
Using – Really Using – COBOL-85

2010 UNITE MCP-4014 1

Using – Really Using –
COBOL-85

Using Using –– Really Using Really Using ––
COBOLCOBOL--8585

Paul Kimpel
2010 UNITE Conference

Session MCP-4014

Wednesday, 26 May 2010, 10:30 a.m.

Copyright © 2010, All Rights Reserved Paradigm Corporation

Using – Really Using – COBOL-85

2010 UNITE Conference
Baltimore, Maryland

Session MCP-4014

Wednesday, 26 May 2010, 10:30 a.m.

Paul Kimpel

Paradigm Corporation
San Diego, California

http://www.digm.com

e-mail: paul.kimpel@digm.com

Copyright © 2010, Paradigm Corporation

Reproduction permitted provided this copyright notice is preserved
and appropriate credit is given in derivative materials.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 2

MCP-4014 2

Presentation TopicsPresentation Topics

Goals

A Few Goodies

Data Definition and Manipulation

COBOL-85 Statements and Control Flow

A New Style for COBOL Coding

If you're like me, your site licensed COBOL-85 and you didn't miss a beat. You kept coding in COBOL-74
like you always had, just compiling it with the C85 compiler. Unisys has done a wonderful job making the
C85 compiler upward compatible with C74 – perhaps too good a job – there just was not much incentive to
use the newer features in C85.

A couple of years ago I started trying to use the new COBOL-85 language features in earnest. The initial
impetus for this was writing a medium-size program to exercise the DMSQL Call Level Interface (CLI) in a
general way.1 The more of the new language constructs I used, the more I started to like it, and I found the
style of coding I had developed over the years for COBOL-68 and -74 starting to change radically.

There have been UNITE presentations on the features of COBOL-85 before, particularly ones by Bob
Morrow and Edward Reid at the 2002 conference (cited in the references at the end of this presentation), but I
have been so taken with the new style of coding that has evolved, that I decided to approach the subject from
that perspective. In order to discuss that new style, of course, we have to talk about the new2 features in
COBOL-85 that enable that style. The first, and largest, part of the presentation will be taken up with a
discussion of those features, and you will see some of the new style in the accompanying examples. I'll talk
about some general features, features for data definition and manipulation, and a really significant set of new
features involving Procedure Division statements and program control flow.

The last dozen slides will discuss the style that has evolved for me, along with some general
recommendations on how to apply COBOL-85 features to the writing of new code.

1 See http://www.digm.com/UNITE/2008/ and particularly the file
SOURCE\UNITE\DMSQL\QUERY\HARNESS.c85_m contained in
http://www.digm.com/UNITE/2008/2008-MCP-4032-Resources.zip
2 I'm not sure that "new" is the right word here, as most of this stuff has been around and available on the
MCP for almost 25 years.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 3

MCP-4014 3

GoalsGoals

Not a complete treatment of COBOL-85

Discuss major new features that:
Aid program readability
Simplify expression of logic
Improve flow of control
Otherwise make programming easier, more reliable,
and more productive

These features suggest a completely
different style for coding COBOL

Easily eliminate GO TOs
Keep processing in-line with flow of control
Resolve some age-old sources of bugs

The goal in this presentation is not to do a complete overview of all of the features of COBOL-85. Instead, I
want to discuss the major new features that aid program readability, simplify program logic, improve control
flow, and otherwise make COBOL programs easier to generate, more reliable, and more productive.

It is from these major features that my new style has evolved. Most of it is in the area of program control flow
– finally having a good way to eliminate GO TOs, taking advantage of features for in-line coding within the
control flow (I'll explain what this means later), and hopefully resolving some age-old sources of classic
COBOL coding bugs.

Totally resolving sources of bugs simply with language features and coding style is too much to hope for, and
I'll discuss at least one major gotcha with the new control flow features.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 4

A Few GoodiesA Few Goodies

First, let's start with a discussion of a few nice, but miscellaneous features in COBOL-85. Some of these are
specific to the Unisys MCP environment rather than standard COBOL-85. I've tried to identify those by
indicating "[MCP]" on the slides.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 5

MCP-4014 5

In-Line (Floating) Comments [MCP]In-Line (Floating) Comments [MCP]

Traditional COBOL comments
"*" or "/" in column 7
Makes the whole line a comment

In-line comments
"*>" makes the rest of the line a comment
Must be preceded by a space
Can appear wherever a space is valid

Example:
IF W-MSG-SIZE = ZERO

CONTINUE *> JUST IGNORE IT

ELSE

...

Traditionally COBOL has had one way to indicate comments in a program,1 and that is by placing an asterisk
("*") or slash ("/") in column 7 of the source record.

COBOL-2002 introduced a new method, similar to that found in many other languages, called the in-line (or
floating) comment, which is signaled by the "*>" character pair. Unisys implemented this feature for the
MCP COBL-85 compiler in MCP 8.0. The asterisk, unless in column 7, must be preceded by a space, and the
comment can start anywhere a space is valid in the syntax.

I like this feature, and am using it more and more in my programs.

1 Well, aside from some areas of the IDENTIFICATION DIVISION that are treated as comments, and the
old NOTE sentence, which is long gone.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 6

MCP-4014 6

Constant Declarations [MCP]Constant Declarations [MCP]

Assigns a data name to a literal value
Must be declared in Working-Storage
Must be level 01
May be declared GLOBAL

Examples
01 MAX-TABLE-SIZE CONSTANT AS 30.

01 DEF-CODE CONSTANT AS "ABC".
01 CODE-LEN CONSTANT AS

LENGTH OF W-NEXT-CODE.
01 W-DATA.

02 W-NEXT-CODE PIC X(6) VALUE DEF-CODE.

02 W-TABLE OCCURS MAX-TABLE-SIZE

03 W-ENTRY PIC X(3).

Constant declarations are another MCP-specific feature introduced in MCP 8.0. I don't know what the genesis
of this feature was, but I've wanted something like this for a long time and I now use it a lot.

In the simplest case, a constant declaration associates a data name with a literal value, similar to a DEFINE in
Algol or a CONSTANT declaration in WFL. The declaration must be in Working-Storage and must be at level
01. I usually align the CONSTANT AS in column 40 (with PIC clauses). The literal value can be any of the
forms that COBOL-85 supports, including hex and floating-point literals.

The data name can be used anywhere the corresponding literal is valid (except in picture strings, as the entire
picture string is considered to be one syntax element). In particular the data name can be used in a VALUE
clause, an OCCURS clause, or as a sending item in a Procedure Division statement.

You can also declare a constant as the LENGTH OF or BYTE-LENGTH OF some data name. The compiler
will evaluate the constant name as the number of characters or bytes, respectively, contained in the specified
data name. For the 8-bit character sets used with Western languages, LENGTH and BYTE-LENGTH are
equivalent.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 7

MCP-4014 7

Conditional Compilation [MCP]Conditional Compilation [MCP]
$IF / $ELSE / $ELSE IF / $END IF

Conditionally excludes lines from compilation
Similar to, but much clearer than $OMIT

Example
$$ OPTION (SET TESTMODE)

. . .

$$ IF TESTMODE

MOVE "TEST MODE" TO W-HEAD-MODE

MOVE 1 TO W-MODE-SW

$$ ELSE

MOVE "NORMAL MODE" TO W-HEAD-MODE

MOVE ZERO TO W-MODE-SW

$$ END IF

Yet another MCP-specific feature of COBOL-85 is a refinement of the $OMIT conditional compilation
feature in COBOL-74 and several other MCP languages. $IF control statements allow you to define areas of
the program that will or will not be compiled based on the value of a compile-time option (or a Boolean
expression composed of compile-time options).

This is a lot easier to read and understand than the $OMIT approach, which requires you to unravel negative
logic to determine whether the affected code gets compiled or not.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 8

MCP-4014 8

Explicit Library Declaration [MCP]Explicit Library Declaration [MCP]

COBOL-85 supports server libraries
Original "COBOL-74" calls (implicit declaration)
New style based on PROGRAM-LIBRARY SECTION.

Library declaration has two parts
Placed at end of DATA DIVISION
LOCAL-STORAGE SECTION

– Defines formal parameters
– Defines size and type of formal parameters
PROGRAM-LIBRARY SECTION

– Defines server library programs
– Specifies attributes of library programs
– Declares entry points in each library
– Specifies sequence of parameters for each call

When calling a server library routine, the compiler must build a system data structure called a library template
that describes the routine's parameters and their data types. For COBOL-74 calls on server libraries, there is
no declaration of the library or its routines. The compiler must deduce the parameter data types from the call.
It does a good job of this, but all parameters must be passed by reference.

COBOL-85 fully supports the COBOL-74 style of library call, but also implements a new method that
involves declaring the library, its entry point routines, and the sequence and types of the parameters for those
routines. The syntax of the CALL verb is also slightly different. This method is based on two sections that go
at the end of the Data Division, the LOCAL-STORAGE section and the PROGRAM-LIBRARY section.

LOCAL-STORAGE serves to associate data types with parameter names. It consists of a series of LD sections
which contain 01- and 77-level declarations. These declarations do not allocate memory in the program, they
merely provide metadata to describe the library entry point routine parameters.

PROGRAM-LIBRARY declares one or more server libraries, the entry point routines for each library, and the
parameter sequences for each entry point. This section can also contain attributes for the libraries and alias
names for the entry points. The overall capability is very similar to the LIBRARY declaration in Algol.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 9

MCP-4014 9

Library Declaration ExampleLibrary Declaration Example
LOCAL-STORAGE SECTION.
LD DTIME-TEMPLATE.
77 L-TIME-TYPE RECEIVED BY CONTENT REAL.
77 L-DTIME-RESULT DOUBLE.

LD FILERECFORMAT-TEMPLATE.
77 L-FILEKIND RECEIVED BY CONTENT REAL.
77 L-RECFORMAT REAL.
77 L-XTRA REAL.
77 L-RESULT REAL.

PROGRAM-LIBRARY SECTION.
LB MCPSUPPORT IMPORT

ATTRIBUTE FUNCTIONNAME IS "MCPSUPPORT"
LIBACCESS IS BYFUNCTION.

ENTRY PROCEDURE DTIMEINTRINSIC
WITH DTIME-TEMPLATE
USING L-TIME-TYPE GIVING L-DTIME-RESULT.

ENTRY PROCEDURE FILERECFORMAT
WITH FILERECFORMAT-TEMPLATE
USING L-FILEKIND, L-RECFORMAT, L-XTRA
GIVING L-RESULT.

...
CALL DTIMEINTRINSIC USING W-X GIVING W-IOTIME

This slide shows an example of declaring two entry points for the MCPSUPPORT library. The LOCAL-
STORAGE section defines the formal parameters and their data types; PROGRAM-LIBRARY defines the
MCPSUPPORT library, the library's attributes, the entry points, and their parameter sequences. Note that the
entry point declarations make use of the data names defined in LOCAL-STORAGE.

Also, note than when using this form of library declaration, the entry point in the CALL statement is a
standard identifier – the one specified for the entry point in the PROGRAM-LIBRARY section. With a
COBOL-74 library call, the entry point is a literal string of the form "procedurename IN libraryname" or
"procedurename OF libraryname".

See the MCP System Interfaces Programming Reference Manual (8600 2029) if you are interested in learning
about the two routines used in this example.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 10

MCP-4014 10

MiscellaneousMiscellaneous

COBOL-85 source is case-insensitive

Relational operators
<= instead of NOT GREATER THAN

>= instead of NOT LESS THAN

BINARY EXTENDED [MCP]
02 W-INDEX PIC S9(4) BINARY EXTENDED.

Suppresses enforcement of PICTURE for BINARY items
Enable globally with $$ SET BINARYEXTENDED

INITIALCCI file [MCP]
File of CCIs ("dollar cards")
Read by compiler at beginning, before source file

Here are a few miscellaneous miscellaneous goodies in COBOL-85:
• COBOL-85 source programs are case-insensitive. You can now write programs in mixed case. "MOVE",

"move", and "Move" all mean the same thing.
• Long overdue, you can now use "<=" instead of the excruciating "NOT GREATER THAN" (and the

slightly less excruciating "NOT >"). Similarly you can use ">=" instead of "NOT LESS THAN" or "NOT
<".

• MCP COBOL-85 supports USAGE BINARY EXTENDED. This allows the compiler to treat USAGE
BINARY items as true hardware integers, ignoring the picture clause. Without the EXTENDED
specification, moving a value to a PIC S9(4) data item forces the compiler to emit code to divide the
value by 10,000 and store the remainder in the data item, thereby enforcing the picture clause, but
destroying most, if not all, of the efficiency inherent in using binary integers. You can cause all BINARY
items in the program to be treated as if EXTENDED had been specified by setting the
$BINARYEXTENDED compiler option.

• MCP COBOL-85 has had a really nice feature since the beginning that can be used to standardize
compiler options for a project or across a site. If you create a file of compiler options and file equate it to
the compiler's INITIALCCI file, the compiler will read that file and apply the options to the
compilation run before reading the source file to be compiled. The INITIALCCI file's default title is
also INITIALCCI, so for most sites (and depending on how family substitution works at the site),
creating a file with the title *INITIALCCI ON DISK will cause the options in that file to be applied by
default to all COBOL-85 compilations at that site. The file can include specifiers that control whether
the options are applied for all compilations, only for batch, or only for interactive compilations. See the
documentation in the COBOL-85 reference manual for details.

Due to space and time limitations, there were a few goodies that did not make the cut for this section of the
presentation. You can read about them in the COBOL-85 reference manual:

• The keyword FILLER is no longer required. You can now write "10 PIC X(3)" in the Data Division
and the compiler will consider that to be a filler item.

• COBOL-85 supports epilog procedures, which are declared in the DECLARATIVES section of the
Procedure Division. An epilog procedure will be executed unconditionally at the termination of a
program, whether the program terminates normally or not. It is typically used to clean up after an abort,
closing files, freeing locks, etc.

• The MCP library CALL statement has an ON EXCEPTION clause that will trap linkage and parameter
mismatches that would otherwise cause the caller to abort. Information about the failed linkage is
available in the LINKLIBRARY-RESULT special register.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 11

Data Definition and ManipulationData Definition and Manipulation

That concludes the discussion of miscellaneous goodies in COBOL-85. Next we will discuss features for data
definition and manipulation.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 12

MCP-4014 12

Symbolic Character DeclarationsSymbolic Character Declarations
Assigns data names to character codes

Declared in SPECIAL-NAMES paragraph
Can be used anywhere a character literal is valid
Note the character codes are 1-relative

Example:
SPECIAL-NAMES.

SYMBOLIC CHARACTERS
NUL-CHAR IS 1
FF-CHAR IS 13
CR-CHAR IS 14
GS-CHAR IS 30
RS-CHAR IS 31
LF-CHAR IS 38
EOT-CHAR IS 56.

A very nice, and from my experience, under-utilized feature of COBOL-85 is symbolic character
declarations. These are placed in the SPECIAL-NAMES paragraph of the Configuration Section.

Once declared, the data names in this section can be used anywhere a character or hex literal can be used.
These are generally more efficient than declaring special characters as items in Working-Storage, as the
compiler can generate literal calls for the character values rather than having to load them from standard data
areas.

Gotcha Alert! The original designers of COBOL never got the email that numbers start at zero, not one.
Never mind that there was no such thing as email at the time. The character codes are specified as the
character's ordinal position in the character set. Ordinal means one-relative (ordinal ⇒ one, for those of you,
like me, who have trouble remembering this). An EBCDIC NUL character has a value of zero, but an ordinal
position of 1.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 13

MCP-4014 13

Character Class ConditionsCharacter Class Conditions
IS ALPHABETIC now includes lower case
ALPHABETIC-UPPER tests for only upper case
ALPHABETIC-LOWER tests for only lower case

Custom character classes
Declared in SPECIAL-NAMES paragraph
Defines a set of characters that can be tested
Non-graphics defined by their ordinal (1-relative) code
Alas, cannot use symbolic characters in class
declarations

COBOL has traditionally had two intrinsic character class conditions, ALPHABETIC and NUMERIC, which
are evaluated using the IS conditional operator (e.g., IF W-COUNTER IS NUMERIC).

Since COBOL-85 recognizes the existence of lower-case characters, the ALPHABETIC class now includes
both upper- and lower-case letters. There are two new classes, ALPHABETIC-UPPER and ALPHABETIC-
LOWER, that will test for all-upper or all-lower case letters.

COBOL-85 also allows you to define custom character classes (what Algol refers to as a TRUTHSET) and
test the contents of data items against those, using the same IS operator. These custom character classes are
declared in the SPECIAL-NAMES paragraph of the Configuration Section.

Non-graphic (i.e., "special") characters must be defined by a numeric code, and that numeric code, as with
symbolic characters, must be specified as the ordinal (one-relative) position of the character in its character
set.

Having gone to all of the trouble to create symbolic character declarations, you would think the designers of
COBOL-85 would have allowed those symbolic characters to be used in the declaration of custom character
classes, but no, they can't.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 14

MCP-4014 14

Character Class ExamplesCharacter Class Examples
SPECIAL-NAMES.

CLASS HEX-DIGITS IS "0123456789ABCDEF"
CLASS ASCII-CTL IS

1 THRU 32, 128
CLASS LINE-DELIM IS

13, 14, 38
CLASS WHITESPACE IS

1, 6, 13, 14, 38, 65.

IF W-TOKEN-CHAR IS ALPHABETIC
...

IF W-TOKEN-CHAR IS ASCII-CTL
...

IF DC-REC IS WHITESPACE
...

This slide shows an example of several character class declarations and their use with class conditions in IF
statements. Graphic (printable) characters can be used literally to define the class; non-graphic characters
must be specified by their ordinal position in the character set.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 15

MCP-4014 15

Not Your Father's Level-88Not Your Father's Level-88

88 conditions were always problematic
Nice way to test for symbolic value conditions
No way to set a value condition symbolically

SET condition-name TO TRUE
Stores the value for the 88-level condition-name in the
associated data item
If 88-item has multiple values, stores the first one

Example
05 W-BASE-STATUS PIC X(2).

88 W-BASE-ON VALUE "ON".
88 W-BASE-OFF VALUE "XX" "NO" " ".

SET W-BASE-OFF TO TRUE.

88-level condition names were a great idea in the original COBOL design, but they have always been
problematic to use. They provide a very nice way to test a data item symbolically for a value or set of values,
but the feature wasn't symmetric – there was no way to symbolically set a data name to one of its conditions.

COBOL-85 introduces an elegant solution to this problem using a variation of the SET verb. You can now
SET an 88-level condition name to TRUE. This causes the compiler to store the value associated with the 88-
level name in the associated data variable. If the 88-level has multiple values, the compiler stores the first
declared value.

In the example on the slide,

SET W-BASE-OFF TO TRUE.

is equivalent to

MOVE "XX" TO W-BASE-STATUS.

Note that you cannot set an 88-level condition name to FALSE.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 16

MCP-4014 16

Manual Insertion Editing [MCP]Manual Insertion Editing [MCP]
COBOL PICTURE has long had two
unconditional insertion characters
B always inserts a space
/ always inserts a slash

COBOL-85 uses "I" to prefix any character
as an insertion character
05 W-NEXT-TIME PIC 99I:99I:99.

05 WPR-SSN PIC 999I-99I-9999.

05 W-EXPLETIVE PIC I%I*I@I#I$I!BX(30).

Can be allowed implicitly using
$AUTOINSERT option (not recommended)

The concept of PICTURE clauses was another great idea in the original COBOL design. Pictures format data,
and part of their capability is to insert additional characters into the sending value in the process of formatting
the receiving value.

PICTURE has long had the ability to unconditionally insert two characters into the receiving value, by
specifying "B" (to insert a space) and "/" (to insert a slash). Earlier MCP compilers were quite liberal in
interpreting picture strings, and generally allowed any character that was not otherwise defined as a picture
character to be treated as an unconditional insertion character, similar to the "/". The actual behavior was
highly context-sensitive and a little difficult to predict in some cases.

MCP COBOL-85 provides a much cleaner, if still non-standard, way to specify unconditional insertion
characters in pictures. This was implemented in MCP 7.0. The character "I" in a picture clause signals that
the next character in the string is to be inserted unconditionally in the receiving value. The nice thing about
this feature is that you can insert any character unconditionally, and do it in a way that is unambiguous.

There is a compiler option, $AUTOINSERT, that will cause COBOL-85 to revert to the implied insertion
behavior of older compilers, but using this is not recommended.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 17

MCP-4014 17

INITIALIZE StatementINITIALIZE Statement

Initializes all elementary items of a group
Can also initialize a single elementary item
Does not initialize FILLER or REDEFINES items
By default, alpha items get SPACE, numerics get ZERO
Can specify a value for certain classes of items
– Alphabetic, Alphanumeric, Alphanumeric-edited
– Numeric, Numeric-edited
– National, National-edited

Examples
INITIALIZE MF-MASTER-REC

INITIALIZE WS-GROUP REPLACING
NUMERIC BY 1,
ALPHANUMERIC BY HIGH-VALUE

Initialization of record areas and group items is something we need to do all of the time in COBOL
applications, but in the past there has not been a good way to do it. The classic method is to move SPACES to
the record or group item, then individually move ZEROES to the numeric items.

Often we don't bother with the fix-up and just move the SPACES. MCP COBOL will treat a numeric
DISPLAY field containing spaces as if it were zero, but probably everyone who has worked on MCP
applications has run into situations where a packed-decimal field has the value 404040… or 040404…
because spaces were moved to the record or group in which the field is contained. And we're the lucky ones –
try that on an IBM 360/zSeries system and you'll get a data exception due to an invalid packed-decimal sign
digit.

Enter the COBOL-85 INITIALIZE statement. This will initialize a record area or group item to specified
values based on the classes of the elementary items in the record or group. FILLER items, and items
subordinate to REDEFINES clauses, are not affected by INITIALIZE.

By default, alphabetic and alphanumeric items are initialized to spaces and numeric items are initialized to
zero.

You can override the default by specifying values for seven different types of data classes:
• Alphabetic
• Alphanumeric
• Alphanumeric-edited
• Numeric
• Numeric-edited
• National
• National-edited

The MCP implementation of this statement appears to be quite efficient. For small data areas (i.e., those
having few subordinate items), the compiler just emits elementary moves. For areas with larger numbers of
items, the compiler constructs a pre-initialized copy of the record or group area in its constant pool, and
initializes the receiving area in one move.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 18

MCP-4014 18

INSPECT CONVERTING StatementINSPECT CONVERTING Statement
COBOL-74 has INSPECT REPLACING for
replacing strings of characters
INSPECT CONVERTING converts
(translates) sets of characters

Examples
INSPECT WS-MSG CONVERTING

"abcdefghijklmnopqrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

INSPECT W-RAW-DATA CONVERTING
W-XX-FROM-CHARS TO W-XX-TO-CHARS

The INSPECT statement has a number of forms, and all of those from COBOL-74 have been brought
forward into COBOL-85. COBOL-85 adds a new variant of this statement, INSPECT CONVERTING.

INSPECT CONVERTING looks a lot like INSPECT REPLACING, but what it does is entirely different.
Whereas the REPLACING form scans a string looking for substrings of a certain value and replaces those
substrings by another substring, the CONVERTING form performs character translation.

The translation can be specified using either literals or data items. Using literals is generally more efficient, as
the compiler can generate the necessary hardware translation tables at compile time and store them in the
codefile. When using data items to define the translation, the tables must be constructed at run time.

The first example on the slide shows one way to up-case text. As we will see, there is another (and probably
better) way to do this using intrinsic functions.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 19

MCP-4014 19

Reference ModificationReference Modification

One of COBOL-85's nicest features
MOVE W-SOURCE (5:12) TO W-DEST (W-X:W-Y)

Operates on only a portion of an item
Only applies to USAGE DISPLAY or NATIONAL items
Can be applied to both sending and receiving items
Syntax: data-name (starting-position : length)

Position and length can be expressions
If length is omitted, implies rest of data item:

MOVE SPACE TO W-MSG (W-X:)

Bounds checking applies
Starting-position is 1-relative, must be > 0
Starting-position + length – 1 <= size of data item

COBOL-85 also introduced the idea of "reference modification." This is simply a grand term for "substring."

Reference modification allows you to address only a portion of a sending or receiving field. It can be used
only with USAGE DISPLAY or NATIONAL items, but within that restriction can be used on both
alphanumeric and numeric fields. As shown on the slide, the syntax for reference modification follows the
data name with an opening parenthesis, an arithmetic expression specifying the one-relative character offset
into the data, a colon (":"), and a second arithmetic expression specifying the length of the substring in
characters.

If the length is omitted (note that the colon must still be present), then the number of characters remaining
after the starting offset is taken as an implicit length.

Reference modification can be used with subscripted data names. In that case it follows the subscripts, viz,

MOVE W-TABLE-ENTRY (W-TX) (W-X:5) TO W-HOLD-AREA

If bounds checking is enabled (which it is by default – see the $BOUNDS compiler option), the compiler emits
code to check that the starting position is one or greater, and that the starting position plus the length is within
the valid length for the data item. Bounds violations result in an assertion failure fault.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 20

MCP-4014 20

Intrinsic FunctionsIntrinsic Functions

Built-in numeric and string functions
FUNCTION name (arguments)

Examples:
MOVE FUNCTION MOD (W-VAL, 3) TO W-REM

compute My-Retirement =
function Annuity (0.0125, 240) * My-Savings

MOVE FUNCTION UPPER-CASE (MSG-TEXT) TO W-BODY

COMPUTE VAR = FUNCTION VARIANCE (MY-TAB (ALL))

MOVE FUNCTION REVERSE (MSG-PASSWORD) (1:4) TO
W-ENCRYPT-TAG-1

A follow-on to the original COBOL-85 standard implemented a rather amazing set of intrinsic functions for
the language. These can be used as sending items in Procedure Division statements. The syntax begins with
the keyword FUNCTION, followed by the name of the function, and optionally followed by arguments
(parameters) in parentheses.

I'll give a brief overview of the intrinsic functions supported by the MCP compiler, arranged in the following
categories:

• Numeric intrinsics
• Date intrinsics
• Character string intrinsics
• Multiple parameter/array intrinsics
• MCP-specific intrinsics

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 21

MCP-4014 21

Lists & Array-Slice ParametersLists & Array-Slice Parameters

Some intrinsic functions allow you to specify
a variable-length list of arguments

MIN, MAX
SUM, VARIANCE, etc.

For these functions, you can specify a table
name with ALL for one or more subscripts
FUNCTION SUM (MY-TAB (ALL))

FUNCTION MIN (WMX-MATRIX (3, ALL))

FUNCTION MEAN (W4S-TABLE (ALL, 3, 7, ALL))

Note that some intrinsic functions allow you to specify a list of arguments, and that the function is computed
over the set of values represented by that list. Examples are MIN, MAX, SUM, and VARIANCE.

For these functions that accept an arbitrary number of arguments, you can also pass the name of a table or
array with the keyword ALL specified for one or more of the dimensions. This effectively allows you to insert
the entire contents of the array, or a slice of the array, into the argument list for the function – an extremely
powerful capability.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 22

MCP-4014 22

Numeric IntrinsicsNumeric Intrinsics
ACOS (number)
ANNUITY (rate,
periods)
ASIN (number)
ATAN (number)
COS (radians)
FACTORIAL (number)
INTEGER (number)
INTEGER-PART
(number)
LINENUMBER

LOG (number)

LOG10 (number)

MOD (number,
modulus)
RANDOM [(seed)]

REM (number, divisor)

SIN (radians)

SQRT (number)

TAN (radians)

COBOL-85 supports a number of numeric or arithmetic intrinsics, including the common transcendental
functions, the factorial function, and mod and rem (remainder divide).

• ANNUITY approximates the value of an annuity for a given rate, paid at the end of each period,
normalized to an initial principal value of 1.0.

• INTEGER returns the greatest integer value that is less than or equal to the argument value.
• INTEGER-PART strips any fractional part from the argument value and returns the integer part. This

function is identical to INTEGER for non-negative argument values.
• The LINENUMBER intrinsic simply returns the sequence number of the source code line on which it

appears.
• RANDOM returns a pseudo-random sequence of numbers. Calling RANDOM with an argument value

(which must be a non-negative integer) initializes the pseudo-random sequence. Subsequent calls
without an argument return successive values from the pseudo-random sequence. The result of the
function is a non-negative fractional value less than one.

For details on the parameters and behavior of all the intrinsic functions, see the section devoted to them in the
COBOL-85 reference manual.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 23

MCP-4014 23

Date IntrinsicsDate Intrinsics
CURRENT-DATE

returns YYYYMMDDHHMMSSTT±HHMM

DATE-OF-INTEGER (day-number)

DAY-OF-INTEGER (day-number)

INTEGER-OF-DATE (yyyymmdd)

INTEGER-OF-DAY (yyyyddd)
WHEN-COMPILED

returns same format as CURRENT-DATE

Date computations have always been difficult in COBOL, since dates are not native data types in the
language.

COBOL-85 supplies an intrinsic that will return the current date and time (plus the system's timezone offset)
in one call using the CURRENT-DATE function.

COBOL-85 also provides functions to convert between Gregorian (yyyymmdd) and Julian (yyyyddd)
numeric date formats and a day number. Day number 1 (the "epoch" date) is 1 January 1601 (16010101); day
number 149536 is 1 June 2010 (20100601).

Once a date is expressed as a number of days offset from an epoch date, it is easy to compute the number of
days between two dates, compute a date so many dates before or after a given date, and to determine the day
of the week. The following example shows how to compute a Gregorian date that is 30 days in the future.

77 W-DATE PIC 9(8) COMP.

MOVE 20100601 TO W-DATE
DISPLAY FUNCTION DATE-OF-INTEGER (

FUNCTION INTEGER-OF-DATE (W-DATE) + 30)

This example will display a result of 20100701.

The language also supports a WHEN-COMPILED function that returns the date and time the program was last
compiled.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 24

MCP-4014 24

Character String IntrinsicsCharacter String Intrinsics
CHAR (ordinal-char-pos)
CHAR-NATIONAL (ordinal-char-pos)
CONVERT-TO-DISPLAY (national [,subs-char])
CONVERT-TO-NATIONAL (display [,subs-char])
LENGTH (data-name)
LENGTH-AN (data-name)
LOWER-CASE (alphanumeric)
NUMVAL (alphanumeric)
NUMVAL-C (alphanumeric)
ORD (alphanumeric)
REVERSE (alphanumeric)
UPPER-CASE (alphanumeric)

COBOL-85 also has a number of character string intrinsics that nicely complement the features of reference
modification.

• CHAR and CHAR-NATIONAL convert the ordinal position of a character in a character set to an
alphanumeric string of length one containing the character. Note that the ordinal character position is
normally one greater than the character's binary value.

• ORD is the inverse of CHAR. It takes the character in the first position of its arguments and returns the
corresponding ordinal position in the character set.

• CONVERT-TO-DISPLAY and CONVERT-TO-NATIONAL convert strings between 8- and 16-bit
character sets.

• LENGTH returns the length in character positions of a data item. LENGTH-AN returns the length in
bytes. There is no difference between the two for 8-bit Western character sets.

• UPPER-CASE and LOWER-CASE perform their eponymous translation functions.
• NUMVAL will convert an alphanumeric string to its numeric equivalent. NUMVAL-C does the same, but

accepts currency formats (e.g., with dollar signs and commas). These functions appear to have limited
value, as using them with invalid numeric data results in the program aborting.

• Finally, there is the REVERSE intrinsic, an interesting function which most modern languages support,
and for which there is no known use. It simply returns the character string of its argument with the order
of the characters reversed.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 25

MCP-4014 25

Multiple Parameter/Array IntrinsicsMultiple Parameter/Array Intrinsics
MAX (item1, item2, item3, …)
MEAN (item1, item2, item3, …)
MEDIAN (item1, item2, item3, …)
MIDRANGE (item1, item2, item3, …)
MIN (item1, item2, item3, …)
ORD-MAX (item1, item2, item3, …)
ORD-MIN (item1, item2, item3, …)
PRESENT-VALUE (rate, amount1, amount2, …)
RANGE (item1, item2, item3, …)
STANDARD-DEVIATION (item1, item2, item3, …)
SUM (item1, item2, item3, …)
VARIANCE (item1, item2, item3, …)

This slide shows the intrinsic functions which accept argument lists of arbitrary length. They will also accept
arrays (tables) and array slices for arguments.

• MAX, MEAN, MEDIAN, MIN, STANDARD-DEVIATION, SUM, and VARIANCE perform their standard
function across the list of argument values.

• ORD-MAX and ORD-MIN are similar to MAX and MIN, but instead of returning the maximum or
minimum value, they return the one-relative position of the max or min value in the argument list.

• MIDRANGE is similar to MEAN, but returns the average of the maximum and minimum values in the
argument list instead of the average across the whole list.

• RANGE returns the difference between the maximum and minimum values in the argument list.
• PRESENT-VALUE computes an approximation of the present value of a future series of period-end

payments. The first argument is the discount rate specified as a decimal fraction (not a percentage). The
remaining arguments in the list are the period-end payments.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 26

MCP-4014 26

MCP-Specific IntrinsicsMCP-Specific Intrinsics
ABS (number)
DIV (number, divisor)
EXP (number) [power of e]
FIRSTONE (number)
FORMATTED-SIZE (data-name)
ONES (number)
SIGN (number)
Also OFFSET (without the FUNCTION keyword)

Returns 0-relative byte offset within 01-record
MOVE OFFSET (ITEM-NAME) TO W-INDEX

MCP COBOL-85 adds a number of additional intrinsics to the standard set.
• ABS strips the sign of the argument value and always returns a non-negative number
• DIV performs an integer division and returns an integer result
• EXP computes the exponential function (power of e)
• FIRSTONE implements the E-mode LOG2 instruction, which returns the bit number plus one of the first

non-zero bit in the argument's numeric value. The argument is converted to a single-precision binary
value prior to determining the leading bit number.

• Similarly, ONES implements the E-mode CBON instruction, which returns a count of the number of one
bits in the argument's single- or double-precision binary value.

• FORMATTED-SIZE is similar to the LENGTH-AN function. It returns the number of bytes in the
argument's data area. It is a carry-over from MCP COBOL-74.

• SIGN returns a value indicating the argument's sign, -1, 0, or +1.
• The OFFSET function is used without the FUNCTION keyword. It is another carry-over from MCP

COBOL-74, and returns the number of bytes that precede the argument's data are in its 01 record area.
Note that unlike most COBOL offsets, this one is zero-relative.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 27

COBOL-85 Statements
and Control Flow

COBOL-85 Statements
and Control Flow

That concludes the discussion of COBOL-85 features for data definition and manipulation. Next, I'll discuss
the very significant changes COBOL-85 has made in the area of program control flow.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 28

MCP-4014 28

Statements, Sentences, ParagraphsStatements, Sentences, Paragraphs

In COBOL, a statement consists of a verb
and its operands

A sentence consists of one or more
statements followed by a period

A paragraph consists of one or more
sentences preceded by a label

A section consists of one or more
paragraphs preceded by a section header

Before talking about COBOL-85 statements and control flow, there are some terms that we need to define and
use consistently. These terms have always been used with COBOL, but in the following discussion, the
distinction between a statement and and sentence is particularly important. Note, for example, that

MOVE A TO B

is a statement, while

MOVE A TO B.

is a sentence that contains a statement.

Oh, that COBOL period.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 29

MCP-4014 29

CONTINUE vs. NEXT SENTENCECONTINUE vs. NEXT SENTENCE
COBOL-85 has a new CONTINUE verb

Similar to NEXT SENTENCE, but…
CONTINUE transfers control to the next statement
(which may or may not be in the next sentence)
NEXT SENTENCE transfers control to the next sentence
(i.e., after the next period)
Recommend you use CONTINUE

Behavior of NEXT SENTENCE is affected
by the compiler's $NEXTSENTENCE option

The difference is important for the next
subject, Scope Terminators

COBOL-85 has a new verb (also a statement), CONTINUE. This statement does nothing. It is typically used
as the object of a predicate where we want no action to take place, e.g.,

IF A > B
CONTINUE

ELSE
...

CONTINUE is very similar to NEXT SENTENCE, but differs in that it transfers control to the next statement,
while NEXT SENTENCE is intended to transfer control to the next sentence in the program. The general
consensus these days seems to be that you should use CONTINUE and avoid NEXT SENTENCE, especially
since the behavior of NEXT SENTENCE can be affected by the MCP compiler's $NEXTSENTENCE option.

The idea of CONTINUE and its difference with NEXT SENTENCE is important for the next discussion on
Scope Terminators.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 30

MCP-4014 30

Scope TerminatorsScope Terminators

Earlier COBOLs had a period problem
Nested statements had to terminate at the end of a
sentence
IF/ELSE, SEARCH/WHEN, READ/AT END, etc.

Source of much frustration
Obscure bugs due to missing/extra periods
Contorted control flow, extra GO TOs, etc.
Induced an out-of-line coding style using PERFORMs

COBOL-85 fixes much of this by providing
optional scope terminators to explicitly
bracket nested statements

COBOL has a problem with the period that ends a sentence, and everyone who has programmed in COBOL
is no doubt painfully familiar with it. The problem is that nested statements that are the object of a predicate
(e.g., the statements subordinate to an IF statement or an AT END clause) must be at the end of a sentence.
Another way of stating this is that the scope of that IF or AT END is terminated by the next period in the
source file.

This has been the source of must frustration to COBOL programmers. It is also the source of any number of
obscure bugs due to missing or extra periods. It leads, in all but the simplest cases, to contorted control flow,
as we write labels and GO TOs to branch around blocks of code that can't be nested the way they are in other,
block-structured languages.

In part, using the period as a scope terminator has lead to what I call an "out-of-line" style for GO TO-less
programming. You have probably seen this, and may have been forced to practice it. The idea is that the
bodies of IFs and ELSEs, exception clauses such as AT END, and the like, are removed to a separate block of
code and PERFORMed from the predicate that they are subordinate to. Similarly, all loops are coded as
PERFORMs of a separate block of code. Personally, I find this style to be almost as bad as coding with GO
TOs, and often less readable.

COBOL-85 fixes much of the problem with periods by providing optional scope terminators for each of the
statements that serve as predicates for a nested set of subordinate statements. You don't have to use scope
terminators, and you can mix their use with the classic style of COBOL coding, but they are a significant (if
long overdue) advance in COBOL syntax. They are also one of the main influences for a new style of
COBOL coding.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 31

MCP-4014 31

The Classic Nested-IF ProblemThe Classic Nested-IF Problem
Pseudo Code
if condition-1

do something for 1
if condition-2

do something for 2
else

do something for not 2

do more for 1

COBOL-74
IF CONDITION-1

PERFORM P-1
IF CONDITION-2

PERFORM P-2
GO TO MORE-1

ELSE
PERFORM NP-2
GO TO MORE-1.

GO TO ONWARD.
MORE-1.

PERFORM MORE-FOR-1.
ONWARD.

...

To illustrate the use of scope terminators, consider the classic nested-IF problem. We test for a condition, and
if that condition is true, want to execute a series of subordinate statements. Within the subordinate statements,
we have another IF statement that itself has subordinate statements. The inner IF statement may or may not
have an ELSE clause. Regardless of the outcome of that inner IF statement, however, we want to execute
some additional code after that, but which is still conditioned by the first IF statement.

In classic COBOL, there is no way to code this by simply nesting statements under the IF statements. Alas,
the indentation that makes the meaning of the pseudo code clear doesn't count in real code, unless you are
programming in Python. In COBOL, you need to either repeat the original IF statement or resort to GO TOs
and labels. The slide shows one common way of doing this. It's not exactly obvious that the code under the
MORE-1 label is actually conditioned by the first IF statement. What's worse, it becomes less obvious the
farther that code is removed from the IF.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 32

MCP-4014 32

Nested-IF With Scope TerminatorsNested-IF With Scope Terminators
IF CONDITION-1

PERFORM P-1
IF CONDITION-2

PERFORM P-2
ELSE

PERFORM NP-2
END-IF

PERFORM MORE-FOR-1
END-IF

Every verb that can
have nested subord-
inate statements has
a scope terminator
END-verb name
Terminator specifies
explicitly where the
nested statements for
that verb end
Only statements can
be nested, not
sentences

This slide shows how this problem can be solved quite easily and clearly in COBOL-85 using the END-IF
scope terminator keyword. END-IF tells us (and the compiler) where the scope of the immediately preceding
IF statement occurs.

In COBOL-85, every verb that can have nested subordinate statements has a corresponding scope terminator
keyword, formed as END-verb name. Other languages use standard statement brackets like BEGIN and END
or curly braces, {}, as scope terminators. This is just the way the designers of COBOL-85 chose to solve the
problem. It may not be pretty, but it sure beats the FI and ESAC approach that ALGOL-68 tried to foist on
the world.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 33

MCP-4014 33

Standard Scope Terminator WordsStandard Scope Terminator Words
END-CALL

END-COMPUTE

END-DELETE

END-DIVIDE

END-EVALUATE

END-IF

END-MULTIPLY

END-PERFORM

END-READ

END-RECEIVE

END-RETURN

END-REWRITE

END-SEARCH

END-START

END-STRING

END-SUBTRACT

END-UNSTRING

END-WRITE

This slide shows all of the scope terminator keywords for standard COBOL-85 statements.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 34

MCP-4014 34

DMSII Scope Terminator Words [MCP]DMSII Scope Terminator Words [MCP]
END-ABORT-
TRANSACTION

END-ASSIGN

END-BEGIN-
TRANSACTION

END-CANCEL

END-CLOSE

END-CREATE

END-DELETE

END-END-TRANSACTION

END-FIND

END-FREE

END-GENERATE

END-INSERT

END-LOCK

END-MODIFY

END-OPEN

END-RECREATE

END-REMOVE

END-SAVE

END-SECURE

END-SET

END-STORE

MCP COBOL-85 has a number of additional verbs for the DMSII host language interface. These also have
their scope terminator keywords. The COMS RECEIVE statement also has END-RECEIVE.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 35

MCP-4014 35

NOT-Exception ClausesNOT-Exception Clauses

Statements with exception-handling clauses
now effectively have an "else"

READ MF-MASTER AT END
MOVE 1 TO W-EOF-SWITCH

NOT AT END
PERFORM 100-LOAD-MASTER THRU 100-EXIT
ADD MF-PMT TO MF-BALANCE ON SIZE ERROR

PERFORM 200-ACCT-OVERFLOW
NOT ON SIZE ERROR

MOVE MF-BALANCE TO WS-STMT-BAL
END-ADD

END-READ

Closely related to scope terminators is another COBOL-85 syntax feature, NOT-exception clauses.
Effectively, these are ELSE clauses for the exception clauses that some COBOL verbs have.

As shown on the slide, in addition to handling the case of an AT END condition on a READ statement, you can
now handle the case of a successful read by coding NOT AT END and nesting a series of statements under that
clause.

Similarly, you can code a NOT ON SIZE ERROR to balance the ON SIZE ERROR clause of an arithmetic
statement.

The real value of scope terminators and NOT-exception clauses is that they allow you to nest statements
arbitrarily without the need to use GO TOs to branch around the sentences and positive-result cases that the
classic COBOL syntax required you to write.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 36

MCP-4014 36

NOT-Exception KeywordsNOT-Exception Keywords
NOT AT END

NOT AT END-OF-PAGE

NOT INVALID KEY

NOT ON EXCEPTION [MCP]
NOT ON OVERFLOW

NOT ON SIZE ERROR

This slide shows all of the NOT-exception clauses that COBOL-85 supports. Note that ON EXCEPTION and
NOT ON EXCEPTION are MCP extensions.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 37

MCP-4014 37

Dep't of Unintended ConsequencesDep't of Unintended Consequences
FIND OEORDERSEQX AT

M-ORD-MAIN = SMO-ORDER-SEQ-NBR AND
M-ORD-SUB = SMO-ORDER-BACK-NBR

ON EXCEPTION
MOVE "*ORDERSEQNBR" TO W-FIELD-NAME
MOVE "No order record" TO W-FIELD-TEXT
CALL "MDC_FORMAT_FIELD IN MDCLIB" USING

W-FIELD-NAME, W-FIELD-TEXT, W-TEXT-SIZE,
FCR-COMS-REPLY, W-OUT-SIZE

NOT ON EXCEPTION
MOVE "COCODE" TO W-FIELD-NAME
COMPUTE W-L = FUNCTION LENGTH (M-CORP)
CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB" USING

W-FIELD-NAME, M-CORP, W-L,
FCR-COMS-REPLY, W-OUT-SIZE

IF M-SHIP-TEST = "*"
MOVE "SHIPTOADDRFLAG" TO W-FIELD-NAME
COMPUTE W-L = FUNCTION LENGTH (M-SHIP-TEST)
CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB"

USING W-FIELD-NAME, M-SHIP-TEST, W-L,
FCR-COMS-REPLY, W-OUT-SIZE

END-IF
END-FIND.

FIND OEORDERSEQX AT
M-ORD-MAIN = SMO-ORDER-SEQ-NBR AND
M-ORD-SUB = SMO-ORDER-BACK-NBR

ON EXCEPTION
MOVE "*ORDERSEQNBR" TO W-FIELD-NAME
MOVE "No order record" TO W-FIELD-TEXT
CALL "MDC_FORMAT_FIELD IN MDCLIB" USING

W-FIELD-NAME, W-FIELD-TEXT, W-TEXT-SIZE,
FCR-COMS-REPLY, W-OUT-SIZE

END-CALL *> CALL HAS "ON EXCEPTION" !
NOT ON EXCEPTION
MOVE "COCODE" TO W-FIELD-NAME
COMPUTE W-L = FUNCTION LENGTH (M-CORP)
CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB" USING

W-FIELD-NAME, M-CORP, W-L,
FCR-COMS-REPLY, W-OUT-SIZE

IF M-SHIP-TEST = "*"
MOVE "SHIPTOADDRFLAG" TO W-FIELD-NAME
COMPUTE W-L = FUNCTION LENGTH (M-SHIP-TEST)
CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB"

USING W-FIELD-NAME, M-SHIP-TEST, W-L,
FCR-COMS-REPLY, W-OUT-SIZE

END-IF
END-FIND.

Listing-A.c85 Listing-B.c85

All is not sweetness and light with NOT-exception clauses, however. You really have to be aware of any
implicit scope termination the compiler may be providing for you. This slide illustrates a very nasty gotcha
that bit me a few months ago. I finally had to use TADS and trace the flow of the program, and then look at
the generated object code to understand what was going on.

The symptom was that neither the ON EXCEPTION or NOT ON EXCEPTION clauses of the DMSII FIND
statement were being executed. The record being searched for was present in the database, and tracing
showed that the ON EXCEPTION CLAUSE was not being executed, but the NOT ON EXCEPTION clause was
skipped over as well. Finally after looking at the code the compiler generated using EDITOR, I realized what
the problem was.

The MCP library CALL syntax also has an ON EXCEPTION clause, and just as with ELSE clauses for nested
IF statements, the compiler was associating the ON EXCEPTION with the most immediate verb that accepted
that clause, which in this case was the CALL statement on the seventh line. The NOT ON EXCEPTION clause
was being compiled as subordinate to the FIND statement's ON EXCEPTION clause, which was not being
executed. Doh!

The solution to this was really simple – just add an END-CALL keyword before the FIND statement's NOT
ON EXCEPTION clause to properly bracket the scope of the CALL statement.

This particular case is an MCP-specific problem, as MCP COBOL uses ON EXCEPTION in a large number
of extensions to the standard language, but the potential exists for it to occur with purely standard coding as
well, say, with nested READ statements.

If you find the text on this slide too small to read, there is a companion document with listings from this
presentation in a less eye-watering font size.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 38

MCP-4014 38

In-Line PERFORMIn-Line PERFORM

Earlier COBOLs had several forms of out-
of-line PERFORM statements
PERFORM label-1 [THRU label-2]
PERFORM label-1 [THRU label-2] expression TIMES

PERFORM label-1 [THRU label-2] UNTIL condition
PERFORM label-1 [THRU label-2] VARYING identifier-1
FROM expression BY expression UNTIL condition

COBOL-85 also allows in-line forms like this
PERFORM UNTIL W-X > W-LIMIT
MOVE W-ENTRY (W-X) TO W-PARAM
PERFORM 124-DO-SOMETHING THRU 124-EXIT
ADD 1 TO W-X

END-PERFORM

The next subject is another major advance in the syntax of control flow that brought COBOL coding practices
kicking and screaming into the '70s.

COBOL-74 and earlier versions had several forms of PERFORM statements where the object of the PERFORM
was an out-of-line block of code, i.e., the statements being performed were elsewhere in the source file and
identified by paragraph or section labels. In addition to the simple subroutine-like PERFORM, there are
variants that implement loop constructs.

COBOL-85 has done a very simple thing – it allows you to move that out-of-line block of code under the
PERFORM verb and terminate it with the END-PERFORM scope terminator. This construct is termed an in-
line PERFORM.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 39

MCP-4014 39

In-Line PERFORM, continuedIn-Line PERFORM, continued

Body of the perform is contained within the
PERFORM statement itself

Provides looping constructs similar to other languages
Supported for all types of PERFORM statements
Can be nested

COBOL-85 also allows test before or after
TEST BEFORE is the default
PERFORM [WITH] TEST BEFORE UNTIL W-X > 10
...

END-PERFORM

PERFORM [WITH] TEST AFTER UNTIL W-X > 10
...

END-PERFORM

The in-line PERFORM is supported for all variants of the PERFORM verb, although it is most often used with
the variants that do looping. In-line PERFORMs can be nested arbitrarily. Finally we have a way to code loops
without GO TOs or out-of-line PERFORMs.

COBOL-85 also introduced a new option for the PERFORM variants that use the UNTIL clause. By default
(and in earlier COBOLs the only option), the UNTIL condition is tested at the beginning of the loop. This
implies that if the condition is initially true, the loop will not be executed at all.

COBOL-85 allows you to specify [WITH] TEST BEFORE (the default) or [WITH] TEST AFTER
following the PERFORM verb to indicate whether the condition should be tested at the beginning or end of the
loop. Thus, TEST BEFORE behaves like a WHILE loop in other languages, while TEST AFTER behaves
like a DO or REPEAT loop.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 40

MCP-4014 40

EVALUATE StatementEVALUATE Statement
Even better than in-line PERFORMs

Defines a series of tests
Selects a set of statements based on those tests
First successful test determines the set selected
Can be used like a CASE statement
Can replace IF-ELSE skip chains
Can be used for decision table-like constructs
Actually an implementation of the McCarthy Conditional

Two main forms
EVALUATE expression
EVALUATE TRUE | FALSE

Possibly the greatest syntactic advance in COBOL-85 is the EVALUATE statement. This is an extremely
versatile construct. I love it, and use it wherever I can.

Basically, EVALUATE defines a series of tests and associates a set of statements with each of those tests. The
tests are evaluated one at a time, in the order written. For the first test that succeeds, the corresponding set of
statements is executed. All remaining tests are skipped and all other sets of statements are not executed.
EVALUATE can be used like a CASE statement, to replace IF-ELSE skip chains, and even to implement
decision table-like constructs. It is form of programming language construct known as a McCarthy
Conditional.

There are two main forms of EVALUATE:
• One where you evaluate an expression and construct tests against the value of that expression
• The other where you indicate whether you are looking for a test that evaluates to true or false, and then

specify the tests as Boolean conditions.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 41

MCP-4014 41

Syntax of Basic EVALUATESyntax of Basic EVALUATE
EVALUATE selection subject
WHEN selection object

statements
WHEN selection object

statements
WHEN selection object

statements
WHEN OTHER

statements
END-EVALUATE

Optional

• First selection object
that matches the
selection subject
determines which set
of statements is
executed

• All other statement
sets are bypassed

• If no object matches,
entire statement is a
no-op

This slide illustrates the general idea of the basic EVALUATE statement. The statement specifies a selection
subject, which can take the forms shown on the next slide. Subordinate to the EVALUATE are a series of
WHEN clauses that specify selection objects. These are the tests to be evaluated. Subordinate to each WHEN
clause is a series of statements. The first WHEN clause whose selection object matches the selection subject
has its statements executed.

If you have several tests that, if successful, would cause the same set of statements to be executed, you can
stack the WHEN clauses one after the other without any intervening statements. All of the contiguously-written
WHEN clauses will be associated with the next set of subordinate statements. If any of the WHEN clauses
matches the selection subject, the associated set of statements will be executed. An example a couple of slides
ahead illustrates this.

If none of the selection objects in the WHEN clauses matches the selection subject, the EVALUATE statement
is effectively a no-op.

The last WHEN clause in an EVALUATE statement can specify WHEN OTHER. This is a catch-all test, and its
statements will be executed if no other WHEN clause was successful. Use of WHEN OTHER is entirely
optional.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 42

MCP-4014 42

EVALUATE Subjects and ObjectsEVALUATE Subjects and Objects

Selection Subjects
TRUE or FALSE
Condition
Expression, identifier, or literal (expr-id-lit)

Selection Objects
Condition
TRUE or FALSE
ANY

[NOT] expr-id-lit
[NOT] expr-id-lit THRU expr-id-lit

The EVALUATE statement is very flexible, and this makes its semantics a little difficult to understand at first.
The basic idea is that it attempts to match a selection subject to one of several selection objects.

A selection subject can be the keyword TRUE or FALSE, a Boolean condition, or an expression (including
data-name identifiers and literals).

A selection object can be a Boolean condition, the keyword TRUE or FALSE, the keyword ANY, an
expression (including a data-name identifier or literal, and optionally preceded by NOT), or a pair of
expressions separated by the keyword THRU. This latter case is a shorthand for specifying a range of values
starting with the first expression and ending with the second one.

The object keyword ANY is a don't-care value – it will match any subject value.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 43

MCP-4014 43

EVALUATE ExamplesEVALUATE Examples
EVALUATE W-TRAN-CODE
WHEN "A"
PERFORM TRAN-A

WHEN "B" THRU "G"
CONTINUE

WHEN "H"
WHEN "I"
WHEN "J"
PERFORM TRAN-I-J

WHEN "H" THRU "J"
PERFORM TRAN-XX

WHEN OTHER
PERFORM TRAN-ERROR

END-EVALUATE

EVALUATE TRUE
WHEN MF-TYPE = "A"
PERFORM TYPE-A

WHEN MF-TYPE = "B"
PERFORM TYPE-B

WHEN WS-ERROR > ZERO
PERFORM ERR-RTN

WHEN WS-ERROR = ZERO
PERFORM MAIN-PROC

WHEN WS-ERROR < ZERO
WHEN WS-WARN = "Y"
PERFORM WARN-PROC
PERFORM MAIN-PROC

END-EVALUATE

This slide illustrates the two primary ways of using EVALUATE.

In the left panel, the selection subject is an expression or data-name identifier that evaluates to a value. The
selection objects in the WHEN clauses are values that are tested against the subject's value. The first object
value that is equal to the subject value determines which set of statements gets executed. This form of
EVALUATE is similar to a CASE statement.

Note that the WHEN clauses for values "H", "I", and "J" are written together. All of these are associated with
the PERFORM TRAN-I-J statement. If any of those WHEN clauses matches the value of W-TRAN-CODE,
that PERFORM will be executed.

Also note that the next WHEN clause for "H" THRU "J" is effectively the same as the three WHEN clauses
written separately above it. This WHEN will never be selected, however, as the WHEN clauses are evaluated in
the order written (or rather the result is as if they had been evaluated in the order written), and the preceding
individual WHEN clauses would always be selected before the one with the THRU object.

The right panel shows the second general form. The selection subject is TRUE or FALSE (although TRUE
seems to be used far more often), and the selection objects in the WHEN clauses are written as Boolean
conditions. The first of those conditions that evaluates to the truth value of the subject determines which
WHEN clause is selected. This form of EVALUATE is effectively a skip-chain test, and is a much nicer way of
writing long sequences of tests than IF/ELSE IF constructs.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 44

MCP-4014 44

Complex EVALUATEComplex EVALUATE
EVALUATE subject ALSO subject ALSO subject…
WHEN object ALSO object ALSO object…

statements
WHEN object ALSO object ALSO object…

statements
WHEN object ALSO object ALSO object…

statements
WHEN OTHER

statements
END-EVALUATE

Optional

• Each object is tested against its
corresponding subject

• First WHEN where all objects
match all subjects is selected

Now for some serious stuff: EVALUATE has a more advanced form, which involves multiple selection
subjects and selection objects. You write the multiple subjects and objects with the keyword ALSO separating
them. This form works the same as the basic EVALUATE, except that for a WHEN clause to be selected, all of
its objects much match all of the subjects.

You can use this form to more or less directly implement a decision table. The big problem with this form is
trying to make it readable in the 61 columns available with the COBOL source record format for Margin B.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 45

MCP-4014 45

Complex EVALUATE ExampleComplex EVALUATE Example
EVALUATE SHIPLOCATION OF B1 ALSO SHIPCUSTTYPE OF B1

WHEN "H" ALSO "C"
WHEN "L" ALSO "C"
WHEN "V" ALSO "U"
WHEN "K" ALSO "U"

MOVE SHIPBOLF-PRINT-NEVER TO PRINTSTATUS OF B2
ADD 1 TO W-SHFBOL-CUSPRINTFORCED

WHEN OTHER
MOVE SHIPBOLF-PRINT-PRINTED TO PRINTSTATUS OF B2
IF PRINTSW OF B1 NOT = SHIPBOLF-PRINT-PRINTED

MOVE SHIPLOCATION OF B1 TO PF-SHIP-LOC
MOVE BOLNBR OF B1 TO PF-BOL-NBR
MOVE "Proforma set to PRINTED status" TO

PF-ERROR-TEXT
PERFORM 0910-PRINT THRU 0910-EXIT

END-IF
END-EVALUATE

I have only encountered one case thus far where I thought the multiple-selection form of EVALUATE was
appropriate, although I've probably had some others and simply didn't recognize them. If you find you are
nesting EVALUATE basic statements, you might think about whether this more advanced form would be a
better choice.

This code snippet came from a database conversion program I wrote earlier this year.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 46

MCP-4014 46

COBOL-85 SubprogramsCOBOL-85 Subprograms

A real subprogram mechanism for COBOL
Parameters
Nested procedures
Global and local variables, etc.
Can be used to build multiple-entry point libraries

The idea is nice … the reality is ugly
Exceeds even the typical level of COBOL verbosity
Global items must be explicitly declared global
Weird limitations on parameters
Does not mix well with PERFORM-based libraries
Make sure you set $CALLNESTED for efficiency

The final subject in this section on statements and program control flow concerns the new subprogram or
"nested program" capability of COBOL-85. This seems like such a really great idea – real subroutines, with
parameters and local storage, and global scoping, and all of the other stuff we're used to in block-structured
languages.

The idea is nice, but the implementation and the coding necessary to invoke it is pretty ugly. The COBOL-85
designers came up with a syntax that not only imposed a COBOL-like flavor to subroutine declaration, but set
a new standard for coding verbosity that was not exceeded until COBOL-2002 provided object oriented
constructs. The slide lists some of the limitations and weirdness with global variables and parameters.
PERFORMs can only exist and be accessed within a subprogram, which makes this facility difficult to use
with established libraries of COPY routines. Also, the CALL syntax for subprograms is identical to that for
ANSI IPC calls to externally bound routines, which generates really inefficient code unless you set the
$CALLNESTED compiler option and forego ANSI IPC altogether.

I've tried to use this feature of COBOL-85, and frankly, I'm turned off by the verbosity of the syntax and all
of the weird constraints and limitations. I've concluded that it's more trouble that it's worth. The only thing I
found nested programs good for is constructing COBOL server libraries with multiple entry points.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 47

MCP-4014 47

Simple Subprogram StructureSimple Subprogram Structure
IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROG.
DATA DIVISION.
WORKING-STORAGE SECTION.

...
PROCEDURE DIVISION.
MAIN-LINE.

...
CALL "PROG-SUB" USING WS-DATA
...

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-SUB.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
PROCEDURE DIVISION USING W-PARAM.

...
EXIT-PROGRAM.

END PROGRAM PROG-SUB.

END PROGRAM MAIN-PROG.

This slide shows a simple outline of a nested program, PROG-SUB, contained within an outer program,
MAIN-PROG, and called from that main program.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 48

A New Style for COBOL CodingA New Style for COBOL Coding

This concludes the discussion on new features in COBOL-85. Next, I want to talk about how these features
have influenced the way that I think about coding in COBOL and how they have, for me, induced a new style
of coding.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 49

MCP-4014 49

COBOL-85 Induces a New StyleCOBOL-85 Induces a New Style

Features
Scope terminators
NOT-exception clauses
In-line PERFORMs
EVALUATE statement

Implications
GO TO-less programming
More in-line logic
Deeper nesting of source code
Minimal periods
PERFORM without THRU

All of the new features in COBOL-85 have their influence, but four in particular have really affected my style
of coding:

• Scope terminators (END-IF, END-READ, END-SEARCH, etc.)
• NOT-exception clauses (NOT AT END, NOT ON EXCEPTION, etc.)
• In-line PERFORMs
• EVALUATE statements.

Using these on a consistent basis has resulted in the following style implications:
• GO TO-less programming. Using the same techniques I use in Algol and other block-structured

languages, I have been able to eliminate essentially all GO TOs from the new code that I write while
retaining a highly readable and maintainable result.

• More in-line logic. All four features have allowed me to move more subordinate code in line with the
predicate statements they go with, rather than keeping them out of line and branching to or PERFORMing
them.

• More in-line logic results in deeper nesting of source code. This is mostly good, but as we will see
shortly, there are some reasonable limits that need to be applied.

• Minimal periods. I find that I don't need to include periods very often, so I have gotten rid of as many as
I can. In other words, I’m writing longer sentences, and fewer of them.

• PERFORM without THRU. Largely as a consequence of GO TO-less programming and minimizing the
number of periods, I am finding that it is possible to PERFORM single paragraphs, so I don't really need
the THRU clause (and the occasionally nasty problems it causes).

I'll elaborate on these points over the next several slides.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 50

MCP-4014 50

GO TO-less ProgrammingGO TO-less Programming

COBOL-85 finally permits a reasonable way
to eliminate or minimize GO TOs

Scope terminators and NOT-exception clauses
eliminate branch-around logic
In-line PERFORMs provide loops without GO TOs or out-
of-line PERFORM constructs
It really does improve readability and reliability

Recommendations
Use scope terminators ALL THE TIME
Use NOT-exception clauses and EVALUATE statements
as needed to avoid GO TOs
Master the various PERFORM variants and use in-line
coding to construct loops

The new control-flow features of COBOL-85 finally permit us to eliminate (or at least minimize) GO TOs in a
reasonable way, without resorting to extraneous out-of-line PERFORMs. Scope terminators, NOT-exception
clauses, and in-line PERFORMs are the chief enablers of this, although the EVALUATE statement can also be a
big help. It took a while to break my old style and get comfortable with a new one, but I've found it really
does improve readability and reliability of my code, and I think I may be coding more productively as well.

My recommendation is to use scope terminators all of the time, especially with IF, SEARCH, EVALUATE,
and all I/O statements (including DMSII verbs) that have exception clauses. Enforcing a consistent style in
this area will help minimize confusion and eliminate bugs. It will also help with the minimization of periods,
as discussed a little later.

Also use NOT-exception clauses to avoid GO TOs. These clauses are a wonderful addition to the language, and
can really help in eliminating tortuous branch-around logic. Similarly, EVALUATE statements can make long
skip chain tests easier to understand and maintain. EVALUATE statements are great for implementing CASE-
like constructs without the need for computed GO TOs and GO TOs for "branch around the rest of the cases"
logic.

Finally, if you haven't mastered the various forms of iterative PERFORM statements, do so. They allow you to
implement loop constructs in a consistent way and without GO TOs.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 51

MCP-4014 51

Listing-1.c74 vs. Listing-2.c85Listing-1.c74 vs. Listing-2.c85
**
0100-SECTION SECTION.
**
0100-EVENT-DISPATCH.
* RECEIVES AND DISPATCHES INPUT MESSAGES FROM COMS AND TIMER
* EVENTS.

MOVE W-TRUE TO W-SERVER-ACTIVE.

0100-EVENT-LOOP.
PERFORM Q116-READ-SYSTEM-TIMER THRU Q116-EXIT.
COMPUTE W-WAIT-DELTA = WDA-EOD-TIMESTAMP - WDA-SYS-TIMESTAMP.
IF W-WAIT-DELTA > W-TICKLER-PERIOD
MOVE W-TICKLER-PERIOD TO W-WAIT-DELTA

ELSE IF W-WAIT-DELTA < ZERO
MOVE ZERO TO W-WAIT-DELTA.

WAIT W-WAIT-DELTA,
ATTRIBUTE DCIINPUTEVENT OF MYSELF,
ATTRIBUTE DCITASKEVENT OF MYSELF
ATTRIBUTE ACCEPTEVENT OF MYSELF
GIVING W-RESULT.

PERFORM Q116-READ-SYSTEM-TIMER THRU Q116-EXIT.
GO TO

0100-01-TIMEOUT-EVENT
0100-02-DCIINPUTEVENT
0100-03-DCITASKEVENT
0100-04-ACCEPTEVENT
DEPENDING ON W-RESULT.

0100-00-INVALID-EVENT.
MOVE W-RESULT TO WM-STATUS-VALUE
MOVE "Invalid WAIT result (0100)" TO WM-STATUS-TEXT
PERFORM 9806-LOG-DISPLAY THRU 9806-EXIT
CHANGE ATTRIBUTE STATUS OF MYSELF TO TERMINATED.

0100-01-TIMEOUT-EVENT.
PERFORM 0800-TIMEOUT-EVENT THRU 0800-EXIT.
GO TO 0100-NEXT-EVENT.

0100-02-DCIINPUTEVENT.
0100-03-DCITASKEVENT.
PERFORM 0110-COMS-RECEIVE-MESSAGE THRU 0110-EXIT.
GO TO 0100-NEXT-EVENT.

0100-04-ACCEPTEVENT.
PERFORM 0700-ACCEPT-OPERATOR-INPUT THRU 0700-EXIT.
GO TO 0100-NEXT-EVENT.

0100-NEXT-EVENT.
IF W-SERVER-ACTIVE = W-TRUE
GO TO 0100-EVENT-LOOP.

0100-EXIT.
EXIT.

**
0100-SECTION SECTION.
**
0100-EVENT-DISPATCH.
* RECEIVES AND DISPATCHES INPUT MESSAGES FROM COMS AND TIMER
* EVENTS.

MOVE W-TRUE TO W-SERVER-ACTIVE

PERFORM UNTIL W-SERVER-ACTIVE = W-FALSE
PERFORM Q116-READ-SYSTEM-TIMER THRU Q116-EXIT
COMPUTE W-WAIT-DELTA = FUNCTION MAX (0,

FUNCTION MIN (W-TICKLER-PERIOD,
WDA-EOD-TIMESTAMP - WDA-SYS-TIMESTAMP))

WAIT W-WAIT-DELTA,
ATTRIBUTE DCIINPUTEVENT OF MYSELF,
ATTRIBUTE DCITASKEVENT OF MYSELF,
ATTRIBUTE EXCEPTIONEVENT OF MYSELF,
ATTRIBUTE ACCEPTEVENT OF MYSELF
GIVING W-RESULT

PERFORM Q116-READ-SYSTEM-TIMER

EVALUATE W-RESULT
WHEN 1

PERFORM 0800-TIMEOUT-EVENT

WHEN 2 THRU 3
PERFORM 0110-COMS-RECEIVE-MESSAGE

WHEN 4
PERFORM 0600-PROCESS-EXCEPTIONEVENT

WHEN 5
PERFORM 0700-ACCEPT-OPERATOR-INPUT

WHEN OTHER
MOVE W-RESULT TO WM-STATUS-VALUE
MOVE "Invalid WAIT result (0100)" TO WM-STATUS-TEXT
PERFORM 9806-LOG-DISPLAY
CHANGE ATTRIBUTE STATUS OF MYSELF TO TERMINATED

END-EVALUATE
END-PERFORM.

This slide shows an example of the kind of transformation that can take place by using the newer COBOL-85
flow-of-control constructs. It is the main-line loop of a COMS transaction processor that does a multiple wait
on timeouts, COMS message events, and the task's ACCEPTEVENT. Note the use of a computed GO TO to
select what should be done as a result of the wait, and the extra GO TOs to branch around the cases that are not
to be executed.

The code on the right was manually converted from the code on the left using COBOL-85 constructs. Note
that the in-line PERFORM makes the loop explicit. The EVALUATE statement that replaces the computed GO
TO also makes it much clearer what is going on in this routine. This version actually has an extra feature – the
addition of a wait on the task's EXCEPTIONEVENT. Despite the additional functionality, the COBOL-85
version is shorter than the original one.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 52

MCP-4014 52

More In-Line LogicMore In-Line Logic
GO TOs divorce the object of a predicate
from the predicate and scatter the code

Often obscures the underlying logic
Requires a lot of discipline to keep code maintainable

Attempts to eliminate GO TOs in earlier
COBOLs induced an out-of-line style

Bodies of IF-ELSE and PERFORM-loop statements were
coded out-of-line as PERFORM routines
Still divorced the objects from their predicates and
scattered the code
Hardly more readable or understandable than GO TOs
Was more maintainable, though

The next implication that comes from using COBOL-85 flow-of-control constructs is that you tend to code
more of the logic in line. Earlier versions of COBOL essentially forced you to code quite a bit of code out-of-
line, either by branching to it, or by means of PERFORM constructs. This separates the predicate of a construct
(an IF statement, say) from its object (the statements nested under that IF).

The problem with out-of-line coding and the separation of predicates from their objects is that it can obscure
the underlying logic. You can minimize this effect by using a consistent style and keeping an eye on the
complexity of the code, but it takes a lot of discipline to preserve that consistency across multiple updates and
keep the code maintainable.

Attempts to enforce a GO TO-less style in earlier versions of COBOL induced an out-of-line coding style,
where the object of a predicate was almost always written as a PERFORM statement, and the statements that
were really the object were located elsewhere in the program. Similarly, all loops were written as an iterative
form of PERFORM, with the body of the loop residing in another part of the source.

I have always thought that this style was self-defeating, because it eliminated GO TOs at the cost of separating
predicates from objects and scattering the code. This always seemed to me to be more confusing than a
disciplined use of GO TO statements, although it could keep you away from the kind of rat's nest that
undisciplined branching can produce.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 53

MCP-4014 53

More In-Line Logic, continuedMore In-Line Logic, continued

COBOL-85 allows you to keep the objects
with their predicates

Scope terminators and NOT-exception clauses allow
complex logic to be coded in-line, not out-of-line
In-line PERFORM loops are much clearer to read

There's a reasonable limit, though…
In-line coding can produce really long routines
Long routines are harder to understand and maintain
50-100 lines is generally a reasonable size
Need to keep an eye on overall length and move large
bodies of code to separate PERFORM routines
The difference is you don't need to to this all the time
just to avoid GO TOs

COBOL-85 solves this problem by allowing you to code the objects in line with their predicates. Scope
terminators and NOT-exception clauses permit you to write complex logic in line, without the need for
branch-around logic or out-of-line PERFORMs. Using in-line PERFORMs for loops makes the loops explicit
and much easier to read and understand.

There's a reasonable limit to how much you can code in line, however. Moving to a more in-line style tends to
make your routines longer, and as routines get longer, they generally become harder to understand and
maintain. The upper limit on the size of a routine is generally accepted to be on the order of 50-100 lines,
although routines with straight-line logic (i.e., streams of code without significant branching or looping) often
can be longer without reducing readability or maintainability.

You simply need to keep an eye on how long your routines are getting and, at an appropriate point, break the
more deeply-nested code out into a separate PERFORM. The big difference here from the out-of-line style
discussed earlier is that you get to choose when to break out the lower-level logic – you don't need to do it all
of the time – just when it makes sense to do so.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 54

MCP-4014 54

Listing-3.c85Listing-3.c85
1212-SHIPMEMO-FIND-COMPLETE.

* SEARCHES THE EXISTING MEMOS FOR THIS ORDER. SETS W-TRUE IN
* W-EDIT-ERROR IF SOME MEMO IS ALREADY MARKED COMPLETE.

FIND LAST SHIPMEMOORDERX AT
SMO-ORDER-SEQ-NBR = M-ORD-MAIN

ON EXCEPTION
CONTINUE

NOT ON EXCEPTION
PERFORM TEST AFTER UNTIL DMSTATUS (DMERROR) OR

SMO-ORDER-SEQ-NBR NOT = M-ORD-MAIN OR
SMO-COMPLETE-FLAG = "Y"

IF SMO-COMPLETE-FLAG = "Y"
IF SMO-BOL-RECSERIAL NOT = ZERO

FIND SHIPBOLX AT
SBL-RECSERIAL = SMO-BOL-RECSERIAL

ON EXCEPTION
CONTINUE

NOT ON EXCEPTION
IF SBL-SHIP-STATUS = SHIPBOLF-SHIPSTATUS-SHIPPED

MOVE W-TRUE TO W-EDIT-ERROR
MOVE WEM-ALREADY-COMPLETE TO

WMU-ORDER-SEQ-NBR-ERR
END-IF

END-FIND
END-IF

ELSE
FIND PRIOR SHIPMEMOORDERX ON EXCEPTION

CONTINUE
END-FIND

END-IF
END-PERFORM

END-FIND.

This slide shows an example of some code that would have required extensive use of GO TOs or out-of-line
PERFORMs had it been coded for an earlier version of COBOL. I have found this particular type of routine to
be one that recurs often, especially when doing DMSII programming.

The general problem is that we need to retrieve a series of records and perform some operation on them. Note
that the entire routine is one DMSII FIND statement.

• It attempts to locate the first record in the sequence: if there isn't one, it simply exits; otherwise the
sequence is processed as part of the NOT ON EXCEPTION clause.

• Within the NOT ON EXCEPTION clause, there is a PERFORM loop that will terminate when we get a
DMSII exception (which will occur on the FIND PRIOR statement at the end of the loop), when the key
that identifies the sequence of records (SMO-ORDER-SEQ-NBR) no longer matches, or an early-exit
condition (SMO-COMPLETE-FLAG = "Y") is encountered.

• Within the loop, there are a couple of nested IF statements and another FIND statement that checks the
status of a related record

• If none of the terminating conditions is found, the FIND PRIOR statement at the end of the loop fetches
the next record in sequence to be tested in the next iteration of the loop.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 55

MCP-4014 55

Deeper Nesting of Source CodeDeeper Nesting of Source Code

Using COBOL-85 features results in deeper
nesting of the source – this is mostly good

Alas, these things don't mix well
Deeply nested code
Long identifiers (which also aid clarity/maintainability)
The 61-columns available for COBOL Margin B

Recommendations
Use a narrow indentation (e.g., 2 columns)
Consider aligning AT END, ON EXCEPTION, etc. with the
indentation of their host verb
Consider aligning WHEN clauses with their EVALUATE
When nesting gets too deep, create a PERFORM

Another outcome of using the COBOL-85 features, and one closely related to more in-line coding, is that the
source code tends to become more deeply nested. This is mostly a good thing.

Where it's not so good is that deeply-nested code does not mix well with longer identifiers (which are good
for clarity and maintainability of the code) and the 61 columns available in the standard COBOL source
record format for Margin B. You tend to run of out room for coding statements on one line fairly quickly, and
breaking statements across lines can reduce the readability of the code.

The solution, once again, is to apply some reasonableness tests as you are coding. There are a number of
things you can do to preserve the space that is available for indentation and nesting:

• Use a narrow indentation increment. Two columns seems to work best.
• Consider aligning exception clauses, such as AT END and ON EXCEPTION, with their host verb, thus:

READ MF-MASTER-FILE
AT END

...
END-READ

• Similarly, consider aligning WHEN clauses in the same column as their EVALUATE verb.
• Keep an eye on the depth of nesting, and especially on the frequency of statements breaking across lines.

When statement breaks become too frequent, create a PERFORM routine to hold the more deeply-nested
statements.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 56

MCP-4014 56

Listing-4.c85Listing-4.c85
*> NOW RETRIEVE ALL MEMOS ASSIGNED TO UNSHIPPED BOLS
FIND FIRST SHIPBOLSELECTX ON EXCEPTION

CONTINUE
NOT ON EXCEPTION

PERFORM UNTIL DMSTATUS (DMERROR)
EVALUATE TRUE

WHEN NOT (WRQ-SHIP-LOC = SBL-SHIP-LOC OR "*")
CONTINUE

WHEN SBL-SHIP-STATUS = SHIPBOLF-SHIPSTATUS-NONE
FIND SHIPMEMOBOLX AT

SMO-BOL-RECSERIAL = SBL-RECSERIAL
ON EXCEPTION

CONTINUE
NOT ON EXCEPTION

PERFORM UNTIL DMSTATUS (DMERROR) OR
SMO-BOL-RECSERIAL NOT = SBL-RECSERIAL

PERFORM 1254-SHIPMEMO-OPEN-MEMO-FORMAT
FIND NEXT SHIPMEMOBOLX ON EXCEPTION

CONTINUE
END-FIND

END-PERFORM

END-FIND
END-EVALUATE

FIND NEXT SHIPBOLSELECTX ON EXCEPTION
CONTINUE

END-FIND
END-PERFORM

END-FIND

IF W-PORTAL-ERROR-CODE NOT = ZERO
PERFORM 9040-MDC-FORMAT-ERROR

END-IF

PERFORM 9010-MDC-SEND-MESSAGE THRU 9010-EXIT.

This slide shows a routine with several levels of nesting and how the structure of the routine is revealed by the
degree of indentation. A consistent indentation style is critical to readability – and reliability – of the code.
The eye is very good at inferring logic structure from physical structure, even when the two aren't related.
Thus, it's very important that your indentation be consistent and follow the logical structure of your code.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 57

MCP-4014 57

Minimal PeriodsMinimal Periods

In COBOL-85, periods are required in the
Procedure Division only before a paragraph
or section label

Scope terminators allow you to write long sentences
Without GO TOs, there is no reason to have more than
one paragraph or sentence in the body of a routine

Recommendations
Code main-lines and PERFORM bodies as one sentence
Use a period only at the end
– Before the exit label that terminates the routine, or
– Before the starting label of the next routine

One of the things that surprised me when I started to code with the new COBOL-85 constructs is that you
don't need periods nearly as much anymore. In COBOL-85, as with earlier COBOLs, periods are required in
the Procedure Division only before a paragraph or section label. Since scope terminators and the other
COBOL-85 features allow you to write longer sentences, you don't need as many periods. Further, without
GO TO statements, you don't need labels within a routine, so there is no reason to break the body of a routine
into multiple sentences – you can write the routine as one long sentence.

Writing routines as one long sentence turns out to have a number of advantages, especially if you need to
move code around or change the indentation (say, to add an intervening IF statement). Since a period only
needs to be at the end of the routine, you don't need to fix up any periods in the middle of the text when you
make these kinds of changes.

I strongly recommend that you adopt this style aggressively and eliminate as many periods as you can,
attempting to write your routines without GO TOs and internal labels, resulting in the routine being a single
sentence. Then you only need place a period at the end of the routine, before the exit label that terminates the
routine (if you use one) or before the starting label of the next routine.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 58

MCP-4014 58

PERFORM Without THRUPERFORM Without THRU
PERFORM as a subroutine has two forms
PERFORM label-1
PERFORM label-1 THRU label-2

Two common conventions
PERFORM section-label
PERFORM paragraph-label THRU paragraph-label

The problem with THRU
It's just about required when using paragraph labels
Need a consistent ending convention (usually a
nnn-EXIT paragraph)
Performing THRU the wrong label creates serious
problems that are difficult to diagnose

The final implication for my new style using the COBOL-85 constructs is that it is now possible to reliably
construct PERFORM statements without a THRU clause.

PERFORM has two forms – addressing a single label, which will cause the sentences subordinate to that label
to be executed, or addressing a range of labels using the THRU clause, which will cause the range of sentences
starting with the first label, through and including the sentences subordinate to the second label. The labels
can be either paragraph or section labels, and when using THRU, both labels must be of the same type.

In the classic COBOL style, there are two common conventions: performing a single section label and
performing a range of paragraph labels. In my experience, the second one is the more common.

The THRU clause has some problems. First, it's just about required when performing paragraph labels.
Performing a single paragraph label won't work if the routine being performed has internal labels. Since
keeping straight in all cases whether the routine does or doesn't require the THRU can be both confusing and
error prone, most people end up using THRU all the time, whether it's strictly necessary or not. This also
implies that you need a consistent ending label for your routines, so most people code an ending paragraph
with an nnn-EXIT label followed by an EXIT statement.

The really big problem with THRU is that it's quite easy to code the wrong ending label, especially when
copying or cloning routines. Performing THRU the wrong label generates nasty bugs that are very difficult to
analyze – the error usually becomes apparent some distance from where the bad THRU is coded, the program
often exhibits very strange behavior just before the program completely messes up, and the final result is often
a stack overflow fault, for which you can't get a dump. A bad THRU can ruin your whole day, along with a
few of the ones immediately following.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 59

MCP-4014 59

PERFORM Without THRU (con't)PERFORM Without THRU (con't)
THRU isn't necessary with the new style

No GO TOs ⇒ no labels inside PERFORM routines
No labels ⇒ PERFORM routine can be one paragraph
One paragraph ⇒ no THRU needed

Can still mix THRU and non-THRU styles
This might become confusing and a source of errors
Might be necessary for compatibility with existing COPY
library routines

The good news with COBOL-85 is that PERFORM with THRU should no longer be necessary. If you don't use
GO TOs, you don't need to have any internal labels in your routines. If you don't have any internal labels, your
routines can consist of one paragraph (and, as pointed out earlier, just one sentence). If your routines are
always just one paragraph, you don't need an exit paragraph, and don't need to PERFORM them with THRU.

You can mix the THRU and non-THRU styles, but that generally isn't a good idea. You can easily lose track
whether a routine requires a THRU or not. That can be another nasty source of bugs.

I must confess that I have not yet made the transition to THRU-less PERFORMs. The reason is that the
applications that I work on, while being compiled all with COBOL-85, are still mainly in the older style. This
is especially true for the libraries common routines embedded in COPY modules. Most of those still need to be
performed with THRU, and thus to keep things simple and consistent, I'm still stuck using the THRU clause.

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 60

MCP-4014 60

ReferencesReferences
COBOL ANSI-85 Programming Reference
Manual, Volume 1: Basic Implementation
(8600 1518)

Intelligent COBOL74->85 Conversion, Bob
Morrow (MGS), UNITE 2002 Conference, AS4050

Making the Best Use of COBOL85, Edward Reid
(MGS), UNITE 2002 Conference, AS4051

COBOL85 For COBOL74 Programmers, Edward
Reid (MGS), UNITE 2002 Conference, AS4052

This presentation
http://www.digm.com/UNITE/2010

The primary reference for the topics discussed in this presentation is Volume 1 of the MCP COBOL-85
reference manual. This is available without charge from the Unisys support site, http://support.unisys.com.

I want to recognize three excellent presentations from the 2002 UNITE conference on COBOL-85 and its
usage, by Bob Morrow and Edward Reid, both at the time presenting on behalf of MGS, Inc. Much of what
they say aligns with my comments in this presentation, but they have a different take on things in some areas,
and you might find their viewpoint interesting and informative.

Finally, a copy of this presentation is available on our web site under the URL shown on the slide.

If you are interested in examining some larger examples using the newer COBOL-85 constructs and the style
I've evolved from them, check out the sample code resources of these presentations from earlier UNITE
conferences:

• DMSQL Query Capabilities and Performance (2008 UNITE, MCP-4032/4033)
http://www.digm.com/UNITE/2008/

• Using Application Data Access (2009 UNITE, MCP-4021)
http://www.digm.com/UNITE/2009/

Using – Really Using – COBOL-85

2010 UNITE MCP-4014 61

End

Using – Really Using –
COBOL-85

End

Using – Really Using –
COBOL-85

2010 UNITE Conference

Session MCP-4014

Using – Really Using – COBOL-85 Listings

2010 UNITE MCP-4014 L-1

Listing-A.c85
 1282-SHIPMEMO-DISPLAY-ORDER.
* LOADS AND FORMATS FIELDS FROM THE RELATED OEFORDM RECORDS
* FOR THE CURRENT MEMO.

 FIND OEORDERSEQX AT
 M-ORD-MAIN = SMO-ORDER-SEQ-NBR AND
 M-ORD-SUB = SMO-ORDER-BACK-NBR
 ON EXCEPTION
 MOVE "*ORDERSEQNBR" TO W-FIELD-NAME
 MOVE "No order record" TO W-FIELD-TEXT
 CALL "MDC_FORMAT_FIELD IN MDCLIB" USING
 W-FIELD-NAME, W-FIELD-TEXT, W-TEXT-SIZE,
 FCR-COMS-REPLY, W-OUT-SIZE
 NOT ON EXCEPTION
 MOVE "COCODE" TO W-FIELD-NAME
 COMPUTE W-L = FUNCTION LENGTH (M-CORP)
 CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB" USING
 W-FIELD-NAME, M-CORP, W-L,
 FCR-COMS-REPLY, W-OUT-SIZE

 IF M-SHIP-TEST = "*"
 MOVE "SHIPTOADDRFLAG" TO W-FIELD-NAME
 COMPUTE W-L = FUNCTION LENGTH (M-SHIP-TEST)
 CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB" USING
 W-FIELD-NAME, M-SHIP-TEST, W-L,
 FCR-COMS-REPLY, W-OUT-SIZE
 END-IF
 END-FIND.

Listing-B.c85
 1282-SHIPMEMO-DISPLAY-ORDER.
* LOADS AND FORMATS FIELDS FROM THE RELATED OEFORDM RECORDS
* FOR THE CURRENT MEMO.

 FIND OEORDERSEQX AT
 M-ORD-MAIN = SMO-ORDER-SEQ-NBR AND
 M-ORD-SUB = SMO-ORDER-BACK-NBR
 ON EXCEPTION
 MOVE "*ORDERSEQNBR" TO W-FIELD-NAME
 MOVE "No order record" TO W-FIELD-TEXT
 CALL "MDC_FORMAT_FIELD IN MDCLIB" USING
 W-FIELD-NAME, W-FIELD-TEXT, W-TEXT-SIZE,
 FCR-COMS-REPLY, W-OUT-SIZE
 END-CALL *> CALL ALSO HAS "ON EXCEPTION" !
 NOT ON EXCEPTION
 MOVE "COCODE" TO W-FIELD-NAME
 COMPUTE W-L = FUNCTION LENGTH (M-CORP)
 CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB" USING
 W-FIELD-NAME, M-CORP, W-L,
 FCR-COMS-REPLY, W-OUT-SIZE

 IF M-SHIP-TEST = "*"
 MOVE "SHIPTOADDRFLAG" TO W-FIELD-NAME
 COMPUTE W-L = FUNCTION LENGTH (M-SHIP-TEST)
 CALL "MDC_FORMAT_FIXED_FIELD IN MDCLIB" USING
 W-FIELD-NAME, M-SHIP-TEST, W-L,
 FCR-COMS-REPLY, W-OUT-SIZE
 END-IF
 END-FIND.

Using – Really Using – COBOL-85 Listings

2010 UNITE MCP-4014 L-2

Listing-1.c74
**
 0100-SECTION SECTION.
**
 0100-EVENT-DISPATCH.
* RECEIVES AND DISPATCHES INPUT MESSAGES FROM COMS AND TIMER
* EVENTS.

 MOVE W-TRUE TO W-SERVER-ACTIVE.

 0100-EVENT-LOOP.
 PERFORM Q116-READ-SYSTEM-TIMER THRU Q116-EXIT.
 COMPUTE W-WAIT-DELTA = WDA-EOD-TIMESTAMP - WDA-SYS-TIMESTAMP.
 IF W-WAIT-DELTA > W-TICKLER-PERIOD
 MOVE W-TICKLER-PERIOD TO W-WAIT-DELTA
 ELSE IF W-WAIT-DELTA < ZERO
 MOVE ZERO TO W-WAIT-DELTA.

 WAIT W-WAIT-DELTA,
 ATTRIBUTE DCIINPUTEVENT OF MYSELF,
 ATTRIBUTE DCITASKEVENT OF MYSELF
 ATTRIBUTE ACCEPTEVENT OF MYSELF
 GIVING W-RESULT.

 PERFORM Q116-READ-SYSTEM-TIMER THRU Q116-EXIT.
 GO TO
 0100-01-TIMEOUT-EVENT
 0100-02-DCIINPUTEVENT
 0100-03-DCITASKEVENT
 0100-04-ACCEPTEVENT
 DEPENDING ON W-RESULT.

 0100-00-INVALID-EVENT.
 MOVE W-RESULT TO WM-STATUS-VALUE
 MOVE "Invalid WAIT result (0100)" TO WM-STATUS-TEXT
 PERFORM 9806-LOG-DISPLAY THRU 9806-EXIT
 CHANGE ATTRIBUTE STATUS OF MYSELF TO TERMINATED.

 0100-01-TIMEOUT-EVENT.
 PERFORM 0800-TIMEOUT-EVENT THRU 0800-EXIT.
 GO TO 0100-NEXT-EVENT.

 0100-02-DCIINPUTEVENT.
 0100-03-DCITASKEVENT.
 PERFORM 0110-COMS-RECEIVE-MESSAGE THRU 0110-EXIT.
 GO TO 0100-NEXT-EVENT.

 0100-04-ACCEPTEVENT.
 PERFORM 0700-ACCEPT-OPERATOR-INPUT THRU 0700-EXIT.
 GO TO 0100-NEXT-EVENT.

 0100-NEXT-EVENT.
 IF W-SERVER-ACTIVE = W-TRUE
 GO TO 0100-EVENT-LOOP.

 0100-EXIT.
 EXIT.

Listing-2.c85
**
 0100-SECTION SECTION.
**
 0100-EVENT-DISPATCH.
* RECEIVES AND DISPATCHES INPUT MESSAGES FROM COMS AND TIMER
* EVENTS.

 MOVE W-TRUE TO W-SERVER-ACTIVE

 PERFORM UNTIL W-SERVER-ACTIVE = W-FALSE
 PERFORM Q116-READ-SYSTEM-TIMER THRU Q116-EXIT
 COMPUTE W-WAIT-DELTA = FUNCTION MAX (0,
 FUNCTION MIN (W-TICKLER-PERIOD,
 WDA-EOD-TIMESTAMP - WDA-SYS-TIMESTAMP))

 WAIT W-WAIT-DELTA,
 ATTRIBUTE DCIINPUTEVENT OF MYSELF,
 ATTRIBUTE DCITASKEVENT OF MYSELF,
 ATTRIBUTE EXCEPTIONEVENT OF MYSELF,
 ATTRIBUTE ACCEPTEVENT OF MYSELF
 GIVING W-RESULT

 PERFORM Q116-READ-SYSTEM-TIMER

 EVALUATE W-RESULT
 WHEN 1
 PERFORM 0800-TIMEOUT-EVENT

 WHEN 2 THRU 3
 PERFORM 0110-COMS-RECEIVE-MESSAGE

 WHEN 4
 PERFORM 0600-PROCESS-EXCEPTIONEVENT

 WHEN 5
 PERFORM 0700-ACCEPT-OPERATOR-INPUT

 WHEN OTHER
 MOVE W-RESULT TO WM-STATUS-VALUE
 MOVE "Invalid WAIT result (0100)" TO WM-STATUS-TEXT
 PERFORM 9806-LOG-DISPLAY
 CHANGE ATTRIBUTE STATUS OF MYSELF TO TERMINATED
 END-EVALUATE
 END-PERFORM.

Using – Really Using – COBOL-85 Listings

2010 UNITE MCP-4014 L-3

Listing-3.c85
 1212-SHIPMEMO-FIND-COMPLETE.
* SEARCHES THE EXISTING MEMOS FOR THIS ORDER. SETS W-TRUE IN
* W-EDIT-ERROR IF SOME MEMO IS ALREADY MARKED COMPLETE.

 FIND LAST SHIPMEMOORDERX AT
 SMO-ORDER-SEQ-NBR = M-ORD-MAIN
 ON EXCEPTION
 CONTINUE
 NOT ON EXCEPTION
 PERFORM TEST AFTER UNTIL DMSTATUS (DMERROR) OR
 SMO-ORDER-SEQ-NBR NOT = M-ORD-MAIN OR
 SMO-COMPLETE-FLAG = "Y"
 IF SMO-COMPLETE-FLAG = "Y"
 IF SMO-BOL-RECSERIAL NOT = ZERO
 FIND SHIPBOLX AT
 SBL-RECSERIAL = SMO-BOL-RECSERIAL
 ON EXCEPTION
 CONTINUE
 NOT ON EXCEPTION
 IF SBL-SHIP-STATUS = SHIPBOLF-SHIPSTATUS-SHIPPED
 MOVE W-TRUE TO W-EDIT-ERROR
 MOVE WEM-ALREADY-COMPLETE TO
 WMU-ORDER-SEQ-NBR-ERR
 END-IF
 END-FIND
 END-IF
 ELSE
 FIND PRIOR SHIPMEMOORDERX ON EXCEPTION
 CONTINUE
 END-FIND
 END-IF
 END-PERFORM
 END-FIND.

Listing-4.c85
 *> NOW RETRIEVE ALL MEMOS ASSIGNED TO UNSHIPPED BOLS
 FIND FIRST SHIPBOLSELECTX ON EXCEPTION
 CONTINUE
 NOT ON EXCEPTION
 PERFORM UNTIL DMSTATUS (DMERROR)
 EVALUATE TRUE
 WHEN NOT (WRQ-SHIP-LOC = SBL-SHIP-LOC OR "*")
 CONTINUE
 WHEN SBL-SHIP-STATUS = SHIPBOLF-SHIPSTATUS-NONE
 FIND SHIPMEMOBOLX AT
 SMO-BOL-RECSERIAL = SBL-RECSERIAL
 ON EXCEPTION
 CONTINUE
 NOT ON EXCEPTION

 PERFORM UNTIL DMSTATUS (DMERROR) OR
 SMO-BOL-RECSERIAL NOT = SBL-RECSERIAL
 PERFORM 1254-SHIPMEMO-OPEN-MEMO-FORMAT THRU
 1254-EXIT
 FIND NEXT SHIPMEMOBOLX ON EXCEPTION
 CONTINUE
 END-FIND
 END-PERFORM

 END-FIND
 END-EVALUATE

 FIND NEXT SHIPBOLSELECTX ON EXCEPTION
 CONTINUE
 END-FIND
 END-PERFORM
 END-FIND

 IF W-PORTAL-ERROR-CODE NOT = ZERO
 PERFORM 9040-MDC-FORMAT-ERROR THRU 9040-EXIT
 END-IF

 PERFORM 9010-MDC-SEND-MESSAGE THRU 9010-EXIT.

