
Programmer’s Reference for
COBOL

Open ServerConnect

4.0

IBM CICS IMS TM and MVS

DOCUMENT ID: 36520-01-0400-02

LAST REVISED: May 24, 2000

Copyright © 1989-2000 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 1/00

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book .. vii

CHAPTER 1 Introduction ... 1
What is Open ServerConnect? .. 1
What is Gateway-Library?.. 2
Gateway-Library functions ... 2
Using Client/Server connections .. 3

SNA connections... 4
TCP/IP connections... 4
Initializing the Gateway-Library environment 4
Starting and ending a conversation... 5
Handling client requests .. 5
Processing client requests .. 6
Differences between CICS, IMS TM and MVS.......................... 7

General processing procedures ... 9
Processing an RPC ... 9
Processing a SQL language request....................................... 10
Processing a cursor request.. 11
Processing a dynamic SQL request .. 12
Processing a long-running transaction 13
Additional processing options.. 14
Tracing and accounting functions.. 15

CHAPTER 2 Topics... 17
Character sets .. 17

Supported workstation character sets 18
Supported mainframe character sets 19

Communication states.. 19
Cursors... 20

What is a cursor? .. 21
Benefits of using cursors ... 21
How cursors work in Open ServerConnect 22
Types of cursor commands ... 22

Contents

iv

CURSOR-DESC structure... 26
Customization .. 36
Datatypes ... 37

Datatype descriptions and correspondences 38
Character datatypes .. 42
Binary and decimal datatypes ... 43
Graphic datatypes ... 46
Unsupported datatypes ... 46

Dynamic SQL support .. 46
Events .. 54
The login packet... 54
Long-running transactions.. 55

Calls in a long-running transaction .. 56
Mixed-mode applications ... 57

Rules for writing mixed-mode applications.............................. 58
Native languages ... 58
Processing Japanese client requests... 59

The Japanese Conversion Module.. 59
Japanese character sets ... 60
Datatypes used with Japanese characters.............................. 61
Summary of datatypes used with Japanese characters.......... 63

CHAPTER 3 Functions.. 67
List of functions .. 67
General information about functions .. 69
TDACCEPT.. 70
TDCONVRT ... 77
TDCURPRO... 83
TDESCRIB ... 88
TDFREE... 96
TDGETREQ ... 99
TDGETSOI... 106
TDGETUSR ... 110
TDINFACT ... 114
TDINFBCD ... 118
TDINFLOG ... 123
TDINFPGM .. 127
TDINFPRM... 131
TDINFRPC ... 136
TDINFSPT.. 138
TDINFUDT ... 142
TDINIT.. 145
TDLOCPRM ... 149
TDLSTSPT... 152

Contents

v

TDNUMPRM .. 155
TDRCVPRM... 157
TDRCVSQL.. 165
TDRESULT .. 170
TDSETACT .. 173
TDSETBCD.. 177
TDSETLEN .. 183
TDSETLOG.. 186
TDSETPRM ... 192
TDSETPT... 197
TDSETSOI ... 200
TDSETSPT .. 205
TDSETUDT .. 209
TDSNDDON... 211
TDSNDMSG... 218
TDSNDROW .. 225
TDSQLLEN .. 229
TDSTATUS .. 232
TDTERM .. 237
TDYNAMIC .. 239
TDWRTLOG... 243

APPENDIX A Gateway-Library Quick Reference .. 247

APPENDIX B Sample RPC Application for CICS... 257
Sample program SYCCSAR2 .. 258
Sample program SYCCSAU2 .. 272
Sample program SYCCSAW2 ... 281
Sample program SYCCSAY2 .. 291
Sample program SYCCSAZ2... 302

APPENDIX C Sample Language Application for CICS 311
Sample program SYCCSAL2... 312

APPENDIX D Sample RPC Application for IMS TM (Implicit)......................... 323
Sample program SYICSAD2.. 323

APPENDIX E Sample RPC Application for IMS TM (Explicit) 337
Sample program SYIXSAM2.. 337

APPENDIX F Sample Mixed-Mode Application... 351

Contents

vi

Sample program SYCTSAX5... 351

APPENDIX G Sample Tracing and Accounting Program................................ 389
Sample program SYCCSAS2 .. 390

Index ... 411

vii

About This Book

The Programmer’s Reference for COBOL for Open ServerConnect
contains reference information for the COBOL version of Open
ServerConnect™ Gateway-Library™.

Note The Open ServerConnect Gateway-Library is a subset of the generic
Sybase® Gateway-Library.

This chapter includes the following topics:

• Audience

• How to use this book

• Related documents

• Other sources of information

• Sybase certifications on the web

• How to get help using Sybase products

• Syntax and style conventions

• If you have questions about this book

Audience
The Programmer’s Reference for COBOL for Open ServerConnect is a
reference book for application programmers who write COBOL programs
that call Open ServerConnect Gateway-Library functions, as well as for
system programmers who want to use COBOL tracing and accounting
features.

How to use this book About This Book

viii

This book assumes that you are familiar with the COBOL programming
language and know how to write COBOL programs under either CICS,
MVS or IMS TM. It does not contain instructions for writing COBOL
programs. Rather, it describes the functions that can be called within your
COBOL programs to perform communication, conversion, tracing,
and accounting functions.

How to use this book
Table 1 shows where to find the information you need in this book.

Table 1: Book organization

Chapter Contents

Chapter 1, “Introduction” An overview of Open ServerConnect including discussion of different kinds of
client requests and explanations of how Open ServerConnect programs process
them.

Note Everyone who writes programs using Open ServerConnect should read this
chapter.

Chapter 2, “Topics” Descriptions of Gateway-Library concepts, and information on how to accomplish
specific programming tasks.

This chapter discusses tasks, resources, and other topics that the application
programmer needs to understand to write Gateway-Library applications. It includes
a detailed discussion of the Gateway-Library cursor, dynamic SQL and Japanese
language support and a list of supported datatypes and models for structures used
to store data.

Chapter 3, “Functions” Reference pages for each Gateway-Library function. Each function description
contains sections on functionality, syntax, explanatory comments and related
functions, as well as an example.

Appendix A, “Gateway-
Library Quick Reference”

A table of all Gateway-Library functions, their arguments and where they exist,
and the symbolic constants used with each argument.

Appendix B, “Sample RPC
Application for CICS”

A sample COBOL application program that processes client RPC requests under
CICS, as well as three COBOL programs that are Open ServerConnect versions of
the RSP3C, RSP4C and RSP8C remote stored procedures.

Appendix C, “Sample
Language Application for
CICS”

A sample COBOL application program that processes client language requests
under CICS.

Appendix D, “Sample RPC
Application for IMS TM
(Implicit)”

A sample COBOL application program that processes client RPC requests under
the IMS TM implicit API.

 About This Book

ix

Related documents
To install, administer, troubleshoot, and write applications for Open
ServerConnect, refer to the following documentation:

• Installation and Administration Guide for Open ServerConnect for IBM
CICS/MVS

• Installation and Administration Guide for Open ServerConnect for IBM
IMS TM and MVS

• Messages and Codes for Open ClientConnect and Open ServerConnect

• Programmer’s Reference for PL/1 for Open ServerConnect

• Programmer’s Reference for Remote Stored Procedures for Open
ServerConnect (for MDI-heritage customers only)

Other sources of information
• The Technical Library CD contains product manuals and technical

documents and is included with your software. The DynaText browser
(included on the Technical Library CD) allows you to access technical
information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting Technical Library.

• The Technical Library Web site is an HTML version of the Technical
Library CD that you can access using a standard Web browser.

To use the Technical Library Web site, go to www.sybase.com and choose
Documentation, choose Technical Library, then choose Product Manuals.

Appendix E, “Sample RPC
Application for IMS TM
(Explicit)”

A sample COBOL application program that processes client RPC requests under
the IMS TM explicit API.

Appendix F, “Sample
Mixed-Mode Application”

A sample COBOL application program that includes both Gateway-Library and
Client-Library function calls (a mixed mode application).

Appendix G, “Sample
Tracing and Accounting
Program”

A sample COBOL program that demonstrates the use of all Gateway-Library
tracing and accounting functions.

Chapter Contents

Sybase certifications on the web About This Book

x

Sybase certifications on the web
Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications and/or EBF Rollups:

1 Point your web browser to Technical Documents at
http://www.techinfo.sybase.com.

2 In the Browse section, click on the What’s Hot entry.

3 Explore your area of interest: Hot Docs covering various topics, or Hot
Links to Technical News, Certification Reports, Partner Certifications,
and so on.

❖ If you are a registered SupportPlus user:

1 Point your Web browser to Technical Documents at
http://www.techinfo.sybase.com.

2 In the Browse section, click on the What’s Hot entry.

3 Click on the EBF Rollups entry.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

4 Follow the instructions associated with the SupportPlusSM Online
Services entries.

Note If you are not a registered SupportPlus user, and you want to
become one:

You can register by following the instructions on the Web.

To use SupportPlus, you need:

• A Web browser that supports the Secure Sockets Layer (SSL), such as
Netscape Navigator 1.2 or later

• An active support license

• A named technical support contact

• Your user ID and password

 About This Book

xi

❖ Whether or not you are a registered SupportPlus user:

You may use Sybase’s Technical Documents. Certification Reports are among
the features documented at this site.

1 Point your Web browser to Technical Documents at
http://www.techinfo.sybase.com.

2 In the Browse section, click on the What’s Hot entry.

3 Click on the topic that interests you.

How to get help using Sybase products
Each Sybase installation that has purchased a support contract has one or more
designated person who is authorized to contact Sybase Technical Support at
800 - 8SYBASE.
If you cannot resolve a problem using the manuals or online help, please have
the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

If you need help using a Sybase product, the following resources are available:

• Sybase Technical Support

• Sybase Professional Services

Sybase Technical Support
Sybase Technical Support provides various forms of customer assistance,
including the following services:

• Identifying problems

• Offering a fix, if available

• Documenting software problems and enhancement suggestions in our
customer support database

• Communicating status information on open problems

• Sharing information on new products or versions of existing products

In addition, Sybase system engineers are available for technical assistance in
various geographical territories.

Syntax and style conventions About This Book

xii

Sybase Professional Services
Sybase Professional Services offers on-site consulting and training programs
to help you maximize the benefits of our products. For more information,
call (303) 486-7700.

Note Outside the continental United States and Canada, obtain the correct
telephone numbers from your sales representative and record them for future
reference.

Syntax and style conventions
This section describes the syntax and style conventions used in this book.

Note Throughout this book, all references to MVS refer to native MVS
programs and all references to Adaptive Server™ Enterprise also apply to its
predecessor, SQL Server.

Syntax conventions
Open ServerConnect uses eight-character function names; other versions of
Server-Library use longer names. This book uses the long version of Server-
Library names with this exception: the eight-character version is used in syntax
statements. For example, CTBCMDPROPS has 11 letters. In the syntax
statement, it is written CTBCMDPR. You can use either version in your code.

Table 2 on page xiii describes the syntax conventions used in this book.

 About This Book

xiii

Table 2: Syntax conventions

Style conventions
Table 3 describes the style conventions used in this book.

Table 3: Style conventions

Symbol Explanation

() Parentheses indicate that parentheses are included as part of the command.

{ } Braces indicate that you must choose at least one of the enclosed options. Do not type the braces
when you type the option.

[] Brackets indicate that you can choose one or more of the enclosed options, or none. Do not type the
brackets when you type the options.

| The vertical bar indicates that you can select only one of the options shown. Do not type the bar in
your command.

, The comma indicates that you can choose one or more of the options shown. Separate each choice
by using a comma as part of the command.

This type of information Looks like this

Gateway-Library function names TDINIT, TDRESULT

Client-Library function names CTBINIT, CTBRESULTS

Other executables (DB-Library routines,
SQL commands) in text

the dbrpcparam routine, a select statement

Directory names, path names, and file names /usr/bin directory, interfaces file

Variables n bytes

Adaptive Server datatypes datetime, float

Sample code 01 BUFFER PIC S9(9) COMP SYNC.
01 BUFFER PIC X(n).

User input 01 BUFFER PIC X(n)

Client-Library and Gateway-Library
function argument names

BUFFER, RETCODE

Client-Library function arguments that are
input (I) or output (O)

COMMAND – (I)
RETCODE – (O)

Names of objects stored on the mainframe SYCTSAA5

Symbolic values used with function
arguments, properties, and structure fields

CS-UNUSED, FMT-NAME, CS-SV-FATAL

Client-Library property names CS-PASSWORD, CS-USERNAME

Client-Library and Gateway-Library
datatypes

CS-CHAR, TDSCHAR

If you have questions about this book About This Book

xiv

If you have questions about this book
If you have questions, comments, or suggestions about this book, contact the
Sybase documentation group directly by e-mail at:

icd_doc@sybase.com

Feel free to forward any information, comments, or questions about:

• Missing, incorrect, or unclear information

• Information you found particularly useful

• Organization or style

We will respond as promptly as possible by e-mail. Your feedback helps us
provide more accurate, detailed, and easy-to-use documentation.

Note Please send comments about product features, functionality, or problems
to your system engineer or Sybase Technical Support.

To order additional copies of Sybase documentation, see “Document Orders”
on the disclaimer page following the title page.

1

C H A P T E R 1 Introduction

This chapter includes the following topics:

• What is Open ServerConnect?

• What is Gateway-Library?

• Gateway-Library functions

• Using Client/Server connections

• General processing procedures

What is Open ServerConnect?
Open ServerConnect is a programming environment that lets you create
mainframe transactions that Sybase client applications can execute.
Open ServerConnect transactions can retrieve and update data stored on
an IBM mainframe in any mainframe resource, such as VSAM files,
TD queues, TS queues, and DL/1 databases, as well as in DB2 databases
and other DBMSs.

Open ServerConnect is available for CICS, IMS TM and MVS. It runs on
an IBM System/390 or plug-compatible mainframe computer. It uses a
host transaction processor, such as CICS, as a communications front end
and uses LU 6.2 or TCP/IP communications protocols.

What is Gateway-Library?

2

What is Gateway-Library?
Open ServerConnect provides a set of built-in, high-level functions for use in
mainframe server applications that communicate with Sybase clients such as
Open Client applications, third-party tools, and server-to-server programs.
These built-in functions are linkable subroutines collectively known as
Gateway-Library. Gateway-Library functions are called through a stub in the
application program. An Open ServerConnect application program uses a
CALL statement to invoke a Gateway-Library function.

You can use Gateway-Library functions with all versions of Open
ServerConnect. Minor coding differences exist between CICS and IMS TM.
Those differences are discussed in “Differences between CICS, IMS TM and
MVS” on page 7.

Gateway-Library functions
Gateway-Library functions provide data conversion and LU 6.2 and TCP/IP
communication functions to mainframe application programs. Each Gateway-
Library function performs one or more specific task(s) in the communication
between a server and a client.

Gateway-Library functions can:

• Retrieve and process requests from remote clients or servers

• Describe and return results to requesting clients or servers

• Manage global and transaction-specific tracing and accounting recording
at the mainframe

Open ServerConnect uses the Sybase Tabular Data Stream (TDS) protocol to
transmit data between the mainframe server and Sybase clients. LU 6.2 or
TCP/IP calls are embedded within Gateway-Library functions. All your
application program needs to do to send and receive data streams is to call the
appropriate Gateway-Library functions. Because Gateway-Library functions
automatically issue the appropriate LU 6.2 or TCP/IP calls, no additional code
is needed. You do not need to know the details of TDS or your network
protocol to use Gateway-Library functions.

CHAPTER 1 Introduction

3

All Gateway-Library functions begin with the letters “TD”. For example,
the TDINIT function initializes the Gateway-Library environment, and the
TDRCVPRM function retrieves the data from a parameter in a call sent by a
remote client.

The complete set of Gateway-Library functions is included on the product
tapes. The program stubs that load and call the Gateway-Library functions are
also included. For a list and explanation of all Gateway-Library functions,
see Chapter 3, “Functions”.

Using Client/Server connections
Open ServerConnect supports both three-tier (gateway-enabled) and two-tier
(gateway-less) environments. It can receive requests from LAN clients through
any of the following:

• Transaction Router Service (TRS) or Net-Gateway using SNA or TCP/IP
in a three-tier gateway-enabled environment

• TCP/IP in a two-tier gateway-less environment

• Adaptive Server Enterprise for server to server communication

If you use SNA as your protocol, use Online Transaction Processing (OLTP),
or have large numbers of geographically-dispersed Adaptive Servers, you must
use a TRS or Net-Gateway in a three-tier environment for routing.

Note For detailed information about compatibility, network drivers,
new features in this version, performance factors, security, three-tier and two-
tier environments and how to install and configure Open ServerConnect in both
environments, see the Installation and Administration Guide for Open
ServerConnect.

Using Client/Server connections

4

SNA connections
A group of logical connections is defined to SNA by the TRS administrator.
Each logical connection connects a mainframe transaction processing region
with a remote port on a TRS platform. Every request forwarded from a TRS to
a mainframe server uses one of these logical connections to communicate with
its remote partner. When a request is sent across a connection, it is called a
conversation.

SNA connections are activated when a TRS is started and remain active until
the TRS is shut down or deactivated.

TCP/IP connections
There is no difference in the use of Gateway-Library functions for SNA or
TCP/IP networks.

In three-tier environments, the TRS administrator defines a group of TCP/IP
communication sessions connecting a mainframe teleprocessing region with a
remote port on a TRS. For detailed information about configuring TRS, see the
Transaction Router Service User’s Guide for DirectConnect.

In two-tier environments, LAN clients directly login to Open ServerConnect
using TCP/IP for connectivity. For information, see the Installation and
Administration Guide for Open ServerConnect.

Initializing the Gateway-Library environment
Each mainframe server application that uses Gateway-Library must initialize
the operating environment. Gateway-Library uses two structures to do this:

• IHANDLE structure

• TDPROC structure

IHANDLE structure The IHANDLE structure is a transaction-wide structure that contains
configuration parameters and other high-level information used to set up the
operating environment for a Gateway-Library transaction. It is defined for each
transaction by TDINIT.

TDINIT must be the first Gateway-Library function call in each application.
The IHANDLE structure corresponds to the context handle in Open Client
Client-Library™.

CHAPTER 1 Introduction

5

After the environment is initialized, an application must establish a
conversation between the client and the server over one of the predefined
connections. In Open ServerConnect, a logical connection is represented by a
TDPROC structure. A TDPROC structure is associated with an IHANDLE
structure and is defined in TDACCEPT.

TDPROC structure The TDPROC structure corresponds to the DBPROCESS structure in DB-
Library and to the connection and command handles in Client-Library.
Gateway-Library sends commands to the server and returns query results to the
application through the TDPROC structure.

The handle for TDPROC is stored in the argument TDPROC. Every Gateway-
Library function that sends or accepts data across a connection must specify
that connection handle in its TDPROC argument.

Starting and ending a conversation
A conversation is established when a client sends a transaction request and a
server accepts the request. It remains open as long as the client and server are
communicating about that request. When all results and messages are returned
to the client, the program must end the conversation and free up the TDPROC
structure. The function TDFREE is included for that purpose. The last
Gateway-Library function called by your application must be TDTERM,
which frees up any remaining storage.

After returning results to a client, a transaction can either end the
communication (short transaction) or wait for another client request
(long-running transaction). In long-running transactions, TDSNDDON marks
the end of a single request, but does not necessarily end the transaction. To end
a transaction, the CONN-OPTIONS argument of TDSNDDON must be set to
TDS-ENDRPC. The transaction then calls TDFREE and TDTERM to free up
storage. Long-running transactions can be coded under CICS or the IMS TM
explicit API.

Handling client requests
Gateway-Library functions are designed to be symmetrical. That is, each time
a program at one end of a connection issues a sending call, the program at the
other end issues a corresponding receiving call.

Using Client/Server connections

6

In Open ServerConnect, the mainframe is always a server, never a client.
Therefore, all the functions documented in this manual are those used by a
server. Each TDRCVxxx function you code in your server application is
responding to a corresponding send function issued by the client or TRS,
and that the data you send with a TDSNDxxx function is accepted by a
corresponding receive function in the client program.

For example, if the client is an Open ClientConnect program, TDRCVSQL and
TDRCVPRM retrieve data sent by the client function CTBSEND,
and TDSNDROW returns rows that are retrieved by the client function
CTBFETCH.

Note It is possible to code mixed-mode programs that act as both server and
client, using both Gateway-Library and Client-Library functions. To do this,
you must have Open ClientConnect installed in the same region as Open
ServerConnect.

Processing client requests
A client can send the following types of requests to a mainframe server:

• Remote Procedure Calls (RPCs)

• Language requests

• Cursor requests

• Dynamic SQL requests

Remote Procedure Calls (RPCs)

For each client RPC, the mainframe application programmer must write a
corresponding server transaction that executes whenever the client calls that
remote procedure.

Language requests

If you have MainframeConnect for DB2/MVS-CICS installed at the
mainframe, you have a prewritten transaction that processes SQL language
requests to DB2. This transaction, called AMD2, uses DB2 dynamic SQL to
process incoming SQL statements. AMD2 handles all language request
processing; no additional code is required.

CHAPTER 1 Introduction

7

If you do not have MainframeConnect for DB2/MVS-CICS, or if you want to
send language requests to a custom-written language handler, you must write
your own language transaction. Gateway-Library includes language-handling
functions for this purpose. An example of a program that executes SQL
language requests is included on the API tape (SYCCSAL2) and is printed in
Appendix C, “Sample Language Application for CICS”.

Note MainframeConnect is available only for MVS-CICS environments.
For IMS TM and native MVS environments, use OmniSQL Access Module for
DB2 for IMS TM and MVS with the SYRT transaction for processing language
requests. Cursors and dynamic SQL are not supported.

Cursor requests

If MainframeConnect for DB2/MVS-CICS is installed at the mainframe,
AMD2 processes cursor requests to DB2.

If MainframeConnect for DB2/MVS-CICS is not installed, you must write a
server transaction to process cursor requests from the client. A single server
transaction can process multiple cursor requests from the client.

Dynamic SQL requests

If MainframeConnect for DB2/MVS-CICS is installed at the mainframe,
AMD2 processes dynamic requests to DB2.

If MainframeConnect for DB2/MVS-CICS is not installed, you must write a
server transaction to process dynamic requests from the client. A single server
transaction can process multiple dynamic requests from the client.

Differences between CICS, IMS TM and MVS
For the most part, the use of Gateway-Library functions in CICS, IMS TM and
MVS is the same. The minor differences that exist are discussed in Table 1-1
on page 7, and noted in the reference pages for the affected functions.

Table 1-1: Coding differences between CICS, IMS TM and MVS

Using Client/Server connections

8

Function Difference between CICS, IMS TM and MVS

TDINFRPC
TDSTATUS

The action taken when the communication state (COMM-STATE) is TDS-RESET can
differ between CICS, MVS and the IMS TM implicit API:

• Under CICS, MVS, and the IMS TM explicit API, the transaction exits as soon as
possible.

• Under the IMS TM implicit API, the transaction can call TDGETREQ to accept
another client request or it can exit.

TDINIT The first argument differs between CICS and IMS TM:

• Under CICS, the communications I/O block, passed as the first parameter in TDINIT,
is the EIB (DFHEIBLK).

• Under IMS TM, the first TDINIT parameter is I/O PCB (IO-PCB).

• Under MVS, a null pointer should be used.

TDSETPT Used with IMS TM only, to indicate the type of IMS TM transaction.

TDSNDDON Value of CONN-OPTIONS in CICS, MVS, and the IMS TM explicit API can be set to
TDS-ENDREPLY in long-running transactions. TDS-ENDREPLY cannot be used
under the IMS TM implicit API. To learn how to simulate long-running transactions in
the implicit API, see “Long-running transactions” on page 55.

TDINFACT
TDSETACT

Accounting records are written to different logs under CICS, IMS TM and MVS:

• Under CICS, accounting functions use VSAM files as log files. The default file name
is SYTACCT1.

• Under IMS TM, accounting functions use the IMS TM log.

• Under MVS, the records are written to a sequential file. The DDNAME of this file
is specified as a parameter in TDCUSTOM.

TDINFLOG
TDINFSPT
TDLSTSPT
TDSETLOG
TDSETSPT
TDWRTLOG

Trace records are written to different logs under CICS, IMS TM and MVS:

• Under CICS, tracing functions use VSAM files as log files. The default file name is
SYTDLOG1.

• Under IMS TM, tracing functions use the IMS TM log.

• Under MVS, the records are written to a sequential file. The DDNAME of this file
is specified as a parameter in TDCUSTOM.

CHAPTER 1 Introduction

9

General processing procedures
Whether the incoming request is an RPC or a language, cursor, or dynamic
request, the server application performs five general steps:

1 Prepares the environment.

2 Accepts the request and retrieves the language, cursor, or dynamic request
or RPC parameters.

3 Performs the requested action.

4 Returns results to the requesting client.

5 Ends the conversation.

This section shows how to perform four of these tasks using Gateway-Library
functions. The remaining task (the requested action) is performed using
familiar programming procedures. See Chapter 3, “Functions” for detailed
information about each function.

Note The tables in the following sections cover only the basic function
sequences. Refer to the sample programs contained in the appendices of this
book to see how these functions are used in context.

Processing an RPC
When a client sends an RPC, a typical mainframe server application (short
transaction) performs the tasks in Table 1-2.

Table 1-2: Functions to process RPCs

Task Function

1. Prepare for incoming requests.

Initialize the Gateway-Library environment.
Specify the type of IMS TM transaction (used with IMS TM transactions only).

TDINIT
TDSETPT

2. Accept the incoming request.

Accept the incoming request. TDACCEPT

3. Handle incoming parameters.

Determine how many parameters were sent.
Define variables for storing parameter information (datatype, length, data).
Retrieve the parameter (Loop until all parameters are retrieved).

TDNUMPRM
TDINFPRM
TDRCVPRM

General processing procedures

10

Processing a SQL language request
When a client sends a SQL select language request, a typical mainframe server
application (short transaction) performs the tasks in Table 1-3.

Table 1-3: Functions to process language requests

4. Process the request.

Perform the requested task(s).

5. Prepare to return results to the client.

Set the length and address of each return parameter (Loop until all parameters are
described).
Describe each column in a row to be returned (Loop until all columns are retrieved).

TDSETPRM

TDESCRIB

6. Return data to the client.

Send data to the client, one row at a time (Loop until all rows are sent).
Send the return parameters, tell the client when results are finished, and close the
connection.

TDSNDROW

7. End the conversation.

Free the TDPROC structure.
Free the MVS storage (required with IMS TM; optional but recommended with CICS).

TDFREE
TDTERM

Task Function

Task Function

1. Prepare for incoming requests.

Initialize the Gateway-Library environment.
Specify the type of IMS TM transaction (used with IMS TM transactions only).

TDINIT
TDSETPT

2. Accept the incoming request.

Accept the incoming request.

TDACCEPT

3. Handle incoming SQL statements.

Determine the length (in bytes) of the incoming SQL string.
Retrieve the SQL string (Loop until all parameters are retrieved).

TDSQLLEN
TDRCVSQL

4. Process the request.

Retrieve the requested data from the database.

CHAPTER 1 Introduction

11

Processing a cursor request
When a client sends a cursor request, a typical mainframe server application
performs the tasks in Table 1-4.

Table 1-4: Functions to process cursor requests

5. Prepare to return results to the client.

Set the length and address of each return parameter (Loop until all parameters are
described).
Describe each column in a row to be returned (Loop until all columns are retrieved).

TDSETPRM

TDESCRIB

6. Return data to the client.

Send data to the client, one row at a time (Loop until all rows are sent).
Send the return parameters, tell the client when results are finished, and close the
connection.

TDSNDROW

7. End the conversation.

Free the TDPROC structure.
Free the MVS storage (required with IMS TM; optional but recommended with CICS).

TDFREE
TDTERM

Task Function

Task Function

1. Prepare for incoming requests.

Initialize the Gateway-Library environment.
Specify the type of IMS TM transaction (used with IMS TM transactions only).

TDINIT
TDSETPT

2. Accept the incoming request.

Accept the incoming request.

TDACCEPT

3. Determine the type of request.

Determine the type of client request: RPC, language, dynamic, or cursor.

TDINFPGM

4. Determine the type of cursor request.

Retrieve CURSOR-COMMAND, CURSOR-ID, and COMMAND-OPTIONS.

TDCURPRO

5. Process the cursor request.

Get the SQL statement, number of parameters, table name, and parameters format.
Either receive input parameters or update columns.

TDRCVSQL
TDNUMPRM
TDINFPRM
TDRCVPRM

General processing procedures

12

Processing a dynamic SQL request
When a client sends a dynamic request, a typical mainframe server application
performs the tasks in Table 1-5.

Table 1-5: Functions to process dynamic requests

6. Describe the rows.

Describe the rows.
Send rows.

TDESCRIB
TDSNDROW

7. Send return information.

Send acknowledgment, CURSOR-STATUS, CURSOR-INFO.

TDCURPRO

8. Send DONE.

Send a DONE package.

TDSNDDON

9. Accept the next request.

Accept the incoming request.

TDGETREQ

10. End the conversation.

Send final DONE package.
Free the TDPROC structure.
Free the MVS storage.

TDSNDDON
TDFREE
TDTERM

Task Function

Task Function

1. Prepare for incoming requests.

Initialize the Gateway-Library environment.
Specify the type of IMS TM transaction (used with IMS TM transactions only).

TDINIT
TDSETPT

2. Accept the incoming request.

Accept the incoming request.

TDACCEPT

3. Determine the event type.

Determine the type of client request: RPC, language, dynamic, or cursor.

TDINFRPC

4. Determine the type of dynamic operation.

This can be a dynamic prepare request, dynamic execute request, dynamic execute
immediate request, request for input or output parameter descriptions, or deallocate
request.

TDYNAMIC

CHAPTER 1 Introduction

13

Processing a long-running transaction
When a client sends a series of RPCs, a typical mainframe server application
(long-running transaction) performs the tasks in Table 1-6. The arrows in the
table indicate code loops.

Table 1-6: Functions to process long-running transactions

5. Process dynamic operation.

Get the statement (for prepare).
Get the statement ID (for all dynamic requests).

TDYNAMIC

6. Handle the incoming parameters.

Determine number of parameters (for execute).
Retrieve number of parameters (for execute).
Retrieve input parameters (for execute).

 TDNUMPRM
 TDINFPRM
 TDRCVPRM

 7. Describe the data.

Describe input/output parameters, or rows to be returned.

 TDSNDROW

8. Return data to the client.

Send result rows for execute or execute immediate.
Send an acknowledge request.
Send a done package.

 TDYNAMIC
 TDSNDDON

9. Get the next request type.

Accept the incoming request.

 TDGETREQ

10. End the conversation.

 Send final DONE package.
 Free the TDPROC structure.
 Free the MVS storage.

 TDSNDDON
 TDFREE
 TDTERM

Task Function

Task Function

1. Prepare for incoming requests.

Initialize the Gateway-Library environment.
Specify the type of IMS TM transaction (used with IMS TM transactions only).

 TDINIT
 TDSETPT

2. Accept the incoming request.

Accept the incoming request.

 TDACCEPT

General processing procedures

14

Additional processing options
Table 1-7 contains additional Gateway-Library functions for occasional use.

Table 1-7: Functions for process options

3. Handle incoming parameters.

Determine how many parameters were sent.
→ Loop until all parameters are retrieved.

 TDNUMPRM
 TDINFPRM
 TDRCVPRM

 4. Process the request.

Perform the requested task(s).

5. Prepare to return results to the client.

→ Loop to describe return parameters and columns in return rows.

 TDSETPRM
 TDESCRIB

6. Return data to the client

→ Send rows and return parameters to the client (For final TDSNDDON, you must set
STATUS to TDS-DONE-FINAL and CONN-OPTIONS to TDS-ENDREPLY).

 TDSNDROW
 TDSNDDON

7. Accept next request.

Accept the incoming request.

 TDGETREQ

8. Repeat steps 3-6.

Repeat steps 3–6 for each successive request (For final TDSNDDON, you must set
STATUS to TDS-DONE-FINAL and CONN-OPTIONS to TDS-ENDRPC).

9. End the conversation.

Free the TDPROC structure.
Free the MVS storage (required with IMS TM; optional but recommended with CICS).

 TDFREE
 TDTERM

Task Function

Task Function

Locate the decimal point for each column. TDSETBCD

Convert mainframe datatypes to those used by DB-Library programs. TDCONVRT

Return information about the currently running transaction. TDINFPGM

Return information about the current client request. TDINFRPC

Return information about the user-defined datatype associated with a column. TDINFUDT

Change data length of a column before sending the row. TDSETLEN

CHAPTER 1 Introduction

15

Tracing and accounting functions
Table 1-8 contains Gateway-Library functions that are available for tracing and
accounting. These functions are used primarily by a system programmer.

Table 1-8: Functions for tracing and accounting

Specify the Gateway-Library datatype for a column. TDSETUDT

Send error or informational messages to the client. TDSNDMSG

Retrieve status information about the connection. TDSTATUS

Retrieve client login information. TDGETUSR

Task Function

Task Function

Turn mainframe-based tracing on or off. TDSETLOG

Write a user-defined or system entry to the trace/error log. TDWRTLOG

Return trace setting information. TDINFLOG

Set tracing on or off for a specified transaction. TDSETSPT

List all transactions for which specific tracing is enabled. TDLSTSPT

Indicate whether tracing is on or off for a specified transaction. TDINFSPT

Turn mainframe-based accounting on or off. TDSETACT

Determine whether accounting is on and the name of the accounting log file. TDINFACT

General processing procedures

16

17

C H A P T E R 2 Topics

This chapter contains information about Open ServerConnect concepts
and procedures that are grouped by the following listed topics:

• Character sets

• Communication states

• Cursors

• Customization

• Datatypes

• Dynamic SQL support

• Events

• The login packet

• Long-running transactions

• Mixed-mode applications

• Native languages

• Processing Japanese client requests

Character sets
Open ServerConnect can accept requests in a variety of client character
sets. The client identifies the character set in the login packet, which is
forwarded to the mainframe server. Open ServerConnect does the
necessary translations (for example, conversion from ASCII 8 to EBCDIC
or from Shift-JIS to IBM-Kanji).

Character sets

18

Gateway-Library uses translation tables and conversion modules to convert
workstation characters into characters used by the mainframe. A Japanese
Conversion Module (JCM) is available with Open ServerConnect on a separate
tape. A system programmer can customize translation tables or rename the
JCM at your site. See the Installation and Administration Guide for Open
ServerConnect for details. This section contains the following subsections:

• Supported workstation character sets

• Supported mainframe character sets

Supported workstation character sets
The tables in this section list the supported character sets, indicate whether or
not each set can be used for Japanese characters, and indicate whether those
that can be used for Japanese characters allow hankaku katakana (single-byte
characters).

Single-byte character sets

Table 2-1 shows which single-byte character sets (SBCS) are supported at the
workstation.

Table 2-1: SBCS supported at the workstation

 As shipped, the default character set on most workstations is iso_1; on an IBM
RS/6000, it is cp850; and on HP platforms, it is roman8. Refer to your
workstation documentation to find out what character set is supported on your
workstation.

Character set name
Supports Japanese
characters? Includes Hankaku Katakana?

iso_1 No Not applicable

cp850 No Not applicable

cp437 No Not applicable

roman8 No Not applicable

mac No Not applicable

ascii_8 No Not applicable

sjis Yes Yes

CHAPTER 2 Topics

19

Double-byte character sets

Table 2-2 shows which double-byte character sets (DBCS) are supported at the
workstation.

Table 2-2: DBCS supported at the workstation

Note All supported DBCS can be used for Japanese characters.

Supported mainframe character sets
Table 2-3 shows which character sets are supported at the mainframe.

Table 2-3: Character sets supported at the mainframe

Note Although single-byte characters can be read as either hankaku katakana
or lowercase alphabetic characters, only one option can be specified in a single
CICS region.

Communication states
Clients and servers that use LU 6.2 and TCP/IP to communicate with each
other are said to be in one of three communication states:

• SEND – Program can send information to the client

• RECEIVE – Program can receive information from the client

• RESET – Connection is closed

Character set name Includes Hankaku Katakana?

eucjis Yes

deckanji No

Type of character set
Character set
name

Includes Hankaku
Katakana?

Single-byte EBCDIC Yes, in Japan only.

Double-byte IBM Kanji No

Cursors

20

At any given time, communication between the mainframe server and the
client is in only one direction. The mainframe server can send information to a
client or receive information from a client, but not both.

The mainframe server must be in the correct communication state before it can
execute certain functions. For example, it must be in SEND state to send results
or messages; it must be in RECEIVE state to retrieve requests.

The communication state of the mainframe server is set by the Gateway-
Library functions. For example, after it accepts a client request with
TDACCEPT, an application switches to SEND state, because the next
communication it has with the client is to send results. In most cases,
the required communication state is evident from the name of the function.
The reference pages in Chapter 3, “Functions” explain which state is required
for each function.

After a client request is processed and all results returned, an application calls
TDSNDDON. If the transaction processes only a single client request (a short
transaction), TDSNDDON ends communication with the client. If the
transaction is a long-running transaction that finished one client request and is
awaiting another, TDSNDDON keeps communication open and switches the
communication state from SEND to RECEIVE. See “Long-running
transactions” on page 55 for details about this type of transaction.

When you follow the usual sequence of function calls, the mainframe server is
always in the correct state. To check the communication state before issuing a
function call, call TDSTATUS. If your application tries to execute a function
when the mainframe server program is not in the appropriate communication
state, the operation fails, and the return code indicates that the application is in
the wrong state.

Cursors
Open ServerConnect supports cursor transactions. The Sybase generic Open
Client libraries (DB-Library and Client-Library), Adaptive Server, and Open
Server support cursors. Cursor support at the mainframe allows clients using
these products to include cursors when accessing mainframe data. This section
contains the following subsections:

• What is a cursor?

• Benefits of using cursors

CHAPTER 2 Topics

21

• How cursors work in Open ServerConnect

• Types of cursor commands

• CURSOR-DESC structure

Note Open ClientConnect versions 2.0 and 3.x do not support cursors.

What is a cursor?
A cursor is a symbolic name that is linked with a SQL statement. Declaring a
cursor establishes this link. The SQL statement can be one of the following:

• A SQL select statement

• A Transact-SQL execute statement

• A dynamic SQL prepared statement

The SQL statement associated with a cursor is called the body of the cursor.
When a client opens a cursor, it executes the body of the cursor, which in turn
generates a result set. The Open ServerConnect application is responsible for
detecting cursor requests and passing cursor results back to the client.

Benefits of using cursors
Cursors allow a client application to retrieve and change data in a powerful,
flexible manner. They allow applications to access and move around in a set of
data rows, rather than merely retrieve a complete result set.

Moreover, a single connection can have multiple cursors open at the same time.
All of the cursor result sets are simultaneously available to the application,
which can fetch them at will. This is in direct contrast to other types of result
sets, which must be handled one row at a time, in a sequential fashion.

Further, a client application can update underlying database tables while
actively fetching rows in a cursor result set.

Cursors

22

How cursors work in Open ServerConnect
The following steps show how Open ServerConnect handles a cursor request:

1 Open ServerConnect receives a client request.

2 The Gateway-Library transaction determines the type of request by calling
TDINFPGM and checking the value of the REQUEST-TYPE argument.

3 If the type of request is TDS-CURSOR-EVENT, the transaction calls
TDCURPRO to determine what cursor command the client sent and which
cursor is affected. The transaction then processes the command and returns
results to the client.

Types of cursor commands
Table 2-4 summarizes the types of cursor commands a client can issue. The
“Command” column in the table shows the value in the CURSOR-COMMAND
field of the CURSOR-DESC structure.

Table 2-4: Summary of cursor commands

A typical client application issues cursor commands in the order in which they
are listed in Table 2-4, but the order can vary. For example, a client can fetch
against a cursor, close the cursor, then reopen and fetch it again.

Command Action

TDS-CURSOR-DECLARE
 0x001

Associate a cursor ID with the body of the cursor.

TDS-CURSOR-OPENCMD
 0x002

Execute the body of the cursor and generate a cursor result set.

TDS-CURSOR-FETCH
 0x003

Fetch rows from the cursor result set.

TDS-CURSOR-DELETE
 0x004

Delete the contents of the current cursor row.

TDS-CURSOR-UPDATE
 0x005

Update the contents of the current cursor row.

TDS-CURSOR-INFO
 0x006

Report the status of the cursor, or set the cursor row fetch
count.

TDS-CURSOR-CLOSE
 0x007

Make the cursor result set unavailable.
Reopening a cursor regenerates the cursor result set.

TDS-CURSOR-DEALLOC
 0x008

Render the cursor nonexistent.
A cursor that is deallocated cannot be re-opened.

CHAPTER 2 Topics

23

Because a client and server can exchange information about multiple cursors
in a single connection session, they need a means of uniquely identifying each
cursor. An Open ServerConnect application responds to a cursor declaration by
sending back a unique cursor ID. The ID is an integer. The client and the server
refer to the cursor by this ID for the lifetime of the cursor.

Declare cursor

When the cursor command is TDS-CURSOR-DECLARE, the client is declaring
a new cursor. In response, the Gateway-Library transaction calls the following
functions:

Open cursor

When the cursor command is TDS-CURSOR-OPENCMD, the client is
executing the body of the cursor and generating a cursor result set. In response,
the Gateway-LibraryThinSpace transaction calls the following functions:

Function Action

TDCURPRO Determine:

• The type of cursor command (DECLARE, in this case), and

• Whether or not this cursor can be used to update database tables.

TDNUMPRM Retrieve the number of parameters associated with the cursor.

TDINFPRM Get the format of each associated parameter (once for each parameter).

TDRCVSQL Retrieve the SQL text associated with the cursor.

[application logic] [Declare the cursor to the application]

TDCURPRO Assign a cursor ID to the cursor.

TDSNDDON Send the reply to the client.

TDGETREQ Retrieve the next part of the cursor request.

Function Action

TDCURPRO Determine the type of cursor command (OPEN, in this case).

TDNUMPRM Retrieve the number of parameters associated with the cursor.

TDRCVPRM Retrieve cursor parameters (once for each parameter).

TDCURPRO Send the cursor status to the client.

TDESCRIB Describe column results to the client (once for each column).

TDSETUDT [optional] Set user datatype, if needed.

TDSNDDON Send the reply to the client.

TDGETREQ Retrieve the next part of the cursor request.

Cursors

24

Fetch rows

When the cursor command is TDS-CURSOR-FETCH, the client is fetching a
row through a cursor. In response, the Gateway-Library transaction calls the
following functions:

Delete cursor

When the cursor command is TDS-CURSOR-DELETE, the client is deleting
the current cursor row. In response, the Gateway-Library transaction calls the
following functions:

Update cursor

When the cursor command is TDS-CURSOR-UPDATE, the client is updating
the contents of the current cursor row. In response, the Gateway-
LibraryThinSpace transaction calls:

Function Action

TDCURPRO Determine the type of cursor command (FETCH).

[application logic] [Adjust the cursor]

TDSNDROW Send back n rows of results.

TDSNDDON Send the reply to the client.

TDGETREQ Retrieve the next part of the cursor request.

Function Action

TDCURPRO Determine the type of cursor command.

[application logic] [Adjust the cursor]

TDSNDDON Send the reply to the client.

TDGETREQ Retrieve the next part of the cursor request.

Function Action

TDCURPRO Determine the type of cursor command.

TDRCVSQL Retrieve the SQL text associated with the cursor.

[application logic] [Adjust the cursor]

TDSNDDON Send the reply to the client.

CHAPTER 2 Topics

25

Request cursor status

The Client-Library command ct_cmd_props can request information on cursor
options, identifiers, and status. When the cursor command is TDS-CURSOR-
INFO with the option CUR-ASKSTATUS (ct_cmd_props (CS-CUR-
STATUS)), the client is requesting the status of the cursor. In response,
the Gateway-Library transaction calls the following functions:

Get fetch count

The Client-Library command ct_cursor can request cursor row information.
When the cursor command is TDS-CURSOR-INFO with the option CUR-
SETROW (ct_cursor (CS-CURSOR-ROW)), the client is setting the row fetch
count. In response, the Gateway-Library transaction calls the following
functions:

Close cursor or deallocate cursor

When the cursor command is TDS-CURSOR-CLOSE, the client is requesting
to close a cursor. This can be a request to both close and deallocate the cursor,
or to close it only.

When the cursor command is TDS-CURSOR-DEALLOC, the client is
requesting to deallocate a cursor.

Function Action

TDCURPRO Determine the type of cursor command.

TDCURPRO Send the cursor status to the client.

TDSNDDON Send the reply to the client.

TDGETREQ Retrieve the next part of the cursor request.

Function Action

TDCURPRO Determine:

• The type of cursor command, and

• The number of rows to be returned with each fetch command.

[application logic] [Adjust the cursor]

TDCURPRO Send the cursor status to the client.

TDGETREQ Retrieve the next part of the cursor request.

Cursors

26

In response to either command, the Gateway-Library transaction calls the
following functions:

CURSOR-DESC structure
A CURSOR-DESC structure contains information about a cursor,
including the following:

• The cursor’s unique ID

• The type of cursor command most recently issued by the client

• The status of the cursor

A CURSOR-DESC structure is defined in SYGWCOB as follows:

CURSOR-ID PIC S9(9) USAGE COMP SYNC.
NUMBER-OF-UPDATE-COLUMNS PIC S9(9) USAGE COMP SYNC.
FETCH-COUNT PIC S9(9) USAGE COMP SYNC.
CURSOR-STATUS PIC S9(9) USAGE COMP SYNC.
CURSOR-COMMAND PIC S9(9) USAGE COMP SYNC.
COMMAND-OPTIONS PIC S9(9) USAGE COMP SYNC
FETCH-TYPE PIC S9(9) USAGE COMP SYNC.
ROW-OFFSET PIC S9(9) USAGE COMP SYNC.
CURSOR-NAME-LENGTH PIC S9(9) USAGE COMP SYNC.
CURSOR-NAME PIC X(30).
TABLE-NAME-LENGTH PIC S9(9) USAGE COMP-SYNC.
TABLE-NAME PIC X(30).

Function Action

TDCURPRO Determine:

• The type of cursor command, and

• Whether the cursor should also be deallocated.

[application logic] [Close the cursor]

TDCURPRO Send the cursor status to the client.

TDSNDDON Send the reply to the client.

TDGETREQ Retrieve the next part of the cursor request.

CHAPTER 2 Topics

27

Fields in a CURSOR-DESC structure

Table 2-5 describes each field in a CURSOR-DESC structure.

Table 2-5: Fields in a CURSOR-DESC structure

Field name Description Notes

CURSOR-ID The current cursor
identifier.

The Open ServerConnect application must set
CURSOR-ID when responding to a TDS-CURSOR-
DECLARE (DECLARE CURSOR) command from the
client. This happens when the client sends a DECLARE
CURSOR command that has CURSOR-NAME as a
required parameter.

The Gateway-Library transaction receives the
DECLARE CURSOR command from the client, calls
TDCURPRO to specify a unique cursor identifier in the
CURSOR-ID field, and returns the unique cursor ID to
the client.

The client uses the unique cursor ID (instead of the
initial cursor name) in the CURSOR-ID field of the
CURSOR-DESC structure for all subsequent
commands regarding this cursor.

NUMBER-OF-
UPDATE-
COLUMNS

The number of columns in
a cursor update clause.

NUMBER-OF-UPDATE-COLUMNS is set to 0 if there
are no update columns. This information is available at
declare time.

FETCH-COUNT The current row fetch
count for this cursor (the
number of rows that are
sent to the client in
response to a TDS-
CURSOR-FETCH
command).

FETCH-COUNT is described when a TDS-CURSOR-
INFO command is received from the client, or sent to
the client in response to such a command. FETCH-
COUNT is set to 1 if the client has not explicitly set a
row fetch count. If the Open ServerConnect application
cannot support the requested fetch count, it can set this
field to a different value before responding.

CURSOR-STATUS The status of the current
cursor.

Open ServerConnect sets the cursor status in response
to the cursor command received from the client. See
Table 2-6 on page 29 for a list of legal values.

CURSOR-
COMMAND

The current cursor
command type.

See Table 2-7 on page 30 for a list of legal values.

COMMAND-OPTIONS Any options associated
with the cursor command.

Not all commands have associated options. The value
of COMMAND-OPTIONS depends on the cursor
command. Table 2-7 on page 30 describes the possible
values for COMMAND-OPTIONS.

Cursors

28

FETCH-TYPE The type of fetch
requested by a client.

FETCH-TYPE is described when a TDS-CURSOR-
FETCH command is received from the client. The valid
fetch types and their meanings are as follows:
 - TDS-NEXT – next row
 - TDS-PREV – previous row
 - TDS-FIRST – first row
 - TDS-LAST – last row
 - TDS-ABSOLUTE – row identified in the
 ROW-OFFSET field
 - TDS-RELATIVE – current row plus or
 minus the value in the ROW-OFFSET field

 Requests to Open ServerConnect always have a
FETCH-TYPE of TDS-NEXT.

ROW-OFFSET The row position for TDS-
ABSOLUTE or TDS-
RELATIVE fetches.

ROW-OFFSET is undefined for all other fetch types.
ROW-OFFSET is described when a TDS-CURSOR-
FETCH command is received from the client.

CURSOR-NAME-
LENGTH

The length of the cursor
name in CURSOR-NAME.

CURSOR-NAME-LENGTH is zero if not used. If used,
CURSOR-NAME-LENGTH is the actual length.

CURSOR-NAME The name of the current
cursor.

TABLE-NAME-
LENGTH

The length of the table
name in TABLE-NAME.

TABLE-NAME-LENGTH is zero if not used. If used,
TABLE-NAME-LENGTH is the actual length. TABLE-
NAME-LENGTH is described when a TDS-CURSOR-
UPDATE or TDS-CURSOR-DELETE command is
received from the client.

TABLE-NAME The table name associated
with a cursor update or
delete command.

TABLE-NAME is described when a TDS-CURSOR-
UPDATE or TDS-CURSOR-DELETE command is
received from the client.

Field name Description Notes

CHAPTER 2 Topics

29

Values for CURSOR-STATUS
The CURSOR-STATUS field of the CURSOR-DESC structure is a bit mask that
can take any combination of the values described in Table 2-6.

Table 2-6: Values for CURSOR-STATUS (CURSOR-DESC)

Values for CURSOR-COMMAND and COMMAND-OPTIONS
The CURSOR-COMMAND field of the CURSOR-DESC structure indicates the
command to be processed. It can take one of the values described in the
following table. TDCURPRO can update this field with the next command to
process for a given cursor. Table 2-7 on page 30 also lists the relevant
COMMAND-OPTIONS values.

Value Meaning

TDS-CURSTAT-DECLARED The cursor is declared. This status is reset after the next
cursor command is processed.

TDS-CURSTAT-OPEN The cursor is open.

TDS-CURSTAT-ROWCNT The cursor specified the number of rows that should be
returned for the TDS-CURSOR-FETCH command.

TDS-CURSTAT-RDONLY The cursor is read only; it cannot be updated. The Open
ServerConnect application should return an error to the client
if TDS-CURSOR-UPDATE or TDS-CURSOR-DELETE is
received for this cursor.

TDS-CURSTAT-UPDATABLE The cursor can be updated.

TDS-CURSTAT-CLOSED The cursor is closed, but not deallocated. It can be opened
again later. This status is also set upon declaration of a cursor.
Open ServerConnect clears it when a TDS-CURSOR-OPEN
is received and resets it when a TDS-CURSOR-CLOSE is
received.

TDS-CURSTAT-DEALLOC The cursor is closed and deallocated. No other status flags
should be set at this time.

Cursors

30

Table 2-7: Values for CURSOR-COMMAND and COMMAND-OPTIONS

CURSOR-COMMAND value Meaning
Legal values for COMMAND-
OPTIONS

TDS-CURSOR-CLOSE Cursor close command. TDS-CURSOR-DEALLOC or TDS-
CURSOR-UNUSED.

TDS-CURSOR-DEALLOC indicates that
the cursor will never be reopened. The
Open ServerConnect application should
delete all associated cursor resources.
The cursor ID number can be reused.

TDS-CURSOR-DECLARE Cursor declare command. The
application can obtain the
actual text of the cursor
statement through TDRCVSQL.

TDS-CURSOR-UPDATABLE, TDS-
CURSOR-RDONLY, or TDS-CURSOR-
DYNAMIC.

TDS-CURSOR-DYNAMIC indicates that
the client is declaring the cursor against a
dynamically prepared SQL statement. In
this case, the text of the cursor statement
is actually the name of the prepared
statement.

TDS-CURSOR-DELETE Cursor delete command.
Performs a positional row
delete through a cursor.

There are no valid options for this
command. COMMAND-OPTIONS
always has the value TDS-CURSOR-
UNUSED.

TDS-CURSOR-FETCH Cursor fetch command.
Performs a row fetch through a
cursor.

There are no valid options for this
command. COMMAND-OPTIONS
always has the value TDS-CURSOR-
UNUSED.

CHAPTER 2 Topics

31

TDS-CURSOR-INFO Cursor information command.
The client sends this command
to the Open ServerConnect
application to set the cursor row
fetch count or to request cursor
status information. The Open
ServerConnect application
sends this command to the
client in response to any cursor
command (including TDS-
CURSOR-INFO itself) to
describe the current cursor.

TDS-CURSOR-SETROWS when the
client is describing the current row fetch
count. The FETCH-COUNT field
contains the requested fetch count.

TDS-CURSOR-ASKSTATUS when the
client is requesting status information
about the current cursor. This generally
occurs when the client sends an attention
and wants to see which cursors are still
available afterwards. The CURSOR-ID
field contains 0. The Open
ServerConnect application should send
back a TDS-CURSOR-INFO response for
each cursor currently available.

TDS-CURSOR-INFORMSTATUS when
the Open ServerConnect application is
responding to a TDS-CURSOR-INFO
command. The CURSOR-STATUS field
contains the cursor status.

TDS-CURSOR-OPEN Cursor open command. TDS-CURSOR-HASARGS or TDS-
CURSOR-UNUSED.

TDS-CURSOR-UPDATE Cursor update command.
Performs a positional row
update through a cursor. The
Open ServerConnect
application can obtain the
actual text of the cursor update
statement by calling
TDRCVSQL.

TDS-CURSOR-UNUSED.

CURSOR-COMMAND value Meaning
Legal values for COMMAND-
OPTIONS

Cursors

32

Handling cursor requests

An Open ServerConnect application uses a TDS-CURSOR-EVENT handler to
handle cursor requests. The handler includes code to detect which of the cursor
commands was issued and to respond with the appropriate information.

The first task inside the event handler is to determine the current cursor and the
cursor command that triggered the TDS-CURSOR-EVENT. It does this by
calling TDCURPRO with the ACTION argument set to TDS-GET.
Open ServerConnect fills the CURSOR-COMMAND field of the Open
ServerConnect application CURSOR-DESC structure with the command type.

The application can then decide what other information it needs to retrieve,
if any, as well as what data to send back to the client. In some cases, it may need
to retrieve parameter formats and parameters; in others, it may want to know
the status of the current cursor and the number of rows to fetch. It may only
need to send back a TDS-CURSOR-INFO command, or it may need to send
back result data or return parameters.

How to respond to specific cursor requests

This section contains information on how a TDS-CURSOR-EVENT handler
should respond to specific types of cursor requests.

On each cursor declare request, the Open ServerConnect application must set
a unique cursor identifier before TDCURPRO, with ACTION set to TDS-SET.
Open ServerConnect sets CURSOR-STATUS and CURSOR-COMMAND in
the CURSOR-DESC structure.

Table 2-8 on page 33 summarizes the valid exchange of cursor requests and
responses between a client and an Open ServerConnect application.

The forward arrows indicate that ACTION is set to TDS-GET and the
application is retrieving information from the client. The backward arrows
indicate that ACTION is set to TDS-SET and the application is sending
information to the client.

CHAPTER 2 Topics

33

Table 2-8: Valid cursor requests and responses

Client action Open ServerConnect application response

Declares a cursor.

 (CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-DECLARE).

→ Retrieve CURSOR-COMMAND value from CURSOR-DESC.
(TDCURPRO)

→ Retrieve number of cursor parameters, if any.
(TDNUMPRM)

→ Retrieve format of cursor parameters, if any.
(TDINFPRM)

→ Retrieve actual text of cursor command.
(TDRCVSQL)

← Set cursor ID. Set CURSOR-ID field to unique cursor ID.
(TDCURPRO)

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL)

Requests the status of the current
cursor or sends a fetch count.

 (CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-INFO).

→ Retrieve CURSOR-COMMAND, CURSOR-ID, and COMMAND-
OPTIONS values from CURSOR-DESC structure.
(TDCURPRO)

← Send number of rows to be returned per fetch, if client set COMMAND-
OPTIONS field to TDS-CURSOR-SETROWS.
(TDCURPRO)

← Send status of all available cursors, if client set COMMAND-OPTIONS
field to TDS-CURSOR-ASKSTATUS.
Set CURSOR-ID field to cursor ID.
(TDCURPRO once for each active declared, opened or closed cursor).

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL).

Note:
If the client request is ct_cmd_props with cursor options, then CURSOR-
COMMAND field is TDS-CURSOR-INFO with TDS-CURSOR-
ASKSTATUS option.

If the client request is ct_cursor (CS-CURSOR-ROWS), then CURSOR-
COMMAND field is TDS-CURSOR-INFO with TDS-CURSOR-
SETROWS option.

Cursors

34

Opens a cursor.

 (CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-OPEN).

→ Retrieve CURSOR-COMMAND and CURSOR-ID values from CURSOR-
DESC structure.
(TDCURPRO)

→ Retrieve number of cursor parameters, if any.
(TDNUMPRM)

→ Retrieve format of cursor parameters and actual parameters, if any.
(TDINFPRM, TDRCVPRM)

← Send cursor status. Set CURSOR-ID to current cursor ID.
(TDCURPRO)

← Describe result row formats.
(TDESCRIB with TYPE argument set to TDS-ROWDATA).

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL).

Fetches rows.

 (CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-FETCH).

→ Retrieve CURSOR-COMMAND and CURSOR-ID values from CURSOR-
DESC structure.
(TDCURPRO)

← Send result rows, FETCH-COUNT times.
(TDSNDROW)

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL).

Sends a cursor close command.

 (CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-CLOSE).

→ Retrieve CURSOR-COMMAND and CURSOR-ID values from CURSOR-
DESC structure.
(TDCURPRO)

← Send cursor status. Open ServerConnect sets cursor status, not the
application.
(TDCURPRO)

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL).

Updates a cursor.

CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-UPDATE).

→ Retrieve CURSOR-COMMAND and CURSOR-ID values from CURSOR-
DESC structure.
(TDCURPRO)

→ Retrieve actual text of cursor command.
(TDRCVSQL)

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL).

Client action Open ServerConnect application response

CHAPTER 2 Topics

35

Additional information: • The Open ServerConnect application response to a cursor command
always concludes with a call to TDSNDDON with a status argument of
TDS-DONE-FINAL.

• After the Open ServerConnect application issues the first TDCURPRO
command with ACTION set to TDS-SET, any further information the
application sends applies to this cursor until a TDSNDDON with a STATUS
argument of TDS-DONE-FINAL is issued.

• Internally, Open ServerConnect replaces the parameter formats received
when the client declares a cursor with those received when the client opens
a cursor. This is necessary if the format of the parameter passed is not
exactly the same as that of the parameter declaration. For example,
a parameter may be declared as a TDS-INT, but the parameter being passed
when the cursor is opened may be of type TDS-SMALLINT.

• In response to a TDS-CURSOR-FETCH command, TDSNDROW sends a
single row of data, and should be called as many times as the number in
the current cursor’s row fetch count.

Processing cursor requests

The Open ServerConnect application program uses TDINFPGM and
TDGETREQ to determine what type of request the client sent. For cursor
requests, the application processes cursor commands and generates result sets.

Multiple cursor commands per transaction invocation are not allowed because
TRS can only pass one cursor command per TDS-CURSOR event. To process
multiple commands, use the Open ServerConnect long-running transaction and
accept each new command request with TDGETREQ.

Cursors are limited to SQL statements and cannot be used with other types of
languages.

Cursor support is not available for Japanese or DBCS.

Deletes a cursor.

CURSOR-COMMAND field of
CURSOR-DESC contains TDS-
CURSOR-DELETE).

→ Retrieve CURSOR-COMMAND and CURSOR-ID values from CURSOR-
DESC structure.
(TDCURPRO)

← Send a DONE packet.
(TDSNDDON with STATUS argument set to TDS-DONE-FINAL).

Client action Open ServerConnect application response

Customization

36

For example, if a client sends an OPEN CURSOR request to a DB2 application,
the Open ServerConnect application is responsible for defining and executing
the actual DB2 OPEN CURSOR command. Open ServerConnect is merely the
transport mechanism for cursor commands.

Customization
When installing Open ServerConnect, system programmers customize the
product for the customer site, defining language and program characteristics
locally. Some of the customized items are used by Open ServerConnect
programs.

Gateway-Library functions use the following customized items:

• An access code, which is required to retrieve a client password

Two customization options are related to the ability to retrieve client
passwords:

• The access code is defined during customization

• An access code flag is set to indicate whether the access code is
required to retrieve the client password

• The native language used at the mainframe. The default is U.S. English.

• Support for DBCSs

The customization module indicates whether DBCSs are supported:

• If DBCSs are supported, this module indicates whether single-byte
characters are treated as lower-case alphabetic characters or as single-
byte (hankaku) katakana during DBCS processing.

• If DBCSs are not used, this module specifies the name of the default
SBCS to be used at the mainframe.

• Whether DB2 LONG VARCHAR data strings with lengths greater than
255 bytes are truncated or rejected when sent to a client

• Dynamic network drivers

CHAPTER 2 Topics

37

The customization module sets up support for the following network
drivers:

• LU 6.2

• IBM TCP/IP

• CPIC

• Interlink TCP/IP

Customization instructions are in the Installation and Administration Guide for
Open ServerConnect. The customization module is loaded during program
initialization (TDINIT).

To retrieve customization information, call TDGETUSR.

Datatypes
Open ServerConnect supports a wide range of datatypes. These datatypes,
named TDSxxx, are compatible with DB2 datatypes, Client-Library datatypes,
and DB-Library datatypes.

When either the Open ServerConnect or the Japanese Conversion Module
(JCM) receives a client request, it automatically converts some DB-Library
and Client-Library datatypes to Open ServerConnect datatypes. When either
returns results to the client, it converts them back. See the conversion tables in
the “Comments” sections of the reference pages in Chapter 3, “Functions” to
find the datatype conversions performed by specific functions.

For most datatypes, Open ServerConnect or the JCM does workstation-to-
mainframe and character set translations when retrieving incoming requests,
then translates the datatypes back to workstation datatypes before returning
results. For binary datatypes, both pass the data through. The section “Binary
and decimal datatypes” on page 43 indicates which datatypes are passed
through without translation.

Datatypes

38

Datatype descriptions and correspondences
Open ServerConnect supports a subset of Client-Library and DB-Library
datatypes. Table 2-9 lists those datatypes and their Gateway-Library
equivalents.

Table 2-9: Open ServerConnect datatypes

Open ServerConnect datatype
and COBOL data descriptions

Client-Library/C and
DB-Library datatypes Datatype descriptions

TDSBINARY

01 BINVAL PIC X(1)
01 BINVALMAX PIC X(255)

CS_BINARY
DBBINARY

Fixed binary type.
No translations are performed
on this datatype.

TDSCHAR

01 CHARVAL PIC X(1)
01 CHVALMAX PIC X(255)

CS_CHAR
DBCHAR

1- to 255-byte fixed character
type.
TDSCHAR can be used to
represent Japanese characters
as well as alphabetic characters.

TDSDATETIME

01 DATTIM PIC X(8)

CS_DATETIME
DBDATETIME

8-byte datetime datatype. The
number of days since 1/1/1900,
and the number of 300ths of a
second since midnight.

TDSDATETIME4

01 DATTIM4 PIC X(4)

CS_DATETIME4
DBDATETIME4

4-byte datetime datatype. The
number of days since 1/1/1900,
and the number of minutes
since midnight.

TDSFLT4

01 FLT4VAL PIC S9(4) COMP-1

CS_REAL
DBREAL

4-byte single precision type.

TDSFLT8

01 FLT8VAL PIC S9(9) COMP-2

CS_FLOAT
DBFLT8

8-byte double precision type.

TDSGRAPHIC

01 GRAPHVAL PIC X(254)
 or
01 GRAPHVAL PIC G(127)

(Not applicable) 1- to 127-character fixed
character type.
Used at the mainframe only to
represent Japanese double-byte
characters.

TDSIMAGE

01 IMAGEVALPIC X(1)
01 IMGVALMAXPIC X(32000)

CS_IMAGE
DBIMAGE

Sybase image datatype. A
variable-length field that can
hold from 0 to 2,147,483,647
bytes of binary data.
This is a Sybase datatype and
can be used only with column
data being returned to Sybase
clients.

CHAPTER 2 Topics

39

TDSINT2

01 INT2VAL PIC X(2)
 or
01 INT2VAL PIC S9(4) COMP

CS_SMALLINT
DBSMALLINT

2-byte integer.
Can be declared as numeric or
character. When declared as
numeric, it has a maximum
value of 65,525.

TDSINT4

01 INT4VAL PIC X(4)
 or
01 INT4VAL PIC S9(9) COMP

CS_INT
DBINT

4-byte integer.
Can be declared as numeric or
character. When declared as
numeric, it has a maximum
value of 2,147,483,648.

TDSLONGVARBIN

01 LONGBINVALPIC X(1)
01 LBINVALMAXPIC X(32000)

CS_LONGBINARY Long variable binary. The
default maximum length for
this datatype is 32K.
Does not include the 2-byte
(“LL”) length specification
prefix.
No translations are performed
on this datatype.

TDSLONGVARCHAR

01 LONGCHARVAL PIC X(1)
01 LCHARVALMAXPIC X(32000)

 CS_LONGCHAR Long variable character type.
The default maximum length
for this datatype is 32K.
Does not include the 2-byte
(“LL”) length specification
prefix.

TDSMONEY

01 MONEY-GROUP
05 MON-HIPIC S9(9) COMP
05 MON-LOPIC S9(9) COMP
 or

01 MONEYVALPIC X(8)

CS_MONEY
DBMONEY

8-byte double precision type.
The range of legal values for
this datatype is:
 -$922,337,203,685,477.5807
to
+$922,337,203,685,477.5807.

Note: This datatype can be used
with client data only.

TDSMONEY4

01 MONEY4VAL PIC X(4)

CS_MONEY4
DBMONEY4

4-byte double precision type.
The range of legal values for
this datatype is:
-$214,748.3648 to
+$214,748.3647

Note: This datatype can be used
with client data only.

Open ServerConnect datatype
and COBOL data descriptions

Client-Library/C and
DB-Library datatypes Datatype descriptions

Datatypes

40

TDSNUMERIC

01 NUMVAL
05 PRECISION PIC X(1)
05 SCALE PIC X(1)
05 ARR PIC X(33)

CS_NUMERIC Numeric type. Support for
numbers with:
Precision – the precision of the
numeric value (1 to 77, default
18).
Scale – the scale of the numeric
value (0 to 77, default 0).

Note: This is a Sybase datatype.
This datatype can be used for
client data only.

TDS-PACKED-DECIMAL

01 PDECVALPIC S9(N) V9(M) COMP-3

CS_PACKED370 IBM/370 packed decimal type.
31-byte precision is supported.

Note: This is a mainframe
datatype and can be used for
mainframe data only.

TDS-SYBASE-DECIMAL

01 NUMVAL
05 PRECISION PIC X(1)
05 SCALE PIC X(1)
05 ARR PIC X(33)

CS_DECIMAL Decimal type. Support for
numbers with:
Precision – the precision of the
numeric value (1 to 77, default
18).
Scale – scale of the numeric
value (0 to 77, default 0).

Note: This is a Sybase datatype.
This datatype can be used for
client data only.

TDSTEXT

01 TEXTVAL PIC X(1)

01 TEXTVALMAX PIC X(32000)

CS_TEXT
DBTEXT

Sybase text datatype. A
variable-length field that can
hold from 0 to 2,147,483,647
bytes of binary data.
This is a Sybase datatype, and
can be used only with column
data being returned to Sybase
clients.

Open ServerConnect datatype
and COBOL data descriptions

Client-Library/C and
DB-Library datatypes Datatype descriptions

CHAPTER 2 Topics

41

TDSVARYBIN

01 VARBIN-GROUPVAL
05 VBIN-LEN PIC S9(4)COMP
05 VBIN-VAL PIC X(1)

01 VARBIN-GROUPVALMAX
05 VBMAX-LEN PIC S9(4)COMP
05 VBMAX-VAL PIC X(255)

CS_VARBINARY
DBVARYBIN

1- to 255-byte variable binary
type.
The field length is stored in a 2-
byte (“LL”) prefix, as in DB2.
No translations are performed
on this datatype.

TDSVARYCHAR

01 VARCHAR-GROUPVAL
05 VCHAR-LEN PIC S9(4) COMP
05 VCHAR-VAL PIC X(1)

01 VARCHAR-GROUPVALMAX
05 VCMAX-LEN PIC S9(4) COMP
05 VCMAX-VAL PIC X(255)

CS_VARCHAR
DBVARYCHAR

1- to 255-byte variable
character type.
The field length is stored in a 2-
byte (“LL”) prefix, as in DB2.
TDSVARYCHAR can be used to
represent Japanese characters
as well as alphabetic characters.

TDSVARYGRAPHIC (Not applicable) 1- to 255-byte graphic datatype.
Used to represent Japanese
double-byte characters.
The field length is stored in a 2-
byte (“LL”) prefix, as in DB2.

Note: This is a mainframe
datatype and can be used with
mainframe data only.

TDSVOID (Not applicable) NULL or nonexistent
parameter. Used to denote
parameters omitted in stored
procedures.

For example, in the following
RPC:
 exec rpc a, b, , d, e

The missing c parameter is
represented as TDSVOID.

No translations are done on this
datatype.

Open ServerConnect datatype
and COBOL data descriptions

Client-Library/C and
DB-Library datatypes Datatype descriptions

Datatypes

42

Character datatypes
The following subsections contain additional information about character
datatypes.

TDSVARYCHAR
Always use TDSVARYCHAR rather than TDSVARCHAR.
DBVARCHAR and TDSVARYCHAR objects include a length specification that
precedes the data, just like DB2 variable datatypes. The length specification
occupies the initial two bytes of the field (in binary format) and is referred to
in print as “LL”.

Note In Client-Library, the CS-VARCHAR datatype includes the “LL” length
specifications and can be mapped to TDSVARYCHAR.

DB2 LONG VARCHAR datatypes

TDSLONGVARCHAR objects do not have the “LL” length specification.
Programs using DB2 data can send DB2 LONG VARCHAR data as
TDSVARYCHAR, TDSLONGVARCHAR, or TDSTEXT.

Converting to
TDSVARYCHAR

If you use TDSVARYCHAR for LONG VARCHAR data, and if the text length
is longer than 255 bytes, the data is either truncated or rejected.
The truncation/rejection option is set at the TRS when it is started.
The mainframe system programmer can override that option during
customization.

Converting to
TDSLONGVARCHAR

If you convert DB2 LONG VARCHAR data to TDSLONGVARCHAR,
remember that this Open ServerConnect datatype does not have the “LL”
length specification. Your program should point to the data portion of the
declaration only.

Note If your client program is Open Client 10.0 or later, you can convert both
columns and parameters to TDSLONGVARCHAR. Otherwise, you can use
TDSLONGVARCHAR only with columns.

Converting to
TDSTEXT

If you convert to TDSTEXT, the complete data string is sent without truncation.

CHAPTER 2 Topics

43

Binary and decimal datatypes
The following sections contain additional information about binary and
decimal datatypes.

TDSVARYBIN
Use TDSVARYBIN rather than TDSVARBINARY. DBVARYBIN and
TDSVARYBIN objects also include the “LL” length specification that precedes
the data.

Note In Client-Library, the CS-VARBINARY datatype includes the “LL” length
specifications and therefore can be mapped to TDSVARYBIN.

Converting Sybase decimal and numeric data

Use TDSNUMERIC and TDS-SYBASE-DECIMAL datatypes for Sybase
Adaptive Server numeric and decimal data. These datatypes are defined as:

01 NUMDEC
 05 PRECISION PIC X(1).
 05 SCALE PIC X(1).
 05 ARR PIC X(33).

In the preceding example, 1 byte is for precision, 1 byte is for scale, and 33
bytes are for the packed value.

You can use conversion between these datatypes and character data.
Open ServerConnect also supports conversion between these datatypes and
TDS-PACKED-DECIMAL (IBM packed decimal).

Converting packed decimal data

You can convert TDS-PACKED-DECIMAL to TDSNUMERIC,
TDS-SYBASE-DECIMAL, character, float, and money datatypes.

Converting packed decimal to character data

When converting TDS-PACKED-DECIMAL data to character datatypes,
you must adjust the length of the result variable.

Use this formula to set the unpacked length:

Datatypes

44

Result Length = (2 * Source Length) - 1.

When converting to character datatypes, automatic conversions may add a
sign, a decimal point, and leading or trailing zeros. Allow one byte each for the
sign and decimal point, and enough bytes to allow for the leading and trailing
zeros.

When converting from packed decimal to character datatypes,
Gateway-Library functions add zeros to the left of the decimal point for
fractional values and to the right of the decimal point for integers. If no decimal
point is present, one is added.

For all values, start with the defined length (precision).

• Add 1 byte for the sign:

• If the sign is positive, Open ServerConnect adds a blank.

• If the sign is negative, Open ServerConnect adds a minus sign.

For integer values:

• Add one byte for a decimal point

• Add one byte for a trailing zero

For fractional values, (n < 1 and > -1, precision = scale):

• Add one byte for a decimal point

• Add one byte for a leading zero

For non-integer values greater than 1:

• Add one byte for a decimal point

Table 2-10 lists decimal-to-character conversions.

Table 2-10: Examples of decimal-to-character conversions

Decimal
value Precision Scale

Calculation
P+s+d+z = result length

Character-type
result

Result
length

1 3 0 3+1+1+1 = 6 bbb1.0 6

123 3 0 3+1+1+1 = 6 b123.0 6

-123 3 0 3+1+1+1 = 6 -123.0 6

1.23 5 2 5+1+1+0 = 7 bbb1.23 7

.3 5 2 5+1+1+0 = 7 bbb0.30 7

-.2 5 2 5+1+1+0 = 7 bb0.20 7

123.45 5 2 5+1+1+0 = 7 b123.45 7

CHAPTER 2 Topics

45

For packed decimal-to-character conversions, the low-order digits of the
character string are truncated. If the actual result is greater than the length of
the destination, the low-order bytes are truncated.

For character-to-packed decimal conversions, the character string is scanned
from left to right to determine precision and scale.
 The resulting packed decimal value contains the highest order digits that fit in
the length specified by the destination length.

Packed decimal to numeric, decimal, float, money conversion

You can convert between IBM packed decimal and Sybase numeric, decimal,
float or money datatypes.

You can also convert Sybase numeric, decimal, float or money to packed
decimal. The result has the same scale as the source.

When converting from packed decimal to Sybase numeric, decimal, float or
money, specify 35 as the destination length.

Sybase numeric or decimal to character data conversion

For numeric or decimal to character conversions, the precision and scale of the
numeric data item are used to determine the output length of the character
string. The source length should be the actual length of the numeric data item.
The destination length should be precision + 2. If this length is less than the
actual length of the result, TDSOVERFLOW is returned.

For character to numeric or decimal conversions, the character string is
scanned from left to right to determine precision and scale. You must specify
the destination length as 35, or TDS-INVALID-LENGTH is returned.
The numeric or data item contains the precision and scale as the first two bytes.

.123 3 3 3+1+1+1 = 6 ThinSpaceb0.123 6

-.123 3 3 3+1+1+1 = 6 ThinSpace-0.123 6

Decimal
value Precision Scale

Calculation
P+s+d+z = result length

Character-type
result

Result
length

Dynamic SQL support

46

Graphic datatypes
Open ServerConnect programs can use graphic datatypes as well as character
datatypes to process double-byte data. Workstation clients, however, use only
character datatypes to represent characters; graphic datatypes are not used with
the supported workstation character sets.

The length of mainframe graphic datatypes is the number of double-byte
characters, whereas the length of character datatypes at both the mainframe and
the workstation is the number of bytes. Therefore, when converting kanji from
character to graphic datatypes, be aware that the length of a kanji string is twice
as long for character datatypes as it is for graphic datatypes.

For a more detailed explanation of length considerations when converting
Japanese characters, see “Character set length requirements” on page 63.

TDSVARYGRAPHIC
Use TDSVARYGRAPHIC rather than TDSVARGRAPHIC. TDSVARYGRAPHIC
objects include the “LL” length specification that precedes the data.

DB2 LONG VARGRAPHIC datatypes

Programs using DB2 data can send DB2 LONG VARGRAPHIC data as
TDSIMAGE.

Unsupported datatypes
If you attempt to send data with a datatype that is not supported by Open
ServerConnect, the operation fails and returns an error.

Dynamic SQL support
Dynamic SQL allows a client application to execute SQL statements
containing variables with values that are determined at run time. It is primarily
useful for precompiler support. A client application prepares a dynamic SQL
statement by associating a SQL statement containing placeholders with an
identifier and sending the statement to an Open ServerConnect application so
that the statement becomes a prepared statement.

CHAPTER 2 Topics

47

When a client application is ready to execute a prepared statement, it defines
values to substitute for the SQL statement placeholders and sends a command
to execute the statement. These values become the command input parameters.
After the statement executes the desired number of times, the client application
deallocates the statement.

Dynamic SQL permits a client application to act interactively, passing different
information at different times to the Open ServerConnect application as it gets
that information from the user. The Open ServerConnect application can then
fill in the missing pieces in the SQL query with the data the user provides.

In Open ServerConnect, this process must occur as a long-running transaction.
When a client issues a dynamic SQL command, Open ServerConnect indicates
a TDS-DYNAMIC event through TDINFPGM or TDGETREQ. The server
application retrieves the type of command through a TDYNAMIC call and then
satisfies the client request.

Table 2-11 on page 47 defines the valid Open ServerConnect responses for
various client requests.

Table 2-11: Valid dynamic SQL requests and responses

Dynamic SQL support

48

Client action Open ServerConnect application response

Client issues a prepare command (TD-
PREPARE)

1. Get operation type (TDS-GET)
(TDYNAMIC)

2. Get statement ID length (TDS-GET)
(TDYNAMIC)

3. Retrieve statement ID (TDS-GET)
(TDYNAMIC)

4. Retrieve statement length (TDS-GET)
(TDYNAMIC)

5. Retrieve statement (TDS-GET)
(TDYNAMIC)

6. Send statement ID length (TDS-SET)
(TDYNAMIC)

7. Send statement ID (TDS-SET)
(TDYNAMIC)

8. Acknowledge request (TDS-SET)
(TDYNAMIC)

9. Send DONE packet (TDS-ENDREPLY)
(TDSNDDON)

10. Return a language, RPC, dynamic, or cursor request type
(TDGETREQ)

CHAPTER 2 Topics

49

Client requests an input parameter description
(CS-DESCRIBE-INPUT)

1. Get operation type (TDS-GET)
(TDYNAMIC)

2. Get statement ID length TDS-GET)
(TDYNAMIC)

3. Retrieve statement ID (TDS-GET)
(TDYNAMIC)

4. Send statement ID length (TDS-SET)
(TDYNAMIC)

5. Send statement ID (TDS-SET)
(TDYNAMIC)

6. Acknowledge request (TDS-SET)
(TDYNAMIC)

7. Describe input parameters
(TDESCRIB)

8. Send DONE packet (TDS-ENDREPLY)
(TDSNDDON)

9. Get next request
(TDGETREQ)

Client action Open ServerConnect application response

Dynamic SQL support

50

Client requests an output parameter
description (CS-DESCRIBE-OUTPUT)

1. Get operation type (TDS-GET)
(TDYNAMIC)

2. Get statement ID length (TDS-GET)
(TDYNAMIC)

3. Retrieve statement ID (TDS-GET)

(TDYNAMIC)

4. Describe output column(s)
(TDESCRIB)

5. Send statement ID length (TDS-SET)
(TDYNAMIC)

6. Send statement ID (TDS-SET)
(TDYNAMIC)

7. Acknowledge request (TDS-SET)
(TDYNAMIC)

8. Send DONE packet (TDS-ENDREPLY)
(TDSNDDON)

9. Get next request
(TDGETREQ)

Client action Open ServerConnect application response

CHAPTER 2 Topics

51

Client issues an execute request (TD-
EXECUTE)

1. Get operation type (TDS-GET)
(TDYNAMIC)

2. Get statement ID length (TDS-GET)
(TDYNAMIC)

3. Retrieve statement ID (TDS-GET)
(TDYNAMIC)

4. Retrieve number of parameters
(TDNUMPRM)

5. Retrieve input parameter values
(TDRCVPRM)

6. Send statement ID length (TDS-SET)
(TDYNAMIC)

7. Send statement ID (TDS-SET)
(TDYNAMIC)

8. Acknowledge request (TDS-SET)
(TDYNAMIC)

[application logic: execute client request]

9. Send result rows
(TDSNDROW)

10. Send DONE packet (TDS-ENDREPLY)
(TDSNDDON)

11. Return a language, RPC, dynamic, or cursor request type
(TEGETREQ)

Client action Open ServerConnect application response

Dynamic SQL support

52

Client issues an execute immediate request
(TD-EXECUTE-IMMEDIATE)

1. Get operation type (TDS-GET)
(TDYNAMIC)

2. Get statement ID (should be zero) (TDS-GET)
(TDYNAMIC)

3. Retrieve statement length (TDS-GET)
(TDYNAMIC)

4. Retrieve statement (TDS-GET)
(TDYNAMIC)

5. Acknowledge request (TDS-SET)
(TDYNAMIC)

[application logic: execute client request]

6. Send result rows
(TDSNDROW)

7. Send DONE packet (TDS-ENDREPLY)
(TDSNDDON)

8. Return a language, RPC, dynamic, or cursor request type
(TDGETREQ)

Client action Open ServerConnect application response

CHAPTER 2 Topics

53

Client issues a deallocation request
(TD_DEALLOC)

1. Get operation type (TDS-GET)
 (TDYNAMIC)

 2. Get statement ID length (TDS-GET)
 (TDYNAMIC)

 3. Retrieve statement ID (TDS-GET)
 (TDYNAMIC)

 4. Send statement ID length (TDS-SET)
 (TDYNAMIC)

 5. Send statement ID (TDS-SET)
 (TDYNAMIC)

 6. Acknowledge request (TDS-SET)
 (TDYNAMIC)

 7. Send DONE packet (TDS-ENDREPLY)
 (TDSNDDON)

 8. Return a language, RPC, dynamic, or cursor request type
 (TDGETREQ)

Client action Open ServerConnect application response

Events

54

Events
Open ServerConnect responds to requests from clients. Some of these requests
trigger an event in Open ServerConnect.

The API functions, TDINFPGM and TDGETREQ, return the request types in
Table 2-12.

Table 2-12: Request types from TDINFPGM and TDGETREQ

The login packet
The login packet can contain the following information:

• Name of TRS or mainframe listener.

• The client login information: name, name length, password, and,
optionally, the originating application ID.

• The native language used at the client workstation.

• The character set used by the client. This can be a standard character set
name (such as iso-1), or the name of a customer-defined character set.

• The type of request (language request, RPC, cursor or dynamic).

The client program sets this information in a login packet and sends it to the
mainframe through TRS or mainframe listener. The login packet is passed
when the transaction starts.

Open ServerConnect calls retrieve and use information from the login packet
as necessary. An Open ServerConnect program can examine some of the data
in the login packet by calling TDGETUSR. See TDGETUSR on page 110 for
more details.

Request type If request is Equivalent event

TDS-START-SQL Language request SRV-LANGUAGE

TDS-START-RPC RPC request SRV-RPC

TDS-CURSOR-EVENT Cursor request SRV-CURSOR

TDS-DYNAMIC-EVENT Dynamic request SRV-DYNAMIC

CHAPTER 2 Topics

55

Long-running transactions
In the standard (short) transaction model, a mainframe transaction ends as soon
as it finishes sending results to a single client request.
A long-running transaction does not end the transaction when all results are
sent, but remains active, ready to accept additional requests.

Note Long-running transactions are supported with CICS, MVS, and with the
IMS TM explicit API, but not with the IMS TM implicit API. To simulate a
long-running transaction in the IMS TM implicit API, you must define the
transaction as a WFI (wait-for-input) transaction in the TRANSACT macro.

Long-running transactions begin like transactions that process single client
requests, but, instead of closing the connection after returning results,
they switch from SEND to RECEIVE state, ready to accept subsequent
requests. Because a transaction can call TDACCEPT only once, it calls
TDGETREQ to process subsequent client requests. TDGETREQ also returns
the type of request received.

The values assigned to TDSNDDON arguments determine the type of
transaction:

• For short transactions:

• Set STATUS to TDS-DONE-FINAL.

• Set CONN-OPTIONS to TDS-ENDRPC. This closes the connection
and ends the conversation.

• For long-running transactions (when preparing to accept another request):

• Set STATUS to TDS-DONE-FINAL.

• Set CONN-OPTIONS to TDS-ENDREPLY. This switches the
communication state to RECEIVE. The TDS-ENDREPLY option
indicates that the host is expecting a subsequent communication from
the client.

• For IMS TM WFI transactions:

• Set STATUS to TDS-DONE-FINAL.

• Set CONN-OPTIONS to TDS-ENDRPC. The transaction can call
TDGETREQ to accept another client request.

Long-running transactions

56

A transaction can determine the communication state by calling TDSTATUS.
TDSTATUS returns TDS-SEND or TDS-RECEIVE while the transaction is
running and TDS-RESET when a CICS, MVS, or IMS TM explicit transaction
ends.

Note IMS TM Users: IMS TM WFI transactions can accept additional RPCs
after receiving TDS-RESET. See TDSTATUS on page 232 for details.

Calls in a long-running transaction
The pattern of calls in a long-running transaction follows the proceeding
subsection descriptions.

The first client request

A long-running transaction processes the first client request the same way any
transaction processes a client request.

For the first client request, a long-running transaction:

1 Calls TDACCEPT to accept the request.

2 Uses TDINFPGM to determine the type of request received: an RPC or a
language, cursor, or dynamic request.

3 Processes the request and returns results.

4 Calls TDSNDDON with CONN-OPTIONS set to TDS-ENDREPLY,
which puts the mainframe in RECEIVE state, ready to receive another
request.

Subsequent client requests

For subsequent client requests, a long-running transaction:

1 Calls TDGETREQ to accept each subsequent request and determine
whether it is an RPC or a language, cursor, or dynamic request.

2 Processes the request and returns results.

3 Calls TDSNDDON with CONN-OPTIONS set to TDS-ENDREPLY,
which puts the mainframe in RECEIVE state, ready to receive another
request.

CHAPTER 2 Topics

57

The final client request

A long-running transaction must free up all resources after it accepts and
processes the last client request. It treats the new request as any other
subsequent client request, then calls TDTERM to end the transaction.

For the final client request, a long-running transaction:

1 Calls TDGETREQ, with the WAIT-OPTION set to TDS-FALSE, to:

• Accept the final request, if one is present, or

• End the transaction, if no request is pending.

2 Processes the request and returns results.

3 Calls TDSNDDON with CONN-OPTIONS set to TDS-ENDRPC,
which ends the transaction.

4 Calls TDFREE.

5 Calls TDTERM to free up all resources.

Note TDTERM is required for IMS TM and MVS. It is optional but
recommended for CICS.

Refer to “Processing a long-running transaction” on page 13 to see the
skeleton of a basic long-running transaction.

Mixed-mode applications
Mixed-mode applications are application programs that use both Gateway-
Library and Client-Library functions. In other words, they act as both server
and client.

One example of a mixed-mode application is a transaction that accepts requests
from a remote client, and then sends requests containing the client data to a
remote server. When the transaction receives results from that server, it returns
them to the remote client.

Native languages

58

Rules for writing mixed-mode applications
Follow these rules when writing mixed-mode applications:

• The first Open ServerConnect or Client-Library call must be TDINIT.

• Call TDACCEPT before calling any Client-Library functions.

TDACCEPT allocates the handle for the connection to the remote client,
reads in client login information, and does the necessary translations.

We recommend using Gateway-Library “receive” functions
(TDRCVPRM, TDRCVSQL) to retrieve client data before calling any
Client-Library functions when you use different levels of Open
ClientConnect and Open ServerConnect. Otherwise, Client-Library calls
will not abend but can get out of synchronization.

• After the final results are sent to the remote client, use TDFREE and
TDTERM to end the transaction.

A sample mixed-mode application, SYCTSAX5, is in Appendix F, “Sample
Mixed-Mode Application”.

Native languages
Open ServerConnect can accept and process requests in a variety of native
languages. The following native languages are available from Sybase for Open
ServerConnect:

• U.S. English

• French

• German

• Japanese

Your system programmer can customize Open ServerConnect at your site to
add additional native languages.

An Open ServerConnect program can query the native language with
TDGETUSR.

CHAPTER 2 Topics

59

Processing Japanese client requests

Note The Japanese Conversion Module (JCM) is available for CICS only.
If you are not using the JCM, you can skip this section.

The Japanese Conversion Module
Open ServerConnect can accept and process client requests written in Japanese
if you have the JCM installed. The JCM is provided on a separate tape. It does
the workstation-to-mainframe-to-workstation translations necessary to process
requests containing Japanese characters.

Customization

The Open ServerConnect environment must be customized to process
Japanese requests. A system programmer customizes your environment when
Open ServerConnect is installed. Open ServerConnect loads the customization
module when TDINIT is called.

Customization information includes client login information from the client
login packet that TRS forwards to the mainframe along with the client request.
Among the client information contained in the login packet is the name of the
client character set. See “The login packet” on page 54 for details.

The following options are set during customization:

• The native language used at the mainframe

• DBCS: whether double-byte kanji characters are used

• Information about SBCSs

The use of this option depends on whether DBCS is used:

• If double-byte characters are used, this option indicates whether
single-byte characters are treated as hankaku katakana or as lowercase
alphabetic characters. The default, as shipped, is hankaku katakana.

• If double-byte characters are not used, this option names the default
(single-byte) character set. In the current version, the default character
set is iso-1.

If the native language is Japanese, TDINIT loads the JCM.

Processing Japanese client requests

60

An Open ServerConnect program can retrieve customization information with
the function TDGETUSR.

How the JCM works

Once the JCM is loaded, it gets control whenever an Open ServerConnect
program receives a client request containing TDSCHAR or TDSVARYCHAR
data. TDSCHAR and TDSVARYCHAR are the datatypes used to represent
Japanese characters in workstation character sets. The JCM converts the
workstation Japanese characters to the character set used on the mainframe.
Once mainframe processing is completed, the JCM converts results back to the
original workstation character set before returning them to the client.

The translate tables

The JCM uses translation tables to convert workstation characters to
mainframe characters.

When an Open ServerConnect program receives a client request in Japanese
that contains character datatypes, it gives control to the JCM. The JCM looks
up the client character set in the translate tables.

• If the JCM finds a translate table for the client character set, the JCM
converts the data and names into the equivalent mainframe characters.
After processing is complete, the JCM converts results back to the
workstation characters before returning the results to the client.

• If the client does not specify a character set in the login packet, or if the
JCM cannot find a translate table for the client character set, the program
fails, and Open ServerConnect sends the client an error message.

Japanese character sets
Different brands of workstations use different character sets to represent
double-byte characters. See “Character sets” on page 17 to learn what single-
byte and double-byte character sets are supported on the workstation and at the
mainframe.

Differences among
Japanese character
sets

Each character set used to handle Japanese characters has its own way of
representing kanji or hankaku katakana characters and specifying lengths for
Japanese character strings. While most of the differences are handled by the
JCM, you need to understand a few of these differences in order to specify field
lengths correctly. These differences are discussed in this section.

CHAPTER 2 Topics

61

See Table 2-14 on page 64 and Table 2-15 on page 65 for information on
character set differences in tabular form.

Datatypes used with Japanese characters
The following datatypes can be used with Japanese characters at the
workstation:

• TDSCHAR

• TDSVARYCHAR

The following datatypes can be used with Japanese characters at the
mainframe:

• CHAR

• TDSVARYCHAR

• TDSGRAPHIC

• TDSVARYGRAPHIC

Graphic datatypes are used with double-byte characters only.

Kanji datatypes

Kanji characters always occupy 2 bytes.

Hankaku Katakana datatypes

Hankaku katakana characters are always represented as single-byte character-
type data with datatypes of TDSCHAR or TDSVARYCHAR.

Kanji string lengths

Kanji characters are represented as character-type data at the workstation, and
as either character-type or graphic-type data at the mainframe. The length of a
Japanese character string depends on which workstation is being used and
whether the datatype is graphic or character.

Processing Japanese client requests

62

Some character sets use a special indicator or code in character-type strings to
announce that the following series of characters are double-byte characters.
With kanji, this indicator is called a Shift Out (SO) code. An SO code marks
the beginning of a double-byte kanji string. The end of the kanji string is
marked by a Shift In (SI) code.

When setting field lengths for Japanese character strings, you must include
room for these SO/SI codes.

When sending data from a mainframe to a workstation, you can replace SO/SI
codes with blanks by calling the Gateway-Library function TDSETSOI before
receiving or sending data.

Graphic datatypes do not use SO/SI codes.

 Warning! When receiving data from a workstation character set that does not
use SO/SI codes, IBM_Kanji always inserts the SO/SI codes at the beginning
and end of double-byte character strings. If the field length specification does
not take this into account, and the length is just long enough for the data itself,
some of the data is lost.
If a field contains mixed single-byte and double-byte data in more than one
kanji string, an SO/SI pair exists for each kanji string.

At the mainframe, the length of graphic-type strings is counted in double-byte
(16-bit) characters. Thus, a string of 10 kanji characters has a length of 10.

At the workstation, the length of kanji character strings is counted in bytes.
Thus, a string of 10 kanji characters has a length of 20.

Hankaku Katakana string lengths

The length of a hankaku katakana string is always represented in bytes, at both
the workstation and the mainframe. A hankaku katakana character occupies
one byte, except in eucjis.

The eucjis hankaku katakana character set uses an indicator (SS2) in character-
type strings to announce that the next byte is occupied by a hankaku katakana.
The SS2 indicator occupies one byte, and the hankaku katakana itself occupies
one byte. As a result, the total length of each eucjis hankaku katakana character
is two bytes.

CHAPTER 2 Topics

63

Summary of datatypes used with Japanese characters
Table 2-13 lists the datatypes that are used with Japanese characters.

Table 2-13: Datatypes used with Japanese characters

Length considerations

When converting from a workstation Japanese character set to a mainframe
Japanese character set, you frequently need to adjust the length.
The adjustment depends on which character sets, datatypes, and language are
being used.

• Descriptions of eucjis data also apply to deckanji, with the exception that
deckanji does not include hankaku katakana.

• Open ServerConnect character datatypes are TDSCHAR and
TDSVARYCHAR.

• Open ServerConnect graphic datatypes are TDSGRAPHIC and
TDSVARYGRAPHIC.

• Open ServerConnect datatypes with “VARY” in the name have a two-byte
length (“LL”) specification at the beginning of each data field. Do not
count these “LL” bytes when calculating the length of the field.

Character set length requirements

Table 2-14 on page 64 describes how Japanese characters are represented in
supported character sets, and how their lengths are affected.

Datatype Used with
Uses SO/SI
or SS2 Length measures

TDSCHAR
TDSVARYCHAR

DBCS and SBCS.

At the
workstation
and at the mainframe.

IBM Kanji:
Uses SO/SI with
double-byte
characters.

EUC-JIS:
Uses SS2 with
hankaku katakana.

For all character sets:
Number of bytes.

Maximum length for
TDSCHAR and
TDSVARYCHAR is 255.

TDSGRAPHIC
TDSVARYGRAPHIC

DBCS only.
At mainframe only.

No. Number of characters.
Maximum length is 127.

Processing Japanese client requests

64

Table 2-14: Length requirements in Japanese character sets

Character
set

SBCS or
DBCS Datatype Length considerations Example

EUC-JIS DBCS
(hankaku
katakana)

character Each 1-byte hankaku katakana
character is preceded by a 1-byte
SS2 indicator. As a result, each
eucjis hankaku katakana
character has a length of 2: the
SS2 indicator and the hankaku
katakana itself.

A string of 4 hankaku
katakana occupies 8 bytes
and has a length of 8.

EUC-JIS DBCS
(kanji)

character Each kanji character is 2 bytes
long and has a length of 2.

Kanji and single-byte alphabetic
characters can be mixed. When
converting mixed strings from
IBM Kanji to workstation kanji,
double the length to be safe.

A string of 4 kanji
occupies 8 bytes and has a
length of 8.

Shift-JIS SBCS
(hankaku
katakana)

character Each hankaku katakana character
is 1 byte long and has a length of
1.

Shift-JIS hankaku katakana does
not use SS2 indicators.

A string of 4 hankaku
katakana occupies 4 bytes
and has a length of 4.

Shift-JIS DBCS
(kanji)

character Each kanji character is 2 bytes
long and has a length of 2.

Kanji and single-byte alphabetic
characters can be mixed. When
converting mixed strings from
IBM Kanji to workstation kanji,
double the length to be safe.

A string of 4 kanji
occupies 8 bytes and has a
length of 8.

IBM Kanji DBCS character Each kanji character is 2 bytes
long and has a length of 2.

Each kanji string is preceded by a
Shift Out indicator and followed
by a Shift In indicator, adding two
to the length of each kanji string.

Kanji and single-byte alphabetic
characters can be mixed. When
converting mixed strings from
IBM Kanji to workstation kanji,
double the length to be safe.

A string of 4 kanji
occupies 10 bytes and has
a length of 10.

(8 bytes for the data and 2
bytes for the SO/SI codes)

CHAPTER 2 Topics

65

Examples of length settings in conversions

Table 2-15 illustrates length adjustments required for some workstation-to-
mainframe Japanese character set conversions.

Table 2-15: Length-settings in Japanese character set conversions

IBM Kanji
kanji

DBCS graphic Each kanji character is a double-
byte character and has a length of
1.

There are no SO/SI indicators
with graphic data.

A string of 4 kanji
occupies 8 bytes and has a
length of 4.

IBM Kanji
hankaku
katakana

SBCS character Each hankaku katakana character
is 1 byte long and has a length of
1.

IBM Kanji hankaku katakana
does not use SS2 indicators.

A string of 4 hankaku
katakana occupies 4 bytes
and has a length
of 4.

Character
set

SBCS or
DBCS Datatype Length considerations Example

Source
character set

Source
datatypes

Source
length

Target
character
set

Target
datatypes

Target
length

EUCJIS hankaku
katakana

character 8 IBM Kanji
hankaku katakana

character 4

EUCJIS kanji character 8 IBM Kanji
kanji

character 10

EUCJIS kanji character 8 IBM Kanji
kanji

graphic 4

Shift-JIS hankaku
katakana

character 4 IBM Kanji
hankaku katakana

character 4

Shift-JIS kanji character 8 IBM Kanji
kanji

character 10

Shift-JIS kanji character 8 IBM Kanji
kanji

graphic 4

IBM Kanji
hankaku katakana

character 4 EUC-JIS hankaku
katakana

character 8

IBM Kanji
hankaku katakana

character 4 Shift-JIS hankaku
katakana

character 4

IBM Kanji kanji character 10 EUC-JIS kanji character 8

IBM Kanji kanji character 10 Shift-JIS kanji character 8

Processing Japanese client requests

66

Lengths in conversions

Because differences among Japanese character sets can result in longer and
shorter lengths after conversion, Gateway-Library includes the TDSETSOI
function that specifies padding or stripping the SO/SI indicators.

When converting from a character set that uses SO/SI indicators to one that
does not (for example, converting CHAR data from IBM Kanji to Shift-JIS
kanji), you can use TDSETSOI to specify whether the SO/SI indicators are
stripped or whether they are replaced with embedded blanks. When replaced
with embedded blanks, the length does not change. When stripped, the length
is reduced by two bytes for each kanji string.

If no strip option is set, the JCM automatically strips SO/SI indicators.

When TDSETSOI replaces SO/SI indicators with blanks, the blanks are
positioned at the end of the field. For example, in an IBM Kanji CHAR field
that contains four kanji, the first byte contains the SO indicator, and the tenth
byte contains the SI indicator. After conversion to Shift-JIS kanji, the first eight
bytes are occupied by kanji, and the blanks occupy bytes nine and ten.

By judicious use of TDSETSOI, you can minimize the length changes and
calculations needed in Open ServerConnect programs. SeeTDSETSOI on page
200 for details.

See TDGETSOI on page 106 for information about how to query the SO/SI
processing settings for a column or parameter.

IBM Kanji kanji graphic 4 EUC-JIS kanji character 8

IBM Kanji kanji graphic 4 Shift-JIS kanji character 8

Source
character set

Source
datatypes

Source
length

Target
character
set

Target
datatypes

Target
length

67

C H A P T E R 3 Functions

This chapter describes the Gateway-Library functions that are included
with your Open ServerConnect software. Table 3-1 lists the functions and
provides a brief description of each. Following Table 3-1 is general
information about functions and then a detailed description of each listed
one.

List of functions
Open ServerConnect supports the following Gateway-Library functions
listed in Table 3-1.

Table 3-1: List of Gateway-Library functions

Function Description

TDACCEPT Accepts an incoming request from a remote client.

TDCONVRT Converts a mainframe datatype to a datatype that can be used by an Open Client
DB-Library or Client-Library application.

TDCURPRO Retrieves or sets information about a cursor.

TDESCRIB Describes a row column and binds its associated host program variable.

TDFREE Frees up the TDPROC structure for the connection.

TDGETREQ Accepts the next RPC or language, cursor, or dynamic request in a long-running
transaction and returns the transaction ID of the associated mainframe
transaction.

TDGETSOI Determines what Shift Out/Shift In (SO/SI) processing options are set for a
column or parameter. (Used with double-byte character sets.)

TDGETUSR Retrieves client login and mainframe customization information.

TDINFACT Retrieves information about global accounting.

TDINFBCD Retrieves the length and the number of decimal places for a specified packed
decimal column or parameter.

TDINFLOG Returns information about the trace settings currently in effect for the trace log.

TDINFPGM Returns information about the currently running transaction.

TDINFPRM Retrieves information about the specified parameter.

TDINFRPC Returns information about the client RPC that requested the current transaction.

List of functions

68

TDINFSPT Indicates whether tracing is on or off for a specified transaction, and returns the
transaction ID.

TDINFUDT Returns information about the user-defined datatype associated with a column.

TDINIT Initializes the Gateway-Library environment.

TDLOCPRM Returns the ID number of a parameter based on its parameter name.

TDLSTSPT Lists all transactions for which tracing is enabled.

TDNUMPRM Returns the total number of parameters that came with the current remote
procedure call, or a cursor or dynamic request.

TDRCVPRM Receives a parameter from a remote client.

TDRCVSQL Receives a SQL statement string from a remote client.

TDRESULT Describes the communication received from the client.

TDSETACT Turns system-wide accounting for Gateway-Library on or off. Also used to
rename the accounting log under CICS.

TDSETBCD Specifies the length and number of decimal places for a given column.

TDSETLEN Sets the column length for a variable-length field before sending it to a client.

TDSETLOG Turns system-wide tracing options for the Gateway-Library functions on or off.
Also used to rename the trace log under CICS.

TDSETPRM Specifies the length and address of a return parameter.

TDSETPT Specifies the type of IMS TM transaction being used.

TDSETSOI Sets the Shift Out/Shift In (SO/SI) processing options for a column or
parameter. (Used with double-byte character sets.)

TDSETSPT Turns tracing on or off for a specified transaction.

TDSETUDT Specifies the TDS datatype for a given column.

TDSNDDON Sends return parameter information back to the client. Tells the client that all
results are sent, and retains or terminates the connection between the client and
server.

TDSNDMSG Sends an error or informational message to a client.

TDSNDROW Sends a row of data back to the requesting client.

TDSQLLEN Gets the length of a SQL statement string received from a remote client.

TDSTATUS Retrieves status information about the client/server connection.

TDTERM Terminates a program and frees up all MVS storage.

TDYNAMIC Reads or responds to a client dynamic SQL command.

TDWRTLOG Writes a user-created message or a system entry to the trace log.

Function Description

CHAPTER 3 Functions

69

General information about functions
Each entry on the following pages includes a functional description, the syntax
(including the datatype of each argument), an example, possible return codes,
and a list of related function, topics, and documentation. All arguments of each
function are required unless designated as optional.

Most examples in this chapter are taken from the sample programs in the
appendices. These programs show how individual functions are coded in
context. Refer to the appendices to learn how to set up your WORKING
STORAGE SECTION and to see examples of complete programs.

Your application must include a set of constants supplied with Open
ServerConnect. These are standard argument options and return values for the
COBOL Gateway-Library interface. To include these constants in a COBOL
program, include the copybook SYGWCOB in the program.

When you use Gateway-Library functions, be aware of the following
information:

• For most Gateway-Library functions, the return codes for Gateway-
Library functions are stored in a RETCODE argument. Where this
argument exists, it is always the second argument for a function.

• The TDPROC structure is established by the TDACCEPT function.
TDPROC is a required argument of all subsequent functions that use the
same connection (except tracing and accounting functions). In most cases,
TDPROC is the first argument.

• The maximum length allowed for names is 30 bytes.

Note For numeric and alphabetic lists of all return codes,
including descriptions, see Messages and Codes for Open ClientConnect and
Open ServerConnect.

TDACCEPT

70

TDACCEPT
Description Accepts a request from a remote client. This function returns the handle for the

SNA or TCP/IP conversation in the TDPROC program variable.

Syntax COPY SYGWCOB.
01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9 USAGE COMP SYNC.
01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 ACCEPT-CONNECTION-NAME PIC X(8) VALUE IS SPACES.
01 ERROR-SUBCODE PIC S9(9) USAGE COMP SYNC.

CALL 'TDACCEPT’ USING TDPROC, RETCODE, IHANDLE, ACCEPT-
CONNECTION-NAME, ERROR-SUBCODE.

Parameters TDPROC
(O) Handle for this client/server connection. All subsequent server functions
using this connection must specify this same value in their TDPROC
argument. The TDPROC handle corresponds to the connection and
command handles in Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-2 on page 71.

IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

ACCEPT-CONNECTION-NAME
(I) Leave blank. CICS and IMS TM get this information elsewhere.

ERROR-SUBCODE
(O) Detailed error information. Provides additional information about the
cause of failure when TDACCEPT returns a return code other than TDS-OK.
For a list of error subcodes, see Messages and Codes for Open
ClientConnect and Open ServerConnect.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
2 on page 71.

CHAPTER 3 Functions

71

Table 3-2: TDACCEPT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CHARSET-NOTLOADED (-261) Gateway-Library found the DBCS specified by the
client, but the corresponding double-byte module
was not loaded at the mainframe.

This code is retuned to TDACCEPT when a client
specifies a DBCS (for example, Shift-JIS) for which
the associated translate module was not loaded or
defined to the mainframe system.

If the TP system is CICS, this can mean that the
translate module was not defined in RDO (or to the
PPT table), or that it is not present in the LOADLIB.

TDS-CHARSETSRV-NOT-SBCS (-264) The client character set was not found; DBCS
specified as default.

This code represents two problems:

1 The character set named in the client login packet
was not found in the table of character set names.
This may indicate that the client did not specify
the character set correctly (for example, the -J
option in isql or the DBSETLCHARSET value in
a DB-Library program is invalid).

2 Open ServerConnect was customized to process
single-byte character sets, but the default
character set is double-byte.
This usually indicates that the customization
settings are incorrect for kanji support.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-DBCS-CHARSET-NOTFOUND (-263) Gateway-Library could not find the DBCS specified
in the client login packet.

This usually indicates that the client request
specified an invalid character set in, for example,
the -J option in isql or the DBSETLCHARSET value
in a DB-Library program.

TDS-DEFAULT-CHARSET-NOTFOUND (-262) The client login packet did not specify a character
set or the specified client character set could not be
found, and Gateway-Library did not find the
default. This code is returned for single-byte
character sets only.

TDS-GWLIB-UNAVAILABLE (-15) Could not load SYGWCICS (the Gateway-Library
phase).

TDACCEPT

72

Examples Example 1
The following code fragment illustrates the use of TDINIT, TDACCEPT,
TDRESULT, TDSNDDON, and TDFREE at the beginning and end of a Gateway-
Library program. This example is taken from the sample program,
SYCCSAR2, in Appendix B, “Sample RPC Application for CICS”.

* Establish gateway environment

CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

* Accept client request

CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,SNA-CONNECTION-
NAME, SNA-SUBC.

* TDRESULT to make sure we were started via RPC request

CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.
IF GWL-RC NOT = TDS-PARM-PRESENT
THEN PERFORM TDRESULT-ERROR
GO TO END-PROGRAM
END-IF.

* ---
* body of program
* ---

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-SOS (-257) Memory shortage. The host subsystem was unable
to allocate enough memory for the control block that
Gateway-Library was trying to create. The
operation failed.

TDS-USING-DEFAULT-CHARSETSRV (10) Gateway-Library using default character set.

The client login packet did not specify a character
set, or Gateway-Library could not find the specified
single-byte character set, so it used the default
character set specified during customization. This is
an informational message.

Return value Meaning

CHAPTER 3 Functions

73

*---
END-PROGRAM.
*---
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO PARM-RETURN-ROWS
 END-IF.

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 PARM-RETURN-ROWS, TDS-ZERO,
 TDS-ENDRPC.

CALL ’TDFREE’ USING GWL-PROC, GWL-RC.
EXEC CICS RETURN END-EXEC.

Example 2
The following code fragment illustrates the use of TDINIT, TDSETPT,
and TDACCEPT at the beginning of a Gateway-Library program that uses the
IMS implicit API. This example is taken from the sample program in Appendix
D, “Sample RPC Application for IMS TM (Implicit)”.

 * --
 * establish gateway environment
 * --
 CALL ‘TDINIT’ USING IO-PCB, GWL-RC, GWL-INIT-HANDLE.

[check return code]

 * --
 * set program type to MPP
 * --
 CALL ‘TDSETPT’ USING GWL-INIT-HANDLE, GWL-RC, GWL- PROG-TYPE,
 GWL-SPA-PTR, TDS-NULL, TDS- NULL.
[check return code]

 * --
 * accept client request
 * --
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.
 *---
 READ-IN-USER-PARM.
 *---

TDACCEPT

74

Usage • A mainframe server application uses TDACCEPT to accept RPCs and
language requests from a remote client. It reads in login information and
does all necessary translations, including workstation-to-mainframe
character set conversions for all supported national languages.
This function is required in all Open ServerConnect programs.

• TDACCEPT retrieves login information from the login packet sent with the
client request. The login packet contains information needed by the
mainframe program, including the following:

• The client login name and password.

• The national language and character set used by the client.

• The type of request (language, RPC, cursor or dynamic).
 If the request is an RPC, the RPC name. If the request is a cursor,
the cursor name.

• The name of the TRS sending the request (in a three-tier
environment), or the name of the Open Server from the interfaces file
(in a two-tier environment).

Your program can retrieve information with TDGETUSR.

• TDACCEPT returns the handle for the conversation initiated by this client
request.

Note This book uses the term conversation to refer to active connections
for both SNA and TCP/IP.

• A successful TDACCEPT puts the server application in RECEIVE state.
The server application can then call TDRCVSQL, TDYNAMIC,
TDRCVPRM or TDCURPRO to retrieve incoming SQL text,
RPC parameters or cursor information. See “Communication states” on
page 19 for a discussion of SEND and RECEIVE states.

• TDACCEPT returns standard communication subcodes. These codes are
listed in Messages and Codes for Open ClientConnect and Open
ServerConnect.

• Only one TDACCEPT can be in an Open ServerConnect program. If this is
a long-running transaction, use TDACCEPT to accept the first client
request and TDGETREQ to accept subsequent requests.

CHAPTER 3 Functions

75

Character set translations

After Gateway-Library accepts the client request, it converts the request into a
form understood by the mainframe. Roman characters are converted from
ASCII to EBCDIC. Japanese characters are converted to IBM-Kanji.

Gateway-Library uses translate tables to do these conversions.
Single-byte translate tables can be customized locally. The Japanese
Conversion Module has its own set of conversion tables.

The Open ServerConnect environment is customized at the customer site.
During customization, you define the type of requests that Gateway-Library
will process. Customized items related to international applications include:

• The national language used at the mainframe.

• The DBCS support flag. This determines whether or not double-byte
character sets (DBCS) such as kanji are supported.

• The treatment of single-byte character sets, when DBCS are supported.
This determines whether they are treated as lowercase roman letters or as
Japanese hankaku katakana characters.

• The default character set, when the client character set is single-byte.

When TDACCEPT retrieves the client character set from the login packet,
it looks up that character set in a table of supported character set names. If it
finds a match in that table, it uses the associated translate table or conversion
module to convert the request to mainframe characters.

If no character set is specified in the login packet, or if Gateway-Library cannot
find a match for the specified client character set, the action taken by
TDACCEPT depends on whether or not a double-byte character set was
specified during customization.

When the character set is single-byte:

• Gateway-Library uses the default character set defined during
customization, and TDACCEPT returns TDS-OK.

Note If Gateway-Library cannot find he default character set in the
character set table, TDACCEPT fails and returns TDS-DEFAULT-
CHARSET-NOTFOUND. If Gateway-Library finds the default character
set, but it is a double-byte character set, TDACCEPT fails, returning TDS-
CHARSETSRV-NOT-SBCS.

TDACCEPT

76

When the character set is double-byte:

• If the login packet does not specify a character set or specifies one that
Gateway-Library cannot match, TDACCEPT fails and returns TDS-DBCS-
CHARSET-NOTFOUND.

• If Gateway-Library finds the client character set, but the corresponding
conversion module (for example, the JCM) was not loaded,
TDACCEPT fails and returns TDS-CHARSET-NOTLOADED or TDS-
CONTROL-NOT-LOADED.

For Japanese users

Japanese requests are processed by the Japanese Conversion Module (JCM),
a separate tape that provides Japanese language support for Open
ServerConnect. The JCM must be installed and defined to your mainframe
system before Gateway-Library can process client requests written in
Japanese.

Within a Gateway-Library program, TDINIT loads the JCM. If it cannot load
that module, TDINIT does not return an error code. However, when a client
request specifies a double-byte character set in the login packet,
TDACCEPT returns TDS-CHARSET-NOTLOADED.

If your program uses the JCM, TDACCEPT converts the name of each
parameter to the character set used at the mainframe.

See also Related functions

• TDFREE on page 96

• TDINIT on page 145

Related topics

• “Character sets” on page 17

• “The login packet” on page 54

• “Processing Japanese client requests” on page 59

• “Customization” on page 59

Related documents

• Messages and Codes for Open ClientConnect and Open ServerConnect

CHAPTER 3 Functions

77

TDCONVRT
Description Converts the data in a variable from a mainframe datatype to a datatype that

can be used by an Open Client program.

Note TDCONVRT converts single-byte character sets. Do not use it with
double-byte character sets.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 NUM-DECIMAL-PLACES PIC S9(9) USAGE COMP SYNC.
01 SOURCE-TYPE PIC S9(9) USAGE COMP SYNC.
01 SOURCE-LENGTH PIC S9(9) USAGE COMP SYNC.
01 SOURCE-VARIABLE PIC X(n).
01 RESULT-TYPE PIC S9(9) USAGE COMP SYNC.
01 RESULT-LENGTH PIC S9(9) USAGE COMP SYNC.
01 RESULT-VARIABLE PIC X(n).
01 OUTLEN PIC S9(9) USAGE COMP SYNC.
 (optional)

CALL ’TDCONVRT’ USING TDPROC, RETCODE,
NUM-DECIMAL-PLACES, SOURCE-TYPE,
SOURCE-LENGTH, SOURCE-VARIABLE,
RESULT-TYPE, RESULT-LENGTH,
RESULT-VARIABLE, OUTLEN.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-3 on page 78.

NUM-DECIMAL-PLACES
(I) Number of digits after the decimal point (scale) in the SOURCE-
VARIABLE. This value must not be a negative number. When converting
packed decimal to or from numeric or Sybase-decimal, or when converting
packed decimal, numeric, or Sybase decimal to or from character format,
TDCONVRT uses this information to ensure that the decimal point is
correctly placed. For all other datatypes, it ignores this argument.

SOURCE-TYPE
(I) Datatype of the SOURCE-VARIABLE.

TDCONVRT

78

SOURCE-LENGTH
(I) Actual length of the SOURCE-VARIABLE. This value must not be a
negative number. For TDSVARYCHAR or TDSVARYBIN this value does not
include two bytes for "LL" specifications. For Sybase numeric or decimal,
it is actual length and not a maximum length (35).

SOURCE-VARIABLE
(I) Host program variable that contains the data to be converted. This is the
variable described in the previous two arguments.

RESULT-TYPE
(I) DB-Library or Client-Library datatype of the RESULT-VARIABLE.

RESULT-LENGTH
(I) Actual length of the RESULT-VARIABLE. This value must be greater
than zero and must not be a negative number. For fixed-length datatypes,
this argument is ignored. Always use 35 as a result length for numeric and
Sybase decimal data.

RESULT-VARIABLE
(O) Variable that contains the converted data. This is the variable described
in the previous two arguments.

OUTLEN
(O) Optional, returns actual length for numeric or Sybase decimal result.

Return value The RETCODE argument can contain any of the return values listed in Table
3-3.

Table 3-3: TDCONVRT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-DATE-CONVERSION-ERROR (-23) Error in conversion of datetime data. This can be a
result of trying to convert short datetime
(TDSDATETIME4) for a client using an early TDS
version. TDS versions earlier than 4.2 do not
support the short datetime datatype.

TDS-DECIMAL-CONVERSION-ERROR (-24) Error in conversion of packed decimal data.

TDS-FLOAT-CONVERSION-ERROR (-21) Error in conversion of float values.

TDS-INVALID-DATA-CONVERSION (-172) Incompatible datatypes. The source datatype cannot
be converted into the requested result datatype.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the RESULT-
LENGTH argument is too short. The length must be
greater than zero.

CHAPTER 3 Functions

79

Examples The following code fragment shows two methods of converting datatypes.
One method uses TDESCRIB to convert data from the DB2 datatype DECIMAL
(TDSDECIMAL) to TDSFLT8. The other method uses TDCONVRT to convert
data from the DB2 datatype DECIMAL (TDSDECIMAL) to the DB-Library
datatype DBMONEY (TDSMONEY).

 This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS” which runs under CICS.

* Here we let TDESCRIB convert from TDSDECIMAL to TDSFLT8.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-JC.
CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-JC.
MOVE LENGTH OF EMPLOYEE-JC TO WRKLEN1.
MOVE LENGTH OF CN-JC TO WRKLEN2.
MOVE TDSDECIMAL TO DB-HOST-TYPE.
MOVE TDSFLT8 TO DB-CLIENT-TYPE.
PERFORM DESCRIBE-COLUMN.

* We must inform the Server Library how many decimal places
* are in the EMPLOYEE-JC column.

 CALL ’TDSETBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, TDS-DEFAULT-LENGTH,
 GWL-SETBCD-SCALE.

 * Demonstrate getting decimal column information.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-INVALID-VAR-ADDRESS (-175) Specified variable address is invalid. No variable
with the specified name exists. A NULL value was
specified. The operation failed.

TDS-MONEY-CONVERSION-ERROR (-22) Error in conversion of TDSMONEY-type data. This
can be a result of trying to convert to short money
(TDSMONEY4) for a client using an early TDS
version. TDS versions earlier than 4.2 do not
support the short money datatype.

TDS-TRUNCATION-ERROR (-20) Error occurred in truncation of data value.

Return value Meaning

TDCONVRT

80

Usage • A server application uses this function to convert from a mainframe
datatype to a datatype that can be used by an Open Client DB-Library or
Client-Library client. See “Datatypes” on page 37 for more information
about particular datatypes and datatype conversions. For details about DB-
Library datatypes, see the Reference Manual for the Open Client DB-
Library. For details about Client-Library datatypes, see the Reference
Manual for the Open Client Client-Library.

Note Most Gateway-Library-to-Client-Library datatype conversions can
be done more efficiently with TDESCRIB and TDSETPRM, which perform
automatic data conversions. For more information, see TDESCRIB on
page 88 and TDSETPRM on page 192.

• This function converts a single variable each time it executes.

• If several columns in a single result row will be converted, an application
must issue a separate TDCONVRT call for each column that will be
converted before it sends the row to a client. If several rows of data are sent
to the client, the application must issue a separate TDCONVRT call for
every column that needs conversion in each row, before it issues a
TDSNDROW call for that row.

• If TDESCRIB follows TDCONVRT, be sure that the TDESCRIB HOST-
VARIABLE-NAME argument corresponds to the TDCONVRT RESULT-
VARIABLE rather than the SOURCE-VARIABLE.

Datatype conversions
Table 3-4 lists the conversions you can perform with TDCONVRT

Table 3-4: Datatype conversions performed by TDCONVRT

Source datatype Result datatype Notes

TDSCHAR
TDSCHAR
TDSCHAR
TDSCHAR
TDSCHAR
TDSCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSLONGVARCHAR
TDSLONGVARCHAR
TDSLONGVARCHAR

TDSVARYCHAR
TDSLONGVARCHAR
TDSMONEY
TDS-SYBASE-DECIMAL
TDS-PACKED-DECIMAL
TDSCHAR
TDSLONGVARCHAR
TDSMONEY
TDSCHAR
TDSTEXT
TDSVARYCHAR

Performs EBCDIC and ASCII
conversion.
Pads TDSCHAR fields with blanks.
When converting TDSCHAR to
Sybase numeric and decimal,
specify 35 as destination length.
OUTLEN shows the actual length.

TDSDATETIME
TDSDATETIME4

TDSCHAR
TDSCHAR

CHAPTER 3 Functions

81

TDSFLT4
TDSFLT4
TDSFLT4

TDSFLT8
TDSMONEY
TDSMONEY4

Pads with zeros.

TDSFLT8
TDSFLT8
TDSFLT8

TDSFLT4
TDSMONEY
TDSMONEY4

Truncates low order digits.

TDSGRAPHIC
TDSGRAPHIC
TDSVARYGRAPHIC
TDSVARYGRAPHIC

TDSCHAR
TDSVARYCHAR
TDSCHAR
TDSVARYCHAR

Used with Japanese double-byte
character sets.
PadsTDSCHAR fields with blanks.

TDSLONGVARBIN TDSIMAGE

TDSNUMERIC
TDSNUMERIC

TDSCHAR
TDSPACKED-DECIMAL

When converting Sybase numeric
and decimal to char, specify
destination length as precision +2,
or precision +3 if precision=scale
for leading zero.
When converting from numeric to
TDS-PACKED-DECIMAL, the
destination should supply the same
precision and scale as the source.
 For numeric (15,5) specify
destination as S9(10) v9(5).

TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL

TDS-CHAR
TDSVARYCHAR
TDSMONEY
TDSNUMERIC
TDSFLT4
TDSFLT8
TDS-SYBASE-DECIMAL

When converting packed decimal
to character values, change the
length to allow for unpacking,
leading or trailing zeros, the sign
and the decimal point.
When converting TDS-PACKED-
DECIMAL to Sybase numeric and
decimal, specify 35 as the
destination length. OUTLEN shows
the actual length of the numeric
field.

TDS-SYBASE-DECIMAL
TDS-SYBASE-DECIMAL

TDSCHAR
TDSPACKED-DECIMAL

When converting Sybase numeric
and decimal to char, specify
destination length as precision +2,
or precision +3 if precision=scale
for leading zero.

Source datatype Result datatype Notes

TDCONVRT

82

 Warning! The results of decimal-to-character type conversions are no longer
formatted in SQL Processor Using File Input (SPUFI) style. See “Converting
packed decimal to character data” on page 43 for an explanation of how the
results now handle leading and trailing zeroes.

If you are using DB2: • For VARCHAR strings:

• Treat VARCHAR strings as TDSVARYCHAR. You can safely convert
these strings to DB-library VARYCHAR or CHAR.

• For 255-byte LONG VARCHAR strings:

Treat these strings as TDSVARYCHAR. TDSVARYCHAR strings can be
up to 255 bytes in length. You can safely convert these strings to DB-
library VARYCHAR or CHAR.

• For longer LONG VARCHAR strings (256 or more bytes):

Treat these strings as TDSLONGVARCHAR. When converting long
varchar data to a client datatype, you have three options:

Option 1: If the client program supports TEXT datatypes, you can
convert the string to TDSTEXT before sending it to the client.
TDSTEXT is a variable-length datatype containing up to
2,147,483,647 bytes.

Option 2: If the client is an Open Client 10.0 program, you can send
the data as TDSLONGVARCHAR. The Client-Library datatype CS-
LONGCHAR has a maximum length of 2,147,483,647 bytes.

Option 3: If the truncation option is set during customization, you can
send the string as TDSVARYCHAR. If you choose this option, the data
is truncated. However, if the truncation option is not set, and you try
to convert these strings to TDSVARYCHAR, an error is returned.

• For long binary strings:

• If the client program supports IMAGE datatypes, you can convert the
string to TDSIMAGE before sending it to the client. TDSIMAGE is a
variable-length datatype containing up to 2,147,483,647 bytes.

• If the client is a Client-Library 10.0 program, you can send the data as
TDSLONGVARBIN. The Client-Library datatype CS-LONGBINARY
has a maximum length of 2,147,483,647 bytes.

CHAPTER 3 Functions

83

See also Related functions

• TDESCRIB on page 88

• TDRCVPRM on page 157

• TDSETBCD on page 177

• TDSETPRM on page 192

Related topics

• “Datatypes” on page 37

Related documents

• Reference Manual for Open Client DB-Library

TDCURPRO
Description Retrieves or sets information about a cursor.

Syntax COPY SYGWCOB.

 01 TDPROC PIC S9(9) USAGE COMP SYNC.
 01 RETCODE PIC S9(9) USAGE COMP SYNC.
 01 ACTION PIC S9(9) USAGE COMP SYNC.
 01 CURSOR-DESC FROM SYGWCOB.

 CALL ‘TDCURPRO’ USING TDPROC, RETCODE, ACTION,
 CURSOR-DESC.

The CURSOR-DESC structure is defined in SYGWCOB as follows:

CURSOR-ID PIC S9(9) USAGE COMP SYNC.
NUMBER-OF-UPDATE-COLUMNS PIC S9(9) USAGE COMP SYNC.
FETCH-COUNT PIC S9(9) USAGE COMP SYNC.
CURSOR-STATUS PIC S9(9) USAGE COMP SYNC.
CURSOR-COMMAND PIC S9(9) USAGE COMP SYNC.
COMMAND-OPTIONS PIC S9(9) USAGE COMP SYNC
FETCH-TYPE PIC S9(9) USAGE COMP SYNC.
ROW-OFFSET PIC S9(9) USAGE COMP SYNC.
CURSOR-NAME-LENGTH PIC S9(9) USAGE COMP SYNC.
CURSOR-NAME PIC X(30).
TABLE-NAME-LENGTH PIC S9(9) USAGE COMP-SYNC.
TABLE-NAME PIC X(30).

TDCURPRO

84

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-5 on page 85.

ACTION
(I) Action to be taken by this call. ACTION is an integer variable that
indicates the purpose of this call.

Assign ACTION one of the following symbolic values:

CURSOR-DESC
(I/O) A CURSOR-DESC structure containing information in the following
fields:

TDS-GET (33) Retrieves cursor information.

TDS-SET (34) Specifies cursor information.

This field Contains this information

CURSOR-ID The cursor identifier.

NUMBER-OF-UPDATE-
COLUMNS

The number of columns in a cursor update clause.

FETCH-COUNT The current row fetch count for this cursor; that is, the
number of rows that are sent to the client in response
to a TDS-CURSOR-FETCH command.

CURSOR-STATUS The status of the current cursor.

CURSOR-COMMAND The current cursor command type.

COMMAND-OPTIONS Any options associated with the cursor command.

FETCH-TYPE The type of fetch requested by a client.

ROW-OFFSET The row position for TDS-ABSOLUTE or TDS-
RELATIVE fetches.

CURSOR-NAME-LENGTH The length of the cursor name in CURSOR-NAME.

CURSOR-NAME The name of the current cursor.

TABLE-NAME-LENGTH The length of the tablename in TABLE-NAME.

TABLE-NAME The table name associated with a cursor update or
delete command.

CHAPTER 3 Functions

85

Return value The RETCODE argument can contain any of the return values listed in Table
3-5.

Table 3-5: TDCURPRO return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-BUFFLEN-GREATER-TYPE (-191) TDYNAMIC: The size of the buffer is greater than
the dynamic SQL-type field being retrieved.

TDS-BUFFLEN-LESS-TYPE (-192) TDYNAMIC: The size of the buffer is too small to
return a dynamic SQL-type field.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CMD-NOT-GET-SET (-190) The value of the ACTION argument is invalid.
It should be either TDS-GET or TDS-SET.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-CURSOR-ALREADY-OPEN (-74) Cursor already open. You cannot open the same
cursor more than once.

TDS-CURSOR-NOT-CLOSED (-73) Cursor is still active (deallocate without close first).

TDS-CURSOR-NOT-DECLARED (-70) A cursor must be declared before it can be opened.

TDS-CURSOR-NOT-OPEN (-72) Cursor not open. A cursor must be open before a
fetch, close, delete, or update.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-CURCLOSOPTION (-182) A closed cursor command specified an invalid
option. The Gateway-Library transaction received a
closed cursor command, but the value of the
OPTION field of the CURSOR-DESC structure is
invalid. Valid options are TDS-CUR-UNUSED and
TDS-CUR-DEALLOC.

TDS-INVALID-CURDECLOPTION (-183) A declare cursor command has an invalid option
specified. The Gateway-Library transaction
received a declare cursor command, but the value of
the OPTION field of the CURSOR-DESC structure
is invalid. Valid options are TDS-CUR-UNUSED
and TDS-CUR-DEALLOC.

TDS-INVALID-CURDECLSTAT (-184) Illegal cursor declare option.

TDS-INVALID-CURINFCMD (-195) Illegal cursor information command.

TDS-INVALID-CURINFSTAT (-185) Illegal cursor information status.

TDCURPRO

86

Usage • An Open ServerConnect application uses this function to exchange active
cursor information with a client.

A transaction first calls TDCURPRO, with an ACTION of TDS-GET to
retrieve the client cursor command and other information about the cursor
(for example, the requested fetch count). The CURSOR-DESC structure
provides this information.

After processing the client command, the transaction calls TDCURPRO
with an ACTION of TDS-SET to return acknowledgment and/or updated
cursor information to the client.

• Each type of cursor command requires a distinct response from the Open
ServerConnect application. Cursor commands and their responses are
discussed under “Types of cursor commands” on page 22.

• An application can also read in parameters or send back result rows,
depending on the circumstances.

• An application can call TDCURPRO for any cursor by specifying which
cursor in the CURSOR-ID field of the CURSOR-DESC structure.
Cursors need not be called in any particular order.

• The CURSOR-COMMAND field in the CURSOR-DESC structure indicates
the command to be processed.

TDS-INVALID-CUROPENSTAT (-187) Illegal cursor open status.

TDS-INVALID-CURSOR-COMMAND (-194) The cursor command is not declare, open, fetch,
delete, update, or close.

TDS-INVALID-CURSOR-FSM (-78) Invalid cursor state.

TDS-INVALID-CURUPDSTAT (-186) Illegal cursor update status.

TDS-INVALID-OP-TYPE (-193) Invalid dynamic SQL operation.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-NO-CURRENT-CURSOR (-200) No cursor is associated with the current transaction.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

CHAPTER 3 Functions

87

• When a client declares a new cursor (CURSOR-COMMAND is TDS-
CURSOR-DECLARE), the client provides a cursor name, but not a cursor
ID. It is the responsibility of the Open ServerConnect application to assign
a unique cursor ID to the new cursor and return that ID to the client.

To do this,

• Specify TDS-SET for the ACTION argument.

• Specify the new cursor ID in the CURSOR-ID field in the CURSOR-
DESC structure.

• Return this information to the client.

Note Both the client and the Open ServerConnect applications must
subsequently refer to this cursor by its ID rather than its name.

• The application must acknowledge all cursor commands except fetch,
update, and delete by sending back a cursor information command.

To do this, specify TDS-SET in the ACTION argument.

This is the very first piece of information the application sends back after
receiving a cursor command. The application sets the cursor ID.
This information comes back on every command.

For example, after receiving a close cursor request,
Open ServerConnect sets CURSOR-COMMAND to TDS-CURSOR-
INFO and CURSOR-STATUS to TDS-CURSTAT-CLOSED.

Note This is done by Open ServerConnect, not by the application.

• Multiple cursor commands per transaction invocation are not allowed.
To process multiple commands, use the long-running transaction,
accepting each new command request with TDGETREQ.

See also Related functions

• TDACCEPT on page 70

• TDGETREQ on page 99

TDESCRIB

88

TDESCRIB
Description Describes a column in a result row and the mainframe server program variable

where it is stored.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 COLUMN-NUMBER PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE-TYPE PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE-MAXLEN PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE-NAME PIC X(n).
01 NULL-INDICATOR-VARIABLE PIC S9(4) USAGE COMP SYNC.
01 NULLS-ALLOWED PIC S9(9) USAGE COMP SYNC.
01 COLUMN-TYPE PIC S9(9) USAGE COMP SYNC.
01 COLUMN-MAXLEN PIC S9(9) USAGE COMP SYNC.
01 COLUMN-NAME PIC X(n).
01 COLUMN-NAME-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL 'TDESCRIB’ USING TDPROC, RETCODE, COLUMN-NUMBER,
 HOST-VARIABLE-TYPE
 HOST-VARIABLE-MAXLEN,
 HOST-VARIABLE-NAME,
 NULL-INDICATOR-VARIABLE,
 NULLS-ALLOWED, COLUMN-TYPE,
 COLUMN-MAXLEN, COLUMN-NAME,
 COLUMN-NAME-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-6 on page 90.

COLUMN-NUMBER
(I) Number of the column that is being described. Columns are numbered
sequentially. The first column in a row is number 1.

HOST-VARIABLE-TYPE
(I) Datatype of HOST-VARIABLE-NAME, the host program variable where
the data for this column is stored. If you use TDCONVRT to convert from one
datatype to another, this is the RESULT-TYPE.

CHAPTER 3 Functions

89

HOST-VARIABLE-MAXLEN
(I) Maximum length of the host program variable. This is the value of (n) in
the definition statement for HOST-VARIABLE-NAME.

For TDSVARYCHAR, TDSVARYBIN, and TDSVARYGRAPHIC variables,
this length does not include the 2 bytes for the “LL” length specification.
For graphic datatypes, this is the number of double-byte characters; for other
datatypes, it is the actual length.

HOST-VARIABLE-NAME
(I) Host program variable that contains the data for this column.

You must name a different variable for each column to be described.

If you use TDCONVRT to convert from one datatype to another, this is the
RESULT-VARIABLE. If the datatype is TDSVARYCHAR, TDSVARYBIN,
or TDSVARYGRAPHIC, this is the name of a structure that includes the “LL”
length specification.

NULL-INDICATOR-VARIABLE
(I) Host program variable that contains the NULL indicator for this column.
When the value in this variable is negative, TDSNDROW sends a NULL
value for this column. Note that this variable is a halfword.

If NULLS-ALLOWED is TDS-FALSE, this argument is ignored.

NULLS-ALLOWED – (I) Null permission indicator. Indicates whether
NULLs are allowed for this column. Assign this argument one of the
following values:

Note NULLs are typically used with DB2.

COLUMN-TYPE
(I) Open Client datatype of the column. This is the datatype used by the
client application.

COLUMN-MAXLEN
(I) Maximum length of the column data. For variable-length datatypes,
this argument represents the maximum length for a value of that datatype.
For fixed-length datatypes (TDSINTn, TDSFLTn), this argument is ignored.

COLUMN-NAME
(I) Name of the column with the data that is being returned.

TDS-TRUE (1) NULLs are allowed.

TDS-FALSE (0) NULLs are not allowed.

TDESCRIB

90

COLUMN-NAME-LENGTH
(I) Actual length of the column name.

Return value The RETCODE argument can contain any of the return values listed in Table
3-6.

Table 3-6: TDESCRIB return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-DUPLICATE-ENTRY (-9) Duplicate column description. You attempted to
describe the same column twice with a TDESCRIB
statement. The operation failed.

TDS-ILLEGAL-REQUEST (-5) Illegal function. The operation failed.
 This code can indicate that a client application is
trying to use a Gateway-Library function that is not
supported for clients (for example, TDSNDROW).

TDS-INVALID-DATA-CONVERSION (-172) Incompatible datatypes. The source datatype cannot
be converted into the requested result datatype.

TDS-INVALID-DATA-TYPE (-171) Illegal datatype. A sybase datatype supplied in the
call is not supported and the conversion can not be
completed.

TDS-INVALID-ID-VALUE (-10) The specified column or parameter number is
greater than the system maximum. Sybase allows as
many columns per table result and parameters per
RPC as the system maximum.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the
COLUMN-MAXLEN argument is too short.

TDS-INVALID-NAMELENGTH (-179) Invalid name length. The length specified for the
column, parameter, message, or server name is
invalid.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-INVALID-VAR-ADDRESS (-175) Specified variable address is invalid. No variable
with the specified name exists. A NULL value was
specified. The operation failed.

CHAPTER 3 Functions

91

Examples The following code fragment illustrates a typical use of TDESCRIB.
This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Here we let TDESCRIB convert from DB2 varchar (TDSVARYCHAR)
* to DBCHAR.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-ED.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-ED.
 MOVE LENGTH OF EMPLOYEE-ED TO WRKLEN1.
 MOVE LENGTH OF CN-ED TO WRKLEN2.

 MOVE TDSINT2 TO DB-HOST-TYPE.
 MOVE TDSINT2 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * Get the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDINFUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

 * Set the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDSETUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.
 *---
 DESCRIBE-COLUMN.
 *---
 SET ADDRESS OF LK-DESCRIBE-HV TO DB-DESCRIBE-HV-PTR.
 SET ADDRESS OF LK-COLUMN-NAME-HV TO DB-COLUMN-NAME-HV-PTR.
 ADD 1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 DB-HOST-TYPE, WRKLEN1, LK-DESCRIBE-HV,
 DB-NULL-INDICATOR, TDS-FALSE,
 DB-CLIENT-TYPE, WRKLEN1,

 LK-COLUMN-NAME-HV, WRKLEN2.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

TDESCRIB

92

Usage • A server application uses this function to describe a column that is
returned to the client and the host program variable where the column data
is stored.

• You must use a separate TDESCRIB call for each column in a row. Thus,
if a row has 12 columns of data, you must call TDESCRIB 12 times,
once for each column.

• Columns can be described in any order.

• The maximum number of columns that can be returned to a client is 255.

Note Applications should check the return code after each TDESCRIB to
see whether any data conversion errors occurred. This is especially
important with applications that convert decimal or floating point data
before returning it to the client.

• There can be only one TDESCRIB call for each column. If you try to
describe the same column twice, the operation fails and returns TDS-
DUPLICATE-ENTRY.

• After all the columns in a row are described, the server application calls
TDSNDROW once for each row of data to be sent to the client.

Each TDSNDROW call retrieves the data from every variable named in the
HOST-VARIABLE-NAME arguments of the preceding TDESCRIB calls,
and returns that data to the client in the associated columns. Do not call
TDSNDROW until all columns in the row are associated with a variable,
using TDESCRIB.

• An application can only call TDESCRIB before it sends rows to a client.
Do not call TDESCRIB once your program starts to send rows.

• The length of columns with datatypes that have “VARY” in the name
(TDSVARYCHAR, TDSVARYBIN, TDSVARYGRAPHIC) is derived from the
2-byte “LL” length specification in the named variable structure.

TDSLONGVARCHAR columns do not have “LL” length specifications.

Always specify a column length of 35 when describing Sybase numeric
and decimal columns.

• TDESCRIB automatically converts some mainframe datatypes to Open
Client datatypes before returning data to a Sybase client. TDESCRIB sets
up the conversion and then performs the conversion when the row is sent
to the client by TDSNDROW.

CHAPTER 3 Functions

93

TDESCRIB pads binary-type columns with zeros and character-type
columns with blanks; no default padding is set for columns of other
datatypes.

You can perform additional datatype conversions (to text and image
datatypes, for example) by calling TDCONVRT.

• TDS versions earlier than 4.2 do not support short float (TDSFLT4),
short money (TDSMONEY4), or short datetime (TDSDATETIME4)
datatypes. Gateway-Library automatically converts short float and money
values to TDSFLT8 and TDSMONEY before returning data to a client using
earlier versions of TDS. Gateway-Library does not convert short datetime
datatypes.

TDINFPGM returns the version of TDS in use.

Datatype conversions
Table 3-7 shows which conversions are performed automatically when
TDESCRIB is called.

Table 3-7: Datatype conversions performed by TDESCRIB

Source datatype Result datatype Notes

TDSCHAR
TDSCHAR
TDSCHAR
TDSCHAR
TDSCHAR
TDSCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSLONGVARCHAR
TDSLONGVARCHAR
TDSLONGVARCHAR

TDSVARYCHAR
TDSLONGVARCHAR
TDSMONEY
TDSNUMERIC
TDS-SYBASE-DECIMAL
TDS-PACKED-DECIMAL
TDSCHAR
TDSLONGVARCHAR
TDSMONEY
TDSCHAR
TDSTEXT
TDSVARYCHAR

Performs EBCDIC and ASCII
conversion.
Pads TDSCHAR fields with blanks.
When converting TDSCHAR to
Sybase numeric and decimal,
specify 35 as destination length.
OUTLEN shows the actual length.

TDSDATETIME
TDSDATETIME4

TDSCHAR
TDSCHAR

TDSFLT4
TDSFLT4
TDSFLT4

TDSFLT8
TDSMONEY
TDSMONEY4

Pads with zeros.

TDSFLT8
TDSFLT8
TDSFLT8

TDSFLT4
TDSMONEY
TDSMONEY4

Truncates low order digits.

TDSGRAPHIC
TDSGRAPHIC
TDSVARYGRAPHIC
TDSVARYGRAPHIC

TDSCHAR
TDSVARYCHAR

TDSCHAR
TDSVARYCHAR

Used with Japanese double-byte
character sets.
Pads TDSCHAR fields with blanks.

TDESCRIB

94

• When converting packed decimal data, the COLUMN-MAXLEN must
allow for:

• Unpacking

• Leading and trailing zeros

• Sign and decimal point

A suggested formula for unpacking is:

Result Length = (2 * Source Length) - 1

TDSLONGVARBIN TDSIMAGE

TDSNUMERIC
TDSNUMERIC

TDSCHAR
TDS-PACKED-DECIMAL

When converting Sybase numeric
and decimal to char, specify
destination length as precision +2,
or precision +3 when
precision=scale.
When converting from numeric to
TDS-PACKED-DECIMAL,
the destination should supply the
same precision and scale as the
source.
For numeric (15,5) specify
destination as S9(10) v9(5).

TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL

TDSCHAR
TDSVARYCHAR
TDSMONEY
TDSNUMERIC
TDSFLT4
TDSFLT8
TDS-SYBASE-DECIMAL

When converting packed decimal
to character values, change the
length to allow for unpacking,
leading or trailing zeros, the sign
and the decimal point.
When converting TDS-PACKED-
DECIMAL to Sybase numeric and
decimal, specify 35 as the
destination length. OUTLEN shows
the actual length of the numeric
field.

TDS-SYBASE-DECIMAL
TDS-SYBASE-DECIMAL

TDSCHAR
TDS-PACKED-DECIMAL

When converting Sybase numeric
and decimal to char, specify
destination length as precision +2,
or precision +3 when
precision=scale (for leading zero).

Source datatype Result datatype Notes

CHAPTER 3 Functions

95

• Always use TDSETBCD when describing Sybase decimal and numeric
columns. Assign the following:

• Precision to BCD-LENGTH

• Scale to BCD-NUMBER-DECIMAL-PLACES

• See “Datatypes” on page 37 for more information about datatypes
supported by Gateway-Library.

For Japanese users

The Japanese Conversion Module (JCM) automatically converts column
names from the character set used at the mainframe server to that specified by
the client in the login packet.

• When converting Japanese characters, TDESCRIB changes the length of
the column name to the length required by the client character set,
which may be different from the length of the column name at the
mainframe.

To learn more, see the discussion of length considerations in “Processing
Japanese client requests” on page 59.

See also Related functions

• TDCONVRT on page 77

• TDSNDROW on page 225

Related topics

• “Datatypes” on page 37

• “Processing Japanese client requests” on page 59

TDFREE

96

TDFREE
Description Frees up a previously allocated TDPROC structure after returning results to a

client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.

CALL ’TDFREE’ USING TDPROC, RETCODE.

Parameters TDPROC
(I) Handle for this client–server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-8.

Table 3-8: TDFREE return values

Examples Example 1
The following code fragment illustrates the use of TDINIT, TDACCEPT,
TDSNDDON, and TDFREE at the beginning and end of a Gateway-Library
program. This example is taken from the sample program, SYCCSAR2,
in Appendix B, “Sample RPC Application for CICS”.

* Establish gateway environment
CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

* Accept client request
CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
SNA-CONNECTION-NAME, SNA-SUBC.

* TDRESULT to make sure we were started via RPC request
CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.
IF GWL-RC NOT = TDS-PARM-PRESENT THEN

 PERFORM TDRESULT-ERROR
 GO TO END-PROGRAM

END-IF.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

CHAPTER 3 Functions

97

* ---
* body of program
* ---
*---
 END-PROGRAM.
*---
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO PARM-RETURN-ROWS
 END-IF.
 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 PARM-RETURN-ROWS, TDS-ZERO,
 TDS-ENDRPC.
 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS RETURN END-EXEC.

Example 2
This code fragment shows the use of TDFREE and TDTERM in a transaction
that uses the IMS TM implicit API. This transaction processes multiple client
requests, using TDGETREQ to call each request after the first. This example is
taken from the sample program in Appendix D, “Sample RPC Application for
IMS TM (Implicit)”.

* ---
* Get next client request
* ---
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-RPC-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION,
 GWL-REQ-TYPE, GWL-RPC-NAME.
 EVALUATE GWL-RC
 WHEN ZEROES
 GO TO READ-IN-USER-PARM
 WHEN TDS-RESULTS-COMPLETE
 PERFORM FREE-ALL-STORAGE
 WHEN TDS-CONNECTION-TERMINATED
 PERFORM FREE-ALL-STORAGE
 WHEN OTHER
 MOVE ‘TDGETREQ’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-EVALUATE.
 GOBACK.

TDFREE

98

*---
 FREE-ALL-STORAGE.
*---
 CALL ‘TDFREE’ USING GWL-PROC, GWL-RC.
 CALL ‘TDTERM’ USING GWL-INIT-HANDLE, GWL-RC.

Usage An application calls TDFREE to clean up and deallocate the TDPROC structure
defined for this connection in TDACCEPT (For TCP/IP applications,
this closes the socket). TDFREE does not free up the IHANDLE.

Under CICS

The IHANDLE is automatically freed when the transaction ends.

Typically, a transaction calls TDFREE either at the end of a transaction, or after
TDRESULT returns TDS-CONNECTION-TERMINATED or TDS-
CONNECTION-FAILED.

Under IMS TM and MVS

The transaction must call TDTERM to free the IHANDLE.

The last call in an IMS TM program, after it has processed all requests,
must be TDTERM, which frees all resources, including the IHANDLE,
in preparation for program termination. We strongly recommend ending all
programs with a TDTERM call.

See also Related functions

• TDACCEPT on page 70

• TDGETREQ on page 99

• TDINIT on page 145

• TDRESULT on page 170

• TDTERM on page 237

CHAPTER 3 Functions

99

TDGETREQ
Description Accepts the next request in a long-running transaction.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 WAIT-OPTION PIC S9(9) USAGE COMP SYNC.
01 REQUEST-TYPE PIC S9(9) USAGE COMP SYNC.
01 TRAN-NAME PIC X(30).

CALL ’TDGETREQ’
USING TDPROC, RETCODE, WAIT-OPTION
REQUEST-TYPE, TRAN-NAME.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in this associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

TDGETREQ

100

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-9 on page 101.

WAIT-OPTION
(I) Wait/do not wait indicator. Indicates what the application should do after
a TDGETREQ if no request is present:
 (1) wait for a new request to arrive, or
 (2) terminate immediately.

Assign this argument one of the following values:

Under CICS and MVS: We recommend always coding TDS-FALSE.
Coding TDS-FALSE ends the transaction and frees resources if there is
nothing left to do. Coding TDS-TRUE causes the transaction to wait.

Under IMS TM: The WAIT-OPTION tells the transaction what to do when
the message queue is empty. This will be to wait for another request to
appear on the queue, or end the transaction.

Note To use TDGETREQ properly under the IMS TM implicit API,
the transaction must be a WPI transaction, or the message region that the
transaction runs in must have PWFI=Y (Pseudo-Wait-For-Input) specified.

REQUEST-TYPE
(O) Type of request to be accepted. Returns one of the following values:

TDINFPGM and TDINFRPC also return this information.

Note These are new values. The old values (TDS-START-SQL and TDS-
START-RPC) still work, but you should use the new values from now on.

TDS-TRUE (1) Wait for input.

TDS-FALSE (0) Do not wait for input.

TDS-LANGUAGE-EVENT (1) Current request is a language request.

TDS-RPC-EVENT (3) Current request is an RPC.

TDS-DYNAMIC-EVENT (4) Current request is a dynamic SQL
request.

TDS-CURSOR-EVENT (5) Current request is a cursor request.

CHAPTER 3 Functions

101

TRAN-NAME
(O) Variable where the name of the current CICS, MVS or IMS TM
transaction is returned.

Return value The RETCODE argument can contain any of the return values listed in Table
3-9.

Table 3-9: TDGETREQ return values

Examples Example 1
The following code fragment illustrates the use of TDSNDDON and
TDGETREQ in a Gateway-Library long-running transaction using the IMS TM
explicit API. This example is taken from the sample program in Appendix E,
“Sample RPC Application for IMS TM (Explicit)”.

*--
 SEND ROWS TO CLIENT, MOVE ZEROES TO CTR-ROWS.
*--

 IF PARM-NR-ROWS = ZEROES THEN
MOVE ‘Y’ TO ALL-DONE-SW
 ELSE
 PERFORM SEND-ROWS
 UNTIL ALL-DONE OR CTR-ROWS >= PARM-NR-ROWS.
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-SOS (-257) Memory shortage. The host subsystem was unable
to allocate enough memory for the control block that
Gateway-Library tried to create. The operation
failed.

TDGETREQ

102

 MOVE ZERO TO CTR-ROWS
 END-IF.
SEND-DONE.
 IF PARM-NR-ROWS = ZEROES THEN
 MOVE TDS-ENDRPC TO GWL-SEND-DONE
 ELSE
 MOVE TDS-ENDREPLY TO GWL-SEND-DONE.
*--
 ISSUE SEND DONE TO CLIENT
*--
 CALL ‘TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS,
 CTR-ROWS,
 TDS-ZERO,
 GWL-SEND-DONE.

[check return code]

 IF PARM-NR-ROWS = ZEROES THEN
 PERFORM FREE-ALL-STORAGE
 GOBACK.
*--
 GET NEXT CLIENT REQUEST
*--
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-RPC-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION
 GWL-REQ-TYPE, GWL-RPC-NAME.
[check return code]

 PERFORM FREE-ALL-STORAGE.
 GOBACK.

Example 2
The following code fragment illustrates the use of TDSNDDON and
TDGETREQ in a Gateway-Library transaction using the IMS TM implicit API.
This example is taken from the sample program in Appendix D, “Sample RPC
Application for IMS TM (Implicit)”.

*--
 SEND-ROWS
*---
 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.

CHAPTER 3 Functions

103

 FINISH-REPLY.

 CALL ‘TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS, CTR-ROWS,
 TDS-ZERO, TDS-ENDRPC.

[check return code]

 * --
 * Get next client request
 * --
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-RPC-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION,
 GWL-REQ-TYPE, GWL-RPC-NAME.
 EVALUATE GWL-RC
 WHEN ZEROES
 GO TO READ-IN-USER-PARM
 WHEN TDS-RESULTS-COMPLETE
 PERFORM FREE-ALL-STORAGE
 WHEN TDS-CONNECTION-TERMINATED
 PERFORM FREE-ALL-STORAGE
 WHEN OTHER
 MOVE ‘TDGETREQ’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-EVALUATE.

Usage Note IMS TM Users: Transactions running under the IMS TM implicit API
do not support true long-running transactions. See “For IMS TM users” on
page 105 in this section for IMS TM-specific information.

• Use TDGETREQ in long-running transactions to determine whether more
requests are arriving. If more requests are arriving, TDGETREQ:

• Indicates whether the request is an RPC or a language request
(TDGETREQ gets this information from the login packet).

• Returns the transaction name.

• Accepts the request.

TDGETREQ

104

• TDACCEPT cannot be used more than once in an application, and it is
always used to accept the first client request received. When a long-
running transaction or WFI transaction accepts multiple client requests,
the transaction uses TDACCEPT to accept the first request and TDGETREQ
to accept subsequent requests. Because all requests do not need to be the
same type, TDGETREQ also indicates the type of request. For example,
one may be an RPC, the next may be a SQL language request.

• TDGETREQ is used with WFI and explicit transactions under IMS TM and
for CONVERSATIONAL-type transactions under CICS.

• TDINFRPC also returns the type of request, as well as the name of the RPC
that called the current transaction.

• After a TDGETREQ call, continue coding just as you would after
TDACCEPT.

• TDGETREQ follows TDSNDDON in a long-running or WFI transaction.

• In a long-running transaction: To keep the connection open after
TDSNDDON returns results for the previous client request, the CONN-
OPTIONS argument of TDSNDDON must be set to TDS-ENDREPLY.
Otherwise, the conversation shuts down and TDGETREQ returns
TDS-CONNECTION-TERMINATED.

• In a WFI transaction: The CONN-OPTIONS argument of TDSNDDON
must be set to TDS-ENDRPC. TDS-ENDREPLY is not supported for
IMS TM implicit transactions.

• TDGETREQ puts the transaction into RECEIVE state.

• For each new request, the transaction reads in a new login packet.
The login packet indicates which type of request is being sent.

• You can use long-running transactions with both half-duplex and full-
duplex connections.

• When a request is present, TDGETREQ returns TDS-OK. When no request
is present, the TDGETREQ action depends on the value of WAIT-OPTION:

• When WAIT-OPTION is TDS-FALSE, TDGETREQ returns TDS-
CONNECTION-TERMINATED.

• When WAIT-OPTION is TDS-TRUE, TDGETREQ waits for another
request; if the transaction stops, TDGETREQ returns TDS-
CONNECTION-TERMINATED.

CHAPTER 3 Functions

105

For IMS TM users

• Using the implicit API:

The implicit API does not support true long-running transactions.
However, if an implicit IMS TM transaction is defined as WFI, it can
accept multiple requests from any number of workstations for the same
mainframe transaction.

To use TDGETREQ properly with the implicit API, the transaction must be
a WFI transaction, or the message region that the transaction runs in must
have PWFI=Y (Pseudo-Wait-For-Input) specified.

• Using the explicit API:

Programs using the explicit API use the same Gateway-Library functions
and parameters as CICS programs. Comments in this section apply to
explicit IMS TM transactions and CICS transactions.

See also Related functions

• TDSNDDON on page 211

Related topics

• “Communication states” on page 19

• “The login packet” on page 54

• “Long-running transactions” on page 55

TDGETSOI

106

TDGETSOI
Description Queries the Shift Out/Shift In (SO/SI) processing settings for a column or

parameter.

Note This function is used with the Japanese Conversion Module (JCM).

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 OBJECT-TYPE PIC S9(9) USAGE COMP SYNC.
01 OBJECT-NUMBER PIC S9(9) USAGE COMP SYNC.
01 STRIP-SOSI PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETSOI’ USING TDPROC, RETCODE, OBJECT-TYPE,
OBJECT-NUMBER, STRIP-SOSI.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-10 on page 107.

OBJECT-TYPE
(I) Type of object to be checked. This argument specifies which type of
object is checked by this call: a column in a return row or a return parameter.

Assign OBJECT-TYPE one of the following values:

OBJECT-NUMBER
(I) Order number of the column or parameter being checked.

If the object is a column, this is the position of the column in the row,
counting from left to right. Columns are numbered sequentially with the
leftmost column in a row number 1.

If the object is a return parameter, this is the number of the parameter with
the value that is being checked. All parameters are counted, whether or not
they are return parameters. Parameters are numbered sequentially with the
first parameter number 1.

TDS-OBJECT-COL (1) Object is a column in a return row.

TDS-OBJECT-PARM (2) Object is a return parameter.

CHAPTER 3 Functions

107

STRIP-SOSI
(O) The SO/SI processing setting being used for this column or parameter.

STRIP-SOSI returns one of the following values:

Return value The RETCODE argument can contain any of the return values listed in Table
3-10.

Table 3-10: TDGETSOI return values

Examples The following code fragment uses TDGETSOI to replace SO/SI codes with
blanks before retrieving parameters and again before returning data to the
client. This example is not included on the Open ServerConnect API tape,
but is available to Japanese customers on the Japanese Conversion Module
tape.

 **
 PROCEDURE DIVISION.
 **
 CALL ‘TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
 *
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.
 *
 CALL ‘TDRESULT’ USING GWL-PROC, GWL-RC.
 *
 * get the information of sosi
 *
 MOVE TDS-OBJECT-PARM TO PRM-01-OBJ-TYPE.
 MOVE PRM-01-ID TO PRM-01-OBJ-ID.

TDS-STRIP-SOSI (0) SO/SI codes are stripped before being sent to the
client. This is the default.

TDS-BLANK-SOSI (1) SO/SI codes are converted to blanks before being
sent to the client.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-FLAGS (-176) Invalid padding option for a field.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDGETSOI

108

 CALL ‘TDGETSOI’ USING GWL-PROC, GWL-RC,
 PRM-01-OBJ-TYPE,
 PRM-01-OBJ-ID,
 PRM-01-STRIP-SOSI.
 *
 IF PRM-01-STRIP = TDS-STRIP-SOSI
 THEN
 *
 * specify the embedded blanks to the parameter
 *
 MOVE TDS-BLANK-SOSI TO PRM-01-STRIP-SOSI
 CALL ‘TDSETSOI’ USING GWL-PROC, GWL-RC,
 PRM-01-OBJ-TYPE,
 PRM-01-OBJ-ID,
 PRM-01-STRIP-SOSI
 *
 END-IF
 *
 MOVE TDSCHAR TO PRM-01-HOST-TYPE.
 *
 MOVE LENGTH OF PRM-01-DATA TO PRM-01-MAX-LEN.
 *
 CALL ‘TDRCVPRM’ USING GWL-PROC, GWL-RC,
 PRM-01-ID,
 PRM-01-AREA,
 PRM-01-HOST-TYPE,
 PRM-01-MAX-LEN,
 PRM-01-ACT-LEN.
 * CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC,
 COL-01-NUM,
 COL-01-HOST-TYPE,
 COL-01-HOST-LEN,
 COL-01-AREA,
 COL-01-NULL-INDICATOR,
 TDS-FALSE,
 COL-01-CLIENT-TYPE,
 COL-01-CLIENT-LEN,
 COL-01-NAME,
 COL-01-NAME-LEN.
 *
 * get the information of sosi
 *
 MOVE TDS-OBJECT-COL TO COL-01-OBJ-TYPE.
 MOVE COL-01-NUM TO COL-01-OBJ-ID.
 CALL ‘TDGETSOI’ USING GWL-PROC, GWL-RC,
 COL-01-OBJ-TYPE,

CHAPTER 3 Functions

109

 COL-01-OBJ-ID,
 COL-01-STRIP-SOSI.
 *
 IF COL-01-STRIP-SOSI = TDS-STRIP-SOSI
 THEN
 *
 * specify the embedded blanks to the column
 *
 MOVE TDS-BLANK-SOSI TO COL-01-STRIP-SOSI
 CALL ‘TDSETSOI’ USING GWL-PROC, GWL-RC,
 COL-01-OBJ-TYPE,
 COL-01-OBJ-ID,
 COL-01-STRIP-SOSI
 END-IF
 *
 *
 PERFORM FETCH-AND-SEND-ROWS UNTIL ALL-DONE.

Usage • Use TDGETSOI to determine whether SO/SI codes in double-byte
character strings are stripped or converted to blanks before results are
returned to the client.

• SO/SI codes are used with character datatypes to set off double-byte
characters. Graphic datatypes do not use SO/SI codes.

• Replacing SO/SI codes with blanks maintains the length of the string.
Otherwise, if SO/SI codes are stripped, the result length is shorter than the
source length.

• For more information about Shift Out and Shift In codes, read “Character
sets” on page 17 and “Processing Japanese client requests” on page 59.

See also Related functions

• TDSETSOI on page 200

Related topics

• “Character sets” on page 17

• “Processing Japanese client requests” on page 59

TDGETUSR

110

TDGETUSR
Description Gets user login information from the client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 ACCESS-CODE PIC X(32).
01 USER-ID PIC X(32).
01 PASSWORD PIC X(32).
01 SERVER-NAME PIC X(32).
01 CLIENT-CHARSET PIC X(32).
01 NATIONAL-LANGUAGE PIC X(32).
01 SERVER-CHARSET PIC X(32).01 SERVER-DBCS PIC X(32).
01 APPNAME-ID PIC X(32).CALL ’TDGETUSR’ USING TDPROC,

RETCODE, ACCESS-CODE,
 USER-ID, PASSWORD, SERVER-NAME,
 CLIENT-CHARSET, NATIONAL-LANGUAGE,
 SERVER-CHARSET, SERVER-DBCS,
 APPNAME-ID.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-11 on page 112.

ACCESS-CODE
(I) Variable containing an access code that authorizes this application to
retrieve a client password. TDGETUSR gets this information from the
mainframe customization module.

USER-ID
(O) Variable where the client user ID is returned to the application. This is
the user ID the client uses to log into the TRS.

CHAPTER 3 Functions

111

PASSWORD
(O) Variable where the client password is returned to the application. This is
the password the client uses when logging into the TRS.

Note If an access code is required and it does not match the access code
specified during mainframe customization, the PASSWORD field is set to
blanks.

SERVER-NAME
(O) Variable where the name of the server specified by the client is returned.
For workstation clients, this is the name of the TRS used to access this Open
ServerConnect application.

CLIENT-CHARSET
(O) Variable where the name of the character set used by the client is
returned. This information is provided in the client login packet.

NATIONAL-LANGUAGE
(O) Variable where the name of the national language used by the client is
returned. This information is provided in the client login packet. If no
national language is specified, the default is U.S. English.

SERVER-CHARSET
(O) Variable where information about the treatment of single-byte
characters is returned. This value is set during customization.

If SERVER-DBCS indicates that double-byte character sets are not
supported (SERVER-DBCS is NONE), SERVER-CHARSET returns the
name of the default single-byte character set used by Gateway-Library
programs. The default character set is used in the following cases:

• The client login packet does not specify a character set.

• The client login packet specifies a character set, but Gateway-Library
cannot find that character set in the table of character set names.

If SERVER-DBCS indicates that double-byte character sets are supported
(SERVER-DBCS is KANJI), SERVER-CHARSET indicates how single-byte
characters are treated.

Single-byte characters can be treated as either:

LOWERCASE Lowercase letters (roman alphabet)

KANA Hankaku katakana (single-byte Japanese characters)

TDGETUSR

112

SERVER-DBCS
(O) DBCS support indicator. This value indicates whether the mainframe
system is using double-byte kanji characters or only single-byte characters.
TDGETUSR gets this information from the mainframe customization
module.

APPNAME-ID
(O) Name of the client application (from the client login record).
The application name is set on the client side via a dbsetlapp call,
and forwarded to the mainframe by the TRS. APPNAME-ID is typically
used to pass unique identifier information about the client application.

Return value The RETCODE argument can contain any of the return values listed in Table
3-11.

Table 3-11: TDGETUSR return values

Examples The following code fragment illustrates the use of TDGETUSR to verify the
client login information. The program must provide an access code—TOP
SECRET—for permission to access the user’s password. This example is taken
from the sample program, SYCCSAR2, in Appendix B, “Sample RPC
Application for CICS”.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.

 * TDRESULT to make sure we were started via RPC request

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

KANJI Double-byte characters are supported.

NONE Double-byte characters are not supported.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

CHAPTER 3 Functions

113

 IF GWL-RC NOT = TDS-PARM-PRESENT THEN
 PERFORM TDRESULT-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Verify user login information

 MOVE ’TOP SECRET’ TO GU-ACCESS-CODE.

 CALL ’TDGETUSR’ USING GWL-PROC, GWL-RC, GU-ACCESS-CODE,
 GU-USER-ID, GU-PASSWORD, GU-SERVER-NAME,
 GU-CLIENT-CHARSET, GU-NATIONAL-LANG,
 GU-SERVER-CHARSET, GU-SERVER-DBCS, GU-APP-ID.

 IF GWL-RC NOT = TDS-OK THEN
 PERFORM TDGETUSR-ERROR
 GO TO END-PROGRAM
 END-IF.

Usage • TDGETUSR allows a mainframe server application to retrieve client
information from the login packet. This information includes:

• The user ID and password the client used to log into the TRS

• The name of the TRS through which the request is sent

• The national language used by the client

• The character set used by the client

• TDGETUSR also retrieves customization information from the mainframe
customization module. This information includes:

• The default single-byte character set used by Gateway-Library

• How single-byte characters are treated in DBCS

• A security access code that must be entered to retrieve users’ login
passwords

• TDGETUSR is especially useful to customers who provide their own
security or accounting functions. It enables the program to uniquely
identify each user of the Open ServerConnect product or application.

TDINFACT

114

• TDGETUSR prevents unauthorized access to a client password by
requiring an access code. Unless the correct access code is specified in the
ACCESS-CODE argument, the password is not returned to the variable
specified in PASSWORD. In this case, TDGETUSR returns TDS-OK,
but leaves PASSWORD blank.

Note You can deactivate this feature, allowing the program to retrieve the
password without an access code.

See also Related functions

• TDACCEPT on page 70

Related topics

• “Character sets” on page 17

• “The login packet” on page 54

• “Customization” on page 36

TDINFACT
Description Retrieves information about Gateway-Library accounting.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 ACCOUNTING-FLAG PIC S9(4) USAGE COMP SYNC.
01 ACCOUNTING-FILENAME PIC X(8) VALUE IS SPACES.
01 MAXNUM-ACCT-RECORDS PIC 9(9) USAGE COMP SYNC.

CALL 'TDINFACT’ USING IHANDLE, RETCODE, ACCOUNTING-FLAG,
ACCOUNTING-FILENAME MAXNUM-ACCT-RECORDS.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-12 on page 115.

CHAPTER 3 Functions

115

ACCOUNTING-FLAG
(O) Accounting on/off indicator. This argument returns one of the following
values:

ACCOUNTING-FILENAME
(O) Variable where the name of the accounting log is returned.

Under CICS: This is the DATASET name from the CICS File Control Table
(FCT) entry that describes the VSAM file used for this log. As installed,
this name is SYTACCT1.

Under IMS TM and MVS: Leave this field blank. IMS TM and MVS ignore
this value.

MAXNUM-ACCT-RECORDS
(O) Accounting log record limit.

Under CICS: This is the maximum number of records to be allocated for this
accounting file. A value of -1 indicates the system maximum.

Under IMS TM: The IMS TM system log does not have a limit.

Under MVS: Use -1. The size of the log is determined by the space allocated
to the sequential file used as the MVS log.

Return value The RETCODE argument can contain any of the return values listed in Table
3-12.

Table 3-12: TDINFACT return values

TDS-TRUE (1) Accounting is on.

TDS-FALSE (0) Accounting is off.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDINFACT

116

Examples The following code fragment processes a request for accounting information
and returns that information to the client. This example is based on the sample
program in Appendix G, “Sample Tracing and Accounting Program” which
runs under CICS.

 *--
 TDINFACT.
 *--
 MOVE LENGTH OF GWL-INFACT-STATUS TO WRKLEN1.
 MOVE LENGTH OF CN-INFACT-STATUS TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 MOVE ’TDESCRIB’ TO MSG-SRVLIB-FUNC.
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN, TDSINT4,
 WRKLEN1, GWL-INFACT-STATUS, TDS-ZERO,
 TDS-FALSE, TDSINT4, WRKLEN1,
 CN-INFACT-STATUS, WRKLEN2.
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFACT-EXIT
 END-IF.
 MOVE LENGTH OF GWL-INFACT-FILENAME TO WRKLEN1.
 MOVE LENGTH OF CN-INFACT-FILENAME TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN, TDSCHAR,
 WRKLEN1, GWL-INFACT-FILENAME,
 TDS-ZERO, TDS-FALSE, TDSCHAR, WRKLEN1,
 CN-INFACT-FILENAME, WRKLEN2.
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFACT-EXIT
 END-IF.
 MOVE LENGTH OF GWL-INFACT-RECORDS TO WRKLEN1.
 MOVE LENGTH OF CN-INFACT-RECORDS TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN, TDSINT4,
 WRKLEN1, GWL-INFACT-RECORDS, TDS-ZERO,
 TDS-FALSE, TDSINT4, WRKLEN1,
 CN-INFACT-RECORDS, WRKLEN2.
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFACT-EXIT
 END-IF.
 CALL ’TDINFACT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFACT-STATUS,
 GWL-INFACT-FILENAME,

CHAPTER 3 Functions

117

 GWL-INFACT-RECORDS.
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFACT’ TO MSG-SRVLIB-FUNC
 GO TO TDINFACT-EXIT
 END-IF.
 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC.
 *--
 TDINFACT-EXIT.
 *--
 EXIT.

Usage • You use this function to determine whether system-wide accounting
recording is on or off and, under CICS, to learn the name of the accounting
log.

• This function returns accounting information recorded at the mainframe
server. The TRS administrator can turn local accounting recording on and
off at the TRS. Accounting at the mainframe and at the TRS are
independent of each other.

• Gateway-Library accounting records the total number of TDS bytes,
packets, messages, rows, requests, and cancels sent and received by Open
ServerConnect from the time a TDACCEPT function initializes the TDS
environment until a TDFREE is issued, and the number of seconds and
milliseconds that elapsed during the conversation.

• To set accounting recording on or off, use TDSETACT.

The accounting flag is set to off when Gateway-Library is initialized.
It remains off until the program explicitly turns it on with TDSETACT,
then it remains on until the program explicitly turns it off with TDSETACT.
No other Gateway-Library functions turn accounting on or off.

• Accounting information is written to the accounting log after TDFREE is
issued.

• Under CICS: The accounting log is a VSAM ESDS file.

• Under IMS TM: The accounting log is the IMS TM system log.
For more information on this log, see your IMS TM documentation.

• Under MVS: The accounting log is a sequential file. The DDNAME
of this file is defined in SYGWXCPH.

• See the Installation and Administration Guide for Open ServerConnect for
an explanation of the Gateway-Library accounting facility, instructions for
using it, and the layout of the CICS accounting log.

TDINFBCD

118

See also Related functions

• TDACCEPT on page 70

• TDFREE on page 96

• TDSETACT on page 173

Related documents

• Installation and Administration Guide for Open ServerConnect

TDINFBCD
Description Retrieves the length and number of decimal places for a specified decimal

column or parameter.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9)USAGE COMP SYNC.
01 RETCODE PIC S9(9)USAGE COMP SYNC.
01 OBJECT-TYPE PIC S9(9)USAGE COMP SYNC.
01 OBJECT-NUMBER PIC S9(9)USAGE COMP SYNC.
01 BCD-LENGTH PIC S9(9)USAGE COMP SYNC.
01 BCD-NUMBER-DECIMAL-PLACES PIC S9(9)USAGE COMP SYNC.

CALL ’TDINFBCD’ USING TDPROC,RETCODE,OBJECT-TYPE, OBJECT-
NUMBER,BCD-LENGTH, BCD-NUMBER-DECIMAL-PLACES.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-13 on page 119.

OBJECT-TYPE
(I) Object type indicator. Indicates whether the object being queried is a
parameter or a column. Assign this argument one of the following values:

TDS-OBJECT-COL (1) Object is a column in a return row.

TDS-OBJECT-PARM (2) Object is a parameter.

CHAPTER 3 Functions

119

OBJECT-NUMBER
(I) Number of the column or parameter.

If the object is a column, this is the position of the column in the row,
counting from left to right. Columns are numbered sequentially; the leftmost
column in a row is number 1.

If the object is a return parameter, this is the number of the parameter with
the value that is being checked. All parameters are counted, whether or not
they are return parameters. Parameters are numbered sequentially; the first
parameter is number 1.

BCD-LENGTH
(O) Variable where the length of the packed decimal field is returned.
When used for Sybase numeric/decimal, this is a precision of the numeric or
decimal field.

BCD-NUMBER-DECIMAL-PLACES
(O) Variable where the number of decimal places in the packed decimal field
is returned.

Return value The RETCODE argument can contain any of the return values listed in Table
3-13.

Table 3-13: TDINFBCD return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDINFBCD

120

Examples The following code fragment shows two methods of converting datatypes.
One uses TDESCRIB to convert data from the DB2 datatype DECIMAL
(TDSDECIMAL) to TDSFLT8. The other uses TDCONVRT to convert data from
the DB2 datatype DECIMAL (TDSDECIMAL) to the DB-Library datatype
DBMONEY (TDSMONEY).
This program uses TDSETBCD to set the number of decimal places in the
column to 2; it uses TDINFBCD to check how many decimal places are in the
column.
 This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Here we let TDESCRIB convert from TDSDECIMAL to TDSFLT8.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-JC.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-JC.
 MOVE LENGTH OF EMPLOYEE-JC TO WRKLEN1.
 MOVE LENGTH OF CN-JC TO WRKLEN2.
 MOVE TDSDECIMAL TO DB-HOST-TYPE.
 MOVE TDSFLT8 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * We must inform the Server Library how many decimal places
 * are in the EMPLOYEE-JC column.

 CALL ’TDSETBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, TDS-DEFAULT-LENGTH,
 GWL-SETBCD-SCALE.

 * Demonstrate getting decimal column information.

 CALL ’TDINFBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, GWL-INFBCD-LENGTH,
 GWL-INFBCD-SCALE.

 * Here we intend to use TDCONVRT to convert from TDSDECIMAL to
 * TDSMONEY, so we point TDESCRIB to the output of TDCONVRT,
 * rather than the original input.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, WRK-EMPLOYEE-SAL.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-SAL.
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN1.
 MOVE LENGTH OF CN-SAL TO WRKLEN2.
 MOVE TDSMONEY TO DB-HOST-TYPE.
 MOVE TDSMONEY TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

CHAPTER 3 Functions

121

 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.
 *---
 FETCH-AND-SEND-ROWS.
 *---
 EXEC SQL FETCH ECURSOR INTO :EMPLOYEE-FIELDS END-EXEC.

 IF SQLCODE = 0 THEN

 * Convert from DB2 decimal (TDSDECIMAL) to dblib MONEY.

 MOVE LENGTH OF EMPLOYEE-SAL TO WRKLEN1
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN2

 CALL ’TDCONVRT’ USING GWL-PROC, GWL-RC,
 GWL-CONVRT-SCALE, TDSDECIMAL,
 WRKLEN1, EMPLOYEE-SAL, TDSMONEY,
 WRKLEN2, WRK-EMPLOYEE-SAL

 * send a row to the client

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 ADD 1 TO PARM-RETURN-ROWS

 IF GWL-RC = TDS-CANCEL-RECEIVED THEN
 MOVE ’Y’ TO ALL-DONE-SW
 END-IF

 ELSE IF SQLCODE = +100 THEN
 MOVE ’Y’ TO ALL-DONE-SW

 ELSE
 MOVE ’Y’ TO ALL-DONE-SW
 PERFORM FETCH-ERROR
 END-IF.

 *---
 GET-PARM-INFO.
 *---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L
 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.

TDINFBCD

122

 *---
 DESCRIBE-COLUMN.
 *---
 SET ADDRESS OF LK-DESCRIBE-HV TO DB-DESCRIBE-HV-PTR.
 SET ADDRESS OF LK-COLUMN-NAME-HV TO DB-COLUMN-NAME-HV-PTR.
 ADD 1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 DB-HOST-TYPE, WRKLEN1, LK-DESCRIBE-HV,
 DB-NULL-INDICATOR, TDS-FALSE,
 DB-CLIENT-TYPE, WRKLEN1,
 LK-COLUMN-NAME-HV, WRKLEN2.

Usage • Packed decimal data is supported in COBOL, but not in DB-Library or
Client-Library.

• Numeric and Sybase decimal are used as Client-Library decimal
datatypes.

Note Although the name of this function implies BCD data, in COBOL
this function is actually used with packed decimal data.

• A server application uses this function to retrieve length information about
a column or parameter containing packed decimal information, and to
retrieve information about precision and scale of a column or parameter
containing Sybase numeric or decimal information.

• If this function is used to query an object that does not contain decimal
values, it returns the length, but the BCD-NUMBER-DECIMAL-PLACES
argument is ignored.

• When used to get information about a column, TDINFBCD must be
preceded by a TDESCRIB call for the specified column.

• Use this function after TDINFPRM to find precision and scale of a Sybase
numeric or decimal parameter.

See also Related functions

• TDESCRIB on page 88

• TDSETBCD on page 177

CHAPTER 3 Functions

123

TDINFLOG
Description Determines what types of mainframe server tracing have been set.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 GLOBAL-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 API-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 TDS-HEADER-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 TDS-DATA-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 TRACE-ID PIC S9(9) USAGE COMP SYNC.
01 TRACE-FILENAME PIC X(8).
01 MAXNUM-TRACE-RECORDS PIC S9(9) USAGE COMP SYNC.

CALL ’TDINFLOG’ USING IHANDLE,RETCODE,GLOBAL-TRACE-FLAG,
API-TRACE-FLAG,TDS-HEADER-TRACE-FLAG TDS-DATA-TRACE-FLAG,
TRACE-ID,TRACE-FILENAME, MAXNUM-TRACE-RECORDS.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-14 on page 125.

GLOBAL-TRACE-FLAG
(O) Global/specific trace indicator. This argument indicates whether tracing
is on or off, and whether it is global (traces all transactions) or applies to a
specific set of transactions. If tracing is set off, only errors are logged.

The GLOBAL-TRACE-FLAG argument returns one of the following values:

API-TRACE-FLAG
(O) The API tracing on/off indicator. This is a Boolean value that indicates
whether tracing is turned on or off for Gateway-Library calls. This argument
returns one of the following values:

TDS-NO-TRACING (0) All tracing is off.

TDS-TRACE-ALL-RPCS (1) Global tracing is on.

TDS-TRACE-SPECIFIC-RPCS (2) Specific tracing is on.

TDS-TRACE-ERRORS-ONLY (3) Only errors are logged.

TDS-TRUE (1) API tracing is on.

TDS-FALSE (0) API tracing is off.

TDINFLOG

124

TDS-HEADER-TRACE-FLAG
(O) The TDS header tracing on/off indicator. This is a Boolean value that
indicates whether tracing is turned on or off for TDS headers. This argument
returns one of the following values:

TDS-DATA-TRACE-FLAG
(O) The TDS data tracing on/off indicator. This is a Boolean value that
indicates whether tracing is turned on or off for TDS data. This argument
returns one of the following values:

TRACE-ID
(O) The trace entry identifier.

Under CICS: This is the tag for the auxiliary file entry.

Under IMS TM and MVS: Leave this field blank. This argument is ignored.

TRACE-FILENAME
(O) Name of the trace/error log.

Under CICS: This is the DATASET name from the CICS File Control Table
(FCT) entry that describes the VSAM file used for this log. As installed,
this name is SYTDLOG1.

Under IMS TM and MVS: Leave this field blank. IMS TM and MVS ignore
this value.

MAXNUM-TRACE-RECORDS
(O) Trace log record limit.

Under CICS: This is the maximum number of records that can be written to
this file. A value of -1 indicates the system maximum.

Under IMS TM: The IMS TM system log does not have a limit.

Under MVS: The limit is the amount of space on the log file.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
14 on page 125.

TDS-TRUE (1) Header tracing is on.

TDS-FALSE (0) Header tracing is off.

TDS-TRUE (1) Data tracing is on.

TDS-FALSE (0) Data tracing is off.

CHAPTER 3 Functions

125

Table 3-14: TDINFLOG return values

Examples The following code fragment shows how to use TDINFLOG at the beginning of
a program to determine which types of tracing are currently enabled.
This example is taken from the sample program in Appendix C, “Sample
Language Application for CICS”.

 * Establish gateway environment
 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
 * Turn on local tracing if not on globally or locally
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS.
 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-ALL-RPCS
 AND GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 MOVE 1 TO TRACING-SET-SW
 PERFORM LOCAL-TRACING
 END-IF.
 * Accept client request
 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.
 *--
 LOCAL-TRACING.
 *--
 CALL ’TDSETSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 TRACING-SET-SW,
 GWL-SETSPT-TRACE-LEVEL,
 GWL-SETSPT-RPC-NAME,
 GWL-SETSPT-RPC-NAME-L.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-LOG-ERROR(-258) Attempt to write to the log file failed.

TDINFLOG

126

Usage • You use this function to determine whether tracing is turned on,
and whether the traces are global or for specific transactions only.
The following kinds of tracing are supported:

• API call tracing. Traces Gateway-Library calls.

Under CICS: Uses the CICS auxiliary trace facility.

Under IMS TM: Uses the IMS TM system log.

Under MVS: Uses a sequential file.

• TDS header tracing. Keeps track of the 8-byte TDS headers being sent
to and from the mainframe server.

• TDS data tracing. Traces both incoming and outgoing TDS data.

• Trace records are written to the trace log.

• The trace log is also the error log.

• To turn tracing on or off and specify whether it is global or specific,
call TDSETLOG.

• Specific tracing can be set for 1–8 transactions. To specify tracing for
individual transactions, call TDSETSPT. To find out whether tracing is on
for a particular transaction, call TDINFSPT. To list the transactions for
which specific tracing is enabled, call TDLSTSPT.

• TDINFLOG returns trace information recorded at the mainframe server.
The TRS administrator can turn tracing on and off at the TRS. Tracing at
the mainframe and at the TRS are independent of each other.

• See Installation and Administration Guide for Open ServerConnect for an
explanation of the trace facility, instructions for using it, and the layout of
the CICS trace log.

See also Related functions

• TDACCEPT on page 70

• TDFREE on page 96

• TDINFSPT on page 138

• TDSETLOG on page 186

• TDSETSPT on page 205

• TDWRTLOG on page 243

CHAPTER 3 Functions

127

TDINFPGM
Description Retrieves information about the current client request.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 TDS-VERSION PIC S9(9) USAGE COMP SYNC.
01 LONGVAR-TRUNC-FLAG PIC S9(9) USAGE COMP SYNC.
01 ROW-LIMIT PIC S9(9) USAGE COMP SYNC.
01 REMOTE-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 USER-CORRELATOR PIC S9(9) USAGE COMP SYNC.
01 DB2GW-OPTIONS PIC S9(9) USAGE COMP SYNC.
01 DB2GW-PID PIC X(8).
01 REQUEST-TYPE PIC S9(9) USAGE COMP SYNC.

CALL 'TDINFPGM’ USING TDPROC,RETCODE, TDS-VERSION,
 LONGVAR-TRUNC-FLAG,ROW-LIMIT,
 REMOTE-TRACE-FLAG,
 USER-CORRELATOR,DB2GW-OPTIONS,
 DB2GW-PID, REQUEST-TYPE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-16 on page 129.

TDS-VERSION
(O) Variable where the version of TDS being used is returned. The version
value can be any of the following listed in Table 3-15 on page 128.

TDINFPGM

128

Table 3-15: TDS-VERSION values

This value must be the same as the version level specified at the client.

LONGVAR-TRUNC-FLAG
(O) Variable where the truncation indicator for TDSLONGVARCHAR fields
is returned. It indicates what happens when TDSLONGVARCHAR fields over
255 characters are returned to the client.

One of the following values is returned in this variable:

If 0 is specified, it is the responsibility of the Gateway-Library programmer
to determine what action is taken.

Note TDSLONGVARCHAR truncation may also be specified at the mainframe
during customization. If truncation is set on at either the mainframe or the TRS,
truncation occurs.

ROW-LIMIT
This argument is ignored.

REMOTE-TRACE-FLAG
(O) Variable that contains the TRS tracing indicator. This is a Boolean value
that indicates whether tracing is on or off at the TRS.

One of the following values is returned in this variable:

TDS-VERSION-20 PIC S9(9) COMP VALUE 512

TDS-VERSION-34 PIC S9(9) COMP VALUE 832

TDS-VERSION-40 PIC S9(9) COMP VALUE 1024

TDS-VERSION-42 PIC S9(9) COMP VALUE 1056

TDS-VERSION-46 PIC S9(9) COMP VALUE 1120

TDS-VERSION-48 PIC S9(9) COMP VALUE 1152

TDS-VERSION-49 PIC S9(9) COMP VALUE 1168

TDS-VERSION-50 PIC S9(9) COMP VALUE 1280

TDS-VERSION-51 PIC S9(9) COMP VALUE 1296

TDS-TRUE (1) TDSLONGVARCHAR fields are truncated.

TDS-FALSE (0) TDSLONGVARCHAR fields are not truncated;
an error is returned instead.

TDS-TRUE (1) TRS tracing is on.

TDS-FALSE (0) TRS tracing is off.

CHAPTER 3 Functions

129

USER-CORRELATOR
(I) Information argument. You can use this argument for any purpose.

DB2GW-OPTIONS
This argument is ignored.

DB2GW-PID
This argument is ignored.

REQUEST-TYPE
(O) Variable where the type of client request is indicated. One of the
following values is returned:

TDGETREQ and TDINFRPC also return this information.

Note These are new values. The old values (TDS-START-SQL and TDS-
START-RPC) still work, but you should use the new values from now on.

Return value The RETCODE argument can contain any of the return values listed in Table
3-16.

Table 3-16: TDINFPGM return values

Examples The following code fragment illustrates the use of TDINFPGM to determine
what kind of request was received. This example is taken from the sample
program in Appendix C, “Sample Language Application for CICS”.

TDS-LANGUAGE-EVENT(1) Current request is a language
request.

TDS-RPC-EVENT (3) Current request is an RPC.

TDS-DYNAMIC-EVENT (4) Current request is a Dynamic SQL
request.

TDS-CURSOR-EVENT (5) Current request is a cursor request.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDINFPGM

130

* Establish gateway environment.
 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
* Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

 * Ensure kicked off via language request
 * (this could be handled more reasonably by TDRESULT)

 CALL ’TDINFPGM’ USING GWL-PROC, GWL-RC,
 GWL-INFPGM-TDS-VERSION,
 GWL-INFPGM-LONGVAR,
 GWL-INFPGM-ROW-LIMIT,
 GWL-INFPGM-REMOTE-TRACE,
 GWL-INFPGM-CORRELATOR,
 GWL-INFPGM-DB2GW-OPTION,
 GWL-INFPGM-DB2GW-PID,
 GWL-INFPGM-TYPE-RPC.

 IF GWL-INFPGM-TYPE-RPC NOT = TDS-START-SQL
 MOVE MSG-NOT-LANG TO MSG-TEXT
 MOVE LENGTH OF MSG-NOT-LANG TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

Usage • A server application uses TDINFPGM to get information about the client
request (remote program). This function can be used only by a server.

• This function returns the following information:

• The TDS version currently in use.

• Whether the request is an RPC, language, cursor or dynamic request.

• Whether LONG VARCHAR fields over 255 characters should be
returned to the client (in truncated form).

• Whether TRS tracing is on or off.

• TDINFPGM looks at both the TRS and mainframe customization settings
to determine whether truncation will occur, according to Table 3-17 on
page 131.

CHAPTER 3 Functions

131

Table 3-17: TDSLONGVARCHAR truncation rule

• The argument USER-CORRELATOR is available for sending site-specific
information.

See also Related documents

• Transaction Router Service User’s Guide for DirectConnect

TDINFPRM
Description Retrieves parameter type, datatype, and length information about a specified

RPC parameter.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 PARM-ID PIC S9(9) USAGE COMP SYNC.
01 DATATYPE PIC S9(9) USAGE COMP SYNC.
01 ACTUAL-DATA-LENGTH PIC S9(9) USAGE COMP SYNC.
01 MAX-DATA-LENGTH PIC S9(9) USAGE COMP SYNC.
01 PARM-STATUS PIC S9(9) USAGE COMP SYNC.
01 PARM-NAME PIC X(30).
01 PARM-NAME-LENGTH PIC S9(9) USAGE COMP SYNC.
01 USER-DATATYPE PIC S9(9) USAGE COMP SYNC.

CALL ’TDINFPRM’ USING TDPROC,RETCODE, PARM-ID,
 DATATYPE, ACTUAL-DATA-LENGTH,
 MAX-DATA-LENGTH, PARM-STATUS,PARM-NAME,
 PARM-NAME-LENGTH,USER-DATATYPE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

When TRS truncation flag
When TDCUSTOM truncation
flag TDSLONGVARCHAR fields

ON ON Truncated

ON OFF Truncated

OFF ON Truncated

OFF OFF Not truncated

TDINFPRM

132

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-18 on page 133.

PARM-ID
(I) Number of the parameter with the information that is requested.
Parameters are numbered sequentially; the first parameter is number 1.

DATATYPE
(O) Variable where the Open Client datatype of the parameter is returned.
The datatype is specified by the client.

ACTUAL-DATA-LENGTH
(O) Variable where the actual length of the parameter data is returned.
For TDSVARYCHAR, TDSVARYBIN, and TDSVARYGRAPHIC parameters,
this value does not include the 2 bytes for the “LL” length specification.

MAX-DATA-LENGTH
(O) Variable where the maximum length allowed for the parameter’s data is
returned. This value is specified by the client in the parameter definition.
For TDSVARYCHAR, TDSVARYBIN, and TDSVARYGRAPHIC parameters,
this value does not include the 2 bytes for the “LL” length specification.

PARM-STATUS
(O) Variable where the parameter’s status is returned. This argument
indicates whether the named parameter is a return parameter. It returns one
of the following values, depending on the TDS version you are using.

• For TDS 4.6:

• For TDS 5.0:

The client specifies the value of this argument.

PARM-NAME
(O) Variable where the name of the incoming parameter is stored. This is the
name given to the parameter by the client.

TDS-INPUT-VALUE (0) Parameter is not a return parameter.

TDS-RETURN-VALUE (1) Parameter is a return parameter.

TDS-INPUT-VALUE-NULLABLE
(32)

Parameter is a nullable non-
return parameter.

TDS-RETURN-VALUE-NULLABLE
(33)

Parameter is a nullable return
parameter.

CHAPTER 3 Functions

133

PARM-NAME-LENGTH
(O) Variable where the length of the parameter name is returned. The name
length is specified by the client when the RPC is sent.

USER-DATATYPE
(O) Variable where the user-assigned datatype for this parameter is stored.
This argument is used for return parameters only.

Return value The RETCODE argument can contain any of the return values listed in Table
3-18.

Table 3-18: TDINFPRM return values

Examples The following code fragment illustrates a typical use of TDINFPRM.
The transaction: calls TDNUMPRM to determine how many parameters to
retrieve; calls TDLOCPRM to ascertain the number of the parameter whose
information it wants; calls TDINFPRM for a description of the parameter;
calls TDRCVPRM to retrieve the parameter data.
This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-NO-PARM-PRESENT (103) No incoming parameters present. TDRCVPRM
cannot retrieve a parameter because no more
parameters were accepted. The operation failed.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

TDINFPRM

134

* Get number of parameters ... should be two

 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 IF GWL-NUMPRM-PARMS NOT = 2 THEN
 PERFORM TDNUMPRM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get return parameter information

 MOVE 1 TO GWL-INFPRM-ID.
 PERFORM GET-PARM-INFO.

 (IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE AND
 IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE-NULLABLE) THEN
 PERFORM TDINFPRM-NOT-RETURN-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 MOVE GWL-INFPRM-USER-DATA TO GWL-SETPRM-USER-DATA.
 MOVE GWL-INFPRM-ID TO GWL-SETPRM-ID.
 MOVE GWL-INFPRM-DATA-L TO GWL-SETPRM-DATA-L.
 MOVE GWL-INFPRM-TYPE TO GWL-SETPRM-TYPE.

 * Get department id parameter number from known name

 MOVE ’@parm2’ TO GWL-INFPRM-NAME.
 MOVE 6 TO GWL-INFPRM-NAME-L.

 CALL ’TDLOCPRM’ USING GWL-PROC, GWL-INFPRM-ID,
 GWL-INFPRM-NAME, GWL-INFPRM-NAME-L.

 * Get department parameter information

 PERFORM GET-PARM-INFO.

 IF GWL-INFPRM-TYPE NOT = TDSVARYCHAR THEN
 PERFORM TDINFPRM-NOT-CHAR-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get department parameter data

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 PARM-DEPT, GWL-INFPRM-TYPE,

CHAPTER 3 Functions

135

 GWL-INFPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.
 *---
 GET-PARM-INFO.
 *---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L
 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.

Usage • A server application uses this function to retrieve datatype and length
information about a parameter before it retrieves it. This can be any
supported type of parameter including cursor parameters.

• An application can request information about parameters in any order,
by specifying which parameter in the PARM-ID argument.

• The maximum number of parameters that can be retrieved is 255.

• Unless you already know the length and datatype of the incoming
parameter, you must issue a TDINFPRM call before each TDRCVPRM call.
TDRCVPRM needs to know the appropriate datatype and length to properly
set up for the incoming data.

• An application uses TDINFPRM only when the client request is an RPC or
a cursor command. Language requests do not have parameters.

• A server program can modify the data length of a parameter by calling
TDSETPRM before passing results back to the client.

• Each parameter has an actual data length and a maximum data length.
For standard fixed-length datatypes that do not allow nulls, both lengths
are the same. For variable-length fields, the lengths may vary.

For example, a TDSVARYCHAR parameter with a declared length of 30
may have data that is only 10 bytes long. In this case, the parameter’s
actual data length is 10 and its maximum data length is 30.

See also Related functions

• TDACCEPT on page 70

• TDNUMPRM on page 155

• TDRCVPRM on page 157

• TDSETPRM on page 192

TDINFRPC

136

TDINFRPC
Description Returns information about the current client request.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9)USAGE COMP SYNC.
01 RETCODE PIC S9(9)USAGE COMP SYNC.
01 REQUEST–TYPE PIC S9(9)USAGE COMP SYNC.
01 RPC–NAME PIC X(30).
01 COMM–STATE PIC S9(9)USAGE COMP SYNC.

CALL 'TDINFRPC' USING TDPROC, RETCODE, REQUEST–TYPE,
 RPC–NAME, COMM-STATE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-19 on page 137.

REQUEST-TYPE
(O) Type of request being accepted. Returns one of the following values:

TDINFPGM and TDGETREQ also return this information.

Note These are new values. The old values (TDS-START-SQL and TDS-
START-RPC) still work, but you should use the new values from now on.

RPC-NAME
(O) Variable where the name of the current client RPC is returned. If the
client request is not an RPC, this field contains blanks.

TDS-LANGUAGE-EVENT (1) Current request is a language
request.

TDS-RPC -EVENT (3) Current request is an RPC.

TDS-DYNAMIC-EVENT (4) Current request is a dynamic SQL
request.

TDS-CURSOR-EVENT (5) Current request is a cursor request.

CHAPTER 3 Functions

137

COMM–STATE
(O) Variable where the current communication state of the mainframe
transaction is stored. COMM–STATE is one of the following values:

TDSTATUS also returns this information.

See “Communication states” on page 19 for an explanation of
communication states.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
19 on page 137.

Table 3-19: TDINFRPC return values

Usage • Use TDINFRPC in long-running transactions to determine:

• The type of client request currently being processed

• The name of the current client request, if the request is an RPC

• Whether the transaction is in the correct communication state for
retrieving the next request (issuing TDGETREQ)

• Long-running transactions use TDGETREQ to retrieve each request that
follows the first request. TDGETREQ returns the request type and
transaction name for each client request it accepts.

• An application program can call TDINFRPC at any point in the program to
retrieve information about the RPC or communication state.

TDS-RESET (0) Client/server conversation for this transaction ended.

 If the current transaction is running under CICS or uses the IMS TM
explicit API, the transaction should exit as soon as possible.

 If the current transaction is a WFI transaction using the IMS TM implicit
API, the transaction can accept another client request by calling
TDGETREQ.

TDS-SEND (1) Transaction is in SEND state.

TDS-RECEIVE (2) Transaction is in RECEIVE state.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDINFSPT

138

• The Gateway-Library function, TDSTATUS, also returns the
communication state. TDSTATUS also returns TDS status information,
and standard communication error codes. Call TDSTATUS when all
incoming parameters are retrieved or after all results are sent.
Call TDINFRPC to learn the current communication state at all other times.

• To change the communication state:

• From RECEIVE state to SEND state, call TDRESULT. This shifts the
transaction into SEND state and cancels the current request.

• From SEND state to RECEIVE state, call TDSNDDON. This indicates
that all results are sent and processing for the current request ended.

• TDINFRPC is not a required call.

See also Related functions

• TDGETREQ on page 99

• TDINFPGM on page 127

• TDSNDDON on page 211

• TDSTATUS on page 232

Related topics

• “Communication states” on page 19

TDINFSPT
Description Indicates whether tracing is on or off for a specified transaction.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 TRACE-STATUS PIC S9(9) USAGE COMP SYNC.
01 TRACE-OPTION PIC S9(9) USAGE COMP SYNC.
01 TRANSACTION-ID PIC X(n).
01 TRANSACTION-ID-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDINFSPT’ USING IHANDLE, RETCODE, TRACE-STATUS,
 TRACE-OPTION, TRANSACTION-ID,
 TRANSACTION-ID-LENGTH.

CHAPTER 3 Functions

139

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-20 on page 140.

TRACE-STATUS
(O) Variable where the trace indicator for the specified transaction is
returned. This is a Boolean value that indicates whether tracing is on or off
for the transaction specified in this function.

This argument returns one of the following values:

TRACE-OPTION
(O) Variable where the type of tracing enabled for the specified transaction
is returned. This argument returns one of the following values:

TRANSACTION-ID
(I) Mainframe transaction identifier of the transaction for which the trace
status is requested.

Under CICS: This is the TRANSID from the CICS Program Control Table
(PCT).

Under IMS TM: This is the transaction name defined when the system is
generated.

Under MVS: This is the APPC transaction name defined in the transaction
profile.

TDS-TRUE (1) Tracing is on for this transaction.

TDS-FALSE (0) Tracing is off for this transaction.

TDS-SPT-API-TRACE (0x08) All Gateway-Library calls are traced.

TDS-SPT-ERRLOG (0x02) Error log recording is enabled.

TDS-SPT-TDS-DATA (0x01) TDS packet-tracing recording is
enabled.

TDINFSPT

140

TRANSACTION-ID-LENGTH
(O) Variable where the length of the TRANSACTION-ID is returned.
For graphic datatypes, this is the number of double-byte characters; for other
datatypes, it is the number of bytes.

Under CICS: For CICS Version 1.7, this value is always 4 or less. For later
versions, it is the actual length of the transaction ID, which can be greater
than 4.

Under IMS TM: This value is always 8 or less.

Under MVS: This is the APPC transaction name defined in the transaction
profile. This value is normally 8 or less.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
20 on page 140.

Table 3-20: TDINFSPT return values

Examples The following code fragment illustrates the use of TDINFSPT to determine
whether tracing is enabled for a particular transaction. This example is taken
from the sample program in Appendix G, “Sample Tracing and Accounting
Program” which runs under CICS.

 *--
 GET-TRACE-STATUS.
 *--
 * Determine whether global tracing is on.
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL, GWL-INFLOG-API,
 GWL-INFLOG-HEADER, GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 * If specific tracing is on, see if it’s on for this
 * transaction and turn on the tracing flag.
 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.
 MOVE LENGTH OF WRK-RPC TO WRKLEN1.
 CALL ’TDINFSPT’ USING GWL-INIT-HANDLE, GWL-RC,

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

CHAPTER 3 Functions

141

 GWL-INFSPT-STATUS, GWL-INFSPT-OPTIONS,
 WRK-RPC, WRKLEN1.
 IF GWL-RC NOT = TDS-OK AND
 GWL-RC NOT = TDS-ENTRY-NOT-FOUND THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFSPT’ TO MSG-SRVLIB-FUNC
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.
 IF GWL-INFSPT-STATUS = TDS-TRUE THEN
 MOVE ’Y’ TO TRACING-SW
 END-IF.

Usage • TDINFSPT indicates whether tracing for a specified transaction is currently
on or off.

• Transaction-level tracing occurs when TDSETLOG sets the global trace
flag to TDS-TRACE-SPECIFIC-RPCS and sets on one or more types of
tracing (for example, API tracing or header tracing). When the global trace
flag is set to TDS-TRACE-ALL-RPCS, all transactions are traced,
whether they have individual tracing turned on or not.

Use TDINFLOG to determine the setting of the global trace flag and to learn
what types of tracing are currently enabled. Use TDSETLOG to specify
those settings.

• Transaction-level tracing can be enabled for up to eight transactions at a
time.

• To learn how to set tracing on or off for a specified transaction,
see TDSETSPT on page 205.

• To learn how to get a list of all transactions for which tracing is currently
enabled, see TDLSTSPT on page 152.

• TDINFSPT governs tracing at the mainframe server. The TRS
administrator can turn tracing on and off at the TRS. Tracing at the
mainframe server and at the TRS are independent of each other.

• See the Installation and Administration Guide for Open ServerConnect for
an explanation of the Gateway-Library tracing facility, instructions for
using it, and the layout of the trace log.

See also Related functions

• TDINFLOG on page 123

• TDLSTSPT on page 152

TDINFUDT

142

• TDSETLOG on page 186

• TDSETSPT on page 205

• TDWRTLOG on page 243

Related documents

• Installation and Administration Guide for Open ServerConnect

TDINFUDT
Description Retrieves information about the client-defined datatype for a column.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 COLUMN-NUMBER PIC S9(9) USAGE COMP SYNC.
01 USER-DATATYPE PIC S9(9) USAGE COMP SYNC.

CALL ’TDINFUDT’ USING TDPROC, RETCODE, COLUMN-NUMBER,
 USER-DATATYPE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-21.

COLUMN-NUMBER
(I) Number of the column with the datatype that is being queried.
Columns are numbered sequentially; the first column in a row is number 1.

USER-DATATYPE
(O) Variable where the user-defined datatype is returned. This can be any
datatype assigned to the column by a client.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
21 on page 143.

CHAPTER 3 Functions

143

Table 3-21: TDINFUDT return values

Examples The following code fragment illustrates a typical use of TDINFUDT.
This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Here we let TDESCRIB convert from DB2 varchar (TDSVARYCHAR)
* to DBCHAR.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-ED.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-ED.
 MOVE LENGTH OF EMPLOYEE-ED TO WRKLEN1.
 MOVE LENGTH OF CN-ED TO WRKLEN2.
 MOVE TDSINT2 TO DB-HOST-TYPE.
 MOVE TDSINT2 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * Get the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDINFUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

 * Set the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDSETUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

*---
 DESCRIBE-COLUMN.
*---
 SET ADDRESS OF LK-DESCRIBE-HV TO DB-DESCRIBE-HV-PTR.
 SET ADDRESS OF LK-COLUMN-NAME-HV TO DB-COLUMN-NAME-HV-PTR.
 ADD 1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDINFUDT

144

 DB-HOST-TYPE, WRKLEN1, LK-DESCRIBE-HV,
 DB-NULL-INDICATOR, TDS-FALSE,
 DB-CLIENT-TYPE, WRKLEN1,
 LK-COLUMN-NAME-HV, WRKLEN2.

Usage • Use this function to determine the datatype defined for a column by the
client. When your application returns results to the client, it can specify the
user-defined datatype for that column with the function TDSETUDT.

• The user-defined datatype is a tag associated with a column by the client.
It is not the TDS datatype of the column, which is specified in the
TDESCRIB call.

• You can query and set the user-defined datatype for a return parameter
with TDINFPRM and TDSETPRM.

See also Related functions

• TDINFPRM on page 131

• TDSETPRM on page 192

• TDSETUDT on page 209

CHAPTER 3 Functions

145

TDINIT
Description Initializes the TDS environment for a connection.

Syntax COPY SYGWCOB.

01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 IHANDLE PIC S9(9) USAGE COMP SYNC.

For CICS:ThinSpace CALL ’TDINIT’ USING DFHEIBLK, RETCODE,
IHANDLE.

For IMS TM: CALL ’TDINIT’ USING IO-PCB, RETCODE, IHANDLE.

For native MVS: CALL ‘TDINIT’ USING DUMMY, GWL-RC,
GWL-INIT-HANDLE.

Note MVS does not need to use anything.

Parameters RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-22.

IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. All subsequent tracing and accounting
functions must specify this same value in their IHANDLE argument.
It corresponds to the context structure in Open Client Client-Library.

Return value The RETCODE argument can contain any of the return values listed in Table
3-22.

Table 3-22: TDINIT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONTROL-NOTLOADED (-260) Cannot load the customization module. This module
is necessary for Gateway-Library operation.

TDS-GWLIB-BAD-VERSION (-16) The program version you are using is newer than the
version of the Gateway-Library phase in use.

TDS-GWLIB-UNAVAILABLE (-15) Could not load SYGWCICS (the Gateway-Library
phase).

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDINIT

146

Examples Example 1
The following code fragment illustrates the use of TDINIT, TDACCEPT,
TDSNDDON, and TDFREE at the beginning and end of a Gateway-Library
program. This example is taken from the sample program, SYCCSAR2,
in Appendix B, “Sample RPC Application for CICS”.

* Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.

 * TDRESULT to make sure we were started via RPC request

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-PARM-PRESENT THEN
 PERFORM TDRESULT-ERROR
 GO TO END-PROGRAM
 END-IF.
* ---
* body of program
* ---
*---
 END-PROGRAM.
*---
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO PARM-RETURN-ROWS
 END-IF.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-SOS (-257) Memory shortage. The host subsystem was unable
to allocate enough memory for the control block that
Gateway-Library was trying to create.
The operation failed.

Return value Meaning

CHAPTER 3 Functions

147

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 PARM-RETURN-ROWS, TDS-ZERO,
 TDS-ENDRPC.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS RETURN END-EXEC.

Example 2
The following code fragment shows the use of TDINIT, TDSETPT,
and TDACCEPT at the beginning of a program that uses the implicit API under
IMS TM. This example is taken from the sample program in Appendix D,
“Sample RPC Application for IMS TM (Implicit)”.

* --
* establish gateway environment
* --
 CALL ‘TDINIT’ USING IO-PCB, GWL-RC, GWL-INIT-HANDLE.
 .
 . [check return code]
 .
 * ---
 * set program type to MPP
 * ---

 CALL ‘TDSETPT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-PROG-TYPE, GWL-SPA-PTR,
 TDS-NULL, TDS- NULL.
 .
 . [check return code]
 .
 * --
 * accept client request
 * --
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.
*---
 READ-IN-USER-PARM.
*---

TDINIT

148

Usage • TDINIT initializes the TDS environment for a new client/server
connection, preparing the connection for data transfer between the
Gateway-Library transaction and the remote client.

• TDINIT must be the first Gateway-Library function called in a server
program, and can be called only once for a given connection.

• TDINIT is also the first function called in a mixed client/server program.
See the example in Appendix F, “Sample Mixed-Mode Application”.

• The first TDINIT argument is the address of the communication I/O block.

 Under CICS: The EXEC Interface Block (EIB). You must code
“DFHEIBLK” exactly as shown in the first call under Syntax.

Under IMS TM: The I/O Program Communications Block. You must code
“IO-PCB” exactly as shown in the second call under Syntax.

Under MVS: Pass a null pointer. MVS does not use it.

Note For Open ServerConnect, the conversation is always initiated by the
client program. Gateway-Library programs do not initiate conversations.

• You customize your Gateway-Library environment when Open
ServerConnect is installed. TDINIT loads the customization module. If it
cannot load that module, TDINIT returns TDS-CONTROL-
NOTLOADED. Without this module, Gateway-Library programs cannot
be used.

During customization, the national language and default character sets
used at the mainframe are specified. A Gateway-Library program can
retrieve customization information with TDGETUSR.

For Japanese users

• The Japanese Conversion Module (JCM) processes Japanese requests.
The JCM is an option available with Open ServerConnect which must be
installed and defined to your mainframe system.

• TDINIT loads the JCM. If it cannot load that module, TDINIT does not
return an error code. However, when a client request specifies a double-
byte character set in the login packet, TDACCEPT returns TDS-
CHARSET-NOTLOADED.

• See “Character sets” on page 17 and “Processing Japanese client
requests” on page 59 for more information about using Gateway-Library
with Japanese characters.

CHAPTER 3 Functions

149

See also Related functions

• TDACCEPT on page 70

• TDFREE on page 96

• TDGETUSR on page 110

Related topics

• “Character sets” on page 17

• “Processing Japanese client requests” on page 59

• “Customization” on page 36

TDLOCPRM
Description Returns the ID number of a parameter when the parameter name is received.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 PARM-ID PIC S9(9) USAGE COMP SYNC.
01 PARM-NAME PIC X(n).
01 PARM-NAME-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDLOCPRM’ USING TDPROC, PARM-ID, PARM-NAME,
 PARM-NAME-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

PARM-ID
(O) Variable where the number of the named parameter is returned.
Parameters are numbered sequentially; the ID of the first parameter is 1.
If a 0 is returned here, TDLOCPRM could not find a parameter with the
specified name.

PARM-NAME
(I) The name associated with the desired parameter. This name corresponds
to the parameter name in the Open Client DB-Library dbrpcparam routine.

PARM-NAME-LENGTH
(I) The actual length of the PARM-NAME.

TDLOCPRM

150

Return value This function has no RETCODE argument. It returns the parameter ID in the
PARM-ID argument, or a 0 if it finds no parameter with the specified name.

Examples The following code fragment illustrates a typical use of TDLOCPRM.
The transaction calls TDNUMPRM to determine how many parameters to
retrieve, calls TDLOCPRM to ascertain the number of the parameter with the
information it wants, calls TDINFPRM for a description of the parameter,
and calls TDRCVPRM to retrieve the parameter data.

 This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

 * Get number of parameters ... should be two

 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 IF GWL-NUMPRM-PARMS NOT = 2 THEN
 PERFORM TDNUMPRM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get return parameter information

 MOVE 1 TO GWL-INFPRM-ID.
 PERFORM GET-PARM-INFO.

 (IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE AND
 IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE-NULLABLE) THEN
 PERFORM TDINFPRM-NOT-RETURN-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 MOVE GWL-INFPRM-USER-DATA TO GWL-SETPRM-USER-DATA.
 MOVE GWL-INFPRM-ID TO GWL-SETPRM-ID.
 MOVE GWL-INFPRM-DATA-L TO GWL-SETPRM-DATA-L.
 MOVE GWL-INFPRM-TYPE TO GWL-SETPRM-TYPE.

 * Get department id parameter number from known name

 MOVE ’@parm2’ TO GWL-INFPRM-NAME.
 MOVE 6 TO GWL-INFPRM-NAME-L.

 CALL ’TDLOCPRM’ USING GWL-PROC, GWL-INFPRM-ID,
 GWL-INFPRM-NAME, GWL-INFPRM-NAME-L.

 * Get department parameter information

CHAPTER 3 Functions

151

 PERFORM GET-PARM-INFO.

 IF GWL-INFPRM-TYPE NOT = TDSVARYCHAR THEN
 PERFORM TDINFPRM-NOT-CHAR-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get department parameter data

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 PARM-DEPT, GWL-INFPRM-TYPE,
 GWL-INFPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.
*---
 GET-PARM-INFO.
*---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L
 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.

Usage • A server application uses this function to determine the ID of a parameter
with a name that is known.

• If no parameter matching the specified name is found, this function returns
0 in the PARM-ID argument.

See also Related functions

• TDINFPRM on page 131

• TDRCVPRM on page 157

Related documents

• Reference Manual for Open Client DB-Library (dbrpcparam)

TDLSTSPT

152

TDLSTSPT
Description Lists transactions for which tracing is enabled.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 TRACE-TABLE-LIST OCCURS 8 TIMES
 PIC X(8).

CALL ’TDLSTSPT’ USING IHANDLE,RETCODE,
 TRACE-TABLE-LIST.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-23 on page 152.

TRACE-TABLE-LIST
(O) An array listing the contents of the trace table. Each element of this
array, TRANSID-n, returns the transaction ID of a transaction for which
specific tracing is currently enabled.

Under CICS: This is the TRANSID from the CICS Program Control Table
(PCT).

Under IMS TM: This is the transaction name defined when the system is
generated.

Under MVS: This is the APPC transaction name of the MVS transaction.

Return value The RETCODE argument can contain any of the return values listed in Table
3-23.

Table 3-23: TDLSTSPT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in
specifying a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

CHAPTER 3 Functions

153

Examples The following code fragment illustrates the use of TDLSTSPT to determine
which transactions have tracing enabled. It returns the transaction IDs to the
caller. This example is taken from the sample program in Appendix G, “Sample
Tracing and Accounting Program” which runs under CICS.

* --
* Describe column containing transaction ID.
* --
 MOVE LENGTH OF WRK-TRANID TO WRKLEN1.
 MOVE LENGTH OF CN-LSTSPT-TRANID TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN, TDSCHAR,
 WRKLEN1, WRK-TRANID,

TDS-ZERO, TDS-FALSE,
TDSCHAR, WRKLEN1,
CN-LSTSPT-TRANID, WRKLEN2.

* --
* Find out whether specific tracing is on; if not, exit.
* --
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL, GWL-INFLOG-API,
 GWL-INFLOG-HEADER, GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.
 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 GO TO TDLSTSPT-EXIT
 END-IF.
* --* Return
trace table IDs to client, one item at a time.
* ---
 CALL ’TDLSTSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-LSTSPT-LIST(1).
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDLSTSPT’ TO MSG-SRVLIB-FUNC
 GO TO TDLSTSPT-EXIT
 END-IF.
 PERFORM VARYING WRK-LSTSPT-SS FROM 1 BY 1
 UNTIL WRK-LSTSPT-SS = 8
 MOVE GWL-LSTSPT-LIST(WRK-LSTSPT-SS) TO WRK-TRANID
 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 ADD +1 TO CTR-ROWS
 END-PERFORM.

TDLSTSPT

154

Usage • TDLSTSPT lists the transactions for which specific tracing is enabled.
Transaction-level tracing can be enabled for up to eight transactions.

• A blank indicates that no more transactions have tracing enabled.
For example, if the first four elements in the array return transaction
names, and the fifth element returns a blank, you know that tracing is
enabled for four transactions only, and that elements six through eight
return blanks.

• Transaction-level tracing occurs when the global trace flag is set off (TDS-
FALSE) by TDSETLOG and one or more types of tracing are enabled.
When the global trace flag is set on (TDS-TRUE), all transactions are
traced, whether or not individual tracing is specified for each transaction.

• To determine the setting of the global trace flag and to learn what types of
tracing are currently enabled, use TDINFLOG.

• To determine whether tracing is turned on for a particular transaction,
without listing all traced transactions, use TDINFSPT. TDINFSPT also
returns the type of tracing enabled for the transaction.

• TDLSTSPT retrieves information about tracing at the mainframe server,
not the TRS. Tracing at the mainframe server and at the TRS are
independent of each other.

• See the Installation and Administration Guide for Open ServerConnect for
an explanation of the Gateway-Library tracing facility, instructions for
using it, and the layout of the trace log.

See also Related functions

• TDINFLOG on page 123

• TDINFSPT on page 138

• TDSETLOG on page 186

• TDSETSPT on page 205

• TDWRTLOG on page 243

Related documents

• Installation and Administration Guide for Open ServerConnect

CHAPTER 3 Functions

155

TDNUMPRM
Description Determines how many parameters were sent with the current RPC by the

remote client or server.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 NUMBER-OF-PARMS PIC S9(9) USAGE COMP SYNC.

CALL ’TDNUMPRM’ USING TDPROC, NUMBER-OF-PARMS.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

NUMBER-OF-PARMS
(O) Number of parameters accepted as part of the current RPC.
This argument replaces the RETCODE argument for this function and is
where the result of function execution is stored.

Return value This function returns the number of parameters in the NUMBER-OF-PARMS
argument.

Examples The following code fragment illustrates a typical use of TDNUMPRM. It does
the following: calls TDNUMPRM to determine how many parameters to
retrieve; calls TDLOCPRM to ascertain the number of the parameter with the
information it wants; calls TDINFPRM for a description of the parameter;
calls TDRCVPRM to retrieve the parameter data.

This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Get number of parameters ... should be two

 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 IF GWL-NUMPRM-PARMS NOT = 2 THEN
 PERFORM TDNUMPRM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get return parameter information

 MOVE 1 TO GWL-INFPRM-ID.
 PERFORM GET-PARM-INFO.

TDNUMPRM

156

 (IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE AND
 IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE-NULLABLE) THEN
 PERFORM TDINFPRM-NOT-RETURN-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 MOVE GWL-INFPRM-USER-DATA TO GWL-SETPRM-USER-DATA.
 MOVE GWL-INFPRM-ID TO GWL-SETPRM-ID.
 MOVE GWL-INFPRM-DATA-L TO GWL-SETPRM-DATA-L.
 MOVE GWL-INFPRM-TYPE TO GWL-SETPRM-TYPE.

 * Get department id parameter number from known name

 MOVE ’@parm2’ TO GWL-INFPRM-NAME.
 MOVE 6 TO GWL-INFPRM-NAME-L.

 CALL ’TDLOCPRM’ USING GWL-PROC, GWL-INFPRM-ID,
 GWL-INFPRM-NAME, GWL-INFPRM-NAME-L.

 * Get department parameter information

 PERFORM GET-PARM-INFO.

 IF GWL-INFPRM-TYPE NOT = TDSVARYCHAR THEN
 PERFORM TDINFPRM-NOT-CHAR-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get department parameter data

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 PARM-DEPT, GWL-INFPRM-TYPE,
 GWL-INFPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.
*---
 GET-PARM-INFO.
*---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L
 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.

CHAPTER 3 Functions

157

Usage • A server application uses this function to determine how many parameters
were sent with a client RPC.

• When a cursor command is received, this function returns the number of
cursor parameters for the current cursor.

• Use this function to determine how many parameters you need to retrieve
with TDRCVPRM. You must call TDRCVPRM once for each parameter.

See also Related functions

• TDACCEPT on page 70

• TDRCVPRM on page 157

TDRCVPRM
Description Retrieves the data from an RPC parameter sent by a remote client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 PARM-ID PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE PIC X(n).
01 HOST-VARIABLE-TYPE PIC S9(9) USAGE COMP SYNC.
01 MAX-DATA-LENGTH PIC S9(9) USAGE COMP SYNC.
01 ACTUAL-DATA-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDRCVPRM’ USING TDPROC, RETCODE, PARM-ID,
 HOST-VARIABLE, HOST-VARIABLE-TYPE,
 MAX-DATA-LENGTH, ACTUAL-DATA-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-24 on page 158.

PARM-ID
(I) Number of the parameter or cursor parameter to be received.
Parameters are numbered sequentially with the first parameter number one.

TDRCVPRM

158

HOST-VARIABLE
(O) Host program variable where the parameter data is stored.

HOST-VARIABLE-TYPE
(I) Datatype of the HOST-VARIABLE. This is the datatype that is used in
mainframe processing of this parameter.

MAX-DATA-LENGTH
(I) Maximum length of the data that can be stored in the named HOST-
VARIABLE. For TDSVARYCHAR, TDSVARYBIN, and TDSVARYGRAPHIC
parameters, this value does not include the 2 bytes for the “LL” length
specification.

For graphic datatypes, this is the number of double-byte characters. For a
Sybase numeric or decimal parameter, it is 35. For other datatypes, it is the
number of bytes.

To determine the maximum length of the incoming data, use TDINFPRM.
For fixed-length datatypes, this value is ignored.

ACTUAL-DATA-LENGTH
(O) Variable where the actual length of the received data is returned.
For TDSVARYCHAR, TDSVARYBIN, and TDSVARYGRAPHIC parameters,
this value does not include the 2 bytes for the “LL” length specification.
If this length is greater than the specified MAX-DATA-LENGTH, the data is
truncated, and TDRCVPRM returns TDS-TRUNCATION-OCCURRED.

For graphic datatypes, this is the number of double-byte characters; for other
datatypes, it is the number of bytes.

Return value The RETCODE argument can contain any of the return values listed in Table
3-24.

Table 3-24: TDRCVPRM return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

CHAPTER 3 Functions

159

TDS-DATE-CONVERSION-ERROR (-23) Error in conversion of datetime data. This can be a
result of trying to convert short datetime
(TDSDATETIME4) for a client using an early TDS
version. TDS versions earlier than 4.2 do not support
the short datetime datatype.

TDS-DECIMAL-CONVERSION-ERROR (-24) Error in conversion of packed decimal data.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-FLOAT-CONVERSION-ERROR (-21) Error in conversion of float values.

TDS-INVALID-DATA-CONVERSION (-172) Incompatible datatypes. The source datatype cannot
be converted into the requested result datatype.

TDS-INVALID-DATA-TYPE (-171) Illegal datatype. A Sybase datatype supplied in the
call is not supported and the conversion cannot be
done. The operation failed.

TDS-INVALID-ID-VALUE (-10) The specified column or parameter number is
greater than the system maximum. Sybase allows as
many columns per table result and parameters per
RPC as the system maximum.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the
xxx-LENGTH argument is too long.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-INVALID-VAR-ADDRESS (-175) Specified variable address is invalid. No variable
with the specified name exists. A NULL value was
specified. The operation failed.

TDS-MONEY-CONVERSION-ERROR (-22) Error in conversion of TDSMONEY-type data.
This can be a result of trying to convert to short
money (TDSMONEY4) for a client using an early
TDS version. TDS versions earlier than 4.2 do not
support the short money datatype.

TDS-NO-PARM-PRESENT (103) No incoming parameters present. TDRCVPRM
cannot retrieve a parameter because no more
parameters were accepted. The operation failed.

TDS-TRUNCATION-OCCURRED (-13) Data was truncated. The actual data length was
longer than the maximum data length allotted for
this data.

Return value Meaning

TDRCVPRM

160

Examples Example 1
The following code fragment illustrates a typical use of TDRCVPRM.
The transaction does the following: calls TDNUMPRM to determine how many
parameters to retrieve; calls TDLOCPRM to ascertain the number of the
parameter whose information it wants; calls TDINFPRM for a description of the
parameter; calls TDRCVPRM to retrieve the parameter data.

This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Get number of parameters ... should be two

 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 IF GWL-NUMPRM-PARMS NOT = 2 THEN
 PERFORM TDNUMPRM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get return parameter information

 MOVE 1 TO GWL-INFPRM-ID.
 PERFORM GET-PARM-INFO.

 (IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE AND
 IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE-NULLABLE) THEN
 PERFORM TDINFPRM-NOT-RETURN-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 MOVE GWL-INFPRM-USER-DATA TO GWL-SETPRM-USER-DATA.
 MOVE GWL-INFPRM-ID TO GWL-SETPRM-ID.
 MOVE GWL-INFPRM-DATA-L TO GWL-SETPRM-DATA-L.
 MOVE GWL-INFPRM-TYPE TO GWL-SETPRM-TYPE.

 * Get department id parameter number from known name

 MOVE ’@parm2’ TO GWL-INFPRM-NAME.
 MOVE 6 TO GWL-INFPRM-NAME-L.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

CHAPTER 3 Functions

161

 CALL ’TDLOCPRM’ USING GWL-PROC, GWL-INFPRM-ID,
 GWL-INFPRM-NAME, GWL-INFPRM-NAME-L.

 * Get department parameter information

 PERFORM GET-PARM-INFO.

 IF GWL-INFPRM-TYPE NOT = TDSVARYCHAR THEN
 PERFORM TDINFPRM-NOT-CHAR-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get department parameter data

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 PARM-DEPT, GWL-INFPRM-TYPE,
 GWL-INFPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.
 *---
 GET-PARM-INFO.
 *---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L
 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.

Example 2
The following code fragment illustrates the use of TDRCVPRM in a Gateway-
Library program that uses the IMS TM implicit API. This example is taken
from the sample program in Appendix D, “Sample RPC Application for IMS
TM (Implicit)”.

 * --
 * establish gateway environment
 * --
 CALL ‘TDINIT’ USING IO-PCB, GWL-RC, GWL-INIT-HANDLE.
 .
 . [check return code]
 .
 * --
 * set program type to MPP
 * --

TDRCVPRM

162

 CALL ‘TDSETPT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-PROG-TYPE, GWL-SPA-PTR,
 TDS-NULL, TDS- NULL.
 . [check return code]
 .
 * --
 * accept client request
 * --
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.
 .
 . [check return code]
 .
 *--
 READ-IN-USER-PARM.
 *--
 MOVE ‘Y’ TO SEND-DONE-SW.
 MOVE ‘N’ TO ALL-DONE-SW.
 MOVE SPACES TO CALL-ERROR.
 MOVE ZEROES TO CALL-ERROR-RC CTR-ROWS.
 MOVE 1 TO CTR-COLUMN.
 MOVE LENGTH OF PARM-DEPT TO WRKLEN1.
CALL ‘TDRCVPRM’ USING GWL-PROC, GWL-RC, PARM-ID1, PARM-DEPT,
 TDSCHAR, WRKLEN1, PARM-L.
 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDRCVPRM’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

Usage • A server application calls TDRCVPRM to retrieve a parameter sent by a
remote client. A server application uses TDRCVPRM only when the client
request is an RPC or a cursor command. Language requests do not have
parameters.

• An application must issue one TDRCVPRM call for each parameter to be
retrieved. To determine the total number of parameters received,
use TDNUMPRM.

• Parameters can be retrieved in any order, using the PARM-ID argument to
specify which parameter is wanted. If you know the parameter name but
not its number, call TDLOCPRM to determine the parameter ID.

• Unless you already know the length and datatype of the incoming
parameter, call TDINFPRM before each TDRCVPRM call.
TDINFPRM returns the datatype and length of the incoming data,
and indicates whether or not it is a return parameter.

CHAPTER 3 Functions

163

• If the ACTUAL-DATA-LENGTH is greater than the MAX-DATA-LENGTH,
the data is truncated, and TDRCVPRM returns TDS-TRUNCATION-
OCCURRED.

• A server program can modify the data length of a return parameter by
issuing TDSETPRM before it returns results.

Datatype conversions
If the parameter datatype is different from the one specified in HOST-
VARIABLE-TYPE, TDRCVPRM converts it to the specified datatype before
processing (implicit conversion).

Table 3-25 shows which implicit conversions can be performed by
TDRCVPRM.

Table 3-25: Datatype conversions performed by TDRCVPRM

Source datatype:
Open Client

Result datatype:
Gateway-Library Notes

TDSCHAR
TDSCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSLONGVARCHAR
TDSLONGVARCHAR

TDSVARYCHAR
TDSLONGVARCHAR
TDSCHAR
TDSLONGVARCHAR
TDSCHAR
TDSVARYCHAR

Performs ASCII to EBCDIC
conversion. For Japanese character
sets, does workstation to
mainframe conversion.
Pads TDSCHAR fields with blanks.

TDSFLT4
TDSFLT4
TDSFLT8
TDSFLT8

TDSFLT8
TDS-PACKED-DECIMAL
TDSFLT4
TDS-PACKED-DECIMAL

Truncates low order digits.

TDSMONEY
TDSMONEY
TDSMONEY4
TDSMONEY4
TDSMONEY
TDSMONEY
TDSMONEY

TDSFLT4
TDSFLT8
TDSFLT4
TDSFLT8
TDSCHAR
TDSVARYCHAR
TDS-PACKED-DECIMAL

TDSCHAR
TDSVARYCHAR

TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL

TDSNUMERIC
TDSNUMERIC

TDS-PACKED-DECIMAL
TDSCHAR

When receiving numeric or Sybase
decimal the MAX-DATA-LENGTH
is the maximum length of the result
(precision +2, or precision +3 if
precision=scale).

TDRCVPRM

164

For more information about datatypes, see “Datatypes” on page 37.

TDRCVPRM pads binary-type host variables with zeroes and graphic- or
character-type host variables with blanks. No default padding is set for
columns of other datatypes.

Note Open Client automatically converts all fixed character (TDSCHAR)
parameters to variable character (TDSVARYCHAR) parameters when it
sends them to a server. If you prefer to work with fixed character
parameters, assign HOST-VARIABLE-TYPE a value of TDSCHAR.

For Japanese users

• When the Japanese Conversion Module (JCM) is used,
TDRCVPRM converts the parameter data from the client character set to
the one used at the mainframe server, if conversion is necessary.

• When converting client character data to mainframe graphic data,
Gateway-Library divides the length of incoming Japanese strings in half
because the length of mainframe graphic datatypes is the number of
double-byte characters, whereas the length of character datatypes at both
the mainframe and the workstation is the number of bytes.

Your program needs to allow for length differences between the
workstation character set and the mainframe character set.

See “Processing Japanese client requests” on page 59 and “Datatypes” on
page 37 for a full discussion of character set conversions and length
considerations.

TDS-SYBASE-DECIMAL
TDS-SYBASE-DECIMAL

TDS-PACKED-DECIMAL
TDSCHAR

When receiving numeric or Sybase
decimal as packed decimal, use
TDINFBCD to determine the host
packed decimal precision and
scale.
 MAX-DATA-LENGTH is the actual
length of this packed decimal.

TDSCHAR
TDSCHAR
TDSVARYCHAR
TDSVARYCHAR

TDSGRAPHIC
TDSVARYGRAPHIC
TDSGRAPHIC
TDSVARYGRAPHIC

Used with Japanese double-byte
character sets.
Pads TDSGRAPHIC fields with
blanks.

TDSDATETIME
TDSDATETIME4

TDSCHAR
TDSCHAR

Source datatype:
Open Client

Result datatype:
Gateway-Library Notes

CHAPTER 3 Functions

165

• When using the JCM, an application can call TDSETSOI to manipulate
Shift Out/Shift In codes for character data before issuing a TDRCVPRM
call.

• Table 3-25 on page 163 lists the implicit conversions that the JCM does
when retrieving data.

See also Related functions

• TDACCEPT on page 70

• TDINFPRM on page 131

• TDLOCPRM on page 149

• TDNUMPRM on page 155

• TDRCVSQL on page 165

• TDSETPRM on page 192

Related topics

• “Character sets” on page 17

• “Datatypes” on page 37

• “Processing Japanese client requests” on page 59

TDRCVSQL
Description Receives a language string from a remote client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE PIC X(n).
01 MAX-VAR-LENGTH PIC S9(9) USAGE COMP SYNC.
01 ACTUAL-STRING-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDRCVSQL’ USING TDPROC, RETCODE,HOST-VARIABLE,
 MAX-VAR-LENGTH,ACTUAL-STRING-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

TDRCVSQL

166

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-26 on page 166.

HOST-VARIABLE
(O) Host program variable where the text of the retrieved language string is
stored.

MAX-VAR-LENGTH
(I) Maximum length of the string that can be stored in the named HOST-
VARIABLE. For graphic datatypes, this is the number of double-byte
characters; for other datatypes, it is the number of bytes.

ACTUAL-STRING-LENGTH
(O) The actual length of the incoming data, in bytes. If this length is greater
than the specified MAX-VAR-LENGTH, the data is truncated.

Note If this is a Japanese character set, the length may be halved when
converted to IBM Kanji by Gateway-Library.

Return value The RETCODE argument can contain any of the return values listed in Table
3-26.

Table 3-26: TDRCVSQL return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ILLEGAL-REQUEST (-5) Illegal function. The operation failed.
 This code can indicate that a client application is
trying to use a Gateway-Library function that is not
supported for clients (for example, TDSNDROW).

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the MAX-
VAR-LENGTH argument is too short. The length
must be greater than zero.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

CHAPTER 3 Functions

167

Examples The following code fragment illustrates the use of TDSQLLEN and TDRCVSQL
to receive a language request from the client. This example is taken from the
sample program in Appendix C, “Sample Language Application for CICS”.

* Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

* Turn on local tracing if not on globally or locally

 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS.

 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-ALL-RPCS
 AND GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 MOVE 1 TO TRACING-SET-SW
 PERFORM LOCAL-TRACING
 END-IF.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-NO-SQL-PRESENT (101) No incoming language string present. TDRCVSQL
cannot retrieve more text because no more text was
accepted. The operation failed.

TDS-TRUNCATION-OCCURRED (-13) Data was truncated. The actual data length was
longer than the maximum data length allotted for
this data.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

TDRCVSQL

168

 * Ensure kicked off via language request
 * (this could be handled more reasonably by TDRESULT)

 CALL ’TDINFPGM’ USING GWL-PROC, GWL-RC,
 GWL-INFPGM-TDS-VERSION,
 GWL-INFPGM-LONGVAR,
 GWL-INFPGM-ROW-LIMIT,
 GWL-INFPGM-REMOTE-TRACE,
 GWL-INFPGM-CORRELATOR,
 GWL-INFPGM-DB2GW-OPTION,
 GWL-INFPGM-DB2GW-PID,
 GWL-INFPGM-TYPE-RPC.
 IF GWL-INFPGM-TYPE-RPC NOT = TDS-START-SQL
 MOVE MSG-NOT-LANG TO MSG-TEXT
 MOVE LENGTH OF MSG-NOT-LANG TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 * Prepare for receive

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 * Get lenth of language text, ensure not too big for us
 * (this could be handled without TDSQLLEN by checking
 * LANG-ACTUAL-LEN doesn’t exceed LANG-MAX-L in TDRCVSQL call)

 CALL ’TDSQLLEN’ USING GWL-PROC, GWL-SQLLEN.
 MOVE LENGTH OF LANG-BUFFER-TEXT TO LANG-MAX-L.

 IF GWL-SQLLEN > LANG-MAX-L THEN
 MOVE MSG-BAD-LEN TO MSG-TEXT
 MOVE LENGTH OF MSG-BAD-LEN TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.
 * Get language text
 CALL ’TDRCVSQL’ USING GWL-PROC, GWL-RC,
 LANG-BUFFER-TEXT,
 LANG-MAX-L,
 LANG-ACTUAL-L.
 MOVE LANG-ACTUAL-L TO LANG-BUFFER-LL.

CHAPTER 3 Functions

169

Usage • A server application uses this function to retrieve a SQL or other language
string from a client. Although the function is called TDRCVSQL, it can
receive any type of language request, including math functions,
single-byte katakana, and so on, as well as SQL text for cursors.

TDRCVSQL does not differentiate between SQL strings and other
character text strings. It is up to your application to determine what kind
of text is in the buffer and what to do with it.

• You can determine the length of the incoming string by issuing TDSQLLEN
after TDACCEPT and before TDRCVSQL.

• To determine whether the incoming request is a language request,
cursor request, or an RPC, call TDINFPGM or TDRESULT. In long-running
transactions, TDGETREQ indicates the type of request.

If your program calls TDRCVSQL and the request is not a language or
cursor/dynamic request, TDRCVSQL returns TDS-NO-SQL-PRESENT.

• You can divide the language string between two variables. First, specify a
partial length in the MAX-VAR-LENGTH argument of one TDRCVSQL
call. Then, issue TDSQLLEN just before conversion to determine the length
of the remaining text, and specify that length in the MAX-VAR-LENGTH
argument of a subsequent TDRCVSQL call.

Note If you are using a double-byte character set, see instructions under
“For Japanese Users” to learn how to divide a string between two
variables.

• If the ACTUAL-STRING-LENGTH of the text is longer than that specified
in MAX-VAR-LENGTH, the string is truncated, and TDRCVSQL returns
TDS-TRUNCATION-OCCURRED.

For Japanese users

• To divide a language string between two variables when using double-byte
character sets, set MAX-VAR-LENGTH to two times the length returned by
TDSQLLEN.

• If you are using a DBCS, be sure to use “G” in the PICTURE clause of the
data definition statement. This is required by DB2. For example:

10 MYVAR PICTURE GG USAGE DISPLAY-!.

See also Related functions

• TDGETREQ on page 99

• TDINFPGM on page 127

TDRESULT

170

TDRESULT
Description Determines whether a request is pending and identifies the type of object

received.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.

CALL ’TDRESULT’ USING TDPROC, RETCODE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-27.

Return value The RETCODE argument can contain any of the return values listed in Table
3-27.

Table 3-27: TDRESULT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-PARM-PRESENT (203) Parameter value received. A parameter was received
from the remote client. This value is returned to
TDRESULT when a parameter is accepted by a
server program and is ready to be retrieved.

TDS-RESULTS-COMPLETE (500) TDRESULT indicated no more results. No, or no
more, language text, RPC parameters,
cancel requests, or messages were retrieved.

CHAPTER 3 Functions

171

Examples The following code fragment illustrates the use of TDINIT, TDACCEPT,
TDSNDDON, and TDFREE at the beginning and end of a Gateway-Library
program. This example is taken from the sample program, SYCCSAR2,
in Appendix B, “Sample RPC Application for CICS”.

* Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

* Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.

* TDRESULT to make sure we were started via RPC request

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-PARM-PRESENT THEN
 PERFORM TDRESULT-ERROR
 GO TO END-PROGRAM
 END-IF.
* ---
* body of program
* ---
*---
 END-PROGRAM.
*---
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO PARM-RETURN-ROWS
 END-IF.

TDS-SQL-CMD-PRESENT (201) Language string received. A language request was
received from a remote client. This value is returned
to TDRESULT when a language string is accepted by
a server program and is ready for retrieval.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

TDRESULT

172

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 PARM-RETURN-ROWS, TDS-ZERO,
 TDS-ENDRPC.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS RETURN END-EXEC.

Usage • A server application can use this function to determine whether a remote
client sent a new request over this connection, and, if so, what kind of
request—a language request or an RPC.

If the request is a language request, TDRESULT returns TDS-SQL-CMD-
PRESENT.

If the request is an RPC with parameters, TDRESULT returns TDS-PARM-
PRESENT.

• In a long-running transaction, TDGETREQ returns the type of request
pending. There is no need to call TDRESULT after TDGETREQ.

• An application can call TDRESULT to determine whether any more results
are pending. After all SQL statements or RPC parameters are read in,
TDRESULT returns TDS-RESULTS-COMPLETE.

• This function is not required. It is included for compatibility with earlier
versions of Gateway-Library.

• Use TDINFPGM, TDGETREQ, or TDINFRPC to determine what type of
request the remote client sent.

See also Related functions

• TDACCEPT on page 70

• TDRCVPRM on page 157

• TDRCVSQL on page 165

CHAPTER 3 Functions

173

TDSETACT
Description Turns on or off system-wide accounting for Gateway-Library. Under CICS,

rename the CICS accounting log.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 ACCOUNTING-FLAG PIC S9(4) USAGE COMP SYNC.
01 ACCOUNTING-FILENAME PIC X(8) VALUE IS SPACES.
01 MAXNUM-ACCT-RECORDS PIC 9(9) USAGE COMP SYNC.

CALL 'TDSETACT’ USING IHANDLE, RETCODE,
 ACCOUNTING-FLAG, ACCOUNTING-FILENAME,
 MAXNUM-ACCT-RECORDS.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-28 on page 174.

ACCOUNTING-FLAG
(I) Accounting on/off indicator. Assign this argument one of the following
values:

ACCOUNTING-FILENAME
(I) Name of the accounting log.

Under CICS: Specify the DATASET name from the CICS File Control Table
(FCT) entry that describes the VSAM file used for this log. As installed,
this name is SYTACCT1. You can change the name of this log by specifying
a new name here.

Under IMS TM and MVS: Leave this field blank. IMS TM and MVS ignore
this value.

TDS-TRUE (1) Turn on accounting.

TDS-FALSE (0) Turn off accounting.

TDSETACT

174

MAXNUM-ACCT-RECORDS
(I) Accounting log record limit.

Under CICS: This is the maximum number of records to be allocated for this
accounting file. To indicate the system maximum, assign this argument a
value of -1. We recommend always setting this value to -1.

Under IMS TM: The IMS TM system log does not have a limit.
We recommend always using -1.

Under MVS: Use -1. The size of the log is determined by the space allocated
to the sequential file used as the MVS log.

Return value The RETCODE argument can contain any of the return values listed in Table
3-28.

Table 3-28: TDSETACT return values

Examples In the following code fragment, the program receives a request to turn
accounting on, uses TDINFACT to check that accounting is off, then uses
TDSETACT to turn accounting on. This example is based on the sample
program in Appendix G, “Sample Tracing and Accounting Program”,
which runs under CICS.

* Accept client request
 CALL ’TDACCEPT’ ...
* --
 GET-PARM.
* --
 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC,
 GWL-RCVPRM-ID, PARM-REQUEST, TDSCHAR,
 GWL-RCVPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.
 IF PARM-REQUEST-INFACT THEN
 PERFORM TDINFACT THRU TDINFACT-EXIT
 ELSE IF PARM-REQUEST-SETACT-ON THEN
 PERFORM TDSETACT-ON THRU TDSETACT-ON-EXIT

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-LOG-ERROR(-258) Attempt to write to the log file failed.

CHAPTER 3 Functions

175

* Request was to set accounting on.
*--
 TDSETACT-ON.
*--
 CALL ’TDINFACT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFACT-STATUS,
 GWL-INFACT-FILENAME,
 GWL-INFACT-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFACT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETACT-ON-EXIT
 END-IF.
* Turn on mainframe accounting.
 CALL ’TDSETACT’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-TRUE, GWL-INFACT-FILENAME,
 GWL-INFACT-RECORDS.
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETACT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETACT-ON-EXIT
 END-IF.
*--
 TDSETACT-ON-EXIT.
*--
 EXIT.

Usage • You use this function to begin recording accounting information in the
accounting log, to stop recording after it began, or, under CICS, to change
the name of the accounting log.

• This function returns accounting information recorded at the mainframe
server. The TRS administrator can turn local accounting recording on and
off at the TRS. Accounting at the mainframe and at the TRS are
independent of each other.

• Gateway-Library accounting records the total number of TDS bytes,
packets, messages, rows, requests, and cancels sent and received at the
mainframe server from the time a TDACCEPT function initializes the TDS
environment until a TDFREE is issued, and the number of seconds and
milliseconds that elapsed during the conversation.

• The accounting flag is set to off when Gateway-Library is initialized.
It remains off until the program explicitly turns it on with TDSETACT;
then it remains on until the program explicitly turns it off with TDSETACT.
No other Gateway-Library functions turn accounting on or off.

TDSETACT

176

• If a transaction does not call this function, the accounting flag remains in
the state it was in before the transaction executed.

• TDSETACT opens the specified accounting log when it turns accounting
recording on.

Note The IMS TM system log is always open, but TDSETLOG does a
logical OPEN by turning accounting on.

• Accounting information is written to the accounting log after TDFREE is
issued.

• The log used for accounting depends upon the transaction processing
system in use:

• Under CICS: The accounting log is a VSAM ESDS file known to
CICS as SYTACCT1.

You can use this function to change the name of the accounting log as
long as the name you specify matches an FCT DATASET entry.
An alternate log may already exist—an FCT entry for the alternate log
SYTACCT2 is included in the installation instructions.

When the log fills up, you must explicitly empty or delete the log or
specify an alternate log in the ACCOUNTING-FILENAME argument.

• Under IMS TM: The accounting log is the IMS TM system log.
For more information on this log, see your IMS TM documentation.

• Under MVS: The log file is a sequential file (usage is optional).

• See the Installation and Administration Guide for Open ServerConnect for
an explanation of the Gateway-Library accounting facility, instructions for
using it, and the layout of the CICS accounting log.

See also Related functions

• TDACCEPT on page 70

• TDFREE on page 96

• TDINFACT on page 114

Related documents

• Installation and Administration Guide for Open ServerConnect

CHAPTER 3 Functions

177

TDSETBCD
Description Sets the length and number of decimal places for a given packed decimal

column or parameter. You can also set the number of decimal places for
numeric and Sybase decimal columns.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 OBJECT-TYPE PIC S9(9) USAGE COMP SYNC.
01 OBJECT-NUMBER PIC S9(9) USAGE COMP SYNC.
01 BCD-LENGTH PIC S9(9) USAGE COMP SYNC.
01 BCD-NUMBER-DECIMAL-PLACES

 PIC S9(9) USAGE COMP SYNC.

CALL 'TDSETBCD’ USING TDPROC, RETCODE, OBJECT-TYPE,
 OBJECT-NUMBER, BCD-LENGTH,
 BCD-NUMBER-DECIMAL-PLACES.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-29 on page 178.

OBJECT-TYPE
(I) Object type indicator. Indicates whether the object is a parameter or a
column. Assign this argument one of the following values:

OBJECT-NUMBER
(I) Number of the column or parameter with the information that is being set.

If the object is a column, this is the position of the column in the row,
counting from left to right. Columns are numbered sequentially with the
leftmost column in a row number one.

If the object is a return parameter, this is the number of the parameter with
the value that is being checked. All parameters are counted, whether or not
they are return parameters. Parameters are numbered sequentially with the
first parameter number one.

TDS-OBJECT-COL (1) Object is a column in a return row.

TDS-OBJECT-PARM (2) Object is a parameter.

TDSETBCD

178

BCD-LENGTH
(I) The length of the packed decimal field. This value must not be a negative
number. The maximum allowed length for a packed decimal object is 31.
Instead of a specific value, you can default to the COLUMN-MAXLEN
specified in the TDESCRIB call that describes this column. To do this,
assign this argument a value of TDS-DEFAULT-LENGTH.

BCD-NUMBER-DECIMAL-PLACES
(I) Number of decimal places in the object. This value must not be a negative
number. The maximum number of decimal places allowed for a packed
decimal object is 31. The maximum decimal places allowed for Sybase
numeric or decimal is 77.

Return value The RETCODE argument can contain any of the return values listed in Table
3-29.

Table 3-29: TDSETBCD return values

Examples Example 1
The following code fragment shows how to set the column maximum length to
35.

 MOVE +1 TO COLUMN-NUMBER.
 * need to set the Host Max Length to actual Length *
 MOVE LENGTH OF WS-OUTPUT-DECIMAL TO HOST-LEN
 * need to set the Column Max Length to 35(max len of dec)*
 MOVE 35 TO COLUMN-LEN.
 MOVE LENGTH OF WS-OUTPUT-COL-NAME TO COLUMN-NAME-LEN.

 CALL ’TDESCRIB’ USING GWL-PROC,
 GWL-RC,
 COLUMN-NUMBER,

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the BCD-
LENGTH argument is wrong.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

CHAPTER 3 Functions

179

 TDS-PACKED-DECIMAL,
 HOST-LEN,
 WS-OUTPUT-DECIMAL,
 TDS-ZERO,
 TDS-FALSE,
 TDS-SYBASE-DECIMAL,
 COLUMN-LEN,
 WS-OUTPUT-COL-NAME,
 COLUMN-NAME-LEN.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDESCRIB’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 * move the total number of digits to Percision *
 MOVE 11 TO WS-PERCISION.
 * move the total number of digits to right of dec point *
 MOVE 03 TO WS-SCALER.
 CALL ’TDSETBCD’ USING GWL-PROC,
 GWL-RC,
 TDS-OBJECT-COL,
 COLUMN-NUMBER,
 WS-PERCISION,
 WS-SCALER.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDSETBCD’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.
 PERFORM 310-SEND-ROW THRU 310-EXIT.

TDSETBCD

180

Example 2
The following code fragment shows two methods of converting datatypes.
One uses TDESCRIB to convert data from the DB2 datatype DECIMAL
(TDSDECIMAL) to TDSFLT8. The other uses TDCONVRT to convert data from
the DB2 datatype DECIMAL (TDSDECIMAL) to the DB-Library datatype
DBMONEY (TDSMONEY).

 This program uses TDSETBCD to set the number of decimal places in the
column to 2; it uses TDINFBCD to check how many decimal places are in the
column.

This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Here we let TDESCRIB convert from TDSDECIMAL to TDSFLT8.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-JC.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-JC.
 MOVE LENGTH OF EMPLOYEE-JC TO WRKLEN1.
 MOVE LENGTH OF CN-JC TO WRKLEN2.
 MOVE TDSDECIMAL TO DB-HOST-TYPE.
 MOVE TDSFLT8 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * We must inform the Server Library how many decimal places
 * are in the EMPLOYEE-JC column.

 CALL ’TDSETBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, TDS-DEFAULT-LENGTH,
 GWL-SETBCD-SCALE.

 * Demonstrate getting decimal column information.

 CALL ’TDINFBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, GWL-INFBCD-LENGTH,
 GWL-INFBCD-SCALE.

 * Here we intend to use TDCONVRT to convert from TDSDECIMAL to
 * TDSMONEY, so we point TDESCRIB to the output of TDCONVRT,
 * rather than the original input.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, WRK-EMPLOYEE-SAL.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-SAL.
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN1.
 MOVE LENGTH OF CN-SAL TO WRKLEN2.

CHAPTER 3 Functions

181

 MOVE TDSMONEY TO DB-HOST-TYPE.
 MOVE TDSMONEY TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.
*---
 FETCH-AND-SEND-ROWS.
*---
 EXEC SQL FETCH ECURSOR INTO :EMPLOYEE-FIELDS END-EXEC.

 IF SQLCODE = 0 THEN

 * Convert from DB2 decimal (TDSDECIMAL) to dblib MONEY.

 MOVE LENGTH OF EMPLOYEE-SAL TO WRKLEN1
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN2

 CALL ’TDCONVRT’ USING GWL-PROC, GWL-RC,
 GWL-CONVRT-SCALE, TDSDECIMAL,
 WRKLEN1, EMPLOYEE-SAL, TDSMONEY,
 WRKLEN2, WRK-EMPLOYEE-SAL

 * send a row to the client

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 ADD 1 TO PARM-RETURN-ROWS

 IF GWL-RC = TDS-CANCEL-RECEIVED THEN
 MOVE ’Y’ TO ALL-DONE-SW
 END-IF

 ELSE IF SQLCODE = +100 THEN
 MOVE ’Y’ TO ALL-DONE-SW

 ELSE
 MOVE ’Y’ TO ALL-DONE-SW
 PERFORM FETCH-ERROR
 END-IF.

 *---
 GET-PARM-INFO.
 *---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L

TDSETBCD

182

 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.
 *---
 DESCRIBE-COLUMN.
 *---
 SET ADDRESS OF LK-DESCRIBE-HV TO DB-DESCRIBE-HV-PTR.
 SET ADDRESS OF LK-COLUMN-NAME-HV TO DB-COLUMN-NAME-HV-PTR.
 ADD 1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 DB-HOST-TYPE, WRKLEN1, LK-DESCRIBE-HV,
 DB-NULL-INDICATOR, TDS-FALSE,
 DB-CLIENT-TYPE, WRKLEN1,
 LK-COLUMN-NAME-HV, WRKLEN2.

Usage • Packed decimal data is supported in COBOL, but not in DB-Library or
Client-Library. This function preserves the scale and value when
converting a DB-Library or Client-Library decimal value to COBOL
packed decimal data and vice versa.

Note Although the name of this function implies BCD data, in COBOL
this function is actually used with packed decimal data.

• Always use this function when describing Sybase decimal and numeric
columns, and when using TDSETPRM for implicit conversion from char or
packed decimal to a Sybase numeric or decimal return parameter.
Assign the following:

• Precision to BCD-LENGTH

• Scale to BCD-NUMBER-DECIMAL-PLACES

• Use this function to specify:

• The length and number of decimal places of a client parameter before
converting it to packed decimal.

• The length and number of decimal places of a column that contains
packed decimal data, before returning the data to the client.

• The number of decimal places for numeric and Sybase decimal
columns.

CHAPTER 3 Functions

183

• For parameters, use this function to specify the length and number of
decimal places of a TDS-MONEY type parameter before it is converted to
packed decimal.

Note When reading in decimal data, call TDSETBCD before calling
TDRCVPRM to set the decimal point location. When returning decimal
data to a client, call TDSETBCD after calling TDESCRIB.

See also Related functions

• TDESCRIB on page 88

• TDINFBCD on page 118

TDSETLEN
Description Sets the column length for a variable-length field before sending it to a client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 COLUMN-NUMBER PIC S9(9) USAGE COMP SYNC.
01 NEW-COLUMN-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETLEN’ USING TDPROC, RETCODE, COLUMN-NUMBER,
 NEW-COLUMN-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-30 on page 184.

COLUMN-NUMBER
(I) The number of the column that is being described. Columns are
numbered sequentially; the first column in a row is number 1.

TDSETLEN

184

NEW-COLUMN-LENGTH
(I) New length of the column data.

This argument specifies the length of the data that is sent in subsequent
TDSNDROW calls. This value must be greater than zero but cannot be
greater than the maximum length of the column, as determined by
TDESCRIB.

Return value The RETCODE argument can contain any of the return values listed in Table
3-30.

Table 3-30: TDSETLEN return values

Examples The following code fragment illustrates a typical use of TDSETLEN.

*--
 FETCH-AND-SEND-ROWS.
*--
 EXEC SQL FETCH ECURSOR INTO :EMPLOYEE-FIELDS
 END-EXEC.
 IF SQLCODE = 0 THEN
* --
* Convert from DB2 decimal type (TDS-PACKED-DECIMAL) to
* DB-Library MONEY.
* --
 MOVE LENGTH OF EMPLOYEE-SAL TO WRKLEN1
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN2
 CALL ’TDCONVRT’ USING GWL-PROC, GWL-RC,

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-DATA-TYPE (-171) Illegal datatype. A Sybase datatype supplied in the
call is not supported and the conversion cannot be
done. The operation failed.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the NEW-
COLUMN-LENGTH argument is too long.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

CHAPTER 3 Functions

185

 GWL-CONVRT-SCALE,
TDS-PACKED-DECIMAL,
 WRKLEN1, EMPLOYEE-SAL, TDSMONEY,
WRKLEN2, WRK-EMPLOYEE-SAL

* --
* Do not send trailing blanks of EMPLOYEE-LNM.
* --
 MOVE LENGTH OF EMPLOYEE-LNM TO WRKLEN1
 MOVE 2 TO CTR-COLUMN
 PERFORM VARYING WRK-BLANKS-SS FROM 1 BY 1
 UNTIL WRK-BLANKS-SS > WRKLEN1
 OR EMPLOYEE-LNM-CHARS(WRK-BLANKS-SS) <= SPACE
 END-PERFORM
 IF WRK-BLANKS-SS < WRKLEN1 THEN
 SUBTRACT 1 FROM WRK-BLANKS-SS
 CALL ’TDSETLEN’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 WRK-BLANKS-SS
 END-IF
* --
* Send a row to the client.
* --
 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 ADD 1 TO PARM-RETURN-ROWS
 IF GWL-RC = TDS-CANCEL-RECEIVED THEN
 MOVE ’Y’ TO ALL-DONE-SW
 END-IF
 ELSE IF SQLCODE = +100 THEN
 MOVE ’Y’ TO ALL-DONE-SW
 ELSE IF SQLCODE < 0 THEN
 MOVE ’Y’ TO ALL-DONE-SW
 PERFORM FETCH-ERROR
 END-IF.

Usage • A server application uses this function to specify the length of data for a
single column, before it is sent to the client.

• Column data lengths are initially set with TDESCRIB. For fixed-length
fields, there is no need to set the column lengths again. For variable-length
fields, if the actual data length changes from one row to another,
your application needs to reset the column length before you send the row
of data to the client.

• Your application must issue a separate TDSETLEN for each column for
which the data length changes.

TDSETLOG

186

• Each column of the row must first be defined in a TDESCRIB statement.
The TDSETLEN statement must be coded after the TDESCRIB statement
for that column.

• Your application must be in SEND state for this function to execute
successfully. If it is not in SEND state, TDSETLEN returns TDS-WRONG-
STATE. To switch to SEND state, call TDRESULT.

• The column length set by TDSETLEN must not be greater than the
maximum column length specified in TDESCRIB. If it is longer,
the function returns TDS-INVALID-LENGTH.

See also Related functions

• TDESCRIB on page 88

• TDSNDROW on page 225

TDSETLOG
Description Sets system-wide tracing for the mainframe server and rename the CICS trace

log.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 GLOBAL-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 API-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 TDS-HEADER-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 TDS-DATA-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
01 TRACE-ID PIC S9(9) USAGE COMP SYNC.
01 TRACE-FILENAME PIC X(8) VALUE IS SPACES.
01 MAXNUM-TRACE-RECORDS PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETLOG’ USING IHANDLE, RETCODE,
 GLOBAL-TRACE-FLAG, API-TRACE-FLAG,
 TDS-HEADER-TRACE-FLAG,
 TDS-DATA-TRACE-FLAG, TRACE-ID,
 TRACE-FILENAME, MAXNUM-TRACE-RECORDS.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

CHAPTER 3 Functions

187

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-31 on page 188.

GLOBAL-TRACE-FLAG
(I) Global or specific trace indicator. Use this argument to turn tracing on or
off and to indicate whether tracing is global (trace all transactions) or applies
to a specific set of transactions. If tracing is off, only errors are logged.

Specific tracing can be set for 1 through 8 transactions. To set tracing for a
particular transaction, use TDSETSPT.

Assign this argument one of the following values:

API-TRACE-FLAG
(I) API tracing on/off indicator. This is a Boolean value that sets tracing on
or off for Gateway-Library calls. Assign this argument one of the following
values:

TDS-HEADER-TRACE-FLAG
(I) TDS header tracing on/off indicator. This is a Boolean value that sets
tracing on or off for TDS headers. Assign this argument one of the following
values:

TDS-DATA-TRACE-FLAG
(I) TDS data tracing on/off indicator. This is a Boolean value that sets
tracing on or off for TDS data. Assign this argument one of the following
values:

TDS-NO-TRACING (0) Turn off all tracing.

TDS-TRACE-ALL-RPCS (1) Turn on global tracing.

TDS-TRACE-SPECIFIC-RPCS (2) Turn on specific tracing.

TDS-TRACE-ERRORS-ONLY (3) Log errors only.

TDS-TRUE (1) Turn on API tracing.

TDS-FALSE (0) Turn off API tracing.

TDS-TRUE (1) Turn on header tracing.

TDS-FALSE (0) Turn off header tracing.

TDS-TRUE (1) Turn on data tracing.

TDS-FALSE (0) Turn off data tracing.

TDSETLOG

188

TRACE-ID
(I) The trace entry identifier.

Under CICS: This is the tag for the auxiliary file entry.

Under IMS TM and MVS: Leave this field blank. This argument is ignored.

TRACE-FILENAME
(I) Name of the trace/error log.

Under CICS: Specify the DATASET name from the CICS File Control Table
(FCT) entry that describes the VSAM file used for this log. As installed,
this name is SYTDLOG1. You can change the name of this log by specifying
a new name here.

Under IMS TM and MVS: Leave this field blank. IMS TM and MVS ignore
this value.

MAXNUM-TRACE-RECORDS
(I) Trace log record limit.

Under CICS: This is the maximum number of records to be allocated for this
trace file. To indicate the system maximum, assign this argument a value of
-1. We recommend always using -1.

Under IMS TM: The IMS TM system log does not have a limit.
We recommend always using -1.

Under MVS: Use -1. The size of the log is determined by the space allocated
to the sequential file used as the MVS log.

Return value The RETCODE argument can contain any of the return values listed in Table
3-31.

Table 3-31: TDSETLOG return values

Examples The following code fragment illustrates the use of TDSETLOG to enable TDS
header and data tracing. This example is taken from the sample program
SYICSAL2, which runs under IMS TM. This book does not contain a listing
for SYICSAL2. It is, however, shipped on the product tape.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in specifying
a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-LOG-ERROR(-258) Attempt to write to the log file failed.

CHAPTER 3 Functions

189

* turn on local tracing if not on globally or locally
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS.
 .
 . [check return code]
 .
 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-ALL-RPCS THEN
 PERFORM LOCAL-TRACING
 ENDIF.
 .
*--
 LOCAL-TRACING.
*--
* turn on specific tracing for SYL2
 MOVE TDS-TRACE-SPECIFIC-RPCS to GWL-INFLOG-GLOBAL.
 MOVE TDS-TRUE TO GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA.

 MOVE 99 TO GWL-INFLOG-TRACE-ID.
 MOVE ’IMSLOG’ TO GWL-INFLOG-FILENAME.
 MOVE -1 TO GWL-INFLOG-TOTAL-RECS.
 CALL 'TDSETLOG' USING GWL-INIT-HANDLE, GWL-RC,

 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS..
 . [check return code]
 .
 CALL 'TDSETSPT' USING GWL-INIT-HANDLE, GWL-RC,
 TRACING-SET-SW,

 GWL-SETSPT-TRACE-LEVEL,
 GWL-SETSPT-RPC-NAME,
GWL-SETSPT-RPC-NAME-L.

TDSETLOG

190

Usage • You use this function to turn on or off one or more kinds of tracing, and to
specify whether tracing is global or for specific transactions only.
The following kinds of tracing are supported:

• API call tracing: traces Gateway-Library calls.

Under CICS: API tracing uses the CICS auxiliary trace facility.

Under IMS TM: API tracing uses the IMS TM system log.

Under MVS: MVS uses a sequential file.

• TDS header tracing: keeps track of the 8-byte TDS headers that are
sent to and from the mainframe server.

• TDS data tracing: traces both incoming and outgoing TDS data.

• The trace log is also the error log.

• The trace flag is set to off when the Gateway-Library is initialized.
It remains off until the program explicitly turns it on with TDSETLOG,
then it remains on until the program explicitly turns it off with TDSETLOG.
No other Gateway-Library functions turn tracing on or off.

• Specific tracing can be set for up to eight transactions. To set tracing for a
particular transaction, use TDSETSPT. To find out whether specific tracing
is set for a particular transaction, call TDINFSPT. For a list of the
transactions being specifically traced, call TDLSTSPT.

• The specified types of tracing (API, TDS header, and/or TDS data) apply
to all transactions if the GLOBAL-TRACE-FLAG is set to TDS-TRACE-
ALL-RPCS. If the GLOBAL-TRACE-FLAG is set to TDS-TRACE-
SPECIFIC-RPCS, tracing applies to only those transactions specified in
TDSETSPT calls.

• If the global trace flag is set to TDS-NO-TRACING or TDS-TRACE-
ERRORS, the program ignores the settings for the API, TDS header,
and TDS data flags and turns them off.

• A transaction can call this function any time after TDINIT. To set tracing
on for the entire transaction, code this function before TDACCEPT. To set
tracing on for only a portion of a transaction, use TDSETLOG anywhere
within your program.

• TDSETLOG begins writing to the specified log when it turns tracing on.
It appends each new trace or error record to the trace log.

• If your program does not call this function, the trace flag remains in the
state it was in before the transaction executed.

CHAPTER 3 Functions

191

• The log used for tracing depends upon the transaction processing system
in use and the type of tracing being done:

• Under CICS: Header and data traces are written to the trace log.
The trace log is a VSAM ESDS file.

As installed, the CICS trace log is named SYTDLOG1. You can
change the name of this file by specifying a different name in the
TRACE-FILENAME argument. The new name must match an FCT
DATASET entry. Note that an alternate log may already exist. An FCT
entry for the alternate log SYTDLOG2 is included in the installation
instructions.

When the VSAM log fills up, you must explicitly empty or delete the
log or specify an alternate log in the TRACE-FILENAME argument.

API tracing uses the CICS auxiliary facility. CICS users can retrieve
the auxiliary trace output with the CICS job stream or with third party
packages designed for this purpose. Refer to your CICS
documentation for details about this facility.

• Under IMS TM: Header, data, and API tracing information are all
written to the IMS TM system log. The same log is used for errors,
tracing, and accounting, so each record needs to indicate which type
of record it is.

The layout of this log is the same as the layout of the CICS log except
for the header. For details about the IMS TM system log, refer to your
IMS TM documentation.

• Under MVS: The layout of this log is the same as the layout of the
CICS log.

• This function governs tracing at the mainframe server. The TRS
administrator can turn tracing on and off at the TRS. Tracing at the
mainframe server and at the TRS are independent of each other.

• See the Installation and Administration Guide for Open ServerConnect for
a general discussion of the Gateway-Library tracing facility, instructions
for using it, and the layout of the trace log.

TDSETPRM

192

See also Related functions

• TDACCEPT on page 70

• TDFREE on page 96

• TDINFLOG on page 123

• TDINFSPT on page 138

• TDSETSPT on page 205

• TDWRTLOG on page 243

Related documents

• Installation and Administration Guide for Open ServerConnect

TDSETPRM
Description Specifies the content and length of a return parameter before returning it to a

remote client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 PARM-ID PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE-TYPE PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE-LENGTH PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE PIC X(n).
01 USER-DATATYPE PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETPRM’ USING TDPROC, RETCODE, PARM-ID,
 HOST-VARIABLE-TYPE,
 HOST-VARIABLE-LENGTH, HOST-VARIABLE,
 USER-DATATYPE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-32 on page 193.

CHAPTER 3 Functions

193

PARM-ID
(I) Number of the parameter to be returned. This must be the same parameter
ID specified in the TDRCVPRM call that retrieved this parameter.
Parameters are numbered sequentially in the order received, from 1 to 255.

HOST-VARIABLE-TYPE
(I) Datatype of the HOST-VARIABLE.

HOST-VARIABLE-LENGTH
(I) Length of the HOST-VARIABLE.

If HOST-VARIABLE-TYPE is TDSVARYCHAR, TDSVARYBIN,
or TDSVARYGRAPHIC, this length does not include the 2 bytes for the “LL”
length specification. For graphic datatypes, this is the number of double-
byte characters; for other datatypes, it is the number of bytes (actual length).

HOST-VARIABLE
(I) Name of the host program variable that contains the return data.

USER-DATATYPE
(I) The client-specified datatype of the parameter, if any. If no user datatype
is specified, code 0 for this field. Currently, this argument is ignored.

Return value The RETCODE argument can contain any of the return values listed in Table
3-32.

Table 3-32: TDSETPRM return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-DATE-CONVERSION-ERROR (-23) Error in conversion of datetime data. This can be a
result of trying to convert short datetime
(TDSDATETIME4) for a client using an early TDS
version. TDS versions earlier than 4.2 do not
support the short datetime datatype.

TDS-DECIMAL-CONVERSION-ERROR (-24) Error in conversion of packed decimal data.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-FLOAT-CONVERSION-ERROR (-21) Error in conversion of float values.

TDS-ILLEGAL-REQUEST (-5) Illegal function. The operation failed.
 This code can indicate that a client application is
trying to use a Gateway-Library function that is not
supported for clients (for example, TDSNDROW).

TDS-INVALID-DATA-CONVERSION (-172) Incompatible datatypes. The source datatype cannot
be converted into the requested result datatype.

TDSETPRM

194

Examples The following code fragment illustrates a typical use of TDSETPRM.
This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

 PERFORM DESCRIBE-COLUMN.
 PERFORM FETCH-AND-SEND-ROWS UNTIL ALL-DONE

* Update returned parameter with number of rows fetched
 CALL ’TDSETPRM’ USING GWL-PROC, GWL-RC, GWL-SETPRM-ID,
 GWL-SETPRM-TYPE, GWL-SETPRM-DATA-L,
 PARM-RETURN-ROWS,
 GWL-SETPRM-USER-DATA.
 GO TO END-PROGRAM.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the HOST-
VARIABLE-LENGTH argument is too long.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-INVALID-VAR-ADDRESS (-175) Specified variable address is invalid. No variable
with the specified name exists. A NULL value was
specified. The operation failed.

TDS-MONEY-CONVERSION-ERROR (-22) Error in conversion of TDSMONEY-type data.
This can be a result of trying to convert to short
money (TDSMONEY4) for a client using an early
TDS version. TDS versions earlier than 4.2 do not
support the short money datatype.

TDS-TRUNCATION-ERROR (-20) Error occurred in truncation of data value.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

CHAPTER 3 Functions

195

Usage • A server application uses this function to tell TDSNDDON where to find
the data for a return parameter and the data length and datatype.

• TDSETPRM sets the return value for a parameter but does not actually send
it to the client. All return parameters, whether their return values were
changed by TDSETPRM or not, are sent to the client when TDSNDDON is
called.

• TDSETPRM is the only way to change the content or the length of a return
parameter. When you call TDSNDDON, any return parameters with values
that were not changed by a TDSETPRM call contain the same data they
contained when received from the client.

• A return parameter must be identified as such in the PARM-STATUS
argument of TDINFPRM. If you try to change the return value for a
parameter that was not invoked as a return parameter, an error occurs.

A valid return parameter has the PARM-STATUS field set to TDS-
RETURN-VALUE (X'01') or TDS-RETURN-VALUE-NULLABLE
(X'33') and a parameter ID of 1 or greater. Any other PARM-STATUS and
a PARM-ID of 0 indicate that the parameter is not a return parameter.

• A server program may specify its own datatype for a parameter. To specify
that datatype for the return value, assign it to the USER-DATATYPE
argument.

• If the variable datatype is TDSVARYCHAR, TDSVARYBIN,
or TDSVARYGRAPHIC, the length does not include the 2 bytes for the
“LL” specification. The length specified in “LL” is ignored unless a -1 is
coded as the length argument, in which case the length specified in the
“LL” is used.

• When converting from a char or packed decimal datatype to a client
numeric or Sybase decimal datatype, use TDSETBCD before TDSETPRM
to set precision and scale of the client datatype.

Datatype conversions
When sending data to a client, TDSETPRM converts many datatypes from the
Gateway-Library (source) datatype to the client (result) datatype.
Table 3-33 on page 196 shows what conversions are possible.

TDSETPRM

196

Table 3-33: Datatype conversions performed by TDSETPRM

See also Related functions

• TDINFPRM on page 131

• TDRCVPRM on page 157

• TDSNDDON on page 211

Source datatype:
Gateway-Library

Result datatype:
Open Client Notes

TDSCHAR
TDSCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSLONGVARCHAR
TDSLONGVARCHAR
TDSMONEY
TDSMONEY

TDSVARYCHAR
TDSLONGVARCHAR
TDSCHAR
TDSLONGVARCHAR
TDSCHAR
TDSVARYCHAR
TDSCHAR
TDSVARYCHAR

Does EBCDIC to ASCII
conversion. For Japanese
characters, converts to workstation
datatype.

Pads TDSCHAR fields with blanks.

TDSFLT8
TDSFLT8
TDSFLT8
TDSFLT4
TDSFLT4
TDSFLT4

TDSFLT4
TDSMONEY
TDSMONEY4
TDSFLT8
TDSMONEY
TDSMONEY4

Truncates low order digits.

TDSCHAR
TDSVARYCHAR

TDSMONEY
TDSMONEY

TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED- DECIMAL

TDSCHAR
TDSVARYCHAR
TDSFLT8
TDSMONEY

When converting packed decimal
to character values, change the
length to allow for unpacking,
leading or trailing zeros, the sign
and the decimal point.

TDSGRAPHIC
TDSGRAPHIC
TDSVARYGRAPHIC
TDSVARYGRAPHIC

TDSCHAR
TDSVARYCHAR
TDSCHAR
TDSVARYCHAR

Used with Japanese double-byte
character sets.
Pads TDSCHAR fields with blanks.

TDSDATETIME
TDSDATETIME4

TDSCHAR
TDSCHAR

TDSCHAR
TDSCHAR

TDSNUMERIC
TDS-SYBASE-DECIMAL

Use TDSETBCD to set Sybase
numeric or decimal precision and
scale before TDSETPRM.

TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL

TDSNUMERIC
TDS-SYBASE-DECIMAL

Use TDSETBCD to set Sybase
numeric or decimal precision and
scale before TDSETPRM.

CHAPTER 3 Functions

197

TDSETPT
Description Specifies the type of IMS TM transaction being used.

Note This function is for use with IMS TM programs only. CICS programs
ignore this call. MVS programs do not ignore this call.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 PROG-TYPE PIC X(4).
01 SPA PIC X(n).
01 RESERVED1 PIC S9(9) USAGE COMP SYNC.
01 RESERVED1 PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETPT’ USING IHANDLE, RETCODE, PROG-TYPE,
 SPA, RESERVED1, RESERVED2.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-34 on page 199.

TDSETPT

198

PROG-TYPE
(I) Type of IMS TM program being called. This is a 4-byte padded field.

Assign this argument one of the following IMS TM program types:

Under CICS: If you leave this field blank, Gateway-Library ignores this
value and assumes a standard CICS program.

Under IMS TM: If you leave this field blank, Gateway-Library assumes a
standard IMS TM MPP program.

Under MVS: PROG-TYPE must be EXPL.

SPA
(I) The IMS TM scratch pad area where conversational transaction results
are stored.

When PROG-TYPE is CONV, this argument is required. For other program
types, set this field to zeroes, and Gateway-Library ignores this field.

RESERVED1
(I) Reserved for future use.

RESERVED2
(I) Reserved for future use.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
34 on page 199.

MPP An IMS TM online (implicit or Adapter) message processing
program that runs in an IMS TM message processing region.
This is the default.

BMP An IMS TM batch message program that runs in an IMS TM
batch message processing region.

CONV An IMS TM message processing program that uses the IMS
TM scratch pad area (SPA).

EXPL An IMS TM message processing program that uses the explicit
API. This is the only option that supports long-running
transactions.

CHAPTER 3 Functions

199

Table 3-34: TDSETPT return values

Examples The following code fragment illustrates the use of TDINIT, TDSETPT,
and TDACCEPT at the beginning of a Gateway-Library program that uses the
IMS TM implicit API. This example is taken from the sample program in
Appendix D, “Sample RPC Application for IMS TM (Implicit)”.

* establish gateway environment
 CALL ‘TDINIT’ USING IO-PCB, GWL-RC, GWL-INIT-HANDLE.
 . [check return code]
 .
 * set program type to MPP
 CALL ‘TDSETPT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-PROG-TYPE, GWL-SPA-PTR,
 TDS-NULL, TDS- NULL.
 . [check return code]
 .
* accept client request
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.
*--
 READ-IN-USER-PARM.
*--

Usage • TDSETPT tells Gateway-Library which type of IMS TM transaction is
being called and, if the transaction is conversational (CONV), the address
of the scratch pad area.

• TDSETPT is used with IMS TM programs only. If this function is called in
a CICS program, Gateway-Library ignores the function and assumes that
the program is a standard CICS program.

• TDSETPT follows TDINIT and precedes TDACCEPT in a Gateway-Library
program.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in
specifying a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDSETSOI

200

Because the default program type is MPP, coding TDSETPT immediately
after TDINIT is particularly important for BMP, conversational (CONV),
and explicit (EXPL) programs.

• See “Long-running transactions” on page 55, for a discussion of long-
running transactions under both CICS and IMS TM.

• For more information, refer to your IMS TM product documentation.

Note If your transaction is conversational (CONV), you must insert the scratch
pad area into the IO/PCB before sending the results with TDSNDROW.

See also Related functions

• TDACCEPT on page 70

• TDGETREQ on page 99

• TDINIT on page 145

• TDTERM on page 237

Related topics

• “Long-running transactions” on page 55

TDSETSOI
Description Set the Shift Out/Shift In (“SO/SI”) processing options for a column or

parameter.

Note This function is used with the Japanese Conversion Module (JCM).

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 OBJECT-TYPE PIC S9(9) USAGE COMP SYNC.
01 OBJECT-NUMBER PIC S9(9) USAGE COMP SYNC.
01 STRIP-SOSI PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETSOI’ USING TDPROC, RETCODE, OBJECT-TYPE,
 OBJECT-NUMBER, STRIP-SOSI.

CHAPTER 3 Functions

201

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-35 on page 202.

OBJECT-TYPE
(I) Indicator for the type of object being set. This argument indicates
whether the object being described is a column in a return row or a return
parameter.

Assign this argument one of the following values:

OBJECT-NUMBER
(I) Number of the column or parameter being set.

If the object is a column, this is the number of the column with the SO/SI
option that is being set. Columns are numbered sequentially; the first
column in a row is number 1.

If the object is a parameter, this is the number of the parameter with the
SO/SI option that is being set. All parameters are counted, whether or not
they are return parameters. Parameters are numbered sequentially; the first
parameter is number 1.

STRIP-SOSI
(I) The SO/SI processing option being set for this column or parameter.

Assign STRIP-SOSI one of the following values:

Return value The RETCODE argument can contain any of the return values listed in Table 3-
35 on page 202.

TDS-OBJECT-COL (1) Object is a column in a return row.

TDS-OBJECT-PARM (2) Object is a return parameter.

TDS-STRIP-SOSI (0) SO/SI codes are stripped at the host before
being sent to the client. This is the default.

TDS-BLANK-SOSI (1) SO/SI codes are converted to blanks before
being sent to the client. The length of the
object does not change.

TDSETSOI

202

Table 3-35: TDSETSOI return values

Examples The following code fragment uses TDSETSOI to replace SO/SI codes with
blanks before retrieving parameters and again before returning data to the
client. This example is not included on the Open ServerConnect API tape,
but is available to Japanese customers on the Japanese Conversion Module
tape.

 PROCEDURE DIVISION.

 *
 CALL ‘TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
 *
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.
 *
 CALL ‘TDINFRPC’ USING GWL-PROC, GWL-RC, GWL-REQ-TYPE,
 GWL-RPC-NAME,GWL-COMM-STATE.
 * get the information of so-so
 MOVE TDS-OBJECT-PARM TO PRM-01-OBJ-TYPE.
 MOVE PRM-01-ID TO PRM-01-OBJ-ID.
 CALL ‘TDGETSOI’ USING GWL-PROC, GWL-RC,
 PRM-01-OBJ-TYPE,
 PRM-01-OBJ-ID,
 PRM-01-STRIP-SOSI.
 *
 IF PRM-01-STRIP = TDS-STRIP-SOSI
 THEN
* specify the embedded blanks to the parameter
 MOVE TDS-BLANK-SOSI TO PRM-01-STRIP-SOSI
 CALL ‘TDSETSOI’ USING GWL-PROC, GWL-RC,
 PRM-01-OBJ-TYPE,

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-FLAGS (-176) Invalid padding option for a field.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

CHAPTER 3 Functions

203

 PRM-01-OBJ-ID,
 PRM-01-STRIP-SOSI
 END-IF
*
 MOVE TDSCHAR TO PRM-01-HOST-TYPE.
 *
 MOVE LENGTH OF PRM-01-DATA TO PRM-01-MAX-LEN.
 *
 CALL ‘TDRCVPRM’ USING GWL-PROC, GWL-RC,
 PRM-01-ID,
 PRM-01-AREA,
 PRM-01-HOST-TYPE,
 PRM-01-MAX-LEN,
 PRM-01-ACT-LEN.
*
 CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC,
 COL-01-NUM,
 COL-01-HOST-TYPE,
 COL-01-HOST-LEN,
 COL-01-AREA,
 COL-01-NULL-INDICATOR,
 TDS-FALSE,
 COL-01-CLIENT-TYPE,
 COL-01-CLIENT-LEN,
 COL-01-NAME,
 COL-01-NAME-LEN.
* get the information of sosi
 MOVE TDS-OBJECT-COL TO COL-01-OBJ-TYPE.
 MOVE COL-01-NUM TO COL-01-OBJ-ID.
 CALL ‘TDGETSOI’ USING GWL-PROC, GWL-RC,
 COL-01-OBJ-TYPE,
 COL-01-OBJ-ID,
 COL-01-STRIP-SOSI.
 *
 IF COL-01-STRIP-SOSI = TDS-STRIP-SOSI
 THEN
 *
 * specify the embedded blanks to the column
 MOVE TDS-BLANK-SOSI TO COL-01-STRIP-SOSI
 CALL ‘TDSETSOI’ USING GWL-PROC, GWL-RC,
 COL-01-OBJ-TYPE,
 COL-01-OBJ-ID,
 COL-01-STRIP-SOSI
 END-IF
 PERFORM FETCH-AND-SEND-ROWS UNTIL ALL-DONE.

TDSETSOI

204

Usage • Use TDSETSOI to specify whether SO/SI codes are stripped or converted
to blanks for a specified column or parameter before results are returned
to the client.

• SO/SI codes are inserted around double-byte character strings when the
client request is received by the Gateway-Library program.
The TDSETSOI setting determines what happens to those codes when the
string is returned to the client.

• If a program uses TDSETSOI to handle SO/SI codes when there are no
SO/SI codes or blanks surrounding kanji characters, the TDSETSOI setting
is ignored.

• SO/SI codes are used with character datatypes. Graphic datatypes do not
use SO/SI codes.

• Replacing SO/SI codes with blanks maintains the length of the string.
Otherwise, if SO/SI codes are stripped, the result length is shorter than the
source length. Unless you know in advance how many pairs of SO/SI
codes are in the source string, it is difficult to know what the result length
will be.

• For a discussion of Shift Out and Shift In codes, read “Character sets” on
page 17 and “Processing Japanese client requests” on page 59.

See also Related functions

• TDGETSOI on page 106

Related topics

• “Character sets” on page 17

• “Processing Japanese client requests” on page 59

CHAPTER 3 Functions

205

TDSETSPT
Description Sets tracing on or off for a specified transaction.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 TRACE-STATUS PIC S9(9) USAGE COMP SYNC.
01 TRACE-OPTIONS PIC S9(9) USAGE COMP SYNC.
01 TRANSACTION-ID PIC X(n).
01 TRANSACTION-ID-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETSPT’ USING IHANDLE, RETCODE, TRACE-STATUS,
 TRACE-OPTIONS, TRANSACTION-ID,
 TRANSACTION-ID-LENGTH.

Parameters IHANDLE
(I) A transaction-wide structure that contains information used to set up the
Gateway-Library environment. This must be the same IHANDLE specified
in the program’s initial TDINIT call. It corresponds to the context structure in
Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-36 on page 206.

TRACE-STATUS
(I) Trace indicator for the specified transaction. This is a Boolean value that
turns tracing on or off for the specified transaction.

Assign this argument one of the following values:

TRACE-OPTIONS
(I) Type of tracing to be enabled for the specified transaction. Assign this
argument one of the following values:

TDS-TRUE (1) Turn on tracing for this transaction.

TDS-FALSE (0) Turn off tracing for this transaction.

TDS-SPT-API-TRACE (0x08) Trace all Gateway-Library calls.

TDS-SPT-ERRLOG (0x02) Enable error log recording.

TDS-SPT-TDS-DATA (0x01) Enable TDS packet-tracing recording.

TDSETSPT

206

TRANSACTION-ID
(I) Mainframe transaction identifier of the affected transaction.

Under CICS: This is the TRANSID from the CICS Program Control Table
(PCT).

Under IMS TM: This is the transaction name defined when the system is
generated.

Under MVS: This is the APPC transaction name defined in the transaction
profile.

TRANSACTION-ID-LENGTH
(I) Length of the TRANSACTION-ID.

For graphic datatypes, this is the number of double-byte characters; for other
datatypes, it is the number of bytes. This value is returned by TDINFSPT.

Under CICS: For CICS Version 1.7, this value is always 4 or less. For later
versions, it is the actual length of the transaction ID, which can be greater
than 4.

Under IMS TM: This value is always 8 or less.

Under MVS: This is the APPC transaction name defined in the transaction
profile. This value is normally 8 or less.

Return value The RETCODE argument can contain any of the return values listed in Table
3-36.

Table 3-36: TDSETSPT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-DUPLICATE-ENTRY (-9) Duplicate column description. You attempted to
describe the same column twice with a TDESCRIB
statement. The operation failed.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in
specifying a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-STATUS (-174) Invalid status value. The value entered in the
STATUS field is invalid.

CHAPTER 3 Functions

207

Examples The following code fragment shows how to use TDINFLOG at the beginning of
a program to determine which types of tracing are currently enabled and
TDSETSPT at the end of a program. This example is taken from the sample
program in Appendix C, “Sample Language Application for CICS”.

 * Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * Turn on local tracing if not on globally or locally
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS.

 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-ALL-RPCS
 AND GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 MOVE 1 TO TRACING-SET-SW
 PERFORM LOCAL-TRACING
 END-IF.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

 *--
 LOCAL-TRACING.
 *--
 CALL ’TDSETSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 TRACING-SET-SW,
 GWL-SETSPT-TRACE-LEVEL,
 GWL-SETSPT-RPC-NAME,
 GWL-SETSPT-RPC-NAME-L.

TDS-SOS (-257) Memory shortage. The host subsystem was unable
to allocate enough memory for the control block
that Gateway-Library tried to create. The operation
failed.

Return value Meaning

TDSETSPT

208

Usage • TDSETSPT turns tracing on or off for the specified transaction.

• Transaction-level tracing occurs when TDSETLOG sets the global trace
flag to TDS-TRACE-SPECIFIC-RPCS and sets on one or more types of
tracing (for example, API tracing or header tracing). Use TDINFLOG to
determine the setting of the global trace flag and to learn which types of
tracing are currently enabled. Call TDSETLOG to change those settings.

• If you request tracing for a transaction, and tracing is already on for that
transaction, TDSETSPT returns TDS-DUPLICATE-ENTRY.

• You can turn on transaction-level tracing for up to eight (8) transactions at
a time.

• Because eight is the maximum number of transactions for which tracing
can be enabled at one time, you must turn tracing off for one of these
transactions before you can enable tracing for an additional transaction.
If you request tracing for a transaction, and eight transactions already have
tracing turned on, TDSETSPT returns TDS-SOS.

• If you try to turn tracing off for a transaction for which tracing is not
enabled, TDSETSPT returns TDS-ENTRY-NOT-FOUND.

• This function governs tracing at the mainframe server. The TRS
administrator can turn tracing on and off at the TRS. Tracing at the
mainframe server and at the TRS are independent of each other.

• See the Installation and Administration Guide for Open ServerConnect for
an explanation of the Gateway-Library tracing facility, instructions for
using it, and the layout of the trace log.

See also Related functions

• TDINFLOG on page 123

• TDINFSPT on page 138

• TDLSTSPT on page 152

• TDSETLOG on page 186

• TDWRTLOG on page 243

CHAPTER 3 Functions

209

TDSETUDT
Description Sets the user-defined datatype for the specified column.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 COLUMN-NUMBER PIC S9(9) USAGE COMP SYNC.
01 USER-DATATYPE PIC S9(9) USAGE COMP SYNC.

CALL ’TDSETUDT’ USING TDPROC, RETCODE, COLUMN-NUMBER,
 USER-DATATYPE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-37.

COLUMN-NUMBER
(I) Number of the column with the datatype that is being set.

USER-DATATYPE
(I) The user-defined datatype to be assigned to the specified column.

Return value The RETCODE argument can contain any of the return values listed in Table
3-37.

Table 3-37: TDSETUDT return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ENTRY-NOT-FOUND (-8) The specified column number, transaction number,
or parameter does not exist.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDSETUDT

210

Examples The following code fragment illustrates a typical use of TDSETUDT.
This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

* Here we let TDESCRIB convert from DB2 varchar (TDSVARYCHAR)
* to DBCHAR.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-ED.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-ED.
 MOVE LENGTH OF EMPLOYEE-ED TO WRKLEN1.
 MOVE LENGTH OF CN-ED TO WRKLEN2.
 MOVE TDSINT2 TO DB-HOST-TYPE.
 MOVE TDSINT2 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.
 * Get the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDINFUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

 * Set the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDSETUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

 *---
 DESCRIBE-COLUMN.
 *---
 SET ADDRESS OF LK-DESCRIBE-HV TO DB-DESCRIBE-HV-PTR.
 SET ADDRESS OF LK-COLUMN-NAME-HV TO DB-COLUMN-NAME-HV-PTR.
 ADD 1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 DB-HOST-TYPE, WRKLEN1, LK-DESCRIBE-HV,
 DB-NULL-INDICATOR, TDS-FALSE,
 DB-CLIENT-TYPE, WRKLEN1,
 LK-COLUMN-NAME-HV, WRKLEN2.

Usage • Use TDSETUDT to associate the user-defined datatype with a column
when you return that column to the client.

• Use TDINFUDT to find out what datatype the client assigned to a given
column.

• The Gateway-Library datatype for a column is specified by TDESCRIB.

• You can query and set the user-defined datatype for a return parameter
with TDINFPRM and TDSETPRM.

CHAPTER 3 Functions

211

See also Related functions

• TDINFPRM on page 131

• TDSETPRM on page 192

• TDSETUDT on page 209

TDSNDDON
Description Sends a results completion indication to the client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 STATUS PIC S9(9) USAGE COMP SYNC.
01 ROW-COUNT PIC S9(9) USAGE COMP SYNC.
01 RETURN-STATUS-NUMBER PIC S9(9) USAGE COMP SYNC.
01 CONN-OPTIONS PIC S9(9) USAGE COMP SYNC.

CALL ’TDSNDDON’ USING TDPROC, RETCODE, STATUS,
 ROW-COUNT, RETURN-STATUS-NUMBER,
 CONN-OPTIONS.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-39 on page 214.

STATUS
(I) The result of the operation. Assign this argument one of the following
values:

TDS-DONE-FINAL
 (0x0000)

The set of results currently being sent is the final set of results.
 If STATUS is TDS-DONE-FINAL.
 CONN-OPTIONS must be
 TDS-ENDREPLY or TDS-ENDRPC.

 Note: TDS-ENDREPLY is not supported for the IMS TM implicit
API.

TDSNDDON

212

ROW-COUNT
(I) Number of rows selected or modified by the request. If this argument
contains a valid number (a positive integer or zero), the STATUS argument
should indicate TDS-DONE-COUNT. If the client request did not affect any
rows (for example, it created or dropped a table), this argument does not
contain a valid number, and TDS-DONE-COUNT should not be returned in
the STATUS argument.

RETURN-STATUS-NUMBER
(I) Completion code used only with RPCs. An integer that is passed back to
the client’s return status field to indicate normal completion, an error, or
other condition. Sybase Adaptive Servers have predefined return status
values for the numbers 0 and -1 to -14, listed in Table 3-38 on page 212.
Values -15 to -99 are reserved for future use. To avoid conflict with Adaptive
Server codes, use positive numbers for user-defined return status values.

The predefined Sybase return status values are listed in Table 3-38.

Table 3-38: List of Sybase return status values

TDS-DONE-CONTINUE
 (0x0001)

More results follow. This option tells the receiving program to
continue retrieving results until this argument specifies TDS-
DONE-FINAL or TDS-DONE-ERROR.

 If STATUS is TDS-DONE-CONTINUE,
 CONN-OPTIONS must be TDS-FLUSH.

TDS-DONE-ERROR
 (0x0002)

The last request received from the client resulted in an error.

TDS-DONE-COUNT
 (0x0010)

The ROW-COUNT argument contains a valid count value.

Value Meaning

0 Procedure executed without error.

-1 Missing object.

-2 Datatype error.

-3 Process was chosen as deadlock victim.

-4 Permission error.

-5 Syntax error.

-6 Miscellaneous user error.

-7 Resource error, such as out of space.

-8 Non-fatal internal problem.

-9 System limit was reached.

-10 Fatal internal inconsistency.

CHAPTER 3 Functions

213

Note This value cannot be NULL.

CONN-OPTIONS
(I) Connection open or closed indicator. Specifies whether the connection
between the client and server should remain open or be closed.

Assign CONN-OPTIONS one of the following values:

Return value The RETCODE argument can contain any of the return values listed in Table 3-
39 on page 214.

-11 Fatal internal inconsistency.

-12 Table or index is corrupt.

-13 Database is corrupt.

-14 Hardware error.

Value Meaning

TDS-ENDREPLY (1) Indicates that the reply data stream ended.
The communication state is changed from SEND to RECEIVE, and the
transaction awaits the next request.

When you use this value, STATUS must be TDS- DONE-FINAL. For IMS
TM transactions,
the TDSETPT PROG-TYPE parameter must be EXPL.

Note Select this option when using long-running transactions (CICS or
explicit IMS TM only).
The IMS TM implicit API does not support long-running transactions.

TDS-ENDRPC (3) Indicates that the data stream ended. This option ends the current
conversation with the client and nullifies the handle specified in TDPROC.
If a subsequent Gateway-Library function attempts to use that connection or
handle, it results in an error or abend.

When you use this value, STATUS must be TDS-DONE-FINAL.

TDS-FLUSH (7) Indicates the end of a result set, but that another may follow. This option
does not end the conversation, but it leaves the connection open.

If CONN-OPTIONS is TDS-FLUSH, STATUS must be TDS-DONE-
CONTINUE.

TDSNDDON

214

Table 3-39: TDSNDDON return values

Examples Example 1
The following code fragment illustrates the use of TDINIT, TDACCEPT,
TDSNDDON, and TDFREE at the beginning and end of a Gateway-Library
program. This example is taken from the sample program, SYCCSAR2,
in Appendix B, “Sample RPC Application for CICS”.

* Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.

 * TDRESULT to make sure we were started via RPC request

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ILLEGAL-REQUEST (-5) Illegal function. The operation failed. This code can
indicate that a client application is trying to use a
Gateway-Library function that is not supported for
clients (for example, TDSNDROW).

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-STATUS (-174) Invalid status value. The value entered in the
STATUS field is invalid.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

CHAPTER 3 Functions

215

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-PARM-PRESENT THEN
 PERFORM TDRESULT-ERROR
 GO TO END-PROGRAM
 END-IF.
 * ---
 * body of program
 * ---
 *---
 END-PROGRAM.
*---
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO PARM-RETURN-ROWS
 END-IF.

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 PARM-RETURN-ROWS, TDS-ZERO,
 TDS-ENDRPC.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS RETURN END-EXEC.

Example 2
The following code fragment illustrates the use of TDSNDDON and
TDGETREQ in a Gateway-Library transaction using the IMS TM implicit API.
This example is taken from the sample program in Appendix D, “Sample RPC
Application for IMS TM (Implicit)”.

 *--
 SEND-ROWS.
 *--
 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.
 FINISH-REPLY.
 .
 CALL ‘TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS,
 CTR-ROWS,
 TDS-ZERO,
 TDS-ENDRPC.
 . [check return code]

TDSNDDON

216

 .
* Get next client request
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-RPC-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION,
 GWL-REQ-TYPE, GWL-RPC-NAME.
 EVALUATE GWL-RC
 WHEN ZEROES
 GO TO READ-IN-USER-PARM
 WHEN TDS-RESULTS-COMPLETE
 PERFORM FREE-ALL-STORAGE
 WHEN TDS-CONNECTION-TERMINATED
 PERFORM FREE-ALL-STORAGE
 WHEN OTHER
 MOVE ‘TDGETREQ’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-EVALUATE.
 GOBACK.

Usage • A server application uses this function to tell a client that it finished
sending results and there is no additional data to be returned, or that an
error or abnormal situation was detected by the server application.
TDSNDDON also indicates whether the client/server connection should
remain open or be closed.

• When STATUS is TDS-DONE-FINAL, TDSNDDON sends return
parameter information back to the client. The return parameter value must
be previously set by TDSETPRM.

• When the connection remains open, this function puts the server
application into RECEIVE state to await another request. In this case,
that application should call TDRESULT next, to determine the client
response.

• The application must be in SEND state for this function to execute
successfully. If it is not in SEND state, TDSNDDON returns TDS-
WRONG-STATE. Call TDRESULT to put your application in SEND state.

• See the discussion of RETURN in the Reference Manual for Sybase
Adaptive Server Enterprise for more information about return status
values.

• This call controls whether the connection between a client and a server
should remain open or whether it should be closed.

CHAPTER 3 Functions

217

For Long-Running Transactions

Note IMS TM Users: Long-running transactions are only supported for the
explicit API (the TDSETPT PROG-TYPE parameter is set to EXPL).

• With short transactions, a transaction ends after it sends results to the
client; in long-running transactions, it stays active and processes new
requests as they are sent.

• To prepare to accept additional client requests after all results are returned,
set STATUS to TDS-DONE-FINAL and CONN-OPTIONS to TDS-
ENDREPLY then, call TDGETREQ to accept the next client request.

• A return code of TDS-CANCEL-RECEIVED indicates that the client sent
an ATTENTION. Once it receives an ATTENTION, Open ServerConnect
does not forward any results to the client.

Therefore, all Open ServerConnect application programs should
check for TDS-CANCEL-RECEIVED frequently, and send a TDSNDDON
as soon as possible after one is received.

Note If a client ATTENTION is received after all results are sent by the
Open ServerConnect transaction, Open ServerConnect may forward
results to the client before it is aware that the client canceled the request.

For Japanese users

• The JCM converts the data in the return parameter from mainframe to
workstation before sending it back to the client.

See also Related functions

• TDACCEPT on page 70

• TDRESULT on page 170

• TDSETPRM on page 192

Related documents

• Installation and Administration Guide for Open ServerConnect

• Reference Manual for Sybase Adaptive Server Enterprise (for a discussion
of return status values)

TDSNDMSG

218

TDSNDMSG
Description Sends an error or informational message to the client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 MESSAGE-TYPE PIC S9(9) USAGE COMP SYNC.
01 MESSAGE-NUMBER PIC S9(9) USAGE COMP SYNC.
01 SEVERITY PIC S9(9) USAGE COMP SYNC.
01 ERROR-STATE PIC S9(9) USAGE COMP SYNC.
01 LINE-ID PIC S9(9) USAGE COMP SYNC.
01 TRANSACTION-ID PIC X(n).
01 TRANSACTION-ID-LENGTH PIC S9(9) USAGE COMP SYNC.
01 MESSAGE-TEXT PIC X(n).
01 MESSAGE-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDSNDMSG’ USING TDPROC, RETCODE,
 MESSAGE-TYPE, MESSAGE-NUMBER,
 SEVERITY, ERROR-STATE, LINE-ID,
 TRANSACTION-ID, TRANSACTION-ID-LENGTH,
 MESSAGE-TEXT, MESSAGE-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-40 on page 221.

MESSAGE-TYPE
(I) Category of message being sent. Indicates whether it is an informational
message or an error message. Assign this argument one of the following
values:

MESSAGE-NUMBER
(I) Message number. This value is always four bytes in length.
Where possible, use Sybase-compatible error numbers.

For messages sent to Open Client programs, this value is stored in the
SMSG-NO field of the Open Client CS-SERVERMSG structure.

TDS-INFO-MSG (1) Message is an informational message.

TDS-ERROR-MSG (2) Message is an error message.

CHAPTER 3 Functions

219

SEVERITY
(I) Severity level of the error. A value of 10 or less represents an
informational message.

For messages sent to Open Client clients, this value is stored in the SMSG-
SEV field of the Open Client CS-SERVERMSG structure.

Specify one of the following severity values:

ERROR-STATE
(I) Error state number. This number provides additional information about
the context of the error.

For messages sent to Open Client clients, this value is stored in the SMSG-
STATE field of the Open Client CS-SERVERMSG structure.

LINE-ID
(I) An additional identifier assigned by the program. You determine how to
use this argument at your site.

For messages sent to Open Client clients, this value is stored in the SMSG-
LINE field of the Open Client CS-SERVERMSG structure.

TRANSACTION-ID
(I) Identifier of the transaction that is currently executing. This value
identifies the transaction that is issuing the error message.

Under CICS: This is the TRANSID from the CICS PCT.

Under IMS TM: This is the transaction name defined when the system is
generated.

Under MVS: This is the APPC transaction name defined in the transaction
profile.

TDS-INFO-SEV (0) Informational message

TDS-ERROR-SEV (10) Error message

TDSNDMSG

220

TRANSACTION-ID-LENGTH
(I) Length of the TRANSACTION-ID. For graphic datatypes, this is the
number of double-byte characters; for other datatypes, it is the number of
bytes.

Under CICS: For CICS Version 1.7, this value is always 4 or less. For later
versions, it is the actual length of the transaction ID, which can be greater
than 4.

Under IMS TM: This value is always 8 or less.

Under MVS: This is the APPC transaction name defined in the transaction
profile. This value is normally 8 or less.

MESSAGE-TEXT
(I) The text of the message.

For messages sent to Open Client clients, this value is stored in the SMSG-
TEXT field of the Open Client CS-SERVERMSG structure.

MESSAGE-LENGTH
(I) Length of the message text. The maximum permitted length for a
message is 512 bytes.

If you are using the Japanese Conversion Module (JCM), it adjusts this
length to the length used by the client character set.

For messages sent to Open Client clients, this value is stored in the SMSG-
TEXT-LEN field of the CS-SERVERMSG structure.

Return value The RETCODE argument can contain any of the return values listed in Table 3-
40 on page 221.

CHAPTER 3 Functions

221

Table 3-40: TDSNDMSG return values

Examples Example 1
The following code fragment shows how a program uses TDSNDMSG to send
an error message to a client. This example is taken from the sample program,
SYCCSAR2, in Appendix B, “Sample RPC Application for CICS”.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-ILLEGAL-REQUEST (-5) Illegal function. The operation failed. This code can
indicate that a client application is trying to use a
Gateway-Library function that is not supported for
clients (for example, TDSNDROW).

TDS-INVALID-DATA-TYPE (-171) Illegal datatype. A Sybase datatype supplied in the
call is not supported and the conversion cannot be
done. The operation failed.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the
MESSAGE-LENGTH argument is too long.

TDS-INVALID-NAMELENGTH (-179) Invalid name length. The length specified for the
column, parameter, message, or server name is
invalid.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-STATUS (-174) Invalid status value. The value entered in the
STATUS field is invalid.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-INVALID-VAR-ADDRESS (-175) Specified variable address is invalid. No variable
with the specified name exists. A NULL value was
specified. The operation failed.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

TDSNDMSG

222

*---
SEND-SQL-ERROR.

*---
 MOVE SQLCODE TO MSG-SQL-ERROR-C.
 MOVE SQLERRMC TO MSG-SQL-ERROR-K.

 * ---
 * ensure possible non-printables translated to spaces
 * ---
 PERFORM VARYING MSG-SQL-ERROR-SS FROM 1 BY 1
 UNTIL MSG-SQL-ERROR-SS > SQLERRML

 IF MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) < SPACE
 OR MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) > ’9’ THEN
 MOVE SPACE TO MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS)
 END-IF

 END-PERFORM.

 MOVE MSG-SQL-ERROR TO MSG-TEXT.
 MOVE LENGTH OF MSG-SQL-ERROR TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.

 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE MSG-SEVERITY-ERROR TO MSG-SEVERITY.
 MOVE MSG-NR-ERROR TO MSG-NR.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 PERFORM SEND-MESSAGE.

 *---
 SEND-MESSAGE.
 *---
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

 * Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC, GWL-STATUS-NR,
 GWL-STATUS-DONE, GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

CHAPTER 3 Functions

223

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC, MSG-TYPE,
 MSG-NR, MSG-SEVERITY, TDS-ZERO,
 TDS-ZERO, MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

Example 2
This code fragment illustrates the use of TDSTATUS and TDSNDMSG in a
Gateway-Library transaction using the IMS TM implicit API. This example is
taken from the sample program in Appendix D, “Sample RPC Application for
IMS TM (Implicit)”.

*---
SEND-ERROR-MESSAGE.

 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

* Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

TDSNDMSG

224

Usage Note IMS TM Users: The term “message” is used here in the narrow sense of
error or informational messages sent to the client; it is not used in the IMS TM
sense of message processing.

• A server application uses this function to send an error or informational
message to a remote client.

• Errors related to the operation of the TRS are recorded in its error log,
available to the TRS administrator. Errors related to the client program are
passed on to the requesting client. A client handles an Open
ServerConnect error message like any error returned by Adaptive Server.

• Messages can be sent before a row is described or after all rows are sent.
An application can call TDSNDMSG either before a TDESCRIB or after the
last TDSNDROW call for the described row. No messages can be sent
between a TDESCRIB and a TDSNDROW or between two TDSNDROW
calls.

• Your application must be in SEND state for this function to execute
successfully. If it is not in SEND state, TDSNDMSG returns TDS-
WRONG-STATE. Call TDRESULT to put your application in SEND state.

• A transaction can send a message to a client after TDSNDDON only if the
value of the TDSNDDON argument STATUS is TDS-DONE-CONTINUE,
and the value of CONN-OPTIONS is TDS-FLUSH. If the value of CONN-
OPTIONS is TDS-ENDRPC or TDS-ENDREPLY, no messages can be
sent after a TDSNDDON call is issued.

For Japanese users

• If the JCM is used, TDSNDMSG converts the message data from the
mainframe character set to the workstation character set and adjusts the
message length before sending, if necessary.

See also Related documents

• Reference Manual for Open Client DB-Library (dbmsghandle)

• Messages and Codes for Open ClientConnect and Open ServerConnect

• Transaction Router Service User’s Guide for DirectConnect

CHAPTER 3 Functions

225

TDSNDROW
Description Sends a row of data back to the requesting client, over the specified connection.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.

CALL ’TDSNDROW’ USING TDPROC, RETCODE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-41.

Return value The RETCODE argument can contain any of the return values listed in Table
3-41.

Table 3-41: TDSNDROW return values

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-CONNECTION-FAILED (-4998) Connection abended. The client/server connection
abnormally ended (for example, the LU 6.2 session
crashed or the remote transaction abended).

TDS-CONNECTION-TERMINATED (-4997) Connection closed. The remote partner closed
(deallocated) the client/server connection.

TDS-DATE-CONVERSION-ERROR (-23) Error in conversion of datetime data. This can be a
result of trying to convert short datetime
(TDSDATETIME4) for a client using an early TDS
version. TDS versions earlier than 4.2 do not
support the short datetime datatype.

TDS-DECIMAL-CONVERSION-ERROR (-24) Error in conversion of packed decimal data.

TDS-FLOAT-CONVERSION-ERROR (-21) Error in conversion of float values.

TDS-ILLEGAL-REQUEST (-5) Illegal function. The operation failed.
This code can indicate that a client application is
trying to use a Gateway-Library function that is not
supported for clients (for example, TDSNDROW).

TDS-INVALID-LENGTH (-173) The length specified in the preceding TDESCRIBE
is wrong.

TDSNDROW

226

Examples The following code fragment illustrates a typical use of TDSNDROW in a
paragraph that converts packed decimal data to the client money datatype
before sending the row to the client. This example is taken from the sample
program, SYCCSAR2, in Appendix B, “Sample RPC Application for CICS”.

 *---
 FETCH-AND-SEND-ROWS.
 *---
 EXEC SQL FETCH ECURSOR INTO :EMPLOYEE-FIELDS END-EXEC.

 IF SQLCODE = 0 THEN

 * Convert from DB2 decimal (TDSDECIMAL) to dblib MONEY.

 MOVE LENGTH OF EMPLOYEE-SAL TO WRKLEN1
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN2

 CALL ’TDCONVRT’ USING GWL-PROC, GWL-RC,
 GWL-CONVRT-SCALE, TDSDECIMAL,
 WRKLEN1, EMPLOYEE-SAL, TDSMONEY,
 WRKLEN2, WRK-EMPLOYEE-SAL

 * send a row to the client

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 ADD 1 TO PARM-RETURN-ROWS

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-MONEY-CONVERSION-ERROR (-22) Error in conversion of TDSMONEY-type data. This
can be a result of trying to convert to short money
(TDSMONEY4) for a client using an early TDS
version. TDS versions earlier than 4.2 do not
support the short money datatype.

TDS-TRUNCATION-ERROR (-20) Error occurred in truncation of data value.

TDS-WRONG-STATE (-6) This function cannot be used in the current
communication state. For example, your program
tried to send a reply before it read in all of the client
parameters. The application was still in RECEIVE
state and could not send. The operation failed.

Return value Meaning

CHAPTER 3 Functions

227

 IF GWL-RC = TDS-CANCEL-RECEIVED THEN
 MOVE ’Y’ TO ALL-DONE-SW
 END-IF

 ELSE IF SQLCODE = +100 THEN
 MOVE ’Y’ TO ALL-DONE-SW

 ELSE
 MOVE ’Y’ TO ALL-DONE-SW
 PERFORM FETCH-ERROR
 END-IF.

Usage • A server application uses this function to send a row of data to the
requesting client over the connection specified in TDPROC.
Each TDSNDROW sends a single row, so the application must issue a
TDSNDROW call for each row to be sent.

TDSNDROW sends the column name and format before it sends the column
data.

Note If your IMS TM transaction is conversational (CONV), you must
insert the scratch pad area at the beginning of the IO/PCB before sending
the results with TDSNDROW.

• A server application cannot send any data rows to the client after it issues
TDSNDMSG or TDSNDDON, unless the TDSNDDON status is TDS-
DONE-CONTINUE.

• Before a row of data can be sent to a client, every column of the row must
be defined in a TDESCRIB call. If your application calls TDSNDROW
before all the columns in the row are described with TDESCRIB, this
function returns TDS-WRONG-STATE, and the row is not sent.

• If the column datatype is TDSVARYCHAR, TDSVARYBIN,
or TDSVARYGRAPHIC, the column length is determined each time a row
is sent by the value of the “LL” specification at the beginning of the
column structure.

TDSNDROW

228

Datatype conversions
Table 3-42 shows the conversions that TDSNDROW performs.

Table 3-42: Datatype conversions performed by TDSNDROW

• Your application must be in SEND state for this function to execute
successfully. If it is not in SEND state, TDSNDROW returns TDS-
WRONG-STATE. Calling TDRESULT puts your application in SEND
state.

Source datatype:
Gateway-Library

Result datatype:
Open Client Notes

TDSCHAR
TDSCHAR
TDSVARYCHAR
TDSVARYCHAR
TDSVARYCHAR

TDSVARYCHAR
TDSMONEY
TDSCHAR
TDSLONGVARCHAR
TDSMONEY

Performs EBCDIC and ASCII
conversion. For Japanese character
sets, does mainframe to
workstation conversion.
Pads TDSCHAR fields with blanks.

TDSFLT8
TDSFLT8
TDSFLT8

TDSFLT4
TDSMONEY
TDSMONEY4

Truncates low order digits.

TDSFLT4
TDSFLT4
TDSFLT4

TDSFLT8
TDSMONEY
TDSMONEY4

TDSCHAR
TDSVARYCHAR

TDSMONEY
TDSMONEY

TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL
TDS-PACKED-DECIMAL

TDSCHAR
TDSVARYCHAR
TDSMONEY
TDSFLT4
TDSFLT8

When converting packed decimal
to character values, change the
length to allow for unpacking,
leading or trailing zeros, the sign
and the decimal point.

TDS-PACKED-DECIMAL
TDSCHAR

TDSNUMERIC
TDSNUMERIC

Use TDSETBCD after TDESCRIB
to set precision and scale for
numeric or Sybase decimal
columns.

TDS-PACKED-DECIMAL
TDSCHAR

TDS-SYBASE-DECIMAL
TDS-SYBASE-DECIMAL

Use TDSETBCD after TDESCRIB
to set precision and scale for
numeric or Sybase decimal
columns.

TDSGRAPHIC
TDSGRAPHIC
TDSVARGRAPHIC
TDSVARGRAPHIC

TDSCHAR
TDSVARYCHAR
TDSCHAR
TDSVARYCHAR

Performed by Japanese Conversion
Module.
Pads TDSCHAR fields with blanks.

TDSDATETIME
TDSDATETIME4

TDSCHAR
TDSCHAR

CHAPTER 3 Functions

229

• If the RETCODE argument contains the value,
TDS-CANCEL-RECEIVED, your application should immediately stop
sending rows and issue TDSNDDON and TDFREE. It is a good idea to
check the return code after each row is sent.

For Japanese users

• If the JCM is used, TDSNDROW converts the data in a column from the
mainframe character set to the workstation character set before sending,
if necessary.

See also Related functions

• TDESCRIB on page 88

• TDSNDDON on page 211

• TDSNDMSG on page 218

Related topics

• “Datatypes” on page 37

TDSQLLEN
Description Determines the length of a language string received from a client.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 SQL-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL ’TDSQLLEN’ USING TDPROC, SQL-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

SQL-LENGTH
(O) The length of the incoming language string. For graphic datatypes,
this is the number of double-byte characters; for other datatypes, it is the
number of bytes.

TDSQLLEN

230

Return value This function has no RETCODE argument. It returns the length of the SQL
string in the SQL-LENGTH argument. If the value in SQL-LENGTH is -1,
call TDRESULT, and examine its return code to determine what the problem is.

Examples The following code fragment illustrates the use of TDSQLLEN and TDRCVSQL
to receive a language request from the client. This example is taken from the
sample program in Appendix C, “Sample Language Application for CICS”.

 * Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * Turn on local tracing if not on globally or locally

 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS.

 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-ALL-RPCS
 AND GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 MOVE 1 TO TRACING-SET-SW
 PERFORM LOCAL-TRACING
 END-IF.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

 * Ensure kicked off via language request
 * (this could be handled more reasonably by TDRESULT)

 CALL ’TDINFPGM’ USING GWL-PROC, GWL-RC,
 GWL-INFPGM-TDS-VERSION,
 GWL-INFPGM-LONGVAR,
 GWL-INFPGM-ROW-LIMIT,
 GWL-INFPGM-REMOTE-TRACE,
 GWL-INFPGM-CORRELATOR,
 GWL-INFPGM-DB2GW-OPTION,
 GWL-INFPGM-DB2GW-PID,
 GWL-INFPGM-TYPE-RPC.

CHAPTER 3 Functions

231

 IF GWL-INFPGM-TYPE-RPC NOT = TDS-START-SQL
 MOVE MSG-NOT-LANG TO MSG-TEXT
 MOVE LENGTH OF MSG-NOT-LANG TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 * Prepare for receive

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 * Get lenth of language text, ensure not too big for us
 * (this could be handled without TDSQLLEN by checking
 * LANG-ACTUAL-LEN doesn’t exceed LANG-MAX-L in TDRCVSQL call)

 CALL ’TDSQLLEN’ USING GWL-PROC, GWL-SQLLEN.
 MOVE LENGTH OF LANG-BUFFER-TEXT TO LANG-MAX-L.

 IF GWL-SQLLEN > LANG-MAX-L THEN
 MOVE MSG-BAD-LEN TO MSG-TEXT
 MOVE LENGTH OF MSG-BAD-LEN TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 * Get language text

 CALL ’TDRCVSQL’ USING GWL-PROC, GWL-RC,
 LANG-BUFFER-TEXT,
 LANG-MAX-L,
 LANG-ACTUAL-L.

 MOVE LANG-ACTUAL-L TO LANG-BUFFER-LL.

Usage • A server application uses this function to determine the actual length of an
incoming string.

• Typically, an application calls TDSQLLEN after TDACCEPT and before
TDRCVSQL to determine how large a storage area to allocate for the
incoming string.

• You can use TDSQLLEN to store incoming text in more than one variable.
Read part of the text into one variable, using TDRCVSQL, then call
TDSQLLEN to determine the length of the text that remains.
Call TDRCVSQL again to move the remaining text into a second variable.
Repeat as often as necessary.

TDSTATUS

232

• Although this function is called TDSQLLEN, it does not differentiate
between SQL strings and other language strings, such as math functions or
single-byte katakana. It is up to the application to determine what kind of
text is in the buffer and what to do with it.

See also Related functions

• TDRCVSQL on page 165

• TDRESULT on page 170

TDSTATUS
Description Retrieves the last status information received from a remote procedure call

(RPC) or SQL command string.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 RETURN-STATUS-NUMBER PIC S9(9) USAGE COMP SYNC.
01 DONE-STATUS PIC S9(9) USAGE COMP SYNC.
01 DONE-COUNT PIC S9(9) USAGE COMP SYNC.
01 COMM–STATE PIC S9(9) USAGE COMP SYNC.
01 COMM-RETCODE PIC S9(9) USAGE COMP SYNC.
01 COMM-ERROR-SUBCODE PIC S9(9) USAGE COMP SYNC.

CALL 'TDSTATUS' USING TDPROC, RETCODE,
 RETURN-STATUS-NUMBER, DONE-STATUS,
 DONE-COUNT, COMM–STATE, COMM-RETCODE,
 COMM-ERROR-SUBCODE.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-43 on page 234.

CHAPTER 3 Functions

233

RETURN-STATUS-NUMBER
(O) Variable where the completion code for this request is stored. This code
is an integer that indicates normal completion, an error, or other condition.
Negative numbers (-1 to -99) and zero are Sybase-defined return status
numbers. Positive numbers are user-defined values. For a list of Sybase-
defined return status numbers, see the discussion of TDSNDDON on page
211.

DONE-STATUS
(O) Variable where the result of the operation is stored. This value indicates
whether the operation completed normally or returned an error, and whether
any rows were affected. DONE-STATUS returns one of the following values:

DONE-COUNT
(O) Variable where the row count for the operation is stored. If the DONE-
STATUS indicates that a valid number of rows was affected by the operation,
this value indicates how many rows were affected.

COMM–STATE
(O) Variable where the current communication state of the mainframe server
is stored. COMM-STATE returns one of the following values:

TDS-DONE-FINAL
 (0x0000)

The set of results currently being sent is the final set of results.

TDS-DONE-CONTINUE
 (0x0001)

More results follow. This option tells the receiving program to
continue retrieving results until this argument specifies TDS-
DONE-FINAL or TDS-DONE-ERROR.

TDS-DONE-ERROR
 (0x0002)

The last request received from the client resulted in an error.

TDS-DONE-COUNT
 (0x0010)

The ROW-COUNT argument contains a valid count value.

TDS-RESET (0) Client/server conversation for this transaction ended.

 If the current transaction is running under CICS or uses the IMS TM
explicit API, the transaction should exit as soon as possible.

 If the current transaction is a WFI transaction using the IMS TM implicit
API, the transaction can accept another client request by calling
TDGETREQ.

TDS-SEND (1) Transaction is in SEND state.

TDS-RECEIVE (2) Transaction is in RECEIVE state.

TDSTATUS

234

TDINFRPC also returns this information.

See “Communication states” on page 19 for an explanation of
communication states.

COMM-RETCODE
(O) Variable where the TDPROC current communication I/O return code is
stored. This value is in SAA format.

COMM-ERROR-SUBCODE
(O) Detailed error information. Provides additional information about the
cause of failure when TDSTATUS returns a return code other than TDS-OK.

A list of these codes is in the Messages and Codes for Open ClientConnect
and Open ServerConnect.

Return value The RETCODE argument can contain any of the return values listed in Table
3-43.

Table 3-43: TDSTATUS return values

Examples Example 1
The following code fragment shows how a program uses TDSTATUS to
determine the communication state before sending an error message to a client.
This example is taken from the sample program, SYCCSAR2, in Appendix B,
“Sample RPC Application for CICS”.

*---
SEND-SQL-ERROR.
*---

 MOVE SQLCODE TO MSG-SQL-ERROR-C.
 MOVE SQLERRMC TO MSG-SQL-ERROR-K.
 * ---
 * ensure possible non-printables translated to spaces
 * ---

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-CANCEL-RECEIVED (-12) Operation canceled. The remote partner issued a
cancel. The current operation failed.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC
argument.

TDS-STATUS-NOT-RECEIVED (-11) No status returned from client. No RETURN-
STATUS-NUMBER is available because the server
did not yet send the status back to the client.

CHAPTER 3 Functions

235

 PERFORM VARYING MSG-SQL-ERROR-SS FROM 1 BY 1
 UNTIL MSG-SQL-ERROR-SS > SQLERRML

 IF MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) < SPACE
 OR MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) > ’9’ THEN
 MOVE SPACE TO MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS)
 END-IF
 END-PERFORM.
 MOVE MSG-SQL-ERROR TO MSG-TEXT.
 MOVE LENGTH OF MSG-SQL-ERROR TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE MSG-SEVERITY-ERROR TO MSG-SEVERITY.
 MOVE MSG-NR-ERROR TO MSG-NR.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 PERFORM SEND-MESSAGE.
 *---
 SEND-MESSAGE.
 *---
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.
 * Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC, GWL-STATUS-NR,
 GWL-STATUS-DONE, GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC, MSG-TYPE,
 MSG-NR, MSG-SEVERITY, TDS-ZERO,
 TDS-ZERO, MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

Example 2
The following code fragment illustrates the use of TDSTATUS and TDSNDMSG
in a Gateway-Library transaction using the IMS TM implicit API.
This example is taken from the sample program in Appendix D, “Sample RPC
Application for IMS TM (Implicit)”.

TDSTATUS

236

*---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

* Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

Usage • TDSTATUS returns the TDS status number, status flags, count,
and communication state associated with the current RPC or SQL
command batch execution.

• TDSTATUS returns standard communication subcodes.

See also Related functions

• TDRESULT on page 170

• TDSNDDON on page 211

Related topics

• “Long-running transactions” on page 55

Related documents

• Messages and Codes for Open ClientConnect and Open ServerConnect

CHAPTER 3 Functions

237

TDTERM
Description Frees up all MVS storage.

Syntax COPY SYGWCOB.

01 IHANDLE PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.

CALL ’TDTERM’ USING IHANDLE, RETCODE.

Parameters IHANDLE
(I) Pointer to a transaction-wide structure that contains information used to
set up the Gateway-Library environment. This must be the same IHANDLE
specified in the program’s initial TDINIT call. It corresponds to the context
structure in Open Client Client-Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-44.

Return value The RETCODE argument can contain any of the return values listed in Table
3-44.

Table 3-44: TDTERM return values

Examples The following code fragment illustrates the use of TDFREE and TDTERM in a
Gateway-Library transaction using the IMS TM implicit API. The transaction
processes multiple client requests, using TDGETREQ to call each request after
the first. This example is taken from the sample program in Appendix D,
“Sample RPC Application for IMS TM (Implicit)”.

*--
SEND-ROWS.
*--

 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.
 FINISH-REPLY.
 CALL ‘TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS, CTR-ROWS,
 TDS-ZERO, TDS-ENDRPC.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-INVALID-IHANDLE (-19) Invalid IHANDLE specification. Error in
specifying a value for the IHANDLE argument.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one
or more of the arguments supplied in the call is not
valid. The operation failed.

TDTERM

238

 . [check return code]
 .
* Get next client request
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-RPC-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION,
 GWL-REQ-TYPE, GWL-RPC-NAME.
 EVALUATE GWL-RC
 WHEN ZEROES
 GO TO READ-IN-USER-PARM
 WHEN TDS-RESULTS-COMPLETE
 PERFORM FREE-ALL-STORAGE
 WHEN TDS-CONNECTION-TERMINATED
 PERFORM FREE-ALL-STORAGE
 WHEN OTHER
 MOVE ‘TDGETREQ’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-EVALUATE.
 GOBACK.
 *---
 FREE-ALL-STORAGE.
 *---
 CALL ‘TDFREE’ USING GWL-PROC, GWL-RC.
 . [check return code]
 CALL ‘TDTERM’ USING GWL-INIT-HANDLE, GWL-RC.

Usage • TDTERM frees all TDPROCs and underlying free control blocks,
including the IHANDLE, in preparation for program termination. It also
deallocates the connection, if it is still active, and frees its queues.

• This function is required in MVS and IMS TM programs to free up MVS
storage when the MVS or IMS TM application exits. In CICS programs,
it is optional.

• See “Long-running transactions” on page 55.

• For more information, refer to your IMS TM product documentation.

CHAPTER 3 Functions

239

See also Related functions

• TDACCEPT on page 70

• TDGETREQ

• TDINIT on page 145

• TDSETPT on page 197

Related topics

• “Long-running transactions” on page 55

Related documents

• Messages and Codes for Open ClientConnect and Open ServerConnect

TDYNAMIC
Description Reads or responds to a client dynamic SQL command.

Syntax Copy SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 CMD PIC S9(9) USAGE COMP SYNC.
01 ITEM PIC S9(9) USAGE COMP SYNC.
01 HOST-VARIABLE PIC X(n).
01 HOST-VAR-LENGTH PIC S9(9) USAGE COMP SYNC.
01 ACTUAL-DATA-LENGTH PIC S9(9) USAGE COMP SYNC.
CALL ‘TDYNAMIC’ USING TDPROC, RETCODE, CMD, ITEM,
 HOST-VARIABLE. HOST-VAR-LENGTH,
 ACTUAL-DATA-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-47 on page 241.

CMD
(I) Gets (TDS-GET) or sets (TDS-SET) the value of a particular item.

TDYNAMIC

240

ITEM
(I/O) Indicates what kind of information is being sent or retrieved. ITEM can
be one of the following values listed in Table 3-45.

Table 3-45: ITEM argument values

HOST-VARIABLE - (I/O) – Buffer in which ITEM value is returned (TDS-
GET) or set (TDS-SET).

HOST-VAR-LEN - (I/O) – The length in bytes of HOST-VARIABLE.
This value varies depending on the value of ITEM. The possible values are
listed in Table 3-46 on page 240.

Table 3-46: HOST-VAR-LEN values

Return value The RETCODE argument can contain any of the return values listed in Table 3-
47 on page 241.

Value Notes

TDS-DYN-TYPE Legal values for TDS-DYN-TYPE when CMD is TDS-GET:
 TDS-PREPARE
 TDS-DESCRIBE-INPUT
 TDS-DESCRIBE-OUTPUT
 TDS-EXECUTE
 TDS-EXEC-IMMEDIATE
 TDS-DEALLOC

 When CMD is TDS-SET, TDS-DYN-ACK is the only valid
value.

TDS-DYN-IDLEN The length of the dynamic statement ID.

TDS-DYN-ID The dynamic statement ID.

TDS-DYN-STMTLEN The length of the dynamic statement.

TDS-DYN-STMT The dynamic statement that is being prepared or executed.

Value Notes

TDS-DLYN-TYPE (4)

TDS-DYN-IDLEN (4)

TDS-DYN-ID Depends on the size of ID (maximum is 255)

TDS-DYN-STMTLEN (4)

TDS-DYN-STMT Depends on the size of dynamic statement

CHAPTER 3 Functions

241

Table 3-47: TDYNAMIC return values

Return value Meaning

TDS-DYNSQL-ALREADY-DEALLOCATED (-84) Dynamic SQL request already allocated. You
cannot deallocate a dynamic SQL request that is
already allocated.

TDS-DYNSQL-ALREADY-PREPARED (-81) Dynamic SQL request already prepared. You
cannot prepare a dynamic SQL request that is
already deallocated.

TDS-DYNSQL-ID-NOT-FOUND (-85) Dynamic SQL request not found.

TDS-DYNSQL-IDLEN-TOO-LONG (-87) Dynamic SQL request ID length is greater than
255.

TDS-DYNSQL-NO-STMT-GIVEN (-86) No SQL statement is associated with the
dynamic SQL request.

TDS-DYNSQL-NOT-PREPARED (-80) A dynamic SQL request is not prepared.

TDS-DYNSQL-OUTPUT-ALREADY-DEFINED (-83) Dynamic SQL output already defined. You
cannot define dynamic SQL output more than
once.

TDS-DYNSQL-PARMS-ALREADY-DEFINED (-82) Dynamic SQL parameters already defined. You
cannot define dynamic SQL parameters more
than once.

TDS-DYNSQL-STMT-NOT-FOUND (-89) No SQL statement is associated with the
dynamic SQL request.

TDS-INVALID-BOOLEAN (-180) Invalid Boolean value. Boolean values must be
set to either CS-TRUE or CS-FALSE.

TDS-INVALID-CURCLOSOPTION (-182) A “closed” cursor command specified an invalid
option. The Gateway-Library transaction
received a “closed” cursor command, but the
value of the OPTION field of the CURSOR-
DESC structure is invalid. Valid options are
TDS-CUR-UNUSED and TDS-CUR-
DEALLOC.

TDS-INVALID-CURDECLOPTION (-183) A declare cursor command has an invalid option
specified. The Gateway-Library transaction
received a declare cursor command, but the
value of the OPTION field of the CURSOR-
DESC structure is invalid. Valid options are
TDS-CUR-UNUSED and TDS-CUR-
DEALLOC.

TDS-INVALID-CURDECLSTAT (-184) Illegal cursor declare option.

TDS-INVALID-CURINFCMD (-195) Illegal cursor information command.

TDS-INVALID-CUROPENSTAT (-187) Illegal cursor open status.

TDS-INVALID-CURUPDSTAT (-186) Illegal cursor update status.

TDYNAMIC

242

See also Related topics

• “Dynamic SQL support” on page 46

TDS-INVALID-DATA-CONVERSION (-172) Incompatible datatypes. The source datatype
cannot be converted into the requested result
datatype.

TDS-INVALID-DATA-TYPE (-171) Illegal datatype. A Sybase datatype supplied in
the call is not supported and the conversion
cannot be done. The operation failed.

TDS-INVALID-DATAFMT-VALUE (-181) One or more values specified for fields in the
DATAFMT structure are illegal.

TDS-INVALID-DYNSQL-FSM (-79) Dynamic SQL request in invalid state.

TDS-INVALID-DYNSTAT (-188) Invalid status for dynamic SQL request.

TDS-INVALID-DYNTYPE (-189) Invalid type for dynamic SQL request.

TDS-INVALID-FLAGS (-176) Invalid padding option for a field.

TDS-INVALID-LENGTH (-173) Wrong length. The length specified in the
HOST-VAR-LEN argument is too long.

TDS-INVALID-NAMELENGTH (-179) Invalid name length. The length specified for the
column, parameter, message, or server name is
invalid.

TDS-INVALID-PRECISION (-177) Invalid precision value. The precision value
specified during conversion of TDS-PACKED-
DECIMAL data is invalid.

TDS-INVALID-SCALE (-178) Invalid scale value. The scale value specified
during conversion of TDS-PACKED-
DECIMAL data is invalid.

TDS-INVALID-STATUS (-174) Invalid status value. The value entered in the
STATUS field is invalid.

TDS-INVALID-VAR-ADDRESS (-175) Specified variable address is invalid. No
variable with the specified name exists. A
NULL value was specified. The operation
failed.

Return value Meaning

CHAPTER 3 Functions

243

TDWRTLOG
Description Writes a user-created message or a system entry to the trace and error log.

Syntax COPY SYGWCOB.

01 TDPROC PIC S9(9) USAGE COMP SYNC.
01 RETCODE PIC S9(9) USAGE COMP SYNC.
01 DATETIME-FLAG PIC S9(9) USAGE COMP SYNC.
01 MESSAGE PIC X(x).
01 MESSAGE-LENGTH PIC S9(9) USAGE COMP SYNC.

CALL 'TDWRTLOG’ USING TDPROC, RETCODE, DATETIME-FLAG,
 MESSAGE, MESSAGE-LENGTH.

Parameters TDPROC
(I) Handle for this client/server connection. This must be the same value
specified in the associated TDACCEPT call. The TDPROC handle
corresponds to the connection and command handles in Open Client Client-
Library.

RETCODE
(O) Variable where the result of function execution is returned. Its value is
one of the codes listed in Table 3-48 on page 244.

DATETIME-FLAG
(I) Timestamp indicator. This flag indicates whether or not the log message
should begin with the current date and time. Assign this argument one of the
following values:

MESSAGE
(I) User-written message. This is the text of the message to be written to the
trace file.

MESSAGE-LENGTH
(I) Length of the user-written message. The message must be less than or
equal to 80 bytes in length. For graphic datatypes, this is the number of
double-byte characters; for other datatypes, it is the number of bytes.

TDS-TRUE (1) Include date and time.

TDS-FALSE (0) Do not include date and time.

TDWRTLOG

244

Return value The RETCODE argument can contain any of the return values listed in Table
3-48.

Table 3-48: TDWRTLOG return values

Examples The following code fragment writes an entry to the trace log after checking to
see that tracing is enabled. It is taken from the sample program in Appendix G,
“Sample Tracing and Accounting Program” which runs under CICS.

* ---
 * Determine whether tracing is on or off.
 * ---
 PERFORM GET-TRACE-STATUS THRU GET-TRACE-STATUS-EXIT.

 * ---
 * Write a log entry only if logging is enabled.
 * ---
 IF TRACING-ON THEN
 CALL ’TDWRTLOG’ USING GWL-PROC,
 GWL-RC,
 TDS-TRUE,
 GWL-WRTLOG-MSG,
 GWL-WRTLOG-MSG-L

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDWRTLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDWRTLOG-EXIT
 END-IF
 ELSE
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’LOGNOTON’ TO MSG-SRVLIB-FUNC
 END-IF.

Return value Meaning

TDS-OK (0) Function completed successfully.

TDS-LOG-ERROR(-258) Attempt to write to the log file failed.

TDS-INVALID-PARAMETER (-4) Invalid parameter value. The value assigned to one or more
of the arguments supplied in the call is not valid. The
operation failed.

TDS-INVALID-TDPROC (-18) Error in specifying a value for the TDPROC argument.

TDS-WRONG-STATE (-6) This function cannot be used in the current communication
state. For example, your program tried to send a reply before
it read in all of the client parameters. The application was still
in RECEIVE state and could not send. The operation failed.

CHAPTER 3 Functions

245

Usage • You use this function to write a message to the trace and error log.

• Traces and error messages are written to the same log. The transaction
processing system determines the log used for tracing and the type of
tracing being done:

• Under CICS: The trace and error log is a VSAM ESDS file.

As installed, the CICS trace log is named SYTDLOG1. You can
change the name of this file with TDSETLOG. To find out the name of
the current trace log, use TDINFLOG.

• Under IMS TM: Header, data, and API tracing information are all
written to the IMS TM system log.

• Under MVS: The information is written to a sequential file.

• The log must be open for this function to execute successfully.

• Under CICS: TDSETLOG opens the trace and error log when it turns
tracing on.

• Under IMS TM: The IMS TM system log is always open,
but TDSETLOG does a logical OPEN by turning tracing on.

• Under MVS: Gateway-Library opens the log, but TDSETLOG does a
logical OPEN by turning tracing on.

• This function can be used to send local messages to the trace and error log
even when the connection is down.

• See the Installation and Administration Guide for Open ServerConnect for
an explanation of the Gateway-Library tracing facility, instructions for
using it, and the layout of the trace log.

See also Related functions

• TDINFLOG on page 123

• TDSETLOG on page 186

TDWRTLOG

246

247

A P P E N D I X A Gateway-Library Quick
Reference

This appendix contains Table A-1, which lists the Gateway-Library
functions, shows the arguments used with each, and gives the function’s
symbolic constants where used.

Table A-1: Gateway-Library function quick reference

Function Arguments Symbolic constants

TDACCEPT (TDPROC,

RETCODE,

IHANDLE,

ACCEPT-CONNECTION-NAME,

ERROR-SUBCODE);

TDCONVRT (TDPROC,

RETCODE,

NUM-DECIMAL-PLACES,

SOURCE-TYPE,

SOURCE-LENGTH,

SOURCE-VARIABLE,

RESULT-TYPE,

RESULT-LENGTH,

RESULT-VARIABLE,

OUTLEN);

Note: OUTLEN is optional.

TDCURPRO (TDPROC,

RETCODE,

ACTION,

CURSOR-DESC);

248

TDESCRIB (TDPROC,

RETCODE,

COLUMN-NUMBER,

HOST-VARIABLE-TYPE,

HOST-VARIABLE-MAXLEN,

HOST-VARIABLE-NAME,

NULL-INDICATOR-VARIABLE,

NULLS-ALLOWED, TDS-TRUE
TDS-FALSE

COLUMN-TYPE,

COLUMN-MAXLEN,

COLUMN-NAME,

COLUMN-NAME-LENGTH);

TDFREE (TDPROC,

RETCODE);

TDGETREQ (TDPROC,

RETCODE,

WAIT-OPTION, TDS-TRUE
TDS-FALSE

REQUEST-TYPE, TDS-LANGUAGE-EVENT
TDS-RPC-EVENT
TDS-DYNAMIC-EVENT
TDS-CURSOR-EVENT

TRAN-NAME);

TDGETSOI (TDPROC,

RETCODE,

OBJECT-TYPE TDS-OBJECT-COL
TDS-OBJECT-PARM

OBJECT-NUMBER

STRIP-SOSI); TDS-STRIP-SOSI
TDS-BLANK-SOSI

Function Arguments Symbolic constants

APPENDIX A Gateway-Library Quick Reference

249

TDGETUSR (TDPROC,

RETCODE,

ACCESS-CODE,

USER-ID,

PASSWORD,

SERVER-NAME,

CLIENT-CHARSET,

NATIONAL-LANGUAGE,

SERVER-CHARSET,

SERVER-DBCS,

APPNAME-ID);

TDINFACT (IHANDLE,

RETCODE,

ACCOUNTING-FLAG, TDS-TRUE
TDS-FALSE

ACCOUNTING-FILENAME,

MAXNUM-ACCT-RECORDS);

TDINFBCD (TDPROC,

RETCODE,

OBJECT-TYPE, TDS-OBJECT-COL
TDS-OBJECT-PARM

OBJECT-NUMBER,

BCD-LENGTH,

BCD-NUMBER-DECIMAL-PLACES);

Function Arguments Symbolic constants

250

TDINFLOG (IHANDLE,

RETCODE,

GLOBAL-TRACE-FLAG, TDS-NO-TRACING
TDS-TRACE-ALL-RPCS
TDS-TRACE-SPECIFIC-RPCS
TDS-TRACE-ERRORS-ONLY

API-TRACE-FLAG, TDS-TRUE
TDS-FALSE

TDS-HEADER-TRACE-FLAG, TDS-TRUE
TDS-FALSE

TDS-DATA-TRACE-FLAG, TDS-TRUE
TDS-FALSE

TRACE-ID,

TRACE-FILENAME,

MAXNUM-TRACE-RECORDS);

TDINFPGM (TDPROC,

RETCODE,

TDS-VERSION, TDS-VERSION2-3
TDS-VERSION3-4
TDS-VERSION4-0
TDS-VERSION4-2
TDS-VERSION4-6
TDS-VERSION4-8
TDS-VERSION4-9
TDS-VERSION5-0

LONGVAR-TRUNC-FLAG, TDS-TRUE
TDS-FALSE

ROW-LIMIT,

REMOTE-TRACE-FLAG, TDS-TRUE
TDS-FALSE

USER-CORRELATOR,

DB2GW-OPTIONS,

DB2GW-PID,

REQUEST-TYPE); TDS-LANGUAGE-EVENT
TDS-RPC-EVENT
TDS-CURSOR-EVENT
TDS-DYNAMIC-EVENT

Function Arguments Symbolic constants

APPENDIX A Gateway-Library Quick Reference

251

TDINFPRM (TDPROC,

RETCODE,

PARM-ID,

DATATYPE,

ACTUAL-DATA-LENGTH,

MAX-DATA-LENGTH,

PARM-STATUS, For TDS 4.6:
TDS-INPUT-VALUE
TDS-RETURN-VALUE
For TDS 5.0:
TDS-INPUT-VALUE-NULLABLE
TDS-RETURN-VALUE-NULLABLE

PARM-NAME,

PARM-NAME-LENGTH,

USER-DATATYPE);

TDINFRPC (TDPROC,

RETCODE,

REQUEST-TYPE, TDS-LANGUAGE-EVENT
TDS-RPC-EVENT
TDS-CURSOR-EVENT
TDS-DYNAMIC-EVENT

REC-NAME,

COMM-STATE); TDS-RESET
TDS-SEND
TDS-RECEIVE

TDINFSPT (IHANDLE,

RETCODE,

TRACE-STATUS, TDS-TRUE
TDS-FALSE

TRACE-OPTION, TDS-SPT-API-TRACE
TDS-SPT-ERRLOG
TDS-SPT-TDS-DATA

TRANSACTION-ID,

TRANSACTION-ID-LENGTH);

TDINFUDT (TDPROC,

RETCODE,

COLUMN-NUMBER,

USER-DATATYPE);

Function Arguments Symbolic constants

252

TDINIT For CICS: (DFHEIBLK,
For IMS TM: (IO-PCB,

RETCODE,

IHANDLE);

TDLOCPRM (TDPROC,

PARM-ID,

PARM-NAME,

PARM-NAME-LENGTH);

TDLSTSPT (IHANDLE,

RETCODE,

TRACE-TABLE-LIST);

TDNUMPRM (TDPROC,

NUMBER-OF-PARMS);

TDRCVPRM (TDPROC,

RETCODE,

PARM-ID,

HOST-VARIABLE,

HOST-VARIABLE-TYPE,

MAX-DATA-LENGTH,

ACTUAL-DATA-LENGTH);

TDRCVSQL (TDPROC,

RETCODE,

HOST-VARIABLE,

MAX-VAR-LENGTH,

ACTUAL-STRING-LENGTH);

TDRESULT (TDPROC,

RETCODE);

TDSETACT (IHANDLE,

RETCODE,

ACCOUNTING-FLAG, TDS-TRUE
TDS-FALSE

ACCOUNTING-FILENAME,

MAXNUM-ACCT-RECORDS);

Function Arguments Symbolic constants

APPENDIX A Gateway-Library Quick Reference

253

TDSETBCD (TDPROC,

RETCODE,

OBJECT-TYPE, TDS-OBJECT-COL
TDS-OBJECT-PARM

OBJECT-NUMBER,

BCD-LENGTH,

BCD-NUMBER-DECIMAL-PLACES);

TDSETLEN (TDPROC,

RETCODE,

COLUMN-NUMBER,

NEW-COLUMN-LENGTH);

TDSETLOG (IHANDLE,

RETCODE,

GLOBAL-TRACE-FLAG, TDS-NO-TRACING
TDS-TRACE-ALL-RPCS
TDS-TRACE-SPECIFIC-RPCS
TDS-TRACE-ERRORS-ONLY

API-TRACE-FLAG, TDS-TRUE
TDS-FALSE

TDS-HEADER-TRACE-FLAG, TDS-TRUE
TDS-FALSE

TDS-DATA-TRACE-FLAG, TDS-TRUE
TDS-FALSE

TRACE-ID

TRACE-FILENAME

MAXNUM-TRACE-RECORDS);

TDSETPRM (TDPROC,

RETCODE,

PARM-ID,

HOST-VARIABLE-TYPE,

HOST-VARIABLE-LENGTH,

HOST-VARIABLE,

USER-DATATYPE);

Function Arguments Symbolic constants

254

TDSETPT (IHANDLE,

RETCODE,

PROG-TYPE, MPP
BMP
CONV
EXPL

SPA,

RESERVED1,

RESERVED2);

TDSETSOI (TDPROC,

RETCODE,

OBJECT-TYPE, TDS-OBJECT-COLUMN
TDS-OBJECT-PARAMETER

OBJECT-NUMBER,

STRIP-SOSI); TDS-STRIP-SOSI
TDS-BLANK-SOSI

TDSETSPT (IHANDLE,

RETCODE,

TRACE-STATUS, TDS-TRUE
TDS-FALSE

TRACE-OPTIONS, TDS-SPT-API-TRACE
TDS-SPT-ERRLOG
TDS-SPT-TDS-DATA

TRANSACTION-ID,

TRANSACTION-ID-LENGTH);

TDSETUDT (TDPROC,

RETCODE,

COLUMN-NUMBER,

USER-DATATYPE);

Function Arguments Symbolic constants

APPENDIX A Gateway-Library Quick Reference

255

TDSNDDON (TDPROC,

RETCODE,

STATUS, TDS-DONE-FINAL
TDS-DONE-CONTINUE
TDS-DONE-ERROR
TDS-DONE-COUNT

ROW-COUNT,

RETURN-STATUS-NUMBER,

CONN-OPTIONS); TDS-ENDREPLY
TDS-ENDRPC
TDS-FLUSH

TDSNDMSG (TDPROC,

RETCODE,

MESSAGE-TYPE, TDS-INFO-MSG
TDS-ERROR-MSG

MESSAGE-NUMBER,

SEVERITY, TDS-INFO-SEV
TDS-ERROR-SEV

ERROR-STATE,

LINE-ID,

TRANSACTION-ID,

TRANSACTION-ID-LENGTH,

MESSAGE-TEXT,

MESSAGE-LENGTH);

TDSNDROW (TDPROC,

RETCODE);

TDSQLLEN (TDPROC,

SQL-LENGTH);

Function Arguments Symbolic constants

256

TDSTATUS (TDPROC,

RETCODE,

RETURN-STATUS-NUMBER,

DONE-STATUS, TDS-DONE-FINAL
TDS-DONE-CONTINUE
TDS-DONE-ERROR
TDS-DONE-COUNT

DONE-COUNT,

COMM-STATE, TDS-RESET
TDS-SEND
TDS-RECEIVE

COMM-RETCODE,

COMM-ERROR-SUBCODE);

TDTERM (IHANDLE,

RETCODE);

TDYNAMIC TDPROC,

RETCODE, TDS-DYN-TYPE
TDS-DYN-IDLEN
TDS-DYN-ID
TDS-DYN-STMTLEN
TDS-DYN-STMT

CMD,

ITEM,

HOST-VARIABLE,

HOST-VAR-LENGTH,

ACTUAL-DATA-LENGTH

TDWRTLOG (TDPROC,

RETCODE,

DATETIME-FLAG, TDS-TRUE
TDS-FALSE

MESSAGE,

MESSAGE-LENGTH);

Function Arguments Symbolic constants

257

A P P E N D I X B Sample RPC Application for
CICS

This appendix contains five Open ServerConnect application programs:

• “Sample program SYCCSAR2” on page 258

A sample application that processes a LAN-side RPC from the Open
Client DB-Library

• “Sample program SYCCSAU2” on page 272

A sample cursor application

• “Sample program SYCCSAW2” on page 281

A sample application that receives parameters up to 55 bytes in length
and echoes them back in 55 byte rows

• “Sample program SYCCSAY2” on page 291

A sample application that receives one of two keywords,
@ERRORMSG or @WARNMSG and other keywords, and then
replies with the keywords and data

• “Sample program SYCCSAZ2” on page 302

A sample application that receives a text input string (10,000 bytes)
and returns it in a 50 byte column one row at a time

The purpose of these sample programs is to demonstrate the use of
Gateway-Library functions, particularly those designed to handle remote
procedure calls from a client. In some cases, one Gateway-Library
function is used for demonstration purposes when another function would
be more efficient. In order to best illustrate the flow of processing, the
programs do limited error checking.

Sample program SYCCSAR2

258

Sample program SYCCSAR2
This sample program, SYCCSAR2, processes a LAN-side client RPC, syr2.c,
from the Open Client DB-Library program. syr2.c is included on the TRS CD
or tape.

The SYCCSAR2 sample program is provided as part of the Open
ServerConnect package. It references a table, SYBASE.SAMPLETB, which you
create from the file SYOSCREA provided with Open ServerConnect in the
CTRL library.

This program accesses the sample DB2 table, SYBASE.SAMPLETB and selects
columns from all rows with a department number that matches the number
supplied in a passed parameter. It returns the selected rows to the client. One of
the return parameters indicates how many rows are affected.

After each row is sent, this program examines the TDSNDROW return code. If
a cancel request is received, it stops sending rows.

If the program completes successfully, it sends a confirmation message to the
client; otherwise, it sends an error message.

This program demonstrates the use of the following Gateway-Library
functions:

Table B-1: List of functions used in SYCCSAR2

Name Action

TDACCEPT Accept a client request.

TDCONVRT Convert data from host datatype to DB-Library datatype.

TDESCRIB Describe a column.

TDFREE Free up the TDPROC structure for the connection.

TDINFBCD Get packed decimal information for a described column.

TDINFPRM Get information about one RPC parameter.

TDINFUDT Get a column’s user-defined datatype.

TDINIT Initialize the Gateway-Library environment.

TDLOCPRM Return ID of one RPC parameter based on name.

TDNUMPRM Get total number of RPC parameters.

TDRCVPRM Receive RPC parameter from client program.

TDRESULT Describe next communication from client.

TDSETBCD Set scaling for a described column.

TDSETPRM Set one return parameter.

TDSETUDT Set a column’s user datatype.

TDSNDDON Send results-completion to client.

APPENDIX B Sample RPC Application for CICS

259

*@(#) syccsar2.cobol 1.1 3/17/98 */
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCCSAR2.
****** SYCCSAR2 - RPC REQUEST APPLICATION - COBOL2 - CICS *******
 *
 * TRANID: SYR2
 * PROGRAM: SYCCSAR2
 * PLAN NAME: SYR2PLAN
 * FILES: n/a
 * TABLES: SYBASE.SAMPLETB
 *
 * This program is executed via a client RPC request from sample
 * dblib program ’SYR2’. The purpose of the program is primarily
 * to demonstrate Server Library calls, especially those which
 * would be used in a server application designed to handle
 * RPC requests.
 *
 * Server Library calls:
 * TDACCEPT accept request from client
 * TDCONVRT convert data from host to DBlib datatype
 * TDESCRIB describe a column
 * TDFREE free TDPROC structure
 * TDINFBCD get BCD information for a described column
 * TDINFPRM get information about one rpc parameter
 * TDINFUDT get user column datatype
 * TDINIT establish environment
 * TDLOCPRM return id of one rpc parameter based on name
 * TDNUMPRM get total nr of rpc parameters
 * TDRCVPRM retrieve rpc parameter from client
 * TDRESULT describe next communication
 * TDSETBCD set scaling for a described column
 * TDSETPRM set return parameter
 * TDSETUDT set user column datatype
 * TDSNDDON send results-completion to client
 * TDSNDMSG send message to client
 * TDSNDROW send row to client
 * TDSTATUS get status information
 *
 *
 * The program selects columns from the DB2 sample table

TDSNDMSG Send message to client.

TDSNDROW Send row to client.

TDSTATUS Get status information.

Name Action

Sample program SYCCSAR2

260

 * SYBASE.SAMPLETB of all rows with a department number equal
 * to that supplied in a passed parameter.
 *
 * The number of rows is returned in a return parameter.
 *
 * After each row is sent, TDSNDROW’s return code is examined.
 * If a cancel request was received, then no more rows are sent.
 *
 * A confirmation message is sent to the client if all is
 * well, otherwise an error message is sent.
 *
 * CHANGE ACTIVITY:
 * 4/90 - Created, MPM
 * 10/93 - Added SAMPLETB DCLGEN, some restructuring, TC
 *

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 **
 WORKING-STORAGE SECTION.
 **

 *---
 * DB2 SQLCA
 *---
 EXEC SQL INCLUDE SQLCA END-EXEC.
 *---
 * SYBASE.SAMPLETB Table Declaration
 *---
 EXEC SQL INCLUDE SYCCSMPT END-EXEC.
 *---
 * SERVER LIBRARY COBOL COPY BOOK
 *---
 COPY SYGWCOB.
 *---
 * WORK AREAS
 *---
 01 GW-LIB-MISC-FIELDS.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-INFPRM-ID PIC S9(9) COMP.
 05 GWL-INFPRM-TYPE PIC S9(9) COMP.
 05 GWL-INFPRM-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-MAX-DATA-L PIC S9(9) COMP.

APPENDIX B Sample RPC Application for CICS

261

 05 GWL-INFPRM-STATUS PIC S9(9) COMP.
 05 GWL-INFPRM-NAME PIC X(30).
 05 GWL-INFPRM-NAME-L PIC S9(9) COMP.
 05 GWL-INFPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-INFUDT-USER-TYPE PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-NUMPRM-PARMS PIC S9(9) COMP.
 05 GWL-RCVPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-ID PIC S9(9) COMP.
 05 GWL-SETPRM-TYPE PIC S9(9) COMP.
 05 GWL-SETPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-CONVRT-SCALE PIC S9(9) COMP VALUE 2.
 05 GWL-SETBCD-SCALE PIC S9(9) COMP VALUE 0.
 05 GWL-INFBCD-LENGTH PIC S9(9) COMP.
 05 GWL-INFBCD-SCALE PIC S9(9) COMP.

 01 PARM-FIELDS.
 05 PARM-DEPT.
 49 PARM-DEPT-LEN PIC S9(4) COMP.
 49 PARM-DEPT-TEXT PIC X(3).
 05 PARM-RETURN-ROWS PIC S9(9) COMP VALUE 0.

 01 SNA-FIELDS.
 05 SNA-SUBC PIC S9(9) COMP.
 05 SNA-CONNECTION-NAME PIC X(8) VALUE SPACES.

 01 EMPLOYEE-FIELDS.
 05 EMPLOYEE-FNM.
 49 EMPLOYEE-FNM-LEN PIC S9(4) COMP.
 49 EMPLOYEE-FNM-TEXT PIC X(12).
 05 EMPLOYEE-LNM.
 49 EMPLOYEE-LNM-LEN PIC S9(4) COMP.
 49 EMPLOYEE-LNM-TEXT PIC X(15).
 05 EMPLOYEE-ED PIC S9(4) COMP.
 05 EMPLOYEE-JC PIC S9(3) COMP-3.
 05 EMPLOYEE-SAL PIC S9(6)V9(2) COMP-3.

 01 EMPLOYEE-FIELDS-CHAR REDEFINES EMPLOYEE-FIELDS.
 05 FILLER PIC X(16).
 05 EMPLOYEE-LNM-CHARS OCCURS 15 TIMES

Sample program SYCCSAR2

262

 PIC X.
 05 FILLER PIC X(9).

 01 COLUMN-NAME-FIELDS.
 05 CN-FNM PIC X(10) VALUE ’FIRST_NAME’.
 05 CN-LNM PIC X(9) VALUE ’LAST_NAME’.
 05 CN-ED PIC X(9) VALUE ’EDUCATION’.
 05 CN-JC PIC X(7) VALUE ’JOBCODE’.
 05 CN-SAL PIC X(6) VALUE ’SALARY’.

 01 DESCRIBE-BIND-FIELDS.
 05 DB-HOST-TYPE PIC S9(9) COMP.
 05 DB-CLIENT-TYPE PIC S9(9) COMP.
 05 DB-DESCRIBE-HV-PTR POINTER.
 05 DB-COLUMN-NAME-HV-PTR POINTER.
 05 DB-NULL-INDICATOR PIC S9(4) COMP VALUE 0.

 01 TDGETUSR-FIELDS.
 05 GU-ACCESS-CODE PIC X(32).
 05 GU-USER-ID PIC X(32).
 05 GU-PASSWORD PIC X(32).
 05 GU-SERVER-NAME PIC X(32).
 05 GU-CLIENT-CHARSET PIC X(32).
 05 GU-NATIONAL-LANG PIC X(32).
 05 GU-SERVER-CHARSET PIC X(32).
 05 GU-SERVER-DBCS PIC X(32).
 05 GU-APP-ID PIC X(32).

 01 COUNTER-FIELDS.
 05 CTR-COLUMN PIC S9(9) COMP VALUE 0.

 01 WORK-FIELDS.
 05 WRKLEN1 PIC S9(9) COMP.
 05 WRKLEN2 PIC S9(9) COMP.
 05 WRK-BLANKS-SS PIC S9(9) COMP.
 05 WRK-DONE-STATUS PIC S9(9) COMP.
 05 WRK-EMPLOYEE-SAL PIC X(8).

 01 MESSAGE-FIELDS.
 05 MSG-TYPE PIC S9(9) COMP.
 05 MSG-SEVERITY PIC S9(9) COMP.
 05 MSG-SEVERITY-OK PIC S9(9) COMP VALUE 9.
 05 MSG-SEVERITY-ERROR PIC S9(9) COMP VALUE 11.
 05 MSG-NR PIC S9(9) COMP.
 05 MSG-NR-OK PIC S9(9) COMP VALUE 1.
 05 MSG-NR-ERROR PIC S9(9) COMP VALUE 2.

APPENDIX B Sample RPC Application for CICS

263

 05 MSG-RPC PIC X(4) VALUE ’SYR2’.
 05 MSG-RPC-L PIC S9(9) COMP.
 05 MSG-TEXT PIC X(100).
 05 MSG-TEXT-L PIC S9(9) COMP.
 05 MSG-NOT-RPC PIC X(30)
 VALUE ’SYR2 not begun via rpc request’.
 05 MSG-NOT-AUTH PIC X(19)
 VALUE ’User not authorized’.
 05 MSG-WRONG-NR-PARMS PIC X(30)
 VALUE ’Number of parameters was not 2’.
 05 MSG-NOT-RETURN-PARM PIC X(42)
 VALUE ’First parameter must be a RETURN parameter’.
 05 MSG-NOT-CHAR-PARM PIC X(41)
 VALUE ’Second parameter must be a CHARACTER type’.
 05 MSG-BAD-CURSOR PIC X(27)
 VALUE ’ERROR - can not open cursor’.
 05 MSG-BAD-FETCH PIC X(24)
 VALUE ’ERROR - fetch row failed’.
 05 MSG-SQL-ERROR.
 10 FILLER PIC X(10) VALUE ’Sqlcode = ’.
 10 MSG-SQL-ERROR-C PIC -9(3) DISPLAY.
 10 FILLER PIC X(16)
 VALUE ’, Error Tokens: ’.
 10 MSG-SQL-ERROR-K PIC X(70).
 10 MSG-SQL-ERROR-K-CHARS
 REDEFINES MSG-SQL-ERROR-K
 OCCURS 70 TIMES
 PIC X.
 05 MSG-SQL-ERROR-SS PIC S9(4) COMP.

 01 CICS-FIELDS.
 05 CICS-RESPONSE PIC S9(9) COMP.

 01 SWITCHES.
 05 ALL-DONE-SW PIC X VALUE ’N’.
 88 NOT-ALL-DONE VALUE ’N’.
 88 ALL-DONE VALUE ’Y’.
 05 SEND-DONE-SW PIC X VALUE ’Y’.
 88 SEND-DONE-ERROR VALUE ’N’.
 88 SEND-DONE-OK VALUE ’Y’.
 *---
 * DECLARE CURSOR
 *---
 EXEC SQL
 DECLARE ECURSOR CURSOR
 FOR SELECT FIRSTNME, LASTNAME,

Sample program SYCCSAR2

264

 EDUCLVL, JOBCODE, SALARY
 FROM SYBASE.SAMPLETB
 WHERE WORKDEPT = :PARM-DEPT
 END-EXEC.
 **
 LINKAGE SECTION.
 **
 01 LK-DESCRIBE-HV PIC X(255).
 01 LK-COLUMN-NAME-HV PIC X(30).
 **
 PROCEDURE DIVISION.
 **

 * Reset DB2 error handlers

 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 * Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.

 * TDRESULT to make sure we were started via RPC request

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-PARM-PRESENT THEN
 PERFORM TDRESULT-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Verify user login information

 MOVE ’TOP SECRET’ TO GU-ACCESS-CODE.

 CALL ’TDGETUSR’ USING GWL-PROC, GWL-RC, GU-ACCESS-CODE,
 GU-USER-ID, GU-PASSWORD, GU-SERVER-NAME,
 GU-CLIENT-CHARSET, GU-NATIONAL-LANG,
 GU-SERVER-CHARSET, GU-SERVER-DBCS, GU-APP-ID.

APPENDIX B Sample RPC Application for CICS

265

 IF GWL-RC NOT = TDS-OK THEN
 PERFORM TDGETUSR-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get number of parameters ... should be two

 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 IF GWL-NUMPRM-PARMS NOT = 2 THEN
 PERFORM TDNUMPRM-ERROR
 GO TO END-PROGRAM
 END-IF.

 * Get return parameter information

 MOVE 1 TO GWL-INFPRM-ID.
 PERFORM GET-PARM-INFO.

 (IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE AND
 IF GWL-INFPRM-STATUS NOT = TDS-RETURN-VALUE-NULLABLE) THEN
 PERFORM TDINFPRM-NOT-RETURN-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

 MOVE GWL-INFPRM-USER-DATA TO GWL-SETPRM-USER-DATA.
 MOVE GWL-INFPRM-ID TO GWL-SETPRM-ID.
 MOVE GWL-INFPRM-DATA-L TO GWL-SETPRM-DATA-L.
 MOVE GWL-INFPRM-TYPE TO GWL-SETPRM-TYPE.

 * Get department id parameter number from known name

 MOVE ’@parm2’ TO GWL-INFPRM-NAME.
 MOVE 6 TO GWL-INFPRM-NAME-L.

 CALL ’TDLOCPRM’ USING GWL-PROC, GWL-INFPRM-ID,
 GWL-INFPRM-NAME, GWL-INFPRM-NAME-L.

 * Get department parameter information

 PERFORM GET-PARM-INFO.

 IF GWL-INFPRM-TYPE NOT = TDSVARYCHAR THEN
 PERFORM TDINFPRM-NOT-CHAR-PARM-ERROR
 GO TO END-PROGRAM
 END-IF.

Sample program SYCCSAR2

266

 * Get department parameter data

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 PARM-DEPT, GWL-INFPRM-TYPE,
 GWL-INFPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.

 * Open the DB2 cursor for fetch

 EXEC SQL OPEN ECURSOR END-EXEC.

 IF SQLCODE NOT = 0
 PERFORM OPEN-ERROR
 GO TO END-PROGRAM
 END-IF.

 * The SYGETAD assembler subroutine returns the address of any
 * data item in parameter two into parameter 1. It’s a way to
 * get around the limitations of the COBOL 2 SET verb.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-FNM.

 * During ’DESCRIBE-COLUMN’, LK-DESCRIBE-HV will be based on
 * DB-DESCRIBE-HV-PTR, which addresses EMPLOYEE-FNM. This
 * allows us to call a ’generic’ TDESCRIB, using LK-DESCRIBE-HV
 * as a constant in the call, even though it actually varies
 * depending on the SYGETAD and SET sequence preceding it.
 *
 * The same technique will be used for other data items which
 * must be passed by address; for example, the name of the
 * columns.

 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-FNM.
 MOVE LENGTH OF EMPLOYEE-FNM-TEXT TO WRKLEN1.
 MOVE LENGTH OF CN-FNM TO WRKLEN2.
 MOVE TDSVARYCHAR TO DB-HOST-TYPE.
 MOVE TDSVARYCHAR TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * Here we let TDESCRIB convert from DB2 varchar (TDSVARYCHAR)
 * to DBCHAR.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-LNM.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-LNM.
 MOVE LENGTH OF EMPLOYEE-LNM-TEXT TO WRKLEN1.

APPENDIX B Sample RPC Application for CICS

267

 MOVE LENGTH OF CN-LNM TO WRKLEN2.
 MOVE TDSVARYCHAR TO DB-HOST-TYPE.
 MOVE TDSCHAR TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-ED.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-ED.
 MOVE LENGTH OF EMPLOYEE-ED TO WRKLEN1.
 MOVE LENGTH OF CN-ED TO WRKLEN2.
 MOVE TDSINT2 TO DB-HOST-TYPE.
 MOVE TDSINT2 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * Get the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDINFUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

 * Set the user defined datatype of EMPLOYEE-ED column.

 CALL ’TDSETUDT’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 GWL-INFUDT-USER-TYPE.

 * Here we let TDESCRIB convert from TDSDECIMAL to TDSFLT8.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, EMPLOYEE-JC.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-JC.
 MOVE LENGTH OF EMPLOYEE-JC TO WRKLEN1.
 MOVE LENGTH OF CN-JC TO WRKLEN2.
 MOVE TDSDECIMAL TO DB-HOST-TYPE.
 MOVE TDSFLT8 TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 * We must inform the Server Library how many decimal places
 * are in the EMPLOYEE-JC column.

 CALL ’TDSETBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, TDS-DEFAULT-LENGTH,
 GWL-SETBCD-SCALE.

 * Demonstrate getting decimal column information.

 CALL ’TDINFBCD’ USING GWL-PROC, GWL-RC, TDS-OBJECT-COL,
 CTR-COLUMN, GWL-INFBCD-LENGTH,
 GWL-INFBCD-SCALE.

Sample program SYCCSAR2

268

 * Here we intend to use TDCONVRT to convert from TDSDECIMAL to
 * TDSMONEY, so we point TDESCRIB to the output of TDCONVRT,
 * rather than the original input.

 CALL ’SYGETAD’ USING DB-DESCRIBE-HV-PTR, WRK-EMPLOYEE-SAL.
 CALL ’SYGETAD’ USING DB-COLUMN-NAME-HV-PTR, CN-SAL.
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN1.
 MOVE LENGTH OF CN-SAL TO WRKLEN2.
 MOVE TDSMONEY TO DB-HOST-TYPE.
 MOVE TDSMONEY TO DB-CLIENT-TYPE.
 PERFORM DESCRIBE-COLUMN.

 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.

 * Close cursor

 EXEC SQL CLOSE ECURSOR END-EXEC.

 * Update returned parameter with number of rows fetched

 CALL ’TDSETPRM’ USING GWL-PROC, GWL-RC, GWL-SETPRM-ID,
 GWL-SETPRM-TYPE, GWL-SETPRM-DATA-L,
 PARM-RETURN-ROWS,
 GWL-SETPRM-USER-DATA.

 GO TO END-PROGRAM.
 *---
 FETCH-AND-SEND-ROWS.
 *---
 EXEC SQL FETCH ECURSOR INTO :EMPLOYEE-FIELDS END-EXEC.

 IF SQLCODE = 0 THEN

 * Convert from DB2 decimal (TDSDECIMAL) to dblib MONEY.

 MOVE LENGTH OF EMPLOYEE-SAL TO WRKLEN1
 MOVE LENGTH OF WRK-EMPLOYEE-SAL TO WRKLEN2

 CALL ’TDCONVRT’ USING GWL-PROC, GWL-RC,
 GWL-CONVRT-SCALE, TDSDECIMAL,
 WRKLEN1, EMPLOYEE-SAL, TDSMONEY,
 WRKLEN2, WRK-EMPLOYEE-SAL

 * send a row to the client

APPENDIX B Sample RPC Application for CICS

269

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 ADD 1 TO PARM-RETURN-ROWS

 IF GWL-RC = TDS-CANCEL-RECEIVED THEN
 MOVE ’Y’ TO ALL-DONE-SW
 END-IF

 ELSE IF SQLCODE = +100 THEN
 MOVE ’Y’ TO ALL-DONE-SW

 ELSE
 MOVE ’Y’ TO ALL-DONE-SW
 PERFORM FETCH-ERROR
 END-IF.
 *---
 GET-PARM-INFO.
 *---
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, GWL-INFPRM-ID,
 GWL-INFPRM-TYPE, GWL-INFPRM-DATA-L,
 GWL-INFPRM-MAX-DATA-L
 GWL-INFPRM-STATUS, GWL-INFPRM-NAME,
 GWL-INFPRM-NAME-L,
 GWL-INFPRM-USER-DATA.

 *---
 DESCRIBE-COLUMN.
 *---
 SET ADDRESS OF LK-DESCRIBE-HV TO DB-DESCRIBE-HV-PTR.
 SET ADDRESS OF LK-COLUMN-NAME-HV TO DB-COLUMN-NAME-HV-PTR.
 ADD 1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 DB-HOST-TYPE, WRKLEN1, LK-DESCRIBE-HV,
 DB-NULL-INDICATOR, TDS-FALSE,
 DB-CLIENT-TYPE, WRKLEN1,
 LK-COLUMN-NAME-HV, WRKLEN2.
 *---
 TDGETUSR-ERROR.
 *--
 MOVE MSG-NOT-AUTH TO MSG-TEXT.
 MOVE LENGTH OF MSG-NOT-AUTH TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 *---
 TDRESULT-ERROR.
 *---
 MOVE MSG-NOT-RPC TO MSG-TEXT.

Sample program SYCCSAR2

270

 MOVE LENGTH OF MSG-NOT-RPC TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 *---
 TDNUMPRM-ERROR.
 *---
 MOVE MSG-WRONG-NR-PARMS TO MSG-TEXT.
 MOVE LENGTH OF MSG-WRONG-NR-PARMS TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.

 *---
 TDINFPRM-NOT-RETURN-PARM-ERROR.
 *---
 MOVE MSG-NOT-RETURN-PARM TO MSG-TEXT.
 MOVE LENGTH OF MSG-NOT-RETURN-PARM TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 *---
 TDINFPRM-NOT-CHAR-PARM-ERROR.
 *---
 MOVE MSG-NOT-CHAR-PARM TO MSG-TEXT.
 MOVE LENGTH OF MSG-NOT-CHAR-PARM TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 *---
 OPEN-ERROR.
 *---
 MOVE MSG-BAD-CURSOR TO MSG-TEXT.
 MOVE LENGTH OF MSG-BAD-CURSOR TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 PERFORM SEND-SQL-ERROR.
 *---
 FETCH-ERROR.
 *---
 MOVE MSG-BAD-FETCH TO MSG-TEXT.
 MOVE LENGTH OF MSG-BAD-FETCH TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 PERFORM SEND-SQL-ERROR.
 *---
 SEND-SQL-ERROR.
 *---
 MOVE SQLCODE TO MSG-SQL-ERROR-C.
 MOVE SQLERRMC TO MSG-SQL-ERROR-K.
 * ---
 * ensure possible non-printables translated to spaces
 * ---
 PERFORM VARYING MSG-SQL-ERROR-SS FROM 1 BY 1
 UNTIL MSG-SQL-ERROR-SS > SQLERRML

APPENDIX B Sample RPC Application for CICS

271

 IF MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) < SPACE
 OR MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) > ’9’ THEN
 MOVE SPACE TO MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS)
 END-IF

 END-PERFORM.

 MOVE MSG-SQL-ERROR TO MSG-TEXT.
 MOVE LENGTH OF MSG-SQL-ERROR TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE MSG-SEVERITY-ERROR TO MSG-SEVERITY.
 MOVE MSG-NR-ERROR TO MSG-NR.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 PERFORM SEND-MESSAGE.
 *---
 SEND-MESSAGE.
 *---
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

 * Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC, GWL-STATUS-NR,
 GWL-STATUS-DONE, GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC, MSG-TYPE,
 MSG-NR, MSG-SEVERITY, TDS-ZERO,
 TDS-ZERO, MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.
 *---
 END-PROGRAM.
 *---
 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS

Sample program SYCCSAU2

272

 MOVE ZERO TO PARM-RETURN-ROWS
 END-IF.

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 PARM-RETURN-ROWS, TDS-ZERO,
 TDS-ENDRPC.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS RETURN END-EXEC.

Sample program SYCCSAU2
The following sample program, SYCCSAU2, establishes a long-running
conversational transaction which returns data to the client, then waits for client
requests via the TDGETREQ interface. The purpose of this sample is to
demonstrate the handling of cursor commands. This sample processes an
Embedded SQL™/C Open Client RPC, syu2.c, which is included on the TRS
tape. The SYCCSAU2 sample program is included on the Open ServerConnect
API tape.

This sample program does not use any table, the data used by the cursor
commands is hard-coded in the program.

*@(#) syccsau2.cobol 1.1 4/26/96 */
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCCSAU2.
****** SYCCSAU2 - SAMPLE LONG-RUNNING CURSOR transaction program ***
 *
 * TRANID: SYU2
 * PROGRAM: SYCCSAU2
 * PLAN NAME: n/a
 * FILES: n/a
 * TABLES: n/a
 *
 * This program establishes a long-running "conversational"
 * transaction which returns data to the client then waits for
 * client requests via the TDGETREQ interface.
 * This version of the program is built to use the open server
 * cursor commands which are introduced on OS 3.1 and netgateways
 * 3.0.1
 *
 * The following Open Server Library calls are used:

APPENDIX B Sample RPC Application for CICS

273

 *
 * TDINIT initializes the TDS environment
 * TDACCEPT accept a request from a client
 * TDCURPRO cursor processing command
 * TDESCRIB describe a column in a result row
 * TDFREE free the TDPROC structure
 * TDGETREQ get the next cursor request
 * TDINFPRM retrieve information about a RPC parameter
 * TDINIT initialize the TDS environment
 * TDRCVPRM retrieve the data from a RPC parameter
 * TDRCVSQL get SQL next
 * TDRESULT describe the next object from a client
 * TDSNDDON send result completion indication to client
 * TDSNDROW send a row of data to the requesting client
 * TDNUMPRM get number of cursor parameters
 *
 * Change Activity:
 * 04/13 J.A.- code to handle cursor support select support
 * 04/17 J.A.- added code to handle update and delete from cursor

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 *--
 * Work variables
 *--
 77 COL-20 PIC S9(9) COMP VALUE +20.
 77 COL2-LNG PIC S9(9) COMP VALUE +4.
 77 COL-COUNT PIC S9(9) COMP VALUE +1.
 77 COLUMN-NAME PIC X(4) VALUE ’COLS’.
 77 COLUMN-NAME-LEN PIC S9(9) COMP VALUE +4.
 * Gateway Library interface variables
 77 GWL-INIT-HANDLE POINTER.
 77 GWL-PROC POINTER.
 77 GWL-RC PIC S9(9) COMP VALUE +0.
 77 FILL-COUNT PIC S9(9) COMP VALUE +0.
 77 NULL-IND PIC S9(4) COMP VALUE +0.
 77 PARM-NAME PIC X(20).
 77 PARM-NAME-LNG PIC S9(9) COMP.
 77 PARM-FILLCHAR PIC X(1) VALUE SPACES.
 77 PARM-ID PIC S9(9) COMP.
 77 PARM-STATUS PIC S9(9) COMP.
 77 PARM-DATA-TYPE PIC S9(9) COMP.
 77 PARM-DATA-LNG PIC S9(9) COMP.
 77 PARM-LNG PIC S9(9) COMP.

Sample program SYCCSAU2

274

 77 PARM-MAXLNG PIC S9(9) COMP.
 77 PARM-NUMROW PIC S9(9) COMP VALUE +0.
 77 PARM-UDT PIC S9(9) COMP.
 77 REQ-TYPE PIC S9(9) COMP VALUE +0.
 77 RETURN-STATUS PIC S9(9) COMP VALUE +0.
 01 ROW-DATA.
 05 ROW-CHAR PIC X(1) VALUE SPACES
 OCCURS 80 TIMES.
 77 RPC-NAME PIC X(4) VALUE ’TS02’.
 77 RPC-NAME-LENGTH PIC S9(9) COMP VALUE +4.
 77 SNA-CONNECTION-NAME PIC X(8) VALUE SPACES.
 77 SNA-SUBCODE PIC S9(9) COMP.
 77 WAIT-OPTION PIC S9(9) COMP VALUE +0.
 01 CMD PIC S9(9) COMP SYNC.
 01 REMOTE-TRACE-FLAG PIC S9(9) USAGE COMP SYNC.
 01 TDS-VERSION PIC S9(9) USAGE COMP.
 01 LONGVAR-TRUNC-FLAG PIC S9(9) USAGE COMP.
 01 ROW-LIMIT PIC S9(9) USAGE COMP.
 01 USER-CORRELATOR PIC S9(9) USAGE COMP.
 01 DB2GW-OPTIONS PIC S9(9) USAGE COMP.
 01 DB2GW-PID PIC X(1).
 77 ERR-MSG PIC X(40) VALUE IS SPACES.
 77 ERR-MSG-LEN PIC S9(9) USAGE COMP VALUE IS 40.
 01 NO-OF-ROWS PIC S9(9) USAGE COMP VALUE IS 0.
 01 ROWS-TOTAL PIC S9(9) USAGE COMP VALUE IS 0.
 01 SEND-STATUS PIC S9(9) USAGE COMP SYNC.
 01 STATUS-NUMBER PIC S9(9) USAGE COMP SYNC.
 01 OPEN-COUNT PIC S9(9) USAGE COMP VALUE IS 0.
 01 SAVE-CURSOR-ID PIC S9(9) USAGE COMP SYNC.
 01 SQLSTR PIC X(300) VALUE IS SPACES.
 01 MAX-SQL-LENGTH PIC S9(9) USAGE COMP VALUE IS 300.
 01 ACT-SQL-LENGTH PIC S9(9) USAGE COMP.
 01 COL1-DATA PIC X(20) VALUE IS SPACES.
 01 COL2-DATA PIC S9(9) USAGE COMP.
 01 UPDATES-THIS-CURSOR PIC S9(9) USAGE COMP.
 01 DELETES-THIS-CURSOR PIC S9(9) USAGE COMP.
 *--
 * Server library COBOL copybook
 *--
 COPY SYGWCOB.
 *--
 * Procedure division.
 *--
 PROCEDURE DIVISION.
 * Initialize TDS environment
 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

APPENDIX B Sample RPC Application for CICS

275

 * Accept client request
 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBCODE.
 * If no parameters set 20 rows and wait for cursor command
 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.
 IF GWL-RC NOT EQUAL TDS-PARM-PRESENT THEN
 MOVE 20 TO PARM-NUMROW
 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, TDS-DONE-FINAL,
 PARM-NUMROW, TDS-ZERO, TDS-ENDREPLY
 GO TO NEXT-STEP.
 * Read in user parameters, and process the request
 * only parameter for now is number of rows requested
 * Get info for RPC parameter 1 - number rows
 MOVE 1 TO PARM-ID.
 CALL ’TDINFPRM’ USING GWL-PROC, GWL-RC, PARM-ID,
 PARM-DATA-TYPE, PARM-LNG, PARM-MAXLNG,
 PARM-STATUS, PARM-NAME, PARM-NAME-LNG,
 PARM-UDT.
 * Initialize the cursor-id , 111 is not significant number
 MOVE 111 TO SAVE-CURSOR-ID.
 * Get number of row to return from RPC parameter 2
 * if parmeter is not entered then return 20 rows
 IF GWL-RC = 0
 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC, PARM-ID,
 PARM-NUMROW, TDSINT4, PARM-MAXLNG, PARM-LNG
 ELSE
 STRING ’PARM 1 SHOULD BE INT4’
 DELIMITED BY SIZE INTO ERR-MSG
 PERFORM SEND-ERROR.
 * we are assuming client program just starts long running rpc
 * used with the cursor support we are adding in 3.1
 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, TDS-DONE-FINAL,
 PARM-NUMROW, TDS-ZERO, TDS-ENDREPLY.
 * Wait for the next request from the client
 PERFORM NEXT-STEP.
 GOT-REQ.
 CALL ’TDINFPGM’ USING GWL-PROC GWL-RC TDS-VERSION
 LONGVAR-TRUNC-FLAG ROW-LIMIT
 REMOTE-TRACE-FLAG USER-CORRELATOR
 DB2GW-OPTIONS DB2GW-PID REQ-TYPE.
 * make sure we are getting a cursor command from the client
 IF REQ-TYPE NOT EQUAL TDS-CURSOR-EVENT
 STRING ’REQ-TYPE NOT EQUAL TDS-CURSOR-EVENT’
 DELIMITED BY SIZE INTO ERR-MSG
 PERFORM SEND-ERROR.
 * look at the incoming request and perform necessary action

Sample program SYCCSAU2

276

 * in this simple example we just handle the client cursor requests
 MOVE TDS-GET TO CMD.
 CALL ’TDCURPRO’ USING GWL-PROC, GWL-RC,
 CMD, CURSOR-DESC.
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDCURPRO GET FAILED’ DELIMITED BY SIZE
 INTO ERR-MSG
 PERFORM SEND-ERROR.
 EVALUATE CURSOR-COMMAND
 WHEN TDS-CURSOR-DECLARE
 PERFORM DECLARE-LOGIC
 WHEN TDS-CURSOR-INFO
 PERFORM INFO-LOGIC
 WHEN TDS-CURSOR-OPENCMD
 PERFORM OPEN-LOGIC
 WHEN TDS-CURSOR-FETCH
 PERFORM FETCH-LOGIC
 WHEN TDS-CURSOR-UPDATE
 PERFORM UPDATE-LOGIC
 WHEN TDS-CURSOR-DELETE
 PERFORM DELETE-LOGIC
 WHEN TDS-CURSOR-CLOSE
 PERFORM CLOSE-LOGIC
 WHEN TDS-CURSOR-DEALLOC
 * not a lot of meaning here as in server it frees structures
 * we will never require the client to deallocate
 * in a very large application this might be necessary
 PERFORM DEALLOC-LOGIC
 WHEN OTHER
 STRING ’TDCURPRO GOT UNEXPECTED CMD REQUEST’
 DELIMITED BY SIZE INTO ERR-MSG
 PERFORM SEND-ERROR
 END-EVALUATE.
 PERFORM NEXT-STEP.
 NEXT-STEP.
 PERFORM DO-GET-REQ.
 PERFORM GOT-REQ.
 DO-GET-REQ.
 CALL ’TDGETREQ’ USING GWL-PROC GWL-RC WAIT-OPTION
 REQ-TYPE RPC-NAME.
 IF REQ-TYPE NOT EQUAL TDS-CURSOR-EVENT
 GO TO END-OF-REQUESTS.
 DECLARE-LOGIC.
 * set CURSOR-ID and CURSOR-STATUS

APPENDIX B Sample RPC Application for CICS

277

 * increment the cursors we have used
 ADD 1 TO SAVE-CURSOR-ID.
 MOVE SAVE-CURSOR-ID TO CURSOR-ID.
 PERFORM DECLARE-VALIDATION.
 PERFORM TDSSET-CURSOR.
 PERFORM SEND-ENDREPLY-200.
 DECLARE-VALIDATION.
 * the cursor must be CRSLONG, initially and then CRSRESULTS

 * this is a little harsh but the
 * sample is only meant to work with its counter part embedded sql
 * or ctlibrary sample program
 * the name implies that this is a long running transaction
 * it is possible to not be a long running transaction but the
 * program would have to be the default language transaction at
 * the mainframe server gateway, which is not very likely
 * one could do much more in this validation
 IF CURSOR-NAME IS EQUAL ’CRSLONG’ OR CURSOR-NAME
 IS EQUAL ’CRSRESULTS’ PERFORM COMPARE-SQL.
 COMPARE-SQL.
 * could look at the incoming sql w/cursor and have logic if needed
 * but we don’t care about the sql received at all for the sample
 * in a real program one could use this to pass a where clause etc

 * for the logic which is to materialize the results
 CALL ’TDRCVSQL’ USING GWL-PROC GWL-RC
 SQLSTR MAX-SQL-LENGTH
 ACT-SQL-LENGTH.
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDRCVSQL FAILED’
 DELIMITED BY SIZE
 INTO ERR-MSG
 PERFORM SEND-ERROR.
 INFO-LOGIC.
 * Here our assumption is that row count is set via client program
 PERFORM TDSSET-CURSOR.
 PERFORM SEND-ENDREPLY-200.
 OPEN-LOGIC.
 * for this sample we are going to only return 20 rows
 * if no parameter specified. With real data the actual data source
 * determines the number of fetches
 * initialize counters for the total number of updates and deletes
 * which are performed on this cursor. In this sample we will
 * communicate this back to the client after the cursor is
 * closed. In real applications data would be deleted or updated
 * for the results cursor only 2 rows returned
 IF CURSOR-NAME IS EQUAL ’CRSLONG’

Sample program SYCCSAU2

278

 MOVE PARM-NUMROW TO ROWS-TOTAL
 MOVE 0 TO UPDATES-THIS-CURSOR
 MOVE 0 TO DELETES-THIS-CURSOR
 ELSE
 MOVE 2 TO ROWS-TOTAL.
 * describe results
 * MOVE TDS-CURSOR-OPEN TO CURSOR-STATUS
 PERFORM TDSSET-CURSOR.
 * for this problem just send two columns of data
 PERFORM SEND-TWO-COLUMN.
 PERFORM SEND-OPEN.
 FETCH-LOGIC.
 PERFORM TDSSET-CURSOR.
 * send fetch-count number of rows to the client
 * fetch-count set in cursor descriptor block
 * the following code assumes that the fetch-count is
 * an integral multiple of actual data
 * when the row count is zero then there is one more fetch
 * which just gets the SQLCODE 100
 IF ROWS-TOTAL NOT EQUAL ZERO
 IF ROWS-TOTAL LESS THAN FETCH-COUNT
 MOVE ROWS-TOTAL TO NO-OF-ROWS
 ELSE
 MOVE FETCH-COUNT TO NO-OF-ROWS END-IF
 PERFORM SEND-ROW
 UNTIL NO-OF-ROWS = 0 OR ROWS-TOTAL = 0
 ELSE PERFORM SEND-ENDREPLY-200 END-IF.
 SEND-ROW.
 * if we are using results cursor then send different data
 IF CURSOR-NAME IS EQUAL ’CRSRESULTS’
 IF ROWS-TOTAL = 2
 MOVE ’Updates last cursor ’ TO COL1-DATA
 MOVE UPDATES-THIS-CURSOR TO COL2-DATA
 ELSE
 MOVE ’Deletes last cursor ’ TO COL1-DATA
 MOVE DELETES-THIS-CURSOR TO COL2-DATA END-IF
 END-IF
 * send a row of data
 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDSNDROW FAILED’
 DELIMITED BY SIZE
 INTO ERR-MSG
 PERFORM SEND-ERROR.
 SUBTRACT 1 FROM NO-OF-ROWS.
 SUBTRACT 1 FROM ROWS-TOTAL.

APPENDIX B Sample RPC Application for CICS

279

 IF NO-OF-ROWS = 0 OR ROWS-TOTAL = 0
 PERFORM SEND-ENDREPLY-200.
 UPDATE-LOGIC.
 PERFORM TDSSET-CURSOR.
 PERFORM COMPARE-SQL.
 * at this point we would look at the update sql to decide

 * what must be done, in our case just move information to
 * the column data being returned
 * looking at the text string is more than we want to do here so
 * move a couple some new data to the colums being
 * returned to show that the update was processed and add one
 * to the update counter
 *
 * this doesn’t appear to the client to be very accurate unless
 * the fetch-count is 1 as the fetch here is out of sync with
 * the one the application is issuing
 IF FETCH-COUNT = 1
 MOVE ’Updated col1 data ’ TO COL1-DATA
 MOVE 123 TO COL2-DATA END-IF
 ADD 1 TO UPDATES-THIS-CURSOR.
 PERFORM SEND-ENDREPLY-200.
 DELETE-LOGIC.
 * on a delete request we have nothing to actually delete so
 * we will just update a counter to show the activity took place
 PERFORM TDSSET-CURSOR.
 ADD 1 TO DELETES-THIS-CURSOR.
 PERFORM SEND-ENDREPLY-200.
 CLOSE-LOGIC.
 PERFORM TDSSET-CURSOR.
 PERFORM SEND-ENDREPLY-200.
 DEALLOC-LOGIC.
 STRING ’DEALLOC NOT IMPLEMENTED’
 DELIMITED BY SIZE
 INTO ERR-MSG
 PERFORM SEND-ERROR.
 PERFORM SEND-ENDREPLY-200.
 SEND-OPEN.
 PERFORM SEND-ENDREPLY-200.
 TDSSET-CURSOR.
 MOVE TDS-SET TO CMD.
 CALL ’TDCURPRO’ USING GWL-PROC, GWL-RC,
 CMD, CURSOR-DESC.
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDCURPRO SET FAILED’ DELIMITED BY SIZE
 INTO ERR-MSG
 PERFORM SEND-ERROR.

Sample program SYCCSAU2

280

 SEND-ENDREPLY-200.
 MOVE TDS-DONE-FINAL TO SEND-STATUS.
 ADD TDS-DONE-COUNT TO SEND-STATUS.
 MOVE 200 TO STATUS-NUMBER.
 CALL ’TDSNDDON’ USING GWL-PROC GWL-RC
 SEND-STATUS
 NO-OF-ROWS STATUS-NUMBER TDS-ENDREPLY.
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDSNDDON FAILED’
 DELIMITED BY SIZE INTO ERR-MSG
 PERFORM SEND-ERROR.
 SEND-TWO-COLUMN.
 MOVE 1 TO OPEN-COUNT.
 MOVE 1 TO COL-COUNT.
 MOVE ’COL1’ TO COLUMN-NAME.
 * Describe the column host variable to the client
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, COL-COUNT, TDSCHAR,
 COL-20, COL1-DATA, NULL-IND, TDS-FALSE,
 TDSCHAR, COL-20, COLUMN-NAME,
 COLUMN-NAME-LEN.
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDESCRIB FAILED’
 DELIMITED BY SIZE INTO ERR-MSG
 PERFORM SEND-ERROR.
 ADD 1 TO COL-COUNT.
 MOVE ’COL2’ to COLUMN-NAME.
 MOVE LENGTH OF COL2-DATA TO COL2-LNG.
 * Describe the column host variable to the client
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC, COL-COUNT, TDSINT4,
 COL2-LNG, COL2-DATA, NULL-IND,
 TDS-FALSE,
 TDSINT4, COL2-LNG, COLUMN-NAME,
 COLUMN-NAME-LEN.
 IF GWL-RC NOT EQUAL TDS-OK
 STRING ’TDESCRIB FAILED’
 DELIMITED BY SIZE INTO ERR-MSG
 PERFORM SEND-ERROR.
 * Here we are just hardcoding some meaningless data into
 * these columns. In a real application there must be some
 * logic here to update the data columns.
 MOVE ’ABCDEFGHIJabcdefghij’ TO COL1-DATA.
 MOVE 999 TO COL2-DATA.
 * Transaction termination routine
 END-OF-REQUESTS.
 * Send result completion to the client
 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, TDS-DONE-FINAL,

APPENDIX B Sample RPC Application for CICS

281

 TDS-ZERO, RETURN-STATUS, TDS-ENDRPC.
 * Free the session data structure and exit
 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.
 EXEC CICS RETURN END-EXEC.
 SEND-ERROR.
 CALL ’TDSNDMSG’ USING GWL-PROC GWL-RC
 TDS-ERROR-MSG TDS-SYBERDNR TDS-EXUSER
 TDS-ZERO TDS-ZERO
 RPC-NAME RPC-NAME-LENGTH
 ERR-MSG ERR-MSG-LEN.
 PERFORM END-OF-REQUESTS.

Sample program SYCCSAW2
The following program, SYCCSAW2, receives parameters up to 55 bytes in
length and echoes them back in 55 byte rows.

Note This application replaces the sample remote stored procedure RSP3C for
MDI-heritage customers. For information about RSP3C, see the
Programmer’s Reference for Remote Stored Procedures for Open
ServerConnect.

IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCCSAW2.
 DATE-WRITTEN. 12/02/96.
 DATE-COMPILED.
 **
 **
 ** (c) 1995 by Sybase, Inc. All Rights Reserved
 **
 **
 **
 ** PROGRAM: SYCCSAW2
 **
 ** THIS PROGRAM IS THE OPEN SERVER VERSION OF RSP3C.
 ** This program receives parms up to 55 bytes in length
 ** will echo it back in 55 byte rows.
 ** NOTE: OS app cannot recieve input pipes as an RSP can,
 ** this is the only method using OS to do it...
 ** The input data is treated a char type as RSP3c did...
 ** exec syw2 1234567890, 1234567890,

Sample program SYCCSAW2

282

 **

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 **
 * COPY IN THE OS SERVER LIBRARYS
 **
 COPY SYGWCOB.
 **
 *OPEN SERVER WORK VARIBLES FOR OS CALL TO USE ...
 **
 01 WS-GWL-WORK-VARIBLES.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-INFPRM-ID PIC S9(9) COMP.
 05 GWL-INFPRM-TYPE PIC S9(9) COMP.
 05 GWL-INFPRM-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-MAX-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-STATUS PIC S9(9) COMP.
 05 GWL-INFPRM-NAME PIC X(30).
 05 GWL-INFPRM-NAME-L PIC S9(9) COMP.
 05 GWL-INFPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-INFUDT-USER-TYPE PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-COMM-STATE PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-NUMPRM-PARMS PIC S9(9) COMP.
 05 GWL-RCVPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-ID PIC S9(9) COMP.
 05 GWL-SETPRM-TYPE PIC S9(9) COMP.
 05 GWL-SETPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-CONVRT-SCALE PIC S9(9) COMP VALUE 2.
 05 GWL-SETBCD-SCALE PIC S9(9) COMP VALUE 0.
 05 GWL-INFBCD-LENGTH PIC S9(9) COMP.
 05 GWL-INFBCD-SCALE PIC S9(9) COMP.
 05 GWL-RETURN-ROWS PIC S9(9) COMP VALUE +0.

APPENDIX B Sample RPC Application for CICS

283

 05 SNA-CONN-NAME PIC X(8) VALUE SPACES.
 05 SNA-SUBC PIC S9(9) COMP.
 05 WRK-DONE-STATUS PIC S9(9) COMP.
 05 GWL-ACTUAL-LEN PIC S9(9) COMP.
 05 GWL-TRAN-LEN PIC S9(9) COMP.
 05 GWL-MSG-LEN PIC S9(9) COMP.
 05 WS-NUMPRM-PARMS PIC S9(9) COMP.
 05 GWL-REQUEST-TYP PIC S9(9) COMP.
 05 GWL-RPC-NAME PIC X(30) VALUE SPACES.
 05 GWL-COMM-STATE PIC S9(9) COMP.
 05 I PIC S9(9) COMP.

 01 DESCRIPTION-FIELDS.
 05 COLUMN-NUMBER PIC S9(09) COMP VALUE +0.
 05 HOST-TYPE PIC S9(09) COMP VALUE +0.
 05 HOST-LEN PIC S9(09) COMP VALUE +0.
 05 COLUMN-LEN PIC S9(09) COMP VALUE +0.
 05 COLUMN-NAME-LEN PIC S9(09) COMP VALUE +0.
 05 WS-ZERO PIC S9(09) COMP VALUE +0.

 01 WS-MSG-WORK-VARS.
 05 MSG-NR PIC S9(9) COMP VALUE +9999.

 01 WS-INPUT-LEN PIC S9(9) COMP VALUE +55.
 01 WS-INPUT-DATA PIC X(55) VALUE SPACES.

 01 WS-OUTPUT-DATA PIC X(55) VALUE SPACES.

 01 WS-OUTPUT-COL-NAME PIC X(13)
 VALUE ’OUTPUT_COLUMN’.
 01 WS-QUEUE-NAME.
 05 WS-TRANID PIC X(4) VALUE ’SYW2’.
 05 WS-TRMID PIC X(4) VALUE SPACES.
 01 CICSRC PIC S9(8) COMP.
 01 CICSRC-DIS PIC S9(8).

 **
 * MESSAGES *
 **

 01 WS-MSG.
 05 FILLER PIC X(17)
 VALUE ’ERROR IN OS CALL ’.
 05 WS-MSG-FUNC PIC X(10).
 05 FILLER PIC X(04)

Sample program SYCCSAW2

284

 VALUE ’RC=’.
 05 WS-MSG-RC PIC S9(9).
 05 FILLER PIC X(18)
 VALUE ’ SUBCODE ERROR = ’.
 05 MSG-SUBC PIC 9(9) VALUE 0.
 05 WS-MSG-TEXT PIC X(50) VALUE SPACES.

 01 WORK-SRVIN-INFO.
 05 WK-INFO-TBL-ID PIC S9(8) COMP.
 05 WK-INFO-TBL-NAME PIC X(30).
 05 WK-INFO-TBL-VALUE PIC X(10).

 LINKAGE SECTION.
 **
 * THE LINKAGE SECTION DEFINES MASKS FOR DATA AREAS THAT ARE
 * PASSED BETWEEN THIS PROGRAM.
 **

 01 DFHCOMMAREA PIC X(1).

 PROCEDURE DIVISION.

 000-MAIN-PROCESSING.

 PERFORM 100-INITIALIZE THRU 100-EXIT.

 PERFORM 200-PROCESS-INPUT THRU 200-EXIT.

 PERFORM 300-PROCESS-OUTPUT THRU 300-EXIT.

 PERFORM 900-ALL-DONE THRU 900-EXIT.

 GOBACK.

 000-EXIT.
 EXIT.

 100-INITIALIZE.

 **
 * INTIALIZED THE TDS CONNECTION AND CONFIRM THAT IT
 * WAS AN RPC CALL,
 **

APPENDIX B Sample RPC Application for CICS

285

 ==> INITIAL QUEUE NAME <===
 MOVE EIBTRMID TO WS-TRMID.

 ==> ESTABLISH GATEWAY ENVIRONMENT <===

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ==> ACCEPT CLIENT REQUEST <===

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONN-NAME, SNA-SUBC.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ==> TO MAKE SURE WE WERE STARTED BY RPC REQUEST... <===

 CALL ’TDINFRPC’ USING GWL-PROC, GWL-RC,
 GWL-REQUEST-TYP, GWL-RPC-NAME,
 GWL-COMM-STATE.
 IF GWL-RC NOT = TDS-OK OR
 GWL-REQUEST-TYP NOT = TDS-RPC-EVENT
 THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDINFRPC’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 100-EXIT.
 EXIT.

 200-PROCESS-INPUT.
 **
 * RECEIVE THE INPUT PARAMETER INTO HOST VARIBLE, SEND ROW DATA *
 * BACK DOWN TO CLIENT *
 **

 ---> Find out how many parms are being passed <---
 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

Sample program SYCCSAW2

286

 ---> No Parms ---> pump back a message <---

 IF GWL-NUMPRM-PARMS < +1 THEN
 MOVE ’At least one parm is needed’
 TO WS-MSG-TEXT
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDNUMPRM’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF

 ---> SAVE THE NUMBER OF PARMS FOR THE LOOP <---
 MOVE GWL-NUMPRM-PARMS TO WS-NUMPRM-PARMS.

 ---> LOOP THRU THE PARMS AND WRITE TO TEMP STORAGE <----
 PERFORM VARYING GWL-NUMPRM-PARMS FROM 1 BY 1
 UNTIL GWL-NUMPRM-PARMS > WS-NUMPRM-PARMS
 PERFORM 210-GET-PARM THRU 210-EXIT
 PERFORM 220-WRITE-TS THRU 220-EXIT

 END-PERFORM.
 200-EXIT.
 EXIT.
 210-GET-PARM.
 **
 * *---> GET THE PARM INTO THE HOST VARIBLE <---* *
 **

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC,
 GWL-NUMPRM-PARMS,
 WS-INPUT-DATA,
 TDSCHAR,
 WS-INPUT-LEN,
 GWL-ACTUAL-LEN
 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDRCVPRM’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.
 210-EXIT.
 EXIT.
 220-WRITE-TS.
 **
 * *---> USING TEMP STORAGE, STORE PARMS FOR OUTPUT LATER <---**
 **

APPENDIX B Sample RPC Application for CICS

287

 EXEC CICS
 WRITEQ TS QUEUE(WS-QUEUE-NAME)
 FROM (WS-INPUT-DATA)
 LENGTH(LENGTH OF WS-INPUT-DATA)
 RESP (CICSRC)
 END-EXEC.
 IF CICSRC NOT = DFHRESP(NORMAL)
 MOVE CICSRC TO CICSRC-DIS
 MOVE CICSRC-DIS TO WS-MSG-RC
 MOVE ’WRITEQ’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 220-EXIT.
 EXIT.
 300-PROCESS-OUTPUT.
 **
 * READ TEMP STORAGE QUEUE AND SEND ROWS TO CLIENT *
 **

 PERFORM 310-DEFINE-OUTPUT THRU 310-EXIT.

 PERFORM VARYING I FROM 1 BY 1 UNTIL I > WS-NUMPRM-PARMS
 PERFORM 320-READQ-TS THRU 320-EXIT
 PERFORM 330-SEND-ROW THRU 330-EXIT

 END-PERFORM.

 300-EXIT.
 EXIT.

 310-DEFINE-OUTPUT.
 **
 * DEFINE THE OUTPUT COLUMN AS CHAR OF 55 BYTES *
 **

 MOVE +1 TO COLUMN-NUMBER.
 MOVE LENGTH OF WS-OUTPUT-DATA TO HOST-LEN
 COLUMN-LEN.
 MOVE LENGTH OF WS-OUTPUT-COL-NAME TO COLUMN-NAME-LEN.
 CALL ’TDESCRIB’ USING GWL-PROC,
 GWL-RC,

Sample program SYCCSAW2

288

 COLUMN-NUMBER,
 TDSCHAR,
 HOST-LEN,
 WS-OUTPUT-DATA,
 TDS-ZERO,
 TDS-FALSE,
 TDSCHAR,
 COLUMN-LEN,
 WS-OUTPUT-COL-NAME,
 COLUMN-NAME-LEN.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDESCRIB’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 310-EXIT.
 EXIT.
 320-READQ-TS.
 **
 * READ THE INPUT TEMP STORAGE QUEUE
 **
 EXEC CICS
 READQ TS QUEUE(WS-QUEUE-NAME)
 INTO (WS-OUTPUT-DATA)
 LENGTH(LENGTH OF WS-OUTPUT-DATA)
 NEXT
 RESP (CICSRC)
 END-EXEC.
 IF CICSRC NOT = DFHRESP(NORMAL)
 MOVE CICSRC TO CICSRC-DIS
 MOVE CICSRC-DIS TO WS-MSG-RC
 MOVE ’READQ’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 320-EXIT.
 EXIT.

 330-SEND-ROW.
 **

APPENDIX B Sample RPC Application for CICS

289

 * SEND ROW OF DATA TO CLIENT....

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDSNDROW’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 330-EXIT.
 EXIT.
 EJECT
 900-ALL-DONE.

 **
 * CLOSE CONNECTION TO CLIENT AND RETURN TO CICS... *
 **

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 GWL-RETURN-ROWS, TDS-ZERO, TDS-ENDRPC.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 980-CICS-DUMP THRU 980-EXIT
 PERFORM 990-CICS-RETURN THRU 990-EXIT
 END-IF.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS
 DELETEQ TS QUEUE(WS-QUEUE-NAME)
 RESP (CICSRC)
 END-EXEC.
 IF CICSRC NOT = DFHRESP(NORMAL)
 MOVE CICSRC TO CICSRC-DIS
 MOVE CICSRC-DIS TO WS-MSG-RC
 MOVE ’DELETEQ’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 PERFORM 990-CICS-RETURN THRU 990-EXIT.

 900-EXIT.

Sample program SYCCSAW2

290

 EXIT.

 910-ERR-PROCESS.
 **
 * PERFORM ALL-DONE IN A ERROR STATE *
 **

 MOVE ZERO TO GWL-RETURN-ROWS.
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS.
 PERFORM 900-ALL-DONE THRU 900-EXIT.
 910-EXIT.
 EXIT.
 920-SEND-MESSAGE.
 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.
 * Ensure we’re in right state to send a message
 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.
 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN
 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.
 920-EXIT.
 EXIT.
 980-CICS-DUMP.
 **
 * CAUSE A CICS TRANSACTION DUMP USUALLY BECAUSE SOMETHING IS BAD *
 **
 EXEC CICS
 DUMP DUMPCODE(’SYW2’) NOHANDLE
 END-EXEC.

APPENDIX B Sample RPC Application for CICS

291

 980-EXIT.
 EXIT.

 990-CICS-RETURN.
 **
 * RETURN TO CICS... *
 **

 EXEC CICS
 RETURN
 END-EXEC.

 990-EXIT.
 EXIT.

Sample program SYCCSAY2
The following program receives one of two keywords, @ERRORMSG or
@WARNMSG and other keywords, and then replies with the keywords and
data.

Note This application replaces the sample remote stored procedure RSP4C for
MDI-heritage customers. For information about RSP4C, see the Programmer’s
Reference for Remote Stored Procedures for Open ServerConnect.

IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCCSAY2.
 DATE-WRITTEN. 12/17/96.
 DATE-COMPILED.
 **
 **
 ** (c) 1995 by Sybase, Inc. All Rights Reserved
 **

 **
 ** PROGRAM: SYCCSAY2
 **
 ** THIS PROGRAM IS A THE OPEN SERVER VERSION OF RSP4C.
 ** It will receive one of 2 Keywords @ERRORMSG or @WARNMSG and
 ** Other Keywords. Will reply with the keywords and data.

Sample program SYCCSAY2

292

 ** If @ERRORMSG AND/OR @WARNMSG are ’Y’ that type of message
 ** will be returned...
 ** exec syy2 @WARNMSG=Y,@ERRORMSG=Y.........
 **

 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.

 **
 * COPY IN THE OS SERVER LIBRARYS
 **
 COPY SYGWCOB.
 **
 *OPEN SERVER WORK VARIBLES FOR OS CALL TO USE ...
 **
 01 WS-GWL-WORK-VARIBLES.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-INFPRM-ID PIC S9(9) COMP.
 05 GWL-INFPRM-TYPE PIC S9(9) COMP.
 05 GWL-INFPRM-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-MAX-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-STATUS PIC S9(9) COMP.
 05 GWL-INFPRM-NAME PIC X(30).
 05 GWL-INFPRM-NAME-L PIC S9(9) COMP.
 05 GWL-INFPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-INFUDT-USER-TYPE PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-COMM-STATE PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-NUMPRM-PARMS PIC S9(9) COMP.
 05 GWL-RCVPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-ID PIC S9(9) COMP.
 05 GWL-SETPRM-TYPE PIC S9(9) COMP.
 05 GWL-SETPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-CONVRT-SCALE PIC S9(9) COMP VALUE 2.
 05 GWL-SETBCD-SCALE PIC S9(9) COMP VALUE 0.

 05 GWL-INFBCD-LENGTH PIC S9(9) COMP.

APPENDIX B Sample RPC Application for CICS

293

 05 GWL-INFBCD-SCALE PIC S9(9) COMP.
 05 GWL-RETURN-ROWS PIC S9(9) COMP VALUE +0.
 05 SNA-CONN-NAME PIC X(8) VALUE SPACES.
 05 SNA-SUBC PIC S9(9) COMP.
 05 WRK-DONE-STATUS PIC S9(9) COMP.
 05 GWL-ACTUAL-LEN PIC S9(9) COMP.
 05 GWL-TRAN-LEN PIC S9(9) COMP.
 05 GWL-MSG-LEN PIC S9(9) COMP.
 05 WS-NUMPRM-PARMS PIC S9(9) COMP.
 05 GWL-REQUEST-TYP PIC S9(9) COMP.
 05 GWL-RPC-NAME PIC X(30) VALUE SPACES.
 05 GWL-COMM-STATE PIC S9(9) COMP.
 05 I PIC S9(9) COMP.
 05 WS-ERROR-MSG PIC S9(9) COMP VALUE ZERO.
 05 WS-ERROR-SEV PIC S9(9) COMP VALUE ZERO.
 01 DESCRIPTION-FIELDS.
 05 COLUMN-NUMBER PIC S9(09) COMP VALUE +0.
 05 HOST-TYPE PIC S9(09) COMP VALUE +0.
 05 HOST-LEN PIC S9(09) COMP VALUE +0.
 05 COLUMN-LEN PIC S9(09) COMP VALUE +0.
 05 COLUMN-NAME-LEN PIC S9(09) COMP VALUE +0.
 05 WS-ZERO PIC S9(09) COMP VALUE +0.

 01 WS-MSG-WORK-VARS.
 05 MSG-NR PIC S9(9) COMP VALUE +9999.

 01 WS-INPUT-LEN PIC S9(9) COMP VALUE +55.
 01 WS-INPUT-DATA PIC X(55) VALUE SPACES.

 01 WS-LENGTH PIC S9(9) COMP VALUE ZERO.
 01 WS-WARNMSG PIC X(8) VALUE ’@WARNMSG’.
 01 WS-WARNMSG-ID PIC S9(9) COMP VALUE ZERO.
 01 WS-WARNMSG-88 PIC X(1) VALUE ’N’.
 88 WARNING-MSG VALUE ’Y’.

 01 WS-ERRORMSG PIC X(9) VALUE ’@ERRORMSG’.
 01 WS-ERRORMSG-ID PIC S9(9) COMP VALUE ZERO.
 01 WS-ERRORMSG-88 PIC X(1) VALUE ’N’.
 88 ERROR-MSG VALUE ’Y’.
 01 WS-OUTPUT-DATA PIC X(55) VALUE SPACES.

 01 WS-OUTPUT-COL-NAME PIC X(13)
 VALUE ’OUTPUT_COLUMN’.

 01 WS-QUEUE-NAME.
 05 WS-TRANID PIC X(4) VALUE ’SYY2’.

Sample program SYCCSAY2

294

 05 WS-TRMID PIC X(4) VALUE SPACES.
 01 CICSRC PIC S9(8) COMP.
 01 CICSRC-DIS PIC S9(8).

 **
 * MESSAGES *
 **

 01 WS-MSG.
 05 FILLER PIC X(17)
 VALUE ’ERROR IN OS CALL ’.
 05 WS-MSG-FUNC PIC X(10).
 05 FILLER PIC X(04)
 VALUE ’RC=’.
 05 WS-MSG-RC PIC S9(9).
 05 FILLER PIC X(18)
 VALUE ’ SUBCODE ERROR = ’.
 05 MSG-SUBC PIC 9(9) VALUE 0.
 05 WS-MSG-TEXT PIC X(50) VALUE SPACES.

 01 WS-HOLD-MSG PIC X(107) VALUE SPACES.
 01 WS-WARN-MSG PIC X(107) VALUE
 ’THIS IS A WARNING MESSAGE........’.
 01 WS-ERR-MSG PIC X(107) VALUE
 ’THIS IS A ERROR MESSAGE........’.

 01 WORK-SRVIN-INFO.
 05 WK-INFO-TBL-ID PIC S9(8) COMP.
 05 WK-INFO-TBL-NAME PIC X(30).
 05 WK-INFO-TBL-VALUE PIC X(10).

 LINKAGE SECTION.
 **
 * THE LINKAGE SECTION DEFINES MASKS FOR DATA AREAS THAT ARE
 * PASSED BETWEEN THIS PROGRAM.
 **
 01 DFHCOMMAREA PIC X(1).
 PROCEDURE DIVISION.
 000-MAIN-PROCESSING.

 PERFORM 100-INITIALIZE THRU 100-EXIT.
 PERFORM 200-PROCESS-INPUT THRU 200-EXIT.

 PERFORM 300-PROCESS-OUTPUT THRU 300-EXIT.

APPENDIX B Sample RPC Application for CICS

295

 PERFORM 900-ALL-DONE THRU 900-EXIT.

 GOBACK.

 000-EXIT.
 EXIT.

 100-INITIALIZE.

 **
 * INTIALIZED THE TDS CONNECTION AND CONFIRM THAT IT
 * WAS AN RPC CALL,
 **
 ==> INITIAL QUEUE NAME <===
 MOVE EIBTRMID TO WS-TRMID.

 ==> ESTABLISH GATEWAY ENVIRONMENT <===

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ==> ACCEPT CLIENT REQUEST <===

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONN-NAME, SNA-SUBC.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ==> TO MAKE SURE WE WERE STARTED BY RPC REQUEST... <===
 CALL ’TDINFRPC’ USING GWL-PROC, GWL-RC,
 GWL-REQUEST-TYP, GWL-RPC-NAME,
 GWL-COMM-STATE.
 IF GWL-RC NOT = TDS-OK OR
 GWL-REQUEST-TYP NOT = TDS-RPC-EVENT
 THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDINFRPC’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 100-EXIT.

Sample program SYCCSAY2

296

 EXIT.

 200-PROCESS-INPUT.
 **
 * RECEIVE THE INPUT PARAMETER INTO HOST VARIBLE, SEND ROW DATA *
 * BACK DOWN TO CLIENT *
 **

 ---> Find out how many parms are being passed <---
 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 ---> NO PARMS, pump back a message <---

 IF GWL-NUMPRM-PARMS < +1 THEN
 MOVE ’At least one parm is needed’
 TO WS-MSG-TEXT
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDNUMPRM’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ---> TEST TO SEE IF THE KEYWORDS "WARNMSG" AND <---
 ---> OR ERRORMSG WHERE SENT.... <---
 MOVE LENGTH OF WS-WARNMSG TO WS-LENGTH.
 CALL ’TDLOCPRM’ USING GWL-PROC, WS-WARNMSG-ID,
 WS-WARNMSG, WS-LENGTH.

 MOVE LENGTH OF WS-ERRORMSG TO WS-LENGTH.
 CALL ’TDLOCPRM’ USING GWL-PROC, WS-ERRORMSG-ID,
 WS-ERRORMSG, WS-LENGTH.
 ---> SAVE THE NUMBER OF PARMS FOR THE LOOP <---
 MOVE GWL-NUMPRM-PARMS TO WS-NUMPRM-PARMS.

 ---> LOOP THRU THE PARMS AND WRITE TO TEMP STORAGE <----
 PERFORM VARYING GWL-NUMPRM-PARMS FROM 1 BY 1
 UNTIL GWL-NUMPRM-PARMS > WS-NUMPRM-PARMS
 PERFORM 210-GET-PARM THRU 210-EXIT
 PERFORM 220-WRITE-TS THRU 220-EXIT

 END-PERFORM.
 200-EXIT.

APPENDIX B Sample RPC Application for CICS

297

 EXIT.
 210-GET-PARM.
 **
 * *---> Get that parm info into the host varible <---* *
 **

 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC,
 GWL-NUMPRM-PARMS,
 WS-INPUT-DATA,
 TDSCHAR,
 WS-INPUT-LEN,
 GWL-ACTUAL-LEN
 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDRCVPRM’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 210-EXIT.
 EXIT.
 220-WRITE-TS.
 **
 * *---> WRITE PARMS TO TEMP STORAGE, LATER RETURN PARMS <---* *
 * *---> BACK DOWN TO CLIENT AS OUTPUT <---* *
 **

 EXEC CICS
 WRITEQ TS QUEUE(WS-QUEUE-NAME)
 FROM (WS-INPUT-DATA)
 LENGTH(LENGTH OF WS-INPUT-DATA)
 RESP (CICSRC)
 END-EXEC.
 IF CICSRC NOT = DFHRESP(NORMAL)
 MOVE CICSRC TO CICSRC-DIS
 MOVE CICSRC-DIS TO WS-MSG-RC
 MOVE ’WRITEQ’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

Sample program SYCCSAY2

298

 220-EXIT.
 EXIT.
 300-PROCESS-OUTPUT.
 **
 * READ TEMP STORAGE QUEUE AND SEND ROWS TO CLIENT *
 **

 PERFORM 310-DEFINE-OUTPUT THRU 310-EXIT.

 PERFORM VARYING I FROM 1 BY 1 UNTIL I > WS-NUMPRM-PARMS
 PERFORM 320-READQ-TS THRU 320-EXIT
 PERFORM 330-SEND-ROW THRU 330-EXIT
 END-PERFORM.

 ---> PROCESS WARNMSG AND/OR ERRORMSG AFTER SENDING ROWS. <---
 IF WARNING-MSG
 THEN
 MOVE TDS-INFO-MSG TO WS-ERROR-MSG
 MOVE TDS-INFO-SEV TO WS-ERROR-SEV
 MOVE WS-WARN-MSG TO WS-HOLD-MSG
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 END-IF.
 IF ERROR-MSG
 THEN
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 MOVE WS-ERR-MSG TO WS-HOLD-MSG
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 END-IF.
 300-EXIT.
 EXIT.

 310-DEFINE-OUTPUT.
 **
 * DEFINE THE OUTPUT COLUM AS CHAR OF 55 BYTES *
 **

 MOVE +1 TO COLUMN-NUMBER.
 MOVE LENGTH OF WS-OUTPUT-DATA TO HOST-LEN
 COLUMN-LEN.
 MOVE LENGTH OF WS-OUTPUT-COL-NAME TO COLUMN-NAME-LEN.
 CALL ’TDESCRIB’ USING GWL-PROC,
 GWL-RC,
 COLUMN-NUMBER,

APPENDIX B Sample RPC Application for CICS

299

 TDSCHAR,
 HOST-LEN,
 WS-OUTPUT-DATA,
 TDS-ZERO,
 TDS-FALSE,
 TDSCHAR,
 COLUMN-LEN,
 WS-OUTPUT-COL-NAME,
 COLUMN-NAME-LEN.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDESCRIB’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 310-EXIT.
 EXIT.
 320-READQ-TS.
 **
 * READ THE INPUT TEMP STORAGE QUEUE
 **
 EXEC CICS
 READQ TS QUEUE(WS-QUEUE-NAME)
 INTO (WS-OUTPUT-DATA)
 LENGTH(LENGTH OF WS-OUTPUT-DATA)
 NEXT
 RESP (CICSRC)
 END-EXEC.
 IF CICSRC NOT = DFHRESP(NORMAL)
 MOVE CICSRC TO CICSRC-DIS
 MOVE CICSRC-DIS TO WS-MSG-RC
 MOVE ’READQ’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.
 ---> PROCESS WARNMSG AND/OR ERRORMSG PARMS IF YES... <---
 IF WS-WARNMSG-ID = I AND WS-OUTPUT-DATA = ’Y’
 MOVE ’Y’ TO WS-WARNMSG-88.
 IF WS-ERRORMSG-ID = I AND WS-OUTPUT-DATA = ’Y’

Sample program SYCCSAY2

300

 MOVE ’Y’ TO WS-ERRORMSG-88.
 320-EXIT.
 EXIT.

 330-SEND-ROW.
 **
 * SEND ROW OF DATA TO CLIENT....

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDSNDROW’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG
 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 330-EXIT.
 EXIT.
 EJECT
 900-ALL-DONE.
 **
 * CLOSE CONNECTION TO CLIENT AND RETURN TO CICS... *
 **
 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 GWL-RETURN-ROWS, TDS-ZERO, TDS-ENDRPC.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 980-CICS-DUMP THRU 980-EXIT
 PERFORM 990-CICS-RETURN THRU 990-EXIT
 END-IF.
 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.

 EXEC CICS
 DELETEQ TS QUEUE(WS-QUEUE-NAME)
 RESP (CICSRC)
 END-EXEC.
 IF CICSRC NOT = DFHRESP(NORMAL)
 MOVE CICSRC TO CICSRC-DIS
 MOVE CICSRC-DIS TO WS-MSG-RC
 MOVE ’DELETEQ’ TO WS-MSG-FUNC
 MOVE WS-MSG TO WS-HOLD-MSG
 MOVE TDS-ERROR-MSG TO WS-ERROR-MSG

APPENDIX B Sample RPC Application for CICS

301

 MOVE TDS-ERROR-SEV TO WS-ERROR-SEV
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 PERFORM 990-CICS-RETURN THRU 990-EXIT.

 900-EXIT.
 EXIT.

 910-ERR-PROCESS.
 **
 * PERFORM ALL-DONE IN A ERROR STATE *
 **

 MOVE ZERO TO GWL-RETURN-ROWS.
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS.
 PERFORM 900-ALL-DONE THRU 900-EXIT.

 910-EXIT.
 EXIT.

 920-SEND-MESSAGE.
 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.
 * Ensure we’re in right state to send a message
 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.
 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN
 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L

Sample program SYCCSAZ2

302

 END-IF.
 920-EXIT.
 EXIT.

 980-CICS-DUMP.
 **
 * CAUSE A CICS TRANSACTION DUMP USUALLY BECAUSE SOMETHING IS BAD *
 **
 EXEC CICS
 DUMP DUMPCODE(’SYY2’) NOHANDLE
 END-EXEC.

 980-EXIT.
 EXIT.

 990-CICS-RETURN.
 **
 * RETURN TO CICS... *
 **

 EXEC CICS
 RETURN
 END-EXEC.

 990-EXIT.
 EXIT.

Sample program SYCCSAZ2
The following program receives a text input string (10,000 bytes) and returns
it in a 50-byte column one row at a time.

Note This application replaces the sample remote stored procedure RSP8C for
MDI-heritage customers. For information about RSP8C, see the Programmer’s
Reference for Remote Stored Procedures for Open ServerConnect.

IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCCSAZ2.
 DATE-WRITTEN. 09/17/96.
 DATE-COMPILED.
 **

APPENDIX B Sample RPC Application for CICS

303

 **
 ** (c) 1995 by Sybase, Inc. All Rights Reserved
 **
 **

 **
 ** PROGRAM: SYCCSAZ2 TRAN:SYZ2....
 **
 ** THIS PROGRAM IS A THE OPEN SERVER VERSION OF RSP8C. RECEIVES
 ** A TEXT INPUT STRING(10,000 BYTES) AND RETURNS IT IN A 50 BYTE
 ** COLUMN ONE ROW AT A TIME...
 ** Example: exec syz2 ’xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’
 **

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 **
 * COPY IN THE OS SERVER LIBRARYS
 **
 COPY SYGWCOB.
 **
 *OPEN SERVER WORK VARIBLES FOR OS CALL TO USE ...
 **
 01 WS-GWL-WORK-VARIBLES.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-INFPRM-ID PIC S9(9) COMP.
 05 GWL-INFPRM-TYPE PIC S9(9) COMP.
 05 GWL-INFPRM-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-MAX-DATA-L PIC S9(9) COMP.
 05 GWL-INFPRM-STATUS PIC S9(9) COMP.
 05 GWL-INFPRM-NAME PIC X(30).
 05 GWL-INFPRM-NAME-L PIC S9(9) COMP.
 05 GWL-INFPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-INFUDT-USER-TYPE PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-COMM-STATE PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.

Sample program SYCCSAZ2

304

 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-NUMPRM-PARMS PIC S9(9) COMP.
 05 GWL-RCVPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-ID PIC S9(9) COMP.
 05 GWL-SETPRM-TYPE PIC S9(9) COMP.
 05 GWL-SETPRM-DATA-L PIC S9(9) COMP.
 05 GWL-SETPRM-USER-DATA PIC S9(9) COMP.
 05 GWL-CONVRT-SCALE PIC S9(9) COMP VALUE 2.
 05 GWL-SETBCD-SCALE PIC S9(9) COMP VALUE 0.
 05 GWL-INFBCD-LENGTH PIC S9(9) COMP.
 05 GWL-INFBCD-SCALE PIC S9(9) COMP.
 05 GWL-RETURN-ROWS PIC S9(9) COMP VALUE +0.
 05 SNA-CONN-NAME PIC X(8) VALUE SPACES.
 05 SNA-SUBC PIC S9(9) COMP.
 05 WRK-DONE-STATUS PIC S9(9) COMP.
 05 GWL-ACTUAL-LEN PIC S9(9) COMP.
 05 GWL-TRAN-LEN PIC S9(9) COMP.
 05 GWL-MSG-LEN PIC S9(9) COMP.
 05 GWL-REQUEST-TYP PIC S9(9) COMP.
 05 GWL-RPC-NAME PIC X(30) VALUE SPACES.
 05 GWL-COMM-STATE PIC S9(9) COMP.
 05 I PIC S9(9) COMP VALUE +0.
 05 J PIC S9(4) COMP VALUE +0.

 01 DESCRIPTION-FIELDS.
 05 COLUMN-NUMBER PIC S9(09) COMP VALUE +0.
 05 HOST-TYPE PIC S9(09) COMP VALUE +0.
 05 HOST-LEN PIC S9(09) COMP VALUE +0.
 05 COLUMN-LEN PIC S9(09) COMP VALUE +0.
 05 COLUMN-NAME-LEN PIC S9(09) COMP VALUE +0.

 01 WS-MSG-WORK-VARS.
 05 MSG-NR PIC S9(9) COMP VALUE +9999.

 01 WS-INPUT-LEN PIC s9(9) COMP VALUE +10000.
 01 WS-INPUT-DATA-HDR.
 03 WS-INPUT-DATA PIC X(10000) VALUE SPACES.
 03 WS-INPUT-REDEFINE REDEFINES WS-INPUT-DATA.
 05 WS-INPUT-TABLE OCCURS 10000 TIMES.
 10 WS-INPUT-CHAR PIC X.
 01 WS-OUTPUT-DATA-HDR.
 03 WS-OUTPUT-DATA PIC X(50) VALUE SPACES.
 03 WS-OUTPUT-REDEFINE REDEFINES WS-OUTPUT-DATA.
 05 WS-OUTPUT-TABLE OCCURS 50 TIMES.
 10 WS-OUTPUT-CHAR PIC X.

APPENDIX B Sample RPC Application for CICS

305

 01 WS-OUTPUT-COL-NAME PIC X(13)
 VALUE ’OUTPUT_COLUMN’.

 **
 * MESSAGES *
 **

 01 WS-MSG.
 05 FILLER PIC X(17)
 VALUE ’ERROR IN OS CALL ’.
 05 WS-MSG-FUNC PIC X(10).
 05 FILLER PIC X(04)
 VALUE ’RC=’.
 05 WS-MSG-RC PIC 9(9).
 05 FILLER PIC X(18)
 VALUE ’ SUBCODE ERROR = ’.
 05 MSG-SUBC PIC 9(9) VALUE 0.
 05 WS-MSG-TEXT PIC X(50) VALUE SPACES.

 01 WORK-SRVIN-INFO.
 05 WK-INFO-TBL-ID PIC S9(8) COMP.
 05 WK-INFO-TBL-NAME PIC X(30).
 05 WK-INFO-TBL-VALUE PIC X(10).

 LINKAGE SECTION.
 **
 * THE LINKAGE SECTION DEFINES MASKS FOR DATA AREAS THAT ARE
 * PASSED BETWEEN THIS PROGRAM.
 **

 01 DFHCOMMAREA PIC X(1).

 PROCEDURE DIVISION.

 000-MAIN-PROCESSING.

 PERFORM 100-INITIALIZE THRU 100-EXIT.

 PERFORM 200-PROCESS-INPUT THRU 200-EXIT.

 PERFORM 300-PROCESS-OUTPUT THRU 300-EXIT.

 PERFORM 900-ALL-DONE THRU 900-EXIT.

Sample program SYCCSAZ2

306

 GOBACK.

 000-EXIT.
 EXIT.

 100-INITIALIZE.
 **
 * INTIALIZE THE TDS CONNECTION AND RECEIVE THE
 * RPC PARM........
 **

 ==> ESTABLISH GATEWAY ENVIRONMENT <===

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ==> ACCEPT CLIENT REQUEST <===

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONN-NAME, SNA-SUBC.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 ==> VERIFY PROGRAM INITIATED BY AN RPC REQUEST... <===

 CALL ’TDINFRPC’ USING GWL-PROC, GWL-RC,
 GWL-REQUEST-TYP, GWL-RPC-NAME,
 GWL-COMM-STATE.
 IF GWL-RC NOT = TDS-OK OR
 GWL-REQUEST-TYP NOT = TDS-RPC-EVENT
 THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDINFRPC’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 100-EXIT.
 EXIT.

APPENDIX B Sample RPC Application for CICS

307

 200-PROCESS-INPUT.
 **
 * RECEIVE THE INPUT PARAMETER INTO HOST VARIBLE
 **

 ---> Find out how many parms are being passed <---

 CALL ’TDNUMPRM’ USING GWL-PROC, GWL-NUMPRM-PARMS.

 ---> More than one, pump back a message <---

 IF GWL-NUMPRM-PARMS not = +1 THEN
 MOVE ’Invalid Number of Parameters’
 TO WS-MSG-TEXT
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDNUMPRM’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF

 ---> Get that parm info into the host varible <---

 IF GWL-NUMPRM-PARMS = +1 THEN
 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC,
 GWL-NUMPRM-PARMS,
 WS-INPUT-DATA,
 TDSLONGVARCHAR,
 WS-INPUT-LEN,
 GWL-ACTUAL-LEN
 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDRCVPRM’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF
 END-IF.
 200-EXIT.
 EXIT.
 300-PROCESS-OUTPUT.
 **
 * BREAK UP THE 10K INPUT FIELDS INTO A 50 BYTE COLUMN AND SEND
 **

 MOVE +1 TO COLUMN-NUMBER.
 MOVE LENGTH OF WS-OUTPUT-DATA TO HOST-LEN
 COLUMN-LEN.

Sample program SYCCSAZ2

308

 MOVE LENGTH OF WS-OUTPUT-COL-NAME TO COLUMN-NAME-LEN.
 CALL ’TDESCRIB’ USING GWL-PROC,
 GWL-RC,
 COLUMN-NUMBER,
 TDSCHAR,
 HOST-LEN,
 WS-OUTPUT-DATA,
 TDS-ZERO,
 TDS-FALSE,
 TDSCHAR,
 COLUMN-LEN,
 WS-OUTPUT-COL-NAME,
 COLUMN-NAME-LEN.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE GWL-RC TO WS-MSG-RC
 MOVE ’TDESCRIB’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.

 PERFORM VARYING I FROM 1 BY 1 UNTIL I > GWL-ACTUAL-LEN
 COMPUTE J = J + 1
 MOVE WS-INPUT-CHAR(I) TO WS-OUTPUT-CHAR(J)
 IF J = 50
 THEN
 PERFORM 310-SEND-ROW THRU 310-EXIT
 MOVE ZERO TO J
 MOVE SPACES TO WS-OUTPUT-DATA
 END-IF
 END-PERFORM.
 IF J > ZERO
 THEN PERFORM 310-SEND-ROW THRU 310-EXIT.

 300-EXIT.
 EXIT.
 310-SEND-ROW.
 **
 * SEND ROW OF DATA TO CLIENT....

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC
 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE GWL-RC TO WS-MSG-RC

APPENDIX B Sample RPC Application for CICS

309

 MOVE ’TDSNDROW’ TO WS-MSG-FUNC
 PERFORM 920-SEND-MESSAGE THRU 920-EXIT
 PERFORM 910-ERR-PROCESS THRU 910-EXIT
 END-IF.
 310-EXIT.
 EXIT.
 EJECT
 900-ALL-DONE.
 **
 * CLOSE CONNECTION TO CLIENT AND RETURN TO CICS... *
 **

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC, WRK-DONE-STATUS,
 GWL-RETURN-ROWS, TDS-ZERO, TDS-ENDRPC.
 IF GWL-RC NOT = TDS-OK THEN
 PERFORM 980-CICS-DUMP THRU 980-EXIT
 PERFORM 990-CICS-RETURN THRU 990-EXIT
 END-IF.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.
 PERFORM 990-CICS-RETURN THRU 990-EXIT.

 900-EXIT.
 EXIT.

 910-ERR-PROCESS.
 **
 * PERFORM ALL-DONE IN A ERROR STATE *
 **

 MOVE ZERO TO GWL-RETURN-ROWS.
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS.
 PERFORM 900-ALL-DONE THRU 900-EXIT.

 910-EXIT.
 EXIT.

 920-SEND-MESSAGE.
 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.
 * Ensure we’re in right state to send a message
 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,

Sample program SYCCSAZ2

310

 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.
 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN
 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

 920-EXIT.
 EXIT.

 980-CICS-DUMP.
 **
 * CAUSE A CICS TRANSACTION DUMP USUALLY BECAUSE SOMETHING IS BAD *
 **
 EXEC CICS
 DUMP DUMPCODE(’SYZ2’) NOHANDLE
 END-EXEC.

 980-EXIT.
 EXIT.

 990-CICS-RETURN.
 **
 * RETURN TO CICS... *
 **

 EXEC CICS
 RETURN
 END-EXEC.

 990-EXIT.
 EXIT.

311

A P P E N D I X C Sample Language Application
for CICS

This appendix contains a sample Open ServerConnect application
program that processes a client’s SQL language request using the DB2
Dynamic SQL facility. This CICS program uses VS COBOL II, DB2, and
Gateway-Library.

The client language request can be entered on line, using ISQL or another
Sybase or third party front end product, or it can be coded in a DB-Library
program. A corresponding DB-Library program, syl2.c, is included with
TRS. The server program listed here is included on the Open
ServerConnect tape.

If the TRS security administrator specifies this program as your language
handler, be sure that syl2.c is the Language RPC Name in the Transaction
Group associated with all client logins that use this program to process
SQL language requests.

If you want to allow a client to execute this program on line, be sure that
the TRS specifies SYL2 rather than AMD2 as the mainframe transaction
for SQL language requests.

The purpose of this sample program is to demonstrate the use of Gateway-
Library functions, particularly those designed to handle client language
requests. In some cases, one Gateway-Library function is used for
demonstration purposes when another function would be more efficient.
In order to best illustrate the flow of processing, the program does not do
extensive error checking.

Note You can write language handling programs to handle any incoming
text. You are not restricted to SQL text or to any particular host access
method.

This program demonstrates the use of the following Gateway-Library
functions listed in Table C-1.

Sample program SYCCSAL2

312

Table C-1: List of functions used in SYCCSAL2

Sample program SYCCSAL2
This program accepts all valid Dynamic SQL requests except SELECT
commands. DELETE requests must have a WHERE clause, or they will be
rejected. Upon successful completion, this program sends a confirmation
message to the client; otherwise, it sends an error message.

 *@(#) syccsal2.cobol 1.1 3/17/98 */
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCCSAL2.

 ****** SYCCSAL2 - LANGUAGE REQUEST APPLICATION - COBOL2 - CICS **
 *
 * TRANID: SYL2
 * PROGRAM: SYCCSAL2
 * PLAN NAME: SYL2PLAN
 * FILES: n/a
 * TABLES: adhoc
 *
 * This program is executed via a client language request
 * from sample dblib program ’SYL2’, or by SYBASE’s ISQL if
 * installed. The client program must login to a transaction
 * group with SYL2 as the language handler.
 *
 * The purpose of the program is primarily to demonstrate Server

Name Action

TDACCEPT Accept a client request.

TDFREE Free up the TDPROC structure for the connection.

TDINFLOG Return current trace settings for trace log.

TDINFPGM Return information about current program.

TDINIT Initialize the Gateway-Library environment.

TDRCVSQL Receive a SQL command string from client.

TDRESULT Describe next communication from client.

TDSETSPT Set specific tracing.

TDSNDDON Send results-completion to client.

TDSNDMSG Send message to client.

TDSQLLEN Get length of incoming text.

TDSTATUS Get status information.

APPENDIX C Sample Language Application for CICS

313

 * Library calls, especially those which would be used in a
 * server application designed to handle language requests.
 *
 * Server Library calls:
 * TDACCEPT accept request from client
 * TDFREE free TDPROC structure
 * TDINFLOG return trace settings
 * TDINFPGM return program information
 * TDINIT establish environment
 * TDRCVSQL receive language text
 * TDRESULT describe next communication
 * TDSETSPT set specific tracing
 * TDSNDDON send results-completion to client
 * TDSNDMSG send message to client
 * TDSQLLEN get length of incoming text
 * TDSTATUS get status information
 *
 *
 * The program accepts all valid SQL requests other than
 * ’SELECT’. A ’DELETE’ must have a WHERE clause, or it is
 * rejected.
 *
 * A confirmation message is sent to the client if all is
 * well, otherwise an error message is sent.
 *
 * CHANGE ACTIVITY:
 * 4/90 - Created, MPM
 * 10/93 - Some restructuring, TC
 *

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 **
 WORKING-STORAGE SECTION.
 **

 *---
 * DB2 SQLCA
 *---
 EXEC SQL INCLUDE SQLCA END-EXEC.

 *---
 * DB2 MINIMUM SQLDA FOR COBOL II
 *---
 01 SQLDA.

Sample program SYCCSAL2

314

 02 SQLDAID PIC X(8) VALUE ’SQLDA’.
 02 SQLDABC PIC S9(8) COMP VALUE 60.
 02 SQLN PIC S9(4) COMP VALUE 1.
 02 SQLD PIC S9(4) COMP VALUE 0.
 02 SQLVAR.
 03 SQLTYPE PIC S9(4) COMP.
 03 SQLLEN PIC S9(4) COMP.
 03 SQLDATA POINTER.
 03 SQLIND POINTER.
 03 SQLNAME.
 49 SQLNAMEL PIC S9(4) COMP.
 49 SQLNAMEC PIC X(30).

 *---
 * SERVER LIBRARY COBOL COPY BOOK
 *---
 COPY SYGWCOB.

 *---
 * WORK AREAS
 *---
 01 GW-LIB-MISC-FIELDS.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-SQLLEN PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-INFPGM-TDS-VERSION PIC S9(9) COMP.
 05 GWL-INFPGM-LONGVAR PIC S9(9) COMP.
 05 GWL-INFPGM-ROW-LIMIT PIC S9(9) COMP.
 05 GWL-INFPGM-REMOTE-TRACE PIC S9(9) COMP.
 05 GWL-INFPGM-CORRELATOR PIC S9(9) COMP.
 05 GWL-INFPGM-DB2GW-OPTION PIC S9(9) COMP.
 05 GWL-INFPGM-DB2GW-PID PIC X(8).
 05 GWL-INFPGM-TYPE-RPC PIC S9(9) COMP.
 05 GWL-INFLOG-GLOBAL PIC S9(9) COMP.
 05 GWL-INFLOG-API PIC S9(9) COMP.
 05 GWL-INFLOG-TDS-HEADER PIC S9(9) COMP.
 05 GWL-INFLOG-TDS-DATA PIC S9(9) COMP.
 05 GWL-INFLOG-TRACE-ID PIC S9(9) COMP.
 05 GWL-INFLOG-FILENAME PIC X(8).

APPENDIX C Sample Language Application for CICS

315

 05 GWL-INFLOG-TOTAL-RECS PIC S9(9) COMP.
 05 GWL-SETSPT-TRACE-LEVEL PIC S9(9) COMP VALUE 4.
 05 GWL-SETSPT-RPC-NAME PIC X(4) VALUE ’SYL2’.
 05 GWL-SETSPT-RPC-NAME-L PIC S9(9) COMP VALUE 4.

 01 LANGUAGE-FIELDS.
 05 LANG-MAX-L PIC S9(9) COMP.
 05 LANG-ACTUAL-L PIC S9(9) COMP.
 05 LANG-TEXT-SS PIC S9(4) COMP.

 01 LANG-BUFFER.
 49 LANG-BUFFER-LL PIC S9(4) COMP.
 49 LANG-BUFFER-TEXT PIC X(1024).

 01 PARSESQL-BUFFER REDEFINES LANG-BUFFER.
 05 PARSESQL-TEXT.
 10 PARSESQL-TEXT-LL PIC S9(4) COMP.
 10 PARSESQL-TEXT-CHARS OCCURS 1024 TIMES
 PIC X.
 05 PARSESQL-TEXT-DUMMY-LVL PIC X.

 01 SNA-FIELDS.
 05 SNA-SUBC PIC S9(9) COMP.
 05 SNA-CONNECTION-NAME PIC X(8) VALUE SPACES.

 01 PARSE-FIELDS.
 05 PARSE-PTR PIC S9(4) COMP VALUE 0.
 05 PARSE-TOKEN PIC X(18) VALUE SPACES.
 05 PARSE-FROM PIC X(04).
 05 PARSE-TABLE PIC X(46).
 05 PARSE-CORRELATION PIC X(18) VALUE SPACES.
 05 PARSE-WHERE PIC X(05) VALUE SPACES.

 01 WORK-FIELDS.
 05 WRK-DONE-STATUS PIC S9(9) COMP.

 01 MESSAGE-FIELDS.
 05 MSG-TYPE PIC S9(9) COMP.
 05 MSG-SEVERITY PIC S9(9) COMP.
 05 MSG-SEVERITY-OK PIC S9(9) COMP VALUE 9.
 05 MSG-SEVERITY-ERROR PIC S9(9) COMP VALUE 11.
 05 MSG-NR PIC S9(9) COMP.
 05 MSG-NR-OK PIC S9(9) COMP VALUE 1.
 05 MSG-NR-ERROR PIC S9(9) COMP VALUE 2.
 05 MSG-RPC PIC X(4) VALUE ’SYL2’.
 05 MSG-RPC-L PIC S9(9) COMP.

Sample program SYCCSAL2

316

 05 MSG-TEXT PIC X(50).
 05 MSG-TEXT-L PIC S9(9) COMP.
 05 MSG-SQL-ERROR.
 10 MSG-SQL-ERROR-T PIC X(31)
 VALUE ’Invalid sql request, sqlcode = ’.
 10 MSG-SQL-ERROR-C PIC -9(3) DISPLAY.
 05 MSG-SELECT PIC X(24)
 VALUE ’SQL select not supported’.
 05 MSG-NOT-LANG PIC X(35)
 VALUE ’SYL2 not begun via language request’.
 05 MSG-BAD-LEN PIC X(31)
 VALUE ’Request has too many characters’.
 05 MSG-NO-WHERE PIC X(26)
 VALUE ’Delete has no where clause’.
 05 MSG-OK PIC X(22)
 VALUE ’Execute was successful’.
 05 MSG-NOT-OK.
 10 FILLER PIC X(26)
 VALUE ’Execute failed, sqlcode = ’.
 10 MSG-NOT-OK-C PIC -9(3) DISPLAY.
 10 FILLER PIC X(18)
 VALUE ’, ROLLBACK issued.’.

 01 CICS-FIELDS.
 05 CICS-RESPONSE PIC S9(9) COMP.

 01 SWITCHES.
 05 TRACING-SET-SW PIC S9(9) COMP VALUE 0.
 88 TRACING-RESET VALUE 0.
 88 TRACING-SET VALUE 1.
 05 SEND-DONE-SW PIC X VALUE ’Y’.
 88 SEND-DONE-ERROR VALUE ’N’.
 88 SEND-DONE-OK VALUE ’Y’.

 *---
 * DECLARE STATEMENT AND CURSOR
 *---
 EXEC SQL DECLARE S1 STATEMENT END-EXEC.
 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

 **
 PROCEDURE DIVISION.
 **

 * Reset db2 error handlers

APPENDIX C Sample Language Application for CICS

317

 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 * Establish gateway environment

 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * Turn on local tracing if not on globally or locally

 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-TDS-HEADER,
 GWL-INFLOG-TDS-DATA,
 GWL-INFLOG-TRACE-ID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-TOTAL-RECS.

 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-ALL-RPCS
 AND GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 MOVE 1 TO TRACING-SET-SW
 PERFORM LOCAL-TRACING
 END-IF.

 * Accept client request

 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

 * Ensure kicked off via language request
 * (this could be handled more reasonably by TDRESULT)

 CALL ’TDINFPGM’ USING GWL-PROC, GWL-RC,
 GWL-INFPGM-TDS-VERSION,
 GWL-INFPGM-LONGVAR,
 GWL-INFPGM-ROW-LIMIT,
 GWL-INFPGM-REMOTE-TRACE,
 GWL-INFPGM-CORRELATOR,
 GWL-INFPGM-DB2GW-OPTION,
 GWL-INFPGM-DB2GW-PID,
 GWL-INFPGM-TYPE-RPC.

 IF GWL-INFPGM-TYPE-RPC NOT = TDS-START-SQL
 MOVE MSG-NOT-LANG TO MSG-TEXT

Sample program SYCCSAL2

318

 MOVE LENGTH OF MSG-NOT-LANG TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 * Prepare for receive

 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 * Get lenth of language text, ensure not too big for us
 * (this could be handled without TDSQLLEN by checking
 * LANG-ACTUAL-LEN doesn’t exceed LANG-MAX-L in TDRCVSQL call)

 CALL ’TDSQLLEN’ USING GWL-PROC, GWL-SQLLEN.
 MOVE LENGTH OF LANG-BUFFER-TEXT TO LANG-MAX-L.

 IF GWL-SQLLEN > LANG-MAX-L THEN
 MOVE MSG-BAD-LEN TO MSG-TEXT
 MOVE LENGTH OF MSG-BAD-LEN TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 * Get language text

 CALL ’TDRCVSQL’ USING GWL-PROC, GWL-RC,
 LANG-BUFFER-TEXT,
 LANG-MAX-L,
 LANG-ACTUAL-L.

 MOVE LANG-ACTUAL-L TO LANG-BUFFER-LL.

 * Ensure line feeds, low-values, etc. translated to blanks

 PERFORM VARYING LANG-TEXT-SS FROM 1 BY 1
 UNTIL LANG-TEXT-SS > PARSESQL-TEXT-LL

 IF PARSESQL-TEXT-CHARS(LANG-TEXT-SS) < SPACE THEN
 MOVE SPACE TO PARSESQL-TEXT-CHARS(LANG-TEXT-SS)
 END-IF

 * Save position of first non-blank

 IF PARSE-PTR = 0 AND
 PARSESQL-TEXT-CHARS(LANG-TEXT-SS) > SPACE THEN
 MOVE LANG-TEXT-SS TO PARSE-PTR

APPENDIX C Sample Language Application for CICS

319

 END-IF

 END-PERFORM.

 * Let DB2 edit and tell us if SELECT

 EXEC SQL PREPARE S1 INTO SQLDA FROM :LANG-BUFFER END-EXEC.

 IF SQLD NOT = 0 THEN
 MOVE MSG-SELECT TO MSG-TEXT
 MOVE LENGTH OF MSG-SELECT TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 IF SQLCODE < 0 THEN
 MOVE SQLCODE TO MSG-SQL-ERROR-C
 MOVE MSG-SQL-ERROR TO MSG-TEXT
 MOVE LENGTH OF MSG-SQL-ERROR TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 * Parse and handle special case of DELETE without WHERE clause

 UNSTRING LANG-BUFFER-TEXT DELIMITED BY ALL ’ ’
 INTO PARSE-TOKEN
 PARSE-FROM
 PARSE-TABLE
 PARSE-CORRELATION
 PARSE-WHERE
 POINTER PARSE-PTR.

 PERFORM XLATE-TOKEN-UPPERCASE.

 IF PARSE-TOKEN = ’DELETE’ THEN
 MOVE PARSE-CORRELATION TO PARSE-TOKEN
 PERFORM XLATE-TOKEN-UPPERCASE
 MOVE PARSE-TOKEN TO PARSE-CORRELATION

 MOVE PARSE-WHERE TO PARSE-TOKEN
 PERFORM XLATE-TOKEN-UPPERCASE

 IF PARSE-CORRELATION NOT = ’WHERE ’ AND
 PARSE-TOKEN NOT = ’WHERE ’ THEN
 MOVE MSG-NO-WHERE TO MSG-TEXT

Sample program SYCCSAL2

320

 MOVE LENGTH OF MSG-NO-WHERE TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF
 END-IF.

 * Execute the SQL statement

 EXEC SQL EXECUTE S1 END-EXEC.

 IF SQLCODE < 0 THEN
 PERFORM CICS-ROLLBACK
 MOVE SQLCODE TO MSG-NOT-OK-C
 MOVE MSG-NOT-OK TO MSG-TEXT
 MOVE LENGTH OF MSG-NOT-OK TO MSG-TEXT-L
 PERFORM SEND-ERROR-MESSAGE
 GO TO END-PROGRAM
 END-IF.

 MOVE MSG-OK TO MSG-TEXT.
 MOVE LENGTH OF MSG-OK TO MSG-TEXT-L.
 PERFORM SEND-CONFIRM-MESSAGE.
 GO TO END-PROGRAM.

 *---
 XLATE-TOKEN-UPPERCASE.
 *---

 * All we care about is DELETE and WHERE

 INSPECT PARSE-TOKEN REPLACING ALL ’d’ BY ’D’
 ’e’ BY ’E’
 ’h’ BY ’H’
 ’l’ BY ’L’
 ’r’ BY ’R’
 ’t’ BY ’T’
 ’w’ BY ’W’.

 *---
 SEND-CONFIRM-MESSAGE.
 *---
 MOVE MSG-SEVERITY-OK TO MSG-SEVERITY.
 MOVE MSG-NR-OK TO MSG-NR.
 MOVE TDS-INFO-MSG TO MSG-TYPE.
 PERFORM SEND-MESSAGE.

APPENDIX C Sample Language Application for CICS

321

 *---
 SEND-ERROR-MESSAGE.
 *---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE MSG-SEVERITY-ERROR TO MSG-SEVERITY.
 MOVE MSG-NR-ERROR TO MSG-NR.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 PERFORM SEND-MESSAGE.

 *---
 SEND-MESSAGE.
 *---
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

 * ---
 * ensure we’re in right state to send a message
 * ---
 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

 *---
 LOCAL-TRACING.
 *---
 CALL ’TDSETSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 TRACING-SET-SW,
 GWL-SETSPT-TRACE-LEVEL,
 GWL-SETSPT-RPC-NAME,
 GWL-SETSPT-RPC-NAME-L.

Sample program SYCCSAL2

322

 *---
 CICS-ROLLBACK.
 *---
 EXEC CICS SYNCPOINT
 ROLLBACK
 RESP(CICS-RESPONSE)
 END-EXEC.

 *---
 END-PROGRAM.
 *---
 IF TRACING-SET
 MOVE 0 TO TRACING-SET-SW
 PERFORM LOCAL-TRACING
 END-IF.

 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO SQLERRD(3)
 END-IF.

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS,
 SQLERRD(3),
 TDS-ZERO,
 TDS-ENDRPC.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.
 EXEC CICS RETURN END-EXEC.

323

A P P E N D I X D Sample RPC Application for
IMS TM (Implicit)

This appendix contains a sample mainframe server application program
that runs in implicit mode under IMS TM and processes a series of client
RPCs from the Open Client program SYD2. The COBOL program listed
here is included on the Open ServerConnect API tape.

The purpose of this sample program is to demonstrate the use of Gateway-
Library functions in IMS TM programs, particularly those designed to
handle remote procedure calls from a client. In some cases, one Gateway-
Library function is used for demonstration purposes when another
function would be more efficient. In order to best illustrate the flow of
processing, the program does not do extensive error checking.

This sample program is provided as part of the Open ServerConnect
package. It uses DB2, VS COBOL II and Gateway-Library. It references
a DB2 sample table, SYBASE.SAMPLETB, which is provided with the
product.

Sample program SYICSAD2

 IDENTIFICATION DIVISION.
 *-----------------------
 PROGRAM-ID. SYICSAD2.

 ****** SYICSAD2 - RPC REQUEST APPLICATION - COBOL2 - IMS *******
 *
 * TRANID: SYD2
 * PROGRAM: SYICSAD2
 * PLAN NAME: SYICSAD2
 * FILES: n/a
 * TABLES: SYBASE.SAMPLETB
 *
 * This program is executed via a client RPC request from sample

Sample program SYICSAD2

324

 * dblib program ‘SYD2’ or from isql. The program expects one sample
 * character parm which is equal to a department number in the DB2
 * table SYBASE.SAMPLETB. The program then selects and returns all
 * rows with that department number.
 *
 * To execute from iqsl type:
 *
 * >isql -Usa -Sservername
 *
 * >exec SYD2 ‘D11’
 *
 * >go
 *
 * NOTE: Add SYD2 using isql as follows:
 *
 * exec sgw_addrpc SYD2,SYD2,IMSLU62,none
 *
 * where IMSLU62 is the APPC name of your IMS region.
 *
 * Server Library calls:
 *
 * TDACCEPT accept request from client
 * TDESCRIB describe a column
 * TDFREE free TDPROC structure
 * TDGETREQ get next set of parms
 * TDINIT establish environment
 * TDRCVPRM retrieve rpc parameter from client
 * TDSNDDON send results-completion to client
 * TDSNDMSG send message to client
 * TDSNDROW send row to client
 * TDSTATUS get status information
 * TDSETPT pass type of program to gwlib
 * TDTERM clean up control blocks
 *

 ENVIRONMENT DIVISION.
 DATA DIVISION.

 **
 WORKING-STORAGE SECTION.
 **
 *---
 * DB2 SQLCA
 *---
 EXEC SQL INCLUDE SQLCA END-EXEC.

APPENDIX D Sample RPC Application for IMS TM (Implicit)

325

 *---
 * SERVER LIBRARY COBOL COPY BOOK
 *---
 COPY SYGWCOB.

 *---
 * WORK AREAS
 *---
 01 GW-LIB-MISC-FIELDS.
 05 GWL-SPA-PTR POINTER.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-REQ-TYPE PIC S9(9) COMP VALUE +0.
 05 GWL-WAIT-OPTION PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-PROG-TYPE PIC X(04) VALUE ‘MPP ‘.
 05 GWL-RPC-NAME PIC X(30) VALUE SPACES.

 01 PARM-FIELDS.
 05 PARM-L PIC S9(9) COMP.
 05 PARM-ID1 PIC S9(9) COMP VALUE 1.
 05 PARM-DEPT PIC X(3).

 01 SNA-FIELDS.
 05 SNA-SUBC PIC S9(9) COMP
 05 SNA-CONNECTION-NAME PIC X(8) VALUE SPACES.

 01 EMPLOYEE-FIELDS.
 05 EMPLOYEE-LNM.
 49 EMPLOYEE-LNM-LEN PIC S9(4) COMP.
 49 EMPLOYEE-LNM-TEXT PIC X(15).
 05 EMPLOYEE-DEPT PIC X(3).
 05 EMPLOYEE-PH PIC X(4).
 05 EMPLOYEE-SALARY PIC S9(6)V9(2) COMP-3.

 01 COLUMN-NAME-FIELDS.
 05 CN-LNM PIC X(10) VALUE ‘LAST_NAME ‘.
 05 CN-DEPT PIC X(8) VALUE ‘EMP_DEPT’.
 05 CN-PH PIC X(9) VALUE ‘EMP_PHONE’.

Sample program SYICSAD2

326

 05 CN-SALARY PIC X(6) VALUE ‘SALARY’.

 01 DESCRIBE-BIND-FIELDS.
 05 DB-HOST-TYPE PIC S9(9) COMP.
 05 DB-CLIENT-TYPE PIC S9(9) COMP.
 05 DB-NULL-INDICATOR PIC S9(4) COMP VALUE 0.

 01 COUNTER-FIELDS.
 05 CTR-COLUMN PIC S9(9) COMP VALUE 1.
 05 CTR-ROWS PIC S9(9) COMP VALUE 0.

 01 WORK-FIELDS.
 05 WRKLEN1 PIC S9(9) COMP.
 05 WRKLEN2 PIC S9(9) COMP.
 05 WRK-DONE-STATUS PIC S9(9) COMP.

 01 MESSAGE-FIELDS.
 05 MSG-TYPE PIC S9(9) COMP.
 05 MSG-SEVERITY PIC S9(9) COMP VALUE 11.
 05 MSG-NR PIC S9(9) COMP VALUE 2.
 05 MSG-RPC PIC X(4) VALUE ‘SYD2’.
 05 MSG-RPC-L PIC S9(9) COMP.
 05 MSG-TEXT PIC X(100).
 05 MSG-TEXT-L PIC S9(9) COMP.
 05 MSG-BAD-CURSOR PIC X(27)
 VALUE ‘ERROR - can not open cursor’.
 05 MSG-BAD-FETCH PIC X(24)
 VALUE ‘ERROR - fetch row failed’.
 05 MSG-SQL-ERROR.
 10 FILLER PIC X(10) VALUE ‘Sqlcode = ‘.
 10 MSG-SQL-ERROR-C PIC -9(3) DISPLAY.
 10 FILLER PIC X(16)
 VALUE ‘, Error Tokens: ‘.
 10 MSG-SQL-ERROR-K PIC X(70).
 10 MSG-SQL-ERROR-K-CHARS
 REDEFINES MSG-SQL-ERROR-K
 OCCURS 70 TIMES
 PIC X.
 05 MSG-SQL-ERROR-SS PIC S9(4) COMP.

 01 CALL-ERROR-MESSAGE.
 05 FILLER PIC X(5) VALUE SPACES.
 05 CALL-PROG PIC X(10) VALUE ‘SYICSAD2’.
 05 FILLER PIC X(5) VALUE SPACES.
 05 CALL-ERROR PIC X(10) VALUE SPACES.
 05 FILLER PIC X(5) VALUE ‘ RC= ‘.

APPENDIX D Sample RPC Application for IMS TM (Implicit)

327

 05 CALL-ERROR-RC PIC -ZZZZ.
 01 SWITCHES.
 05 ALL-DONE-SW PIC X VALUE ‘N’.
 88 NOT-ALL-DONE VALUE ‘N’.
 88 ALL-DONE VALUE ‘Y’.
 05 SEND-DONE-SW PIC X VALUE ‘Y’.
 88 SEND-DONE-ERROR VALUE ‘N’.
 88 SEND-DONE-OK VALUE ‘Y’.

 *---
 * DECLARE CURSOR
 *---
 EXEC SQL
 DECLARE ECURSOR CURSOR
 FOR SELECT LASTNAME,
 WORKDEPT, PHONENO, SALARY
 FROM SYBASE.SAMPLETB
 WHERE WORKDEPT = :PARM-DEPT
 END-EXEC.

 LINKAGE SECTION.

 01 IO-PCB.
 05 LTERM-NAME PIC X(8).
 05 TERM-RESERVE PIC XX.
 05 TERM-STATSUS PIC XX.
 05 TERM-PREFIX.
 15 FILLER PIC X.
 15 JULIAN-DATE PIC S9(5) COMP-3.
 15 TIME-O-DAY PIC S9(7) COMP-3.
 15 FILLER PIC XXXX.
 05 MODNAME PIC X(08).

 **
 PROCEDURE DIVISION.
 **

 ENTRY ‘DLITCBL’ USING IO-PCB.

 *---
 INITIALIZE-PROGRAM.
 *---

 SET GWL-SPA-PTR TO NULL.

 * ---

Sample program SYICSAD2

328

 * reset db2 error handlers
 * ---
 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 * ---
 * establish gateway environment
 * ---
 CALL ‘TDINIT’ USING IO-PCB, GWL-RC, GWL-INIT-HANDLE.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDINIT’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 * ---
 * Set program type
 * ---
 CALL ‘TDSETPT’ USING GWL-INIT-HANDLE, GWL-RC, GWL-PROG-TYPE
 GWL-SPA-PTR, TDS-NULL, TDS-NULL.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDSETPT’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 * ---
 * accept client request
 * ---

 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDACCEPT’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 *---
 READ-IN-USER-PARM.
 *---
 MOVE ‘Y’ TO SEND-DONE-SW.

APPENDIX D Sample RPC Application for IMS TM (Implicit)

329

 MOVE ‘N’ TO ALL-DONE-SW.
 MOVE SPACES TO CALL-ERROR.
 MOVE ZEROES TO CALL-ERROR-RC CTR-ROWS.
 MOVE 1 TO CTR-COLUMN.

 MOVE LENGTH OF PARM-DEPT TO WRKLEN1.

 CALL ‘TDRCVPRM’ USING GWL-PROC, GWL-RC,
 PARM-ID1,
 PARM-DEPT,
 TDSCHAR,
 WRKLEN1,
 PARM-L.
 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDRCVPRM’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 *---
 OPEN-DB2-CURSOR.
 *---
 EXEC SQL OPEN ECURSOR END-EXEC.

 IF SQLCODE NOT = 0
 DISPLAY ‘SQLCODE = ‘ SQLCODE
 PERFORM OPEN-ERROR
 GO TO FINISH-REPLY
 END-IF.

 *---
 SETUP-REPLY-COLUMNS.
 *---
 MOVE TDSVARYCHAR TO DB-HOST-TYPE.
 MOVE TDSCHAR TO DB-CLIENT-TYPE.
 MOVE LENGTH OF EMPLOYEE-LNM-TEXT TO WRKLEN1.
 MOVE LENGTH OF CN-LNM TO WRKLEN2.

 CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 DB-HOST-TYPE,
 WRKLEN1,
 EMPLOYEE-LNM,
 DB-NULL-INDICATOR,
 TDS-FALSE,
 DB-CLIENT-TYPE,

Sample program SYICSAD2

330

 WRKLEN1,
 CN-LNM,
 WRKLEN2.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDESCRIB’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 ADD 1 TO CTR-COLUMN.
 MOVE TDSCHAR TO DB-HOST-TYPE.
 MOVE TDSCHAR TO DB-CLIENT-TYPE.
 MOVE LENGTH OF EMPLOYEE-DEPT TO WRKLEN1.
 MOVE LENGTH OF CN-DEPT TO WRKLEN2.

 CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 DB-HOST-TYPE,
 WRKLEN1,
 EMPLOYEE-DEPT,
 DB-NULL-INDICATOR,
 TDS-FALSE,
 DB-CLIENT-TYPE,
 WRKLEN1, CN-DEPT,WRKLEN2.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDESCRIB’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 ADD 1 TO CTR-COLUMN.
 MOVE LENGTH OF EMPLOYEE-PH TO WRKLEN1.
 MOVE LENGTH OF CN-PH TO WRKLEN2.

 CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 DB-HOST-TYPE,
 WRKLEN1,
 EMPLOYEE-PH,
 DB-NULL-INDICATOR,
 TDS-FALSE,
 DB-CLIENT-TYPE,

APPENDIX D Sample RPC Application for IMS TM (Implicit)

331

 WRKLEN1, CN-PH, WRKLEN2.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDESCRIB’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 * ---
 * Here we let TDESCRIB convert from TDSDECIMAL to TDSMONEY.
 * Note we’re taking the default scaling (2) for TDSDECIMAL
 * input, though we could override with TDSETBCD if necessary.
 * ---
 ADD 1 TO CTR-COLUMN.
 MOVE LENGTH OF EMPLOYEE-SALARY TO WRKLEN1.
 MOVE LENGTH OF CN-SALARY TO WRKLEN2.

 CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC, CTR-COLUMN,
 TDSDECIMAL,
 WRKLEN1,
 EMPLOYEE-SALARY,
 DB-NULL-INDICATOR,
 TDS-FALSE,
 TDSMONEY,
 TDS-DEFAULT-LENGTH,
 CN-SALARY, WRKLEN2.
 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDESCRIB’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 *---
 SEND-ROWS.
 *---
 PERFORM FETCH-AND-SEND-ROWS
 UNTIL ALL-DONE.

 FINISH-REPLY.
 *--
 * close cursor
 *--
 EXEC SQL CLOSE ECURSOR END-EXEC.

 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS

Sample program SYICSAD2

332

 MOVE ZERO TO CTR-ROWS
 END-IF.

 CALL ‘TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS, CTR-ROWS, TDS-ZERO, TDS-ENDRPC.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDSNDDON’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 * ---
 * Get next client request
 * ---
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-RPC-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION,
 GWL-REQ-TYPE, GWL-TRAN-NAME.

 EVALUATE GWL-RC
 WHEN ZEROES
 GO TO READ-IN-USER-PARM
 WHEN TDS-RESULTS-COMPLETE
 PERFORM FREE-ALL-STORAGE
 WHEN TDS-CONNECTION-TERMINATED
 PERFORM FREE-ALL-STORAGE
 WHEN OTHER
 MOVE ‘TDGETREQ’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-EVALUATE.

 GOBACK.

 *---
 FETCH-AND-SEND-ROWS.
 *---
 EXEC SQL FETCH ECURSOR INTO :EMPLOYEE-FIELDS
 END-EXEC.

 IF SQLCODE = 0 THEN

 * --
 * send a row to the client
 * --
 CALL ‘TDSNDROW’ USING GWL-PROC, GWL-RC

APPENDIX D Sample RPC Application for IMS TM (Implicit)

333

 ADD 1 TO CTR-ROWS

 IF GWL-RC = TDS-CANCEL-RECEIVED THEN
 MOVE ‘Y’ TO ALL-DONE-SW
 ELSE
 IF GWL-RC NOT EQUAL TO ZEROES THEN
 PERFORM DISPLAY-CALL-ERROR
 MOVE ‘Y’ TO ALL-DONE-SW
 END-IF

 ELSE IF SQLCODE = +100 THEN
 MOVE ‘Y’ TO ALL-DONE-SW

 ELSE IF SQLCODE < 0 THEN
 MOVE ‘Y’ TO ALL-DONE-SW
 PERFORM FETCH-ERROR
 END-IF.

 *---
 DISPLAY-CALL-ERROR.
 *---

 MOVE GWL-RC TO CALL-ERROR-RC.
 MOVE CALL-ERROR-MESSAGE TO MSG-TEXT.
 MOVE LENGTH OF CALL-ERROR-MESSAGE TO MSG-TEXT-L.
 PERFORM SEND-MESSAGE.
 DISPLAY CALL-ERROR-MESSAGE.
 PERFORM FREE-ALL-STORAGE.
 GOBACK.

 *---
 FREE-ALL-STORAGE.
 *---
 CALL ‘TDFREE’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE GWL-RC TO CALL-ERROR-RC
 MOVE ‘TDFREE’ TO CALL-ERROR
 DISPLAY CALL-ERROR-MESSAGE
 END-IF.

 CALL ‘TDTERM’ USING GWL-INIT-HANDLE, GWL-RC.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE GWL-RC TO CALL-ERROR-RC

Sample program SYICSAD2

334

 MOVE ‘TDTERM’ TO CALL-ERROR
 DISPLAY CALL-ERROR-MESSAGE
 END-IF.

 *---
 OPEN-ERROR.
 *---
 MOVE MSG-BAD-CURSOR TO MSG-TEXT.
 MOVE LENGTH OF MSG-BAD-CURSOR TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 PERFORM SEND-SQL-ERROR.

 *---
 FETCH-ERROR.
 *---
 MOVE MSG-BAD-FETCH TO MSG-TEXT.
 MOVE LENGTH OF MSG-BAD-FETCH TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.
 PERFORM SEND-SQL-ERROR.

 *---
 SEND-SQL-ERROR.
 *---
 MOVE SQLCODE TO MSG-SQL-ERROR-C.
 MOVE SQLERRMC TO MSG-SQL-ERROR-K.

 * ---
 * ensure possible non-printables translated to spaces
 * ---
 PERFORM VARYING MSG-SQL-ERROR-SS FROM 1 BY 1
 UNTIL MSG-SQL-ERROR-SS > SQLERRML

 IF MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) < SPACE OR
 MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS) > ‘9’ THEN
 MOVE SPACE TO MSG-SQL-ERROR-K-CHARS(MSG-SQL-ERROR-SS)
 END-IF

 END-PERFORM.

 MOVE MSG-SQL-ERROR TO MSG-TEXT.
 MOVE LENGTH OF MSG-SQL-ERROR TO MSG-TEXT-L.
 PERFORM SEND-ERROR-MESSAGE.

 *---
 SEND-ERROR-MESSAGE.
 *---

APPENDIX D Sample RPC Application for IMS TM (Implicit)

335

 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

* Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.

Sample program SYICSAD2

336

337

A P P E N D I X E Sample RPC Application for
IMS TM (Explicit)

This appendix contains a sample long-running transaction that runs under
the IMS TM explicit API. This transaction processes a client RPC. The
COBOL program listed here is included on the Open ServerConnect API
tape.

The purpose of this sample program is to demonstrate the use of Gateway-
Library functions in IMS TM programs, particularly those designed to
handle long-running transactions. In order to best illustrate the flow of
processing, the program does not do extensive error checking.

This sample program is provided as part of the Open ServerConnect
package. It uses DB2, VS COBOL II and Gateway-Library.

Sample program SYIXSAM2

 IDENTIFICATION DIVISION.
 *-----------------------
 PROGRAM-ID. SYIXSAM2.

 ****** SYIXSAM2 - RPC REQUEST APPLICATION - COBOL2 - IMS ********
 *
 * TRANID: SYIXSAM2
 * PROGRAM: SYIXSAM2
 * PLAN NAME: N/A
 * FILES: N/A
 * TABLES: N/A
 *
 * This program is an example of a long-running transaction.
 * It may also be used to stress test IMS Open Server. The
 * program is executed via isql. The first parameter is
 * a one byte character that is used to set up a reply
 * row. The second parameter is the number of rows to

Sample program SYIXSAM2

338

 * return to the client.
 *
 * To execute from isql type:
 *
 * >isql -Usa -Sservername
 *
 * >exec SYIXSAM2 X, 100
 *
 * >go
 *
 * To end SYIXSAM2 type:
 *
 * >exec SYIXSAM2 X,0
 *
 * >go
 *
 * The SYIXSAM2 tran returns a 80 byte row containing the name
 * client that initiated the RPC and a 71 byte pattern.
 *
 * Server Library calls:
 *
 * TDACCEPT accept request from client
 * TDESCRIB describe a column
 * TDFREE free TDPROC structure
 * TDGETREQ get next set of parms
 * TDINIT establish environment
 * TDRCVPRM retrieve rpc parameter from client
 * TDSNDDON send results-completion to client
 * TDSNDMSG send message to client
 * TDSNDROW send row to client
 * TDSTATUS get status information
 * TDSETPT pass type of program to gwlib
 * TDTERM clean up control blocks
 * CHANGE ACTIVITY:
 * 9/93 - created for IMS MSP
 **

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 **
 WORKING-STORAGE SECTION.
 **

 *---
 * SERVER LIBRARY COBOL COPY BOOK
 *---

APPENDIX E Sample RPC Application for IMS TM (Explicit)

339

 COPY SYGWCOB.

 *---
 * WORK AREAS
 *---
 01 GW-LIB-MISC-FIELDS.
 05 GWL-SPA-PTR POINTER.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-RC PIC S9(9) COMP VALUE +0.
 05 GWL-REQ-TYPE PIC S9(9) COMP VALUE +0.
 05 GWL-WAIT-OPTION PIC S9(9) COMP VALUE +0.
 05 GWL-STATUS-NR PIC S9(9) COMP VALUE +0.
 05 GWL-STATUS-DONE PIC S9(9) COMP VALUE +0.
 05 GWL-STATUS-COUNT PIC S9(9) COMP VALUE +0.
 05 GWL-STATUS-COMM PIC S9(9) COMP VALUE +0.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP VALUE +0.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP VALUE +0.
 05 GWL-PROG-TYPE PIC X(04) VALUE ‘MPP ‘.
 05 GWL-TRAN-NAME PIC X(30) VALUE SPACES.

 01 CPIC-RC PIC S9(9) COMP VALUE +0.

 01 PARM-FIELDS.
 05 PARM-L PIC S9(9) COMP VALUE +0.
 05 PARM-ID1 PIC S9(9) COMP VALUE 1.
 05 PARM-ID2 PIC S9(9) COMP VALUE 2.
 05 PARM-PATTERN PIC X(1).
 05 PARM-NR-ROWS PIC S9(9) COMP.

 01 SNA-FIELDS.
 05 SNA-SUBC PIC S9(9) COMP VALUE +0.
 05 SNA-CONNECTION-NAME PIC X(8) VALUE SPACES.

 01 COLUMN-NAME-FIELDS.
 05 BANANA PIC X(06) VALUE ‘BANANA’.
 01 DESCRIBE-BIND-FIELDS.
 05 DB-HOST-TYPE PIC S9(9) COMP VALUE +0.
 05 DB-CLIENT-TYPE PIC S9(9) COMP VALUE +0.
 05 DB-NULL-INDICATOR PIC S9(4) COMP VALUE 0.

 01 COUNTER-FIELDS.
 05 CTR-COLUMN PIC S9(9) COMP VALUE 1.
 05 CTR-ROWS PIC S9(9) COMP VALUE 0.

 01 WROW.

Sample program SYIXSAM2

340

 05 WROW-LU PIC X(09).
 05 WROW-PATTERN OCCURS 71 TIMES PIC X(01).

 01 WORK-FIELDS.
 05 WRKLEN1 PIC S9(9) COMP VALUE +0.
 05 WRKLEN2 PIC S9(9) COMP VALUE +0.
 05 WRK-DONE-STATUS PIC S9(9) COMP VALUE +0.
 05 I PIC S9(9) COMP VALUE +0.

 01 MESSAGE-FIELDS.
 05 MSG-TYPE PIC S9(9) COMP VALUE +0.
 05 MSG-SEVERITY PIC S9(9) COMP VALUE 11.
 05 MSG-NR PIC S9(9) COMP VALUE 2.
 05 MSG-RPC PIC X(8) VALUE ‘SYIXSAM2’.
 05 MSG-RPC-L PIC S9(9) COMP VALUE +0.
 05 MSG-TEXT PIC X(100).
 05 MSG-TEXT-L PIC S9(9) COMP VALUE +0.

 01 CANCEL-RECV-MSG.
 05 FILLER PIC X(40) VALUE ‘CANCEL RECEIVED’.

 01 CALL-ERROR-MESSAGE.
 05 FILLER PIC X(5) VALUE SPACES.
 05 CALL-PROG PIC X(10) VALUE ‘SYIXSAM2’.
 05 FILLER PIC X(5) VALUE SPACES.
 05 CALL-ERROR PIC X(10) VALUE SPACES.
 05 FILLER PIC X(5) VALUE ‘ RC= ‘.
 05 CALL-ERROR-RC PIC -9999.

 01 SWITCHES.
 05 ALL-DONE-SW PIC X VALUE ‘N’.
 88 NOT-ALL-DONE VALUE ‘N’.
 88 ALL-DONE VALUE ‘Y’.
 05 SEND-DONE-SW PIC X VALUE ‘Y’.
 88 SEND-DONE-ERROR VALUE ‘N’.
 88 SEND-DONE-OK VALUE ‘Y’.

 01 APSB PIC X(04) VALUE ‘APSB’.
 01 DPSB PIC X(04) VALUE ‘DPSB’.

 01 AIB.
 05 AIBID PIC X(08).
 05 AIBLEN PIC S9(9) COMP.
 05 AIBSFUNC PIC X(08).

APPENDIX E Sample RPC Application for IMS TM (Explicit)

341

 05 AIBRSNM1 PIC X(08).
 05 FILLER PIC X(16).
 05 AIBOALEN PIC S9(9) COMP.
 05 AIBOAUSE PIC S9(9) COMP.
 05 FILLER PIC X(12).
 05 AIBRETRN PIC S9(9) COMP.
 05 AIBREASN PIC S9(9) COMP.
 05 FILLER PIC X(04).
 05 AIBRSA1 PIC S9(9) COMP.
 05 FILLER REDEFINES AIBRSA1.
 10 AIBPTR POINTER.
 05 FILLER PIC X(44).

 LINKAGE SECTION.

 01 PCB-ADDRESSES.
 05 PCB-ADDRESS-LIST USAGE IS POINTER OCCURS 3 TIMES.

 01 IO-PCB.
 05 LTERM-NAME PIC X(8).
 05 TERM-RESERVE PIC XX.
 05 TERM-STATSUS PIC XX.
 05 TERM-PREFIX.
 15 FILLER PIC X.
 15 JULIAN-DATE PIC S9(5) COMP-3.
 15 TIME-O-DAY PIC S9(7) COMP-3.
 15 FILLER PIC XXXX.
 05 MODNAME PIC X(08).

 **
 PROCEDURE DIVISION.
 **

 *---+---------------
 INITIALIZE-PROGRAM.
 *---

 PERFORM ALLOC-AIB.

 * ---
 * Establish Open Server environment
 * --
 CALL ‘TDINIT’ USING IO-PCB, GWL-RC, GWL-INIT-HANDLE.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDINIT’ TO CALL-ERROR

Sample program SYIXSAM2

342

 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 * ---
 * Set program type
 * ---

 MOVE ‘EXPL’ to GWL-PROG-TYPE.

 CALL ‘TDSETPT’ USING GWL-INIT-HANDLE, GWL-RC, GWL-PROG-TYPE
 GWL-SPA-PTR, TDS-NULL, TDS-NULL.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDSETPT’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 * ---
 * accept client request
 * ---
 CALL ‘TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME, SNA-SUBC.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDACCEPT’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 PERFORM READ-IN-USER-PARMS THRU READ-IN-EXIT
 UNTIL (GWL-RC NOT EQUAL TO ZEROES).

 GOBACK.

 * --
 READ-IN-USER-PARMS.
 *---
 * INITIALIZATION
 *---
 MOVE ‘Y’ TO SEND-DONE-SW.
 MOVE ‘N’ TO ALL-DONE-SW.
 MOVE SPACES TO CALL-ERROR.
 MOVE ZEROES TO CALL-ERROR-RC CTR-ROWS.
 MOVE 1 TO CTR-COLUMN.

APPENDIX E Sample RPC Application for IMS TM (Explicit)

343

 *---
 * GET PARM 1 - CHARACTER TO USE IN PATTERN
 *---
 MOVE LENGTH OF PARM-PATTERN TO WRKLEN1.

 CALL ‘TDRCVPRM’ USING GWL-PROC, GWL-RC,
 PARM-ID1,
 PARM-PATTERN,
 TDSCHAR,
 WRKLEN1,
 PARM-L.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDRCVPRM-1’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 MOVE BANANA TO WROW-LU.

 PERFORM SET-UP-ROW-PATTERN
 VARYING I FROM 1 BY 1
 UNTIL I > 71.

 *---
 * GET PARM 2 - NUMBER OF ROWS TO SEND TO CLIENT
 *---
 MOVE LENGTH OF PARM-NR-ROWS TO WRKLEN1.

 CALL ‘TDRCVPRM’ USING GWL-PROC, GWL-RC,
 PARM-ID2,
 PARM-NR-ROWS,
 TDSINT4,
 WRKLEN1,
 PARM-L.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDRCVPRM-2’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 IF PARM-NR-ROWS = ZEROES THEN
 GO TO SEND-DONE.
 *---
 * SETUP REPLY
 *---
 MOVE TDSCHAR TO DB-HOST-TYPE.

Sample program SYIXSAM2

344

 MOVE TDSCHAR TO DB-CLIENT-TYPE.
 MOVE LENGTH OF WROW TO WRKLEN1.
 MOVE LENGTH OF BANANA TO WRKLEN2.

 CALL ‘TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 DB-HOST-TYPE,
 WRKLEN1,
 WROW,
 DB-NULL-INDICATOR,
 TDS-FALSE,
 DB-CLIENT-TYPE,
 WRKLEN1,
 BANANA,
 WRKLEN2.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDESCRIB’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 *---
 * SEND ROWS TO CLIENT
 *---
 MOVE ZEROES TO CTR-ROWS.

 IF PARM-NR-ROWS = ZEROES THEN
 MOVE ‘Y’ TO ALL-DONE-SW
 ELSE
 PERFORM SEND-ROWS
 UNTIL ALL-DONE OR CTR-ROWS >= PARM-NR-ROWS.

 IF SEND-DONE-OK
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO CTR-ROWS
 END-IF.

 SEND-DONE.

 IF PARM-NR-ROWS = ZEROES THEN
 MOVE TDS-ENDRPC TO GWL-SEND-DONE
 ELSE
 MOVE TDS-ENDREPLY TO GWL-SEND-DONE.

APPENDIX E Sample RPC Application for IMS TM (Explicit)

345

 *---
 * ISSUE SEND DONE TO CLIENT
 *---
 CALL ‘TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS,
 CTR-ROWS,
 TDS-ZERO,
 GWL-SEND-DONE.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE ‘TDSNDDON’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR
 END-IF.

 IF PARM-NR-ROWS = ZEROES THEN
 PERFORM FREE-ALL-STORAGE
 GOBACK.

 * --
 * GET NEXT CLIENT REQUEST
 * --
 MOVE TDS-TRUE TO GWL-WAIT-OPTION.
 MOVE ZEROES TO GWL-REQ-TYPE.
 MOVE SPACES TO GWL-TRAN-NAME.
 CALL ‘TDGETREQ’ USING GWL-PROC, GWL-RC, GWL-WAIT-OPTION,
 GWL-REQ-TYPE, GWL-TRAN-NAME.

 EVALUATE GWL-RC

 WHEN ZEROES
 GO TO READ-IN-USER-PARMS

 WHEN TDS-RESULTS-COMPLETE
 PERFORM FREE-ALL-STORAGE

 WHEN TDS-CONNECTION-TERMINATED
 PERFORM FREE-ALL-STORAGE

 WHEN TDS-CONNECTION-FAILED
 PERFORM FREE-ALL-STORAGE

 WHEN OTHER
 MOVE ‘TDGETREQ’ TO CALL-ERROR
 PERFORM DISPLAY-CALL-ERROR

Sample program SYIXSAM2

346

 END-EVALUATE.

 GOBACK.

 READ-IN-EXIT.
 EXIT.

 SET-UP-ROW-PATTERN.

 MOVE PARM-PATTERN TO WROW-PATTERN (I).

 SET-UP-ROW-PATTERN-EXIT.
 EXIT.

 *---
 SEND-ROWS.
 *---
 CALL ‘TDSNDROW’ USING GWL-PROC, GWL-RC

 EVALUATE GWL-RC

 WHEN ZEROES
 ADD 1 TO CTR-ROWS

 WHEN TDS-CANCEL-RECEIVED
 MOVE ‘Y’ TO ALL-DONE-SW
 MOVE CANCEL-RECV-MSG to MSG-TEXT
 MOVE LENGTH OF CANCEL-RECV-MSG TO MSG-TEXT-L
 PERFORM SEND-MESSAGE

 WHEN OTHER
 PERFORM DISPLAY-CALL-ERROR
 MOVE ‘Y’ TO SEND-DONE-SW
 MOVE ‘Y’ TO ALL-DONE-SW

 END-EVALUATE.

 SEND-ROWS-EXIT.
 EXIT.

 *---
 DISPLAY-CALL-ERROR.
 *---

 MOVE GWL-RC TO CALL-ERROR-RC.

APPENDIX E Sample RPC Application for IMS TM (Explicit)

347

 MOVE CALL-ERROR-MESSAGE TO MSG-TEXT.
 MOVE LENGTH OF CALL-ERROR-MESSAGE TO MSG-TEXT-L.
 PERFORM SEND-MESSAGE.
 DISPLAY CALL-ERROR-MESSAGE.
 PERFORM FREE-ALL-STORAGE.
 GOBACK.

 DISPLAY-CALL-ERROR-EXIT.
 EXIT.

 *---
 FREE-ALL-STORAGE.
 *---

 CALL ‘TDFREE’ USING GWL-PROC, GWL-RC

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE GWL-RC TO CALL-ERROR-RC
 MOVE ‘TDFREE’ TO CALL-ERROR
 DISPLAY CALL-ERROR-MESSAGE
 END-IF.

 CALL ‘TDTERM’ USING GWL-INIT-HANDLE, GWL-RC.

 IF GWL-RC NOT EQUAL TO ZEROES THEN
 MOVE GWL-RC TO CALL-ERROR-RC
 MOVE ‘TDTERM’ TO CALL-ERROR
 DISPLAY CALL-ERROR-MESSAGE
 END-IF.

 PERFORM DEALLOC-AIB.

 FREE-ALL-STORAGE-EXIT.
 EXIT.

 *---

 SEND-ERROR-MESSAGE.

 *---

 MOVE 'N' TO SEND-DONE-SW.

Sample program SYIXSAM2

348

 MOVE TDS-ERROR-MSG TO MSG-TYPE.

 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

 * Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,

 GWL-STATUS-NR,

 GWL-STATUS-DONE,

 GWL-STATUS-COUNT,

 GWL-STATUS-COMM,

 GWL-STATUS-RETURN-CODE,

 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND

 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,

 MSG-TYPE, MSG-NR,

APPENDIX E Sample RPC Application for IMS TM (Explicit)

349

 MSG-SEVERITY,

 TDS-ZERO,

 TDS-ZERO,

 MSG-RPC, MSG-RPC-L,

 MSG-TEXT, MSG-TEXT-L

 END-IF.

 SEND-MESSAGE-EXIT.
 EXIT.

 ALLOC-AIB.
 * ---
 * Allocate AIB
 * ---

 MOVE ‘DFSAIB ‘ TO AIBID.
 MOVE ‘SYICSAM2’ TO AIBRSNM1.
 MOVE 128 TO AIBLEN.

 CALL ‘AIBTDLI’ USING APSB AIB.

 IF AIBRETRN IS EQUAL TO ZEROES THEN
 SET ADDRESS OF PCB-ADDRESSES TO AIBPTR
 SET ADDRESS OF IO-PCB TO PCB-ADDRESS-LIST (1)
 ELSE
 DISPLAY ‘SYIXSAM2 - APSB CALL FAILED RC= ‘ AIBRETRN
 DISPLAY ‘SYIXSAM2 - APSB CALL FAILED REASON= ‘ AIBREASN
 GOBACK.

 ALLOC-AIB-EXIT.
 EXIT.

 DEALLOC-AIB.

Sample program SYIXSAM2

350

 * ---
 * ISSUE SRRCMIT CALL
 * ---
 CALL ‘SRRCMIT’ USING CPIC-RC.

 IF CPIC-RC IS NOT EQUAL TO ZEROES THEN
 DISPLAY ‘SYIXSAM2 SRRCMIT CALL FAILED CPIC-RC=’ CPIC-RC.

 * ---
 * Deallocate AIB
 * ---
 CALL ‘AIBTDLI’ USING DPSB AIB.

 IF AIBRETRN IS NOT EQUAL TO ZEROES THEN
 DISPLAY ‘SYIXSAM2 - DPSB CALL FAILED RC= ‘ AIBRETRN
 DISPLAY ‘SYIXSAM2 - DPSB CALL FAILED REASON= ‘ AIBREASN.

 DEALLOC-AIB-EXIT.
 EXIT.

351

A P P E N D I X F Sample Mixed-Mode
Application

This appendix contains a sample COBOL application that uses both
Client-Library and Gateway-Library functions. In other words, this
program acts as both client and server.

The purpose of this sample program is to demonstrate the use of Gateway-
Library functions in a conversational IMS TM program that handles
remote procedure calls from a client. In some cases, one Gateway-Library
function is used for demonstration purposes when another function would
be more efficient. In order to best illustrate the flow of processing, the
program does not do extensive error checking.

This sample program is provided as part of the Open ServerConnect
package. Running it requires Open ServerConnect. SYCTSAX5 uses VS
COBOL II and Gateway-Library.

Sample program SYCTSAX5

 *
 * Confidential property of Sybase, Inc.
 * (c) Copyright Sybase, Inc. 1985 TO ???.
 * All rights reserved.
 **

 ****** SYCTSAX5 - Open Server Open Client - COBOL -CICS ************ *
*
 * *
 * TRANID: SYX5 *
 * *
 * PROGRAM: SYCTSAX5 *
 * *
 * *
 * TABLE: SYBASE.SAMPLETB *

Sample program SYCTSAX5

352

 * *
 * PURPOSE: Demonstrates Open Server/Open Client CALLs. *
 * *
 * FUNCTION: Illustrates the ability to act as a server and a *
 * client within one program. *
 * *
 * This program is invoked via an RPC request and will *
 * in turn execute a language request against a server *
 * and return the results back to the client. *
 * *
 * It will issue the following SQL statement: *

 * "SELECT FIRSTNME FROM SYBASE.SAMPLETB" *
 * *
 * *
 * PREREQS: Before running SYCTSAX5, make sure that the server *
 * you wish to access has an entry in the Connection *
 * Router Table for that Server and the MCC(s) that *
 * you wish to use. *
 * *
 * INPUT: On the input, make sure to enter the Server name, *
 * user id, and password for the target server that *
 * executes the RPC - SYX5. *
 * *
 * Open Server Library calls: *
 * *
 * TDACCEPT accept request from client *
 * TDESCRIB describe a column in the result row *
 * TDFREE free TDPROC structure *
 * TDINFPRM get information about one rpc parameter *
 * TDINIT establish environment *
 * TDNUMPRM get total nr of rpc parameters *
 * TDRCVPRM retrieve rpc parameter from client *
 * TDSNDDON send results-completion to client *
 * TDSNDMSG send error messages back to the client *
 * TDSNDROW send a row of data back to the client *
 * *
 * Open Client calls: *
 * *
 * CTBBIND bind a column variable *
 * CTBCLOSE close a server connection *
 * CTBCMDALLOC allocate a command *
 * CTBCMDDROP drop a command *
 * CTBCOMMAND initiate remote procedure call *
 * CTBCONALLOC allocate a connection *
 * CTBCONDROP drop a connection *

APPENDIX F Sample Mixed-Mode Application

353

 * CTBCONPROPS alter properties of a connection *
 * CTBCONNECT open a server connection *
 * CTBDIAG retrieve SQLCODE messages *
 * CTBEXIT exit client library *
 * CTBFETCH fetch result data *
 * CTBINIT init client library *
 * CTBRESULTS sets up result data *
 * CTBSEND send a request to the server *
 * *
 * History: *
 * *
 * Date BTS# Descrition *

 * ======= ====== === *
 * Feb1795 Create *
 * Nov1595 99999 Rewrite and add front end to the program *
 * *
 **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SYCTSAX5.

 ENVIRONMENT DIVISION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 *---
 * Client Library Cobol Copy Book
 *---

 COPY CTPUBLIC.

 *---
 * Server Library Cobol Copy Book
 *---

 COPY SYGWCOB.

 *---
 * Standard CICS Attribute and Print Control Chararcter List
 *---

 COPY DFHBMSCA.

 *---

Sample program SYCTSAX5

354

 * CICS Standard Attention Identifiers Cobol Copy Book
 *---

 COPY DFHAID.

 *---
 * Work Area
 *---

 01 GW-LIB-MISC-FIELDS.
 05 GWL-TDPROC POINTER.
 05 GWL-RC PIC S9(9) COMP SYNC VALUE 0.

 01 INTERNAL-FIELDS.
 05 CF-FOUR PIC S9(9) COMP VALUE 4.

 01 SWITCHES.
 05 SW-RESULTS PIC X(01) value ’Y’.
 88 NO-MORE-RESULTS VALUE ’N’.
 05 SW-FETCH PIC X(01) value ’Y’.
 88 NO-MORE-ROWS VALUE ’N’.
 05 SW-DIAG PIC X(01) VALUE ’N’.
 88 DIAG-MSGS-INITIALIZED VALUE ’Y’.

 01 PARM-FIELDS.
 05 PF-PARM-ID PIC S9(9) COMP SYNC.
 05 PF-DATATYPE PIC S9(9) COMP SYNC.
 05 PF-ACTUAL-DATA-LENGTH PIC S9(9) COMP SYNC.
 05 PF-MAX-DATA-LENGTH PIC S9(9) COMP SYNC.
 05 PF-PARM-STATUS PIC S9(9) COMP SYNC.
 05 PF-PARM-NAME PIC X(30).
 05 PF-PARM-NAME-LENGTH PIC S9(9) COMP SYNC.
 05 PF-USER-DATATYPE PIC S9(9) COMP SYNC.
 05 PF-NUM-OF-PARMS PIC S9(9) COMP SYNC.
 05 PF-MSGLIMIT PIC S9(9) COMP.

 01 SNA-FIELDS.
 05 SNA-SUBC PIC S9(9) COMP SYNC.
 05 SNA-CONNECTION-NAME PIC X(8) VALUE IS SPACES.

 01 WORK-FIELDS.
 05 WRK-DONE-STATUS PIC S9(9) COMP SYNC.

 01 DESCRIBE-FIELDS.
 05 DF-COLUMN-NUMBER PIC S9(9) COMP SYNC VALUE 0.
 05 DF-HOST-VARIABLE-TYPE PIC S9(9) COMP SYNC VALUE 0.

APPENDIX F Sample Mixed-Mode Application

355

 05 DF-HOST-VARIABLE-MAXLEN PIC S9(9) COMP SYNC VALUE 0.
 05 DF-HOST-VARIABLE-NAME POINTER.
 05 DF-NULL-INDICATOR-VAR PIC S9(9) COMP SYNC VALUE 0.
 05 DF-NULLS-ALLOWED PIC S9(9) COMP SYNC VALUE 0.
 05 DF-COLUMN-TYPE PIC S9(9) COMP SYNC VALUE 0.
 05 DF-COLUMN-MAXLEN PIC S9(9) COMP SYNC VALUE 0.
 05 DF-COLUMN-NAME PIC X(30).
 05 DF-COLUMN-NAME-LEN PIC S9(9) COMP SYNC VALUE 0.

 01 SNDMSG-FIELDS.
 05 SF-MESSAGE-TYPE PIC S9(9) COMP SYNC.
 05 SF-MESSAGE-NUMBER PIC S9(9) COMP SYNC.
 05 SF-SEVERITY PIC S9(9) COMP SYNC.
 05 SF-ERROR-STATE PIC S9(9) COMP SYNC.
 05 SF-LINE-ID PIC S9(9) COMP SYNC.
 05 SF-TRANSACTION-ID PIC X(4) VALUE ’SYX5’.
 05 SF-TRANSACTION-ID-LEN PIC S9(9) COMP SYNC.
 05 SF-MESSAGE-TEXT PIC X(80).
 05 SF-MESSAGE-LENGTH PIC S9(9) COMP SYNC.

 01 CTX PIC S9(9) COMP SYNC.

 01 ROW-DATA PIC X(80) VALUE IS SPACES.

 *---
 * Work Areas Open Client
 *---

 01 CS-LIB-MISC-FIELDS.
 05 CSL-CMD-HANDLE PIC S9(9) COMP SYNC VALUE 0.
 05 CSL-CON-HANDLE PIC S9(9) COMP SYNC VALUE 0.
 05 CSL-CTX-HANDLE PIC S9(9) COMP SYNC VALUE 0.
 05 CSL-RC PIC S9(9) COMP SYNC.

 01 PROPS-FIELDS.
 05 PF-SERVER PIC X(30).
 05 PF-SERVER-SIZE PIC S9(9) COMP.
 05 PF-USER PIC X(30).
 05 PF-USER-SIZE PIC S9(9) COMP.
 05 PF-PWD PIC X(30).
 05 PF-PWD-SIZE PIC S9(9) COMP.
 05 PF-OUTLEN PIC S9(9) COMP SYNC.
 05 PF-STRLEN PIC S9(9) COMP SYNC.

 01 QUERY-FIELDS.
 05 QF-LEN PIC S9(9) VALUE 1.

Sample program SYCTSAX5

356

 05 QF-MAXLEN PIC S9(9) VALUE 1.
 05 QF-ANSWER PIC X(01) VALUE ’ ’.

 01 FETCH-FIELDS.
 05 FF-ROWS-READ PIC S9(9) COMP SYNC VALUE 0.
 05 FF-ROW-NUM PIC S9(9) COMP SYNC VALUE 0.

 01 COLUMN-FIELDS.
 05 CF-COL-FIRSTNME PIC X(12) VALUE SPACES.
 05 CF-COL-NUMBER PIC S9(9) COMP SYNC VALUE 0.
 05 CF-COL-INDICATOR PIC S9(9) COMP SYNC VALUE 0.
 05 CF-COL-OUTLEN PIC S9(9) COMP SYNC VALUE 0.

 01 LANG-FIELDS.
 05 LF-LANG PIC X(36)
 VALUE ’SELECT FIRSTNME FROM SYBASE.SAMPLETB’.

 01 ERROR-MSG.
 05 ERROR-TEXT PIC X(50) VALUE ’ ’.
 05 ERROR-LITERAL PIC X(06) VALUE ’ RC = ’.
 05 ERROR-RC PIC -ZZZ9.
 01 ERROR-MSG-STR REDEFINES ERROR-MSG PIC X(61).

 01 INFO-MSG-STR PIC X(80) VALUE ’ ’.

 01 RESULTS-FIELDS.
 05 RF-TYPE PIC S9(9) COMP SYNC VALUE 0.

 01 DATAFMT.
 05 DF-NAME PIC X(132).
 05 DF-NAMELEN PIC S9(9) COMP SYNC.
 05 DF-DATATYPE PIC S9(9) COMP SYNC.
 05 DF-FORMAT PIC S9(9) COMP SYNC.
 05 DF-MAXLENGTH PIC S9(9) COMP SYNC.
 05 DF-SCALE PIC S9(9) COMP SYNC.
 05 DF-PRECISION PIC S9(9) COMP SYNC.
 05 DF-STATUS PIC S9(9) COMP SYNC.
 05 DF-COUNT PIC S9(9) COMP SYNC.
 05 DF-USERTYPE PIC S9(9) COMP SYNC.
 05 DF-LOCALE PIC X(68).

 *---
 * Common Work Areas
 *---

 01 MSG-FIELDS.

APPENDIX F Sample Mixed-Mode Application

357

 05 MSG-END-MSG PIC X(25)
 VALUE ’All done processing rows.’.
 05 MSG-NOT-RPC PIC X(35)
 VALUE ’SYX5 must be begun via rpc request.’.
 05 MSG-WRONG-NR-PARMS PIC X(40)
 VALUE ’Number of parameters must be 2 or 3.’.
 05 MSG-NOT-INT4-PARM PIC X(33)
 VALUE ’Parameter must be a INTEGER type.’.
 05 MSG-CANCELED PIC X(17)
 VALUE ’Cancel requested.’.
 05 MSG-TDRCVPRM-FAIL PIC X(16)
 VALUE ’TDRCVPRM failed.’.

 01 CICS-FIELDS.
 05 CICS-RESPONSE PIC S9(9) COMP SYNC.

 01 MISC-FIELDS.
 05 I PIC S9(9) COMP.
 05 LCV PIC S9(9) COMP SYNC.
 05 TMP-DATE PIC X(08).
 05 TMP-TIME PIC X(08).
 05 UTIME PIC S9(15) COMP-3.

 01 X5-HEADER.
 05 X5-DATE-HDR PIC X(06) VALUE ’ DATE ’.
 05 X5-DATE-DATA PIC X(08).
 05 X5-HDR PIC X(56).
 01 X5-HEADER-STR REDEFINES X5-HEADER PIC X(70).

 01 X5-HEADER2.
 05 X5-TIME-HDR PIC X(06) VALUE ’ TIME ’.
 05 X5-TIME-DATA PIC X(08).
 01 X5-HEADER2-STR REDEFINES X5-HEADER2 PIC X(14).

 01 DISP-MSG.
 05 TEST-CASE PIC X(08) VALUE IS ’SYCTSAA5’.
 05 FILLER PIC X(01) VALUE IS SPACES.
 05 MSG.
 10 SAMP-LIT PIC X(05) VALUE IS ’rc = ’.
 10 SAMP-RC PIC -Z9.
 10 FILLER PIC X(02) VALUE IS ’, ’.
 10 REST-LIT PIC X(12) VALUE IS
 ’Result Type:’.
 10 REST-TYPE PIC Z(3)9.
 10 FILLER PIC X(03) VALUE IS SPACES.
 10 MSGSTR PIC X(40) VALUE IS SPACES.

Sample program SYCTSAX5

358

 01 DIAG-FIELDS.
 05 DG-MSGNO PIC S9(9) COMP VALUE +1.
 05 DG-NUM-OF-MSGS PIC S9(9) COMP VALUE +0.

 01 DISP-SERVER.
 05 SERVER-HDR PIC X(09) VALUE IS
 ’ SERVER: ’.
 05 SERVER-DATA PIC X(20).
 05 USER-HDR PIC X(10) VALUE IS
 ’ USER-ID: ’.
 05 USER-DATA PIC X(30).

 *---
 * Client Message Structure
 *---

 01 CLIENT-MSG.
 05 CM-SEVERITY PIC S9(9) COMP SYNC.
 05 CM-MSGNO PIC S9(9) COMP SYNC.
 05 CM-TEXT PIC X(256).
 05 CM-TEXT-LEN PIC S9(9) COMP SYNC.
 05 CM-OS-MSGNO PIC S9(9) COMP SYNC.
 05 CM-OS-MSGTXT PIC X(256).
 05 CM-OS-MSGTEXT-LEN PIC S9(9) COMP SYNC.
 05 CM-STATUS PIC S9(9) COMP.

 01 DISP-CLIENT-MSG-HDR.
 05 CLIENT-MSG-HDR PIC X(15) VALUE IS
 ’Client Message:’.

 01 DISP-CLIENT-MSG-1.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-SEVERITY-HDR PIC X(09) VALUE IS ’Severity:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-SEVERITY-DATA PIC Z(8)9.
 05 CM-STATUS-HDR PIC X(12) VALUE IS
 ’, Status: ’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-STATUS-DATA PIC Z(8)9.

 01 DISP-CLIENT-MSG-2.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OC-MSGNO-HDR PIC X(09) VALUE IS ’OC MsgNo:’.

APPENDIX F Sample Mixed-Mode Application

359

 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OC-MSGNO-DATA PIC Z(8)9.

 01 DISP-CLIENT-MSG-3.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OC-MSG-HDR PIC X(09) VALUE IS ’OC MsgTx:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OC-MSG-DATA PIC X(66).

 01 DISP-CLIENT-MSG-3A.
 05 CM-OC-MSG-DATA-1 PIC X(66).
 05 CM-OC-MSG-DATA-2 PIC X(66).
 05 CM-OC-MSG-DATA-3 PIC X(66).
 05 CM-OC-MSG-DATA-4 PIC X(58).

 01 DISP-CLIENT-MSG-3B.
 05 FILLER PIC X(13) VALUE IS SPACES.
 05 CM-OC-MSG-DATA-X PIC X(66).

 01 DISP-EMPTY-CLIENT-MSG-3.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OC-MSG-HDR PIC X(09) VALUE IS ’OC MsgTx:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 NO-DATA PIC X(11) VALUE IS ’No Message!’.

 01 DISP-CLIENT-MSG-4.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OS-MSG-HDR PIC X(09) VALUE IS ’OS MsgNo:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OS-MSGNO-DATA PIC Z(8)9.

 01 DISP-CLIENT-MSG-5.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OS-MSG-HDR PIC X(09) VALUE IS ’OS MsgTx:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OS-MSG-DATA PIC X(66).

 01 DISP-CLIENT-MSG-5A.
 05 CM-OS-MSG-DATA-1 PIC X(66).
 05 CM-OS-MSG-DATA-2 PIC X(66).
 05 CM-OS-MSG-DATA-3 PIC X(66).
 05 CM-OS-MSG-DATA-4 PIC X(58).

 01 DISP-EMPTY-CLIENT-MSG-5.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 CM-OS-MSG-HDR PIC X(09) VALUE IS ’OS MsgTx:’.

Sample program SYCTSAX5

360

 05 FILLER PIC X(02) VALUE IS SPACES.
 05 NO-DATA PIC X(11) VALUE IS ’No Message!’.

 *---
 * Server Message Structure
 *---

 01 SERVER-MSG.
 05 SM-MSGNO PIC S9(9) COMP.
 05 SM-STATE PIC S9(9) COMP.
 05 SM-SEV PIC S9(9) COMP.
 05 SM-TEXT PIC X(256).
 05 SM-TEXT-LEN PIC S9(9) COMP.
 05 SM-SVRNAME PIC X(256).
 05 SM-SVRNAME-LEN PIC S9(9) COMP.
 05 SM-PROC PIC X(256).
 05 SM-PROC-LEN PIC S9(9) COMP.
 05 SM-LINE PIC S9(9) COMP.
 05 SM-STATUS PIC S9(9) COMP.

 01 DISP-SERVER-MSG-HDR.
 05 SERVER-MSG-HDR PIC X(15) VALUE IS
 ’Server Message:’.

 01 DISP-SERVER-MSG-1.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-MSG-NO-HDR PIC X(09) VALUE IS
 ’Message#:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-MSG-NO-DATA PIC Z(8)9.
 05 SM-SEVERITY-HDR PIC X(12) VALUE IS
 ’, Severity:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-SEVERITY-DATA PIC Z(8)9.
 05 SM-STATE-HDR PIC X(12) VALUE IS
 ’, State No:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-STATE-DATA PIC Z(8)9.

 01 DISP-SERVER-MSG-2.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-LINE-NO-HDR PIC X(09) VALUE IS
 ’Line No:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-LINE-NO-DATA PIC Z(8)9.
 05 SM-STATUS-HDR PIC X(12) VALUE IS

APPENDIX F Sample Mixed-Mode Application

361

 ’, Status :’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-STATUS-DATA PIC Z(8)9.

 01 DISP-SERVER-MSG-3.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-SVRNAME-HDR PIC X(09) VALUE IS ’Serv Nam:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-SVRNAME-DATA PIC X(66).
 05 FILLER PIC X(03) VALUE IS ’...’.

 01 DISP-SERVER-MSG-4.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-PROC-ID-HDR PIC X(09) VALUE IS ’Proc ID:’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-PROC-ID-DATA PIC X(66).

 01 DISP-SERVER-MSG-5.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-MSG-HDR PIC X(09) VALUE IS ’Message :’.
 05 FILLER PIC X(02) VALUE IS SPACES.
 05 SM-MSG-DATA PIC X(66).

 01 DISP-SERVER-MSG-5A.
 05 SM-MSG-DATA-1 PIC X(66).
 05 SM-MSG-DATA-2 PIC X(66).
 05 SM-MSG-DATA-3 PIC X(66).
 05 SM-MSG-DATA-4 PIC X(58).

 01 DISP-SERVER-MSG-5X.
 05 FILLER PIC X(13) VALUE IS SPACES.
 05 SM-MSG-DATA-X PIC X(66).

 PROCEDURE DIVISION.

 *---
 * Begin program here
 *---

 MOVE LOW-VALUES TO PARM-FIELDS DATAFMT.
 MOVE ’Y’ TO SW-DIAG.

 EXEC CICS ASKTIME
 ABSTIME(UTIME)
 END-EXEC.

Sample program SYCTSAX5

362

 EXEC CICS FORMATTIME
 ABSTIME(UTIME)
 DATESEP(’/’)
 MMDDYY(TMP-DATE)
 TIME(TMP-TIME)
 TIMESEP
 END-EXEC.

 MOVE
 ’ SYBASE COBOL SAMPLE PROGRAM SYCTSAX5 SQL RESULT OUTPUT ’
 TO X5-HDR.
 MOVE TMP-DATE TO X5-DATE-DATA.
 MOVE TMP-TIME TO X5-TIME-DATA.

 *---
 * intialize the TDS environment for a client
 *---

 CALL ’TDINIT’ USING DFHEIBLK,
 GWL-RC,
 CSL-CTX-HANDLE.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDINIT failed’ TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 *---
 * accept request from a remote client
 *---

 CALL ’TDACCEPT’ USING GWL-TDPROC,
 GWL-RC,
 CSL-CTX-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.
 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDACCEPT failed’ TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

APPENDIX F Sample Mixed-Mode Application

363

 *---
 * display date and time
 *---

 MOVE SPACES TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE X5-HEADER-STR TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE X5-HEADER2-STR TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE SPACES TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 *---
 * determine how many parameters were sent with the current RPC
 * by the remote client or server
 *---

 CALL ’TDNUMPRM’ USING GWL-TDPROC,
 PF-NUM-OF-PARMS.

 IF PF-NUM-OF-PARMS = 2 OR PF-NUM-OF-PARMS = 3
 THEN
 MOVE SPACES TO INFO-MSG-STR
 ELSE
 MOVE MSG-WRONG-NR-PARMS TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 MOVE SPACES TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 MOVE
 ’syntax is: SYX5 server-nm, user-id OR’
 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 MOVE
 ’ SYX5 server-nm, user-id, password’
 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 PERFORM ALL-DONE

Sample program SYCTSAX5

364

 END-IF.

 *---
 * retrieves parameter type, datatype, and length information
 * about the 1st RPC parameter(server-name parameter)
 *---

 MOVE 1 TO PF-PARM-ID.

 CALL ’TDINFPRM’ USING GWL-TDPROC,
 GWL-RC,
 PF-PARM-ID,
 PF-DATATYPE,
 PF-ACTUAL-DATA-LENGTH,
 PF-MAX-DATA-LENGTH,
 PF-PARM-STATUS,
 PF-PARM-NAME,
 PF-PARM-NAME-LENGTH,
 TDS-NULL.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDINFPRM for server-name parameter failed’
 TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 IF PF-DATATYPE NOT = TDSCHAR AND
 PF-DATATYPE NOT = TDSVARYCHAR
 THEN
 MOVE ’server-name datatype must be TDSCHAR’
 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 *---
 * retrieves the data from an RPC parameter sent by a remote
 * client
 *---

 MOVE LENGTH OF PF-SERVER TO PF-STRLEN.

 CALL ’TDRCVPRM’ USING GWL-TDPROC,

APPENDIX F Sample Mixed-Mode Application

365

 GWL-RC,
 PF-PARM-ID,
 PF-SERVER,
 TDSCHAR,
 PF-STRLEN,
 PF-ACTUAL-DATA-LENGTH.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDRCVPRM for server-name parameter failed’
 TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 MOVE PF-ACTUAL-DATA-LENGTH TO PF-SERVER-SIZE.

 *---
 * retrieves parameter type, datatype, and length information
 * about the 2nd RPC parameter(user-id parameter)
 *---

 MOVE 2 TO PF-PARM-ID.

 CALL ’TDINFPRM’ USING GWL-TDPROC,
 GWL-RC,
 PF-PARM-ID,
 PF-DATATYPE,
 PF-ACTUAL-DATA-LENGTH,
 PF-MAX-DATA-LENGTH,
 PF-PARM-STATUS,
 PF-PARM-NAME,
 PF-PARM-NAME-LENGTH,
 TDS-NULL.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDINFPGM for user-id parameter failed’
 TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 IF PF-DATATYPE NOT = TDSCHAR AND

Sample program SYCTSAX5

366

 PF-DATATYPE NOT = TDSVARYCHAR
 THEN
 MOVE ’user-id datatype must be TDSCHAR’
 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 *---
 * retrieves the data from an RPC parameter sent by a remote
 * client
 *---

 MOVE LENGTH OF PF-USER TO PF-STRLEN.

 CALL ’TDRCVPRM’ USING GWL-TDPROC,
 GWL-RC,
 PF-PARM-ID,
 PF-USER,
 TDSCHAR,
 PF-STRLEN,
 PF-ACTUAL-DATA-LENGTH.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDRCVPRM for user-id failed’ TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 MOVE PF-ACTUAL-DATA-LENGTH TO PF-USER-SIZE.

 IF PF-NUM-OF-PARMS = 3
 THEN

 *---
 * retrieves parameter type, datatype, and length information
 * about the 3rd RPC parameter(password parameter)
 *---

 MOVE 3 TO PF-PARM-ID

APPENDIX F Sample Mixed-Mode Application

367

 CALL ’TDINFPRM’ USING GWL-TDPROC,
 GWL-RC,
 PF-PARM-ID,
 PF-DATATYPE,
 PF-ACTUAL-DATA-LENGTH,
 PF-MAX-DATA-LENGTH,
 PF-PARM-STATUS,
 PF-PARM-NAME,
 PF-PARM-NAME-LENGTH,
 TDS-NULL

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDINFPRM for server-name parameter failed’
 TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF

 IF PF-DATATYPE NOT = TDSCHAR AND
 PF-DATATYPE NOT = TDSVARYCHAR
 THEN
 MOVE ’server-name datatype must be TDSCHAR’
 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 PERFORM ALL-DONE
 END-IF

 *---
 * retrieves the data from an RPC parameter sent by a remote
 * client
 *---

 MOVE LENGTH OF PF-PWD TO PF-STRLEN

 CALL ’TDRCVPRM’ USING GWL-TDPROC,
 GWL-RC,
 PF-PARM-ID,
 PF-PWD,
 TDSCHAR,
 PF-STRLEN,
 PF-ACTUAL-DATA-LENGTH

 IF GWL-RC NOT = TDS-OK
 THEN

Sample program SYCTSAX5

368

 MOVE ’TDRCVPRM for password parameter failed’
 TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF

 MOVE PF-ACTUAL-DATA-LENGTH TO PF-PWD-SIZE
 ELSE
 MOVE SPACES TO PF-PWD
 MOVE 0 TO PF-PWD-SIZE
 END-IF.

 *---
 * display server and user-id heading
 *---

 MOVE PF-SERVER TO SERVER-DATA.
 MOVE PF-USER TO USER-DATA.
 MOVE DISP-SERVER TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE SPACES TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 *---
 * describe the 1st column in a result row and the mainframe
 * server program variable where it is stored
 *---

 MOVE 1 TO DF-COLUMN-NUMBER.
 MOVE TDSVARYCHAR TO DF-HOST-VARIABLE-TYPE.
 MOVE LENGTH OF CF-COL-FIRSTNME TO DF-HOST-VARIABLE-MAXLEN.
 MOVE TDS-ZERO TO DF-NULL-INDICATOR-VAR.
 MOVE TDS-FALSE TO DF-NULLS-ALLOWED.
 MOVE TDSVARYCHAR TO DF-COLUMN-TYPE.
 MOVE LENGTH OF CF-COL-FIRSTNME TO DF-COLUMN-MAXLEN.
 MOVE ’FIRST NAME’ TO DF-COLUMN-NAME.
 MOVE 10 TO DF-COLUMN-NAME-LEN.

 CALL ’TDESCRIB’ USING GWL-TDPROC,
 GWL-RC,
 DF-COLUMN-NUMBER,
 DF-HOST-VARIABLE-TYPE,
 DF-HOST-VARIABLE-MAXLEN,
 CF-COL-FIRSTNME,

APPENDIX F Sample Mixed-Mode Application

369

 DF-NULL-INDICATOR-VAR,
 DF-NULLS-ALLOWED,
 DF-COLUMN-TYPE,
 DF-COLUMN-MAXLEN,
 DF-COLUMN-NAME,
 DF-COLUMN-NAME-LEN.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDESCRIB failed’ TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 PERFORM OC-INIT.

 PERFORM OC-CONNECT.

 PERFORM OC-SEND-LANG.

 PERFORM OC-PROCESS-RESULTS.

 PERFORM OC-ALL-DONE.

 *==
 *== ==
 *== Subroutine to send a results completion indication ==
 *== to the client, free up a previously allocated ==
 *== GWL_TDPROC structure, and return back to CICS ==
 *== ==
 *==
 ALL-DONE.

 *---
 * send a results completion indication to the client
 *---

 CALL ’TDSNDDON’ USING GWL-TDPROC,
 GWL-RC,
 TDS-DONE-FINAL,
 TDS-NULL,
 TDS-ZERO,
 TDS-ENDRPC.

Sample program SYCTSAX5

370

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDSNDDON failed’ TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 END-IF.
 *---
 * free up a previously allocated GWL_TDPROC structure after
 * returning results to a client
 *---

 CALL ’TDFREE’ USING GWL-TDPROC,
 GWL-RC.

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE ’TDFREE failed’ TO ERROR-TEXT
 MOVE GWL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 END-IF.

 *---
 * return back to CICS
 *---

 EXEC CICS RETURN END-EXEC.

 *==
 *== ==
 *== Subroutine to initialize the Client-Library ==
 *== ==
 *==
 OC-INIT.

 *---
 * initialize the Client-Library
 *---
 CALL ’CTBINIT’ USING CSL-CTX-HANDLE,
 CSL-RC,
 CS-VERSION-46.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBINIT failed’ TO MSGSTR
 PERFORM ERROR-OUT

APPENDIX F Sample Mixed-Mode Application

371

 PERFORM ALL-DONE
 END-IF.

 *==
 *== ==
 *== Subroutine to allocate connect handler, alter ==
 *== properties for user-id and password, set up ==
 *== retrieval of all Open Client messages, and open ==
 *== connection to the server ==
 *== ==
 *==
 OC-CONNECT.

 *---
 * allocate a connection to the server
 *--

 CALL ’CTBCONAL’ USING CSL-CTX-HANDLE,
 CSL-RC,
 CSL-CON-HANDLE.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCONAL failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *---
 *alter properties of the connection
 * --

 CALL ’CTBCONPR’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-SET,
 CS-USERNAME,
 PF-USER,
 PF-USER-SIZE,
 CS-FALSE,
 CS-UNUSED.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCONPR for user-id failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE

Sample program SYCTSAX5

372

 END-IF.

 CALL ’CTBCONPR’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-SET,
 CS-PASSWORD,
 PF-PWD,
 PF-PWD-SIZE,
 CS-FALSE,
 CS-UNUSED.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCONPR for password failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 --
 * setup retrieval of All Messages
 --

 CALL ’CTBDIAG’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED,
 CS-INIT,
 CS-ALLMSG-TYPE,
 CS-UNUSED,
 CS-UNUSED.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBDIAG CS-INIT failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 --
 * set the upper limit of number of messages
 --

 MOVE 5 TO PF-MSGLIMIT.

 CALL ’CTBDIAG’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED,

APPENDIX F Sample Mixed-Mode Application

373

 CS-MSGLIMIT,
 CS-ALLMSG-TYPE,
 CS-UNUSED,
 PF-MSGLIMIT.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBDIAG CS-MSGLIMIT failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 --
 * open connection to the server
 --

 CALL ’CTBCONNE’ USING CSL-CON-HANDLE,
 CSL-RC,
 PF-SERVER,
 PF-SERVER-SIZE,
 CS-FALSE.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCONNE failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *==
 *== ==
 *== Subroutine to allocate command handler, prepare ==
 *== and send the language request ==
 *== ==
 *==
 OC-SEND-LANG.

 *---
 * allocate a command handle
 *--

 CALL ’CTBCMDAL’ USING CSL-CON-HANDLE,
 CSL-RC,
 CSL-CMD-HANDLE.

 IF CSL-RC NOT = CS-SUCCEED

Sample program SYCTSAX5

374

 THEN
 MOVE ’CTBCMDAL failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *---
 * prepare the language request
 *---

 MOVE LENGTH OF LF-LANG TO PF-STRLEN.

 CALL ’CTBCOMMA’ USING CSL-CMD-HANDLE,
 CSL-RC,
 CS-LANG-CMD,
 LF-LANG,
 PF-STRLEN,
 CS-UNUSED.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCOMMA failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *---
 * send the language request
 *--

 CALL ’CTBSEND’ USING CSL-CMD-HANDLE,
 CSL-RC.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBSEND failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *==
 *== ==
 *== Subroutine to process the result ==
 *== ==
 *==

APPENDIX F Sample Mixed-Mode Application

375

 OC-PROCESS-RESULTS.

 PERFORM RESULTS-PROCESSING UNTIL NO-MORE-RESULTS.

 *==
 *== ==
 *== Subroutine to set up the results data ==
 *== ==
 *==
 RESULTS-PROCESSING.

 CALL ’CTBRESUL’ USING CSL-CMD-HANDLE
 CSL-RC
 RF-TYPE.

 EVALUATE CSL-RC

 WHEN CS-SUCCEED

 EVALUATE RF-TYPE

 WHEN CS-ROW-RESULT
 PERFORM ROW-RESULT-PROCESSING
 MOVE ’Y’ TO SW-FETCH
 PERFORM FETCH-PROCESSING UNTIL NO-MORE-ROWS

 WHEN CS-STATUS-RESULT
 PERFORM STATUS-PROCESSING

 WHEN CS-CMD-FAIL
 MOVE ’RESULTS-PROCESSING CMD-FAIL’ TO MSGSTR
 PERFORM ERROR-OUT
 MOVE ’bad user-id or password’ TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 MOVE SPACES TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 WHEN CS-CMD-DONE
 MOVE ’RESULTS-PROCESSING CMD-DONE’ TO INFO-MSG-STR
 MOVE RF-TYPE TO ERROR-RC

 WHEN OTHER
 MOVE ’RESULTS-PROCESSING unknown return code’
 TO MSGSTR
 PERFORM ERROR-OUT
 END-EVALUATE

Sample program SYCTSAX5

376

 WHEN CS-FAIL
 MOVE ’N’ TO SW-RESULTS
 MOVE ’CTBRESULTS failed’ TO MSGSTR
 PERFORM ERROR-OUT

 WHEN CS-END-RESULTS
 MOVE ’N’ TO SW-RESULTS

 WHEN OTHER
 MOVE ’N’ TO SW-RESULTS
 MOVE ’CTBRESULTS failed’ TO MSGSTR
 PERFORM ERROR-OUT

 END-EVALUATE.

 *==
 *== ==
 *== Subroutine to process row result and bind ==
 *== ==
 *==
 ROW-RESULT-PROCESSING.

 CALL ’CTBRESUL’ USING CSL-CMD-HANDLE
 CSL-RC
 RF-TYPE.

 MOVE CS-VARCHAR-TYPE TO DF-DATATYPE.
 MOVE CS-FMT-UNUSED TO DF-FORMAT.
 MOVE LENGTH OF CF-COL-FIRSTNME TO DF-MAXLENGTH.
 MOVE 1 TO DF-COUNT.

 *--
 * bind the first column
 *--

 MOVE 1 TO CF-COL-NUMBER.

 CALL ’CTBBIND’ USING CSL-CMD-HANDLE,
 CSL-RC,
 CF-COL-NUMBER,
 DATAFMT,
 CF-COL-FIRSTNME,
 CF-COL-OUTLEN,

APPENDIX F Sample Mixed-Mode Application

377

 CS-PARAM-NOTNULL,
 CF-COL-INDICATOR,
 CS-PARAM-NULL.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBBIND first name failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *==
 *== ==
 *== Subroutine to fetch the result ==
 *== ==
 *==
 FETCH-PROCESSING.

 CALL ’CTBFETCH’ USING CSL-CMD-HANDLE,
 CSL-RC,
 CS-UNUSED,
 CS-UNUSED,
 CS-UNUSED,
 FF-ROWS-READ.

 EVALUATE CSL-RC

 WHEN CS-SUCCEED
 MOVE ’Y’ TO SW-FETCH
 COMPUTE FF-ROW-NUM = FF-ROW-NUM + 1

 *--
 * send a row of data back to the requesting client
 *--

 CALL ’TDSNDROW’ USING GWL-TDPROC,
 GWL-RC

 MOVE SPACES TO CF-COL-FIRSTNME

 IF GWL-RC NOT = TDS-OK
 THEN
 MOVE MSG-CANCELED TO INFO-MSG-STR
 MOVE CSL-RC TO ERROR-RC
 PERFORM SEND-INFO-MESSAGE
 END-IF

Sample program SYCTSAX5

378

 WHEN CS-END-DATA
 MOVE ’N’ TO SW-FETCH

 MOVE SPACES TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 MOVE MSG-END-MSG TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 MOVE SPACES TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 WHEN CS-FAIL
 MOVE ’N’ TO SW-FETCH
 MOVE ’FETCH-PROCESSING return CS-FAIL ’ TO MSGSTR
 PERFORM ERROR-OUT

 WHEN CS-ROW-FAIL
 MOVE ’N’ TO SW-FETCH
 MOVE ’FETCH-PROCESSING retuen CS-ROW-FAIL’
 TO MSGSTR
 PERFORM ERROR-OUT

 WHEN CS-CANCELLED
 MOVE ’N’ TO SW-FETCH
 MOVE MSG-CANCELED TO MSGSTR
 PERFORM ERROR-OUT

 WHEN OTHER
 MOVE ’N’ TO SW-FETCH
 MOVE ’CTBFETCH UNEXPECTED RETURN CODE’
 TO MSGSTR
 PERFORM ERROR-OUT

 END-EVALUATE.

 *==
 *== ==
 *== dummy routine ==
 *== ==
 *==
 STATUS-PROCESSING.

 *STATUS-PROCESSING-EXIT.
 EXIT.

APPENDIX F Sample Mixed-Mode Application

379

 *==
 *== ==
 *== Subroutine to drop the command handler, to close ==
 *== the server connection, to drop the connection ==
 *== handler and exit ==
 *== ==
 *==
 OC-ALL-DONE.

 CALL ’CTBCMDDR’ USING CSL-CMD-HANDLE,
 CSL-RC.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCMDDR failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 CALL ’CTBCLOSE’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCLOSE failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 CALL ’CTBCONDR’ USING CSL-CON-HANDLE,
 CSL-RC.

 IF CSL-RC NOT = CS-SUCCEED
 THEN
 MOVE ’CTBCCONDR failed’ TO MSGSTR
 PERFORM ERROR-OUT
 PERFORM ALL-DONE
 END-IF.

 *==
 *== ==
 *== Subroutine to send an error message to the client ==
 *== ==
 *==

Sample program SYCTSAX5

380

 SEND-ERROR-MESSAGE.

 MOVE TDS-ERROR-MSG TO SF-MESSAGE-TYPE.
 MOVE 0 TO SF-MESSAGE-NUMBER.
 MOVE 10 TO SF-SEVERITY.
 MOVE 0 TO SF-ERROR-STATE.
 MOVE 0 TO SF-LINE-ID.
 MOVE LENGTH OF SF-TRANSACTION-ID TO SF-TRANSACTION-ID-LEN.
 MOVE ERROR-MSG-STR TO SF-MESSAGE-TEXT.
 MOVE LENGTH OF SF-MESSAGE-TEXT TO SF-MESSAGE-LENGTH.

 CALL ’TDSNDMSG’ USING GWL-TDPROC,
 GWL-RC,
 SF-MESSAGE-TYPE,
 SF-MESSAGE-NUMBER,
 SF-SEVERITY,
 SF-ERROR-STATE,
 SF-LINE-ID,
 SF-TRANSACTION-ID,
 SF-TRANSACTION-ID-LEN,
 SF-MESSAGE-TEXT,
 SF-MESSAGE-LENGTH.

 *==
 *== ==
 *== Subroutine to send an informational message to the ==
 *== client ==
 *== ==
 *==
 SEND-INFO-MESSAGE.

 MOVE TDS-INFO-MSG TO SF-MESSAGE-TYPE.
 MOVE 0 TO SF-MESSAGE-NUMBER.
 MOVE 0 TO SF-SEVERITY.
 MOVE 0 TO SF-ERROR-STATE.
 MOVE 0 TO SF-LINE-ID.
 MOVE LENGTH OF SF-TRANSACTION-ID TO SF-TRANSACTION-ID-LEN.
 MOVE INFO-MSG-STR TO SF-MESSAGE-TEXT.
 MOVE LENGTH OF SF-MESSAGE-TEXT TO SF-MESSAGE-LENGTH.

 CALL ’TDSNDMSG’ USING GWL-TDPROC,
 GWL-RC,
 SF-MESSAGE-TYPE,
 SF-MESSAGE-NUMBER,
 SF-SEVERITY,
 SF-ERROR-STATE,

APPENDIX F Sample Mixed-Mode Application

381

 SF-LINE-ID,
 SF-TRANSACTION-ID,
 SF-TRANSACTION-ID-LEN,
 SF-MESSAGE-TEXT,
 SF-MESSAGE-LENGTH.

 *==
 *== ==
 *== Subroutine to print output messages. ==
 *== ==
 *==
 ERROR-OUT.

 IF DIAG-MSGS-INITIALIZED
 THEN
 PERFORM GET-DIAG-MESSAGES
 END-IF.

 *---
 * Display The Message
 *---

 MOVE CSL-RC TO SAMP-RC.
 MOVE RF-TYPE TO REST-TYPE.

 MOVE SPACES TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE DISP-MSG TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE SPACES TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE SPACES TO MSGSTR.
 MOVE ZERO TO SAMP-RC.
 MOVE ZERO TO REST-TYPE.

 PRINT-MSG-EXIT.
 EXIT.

 *==
 *== ==
 *== Subroutine to retrieve any diagnostic messages ==
 *== ==
 *==

Sample program SYCTSAX5

382

 GET-DIAG-MESSAGES.

 * Disable calls to this subroutine *

 MOVE ’N’ TO SW-DIAG.

 * First, get client messages *

 CALL ’CTBDIAG’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED,
 CS-STATUS,
 CS-CLIENTMSG-TYPE,
 CS-UNUSED,
 DG-NUM-OF-MSGS.

 IF CSL-RC NOT EQUAL CS-SUCCEED
 THEN
 STRING ’CTBDIAG CS-STATUS CS-CLIENTMSG-TYP failed’
 DELIMITED BY SIZE INTO ERROR-TEXT
 MOVE CSL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 ELSE
 IF DG-NUM-OF-MSGS > 0
 THEN
 PERFORM RETRIEVE-CLIENT-MSGS
 VARYING I FROM 1 BY 1
 UNTIL I IS GREATER THAN DG-NUM-OF-MSGS
 END-IF
 END-IF.

 * Then, get server messages *

 CALL ’CTBDIAG’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED,
 CS-STATUS,
 CS-SERVERMSG-TYPE,
 CS-UNUSED,

APPENDIX F Sample Mixed-Mode Application

383

 DG-NUM-OF-MSGS.

 IF CSL-RC NOT EQUAL CS-SUCCEED
 THEN
 STRING ’CTBDIAG CS-STATUS CS-SERVERMSG-TYP fail’
 DELIMITED BY SIZE INTO ERROR-TEXT
 MOVE CSL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 ELSE
 IF DG-NUM-OF-MSGS > 0
 THEN
 PERFORM RETRIEVE-SERVER-MSGS
 VARYING I FROM 1 BY 1
 UNTIL I IS GREATER THAN DG-NUM-OF-MSGS
 END-IF
 END-IF.

 GET-DIAG-MESSAGES-EXIT.
 EXIT.

 *==
 *== ==
 *== Subroutine to retrieve diagnostic messages from client ==
 *== ==
 *==
 RETRIEVE-CLIENT-MSGS.

 CALL ’CTBDIAG’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED,
 CS-GET,
 CS-CLIENTMSG-TYPE,
 DG-MSGNO,
 CLIENT-MSG.

 IF CSL-RC NOT EQUAL CS-SUCCEED
 THEN
 STRING ’CTBDIAG CS-GET CS-CLIENTMSG-TYPE failed’
 DELIMITED BY SIZE INTO ERROR-TEXT
 MOVE CSL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 *---

Sample program SYCTSAX5

384

 * display message text
 *---

 MOVE DISP-CLIENT-MSG-HDR TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE SPACES TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE CM-SEVERITY TO CM-SEVERITY-DATA.
 MOVE CM-STATUS TO CM-STATUS-DATA.
 MOVE DISP-CLIENT-MSG-1 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE CM-MSGNO TO CM-OC-MSGNO-DATA.
 MOVE DISP-CLIENT-MSG-2 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 IF CM-MSGNO NOT EQUAL 0
 THEN
 MOVE SPACES TO CM-OC-MSG-DATA
 MOVE CM-TEXT TO CM-OC-MSG-DATA
 MOVE CM-TEXT TO DISP-CLIENT-MSG-3A
 MOVE DISP-CLIENT-MSG-3 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF CM-TEXT-LEN > 66
 THEN
 MOVE CM-OC-MSG-DATA-2 TO CM-OC-MSG-DATA-X
 MOVE DISP-CLIENT-MSG-3B TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF CM-TEXT-LEN > 132
 THEN
 MOVE SPACES TO CM-OC-MSG-DATA-X
 MOVE CM-OC-MSG-DATA-3 TO CM-OC-MSG-DATA-X
 MOVE DISP-CLIENT-MSG-3B TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF CM-TEXT-LEN > 198
 THEN
 MOVE SPACES TO CM-OC-MSG-DATA-X
 MOVE CM-OC-MSG-DATA-4 TO CM-OC-MSG-DATA-X
 MOVE DISP-CLIENT-MSG-3B TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 END-IF

APPENDIX F Sample Mixed-Mode Application

385

 END-IF
 END-IF
 ELSE
 MOVE DISP-EMPTY-CLIENT-MSG-3 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 END-IF.

 MOVE CM-OS-MSGNO TO CM-OS-MSGNO-DATA.
 MOVE DISP-CLIENT-MSG-4 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 IF CM-OS-MSGNO NOT EQUAL 0
 THEN
 MOVE SPACES TO CM-OS-MSG-DATA
 MOVE CM-OS-MSGTXT TO CM-OS-MSG-DATA
 MOVE SPACES TO DISP-CLIENT-MSG-5A
 MOVE CM-OS-MSGTXT TO DISP-CLIENT-MSG-5A
 MOVE DISP-CLIENT-MSG-5 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF CM-OS-MSGTEXT-LEN > 66
 THEN
 MOVE SPACES TO CM-OC-MSG-DATA-X
 MOVE CM-OS-MSG-DATA-2 TO CM-OC-MSG-DATA-X
 MOVE DISP-CLIENT-MSG-3B TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF CM-OS-MSGTEXT-LEN > 132
 THEN
 MOVE SPACES TO CM-OC-MSG-DATA-X
 MOVE CM-OS-MSG-DATA-3 TO CM-OC-MSG-DATA-X
 MOVE DISP-CLIENT-MSG-3B TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF CM-OS-MSGTEXT-LEN > 198
 THEN
 MOVE SPACES TO CM-OC-MSG-DATA-X
 MOVE CM-OS-MSG-DATA-4 TO CM-OC-MSG-DATA-X
 MOVE DISP-CLIENT-MSG-3B TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 END-IF
 END-IF
 END-IF
 ELSE
 MOVE DISP-EMPTY-CLIENT-MSG-5 TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

Sample program SYCTSAX5

386

 END-IF.

 RETRIEVE-CLIENT-MSGS-EXIT.
 EXIT.

 *==
 *== ==
 *== Subroutine to retrieve diagnostic messages from server ==
 *== ==
 *==
 RETRIEVE-SERVER-MSGS.

 CALL ’CTBDIAG’ USING CSL-CON-HANDLE,
 CSL-RC,
 CS-UNUSED,
 CS-GET,
 CS-SERVERMSG-TYPE,
 DG-MSGNO,
 SERVER-MSG.

 IF CSL-RC NOT EQUAL CS-SUCCEED
 THEN
 STRING ’CTBDIAG CS-GET CS-SERVERMSG-TYPE failed’
 DELIMITED BY SIZE INTO ERROR-TEXT
 MOVE CSL-RC TO ERROR-RC
 PERFORM SEND-ERROR-MESSAGE
 PERFORM ALL-DONE
 END-IF.

 *--
 * display message text
 *--

 MOVE SM-MSGNO TO SM-MSG-NO-DATA.
 MOVE SM-SEV TO SM-SEVERITY-DATA.
 MOVE SM-STATE TO SM-STATE-DATA.

 MOVE SM-LINE TO SM-LINE-NO-DATA.
 MOVE SM-STATUS TO SM-STATUS-DATA.

 MOVE SPACES TO SM-SVRNAME-DATA.
 MOVE SM-SVRNAME TO SM-SVRNAME-DATA.

 MOVE SPACES TO SM-PROC-ID-DATA.
 MOVE SM-PROC TO SM-PROC-ID-DATA.

APPENDIX F Sample Mixed-Mode Application

387

 MOVE SPACES TO SM-MSG-DATA.
 MOVE SM-TEXT TO SM-MSG-DATA.

 MOVE SPACES TO DISP-SERVER-MSG-5A.
 MOVE SM-TEXT TO DISP-SERVER-MSG-5A.

 MOVE DISP-SERVER-MSG-HDR TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE DISP-SERVER-MSG-1 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE DISP-SERVER-MSG-2 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE DISP-SERVER-MSG-3 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE DISP-SERVER-MSG-4 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 MOVE DISP-SERVER-MSG-5 TO INFO-MSG-STR.
 PERFORM SEND-INFO-MESSAGE.

 IF SM-TEXT-LEN > 66
 THEN
 MOVE SPACES TO SM-MSG-DATA-X
 MOVE SM-MSG-DATA-2 TO SM-MSG-DATA-X
 MOVE DISP-SERVER-MSG-5X TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF SM-TEXT-LEN > 132
 THEN
 MOVE SPACES TO SM-MSG-DATA-X
 MOVE SM-MSG-DATA-3 TO SM-MSG-DATA-X
 MOVE DISP-SERVER-MSG-5X TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE

 IF SM-TEXT-LEN > 198
 THEN
 MOVE SPACES TO SM-MSG-DATA-X
 MOVE SM-MSG-DATA-4 TO SM-MSG-DATA-X
 MOVE DISP-SERVER-MSG-5X TO INFO-MSG-STR
 PERFORM SEND-INFO-MESSAGE
 END-IF

Sample program SYCTSAX5

388

 END-IF
 END-IF.

 RETRIEVE-SERVER-MSGS-EXIT.
 EXIT.

389

A P P E N D I X G Sample Tracing and
Accounting Program

This appendix contains a sample mainframe server application program
that a system programmer can use to perform mainframe-based tracing
and accounting functions.

Note This program is not included on the Open ServerConnect tape.

The purpose of this sample program is to demonstrate the use of all
Gateway-Library tracing and accounting functions. In some cases, one
Gateway-Library function is used for demonstration purposes when
another function would be more efficient. In order to best illustrate the
flow of processing, the program does not do extensive error checking.

This sample program uses VS COBOL II and Gateway-Library and runs
under CICS.

This program demonstrates the use of the following Gateway-Library
functions listed in Table G-1.

Table G-1: Functions used in SYCCSAS2

Name Action

TDACCEPT Accept a client request.

TDESCRIB Describe a column.

TDFREE Free up the TDPROC structure for the connection.

TDINFACT Get current accounting information.

TDINFLOG Get current trace settings for trace log.

TDINFSPT Get specific tracing information.

TDINIT Initialize the Gateway-Library environment.

TDLSTSPT Get list of active specific trace transaction IDs.

TDRCVPRM Receive RPC parameter from client program.

TDRESULT Describe next communication from client.

TDSETACT Set accounting on or off.

TDSETLOG Set trace log on or off.

Sample program SYCCSAS2

390

Sample program SYCCSAS2
This program uses the Gateway-Library system programmer calls to do tracing
and accounting at the mainframe.

IDENTIFICATION DIVISION.

*-----------------------

 PROGRAM-ID. SYCCSAS2.

 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *--
 * SERVER LIBRARY COBOL COPY BOOK
 *--
 COPY SYGWCOB.

 *--
 * WORK AREAS
 *--
 01 GW-LIB-MISC-FIELDS.
 05 GWL-PROC POINTER.
 05 GWL-INIT-HANDLE POINTER.
 05 GWL-INFACT-STATUS PIC S9(9) COMP.
 05 GWL-INFACT-FILENAME PIC X(8).

TDSETSPT Set tracing on or off for a specific transaction.

TDSNDDON Send results-completion to client.

TDSNDMSG Send message to client.

TDSNDROW Send row to client.

TDSTATUS Get status information.

TWRTLOG Write a user record to the trace log.

Name Action

APPENDIX G Sample Tracing and Accounting Program

391

 05 GWL-INFACT-RECORDS PIC S9(9) COMP.
 05 GWL-INFLOG-GLOBAL PIC S9(9) COMP.
 05 GWL-INFLOG-API PIC S9(9) COMP.
 05 GWL-INFLOG-HEADER PIC S9(9) COMP.
 05 GWL-INFLOG-DATA PIC S9(9) COMP.
 05 GWL-INFLOG-TRACEID PIC S9(9) COMP.
 05 GWL-INFLOG-FILENAME PIC X(8).
 05 GWL-INFLOG-RECORDS PIC S9(9) COMP.
 05 GWL-INFSPT-STATUS PIC S9(9) COMP.
 05 GWL-INFSPT-OPTIONS PIC S9(9) COMP.
 05 GWL-INFSPT-TRANID PIC X(4).
 05 GWL-INFSPT-TRANID-L PIC S9(9) COMP.
 05 GWL-LSTSPT-LIST OCCURS 8 TIMES
 PIC X(8).
 05 GWL-RC PIC S9(9) COMP.
 05 GWL-RCVPRM-ID PIC S9(9) COMP VALUE +1.
 05 GWL-RCVPRM-MAX-DATA-L ThinSpaceThinSpacePIC S9(9) COMP VALUE +2.
 05 GWL-RCVPRM-DATA-L PIC S9(9) COMP VALUE +2
 05 GWL-SETSPT-OPTIONS PIC S9(9) COMP.
 05 GWL-STATUS-NR PIC S9(9) COMP.
 05 GWL-STATUS-DONE PIC S9(9) COMP.
 05 GWL-STATUS-COUNT PIC S9(9) COMP.
 05 GWL-STATUS-COMM PIC S9(9) COMP.
 05 GWL-STATUS-RETURN-CODE PIC S9(9) COMP.
 05 GWL-STATUS-SUBCODE PIC S9(9) COMP.
 05 GWL-WRTLOG-MSG-L PIC S9(9) COMP VALUE +34.
 05 GWL-WRTLOG-MSG PIC X(34)
 VALUE ’TEST MESSAGE FROM SYS2 TRANSACTION’.

 01 PARM-FIELDS.
 05 PARM-REQUEST PIC X(2).
 88 PARM-REQUEST-INFACT VALUE ’IA’.
 88 PARM-REQUEST-INFLOG VALUE ’IL’.
 88 PARM-REQUEST-LSTSPT VALUE ’IS’.
 88 PARM-REQUEST-SETACT-ON VALUE ’YA’.
 88 PARM-REQUEST-SETACT-OFF VALUE ’NA’.
 88 PARM-REQUEST-SETLOG-ON VALUE ’YL’.
 88 PARM-REQUEST-SETLOG-OFF VALUE ’NL’.
 88 PARM-REQUEST-SETSPT-ON VALUE ’YS’.
 88 PARM-REQUEST-SETSPT-OFF VALUE ’NS’.
 88 PARM-REQUEST-WRTLOG VALUE ’WL’.

 01 SNA-FIELDS.
 05 SNA-SUBC PIC S9(9) COMP.
 05 SNA-CONNECTION-NAME PIC X(8) VALUE SPACES.

Sample program SYCCSAS2

392

 01 COLUMN-NAME-FIELDS.
 05 CN-INFACT-STATUS PIC X(13) VALUE ’ACT_STATUS’
 05 CN-INFACT-FILENAME PIC X(12) VALUE ’ACT FILENAME’.
 05 CN-INFACT-RECORDS PIC X(11) VALUE ’ACT RECORDS’.
 05 CN-INFLOG-GLOBAL PIC X(10) VALUE ’LOG GLOBAL’.
 05 CN-INFLOG-API PIC X(7) VALUE ’LOG API’.
 05 CN-INFLOG-HEADER PIC X(10) VALUE ’LOG HEADER’.
 05 CN-INFLOG-DATA PIC X(8) VALUE ’LOG DATA’.
 05 CN-INFLOG-TRACEID PIC X(11) VALUE ’LOG TRACEID’.
 05 CN-INFLOG-FILENAME PIC X(12) VALUE ’LOG FILENAME’.
 05 CN-INFLOG-RECORDS PIC X(11) VALUE ’LOG RECORDS’.
 05 CN-LSTSPT-TRANID PIC X(06) VALUE ’TRANID’.

 01 COUNTER-FIELDS.
 05 CTR-COLUMN PIC S9(9) COMP VALUE 0.
 05 CTR-ROWS PIC S9(9) COMP VALUE 0.

 01 WORK-FIELDS.
 05 WRKLEN1 PIC S9(9) COMP.
 05 WRKLEN2 PIC S9(9) COMP.
 05 WRK-DONE-STATUS PIC S9(9) COMP.
 05 WRK-RPC PIC X(4) VALUE ’SYS2’.
 05 WRK-TRANID PIC X(4) VALUE SPACE.
 05 WRK-LSTSPT-SS PIC S9(4) COMP.

 01 MESSAGE-FIELDS.
 05 MSG-TYPE PIC S9(9) COMP.
 05 MSG-SEVERITY-ERROR PIC S9(9) COMP VALUE 11.
 05 MSG-NR-ERROR PIC S9(9) COMP VALUE 2.
 05 MSG-RPC PIC X(4).
 05 MSG-RPC-L PIC S9(9) COMP VALUE 4.
 05 MSG-TEXT PIC X(20).
 05 MSG-TEXT-L PIC S9(9) COMP.
 05 MSG-SRVLIB.
 10 MSG-SRVLIB-FUNC PIC X(8) VALUE SPACE.
 10 FILLER PIC X(6) VALUE ’ RC = ’.
 10 MSG-SRVLIB-RC PIC Z(4)9+.

 01 SWITCHES.
 05 SEND-DONE-SW PIC X VALUE ’Y’.
 88 SEND-DONE-ERROR ThinSpaceThinSpaceThinSpaceThinSpaceVALUE
’N’.
 88 SEND-DONE-OK ThinSpaceThinSpaceThinSpaceThinSpaceVALUE
’Y’.
 05 TRACING-SW PIC X VALUE ’N’.
 88 TRACING-OFF VALUE ’N’.

APPENDIX G Sample Tracing and Accounting Program

393

 88 TRACING-ON VALUE ’Y’.

 PROCEDURE DIVISION.

 *--
 INITIALIZE-PROGRAM.
 *--

 * --
 * Establish gateway environment.
 * --
 CALL ’TDINIT’ USING DFHEIBLK, GWL-RC, GWL-INIT-HANDLE.

 * --
 * Accept client request.
 * --
 CALL ’TDACCEPT’ USING GWL-PROC, GWL-RC, GWL-INIT-HANDLE,
 SNA-CONNECTION-NAME,
 SNA-SUBC.

 * --
 * Call TDRESULT to validate that request is an RPC.
 * --
 CALL ’TDRESULT’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-PARM-PRESENT THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDRESULT’ TO MSG-SRVLIB-FUNC
 GO TO END-PROGRAM
 END-IF.

 *--
 GET-PARM.
 *--
 CALL ’TDRCVPRM’ USING GWL-PROC, GWL-RC,
 GWL-RCVPRM-ID,
 PARM-REQUEST,
 TDSCHAR,
 GWL-RCVPRM-MAX-DATA-L,
 GWL-RCVPRM-DATA-L.

Sample program SYCCSAS2

394

 IF PARM-REQUEST-INFACT THEN
 PERFORM TDINFACT THRU TDINFACT-EXIT

 ELSE IF PARM-REQUEST-INFLOG THEN
 PERFORM TDINFLOG THRU TDINFLOG-EXIT

 ELSE IF PARM-REQUEST-LSTSPT THEN
 PERFORM TDLSTSPT THRU TDLSTSPT-EXIT

 ELSE IF PARM-REQUEST-SETACT-ON THEN
 PERFORM TDSETACT-ON THRU TDSETACT-ON-EXIT

 ELSE IF PARM-REQUEST-SETACT-OFF THEN
 PERFORM TDSETACT-OFF THRU TDSETACT-OFF-EXIT

 ELSE IF PARM-REQUEST-SETLOG-ON THEN
 PERFORM TDSETLOG-ON THRU TDSETLOG-ON-EXIT

 ELSE IF PARM-REQUEST-SETLOG-OFF THEN
 PERFORM TDSETLOG-OFF THRU TDSETLOG-OFF-EXIT

 ELSE IF PARM-REQUEST-SETSPT-ON THEN
 PERFORM TDSETSPT-ON THRU TDSETSPT-ON-EXIT

 ELSE IF PARM-REQUEST-SETSPT-OFF THEN
 PERFORM TDSETSPT-OFF THRU TDSETSPT-OFF-EXIT

 ELSE IF PARM-REQUEST-WRTLOG THEN
 PERFORM TDWRTLOG THRU TDWRTLOG-EXIT
 END-IF.

 *--
 END-PROGRAM.
 *--
 IF SEND-DONE-OK THEN
 MOVE TDS-DONE-COUNT TO WRK-DONE-STATUS
 ELSE
 PERFORM SRVLIB-ERROR THRU SRVLIB-ERROR-EXIT
 MOVE TDS-DONE-ERROR TO WRK-DONE-STATUS
 MOVE ZERO TO CTR-ROWS
 END-IF.

 CALL ’TDSNDDON’ USING GWL-PROC, GWL-RC,
 WRK-DONE-STATUS,
 CTR-ROWS,
 TDS-ZERO,

APPENDIX G Sample Tracing and Accounting Program

395

 TDS-ENDRPC.

 CALL ’TDFREE’ USING GWL-PROC, GWL-RC.
 STOP RUN.

 *--
 TDINFACT.
 *--
 MOVE LENGTH OF GWL-INFACT-STATUS TO WRKLEN1.
 MOVE LENGTH OF CN-INFACT-STATUS TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 MOVE ’TDESCRIB’ TO MSG-SRVLIB-FUNC.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFACT-STATUS,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFACT-STATUS,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFACT-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFACT-FILENAME TO WRKLEN1.
 MOVE LENGTH OF CN-INFACT-FILENAME TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSCHAR,
 WRKLEN1,
 GWL-INFACT-FILENAME,
 TDS-ZERO,
 TDS-FALSE,
 TDSCHAR,
 WRKLEN1,
 CN-INFACT-FILENAME,
 WRKLEN2.

Sample program SYCCSAS2

396

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFACT-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFACT-RECORDS TO WRKLEN1.
 MOVE LENGTH OF CN-INFACT-RECORDS TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFACT-RECORDS,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFACT-RECORDS,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFACT-EXIT
 END-IF.

 CALL ’TDINFACT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFACT-STATUS,
 GWL-INFACT-FILENAME,
 GWL-INFACT-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFACT’ TO MSG-SRVLIB-FUNC
 GO TO TDINFACT-EXIT
 END-IF.

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSNDROW’ TO MSG-SRVLIB-FUNC
 GO TO TDINFACT-EXIT
 END-IF.

APPENDIX G Sample Tracing and Accounting Program

397

 ADD +1 TO CTR-ROWS.

 *--
 TDINFACT-EXIT.
 *--
 EXIT.

 *--
 TDINFLOG.
 *--
 MOVE LENGTH OF GWL-INFLOG-GLOBAL TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-GLOBAL TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.
 MOVE ’TDESCRIB’ TO MSG-SRVLIB-FUNC.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFLOG-GLOBAL,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFLOG-GLOBAL,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFLOG-API TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-API TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFLOG-API,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFLOG-API,

Sample program SYCCSAS2

398

 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFLOG-HEADER TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-HEADER TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFLOG-HEADER,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFLOG-HEADER,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFLOG-DATA TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-DATA TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFLOG-DATA,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFLOG-DATA, WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN

APPENDIX G Sample Tracing and Accounting Program

399

 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFLOG-TRACEID TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-TRACEID TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFLOG-TRACEID,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFLOG-TRACEID,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

 MOVE LENGTH OF GWL-INFLOG-FILENAME TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-FILENAME TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSCHAR,
 WRKLEN1,
 GWL-INFLOG-FILENAME,
 TDS-ZERO,
 TDS-FALSE,
 TDSCHAR,
 WRKLEN1,
 CN-INFLOG-FILENAME,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

Sample program SYCCSAS2

400

 MOVE LENGTH OF GWL-INFLOG-RECORDS TO WRKLEN1.
 MOVE LENGTH OF CN-INFLOG-RECORDS TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSINT4,
 WRKLEN1,
 GWL-INFLOG-RECORDS,
 TDS-ZERO,
 TDS-FALSE,
 TDSINT4,
 WRKLEN1,
 CN-INFLOG-RECORDS,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 GO TO TDINFLOG-EXIT
 END-IF.

 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-HEADER,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDINFLOG-EXIT
 END-IF.

 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSNDROW’ TO MSG-SRVLIB-FUNC
 GO TO TDINFLOG-EXIT

APPENDIX G Sample Tracing and Accounting Program

401

 END-IF.

 ADD +1 TO CTR-ROWS.

 *--
 TDINFLOG-EXIT.
 *--
 EXIT.

 *--
 TDLSTSPT.
 *--
 MOVE LENGTH OF WRK-TRANID TO WRKLEN1.
 MOVE LENGTH OF CN-LSTSPT-TRANID TO WRKLEN2.
 ADD +1 TO CTR-COLUMN.

 CALL ’TDESCRIB’ USING GWL-PROC, GWL-RC,
 CTR-COLUMN,
 TDSCHAR,
 WRKLEN1,
 WRK-TRANID,
 TDS-ZERO,
 TDS-FALSE,
 TDSCHAR,
 WRKLEN1,
 CN-LSTSPT-TRANID,
 WRKLEN2.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDESCRIB’ TO MSG-SRVLIB-FUNC
 GO TO TDLSTSPT-EXIT
 END-IF.
 *
 * Find global status.
 *
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-HEADER,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,

Sample program SYCCSAS2

402

 GWL-INFLOG-RECORDS.
 *
 * If there are any errors, then assume tracing has been disabled.
 *
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDLSTSPT-EXIT
 END-IF.
 *
 * If specific tracing is not on, then return nothing.
 *
 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 GO TO TDLSTSPT-EXIT
 END-IF.
 *
 * Return rows.
 *
 CALL ’TDLSTSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-LSTSPT-LIST(1).

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDLSTSPT’ TO MSG-SRVLIB-FUNC
 GO TO TDLSTSPT-EXIT
 END-IF.
 PERFORM VARYING WRK-LSTSPT-SS FROM 1 BY 1
 UNTIL WRK-LSTSPT-SS = 8

 MOVE GWL-LSTSPT-LIST(WRK-LSTSPT-SS) TO WRK-TRANID
 CALL ’TDSNDROW’ USING GWL-PROC, GWL-RC

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSNDROW’ TO MSG-SRVLIB-FUNC
 MOVE 8 TO WRK-LSTSPT-SS
 END-IF

 ADD +1 TO CTR-ROWS

 END-PERFORM.

 *--
 TDLSTSPT-EXIT.
 *--
 EXIT.

APPENDIX G Sample Tracing and Accounting Program

403

 *--
 TDSETACT-ON.
 *--
 CALL ’TDINFACT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFACT-STATUS,
 GWL-INFACT-FILENAME,
 GWL-INFACT-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFACT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETACT-ON-EXIT
 END-IF.
 *
 * Turn on host accounting.
 *
 CALL ’TDSETACT’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-TRUE,
 GWL-INFACT-FILENAME,
 GWL-INFACT-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETACT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETACT-ON-EXIT
 END-IF.

 *--
 TDSETACT-ON-EXIT.
 *--
 EXIT.

 *--
 TDSETACT-OFF.
 *--
 CALL ’TDINFACT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFACT-STATUS,
 GWL-INFACT-FILENAME,
 GWL-INFACT-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFACT’ TO MSG-SRVLIB-FUNC

Sample program SYCCSAS2

404

 GO TO TDSETACT-OFF-EXIT
 END-IF.
 *
 * Turn off host accounting if it is on.
 *
 IF GWL-INFACT-STATUS = TDS-TRUE THEN
 CALL ’TDSETACT’ USING GWL-INIT-HANDLE, GWL-RC, TDS-FALSE,
 GWL-INFACT-FILENAME, GWL-INFACT-RECORDS

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETACT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETACT-OFF-EXIT
 END-IF
 END-IF.

 *--
 TDSETACT-OFF-EXIT.
 *--
 EXIT.

 *--
 TDSETLOG-ON.
 *--
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-HEADER,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDSETLOG-ON-EXIT
 END-IF.
 *
 * Turn on API (CICS Aux Trace) and header tracing.
 *
 CALL ’TDSETLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-TRACE-ALL-RPCS,
 TDS-TRUE,
 TDS-TRUE,
 GWL-INFLOG-DATA,

APPENDIX G Sample Tracing and Accounting Program

405

 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDSETLOG-ON-EXIT
 END-IF.

 *--
 TDSETLOG-ON-EXIT.
 *--
 EXIT.

 *--
 TDSETLOG-OFF.
 *--
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-HEADER,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDSETLOG-OFF-EXIT
 END-IF.
 *
 * Turn off API (CICS Aux Trace) and header tracing.
 *
 CALL ’TDSETLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-NO-TRACING,
 TDS-FALSE,
 TDS-FALSE,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW

Sample program SYCCSAS2

406

 MOVE ’TDSETLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDSETLOG-OFF-EXIT
 END-IF.

 *--
 TDSETLOG-OFF-EXIT.
 *--
 EXIT.

 *--
 TDSETSPT-ON.
 *--
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-HEADER,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDSETSPT-ON-EXIT
 END-IF.
 *
 * Turn on tracing for specific transactions.
 *
 CALL ’TDSETLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-TRACE-SPECIFIC-RPCS,
 TDS-TRUE,
 TDS-TRUE,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDSETSPT-ON-EXIT
 END-IF.
 *
 * Enable error log recording for this tranid.
 *

APPENDIX G Sample Tracing and Accounting Program

407

 MOVE 2 TO GWL-SETSPT-OPTIONS.
 MOVE LENGTH OF WRK-RPC TO WRKLEN1.

 CALL ’TDSETSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-TRUE,
 GWL-SETSPT-OPTIONS,
 WRK-RPC,
 WRKLEN1.

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETSPT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETSPT-ON-EXIT
 END-IF.

 *--
 TDSETSPT-ON-EXIT.
 *--
 EXIT.

 *--
 TDSETSPT-OFF.
 *--
 *
 * Assume specific tracing is on for this transaction,
 * and turn it off.
 *
 MOVE LENGTH OF WRK-RPC TO WRKLEN1.

 CALL ’TDSETSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 TDS-FALSE,
 GWL-SETSPT-OPTIONS,
 WRK-RPC,
 WRKLEN1.

 IF GWL-RC NOT = TDS-OK
 AND GWL-RC NOT = TDS-ENTRY-NOT-FOUND THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDSETSPT’ TO MSG-SRVLIB-FUNC
 GO TO TDSETSPT-OFF-EXIT
 END-IF.

 *--
 TDSETSPT-OFF-EXIT.
 *--
 EXIT.

Sample program SYCCSAS2

408

 *--
 TDWRTLOG.
 *--
 *
 * Write a log entry only if logging is enabled.
 *
 PERFORM GET-TRACE-STATUS THRU GET-TRACE-STATUS-EXIT.

 IF TRACING-ON THEN
 CALL ’TDWRTLOG’ USING GWL-PROC, GWL-RC,
 TDS-TRUE,
 GWL-WRTLOG-MSG,
 GWL-WRTLOG-MSG-L

 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDWRTLOG’ TO MSG-SRVLIB-FUNC
 GO TO TDWRTLOG-EXIT
 END-IF
 ELSE
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’LOGNOTON’ TO MSG-SRVLIB-FUNC
 END-IF.

 *--
 TDWRTLOG-EXIT.
 *--
 EXIT.

 *--
 GET-TRACE-STATUS.
 *--
 *
 * Find global status.
 *
 CALL ’TDINFLOG’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFLOG-GLOBAL,
 GWL-INFLOG-API,
 GWL-INFLOG-HEADER,
 GWL-INFLOG-DATA,
 GWL-INFLOG-TRACEID,
 GWL-INFLOG-FILENAME,
 GWL-INFLOG-RECORDS.
 *
 * If there are any errors, then assume tracing has been disabled.

APPENDIX G Sample Tracing and Accounting Program

409

 *
 IF GWL-RC NOT = TDS-OK THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFLOG’ TO MSG-SRVLIB-FUNC
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.
 *
 * If global tracing is on, then tracing is enabled.
 *
 IF GWL-INFLOG-GLOBAL = TDS-TRACE-ALL-RPCS THEN
 MOVE ’Y’ TO TRACING-SW
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.
 *
 * If error logging is on, then tracing is enabled.
 *
 IF GWL-INFLOG-GLOBAL = TDS-TRACE-ERRORS-ONLY THEN
 MOVE ’Y’ TO TRACING-SW
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.
 *
 * If specific tracing is not on, then no tracing is on.
 *
 IF GWL-INFLOG-GLOBAL NOT = TDS-TRACE-SPECIFIC-RPCS THEN
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.
 *
 * Specific tracing is on, see if on for this transaction.
 *
 MOVE LENGTH OF WRK-RPC TO WRKLEN1.

 CALL ’TDINFSPT’ USING GWL-INIT-HANDLE, GWL-RC,
 GWL-INFSPT-STATUS,
 GWL-INFSPT-OPTIONS,
 WRK-RPC,
 WRKLEN1.

 IF GWL-RC NOT = TDS-OK AND
 GWL-RC NOT = TDS-ENTRY-NOT-FOUND THEN
 MOVE ’N’ TO SEND-DONE-SW
 MOVE ’TDINFSPT’ TO MSG-SRVLIB-FUNC
 GO TO GET-TRACE-STATUS-EXIT
 END-IF.

 IF GWL-INFSPT-STATUS = TDS-TRUE THEN
 MOVE ’Y’ TO TRACING-SW

Sample program SYCCSAS2

410

 END-IF.
*--
 GET-TRACE-STATUS-EXIT.
 *--
 EXIT.
*--
 SRVLIB-ERROR.
 *--
 MOVE GWL-RC TO MSG-SRVLIB-RC.
 MOVE MSG-SRVLIB TO MSG-TEXT.
 MOVE LENGTH OF MSG-SRVLIB TO MSG-TEXT-L.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE WRK-RPC TO MSG-RPC.
*---
 SEND-ERROR-MESSAGE.
*---
 MOVE ’N’ TO SEND-DONE-SW.
 MOVE TDS-ERROR-MSG TO MSG-TYPE.
 MOVE LENGTH OF MSG-RPC TO MSG-RPC-L.

* Ensure we’re in right state to send a message

 CALL ’TDSTATUS’ USING GWL-PROC, GWL-RC,
 GWL-STATUS-NR,
 GWL-STATUS-DONE,
 GWL-STATUS-COUNT,
 GWL-STATUS-COMM,
 GWL-STATUS-RETURN-CODE,
 GWL-STATUS-SUBCODE.

 IF (GWL-RC = TDS-OK AND
 GWL-STATUS-COMM = TDS-RECEIVE) THEN

 CALL ’TDSNDMSG’ USING GWL-PROC, GWL-RC,
 MSG-TYPE, MSG-NR,
 MSG-SEVERITY,
 TDS-ZERO,
 TDS-ZERO,
 MSG-RPC, MSG-RPC-L,
 MSG-TEXT, MSG-TEXT-L
 END-IF.
 *--
 SRVLIB-ERROR-EXIT.
 *--
 EXIT.

411

A
Access code, customization 36
Accounting

retrieving accounting information at mainframe
114

sample program 389
setting on and off at mainframe 173
tracing functions used in 15

Accounting log
changing log name under CICS 176
IMS TM log 173
no record limit under IMS TM 115, 174
querying log name under CICS 115, 117
querying record number under CICS 115
setting record limit under CICS 174
specifying log name under CICS 173
uses IMS TM log 115
uses IMS TM system log 117, 176

Alphabetic characters
single-byte characters treated as 59

C
Character sets

client, list of supported 18
datatypes used with Japanese characters 61
differences in Japanese 60
discussion 17, 19
double-byte, mainframe supported 19
double-byte, setting up support 59
double-byte, workstation supported 19
how single-byte are handled at mainframe 111
Japanese, querying Shift Out/Shift In settings 66
querying client character set 54, 111
querying support for double-byte 112
single-byte, mainframe supported 19
single-byte, setting default 36
single-byte, workstation supported 18

table translation 60
Character sets. See also Kanji, Katakana, Japanese,

DBCS and SBCS 67
Client

character set, supported 18
querying character set 54, 111
querying information 109
querying name 54
querying national language 111
querying password 54, 110, 111
querying userID 110

Client requests
processing 6, 9, 10
query types 54
querying type of 170
querying types of 136

Client requests, processing with Gateway-Library 5
Client-Library

Gateway-Library application functions 57
Gateway-Library datatypes 38, 41

COBOL data descriptions, Gateway-Library datatypes
38, 41

Column
describing host variable for 88
describing name 88
describing with TDESCRIB 88
specifying decimal places 177
specifying length 88, 177, 183
specifying type 88

Communication state
determining 137, 233

Communication states 19
Connection

logical, definition 4
Connections

handles for allocating 70
Connections, establishing 5
Contacting Sybase technical support xi
Conversation, defined 4
Conversion

Index

Index

412

to DB-Library datatypes 77
CTBCTXALLOC

in mixed-mode applications, do not use 58
CURSOR-DESC structure 26
Cursors

benefits of using 21
close 25
command types 22
CURSOR-DESC structure 26
declare 23
definition 21
fetch rows 24
handling cursor requests 32, 35
request status 25
statements defined 21
TDS-CURSOR event handler 32

Customization
client password access code 36
Gateway-Library options 36
national language 36
truncating LONG VARCHAR strings 36

Customization, dynamic network drivers 36

D
Datatypes

binary, Client-Library equivalent 38
binary, DB-Library equivalent 38
binary, description 38
binary, TDSVARYBIN 43
character, Client-Library equivalent 38
character, conversion from decimal 43
character, DB2 LONG VARCHAR 42
character, DB-Library equivalent 38
character, description 38
character, TDSVARYCHAR 42
datetime, description 38
DB2 LONG VARCHAR 42
DB2 LONG VARCHAR, rejection or truncation 36
decimal, conversion to character 43
discussion 37, 46
float, 4-byte and 8-byte supported 38
graphic, description 38
Japanese character sets 61
list of supported 37

packed decimal, converting and unpacking 43
TDS-PACKED-DECIMAL, formula for unpacking

43
used with Japanese character sets 61, 63
variable, TDSVARYBIN 43
variable, TDSVARYCHAR 42

DBCS
customization 36
mainframe supported 19
setting up support 59
workstation supported 19

DBCS. See also Kanji, Katakana, Japanese, Character
sets and SBCS 67

dec_kanji, support 19
Decimal

converting packed decimal with TDCONVRT 77
converting packed decimal with TDRCVPRM 163

Decimal places
assigning during conversion 77

DFHEIBLK
defining 145

Documentation
how to contact xiv

DONE
sending to client 211

Double Byte Character Set. See DBCS 67
Dynamic network drivers, customization 36

E
Electronic mail

for documentation xiv
End of results

indicating 211
Error log

tracing errors 187
tracing RPCs 187
turn off tracing 187
used for tracing 126, 190

Errors
sending error messages to client 218

eucjis, supported 19
Example

accounting 389
language handler 311

Index

413

RPC application 257, 323, 337
tracing 389

F
Function call sequence 9, 19
Functions

definition in Gateway-Library 2
how called with Gateway-Library 2
paired with client functions 5
TDACCEPT 70
TDCONVRT 77
TDCURPRO 83
TDESCRIB 88, 95
TDFREE 96, 98
TDGETREQ 99, 105
TDGETSOI 106, 109
TDGETUSR 110, 114
TDINFACT 114, 118
TDINFBCD 118, 122
TDINFLOG 123, 126
TDINFPGM 127, 131
TDINFPRM 131, 135
TDINFRPC 136
TDINFSPT 138, 142
TDINFUDT 142, 144
TDINIT 145, 149
TDLOCPRM 149
TDLSTSPT 152, 154
TDNUMPRM 155, 157
TDRCVPRM 157, 165
TDRCVSQL 165
TDRESULT 170, 172
TDSETACT 173, 176
TDSETBCD 177, 183
TDSETLEN 183, 186
TDSETLOG 186, 192
TDSETPRM 192, 196
TDSETPT 197, 200
TDSETSOI 200, 204
TDSETSPT 205, 208
TDSETUDT 209, 211
TDSNDDON 211, 217
TDSNDMSG 218, 224
TDSNDROW 225, 229

TDSQLLEN 229, 232
TDSTATUS 232, 236
TDTERM 237, 239
TDWRTLOG 243, 245
TDYNAMIC 239, 242

G
Gateway-Library

functions 3
functions, list of 67
initializing 4
overview 1, 15

Global tracing
querying 100, 101, 106, 201

H
Handles

allocating context handles 145
connection, allocating 70
Gateway-Library equivalent command handle 70
Gateway-Library equivalent connection handle 70
Gateway-Library equivalent context handle 70

Hankaku katakana
datatypes used with 61
single-byte characters treated as 59
string lengths 62

I
ibm_kanji, support 19
IHANDLE

in TDINIT 145
in TDACCEPT 70

IMS TM
coding differences with CICS 2
implicit API, sample RPC program 323
simulating long-running transactions in implicit API

100
IMS TM implicit API

no support for long-running transactions 103
Initialization

Index

414

customization 37
of TDS environment 145
TDS environment 4

J
Japanese characters

differences between character sets 60
Japanese Conversion Module. See JCM 59
Japanese support

character sets 60
characters length considerations 63
datatypes 61, 63
discussion 59
for DBCS 59
string lengths 61
table translation 60

Japanese. See also Kanji, Katakana, Character sets, DBCS
and SBCS 67

JCM
how it works 60
table translation 60

K
Kanji

character set support 60
datatypes used with 61
differences among character sets 60
discussion 59
length considerations 63
string lengths 61

Katakana
hankaku, datatypes used with 61
length considerations 63
single-byte datatypes used with 61

Katakana. See also Kanji, Japanese, Character sets, DBCS
and SBCS 67

L
Language request, long-running transaction 99
Language requests

accepting 70
custom-written sample program 6
processing 10
sample program 311

Logical connection, defined 4
Login information, querying 54
Login packet

description and contents 54
retrieving contents with TDGETUSR 54

Long datatypes
character, handling 42

Long-running transaction
definition 20, 55

Long-running transactions
no support for IMS TM implicit API 103, 217

Lower-case letters
single-byte characters treated as 59

M
Message

sending to client 218
Mixed-mode applications

discussion 57

N
National languages

client, querying 54
discussion 58
returned by TDGETUSR 58
setting during customization 36

Native language, customization 36
Net-Gateway

identifying 54

P
Packed decimal

converting with TDCONVRT 77
converting with TDRCVPRM 163

Parameter
counting 155

Index

415

determining datatype 131
determining ID 149
determining length 131
determining name 131
identifying return parameter 131
retrieving 157
specifying decimal places 177
specifying length 177
specifying return parameter data 192
specifying return parameter datatype 192
specifying return parameter length 192

Parameters omitted, denoting with TDSVOID 41
Password

client access code customization 36
client, querying 54

Professional Services
how to contact xii

R
Receive state 19
Receiving

client requests, general 5
language requests 70
RPCs 70

Reset state 20
Row

describing column 88
sending row data to client 225

RPC
accepting 70
identifying 170
language request in long-running transaction 99
number of parameters 155
processing 6, 9
processing, sample program 257, 323, 337
querying RPC name 136
querying RPC parameters 131
retrieving status 232

S
Sample program

accounting 389

language handler 311
RPC application 257, 323, 337
tracing 389

SBCS
host, default 59
mainframe supported 19
workstation supported 18

SBCS. See also Kanji, Katakana, Japanese, Character set
and DBCS 67

Send state 19
Session, establishing 5
Shift Out/Shift In codes

stripping 66
Short transaction, definition 20
Single Byte Character Set. See SBCS 67
sjis

supported 18
SNA conversation

handle for 70
SNA conversation, establishing 5
Specific tracing

querying 100, 101, 106, 201
SQL request

processing 6
retrieving 165
retrieving status 232

SQL text
accepting 70
determining length 229

States. See Communication, Receive and Send states
19

Status
retrieving RPC status 232
retrieving SQL request status 232

SYL2
listing 311

SYR2
listing 257, 323, 337

SYS2
listing 389

T
Table translation 60
Tabular Data Stream. See TDS 2

Index

416

TCP/IP
embedded calls 2

TDACCEPT
description 70
in mixed-mode application 58
used with long-running transactions 55, 56

TDCONVRT
description 77

TDCURPRO
description 83

TDESCRIB
description 88, 95
use with JCM 95

TDFREE
description 96, 98
in mixed-mode application 58

TDGETREQ
description 99, 105
use with IMS TM 103
used with long-running transactions 55

TDGETSOI
description 106, 109

TDGETUSR
description 110, 114
retrieving login packet data 54

TDINFACT
description 114, 118

TDINFBCD
description 118, 122

TDINFLOG
description 123, 126

TDINFPGM
description 127, 131

TDINFPRM
description 131, 135

TDINFRPC
description 136

TDINFSPT
description 138, 142

TDINFUDT
description 142, 144

TDINIT
description 145, 149
in mixed-mode application, must be first call 58
use with JCM 148

TDLOCPRM

description 149
TDLSTSPT

description 152, 154
TDNUMPRM

description 155, 157
TDPROC

allocating 70
deallocating 96
initializing 70

TDRCVPRM
description 157, 165
use with JCM 164

TDRCVSQL
description 165
use with JCM 169

TDRESULT
description 170, 172

TDS
protocol 2

TDS environment
initializing 145

TDSBINARY
Client-Library equivalent 38
COBOL data description 38
DB-Library equivalent 38
description 38

TDSCHAR
Client-Library equivalent 38
COBOL data description 38
DB-Library equivalent 38
description 38
used with Japanese characters 61, 62

TDSDATETIME
4-byte and 8-byte supported 38
Client-Library equivalent 38
DB-Library equivalent 38
description 38

TDSETACT
description 173, 176

TDSETBCD
description 177, 183

TDSETLEN
description 183, 186

TDSETLOG
description 186, 192

TDSETPRM

Index

417

description 192, 196
TDSETPT

description 197, 200
TDSETSOI

description 66, 200, 204
TDSETSPT

description 205, 208
TDSETUDT

description 209, 211
TDSFLT

4-byte and 8-byte supported 38
Client-Library equivalent 38
COBOL data description 38
DB-Library equivalent 38
description 38

TDSGRAPHIC
description 38
used with Japanese characters 61, 62

TDSIMAGE
Client-Library equivalent 38
COBOL data description 38
converting long graphic types to 46
DB-Library equivalent 38
description 38
supported for workstation only 38

TDSINT2
Client-Library equivalent 39, 41
COBOL data description 39
DB-Library equivalent 39
description 39

TDSINT4
COBOL data description 39
DB-Library equivalent 39
description 39

TDSLONGVARBIN
Client-Library equivalent 39
COBOL data description 39
description 39

TDSLONGVARCHAR
Client-Library equivalent 39
COBOL data description 39
description 39
differences from TDSVARYCHAR 42
used with Japanese characters 61

TDSMONEY
COBOL data description 39

DB-Library equivalent 39
description 39
used with client data only 39

TDSMONEY4
COBOL data description 39
DB-Library equivalent 39
description 39
used with client data only 39

TDSNDDON
description 211, 217
use with JCM 217
used with long-running transactions 55, 56
when to use TDS-ENDREPLY 56

TDSNDMSG
description 218, 224
use with JCM 224

TDSNDROW
description 225, 229
use with JCM 229

TDSNUMERIC
Client-Library equivalent 40
COBOL data description 40
description 40
used for client data only 40

TDS-PACKED-DECIMAL
Client-Library equivalent 40
COBOL data description 40
converting to workstation datatype 43
description 40
used for mainframe data only 40

TDSQLLEN
description 229, 232

TDS-SYBASE-DECIMAL
Client-Library equivalent 40
COBOL data description 40
description 40
used for client data only 40

TDSTATUS
description 232, 236

TDSTEXT
Client-Library equivalent 40
COBOL data description 40
converting long varchar types to 42
DB-Library equivalent 40
description 40

TDSVARGRAPHIC

Index

418

used with Japanese characters 61, 62
TDSVARYBIN

COBOL data description 41
DB-Library equivalent 41
description 41
why not VARBINARY 43

TDSVARYCHAR
COBOL data description 41
DB-Library equivalent 41
description 41
differences from TDSLONGVARCHAR 42
do not use VARCHAR 42
used with Japanese characters 61, 62

TDSVARYGRAPHIC
use instead of TDSVARGRAPHIC 46
used to represent Japanese double-byte characters 41
used with mainframe data only 41

TDSVOID, denoting omitted parameters 41
TDTERM

description 237, 239
in mixed-mode application 58
required with IMS TM 238
used with long-running transactions 57

TDWRTLOG
description 243, 245

TDYNAMIC
description 239, 242

Technical support
how to contact xi

Trace flag
in TDINFLOG 100, 101, 201, 106

Trace log
adding user message 243
trace errors only 187
trace specific RPCs 187
tracing RPCs 187
turn off tracing 187

Tracing
functions used in 15
global, definition 187
querying API 123
querying global 100, 101, 106, 123, 201
querying specific 101, 106, 201
querying TDS data 123
querying TDS headers 123
querying transaction level 123, 138

sample program 389
setting API 186
setting global 186
setting TDS data 186
setting TDS headers 186
setting transaction level 152, 186, 205
types of 126, 190
uses error log 126
using error log 190

Transaction
long-running, definition 20
long-running, language request 99
returned by TDGETREQ 99
short, definition 20

V
VARBINARY

do not use 43
VARCHAR

do not use 42

