
1

���������
	
���������
�����
��
�����
���������

��
�������
�
�
����

���������
��� �������� !�����!���

2

ZingCOBOLCopyright Timothy R P Brown 2003

1. Getting Started

1.1 Introduction

The aim of the ZingCOBOL is to give the basics of the COBOL programming language
for anyone who knows a little bit about computers (not much) and preferably will at least
have come across another procedural progamming language such as C, BASIC or
Pascal. If you want to learn good structured programming then, although the basic
COBOL syntax is provided here, other sources can provide more effective guidance (for
example, see The Kasten COBOL Page).

The floating SITE MENU button can be clicked to bring up a temporary menu for
navigating this site. If your browser doesn't support this feature (or the popup window that
results) there is a table of contents at the bottom of every page to navigate with.

If you wish to find a specific item the Quick Reference page should take you to the
desired section. This tutorial is by no means extensive but the basics should be covered
here.

What's written here will hopefully be correct (tell me otherwise) and maybe even
informative. However, I would strongly recommend buying a good book on COBOL
programming, and/or have someone teach you it.

If you have any queries, comments, or suggestions you can either go to the zingCOBOL
Forum (all levels of ability are welcome), use the Feedback form and/or sign the
Guestbook.

I hope ZingCOBOL will prove useful to you.

1.2 COBOL - a brief overview

COBOL (COmmon Business Orientated Language) has been around for yonks (since
1959), updated in 1968, 1977 and 1985. OO COBOL was developed in the 1990's. Well
suited to business applications, i.e. used for large batch processes running on mini-
computer and mainframes (medium to large platforms). About 65% of new critical
applications use COBOL; several billion lines of COBOL code exist throughout the world,
used by over a million companies. So it may be old but it remains one of the most

important languages in commercial use today. (source: Computer Weekly, Dec 9th,
1999).

1.3 What you'll need

The best way to learn to programme/learn a new language is to actually be able to write
code and run it on a computer. Consequently, you really need a computer (probably a
PC), a text editor (Notepad or WordPad will do) to write the code into, and most
importantly, a COBOL compiler which will check your code and then convert it into
something the computer can understand and execute. I use the Fujitsu COBOL85 ver3.0
compiler which can be downloaded for free (see the Links page).

If you want to download a simple program for added/refreshing line numbers, go to the
Links page.

A brief description of how to compile a program using Fujitsu COBOL85 version 3.0 can
be read here

3

2. COBOL Basics

2.1 Coding Areas
2.2 Syntax
2.3 The Hello World Program

2.1 Coding Areas

If you look at the COBOL coding in later sections (e.g. League Table program in the Sample
code section) the specific positions of coding elements are important for the compiler to
understand. Essentially, the first 6 spaces are ignored by the compiler and are usually used by
the programmer for line numbers. These numbers are not the same as those in BASIC where
the line number is used as part of the logic (e.g. GOTO 280, sending the logic to line 280).

The seventh position is called the continuation area. Only certain characters ever appear here,
these being:

* (asterisk), / (solidus or forward slash), or - (hyphen).

The asterisk is used to precede a comment, i.e. all that follows is ignored by the compiler. The
solidus is used to indicate a page break when printing coding from the compiler, but it too can be
used as comment since the rest of the line is ignored by the compiler. The hyphen is used as a
continuation marker, i.e. when a quoted literal needs to be extended over to the next line. It is
not for continuing a statement onto the next line (this is unnecessary*) and also cannot be used
to continue a COBOL word. (*You can write any COBOL statement over as many lines as you
like, so long as you stay in the correct coding region and don't split strings.)

000200*Here is a comment.

000210/A new line for printing and a comment.

000220

:

000340 DISPLAY 'This might be a very long string that

000350- 'needs to be continued onto the next line'

Positions 8 to 11 and 12 to 72 are called area A and area B, respectively. These are used in
specific instances that will be detailed in later sections.

2.2 Syntax

Identifier names

Summary

Positions Designation

1 to 6

7

8 to 11

12 to 72

line code

continuation area

area A

area B

4

User-defined names must conform to the following rules:

� Must only consist of alphabetic and numeric characters and/or hyphens

� The name must contain at least one alphabetic character

� Must be no more than 30 characters

� When using hyphens, they must not appear at the beginning or end of the name

Some examples of legal names:

A123

RecordCount-1

WAGE-IN

Tot-2-out

Like all COBOL code, the compiler will not distinguish between upper and lower case letters
(except within quotes).

Lastly, COBOL has a large list of reserved words that cannot be used as identifier names. A list
of COBOL reserved words is given elsewhere.

Punctuation

The full stop (period) is the most important punctuation mark used, and its use will be detailed
later (see Scope terminators). Generally, every line of the IDENTIFICATION, ENVIRONMENT,
and DATA DIVISION end in a period.

Quotation marks, either single or double, are used to surround quoted literals (and when calling
a sub-program). However, donât mix them when surrounding the literal, e.g.

" This is bad â

" but this is ok "

Commas and semi-colons are also used to separate lists of identifiers, e.g.
MOVE 2 TO DATA-ITEM-1, DATA-ITEM-2, DATA-ITEM-3
A space must follow the comma/semi-colon. They are optional however, and a space would
suffice, but it does add to clarity.

Spelling

Since COBOL was developed in the USA, the spelling of words is American, e.g. INITIALIZE or
ORGANIZATION (using Z rather than S). Brits be warned!

In many cases, abbreviations and alternative spellings are available (see reserved word list),
e.g. ZERO ZEROS ZEROES all mean the same thing. Likewise, LINE and LINES, PICTURE
and PIC, THROUGH and THRU.

2.3 The 'Hello World' Program

As is traditional for all introductory lessons for a programming language, here's a 'Hello World'
program:

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. HELLO-WORLD-PROG.

5

ZingCOBOL Copyright Timothy R P Brown 2003

000030 AUTHOR. TIMOTHY R P BROWN.

000040*The standard Hello world program

000050

000060 ENVIRONMENT DIVISION.

000070

000080 DATA DIVISION.

000090 WORKING-STORAGE SECTION.

000100 01 TEXT-OUT PIC X(12) VALUE 'Hello World!'.

000110

000120 PROCEDURE DIVISION.

000130 MAIN-PARAGRAPH.

000140 DISPLAY TEXT-OUT

000150 STOP RUN.

6

3. The Four Divisions

3.1 The IDENTIFICATION DIVISION
3.2 The ENVIRONMENT DIVISION
3.3 The DATA DIVISION
3.3 The PROCEDURE DIVISION

COBOL program code is divided into four basic division: IDENTIFICATION, ENVIRONMENT, DATA, and
PROCEDURE divisions. The identification division is required, but in theory the others are not absolute
(although you won't have much of a program without any procedures or data!).

The identification division tells the computer the name of the program and supplies other documentation
concerning the program's author, when it was written, when it was compiled, who it is intended for...etc. In
fact, only the program name is required by the compiler.

000100 INDENTIFICATION DIVISION.

000110 PROGRAM-ID. EXAMPLE-1-PROG.

000120 AUTHOR. ZINGMATTER.

000130 INSTALLATION. XYZ GROUP.

000140 DATE-WRITTEN. 17/5/00.

000150 DATE-COMPILED.

000160 SECURITY. LOCAL GROUP.

Note:

� The use of full stops is important. Throughout these pages, note where they are positioned

� The first words (PROGRAM-ID, AUTHOR etc..) are written in area A, the details are in

area B

� The DATE-COMPILED detail is written automatically by the compiler

This division tells the computer what the program will be interacting with (i.e. its environment) such as
printers, disk drives, other files etc... As such, there are two important sections: the CONFIGURATION
SECTION (which defines the source and object computer) and the INPUT-OUTPUT SECTION (which
defines printers, files that may by used and assigns identifier names to these external features).

000260 ENVIRONMENT DIVISION.

000270 CONFIGURATION SECTION.

000280 SOURCE-COMPUTER. IBM PC.

000290 OBJECT-COMPUTER. IBM PC.

000300 INPUT-OUTPUT SECTION.

000310 FILE-CONTROL.

000320 SELECT INPUT-FILE ASSIGN TO 'input.dat'

000330 ORGANIZATION IS LINE SEQUENTIAL.

000340 SELECT PRINT-FILE ASSIGN TO PRINTER.

7

Notes:

� You probably wouldn't need to bother with the configuration section (I think this is an oldie

thing)

� The DIVISION and SECTION words are written into area A but the SELECT clause should

be in area B.

� The full stop doesn't appear in the SELECT clause until after the ORGANIZATION has

been specified.

� INPUT-FILE and PRINT-FILE are user-defined names that are used in the program to
refer to 'input.dat' and the printer, respectively. If the input.dat file was on a different disk
drive, within a directory structure, then you could write: ...ASSIGN TO

'D:datafiles/data/input.dat'.

� Line 000330 describes the structure or form of the data written in 'input.dat' file. In this

case, each record is on a new line in the file (see File Handling section for details).

� The printer also is assigned but the organization doesn't have to be secified.

� For the SELECT clause, if no organization is defined the computer defaults to

SEQUENTIAL organization (i.e. each record appears in a long string with no line breaks.

Things look clearer when you see a full program (see Sample Code section).

3.3 The DATA DIVISION

The data division is where memory space in the computer is allocated to data and identifiers that are to be
used by the program. Two important sections of this division are the FILE SECTION and the WORKING-
STORAGE SECTION. The file section is used to define the structure, size and type of the data that will be
read from or written to a file.

Suppose the 'input.dat' file (described above) contains a series of records about a companies customers,
giving details of name, address, and customer number. If you were to open 'input.dat' with a text editor you
would see each record on a new line like this:

Joe Bloggs 20Shelly Road Bigtown 023320

John Dow 15Keats Avenue Nowheresville042101

Jock MacDoon05Elliot Drive Midwich 100230

etc...

The different pieces of data need to be defined so that the program can read a record at a time, placing
each piece of information into the right area of memory (which will be labelled by an identifier).

The file section for this may look like this:

000400 DATA DIVISION.

000410 FILE SECTION.

000420

000430 FD INPUT-FILE.

000440 01 CUSTOMER-DATA.

000450 03 NAME PIC X(12).

000460 03 ADDRESS.

000470 05 HOUSE-NUMBER PIC 99.

8

000480 05 STREET PIC X(19).

000490 05 CITY PIC X(13).

000500 03 CUST-NUMBER PIC 9(6).

Notes:

� 'FD' stands for File Descriptor, and names the file, INPUT-FILE (assigned in the environment

division), and describes the exact structure of the data in each record. All records in this file MUST
be of exactly the same structure.

� '01 CUSTOMER-DATA' is the group name and refers to all of the single record that is read into the

computer memory from the file. The higher numbers (levels), 03.. and 05.. will contain the indivual
fields of the record.

� Both FD and 01 are written in area A while higher levels are in area B.

� Level 01 is sub-grouped into level 03 fields. Notice that one of the level 03 sub-groups is itself sub-
grouped into level 05. The sub-grouping could continue upwards as required to 07, 09 etc.. These
numbers (except level 01) could as easily be 02, 03, 04 ...or any increasing number scale. There are
some numbers (i.e. 66, 77 and 88) which actually have other uses but these will be discussed in the
Defining Data section.

� The PIC (short for PICTURE) clause indicates the size and type of data that that field contains. For

example, in line 000450, the data name (identifier) NAME has been defined as holding 12 characters
of alphnumeric data. It could have been written as PIC XXXXXXXXXXXX be that's a pain. 'X' means
alphnumeric and can contain any ASCII character. However, even if it contained '2' you could not do
any calculations on this as the information is stored as the ASCII code for the character '2', rather
than the actual number 2. Line 000470 defines HOUSE-NUMBER as PIC 9(2), which can hold a 2-
digit number. You can do calculations with this since '9' is used to denote a numeric field.

� Notice how the group names (CUSTOMER-DATA and ADDRESS) do not have PIC descriptions.
This is because the higher level field descriptions when added together will be the size of the group
name, i.e. CUSTOMER-NUMBER will hold 46 characters which turns out to be the size of each
record (spaces are included). You can refer to these group names but when doing so all data will be
treated as alphanumeric and cannot be used for calculations, even if all of the higher group items are
numeric.

9

The WORKING-STORAGE SECTION of the data division is for defining data that is to be stored in
temporary memory, i.e. during program run-time. Effectively, this is where, for example, an identifier is
defined that will hold the result of a calculation.

000500 DATA DIVISION.

000510 WORKING-STORAGE SECTION.

000520

000530 01 RECORD-COUNTER PIC 9(5).

Also see the 'Hello World' program. In that case the string to be displayed on the screen is actually defined
in working-storage using the VALUE clause (01 TEXT-OUT PIC X(12) VALUE 'Hello World!'). The same can
be done for numeric data e.g.:

000800 01 TOTALS-IN.

000810 03 1ST-NO PIC 99 VALUE ZERO.

000820 03 2ND-NO PIC 999 VALUE 100.

The equivalent to filling an item such as 1ST-NO (above) with zeroes, is filling an alphanumeric (PIC X) item
with spaces e.g. 01 MESSAGE PIC X(12) VALUE SPACES.

A further section of the data division is the LINKAGE SECTION, which is used to facilitate the sharing of
data between programs (or sub-programs). See below.

3.4 The PROCEDURE DIVISION

The procedure division is where the logic of the program actually found. Here is where the various
commands are written (see Commands and logic section).

COBOL is a modular language, in that a program is usually broken up into units described as paragraphs.

000900 PROCEDURE DIVISION.

000910 CONTROL-PARAGRAPH.

000920 PERFORM READ-DATA-FILE

000930 PERFORM CALULATE-PRICES

000940 PERFORM PRINT-PRICE-REPORT

000950 STOP RUN.

The PERFORM statement is used to 'call' other paragraphs to do each task. These paragraphs would
appear in the same coding and are part of the same program. In the above example, the program would
consist of four paragraphs: the CONTROL-PARAGRAPH and the three called from within it. All of the
paragraph names are user-defined. Even if a program only has one paragraph, it must still have a name.
The 'Hello World' program has a paragraph name MAIN-PARAGRAPH. Regarding punctuation, as a rule
there should only be two full stops in any paragraph; one after the paragraph name and the other at the end
of the paragraph.

Sub-programs

10

A program may also refer to a different program, called a sub-program. A sub-program is an entirely
different program from the calling program, with its own divisions etc... with the exception that it does not
end with STOP RUN (which would return you to the operating system), but with EXIT PROGRAM. The sub-
program is a module, rather than a subroutine which is what a paragraph could be described as. The verb
CALL is used to activate the sub-program:

000800 DATA DIVISION.

000810 WORKING-STORAGE SECTION.

000820 01 W-DATE-IN PIC 9(6).

:

000850 LINKAGE SECTION.

000860 01 L-DATE-IN.

000870 03 DAY PIC 99.

000880 03 MONTH PIC 99.

000890 03 YEAR PIC 99.

:

000900 PROCEDURE DIVISION.

000910 CONTROL-PARAGRAPH.

000920 PERFORM READ-FILE

000930 CALL "VALIDATE-DATE" USING L-DATE-IN

:

001950 STOP RUN.

:

003000 IDENTIFICATION DIVISION.

003010 PROGRAM-ID VALIDATE-DATE.

003020

:etc.....

003500 PRODECURE DIVISION USING L-DATE-IN.

:

004000 EXIT PROGRAM.

In the above code, a sub-program is called, named VALIDATE-DATE

In order to use data from the calling program in the sub-program the calling program uses a section in the
data division called the LINKAGE SECTION. The item W-DATE-IN in the calling program occupies the same
memory address as the sub-program's item L-DATE-IN, so the number placed in W-DATE-IN item using the
VALUE clause is also in L-DATE-IN. Note: you cannot use VALUE in the linkage section.

The procedure division of the sub-program requiring the use of linkage section defined data must say so by:
PROCEDURE DIVISION USING ...[linkage section items to be used] also refered to by the CALL ... USING.
See lines 000930 and 3500 above.

In the above example, what is being called ("VALIDATE-DATE") is a literal. This means that you could use
an identifier instead, allowing you a choice between sub-programs depending on what the literal had been
previously defined as. For example, if a record was of type "A" then you may want to process that record
using sub-program PROCESS-A-REC, but if a type "B" record the use PROCESS-B-REC.
The logic might be as follows:

:

0003000 IF RECORD-TYPE = "A" THEN

0003010 MOVE "PROCESS-A-REC" TO SUB-PROG

0003020 ELSE MOVE "PROCESS-B-REC" TO SUB-PROG

0003030 CALL SUB-PROG USING L-REC-DATA

:

11

ZingCOBOL Copyright Timothy R P Brown 2003

Although I haven't described the various commands of the procedure division (see Commands and logic
sections) the above code is fairly clear...if a marker called RECORD-TYPE has been set as "A" then place
(i.e. MOVE) the string "PROCESS-A-REC" into the area of memory labelled as SUB-PROG (so now SUB-
PROG contains this string). Otherwise (i.e. ELSE) it is assumed that the only other type there is can be "B"
type and so "PROCESS-B-REC" is MOVEd into SUB-PROG. Depending on what the item SUB-PROG
contains the desired sub-program will be called.

12

4. Defining Data Part 1

4.1 Number Formats
4.2 Moving and Editing data
4.3 Initializing data

A large portion of any COBOL program consists of the data division and how the data is defined and manipulated. As
already described in the previous section (The Four Divisions), each identifier used in the procedure division must be
defined. How they are defined depends of what is to be performed on that data.

More on data definition for tables (arrays), Boolean data, and for writing printing data, is discussed in the following
section (Defining Data Part 2).

The MOVE verb is used extensively in COBOL to manipulate data and so is introduced here. As the name suggests,
MOVE simply tells the computer to place a certain item of data to a specified identifier. a typical statement would be of
the form:

MOVE [identifier or literal] TO [identifier-1] [identifier-2]...

4.1 Number Formats

There are three types of number formats (that I'm aware of): DISPLAY, PACKED-DECIMAL (or COMPUTATIONAL-3
aka COMP-3), and BINARY. These are defined in the data division after the PIC clause (although DISPLAY format is
default so you don't really have to define it). In DISPLAY format (aka character format) a single digit (i.e. PIC 9) would
use 1 byte (8 bits) of memory. In order to save space and processing time, calculation can be performed in a more
economical way using COMP-3 or BINARY formats. This is because they use less bytes:

e.g.

01 ITEM-1 PIC 9(3) VALUE 123 USAGE IS DISPLAY.

This uses 4 bytes of memory: one for each digit plus one for the sign (+ or -).

01 ITEM-1 PIC 9(3) VALUE 123 USAGE IS PACKED-DECIMAL.

This uses 2 bytes: each individual digit is converted to binary -

1 2 3 sign

0001 0010 0011 1111 (unsigned)

1101 (negative)

1100 (positve)

01 ITEM-1 PIC 9(3) VALUE 123 USAGE IS BINARY.

This uses 1 byte: 123 (one-hundred and twenty-three) is converted into binary: 01111011

These compressed formats can be used for calculations but not much use for displaying
or printing the result. Hence, it is necessary to convert the result of such a calculation back
into DISPLAY format:

:

000100 01 NUMBER-1 PIC 9(3) USAGE IS BINARY.

13

000110 01 NUMBER-2 PIC 9(3) USAGE IS BINARY.

000120 01 ANSWER-OUT PIC 9(4) USAGE IS DISPLAY.

:

000200 MULTIPLY NUMBER-1 BY NUMBER-2 GIVING ANSWER-OUT

000210 DISPLAY ANSWER-OUT

Both 'USAGE' and 'IS' are optional (as is 'DISPLAY').

4.2 Moving and Editing Data

Care must be taken when moving (using the MOVE verb) data to an item. In other languages, such as Pascal, when to
assign a value to XYZ (defined at the beginning of the program as an integer for example), then that's it. In COBOL, you
have to be sure that the value you are moving to XYZ item is not bigger than the defined size. If you moved 1234 to a
PIC 999 defined item, then if you were to examine XYZ it would contain 234. For numeric data, the digits are truncated
from the left. If item ABC were defined as PIC XXX and you moved "abcd" into it, on examination you would find it
contained "abc". For alpha-numeric data characters are truncated from the right.

Conversely, moving data that is smaller than the PIC definition has certain effects. If 2 was moved to item XYZ above,
then the number 2 is written to the right-most position and the leading positions are zero-filled (see figure below).
Likewise, moving "A" to ABC above, the letter "A" would be written to the left-most position with the trialing positions
being space-filled.

So what about data with decimal places?
To use decimal places, the letter 'V' is used in the PIC description:

01 COST-OF-ITEM PIC 9(4)V99.

Here the item COST-OF-ITEM can contain a number that has two decimal places. 'V' is called an implied decimal place
in that the 'V' itself is not an area of memory, i.e. the above PIC description will hold 6 digits - 4 before the decimal point
and two after. The computer will align the number being moved into the item around the decimal point. See the
examples below:

number going into COST-OF-ITEM contents of COST-OF-ITEM [PIC 9(4)V99]

1234.56 1234.56

1234 1234.00 (zero-filled)

1 0001.00 (zero-filled)

0.1 0000.10 (zero-filled)

654321.12 4321.12 (digits are truncated)

654321 4321.00 (digits are truncated)

1234.567 1234.56 (figure is NOT rounded up to 1234.57)

14

If you were to display COST-OF-ITEM it would appear as 123456 since the decimal point is assumed, not actual. For the
purposes of printing or displaying a number you would need to actually show where decimal point is. You may also wish
to avoid having a long string of zeros in front of a number and have spaces used instead. So the number would first have
to be moved into an outputing item...well have a look at the small program below (don't worry too much about any of the
commands used in the procedure division, although they're pretty self explanatory):

� the VDU will then diplay:
£ 22.80 in total

� The program gives values to COST-OF-ITEM and NUMBER-OF-ITEMS (lines 180 &
190) and multiples them to give TOTAL-COST (line 200).

� This result of this calculation is then moved to TOTAL-COST-OUT (line 210).
� Line 140 has a PIC description 'ZZZZ9.99'. The Z means 'zero-supression' where

spaces are added instead of zeros. This means that you would not be allowed to
perform arithemic functions on TOTAL-COST-OUT since it now contains
alphanumeric data (i.e. spaces). Also, an actual decimal point (i.e. a full stop) is
used in place of the 'V'

� You could actually write in line 200: COMPUTE TOTAL-COST-OUT = COST-OF-
ITEMS * NUMBER-OF-ITEMS. Here the result of the calculation is put straight into
TOTAL-COST-OUT, but no further calculations could be performed on the result.

You'll notice that there is a gap (of 2 spaces) between the '£' sign and the actual number in the displayed output.
To avoid this when using '£' or '$' signs (well COBOL is a business language), you can zero-suppress as follows:

000140 01 TOTAL-COST-OUT PIC ££££9V99.

the VDU will then display:
£22.80 in total

000010 IDENTIFICATION DIVISION.

000020

000030 PROGRAM-ID. DATA-MOVING-PROG.

000040 AUTHOR. TRP BROWN.

000050

000070 DATA DIVISION.

000080

000090 WORKING-STORAGE SECTION.

000100 01 COST-OF-ITEM PIC 9(4)V99.

000110 01 NUMBER-OF-ITEMS PIC 99.

000130 01 TOTAL-COST PIC 9(5)V99.

000140 01 TOTAL-COST-OUT PIC Z(4)9.99.

000150

000160 PROCEDURE DIVISION.

000170 MAIN-PARAGRAPH.

000180 MOVE 4.56 TO COST-OF-ITEM

000190 MOVE 5 TO NUMBER-OF-ITEMS

000200 COMPUTE TOTAL-COST =

000205 COST-OF-ITEMS * NUMBER-OF-ITEMS

000210 MOVE TOTAL-COST TO TOTAL-COST-OUT

15

If you want nothing in a field when printing a value that is zero then use BLANK WHEN ZERO:

000140 01 PRINT-VALUE PIC Z(5)9V99 BLANK WHEN ZERO.

the VDU will then display: ...er nothing...

More Data Editing

Signed data needs to be able to indicate whether it is a positive or negative number. An item may have a
definition:

01 DATA-VALUE-1 PIC S999.

'S' indicates that the data is signed and so allows for negative values to be stored. If data is being entered from a
keyboard say, as -201, into DATA-ITEM-2, the computer needs to be told that the first character is a sign:

01 DATA-VALUE-2 PIC S999 SIGN LEADING SEPARATE.

This would be suitable for a item into which "-201" can be entered. Here 'SIGN LEADING SEPARATE' indicates
that a + or - occurs immediately before the number (you can also have 'SIGN TRAILING SEPARATE'). The
important feature is the 'S' prior to the 999 (irrespective of leading or trailing signs).

For output, the sign can be maniputed to show signs and zero-suppress using a 'floating sign'. Look at the
following examples:

The last two examples in the table show how the sign can be moved to the other end of the number when SIGN
LEADING/TRAILING SEPARATE is used.

Some characters can be inserted into numbers, these being SPACE, SOLIDUS, ZERO (using 'B' '/' and '0'
respectively):

Adding a solidus can be useful for printing the date (which can be obtained directly from the computer in the form

Sending field Receiving field

Description (PIC) Contents Description (PIC) Contents

S999 -21 S999 -021

S999 -21 --99 -21

S999 +21 --99 21

S999 -21 ++99 -21

S999 +21 ++99 +21

S999 SIGN LEADING SEPARATE -347 999+ 347-

S999 SIGN TRAILING SEPARATE 347- -999 -347

Sending field Receiving field

Description (PIC) Contents Description (PIC) Contents

99999 12345 99B9B99 12 3 45

99999 12345 9909099 1203045

999999 170568 99/99/99 17/05/68

16

of yymmdd [you have to switch the order around first]). I can only assume that adding zeros to a number is for
fraudulent purposes.

Redefining Data

It is sometimes useful to be able to have data that can be defined as either numeric or alphanumeric. This is
done by redefining the data. One way is implicit redefinition:

01 DATA-ITEM-X.

03 DATA-ITEM-1 PIC 99.

Although DATA-ITEM-X and DATA-ITEM-1 refer to the same area of memory storage, the level 03 item is
numeric. However, group items are always alphanumeric and as a result, if you moved the number 25 into
DATA-ITEM-1, you could use DATA-ITEM-X as an alphanumeric item containing the literal "25".

Explicit redefinition uses the verb REDEFINES so that you could do this:

01 DATA-ITEM-X.

03 DATA-ITEM-1 PIC 99.

03 DATA-ITEM-2 REDEFINES DATA-ITEM-1 PIC XX.

REDEFINES cannot be used for level 01 items and can only redefine items on the same level.

Another use for REDEFINES is to offer an alternative PIC desciption for the same data group:

01 DATE-TODAY.

03 UK-DATE.

05 UK-DAY PIC 99.

05 UK-MONTH PIC 99.

05 UK-YEAR PIC 99.

03 JULIAN-DATE REDEFINES UK-DATE.

05 JUL-YEAR PIC 99.

05 JUL-DAY PIC 999.

� UK date format is ddmmyy while Julian date format is yyddd (i.e. nth day of the
year)

� You could move (depending on the type of date given) the date into either UK-
DATE or JULIAN-DATE and later in the program call the date using DATE-
TODAY

� JULIAN-DATE has one less 9 than UK-DATE. The computer will simply space-
fill the unused byte.

4.3 Initializing Data

During a program run it is often necessary to reset an item, or group of items, back to zero (or other value), or

17

back to a certain literal. Often the program requires data to be set at a certain value (or set literal) at the
beginning of a run. For example, an item may be used to count the number of records that have been read by
the program. each time this has occurred the line:

COMPUTE REC-COUNT = REC-COUNT + 1

Obviously, the first time REC-COUNT is encountered, it would need to have a
value (probably zero). This could be acheived in the data division:

01 REC-COUNT PIC 9(4) VALUE ZERO.

Alternatively, early in the procedure division, the command

MOVE ZERO TO REC-COUNT

would have the same effect. If, however, you wished to set a group of items to zero
(to zeroize) and/or set other alphanumeric items in that group to spaces then you
could use the INITIALIZE verb. For example:

000200 DATA DIVISION.

000210 WORKING-STORAGE SECTION

000220 01 DATA-GROUP.

000230 03 REC-COUNTER PIC 9(4).

000240 03 REC-TYPE PIC X(2).

000250 03 REC-DATE PIC 9(6).

000260 03 FILLER PIC X(14) VALUE 'Record details'.

And in the procedure division:

000400 INITIALIZE DATA-GROUP

The effect of this will be that whatever the contents of any of the level 03 items prior
to the initialize statement REC-COUNTER will now contain zero, as will REC-DATE,
and REC-TYPE will contain spaces. However, FILLER (the last item), is actually a
reserved word and refers to an used area. The word 'FILLER' can actually be
omitted (i.e. 01 PIC X(14) VALUE 'Record details'.). As you will see in the
Printing/writing data part of the next section, a literal can be assigned to this.
Following initialization the filler will remain unchanged (and not space-filled).

ZingCOBOL Copyright Timothy R P Brown 2003

18

5. Defining Data Part 2

5.1 Printing/writing data
5.2 Tables
5.3 Boolean Data
5.4 HIGH-VALUES and LOW-VALUES

How data is prepared for printing or for writing to a file is largely controlled by how it is defined in the data division. This
section also describes how tables (aka arrays in other languages) are defined and used in COBOL. The definition and use of
Boolean data (i.e. true or false) is discussed too.

5.1 Printing and Writing Data

The specific commands used for printing or writing data are given in the Commands and logic sections. Much of how that
data will look, such as in a report, is defined in the data division.

The following code is taken from a full program given in the Sample code section should illustrate how a printed report is
defined in the data division. If writing to a file it would be virtually identical (see Sample code section for an example of this).

If you wished to print a report in the form of a table then you would first have to assign an identifier name to the printer in the
environment division using the select clause.

000110 ENVIRONMENT DIVISION.

000120 INPUT-OUTPUT SECTION.

000130 FILE-CONTROL.

000140

:

000210 SELECT PRINT-FILE ASSIGN TO PRINTER.

000220

000230

000240 DATA DIVISION.

000250 FILE SECTION.

:

000580 FD PRINT-FILE.

000590 01 REPORT-OUT PIC X(80).

:

000630 WORKING-STORAGE SECTION.

000640

:

001040 01 PRINT-HEADERS.

001050 03 P-TITLE.

001060 05 P-TITLE-TXT PIC X(49) VALUE

001070 ' Batch Control Program - Error Report. Page:'.

001080 05 P-PAGE-NO PIC Z9 VALUE ZERO.

001090 03 COL-HEAD-1 PIC X(31)

001100 VALUE ' PART CUST/ DATE QUANT'.

001110 03 COL-HEAD-2 PIC X(24)

001120 VALUE ' NO SUP NO SUP/REC'.

001130

001140 01 PRINT-LINE.

001150 03 P-PART-NO PIC X(8).

001160 03 PIC X VALUE SPACE.

001170 03 P-CUS-SUP-NO PIC X(6).

001180 03 PIC XX VALUE SPACES.

19

001190 03 P-DATE-S-D.

001200 05 P-DATE-1 PIC XX.

001210 05 PIC X VALUE '/'.

001220 05 P-DATE-2 PIC XX.

001230 05 PIC X VALUE '/'.

001240 05 P-DATE-3 PIC XX.

001250 03 PIC X VALUE SPACE.

001260 03 P-QUANT PIC Z(4)9.

001270

001280 01 P-FOOTER.

001290 03 TOT-REC-TXT PIC X(21)

001300 VALUE 'Total record number: '.

001310 03 P-REC-COUNT PIC ZZ9 VALUE ZERO.

001320

001330 01 P-BATCH-REC.

001340 03 BAT-TITLE PIC X(38)

001350 VALUE ' HASH TOTALS IN BATCH CONTROL RECORD'.

001360 03 BATCH-SOURCE PIC X(29) VALUE SPACES.

001370 03 P-BAT-CUS-SUPP.

001380 05 BAT-CUS-SUP PIC X(25)

001390 VALUE ' CUSTOMER/SUPPLIER NOS: '.

001400 05 BAT-C-S-N-TOT PIC Z(7)9.

001410 03 P-BAT-DATE.

001420 05 BAT-DATE PIC X(9)

001430 VALUE ' DATES: '.

001440 05 BAT-D-S-D-TOT PIC Z(7)9.

001450 03 P-BAT-QUANT.

001460 05 BAT-QUANT PIC X(14)

001470 VALUE ' QUANTITIES: '.

001480 05 BAT-Q-TOT PIC Z(7)9.

001490 03 P-BAT-PART.

001500 05 BAT-PART PIC X(12)

001510 VALUE ' PART NOS: '.

001520 05 BAT-P-N-TOT PIC Z(7)9.

:

� The printout would have the following format: [click here]
� The printer was assigned to PRINT-FILE (the FD level) with the level 01 called

REPORT-OUT
� There are four groups used to define each main part of the printout: PRINT-HEADERS

(for the title and column heads), PRINT-LINE (for the actual data from the records), P-
FOOTER (for the totals at the end of the table), and P-BATCH which appears after the
main table and lists various totals

� To define text, fillers are used with a VALUE of what the text is to be, e.g.

001090 03 COL-HEAD-1 PIC X(31)

001100 VALUE ' PART CUST/ DATE QUANT'.

This is the first line of the column header. COL-HEAD-2 giving the next line.
� Spaces between the titles done by defining a PIC X size that is larger then the text

since the extra spaces will be space-filled
� Spaces between data are acheived by the use of fillers with a VALUE SPACES for the

20

desired PIC X size.
� Data and strings to be printed are first moved to the appropriate item of the print group

and then the entire group is written to REPORT-OUT, which is defined as PIC X(80).
For example:

003220 MOVE PAGE-NO TO P-PAGE-NO

003230 WRITE REPORT-OUT FROM P-TITLE AFTER PAGE

Here the page number is moved to the P-TITLE sub-group member (of PRINT-
HEADERS) P-PAGE-NO. The following line effectively means:
MOVE P-TITLE TO REPORT-OUT
WRITE REPORT-OUT AFTER PAGE
(AFTER PAGE instructs the printer to start a new page)

� It is in the data groups involved in printing (or writing to a file) that data editing (such as
zero-supression) is performed

� By simply changing the ASSIGN PRINT-FILE TO 'PRINTER' to ASSIGN PRINT-FILE
TO 'report.txt' would be all that was required to produce the same report in a file called
'report.txt' and add ORGANIZATION IS LINE SEQUENTIAL. Although, the AFTER
PAGE and AFTER ... LINES would have no effect

5.2 Tables

Also known as an array in other languages, a table is a group of data associated with a single item name. To identify pieces
data (elements) within that table the item is given a subscript number which follows the name.

W-NAME (elements) Subscript

Smith 1

Jones 2

MacDoon 3

Walker 4

O'Leary 5

So, DISPLAY W-NAME (2) will give "Jones".

A 2-dimensional table uses two subscripts:

21

So element (2, 4) will contain "1.1".

To define the W-NAME (1-dimensional) table in the data division:

01 W-NAME PIC X(10) OCCURS 5 TIMES.

The word TIMES is optional. Also, the PIC clause can also be written after the OCCURS ...
clause.

To define the SALES-TABLE (2-dimensional) table, just add another level to the group. Hence:

01 SALES-TABLE.

03 BRANCH-NO OCCURS 4.

05 MONTHLY-SALES OCCURS 4 PIC 9V9.

Notice how only the top level 05 contains the PIC clause. Level 01 describes a whole table
made up of 4 items (level 03) containing 4 elements (level 05).

Table can be multi-dimensional, but always the last level will be the identifier name that is associated with the subscripts and
will have the PIC clause.

For the use of tables, see the League Table Program in the Sample Code section.

Finally, don't try to refer to a table element that is of a greater value than that defined in the data division, i.e. W-NAME (6)
will cause a runtime error and terminate the program. It should be obvious that a subscript should be a numeric literal or an
identifier that is numeric.

The use of identifiers as subscripts is where tables are of most use, i.e. MONTHLY-SALES (INPUT-BRANCH, INPUT-
MONTH).

22

5.3 Boolean Data

Boolean data is either TRUE or FALSE. These are data types are useful for flags for so-called condition-name conditions
(see Commands and Logic section).

A simple example:

000100 IDENTIFICATION DIVISION.

000110 PROGRAM-ID. NUMBER-SIZE-PROG.

000120 AUTHOR. TRP BROWN.

000130

000140 DATA DIVISION.

000150 WORKING-STORAGE SECTION.

000160 01 NUMBER-SIZE PIC X.

000170 88 BIG-NUMBER VALUE 'Y'.

000180

000190 77 DATA-NUMBER PIC 9(6).

000200

000210

000220 PROCEDURE DIVISION.

000230 INPUT-NUMBER-PARAGRAPH.

000240 MOVE 'N' TO NUMBER-SIZE

000250 ACCEPT DATA-NUMBER

000260 IF DATA-NUMBER > 1000

000270 THEN MOVE 'Y' TO NUMBER-SIZE

000280 END-IF

000290 IF BIG-NUMBER

000300 THEN DISPLAY 'Thats a big number'

000310 ELSE DISPLAY 'Thats a little number'

000320 END-IF

000330 STOP RUN.

�

When then number entered (line 250) is greater than 1000 then a 'Y' character is moved
to the level 01 item NUMBER-SIZE. The effect of this is to give the level 88 item BIG-NUMBER
a TRUE condition. This is what level 88 is for in COBOL.

�

Line 240 initially sets BIG-NUMBER to false by moving an 'N' character into NUMBER-SIZE, although
any character (other than 'Y') would have the same effect.

� IF BIG-NUMBER THEN... is like saying "IF BIG-NUMBER is true THEN..."

Multiple level 88 can be set for a single group, or you can have more than one option that
will set the condition to true.

01 THIRTY-DAY-MONTHS PIC X VALUE SPACE.

88 SEPTEMBER VALUE 'S'.

88 APRIL VALUE 'A'.

88 JUNE VALUE 'J'.

88 NOVEMBER VALUE 'N'.

23

01 MONTHS-CHECK PIC X.

88 SHORT-MONTH VALUE 'S' 'A'

'J' 'N'

'F'.

01 GRADES-CHECK PIC 999.

88 A-GRADE VALUE 70 THRU 100.

88 B-GRADE VALUE 60 THRU 69.

88 C-GRADE VALUE 50 THRU 59.

88 FAIL-GRADE VALUE 0 THRU 49.

GRADES-CHECK uses THRU (or THROUGH) to allow a range of numeric values to be tested.

SET

A useful verb to use is SET. Rather than having to use the line:

MOVE 'Y' TO NUMBER-SIZE

as in the code example above, you can simply set the boolean variable to true by coding:

SET BIG-NUMBER TO TRUE

This means that you don't have to worry about what the value of the level 01 item has to be
in order to make the associated level 88 to be true (notice that it is the level 88 item
name that is set to true and NOT the level 01 item). Of course, you might also code

SET BIG-NUMBER TO FALSE.

5.4 HIGH-VALUES and LOW-VALUES

There are occasions when you may wish to set a variable to an infinitely high or infinitely
low number. For example, suppose you were merging two files on surnames as the primary key:

*in data division FILE SECTION

FD FILE-1.

01 RECORD-1.

03 IN-NAME-1 PIC X(20).

03 FILLER PIC X(50).

24

FD MERGE-FILE.

01 RECORD-OUT PIC X(70).

:

:

PERFORM WITH TEST AFTER EOF-FLAG-1 AND EOF-FLAG-2

*loop until each file has been read to completion

*read each file

READ FILE-1

AT END SET EOF-FLAG-1 TO TRUE

MOVE HIGH-VALUES TO IN-NAME-1

END-READ

READ FILE-2

AT END SET EOF-FLAG-2 TO TRUE

MOVE HIGH-VALUES TO IN-NAME-2

END-READ

*sort the records (assuming no 2 names are the same)

*on ascending surname

IF IN-NAME-1 IS < IN-NAME-2 THEN

WRITE RECORD-OUT FROM RECORD-1

ELSE

WRITE RECORD-OUT FROM RECORD-2

END-IF

END-PERFORM

In this example, when IN-NAME-1 is less than IN-NAME-2 (based on their ASCII values e.g. A < B etc..)
then the FILE-1 record (RECORD-1) is written to the merge file (RECORD-OUT). One of FILE-1 and FILE-2
will come to an end before the other so the completed file has its IN-NAME-_ value set to constant that will
ALWAYS be greater than the IN-NAME-_ value still being read, ensuring all remain files are written to the
merge file. This is done with the lines: MOVE HIGH-VALUES TO IN-NAME-1 and MOVE HIGH-VALUES TO IN-NAME-2

It is important to note that HIGH-VALUES and LOW-VALUES are ALPHANUMERIC in type, so you can't
set numerically defined variables to this type (you would have to
implicitly redefine the variable first). This is an annoying quirk of COBOL.

ZingCOBOL Copyright Timothy R P Brown 2003

25

6. Commands and Logic

6.1 ACCEPT and DISPLAY
6.2 MOVE
6.3 PERFORM
6.4 IF..THEN..ELSE
6.5 Conditions
6.6 EVALUATE
6.7 Arithmetic
6.8 Strings
6.9 WRITE
6.10 Scope Terminators

Many of the commands described in this section have already been used in earlier sections but here their
description will be shown alongside related commands, clauses and verbs. It should be noted that a command
probably is a verb, while a clause is a collection of COBOL words without a verb...something like that...

6.1 ACCEPT and DISPLAY

To enter data via the console during a program run, use the ACCEPT verb, e.g:
ACCEPT W-DATA-IN

To display data on the console during a run use the DISPLAY verb, i.e:
DISPLAY W-DATA-OUT

To place text with the outputed data you would code:
DISPLAY 'Inputed data is ' W-DATA-OUT

6.2 MOVE

The format is:

The MOVE statement has already been extensively used in the examples in the Defining Data section. A couple of
features have not been described yet: CORRESPONDING (abreviation CORR) and the qualification OF or IN. The
elipsis (...) means more of the same, i.e. above [identifier-2] [identifier-3] [identifier-4]...and so on.

To move a group of items from one field description to another:

03 DATE-IN.

05 W-DAY PIC 99.

05 W-MONTH PIC 99.

05 W-YEAR PIC 99.

:

03 DATE-OUT.

05 W-DAY PIC 99.

05 PIC X VALUE '/'.

05 W-MONTH PIC 99.

05 PIC X VALUE '/'.

05 W-YEAR PIC 99.

MOVE [literal-1 or identifier-1] TO [identifier-2] ...

26

If you were to code: MOVE DATE-IN TO DATE-OUT you would end up with the 6 characters of DATE-IN appearing
in the first 6 positions of DATE-OUT, including over-written fillers. To get the contents of W-DAY of DATE-IN into W-
DAY of DATE-OUT (and the same for the other two items) you could either move them individually, or you could
simply code: MOVE CORRESPONDING DATE-IN TO DATE-OUT. To do this the items must have the same name
spelling and must be of the same level (here they are both level 03). They don't have to be in the same level 01
group.

Of course, this does present the programmer with a potential problem, this being that if elsewhere in the program
you were to code, say, ADD 12 to W-MONTH, the compiler would report a syntax error since it W-MONTH appears
twice in the data division and doesn't know which one you mean. To remedy this, you have to qualify the item, i.e.
state which group W-MONTH you mean, i.e. :

MOVE 12 TO W-MONTH IN DATE-OUT.

You could use the word OF instead of IN here to the same effect.

Reference modification

To access specific characters within a string you can use a reference modifier.

STRING-ITEM (startPosition:Length)
The start position is the nth character of the STRING-ITEM. For MicroFocus compilers at least, the length can be
omitted if you want all characters to the end of the string. e.g.

WORKING-STORAGE SECTION.

01 STRING-1 PIC X(10) VALUE 'ABCDEFGHIJ'.

01 STRING-2 PIC X(10) VALUE SPACES.

01 STRING-3 PIC X(10) VALUE SPACES.

01 STRING-4 PIC X(10) VALUE SPACES.

01 STRING-5 PIC X(10) VALUE SPACES.

01 STRING-6 PIC X(10) VALUE SPACES.

:

:

in procedure division:

MOVE STRING-1(2:6) TO STRING-2

MOVE STRING-1(1:9) TO STRING-3

MOVE STRING-1(6) TO STRING-4

MOVE STRING-1(5:1) TO STRING-5

MOVE STRING-1(3:3) TO STRING-6

Then:
STRING-2 will contain characters 2 to 6, i.e. : "BCDEFG "
STRING-3 will contain characters 1 to 9, i.e. : "ABCDEFGHI "
STRING-4 will contain characters 6 to the end of STRING-1, i.e. : "FGHIJ "
STRING-5 will contain character 5 only, i.e. : "E "
STRING-6 will contain characters 3 to 5, i.e. : "CDE "

6.3 PERFORM

The PERFORM verb is one of the most important in COBOL (alongside MOVE). PERFORM has already been
encountered in the Four Divisions section, where it was used to call paragraphs from within a control paragraph. Of
course, it doesn't have to be a control (or main) paragraph.

000290 PROCEDURE DIVISION.

27

000300 XYZ-PARAGRAPH.

000310 PERFORM FIRST-PROCESS

000320 PERFORM SECOND-PARAGRAPH

000330 STOP RUN.

:

002000 FIRST-PROCESS.

002010 [statements]

: [last statement].

In the above code, the paragraph FIRST-PROCESS is executed. When the full stop at the end of this paragraph is
encountered the logic will return to XYZ-PARAGRAPH at the next line, i.e. line 320. This is called an Out-of-Line
PERFORM.

The PERFORM verb can form the bases of a repetitive loop (or sub-routine) until a certin condition has been met.
For Example:

:

000290 PROCEDURE DIVISION.

000300 XYZ-PARAGRAPH.

000310 PERFORM COUNT-PROCESS UNTIL W-COUNTER > 10

000320 STOP RUN.

001000

002000 COUNT-PROCESS.

002010 COMPUTE W-COUNTER = W-COUNTER + 1

002020 DISPLAY 'Number of loops is ' W-COUNTER.

In the above code, COUNT-PROCESS is executed until the value of W-COUNT has reached 11.
The format for an Out-of-Line PERFORM is:

An In-Line PERFORM, rather than execute a paragraph (aka procedure), allows for the repeated execution of a
series of commands. The format for an In-Line PERFORM is:

Example:

:

000290 PROCEDURE DIVISION.

000300 XYZ-PARAGRAPH.

000305 MOVE ZERO TO W-COUNTER

000310 PERFORM UNTIL W-COUNTER > 10

000320 COMPUTE W-COUNTER = W-COUNTER + 1

000330 DISPLAY 'This is loop number: ' W-COUNTER

PERFORM [paragraph-name] UNTIL [condition]

PERFORM UNTIL
{action}...
END-PERFORM

28

000340 END-PERFORM

000350 DISPLAY 'Counter is now equal to: ' W-COUNTER

000360 STOP RUN.

END-PERFORM defines the scope of the PERFORM loop, and is a Scope terminator. Other such scope
terminators exist for other commands that will be described further on. The code above will loop 11 times (showning
numbers 1 to 11). This is because when W-COUNTER is equal to 10, the condition (W-COUNTER) is still false. 1 is
then added, and W-COUNTER is displayed as 11, and now when W-COUNTER is tested the condition will be true
and the logic will then jump to the statement that immediately follows END-PERFORM.

This type of PEFORM tests the condition before the following statements are allowed to proceed. Using WITH
TEST can be used to define when the test is done:

:

000290 PROCEDURE DIVISION.

000300 XYZ-PARAGRAPH.

000305 MOVE ZERO TO W-COUNTER

000310 PERFORM WITH TEST AFTER UNTIL W-COUNTER > 10

000320 COMPUTE W-COUNTER = W-COUNTER + 1

000330 DISPLAY 'This is loop number: ' W-COUNTER

000340 END-PERFORM

000350 DISPLAY 'Counter is now equal to: ' W-COUNTER

000360 STOP RUN.

Now the condition is tested after the commands within the PERFORM..END-PERFORM loop has be executed
once. (WITH TEST BEFORE has same effect as initial example).

If you wanted to loop a desired number of times you could use TIMES

PERFORM 5 TIMES

COMPUTE W-NUMBER = XYZ * 3

END-PERFORM

The format is:

To have a loop using an increment (such as a 'for..do' loop in Pascal or FOR in BASIC), the PERFORM VARYING
statement is used.
The Format is:

PERFORM {identifier or literal} TIMES
{action}...
END-PERFORM

PERFORM {paragraph-name if out-of-line} VARYING {identifier-1}

FROM {identifier-2 or literal} BY {identifier-3 or literal}
UNTIL {condition}
END-PERFORM

29

What does all that mean? Well look at the example:

:

000290 PROCEDURE DIVISION.

000300 XYZ-PARAGRAPH.

000310 PERFORM VARYING W-COUNTER FROM 1 BY 2

000320 UNTIL W-COUNTER > 10

000330 DISPLAY 'This is loop number: ' W-COUNTER

000340 END-PERFORM

000350 DISPLAY 'Counter is now equal to: ' W-COUNTER

000360 STOP RUN.

This code will display:

This is loop number: 1

This is loop number: 3

This is loop number: 5

This is loop number: 7

This is loop number: 9

Counter is now equal to: 11

This because with each loop, W-COUNTER has increased from 1 by increments of 2. When W-COUNT was equal
to 11 then the condition W-COUNTER > 10 is now true and so the loop is exited. If you wanted to count downwards
you could code:

PERFORM VARYING W-COUNTER FROM 20 BY -1
UNTIL W-COUNTER < ZERO.

The last thing to mention is PERFORM..THRU. If a program had a series of paragraphs, just for the sake of
argument, called PROCESS-1, PROCESS-2, PROCESS-3 and PROCESS-4, then if you wished to execute these
paragraphs in the order that they are written you could code: PERFORM PROCESS-1 THRU PROCESS-4 with any
out-of-line loops and conditions you might want. Seemingly, this is not good programming practise so is generally
avoided.

6.4 IF..THEN..ELSE

Another fundamental part of programming logic is the ability to offer a choice of what to do that depends on the
conditions asked of. (I'm not sure that makes any sense...). The format is:

An example:

IF X = Y THEN

MOVE 1 TO Y-COUNTER

ELSE

MOVE 1 TO X-COUNTER

END-IF

IF {identifier-1} {condition} {identifier-2 or literal} ...

THEN {statements}
[ELSE {statements}]
END-IF

30

ELSE is used if an alternative statement is to be executed if the first condition is false. If there was only to be action
if X = Y then the ELSE would be ommitted.

The END-IF terminates the IF statement. All that lies between IF and END-IF will depend on the conditions being
tested.

Multiple conditions can be tested, i.e. IF (X = Y) AND (Y < 100) THEN ..

The types of conditions available are described in the following section..

6.5 Conditions

There are four types of conditions that could be tested either in a PERFORM, IF..THEN, or EVALUATE (see next
section), these being:

1. Class conditions

2. Relational conditions

3. Sign conditions

4. Condition-name conditions

Class conditions test where an item is NUMERIC, ALPHABETIC, ALPHABETIC-LOWER, or ALPHABETIC-
HIGHER (as in lower or upper case).

Relational conditions allow comparisons, i.e: GREATER THAN, LESS THAN, EQUAL TO or their sign equivalent: "
> ", " < ", " = ", respectively.

Sign conditions test whether an item IS POSITIVE, IS NEGATIVE, or IS NOT ZERO. (note 'IS' is optional)

Condition-name conditions are as described in the Defining data (part 2) section, where a named condition is
defined in the data division using a level 88 description.

Conditions can be combined using AND, OR, AND NOT, OR NOT, and brackets. The most common combinations
would probably be GREATER THAN OR EQUAL TO and LESS THAN OR EQUAL TO, which can simply be written
>= and <= respectively. Also, NOT EQUAL TO would be <> although I find the Fujitsu compiler rejects '<>' so I just
use 'NOT = ' instead.

More complex combinations can be acheived with the use of brackets. eg.

IF (X > Y) AND ((Y + 10 < Z) OR (X - 10 > Z)) THEN ...

Remember:

[true] AND [false] = FALSE

[true] AND [true] = TRUE

[true] OR [false] = TRUE

[true] OR [true] = TRUE

NOT [true] = FALSE

NOT [false] = TRUE

Alpha-numeric comparisons can also be made that relate to their ASCII character value, so 'A' < 'Z' etc...

The SET verb is quite useful when working with boolean items and has been discussed in the previous section.

31

6.6 EVALUATE

If there are a large number of conditional alternatives, then using a large number of nested IF statements can be
messy:

IF A = 1 THEN PERFORM PARA-1

ELSE

IF A = 2 THEN PERFORM PARA-2

ELSE

IF A = 3 THEN PERFORM PARA-3

ELSE

IF A = 4 THEN PERFORM PARA-4

END-IF

END-IF

END-IF

END-IF

The above example only tested four possible values for 'A'. Suppose there were ten or twenty? This is where the
EVALUATE statement is of great use. The format is:

The best way to understand this is to look at the following examples:

Example 1.

EVALUATE W-NUM

WHEN 1 MOVE 10 TO NEW-DATA

DISPLAY 'NEW-DATA IS 10'

WHEN 2 MOVE 20 TO NEW-DATA

DISPLAY 'NEW-DATA IS 20'

WHEN 3 MOVE 30 TO NEW-DATA

DISPLAY 'NEW-DATA IS 30'

WHEN OTHER MOVE ZERO TO NEW-DATA

DISPLAY 'NEW-DATA IS 0'

END-EVALUATE

Example 2.

{ identifier-1 } { identifier-2 }

{ literal-1 } { literal-2 }

EVALUATE { expression-1 } ALSO { expression-2 }

{ TRUE } { TRUE }

{ FALSE } { FALSE }

WHEN {statement-1}...

WHEN OTHER {statement-2}...

END-EVALUATE

32

EVALUATE SCORE

WHEN 0 THRU 49 MOVE 'FAIL' TO W-GRADE

WHEN 50 THRU 59 MOVE 'C' TO W-GRADE

WHEN 60 THRU 69 MOVE 'B' TO W-GRADE

WHEN OTHER MOVE 'A' TO W-GRADE

END EVALUATE

Example 3.

EVALUATE (FUEL-TYPE = 'PETROL') ALSO (ENGINE-SIZE > 1.1)

WHEN TRUE ALSO TRUE

DISPLAY '20% PETEROL DUTY TO PAY'

WHEN TRUE ALSO FALSE

DISPLAY '10% PETROL DUTY TO PAY'

WHEN FALSE ALSO TRUE

DISPLAY '15% DIESEL DUTY TO PAY'

WHEN FALSE ALSO FLASE

DISPLAY '5% DIESEL DUTY TO PAY'

END-EVALUATE

Example 1 shows how an item (W-NUM) is compared to a set of possibilities, and when true, any number of
statements can be executed. Example 2 shows how a range of values can be studied using the THRU clause. Care
should be taken to ensure that these ranges do not overlap. Both of these examples use WHEN OTHER. Again,
care should be taken: in example 2, as it is coded, a score of -1 would result in an A-grade being awarded. A better
coded solution would include:

:

WHEN 70 THRU 100 MOVE 'A' TO W-GRADE

WHEN OTHER DISPLAY 'ERROR. SCORE NOT VALID'

END EVALUATE

Now, when SCORE is less then zero (or greater than 100) an error message will be displayed.

6.7 Arithmetic

To perform arithmetic calculations there are two ways of going about doing this: using the ADD, SUBTRACT,
MULITPLY, DIVIDE verbs, or using the COMPUTE verb as seen already. The formats for the first group are as
follows: [square brackets indicate optional words]

Examples:

ADD NUM-A TO NUM-B GIVING NUM-TOTAL-1

ADD NUM-A, 20 TO NUM-B GIVING NUM-TOTAL-2

ADD 3 TO NUM-TOTAL-3

When the word GIVING is not used (as in the third example) the identifier that follows 'TO' is where the result of the
addition. This also applies to SUBTRACT and MULTIPLY. ON SIZE ERROR is a conditional, whereby if the result

ADD {identifier-1 or literal}... TO {identifier-2 or literal}...

[GIVING {identifier-3}]
[NOT] [ON SIZE ERROR {statements}]

[END-ADD]

33

of the calculation is larger than the PIC description (i.e. the result is truncated either at the leading end or the
decimal places). On such an occasion a series of statements can be executed. The use of ON SIZE ERROR
means that a scope terminator is required (END-ADD). The second example adds both NUM-A and 20 to NUM-B.

Examples:

SUBTRACT 200 FROM NUM-C GIVING NUM-D

ON SIZE ERROR DISPLAY 'NUM-D is out of range'

END-SUBTRACT

SUBTRACT NUM-F FROM 20 ** this won't work! **

The second example is illegal because, in the absence of a receiving identifier after GIVING, the result of the
subtraction has nowhere to go (20 is a literal). The same would apply to ADD and MULTIPLY.

Examples:

MULTIPLY NUM-G BY 20 GIVING NUM-F

MULTIPLY 20 BY NUM-G

Examples:

DIVIDE NUM-H BY 3 GIVING NUM-I REMAINDER NUM-REMAIN

DIVIDE NUM-Y BY 3 GIVING NUM-K ROUNDED

The DIVIDE statement differs from the previous 3 in that GIVING is required. Also, the remainder of the division
(e.g. 7 divided by 3 equals 3 remainder 1) can be stored in an identifier. The ROUNDED option, which is also
available for the MULTIPLY statement, will round to the nearest significant decimal place, defined by the PIC
clause. E.g.:

000100 77 NUM-A PIC 99 VALUE 10.

000200 77 NUM-B PIC 9V99.

:

002000 DIVIDE NUM-A BY 3 GIVING NUM-B

002010 ON SIZE-ERROR DISPLAY 'RESULT IS TRUNCATED'

002020 END-DIVIDE

002030

002040 DIVIDE NUM-A BY 3 GIVING NUM-B ROUNDED

002050 ON SIZE-ERROR DISPLAY 'RESULT IS TRUNCATED'

002020 END-DIVIDE

SUBTRACT {identifier-1 or literal}... FROM {identifier-2 or literal}...

[GIVING {identifier-3}]
[NOT] [ON SIZE ERROR {statements}]

[END-SUBTRACT]

MULTIPLY {identifier-1 or literal}... BY {identifier-2 or literal}...

[GIVING {identifier-3}][ROUNDED]
[NOT] [ON SIZE ERROR {statements}]

[END-MULTIPLY]

DIVIDE {identifier-1 or literal} BY {identifier-2 or literal}...
GIVING {identifier-3} [ROUNDED] [REMAINDER {identifier-4}]
[NOT] [ON SIZE ERROR {statements}]

[END-DIVIDE]

34

The first DIVIDE statement will result in a size error (20 / 3 = 6.66666..) as NUM-B will contain 6.66 but will have
truncated the rest. This does not apply to the second DIVIDE statement since it has been rounded to fit the pic
description 9V99, and so in this case NUM-B will contain 6.67.

Examples:

DIVIDE 3 INTO NUM-Y GIVING NUM-K ROUNDED

This differs from the previous DIVIDE statement only in the order of numerator and denominator (both mean NUM-
Y / 3).

COMPUTE

As previously seen in earlier sections, COMPUTE can be used to do arithmetic calculations. The format is:

with the operations:

Note that brackets need to be used for complex calculations where signs have presidence over each other, for
example: 2 + 3 * 2 equals 8 (and not 10) since 3 * 2 is calculated before the addition. Remember your school maths
lessons (BROMDAS or something).

6.8 Strings

STRING

STRING will move a series of strings into a destination string (from left to right without space filling). If the
destination string is not large enough to hold all the source strings then this can be detected and acted on by the
ON OVERFLOW condition. The DELIMITED word specifies the source string characters to be used:

DIVIDE {identifier-1 or literal} INTO {identifier-2 or literal}...
GIVING {identifier-3} [ROUNDED] [REMAINDER {identifier-4}]
[NOT] [ON SIZE ERROR {statements}]

[END-DIVIDE]

COMPUTE {identifier-1} [ROUNDED] = arithmetic expression
[NOT] [ON SIZE ERROR {statements}] [END-COMPUTE]

+ add
- subtract
* multiply
/ divide
** to the power of

STRING {identifier-1 or literal-1} DELIMITED BY {identifier-2 or literal-2 or
SIZE}...

INTO {identifier-3}
ON OVERFLOW [statements]
NOT ON OVERFLOW [statements]

END-STRING

35

01 W-DAY PIC XXX VALUE 'MON'.

01 W-MONTH PIC XXX VALUE '5 '.

01 W-YEAR PIC XXXX VALUE '2000;'.

:

STRING W-DAY DELIMITED BY SIZE

'/' DELIMITED BY SIZE

W-MONTH DELIMITED BY SPACES

'/' DELIMITED BY SIZE

W-YEAR DELIMITED BY ';'

INTO DATE-STRING

END-STRING

The item DATE-STRING will contain "MON/5/2000".

UNSTRING

UNSTRING allows you to break up a string into small strings placed into new items:

01 W-LONG-STRING PIC X(50) VALUE 'Name;Address;Post Code'.

:

UNSTRING W-LONG-STRING DELIMITED BY ';'

INTO W-NAME COUNT IN CHARS-NAME

UNSTRING {identifier-1 or literal-1} DELIMITED BY {identifier-2 or literal-2 or
SIZE}...

INTO {identifier-3 COUNT IN identifier-4}...
TALLYING IN {identifier-5}
ON OVERFLOW [statements]
NOT ON OVERFLOW [statements]

END-UNSTRING

36

W-ADDRESS COUNT IN CHARS-ADDR

W-POST-CODE COUNT IN CHARS-PCODE

TALLYING IN NUM-STRINGS-OUT

END-UNSTRING

Here then string 'Name' will be placed into W-NAME, containing 4 characters, thus CHARS-NAME will contain the
value of 4. Likewise for W-ADDRESS ('Address') CHARS-ADDR (7) etc... Notice how the ; character has been lost.
Any character, including spaces can be used as a delimiter. TALLYING IN will count the number of items that were
filled by the UNSTRING operation, in this case NUM-STRINGS-OUT will contain the value 3. Lastly, the ON
OVERFLOW detects when each target of the UNSTRING operation has been used but there remains unused
characters in the source string, e.g. if W-LONG-STRING contained 'Name;Address;Post Code;Country'.

INSPECT

This form of INSPECT allows you to change characters within a string using the various options above.

Here the source string is inspected and a tally of the number of characters defined (using the subsequent options)
is held in {identifier-2}.

6.9 WRITE

To output data to the printer or to a file, the verb WRITE is used. It would be of the form:

For example:

000100 ENVIRONMENT DIVISION.

000200 INPUT-OUTPUT SECTION.

000300 FILE-CONTROL.

000400 ASSIGN PRINT-FILE TO PRINTER.

:

INSPECT {identifier-1} REPLACING CHARACTERS BY {identifier-2 or literal-1}
{BEFORE or AFTER} [INITIAL {identifier-3 or literal-2}]
{ALL or LEADING or FIRST} {identifier-4 or literal-3}
BY {identifier-5 or literal-4} {BEFORE or AFTER} INITIAL {identifier-6 or

literal-5}

INSPECT {identifier-1} TALLYING {identifier-2}
{BEFORE or AFTER} [INITIAL {identifier-3 or literal-2}]
{ALL or LEADING or FIRST} {identifier-4 or literal-3}
BY {identifier-5 or literal-4} {BEFORE or AFTER} INITIAL {identifier-6 or

literal-5}

WRITE {level 01 name of file/printer FD}

37

000500 DATA DIVISION.

000600 FILE SECTION.

000700 FD PRINT-FILE.

000800 01 P-DATA PIC X(80).

:

000900 WORKING-STORAGE SECTION.

001000 01 DATA-NUMBER PIC 9(6) VALUE 123456.

001100 01 PRINT-NUMBER PIC X(6).

:

010900*in procedure division

011100 MOVE DATA-NUMBER TO PRINT-NUMBER

011200 MOVE PRINT-NUMBER TO P-DATA

011300 WRITE P-DATA

To simplify things the word FROM can be used to save always having to first MOVE the data (PRINT-NUMBER)
into the printing item (P-DATA above). So, line 011200 and 011300 can simply be written as:

011100 WRITE P-DATA FROM PRINT-NUMBER

In addition to WRITE, the is also REWRITE and DELETE which are used to update records within files that have
been opened in I-O mode (see the following section). When using DELETE you must first read the record that is to
be deleted. Also, when deleting a record you refer to the FILE NAME rather than the record name:

000300 FD IN-FILE.

000400 01 CUST-RECORD.

000500 03 C-NAME PIC X(20).

000600 03 C-NUMBER PIC 9(6).

:

001000* in procedure division

001100 READ IN-FILE

001200 NOT AT END

001300 IF C-NUMBER = 123456 THEN

001400 DELETE IN-FILE

001500 ELSE MOVE C-NUMBER TO W-DATA-STORE

001600 END-IF

001700 END-READ

For details on the READ statement, see the following section

6.10 Scope Terminators

In the section COBOL basics I mentioned the full stop (period). This is what can be described as a scope terminator.
Many COBOL verbs have their own scope terminator, for example, END-IF, END-READ, END-PERFORM etc... The

38

purpose of a scope terminator is to define when a verb's scope (i.e. associated logic) is finished.

For example:

READ IN-FILE

AT END MOVE 'Y' TO EOF FLAG

NOT AT END

IF REC-IN = 'Z' THEN

PERFORM PROCEDURE-X

END-IF

END-READ

[more code]

In the above example END-READ defines the scope of the READ statement since there is a condition involved (AT
END of the file, or NOT AT END of the file), while END-IF defines then end of the IF condition, i.e. END-READ and
END-IF define their scope. Any code that follows the read statement will apply regardless of the READ condition
(which is what you would want in the above example). Without END-READ the subsequent code would only be
performed while NOT AT END is true: some nasty bugs could ensue! Things become even more scary if you forget
to use END-IF or END-PERFORM (especially when looping). There's a good chance the compiler might pick up the
error.

However, a period is also a scope terminator. You might also code:

READ IN-FILE

AT END MOVE 'Y' TO EOF FLAG

NOT AT END

PERFORM UNTIL REC-IN = 'A'

IF REC-IN = 'Z' THEN

PERFORM PROCEDURE-X.
END-PERFORM

[more code]

This would have the same effect as the first example (assuming the compiler doesn't complain). Some people do
use periods in place of END-IF etc (note: I'm not sure you allowed to replace END-PERFORM however). Problems
may arise when you forget to use a scope terminator somewhere and there's a period somewhere further down the
code then the compiler might just get confused.

It is important to realise that the period will terminate all ongoing conditions. So in the above example, the period
will act as both an END-IF, END-PERFORM and END-READ.

Look at this paragraph:

000090*this works, using period scope terminators

000100 PARAGRAPH-ABC.

000200 MOVE 0 TO N

000300 PERFORM UNTIL N > 10

000400 COMPUTE N = N + 1

000500 DISPLAY N.

000600

000700 PERFORM PROCEDURE-Y N TIMES

000800 PERFORM UNTIL END-OF-FILE

000900 READ IN-FILE

001000 AT END MOVE 'Y' TO EOF-FLAG

001100 NOT AT END

001200 ADD VALUE-FROM-RECORD TO N GIVING X.

001300

39

001400 END-PERFORM

001500 DISPLAY X.

In the first example, the code will display numbers 1 to 10. It will then perform PROCEDURE-Y 11 times. Finally,
the numbers coming from the IN-FILE (VALUE-FROM-RECORD) will be added to 11 giving X, which is then
displayed.

But what if we were to forget to put a period at the end of line 500?

000090*this has a syntax error

000100 PARAGRAPH-ABC.

000200 MOVE 0 TO N.

000300 PERFORM UNTIL N > 10

000400 COMPUTE N = N + 1

000500 DISPLAY N

000600

000700 PERFORM PROCEDURE-Y N TIMES.

000800 PERFORM UNTIL END-OF-FILE

000900 READ IN-FILE

001000 AT END MOVE 'Y' TO EOF-FLAG

001100 NOT AT END

001200 ADD VALUE-FROM-RECORD TO N GIVING X.

001300

001400 END-PERFORM

001500 DISPLAY X.

Now, the period on line 700 will terminate the scope of the PERFORM statement on line 300. This means that
PROCEDURE-Y gets performed 1+2+3+4+5+6+7+8+9+10+11 times (that's 66 times!). Oh dear.

In fact, when I tried to test these code fragments by compiling [on the Fujitsu COBOL v3] it complained
bitterly! The compiler was particularly bothered by the lack of END-PERFORMS.

I was taught to only use 2 periods in any paragraph: the first after the paragraph name, the second (and last) at the
end of the paragraph. So always use the verb's own scope terminator. More typing but less headaches in my
humble opinion. Here's what the above code would look like when following this advice:

000090*using just 2 periods

000100 PARAGRAPH-ABC.

000200 MOVE 0 TO N

000300 PERFORM UNTIL N > 10

000400 COMPUTE N = N + 1

000500 DISPLAY N

000600 END-PERFORM

000700 PERFORM PROCEDURE-Y N TIMES

000800 PERFORM UNTIL END-OF-FILE

000900 READ IN-FILE

001000 AT END MOVE 'Y' TO EOF-FLAG

001100 NOT AT END

001200 ADD VALUE-FROM-RECORD TO N GIVING X

001300 END-READ

001400 END-PERFORM

001500 DISPLAY X.

40

ZingCOBOL Copyright Timothy R P Brown 2003

Ahh...that's better...

41

7. File Handling

7.1 Reading and writing
7.2 REWRITE, DELETE and EXTEND
7.3 File organization
7.4 SORT and MERGE
7.5 Input and output procedures
7.6 File Status (error handling)

This section outlines how data can read from and written to files, how records are organized within a file and
how records can be manipulated (e.g. sorting, merging).

7.1 Reading and Writing

In order to either read, alter or create a new file, we must first open it (even if it doesn't even exist yet). In
doing so, a open mode must be defined. To simply read data from an existing file it would be opened in
INPUT mode. In this mode, the file is read-only and cannot be altered in any way.
If writing to new file, i.e. creating one (or overwriting an existing file so be careful) the new file would be
opened in OUTPUT mode. You cannot read data from a file opened in OUTPUT mode.
EXTEND mode allows for records to be added to the end of an existing file.
I-O mode is for input and output access to the file, such as when you wish to update a record, or delete a
record.

When a file is no longer required, the file needs to be closed again (using CLOSE). You can open and close a
file as often as you like during a program run, although bear in mind that each time you open a file the
computer will read from the first record onwards (in INPUT and I-O mode) or will overwrite in OUTPUT mode.

e.g.

OPEN INPUT DATA-1-FILE DATA-2-FILE

OUTPUT NEW-DATA-FILE

:

:

CLOSE DATA-1-FILE DATA-2-FILE NEW-DATA-FILE

READ

The READ statement will read the data from a file, taking precisely the data that is defined in the file
descriptor (FD) in the data division (file section) (see The Four Divisions section).
The format is:

Since a file would likely contain more than one record, the READ statement is often contained within a
PERFORM loop:

OPEN {INPUT or OUTPUT or I-O or EXTEND} {filename-1}...
{INPUT or OUTPUT or I-O or EXTEND} {filename-2}...

READ {FD filename}

AT END {statements}

NOT AT END {statements}

END-READ

42

IDENTIFICATION DIVISION.

PROGRAM-ID. READ-EXAMPLE.

AUTHOR ZINGMATTER.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

ASSIGN IN-FILE TO 'A:CUSTOMER.DAT'

ORGANIZATION IS LINE SEQUENTIAL.

ASSIGN PRINT-FILE TO PRINTER.

:

DATA DIVISION.

FILE SECTION.

FD IN-FILE.

01 CUSTOMER-DETAILS.

03 CUS-NAME PIC X(20).

03 CUS-NUM PIC 9(6).

FD PRINT-FILE.

01 PRINT-REC PIC X(60).

WORKING-STORAGE SECTION.

01 EOF-FLAG PIC X.

88 END-OF-IN-FILE VALUE 'Y'.

01 P-CUS-DETAILS

03 PIC X(5) VALUE SPACES.

03 P-NAME PIC X(25).

03 P-NUM PIC Z(5)9.

:

PROCEDURE DIVISION.

MAIN-PARAGRAPH.

OPEN INPUT IN-FILE

*"Prime" read

READ IN-FILE

AT END MOVE 'Y' TO EOF-FLAG

NOT AT END PERFORM PRINT-DETAILS

END-READ

*Main reading loop

PERFORM UNTIL END-OF-IN-FILE

READ IN-FILE

AT END MOVE 'Y' TO EOF-FLAG

NOT AT END PERFORM PRINT-DETAILS

END-READ

END-PERFORM

STOP RUN.

PRINT-DETAILS.

MOVE CUS-NAME TO P-NAME

MOVE CUS-NUM TO P-NUM

WRITE PRINT-REC FROM P-CUS-DETAILS AFTER 1 LINE.

43

� A record containing a customer name (CUS-NAME) and the customer
number (CUS-NUM) are read from a file customer.dat assign to IN-FILE.

� The file is opened for INPUT (i.e. read-only).
� The "prime read" refered to in the comment is the initial read of IN-FILE that

allows for the possibility that the file contains no records.
� The AT END clause tests for the end of file condition. When true, a series of

statements can then be executed. Likewise, the NOT AT END clause allows
for a series of statements to be executed when this condition is true. In the
above example, when the file contains no more records (i.e. is at the end of
the file) 'Y' is moved to EOF-FLAG, thereby making the condition name
condition (END-OF-IN-FILE) true. When not at the end of the file, a record is
read into memory and the paragraph PRINT-DETAILS is executed.

� The statements between PERFORM UNTIL... and END-PERFORM are
executed until the END-OF-IN-FILE condition is true (when the AT END of
the read statement is true).

If you want to place data from a record into an item in WORKING-STORAGE (in addition to the memory
space already allocated to the same data defined in the data division - so not much call for it), then use
READ ... INTO. i.e:

READ IN-FILE INTO W-RECORD-IN

7.2 REWRITE, DELETE, and EXTEND

In order to ammend a record in a file, such as to update data (see League Table Program in sample programs
section), to delete a record altogther, or to add a record to the end of a file, you can use REWRITE, DELETE
or EXTEND, respectively. However, to use REWRITE or DELETE you must open the file using I-O mode.
Also, DELETE can only be used on files with RELATIVE or INDEXED organization (see example below).

RELATIVE and INDEXED files are discussed in the following section (File Organization).

The format of the DELETE statement is:

DELETE filename
ON INVALID KEY

{statements}
NOT ON INVALID KEY

{statements}
END-DELETE

ON INVALID KEY means the record was not found, so you might want to display an error message
e.g. DISPLAY 'RECORD NOT FOUND'

To REWRITE you can refer to the level 01 name to change the record with the ammended field:

FD IN-FILE

01 RECORD-IN.

03 IN-NAME PIC X(20).

03 IN-ADDRESS PIC X(60).

PROCEDURE DIVISION.

MAIN-PARAGRAPH.

44

:

OPEN I-O IN-FILE

:

READ IN-FILE

IF IN-NAME = 'BILLY NOMATES' THEN

MOVE 'JIMMY MOREPALS' TO IN-NAME

REWRITE RECORD-IN

ELSE

DISPLAY IN-NAME

END-IF

:

To EXTEND you must open the file in EXTEND mode:

OPEN EXTEND IN-FILE

:

DISPLAY 'Type in new name'

ACCEPT NEW-NAME

MOVE NEW-NAME TO IN-NAME

EXTEND IN-FILE

DISPLAY 'Type in new address'

ACCEPT NEW-ADDRESS

MOVE NEW-ADDRESS TO IN-ADDRESS

EXTEND IN-FILE

:

Here is a sample program that deletes a record from an INDEXED file using the DELETE statement, followed
by deletion of a record that does not use the DELETE statement but writes the whole file (less the record to be
deleted) to a temporary file. The program asks for a six digit code that identifies the record to be removed
from the file. If you want to try this program then you'll need to create a couple of test files: TESTDATA1.DAT
and TESTDATA2.TXT.

TESTDATA1.DAT needs to be an indexed file. To create this you'll need to compile and run the Create
INDEXED file program and Read INDEXED file program (both in the Sample Code section).

TESTDATA2.TXT should be LINE SEQUENTIAL and of the form:

CODE--SOME ENTRY OF 43 CHARACTERS

123456abc----------**********----------**********

:

:

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. DELETION-EXAMPLE.

000030 AUTHOR. TIM-R-P-BROWN.

45

000040* Program that deletes a record from a

000050* file where the specified record ID code is entered

000060* by the user. 2 differing methods are used.

000070

000080 ENVIRONMENT DIVISION.

000090

000100 INPUT-OUTPUT SECTION.

000110 FILE-CONTROL.

000120

000130 SELECT IN-FILE-1 ASSIGN TO 'TESTDATA1.DAT'

000140 ORGANIZATION IS INDEXED

000150 ACCESS MODE IS DYNAMIC

000160 RECORD KEY IS RECORD-CODE-1.

000170 SELECT IN-FILE-2 ASSIGN TO 'TESTDATA2.TXT'

000180 ORGANIZATION IS LINE SEQUENTIAL.

000190 SELECT TEMP-FILE ASSIGN TO 'TEMP.TXT'

000200 ORGANIZATION IS LINE SEQUENTIAL.

000210

000220 DATA DIVISION.

000230 FILE SECTION.

000240

000250 FD IN-FILE-1.

000260 01 RECORD-1.

000270 03 RECORD-CODE-1 PIC X(6).

000280 03 RECORD-DETAILS-1 PIC X(43).

000290

000300 FD IN-FILE-2.

000310 01 RECORD-2.

000320 03 RECORD-CODE-2 PIC X(6).

000330 03 RECORD-DETAILS-2 PIC X(43).

000340

000350 FD TEMP-FILE.

000360 01 TEMP-RECORD.

000370 03 TEMP-CODE PIC X(6).

000380 03 TEMP-DETAILS PIC X(43).

000390

000400

000410

000420 WORKING-STORAGE SECTION.

000430

000440 01 END-OF-FILE-FLAG PIC X VALUE 'N'.

000450 88 EOF VALUE 'Y'.

000460

000470 01 REC-DELETE-FLAG PIC X VALUE 'N'.

000480 88 RECORD-DELETED VALUE 'Y'.

000490

000500 01 DEL-CODE PIC X(6) VALUE SPACES.

000510

000520

000530

000540 PROCEDURE DIVISION.

000550

000560 MAIN-PARAGRAPH.

000570

000580 PERFORM FIRST-METHOD

000590 MOVE 'Y' TO END-OF-FILE-FLAG

000600 PERFORM SECOND-METHOD

000610 STOP RUN.

46

000620

000630***

000640

000650 FIRST-METHOD.

000660* Paragraph that uses the DELETE to remove a record

000670

000680 DISPLAY 'Enter 6 digit code of record to be deleted'

000690 ACCEPT RECORD-CODE-1

000700 OPEN I-O IN-FILE-1

000710

000720

000730 DELETE IN-FILE-1

000740 INVALID KEY DISPLAY 'RECORD NOT FOUND'

000750

000760 END-DELETE

000770

000780

000790 CLOSE IN-FILE-1.

000800

000810***

000820

000830 SECOND-METHOD.

000840* Paragraph that writes to a temporary file without

000850* including the record to be deleted

000860

000870 DISPLAY 'Enter 6 digit code of record to be deleted'

000880 ACCEPT DEL-CODE

000890 OPEN INPUT IN-FILE-2

000900 OUTPUT TEMP-FILE

000910

000920 MOVE 'N' TO REC-DELETE-FLAG

000930 MOVE 'N' TO END-OF-FILE-FLAG

000940

000950*----first write all records (except the selected one) to

000960*----the temporary file

000970 PERFORM UNTIL EOF

000980 READ IN-FILE-2

000990 AT END SET EOF TO TRUE

001000 NOT AT END

001010 IF RECORD-CODE-2 = DEL-CODE THEN

001020 SET RECORD-DELETED TO TRUE

001030 ELSE

001040 WRITE TEMP-RECORD FROM RECORD-2

001050 END-IF

001060 END-READ

001070 END-PERFORM

001080

001090

001100

001110 IF NOT RECORD-DELETED THEN

001120 DISPLAY 'Record not found'

001130 END-IF

001140

001150 CLOSE IN-FILE-2 TEMP-FILE

001160

001170 MOVE 'N' TO END-OF-FILE-FLAG

001180

001190*----now read all records from temp-file to a new 'TESTDATA-2.TXT'

47

001200*----This is virtually the same as just renaming the temporary file

001210*----when you think about it, just done the COBOL way!

001220 OPEN INPUT TEMP-FILE

001230 OUTPUT IN-FILE-2

001240*---------the original 'TESTDATA-2.TXT' will be overwritten-----*

001250

001260 PERFORM UNTIL EOF

001270 READ TEMP-FILE

001280 AT END SET EOF TO TRUE

001290 NOT AT END

001300 WRITE RECORD-2 FROM TEMP-RECORD

001310 END-READ

001320 END-PERFORM

001330

001340 CLOSE TEMP-FILE IN-FILE-2.

001350

001360***

001370***

7.3 File Organization

There are at least four ways in which the records on a file may be organised: SEQUENTIAL, LINE
SEQUENTIAL, RELATIVE, AND INDEXED. When a file contains several records (hundreds or even
thousands) if you only wanted to access one or two of them, it would waste processor time having to search
an entire file in order to read them if stored in sequential or line sequential formats. Hence, relative and
indexed files are of particular advantage.

Relative files

These files are organised so that a record can be accessed by referring to its position within the file, i.e.
relative to other records. This is acheived by calculating the size (in characters, defined in the FD description)
of each record and multiplying it by the required nth record....eh?? you ask. Consider the following program:

IDENTIFICATION DIVISION.

PROGRAM-ID. RELATIVE-EXAMPLE.

AUTHOR TRP BROWN.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

ASSIGN IN-FILE TO 'A:CUSTOMER.DAT'

ORGANIZATION IS RELATIVE

ACCESS MODE IS DYNAMIC

RELATIVE KEY IS ENTER-NUM.

DATA DIVISION.

FILE SECTION.

FD IN-FILE.

01 CUSTOMER-DETAILS.

03 CUS-NAME PIC X(20).

03 CUS-CODE PIC X(6).

WORKING-STORAGE SECTION.

01 ENTER-NUM PIC 9(4).

48

PROCEDURE DIVISION.

MAIN-PARAGRAPH.

OPEN INPUT IN-FILE

DISPLAY 'ENTER CUSTOMER NUMBER'

ACCEPT ENTER-NUM

READ IN-FILE

INVALID KEY DISPLAY 'RECORD NOT FOUND'

NOT INVALID KEY

DISPLAY 'CUSTOMER NAME: ' CUS-NAME

DISPLAY 'CODE: ' CUS-CODE

END-READ

CLOSE IN-FILE

STOP RUN.

� In the environment division, the assign clause contains a number of extra
words. The organization is RELATIVE. This is followed by ACCESS MODE
IS DYNAMIC. This means that the file can be read sequentially or
RANDOMLY, i.e. direct access whereby the computer can calculate where
to look for the required record. You alternatively use ACCESS MODE IS
RANDOM but this doesn't allow for a sequential access option (so what's the
point using it...?).

� The next line RELATIVE KEY IS ENTER-NUM refers to this item defined in
working storage that will contain the record number required. When the
number is entered into the keyboard (ACCEPT ENTER-NUM), the computer
will multiply this number (minus 1) by the size of the record (CUSTOMER-
DETAILS containing 26 characters):
e.g.

(102-1) * 26 = 2626 characters into the file will be immediately followed by
the 102nd record.

� The read statement, rather than using AT END and NOT AT END, uses
INVALID KEY and NOT INVALID KEY. Here these depend on whether the
file has been found or not.

� The PIC size of ENTER-NUM is 9(4), which limits the file to 9,999 records
but you could increase this if you wanted.

� It should be noted that you are not allowed to use an item defined in the FD
as a relative key.

Indexed files

An indexed file contains records that, unlike relative files, do not require the key to be numeric. Look at the
following code (similar to the above code):

IDENTIFICATION DIVISION.

PROGRAM-ID. INDEXED-EXAMPLE.

AUTHOR TRP BROWN.

49

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

ASSIGN IN-FILE TO 'A:CUSTOMER.DAT'

ORGANIZATION IS INDEXED

ACCESS MODE IS DYNAMIC

RECORD KEY IS CUS-CODE.

DATA DIVISION.

FILE SECTION.

FD IN-FILE.

01 CUSTOMER-DETAILS.

03 CUS-CODE PIC X(6).

03 CUS-NAME PIC X(20).

WORKING-STORAGE SECTION.

01 ENTER-NUM PIC 9(4).

PROCEDURE DIVISION.

MAIN-PARAGRAPH.

OPEN INPUT IN-FILE

DISPLAY 'ENTER CUSTOMER NUMBER'

ACCEPT ENTER-NUM

READ IN-FILE

INVALID KEY DISPLAY 'RECORD NOT FOUND'

NOT INVALID KEY

DISPLAY 'CUSTOMER NAME: ' CUS-NAME

DISPLAY 'CODE: ' CUS-CODE

END-READ

CLOSE IN-FILE

STOP RUN.

The main differences between this example and the relative file example are that (1) the term RECORD KEY
is used, rather than RELATIVE KEY; (2) any field can be used from the record. However, the field must be
unique otherwise a duplicate key error would occur. Rather than directly access the file, as in relative file
access, the computer searches a separate index file that contains pointers to the position of the actual record
on the indexed (data) file. The field in the index, whether numeric or alphanumeric, must be in strict ascending
order (ASCII characters are ordered according to their ASCII value, e.g. A < B etc...).

In order to read the indexed file sequentially, but in ascending order on the key field, the verb START is used.
For the above example:

OPEN INPUT IN-FILE

START IN-FILE

KEY GREATER THAN 'D23301'

INVALID KEY

DISPLAY 'NO MORE RECORDS BEYOND THIS POINT'

50

NOT INVALID KEY

....statements to process rest of file e.g. READ within a loop

END-START

To differentiate between a sequential READ and a random READ when using DYNAMIC access mode, you
would use the statements READ (with INVALID KEY) for random read, and READ...NEXT for sequential read
(with AT END) e.g. :

*Random read

MOVE 'E11323' TO CODE-NUM

READ IN-FILE

INVALID KEY DISPLAY 'CODE NOT FOUND'

END-READ

*Sequential read

READ IN-FILE NEXT

AT END MOVE 'Y' TO EOF-FLAG

END-READ

7.4 SORT and MERGE

If you wished to take a file of unordered records and produce a new file of these records sorted into ascending
or descending order of a field you would use SORT. The League table program in the Sample code section
uses this utility to generate a league table from updated records from a data file, sorted principally by
descending points.

Consider this segment of code from this program:

000050 ENVIRONMENT DIVISION.

000060 INPUT-OUTPUT SECTION.

000070 FILE-CONTROL.

000080 SELECT TEAM-REC-IN ASSIGN TO "INPUT.REC"

000090 ORGANIZATION IS SEQUENTIAL.

000100 SELECT WORK-FILE ASSIGN TO SORTWK01.

000110 SELECT SORT-OUT ASSIGN TO "SORTED.REC"

000120 ORGANIZATION IS SEQUENTIAL.

000130 SELECT PRINT-FILE ASSIGN TO "PRINTOUT.TXT".

000140

000150

000160 DATA DIVISION.

000170 FILE SECTION.

000180 FD TEAM-REC-IN.

000190 01 TEAM-REC.

000200 03 TEAM-CODE PIC XXX.

000210 03 TEAM-NAME PIC X(20).

000220 03 PLAYED PIC 99.

000230 03 GOALS-FOR PIC 99.

000240 03 GOALS-AGST PIC 99.

000250 03 G-WON PIC 99.

000260 03 G-LOST PIC 99.

000270 03 G-DRAWN PIC 99.

000280 03 GOAL-DIFF PIC S99 SIGN LEADING SEPARATE.

000290 03 POINTS PIC 99.

51

000300

000310 SD WORK-FILE.

000320 01 WORK-REC.

000330 03 TEAM-CODE-KEY PIC XXX.

000340 03 PIC X(22).

000350 03 GF-KEY PIC 99.

000360 03 PIC X(8).

000370 03 GD-KEY PIC S99 SIGN LEADING SEPARATE.

000380 03 POINTS-KEY PIC 99.

000390

In addition to the FD for the TEAM-REC-IN (the main data file) there is also a WORK-FILE that the computer
uses for sorting. Here it is assigned to SORTWK01, required for the Fujitsu COBOL compiler, but for
MicroFocus you might code ASSIGN TO DISK or even ASSIGN TO "B:TEMPFILE".

The WORK-FILE does not have a FD descriptor, but rather, has a sort descriptor SD.

003310 SORT-TABLE.

003320 SORT WORK-FILE

003330 ON DESCENDING KEY POINTS-KEY GD-KEY GF-KEY

003340 USING TEAM-REC-IN

003350 GIVING SORT-OUT.

The SORT-TABLE paragraph then sorts the data file TEAM-REC-IN as shown above. Note that the SORT
verb is followed by WORK-FILE and that TEAM-REC-IN is refered to with USING...

Since it is common for two teams to have the same number of points then, the DESCENDING KEY first
attempts to sort by points (POINTS-KEY) but if these match then they are than sorted by goal difference (GD-
KEY) and then by goals scored (GF-KEY). If these all match then the teams will be placed as the appear from
the data file (for TEAM-REC-IN I placed them in alphabetical order).

SORT-OUT is the destination of the sorted data where the new league table would appear.

Note, a file that is to be sorted if already open, must be closed prior to sorting. THE SORT STATEMENT WILL
AUTOMATICALLY OPEN THE UNSORTED FILE WHEN EXECUTED.

Merge

To merge two sorted files into a single sorted file, the MERGE statement is used:

MERGE WORK-FILE

ON ASCENDING KEY CUS-CODE-KEY

USING FILE-A

FILE-B

GIVING MERGED-FILE

You can merge more than 2 files if you wish. An SD would be required as used with a SORT.

52

7.5 INPUT and OUTPUT PROCEDURE

The SORT statement above sorted all the records in the file into a new file. But if you wanted to produce a
sorted file that only contained, for example, product numbers which begin with a '1', you would use an INPUT
PROCEDURE.

The record FD might be:

FD UNSORTED-FILE.

01 UNSORTED-RECORD.

03 1ST-DIGIT-OF-CODE PIC 9.

03 PIC X(20).

The description gives the minimum detail required. Now some procedure division:

PROCEDURE DIVISION.

SORT-SELECT.

SORT WORK-FILE

ON DESCENDING KEY PRODUCT-NO

INPUT PROCEDURE SELECT-PROD-CODE

GIVING SORTED-CODES-FILE

STOP RUN.

The INPUT PROCEDURE clause acts like a PERFORM, indicating the logic to go to a different paragraph
(i.e. procedure).

So the paragraph SELECT-PROD-CODE might be like this:

SELECT-PROD-CODE.

OPEN INPUT UNSORTED-DATA-FILE

PERFORM UNTIL END-OF-FILE

READ UNSORTED-DATA-FILE

AT END MOVE 'Y' TO EOF-FLAG

NOT AT END

IF 1ST-DIGIT-OF-CODE = 1 THEN

MOVE UNSORTED-RECORD TO WORK-REC

RELEASE WORK-REC

END-IF

END-READ

END-PERFORM

CLOSE UNSORTED-DATA-FILE

When the if condition is true, the record is moved to the work-file (WORK-REC is the level 01 name) by the
RELEASE verb, even though the MOVE verb appears first (I dunno why..!). Unlike a simple SORT, you DO
have to OPEN the unsorted file prior to an input procedure.

OUTPUT PROCEDURE

If you just want to print specific sorted fields you would use an OUTPUT PROCEDURE. Based on the above

53

example:

PROCEDURE DIVISION.

PRINT-SORT-REC.

SORT WORK-FILE

ON DESCENDING KEY PRODUCT-NO

USING UNSORTED-RECORD

OUTPUT PROCEDURE PRINT-SELECT-PROD-CODE

STOP RUN.

The INPUT PROCEDURE clause acts like a PERFORM, indicating the logic to go to a different paragraph
(i.e. procedure).

So the paragraph SELECT-PROD-CODE might be like this:

SELECT-PROD-CODE.

OPEN OUTPUT PRINT-FILE

PERFORM UNTIL END-OF-FILE

RETURN UNSORTED-DATA-FILE

AT END MOVE 'Y' TO EOF-FLAG

NOT AT END

{move fields in SD sort group to print fields}...

WRITE PRINT-RECORD FROM {print group}

END-RETURN

END-PERFORM

CLOSE PRINT-FILE.

Instead of READ you use RETURN and then WRITE the record to the printer rather than RELEASE the
record to a file.

You can combine INPUT and OUTPUT procedures into the same sort statement by replacing both the USING
and GIVING statements:

SORT WORK-FILE

ON DESCENDING KEY PRODUCT-NO

INPUT PROCEDURE SELECT-PROD-CODE

OUTPUT PROCEDURE PRINT-SELECT-PROD-CODE

STOP RUN.

7.6 FILE STATUS (error handling)

A number of errors can occur that result from file input/output that programmer may wish to be able to deal
with in order to avoid unexpected program termination.

Run time errors can arise quite easily from a file not being available to open, or if present the data is
corrupted. Furthermore, what if there is no more disk space available or not enough space has been allocated
to allow for addtition of new data. Other errors, such as attempting to close a file that isn't open, or to read a
file opened for output only, may well derive from logical errors (that is, programming mistakes) but can be
dealt with nonetheless when debugging. These kinds of errors will normally result in termination of the
program run, whereas using File Status can allow the programmer to deal with any such problems without the

54

program run stopping and returning to the operating system.

File Status Codes are made of two digits, the first indicates one one of 5 classes:

The second digit refers to the particular case within the class. Here are examples common to both Microfocus
and Fujitsu compilers (although there are more besides). I would check your compiler documentation.

0 Input/output operation successful

1 File "at end" condition

2 Invalid key

3 Permanent I/O error

4 Logic error

Code Meaning

00 Input/output operation successful

02 Duplicate record key found (READ ok)

04 Length of record too large (READ ok)

10 File AT END

14

"The valid digits of a read relative record
number are greater than the size of the relative
key item of the file." from Fujitsu manual -
I'm not sure I what that means!

16
Program tries to read file already AT END
note: Fujitsu compiler returns code "46" in this case

22
Program attempts to write a record
with a key that already exists

23 Record not found

24 Program attempts to write record to a disk that is full

30
Input/output operation unsuccessful,
no further information available

34 Program attempts to write record to a disk that is full

55

To use these codes you need to include the FILE STATUS clause in the SELECT statement of the
environment division:

SELECT TEST-FILE ASSIGN TO 'TEST-DATA.DAT'

ORGANIZATION IS SEQUENTIAL

FILE STATUS IS W-STATUS.

Of course W-STATUS could any user name you like. It must however be defined in working storage as PIC
XX, i.e. as alpha numeric and not numeric. So, if during a program run a certain input/output error occurs,
rather than the program terminate, the program will simply produce an error status.
You might code:

* Here a possible danger of too big a record being moved into W-RECORD

READ RECORD-IN INTO W-RECORD

IF W-STATUS = "04" THEN

DISPLAY "Over-sized record has been read"

SET REC-XS-FLAG TO TRUE

END-IF

Another example might be, when reading from an indexed file:

35
Program tries to open non-existant file
for INPUT, I-O or EXTEND

37 Program tries to open line sequential file in I-O mode

41 Program tries to open file that is already open

42 Program tries to close file that is not open

43
Program tries to delete or rewrite a record
that has not been read

44 Program tries to write or rewrite a record of incorrect length

46
Program tries to read a record where the previous read or
START has failed or the AT END condition has occurred

47
Program tries to read a record from a file opened
in the incorrect mode

48
Program tries to write a record from a file opened
in the incorrect mode

49
Program tries to delete or rewrite a record from a file opened

in the incorrect mode

56

ZingCOBOL Copyright Timothy R P Brown 2003

READ IN-FILE

IF W-STATUS = "23" THEN

DISPLAY "Record not found"

ELSE PERFORM MAIN-PROCESS

You could have easily have written:

READ IN-FILE

INVALID KEY

DISPLAY "Record not found"

NOT INVALID KEY PERFORM MAIN-PROCESS

END-READ

So consider which is the best option and remember not to try and do both.

For Fujitsu compilers at least, although the program run is not terminated, the Fujitsu WINEXE enviroment will
still produce a prompt indicating the error (with more detailed error codes). I'm not sure, but I suspect that this
facility can be disabled. Check the user manual.

57

8. Debugging COBOL code

So you've written your program, finally got it to compile after sorting out all those syntax errors and undefined variables
and the rest. So you execute the program and Hey Presto! ... nothing happens, you get a runtime error, or worst of all,
your computer locks up and you're reaching for CTRL+ALT+DEL. So what went wrong?

Don't worry. The next thing to do after writing your wonderfully crafted program is to fix all the bugs, that is, all the
errors in the code that lie hidden in the logic beyond the reach of the compiler. Here are a few personal hints and tips
of mine to set about debugging your program (and avoiding errors in the first place), or at least how I go about getting
my code to do what I want it to do.

i. Before a line of code is written...preparation
ii. Commenting
iii. Variable names
iv. Break it up
v. "Stubs"
vi. Watching variables
vii. Debugging tools

(i) Before a line of code is written...preparation

The best way to avoid spending hours trying to untangle a mass of complex code (that you brilliantly typed into the
computer straight from the top of your head) is PREPARATION. By that I mean: (1) be absolutely clear about what you
want the program to do - know what the inputs and outputs are, (2) write a very broad algorithm and gradually refine as
far as you can using pseudo-code, (3) draw a flow chart or structure chart that matches the pseudo-code, and (4)
translate the flow chart into actual COBOL.

One issue is: Do I write the PROCEDURE DIVISION first and then go back and write the DATA DIVISION? This would
seem a fairly sensible thing to do except that in practise you find you will forget to declare a whole slew of variables. A
further point is that a good deal of COBOL involves doing things to the data that rely on what's been declared in the
DATA DIVISION. Again, I would suggest preparing a fair proportion of the data definitions on paper first. When I write a
program I write as much DATA DIVISION as possible before starting on the PROCEDURE DIVISION. Then, as I
proceed through the code I keep going back to the DATA DIVISION to update it as soon as possible.

(ii) Commenting

Liberally sprinkle you code with comments that explain exactly what each fragment of code is meant to do. This really
helps when trying figure out what's going on.

(iii) Variable names

Use variable names that are meaningful and stick to a standard format. For example, some people use a prefix before
variable names to indicated the general function of the variable, such as printing variables:

01 PRINT-OUTPUT.

03 P-NAME PIC X(20).

03 P-ADDRESS PIC X(50).

58

03 P-CUS-CODE PIC 9(6).

03 P-PAGE-COUNT PIC 999.

This example uses "P-" before each name to indicate a member of the print output group. Sometimes the prefix "WS-"
is used to indicate WORKING-STORAGE, "L-" for LINKAGE SECTION variables. Notice that the names are also
meaningful. While you may spend longer typing out longer names you'll thank youself when it comes to fixing bugs.

Care should be taken when deciding names that you spell them correctly (PAGE-COUNTRE) and/or consistantly
(RECORD-NUM and RECORD-NO) and that you don't try to use singular and plural names (CUSTOMER-TOTAL and
CUSTOMER-TOTALS).

(iv) Break it up

Breaking your code into smaller procedures (i.e. paragraphs) not only makes the program easier to read, but easier
spot where problems are arising.

(v) "Stubs"

One way to monitor what is going on when you run your program is to place "stubs" at important points in the logic. By
stubs I mean a DISPLAY statement that tells you the that certain position in the logic has been executed:

MAIN-PARAGRAPH.

DISPLAY 'IN MAIN PARAGRAPH'

PERFORM INIT-PARAGRAPH.

PERFORM RECORD-READ-PARAGRAPH

UNTIL NO-MORE-RECORDS

PEFORM TERMINATE-RUN

DISPLAY 'PROGRAM ENDING'

STOP RUN.

If you have a DISPLAY at the beginning of each paragraph then the console window might look something like this:

IN MAIN PARAGRAPH

IN INIT-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN RECORD-READ-PARAGRAPH

IN TERMINATE-PARAGRAPH

PROGRAM ENDING

You must remember to remove all of the stubs when the program is fully debugged.

59

(vi) Watching variables
Of course, just putting little flags say "IN PARAGRAPH XYZ" can be extended further to display the value of certain
important variables:

DISPLAY "P-COUNTER = " P-COUNTER

Again, don't forget to remove them (or comment them out) when your done.

(vii) Debugging tools
Both the Fujitsu COBOL85 and Microfocus Personal COBOL compilers (and presumably other too) have debugging
utilities. Most significant are the ability to animate the program and set breakpoints throughout your code. Animating
your code allows you to view each line of code as the debugger steps through the program. You can pause the run at
any point and check the value of variables. During this process you can specify variables that you want to watch
throughout the run. Animating a program run can prove a bit tedious if large amounts of iterations are involved.

An alternative is to set breakpoints. By doing so the program run will pause at defined breakpoints (wherever you want
them) to allow you to check the value of variables.

You should check your compiler documentation to find out how to use debugging utilites: for large programs they are
well worth the effort.

* * *

When it comes to actually fixing errors try to avoid "hacks", that is, adding bits of code to correct erroneous data values
rather than trying to find out why the data was wrong in the first place. You may find yourself getting bound up in ever
more complex arrays of Boolean flags to allow certain conditions: e.g.

IF (X = Y) AND (Z >= W) AND ((A = B) OR (A <> C)) AND (D < F) THEN...scream..?

This being the case, see if your logic couldn't be better designed. Sometimes going back to the drawing board (more
than once) is the best strategy in the long run. Like a famous chess grandmaster once said (I don't know who) "If you
see a good move, look for a better one" : if you think of a good way of coding something, look for a better alternative
(not as snappy ?!).

Something to keep in mind at all times is that one day someone other than yourself may have to read and understand
(and perhaps modify) your code. Whether this is true or not it is a good habit to get into because it makes you write
better code. And, as a software professional, this will almost certainly be the case.

ZingCOBOL Copyright Timothy R P Brown 2003

60

10. Sample COBOL code

10.1 Add line number program
10.2 Refresh line numbers program
10.3 League table program
10.4 Calculate prime numbers program
10.5 Create INDEXED file program
10.6 Read INDEXED file program

The sample code here was written while learning COBOL so they aren't particularly well structured. Also, they are not
the usual type of COBOL program that you would normally come across. COBOL is more likely written for business
applications such as payroll programs or stock control etc... Hopefully they might give an indication of how COBOL
works.

10.1 Add line numbers program

This program is designed to add line numbers to COBOL code that has been typed into a text editor (e.g. Notepad) in
the following format:

The text file containing COBOL code as above should be call named input.txt.
Following execution, the program will produce a new file called output.cob although it
will still be a simply text file, but can be compiled. The output.cob file for the above code
would be:

:

PROCEDURE DIVISION.

MAIN-PARAGRAPH.

MOVE X TO Y

*the comment asterisk will be placed in position 7

/as will the page break solidus

IF Y > Z THEN

ADD Z TO X

MOVE X TO Z

ELSE DISPLAY 'The hypen for continuing a string

- 'onto the next line also goes into position 7'

END-IF

*all other text is placed from position 8

*so you still need to indent where required

STOP RUN.

*lastly, there is a limit of about

*70 characters per line (from position 8)

:

000010 PROCEDURE DIVISION.

000020

000030 MAIN-PARAGRAPH.

000040 MOVE X TO Y

000050*the comment asterisk will be placed in position 7

000060/as will the page break solidus

000070 IF Y > Z THEN

000080 ADD Z TO X

000090 MOVE X TO Z

000100 ELSE DISPLAY 'The hypen for continuing a string

61

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. LINE-NO-PROG.

000030 AUTHOR. TIM R P BROWN.

000040**

000050* Program to add line numbers to typed code *

000060* Allows for comment asterisk, solidus, or hyphen ,*

000070* moving it into position 7. *

000080* *

000090**

000100

000110 ENVIRONMENT DIVISION.

000120 INPUT-OUTPUT SECTION.

000130 FILE-CONTROL.

000140 SELECT IN-FILE ASSIGN TO 'INPUT.TXT'

000150 ORGANIZATION IS LINE SEQUENTIAL.

000160 SELECT OUT-FILE ASSIGN TO 'OUTPUT.COB'

000170 ORGANIZATION IS LINE SEQUENTIAL.

000180

000185***

000187

000190 DATA DIVISION.

000200 FILE SECTION.

000210

000220 FD IN-FILE.

000230 01 LINE-CODE-IN.

000240 03 CHAR-1 PIC X.

000250 03 CODE-LINE PIC X(110).

000260

000270 FD OUT-FILE.

000280 01 LINE-CODE-OUT PIC X(120).

000290

000300

000310 WORKING-STORAGE SECTION.

000320

000330 01 EOF-FLAG PIC X VALUE 'N'.

000340 88 END-OF-FILE VALUE 'Y'.

000350

000360 01 NUMBER-CODE.

000370 03 L-NUM-CODE PIC 9(6) VALUE ZEROS.

000380 03 B-SPACE PIC X VALUE SPACE.

000390 03 L-CODE PIC X(100) VALUE SPACES.

000400

000410 01 NUMBER-COMMENT.

000420 03 L-NUM-COM PIC 9(6) VALUE ZEROS.

000430 03 L-COMMENT PIC X(100) VALUE SPACES.

000440

000450 01 LINE-NUMBER PIC 9(6) VALUE ZEROS.

000110- 'onto the next line also goes into position 7'

000120 END-IF

000130*all other text is placed from position 8

000140*so you still need to indent where required

000150 STOP RUN.

000160

000170*lastly, there is a limit of about

000180*70 characters per line (from position 8)

62

000460

000470

000480***

000490

000500 PROCEDURE DIVISION.

000510

000510 MAIN-PARA.

000520 OPEN INPUT IN-FILE

000530 OUTPUT OUT-FILE

000535

000540 PERFORM UNTIL END-OF-FILE

000550 ADD 10 TO LINE-NUMBER

000560 READ IN-FILE AT END

000570 MOVE 'Y' TO EOF-FLAG

000580 NOT AT END

000590 IF (CHAR-1 = '*')

000600 OR (CHAR-1 = '/')

000610 OR (CHAR-1 = '-') THEN

000620 MOVE LINE-CODE-IN TO L-COMMENT

000630 MOVE LINE-NUMBER TO L-NUM-COM

000640 WRITE LINE-CODE-OUT FROM NUMBER-COMMENT

000660 ELSE

000670 MOVE LINE-CODE-IN TO L-CODE

000680 MOVE LINE-NUMBER TO L-NUM-CODE

000690 WRITE LINE-CODE-OUT FROM NUMBER-CODE

000720 END-IF

000730 END-READ

000740 INITIALIZE NUMBER-CODE NUMBER-COMMENT

000750 END-PERFORM

000760

000770 CLOSE IN-FILE OUT-FILE

000780 STOP RUN.

10.2 Refresh line numbers program

This program is designed to refresh COBOL code line numbers following editing that would result in uneven line
number increases (or even no line number at all) where lines have been inserted or deleted.

00010 IDENTIFICATION DIVISION.

00020 PROGRAM-ID. RENUMBER-PROG.

00030 AUTHOR. TIMOTHY R P BROWN.

00040

00045**

00050* Program to refresh numbers to typed code *

00060* Allows for comment all characters at position 7 *

00065**

00070

00080

00090 ENVIRONMENT DIVISION.

00100 INPUT-OUTPUT SECTION.

00110 FILE-CONTROL.

00120 SELECT IN-FILE ASSIGN TO 'INPUT.COB'

00130 ORGANIZATION IS LINE SEQUENTIAL.

00140 SELECT OUT-FILE ASSIGN TO 'RENUM.COB'

00150 ORGANIZATION IS LINE SEQUENTIAL.

00160

00170 DATA DIVISION.

63

00180 FILE SECTION.

00190

00200 FD IN-FILE.

00210 01 CODE-IN.

00230 03 OLD-NUM PIC 9(6).

00240 03 IN-CODE PIC X(150).

00250

00260 FD OUT-FILE.

00270 01 CODE-OUT PIC X(91).

00280

00290

00300 WORKING-STORAGE SECTION.

00310

00320 01 EOF-FLAG PIC X VALUE 'N'.

00330 88 END-OF-FILE VALUE 'Y'.

00340

00350

00360 01 W-RENUMBER-CODE.

00370 03 W-NUM PIC 9(6) VALUE ZEROS.

00380 03 W-CODE PIC X(85) VALUE SPACES.

00390

00400 01 LINE-NUMBER PIC 9(6) VALUE ZEROS.

00403

00407***

00410

00420 PROCEDURE DIVISION.

00430 MAIN-PARA.

00440 OPEN INPUT IN-FILE

00450 OUTPUT OUT-FILE

00460

00470 PERFORM UNTIL END-OF-FILE

00480 ADD 10 TO LINE-NUMBER

00490 READ IN-FILE

00495 AT END MOVE 'Y' TO EOF-FLAG

00500 NOT AT END

00510 MOVE IN-CODE TO W-CODE

00520 MOVE LINE-NUMBER TO W-NUM

00530 WRITE CODE-OUT FROM W-RENUMBER-CODE

00550 END-READ

00570 END-PERFORM

00580

00590 CLOSE IN-FILE OUT-FILE

00600 STOP RUN.

10.3 League table program

This program is designed to update a football league table and print out a table when any scores have been added.
The diplay prompts the user to input the score from a game. The points for each team involved are updated, as are
the goals for, against and difference. The program will search the data file and update the relevant team record.
When score input is complete, the program then sorts the data into a temporary file before printing out an updated
league table. An OUTPUT PROCEDURE could have been used instead of producing a temporary sorted file.

This program would probably benefit from using an indexed file for the team records rather than searching the
sequentail file, as done here.

This code is written for the 1999-2000 season of the English FA Premiership. The team data is stored on a sequential
file in alphabetical order. If you wish to download a copy of this data file (with mostly fictional scores etc..) click here
and a better program description click here.

64

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. TABLE-PROG.

000030 AUTHOR. TIMOTHY R P BROWN.

000035

000037***

000040* Program to update a football league table *

000045* and output a new updated table *

000046* Based on English Premiership season 1999-2000 *

000047***

000048

000050 ENVIRONMENT DIVISION.

000060 INPUT-OUTPUT SECTION.

000070 FILE-CONTROL.

000080 SELECT TEAM-REC-IN ASSIGN TO "INPUT.REC"

000090 ORGANIZATION IS SEQUENTIAL.

000100 SELECT WORK-FILE ASSIGN TO SORTWK01.

000105* for MicroFocus compiler

000107* replace SORTWK01 with 'WORKFILE.DAT'

000110 SELECT SORT-OUT ASSIGN TO "SORTED.REC"

000120 ORGANIZATION IS SEQUENTIAL.

000130 SELECT PRINT-FILE ASSIGN TO PRINTER.

000140

000150

000160 DATA DIVISION.

000170 FILE SECTION.

000180 FD TEAM-REC-IN.

000190 01 TEAM-REC.

000200 03 TEAM-CODE PIC XXX.

000210 03 TEAM-NAME PIC X(20).

000220 03 PLAYED PIC 99.

000230 03 GOALS-FOR PIC 99.

000240 03 GOALS-AGST PIC 99.

000250 03 G-WON PIC 99.

000260 03 G-LOST PIC 99.

000270 03 G-DRAWN PIC 99.

000280 03 GOAL-DIFF PIC S99 SIGN LEADING SEPARATE.

000290 03 POINTS PIC 99.

000300

000310 SD WORK-FILE.

000320 01 WORK-REC.

000330 03 TEAM-CODE-KEY PIC XXX.

000340 03 PIC X(22).

000350 03 GF-KEY PIC 99.

000360 03 PIC X(8).

000370 03 GD-KEY PIC S99 SIGN LEADING SEPARATE.

000380 03 POINTS-KEY PIC 99.

000390

000400

000410 FD PRINT-FILE.

000420 01 TEXT-OUT PIC X(60).

000430

000440 FD SORT-OUT.

000450 01 TEAM-REC-OUT.

000460 03 STEAM-CODE PIC XXX.

000470 03 STEAM-NAME PIC X(20).

000480 03 SPLAYED PIC 99.

000490 03 SGOALS-FOR PIC 99.

000500 03 SGOALS-AGST PIC 99.

65

000510 03 SG-WON PIC 99.

000520 03 SG-LOST PIC 99.

000530 03 SG-DRAWN PIC 99.

000540 03 SGOAL-DIFF PIC S999.

000550 03 SPOINTS PIC 99.

000560

000570

000580

000590

000600 WORKING-STORAGE SECTION.

000610

000620 01 M PIC 99.

000630 01 REAL-GOAL-DIFF PIC S999.

000640

000650 01 W-DATE.

000660 03 W-YEAR PIC 99.

000670 03 W-MON PIC 99.

000680 03 W-DAY PIC 99.

000690

000700

000710 01 SCORE.

000720 03 W-H-SCR PIC 9.

000730 03 PIC X VALUE "-".

000740 03 W-A-SCR PIC 9.

000750

000760 01 P-TITLE.

000770 03 PIC X(5) VALUE SPACES.

000780 03 TAB-TITLE PIC X(34)

000790 VALUE "The English FA Premier League".

000800

000810 03 P-DATE.

000820 05 P-DAY PIC XX.

000830 05 PIC X VALUE "/".

000840 05 P-MON PIC XX.

000850 05 PIC X VALUE "/".

000860 05 P-YEAR PIC XX.

000870

000880 01 P-UNDERLINE PIC X(45) VALUE ALL "-".

000890 01 P-GAP PIC X VALUE SPACE.

000900

000910 01 P-HEADER.

000920 03 PIC X(6) VALUE SPACES.

000930 03 TAB-TEAM PIC X(4) VALUE "TEAM".

000940 03 PIC X(11) VALUE SPACES.

000950 03 PLY PIC X(5) VALUE "Playd".

000960 03 PIC X VALUE SPACE.

000970 03 WO PIC XXX VALUE "Won".

000980 03 PIC X VALUE SPACE.

000990 03 DR PIC XXXX VALUE "Drwn".

001000 03 PIC X VALUE SPACE.

001010 03 LO PIC XXXX VALUE "Lost".

001020 03 PIC X VALUE SPACE.

001030 03 GF PIC XXX VALUE "For".

001040 03 PIC X VALUE SPACE.

001050 03 GA PIC X(5) VALUE "Agnst".

001060 03 PIC X VALUE SPACE.

001070 03 GD PIC XX VALUE "GD".

001080 03 PIC X VALUE SPACE.

66

001090 03 PTS PIC XXX VALUE "PTS".

001100

001110 01 W-TEXT-OUT.

001120 03 P-TAB-POS PIC 99.

001130 03 PIC X VALUE SPACE.

001140 03 P-TEAM PIC X(20).

001150 03 P-PLAYED PIC 99.

001160 03 PIC XXX VALUE SPACES.

001170 03 P-G-WON PIC Z9.

001180 03 PIC XX VALUE SPACES.

001190 03 P-G-DRAWN PIC Z9.

001200 03 PIC XXX VALUE SPACES.

001210 03 P-G-LOST PIC Z9.

001220 03 PIC XXX VALUE SPACES.

001230 03 P-GOALS-FOR PIC 99.

001240 03 PIC XX VALUE SPACES.

001250 03 P-GOALS-AGST PIC 99.

001260 03 PIC XX VALUE SPACES.

001270 03 P-GOAL-DIFF PIC ZZ9.

001280 03 PIC XX VALUE SPACES.

001290 03 P-POINTS PIC Z9.

001300

001310

001320 01 SCORE-TAB.

001330 03 TAB-SCORE PIC 9 OCCURS 2.

001340 01 T-POINTS-TAB.

001350 03 T-POINTS PIC 99 OCCURS 20.

001360 01 POINTS-TAB.

001370 03 TAB-POINTS PIC 9 OCCURS 2.

001380 01 T-G-FOR-TAB.

001390 03 T-G-FOR PIC 99 OCCURS 20.

001400 01 T-G-AGST-TAB.

001410 03 T-G-AGST PIC 99 OCCURS 20.

001420 01 T-G-DIFF-TAB.

001430 03 T-G-DIFF PIC 99 OCCURS 20.

001440 01 TAB-TEAM-NAME.

001450 03 TEAM PIC XXX OCCURS 2.

001460

001470

001480 01 V-TEAM-FLAG PIC X.

001490 88 V-TEAM VALUE "Y".

001500 01 V-SCORE-FLAG PIC X.

001510 88 V-SCORE VALUE "Y".

001520 01 SORT-ONLY-FLAG PIC X.

001530 88 SORT-ONLY VALUE "Y".

001540

001550

001560 01 ENDING-KEY PIC X VALUE SPACE.

001570 01 SWITCH PIC 9.

001580 01 EOF-FLAG PIC X VALUE "N".

001590 01 COUNTER PIC 99.

001600 01 W-GOAL-DIFF PIC 99.

001610 01 LAST-SCORE PIC X.

001620 01 N PIC 99.

001630

001640***

001650

001660 PROCEDURE DIVISION.

67

001670

001680 MAIN-PARAGRAPH.

001690

001700 PERFORM DISPLAY-INSTRUCTIONS

001710 PERFORM INPUT-DATA

001720 PERFORM SORT-TABLE

001730 PERFORM PRINT-TABLE

001740 DISPLAY " Type Q or X to exit program."

001750 ACCEPT ENDING-KEY

001760 STOP RUN.

001770***

001780 DISPLAY-INSTRUCTIONS.

001790 DISPLAY " Instructions"

001800 DISPLAY " "

001810 DISPLAY " Following prompts, enter the first "

001820 DISPLAY "3 letters of the team in lower case. "

001830 DISPLAY " Then enter the score (home team score first)."

001840 DISPLAY " To perform SORT ONLY function, type 'xxx' "

001850 DISPLAY "at both team prompts. ".

001860***

001870 INPUT-DATA.

001880 MOVE "n" TO LAST-SCORE

001890 MOVE "N" TO SORT-ONLY-FLAG

001900 PERFORM UNTIL LAST-SCORE = "y" OR "Y"

001910 MOVE "N" TO V-SCORE-FLAG

001920 MOVE "N" TO V-TEAM-FLAG

001930 PERFORM UNTIL V-TEAM

001940 DISPLAY "INPUT HOME TEAM >"

001950 ACCEPT TEAM (1)

001960 DISPLAY "INPUT AWAY TEAM >"

001970 ACCEPT TEAM (2)

001980 PERFORM VAL-TEAM

001990 END-PERFORM

002000 IF TEAM (1) = "XXX" OR "xxx" THEN

002010 MOVE "Y" TO LAST-SCORE

002020 PERFORM SORT-TABLE

002030 ELSE

002040 PERFORM UNTIL V-SCORE or SORT-ONLY

002050 DISPLAY "INPUT RESULT AS 'X-Y'"

002060 ACCEPT SCORE

002070 MOVE W-H-SCR TO TAB-SCORE (1)

002080 MOVE W-A-SCR TO TAB-SCORE (2)

002090 PERFORM VAL-SCORE

002100 END-PERFORM

002110 DISPLAY "LAST RESULT? Y/N"

002120 ACCEPT LAST-SCORE

002130 PERFORM CALC-POINTS

002140 PERFORM UPDATE-RECORD

002150 END-IF

002160 END-PERFORM.

002170***

002180 VAL-TEAM.

002190 PERFORM VARYING COUNTER FROM 1 BY 1

002200 UNTIL COUNTER > 2

002210

002220 EVALUATE TRUE

002230 WHEN TEAM (COUNTER) = "ars" or "ast" or "bra" or

002240 "che" or "cov" or "der" or

68

002250 "eve" or "lee" or "lei" or

002260 "liv" or "man" or "mid" or

002270 "new" or "she" or "sou" or

002280 "sun" or "tot" or "wat" or

002290 "wes" or "wim"

002300 MOVE "Y" TO V-TEAM-FLAG

002310 WHEN OTHER MOVE "N" TO V-TEAM-FLAG

002320 END-EVALUATE

002340 END-PERFORM

002350 IF NOT V-TEAM THEN DISPLAY

002360 "INVALID TEAM CODE ENTERED-"

002370 "RE-ENTER BOTH TEAM CODES AGAIN."

002380 END-IF.

002390***

002400 VAL-SCORE.

002410 IF (W-H-SCR > 9) OR (W-A-SCR > 9)

002420 THEN PERFORM BIG-SCORE

002430 END-IF

002440 IF (W-H-SCR NOT NUMERIC) OR (W-H-SCR NOT NUMERIC)

002450 THEN MOVE "N" TO V-SCORE-FLAG

002460 ELSE MOVE "Y" TO V-SCORE-FLAG

002470 END-IF

002480 IF NOT V-SCORE THEN

002490 DISPLAY "INVALID SCORE ENTRY. PLEASE RE-ENTER SCORE."

002500 END-IF.

002510***

002520 BIG-SCORE.

002525* Putting a STOP RUN in this paragraph is probably

002527* very bad programming practise. Better logic could be used!

002530 DISPLAY "A team has scored more than 10 goals. "

002540 DISPLAY "This program will terminate now. "

002550 DISPLAY "Following this, the record in Input.rec "

002560 DISPLAY "will have to be ammended manually"

002580 DISPLAY " Following this perform SORT ONLY procedure."

002600 ACCEPT ENDING-KEY

002610 STOP RUN.

002620

002630***

002640 CALC-POINTS.

002650 IF TAB-SCORE (1) > TAB-SCORE (2) THEN

002660 MOVE 3 TO TAB-POINTS (1)

002670 ELSE

002680 IF TAB-SCORE (2) > TAB-SCORE (1) THEN

002690 ADD 3 TO TAB-POINTS (2)

002700 ELSE

002710 MOVE 1 TO TAB-POINTS (1)

002720 MOVE 1 TO TAB-POINTS (2)

002730 END-IF

002740 END-IF.

002750

002760***

002770 UPDATE-RECORD.

002790 MOVE 1 TO N

002800 MOVE 1 TO M

002810 OPEN I-O TEAM-REC-IN

002820 PERFORM UNTIL M > 20

002830 READ TEAM-REC-IN

002840 AT END

69

002850 DISPLAY TEAM (1) " has details ammended"

002860 NOT AT END

002870 IF TEAM (1) = TEAM-CODE THEN

002880 PERFORM ADJUST-DATA

002890

002900 END-IF

002910 ADD 1 TO M

002920 END-READ

002930 END-PERFORM

002940

002950 CLOSE TEAM-REC-IN

002955

002970 MOVE 2 TO N

002980 MOVE 1 TO M

002980

002990 OPEN I-O TEAM-REC-IN

003000 PERFORM UNTIL M > 20

003010 READ TEAM-REC-IN

003020 AT END

003030 DISPLAY TEAM (2) " has details ammended"

003040 NOT AT END

003050 IF TEAM (2) = TEAM-CODE THEN

003060 PERFORM ADJUST-DATA

003080 END-IF

003090 ADD 1 TO M

003100 END-READ

003110 END-PERFORM

003120 CLOSE TEAM-REC-IN

003130 DISPLAY "Table has been updated".

003140***

003150 ADJUST-DATA.

003160 IF N = 1 THEN MOVE 2 TO SWITCH

003170 ELSE MOVE 1 TO SWITCH

003180 END-IF

003190 ADD TAB-SCORE (N) TO GOALS-FOR

003200 ADD TAB-SCORE (SWITCH) TO GOALS-AGST

003210 SUBTRACT GOALS-AGST FROM GOALS-FOR GIVING GOAL-DIFF

003220 ADD TAB-POINTS (N) TO POINTS

003230 ADD 1 TO PLAYED

003240 EVALUATE TAB-POINTS (N)

003250 WHEN 3 ADD 1 TO G-WON

003260 WHEN ZERO ADD 1 TO G-LOST

003270 WHEN 1 ADD 1 TO G-DRAWN

003280 END-EVALUATE

003290 REWRITE TEAM-REC.

003300***

003310 SORT-TABLE.

003320 SORT WORK-FILE

003330 ON DESCENDING KEY POINTS-KEY GD-KEY GF-KEY

003340 USING TEAM-REC-IN

003350 GIVING SORT-OUT.

003360

003370***

003380 PRINT-TABLE.

003390 ACCEPT W-DATE FROM DATE

003400 MOVE W-DAY TO P-DAY

003410 MOVE W-MON TO P-MON

003420 MOVE W-YEAR TO P-YEAR

70

003430

003440 OPEN INPUT SORT-OUT

003450 OUTPUT PRINT-FILE

003460

003470 WRITE TEXT-OUT FROM P-TITLE AFTER 1 LINE

003480 WRITE TEXT-OUT FROM P-UNDERLINE AFTER 1 LINE

003490 WRITE TEXT-OUT FROM P-GAP AFTER 1 LINE

003500 WRITE TEXT-OUT FROM P-HEADER AFTER 1 LINE

003510 MOVE 1 TO N

003520 PERFORM UNTIL N > 20

003530 READ SORT-OUT

003540 AT END MOVE "Y" TO EOF-FLAG

003550 NOT AT END

003560 MOVE N TO P-TAB-POS

003570 MOVE STEAM-NAME TO P-TEAM

003580 MOVE SPLAYED TO P-PLAYED

003590 MOVE SG-WON TO P-G-WON

003600 MOVE SG-LOST TO P-G-LOST

003610 MOVE SG-DRAWN TO P-G-DRAWN

003620 MOVE SGOALS-FOR TO P-GOALS-FOR

003630 MOVE SGOALS-AGST TO P-GOALS-AGST

003650 MOVE SGOAL-DIFF TO P-GOAL-DIFF

003660 MOVE SPOINTS TO P-POINTS

003670

003680 WRITE TEXT-OUT FROM W-TEXT-OUT

003700 END-READ

003710 ADD 1 TO N

003720 END-PERFORM

003730 CLOSE SORT-OUT PRINT-FILE

003740 DISPLAY "Table is now written to the printer".

003750***

10.4 Calculate prime numbers program

This is a little program that calulates prime numbers. You are prompted to enter a number (up to 1999) and the
program will produce a file, 'PRIME-NO.TXT, which contains a table of all prime numbers up to the value entered.

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. PRIME-NO-PROG.

000030 AUTHOR. TIMOTHY R P BROWN.

000040

000050**

000060* PROGRAM TO CALCULATE PRIME NUMBERS *

000070**

000080

000090 ENVIRONMENT DIVISION.

000100 INPUT-OUTPUT SECTION.

000110 FILE-CONTROL.

000120

000130 SELECT OUT-FILE ASSIGN TO 'PRIME-NO.TXT'

000140 ORGANIZATION IS LINE SEQUENTIAL.

000150**

000160 DATA DIVISION.

000170 FILE SECTION.

000180

000190 FD OUT-FILE.

000200 01 NO-OUT PIC X(80).

71

000210**

000220 WORKING-STORAGE SECTION.

000230

000240 01 EVEN-FLAG PIC X.

000250 88 NUM-EVEN VALUE 'Y'.

000260 01 PRIME-FLAG PIC X .

000270 88 IS-PRIME VALUE 'Y'.

000280

000290 01 TOP-VALUE PIC 9(7) VALUE ZERO.

000300

000310 01 COUNTERS.

000320 03 Y-COUNT PIC 9(6) OCCURS 1000.

000330

000340 01 CALC-NO PIC 9(6) VALUE ZERO.

000350

000360 01 SUBS.

000370 03 X-SUB PIC 9(6) VALUE 3.

000380 01 PRINT-SUBS.

000390 03 P-COUNT-X PIC 9(6) VALUE 1.

000400

000410 01 A PIC 9(6) VALUE ZERO.

000420 01 B PIC 9(6) VALUE ZERO.

000430 01 C PIC 9(6) VALUE ZERO.

000440 01 D PIC 9(6) VALUE ZERO.

000450 01 Z PIC 9(6) VALUE ZERO.

000460 01 PRIME-NO-COUNT PIC 9(6) VALUE 2.

000465

000470 01 PRINT-LINE.

000480 03 P-NUM1 PIC Z(5)9 VALUE ZERO.

000490 03 P-NUM2 PIC Z(5)9 VALUE ZERO.

000500 03 P-NUM3 PIC Z(5)9 VALUE ZERO.

000510 03 P-NUM4 PIC Z(5)9 VALUE ZERO.

000520 03 P-NUM5 PIC Z(5)9 VALUE ZERO.

000530

000540 01 EXIT-KEY PIC X VALUE SPACE.

000545

000550***

000560 PROCEDURE DIVISION.

000570 MAIN-PARA.

000580 OPEN OUTPUT OUT-FILE

000590 DISPLAY 'ENTER VALUE TO WHICH PRIME NUMBERS '

000600 DISPLAY 'ARE TO BE CALCULATED BETWEEN 1 AND 999,999'

000602 MOVE 1 TO Y-COUNT (1)

000605 MOVE 2 TO Y-COUNT (2)

000610

000620*ENTER VALUE

000630 PERFORM UNTIL TOP-VALUE > 0

000640 ACCEPT TOP-VALUE

000650 END-PERFORM

000660

000670*ZEROISE TABLE

000680 MOVE ZEROS TO COUNTERS

000690

000700*DETERMINE PRIME NUMBERS AND PLACE IN TABLE

000710

000720 PERFORM VARYING CALC-NO FROM 3 BY 1

000730 UNTIL CALC-NO > TOP-VALUE

000740 DISPLAY CALC-NO

72

000750 MOVE 1 TO C

000760 MOVE 'N' TO PRIME-FLAG

000770

000780*IS NUMBER EVEN (BUT NOT 2)?

000790

000800 DIVIDE CALC-NO BY 2 GIVING A REMAINDER Z

000830 IF Z = 0 THEN MOVE 'Y' TO EVEN-FLAG

000840 ELSE MOVE 'N' TO EVEN-FLAG

000850 END-IF

000860

000865**

000870*DIVIDE EACH ODD NUMBER BY NUMBERS UP TO HALF THE CALC-NO

000880*LOOP EXITED WHEN A NUMBER DIVIDES IT WITH NO REMAINDER

000890*OR WHEN ALL NUMBERS CHECKED

000895**

000900 IF NOT NUM-EVEN THEN

000910 PERFORM VARYING D FROM 3 BY 1

000920 UNTIL (C = 0) OR (D > ((CALC-NO + 1) / 2))

000930 DIVIDE CALC-NO BY D GIVING A REMAINDER C

000940 END-PERFORM

000950 END-IF

000960

000970 IF C = 0 THEN MOVE 'N' TO PRIME-FLAG

000980 ELSE MOVE 'Y' TO PRIME-FLAG

000990 END-IF

001000

001010*WHEN PRIME NUMBER DEFINED, MOVE IT INTO TABLE

001020 IF IS-PRIME THEN

001030 MOVE CALC-NO TO Y-COUNT (X-SUB)

001040 ADD 1 TO X-SUB PRIME-NO-COUNT

001050 END-IF

001060 END-PERFORM

001070

001080*STORE THE FINAL VALUE OF X-SUB BEFORE RE-USING IT

001090 MOVE X-SUB TO P-COUNT-X

001100 MOVE ZERO TO X-SUB

001110***

001120*WRITE TABLE

001130 PERFORM VARYING X-SUB FROM 1 BY 5

001140 UNTIL X-SUB > P-COUNT-X

001150 MOVE Y-COUNT (X-SUB) TO P-NUM1

001160 MOVE Y-COUNT (X-SUB + 1) TO P-NUM2

001170 MOVE Y-COUNT (X-SUB + 2) TO P-NUM3

001180 MOVE Y-COUNT (X-SUB + 3) TO P-NUM4

001190 MOVE Y-COUNT (X-SUB + 4) TO P-NUM5

001200 WRITE NO-OUT FROM PRINT-LINE AFTER 2 LINE

001230 END-PERFORM

001240

001250 DISPLAY 'CALCULATIONS COMPLETE - ' PRIME-NO-COUNT

001260 ' PRIME NUMBERS CALCULATED'

001270 CLOSE OUT-FILE

001280 STOP RUN.

10.5 Create INDEXED file program

This program takes a line sequential record file and converts it to an indexed file. The records must contain a unique
key field that is in strict ascending order. The input file (from a text editor) should be called 'LINESEQFILE.TXT'. The

73

program output will be 'INDEXEDFILE.DAT'. You can change these in the ENVIRONMENT DIVISION if you want.

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. CREATE-INDEX-PROG.

000030 AUTHOR. TIMOTHY R P BROWN.

000040

000045***

000050* Program to convert a sorted (ascending) *

000060* line sequential file ('LINESEQFILE.TXT') to *

000070* an indexed file (output 'INDEXEDFILE.DAT'). *

000075***

000080

000090 ENVIRONMENT DIVISION.

000100 INPUT-OUTPUT SECTION.

000110 FILE-CONTROL.

000120

000130 SELECT OUT-FILE ASSIGN TO 'INDEXEDFILE.DAT'

000140 ORGANIZATION IS INDEXED

000150 ACCESS MODE IS SEQUENTIAL

000160 RECORD KEY IS INDEX-KEY.

000170 SELECT IN-FILE ASSIGN TO 'LINESEQFILE.TXT'

000180 ORGANIZATION IS LINE SEQUENTIAL.

000190

000200 DATA DIVISION.

000210 FILE SECTION.

000220

000230 FD OUT-FILE.

000240 01 MAKE-OUT.

000250 03 INDEX-KEY PIC X(6).

000260 03 PIC X(120).

000270

000280 FD IN-FILE.

000290 01 IN-REC PIC X(126).

000300

000310

000320 WORKING-STORAGE SECTION.

000340

000350 01 EOF-FLAG PIC X VALUE 'N'.

000360 88 END-OF-FILE VALUE 'Y'.

000370

000375***

000377

000380 PROCEDURE DIVISION.

000390 MAIN-PARA.

000400 OPEN INPUT IN-FILE

000410 OUTPUT OUT-FILE

000420

000430 PERFORM UNTIL END-OF-FILE

000440 READ IN-FILE

000450 AT END MOVE 'Y' TO EOF-FLAG

000460 NOT AT END

000470 MOVE IN-REC TO MAKE-OUT

000480 WRITE MAKE-OUT

000490 END-READ

000500 END-PERFORM

000510

000520 CLOSE OUT-FILE IN-FILE

000530 STOP RUN.

74

10.6 Read INDEXED file program

This program allows you to view the contents of an indexed file by generating a line sequential file of the original
indexed file. If you tried to open an indexed file with a text editor you would just see gibberish. The input file for this
program is 'INDEXEDFILE.DAT' giving an output text file called READFILE.TXT. Again, you can change these in the
ENVIRONMENT DIVISION if you wish.

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. INDEXED-TO-READ-PROG.

000030 AUTHOR. TIMOTHY R P BROWN.

000040

000045***

000050* Program to convert indexed file 'INDEXEDFILE.DAT' *

000060* to line sequential (output called 'READFILE.TXT') *

000070* for viewing with text editor. *

000075***

000080

000090 ENVIRONMENT DIVISION.

000100 INPUT-OUTPUT SECTION.

000110 FILE-CONTROL.

000120

000130 SELECT IN-FILE ASSIGN TO 'INDEXEDFILE.DAT'

000140 ORGANIZATION IS INDEXED

000150 ACCESS MODE IS DYNAMIC

000160 RECORD KEY IS S-KEY-NO.

000170 SELECT OUT-FILE ASSIGN TO 'READFILE.TXT'

000180 ORGANIZATION IS LINE SEQUENTIAL.

000190

000200 DATA DIVISION.

000210 FILE SECTION.

000220

000230 FD IN-FILE.

000240 01 IN-REC.

000250 03 S-KEY-NO PIC X(6).

000260 03 PIC X(43).

000270

000280 FD OUT-FILE.

000290 01 OUT-REC PIC X(49).

000300

000310

000320 WORKING-STORAGE SECTION.

000340

000350 01 EOF-FLAG PIC X VALUE 'N'.

000360 88 END-OF-FILE VALUE 'Y'.

000370

000373***

000377

000380 PROCEDURE DIVISION.

000390 MAIN-PARA.

000400 OPEN INPUT IN-FILE

000410 OUTPUT OUT-FILE

000420

000430 PERFORM UNTIL END-OF-FILE

000440 READ IN-FILE NEXT

000450 AT END MOVE 'Y' TO EOF-FLAG

000460 NOT AT END

000470 WRITE OUT-REC FROM IN-REC

75

ZingCOBOL Copyright Timothy R P Brown 2003

000480 END-READ

000490 END-PERFORM

000500

000510 CLOSE IN-FILE OUT-FILE

000520 STOP RUN.

76

About ZingCOBOL

This book has been generated from the web site ZingCOBOL, found at one of
the following locations:

http://members.lycos.co.uk/zingcobol
http://zingcobol.tripod.com
http://homepage.ntlworld.com/zingmatter/zingcobol

As a consequence of this, there may appear textual references that do not
appear to make much sense since it was a hyperlink on the original site.

ZingCOBOL was developed, beginning in 1999, and gradually improved over
time with corrections, additions, and some minor design changes.

The text, graphics, and COBOL source code are copyright of Timothy R P
Brown and Zingmatter Web Design 1999 onwards. If you wish to reproduce
this text for self learning then feel free to print it off. Likewise, for use within a
teaching environment it is free to use in it an unaltered form. If you wish to
publish any, or part of this book, or alter significant parts within, permission
should be obtained from the author.

The flower image on the front cover was by my daughter Emily.

Timothy R P Brown
Glasgow, UK

August 2003

ZingCOBOL Copyright Timothy R P Brown 2003

77

ZingCOBOL Copyright Timothy R P Brown 2003

