with runtime information of the process. Invocation objects are the glue that link 

input and output data products, and they constitute an annotation scheme for representing the provenance. 

Semantic information on the dataset derivation is not collected. 

The lineage in Chimera is represented in VDL that is managed by a virtual data catalog (VDC) service. 

The VDC maps the VDL to a relational schema and stores it in a relational database accessible through 

SQL queries [45]. Metadata can be stored in a single VDC, or distributed over multiple VDC repositories 

that enables scaling through federation. VDL can contain inter-catalog references to refer to data and 

processes in external VDCs. Lineage information can be retrieved from the VDC using queries written in 

VDL that can, for example, recursively search for derivations that generated a particular dataset. A virtual 

data browser that uses the VDL queries to interactively access the catalog is proposed [45]. A novel use 

of provenance in Chimera is to plan and estimate the cost of regenerating datasets. When a dataset has 

been previously created and it needs to be regenerated (e.g. to create a new replica), its provenance guides 

the workflow planner in selecting an optimal plan for resource allocation [45, 64]. 

4.3 myGrid 

The myGrid project provides middleware in support of in silico experiments in biology, modeled as 

workflows in a Grid environment [87]. In silico experiments are web-based data analysis and 

computational procedures analogous to laboratory experiments [46, 73]. Bioinformatics places a higher 

importance on semantically enhanced information model as opposed to availability of computationally 

intensive resources [87]. myGrid services include resource discovery, workflow enactment, and metadata 

and provenance management, that enable information integration and help address the semantic 

complexity.  

myGrid is service-oriented and executes workflows written in XScufl language using the Taverna 

workflow environment [74]. A log of the workflow enactment contains the services invoked, their 

parameters, the start and end times, the data products used and derived, and ontology descriptions, and it 

is automatically recorded when the workflow executes. This process-oriented workflow derivation log is 

inverted to infer the provenance for the intermediate and final data products [46]. Users need to annotate 

workflows and services with semantic descriptions to enable this inference and have the semantic 

metadata carried over to the data products, and this is part of the user overhead. 

In addition to contextual and organizational metadata such as owner, project, and experiment hypothesis, 

users can provide domain specific ontological terms to describe the data and the experiment [6, 46]. These 

contextual information help scientists to understand the experiments that have been conducted and to 

validate them. Scientists can also directly upload datasets into the myGrid environment along with their 

associated provenance information [6]. XML, HTML, and RDF are used to represent syntactic and 

semantic provenance metadata using the annotation scheme [61]. The granularity at which provenance 

can be stored is flexible and is any resource identifiable by an LSID [74]. This includes provenance about 

components such as experiments, workflow specifications, and services, in addition to data products [61]. 

The myGrid Information Repository (mIR) data service is a central repository built over a relational 

database to store metadata about experimental components [74]. A number of ways are available for 
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knowledge discovery by reasoning over semantically enhanced provenance logs [73]. A rudimentary 

viewer is available in the form of Launchpad, a generic visualizer for LSID environments [46]. The 

semantic provenance information available as RDF can be viewed as a labeled graph using the Haystack 

semantic web browser [74]. COHSE (Conceptual Open Hypermedia Services Environment), a semantic 

hyperlink utility, is another tool used to build a semantic web of provenance. Here, semantically 

annotated provenance logs are interlinked using an ontology reasoning service and displayed as a 

hyperlinked web page. Provenance information generated during the execution of a workflow can also 

trigger the rerun of another workflow whose input data parameters it may have updated [87]. 

4.4 Collaboratory for Multi-scale Chemical Science (CMCS) 

The CMCS project is an informatics toolkit for collaboration and metadata-based data management for 

multi-scale science [79, 88]. CMCS manages heterogeneous data flows and metadata across multi-

disciplinary sciences such as combustion research where it is not possible to enforce metadata standards 

across the domain [47]. Provenance metadata in CMCS supplements the traditional means of establishing 

the pedigree of data through scientific publications [89].  

CMCS uses the Scientific Annotation Middleware (SAM) repository for storing resources represented as 

URL referenceable files and collections [79]. CMCS uses an annotation scheme to associate XML 

metadata properties with the files in SAM, and manages them through a Distributed Authoring and 

Versioning (WebDAV) interface. Files form the level of granularity and all resources such as data 

objects, processes, web services, and bibliographic records are abstracted as files. The type of the 

resource is distinguished by the Multi-purpose Internet Mail Extension (MIME) type for that file [88]. 

Dublin Core (DC) [90] elements like Title, Creator, and Date are used as XML properties to describe 

general characteristics of the resources. Additionally, DC verbs like Has Reference, Issued, and Is Version 

Of semantically relate resources with each other through XLink references in SAM [88]. These verbs 

capture the provenance by relating data files with their deriving processes. Direct association of 

provenance metadata with the data object makes this a data-oriented model. Heterogeneous metadata 

schemas are supported by mapping them to standard DC metadata terms using XSLT translators 

associated with specific MIME types. One limitation of exclusively using DC terms as a semantic 

metadata scheme is that they are intended for generic use with any type of resource. Hence the semantic 

meaning conveyed by the terms depends on the context they are used in and the resource they describe, 

leaving scope for ambiguity.  

CMCS does not provide a facility for automated collection of lineage from a workflow’s execution. Data 

files and their metadata are populated by DAV-aware applications in workflows or manually entered by 

scientists through a portal interface [79]. Provenance metadata properties can be queried from SAM using 

generic WebDAV clients. Special pedigree browser portlets allow users to traverse the provenance 

metadata for a resource as a web page with hyperlinks to related data, or by visualizing a labeled graph 

represented in the Graphics eXchange Language (GXL). Provenance information can also be exported to 

RDF that semantic agents can use to infer relationships between resources. Provenance metadata that 

indicate data modification can generate notifications that trigger workflow execution to update dependent 

data products. 

4.5 Provenance Aware Service-oriented Architecture (PASOA) 

The Provenance Aware Service Oriented Architecture (PASOA) project is building a provenance 

infrastructure for recording, storing and reasoning over provenance using an open provenance protocol 

that will foster interoperability among e-science communities [8, 84]. PASOA identifies several 

requirements for a provenance system in a service oriented architecture, such as verifiability of actors 

involved in a process and reproducibility of the process, accountability and preservation of provenance 

over time, scalability of the provenance system, generality to support diverse Grid applications as well as 

customizability as required [8, 84]. Actors are either clients of services or services that are invoked, and 

they generate two kinds of provenance during a workflow’s execution. Interaction provenance, describing 
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the input and output parameters of a service invocation, is generated and corroborated by both actors – 

client and service – in the invocation. Actor provenance is metadata about the actor’s own state during a 

service invocation (e.g. CPU usage or the service script) and is not verifiable [44, 84]. 

The Provenance Recording Protocol (PReP) defines fourteen interaction provenance messages that are 

generated by the actors, synchronously or asynchronously, with each service invocation. They are divided 

into four phases: negotiation phase, invocation phase, provenance recording phase, and termination 

phase, during which the actors agree upon a provenance service to record the provenance, perform the 

service invocation, record their interaction provenance, and terminate the protocol, respectively. All 

interaction and actor provenance messages generated by the clients and services in a workflow are 

correlated using an ActivityID present in the provenance messages. These form a process oriented 

provenance trace of the workflow recorded as annotations, and data provenance needs to be 

independently derived by linking all assertions that have the same ActivityID as that of the assertion 

containing the data as output. The granularity of the provenance is at the level of the input and output 

parameters to the web service.  

Provenance Recording for Services (PReServ) is a web service implementation of the PReP protocol that 

stores the provenance either in memory, in a relational database, or in the file system [44]. The actual 

representation of provenance is not apparent. A performance overhead of 10% has been observed when 

the provenance assertions are submitted asynchronously by the actors, with the overhead increasing when 

the provenance is sent synchronously with the service invocation. Overhead also lies in modifying the 

actors to generate the provenance messages, though this can be reduced by just modifying the workflow 

engine to generate provenance [91]. Methods to scale the provenance store through federation are being 

considered. 

A querying interface is not defined as part of the PReP protocol but a basic querying API is available to 

retrieve provenance from PReServ [44]. Basic queries to locate all data that were derived using the same 

service can be performed. Semantic validity checking of services and their inputs/outputs is possible by 

comparing the expected inputs/outputs of a service, available in a semantic registry, with the actual 

inputs/outputs available with the provenance. Other uses, such as repeating a workflow using the inputs to 

services available as provenance, are also foreseen. 

4.6 Earth System Science Workbench (ESSW) 

The Earth System Science Workbench (ESSW) [92] is a metadata management and data storage system 

for earth science researchers. ESSW is used to manage custom satellite-derived data products and 

compose relevant metadata for an ecological research project that spans multiple organizations [80]. 

Lineage is a key facet of the metadata created in the workbench, and is used for detecting errors in 

derived data products and in determining the quality of datasets. 

ESSW uses a scripting model for data processing i.e. all data manipulation is done through scripts that 

wrap existing scientific applications [80]. The sequence of invocation of these data transformation scripts 

by a master workflow script forms a DAG. Data products at the granularity of files are consumed and 

produced by the scripts, with each data product and script having a uniquely labeled metadata object. As 

the workflow script invokes individual scripts, these scripts, as part of their execution, compose XML 

metadata for themselves and the data products they generate using script libraries that are provided. The 

workflow script links the data flow between successive scripts using their metadata ids to form the lineage 

trace for all data products, represented as annotations. By chaining the scripts and the data using parent-

child links, ESSW is balanced between data and process oriented lineage. 

ESSW puts the onus on the script writer to record the metadata and lineage using templates and libraries 

that are provided. The libraries store metadata objects as files in a web accessible location and the lineage 

separately in a lineage server that uses a relation database backend [80]. This separation of the metadata 

and the lineage repository enables legacy metadata systems to record lineage information without 

modifying their existing metadata management methods. Scalability is not currently addressed though 
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there is a proposal to federate lineage across organizations [80]. Linchpin data products that exist at the 

boundaries of two workflows (i.e. the data output of one workflow is the input to the other) running at 

different organizations are identified and link the lineage chains in both the organizations.  

The metadata and lineage information can be navigated as a workflow DAG through a web browser that 

uses PHP scripts to access the lineage database [92]. Future work includes encoding lineage information 

semantically as RDF triples to help answer richer queries [58, 80]. The data products and deriving scripts 

form the subject and object in the RDF triple and verbs such as createdBy and inputTo establish the 

relation between them. 

4.7 Tioga 

Tioga [93] is a database centric visualization tool, built on top of POSTGRES, that uses a “drag and drop” 

approach to construct database programs. User-defined POSTGRES functions with a typed inputs and 

outputs are visually depicted as boxes that are interconnected through arrows representing the dataflow 

between them, effectively forming a workflow. Tioga tracks fine-grained data lineage within the database 

and is motivated by the needs of atmospheric scientists to trace the steps that led to identification of 

cyclone signatures based on attributes in the database [53]. 

Tioga was one of the earliest systems to represent provenance using inverse functions registered for user-

defined functions (UDFs) [53]. For a UDF f that takes as input a set of tuples I-1 from a certain table and 

generates a set of output tuples I, the inverse function is given by the function f-1 that takes as input the 

tuples I and generates the source tuples I-1. UDFs that do not have exact inverse functions can instead 

register weak-inverse functions that provide a subset or superset of the source tuples. A weak inverse 

function f-w takes the tuples I as input and generates the tuples I-w, that are either complete (I-w ⊇ I-1) or 

pure (I-w ⊆ I-1) or both (I-w = I-1). The accuracy of I-w can be enhanced by defining verification functions, 

f
-v, that take I and I-w as inputs to give the tuples I-v, that are closer to the exact inverse set I-1. They too 

have the properties of complete (I-v ⊇ I-1) or pure (I-v ⊆ I-1) or both (I-v = I-1). 

The weak-inverse and verification functions registered for UDFs, when executed, track the output tuples 

of the UDFs back to their source tuples, and provide an approximate version (unless the functions are 

complete as well as pure) of the lineage [53]. Weak-inverse and verification functions for UDFs can 

further be decomposed and represented as the union of weak-inverse and verification functions of each 

attribute in the tuples generated by the UDF, thus achieving attribute-level granularity. The weak-inverse 

and verification functions for a single attribute type can be reused by all tuples having that attribute type 

thus reduceing the overhead for defining these functions. It is possible that the UDFs may not even have 

non-trivial weak-inverse and verification functions. Associating the functions directly with the data makes 

this a data oriented model. Despite fine-grained data provenance, the storage overhead is low since 

defining a weak-inverse and a verification function for each attribute type denotes the lineage for all 

tuples that contain those attributes types and hence the systems scales with the number of tuples.  

The lineage information provided by Tioga is limited since the inputs that went into creating that data 

item are alone recorded in the absence of any other semantic information. Fine-grained lineage can be 

supplemented by coarse-grained metadata techniques if additional provenance information is required 

[53]. The weak-inverse and verification functions may be modeled as boxes in Tioga whose results, that 

form the lineage, can be visualized [93]. Users can also define database queries that use these inverse 

functions to extract the lineage. Since inverse-function strategies are executed just-in-time, there may be 

significant computational overhead to retrieve the lineage. 

4.8 Buneman, P. 

Buneman has presented a collection of theoretical work on managing provenance and on the related 

topics of annotations, archiving, and versioning in scientific databases. Scientific databases are often 

“curated” by adding annotations to them [4, 94], and in sciences like biology and astronomy, there are 

curated source databases which are processed by scientists to create new datasets [95]. Provenance is 
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necessary to track the processed datasets back to the curated source database, as well as to propagate 

additional annotations on the derived data back to the source database [38]. For databases that change 

over time, compact versioning is essential to recover data referenced by the lineage of data derived from 

an earlier version of the database [94]. 

Buneman puts forth two forms of data provenance that he terms “why” provenance and “where” 

provenance [4]. Why provenance gives the reason the data was generated, say, in the form of a proof tree 

that locates source data items contributing to its creation. Where provenance provides an enumeration of 

the source data items that were actually copied over or transformed to create this data item. These 

provenances are defined for relational, object oriented, and semi-structured databases that satisfy a certain 

deterministic data and query model. The why provenance for a data created by a query on the database is 

the collection of values, called the minimal witness basis, that prove the query output and can be found by 

a pattern matching algorithm. A similar algorithm to generate the where provenance, called the derivation 

basis, is also available. These algorithms are akin to determining lineage through query inversion. The 

algorithm to determine why provenance is invariant under rewriting of the original query, while only the 

class of traceable queries are rewriteable without affecting the where provenance algorithm [4]. The 

inverse queries are associated with the derived data making it data oriented provenance with granularity at 

the level of tuples and attributes in the database. 

Why and where provenance are respectively analogous to two view update problems in relational 

databases [38]. The view deletion problem requires the identification of the smallest set of tuples in the 

database whose removal will cause a given tuple in a view to be deleted while minimizing deletion of 

other tuples in the view. The annotation placement problem needs to locate the attributes in the source 

database that need to be annotated so that the annotation will appear in an attribute of the view, while 

minimizing side effects to other attributes in the view. An investigation of the computational complexity 

of solving these problems for views created by SPJU (select-project-join-union) relational operators 

concludes that for views created using PJ and JU queries, finding their view deletions without side effects 

on the source or view data is NP-hard, while for SPU and SJ views, view deletions without side effects are 

polynomial time solvable. Similarly, for solving the annotation placement problem, PJ views are 

intractable while SJU and SPU are tractable.  

4.9 Cui, Y. & Widom, J. (Trio) 

Cui and Widom [33, 51] trace lineage information for view data and general transformations in data 

warehouses. The Trio project [54] leverages some of this work in a proposed database system which has 

data accuracy and data lineage as inherent components. While data warehouse mining and updation 

motivates lineage tracking in this project, any system that uses database queries and functions to model 

workflows and data transformations can apply such techniques. 

Identifying the maximal set of tuples from source tables, that produced a data item in a materialized 

warehouse view is defined as the view data lineage problem [51, 96]. A database view can be modeled as 

a query tree that is evaluated bottom-up, starting with leaf operators having tables as inputs and 

successive parent operators taking as input the relations resulting from its child operators [51]. For ASPJ 

(Aggregate-Select-Project-Join operator) views, it is possible to automatically create an inverse query for 

the view query that will identify the tuples from the source tables that form the view data’s lineage [51]. 

A Split algorithm that operates on the materialized view results and the source tables is recursively 

applied to each segment of the canonicalized ASJP query tree in a top-down manner [51]. A union of the 

results of all the Split operations returns the exact tuples in the source tables that is the required lineage 

for the view. Computing the lineage trace can be optimized by using auxiliary tables that cache source 

tables and intermediate results of the ASJP view query evaluation [51]. This reduces costly access to 

source tables external to the warehouse and prevents inconsistencies due to updates in the source tables. 

Comparison for ten auxiliary table schemes, ranging from storing no auxiliary table to storing all source 

tables, is provided [33]. 
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Trio [54] uses this inversion model to automatically determine the source data for tuples created by view 

queries. The inverse queries are recorded at the granularity of a tuple and stored in a special Lineage table 

that records, for each tuple, its creation timestamp, the derivation-type (such as by a view query, an insert 

or update query, or user defined functions), and additional lineage related data. This direct association of 

lineage with tuples makes this a data-oriented provenance scheme. While lineage for view tuples can be 

derived using the above algorithm, mechanisms to handle non-view tuples are yet to be determined. 

Lineage in Trio is simply the source tuples and the view query that created the view tuple, with no 

semantic metadata recorded. Scalability is not specifically addressed either. Other than querying the  

Lineage table, some special purpose constructs for retrieving lineage information through a Trio Query 

Language (TriQL) are planned. Since recording attribute level accuracy is also an inherent part of Trio, 

queries combining both lineage and accuracy information shall also be supported. 

5 Discussion 

The survey we presented exposes interesting open research questions on provenance and challenges that 

need to be overcome to make provenance pervasive in the broader community. Data is increasingly being 

shared across organizations and it is essential for provenance to be shared along with the data. Most of the 

projects surveyed have their own proprietary protocols for managing provenance, and the absence of open 

standards for collecting, representing, storing, and querying for provenance is an obvious hindrance to 

promoting interoperability. Open standards will also promote federated collection of provenance from 

actors across organizations instead of a centralized approach where, say, a workflow engine is solely 

responsible for recording provenance. Standards will also allow provenance collection to be pushed into 

the middleware instead of expecting the user or service provider to do it. The work by PASOA on 

defining a provenance recording API [8] is in the right direction but needs further refinement on how 

provenance is represented and queried. Any such standard will have to satisfy the diverse needs of the 

multifarious scientific or business domains in which it will be used, and these requirements need to be 

identified. 

Standardizing semantic terms to describe provenance will allow unambiguous interpretation of 

provenance [46]. This, coupled with domain specific ontologies, will allow automated verification of the 

provenance and enable richer queries. Such a verification can eventually be extended to any piece of 

information present in the semantic web [97] through its provenance [62]. myGrid is progressing along 

these lines by migrating to the Web Ontology Language (OWL) for describing their provenance. CMCS 

too has preliminary support for a semantic description of provenance that can be improved upon by using 

specific semantic terms to describe provenance instead of using overloaded Dublin Core verbs. 

Using provenance as a basis for decision making largely depends upon the trustworthiness of provenance. 

Assertions about the pedigree of data will have to be backed by the identity of a trusted person or 

organization to make the assertion meaningful [98]. There can also be multiple versions of truth provided 

by different entities involved in the data derivation and these will have to be mediated [44, 59]. Also, 

there should be assurances that the provenance information was not tampered with and signing 

provenance using digital signatures is a solution. Providing such convincing assertions on provenance 

will enhance its value and lead to a broader use of provenance for decision making, that in turn will 

promote a wider collection of provenance. 

The granularity of provenance depends on the discipline in which it is collected and the application in 

which it is used. Developing standards to represent provenance is related to the issue of naming datasets 

uniquely and uniformly so that they can be referenced by the provenance [99]. Naming schemes like 

LSID that use URNs or URIs to identify datasets allow provenance to refer to abstract datasets 

irrespective of their granularity or representation. At the same time, care should be taken that these 

indirection schemes do not prevent us from discovering or indicating relationships between the 

provenances of datasets, as may be the case between the provenance of a data collection and the 

provenance of a data entry that is present in the collection. 
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There is potential for convergence of lineage tracking in databases and provenance collection in service-

oriented architectures. Databases are moving towards supporting service invocations from within queries 

and web services use databases to store and transform data. When data passes through multiple 

organizations, it is possible that is processed by both such systems, motivating the need to tracking 

provenance seamlessly across these architectures transparently. Federated databases may pose additional 

challenges due to the source transparency they provide over heterogeneous data [52]. 

Annotations and inversion are two design choices to represent provenance, though this choice may be 

limited by the way data is processed and due to restrictions on the kinds of transformations that can be 

inverted. Inversion seems to be more optimal from a storage perspective and may be preferred by 

organizations requiring provenance tracking for a large number of fine-grained datasets. But all the 

systems we surveyed that use the inversion technique [4, 51, 53] require the source data to be available in 

order to execute the inverse queries. If the source data keeps changing, this may require a significant 

amount of auxiliary data to be retained to determine the lineage and this offsets the storage benefits of 

inversion. A deeper study of the storage needs of the inversion techniques will help architects of 

provenance systems to make a design decision between annotation and inversion, and fuel further 

research into the inversion technique. 

Another design choice is whether to use a process oriented or data oriented model of provenance. This has 

underpinnings on the cost of executing relevant queries on the provenance metadata. It is potentially 

costlier to extract data provenance from a process oriented model since this involves examining all 

process oriented provenance records in which this data appears and selecting those that led to the data’s 

creation. Data oriented provenance would provide this information immediately. On the other hand, data 

oriented provenance may have a costly overhead to execute a process related query, say one that locates 

workflows in which a particular data was used. Data oriented provenance allows the data provenance to 

be represented and ported in a self-contained manner. 

Efficiently federating the collection, storage, and retrieval of provenance is necessary for it to scale across 

communities. Negligible research has been done on scaling provenance systems but one can expect 

existing distributed architectures such as federated registries and peer-to-peer systems to guide this 

development.  

Retaining lineage about data even after it was deleted, or lineage that traces the reason for a data being 

deleted (as opposed to how it was created) is termed phantom lineage [54, 75]. This tracks the lifetime of 

a data from its creation to deletion and finds interesting uses such as for auditing. Provenance can be used 

to estimate quality metrics for data or for deriving new hypothesis from the provenance of experimental 

results. Discovering such novel ways to use provenance will drive more organizations to collect 

provenance. For this to happen, provenance needs to be fully understood and studied in the context of its 

potential use in each domain. Many of its current applications are largely generic in nature and there 

remains potential to use provenance in much better ways. 

6 Conclusion 

In this paper, we presented a taxonomy to understand and compare provenance techniques used in e-

science projects. The exercise shows that provenance is still an exploratory field and several open 

research questions are exposed. There need to be means to guarantee the source of provenance and assert 

its truthfulness in order for provenance to be useful beyond an individual organization [59]. Ways to 

federate provenance information is essential for scalable collection, storage, and retrieval of provenance. 

Evolution of common metadata standards, semantic terms, and service interfaces to manage provenance 

in diverse domains will also contribute to a wider adoption of provenance and promote its sharing [63]. 

The ability to seamlessly represent provenance of data derived from both workflows and databases can 

help in its portability. Ways to store provenance about missing or deleted data (phantom lineage [54]) 

require further consideration. Finally, a deeper understanding of provenance is needed to identify novel 

ways to leverage it to its full potential.  
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Figure 2 Database query tree analogous to the Workflow DAG in Figure 1. Here, the final view, FV#1, is derived from external 

sources and stored in a data warehouse. The lineage for this view, FV#1, depends on the source tables ST#1, ST#2, and ST#3, on 

the intermediate views, IV#1 and IV#2, and the relational queries, RQ#1, and RQ#2, and the user defined function, UDF#1. The 

exact tuples from the tables and views that contributed to the final view depends upon the queries and the function.  
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Figure 3 The Provenance Taxonomy 
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