Teach Yourself COBOL in 21 days,
Second Edition

Next chapter

Table of Contents:

Introduction

Week 1 at a Glance

Day 1 - Your First COBOL Program

Day 2 - Using Variables and Constants

Day 3 - A First Look at Structured COBOL

Day 4 - Decision Making

Day 5 - Using PERFORM, GO TO, and IF to Control Programs

Day 6 - Using Data and COBOL Operators

Day 7 - Basics of Design

Week 1 in Review

Week 2 at a Glance

Day 8 - Structured Data

Day 9 - File I/0

Day 10 - Printing

Day 11 - Indexed File I/O

Day 12 - More on Indexed Files

Day 13 - Deleting Records and Other Indexed File Operations

Day 14 - A Review of Indexed Files

Week 2 in Review

Week 3 at a Glance

o Day 15 - Data Integrity

« Day 16 - Using Look Up and Arrays

e« Day 17 - Alternate Keys

« Day 18 - Calling Other Programs

« Day 19 - Complex Data Entry Problems

« Day 20 - More Complex Data Entry

« Day 21 - Selecting, Sorting, and Reporting

Week 3 in Review

« Bonus Day 1 - Control Breaks

« Bonus Day 2 - Miscellaneous COBOL Syntax

« Bonus Day 3 - Full-Screen I/O

« Bonus Day 4 - Using a Symbolic Debugger

e« Bonus Day 5 - Intrinsic Functions and the Year 2000
« Bonus Day 6 - Dates and the Year 2000

« Appendix A - Answers
« Appendix B - ASCII
« Appendix C - Editing, Compiling, and Linking

o Appendix D - Handling Compiler Errors

e Appendix E - Summary of COBOL Syntax

« Appendix F - Transaction Processing

o Appendix G - Glossary

Next chapter

© Copyright Macmillan Computer Publishing. All rights reserved.

Next chapter Contents

Teach Yourself COBOL in 21 days,
Second Edition

By Mo Budiong

Dedication

| want to dedicate this book to the army of programmers and computer professionals who are al
sweating or will shortly be sweating with the rest of us over the year 2000 problem.

Acknowledgments

In this second edition dfeach Yourself COBOL in 21 Days$ave had a chance to correct errors fro
the first edition, expand on areas that needed elaboration, and write about many of the new and
things that are happening in the COBOL world. But most important to me, | have been able to ac
feedback that | have had from readers of the first edition. All of it was good, and all of it was helf
There are way too many of you to thank. There were lots of little suggestions and a couple of m:
and they all have been incorporated. | want to thank you all.

This is my third project for Sams and Macmillan, and | want to thank Chris Denny for noticing th:
first edition was climbing the sales charts and for realizing that it was time for a new edition.

| want to thank Heather Mlodinow, an accomplished COBOL programmer who reviewed the tect
end of the first edition, and Lee Ann Phillips who reviewed the second edition. Lee Ann was a to
editor, but she was usually right, and | am particularly indebted to her for additional material on ¢
and calendars. Greg Adams, president of International Digital Scientific, Inc., also reviewed the «
chapters and provided helpful suggestions. All the Sams and Macmillan editors and crew have
terrific. Ryan Rader, Rich Alvey, Drew Cupp, Heather Butler, Mary Ann Abramson, Fran Hatton,
Gayle Johnson all gave excellent advice and encouragement.

Mostly, | want to thank my wife Helen, who was not only my first line editor, but the first guinea
take the course. In fact, all three of the trial students--Helen, Victoria St. James, and Colleen
Lerian--were patient and capable and made it very easy to adjust the book to get it right for a ne
to COBOL. The book is much better because of their efforts.

In order to do this job properly, | needed to get my hands on a great deal of software and hardw.
want to thank Micro Focus Inc. for providing Micro Focus Personal COBOL and Micro Focus
Professional COBOL, as well as a lot of encouragement.

Acucobol Inc. graciously made its ACUCOBOL-85 package available.

A huge team is involved in taking a manuscript from the author's pen (or word processor) to fina
lot of help, advice, and changes are contributed by this team. But ultimately the book is the auth
work, and therefore | want to stress that | have made every effort to provide useful and accurate
information, but any errors you find are mine alone.

About the Author

Mo Budlong has been a programmer and hardware engineer for 25 years. He has written sever:
computer books, includinGOBOL Dates and the Year 200@oving from COBOL to CCOBOL
Cookbooks Volumes 2, and3, and theC100 Manual He currently writes regular columns for UNIX
magazines in the U.S. and England, including the monthly "UNIX 101" colunBufdWorld Onlinga
Web-based magazine. As a software consultant, he programs in multiple languages, including C
Visual Basic, SQL, and numerous Assembly languages, and he has several software packages
on the market.

Tell Us What You Think!

As a reader, you are the most important critic and commentator of our books. We value your opi
want to know what we're doing right, what we could do better, what areas you'd like to see us pt
and any other words of wisdom you're willing to pass our way. You can help us make strong boc
meet your needs and give you the computer guidance you require.

Do you have access to the World Wide Web? Then check out our lsitg: dtvww.mcp.com

NOTE: If you have a technical question about this book, call the technical support line at
317-581-3833 or send e-mailgapport@mcp.com .

As the team leader of the group that created this book, | welcome your comments. You can fax,
or write me directly to let me know what you did or didn't like about this book--as well as what ws
do to make our books stronger. Here's the information:

Fax: 317-581-4669

E-mail: programming_mgr@sams.mcp.com

Mail: Christopher Denny
Comments Department
Sams Publishing

201 W. 103rd Street

http://www.mcp.com/
mailto:support@mcp.com
mailto:programming_mgr@sams.mcp.com

Indianapolis, IN 46290

Introduction

COBOL is a language that was developed specifically for business programming. It actually can
for a wide range of programs and programming problems, but it is most popular for handling trac
business activities. COBOL excels in accounting systems and related activities such as inventor
retail sales tracking, contact management, commissions, payroll--the list is almost endless.

It is the most widespread commercial programming language in use today. It is English-like and
read. This makes it very popular with nonprogrammers. Financial officers frequently can read a :
of a COBOL program and understand what it is doing with figures, without having to rely on
programmers to interpret the program for them.

There is no doubt that COBOL is the most successful programming language ever. With an estil
million lines of COBOL code in use just in the United States, it remains a key language of choice
business applications.

Four years ago, the popular computer media were chanting a funeral dirge for COBOL. Today, t
has changed remarkably. Nearly every major software and information systems magazine has c
recent articles about the year 2000 problem and the need for COBOL programmers to handle th
problem.

Major software companies are backing this resurgence with research and development dollars. .
range of new COBOL-based products has been announced by Micro Focus Inc., Acucobol Inc.,
Computer Associates International Inc., Fujitsu Inc., and many more.

Programming work is available in COBOL for entry-level, intermediate, and advanced programn
This cannot be said of other languages, which usually require high intermediate-to-expert experi
before you can market that skill.

An additional factor has spurred the demand for COBOL programmers--the approach of the yea
Over the years, thousands of programs have been written using only a 4 digit date. When the cc
has to calculate into and beyond the year 2000, all kinds of problems arise. Millions of lines of ct
to be corrected before the year 2000, and there are just not enough COBOL programmers avalil:
situation is not limited to COBOL programs, but because COBOL has been the language of pref
for business applications for so long, there are vastly more COBOL programs in existence. The
magnitude of the year 2000 crisis has caused experienced software experts to predict dire cons:
It is estimated that the cost of fixing the problem will run into the billions of dollars. The demand-
COBOL programmers increases almost weekly, as more and more companies realize the scope
year 2000 problem and begin to allocate resources for its solution.

Although planning, supervision, and management of a year 2000 project requires highly skilled,
experienced technicians, there is lots of work that entry-level programmers can do. In fact, a
ComputerWorldarticle on the need for training COBOL programmers quotes Sheldon Glasser, a
consultant, as recommending that entry-level personnel be used for maintenance work to free uj
highly skilled programmers for the more difficult year 2000 wadkach Yourself COBOL in 21 Days
has been revised to include more information on dates and the year 2000 problem.

Other magazines such lormation Technology Training AssociatiandUnispherehave stressed th
importance of getting novices trained and productive fast. With fewer than 1,000 days until the y
2000, there's no time to waste on academic or theoretical exercises. | wanted to create a way fo
to be able to quickly and easily learn the language, and the feedback in calls and letters as well
response has been encouraging in this regard. This book is being used in college and other cou
the country as well as in businesses and as a home study course.

Although the enormous demand for programmers to fix year 2000 problems probably will not co
far into the new millennium, undoubtedly the demand for COBOL programmers will continue. Me
companies are putting off other maintenance and development that is not crucial in favor of com
their year 2000 projects. Given the amount of money that is being invested in updating and corre
existing COBOL code and the date problems in it, no one will want to throw away that investmer
near future--which means COBOL is here to stay for another round.

Additionally, recent developments in COBOL include a graphical user interface that works for C(
programs running on PCs and UNIX-based systems. This has created a trend in downsizing--tal
existing COBOL programs from mainframes and minicomputers and moving them to PCs as CC
applications.

COBOL is also a good general-purpose language and can be used for creating simple or very c
programs. It has been standardized since 1968, and learning it on any computer enables you to
other computers.

COBOL has invaded UNIX, an area that was dominated by the C language. A friend of mine rec
called who was desperately looking for COBOL programmers. He is a systems administrator for
network of UNIX computers at a major oil company. He has been a C purist for years, but the cc
has decided to buy a business package in COBOL, and he needed help immediately. COBOL o
has a long and healthy life ahead of it.

About This Book

Teach Yourself COBOL in 21 Dayent through many versions before it was right for the job. Sewv¢
adventurous volunteers agreed to learn COBOL from scratch by doing each lesson as | complet
| installed revisions based on their feedback. For the second edition, each day's text incorporate
suggestions from the first edition users and then underwent multiple revisions to ensure that it c«
easily understood and that the correct gradient approach was used. Concepts are introduced slc
repeated many times. The first edition included four Bonus Day lessons. This new edition has b
extended to include two additional Bonus Day lessons, with emphasis on the year 2000 problenr

In many cases, it is difficult to illustrate a programming point by using a full program. The point &
highlighted gets lost against the background of all the other things going on in the program.

The answer to this is to write short programs just to show how something works. The problem w
approach is that some examples are silly or trivial programs. One of my more determined volunt
frequently showed up at my desk looking perplexed and asking, "l understand what the program
but why would anyone ever want a program like this?"

The answer always is, "No one would; the example is only to illustrate how that part of the langu

works." | have revised each chapter and added specific comments indicating which examples ar
programs. If I've missed any of these, and you see a program that seems to do something silly,
or useless, be tolerant. Review the program as an example of how the language works and not
program that you might use for some purpose.

Lots of code is used. COBOL experience comes from writing, reading, and understanding lots o
Sometimes one point is illustrated by repeating a whole program with only that one point change

Programming Style

It is impossible to write a book about a programming language without spilling over into program
style. | have tried to balance teaching you good programming habits and teaching you the langu

It also is one of the realities of COBOL that a great deal of COBOL programming consists of
maintaining existing programs written by other people. Some of these existing programs are jusi
awful. You have to know a little about the "dark side" of programming to be able to deal with the:
Techniques are described that you should never use, but you do need to know what is going on
program when you see it.

Which is the best programming style is debated almost as hotly as which is the best programmir
language. You probably will run into some criticism of the programming styles used in this book.
get tangled up by it; you always can improve your style.

How to Use This Book

This book starts at the beginning, taking people who know nothing about COBOL and stepping t
through 21 lessons and on to programming proficiency.

Within this book, you'll find hands-on tutorials, timely tips, and easy-to-understand technical info
to help you get your footing with COBOL. You begin by writing simple programs, and progress t
complex, useful programs that you can apply to your day-to-day situations. This book also addre
year 2000 problem and offers useful solutions to apply.

Who Should Read This Book

Whether you are a complete novice to programming or a programmer ready to take the plunge i
COBOL, this book is for you. The book walks you day by day through the process of learning C(
In addition, if you're feeling really ambitious, you can plunge into the six Bonus Day chapters at |
of the book, which give you even more information about programming with COBOL. You can gt
chapter by chapter through the lessons, or just choose those lessons that most interest you. Eitt
this book is the perfect companion for anyone ready to learn programming in COBOL.

Conventions

This book uses several different typefaces to help you differentiate between COBOL code and r
text. COBOL code appears in the book spacial typeface. Placeholders within the code--words
represent the type of infomation you need to enter in the code--appegreciaal it al i c typeface

New Term: In addition, when new terms are introduced in the text, a New Term icon appears to"
of the text to indicate that term is being defined.

TYPE: The type icon denotes a new program for you to enter into your editor.
OUTPUT: The output icon highlights the results of compiling and executing the program.

ANALYSIS: Analysis of the programs reveals insights and information about several key lines o
listing.

Throughout this book, the emphasis has been on providing useful information in a way that is fa:
and fun.

Who Should Use This Book?

Teach Yourself COBOL in 21 Days, Second Edisaimed at beginners. It also is suitable for anyo
who needs a refresher in COBOL, and for entry-level programmers who want to take their next ¢
COBOL. This book also can be used by experienced programmers who do not know COBOL.

What | Expect from You

You are expected to have some familiarity with the computer that you will use with this book. | w
not expect people who have no experience with computers to be interested in learning COBOL
first step with computers.

This is not an academic book. | expect that a person wanting to learn COBOL programming will
do the exercises, write the code, compile it, and run it. You will not learn to program by just read
about it. You have to learn to use the tools by practicing their use. Therefore, you must either ov
COBOL compiler or have access to one in order to get the most out of your study.

You should have good English and computer dictionaries available in order to look up words yot
fully understand. It is impossible to understand what you are studying if you do not know the me
the words used.

Two things are important if you are new or relatively new to programming. Don't skip anything. T
course is organized to be a gradual accumulation of skills. Skipping a section will cause problern
sections. Also, be sure to do all the exercises. Frequently, the explanations and examplesinac
based on an assumption that you completed the exercises at the end of a preceding chapter.

The other important point is to use good study habits. Study with a schedule and with a definite |
to get through some portion of the course. You must also read and understand questions and e»
before you begin doing them.

Working with Your Computer

You must know how to do four things in order to work with this book. These are covered in the fi
chapters of the book, and you must master these skills. You will be using them again and again
progress through the book. If you skimp on any of them, you will hit a wall somewhere in this coi

You must learn how to do the following:

« Edit a text file. An editor is somewhat similar to a word processor but does not have all the
formatting features. The editor is used to write the programs in the book.

« Compile. A compiler converts the file that you have just edited into something that will run
your computer as a program.

« Link. This might not be necessary on your system, but you must find out whether it is neec
you must learn how to do it. Linking takes the executable program created by the compiler
links it with any programs that your computer needs in order to be able to operate.

« Run. You must know how to execute a program when it is ready to run.

These four steps are covered in some detail in the manual for your compiler, and in Appendix C
"Editing, Compiling, and Linking." If you aren't familiar with these by the time you finish Day 1, "™
First COBOL Program,” you will be in trouble for the rest of the course.

Target Compiler and Computers

Teach Yourself COBOL in 21 Days, Second Editras written in such a way that it can be used wit
most computers and most versions of COBOL. There is a great deal of difference in the way diff
computers behave and the way versions of COBOL interact with the user.

The programs are written to work with Micro Focus COBOL, Micro Focus Personal COBOL, LPI
COBOL, ACUCOBOL on UNIX or MS-DOS computers, and VAX COBOL on VAX VMS compute
The programs also should work with IBM COBOL for the AIX computer, RM COBOL, Realia CO
and Microsoft COBOL. There probably are many others.

All the volunteers worked with Micro Focus Personal COBOL, and the book tends to favor that c
because it is a full compiler at a reasonable price. This makes it a good tool for self-teaching.

You musthave a COBOL compiler in your computer system in order to be able to master the bas
COBOL programming skills. If you do not have a compiler, an order form for one is included at tl
of the book.

Supporting Material

Teach Yourself COBOL in 21 Days, Second Editictudes several appendixes designed to supple
points touched on in the text:

o Appendix A, "Answers," contains the answers to all the quiz questions and exercises pose
end of each chapter.
« Appendix B, "ASCII," contains the ASCII character chart.

« Appendix C, "Editing, Compiling, and Linking," describes how to edit, compile, link, and rui

using various computers and versions of COBOL.

Appendix D, "Handling Compiler Errors," covers some of the trickier compiler errors produ
COBOL compilers and how to track them down.

Appendix E, "Summary of COBOL Syntax," is a brief listing of the syntax of the COBOL
language used in this book.

Appendix F, "Transaction Processing," describes methods of updating groups of files
simultaneously to prevent data corruption.

Appendix G, "Glossary," includes definitions of unusual terms used in the book.

The Companion Disk

A low-cost companion disk is available from the author, Mo Budlong, for $15.00 through King
Computer Services, Inc., PO Box 728, Tujunga, CA 91043-0728. (See the King Computer Servi
form at the back of the book.) This disk offer is made by the author and not by Sams Publishing.
disk will save you a lot of typing. It contains all the programs in the book, including sample progr
the exercises. If you choose to order the disk, it will be sent to you quickly so that you can begin
soon as possible.

Teach Yourself COBOL in 21 Days, Second Editdhenable you to take the bold step into the wor
of COBOL programming. It is an exciting world. Happy programming!

Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 1 At a Glance

As you begin your first week of learning to become a COBOL programmer, you will start to see \
COBOL is one of the most commonly used programming languages, despite being one of the ol
Aside from familiarity with an editor and the structure of the language, you'll find that the most
important tool is experience. Experience is gained only by doing things. Learning by doing is reg
by many as the most effective form of learning. This book is designed to encourage you to perfo
real-world tasks at a pace designed for the beginner.

This book is set up around a series of concepts that build on each other. Each day ends with a v
containing a quiz and exercises that focus on specific concepts. Appendix A lists possible answe
quiz questions and programs for the exercises. Don't be discouraged if your programs don't look
like those found in Appendix A. More than one answer is always possible. Because learning by «
so effective, take advantage of the quizzes and exercises. They let you know whether you're on
whether you need to return to a day and review a certain concept.

Where You're Going

The first week covers the fundamentals of the COBOL programming language. Don't underestin
power of this material! COBOL is much like English, so you don't need to focus on cryptic symbc
meanings. Instead, you can focus on the lessons and underlying principles.

On Day 1, "Your First COBOL Program," you'll write your first program and immediately focus ot
COBOL is so easy to learn. Day 2, "Using Variables and Constants," helps you focus on how to
variables to store and manipulate information in your program. Day 3, "A First Look at Structurec
COBOL," focuses on the overall structure of the COBOL program and lays the groundwork for n
Important concepts. Day 4, "Decision Making," and Day 5, "UBBRFORM50 TQ, andIF to

Control Programs," focus on the mechanisms used to control which statements are executed, w
should execute, and how many times they should execute. Day 6, "Using Data and COBOL Ope
contributes significantly to your understanding of how to manipulate information stored within va
and reinforces the information covered on Day 1. Day 7, "Basics of Design," teaches you how tc

down a task, identify processing loops, and work your way through the steps of program design.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

-Day 1 -
Your First COBOL Program

Let's start with some basics. You might find that some of this revisits material you know, particularly if
already are a programmer. COBOL sets somewhat rigid requirements for the layout, contents, and orc
program. You must be familiar with these in order to program in COBOL.

Today's lesson covers the following topics:
« What is a computer?

« What is a program?

« What is a programming language?
« Whatis COBOL?

« The "Hello World" program.

o The parts of a COBOL program.

« The elements of code layout.

« Commenting a COBOL program.

« What is a shell program?

Today, you'll write your first program and learn the basic parts of a COBOL program.

What Is a Computer?

A computer is a machine that can add, subtract, multiply, divide, and perform other mathematical and
functions on numbers. A computer recognizes some numbers as numbers, and it also can recognize v
translating the words into numbers. At one time, you could talk to a computer only in numbers, but moi
computers can accept words on-screen, translate them into command numbers, and then execute the

The heart of a computer is the machine that does the addition, subtraction, multiplication, and division,
moves data from one location to another. This is calledghtal processing un{iCPU), because it process:
the data. In personal computing, the computer itself frequently is named after the CPU. A computer th:
CPU called the 80286 is sometimes called a 286. Machines that use the 80386 usually are sold as 38!
and those that use the 80486 CPU are called 486 machines. The arrival of 80586 chips heralded a nal
These are called Pentiums. Will 80686 chips be called Hexiums?

To be useful, the computer also must have a way to be given the numbers to proosssty(idred a method «
presenting results to the user (thepu). The input to a computer usually is entered with a keyboard. Oth
input devices include bar code readers, optical character readers (OCR), scanners, and mice. The out
computer usually is displayed on a monitor (or screen) or printed on paper or can be written out to a fil
disk.

To perform large calculations, the computer needs some place to store temporary or intermediate rest
temporary storage for the computer frequently is catlath memoryprimary memoryor primary storageand
usually is stored inside the main box of the computer. Think of the memory storage area inside the cor
a giant scratch pad for programs. Early personal computers had as little as 4 kilobytes (4KB) of memo
kilobyteis a bit more than 1,000 bytes; a byte can store one character of data,Au¢h as@) The persona
computer boom brought the price of memory down to the point that computers now commonly sell witt
starting memory of 4 or 8 megabytes (8MB) and can be upgraded to 32MB or moregéhytas about a
million bytes.)

To save results so that they can be reused, the computer needs some place to store information on a
or long-term basis. The problem with main memory is that it needs to have power all the time. When a
computer is switched off, the contents of main memory are lost. The computer needs something that v
information even when power is switched off. This is the task of secondary storage. Secondary storagt
permanent and continues to function even after power is gone. Secondary storage comes most comm
form of diskettes (or floppies), hard disks, and tapes. Data is recorded on diskettes, hard drives, and te
manner similar to the way that music is stored on a music tape cassette. A CD-ROM (compact disc-re:
memory) is another type of secondary storage. It is most commonly used as a permanent storage dev
contains data that cannot be modified; such as the text of encyclopedias and dictionaries, or a comple
of businesses in a country. There are more expensive devices available that can write to a CD-ROM tt
used for the initial storage of the dictionary, encyclopedia, or whatever.

The central processing unit requires that any program to be run and any data to be processed must be
memory. Whenever you run a program, it is loaded from the secondary storage device (disk) into mair
primary memory before it is executed. Whenever you work on data, such as editing a file, the file is firs
into main memory from the disk drive (secondary storage). The editing is done directly in main memor
then must be saved back to disk. The central processing unit can neither execute a program directly fr
nor manipulate data directly on the disk.

Figures 1.1 through 1.4 illustrate the relationship between the CPU, main memory, and disk storage.

Figure 1.1.
When the user starts a word processing program, the CPU loads the program from a hard disk into me

In Figure 1.1, the user has typed a command or clicked a button to start a word processing program. T
locates the program on the disk, loads it into main memory, and then begins executing the instructions
word processing program.

In Figure 1.2, the word processing program is running and the user types a command or clicks a butto
document for editing. The CPU locates the document on the disk and loads it, ready to be edited, into
memory.

Figure 1.2.
When the user asks for a document to be edited, the CPU loads the document from a hard disk into m

In Figure 1.3, the word processing program is running and the user types a letter "A" to be added to th
document. The CPU collects the letter typed at the keyboard and places it in the document in memory

Figure 1.3.
When the user types the letter "A," the CPU collects the character from the keyboard and inserts it intc

memory.

In Figure 1.4, the user has requested that the document be saved. The CPU collects all the memory c
the document and writes it to the hard disk.

Figure 1.4.
When the user asks for the document to be saved, it is pulled from memory and written back to the ha

The CPU, input, output, main memory, and secondary storage all work together to form a computer.

What Is a Program?

A computer is an incredibly stupid device. It doesn't do anything unless and until it is told to do so.

When a computer is first switched on, the CPU starts looking through main memory for an instruction.
think of it as being in a perpetual state of readiness.

The computer is designed so that a small portion of main memory is permanent; it retains its contents
when the power is switched off. This permanent memory is placed at the location where the CPU begi
searching for its first instruction after powering up. Consequently, it finds this permanent instruction
immediately. This permanent area of memory contains a sequence of instructions that the computer e:
power-up. The instructions look something like this:

« Test the monitor.
« Test the keyboard.
« Test all of the main memory and display the results on the monitor.

« Test any other devices that need to be tested, including disk drives.

« Load theoperating systemrogram from secondary storage (the disk) into main memory. The opet

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/01.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch01/04.htm

system is a master program that controls a computer's basic functions and allows other program
access the computer's resources, such as the disk drives, printer, keyboard, and screen. (In prac
step is a little more complicated, but the principle is correct.) For an MS-DOS-compatible compu
operating system is MS-DOS (Microsoft Disk Operating System).

« Jump to the first, previously loaded instruction at the beginning of the MS-DOS operating systenr

From this point on, the CPU is executing instructions within the MS-DOS operating system.

If you could read the first few instructions of the MS-DOS operating system in English, they might look
something like what you see in Table 1.1.

Table 1.1. The first few instructions of the MS-DOS operating system as they might appear in
English.

Instruction Number |Instruction Comment

001 Display the prompt Put the> prompt on the screen.

002 Wait for a keypress

003 Was a key pressed?

004 If not, GO TO 002 If no key was pressed, go back and try again.

005 Get the key value

006 Save the key value Store the value in main memory.

007 Display the key value

008 Was the value (ENTER)? Determine whether the Enter key was pressed,
signaling the end of command input.

009 If not, GO TO 002 The user is still typing, so keep getting keypresses

010 GO TO do the command The user pressed Enter, so jump to the instruction
will try to execute the command. This part of the
program is not shown.

The set of instructions is written in English to represent the steps of a program. The program is execut
quickly that you see no visible delay between typing the key and seeing it appear on-screen, even thot
action of saving the key value occurs between the keystroke and the display.

What Is a Programming Language®?

The CPU expects instructions to arrive as numeric codes. These numeric codes are not easily read by
beings. Aprogramming languages a set of English-like instructions that includes a set of rules (syntax) 1
putting the instructions together to create commands.

A translator changes the English-like commands into numeric codes that the computer can understanc
most common type of translator is a compiler. Tbmpileris a program that reads the English-like comme
in a file and then creates another file containing computer-readable numeric codes or commands.

In the previous example, the CPU cannot understand the English-like instiwv&®® KEY PRESSED?
but a programming language might accept this as a valid command and translate it into codes that the

recognize.

The termprogramis used loosely to refer to the actual application that is executed by the CPU, as well
file of English-like commands originally written by the programmer before it was translated into the pro
that the CPU executes.

In strict terms, the English-like commands in a file are caltedce codeand the translated numeric codes
placed in the output file are a runable program calextutable codéel'he computer cannot directly execute
source code as if it were a program. However, even experienced programmers will say, "l wrote a prog
calculate the month-end balance.” What they really mean is, "l wrote a source code file containing Eng
commands that, when compiled, will produce an executable program file that, when run, will calculate
month-end balance." It is definitely easier to say, "l wrote a program."

What Is COBOL?

COBOL is a programming language especially aimed at solving business problems. You will see as yc
through this book that COBOL solves a lot more than just business problems and can be used as a so
many data processing problems.

New Term: COBOLis an acronym for Common Business Oriented Language.

NOTE: COBOL was developed by the Conference on Data Systems Languages (CODASYL),
convened in 1959 by the Department of Defense. COBOL compilers became available in 1960, |
they were not standardized. The American National Standards Institute (ANSI) standardized a
version of COBOL in 1968. The language was revised and updated by ANSI in 1974 and again i
1985. These standards sometimes are called COBOL or COBOL-68, COBOL-74, or COBOL-85.
Most compilers are now COBOL-85 standard, but there still are a few COBOL-74 versions out
there. This book is written against the COBOL-85 standard, but you will have no trouble using a
COBOL-74 compiler for any of the examples.

Because the year 2000 problem might be one of the reasons that you are studying this book, it i
worth noting that legacy code could be written in any of the earlier COBOL standards. If you are
taking this course to bring yourself up to speed for an update effort, you will need to learn the
quirks and differences of the particular COBOL version that you will be working on. This book
covers the core of COBOL-85 and will give you about 95% of any version of COBOL that you
might work with. Throughout the book there are tips on differences that you might find in other
versions of COBOL.

The future of COBOL is fairly bright. A new COBOL standard is being drafted even as | write this
This standard is intended to take COBOL into the future and certainly well beyond the year 2000
The amount of money that is being invested in correcting date problems in existing COBOL code
is a sure indicator that no one is planning to dispose of COBOL in the near future.

Approximately 90% of all COBOL code runs in a character-based environment, which means the
most COBOL screens are 80 columns wide by 24 or 25 characters high and do not contain
graphics. Although there are versions of COBOL on the market that act in a Windows-like
environment, this book is not intended to be a course in COBOL for Windows. This means that
throughout the book, you will be running or executing your programs on an MS-DOS computer o
in an MS-DOS window that has been opened on a Windows computer. The MS-DOS window is
80 x 24 character window and represents the kind of display that you might see when coding

COBOL on a mainframe or minicomputer.

The "Hello World" Program

The "Hello world" program has become almost trite. Writing a program that {ieli® world"
on-screen usually is the first program you learn in any language. Listing 1.1 is a basic COBOL prograr
will display "Hello world" . The format of a COBOL program is covered in the following sections.

TYPE: Listing 1.1. "Hello world" in COBOL.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.
000800 DISPLAY "Hello world".
000900

001000 PROGRAM-DONE.

001100 STOP RUN.

ANALYSIS: A COBOL program always contains four divisions. These four divisions always have the ¢
names:

o IDENTIFICATION DIVISION
« ENVIRONMENT DIVISION
« DATA DIVISION

« PROCEDURE DIVISION

In Listing 1.1, line000100 and000200 are thdDENTIFICATION DIVISION . This division is used to
identify basic information about the program. In this examplelDE&NTIFICATION DIVISION contains
only thePROGRAM-IDHELLQ

Line 000300 is theENVIRONMENT DIVISION, which is used to identify the environment in which the
program is running. Remember that COBOL is intended to run on many different types of machines, a
section is used to handle the differences between various computers. In this case, the program has nc
specialized machine requirements, SOEN/IRONMENT DIVISION is empty.

Line 000400 is theDATA DIVISION , which will contain any data that the program operates on. This
program has no data, so tDATA DIVISION is empty.

Lines000500 through001100 are thePROCEDURE DIVISION This is the meat of the program--the pa
that does the work intended by the programmer.AFR®CEDURE DIVISIONcontains two paragraphs at |i
000700 (PROGRAM-BEGINand line001000 (PROGRAM-DONE he termparagraphhas a special
definition in COBOL that will be covered a bit later in today's lesson. All the actual work in this prograrn
done by lineD00800 .

If you have not yet installed your software, review Appendix C, "Editing, Compiling, and Linking," and t
Installation instructions in your software documentation; then complete the installation procedure. Mak

that you end up with &> prompt under MS-DOS, and create your working directories as described in
Appendix C. Change to your working directory before you begin edittig.cbl

It is extremely important that you type (edit), compile, and, if necessary, link this program to produce a
program. If you can't get this program to run, the remainder of this book will be an exercise in theory w
practical application. If you are using some other editor and COBOL combination, consult your local
documentation or someone who is experienced with the system. Don't pass over this exercise without
to run. It is the simplest program to edit, compile, link, and run.

Before you start typing, you should note a couple of things. The first six character positions of each lin
used for line numbering. The seventh character position is always blank. The command9@b866sand
001100 begin at position 12. Everything else starts at position 8.

The editor that comes with Micro Focus Personal COBOL actually skips positions 1 through 7 and lea
cursor positioned at column 8. If you are using this editor, use the left arrow key to move to column 1t
the line numbers and the lines. Columns 1 through 7 are traditionally used for line numbering in COBC
larger systems will use line numbers. The practice of skipping or not requiring line numbers is commor
COBOL compilers and very modern compilers, but at the moment it is the exception rather than the ru
book uses line numbers in keeping with the practice of most larger systems, and to provide a convenie
refer to lines of code when a program is being analyzed in the text.

It's preferable to use spaces instead of the Tab key while editing, and you should break the habit of us
Tab key. Many personal computer-based COBOL compilers can handle tab characters, but the langue
designed originally to allow tabs in the source code file, and their presence can cause trouble on large
machines.

If you are using Micro Focus Personal COBOL, start your editor by typing the following line and pressi
Enter:

pcobol hello.cbl

The extensioncbl is the default extension for many MS-DOS based COBOL compilers. On the VAX
minicomputer manufactured by Digital EqQuipment Corporation, the default extensi&@bs and you would
use a command such as:

EDIT HELLO.COB

DO/DON'T:
DO type each line exactly as it appears in Listing 1.1. Review your work carefully.

DON'T make typing errors. Some of the typing errors that can cause serious problems when yot
are compiling include misspelling the name @I&ISION (for example]NDENTIFICATION
DIVISION), adding an unnecessary hyphen (for exanipfe[A-DIVISION), or omitting any of

the periods. Note that everything ends with a perigdif fact, line 000200 has two periods in it.

New Term: Checking source code created with an editor for typographical and other errors before cornr
is referred to adesk-checking

New Term: COBOL compilers are prone to produce cascading errocaséading errofis one or more error:
(sometimes hundreds) generated by the compiler when the problem really is one simple error earlier ir
program. Code containing a missing period can produce a stream of apparent errors on some compile
be traced back in the program to that single error. The missing period itself might not even be mention
error by the compiler, but it causes later problems that do show up.

When you have completed your check, close and save the file. Under Micro Focus Personal COBOL,
down the Alt key while pressing F4, and then release both keys and press Enter.

Now you are ready to compile your program. Under Micro Focus Personal COBOL, press ERzeahtilis
displayed on the status line (the fifth line from the bottom of the screen) and press Enter.

New Term: Under Micro Focus Personal COBOL, the process of compiling is adilecking The Micro
Focus Personal COBOL compiler actually is calledctiecker

The program should compile with no errors or warnings. If there are errors or warnings, re-edit your sc
code file,hello.cbl , desk-check it (compare it to the example in the book), and locate the error. The
compiler might tell you the line number at which the error occurred, and you can go straight to that line

COBOL compilers are dependent on correct punctuation, so bad punctuation can sometimes confuse
compiler. If the compiler says you have an error on a particular line, but you can't seem to find it, look
two lines earlier to check whether you left out a period or started a line in an incorrect column. You als
want to check Appendix D, "Handling Compiler Errors," to help you track down errors.

After the program compiles cleanly, you are ready to run it. Exit from the COBOL development enviror
you are in one. For Micro Focus Personal COBOL, press Esc. The bottom row of the screen will disple
message "Exit from Personal COBOL." Press the Y key to exit.

To run the program, types and press Enter to clear the screen. Then type the following and press En
pcobrun hello

The program runs and displays your "Hello World" text, along with some Micro Focus copyright inform
as shown in the output that follows.

OUTPUT:

Personal COBOL version 2.0 from Micro Focus

PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
Hello world

C:>

Congratulations, you've completed your first program. If you are not excited about this, try exclaiming '
My first COBOL program!" a couple of times.

The output display is approximately what you should see on your screen under Microfocus Personal C
Other versions of COBOL will produce different display arrangements and may or may not include cog
notices. The key point is that the messkgéo world will be displayed on-screen.

If you did not get the expected results, do not despair. Go back to the beginning of this section and rev
the work. Particularly review Appendix C and the installation instructions in your software documentati
run the tests to make sure that your editor is installed correctly. Check all the spelling in the program a
through the compiler (checker) again until there are no error messages.

The Parts of a COBOL Program

Recall that a COBOL program is made up of four mandatory divisions. They always appear in the procg
the order shown in Listing 1.2.

TYPE: Listing 1.2. COBOL's four divisions.

000100 IDENTIFICATION DIVISION.
000200 ENVIRONMENT DIVISION.
000300 DATA DIVISION.

000400 PROCEDURE DIVISION.

ThelIDENTIFICATION DIVISION marks the beginning of a COBOL program. The name of the progr
which you assign, will be entered as a statement IXBBITIFICATION DIVISION (more on this in a
moment).

The ENVIRONMENT DIVISION contains statements or commands to describe the physical environme
which the program is running. The main use ofEN&/IRONMENT DIVISION is to describe the physical
structure of files that will be used in the program. You won't be working with files in these early lessons
now thisDIVISION will be little used.

TheDATA DIVISION contains statements describing the data used by the programATAeDIVISION
and thePROCEDURE DIVISIONare the most important divisions in a COBOL program; they do 95 per
of the work. You will start working in thBATA DIVISION in Day 2, "Using Variables and Constants."

ThePROCEDURE DIVISIONcontains the COBOL statements that the program will execute after the p
starts running. ThHEROCEDURE DIVISIONiIs the real workhorse of a COBOL program. Without a
PROCEDURE DIVISION you wouldn't have a program, because all the other divisions are used to cre
environment and data that are used byRR®OCEDURE DIVISIONto actually do something.

You already have sedmello.cbl (in Listing 1.1). It contains no data, no environment, and only one
significant statement, which is in tRROCEDURE DIVISION However, without th®ISPLAY "Hello"
command, the program would do nothing at all.

EachDIVISION in a COBOL program is broken down into smaller units, like an outline. Briefly, a
DIVISION can contairSECTIONs, aSECTIONcan contain paragraphs, and paragraphs can contain
sentences. For the moment, you can igigEETIONs, which are introduced in Day 2. Think of a COBOL
program aPIVISION s containing paragraphs containing sentences.

The requirements for the contents of each diffePdRiSION can vary, but most compilers require that on
two things be present in a COBOL program--other than the four divisions--in order to compile it:

« PROGRAM-ID
« STOP RUN

ThePROGRAM-I0s a paragraph that must appear inlENTIFICATION DIVISION and is used to give
the program a name.

There must also be one paragraph inRROCEDURE DIVISIONthat contains th8 TOP RUNSstatement.

Listing 1.3 is an example of the smallest possible COBOL program that will compile and run on any C(
compiler. It contains theROGRAM-IDparagraph and only one paragraph inRROCEDURE DIVISION

The paragrapPROGRAM-DONi6ntains only one senten@&[OP RUN This sentence causes the progran
stop running when the sentence is executed. Most versions of COBOL require this explicit command &
of identifying the point in the program where the program terminates.

TYPE: Listing 1.3. mi ni num cbl , the irreducible minimum COBOL program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MINIMUM.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-DONE.

000800 STOP RUN.

OUTPUT:
Nothing!

ANALYSIS: Clearly,minimum.cbl does even less théaello.cbl . In fact,minimum.cbl does nothin
except stop running as soon as it starts. Its only function is to illustrate the minimum syntax that the C(
compiler will accept.

Of all the errors that you can make in typing a COBOL program, an inc&/iétSION name is one of the
hardest errors to locate. In one compiler that | tested, misspelling the naméDERMBEFICATION
DIVISION asINDENTIFICATION DIVISION caused the compiler to report that BEROCEDURE
DIVISION was missing. This is a difficult error to spot because the real problem was three divisions a
everything about thEROCEDURE DIVISIONwas fine. It is important that tH2!VISION s be typed
correctly.

Listing 1.4 is more useful thaninimum.cbl . You will recognize some similarities bello.chbl , but |
have divided a couple of the lines to illustrate a few more things about COBOL.

TYPE: Listing 1.4. Three levels of COBOL grammar.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. SENTNCES.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500 PROCEDURE DIVISION.

000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "This program contains four DIVISIONS,".
000900 DISPLAY "three PARAGRAPHS".

001000 DISPLAY "and four SENTENCES".

001100 PROGRAM-DONE.

001200 STOP RUN.

OUTPUT:

C>pcobrun comment

Personal COBOL version 2.0 from Micro Focus

PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
This program contains four DIVISIONS,

three PARAGRAPHS

and four SENTENCES

ANALYSIS: Strictly speaking, theROGRAM-IDSENTNCESIs a sentence, but it has such a specializec
in a COBOL program (identifying the program) that it is not usually considered to be a sentence. The f

is namedsentnces.chbl (with the wordsentnces deliberately shortened) because some operating sy
(especially MS-DOS) limit filenames to eight characters plus an extension, and many compilers limit pi
names to eight characters.

DO/DON'T:
DO match the filename and program name; for exanseletnces.cbl is the file name and
SENTNCESs thePROGRAM-ID

DON'T add confusion by usingROGRAM-ICthat is different from the filename.

I will stick with the use of eight or fewer characters for the names of programs and files throughout the

Thesentnces.cbl program contains all fo»IVISION s, three paragraphBROGRAM-ID
PROGRAM-BEGINandPROGRAM-DONEaNd four sentences (the thi2kSPLAY statements in
PROGRAM-BEGINMNdSTOPRUNat line001200).

The paragraph namBROGRAM-IDis a required paragraph name and must be typed exactly as
PROGRAM-IDThe paragraph nam@fROGRAM-BEGIdNdPROGRAM-DON#e names | assigned when
wrote the program. Any of the paragraphs inRREOCEDURE DIVISIONare given nhames you assign. The
two paragraphs could have been nam&IPLAY-THE-INFORMATION andPROGRAM-ENDS-HERE

All the special words in COBOL (such BROGRAM-IDDATA DIVISION , STOR andRUN, as well as the
paragraph names and program name (SUSEASTNCESPROGRAM-BEGINandPROGRAM-DONEare
created using the uppercase letters of the alpiatiwbughz, the digitsO through9, and the hyphen {. The
designers of COBOL chose to allow a hyphen as a way of improving the readability of COBOL words.
PROGRAM-BEGIN easier to read thittROGRAMBEGIN

The designers of COBOL also allowed for blank lines, such a®0@600 in Listing 1.4. Blank lines mean
nothing in COBOL and can be used to spread things out to make them more readable.

You should type, compile (and, if necessary, link), and run Listing 1.4. See Appendix C for details. Yot
need to review this appendix a couple of times before you are completely comfortable with each of the
involved in editing, compiling, and running.

Listing 1.4 illustrates the line-by-line organization of a COBOL program. There also is a left-to-right
organization that determines what can be placed in certain columns.

A COBOL source code file has five areas, extending from left to right across the page. The first six che
or columns of a line are called tekequence number areahis area is not processed by the compiler, or if i
processed, it provides you only with warnings that numbers are out of sequence (if they are).

Character position 7 is called timglicator area This seventh position is usually blank. If an asterisk is pla
in this column, everything else on that line is ignored by the compiler. This is used as a method to inclt
comments in your source code file.

The four character positions 8 through 11 are calieé A DIVISION s and paragraphs (a&ECTIONS)
must start in Area A. It is good coding practice to Sd¥ISION s, SECTIONs, and paragraph names at
column 8 rather than some random place in Area A.

Character positions 12 through 72 are calleglh B Sentences must start and end within Area B. It is gool
coding practice to start sentences at column 12 rather than some random place in Area B.

COBOL was designed as an 80-column language, but there is no formal definition of character positiol

through 80. This is called théentification arealwhich has nothing to do with thiBENTIFICATION
DIVISION).

The identification area is left to the designer of the COBOL compiler to use as needed. COBOL editors
computers usually allow you to define an eight-character modification code that is inserted into the
identification area whenever a line is changed or a new line is added. If you add lines to an existing prt
change existing lines, it could be useful to know which lines were changed. Modification codes can be
track down where a particular change was made. Modification codes are especially useful in companie
many programmers can work on many files. It helps keep track of changes, when they occurred, and v
them.

Some special COBOL editors place a modification code automatically in positions 73 through 80. This
of marking lines as modified usually depends on a special editor set up for COBOL that inserts these ¢
automatically. You probably will never see modification codes using COBOL on a PC.

Listing 1.5 iscomment.cbl , which really issentnces.cbl with a comment included and some lines ti
have been tagged with modification codes. | have deliberately left some of the sequence numbers out,
them in incorrect order. The compiler will compile this without an error, but it might generate a warning
lines are out of order or sequence numbers are not consecutive. The compiler doesn't really care what
first six positions, but it might provide some warning information. Because of the width limits in a book,
example modification codes in Listing 1.5 do not actually start in column 73 as they must in a real COE
example.

TYPE: Listing 1.5. The areas of a COBOL program.

Indicator area Area A Area B ldentification area

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COMMENT.
000300 ENVIRONMENT DIVISION.

DATA DIVISION. MB072197
000500 PROCEDURE DIVISION.
000600
000700* This is a comment. MB072197

000800* This paragraph displays information about the program. MB072197
000900 PROGRAM-BEGIN.

003700 DISPLAY "This program contains four DIVISIONS,". MB072197
003800 DISPLAY "three PARAGRAPHS". MBO072197
001000 DISPLAY "and four SENTENCES".

001100 PROGRAM-DONE.

001200 STOP RUN.

Note that the output is the samesastnces.chbl

OUTPUT:

C>pcobrun comment

Personal COBOL version 2.0 from Micro Focus

PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
This program contains four DIVISIONS,

three PARAGRAPHS

and four SENTENCES

C>

ANALYSIS: As a historical note, the very first COBOL programs were written using punch cards. Eacl
carried one line of code that had been carefully entered using a keypunch machine (a kind of typewrite
punches holes in cards). The stack of punched cards was carried to the computer and fed into it using
reader. An "out of sequence" warning was used to let you know that you probably had dropped the pu
deck and hadn't put them back together in the correct sequence. Compiler error messages also referre
numbers, and locating an error was difficult without line numbers on the cards. PC COBOL compilers |
give warnings about sequence.

Lines000700 and000800 contain an asterisk in column 7, the indicator area. Everything beyond the ¢
Is ignored and can be used as a comment, as in the example.

DIVISION s and paragraphs start in Area A but can extend into Area B.

Sentences begin and end in Area B. In Listing 1.5, sentences appear@23in@8 , 003800 , 001000 , and
001200 .

What Is a Shell Program?

Because COBOL has a certain minimum amount of code that is required for all programs, it is a good
to maintain a COBOL program that contains the minimum requirements.

New Term: A COBOL program that contains the minimum requirements usually is cadleellgprogram a
skeleton programor aboilerplate program

If you copy this shell program to a new file before you start editing the new program, you can save yoL
extra typing. Listing 1.6c0obshlO1.cbl , is your first version of the COBOL shell program. As you prog
through the days, you'll gradually add more and more pieces to the shell; eventually, you'll have a corr
shell to use in all projects.

TYPE: Listing 1.6. Your first version of a COBOL shell.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COBSHLO1.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600 PROGRAM-BEGIN.

000700

000800 PROGRAM-DONE.

000900 STOP RUN.

Type Listing 1.6 and compile it to ensure that everything in it is correct. You will use this shell, and ver:
it, many times before you are through with these lessons.

As you will see in the next few days, PC-based COBOL compilers are much less stringent about follov
rules described in today's lesson. However, COBOL is intended to be a portable language that allows
moved to other computers. Another computer probably will be using another COBOL compiler that mic
require compliance to all the strict rules of COBOL. When you start breaking the rules, you limit your c

compiler that can handle the loose syntax, and this might make it extremely difficult to move your code
another machine or compiler.

Summary

Today's lesson introduced you to some computer and programming basics, including the following:
« A computer processes numbers and is made up of a central processing unit, input devices, outp
main memory, and secondary storage.

« A computer can't do anything without a program.

« A program is a series of instructions that the central processing unit executes to process data, u:
using some input data and providing some sort of output.

« A programming language is a method of writing a source code file in an English-like language th
human being can understand.

« A compiler translates the source code file into instructions that the central processing unit can ur
and execute.

« A COBOL program contains foldIVISION s: theDENTIFICATION DIVISION , the
ENVIRONMENT DIVISION, theDATA DIVISION , and theeROCEDURE DIVISION

« A DIVISION can be broken down into paragraphs. Some divisions have required paragraphs, s
the PROGRAM-IDparagraph in thEDENTIFICATION DIVISION

« The names of the paragraphs in BROCEDUREIVISION are assigned by the programmer.

« The work of a COBOL program is done in sentences that contain the commands of a program al
within a paragraph.

« A COBOL program is written in 80-column format. The columns are divided into the following are

o Columns 1 through 6 are the sequence area and can be used by the programmer for line r
Line numbering is optional.

o Column 7 is the indicator area. An asteriskifi column 7 causes everything to the right of the
asterisk to be treated as a comment.

0 Columns 8 through 11 are Area A, and columns 12 through 72 are ABH¥IBION names,
SECTIONnames, and paragraph names must begin in Area A, but they can extend into Ar
Sentences begin and end in Area B.

o Columns 73 through 80 are undefined and are not processed by the COBOL compiler, but

COBOL editors use these columns to tag lines with modification codes.

Today, you also learned how to type, compile, and run several simple COBOL programs.

Q&A

Q Why is so much of COBOL in uppercase?

A COBOL was developed in the days when computer terminals and keypunch machines used o
uppercase letters. The entire language was defined in terms of this all-uppercase state of affairs
display uppercase and lowercase messages, sti#ilasvorld , because terminals now have
uppercase and lowercase capability. However, the actual elements of COBOILWAREON s, the
paragraph names suchRROGRAM-BEGINand the verbs such B$SPLAY--originally were designel
in uppercase only.

Q What does a blank line in a program do?

A Nothing. The compiler skips blank lines. You can put blank lines anywhere you want in the prc
improve readability.

Q Does COBOL use line numbers?

A Yes, but they are optional. Most compilers ignore them or can be set to ignore them. Some co
on larger computers will process the line numbers and provide a warning if the line numbers are
seqguence, but this is not an error.

Q Can | put anything in a comment?

A Yes. As long as the asterisk appears at column 7, everything after the asterisk is ignored and
effect on the compiler. You can write English sentences or gobbledygook, although the usual pre
to provide some information that describes what the program is doing, or why it is doing it.

You can do this on as many lines as necessary to complete the comment.
Q Will my comments appear in the program when it runs?

A No. Comments appear only in the source code file, and they will not be included in the compile
program. Comments are intended to document the source code. The computer can read only the
code, and the comments wouldn't mean anything to the computer, so they are not included in the
program.

Q Why do paragraph names have hyphens in them?

A Paragraph names in COBOL are limited to 30 characters and may only contain uppercasg lett
throughZz), digits © through9), and the hyphen . The hyphen is used to improve the readability o
paragraphs and the names of data (which is covered in Day 2). Some modern compilers allow p.
names, division names, and other elements of COBOL to be typed in lowercase.

Wo
Quiz

rkshop

1. What is the output of the following program?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BYEBYE.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "Bye bye birdie".
000900 PROGRAM-DONE.

001000 STOP RUN.

2. How manyDIVISION s are in the following prograrbyebye.cbl

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BYEBYE.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "Bye bye birdie".
000900 PROGRAM-DONE.

001000 STOP RUN.

3. How many paragraphs?
4. How many sentences?

5. What is wrong with the followindyadOl.cbl ?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BADO1.
000300 ENVIRONMENT DIVISION.
000400

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "I'm bad!".
000900 PROGRAM-DONE.

001000 STOP RUN.

6. What is wrong with the followindyad02.cbl ?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BADOZ.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.

000600

000700 PROGRAM-BEGIN.
000800 DISPLAY "I'm bad!".
000900 PROGRAM-DONE.
001000 STOP RUN.

Hint: Where are sentences supposed to begin?
Note Some compilers might not give an error on compiB#d>02, but might only provide a warning.

7. What is wrong with the followindyad03.cbl ?

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BADO3.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500 PROCEDURE DIVISION.

000600 This program displays a message.
000700 PROGRAM-BEGIN.

000800 DISPLAY "I'm really bad!".
000900 PROGRAM-DONE.

001000 STOP RUN.

Exercises

1. Modify the hello.cbl program to displayam a COBOL programmer

Hint: Copy thehello.chbl program tdam.cbl
copy hello.cbl iam.chbl
Then use your editor or pcobol to changeRROGRAM-IDandDISPLAY statements.

2. Use the computer to compile each of the bad examipde©O(.cbl , bad02.cbl , and
bad03.cbl) to get a feel for the types of error messages that your compiler produces.

COBOL-85 compilers are much more relaxed than earlier standardENNHRONMENTDATA and
PROCEDURE DIVISIONs are optional under ANSI 85, although what a program would do withot
PROCEDURE DIVISION:is a bit of a mystery. The results of compiling these programs are intere

Both Micro Focus Personal COBOL and ACUCOBOL found nothing wronglvati91.cbl
Apparently, if a program contains no data, it doesn't need to Ha»&a DIVISION .

Micro Focus Personal COBOL handledd02.cbl without a hiccup.
ACUCOBOL produced a warning that a sentence was starting in Area A.

Both Micro Focus Personal COBOL and ACUCOBOL generated errdsad®B3.cbl and would not
compile it.

3. Modify bad01.cbl so that it compiles without errors or warnings.

4. Modify bad02.cbl so that it compiles without errors or warnings.

5. Modify bad03.cbl so that it compiles without errors or warnings.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days, Second
Edition

Previous chapter Next chapter Contents

- Day 2 -
Using Variables and Constants

TheDATA DIVISION is a critical subject to understand in COBOL. Today's lesson covers the basics, but yot
returning to thdATA DIVISION again and again throughout this book.

Today, you learn about the following topics:
« What is a constant?

« What is a variable?

« Defining numeric variables in COBOL.
« Naming variables in COBOL.

o More on usindDISPLAY.

« Defining and using variables.

« Defining pictures.

« Using theMOVEverb.

« Formatting output.

« Tips on layout and punctuation.

« Continuation characters.

What Is a Constant?

The data in COBOL programs falls into two broad categories: constants and variables.

New Term: A constants a value that cannot be modified while the program is running.

You already have used constants intieo.cbl program and examples in Day 1, "Your First COBOL Progra
In Listing 1.1, the stringHello world" IS a constant.

In hello.chbl , there is no way to modify the display"éfello world" without editing the program and
recompiling it, as shown in Listing 2.1. This effectively creates a new program.

TYPE: Listing 2.1. Modifying a constant by editing and recompiling.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLO.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "l said, Hello world".
000900

001000 PROGRAM-DONE.

001100 STOP RUN.

If you want to display both messages, you have to use code similar to what you see in Listing 2.2; however, t
uses two different constants in one program.

TYPE: Listing 2.2. Adding another constant.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELOHELO.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "Hello world".
000900 DISPLAY "l said, Hello world".
001000 PROGRAM-DONE.

001100 STOP RUN.

Numeric constants can be used in a similar way. Listing 2.3 includes examples of numeric catstamd42.607).
Note the difference between character constants, sutteds world" , and numeric constants, suchl2s607 .
Character constants are enclosed in quotation marks. Numeric constants are not.

New Term: Character constants also are caligthg constants
TYPE: Listing 2.3. String and numeric constants.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CONST.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 PROCEDURE DIVISION.
000600

000700 PROGRAM-BEGIN.

000800 DISPLAY "Hello world".
000900 DISPLAY 55.

001000 DISPLAY 12.607.
001100 PROGRAM-DONE.
001200 STOP RUN.

Character constants can contain spaces, such as the space between the'Meitdsnarld” . Without the doubl
guotation marks at each end, the compiler would have trouble recognizing all of the character constant; it wol
know where the constant ended. The following is a classic example of this problem:

DISPLAY THIS IS THE DISPLAY.

DISPLAY is a COBOL verb. In this example, the first occurrence of the BEBELAY is the COBOL verb for
displaying information. The compiler could become confused as to whether the second occurrence of the wol
DISPLAY is part of the message to be displayed or is an®tf&PLAY verb. To keep the compiler from having a
nervous breakdown, the programmer is required to write the following:

DISPLAY "THIS IS THE DISPLAY".

Every popular programming language includes a requirement that character constants be enclosed in some ¢
guotation marks or other signaling characters to indicate the exact beginning and end of the character consta
uses double quotation marks at the beginning and end of the characters.

Numeric constants such as the following do not comtduite spaceand it is much easier for the compiler to recog
them as numbers:
DISPLAY 12.607.

Most popular languages do not require any special characters to signal a numeric constant.

New Term: White spaceés a general term to cover any blank characters. A space is white space, as is a tab, tf
won't use tabs in COBOL programs. They are called white space because they print as white spaces on whit
when sent to a printer.

What Is a Variable?

Computers are capable of dealing with a large amount of data, and the data should be able to change while t
computer is running. So, how do you change data? You use something called a variable.

New Term: A variableis a value that can be changed while the program is running.

When a variable is created in a program, an area of memory is set aside to hold values. In most programmin
languages, including COBOL, a variable is given a name. The name can be used in the program to refer to tt

The value stored in memory can be modified while the program is running by using the variable name. You'll
examples of using variables later in today's lesson; but you first must understand how to define a variable.

Defining Numeric Variables in COBOL

The following is an example of a COBOL numeric variable. Variable names use the same characters as para
namesA throughz, 0 through9, and the hyphen {. This is described more fully in the section "Naming Variable
COBOL," later in today's lesson.

001400 01 THE-NUMBER PICTURE IS 9999.

A COBOL variable definition contains at least three parts:
« The level number
o The name
« ThePICTURE

In the syntax, the level numberG4. For now, every variable you will be using will have a level numbédofThe
level numbefO1 must be in Area A, columns 8 through 11. In the previous code fragme@f, 8tarts in column 8.

The second part of the variable definition is the name of the variable and, in this T&de;N®JMBERThis is the
data name used to identify the variable. The data name is assigned by the programmer. The variable will be |
by its data namé&;HE-NUMBERanywhere in the program that the variable must be set or modified. The name
variable must start in Area B, columns 12 through 72. In this examigEe;NUMBERtarts in column 12.

The PICTUREdefines two things about a variable: the size of the variable (the number of bytes used in memc
value) and the type of data that can be stored in the variable. In this example, thé@p&3unedicates that four
numeric characters can be stored in the variable naitHEdNUMBERSimilarly, a variable with ICTUREIS 99
could hold two numeric characters. TRECTURE IS clause and the actual pictt8899 must start somewhere in
Area B, columns 12 through 72.

ThePICTURE IS clause in the definition of a variable is the COBOL syntax for introducing the size of a varia
the type of data that a variable holds.

The9999 in the picture does not indicate that the variable contains the value 9999. It indicates that the variak
used for numeric values in the range 0 through 9,9999%88 picture indicates that four numeric digits can be st
in this variable. The pictur@gd99 will hold any of the values from 0 through 9,999. The values 17 and 6,489 wil
fit in THE-NUMBERbut the value 65,413 is too large.

Look at Listing 2.4add01.cbl , for the general format of the program now that it contains variables. Three va
are created in this prograftRST-NUMBER SECOND-NUMBERNdTHE-RESULT. Each variable has the level
number0l. The first two have pictures 80 and will hold values ranging from 0 through 99. The third variable,
THE-RESULT, has a picture @99 and will hold a value of 0 through 999. Once againPM&TURE IS clause
does not set the value of the variable; it sets only the largest and smallest values that a variable can hold anc
that the variable will hold numeric data.

TYPE: Listing 2.4. Using variables.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. ADDO1.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.

001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500

001600 DISPLAY "Enter the first number.".
001700

001800 ACCEPT FIRST-NUMBER.
001900

002000 DISPLAY "Enter the second number.".
002100

002200 ACCEPT SECOND-NUMBER.

002300

002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500

002600 DISPLAY "The result is:".

002700 DISPLAY THE-RESULT.

002800

002900 PROGRAM-DONE.

003000 STOP RUN.

003100

Load and compile or type in with your editor and compile Listing&ld01.CBL . When you run the program, yot
will be asked to enter the first number, as shown in the following output. Note that the final bl3LOE in the
listing has no effect on the program. You can leave it out if you wish.

OUTPUT:
C>pcobrun add01

Enter the first number.

First, type97 and then press Enter. You will be asked for a second number, in a screen looking something lik
C>pcobrun add01

Enter the first number.
97
Enter the second number.

Now type33 and press Enter. The two numbers are added together and displayed:
C>pcobrun add01

Enter the first number.

97

Enter the second number.
33

The result is:

130

C>

ANALYSIS: Take a look at thBATA DIVISION . Here is your first example of a section, WORKING-STORAG
SECTION A SECTIONin COBOL is created by typing a name, similar to a paragraph name, followed by one
spaces, followed by the woRBECTIONand a periodSECTIONs in COBOL can be required or optional, dependir
on whichDIVISION they are iInWORKING-STORAGE SECTION a reserved name and a required section in t
DATA DIVISION if your program uses any variables--and most programs do.

DO/DON'T:
DO precede the worBECTIONwith at least one spac&/ORKING-STORAGE SECTIQN

DON'T precedeéSECTIONwith an extra hypheWWORKING-STORAGE-SECTIOQN

Each of the variables is defined witl®4, a variable name, andPACTURE ThePICTURE IS clauses are lined ug
on the right. There is no reason for this other than tidiness. As longRKIRERE clause starts and ends in Area |
there are no other restrictions on alignment or position.

Now look at Listing 2.4 again, but this time from the perspective of a running program DAT#eDIVISION
space is created for two variables with picture8®faind one variable with a picture @99 .

In the PROCEDURE DIVISION a message is displayed for the user atQbie600 , asking the user to enter the fir
variable. At line001800 , this value is accepted from the keyboard, usindADEEPTverb. ACCEPTis a verb that
causes the program to wait for input from the keyboard. Digits can be typed until the user presses Enter. Whe
presses Enter, the value of the digits entered is moved to the variable named immediatelyfdli€ER&verb.

When the program is running and encounters the sentence
ACCEPT FIRST-NUMBER

the computer stops and waits for the user to type. Whatever value is typed is stored in the two bytes of
FIRST-NUMBER

At line 002000 , the user is asked for another number. This is accepted @0R200 using theACCEPTverb and
stored iINSECOND-NUMBER

At line 002400 , the COBOLCOMPUTEerb is used to add the two values together. In the following statement,
values that have been storedFERST-NUMBERandSECOND-NUMBE#&e retrieved and added together, usirig
perform the addition:

COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
The result of this addition is storedTHHE-RESULT.
Finally, in lines002600 and002700 , the result of the addition is displayed.

In this example, two of the variableSIRST-NUMBERandSECOND-NUMBERave been modified or "varied" by
the user entering values at the keyboard. The third variBHE;RESULT, was modified by the program. The
program uses theOMPUTEtatement to calculate a new value and storeliHB-RESULT This is what variables &
all about: the ability to vary their values while the program is running.

Some versions of COBOL (ACUCOBOL, for example) are picky about accepting data from the keyboard. If a
defined with PICTURE IS 99, you must enter two digits in response tAAGCEPT To enter the numbé&, you
must entef03. To enter7 into aPICTURE99999 field, you must ented0007 . ACUCOBOL includes an option to
change this behavior, and | am informed that, as of their version 3.0 compile€C@tePTverb behaves in a more
relaxed manner, allowing numeric entry without the preceding zeroes. Other versions of COBOL, such as Mic
Personal COBOL, use this more relaxed approa@®COEPT If you want to enter 8 into aPICTURE999, just
enter &3 and press Enter. The COBOL language will correctly €168 in thePICTURE999.

For the time being, enter all the digits to avoid any problems. If a program complams-e@imeric data in
a numeric field , you probably have not entered enough leading zeroes.

Type the program from Listing 2.4 into your computer and compile it. Run it several times, entering different \
each time. You will see that the three variables truly are variable, because their values are determined while -
program is running. You do not have to edit and recompile the program each time that you want to get a new

Take one more look at Listing 24¢d01.cbl , for a quick review. Line numbers appear in columns 1 through ¢
sequence area. Comments start in the indicator area, and they start with an asterisk in thadBABHN s,
SECTIONs, paragraphs, and thé level number of a variable start in columns 8, Area A. Everything else starts
ends in Area B, usually at column 12.

Naming Variables in COBOL

COBOL variable names are similar to paragraph and section names because they can use any of the upperc
characters, the digits 0 through 9, and the hyphen (but not as a starting character). COBOL variable and pare
names are limited to 30 characters. Table 2.1 provides some examples of valid and invalid variable names.

Table 2.1. Valid and invalid variable names.

|Va|id Name ’Invalid Name ’Explanation of Invalid Name

|TOTAL-DOLLARS TOTAL-$]Uses an invalié in the name

|SUM-OF-COLUMNS sum-of-columns ’Uses lowercase letters

7-BY-5 7_BY_ 5 Uses the invalid character in the
name

|MINUS-RESULT -RESULT ’Starts with a hyphen

|BOEING-707-SEATS BOEING-707-MAXIMUM- SEATING-CAPACITY]Exceeds 30 characters

Some modern compilers have disposed of the uppercase requirement and will accept variable names such a
sum-of-columns and7-by-5 , butitis a good practice to use uppercase because it makes your code more
between COBOL compilers.

More on Using DI SPLAY

TheDISPLAY verb can be used to display more than one value at a time, like so:
DISPLAY "The resultis " THE-RESULT.

It is used this way in Listing 2.8dd02.cbl . The only change in this program is that li0862600 and002700
have been combined into a sinGIESPLAY line, and the colon () in the message has been replaced with a spact

TYPE: Listing 2.5. Combining values in one DI SPLAY statement.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. ADDO2.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500

001600 DISPLAY "Enter the first number.".
001700

001800 ACCEPT FIRST-NUMBER.

001900

002000 DISPLAY "Enter the second number.".
002100

002200 ACCEPT SECOND-NUMBER.

002300

002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500

002600 DISPLAY "The resultis " THE-RESULT.
002700

002800

002900 PROGRAM-DONE.

003000 STOP RUN.

003100

This is the output from a sample session \wadld02.cbl . The result line is combined into one line of display:

OUTPUT:
C>pcobrun add02

Enter the first number.

16

Enter the second number.
93

The result is 109

C>

Defining and Using Variables

When you define a variable in tieORKING-STORAGE SECTIObdF theDATA DIVISION , you are providing
information for the compiler about the size of the variable and the type of data that can be stored in it.

A numeric variable is used to store numbers. The picture character used to represent a digit in a numeric var
as in this example:

01 THE-NUMBER PICTURE IS 99.

This description defines a variable nanfétE-NUMBERhat can be used to hold a numeric variable that is two d
long; in other words, any value in the range of 0 through 99.

New Term: Variables that can hold character data are called alphanumeric variables.

Alphanumeric data contains one or more printable characters. Some examples of alphanumeric wles are
??506"%%A, and123-B707 . An alphanumeric variable is defined in the same way as a nhumeric variable, exc
the picture character used to represent one alphanumeric charactér Tharfollowing syntax example defines an
alphanumeric variable that can hold a word or message of no more than 10 characters:

001200 01 THE-MESSAGE PICTURE IS XXXXXXXXXX.

An alphanumeric variable can also be used to hold numbers (such as B2@rimgaPICTURE IS XXX variable),
but you will not be able to use the values as numbers. For example, you could disPIEYTHRE IS XXX variable
containingl23, but you couldn't use tteOMPUTEerb to add 1 to it.

In Listing 2.6, a modified version diello.cbl namechello02.cbl illustrates the use of alphanumeric varial

TYPE: Listing 2.6. Using an alphanumeric variable.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOO?2.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 THE-NAME PICTURE IS XXXXXXXXXX.
000900

001000 PROCEDURE DIVISION.

001100

001200 PROGRAM-BEGIN.

001300

001400 DISPLAY "Enter someone's name.".
001500

001600 ACCEPT THE-NAME.

001700

001800 DISPLAY "Hello " THE-NAME.
001900

002000 PROGRAM-DONE.
002100 STOP RUN.

The following is an example of the output frérallo02.cbl , usingErica as the name entered at the keyboart

OUTPUT:
C>pcobrun hello02

Enter someone's name.
Erica
Hello Erica

C>

ANALYSIS: At line 001400 , the user is asked to enter a name. At0id&600 , theACCEPTverb will cause the
computer to accept input from the keyboard until the user presses Enter. Whatever is typed (up to 10 charact
stored iNTHE-NAME THE-NAMEthen is displayed in a hello message.

Defining Pictures

So far, you've defined small variables, but you also can define longer ones in COBOL. Numeric variables car
large as 18 digits:

01 THE-NUMBER PICTURE IS 9999999999999999909.

Numeric variables are limited to 18 digits, but the length of alphanumeric variables is limited by the version of
that you have. LPI COBOL has a limit of 32,767 characters. ACUCOBOL has a limit of 65,520 characters. Th
Professional Micro Focus COBOL compiler (big brother to Micro Focus Personal COBOL) has a limit of a wh
256 million characters.

Defining long variables could become a tedious task if eemd9 had to be spelled out explicitly; and typing in
long strings ofX or9 could result in errors. In addition, having to tyRI€ETURE IS for every variable can get tiring
in large programs. Fortunately, COBOL allows some abbreviations that make the task less cumbersome.

The wordlS in PICTURE IS is optional, and the worldlICTURE can be abbreviated 8C . This abbreviation is

used so commonly that it is rare to see a program contdZIGURE IS :
01 THE-MESSAGE PIC XXXXXX.

The second abbreviation is even more useful. The picture itself can be abbreviated by typing one picture cha
followed by the number of repetitions of that character in parentheses PIGUSXXXXX become#IC X(6) , and
PIC 99999 become®IC 9(5) . The 18-digit number shown earlier becomes the following:

01 THE-NUMBER PIC 9(18).

This works even when the repetition is one, so it is possible to deBtGb¢ asPIC X(1) . When you are reading
listing, it sometimes is easier to determine the size of a variable quickly by scanning the values in parenthese
programmers make it a practice always to include the size in parentheses.

If you want to use the abbreviations to cut down on keystrokes, abbreviate anything exceeding a lengtIGf fou
XXXXandPIC X(4) require the same number of keystrokes, so for the sake of typing speed, it doesn't matte
you usePIC X is faster to type thaRIC X(1) , butPIC X(5) s faster to type thaRIC XXXXX.

You might find the use of parentheses is dictated by the style manual of the company that is using the progra
for your own use, pick the one that is more comfortable for you.

Introducing the MOVE Verb

TheMOVErerb in COBOL is a general-purpose verb, used to store a value in a variable. The general SViQ&Ef
is the following:

MOVE value TO variable.

In this syntaxyariable must be a variable defined in tBATADIVISION , andvalue can be another variable
a constant.

Here are some examples:

MOVE 12 TO THE-NUMBER.
MOVE ONE-NUMBER TO ANOTHER-NUMBER.
MOVE "XYZ" TO THE-MESSAGE.

MOVEHSs used to set a variable to a specific value. For example, if you're going to use the ValtaGI©OUNTERs a
counter and you need the count to start at 1, you might use the following as one method of setting up the var
starting value:

MOVE 1 TO THE-COUNTER.
MOVENn COBOL does not move memory physically from one place to another. It copies values from the sourt
variable and stores them in the target variable. Table 2.2 describes the effect of some Mi@&tEntamples that

move constants and variables into variables. All variables are assumed to be definddRKING-STORAGE
SECTION

Table 2.2. Examples of the MOVE verb.

Command Effect

MOVE 19 TO THE-NUMBER Storesl9 in the variablerTHE-NUMBERor setsTHE-NUMBERo a
value of19

MOVE "Hello" TO THE-MESSAGE StoresHello in the variableTHE-MESSAGEor sets
THE-MESSAGHo containHello

MOVE A-NUMBER TO THE-NUMBER Locates the variable nam@dNUMBERgets the value stored the
and copies it or moves it to the variable namedE-NUMBER

MOVE THE-OLD-NAME TO THE-NEW-NAMIEocates the variable nam&tHE-OLD-NAME gets the value stor
there, and copies it or moves it to the variable named
THE-NEW-NAME

Listing 2.7 is a program designed solely to provide examples di@éEverb. It combine®ICTURE abbreviations,
multiple DISPLAY statements, andOVEstatements to display two messages, with message numbers, on the <
This will give you a further idea of the uses and effectd OVE

TYPE: Listing 2.7. Using MOVE.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOOS.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 THE-MESSAGE PIC X(20).
000900 01 THE-NAME PIC X(10).
001000 01 THE-NUMBER PIC 99.

001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500

001600 DISPLAY "Enter someone's name.".
001700

001800 ACCEPT THE-NAME.

001900

002000 MOVE "Hello" TO THE-MESSAGE.
002100

002200 MOVE 1 TO THE-NUMBER.
002300

002400 DISPLAY "Message "

002500 THE-NUMBER

002600 e

002700 THE-MESSAGE

002800 THE-NAME.

002900

003000 MOVE "Say Goodnight,” TO THE-MESSAGE.
003100

003200 MOVE 2 TO THE-NUMBER.
003300

003400 DISPLAY "Message "

003500 THE-NUMBER

003600 e

003700 THE-MESSAGE

003800 THE-NAME.

003900

004000

004100 PROGRAM-DONE.
004200 STOP RUN.

004300

OUTPUT:
C>pcobrun hello03

Enter someone's name.

G aci e

Message 01: Hello Gracie
Message 02: Say Goodnight, Gracie

C>

ANALYSIS: Lines000800 , 000900, and001000 contain abbreviateRICTURES THE-MESSAGEs a
20-character alphanumeric field, ahdE-NAMESs a 10-character alphanumeric field. The user is asked to enter
name, and this is accepted from the keyboardTirtB-NAMEat line001800 .

In lines002000 and002200 , MOVEs used to move values THHE-MESSAGENd theTHE-NUMBERLines
002400 through002800 contain one lon®ISPLAY statement. Notice that this long statement ends with only ¢
period, on lineD02800 . COBOL sentences can spread over more than one line as in this example, as long as
remain within Area B, which is columns 12 through 72. DISPLAY creates one line of display information
containing the valuellessage, THE-NUMBER , THE-MESSAGEandTHE-NAME, one after the other on a sing
line:

Message 01: Hello Charlie

Similar logic is repeated at [in€@93000 through003800 , and a second line is displayed. See if you can guess
the output will appear before taking a look.

Note that the output frornello03.cbl is shown for an input name Giracie . Listing 2.7 is a good program for
practice. First type, edit, and compiiello03.cbl , and try it a couple of times. Then copy the program to
hello04.cbl and edit it. Try different constants and display orders foDIBSLAY statements. Here are a couy
of alternatives for the firdDISPLAY statement:

DISPLAY "Line "

THE-NUMBER

ns

THE-MESSAGE

THE-NAME.

DISPLAY THE-MESSAGE

THE-NAME

"was Number "

THE-NUMBER.

The following are sample output lines from these two formats:

Line 01> Hello Charlie

Hello Charlie was Number 01

One of the features of tiMOVEverb is that it will pad a variable with spaces to the end if the value that is being
into an alphanumeric field is too short to fill the field. This is convenient; it's almost always what you want. In f
MOVE "Hello" TO THE-MESSAGE |, the first five characters GHE-MESSAGHre filled withHello , and the
remaining character positions are filled with spaces. (In Bonus Day 2, "Miscellaneous COBOL Syntax," you le
to move a field while dropping the trailing space used for padding.)

MOVBpads numeric variables by filling them with zeroes to the left. Notice that a numeric valuePiti98
containing a value df will display asO1 in Listing 2.7. This is because of the padding action oM®&/Everb.

Values that are too long are truncated’ HHE-MESSAGES defined as RIC X(7) , the line
MOVE "Hello world" to THE-MESSAGE

results inTHE-MESSAGEontainingHello w and the rest of the value falling off the end.

Moving a value that is too large to a numeric variable results in a similar truncation, but on the left side. If
THE-NUMBERS defined as IC 9999 , the following line results iTHE-NUMBERontainingl784 :

MOVE 61784 TO THE-NUMBER

There isn't room for all five digits, so only the four digits on the right are picked up on the move.

Formatting Output

Listing 2.8 is another example of some of the principles you have learned. It displays three lines of a nursery
involving some work that Jack had to do. T&@Dverb (which is new in this listing) increments the value of
THE-NUMBERs each line is displayed. In tbéSPLAY statements, a space is used to separate the line numbe
the statement. Remember that the asterisk in column 7 is used to place a comment in the code.

TYPE: Listing 2.8. Using the ADD verb.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. JACKO1.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 THE-MESSAGE PIC X(50).

000900 01 THE-NUMBER PIC 9(2).

001000

001100 PROCEDURE DIVISION.

001200 PROGRAM-BEGIN.

001300

001400* Set up and display line 1

001500 MOVE 1 TO THE-NUMBER.

001600 MOVE "Jack be nimble," TO THE-MESSAGE.
001700 DISPLAY THE-NUMBER " " THE-MESSAGE.
001800

001900* Set up and Display line 2

002000 ADD 1 TO THE-NUMBER.

002100 MOVE "Jack be quick,” TO THE-MESSAGE.
002200 DISPLAY THE-NUMBER " " THE-MESSAGE.
002300

002400* Set up and display line 3

002500 ADD 1 TO THE-NUMBER.

002600 MOVE "Jack jump over the candlestick.” TO THE-MESSAGE.
002700 DISPLAY THE-NUMBER " " THE-MESSAGE.
002800

002900 PROGRAM-DONE.

003000 STOP RUN.

003100

OUTPUT:

01 Jack be nimble,

02 Jack be quick,

03 Jack jump over the candlestick.
C>

C>

ANALYSIS: Itis possible to use a variable as though it were a constant. In Listing 2.9, an additional variable,
A-SPACE is created. This variable is set to a value at the start of the program and then used in each messac
output ofjack02.cbl should be identical to that f#ck02.cbl

New Term: Setting a variable to a starting value is caitetializing.
TYPE: Listing 2.9. Another method of formatting.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. JACKO2.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 THE-MESSAGE PIC X(50).

000900 01 THE-NUMBER PIC 9(2).

001000 01 A-SPACE PIC X.

001100

001200 PROCEDURE DIVISION.

001300 PROGRAM-BEGIN.

001400

001500* Initialize the space variable

001600 MOVE "" TO A-SPACE.

001700

001800* Set up and display line 1

001900 MOVE 1 TO THE-NUMBER.

002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.
002200

002300* Set up and Display line 2

002400 ADD 1 TO THE-NUMBER.

002500 MOVE "Jack be quick,” TO THE-MESSAGE.

002600 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.
002700

002800* Set up and display line 3

002900 ADD 1 TO THE-NUMBER.

003000 MOVE "Jack jump over the candlestick." TO THE-MESSAGE.
003100 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.
003200

003300 PROGRAM-DONE.

003400 STOP RUN.

003500

Layout and Punctuation

As the programs you are working on get larger, it is a good idea to start paying attention to layout and other fi
COBOL that can help make your code more readable.

Commas can be used in COBOL to separate items in a list:
DISPLAY THE-NUMBER, " ", THE-MESSAGE.

There are arguments for and against the use of commas. As far as the COBOL compiler is concerned, commn
optional; the compiler ignores them completely. The only use, therefore, is to improve readability. In a list of v
the commas help to separate the elements when you are reading the code.

Serious problems result from mistyping a period for a comma. If the screen does not provide a clear display ¢
printer is printing the source code with a feeble ribbon, it is possible to mistake a comma for a period. A perio
optional and is a critical piece of COBOL syntax used to end sentences. The confusion of a comma for a peri
caused some serious problems in programs, and it might be better to leave commas out unless there is a cor
reason to use them.

A sentence does not have to begin and end on one line. As long as it stays out of Area A (columns 8 through
sentence can spread over multiple lines. Listingtelflo03.cbl , uses this technique to clearly separate each
that is being displayed. Listing 2.10 is a versiojaok02.cbl that spreads tHeISPLAY sentence out in order tc
clarify what is being displayed. This will compile and run identicalljpt&02.cbl , but it is a little easier to read.

TYPE: Listing 2.10. Spreading out a sentence.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACKO3.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100

001200 PROCEDURE DIVISION.

001300 PROGRAM-BEGIN.

001400

001500* Initialize the space variable
001600 MOVE "" TO A-SPACE.
001700

001800* Set up and display line 1

001900 MOVE 1 TO THE-NUMBER.
002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY

002200 THE-NUMBER

002300 A-SPACE

002400 THE-MESSAGE.

002500

002600* Set up and Display line 2

002700 ADD 1 TO THE-NUMBER.
002800 MOVE "Jack be quick,” TO THE-MESSAGE.

002900 DISPLAY

003000 THE-NUMBER

003100 A-SPACE

003200 THE-MESSAGE.
003300

003400* Set up and display line 3
003500 ADD 1 TO THE-NUMBER.
003600 MOVE "Jack jump over the candlestick.” TO THE-MESSAGE.
003700 DISPLAY

003800 THE-NUMBER

003900 A-SPACE

004000 THE-MESSAGE.
004100

004200 PROGRAM-DONE.

004300 STOP RUN.

004400

Remember that, when you are reading COBOL programs, a sentence continues until a period is encounterec
how many lines it takes.

Continuation Characters

When an alphanumeric value is too long to fit on a single line, it can be continued on the next line by using a
continuation character. In Listing 2.11, the columns have been included. The message must be continued to
Area B (column 72) and ends without a closing quote. The next line begins with a hyphreaglumn 7 to indicate
that the previous quoted string is being continued. The rest of the message starts with a quote and continues
is necessary to complete the message. Lines can be continued over more than one line if necessary.

Listing 2.11. The continuation character.

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
000500 01 LONG-MESSAGE PIC X(80) VALUE "This is an incredibly long m
000600- “essage that will take more than one line to define".

Summary

Today, you learned the basics about COB@AJ A DIVISION , including the following:
o« TheWORKING-STORAGE SECTIObF theDATA DIVISION is used to create space for the variables of
program.

« Variables inWORKING-STORAG# e given names. The names are assigned by the programmer.

« Variables can be named using the uppercase charadtensughZ, the digitsO through9, and the hyphen §.
The hyphen cannot be the first character of a variable name.

« Variables are divided into two broad classes: alphanumeric and numeric.

« Alphanumeric variables can hold printable characi#&ikroughZ, a throughz, O through9, spaces, symbols,
and punctuation characters.

« Numeric variables can hold numbers.
« Alphanumeric values must be enclosed in double guotation marks when being moved to variables.
« Numeric values being moved to numeric variables do not require quotation marks.

« TheMOVErerb moves an alphanumeric value to an alphanumeric variable and pads the variable with sj
the right if the value is too short to fill the variable.

« TheMOVEverb moves a numeric value to a numeric variable and pads the value on the left with zeroes
value is too small to fill the variable.

« TheDISPLAY verb can display more than one value or variable at a time.

« A COBOL sentence can contain commas for punctuation. They do not affect the behavior of the final pr
but they can be included to improve readability.

« A COBOL sentence ends with a period. It can spread over several lines of the source code file, as long
within Area B, columns 12 through 72.

« A continuation character can be used to continue a literal on one or more subsequent lines.

Q&A

Q Are there other limits on variable names?

A For now, you should ensure that each variable name is different. You have up to 30 characters to ust
variable name, so you should have no trouble coming up with different names.

Q When should you use a variable, and when should you use a constant?

A Most of the work in programming is done with variables. You can use a constant instROBEDURE
DIVISION when it will never need to be changed.

Even when a constant will never change, it sometimes is clearer to use a variable, because it explains \
happening. In the following example, the first line indicates that the sales amount is being multiplied by
constant10 (10 percent), but gives no information on why. The val@e is a constant because it cannot b
changed without first editing the program and recompiling it. The second version indicates that some lo
being executed to calculate a sales commission:

MULTIPLY SALES-AMOUNT BY .10.
MULTIPLY SALES-AMOUNT BY COMMISSION-RATE.

Workshop

Quiz
1. How many bytes of memory are used by the following variable?

01 CUSTOMER-NAME PIC X(30).
2. What type of data can be storeddd STOMER-NAME

3. If you move a value t€USTOMER-NAMEuch as
MOVE "ABC Company" TO CUSTOMER-NAME.

only the first 11 characters of the variable are filled with the value. What is placed in the remaining 19 ¢
positions?

4.What is the largest number that can be moved Wiy Ho the following variable?
01 UNITS-SOLD PIC 9(4).
5. What is the smallest value that can be moved UdidyHo UNITS-SOLD?

6.1f 12 is moved tdJNITS-SOLD, as in
MOVE 12 to UNITS-SOLD.
what values are stored in the four numeric positiongNiTS-SOLD?

Exercises
1. Modify add02.cbl from Listing 2.5 to display a message that tells the user what the program will do
Hint: Add a message at li@91500 .

2. Pick a poem or phrase of your own choosing that has four or more lines (but no more than 10 lines) ¢
display it on the screen with line numbers.

3. Repeat this poem but have the line numbers st@f and increment by 5.

Hint: You can start by moving to THE-NUMBERand then increment the value by uskigD 5 TO
THE-NUMBEROr each line that is being printed.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 3 -
A First Look at Structured COBOL

COBOL is a structured language. You already have seen some of the rules for layout, but struct
deeper than just physical layout. Structuring applies tD&iEAand thePROCEDURE DIVISIONs of ¢
COBOL program. Today, you learn the structure oRROCEDURE DIVISIONand explore the
following topics:

« A new COBOL shell.

« Program flow.

« Paragraph names.

o What isSTOP RUN

o What is thePERFORMerb?

e« When to usé?’ERFORM

« SECTIONs in thePROCEDURE DIVISION

A New COBOL Shell

From now on, all programs will have some sort of data in them, so it is a good idea to modify
cobshlO1.cbl |, created in Day 1, "Your First COBOL Program." Listing 8dhshl02.cbl |, now
includesWORKING-STORAGE

TYPE: Listing 3.1. A new COBOL shell including data.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COBSHLOZ2.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 WORKING-STORAGE SECTION.
000600

000700 PROCEDURE DIVISION.
000800 PROGRAM-BEGIN.

000900

001000 PROGRAM-DONE.

001100 STOP RUN.

Program Flow

The normal course of execution of a COBOL program is from the first statemenAR@®EEDURE
DIVISION to the last. Let's look at Listing 3.2dd01.cbl , line by line.

TYPE: Listing 3.2. Top-to-bottom execution.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. ADDO3.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 FIRST-NUMBER PICTURE IS 99.
000900 01 SECOND-NUMBER PICTURE IS 99.
001000 01 THE-RESULT PICTURE IS 999.
001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500 DISPLAY "This program will add 2 numbers.".
001600 DISPLAY "Enter the first number.".
001700

001800 ACCEPT FIRST-NUMBER.

001900

002000 DISPLAY "Enter the second number.".
002100

002200 ACCEPT SECOND-NUMBER.

002300

002400 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
002500

002600 DISPLAY "The resultis " THE-RESULT.
002700

002800

002900 PROGRAM-DONE.

003000 STOP RUN.

003100

ANALYSIS: The program starts executing at [@@1300 in thePROCEDURE DIVISION Blank
lines are skipped, so nothing happens on that line.Q04400 is a paragraph name. Paragraphs in
COBOL are used as bookmarks. The program doesn't do anything 001480 except to note
internally that it has started a paragraph naRROGRAM-BEGIN

At line 001500 , the program displays a message on-screen. AD0@600 , another is displayed. Lin
001700 is blank, so it is skipped. At lif@)1800 , the program stops, waits for keyboard input, anc
places the results in the varialfllRST-NUMBER

This type of step-by-step action occurs until 22900, when the program notes that it has begur
executing a paragraph nameRROGRAM-DONEt line 003000 , the statemerBTOP RUNis executec
and this halts the execution of the program.

Paragraph Names

Because paragraph names are used only as bookmarks, it is possible to insert more paragraph
this program. Remember that you can assign your own paragraph names. The rules for naming
paragraphs are similar to the rules for naming variables:

A paragraph name can contain 30 characters. In fact, a paragraph name can be longer the
characters, but the compiler will warn you that it will use only the first 30 characters of the
The remaining characters can be included in the name but the compiler will ignore them.

The characters can BethroughZ, 0 through9, and the hyphen . Some compilers also allow
the lowercase characteashroughz.

The paragraph name must not start with the hyphen.

Paragraph names must start in Area A, columns 8 through 11, and must end with a period

DO/DON'T:
DO use uppercase paragraph names if you want your code to be portable.

DON'T use lowercase paragraph names. Even the simplest COBOL programs have a
tendency to survive and grow. One day, you might find yourself porting the program to a
new computer, and you will curse yourself for having used lowercase. Listing 3.3 is
sprinkled with some extra paragraph names. If you compare Listing 3.2 and Listing 3.3, yo
will see that the sentences are identical. Because a paragraph name does not cause any
command to be executed, these two programs behave identically. Enter them both into the

computer and compile them. Run them one after the other and you will see no difference.

TYPE: Listing 3.3. Adding extra paragraph names.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADDOA4.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.

001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500

001600 DISPLAY "This program will add 2 numbers.".
001700

001800 GET-FIRST-NUMBER.

001900

002000 DISPLAY "Enter the first number.".
002100

002200 ACCEPT FIRST-NUMBER.

002300

002400 GET-SECOND-NUMBER.

002500

002600 DISPLAY "Enter the second number.".
002700

002800 ACCEPT SECOND-NUMBER.
002900

003000 COMPUTE-AND-DISPLAY.

003100 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003200

003300 DISPLAY "The resultis " THE-RESULT.

003400

003500

003600 PROGRAM-DONE.

003700 STOP RUN.

003800

ANALYSIS: Listing 3.4 includes an empty paragraph at 608400 . At lines001500 , 001800 ,
002400 , and003000 , the paragraph names have been chang8d@E&®-01, STEP-02, and so on. If

you inspect the code, you will notice that, because of the placement of the paragraph names, th
paragrapiPROGRAM-BEGINontains no statements. Some compilers allow this, and others com,
an empty paragraph with either a warning or an error. Personal COBOL and ACUCOBOL both ¢
If you want to test your compiler, you can type this and compile it.

TYPE: Listing 3.4. An empty paragraph.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADDOS5.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.
001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500 STEP-01.

001600 DISPLAY "This program will add 2 numbers.".

001700

001800 STEP-02.

001900

002000 DISPLAY "Enter the first number.".
002100

002200 ACCEPT FIRST-NUMBER.
002300

002400 STEP-03.

002500

002600 DISPLAY "Enter the second number.".
002700

002800 ACCEPT SECOND-NUMBER.
002900

003000 STEP-04.

003100 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003200

003300 DISPLAY "The resultis " THE-RESULT.

003400

003500

003600 PROGRAM-DONE.

003700 STOP RUN.

003800

What Is STOP RUN?

In any programming language, certain words have special meanings in the language. In COBOL
DISPLAY "Hello" causes the wordello to be displayed on-screddlSPLAY has a special
meaning in COBOL. It means "put the next thing on the screen.”

New Term: Reserved wordare reserved in the language to have a special meaning, and the proc
cannot use these words for some other purpose.

The wordsDATAandDIVISION appearing together mean that the section of the program where |
defined is beginningATA DIVISION , andDISPLAY are reserved words. Therefore, if you create
program that displays something, it would be incorrect to name the pred&PhAY as in the
following:

PROGRAM-ID. DISPLAY.

The compiler probably would complain of an invalid program name, beEd888 AY is reserved for
special meaning in COBOL. You already have learned several reserved GOMBEUTEACCEPT
ADD PROCEDURBIVISION , and others. You learn about most of them as you move through tl
book.

DO/DON'T:
DO name programs, variables, and paragraphs with descriptive names that make their ust
obvious.

DON'T name programs, variables, or paragraphs with reserved words.

You also have seen thatORKING-STORAGE a reserved word for the name of 8 CTIONin the
DATA DIVISION that contains the data. The compiler will complain if you try to name a variable
WORKING-STORAGHEhat combination of words is reserved for use by COBOL.

STOP RUNhas appeared in every program so $fOP RUNis a sentence in COBOL, just as
DISPLAY "Hello" is. STOPandRUNare both reserved words, and the sent&Tc@P RUNdoes
exactly what it says; it stops the execution of the program.

Some COBOL implementations do not requilT@P RUN for example, Personal COBOL does no
Most compilers will compile a program that does not inclu&d@P RUN and the problem, if there is
one, occurs while the program is running. A program will come to the end and appear to start ov
or it will come to the end and crash with some soABORTmessage. If you want to check out your
COBOL compiler, take any of the examples already covered and remdwB@®®BRAM-DONE
paragraph and th@TOP RUNsentence. Compile the program and then try to run it. See what hap
when the program reaches the end.

STOP RUNcan occur anywhere in the program, and it will stop execution. In all the examples so
STOP RUNIs placed in its own separate paragraph to make it stand out as the end of the progra
Listing 3.2 could have been written without PROGRAM-DON#aragraph name, as long as it inclu
STOP RUN It would have worked as well. In Listing 3.5, tR€OP RUNat line002400 causes the
program to terminate at that spot.

TYPE: Listing 3.5. Aforced STOP RUN.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. ADDOG6.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 FIRST-NUMBER PIC 99.

000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.

001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500 DISPLAY "This program will add 2 numbers.".
001600

001700

001800 DISPLAY "Enter the first number.".
001900

002000 ACCEPT FIRST-NUMBER.

002100

002200 DISPLAY "Fooled you.".

002300

002400 STOP RUN.

002500

002600 DISPLAY "Enter the second number.".
002700

002800 ACCEPT SECOND-NUMBER.
002900

003000 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
003100

003200 DISPLAY "The resultis " THE-RESULT.
003300

003400

003500 PROGRAM-DONE.

003600 STOP RUN.

003700

Obviously, thePROGRAM-DONtaragraph at 1in603500 is misleading in this example because th
program stops before this point.

What Is the PERFORMVerb?

A program that executes from beginning to end and then stops might be useful for something, bi
wouldn't do much more than the examples already covered. Suppose you had one action that y«
performed several times in a program. In top-to-bottom execution, you would have to code that ¢
logic over and over.

The PERFORMerb avoids this problem of coding repetitive actions. In order to illustrate the effec
PERFORM.isting 3.6 uses another version of the "Hello world" progralRERFORNS a kind of
“jump" with a "bounce back."

TYPE: Listing 3.6. Using PERFCORM

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOO04.

000300

000400* This program illustrates the use of a PERFORM
000500

000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.

000800 PROCEDURE DIVISION.

000900

001000 PROGRAM-BEGIN.

001100 DISPLAY "Today's message is:".
001200 PERFORM SAY-HELLO.
001300

001400 PROGRAM-DONE.

001500 STOP RUN.

001600

001700 SAY-HELLO.

001800 DISPLAY "Hello world".

001900

OUTPUT:

Today's message is:
Hello world

C>

C>

ANALYSIS: Atline 001200 , PERFORM SAY-HELLGOndicates the following:
1. Locate the paragraph nam84Y-HELLQO,

2. Jump to that paragraph and start executing there.

3. When that paragraph ends, return to the end of this senteBB-0ORM SAY-HELLD

A paragraph ends in two ways. Either another paragraph begins or the end of the source code fi
reached. In Listing 3.6, the paragrdpROGRAM-BEGINNds at lin®01400 whenPROGRAM-DONI
begins. The paragrappfROGRAM-DON#nds at lind01700 whenSAY-HELLODbegins, and
SAY-HELLOends just after linB01900 at the end of the source code file.

Ignoring blank lines (because they will not execute), the sequence of execution in Listing 3.6 is t
following: Line 001000 . Internally note that the paragraBROGRAM-BEGINas started.

Line 001100 . DISPLAY "Today's message is:" on-screen.

Line 001200 . Locate the paragra@AY-HELLOat line001700 . Jump to lineéd01700 , the beginning
of SAY-HELLQ

Line 001700 . Internally note that the paragraAY-HELLOhas started.
Line 001800 . DISPLAY "Hello world" on-screen.

End of file. COBOL recognizes that it has hit the end oSA¥-HELLOparagraph, but it also knows
that it is in the middle of RERFORNMequested at [in@01200 . Whenever a paragraph ends becaus
an end-of-file or because a new paragraph starts, COBOL checks whether it is in the middle of ¢
PERFORMTf it is, it returns to the line that requested BEERFORMN this example, thEAY-HELLO
paragraph ends, and execution resumes at the end 60200 . There are no further instructions ol
that line, so execution continues at [0@&1400 .

Line 001400 . Internally note that the paragraBROGRAM-DONTtas started. Lin@01500 . Stop
execution of the program. The top-to-bottom course of a COBOL program continues unless it is
interrupted by #ERFORMT he paragraph being performed is also executed top to bottom. When
PERFORNs complete, the program returns to the point just aftePERRFORM/as requested, and it
continues from there to the bottom.

It is important to recognize this "keep-on-trucking" flow of a COBOL program, because it is critic
place youlPERFORBU paragraphs below tis8OP RUNSstatement. Listing 3.7 has tBAY-HELLO
paragraph placed differently.

TYPE: Listing 3.7. An incorrectly placed paragraph.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. HELLOOS.

000300

000400* This program illustrates the incorrect placement of a
000500* Paragraph that is the target of a perform
000600

000700 ENVIRONMENT DIVISION.

000800 DATA DIVISION.

000900 PROCEDURE DIVISION.

001000

001100 PROGRAM-BEGIN.

001200 DISPLAY "Today's message is:".
001300 PERFORM SAY-HELLO.

001400

001500 SAY-HELLO.

001600 DISPLAY "Hello world".
001700

001800 PROGRAM-DONE.
001900 STOP RUN.

002000

If you followed the steps describing the flowrll005.cbl , it should come as no surprise that tr
program displaysiello world twice:

OUTPUT:

Today's message is:
Hello world

Hello world

C>

C>

ANALYSIS: Ignoring blank lines, the sequence of execution in Listing 3.7 is as followsOQirOO0 .
Internally note that the paragraPROGRAM-BEGINas started.

Line 001200 . DISPLAY "Today's message is:" on-screen.

Line 001300 . Jump to lineéd01500 , the beginning 0SAY-HELLQ

Line 001500 . Internally note that the paragrapAY-HELLOhas started.
Line 001600 . DISPLAY "Hello world" on-screen.

Line 001800 . COBOL recognizes that it has hit the end of$iAér-HELLO paragraph, but it also
knows that it is in the middle of RERFORNequested at [in@01300 . TheSAY-HELLOparagraph
ends, and execution resumes at the end oDMS00 . There are no further instructions on that line
execution continues at lird®1500 .

Line 001500 . Internally note that the paragrapAY-HELLOhas started.
Line 001600 . DISPLAY "Hello world" on-screen.

Line 001800 . COBOL recognizes that it has hit the end of$lAer-HELLOparagraph, but in this cas
it is not in the middle of RERFORM

Line 001800 . Internally note that the paragraPROGRAM-DONtas started. Lin@01900 . Stop
execution of the program.

When to Use PERFORM

A PERFORMas several uses in COBOL. First, it is used to section off a repetitive action that is
performed in several places or several times in a program to prevent writing the same code ovel
over.(l hinted at this use when | introdud@dRFORMarlier in today's lesson.) This creates two

advantages: It not only cuts down on the amount of typing, but it cuts down on the number of po
errors. Less typing means fewer opportunities to copy it incorrectly.

Imagine typing the following retail profit formula five or six times in different places in a program,
you begin to see the sense of putting this in a paragraph COIBPPUTE-RETAIL-PROFITand using
the PERFORMerb every time you want it done:

COMPUTE MARGIN-PERCENT =
((GOODS-PRICE - GOODS-COST) /
GOODS-PRICE) * 100 .

The second use fFERFORMhight not be so obvious, because the programs used so far in this bc
have been relatively small. RERFORMerves to break up a program into smaller, more manageal
pieces. If you're changing the sales commission from 10 percent to 11 percent, it's much easier
through a long program looking for a paragraph na@&HCULATE-COMMISSIONKhan to plow
through a long list of code not broken into paragraphs. It is very common for programs to perforr
than one major task. A payroll system might have a program in it used both to calculate pay tota
print checks after the hours for each employee are entered into the computer.

A program that carries out these actions might have one area of the program to deal with the ca
while further down in the program another area of code deals with the printing activity. Above thq
areas is the main logic of the program that performs both pieces of the program:

MAIN-LOGIC.
PERFORM CALC-PAYROLL-TOTALS.
PERFORM PRINT-PAYROLL-CHECKS.

The third reason to usePERFORNS that the program is easier to read and understand if the para
are named sensibly. In the following code fragment, it is fairly easy to figure out what the paragr:
PAY-THE-SALESPERSONS doing, even though the whole paragraph is made BEBFORM

PAY-THE-SALESPERSON
PERFORM GET-SALES-TOTAL.
PERFORM CALCULATE-COMMISSION.
PERFORM PRINT-THE-CHECK.

A fourth reason to useERFORMould be to conserve memory. Look back at the retail profit formt
and imagine that piece of code repeated five or six times in a single program. Each time the forr
appears in the program it takes up several bytes of memory. Coding it once in a single paragrap
performing that paragraph five or six times uses far less memory.

Let's take a closer look at the first reason fBlERRFORMwhich is to handle repetitive code. Listing &
"The Lady from Eiger," is similar t@mck03.cbhl, used in Day 2, "Using Variables and Constants
At line 001800 , THE-NUMBERsS initialized to0, and then (instead of movirigto THE-NUMBERat
line 002300) 1 is added t&'HE-NUMBER

TYPE: Listing 3.8. Repetitive actions.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGEROS.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 THE-MESSAGE PIC X(50).
000900 01 THE-NUMBER PIC 9(2).
001000 01 A-SPACE PIC X.
001100

001200 PROCEDURE DIVISION.

001300 PROGRAM-BEGIN.

001400

001500* Initialize the space variable
001600 MOVE "" TO A-SPACE.
001700* Start THE-NUMBER at O

001800 MOVE 0 TO THE-NUMBER.
001900

002000* Set up and display line 1

002100 MOVE "There once was a lady from Eiger,"
002200 TO THE-MESSAGE.

002300 ADD 1 TO THE-NUMBER.
002400 DISPLAY

002500 THE-NUMBER

002600 A-SPACE

002700 THE-MESSAGE.

002800

002900* Set up and Display line 2

003000 MOVE "Who smiled and rode forth on a tiger."
003100 TO THE-MESSAGE.

003200 ADD 1 TO THE-NUMBER.
003300 DISPLAY

003400 THE-NUMBER

003500 A-SPACE

003600 THE-MESSAGE.

003700

003800* Set up and display line 3

003900 MOVE "They returned from the ride" TO THE-MESSAGE.
004000 ADD 1 TO THE-NUMBER.
004100 DISPLAY

004200 THE-NUMBER

004300 A-SPACE

004400 THE-MESSAGE.

004500

004600* Set up and display line 4

004700 MOVE "With the lady inside,"” TO THE-MESSAGE.
004800 ADD 1 TO THE-NUMBER.

004900 DISPLAY

005000 THE-NUMBER

005100 A-SPACE

005200 THE-MESSAGE.
005300

005400* Set up and display line 5
005500 MOVE "And the smile on the face of the tiger."
005600 TO THE-MESSAGE.
005700 ADD 1 TO THE-NUMBER.
005800 DISPLAY

005900 THE-NUMBER

006000 A-SPACE

006100 THE-MESSAGE.
006200

006300

006400 PROGRAM-DONE.

006500 STOP RUN.

006600

OUTPUT:

01 There once was a lady from Eiger,
02 Who smiled and rode forth on a tiger.
03 They returned from the ride

04 With the lady inside,

05 And the smile on the face of the tiger.
C>

C>

ANALYSIS: If you inspect line©02300 through002700 and lineD03200 through003600 , you'll
find that the actions are identical. These appear again indg¥300 through004400 . In fact, these
two sentences are repeated five times in the program, appearing again(04i&e8 through005200
and005700 through006100 .

TheDISPLAY command (line®02400 through002700 , 003300 through003600 , and so on) is
rather long because it iLASPLAY of three variables. The odds of typing incorrectly are reasonab
high. A typographical error wouldn't be so bad (because the compiler would complain if somethi
spelled incorrectly), but suppose that in one of the five instances you |8#SRRACEin the list of
variables to display. It wouldn't be a disaster. It would show up the first time you ran the prograrn
the lines would look odd, and you would be able to track it down quickly. Unfortunately, not all el
this sort are so easy to spot. If this were a series of calculations, you might be able to spot an er
final result, but you wouldn't know where it had originated.

There are two repetitive actions in Listing 3.8:
ADD 1 TO THE-NUMBER

and
DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.

It is simple to extract these two lines and create a paragraph that performs both of these actions

ADD-NUMBER-AND-DISPLAY.
ADD 1 TO THE-NUMBER
DISPLAY THE-NUMBER A-SPACE THE-MESSAGE.

Listing 3.9 is an example of using this paragraph, WERFORBMIinserted at the appropriate points.
TYPE: Listing 3.9. Usinga PERFORMed paragraph.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. EIGERO04.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 THE-MESSAGE PIC X(50).

000900 01 THE-NUMBER PIC 9(2).

001000 01 A-SPACE PIC X.

001100

001200 PROCEDURE DIVISION.

001300 PROGRAM-BEGIN.

001400

001500* Initialize the space variable

001600 MOVE "" TO A-SPACE.

001700* Start THE-NUMBER at O

001800 MOVE 0 TO THE-NUMBER.

001900

002000* Set up and display line 1

002100 MOVE "There once was a lady from Eiger,"
002200 TO THE-MESSAGE.

002300 PERFORM ADD-NUMBER-AND-DISPLAY.
002400

002500* Set up and Display line 2

002600 MOVE "Who smiled and rode forth on a tiger."
002700 TO THE-MESSAGE.

002800 PERFORM ADD-NUMBER-AND-DISPLAY.
002900

003000* Set up and display line 3

003100 MOVE "They returned from the ride" TO THE-MESSAGE.
003200 PERFORM ADD-NUMBER-AND-DISPLAY.
003300

003400* Set up and display line 4

003500 MOVE "With the lady inside,"” TO THE-MESSAGE.
003600 PERFORM ADD-NUMBER-AND-DISPLAY.

003700

003800* Set up and display line 5

003900 MOVE "And the smile on the face of the tiger."
004000 TO THE-MESSAGE.

004100 PERFORM ADD-NUMBER-AND-DISPLAY.
004200

004300 PROGRAM-DONE.

004400 STOP RUN.

004500

004600 ADD-NUMBER-AND-DISPLAY.

004700 ADD 1 TO THE-NUMBER.

004800 DISPLAY

004900 THE-NUMBER

005000 A-SPACE

005100 THE-MESSAGE.

005200

CodeeigerO4.cbl , compile it, and run it. Work out the flow of ealeERFORMNd how the progral
returns to the main stream of the logic. Here is the outpeigef04.cbl

OUTPUT:

01 There once was a lady from Eiger,
02 Who smiled and rode forth on a tiger.
03 They returned from the ride

04 With the lady inside,

05 And the smile on the face of the tiger.
C>

C>

ANALYSIS: At line 002300 , the computer locatesSDD-NUMBER-AND-DISPLAYat line004600
and jumps to that line. This paragrapfPSRFORBYU, and when complete, execution resumes at the
of line 002300 . Execution continues on lir@2600 . Then at linéd02800 , another jump is made to
line 004600 , and the program returns to the end of 02800 . This process continues until all five
PERFORMequests have been executed ABD-NUMBER-AND-DISPLAYhas been performed five
times.

It is possible to requestRERFORM/hen you already are withinRERFORMoy nesting them togethe
If a paragraph that is beilRERFORM itself requests RERFORM(f another paragraph, COBOL ke
track of the layers dPERFORBH paragraphs and returns to the correct level.

In general, when RERFORBH paragraph ends, the program returns to the line that requested the
PERFORIMVat a position in the line just after tRERFORMas requested. In Listing 3.10, the
ADD-NUMBER-AND-DISPLAYparagraph at linB05100 has been broken down into two sentence
that eaciPERFORMmMmaller paragraphs. TheBERFORMentences refer to paragraphs at IB@&s3800
and006100 --ADD-THE-NUMBERNADISPLAY-THE-MESSAGE Each of these paragraphs does
only one thing. In practice, you rarely would create a paragraph to execute a single statement, b
example serves to illustrate nesRERFORMI

TYPE: Listing 3.10. Nested PERFORME.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. EIGERO05.

000300

000400* This program illustrates nested PERFORMS
000500 ENVIRONMENT DIVISION.

000600 DATA DIVISION.

000700

000800 WORKING-STORAGE SECTION.

000900

001000 01 THE-MESSAGE PIC X(50).

001100 01 THE-NUMBER PIC 9(2).

001200 01 A-SPACE PIC X.

001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 Initialize the space variable

001800 MOVE "" TO A-SPACE.

001900* Start THE-NUMBER at 0

002000 MOVE 0 TO THE-NUMBER.

002100

002200* Set up and display line 1

002300 MOVE "There once was a lady from Eiger,"
002400 TO THE-MESSAGE.

002500 PERFORM ADD-NUMBER-AND-DISPLAY.
002600

002700* Set up and Display line 2

002800 MOVE "Who smiled and rode forth on a tiger."
002900 TO THE-MESSAGE.

003000 PERFORM ADD-NUMBER-AND-DISPLAY.
003100

003200* Set up and display line 3

003300 MOVE "They returned from the ride" TO THE-MESSAGE.
003400 PERFORM ADD-NUMBER-AND-DISPLAY.
003500

003600* Set up and display line 4

003700 MOVE "With the lady inside,"” TO THE-MESSAGE.
003800 PERFORM ADD-NUMBER-AND-DISPLAY.
003900

004000* Set up and display line 5

004100 MOVE "And the smile on the face of the tiger."
004200 TO THE-MESSAGE.

004300 PERFORM ADD-NUMBER-AND-DISPLAY.

004400

004500 PROGRAM-DONE.

004600 STOP RUN.

004700

004800* This paragraph is PERFORMED 5 times from within
004900* PROGRAM-BEGIN. This paragraph in turn PERFORMS
005000* Two other paragraphs

005100 ADD-NUMBER-AND-DISPLAY.

005200 PERFORM ADD-THE-NUMBER.

005300 PERFORM DISPLAY-THE-MESSAGE.

005400

005500* These two paragraphs will each be performed 5 times as
005600* they are each performed every time ADD-NUMBER-AND-DISPLAY
005700* is performed.

005800 ADD-THE-NUMBER.

005900 ADD 1 TO THE-NUMBER.

006000

006100 DISPLAY-THE-MESSAGE.

006200 DISPLAY

006300 THE-NUMBER

006400 A-SPACE

006500 THE-MESSAGE.

006600

ANALYSIS: The flow of the program at [in@05100 is executed every tinlRERFORM
ADD-NUMBER-AND-DISPLAYSs requested: Lin605100 . Internally note that the paragraph
ADD-NUMBER-AND-DISPLAYhas started.

Line 005200 . Locate the paragraph calla@®@D-THE-NUMBERNd jump to it at [in®05800 .
Line 005800 . Internally note that the paragrapPD-THE-NUMBERas started.
Line 005900 . ADD 1 TO THE-NUMBER

Line 006100 . COBOL notes thaADD-THE-NUMBERas ended and returns to 10@5200 , where
there are no further instructions.

Line 005300 . Locate the paragraph nametsPLAY-THE-MESSAGEand jump to it at in@06100 .
Line 006100 . Internally note that the paragraptSPLAY-THE-MESSAGEhas started.

Lines006200 throughO06500 . These lines are executed as one long sentence, displaying all th:
variables.

End of file (the last line of the source code). COBOL notes the eDtS6LAY-THE-MESSAGEand
knows it is in the middle of RERFORMTt returns to lin@d05300 , where there are no further
instructions. LinéD05800 . (Remember that blank lines and comment lines have no effect on the
program, so the next active [ineG85800 .) COBOL notes thaADD-THE-NUMBERtarts here;
therefore, the current paragragp{hD-NUMBER-AND-DISPLAYmust have ended. Execution return

whatever line originally requested tRERFORNMf ADD-NUMBER-AND-DISPLAY

DO/DON'T:
DO locate repetitive actions in your programs, and create separate paragraphs containing
those actions. TheRERFORNhe paragraph wherever those actions are needed.

DON'T keep typing the same code over and over in one program.

It is common foPERFORBMto be nested in COBOL programs. In fact, Listing 3.11 shows how an
experienced programmer actually might organize "The Lady from Eiger." The callouts down the
side show you the sequence of execution.

TYPE: Listing 3.11. A structured program.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EIGEROS.

000300

000400* This program illustrates nested PERFORMS in a
000500 structured program.

000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.

000800

000900 WORKING-STORAGE SECTION.
001000

001100 01 THE-MESSAGE PIC X(50).
001200 01 THE-NUMBER PIC 9(2).

001300 01 A-SPACE PIC X.
001400

001500 PROCEDURE DIVISION.
001600

001700* LEVEL 1 ROUTINES

001800 PROGRAM-BEGIN.

001900

002000 PERFORM PROGRAM-INITIALIZATION.
002100 PERFORM MAIN-LOGIC.
002200

002300 PROGRAM-DONE.

002400 STOP RUN.

002500

002600*LEVEL 2 ROUTINES

002700 PROGRAM-INITIALIZATION.
002800 Initialize the space variable
002900 MOVE"" TO A-SPACE.
003000* Start THE-NUMBER at 0
003100 MOVE 0 TO THE-NUMBER.
003200

003300 MAIN-LOGIC.

003400* Set up and display line 1

003500 MOVE "There once was a lady from Eiger,"
003600 TO THE-MESSAGE.

003700 PERFORM ADD-NUMBER-AND-DISPLAY.
003800

003900* Set up and Display line 2

004000 MOVE "Who smiled and rode forth on a tiger."
004100 TO THE-MESSAGE.

004200 PERFORM ADD-NUMBER-AND-DISPLAY.
004300

004400* Set up and display line 3

004500 MOVE "They returned from the ride" TO THE-MESSAGE.
004600 PERFORM ADD-NUMBER-AND-DISPLAY.
004700

004800* Set up and display line 4

004900 MOVE "With the lady inside,” TO THE-MESSAGE.
005000 PERFORM ADD-NUMBER-AND-DISPLAY.
005100

005200* Set up and display line 5

005300 MOVE "And the smile on the face of the tiger."
005400 TO THE-MESSAGE.

005500 PERFORM ADD-NUMBER-AND-DISPLAY.
005600

005700* LEVEL 3 ROUTINES

005800* This paragraph is PERFORMED 5 times from within
005900* MAIN-LOGIC.

006000

006100 ADD-NUMBER-AND-DISPLAY.

006200 ADD 1 TO THE-NUMBER.

006300 DISPLAY

006400 THE-NUMBER

006500 A-SPACE

006600 THE-MESSAGE.

006700

ANALYSIS: The "main" stream of the program runs from I@@4.800 to line002400 and is quite

short. All the work of the program is accomplished by reque8tEI§FORMBIof other paragraphs. Son
of these in turn request othRERFORBI You should look over this listing and compare it carefully 1
Listing 3.9. You will see that the effect of the two programs is identical, and both of them use pal
to isolate repetitive logic. The versionaiger06.cbl additionally uses paragraphs to break out ¢
document which parts of the code are for initializing (or setting up variables) before the main log

which parts are the main logic of the code.

Summary

Today, you learned about the structure of RROCEDURE DIVISION including the following basics
« COBOL programs execute from top to bottom unless that flow is interrupte@ BREORM

« The statements iInRERFORBU paragraph are executed from top to bottom.

« When aPERFORBH paragraph is completed, flow resumes at the jumping-off point (the po
where thePERFORMas requested) and continues down through the statements.

« COBOL paragraph names can contain up to 30 significant characters. The charactes can
throughZ, 0 through9, and the hyphen {. Some compilers allow the lowercase charaaers
throughz. The paragraph name must not start with the hyphen. Additionally, paragraph na
must start in Area A, columns 8 through 11, and must end with a period.

 PERFORBH paragraphs must be placed afteiSi®P RUNstatement.

« PERFORNMS used to eliminate repetitive coding and break a program into more manageabl
pieces. It also can be used to document the program if done correctly.

« PERFORBMIcan be nested so tha?BRFORBU paragraph can itself requefRREBRFORNMf
another paragraph.

« COBOL programs frequently are arranged so that a small amount of code is written betwe
start of the program arsiTOPRUN This code usually consists BERFORMequests on
paragraphs that are written after SiFEOP RUN

Q&A

Q Are there other limits on COBOL paragraph names?

A Paragraphs (and variables) each should have a unique name. There actually is a way a
limit, but its explanation is beyond the scope of this book. With 30 characters for a paragre
name, you should have no problem coming up with different names for each paragraph.

There is another limit that you should place on yourself for practical purposes. Paragraph |
should be descriptive of what is done in the paragraph.

Q How many paragraphs can be included in th€ROCEDURE DI VI SI ON?

A This is limited only by the COBOL compiler that you are using. The number always is lal
enough to support large and fairly complex programs because COBOL is a language desi

handle such problems.
Q How many PERFORMs can be included in a program?

A There is no limit oiPERFORMother than the limits imposed by your compiler on the over
size of programs. See the next question.

Q If one paragraph canPERFORManother paragraph, which in turn can PERFORManother
paragraph, how many levels of this nestingRERFORMs within PERFORMs) are possible?

A This again depends entirely on your COBOL compiler. The number usually is large. Lev
250 are not uncommon. You would have to write something very complex teEREIORBM250
levels deep.

Q Can a paragraphPERFORMitself as in the following example?

DO-SOMETHING.
PERFORM DO-SOMETHING.

A No. This is allowed in some languages, but not in COBOL.

Workshop
Quiz

1. If the code in a paragraph is designed to locate overdue customers, which of the followil
would be the best name for the paragraph?

a.LOCATE-CUSTOMERS.
b. FIND-SOME-STUFF.

c. LOCATE-OVERDUE-CUSTOMERS.
2. Number the lines ainsg01.cbl to show the sequence in which the lines would be execu

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MSGO1.
000300

000400 ENVIRONMENT DIVISION.
000500 DATA DIVISION.

000600

000700 WORKING-STORAGE SECTION.
000800

000900 PROCEDURE DIVISION.
001000

001100 PROGRAM-BEGIN.

001200

001300 PERFORM MAIN-LOGIC.
001400

001500 PROGRAM-DONE.

001600 STOP RUN.

001700

001800 MAIN-LOGIC.

001900 PERFORM DISPLAY-MSG-1.
002000 PERFORM DISPLAY-MSG-2.
002100

002200 DISPLAY-MSG-1.

002300 DISPLAY "This is message 1.".
002400

002500 DISPLAY-MSG-2.

002600 DISPLAY "This is message 2.".
002700

Exercises

1. What would be the effect of omitting tRROGRAM-DONtaragraph an8TOP RUNsentenct
from helloO4.cbl in Listing 3.6? Copyello04.cbl to hello06.cbl and edit it to
remove line$01400 and001500 . Compile and run the program. What does the display lot
like? The display effect should be the same as the output of Listingeda0Q5.chbl

2. Trace the flow ohello06.cbl step by step and work out what is happening. What mus
appear before any paragraphs thaRERFORBI?

3. Work out where to place aTOP RUNin hello06.chbl to prevent the situation in Exercise

4. Study the following listingadd07.cbl

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ADDO7.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 FIRST-NUMBER PIC 99.
000900 01 SECOND-NUMBER PIC 99.
001000 01 THE-RESULT PIC 999.
001100

001200 PROCEDURE DIVISION.

001300

001400 PROGRAM-BEGIN.

001500

001600 PERFORM ADVISE-THE-USER.

001700 PERFORM GET-FIRST-NUMBER.
001800 PERFORM GET-SECOND-NUMBER.
001900 PERFORM COMPUTE-AND-DISPLAY.
002000

002100 PROGRAM-DONE.

002200 STOP RUN.

002300

002400 ADVISE-THE-USER.

002500 DISPLAY "This program will add 2 numbers.".
002600

002700 GET-FIRST-NUMBER.

002800

002900 DISPLAY "Enter the first number.".
003000 ACCEPT FIRST-NUMBER.

003100

003200 GET-SECOND-NUMBER.

003300

003400 DISPLAY "Enter the second number.".
003500 ACCEPT SECOND-NUMBER.

003600

003700 COMPUTE-AND-DISPLAY.

003800

003900 COMPUTE THE-RESULT = FIRST-NUMBER + SECOND-NUMBER.
004000 DISPLAY "The resultis " THE-RESULT.
004100

Copy this toadd08.cbl and modify the program so that it adds three numbers instead of t

Hint: You can add three numbers just by continuingGMPUTBtatement:

004600 COMPUTE THE-RESULT = FIRST-NUMBER +
004700 SECOND-NUMBER +
004800 THIRD-NUMBER.

5. Usingadd02.cbl (Listing 2.6 from Day 2), redesign the program to use a logic flow sim
to eiger06.cbl , with the main stream of the program being a seri€EGFORB]

Hint: Listing 3.3 provides some clues about the natural paragraphs in the program.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 4 -
Decision Making

A program must be able to make decisions about data and to execute different sections of code

those decisions. Controlling the flow of programs by testing conditions witk tlstatement lies at the
heart of every program.

This lesson deals almost exclusively with tFRestatement and the many options available with

it--information critical to understanding programming in COBOL. Today, you learn about the follc
topics:

e WhatislF ?

UsingIF to control multiple statements.

What can you test with df ?

Testing multiple conditions.

UsingIF-ELSE .

| F

The primary method of changing the flow of a program is by making decisions usiifg vieeb. The
following example demonstrates the verb:

IF condition
PERFORM DO-SOMETHING.

When COBOL sees dR , it makes a decision about the condition, and then either requeSRFRORNM
of DO-SOMETHINGr skips that line of the program.

The example in Listing 4.1 uses k& to decide which message to displayGET-THE-ANSWERat
line 002300 , this program prompts the user to entar N (Yes or No) and accepts a single charact
from the keyboard and places it in the variablle&5-OR-NQ This is not a particularly good program
because if the user enters a lowercase y or n, the program does nothing at all. The problem of h
the lowercase entry is addressed later in this chapter. The general problem of handling lowercas
uppercase data entry is covered in Day 15, "Data Integrity." For now, just press the Caps Lock k
left of your keyboard to force all data entry into uppercase.

TYPE: Listing 4.1. Testing values using | F.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. YESNOO1.

000300%---======mm = m e m oo
000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no.
000600%----=====mmmmm s
000700 ENVIRONMENT DIVISION.

000800 DATA DIVISION.

000900 WORKING-STORAGE SECTION.

001000

001100 01 YES-OR-NO PIC X.

001200

001300 PROCEDURE DIVISION.

001400 PROGRAM-BEGIN.

001500

001600 PERFORM GET-THE-ANSWER.
001700

001800 PERFORM DISPLAY-THE-ANSWER.
001900

002000 PROGRAM-DONE.

002100 STOP RUN.

002200

002300 GET-THE-ANSWER.

002400

002500 DISPLAY "Is the answer Yes or No? (Y/N)".
002600 ACCEPT YES-OR-NO.

002700

002800 DISPLAY-THE-ANSWER.

002900 IF YES-OR-NO IS EQUAL "Y"
003000 DISPLAY "You answered Yes.".
003100

003200 IF YES-OR-NO IS EQUAL "N"
003300 DISPLAY "You answered No.".
003400

This is the output ofesno01.cbl if you enter a:

OUTPUT:

Is the answer Yes or No? (Y/N)
Y
You answered Yes.

C>
C>

ANALYSIS: Edit, compile, and run this program; then try it, entering a few different answers. Yo
notice that it displays a message only if the entry is an upperaade When you are comparing
alphanumeric variables, the values are case-dependegnis st the same a§ andn is not the same
N.

DO/DON'T:
DO test for both uppercase and lowercase versions of an alphanumeric field, if either
uppercase or lowercase values are valid.

DON'T ignore case differences in a variable if they are important in a program.

In DISPLAY-THE-ANSWERat lines002800 through003300 , one of two possible messages is
displayed, based on whether the user entededraanN.

At line 002900 , the condition being testedYES-OR-NO IS EQUAL "Y" .1S EQUAL are COBOILI
reserved words used for testing whether two values are equdF Tdentences in
DISPLAY-THE-ANSWERat lines002900 and003200 are each two lines long; there is no period
until the end of the second line.

When the criteria of a tested condition are met, the condition is considered to be true. When the
of a tested condition are not met, the condition is considered to be faldeISPIEAY statement at line
003000 is executed only when the condition being tested byRhat line002900 (YES-OR-NO IS
EQUAL "Y") is true. When th& at line002900 is not true (any character bviis entered), line
003000 is skipped. Th®ISPLAY statement at [inB03300 is executed only when the condition be
tested by théF at line003200 (YES-OR-NO IS EQUAL "N") is true. When th& at line
003200 is not true (any character btis entered), lin®03300 is skipped. When a condition teste
by anlF statement is not true, any statements controlled bif~there not executed.

Depending on the user's input, there are three possible output results from this program:

o If YES-OR-NOcontains amN whenDISPLAY-THE-ANSWERSs performed, thé& test at line
002900 is not true, and linB03000 is not executed. However, tHe test at lineD03200 is
true, and lin€®03300 is executed.

o If YES-OR-NOcontains & whenDISPLAY-THE-ANSWERSs performed, théF test at line
002900 s true, and lin®03000 is executed. However, thE test at lineD03200 is false, and
line 003300 is not executed.

« If YES-OR-NOdoes not contain 4 or anN whenDISPLAY-THE-ANSWERSs performed, the
IF test at lined02900 is false, and lin@03000 is not executed. THE test at lineD03200
also is false, and lin@03300 is not executed. In this case, neither message is displayed.

Listing 4.2 adds the extra step of editing the user's answer to adjust for a loweocase
TYPE: Listing 4.2. Editing the answer.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. YESNOO2.

000300% === m e m oo
000400* This program asks for a 'Y or N answer, and then
000500 displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
0007 00% === mm i m e
000800 ENVIRONMENT DIVISION.

000900 DATA DIVISION.

001000 WORKING-STORAGE SECTION.

001100

001200 01 YES-OR-NO PIC X.

001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 PERFORM GET-THE-ANSWER.
001800

001900 PERFORM EDIT-THE-ANSWER.
002000

002100 PERFORM DISPLAY-THE-ANSWER.
002200

002300 PROGRAM-DONE.

002400 STOP RUN.

002500

002600 GET-THE-ANSWER.

002700

002800 DISPLAY "Is the answer Yes or No? (Y/N)".
002900 ACCEPT YES-OR-NO.

003000

003100 EDIT-THE-ANSWER.

003200

003300 IF YES-OR-NO IS EQUAL "y"

003400 MOVE "Y" TO YES-OR-NO.

003500

003600 IF YES-OR-NO IS EQUAL "n"

003700 MOVE "N" TO YES-OR-NO.

003800

003900 DISPLAY-THE-ANSWER.

004000 IF YES-OR-NO IS EQUAL "Y"
004100 DISPLAY "You answered Yes.".
004200

004300 IF YES-OR-NO IS EQUAL "N"
004400 DISPLAY "You answered No.".
004500

ANALYSIS: In EDIT-THE-ANSWERAat line003300 , the program checks to see whether the user
entered & . If true, at lineD03400 the program forces this to becom¥.dn the same paragraph at lii
003600 and003700 , ann will be changed to aN.

The tests ilDISPLAY-THE-ANSWERwork correctly now, because the answer has been forced to
uppercase’ or N by theEDIT-THE-ANSWERparagraph.

If you edit, compile, and rupesno02.cbl , you will find that uppercase and lowercase versiorns ¢
andn are now all valid entries. The program still displays no message if anything else is entered
address this problem later in this chapter, in the section en#EUSE .)

Using | F to Control Multiple Statements

Listing 4.3 executes multiple statements under the control ¢Fthiests at line®04000 and004400 .
In each sequence RERFORNS requested to display an additional message before the main mes:
displayed. More than one statement can be executed whHEntasts true:

IF condition
PERFORM DO-SOMETHING
PERFORM DO-SOMETHING-ELSE.

An IF controls all statements under it until the sentence ends. WHEntasts true, all statements ug
the next period are executed. Wherifantests false, all statements up to the next period are skippe

TYPE: Listing 4.3. Controlling multiple statements with | F.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. YESNOO3.

000300% === mm oo
000400* This program asks for a 'Y or N answer, and then
000500* displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
0007 00%-----=-mmmmm e m e
000800 ENVIRONMENT DIVISION.

000900 DATA DIVISION.

001000 WORKING-STORAGE SECTION.

001100

001200 01 YES-OR-NO PIC X.

001300

001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.

001600
001700 PERFORM GET-THE-ANSWER.
001800
001900 PERFORM EDIT-THE-ANSWER.
002000

002100 PERFORM DISPLAY-THE-ANSWER.
002200

002300 PROGRAM-DONE.

002400 STOP RUN.

002500

002600 GET-THE-ANSWER.

002700

002800 DISPLAY "Is the answer Yes or No? (Y/N)".
002900 ACCEPT YES-OR-NO.

003000

003100 EDIT-THE-ANSWER.

003200

003300 IF YES-OR-NO IS EQUAL "y"
003400 MOVE "Y" TO YES-OR-NO.
003500

003600 IF YES-OR-NO IS EQUAL "n"
003700 MOVE "N" TO YES-OR-NO.
003800

003900 DISPLAY-THE-ANSWER.

004000 IF YES-OR-NO IS EQUAL "Y"
004100 PERFORM IT-IS-VALID

004200 DISPLAY "You answered Yes.".
004300

004400 IF YES-OR-NO IS EQUAL "N"
004500 PERFORM IT-IS-VALID

004600 DISPLAY "You answered No.".
004700

004800 IT-IS-VALID.

004900 DISPLAY "Your answer is valid and".
005000

OUTPUT:

Is the answer Yes or No? (Y/N)
y

Your answer is valid and

You answered Yes.

C>
C>

ANALYSIS: When thdF at line004400 tests true, line®04100 and004200 are executed, one
after the other. Lin€@04100 is aPERFORMequest that causes a message to be displayed at line
004900 . A similar action happens when the at line004000 tests true and liné€304500 and
004600 are executed.

What Can You Test with | F?

The condition in ahF verb is a test of one value against another for equality or inequality.

New Term: The symbols used to compare two values are catlatparison operatorslhe short and
long versions of these comparisons are all comparison opet&N&T EQUAL , NOT =, =, IS
EQUALNOT <, >, GREATER THANandNOT GREATER THANre all examples of comparison
operators. Tables 4.1 and 4.2 list all of the comparison operators.

Table 4.1 lists the comparisons that can be made and describes their effects.

Table 4.1. COBOL comparison operators.

Comparison Operator Description

IF x IS EQUAL y True ifx equalsy

IF x IS LESS THAN y True ifx is less thaly

IF x IS GREATER THAN y True ifx is greater thag

IF x IS NOT EQUAL y True ifx does not equal

IF x IS NOT LESS THAN y True ifx is not less thag (or is equal to or greater thgj
IF x IS NOT GREATER THAN Yy |True ifx is not greater thay (or is equal to or less thar)

The wordIS in a comparison is optional, aB@QUAL GREATER THANandLESS THAN can be
shortened te, >, and<, respectively. Table 4.2 compares the possible versions of comparisons.

Table 4.2. More COBOL comparison operators.

Optional Operator Shortest Version
IF x EQUAL y IFx=y

IF x LESS THAN y IFx<y

IF x GREATER THAN y IFx>y

IF x NOT EQUAL y IFXNOT =y

IF x NOT LESS THAN y IF X NOT <y

IF x NOT GREATER THANY [IF X NOT >y

Listing 4.4 repeatgesno03.cbl , using the shortened comparisons.

TYPE: Listing 4.4. yesno03. cbl with shorter comparisons.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. YESNOO4.

000300%—---mmmm oo
000400* This program asks for a 'Y or N answer, and then
000500~ displays whether the user chose yes or no.
000600* The edit logic allows for entry of Y, y, N, or n.
0007 00% - m e m e
000800 ENVIRONMENT DIVISION.

000900 DATA DIVISION.

001000 WORKING-STORAGE SECTION.
001100

001200 01 YES-OR-NO PIC X.

001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 PERFORM GET-THE-ANSWER.
001800

001900 PERFORM EDIT-THE-ANSWER.
002000

002100 PERFORM DISPLAY-THE-ANSWER.
002200

002300 PROGRAM-DONE.

002400 STOP RUN.

002500

002600 GET-THE-ANSWER.

002700

002800 DISPLAY "Is the answer Yes or No? (Y/N)".
002900 ACCEPT YES-OR-NO.

003000

003100 EDIT-THE-ANSWER.

003200

003300 IF YES-OR-NO ="y"

003400 MOVE "Y" TO YES-OR-NO.
003500

003600 IF YES-OR-NO ="n"

003700 MOVE "N" TO YES-OR-NO.
003800

003900 DISPLAY-THE-ANSWER.

004000 IF YES-OR-NO ="Y"

004100 PERFORM IT-IS-VALID

004200 DISPLAY "You answered Yes.".
004300

004400 IF YES-OR-NO ="N"

004500 PERFORM IT-IS-VALID

004600 DISPLAY "You answered No.".
004700

004800 IT-IS-VALID.

004900 DISPLAY "Your answer is valid and".
005000

For numeric values, all these tests make sense. Less than and greater than are both conditions
can be established when you are testing two numbers. But what are you testing when you comg
alphanumeric variables?

When a condition test is performed on alphanumeric variables, the tests usually compare the ch
the two alphanumeric values on the left and right sides of the comparison operator, in ASCII ord
Appendix B, "ASCII.")

New Term: The sequence in which the characters appear in the ASCII chart is knowA&Clhe
collating sequenceCollate means to assemble in some sort of order--in this case, ASCII order.

ASCII is not the only collating sequence. IBM mainframes use a collating sequence called EBCI
the ASCII collating sequence, numbers appear before uppercase letters, and uppercase letters .
before lowercase letters. In the EBCDIC collating sequence, lowercase letters appear before up
letters and numbers appear last. Punctuation characters vary quite a bit in the EBCDIC and AS(
collating sequences. Collating sequences also vary for different spoken languages. Castillian Sg
treats the letter combinations ch and Il as single letters so that llanero sorts after luna and chico
corazon. The examples in this book are based on the English ASCII collating sequence.

In ASCII order,Ais less thaB, AB s less tha\BG and the uppercase letters are less than the

lowercase letters; sé\BCis less thambc . When an alphanumeric variable contains the digttsrough
9, the digits are less than the characterdB0is less thaABC Spaces are the lowest of all, so thre
spaces are less th@GAA. Refer to Appendix B for the complete set and sequence of ASCII charac

Listing 4.5 will accept two words from a user and then display them in ASCII order. You can use
program any time you want to find out the actual ASCII order for two values. The testing is done
paragrapDISPLAY-THE-WORDSwhich starts at 1in@04100 . The actual tests, at in@64500 and
004900, use a greater thar)(and a not greater thaNQT >) comparison to decide which word to
display first.

TYPE: Listing 4.5. Displaying two words in ASCII order.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. WRDSRTOL.
000300%--======mmmmmm e m oo

000400* Accepts 2 words from the user and then displays
000500* them in ASCII order.
000600%----====mmmmm e m oo

000700 ENVIRONMENT DIVISION.

000800 DATA DIVISION.

000900 WORKING-STORAGE SECTION.

001000

001100 01 WORD-1 PIC X(50).
001200 01 WORD-2 PIC X(50).
001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 PERFORM INITIALIZE-PROGRAM.
001800 PERFORM ENTER-THE-WORDS.
001900 PERFORM DISPLAY-THE-WORDS.
002000

002100 PROGRAM-DONE.

002200 STOP RUN.

002300

002400* Level 2 Routines

002500

002600 INITIALIZE-PROGRAM.

002700 MOVE""TO WORD-1.

002800 MOVE "" TO WORD-2.

002900

003000 ENTER-THE-WORDS.

003100 DISPLAY "This program will accept 2 words,".
003200 DISPLAY "and then display them".
003300 DISPLAY "in ASCII order.".

003400

003500 DISPLAY "Please enter the first word.".
003600 ACCEPT WORD-1.

003700

003800 DISPLAY "Please enter the second word.".
003900 ACCEPT WORD-2.

004000

004100 DISPLAY-THE-WORDS.

004200

004300 DISPLAY "The words in ASCII order are:".
004400

004500 IF WORD-1 > WORD-2
004600 DISPLAY WORD-2
004700 DISPLAY WORD-1.
004800

004900 IF WORD-1 NOT > WORD-2
005000 DISPLAY WORD-1
005100 DISPLAY WORD-2.
005200

Here is the sample outputwfdsrtO1.chbl when the words entered dreta
OUTPUT:

andalpha :

This program will accept 2 words,
and then display them

in ASCII order.

Please enter the first word.

bet a

Please enter the second word.

al pha

The words in ASCII order are:
alpha

beta

C>

ANALYSIS: Multiple statements are executed within tRetests at line®04500 and004900 . There
are twoDISPLAY statements under each of tRetests. IWORD-1is greater thallWORD-2or if
WORD-1occurs afteWORD-2n the ASCII sorting sequenc@/ORD-3s displayed first.

You should edit, compile, and ruvrdsrtO1.cbl ; then try it with various pairs of "words," such as
ABCandabc, (spaceABCandABC or ABCDandABG to see how these are arranged in ASCII orde

Please note that many people, including experienced programmers, assume that the opposite o
GREATER THANs LESS THAN However, testing for only these two conditions misses the case
the two entered words are identical. The compleme@&REATER THANs LESS THAN OR EQUAL
which is correctly stated &80T GREATER THAN

You also can try a version wifrdsrtO1.chbl that reverses the testiiSPLAY-THE-WORDSas in
Listing 4.6, which is just a listing of tH2ISPLAY-THE-WORDSaragraph. Try coding this one as
wrdsrt02.cbl and satisfy yourself that the results are identical. Note that the test and display
are reversed.

TYPE: Listing 4.6. Reversing the test and display.

004100 DISPLAY-THE-WORDS.

004200

004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2

004500 DISPLAY WORD-1

004600 DISPLAY WORD-2.

004700 IF WORD-1 NOT < WORD-2

004800 DISPLAY WORD-2

004900 DISPLAY WORD-1.

You should also try a version wirdsrtO1.cbl that tests incorrectly iDISPLAY-THE-WORDSas
in Listing 4.7. This version tests fbESS THANandGREATER THANTry coding this one as
badsrt.cbl and satisfy yourself that the results are identical unless you enter the exact string
WORD-1andWORD-2, such asABCandABC Note that the test fails to display anything for this
condition.

TYPE: Listing 4.7. An incorrect version of the test.

004100 DISPLAY-THE-WORDS.

004200

004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2

004500 DISPLAY WORD-1

004600 DISPLAY WORD-2.

004700 IF WORD-1 > WORD-2

004800 DISPLAY WORD-2

004900 DISPLAY WORD-1.

The indentation chosen for the is completely arbitrary. As long as tite starts in and stays within
Area B, the arrangement is up to you. Listing 4.8 and Listing 4.9 are equally valid, but in Listing -
difficult to tell what is going on, and Listing 4.8 looks a bit sloppy.

DO/DON'T:
DO indentlF conditions carefully. AiF controls all statements up to the period at the end
of the sentence.

DON'T use sloppy indenting on &R . Correct indentation gives a good visual clue of
which parts of the program are controlled by lthe

TYPE: Listing 4.8. Sloppy indenting ofan | F.

004100 DISPLAY-THE-WORDS.

004200

004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2

004500 DISPLAY WORD-1

004600 DISPLAY WORD-2.
004700 IF WORD-1 NOT < WORD-2
004800 DISPLAY WORD-2

004900 DISPLAY WORD-1.
TYPE: Listing 4.9. Failing to indentan | F.

004100 DISPLAY-THE-WORDS.

004200

004300 DISPLAY "The words sorted in ASCII order are:".
004400 IF WORD-1 < WORD-2

004500 DISPLAY WORD-1

004600 DISPLAY WORD-2.

004700 IF WORD-1 NOT < WORD-2

004800 DISPLAY WORD-2

004900 DISPLAY WORD-1.

Testing Multiple Conditions

An IF test also can be used to test more than one condition. Conditions can be combinedAMDs
OR or combinations of both. Listing 4.10 is a short menu program. A menu program is designed
display a series of options on the screen and let the user pick one option to execute. In this men
program, the user has a choice of displaying one of three possible messages.

TYPE: Listing 4.10. Combining tests using OR

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MENUOL1.
000300*-==-===m=mmmmmmmmmmem oo oo

000400* THIS PROGRAM DISPLAYS A THREE CHOICE MENU OF
000500* MESSAGES THAT CAN BE DISPLAYED.

000600* THE USER ENTERS THE CHOICE, 1, 2 OR 3, AND
000700* THE APPROPRIATE MESSAGE IS DISPLAYED.
000800* AN ERROR MESSAGE IS DISPLAYED IF AN INVALID
000900* CHOICE IS MADE.
D01000%-rmemc=mmmemmemreemccmcocmcoocmconmceocceon e

001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400

001500 01 MENU-PICK PIC 9.

001600

001700 PROCEDURE DIVISION.

001800 PROGRAM-BEGIN.

001900
002000 PERFORM GET-THE-MENU-PICK.
002100
002200 PERFORM DO-THE-MENU-PICK.
002300

002400 PROGRAM-DONE.

002500 STOP RUN.

002600

002700* LEVEL 2 ROUTINES

002800 GET-THE-MENU-PICK.

002900

003000 PERFORM DISPLAY-THE-MENU.
003100 PERFORM GET-THE-PICK.
003200

003300 DO-THE-MENU-PICK.

003400 IF MENU-PICK <1 OR
003500 MENU-PICK > 3

003600 DISPLAY "Invalid selection".

003700

003800 IF MENU-PICK =1

003900 DISPLAY "One for the money.".
004000

004100 IF MENU-PICK =2

004200 DISPLAY "Two for the show.".
004300

004400 IF MENU-PICK =3

004500 DISPLAY "Three to get ready.".
004600

004700* LEVEL 3 ROUTINES

004800 DISPLAY-THE-MENU.

004900 DISPLAY "Please enter the number of the message".

005000 DISPLAY "that you wish to display.".

005100* Display a blank line

005200 DISPLAY " ",

005300 DISPLAY "1. First Message".
005400 DISPLAY "2. Second Message".
005500 DISPLAY "3. Third Message".
005600* Display a blank line

005700 DISPLAY " ",

005800 DISPLAY "Your selection (1-3)?".
005900

006000 GET-THE-PICK.

006100 ACCEPT MENU-PICK.

006200

Here are sample output results framanu01.cbl

OUTPUT:

Please enter the number of the message
that you wish to display.

1. First Message
2. Second Message
3. Third Message

Your selection (1-3)?
2
Two for the show.

C>
C>

Please enter the number of the message
that you wish to display.

for a valid and an invalid response:

1. First Message
2. Second Message
3. Third Message

Your selection (1-3)?
5
Invalid selection

C>
C>

ANALYSIS: The valid menu selections ate2, and3. The test that the value entered is in a range
lines003400 through003500 , ending with a display of an invalid entry message atdog600 . If
the enteredENU-PICKis less than 1 or greater than 3, it is invalid. Note thaDtfRen line003400
combines the two tests within ofte. An ORtest is true if either of the tests is true.

Read the comments in the program, because they explain some of the options used to improve
the displayed menu. The levels in the comments relate to the I&RERFORMRoutines in level 2 are
being performed from the top level of the progr&dROGRAM-BEGINRoutines in level 3 are
performed from within routines at level 2.

An ANDitest is true only if both conditions being tested are true. Listing 4.11 asks the user to ent
number between 10 and 100, excluding 10 and 100. Therefore, the valid range of entries for this
is011 through099. Remember that ACUCOBOL will require that you enter the leading zero.

TYPE: Listing 4.11. Combining tests with AND.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. RANGEO1.
000300*--=-m=nmmmmmmmmmmmm e oo oo

000400* ASKS USER FOR A NUMBER BETWEEN 10 AND 100
000500* EXCLUSIVE AND PRINTS A MESSAGE IF THE ENTRY
000600* IS IN RANGE.
000700*-==-==mmmmmmmmmm e oo

000800 ENVIRONMENT DIVISION.

000900 DATA DIVISION.

001000 WORKING-STORAGE SECTION.

001100

001200 01 THE-NUMBER PIC 999.

001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 PERFORM GET-THE-NUMBER.

001800

001900 PERFORM CHECK-THE-NUMBER.

002000

002100 PROGRAM-DONE.

002200 STOP RUN.

002300

002400 GET-THE-NUMBER.

002500 DISPLAY "Enter a number greater than 10".
002600 DISPLAY "and less than 100. (011-099)".
002700 ACCEPT THE-NUMBER.

002800

002900 CHECK-THE-NUMBER.

003000 IF THE-NUMBER > 10 AND

003100 THE-NUMBER < 100

003200 DISPLAY "The number is in range.".
003300

ANALYSIS: At lines003000 and003100, THE-NUMBERnNust be greater than 10 and less than :
to be valid.

| F- ELSE

When anF test fails, none of the statements controlled byEhéest are executed. The program
continues to the next sentence and skips all the logic. In ListingvédSr¢0103.cbl), at lines
004500 through005100, twoIF tests are done to check the correct order for displayi@drD-1and
WORD-2In these two comparisons, the sectihdest is the exact opposite of the fifst test:

WORD-1 > WORD-2
WORD-1 NOT > WORD-2.

If you refer to Listing 4.7, you will recall that | had you deliberately create an error in the two test
testingLESS THAN followed byGREATER THANIt is entirely possible to make this exact error by
accident. Rather than worrying about testing the complementary condition, you cankisBEwause
of anlF to do it for you. If you are testing a condition and you want to do one set of commands i
condition or conditions are true and another set if they are false, it is easieEldSEs#an to try to
word anlF with the opposite condition.

An ELSE has the following form:

IF condition
statement
statement

ELSE
statement
statement.

The following is an example of &L SE statement:

IFA<B
PERFORM ACTION-A

PERFORM ACTION-B
ELSE

PERFORM ACTION-C

PERFORM ACTION-D.

ELSEcan be used in di test to specify what to do when thie condition does not test as true. An
ELSE also can execute multiple statements. IWFaBLSE statement, when tHE condition is true, a
statements up to tHeLSE are executed. Otherwise, all statements fronietHeE to the closing period
are executed. The period is placed at the end of the last statemerilirsthe

Listing 4.12 is a slightly improved versionwfdsrtOl1.cbl . The twolF tests have been replaced
anlF-ELSE . You should be able to copyrdsrtO1.chbl towrdsrt03.chbl and make the two
changes needed easily. Remove the period at the end 604i7€0 , and change the secolid test to
anELSE

TYPE: Listing 4.12. Using | F- ELSE.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. WRDSRTO3.
000300%----==-mmmmmm i m s oo

000400* Accepts 2 words from the user and then displays
000500* them in ASCII order.

000600*----==-mmmmmm oo

000700 ENVIRONMENT DIVISION.

000800 DATA DIVISION.

000900 WORKING-STORAGE SECTION.

001000
001100 01 WORD-1 PIC X(50).
001200 01 WORD-2 PIC X(50).
001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 PERFORM INITIALIZE-PROGRAM.
001800 PERFORM ENTER-THE-WORDS.
001900 PERFORM DISPLAY-THE-WORDS.
002000

002100 PROGRAM-DONE.

002200 STOP RUN.

002300

002400* Level 2 Routines

002500

002600 INITIALIZE-PROGRAM.

002700 MOVE "" TO WORD-1.

002800 MOVE "" TO WORD-2.

002900

003000 ENTER-THE-WORDS.

003100 DISPLAY "This program will accept 2 words,".
003200 DISPLAY "and then display them".

003300 DISPLAY "in ASCII order.".

003400

003500 DISPLAY "Please enter the first word.".
003600 ACCEPT WORD-1.

003700

003800 DISPLAY "Please enter the second word.".
003900 ACCEPT WORD-2.

004000

004100 DISPLAY-THE-WORDS.

004200

004300 DISPLAY "The words in ASCII order are:".
004400

004500 IF WORD-1 > WORD-2
004600 DISPLAY WORD-2
004700 DISPLAY WORD-1
004800 ELSE

004900 DISPLAY WORD-1
005000 DISPLAY WORD-2.
005100

ThelF-ELSE construction is useful when you are working with combined tests.

Look at Listing 4.11 again and try to work out the opposite test to the test @208@30 and003100 .
It should be something like the lines in Listing 4.13.

TYPE: Listing 4.13. The original test and its opposite.

003000 IF THE-NUMBER > 10 AND

003100 THE-NUMBER < 100

003200 DISPLAY "The number is in range.".
003300

003400 IF THE-NUMBER NOT > 10 OR

003500 THE-NUMBER NOT < 100

000000 DISPLAY "The number is not in range.".

Listing 4.14 handles the problem by uskEIgSE, and it is simpler to code and easier to understand.
TYPE: Listing 4.14. Using ELSE.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. RANGEO?2.
000300*-==-====mmmmmmmmmeem o e oo

000400* ASKS USER FOR A NUMBER BETWEEN 10 AND 100
000500* EXCLUSIVE AND PRINTS A MESSAGE IF THE ENTRY

000600* IS IN RANGE.
000700%==-m==mmmmmmmm e oo eeeee
000800 ENVIRONMENT DIVISION.

000900 DATA DIVISION.

001000 WORKING-STORAGE SECTION.
001100

001200 01 THE-NUMBER PIC 999.
001300

001400 PROCEDURE DIVISION.

001500 PROGRAM-BEGIN.

001600

001700 PERFORM GET-THE-NUMBER.
001800

001900 PERFORM CHECK-THE-NUMBER.
002000

002100 PROGRAM-DONE.

002200 STOP RUN.

002300

002400 GET-THE-NUMBER.

002500 DISPLAY "Enter a number greater than 10".
002600 DISPLAY "and less than 100. (011-099)".
002700 ACCEPT THE-NUMBER.

002800

002900 CHECK-THE-NUMBER.

003000 IF THE-NUMBER > 10 AND

003100 THE-NUMBER < 100

003200 DISPLAY "The number is in range."
003300 ELSE

003400 DISPLAY "The number is out of range.".
003500

Listing 4.15 is another version of the yes/no problem. In this listing, the answer is tesfexd frand ¢
separate paragraph is performed if the answer is valid. OtheEliSE), an invalid entry message is
displayed. The code in the paragrdpisPLAY-YES-OR-NO can be written differently. See whethel
you can figure out what to change, and then look at the analysis after the listing.

TYPE: Listing 4.15. Using | F- ELSE.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. YESNOOS.

000300%----===mmmm i m oo

000400* This program asks for a Y or N answer, and then
000500* displays whether the user chose yes or no
000600* or an invalid entry.

000700* The edit logic allows for entry of Y, y, N, or n.
000800 === m e m oo

000900 ENVIRONMENT DIVISION.
001000 DATA DIVISION.

001100 WORKING-STORAGE SECTION.
001200

001300 01 YES-OR-NO PIC X.
001400

001500 PROCEDURE DIVISION.

001600 PROGRAM-BEGIN.

001700
001800 PERFORM GET-THE-ANSWER.
001900
002000 PERFORM EDIT-THE-ANSWER.
002100

002200 PERFORM DISPLAY-THE-ANSWER.
002300

002400 PROGRAM-DONE.

002500 STOP RUN.

002600

002700 GET-THE-ANSWER.

002800

002900 DISPLAY "Is the answer Yes or No? (Y/N)".
003000 ACCEPT YES-OR-NO.

003100

003200 EDIT-THE-ANSWER.

003300

003400 IF YES-OR-NO ="y"

003500 MOVE "Y" TO YES-OR-NO.
003600

003700 IF YES-OR-NO ="n"

003800 MOVE "N" TO YES-OR-NO.
003900

004000 DISPLAY-THE-ANSWER.

004100

004200 IF YES-OR-NO ="Y" OR

004300 YES-OR-NO ="N"

004400 PERFORM DISPLAY-YES-OR-NO
004500 ELSE

004600 DISPLAY "Your entry was invalid.".
004700

004800 DISPLAY-YES-OR-NO.

004900

005000 IF YES-OR-NO ="Y"

005100 DISPLAY "You answered Yes.".
005200

005300 IF YES-OR-NO ="N"

005400 DISPLAY "You answered No.".

005500

ANALYSIS: The paragrapPISPLAY-YES-OR-NO is performed only iy ES-OR-NOQis Y or N, so
this paragraph could be simplified by usinget6E
DISPLAY-YES-OR-NO.

IF YES-OR-NO ="Y"

DISPLAY "You answered Yes."
ELSE

DISPLAY "You answered No.".

DO/DON'T:

DO typelF andIF-ELSE constructions carefully. Al controls all statements up to the
nextELSE, or to the period at the end of the sentence if there E4.8& An ELSE

controls all statements up to the period at the end of the sentence.

DON'T use sloppy indenting dir andIF-ELSE verbs. Correct indentation gives a good
visual clue of which parts of the program are controlled byRhand which are controlled
by theELSE

A final note inIF-ELSE indentation is that COBOL unfortunately uses the period as a
sentence terminator. The period is almost invisible and can even get lost in a listing printec
with a poor ribbon. This is another reason that source code should be kept as standardize:
possible. PropdiF-ELSE indentations are one way of keeping your code easy to read.

Summary
Today's lesson explored controlling the flow of programs by testing conditions with statement.
You learned these basics:
« The primary method of changing the flow of a program is to usg ar anlF-ELSE to make a
decision, based on the values of variables.

« Multiple statements can be executed withirlFan

« The conditional operators used withl&ntest are as follows:

Conditional operator Alternative operator
IS EQUAL =

IS GREATER THAN >

IS LESS THAN <

IS NOT EQUAL NOT =

IS NOT GREATER THAN|NOT >

IS NOT LESS THAN NOT <

« When numeric values are compared, they are compared as numbers.

« When alphanumeric values are compared, they are compared based on the ASCII collatin
sequence.

« Multiple conditions can be tested in &n by usingANDandORto connect two or more
comparisons.

« An ELSEcan be used to control statements to be executed whin thet evaluates as false.
« Multiple statements can be executed withirEuSE
« The statements controlled by &hn are executed if the condition being tested byFars true.

« The statements controlled by BhSE are executed if the condition being tested by the
correspondingF is false.

Q&A

Q Can a numeric variable be tested against an alphanumeric variable?

A Some compilers let you get away with this, but it is a very bad habHHBFMESSAGHS a
PIC X containing the characté2" , andTHE-NUMBERs aPIC 9 containing2, the statemen:

IF THE-MESSAGE = THE-NUMBER
could produce the following different results:

o The compiler might refuse to compile it and return an error that you cannot compare:
data types.

o It might compile, run, and test correctly.
o It might compile, but the program might crash while running when the test is perform

o It might compile and run, but return random results that test true sometimes and test
other times.

Because only one of these possibilities is what you want, it isn't worth trying to work with a
particular compiler's idiosyncrasies. It is also makes it hard to figure out what the program
when unlike data types are compared.

Workshop
Quiz

1. In the following paragrapPECIDE-WHAT-TO-DQ which lines are executed when
THE-NUMBERquals7?

005200 DECIDE-WHAT-TO-DO.
005300 IF THE-NUMBER =7 OR
005400 THE-NUMBER < 4
005500 PERFORM ACTION-1
005600 PERFORM ACTION-2
005700 ELSE

005800 PERFORM ACTION-3.
005900

2. Which lines are executed wh&RE-NUMBERquals?

3. Which lines are executed wh&érHE-NUMBERqual2?

4. Which lines are executed wh@rE-NUMBERqualsA?
Exercises

1. Modify Listing 4.2 to allonMaybe as a third possible answer.

2. Modify Listing 4.4 to allonMaybe as a third possible answer.

Hint: You can test more than two conditions usiidgDor OR as in the following example:

004400 IF YES-OR-NO ="Y" OR

004500 YES-OR-NO ="N" OR

004600 YES-OR-NO ="M"

004700 PERFORM DISPLAY-YES-NO-OR-MAYBE

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 5 -
Using PERFORM, GO TO, and IF to
Control Programs

In COBOL, the flow of a program is controlled almost entirelf{lyELSE statements, theERFORM
verb, andGO TQ, which is a new verb you will look at today. There are some additional versions
PERFORMerb and théF-ELSE statement, allowing even more control, and these are covered a
Today, you learn about the following topics:

« UsingGO TOto control a program.
o Using PERFORNEpetitively.
« What is a processing loop?

« UsingPERFORNbD control a processing loop.

Using GO TOto Control a Program

You can force the program to jump to the beginning of any paragraph GthEO Here is an
example:

GO TO paragraph-name.
A GO TOis like aPERFORNMh that the program jumps to a new paragraph. However, when that
paragraph is completed, tRERFORNeturns to the line at which tiRERFORMas requested, but th

GO TOdoes not. When @O TOreaches the end of the paragraph to which it has jumped, it move
the next paragraph.

GO TOis written as two words, but it is used as one. The words always appear together. Listing

GO TOto bail out of a program.
TYPE: Listing 5.1. Using GO TO.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. QUITOL1.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 WORKING-STORAGE SECTION.
000600

000700 01 YES-OR-NO PIC X.
000800

000900 PROCEDURE DIVISION.

001000 PROGRAM-BEGIN.

001100

001200 PERFORM SHALL-WE-CONTINUE.
001300 IF YES-OR-NO ="N"

001400 GO TO PROGRAM-DONE.
001500

001600 PERFORM MAIN-LOGIC.
001700

001800 PROGRAM-DONE.

001900 STOP RUN.

002000

002100 SHALL-WE-CONTINUE.

002200 DISPLAY "Continue (Y/N)?".
002300 ACCEPT YES-OR-NO.
002400 IF YES-OR-NO ="n"

002500 MOVE "N" TO YES-OR-NO.
002600

002700 MAIN-LOGIC.

002800 DISPLAY "This is the main logic.".
002900

ANALYSIS: At line 001200 , aPERFORNMs requested ddHALL-WE-CONTINUE In this paragraph
at lines002100 and002200 , the user is asked whether he wants to continue. When the user ent
response, a possible "n" is converted to "N" and the logic adih800 checks whether the user
entered\, and, if so, the program flow at lii@®1400 jumps straight tt° ROGRAM-DONE
PROGRAM-DONibntains the now familid8 TOP RUN and execution of the program is terminated

The alternative is that the user enters something otheNtf@m), and line001300 is skipped. The
next executed line 801600 , where the program requesttBRFORMf MAIN-LOGIC. (In this
example, the content MAIN-LOGIC isn't important.)

GO TOis the only four-letter verb in COBOL. (That's a joke.) The uge@fTOin programs is a hotly
debated issue, and academics will tell you, "You never @&@ &Q" or "One moreG0O TOout of you,
and I'm going to wash your mouth out with soap!" One professor of computer science was So inc

GO TOthat he designed a whole new programming language wiadOin it.

If you plan to work with COBOL in the real world, rather than behind closed university doors, yot
know what &G0 TOdoes and how to work with and around it. Any working program that you hav
modify will be littered withGO TOverbs, and you ignore them at your own peril. Just remember tl
mentioning &GO TOaround some people will make their faces red and cause steam to come out
ears.

You shouldn't us&0O TOin programs that you write, but you will have to deal V8@ TOin programs
that you modify. Listing 5.2 is an example o6& TOthat would be considered a minor sin by some
people. The progranmultOl.cbl , displays multiplication tables (such as the ones you had to
memorize in school) based on which table the user selects to display.

TYPE: Listing 5.2. Using GO TOto execute a paragraph several times.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTOL1.

000300%----==mmmmm e m e
000400* This program asks the user for a number for a
000500* multiplication table,

000600* and then displays a table for that number times
000700* the values 1 through 12.

000800%--=-====mm = m oo
000900 ENVIRONMENT DIVISION.

001000 DATA DIVISION.

001100 WORKING-STORAGE SECTION.
001200

001300 01 THE-NUMBER PIC 99.
001400 01 THE-MULTIPLIER PIC 999.
001500 01 THE-PRODUCT PIC 9999.
001600

001700 PROCEDURE DIVISION.

001800* LEVEL 1 ROUTINES

001900 PROGRAM-BEGIN.

002000 PERFORM PROGRAM-INITIALIZATION.
002100 PERFORM GET-TABLE-NUMBER.
002200 PERFORM DISPLAY-THE-TABLE.
002300

002400 PROGRAM-DONE.

002500 STOP RUN.

002600

002700* LEVEL 2 ROUTINES

002800 PROGRAM-INITIALIZATION.

002900 MOVE 0 TO THE-MULTIPLIER.
003000

003100 GET-TABLE-NUMBER.

003200 DISPLAY

003300 "Which multiplication table (01-99)?".

003400 ACCEPT THE-NUMBER.

003500

003600 DISPLAY-THE-TABLE.

003700 DISPLAY "The " THE-NUMBER s table is:".

003800 PERFORM CALCULATE-AND-DISPLAY.

003900

004000* LEVEL 3 ROUTINES.

004100 CALCULATE-AND-DISPLAY.

004200 ADD 1 TO THE-MULTIPLIER.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY

004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
004600 IF THE-MULTIPLIER < 12

004700 GO TO CALCULATE-AND-DISPLAY.

004800

This is the output omultOl.cbl for the 7's table (which | had a great deal of trouble memorizing
school):

OUTPUT:

Which multiplication table (01-99)?
07

The 07's table is:
07 * 001 = 0007
07 * 002 = 0014
07 * 003 = 0021
07 * 004 = 0028
07 * 005 = 0035
07 * 006 = 0042
07 * 007 = 0049
07 * 008 = 0056
07 * 009 = 0063
07 * 010 = 0070
07 * 011 = 0077
07 *012 = 0084
C>

C>

ANALYSIS: In PROGRAM-INITIALIZATION , the variablerHE-MULTIPLIER is set td0. In
GET-TABLE-NUMBERthe user is asked to select the multiplication table and is prompted for ar
betweerD1l and99. Remember that some versions of COBOL require that you enter a number w
leading zero, hered3, for example, if you want 3.

These two paragraphs, when performed, set things up for the main activity of the program, whic!
display a table of the entered number times 1, times 2, times 3, and so on to 12.

Now look at the paragragbALCULATE-AND-DISPLAY. THE-MULTIPLIER is initialized toO by
PROGRAM-INITIALIZATION , so the action of this paragraph is to 4dd THE-MULTIPLIER ,
calculateTHE-PRODUCDBy multiplying THE-MULTIPLIER by THE-NUMBERand then display this
information.

In the COBOLCOMPUTEtatement, the asterisk)(is the multiplication symbol.

TheDISPLAY statement is organized to display the results as follows:

03 *01 = 0003
03 * 02 = 0006

The basic repetitive task of the program to is Add THE-MULTIPLIER, calculate the new product,
and display the result. It is necessary to do this 12 times. Ab0#&00 , anlF tests whether
THE-MULTIPLIER is less than 12. As long as it is, the program will jump back to the beginning «
CALCULATE-AND-DISPLAY. Each time, the program adtto THE-MULTIPLIER and calculates
and displays the new product. WHBHE-MULTIPLIER reached2, thelF condition is no longer tru
TheGO TO CALCULATE-AND-DISPLAY at line004700 is not executed and the
CALCULATE-AND-DISPLAYparagraph ends. The program returns to the end dd08800 looking
for more commands. There are none. No further commands RIERLAY-THE-TABLE, so that
paragraph ends and the program returns ta0ld2200 , where there also are no further commands.
program proceeds to lin@92400 and002500 and ends.

It is certainly legitimate to use@O TOat the bottom of a paragraph to jump back to the top of the
paragraph in order to execute the paragraph again under some condition, although some would
even that use.

After you've worked with modifying real code, you will find out wap TOshould be discouraged. Ii
very confusing to be following a paragraph of logic, and fiG&CaTOto another paragraph somewhe
else in the program. Becaus&® TOdoes not bounce back, you have no way of knowing whethei
rest of the current paragraph is ever executed or the programmer just skipped everything else fc
reason.

One danger o650 TOverbs is the likelihood that the programmer skipped some code for no reast
(other than carelessness), instead of having some reason to skip the code.

UnderstandsO TQ because you will find it in various programs. You can a@@ TOcompletely, as
you will see a little later in today's lesson. So, if you ever work in a shop that has banned thHe@s¢
TGO, you can work your way around the stricture.

Using PERFORMRepetitively

Now that you have been warned about the evilSOfTQ, how could you write the previous program
without one? Th€ ERFORNMerb is available for that purpose--in a variety of flavors. One of them
allows you to perform a paragraph several times:

PERFORM A-PARAGRAPH 10 TIMES.

Listing 5.3,mult02.cbl , uses this version of ttRERFORMerb to present the same multiplication

tables based on the user's selection. Edit, compile, and run this program. It will accept fact®gs uj
ANALYSIS: Listing 5.3. Using PERFORMmultiple TI MES.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTO?2.

000300%-----=-mmmm oo oo
000400* This program asks the user for a number for a
000500* multiplication table,

000600* and then displays a table for that number times
000700* the values 1 through 12.

000800% === m oo
000900 ENVIRONMENT DIVISION.

001000 DATA DIVISION.

001100 WORKING-STORAGE SECTION.

001200

001300 01 THE-NUMBER PIC 99.

001400 01 THE-MULTIPLIER PIC 999.

001500 01 THE-PRODUCT PIC 9999.

001600

001700 PROCEDURE DIVISION.

001800* LEVEL 1 ROUTINES

001900 PROGRAM-BEGIN.

002000 PERFORM PROGRAM-INITIALIZATION.
002100 PERFORM GET-TABLE-NUMBER.
002200 PERFORM DISPLAY-THE-TABLE.
002300

002400 PROGRAM-DONE.

002500 STOP RUN.

002600

002700* LEVEL 2 ROUTINES

002800 PROGRAM-INITIALIZATION.

002900 MOVE 0 TO THE-MULTIPLIER.

003000

003100 GET-TABLE-NUMBER.

003200 DISPLAY

003300 "Which multiplication table (01-99)?".
003400 ACCEPT THE-NUMBER.

003500

003600 DISPLAY-THE-TABLE.

003700 DISPLAY "The " THE-NUMBER "'s table is:".
003800 PERFORM CALCULATE-AND-DISPLAY 12 TIMES.
003900

004000* LEVEL 3 ROUTINES.

004100 CALCULATE-AND-DISPLAY.

004200 ADD 1 TO THE-MULTIPLIER.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY
004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.

ANALYSIS: The program is identical tmultO1.cbl except that th& andGO TOat lines004600
and004700 are removed, and tiRERFORNMLt line003800 has been replaced wiIRERFORM
CALCULATE-AND-DISPLAY 12 TIMES .

Again, the basic repetitive task of the program is to add 1, calculate, and display the result. It is |
to do this 12 times, and this job is taken care of atdd8300 .

When thePERFORMerb is used to perform something a number of times, the COBOL compiler t
care of setting things so thaPERFORNS requested over and over until the number of times is
exhausted. When the program is running, it actually jumps down t60#EO0 and then back to line
003800 12 times.

ThePERFORM...TIMES verb is flexible, and the number of times to perform something can be ¢
variable itself. Here is an example:

PERFORM A-PARAGRAPH HOW-MANY TIMES.

Listing 5.4 takes the multiplication table program one step further by allowing the user to specify
number of entries to be displayed.

TYPE: Listing 5.4. Varying the number of entries.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTO3.

000300%----===mmmm e mmmm oo
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number times
000700* the values 1 through HOW-MANY.
000800*

000900*

001000%--=-mmmmm e m oo
001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.
001400

001500 01 THE-NUMBER PIC 99.
001600 01 THE-MULTIPLIER PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY PIC 99.
001900

002000

002100

002200

002300 PROCEDURE DIVISION.

002400* LEVEL 1 ROUTINES

002500 PROGRAM-BEGIN.

002600 PERFORM PROGRAM-INITIALIZATION.

002700 PERFORM GET-TABLE-DATA.

002800 PERFORM DISPLAY-THE-TABLE.

002900

003000 PROGRAM-DONE.

003100 STOP RUN.

003200

003300* LEVEL 2 ROUTINES

003400 PROGRAM-INITIALIZATION.

003500 MOVE 0 TO THE-MULTIPLIER.

003600

003700

003800 GET-TABLE-DATA.

003900 DISPLAY

004000 "Which multiplication table(01-99)?".

004100 ACCEPT THE-NUMBER.

004200

004300 DISPLAY "How many entries would you like (01-99)?".
004400 ACCEPT HOW-MANY.

004500

004600 DISPLAY-THE-TABLE.

004700 DISPLAY "The " THE-NUMBER "'s table is:".

004800 PERFORM CALCULATE-AND-DISPLAY HOW-MANY TIMES.
004900

005000* LEVEL 3 ROUTINES.

005100 CALCULATE-AND-DISPLAY.

005200 ADD 1 TO THE-MULTIPLIER.

005300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005400 DISPLAY

005500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
005600

The following is the output frormult03.cbl for 15 entries of the 15's table:

OUTPUT:

Which multiplication table(01-99)7?

15

How many entries would you like (01-99)?
15

The 15's table is:

15 * 001 = 0015

15 * 002 = 0030

15 * 003 = 0045

15 * 004 = 0060
15 * 005 = 0075
15 * 006 = 0090
15 *007 = 0105
15 * 008 = 0120
15 * 009 = 0135
15 *010 = 0150
15*011 =0165
15*012 = 0180
15*013 =0195
15 *014 = 0210
15 * 015 = 0225
C>

C>

ANALYSIS: In Listing 5.4,mult03.cbl , theGET-TABLE-NUMBERaragraph has been changec
GET-TABLE-DATAand additionally asks the user for the number of entries to be displayed. This
is stored in the variabldOW-MANYnstead of performinGALCULATE-AND-DISPLAY 12 TIMES ,
the program performs HOW-MANY TIMES

If you edit, compile, and run this program, you can display the 15's table with 24 or 25 entries. If
enter more than 25 for the number of entries, the first entries in the table will scroll off the top of
screen.

Certain terminals known as block mode terminals do not display all lines. Instead they display or
wait for you to press Enter, then display the next line, and so on. If this happens to you, consult"
system administrator for verification that you are using block mode terminals. If this is the case,
should consider acquiring the Micro Focus Personal COBOL Compiler to continue these lesson:

The programmult03.cbl contains a few extra blank lines because you will be modifying it shor
Spend some time going over Listing 5.4 to make sure that you really understand what is happen
program. Run it several times with different values (with the program in front of you) and work ot
where you are in the code at each point in the running program.

In mult03.cbl , the flaw, as mentioned before, is that early entries in the table scroll off the scr:
more than 20 entries are requested.

You have all the tools you need to correct this problem; it is just a matter of using them. To tidy
display in the next example, the program halts the display after every 15 lines.

The traditional way of doing this would be to display 15 lines, displags ENTER to continue
, and wait for the user to press the Enter key.

Remember that using te&CCEPTverb causes the computer to wait for input from the keyboard ur
user presses Enter. In this case, you want the user to press Enter, but you don't care about any
entered. The simple solution isACCEPTa dummy variable.

Edit, compile, and run Listing 5.5, trying numbers of entries greater than 15. The display will pau
15 lines and wait for you to press Enter; then it will continue the display.

TYPE: Listing 5.5. Pausing after 15 lines.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTOA4.
000300*=--=--====mmmmmmm oo
000400* This program asks the user for a number for a

000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.

000800*

000900* The display is paused after each 15 lines.

001000*

001100 ENVIRONMENT DIVISION.
001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.

001400

001500 01 THE-NUMBER PIC 99.
001600 01 THE-MULTIPLIER PIC 999.
001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY PIC 99.
001900 01 SCREEN-LINES PIC 99.

002000

002100 01 A-DUMMY PIC X.

002200

002300 PROCEDURE DIVISION.
002400* LEVEL 1 ROUTINES
002500 PROGRAM-BEGIN.

002600 PERFORM PROGRAM-INITIALIZATION.
002700 PERFORM GET-TABLE-DATA.

002800 PERFORM DISPLAY-THE-TABLE.
002900

003000 PROGRAM-DONE.

003100 STOP RUN.

003200

003300* LEVEL 2 ROUTINES
003400 PROGRAM-INITIALIZATION.

003500 MOVE 0 TO THE-MULTIPLIER.

003600 MOVE 0 TO SCREEN-LINES.

003700

003800 GET-TABLE-DATA.

003900 DISPLAY

004000 "Which multiplication table (01-99)?".

004100 ACCEPT THE-NUMBER.

004200

004300 DISPLAY "How many entries would you like (01-99)?".

004400 ACCEPT HOW-MANY.

004500

004600 DISPLAY-THE-TABLE.

004700 DISPLAY "The " THE-NUMBER "'s table is:".

004800 PERFORM CALCULATE-AND-DISPLAY HOW-MANY TIMES.
004900

005000* LEVEL 3 ROUTINES.

005100 CALCULATE-AND-DISPLAY.

005200 ADD 1 TO THE-MULTIPLIER.

005300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005400 DISPLAY

005500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
005600

005700 ADD 1 TO SCREEN-LINES.

005800 IF SCREEN-LINES =15

005900 DISPLAY "Press ENTER to continue . . ."

006000 ACCEPT A-DUMMY

006100 MOVE 0 TO SCREEN-LINES.

006200

Three screens of output occur whrualtO4.cbl is used to display 31 entries of the 14's table. He
the first screen:

OUTPUT:

Which multiplication table (01-99)7?
14

How many entries would you like (01-99)?
31

The 14's table is:

14 * 001 = 0014

14 * 002 = 0028

14 * 003 = 0042

14 * 004 = 0056

14 * 005 = 0070

14 * 006 = 0084

14 * 007 = 0098

14 * 008 = 0112

14 * 009 = 0126

14 * 010 = 0140

14 * 011 = 0154

14 *012 = 0168

14 * 013 = 0182

14 * 014 = 0196

14 * 015 = 0210

Press ENTER to continue . . .

After you press Enter, the current display scrolls upward, making room for 15 more lines of table
anothePress ENTER message. The tail end of the first 15 lines still appears at the top of the sc
Here is the output after you press Enter:

OUTPUT:

14 * 010 = 0140
14 * 011 = 0154
14 * 012 = 0168
14 * 013 =0182
14 * 014 = 0196
14 * 015 = 0210
Press ENTER to continue . . .

14 * 016 = 0224
14 * 017 = 0238
14 * 018 = 0252
14 * 019 = 0266
14 * 020 = 0280
14 * 021 = 0294
14 * 022 = 0308
14 * 023 = 0322
14 * 024 = 0336
14 * 025 = 0350
14 * 026 = 0364
14 * 027 = 0378
14 * 028 = 0392
14 * 029 = 0406
14 * 030 = 0420
Press ENTER to continue . . .

After you press Enter a second time, one more line of information is displayed at the bottom of tl
screen, leaving the remains of the first two displays of 15 lines at the top:

OUTPUT:

14 * 015 = 0210
Press ENTER to continue . . .

14 * 016 = 0224
14 *017 = 0238
14 * 018 = 0252
14 * 019 = 0266
14 * 020 = 0280
14 * 021 = 0294
14 * 022 = 0308
14 * 023 = 0322
14 * 024 = 0336

14 * 025 = 0350
14 * 026 = 0364
14 * 027 = 0378
14 * 028 = 0392
14 * 029 = 0406
14 * 030 = 0420
Press ENTER to continue . . .

14 * 031 = 0434
C>
C>

ANALYSIS: Listing 5.5 adds two additional variabl€&CREEN-LINESto count the number of lines
that have been displayed on the screenfabdJMMYwhich is a dummy variable to be used with
ACCEPT TheSCREEN-LINESvariable is set to an initial value 0fin

PROGRAM-INITIALIZATION .

All the other changes are in tRALCULATE-AND-DISPLAYparagraph at lin805100 . The first part
of the paragraph is identical to Listing 5muylt03.cbl , up to line005600 . Note that the line

numbers have stayed the same for Listing 5.4 and 5.5 because of the extra blank lines in Listing
blanks are there to keep the line numbers the same, but this is not a standard programming prau

At line 005700, 1 is added to the variable. At li®5800 , a test is made to determine whether
SCREEN-LINEShas reached 15 (that is, 15 lines have been displayed). When 15 lines have be:
displayed, the logic at liné€¥5900 through006100 is executed. At lin€@05900 , a message is
displayed. At lineD06000 , A-DUMMYs accepted. Remember that you don't care what value is ple
A-DUMMYyou just want some method of waiting for the user to press Enter. AJ6100 , the
SCREEN-LINESVvariable is reset t0.

If SCREEN-LINESwere not reset 0, it would continue counting up from 15 to 16, 17, and so on.
never again would equal 15, and tReat line005800 would never test true. The result would be tF
the screen would stop after the first 15 entries were displayed, but it wouldn't stop after the next

Listing 5.5 has a minor bug (a logic error) in it. To see the result of the bug, do the following: Rul
multO4.cbl and enter any multiplication table that you want. For the number of entries, enter ¢
multiple of 15, such as 15, 30, or 45. After the program has displayed the number of entries, it a:
to press Enter to continue. When you press Enter, nothing else is displayed and the program en
Press ENTER message implies to the user that there is more to see when, in fact, there is not.
following the logic and work out why this happens. You will deal with this bug later in today's les:
but first you have a few more things to learn abouPEBRFORMerb.

What Is a Processing Loop?

A computer is designed to do things over and over, but if it does the same thing endlessly, the ¢
is limited to a single job. In practice, a processing loop is brought to an end by some condition. 1
condition is set up to be tested at the beginning of each pass through the processing loop or at t
step in the loop. The condition is used to determine whether the processing loop should end or ¢

The processing loop is the logic that is performed over and over.

New Term: You have just written a couple programs containing examples of a processing loop. ,
processing loops one or more paragraphs that are executed over and over. Processing loops (w
almost always controlled by some condition and should be call®dolled processing loopsire
sometimes simply calleldops

New Term: The condition that controls the processing loop usually is callgortiessing loop contr¢
or simply theloop control

Sometimes it is difficult to separate completely the processing loop from the control of the loop, :
two areas are referred to jointly as a loop or a processing loop. You should train yourself to spot
processing loop and the control of the processing loop.

Listing 5.6 is a portion afnult02.cbl from Listing 5.3.
TYPE: Listing 5.6. A controlled processing loop.

003800 PERFORM CALCULATE-AND-DISPLAY 12 TIMES.

003900

004000

004100 CALCULATE-AND-DISPLAY.

004200 ADD 1 TO THE-MULTIPLIER.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY

004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.

ANALYSIS: The processing loop portion is tBALCULATE-AND-DISPLAYparagraph at lines
004100 through004500 . This paragraph is performed over and over.

The control for the processing loop is PERFORM 12 TIMES statement at [inB03800 . The
condition that controls or ends the loop occurs when the paragraph has been performed 12 time

Listing 5.7 shows a portion of Listing 5:2ult01.cbl
TYPE: Listing 5.7. Another control loop.

003800 PERFORM CALCULATE-AND-DISPLAY.

003900

004000

004100 CALCULATE-AND-DISPLAY.

004200 ADD 1 TO THE-MULTIPLIER.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY

004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
004600 IF THE-MULTIPLIER <12

004700 GO TO CALCULATE-AND-DISPLAY.

ANALYSIS: In this example, the processing loop is alsoGAe. CULATE-AND-DISPLAYparagraph.

The control for the loop is at lin€®4600 and004700 . The loop ends wheRHE-MULTIPLIER is
no longer less than 12.

A controlled processing loop is one of the key elements of every working program. Remember tt
of the main functions of a computer is to perform repetitive tasks. Unless you want the computer
perform the same task forever, you must use some condition to stop the repetition. This is where
control loop comes in.

The control loop is such a key part of any computer program that every programming language |
some specialized verb or statement that can be used to create a controlled processing loop. CO
exception.

Using PERFORMto Control a Processing Loop

The PERFORMerb has some other formats that allow control over a loop. The first of these form
you have seen, is using tRERFORMerb with a number ofIMES. The next iPERFORM UNTIL
Use this syntax:

PERFORM a paragraph
UNTIL a condition.

The following is an example:

PERFORM CALCULATE-AND-DISPLAY
UNTIL THE-MULTIPLIER > 12.

ThePERFORM UNTILsentence is a repetitive request to perform a paragraph, with a bEilt@st in
theUNTIL. ThePERFORMerb is requested over and over until the condition tests true.

Listing 5.8 illustrates RERFORM UNTIL
TYPE: Listing 5.8. Using PERFORM UNTI L.

003800 PERFORM CALCULATE-AND-DISPLAY

003900 UNTIL THE-MULTIPLIER > 12.

004000

004100 CALCULATE-AND-DISPLAY.

004200 ADD 1 TO THE-MULTIPLIER.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY

004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.

ANALYSIS: At lines003800 and003900 , the paragrap@ALCULATE-AND-DISPLAYis
performed repetitively. This repetition stops wAeE-MULTIPLIER is greater than 12 (as specifiet
line 003900). PERFORM UNTILis one long sentence with the period at the end o300 . There
is a bug in this example that we will be fixing before the end of the chapter.

A PERFORM UNTlILsentence tests the condition before the perform is executed. COBOL does 1
allow you to go to a line number, but if it didPERFORM UNTILsentence could be thought of as

executing the following logic, which is not proper COBOL code:

003800 IF THE-MULTIPLIER > 12 GO TO line 004100.
003900 PERFORM CALCULATE-AND-DISPLAY
004000 GO TO line 003800.

004100* PROGRAM continues here

Previous examples started by setfitdE-MULTIPLIER to 0. TheCALCULATE-AND-DISPLAY
paragraph always began by adding 1 to the multiplier, as in Listing 5.8.

If you follow the path of the logic in Listing 5.8, starting at the to@ALCULATE-AND-DISPLAY
whenTHE-MULTIPLIER equals 11, you'll notice an error in the logic (a bug). The paragraph adc
THE-MULTIPLIER , making it12, and displays the results fb2. The program then returns to line
003900, falls through to lind04000, where it jumps back up to lif@3800 , and checks the
condition againTHE-MULTIPLIER equalsl? (so it is not greater thel?), however, and the
paragraplCALCULATE-AND-DISPLAY:is performed one more time. The first action in
CALCULATE-AND-DISPLAYis to addl to THE-MULTIPLIER, so the results will be displayed wh
THE-MULTIPLIER equalsl3.

The quickest fix for this is to change the test at 188900 to test for greater thalil, but it looks a
little confusing when you are reading the code. It takes a moment to realize that the loop execut
times, because you have to look back through the code to establiSHERMULTIPLIER originally
was set td:

003800 PERFORM CALCULATE-AND-DISPLAY
003900 UNTIL THE-MULTIPLIER > 11.

A solution that works just as well is illustrated in Listing 5.9. This has the advantage of keeping ¢
key pieces of the loop together in one section of the code.

TYPE: Listing 5.9. Structured loop control.

003700 MOVE 1 TO THE-MULTIPLIER.

003800 PERFORM CALCULATE-AND-DISPLAY

003900 UNTIL THE-MULTIPLIER > 12.

004000

004100 CALCULATE-AND-DISPLAY.

004200 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004300 DISPLAY

004400 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
004500 ADD 1 TO THE-MULTIPLIER.

ANALYSIS: The variableTHE-MULTIPLIER first is set to a value df. The paragraph
CALCULATE-AND-DISPLAYis performed untifHE-MULTIPLIER is greater thath2. Because
THE-MULTIPLIER starts with an initially correct value &f theADD 1 TO THE-MULTIPLIER
logic is moved to the end ALCULATE-AND-DISPLAY.

It is much quicker to figure out that the loop is performed WHE-MULTIPLIER ranging in value
from 1 throughl2.

Listing 5.9 also illustrates a very common method of constructing and controlling a processing Ic
These are the three steps of this construction:

1. Set up a variable with the value that it must have when the loop is entered for the first tir
variable is called the loop control variable. In this cast5-MULTIPLIER must start off with a
value ofl at line003700 .

2. Request #ERFORMTf the loop until the variable is out of range--in this cB&RFORM
CALCULATE-AND-DISPLAY(at line003800) UNTIL THE-MULTIPLIER > 12 (atline
003900).

3. In the loop, do whatever processing is called for. At the end of the loop or after each pas
through the loop, increment the loop control variable. In this case, the loop control variable
increased by 1 at [in@04500 .

Look again at Listing 5.9 for these three steps. Based on the first step, the VdliEe MULTIPLIER
must be set t@. This is the first value thatHE-MULTIPLIER must have on entry to the loop
(CALCULATE-AND-DISPLAY). This is taken care of at lifg®3700 .

In the second steGALCULATE-AND-DISPLAY s performed until thMULTIPLIER is greater than
12, at lineH03800 and003900 .

In the final step, the variable that controls the lodpE-MULTIPLIER , is modified as the last step ir
the loop. TheADD 1 logic is moved and now occurs at the en€@ALCULATE-AND-DISPLAYat line
004500 . The requested paragraph is performed over and over until the condition tests true.

Using PERFORM VARYI NG UNTI L

The three steps of process loop control are so common in programs PERR®RMerb has been
extended even further, to allow the first and last steps to be incorporated directly PERRORMerb:

PERFORM a paragraph
VARYING a variable
FROM a value BY a value
UNTIL a condition.

The following is an example:

PERFORM CALCULATE-AND-DISPLAY
VARYING THE-MULTIPLIER
FROM1BY 1

UNTIL THE-MULTIPLIER > 12.

This is an extension ?#ERFORM UNTIL

Compare the partial programs in Listings 5.10 and 5.11. They produce the same results using di
versions of thERFORMerb. (I've inserted the blank line in Listing 5.10 in the middle of the
PERFORM UNTIUogic to keep the line numbers the same in the two listings. Remember that th
line means nothing; even if it appears in the middle of a sentence, it is ignored.)

TYPE: Listing 5.10. Using PERFORM UNTI L in a loop.

003700 MOVE 1 TO THE-MULTIPLIER.

003800 PERFORM CALCULATE-AND-DISPLAY

003900

004000 UNTIL THE-MULTIPLIER > 12.

004100

004200 CALCULATE-AND-DISPLAY.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY

004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
004600 ADD 1 TO THE-MULTIPLIER.

TYPE: Listing 5.11. Using PERFORM VARYI NG UNTI L.

003700

003800 PERFORM CALCULATE-AND-DISPLAY

003900 VARYING THE-MULTIPLIER FROM 1 BY 1

004000 UNTIL THE-MULTIPLIER > 12.

004100

004200 CALCULATE-AND-DISPLAY.

004300 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
004400 DISPLAY

004500 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
004600

ANALYSIS: In Listing 5.10, initializingTHE-MULTIPLIER at line003700 and adding 1 to
THE-MULTIPLIER at line004600 have been replaced by a single lin@@23900 in Listing 5.11.

A PERFORM VARYING UNTILcan be broken down into the following steps (again assuming the
COBOL allows you to go to a line number, which it doesn't):

003700 MOVE 1 TO THE-MULTIPLIER.

003800 IF THE-MULTIPLIER > 12 GO TO line 004200.
003900 PERFORM CALCULATE-AND-DISPLAY.
004000 ADD 1 TO THE-MULTIPLIER.

004100 GO TO line 003800.

004200* Program continues here

Listing 5.12 shows the multiplication tables program again, IBERFORM VARYING UNTILto
control the processing loop.

TYPE: Listing 5.12. Using PERFORM VARYI NG UNTI L.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTOS.

000300% === m oo
000400* This program asks the user for a number for a

000500* multiplication table, and a table size and then
000600* displays a table for that number times the values
000700* 1 through HOW-MANY using PERFORM VARYING UNTIL.
000800 === m oo

000900 ENVIRONMENT DIVISION.

001000 DATA DIVISION.

001100 WORKING-STORAGE SECTION.

001200

001300 01 THE-NUMBER PIC 99.

001400 01 THE-MULTIPLIER PIC 999.

001500 01 THE-PRODUCT PIC 9999.

001600 01 HOW-MANY PIC 99.

001700

001800 PROCEDURE DIVISION.

001900* LEVEL 1 ROUTINES

002000 PROGRAM-BEGIN.

002100 PERFORM PROGRAM-INITIALIZATION.
002200 PERFORM GET-TABLE-DATA.

002300 PERFORM DISPLAY-THE-TABLE.

002400

002500 PROGRAM-DONE.

002600 STOP RUN.

002700

002800* LEVEL 2 ROUTINES

002900 PROGRAM-INITIALIZATION.

003000* MOVE 0 TO THE-MULTIPLIER.

003100* is no longer needed

003200

003300 GET-TABLE-DATA.

003400 DISPLAY

003500 "Which multiplication table(01-99)?".

003600 ACCEPT THE-NUMBER.

003700

003800 DISPLAY "How many entries would you like (01-99)?".
003900 ACCEPT HOW-MANY.

004000

004100 DISPLAY-THE-TABLE.

004200 DISPLAY "The " THE-NUMBER "'s table is:".
004300 PERFORM CALCULATE-AND-DISPLAY
004400 VARYING THE-MULTIPLIER

004500 FROM1BY 1
004600 UNTIL THE-MULTIPLIER > HOW-MANY.
004700

004800* LEVEL 3 ROUTINES.
004900 CALCULATE-AND-DISPLAY.
005000

005100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005200 DISPLAY

005300 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
005400

Solving the Press ENTER Problem

Remember the bug in Listing 5/ult04.cbl ? It displays @#ress ENTER message, even when
there is nothing else to display. Now we're going to solve this problem; you'll find the solution in
mult05.cbl . The processing loop fromult05.cbl is shown in Listing 5.13.

TYPE: Listing 5.13. The processing loop from mul t 05. cbl .

004900 CALCULATE-AND-DISPLAY.

005000

005100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005200 DISPLAY

005300 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
005400

The two important points in any processing loop are the top of the loop and the bottom of the loc
might seem obvious at first glance, but you must understand two things about these points. If th
processing loop is constructed correctly, you know at the top of the loop that the rest of the loop
to be executed. At the bottom of the loop, you know that the loop has been executed. Now you ¢
use these two points in the loop to solveRness ENTER problem.

There really are two problems. One is to count the number of lines that have been displayed, wr
fairly simple to do. The other is to displayPeess ENTER message (and wait for the user) when ol
15 lines have been displayed and there is more data to display.

The obvious place to count the lines is at the end of the loop where it is obvious that one line ha
displayed (the loop has been executed). Listing 5.14 adds the instruction to count the linégl@0lin

TYPE: Listing 5.14. Counting the lines.

004900 CALCULATE-AND-DISPLAY.

005000

005100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
005200 DISPLAY

005300 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
005400 ADD 1 TO SCREEN-LINES.

The second problem (displayindPeess ENTER message at the correct point) seems to fit at the |
the loop. There you know that a line is about to be displayed. If you make the program stop the |
this point and the user presses Enter, you can be certain that at least one more line will be displ:
Listing 5.15 is a complete listing, using a test3@REEN-LINESat the top of the loop and adding t
SCREEN-LINESat the bottom of the loop. Code, compile, and run this listing; try any number of

entries, including multiples of 15. You will see that the minor buguitO4.cbl
TYPE: Listing 5.15. Eliminating the Press ENTER bug.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTOSG.

000300%-----=-mmmm oo oo
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*

000900* The display is paused after each 15 lines.
001000%-----=-==m = mm oo
001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400

001500 01 THE-NUMBER PIC 99.

001600 01 THE-MULTIPLIER PIC 999.
001700 01 THE-PRODUCT PIC 9999.

001800 01 HOW-MANY PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000

002100 01 A-DUMMY PIC X.
002200

002300 PROCEDURE DIVISION.

002400* LEVEL 1 ROUTINES

002500 PROGRAM-BEGIN.

002600 PERFORM PROGRAM-INITIALIZATION.
002700 PERFORM GET-TABLE-DATA.
002800 PERFORM DISPLAY-THE-TABLE.
002900

003000 PROGRAM-DONE.

003100 STOP RUN.

003200

003300* LEVEL 2 ROUTINES

003400 PROGRAM-INITIALIZATION.

003500

003600 MOVE 0 TO SCREEN-LINES.
003700

003800 GET-TABLE-DATA.

003900 DISPLAY

004000 "Which multiplication table(01-99)?".
004100 ACCEPT THE-NUMBER.

004200

has been eliminate

004300 DISPLAY "How many entries would you like (01-99)?".
004400 ACCEPT HOW-MANY.

004500

004600 DISPLAY-THE-TABLE.

004700 DISPLAY "The " THE-NUMBER "'s table is:".

004800 PERFORM CALCULATE-AND-DISPLAY

004900 VARYING THE-MULTIPLIER

005000 FROM1BY 1
005100 UNTIL THE-MULTIPLIER > HOW-MANY.
005200

005300* LEVEL 3 ROUTINES.

005400 CALCULATE-AND-DISPLAY.

005500

005600 IF SCREEN-LINES =15

005700 DISPLAY "Press ENTER to continue . . ."

005800 ACCEPT A-DUMMY

005900 MOVE 0 TO SCREEN-LINES.

006000

006100 COMPUTE THE-PRODUCT = THE-NUMBER * THE-MULTIPLIER.
006200 DISPLAY

006300 THE-NUMBER " * " THE-MULTIPLIER " =" THE-PRODUCT.
006400

006500 ADD 1 TO SCREEN-LINES.

006600

You now have seen several ways of avoidig TQO You can us€ERFORND control a processing
loop in different ways, and it should be possible to set up the control in such a waptfi@can be
avoided.

DO/DON'T:
DO understand>O TOso that you know what it is doing when you see it in a program.

DON'T use &0 TOin a program that you write.

DO usePERFORMPERFORM UNTIL PERFORM VARYINGNdPERFORM nn TIMES
to control loops. If a problem seems to req@i@ TOto solve it, it can be solved better
using one of the versions BERFORM

Summary

Today, you learned how to uBERFORMSO TQ, andIF to control programs. The following are the
basic truths about those three statements:

« A GO TOverb can be used to make the program jump to the beginning of another paragra
back to the beginning of the current paragraph.

« Using aGO TOverb to jump out of one paragraph to the start of another paragraph is bad
programming practice. Don't do it.

« ThePERFORMerb can be used to perform a paragraph a number of times. The number of
can be a constant, as in this example:

PERFORM DO-SOMETHING 10 TIMES
« The number of times can also be a variable, as in this example:
PERFORM DO-SOMETHING THE-NUMBER TIMES
« A processing loop is one paragraph (or more) performed over and over in a program.

« A processing loop must be controlled by some condition that will cause the loop to stop, ot
loop will go on forever.

« Controlled processing loops in COBOL can be executed by using the following three varia
thePERFORMerb:

PERFORM a paragraph number TIMES.
PERFORM a paragraph
UNTIL condition.
PERFORM a paragraph
VARYING a variable
FROM starting value BY increment value
UNTIL condition.

« The key steps in setting up a loop are as follows:

1. Initialize a value for the first pass through the loop.
2. Perform the processing loop until a condition is met.

3. Increment the control variable at the end of the loop or after each pass through the

. The top of the loop can be used to insert code that will be executed only if the loop v
executed.

« The bottom of the loop can be used to insert code that will be executed each time the loop
completed.

Q&A

Q Can | perform something zero times?

A Yes, you should be able to. | have tested several COBOL compilers, and they all allow t
effect not performing at all. If the user enté@sfor HOW-MANM mult02.cbl , the result is
the following:

Which multiplication table(01-99)?

15

How many entries would you like (01-99)?
00

The 15's table is:

C>

C>

Q Why is THE- MULTI PLI ER defined as a1 C 999 in all the sample programs when &1 C
99 should be large enough for a value from 1 to 99?

A The answer lies in the extremes. In most of the examPRSCULATE-AND-DISPLAYis
performed untiTHE-MULTIPLIER is greater thallOW-MANYThis test is performed in variol
ways in the examples but is essentially the same test.

If the user enter89 for HOW-MANYan interesting problem shows up whddE-MULTIPLIER
is defined as IC 99 . On each pass throu@ALCULATE-AND-DISPLAY, 1 is added to
THE-MULTIPLIER . What happens wheFHE-MULTIPLIER equal€99 and you add. to it?
THE-MULTIPLIER should go tdl00, but aPIC 99 is too small to hold that value. TR0 is
truncated on the left 100, andTHE-MULTIPLIER can never reach a value where it is greate
thanHOW-MAN¥ HOW-MAN¥quals99. Adding the extra digit to the picture of
THE-MULTIPLIER allows it to go tdl00 as a value.

Whenever you write a program, it is practically mandatory that you test it at the extremes ¢
data. If the user is allowed to en@ through99, what happens if the user ent@8? What
happens if the user enté)8

Workshop

Quiz
1. How many times wilDISPLAY-HELLO be performed in the following example?

003600 PERFORM DISPLAY-HELLO 10 TIMES.
003700

003800 DISPLAY-HELLO.

003900 DISPLAY "hello".

004000

2.1f THE-COUNTis defined as a numeric variable, how many timesmBHPLAY-HELLO be
performed in the following example?

003600 PERFORM DISPLAY-HELLO

003700 VARYING THE-COUNT FROM 1 BY 1
003800 UNTIL THE-COUNT > 5.

003900

004000 DISPLAY-HELLO.

004100 DISPLAY "hello".

004200

3. In each of the previous examples, which lines contain the processing loop and which lin
contain the control for the processing loop?

Exercise

Code two different ways to perform a paragraph named A-PARAGRAPH eight times.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 6 -
Using Data and COBOL Operators

One truth about COBOL is that you will never learn everything about the data used by a progran
DATA DIVISION . Each day's lesson gives you enough of a grasp @AA& DIVISION that you
can work comfortably with data. Today, you dive back intoDA§ A DIVISION and learn about the
following topics:

« Initializing variables

« SPACESandZEROES

« Experimenting with truncated variables

« Multiple moves

o Decimal data

« Positive and negative numbers

« Displaying decimals and signs

« Suppressing leading zeroes

« Adding commas

« COBOL numeric operators

Initializing Variables

When you define a variable WORKING-STORAGLHKou also can assign it an initial value. This is a
convenient method of setting variables to start with a known value.

Variables are initialized with MALUE IS clause, as shown in lin@00900 and001000 of Listing
6.1. Note that the period closing the variable definition is at the end of the initializer, so the sequ
the level number, the variable narm¢CTURE IS (or PIC), the pictureYALUE IS , the initializer,
and finally the period.

TYPE: Listing 6.1. Initializing a variable in ~ WORKI NG STORAGE.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. JACKO04.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 THE-MESSAGE PIC X(50).

000900 01 THE-NUMBER PIC 9(2) VALUE IS 1.
001000 01 A-SPACE PICX VALUEIS"".
001100

001200 PROCEDURE DIVISION.

001300 PROGRAM-BEGIN.

001400

001500* Set up and display line 1

001600 MOVE "Jack be nimble," TO THE-MESSAGE.
001700 DISPLAY

001800 THE-NUMBER

001900 A-SPACE

002000 THE-MESSAGE.

002100

002200* Set up and Display line 2

002300 ADD 1 TO THE-NUMBER.

002400 MOVE "Jack be quick,”" TO THE-MESSAGE.
002500 DISPLAY

002600 THE-NUMBER

002700 A-SPACE

002800 THE-MESSAGE.

002900

003000* Set up and display line 3

003100 ADD 1 TO THE-NUMBER.

003200 MOVE "Jack jump over the candlestick.”" TO THE-MESSAGE.
003300 DISPLAY

003400 THE-NUMBER
003500 A-SPACE
003600 THE-MESSAGE.
003700

003800 PROGRAM-DONE.
003900 STOP RUN.
004000

004100

The wordIS in a value clause is optional; the initialization could be written as the following:
01 THE-NUMBER PIC 9(2) VALUE 1.

Compare Listing 6.1 to Listing 2.10 in Day 2, "Using Variables and Constants." Notice that using
initializers INWORKING-STORAGHas eliminated the need for two of M@V Estatements, at lines
001600 and001900, in thePROCEDURE DIVISION

If you want a variable to have a default value that will be used in the program, you must initialize
WORKING-STORAGH variable that is not initialized has an undefined value until something is r
to it.

An undefined valués one that can contain any value.

For numeric variables, this can become a problem. If you attempt to USESIREAY (ADD 1)
statement with a numeric variable that contains an undefined value, you probably will produce a
This does not cause a compiler error, but usually causes an error while the program is running. -
program usually aborts with a message such as this:

ATTEMPT TO PERFORM ARITHMETIC WITH NON-NUMERIC DATA

or
VARIABLE THE-NUMBER DOES NOT CONTAIN NUMERIC DATA

Initializing a variable iIWORKING-STORAGHas the same effect adi®VEo the variable. If the
initializing value is shorter than tHfICTURE of an alphanumeric field, the field is padded on the ric
with spaces. If the initializing value is too small for a numeric variable, the variable is padded on
with zeroes.

Listing 6.2,jack05.cbl , takes initialization one step further by initializing all the variables ready
print the first line of the poem.

TYPE: Listing 6.2. Short initializers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. JACKO5.

000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.
000700

000800 01 THE-MESSAGE PIC X(50)

000900
001000

VALUE "Jack be nimble,".

001100 01 THE-NUMBER PIC 9(2) VALUE IS 1.
001200 01 A-SPACE PIC X VALUEIS"".

001300

001400 PROCEDURE DIVISION.
001500 PROGRAM-BEGIN.

001600

001700* Line 1 is set up, so just display it

001800
001900
002000
002100
002200

DISPLAY
THE-NUMBER
A-SPACE
THE-MESSAGE.

002300* Set up and Display line 2

002400
002500
002600
002700
002800
002900
003000

ADD 1 TO THE-NUMBER.
MOVE "Jack be quick,” TO THE-MESSAGE.
DISPLAY

THE-NUMBER

A-SPACE

THE-MESSAGE.

003100* Set up and display line 3

003200
003300
003400
003500
003600
003700
003800

ADD 1 TO THE-NUMBER.

MOVE "Jack jump over the candlestick." TO THE-MESSAGE.

DISPLAY
THE-NUMBER
A-SPACE
THE-MESSAGE.

003900 PROGRAM-DONE.

004000
004100

STOP RUN.

The output from all three versions ¥ACK s identical.

OUTPUT:

C>

01 Jack be nimble,
02 Jack be quick,
03 Jack jump over the candlestick.

C>

ANALYSIS: The definition for the variabld/HE-MESSAGEs at line000800 and000900 . The
definition is broken up into two lines. TIBd level starts in Area A, but only the level number of the
variable is required to start in Area A. The remainder of the definition (the variable name, picture
value) falls within Area B (columns 12 through 72).

The initializer forTHE-MESSAGEin this caseJack be nimble" --is clearly too short for the
PICTURE, and the remainder GHE-MESSAGEs filled with spaces by the compiler when it
encounters th¥ ALUEclause. SimilarlyTHE-NUMBERs initialized with al, and the compiler fills the
variable space witB1 when it encounters théALUE IS clause.

Note that initializing a variable with\dALUEIin WORKING-STORAGE the same as usifgOVEo
give it a value. Thereafter, you can 0®VHo assign values to the variable later in the program.
THE-MESSAGEitialized at line€900800 and000900 , is modified by aMOVEat line002500 and
again later at lin@03300 .

SPACES and ZERCES

Variables that are not initialized contain undefined values uMiD&Enoves something to them. It is
good practice to initialize variables WHORKING-STORAGHEhe usual practice is to initialize numeri
variables to zero and alphanumeric variables to spaces. COBOL has provided reserved words ft
primarily to make clearer what is happening.

Both of the following initializations do the job. Remember that an initializer works IM®¥Epadding
the remainder of the variable with spaces or zeroes. Therefore, moving a single space to an alpl
variable is the same as filling it with spaces, as you see here:

01 THE-MESSAGE PIC X(50) VALUE "".
01 THE-NUMBER PIC 9(4) VALUE 0.

Instead of a quoted space (which isn't clear), or a 0 (zero) that can be confused with the letter O
has reserved the wor@ACE SPACESZERQ ZEROS andZEROESo represent these values. Thit
initialization is clearer:

01 THE-MESSAGE PIC X(50) VALUE SPACES.
01 THE-NUMBER PIC 9(4) VALUE ZEROES.

SPACEandSPACESboth mean "fill with spacesZERQ ZEROS andZEROESll mean "fill with
zeroes." The singular and plural versions produce the identical &fRACEs the same aSPACES
andZEROQis the same a8BEROSaNdZEROES

SPACESandZEROESlso can be used MOVEcommands, like this:

MOVE SPACES TO THE-MESSAGE.
MOVE ZERO TO THE-NUMBER.

DO/DON'T:
DO initialize variables in th©®ATA DIVISION when they are defined, or in the
PROCEDURE DIVISIONbefore they are used.

DON'T perform any arithmetic functions on an uninitialized numeric variable.

Truncated Values

A truncated valueccurs when a value that is too large for a numeric variable is moved to the nut
variable, or when a value that is too long for an alphanumeric variable is moved to the alphanun
variable.

The compiler conveniently fills variables with blanks or zeroes when short or small values are m
them, or when short or small values are used to initialize them. What happens when a value tha
large or too long is moved to a variable or is used to initialize a variable?

The short answer is that you lose some data. What you lose depends on the type of variable tha
target of theMOVEAnN alphanumeric variable truncates the right end of the value until the value fi
the variable. A numeric variable truncates the left end of the value until the value fits. (There is a
exception to this for decimal values, which you will learn about in "Decimal Data," later in this ch

Listing 6.3 illustrates the effect of truncation on variables. It moves a message to successively si
alphanumeric variables, and a numeric value to successively smaller numeric variables. All the t
values are displayed.

TYPE: Listing 6.3. Truncating variables.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TRUNCO1.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 WORKING-STORAGE SECTION.

000600

000700 01 6-BYTES PIC X(6).
000800 01 5-BYTES PIC X(5).
000900 01 4-BYTES PIC X(4).
001000 01 3-BYTES PIC X(3).
001100 01 2-BYTES PIC X(2).
001200 01 1-BYTE PIC X(1).
001300

001400 01 5-DIGITS PIC 9(5).
001500 01 4-DIGITS PIC 9(4).
001600 01 3-DIGITS PIC 9(3).
001700 01 2-DIGITS PIC 9(2).
001800 01 1-DIGIT PIC 9(1).
001900

002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.

002200
002300
002400

MOVE "Hello" TO 6-BYTES.
MOVE "Hello" TO 5-BYTES.

002500 MOVE "Hello" TO 4-BYTES.
002600 MOVE "Hello" TO 3-BYTES.
002700 MOVE "Hello" TO 2-BYTES.
002800 MOVE "Hello" TO 1-BYTE.
002900

003000 MOVE 2397 TO 5-DIGITS.
003100 MOVE 2397 TO 4-DIGITS.
003200 MOVE 2397 TO 3-DIGITS.
003300 MOVE 2397 TO 2-DIGITS.
003400 MOVE 2397 TO 1-DIGIT.
003500

003600 DISPLAY 6-BYTES.

003700 DISPLAY 5-BYTES.

003800 DISPLAY 4-BYTES.

003900 DISPLAY 3-BYTES.

004000 DISPLAY 2-BYTES.

004100 DISPLAY 1-BYTE.

004200

004300 DISPLAY 5-DIGITS.
004400 DISPLAY 4-DIGITS.

004500 DISPLAY 3-DIGITS.
004600 DISPLAY 2-DIGITS.
004700 DISPLAY 1-DIGIT.

004800

004900

005000 PROGRAM-DONE.

005100 STOP RUN.

005200

The output otrunc01.cbl shows characters being lopped off the right siddedfo and digits
being lopped off the left side @897 :

OUTPUT:

Hello
Hello
Hell
Hel
He

H
02397
2397
397
97

-

C>
C>

You might find when you compileunc01.cbl that the compiler will return warnings about
truncation. Many compilers will provide warnings on the numeric mov8€atiGITS |, 2-DIGITS
and1-DIGIT . This usually is something like the following:

HIGH ORDER DIGIT TRUNCATION MAY OCCUR IN MOVE AT LINE 003200

A few compilers give warnings on the alphanumeric truncation in the mo4eBYGES, 3-BYTES,
2-BYTES, and1-BYTE:

VALUE MAY BE TRUNCATED IN MOVE AT LINE 002500

It is more common to warn about numeric truncation because it usually has more serious effects
outcome of a program. Numeric values in a program are usually used somewhere in a calculatic
truncation can produce errors that are not easily visible.

Listing 6.4,trunc02.cbl , demonstrates the truncation of values by initializing the variables witt
values that are too large or too long. You might find thatc02.cbl will not even compile with
your compiler. Truncation in initializers WORKING-STORAGE treated more severely than a
truncation in aMOVEstatement, and this listing might produce one or more errors and fail to comg
This program will not compile with the Microfocus Personal COBOL compiler and generates the
"VALUE literal too large. Literal truncated." for lines000900 through001200 .
It also generates the erf&ALUE too long for data item or has too many decimal

positions." for lines001600 through001800 . The ACUCOBOL compiler provides the more
general errotVALUE size error" for the same lines.

TYPE: Listing 6.4. Truncation in initializers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TRUNCO2.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 WORKING-STORAGE SECTION.

000600

000700 01 6-BYTES PIC X(6) VALUE "Hello".
000800 01 5-BYTES PIC X(5) VALUE "Hello".
000900 01 4-BYTES PIC X(4) VALUE "Hello".
001000 01 3-BYTES PIC X(3) VALUE "Hello".
001100 01 2-BYTES PIC X(2) VALUE "Hello".
001200 01 1-BYTE PIC X(1) VALUE "Hello".
001300

001400 01 5-DIGITS PIC 9(5) VALUE 2397.
001500 01 4-DIGITS PIC 9(4) VALUE 2397.
001600 01 3-DIGITS PIC 9(3) VALUE 2397.
001700 01 2-DIGITS PIC 9(2) VALUE 2397.
001800 01 1-DIGIT PIC 9(1) VALUE 2397.

001900

002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.
002200

002300

002400 DISPLAY 6-BYTES.
002500 DISPLAY 5-BYTES.
002600 DISPLAY 4-BYTES.
002700 DISPLAY 3-BYTES.
002800 DISPLAY 2-BYTES.
002900 DISPLAY 1-BYTE.
003000

003100 DISPLAY 5-DIGITS.
003200 DISPLAY 4-DIGITS.
003300 DISPLAY 3-DIGITS.
003400 DISPLAY 2-DIGITS.
003500 DISPLAY 1-DIGIT.
003600

003700

003800 PROGRAM-DONE.
003900 STOP RUN.
004000

If trunc02.chbl does compile, its output is the same as the outguied01.cbl

Multiple MOVE Statements

A MOVErerb can be used to move the same value to multiple targets. Here is the syntax:
MOVE source TO destination destination destination

Listing 6.5,trunc03.cbl , uses multiple moves to achieve the same resultias01.cbl . (Listing
6.5 only illustrates the convenience of using a multyW@VEIt isn't a useful program.)

TYPE: Listing 6.5. Using multiple = MOVE statements.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. TRUNCO3.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.

000500 WORKING-STORAGE SECTION.
000600

000700 01 6-BYTES PIC X(6).
000800 01 5-BYTES PIC X(5).
000900 01 4-BYTES PIC X(4).
001000 01 3-BYTES PIC X(3).
001100 01 2-BYTES PIC X(2).
001200 01 1-BYTE PIC X(1).

001300

001400 01 5-DIGITS PIC 9(5).
001500 01 4-DIGITS PIC 9(4).
001600 01 3-DIGITS PIC 9(3).
001700 01 2-DIGITS PIC 9(2).
001800 01 1-DIGIT PIC 9(1).
001900

002000 PROCEDURE DIVISION.
002100 PROGRAM-BEGIN.

002200

002300 MOVE "Hello" TO 6-BYTES 5-BYTES
002400 4-BYTES 3-BYTES
002500 2-BYTES 1-BYTE.
002600

002700 MOVE 2397 TO 5-DIGITS
002800 4-DIGITS

002900 3-DIGITS

003000 2-DIGITS

003100 1-DIGIT.

003200

003300 DISPLAY 6-BYTES.
003400 DISPLAY 5-BYTES.
003500 DISPLAY 4-BYTES.
003600 DISPLAY 3-BYTES.
003700 DISPLAY 2-BYTES.
003800 DISPLAY 1-BYTE.
003900

004000 DISPLAY 5-DIGITS.
004100 DISPLAY 4-DIGITS.
004200 DISPLAY 3-DIGITS.
004300 DISPLAY 2-DIGITS.
004400 DISPLAY 1-DIGIT.
004500

004600

004700 PROGRAM-DONE.
004800 STOP RUN.
004900

Decimal Data

So far, all the numbers you've worked with have been positive whole numbers (integers), but CC
a business language, which should be able to deal with decimal numbers, dollars and cents, anc
percentages.

In order to put a decimal point in a number, you must put a decimal pointPiGh&JRE of a variable.

The character in a numefiCTUREthat represents a decimal point is an upperdase

The following variable holds values ranging fré&®0.00 to0999.99 .
01 THE-VALUE PIC 999Vv99.

Any constant values that you move to a decimal variable or use to initialize a decimal variable al
in conventional format, as in these examples:

01 THE-VALUE PIC 999V99 VALUE 19.24.
01 THE-VALUE PIC 999V99 VALUE ZERO.
MOVE 26.15 TO THE-VALUE.

If you attempt to move a value containing too many decimals, the number is truncated on the rig
some of the decimal information will be lost. In this exampleE-VALUEends up containing67.23

MOVE 467.237 TO THE-VALUE.

Truncation still takes place from the high end as well. In this exafidIE;VALUEends up containing
923.46 because the number is truncated on both the left and the right:

MOVE 6923.468 TO THE-VALUE.

WARNING: | have stressed truncation in numbers because of the effect it can have on
calculations. It is important to plan the size of numeric variables so that they are large
enough to hold the largest possible values that may occur during the program.

Positive and Negative Numbers

COBOL numbers can also contain a positive or negative sigrPQIEURE character for a sign is an
initial S. TheS must be the first character in the picture.

The following variable holds values ranging fre®99.99 t0+999.99 .
01 THE-VALUE PIC S999V99.

The following variable holds values ranging fre®®99 to+9999.
01 THE-VALUE PIC S99909.

The abbreviations used in a picture still can be used in a numeric picture containing a sign or a (
For example, the following two variable definitions will produce the same size and type of variab

01 THE-VALUE PIC S999999V9999.
01 THE-VALUE PIC S9(6)V9(4).

It looks like some sort of strange code, but it is simple to decipher if you remember that any nurr
parentheses inRICTURE s a signal to repeat the preceding character the number of times in
parentheses. $6) expands t®99999 and9(4) expands t®999.

Displaying Decimals and Signs

In COBOL, numbers that will be displayed are treated differently from numbers that are used for
calculations. COBOL was designed to do a lot of number calculating (addition, subtraction,
multiplication, and division). Numbers that containSfor a sign (positive or negative) ovdor a
decimal are stored in memory in a special format that speeds up calculations. However, this forr
not display correctly.

The designers of COBOL recognized the need to include in the design of the language a way to
numeric values. After all, the output of a program isn't much good if a user can't understand it.

The idea behind the design is that all calculations are performed with numeric variables (variable
pictures contain only numbers, &ror a sign, and & for a decimal). After the calculations are
complete, the resulting value is moved to a display variable, and the display variable is put on-s¢
through aDISPLAY statement.

A numeric variable stipulated byLdSPLAY statement uses differeRtCTURE characters for the sigr
and the decimal.

The PICTURE character for a sign in a numeric variable that will be usedBdERLAY is the minus
sign ¢). ThePICTUREcharacter for a decimal in a numeric variable that will be usedIfiPLAY is
the decimal point or period.

The following variable holds the value399.99 through999.99 for display purposes:
01 DISPLAY-VALUE PIC -999.99.

The display sign-() displays only when the value is negativeDISPLAY-VALUE contains46.17 , it
displays as the following:

-046.17

However, the numbés5.03 displays as follows:
055.03

A program performing calculation and display might conV'd@RKING-STORAG&Nd code as in
Listing 6.6. In practice, a sales commission usually would not be negative (unless the salespers:
generated a pile of refunds), but the example does show the difference betw€TtHRE of a signe
value used for calculation at liR®0800 and thePICTURE of a signed value used for display at line
001300 .

TYPE: Listing 6.6. Using numeric and display variables.

000700 WORKING-STORAGE SECTION.

000800 01 SALES-TOTAL PIC S9(5)V99 VALUE 44707.66.
000900 01 COMMISSION-PERCENT PIC 99 VALUE 11.
001000 01 PERCENT-AS-DECIMAL PIC V99.

001100 01 THE-COMMISSION PIC S9(5)V99 VALUE ZERO.
001200

001300 01 DISPLAY-COMMISSION PIC -9(5).99.

002500* Divide commission by 100 to convert to decimal
002600 COMPUTE PERCENT-AS-DECIMAL =
002700 COMMISSION-PERCENT / 100.

002800

002900 COMPUTE THE-COMMISSION =

003000 PERCENT-AS-DECIMAL * SALES-TOTAL.
003100

003200 MOVE THE-COMMISSION TO DISPLAY-COMMISSION.
003300

003400 DISPLAY "The Commission is "

003500 DISPLAY-COMMISSION.

The- also can be placed at the end of the picture rather than at the beginning. It is fairly commao
business programs to see display values specified as follows:

01 THE-DISPLAY-VALUE PIC 999999.99-.

Suppressing Leading Zeroes

You can suppress leading zeroes to improve the display of a number. In the previous example, i
-55.17 is moved torHE-DISPLAY-VALUE and then displayed, it appears on the screen as the
following:

000055.17-

In a display variable, you can suppress the display of leading zeroesZusingplaced in the picture
of the variable. Here is an example:

01 THE-DISPLAY-VALUE PIC 2Z227279.99-.

When entered like this, a value-64.27 moved toTHE-DISPLAY-VALUE displays as the followin
54.27-

Leading zeroes are suppressed byzhethePICTURE statement.

Using aPICTURE0f ZZZZ279.99- enables the valu@ to display as this:
0.00

If you suppress all zeroes witlPdCTURE of ZZZ2727Z.ZZ- , a value of) displays as a blank becaus:
all zeroes are suppressed.

Commas can be inserted in the picture to provide commas in the final display, like this:
01 DISPLAY-COMMISSION PIC ZZ,2Z9.99-.

A value 0f12345.67 moved taDISPLAY-COMMISSIONdisplays as the following:
12,345.67

New Term: The minus sign-(), decimal point (), comma () and the charactet are callecediting
characters A numeric variable that contains an editing character is callediged numeric variable
Edited numeric variables should be used only to display values and should not be used in calcul
There are other editing characters, but these are the main ones.

WARNING: Editing characters should never be mixed i@tbr Vin aPICTURE PIC
S99.99 andPIC -ZZV99 are illegalPICTUREs, and your compiler will generate an
error if you try to create RICTUREthat mixes the two types.

Before you leap into writing a program that uses decimal or signed data, you need to know how
signed and decimal data usiA@ CEPT Numeric data that is entered into a computer probably will
entered by the user with editing characters, such as a plus sign or a minus sign, a decimal point
commas.

If you ACCEPTvalues into a numeric field, such aBI& 9(6)V99 , characters such as signs and
commas entered by the user will be invalid. In order to allow the user to enter digits and editing
characters, it is necessary to éeCEPTio accept values into an edited numeric variable.

The easiest way to creat€ - CTUREfor a field into which this type of numeric data will be accepte
to make it as large as possible by including all possible editing characters. If you want to allow tf
to enter a number as large%9,999.99 with a sign, the picture for the field should Pk
-ZZ272,272Z.ZZ . ThisPICTUREallows the user to enter all possible editing characters including
commas, a sign, and a decimal point. You also could use the following:

01 ENTRY-FIELD PIC 2Z2,22Z2.77-.

When a display variable is used as a data entry fieldAMGEPT thePICTURE of the variable does
not control what the user can enter. For example, it doesn't matter whether the minugisigta¢ed a
the beginning or the end of tRRCTURE statement. The user still can enter a minus in a leading ot
trailing position. When aACCEPTof ENTRY-FIELD is used in a program, tAeCCEPTverb uses the
size of thePICTURE, 11 characters (eight characters, a comma, a minus sign, and a decimal poil
determine how many characters the user is allowed to enter and assumes that the user will be €
digits, and possibly a sign, commas and/or a decimal point as the input.

After the user enters data and presses EnteA@@EPTverb looks at the 11 (or fewer) characters a
tries to sort out the digits, minus signs, commas, or decimal points. It turns the result into a numl
can be moved to a true numeric variable.

Unfortunately, the following three different versionsA@@CEPTcan be used for numeric entry:

ACCEPT ENTRY-FIELD.
ACCEPT ENTRY-FIELD WITH CONVERSION.
ACCEPT ENTRY-FIELD CONVERT.

Micro Focus Personal COBOL uses the first version. ACUCOBOL uses the second and third vel
VAX COBOL use the second; and LPI COBOL uses the third. You have to consult your COBOL
to check which one your version uses.

NOTE: The listings in today's lesson USECEPT ENTRY-FIELD because this code was

compiled and tested using a Micro Focus compiler. The other versions are commented ou
the code. You can change the one you use to fit your compiler.

Code, compile, and run Listing 6.7, entering various values to get an idea how the formatting wc
might want to try editing the program to add additional formats or to try out longer fields.

TYPE: Listing 6.7. Edited formats.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. NUMSO1.
000300*--==n=nmmmmmmmmm oo
000400 Illustrates how decimal data is displayed
000500* when edited.

000600*--====nmmmmmmmmm oo

000700 ENVIRONMENT DIVISION.

000800 DATA DIVISION.

000900 WORKING-STORAGE SECTION.

001000

001100 01 ENTRY-FIELD PIC -ZZ2Z,272Z.7Z.
001200 01 THE-VALUE PIC S999999V99.
001300

001400 01 EDITED-DISPLAY-1 PIC -999999.99.
001500 01 EDITED-DISPLAY-2 PIC ZZ2Z779.99-.
001600 01 EDITED-DISPLAY-3 PIC Z22Z272Z27.Z2Z-.
001700 01 EDITED-DISPLAY-4 PIC ZZZ,272Z.7Z-.
001800

001900 PROCEDURE DIVISION.

002000 PROGRAM-BEGIN.

002100

002200 DISPLAY "PLEASE ENTER A VALUE".
002300 ACCEPT ENTRY-FIELD.

002400*or ACCEPT ENTRY-FIELD CONVERT.
002500*or ACCEPT ENTRY-FIELD WITH CONVERSION.
002600 MOVE ENTRY-FIELD TO THE-VALUE.

002700

002800 MOVE THE-VALUE TO EDITED-DISPLAY-1
002900 EDITED-DISPLAY-2
003000 EDITED-DISPLAY-3
003100 EDITED-DISPLAY-4.
003200

003300 DISPLAY ENTRY-FIELD "|"
003400 EDITED-DISPLAY-1"|"
003500 EDITED-DISPLAY-2 "|"
003600 EDITED-DISPLAY-3 "|"
003700 EDITED-DISPLAY-4"|".

003800

003900 IF THE-VALUE NOT = ZERO
004000 GO TO PROGRAM-BEGIN.
004100

004200 PROGRAM-DONE.

004300 STOP RUN.

004400

The output ohumsO1l.cbl shows the results of various numeric entry values. The user input is ¢
in boldface type. Entry stops when you enter zero.

OUTPUT:

PLEASE ENTER A VALUE
-1

- 1.00/-000001.00| 1.00-] 1.00-] 1.00-|

PLEASE ENTER A VALUE

234, 56

23,456.00| 023456.00| 23456.00 | 23456.00 | 23,456.00 |
PLEASE ENTER A VALUE

10606-

- 10,606.00|-010606.00| 10606.00-| 10606.00-| 10,606.00]
PLEASE ENTER A VALUE

123. 45

123.45| 000123.45| 123.45| 123.45| 123.45 |
PLEASE ENTER A VALUE

1234. 5

1,234.50| 001234.50| 1234.50 | 1234.50 | 1,234.50 |
PLEASE ENTER A VALUE

-1678. 98

- 1,678.98|-001678.98| 1678.98-| 1678.98-| 1,678.98|
PLEASE ENTER A VALUE

ANALYSIS: The code in Listing 6.7 allows data entry to be accepted into a display variable field
002300 and then moves it to a calculation field. From there, it is moved to several different edite
numeric fields. The original entry and the different versions of the edited numeric fields are displ

COBOL Numeric Operations

You already have worked with several COBOL numeric operators; now it is time to round them
one section.

The COBOLCOMPUTEerb is a general-purpose verb that can be used to calculate results. Arith
expressions in thEeOMPUTRerb use the arithmetic operatoftstaddition),- (subtraction)?
(multiplication), and (division). You can use parentheses to affect the order in which operations
performed.

When parentheses appear in an expression, the value within the innermost parentheses is evalt

Assuming thafHE-VALUE containsl00 andTHE-PERCENTcontains 25 , these are the steps for
evaluating the sample compute statement:

1. COMPUTE THE-RESULT = ((THE-VALUE * THE-PERCENT) + 14) / 6
2. COMPUTE THE-RESULT = ((25) + 14) /6
3. COMPUTE THE-RESULT = (39) / 6

4. COMPUTE THE-RESULT =6.5

The COMPUTLRerb has two optional clausésOUNDERNdON SIZE ERROR. ROUNDEIunds the
result up or down as necessary, based on the results of the calculatiQN Bi2E ERROR logic is
performed if the result is larger than the variable that is used to store the result.

The statement that followBN SIZE ERROR also is executed if@OMPUTEtatement attempts to dc
something impossible, such as divide by zero. Dividing by zero causes a lot of problems for a cc
It is an error that can occur iINGOMPUTKtatement that uses divisiah){or one that uses th#VIDE
verb (which is covered later in today's lesson).

In the following syntax, clauses in brackdis J are optional. In €&OMPUTEtatement, the result is
stored in the variable on the left of the equalssign, like this:

COMPUTE numeric variable
[ROUNDED] =
arithmetic expression
[ON SIZE ERROR
do something else]

In the following examples, the fir& OMPUTEtatement uses all of the options.

COMPUTE THE-RESULT
ROUNDED =
(BASE-VALUE * 10) +
(A-VALUE / 50)
ON SIZE ERROR
DISPLAY "Warning Size error."

COMPUTE THE-RESULT = 12 * 15,
COMPUTE THE-RESULT
ROUNDED =
(BASE-VALUE * 10) / 1.5.

A divide-by-zero error might occur in a program that calculated the sales dollars generated per ¢
salesperson by dividing a salesperson’s monthly total sales revenue by the number of days worl
month. If one of the sales staff were off all month because of a serious iliness, but some income
that month from a previous month's sale, trying to compute the dollars per day would cause a
divide-by-zero error.

COMPUTE DOLLARS-PER-DAY = MONTH-DOLLARS / DAYS-WORKED.

A program containing thiEOMPUTEtatement would crashifAYS-WORKEBquals). An ON SIZE
ERRORraps this condition and displays an error, so that the program can continue:

002600 COMPUTE DOLLARS-PER-DAY =
002700 MONTH-DOLLARS / DAYS-WORKED
002800 ON SIZE ERROR

002900 DISPLAY "Division by zero error".

The ADDverb is available in two versions. Both versions have options similar @AMPUTEerb. In
the first, a value (which can be a constant or a variable) is added to second value (which must b
variable). The result is stored in the variable, like this:

ADD value TO variable
[ROUNDED]
[ON SIZE ERROR
do something]

In each of the following examples, the result of the addition is storedEVALUE
ADD 1.17 TO THE-VALUE.

ADD A-VALUE TO THE-VALUE
ROUNDED.

ADD 1.17 TO THE-VALUE
ROUNDED
ON SIZE ERROR
DISPLAY "Add - overflow"

In the second version, two values are added together and the reserv&lWIBI@ is used to indicate
variable into which the result is stored. The values can be constants or variables.

ADD value TO value
GIVING variable [ROUNDED]
[ON SIZE ERROR
do something]

In each example, the result of the addition is stordHB-SUM as shown here:

ADD 17.5 TO THE-VALUE
GIVING THE-SUM ROUNDED
ON SIZE ERROR
DISPLAY "Add - overflow"

ADD 17.5TO 22.7
GIVING THE-SUM

ADD A-VALUE TO THE-VALUE
GIVING THE-SUM
ON SIZE ERROR
DISPLAY "Add - overflow"

Subtraction is handled by tiI B2 JBTRACverb, and it comes in the following two versions that are
similar toADD The second version 8UBTRACTlso use$IVING.

SUBTRACT value

FROM variable [ROUNDED]
[ON SIZE ERROR
do something]

SUBTRACT value FROM value
GIVING variable [ROUNDED]
[ON SIZE ERROR
do something]

The following are examples of subtraction with 818BTRACverb:

SUBTRACT 1.17
FROM THE-VALUE ROUNDED
ON SIZE ERROR
DISPLAY "Subtract - overflow
SUBTRACT 17.5 FROM THE-VALUE
GIVING THE-DIFFERENCE ROUNDED
ON SIZE ERROR
DISPLAY "Subtract-overflow"

Multiplication is handled by thMMULTIPLY verb, and the following syntax for both versions of
MULTIPLY is similar toADDandSUBTRACT

MULTIPLY value
BY variable [ROUNDED]
[ON SIZE ERROR
do something |

MULTIPLY value BY value
GIVING variable [ROUNDED]
[ON SIZE ERROR
do something]

The result is stored in the second value (for exanipi#&-VALUE) for the first version, and the secor
version use§IVING to name a variable--in this ca3éJE-PRODUCFto store the result:

MULTIPLY 1.17
BY THE-VALUE ROUNDED
ON SIZE ERROR
DISPLAY "Multiply-overflow"
MULTIPLY 17.5 BY THE-VALUE
GIVING THE-PRODUCT ROUNDED
ON SIZE ERROR
DISPLAY "Multiply-overflow"

Division with theDIVIDE verb comes in several versions, which follow. It has versions with and
without theGIVING clause, and it also includes the capability of storing the remainder of a divisic
separate variable. There also are versions that allow you to &VidedivideINTO.

DIVIDE value

INTO variable [ROUNDED]
[ON SIZE ERROR

do something]

DIVIDE value INTO value
GIVING variable [ROUNDED]
[ON SIZE ERROR
do something |

DIVIDE value INTO value
GIVING variable [ROUNDED]
REMAINDER variable
[ON SIZE ERROR
do something]

DIVIDE value BY value
GIVING variable [ROUNDED]
[ON SIZE ERROR
do something]

DIVIDE value BY value
GIVING variable [ROUNDED]
REMAINDER variable
[ON SIZE ERROR
do something]

The following are examples of division with tB&VIDE verb:

DIVIDE 56.2
INTO THE-VALUE ROUNDED
ON SIZE ERROR
DISPLAY "Divide-error"

DIVIDE 56.2 INTO THE-VALUE
GIVING THE-QUOTIENT ROUNDED
ON SIZE ERROR
DISPLAY "Divide-error"

DIVIDE 15 INTO THE-VALUE
GIVING THE-QUOTIENT ROUNDED
REMAINDER THE RE-REMAINDER
ON SIZE ERRROR
DISPLAY "Divide-error"

DIVIDE 56.2 BY THE-VALUE
GIVING THE-QUOTINT ROUNDED
ON SIZE ERROR
DISPLAY "Divide-error"

DIVIDE 15 BY 7
GIVING THE-QUOTIENT ROUNDED
REMAINDER THE-REMAINDER
ON SIZE ERROR
DISPLAY "Divide-error"

Summary

Today, you learned more about COBODRATA DIVISION , including the following basics:

When a variable is declaredWMORKING-STORAGH also can be given an initial value with ¢
VALUEor VALUE IS clause.

A variable that is not initialized WORKING-STORAGEONntains undefined values and must t
initialized if it is expected to have a default value.

Initializing a variable iIWORKING-STORAGHaS the same effect ad®VEo the variable. If
the initializing value is too small for an alphanumeric field, the field is padded on the right v
spaces. If the initializing value is too small for a numeric variable, the variable is padded ol
left with zeroes.

SPACEandSPACESare reserved COBOL words that mean "fill with spac2ERQ ZEROS anc
ZEROESare reserved COBOL words that mean "fill with zeroes."

If a value is too large or too long when moved to a target variable, you will lose some data
alphanumeric variable truncates characters from the right of the value until the value will fr
variable. A numeric variable truncates digits from the left of the value until the value will fit.
compiler might warn you or return errors when initializing with or moving values that are to
or too long.

A MOVEverb can be used to move the same value to multiple targets.

The decimal in a numerieICTUREIs aV, and the sign in a numeric picture is a leadnghe
following variable will hold values ranging fror89.9 through99.9 .

01 THE-VALUE PIC S99VO9.

Variables whose pictures contain only the chara@&e® andV are numeric variables and can
used in calculations.

Variables whose pictures contain- , . , and, are edited numeric variables intended to be us
for displaying or printing variables. You have seen the effect of some of these editing char.
on the display of a number.

How to use th€ OMPUTEADD SUBTRACTMULTIPLY andDIVIDE verbs

Q&A

Q If | can useZERCES and SPACES to initialize a variable, can | also moveZERCES and
SPACES to a variable?

A Yes. Both of the following statements behave as you would expect them to by moving s
zeroes to variables:

MOVE SPACES TO THE-MESSAGE.
MOVE ZEROES TO THE-NUMBER.

Q Does truncation happen in signed (positive and negative) numbers?

A Yes. If you move2371.16 to aPIC S999V99 , the result is stored a371.16 . If you
move a number with a negative sign to a picture that does not have a sign, the sign is trun
you move-456.78 to aPIC 999V99 , the result is stored d56.78 .

Workshop
Quiz

1. What is the value iBIG-NUMBERafter theMOVPE

01 BIG-NUMBER PIC 9(5).
MOVE 4976 TO BIG-NUMBER

2.What is the value iSMALL-NUMBERfter theMOVP

01 SMALL-NUMBER PIC 9(2).
MOVE 4976 TO SMALL-NUMBER.

Hint: Numbers are truncated from the left.

3. After the following moveTHE-VALUE containg000.00 . Why?

01 THE-VALUE PI1C 999V909.
MOVE 1000.001 TO THE-VALUE.

Exercises

1. If you haven't done so, compiieincO1.cbl and make a note of any warnings provided
your compiler. If your compiler has a manual that lists the meanings of warnings, look ther
the manual and become familiar with them.

2. Compiletrunc02.cbl and look up any errors generated by the compiler.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 7 -
Basics of Design

You now have enough tools to begin designing your own programs. A simple approach to desig!
make your efforts worthwhile. Today, you learn about the following topics:

« Why write a program?

« Defining the job.

« Breaking down the task.

« lIdentifying the processing loops.

« What is pseudocode and how do you use it?

« Identifying the main processing loop.

« The steps to program design.

« A compound interest program.

Why Write a Program?

A program's primary goal is to take a repetitive task that would be mind-numbingly dull for a per:
perform, and reduce it to a set of rote steps performed over and over by the machine.

A task is suitable for a program if the task involves doing one thing over and over. For example,
through the list of all books loaned out by a library, checking the return dates, determining which

are overdue, and printing an overdue notice to send to the offending cardholder is an ideal task
computer program. This task is repetitive because it processes each book with the same steps:

1. Look up the loan date.
2. Check whether it is overdue.

3. If it is overdue, print a notice.

A task also is suitable for a program if it does only one thing once, but the program is run severe
For example, a program would be helpful to design and print signs for a retail store. Someone w
a sign and print it each time there is a sale. Unless you are keen on that individual artistic look, ¢
sign-printing program will do this task repeatedly with a uniform quality of result.

If you are planning to move and need to put up a sign offering a garage sale, this is probably an
unsuitable candidate for a program, unless you hold a garage sale every weekend and need to |
that often.

In the early lessons of this book, several programs were presented that were not true candidate:
programs. The "Hello world" program and the programs to display poems really didn't qualify as
necessary programs, but they were coded simply to introduce you to the language.

The multiplication tables programs were good candidates. They executed an action repeatedly t
multiplying two numbers, displaying the result, and moving on to the next number.

Some repetitive tasks make lousy programs because of the limitations of computers. Although y
make yourself a cup of coffee the same way each morning, it really wouldn't work as a program.
few computers have a coffee maker as a standard output device.

If the job involves processing data, it is a good bet that a program will help expedite the task. (Tt
always true. How about the repetitive task of going through all the people you know and selectin
people to invite to a party? Unless the computer knows who is on your A list, it will not be able tc
job even though it is repetitive and is data processing.)

Defining the Job

When you have decided that a job is suitable for a computer, you need to come up with a job de
for the program. This doesn't have to be detailed, but it does have to be precise. Some job desc
computer programs that have been discussed or have appeared in previous lessons include the

« Review all books out on loan and send overdue notices to the holders of all overdue books

« Accept a sign text from the user, format a sign under user control, and print one or more ¢
it.

« Display a multiplication table for any value from 1 to 99, displaying any number of entries f
to 99.

« Display multiplication tables for any value from 1 to 99, displaying any number of entries fr
to 99.

Notice the difference between the last two. This is an example of precision without detail. The jo
descriptions are of two similar but slightly different programs.

Breaking Down the Task

When you have a job description, you can start breaking the job into smaller jobs. This is the pol
which you need to have some knowledge of what the programming language is capable of doing

Let's try breaking down the fourth job description in the previous list, because you're familiar witt
version of this program. This will be a version of the multiplication tables that lets the user enter
than one table and display it. The job description is to display multiplication tables for any value
to 99, displaying any number of entries from 1 to 99. Without worrying about the order of things,
breaking the job description into component tasks, with a brief description of what the computer
have to do to execute this part of the task.

Original Job Description Computer Task
Display multiplication tables Display multiplication tables over and over.
For any value from 1 to 99 Ask the user for the table to display (1-99).

Display any number of entries from 1 to|29Ask the user for the number of entries (1-99).

2. Display each entry from 1 through the number specil
by the user.

The smaller tasks themselves might have to be broken down again. This process might have to
performed over and over until the tasks are small enough to be described in terms the computer
process.

|dentifying the Processing Loops

Processing loops begin to stand out when the job is broken into smaller tasks. Recall from Day *
PERFORM5O TQ andIF to Control Programs,” that a processing loop is any task that is done o
over based on the detailed task descriptions.

You should be able to identify two loops now. The first displays a selected table repeatedly. The
displays an entry repeatedly until the number of entries specified by the user is reached.

After you have identified a loop, it is helpful to think of the loop as doing one thing over and over
of doing all the things once. Table 7.1 illustrates the difference between the normal way of thinki
about doing things repeatedly, and the computer-oriented way of thinking about processing loop

Table 7.1. Normal thinking versus computer thinking.

Normal Thinking ’Computer Thinking
Display several tabIeF)ispIay one table over and over, changing some value each time.
Display all the entrie$DispIay one entry over and over, changing some value eacl) time.

New Term: Pseudocodés a convenient way to write code without having to labor over the syntax
every line. It also allows you to leave gaps when you don't know the answer yet. Good pseudoct
should be written in something that approximates the target language. There are no real rules fc
pseudocode, except that it should be helpful when designing a program.

Now that you have the program job, tasks, and processing loops identified, the next step is to st
it together with pseudocode. The first task is identifying the whole program. What does it do? Th
program displays a bunch of tables. In computer "loopthink” it displays one table over and over,
something changed during each display. Listing 7.1 is a pseudocode statement for this.

Note that the first example of pseudocode violates two COBOL syntax rules. All words are not ir
uppercase, and the sentence does not end with a period. This is typical of pseudocode. It is like
but does not have to honor all syntax rules.

TYPE: Listing 7.1. The first pseudocode.

THE-PROGRAM
DISPLAY-ONE-TABLE over and over

"Over and over" is good enough for the programmer, but a computer program needs to be more
so that the computer knows when to stop. This translates itdd@Hh. condition. For the moment, |
will leave things open-ended and change the pseudocode to that of Listing 7.2.

TYPE: Listing 7.2. The main action of the program in pseudocode.

THE-PROGRAM
DISPLAY-ONE-TABLE
UNTIL something???

The next step is to look BISPLAY-ONE-TABLE. What actions do you have to do to display one
table? Basically, there are only two actions, which are to get the table and display it. Listing 7.3 «
the pseudocode with these steps.

TYPE: Listing 7.3. Expanding the code.

THE-PROGRAM
DISPLAY-ONE-TABLE
UNTIL something???

DISPLAY-ONE-TABLE
GET-WHICH-TABLE
DISPLAY-THE-TABLE

GET-WHICH-TABLEresolves into simple COBOL commands to display a message and accept :
answer. Now, what do you have to do to display the table? There are also two steps to this. Firs
number of entries. Next, display one entry until that number of entries is exhausted. Listing 7.4 il
the actions foGET-WHICH-TABLEandDISPLAY-THE-TABLE.

TYPE: Listing 7.4. Expanding on DI SPLAY- THE- TABLE.

THE-PROGRAM
DISPLAY-ONE-TABLE
UNTIL something???

DISPLAY-ONE-TABLE
GET-WHICH-TABLE
DISPLAY-THE-TABLE

GET-WHICH-TABLE
DISPLAY "Which table? (01-99)"
ACCEPT THE-TABLE

DISPLAY-THE-TABLE
GET-HOW-MANY-ENTRIES
DISPLAY-ONE-ENTRY

UNTIL all entries are displayed

Now you can apply your knowledge of COBOL to the problem. The entries to be displayed rang:
to the number entered by the user. This seems a good place tdARY BNGoption. Listing 7.5
expands on this iDISPLAY-THE-TABLE and also tackles the problem of getting the number of
entries.

TYPE: Listing 7.5. The program takes shape.

THE-PROGRAM
DISPLAY-ONE-TABLE
UNTIL something???

DISPLAY-ONE-TABLE
GET-WHICH-TABLE
DISPLAY-THE-TABLE

GET-WHICH-TABLE
DISPLAY "Which table? (01-99)"
ACCEPT THE-TABLE

DISPLAY-THE-TABLE
GET-HOW-MANY-ENTRIES
DISPLAY-ONE-ENTRY

VARYING THE-ENTRY FROM 1 BY 1
UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GET-HOW-MANY-ENTRIES
DISPLAY "How many entries (01-99)?"
ACCEPT HOW-MANY-ENTRIES

The last piece of the program is the task of displaying one entry. Listing 7.6 puts the final piece ¢
pseudocode together.

TYPE: Listing 7.6. The core of the program in pseudocode.

THE-PROGRAM
DISPLAY-ONE-TABLE
UNTIL something???

DISPLAY-ONE-TABLE
GET-WHICH-TABLE
DISPLAY-THE-TABLE

GET-WHICH-TABLE
DISPLAY "Which table? (01-99)"
ACCEPT THE-TABLE

DISPLAY-THE-TABLE
GET-HOW-MANY-ENTRIES
DISPLAY-ONE-ENTRY

VARYING THE-ENTRY FROM 1 BY 1
UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GET-HOW-MANY-ENTRIES
DISPLAY "How many entries (01-99)?"
ACCEPT HOW-MANY-ENTRIES

DISPLAY-ONE-ENTRY
COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY
DISPLAY THE-TABLE " * "
THE-ENTRY " ="
THE-PRODUCT

You don't want the program to turn into a runaway train, so you still hau®ai. to resolve in
THE-PROGRANMT his is where the user wants the process to stop. You could establish this by as
users whether they want to continue or to see another table.

When should the user be asked? After each table is displayed. Remember the two key parts of
processing loop are the top and the bottom. The question could be asked at the bottom of
DISPLAY-ONE-TABLE. Listing 7.7 covers the sections that have been added in

DISPLAY-ONE-TABLE and the new secticdBO-AGAIN In GO-AGAIN | made a design choice abc
the user's answer. | could have checked fof, n, orN and provided an invalid entry message for
anything else, but this felt like overkill for such a simple program. Instead, | chose to test gnantbi
convert it toY. Then, anything other thahis changed td\, forcing any entry other tharviory to be
treated as0.

TYPE: Listing 7.7. The pseudocode is almost complete.

THE-PROGRAM
DISPLAY-ONE-TABLE
UNTIL YES-NO ="N"

DISPLAY-ONE-TABLE
GET-WHICH-TABLE
DISPLAY-THE-TABLE
GO-AGAIN

GET-WHICH-TABLE
DISPLAY "Which table? (01-99)"
ACCEPT THE-TABLE

DISPLAY-THE-TABLE
GET-HOW-MANY-ENTRIES
DISPLAY-ONE-ENTRY

VARYING THE-ENTRY FROM 1 BY 1
UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GO-AGAIN
DISPLAY "Go Again (Y/N)?"
ACCEPT YES-NO
IF YES-NO ="y"
MOVE "Y" TO YES-NO
IF YES-NO NOT ="Y"
MOVE "N" TO YES-NO

GET-HOW-MANY-ENTRIES
DISPLAY "How many entries (01-99)?"
ACCEPT HOW-MANY-ENTRIES

DISPLAY-ONE-ENTRY
COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY
DISPLAY THE-TABLE " *"
THE-ENTRY " ="
THE-PRODUCT

Now comes the tidying up. First, look at the loops. There is a potential problem in the control of 1

loop inTHE-PROGRAMRecall the following loop steps:
1. Initialize for the first pass through the loop.

2. Do the loop.

3. Modify the variable that controls the loop as the last step of the loop, or after each pass
the loop.

There is no loop step 1 f@ISPLAY-ONE-TABLE. This can be fixed by forcingES-NOto an initial
value of"Y" . This ensures th&ISPLAY-ONE-TABLE is executed when the loop is entered for the
first time.

THE-PROGRAM
MOVE "Y" TO YES-NO
DISPLAY-ONE-TABLE
UNTIL YES-NO ="N"

The second area to clean up has been dealt with once before--the problem of displaying 15 line:
time. You can use the top of tbeSPLAY-ONE-ENTRYloop for aPress ENTER message, and ust
the bottom of the loop to add 1SCREEN-LINES

Because this program will display more than one table, it is necessary ®@GIREEN-LINES at zero
before each table is displayed. Listing 7.8 is the final version of the pseudocode.

TYPE: Listing 7.8. The final pseudocode.

THE-PROGRAM
MOVE "Y" TO YES-NO
DISPLAY-ONE-TABLE
UNTIL YES-NO ="N"

DISPLAY-ONE-TABLE
GET-WHICH-TABLE
DISPLAY-THE-TABLE
GO-AGAIN

GET-WHICH-TABLE
DISPLAY "Which table? (01-99)"
ACCEPT THE-TABLE

DISPLAY-THE-TABLE
GET-HOW-MANY-ENTRIES
MOVE 0 TO SCREEN-LINES
DISPLAY-ONE-ENTRY
VARYING THE-ENTRY FROM 1 BY 1
UNTIL THE-ENTRY > HOW-MANY-ENTRIES

GO-AGAIN
DISPLAY "Go Again (Y/N)?"
ACCEPT YES-NO
IF YES-NO ="y"

MOVE "Y" TO YES-NO
IF YES-NO NOT ="Y"
MOVE "N" TO YES-NO

GET-HOW-MANY-ENTRIES
DISPLAY "How many entries (01-99)?"
ACCEPT HOW-MANY-ENTRIES

DISPLAY-ONE-ENTRY
IF SCREEN-LINES =15
PRESS-ENTER

COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY
DISPLAY THE-TABLE " * "

THE-ENTRY " ="

THE-PRODUCT
ADD 1 TO SCREEN-LINES

PRESS-ENTER
DISPLAY "Press ENTER to continue"
ACCEPT A-DUMMY

What's left? | deliberately chose a pseudocode that translated readily into COBOL code. Remen
pseudocode is supposed to help with the design. In fact, the pseudocode is now very close to a
program.

Basically, you need to clean up the punctuation by adding some periods, addERRF@R Mtatement:
create variables IWORKING-STORAGEompile, and test. The result is shown in Listing 7.9. The
pseudocode is almost identical to PROCEDURE DIVISION

TYPE: Listing 7.9. The final program.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTO?.

000300% === m o m oo
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*

000900* The display is paused after each 15 lines.
001000%--=-====mmm e m e m e
001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.
001300 WORKING-STORAGE SECTION.

001400
001500 01 THE-TABLE PIC 99.
001600 01 THE-ENTRY PI1C 999.

001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY-ENTRIES PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000

002100 01 A-DUMMY PIC X.

002200

002300 01 YES-NO PIC X.

002400

002500 PROCEDURE DIVISION.

002600

002700 PROGRAM-BEGIN.

002800 MOVE "Y" TO YES-NO.

002900 PERFORM DISPLAY-ONE-TABLE
003000 UNTIL YES-NO ="N".

003100

003200 PROGRAM-DONE.

003300 STOP RUN.

003400

003500 DISPLAY-ONE-TABLE.

003600 PERFORM GET-WHICH-TABLE.
003700 PERFORM DISPLAY-THE-TABLE.
003800 PERFORM GO-AGAIN.

003900

004000 GET-WHICH-TABLE.

004100 DISPLAY

004200 "Which multiplication table(01-99)?".
004300 ACCEPT THE-TABLE.

004400

004500 DISPLAY-THE-TABLE.

004600 PERFORM GET-HOW-MANY-ENTRIES.
004700

004800 MOVE 0 TO SCREEN-LINES.
004900

005000 PERFORM DISPLAY-ONE-ENTRY
005100 VARYING THE-ENTRY

005200 FROM1BY 1
005300 UNTIL THE-ENTRY > HOW-MANY-ENTRIES.
005400

005500 GO-AGAIN.
005600 DISPLAY "Go Again (Y/N)?".
005700 ACCEPT YES-NO.

005800 IF YES-NO ="y"

005900 MOVE "Y" TO YES-NO.

006000 IF YES-NO NOT ="Y"

006100 MOVE "N" TO YES-NO.

006200

006300 GET-HOW-MANY-ENTRIES.

006400 DISPLAY

006500 "How many entries would you like (01-99)?".
006600 ACCEPT HOW-MANY-ENTRIES.

006700

006800 DISPLAY-ONE-ENTRY.

006900

007000 IF SCREEN-LINES =15

007100 PERFORM PRESS-ENTER.

007200 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY.
007300 DISPLAY

007400 THE-TABLE " *" THE-ENTRY " =" THE-PRODUCT,
007500

007600 ADD 1 TO SCREEN-LINES.

007700

007800 PRESS-ENTER.

007900 DISPLAY "Press ENTER to continue . . .".
008000 ACCEPT A-DUMMY.

008100 MOVE 0 TO SCREEN-LINES.

008200

|dentifying the Main Processing Loop

Although a processing loop is supposed to be a section of the program that is performed over at
does not have to be. The main processing loop, the main action that the program does, is not al'
performed repeatedly. You saw in earlier versions of the multiplication tables program in Day 5t
main processing loop need not be performed over and over. Yet the program is still a valid comy
program.

If the main processing loop doesn't have to be a true loop, how do you identify it? One way is to
that whatever the program is going to do, it will be doing it over and over. If the original job desc
had been to display only one multiplication table, you could add "do it over and over" while you ¢
designing it.

When you have used this trick in thinking to identify the main activity (and thereby the main proc
loop) of the program, the design can be completed, and the program can be converted easily to
loop version.

An interesting feature of processing loops is that they work for one occurrence in the loop just as
they do for all occurrences. Listing 7.10ult08.cbl , is identical tanultO7.cbl , but certain lines
have been commented out. Commenting out code is a common practice. Instead of deleting the

line, simply place an asterisk in column 7. This causes the line to be treated as a comment, and
therefore ignored by the compiler. It has the same effect as deleting the line, but it leaves the co
This practice is used when something is being changed and you need to refer to the original.

TYPE: Listing 7.10. Converting mnul t 07. cbl to perform a single loop.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MULTOS.

000300%-----=-mmmm oo
000400* This program asks the user for a number for a
000500* multiplication table, and a table size
000600* and then displays a table for that number
000700* times the values 1 through HOW-MANY.
000800*

000900* The display is paused after each 15 lines.
001000%-----=-==mmmmm oo oo
001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400
001500 01 THE-TABLE PIC 99.
001600 01 THE-ENTRY PIC 999.

001700 01 THE-PRODUCT PIC 9999.
001800 01 HOW-MANY-ENTRIES PIC 99.
001900 01 SCREEN-LINES PIC 99.
002000

002100 01 A-DUMMY PIC X.

002200

002300*01 YES-NO PIC X VALUE "Y".
002400

002500 PROCEDURE DIVISION.

002600

002700 PROGRAM-BEGIN.

002800* MOVE "Y" TO YES-NO.

002900 PERFORM DISPLAY-ONE-TABLE.
003000* UNTIL YES-NO = "N".

003100

003200 PROGRAM-DONE.

003300 STOP RUN.

003400

003500 DISPLAY-ONE-TABLE.

003600 PERFORM GET-WHICH-TABLE.
003700 PERFORM DISPLAY-THE-TABLE.
003800* PERFORM GO-AGAIN.

003900

004000 GET-WHICH-TABLE.

004100 DISPLAY

004200 "Which multiplication table(01-99)?".
004300 ACCEPT THE-TABLE.

004400

004500 DISPLAY-THE-TABLE.

004600 PERFORM GET-HOW-MANY-ENTRIES.
004700

004800 MOVE 0 TO SCREEN-LINES.
004900

005000 PERFORM DISPLAY-ONE-ENTRY
005100 VARYING THE-ENTRY

005200 FROM 1BY 1
005300 UNTIL THE-ENTRY > HOW-MANY-ENTRIES.
005400

005500*GO-AGAIN.

005600* DISPLAY "Go Again (Y/N)?".

005700* ACCEPT YES-NO.

005800* IF YES-NO ="y"

005900* MOVE "Y" TO YES-NO.

006000* IF YES-NO NOT ="Y"

006100* MOVE "N" TO YES-NO.

006200

006300 GET-HOW-MANY-ENTRIES.

006400 DISPLAY

006500 "How many entries would you like (01-99)?".
006600 ACCEPT HOW-MANY-ENTRIES.

006700

006800 DISPLAY-ONE-ENTRY.

006900

007000 IF SCREEN-LINES =15

007100 PERFORM PRESS-ENTER.

007200 COMPUTE THE-PRODUCT = THE-TABLE * THE-ENTRY.
007300 DISPLAY

007400 THE-TABLE " *" THE-ENTRY " =" THE-PRODUCT.
007500

007600 ADD 1 TO SCREEN-LINES.

007700

007800 PRESS-ENTER.

007900 DISPLAY "Press ENTER to continue . . .".
008000 ACCEPT A-DUMMY.

008100 MOVE 0 TO SCREEN-LINES.

008200

ANALYSIS: Listing 7.10 has been modified to remove all the code pertaining to asking the user
continue and to going again if the user answers yes.

Lines002300 , 002800 , 003000 , 003800 , and005500 through006100 have been commented
out. The resulting program is a slightly different version of the original multiplication tables progr:
displays only one table. TmeultO7.cbl program has been stripped back to a single pass by a fe
well-placed asterisks, and you have completed an efficient design.

Processing loops are not always obvious. The original versions of the multiplication program,
multOl.cbl throughmultO6.cbl , in Day 5, made only one pass through the main processing

If you are designing a program that performs only one pass of some process, you can imitate th
shown in Listing 7.10mult08.cbl . Pretend that you are making multiple passes, complete the «
and then cut back to one pass through the loop. This is just a trick to help you think of the main i
a program as a processing loop, even if it is executed only once.

A Summary of Design Steps

Before you tackle another design problem, a review of the design steps that you have learned is
The following list includes both design and development:

1. Create a job description. This is a precise, but not necessarily detailed, description of wi
program will do.

2. Break the job description into tasks. This step adds detail to the precision. The tasks mig
to be further broken down until the task descriptions approximate what a computer can do

3. Identify the processing loops.

4. |dentify the main processing loop if it has not become apparent during step 3.
5. Write the program in pseudocode.

6. Convert the pseudocode into actual code.

7. Edit and compile the program.

8. Test the program.

9. Fix any bugs by rewriting the areas of the program that aren't working correctly.

10. Repeat steps 8 and 9 until the program works correctly.

It is not unusual for steps 1 through 5 to take longer than steps 6 through 10, especially if you dc
thorough job of design.

A Compound Interest Program

In this example you work through the design of a completely new program that calculates the va
initial investment after compound interest has accumulated over a period of time.

To calculate compound interest, you need to know the principal, the interest rate over a given pe
the number of periods over which the interest will be compounded. Starting with the steps again
first create a job description for the program, which is as follows: Calculate the values of investn
based on user input of principals, interest rates, and number of periods. This can be broken into
following tasks without regard to their order:

1. Calculate the value of an investment over and over.
2. Display the value.

3. Get user input of the principal.

4. Get user input of the interest.

5. Get user input of the number of periods.

The easiest way to calculate compound interest is to calculate the new value of the
investment over one period. Then make the new value the investment, and calculate anotl
new value on one period using the new investment value. (See Table 7.2.) This is repeate
until all periods are exhausted. Assuming an interest rate of 10 percent over four periods,
value of the investment is calculated in the four steps shown in Table 7.2.

Table 7.2. Calculating compound interest.

Period 1 2 3 4
Principal 1000.00 |1100.00 |1210.00 |1331.00
Rate (10%) x.10 x.10 x.10 x.10
Interest =100.00 |=110.00 [=121.00 |=133.10
Plus the original princip#l—lOO0.0C+1100.0C+1210.0C+1331.0C
Equals =1100.00=1210.00=1331.00=1464.1C

At the end of each step, the resulting value is moved to the top of the next period and the
steps are repeated.

There are more efficient formulas for compound interest, but this one illustrates that even
when you don't know the "most proper" formula, you can use a computer to tough it out fol
you. This helps to add a sixth task to the list.

6. Calculate the new value of an investment for one period over and over.

From these tasks, it is possible to recognize two processing loops at tasks 1 and 6. The loop at

the main loop for the program.

From your existing experience with pseudocode, put together a quick outline of the program. In |
7.11, I've used more formal pseudocode, which approximates COBOL even more closely. Now f
have some experience wWitHSPLAY andACCEPT it's not necessary to spell all this out in pseudoc
Remember that pseudocode is supposed to help during a design, not be extra work to do. The
is clear enough to indicate that you will display some sort of message and get some user input.

TYPE: Listing 7.11. Pseudocode for compound interest.

THE-PROGRAM
MOVE "Y" TO YES-NO
PERFORM GET-AND-DISPLAY-RESULT
UNTIL YES-NO = "N".

GET-AND-DISPLAY-RESULT.
PERFORM GET-THE-PRINCIPAL
PERFORM GET-THE-INTEREST
PERFORM GET-THE-PERIODS.
PERFORM CALCULATE-THE-RESULT.
PERFORM DISPLAY-THE-RESULT.
PERFORM GO-AGAIN.

GET-THE-PRINCIPAL.
(between 0.01 and 999999.99)

GET-THE-INTEREST.
(between 00.1 and 99.9%)

GET-THE-PERIODS.
(between 001 and 999)

CALCULATE-THE-RESULT.
PERFORM CALCULATE-ONE-PERIOD
VARYING THE-PERIOD FROM 1 BY 1
UNTIL THE-PERIOD > NO-OF-PERIODS.

CALCULATE-ONE-PERIOD.
COMPUTE EARNED-INTEREST ROUNDED =
THE-PRINCIPAL * INTEREST-AS-DECIMAL.
COMPUTE THE-NEW-VALUE =
THE-PRINCIPAL + EARNED-INTEREST.
MOVE THE-NEW-VALUE TO THE-PRINCIPAL.

GO-AGAIN
(YES OR NO)

DISPLAY-THE-RESULT
(VALUE = THE-PRINCIPAL)

Listing 7.12 is the code that comes from the pseudocode. The paragraphs to get the principal, tf
and the number of periods have been designed to validate the input data, display an invalid entr
if necessary, and go to the top of the paragraph if an entry error has occurred. Study this listing,
compile it, and try it out.

NOTE: Remember that thaCCEPT data-name statements have to be adjusted to your
computer t)ACCEPT data-name CONVERT or justACCEPT data-name WITH
CONVERSION

TYPE: Listing 7.12. Compound interest.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINTO1.
000300%-=-=====mmmmmm e
000400* Calculates compound interest
000500%-=-n==mmmmmmm e
000600 ENVIRONMENT DIVISION.

000700 DATA DIVISION.

000800 WORKING-STORAGE SECTION.

000900

001000 01 YES-NO PIC X.

001100 01 THE-INTEREST PIC 99V9.
001200 01 INTEREST-AS-DECIMAL PIC V999.
001300 01 THE-PRINCIPAL PIC 9(9)V99.
001400 01 THE-NEW-VALUE PIC 9(9)V99.
001500 01 EARNED-INTEREST PIC 9(9)V99.
001600 01 THE-PERIOD PIC 9999.
001700 01 NO-OF-PERIODS PIC 999.
001800

001900 01 ENTRY-FIELD PIC Z(9).ZZ.
002000 01 DISPLAY-VALUE PIC 2Z27,277,7279.99.
002100

002200 PROCEDURE DIVISION.

002300 PROGRAM-BEGIN.

002400

002500 MOVE "Y" TO YES-NO.

002600 PERFORM GET-AND-DISPLAY-RESULT
002700 UNTIL YES-NO = "N".

002800

002900 PROGRAM-DONE.

003000 STOP RUN.

003100

003200 GET-AND-DISPLAY-RESULT.

003300 PERFORM GET-THE-PRINCIPAL.

003400 PERFORM GET-THE-INTEREST.

003500 PERFORM GET-THE-PERIODS.

003600 PERFORM CALCULATE-THE-RESULT.
003700 PERFORM DISPLAY-THE-RESULT.
003800 PERFORM GO-AGAIN.

003900

004000 GET-THE-PRINCIPAL.

004100 DISPLAY "Principal (.01 TO 999999.99)?".
004200 ACCEPT ENTRY-FIELD

004300 MOVE ENTRY-FIELD TO THE-PRINCIPAL.
004400 IF THE-PRINCIPAL < .01 OR

004500 THE-PRINCIPAL > 999999.99

004600 DISPLAY "INVALID ENTRY"

004700 GO TO GET-THE-PRINCIPAL.

004800

004900 GET-THE-INTEREST.

005000 DISPLAY "Interest (.1% TO 99.9%)?".
005100 ACCEPT ENTRY-FIELD.

005200 MOVE ENTRY-FIELD TO THE-INTEREST.
005300 IF THE-INTEREST <.10R

005400 THE-INTEREST > 99.9

005500 DISPLAY "INVALID ENTRY"

005600 GO TO GET-THE-INTEREST

005700 ELSE

005800 COMPUTE INTEREST-AS-DECIMAL =
005900 THE-INTEREST / 100.

006000

006100 GET-THE-PERIODS.

006200 DISPLAY "Number of periods (1 TO 999)?".
006300 ACCEPT ENTRY-FIELD.

006400 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
006500 IF NO-OF-PERIODS <1 OR

006600 NO-OF-PERIODS > 999

006700 DISPLAY "INVALID ENTRY"

006800 GO TO GET-THE-PERIODS.

006900

007000 CALCULATE-THE-RESULT.

007100 PERFORM CALCULATE-ONE-PERIOD
007200 VARYING THE-PERIOD FROM 1 BY 1
007300 UNTIL THE-PERIOD > NO-OF-PERIODS.
007400

007500 CALCULATE-ONE-PERIOD.

007600 COMPUTE EARNED-INTEREST ROUNDED =

007700 THE-PRINCIPAL * INTEREST-AS-DECIMAL.
007800 COMPUTE THE-NEW-VALUE =

007900 THE-PRINCIPAL + EARNED-INTEREST.
008000 MOVE THE-NEW-VALUE TO THE-PRINCIPAL.
008100

008200 GO-AGAIN.

008300 DISPLAY "GO AGAIN?".

008400 ACCEPT YES-NO.

008500 IF YES-NO ="y"

008600 MOVE "Y" TO YES-NO.

008700 IF YES-NO NOT ="Y"

008800 MOVE "N" TO YES-NO.

008900

009000 DISPLAY-THE-RESULT.

009100 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
009200 DISPLAY "RESULTING VALUE IS " DISPLAY-VALUE.
009300

Here is the output afmpint01.cbl for $1,000.00 invested at 1.1 percent per month, and compc
for 48 months:

OUTPUT:

Principal (.01 TO 999999.99)?

1000

Interest (.1% TO 99.9%)?

1.1

Number of periods (1 TO 999)7?

48

RESULTING VALUE IS 1,690.65
GO AGAIN?

Before anyone complains about us@@ TOin Listing 7.12, | have included Listing 7.13,
cmpint02.cbl , which avoids th&O TOlogic by using aiENTRY-OKflag. Study the differences i
cmpintO1.cbl andcmpint02.cbl . The second listing illustrates that you can avoid usi@@®a
TOeven when &0 TOseems like a logical choice.

TYPE: Listing 7.13. Avoiding GO TO.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINTO?2.
000300*--==m=nmmmmmmmmm oo
000400* Calculates compound interest
000500*--=--===nmmmmm oo
000600 ENVIRONMENT DIVISION.

000700 DATA DIVISION.

000800 WORKING-STORAGE SECTION.
000900

001000 01
001100 01
001200 01
001300 01
001400 01
001500 01
001600 01
001700 01
001800 01
001900

002000 01
002100 01
002200

YES-NO PIC X.

ENTRY-OK PIC X.
THE-INTEREST PIC 99V9.
INTEREST-AS-DECIMAL PIC V999.
THE-PRINCIPAL PIC 9(9)V99.
THE-NEW-VALUE PIC 9(9)V99.
EARNED-INTEREST PIC 9(9)V99.
THE-PERIOD PIC 9999.
NO-OF-PERIODS PIC 999.
ENTRY-FIELD PIC Z(9).ZZ.

DISPLAY-VALUE PIC 2Z27,277,279.99.

002300 PROCEDURE DIVISION.
002400 PROGRAM-BEGIN.

002500
002600
002700
002800
002900

MOVE "Y" TO YES-NO.
PERFORM GET-AND-DISPLAY-RESULT
UNTIL YES-NO = "N".

003000 PROGRAM-DONE.

003100
003200

STOP RUN.

003300 GET-AND-DISPLAY-RESULT.

003400
003500
003600
003700
003800
003900
004000

PERFORM GET-THE-PRINCIPAL.
PERFORM GET-THE-INTEREST.
PERFORM GET-THE-PERIODS.
PERFORM CALCULATE-THE-RESULT.
PERFORM DISPLAY-THE-RESULT.
PERFORM GO-AGAIN.

004100 GET-THE-PRINCIPAL.

004200
004300
004400
004500

MOVE "N" TO ENTRY-OK.
PERFORM ENTER-THE-PRINCIPAL
UNTIL ENTRY-OK ="Y".

004600 ENTER-THE-PRINCIPAL.

004700
004800
004900
005000
005100
005200
005300
005400

DISPLAY "Principal (.01 TO 999999.99)?".
ACCEPT ENTRY-FIELD.
MOVE ENTRY-FIELD TO THE-PRINCIPAL.
IF THE-PRINCIPAL < .01 OR
THE-PRINCIPAL > 999999.99
DISPLAY "INVALID ENTRY"
ELSE
MOVE "Y" TO ENTRY-OK.

005500

005600 GET-THE-INTEREST.

005700 MOVE "N" TO ENTRY-OK.

005800 PERFORM ENTER-THE-INTEREST

005900 UNTIL ENTRY-OK ="Y".

006000

006100 ENTER-THE-INTEREST.

006200 DISPLAY "Interest (.1% TO 99.9%)?".
006300 ACCEPT ENTRY-FIELD.

006400 MOVE ENTRY-FIELD TO THE-INTEREST.
006500 IF THE-INTEREST <.10R

006600 THE-INTEREST > 99.9

006700 DISPLAY "INVALID ENTRY"

006800 ELSE

006900 MOVE "Y" TO ENTRY-OK

007000 COMPUTE INTEREST-AS-DECIMAL =
007100 THE-INTEREST / 100.

007200

007300 GET-THE-PERIODS.

007400 MOVE "N" TO ENTRY-OK.

007500 PERFORM ENTER-THE-PERIODS

007600 UNTIL ENTRY-OK = "Y".

007700

007800 ENTER-THE-PERIODS.

007900 DISPLAY "Number of periods (1 TO 999)?".
008000 ACCEPT ENTRY-FIELD.

008100 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
008200 IF NO-OF-PERIODS <1 OR

008300 NO-OF-PERIODS > 999

008400 DISPLAY "INVALID ENTRY"

008500 ELSE

008600 MOVE "Y" TO ENTRY-OK.

008700

008800 CALCULATE-THE-RESULT.

008900 PERFORM CALCULATE-ONE-PERIOD
009000 VARYING THE-PERIOD FROM 1 BY 1
009100 UNTIL THE-PERIOD > NO-OF-PERIODS.
009200

009300 CALCULATE-ONE-PERIOD.

009400 COMPUTE EARNED-INTEREST ROUNDED =
009500 THE-PRINCIPAL * INTEREST-AS-DECIMAL.
009600 COMPUTE THE-NEW-VALUE =

009700 THE-PRINCIPAL + EARNED-INTEREST.
009800 MOVE THE-NEW-VALUE TO THE-PRINCIPAL.
009900

010000 GO-AGAIN.

010100 DISPLAY "GO AGAIN?".

010200 ACCEPT YES-NO.

010300 IF YES-NO ="y"

010400 MOVE "Y" TO YES-NO.

010500 IF YES-NO NOT ="Y"

010600 MOVE "N" TO YES-NO.

010700

010800 DISPLAY-THE-RESULT.

010900 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
011000 DISPLAY "RESULTING VALUE IS " DISPLAY-VALUE.
011100

ANALYSIS: In Listing 7.13, the data entry is treated as a processing loop that is performed until
that is entered is correct.

For example, at linB04200 , theENTRY-OKflag is set tdN" (not okay) before the loop
ENTER-THE-PRINCIPAL is performed. TheENTER-THE-PRINCIPAL is performedJNTIL
ENTRY-OK ="Y" (the data entry is okay). This fordeBITER-THE-PRINCIPAL to be performed :
least once. Because the c&ENTER-THE-PRINCIPAL is used, the user is prompted for an entry, t
entry is accepted, and the entry is checked.

If the entry is okay, thENTRY-OKflag is set td'Y" . This ends th€ ERFORM UNTILat lines
004300 and004400 .

If the entry is not okay, aiNVALID ENTRY message is displayed, but BTRY-OKflag is not
changed. On exit, tHeERFORM UNTILat lines004300 and004400 finds that theENTRY-OKflag
is not yet'Y" andENTER-THE-PRINCIPAL is performed one more time. This continues until the
gets it right and thENTRY-OKflag is set ta'Y" .

Summary

Today, you learned the basics of program design. The following are the key steps of design and
development:

1. Create a job description for the program.

2. Break the job description into tasks until the tasks approximate what the computer will d
3. Identify the processing loops.

4. |dentify the main processing loop if it has not become apparent during step 3.

5. Write the program in pseudocode.

6. Convert the pseudocode into actual code.

7. Edit and compile the program.

8. Test the program.
9. Fix any bugs by rewriting the areas of the program that aren't working correctly.

10. Repeat steps 8 and 9 until the program works correctly.

Pseudocode is any convenient English-like method of describing what a program does. Pseudor
with the design of a program and easily converts into the code for the program.

You can avoidsO TOusing thePERFORMerb and its variations.

Q&A

Q Do | have to do all of the design steps before | start coding?

A When you are learning, it is good practice to do all steps. This helps you clarify what the
program eventually is supposed to do. Even so, you will notice that in the second example
out some of the steps of the pseudocode.

You will reach a point when you can "think" in sections of code. For example, you probably
already have a rough idea of what the code would look like to ask the user whether to go ¢
You will be able to shortcut some of the design steps because you will actually be doing th
your head without having to write them all out on paper.

Workshop
Quiz

1. What is the first step in designing the program for the following job description?

Ask the user for sales amounts and sales tax rates, and use these values to calculate the
the amount.

2. What are the six design steps?

Exercises

1. Perform all the design steps up to and including the coding of the job described in Quiz
1. The steps for this are given in the back of the book. If you hit a snag on any step, go ah
look at the answer for that step. Designing is a skill that comes only with a vast amount of
experience. Occasionally, | have seen competent programmers freeze or produce a bad d
when they have been asked to design certain programs, and | still have plenty to learn abc
design. There is no shame in getting help for this exercise.

Hint: You will be able to use quite a bit of the logic frompint02.chbl

7.13) as the basic model for the program.

(shown in Listing

2. Complete the following last four steps of the development on the design you did in Exer:

7. Edit and compile the program.

8. Test the program.

9. Fix any bugs by rewriting the areas of the program that aren't working correctly.

10.Repeat steps 8 and 9 until the program works correctly.

3. Modify the program that you created in Exercise 2 so that it asks for the sales tax percel
only once as the first step of the program, and then asks for sales amounts repeatedly, ca

the sales tax for each entry.

Hint: Use the answer to Exercise 2 from Appendix A, "Answers." You should be able to m:
change by moving only one line of code up to become the first line of cGRAMGRAM-BEGIN

Previous chapter Next chapter

Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 1 In Review

After the first week of teaching yourself COBOL, you should be familiar with the basic structure «
COBOL program. Because COBOL is much like the English language in structure and readabilit
probably can follow programs containing unfamiliar material--something you might not be able tc
when learning other programming languages. By now you should be able to easily recognize an
the fourDIVISION s, design your overall program structure, make decisions usitig teatement,
designate the flow of your program usitgRFORMNdGO TQ, and use the various operators to
manipulate data stored within your program.

As you continue, focus on what is being accomplished and how it fits within the concepts you've
so far. The lessons are designed to build on each other and reduce the need to turn back and re
previous days, but don't feel bad if you need to do so. Although the design of COBOL is simple,
book moves at a rapid pace in order to ensure that you have all the necessary information to qui
become a competent COBOL programmer.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

Week 2 At a Glance

You've made it through the first week. You can now define the information your program should
and manipulate, and you know how to act on this information. You can be proud of what you've
accomplished so far.

Where You're Going

The second week focuses on reading information into your program and out to your users. COB
excels in this area, so don't underestimate the value of these chapters and their quizzes and exe
After all, the value of any software lies in how easily others can use it. Day 8, "Structured Data,"
help you take the information your program uses and organize it into a structured format. You ce
more easily model the real-world problems that you face daily. Day 9, "File 1/0," and Day 10, "Pt
emphasize the need to effectively and efficiently read information into and out of files and print
formatted information on your printer. Day 11, "Indexed File 1/0," and Day 12, "More on Indexed
provide important information that no COBOL programmer should be without. Day 13, "Deleting
Records and Other Indexed File Operations," adds to your growing understanding of indexed file
teaching you to delete unwanted information--a skill as important as collecting necessary inform
You'll close the second week with still another day of indexed files on Day 14, "A Review of Inde
Files."

After you finish this week, you should rank yourself as a strong intermediate user. You'll be two-
the way through your 21-day journey.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 8 -
Structured Data

You can use thBATA DIVISION to organize your data and variables and improve the performat
your program. You also can use it to reduce the amount of code that you have to write.

Today, you learn about the following topics:
« What is a data structure?

« How to use a data structure.

o FILLER and how to use it.

« Calculating the length of data structures.
« What is structured data in memory?

« Nested structure variables.

« Misusing structures.

o Whatis levelf/77?

« What is levelB8?

What Is a Data Structure?

You might want to create a COBOL program that combines variables to improve the way they di

New Term: A data structureorrecord in COBOL is a method of combining several variables into
larger variable.

The programjack02.cbl in Day 2, "Using Variables and Constants," used variables to display
poem with line numbers. Variables are defined and displayed as shown in List-ing 8.1.

TYPE: Listing 8.1. An extract from | ack02. cbl .

000700

000800 01 THE-MESSAGE PIC X(50).

000900 01 THE-NUMBER PIC 9(2).

001000 01 A-SPACE PIC X.

001100

001700

001800* Set up and display line 1

001900 MOVE 1 TO THE-NUMBER.

002000 MOVE "Jack be nimble," TO THE-MESSAGE.
002100 DISPLAY THE-NUMBER A-SPACE THE-MESSAGE
002200

These three variables can be combined into one record (data structure) and used as a group for
DISPLAY statement. The grouping is done by defining the data as shown in Listing 8.2.

TYPE: Listing 8.2. A structure or record.

000700

000800 01 THE-WHOLE-MESSAGE.

000900 05 THE-NUMBER PIC 9(2) VALUE ZEROES.
001000 05 A-SPACE PIC X(1) VALUE SPACE.
001100 05 THE-MESSAGE PIC X(50) VALUE SPACES.
001200

New Term: In Listing 8.2, THE-WHOLE-MESSAGE astructure variableor simply astructure It is
occasionally referred to ascampound variabler compound data

In a structure variable, the highest-level variable (the one that includes all the individual variable
the level numbe@l1. TheOl level must appear in Area A (columns 8 through 12). The structure ve
name appears in Area B (columns 12 through 72), and it does not RE®EWRE The variables that
fall within the structure begin with numbers higher tBan and start in Area B (columns 12 through

You can use the individual variables within a structure in the program as though they still webé le
variables. In addition, you can use the structure variable as a variable. For example, if all the val
within a structure variable can be displayed, the structure variable itself can be displayed as a v

(see Listing 8.3).

TYPE: Listing 8.3. Using a structure.

000700

000800 01 THE-WHOLE-MESSAGE.

000900 05 THE-NUMBER PIC 9(2) VALUE ZEROES.
001000 05 A-SPACE PIC X(1) VALUE SPACE.

001100 05 THE-MESSAGE PIC X(50) VALUE SPACES.
001700

001800* Set up and display line 1

001900 MOVE 1 TO THE-NUMBER.

002000 MOVE "Jack be nimble,” TO THE-MESSAGE.
002100 DISPLAY THE-WHOLE-MESSAGE.

002200

ANALYSIS: The individual variables of the structure have higher level numbers than the structu
variable. In the following code fragment, the elementary variables have the level d&mbérs level
number could have be@®2, but it is a common practice to skip some numbers between levels.

Figure 8.1 illustrates the positioning of the parts of a structure variable within Area A and Area B

Figure 8.1.
The layout of a structure in Area A and Area B.

How to Use a Data Structure

One of the primary uses of a structure is to format information for display or printing. One quick \
seeing how structures work is to use one to format output data.

Listing 8.4,cmpint03.cbl , is similar to the compound interest programs in Day 7, "Basics of
Design," but it uses a structured variable (a structure) to produce a formatted output.

TYPE: Listing 8.4. Using a structure to format data.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINTO3.
000300%----=====mmmmmm oo
000400* Calculates compound interest
000500%-=-n==nmmmmmmmmm e
000600 ENVIRONMENT DIVISION.

000700 DATA DIVISION.

000800 WORKING-STORAGE SECTION.
000900

001000 01 YES-NO PIC X.
001100 01 ENTRY-OK PIC X.

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/01.htm

001200 01
001300 01
001400 01
001500 01
001600 01
001700 01
001800 01
001900 01
002000

002100 01
002200

002300 01

THE-INTEREST PIC 99V09.
INTEREST-AS-DECIMAL PIC V999.
THE-PRINCIPAL PIC 9(9)V99.
WORKING-PRINCIPAL PIC 9(9)V99.
THE-NEW-VALUE PIC 9(9)V99.
EARNED-INTEREST PIC 9(9)V99.
THE-PERIOD PIC 9999.
NO-OF-PERIODS PIC 999.
ENTRY-FIELD PIC 222,222,777 .77.
THE-WHOLE-MESSAGE.

002400 05 DISPLAY-PRINCIPAL PIC Z2ZZ,272Z7,7279.99.
002500 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002600 05 DISPLAY-INTEREST PIC Z9.9.

002700 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
002800 05 DISPLAY-PERIODS PIC ZZ9.

002900 05 MESSAGE-PART-03 PIC X(16)

003000 VALUE " periods yields ".

003100 05 DISPLAY-VALUE PIC Z2ZZ,272Z7,779.99.
003200

003300 PROCEDURE DIVISION.
003400 PROGRAM-BEGIN.

003500

003600 MOVE "Y" TO YES-NO.

003700 PERFORM GET-AND-DISPLAY-RESULT
003800 UNTIL YES-NO = "N".

003900

004000 PROGRAM-DONE.

004100 STOP RUN.

004200

004300 GET-AND-DISPLAY-RESULT.

004400 PERFORM GET-THE-PRINCIPAL.
004500 PERFORM GET-THE-INTEREST.
004600 PERFORM GET-THE-PERIODS.
004700 PERFORM CALCULATE-THE-RESULT.
004800 PERFORM DISPLAY-THE-RESULT.
004900 PERFORM GO-AGAIN.

005000

005100 GET-THE-PRINCIPAL.

005200 MOVE "N" TO ENTRY-OK.

005300 PERFORM ENTER-THE-PRINCIPAL
005400 UNTIL ENTRY-OK ="Y".

005500

005600 ENTER-THE-PRINCIPAL.
005700 DISPLAY "Principal (.01 TO 999999.99)?".

005800
005900
006000
006100
006200
006300
006400
006500

ACCEPT ENTRY-FIELD WITH CONVERSION.
MOVE ENTRY-FIELD TO THE-PRINCIPAL.
IF THE-PRINCIPAL < .01 OR
THE-PRINCIPAL > 999999.99
DISPLAY "INVALID ENTRY"
ELSE
MOVE "Y" TO ENTRY-OK.

006600 GET-THE-INTEREST.

006700
006800
006900
007000

MOVE "N" TO ENTRY-OK.
PERFORM ENTER-THE-INTEREST
UNTIL ENTRY-OK ="Y".

007100 ENTER-THE-INTEREST.

007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200

DISPLAY "Interest (.1% TO 99.9%)?".
ACCEPT ENTRY-FIELD WITH CONVERSION.
MOVE ENTRY-FIELD TO THE-INTEREST.
IF THE-INTEREST < .1 OR

THE-INTEREST > 99.9

DISPLAY "INVALID ENTRY"
ELSE

MOVE "Y" TO ENTRY-OK

COMPUTE INTEREST-AS-DECIMAL =

THE-INTEREST / 100.

008300 GET-THE-PERIODS.

008400
008500
008600
008700

MOVE "N" TO ENTRY-OK.
PERFORM ENTER-THE-PERIODS
UNTIL ENTRY-OK ="Y".

008800 ENTER-THE-PERIODS.

008900
009000
009100
009200
009300
009400
009500
009600
009700

DISPLAY "Number of periods (1 TO 999)?".
ACCEPT ENTRY-FIELD WITH CONVERSION.
MOVE ENTRY-FIELD TO NO-OF-PERIODS.
IF NO-OF-PERIODS <1 OR
NO-OF-PERIODS > 999
DISPLAY "INVALID ENTRY"
ELSE
MOVE "Y" TO ENTRY-OK.

009800 CALCULATE-THE-RESULT.

009900
010000
010100
010200
010300

MOVE THE-PRINCIPAL TO WORKING-PRINCIPAL.
PERFORM CALCULATE-ONE-PERIOD

VARYING THE-PERIOD FROM 1 BY 1

UNTIL THE-PERIOD > NO-OF-PERIODS.

010400 CALCULATE-ONE-PERIOD.

010500 COMPUTE EARNED-INTEREST ROUNDED =
010600 WORKING-PRINCIPAL * INTEREST-AS-DECIMAL.
010700 COMPUTE THE-NEW-VALUE =

010800 WORKING-PRINCIPAL + EARNED-INTEREST.
010900 MOVE THE-NEW-VALUE TO WORKING-PRINCIPAL.
011000

011100 GO-AGAIN.

011200 DISPLAY "GO AGAIN?".

011300 ACCEPT YES-NO.

011400 IF YES-NO ="y"

011500 MOVE "Y" TO YES-NO.

011600 IF YES-NO NOT ="Y"

011700 MOVE "N" TO YES-NO.

011800

011900 DISPLAY-THE-RESULT.

012000 MOVE THE-PRINCIPAL TO DISPLAY-PRINCIPAL.
012100 MOVE THE-INTEREST TO DISPLAY-INTEREST.
012200 MOVE NO-OF-PERIODS TO DISPLAY-PERIODS.
012300 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
012400 DISPLAY THE-WHOLE-MESSAGE.

012500

OUTPUT:

Principal (.01 TO 999999.99)?

14000

Interest (.1% TO 99.9%)?

12.7

Number of periods (1 TO 999)7?

14

14,000.00 at 12.7% for 14 periods yields 74,655.69
GO AGAIN?

ANALYSIS: The structure is defined at 1in662300 to 003100 . In DISPLAY-THE-RESULT, at
lines0011900 to 0012400 , values are moved to each of the individual elements of the structure
the whole structure is displayed, rather than the separate parts.

The structurd HE-WHOLE-MESSAGE considered to be one long variable containing subparts. E
using it for theDISPLAY, you cut down on the amount of code you have to write to display the sa
formatted data one piece at a time.

FI LLER and How to Use It

Listing 8.5 is the message data structure extracteddropint03.cbl . All parts of the message
appear as variables with lev@ numbers withifTHE-WHOLE-MESSAGIEven parts of the messag
that do not vary, such &ESSAGE-PART-01 MESSAGE-PART-02 andMESSAGE-PART-03 have

been given data names.
TYPE: Listing 8.5. The structure definition.

002300 01 THE-WHOLE-MESSAGE.
002400 05 DISPLAY-PRINCIPAL PIC 2Z27,277,7279.99.

002500 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002600 05 DISPLAY-INTEREST PIC Z9.9.

002700 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
002800 05 DISPLAY-PERIODS PIC ZZ9.

002900 05 MESSAGE-PART-03 PIC X(16)

003000 VALUE " periods yields ".

003100 05 DISPLAY-VALUE PIC 2ZZ,2727,7279.99.
003200

ANALYSIS: Three of the variables withilHE-WHOLE-MESSAG& e never used in the main
program. They arMESSAGE-PART-01 MESSAGE-PART-02 andMESSAGE-PART-03at lines
002500, 002700 , and002900 , respectively. They are used to format part of the display and are
assigned values in the definition, but nothing is ever moved to these values in the program.

MESSAGE-PART-01 MESSAGE-PART-02 andMESSAGE-PART-03really do not need to exist a:
variables with data names because they are never usedPR@EEDURE DIVISION They exist only
to fill out THE-WHOLE-MESSAGE

In COBOL, this type of value in a structure variable can be defined as a filler by using the COBC
reserved wordFILLER . Listing 8.6 use&ILLER in the definition of the same structure variable.

TYPE: Listing 8.6. How to use FI LLER.

002300 01 THE-WHOLE-MESSAGE.
002400 05 DISPLAY-PRINCIPAL PIC 222,2727,7279.99.

002500 05 FILLER PIC X(4) VALUE " at ".
002600 05 DISPLAY-INTEREST PIC Z9.9.

002700 05 FILLER PIC X(6) VALUE "% for ".
002800 05 DISPLAY-PERIODS PIC ZZ9.

002900 05 FILLER PIC X(16)

003000 VALUE " periods yields ".

003100 05 DISPLAY-VALUE PIC 222,227,279.99.
003200

A FILLER cannot be treated as a variable. It is used to reserve space in a structure variable. Yc
assign PICTUREand avALUEto aFILLER when it is defined, but you cannot Wd®VEwith
FILLER .

Calculating the Length of Data Structures

A data structure is actually a series of individual variables, laid end to end in memory. The lengtl
simple data structure, such as this one used to create a displayable message, is the sum of all t|
of the individual parts.

Table 8.1 shows how to calculate the lengtiildE-WHOLE-MESSAGHY adding the lengths of the
parts. THE-WHOLE-MESSAGE 61 bytes (characters) long.

Table 8.1. Calculating a structure length.

Variable Length
05 DISPLAY-PRINCIPAL PIC ZZZ,2ZZ,2Z9.99. 14

05 FILLER PIC X(4) VALUE " at ". 4

05 DISPLAY-INTEREST PIC Z9.9. 4

05 FILLER PIC X(6) VALUE "% for ". 6

05 DISPLAY-PERIODS PIC ZZ9. 3

05 FILLER PIC X(16) VALUE " periods yields ". 16

05 DISPLAY-VALUE PIC 2ZZ7,2ZZ,7279.99. 14

01 THE-WHOLE-MESSAGE 61

What Is Structured Data in Memory?

A structure variable is treated as an alphanumeric variable. It has an iRPIGIEDRE of X(nn) , where
nn is equal to the length of the structure variabldE-WHOLE-MESSAGHas an impliciPICTURE of
X(61) .

You can move a value to a structure variable, but the move will affect the entire length of the vat
structure variable and the variables that are the elements of a structure occupy the same memo
When a variable is created by the compiler, it sets aside a number of bytes in memory that can |
hold data.

Listing 8.7 shows a sample structure variable used to display an employee number and an hour!
earned.

TYPE: Listing 8.7. A sample structure.

000900 01 EMPLOYEE-DATA.

001000 05 FILLER PIC X(4)
001100 VALUE "Emp ".

001200 05 EMP-NUMBER PIC 9999.
001300 05 FILLER PIC X(7)

001400 VALUE " earns ".

001500 05 EMP-HOURLY PIC Z9.99.

The output of this structure, if you mo284 to EMP-NUMBERNd13.50 to EMP-HOURLMNd then
DISPLAY EMPLOYEE-DATA is the following:

OUTPUT:
Emp 0234 earns 13.50

Figure 8.2 represents how the bytes in this structure are filled in with these 2&dian (
EMP-NUMBERNd13.50 in EMP-HOURLY The top row numbers the bytes frdanto 20, which is
the length of the entire structure. The second row contains the actual values in memory, where |
containsE' , position 2 containgm' , and so on.

Rows 3 and 4 are the variable names and the picture for each variable.

Figure 8.2.
The memory layout of a structure.

ANALYSIS: The two fillers, as well aEMP-NUMBERNJEMP-HOURL Yoccupy some bytes that ar
in the same space in memory as the structure vaibiR_OYEE-DATA

When you use a command in COBOL to modify a variable in memory, the command looks at va
in memory as individual units. If you move a valu&tdP-NUMBERor useADD 1 TO
EMP-NUMBERCOBOL acts oieEMP-NUMBERS if it were a single variable and ignores the fact th.
EMP-NUMBER part of the structuieMPLOYEE-DATA

Regarding a variable as an individual unit also applies to the complete structure. If you move ar
to EMPLOYEE-DATAthe command treaEBMPLOYEE-DATAs if it were &I1C X(20) (the implied
picture) and ignores the fact tHBMPLOYEE-DATAas smaller variables within it.

If the following command is executed in a COBOL program containing this EMRe.OYEE-DATA
structure EMPLOYEE-DATAs treated as if it were a single variable and the elements within
EMPLOYEE-DATAre ignored (as shown in Figure 8.3):

004600 MOVE "No more employees." TO EMPLOYEE-DATA.
004700 DISPLAY EMPLOYEE-DATA.

Figure 8.3.
EMPLOYEE- DATA after moving a value to it.

The variables iEMPLOYEE-DATAIo not disappear, but théOVEaffects all 20 bytes of memory, ar
the individual variables might no longer contain data that is correct for that variable type. Figure
back the variables IEMPLOYEE-DATAEMP-NUMBERow contain®re , which certainly is not valic
numeric data. This isn't a problem as long as you don't use a commaMPeNUMBERsuch a®ADD

1 TO EMP-NUMBER I'll return to this issue in a moment.

Figure 8.4.
EMPLOYEE- DATA with the variables added.

This use of a structure variable is fairly common in display and print programs that might use a ¢

file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/02.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/03.htm
file:///D|/Cool Stuff/old/ftp/Sams.Teach.Yourself.Cobol.In.21.Days/Teach Yourself Cobol in 21 Days/ch08/04.htm

to format and display information line by line, and then at the end of the program might move a r
to the entire structure and display it. It is not necessarily good programming practice, but you wil
encounter this use of structure variables in many programs.

Nested Structure Variables

Any structure can contain another structure. In Listing B-85-MESSAGES a structure that, in turn,
contains two alphanumeric variableACKS-NAMEandJACKS-TASK In addition, it uses ¥ALUEto
initialize JACKS-NAMEoO reduce the size of the message that must be moved for each line of the
display. IndentingACKS-NAMEandJACKS-TASK s a matter of style. The indention makes it clee
that these variables are subordinat€é HiE-MESSAGE

TYPE: Listing 8.8. Structures within structures.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. JACKO6.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 THE-WHOLE-MESSAGE.

000900 05 THE-NUMBER PIC 9(2) VALUE 1.
001000 05 A-SPACE PIC X VALUE SPACE.
001100 05 THE-MESSAGE.

001200 10 JACKS-NAME PIC X(5) VALUE "Jack".
001300 10 JACKS-TASK PIC X(45).

001400

001500 PROCEDURE DIVISION.

001600 PROGRAM-BEGIN.

001700

001800* Set up and display line 1

001900 MOVE "be nimble,” TO JACKS-TASK.
002000 DISPLAY THE-WHOLE-MESSAGE.
002100

002200* Set up and Display line 2

002300 MOVE "be quick,"” TO JACKS-TASK.
002400 ADD 1 TO THE-NUMBER.

002500 DISPLAY THE-WHOLE-MESSAGE.
002600

002700* Set up and display line 3

002800 MOVE "jump over the candlestick." TO JACKS-TASK.
002900 ADD 1 TO THE-NUMBER.

003000 DISPLAY THE-WHOLE-MESSAGE.
003100

003200* Display a closing message

003300 MOVE "That's all folks" TO THE-WHOLE-MESSAGE.
003400 DISPLAY THE-WHOLE-MESSAGE.

003500

003600 PROGRAM-DONE.

003700 STOP RUN.

003800

The following is the output gack06.cbl

OUTPUT:

01 Jack be nimble,

02 Jack be quick,

03 Jack jump over the candlestick.
That's all folks

C>

C>

ANALYSIS: The last action of the program, at li6@3300 , is to move a value to
THE-WHOLE-MESSAG#&d then display it at lin@03400 . This wipes out the previous contents of
THE-WHOLE-MESSAG#&hd overwrites the whole variable structure as though it were a single
alphanumeric variable. This effect can be seen in the outpati§f6.cbl

To calculate the length of a structure variable containing one or more other structure variables, ¢
what you already know about structure variables. Work out the length of the internal structure ve
and add them to the length of the leQ#&lstructure. Table 8.2 calculates the size of the structure by
turning the structure upside down and calculating a sub- totAHBrMESSAGENd adding that resul
to the lengths of the other variablesTIHE-WHOLE-MESSAGE

Table 8.2. Calculating the length of a complex structure.

Variable Length

10 JACKS-TASK PIC X(45). 45

10 JACKS-NAME PIC X(5) VALUE "Jack". +5

05 THE-MESSAGE. = 50 (ubtota)
05 A-SPACE PIC X VALUE SPACE. +1

05 THE-NUMBER PIC 9(2) VALUE 1. +2

01 THE-WHOLE-MESSAGE. = 53 (@rand tota)

The maximum level number for a variable within a structud®isin practice, it is unusual to find a
variable structure that uses all 49 levels. You'll rarely go beg6nelven when you increment by 5.

The last steps gack06.chbl are to movéThat's all folks" to THE-WHOLE-MESSAG#and
then display it. This raises an interesting problem. By motiihat's all folks" to
THE-WHOLE-MESSAGHEou move values into the areas occupied HE-NUMBERA-SPACE and

THE-MESSAGEForA-SPACEandTHE-MESSAGEthis is no problem because they are alphanun
variablesTHE-NUMBERhowever, is a numeric variable that occupies the first two bytes of
THE-WHOLE-MESSAGHRfter theMOVEiIt contains the valu€rh" , the first two characters of
“That's all folks" , and the value moved IHE-MESSAGEThis is certainly not numeric dat:

If you attempt to perform some sort of calculation WithE-NUMBERyour program usually fails with
an error becauseHE-NUMBERoontains invalid data. Some versions of COBOL let you display the
variable usindISPLAY THE-NUMBERand it actually displays &¥h" . Very few versions of
COBOL let you perform anything that resembles a mathematical operation with the variable. Lisi
is a deliberate effort to cause the program to crash by attemptingA®Osé TO THE-NUMBER
when it containsTh" .

TYPE: Listing 8.9. Forcing a numeric error.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. JACKO7.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500

000600 WORKING-STORAGE SECTION.

000700

000800 01 THE-WHOLE-MESSAGE.

000900 05 THE-NUMBER PIC 9(2) VALUE 1.
001000 05 A-SPACE PIC X VALUE SPACE.
001100 05 THE-MESSAGE.

001200 10 JACKS-NAME PIC X(5) VALUE "Jack".
001300 10 JACKS-TASK PIC X(45).

001400

001500 PROCEDURE DIVISION.

001600 PROGRAM-BEGIN.

001700

001800* Set up and display line 1

001900 MOVE "be nimble,” TO JACKS-TASK.
002000 DISPLAY THE-WHOLE-MESSAGE.
002100

002200* Set up and Display line 2

002300 MOVE "be quick," TO JACKS-TASK.
002400 ADD 1 TO THE-NUMBER.

002500 DISPLAY THE-WHOLE-MESSAGE.
002600

002700* Set up and display line 3

002800 MOVE "jump over the candlestick.”" TO JACKS-TASK.
002900 ADD 1 TO THE-NUMBER.

003000 DISPLAY THE-WHOLE-MESSAGE.
003100

003200* Display a closing message

003300 MOVE "That's all folks" TO THE-WHOLE-MESSAGE.
003400 DISPLAY THE-WHOLE-MESSAGE.
003500

003600* A deliberate attempt to blow up the program
003700 DISPLAY THE-NUMBER.

003800 ADD 1 TO THE-NUMBER.

003900 DISPLAY THE-NUMBER.

004000

004100 PROGRAM-DONE.

004200 STOP RUN.

004300

The following output and error message produced by Micro Focus Personal COBOL indicates tr
error occurred while trying t&DD 1 TO THE-NUMBER Note that the firsDISPLAY at line003700
of the program worked and display&d” .

OUTPUT:

C>pcobrun jack07

Personal COBOL version 2.0 from Micro Focus

PCOBRUN V2.0.02 Copyright (C) 1983-1993 Micro Focus Ltd.
01 Jack be nimble,

02 Jack be quick,

03 Jack jump over the candlestick.

That's all folks

Th

JACKO7 Segment RT : Error 163 at COBOL PC 009A
Description : lllegal Character in Numeric Field

C>
C>

The following output for the same program was compiled and run using ACUCOBOL. This prodt
error. The program display$h" and then add$ to THE-NUMBERnd displays it again d$g" . This
obviously nutty result is caused by the fact tRdE-NUMBERIoesn't contain valid data. If you
encounter errors such as non-numeric data in a numeric field, or illegal characters in a numeric
there are two possible causes that you could investigate. The variable might never have been cc
initialized or the program might have useil®VEstatement to fill a structure variable with informati
that is invalid for one or more numeric variables that are a part of the structure variable. You wol
code a program to take advantage of quirky behavior sutfhasbecoming'Tg" in the preceding
example. No one would be able to understand what your program was really trying to do becaus
on possibly unpredictable behavior by some brand of compiler and the behavior might disappea
new version of the compiler was released by the manufacturer.

OUTPUT:

01 Jack be nimble,
02 Jack be quick,

03 Jack jump over the candlestick.
That's all folks

Th

Tg

C>
C>

If you have moved a value to the structure and need toHEENUMBERgain as a numeric value, yc
must reset the value THE-NUMBERY moving a number to it, like this:

MOVE 1 TO THE-NUMBER.

Moving a number to reset the value is the only action you should attempt on a numeric variable
contains invalid data.

DO/DON'T:
DO move values to numeric variables that have undefined or invalid contents before using
numeric variables in calculations.

DON'T perform calculations with numeric variables that have undefined values or that hav
been modified because they are elements of a structure and some value has been moved
the structure.

Misusing Structures

It is common to find programs that define data structur®8Q@RKING-STORAGHat never are used
structures. Variables of one type might be clumped together into a data structure as a form of
documentation. Perhaps this is an effort to be tidy.

Grouping variables together under a structure variable because they are similar or to keep thing
a good practice. It is better to use commeni&/MRKING-STORAGE separate groups of variables
used for different purposes. The existence of a structure variable implies that it is used somewh:
program as a variable. It can be misleading to see a strucMt®RKING-STORAGHat is not really ¢
structure but is a grab bag of variables. (See Listing 8.10.) THEtWHOLE-MESSAGE actually
used as a structure in the program. Be aware of this when you are trying to understand a progra
you are reading. The following example is one you are familiar with, and you will recognize imm
what is going on; recognition is harder in an unfamiliar program.

TYPE: Listing 8.10. Clumping variables together.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CMPINTOA4.
000300%-=--===mmmmmmmm oo
000400* Calculates compound interest
000500%-=--=====mmmmm e
000600 ENVIRONMENT DIVISION.

000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.

000900

001000 01 SOME-FLAGS.

001100 05 YES-NO PIC X.

001200 05 ENTRY-OK PIC X.

001300

001400 01 CALCULATION-FIELDS.

001500 05 THE-INTEREST PIC 99V9.
001600 05 INTEREST-AS-DECIMAL PIC V999.
001700 05 THE-PRINCIPAL PIC 9(9)V99.
001800 05 WORKING-PRINCIPAL PIC 9(9)V99.
001900 05 THE-NEW-VALUE PIC 9(9)V99.
002000 05 EARNED-INTEREST PIC 9(9)V99.
002100 05 THE-PERIOD PIC 9999.
002200 05 NO-OF-PERIODS PIC 999.
002300

002400 01 ENTRY-FIELD PIC 227,772,777 .7Z.
002500

002600 01 THE-WHOLE-MESSAGE.
002700 05 DISPLAY-PRINCIPAL PIC 2Z27,277,7279.99.

002800 05 MESSAGE-PART-01 PIC X(4) VALUE " at ".
002900 05 DISPLAY-INTEREST PIC Z9.9.

003000 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
003100 05 DISPLAY-PERIODS PIC ZZ9.

003200 05 MESSAGE-PART-03 PIC X(16)

003300 VALUE " periods yields ".

003400 05 DISPLAY-VALUE PIC Z2ZZ,2727,779.99.
003500

003600 PROCEDURE DIVISION.

003700 PROGRAM-BEGIN.

003800

003900 MOVE "Y" TO YES-NO.

004000 PERFORM GET-AND-DISPLAY-RESULT
004100 UNTIL YES-NO = "N".

004200

004300 PROGRAM-DONE.

004400 STOP RUN.

004500

004600 GET-AND-DISPLAY-RESULT.

004700 PERFORM GET-THE-PRINCIPAL.
004800 PERFORM GET-THE-INTEREST.
004900 PERFORM GET-THE-PERIODS.
005000 PERFORM CALCULATE-THE-RESULT.
005100 PERFORM DISPLAY-THE-RESULT.

005200 PERFORM GO-AGAIN.

005300

005400 GET-THE-PRINCIPAL.

005500 MOVE "N" TO ENTRY-OK.

005600 PERFORM ENTER-THE-PRINCIPAL
005700 UNTIL ENTRY-OK = "Y".

005800

005900 ENTER-THE-PRINCIPAL.

006000 DISPLAY "Principal (.01 TO 999999.99)?".
006100 ACCEPT ENTRY-FIELD WITH CONVERSION.
006200 MOVE ENTRY-FIELD TO THE-PRINCIPAL.
006300 IF THE-PRINCIPAL <.01 OR

006400 THE-PRINCIPAL > 999999.99

006500 DISPLAY "INVALID ENTRY"

006600 ELSE

006700 MOVE "Y" TO ENTRY-OK.

006800

006900 GET-THE-INTEREST.

007000 MOVE "N" TO ENTRY-OK.

007100 PERFORM ENTER-THE-INTEREST
007200 UNTIL ENTRY-OK ="Y".

007300

007400 ENTER-THE-INTEREST.

007500 DISPLAY "Interest (.1% TO 99.9%)?".
007600 ACCEPT ENTRY-FIELD WITH CONVERSION.
007700 MOVE ENTRY-FIELD TO THE-INTEREST.
007800 IF THE-INTEREST <.1 OR

007900 THE-INTEREST > 99.9

008000 DISPLAY "INVALID ENTRY"

008100 ELSE

008200 MOVE "Y" TO ENTRY-OK

008300 COMPUTE INTEREST-AS-DECIMAL =
008400 THE-INTEREST / 100.

008500

008600 GET-THE-PERIODS.

008700 MOVE "N" TO ENTRY-OK.

008800 PERFORM ENTER-THE-PERIODS

008900 UNTIL ENTRY-OK ="Y".

009000

009100 ENTER-THE-PERIODS.

009200 DISPLAY "Number of periods (1 TO 999)?".
009300 ACCEPT ENTRY-FIELD WITH CONVERSION.
009400 MOVE ENTRY-FIELD TO NO-OF-PERIODS.
009500 IF NO-OF-PERIODS <1 OR

009600 NO-OF-PERIODS > 999

009700 DISPLAY "INVALID ENTRY"

009800 ELSE

009900 MOVE "Y" TO ENTRY-OK.

010000

010100 CALCULATE-THE-RESULT.

010200 MOVE THE-PRINCIPAL TO WORKING-PRINCIPAL.
010300 PERFORM CALCULATE-ONE-PERIOD

010400 VARYING THE-PERIOD FROM 1 BY 1

010500 UNTIL THE-PERIOD > NO-OF-PERIODS.
010600

010700 CALCULATE-ONE-PERIOD.

010800 COMPUTE EARNED-INTEREST ROUNDED =
010900 WORKING-PRINCIPAL * INTEREST-AS-DECIMAL.
011000 COMPUTE THE-NEW-VALUE =

011100 WORKING-PRINCIPAL + EARNED-INTEREST.
011200 MOVE THE-NEW-VALUE TO WORKING-PRINCIPAL.
011300

011400 GO-AGAIN.

011500 DISPLAY "GO AGAIN?".

011600 ACCEPT YES-NO.

011700 IF YES-NO ="y"

011800 MOVE "Y" TO YES-NO.

011900 IF YES-NO NOT ="Y"

012000 MOVE "N" TO YES-NO.

012100

012200 DISPLAY-THE-RESULT.

012300 MOVE THE-PRINCIPAL TO DISPLAY-PRINCIPAL.
012400 MOVE THE-INTEREST TO DISPLAY-INTEREST.
012500 MOVE NO-OF-PERIODS TO DISPLAY-PERIODS.
012600 MOVE THE-NEW-VALUE TO DISPLAY-VALUE.
012700 DISPLAY THE-WHOLE-MESSAGE.

012800

There are some instances when grouping variables together might be useful. Some compilers v
more efficient use of memory if numeric variables are grouped together under a structure variab

Unfortunately, this is not true of all compilers.

What Is Level 777

When you see data in a structure in a program, you assume that the structure is used somewhe

program as a structure, and you can be confused if it is not.

A variable that is not a structure can be given a level numb&éf ofstead o01:

002600 77 YES-NO PIC X.

A level 77 variable uses the same syntax as a l@Yelariable and must also begin in Area A, but a

level 77 may not be used for a structure variable.

A level number of/7 indicates to the compiler that the variable named aftefthe a simple
elementary variable and not a structure. This change sometimes speeds up the compiler, and it
improve the memory use of a program. You don't have to worry about using Te\mlt you will see it
in some programs and you should know what it means when you see it.

Listing 8.11 shows an alternative way of defining the variablespintO4.cbl
TYPE: Listing 8.11. Using level 77.

000800 WORKING-STORAGE SECTION.

000900

001000

001100 77 YES-NO PIC X.

001200 77 ENTRY-OK PIC X.

001300

001400

001500 77 THE-INTEREST PIC 99V9.
001600 77 INTEREST-AS-DECIMAL PIC V999.
001700 77 THE-PRINCIPAL PIC 9(9)V909.
001800 77 WORKING-PRINCIPAL PIC 9(9)V99.
001900 77 THE-NEW-VALUE PIC 9(9)V99.
002000 77 EARNED-INTEREST PIC 9(9)V909.
002100 77 THE-PERIOD PI1C 9999.

002200 77 NO-OF-PERIODS PIC 999.
002300

002400 77 ENTRY-FIELD PIC 222,222,777 .77.
002500

002600 01 THE-WHOLE-MESSAGE.
002700 05 DISPLAY-PRINCIPAL PIC 222,27272,279.99.

002800 05 MESSAGE-PART-01 PIC X(4) VALUE " at "
002900 05 DISPLAY-INTEREST PIC Z29.9.

003000 05 MESSAGE-PART-02 PIC X(6) VALUE "% for ".
003100 05 DISPLAY-PERIODS PIC Z2Z9.

003200 05 MESSAGE-PART-03 PIC X(16)

003300 VALUE " periods yields ".

003400 05 DISPLAY-VALUE PIC 2Z27,277,7279.99.
003500

What Is Level 887

Level 88 is a special level number used to improve the readability of COBOL programs and to in
IF tests.

A level 88 looks like a level under another variable, but it's not. It does not RMETAJRE, but it does
have a value. A levé8 is always associated with another variable and is a condition name for thi

variable. Here is an example:

002500

002600 01 YES-NO PIC X.

002700 88 ANSWER-IS-YES VALUE "Y".
002800

Both of the following conditions test whethéES-NOis equal td'Y" :

003700 IF YES-NO ="Y"
003700 IF ANSWER-IS-YES

The condition name at li@2700 is another way of sayingES-NO ="Y" and can be used IR
andUNTIL conditions. A leveB8 condition name can be used for an alphanumeric or numeric va

Listing 8.12,menu02.cbl , is a menu program that displays a message based on a menulpi2k a
3, and exits on Q.

TYPE: Listing 8.12. Using a level 88 condition name.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MENUO2.

000300*----==-mmmmm oo

000400* THIS PROGRAM DISPLAYS A THREE CHOICE MENU OF
000500* MESSAGES THAT CAN BE DISPLAYED.

000600* THE USER ENTERS THE CHOICE, 1, 2 OR 3, AND
000700* THE APPROPRIATE MESSAGE IS DISPLAYED.
000800* AN ERROR MESSAGE IS DISPLAYED IF AN INVALID
000900* CHOICE IS MADE.
0021000%-=-n=mnmmmmmmmm e e

001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400

001500 01 MENU-PICK PIC 9.

001600 88 PICK-IS-EXIT VALUE 0.

001700

001800 PROCEDURE DIVISION.

001900 PROGRAM-BEGIN.

002000

002100 MOVE 1 TO MENU-PICK.

002200 PERFORM GET-AND-DO-PICK

002300 UNTIL PICK-IS-EXIT.

002400

002500 DISPLAY "Thank you. Exiting".

002600

002700 PROGRAM-DONE.

002800 STOP RUN.

002900
003000 GET-AND-DO-PICK.
003100 PERFORM GET-THE-MENU-PICK.

003200

003300 PERFORM DO-THE-MENU-PICK.
003400

003500 GET-THE-MENU-PICK.

003600

003700 PERFORM DISPLAY-THE-MENU.
003800 PERFORM GET-THE-PICK.
003900

004000 DO-THE-MENU-PICK.

004100 IF MENU-PICK >3

004200 DISPLAY "Invalid selection".
004300

004400 IF MENU-PICK =1

004500 DISPLAY "One for the money.".
004600

004700 IF MENU-PICK =2

004800 DISPLAY "Two for the show.".
004900

005000 IF MENU-PICK =3

005100 DISPLAY "Three to get ready.".
005200

005400 DISPLAY-THE-MENU.

000000* Includes the display of some blank lines to
000000* improve the appearance

005500 DISPLAY "Please enter the number of the message".
005600 DISPLAY "that you wish to display.".
005800 DISPLAY "™,

005900 DISPLAY "1. First Message".
006000 DISPLAY "2. Second Message".
006100 DISPLAY "3. Third Message".
006300 DISPLAY "".

006400 DISPLAY "0. EXIT".

006500 DISPLAY "™,

006600 DISPLAY "Your selection (1-3)?".
006700

006800 GET-THE-PICK.

006900 ACCEPT MENU-PICK.

Line 001600 defines a condition name BICK-IS-EXIT whenMENU-PICK =0 . At line

002100 , MENU-PICKis set tal so that it does not have a valueoif you startMENU-PICKwith a
value of0, GET-AND-DO-PICK never will be performed. Instea@ET-AND-DO-PICK is performed
until thePICK-IS-EXIT . TheUNTIL condition at lindd02300 is exactly equivalent to the followin

002300 UNTIL MENU-PICK = 0.

You also can set up a lev@8 condition to test more than one condition. Here's a situation that cot
an88 to sort out a knottyF test. In Listing 8.12menu02.cbl , the menu selections are convenien
arranged to be valid if they aPethrough3. The test for a valid selection at li664100 is fairly simple
because anything abo@ds invalid:

004000

004100 IF MENU-PICK > 3

004200 DISPLAY "Invalid selection".
004300

If you change your design so thats used to exit, the test for a valid pick becomes complicated. Li
8.13 and Listing 8.14 show two ways of performing this test. They are both awkward and a little
confusing to read.

TYPE: Listing 8.13. A complex | F.

004100 IF MENU-PICK <1 OR

004200 (MENU-PICK < 9 AND MENU-PICK > 3)
004300 DISPLAY "Invalid selection".

004400

TYPE: Listing 8.14. Another complex | F.

004100 IF MENU-PICK NOT =1 AND
004200 MENU-PICK NOT =2 AND
004300 MENU-PICK NOT =3 AND
004400 MENU-PICK NOT =9
004500 DISPLAY "Invalid selection".
004600

You can set up a lev8B to test for more than one value. The values can be a list of individual val
in Listing 8.15 (commas are optional), a range of values as in Listing 8.16, or a combination of li
range values as in Listing 8.17. Each listing includes comments showing the equivalent tests the
used when not using @&8.

TYPE: Listing 8.15. Level 88 with a list of values.

002500

002600 01 MENU-PICK PIC 9.

002700 88 PICK-IS-VALID VALUES1], 2, 3, 9.
002800* MENU-PICK =1 OR

002900* MENU-PICK =2 OR

003000* MENU-PICK =3 OR

003100* MENU-PICK =9

003200

TYPE: Listing 8.16. Level 88 with a range of values.

002500

002600 01 MENU-PICK PIC 9.

002700 88 PICK-IS-VALID VALUES 0 THROUGH 3.
002800* MENU-PICK =0 OR

002900* MENU-PICK =1 OR

003000* MENU-PICK = 2 OR

003100* MENU-PICK = 3

003200

TYPE: Listing 8.17. Level 88 with range and list values.

002500

002600 01 MENU-PICK PIC 9.

002700 88 PICK-IS-VALID VALUES 8, 9,0 THROUGH 3
002800* MENU-PICK = 8 OR

002900* MENU-PICK =9 OR

003000* MENU-PICK =0 OR

003100* MENU-PICK =1 OR

003200* MENU-PICK =2 OR

003300* MENU-PICK = 3

003400

A variable also can have more than one I83tondition name associated with it, as shown in Listi
8.18.

TYPE: Listing 8.18. More than one level 88.

002500

002600 01 MENU-PICK PIC 9.

002700 88 PICK-IS-VALID VALUES 8, 9,0 THROUGH 3
002800 88 PICK-IS-EXIT VALUE 9.

002900

Listing 8.19 uses a lev8B to create a condition ¢fICK-IS-VALID whenMENU-PICKequalsl, 2,
3, or9. Then, another levé8 is used to set up a condition namd>tCK-IS-EXIT when
MENU-PICKequal9.

TYPE: Listing 8.19. More level 88.

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. MENUOS.
D00300%-rme=r=mmmemmeorcemccmcocmceoccmconmcoocceon -

000400* THIS PROGRAM DISPLAYS A THREE CHOICE MENU OF
000500* MESSAGES THAT CAN BE DISPLAYED.

000600* THE USER ENTERS THE CHOICE, 1, 2 OR 3, AND
000700* THE APPROPRIATE MESSAGE IS DISPLAYED.

000800* AN ERROR MESSAGE IS DISPLAYED IF AN INVALID

000900* CHOICE IS MADE.
001000%*==-===nmemmmmmmmm e e e eeeee
001100 ENVIRONMENT DIVISION.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.
001400

001500 01 MENU-PICK PIC 9.
001600 88 PICK-IS-EXIT VALUE 9.
001700 88 PICK-IS-VALID VALUES 1 THRU 3, 9.
001800

001900 PROCEDURE DIVISION.

002000 PROGRAM-BEGIN.

002100

002200 MOVE 1 TO MENU-PICK.
002300 PERFORM GET-AND-DO-PICK
002400 UNTIL PICK-IS-EXIT.

002500* MENU-PICK =9
002600

002700 DISPLAY "Thank you. Exiting".
002800

002900 PROGRAM-DONE.

003000 STOP RUN.

003100

003200 GET-AND-DO-PICK.

003300 PERFORM GET-THE-MENU-PICK.
003400

003500 PERFORM DO-THE-MENU-PICK.
003600

003700 GET-THE-MENU-PICK.

003800

003900 PERFORM DISPLAY-THE-MENU.
004000 PERFORM GET-THE-PICK.
004100

004200 DO-THE-MENU-PICK.

004300* NOT (MENU-PICK=10R20OR30R9)
004400 IF NOT PICK-IS-VALID

004500 DISPLAY "Invalid selection".
004600

004700 IF MENU-PICK =1

004800 DISPLAY "One for the money.".
004900

005000 IF MENU-PICK =2

005100 DISPLAY "Two for the show.".
005200

005300 IF MENU-PICK =3

005400 DISPLAY "Three to get ready.".
005500

005600* LEVEL 3 ROUTINES

005700 DISPLAY-THE-MENU.

005800 DISPLAY "Please enter the number of the message".
005900 DISPLAY "that you wish to display.".
006000* Display a blank line

006100 DISPLAY "™,

006200 DISPLAY "1. First Message".
006300 DISPLAY "2. Second Message".
006400 DISPLAY "3. Third Message".
006500* Display a blank line

006600 DISPLAY "".

006700 DISPLAY "9. EXIT".

006800 DISPLAY "™,

006900 DISPLAY "Your selection (1-3)?".
007000

007100 GET-THE-PICK.

007200 ACCEPT MENU-PICK.

007300

The conditions are set up at li@31600 and001700 . The condition namBICK-IS-VALID s set
up whenMENU-PICKequalsl, 2, 3, or9. At lines002300 and002400 , GET-AND-DO-PICK is
performedUNTIL PICK-IS-EXIT (MENU-PICK =9).

At lines004300 and004400 , NOTis used to test for an invalid menu plekNOT
PICK-IS-VALID (if MENU-PICKis not one of the values in the condition name list). You can se
much tidier, and easier to understand, the logic is aDid400 .

Summary

Today, you used thBATA DIVISION to organize your data and variables, improve the performal
your program, and reduce the amount of code that you have to write. You also learned the follov
basics:

o COBOL variables can be combined into a composite variable called a structure. The varia
within a structure variable still can be used as if they are not part of a structure variable.

« Structure variables frequently are used to format data for display purposes. If the individua
variables within a structure can be displayed, the structure variable itself can be displayed

o Parts of a structure variable that are used to hold constant information and are not used in
PROCEDURE DIVISIONcan be nameHILLER .

« The length of a data structure can be calculated by adding the lengths of the individual var

« The implicit picture of a structure RIC X with a length equal to the length of the structure.

A structure variable can, in turn, contain another structure variable.

You can give a variable that is not a structure the level nuivaer

You can use a lev@8 to set up condition names that can be used to simplifgndUNTIL tests

Q&A

Q What happens if | move to aFl LLER?

A You can't. The compiler does not recogritteLER as a variable name; it is used only to
reserve space in a structure variable. If you include a command sMéNS 1 TO FILLER in
a program, it will not compile and produces an error. You can move values to a structure v
that contains &ILLER . TheMOVEwill affect the structure variable and all of the variables wi
the structure, but you cannot directly move valuesRt_ER .

Q Why do | need to know the lengths of structures?

A You don't yet, but you will need to know how to calculate this when you start creating pri
reports (in Day 10, "Printing").

Workshop
Quiz

1. What is the length ofHE-WHOLE-MESSAG the following example?

000800 01 THE-WHOLE-MESSAGE.

000900 05 THE-NUMBER PIC 9(2) VALUE 1.
001000 05 A-SPACE PIC X VALUE SPACE.
001100 05 THE-MESSAGE.

001200 10 JACKS-NAME PIC X(5) VALUE "Jack".
001300 10 JACKS-TASK PIC X(45).

001400

2.What is the impliedPICTURE of THE-WHOLE-MESSAGIE question 1?
3. What is a data structure?

4.1f you move a value to a structure variable, what happens to the values in the individual
variables within the structure?

5. In the following code, what is another way of performing the test a004600 ?

001800 01 YES-NO PIC X.
001900 88 ANSWER-IS-YES VALUE "Y".

004600 IF YES-NO ="Y"
004700 PERFORM DO-SOMETHING.

6. In the following code, what is another way of performing the test at0igd800 and
004700 ?

001800 01 YES-NO PIC X.
001900 88 ANSWER-IS-VALID VALUES "Y","N".

004600 IF YES-NO ="Y"OR
004700 YES-NO ="N"
004800 PERFORM DO-SOMETHING.

7.Devise a leveB8 condition name fo¥ES-NOthat would simplify the tests at lin@64600
through004900 in the following code:

001800 01 YES-NO PIC X.
004600 IF YES-NO ="Y"OR

004700 YES-NO ="y" OR

004800 YES-NO ="N" OR

004900 YES-NO ="n"

005000 PERFORM DO-SOMETHING.

Exercises

1. Copymult07.cbl from Day 7, "Basics of Design," tault09.cbl , and modify the
program to use a data structure to display the results of the multiplication table.

2. Design a structure similar ©UST-DATAthat would hold a 5-digiEUST-NUMBERa
30-characte€CUST-NAMEa 50-charactea€UST-ADDRESSand a 5-digiCUST-ZIP-CODE:

001100 01 CUST-DATA.
001200 05 CUST-NUMBER PIC 9(3).

001300 05 CUST-NAME PIC X(10).
3. Code theCUST-DATAstructure with all the fields initialized correctly to zeroes or spaces
VALUECclauses.

Previous chapter Next chapter Contents

Macmillan Computer Publishing USA

© Copyright Macmillan Computer Publishing. All rights reserved.

Teach Yourself COBOL in 21 days,
Second Edition

Previous chapter Next chapter Contents

- Day 9 -
File I/O

Welcome to the big time! Saving data to and retrieving data from a disk depends on you being a
handle files. The primary activity of COBOL programs is storage, retrieval, sorting, and reporting
files of information. Today, you learn about the following topics:

« Whatis a file?

« Whatis a record?

« Whatis a field?

« Defining a file in COBOL.

« The logical description of a COBOL file.

« The physical description of a COBOL file.

« Opening and closing a file.

« Adding records to a file.

« Reading records from a file.

« The file processing loop.

What Is a File?

Imagine a small company that keeps two card file boxes. One box contains a card for each venc
supplies raw material to the company. The other contains a card for each customer who has put
from the company. Close both boxes, label one Vendors and the other Customers, and bring a ¢
to look at the boxes.

The stranger would see two labeled 3x5 inch boxes that take up space on the desk. The strange
assume that the boxes contain data on customers and vendors, but the boxes could contain hal
sandwich and the boss's lucky golf ball.

On a computer disk, a file is similar to a card file box. It has a label (the filename on the disk) an
up space on the disk. The computer has no idea what kind of data is in a file; the file is just a chi
disk space set aside for data and given a name. The file could be a word processing document 1
james.doc containing a letter written to James, or it could be an Excel spreadsheethaixied
containing account balances. These are sometimes palsdtal files

Back in our hypothetical office, the stranger might open the boxes to check their contents, and h
see that the physical card file box contains a collection of data.

New Term: In a COBOL program, @le is a collection of related units of information within a data
category. A file might contain all the information (related units of information) about customers (¢
category) for a company. This usually is callethta fileor alogical file.

For the file to exist, there must be a physical