HP COBOL 1I/XL Quick
Reference Guide

HP 3000 MPE/iX Computer Systems
Edition 3

(D Preateis

Manufacturing Part Number: 31500-90003
EO0791

U.S.A. July 1991

Notice

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1991 by Hewlett-Packard Company

-2

Printing History

New editions are complete revisions of the manual. The dates on the
title page change only when a new edition is published.

The software code printed alongside the data indicates the version level

of the software product at the time the manual or update was issued.

Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one to one correspondence between
product updates and manual updates.

First Edition November 1987 31500A.00.12
Second Edition October 1988 31500A.01.06
Third Edition July 1991 31500A.04.03
Preface

This is a quick reference guide for the HP COBOL Il programming language
on the MPE XL operating system. HP COBOL Il is based on the ANSI
COBOL'1974 and ANSI COBOL'1985 Standard X3.23-1985.

This guide is intended for programmers who have a working knowledge of
COBOL. It summarizes HP COBOL Il language elements and gives the
syntax[REV BEG] for statements, commands, compiler directives, and COBOL
functions.This manual is organized as follows:

Chapter 1 Preprocessor Commands and $CONTROL Options
Chapter 2 Program Format

Chapter 3 IDENTIFICATION DIVISION Statements
Chapter 4 ENVIRONMENT DIVISION Statements
Chapter 5 DATA DIVISION Statements

Chapter 6 PROCEDURE DIVISION Statements
Chapter 7 COBOL Reserved Word List

Appendix A HP COBOL II/XL Compiler Commands
Appendix B HP COBOL II/V Compiler Commands
Appendix C MPE XL Run-Time Trap Handling
Appendix D COBEDIT Program

Appendix E COBOL Functions

What's New in This Release
The following lists major changes to this manual since the last edition:
* Addition of Appendix E, which describes the built-in COBOL
functions recently defined by Addendum 1 of the ANSI COBOL'85
standard.

* Reorganization of the IDENTIFICATION, ENVIRONMENT, DATA, and
PROCEDURE DIVISION statements (Chapters 3 through 6).

* Miscellaneous changes identified with change bars in the side
margins.

Additional Documentation

More information on HP COBOL II/XL is in the following manuals:

* HP COBOL II/XL Reference Manual (31500-90001)

* HP COBOL Il/XL Programmer's Guide (31500-90002)

* HP COBOL II/XL Migration Guide (31500-90004)
Acknowledgement

At the request of the American National Standards Institute (ANSI), the
following acknowledgement is reproduced in its entirety:

Any organization interested in reproducing the COBOL standard and
specifications in whole or in part, using ideas from this document
as the basis for an instruction manual or for any other purpose, is
free to do so. However, all such organizations are requested to
reproduce the following acknowledgement paragraphs in their entirety
as part of the preface to any such publication (any organization
using a short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgement of the source,
but need not quote the acknowledgement):

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no

responsibility is assumed by any contributor, or by the committee,
in connection therewith.

The authors and copyright holders of the copyrighted material used
herein have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such authorization

extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for
the Univac(R) | and Il, Data Automation Systems copyrighted 1958,

1959, by Sperry Rand Corporation; IBM Commercial Translator Form No.
F 28-8013, copyrighted 1959 by IBM, FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell.

Conventions
Notation Description

Change bars in the margin show where substantial changes
have been made to this manual since the last

edition.
UPPERCASE and Within syntax statements, characters in uppercase must
UNDERLINING be entered in exactly the order shown. Uppercase words

that are underlined are keywords that are always
required when the clause or statement in which they
appear is used in your program. Uppercase words that
are not underlined are optional, and may be included or
omitted. They have no effect on program execution and
serve only to make source program listings more
readable. The following example illustrates this:

[FILE STATUS IS stat-item .

STATUS must be entered, FILE may be either included or
omitted. See also "Underlining in dialog" on the
following page.

italics Within syntax statements, a word in italics represents a
formal parameter, argument, or literal that you must
replace with an actual value. In the following example,
you must replace filename with the name of the file you
want to release:

RELEASE filename

punctuation Within syntax statements, punctuation characters (other
than brackets, braces, vertical parallel lines, and
ellipses) must be entered exactly as shown.

{} Within syntax statements, when several elements within
braces are stacked, you must select one. In the
following equivalent examples, you select ON or OFF:

{ON }
SETMSG {OFF}

SETMSG {ON }

{In}

[]

{OFF}
Within syntax statements, bars in braces are choice
indicators. One or more of the items within the choice
indicators must be specified, but a single option may be
specified only once.

Within syntax statements, brackets enclose optional
elements. In the following example, brackets around

,TEMP indicate that the parameter and its delimiter are
not required:

PURGE filename [,TEMP]

When several elements within brackets are stacked, you
can select any one of the elements or none. In the
following equivalent examples, you can select devicename
or deviceclass or neither:

[devicename |
SHOWDEV | deviceclass]

SHOWDEV [devicename |
deviceclass]

Underlining in When it is necessary to distinguish user input from

dialog

..

(1.

computer output, the input is underlined. See also
underlining on the previous page.

NEW NAME? ALPHA

Brackets followed by a horizontal ellipsis indicate
either that a previous bracketed element may be repeated
zero or more times, or that elements have been omitted
from the description.

[WITH DUPLICATES] ...

The ellipsis shows that the preceding clause may be
repeated indefinitely.

Braces followed by a horizontal ellipses indicate either
that the item within braces may be repeated one or more
times, or that elements have been omitted from the
description.

Within syntax statements, the space symbol _ shows a
required blank. In the following example, you must
separate modifier and variable with a blank:

SET [(modifier)]_(variable),

<, >, =,<=, These symbols are used in conditional statements to

>z, <>

represent the keywords LESS THAN, GREATER THAN, EQUAL

TO, LESS THAN OR EQUAL TO, GREATER THAN OR EQUAL TO, and
NOT EQUAL TO, respectively. Although these symbols
represent keywords, they are not underlined.

; The semicolon is used only to improve readability and is
always optional.

: The comma is used only to improve readability, and is
always optional.

The period is a terminator or delimiter that is always
required where shown; it must always be entered at the
end of every division name, section name, paragraph
name, and sentence.

A The caret is occasionally used in examples to represent
an implied decimal point in computer memory.

Shading Features that are part of the 1985 ANSI standard are
shaded. They are accessible through the ANSI85 entry
point.

LG200026_198 In some diagrams and tables, a number appears in the
lower left corner. This number is for HP control
purposes only and should not be interpreted as part of
the diagram or table.

Chapter 1 Preprocessor Commands and $CONTROL Options

Table 1-1. Preprocessor Commands

I
Command Purpose

I I

| N y
$COMMENT | Writing comment lines.

I I

| . —
$DEFINE | Defining and using macros. |
$PREPROCESSOR | |

I I

I " N
$IF | Conditionally compiling.
$SET | |

I I

I o N .
$INCLUDE | File inserting, merging, and editing |
$EDIT | operations. |

I I

I | .
[REV BEG]$COPYRIGHT [REV END] | Affecting compiler output (code and |
$PAGE | listing). |
$TITLE[REV BEG] | |
$VERSION [REV END] | |
$CONTROL | |

I

General Format
The preprocessor commands have the following format:
$ commandname| parameterlist]

Parameters

commandname one of the command names shown in the list above.

parameterlist a list of parameters for a given preprocessor command.
The specific parameters (if any) allowed for a given
preprocessor command are listed later in this section
where the command is described. A list of parameters in
a command must be separated from the command by one or
more spaces, and each parameter specified must be
separated from any succeeding parameter by a comma
optionally followed or preceded by one or more spaces.

$COMMENT

The $COMMENT command identifies comment text.

-2

Syntax
$COMMENT [comment-text |
Parameters

comment-text a string containing anything you want to enter.

comment-text requires no delimiters. It ends at the end of

the line where the $SCOMMENT command is issued unless a
continuation character is used. Use of COBOL comments,
" is preferred.

$CONTROL
The $CONTROL command controls compilation and list options.
Syntax
$CONTROL option [, optionlist 1
Parameters

optionlist one or more valid options, each separated from the
preceding option by a comma and zero or more optional
spaces.

option a valid option for the $CONTROL command.
These are the $CONTROL options:

ANSISORT

ANSISUB

BOUNDS
CALLINTRINSIC (1)
CHECKSYNTAX
CMCALL (1)

CODE

NOCODE

CROSSREF
NOCROSSREF
DEBUG

DIFF74

DIFF74=0BS
DIFF74=INC

DYNAMIC
ERRORSRrumber
INDEX16 (1)

INDEX32 (1)

LINES= number

LIST

NOLIST

LOCKING

LOCOFF

LOCON

MAP

NOMAP[REV BEG]
NLS=options (1) [REV END]
MIXED

NOMIXED
OPTFEATURESaptions (1)
OPTIMIZE[= number] (1) [REV BEG]
POSTS85 (1) [REV END]
QUOTE=

RLFILE (1)
RLINIT (1)
SOURCE
NOSOURCE

STAT74
STDWARN[fevel]
NOSTDWARN
SUBPROGRAM
SYMDEBUG
SYNC16

SYNC32

USLINIT
VALIDATE (1)
NOVALIDATE (1)
VERBS

NOVERBS

WARN

NOWARN

(1) This option is available only on HP COBOL II/XL.
The default SCONTROL options are shown below:

$CONTROL NOCODE, NOCROSSREF, ERRORS=100, LINES = 60, QUOTE=", LIST, LOCON, &
$ NOMAP, MIXED, SOURCE, NOSTDWARN, NOVERBS, WARN

NOTE For a description of other $CONTROL commands, refer to the HP COBOL
/XL Reference Manual

$COPYRIGHT

The $COPYRIGHT command puts a copyright string into your object file.

Syntax

$COPYRIGHT [string |, string]...]

Parameter

string the data to be placed into the object file. The characters
of string must be preceded and followed by a quotation
mark. The total number of characters used in the strings
is limited to 116. This includes any blanks appearing in
strings, but does not include the quotation marks used to
delimit the strings.

$DEFINE

The $DEFINE command defines a macro.

Syntax

$DEFINE macro-name =[string-text #

Parameters

macro-name the name of the macro being defined, and consists of an
initial non-alphanumeric character (default is the percent
sign, %), followed by an alphabetic character, followed by
zero or more alphanumeric characters.
The length of the macro name may be any number of
characters, but only the first fifteen are recognized by
the preprocessor. Note that care must be taken to assure
unigueness of such names.

string-text can be any text you choose. However, because this text is
sent to the compiler, it must be a valid COBOL statement or

sentence, with one exception. This exception is the use of
formal parameters in the string-text

$EDIT

The $EDIT preprocessor command can be used to bypass all records of the
masterfile whose sequence fields contain a certain value, and renumber

the numeric sequence fields of records in the newfile created by merging

a textfile and a masterfile.

Syntax

$EDIT [parameter=subparameter 1L parameter=subparameter
Parameters
parameter either VOID, SEQNUM, NOSEQ, or INC.
subparameter either a sequence value, a sequence number, or an

increment number. Which one is used depends on the
parameter.
$IF
The $IF command interrogates any of the ten compilation switches.
Syntax
$IF [Xn={ON }]

[{OFF}] - _ _ ,
where X n is a compilation switch as described under the $SET command in
the preceding paragraphs.
$INCLUDE

The $INCLUDE command allows you to specify an entire file to be sent,
line by line, to the compiler as part of your source file.

Syntax
$INCLUDE filename

Parameter

filename the name of the file whose records are to be sent to the
compiler.

$PAGE

The $PAGE command allows you to replace the first line of the title
portion of the standard page heading in a listfile and to advance to the
next logical page of the listfile.

Syntax
$PAGE[string |, string]...]
Parameter

string the data to be used in replacing the first line of the
title. The characters of string must be preceded and
followed by a quotation mark. The total number of
characters used in the strings is limited to 97. This
includes any blanks appearing in strings, but does not
include the quotation marks used to delimit the strings.

101

$PREPROCESSOR

The $SPREPROCESSOR command allows you to change the default characters
used in macro definitions and names.

Syntax
$PREPROCESSOR parameter=subparameter [, parameter=subparameter]
Parameters

parameter one of the keywords shown below. Each may be used only
once in a given $PREPROCESSOR command.

KEYCHAR specifies that the initial character of all
macro names is to be subparameter

PARMCHAR specifies that the initial character of all
formal parameters in macro definitions is to be
subparameter

DELIMITER specifies that the delimiting character in a
macro string-text is to be subparameter

subparameter the character to be used in replacing the currently used
initial character or delimiter.

$SET

The $SET command can be used to turn the ten compilation switches on or
off.

Syntax
$SET [Xn={ON } [, Xr={ON }]...]
[{OFF}[{OFF}]]

where X n and X r are compilation switches. The ten software switches are
of the form, Xn, where n is an integer in the range 0 through 9.

$TITLE

The $TITLE command can be used to replace the first or second line of a
title in the listfile.

Syntax
STITLE [(n)][string |, string]..]
Parameters
n specifies which line of the title is to be replaced. Thus, n can

be either 1 or 2, and must be preceded and followed by a space.
The default is 1.

string has the same format, restrictions, and use as in the $PAGE
command.

$VERSION
The $VERSION command puts a version string into your object file.
Syntax
$VERSION [string [, string 1]..]
Parameter

string the data to be placed into the object file. The characters

1-6

of string must be preceded and followed by a quotation mark
(") or an apostrophe ('). The total number of characters

used in the strings is limited to 255. This includes any

blanks appearing in strings, but does not include the

guotation marks used to delimit the strings.

Chapter 2 Program Format

{ IDENTIFICATION DIVISION.
PROGRAM-ID. program-name-3 [IS |NITIAL PROGRAM],
[ENVIBONMENT DIVISION. environment-division-content |
[DATA DIVISION. data-divisfon-content]

[PROCEDURE DIVISION. procedure-division—content |

[nested-source-program] ...

END PROGRAM program-name-3.} ...

IDENTIFICATION DIVISION,

PROGRAM-ID. program-name—4 [IS INITIAL PROGRAM].
[ENVIBONMENT DIVISION. environment-division-content)
[DATA DIVISION. data-division-coritent |

{ PROCEDURE DNISION. procedure-division-corntent |

[[nested-source-program] ...

END PROGRAM program-name-4.]

LG200026_213a

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name-1 |}

[ENVIRONMENTAL DIVISION. environment—division-content |
[DATA DIVISION. data—division—-content]

[PROCEDURE DIVISION. procedure-division-content |

END PROGRAM program-name-1.]

Where nested-source-program Is:
IDENTIFICATION DIVISICN.

PROGRAM-ID. program-name-2 I8

[ENVIRONMENT DIVISION. erwviromment-division-content]
[DATA DIVISION. data—division-content]

[PROCEDURE DNVISION. procedure-division-content |

Ec /.»{n.; e
END PROGRAM program-name-2 .

LG200028_212a

Chapter 3 IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION has the following format:

{ J-D } QIMI&IQN.'
].QE.NII.EIQAI'QN.

PROGRAM-ID. program-name

[AUTHOR. {comment-entry} . . .]
[INSTALLATION. [comment-entry] . . .]
[DATE-WRITTEN. [comment-entry] . . .]
[DATE-COMPILED. [comment-entry] . . .]

[SECURITY. [comment-entry] . . .]
[REMARKS. [comment-entry] ...] An HP extension to the 1985 ANSI COBOL standard

Chapter 4 ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION
[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry]]
[OBJECT-COMPUTER. [obfect-computer-entry]]
[SPECIAL-NAMES. [special-names-entry]])

(INPUT-QUTPUT SECTION.

EILE-CONTROL. { file-control-entry } ...

[I-O-CONTROL. [input-output-control-entry]l]]

CONFIGURATION SECTION

[CONFIGURATION SECTION.
[SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE . 1]
[OBJECT-COMPUTER. [computer-name

WORDS
MEMORY SIZE integer-T CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]
[SEGMENT-LIMIT IS segmenf-number] .]]

[SPECIAL-NAMES. [[function-name-1

IS mnemonic-name-1 [QN STATUS IS condition-name-1 [QFF STATUS IS condition-name-2]}
IS mnemonic-name-2 [QFF STATUS IS condition-name-T [QN STATUS IS condition-name-1]]
ON STATUS IS condition-name-T { QFF STATUS IS condiion-name-2 |

QFF STATUS 1S candition-name-2 [ON STATUS IS candition-nama-1]

{IHBQLLGH] titeral-2
leral-1 THRY
|:{ ALSO fiteral-3 }.

\ /

[CURRENCY SIGN IS fiteral-6]
[DECIMAL-POINT IS COMMA]] J] LG200020_015

SOURCE-COMPUTER Paragraph

[SOURCE-COMPUTER. fomputer-name [WITH DEBUGGING MODE].]]

OBJECT-COMPUTER Paragraph

[OBJECT-COMPUTER. [computer-name

WORDS
MEMORY SIZE integer-1 CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1)
[SEGMENT-LIMIT IS segment-number] .]

SPECIAL-NAMES Paragraph

switch-name
device-name

IS mnemonic-narme-T [QN STATUS IS conditlon—name-1 [QEE STATUS 1S condition-name-2]
1S mremonic-narme-2 [QFE STATUS IS condition-rame-1 [ON STATUS (S condition-name-T1]]
ON STATUS IS condition-name-1 [DEF STATUS IS condition-name-2)
QFF STATUS IS condition-name-2 [QN STATUS IS condition-name-1]

HAREY alphabet-name-1 IS

{ STANDARD-1 3
STANDARD-2
NATIVE
EBCDIC
= -
{]]:IBQ_U_GI:I] roral_2
Jiferal-1 THRU P
{ALSO fiteral-3}. ..)

e

k3

s

[CURRENCY SIGN IS Jiteraf-6]
[RECIMAL-POINT IS COMMA).])

Table 4-1. HP COBOL Il Feature, Switch, and Device Names

| I
CONDITION-CODE | Refers to condition codes

| returned by operating system |

| intrinsics when they have been |

| called through the CALL |

| statement. |

| clause of the WRITE statement, |
| this prevents the line printer |

| from advancing vertically or |

| horizontally.

| |
TOP | When included in the ADVANCING |
| clause of the WRITE statement, |
| the mnemonic name assigned to |
| TOP causes the line printer to |
| perform a page eject. |

| I
Co1 | Used in the ADVANCING clause |

through | of the WRITE statement for |
C16 | sequential files. Each |

directs the line printerto |
skip to a particular channel |
(1 through 16) on the carriage |
control tape. Refer to the

for detalils. |

I I
NO SPACE CONTROL | When included in the ADVANCING |

COBOL /XL Reference Manual

HP|
I

Table 4-1. HP COBOL Il Feature, Switch, and Device Names (cont.)

| |
SWO0 | Refer to software switches |
through | associated with condition |
SW15 | names. (Software switches are |

| described in the next section |
| of this chapter.) |
| I

| I
SYSIN | Refers to the operating system |
| standard input device. In an |
| interactive session, thisis |
| your terminal. In a batch |
| job, it is either the card |
| reader or operator's console. |

| I
SYSOUT | Refers to the operating system |
| standard output device. In an |
| interactive session, thisis |
| your terminal. In a batch |
| job, it is the line |
| printer[REV BEG] |
|

| |
CONSOLE | Refers to the computer |
| operator's console (not your |
| terminal).[REV END] |
|

INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION Format
[INPUT-OUTPUT SECTION.
EILE-CONTROL.

{ file-control-entry }

[1-0-CONTROL.
BECORD
SAME | SORT AREA FOR file-name-3 { file-name-4} ...|...
SORT-MERGE

[MULTIPLE FILE TAPE CONTAINS { file-name-5 [PQSITION integer-31}...1... .1I]

File Control Clauses

Flle Control Format
Format 1 - For Sequential Flles

SELECT [OPTIONAL} file-name-71
ASSIGN {[TO file-info-1] SING dafa-rame-T]}

[escnz s []

[[ORGANIZATION iS) SEQUENTIAL]
[ACCESS MODE IS SEQUENTIAL]
[FILE STATUS IS stat-ftem].

el =]

[ORGANIZATION IS] RELATIVE

SEQUENTIAL [RELATIVE KEY IS dalga-name-1)

ACCESS MODE IS
{m:::“““:] RELATIVE KEY IS date-rame-1

[FILE STATUS IS stat-item)].

Format 3 - For Random-Access Flles

5
file—narme

ASSICN {[TO fila-info-T] {USING data-rame-1]}

. AREA
,:EESEE!E integer-1 [AMEAS]]
ACCESS MODE IS BANDOM

ACTUAL KEY IS data-name-1
[FILE STATUS IS stat-item).

Format 4 - For Indexed Flles

ASSIGN {[TO fife-info-1) [LISING data-name-1]}
_ AREA
I:EEEEEIEIMT I: AREAS :I
[QAGANIZATION 1S] INDEXED
SEQUENTIAL

ACCESS MODE IS RANDOM
DYNAMIC

BECORD KEY IS data-name-1 [WITH DUPLICATES]

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] - - .

[FILE STATUS IS stat-itern).

Format 5§ - For Sort-Merge Files
SELECT file-name-1
ASSIGN {[TO file-info-1] [USING data-name-1]}

Table 4-2. ANSI COBOL'85 File Status Codes

I I I

| RANDOM ACCESS or | |
SEQUENTIAL | RELATIVE | INDEXED |
I

—CTounmOOCwm

I I I
00-Successful. No | 00-Successful. No | 00-Successful. No |

more information | more information | more information |
available. | available. | available.
04-READ length of | 04-READ length of | 02-READ current |
record doesn't | record doesn't | key=nextkey |
match file. | match file. | value -WRITE or |
05-OPEN. Optional | 05-OPEN. Optional | REWRITE creates |
file not | file not | duplicate key |
| present, | present, | foralternate |
| created. | created. | key in which |
O7-Fileisnota | | duplicates are |
tape as the | | allowed. |
OPEN/ CLOSE [| 04-READ length of |
phrase implies. | | record doesn't |
	match file.
	05-OPEN. Optional
	file not
	present,
i i created. [

I I | I
10-EOF or optional | 10-EOF or optional | 10-EOF or optional |

A
T | filenotpresent | file notpresent | file not present |
E | onREAD. | on READ. | on READ. |
N | | 14-Record number | |
D | | too big for | |

| | relative key | |

| | dataitem on | |

| | READ. | |

I I I I

| I I
I | 22-WRITE a | 21-Sequence error. |
N duplicate key. (1)] 22-WRITE OR |
\Y 23-Record does not | REWRITE [
A exist. | aduplicate key.
L | | -START OR READ on | 23-Record does not |
I | missing optional | exist. |
D file. | -START OR READ on |
K 24-WRITE beyond | missing optional |
E file boundary. | file.
Y -Sequential | 24-WRITE beyond |
WRITE record | file boundary. |
number too | |

big for relative | |
key data item. | |

Table 4-2. ANSI COBOL'85 File Status Codes (cont.)

I I I

| RANDOM ACCESS or |
SEQUENTIAL | RELATIVE |
I I

I
I I I
P | 30-No more | 30-No more | 30-No more |
E information | information | information |
R available.[REV BEG] | available.[REV BEG]| available.[REV BEG]|
M |31-OPEN, SORT, or |31-OPEN, SORT, or |31-OPEN, SORT, or |
A MERGE of dynamic | MERGE of dynamic | MERGE of dynamic |
N file failed due | file failed due | file failed due |
E to file | tofile | to file name |
N attribute | attribute | attribute |
T conflict.[REV END] | conflict.[REV END] | conflict.[REV END] |
E | 34-Boundary | 35-Nonoptional | 35-Nonoptional |
R violation. | file not | file not |
R | 35-Nonoptional | present for | present for |
0] file not | OPEN. | OPEN.
R present for | 37-EXTEND or | 37-EXTEND or |
OPEN. | OUTPUT on | OUTPUT on |
37-EXTEND or | unwritable file. | unwritable file. |
OUTPUT on | -I-O for file | -I-O for file |
unwritable file. | that does | that does |
-1-O for file | not support | not support |
that doesnot | it | it
support it. | -INPUT oninvalid | -INPUT oninvalid |
-INPUT oninvalid | device for | device for |
device for | input. | input. |
input. | 38-OPEN on file | 38-OPEN on file |
38-OPEN on file | closed with | closed with [
closed with | LOCK. | LOCK. |
LOCK. | 39-OPEN | 39-OPEN |
39-OPEN | unsuccessful due | unsuccessful due |
unsuccessful due | to fixed file | tofixedfile |
to fixed file | attribute | attribute |
attribute | conflict. | conflict. |
conflict. [[|

I
INDEXED

Table 4-2. ANSI COBOL'85 File Status Codes (cont.)

| I
RANDOM ACCESS or		
SEQUENTIAL	RELATIVE [INDEXED	
L	41-OPEN on file	41-OPEN on file
(0] that is	thatis	thatis
G already open.	already open.	already open.
	42-CLOSE for file	42-CLOSE for file
C not open.	notopen.	notopen.
E	[43-No READ before	43-No READ before
R REWRITE.	REWRITE/DELETE.	REWRITE/DELETE.
R	44-Boundary	44-Boundary
0] violation.	violation.	violation.
R -Record too big	-Recordtoo big	-Recordtoo big
ortoosmall.	ortoosmall.	ortoosmall
-Rewrite record	46-READ after	46-READ after
not same size.	AT END or	ATEND or
46-READ after	after	after
AT END or	unsuccessful	unsuccessful
after	READ or START.	READ or START.
unsuccessful	47-READ or START	47-READ or START
READ.	on file not	on file not
47-READ on file	open for	open for
not open	inputorl-O.	inputorl-O.
for input.	48-WRITE on file	48-WRITE on file
48-WRITE on file	not open for	not open for
not open for	outputorl-O.	outputor
output.	49-REWRITE or	1-O.
49-REWRITE on file	DELETE on	49-REWRITE/DELETE
not open for I-O.	file notopen	on file not
forl-O.	openforl-O.	

(1) Does not apply to random files.

4-10

Table 4-3. ANSI COBOL'74 File Status Codes

I
|
SEQUENTIAL
|

I
RANDOM ACCESS or |
RELATIVE

I
00-Successful. No

I
| 00-Successful. No

S
U more information | more information |
C available. | available. | available.
C | | 02-READ current
E | | key=next |
S | | key value.
S | | -WRITE or REWRITE
F | | creates |
u | | duplicate key
L | | | foralternate |
		key in which
		duplicates are
		allowed.
I		
I ,		
A	10-EOF or optional	10-EOF or optional
T	filenot	file not
E		present.
N		
D	I I	
I I I I		
(I	22-WRITE	21-Sequence error.
N a duplicate key.	22-WRITE OR	
\% 23-Record does not	REWRITE a	
A exist. duplicate key.		
L		-START OR READ on
(I	missing optional	exist
D file. -START OR READ on		
K 24-WRITE beyond	missing optional	
E file boundary.	file.	
Y -Sequential	24-WRITE beyond	
	WRITE record	file boundary.
	number too	
	Dbig for relative	
	keydataitem.	
I I I I		
I		
30-No more	30-No more	30-No more
information	information	information
available.	available.	available.
34-Boundary		
violation. | | [

OoOXTIOMHAZMZr>Z0MT

| 00-Successful. No
more information

I
| 10-EOF or optional

I
INDEXED

-11

[-O-CONTROL Paragraph

BECORD
SAME | SORT AREA FOR file-name-3 { file-name-4 }
SORT-MERGE

(MULTIPLE FILE TAPE CONTAINS { file-name-5 [PQSITION integer-3)} ...]... .1

4-12

fi

Chapter 5 DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION

[DATA DIVISION.
[EILE SECTION.

file-description-entry { record-description-entry } . ..
sort-merge-file-description-entry { record-description-entry }...|....

WORKING-STORAGE SECTION.

77-level-description-entry |
record-description-entry

[LINKAGE SECTION.

77-levei-description-entry
record-description-entry T

FILE SECTION

[FILE SECTION .
ELR file-name-1

[BLOCK CONTAINS [infsger—1 TO] nteger-2 { RECORDS :|

CHARACTE

i ot
CONTAINS integer-6 TQ Infeger-7 CHARACTERS
RECORD IS] { STANDARD]

ﬂ{ REGORDS ARE

dafa-name-2
VALUE QF {{Iabe.f-infa-l}ls {”w_._,]] . :l

RECORD IS
DATA {RECOHDSARE} { data-name-3 } ... :|
data-name-5 }:l

[ME_ |S{ data-nan” -4]UNES [WITHMN_G AT { intager-7

I:LINES .wTI_tJ.E'{""mF rame-? }][UNESAT BOTTOM f“"’ reme-?]:I:l

[CODE-SET IS alphabet-name-T1] .
{ record-dascriptfon-antry } . . . LG200028_039bL

OMITTED

8D file-name-1

CONTAINS integer-1 CHARACTERS

RECOR

i CONTAINS integer-4 TQ integer-5 CHARACTERS

B RECORD IS
DA RECORDS ARg| 1data-name-2 } ...

{ record-description-entry } ... | 200078 0386

fi

Table 5-1. Values of the LABEL INFO and DATA NAME Parameters
in the VALUE OF Clause

- label-info-n - Meaning - data-name-n or literal-n

| vOL | Volume identification. | Any combination of one to six characters |
| from the set A through Z, and 0 through 9. |

- LABELS - ANSI standard or IBM format. - ANS or IBM.

| SEQ | Relative position of file on a | 0 to 9999, NEXT, or ADDF. [
| | magnetic tape. | |

EXDATE	Date when file may be written	Date, in the form month/day/year. The
over. Until that time, the	default is 00/00/00.	
	file is protected.	

WORKING-STORAGE SECTION

[WORKIING-STORAGE SECTION.

77-level-description-entry
record-description-entry

LINKAGE SECTION

[LINKAGE SECTION.

77-level-description-entry
record-description-entry

Data Description

Data Description Format

Format 1
numbe data-narme-1
fever- [FlLLEH]

(siGN is) f LEADING
'l [SEPARATE CHARACTER]
{rain]

- OCCURS intsger-2 TIMES

ASCENDING
I:{lhlﬁ }KEY'S { data-name-3 } :I
(INDEXED BY { index-name-1} 1]

QCCURS intsger-1 TQ integer-2 TIMES DEPENDING ON data-name-4

[{%mﬁ“ﬁ] KEY IS {data-name-3} ' :I

[INDEXED BY { indax-name-1} ..]

[BLANK WHEN ZERQ]
IVALUE IS fiteral-1].

Format 2

66 data-name-1 RENAMES data-name-2 Biﬁﬂ!-lﬁli] data-name-3 | .
THAU

Format 3

VALUES ARE IHRU

e (R, (e (258 e]}

The table below summarizes the type of editing permitted for each
category.

Table 5-2. Allowable Types of Editing For Categories of Data Items

I I
Category | Type of Editing
I I
. o
Alphabetic | Simple insertion B only. |
I I
: I
Numeric | None.
I
| I
Alphanumeric | None.
I
| o
Alphanumeric- | Simple insertion (0), (,), |
Edited | (B), and (/).
I
I
Numeric-Edited | All.
I I

fi

The table below shows the units digit, with the sign of its associated
number represented in ASCII code.

Table 5-3. Overpunch Characters for Rightmost Digit in ASCIl Coded Decimal

Numbers
- Units Digit - Internal Representation (ASCII) -
Positive - Negative - No Sign

0 { - 1} 0

1 A -] 1
2 B - K 2
3 C L 3
4 D M 4
5 E - N 5
6 F @] 6
7 G P 7
8 H Q 8
9 I R 9

The table below shows the number of bytes used depending on the size of a
data item.

Table 5-4. Number of Bytes Used to Contain a BINARY Data Item

PICTURE - Number of Bytes
S9 to S9(4) - 2
S9(5) to S9(9) - 4
S9(10) to S9(18) - 8

The table below shows the bit configuations used to represent signs in
packed-decimal fields.

Table 5-5. COMPUTATIONAL-3 or PACKED-DECIMAL Sign Configuration

| | Bit [Hexadecimal
| Sign | Configuration | Value [

+ - 1100

1101 - D

Unsigned - 1111 - F

Chapter 6 PROCEDURE DIVISION

The PROCEDURE DIVISION has the following format:

Format 1

[PROCEDURE DIVISION [USING { data-name~1 } - - -] -

{ paragraph-name.
[sentence]...}...]

Format 2
[PROCEDURE DIVISION [USING { data-name-1} - -] -

[DECLARATIVES.

{ section-name SECTION [segment-number].
USE statement
[paragraph-name .

[sentence] ...] ... } o

END DECI ARATIVES .]

{ section-name SECTION [segment-number].
[paragraph-name .

[sentence] ...]1 ... } ...]

Imperative Statements and Sentences

The following table lists verbs used in forming imperative statements.
Table 6-1. Imperative Verbs

ACCEPT(1) 0|\|| INPUT |EX|CLUSIVE | | RELEASE |
ERROR | | |
ADD(2) ON SIZlE ERROR | El(AMINE | | REWRITE(3) INVALID KEY |
ALTER | | EXIT | | SET | |
CALL(4) ON O\|/ERFLOWON ||GO TO | | SORT
EXCEPTION | | |
CANCEL | | GOBACKI | STAlRT (3) |
CLOSE | | INITIALIZE | STOP |
COMPUTE(2) |INSPE(|:T |S'I'RING (5) ON OVERFLOW |
CONTINUE | | MERGEI | SUIBTRACT 2 |
DELETE (3) | | MOVE | | TERMINATE |
DISPLAY | MULTIPLY (2) | UNl-EXCLUSIVE |
DIVIDE (2) | | OPEN | UNSTIl?ING (5) |
ENTER | PERFORM | WRITE (6) INVALID KEY |

| | END-OF-PAGE |
EVALUATE | | READ (7') AT END INVAlLID | |

IKEY I | I

(1) Without the optional and NOT ON INPUT ERROR phrase.

(2) Without the optional and NOT ON SIZE ERROR phrases.

(3) Without the optional and NOT INVALID KEY phrases.

(4) Without the optional , , and NOT ON EXCEPTION phrases.

(5) Without the optional and NOT ON OVERFLOW phrases.

(6) Without the optional , NOT INVALID KEY, , and NOT AT END-OF-PAGE phrases.
(7) Without the optional , NOT AT END, , and NOT INVALID KEY phrases.

PROCEDURE DIVISION Statements

ACCEPT Statement

GENERAL FORMAT FOR VERBS
Format 1

SYSIN
ACCEPT identifier [EREE] | FROM { CONSOLE
mnemonic-name

Format 2

SYSIN
ACCEPT identifier EREE | FROM 4 CONSOLE

mnemonic-name

[ON INPUT ERROR imperative-statement-1]

Format 3

ACCEPT identifier EROM

LG200026_080

ADD Statement
ALTER Statement
Format 1

ideritifier-2
{fteral-2

idertifier-1
ADD {!ﬂarai—f }
GMNG { identifier-3 [ROUNDED]}
SIZE ERROR imperative—statemert-1]

[CN

}..

ALTER Statement
procedure-name-2

TO [PROCEED TO]

ALTER { procedure-name-1

CALL Statement

CALL Statement Format (ANSI COBOL '85)

Format 1

identifier-1 '
m{mamf-r] [m :

[ON QVERFLOW imperative-statement-1

CALL Statemment Format {An HP Extension to the 1985 ANSI

COBOL. Standard)
Format 1
A\
idertifier—1 or-2
Q&LL{ 4y _} USING< identitier-2 =+ | [GMING /dentifiar-4]
[INTRINSIC] /iterai-1 \identifier-2\
Niteraf-2+

[ON QVERFLOW imperative-statemant-1

Format 2
W
@identifier-2
cALl {fdsnrmer-f] usING< fdertier-2 % - | [GIVING identifier—4]
[INTRINSIC] fiteral-1 identiier-2\

\iteral-24

CANCEL Statement

identifier-1
CANCELS .
literal-1

CLOSE Statement

CLOSE « file-name-1

COMPUTE Statement

COMPUTE { identifier-1 [BOUNDED] } - - = arithmetic-expression

[ON SIZE ERROR imperative-statement-1]

CONTINUE Statement
CONTINUE

COPY Statement

COPY text-name-1 I:{ iE} library-name-1 :I [NOLIST]

—y

= = pseudo-text-1 = = = = pseudo-text-2 = =
identifier-1 identifier-2
BEPLACINGS 4 Jitgral-1 BY literal-2

word-1 word-2

DELETE Statement

DELETE file-name-1 RECORD

[INVALIR KEY imperative-statemnent-1]

DISPLAY Statement

UPON { CONSOLE

mnemonic-name

DISPLAY identifier-1
literal-1

DIVIDE Statement

Format 1

identifier~1
Divipe {7] INTO { identifier-2 [BQUNDED]} - . .

[ON SIZE ERROR /mperative-statemernt-T1]

R AT

Format 2
identifier-1 identifier-2
DIVIDE {mmf-t } literal-2 }

GIVING { /dentifier-3 [RQUNDEDY]} ...
[ON SIZE ERROR imperative-staternent-1]

S i SN M e

Format 3
identifier-1 idertifier-2
DIYDE { fiteral-1 } {mem'-z }

GMING { identifier-3 [ROUNDED]} ...
[ON SIZE ERROR imperative-statement1)

i

20

R

Tt
o
o

6- 8

Format 4

identifier-1 identitier-2
D'MD'E{fM-f] [0 {mmr-z

] GIVING identitiar-3 [ROUNDED]

BEMAINDER fdentiffer-4

DIMVIDE {““"‘"ﬁ“’" } BY mﬁ;"z] GIVING identifier-3 [ROUNDED]

BEMAINDER idertifier-4
[ON SIZE ERROR imperative-statement-1]

ENTER Statement
ENTER Janguage-name [routine-name 1].

ENTRY Statement
ENTRY literal-1 [USING { data-name-1 }...]

EVALUATE Statement

ideritior-1

Identifier-2
literal-1 Htoral-2
EVALUATE X expression-1 ALSO expression~2
IRUE TRUE
EALSE FALSE
{{ WHEN
condition-1
IBUE
< EALSE >
Idertifier-3 identifier-
m{{m.z’ }HM}{ el }]}
\. srithmetic—axpression—1 THAY arithmetic-exprossion-2 J
[ALSQ
ANY AN R
condition-2
TRUE
identifier-5 Ideriifier-6
afithmetic-expression-3 THRY &rithmetic-axprassion-4 J d

imperaitive-statemerd-1} - --
WHEN OTHER /mperative—staternent-2 |

[END-EVALUATE]
EXAMINE Statement

EXAMINE idetifier

-

TALLYING {

([UNTIL FIRST
ALL
| LEADING

(ALL
LEADING
[UNTIL] FIRST

BEPLACINGH
\ .

‘)

. literal-1 [REPLACING BY literal-2)]

» literal-3 BY literal-4

‘ J

EXCLUSIVE Statement
EXCLUSIVE file-name [CONDITIONALLY]

EXIT Statement
paragraph-name
EXIT.
paragraph/section-name

EXIT PROGRAM Statement
EXIT PROGRAM

GOBACK Statement
GOBACK

GO TO Statement
GO TO|[procedure-name-1 |
GO TO{ procedure-name-1 }... DEPENDING ON identifier-1

IF Statement

ELSE {statement-2}

{ statement-1} - -
IE condition-1 THEN

NEXT SENTENCE
INITIALIZE Statement
INITIALIZE { identifier-1} - - -
o ALPHABETIC 1
ALPHANUMERIC
REPLACING{ { NUMERIC DATA BY {"""’""""9""’]
ALPHANUMERIC-ED- literal-1
[TED
- NUMERIC-EDITED -

6- 10

INSPECT Statement

Format 1 - INSPECT...TALLYING

INSPECT identifier-1 TALLYING
idenﬁfier—4}
literal-1

{ALL] { { idemiﬁer—a}[{ EEEQBE} INITIAL { idemiﬁer-4}:|
LEADING literal-1 AFTER literal-2

Format 2 - INSPECT...REPLACING
INSPECT identifier-1 BEPLACING

CHARACTERS BI{ identifier—5} { B_EF_QBE] INITIAL {identiﬁer—4}
literal-3 AFTER literal-2

{ LEAM.NQ} {{ ;fient;fl:r-:i] BY { ;fient;f.r;r—5}|:{ QEEQ_BE} INITIAL { ;:ent;ﬂ:r—4]]
EIRST iteral- iteral- AFTER iteral-

} {
CHARACTERS INITIAL

[{ AFTER

identifier-2 FQR

Format 3 - INSPECT...TALLYING
INSPECT identifisr-1 TALLYING

cunnacres | { 320} w2

) g [y Bt ey

e | B

idomtitier-2 FOR

=

i Y

INSPECT...CONVERTING

INSPECT identifier-1 mmcsanua{“’”"””’"“ } o {"""‘”""’}

iiteral-4 iiteral-5

[ERCg

- 11

MERGE Statement

MERGE Statement Format

MERGE file-name-1 { ON {AS'QEND'I'NQ } KEY { data-name-11} ...]

DESCENDING
alphabet-name
language-id

USING file-name-2 { file-name-3 }

QUTPUT PROQCEDURE IS procedure-name-1 [{IHBMH} procedure-name-2 :|
GIVING { file-name-4} - -

MOVE Statement

identifier-1
literal-1

MOVE TO { identifier-2 }

CORRESPONDING

MOVE identifier-1 TQ identifier-2
{com)

-12

Table 6-2. Permissible Moves

&

%

%, %4% %’o < %'% %%20
&\ %, \ 2, %%, %,gf AR AR
Source Field % N\ o \ % %) <%J%b %%*§%@
Group Y Y Y yvio| ! ¥ Y!
Alphabetio Y Y Yy | A Al A Y | A
Alphanumeric ¥ Y Y | ve | vo | vo | ¥ | ve
Extemnal Decimal (DISPLAY) Y! A Y2 Y Y Y N Y
Binary (COMP) y | A| yv] v | v Yy | = | ¥
Numeric Edited y |A|l Y| Y]y | v ¥ |V
Alphanumeric Edited Y Y 4 A A A Y A
Zero; (numeric or alphanumeric) ' A 4 ya v Y Y Yo
Spaces vl vyvlvyl]Jalafa]vy]a
High-Value, Low-Vaiue. Guctes yla|ly|a[|a|a]|y]|a
All Litoral Y Y Yyl v|]yY | w| Y |V
Numeric Literal 2| A|lv| Y] Y | Y |jy]|y
Nonnumeric Literal Y Y Y|l vy |v]Y|W
Packed Dacimal (COMP-3) vylalv| ¥yl Yy |y]|vyly

= move without conversion

of the least significant cigit.
= 8 NUMeNc move

r xR kR

= permissidle; & = prohibited

{The characters must ba numetic.)

¥® = the fiteral must consist only of numedc characters and is

treated as an External Decimal {integer) fleld.

Y®: = de-adited move

= parmissible only if the dacimal point Is to the right

= the move is treated as an External Decimal (integer) field,

L3200028 210¢

- 13

MULTIPLY Statement

- 14

Format 1

identifier-1
MULTIPLY {:m-: } BY {identifier~2 [ROUNDED)] }

[ONﬂZEEEEQE frrmmw ~statemerk-1]

Format 2

idertifier-1 ideriifier-2
Mumeu::{,m_, } {,m_z }

GIVING { identifier-3 [ROUNDED]
[nN SIZE ERROR /mperative-statemert-1]

{-"-"{-".r? .-"f.-"-'_'.;-!r"f-rr,r" _-:".r"

OPEN Statement

r weur L 1 ~ REVERSED
Y] § file-name WITH NO REWIND

OPEN < OQUTPUT { file-name-2 [WITH NO REWIND]}
1-Q {file-name-3}
EXTEND ({ file-name-4 }

\

PERFORM Statement

Format 1

PERFORM [procedure-name-1 I:{ %ﬁﬂﬁﬂ} procedure-name-2 :|:|

Format 2

PERFORM l:procedure-name-1 [{%ﬂm} procedure-name-2]:I

{ identifier-1

}IIME§

integer-1

Format 3

—

Format 4a. (Out-of-line PERFORM . . . VARYING)

THROUGH

PERFORM procedure-name—1 [THRU } proamu—mna—z]

e e

i o
VARYING {'M'T'”'z r } FROM { indax-name-2
Index-riame titerai-1
idontifier-4
—{lﬂ'ﬂ'af-ﬂ } UNTIL condition-1
. idamtifier-6
AFTER { f'""'m's . } FROM < Index-name—4
ndex-name literal-3
identifier-7 .
BY { fiterai-4 } UNTIL condition-2

Format 4b. (In-line PERFORM . . . VARYING)

READ Statement

Format 1 - Sequentla!, Relative, Random, and Indexed Flles

BEAD file—name—7 [NEXT] RECORD [INTQ identifiar-1]
[ATENQIMM—M 1]

Format 2 - Relative and Random Files
READ file-name-1 RECORD [INTQ identitier-1]
[l_N!ALID_K‘EYfmpWM statm 1]

Format 3 - Indexed Flies

READ fite-name-1 RECORD [INTC /dentifier-1]

VALY
-:J- }{{‘m 1.1.'\.
HEAR

RELEASE Statement
RELEASE record-name-1 [EROM identifier-1]

REPLACE Statement

Format 1

BEPLACE = = pseudo-text-1 == BY = = pseudo-text-2 = =

Format 2

BEPLACE OFF

- 17

-18

RETURN Statement

BETURN fife-name-1 RECORD [INTQ identifier-1]

AT ENQ :mperattve statement—1

REWRITE Statement

Format 1 - Sequentlial Files
BREWRITE record-name-1 [EROM identifier-1]

Format 2 - Relative, Random, and Indexed Files
BEWRITE record-name-1 [ERQOM identifier-1]
[INVALID KEY imperative- statement 1]

SEARCH Statement

Format 1
identifier-2

L Y

[AT END imperaiiva—statoment- 1]

Format 2

SEARCH ALL /dantifisr-1 [AT END imperative-siatemeant-1]

IS EQUAL TO
WHEN dafta-name-1 1IS-]
condition-name-1
IS EQUAL TO
ANDS{ cata-name-2 {|s=
condition-name-2

SEEK Statement
SEEK file-name RECORD

dentifier-3
literai-1
arithmetic-axpression-1

Idertitier—4
literal-2
arithmetic-exprassion-2

LG200026_136

-2 19

SET Statement

Format 1

index o-1 index-name-2
SET § IO { identitier-2
identifier-1 .
integer-1

Format 2

SET { index-name-3} ... { UE BY } {idsnrifr'er-3 }

DOWN BY integer-2

SET {{mnemonic—name—?} ... TO {QN]]
OFF

SET { condition-name-11}... TO TRUE

SORT Statement

SQRT file-name-1 { ON{Ag'QENQLNﬁ l KEY { data-name-1} ... }

alphabet-name }

COLLATING SEQUENCE IS { language-name
fanguage-id

r

N
THROUGH
< INPUT PROCEDURE IS procedure-name-1 l:{ THRU } procedure-narme-2] »

USING { file-name-2} ...)
“
-
THROUGH
{ QOUTPUT PROCEDURE IS procedure-name-3 [{ THRU } procedure-name-4
GIVING { file-name-3} --- -
.

6- 20

START Statement

IS EQUAL TO
IS =
IS GREATER THAN

START file-name-1 1551< :g N>Q_I LESS THAN

STOP Statement

BUN
STOP { literal-1 }

STRING Statement

identifier-2
} ... RDELIMITED BY < literai-2
SIZE

identifier-1
literal-1

st {1

INTQ identifier-3
[WITH POINTER identifier-4]
[ON OVERFLOW imperative-statemnent-1]

> data-name-1

- 21

-22

SUBTRACT Statement

SUBTRACT {"’“"“"} ... EROM { identifier-3 [ROUNDED]} - .

{DN SIZE ERROR Imperative-statement-T]

SUBTRACT {“”’”"’””] Eﬂgu{m’"”""]
fitaral=1 fiteral-2

GMVING { /dertifier-3 [BOUNDEDI} . ..
{ON SIZE_EBBQ_Ermpemrm-sratsmm 1]

Format 3

CORRESPONDING
CORAR
[ON SIZE ERROR :mpwaﬁvs—sraremm 1]

susacr|

UN-EXCLUSIVE Statement
UN-EXCLUSIVE file-name-1

} idertifier-1 ERQM idantifiar-2 [ROUNDED]

UNSTRING Statement

UNSTRING idertifier-1

literal-1 literal-2

I:[QELLLMJIEQ BY [ALL] {identiﬁer—Z} l: OR [ALL] {identiﬁer-a }]

INTO { identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-61} .

[WITH PQINTER identifier-7]
[TALLYING IN identifier-8]
[ON QVERFLOW imperative-statement-1]

USE Statement

Format 1 - Error Handling Procedures
{ file-name-1} -~

INPUT
USE { GLOBAL] AFTER STANDARD {m] PROCEDURE ON { OQUTPUT
ERBOR -0
EXTEND
Format 2 - User Label Procedures
USE AFTER STANDARD BEGINNING [FILE]
fite-name-1 [file-name-2)
INPUT
LABEL PROCEDURE ON{ QUIPUT
EXTEND
Format 3 - Debugging
USE FOR DEBUGGING ON
{{pracodwe-nems-! P]
ALL PROCEDURES) LG200028_147a

- 23

- 24

WRITE Statement

Format 1 - Sequential Files

WRITE record-name-1 [EROM identifier-1]

"{

{w} ADVANCING ¥

Format 2 - Relative, Indexed, or Random-Access Flles

\

idsntifler-
fnsgear-1

PAGE

WRITE record-narne-1 [ERQM identiftar-T]

}{

LINE
LINES

mnamonic-name—1 }

ﬁ-

7

General Format for Conditions

Abbreviated Combined Relation Condition Format

AND
relation-condition { { OR } [NOT] [relational-operator] object }

Class Condition Format

identifier-1 1S [NOT] < ‘AEPHAR

Combined Condition Format

condition-1 condition-2
{{ OR

Condition-Name Condition Format
condition-name-1

-1 25

Intrinsic Relation Condition Format

(~ 1S INOT] GREATER THAN \
IS [NOT] >
IS [NOT] LESS THAN
IS [NOT] <«
'S [NOT] EQUAL TO
IS [NOT] = > 0

mnemonic-name || <

Negated Condition Format
NOT condition-name-1

Relation Condition Format

(s NoT GREATER THAN)

IS [NOT] >

IS [NOT] LESS THAN

IS [NOT] <
identifier-1 IS [NOT] EQUAL TO identifier-2
literal-1 IS [NOT] = literal-2
arithmetic-expression-1 arithmetic-expression-2
index-name-1 index-name-2

An HP extension to the 1985
ANS| COBOL standard

- 26

Sign Condition Format

arithmetic-expression 1S [NQT] < NEGATIVE

Switch-Status Condition Format
condition-name-1
Miscellaneous Formats

Quialification

Format 1
f

{LN

IN .
\{ Q_E] { file-name-1}

]

} data-name-2

{ data-name-1] <

condition-name-1

Format 2

paragraph-name-1 { gE] section-name-1

Format 3

IN ,
text-name-1 library-name-1
{ OF } i

Format 4

IN

UNAGE—Q@JNIEB{ OF

] file-name-2

\
|:{ gE} { file-name-1 }]

- 27

Subscripting/Indexing

 ALL Y

integer-1

{condition—name-1} ({ data-name-2 [{+} integer-2)] »
data-name-1 index-name-1 [{+} integer-3]

 mmAmAn~ A . /

Reference Modification
data-name-1 (leftmost-character-position [length 1)

Identifier

IN o INY (e
data-name-1 { QE} data-name-2 { QE} {frle name-1 }

(({ subscript} -)'f

6- 28

Special Register Words
Table 6-2. Special Register Words

| I
Word | Contents

| |
LINAGE-COUNTER | An unsigned number used to keep |
track of the number of lines |
written to each page of a |
printed report. |

| I
DEBUG-ITEM | A data item used in support of |
the COBOL DEBUG facility. [
I

| I
TALLY | A 5-digit unsigned integer |
typically used to store
information produced by the |
EXAMINE statement in the |
PROCEDURE DIVISION. |
I

| I
CURRENT-DATE | An 8-digit alphanumeric item |
used only as the sending field |
in a MOVE or DISPLAY statement |
in the PROCEDURE DIVISION. |

I |
WHEN-COMPILED | An 18-character alphanumeric |
item that represents the date |
and time that the program is |
compiled.[REV BEG] |

| I
RETURN-CODE | A predefined numeric data name |
in the PROCEDURE DIVISION of a |
subprogram, RETURN-CODE is used |
to pass a value back tothe |
calling program.[REV END] |
I

I I

TIME-OF-DAY | A six-character numeric item |
| accessed only as the
| transmitting field of a MOVE or |
| DISPLAY statement in the
| PROCEDURE DIVISION to access the |
| time of day. |

Figurative Constant Words
Table 6-3. Figurative Constant Words

Word | Constant Value

| |
ALL literal | The character string denoted by the |
| variable literal

HIGH-VALUE | One or more occurrences of the |
HIGH-VALUES | character with the highest possible |
| value in the program collating |
| sequence.
|

LOW-VALUE | One or more occurrences of the |
LOW-VALUES | character with the lowest possible |
| value in the program collating |
| sequence.
|

QUOTE | One or more quotation marks. This |
QUOTES | constant is used to code the |

| quotation mark as a literal in

| statements such as MOVE QUOTES. |

|
SPACE | One or more spaces.

SPACES | |
| |
ZERO | One or more occurrences of the digit |
ZEROS | zero. [
ZEROES | |
| |
[ALL] | User-defined figurative constants

symbolic-character| which are defined using the SYMBOLIC |
| CHARACTERS clause of the ENVIRONMENT |
| DIVISION. [

6- 30

Appendix A HP COBOL II/XL Compiler Commands

Command Files

These are the MPX XL command files you can use to compile, link, and
execute HP COBOL II/XL programs. The syntax follows.

Table A-1. Command Files

Command | Description

| I
COB85XL | Invokes the COBOL compiler using the 1985 ANSI standard entry point and |
| creates an object file. |

| I
COB85XLK | Invokes the COBOL compiler using the 1985 ANSI standard entry point, |
| links the object file, and creates a program file. |

| |
COB85XLG | Invokes the COBOL compiler using the 1985 ANSI standard entry point, and |
| creates and runs a program file in SNEWPASS. |

| I
COB74XL | Invokes the COBOL compiler using the 1974 ANSI standard entry point and |
| creates an object file. |

| |
COB74XLK | Invokes the COBOL compiler using the 1974 ANSI standard entry point, |
| links the object file, and creates a program file. |
I

| I
COB74XLG | Invokes the COBOL compiler using the 1974 ANSI standard entry point, and |
| creates and runs a program file in SNEWPASS. |
I

Syntax

COB85XL [textfile [objectfile LI listfile ILI masterfile 1L newfile]I
[;INFO=" info "I ;WKSP= workspacename |[;XDB= xdbfile]

COBS85XLK [textfile LI progfile [listfile LI masterfile][, newfile]l
[;INFO=" info "IWKSP= workspacename |[;XDB= xdbfile]

COBS5XLG [textfile ILL listfile ILL ~masterfile [, newfile T]]
[;INFO=" info "|[WKSP= workspacename][;XDB= xdbfile]

COB74XL [textfile LI objectfile LI listfile LI masterfile][, newfile]l
[[INFO=" info ";WKSP= workspacename |[;XDB= xdbfile]

COB74XLK [textfile LI progfile [listfile LI masterfile 1L, newfile]I
[;INFO=" info "|[;WKSP= workspacename |[;XDB= xdbfile]

COB74XLG [textfile L[listfile LI masterfile I, newfile 1
[;INFO=" info. ";WKSP= workspacename |[;XDB= xdbfile]

Parameters

textfile MPE or TSAM file containing your source program. This
file can be compiled. The default is $STDIN.
objectfile Relocatable object code file. This file can be linked.

The default is SNEWPASS or $OLDPASS. The object file
code can be NMOBJ or NMRL. The compiler will take the
appropriate actions for existing files.

progfile Executable program file. This file can be executed.
The default is SNEWPASS.

listfile File on which your source code will be listed. The
default is $STDLIST.

masterfile MPE or TSAM file to be merged with textfile to produce a
composite source program. If masterfile is omitted, the
entire source is from textfile

newfile MPE file into which the merged textfile and masterfile
is written. For details, refer to the HP COBOL 1I/XL

Reference Manual . If newfile is omitted, no new file is

written.

info A string whose value is a command list of the form:

"$ compiler_command [$ compiler_command 1]..."

where no compiler_ command contains the character $.

If the number of commands is long enough, you can use an

ampersand (&) to continue the info string. The length
limit for a compiler command is the same as the length

limit for a source program line.

In the listing file, the string "INFO=" appears where
the sequence numbers normally appear.

workspacename Work space in which HP TOOLSET/XL can manage versions of
the source program.[REV BEG]

xdbfile MPE XL file into which a listing of the source code is
written. xdbfile is used to view the source code in the
HP Symbolic Debugger/XL.[REV END]

Compiling Your Program With the RUN Command

The MPE XL RUN command runs the HP COBOL Il compiler, which compiles your
source program. You can invoke the HP COBOL Il compiler and compile your
HP COBOL Il program with either the RUN command or a command file.

Syntax

RUN {COBOL }.PUB.SYS [,{ANSI85}];PARM= parm;INFO= info
{COBOLII} [{ANSI74}]

Appendix B COBOL II/XL Compiler Commands

Any of the commands or UDCs that are summarized below can be used to

invoke the HP COBOL II/V compiler. The COBOLII commands invoke the ANSI
COBOL'74-compatible COBOLII compiler through the ANSI COBOL'74 entry

point. The COBOLIIX system-wide UDCs invoke the extended COBOLII

compiler through the ANSI COBOL'85 entry point. This provides access to

the ANSI COBOL'85 feature set.

Syntax of UDCs
COBOLIIX [textfile LI uslfile [.[listfile LI masterfile]
LI newfile 1IN info]
COBOLIIXPREP [textfile LI progfile [, listfile LI masterfile]
LI newfile 1IN info |
COBOLIIXGO [textfile L[listfile LI masterfile 1LI newfile 1]III, info]
Syntax of Commands
COBOLII [textfile L[uslfile [.[listfile LI masterfile 1LI newfile 1111
[;INFO= info 1;WKSP= workspacename |
COBOLIIPREP [textfile LI progfile [,[listfile LI masterfile]
LI newfile]|IIN[;INFO= info [;WKSP= workspacename |
COBOLIIGO [textfile LI listfile ILL masterfile][, newfile]]]

[;INFO= info J[WKSP= workspacename]

Appendix C MPE/XL Run-Time Trap Handling

The HP COBOL II/XL compiler handles run-time traps for cases of bounds
checking, divide by zero, invalid GOTO statements, and alignment errors.

The run-time environment is set using the MPE XL SETVAR command with the
variable COBRUNTIME. The syntax for this command is:

SETVAR COBRUNTIME " string "
[REV BEG]

where string is a string of nine uppercase or lowercase[REV END]
characters representing run-time options A, C, D, |, M, N, or blank as
shown in the following table.

Table C-1. Run-Time Error Handling Options

| I
Option | Meaning

Aor blalnk | Print the error message and abort (the dlefault). [
C | | Print the error message and continue. |
D | Print the error message and enter debug mlode. |
I Ignore the error (continue without printing an error message). |

M | Print the error message, change the illegal digit to some legal |
digit, and continue. This option is only valid for illegal decimal

or ASCII digit errors. (See character position 1 in the next table.) |
When used for other errors, M is treated as a blank.

I
N | Change the illegal digit to a legal digit and continue without |
printing an error message.[REV BEG] This option is only valid for |
illegal decimal or ASCII digit errors in positions 1, 7, and 8. See |
the description of character positions 1, 7, and 8 in the next table |
for details. When used in other positions,[REV END] N is treated as |
a blank. |
I

Each character position in the above COBRUNTIME string represents a
specific trap that you can request, as shown in the following table:

Table C-2. Character Position in Specific Traps

Character | |
Position | Trap Type
I |

|
1 | lllegal ASCII or decimal digit.
|

| |
2 | Range error (OCCURS DEPENDING ON identifier, subscript, |
| index, or reference modification out of bounds). |

I
3 | No SIZE ERROR phrase.
I I

N

I
| Invalid GO TO.
I

|
5 | Address Alignment.
| I

»

| Paragraph stack overflow (recursive PERFORMS or too many |
| PERFORMSs with a common exit point).[REV BEG] |
I |

| I
7 | Leading blanks in a numeric field. If this position |
contains |, leading blanks in a numeric field are ignored.
If this position contains N, leading blanks are changed to
zeros. If this position contains a value other than N or I, |
the action entered in character position 1 is used. |

8 | Unsigned number in signed numeric field or signed number in |
unsigned numeric field. If this position contains I, the |
invalid sign is ignored. If this position contains N, the |
invalid sign is corrected. If this position containsa |
value other than N or |, the action entered in character |
position 1 is used.[REV END]
I

Table C-2. Character Position in Specific Traps (cont.)

I
Character | |
Position | Trap Type

[REV BEG] | |

I
9 | Only affects a NUMERIC class condition with a PACKED-DECIMAL |
identifier. If this field contains the character I, then |

the following conditions do not make a NUMERIC test false: |

I
* A signed value in an unsigned PACKED-DECIMAL field. |
* An unsigned value in a signed PACKED-DECIMAL field. |
* Any invalid sign nibble (half-byte). |

If this field contains anything other than I, the above
conditions make the NUMERIC class condition false.[REV END] |

Appendix D COBEDIT Program

The COBEDIT program develops and maintains COPY libraries. This program
resides in the PUB group of the SYS account. It allows you to create,
modify, and list a COBOL COPY library file.

To enter the COBEDIT program, issue the following command:
COBEDIT
Table D-1. COBEDIT Commands

I
Command | Meaning
I I
I _ _ I
BUILD | Build a COPYLIB file. |
I I
COPY | Copy modules into the library as in the BUILD |
| command. |
I |
EDIT | Create or edit a module to add to a COPYLIB file. |
I I
EXIT | Leave the COBEDIT program. |
I
HELP | List all COBEDIT commands. |
I I
KEEP | Add a module to the currently active COPYLIB file. |
I I
LIBRARY | Activate an already existing COPYLIB file. |
LIST | List text-names or one or more modules of the |
currently active COPYLIB file. |
PURGE | Purge a module of the currently active library or |
purge the library itself. |
I
SHOW | Show the name of the current library, its key file |
and the latest module to be accessed. [

BUILD

The BUILD command allows you to build a new KSAM file to be used as a
library file.

Syntax
BUILD [file-name][, maxrecs |

Parameters

file-name any name you wish to give your new library file,
subject to the naming conventions for any MPE file.
The file-name may be from one to eight alphanumeric
characters, the first of which must be alphabetic.

maxrecs if specified, must be greater than 0. It specifies

the maximum number of records that may be placed in
the file being built. If no value is specified for
maxrecs , the default is 2500.

COPY

The COPY command allows you to copy additional modules into a library
that was created previously using the BUILD command. To use COPY, the
library must be the current library or it must be activated by using the
LIBRARY command.

Syntax
COPY
EDIT

The EDIT command calls the EDIT/3000 subsystem, and optionally allows you
to name a module from the currently active library to be edited.

Syntax
EDIT [text-name]
Parameters

text-name the name of a module in the currently active
library.

EXIT
The EXIT command is used to exit the COBEDIT program.
Syntax
E[XIT]
HELP

The HELP command lists and gives a brief description of all commands
available in the COBEDIT program.

Syntax
HELP
KEEP

The KEEP command allows you to add a module to the currently active
library or replace an already existing module.

Syntax
KEEP [text-name]
Parameters
text-name is the name to be used for the module being kept.
LIBRARY

The LIBRARY command allows you to select the library that you wish to
access. When you issue this command, the currently active library is
closed and the specified library is opened and made available.

Syntax
LIBRARY library-name
Parameters
library-name is the name of the library file you want to access.
LIST

The LIST command allows you to list information about your currently
active library.

Syntax
LIST [text-name |
[ALL]
Parameters

text-name is the name of a module in the currently active

library.

ALL indicates that all modules in the library are to be
listed, beginning with the first module on the
file, and proceeding to the last.

PURGE

The PURGE command allows you to purge either a single module from your
currently active library or the entire library.

Syntax
PURGE ({ text-name }
{ ALL }

Parameters

text-name is the name of a module to be purged from the
currently active library. This is the module to be
purged.

ALL indicates that you want the entire library,
including its key file, to be purged.

SHOW

The SHOW command is used to find out the name of the currently active
library, its key file, and the name of the module that was most recently
accessed by COBEDIT.

If no library is open, the message No library is open occurs.
Syntax
SHOW

Appendix E COBOL Functions

The following tables lists and briefly describes each COBOL function.
The syntax for each function follows.

Table E-1. Date Functions

- Function - Type - Value Returned

CURRENT-DATE | Alphanumeric | Current date and time and |
| | difference from Greenwich Mean |
| | Time. |

DATE-OF- | Integer | Standard date equivalent |
INTEGER | | (YYYYMMDD) of integer date. |

DAY-OF-INTEGER | Integer | Julian date equivalent (YYYYDDD) |
| | of integer date. |

INTEGER-OF- | Integer | Integer date equivalent of |
DATE | | standard date (YYYYMMDDD). |

INTEGER-OF-DAY | Integer | Integer date equivalent of |
| | Julian date (YYYYDDD). |

WHEN-COMPILED | Alphanumeric | Date and time program was |
| | compiled. [

Table E-2. String Functions

- Function - Type - Value Returned

CHAR | Alphanumeric | The character in a specified |
| position of the program
| | collating sequence.

LENGTH | Integer | Length, in character positions, |
| | of the parameter. |

LOWER-CASE | Alphanumeric | The same parameter with all |
| | uppercase letters replaced by |
| | lowercase letters.

NUMVAL | Numeric | Numeric value of a simple |
| | numeric string. |

NUMVAL-C | Numeric | Numeric value of a numeric |
| | string with optional commas and |
| | currency sign. |

ORD | Integer | Ordinal position of the |
| | parameter in collating sequence. |

REVERSE | Alphanumeric | Same parameter with characters |
| in reverse order.

UPPER-CASE | Alphanumeric | Same parameter with all |
| | lowercase letters replaced by |
| | uppercase letters. |

Table E-3. General Functions

- Function - Type - Value Returned
MAX | Depends on | Maximum value of all parameters. |
| parameters. | |
MIN | Depends on | Minimum value of all parameters. |
| parameters. |
ORD-MAX | Integer | Ordinal position of maximum |
| | parameter. |
ORD-MIN | Integer | Ordinal position of minimum |
| | parameter. |

Table E-4. Arithmetic Functions

- Function - Type - Value Returned

INTEGER | Integer | The greatest integer not greater |
| | than the given numeric value. |

INTEGER-PART | Integer | Integer part of the given |
| | numeric value. |

LOG | Numeric | Natural logarithm of a numeric |
| | value. |
LOG10 | Numeric | Logarithm to base 10 of a |
| | numeric value. |
MOD | Integer | Modulo of two integer |
| | parameters.
- RANDOM - Numeric - Pseudo-random number. -
- REM - Numeric - Remainder after division. -
- SQRT - Numeric - Square root of a numeric value. -
| SUM | Integer or | Sum of parameters. |
| | Numeric

Table E-5. Financial and Statistical Functions

- Function - Type - Value Returned

| ANNUITY | Numeric | Ratio of an annuity paid for a |
| | | specified number of periods at a |

| | | specified interest rate to an |

| | initial investment of one. [

- FACTORIAL - Integer - Factorial of an integer value. -

- MEAN - Numeric - Arithmetic mean of parameters. -
- MEDIAN - Numeric - Median of parameters. -

| MIDRANGE | Numeric | Mean of smallest and largest |
| | parameters.

PRESENT-VALUE | Numeric | Present value of a series of |
| | future period-end amounts ata |
| | given discount rate. |

RANGE | Integer or | Value of largest parameter minus |
| Numeric | value of smallest parameter. |
STANDARD- | Numeric | Standard deviation of |
DEVIATION | | parameters. |
- VARIANCE - Numeric - Variance of parameters. -

Table E-6. Trigonometric Functions

- Function - Type - Value Returned -
- COS - Numeric - Cosine of an angle in radians. -
- SIN - Numeric - Sine of an angle in radians. -
- TAN - Numeric - Tangent of an angle in radians. -
ACOS | Numeric | Arccosine, in radians, ofa |

| numeric value.

ASIN | Numeric | Arcsine, in radians, of a [
| | numeric value. |

ATAN | Numeric | Arctangent, in radians, ofa |
| | numeric value. |

The $CONTROL POST85 Option

You must specify SCONTROL POST85 in any program that calls a COBOL
function. $CONTROL POST85 enables the COBOL functions and makes the word
FUNCTION a reserved word. If you have used the word FUNCTION as an
identifier, you must change it to another word before you can call any

COBOL functions. Otherwise, the compiler gives an error message.

ANSI85 Entry Point

You must use the ANSI85 entry point of the HP COBOL II/XL compiler to
call any COBOL functions.

ACOS

The ACOS function returns the arccosine of the parameter. The function
type is numeric.

Syntax
FUNCTION ACQOS (parameter-1)
Parameters
parameter-1 Must be class numeric and must be between -1 and 1,
inclusive.
ANNUITY

The ANNUITY function (annuity immediate) returns a numeric value that is

the ratio of an annuity paid at the end of each period for the number of

periods specified by parameter-2 to an initial investment of one.

Interest is earned at the rate specified by parameter-1 and is applied at
the end of the period before the payment. The function type is numeric.

Syntax
FUNCTION ANNUITY (parameter-1 parameter-2)

Parameters

parameter-1 Must be class numeric and must be greater than or
equal to zero.

parameter-2 Must be a positive integer.

ASIN

The ASIN function returns the arcsine of the parameter. The function
type is numeric.

Syntax
FUNCTION ASIN (parameter-1)
Parameters
parameter-1 Must be class numeric and must be between -1 and 1,
inclusive.
ATAN

The ATAN function returns the arctangent of the parameter. The function
type is numeric.

Syntax

FUNCTION ATAN (parameter-1)
Parameters
parameter-1 Must be class numeric.
CHAR

The CHAR function returns a one-character alphanumeric value that is a
character in the program collating sequence having the ordinal position

equal to the value of parameter-1 . The function type is alphanumeric.
Syntax
FUNCTION CHAR (parameter-1)
Parameters
parameter-1 Must be an integer. Must be greater than zero and

less than or equal to the number of positions in
the collating sequence.

COoSs

The COS function returns the cosine of an angle. The function type is
numeric.

Syntax
FUNCTION COS (parameter-1)
Parameters
parameter-1 The size of an angle in radians. Must be class

numeric.
CURRENT-DATE

The CURRENT-DATE function returns the calendar date, time of day, and the
difference between the local time and Universal Coordinated Time (UTC),

or Greenwich Mean Time. To get the correct time differential, you need

to set the environment variable TZ to your local time zone. The function

type is alphanumeric.

Syntax
FUNCTION CURRENT-DATE
DATE-OF-INTEGER

The DATE-OF-INTEGER function converts a date in the Gregorian calendar
from integer date form to standard date form (YYYYMMDD). The function
type is integer.

Syntax
FUNCTION DATE-OF-INTEGER (parameter-1)
Parameters

parameter-1 A positive integer that represents a number of days
succeeding December 31, 1600 in the Gregorian
calendar.

DAY-OF-INTEGER

The DAY-OF-INTEGER function converts a date in the Gregorian calendar
from integer date form to Julian date form (YYYYDDD). The function type
is integer.

Syntax
FUNCTION DAY-OF-INTEGER (parameter-1)
Parameters

parameter-1 A positive integer that represents a number of days
succeeding December 31, 1600 in the Gregorian
calendar.

FACTORIAL

The FACTORIAL function returns an integer that is the factorial of
parameter-1 . The function type is integer.

Syntax
FUNCTION FACTORIAL (parameter-1)
Parameters
parameter-1 Must be an integer greater than or equal to zero.
(The largest value parameter-1 can be is 20 in
order for the result to fit in 18 digits.)
INTEGER

The INTEGER function returns the greatest integer value that is less than
or equal to the argument. The function type is integer.

Syntax

FUNCTION INTEGER (parameter-1)
Parameters
parameter-1 Must be class numeric.

INTEGER-OF-DATE

The INTEGER-OF-DATE function converts a date in the Gregorian calendar
from standard date form (YYYYMMDD) to integer date form. The function
type is integer.

Syntax
FUNCTION INTEGER-OF-DATE (parameter-1)
Parameters

parameter-1 Must be an integer of the form YYYYMMDD, whose
value is determined as follows:

(YYYY * 10000) + (MM * 100) + DD

where YYYY represents the year in the Gregorian
calendar and must be an integer greater than 1600.
MM represents a month and must be a positive
integer less than thirteen. DD represents a day
and must be a positive integer less than 32 ; DD
must be valid for the specified month and year
combination.

INTEGER-OF-DAY

E-6

The INTEGER-OF-DAY function converts a date in the Gregorian calendar
from Julian date form (YYYYDDD) to integer date form. The function type
is integer.

Syntax
FUNCTION INTEGER-OF-DAY (parameter-1)
Parameters
parameter-1 Must be an integer of the form YYYYDDD, whose value

is obtained as follows:
(YYYY *1000) + DDD

where YYYY represents the year in the Gregorian
calendar and must be an integer greater than 1600.
DDD represents the day of the year and must be a
positive integer less than 367. DDD must be valid
for the year specified.

INTEGER-PART

The INTEGER-PART function returns an integer that is the integer portion
of parameter-1 (parameter-1 s truncated). The function type is integer.

Syntax
FUNCTION INTEGER-PART (parameter-1)
Parameters
parameter-1 Must be class numeric.
LENGTH

The LENGTH function returns an integer equal to the length of the
argument in character positions (bytes). To conform to ANSI

standard COBOL, you can use the LENGTH function instead of the .LEN.
pseudo-intrinsic. The function type is integer.

Syntax
FUNCTION LENGTH (parameter-1)
Parameters

parameter-1 A nonnumeric literal or a data item of any class or
category.

If parameter-1 or any data item subordinate to
parameter-1 is described with the DEPENDING phrase

of the OCCURS clause, the contents of the data item

referenced by the data-name specified in the

DEPENDING phrase are used at the time the LENGTH

function is evaluated.

	Top of Document
	Preface
	Chapter 1 Preprocessor Commands and $CONTROL Options
	Chapter 2 Program Format
	Chapter 3 IDENTIFICATION DIVISION
	Chapter 4 ENVIRONMENT DIVISION
	Chapter 5 DATA DIVISION
	Chapter 6 PROCEDURE DIVISION
	Appendix A HP COBOL II/XL Compiler Commands
	Appendix B COBOL II/XL Compiler Commands
	Appendix C MPE/XL Run-Time Trap Handling
	Appendix C MPE/XL Run-Time Trap Handling
	Appendix D COBEDIT Program
	Appendix E COBOL Functions

