COBOL

From Micro to Mainframe

Preparing for the New Millennium

CAROL VAZQUEZ VILLAR
ARTHUR R. Buss

THIRD EDITION

COBOL

From Micro to Mainframe = _

THIRD EDITION

GRAUER / VAZQUEZ VILLAR / BUSS

The third edition of COBOL From Micro to Mainframe is designed to'satisfy all of your COBOL
needs—on multiple platforms. The textbook covers all basic COBOL elements, with additional
chapters on the Year 2000 problem. structured programming and design. debugging, subprograms,
table processing, sorting. screen /0, sequential file maintenance. indexed files, arid object-oriented
COBOL. The third edition teaches programming as it is practiced in the real world, with programming
tips that go beyond the syntactical rules of COBOL and that make programs easier to maintain and
run more emcmnﬂy
Best-selling author Robert T. Grauer and c0~authors Caml Vazqucz Vﬂiar and Arthur R. Buss provide
you with a complete learning packag !] 1 COBOL for
Windows ' compiler—that will prepare vou fc)r success with COBQL pmgramming.

Look for these enhancements in the third edition:

NEW-—Our most important revision is an entirely new chapter on the Year 2000 problem
that discusses the nature of changes that need to be made to existing COBOL programs.
NEW-—A second new chapter is devoted to Object-Oriented COBOL Programming. an
emerging technology of increased importance in the COBOL world. ~
NEW-—Auvailability of the Micro Focus Personal COBOL for Windows with the third edition.
A new appendix has been added with more than 83 screen shots describing how to use the software.
NEW and REVISED—Appendix with more than 100 programming projects. Data for the

projects are available for download from www.prenhall.com/grauer_cobol.

Dr. Robert T. Grauer is an Associate Professor in the Department of Computer Information
Systems at the University of Miami, where he has been honored with the Outstanding Teacher
Award in the School of Business. A prolific author known for his unparalleled pedagogy. reader-
friendly writing style, and Exploring Windows series. Dr. Grauer has written 30 books on programming
and information systems, and has more than a million books in print. Dr. Grauer can be reached at
rgrauer@sba.miami.edu.

Carol Vazquez Villar. an instructor in the Department of Computer Information Systems at
University of Miami for eight years, currently works for Andersen Consulting. She has developed
and trained high performance teams on team building and communications and is currently planning
and developing leadership training seminars.
Dr. Arthur R. Buss is Associate Professor of Computer Studies at William Jewell College, where he
teaches Information Technology courses. Prior to coming to Jewell. he worked at Kmart
Corporation and McDonnell Douglas as a programmer, systems analyst, and project leader. He is
currently conducting studies in the Year 2000 problem and in Object-Oriented COBOL.

LEBN O-13-7808L7-8¢

90000
PRENTICE HALL . ‘
Upper Saddle River, NJ 07458 ;
http://www.prenhall.com ‘

eface

The following software and supplements are available from Prentice Hall:

* SOFTWARE-—Micro Focus Personal COBOL for Windows 3.1 with object-
orientation and Personal Dialog Systerm. Compatible with Windows95 and
WindowsNT, Personal COBOL provides all the tools to help you learn and
use COBOL. The software includes an integrated editor, compiler and
animator for creating, debugging and executing COBOL programs. Prentice
Hall offers an affordable package of COBOL: From Micro to Mainframe, Third
Edition with the Micro Focus Personal COBOL Compiler. Please order ISBN
0-13-975178-5.

» WEB SITE—Download every COBOL program in the text as well as data files
for the nearly on hundred student projects from the COBOL: From Micro to
Mainframe web site at: http://www.prenhall com/grauer_ccbol.

» Instructor's Resource Manual (ISBN# (0-13-081513-6)

« Prentice Hall Custom Test. Based on the powerful testing technology
developed by Engineering Sofiware Associates, Inc. (EAS), Prentice Hall
Custom Test aiiows the educator to create and tailor the exam to their own
needs. Piease order ISBN# 0-13-081515-2

We are especially grateful to our editors at Prentice Hall, Laura Steele, Alan Apt, and
Marcia Horton, without whom this project wouid noi have been possibie. We also
wan t to thank the many other individuals who helped produce the third edition.
Irwin Zucker, who supervised the production, Kate Kaibni, editorial assistant, who
worked hard to provide us with timely chapter reviews, and joel Berman, our
marketing manager at Prentice Hall, who developed the innovative campaign to
make this book a success.

We also want to acknowledge our reviewers, who through their comments and
constructive criticism, made this a far better book:

Robert V. Binder, Robert Binder Systems Consulting, Inc.
Dinon Boyer, University of Akron

Georgia Brown, Northern Illinois University

Jan De Lassen, Brigham Young University

Ida M. Flynn, University of Pittsburgh

Frank T. Gergelyi, NIIT

Ken Goldsmith, University of Miami

Tom Gorecki, St. Charles Community College
Carol C. Grimm, Palm Beach Community College
Monica Holmes, Central Michigan University
Arn W. Houck, Pima Community College

David Lee

James W. Payne, Kellogg Community College
Nicholas Ross, University of lllinois at Chicago
Wendell L. Pope, Utah State University

Daniel H. Rindfleisch, Computer Specialist with Federal Government
Daniel R. Rota, Robert Morris College

Richard H. Saracusa, Northeastern University
Ron Teemley, DeVry Institute of Technology
Donat Valcourt, Northeastern University

Ron Williams, Mclennon Community College
Jackie Zucker, University of Miami

http://www.prenhall.com/grauer_cobol

A final word of thanks to you, our readers, for choesing this book. Please feel
free to contact us with any comments or suggestions via email,

Robert Grauer
rgrauer@umiami.miami.edu

~

arol Vazquez Villar

Arthur R, Buss
bussa@william jewell.edu

mailto:bussa@william.jewell.edu

1 v Introduction

Overview 2 Test Data 13
The First Problem 2 Elements of COBOL 13
Programming Specifications 3 Reserved Words 13
Required Logic 5 Programmer-Supplied Names 14
Flowcharts 6 Literals 15
Pseudocode 8 Symbels 16
A First ook at COBOL 9 Level Numbers 16
Identification Division 11 Picture Clauses 17
Environment Division 11 A Second Look at COBOL 17
Data Division 11 Summary 19
Procedure Division 12 Fil-in 20 TruefFaise 20 Problems 21
z: From Coding Form to Computer
Overview 26 Errors in Compilation 33
From Coding Form to Computer 26 Errors in Execution 35
The COBOL Coding Form 28 Errors in Data input 37
Use of an Editor 28 Evolution of COBOL 38
The Compite, Link, and Execute Sequence 30 There's Always a Reason 40
Learning by Doing 32 Summary 41
Errors in Entering the Program 33 Fill-in - 41 TruefFalse 42 Problems 43

Errors in Operating System Commands 33

: A Methodology for Program Development

Overview 48 Sufficiency of the Basic Structures 56
The Tuition Billing Problem 48 Expressing Logic 57
Structured Design 50 The Traditional Flowchart 57
Evaluating the Hierarchy Chart 52 Pseudocode 57
Completeness 53 Warnier-Orr Diagrams 59
Functionality 54 Top-Down Testing 61
Span of Control - 54 Summary 66

Structured Programming 54 Fil-in 67 TruefFalse 68

Problems 68

25

47

Contents

Overview 74
COBQOL Notation 74
ldentification Division 75
Environment Division 786
CONFIGURATION SECTION 76
INPUT-OUTPUT SECTION 76
Data Division 77
FILE SECTION 77

huispter 4: The ldentification, Environment, and Data Divisions 73

WORKING-STORAGE SECTION 82
The Tuition Billing Program 84
Prograrmming Specifications 84
CORQL Entries 87
Limitations of COBOL-74 90
Summary 90
Fill-in 92 TruefFalse Q2 Problems 93

Chapter 5: The Procedure Division 97

QOverview 98

OPEN 98

CLOSE 89

ReEAD 49
Placement of ihe READ Statement 100

WRITE 100

STOP RUN 102

MOVE 102
Restrictions on the Move Statement 103
Aiphanumeric Field to Alphanumeric Fleld 103
Numeric Field to Numeric Field 104
Group Moves 105

PERFORM 105

I 106
The ELSE Clause 106
Indentation 106

EVALUATE 109

Arithmetic Statements 109

s

The ROUNDED Clause 109
The SIZE ERROR Clause 110
COMPUTE 11G
ADD 112
SUBTRACT 112
MULTIPLY 114
DIVIDE 1158
Programming Tigy: Use the COMPUTE
Statement 1186
Assumed Decimal Poini 117
The Tuition Billing Program 118
Test Cata 126
Hierarchy Chart 127
COBOL Program Skeleton 128
Limitations of COBOL-74 128
Summary 130
Fill-im 131 TruefFalse 132 Proglems 133

Chapter 6: Debugging
Overview 140
Errors in Compilation 140
Commen Compilation Errors 149
Errors in Execution 151
Fite Status Codes 156
Ancther Run Time Error - 158
Logic Errors 159

139

Tips for Debugging 160
DISPLAY Statement 161
The Structured Waikthrough 162
Summary 163
Fill-in - 164 Truefralse 165 Proclems 185

Contents

b

Chapter 7: Editing and Coding Standard 169

Overview 170

Editng 170
The Decimal Point 172
Zgro Suppression 172
Dollar Signs 174
Comma 174
Asterisks for Check Protection 175
Insertion Characters 175
Synopsis 175

Signed Numbers 176
CRand DB 176
Plus and Minwus Signs 177

BLANK WHEN ZERO Clause 177
The Tuition Billing Program Revisited 178
Coding Standards 179
Data Division 179
Programming Tip: Avoid Literals 180
Procedure Division 181
Pragramming Tip: Use Scope Terminators 182
Both Divisions 183
A Well-Written Program 184
Summary 189
Fill-in - 190 True/False 191 Problems 181

i it e aB i e D i e

Chapter 8: Data Validation
Overview 196

System Concepts: Data Validation 196
The IF Statement 197

Reiational Condition 188
Class Test 199

Sign Test 200

Condition-Narme Test (88-Level Eniries) 200
Compound Test 200

Hierarchy of Operations 201

implied Conditions 203

Nested IFs 203

NEXT SENTENCE 205

195
ACCEPT Statement 206
Calculations Involving Dates 206
The Stand-Alone Edit Program 207
Programming Spacifications 208
Error Messages 211
Pseudocode 211
Hierarchy Chart 212
The Completed Program 212
Limitations of COBOL-74 221
Summary 223
Fill-in 224 TruefFalse 224 Problems 225

E o e

Chapter 9 : More About the Procedure Division 229

Overview 230

PERFORM 231
TEST BEFORE/TEST AFTER 231
in-line Perform 232
Performing Sections 232
PERFCRM THRU 232
Programming Tip: Perform Paragraphs, Not

Seclions 233

READ 234
ralse-Condition Branch 234
READ INTO 235

WRITE FROM 236

INITIALIZE 236

String Processing 237
INSPECT 237

STRING 238
UNSTRING 240
Reierence Modification 240
ACCEPT 242
Duplicate Data Names 243
Qualification 244
MOVE CORRESPONDING 245
The Car Billing Program 246
Programming Specifications 2486
Program Design 248
Tne Compieted Prograrm 249
Limitations of COBOL-74 258
Summary 258
Fill-in 259 True/Faise 260 Problems 260

Contenis

snanter 43: Screen -0
Overview 266
ACCEPT 266
Programming Tip: Micre Focus Level 78—The Use
of COBOL Constanls 267
DISPLAY 269
The Tuition Billing Program Revisited 270
Programming Specifications 270
Hierarchy Chart 271
Pseudocode 271
The Completed Program 273
Programming Tip: The Hidden Power of
the Alt key 274

265

Car Validation and Billing Program 278
Programming Specifications 279
The Screen Section 280
rlierarchy Chart 284
Pseudocode 284
The Completed Program 287
Limitations of COBOL-74 297
Summary 297

Fill-in 298 TruefFaise 209 Problems 299

Over\/lew 3
introduction 1o Tahies 302
OCCURS Clause 303
Processing a Table 304
PERFCAM VARYING 304
A Second Example 306
Problems with the OCCURS Clause 308
Rules for Subscripts 308
Relative Subscripting 308
USAGE Clause 309

@ 19 Introduction to Tables

o | L

OCCURS DEPENDING ON - 310
The Student Transcript Program 311
Programming Specifications 311
Program Design 313
The Compleied Program 314
Indexes versus Subscripts 321
The SET Statement 322
Limitations of COBOL-74 322
Summary 325

Fiil-in 326 TrueffFalse 326 Problems 327

e 8 'l'able I.ookups
Overwew 332
System Concepts 332
Types of Codes 333
Characteristics of Codes 333
Sequential Table Lookup 334
Binary Table Lookup 335
Pesitional Organization and Direct Lookups 336
initializing a Table 336
Hard Coding 336
Input-Loaded Tables 338
Table Lookups 339
PERFORM VARYING Statement 340
SEARCH Statement 340

331

Prograrmmming Tip—Restrict Subscripts
and Switches t0 a Single Use 342
SEARCH ALL Statement 344
Direct Lookup 344
Range-Step Tables 345
A Complete Example 347
Programming Specifications 347
Program Design 349
The Completed Program 350
Limitations of COBOL-74 357
Summary 357

Fill-in 358 TruefFalse 359 Problems 360

301

Contenrs

Overview 364

System Concepts 364
COBOL Implementation 366
One-Level Tables 366

PERFORM VARYING 366
Two-Level Tables 368
Errors in Compilation 369
PERFORM VARYING 370
A Sample Program 373
Programming Specifications 373
Program Design 375
The Compieted Program 375
Three-Level Tables 380

363

PERFORM VARYING 382
A Sample Program 384
Programming Specifications 384
The Completed Program 386
Table Lookups 380
A Calorie Counter’s Delight 392
Programming Specilications 392
Range-Step Tables 392
The Compleled Program 394
Limitations of COBOL-74 398
Summary 398
Fill-in - 399 Trus/false 399 Problems 400

2y 14 Sorting
Overview 404
Sysiem Concepts 4056
Collating Sequence 405
Empadded Sign 406
COBOQOL. implementation 408
SORT Statement 409
SD (Sort Descriplion) 410
ELEASE and AETURN 410
Programming Speciications 411

403
USING/GIVING Option 414
INPUT PROCEDURE/OUTPUT PROCEDURE
Option 419
Comparing Options 426
MERGE Statement 426
Limitations of COBOL-74 428
Summary 428
Fill-in - 429 TruefFalse 430 Problems 431

&
Overview 436
System Concepts 436
Ruhning versus Rolling Totals 440
One-Level Control Breaks 443
Programming Specifications 443
Hierarchy Chart 444
Pseudocode 446
The Completed Program 445
Two-Level Control Breaks 451
Hierarchy Chart 451
Pseudocode 452

435

The Completed Program 454
Three-Level Conirol Breaks 460
Hierarchy Chart 460
Pseudocode 462
The Compieled Program 463
Programming Tip: How o Write a Control Break
Frogram 470
Limitations of COBGL-74 471
Summary 471
Fill-in 472 True/False 472 Frobiems 473

Contants

Lhwmpier 16: Subprograms 475

Overview 476 The Completed Programs 486
Subprograms 477 Main Program (FITNESS) 486
Calted and Calling Programs 477 Input Program (INPUTSURB) 490
COPY Statement 479 Weight-Range Program (WGTSUB) 495
Calling BY CONTENT and BY REFERENCE 480 Training Program (TRBAINSUB) 498
Programming Tip: Use COPY 1o Pass Display Program {DSPLYSURB) 498
Parameters 481 Time Program (TIMESUB) 503
INITIAL Ciause 482 The Linkage Editor 504
A System for Physical Fitness 482 Problems with the Linkage Editor 505
Programming Specifications 482 Limitations of COBOL-74 506
Hierarchy Chart 485 Summary 508
Pseudocode 485 Filkin 508 TruefFaise 509 Problems 510

Chapter 17: Seqguential File Maintenance 515

Overview 516 Programming Specifications 528
System Concepts 516 The Bafance Line Algorithm 529
Sequential versus Nonsequential Processing 518 Dasigning the Hierarchy Chart 531
Pericdic Maintenance 518 Top-Down Testing 535
Data Validation 5192 The Stubs Program 535
Programming Specifications 520 The Completed Program 540
Designing the Program 523 Summary 545
The Cornpleted Program 524 Fill-in - 546 True/False 546 Problems 547

Sequential File Maintenance 528

Lhiapier 18: Indexed Files 549

Overview 550 Maintaining an Indexed File 563
System Concepts 550 Programming Specilications 563
COBOL Implementation 554 Hierarchy Chart 564
Creating an Indexed File 556 Pseudocode 566

Programming Specifications 556 The Completed Program 566

Pseudocode 557 Alternate Record Key 570

The Completed Program 557 Programming Specifications 570
Additional COBOL Elements 559 Concatenated Key 573

OPEN 559 The START Staternent 574

READ 580 Limitations of COBOL-74 574

WRITE 562 Summary 575

REWRITE 562 Fill-in 577 Trueffalse 578 Problems 578

DELETE 562

Contents

The Year 2000 Probleim 583

Overview 584 L eap-Year Problem 594
The Year 2000 Problem 584 Retirement Program Revisited 594
[ate Arithmetic 590 Summary 599

COROL Intringic Calendar Functions 591 Fill-in - 600 TruefFalse 600 Problems 801

_ 603

Overview 604 The StudentDM Class 621
The Next Generation of COBOL 605 The StudentDM instance Definition 625

The Development of Struciured Programming 606 The Student Class 627

Terminclogy 607 The Person Class 630

The Object-Oriented versus Structured Paradigm 608 The Student £/l Class 633

Student-Lock-UP Pregram €12 The Student PRT Class 835

The Registrar Class 616 Conclusion 639

Classes and Inheritance 618 Summary 640

ProcessReguests Method 618 Fill-in 641 Trusfralse 641 Problems 642

4: Micro Focus Personal COBOL. for Windows: Users

Guide and Tutorial 643

Getting Started 697

=: Reserved Words 709

tx s COBOL-85 Reference Summary 711

COBOL 1997, 1998, 1999, 2000, or ...7 737

= Answers to Odd-Numbered Exercises 745

i Projects 7853

893

Qverview

The First Problem
Programming Specifications

Hequired Logic
Fiowcharts
Pseudocode

A First Look at COBOL
Identification Division
Environment Divisicn
Data Division
Procedure Livision

Tesi Data

Elements of COBOL
Reserved Words
Programmer-Supplied Names
Literals
Symbols
Level Numbers
PICTURE Clauses

A Second Look at COBOL

Summary

Fill-in

True/False

Problems

. PR
LS S A R

Chapter 1 — introduction

After reading this chapter you will be able to:

Define the {terms: field, record, and file.

4 Name two technigues used to express pragram logic,
¥ ldentify the four divisions of a COBOL program.

4 State the six COBOL language elements.

State the rules for creating a programmer-supplied name; distinguish
between examples of valid and invalid names.

State the difference between numernic and nonnumeric literals; recognize
valid and invalid examples of each.

Follow the logic of a simple program: as expressed in a flowchart or
pseudocode.

This book is about computer programming. In particular, it is about COBOL, a
widely used commercial programming language. Programming involves the
transiation of an algorithm {a precise means of solving a problemy} into a form the
computer can understand. Programming is necessary because, despite reports
to the contrary, computers cannot think for themselves. Instead, they do exaclly
what they have been instructed to do, and these instructions {ake the form of a
computer program. The advantage of the computer stems from its speed and
accuracy. It does not do anything that a human being could not do, given
sufficient time and memaory capacity.

We begin our study of computer programming by describing a simple
problem and then developing the togic and COBOL program to solve it. This
rapid entrance into COBOL is somewhat different from the approach followed by
most textbooks, but we believe in learning by domng. There is nothing very
mysterious about COBOL. programming, so let's get started.

ro i

he First

Our first probiem is set in the context of a university, and involves a set of student
records, one record per student. Each record contains the student’s name, number
of completed credits, and major. Implicit in this statement are the definitions of
three fundamental terms: field, record, and file. A field is a basic fact, such as the
namne, address, major, grade poinl average, or number of completed credits. A
record is a set of fields, and a file is a set of records. Thus, if there were 1,600
students, there would be 1,000 records (one for each student), each consisting of
five fields, and comprising a single student file.

To clarify this relationship, we create four hypothetical students for our
problem: John Adams, Amelia Earhart, Orville Wright, and Georgia O'Keeffe. There
are many facts about each of our students, but our problem utilizes only three:

Thre Firgr Froblem

Fields, Records, and Files

FHELOE

{Facts) (Set of Fields)

;i MName: John Adams e e e
H i i| Cradits: 80 f Joha Adamis 90 : Palitical Stience :

oy Name: Amelia Earhart i Johp 4
P4 Creditss 120 T Amelia Earhart | 1207 Aviation & o MAdamg | 8¢
./ Major: Aviation S

. e
poliical SCEN

\

At .
Mefia Earar | 120 | Aviation

\

Name: Orville Wright ‘ /y ”—
Crediis: 115 Orvilie Wright - 1151 Enginzering Urviitg wyighe | <= | Enginesting :
. . . s e Lty L L e Wright 1| 115 g :
Majer: Engineering e i__,// :
Ge Ry

/ VG Oegre | 126 | At . s

A 3 \ PR :

Name: Georgia O'Keeffe = e - :
redits: 125 {Georgia O'eeffe[125 At |
Major: Art

i

naine, major, and credits completed. Figitre 1.1 represents these concepts in pictorial
fashion. Each fact about each student comprises a single field. The three felds
collectively muke up that student’s record. The four records (one for each of our
studerits) cormnpose the student file.

The problem is to process the file of student records and produce a list of
engineering students who have completed more than 116 credits. Tt is a typical
problem, in that its solution will address the three elements common to all computer
applications: input, processing, and sutput. As shown in Figure 1.2, the student file,
just defined, is the input; this file is processed by detennining which students are
engineering majors with more than 110 credits; and consequently, a reportis created
as oulput, reflecting these students.

The input to a computer prograny thal is, the precise arrangement of the
variaus fields in each incoming record, has to be specified exactly. Figure 1.3ais a
common way to communicate this information, and shows that the student’s name
is contained in positions 1-25, the number of credits in positions 26-23, and the
student’s major in positions 25-43. Note too, that every record in a given file must
have the identical record layout.

In similar fashion, the report produced as output is aiso precisely designed.
Figure 1.3¢c shows a print fayout chart, in which descriptive informaiion appears
cn fine one, with the names of selected students in columns 9-33 of subsequent
fines. Observe also that the location of the name field is different in the input and
output records {positions 1-25 and 9-33, respectively), and that each input record
contains three fields, but that each line of ontput has been designed fo coniain only
one field.

Programning Spe

It is important that programming specification—that is, the input, precessing, and
output requirements—be presented in a clear and unambiguous fashion.

Figure 1.2 Input, Processing, and Cutput

Chapler 1 introduction

BT PROCESSING

| //,

; B

‘ & 3 : P

— | Eagineering major | | 5| STUDENT NAME
; dohs e b epet? | | withmore than ! ! 1 ORVHLE WRIGHT
= Adans 80 Poiiica < / 7 110 credifs | f /J
% : i S~
Amella Earhary | 120 _ALME'F/

; Urvitle wrighy | 115 | Engineenind

Genrgiﬂ O'Keele [1251 At S

Figure 1.3 Engineering Senior {(Input and Cutput)

STUDENT NAME
i

23 45 6 7 8 910181213 141516 17 18192021 22 23 24 25

CREDITS STUDENT MAJOR

2621 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 42

JOHN ADAMS

AMELIA EARHART
ORVILLE WRIGHT
GEORGIA O'KEEFE

- Vi R LR . biir
SRR R SR
STUDENT NAME

! XXXXXKXKXXKRXKXXXKXKXRKAK
! CKXKXARXKRXKNRERNR AN AKX KX X
o
i
i i
[!
A
, ! i
: g
3 ’ I
;
t .
£ i
5 .
%
I

{a) Studeni Racord Layout

090POLITICAL 3CI
120AVIATION
115ENGINEERING
125ART

{b) Test Data

B

L :

' I
|

|
]
|

(e} Print Lavout

Reqguired Lugic

Accordingly, the authors have adopted the format shown below, and use it
throughout the 1ext for both illustrative programs and student assignments. The
programming specifications begin with the program name and a brief narrative,
followed by a detailed description of the various requirements. Note, too, that the
specification document is entirely self-contained, and that if the person preparing
the specifications has done a complete job, there will be little need for the
programmer to seek additional information.

PROGRAMMING SPECIFICATIONS

Program Name:

Narrative:

Input File(s}:
Iinput Record Layout:
Test Data:

Report Layout:

Processing Reguirements:

Engineering Senicr Program

This program processes a file of student records and prints the name of every student
who is an engineering major with mare than 110 credits,

STUDENT-FILE

See tigure 1.3a

See rFigure 1.3

See Figure 1.3¢

1.
2.

Print a heading iine.

Read a file of student recards.

. For every record, determine whether that student has a major of engineering and has

completed more than 110 credits.

. Print the name of every student who satisfies the requiremenis in item 3 above, Single-

space the ouiput.

Let us imagine momentarily that the student records are physically in the form of manila
folders, stored in a filing cabinet, and further that a clerk is available to do our work. Our
problem is to instruct the clerk on how 1o go through Lhe folders. We would say something
to the following effect;

Repeat steps 1 through 4 until there are no more tolders:

1. Select a folder,

2. Examine the folder to see if that student is an engineering major and has
more than i 10 credits.

3. If the student meets both qualifications, write the student’s name on a
running list.

4, Return the folder to the file cabinet.

Stop

In essence, we have prepared a series of instructions for the clerk to follow. If

our instructions are correct and if they are followed exactly, then the clerk will
produce the desired results.

Chapter ¥ -~ intreduction

A computer program is a set of instructions, written according io a precise

f el arla il vl P T Ryt St st T3l o 4l

I.LE.ILD, WIlCG I.ll_ LUI&I}}U\.LI ll.lLLrl.JLCLJ aiii DUIJDLL:[LU.,LILI._Y CACLULELCD, Ul..U.l.l\C LG
clerk, however, the computer always follows our instructions exactly. In other
words, the computer does what we tell it to do, which is not necessarily what we
want it to do. A human clerk, on the other hand, has a mind of his or her own
and can question or alter erroneous instructiocns. Since the computer does
precisely what it is told, it is imperative that you strive to write logically correct
programs. Accordingly, you must expend signilicani effori prior io aucival coding
to develop a program’s logic correctly. Two common techniques for expressing
that logic are flowcharts and pseudocode.

foweekhart U e

A flowchart is a pictorial representation of the logic inherent in a program. It is the
translation of a problem statement into a logical blueprint that is subsequently
incorporated into the COBOL program. A flowchart to list the engincering students
with more than 110 credits is shown in Figure 1.4,

A flowchart uses blocks with specific shapes to indicate the nature of an
operation. Using Figure 1.4 as a guide, we see that a diamond-shaped block indicates
a decision, a parallelogram depicts input or output, an ellipse shows the beginning
or end, and a rectangle implies straightforward processing. A rectangle with vertical
lines implies that the processing within the rectangle will be expanded into a
flowchart of its own.

To understand the flowchart in Figure 1.4, consider the nature of a READ
statement. The function of a READ instruction is to obtain a record, but there will
always be a point when a READ is altemnpted and no record is found, inai is, when
all the records in the file have already been read. Since one does not know in
advance how many records a file contains, the READ instruction must also test for
the erd-of-file condition. Thus, if a file contains lwa records, it is actually read three
times (once for each record, and once to sense the end-of-file condition).

The flowchart in Figure 1.4 begins with a start block (block 1}, and continues
with various housckeeping blocks. Housckeeping consists of statements that are
done once at the start of processing, for example, opening files (block 2), reading
the first record (block 3), and writing a heading at the start of a report (block 4).
Control then passes through a connector block {block 5} to a decision statement
{block 6.

If the end-of-file has not been reached, control goes to the PROCESS-RECORDS
block, which is expanded in the right side of the figure. Each incoming record is
checked in block 9 to determine if it meets both qualifications. If so, that student’s
name is written to the output report in block 10; if not, contiol goes directly to the
connector in biock 11. (Note that both the true and false branches for the condition
in block 9 meet at 4 single connector in block 11.} The next record is read in block
12, and the PROCESS-RECORDS block is finished. Controt then moves to the left
side of the figure, to the connector in block 5 to the end-of-file test in block 6.
Everntually, when the end-of-file has been reached, control will pass to close files
(block 7}, then to the stop statement in block 8.

To better understand how the lowchart works, we can use the test data of
Figure 1.1 and play computer, by running the data through the flowchart. Execution
begins by opening the files, reading the first record (John Adams), and writing the
heading line. The end-of-file has not been reached, so black & directs flow to block
9, the test for engineering majors with more than 110 credits. John Adams fails the
test, so conirol passes to the connector in block 11, to the READ in block 12,
whereupon the data for Amelia Earhart are read into memeoery, Control flows through

Raequired lLogic

Flowehart 1o Select Engineering Seniors

1 START)

Y

Y

3 READ
FIRST
HECORD

/| WRITE
| HEADING

PROCESS
(RECORDS
e :\

FALSE ENGINEERIN
/mma AND
AIORE THAN

l g \@\c—ﬂfmm

BROCESS
RECORDS

the connector of block 5, to the end-of-file test in block 6, and then to the qualification
test in block 9. Amelia Earhart fails the test, again passing control to the connector
in block 11, to the READ in block 12, at which point Orville Wright is read into
memeory. However, Wright is an engineering major with more than 110 credits, so
he passes the test and his name is written ity black 10,

The data for Georgia O'Keeffe are read in block 12, and control flows once
more to the connector in block 5, to the end-of-file test in biock 6. Realize, however,
that even though O'Keeffe is the last record, the end-of-file condition has not yet
been detected. O'Keeffe fails the qualification test, whereupon control flows to the
READ in block 12. This time the end-of-file is detected so that, when control again
reaches the end-of-file test in block 6, processing will be directed to the CLOSE
FILES and STOP statements in blocks 7 and 8.

Chapter 1 - Introduction

The Flow chart and Test Data

1 Start 1 At beginning of program
2 Open files 1 At beginning of program
3 initial read 1 Reads the first record (Adams)
4 Write heading 1 Al beginning of program
8 Conneclor 5 Enterad five times
& End-oi-iile test 5 Onece for each of four records: once 1o sense
and-of-file condilion
7 Close files 1 Once, before execution stops
8 Stop 1 Executed once, at program’s end
9 Qualifying test 4 Once for each student
10 Write 1 Executed for Wright only
11 Connector 4 Entered four fimes
12 HRead 4 Heads every record but the first, and detects

the end-oi-file condition

Tt is usefui to summarize this discussion by tabulating the number of times
each block in Figure 1.4 is executed. This is shown in Table 1.1

Pseudocode expresses a program’s logic more concisely than a flowchart. One
definition of pseudocode is neat notes to oneself, and since programmers do this
naturally, pseudocode has replaced the traditional flowchart in many installations.
Consider Figure 1.5, which contains identical logic to the flowchart in Figure 1.4,
albeit in a more concise fashion,

As shown in Figure 1.5, the logic of most programs can be divided into three
major portions: iritialization, processing, and termination. Initialization is done
once at the start of processing—for example, opening files, reading the first record
in a file, and writing a heading. This is followed by a series of instructions that are
executed repeatedly, once for each incoming record; e.g., each record is evaluated
for an engineering major with the requisite number of credits. If both conditions are
met, the name will be written on the registrar’s list; if the conditions are not met,

¢ 4.5 Pseudocode

j Open files

¢ Initialization Read first record

1 lWrite heading

DO whilte data remains

g! IF engineering major with more than 110 credits
Processing . ENDI?WE student's name

1 Read next recard
| ENDDO
_— f Clese files i
] Termination I Stop L
| |
H E

A First Look at COBOI

M= O WS ~ o B W N e D

L
2
3
1
5
6
7
8
9

¢ The First COBOL Program

nothing further is done with the particular record. When all of the records in the file
have been read, the loop is finished, and a termination routine is entered to print a
total ot simply stop processing.

Figure 1.5 also contains vertical lines connecting the words IF and ENDIF, and
DO and ENDDO. This 1notation indicates two of the basic building blocks (selection
and iteratiorn) of a discipline known as structured programming which is fully
explained in Chapter 3.

Pseudocode uses instructions similar (o those of a computer language to
describe program logic, but is not bound by precise syntactical rules found in
formal programming languages. For example, the vertical lines referred to previously
are the authors’ convention and do not necessarily appear in the pseudocode of
others. Nor is pseudocode bound by any rules for indentation, which is done strictly
at the discretion of the person using it. The purpose of pseudocode is simply to
convey program logic in a straightforward and easily followed manner.

We proceed to the COBOL prograin in Figure 1.6, which corresponds to the flowchart
in Figure 1.4 and the pseudocode in Figure 1.5. The syntactical rules for COBOL are
extremely precise, and you are certainly nor expected to remember them after a
brief exposure to Figure 1.6, The authors believe, however, that immediate exposure
to a real program is extremely beneficial in stripping the mystical aura that oo often

IDENTIFICATION DIVISION.

PROGRAM-ID.
 AUTHOR.

SENTOR. S _
ROBERT GRAUER. ! S

ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTRO2\SENIOR.DAT'
CRGANIZATION IS LINE SEQUENTIAL,
SELECT PRINT-FILE

~ ASSIGN TO PRINTER.

'DATA DIVISION.

FILE SECTION.

FB STUDENT-FILE
RECORD CONTAINS 43 CHARACTERS
DATA RECORD IS STUDENT-IN.

01 STUDENT-IN.

05 STU-NAME PIC X{25).
05 STU-CREDITS PIC 9(3).
05 5TU-MAJCGR PIC X{15).

file://'A:/CHAPTR02/SENI0R.DAT

Chapter 1 — Introduction

Figure 1.8 (continued)

23 FD PRINT-FILE
- 24 RECORD CONTAINS 132 CHARACTERS
25 DATA RECORD IS PRINT-LINE.
| 76 01 PRINT-LINE PIC X(132).
27
'+ 28 WORKING-STORAGE SECTION.
29 01 DATA-REMAINS-SWITCH PIC X{2) VALUE SPACES.
© 30
31 01 HEADING-LINE. T faia Phvision
32 05 FILLER PIC X{10) VALUE SPACES.
;33 05 FILLER PIC X(12) VALUE 'STUDENT NAME®. !
| 34 05 FILLER PIC X(110) VALUE SPACES. E
'35 |
;36 01 DETAIL-LINE.
37 05 FILLER PIC X(8) VALUE SPACES.
38 05 PRINT-NAME PIC X(25).
39 o5 FILLER PIC A(99) VALUE SPACES. |
.41 PROCEDURE DIVISION.
I a2 PREPARE-SENIOR-REPORT . _
| 43 OPEN INPUT STUDENT-FILE |
| a4 OUTPUT PRINT-FILE. |
;45 READ STUDENT-FILE :
46 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
47 END-READ. ‘
48 PERFORM WRITE-HEADING-LINE.
43 PERFORM PROCESS-RECORDS
50 UNTIL DATA-REMAINS-SWITCH = *ND'.
| 61 CLOSE STUDENT-FILE
| B2 PRINT-FILE.
i 53 STOP RUN.
‘ 54 ;
55 WRITE-HEADING-LINE. LT Frocodure (hvision
56 MOVE HEADING-LINE TO PRINT-LINE.
| 57 WRITE PRINT-LINE.
58
- 59 PROCESS-RECORDS.
60 IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING'
| 61 MOVE STU-NAME TO PRINT-NAME
| 62 MOVE DETAIL-LINE TO PRINT-LINE
| 63 WRITE PRINT-LINE
" 54 END-IF.
65 READ STUDENT-FILE j
| 66 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH |
67 END-READ. i

A Firsr Look at CORBQL

surrounds programming. Further, Figure 1.6 will become easier to understand after
sorme brief explanation.

Every COBOL program consists of four divisions, which must appear in the
following order:

IBENTIFICATION RIVISION The Identification Division contains the
program name and author’'s name.

ENVIRONMENT DIVISTON The Environment Division associates the file
namnes referenced in @ program to the input and
output (1/0) devices recognized by the operating
systeqn.

DATA DIVISION The Data Division describes the record layout of
the incoming record(s) and the location of data
in the generated report.

PROCEDURE DIVISION 'The Procedure Division contains the program
logic, that is, the instructions the computer is to
execute in solving the problem.

Since COBOL is intended to resemble English, you may be able 1o get an
overall sense of what is happening, merely by reading the program. We provide an
intuitive explanation and reiterate that, at this time, you should in no way be
conceined with the precise syntax of the language; thai is, our present intent is to
teach COBOL by example, with the short-term objective of achieving a conceptual
understanding of a COBOL program.

The identification Division

The IDENTIFICATION DIVISION (Lines 1-3) appears at the beginning of every
program. It serves to identity the program (SENIOR) and the author (Robert Grauer),
There is nothing complicated about this division, and it has no effect on the results
of the program.

The Envircnment Division

The ENVIRONMENT DIVISION {lines 5-11) contains the INPUT-OUTPUT SECTION,
which describes the files used by the program. The engineering senior program
uses two files, an input file containing the student records and an output file for the
report. Both of these files are defined in SELECT statements.

The names chosen by the programmer for these files (that is, STUDENT-FILE
and PRINT-FILE) are assigned to logical devices known to the operating system, by
the SELECT statement and associated ASSIGN clause. Line 8, for example, ties the
incomiong STUDENT-FILE to the file SENIOR.DAT; this tells the operating system to
read the file containing the incoming student records from the file SENIOR.DAT.
{(The format of the file name is installation dependent and varies from computer o
computer.) The clause ORGANEZATION 1S LINE SEQUENTIAL is required to properly
process sequential files on personal computers. Mainframe sequential files have a
different format and do not require this clause.

The Date Division

The DATA DIVISION {lines 13-39) describes all data elements used by the program.
it is divided into two sections, the FILE SECTION (lines 14-26} and the WORKING-
STORAGE SECTION {lines 28-39).

Chapter 1 — Introduction

The FILE SECTION contains file description (FD) entries for files previously
defined in SELECT statements. The FD for STUDENT-FILE extends from line 15 to
line 17 and contains clauses that describe the physical characteristics of the file. The
FD is followed by a record description, which defines the various fields within the
record (lines 18-21).

The statements within the record description are preceded by level numbers,
in this exampte, 01 and 05. The level number 01 is special and indicates the beginning
of a record description entry. The fields within a record are defined through a series
of PICTURE clauses (PIC is an acceptable abbreviation), which indicate the type
and séze of the tield. A picture of 9's indicates a numeric field, whereas a picture of
X's signifies an alphanumeric field. The number in parentheses indicates the size
of the field; for example, PIC 9(3) indicates a three-position numeric field,
and PIC X(25) is a 25-position alphanumeric tield. The PICTURE clauses in lines
19-21 of Figure 1.6 are consistent with the record description in the original
problem statement.

The WORKING-STORAGE SECTION {lines 28-39) is used to define any data
names that do notappear in an input or output tile. The programming specifications
called for two distiner print lines (a heading line and a detail line), each of which
contains a different format as per the print layout of Figure 1.3, Accordingly, twa
different 01 entries are defined, HEADING-LINE and DETAIL-LINE, each with a
different layout. The function of DATA-REMAINS-SWITCH will be made clearer
after an examination of the Procedure Division.

‘The PROCEDURE DIVISION (lines 41-67) contains the logic required to solve the
problem. The Procedure Division is divided into paragraphs, with each paragraph
consisting of one or more sentences.

The first paragraph, PREPARE-SENIOR-REPORT, extends from line 42 to line
53. It begins by opening the files, then reading the first student record. The PERFORM
statement in line 48 transfers control to the paragraph WRITE-HEADING-LINE
{lines 55-57), which prints the heading, then returns control back to line 49 in the
PREPARE-SENIOR-REPORT paragraph. This too is a PERFORM statement, which
transfers control to the paragraph PROCESS-RECORDS (lines 53-67), which
processes incoming siudent records until the data file is exhausted.

The IF statement in line 60 determines whether an incoming record meets
both qualifications, that is, whether the student is an engineering major and has
more than 110 credits. If both conditions are met, that student’s name is written to
the output report. The IF statement extends to the END-IF scope terminatorin line
64; that is, if the condition in line 60 is met, every statement between the condition
and the END-IF in line 64 will be executed. Note, too, that three COBOL statements
are required to produce a detail line; the incoming name is moved to the output
name in line 61, the detail line is moved to the print line in line 62, and the line is
written in line 63.

The action of the PERFORM statement is explained with the aid of Figure 1.7.
The PERFORM statement in line 49 transfers contro! to the paragraph
PROCESS-RECORDS, untii DATA-REMAINS-SWITCH = ‘N0, that is, until the data
file is empty. Accordingly, the last staternent of the performed routine is a READ
statement to read the next record. When the end-of-file is reached, the AT END
clause of the READ statement will move 'NO' to DATA-REMAINS-SWITCH to
terminate the PERFORM; the READ statement itself is ended by the END-READ
scope terminator. Control then returns to the statement under the PERFORM
statement (to line 51), which closes the files, and finally to the STOP RUN statement,
which terminates the program.

" Procedure Division Logic

PROCEDURE DIVISION
PREPARE-SENIOR-REPORT
OPEN INPUT STUDENT-FILE
QUTPUT PRINT-FILE.
: READ STUDENT-FILE
: AT END MOVE 'NG" 7O DATA-REMINS-SWITCH
FNN-RFAD
FERFURM WRITE-HEADING-LINE.
PERFGRM PROCESS RECORDS
UNTIL DATA-REMAINS- SWITCH WO

PROCESS-RECORDS
IF STU-CRFONTS » 110 ANE STU-MAJOR = "ENGINEERING

MOVE STU-NAME TO FRINT-NAME
MOVE OETAIL-LINE YO PRINT-LINE
WERITE PRINT-LINE
END-IF
READ STUDENT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH

I
ENE-READ. |

“ DATA- REMAIS- /.___J
< SWITCH =NG? "
N / =

TRUE

CLOSE STUDENT-FILE
FRINT-FILE.
TOP RUN

Figure 1.8 contains test data and the associated output produced by the program in
Figure 1.6. (Five more records have been added to provide additional examples.)
You should be able 1o state the reasons why individual records were not selected for
the outpui repaort; for example, Amelia Farhart and Alex Bell were rejected for the
wrong major and an insufficient number of credits, respectively. (Can you identify
all nine of our famous students?)

Although you are not yet expected to write a COBOL program, you should be able to
follow simple programs like the one in Figure 1.6 intuitively. This section begins a
formal discussion of COBOL so that you will eveniually be able to write an entire
program.

COBOL consists of six language eclements: reserved words, programmer-
supplied names, literals, symbols, level numbers, and pictures.

Reserved words have special significance to COBOL and are used in a rigidly
prescribed manner. They must be spelled correctly, or the compiler will not be able

Chapter 1 — Introduction

y@ 1.8 Test Data and Associated Output

_JOHN ADAMS < 0S0POLTICAL SCI

_AMEUAEARHART _ 120AVIATION .
ORVILLE WRIGHT 1153ENGINEERING
GEORGIA O'KEEFE 125ART
MERIWETHER LEWIS 115TRAVEL
JOHNKENNEDY 115POLITICAL SCI

JALEXBELL _____ O090ENGINEERING |
EMILY DICKINSON OB5LITERATURE

JOHN ROEBLING T1SENGINEERING

STUDENT NAME
CRVILLE WRIGHT

JOHN ROEBLING

to recognize them. The list of reserved words varies from compiler to compiler. A
comprehensive list of reserved words is given in Appendix C. The beginner is urged
to refer frequently ta this appendix for two reasons: {1) to ensure the proper spelling
of reserved words used in his or her program; and (2} to avoid the inadvertent use of
reserved words as programmer-supplied names.

You, the programmer, supply names for paragraphs, data elements, and files. A
paragraph name is a 1ag (o which the program refers, for example, PROCESS-
RECORDS or PREPARE-SENIOR-REPORT in Figure 1.6. Data namesare the elements
on which instructions operate, for example, STU-NAME, STU-CREDITS, and STU-
MAJOR in Figure 1.6. File namesare specified in several places throughout a COBOL
program, but their initial appearance is in the Environment Division, for example,
STUDENT-FILE and PRINT-FILE in Figure 1.6. All programmer-supplied names are
chosen according to the following rules:

1. A programmer-supplied name may contain the letters A to Z, the digits 6 to
9, and the hyphen; no other characters are permitted, not even blanks.

wf

COBOL

!\)

A programmer-supplied name may not begin or end with a hyphen.

3. A programmer-supplied name must be 30 characters or fewer in length.
4. Areserved word may noi be used as a programmer-supplied name.

5. Data names must contain at least one letter.

6. Paragraph names may be all numeric.

Table 1.2 illustrates examples of the rules associated with programmer-suppiied
fidmes,

Programmer-Suppiied Names

SUM Invalid —rcsorved word

SUM-OF-X Vahd

SUM OF X Invalid—contains blanks

SUn-OF-X Invalid-—ands with a hyphen
SUM-CF-ALL-THE-XS Vaiid
SUM-OF-ALL-THE-XS-IN-ENTIRE-PROGRAM Invalid--more than 30 characters
GROSS-PAY-IN-§ Invalid—contains a §

12345 Vaiid as a paragraph name but invalic

4% & dala name

A literalis an exact value or constant. Literals are of two types, numeric (a number}
or nonnumeric (a character string). Literals of both types appear throughout a
program and are used tc compare the value of a data name to a specified constant,
Consider line 60 of Figure 1.6:

IF STU-CREDITS = 110 AND STU-MAJOR = 'ENGINEERING'

In the first portion of the staternent, STU-CREDITS is compared to 110, a numeric
literal. Nurneric literals adhere to the following rules:

1. A numeric literal can be up to 18 digits long.
2. A numeric literal mhay begin with a leading (leftmost) plus or minus sign,

3. A numeric literal may contain a decimal point, bur it may notend with a
decimal point.

The second part of the IF statement contains a nonnumeric literal,
‘ENGINEERING’. Nonnumeric literals adhere o the following rules:

1. A nonnumeric literal is enciosed in apostrophes (or quotation marks) as
specified by the compiler.

2. Ancnnumeric literal may be up to 160 characters in length.

3. A nonnumeric literal may conlain anything, including blanks, numbers, and
reserved words, but not another apostrophe (or quotation mark).

Examples of both nuumeric and nonnumeric literals are shown Table 1.3.

Chapter 1 — {niroduction

Yiadsiow 1.8 Numeric and Nonnumeric Literals
123.4 Valid numeric literal
‘123.4' Valid nonnumeric literal
+123 Valid numeric iiteral
IDENTIFICATION DAVISION! Valid nonnurneric literal
123, Invalid numeric teral—-may not end with a decimal point
123- Invalid numeric literal-—the minus sign must be in the lefimost
position

Symbols are of three types—punctuation, arithmetic, and relational, as listed in
Table 1.4.

5 Symbaols

Punciuation . (Jenctes end of COBOL entry
Delineates clauses

Sets off nonnumeric Hterals
{7 Epcloses SUDSCTIDNS Ul eXpressung
Arithmetic + Addition
- Subtraction
* Muhiplication
Division
= Exponentiation
Retational = Equal to
> Greater than
< Less than
> Greater than or equal to
<= i.ess than or equal to

The use of relational and arithmetic symbols is described in detail later in the
text, beginning in Chapter 4. A period terminates an entry, and its omission (in the
absence of a scope terminator) can cause difficulty. A comina, on the other hand, is
entirely optional, and its omission {or inclusion) has no effect whatsoever on the
program. The use of commas is discouraged, however, as a comma can be mistaken
for a period on older printers, which tend to blur the output.

Level numbers describe the relationship of itemns in a record. For example, under
STUDENT-FILE in Figure 1.6, there was a single 01-level entry and several 05-level
entries. [n general, the higher (numerically) the level number, the less significant
the entry; thus 05 is less important than 01. Entries with higher numeric values are
said to belong to the levels above them. Thus, in Figure 1.6 the several 05-level
entries belong to their respective 01-level entries,

A Seconag Look a1 COBOL

PG

BE Sleusses

Pictures describe the nature of incoming or ouigoing data. A picture of 9's means
the entry is numeric; a picture of X's means the entry is alphanumeric, that is, it can
contain ietters, numbers, and special characters. (Alphabetic pictures, with a picture
of A, are seldom used; even names can contain apostrophes or hyphens, which are
alphanumeric rather than alphabetic in nature.) Level numbers and pictures are
discussed more fully in Chapter 4.

Figure 1.9 contains a relabeled version of the Engincering Senior Program and
represents a second look at COBOL. This time our intention is to emphasize the
various COBOL elements as they appear in a complete program.

t.¢ The Engineering Senior Program (A Secoend Look)

1 IDENTIFICATION DIVISION.

2 PROGRAM- 1D. SENIOR.

3 AUTHOR. ROBERT GRAUER.

4

5 ENVIRONMENT DIVISION.

6 INPUT-QUTPUT SECTION.

7 FILE-CONTROL.

8 SELECT (STUBENT-FILE". ASSIGN TO ‘A: \CHAPTROZ\SENIOR DAT'.

5 ORGANIZATION 1S LINE SEQUENTIAL. e o

10 SELECT PRINT-FILF o

11 ASSIGN TO PRINTER. 7 ‘
12 T

13 DATA DIVISION. e

14 FILE SECTION. T

15 FD {STUDENT-FILE -~

16 RECORD CONTAINS 43 CHARACTERS

17 DATA RECORD 1S STUDENT-IN.

18 01 STUDENT-IN,

19 105 STU-NAME ™ o PIC X(25). ! e o

20 05 STU-CREDITS PIC 9(3). |-

21 105 STU-MAJOR _PIC x{15).

22
23 FD PRINT-FILE
24 RECORD CONTAINS 132 CHARACTERS
25 DATA RECORD IS PRINT-LINE.

26 01 PRINT-LINE PIC X{132). e Beratved e :
57 I - s
28 ‘WORKING-STORAGE SECTION.}-—""" ’
29 01 DATA-REMAINS-SWI1TCH PIC X(2) VALUE SPACES.

30

file://A:/CHAPTR02/SENI0R.DAT'

Chapter 1 — intioduction

Figurs 1.8 (continued)

@
|
|

| 01 HEADING-LINE.
Y 05 FILLER PIC X{10) VALUE SPACES.
E 05 FILLER PIC X{12) VALUE *STUDENT NAME®.
L 05 FILLER PIC X{(110) VALUE SPACES. ;
35 j
L3 01 DETAIL-LINE. ;
Y, 05 FILLER PIC X(8) VALUE SPACES. %
f38 05 PRINT-NAME PIC X{25). ;
P39 05 FILLER PIC X(99) VALUE SPACES. ;
: 40 . L
4 [PROCEDURE DIVISION. - :
42 PREPARE-SENIOR-RFPORT . ST e Bl von
43 OPEN INPUT STUDENT-FILE :
44 OUTPUT PRINT-FILE.
45 READ STUDENV-FILE
46 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
47 END-READ.
b8 PERFORM WRITE-HEADING-LINE.
P49 [SERFORM PROCESS-RECORDS b _
[50 UNTIL DATA-REMAINS-SWITCH = 'NO'. g 5 5
51 CLOSE STUDENT-FILE ;
52 PRINT~FILE. e g
53 STOP RUN. T ;
54 e ;
55 WRTTE-HEADING-LINE, o
56 MOVE HEADING-LINE TO PRINT-LINE.
L 57 WRITE PRINT-LINE. .~
| 58 /’// R i
.59 [PROCESS-RECORDS. e ,
E60 IF STU-CREDITS >iT107AND STU-MAJOR = |"ENGINEERING'+
! MOVE STU-NAME TO PRINT-MAME
62 MOVE DETAIL-LINE TO PRINT-LINE
63 WRITE PRINT-LINE i
64 END-TF. i
65 READ STUDENT-FILE
65 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
67 END-READ.

Observe, for example, the definition of a file name, STUDENT-FILE, in the
SELECT statement of line 8, and its subsequent appearance in the FD ofline 15, and
the OPEN, READ, and CLOSE statements of lines 43, 45, 51, and 65. Notice the
definition of the various data names in lines 19-21 (accomplished through level
numbers and PICTURE clauses) and the subsequent appearances in the Procedure
Divisicn. Note the consistency of the paragraph name in the PERFORM statement
of line 49 and the paragraph header in line 59. Observe that literals appear in the IF
statement of line 60 and in the AT END clause of the READ statement (lines 46 and
66). Finally, note the abundant use of COBOL reserved words {(PROCEDURE,
DIVISION, WORKING-STORAGE, SECTION, and so on)j throughout.

immary

i

Ly

'3
M

Py
! \"?’

AHY

Foplnts to Resmrember

A field is a basic fact, such as the name, address, major, grade point
average, or number of completed credits. A record is a set of fields, and a
file is & set of records.

Every computer application consists of input, processing, and output.

The computer cannot think for itself but must be told precisely what to do.
This is done through a series of instructions known as a program.

The computer does not do anything that a human being could not do if
given sufficient time. The advantages of a computer stem from its speed

and accuracy.

Aflowchart and/or pseudocode represent the logic embodied in a computer

prograrm.

2 Every COBOL program contains four divisions, which appear in the

sequence: Identification, Environment, Data, and Procedura.

COBOL. contains six language elements; reserved words, programimier-

supplied names, literals, symbols, level numbers, and pictures.

Koy Words and Concepis

Alphabetic data
Alphanumeric data
Arithmetic symbol
End-of-file

Field

File

Flowchart
Initialization

Level number
Nonnumeric literal
Numeric data
Numeric literal
Paragraph

COEOL Elarments

DATA DIVISION
ENVIRONMENT DIVISION
FILE SECTION
IDENTIFICATION DIVISION

Processing
Programmer-supplied name
Programming specifications
Pseudocode

Punctuation symbol

Record

Record description
Relational symbol

Reserved words

Scope terminator

Symbol

Termination

Test Data

INPUT-OUTPUT SECTION
PICTURE

PROCEQURE DIVISION
WORKING-STORAGE SECTION

Chapter 1 -~ Introduction

1. All computer applications consist of . , and

2. The divisions of a COBOL program appear in the order:

and
3 A is a pictorial representation of the logic in a program.
4, may be described as neat notes to oneself.
5. A diamond-shaped block in a flowchart indicates a
6. have special significance to COBOL and
must be used in a rigidly prescribed manner and be spelfed correctly,
7. A - may contain the letters

Ato Z, the digits G to 9, and the hyphen.
8. *is the COBOL symbol for

9. = =, and < are examples of symbols in COBCL.

16, A .. is a set of records.

11, Areccrd consists of one or more

12. A is a set of instructions i a computer,

1. Nonnumeric literals may not contain nurnbers.

Numeric fiterals may not contain letters.

!’\')

A data name may not centain any characiers other than letters or numbers.
The rules for forming paragraph names and data names are exactly the same.
A data name may not censist of more than 30 characters.

A nonnumeric literal may not contain more than 30 characters.

A numeric titeral may contain up to 18 digits.

There are four divisicns in a COBOL program.

The givisions of a COBOL program may appear in any order.

cC e ® N & ;O R w

Data description appears in the Identification Division.

puy

. A record contains one or more fields.

—
—_

. Afileis a set of records.

[
W

. Computers can think for themselves.

Mo statement in a computer program may be executed more than once.

[C—,
SIS

A rectangle is the standard flowchart symbol for a decision biock.

—_
(w2}

. Reserved words may appear in a nonnumeric fiteral.

—
~

Reserved words may be used as data names.

Probiems

18. Pseudocode sérves the same function as a flowchart.
19. Pseudocode must be written according to precise syntactical rules.

20, The COBCL compiler needs io be installed every time a program is éxecuted.

1. Indicate whesther the eniries below are valid as data names. If any entry is invalid,
state the reason.
4. NUMBER-CF-TIMES
b. CODE
o 12345
d. ONE TWO THREE
g, IDENTIFICATION-DIVISION
f. HDENTIFICATION
g. HOURS
b GROSS-PAY
I GROSS-PAY-IN-3

2. Classily the entries below as being vahd or invalid literals. For each valid entry,
indicate whether it is numeric or nonnurmeric; for each invalid entry, state why il Is
invalid,

567

. 567

5. -he7

d. +567

g +567.

f. 'B&7

g. ‘FIVE SIX SEVEN'

h. 567

i. BB7-

j. 567+

BT+

oy oo

I

-

(0

. Which division{s) contain paragraph names?

. Which division(s) contain the SELECT statement(s)?
. Which division(s) contain lavel numbers?

. Which division(s) contain data names?

® o 0 o w

. Which division{s} contain reserved words?
f. Which division{s} contain PICTURE clauses?
g. Which division{s) do not contain fite names?

4. Given the COBOL program in Figure 1.8, indicate what changes would have to be
made if
a. We wanted music students rather than engineering students.
b. We wanted students with 60 or fewer credits,
¢. The student major was contained In celumns 60-74 of the incoming record.
d. We wanled engineering students or students with 110 credits or more.
MNote: Treat parts (a), (D), (c), and (d) independently.

Chapter 1t — Introduction

5. Which division in a COBOL program contains
a. The File Section?

. Statements to open and close files?

. The description of incoming data?

. The description of outgoing data?

. The author's name?

. The program’'s name?

g. Staterents to read information?

h. Statements to write information?

o Q OO

—_

6. Your programming supervisor has drawn a flowchart for you to cede. He lefi the
flowchart on his dining room table at home, and unfortunately his hree-year-old
son, Benjy, cut it up into pieces with a pair of scissors. Yow supervisor has
collected the pieces {shown in Figure 1.10) and has asked you to rearrange them
properly intc a correct flowchart; do so. The flowchart is (o read a file with each
record containing three unequal numbers, A, B, and C. Write cut the greater of the
two sums (A + B) and (B + C) for each record only if A is iess than 50. Deveiop the
equivalent pseudocaode.

7. World Wide Sales, inc., wishes to promaote one of its employees 16 haad the South
American Division. The selectad amployee must speak Spanish, be 40 or younger,
and hoid a coliege degree. The programming manager has prepared the necessary
flowchart (see Figure 1.11). but unfortunately Benjy and his scissors got to it first
{see Problem 6). Your job is fo put the flowchart together. Note that there may be
more than one employee who qualifies for the position. Accordingly, the flowchart
includes the necessary logic to count and print the number of gualified employees
and o print the name of every such employee. Develop the equivalent pseudocode.

8. Figure 1.12 contains a COBOL program to pracess a file of employee records and
print the names of programmers under 30. Using Figure 1.6 as a guide, restore the
missing information so that the program wili run as intended.

Flowchart Blocks for Problem 6

ADDATOB
GIVING D

»

READ

FIRST WRITEE

RECORD

vl

ADDBTOC
GIVING E

NEXT
RECORD

START

May be used more
than once

Problems

S5TOP

START

lowchart Blocks for Problem 7

SPEAKS
SPANISH?

WRITE
NUMBER-
QUALIFIED

2H08 10 /

COLLEGE READ NEXT
NURBER RECORD

DEGREE? QUALIFIED /

QY ®

ADD 1 70 / WRITE NAME / READ
NUMBER OF QUALIFIED EIRST
QUALIFIED May be used mare EMPLOYEE RECORD
than anca { {
c.i2 COBOL Listing for Problem 8

i IDENTIFICATION DIVISION.

2 PROGRAM-ID. FIRSTTRY.

3 : GRAUER.

4

5 ENVIRONMENT DIVISION.

6 INPUT-OUTPUT SECTION.

7 FILE-CONTROL.

8 SELECT EMPLOYEE-FILE ASSIGN 70 ‘A:\CHAPTRO2\FIRSTTRY.DAT'

9 ORGANIAZATION IS LINE SEQUENTIAL.

10 : PRINT-FILE

11 ASSIGN 7O PRINTER.

12

13

i4 FILE SECTION.

15 FD EMPLOYEE-FILE

1 RECORD CONTAINS 44 CHARACTERS

i7 DATA RECORD IS EMPLOYEE-RECORD.

18 01 EMPLOYEE-RECORD.

19 05 EMP-NAME PIC X{25).

20 05 EMP-TITLE PIC X(10),.

21 05 EMP-AGE PIC 99,

22 05 FILLER PIC XX.

23 05 EMP-SALARY PIC 9(5}.

file:///CHAPTR02/FI

Chapler T — introduction

Figure 1.12 COBOL Listing for Probiem 8 (continuesd)

25 FD e f
L 26 RECORD CONTAINS 132 CHARACTERS ;
27 DATA RECGRD IS PRINT-LIKE. §
28 0! PRINT-LINE.
29 05 FILLER PIC X. §
30 05 PRINT-NAME R ;
31 05 FILLER PIC X(2). 5
iz 05 PRINT-AGE PIC 99. :
33 05 FILLER PIC X(3). ;
34 05 PRINT-SALARY PIC 9(5).
35 05 FILLER PIC X(94).
36
38 01 END-DF-DATA-FLAG PIC X{3}
39 PROCEDURE DIVISION.
40 MAINLINE.
41 5 .. INPUT EMPLOYEE-FILE
42 QUTPUT PRINT-FILE.
43 MOVE SPACES TO PRINT-LINE.
{44 MOVE 'SALARY REPORT FOR PROGRAMMERS UNDER 30° TO PRINT-LINE.
E 45 WRITE PRINT-LINE
N 1 AFTER ADVANCING 2 LINES.
Y READ EMPLOYEE-FILE
L 48 AT END MOVE "YES' TO END-OF-DATA-FLAG
49 END-READ.
50 - PROCESS-EMPLOYEE-RECORDS
51 UNTEL END-GF-DATA-FLAG = 'YES'.
52 CLOSE EMPLOYEE-FILE
53 PRINT-FILE,
54 STOP RUN.
55
56 PROCESS-EMPLOYEE-RECORDS. i
57 IF EMP-TITLE = 'PROGRAMMER[juHrEhP-AGE < 30
: 58 MOVE SPACES TO PRINI-ETNE
i 59 MOV E EMP-NAME,Ia’ﬁﬁINT-NAME
i MOYE .. = TO PRINT-AGE
61 MOVE EMP-SALARY TO PRINT-SALARY
62 WRITE PRINT-LINE
63 END-IF.
64 READ EMPLOYEE-FILE _,,/”7
65 AT END MOVE -~ TO END-OF-DATA-FLAG
66 END-READ.

Overview
From Coding Form fo Computer
The COBOL Coding Form
uUse of an Editor
The Compile, Link, and Execute Sequence
Learning by Doing
Errors in Entering the Program
Errors in Operating Sysiem Commands
Errors in Compilation
Errors in Execution
Errors in Data Input
Evolution of COBOL
There's Always a Reason
Summary
Fill-in
True/False
Problems

Chapter 2 — From Coding Form to Computer

OBJECTIVES

OVERVIEW

After reading this chapter you will be able to:

#% State the rules associated with the COBOL coding sheet, and enter a
program appropriately.

Distinguish between compilation and execution; describe the function of a
link program.

oo

Describe the environmental differences between a PC and a mainirame as
they relate ta execution of COBOL programs.

Compile, link, and execute a COBCOL program.

Find and correct simple errors in compilation or execution.

This chapter continues with the engineering senior program ot Chapter 1,
describing how to aciuaily run a COBOL program. We discuss the COBOL
coding form and its associated rules, the use of an editor (or word processor} to
create COBOL programs and/or data files, and the procedure for submission to
the computer. We describe the compile, link, and execute sequence. We also
ptepare you for the errors you will inevitably make, discuss fundamentals of
debugging, and alert you to the subtle differences between the two standards in
use today, COBOL-74 and COBOL-85.

At the conclusion of the chapter we ask you to run the engineering senior
program of Chagpter 1. Seeing is believing may e a cliché, but itis only after you
have seen output from your own program that the material truty begins to make
sense. Suffice it to say then, that the sooner you are on the computer, the sconer
you will appreciate the subtleties inherent in programming.

Form to
Computer

Chapter 1 ended with presentation of a completed COBOL program, and a discussion
of the elements that make up the COBOL language. The program, however, is not
yet in a form suitable for execution on the computer, and much has to be done in
order for this to be accomplished. That is the overriding objective of this chapter.

The flowchart in Figure 2.1 depicts the various steps in solving a problem
through use of a computer. The first step is to obtain a clear statement of the
problem, containing a complete description of the input and desired output. The
problem statement should also contain detailed processing specifications. It is not
enough, for example, to say calculate a student’s grade point average; instead the
method for calculating the average must be provided as well.

Once the input, output, and processing specifications have been enumerated,
a hierarchy chart (see Chapter 3) is created, then a flowchart or pseudocode is
developed. Careful attention to these steps will simplify the subsequent program
and increase the likelihood it will be correct.

Coding is the translation of the hierarchy chart, flowchart, and/for pseudocode
into COBOL. Coding must be done within the well-defined rules of COBOI. regarding

From Coding Ferm to Qomputer

Figure 2.4 The Programming Process

i
(START) {
Y ENTER
TEST DATA :
DBTAIN ;
PROGRAM F
SPECS \
¥ PREPARE
CONTROLE
BEVELOP A STATEMENTS
HIERARCHY | b S
CHART _{
e J A
. 2 A
DEVELOP A :{
FLOWEHART OR X
FSELDOCODE /" ~]
. REVISE ,
< COMPILATION ™ COReL
v WRORS? _“TRUE PROGRAM
S — /-‘ ;
ENTER PROGRAM FALSE :
OM CODING |
SHEETS ;
e :
}
w 5
i
ENTER FHOGXHAM i
USING TEXT ‘ :
E0{TOR EXECUTION EB%'SLE
- ERRORS? PROGRAM
Q Y
(STOP)

the placement of various statements in specific areas of the coding form. After
coding, the program is entered into a file suitable for input to a computer through
use of an editor.

The program is then submilted to the computer in conjunction with a set of
controf statements. The latter provide information to the operating system as to the
location of the COBOL program and/or its associated data. The control statements
vary greatly from installation to instaliation.

Next comes compilation in which ithe COBOL program is translated into
machine language. Initial attempts at compilation are apt to identity several errors,
due to misspellings, missing periods, misplaced parentheses, etc. Corrections are
made, and the program is recompiled. Only after the compilation has been
successfully completed can we proceed to execution.

During execution the computer does exactly what it was instructed to do,
which may be different from what you want it to do. For example, if OR were
substituted for AND in line 60 of the engineering senior program, the program
would select either engineering majors or seniors. Lither way, it would function
differently from the original, logically correct version, although the program would

Chapter 2 — From Coding Form to Compuler

still compile cleanly. Corrections are made, the program is recompiled, and testing
continues.

The presence of the two decision blocks in Figure 2.1 indicates the iterative
nature of the entire process. Few, if any, programs compile correcily on the first
try—hence the need to recode specific statements. Similarly, programs may not
execute properly on the first atternpt, and thus the need to revise the program,
recompile, reexecute, and so on.

3 s
g

The COBOL Soding

i

The COBOL compiler is very particular about the information it receives, and requires
a program to be written within its well-defined syntax, For example, division and
section headers are required to begin between columns 8 and 11, whereas most
other statements begin in or past column 12. There are additional rules for
continuation (what happens if a staternent does not fit on one linej, comments,
optional sequencing of source statements in columns 1-6, and program identification
in columns 73-80.

The rules of the coding sheet are summarized in Table 2.1, and illustrated in
Figure 2.2. The laiter shows completed forms for the engineering senior problem of
Chapter 1. Several features in Figure 2.2 bear mention. Note in particular the wavy
line under various PIC entries to indicate that identical information is to be entered
on subsequent lines. Of greatest import, however, is the conformity between the
entries in Figure 2.2 and the COBOL requirements of Table 2.1.

Coding sheets are not mandatory and you can use ordinary paper instead.
You will find, however, that programining is much easier, if you are well organized.
A good start is to have the program neatly entered in appropriate columns before
sitting down at the computer.

Uise of an BEditor

Once a program has been written on coding sheets, it is entered through an editor
(or word processor) into a file for subsequent input to the computer. In all likelihood
you are already familiar with a word processor, and can use that to create and edit
COBOL programs as well. Accordingly, be sure you can do all of the following:

1. Save the program as an unformatted (ASCII text)] file, with a file pame of your
own choosing, consistent with the computer on which you will execute the
program.

2. Retrieve the file, then resave it after making additional modifications.

3. Toggie between the insertion and replacement modes to change characters
within a statement, and/or to insert and/or delete statements within a
program.

4. Print alisting of the file.
You will also find it useful to learn the commands to:

I. Settabs to move to designated columns; for example, columns 8 and 12 for
the A and B margins, respectively.

2. Search and/or replace character strings.

3. Move to specified places within the program; for example, the beginning or
end, a particular line, the start of the Procedure Division, and so on.

The availability of an on-line editor facilitates programming to an extent that
was unimaginable to tens of thousands of COBOL programmers of the 1960s and

From Coding Form o Compuier

Rules for lhe COBOL Coding Form

-6 Optional sequence numbers: |f this fisld is coded, the compiter performs a segquence check on incoming
COBOL statements by Hagging any staternents aut of order. Although some cammercial installations
encourage this option, we advize against it, especially since you are entering your own programs, and the

more you type, the more chance for error.

4 A asterisk in colunn 7 indicaies a comiment. wh
titerals (described turther an page 180 Commar
e source listing bui are otherwise ignored.

a hyphen is used for the confinuation of nonnumeric
S may appear anywhare in 3 prograny, they are shown on

8-11 Known as the A margin; Division headers, section headers, paragraph rames. FD's, and 01's all begin in the
A margin.
1272 Known as the 8 margin, All remaining entries bogit in or pas* column 12, COBOL permits consideranie

flexibility here, but individual instaliations have their own requirements. We, for example, begin PICTURE
clauses in the same column. for example. column 37, for better readabifity. (We shall discuss this further in
Chapter 7}

73-80 Program identification a second oplional field, whict 15 ignored by the compiler. Different instailations have
different standards regarding use of this fieid

The COBOL Coding Form

F

| [i e . 'ilﬁa T

ROBERT GRAUER e 9/10/93 | o | L

E |) o ZOE0H Staisl’nsn’l V o

% D‘;E_Mﬂ F!LATI'ON BIVISION | Iﬂ S S ot

A --IDI i SENIOR. . | : :

; el AU U1} 0] ROBERT GRAUER L ' '

L _wlﬁ_ ENVIRGNMENT B 510N, jﬁ o

b | LNPUT -OUTPUT SECT] ' |

; e | FILE=COMTROL. | | ; :
o | SELECTT ﬁ?&DEH:‘ A \chPTRcz\SEhiOR 3

SeLECT dn;wfﬁr |

: S Asgleu
DATA th 510&

Chapter 2 — From Codiag Form to Computer

sy (continued)
! pogam SENIOR o o Poquastedty - Page 2 o 3 T
E progrmmer ROBERT GRAUER vae 9/16/9% lentiteation ‘L] ‘; ‘ ‘ | &
e i o T conoL sutement %
| ala Gi7ik | ‘

early 1970s. COBOL itself is over 30 years old, and for much of its existence the
punched card and batch processing (often with turnaround times of several hours
or more} was the way in which programs were submitted. Students today are far
more fortunate in the available technology, taking for granted the ability to execute
a program marny times in a single session, instead of having to wait hours (or days)
to retrieve a single run, wai{ hours more for the next run, etc.

The material on the coding sheet and use of an editor is straightforward, and should
pose little difficulty. The execution of a COBGL program, however, is more complex,
and is explained in conjunction with Figure 2.3. The figure shows the execution of
three distingt programs, a cempiler, linker (or linkage-editor on IBM mainframes),
and load module, each of which Is necessary to produce the list of engineering
seniors. Realize, too, that the process described in Figure 2.3 is required for any
COBOL program, even one as simple as the engineering senior example.

http://STUDE.Nl

From Coding Forim to Compuler

Z.F {continued)
ng;a;ﬁ” ”S;NlOR = Requeste by Page 3 o 3
| Frogrammar ___RO_SERT GRAUER ve 9 f10/93 Mertitcation i | ‘ E ' g w
Sequence i :

A B

COBOL Statement I

TE THEADTNG- LTN
MOVE HEADING

|
o
LM

RIN

The procedure begins with the COBOL compiler, a program that accepts a
COBOL {(source) program as input, and produces a machine-language (object)
prograin as output. The result of the compilation, the object program, is input into a
second program called the linker, that combines the object program with subroutines
and other object modules to produce a load module. Execution of the compiled
COBOL program takes place in the third step as the load module accepts input daia
and produces an output report.

The execution of the various programs in Figure 2.3 does not happen through
wishtul thinking, but through specification of commands to the operating system to
describe these programs and their associated data files. Every operating system has
its own specific commands, but the underlying concept is the same, namely that
three different programs (a compiler, linker, and load module) are required. It will
be necessary, therefore, to learn the commands for your particular configuration in
order to compile, link, and execuie a COBOL program !

1. Appendices A and B describe the Micro Focus Personal COBOL for Windows that may accompany this
text.

Chaplter 2 — From Coang Form 1o Computer

Figure 2.3 Compile, Link, and Execute Sequence

T “31
COBOL !
STATEMENTS I |
e A PROGRAM
LISTING
L T
COMPILER
____________________________ i CTTT
N——
ORJECT
JU— _ MODILE
*"—w_ ’/]
SUBROUTINE | !
LIBRARIES -
| LINKER P LOAD MODULE :

OTHER OBJECT
MODULES
. J yd

S— A —

OQUTPUT
REPORTS

"

I
fm——3o{ EXECUTION
INPUT DATA. |

_

arving
Doing

One learns by doing. This time-worn axiom is especially true for programming. We
have covered a lot of material since you first began reading Chapter 1. Now ii is time
to put everything together and actually run your first program. Enter the program
on the coding sheets in Figure 2.2, using the appropriate editor. Prepare the necessary
control statements for the operating system. Create your own test datd, or use
Figure 1.8a. Submit the job and reirieve your output.

Woe helieve—in fact we are very sure—that afier you receive your first computer
printout, many things will fall into place. Nevertheless, the first program is in many
ways the most difficult you will attempt, and you should be prepared for problems
along the way. The difficulty is not in the program’s complexity (the engineering
senior program is logically trivial), Nor is it in the COBOL syntax, in that the program
uses only a fraction of the COBOL features you will eventually employ. The problems
arise in interacting with the computer, using the editor, entering the proper
commands to the operaiing system, and so on. Murphy’s Law is perhaps the most
cloquent statement of what to expect, and thus you should be prepared for any or
all of the ensuing errors.

Learning by Doing

S

‘The errors that occur as you enter the program are potentially the most damaging,
especiaily if you spend hours entering the program and then forget to save it, save it
incorrectly, or delete it unintentionally. A suggested course of action for your first
attempt is to enter only the first two lines of the program, save these, log off the
system, then log on and retrieve the file. In this way you are sure you know how to
use the editor. Other frequent erross are (o enter information in the wrong columns,
to misuse a tab key, and so on.

b B o e s < s i
LR LOwrnTiRnds

=
=47

The syntax of operating system commands has to be followed exactly, in order for
the system to do your bidding. Simple mistakes result in baffling errors; for example,
Bad command or file name, when you misspell an MS-DOS command, and/or fail
to indicate the proper subdirectory where the command is located. In similar fashion
the control statements submitted on a mainframe must be syntactically correct, or
everything else will fail. invalid job streams result in the system being unable to
axecite the job, leaving you with the most frustrating of all messages, fob not run
due to JCL error.

A compilation error occurs whenever you violate a rule of COBOL, for example,
misspelling a reserved word or misplacing a period. The result of the error is that the
compiier is unabie {0 trapslate a portion of the COBOL. program to machine language,
and any subsequent attempt at execution will (most likely) be incorrect.

Consider, for example, Figure 2.4a, which contains a slighily modified version
of the lingineering Senior 'rogram of Figure 1.6, in which lines 5964 have been

Engineering Senior Program with Compilation Errors

1 IDENTIFICATION DIVISION.

2 PROGRAM-1D. SENIORCE.

3 AUTHOR, ROBERT GRAUER.

a

5 ENVIRONMENT DIVISION.

6 INPUT-0UTPUT SECTION. ;
7 FILE-CONTROL.

8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTEROQ2\SENIOR,DAT'
9 ORGANIZATION IS LINE SEQUENTIAL.

10 SELECY PRINT-FILE

11 ASSIGN TO PRINTER.

12

13 DATA DIVISION.

14 FILE SECTION.

15 FD STUDENT-FILE

16 RECORD CONTAINS 43 CHARACTERS

17 DATA RECORD IS STUDENT-IN.

18 01 STUDENT-IN.

05 STU-NAME PIC X(25}.

=
o

file://'A:/CHAPTER02/SENI0R.DAT'

A

Figure 2.4 (continued)

Chapter 2 — From Coding Form fo Computer

20
21
22
23
24
25
26
27
28
29
i 30
P31
32
33
34
35
36
37
38
39
40
41
1z
43
44
15
46
47
48
49
50
51
52
53
54
55
56
57
58

g

05 STU-CREDITS PIC 9(3}.
05 STU-MAJOR PIC X(15).

FD PRINT-FILE
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-LINE.
01 PRINT-LINE PIC X{132)}.

WORKING-STORAGE SECTION.
01 DATA-REMAINS-SWITCH PIC X(2} VALUE SPACES.

0% HEADING-LINE.

05 FILLER PIC X{10} VALUE SPACES.
05 FILLER PIC X(12) VALUE 'STUDENT NAME'.
05 FILLER PIC X(110) VALUE SPACES.

01 DETAIL-LINE.

05 FILLER PIC X({8) VALUE SPACES.
05 PRINT-NAME PIC X(25).
05 FILLER PIC X(99) VALUE SPACES.

PROCEDURE DIVISION.
PREPARE -SENIOR-REPORT .
OPEN INPUT STUDERT-FIL
OUTPUT PRINT-FILE.
READ STUDENT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
END-READ.
PERFORM WRITE-HEADING-LINE.
PERFORM PROCESS-RECORDS
UNTIL DATA-REMAINS-SWITCH = 'NO'.
CLOSE STUDENT-FILE
PRINT-FILE.
STOP RUN.

WRITE-HEADING-LINE.
MOVE HEADING-LINE TO PRINT-LINE.
WRITE PRINT-LINE.

e Parioc imissing aiter paragraph header

e

PROCESS-RECORDS

60
61
62

IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING'
MOVE STU-NAME TO PRINT-NAME
MOVE DETAIL-LINE TO PRINT-LINE

64
65
66
67

_WRTE PRINT-LINE.-o

END=TF.

READ STUDENT-FILE
AT END MOVE 'NO° TO DATA-REMAINS-SWITCH

END-READ.

P O T
17 cefore ENO-IF tarrvinaion

ta) COBOL Listing

Ltearning by Coing

Bigure 2.4 [(continued)
% e COSH, srmiam A S
L LINE ERR# LVl ERROR TEXT !
t 160[0138 W Period assumed before 'IF'

‘6310787 E Undefined symbol *WRTE'

%ﬁﬁjﬂﬁ% E Mo corresponding active scope for ‘END-IF'

seniorce has 1 Warning + 2 E Level messages

S

changed to produce compilation errors, Figure 2.4b shows the resulting compiler
diagnostics. The error message associated with line 60 is caused by the missing
period {afier the paragraph header) in line 59. The diagnostic in line 63 resulted
from misspelling a reserved word, and the diagnostic in line 64 is produced by the
superflucus period in line §3.

Compiler diagnostics arc discussed tully in Chapter 6. Corrections are made,
and the program is recompiled. Only after the compilation has been successfully
completed should we proceed to execution.

Evrers in BEreoution

Execution errors occur after compilation and are generally due 1o errors in logic.
Figure 2.5a contains yet another version of the engineering senior program in
which the credits test was deliberately omitted in line 60. The program is syntactically
correct and will compile without error; it is, however, logically incorrect and hence
the associated output in Figure 2.5b is wrong. (Review the original program
specifications and test data; Alex Bell should not be selected because of an insufficient
numnber of credits.)

Figure 2.8 Enginesring Senior Program with Executicn Errors

1 IDENTIFICATION DIVISION.
2 PROGRAM-1D. SENIOREE. :
3 AUTHOR. ROBERT GRAUER, j
4 7
5 ENVIRONMENT DIVISION. ;
6 INPUT-OUTPUT SECTION. ?
7 FILE-CONTROL. :
8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTROZ\SENIOR.DAT' ;
9 ORGANIZATION IS LINE SEQUENTIAL. %
10 SELECT PRINT-FILE :
11 ASSIGN TO PRINTER. §
12

DATA DIVISION.

—
o

file://'A:/CHAPTR02/SENIOR.DAT'

Chapler 2 — From Coding Form to Computer

Eigure 2.8 (continued)

14 FILE SECTION. g

15 FG STUDENT-FILE]

16 RECORD CONTAINS 43 CHARACTERS :

17 DATA RECORD IS STUDENT-IN. '

18 01 STUBENT-IN.

19 05 STU-NAME PIC X(25). ;

20 05 STU-CREDITS PIC 9(3}.

21 05 STU-MAJOR PIC X(15).

22 ;

23 FD PRINT-FILE

24 RECORD CONTAINS 132 CHARACTERS !

25 DATA RECORD IS PRINT-LINE.

26 01 PRINT-LINE PIC X{132).

27

28 WORKTNG-STORAGE SECTION.

29 01 DATA-REMAINS-SWITCH PIC X{2) VALUE SPACES.

30

31 01 HEADING-LINE,

32 05 FILLER PIC X{10) VALUE SPACES.

33 05 FILLER eIt x(12) YALUGE ‘STUDENT NAME'.

34 05 FILLER PIC X(11G) VALUE SPACES.

35

5 0l DETAIL.LINE,

37 05 FILLER PIC X(8) VALUE SPACES.

38 0% PRINT-NAME PIC X(25).

39 05 FILLER PIC %(99) VALUE SPACES. §

40 ‘

a1 PROCEDURE DIVISION. :

42 PREPARE-SENIOR-REPORT.

43 OPEN INPUT STUDENT-FILE

a4 QUTPUT PRINT-FILE,

a5 READ STUDENT-FILE

46 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH

47 END-READ.

43 PERFORM WRITE-HEADING-LINE.

19 PERFORM PROCESS-RECORDS

50 UNTIL DATA-REMAINS-SWITCH = 'ND'. f

51 CLOSE STUDENT-FILE ;

52 PRINT-FILE. :

53 STOP RUN.

54

55 WRITE-HEADING-LINE. :

56 MOVE HEADING-LINE TO PRINT-LINE. |

57 WRETE PRINT-LINE. %

58 :

59 PROCESS-RECORDS. s

60 TF STU-MAJOR = TENGINEERING t—"" "~

61 MOVE STU-NAME TO PRINT-NAME .

62 MOVE DETAIL-LINE TO PRINT-LINE :

63 WRITE PRINT-LINE |
;

Lgairning hy Daoing

s

b 64 END-IF.

65 READ STUDENT-£ILE

66 AT END MOVE 'NO' 7O DATA-REMAINS-SWITCH
i 87 END-READ,

STUDENT NAME
ORVILLE WRIGHT e
AOXBEC -~
JOHN ROEBLING

H is important to remember, therefore, that a computer does exacily what i is

instructed to do, which may be different from what you want it to do. In other words
if you (incorrectly) tefl the computer te ignore the credits test, then that is precisely
what the program will do.

A program may also produce erronecus putput, even if it is logically correct, when
the data on which the program operates are invalid. [f, for example, the erroneous
data in Tigure 2.6 are submiited to the valid program in Figure 2.2, neither Orville
Wright nor john Roebling will be selected! Wright's major appears in the data as
ENGINEER, whereas line 60 in the program is looking for ENGINEERING.
Roebling's credits are entered in the wreng column. In other words, a computer
operates on data exactly as it is submitted, with no regard for its correctness.
Stated another way, the outpurt produced by a program is only as good as its input,
or pul even more simply, garbage in, garbage out, giving rise to the well known
acronym, G1G0.

#2.8 Eroneous Input Data

H
i
H
1
i
i
i
!
H

JOHN ADAMS 0SOPOLITICAL SCI
. AMELIA EARHART 120AVIATION
! ORVILLE WRIGHT TISERGINEER - - .
© GEORGIA 0'KEEFFE 125ART
MERIWETHER LEWIS 115TRAVEL
JOHN KENNEDY 115P0LITICAL SCI
ALEX BELL 0I0ENGINEERING
EMILY DICKINSON 085LITERATURE
JOHN ROEBLING T15ENGINEERING - -

Chapter 2 ~ From Coding Form to Compuler

COBOL was introduced in 1959 through the efforts of Captain Grace Mwiray Hopper
of the United States Navy, Tt was designed to be an open ended language, capable of
accepting change and amendment. It was also intended to be a highly portable
language; i.e., a COBOL program writien for an 18M mainframe computer should
run equally well on any other compuier with a COROL compiter. Over the years the
needs of an evolving language, and the desire for compatibility among vendors
have given rise to several COBOL standards, two of which are in common use today,
COBQL-74 and COBOL-85.

All of the listings in this text are writien to take advantage of features in the
newest standard, COBOL-85. We think it important to emphasize COBOL-85 (de-
emphasize COBOL-74) because COBOI -85 has been the current standard for several
years. Industry, however, is stow to change, and even as this book is written in 1993,
many (perhaps most} of industry’s currently running COBOL programs adhere to
COBOL-74. The reason for the slow conversion is the subtie incompatibilities that
exist between the two compilers. In theory, a program written under the earlier
compiler is supposed to run without madification under the later compiler. In
practice, however, this is not always the case.

Consider, for examiple, the incompatibility brought about by the introduction
of new features and associated new reserved words, words such as CONTENT,
EVALUATE, FALSE, OTHER, TEST, aid so or. A programmer writing under COBOL-
74 could logicaily have used any or ali of these words as data names, which posed no
problem under the older compiler, but which produces numerocus compilation
errors under COBOT.-85. Thus, a blanket conversion by an instaliation of its hundreds
(thousands. or tens of thousands) of COBOL programs. wouid prove disastrous,
urless cach program was manually checked for compatibility with the new standard.

Many instaliations suppozt both compilers, using COBOI.-74 10 maintain
existing programs and COBOL-85 for new development. I is important, therefore,
that you become aware of the differences between the two standards. Accordingly,
we end most chapters with a section describing differences between the standards
as they relate to the program discussed in that chapter.

Figure 2.7 represents our final look at the engineering senior program as it
would be implemented in COBOL-74. Note the following differences between this
program and the COBOL-85 immplementation of Figure 1.6:

%% Engineering Senior Program (COBGL-74 Imptementation)

DATA DIVISION.

—_
[=2}

S IDENTIFICATION DIVISION.
-2 PROGRAM-ID. SENIOR74.

C3 AUTHOR. ROBERT GRAUER.

L4

: 5 ENVIRONMENT DIVISION.

: 6 CONFIGURATTON SECTION.

; 7 SOURCE-COMPUTER. IBM-PC. -~

-8 (OBJECT-COMPUTER. TBM-PC.

P9 INPUT-OUTPUT SECTION.

S0 FILE-CONTROL.

L1l | SELECT STUDENT-FILE ASSIGN TO UT-S-SYSIN .
.13 | SELECT PRINT-FILE

;14 .. ASSIGN TO UT-S-SYSOUT.

L1

Evolution of COBOL

(continued)
17 FILE SECTION.
18 FD STUDENT-FILE
19 LABEL RECORDS ARE STANDARD =~ - - =wrr = =i o = 7 f b o i e
20 'RECORD CONTAINS 43 CHARACTERS -
21 DATA RECORD IS STUDENT-IN. e
22 01 STUDENT-IN. L
23 05 STU-NAME PIC X{25). K
24 05 STY-CREDITS PIC 9(3). -
25 05 STU-MAJOR PIC X(15). =
26 -
27 FO PRINT-FILE
28 LABEL RECORDS ARE STANDARD
29 RECORD CONTAINS 132 CHARACTERS
30 DATA RECORD IS PRINT-LINE.
31 01 PRINT-LINE PIC X(132}.
32
33 WORKING-STORAGE SECTION.
34 01 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES.
35
36 01 HEADING-LINE.
37 05 FILLER PIC X(10) VALUE SPACES.
38 05 FILLER PIC X{12) VALUE 'STUDENT NAME'.
39 05 FILLER PIC X(110) VALUE SPACES.
40
1 01 DETATL-LINE.
a2 05 FILLER PIC X(8) VALUE SPACES.
a3 05 PRINT-NAME PIC X{25).
a4 05 FILLER PIC X(99) VALUE SPACES.
45
46 PROCEDURE DIVISION.
47 PREPARE -SENIOR-REPORT .
48 OPEN INPUT STUDENT-FILE
49 QUTPUT PRINT-FILE.
50 READ STUDENT-FILE
51 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH.
52 PERFORM WRITE-HEADING-LINE.
53 PERFORM PROCESS-RECORDS
54 UNTIL DATA-REMAINS-SWITCH = 'NO*.
55 CLOSE STUDENT-FILE
56 PRINT-FILE.
57 STOP RUN.
58
59 WRITE-HEADING-LINE.
60 MOVE HEADING-LINE TO PRINT-LINE.
61 WRITE PRINT-LINE.
62
63 PROCESS~RECORDS .
64 " IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING' :
65 ‘ MOVE STU-NAME TO PRINT-NAME :
66 ‘ MOVE DETAIL-LINE TO PRINT-LINE
67 WRITE PRINT-LINE. B
68 READ STUDENT-FILE T

69 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH.

Chapter 2 — From Coding Form to Compuler

I. COBOIL-74 regquires a CONFIGURATION SECTION with both a
SOURCE-COMPUTER and an OBJECT-COMPUTER paragraph, to indicate
the computer on which the program will compile and execute. The
CONFIGURATION SECTION is optional in COBOL-85, and since these entries
are treated as comments by the compiler, they are omitted in the COBO1L-85

listing.

2. COBOL-74requires the LABEL RECORDS clause in a file description 1o indicate
whether standard, nonstandard, or no labels are in eflfect. (A label contains
information about a file such as the date it was created and the intended
expiration date.) The clause is optional in COBOL-85 where ils omission
defaults to LABEL RECORDS ARE STANDARD.

Scope terminators (END-IF and END-READ) are not permitted in COBOL-74
and hence do not appear in Figure 2.7. Scope terminators are optional in
COBOL-85, but are used throughout the text because of advantages that will
be ciearly explained in Chapter 7.

o

Diespite these ditferences the COBOL-74 implementation of the engineering senior
program is upward compatible with COBOL-85; that is, the program in Figure 2.7
will run wirhour modification under the new compiler. The converse is not true; the
COBOL-85 listing in Figure 1.6 will not run under the earlier standard.

4 Reason

WHYS

We expect that you completed the chapter with little difficubty and that vou were
able to successfully run the engineering senior pragram. There will be times, however,
when not everything will go as smoocthly and so we relate a favorite anecdote
(“Mystery of the Month,” PO World Magazine, April 1983) that is as relevant today as
when it was written. As you read our tale, remember that a computer does exactly
what you tell it to do, which is not necessarily what you want it to do. Itis a source of
wonderful satisfaction when everything works, but also the cause of nearly
unbelievable frustration when results are not what you expect.

Our story concerns a manager who purchased a PC and began to use it
enthusiastically. Unfortunately, the feeling did not rub off on his assistant, who was
apprehensive of computers in general, but who finally agreed to try the new
technology.

As is frequently the case, the assistant’s experience with the computer was as
frustrating as the manager's was rewarding. Every time the assistant iried using the
computer an error message appeared, vet when the manager tried the same
procedure it worked fine. Finally, manager and assistant went through a systematic
comparison of everything they did: turning the machine on and off, handling disks,
using the keybhoard, etc. They could find no difference in their procedures and could
not account for the repeated disk errors which plagued the assistant but left the
manager alone.

Just as they were about to give up the manager noticed thal his assistant
was wearing a charm bracelet. He looked closely, and sure enough one of the
charms was a tiny magnet containing just enough force to interfere with reading
the disk. The assistant stored the bracelet in a drawer and the machine has been
fine ever since.

The point of our story is that there is always a logical reason for everything a
computer does or does not do, although discovering that reason may be less than
obvious. You are about to embark on a wondertul journey toward the productive
use of a computer, with a virtually nnlimited number of potential applications. Be

patient, be inquisitive, and enjoy.

Fiit-1n

The A margin consisis of columns 8-11 whereas the B margin is defined as
columns 12-72. Division and section headers, paragraph names, FD's,
and 01-leve! entries must begin in the A margin; all other entries begin in
the B margin (that is, in or past colurmn 12),

The execution of a COBOL program is a three part process, involving three
distinct programs—a compiler, a linker, and the resultant load module. The
means of communicating information about thegse programs (and their
associated files) is dependent on the operating system.

A compiler s a computer program that transtates a higher-tevel (problem-
oriented) language such as COBOL into machine ianguage; the input to a
compiler is referred 10 as & source program, whereas the output is an
object program.

The linker combines the output produced by the compiler, with additional
object modules (such as subroutines andfor input/Output modules) to
produce a ioad module.

Execution of the COBOL program occurs when the icad module precesses
the input file{s) to produce the required reports.

COBOL-74 is intended to be upward compatible with COBOL-85 although
subtle iIncompatibitities do exist between the two standards, The converse
is not true, as COBQOL -85 programs wili not run under the earlier standard.

e and Congapts

p

A rmargin Debugging

ASCI tile Editor

B margin Execution error
COBOL-74 GIGO

COBOL-85 Incompatibility
Coding form t.oad module
Comments Object program
Compilation error Operating system
Compiler Source program

Continuation

Test data

1. A
language.

2.

transiates a

is the most recently approved COBOL. standard, but

is still widely used in industry.

language into an

Chapier 2 — From Cading Form to Compuier

3. The is in columns 8 to 11 of the coding sheet.

4. A comment is indicated by an in column

5. Eniries that are not required to begin in the A margin may begin anywhere in
columns to

6. Division headers and paragraph names must begin in the

7. An is used to enter programs into the computer.

8. The compile, link. and execute procass requiras the execution of
distinct programs.

9. is the process of finding and cerrecting errors in a program.

10. Picture clauses may begin anywhere within the margin.
11. The output of compilation Is input to a second program cailted the R

12. A clean compile {does/does not) guarantee that the resulting program execution
will be correct.

13. Different mainframe computers witf most fikely use {differsntfidenticaly COBOL
compiers.

14, Misspeiling a reserved word will result in a error.

15. Entering test data in the wrong columns will result in an error.

TRUE/FALSE

1. A compiler translates a machine-orienled language into a problem-oriented
language.

A well-writen program will always produce correct results, even with bad data.
A compiler is a computer program.

The COBOL compiler for an IBM mainframe is identical to the compiier for a PC.
A COBOL program can run on a variety of computers.

Division headers must begin in the A margin.

Division headers must begin in column 8.

Seciion headers must begin in column 12

Paragraph names must begin in column 8.

S oo N O s e

ey

PICTURE clauses may appear in column 12 or after.

puy
—t

. 1f a program compiles correctly, then it must execute correctly.

-
0

Columns 1-6 are never used on the coding sheet.

s
)

. The use of columns 73-80 is optional.

. Column 8 is used as a continuation column.

ansh,
=

. All editors have identical commands.

-k ek
[o) N1

. All computers use the same operating system.

-
~

Successful execution of the COBOL compiler produces a load module.

Problems

FROBL

EMS

1. Figure 2.8a contains data for the COBOL pregram in Figure 2.8b, which will
process a file of employse records and print the names of all programmers
under 30.

Figure 2.8 COBOL Program and Associated Data for Problems 1 & 2

WALT BECHTEL
NELSON KERBEL
MARGOT HUMMER
CATHY BENWAY
JUD MCDONALD
JACKIE CLARK
LOVIS NORIEGA
JEFF SHEESLEY

PROGRAMMER34
PROGRAMMER23
PROGRAMMER30
DATA BASE 22 50000
DATA BASE 29
PROGRAMMERZZ
PROGRAMER 24
ANALYST 28

{a} Daia

1 IDENTIFICATION DIVISION,

2 PROGRAM-ID. FIRSTTRY.

3 AUTHOR. GRAUER.

4

5 ENVIRONMENT DIVISION.

6 INPUT-GUTPUT SECTION.

7 FILE-CONTROL.

8 SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTROZ\FIRSTTRY.DAT'
g ORGANIZATION IS LINE SEQUENTIAL.
i0 SELECT PRINT-FILE

il ASSIGN TG PRINTER.

12

13 DATA DIVISION,

14 FILE SECTION.

15 FD EMPLOYEE-FILE

16 RECORD CONTAINS 44 CHARACTERS

17 DATA RECORD IS EMPLOYEE-RECORD.

i8 01 EMPLOYEE-RECORD.

19 05 EMP-NAME PIC X{25).
20 05 EMP-TITLE PIC Xx{18).
21 05 EMP-AGE PIC 99.
22 05 FILLER PIC XX.
23 05 EMP-SALARY PIC 9(5}.
24

25 FD PRINT-FILE

26 RECORD CONTAINS 132 CHARACTERS
27 DATA RECORD IS PRINT-LINE.
28 (01 PRINT-LINE.

file://'A:/CHAPTR02/FIRSTTRY.DAT

Chepter 2 - From (Coding Form to Computer

Figure 2.8 (continued)

29 05 FILLER PIC X,
S) 05 PRINT-NAME PIC X{25).
) 05 FILLER PIC X{2}.
.32 05 PRINT-AGE PIC 99.
33 05 FILLE PIC X(3}.
34 05 PRINT-SALARY PIC 9(5}.
35 05 FILLER PIC X{94).
36
37 WORKING-STORAGE SECTION.
38 01 END-OF-DATA-FLAG PIC X{(3) VALUE SPACES.
39 PROCEDURE DIVISION.
a0 PREPARE - PROGRAMMER-REPORT .
41 OPEN INPUT EMPLOYEE-FILE
42 DUTPUT PRINT-FILE.
P43 MOVE SPACES TGO PRINT-LINE.
44 MOVE 'SALARY REPORT FOR PROGRAMMERS URDER 30' TO PRINT-LINE.
45 WRITE PRINT-LINE
46 AFTER ADVANCING 2 LINES.
a7 READ EMPLOYEE-FILE
48 AT END MOVE ‘YES' TG END-OF-DATA-FLAG
49 END~READ.
50 PEREORM PROCESS-EMPLOYEE-RECORDS
51 UNTIL END-OF-DATA-FLAG = 'YES'.
52 CLOSE EMPLOYEE-FILE
53 PRINT-FILE.
54 STOP RUN.
54
56 PROCESS-EMPLOYEE~RECORDS .
57 IF EMP-TITLE = *PROGRAMMER' AND EMP-AGE < 30
58 MOVE SPACES TG PRINT-LINE
59 MOVE EMP-NAME TO PRINT-NAME
64 MOVE EMP-AGE TO PRINT-AGE
61 MOVE EMP-SALARY TO PRINT-SALARY
62 WRITE PRINT-LINE
63 END-IF.
64 READ EMPLOYEE-FILE
65 AT END MOVE 'YES' TO END-OF-DATA-FLAG
66 END-READ.

ih COBOL Program

a. Compile, link, and execute the COBOL pragram, using the appropriate commands
for your system. {The program is on the data disk that accompanies this bock.)

b. Are any potential problems introduced by checking age rather than date of
birth?

¢. Would processing be simplified if the employse records contained an abbreviated
title code {for example, G10) rather than an expanded litle (for exampie,
programmer)? Are there any other advaniages to storing codes rather than
expanded values?

Probiemnis

a.
b.

c.

. Modify the program in Figure 2.8b o accormmodate all of the following.

Employee age is stored in positions 38 and 39 of the incoming record

The report should list all employees under age 30 who earn at least $30,000,
regardless of title.

The report should include the title of all selected employees in positions 41 .52,

. Maich each item with ils proper description.

d.

4"

LS

C

d.

~ o

=]

.

k.

t. A Margin a. An asterisk in column 7

2. B Margin b. First line of any COBOL program

3. Comment c. Often appears in daia names

4. IDENTIFICATION DIVISION d. Columns 12 through 72

5 PROCEDURE DIVISION a. Contains the logic of a program

6. Hyphen f. Limited to 160 characters, and
enclosed in guotes or apostrophes

7. Neonnumeric literal g. Where division. section, and
paragraph headers begin

8. Reserved word h. Translates COBOL to machine
tanguage

9. Compiler i. Preassigned meaning

10. Literal I. A consiant, may be numeric or

NONMUIMEric

. Indicate the starting column {or columns) for each of the following.

Division neaders

Comments

Paragraph names

Slatements in the Procedure Division (except paragraph names})
WORKING-STORAGE SECTION

FD

.07 eniries

05 entries
PICTURE clauses
OPEN statement
WRITE statement
SELECT statement

). Explain how it is possible for a program (¢ compile perfectly, be logically correct,

and still produce invalid results; provide specific examples in conjunction with the
engineering senior prograr.

Overview
The Tuition Billing Probiem
Structured Design
Evaluating the Hierarchy Chart
Compleleness
Functionality
Span of Control
Structured Programming
Sufficiency of the Basic Structures
Expressing Logic
The Traditional Flowchart
Pseudocode
Warnier-Orr Diagrams
Top-Down Testing
Summary
Fill-in
TruefFalse
Problems

Chapter 3 - A Methodology for Program Deveiopment

f
.
v

[

After reading this chapter you will be able to:

Describe how a hierarchy chart is developed; discuss three criteria for
avaluating a completed hierarchy chart.

Define structured programming; describe its three fundamental building
biocks and an optional extension,

Explain the one entry point/one exit point philosophy of structured
programming.

Differentiate between structured programming and structured design;
distinguish between a functionally oriented technique and one that is
procedurally oriented.

Describe what is meant by top down design and impiementation.

We stated at the outset that programming is best learned by doing, and so our
objective in the first two chapters was to put you on the computer as quickly as
possible. Thus, we jJumped immediately into COBOL, without giving much thought
to the underlying logic of the program you developed. While that approach
warks well initially, it is also important for you ta learn how to properly design
programs, so that they will work correctly, and further so that they can be easily
read and maintained by someone other than yourself.

Accordingly, this chapter presents a methodology for program development,
embracing the techniques of structured design, structured programming, and
top down testing. We stress that struclured design is functionaily oriented and
describes what is to be accompilished; structured programming, on the oiher
hand, is procedurally oriented and focuses on how the objectives of the program
wili be realized. The discussion includes hierarchy charis, pseudocode,
fiowcharts, and Warnier-Orr diagrams.

The presentation is of a practical nature, and stresses application rather
than theary. Accordingly, we introduce a new program ai the beginning of the
chapter, and develop the methodology in the context of that program. We begin
with presentation of the program specifications.

This section contains the specifications for a new problem, known simply as the
tuition billing program. The requirements are straightforward and parallel those of
many other COBOL programs, namely to print a heading line{(s) at the start of
processing, one or more detail lines for every record processed, and a total line(s) at
the end of processing. As simple as these specifications may be, itis critical that you
avoid the temptation to rush immediately into COB(L, and concentrate instead on
designing the program you will eventually write.

The Turtion

Biiting Probiam

PROGRAMMING.

Pragram Name:

fnput Re

Narrative:

input File{s}):
cord Layout:

Fest Data:

Report Layout:

Processing Requirements:

‘The approach we follow begins with a determination of the most gencral

thon divides thar tagl inta gmaloer

f1|r'| rrinn Il‘\u nracram oo tn Jdrr\"’l"\!l&.'1
Fron o 5 ndl fask mana

angd
smaller pieces, uintil the requirements of each piece are clearly recognized. Initiaily
the design process may seem superfluous in that you are confident of vour ability
to begin coding immediateiy. Rest assured, however, that design is productive
work, and does in fact pay dividends in the long run. A well-designed program is
far more likely te be correct than one written off-the-cuff. Moreover, and this
may be the argument that most appeals to you, a well-designed program will
uliimately be completed in less time than one that is poorly designed or one that

has no design at all.

SPECIFIGATIONS .
Tuition Billing Program

This program processas a file of student records, computes and prints the wition bilt for
each student, and prints the total amounts for all studerts,

STUDENT-FILE

See Figure 3.1a

SMITH JB15Y00006230
JAMES HR15 0500245
BAKER SR0O9 (500350
PART-TIMER JRG3YO000300
JONES PL15Y0000280
HEAVYWORKER HMi§ 0000200
LEE BL1& 0000335
CLARK JCO6 9000310
GROSSMAN SEQ7 0000215
FRANKEL LF10 0000350
BENWAY CT03 0250395
KERBEL NBO4 00601CO0

See Figure 3.1b

1. Print a suitable heading at the beginning of the report.
2. ftead a file of student records.

3. Process each record read hy:
a. Computing an individual bill, equal to the sum of twition, union fee, and activity fee,
minus a scholarship (if any}, by
i. Calculating the tuition due, at a rate of $200 per credit.

ii. Biling the student $25 for the union fee, if there is a "Y" in the Union Member
position.

ili. Computing the activity fee based on the number of cradits taken:

ACTIVITY FEE CREDITS
$25 6 or fewer
$50 7 - 12

$7% more thap 12

Chapiar 8 — A Methodoiogy for Program Development

.7 Record Layouts for Tumon Blllang Program

' CREDITS UNION MEMBER 5
INITIALS J ’ jSCHOLAFlSHIP ;
i

! STUDENT NAME

LAST
! 1 2345 6 7 8 9 1011 12 13 14 15{16 17]18 19(20|21 22 23 24|25°26 27

GPA

{a} ot Becord Layolt

UBENT INAME

TDTAL BILL

ACT FEE

CRECITS SCHOLARSHIP

‘ ['
KXKXXXXXEANK XXX x}x S99] 83,839 $59 539 Ch.849 $3, 359
: 4 xxxxxxxxﬁxxxxxxx x‘x 99 b.889 389 $33 B T 12 $4, 889
! UNLVERSITY TOTALS $935,%99) 384,589 $95,8%9 B AR R S AL L PR

(b} Hepos

"{
sl
5
o

3 TTERE

rz\

iv. Awarding a scholarship equal 16 the amount in the incoming record if, and only
if, the GPA is greater than 2.5. (Observe that in the test data on the previous
page James goes not qualify for the $500 scholarship he would otherwise have
been awarded.)

v. Incrementing the university fotals for tuition, union fee, activity fee, scholarship,
and averall total.

b. Printing a detait line for each record read.

4. Print a total line at the end of the report.

i & labiain] i v w e P v ——

Struciurad Structured design identifies the tasks a program is to accomplish, then relates those
Diesion tasks to one another in a hierarchy chart. Figure 3.2 contains a very basic exampile,

= applicable to any COBOL program. The hierarchy chart divides the program into
its functional components, for example, initialization, processing, and termination,

Structored [lesign

and indicates the manager/subordinate relationships between these components.
In this example all three modudes are subordinate to the module laheled any
COBOL program.

To betier appreciate the significance of a hierarchy chart and its role in program
development, consider Figure 3.3, depicting the hierarchy chart for the tuition
billing program. The development takes place in stages, beginning at the top and
working down to the bottom. At every level, the major functionis) are subdivided
into other functions that are placed on the next lower level in the hierarchy chart.
Those functions are in turn further subdivided into still other functions, until finally
the lowest-level functions cannot be further subdivided.

The specifications for the tuition billing problem suggest a suitable name
for the highest-level module, PREPARE-TUITHON-REPORT. This in turn is divided
into its basic functions of initialization (consisting of WRITE-HEADING-LINE and
READ-STUDENT-FILE), processing (PROCESS-STUDENT-RECORD), and
termination (WRITE-UNIVERSITY-TOTALS). Levels 1 and 2 of the hierarchy chart
are shown in Figure 3.3a.

Of these four modules, only one, PROCESS-STUDENT-RECORD, needs to be
subdivided. In other words ask yourself which additional lower-level functions
should be included under PROCESS-STUDENT-RECORD in order to process
individual student records. The program specifications coritain the requirement o
compute the individual's bill, increment the university totals to include the amount
just compuied, and write a detai] line for the particular student. Each of these tasks
requires its own module as indicated in Figure 3.3b. In addition, PROCESS-
STUDENT-RECORD must also read the next recard so that the program can continue.
(The module READ-STUDENT-FILE appears twice in the hierarchy chart; on level

two to read the first record, and on level three to read ail subsequent records, The
necessity for the dual appearance stems from a iimitation in COBOL-74 rather than
a requirement of structured design).

The development of a hierarchy chart continues until its lowest-level modules
cannot be further subdivided, that is, until the designer believes they can be easily
transtated into programming statements. The decision is subjective in that there is
no single correct answet; you could, for example, stop at three levels ot continue to
a fourth level as in Figure 3.3c. We chose to divide COMPUTE-INDIVIDUAL-BILL
into four additional modules: COMPUTE-TUITION, COMPUTE-UNION-FEE,
COMPUTE-ACTIVITY-FEE, and COMPUTE-SCHOLARSHIP.

The hierarchy chart is now complete and consists of four levels, each of
which will correspond to a PERFORM statement in the eventual COBOL program;

Figure 3.2 Overall COBOL Hierarchy Chart

ANY COBOL
PROGHAM

INITIALIZATION PHOCESSING TERMINATION

Chapter 3 — A Msthodology tor Program Development

Hierarchy Chart for Tuition Billing Program

1st Level
2nd Level Processing
Requirements PREPARE
! 1. Print & heading line TUITION
i 2. Read student REPORT
3. Pracess each record
4, Print a total line
WRITE READ PROCESS WRITE
HEADING STUDENT STUDENT UNIVERSITY
LINE FILE RECORD TOTALS
ey lewein i g
j PREPARE
: TUITION
‘ REPORT
:
;
WRITE READ PROCESS WRITE :
HEADING STUDENT STUDENT UNIVERSITY !
LINE FILF RECORD TOTALS :
3id Level Pivcessing
! Requirements
= 3a) Cornpute individual bill
:aia \Igcreme‘?t tcllzilfs
2) Write a detail line INCREMENT WRITE READ
3a) Read a student record GOMPUTE UNIVERSITY DETAIL STUDENT
INDIVIDUAL BILL TOTALS LINE FILE

that is, the module {paragraph) on leve) one will perform the modules (paragraphs)
on level two, those on level twa will perform the modules on level three, and so
on. The hierarchy chart does not specify how often these paragraphs will be called,
nor does it indicate the conditions for calling one subordinate in lieu of another.
In other words, the hierarchy chart indicates only what functions are necessary,
but not when they are executed. It contains no decision-making logic, nor does it
imply anything about the order or frequency in which various paragraphs within
a prograin are executed. That, in turn, is specified within the logic of the program,
developed according to the discipline of structured programming as discussed
later in the chapter.

As we have already indicated, the decision of how many modules to include in a
hierarchy chart and how they should be related to one another is necessarily
subjective. Nevertheless, there are certain evaluaiion criteria that result in selecting
one design over another. Among these are the following:

Evaluating

the Hierarchy Chan

Figure 3.3 (conlinued)

PREPARE
TUITION
REPCRT
WRITE READ PROCESS WRITE
HEADRING STUDENT STUDENT UNIVERSITY
LINE FILE RKECORD TGTALS
{
i COMBUTE INCREMENT ! WRITE | V READ
INDIVIDUAL UNIVERSITY | DETAL STUDENT
BILL TOTALS [LINE FILE
g E
4th |evel Processing i
a | ___Requiremens ‘
A :
i | ; COMPULE - 3a(1) Compuse tuition ;
COMPUTE i i COMPUTE : COMPUTE ‘e Lnion § !
ACTIVITY 3a(2} Compute union fee :
TUITION UNLON FEE FEE SCHOLARSHIP 3333 Campute activity fe ;
[_ __ 3a{4) Compute scholarship [

ic; Corplele HMigrarchy Chart (Levais T4}

1. Ts the hierarchy chart complete?
2. Are the modules functionai?

3. Is there effective span of control?

Completensss

A hierarchy chart must be complete; that is, it has to provide for every function
required by the program as specified in the programming specifications, You test
for completeness level by level, starting at the top of the hierarchy chart, and
working your way down, one level at a time, by asking the question, “Do the
subordinate modules at the next level completely develop their corresponding
mochudes at this level?” If the answer is yes, move to the next module on the present
level, or to the first module on the next level, and repeat the question. If the answer
is ng, add functions as necessary and continue to the next module.

For example, begin with the completed hierarchy chart of Figure 3.3c and ask
yourself whether the modules on level two are adequate to expand the single module
of level one; that is, do the four modules on level two completely expand the
PREPARE-TUITION- REPORT modufe to which they are subordinate? The answer is
yes, 50 you move to level three and see whether the modules on this level adequately
expand the PROCESS-STUDENT-RECORD module from level two. Once again the
answer is yes, and so vou progress to level four. The process continues until you
have checked every module on every level and are satisfied that all necessary
functions are included.

Structured

Programming

terhodoiogy tor Program Development

Functionality

Every module in a hierarchy chart should be dedicated (o a single function, the
nature of which should be clear from examining the module’s name. Each of the
module names in Figure 3.3 consists of a verb, adjective (or two), and an object—-for
example, COMPUTE-INDIVIDUAL-BILL or WRITE-DETAIL-LINE. Indeed, if a
medule cannot be named in this way, its function is probably not well defined and
thought should be given to revising the herarchy chart.

Stated another way, you should reject {or redesign} any module thai does not
appear to be functional; that is, madules whose names contain:

1. More than one verb—for example, READ-AND-WRITE.
2. Muore than one object—{for example, EDIT-NAME-AND-ACCOUNT-DATA.

3. Nondescriptive or time-related terms-—for example, HOUSEKEEPING,
TERMINATION-ROUTINE, INITIALIZATION, or MAINLINE.

Another way of expressing the need for functional modules is to strive for
module independence; that is, the internal workings of one module should not
affect those of another. Perhaps you have already been associated with a working
pregram in which changes were implemented, only to have some other, apparently
unrelated, portion of the program no longer work properly. The probiem may be
due to paragraphs in the program being unnecessarilty dependent on one another.

What we are saying is that in an ideal situation, changes made to one paragraph
should not affect the results of any other. In a more practical sense, the paragraphs
have to be somewhat related, otherwise they would not be parts of the same program;
however, the amount of interdependence between paragraphs should be minimized
to the greatest extent possible, With respect to Figure 3.3, for example, a change in
the pracedure for computing the union fee should not affect how the activity fee is
determined. That is because the modules COMPUTE-UNION-FELE and COMPUTE-
ACTIVITY-FEE are functional in their own right, and consequently are independent
of one another,

Span of Control

The span of control of a moedule is the number of subordinates it contains. In
Figure 3.3, for example, the span of control of both PREPARE-TUITION-REPORT
and COMPUTE-INDIVIDUAL-BILL is four. An effective span of control (for hierarchy
charts associated with COBOL programs) is generally from two or three to seven,
although that may vary depending on the situation. You should, however, avoid
extremes in either direction. Programs with ineffective spans of control {too many
subordinates or too few) are poorly designed and difficuli to follow and/or maintain.

Let us pause for a moment to see what has been accomplished. We have taken the
original problem and divided it into a series of manageable pieces, each of which
describes a particular job that needs to be accomplished. In other words, we have
said what needs to be done to solve the problem, but have not as yet said how we
will solve it. That in essence is the difference between structured design and
structured programming.

A structured program is one consisting entirely of three types of logic structures:

i IS BRI T

sequence, selection (a decision), and iteration {(a loop}. The fact thai these structures

Struciured Programming

{or basic buiiding blocks) are sufficient to express any desired logic was first
postulated in a now-ciassic paper by Bohin and jacopini.:

The elementary building blocks of structured programming are shown in
flowchart form in Figure 3.4. Flowcharts use special symbols to communicate
information. A rectangle indicates a processing statement, a diamond indicates a
decision, and a small circle connects portions of the flowchart. All of the flowcharts
have one key feature in common, namely, a single entry point and a single exit
paint; that is, there is only one way to enter each structure and only one way to
leave.

The sequence structure in Figure 3.4a specifies that the program statements
are executed sequentially, in the order in which they appear. The two blocks, A and
B, may denote anything from single statements to complete programs, and it is
clear that there is a single entry point and a single exit point to the structure.

1 Bohm and Jacopini, “Flow Diagrams, Turing Machines and Languages with Only Two Formation
Rules,” Communications of the ACM {May 1966).

<4 The Building Blocks of Structured Pragramming

'

{a) Bequence

(o) Heration

(ELSE)
FALSE

(THEN)

-

{0} Sefection

EXIT

T
/I“-\

——-—-p»(ENTRY 3 .

e w

{d} Case

Chaptler 3 — A Methodology for Program Development

The selection (or IF . . . THEN . . . ELSE} structure in Figure 3.4b specifies a

choice between two actions. A condition is tested with one of two oufcomes; if
the condition is true, block A is executed, while if it is false, block B is executed.
The condition itself is the single entry point, and both paths meet to form a single
exit point,

The iteration (or DO . . . WHILE) structure in Figure 3.4c specifies repeated
execution of one or more statements while a condition is true. A condition is tested
and, if it is true, block A is executed after which the condition is retesied. if, however,
the condition is false, control passes to the next sequential statement after the
iteration structure. Again, there is a single entry point and a single exit point from
the structure.

The case structure in Figure 3.4d expresses a multibranch situation. Although
case is actually a special instance of selection, it is convenient to extend the definition
of structured programming to include this fourth type of building block. The case
structure evaluates a condition and branches (o one of several paths, depending on
the vailue of the condition. As with the other building blocks, there is one entry point

and one exit point.

Sufticiency of the Basic Structures

The theory of structured programming says simply that an appropriate combination
of the basic building blocks may be derived to solve any problem. This is possible
because an entire structure (sequence, selection, iteration, or case) may be
substituted anywhere block A or B appears. Figure 3.5 shows a combination of the
basic structures to ilustrate this concept.

Figure 3.5 is essentially a selection structure. However, instead of speciiying a
single statement for the true or false branches, as was done in Figure 3.4, a complete
building block is used instead. Thus, if condition-1 is true, an iteration structure is
entered, whereas, if it is false, a sequence structure is executed. Both the iteration
and sequence structures meet at a single exit point which becomes the exit point for
the initial selection structure,

Figure 3.5 Sufficiency of the Basic Structures

Sequence Structure \f iteration Structure

ressing Logie

We now turn our attention to ways in which programmers express logic, to
themselves and to others. We begin with the traditional flowchart, then move to
newer techniques more closely associated with structured programming:
pseudocode and Warnier-Orr diagrams.

The Traditions! Flowohart

Every programmer is familiar with the traditional flowchart as described in Chapter 1.
Although flowcharts have declined in popularity, they remain in widespread use,
primarily for documentation. Our personal preference is to use psendocode, but we
include Figure 3.6 fuor completeness. The decision as to which technique to use is
between you and your instructor.

e

The fact that most programmenrs write simple notes to themselves prior to coding
a program gave rise to pseudocode, a technique associated with structured
programming. As we indicated in Chapter |, pseudocode is defined simiply as neat
notes to yourself, and uses staternents similar to computer instructions ta describe
togic. Figure 3.7 represents the building blocks of structured programming as they
would be writien in pseudocode and corresponds to the flowcharts shown in
Figure 3.4.

Pseudocode comes into play after the design phase of a program has been
completed, and prior to actual coding. Recall that a hierarchy chait is funciional in
nature and indicates what has to be done, but not necessarily when or how.
Pseudocode, on the other hand, is procedural and contains sequence and decision-
making logic. In other words, pseudocode connects the modules in a hierarchy
chart through loops and decision making.

To better appreciate how pseudocode expresses programming logic, consider
Figure 3.8, which contains pseudocode for the tuition billing program. Two versions
of the pseudocode are presented-—an initial attempt in Figure 3.84, and an expanded
(more detailed) version in Figure 3.8b. Both versions are equally appropriate, with
the choice between them depending entirely on the individual, and the level of
detail he or she desires,

The logic is straightforward and begins with the steps for initialization; to
open iiles, write a heading line{s), and read the first record. Then, a loop {or iteration
structure} is entered in which the program computes the student’s bill (tuition plus
union and activity fees minus scholarship), increments the university totals to
include this amount, writes a detail line, and finally reads the next student record.
The statements in the loop are executed continually until all the records have been
read, at which point university totals are written, and the program terminates.

Pseudocode has a distinct block structure that is conducive te structured
programming. It is not, however, bound by formal syntactical rules (although some
organizations have impiemented standards}, nor doss it have specific rules of
indentation, which is done strictly at the programmer's discretion. Its only limitation
isarestriction to the building blocks of structured programming (sequence, selection,
iteration, and case).

With practice, pseudocode can be developed quickly and easily. Good
pseudocode should be sufficiently precise to be a real aid in writing a program,
while informal enough to be understood by nonprogrammers. The informality of

Chapter 3 — A Methodolagy for Program Devalopment

Tigegre 3.5 Flowchart for Tuition Biling Program

-~ PROCESS
- A swoeny /.

! START

\ COMPUTE
. TUITION i
OPEN FILES :
E Y.
i H
! COMPUTE
{ READ UN{ON FEE
! STUDENT ;
RECORD — ¢
N COMPUTE

< - ACTWITY

; FEE

DATA PROCESS | N _ :

REMAINS? STUDENT j> J S

i WRITE INCREMENT

UNIVERSITY 1 URIVERSITY

: TOTALS . TOTALS

: Y !
CLOSE
‘5 FILES :
r

: sTop READ
el STUDENT | -
./ RECORD

the technique precludes exact rules, but we urge the use of consistent conventions
to make it easier to read. Gur suggestions:

1. Indent for readability.

2. Use ENDIF, ENDDQO, and ENDCASE to indicate the end of a logic structure;
use vertical tines to indicate the extent of a hlock.

cpressing Logie

" Pseudocode for Building Blocks

Statement A
Statement B

- IF condition is true
Statemeni A
ELSE
Statement B
ENDIF

DO WHILE condition is true
Statement A
ENGDO

00 CASE
Case 1 is true
Statement A
Case 7 is true
Statement 8

~— - ENDCASE

3. Use parenthetical expressions to clarify statements associated with the ELSE
portion of an IF statement.

4. Minimize or avoid the use of adjectives and adverbs.

Warnier-Orr diagrams {named for their co-developers, Jean-Dominique Warnier
and Kenneth Orr) combine elements of structured design and structured
programming. The diagrams use specific symbols to represent the basic building
blocks of structured programming, then combine these elements in hierarchical
fashion.

Figure 3.9 shows how the basic building blocks of structured programming
would be represented in a Warnier-Orr diagram. Sequential statements (Figure 3.9a)
are listed verticaliy, one under the other, and are grouped in braces. A plus sign
enclosed in a circle indicates selection, and is placed between the true and false
conditions of the selection structure (a bar denotes the false condition). Parentiicses
indicate iteration (Figure 3.9c), with the number inside the parentheses indicating

Figure 3.8 Pseudocode for Tuition Billing Program

i

Open files
Write heading line(s}
Read STUDENT-FILE at end indicate no more data
DO WHILE data remains
Compute tuition
Compute union fee
Compute activity fee
Compute scholarship
Compute bill
Increment university totals
Write detail 1ine
Read STUDENT-FILE at end indicate no more data

- ENDBO

Write university totals
Close files
Stop run

(&) mmatial suompt
Open fites

Write heading line{s)
Read STUDENT-FILE at end indicate no more data

- DO WHILE data remains

Compute tuition = 200 * credits

~——— IF union member

Union fee = $25
ELSE
Union fee = 0

-——— ENDIF
- DO CASE

CASE credits <= 6
Activity fee = 25

CASE credits » 6 and <= 12
Activity fee = 50

CASE credits > 12
Activity fee = 75

-—--- END CASE

~~ If gpa > 2.5
Scholarship = Scholarship amount
ELSE {no scholarship)
Scholarship = 0

- ENDIF

Compute Bill = Tuition + Union fee + Activity fee - Scholarship
Increment university totals

Write detail line

Read STUDENT-FILE at end indicate no more data

- ENDDO

Write university totals
Close files
Stop run

efalied pse

%
i3

b

&

Siialetsle

i
I

Chapter 3 — A Methodology for Program Development

»-Down Testing

Figure 3.5 Warnier-Orr Diagrams for Building Blocks

fins

| Statement A
| Statement B

{a) The Seguencs Structure

Condition { Statement A
Condition {Statement B

(b} The Selsction Structure

{0, End) { Statement A

(o} The Heratlon Struciurs

how often the loop is to be performed. A variable number of iterations is implied by
enclosing two numbers, for example (0, End} to indicate execution until an end-of-
file condition is reached. There is no specific notation for the case construct.

Figure 3.10 contains a Warnier-Orr diagram for the tition billing program.
The diagram depicts the same manager/subordinate relationships as the hierarchy
chart of Figure 3.3¢, but unlike the hierarchy chart, is read from left to right rather
than from top to bottom. The diagram also contains additional information not
found in the hierarchy chart, namely the logic to indicate how often, and in what
sequence, subordinate modules are executed.

All programs require extensive testing to ensure that they conform to the original
specifications. However, the question of when coding ends and testing begins is
not as straightforward as it may appear, and gives rise to the philosophy of top-
down testing.

Top-down testing suggests that coding and testing are parallel activities, and
espouses the philosophy that testing begins even before a program is completely
finished. This is accomplished by initially coding the intermediate- and/or lower-
level paragraphs as stubs, that is, partially coded paragraphs whose purpose is to
indicate only that the paragraph has been executed. The stub paragraphs do no
useful work per se, and are used only to test the overall flow of the program. The
rationale is that the highest (and most difficult) madules should be tested earlier
and more often than the lower-tevel routines; the latter contain detailed hor often
trivial logic, and are least important with respect to the overall program flow.

Figure 3.11 is an example of such a program. It is complete in the sense that it
contains a paragraph for every module in the hierarchy chart of Figure 3.3, yet
incomplete in that most of its paragraphs consist of a single DISPLAY statement.

hapter 3 — A Methodolagy for Program Development

Figure 3.10 Warnier-Orr Diagram for Tuition Billing Program

Tuition-Billing Program

fOpen files
Iwrite-heading-line
Read-student-file
(1)
| Compute~tuition
(1)
| Compute-union-fee ;
Compute-individual-biti % (1)
1 :
(1) iComputel-activity—fee

iCompute-scho1arship
(1) :
Process-record |

(G, &nd)
Increment-university-totals
(1)
Write-detail-line
{1
Read-student-file
(1)

[write—’qqiversity-totals

(DISPLAY is one of the most useful statements in COBOL as it allows the programiner
to print a message on the screen—for example, DISPLAY “COMPUTE-INDIVIDUAL-
BILL paragraph has been entered”—or to print the contents of a data name—for
example, DISPLAY STUDENT-RECORD—without having to open a file. The DISPLAY
statement is covered in Chapter 6.)

The program in Figure 3.11 was tested with the data of Figure 3.12a, and
produced the output of Figure 3.12b. You may not think that much has been
accomplished, but closer examination shows that all of the paragraphs in the
program were executed, and further that they were executed in the correct sequence.
The testing has demeonstrated that the overall program flow is correct.

Execution began with the paragraph PREPARE-TUITION-REPORT followed
by thie the paragraph WRITE-HEADING-LINE. The record for the first student (JB
Smith) was read, and the paragraph PROCESS-STUDENT-RECORD was entered.
The paragraph COMPUTE-INDIVIDUAL-BILL was executed next, and called its
four subordinates to compute the tuition, union fee, activity fee, and scholarship.
The paragraphs to increment university totals and to write a detail line were also
called. The data for the second student (HR James) was read, and PROCESS-
STUDENT-RECORD (and all its subardinates) were re-executed. Eventually the end
of file was reached, the paragraph WRITE-UNIVERSITY-TOTALS was executed, and
the program ended.

Yes, the program requires additional development, but the hardest part is
over. Any errors that may have existed in the highest-level modules have already

Tap-Down

lesting

Figure 3.11 Tuition Biting Program with Stubs

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. TUITIONS.

3 AUTHOR. CAROL VAZQUEZ VILLAR.

4

5 ENVIRONMENT DIVISION.

6 INPUT-DUTPUT SECTION.

7 FILE-CONTROL.

8 SELECT STUDENT-FILE ASSIGN TC 'A:\CHAPTRO3\TUITION.DAT'
9 ORGANIZATION IS LINE SEQUENTIAL.

10

11 DATA DBIVISION.

12 FILE SECTION.

13 FD STUDENT-FILE

14 RECORD CONTAINS 27 CHARACTERS.

15 01 STUDENT-RECORD PIC X(27}.

16

i7 WORKING-STORAGE SECTIGN.

18 0} DATA-REMAINS-SWITCH PIC X(2} VALUE SPACES.
19
20 PROCEDURE DIVISION.
21 PREPARE-TUITION-REPORT.
22 DISPLAY 'PREPARE-TUITION-REPORT paragraph entered'.
23 OPEN INPUT STUDENT-FILE.
24 PERFORM WRITE-HEADING-LINE.
25 PERFORM READ-STUDENT-FILE.
26 PERFORM PROCESS-STUDENT-RECORD

27 UNTIL DATA-REMAINS-SWITCH = 'NQ'.

28 PERFORM WRITE-UNIVERSITY-TOTALS.

29 CLOSE STUBENT-FILE.
30 STGP RUN.
31
32 WRITE-HEADING-LINE.

33 DISPLAY 'WRITE-HEADING-LINE paragraph entered'.

34

35 READ-STUDENY-FILE.

36 READ STUDENT-FILE

37 AT END MOVE 'NO‘ TO DATA-REMATNS-SWITCH

38 END-READ.

39

40 PROCESS-STUDENT~RECORD,

41 DISPLAY ' '.
42 DGISPLAY 'PROCESS-STUDENT-RECORD paragraph entered'.

{43 DISPLAY 'Student record being processed: ' STGDENT-RECORD. |

44 PERFORM COMPUTE-INDIVIDUAL-BILL.
45 PERFORM INCREMENT-UMIVERSITY-TOTALS
46 PERFORM WRITE-DETATL-LINE. Display statermient shows cumrent record
47 PERFORM READ-STUDENT-FILE.
48

file://'A:/CHAPTR03/TUITI0N.DAT'

Figure 3,11 (continued)

49 COMPUTE- INDIVIDUAL-BILL.
50 DISPLAY ' COMPUTE-INDIVIDUAL-BILL paragraph entered'.
51 PERFORM COMPUTE-TUITION.
52 PERFORM COMPUTE-UNEION-FEE.
53 PERFORM COMPUTE-ACTIVITY-FEE.
54 PERFORM COMPUTE-SCHOLARSHIP,
i 55
: E 56 COMPUTE-TUITION. {
| 57 DISPLAY ' COMPUTE-TUITION paragraph entered'.é\\\
58 A
59 COMPUTE-UNION-FEE.
60 DISPLAY ' COMPUTE-UNION-FEE paragraph entered',
61
62 COMPUTE-ACTIVITY-FEE.
63 DISPLAY ' COMPUTE-ACTIVITY-FEE paragraph entered'.
64
65 COMPUTE-SCHOLARSHIP,
66 DISPLAY ' COMPUTE-SCHOLARSHIP paragraph entered'.
!
68 INCREMENT-UNEVERSITY-TOTALS.
69 DISPLAY ' INCREMENT-UNIVERS{TY-TOTALS paragraph entered'.
70
71 WRITE-DETAIL-LINE.
72 DISPLAY ' WRITE-DETAIL-LINE paragraph entered'.
73
74 WRITE-UNIVERSITY-TOTALS.
75 DISPLAY ' *.
76 DISPLAY 'WRITE-UNIVERSITY-TOTALS paragraph entered'.

Chapter -3 — A Methodology for Program Development

been found, and were easier to correct than had testing been deferred. Of course,
later versions of the program can still contain bugs, but these errors will occur in
lower level modules where correction is generally easier. The more difficult problems
will already have been resolved in the initial tests, and that is precisely the goal of
top-down testing.

We urge you 1o implement the top-down approach to program testing, and
offer Figure 3.13 as our last word on the subject. In the traditional mode of
Figure 3.13a, no testing is done until the weekend before the program goes live (or
your assigninent is due). Inevitably last-minute panic sets in, giving rise to overtime
and chaos, an environment unlikely to produce logically correct prograimns. By
contrast, the top down approach of Figure 3.13b provides a more uniforim testing
pattern, beginning aimost immmediately with the project’s inception and continuing
throughout its duration. The results are vastly superior.

Tep-Oown Tasting ' ST

Testing the Tuition Billing Program

SMITH JB15Y0000230
JAMES HR15 0508245
BAKER SRO9 0504350
PART-TIMER JRO3YD0C0300
JONES PLIGYOOB0780
HEAVYWORKER iHM18 0000200
LEE BL18 0000335
CLARK JCOe 0000310
GROSSMAN SEQ7 0000215
FRANKEL LF10 0000350
BENWAY £T03 0250395
KERBEL NBO4 0400100

PREPARE-TUITION-REPORT paragraph enteved
WRITE-HEADING-LINE paragraph enteved

PROCESS-STUDENT-RECORD paragraph entered

Student record being processed: SMITH JB15YQ00G230
COMPUTE-INDIVIDUAL-BILL paragraph entered
COMPUTE-TUITION paragraph entered
COMPUTE-UNION-FEE paragraph entered
COMPUTE-ACTIVITY-FEE paragraph entered
COMPUTE-SCHOLARSHIP paragraph entered
INCREMENT-UNIVERSITY-TOTALS paragraph entered
WRITE-DETAIL-LINE paragraph entered

PROCESS=-STUDENT-RECORD paragraph entered

Student record being processed: JAMES HR15 0500245
COMPUTE-TINDIVIDUAL-BILL paragraph entered
COMPUTE-TUITION paragraph entered
COMPUTE-UNION-FEE paragraph entered
COMPUTE-ACTIVITY-FEE paragraph entered
COMPUTE-SCHOLARSHIP paragraph entered
INCREMENT -UNIVERSITY-TQTALS paragraph entered
WRITE-DETAIL-LINE paragraph entered

PROCESS-STUDENT-RECORD paragraph entered

Student record being processed: KERBEL NBG4 0000100
COMPUTE-INDIVIDUAL-BILL paragraph entered
COMPUTE-TUITION paragraph entered
COMPUTE-~UNION-FEE paragraph entered
COMPUTE-ACTIVITY-FEE paragraph entered
COMPUTE-SCHOLARSHIP paragraph entered
INCREMENT-UNIVERSITY-TOTALS paragraph entered
WRITE-DETAIL-LINE paragraph entered

WRITE-UNIVERSITY-TOTALS paragraph entered

Chapter 3 — ‘A Melkodology for Program Development

Figure 3.13 Advantages of Top-Down Testing

Last-minute panic
A A
o e}
£ £
@ B
2 2
5 fd ©
€ E
3 3
9 <]
= J \ E
< USRIt - < o
Time Time
i {a} Traditionai Mode {b) Top-Down Mode

SUMMARY

Faints o Remnentber

Structured design is a functionally oriented technique that identifies the
tasks a program is to accomplish, then relates those tasks o one anather
in a hierarchy chart.

The modules in a higrarchy chart correspond one 1o one with paragraphs
n a COBOL program. A module (paragraph) can be entered only from the
module immediately above it, and must return control to that module when
execution is complele.

A hierarchy chart is evaluaied for compteteness, functionaility, and span of
control.

#. Structured programming is procedural in nature and contains decision-
making logic depicting the sequence in which the program tasks will be
executed.

A structured program consisls entirely of the basic building blocks of
seguence, selection, and iteration; a fourth construct, case, is commonty
included in the definition of structured programming.

i Each of the elementary building blocks in structured programming has one
entry point and one exit point.

Flowcharts andfor pseudocode {defined as neat notes to yourself) describe
the logic in a program, Warnier-Orr diagrams combine elements of structured
design and struciured programming.

Top down testing begins early in the development process, even before a
program is completely coded; it is accomplished through the use of
program siubs.

Filtt-in

Behm and Jacopini

Case structure

Flowchart

Functionai technique
Hierarchy chart

Iteration structure

Cne entry point/one exit point
Procedurat technique
Program stub

Pseudocode

Selection structure
Sequence siructure
Span of contral
Structured design
Structured programming
Top-down development
Warnier-Orr diagram

1 The fundamental building bioc

ks oi structured programiming are:
. and

p%

The _

expressing mullipranch situations

_construct is a fourth structure, which is convenient for

3. Alt of the basic building blocks of structured programming have

entry point and

exit poinl.

4, In the iteration, or DO WHILE construct, the condition is tested { before/after) the

procedure is exacuted.

5. The primary tgol of structured design is the

6, diagrams combine elemenls of a hierarchy charl and

pseudocode.

7. Ahlerarchy chart is evaluated according to the criteria of

,and

8. Structured designis a

oriented technigue, whereas structured

programming is

in nature,

9. , rather than flowcharting, is the most common technique for

expressing program logic.

10. Each moduie in a

represents a

11.

in a COBOL program.

is the management term for the number of

subordinate modules.

12, A weli-chosen paragraph name shouid indicate the function of that paragraph,

and consist of a

, and

13. and

are the individuals credited with first

postulating the structured theorem.

14. Structured (programming/design) is intended o produce a

solution with the same compcnents and relationships as the problem it is

intended 1o solve.

15 A program should be tested from the {lop down/bottom up).

Chapler 3 — A Meihodalogy tor Program Development

El S

o

11.
12,

13.
14.
15.
16.

17.

18.

Acstruclured program is guaranteed not Lo contain logical errors.
Structured programming can be implemented in a variety of programming languages.
INITIALIZATION and TERMINATION are good module names.,

The logic of any program can be expressed as a combination of only three types of
logic structures.

The one eniryfong exit philosophy is essential 1o structured programming.

Decision meaking should generally accur in higher-level, rather than lower-level,
modules.

The case consiruct is ane of the three basic logic structures.

A flowchart is the only way to communicate program logic.
Pseudocode has precise syntactical rules.

A program’s hierarchy chart is developed trom the bottom up.
A program must be completely coded before testing can begin.

A Warnier-Orr diagram combines elements of structured design and structured
programming.

READ-WRITE-AND-COMPUTE is a good module name.
A single COBOL paragraph should accomplish many functions for optimal efficiency.
Program testing should be concentrated in the last 25% of the development phase.

A span of conirol from 15 to 25 COBOL paragraphs is desirabls for the highest-
levei moduies.

The optimal numier of modules in a system is equal to the number of programmers
available for coding.

A module in a hierarchy chart can be called from another module on its own level.

. Given the flowchart in Figure 3.14, respond *trug” or "false” 1o the following on the

basis of the flowchart.

a. X >YandW > Z, then always add 1 to B.

X < Y, then always add 1to D.

If & > T, then always add 1 to B.

X <Y and W < Z, then aways add 110 D.

There are no conditions under which 1 will be added to both A and B
simultanecusiy.

£ W= 2Zand Q < T, then always add 110 C.

D 0o oo

Assume that a robot is sitting on a chair, facing a wall a short distance away.
Restricting yourselt 1o the basic building blocks of structured programming, develop
the necessary logic to have the robot walk to the wall and return to its initial position.
Express your solution in pseudocode. The robot understands the following
comimanas:

ahiems

Flgure 3.94 Flowchart for Problem 1

FALSE

A4 Y

FALSE

ADD1TOD l ADD1TOA

N

o || s |

STAND

SIT

YURN (turns right 90 degrees)
STEP

In adgition, the robot can raise its arms and sense the wall with its fingertips.
{However, it cannat sense the chair on its return trip, since the chair is below arm
level) Accordingly the robot must count the number of steps to the wall or chair by
using the following commands:

ADD (increments counter by 1)
SUBTRACT {decrements counter by 1)
ZERO COUNTER {sets counter to zerp)
ARMS 4P

ARMS DOWN

The wall is assumed (o be an integer number of staps away. Select a volunteer
to act as the robot, and see whether the submitted solutions actually accomplish
the objective.

A}(I?éfhodoff)gy for Program Development

Figure 3.15 Flowchart for Froblem 3

CONDITION,
y
CONDITION,
k4 b4
STATEMENT, STATEMENT, l»— —
| STATEMENT,
¥
i
: CONDITION
STATEMENT, 7 CONDHTION, 8
!
STATEMENT STATEMENT
& 4 CONDITION,
Y
T STATEMENT,
o e
- } Y
! et
’\f)

3. ldentily the efermentary building blocks in Figure 3.15. Be sure you get all of them
(the authors can find eignt).

4. Indicate the output that will be produced by each of the following DISPLAY
statements.

DISPLAY "STUDENT RECORD'.

. DISPLAY STUDENT-RECORD.

DISPLAY 'S5TUDENT RECORD IS ' STUDENT-RECORD.

. DISPLAY.

DISPLAY STUDENT-NAME, SOC-SEC-NUM.

®» oo g

5. This non-data-processing problem specifically avoids a business context, and was
chosen because you are unlikely to have a preexisting bias toward a solution.

hlems

Develop a hierarchy chart to allow a user to play a series of tic-tac-toe games
interactively against a computer. The following modules were used in the author's
solution: PLAY-SERIES, PLAY-GAME, CLEAR-BOARD, GET-USER-MOVE,
VALIDATE-USER-MOVE, CHECK-FOR-WINNER, UPDATE-BOARD, GET-
COMPUTER-MOVE, DISPLAY-BOARD, DISPLAY-MESSAGE. (The last madule,
DISPLAY-MESSAGE, may be called from several places.) The module names
should in themselves be indicative of the module functions.

. Again we have chosen a nonbusiness problem to give you {urther practice with

structured design. This time you are asked o develop a higrarchy chart for the
game of blackjack (alsc known as "217). The gams is played with a deck of 52
cards (or more commoniy with multiple decks). The player places a bet, and the
player and dealer are each deall two cards. Both of the player's cards are face up
(showing), but one of the dealer's cards is hidden. The player is asked whether he
or she wishes to draw additional card(s), after which the dealer has the same
option {provided the player has not gone over 21). The player closast to 21 (without
going over) wins. The rulgs of the game require the dealer to draw with 16 or less,
and stand (not draw) with 17 or more. Your hierarchy chart should contain the
necessary modules o keep a running total of the player's winnings {or losses) as
well as the following special situations:
a. Doubling down--if the player’s first two cards total 11, he or she may double the
bet and receive one additional card
b. Purchasing insurance--if the deaier’s “up” card is an ace, the playetr may place
an additional side bet. If the dealer has “blackjack,” the player receives a payout
of 2 to 1 on the side bet, but loses the initial bet. If the dealer does not have
plackjack, the side pet is jost and play continues,
C. Spiitting pairs—if the player has a pair, he or she may double the bet and play
two hands.

Overview
COBOIL Notation
IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
CONFIGURATION SECTION
INPUT-OUTPUT SECTION
DATA DIVISION
FILE SECTION
File Description (FD)
Record Description
PICTURE Clause
Level Numbers
Assumed Decimal Point
WORKING-STORAGE SECTION
VALUE Ctause
The Taition Billing Program
Programming Specifications
COBOL Entries
Limitations of COBOL-74
Summary
Fill-in
True/False
Problems

After reading this chapter you wiil be able to:

Describe the COBOL notation and determine the appropriale syntax for
any staiement.

& Complete the identification Division of a COBOL. program,

Compiete the Environment Division of a COBOL program.

Code a record description to show hierarchical relationships among fields
containing numeric and alphanumeric entries.

Code a Working-Storage Section to define various print lines.

Explain the use of an assumed decimat point.

The overall approach of this book is to provide a rapid intreduction to computer
programming; thus we presented a complete COBOL program in Chapter 1.
QOur objective at that time was {0 put you on the computer immediately, withaut
too much concern for the syntactical rules, which you must eventually master.
fully explains the variations permitted within any COBOL statement. The chapter
focuses on the Identification, Environment, and Data Divisions, and concludas
with a COBOL. #isting expanding on this material.

COBOL is an English-like language with inherent flexibility in the way a particular
entry may be expressed. In other words, there are a number of different, but equaily
acceptable, ways to say the same thing. It is necessary, therefore, to develop a
standard notation to provide a clear and unambiguous means of indicating precisely
what is, and is not, permitted within any given statement. The notation is illustrated
in Figure 4.1 and adheres to the fellowing conventions: '

1. Lowercase Jetters signify programmer-supplied information—for example,
identifier-1 or literal-1.

2. Uppercase letters indicate reserved words—for example, IF, GREATER, or
THAN.

3. Uppercase letters that are underlined are required; uppercase letters that are
not underlined are optional reserved words.

4. Brackets [] syinbolize an optional entry—for exampie, [NOT .

5. Braces {} imply that one of the enclosed items must be chasen—for example,
a choice is required between identifier-1, literal-1, and arithmetic
expression-1.

6. Three dots. .. mean that the last syniactical unit can be repeated an
arbitrary number of times.

IDENTIFICATION DIVISION

Figure 4.4 COBOL Nolation

HES NP M N

GREATER THAN

| LESS THAN |
N EQUAL TQ E
\ / i
N \ GREATER THAN OR EQUAL TO - ; !
{identifier-i !TES??HTAN ok EEUT&—LQ}E ligentifier-2 i i
IF <Titeral-1 IS [NOT] {7 = literai-2 z
E arithmetic expression-1j / g [arithmetic expression-2 ;
o] < X ;
I.\ {hnee it — ‘
) .

‘the example in Figure 4.1 is associated with the condition portion in the IF
statement. IF is underlined and appears in capital letters, indicating it is a required
reserved word. It is followed by 2 set of braces containing three options, one of
which must be chosen. The reserved word IS appears in uppercase letters but is
not underfined, meaning its use is optional. The brackets surrounding NOT imply
that the clause is optional, but if the clause is chosen, NOT is required because it
is undertined.

The next set of braces indicates a second mandatory choice among five
relationships: GREATER THAN, GREATER THAN OR EQUAL TO, LESS THAN, LESS
THAN OR EQUAL 10, or EQUAL TO. The reserved words THAN and TO are not
underlined and are, therefore, optional. Alternatively, you can choose the appropriate
symbol: », >= <, <=, or = instead of spelling out the relationship. The third set of
braces indicates yet another choice, this time from the entries identifier-2, literal-2,
and arithmetic expression-2.

Returning to the engineering senior problem of Chapter 1, in which §TU-
MAJOR is compared to engineering, we see that all of the following are acceptable
as the condition portion of the IF statement:

IF STU-MAJOR IS EQUAL TO 'ENGINEERING'
IF STU-MAJOR EQUAL 'ENGINEERING'

IF 'ENGINEERING' IS EQUAL TO STU-MAJOR
IF STU-MAJOR = 'ENGINEERING'

The IDENTIFICATION DIVISION is the first of the four divisions in a COBOL
program. Its function is to provide identifving information about the program, such
as author, date written, and security. The division consists of a division header and
up fo six paragraphs:

fdentific
Chivision

IDENTIFICATION DIVISION.

PROGRAM-10,
{AUTHOR.
[INSTALLATION,
[DATE-WRITTEN.
[DAJE-COMPILED.
[SECURITY.

Program-namne .

[comment-entry] ...
feomment-entry] ...
[comnent-entry] ...
fcomment-entry] ...
[comment-entry] ...

e b bd L b

.;._:';G}r,qp.rar 4 — The ldentitication, Fnvironment., and Dara Divisions

The division header and PROGRAM-1D paragraph are the anly required entries. The
five remaining paragraphs are optional (as indicated by the COBOL notation}, and
only the DATE-COMPILED paragraph merits special mention. If the paragraph is
specified, the compiler will insert the current date during program compilation.
{The paragraph is redundant, however, since most compilers automatically print
the date of compilation on the top of each page.) A completed Identification Division
is shown:

IBENTIFICATION DIVISION.

PROGRAM-1ID, FIRSTTRY.

AUTHOR. ROBERT T. GRAUER.

INSTALLATION, UNIVERSITY GF MIAMI.

DATE-WRITTEN, MARCH 16, 1993.

DATE-COMPILED. The compiler supplies compitation date.
SECYURITY. TOP SECRET-INSTRUCTORS ONLY.

Caoding for the Identification Division follows the general rules described in
Chapter 2. The division header and paragraph names begin in the A margin, with alt
corresponding entries beginning in or past column 12 (B margin).

Envirormment
Blivision

The ENVIRONMENT DIVISION contains two sections:

1. The CONFIGURATION SECTION identifies the computers for compiting and
executing the program, usually one and the same.

2. The INPUT-OUTPUT SECTION associates the files in the COBOL program
with the files known to the operating system.

‘The nature of these functions makes the Environment Divisicn dependent on
the computer on which you are working; that is, the Environment Division for a
program on a VAX is different from that for a program on an IBM mainframe.

Contiguration Ssetd
The CONFIGURATION SECTION is enclosed in brackets within the COBOL notation
and is therefore optional. An abbreviated format is shown below:

[CONFIGURATION SECTION,

[SOURCE-COMPUTER. computer-name.]
[OBJECT-COMPUTER. computer-name.]}

The section header and paragraph names begin in the A margin whereas the
computer-name entries begin in or past column 12. The CONFIGURATION SECTION
does littie to enhance (the documentation of) a COBOL program and is typically

omitted,

The INPUT-OUTPUT SECTION associates the files in a COBOL program with files
known to the operating systein. 1t contains a FILE-CONTROL paragraph, which in
turn contains a SELECTY statement for every file in the program, Syntactically it has
the formai;

Data Divisiaon

[INPUT-QUTPUT SECTION,
FILE-CONTROL,
SELECT file-name-1 ASSIGN TO implementor-name.]

A program may be written without any files and hence the INPUT-OUTPUT
section is optional. {See Chapter 10 on screen 1/0 for an example of a program
written without any files.)

The section header {INPUT-OUTPUT SECTION) and paragraph name {(FiLG-
CONTROL) begin in the A margin (columns 8 through 11). The SELECT statements
for the individuat files begin in the B margin {(column 2 and beyond).

The precise format of the implementor-name in the SELECT statement varies
from compiler to compiler, with the example below taken from lines 8 through 11 in
the engineering senior problem.

INPUT-OUTPUT SECTICN.
FILE-CONTROL.
SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTRO3\TUITION.DAT’
ORGANIZATION IS LINE SEQUENTIAL.
SELECT PRINT-FILE
ASSIGK TG PRINTER.

The dependence of the Environment Division on the individual computer
installation bears repeating. You should consult either your instructer or your
camputer center for the proper statements to use in your program.

Lata

Division

The Data Division describes the data itemns that appear in a program. It contains
several sections, two of which, the FILE SECTION and the WORKING-S5TORAGE
SECTION, will be discussed in this chapter. Two other sections, the SCREEN
SECTION and the EINKAGE SECTION, are presented in later chapiers.

File Section T

The FILE SECTION is the first section in the Data Division and contains a file
description (FD) for every file previvusly defined in a SELECT statement in the
Environment Division. (If, however, a program is written without any files, then the
FILE SECTION will not appear.) The file description is followed by the associated
record description which is accomplished through PICTURE clauses and level
numbers, Each of these elements is discussed in turn,

Filg Desoription (FL3) The file description (FD) provides information about the
physical characteristics of a file. It contains four clauses, all of which are optionat,
and which may appear in any order. The final entry, however, must be terminated
by a period. An abbreviated format for the file description is as follows:

D file-name

[BLOCK CONTAINS integer-1 RECORDS }
[RECORD CONTAIMS integer-1 CHARACTERS]

RECORDS ARE| [QMITTED
LABEL 4~ — A

RECORD 1S | |STANDARD

[DATA RECORD TS data-name-i].

The BLOCK CONTAINS clause is used to speed up input/output operations
for files on tape or disk, by reducing the number of physical records (blocks) in a file,

file://'A:/CHAPTR03/TUITI0N.DAT'

‘fe - Identiticalion, Fuvironment, and Dala Divisions

and thus reducing the number of times the input/output device is accessed. In
other words, it is more eflicient to access a disk once and read a block containing 10
records, than it is to access the disk 10 timmes and read each record individually. The
blecking factor is defined as the number of legical records in a physical record. The
concept is ilfustrated in Figure 4.2 where the records of Figure 4.2a are unblocked,
wheteas those in Figures 4.2b and 4.2c have blocking factors of 2 and 3, respectively.

‘The higher the blocking factor, the fewer the number of physical records, and
the more efficient the processing. Thus, the blocking factor should always be as
high as possible, within the limitations of the physical device. The actual
determination of the blocking factor need not concern us now; what is important is
the implementation of blocking in a COBOL program.

Assume, for example, a blocking factor of 5, with the associated entry, BLOCK
CONTAINS 5 RECORDS. The initiat execution of the READ statement places a block
of 5 logical records in memory, with only the first record available to the program.
The second (third, fourth, and fifth) execution of the REAI statement makes a new
logical record available, without a corresponding physical operation taking place.
In similar fashion the sixth execution of the READ statement will bring a4 new
physical record into the 1/0O area, with new logical records made available on the
seventh through tenth executions of the READ statement. All of this is automatically
done for the programmer as long as the BLOCK CONTAINS statement is specified in
the COBOL FD.

Figwse 4.2 Blocked versus Unblocked Records

m
=
Iy 1
2
=

f,;s ?;jn,};c;:m

I
1}%57 BA4 ‘3‘4 ;

EDISON

il i’} Factor 6f Tweo

BAKER BROWY £DISON

e

(¢ Hiog
{Thres Logics! Hag

;3]

Divigian

COBOGL programs that are written to run on an IBM mainframe typically
contain the entry, BLOCK CONTAINS 0 RECORDS. This entry does not mean what
it says literally, but rather that the block size will be entered at execution time.

The RECORD CONTAINS clause indicates the number of characters in a record
and is useful for documentation. The clause also causes the compiler to verify that
the sizes of the individual data items sum to the stated value.

The LABEL RECORDS clause determines whether or not label processing is to
take place. Label records appear at the beginning and end of fiies stored on tape or
disk, and contain information about the file, such as the date created, the logical
record size and the block size. Label records are created automatically whenever a
file is opened as output and are checked automatically whenever a file is opened as
input. Label processing is necessary tc ensure that the proper file is being processed.
The LABEL RECORDS clause is optional and its omission defaults to standard
labels.

The DATA RECORD clause specifies the name of the 91 entry (or entries)
associated with the particular file. [t has Himited value in documentation and has no
other funciion. An example of a completed FIY is showi below:

FD STUBENT-FILE
BLOCK CONTAINS 10 RECORDS
RECGRD CONTAINS 43 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS STUDENT-TN.

Record Description A file description is followed by an associated record

description that conveys the following information:
1. The size and type of each field within a record
2. The order in which “he ficlds appear
3. The relationiship of the fields to one another

through a combination of PICTURE clauses and level numbers.

PICTURE Clause A PICTURE clause describes the size and type of a field. The
size of a field is equivalent to the number of characters (positions) in the field. The
type of field is either numeric or alphanumeric, and is denoted by a 9 or an X
respectively, in the associated PICTURE clause. A numeric item can contain the
numbers 0 - 4, whereas an alphanumeric item may contain A - Z (alphabetic), 0-9
{numieric}, and/or special characters.

The size of a field is indicated by the nuuinber of times the 9 or X is repeated. A
data item with a picture of XXXX or X(4) is a four-position alphanumeric fieid. In
similar fashion 999 or 9(3} denotes a three-position numeric field. (Alphabetic data
items, denoted by an A in the associated PICTURE clause, ave seldom used because
even a field as simple as a person’s name can contain apostrephes or hyphens,
which are alphanumeric rather than alphabetic in nature.}

Level Numbers [Level numbers describe the relationships that exist between
fields within a record. Each field is classilied as either a group item or an elementary
item. A group itemn is a field that can be finther divided—an elementary item can
not.

Consider, for example, Figure 4.3, which depicts a student examination record.
The field STUDENT-NAME is a group item because it is divided into three fields:
LAST-NAME, FIRST-NAME, and INIT. LAST-NAME, FIRST-NAME, and INIT,
however, are elementary items, since they are not further divided. in simitar fashion,
S5-NUM is an elementary item. EXAM-SCORES is a group item, as are MATH and
ENGLISH. ALG, GEO, READ, elc., are eleinentary iterns.

“Chepter 4 — The identification, Envitonment, and Daia Divisions

Figeure 4.3 Student Exam Record

STUDENT-EXAM-RECQRD

STUGENT-NAME SS-NUM EXAM-SCORES
MATH ENGLISH
LAST | FIRST [T -
NAME | NAME ALG l Geo |READ] voc | ur

I ., 5, I o’
1 1516 381 32 40 41 45 4B 50 517 55-%6 _BOB1 65
\ / //0 0\ \, g! /i/,/
o f .// \\ s H /}{//f.,.

Level numbers and PICTURE clauses are used in Figure 4.4 1o define a record
corresponding to the STUDENT-EXAM-RECORD in Figure 4.3. Two equivalent
sets of COBOL statements (Figures 4.4a and 4.4b) are presented and follow the
rules below:

1. The level numbers within a record description can assume any value from 01
to 49 inclusive.

2. The level number 01 denotes the record as a whole.

3. Any level number from 02 to 49 can be used for field(s) within the record, so
long as elementary items have a nuinerically higher number than the group
item to which they belong.

4. An elementary itern must have a PICTURE clause—a group item cannot have
a PICTURE clause.

In Figure 4.4 STUDENT-EXAM-RECORD has a level number of 01 to indicate
the record as a whole. STUDENT-NAME is a subfield of STUDENT-EXAM-RECORLD;
hence it has a higher level number (05). LAST-NAME, FIRST-NAME, and MID-
INITIAL are subordinate to STUDENT-NAME and thus have a higher level number
(1M. SOC-SEC-NUM and EXAM-SCORES are also subfields of STUDENT-EXAM-
RECORD and have the same level number as STUDENT-NAME. EXAM-SCORES is
subdivided into two group items, MATH and ENGLISH, which in tumn are further
subdivided into elementary items.

Every elementary itemn must have a PICTURE clause, whereas a group item
cannaot have a PICTURE clause. Thus, LAST-NAME has the entry PICTURE IS X(15)
to denote a 15-position alphanumeric field; STUDENT-NAME, however, is a group
item and does not have a PICTURE clause. The parentheses in a PICTURE clause
imply repetition; that is, the entry 9(5} for ALLGEBRA depicts a 5-position numeric
field.

There is considerable fatitude within COBOL as to the specification of level
numbers and PICTURE clauses. You can, for example, choose any level numbers
from 02 to 49 to describe subordinate fields; for example, 04, 08, and 12 are used in
Figure 4.4b as opposed to the levels 05, 10, and 15 in Figure 4.4a. The 01 level is used
in both figures for the record as a whole.

Rata Division

Levet Numbers and PICTURE Clauses

01 STUDENT-EXAM-RECORD.
05 STUDENT-NAME.

10 LAST-NAME PICTURE IS X{15). :
10 FIRST-NAME PICTURE IS X{15). E
10 MID-INITIAL PICTURE 15 X. :
05 SOC-SEC-NUM PICTURE IS 9{9}. i
05 EXAM-SCORES. 5
10 MATH.
15 ALGEBRA PICTURE 1S 9{5).
15 GEOMETRY PICTURE 1S 9(5).
10 ENGLISH. ;
15 READING PICTURE IS 9(5). ;

15 VOCABULARY PICTURE IS 9(5).
15 LITERATURE PICTURE IS 9(5).

01 STUDENT-EXAM-RECORD. @
04 STUDENT-NAME. ;

08 LAST-NAME PIC X{15).
08 FIRST-NAME PIC R{15).
08 MID-INITIAL PIC X.
04 SOC-SEC-NUM PIC 9(9).
04 EXAM-SCORES.
08 MATH.
12 ALGEBRA PIC 99999,
12 GEDMETRY PIC 95999,
08 ENGLISH.
12 READING PIC 99999.

12 VOCABULARY PIC 99995.
12 LITERATURE PIC 99999.

The PICTURE clause itself can assume any one of four forms: PICTURE 1§,
PICTURE, PIC IS, or PIC. Parentheses may be used to signal repetition of a picture
type; that s, X(3) is equivalent to XXX. Figure 4.4b is the exact equivalent of Figure 4.4a
with emphasis on the aforementioned flexibility.

; i %+ Incoming numeric data may not contain actual decimal
pomis On ﬁrst I“delng, that statementi may be somewhat hard to accept. How, for
example, does one read a [ield containing dollars and cents? The answer is an
assumed (implied) decimal point as illustrated in the COBOL entry:

05 HOURLY-RATE PICTURE IS 99V99.

Everything is familiar except the V embedded in the PICTURE clause. The V
means an implied decimal point, that is, FIOURLY-RATE is a four-digit (there are

" Chapter 4 — The identification, Environmaent, ard Data Divisions

Siguve 4.5 Assumed Decimal Point

P o i A - e - .

[IROOMING BEGORD: DATA LAVISION HECORE VALUES:

‘g GO T,
01 INCOMING-DATA-RECORD.
9 “87155 “4|3 |Vzm 05 FIELD-A PIC 9V9%, ————> 087

05 FIELD-B PIC 99Y., ——» 654
05 FIELD-C PIC 9. 3
i 05 FIELD-D PiC V999, —— 210

four 9's) numeric field, with two of the digits coming after the decimal point. Simply
stated, the V indicates the position of the decimal point,

To check your understanding, assume that 9876543210 is found in positions
1-10 &f an incoming record and that the following Data Bivision entries apply:

Gl INCOMING-DATA-RECCRD,

G5 FIELD-A PIC 9v99,
05 FIELD-B PIC 99v9.
05 FiEtb-C PIC 9.

05 FIELD-D PIC V995,

The values of FIELE-A, FIRLD-B, FIFLD-C, and FIELD-1J are 9.87, 65.4, 3, and
.210. respectively, as shown in Figure 4.5. FIELD-A is contained in the first three
positions with two of the digits to the right of the decimal point, FIELD-B is contained
in the next three positions (i.e., 6, 5, and 4) with ene digit to the right of the decimal
point. FIELD-C is contained in position 7 with no decimal places. Finally, FIELD-D
is contained in positions 8, 9, and 10, with all three to the right of the decimal.

Working-Slorage Seoilon

The WORKING-STORAGE SECTION defines any data name that was not previously
referenced in the FILE SECTION, that is, any data name that does not appear in a
fite. The WORKING-STORAGE SECTION contains data names to store the results of
calculations, switches to control the execution of performed paragraphs, and/or
data names 1o hold constants needed by the program. The WORKING-STORAGE
SECTION will also define various print lines {a heading, detail, and/or total line)
reguired by a program.

Figure 4.6 contains a WORKING-STORAGE SECTION for an expanded version
of the engineering senior program to count the number of qualified students,
There are separate record descriptions for the counters and constants needed
by the program, as well as a separate record description (01 entry} for each type
of print line.

A FILLER entry defines a field that is not referenced eisewhere in the COBOL
program. The layout of DETAIL-LINE, for example, begins with eight spaces, followed
by the value of PRINT-NAME, an additional 10 spaces, the value of PRINT-MAJOR,
and a final set of 74 spaces to complete the print line. The three fields containing
spaces are not referenced anywhere else in the program vet need to be accounted
for—hence the FiLLER entiy.

The word FILLER is opticnal, however, and could be omitted as shown in the
definition of TOTAL-LINE. The entries under TOTAL-LINE look strange initially,
but make perfect sense when your realize that the “missing” FILLER entiies are not

Data Division

Figure 4.6 The Working-Slorage Section

WORKING-STORAGE SECTION.

01 COUNTERS-AND-SWITCHES.
05 TOTAL-STUDENTS PIC 9{3} VALUE ZEROS.
05 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES.

01 PROGRAM-CONSTANTS.

05 REQUIRED-CREDITS PIC 999 YALUE 110.
05 REQUIRED-MAJOR PIC X{10) VALUE ‘ENGINEERING'.
05 REQUIRED-GPA PIC 9V99 VALUE 3.00.

01 HEADING-LINE.

05 FILLER PIC X(10} VALUE SPACES.
05 FILLER PIC Xx{12) YALUE 'STUDENT NAME'.
G5 FILLER PIC X(110) VALUE SPACES.

01 DETAIL-LINE.

05 FILLER PIC X{8) YALUE SPACES.

05 PRINT-NAME PIC X(25).

05 FILLER PIC X(10) VALUE SPACES.

05 PRINT-MAJOR PIC X(15).

05 FILLER PIC X{74) VALUE SPACES. LT IS OPTIONAL IN COBOL-25
y

01 TOTAL-LINE, %

05 PIC X(4) VALUE SPACES

05 PIC X(14}) VALUE 'TOTAL STUDENTS'.‘

05 PIC X(2) VALUE SPACFS. B

05 TOT-STUDENTS PIC 9(3) VALUE ZEROS.

05 PIC X(110) VALUE SPACES.

01 DASHED-LINE
05 FILLER PIC X{132) VALUE ALL '-'.

referenced in the Procedure Division, atid hence their omission has no effect on the
remainder of the program.

VALUE Clause The VALUE clause initializes the contents of a data name within
the WORKING-STORAGE SECTION and has the general form:
YALUE IS Titeral

Literals are of three types—numeric, nonnumeric, and figurative constants.
Numeric literals—for example, 110 or 3.00-—contain a number and are used in
calculations. Nonnumeric literals, such as ‘ENGINEERING’, contain a character
string and are enclosed in apostrophes or quotations marks. {Additional rules for
numeric and nonnumeric literals were presented in Chapter 1.)

A figurative constani (ZERO or SPACE) is a COBOL reserved word with a pre-

assigned value. The singular and plurat forms of a figurative constant are
interchangesble; that is, one can use SPACE or SPACES, or ZERQ, 7EROS, or ZEROES.

?'.:'_Z"C#'prfor 4= The ldentification, Envirgnment, and Data Divisions

Figurative constants are not enclosed in quotation marks. COBOL also permits the
azoay oxF dlan ATT Lsvnrnd dov vavevnnt o ohoavmoator gfrire
IO O LNEC IR/, I a1 KU lCl.!Lrul € LI GL LG AEL lllg-

The VALUE clause associated with a particular data name must be consistent
with the corresponding PICTURE ciause; that is, it is incorrect to use a nonnuimneric
literal with a numeric picture clause or a numeric literal with a nonnumeric picture.
Consider:

REQUIRED-CREDRITS PIC G99 VALUE 110. (valid)
REQUIRED-MAJOR PIC X(10) VALUE 'ENGINEERING'. ({valid)
REQUIRED-CREDITS PIC 999 VALUE '110°. {invalid)
REQUIRED-MAJGR PIC X(10} VALUE ENGINEERING. {invalid)

REQUIRED-CREDITS is defined as a numeric item and must have a numeric value.
In similar fashion, REQUIRED-MAJOR is defined as alphanumeric and requires an
alphanumeric VALUE clause.

%ﬁ%?@

e

B g
ETsTy)

The tuition billing program was introduced inn Chapter 3 in conjunction with
structured programiming and design. The stubs prograrn did not, however, show
the detailed output as presented in the programming specifications, because the
objective at thai time was only to test the overall iow of the program. itis necessary,
therefore, to return to the original specifications to develop the ldentification,
Environment. and Data Divisions. We will, however, amplify the development of
the Data Division by presenting three figures that relate various portions of the
programiing specifications to their associated COB(L entries.

Brogvarneing Bpe

Figure 4.7a displays the input record layout from the programming specifications;
Figure 4.7b shows the corresponding FD and record description. STUDENT-RECORD
corresponds to the record as a whole and thus is assigned the level number 01.
STUDENT-RECORD in turn is divided into the subordinate fields STU-NAME (which
is further divided into STU-LAST-NAME and STU-INITIALS), STU-CREDITS, STU-
UNION-MEMBER, and STU-SCHOLARSHIP. STUDENT-RECORD and STU-NAME
are group items and do not have a PICTURE dlause; all of the other data names are
elementary items and have a PICTURE clause. An implied decimal point appears
within the PICTURE clause for STU-GPA.

Figure 4.8a excerpts the processing specifications for the computation of a
student’s bill; Figure 4.8b shows the associated record description as it appears in
WORKING-STORAGE, The entries in Figure 4.8b are niot required by COBOL per se,
and are included to facilitate documentation and maintenance. it would be possible,
for example, to use the constants 200 and 25 in the Procedure Division rather than
the corresponding data names PRICE-PER-CREDIT and UNION-FEE. The data
names, however, facilitate program mainfenance; that is, a change in the value of a
constant is easier to implement in the Data Division than (in multiple staternents)
in the Procedure Division.

Figure 4.9a contains the programming specifications for the heading and
detail lines; Figure 4.9b shows the associated COBOL entries. Note carefully the
exact correspondence between the COBOL entries and report layout. The print
layout calls for 10 spaces between the literals STUDENT NAME and CREDITS; thus
there is a 10 position FILLER entry between these literals within the COBOL entries.

The Tuilion Bifling Program

Figuve 4.7 Development of a COBOL Program {Fiile Section)

CREDITS LNION MEMBER
NITIALS ’ ! lscnomﬂsmp

‘ STUDENT NAME I

LAST
2 3 4 8 6 7 8 810111213 14 15116 17{18 1912021 22 23 24(25726 27

GPA

{ay Program Specitications

FD STUDENT-FILE
RECORD CONTAINS 27 CHARACTERS.
01 STUDENT-RECORD.
09 STU-NAME.
10 STU-LAST-NAME PIC X(15}.
1) STU-INITIALS PIC XX.

05 STU-LREDITS PIC 92},
05 STU-UNION-MEMBER PIC X.

05 STU-SCHOLARSHIP PIC 9(4}.
05 STU-GPA PIC 9v99.

{8} COBOL bntries

Figure 4.8 Development of a COBOL Program (Constants and Rates)

—_

. Caleulate tuition due af the rate of $200 per credit.

2. The union fee is $25.

3. Compuie the activity fee based on the number of crediis taken; $25 for 6
credits or less, $50 for 7 to 12 credits, and $75 for more than 12 credits.

4. Award a scholarship equal to the amount in the incoming record if, and

only if, the GPA is greater than 2.5.

{a; Excerpt from the Program Specifications

WORKEING-STORAGE SECTIGN.
01 CONSTANTS-AND-RATES.

G5 PRICE-PER-CREDIT PIC 9(3) VALUE 200.
05 UMION-FEE PIC 9(2) VALUE 25.

i 05 ACTIVITY-FEES.
10 IST-ACTIVITY-FEE PIC 9% YALUE Z5.

z

10 1ST-CREDIT-LIMIT PIC 99 VALUE 6.
i 10 2MD-ACTIVITY-FEE PIC 99 VALUE 50.
10 2ZMD-CREDIT-LIMIT PIC 99 VALUE 12,

10 3RD-ACTIVITY-FEE PIC 99 VALUE 75.

45 MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5.

{b) COBOGL Enlries

01

01

sl Cheptar 4 o The ldentidfication, Environment, and Data Divisions

Development of a COBOL Program (Print Lines)

HEADING-LINE.

05
05
05
05
05
05
05
95
35
05
05
05
05
05
05

FILLER
FILLER
FILLER
FELLER
FILLER
FILLER
FELLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER

DETAIL-LINE.

05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05

FILLER
DET-LAST-NAME
FILLER
DET-INITEALS
FILLER
DET-CREDITS
FILLER
DET-TUITION
FILLER
DET-UNEON-FEE
FILLER

DET-ACTIVITY-FEE

FILLER

DET-SCHOLARSHIP

FILLER
BET-IND-BILL
FILLER

PIC
PIC
PIC
PIC
PIC
PI1C
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PicC
PIC
PIC
PIC
PIC
pIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
pIcC
PIC

X(12)
X{10)
X(7)
X{2)
X(7)
X(2)
X(9)
X(2)
X(7)
K(2}
X(11)
X(2)
X(10)
X{48)

X

X(15).

x(2)
Xx(2}.
X{5)}
g(2).
X(6}
9(6).
X(7)
9(3).
%(6)
9(3).
X{8)
a(s).
X{6)
3{6}.
X{49}

il ;
_UNIDR FEE AC

999,

g 99’ e 3 b o s s

I

£ e
s

E"i’\.;;;.,ii. iy ﬁi_z*,i%ﬁ:}i.&

VALUE SPACES.

VALUE 'STUDENT NAME'.
VALUE SPACES.

VALUE 'CREDITS'.
VALUE SPACES.

VALUE 'TUITION'.
VALUE SPACES.

VALUE ‘UNION FEE'.
VALUE SPACES.

VALUE 'ACT FEE'.
VALUE SPACES.

YALUE ‘SCHOLARSHIP'.
VALUE SPACES.

VALUE 'TOTAL BILL®.
VALUE SPACES.

VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.

O

b COBGL £n

[

The Tuition Billing Program

Figure 4.10 contains the completed entries for the fiist three divisions. (The
completed Procedure Division appears at the end of Chapter 5.) The Identification
Division is unchanged from the stubs program in Chapter 3 and contains only the
required PROGRAM-ID paragraph and an optional AUTHOR paragraph. The
Environment Division has expanded slightly to include an additional SELECT
statement for the print file (lines 10 and 11).

The Data Division, however, has grown significantly. The Fil.LE SECTION
conltains the FI} for the incoming student record (lines 15 and 16) followed by the
associated record description in lines 17 through 24. A file description has also been
added for PRINT-FILE. Note, too, the correspondence between the SELECT
statements in the Environment Division and the associated FD entries in the Data
Division.

The programming specifications call for multiple calculations for each
student (tuiton, union fee, activity fee, scholarship) as well as universiiy totals for
each item. Lach of these calculations requires a separate data name in WORKING-
STORAGE to store the result. Observe, therefore, the definition of the elementary
items IND-TUITION, IND-ACTIVITY-FEE, and so on, which appear together (for
convenience) under the group item INDIVIDUAL-CALCULATIONS dine 33}, In
similar fashion, the elementary iterns UNI-TUITION, UNE-ACTIVITY-FEE, and so
on, appear under the group item UNIVERSITY-TOTALS ({line 40). There is also a
separate 0 entry to hold the constants and rates required by the program (lines
47-56}.

The program requires several different types of print lines—a heading line, a

dotail ine and 2 total Hne, sach with a different format. Thus there are senarate 01
Ui e, ariia o dUa sl Cals vvainn o GlnUi O SUraaal 1ind, tiliv i GUparale v

entries for HEADING-LINE (lines 58--73), DETAIL-LINE (lines 75-92), and TOTAL-
LINE in lines 107-121. Note, too, the separate entry for DASH-LINE (lines 94-105),
which makes use of the All literal to establish a row of dashes. Look carefully at the
use of the FILLER and associated VALUE clauses in each of these print lines, to
create the necessary literal information, and the correspondence between these
entries and the COBOL specifications.

danye 4,18 ldentification, Environment, and Data Divisions for Tultion Billing Program

TR it £+ s e

IDENTIFICATION DIVISION,
PROGRAM-ID. TUITIONS.
AUTHOR. CAROL VAZQUEZ VILLAR.

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTROS\TUITION.DAT'
ORGANIZATION IS LINE SEQUENTIAL.
SELECT PRINT-FILE
ASSTGN TO PRINTER.

LE=R0 o < O = IS I L 7% I AN T)

— e
[T U)

file://'A:/CHAPTR05/TUITI0N.DAT'

Fligyrs 4,90

e

tication. Ehviranment. and Data Divisions

Identification, Environment, and Data Divisions for Tuition Billing Program (continued)

13 DATA DIVISION.
14 FILE SECTION.
15 FD STUDENT-FILE
16 RECORD CONTAINS 27 CHARACTERS.
17 01 STUDENT-RECORD.
C18 05 STU-NAME. T
‘g 10 STU-LAST-NAME PIC X(15).r"
20 10 STU-INITIALS PIC XX.
21 05 STU-CREDITS PIC 9(2).
22 05 STU-UNION-MEMBER PIC X. N
23 05 STU-SCHOLARSHIP PIC 9(4). o IRt dec Al it
‘28 7 o5 STU-GPA PIC GV95. |
25
26 FD PRINT-FILE
27 RECORD CONTAINS 132 CHARACTERS.
28 01 PRINT-LINE PIC X(132}.
L2
30 WORKING-STORAGE SECTION.
31 01 DATA-REMAINS-SWITCH PIC X{2} VALUE SPACES.
R
|33 01 INDIVIDUAL-CALCULATIONS.
34 05 IND-TUITION PIC 9(4) VALUE ZEROS.|
35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZEROS.|
36 05 IND-UNION-FEE PIC 9(2) VALUE ZEROS.
| 37 05 IND-SCHOLARSHIP PIC 9(4) VALUE ZERDS.
{38 05 IND-BILL PIC 9(6) VALUE ZERGS.
39
40 Ol UNIVERSITY-TOTALS.
41 05 UNI-TUETION PIC 9(6) VALUE ZEROS.
a2 05 UNI-UNION-FEE PIC 9(4) VALUE ZEROS.
a3 05 UNI-ACTIVITY-FEE PIC 9(4) VALUE ZEROS.
A4 05 UNI-SCHOLARSHIP PIC 9(6) VALUE ZEROS.
15 05 UNI-IND-BILL PIC 9(6) VALUE ZEROS.
46
a7 01 CONSTANTS-AND-RATES.
48 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200.
49 05 UNION-FEE PIC 9(2) VALUE 25.
50 05 ACTIVITY-FEES,
51 10 1ST-ACTIVITY-FEE PIC 99 VALUE 25.
52 10 1ST-CREDIT-LIMIT PIC 99 VALUE 6.
53 10 2ND-ACTIVITY-FEE PIC 99 VALUE 50.
54 10 2ZND-CREDIT-LIMIT PIC 99 VALUE 12.
55 10 3RD-ACTIVITY-FEE PIC 99 VALUE 75.
{56 05 MINIMUM-SCHOLAR-GPA PIC 9VG VALUE 2.5.
: 57 _Separale areas lor heading and deial ines
| 58 01 HEADING-LINE. |~
59 05 FILLER PIC X VALUE SPACES.
60 05 FILLER PIC X{12) VALUE 'STUDENT NAME'.
61 05 FILLER PIC X(10) VALUE SPACES.
62 05 FILLER PIC X(7) VALUE 'CREDITS'.

' T UENARGE 5 5 grous dem wiih bao 2lammentarny fams

The Tuition Biliing Frogram

{continued)
63 05 FILLER PIC X(2) VALUE SPACES.
. 64 05 FILLER PIC X{7) VALUE 'TUITION'.

65 05 FICLER PIC X{(2) VALUE SPACES.

6 05 FILLER PIC X(9) VALUE 'UNION FEE'.
Y 05 FILLER PIC K(2) VALUE SPACES.
|68 05 FILLER PIC X(7) VALUE 'ACT FEE'.

69 05 FILLER PIC X(2) VALUE SPACES.

70 05 FILLER PIC X(11) VALUE 'SCHOLARSHIP'.

71 05 FILLER PIC X(2) VALUE SPACES.

72 05 FILLER PIC X(10) VALUE 'TOTAL BILL®.

73 05 FILLER PIC X(48) VALUE SPACES.

74 e B e s Frepa_ st ArT herad s

T o BERRILLINE. T y

76 05 FILLER PIC X VALUE SPACES.

77 05 DET-LAST-NAME PIC X{15).

78 05 FILLER PYC X(?) VALHE SPACES.

79 05 DET-INITIALS PIC X(2).

80 05 FILLER PIC X(5) VALUE SPACES.

a1 05 DET-CREDITS PIC 9(2).

P B2 05 FILLER PIC X(6) VALUE SPACES.

83 05 DET-TUITION PIC 9(6).

- 05 FILLER PIC X(7) VALUE SPACES.
: a5 85 DEYV-UNICN-FEE PIC 5{3}.

86 05 FILLER PIC X(6) VALUE SPACES.

87 05 DET-ACTIVITY-FEE PIC 9(3).

88 05 FILLER PIC X(8) VALUE SPACES.

89 05 DET-SCHOLARSHIP PIC 9(5}.

90 05 FILLER PIC X(6) VALUE SPACES.

9] 05 DET-TND-BILL PIC 9{(6).

92 05 FILLER PIC X(49) VALUE SPACES.

93 - RS HrEGs (o dash and iofel ines
w Ol BRSO,

.95 05 FILLER | PIC X{31) VALUE SPACES.
§ 96 05 FILLER f PIC X{8) VALUE ALL '-*.
:g7 05 FILLER / PIC X(2) VALUE SPACES.
.9 05 FILLER / PIC X{8) VALUE ALL '-'.
.99 05 FILLER f PIC X(2) VALUE SPACES.
| 100 05 FILLER / PIC X(7) VALUE ALL '-'.
101 05 FILLER PIC X(6) VALUE SPACES.
102 05 FILLER / PIC X{7) VALUE ALL '-'.
103 05 FILLER [PIC X(5) VALUE SPACES.
108 05 FILLER | PIC X(7) VALUE ALL '-'.
{108 05 FILLER | PIC X{(49) VALUE SPACES.
| 106 /
R e
L 108 05 FILLER PIC X(8) VALUE SPACES.
C109 05 FILLER PIC X{17)

110 VALUE 'UNIVERSITY TOTALS'.

111 05 FILLER PIC X(8) VALUE SPACES.

112 05 TOT-TUITION PIC 9(5}.

The identification, Environmeni, and Data Divisions

Figure 4.10 (continued)

113 05 FILLER PIC x{6) VALUE SPACES.
114 05 TOT-UNION-FEE PIC 9{4).
115 05 FILLER PIC X(5) VALUE SPACES.
116 05 TOT-ACTIVITY-FEE PIC 9{4).
it7 05 FILLER PIC X(7) VALUE SPACES.
118 05 TOT-SCHOLARSHIP PIC 9(6).
119 05 FILLER PIC X(6) VALUE SPACES.
120 05 TOT-IND-BILL PIC 9(6}.
123 05 FILLER PIC X{49) VALUE SPACES.

The CONFHGURATION SECTION, SOURCE-COMPUTER, and OBJECT-
COMPUTER entries are optional in COBOL-85 but are required in COBOL-
74. The LABEL RECORDS clause is optional in COBQL-85 but is required in
COogoL-74,

The BLOCK CONTAINS clause is optienal in both compilers, but its
omission has different effecis. Omitiing the clause in COBOL-85 causes the
system to take the biocking factor from the operating environment {and is
equivalent to the IBM entry BLOCK CONTAINS ¢ RECORDS). Omission of
the clause in COBOL-74 defaults to the implementor-designated number,
regardiess of what was specified in the control statements to the operating
system.

COBOL-85 ailows two new relaticnships, GREATER THAN OHR EQUAL
TO and LESS THAN OR EQUAL TO, in the condition portion of an IF statement.
These were not allowed in COBOL-74, which used NOT LESS THAN as the
equivatent of GREATER THAN OR EQUAL TO.

The word FILLER is optional in COBOL-85, whereas it is required in
COBOL-74.

SUMMARY

Points to Bemember

g COBOL notation is the standardized form used {0 express permissible
COBOL. formats. Uppercase letters indicate COBOL reserved words,
whereas lowercase letters denote programmer-supplied information.
Brackets [} imply an optional entry, whereas braces [} indicate a choice
between required entries. Any underlined item is required.

The PROGRAM-ID paragraph is the only required entry in the ldentification
Division; the AUTHQR paragraph is strongly recommended. The

Immary

s

Environment Division contains the FILE-CONTROL paragraph that defines
the files used in a program through SELECT staterents.

The FILE SECTION contains a file description for every file previously
defined in a SELECT statement in the Environment Division. The file
description is followed by a record description to describe the fields within
a file.

The PICTURE clause indicates the size and type of a data name. An
elementary item always has a PICTURE clause, whereas a group item
does not. Level numbers assume values from 01 to 49 inclusive, with 01
assigned to the record as a whole. Level numbers need not be assigned
consecutive values,

The WORKING-STORAGE SECTION cantains additionat record descriptions
for data names not found in the FILE SECTION. VALUE clauses assign an

initial value to a data name of a numeric literal, a nonnumeric literal, or a

Hey Words and Concepts

Alphanumeric item
Assumed (implied) decimal point
Blocking factor

Group item
Heading line
Level numbers

Braces Logical record
Brackets Numeric item
COBOL notation Physical record
Detall line Record description
Elementary item Size

Figurative constant Total line

ile description Type

COBOL Elements

ALL INSTALLATION

ASSTGN LABEL RECORDS
AUTHOR PICTURE

BLOCK CONTAINS PROGRAM- ID

DATA RECORD IS RECORD CONTAINS
DATE-COMPILED SECURITY
DATE-WRITTEN SELECT

)] SPACES

FILE SECTION VALUE

FILE-CONTROL WORKING-STORAGE SECTION
FILLER ZEROS

INPUT-QUTPUT SECTION

apter 4 — .The {dentificatios. Environment, and Data Divisions

%))

z"w-.

(&)

11.
12.

13.
14.
15.

. The Division is the first division in a COBOL program.
The paragraph is the only reqguired eniry in the Identification
Division.
in the COBOL notaticn, indicate that one of the enciosed eiemenis

must be included.

Required reserved words are written in letters and are
Lowercase letters indicate information.
The Environment Division containg sections.
The statement ties a programmer-chosen file name 1o a system
name.
A itemn is divided into one or more elementary items.
An elementary item always has a clause.
Level numbers appearing under a 01 record may range from - He)
The Data Division coniains the and sections.
The presence of a V in a numeric piclure indicates an decimal
point.
Incoming numeric fields (May/may not) contain an actual decimal point.

denotes a field that is not referenced by name.
The specifies the number of
records in ang record.

ol

© o N o

10.

. The Identification Division may contain up to six paragraphs.

The PROGRAM-ID paragraph is the only required garagraph in the ldentification
Divigion.
Square brackets indicate a required entry.

Braces imply that one of the enclosed entries must be chosen.

A COBOL program that runs successfully on a PC would aiso run successfully on a
mainframe with no modification whatever.

A level number may assume any vaiue from 01 io 49.
A 01-levef entry cannct have a PICTURE clause.
All elementary items have a PICTURE clause.

A group item may have a PICTURE clause.

Oi-level

D

ntries may appear in both the File and Working-Storage Sections of the

Problems

it
12.
13.

clause.

14.

A data name at the 10 leve! will always be an elementary item.
A data name at the 05 fevel may or may not have a PICTURE clause.

PICTURE, PICTURE 1S, PIC, and PIC IS are ail acceptable forms of the PICTURE

PICTURE IS 9(3) and PICTURE iS 999 are equivalent entries.

15. The File Section is required in every COBOL program,

16.
17.

o=l

FHOBLEMS

An incoming numeric field may contain an actuat decimal point.

The RECORD CONTAINS clause is required in an FD.

1. Consider the: accompanying time card. Show an appronriate record dascrinlion for
thug information in COBOL; use any PICTURE clauses you think appropriate.

Time-Record

Name Number

First

Middle | Last

Date Haours

MO | DA | YR

2. In which division{s} do you find the

a.
. FILE-CONTROL paragraph?

. CONFIGURATION SECTION?

. WORKING-STORAGE SECTION?
. FILE SECTION?

™ ¢ O o0 o

PROGRAM-ID paragraph?

FO's?

. AUTHGOR paragraph?

3. Given the following record layout:

0F EMPLOYEE-RECORD.

05 S0C-SEC-NUMBER
05 EMPLOYEE-NAME.
10 LAST-NAME
16 FIRST-NAME
10 MIDDLE-IMIT
FILLER
BIRTH-DATE.

16 BIRTH-MONTH
10 BIRTH-DAY
10 BIRTH-YEAR

FILLER

05
05

05

PIC

PIC
PIC
PIC
PIC

PIC
PIC
PiC
PIC

h. DATE-COMPILED paragragh?
i. INPUT-OUTPUT SECTICN?

j. File namesg?

k. Level numbers?

I, SELECT statements?

m. VALUE clauses?

n. PICTURE clauses?

fhapter 4 - The identification, Environment, and Data Divisions

05 EMPLOYEE-ADDRESS.

in MhiGOCD AA‘D CTRCCT
iy UFIDCIT AU =2 e |

15 HOUSE-NUMBER PIC X({6).
15 STREET-NAME PIC X{10).
10 CITY-STATE-ZIP.

15 CITY PIC X(10).
15 STATE PIC X{4).
15 Z1Ip PIC 9(5).
05 FILLER PIC X(3).

a. List all group items.
b. List alf elementary items.
¢. State the record positions in which the following fields are found:
= SOC-SEC-NUMBER
* EMPLOYEE-NAME
« 1 AST-NAME
¢ FIRST-NAME
¢ MIDDLE-INIT
« BIRTH-DATE
BIRTH-MONTH
« BIRTH-DAY
= BIRTH-YEAR
* EMPLOYEE-ADDRESS
s« NUMBER-AND-STREET
& HOUSE-NUMBER
¢ STREET-NAME
* CITY-STATE-ZIP
= CITY
¢ STATE
e ZIP

4, Given the following record fayout (assume that FIELD-! is the last entry under
FIELD-A),
01 FIELD-A

05 FIELD-B
10 FIELD-C
10 FIELD-D

05 FIELD-E

05 FIELD-F
10 FIELD-G
16 FIELD-H
10 FIELD-I

answer true or false

. FIELD-C is an elementary item.

. FIELD-E is an glementary item
FIELD-E should have a picture.

. FIELD-F should have a picture.
FIELD-B must be larger than FIELD-C.
FIELD-C must be larger than FIELD-D.

FELD-C must be larger than FIELD-H.

© T o0 o

blems

5.

o

h. FIELD-B and FIELD-D end in the same column.
i, FIELD-A and FIELD-1 end in the same column.
j- FIELD-E could be farger than FIELD-F.

k. FIELD-D coutd be larger than FIELD-E.

I. FIELD-F and FIELD-G start in the same column.

Use the COBOL notation introduced at the beginning of the chapter and the
general format of the FD entry to determine whether the following are valid FD
entries.

a. FD EMPLOYEE-FILE.

b. FD EMPLOYEE-FILE
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 100 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS5 EMPLOYEE-RECORD.

C. FD EMPLOYEE-FILE
BLOCK 10 RECORDS
RECGRD 100 CHARACTERS
LABEL RECCRDS STANDARD
DATA RECORDG EMPLOYEE-RECORD.
ndicate whether each of the loilowing entries s spelled comrectly and whether it is
syntactically valid.
. ENVIRONMENT DIVISION
. WORKING-STORAGE-SECTION
. ABENTIFICATION-DIVISION
. WRITTEN-BY
. DATA-DIVISION
FILE SECTION
. PROGRAM 1D
DATE-WRITTEN
DATE-EXECUTED
INPUT-OUTPUT SECTION
FILE-CONTROL SECTION
DATE DIVISION
. COMMENTS

S o 000

SA__TA_' o

Overview
OPEN
CLOSE
READ
Placement of the READ Statement
WRITE
MOVE
Restrictions on the MOVE Statement
Alphanumeric Field {0
Alphanumeric Field
Numeric Feld to Numeric Field
Group Moves
PERFORM
IF
The ELSE Clause
Indeniation
EVALUATE
Arithmetic Statements

The ROUNDED Clause
The SIZE ERROR Clause
COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE
Programming Tip: Use the
COMPUTE Statement
Assumed Decimal Paint
The Tuition Billing Program
Test Data
Hierarchy Chart
COBOL Program Skeleton
Limitations of COBOL-74
Summary
Fill-in
Trus/False
Problems

;f::;.'_(;fa,afpter § o - The Procedure Division

OBJECTIVES

After reading this chapter you will be able to:

B Write the OPEN, CLOSE, READ, and WRITE statements necessary for
sequential file processing.

B Describe the purpose of the priming (initial) READ statement, and place i
correctly in the Procedure Division.

B Discuss the rules of the MOVE statement as they apply to numeric and
alphanumeric fields.

B Describe the PERFORM statement; show how this statement is used 10
process a file until all of its records have been read.

Describe the IF statement and how it is used with and without an ELSE
clause; explain the significance of the END-IF scope terminator.

B

Uise the EVALUATE staternent to impiement a case (muitibranch} consiruct,

¥ State the hierarchy of operations for a COMPUTE statement; describe the
individuai arihmetic statements, ADD, SUBTRACT, MULTIPLY, and DIVIDE.

B Describe the ROUNDED and S1ZE ERROR options as they apply {o any of
the arithmetic statements.

[Explain the relationship between a Procedure Division and its associated
hierarchy chart.

OVERVIEW

This is a long chapter--the longest in the text. It focuses on the Procedure
Division, which is the portion of a COBOL program that contains the logic. The
chapter is long because it presents the many statements needed to write a basic
program such as the tuition billing program introduced in Chapter 3.

We begin with the COBOL statements used for /O (input/foutput) operations;
OPEN, CLOSE, READ, and WRITE, and continue with the STOP RUN statement
to terminate program execution. We learn about the PERFORM statement to
implement & loop, the IF statement o implement the selection structure, and the
EVALUATE statement to implement a case structure. We study the MOVE
statement to copy data from one location to ancther and end with the arithmetic
staterments: COMPUTE, ADD, SUBTRACT, MULTIPLY, and DIVIDE.

The chapter concludes with the completed COBOL listing for the luition
billing program of Chapter 3.

OPEN The OPEN statement initiates processing for a file. It indicates the nature of the file
{input or output) and ensures that a specific device is o
The OPEN statement also performs validation functions in

p
£
0
4
2
I3

aer
a

ith the LABEL

[w]
=
2 =

onjunctia

READ

CLOSE

RECORDS clause of the FD; for example, if label records are specified for an input file,
the OPEN statement checks the header labei of that fiie 10 ensure that the proper file is
available for processing. An abbreviated format of the OPEN statement is:

INPUT .
OPEN << file-name-1 . . .» . . .
— lQUTPUTY

The syntax of the OPEN statement indicates a mandatory selection for the
type of file—INPUT is used for a file that is read, whereas OUTPUT is used for a file
that is written to. The brackets and ellipsis associated with file-name-2 imply that
multiple files can be opened in the same statement as was done in lines 43 and 44 of
the engineering senior program in Figure 1.6:

OPEN INPUT STUDENT-FILE
OUTPUT PRINT-FILE.

Each file referenced in an OPEN statement must have been previously defined in a
SELECT statement in the Environment Division, and in a corresponding FD in the
Data Division. All files must be opened before they can be accessed; the operating
system will terminate execution of a COBOL program that atternpts to read {ot
write) an unopened file.

The CLOSE statement is executed when access to a file is no longer necessary, such as
when all records have been read from an input file or when all records have been written
to an output fite. The CLOSE statement releases the 1/0 devices associated with the file;
it also writes trailer labels at the end of files an disk or tape in conjunction with the
LABEL RECORDS clause of the FD. All open files should be closed before processing
terminates. The format of the CLOSE is simply:

CLOSE file-name-1 [, file-name-2 ...]

The brackets and ellipsis associated with file-name-2 indicate that multiple
files can be closed in the same statement. The type of file, INPUT or OUTPUT, is not
specified when the file is closed because the distinction between input and output
is no longer important. Lines 51 and 52 in the engineering senior program provide
an example:

CLOSE STUDENT-FILE
PRINT-FILE.

A CLOSE statemnent can appear anywhere within a program but typicaily appears
immediately before the program terminates, that is, immediately before the STOP
RUN statement.

The READ statement transfers data froin an open file into memory, provided a record is
available. if, however, no record is present—that is, the end-of-file condition has been
reached-—control passes to the statement(s) following the AT END clause. An abbreviated
format of the READ statement is shown below:

READ fiie-name
AT END statement
[END-READ]

WRETE

Chapter § — The Procedure Division

The END-READ scope terminator is optional but strongly recommended. The READ

A £ T P oar P TN LiPt [T .
statement is illustiated in lines 45-47 of ihe engineering senior program.

READ STUDENT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
END-READ.

Piacement of the BEAD Stalement

The engineering senior program in Figure 1.6 contained two distinct READ
statements. There was an initial, or priming, READ in lines 45-47 and a second
READ statement as the last instruction of the performed paragraph (lines 65-67}.
The necessity for both statements is explained by considering Figure 5.1, which
shows correct and incorrect ways to process a file of transactions.

Figure 5.1a, the incorrect implementation, causes the last record of INPUT-
FILE to be processed twice. To see how this happens, consider a file with only two
records, A and B, realizing that such a file is read three times—once for each record
and once (o sense the end of file. Realize, too, that the PERFORM statement evaluates
the UNTIL condition before branching (a detailed description of the PERFORM
statement is found in an upcoming section).

In Figure 5.1a, record A is read the first time PROCESS-RECORDS is performex,
with execution continuing through the remainder of the PROCESS-RECORDS
paragraph, at which point DATA-REMAINS-SWITCH is still set to 'YES'. Hence,
PROCESS-RECORDS is executed a second time, during which time it reads and
processes record B. Since DATA-REMAINS-SWITCH is stili set to 'YES', PROCESS-
RECORDS is executed a third time, during which the end-of-file condition is sensed
immediately. Execution continues, however, to the end of the paragraph, causing
the last record (record B) to be processed twice.

In the correct implementation of Figure 5.1b, an initial (priming) REAT} is
executed before performing the paragraph PROCESS-RECORDS, which also contains
a READ statement. The first time PROCESS-RECORDS is performed, it processes
record A, and its last statement reads record B. Since DATA-REMAINS-SWITCH is
still set to ‘'YES', PROCESS-RECORDS is executed a second time to process record B,
with the ending READ statement sensing the end-of-file condition. DATA-REMAINS-
SWITCH is set to ‘NO’, which in turn terminates the PERFORM statement.

The WRITE statement transfers data from memory to the printer (or other open output

device), Consider:
WRITE record-name

_ LINE
{[AFTER l ADYANCING Jmteger (ngsm

[BEFGREJ [Iﬂ e

The ADVANCING option controls the line spacing on a printer; for example,
specification of AFFTER ADVANCING 3 LINES produces triple spacing (the printer
skips two lines and writes on the third). Conversely, specification of the BEFORE
option first writes the line, then skips the designated amount. Specification of

WRITE

Figure 3.1 Placement of the READ Statement

PREPARE-TUITION-REPORT.

HOYE TYES' TO BATA-REMAINS-SKITCH.
PERFORM PROCESS-RECORDS
UNTIL. DATA-REMAINS-SWITCH = 'NO*.

PROCESS-RECORDS. o L FEED simlaan! OF GEIGeTEU DarRy At @ e READ
'READ INPUT-FILE e
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
[Ewo-READ.]

g} Incorrect inplementation
PREPARE-TUITION-REPORT.
MOVE EYES' H__) Dﬂtﬁf@E@INS“SWITCH: .) s AU e Gnind g ondv ance 1
{READ INPUT-FILE P

| AT END MOVE 'NO' FO DATA-REMAINS-SKITCH ¢/~

| END-READ. f

£ e H
PERFORM PROCESS-RECORDS ;
UNTIL DATA-REMAINS-SWITCH = 'NO'. |
PROCESS-RECORDS. !

[READ INPUT-FILE 5
: e
! AT END MOVE 'NO' TO DATA-REMAINS-SWITCH ¢
| END-READ. S

(b} Correct implementation

108

Chapter 5 — The Pracedure Division

PAGE, in lieu of LINES, will cause output to begin on top of a new page. Omission of

Thon haaln
the ADVANCING option defaults to single spacing. The examples below

WRITE PRINT-LINE.
WRITE PRINT-LINE

AFTER ADVANCING 2 LINES.
WRITE PRINT-LINE

AFTER ADVANCING PAGE.

will single space, double space, and advance to the top of a new page, respectively.

‘The WRITE statement contains a record name, whereas the READ statement
contains a file name. The record name in the WRI'TE statement will appear as a 01
entry in the File Section of the Data Division. The file in which it is contained wilk
appear in SELECT, FD, OPEN, and CLOSE staternents.

TOE RUN

The format of the STOP RUN statement is simply:

STOP RUN
The STOP RUN statement terminates execution of a COBOL program and returns
control {o the operating syster. {STOP RUN need not be (and typically is not} the
last physical statement in the program.} All files should be closed prior to executing
the STOP RUN staternent.

OWVE

The MOVE statement copies data from one location to another; for example, the
statement MOVE A TO B copies the value in location A to location B. The value of A
is in two places after the move has taken place, while the initial value of B is gone
(having been replaced by the value of A). The syntax of the MOVE statement is:

[identifier-1

MOVE
I 1] iteral-1

} T0 identifier-2 [identifier-3] . .
Consider the following examples:

1. MOVE 200 TO PRICE-PER-CREDIT.

2. MOVE ‘ABC UNIVERSITY’ TO SCHOO1.-NAME,

3. MOVE STU-NAME TO PRINT-NAME.

4. MOVE ZEROS TO TOTAL- NUMBER.

5. MOVE SPACES TO PRINT-LINE.

Example cne moves a numeric literal, 200, to the data name PRICE-PER-
CREDIT. Example two moves a nonnumeric literal, ‘ABC UNIVERSITY’, to SCHOOL-
NAME. Example three copies data from an input area to an output area for
subsequent printing. Examples four and tive use the figurative constanis, ZEROS
and SPACES, to initialize a counter and print line, respectively.

The brackets and ellipsis associated with identifier-3 in the COBOL syntax

indicate the same item can be moved to multiple data names. Thus the single
stalement:

MOVE 10 70O FIELD-A FIELD-B FIELD-C.

JVE

is equivaient to the three individual statements:

MOVE 10 TO FIELD-A.
MOVE 10 TG FIELD-B.
MOVE 10 TO FIELD-C.

The results of a MOVE statement depend on the type of data in the sending and/or
receiving field. We concentrate initially on MOVE statements involving only
elementary items, since these statements are by far the most commonn. Recall (from
Chapter 4) that elementary data items may be of four types:

Numeric Numeric data items, numeric literais, and the figurative
constants, ZERQ, ZEROS, or ZEROLES.

Alphabetic Alphabetic data items and the figurative constants,
SPACE and SPACES

Alphanumeric Alphanumeric data itemns, nonnumeric literals and the
figurative constants, SPACE and SPACES

Numeric Edited Numeric edited data items {to be discussed in Chapter 7;

In theory a MOVE statement could involve any combination of these four
types; in actuality, however, certain types of moves are not permitted as indicated
by Table 5.1. (You do not have to commit the table to memory; simply be aware that
certain restrictions exist, and know where to turn shouid gquestions arise later.)

F. ¢ Rules of the MOVE Statement (Elementary Data lfems)

PRI S P R N O T fiaib il SRS ETE BT

Alphabetic Vakid Valid invalid Invalic
Aiphanumeric Invalicl Valid Irvalic Invalid
Numeric tnvalid integers caly Valid Valid

Numeric Edited invalid Vaiig Valid Invalid

At first glance Table 5.1 seems overwhelming, but a second look shows it to
make intuitive sense. You cannot, for example, move an alphanumeric field to an
alphabetic field (because the alphanumeric field may contain numbers, which are
invalid in an alphabetic field). You can, however, do the move in the opposite
direction; that is, you can move an alphabetic field to an alphanumeric ficld.

Fven Table 5.1 does not tell us everything we need to know about the MOVE
statement. What happens, for example, when moves with like fields (an alphanumeric
sending field to an alphanumeric receiving field) involve PICTURE clauses of different
lengrhs? Additional exnlanation is }—equiruﬂ as exnlained in the next two sections

ES 3 LA LY PPAALIGIRIALE E 10U Qe TApIAITA 110 U0 TR VWD STLIVRIS.

Data moved from an alphanumeric field 1o an alphanumeric field are moved one
character al a time from left to right. If the receiving field is larger than the sending
field, it is padded on the right with blanks; if the receiving tield is smatller than the
sending field, the rightmost characters are truncated.

Alphanumeric moves are illustrated in Table 5.2. Example {a) is trivial, in that
the sending and receiving fields have the same picture clause. In example (b) the
sending field is one character longer than the receiving field; hence the rightmost

Chapter § — The Procedure Division

character is truncated. Data are moved from left to right one character at a time;
thius A, B, G, and D are moved in that order, and E is dropped. In exaimple {c},
however, the receiving field is one character longer than the sending field. A, B,
D, and E are moved in that order, and a blank is added at the right.

YaRELE 3.2 lustration of the MOVE Statement: Alphanumeric Sending Field to
Alphanumeric Receiving Field

%

() X&) X(5) [a]s]c]o]e]
(b) X(5) X(4) (alslcio]
© X5 X() afsiciole] |

B e ot Bl el B Bie s o A g Y e B
Hgrmerie Field Lo Nymevie Fiaid

All moves involving numeric fields maintain decimal alignment If the integer portion
of the receiving field is larger than that of the sending field, high-order (insignificant)
zeros are added to the receiving field. If, however, the integer portion of the receiving
field is smalier than that of the sending field, the high-order (significant} digits of
the sending field are truncated.

in similar fashion if the decimal portion of the receiving field is larger than
that of the sending field. low-order zeros are added. And finally, if the decimal
partion of the receiving field is smaller than that of the sending field, the extra
positions are truncated. These points are clarified in Table 5.3.

varig 2.3 llustration of the MOVE Statement: Numeric Sending Field to
Nurneric Receiving Field

CHNTHNTE

@ 9o [[efa[ale] o) efalads]

0 9(5) (1]2/3]4]5; 9(4) 2[3[a]s]
TR olilz]

© 95 11fz2i3]4]5 9Ae) o]r[zs]a]s]

(@) 9(3Vo9 [1]2l3ia]5 %3)

—t —.L
(@) 939 :IfZE a5 9vog 3145
) 1l273] (399 [172]3]0]e]

Example (a) is trivial. Example (b) attempts to move a five-position field tc a
four-position field. Since decimal alignment is always maintained, the leftmost
digit {i.e., the most significarit digit) is truncated. Example (c) moves a five-position
sending field to a six-position receiving field, causing the addition of a leading
(nonsignificant} zero. The sending field in example (d) has two digits after the
decimal point, but the receiving field has nene. Hence the 4 and 5 do not appearin
the receiving field. Example (e} truncates the most significant digits. Example (f)
adds two nonsignificant zeros to the receiving field.

RFORM

The preceding discussion concerned MOVE statements in which the receiving fieid
was an elementary itemn. The results are very different if a group item is involved,
because if the receiving field is a group item. the move takes place as though the
receiving field were an alphanumeric item, with padding or truncation on the right
as necessary. MOVE statements involving group items often produce unexpected
resuits and should be avoided.

The PERFORM statement transfers control to a procedure {paragraph) elsewhere in the
program, allowing the program to be divided into functional modules. An abbreviated
format of the PERFORM statement is:

PERFORM procedure-name
{UNTIL condition}

Consider first the staterment witheut an UNTIL clause as iHlustrated hebnw

COMPUTE TUITION = CREDITS * CHARGE-PER-CREDIT.
PERFORM WRITE DETAIL-LINE.
ADD 1 TO NUMBER-OF -STUDENTS . - —rmomscmommns

%
i
!
i

~ WRITE-DETAIL-LINE,
MOVE STUDENT-NAME TO PRINT-NAME.
MOVE TUITION TO PRINT-TUITION.
WRITE PRINT-LINE AFTER ADVANCING 2 LINES, -
WRITE-TOTAL-LINE.

The statement PERFORM WRITE-DETAH -LINE transfers control to the first
statement in the paragraph WRITE-DETAIL- LINE. When every statement in WRITE-
DETAIL-LINE has been executed (i.e., when the next paragraph name is
encountered), control returns to the sialement immediately after the original
PERFORM, in this case, to the ADD statement.

Aloop (iteration} is implemented through inclusion of an UNTIL clause. The
condition in the UNTIL clause is tested before the paragraph is executed, and if the
condition is not met, control is transferred to the designated paragraph. When the
paragraph has completed execution, the condition is retested, and if it (the condition)
is still not met, the paragraph is executed a second time. The process continues
until the condition is finally satistied. Consider:

PERFORM PROCESS-RECORDS
UNTTL DATA-REMAINS-SWITCH = 'NO'.

PROCESS-RECORDS.

READ STUDENT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
END-READ.

Chapipr-5 — The Procedure Division

The paragraph PROCESS-RECORDS is executed repeatedly until DATA-
REMAINS-SWITCH equails 'NO', that is, until there are no more incoming records.
The last statement of the performed paragraph is a READ statement, so that when
the end of fiie is reached, DATA-REMAINS-SWITCH will be set to ‘NO’. This causes
the next test of the UNTIL condition to be successful and prevents further execution

of the PROCESS-RECORDS paragraph.

‘The 1F staternent is one of the most powerfui statemendts in COBOL. Our present concern,
however, is with only a few of the available options, with additional consideration
deferred to Chapter 8. An abbreviated format of the IF statement is

IF condition THEN
statement-1
[ELSE
statement-2]

[END-IF]

The 1F statemerit is teriinated by the optional (but highly recommended) END-TF
scope terminator and/or a period. Consider:

IF STU-CREBITS = 110 AND STU-MAJOR = 'ENGINEERING'
MOVE STU-NAME TO PRINT-NAME
MOVE STU-CREDITS T0O PRINT-CREDITS
MOVE STU-GPA TO PRINT-GPA
WRITE PRINT-LINC
END-IF.

If the condition is true, then every statement between the IF (condition) and
the END-IF (and/or period) will be executed. Hence, when an engineering senior is
processed, three MOVE statements and one WRITE statement are exccuted. If,
however, the condition is false, then all four statements—three MOVEs and a
WRITE—are bypassed.

As indicated, the IF statement is terminated by the ENB-IF scope terminator
and/or a period, and the inclusion of both appears redundant. (Many programmers
do, however, use both entries,) END-IF, despite the fact that it is an optional entry,
has distinct advantages (as will be explained in Chapter 7) and should be used in
every instance.

The ELSE Clause

The ELSE clause is optional as implied by the square brackets in its synitax. Figure 5.2a
contains an ELSE clause, whereas it is omitted in Figure 5.2b. If the condition in
Figure 5.2a is true, statement-1 is executed; whereas if it is false, statement-2 is
executed-—in either case execution continues with staterment-3. Figure 5.2b, however,
omits the ELSE clause so that if the condition is false, the IF statement is terminated
immediately.

indentation

Indentationin an IF statement is extremely impoitant to emphasize a prograinmer’s
understanding of a statement’s intended effect. Consider Figure 5.3, which contains
a flowchart and corresponding COBOL code.

Figure 5.2 The IF Statement

FALSE TRUE

CONDITION?

STATEMENT,, STATEMENT,

STATEMENT

{a} With ELSE Optien

*

FALSE / \ TRUE

——\CONDITEON?/'—'I
S ¢
STATEMENT,
—— |
STATEMENT

(&) Without ELSE Ootion

The flowchart in Figure 5.3a indicates that if the condition A = B is true, the
staterments MOVE 1 TO C and MOVE 1 TO D are to be executed. If, however, the
condition is false, then the statements MOVE ZERO TO C and MOVEZEROTO D are
to be executed instead. In either case—that is, whether the condition is true or
false—we are to write a detail line. The latter is indicated by the IF and ELSE
branches meeting in a common exit point, which leads to the final WRITE statement.

The COBOL code in Figure 5.3b is carefully aligned to reflect this interpretation.
Recall that the rules of COBOL require only that an I¥ statement appear in the B
margin, that is, in columns 12-72. Hence the indentation in Figure 5.3b is done
solely for the purpose of making a program easier to read, rather than to satisfy a

Chapter § — The Procedure Division

Figure 5.2 The ELSE Clause/i!

¥ Y
MOVE ZERG MOVE 1
0C 706
¥ ¥ §
MOVE ZERQ MOVE 1 :
10D 0D :
E :
: w{)
\l/
WRITE
DETAIL-LINE

IF A =B
MOVE 1 10 C
MOVE 1 TO D ;
ELSE E
MOVE ZERO TO C
MOVE ZERO TO D
END-IF.
WRITE DETAIL-LINE,

{b COBOL Gods

rule of COBOL. Nevertheless, proper indentation is essential and goes a long way to
irmprove the quality of your work. Accordingly, we suggest the following guidelines:

1. Begin the IF statement in column 12.
2. Put the word ELSE on a line by itself and directly under the IF.
3. Indent detail lines associated with either the IF or ELSE four columns.

4. Put END-IF on a line by itself directly under the IF statement.

hmetic Statemen(§

The EVALUATE statement implements the case (multibranch) construct of
structured programming. It has what first appears to be a rather complicated syntax,
but in actuality is quite easy to use. Consider:

identifier- 1l

expression-1j

TRUE [

EVALUATE

condition-1
WHEN <TRUE imperative-statement-1 . . .

An example of the EVALUATE statemnent is shown below in conjunciion with the
tuition billing program presented in Chapter 3. The specifications for the program
indicate that activity fee is dependent on the number of credits ($25 for 6 credits ar
fewer, $50 for 7 to 12 credits, and $75 for 13 credits or more}. Consider:

EVALUATE TRUE
WHEN STU-CREDITS <= 6
MOVE 25 TO IND-ACTIVITY-FEE
WHEN STU-CREDITS > 6 AND STU-CREDITS <= 1
MOVE 50 TO IND-ACTIVITY-FEE
WHEN STU-CREDITS = 12
MOVE 75 TO IND-ACTIVITY-FEE
END-EVALUATE.

The different conditions (i.e., the ranges for the number of siudent credits) are
presenied in the various WHEN clauses. The END-EVALUATE scope terminatoris a
reguired entry.

4 COBOL does arithmetic in one of two ways. It has individual statements for the
st rrhare s basic arithmetic operations (addition, subtraction, multiplication, and division),
and a COMPUTE statement that combines multiple operations intc one statement.
Asyou shall see, the COMPU'TE statement is generally easier to use, and so we begin
with it. Note, too, that all of these statements have optional ROUNDED and SIZE
ERROR clauses, whick are discussed prior to the individual statements.

MOED Siause

The ROUNDED clause (in any arithmetic statement) causes COBOL te carry a
calculation to one more decimal place than is specified in the result field. If the
value of the extra decimal place is 5 or larger, the answer is rounded up; if it is 4
or less, the answer is unchanged. If the ROUNDED clause is omitted, COBOL
truncates any exira deciimal positions regardless of their value. Table 5.4 shows
the effect of the ROUNDED option in which the values of A and B are added to
produce a vahze for C.

Chapier § — The FProcedure Division

The ROUNDED Clause

Value belore execution 123 456 (immateriaf)
Vaiue after execution of

ADD A B GIVING C 123 456 57

ADD A B GIVING C ROUNDED 123 456 58

Both of the examples in Table 5.4 add the same numbers {1.23 and 4.56) to produce
a sum of 5.79. Both examples also specify the same PICTURE clause for the sum,
which contains only a single decimal place. The first statetnent, however, does not
contain the ROUNDED clause, and hence the .09 is truncated, leaving 5.7 as the
final answer. The second example contains the ROUNDED clause, producing a
more accurate 5.8.

The SIZE ERROR clause is available for all arithmetic stateinenis and produces a
warping when the result of calculation is too large for the designated field. Consider:

05 HOURLY-RATE PIC 69.
05 HOURS-WORKED PIC 99.
05 GROSS-PAY PIC §99.

COMPUTE GROSS-PAY = HOURLY-RATE * HOURS-WORKED.

Let us assume that HOURLY-RATE and HOURS-WOQRKED are 25 and 40,
respectively. The result of the multiplication should be 1,000. GROSS-PAY, however,
is defined as a three-position numeric field and is too small to hold the result.
Hence its value is truncated and only the three rightmost digits are retained; in
other words, GROSS-PAY becomes (000.

‘The situation is prevented by the inclusion of the SIZE ERROR clause:

COMPUTE GROSS-PAY = HOURLY-RATE * HOURS-WORKED
ON SIZE ERROR PERFORM ERROR-ROUTINE
END-COMPUTEL.

This time, if the resulis of the computation are oo large and exceed the size
allotted in the PICTURE clause, control passes to the statement(s} following the
SIZE ERROR clause. The latter contains an error routine to display an error message
or take other corrective action.

The COMPUTE statement combines multiple arithmetic operations into a single
statement of the form:

COMPUTE {identifier-1 [RQUNDED]}...= expression-1
foN SIZE ERROR imperative-statement-1]
[ERD-COMPUTE]

The COMPUTE statement first calculates the vaiue of the expression on the right
side of the equal sign, then stores that value in the data name on the left. The

Arithmetic

Statements

expression within the COMPUTE statement consists of data names, numeric literals,
arithmetic symbols, and parentheses. Spaces should precede and follow arithimetic
symbols. A space is also required before a left parenthesis and after a right
parenthesis.

Parentheses are used to clarify, and in some cases, alter the sequence of,
operations within an expression, but anything contained within parentheses must
also be a valid expression. Expressions are evaiuated according to the foliowing
rules:

1. Anything contained in pareniheses is evaluated first as a separate
expression.

2. The symbols +, - %, /, and ** denote addition, subtraction, multiplication,
division, and exponeniiation, respectively. Exponentiation is done first, then
muidtiplication or division, then addition or subtraction.

3. Ifrule 2 results in a tle {e.g., if both multiplication and division are present),
then evaluation proceeds from left to right.

Table 5.5 contains exampies to illustrate the formation and evaluation of
expressions in a COMPUTLE statement.

The COMPUTE Instruction

Value hefore axecution

Value after execution of

CCMPUTEC = A + B. 2 3 5 Simple addition
COMPUTEC=A+B*2 2 3 8 Muliplication belore addition
COMPUTEC ={(A+RB)*2 2 3 10 Parentiiesis evaluated first
COMPUTEC =A™ B. 2 3 8 Mgebraically, ¢ = aP
COMPUTEC =B A, 2 3 Yy Algebraically, ¢ = b

Table 5.6 should further clarify the use of this all-important statement. This
table contains several algebraic expressions and the corresponding COMPUTE
statements to accomplish the intended logic.

The COMPUTE Instruction {continued)

X=a+h COMPUTE X = A + B
=a;b COMPUTE X = (A + B) / 2.

(a+b)c

xR COMPUTE X = (A + B) * C / 2.
a+b .

X = COMPUTE X = (A + B) / (2 * €).
2c

x =-Ja COMPUTE X = A ** 5.

COMPUTE X = (A ** 2 + B *%2) / (C *=% 2,

Chapter § — The Procedure Division

A

The ADD statement has two basic formats:

identifier-1
agg JICEMHITTENSRL 0 g identifier-2 [ROUNDEU]} .
= |literal-1 - =

[oM SIZE ERRGR imperative-statement - 1]

Eng - ADD]

identiﬁer-l} 1 ﬁdentifier-?}

ADD e e]
- { 111tera1-2

literal-1
GIVING {identifier~3 [Roumnﬁn]} -

ON SLZE ERROR imperative-statement- 1|

[END - ADD]

In the first format the value of identifier-2 is replaced by the result of the
addition; in the second format the value of identifier-2 is unchanged, because the
result is stored in identifier-3 (and beyond). The word TO is required in the first
format, but optional in the second. The three dots in either format indicate that
identifier-1 orliteral-1 can be repeated as many times as necessary (so ihat mutiiple
iterns can be added together.)

Examples 5.1 and 5.2 illustrate the ADD statement. The first instruction adds
the values of A and B (5 and 10} to the value of C (20), and puts the suin of 35 back
into C. Example 5.2, however, does not include the initial value of C jn the calculation;
it adds the values of A and B (5 and 10), and places the sum of 15in C.

Example5.1 ADD A B TQ €

3 B [

otore s 5 o o

After axeculion: T luﬂ: !_3_5_;

Example 5.2 ADD A T0B GIVING C

A 3 ¢

Beforas execution: ,réE @ El’.ﬂ

. - r -

Aftar sxacutinn i_s_}} !13! {_1_5<

Table 5.7 contains additional examples of the ADD statement, with all examples
operating on the initial values of A, B, and C (5, 10, and 30, respectively). The last
example changes the values of both B and C.

Arithmelic Statemanis

YAEELE 8.7 The ADD Instruction

Value before execution 5 10 30
Value alter execution of

ADDATCC 5 10 3b
ADDABITOC. 5 10 45
ADD A TOB GIVING C 5 10 15
ADD A 18 B GIVING C. 5 0 33
ADDABBTOC. 5 10 63
ADD1TOBC 5 11 31

BUBTHADTY

The SUBTRACT statement has two formats:

cininger Jidentifier-1] T S . o
SUBTRACI] .. . FROM ~’Ildent1ner-z [Ruuwutﬁh -
(titeral-1 t 2

ot SIZE ERROR %mperative-statementwl}

[END - SUBTRACT]

SUBTRACT! _
A [htera]-]

e

ROM

identifier-1] [identifier-2
} C liiteral-2

GIVING {1dentiﬁer~3 [RGUNDED]} .

{END - SUBT RACT]

In the first format the initial value of identitier-2 is replaced by the result ot the
subtraction. [n the second format the initial value of either identifier-2 or literal-2 is
unchanged, as the result is stored in identifier-3 {and beyond).

Examples 5.3 and 5.4 illustrate the SUBTRACT statement. In xampie 5.3 the
SUBTRACT statement causes the vaiue of A (5) to be subtracted from the initial
value of B (15} and the result {10) to be stored in B. Only the value of B was changed.

In the FROM . . . GIVING format of Exaimple 5.4 the value of A (5) is subtracted
from the value of B {15), and the result {10) is placed in C. The values of A and B are
unchanged, and the initial value of C (100) is replaced by 10. Table 5.8 contains

PP I LI P Sr, PP
dQGitionas GAﬂiiliJiUD.

Example 5.3 SUBTRACT A FROM B

Chepter 5 — The Procedure Division

Example 54 SUBTRACT A FROM B GIVING C

& B [+
Beilors sxgoubion: l_—i‘)] 15; @
Affer execution: I:SJ @ ﬁli(ﬂ

TABLE 8.8 The SUBTRACT instruction

Value before execution 5 10 30 100
Value after execution of

SUBTRACT A FROM C. 5 i0 25 106G
SUBTRACT A B FRCOM C. 5 10 15 100
SUBTRACT A B FROM C GIVING D. 5 10 30 15
SUBTRACT 16 FROM C D. 5 10 20 90

MULTIPLY

The MULTIPLY statement has two formatis:

[idantifier-1

MULTIPLY | BY {identifier-z [ROUNDED]} C
T Iliteral-1 - T

[oN SIZE ERROR imperative-statement -1]

|EnD - MULTIPLY]

MULTIPLY

identifier-1 BY identifier-2
literal-1 — {ltiteral-2

IVING {identiﬁ'er-3 [ROUNDEB]} ..

ON

]
l(ﬁ

1ZE ERROR imperative- statement - 1]

[END - MULTIPLY]

If GIVING is used, then the result of the multiplication is stored in identifier-3
(and beyond). If GIVING is omitted, then the result is stored in identifier-2 (and
beyond).

Example 5.5 MULYIPLY A BY B

& B
Beiore exscution: 10 EBJ
After execution: 10 E;H;]

| Il

ithmelic

Statements

Example 5.6 MULTIPLY A BY B GIVING C
& 22 &
Setnre peeilin 160 0 1

o @

Table 5.9 contains additional examples of the MULTIPLY statement. As in the
previous examples, the instructions operate on the initial values of A, B, and C.

”%\(

ABLE 8.9 The MULTIPLY Instruction

Value belore execution 5 10 30
Value atter exacution of

MULTIPLY B 8Y A GIVING C. 5 10 50
MULTIPLY A BY B GIVING C. 5 10 50
MULTIPLY ABY B 5 50 30

MULTIPLY B BY A. 50 10 30
MULTIPLY A BY 3 GIVING 8 C.

o]
—
&3]

-
8]

BRIV DE

The DIVIDE staternerit has two formats. In the second format, the primary distinction
is between the words BY and INTO, which determine whether identifier-2 is the
divisor or the dividend. As with the other arithmetic statements, the GIVING option
implies that the result is stored in identifier-3 so that the inital value of identifier-2
or literal-2 is unchanged. Only the second format makes explicit provision for
storing the remainder.

INTO {identifier-z [ROUNDED]} e

DIVIDE {1dent1f1er-l}

Titeral-1
[ON SIZE ERROR imperative—statement—l]

[END—DIVIDE]

DIVIDE

identifier-1] [INTO| [identifier-2 .

: o "ol grving {1’dentifier~3 [Rouncep]} . .
Fiteral-1 BY literal-2 '

[REMAINDER identifier-4|

[ON SIZE ERROR imperative -statement - 1]

{END- DIVIDE]

In Example 5.7 the value of B (50) is divided by the value of A (10}, and the
guotlent (5) replaces the initial value of B. In Example 5.8, which uses the GIVING
option, the quotient goes into C, the remainder into D, and the values of A and B are

 ﬂf“Ch5pfer § — The Pracedure Division

The COMPUTE statement should always be used when muitiple arithmetic operators are invoived.
’ Consider two sets of equivalent code:

|
;
g
;
g

[

MULTIPLY B BY B GIVING B-SQUARED, ;
MULTIPLY 4 BY A GIVING FOUR-A.

MULTIPLY FOUR-A BY C GIVING FOUR-A-C.

g SUBTRACT FOUR-A-C FROM B-SQUARED GIVING RESULT-1.
i COMPUTE RESULT-2 = RESULT-1 ** .5,

SUBTRACT B FROM RESULT-Z GIVING NUMERATOR.
MULTIPLY 2 BY A GIVING DENOMINATOR.

DIVIDE NUMERATOR BY DENOMINATOR GIVING X.

COMPUTE X = {-B + (B ** 2 - {4 * A * C}) ** 8} / {2 * A).

Both gets of code annly to the guadratic formuta,

_B++B?—4AC ,
X = I
2A !
It is fairly easy lo determine what is happening from the single COMPUTE statement, but next to
impossible to reatize the cumulative effect of the eight arithmetic statements. Interpretation of the unacceptable
code is further clouded by the mandatory definition of data names for intermediate results, RESULT-1,
: RESULT-2, etc.
i Parentheses are often required in COMPUTE statements to alter the normal hierarchy of operations; for
example, parentheses are required around 2 * A in the denorninator. If they had been omitted, the numerator
would have been divided by 2 and then the quotient would have been multiplied by A. Sometimes the
parentheses are optional to the compiler but should be used io clarify things for the programmer. The
parentheses around 4 * A * C do not alter the nosmal order of operations and hence are optional.
Individua! arithmetic statements are preferabie to the COMPUTE siatement when only a single operation
is required. Hence, ABD 1 TO COUNTER is easier to read than COMPUTE COUNTER = COUNTER + 1.

irthmeri.

0= f o g e b7
=tqtemeanis

unaflected. Example 5.9 parallels 5.8 except that BY replaces INTQ, resulting in a
R PR er ol a

P TR TN S S oy n g el
quuhuut UE LULU aflul o pCriainiuc

the DIVITIE statement.

F1n Toalda B 140 mn
1 L]

Y 1
(W IRV N RSV L P V)

Example 5.7 DIVIDE A INTO B.

S e 10, 5

Example 5.8 DIVIDE A INTO B GIVING C REMAINDER D.

F:3 & &]
o s 5l

Exampie 59 DIVIDE A BY B GIVING C REMAINDER 9.

1w lsn o

Vatus belore axecution 5 10 30
Valug alter execution of

DIVDE 2 INTO 5. 5 & 30
DIVIDE 2 INTO B GIVING C. 5 10 L
DIVIDE B BY 5 GIVING A 2 10 30
DWIDE A INTO B C. 5 z 6
DIVIDE A INTO B GIVING C. 5 10 2
DIViDE 3 INTO A GIVING B REMAINDER C 5 1 2

e

i,
&

Arithmetic is perforimed on decimal as well as integer fields. You must be aware of
the decimal point, and in particular, be siie to define the field holding the resuit with
a sufficient number of decimeal places. Consider kixample 5.10, in which A and B have
pictures of 99 and 99VY, respectively.

Example 5.10 ADD A TO B.

Chapter § — The Procedure Division

In the example, field B is stored with an implied decimal point. The compiler
geiierates instructions to add an integer number (12) to a number with one decimai
place (34V5). It maintains decimal alignment, obtains 46V5 as an answer, and stores
the result in field B.

Now consider what happens if the operation is reversed, that is, ADD B TO A.
The result of the addition is still 46V5; however, the field that stores the sum, A, is
defined without a decimal point; hence, the .5 will be truncated. It is critical, therefore,
to define the receiving fleld with a sufficient number of decimal places. Table 5.11
contains additional examples. In each instance the instruction is assumed to operate

on the initial values of A, B, and C.

TABLE 8.41 Arithmetic on Fields with Assumed Decimal Points

PECTURE £ 2 SGY¥S SRHGY

Value before execution 12 345 4712
Value after execution of

ADDBTO A, A6 345 4712
ADDATOB. 12 465 4712
ADDBTOC. 12 345 8162
ADDCTOB. 12 816 4712
ADDCTO A, 59 345 4712
ADDATOC. 12 345 5912

iiling Program

The tuition billing program was first presented in Chapter 3, where we produced
the hierarchy chart, pseudocode, and stubs program. We continued the development
of the prograrmn in Chapter 4, with specifics of the ldentification, Environiment, and
Data divisions. Now we are able to write the Procedure Division and complete the
program.

We emphasize, however, that the Procedure Division is not written from
scratch, but is developed from work already done in Chapters 3 and 4. Consider,
therefore, Figure 5.4, which contains the hierarchy chart and detailed pseudocode,
and most importantly the already working stubs program. The stubs program is
complete in the sense that it contains all of the paragraphs needed for the eventual
program; it is incomplete because many of its paragraphs exist as one sentence
DISPLAY statemnents that need to be expanded to perform the indicated task. The
most difficult work has already been done, however, because the testing in Chapter 3
demonstrated thai the overall program flow is correct.

Thus, it is relatively simpie to expand the various stub paragraphs in favor of
more detailed Procedure Division statemnents presented in this chapter. The
paragraphs can be implemented one (or several) at a time; for example, hegin with
the paragraph to write a heading line, expand it, then test it to be sure it executes
correctly. Develop the paragraph to write a detailed line, then expand the paragraphs
to compute the individual amounts (tuition, union fee, activity fee, and scholarship),
testing each paragraph to be sure it warks propetly. Finally, add the paragraphs to
increment the university tetals and write the summary line at the end of the report.

The completed pregram is shown in Figure 5.5. The Identification,
Environment, and Data divisions were developed at the end of Chapter 4 and are

The Tuilion Bilithg Pragram

i
H
H
H
!

% Developing the Procedure Division

PREPARE
TUITION
REPORT

WRIE
HEADING
LINE

READ
STUDENT
FLE

FROCESS
STUBENT
RECORD

WRITE

UNIVERSITY

TOTALS

COMPUTE
INDIVIDUAL
BiLL

|NCREMENT
UNIVERSITY
TOTALS

WRITE
DETAIL
LINE

r

READ
STUDENT
FILE

Comary e

COMPUTE
UNION FEE

COMPUTE

COMPUTE
SCHOLARSHIP

; ACTIVITY
TUTION HE

{a) Hisrarchy Chart

Qpen files

Write heading line(s}

Read STUDENT-FILE at end indicate no more data
e D0 WHILE data remains
i Compute tuition = 200 * credits
.~ IF union member i
i Union fee = $25 :

ELSE

: Union fee
b ENDIF
——— DG CASE
‘ j CASE credits <= 6
; : Activity fee = 25
; CASE credits > 6 and <= 12
i Activity fee = 50
! CASE credits > 12
5 Activity fee = 75

H
o

[——— END CASE
: -~ IF gpa » 2.5
Scholarship = Scholarship amount
ELSE (no schelarship) :
: Scholarship = 0 !
——- ENDIF :
Compute Bi1) = Tuition + Union fee + Activity fee - Scholarship :
Incremeni university totals ;
Write detail line
Read STUDENT-FILE at end indicate no more data
ENDDG
Write university totals
Close files ;
Stop run i

{5} Detaiied Fssudocods

¢
i
i
!

(continued)

Chapter 5

The Procedure Division

PROCEDURE DIVISION.
PREPARE-TUITION-REPORT.
DISPLAY 'PREPARE-TUITION-REPORT paragraph entered’.
OPEN INPUT STUDENT-FILE.
PERFORM WRITE-HEADING-LINE,
PERFORM READ-STUDENT-FILE.
PERFORM PROCESS-STUDENT-RECORD
UNTIL DATA-REMAINS-SWITCH = 'NO'.
PERFORM WRITE-UNIVERSITY-TGTALS.
CLOSE STUDENT-FILE.
STOP RUN.
WRITE-HEADING-LINE.
DISPLAY 'WRITE-HEADING-LINE paragraph entered'.

READ-STUDENT-FILE.
READ STUDENT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
END-READ.

PROCESS-STUDENT -RECORD.
DIsSPLAY * ',
DISPLAY 'PROCESS-STUDENT-RECORD parayraph entered’.
DISPLAY 'Student record being processed: ' STUDENT-RECORDG.
PERFORM COMPUTE-INDIVIDUAL-BILL.
PERFORM INCREMENT-UNIVERSITY-TOTALS
PERFORM WRITE-DETAIL-LINE,
PERFORM READ-STUDENT-FILE.

COMPUTE-INDIVIDUAL-BELL.
DISPLAY ' COMPUTE-INDIVIDUAL-BILL paragraph entered’.
PERFORM COMPUTE-TUITION,
PERFORM COMPUTE-UNION-FEE.
PERFORM COMPUTE-ACTIVITY-FEE.
PERFORM COMPUTE-SCHOLARSHIP.

COMPUTE-TUITION.
DISPLAY ' COMPUTE-TUITION paragraph entered’.

COMPUTE-UNION-FEE.
DISPLAY ' COMPUTE-UNION-FEE paragraph entered'.

COMPUTE-ACTIVITY-FEE.
DISPLAY ¥ COMPUTE-ACTIVITY-FEE paragraph entered’'.

COMPUTE-SCHOLARSHIP.
DISPLAY ' COMPUTE-SCHOLARSHIP paragraph entered’.

INCREMENT-UNIVERSITY-TOTALS.
DISPLAY ' INCREMENT-UNIVERSITY-TOTALS paragraph entered’.

WRITE-DETAIL-LINE,
DISPLAY ' WRITE-DETAEL-LINE paragraph entered'.

WRITE-UNIVERSITY-TOTALS.
DISPLAY * '.
DISPLAY 'WRITE-UNIVERSITY-TOTALS paragraph entered’.

{g) Stubs Program

The Tuition Billing Pragram

+.% The Tuition Biling Program

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. TUITIONS,

3 AUTHOR. CAROL VAZQUEZ VILLAR.

4

5 ENVIRONMENT DIVISION.

6 INPUT-QUTPUT SECTION.

7 FILE-CONTROL.

8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTRO5\TUITION.DAT'
9 ORGANIZATION IS LINE SEQUENTIAL.

10 SELEET PRINT-FILE

11 ASSIGN TO PRINTER.

12

13 DATA DIVISION.

14 FILE SECTION.

15 FD STUDENT-FILE

16 RECORD CONTAINS 27 CHARACTERS,

17 0i STUDENT-RECORD.

i8 05 STU-NAME.

13 10 STU-LAST-NAME PIC X({15}.
20 10 STU-INITIALS PIC XX.
21 05 STU-CREDITS PIC 9(2}.
22 05 STU-UNION-MEMBER PIC X.
23 05 STU-5CHOLARSHIF PIC 9(4}.
24 05 STU-GPA PIC 9v99.
25
26 FD PRINT-FILE
27 RECORD CONTAINS 132 CHARACTERS.
28 01 PRINT-LINE PIC X{132).
29
30 WORKING-STORAGE SECTION.
31 01 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES.
32

33 01 INDIVIDUAL-CALCULATIONS,

34 05 IND-TUITION PIC 9(4} VALUE ZEROS.
35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZERDS.
36 05 IND-UNION-FEE PIC 9(2) VALUE ZEROS.
37 05 IND-SCHOLARSHIP PIC 9{4) VALUE ZEROS.
38 05 IND-BILL PIC 9{6) VALUE ZEROS.
39
40 01 UNIVERSITY-TOTALS.
41 05 UNI-TUITION PIC 9(6) VALUE ZEROS.
iz 05 UNI-UNION-FEE PIC 9{(4) VALUL ZEROS.
43 05 UNI-ACTIVITY-FEE PIC 9(4) VALUE ZEROS.
a4 05 UNI-SCHOLARSHIP PIC 9(6) VALUE ZEROS.
45 05 UNI-IND-BILL PIC 9(6) VALUE ZERQS.
46
47 01 CONSTANTS-AND-RATES.
13 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200.
49 05 UNION-FEE PIC 3(2) VALUE 25.

50 05 ACTIVITY-FEES.

file://'A:/CHAPTR05/TUITI0N.DAT1

Chapier 5 — Ihe Procedurs Division

g 51 10 IST-ACTIVITY-FEE PIC 99 VALUE 25. :

L2 10 IST-CREDIT-LIMIT PIC 99 VALUE 6. 5
. 53 10 2ND-ACTIVITY-FEE PIC 99 VALUE 50. |
[54 10 2ND-CREDIT-LIMIT PIC 99 VALUE 12, :
|55 10 3RD-ACTIVITY-FEE PIC 99 VALUE 75. f
. 56 05 MINIMUM-SCHOLAR-GPA PIC 9Ve VALUE 2.5.
57 t
. 58 01 HEADING-LINE. §
T 05 FILLER PIC X VALUE SPACES. i
60 05 FILLER PIC %{12) VALUE 'STUDENT NAME'. :
61 05 FILLER PIC X{10) VALUE SPACES. f
62 05 FILLER PIC X{7) VALUE ‘CREDITS'. f
; 63 05 FILLER PIC X(2) VALUE SPACES.
¥ 05 FILLER PIC X{7) VALUE 'TUITION'.
S 65 05 FILLER PIC X{2) VALUE SPACES. i
P s 05 FILLER PIC X(S) VALUE 'UNION FEE'. i
Y 05 FILLER PIC X(2) VALUE SPACES. :
68 05 FILLER PIC X(7) VALUE 'ACT FEE‘. ;
L 69 05 FILLER PIC X(2) VALUE SPACES. ;
' 70 05 FILLER PIC X(11} VALUE 'SCHOLARSHIP'. i
7 05 FILLER PIC X(2) VALUE SPACES. ;
72 05 FILLER PIC X{10) YALUE 'TQTAL BILL'. :
73 05 FILLER PIC X(48) VALUE SPACES. :
74
75 01 DETAIL-LINE.
76 05 FILLER PIC X VALUE SPACES.
77 05 DET-LAST-NAME PIC X{15).
78 05 EILLER PIC X{2) VALUE SPACES.
79 05 DET-INITIALS PIC X(2}.
80 05 FILLER PIC X(5) VALUE SPACES.
81 05 DET-CREDITS PIC 9(2).
82 05 FILLER PIC X{6) VALUE SPACES.
83 05 OET-TBITION PIC 9(6).
84 05 FILLER PIC X(7) VALUE SPACES.
85 05 DET-UNION-FEE PIC 9(3).
86 05 FILLER PIC X(6) VALUE SPACES.
87 05 DET-ACTIVITY-FEE PIC 9(3).
L 88 05 FEILLER PIC X(8) VALUE SPACES.
I 89 05 DET-SCHOLARSHIP PIC 9(5).
: 90 05 FILLER PIC X(6) VALUE SPACES.
91 05 DET-IND-BILL PIC 9(6).
92 05 FILLER PIC X{49) VALUE SPACES.
93
94 01 DASH-LINE.
© 95 05 FILLER PIC X(31) VALUE SPACES.
L 96 05 FILLER PIC X(8) VALUE ALL '-'.
; 97 05 FILLER PIC X{2) VALUE SPACES.
98 05 FILLER PIC X(8) VALUE ALL '-'.
39 05 FILLER PIC X(2) VALUE SPACES.

100 G5 FILLER PIC X(?) VALUE ALL '-'.

The Tuition Biting Frogram

5.8 (continusd)

om 05 FILLER PIC %{6) VALUE SPACES.
©102 05 FILLER PIC X(7) VALUE ALL '-'.
© 103 05 FILLER PIC X(5) VALUE SPACES.
104 05 FILLER PIC X(7) VALUE ALL '-',
105 05 FILLER PIC X{49) VALUE SPACES.
. 106

107 01 TOTAL-LINE.

108 05 FILLER PIC X(8) VALUE SPACES.

109 05 FILLER PIC X{17)

110 VALUE 'UNIVERSITY TOTALS'.

111 05 FILLER PIC X(8) VALUE SPACES.

112 05 TOT-TUITION PIC 9(6).

113 05 FILLER PIC X{6) VALUE SPACES.

114 05 TOT-UNION-FEE PIC 9(4).

115 05 FILLER PIC X(5) VALUE SPACES.

116 05 TOT-ACTIVITY-FEE PIC 9(4).

117 5 FILLER PIC X{7} VALUE SPACES.

1i8 05 TOT-SCHOLARSHIP PIC 3(6}.

119 05 FILLER PIC X(6) VALUE SPACES.

120 05 TOT-INB-BILL 810 5(8).

121 05 FILLER PIC X(49) VALUE SPACES.

122

123 PROCEDURE DIVISION.

24 PREPARE - TUIT 10N-REPORT .

125 OPEN TNPUT STUDENT-FILE

126 OUTPUT PRINT-FILE. -

127 PERFORM WRITE-HEADING-LINE.
. {128 _ PERFORM READ-STUDENT-FILE. =
C 129 PERFORM PROCESS-STUDENT-RECORD
L 130 UNTIL DATA-REMAINS-SWITCH = 'NO°.
©131 PERFORM WRITE-UNIVERSITY-TOTALS.

132 LOSE STUDENT-FILE

133 PRINT-FILE.

134 STOP RUN.

135

136 WRITE-HEADING-LINE.

137 MOVE HFADING-LINE TO PRINT-LINE.

138 WRITE PRINT-LINE

139 AFTER ADVANCING PAGE.

140 MOVE SPACES TO PRINT-LINE.

141 WRITE PRINT-LINE.

142

143 READ-STUDENT-FILE.

144 READ STUDENT-FILE

145 AT END MOVE *NO' TO DATA-REMAINS-SWITCH

146 END-READ.

147

148 PROCESS-STUDENT-RECORD.

149 PERFORM COMPUTE-INDIVIDUAL-BILL.

150 PERFORM INCREMENT-UNIVERSITY-TOTALS

151 PERFORM WRITE-DETAIL-LINE.

Chapter 8§ — The Procedure Divisio

tinued)
1152 " _PERFORM READ-STUDENT-FILE.
153 i
154 COMPUTE- INDIVIDUAL-BILL, e T e e R e
155 PERFORM COMPUTE-TUITION.
156 PERFORM COMPUTE-UNION-FEE.
157 PERFORM COMPUTE-ACTIVITY-FEE,
158 PERFORM COMPUTE-SCHOLARSHIP.
159 COMPUTE IND-BILL = IND-TUITION + IND-UNION-FEE +
. 160 IND-ACTIVITY-FEE - IND-SCHOLARSHIP.
161
. 162 COMPUTE-TUITION.
163 COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS.
164
' 165 ~ COMPUTE-UNION-FEE.
166 IF STU-UNION-MEMBER = ‘v L
Lo167 MOVE UNTON-FEE TO IND-UNION-FEE R
1168 ELSE ;
L 169 MOVE ZERO TO IND-UNION-FEE
W0 END-IF.
CoIn
172 COMPUTE-ACTIVITY-FEE,
RV EVALUATE TRUE
.17 WHEN STU-CREDITS <= 1ST-CREDIT-LIMIT
Eoars MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE
| 176 WHEN STU-CREDITS > 1ST-CREDIT-LIMIT !
{177 AND STU-CREDITS <= 2ND-CREDIT~LIMIT ?
178 MOVE ZND-ACTIVITY-FEE TO IND-ACTIVITY-FEE
1179 WHEN STU-CREDITS > 2ND-CREDIT-LIMIT =
| 180 MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE
1181 WHEN OTHER
182 DISPLAY 'INVALID CREDITS FOR: ' STU-NAME
L 183 END-EVALVATE.
184
185 COMPUTE-SCHOLARSHIP.
186 IF STU-GPA > MINIMUM-SCHOLAR-GPA
187 MOVE STU-SCHOLARSHIP TO IND-SCHOLARSHIP
188 ELSE
189 MOVE ZERO TO IND-SCHOLARSHIP
© 190 END-1F.
P19t
P92 INCREMENT-UNIVERSITY-TOTALS.
193 ADD END-TUITTON TO UNI-TUITION.
194 ADD IND-UNION-FEE TO UNI-UNION-FEE.
195 ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE.
196 ADD IND-SCHOLARSHIP TO UNI-SCHOLARSHIP.
. 197 ADD IND-BILL TO UNI-IND-BILL.
P 198
Po199 WRITE-DETAIL-LINE.
200 MOVE STU-LAST-NAME TO DET-LAST-NAME.
201 MOVE STU-INITIALS TO DET-INITIALS.

202 MOVE STU-CREDITS TC DET-CREDITS,

The Tuition Billing Fiagram

Flgmeye 8.5 (coniinued)}

MOVE UNI-TUITION TO TOT-TUITION.
MOVE UNI-UNION-FEE 10 TOT-UNION-FEE.
MOVE UNI-ACTIVITY-FEE TO TOT-ACTIVITY-FEE. =
MOVE UNT-SCHOLARSHIP TO TOT-SCHOLARSHIP,

MOVE UNI-IND-BILL TO TOT-IND-BILL.
MOVE TOTAL-LINE TO PRINT-LINE.

MOVE IND-TUITIGR TO DET-TUITION.

MOVE IND-UNTON-FEE TO DET-UNION-FEE.

MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE.

MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP.

MOYE IND-BILL TO DET-IND-BILL.

MOVE DETAIL-LINE TO PRINT-LINE.

WRITE PRINT-LINE ;
AFTER ADVANCING 1 LINE. i

WRITE-UNIVERSITY-TOTALS.
MOVE DASH-LINE TO PRINT-LINE.
WRITE PRINT-LINE.

e

WRITE PRINT-LINE
AFTER ADVANCING 1 L.INE.

copied directly from Figure 4.10. The completed program appears somewhat
formidable the first time you see it, but it has been developed over the last three
chapters, and you should have no difficulty in following. We suggest yosi take itin
pieces and review sections of the text as you need them with respect to the following:

1.

The Identification Iivision in lines -3 contains only the PROGRAM-ID and
AUTHOR paragraphs.
The Environment Division in lines 5-11 contains the SELECT staternents for
the two required files.

The FD's in lines 15--16 and 26-28 correspond to the SELECT statements in
the Environment Division.

. 'The description for the incoming data in lines 17-24 matches the program

specifications of Chapter 3.

Separate 01 entries are defined for individual and total calculations (lines 33—
38 and 40-45); also data names for the constants and rates are established in
lines 47-56.

Heading, detail, dashed, and total lines are described separately in
WORKING-STORAGE (lines 58-73, 76-92, 94-105, and 107121, respectively);
note the use of VALUE clauses to initialize the various print lines.

‘The paragraphs in the Procedure Division correspond one to one with the
blocks in the hierarchy chart of Figure 5.4a.

An initial READ statement in line 128 is followed by the PERFORM statement
in lines 129 and 130 to execute PROCESS-STUDENT-RECORD (lines 148~
152) until there are no more records. The last statement of the performed
paragraph is a second READ statement. The combination of these
staternents implements the overall logic in the pseudocode of Figure 5.4b.

Chapter § — The Procedure Division

9. An EVALUATE statement in iines 173-183 computes the activity fee
according to the number of credits taken.

10. Separate paragraphs in the Procedure Division compute an individual bill
(lines 154-160}, increment university totals (lines 192-197), and write a detail
line {lines 199--210).

11, Multiple MOVE statemnents are required within the paragraph to write a
detailed line (lines 199-210), with each statement moving a computed value
(such as IND-TUITION) to the corresponding entry in the print line (DET-
TUITION}. The need for both data names will be more apparent after the
material on editing in Chapter 7. The paragraph to write university totals
requires similar treatment.

12. Multiple ADD statements are needed within the paragraph to increment
university totals (lines 193-197}. Each total is stored in a separate field and
thus must be incremented separately.

Figurs 5.6 Test Data and Cutput

JB15Y0000230 §

STUDENT NAME

CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL

SMITH
JAMES HR15 0500245 |
BAKER SRO9 0500350 ;
PART-TIMER JRO3Y0000300 ;
JONES PL15Y0000280 ?
HEAVYWORKER HM18 0000200
LEE BL18 0000335
CLARK JCO6 0000310 '
GROSSMAN SE07 0000215 i
FRANKEL LF10 0000350
BENWAY €103 0250395
KERBEL NBO4 0000100 g

{a; Test Dala

SMITH JB 15 003000 025 075 00000 003100 _5
JAMES HR 15 003000 Goo 075 00000 003075 %
BAKER SR 09 001800 000 050 00500 001350 i
PART-TIMER JR 03 000600 025 025 00000 000650 ?
JONES PL 15 003600 025 075 00600 003100 ?
HEAVYWORKER HM 18 003600 000 G675 00000 003675 ?
LEE BL 18 003600 0600 075 00000 003675 E
CLARK JC 06 001200 000 025 00000 001225 |
GROSSMAN SE o7 001400 000 050 00000 001450
FRANKEL LF 10 002000 000 050 00000 002050
BENWAY cT Q3 000600 000 025 06250 000375
KERBEL NB 04 000800 000 028 (0000 000825

UNIVERSITY TOTALS 024600 0075 0625 000750 024550

{by Cutput

The Tuition Billing Frogram

The test data and associated output are shown in Figures 5.6a and 5.6b, respectively.
The test data are identical to those used in the original stubs program; the output,
however, is different and reflects the expanded Procedure Division of Figure 5.5,
Note, too, the correspondence between individuat records in the input data file and
the associated lines in the printed report.

Observe, for example, that JB Smith, JR Part-Timer, and PL Jones each have a Y
in column 20 of their input records, and that these are the only individuals who are
charged a Union Fee. In similar fashion, James, Baker, and Benway are the only
students with potential scholarships in the incoming data; James, however, does
not have the requisite average and so he does notreceive a scholarship. The student
file has 12 records, and hence 12 students appear in the printed report.

In retrospect, the output produced isn't very pretty as it is unformatted and
cotilains extraneous zeros throughout. (Lditing is presented in Chapter 7 together
with a final version of the program.)

Hierarohy Shart

The hierarchy chart was introduced initially as a design aid and developed before
the program was wriifen; it is also used as a documentation technique after coding
is completed o better understand the overall program stiucture. The hierarchy
chart depicts the functions inherent in a program, and is closely tied to the
paragraphs in the Procedure Division. Observe therefore, the properties of the
hierarchy chart in Figure 5.4a as they relate to the COBOL program in Figure 5.5.

1. Every box (moduie) in the hierarchy chart corresponds to a paragraph in the
COBOL program. There are twelve different modules (the READ appears
twice) in the hierarchy chart, and twelve paragrapls in the program.

2. Each paragraph in the COBOL program contains as many PERFORM
statements as there are modules in the next lower level of the hierarchy
chart. Thus the paragraph at the highest level, PREPARE-TUITION-REPORT,
contains four PERFORM statements, one for each subordinate paragraph.

3. A paragraph can be entered only from the paragraph directly above it and
must eventually return control to that paragraph. Hence, PROCESS-
STUDENT-RECORDS is entered via a PERFORM statement in PREPARE-
TUITION-REPORT. PROCESS-STUDENT-RECORDS in turn invokes four
lower level paragraphs, each of which returns control to PROCESS-
STUDENT-RECCORDS, which eventually returns control to PREPARE-
TUITION-REPORT.

4. Every module in a hierarchy chart (paragraph within a program) should be
dedicated to a single function. The nature of that function should be
apparent from the module’s name and should consist of a verb, one ortwo
adjectives, annd an object.

Bemember, too, that a hierarchy chart is very different from flowchaits or
pseudocode. A hierarchy chart shows what has to be done, but not when; it contains
no decision-making logic. Floweharts and pseudocode, on the other hand, specify
when and if a given block of code is execuied. We say that hierarchy charts are
functional in nature; they contain the tasks necessary to accomplish the
specifications but do not indicate an order for execution. Pseudacade and flowcharts
are procedural and specify logic.

Chapter § — Tie Frocedure Division

Our objective is for you to write meaningful COBOL. programs, not Lo memorize
what must appear to be an endless list of rules. You must eventually remember
certain things, but we have found the best approach is to patiern your first few
COBOL programs after existing examples such as the tuition billing program.
Everything you need to get started is contained in that program (Figure 5.5) if you
will ook at it carefully. As a further aid, Figure 5.7 contains a skeleton outline of a
COBOL program and some helpful hints. Consider:

1. The four divisions must appear in the order: Identification, Environment,
Data, and Procedure. Division headers begin in the A margin and always
appear on a line by themselves.

2. The Environment and Data Divisions contain sections with fixed naines. The
ldentification Division does not contain any sections. {The Procedure
Division may contain programmer-defined sections; however, this is usually
not done in beginning programs.j

3. The Data Division is the only division without paragraph names. In the
identification and Environment Divisians, the paragraph names are fixed. in
the Procedure Division they are determined by the programmer. Paragraph

v oo o 11

4. Any entry not required to begin in the A margin begins in the B margin—that
is, in or past column 12,

5. The program executes instructions sequentially, as they appear in the
Procedure Division, unless a transfer-of-control statement such as
PERFORM is encountered.

6. Every file must be opened and closed. A file name will appear in at least four
staternents: SELECT, FD, OPEN, and CLOSE. The READ statement also
contains the file naine of an input file, whereas the WRITE statement
coniains the record name of an output file.

Scope terminators (e.g., END-IF, and END-READ) did not exist in COBOL 74;
hence all scope terminators in Figure 5.5 must be removed for the programi lo
compile under COBOL-74. The advantage of including scope terminators is
expiained further in Chapter 7.

The EVALUATE statement is alse new to COBOL-85 and hence an
alternative way ¢ compute the activity fee (e.g., multiple F statements) is
requirad 1o davelcp the program under the oider compiler.

The word TO is permitted as an optional reserved word in the GIVING
form of the ADD statement in COBOL-85; it was not allowed in COBOL-74,
THEN is an gplional reserved word in the iF statement in COBOL-85 but was
not allowed in COBOL-74.

COBQIL Program Skeleton

: §c Skeleton Outlme of a COBOL Progfam

IDENTIFICATION DIVISION.
PROGRAM-1D, PROGNAME .
AUTHOR, JOHN DOE.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
" SELECT INPUT-FILE ASSIGN TO 'A:\CHAPTROS\TUITION. DAT"

ORGANIZATION IS LINE SEQUENTTAL.
- SELECT PRINT-FILE i
. ASSIGH TO PRINTER. ‘

DATA DIVISION.
FILE SECTEON.
FD INPUT-FILE
RECORD CONTAINS 80 CHARACTERS.
01 INPUT-RECORD PiC X{80).

FD PRINT-FILE
RECORD CONTAINS 132 CHARACTERS.
01 PRINT-LINE PIC X(132).

WORKING~STORAGE SECTION

| O DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES. |

01 HEADING-LINE.
D1 DETAIL-LINE.

01 TOTAL-LINE,

PROCEDURE DIVISION.
MAINLINE.
OPEN INPUT INPUT-FILE
OUTPUT PRINT-FILE.
READ INPUT-FILE
. AT END MOVE 'NO' TG DATA-REMAINS- SNITCH
(END-READ. o
PERFORM PROCESS-RECORDS
UNTIL DATA-REMAINS-SWITCH = 'ND'.
Icaosa INPUT-FILE g
; PRINT-FILE.
stop e

PROCESS~RECORDS.

| READ INPUT- FIE_E JO .. . - _= / R T R IO

AT END MOVE °'NO" TG DATA-REMAINS- SNITCH
: END-READ. i

file://'A:/CHAPTR05/TUITI0N

Chapter 3 -~ The Procedure Uivision

Balnks to Hemenbar

The READ statement typically appears twice in a COBOL program; as an
initial (priming) read, and as the last statement of a performed paragraph
to process a file unti! its records are exhaustad.

The PERFORM statement may be used with or without an UNTIL clause;
the latter is used to implement a loop.

The iF statement may be used with or without an ELSE clause; indentation
is optional, but strongly suggested, in order to clarify intent,

The EVALUATE sialemment implements the case structure and is used
instead of muitiple IF statements.

The MOVE statement has several precisely defined rufes, which govern the
use of sending and receiving fieids of different iengths and/or data types.
Arithmetic is done in one of two ways: either through individual statemenis
such as ADRD, SUBTRACT, MULTIPLY, and DIVIDE, or through a COMPUTE
staiement which combines muliiple operations.

a
>
T
g
a
&
¢
3
£
=t
T
E
I
=
s}
o
iy
L
=,
o0
o]
»
L
=)

left to nghy, if a tie).

The hierarchy chart can be used as a design ald before a program is
written, and as a documentation technigue afterward.

Hay Words sod Soncenis

Asgsumed (implied) decimal point Hierarchy of cperations
Decimal alignment Indentation

Design aid Priming (initial) read
Documentation Pseudocode
Exponentiation Receiving (destination) fietd
Group move Scope terrminator

Hierarchy chart Source (sending) field

SR, Elemenis

ADD END-COMPUTE EVALUATE READ
ADVANCING END-DIVIDE GIVING ROUNDED
CLOSE END-EVALUATE IF SIZE ERROR
COMPUTE END-TF MOVE STOP RUN
DIVIDE END-MULTIPLY MULTIPLY SUBTRACT
ELSE END-READ OPEN UNTIL

END-ADD END-SUBTRACT PERFORM WRITE

1a.
1t
12.
13.

14.

15.

16.

17.
18.

18.
20.

%!

22.

p—y

. The statement permits multiple arithmetic operations in a single
statement.
Most arithmetic sltatements have distinct formats.
Specification of the ____ clause causes a calculation to be carried to

one more place than is specified in the result field.

Expanentiation is indicated by
in the absence of parentheses exponentiation comes (befare/ater) multiplication.

i both multiplication and division are present, computation proceeds from
to

The iF statement (Goes/does not) require an FLSF clause.

The effect of an IF statement is terminated by the presence of a
of the presence of an clause.

is nonmially the iast statement that is executed in any COBOL

orogram.

A typical CORBOL program usually has distinct READ staternents.

A file containing N records is generally read times.

in COBGL., one reads a and writes &

Specification of inaWRITE
statement causes the next line of output 1o begin on top of a new page.

The type of file—that is, INPUT or OUTPUT - appears in an . but
notina statement.

When an alphanumeric field is moved 1o an alshanumeric field, data are moved
character at a time, from i

It a five position alphanumeric fieid is moved to a four position alphanumeric field,
the low order characler is

A numeric move always maintains

A PERFORM UNTIL statement always tests the condition { beforefaftery pertorming
the designated paragraph.

A numeric field (IMmay/may not) be moved 1o an alphabetic figld.

If a numeric field with PIC 999 is moved to a numeric field with PIC 99, the
(mostfieasl) significant digit wilt be runcated.

The option is available for ali arithimetic
statements, and indicales when the result of a computation is larger than its
designated PICTURE clause.

The statement has been introduced o express a multibranch
situation.

Chapter § — The Procedure Division

—_

—

ey
'y

12
13.
14.
15.
16.
17.
18.
19,
20.
21.
22.
23.
24,

25.
26.
27.
28.

T oo N oo s N

One ADD instruction can change lhe value of more than one data name.

Both GIVING and TO may be present in the same ADD instruction.

A valid ADD instruction may contain neither GIVING nor TO.

Both FROM and GiVING may appear in the same SUBTRACT instruction.

The use of GIVING is optionat in the MULTIPLY statement.

The reserved word INTO must appear in a DIVIDE slatemeant.

In the DIVIDE statement, the dividend is always identifier-1.

Multiplication and division can be performed in the same MULTIHPLY statement.
Multipfication and addition can be performed in the same COMPUTE statement.

in a COMPUTE statement with no parentheses, muitiplication is always done before
subtraction.

. In a COMPUTE statement with no parenthesss, multipiication is always done before

division.

Parentheses are sometimes required in a COMPUTE statement.

The COMPUTE statement changes the value of only one data name.
The IF statemeni must always contain the ELSE option.

The PERFORM staterment transfers control (o a paragraph elsewhere in the program.
A program may contain more than one STOP RUN slatement.

STOP RUN must be the last statement in the Procedure Division.

The ADVANCING option is mandatory in the WRITE statement.

The READ statement contains a record name.

The WRITE statement contains a record name.

The OPEN and CLOSE statements are optional.

The END-IF scope terminator has iitile effect in an i statement.

An {F statement can cause the execution of several other statements.

If the ELSE clause is satisfied in an IF statement, it can cause execution of sevaral
statements.

The ROUNDED clause is required in the COMPUTE statement.
The SIZE ERROR option is allowed only in the COMPUTE statement.
The SIZE ERROR oplien is required in the COMPUTE statement.

The EVALUATE statement facilitates implementation of the case construct.

. -

1. Some of the following arithmetic statemenis are invalid. ldentify those, and state
why they are unacceptable.

ADDABC.

. SUBTRACT 10 FROM A B,
SUBTRACT A FROM 10.

. ADD ATO B GIVING C.
SUBTRACT A ROUNDED FROM B ROUNDED GIVING C.
MULTIPLY A BY 10,

. MULTIPLY 10 BY A ROUNDED.

h. MULTIPLY A BY 10 GIVING B C.

i. DiVIDE A BY B.

j. DIVIDE AINTO B

kK. DIVIDE A INTG B GIVING C.

. DIVIDE B BY AGIVING C

. COMPUTE X ROUNDED = A + B.

i, COMPUTE X = 2(A + B).

0. COMPUTEY =20/ A-C.

-2 00 TR

«

2 Complete the labic below. It sach instance, refer to the initfal values of A, B, |
and D.

Value before execution 4 8 12 2

Value after execution of
a. ADD1TODB.

. ADD A B C GIVING D.

ADDABCTOD.

- SUBTRACT A B FROM C.
SUBTRACT A B FROM C GIVING D.
MULTIPLY ABY B C.

. MULTIPLY B BY A.

DIVIDE A INTO C.
DIVIDE C BY B GIVING D REMAINDER A.

. COMPUTED=A+B/2*D.

k. COMPUTED = (A + B)/ (2" D}

i. COMPUTED =A + B/{2" D).

m. COMPUTED ={A +B)/2"D.

n. COMPUTED =A+ (B/2}*D.

~ o oo o

T oo

3.

Chepter § — Yhe Procedure Division

indicate the lagical errors inherent in the following COBOL fragment:

FILE SECTION.
FD EMPLOYEE-FILE

FO PRINT-FILE

WORKING-STORAGE SECTION.
01 END-OF-FILE-SWITCH PIC %(3) VALUE 'YES'.

PROCEDURE DIVISION.
PREPARE-EMPLOYEE-REPORT.
MOVE HEADING-LINE TO PRINT-LINE.
WRITE PRINT-LINE
AFTER ADVANCING PAGE.
OPEN INPUT EMPLOYEE-FILE
OQUTPUT PRINT-FILE.
PERFORM PROCESS-RECORDS
UNTIL END-OF-FILE-SWITCH = °*YES'.
CLOSE EMPLOYEE-FILE.
STOP RUN.
PROCESS-RECORDS.
READ EMPLOYEE-FILE
AT END MOVE 'YES' TO END-OF-FILE-SWITCH
END-READ.

Some of the foliowing statements are invalid. Indicate those, and state why they are
invalid. {Assume FILE-ONE and FILE-TWO are file namas ang RECORD-ONE is a

record name.)
. OPEN INPUT RECORD-ONE,
. OPEN INPUT FILE-ONE QUTPUT FILE-TWO.
. OPEN INPUT FILE-ONE.
. CLOSE QUTPUT FILE-ONE.
. READ FILE-ONE.
READ FILE-CNE AT END PERFORM END-CF-JOB-ROUTINE,
. READ RECORD-ONE AT END PERFORM END-OF-JOB.
. WRITE RECORD-ONE.
WRITE RECORD-ONE AFTER ADVANCING TWO LINES.
WRITE RECORD-ONE BEFORE ADVANCING TWO LINES.
k. CLOSE FILE-ONE FILE-TWO.
i. WRITE FILE-ONE.
m. WRITE RECORD-ONE AFTER ADVANCING PAGE.

T ™o o 0 T e

[—

Problems

5. Write COBOL GOMPUTE statements to accomplish the intended logic:

a x=a+b+c

a+bc
X =
2

C. x=a +b°+c°

a+b
X =
z2

e. x=a+b

f

(= (a8 + b2
’ \f 2c

g f=p(+iy

f:_(,(lf v)

_la+ by*

X
(dre)

6. Given the following Procedure Divisiori:

BONASERNE TV TC TN
FRULELUURE LPIVi31UN,

FIRST-PARAGRAPH.
MOVE ZEROS TQ FIELD-A FIELD-B.
PERFORM SECOND-PARAGRAPH.
PERFORM THIRD-PARAGRAPH.
PERFORM SECOND-PARAGRAPH.
STOP RUN.
SECOND-PARAGRAPH.
ADD 10 TO FIELD-A.
ADD 20 TO FIELD-B.
THIRD-PARAGRAPH,
MULTIPLY FIELD-A BY FIELD-B GIVING FIELD-C.
DIVIDE FIELD-A INTO FIELD-B GIVING FTELD-D.

a. What are the final values for FIELDG-A, FIELD-B, FIELD-C, and FIELD-D?
b. How many times is each paragraph executed?

http://uivj.oj.un

Chapter § — JTnse Procedure Divigion

7. Complete the following table, showing the contents of the receiving field.

SERISNG FIELD RESESVING FIELD
BLOTURE GONTEMTE P UHE LCONTERTS
a. X{4) X(4)
b, X(4) 9(4)
c. X4 X(3)
d. X(4) X(5)
e 9(4) X(4)
f 9(4) 9(3)
g 94 8(5)
h. 999vy 9(4)
i 999VY A4
i 000Ve eyes)
k. 999vg 99vaQ

8. Supply Procedure Division statements as indicated:

a. Code two eqguivalent statements, an ADD and a COMPUTE, 1o add 1 to the
counter NUMBER-QUALIFIED-EMPLOYEES.

b. Code a COBOL statement to add the contents of five fields, MONDAY-SALES,
TUESDAY-SALES, WEDNESDAY-SALES, THURSDAY-SALES, and FRIDAY-
SALES, storing the result in WEEKLY-SALES.

¢c. Code a COBOL statement to subfract the fields FED-TAX, STATE-TAX,
FICA, and VOLUNTARY-DEDUCTIONS, from GROSS-PAY, and put the result
in NET-PAY.

d. Code a single COBOL staternent to calculate NET-AMOUNT-DUE, which is
equal to the GROSS-SALE minus a 2% discount.

e. Recode part (d). using two statements {(a MULTIPLY and a SUBTRACT).

f. Code a COBOL statement to compute GROSS-PAY, which is equal to HOURS-
WORKED times HOURLY-RATE.

g. Code a single COBOL statement to compute GROSS-PAY, which is equal to
REG-HOURS-WORKED times HOURLY-RATE plus OVERTIME-HOURS times
HOURLY-RATE times 1.5.

h. Code a COBOL statement 1o delermine AVERAGE-SALARY by dividing TOTAL-
SALARY by NUMBER-OF-EMPLOYEES,

i. Code a COBOL Compute statement equivalent to the algebraic formula.

j. Ceode a COBOL Compute statement equivalent to the algebraic formula.

_ —b++b’ —4ac
2a

X

9. Write Procedure Division code for the flowchart in Figure 5.8.

Problems

Flowcharts for Problem &

TRUE
C=0/E - F=F-1
X=A+B
¥
N=N+i
15
TRUE
C=D/E . F=F-1

| K=N+1

Owverview

Errors in Compilation
Comman Comptation Errors

Errors in Execution
File Status Codes

Tips for Debugging
Cross-Reference Listing
DISPLAY Statement
interactive Debugger

The Structured Walkthrough

Summary

Fitt-in

TruefFalse

Problems

Py

EEaEs

Chapter 6 — Debugging

P
fut
£

After reading this chapter you will be able to:

Distinguish between errors in compilation and execution; correct typical
compilation errors.

Use the DISPLAY statement as a debugging tool.

Explain how an interactive debugger can be used to find and correct
execution errors,

Describe the use of file status codes in correcting data management
errors.

Explain what is meant by a structured watkthrough; be able to participate
as reviewer, reviewee, moderator, or secretary.

Very few computer programs run successfully on the first attempt. Indeed, the
programmer is reahistically expected to rmake errors, and an important test of a
or she is able to detect and correct the errors. Since this process is such an
integral part of procgramming, an entire chapier is devoted to debugging. We
consider errors in both compitation and execution.

Compilation errors occur during the translation of COBOL 1o machine
language and are caused by a mistake in COBOL syntax, for example, a
missing period or an entry in a wrong column. Execution errors result after the
program has been transiated tc machine language and produce results that are
different from what the programmer expected or intended.

Compilation errors are easy to find because the compiler produces an
explicit error message. Execution errors are more difficult to detect and may
require the use of additional debugging tools, such as the insertion of DISPLAY
statements into a program and/or the use of an interactive debugger. The
chapter also considers the structured walkthrough as a means of reducing
errors before they occur.

Compilation is the process of translating a source (COBOL) program into machine
language. Any mistake in COBOL syntax causes the compiler to immake an assumption
in the interpretation of the statement in which the error occurs, or, worse vet,
makes it impossible for the compiler to interpret the statement at all. Either way a
compilation error results.

Eirors

i

Campifaltion

Some errors are less severe than others; for example, the compiler is generally
able w guess ihe programmer's inteni when periods are omided in the Data Division,
whereas it is unable to decipher a misspelled reserved word. Accordingly, most
compilers provide different levels of comipiler diagnostics (error messages) according
to the severity of the error. Micro Focus Personal COBOL for Windows, for example,
produces five types of error messages, which are listed in order of increasing severity.
Other compilers have similar classifications. Consider:

I Informational Diagnostics Indicates a coding inefficiency or other
condition (for example, an incompatibility
with the ANS standard}. The program will
compile correctly.

W Warning Diagnostics The statement is syntactically correct, but
the source of a potential problem. A
program can comnpile and execute with
several W-level diagnostics present;
however, ignoring these messages could
lead ta errors in execution.

E Error Diagnostics The statement is incorrect as written, and
requires the compiler to make an
assumption in order to complete the
compilation. You may wish to correct the
praogram in case the compiler’s assumption
is not whal you intended,

§ Severe Diagnostics A severe ertor in that the compiler cannot
make carrections and therefore cannot
gencrate object instructions. Any
statermnent flagged as an S-level error is
ignored and treated as if it were not
present in the program.

U Unrecoverable Diagnostics An error of such severily that the compiler
does not know what to do and cannot
continue. U-level diagnostics are extremely
rare, and you practically have to submit a
Visual BASIC program to the COBOL
compiler to cause a U-level message.

The COBOL compiler tends to rub salt in a wound in the sense that an error in
one staterment can cause error messages in other statements that appear correct.
For example, should you have an S-level ervor in a SELECT statement, the compiler
will flag the error, ignore the SELECT statement, and then flag any other statements
that reference that file even: though those other statements are correct.

can lead to a long and sometimes confusing set of error messages. The only
consolation is that compiler errors can disappear as quickly as they occurred.
Correction of the misspelled word or insertion of the missing statement will often
eliminate severa) errors at once.

Proficiency in debugging comes from experience—the more programs you
write, the better you become. You may correct the errors in the order they appear

Chapter 6 — Debugging

{our preference), or in the order of severity (from Unrecoverable, Severe, Error,
Warning, o Informational)}, or even haphazardiy as you find them. Whichever way
you choose, try to find the mistakes as quickly as possible and without wasting time.
Moreover, don't spend too much time on any single error; instead, if you are stuck,
skip the error temporarily and continue to the next, eliminating as many errors as
you can before you recompile.

Figars &1 Tuition Billing Program with Compilation Errors

1 IDENTIFICATION DIVISION,
5 2 PROGRAM-ID. TUITECOM.
i 3 AUTHOR. CAROL VAZQUEZ VILLAR.
4
5 ENVIRONMENT DIVISION.
6 INPUT-OUTPUT SECTION.
7 FILE-CONTROL.
8 SELECT STUDENT-FILE ASSIGN TG 'A:\CHAPTROG\TUITION.DAT'
g ORGANIZTION IS LINE SEQUENTIAL.
.18 SELECT PRINT-FILE
' 11 ASSIGN TG PRINTER.

12

13 DATA DIVISION.

14 FILE SECTION.

15 FD STUDENT-FILE i

16 RECORD CONTAINS 27 CHARACTERS. i

17 01 STUDENT-RECORD. :

18 05 STU-NAME.

19 10 STU-LAST-NAME PIC X(15).

20 10 STU-INITIALS PIC XX. ;
3 | 05 STU-CREDITS PIC 9(2). ;
|2 05 STU-UNION-MEMBER PIC X. E

23 05 STU-SCHOLARSHIP PIC 9{4).

28 05 STU-GPA PIC 9V99. ?

25 §

26 FD PRINT-FILE {
P27 RECORD CONTAINS 132 CHARACTERS.

28 01 PRINT-LINE PIC X(132).

29

30 WORKING-STORAGE SECTION.
| D1 DATA-REMAINS-SWITCH PIC X{2) VALUE SPACES.

P32

33 01 ENDIVIDUAL-CALCULATLONS.

34 05 IND-TUITION PIC 9(4) VALUE ZEROS.

35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZERDS.

36 05 IND-UNION-FEE PIC 9(2) VALUE ZEROS.

37 05 IND-SCHOLARSHIP PIC 9(3) VALUE ZEROS,

P38 05 IND-BILL PIC §(6) VALUE ZEROS. T
1 39 e e B

40 01 UNIVERSITY-TOTALS. T

a1 05 UNI-TUTTION __P1e-9(6) VALUE ZEROS.

42 05 [UNT UNION FEE 7 PIC 9(4) VALUE ZEROS.

file://'A:/CHAPTR06/TUITI0N.DAT'

Errars in Caompilation

£.4 (continued)

43 05 UNI-ACTIVITY-FEE PIC 9(4) VALUE ZERQS.-——""

44 05 | UNT-SCHOLARSHIP "~ PIC X(6) - VALUE ZEROS.

45 05 UNI-IND-BILL PIC 9(6) VALUE ZEROS.

a6

a7 01 CONSTANTS-AND-RATES.

48 05 PRICE-PER-CREDIT PIC 9{3) VALUE 200.

49 05 UNILON-FEE PIC 9{2) VALUE 25.

50 05 ACTIVITY-FEES.

51 10 1ST-ACTIVITY-FEE PIC 99 VALUE 25.

52 10 1ST-CREDIT-LIMIT PIC 93 VALUE 6.

53 10 2ND-ACTIVITY-FEE PIC 99 VALUE 50.

54 10 2ND-CREDIT-LIMIT PIC 93 VALUE 12.

55 10 3RD-ACTIVITY-FEE PIC 99 VALUE 75.
L 56 05 MINIMUM-SCHOLAR-GPA PIC 3¥§ VALUE 2.5.
Y/
. 58 01 HEADING-LINE.
L5 05 FILLER PIC X VALUE SPACES.
L60 05 FILLER PIC X(12) VALUE *STUDENT NAME'.
; 61 05 FILLER PIC X{10) VALUE SPACES
Ce2 05 FILLER PIC X(7) VALUE ‘CREDITS®.
L 63 05 FILLER PIC X(2) VALUE SPACES.
X 05 FILLER PIC X(7) VALUE 'TUITION'.
1 05 FILLER PIC X{2) VALUE SPACES.
.66 05 FILLER PIC X(9) VALUE 'UNION FEE'.
[67 05 FILLER PIC X(2} VALUE SPACES.
{68 05 FILLER PIC X(7)} VALUE 'ACT FEE'.
F69 05 FILLER PIC X(2) VALUE SPACES.
L0 05 FILLER PIC X(11} VALUE 'SCHOLARSHIP'.
oo 05 FILLER PIC X{2) VALUE SPACES.
Foon 05 FILLER PIC X{10) VALUE 'TOTAL BILL'.

73 05 FILLER PIC X{48) VALUE SPACES.
Loos
.75 01 DETAIL-LINE.
76 05 FILLER PIC X VALUE SPACES.

77 05 DET-LAST-RAME PIC X(15). e

78 05 FILLER PIC X(2) VALUE SPACES, ... 777 iimimiiiis

79 05 DET-INITIALS PIC X(2). o

80 05 FILLER _PIE-X(5) VALUE SPACES.

81 05 | STU-CREDITS i~~~ PIC 9{2).

82 05 FILLER PIC X{6) VALUE SPACES.

83 05 DET-TUITION PIC 9(6).

84 05 FILLER PIC X(7) VALUE SPACES.

85 05 DET-UNION-FEE PIC 9(3).

86 05 FILLER PIC X(6) VALUE SPACES.

87 05 DET-ACTIVITY-FEE PIC 9(3).
.88 05 FILLER PIC X(8) VALUE SPACES.
S 05 DET-SCHOLARSHIP PIC 9(5).
W 05 FILLER PIC X(6) VALUE SPACES.
c9l 05 DET-IND-BILL PIC 9(6).

i 92 05 FILLER PIC X{49) VALUE SPACES.

Chapter 6 -~

Debugging

Finmure 8.1 (continued)
L% 01 DASH-LINE. ;
i 95 05 FILLER PIC X{31) VALUE SPACES.
% 96 05 FILLER PIC X{8) VALUE ALL '-'.
4 97 05 FILLER PIC X{2) VALUE SPACES,
: 98 05 FILLER PIC X(8) VALUE ALL '-'.
% 99 05 FILLER PIC X{2) VALUE SPACES.
100 05 FILLER PIC X{7) VALUE ALL '-*.
P101 05 FILLER PIC X{6) VALUE SPACES.
L2 05 FILLER PIC X{7) VALUE ALL '-'.
[103 05 FILLER PIC X(5) VALUE SPACES.
C 104 05 FILLER PIC X(7) VALUE ALL *-'.
f105 05 FILLER PIC X(49) VALUE SPACES.
©106

107 01 TOTAL-LINE.

108 05 FILLER PIC X(8) VALUE SPACES

109 05 FILLER PIC X{17)

110 VALUE 'UNIVERSITY TOTALS'.
.Im 05 FILLER PIC X{8) VALUE SPACES.
Lo 05 TOT-TUITION PIC 9(6).
(113 05 FILLER PIC X(6) VALUE SPACES.
P14 05 TOT-UMION-FEE PIC 9(4).
Looas 65 FILLER PIC X(5) VALUE SPACES.
© 116 05 TOT-ACTIVITY-FEE PIC 9(4).

117 05 FILLER PIC X(7) VALUE SPACES.

118 05 TOT-SCHOLARSHIP PIC 9(6).

119 05 FILLER PIC X(6) VALUE SPACES.

120 05 TOT-IND-BILL PIC 9(6).
T V3t 05 FILLER PIC X(49) VALUE SPACES.
S V-2
C123 PROCEDURE DIVISION. o herion o r soe os st nane
o TSR
S V13 OPEN INPUT STUDENT-FILE
©126 QUTPUT PRINT-FILE.
C121 PERFORM WRITE-HEADING-LINE.
Po128 PERFORM READ-STUDENT-FILE.
S 129 PERFORM PROCESS-STUDENT-RECORD

130 UNTIL DATA-REMAINS-SWITCH = 'NO'.

131 PERFORM WRITE-UNIVERSITY-TOTALS.

132 CLOSE STUDENT-FILE

133 PRINT-FILE.

134 STOP RUN.

135

136 WRITE-HEADING-LINE.

137 MOVE HEADING-LINE TO PRINT-LINE.

138 WRITE PRINT-LINE

139 AFTER ADVANCING PAGE.

140 MOVE SPACES TO PRINT-LINE,

141 WRITE PRINT-LINE.

142

Errors in Camgifation

Sgoare w0 (continued)
143 READ-STUDENT-FILE. T
144 READ STUDNET-FILE ;~——
145 AT END MOVE 'NO' TO OATA-REMAINS-SWITCH
146 END-READ.,
(147
148 PROCESS - STUDENT-RECORD.
149 PERFORM COMPUTE-INDIVIDUAL-BILL.
150 PERFORM INCREMENT-UNIVERSITY-TOTALS
151 PERFORM WRITE-DETAIL-LINE.
152 PERFORM READ-STUDENT-FILE.
; 153
154 COMPUTE-INDIVIDUAL-BILL.
© 155 PERFORM COMPUTE-TUITION.
156 PERFORM COMPUTE-UNTON-FEE. -
157 PERFORM COMPUTE-ACTIVITY-FEE.
158 PERFORM COMPYUTE-SCHOLARSHIF.
L 159 COMPUTE IND-BILL = IND-TUITION + IND~UNION-FEE + IND-ACTIVITY .
. 160 - IND-SCHOLARSHIP,
161
162 COMPUTE-TUITION.
163 COMPUTE IND-TUITION =PRICE-PER-CREDIT * STU-CREDITS.
164 '
¢ 165 COMPUTE-UNTON- FEE.
166 If STU-UNION-MEMBER = 'Y
L1167 MOVE UNTON-FEE TO IND-UNION-FEE
168 ELSE
169 MOVE ZERO TO IND-UNION-FEE
170 END-IF.
171
V74 COMPUTE-ACTIVITY-FEE, Ty i
173 EVALUATE TRUE e
174 WHEN ‘STU-CREDITS <= 151 ~CREDIT-LIMIT
175 MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE
176 WHEN [STU-CREDITS ‘> 1ST~CREDIT-LIMIT
177 AND STU-CREDITS <= 2ND-CREDIT-LIMIT
178 MOVE 2ND- ACTIVITY FEE TO IND-ACTIVITY-FEE
179 WHEN /STU-CREDTTS "> 2ND-CREDIT-LIMIT
180 MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE
181 WHEN OTHER
182 DISPLAY 'INVALID CREDITS FOR: ' STU-NAME
183 END-EVALUATE.
164
L185 COMPUTE-SCHOLARSHIP.
. 186 IF STU-GPA > MINIMUM-SCHOLAR-GPA
187 MOVE STU-SCHOLARSHTP TO IND-SCHOLARSHIP -
: 188 ELSE
F189 MOVE ZERQ TO IND-SCHOLARSHIP
190 END-TF.
191

192 INCREMENT-UNIVERSITY-TGTALS.

Chapter 6 — Debugging

(continued)

¥
H
b

193 ADD IND-TUITION T0 UNI-TUITION. g
194 ADD IND-UNION-FEE TO UNI-UNION-FEE. ..~
;195 ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE. 7/ iy wose delndon e 42
196 ADD IND-SCHOLARSHIP T0:UNI-SCHOLARSHIP. - !
{197 ADD IND-BILL TO UNI-IND-BILL. e D KA e 1 Seiindicn 5
199 WRITE-DETAIL-LINE. VAR o 1
200 MOVE STU-LAST-NAME T@' DET-LAST-NAME. o ;
L 201 MOVE STU-INITIALS F0 DET- INITIALS. T '
202 MOVE STU-CREDITS 70 DET-CREDITS,
§ 203 MOVE IND-TUITION TO DET-TUITION.
| 204 MOVE IND-UNTON-FEE TO DET-UNION-FEE.
©205 MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE,
E 206 MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP.
P07 MOVE IND-BILL TO DET-IND-BILL. :
fo208 MOVE CETAIL-LINE TO PRINT-LINE. :
C 209 WRITE PRINT-FILE |
210 AFTER ADVANCING 1 LINE. o
P21l
{7212 WRITE-UNIVERSITY-TOTALS.
L2213 MOVE DASH-LINE TO PRINT-LINE. et e S s S line 2
Lo WRITE PRINT-LINE. I
L 215 WMOVE UNI-TUITION TO TOT-TUITION. LRI et g 1
. 216 MOVE | UNI-UNTON-FEE 70 TOT-UNION-FEE. {
Y MOVE UNI-ACTIVITY-FEE TO TOT-ACTIVITY-FEE. :
. 218 MOVE UNI -SCHOLARSHIP -TO' TOT- SCHOLARSHIP.
I 219 MOVE UNI-IND-BILL TO TOT-IND-BILL. §
o220 MOVE TOTAL-LINE TO PRINT-LINE.
L 221 WRITE PRINT-LINE :
222 AFTER ADVANCING 1 LINE. i

To give you a better feel of what to expect from your programs, we have taken
the Tuition Billing program from Chapter 5 and deliberately changed several of the
statements to cause compilation errors as shown in Figures 6.1 and 6.2. The Personal
COBOL Animator highlights each error line in the original code and coordinates the
error line with the error messages listed in the Syntax Errors window shown in
Figure 6.2. The error messages include the assigned number of the error and the
error ievel. For example, 233-8 means that this is error message 233 and its error
level is Severe. The statement is ignored but the prograin cannot be compiled. The
error message also contains a brief explanation of the error. Some of the errors will
be immediately obvious; others may require you to look up the message number in
Syntax Check Error Messages in Animator Help. This help feature is included in the
Standard COBOL Reference entry in the Help menu. S$till other errcors may require
you to seek help. As you progress through this book and gain practical experience,
you will become increasingly self-sufficient.

Errors «n Compilalion

Figure %2 Compilation Errors

Periad missing. Peried assumed 4
User-name required I
gperand STODHEY-FILE is mei deciared 3
scape-delimiter €id mot have a matching verb and was discarded.
Operznd IMD-BCTTMITY is amet declared
Yser-name STY-CREDITS not vnique
Hser-nane STO-CREDETS mot unique
User-pame STY-CREDITS naeb anique
User-rame STU-CREDITS not unique

Operand D0 -YNION-FEC 15 net declared
Operand UHi-SCHOLARSHIF should be numevic
tser-name STU-CREDETS mat unique

Kot 3 recovd nawe

Uperand OHI-UMEON-FEE i net deciared

et us examine the errors:

This error results from the first omitted hyphen in the definition of UNI
LINFON FEE in line 42; that is, the compiler doces not know how o handle what it
thinks are two data names in a row {(UN] and UNION) and hence the error. in this
case, the compiler has found a S-tevel error and ignores the rest ol the slatement.
The compiler does noi detect the missing hyphen between UNION and FEL. If only
the first hyphen is inserted, on the next recompilation, the compiler wili then
discover the second hyphen is missing. Sometimes, one syatax error hides others
so that the compiler is not able 1o detect them.

Correction: [nsert hyphens to read UNI-TINIGN-FEE.

Alevel number must follow a completed statement, but the period ending line
61 has been removed. In this instance, the compiler assumes that the period is
present, so no harm is done, but it is poor programiming to permit such E-level
diagnostics to remain. Moreover, there are situations in which a missing period can
be very damaging.

Correction: Insert a period at the end of line 61.

<o

This error in line 124 is a subtle one that typically sends the beginner for help.
STARY is intended as a paragraph naine, and paragraph names must begin in the A-
miargin, so what's the problem? The difficulty is that START is a reserved word and
cantiot be used as a paragraph name.

Correciion: Chonse anoiher name—ior example, START-THE-PROGRAM.

ol

S Dperand

The compiler was expecting a valid file name but didn't find one because line
144 references STUDNET-FILE rather than STUDENT-FILE. You know they are the
same, but the compiler does not and hence the error.

Correction: Change the file name to STUDENT-FILE in statement 144.

Chaptler 6 — Debugging

2048 A scope-deltmiter did not have & matabing verd and was dyscarced,

This error in line 146 will disappear with the correction to the previous READ
staterment.

Correction: None required beyond the correction to line 144.

12-8 Gperandg INS-ACTIVITY i nol declared

The error is subtle because the program file contains IND-ACTIVITY-FEE in
line 35, yet the data name IND-ACTIVITY appears on the listing and is flagged as an
error. The problem is that the COMPUTE statement in line 159 extends beyond
column 72, into columns 73-76, which are not interpreted by the compiler; that is,
the compiler reads IND-ACTIVITY rather than IND-ACTIVITY-FEE.

Correction: Reformat the COMPUTE statement so that IND-ACTIVITY-FEE appears
on the nextline.

i ars CTHLUODERTTS st apmdee
User-none STU-LDRIDITS nol urigue

This message appears four titnes in a row and is associated with lines 163, 174,
176, and 179. This error message implies that two or more data names are the same;
in this instance STU-CREDITS is defined in line 21 and again in line 81 {the latter
should be DET-CREDITS), and the compiler does not know which is which.
Correction: Restore uniqueness to the data name in line 81, by changing STU-
CREDITS to DET-CREDITS.

1245 Opevand UNL-UR(GN-TEE 15 nol decidred

The error message references UNI-UNION-FEE as an vndefined symbol and
is another example of how one error can cause several others. Hyphens were
omitted in the definition of UNI-UNION-FEE in line 42, and thus (as far as the
compiler is concerned) the data name UNI-UNION-FEE does not exist.

Correction: This diagnostic will disappear with the correction to line 42.
24-5 Operand UN:-SCHOLARSHIP sbould be mumeric

Arithmetic is permitted only on numeric data names, UNI-SCHOLARSHIP,
however, was defined in line 44 as an alphanumeric rather than a numeric data
name, and hence the error.

Correction: Change the PICTURE clause in line 44 from X{6) to 9(6).

.5 User-nare STU-OREDITY nol unigue

This error is identical to the earlier non-unique message from lines 163, 174,
175, 177, and 179. This error disguises another error. DET-CREDITS has not been
defined and should be flagged. In this case, the same correction fixes both problems.

Correction: This error will disappear after changing STU-CREDITS to DET-CREDITS
in line 81.

2530-5 Nov g racovd aame

A WRITE statement, such as the one in line 209, requires a record name rather
than a file name.

Correction: Change Iine 209 to WRITE PRINT-LINE instead of WRITE PRINT-FILE.

Errors

r

[

G ilaElioe

This error is identical to the one in line 194 and is due (o the omitted hyphens
in the definition of UNI-UNION-FEE.

Correction: None reguired beyond the previous correction to line 42,

These are all of the compilation errors detected by the Animator. 'This example
was prepared for an eairlier edition of the book and a different compiler. In making
the conversion to Personal COBOL we found two errors that the Animator did not
flag. The first was in line 163, where there is nio space between the “=" and PRICE-
PER-CREDIT. COBOL requires spaces before and after arithmetic operators, but
evidently the Animator tolerates this ervor. You should always make it a habit to put
spaces before and after arithmetic operators. Other compilers will not be as forgiving,

The second error the Animator did not flag was in line 187, The MOVE
statement moves the value of STU-SCHOLARSHIP (a four-positdon numeric feld)
to IND-SCHOLARSHIP (a three-position numeric field). The problem is that the
sending field is larger than the receiving field, and thus the lefimost (most significant)
digit may be truncated. This error could cause problems and shoutd have had an 1-
ievel or possibly W-level imessage.

on Gomptiaticn Brrovs

Compilation errors are a fact of life. Don't be discouraged if you have many
compilation errors in your first few attempts, and don't be surprised if you have
result in many error messages, and that several errors often can be made to disappear
with one correction. Before leaving the subject, it is worthwhile to review a list of
common errors and suggested ways to avoid them:

Nonunique dara names. 'This error occurs because the same data name is defined in
two different records or twice within the same record. For example, CREDITS inight
be specilied as an inpul field in STUDENT-FILE and again as output in a detaii {ine.
You can avoid the problem by prefixing every data name within a record by a
unigue prefix as shown below:

01 STUDENT-RECORD
05 STU-NAME
10 STU-LAST-NAME
10 STU-INITIALS
05 STU-CREDITS
05 STU-UKRTOR-MEMBER
05 STU-SCHOLARSHIP
05 STU-GPA

Omitted (or exira) periods. Fvery COBOL sentence should have a period. Omission
in the first three divisions ofien results in the compller’s assumpiion of a period
where one belongs, and such errors are generally harmiess. The effect is far more
serious in the Procedure Division, where missing and/or extra pericds affect the
generated logic.

Chapter 6 — Debugging

Omitted space before or after an arithmetic operator. The arithmetic operators, **, *,
/,+, and - ail require a space before and after (a typical error for BASIC programmers,
since the space is not required in that language).

Invalid picture clause for numeric entry. All data names used in arithmetic statements
must have numeric picture clauses consisting of 9's, an implied decimal point, and
an optional sign.

Conflicting picture and value clause. Numeric pictures must have numeric values
(no quotes); nonnumeric pictures must have nonnumeric values (enclosed in
quotes). Both entries below are invalid.

05 TOTAL PIC 9{3) VALUE '123'.
05 TITLE PIC X{3} VALUE 123.

Inadvertent use of COBOL reserved words. COBGL has a list of some 300 reserved
words that can be used only in their designated sense; any other use results in
one or several diagnostics. Some reserved words are obvious, for example,
WORKING-STORAGE, IDENTIFICATION, ENVIRONMENT, DATA, and
PRGCEDURE. Others—such as CGDE, DATE, START, and REPORT—are less
obvious. Instead of memorizing the list or continually referring to it, we suggest
this simple rule of thumb: Always use a hyphen in every data name you create.
This will work more than 99% of the time.

Conflicting RECORD CONTAINS clause and FD record description. This is a common
error, even for established programmers. It can stem from careless addition in that
the sum of the piciures in the FID does noi equal the number of characters in the
RECORD CONTAINS clause. It can also result from other errors within the Data
Division, for example, when an entry containing a PICTURE clause is flagged.
(Remember that if an E-level diagnostic occurs, that entry will be ignored, and the
count is thrown off.)

Receiving field 100 small to accommodate sending field. This is an extremely common
error, often associated with edited piciures (editing is discussed in Chapter 7).
Consider the entries:

05 PRINT-TOTAL-PAY PIC $%,$8%.
05 WS-TOTAL-PAY PIC 9(5}.

MOVE WS~TOTAL-PAY TO PRINT-TOTAL-PAY.

The MOVE statement would generate the warning that the receiving field may be
too small to accommodate the sending field. The greatest possible value for WS-
TOTAL-PAY is 99,999; the largest possible value that could be printed by PRINT-
TOTAL-PAY is $9,999. Even though the picture for the print field contains five §'s,
one $ must always be printed along with the numeric characters, hence the warning.

Omitted (or extra) hyphens in a data name. This is a careless error, but one that
occurs too often. If, for example, we define PRINT-TOTAL-PAY in the Data Division
and then reference PRINT TOTAL-PAY in: the Proceduse Division, the compiler
catches the inconsistency, It doesn't state that a hyphen was omitied, but indicates
that PRINT and TOTAL-PAY are undefined.

A related error is the insertion of extra hyphens where they don’t belong, for
example, WORKING-STORAGE-SECTION or DATA-DIVISION.

Errors in Exeoution SRR e

Misspelled data names or reserved words. Too many COBOL students are poor
spellers. Sound strange? How do you speil environmenr? One or many errors can
result, depending on which word was spelled incorrectly.

Reading a record name or writing a file name. The COBOL rule is very simple—read
a file and write a record—but many people get it confused. Consider:

FO STUDENT-FILE
BATA RECORD IS5 STUDENT-RECORD.

FD PRINT-FILE
DATA RECORD IS PRINT-RECORD.

(o) vz
READ STUDENT-FILE . . .
WRITE PRINT-RECORD . . .

READ STUDENT-RECORD . . .

WRITE PRINT-FILE . . .
Going past coliomn 72, This error can cause any of the preceding errors as well as a
host of others. A COBOL statement must end in column 72 or before; columns 73~
86 are left blank or used for program identification. (The 72-column restriction does
not apply to data.)

After a program has been successfully compiled, it can proceed to execution, and
therein lies the strength and weakness of the computer. The primary attractiveness
of the machine is its ability to perform its task quickly; its weakness stems from the
fact that it does exactly what it has been instructed 1o do. The machine cannot think
for itself; the programmer must think for the machine. If you were to inadvertenily
instruct the computer to compute tuition by charging $20 instead of $200 per credit,
then that is what it would do.
To give you an idea of what can happen, we have deliberately altered the
- original tuition billing program of Chapter 5 and created a new program, shown in
Figure 6.3. Incorporated into this program are two types of errors: run time errors
and logic errors. Run time errors prevent the program from carrying out its task
even though the program compiled properly. Logic errors do not stop the program,
but they cause invalid output from the program.

Tuition Billing Program with Execution Errors

FDENTIFICATION DIVISION.
PROGRAM-E[}. TULTBEXL,
AUTHOR. CAROL VAZQUEZ VILLAR.

FNVIROMMENT DIVISION.
IKPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTROG\TULTIION.DAT’
ORGANTZATION IS LINE SEQUENTIAL.
SELECT PRINT-FILE

[re e e BRI - IS I "I L I

[
=

file://'A:/CHAPTR06/TUITII0N.DAT

(continued)

ASSIGN TO PRINTER.

DATA DIVISION.

FILE SECTION.

FO STUDENT-FILE
RECORD CONTAINS 27 CHARACTERS.

01 STUDENT-RECGRD.

05

o PRI

STU-NAME.

10 STU-LAST-NAME
10 STU-INITIALS
STU-CREDLTS
STU-UNION-MEMBER
STU-SCHOLARSHIP
STY-GPA

AT 1
Eh Bl -

PIC X(15).
PIC XX.
PIC 9(2).
PIC X.

PIC 9{4).

L PIC 999. 1

RECORD CONTAINS 132 CHARACTERS.
01 PRINT-LIKE

WORKING-STORAGE SECTION.
01 DATA-REMAINS-SWITCH

05
05
05
05
05

01 INDIVIDUAL-CALCULATIONS.

IND-TUTTION
IND-ACTIVITY-FEE
IND-UNION-FEE
IND-SCHOLARSHIP
IND-BILL

01 UNIVERSITY-TOTALS.

05
05
05
05
05

UNI-TUITION
UNT-UNTON-FEE
UNI-ACTIVITY-FEE
UNE-SCHOLARSHIP
UNI-IND-BILL

01 CONSTANTS-AND-RATES.

05
05
05

PRICE~-PER-CREDIT
UNION-FEE
ACTIVITY-FEES.

10 1ST-ACTIVITY-FEE
10 1ST-CREDIT-LIMIT
16 ZND-ACTIVITY-FEE
10 ZND-CREDIT-1LIMIT
10 3RD-ACTIVITY-FEE

PIC X(132)

PIC X(2)

PIC 9(4)
PIC 9(2)
PIC 9(2)
PIC 9(4)
PIC 9(6)

PIC 9(6)
PIC 9(4)}
PIC 9(4)
PIC 9(6)
PIC 9{6}

PIC 9(3)
PIC 9(2)

PIC 99

VALUE

VALUE
YALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE

VYALUE
VALUE

VALUE
VALUE
YALUE
VALUE
VALUE

SPACES.,

ZEROS.
ZEROS.
ZEROS.
ZEROS.
ZERQOS.

ZEROS.
ZEROS.,
ZERDS.
ZEROS.
ZEROS.

200.
25.

Chapter 6 —

Oebugging

Errors in Execultion

(continued)
56 05 MINIMUM-SCHOLAR-GPA PIC 9¥9 VALUE 2.5.
57
58 01 HEADING-~LINE.
59 05 FILLER PIC X VALUE SPACES.
60 05 FILLER PIC X{12} VALUE 'STUDENT NAME'.
61 05 FILLER PIC X{10) VALUE SPACES. i
62 05 FILLER PIC X(7) VALUE 'CREDITS'. :
63 05 FILLER PIC X(2) VALUE SPACES. :
64 05 FILLER PIC X(7) VALUE 'TUITION'. ?
65 05 FILLER PIC X{(2) VALUE SPACES. |
66 05 FILLER PIC X{Y) VALUE 'UNION FEE'. |
67 05 FILLER PIC X(2) VALUE SPACES. §
68 05 FILLER PIC X(7) VALUE *ACT FEE'. %
69 05 FILLER PIC X{2} VALUE SPACES. ’
70 05 FILLER PIC X(11) VALUE *SCHOLARSHIP'. ;
71 05 FILLER PIC X(2) VALUE SPACES. ;
72 05 FILLER PIC X{10} VALUE 'TOTAL BILL'.
73 05 FILLER PIC X(48) VALUE SPACES. ;
74 %
75 01 DETAIL-LINE.
76 05 FILLER PIC X YALUE SPACES.
77 05 DET-LAST-NAME PIC X(15).
78 Us FILLER PIC X{2) VALUE SPACES.
79 05 DET-INITIALS PIC X(2).
80 05 FILLER PIC X(5) VALUE SPACES.
81 05 DET-CREDITS PIC 9(2).
82 05 FILLER PIC X(6) VALUE SPACES.
83 05 DET-TUITION PIC 9(6). -
84 05 FILLER PIC X(7) VALUE SPACES. /
85 05 DET-UNION-FEE PIC 9(3). f
86 05 FILLER PIC X(6) VALUE SPACES.
87 05 DET-ACTIVITY-FEE PIC 9(3).
88 05 FILLER PIC X(8) VALUE SPACES.
89 05 DET-SCHOLARSHIP PIC 9(5).
90 05 FILLER PIC X(6} VALUE SPACES.
91 05 DET-IND-BILL PIC 9(6).
92 05 FILLER PIC X(49) VALUE SPACES.
93
94 01 DASH-LINE.
95 05 FILLER PIC X{31) VALUE SPACES.
96 05 FILLER PIC X{(8) VALUE ALL ‘-'. f
97 05 FILLER PIC X(2) VALUF SPACES.
98 05 FILLER PIC X(8) VALUE ALL '-'. g
99 05 FILLER PIC X{2) VALUE SPACES. 5

100 05 FILLER PIC X{7) VALUE ALL '-'.

T e g HUN
g GG

{continued)

Chapter 6 —

Debugging

| N RYIRN

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
144
141
142
143
144
145

05 FILLER PIC X(86)
05 FILLER PIC X(7)
05 FILLER PIC X(5)
05 FILLER PIC X(7)
05 FILLER PIC %(49})

01 TOTAL-LINE.

05 FILLER PIC X(8)
05 FILLER PIC X{17)
VALUE 'UNIVERSITY TOQTALS'.
05 FILLER PIC X(8)
05 TOT-TUITION PIC 9(6).
05 FILLER PIC X(6)
05 TOT-UNION-FEE PIC 9{4).
05 FILLER PIC X{5)
(65 TOT-ACTIVITY-FEE PIC 9{4).
05 FILLER PIC X(7}
05 TOT-SCHOLARSHIP PIC 9(6).
G5 FILLER PIC %(6}
05 TOT-IND-BILL PIC 9(6).
05 FILLER PIC X(49)

PRGCEDURE DIVISION,
PREPARE-TUITION-REPORT,
OPEN INPUT STUDENT-FILE
QUTPUT PRINT-FILE.
PERFORM WRITE-HEADING-LINE.
PERFORM READ-STUDENT-FILE.
PERFORM PROCESS-STUDENT-RECORD

VALUE
VALLE
VALUE
VALUE
VALUE

VALUE

VALUE

YALUE

VALUE

VALUE

VALUE

VALUE

UNTIL DATA-REMAINS-SWITCH = 'NO'.

PERFORM WRITE-UNEVERSITY-TOTALS.
CLOSE STUDENT-FILE

PRINT-FILE.
STOP RUN.

WRITE-HEADING-LINE.
MOVE HEADING-LINE TO PRINT-LINE.
WRITE PRINT-LINE
AFTER ADVANCING PAGE.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LENE,

READ-STUDENT-FILE.
READ STUDENT-FILE

SPACES.

ALL ‘-,

SPACES.

ALL '-'.

SPACES.

SPACES.

SPACES.

SPACES,

SPACES.

SPACES.

SPACES.

SPACES.

AT END MOVE 'NO' TO DATA-REMAINS-SWITCH

Errors in Exegcution

Figure 6.3 (continued)

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
L 166
Y167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

END-READ.

PROCESS-STUDENT-RECORD. T

| PERFORM READ-STUDENT-FILE. ™
PERFORM COMPUTE-INDIVIDUAL-BILL.
PERFORM INCREMENT~UNIVERSITY-TOTALS
PERFORM WRITE-DETAIL-LINE.

COMPUTE-INDIVIDUAL-BELL.
PERFORM COMPUTE-TUITION.
PERFORM COMPUTE-UNION-FEE.
PERFORM COMPUTE-ACTIVETY-FEE.
PERFORM COMPUTE-SCHOLARSHIP.
COMPUTE TIND-BILL = IND-TUITION + IND-UNION-FEE ¢
IND-ACTIVITY-FEE - IND-SCHOLARSHIP.

COMPUTE-TUITION.

COMPUTE IND-VUITION = PRICE-PER-CREDIT * STU-CREDITS.

COMPUTE-UNION-FEE.
CTF STU-UNION-MEMBER = 'Y _
. MOVE ZERO TGO IND-UNION-FEE : J‘,f"“w-
;; ELSE ‘

: MOVE UNION-FEE TO INDMUNION~FEE;
CENG-IF. o

COMPUTE-ACTIVITY-FEE.
EVALUATE TRUE
WHEN STU-CREDITS <= 1ST-CREDIT-LIMIT
MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE
WHEN STU-CREDITS = 1ST-CREDIT-LIMIT
ANDH STU-CREDITS <= 2ND-CREDIT-LIMIT
MOVE 2ND-ACTIVITY-FEL TO IND-ACTIVITY-FEE
WHEN STU-CREDITS > 2ZND-CREDIT-LIMIT
MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE
WHEN OTRER
DISPLAY 'INVALID CREDITS FOR: ' STU-NAME
END-EVALUATE .

COMPUTE-SCHOLARSHIP,
IF S5TU-GPA > MINIMUM-SCHOLAR-GPA
MOVE STU-SCHOLARSHIP TGO IND-SCHOLARSHIP
ELSE
MOVE ZERQ TO IND-SCHOLARSHIP

Chapter 6 — Debugging

Fiagure 8.3 (continued)

© 190 END-IF.
191
LY INCREMENT-UNIVERSITY-TOTALS.
C193 | ADD IND-TUITION TO UNI-TUITION. e .
194 | ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE. .-~ ' B
L 195 {ADD IND-SCHOLARSHIP TO UNI-SCHOLARSHIP.
L 196 |ADD IND-BILL T UNI-IND-BILL.
o197
;198 WRITE-DETAIL-LINE,
© 199 MOVE STU-LAST-NAME TO DET-LAST-NAME.
© 200 MOVE STU-INITIALS YO OET~INITIALS.
[20t MOVE STU-CREDITS TO DET-CREDITS.
202 MOVE IND-TUITION TO DET-TUITION.
[203 MOVE IND-UNION-FEE TO DET-UNION-FEE.
204 MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE.
205 MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP,
206 MOVE IND-BILL TO DET-IND-BILL.
207 MOVE DETAIL-LINE TO PRINT-LINE.
20 WRITE PRINT-LINE ;
209 AFTER ADVANCING 1 LINE. ?
210 :
o2l WRITE-UNIVERSETY~TOTALS. ;
3V MOVE DASH-LINE TG PRINT-LINE. {
213 WRITE PRINT-LINE.
214 MOVE UNI-TUITION TO TOT-TUITION.
215 MOVE UNI-UNION-FEE TQ TOT-UNION-FEE.
216 MOVE UNI-ACTIVITY-FEE TO TOT-ACTIVITY-FEE.
217 _MOVE UNI-SCHOLARSHIP TO TOT-SCHOLARSHIP.
218 | MOVE IND-BILL TO TOT-IND-BILL. -
219 MOVE TOTAL-LINE TO PRINT-LINE. , g
220 WRITE PRINT-LINE e e e e :
221 AFTER ADVANCING 1 LINE. ;

Input/Qutput operations occur throughout the execution of a COBOL program and
consequently are a source of frequent run-time errors. The window shown in
Figure 6.4a represents one of the most common types of errors—attempting to read
from a file that doesn't exist.

After we click on QK, the Animator shows us the line where the error was
detected, as in Figure 6.4b. The OPEN staternent relates to the SELECT ... ASSIGN
statements in the Environment Division. The COBOL SELECT statement ties a
programmer-chosen file name to an implementor name. In Windows-based COBOL
compilers the ASSIGN clause allows the definition of a file name. The combination
of SELECT and ASSIGN associates a COBOL file, such as STUDENT-FILE, with a file
cn disk such as TUITION.BOT in Figure 6.4c, line 8.

The problem s that TUITION.DOT does not exist; look carefully at the
properties of TUITION in Figure 6.4d. The file extension is DAT rather than DOT. In
other words, the COBOL program is attempting to read from a file that isn’t there,
an impaossible situation for the program that leads to an execution or run time
systern (RTS) error.

Frrors in Exegcution

48 File Status EBrrors

The Animator is very picky about file names. For example, even if you spell
the name correctly but do not correctly specily the path, the Animator may not be
able 1o find the file. If the program specifies only the name and extension, but the
actual file is in a working directory other than that expected by the Animator, the
program will not he able to find the file. Appendix B shows you how to make sure
that the Animator knows where to look for files.

Chapter 6 — Debugging

Anoiher Bun Tiawg Srvow

After correcting the file name, we recompiled the program and ran it again, this
time with the results in Figure 6.5. Figure 6.5a shows another common RTS error,
“Illegal Character in Numeric Field.” This error almost always comes from having
spaces in a numeric field. One cause of thase spaces is when the program reads a
data file that actually has spaces in the field. In other words, if the fieid has a
PICTURE of 9(5} and the actual contents are “123", the program will fail if it tries to
use this field in 2 computation. This problem is a data problem rather than a
program problem. When you create test data, be sure to type in leading zeros for
any numeric fields. In this case the field should have been “00123".

A second reason for spaces in a numeric field is when the program attempts to
read beyond the end of a file. The incorrect placement of the READ in line 149 of
Figure 6.3 causes this condition. Figure 6.5b shows the line where the error was
detected. We clicked on each data name in the statement, and the Animator
showed us the current contents of the field. STU-CREDITS contains only spaces
and caused the error. in this case, when the program read beyond the end of the
file, COBOL inserted spaces into STUDENT-RECORD (iine 17), including STU-
CREDITS. To correct the problem we restored the READ to the end of PROCESS-
STUDENT-RECORD, recompiled the program, and reran it. This action corrects
the run-time errors, but there are still logic errors to deal with,

Figues 8.5 lllegal Character Run Time Error

Ilegal character in numeric field {Error 163)

A3

Hun tme siror e

£

-FUITICN.
CEDET O R THTTLOR

1F STU-VIN]OH-NEMBRE:
MOUE ZERG 10

ELEE
MOUE HNIGN-FH
ERp-IF.

EURLUATE THSE
WHEN STU-CRE iT

MULE LST-ACTIYITY-FEE T IWB-ACT
Wit STU-CHEDITS > {ST-CREDIT-LIMIT

rors

in

Execution

O
Rt

There are several subtle errors in Figure 6.6
1. The university total for union fees is zero rather than a computed amount.

2. The suin of the individual fills in the total line appears as 850 (the amount for
the last record), rather than a running total of 24550.

3. The union fees are reversed for each student. For example, James and Baker
are charged $25 when they should be charged nothing; conversely, Part-
Timer and Jones are charged nothing when their fee is $25.

4. James was erroneously awarded a scholarship of $500; James, however, does
not qualify because his average is below 2.5.

We emphasize that these logic errors are noi contrived but are typical of
students and beginning programmers. Even the accomplished practitioner can be
guilty of similar errors when rushed or careless. Realize also that logic errors occur
without fanfare. There are no compiler diagnostics or RIS error messages to warn
of impending trouble. The program has compiled cleanly and runs smoothly to the
end; there is nothing to indicate a problem.

The errors in Figure 6.3 are errors in execution, rather than in compilation.
The prograrn compiled cleanly because it is synfactically correct, but it executed
mproperly because it is logically incorrect. Nevertheless, the program did precisely
what it was instructed to do, which, unforiunately, is not what the programmer
wanted it to do. It is necessary, therefore, to find the source of each logic error, as
discussed below.

1. The torals fur the university are computed in the paragraph INCREMENT-
UNIVERSITY-TOTALS {lines 192-196), in which the individual amounts for
the student being processed are added to the running university totals. Note,
however, that the ADD statement for UNI-UNION-FEE is conspicuously
absent, and hence the value of UNI-UNION-FEE remains unchanged
throughout the program.

2. UNI-IND-BILL is defined in line 45 and correctly incremented for each
record in line 196; so far, so good. However, when the total line is built in line
218, IND-BILL rather than UNI-IND-BILL is moved to TOT-IND-BILL,
causing the individual last bill (for Kerbel) to be printed as the total.

3. IND-UNION-FEE is calculated in a simple IF statement in lines 166-170, in
which the IF and ELSE clauses are reversed; that is, the union fee is $25 for
students who belong to the union as indicated by a Y in the appropriate
incoming field.

4. The definition STU-GPA in line 24 incorrectly omits the implied decimal
point in the PLUTURE clause. Hence all incoming averages will be
interpreted as ten times their true value (i.e., 2.5 will be stored as 25). Thus,

i ctverdoarito wath

all students will have an average greater than 2.5, and hence all students with
potential scholarships will receive the award.

Chapter 6 — Dabugying

wre @.8 Tuition Billing Report Comoarisons-——Invalid and Valid

STUDENT NAME CREDITS TUITION UNION FEE -ACT FEE SCHOLARSHIP TOTAL BILL &
SMITH JB 15 003000 003075 L
JAMES HR 15 003000 002600
BAKER SR 09 501800 081375
PART-TIMER BR03 000600 000625
JONES L 15 903000 603075
HEAVYWORKER H 18 003600 003700
LEE BL 18 003600 903700
| CLARK)& 06 001200 001250
| GROSSMAN SE 07 (01400 001475
| FRANKLL LF 10 002000 002075
| BENWAY 1 03 000600 000400
i KERBEL NB 44 000800 000850 .. o
: PO Tealis eonisnl
UNTVERSITY TOVALS 024600 000850 f-
[STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL §
I :
. SMITH JB 15 003000 025 075 00000 003100 |
JAMES HR 15 £03000 000 075 00000 003075 1
BAKER SR 09 £01800 000 050 00500 £01350
. PART-TIMER JR 03 000600 625 025 00000 000650
L JONES PL 15 003000 025 075 00600 603100 :
| HEAVYWORKER HM 18 083660 090 075 00000 003675 g
| LEE BL 18 003600 000 075 00009 003675 %
P CLARK o 06 001206 000 025 00000 001225 E
| GROSSMAN SE 07 001400 000 050 00000 001450 §
| FRANKEL LF 10 002000 000 050 00000 002050
L BENWAY 7 03 000600 000 025 00250 000375
© KERBEL NB 0% 000800 000 025 00000 000825
UNIVERSITY TOTALS 024600 0075 0625 000750 024550

(i Watia Cuinat Orormn Ohapter 5

i

It was easy to find the execution errors just discussed because we created them in
the first place, and hence we knew exactly where to look. In practice, however, itis noi so
easy. Fortunately, the Personal COBOL Animator provides some powerful tools to help

5 for

Debuggiag

with debugging programs. Appendix A gives an extended discussien of the Animator
aind even hias a shori debuiggiing tatoiial. However, we cai provide a few tips heie as
weil.

1. Step through the program using the Waich Bution. This button shows the
contents of each field in the current statement.

2. Use breakpoints to stop the program at critical junctures in the program. By
using breakpoints, you can run the program at full speed until the
breakpoint is encountered and then step through the questionable code.

3. To save paper, write your output to the screen rather than the printer. When
you are actually ready to print the report, a simple change to the ASSIGN will
accomplish the task. For example:

Tao print to screen: SELECT PRINT-FILE ASSIGN TO PRINTER *CON’".
To print to printer: SELECT PRINT-FILE ASSIGN TO PRINTER.

4. Double-clicking on any data name will bring up the current value of the field,

whether it is in the current execution line or not.

w

Using the Find option in the Edit Menu will highlight all occurrences of a
data name in the program.

There are many other features in the Animator to help with debugging, and as
o gain proficiency in programming you will see how to use them.

LISPLAY Stalsment

it is often heipfui to display intermediate resuits of a program as the program is
being executed. One way to accomplish this is through the insertion of DISPLAY
statements at strategic points in the program. The statement enables you (o print
the value of one or more data names and/or one or more literals without having to
format a record description. Consider:

identifier-1] | jidentifier-2
DISPLAY { - _ C
T {hiteral-l I Titeral-2

The DISPLAY statement produces the contents of each item listed in the order
shown. For example,

1. DISPLAY STUDENT-RECORD.

2. DISPLAY ‘Record being processed: " STUDENT-RECORD.

3. DISPLAY ‘COMPUTE-TUITION paragraph is entered’

4. DISPLAY 'Student data: * STU-NAME STU-CREDITS.

Examiples one and two both display the value of the data name STUDENT-
RECORD; the second example, however, precedes the data name with a literal to
facilitate interpretation of the output. Example three displays just a literal bt
could be used (in conjunction with similar DISPLAY statements in other

paragraphs) to show the flow of program execution. Example four displays a literal
and two data names.

Chapter 6 — [DDebugging

Although it is reasonable to expect errors, the progranuner is also expecled
{reasonabiy) to find and correct them. Until recently, error detection and correction
was a lonely activity. A programmer was encouraged to desk check—that is, read
and reread the code-—in an attemp! to discern logical errors before they occurred,
Desk checking is still an important activity, but it is frequently supplemented by a
newer technique, the structured walkthrough.

The walkthrough brings the evaluation inte the open. it requires a programmer
to have his or her work reviewed formally and periodically by a peer group. The
theory is simple—a programmer is too close to his or her work to see potential
problems adequately and evaluate them objectively, The purpose of the walkthrough
is 1o ensure that all specifications are met, and that the logic and its COBOL
inplementation are correct.

The earlier an error is found, the easier i1 is to cofrect and thus the single most
important objective of a walkthrough is early error derection. Walkthroughs ocour at
several stages during a project, beginning in the analysis phase, where the purpose
is to ensure that the systems analyst has understood the user's requirements.
Walkthroughs occur again during the design phase, afier the programmer has
developed a hierarchy chart and/or associated pseudocode. Finally, walkthroughs
occur during the hmplementation phase, during which the programmer presents
actual code prior to testing.

Walkthroughs are scheduled by the person being reviewed, who aiso selects
the reviewers. The programmer distributes copies of the waork (for example, a
hierarchy chart, pseudocode, or a COBOL program) prior 1o the session. Reviewers
are supposed to study the material in advance so that they can discuss it intelligently.
At the walkthrough iiself, the programiner presents the material ehjectively,
concisely, and dispassionately. He or she should encourage discussion and be
genuinely glad when errors are discovered.

One of the reviewers should function as a moderator to keep the discussion
on track. Another should act as a secretary and mainiain an action list of problems
uncovered during the session. Al the end of the walkthrough the action list is given
to the programuner, who in turn is expected to correct the errors and notify attendees
accordingly. The objective of the walkthrough is to find errors, not to correct them.
The latter is accompiished by the programmer upon receipt of the action list.

The preceding discussion may read well in theory, but programmers often
dislike the walkthrough concept. The probable reason is that they dislike having
their work reviewed and regard criticism of code as a personal affront, intended or
otherwise. This artitude is natural and stems from years of working as individuals,

In addition, walkthroughs can and have become unpleasant and ego-deflating
experiences. "Structured walkover” and “stomp through” are terms that have been
applied to less-than-successful sessions. Only if the atmosphere is kept open and
nondefensive, only it the discussion is restricted to major problems rather than
trivial errors, and only if personality clashes are avoided can the walkthrough be an
effective technigue. To have any chance of success, programmers who function as
both reviewer and reviewee rnust adhere to the foliowing guidelines:

1. The program, and not the programmer, is reviewed. Structured walkthroughs
are intended to find programming problemns; they will not be used by
management as an evaluation tool. No one should keep count of how many

The Struciured Walkthicugh

errors are found in an individual's work or how many errors one finds in
someone else’s. [tis quite logical, therefore, to exclude the project manager—
that is, the individual in charge of salaries and prometions—-from review
sessions.

2. Emphasis is on error detection, pot correction. [tis assumed that the individual
being reviewed will take the necessary corrective action. Reviewers should not
harp on errors by discussing how to correct themy; indeed, no corrections
whatever are made during a walkthrough.

3. Everyone, froni senior analyst to frainee, has his or her work reviewed. This
avoids singling out an individual and further removes any stigina from having
nne's work reviewed. 1t also promaotes the give-and-rake atmosphere that is so
vital to making the concept work.

4. A list of well-defined objectives for each sessiore showld be specificd in advance.
Adherence 1o this guideline keeps the discussion on traock and helps to
guarantee productive discussions. Another guideline is to impose a
predetermirted time Himit, from ball an hour to two hours. Walkthroughs will
eventually cease to he productive and degeneraste into a discussion of Tast
night’s ball game, the new manager, the latest ramor, or some ather “hot”
topic. The situarion should be anticipated and avoided, perhaps by scheduling
walkihrotghs an hour belore lunch. If all of the walkthrough's objectives have
not been et when the deadline is reached, schedule u second sussion.

-1

Participation must e encouraged and dewmanded from the revieers. A
walkthrough will indeed becoime a waste of time it no one has anvthing to say.
Let it be known in advance that each reviewer will be expected o make at least
fwo comuments, one positive and one negative. Alternatively, require each
reviewer 1o come (o the session with a list of at least three questions.

s

Painds {o Bemamber

Compitation errors occur in the translation of COBOL 1o machine language
and result from a violation of COBOL. syntax—for example, a misspelled
data name or an enlry in the wrong calumn.

Run time and execution errars develop after compilation has taken place,
and are caused by improper logic and/or improper COBOL implementation
of valid logic.

A program may compile cleanly and be logically correct. yet stilf fail o
execute if there are problems with the associated dala files, Bun time
errors will occur and generale RTS error messages (o help delermine the
cause of such data management errors.

Sometimes data file problems are not the fault of the program, but are from
the data file itself. The most commaon probiem occurs when a numaeric field
includes spaces rather than zeroes,

i

1Y

Chaptlter 6 — Debugging

The Animator provides many foois for debugging and can be quite helpful
in tracking both syntax and logic errors.

A structured walkthrough is an open evatuation of an individual's work by a
group of his or her peers, with the primary cbjective of detecting errors as
soon as possible in the development cycle.

Key Words and Concepis

Action list Execution error

Compilation error
Compiler option

File status codes
interactive debugger

Cross-reference listing Moderator
Debugging Run Time System
Desk checking Secretary

Early error deteciion

Structured walkthrough

COEGL Eiemeant

BISPLAY

10.

errors occur in the transiation of COBOL to machine language.

errors occur after a program has been successfully transiated to
machine language.

Incorrect translation of vaiid pseudocode into COBOL will most likely produce
errors.

Misspelling a reserved word will most likely produce a error.

If a program cleanly, it means only that the program has been
successiully transiated into machine language.

errors are accompanied by some type of error message, whereas
errors are frequently undetected by the computer.

The process of peer review is known as a

The errors that are detected during a are
entered on an which is maintained by the
secretary.

The emphasis in a structured waikthrough is on error . Not error

One suggestion for conducting successiul walkthroughs is to remember that the
, and not the ig reviewed.

Frobiems

i cause a program 1o stop
processing even though it is syntactically correct.

12, are helpful in detecting

crrors in execution that pertain 1o data managerment.

1. i a program compiles with no giagnostics, it must execute correcily.
2. o program compiles with warning diagnostics, execution will be suppressed,

3. It a program contains logicai errors but not syntactical errors, the compiler will print
appropriate warnings.

4. A COBOIL program is considerad data by the COBOL compiter.

5. An error in one COBOL stalement can cause etrors in saveral clher, anparently
unrelated . statements.

6. Thare are several different levels (of severity) of compilation enrorg
7. Paragragh names begin in the A margin.
8. Spaces are required betore and afier aritinmetic syrmbols.
9 Spaces are required before and after punctualion symbols.
16 A data name that appears in & COMPUTE stalement can be defined with a picture
of X's.
11, Data names may contain blanks.
12, The contents of colurnns 73- 80 are ignored by the compiler.
13 ina COBOL program cne reads a record name and wriles a file name.

14. The emphasis in a structured walkihrough is on error detection rather than error
correction.

15 Walkthroughs should be held for trainges only, as these are the individuals most
fkely to make mistakes.

18, Managers lypically do not attend walkihraughs.,
17. A walkthrough generally lakes a minimum of two hours,

18. Walkthroughs should be restricied to the coding phase of a project.

s

1. Has your work ever been the subject of a structured walkthrough? Was the
experience helpful or a waste of time, or worse? Are you locking forward to your
next walkthrough?

2. Do you agree with banning managers from walkthroughs? 1s it possible that the rale
of moderator in a walkthrough might best be filled by the project manager?

Chapter 6 -~

3. Do you agree with the authors’ suggestions for successiul walkthroughs? Are there

any guidelines you wish to add to the list? To remave from the list?

4. Identity the syntactical errors in the COBOL fragment in Figure 6.8.

5. ldentify the jogical errors in the COBOL fragment in Figure 6.9. (Assume there are

no cther READ statements in the program.)

6. The COBOL fragment in Figure 6.10a is faken from a program that compiled

cleanly but failed to execuie. Tne error message is in Figure 6.10b.

the problem

Explain

g.& COBOL Fragment for Problem 4

IDENTIFICATION DIVISION.
PROGRAM ID. ERRORS.

! ENVIRONMENT DIVISION.

i INPUT-QUTPUT SECTION.

. SELECT EMPLOYEE-FILE ASSIGN TG 'A:\CHAPTROG\EMP.DAT'
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.

FILE SECTION,

FD EMPLOYEE-FILE
RECORD CONTAINS 50 CHARACTERS
DATA RECORD 1S FMPLOYEE-RECORD,
EMPLOYEE-RECORD.

05 EMP-NAME PIC X{20).
05 EMP-NUMBER PIC X(9}.
05 FILLER PIC X(20}.
WORKING STORAGE SECTION.
10 END-OF-FILE-SWITCH PIC X(3) VALUE BLANKS.
Eigare 8.2 COBOL Fragment for Preblem 5

WORKING-STORAGE SECTION.
01 END-OF-FILE-SWITCH PIC X(3) VALUE 'YES'.

[PROCEDURE DIVISION.
MAINELINE .

; PERFORM PROCESS-RECORDS
UNTIL END-OF-FILE-SWITCH = 'YES'

PROCESS-RECORDS.
READ EMPLOYEE-FILE
AT END MOVE 'YES' TQ END-OF-FELE-SWITCH
END-READ.

Debugging

file://'A:/CHAPTR06/EMP.DAT'

Problems

COBOL Fragment for Problem 6

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTRGG\TUITION.DAT'
: ORGANIZATION IS LINE SEQUENTIAL.
SELECT PRINT-FILE

ASSIGN TO PRINTER.

PROCEDURE DIVISION.
PREPARE - SENTOR-REPORT .
READ STUDENT-FILE
AT END MOVE 'NO’ TO DATA-REMAINS-SWITCH
END-READ.
OPEN INPUT STUDENT-FILE
OUTPUT PRINT-FILE.
PERFORM WRITE-HEADING-LINE. :
PERFORM PROCESS-RECORDS ;
| UNTIL DATA-REMAINS-SWITCH = ‘NO'. i
; CLOSE STUDENT-FILE
j ' PRINT-FLLE.
STOP RUN.

|
i
f
|
!
g
:

i) BErior Messags

file://'A:/CHAPTR06/TUITI0N.DAT'

Overview
Editing
The Decimal Point
Zero Suppression
Dollar Signs
Commas
Asterisks for Chieck Protection
Insertion Characters
Synopsis
Signed Numbers
CR and D&
Flus and Minus Signs
ELANK WHEN ZERO Cilause

The Tuition Billing Program Revisited

Coding Standards

Data Division

Procedure Division

Both Divisions
Programming Tip: Avoid Literais
Programming Tip: Use Scope Terminators
A Well-Written Program
Summary
Fill-iry
True/False
Problems

g :-".'c};aptbr F e Editing and Coeding Standards

After reading this chapter you will be able to:
3 List the complete set of COBOL editing characters.

% Differentiate between a numeric field and a numeric-edited field; predict
the results when a numeric tisld is moved to a numeric-edited field.

Understand the difference between an implied decimal point and an actual
decimal point; state the role of each in editing.

Describe the rules for signed numbers and the editing characters +, -, CR,
and Di3.

Describe the rationale for coding standards that go beyond the syntactical
reguirements of COBOL.

The chapier introduces editing—the abjiity to dress up printed reports by inserting
doflar signs, decimal points, and so on, into numeric fields prior {o printing. The
chapter also intfroduces the concept of signed numbers and the use of CR and
B, or a plus and minus sign, 1o indicate positive or negative results. Alt of this
material is incorporated into the tuition billing program from Chapter 5.

The second half of the chapter develops the rationale for coding standards,
or requirements imposed by an installation to increase the readability (and
maintainability) ot COBOL pragrams. We present a series of typical standards
and show how they are incorporated into existing programs.

The importance of editing is best demonstrated by comparing outputs from two
programs. Figure 7.1a contains the original (unedited) output produced by the
tuition billing program of Chapter 5. Figure 7.1b contains edited output, produced
by a modified version of the program, which is presented later in the chapter. The
last line of Figure 7.1b displays a new student, Lucky One, whose scholarship grant
exceeds the total amount of his bill, producing a credit of $150. (Lucky One is not
shown in Figure 7.1a as the original program did not address signed numbers.) The
superiority of the edited output speaks for itself.

The editing characters of Table 7.1 enable the kind of output shown in
Figure 7.1h. Editing is achieved by incorporating these characters into the varicus
PICTURE clauses within a COBOL program.

The editing characters are not associated with the numeric fields used in
computations, as these fields may contain only digits, an implied decimal point,
and an optional sign. Additional data names, known as numeric-edited fields, are
necessary within the program, and it is the picture clauses for the latter that cantain
editing characters from Table 7.1. Tn other words, arithmetic is performed on numeric
fields, whose computed values are subsequently moved to numeric-edited fields,
and the latter are printed.

Editing

Figure 7.4 Comparison of Outputs

STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL
SMITH JB 15 003000 025 Q78 00600 003100
JAMES HR 15 003000 000 075 00000 003075
BAKER SR 09 001800 {oo 050 00506 (GG1350
PART-TIMER JR 03 005600 025 025 00000 000650
JONES PL 15 003000 025 075 90000 003100
HEAVYWORKER HM 18 (03600 a60 075 05000 003675
LEE BL 18 003600 IHY] 075 06000 003675
C1ARK JC 06 003200 000 025 G000 (001225
GROSSMAN SE 07 001440 006 050G 00600 001450
FRANKEL LF 10 002000 000 050 00660 002050
BEKWAY cY 03 000600 000 025 00250 000375
KERBEL NB 04 000800 000 025 000460 (00825

UNIVERSITY TOTALS 024600 0075 0625 Q00750 124550 |
{a) Without Editing

STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL i
SMITH JB 15 $3,000 $25 $75 $3.160
JAMES HR 15 $3,000 $75 $3,075
BAKER SR 9 $1,800 $50 $500 $1,350
PART-TIMER JR 3 $600 §25 $25 $650
JONES PL 15 $3.000 $25 $75 $3,100
HEAVYWORKER HM 18 $3,600 $75 $3,675
LEE BL 18 $3,600 $75 $3,675
CLARK 3 6 $1,200 325 $1,225
GROSSMAN SE 7 $1,400 §50 $1,450
FRANKEL LF 10 $2,000 $50 $2,050
BENWAY cT 3 $600 $25 $250 $375
KERBEL N4 $800 §25 B $825
["Lucky ONE FR 9 $1,800 $50 '$2000 $150CR |
UNIVERSITY TOTALS $26,400 // §75 3675 §2,750 $24,400
Fod

Student has buen added w0 1he origns: i1

fet

{a) With Editing

THABLE 7.4 Editing Characters

Actual decimal point B Blank

Z Zero suporession / Slash

$ Dotlar sign CR Credil characler
s Carrma DB Debit character
* Check orotection + Plus sign

0 Zero - Minus sign

Chapter 7 ~— Fditing and Cuding Standards

The relationship between numeric fields and nurneric-edited fields is Hlustrated
in Figure 7.2, which depicts the calculation of tuition as credits times the rate ($200
per credit). The incoming student record contains the field STU-CREDITS, with the
calculated result defined in Working-Storage as IND-TUITION. The two fields are
numeric, and do not contain any editing characters.

On the other hand, DETAIL-LINE contains two aumeric-edited fields (DET-
CREDITS and DET-TUITION), each of which holds one or more editing characters
from Table 7.1. Tt is not necessary for you to know the precise function of the various
editing characters at this time; you need only perceive the difference between
numeric and numeric-edited fields.

The calculations within Figure 7.2 are done with the numeric fields (IND-
TUTTION and STU-CREDITS}. Then, just pricr to printing, the values in the numeric
fields are moved to the cosresponding numeric-edited fields, which are printed.

Let us consider the various editing characters from Table 7.1, in turn.

The Decimal Polnt R

The actual decimal point is the most basic editing character. In reviewing this and
other examples, it is essential that you remember that any move of a numeric field to
a numeric-edited field maintains decimal alignment. Consider:

05 FIELD-A PIC 9v99.

05 FIELD-A-EDITED PIC 9.99.

FIELD-A is a numeric field, with two digits after an implied deciial point.
FIELD-A-EDITED is a numeric-edited field containing an actual decimal point. All
calculations are done using FIELD-A, which is moved to FIELD-A-EDITED prior 10
printing by means of the statement MOVE FIELD-A TO FIELD-A-EDITED. Thus:

is, FIELD-A-EDITED is a four-position field, whereas FIELD-A requires only three
positions.

Zevo Suppression SOOI

One of the simplest editing requirements is to eliminate high-order (insignificant)
zeros. For example, consider a numeric field defined with a PICTURE clause of 9(5),
but whose value is 00120; in other words the two high-order positions contain
insignificant zeros. It is likely that you would prefer the printed output to appear as
£20, rather than 00120, which is accomplished by the statement MOVE FIELD-B TO

FIELD-B-EDITED as shown:

05 FIELD-B PIC 9(5}).

05 FIELD-B~-EDITED PIC 727719

Hators move: |0 OT?TEMHO 171z 7 E zls [
_ T e e TS T

Affar axsourion ;050'1E : ; 1102100

Editing

Flgwrs 7.2 Numeric and Numeric-Edited Fields

FD STUDENT FILE

! .

01 STUDENT-RECORD.

L 05 STU-CREDITS__ PIC 99, . f

WORKING-STORAGE SECTION.

05 INO-TUITION PIC 9(a). . =

OL CONSTART-AND-RATES. = ! é
.05 PRICE-PER-CREDIT PIC 9(3)

01 DETAIL-LINE. §

e mem.
05 FILLER . PIC X(5) VALUE SPACES, . 7

(05 DET-TUITION . PIC $§8%,899.

PROCEDURE DIVISION. i

| | COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS 7

5 : SIZE ERROR DISPLAY ‘Tuition exceeds expected maximum' —— = =orie 27 i o ool s i il |
% _END-COMPUTE,

© OV STUCREDITS T0 DETZCREDITS, | . i i e
_MOVE IND-TUITION TO DET-TULTION.

Chapter 7 — Editing and Coding Standards

The editing character Z indicates zero suppression, and prevents the printing of
leading zeros. However, as scon as the first significant digit is reached (the 1 in this
example), all subsequent digits are printed. Note, too, that the picture for FIELD-B-
EDITED has a 9 as the low-order character, to print a zero, rather than blank out the
field entirely, in the event of a zerc value,

Collay Signs

The dollar sign is used as an editing character in one of two ways, either in a fixed or
floating position. A single dollar sign in the numeric-edited picture will always print
the dollar sign in the same (fixed) position. Consider the following data names with
the staternent MOVE FIELD-C TO FIELD-C-EDITED:

05 FIELD-C PIC 9(4).
05 FIELD-C-EDITED PIC $ZZ79.

FIELDE FAEL SRR i
[o]a]a]3] L%Id,é@&é
o T — ""’T—‘”T_
AT RS 0 I 0 4113 l

A floating dollar sign is obtained by using mu}{ip!e dollar signs in the edited
field. Consider the following data names in conjunction with the statement MOVE
FIELD-D TO FIELD-D-EDITED:

05 FIELD-D PIC 9(4).
05 FIELD-~D-EDRITED PIC 5%9,
3L 413
L [T |
lojol2)3] b 1$18]5]9]

Aftur srecuion. @EEZ—_EE l_j ‘T$ 2 3 s

A single (floating) dollar sign is printed before the first significant digit in the
edited field, with the leading zero digits, if any, replaced by blanks. In aother words,
the floating dollar sign has the same effect as zero suppression. Note, too, that the
receiving field must be at least one character longer than the sending field 1o
accommodate the dollar sign; otherwise, a compiler warning results.

Conuna

A comma used as an editing character causes a comma to be printed, provided a
significant digit appears to the left of the comma. The comma will be suppressed,
however, if it is preceded by leading zeros. Consider the following data names in
conjunction with the staternent MOVE FIELD-E TO FIELD-E-EDITED:

05 FIELD-E PIC 9(4).
08 FIELD-E-EDITED PIC $35,8%9.
FEELDE EFEEE A T B
Bt e Fals f“" I
Selorg imave: E_BJ?‘G—{—SI $ §$T‘$

e

HOBE 15§5

NP S
ATEE SXEDLIGEH,

The comma is printed in the indicated pesition. Suppose, however, that the
contents of the sending field are less than 1,000, and that the statement MOVE
FIELD-F TO FIELD-F-EDITED is executed in conjunction with the fields:

1iting

05 FIELD-F PIC 9(4).
05 FIELD-F-EDITED PIC $%.%%9.

The comma is suppressed because it was not preceded by a significant digit.
Observe also how the comima is used in conjunction with a floating dollar sign.

The asteriskis used as a fill character to avoid blanks between a fixed dollar sign and
the first significant digit as in $****87. Consider the following fields in conjunction
with the statement MOVE FIELD-G TO FIELD-G-EDITED:

05 FIELD-G PIC 9(5).
05 FIELD-G-EDITER PIC §** =xg,

Loor e

1, with astericks replacing leading

The dollar sign will print in its fixed positio a
s commaonly referred to as check

zeros. The use of the asterisk as a fill character
protection.

1
i

- i ey, &
i T e %

o e
B a

L

The slash, blank, and zero (/, B, and 0, respectively) are insertion characters,
meaning that they are printed exactly where they appear in an edited field. Consider
the following fields together with the statement MOVE FIELD-H TO FIELIY-H-
EDITED:

05 FIELD-H PIC 9(6}.
05 FIELD-H-EDITED PIC 99/99/99.

d may be
edited. Blanks and zeros may be inserted in similar fashion. Note, however, thai the
hyphen is not an insertion character and cannot, be used to place hyphens within a
sacial security number.

Table 7.2 provides an effective review of the editing characters covered so far. Each
entry in the table shows the result of a MOVE statement of a numeric source fieid to
a numeric-edited receiving field. All of the examples maintain decimal alignment as
required. (The p which appears in several examples indicates a space.)

Chapter 7 — Fditing and Coding Slandards

WALLE b
0678 Z(4)
0678 $9(4)
s 9(4) 0678 $2(4) $p678
4 9{4)vy99 123456 9(4).99 1234.56
: 9(4)v99 123456 $9(4).99 $1234.56
9(4)¥99 123456 $9,999.99 $1,234.56
9{4) 0008 $$,33%9 PP
9(a)y9 12345 9(4) 1234
i9(a)y9 12345 9(4).99 1234.50
i 9(5) Q0045 $rwennl $xxx45
B 9(9) 123456789 99989989999 12315456789
9(4) 1234 $3,$%$9.00 $1,234.00
9(6) 080594 94/99/99 08/05/94

9(6) 080594 79/99/99 §8,/05,/94

sTtete
nbers

Thus far we have considered only positive nuimbers, a rather unrealistic limitation.
Numeric fields with negative values require an S in their PICTURE clause to indicate
a signied field, that is, a field that may contain either positive or negative values. If
the sign (the 5 in the PICTURE clause) is omitted, the value of the data name will
always be converted to a posttive niumber, regardless of the result of the computation.
Consider:

05 FIELD-A PIC 599 YALUE -20.
05 FIELD-B PIC 99 VALUE 15.
05 FIELD-C PIC 599 VALUE -20.
05 FIELD-D PIC 99 VALUE 15.

ADD FIELD-B TO FIELD-A.
ADD FIELD-C TO FIELD-D.

Nummerically, the sum of -20 and +15 is -5, and there is no problem when the
result is stored in FIELD-A as in the first command. in the second command,
however, the sum is stored in FIELD-D (an unsigned field), and thus it will assume a
value of +5. Accordingly many programimers adopt the habit of always using signed
fields to avoid any difficulty. Signed numbers require additional editing characters.

o ane B

Financial statements use either the credit (CR) or debit (DB) character to indicate a
negative number. In other words, the representation of a negative number can be
either CR or DB, and depends entirely on the accounting system in use; some
systenis use CR, whereas others will use DB.

w

instance, R or DB appears only when the sending field is negative [examples (b)

NK WHEN ZERQO

Cltause

and (d)j. If the source tield is positive or zero, CR and/or 1IB are replaced by blanks.
The essential point is that COBOL treats CR and DB identically, and the
determination of which negative indicator to use depends on the accounting system.

CR and DB Editing Characters

Y Ak ETLRE EY &R
59(5) 98765 $$$,999CR $98,765
mo S9(5) —98765 $$%,999CR $98, 765CR
= 5$9(5) 98765 $$%.99908 $98,765
00 $9(5) —98765 $3%,999DB $95,7650B

Plus ano Misus Signs
b

Table 7.4 lustrates the use of plus and minus signs. The repetition of a (phus or
minus) sign within the edited PICTIIRE clause denotes a floating (plus or minus)
sign, which will appear in ihe printed field immediately to the left of the first
significent digii. A single (nius or minus) sign, however, indicates a fixed {plus o7
minus) sign, which prints in the indicated position.

Specification of a (fixed or floating) plus sign displays the sign of the edited
field il the number is positive, negative, or zero |examptes (a), (b), and (¢)}.
Specification of a minus sign, however, displays the sigm only when the edited

result is negative. The receiving field miist be al least one character longer than
the sending field to accommodate the sign; otherwise, a compiler warning results.

{ e F

i

Fioating Plus and Minus Sign

POTURE WhiES AT R ERRYED RESULY
$9(4) 1234 4 +1,234
59(4) 0123 o pp+123

T 59(4) -1234 SRR -1,234

4. 59(4) 1234 1,234

e 59(4) 0123 - Bip123

L S9(4) -1234 e -1,234
59(4) 1234 27,2719+ pl,234+
59{4) ~1234 27,779+ B1,234—

The BLANK WHEN ZERG clause produces a blank field when the associated numeric
value is zero, Although the saine effect can be achieved with certain editing strings,
such as 727777 or $$%%%, there are times when the clause is essential. A field with
dollars and cents—for example, $$$9.94, formatted to print a digit immediately to
the left of the decimal point-—will print $0.00. In similar fashion it might be desirable
to blank out a date field with PIC 79/78/79 if the values are unavailable. The
inclusion of BLANK WHEN ZERO at the end of the PICTURE clause in all three
instances will accommplish the desired result.

The Tuition

Chaptes 7 — FExtiting and Coding Standards

Billing Program
Revisited

We return once more to Figure 7.1, the example with which we began the chapter.
The earlier version of the tuition billing program in Chapter 5 did not include
editing characters, and so produced the output in Figure 7.1a. Now we incorporate
the material just presented into a revised version of the program to produce the
edifed output of Figure 7.1h.

The necessary changes are highlighted in Figure 7.3, which compares edited
and unedited PICTURE clauses. The changes affect only the detail (7.3a) and total

Figure 7.3 Edited versus Unedited PICTURE Clauses

45
G5
05
05
a5
05
4]
05
05
05
G5
05
05
a5
05
05
05

05
05

G5
05

01 DETAIL-LIRE.

FILLER
DET-LAST-NAME
FILLER
DET-INITIALS
FILLER
DET-CREDITS
FILLER
DET-TUITION
FILLER
DET-UNION-FLE
FILLER
DET-ACTIVITY-FEE
FILLER
DET-SCHOLARSHIP
FILLER
DET-IND-BILL
FILLER

01 TOTAL-LINE.

EMTER FIRLDS LHEEDETED FIELDS
PIC X VALUE SPACES. PIC X VALUE SPACES.
PIC X(15). PIC X{15).
PIC X{2) VALUE SPACES. PIC X{2) VALUE SPACES. i
PIC X(2). PIC X(2). i
PIC X(5) VALUE SPACES. PIC X(5) VALUE SPACES. !
PIC 79. PIC 9(2).
PIC X(8) VALUE SPACES. PIC X{B} VALUE SPACES.
PIC $335.$59. PIC 9(6).
PIC X{6) VALUE SPACES. PIC X(7) VALUE SPACES.
PIC $$$9 BLANK WHEN ZERD. PIC 9(3).
PIC X(5) VALUE SPACES. PIC X(6) VALUE SPACES.
PIC §5%9 BLANK WHEN ZERO. PIC 9(3).
PIC X(6) VALUE SPACES. PIC X(8) VALYUE SPACES. ;
PIC $$,$$$9 BLANK WHEN ZERO PIC 9(5).
PIC X(4) VALUE SPACES. PIC X(6) VALUE SPACES.
PIC $385,359CR, PIC 9(6).
PIC X(47) VALUE SPACES. PIC X{49) VALUE SPACES.

{a} Detatl Line

FILLER PIC %{8) VALUE SPACES. PIC X(8) VALUE SPACES. |
FILLER PIC X(17) PIC X(17) :
VALUE 'UNIVERSITY TOTALS'. VALUE "UNIVERSITY TOTALS'.

FILLER PIC X%(6) VALUE SPACES. PIC X(8) VYALUE SPACES.

TOT-TUXTION PIC $55%,549. PIC 9(6).

FILLER PIC X({2) VALBE SPACES. PIC X(6) VALUE SPACES.

TOT-UNION-FEE PIC $3§5,8%9. PIC G(4},

FILLER PIC X VALUE SPACES. PIC X(5) VALUE SPACES.
TOT-ACTIVITY-FEE PIC $555.8%9. PiC 9(4).

FILLER PIC %(5) VALUE SPACES. PIC X(7) VALUE SPACES.

TOT-5CHOLARSHIP PIC §54%,8%9. PIC 9(6).

FILLER PIC X(4} VALUE SPACES. PIC X{6) VALUE SPACES.

JOT-IND-BILL PIC $53%,539CR. PIC 9{6). :
FILLER PIC %{47) VALUE SPACES. PIC X{49) VALUE SPACES. {

{B} Yoial Line

yding Standards

(7.3b} lines. (jompmatious are made within the programn using the unedited

PICTURE clauses found in INDIVIDUAL-CALCULATIONS and UNIVERSITY-

TOTALS, then moved to edited PICTURE clauses found in DETAIL-LINE and
TOTAL-LINE, respectively.

All of the calculations and editing are accomplished as illustrated earlier in
Figure 7.2. The computed value of tuition, for example, is stored in the data name
IND-TEHTION with PIC 9(6), then moved to the edited field DET-TUITION with a
PIC: $$33,33%9 prior to printing,

Observe the presence of a CR within the PICTURE clauses for both DET-IND-
BILL and TOT-IND-BILL in Figures 7.3a and 7.3b, respectively. The CR is blanked
out when students owe moeney o the university, but appears when the student is
due a credit {Lucky One in Figure 7.1b). Note, too, the various BLANK WHEN ZER()
clauses throughout Figure 7.3, which produce the more appealing cdited output of
Figure 7.1b contrasted to the zeros in Figure 7.1a.

A good program is easily read and maintained by someone other than the author.
Indeed, continuing success in a cornmercial installation depends on someone other
than the author being able to maintain a program. Most installations impaose a set
of coding standards, such as those described here, which go beyond the
requirements of the COBOL compiler. These standards are optional for the student,
but typical of what is required in the real world.

The next several pages suggest a series of coding standards for you to use.
However, there are no ahsolute rruths—no right or wrong—insofar as programining
style is concerned. Different programmers develop slightly or even radically different
styles that are consistent with the rules of COBOL and with the programmer's
objective. The discussion that follows reflects the viewpoint of the authors and is
necessarily subjective.

We begin with suggestions for the Data Division.

Choose meaningfil names. Avoid taking the easyv way out with two- or three-
character data names. It is impossible for the maintenance programirner, or even
the original author, to determine the meaning of abbreviated data names. The
usual student response is that this adds unnecessarily to the burden of writer's
cramp. Initial coding, however, takes only 5-10% of the total time associated with a
program (maintenance, testing, and debugging take the vast majority), and the
modest increase in coding time is more than compensated by improvements in the
latter activities.

Prefix all data names within the same FD or 01 with twe or three characters unique to
the FD; for example, OM-LAST-NAME, OM-BIRTII-DATE. The utility of this
guideline becomes apparent in the Procedure Division if it is necessary to refer back
to the definition of a data name.

Begin all PICTURE clauses in the same column. Usually in columns 36-48, but the
choice is arbiteary. Do not be unduly disturbed if one or two entries stray from the
designated coliinn, because of long data names and/ or indentation of level numbers,

Choose one form of the PICTURE clause. Choose PIC, PIC IS, PICTURE, or
PICTURE IS and follow it consistentiy. PIC is the shoriest and is as good as any.

Chaptar 7 — CLditing and Coding Standards

The constant (literal} portion of a print line should be defined in Working-Storage, rather than moved to the print
ling in the Procedure Division. Consider the following:

MOVE 'STUDENT NAME SOC SEC NuM CREDITS TUITION

RS BT DET S TS B S U SORE T I DO SR L L .

i

: 01 HEADING-LINE.

§ 05 PIC %{12] VALUE 'STUDENT NAME'

f 05 PIC X(10) VALUE SPACES.
05 PIC X(11) VALUE 'SOC SEC NUM'.
05 PIC X{2} VALUE SPACES.
05 PIC X{7) VALUE 'CREDITS'. ;
05 PIC X(2) VALUE SPACES. :
05 PIC X(7} VALUE *TUITION'. ?
05 PIC X(3) VALUE SPACES.
05 PIC X(11) VALUE 'SCHOLARSHIP' .
05 PIC X(2) VALUE SPACES.
U5 PIC X(4) VALUE 'FEES’,

WRITE PRINT-LINE FROM HEADING-LINE.

The poor code illustrates continuation of a nonnumeric literal. The first line begins with an apostrophe
before STUDENT NAME and ends without a closing apostrophe in column 72, The continued line contains a
hyphen in column 7, and both a beginning and ending apostrophe.

The improved code may appear unnecessarily long in contrast to the poor code. However, it is-an
unwrilten Jaw that users will change column headings, and/or spacing at least twice before being satisfied.
Such changes are easily accommodated in the improved code but often tedious in the original solution.
Assume, for example, that four spaces are required between CREDITS and TUITION, rather than the two that
are there now. Modification of the poor code requires that both lines in the MOVE statement be completely
rewritten, whereas only a PICTURE clause changes in the improved version. Note, too, that the improved code
can be rewritten to reduce the number of FILLER entries, and also to eliminate the word FILLER, as

shown below.
01 HEADING-LINE.

05 PIC X{22) VALUE 'STUDENT NAME'.
; 05 PIC X(13) VALUE 'SOC SEC NUM'.
; 05 PIC X(9} VALUE ‘CREDITS'.
! 05 PIC X(10) VALUE 'TUITION'.

05 PIC X(13) VALUE ' SCHOLARSHIP®,

05 PIC X(4) VALUE ‘FEES'.

in this example each VALUE clause contains fewer characters than the associated PICTURE clause.
Accordingly, alignment is from left to right, with the extra (low-order) positions padded with blanks,

Lngdeni successive fevel munbers nder a 01 consistently. For exanple, two or four
columns. Leave gaps between adjacent levels (for exampie, U1, 05, 10, 15 o7 Ui, 04,
08, 12) instead of using consecutive numbers; that is, avoid 01, 02, 03 (as discussed
in Chapter 4). Use the same level nurebers from FD to FD to maintain consistency
within a program.

Avoid 77-level entries. 77-level entries have notbeen mentloned in the text, because
curTent programming practice argues for thelr elimination. Neveriheless, ihey are
apt to be found in existing programs and are discussed now for that reason.

A 77-level entry was originally defined as an independent data name wih no
relationship to any other data name in a program. (77-level entries are coded as
elementary items in Working-Storage.) However, few if any data names are truly
indepeadent, and 77-level entries should be aveided for that reason. The authors,
for example, have gotien along quite nicely by grouping related entries under a
corumon 01 duescription. Consider the following:

PO Revk iYL

77 TUITION PIC 9{4)v99 YALUE ZERGS.
77 ACTIVITY-FEE PIC 9(2) VALUE ZERGS.
77 UNIGN-FEE PIC 9(2) VALLE ZERDS.

Dpspsuprsy aeh 0 osrtane
RIHERS G w B e N LIt

01 INDIVIDUAL-CAECULATIONS.

05 IND-TUITION PIC &(4)v33 YALLUE ZEROS.
05 IND-ACTIVITY-FEE PEC 9(2) VALUE ZERDS.
05 IND-UNION-FEE PEC 9{2} VALUE ZERDS.

The improved code also uses a commeon prefix, which reflects the similacities
amang the reiated items. There is simply 1o reason to use the older approach of
independent data items.

Frocosture Sivision

Develop functional paragraphs. Every statement in a puragraph should be related
to the overall function of that paragraph, which in wirn should be reflected in the
paragraph name. A well-chosen name wiil consist of a verb, one or two adjectives,
and an abject; for exampie, READ-STUDENT-FILE, WRITE-HEADING-LINE, and
s0 on. If a paragraph cannot be named in this mancer, it is probably not functional,
and consideration shouid be given to redesigning the program and/or paragraph.

Sequence paragraph names. Programmers and managers alike aceept the utility of
this guideling to locate paragraphs in the Procedure Ivision quickly. However,
there is considerable disagreement on just what sequencing scherne to use: ail
numbers, a single letter followed by numbers, and so on. We make no strong
argument for one scheme over another, other than to insist that a consistent
sequencing rule be foliowed, Some exampies are ADIG-WRITE-NEW-MASTER-
RECOR and 100-PRODUCE-ERROR-REPORT.

Avoid conumas. The compiler treais a comma as noise; it has no effect on the
generated object code. Many programimers have acquired the habit of inserting
commas to increase readability. Though this works rather well with prose, it can
have just the oppaosite effect in COBOL, because of blurred print chains, which
make it difficult to distinguish a comma from a period. The best solution is to try Lo
avoid commas altogether.

lise scope terminators. END-IF (see programming tip on page 182) is one of several

scope terminators included in COBOL-85 that should be used whenever possible to

Scope terminators are one of the most powerful enhancements in COBOL-85, and in the opinion of the
authors, justify in and of themselves, conversion o the new siandard. In its simpiest role a scope terminator is
used in place of a period o end a conditional statement—for example, END-IF 1o terminate an IF statement.
(A scope terminator and a period should not appear logether uniess the period alsc ends the sentence.}
One of the most important reasons for using scope terminators is that they eliminaie the very subtle
column 73 problem which has always existed, and which is depicted below. The intended logic is straightforward,
and is supposed o apply a discount of two percent on an order of $2,000 or more. The amount due (NET) is

equal to the amount ordered less the discount {if any).

AT oY .

IF AMOUNT-ORDERED-THISWEEK < 2000
MOVE ZEROS TO CUSTOMER-DISCOUNT
ELSE
COMPUTE CUSTOMER-DISCOUNT = AMOUNT-ORDERED-THISWEEK * .02l
. COMPUTE_NET = AMOUNT-ORDERED- THISWEEK - CUSTOMER-DISCOUNT. 1. ™

Amount ordered Discount Net
3000 60 2940
4000 80 3920
1060 0] 3620
5000 100 4800
1500 0 a0t

The COBOL statements appear correct, yel the outpul is wrong! In particular, the net amounts are
wrong for any order fess than $2,000 (but valid for orders of $2,000 or mare). The net amount for orders less
than $2,000 equais the net for the previous order (ihat is, the net for an arder of $1,000 is incorreclly printed as
$3,920, which was the correct net for the preceding order of $4,000). The net amount tor an order of $1,500
was printed as $4,900. and so on. Why?

The oniy pessible explanation is that the COMPUTE NET statement is not executed for net amounts less
than $2,000. The only way thaf can happen is if the COMPUTE NET statement is taken as part of the ELSE
clause, and that can happen only if the ELSE is not terminated by a period. The period is present, howevear, so
we are back at ground zero—or are we? The period is present, but in column 73, which is ignored by the
compiier. Hence the visual code does not match the compiler interpretation, and the resulting ouiput is
incorreci. Replacing the pericd by the END-IF delimiter will eliminate this and similar errors in the future.
(Remember, a period may appear af the end of the sentence after the END-IF terminator.)

Chapter 7 —— Eaqditing and Coding Standards

Coding Standards

it

terminate a conditional statement. The END-READ terminator should be used in
similar fashion to end the conditional AT END clause in ihe READ siaiemnent.
Indent. Virtuaily all programmers indent successive level numbers in the Data
Division, yet many of these same individuals do not apply a similar principle in the
Procedure Division. The readability of a program is enhanced significantly by
indenting subservient clauses under the main staternents. Some examples:

READ STUDENT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
END-READ.

PERFORM 0020-PROCESS-A-RECORD
UNTIL DATA-REMAINS-SWITCH = 'NO*.

IF STU-UNION-MEMBER = '¥'
MOVE UNION-FFE TO IND-UNION-FEE

MOVE ZERD TO IND-UNION-FEE
ERG-IF.

COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS
SIZE ERROR DISPLAY 'Size error for individual tuition'
END-COMPUTE.

P S
1% BRSNS

Space attractively. 'The adoption of various spacing conventions can go a long way
toward improving the appearance of a program. The authors believe very strongly
in the insertion of blank lines throughout a program to highlight important
statements. Specific suggestions include a blank line before all paragraphs, FDs,
and 01 entries.

You can also force various portions of a listing to begin on a new page, by
putting a slash in column 7 of a separate statement.

Avoid constants. Asignificant portion of maintenance programming (and headaches)
could be avoided if a program is written with an eye toward change. Consider:

[

COMPUTE IND-TUITION = 2Q0 * STU-CREDITS.

WORKING-STORAGE SECTION.
01 CONSTANTS-AND-RATES.
05 PRICE-PER-CREDIT PIC 9(4) VALUE 200.

.

PROCEDURE DIVISION.

COMPUTE IND-TUETION = PRICE-PER-CREDIT * STU-CREDITS.

The improved code is easy to modify when (not if) the tuition rate changes as the

only required modification is to the VALUE clause in Working Storage. The poor

Chapter 7 — Editing and Cuding Standards

code requires changes (o the appropriate Procedure Division statement(s), and if
the constant 206 appears e ilan voce in dre Procedure Division, it is very easy
to miss some of the statements in which the change is required. There is less
possibility for error it the improved code,

Don't overcomment. Contrary o popular belief, the mere presence of comments
does not ensure a well-documented prograim, and poor comments are sometimes
worse than no comments &t all. The most common fault is redundancy wiith the
source cade. Consider:

* CALCULATE NET PAaY
COMPUTE NET-PAY = GROSS-PAY — FED-TAX — VOL-DEDUCT.

The comment detracts from the readability of the statement because it breaks the
logical flow as you read the Procedure Division. Worse than redundant, comments
may be obsolete or inconsistent with the associated code, as is the case when
program statements are changed during maintenance, and the comments are not
correspondingly altered.

The authors certainly do not advocate the elimination of comments
attogether, but argue simply that care, more than is commonly exercised, should
be appiied 1o developing them. One guideline is to provide a comment whenever
the purpose of a program siatement is ot immediately obvious. Imagine, for
example, that you are turning the program over to someone else for maintenance,
and insert a comment whenever you would explain a statement to the other
person. Comments should be used only to show why you are doing something,
rather than what vou are doing. Assume that the maintenance prograimmer is as
competent in COBOL as you are; avoid using comments to explain how a particular
COBOL statement works.

Weil-Writlen
LG ZAFLY

Figure 7.4 is our final pass at the tuition billing program, with attention drawn to the
application of the coding standards just developed. All data names within a 01 entry
are given a cormumon prefix: STY for entries in STUDENT-RECORD (lines 17-24),
IND for data names under INDIVIDUAL-CALCULATIONS {(lines 34-38), and so
on. This guideline applies equally well to record descriptions in both the File and
Working-Storage Sections.

Blank lines highlight 01 entries in the Data Division and paragraph headers in
the Procedure Division. All PICTURE clauses are vertically aligned. Indentation is
stressed in the Procedure Division with subservient clauses four columns under the
associated statements.

Paragraph headers are sequenced and functional in nature. All statements
within a paragraph pertain to the function of that paragraph, as indicated by its
itame. We have chosen a three-digit numerical sequencing scheme, in which the
first digit reflects the hierarchy chart level and the remaining two digits reflect the
order in which the paragraphs are perforined.

A Well-Written FProgram

L A Well-Written COBOL Program

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. TUITION?.
3 AUTHOR. CAROL VAZQUEZ VILLAR.
4
5 ENVIRONMENT DIVISION.
6 INPUT-OUTPUT SECTION.
7 FILE-CONTROL.
8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTRO7\TUITION.DAT’
9 ORGANIZATION IS LINE SEQUENTIAL.
10 SELECT PRINT-FILE
11 ASSIGN TO PRINTER,
12
13 DATA DIVISION.
M FILE SECTION.
.15 FO STUDENT-FILE
.16 RECORD CONTAINS 27 CHARACTERS.
17 61 STUDENT-RECORD.
18 05 STU-NAME.
13 10 STU-LAST-NAME PIC X(15).
20 10 STU-INITIALS PIC XX.
o2 05 STU-CREDITS PIC 9(2). ..
22 {05 STU-UNION-MEMBER PIC X. T RS AR L e St 20
C 23 .05 STU-SCHOLARSHIP PIC 9(4).
ST 105 STU-GPA PIC 9V99. |
., S e I Sl i
26 FO PRINT-FILE
27 RECORD CONTAINS 132 CHARACTERS.
28 01 PRINT-LINE PIC X(132).
.29
L3 WORKTNG-STORAGE SECTION.
) 01 DATA-REMAINS-SWITCH PIC X(2) ~ VALUE SPACES.
33 01 INDIVIDUAL-CALCULATIONS. .
- 05 IND-TUITION PIC 9(4) VALUE ZERCS.
.35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE.ZEROS.
L 36 05 IND-UNION-FEE PIC 9{2) VALUE ZEROS.
7/ 05 IND-SCHOLARSHIP PIC 9(4) VALUE zsﬁﬁsy
. 38 .05 IND-BILL PIC S9(6) VALUE ZEROS. ™.
39 e e e .
40 01 UNIVERSITY-TOTALS.)
T} UNI-TUITION PIC 9(6) VALUE ZEROS,.~
a2 UNI-UNIOK-FEE PIC 9{4) VALUE ZERGS.
oM\ UNI-ACTIVITY-FEE PIC 9(4) VALUE ZEROS.
Lo UNI-SCHOLARSHIP PIC 9(6) VALWE ZEROS.
.45 UNI-IND-BILL PIC S9(6) VALUE ZEROS.
47 01 CONSTANTS-AND-RATES.
48 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200.

49 05 UNION-FEE PIC 9(2) VALUE 25.

~ ESATIVTTY 'ocrc
50 05 ACTIVITY-FEES.

file://'A:/CHAPTR07/TUITI0N.DAT

Chapter 7 — Editing and Coding Standards

ez 7.4 (continued)
5] 10 IST-ACTIVITY-FEE PIC 99 VALUE 25.
52 10 1ST-CREDIT-LIMIT PIC 99 VALUE 6.
53 10 ZND-ACTIVITY-FEE PIC 99 VALUE 50.
54 10 2ND-CREDIT-LIMIT PIC 99 VALUE 12.
55 10 3RD-ACTEVIVY-FEE PIC 99 VALUE 75.
56 05 MINIMUM-SCHOLAR-GPA PIC 9¥9 VALUE 2.5.
57
58 01 HEADING-LINE.
59 05 FILLER PIC X VALUE SPACES. r
60 05 FILLER PIC X({12} VALUE "STUDENT NAME', k
61 05 FILLER PIC X(10) VALUE SPACES. 1
62 05 FILLER PIC X(7) VALUE 'CREDITS'.
63 05 FILLER PIC X{2) VALUE SPACES.
64 05 FILLER Pic X(7) VALUE 'TUITION'.
65 G5 FILLER PIC X(2) VALUE SPACES.
56 05 FILLER pIC X{9) VALUE 'UNION FEE".
67 45 FILLER PIC X{Z) VALUE SPACES.
68 05 FILLER PIC X(7) VALUE 'ACT FEE'.
59 05 FILLER PIC X(2) VALUE SPACES.
70 05 FILLER PEC X(11} VALUE ‘SCHOLARSHIP'.
71 05 FILLER PIC X{?) VALUE SPACES.
72 05 FILLER PIC X(10) VALUE 'TOTAL BILL®.
73 05 FILLER PIC X({38) VALUE SPACES.
74
75 01 DETAIL-LINE.
76 05 FILLER PIC ¥ VALUE SPACES,
77 05 DET-LAST-NAME PIC X(15).
78 05 FILLER PIC X{2) VALUE SPACES. i
79 05 DET-INITIALS Pic x{(2). ;
80 05 FILLER PIC X(5) VALUE SPACES.
81 05 DET-CREDITS PIC 79.
82 05 FILLER PIC X{4) VALUE SPACES.
23 05 DET-TUITION PIC $$5%,$%9.
84 05 FILLER PIC X%{(6) VALUE SPACES,
g5 05 DET-UNION-FEE PIC $$$9 BLANK WHEN ZERO.
86 05 FILLER PIC X{5}) VALUE SPACES.
87 05 DET-ACTIVITY-FEE PIC $$$9 BLANK WHEN ZERO.
88 05 FILLER PIC X(6) VALUE SPACES.
89 05 DET-SCHOLARSHIP PIC 5.9%9 BLANK WHEN ZERO.
90 05 FILLER PIC X{4) VALUE SPACES.
05 DET-IND-BILL PIC $555.539CR.
92 05 FILLER PIC X{47} VALUE SPACES.
93
94 01 DASH-LINE.
95 05 FILLER PIC X(31) VALUE SPACES.
96 05 FILLER PIC X(8) VALUE ALL '-'.
97 05 FILLER PIC X(2) VALUE SPACES.
98 05 FILLER PIC X(8) VALUE ALL '-'.
99 05 FILLER PIC X{2) VALUE SPACES.

100 05 FILLE PIC X(7} VALUE ALL '-'.

A Well-Written FProgram

% (continusd)
101 05 FILLER PIC Xx(6) VALUE SPACES.
102 05 FILLER PIC X(7) VALUE ALL '-'.
103 05 FILLER PIC X(5) VALUE SPACES,
104 05 FILLER PIC X(7) VALUF ALL '-'.
105 05 FILLER PIC X(49) VALUE SPACES.
106
107 01 TOTAL-LINE.
108 05 FILLER PIC X(8) VALUE SPACES.
109 05 FILLER PIC X{17)
110 VALUE 'UNIVERSITY TOTALS'.
111 05 FILLER PIC X{6) VALLE SPACES.
112 05 TOT-TUITION - PIC 3%,$39.
113 05 FILLER TUepIC X(2) VALUE SPACES.
114 05 TOT-UNION-FEE - .. PIC $33%,489.
115 05 FILLER PIC X -. VALUE SPACES.
116 05 TOT-ACTIVITY-FLE ~ PIC $5$5.$83. ~ -
117 05 FILLER PIC X(5) VALUE SPACES. " i .-
118 05 | TOT-SCHOLARSHIP b~ PIC $555,359.
119 5 FILLER CPIC %{&) T VALUE SPACES.
120 05 ‘ TOT-IND-BILL -~~~ PIC $$$$,$$9CR.
121 D5 FILLER PIC X{47) VAIUE SPACES.
122
123 PROCEDURE DIVISION.
124 100-PREPARE-TUITION-REPORT .
125 OPEN INPUT STUDENT-FILE
126 OUTPUT PRINT-FILE.
127 PERFORM 210-WRITE-HEADING-LINE.
128 _PERFORM 230-READ-STUDENT-FILE.
129 | PERFORM 260-PROCESS-STUDENT-RECORD
130 UNTIL DATA-REMAINS-SWITCH = 'NO'. -
131 "PERFORM 290-WRITE-UNIVERSITY-TOTALS. e
132 CLOSE STUDENT-FILE
133 PRINT-FILE.
134 STOP RUN.
135
136 210-WRITE-HEADING-L INE. .
137 MOVE HEADING-LINE TO PRINT-LINE. 7
138 [WRITE PRINT-LINE =
139 _ AFTER ADVANCING PAGE.
140 'MOVE SPACES TO PRINT-LINE.
141 WRITE PRINT-LINE.
142
143 230-READ-STUDENT-FILE.
144 READ STUDENT-FILE
145 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH
146 END-READ.
147
148 260-PROCESS -STUDENT-RECORD.
149 PERFORM 310-COMPUTE-INDIVIDUAL-BILL.

150

PERFORM 33G- INCREMENT-UNIVER-TGTALS

Fioure 7.4

(coniinued)

Chapter 7 —

Ediling and Coding Standards

151
152
153
154
155
156
157
158
159
160
161
162
163
i64
165
166
167
168
163
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
260

PERFORM 360-WRITE-DETATL-LINE.
PERFORM 230-READ-STUDENT-FILE.

MOVE DASH-LINE 7O PRINT-LINE.
WRITE PRINT-LINE.
MOVE UNI-TUITION TO TOT-TUITION.
MOYE UNI-UNION-FEE TO TOT-UNION-FEE.
MOVE UNI-ACTEIVITY-FEE TO TOT-ACTIVITY-FEE.
MOVE UNI-SCHOLARSHIP TO TOT-SCHOLARSHIP.
MOVE UNI-IND-BILL TO TOT-IND-BILL.
MOVE TOTAL-LINE TO PRINT-LINE.
WRITE PRINT-LINE
AFTER ADVANCING 1 LINE.

310-COMPUTE- INDIVIOUAL-BILL.
PERFORM 410-COMPUTE-TUITION.
PERFORM 430-COMPUTE-UNION-FEE.
PERFORM 460-COMPUTE-ACTIVITY-FEE.
PERFORM_490-COMPUTE-SCHOLARSHIP.

[COMPUTE IND-BILL = IND-TUITION + IND-UNION-FEE +

| IND-ACTIVITY-FEE - IND-SCHOLARSHIP.

. 330- INCREMENT-UNIVER-TOTALS. |~ - ...

ADD IND-TUTTION T0 UNI-TUTTION. =

ADD IND-UNION-FEE TO UNI-UNION-FEE.

ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE,
ADD IND-SCHOLARSHIP TO UNI-SCHOLARSH;EE*’”/
ADD IND-BILL TO UNI-INQ;BItEl

_360-WRITE-DETAIL-LINE, |-~
MOVE STU-LAST-NAME TO DET-LAST-NAME.
MOVE STU-INITIALS TO DET-INITIALS.
MOVE STU-CREDITS TO DET-CREDITS.
MOVE IND-TUITION TO DET-TUITION.
MOVE IND-UNION-FEE TO DET-UNION-FEE.
MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE.
MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP.
MOVE IND-BILL TO DET-IND-BILL.
MOVE DETAIL-LINE TO PRINT-LINE.
WRITE PRINT-LINE

AFTER ADVANCING 1 LINE.

410-COMPUTE-TUITION.
COMPUTE IND-TUITION

430-COMPUTE-UNION-FEE.
I IF STU-UNION-MEMBER

[

AT

| ELSE

PRICE~PER-CREDIT * STH-CREDITS.

| MOVE UNION-FEE TO IND-UNION-FEE |-=-- " = =77 oo

i
:
;

Suniinary

Figure 7.4 (continued)

201 | MOVE ZERG TO TMD-UNION-FEE
202 | END-IF.
L 203 e) E
| 204 460-COMPUTE-ACTIVITY-FEE. g
205 EVALUATE TRUE ;
206 WHEN STU-CREDITS <= I1ST-CREDIT-LIMIT ‘
207 MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE f
208 WHEN STU-CREDITS > IST-CREDIT-LIMIT f
209 AND STU-CREDITS <= ZND-CREDIT-LIMIT ?
210 MOVE ZND-ACTIVITY-FEE TO ING-ACTIVITY-FEE g
211 WHEN STU-CREDITS > ZND-CREDIT-LIMIT ;
212 MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE :
213 WHEN OTHER
214 DISPLAY 'INVAL1D CREDITS FOR: ' STU-NAMF
215 END-EVALUATE. j
6 :
2y 490-COMPUTE - SCHOLARSHIP.
| a8 IF STU-GPA > MINIMUM-SCHOLAR-GPA g
219 MOYE STU-SCHOLARSHIP TO TND-SCHOLARSHIR ?
L2 ELSE g
) MOVE ZERO TO IND-SCHOLARSHIP i
222 END-TF. g
: i
; 5
S UMM AR Y

A numeric fieid containg digits, an (optional) implied decimal point, and/or
an optionai sign. A numeric-editad Tield may coniain any editing character.
All calcutations in & COBOL prograrm are done on numeric fields, whose
computed values are moved te numeric-2dited fields prior to printing.

@ Any mova involving a numeric fleid and a numeric-edited field maintains
decimal alignment.

Only a signed nurmeric feld can hold a negative value, thal is, a numeric
figid cannot retain a negative value unless it has been defined with an S in
its PICTURE clause.

Coding standards are intended [0 Improve the readability and rnaintainabiity
of COBOL programs. They are imposed by incividual installations anc go
beyond the requirements of COBOL.

Hey Words and Concapnis

Actual decimal paint
Check protection
Coding standards
CR

DB

Decimal alignment
Editing

Editing characters
Fixed dollar sign
Floating doliar sign
Floating minus sign
Floating plus sign
Functional paragraph

LOEEBE Biesnani

Chapter 7

Implied decimal point
Indentation

Insertion characlers
Maintainability
Numeric field
Numeric-edited field
Prefixing data names
Readability
Receiving field

Sequencing paragraph names

Signed numbers
Source (sending) field
Zero suppression

Editing and Coding Standards

BLANK WHEN ZERO

10.

are a set of rules unigue to each installation,
which go beyond the rules of COBOL, lo improve the readability of a COBOL
program.

and . will appear if and
and are suppressed otherwise.

The editing characters,
only if the sending field is

The presence of multiple dollar signs in the PICTURE clause of an edited field
indicates a dollar sign, whereas a single dollar sign indicates a

dollar sign.

The is the character used for check protection.

The PICTURE clause of a numeric field may cansist of 9's, a to
indicate an implied decimal point, and the latier to indicats a
signed fieid.

Continuation of a literal requires a in column

A well-chosen paragraph name consists of a .
and to indicate the function of that paragraph.

All data names within the same 01 record should begin with a comemon

of COBOL. statemerits withinn the B margin does not affect compiler
interpretation but goes a long way toward improving the readability of a program.

may be left before 01 records and paragraph

names to enhance readability.

Problems

11, W a numeric field is defined without an S in its PICTURE clause, the fiald will never
ARSLNEG A value.

12, All calcutations in a COBOL program are performad on (humeric/numeric-edited)
fieids.

1. Indentation within the B margin afiects compiler interpretation.

Blank tines are not permitted within a COBOL program.

The COBOL. coding standards for AT&T and IBM are apt tc be identical.
COBOL reguires that paragraph names be seguenced.

Data names should be as short as possitle to cut down on the coding effort.

A

Indentation in COBOL is a wasie of time.

~J

A well-commented COBOL program should coritain half as many cornment lines as
Procedure Division statements.

8. All continued statements require a hyphen in column 7.
9. COMPUTE-AND-WRITE is a good paragraph name.

10. Heading, detail, and total lines may be established as separate $1 entries in
Working-Storage.

1. Every PICTURE clause requires a corresponding VALUE clause.
12, Arithmetic may be done on numeric-edited fieids.

13. A positive field should always be defined with a CR in its PICTURE clause, whereas
a negative field requires DB.

14. A single numeric-edilted field may contain a daltar sign, comma, decimal point,
asterisk, and the character string CR in its PICTURE clause.

16, The same numeric-edited field may confain both CR and DB in its PICTURE clause.
16. Hyphens may be used as insertion characters in a social security number.
17. Slashes may be used as insertion characters in a date.

18. The presence of CR or DB in a nurneric-edited field impiigs that the sending field is
signed.

12. Zerois a valid insertion character.

1. Supply PICTURE clauses for the receiving fields needed lo accomplish the following:
a. Afloating dollar sign, omission of cents, printing (or suppression) of commas as
appropriate, and a maximum value of $8,999,999.
b. A fixed dollar sign, asterisk fill for insignificant leading zeros, printing {or
suppression) of commas as appropriaie, 2 maximum value of $9,999, and a
trailing DB i the sending field is negative.

Chapler 7 — Ecicning and Goaing Srandards

c. A fixed dollar sign, 7era suppression of insignificant leading zeros, omission of
commas in allinstances, and @ maximum voiue of 389,008 88,

¢ A floating dottar sign, orinting {(or suppression) of commas as appropriatg, a
maximur valus of $5,992.00, and a trailing CR it the sending field is negative.

2. Show the vaive of the sdited result tor each of the feliowing antries:

BLLBCE FIELS PHLSEI G B
BETLRRE o ALLE ST AIRE FRETED BESULY

a (6} 123456 5{6) I
b 8{6) 123456 a(8) -
c. 9(&) 123456 9(6Y.99 S
d 9{4)veg 1234586 9(4) —
e 9(3)ve9 123456 9(4) S,
9(41ve9 123456 $$9$$9.99 -
. 9(4)Ve9 123456 $$%,%59.9¢
h 9(s) 123456 $$55,8%9.95 e
i 9(6) 123456 7(8)

i G{4)¥59 123456 $228,720.99 o

3. Shiow hs stuled resuits fur gach eniry:
SOURCE Finn o b
BT LERE HALASE BT RARE

a. S9{4)v99 45600 $$$8%.99c
b, S3{4)¥59 45600 $4.8%%.09p8
c. 59{4) 4557 $3,53%.00 e o
d. 59{s) 122577 99899899 -
e, $9{8) 123456 4 —_——
f. $9(6) -123456 e -
g. 59{(6) 123456 TR S B
no S9(6) -123456 -
i 9(4jvey 567890 §4¢5.996.9¢
i 9(4)v99 567860 $777,777.99 .
K. 9{43v9 567690 Jrew wex G900

4. What, if anything, is wrong (either syntactically or logicaily) with the following
PICTURE ciauses?
. 8.5%9.5%59 90
. 995939999
. $555.555.5%53
. $LZ2.27
$a0avos
$992,999,989.02
. $8588.559.99

[S

-0 o

o]

hlems

5. Do you agree with all of the coding standards suggested by the authors? Can you
suggest any others? Do you think the imposition of coding standards within an
installation impinges orn the creativity of individual programmers? Are coding
standards worth the extra tme and trouble they require?

§. Consider the following code:

01 AMOUNT-REMAINING PIC 9{3) VALUE 100.
01 WS-INPUT-AREA.

05 QUANTITY-SHIPPED PIC 99.

05 REST-OF-A-RECORD PIC X%(50}.

READ TRANSACTION-FILE INTO WS-INPUT-AREA
AT END MOVE 'YES' TQ EOF-SWITCH
END-READ,
PERFORM PROCESS-TRANSACTIONS
UNTIL EOF-SWITEH = 'YES*.

PROCESS-TRANSACTIGNS .
SUBTRACT QUANTITY-SHIPPED FROM AMOUNT-REMAINING.
READ TRANSACTION-FILE INTO WS-INPUT-AREA
AT END MOVE 'YES' TO EOF-SWITCH
END-READ.

a Why will AMOUNT-REMAINING never be less than zero?

b. What will be the final value of AMOUNT-REMAINING, given successive values
of 30, 50, 25, and 15 for QUANTITY-SHIPPED?

Oveiview
System Concepts: Data Validation
The IF Statement
Ralational Condition
Class Test
Sign Test
Condition-Naime
Compound Test
Hierarchy of Operations
implied Conditions
Nested IFs
NEXT SENTENCE
ACCEPT Statement
Calculations Involving Dates
Stand-Alone Edit Program
Programming Specifications
Error Messages
Pseudaocode
Hierarchy Chart
The Completed Program
Limitations of COBOL-74
Summary
Fiii-in
True/False
Problems

e FE0) L,\..,
Tol |(OO-LGVDE

Chapter 8 — [Data Validation

After reading this chapter you wili be able to:

Describe the importance of data validation and its implementation in a
stand-alone edit program.

Define the icllowing validity tests: numeric test, alphabetic test, consistency
check, sequence check, completeness check, date check, and subscript
check.

Describe the varnous types of conditions in an IF statement.

Define a nested IF; indicate guidelines for proper indentation in coding
such statements.

Describe the advantages of the END-IF scope terminator; show how the
scope terminator eliminates the need for the NEXT SENTENCE clause.

Obtain the date (calendar and Juiian) and time of execution, impiement
date checking in a program to ensure that the day and month are consistent.

This chapter introduces the concept of data validation. the process of ensuring
that data entered inic a system is as error-free as possible. It begins by
dascribing various types of error checking, then focuses on lhe IF statement, the
means by which data vailidation is implemented in COBOL. We cover the
different types of conditions that exist within an [F statement (relation, ¢lass,
sign, and condition name), the concept of a nested IF, and the importance of the
END-IF scope terminator.

The second half of the chapler develops a stand-alone edit program to
illustrate the implementation of data validation. The program is designed io
process a file of incoming transactions, reject invalid transactions with appropriate
error messages, and write valid frangactions to an output file. The latter is then
input to a reporting {or other) program.

A well-written program is not limited to merely computing answers, but must also
validate the data on which those answers are based. Failure to do so results in
programs that produce meaningless or inaccurate information, a situation described
by the cliché GIGO (Garbage In, Garbage Out). It is the job of the programmer or
analyst to ensure that a system remains as error-free as possible and that the
“garbage” does not enter the system in the first place.

Incoming data may be validated within the program in which itisused orin a
separate stand-alone edit program. The essential point is that incoming data must

be checked; when and how ihis is done is of secondary importance. The foliowing
are typical iypes of daia validadon:

Nuineric test. Ensures that a numeric field contains numeric data. Commas, dollar
signs, declimal points, blanks, or other alphabetic characters are not nurneric, and
will cause problems in execution.

Alphabetic test. Analogous to a numeric test, except that alphabetic fields should
coniain only alphabeiic data. Any errors detected here are typicaily less serious
than for numeric fields.

Reasoncableness (Limil or range) check. Ensures that @ number is within expecied
limits; that is, thar a value does not exceed a designated upper or lower extreme.

Consistency check. Verifies thart the values in two or more fields are consistent, for
example, salary and job tide. Gther exampiles of consistency checks are an individual's
credit rating and the amount of credit & bank is willing to extend, or {as used by the
Internal Revenue Service) an individual’'s reporred income and the zip code.

Lxisting code check. One of the mostimportant tests, the omission of which produces
countless errors. Considern

IF SEX = '
ADD 1 TO NUMBER-OF-MEN

ADD 1 TG NUMBER-OF-WOMEN
END-TF.
it is decidedly pour practice to assumge that an incoming record is female if it is
not male. Both codes should be explicitly checked, and if neither occurs, a suitable
error should be printed.

Sequence check. Fnsures that incoming records are in proper order. [t can also be
used when one record is continued over several lines to ensure that the lines within
d record are in proper sequicnce.

Completeness check. Verifies that data in all required fields are present; this checl s
normally used when new records are added to afile.

Date check. Ensures that an incoming date is acceptable—f{or example, that the day
is from 1 o 31, the month from 1 to 12, and the year within a designated period,
often just the current year. A further check is that the month and day are consistent
with one another—for example, a date of April 31 is invalid.

Subscript check. Validates that a subscript or index is within a table’s original
definition. (Table processing is discussed fully in Chapter 11.)

Diligent application of data validation (sometimes referred to as defensive
programming) minimizes the need for subsequent debugging. it assumes that errors
will occur and takes steps to make them apparent to the programmer and/or user
Before s program terminates, Is it worth the estra tase? Emphatically yes, especially
i yvou have ever been called at two in the moming to hear that your program
“bombed” because of invalid data.

Treve

The importance of the IF staternent is obvicus, yvet the large number of options
make it one of the more difficult staternents fo master. Essential to any {F statement,
however, is the condition, the portion of the statement that is evaluated as either

Chapter 8 — Data Validation

Ai o ool o rhich io Aicsiican
iUllLllLl.Ull 11, waLnal UJ- \i\flil\.all 23 WIoL WSO

true or false. Four types of conditions are possible: relatmnal class, sign, and
g s

A i
U il

-3
2]
€

)
g
i
[

S e B g g o et T
Rl e RS L R T S e

‘w

The relational condition is the most common type of condition and has appeared
throughout the book. As you already know there is considerable variation in the way
the relational operator may be expressed. In all instances, however, the condition
compares the quantities on either side of the relational operator to determine
whether (or not) the condition is true,

The data type of the quantities being compared must be the same; for example,
a numeric data item must be compared to a numeric literal and a nonnumeric data
item to a nonnumeric literal. Failure to do so produces a syntax error during
compilation. The relational condition is illustrated in Figure 8.1.

Eigguers o The Relatlona. Conuno

IS iNOT GREATER THAN

IS ‘w] >
1S [NOT]| LESS THAN
% 15 {noT o .
: identifier-1) | ¢ identifier-2
j IS [NOT] EQUAL TO J _ {
IF Jiiteral-1 e litaral-2

- [expression-ZJ

| s
J 15 [NoT

| LESs

| <

1] EQ
{expressiond]

IS [NOT| GREATER THAN QR EQUAL TO

1

]

| <=

IS [Nor -
IS [NOT LESS THAN OR EQUAL TO
18 [NOT

05 NUMERIC-FIELD PIC 9(5).
05 ALPHANUMERIC-FIELD PIC X{5).

hd i

IF NUMERIC-FIELD

'f =10 ... (valid entry)
! IF NUMERIC-FIELD = '10' . . . (invalid entry)
| IF ALPHANUMERIC-FIELD = 10 . . . (invalid entry) f

IF ALPHANUMERIC-FIELD = '10° (valid entry)

b < e

The

IF Statement

SR e e TERY
B 480 i T

]
e
v
o

The class rest ensures that a field contains numeric or alphabetic data in accordance
with its PICTURE clause. A valid numeric field wili contain only the digits 0 to 9 (a
sign is optional); blanks, decimal points, commas, and other editing characters are
not valid as numeric characters. A valid alphabetic field will contain the letters A to
Z (upper or lower case) and/or blanks. An alphanumeric field may contain any
character; letters, numbers, and/or special characters.

The class test cannot be used indiscriminately; that is, a numeric test cannot
be used for data names defined as alphabetic, nor can an alphabetic test be used for
numeric data names. Either test, however, may be performed on alphanumeric
items. The class test is illustrated in Figure 8.2

The Class Test

HUMERIC | ;
L .. |ALPHABETIC

If identifier IS [NOT| { "~ "

- T {ALPHABETIC - UPPER|

‘ALPHABETIC—LONERJ

Fant L g
(8} syniax

. 05 NUMERTC-FIELD PIC 9(5).
. 05 ALPHABETIC-FIELD PIC A(5).

E IF NUMERIC-FIELD IS NUMERIC
PERFORM DO-ARITHMETIC-CALCULATIONS
! END-TF,

IF NUMERIC-FIELD IS NOT NUMERIC
DISPLAY 'ERROR - NUMERIC FIELD CONTAINS INVALID DATA'
END-IF.

; IF ALPHABETIC-FIELD IS ALPHABETIC
DISPLAY 'ALPHABETIC FIELD CONTAINS UPPER AND/OR LOWER CASE LETTERS®
: END-IF.

IF ALPHABETIC~FIELD 15 NOT ALPHABETIC
DISPLAY 'ALPHABETIC FIELD CONTAINS NON-ALPHABETIC DATA*
END-TF.

(b Exampies

Chapter 8 — Dara Validation

Figure 8.3 The Sign Test

H

) o POSITIVE
identifier e

I _ ’ .+ IS [NOT| (NEGATIVE
T larithmelic expression - 7ERD

IF NET-PAY IS NOT POSITIVE
PERFGRM TOQ-MUCH-TAXES
END-IF.

IF CHECK-BALANCE IS NEGATIVE
PERFORM OVERDRAWN
END-TF.

Sign YTest

The sign test determines whether a numeric field is positive, negative, or zero. The
test is of limited value and could in fact be replaced with the equivalent relational
condition. Nevertheless, the sign test is illustrated in Figure 8.3.

Condition-Name Yest S U

A condition name (88-lcvel entry) is a special way of writing a relational condition
that makes it (the condition) easier to read. Condition names are delined in the
Data Division, then referenced in the Procedure Divisicn as shown in Figure 8.4
Condition names are used for elementary items only.

The definition of a condition name in the Data Division simplifies subsequent
cading in the Procedure Division; for example, 1F FRESHMAN is equivalent to
IF YEAR-CODE = 1. 88-level entries provide improved documentation in that
IT: FRESHMAN is inherently clearer than IF YEAR-CODE = 1.

The use of an 88-level entry also allows multiple codes to be grouped under a
single data name; for example, VALID-CODES is defined as any vajue from 1 1o 8,
This in turn makes it possible to test for an invalid code with a simple IF statement
as shown in Figure 8.4b. Note, too, that condition names permit a given value to
appear under more than one classification; for example, records containing a 3
belong to JUNIOR, UPPER-CLASSMAN, and VALID-CODES.

Gompound Test

Any two simnple tests may be combined to form a compeoundd test through the logical
operators AND and OR. AND implies that both conditions must be satisfied for the
IF to be considered true, whereas OR requires that only one of the conditions be
satisfied. A flowchart is shown in Figure 8.5a depicting the AND condition. Tt requires
that both A be greater than B and C be greater than D in order to proceed to TRUE. If
either of these tests fails, the compound condition is judged false. The general
format is:

1

condition—zf ...

{A0D)
IF condition-1 1“—}

O

g {F Statement

- &4 Condition Names (88-level entries)

VALUE IS THROUGH
88 data-name {‘“’“‘ } {litera]—l [{“‘_‘_‘} 1itera1—2}} -

VALUES ARE THRU

{a} Syntax

05 YEAR-CODE PIC 9.

88 FRESHMAN VALUE 1.

88 SOPHOMORE YALUE 2.

88 JUNICR VALUE 3.

88 SENIOR YALUE 4.

88 GRAD-STUDENT VALUES ARE 5 THRU 8.
88 UNDER-CLASSMAN VALUES ARE 1, 2.

88 UPPER-CLASSMAN VALUES ARE 3, 4.

88 VALID-CODES VALUES ARE 1 THRU 8.

IF FRESHMAN
PERFORM WELCOME-NEW-STUDENTS
END-IF.

IF VALID-CODES i
PERFORM PROCESS-STUDENT-RECORD

ELSE
DISPLAY 'INCOMING YEAR CODE IS IN ERROR’

END-IF.

{hy Exarnsies

Figure 8.5b contains a flowchart for a compound OR in which only one of two

conditions needs te be met for the condition to be considered true, Thus, if either A
is greater than B or C is greater than D, processing is directed to TRUE.

Pl oo s b gsd B enam m:-&‘w 2
SRIETETGTY OY WRBEeranions

IF statements containing compound conditions can become difficult to interpret;
for example, in the statement,

IFX=>YORX=2ZANDX<HW...

which takes precedence, AND or OR? To provide an unequivocal evaluation of
coimpound conditions, the following hierarchy for evaluation is established:

1.

2
3.
4
5

Arithmetic expressions

. Relational operators

NOT condition

. AND {from left to right if more than one)

. OR {from left to right if more than one)

Chapter B -~ [Data Validation

Figure #.5 Compound Conditions

FALSE TRUE FALSE TRUE

i i

: N ?

‘ ¥ ¥
BlA»Band D i A>BmOsD

Thus, for the preceding statement to be true, either

x>y
or
X=2Zand X < W

Parentheses can (and should) be used to clarify the programmer’s intent and
the preceding statement is made clearer if it is rewritten as

IFX>YOR (X=27AND X < W) . ..

Parentheses can also alter the outcome in that the expression In parentheses is
evaluated first. The following statement is logically different from the original
statement:

IF{(X>YO0RX=1Z7) AND X < W . .,

In this example the condition in parentheses (X > Y OR X = 7) is evaluated first, atter
which X is compared to W. Both conditions (the one in parentheses and X < W} must
be true for the compound condition to be considered true.

The

IF Statement

E

SR LR OGNS

s

The simple conditions within a compound condition often have the same subject as
in the statement:

IF SALARY = 30000 AND SALARY < 40000

A more concise way of expressing this logic is with an implied condition, which
requires only the first occursence of the subject; that is,

IF SALARY = 30000 AND < 40000

is equivalent to the earlier entry. If both the subject and relational operator are the
saime, then only the first cccurrence of both needs to be written; that is,

I

IF DEPARTMENT = 10 OR 20
is equivalent to

10 OR DEPARTMENT = 20

IF BEPARTMENT

Implied conditions are often contusing and the following are provided as additional
examples:

IF X = ¥ OR Z is equivalent to IF X = Y OR X = 2
IFA=8B0RLDRD is equivalent to IFA=8B0RA=C0ORA=D
IF A =B AND C is equivalent to IF A =B AND A = C

fosted Py L

E

The general format of the IF staternent is:

£ statement-2... [END-IF]
E NEXT SENTENCE

statement-1... L
NEXT SENTENCE D 1F

A nested IF vesults when either statement- 1 or statement-2 is itself another [F
statement, that is, when there are two or more II's in one sentence. For example,
consider

T [
el %

IF condition-1 THEN[

'

iFA=8
iFrCc>0D
MOVE S TO W
MOVE X TO Y
ELSE
ADD 1 TO Z
END-IF
END-IF.

‘The ELSE clause is associated with the closest previous IF that is not already paired
with another ELSE. Hence, in this example, Z is incremented by 1if A is greater than
B, but C is not greater than D. If, however, A is not greater than B, control passcs to
the statement immediately following the period with no further action being taken.
(The END-IF scope terminator is optional in both instances, but is included as per
our coding standard of Chapter 7 of always specifying the scope terminator.)
Figure 8.6 shows a flowchart and corresponding COBOL code to deterinine
the largest of three quantities A, B, and C. (They are assumed to be unequal nnumbers.)
Observe how the true and faise branches of each decision block meet in a single exit
point and how this corresponds to the COBOL code. Notice also how the indentation

Chapter 8 — [Data Validaltion

Figure 8.8 Nesied IF Statements

YES 5

L 4

MOVE 8 MOVEC MOVE C MOVE A i
TOBIG T0 BIG TO BIG 10 BiG

:
: H

IFA>8 i
IFA>C
MOVE & TO BIG
ELSE
MOVE C TO BIG
END-IF
ELSE ;
IFC>8 !
MOVE C TO BIG
ELSE
MOVE B T0 BIG
END-1IF
END-IF

by CONEGL Stetemenis ;
I

in the COBOL statemnent facilitates interpretation of the staternent. {The compiler
pays no atiention to the indentation, which is done strictly for programmer
convenience.)

We advocate careful attention to indentation and recommend the following
guidelines:

1. Each nested IF should be indented four columns from the previous IF.
2. ELSE should appear on a line by itself directly under its agsociated IF.

3. Detail lines should be indented four columns under both IF and ELSE.

The IF Sisiement

4. The END-IF scope terminator should always be used and appear on a line by
itself directly under its associated ¥,

These guidelines were used in Figure 8.6,

NEELT SERTENCE

The NEXT SENTENCE clause directs contiol to the statement following the period
in an IF statement. 1t was an essential clause in COBO!.-74 to implement cerfain
types of nested IF statements, but is no longer needed due 10 the the END-1E scope
terminator in COBOL-85. The use of NEXT SENTENCE is compared to the scope
terminator in Figure 8.7,

g

Lrgurs 8.7 Nested IF Statements/ |

.f_
i
|
£
i
i

i FALSE -~ S_TRUE ;

i “ S [B :

oo
l TOY
L
ADD 1
TOX
(e
ey [g
~
{ay Fowohart

IFA>8 IF A > B

IFC=>0D IFC>D

ADD 1 YO X ADD 1 TO X

ELSE END-IF

; NEXT SENTENCE £LSE

i ELSE ADD 1 TO Y

i ADD 1 TO Y. END-IF.

(h MEXT SERTENCE (o) Soope Terminaions
| OROL-T4 (OOBOL-88

Chapter 8 — Data Validation

The intended logic is to add 1 to X if A is greater than B and Cis greater than D,
if. however, A is greater than B, but C is not greater than D, no further action is to be
taken. The NEXT SENTENCE clause in Figure 8.7b terminates the IF statement if the
second condition (C > D} is not met. The identical effect is achieved by the END-IF
scope terminator in Figure 8.7c.

S ERT
siemment

The ACCEPT statement is used to obtain the day of the week, date, and/or time of
progiam execittion. Consider:

DAY-OF -WEEK
DATE

DAY

TIME

ACCEPT identifier-1 FROM

Identifier-1 is a programmer-defined work area that holds the information
being accepted such as the DAY-OF. WEEK, DATE, DAY, or TIME, The DAY-OF-
WEEK is returned as a single digit, from one to seven inclusive, corresponding to
Monday through Sundav. (See Figure 9.8 in the next chapier.) DATE and DAY both
reflect the current date, but in different formats. Specification of DATE places a six-
digit numeric field into identifier-1 in the form yymmadd, the first two digits contain
year; the next two, month; and the last two, the day of the month; for example,
930316, denotes March 16, 1993,

Specification of DAY, rather than DATE, returns a five-digit numeric field to
the work area. The first two digits represent year and the last three the day of the
year, numbered from 1 to 365 (366 in a leap year). March 16, 1993, would be
represented as 93075, but March 16, 1992, as 92076, since 1992 is a leap year. (A date
written in this format is known as a fulian date.)

TIME returns an eight-digit numeric field, hlmmsshh, in a 24-hour system. It
contains the number of elapsed hours, minutes, seconds, and hundredths of seconds
after midnight, in that order, from left to right. 10:15 A.M. would return as 10150000,
10:15 P.M. as 22150000.

Calculations lnvolving Dales

Once the date of execution is obtained, it can be used for various types of date
validation such as checking that an employee’s hire date is within the current year.
It can also be used in various calculations, for example, to compute an employee’s
age, or to determine which accounts haven't been paid in 30 days. Figure 8.8
fllustrates how an employee’s age may be calculated from the date of execution and
the employee’s birth date.

You should verify that the COMDPUTE statement in Figuse 8.8 works as intended,
and further that it works for alf combinations of data. This is best accomplished by
“playing computer” and plugging in humbers. Accordingly, consider two examples:

Exampie 8.1
Date of birth: 3/73
Date of execution: 6/93
Expected age: 20 1/4
Calculation: 93 - 73 + (6 -~ 3)/12 = 20 + 3/12 = 20.25

The Stand-Alohe Edit Frogram

- The ACCEPT Stalement

§ WORKING-STORAGE SECTION.

01 EMPLOYEE-RECORD. ;

05 EMP-DATE-OF-BIRTH.

10 EMP-BIRTH-MONTH PIC 99.
10 EMP-BIRTH-YEAR PIC 399.
01 EMPLOYEE-AGE PIC 99vV99.

01 DATE-WORK-AREA.

05 TODAYS-YEAR PIC 99.
i 05 TODAYS-MONTH PIC 99. E:
‘ 05 TODAYS-DAY PIC 99, i

PROCEDURE DIVISION,

ACCEPT DATE-WORK-AREA FROM DATE.

COMPUTE EMPLOYEE-AGE = TODAYS-YEAR - EMP-BIRTH-YEAR
+ {TODAYS-MONTH - EMP-BIRTH-MOKTH) / 12.

Example 8.2
Date of birth: 9/73
Date of execution: 6/93
Expected age: 19 3/4
Caleculation: 93 - 73 + (6 - 9)/12 = 20 + -3/12 = 19.75

The calculations are correct, and they work for both combinations of data; it
doesn’t matter whether the month of execution is before or after the birth month.
{For simplicity only month and year were used in the calculation of age.)

The validation of incoming daia is often done in a stand-alone edit pregram as
opposed to the reporting pregram that processes the data. The sequence is shown
in Figure 8.9. A transaction file is input to the edit program, which checks each
incoming record for validity. Invalid transactions are rejecied with an appropriate
error message(s), whereas valid transactions are written to an cutput file. The valid
transaction file {i.e., the output file from the edit program) is then input to a
reporting program.

Chapler 8 - [arg Validation

Figure 8.9 The Stand-Alone £dit Program

i
:]

&“‘ .
] { REPORT P FINAL RFPORT
PROGRAM ; Tﬂmﬁ'ﬂgm“ PROGRAM s

.. ‘h_._/

ERROR !
MESSAGES gJ

x__/

L . e e S

The Nowchart in Figure 8.9 serves as an effective blueprint for the combing-
tion of programs that are developed in this chapter and the next. The programs
are related to one another in that the output of the edit program in this chapter
will be input to the reporting program in Chapier 9. Specifications for the edit
program are given below, whereas the requirements of the reporting program are
presented in Chapter 9.

Program Name: Car Renlal Validation
Narrative: The specilications describe a stand-alone edit program for car rental transactions, each
of which is subject 1o muitiple validily checks. Invalid transactions are to be rejected with
appropriate error message(s), whereas valid transactions are to be written in their entirety

o an output file; the latter wiil be input 1o a reporting program developead in the next
chapter.

input Filefs): RENTAL-RECORD-FILE

Input Record Layout: 01 RENTAL-RECORD-IN.

05 REN-CONTRACT-NO PIC 9(6).
05 REN-NAME .
10 REN-LAST-NAME PIC X(15).
10 REN-FIRST-NAME PIC X{10).
10 REN-INITTAL PIC X.

(05 REN-RETURNED-DATE,
10 REN-RETURNED-YEAR PIC 9(2}.
10 REN-RETURNED-MONTH PIC 5{2).
10 REMN-RETURNED-DAY PiC 9(2).

(05 REN-CAR-TYPE PIC X.
05 REN-DAYS-RENTED PIC 99.
05 REN-MILEAGE.
16 REN-MILES-IN PIC 3{6).
10 REN-MILES-OUT PIC 9(h).

10 REN-MILEAGE-RATE PiC 99.
05 REN-INSURANCE PIC X.

Processing Requirements:

The Stand-Ajone Fan Frogram

Test Data:

Heport Layout:

See Fgure 8.10a (Four errors are identified.}
See Figutre 8.10b

1. Read a file of car rental records.

2. Validate each input record for ali of the following:

b.

o

any nennumeric coritracl.

The presence of both a first and last name; print the message Missing fast name ot
Missing first name for a record missing either field. A middie initial is not reguired,
but it present, the initial must be alphabetic: print the message Nonalphabetic initial
as appropriate

. A valid car type where the code is one of five vaiues; E, C, M, F, or L. Print the

message Car type mustbe: £, C, M. FF or Ltor any record with an invalid car type.

. Valid dates:

{1) A valid month; that is, a month must be rom 1 o 12; print the message Month
must be between 1 and 12 for any invalid month.

(2v A valid day that is. the day cannot exceed the maximum days in the
corresponding month; print the message /nvalid Day tor any date that is inconsistent
with the monith—for exampie, Aot 31,

(3) Avalid date; that is. a date that is less than or equal 1o the systern date: print
ihe message Date has not yert cecurred for any date i the fulure.

. Avalid number of days rented where the number of days is numearic, is greater ihan

zero, and iess than or egual o 35, Print appropriate eror messages for any
condition that is not met; e.q., Days rented must be numeric. Days rented must be
> 2er0, or Refer to Long-Term Leasing.

ro 5.5 Transaction Files and Error Reports

123459BAKER
987651BROWN
999992J0NES
G87655BROWNING
999777ELSINOR
655443FITZPATRICK
9876545MITH
PINNOCK
X93477BUTLER
35467 9KERBEL
264805C1ARK
8464490
233432BEINHGRN
556564HUMMER
677844MCOONALD
B86222V0GEL
008632TOWER

ROBERT
PETER
TOM
PAULA
TERRY
DAN
PAUL

JOHN
NGRMAN
JANE
SAM
CATHY
MARGO
JAMES
JANICE
DARREN

6930431F0500670000664025K
6930112M1000353000352000N
J931309E35004500004600057
J93102400700240000252500Y
R921126F0500168000159005N
T9305321.0701060000987000C
6921213M0300510000500502Y
1931012F 1000342400331 0008
H930631C000042300041907 5N
X930331F1000340000324300Y :
§921101F07005615005512008 ;
921231X1500182300169802N o
8921122M0200323400113402Y
R9Z0815C0800234500123403Y
930123C0500423500402300N
D930518F1200634500612302Y :
R9304291.0900700200689300K é

e N e S

Chapter 8 — [ata Validation

Figure %46 (continued)

ERROR REPORT AS OF 07/03/93
CONTRACT # LAST NAME ERROR MESSAGE & FIELD CONTENTS g
i
123459 BAKER INVALID DAY ;oo [OBFL {
123459 BAKER INSURANCE CODE MUST BE Y OR N X :
987651 BROWN MILES DRIVEN UNREASONABLY LOW DAYS: 10 MILES: 000010
999999 JONES MONTH MUST BE BETWEEN 1 AND 12 13
999999 JONES MILEAGE IN LESS THAN MILEAGE OUT o IN: 004500 0UT: QG4600 |
999999 JONES . NON-NUMERIC MILEAGE RATE 05 g
987655 BROWNING CAR TYPE MUST BE: E, L, M, F, OR L 0 %
987655 BROWNING DATE HAS NOT YET DCCURRED 10/24/93
987655 BROWNING NON-NUMERIC MILES IN 002400
% 655443 FITZPATRICK INVALID DAY 05/32
; 655443 FITZPATRICK INSURANCE CODE MUST BE ¥ OR K C :
PINNOCK NON-NUMERIC CONTRACT NUMBER f
PINNOCK MISSING FIRST NAME
PINNOCK NON ALPHARETIC INITIAL t
PINNOCK DATE HAS NOT YET OCCURRED 10/12/93
PINNOCK NON-NUMERIC MILES OUT Lo 1003310
X93477 BUTLER NON-RUMERIC CONTRACT NUMBER X93477 _
, X93477 BUTLER INVALID DAY 06/31 ;
| X93477 BUTLER DAYS RENTED MUST BE > ZERO 00 :
X93477 BUTLER MILEAGE RATE OUT OF RANGE 75 ;
846440 NON-NUMERTC CONTRACT NUMBER 846440 ;
846440 MISSING LAST NAME j
846440 CAR TYPE MUST BE: E, €, M, F, ORL .. X :
846440 DAYS RENTED MUST BE NUMERIC i5 :
846440 MILES DRIVEN UNREASONABLY LOW DAYS: I5 MILES: 000125
(o} Brvor Hepo
999777£1.SINOR TERRY R9Z1126F0500168000153005N
987654SMITH PAUL 69712 13M0300510000500502Y
354679KERBEL NORMAN X930331E10060340000324300Y
264805CLARK JANE $921101F0700561500551200N
233432BEINHORN CATHY B921122M0200123400113402Y
556564HUMMER MARGO RG20815C0B00234500123403Y
677844MCDONALD JAMES 930123£0500423500402300N :
886222V0GEL JANICE D930518F1200634500612302Y :
008632 TOWER DARREN R93042910900700200689300N 1
fo} Valld Trans i '

The Stand-Aloneg Edit Program

f. Valid values for the mileage in and out:

Nonhnumeric mifes in or nonnumeric miles out, respectively.
(2y The mileage reported when the car is turned in cannot be less than the
mileage when the car was taken out; print the message Mieage in less than
mileage out as appropriate.
(3) The number of miles driven must pass a reasonableness test of 10 miles or
more per day; Display the message, Miles driven unreasonably low as appropriate.
g. The mileage rate must be numeric and less than or equal to 50 cents per day; print
the message Mileage rafe out of range for an invalid rate.
h. The value of the insurance field must be either Y or N; prinl the message /nsurance
codea must be Y or Nfor an invalid value,

3. Any record that fails any validity test is to be rejected and omiited from the valid record
file. 1t is quite possible that a given record may contain more than one errof, and all
errors are ta be printed except where noted.

4. Valid records are to be written to a file.

Lreoyr B

The utility of a data validation program is determined by the number of potential
errors that it can detect as well as the clarity of the resulting error messages. A iruly
useful program must check for a variety of errors and explain to the user the natutre
of any errors that are detected. These concepts are illustrated in Figure 8.10. The
incoming transaction fite is shown in Figure 8.104a, the associated error messages (in
conjunction with the programming specificationsj in Figure 8.10b, and the valid
transaction file in Figure 8.10c.

The nuinbered callouts in Figure 8.10 highlight some of the erroneous
transactions and the corresponding error message; for example, the date of April
31 is highlighted in the first transaction of Figure 8.10a as is the corresponding
error message in Figure 8.10b. Three other erroniecus transactions are similarly
highlighted.

The individual error messages are [ully descriptive and list both the contract
number and last name of the associated transaction. In addition, the contents of the
erroneous field(s) are shown to the right of the error message, making it even easier
to correct the invalid trtansaction. Note, 100, that the program can also detect multiple
errors for the same transaction; for example, three errors are identified in the single
transaction for Jones.

B g s 5 ¢ 08 e, i
Py gosatie

The pseudocode in Figure 8.11 begins with statements to obtain the date of execution,
write the heading for the error report, and read the first record. The main loop of the
program is executed next and does the following:
1. The incoming transaction is assumed fo be valid by moving *YES' to a valid-
record-switch.

2. Theincoming transaction is subject to all of the individual validity checks, any
one of which can set the valid-record-switch to ‘NO'. Note, too, that since
each transaction record is subject to every validity check, multiple errors can
be detected for a single transaction.

7

The valid-record-switch is checked to see if the record is still valid, and il 30,
the transaction is written to the valid record file. If, on the other hand, the
record is no longer valid, a blank line is written to the error report, which
double spaces betweei: the error messages for one transaction and the next.

Chepter 8 — Data Validation

Tigures 8.9% Pseudocode

Open files
Get today's date
Write error headings
Read rental file
- -— DD WHILE data remains
Move 'YES' to valid record switch
Validate contract number
Validate last name, first name, and initiat
; Validate car type
i Validate month, day, and non-future date
Validate days rented
Validate mileage in, mileage out, and computed miles
Validate mileage rate
Validate insurance code
- IF valid record switch = 'YES'
i Write valid record
ELSE
Write blank Tine in error report
ENDIF
Read next record

e ENDDO
Close files
Stop run

4. The next record is read and the loop continues until the transaction file is
exhausted.

The pseudocode is concise in that the specific nature of each error check is not
shown; nevertheless it {the pseudocode) is an effective aid in writing the program.

ierarchy Cliart

The hierarchy chart for the data validation program is shown in Figure 8.12. The
module CREATE-VALID-FILE sits at the top of the hierarchy chart and invokes four
subordinates, one of which is PROCESS-RENTAL-RECORDS, which implementis
the main loop of the program.

PROCESS-RENTAL-RECORDS in turn has three subordinates, VALIDATE-
RENTAL-RECORD io perform the individual error checks, WRITE-VALID-RECORD
to write valid transactions to the output file, and READ-RENTAL-RECORD to read
the next transaction. Each of the required validity checks is implemented in its own
module, and all of these modules call 2 commen routine to write an error message.

Fap T ey

The o

[

The completed program is shown in Figure 8.13. It is considerably longer than ihe
tuition billing program of the previocus chapters, but nonetheless straightforward

Fhe Standg-Alone Eadl Program

Hierarchy Chart for Validation Program

GREATE

¥
H
i
i

VALID FILE é
. kiT N !
GET WﬂllTE B REIAD PROCESS
TODAYS ERROR RENTAL RENTAL
DATE HFADINGS RECORD RECORDS
WR|ITE P niaD
VALID RENTAL ;
REGORD RECORD &
| _ I | . ! N o
i | [e | [P [T [T [one) R | e |
NUMIBER e T\’lPE RETUIRNED RETED _o_@i(gr_[_ R.KI\TE i T
CwRr " we | wane T wne | F were [owame 1P were | F wane :
ERROR LINE £RROR LINE ERROR LINE LRRUR LINE ERROR LINE] ERROR LINE ! ERROR LINE ! | ERRGA {INE {
{
feF T Frogram

1 IDENTIFICATION DIVISION.

2 PROGRAM-1D. VALCARSS,

3 AUTHOR. CVV.

4

5 ENVIRONMENT DIVISTON.

6 INPUT-QUTPUT SECTION.

7 FILE-CONTROL.

8 SELECT RENTAL-FILE ASSIGN TO *A:\CHAPTROS\VALCARS.DAT'

9 ORGANTZATION IS LINE SEQUENTIAL. :

10 SELECT VALTD-RENTAL-FILE ~ ASSIGN TO 'A:\CHAPTROS\YALRENT.DAT' ;
11 ORGANTZATION IS LINE SEQUENTIAL. i
12 SELECT ERROR~FILE :
13 ASSIGN TO PRINTER. E
14 :
15 DATA DIVISION.
16 FILE SECTION. ;
17 FO RENTAL-FILE {
18 RECORD CONTAINS 56 CHARACTERS. E
19 G1 RENTAL-RECORD. {
20 05 REN-CONTRACT-NO PIC 9{6). f
21 05 REN-NAME. g
22 10 REN-LAST-NAME PIC X(15). ;
23 16 REN-FIRST-NAME PIC X{10).

file://'A:/CHAPTR08/VALCARS.DAT'
file://'A:/CHAPTR08/VALRENT.DAT

Chapter 8 — [Jata Validatior

Figure .13 ({continued)

24 10 REN-INITIAL PIC X.
25 05 REN-RETURNED-DATE.
26 10 REN-RETURNED-YEAR PIC 9(2).
27 10 REN-RETURNED-MONTH PIC 9(2).
28 88 VALID-MONTHS VALUES 1 THRYU 12.

L2 88 FEBRUARY VALUE 2.

P30 88 30-DAY-MONTH VALUES 4 6 9 11.
31 88 31-DAY-MONTH VALUES 13 57 8 10 12.
32 10 REN-RETURNEG-DAY PIC 9(2).
33 05 REN-CAR-TYPE PIC X.
34 88 VALID-CAR-TYPES VALUES 'E' ‘C' 'M' 'F' L',
35 05 REN-DAYS-RENTED PIC 99.
36 ;88 ZERO-DAYS-RENTED VALUE 0. 5
37 |88 VALID-DAYS-RENTED ~ VALUES 1 THRY 35, ™.
38 05 REN-MILEAGE.
39 10 REN-MILES-IN PIC 9(6). S

L a0 10 REN-MILES-QUT PIC 9{6). E e

[Al 10 REN-MILEAGE-RATE PIC99. /0 wrassis

P& [B8 VALID-MILEAGE-RATES VALUES G0 THRU 50. |
43 05 REN-INSURANCE T
44 |88 VALID-INSURANCE VALUES 'Y’ 'N'.
45
46 FD VALID-RENTAL-FIILE
47 RECORD CONTAINS 56 CHARACTERS.
48 01 VALID-RENTAL-RECORD PIC X(56).
49
50 FD ERROR-FILE
51 RECORD CONTAINS 132 CHARACTERS.
52 01 ERROR-RECORD PIC X(132).
53
54 WORKING-STORAGE SECTION.
55 61 PROGRAM-SWITCHES.
56 05 NO-DATA-REMAINS-SWITCH PIC XXX VALUE SPACES.

L5 88 NO-DATA-REMAINS VALUE 'NO'.

. 58 05 VALID-RECORD-SWITCH PIC X(3).
59 88 VALID-RECORD VALUE 'YES'. ;
60 ;
61 01 VALIDATION-CONSTANTS-AND-CALCS. |
62 05 MILES-PER-DAY~FACTOR PIC 99 VALUE 10, |
63 05 EXPECTED-MILES PIC 9(6). |
64 05 ACTUAL-MILES PIC 9(6). |
o f -3 |
66 01 ERROR-REASONS. |
67 . 05 NON-NUMERIC-CONTRACT-MSG PIC X(40) : :
68 : VALUE 'NON-NUMEREC CONTRACT NUMBER'. i . |
69 | 05 LAST-NAME-MSG PIC X(40) T R |
70 | VALUE "MISSING LAST NAME'. i |
71 . 05 FIRST-MAMEMSG PIC X(40) | |
72 ? VALUE 'MISSING FIRST NAME'. | |
73 | 05 INITIAL-MSG PIC X(40) | |

The Stand-Aione Edit Program

&.1% (continued)

123 05 FILLER

PIC X(8) VALUE SPACES.

74 VALUE 'NON ALPHABETIC INITIAL'.
75 _ 05 CAR-TYPE-MSG PIC X{40)
76 _ VALUE 'CAR TYPE MUST BE: E, C, M, F, OR L*.
77 : 05 MONTH-MSG PIC X(40)
78 f YALUE 'MONTH MUST BE BETWEEN 1 AND 12'.
79 ? 05 DAY-MSG PIC X(40)
80 : VALUE 'INVALID DAY'.
81 ? 05 FUTURE-DATE-MSG PIC X(40)
82 f VALUE 'DATE HAS NOT YET OCCURRED'.
83 ? 05 NON-NUM-DAYS-RENTED-MSG PIC X(40)
84 ! VALUE ‘DAYS RENTED MUST BE NUMERIC'.
85 j 05 ZERD-DAYS-MSG PIC X{40)
86 ? VALUE 'DAYS RENTED MUST BE > ZERQ'.
87 : 05 LEASING-MSG PIC X{40)
88 ; VALUE 'REFER TO LONG-TERM LEASING'. b T)
89 : 05 NON-NUM-MILES-1N-MSG PIC X(40)
90 i VALUE 'NON-NUMERIC MILES IN'.
91 : 05 NON-NUM-MILES-0UT-MSG PIC X(40)
92 ; VALUE *NON-NUMERIC MILES OUT:.
93 : 05 LESS-THAN-MILES-MSG PIC X{40)
g4 ; VALUE 'MILEAGE IN LESS THAN MILEAGE OUT' .
95 f 05 INVALID-MILES-MSG PIC X{40)
96 3 VALUE 'MILES DRIVEN UNREASONABLY LOW'.
97 : 65 NON-NUM-RATE-MSG PIC X(40)
98 VALUE 'NON-NUMERTC MILEAGE RATE'.
99 05 MILEAGE-RATE-MSG PIC X(40)
100 : VALUE 'MILEAGE RATE OUT OF RANGE'.
10t 05 INSURANCE-MSG PIC X(40)
102 ; VALUE "INSURANCE CODE MUST BE Y OR N'.
s e L
104 01 TODAYS-DATE.
C105 05 TODAYS-YEAR PIC 99.
. 106 05 TODAYS-MONTH PIC 99.
N (47 05 TODAYS-DAY PIC 99.
¢ 108
C 109 01 HEADING-ERROR-LINE-ONE.
C110 05 FILLER PIC X(26) VALUE SPACES.
m 05 FILLER PIC X(19)
112 VALUE 'ERROR REPORT AS OF '.
113 05 HDG-DATE,
114 10 HDG-MONTH PIC 99/.
115 10 HDG-DAY PIC 99/.
116 10 HDG-YEAR PIC 99,
117 05 FILLER PIC X{79} VALUE SPACES.
118
119 01 HEADING-ERRGR-LINE-TWO.
120 05 FILLER PIC X{10) VALUE 'CONTRACT #'.
121 05 FILLER PIC XX VALUE SPACES.
122 05 FILLER PIC X{9) VALUE 'LAST NAME'.

Chapter 8 — [ata

Validaftion

ree B.48 (confinued)
P14 05 FILLER PIC X(21)
12 VALUE 'ERROR MESSAGE & FIELD'.
P16 05 FILLER PIC X(21) VALUE SPACES.
P17 05 FILLER PIC X(8) VALUE 'CONTENTS'.
I 05 FILLER PIC X(46) VALUE SPACES.
C129
P130 01 ERROR-LINE.
oo 05 FILLER PIC XX VALUE SPACES.
L1 05 ERR-CONTRACT-NO PIC 9(6).
133 05 FILLER PIC %(4) VALUE SPACES.
P13 05 ERR-LAST-NAME PIC X(15).
{135 05 FILLER PIC XX VALUE SPACES.
P 136 05 ERR-MESSAGE PIC X{40).
D137 05 FILLER PIC XX VALUE SPACES.
t 138 05 ERR-CONTENTS PIC X{23).
. 139 05 FILLER PIC X(38) VALUE SPACES.
140
)| 01 ERROR-DETAILS.
N 05 ERR-MILES-IN-OUT.
§ 143 10 FILLER PIC X(8) VALUE 'IN: '.
D1 10 ERR-MILES-IN PIC 9(6).
L 145 10 FILLER PIC X{6) VALUE ' OUT: '.
© 146 10 ERR-MILES-OUT PIC 9(6).
147 05 ERR-RETURNED-DATE.
148 10 ERR-RETURNED-MONTH-DAY.
L 149 15 ERR-RETURNED-MONTH PIC 99.
- 150 15 ERR-RETURNED-DAY PIC /99.
L} 10 ERR-RETURNED-YEAR PIC /99.
L152 05 ERR-EXPECTED-MILES.
Pos3 10 FILLER PIC X(6) VALUE 'DAYS: ‘.
154 10 ERR-DAYS-RENTED PIC 99,
i 155 10 FILLER PIC X(9) VALUE ' MILES: *.
156 10 ERR-MILES PIC 9(6).
L7
[158 PROCEDURE DIVISION.
© 159 000~CREATE-VALID-RENTAL-FILE.
£ 160 ' OPEN INPUT RENTAL-FILE ‘
{ 61 ! OUTPUT VALID-RENTAL-FTLE —-—o .
P 162 . ERROR-FILE. | T
L 163 PERFORM 100-GET-TODAYS-DATE.
L 164 PERFORM 200-WRITE-FRROR-HEADINGS.
b 165 PERFORM 300-READ-RENTAL-RECORD.
166 PERFORM 400-PROCESS-RENTAL-RECGRDS
C167 UNTIL NO-DATA-REMAINS.
168 CLOSE RENTAL-FILE
© 169 VALID~RENTAL-FILE
170 ERROR-FILE.
171 STOP RUN.
172
173 100-GET-TODAYS-DATE.

e, o s s 1

The Stand-Alone Edit Program

Figuve 3.93 (continued)

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
181
192
193
194
195
L 196
© 197
© 198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

| ACCEPT TODAYS-DATE FROM DATE. |-~

MOVE TODAYS-MONTH TO HDG-MONTH.
MOVE TODAYS-DAY TO HDG-DAY.
MOVE TODAYS-YEAR TO HDG-YEAR.

200-~WRITE-ERROR-HEADINGS.

MOVE HEADING-ERROR-LINE-ONE TO ERROR-RECORD.
WRITE ERROR-RECORD

AFTER ADVANCING PAGE.
MOVE HEADING-ERROR-LINE-TWO TO ERROR-RECORD
WRITE ERROR-RECORD

AFTER ADVANCING 2 LINES,
MOVE SPACES TO ERROR-RECORD.
WRITE ERROR-RECCRD.

300-READ-RENTAL-RECORD.

READ RENTAL-FILE .
AT END MOVE ‘ND® TO NO-DATA-REMAINS-SWITCH
END-READ.

400-PROCESS-RENTAL-RECURDS .

VOVE YES" 10 WILID-RECORD-SUITCH. |
PERFORM 500-VALIDATE-RENTAL-RECORD.
PERFORM 600-WRITE-VALID-RECORD.

PERFORM 300-READ-RENTAL-RECORD.

500-YALIDATE-RENTAL-RECORD.

PERFORM 510-VALIDATE-CONTRACT-RO.
PERFORM 520-VALIDATE-NAME.

PERFORM 530-VALIDATE-CAR-TYPE.
PERFORM 540-VALIDATE-DATE-RETURNED.
PERFORM 550-VALIDATE-DAYS-RENTED.
PERFORM 560-VYALIDATE-MILES-DRIVEN
PERFORM 570-VALIDATE-MILEAGE-RATE.
PERFORM 580-VALIDATE-INSURANCE.

510-VALIDATE~CONTRACT-NO.

| IF REN-CONTRACT-NO_NOT NUMERIC -~
MOVE NON-NUMERIC-CONTRACT-MSG TO FRR-MESSAGE
MOVE REN-CONTRACT-NO TO ERR-CONTENTS
PERFORM 599-WRITE-ERROR-LINE

END-IF.

520-VALTDATE-NAME .

IF REN-LAST-NAME = SPACES
MOVE LAST-NAME-MSG TO ERR-MESSAGE
MOVE SPACES TO ERR-CONTENTS
PERFORM 599-WRITE-ERROR-LINE

END-IF.

IF REN-FIRST-NAME = SPACES

Chapter 8 — [Data Validatior

sure §.1% (continued)

224 MOVE FIRST-NAME-MSG TO ERR-MESSAGE
P22 MOVE SPACES T0 ERR-CONTENTS e i it
. 226 PERFORM 599-WRITE-ERROR-LINE e
e END-TF. P
s TP _RENCINTTIAL o7 ALPHABETIC
.29 MOVE INITIAL-MSG TO ERR-MESSAGE
230 MOVE REN-INITIAL TO ERR-CONTENTS
P23l PERFORM 599-WRITE-ERROR-LINE
232 END-IF,

L 233

Lo234 530-VALIDATE-CAR-TYPE.

P 235 IF NOT VALID-CAR-TYPES

236 MOVE CAR-TYPE-MSG TO ERR-MESSAGE
2y MOVE REN-CAR-TYPE TO ERR-CONTENTS

238 PERFORM 599-WRITE-ERROR-LINE

239 END-IF.

240

241 E40-VALIDATE-DATE-RETURNED.

2. TF VALID-MONTHS
243 - IF 30-DAY-MONTH AND REN-RETURNED-DAY <= 30 OR

284 ; 31-DAY-MONTH AND REN-RETURNED-DAY <= 31 OR

. 245 g FEBRUARY AND REN-RETURNED-DAY <= 29

L 248 } IF REN-RETURNED-DATE > TODAYS-DATE

L2y ﬁ MOVE FUTURE-DATE-MSS TO ERR-MESSAGE

. 248 | MOVE REN-RETURNED-MONTH TO ERR-RETURNED-MONTH
249 : MOVE REN-RETURNED-DAY TO ERR-RETURNED-DAY
P250 : MOVE REN-RETURNED-YEAR TO ERR-RETURNED-YEAR

251 | MOVE ERR-RETURNED-DATE TO ERR-CONTENTS

252 PERFORM 599-WRITE-ERROR-LINE §

253 f END-IF Lo
254 . ELSE 7
., 255 i MOVE DAY-MSG TO ERR-MESSAGE
Lo256 ; MOVE REN-RETURNED-MONTH TO ERR-RETURNED-MONTH
257 } MOVE REN-RETURNED-DAY TO ERR-RETURNED-DAY L
. 258 § MOVE ERR-RETURNED-MONTH-DAY TO ERR-CONTENTS ‘
L 259 i PERFORM 599-WRITE-ERROR-LINE
©260 . END-IF
261 'ELSE
L 262 MOVE MONTH-MSG TQ ERR-MESSAGE
P263 | MOVE REN-RETURNED-MONTH TO ERR-CONTENTS
- 264 | PERFORM 599-WRITE-ERROR-LINE
265 |END-TF.
| 266 - S R
. 267 550-YALIDATE-DAYS-RENTED.

. 268 IF REN-DAYS-RENTED NOT NUMERIC

269 MOVE NON-NUM-DAYS-RENTED-MSG TO ERR-MESSAGE
L270 MOVE REN-DAYS-RENTED 10 ERR-CONTENTS
Lo PERFORM 599-WRITE-ERROR-LINE
Loo212 ELSE

B YE IF ZERO-DAYS-RENTED

The Siand Afone Edit Program

3 N

{continued)

274
215
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
. 320
P32
322
323

MOVE ZERO-DAYS-MSG TO ERR-MESSAGE
MOVE REN-DAYS-RENTED TO ERR-CONTENTS
PERFORM 599-WRITE-ERROR-LINKE
ELSE
IF NOT VALID-DAYS-RENTED
MOVE LEASING-M5G TO ERR-MESSAGE
MOVE REN-DAYS-RENTED TO ERR-CONTENTS
PERFORM 599-WRITE-ERROR-LINE
END-TF
END-IF
ENG-IF.

560-VALIDATE-MTLES-DREVEN.
IF REN-MILES-IN NOT NUMERIC
MOVE NON-NUM-MILES-IN-MSG TO ERR-MESSAGE
MOVE REN-MILES-IN TG ERR-CONTENTS
PERFORM 599-WRITE-ERROR-1 INE
ELSE
IF REN-MILES-OUT NOT NUMERIC
MOVE NON-NUM-MILES-OUT-MSG TO ERR-MESSAGE
MOVE REN-MILES-OUT TO ERR-CONTENTS
PERFORM 599-WRITE-ERROR-LINE
ELSE
IF REN-MILES-IN < REN-MILES-QUT
MOVE LESS-THAN-MILES-MSG TO ERR-MESSAGE
MOVE REN-MILES-IN TO ERR-MILES-IN
MOVE REN-MILES-OUT TO ERR-MILES-OUT
MOVE ERR-MILES-IN-QUT TO ERR-CONTENTS
PERFORM 599-WRITE-ERROR-LINE
ELSE
COMPUTE EXPECTED-MILES =
MILES-PER-DAY-FACTOR * REN-DAYS-RENTED
'SIZE ERROR DISPLAY 'SIZE ERROR EX
END-COMPUTE
COMPUTE ACTUAL-MILES =
'REN-MILES-IN - REN-MILES-OUT

| SIZE ERROR DISPLAY 'SIZE ERROR ACTUAL MILES'

END-COMPUTE

IF ACTUAL-MILES < EXPECTED-MILES
MOVE INVALID-MILES-MSG TO ERR-MESSAGE
MOVE REN-DAYS~RENTED TGO ERR-DAYS-RENTED
MOVE ACTUAL-MILES TO ERR-MILES
MOVE ERR-EXPECTED-MILES TO ERR-CONTENTS
PERFORM 59%3-WRITE-ERROR-LINE

END-IF

END-IF
END-TIF
END-TF.

§70-VALIDATE-MILEAGE-RATE.

ERROR EXPECT MILES':

¥

http://mTl.ES

Chapter 8 — Daia Validation

Hloure {continued)
324 IF REN-MILEAGE-RATE NOT NUMERIC
325 MOVE NON-NUM-RATE-MSG TO ERR-MESSAGE
326 MOVE REN-MILEAGE-RATE TG ERR~CONTENTS
327 PERFORM 599-WRITE-ERROR-LINE
328 ELSE
329 IF NOT VALID-MILEAGE-RATES
330 MOVE MILEAGE-RATE-MSG TG ERR-MESSAGE
EX)] MOVE REN-MILEAGE-RATE TO ERR-CONTENTS
332 PERFORM 598-WRITE-ERROR-LINE
333 END-IF
334 END-IF.
335
336 580-VALIDATE- INSURANCE .
337 TF NOT VALID- INSURANCE
338 MOVE INSURANCE-MSG TO ERR-MESSAGE
(339 MOVE REN-INSURANCE TO ERR-CONTENTS
340 PERFORM 539-WRITF-ERROR-1 INE
341 END-TF,
342 - B - e St mime iiee e s et mninn e e e e 1
343 - '599-WRITE-ERROR-LINE.
344 MOVE ‘NO ' TO VALID-RECORD-SWITCH.
345 | MOVE REN-CONTRACT-NO TO ERR-CONTRACT-NO. |
346 | MOVE REN-LAST-NAME TO ERR-LAST-NAME. " N
347 | MOVE ERROR-LINE TO ERROR-RECORD, i o
348 © WRITE ERROR-RECORD. i
o R e]
350 600-WRITE-VALID-RECORD. =~
351 | IF VALID-RECORD _
352 I MOVE RENTAL-RECORD TO VALID-RENTAL-RECORD
353 ! WRITE VALID-RENTAL-RECORD -
354 _ELSE
355 . MOVE SPACES TO ERROR-RECORD
356 L WRITE ERROR-RECORD
357 END-IF.

H
P

and easy to follow. The logic in the program parallels that of the pseudocode just
developed, whereas the paragraphs in the Procedure Division correspond one to
one with the modules in the hierarchy chart, The program complies completely
with the processing requirements and alse illustrates the various COBOL features

presented earlier. Consider:

1. The use of condition names within the FD for RENTAL-RECORD (e.g., lines
28-31, 34, 36-37, etc.) to define valid values for the various input fields.

2. A table of error messages in lines 66-102; grouping the error messages
in this way makes it easy to determine precisely which error checks
are implemented. It also facilitates uniform formaiting of the varicus

error messages.

The Stand-Afone Edit Program

3.

jon]

The ACCEPT statement inline 174 to obtain the system date; also the definition
of TODAYS-DATE in WORKING-STORAGE io hold the date after it is vead.

. The MOVE staiement to initialize VALID-RECORD-SWITCH to 'YES' for each

incoming transaction record (line 195). A second MOVE statement in the
WRITE-ERROR-LINE paragraph (line 344) to reset the switch to ‘NO’ if the
current rransaction fails any one of the validity tests.

. Various class tests for numeric and alphabetic data as in lines 211 and 228.

. Anested T statement in lines 242-265 to implement the various types of date

validation. A second nested IF statement in lines 287 through 321 performs
the various checks on the incoming, outgoing, and computed mileage.

. SIZE ERROR clauses within the COMPUTE statements, lines 306 and 310, in

anticipation of unexpectedly large fields.

R L T el P LR e =y R Y T ¥ - wer o -3 P
. The IF statement in lines 351-357 that determines whether the transaction is

wrilten 1o the valid fiie. Note, too, the ELSE clause within this IF statciment,
which writes a blank linc for every invalid record, which in turn puts a blank
line before cach group of invalid transactions in the eiror repart,

COBOL-85 introduced two additional reiational conditions into the IF staternant,
GREATER THAN OR EQUAL TO and LESS THAN OR EQUAL TO; these
conditions were not allowed in COBOL-74, which used NOT LESS THAN as
the equivalent of GREATER THAN OR EQUAL TO and NOT GREATER THAN
for LESS THAN OR EQUAL TO.

COBOL-85 enables the testing of upper- and/or lowercase letters
through expansion of the alphabetic class test. In COBOL-85 the ALPHABETIC
test is true for uppercase letters, lowercase letters, and the space characler;
the ALPHABETICIPPER test is true for uppeicase letters and the space
character; and the ALPHABETIC-LOWER test is true for lowercase letters
and the space character. There were no UPPER/ALOWER tests in COBOL-74
and the ALPHABETIC test was true only for uppercase letters and space
characters.

The most signiticant change, however, is the intfroduction of the END-IF
scope termipator, which did not exist in COBOL-74. We have already saen
how the scope terminator gliminates the column-73 problem in conjunction
with a “rnissing period” (page 182) and how it eliminales the need for the
NEXT SENTENCE clause (Figure 8.7). The scope terminator also faciliates
the nesting of conditional statements as shown in Figure 8.14.

Consider, for exarnple, the flowchart of Figure 8.14a, and the contrasiing
implementations in COBOL-85 and COBOL-74 in Figures 8.14b and 8.14c¢,
respactively. The END-IF terminator transforms a conditionat statement to an
imperalive (complete) statement, making it possible to exaress the requlred
logic as a single IF statement in COBOL-85. By contrast, the COBOL-74
implementation reqguires an adgitional PERFORM statement and s more
difficutt to follow.

Chapter 8 -

ata Validation

Figure 8.14 Limitations of COBOL-74

VALID
RECORD-SW ?

FALSE

TRUE

ADD 170
MALE-COUNTER

{m} Flowohorl

IF VALID-RECORD-SW = 'Y!
IF SEX = 'M'

ADD 1 TQ MALE-COUNTER

END-TF
IF INCOME > 50000

ADD 1 TO BIGH-INCOME-CTR

END-IF

END-IF.

IF VALID-RECORD-SW = "Y'

PERFORM DO-MORE-TESTS.

DO-MORE-TESTS.
IF SEX = 'M'

ADD 1 TO MALE-COUNTER.

IF INCOME = 50000

ADD 1 TO HIGH-ENCOME-CTR.

s,

INGOME
»50,006 ?
ADD1TO
HIGH-INCGME-
COUNTER
— g
S

rmmary

Posdnty fo Homembey

Data validation is a critical portion of any system, as the output produced
by any program is cnly as good as its input.

Data validation is often done in a stand-alone edit program as opposed to
the reporting program that processes the data; that is, the valid transaction
file produced as output by the edit program becomes the input file to the
reporting program.

The ACCEPT statement is used to obtain the date of execution for use in
implementing various types of date choacks.

There are four types of conditions in the IF statement: relation, class, sign,
and condition name (88-level entries).

[N .

Any two simple conditions may be combined io form a compound condition
using the fogical operators AND and OR. An il statement may alsc use
implied conditions, in which the subject and/or operation is understood.

Anested IF staiement contains two or more i statements within a sentence.
The scope of the condition in the iF statement is terminated by the ELSE

clause, the END-IF scope terminator, and/for a period. The scope terminator
is opticnal but strongly recommencded in all instances.

Indentation within an IF statement is not required by the compiler but
recommended to facililate the programmer’s interpretation.

The NEXT SENTENCE clause direcis controi io the statement immediately
following the period and is required (in COBOL-74) to impiement certain
types of nested conditional statements. The END-IF scope terminator,
introduced in COBOL-85, eliminates the need for the NEXT SENTENCE
clause in all instances.

Hoy Words pad Concepls

88-level entry Impiied condition
Aiphabetic test Limit check

Class iest Nesled IF
Completeness check MNumeric test
Compound test Range check
Condition name Reasonableness check
Consistency check Scope terminator

Data validation Sequence check

Date check Sign test

Edit program Subscript check

Existing code check

]
FLr

.

Chapter & — Darg Validation

e Blarnents

ACCEPT END-TF

AND IF

DATE NEXT SENTENCE
DAY NOT
DAY-OF-WEEK OR

ELSE TIME

1. Incoming data shoutd be prior to being used in computations.
2. The valid transaction file produced as output by an edit programis _
to a reporting program
3. A test ensures that numeric fields do in fact contain numeric
data.
4. A check lests that a value does not exceed a designated upper
or lower bound.
5 A ... checkverifies that all required fields are present.
6. In evaluating a compound condition, ANE) comes (beforg/after) OR.
7. A condition name is also known as an -teval entry.
8 The _ clause direcls controt to the statement
immediately following the period.
9 The_ scope terminator eliminates the nesd for the NEXT SENTENCE
clause.
10. The statement, ACCEPT DATE-WCRK-AREA FROM DATE requires spacification of
a user-defined work area in the form,
TRUE/FALSE
1. Output from a reporting program is typically input to an edit program.
2. The numeric class test can be applied to alphanumeric data.
3. The alphabetic class test can be applied to alphanumeric data.
4. The numetic class test can be applied to alphabetic data.
5. The alphabetic class test can be applied to numeric data.
6. A nested IF statement contains two or more IF statemenis within a singie sentence.
7. The NEXT SENTENCE clause may be associated with either an IF or an ELSE.
8. The END-IF scope terminator gliminates the need for a NEXT SENTENCE clause.
9. The ACCEPT stalement is used to obtain the date of execution.
10. DATE s a COBOL reserved word, containing the date of execution in the form
yymmdd.
11. DAY and DATE produce ihe same results,
12, TIME returns a six-digit numeric field, indicating the time of program execution.

blems

. Recode the following statements to include scope terminators and proper indentation

with the ELSE clause indented under the relevant IF.
a. IFA>B IFC>D MOVEETOF,
ELSE MOVE G TO H.
b.IFA>B IFC>D MOVEETOF,
ELSE MOVE G TO H, ELSE MOVE X TO Y.
c. FA>B,IFC>D MOVEETOF,
ADD1TOE, ELSEMOVE G TO H,
ADD1TOG.
d IFA=B8 MOVEXTOY, MOVE ZTO W,
ELSEIFC>DMOVE 1 TON,

FLSEMOVE 2TO Y, ADD3TO Z.

. Given the nested IF statement;

IF SEX = 'H!'
PERFORM PROCESS-MALE-RECORD
ELSE
IF SEX = 'F'
PERFORM PROCESS-FEMALE-RECORD
ELSE
PERFORM WRITE-ERROR-MESSAGE
END-IF
END-IF.

and the logically equivalent code:

IF SEX = ‘M’

PERFORM PROCESS~MALE-RECORD
END-TF.
IF SEX = 'F!

PERFORM PROCESS-FEMALE-RECORD
END-IF.

IF SEX NOT = *M' AND SEX NOT = 'F!
PERFORM WRITE-ERROR-MESSAGE
END-IF.

a. Discuss the relative efficiency of the two alternatives.

b. What would be the effect of changing AND to OR in the third IF of the second set
of statements?

c. What would be the effect of removing the word ELSE wherever it occurs in the
first set of IF statements?

. Are the two IF statements logically equivalent?

Statement 1:
IFA>B
IFC>D
ADD 1 TO X
ELSE
ADD 1 TO Y
END-IF
END-TF.

o

Chapter 8 — Data Validation

Statement 2:
iFA>BANDC > D
ADD 1 TQ X
ELSE
ADD 1 TO Y
END-TF.

Try the following sets of vaiues to aid in answering the question:
a. A=5B8=1C=10,0= 14
b. A=1,B=5C=10D= 15

Company XYZ has four corporate functions: manufacturing, marketing, financial,
and administrative. Each function in turn has several departments, as shown:

FRUTIOR DEFRRTIRENTS
MANUFACTURING 10,12, 16-3G, 41, &6
MARKETING 6-9, 15, 31-33
FHNANCIA. 60-62, 75
ADMINISTRATIVE 1-4.78

Estabiish condition-name eniries so that, given a vatue of EMPLOYEE-DEPARTMENT,
you can delermine the function. include an 88-ievel entry, VALID-CODES, {o verify
that the incoming department is indeed a valid department (any departmernt
number not shown is invalid).

Given the following COBOL definitions:

05 LOCATION-CODE PIC 99.
88 NEW-YORK VALUE 10.
88 BOSTON VALUE 20.
88 CHICAGO VALUE 30.
88 DETROIT VALUE 40,
88 NORTH-EAST VALUES 10 20.

Are ihe following entries valid as the condition portion of an IF statement?
IF LOCATION-CODE = "1

. [F LOCATION-CODE = 40

IF NEW-YORK

IF LOCATION-CODE = 10 CR 20 OR 30

(F NEW-YORK OR BOSTON OR CHICAGO

IF DETROIT = 40

Would the following be valid examples of MOVE staiements?
g. MOVE 20 TO BOSTON,

h. MOVE 20 TO LOCATION-CODE.

i. MOVE '20' TO LOCATION-CQODE.

Given the fcllowing pairs of IF statements, indicate whether the statements in each
pair have the samea effect;
a IFA>BORC>DANDE=F
IFA>BOR(C>DANDE=F)
b.FA>BORC>DANDE=F
IF(A>BORC>DYANDE=F
c. FA>BORA>CORA>D
IFA>BORCORD
d IFA>B
IFANOT <BORANOT =8B

~ o a0 T oW

Problems

7. Consider the following code, intended to calculate an individual's age from a

o

stored birth date and the date of execution.

01 EMPLOYEE-RECORD.
05 EMP-BIRTH-DATE.
10 BIRTH-MONTH PIC 99.
10 BIRTH-YEAR PIC 99.
01 DATE-WORK-AREA.

05 TODAYS-MONTH PIC 99.
05 TODAYS-DAY PIC 99.
05 TODAYS-YEAR PIC 99.

PROCEDURE DIVISION.
ACCEPT DATE-WORK-AREA FROM DATE.

COMPUTE EMPLOYEE-AGE = TODAYS-YEAR - BIRTH-YEAR
+ TODAYS-MONTH - BIRTH-MONTH.

There are lwo distinct reasons wihy the code will noi work as intended. Find and
corract the arrors,

imolement the logic inFigure 8.18 with and without scope terminators, corresponding
to the imptemertations in COBOL-74 and COBOL-85. Do you see any distinct
advantages to the latter compiier?

Bigure 8.1% Flowcharts for Problem 8

|
|

i

FALSE

STATEMENT,

STATEMENT, STATEMENT,,

STATEMENT,

Cverview

PERFORM
TEST BEFORE/TEST AFTER
Indine Perform
Performing Sections
PERFORM THRU

Programming Tip: Perform Par

READ
False-Concition Branch
READ INTO
WRITE FROM
INITEALIZE
String Processing
INSPECT
STRING
UNSTRING
Reference Modification
ACCEPT
Duplicate Data Names
Qualification
MOVE CORRBESPONDING
The Car Billing Program
Frogramming Specifications
Program Design
The Completed Program
Limitations of COBOL-74
Suramary
Fiil-in
True/fFalse
Problems

O

Chaplter 8 — More About the FProcedaure Division

.....

¥

L

vy

After reading this chapter you will be able to:

Differentiate between the DO WHILE and DO UNTIL structures; describe
how each is implemented in conjunction with a PERFORM statement.

Define an in-line perform and a falge-condition branch; explain how the
combination of these features eliminates the need for a priming read
statement.

Differentiaie between a paragraph and a section.

Code the READ INTO and WRITE FROM statements in the Procedure
Division.

Use the INITIALIZE statement.

Perform basic string processing operations through use of the INSPECT,
STRING, and UNSTRING statements.

Define a duplicate data name and use qualification to eliminate ambiguity;
describe the use of the MOVE CORRESPONDING staternent.

This chapter completes the two-program sequence begun in Chapter 8 by
developing the reporiing program for the valid transaction file. The program is
also intended to illustrate a series of advanced Procedure Division statements
that are presented in the chapter. Many of the statements are new to COBOL-85
and were nct available in COBOL-74,

We begin with the PERFORM statement and include material on the TEST
BEFORE and TEST AFTER ciauses which correspond to the DO WHILE and DO
UNTIL constructs of structured programming. The in-line perform is presented,
as is the THROUGH clause, to perform multipie paragraphs; the use of sections
in lieu of paragraphs is aiso covered. The READ INTO and WRITE FROM
clauses are introduced to combine the effects of a MOVE statement with the
indicated /O operation. The ACCEPT statement is expanded to include the
DAY-OF-WEEK clause, and the INITIALIZE statement establishes values for
multiple data names in a single statement. The INSPECT, STRING, and UNSTRING
statements are introduced to implemaeant string processing operations, Duplicate
data names, qualification, and the MOVE CORRESPONDING statement are
introduced as well.

TFORM

The program at the end of the chapter is designed very differently from the
programs presented thus far as it uses an in-line perform and a false-condition
branch to eliminate the priming read used in earlier programs. The program also
makes extensive use of scope terminators throughout the Procedure Division.

A simple form of the PERFORM statement has been used throughout the text to
implement the iteration construct of structured prograimming:

PERFORM procedure-name UNTIL condition
The condition in the UNTIL clause is tested before the procedure is executed, and if
the condition is nat met, condrol is iransferred 1o the designated procedure. When
the procedure has completed execution, the condition is retested, and if it (the
condition) is still not met, the procedure is executed a second time. The process
conlinues indefinilely until the condition is finally satisfied.

In actuality the PERFORM statement is considerably more complex with many
addizional options. Censider:

I I L T
THROUG
PERFORM ’pr‘oce:iure—name—] 4"”4;*” procedure - name - 2 I
| | THRY
i
'BEFORE]
[NITH TEST I—— H UNTIL condition-1

!
[imperative-statement - 1 END - PERFORM|

Ty,

R LHE/VEST AVTERE T
The optional TEST BEFORE/TEST AFTER clause is explained in conjunction with
Figure 9.1. Figure 9.1a depicts the DO} WHILE structure that has been used

figurs 90F The dteration Structure

-
CONDITION?

FALSE

CONDITION?

() B0 UYL Conmtruet

Chapter 8 - Muore Aboul (he Pieoedure Divigion

throughout the book, while Figure 9.1b illustrates the slightly different DO UNTIL
structure. The difference between the two (aside from the semantics of switching
the true and false branches) pertains to the sequence in which the condition and
statement are executed.

The DO WHILE structure of Figure 9.14 tests the condition before executing
Block A; the DO UNTIL structure in Figure 9.1b tests the condition afier executing
Block A. The DO WHILE structure does not execute Block A if the condition is
initiaily false, whereas DO UNTIL guarantees that Block A is executed at least once.

The PERFORM statement includes the TEST BEFORE and TEST AFTER phrases,
correspondinig o a DO WHILE and DO UNTIL, respectively. Specification of TEST
BEFORE tests the condition before performing the procedure, and corresponds to
the DO WHILE. Specification of TEST AFTER performs the procedure and then tests
the condition, and corresponds to a DO UNTIL. Omission of both TEST BEFORE
annd TEST AFTER (as has been done throughout the text) defaults to TEST BEFORE.

frn-ine BERSORM

The procedure-name is enclosed within brackets within the syntax of the PERFORM
statement and thus s an optional entry. Omission of the procedure name produces
an in-line perform, where the statements to be executed appear immediately below
the PERFORM statement itself, as opposcd to the out-of-line execution of a
designated procedure elsewhere in the program. For example:

PERFORM
Statement 1
Statement 2

Other statements to be executed

END-PERFORM

An in-line perform functions just as a regular PERFORM, except that the
statements to be exccuted are contained entirely within the statement{—that is,
between PERFORM and END-PERFORM. Omission of the procedure name (that is,
specification of an in-line perform) requires the END-PERFGRM delimiter;
conversely, the END-PERFORM may #otbe specified in conjunction with performing
a paragraph.

4

raviorming Sections

®

The procedure name in the PERFORM statement can be either a paragraph or a
section. A paragraph consists of one or more sentences, whereas a section is made
up of one or mare paragraphs. Paragraph headers are required to begin in the A-
margin (columns 8-11), whereas sentences begin in the B-margin {columns 12-72).
The compiler recognizes the end of ene paragraph when it senses the beginning of
the next paragraph—that is, when it finds the next entry in the A-margin. Section
headers also hegin in the A-margin and are distinguished from paragraph headers
by the reserved word SECTION.

When a paragraph is performed, control is transferred to the firsi sentence in
that paragraph and remains in that paragraph until the next paragraph is reached.
In similar fashion, i the procedure name in a PERFGRM statement refers to a
section (rather than a paragraph), control is transferred to the first paragraph in
that section and remains in that section until the next section is reached.

The authors suggest that you avoid sections altogether (see tip on page 233);
the material is included here because sections appear in many older COBOL
DIOgIams,

PERFORM

The motivation behind this guideline is best demonstrated by example. Given the following Procedure
Division, what will ba the final value of X?

PROCEDURE DIVISION.

MAINLINE SECTION.
MOVE ZERO TO X. :
PERFORM A. :
PERFORM B. g
PERFORM €.

PERFORM B.
STOP RUN.

A SECTION.
ADD 1 TO X,

ADD 1

—

L]
p

Y

ADD 1 TO AL
ADD 1 TO X.

The correct answer is 7, not 4. A common error made by many programmers is a misinterpretation ot the
statement PERFORM A. Since A is a section and nol a paragraph, ihe statement PERFORM A invokes every
paragraph in that section, namely, paragraphs B, C, and D, i addilion to the unnamed paragraph immediately
after the section haader.

A PERFORM stalemeit specifies a procedurs, which is either a secticn or & paragraph, yet there is no
way of telling the nature of the procedurs from the PERFGRM statement itself. Consequently, when a section
is specified as a procedure, the unfortunate result is oo often execution of unintended codse. Can't happen?
Did you correctly compute the value of X?

The THROUGH (THRU) clause executes all statements betiween the specified
procedure names. The procedures may be paragraphs or sections, but procedure-
name-1 must be physically before procedure-nare-2 within the COBOL program.

A cominon practice is to make procedure-name-2 a single-sentence paragraph
consisting of the word EXIT. The EXIT statement causes no action to be taken; its
function is to delineate the end of the PERFORM. Consider:

PERFORM PROCESS-RECORDS THRU PROCESS-RECORDS-EXIT.

PROCESS-RECORDS .

Chapter 9 — More About the Pracedure Division

PROCESS-RECORDS-EXIT,
EXIT.

The only practical reason to use a PERFORM THRU statemtent with an EXIT
paragraph is to enable downward branching to the EXIT statement depending on a
condition within the paragraph. Although an argument could be made for this
usage in limited instances, the need for such statements as GO TO PROCESS-
RECORDS-EXIT should generally be avaided.

‘The READ statement includes two important clauses—INTO and NOT AT END—that
were not previously presented. Consider:
READ file-niame RECORD [INTO identifier]
[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

Figaure 5.2 Structure of a COBOL Program

READ INPUT-FILE

AT END MOVE 'NO' TO DATA-REMAINS-SWITCH.
PERFORM PROCESS-RECORDS

UNTIL DATA-REMAINS-SWITEH = 'NO‘.

PROCESS-RECORDS.,

READ INPUT-FILE
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH.

(o) Priming Pead

é PERFORM UNTIL DATA-REMAINS-SWITCH = 'NO'
: READ INPUT-FILE
AT END
MOVE ‘NO* TO DATA-REMAINS-SWITCH
NGT AT END

; END-READ ;
i END-PERFORM. ;

s

it Faige Conditlon Branch with -lne Parform

READ

wah Branah _ ‘ ‘) R

The NOT AT END clause specifies an action for the false branch of a conditional
statement; it is commeonly used is in conjunction with a scope terminator and an in-
line perform to eliminate the priming read, as shown in Figure 9.2.

The choice between the priming read in Figure 9.2a and the equivalent logic
in Figure 9.2b is one of personal preference. The earlier listings (e.g., the tuition
billing program in Chapter 5) used the priming read because it was required in
COBOL-74 as the earlier compiler had neither the talse-condition branch nor the
in-line perform. Many programmers are, in fact, so accustomed to the priming read
that they continue to use it even though it is no longer necessary, We prefer the in-
line perform and false-condition branch, but both techniques are equally accepiable.

The READ INTO phrase causes the input record Lo be stored in two places: in the
I/O area of the designated file and in the identifier name specified in the INTO
phrase in Working-Storage. The statement is iflustrated in Figure 9.3, where the
input data are available in both EMPLOYEE-RECORD and WS-EMPLOYEE-RECORD.
READ INTO is equivalent to the combination of a READ statement and a MOVE
statement as shown:

READ EMPLOYEE-FILE
AT END
MOVE 'NO' TO DATA-REMAINS-SWITCH
NOT AT END

%3 The READ INTO Statement

FD EMPLOYEE-FILE i
DATA RECORD TS5 EMPLOYEE-RECGRD. é
3 01 EMPLOYEE-RECORD PIC X(60). %

WORKING-STORAGE SECTION.

01 FILLER PIC X{14) VALUE 'WS BEGINS HERE'.
01 WS-EMPLOYEE-RECORD.
05 EMP-NAME PIC X{25)}.

PROCEDURE DIVISION.

: READ EMPLOYEE-FILE INTO WS-EMPLOYEE-RECORD :
! AT END
MOVE ‘NG' TO DATA-REMAINS-SWITCH
NOT AT END
PERFORM PROCESS-THIS-RECORD
END-READ. 5

Chaptler-8 — More About the Procedurs Division

PERFORM PROCESS-THIS-RECORD
END-READ.

(5}
MOVE EMPLOYEE-RECORD TD WS-EMPLOYEE-RECORD,

The advantage of the READ INTO statement is in debugging. If a program
ends prematurely, the first task is to identify the record being processed ar the
instant the problem occurred. The FD area is difficult to find, and identification of
the specific logical record is further complicated by considerations of blocking.
Working-Storage, however, is easy to find because of the literal WS BEGINS HERE.
The technique is not sophistcated, but it does work. Once Working-Storage is
found, you can identify the record in question as well as the values of all other data
names defined in Working-Storage.

The WRITE FROM statement is analogous to READ INTO in that it combines the
cffects of a MOVE and a WRITE into a single statement. The general format of the
WRITE statement is:

WRITE record-name [FRGM 1dent1‘f1’er-ll

! [[identifier- 2L [LINE 1”
[| L
{QEFORE ADYANCING |integer J s)
(AFTER Jmnemonmwname}

E S

A single WRITE FROM statement, for example,

WREITE PRINT-LINE FROM HEADING-LINE
AFTER ADVANCING PAGE.

is equivalent to the combination of a MOVE and a WRITE statement:

MOVE HEADING-LINE TO PRINT-LINE.
WRITE PRINT-LINE
AFTER ADVANCING PAGE.

WRITE FROM can be used throughout a program to write heading, detail, and total
lines.

TIALIZE The INITIALIZE statement sets multiple data names to initial values in a single
statement, Consider:

INITIALIZE [identifier-1] . . .

ALPHABETIC
ALPHANUMERIC . .
— 1|:If3ﬂt1ﬁer—21
REPLACING <+ NUMERIC DATA BY {_ . e
— iliteral-1 f

ALPHANUMERIC - EBITED
NUMERIC-EDITED

ring Procesging

The brackets indicale that all parameters are optional; that is, INITIALIZE in and of
itself is a valid statement that initializes all nuimeric items in a program to zeros, and
ail nonnumeric items to spaces. You can also restrict the INITIALIZE statement to
ane (data name or more,) initialize only specific categories of data names, and/or
initialize (o values other than zeros or spaces. Thus given the COBOL fragment:

G1 GROUP-ITEM.

05 NUMERIC-FIELD-1 PIC 9{4}.
05 NUMERIC-FIELD-Z PIC 9{4).
05 ALPHANUMERIC-FIELD-1 PIC X(15).
05 ALPHANUMERIC-FIELD-2 PIC X{20).

The staternent INFITALIZE GROUP-ITEM is equivalent to:

MOVE ZEROS TO NUMERIC-FIELD-1.
MOVE ZERDS TO NUMERIC-FIELD-Z.
MOVE SPACES TG ALPHANUMERIC-FIELD-1.
MOVE SPACES TO ALPHANUMERIC-FIELD-Z2.

In similar fashion, INITIALIZE GROUP-TTEM REPLACING NUMERIC BY ZERO) ig
equivalent (o:

MOVE ZEROS TO NUMERIC-FIELD- 1

MOVE ZERQS TO NUMERIC-FIELD
And finally, INITIALIZE GROUP-ITEM REPLACING ALPHANUMERIC BY SPACES is
equivalent to:

SPACES TO ALPHANUMERTC-FIELDR-1.

E WCES

£ SPACES TO ALPHANUMERIC-FICLD-2

It is often necessary to operate on individual characters within a field, when the
T & field is alphanumeric. Operations of this type are called string processing operaliuns,
and are accomplished with the INSPECT, STRING, and UNSTRING statements in
COBOL. Each of these staternents is discussed in decail.

The INSPEC] statement is a convenient way to replace one character (or character
string) with another. Consider:
!

The INSPECT staternent can be used with the editing characters of Chapter 7
as illustrated in Figure 9.4. Assume, for example, that social security number is
stored as a nine-position field (with no hyphens) in the input record, hut is to
appear with hyphens in the printed report. The MOVE statement transfers the
incoming social security number to an 11-position field containing two blanks

INSPECT identifier-1 REPLACING

[CHARACTERS BY Jldentlﬁer l\ Hi
Lt

FOR ¥
- INITIAL
[Titeral-1 J Fit

fidentifier- 3}
j

Titeral-7

INITIAL

-
i
I
[dentlﬁer q
L

{[ALL)
ALL lident"ifier—ﬂ By %wkenhfler‘ 5]BEFOREL
iteral-5 J

LEADING
[Miteral-3 [= lliteral-4 |AFTER |
FIRST | \

|
|

Chapler 9 — More About the Procedure Division

Figure 9.4 The INSPECT Statement

i

01 RECORD-IN.
05 SOC-SEC-NUM PIC 9(9).

01 PRINT-LINE.
05 S0C-SEC-NUM-0UT PIC 999B9989999.

PROCEDURE DIVISTON.

é MOVE SOC-SEC-NUM TO SOC-SEC-NUM-0UT.
INSPECT SOC~-SEC-NUM-OUT REPLACING ALL ' ' BY '-',

{denoted hy B in the PICTURE clause). The INSPECT statementi replaces every
occurrence of a blank in SOC-SEC-NUM-0OUT by the desired hyphen.

Another frequent use of the INSPECT statement is the elimination of leading
blanks in numeric fields. (Numeric fields in COBOIL should nol contain anything
other than the digits 0 to 9 and a sign over the rightmost (low-order) position.)
Leading blanks can be replaced with zeros as follows:

INSPECT FIEED-WITH-BLANKS REPLACING LEADING ' ' BY 'Q'.

‘The STRING statement joins {concatenates) one or more fields and/or one or more
literals into a single field. Thus a STRING statement has the same etfect as a series of
MOVE statements, excepi that the destination fields are one and the same. An
abbreviated form of the COBOL notation for the STRING follows:

1dentif1er—3]
. DELIMITED BY {literal-3 J C.

ident?fier—l} [identifier—Z]
SIZE

STRING . .
T iteral-1 literal-2

INTO identifier-4 [WITH POINTER identifier-5|
[END - STRING]

The above notation can be simplified, for our discussion, in the following manner:
STRING sending item INTO receiving field

A sending item may be elther an identifier or a literal. Each sending itern must be
accompanied by a delimiting clause, which indicates when to stop moving characters
from the sending field. The delimiter can take one of three forms:

1. An identifier name that contains the delimiting characterx(s},
2. Afigurative literat or constant whose value is the delimiting character(s), or

3. SIZE, which transfers the entire contents of the sending iterm.

String Pracessing

The delimiting character(s} itself is not transferred. Figure 9.5 contains an
example of the STRING statement in which the components of an individual’s
name ate stored separately, then put together to form a single character string. The
application is not unusual in that a program ofien requires a person’s name in two
formats. Ir is easy, for example, to visualize the name (fjohn H. Smith) as a single
entity as it might appear on an address label. You would not, however, want to store
the name as a single field as that would preclude the ability to obtain an alphabetical

» .4 The STRING Statement

% 05 NAME-IN-PIECES. ;
g 10 LAST-NAME PIC X(16) j
10 FIRST-NAME PIC X(10) |
: 10 MIDDLE-INTITIAL PIC X. g
05 ENTIRE-NAME PIC X(29) 3_
:
MOVE SPACES TO ENTIRE-NAME. ;
STRING FIRST-NAME DELIMITED BY SPACE 3
: * ' DELIMITED BY SIZE
MIDDLE-INITIAL DELIMITED BY SPACE
* ' DELIMITED BY SIZE
LAST-NAME DELTMITED BY SPACE
INTO ENTIRE-NAME
E LAST-NAME e ‘[B cl j
: o : |
MIDDLE-INITIAL , Hi
i L i
FIRSTNAME 410, H|N
: — g o - —— !
ENTIRE-NAME L L NEEEEEER 1 ;
: L b | | RN i
H SIS VN ‘I
z r T ST ;
(1) ENTIRE-NAME © -1 - I % f Lo ‘
@ ETRENME adokln sl
H H | [! L LA RO T H id
s | S ———— 5
g (3) ENTIRE-NAME | | BEEN | 5
- : =
; (4) ENTIRE-NAWE | J | ‘ ;
i i A S
(5) ENTIRE-NAME JIG‘H‘I\!”H L
H . fem bk i - H

Chaptler 9 - Muore About the Procedure Division

list on last name; that is you must have access to last name as a separate entity, in
oider to alphabetize a list. {(Sce problern 3.

The Data Division entries in Figure 9.5a define NAME-IN-PIECES to hotd the
individual fields, and ENTIRE-NAME to hold the concatenated result. Five disiinct
steps are required to string the individual ficlds together to form a single name:

1. Mave FIRST-NAME to ENTIRE-NAME.

2. Move a space to ENTIRE-NAME after the first name.

3. Move MIDDIE-INITIAL to ENTIRE-NAME after the space.
4, Move a space (0 ENTIRE-NAME after the initial.

o]

Move LAST-NAME (o ENTIRE-NAME after the second space.

The STRING statement in Figure 9.5b accomplishes all five tasks and is iltustrated in
Figure 9.5¢. The STRING statement executes as follows:

1. The characters in the FIRST-NAME field are moved (from left to right) to
ENTIRE-NAME uniil a space is encountered (the delimiter), or the entire
contents of FIRST-NAME are transferred.

[

The literal ' * {delimiter is SIZE) is moved 1o the position following the last
character of FIRST-NAMTE.

3. The MIDDLE-INITIAL is moved.
4. Theliteral * ' (delimiter is SIZE) is moved to the position following the
MIDDLE-INFTIAL.

5. Finally, each character in LAST-NAME is moved until either a space is
encountered (the delimiter), or the entire field is transferred.

The UNSTRING statement breaks a concatenated field into its components and is
the opposite of the STRING statement. An abbreviated form of the COBOL notation
for the UNSTRING follows:

i
UNSTRING identifier-1 {DELIMITED BY
{

Jidentitier-2| [fidentiﬁerq}—; J

. LN
E§1tera1-1 j }iteral-2

i

INTO identifier-4
[END - UNSTRING|

We reverse the previous example and divide ENTIRE-NAME into its three
components, FIRST-NAM{E, MIDDLE-INITIAL, and LAST-NAME, as shown in
Figure 9.6, The UNSTRING statement operates from left to right on ENTIRE-NAME,
moving characters into FIRST-NAME uniil a space is encountered, then into
MIDDLE-INITIAL, and finally into LAST-NAME,

S S

Reference modification enables you to address a character string that was not
explicitly defined—that is, a character string within an existing data name. This is
done by specifying the lefiinost (starting} position of the string within the data
name and the length of the string, separating the parameters by a colon. The format
for reference modification is shown below and is iflustrated in Figure 9.7.

String Processing

The UNSTRING Statement

05 NAME-IN-PIECES.
10 LAST-NAME PIC X{16).
10 FIRST-NAME PIC X(10}.
10 MIDDLE-INTITIAL PIC X.

05 ENTIRE-NAME PIC X{31).

T0 NAME-IN-PIECES.
UNSTRING ENTIRE-NAME DRELIMITED BY *
IN

MOVE SPACES

TO FIRST-NAME MIDDLE-INITIAL LAST-NAME.

FIRST-NAME T r i Ii

MIODLE-INITIAL

LAST-NAME | J i |
T
|

i 1
ENTIRENAME | 4 [0 H |86 |H]blS[M L{T|H 1?’!\ |
: i i

(1) ENTIRE NAME {J OHNHHDSMIITH{ P
(1) ENTIRENAME | J [0 H|n]B HJH siml 1] 7] H
~ - i h\"‘\.\
//// S l : . LT
o S DR e T
J1OH|N E' SiM ITFi
FIRST-NAML MIDOLE-NARME LAST-NAME

data-name (leftmost position: [length])

In Figure 9.7 TEL EPHONE-NUMBER is defined as a 10 position field within an
incoming record. Portions of this field are then moved to EDITED-PHONE-NUMBER
through reference modification; for example, TELEPHONE-NUMBER (4:3) refers to
positions 4, 5, and 6 within TELEPHONE-NUMBER. The specification of length is
optional, and its omission defaults to the end of the data name; i.e., TELEPHONE-
NUMBER (7:4} and TELEPHONE-NUMBER (7:) are equivalent.

Chapter 8 — Mare About the Procedure Division

Flgure B.¥ Reference Modification

01 INCOMING~RECORD.

05 TELEPHONE-NUMBER PIC X(10}.

01 EDIVED-PHONE-NUMBER.

05 FILLER PIC X VALUE '('.

05 AREA-CODE PIC X(3).

05 FILLER PIC X VALUE '3}'. :
05 EXCHANGE PIC X{3). :
05 FILLER PIC X VALUE '-'.

05 DIGITS PIC %{4).

MOVE TELEPHONE-NUMBER (1:3) TQ AREA-CODE.
MOVE TELEPHONE-NUMBER {4:3) TO EXCHANGE.
MOVE TELEPHONE-NUMBER (7:4) TO DIGITS.

e - R — .

CoER The ACCEPT statement was introduced in Chapter 8 (o ol:tain the date of execution
and implement various forms of date validation. The statement is expanded in this
chapter to include the day of the week as well as the date. Consider:

DAY-QF-WEEK
) s DATE
ACCEPT identifier-1 FROM DAY
TIME

The DAY-OF-WEEK clause returns an integer from 1 to 7 representing the day
according to the following table:

BNTEGES DAY
1 Monday

2 Tuesday

3 Wednesday
4 Thursday

5 Friday

8 Saturday

7 Sunday

The ACCEPT statement is illustrated in Figure 9.8. The user defines a data name in
Working-Storage—for example, DAY-CODE-VALUE in Figure 9.8a—then accepts

yplicate Data

Naines

The ACCEPT Statement

01 DAY-CODE-VALUE PEC 9.
01 TOGAYS-DATE.
05 TODAYS-YEAR PIC 99.
05 TODAYS-MONTH PIC 99.
05 TODAYS-DAY PIC 99.
: 0L HDG-LINE.
E 05 HDG-DAY-OF-WEEK PIC X(9).
: G5 FILLER PIC XX VALUE ', ',
05 HDG~DATE PIC X(8).

ACCEPT DAY-CODE-VALUE FROM DAY-OF-WEEK.

EVALUATE DAY-CODE-VALUE
WHEN 1 MOVE ' Monday' TO HDG-DAY-OF-WEES
WHEN 2 MOVE ' Tuesday' TO HDG-DAY-OF-WEEK
WHEN 3 MOVE ‘Wednesday' TO HDG-DAY-OF-WEEK
: WHEN 4 MOVE * Thursday' TO HDG-DAY-OF-WEEK
i WHEN 5 MOVE ' Friday' TO HDG-DAY-OF -WEEK
i WHEN 6 MOVE ' Saturday' TO HDG-DAY-OF -WEEK
WHEN 7 MOVE ' Sunday' TO HDG-DAY-OF -WEEK

END-EVALUATE.

ACCEPT TODAYS-DATE FROM DATE.

STRING TODAYS-MONTH */' TODAYS-DAY '/*
DELIMITED BY SIZE INTO HDG-DATE

END-STRING.

TODAYS-YEAR

Fant 1
LRed

the value from DAY-OF-WEEK into that data name. The subsequent EVALUATE
statement expands the one-positicn code to a literal day.

The DATE and DAY clauses were described in Chapter 8 and represent the
date (in the form yymmdd) and Julian date (in the form yyddd), respectively. The
DATE clause is iilustrated in Figure 9.8¢ for purposes of review.

Most programs require that the output contain some of the input, for example,
name and social sectirity number. COBOL permits the definition of deuplicate data
namesin the Data Division, provided all Procedure Division references to duplicate
names use the appropriate gualification. We prefer not to use duplicate names
because they violate the prefix coding standard discussed in Chapter 7, but they are
used in older programs, and are covered here for completeness.

Chapter 8 — More About the Procedure Division

Ghumdiféeoation R

The Data Division entries in Figure 9.9a contain several data names that appear in
both STUDENT-RECORD and PRINT-LINE—for example, CREDITS—and any
Procedure Division reference to CREDITS will produce a compiler errorindicating a
nonunique data name. This is because the compiler cannot determine which
CREDITS (in STUDENT-RECORD or PRINT-LINE) is referenced. One solution is

»'\

Flogwwe 9.8 Duplicate Data Names

01 STUDENT-RECORD.

05 STUDENT-NAME PIC X(20).
05 SOCIAL-SECURITY-NUM PIC 9(9).
05 STUDENT-ADDRESS.
10 STREET PIC X{15).
10 CITY-STATE PIC X(15).
05 ZIP-CODE PIC X{5). ;
05 CREDITS PIC 9(3}. ;
05 MAJOR PIC X{10).
05 FILLER PIC X(3).

01 PRINT-LINE.

: 10 STUDENT-NAME PIC X{20). ?
: 10 FILLER PIC XX.
10 CREDITS PIC Z79. :
10 FILLER PIC XX. ;
10 TUITION PIC $3,$$9.99. i
10 FILLER PLC XX. l
10 STUDENT-ADDRESS. i
15 STREET PIC X{15). :
15 CITY-STATE PIC X(15). :
15 71P-CODE PIC X(5). |
10 FILLER PIC XX. !
10 SOCIAL-SECURITY-NUM PIC 999BY9BIIYY.
10 FILLER PIC X(47).

2%

£l B lieember Phade Aot
L8 RARIINUEE L N

MOVE CORRESPONDING STUDENT-RECGRD TO PRINT-LINE.

MOVE STUDENT-NAME OF STUDENT-RECORD
TO STUDERT-NAME OF PRINT-LINE.
MOVE SOCTAL-SECURITY-NUM OF STUDENT-RECORD
T0 SOCTAL-SECURETY-NUM OF PRINT-LINE.
MOVE STREET OF STUDENT-RECORD
TO STREET OF PRINT-LINE.
MOVE CITY-STATE OF STUDENT-RECORD
TO CITY-STATE OF PRINT-LINE.
MGVE CREDITS OF STUDENT-RECORD
TO CREDITS OF PRINT-LIRE.

{0} Bt

o

to gualify the data name, using OF or IN, and refer to CREDITS OF STUDENT-
RECGRD or CREDITS IN STUDENT-RECORD.

Qualification is sometimes necessary over several levels. For example, the use
of STREET OF STUDENT-ADDRESS in the statement below is still ambiguous.

MOVE STREET OF STUDENT-ADDRESS FTO QUTPUT-AREA.

The qualifier STUDENT-ADDRESS appears in both 01 records and thus the ambiguity
wiis not tesolved. Two levels of quaiilication are necessary (0 make the intent clear:

MOVE STREELT OF STUDENT-ADDRESS OF STUDENT-RECORD TO OUTPUT-AREA.
Alternatively, you could skip the intermediate levei and rewrite the statement as:
MOVE STREET IN STUDENT-RECORD TG OUTPUT-AREA.

OF and IN can be used interchangeably. Duplicate data names offer the
advantage of not having to invent different names for the same item—for example,
an employee name appearing in both an input record and output report. They also
permit use of the MOVE CORRESPONDING statement which is not recommended
by the authors, but which is covered for completeness.

WIOVE CORRESPURINNG
The syntax of the MOVE CORRESPONDING staternet is:

MOVE iCQW% identifier-1 T0 identifier-2

|core j

The MOVE CORRESPONDING statement in Figure 9.9b is the equivalent of
the individual MOVE statements in Figure 9.9¢; that is, the single MOVE
CORRESPONDING statement has the same effect as the five individuai MOVE
statements. The CORRESPONDING option sedrches every data name in STUDENT-
RECORD for a matching (duplicate) data name in PRINT-LINE, then generates an
individual MOVE statement whenever a match is found. It is very convenient because
you have to code only the single MOVE CORRESPONDING statement.

The level numbers of the duplicate data names in Figure 9.9a do not have (o
match for a move to be generated—only the data names must be the same. The
order of the data names in the 01 records is aiso immaterial; for example, SOCIAL-
SECURITY-NUM is the second field in STUDENT-RECORD, and the next to last in
PRINT-LINE. Two other conditions must be satisfied, however, in order for a move
to be generated:

1. At least one item in each pair of CORRESPONDING items must be an
elementary item; that is, STUDENT-ADDRESS of STUDENT-RECORI} is not
moved to STUDENT-ADDRESS of PRINT-LINE. (The elementary items STREET
and CiITY-STA'TE are moved instead.)

jad

Corresponding elementary iterns are moved only if they have the same name
and qualification, up to but not including identifier-1 and identifier-2. ZIP-
CODE, for example, belongs directly to STUDENT-RECORD, but has an
intermediate qualifier (STUDENT-ADDRESS) in PRINT-LINE, and thus ZiP-
CODE is not moved.

Chapter 8 — More Aboul the Procedure Division

g

Thea Cav Our fundamental approach throughout the text is to learn by doing. To that end we
pp 8
Biliinig Progearn havedeveloped a complete COBOL program that incorporates the varipus statements
presented in the chapter. Specifications follow in the usual format.

Program Name: {Car Billing Program

Narrative: This program processes the file of valid car rental records that was created in the
validation program of Chapter 8 to produce a report reftecting the amounts owed by
indivigual customers.

Input File(s): RENTAL-FILE
01 RENTAL-RECORD-IN.

05 REN-CONTRACT-NO PIC 9(6).
05 REN-NAML.
10 REN-LAST-NAME PIC X{15}.
10 REN-FIRST-NAME BIC X(10j.
10 REN-INITIAL FiC X.

05 REN-RETURNED-DATE,
10 REN-RETURNED-YEAR PIC 9(2).
16 REN-RETURNED-MONTH PIC 9(2).

10 REN-RETURNED-DAY PIC 9{(2).
05 REN-CAR-TYPE PIC X.
b5 REN-DAYS-RENTED PIC 99.
05 REN-MELEAGE.
10 REN-MILES-IN PIC 9(6).
10 REN-MILES-0UT FIC 9{6).
10 REN-MILEAGE-RATE PIC V99,
05 REN-INSURANCE PIC X.

Test Data: The input file used by this program was created by the data validation program of
Chapter 8 and was shown earlier as fFigure 8.10c. The daia are repeated below for

convenience:!

999777ELSINOR TERRY R921126705001680001520054
987654SMITH PAUL 6921213M0300510000500502Y
354679KERBEL NORMAN X930331F£1000340000324300Y
264805CLARK JANE $921101F0700561500551 200N
233432BEINHORN CATHY B921122M0200123400113402Y
556564HUMMER MARGO R920815C0800234500123403Y
677844MCDONALD JAMES §30123C0500423500402300N
886222V0GEL JANICE D930518F1200634500612302Y
008632TOWER DARREN R930429L0900700200689300N

fRepert Layout: See Figure 9.10.

Processing Requirements: 1. Read the file of valid car rental records that was produced by the editing program of
Chagpter 8. No further validation is requirad in this program.

The Car Biliing Program

Contract
Numbar

5-997.77

3-876-54

3-546-79

2-648-05

2-334-3¢

2. Calculate the amount due for each incoming record as a function of car type, days
rentedt, miles driven, mileage rate, and insurance.

a.

w

The mileage rate is different for each customer and appears as a field in
the incoming record; the mileage total is the mileage rate times the number of
mites driven.

. The daily rate is a function of the type of car rented. Ecenomy cars cost $15 a

day, compact cars $20 a day. mid-size cars $24 a day, full-size cars $28 a day,
and luxury cars $35 a day. The daily total is the daily rate times the number of
days rented.

. insurance is optiona! and is indicated by a 'Y in the appropriate position in the

incoming record. Insurance is $10.50 a day (for customers who choocse it), regardless
of the type of car rented.

. A gcustomer's total bill consists of the mileage total, daily total, and insurance total

as described in paris {a). (b), and {c).

A heading is required at the top of every page, as shown in Figure 9.10. Detall lines

are 10 be double-spaced and limited to five per page.

4. Atotal ling for all computed fields is required at the end of the report.

Car Rental Report

' Mawis Car Rental Renort Satyrday - 07/03/93 Pags 2
Contract Date Car Days Rental Miles Mileage Mileage Insurance Amount [
Number Name Returned Type Rented Total Driven Rate Total Total Due r
5-565-64 HUMMER, MARGO R. 08/15/92 C 8 160.00 1,1t .03 3.3 84.00 277.33 E
f
£-778-44 MCDONALD, JAMES 61/23/93 ¢ 5 100.00 212 .00 0.00 100.00 t
8-862-22 VOGEL, JANICE D, 05/18/93 F 12 336.00 222 02 4.44 126,00 466,44
Mavis Car Rental Report Saturday - 07/03/93 Page 1 ; 315.00 |
{
Date Car Days Rental Hiles Hileage Mijecage Insurance Amount 1["""""
Name Returred Type Rented Total Driven Rate Total Total Due ;j_lﬁ:gfoﬁi__f
ELSINOR, FERRY R. 1i/26/92 ¢ 5 140.00 9 05 4.50 144,50 |
SHITH, PAUL G. 12/13/92 M 3 72.900 95 .02 1.96 31.50 105.40
KERBEL., NORMAN X, 03/31/93 E 10 150.00 157 00 0.0¢ 105.00 255.00
CLARK, JANE S. 11/01/92 b 7 196.00 103 .00 0.00 196.00

BEINHORN, CATHY 8.

11/22/92 M 2 48,06 100 .02 2.06 21,00 71.00

Chapter 8 — More Aboul ine Frocedoure Division

Brogram Doesign

‘The car billing program has two objectives: to complete the two-program sequence
begun in Chapter 8 and to illustrate the Procedure Division statements presented in
this chapter. Both objectives impact the design of the pseudocode and associated
hierarchy chart.

The hierarchy chart in Figure 9.11 is written without the priming read of
earlier programs, The highest-level module, PREPARE-RENTAT-REPORT, has three
subordinates: GET-TODAYS-DATE, PROCESS-RENTAL-RECORDS, and WRITE-
RENTAL-TOTALS. PROCESS-RENTAL-RECORDS in turn is the driving moduale of
the program and performs four lower-levei paragraphs: COMPUTE-INDIVIDUAL-
BILL, WRITE-HEADING-LINES, WRITE-DETAIL-LINE, and INCREMENT-RENTAL-
TOTALS. COMPUTE-INDIVIDUAL-BILL has three subordinate modules, COMPUTE-
MILEAGE-TOTAL, COMPUTE-DAILY-TOTAL, and COMPUTE-INSURANCE-TOTAL
to compute the components of a customer’s bill.

The paragraph WRITE-HEADING- LINES is subordinate to PROCESS-RENTAI -
RECORDS, which differs from an earlier hierarchy chart (page 119) that placed the
heading routine on a higher level. The earlier structure, however, produced only a
single heading at the start of processing, whereas the current requirement is to
produce a heading at the top of every page; hence the heading routine will be
executed several times and is subordinate to processing a record.

The pseudocode in Figure 5.12 takes advantage of the in-line peiform and
false-candition branch to elirninaie the priming read used in earlier examples. The
pseudocode also implements the required page heading routine by initializing the
line counter to six and testing its value prior to writing each detail line. The heading

Figaare .14 Hierarchy Chart

PREPARE
RENTAL
REPORT
GET PROCESS WRITE
TGLAYS RENTAL RENTAL
DATE RECORDS TOTALS
COMPUTE WRITE WRITE INCREMENT
INDIVIDUAL HEADING DETA{L RENTAL
BILL LINES IINE TOTALS
COMPUTE COMPUTE COMPUTE
MILEAGE DAILY INSURANCE
TOTAL TOTAL TOTAL

The Car Bilting Program

42 Pseudocode

Open Files {
Get today's date
~ - DO WHILE data remains
- Read Rental File
: AT END
‘ % i Indicate no more data
: ; ! NOT AT END
: | Initiatize individual calculations
Compute miles driven = miles in - miles out

: : ‘ Car Type E - Move economy rate to mileage rate

E : : Car Type C - Move compact rate to mileage rate

f ‘ : Car Type M - Move midsize toc mileage rate

% ! : Car Type F - Move fullsize rate to mileage rate

; : : : Car Type L - Move luxury rate to mileage rate
~= END CASE

Compute mileage total = wiles driven * mileage rate
: Compute daily tetal = days rented * daily rate
i ; —--= IF insurance taken
; i Compute insurance = insurance rate * days rented
f Compute total bill = mileage amount + daily amount + insurance
i wwee IF Tline count greater than 5
| : Initialize line count to 1
: Increment page count ;
Write heading 1ines ;
END-IF
Write detail line
Add 1 to line count
: Increment rental totals
L - £END READ

------ ENDDO

Write rental totals

Close files

Stop run

will be written prior to the first detail record because it {the line counter) is greater
than five (the desired number of lines per page). The line counter is then reset to
one so that the heading will be produced for every fifth record.

The completed program in Figure 9.13 illustrates many ol the statements presented
in the chapter. The logic of the program is straightforward and parallels the
pseudocode just discussed. Several features of the program merit attention:

1. The combination of the in-line perform and false-condition branch (lines
209-216) to eliminate the priming read used in all previous programs.

Chaptler '8 — More About the Procedure Division

#.4% The Completed Program

; 1 IDENTIFICATION DIVISION.
f 2 PROGRAM-ID. CARSRPT.
3 AUTHOR. CVv.
1 4
: 5 ENVIRONMENT OIVISTON.
? 6 INPUT-OUTPUT SECTION. |
; 7 FILE-CONTROL. ;
: 8 SELECT RENTAL-FILE ASSTGN TO 'A:\CHAPTRO\VALCARS.DAT
| 9 ORGANIZATION IS LINE SEQUENTIAL.
% 10 SELECT PRINT-FILE
11 ASSIGN TO PRINTER.
L12
! 13 DATA DIVISION.
z 14 FILE SECTION.
; 15 FD RENTAL-FILE
: 16 RECORD CONTAINS 56 CHARACTERS.
17 01 RENTAL-RECORD PIC X{56).
18 l
19 FO PRINT-FIL E
20 RECORD CONTAINS 132 CHARACTERS. E
21 01 PRINT-LINE PIC X(132). §
¢ 22 ;
P23 WORKING-STORAGE SECTION. f
- 01 FILLER PIC X(14) |
25 VALUE 'WS BEGINS HERE'. ?
26 ;
27 01 RENTAL-RECORD-IN. {
.28 05 REN-CONTRACT-NO PIC 9(6). ;
2 05 REN-NAME. :
30 10 REN-LAST-NAME PIC X(15). ?
31 10 REN-FIRST-NAME PIC X(10). 5
7 10 REN-INITIAL PIC X. §
L33 05 REN-RETURNED-DATE. !
34 10 REN-RETURNED-YEAR PIC 9(2). i
3 10 REN-RETURNED-MONTH PIC 9(2). L
36 10 REN-RETURNED-DAY PIC 9(2). ‘
Y 05 REN-CAR-TYPE PIC X.
- 38 05 REN-DAYS-RENTED PIC 99.
i 39 05 REN-MILEAGE.
40 10 REN-MILES-IN PIC 9(6). :
' 10 REN-MILES-QUT PIC 9(6). :
© 4z 10 REN-MILEAGE-RATE PIC V9. 5
43 05 REN-INSURANCE PIC X.
L
L 45 01 PROGRAM-SWITCHES.
T 05 DATA-REMAINS-SWITCH PIC XX VALUE SPACES. :
L4y 05 NAME-POINTER PIC 999 VALUE 1. :
? 48 :
49 OL PAGE-AND-LINE-COUNTERS.

© 50 | 05 LINE-COUNT

PIC 9(2) VALUE 6.'”"9..~""'”

file://'A:/CHAPTR09/VALCARS

The Car Bilthing Frogram

{continued)

51 | 05 PAGE-COUNT PIC 9(2) VALUE ZEROS. | .- =~ 7%
52 05 LINES-PER-PAGE _PIC9{2) VALUE 5.
53 '

54 01 DAILY-RATES.

55 05 ECONOMY-RATE PIC 9{3}V89 VALUE 15,

56 05 COMPACT-RATE PIC 9(3)V99 VALUE 20.

57 05 MID-RATE PIC 9{3)V99 VALUE 24,

58 05 FULL-RATE PIC 9{3)V99 VALUE 28.

59 05 LUXURY-RATE PIC 9(3)V99 VALUE 35.

60 05 INSURANCE-RATE PIC 99v99 VALUE 10.50.
61 ‘

62 01 IND-BILL-INFORMATION.

63 05 IND-MILES-DRIVEN PIC 9{5}.

64 05 IND-DAILY-RATE PIC 9{3)V99.

65 05 IND-DAILY-TOTAL PIC 9{4)Vv99.

66 05 TND-MILEAGE-TOTAL PIC 9(3}v9S.

67 05 IND-INSURANCE-TOTAL PEC 9(3)V99.

68 05 IND-AMOUNT-DUE PIT 9(4)V93.

63

70 01 TOTALS-FOR-REPORT .

71 05 TOTAL-DAYS-RENTED PIC 9(4) VALUE ZERGES.
72 05 TOTAL-DAILY-RENTAL PIC 3(6)V99 VALUE ZEROES.
73 05 TOTAL-MILES-DRIVEN PIC 9{6) VALUE ZERDES.
74 05 TOTAL-MILEAGE PIC 9(4)V99 VALUE ZEROES.
75 05 TOTAL-INSURANCE PIC 9(4}V99 VALUE ZEROES.
76 05 TOTAL-AMOUNT~DUE PIC 9(E)V9% VALUE ZEROES.
77

78 01 TODAYS-DATE-AREA.

79 05 TODAYS-YEAR PIC 99.

80 05 TODAYS-MONTH PIC 99.

81 05 TODAYS-DAY PIC 99.

82

83 01 DAY-CODE-VALUE PIC 9.

84

85 01 HEADING-LINE-ONE.

86 05 FILLER PIC X(20) VALUE SPACES.
87 05 FILLER PIC X{25)

88 VALUE 'Mavis Car Rental Report'.

89 05 FILLER PIC X(16) VALUE SPACES.
90 05 HDG-DAY PIC X(9).

91 Q5 FILLER PIC X(3) VALUE ' - '.

92 05 HOG-DATE PIC X{8).

93 05 FILLER PIC X(41) VALUE SPACES.
94 05 FILLER PIC X(5) VALLE ‘Page °.
95 05 KDG-PAGE-NUMBER PIC 79.

96 05 FILLER PIC X{3) VALUE SPACES.
97

98 01 HEADING-LINE-THWO.

99 05 FILLER PIC X(8) VALUE ‘Contract®.

100 05 FILLER PIC X(38) VALUE SPACES.

Chaptler 9 — More About the Procedure Division
Figure 9. (continued)
101 05 FILLER PIC X{4) VALUE 'Date’'.
102 05 FILLER PIC X(5) VALUE SPACES.
103 05 FILLER PIC X(3} VALUE 'Car'.
104 05 FILLER PIC X(3) VALUE SPACES.
105 05 FILLER PIC X{4) VALUE 'Days'.
106 05 FILLER PIC X(6} VALUE SPACES.
107 05 FILLER PIC X(6) VALUE 'Rental'.
108 05 FILLER PIC X({4) VALUE SPACES.
109 05 FILLER PIC X(5} VALUE 'Miles'.
110 05 FILLER PIC X(2) VALUE SPACES.
111 05 FILLER - PIC X{7} VALUE ‘Mileage'.
112 05 FILLER PIC X(2) VALUE SPACES.
113 05 FILLER PIC X{7) VALUE 'Mileage’.
114 05 FILLER PIC X(2) VALUE SPACES.
115 05 FILLER PIC X{9) VALUE 'Insurance'.
1i6 05 FILLER PIC X(6) VALUE SPACES.
117 05 FILLER PIC %{6) VALUE ‘Amount'.
118 05 FILLER PIC X{5) VALUE SPACES.
11
120 01 HEADING-LINE-THREE.
121 05 FILLER PIC X VALUE SPACES.
122 05 FILLER PIC X(6) VARLUE 'Mumber’.
123 05 FILLER PIC X{4) VALUE SPACES.
124 05 FILLER PIC X(4) VALUE 'Name'.
125 05 FILLER PIC X(29) VALUE SPACES.
126 05 FILLER PIC X{8) VALUE 'Returned'.
127 05 FILLER PIC X(2)} VALUE SPACES.
128 05 FILLER PIC X(4) VALUE 'Type'.
129 05 FILLER PIC X(2) VALUE SPACES.
130 05 FILLER PIC X{(6) VALUE 'Rented’.
131 05 FILLER PIC X{6} VALUE SPACES.
132 05 FILLER PIC X{5) VALUE 'Total'.
133 05 FILLER PIC X{3) VALUE SPACES.
134 05 FELLER PIC X{(6) VALUE 'Driven'.
135 05 FILLER PIC X{4) VALUE SPACES.
136 05 FILLER PIC X(4) VALUE ‘Rate'.
137 05 FILLER PIC X{(4) VALUE SPACES.
138 05 FILLER PIC X(5) VALUE 'Total'.
139 05 FILLER PIC X({6) VALUE SPACES.
140 05 FILLER PIC X(5} VALUE 'Total'.
141 05 FILLER PIC X(9) VALUE SPACES.
142 05 FILLER PIC X(3)}) VALUE ‘Due'.
143 05 FILLER PIC X(6) VALUE SPACES.
144
145 01 DETAIL-LINE. . MNSFT T
146 105 DET-CONTRACT-NO _~ PIC 98999899, -~
147 05 FILLER X(3) VALUE SPACES.
148 05 DET-NAME X(30).
149 5 FILLER X(3) VALUE SPACES.
150 05 DET-RETURN-DATE x(8).

The Car Hililng Frogiam

Figura %13 (continued)

151
o152
Poo153
154
i55
156
N Y
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
i 180
S X1
182
183
184
185
186
N 7

188

i89
© 190
Po191
Po192
S 193
194
195
196
197
198
199
i200

G1

01

05
05
05
05
05
05
05
05
05
05
Q5
03
0%
05
05
05
05

FILLER
DET-CAR-TYPE
FILLER
DET-DAYS-RENTED
FILLER
DET-DAILY-TOTAL
FILLER
DET-MILES-DRIVEN
FILLER
DET-MILEAGE-RATE
FILLER
DET-MILEAGE-TOTAL
FILLER
OET-1NSURANCE-TOTAL
FILLER
DET-AMOUNT-DUE
FTLLER

TOTAL-DASH-LINE.

05
05
b5
05
05
05
05
0b
05
05
05
05
05

FILLER
FILLER
FILLER
FTLLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER

TOTAL-LINE.

05
05
05
05
05
05
0%
05
05
05
05
05
05
05
05

FILLER

FILLER

FELLER
TOT-DAYS-RENTED
FILLER
TOT-DAILY-RENTAL
FILLER
TOT-MILES-DRIVEN
FILLER
TOT-MILEAGE
FILLER
TOT-INSURANCE
FILLER
TOT-AMOUNT-DUE
FILLER

PIC X(4) VALUE SPACES.

PIC X

PIC X(h) VALUE SPACES.

PIC Z9.

PIC X{5) VALUE SPACES.

PIC 7,779.96.

PIC X(3) VALUE SPACES.

PIC ZZ,229.

PIC X(5) VALUE SPACES.

PIC .99.

PIC X(5) VALUE SPACES.

PIC 279.99.

PIC X{4} VALUL SPACES.

PIC ZZ9.99 BLANK WHEN ZERO.

PIC X{4} VALUE SPACES.

PIC 7,779.99.

PIC X(5) VALLE SPACES.

PIC X(59) VALUL
PIC X(5) VALUE
PIC %(3) VALUE
PIC X(10) VALUE
PIC XX VALUF
PIC X{7) VALUE
PIC X{l1) VALUF
PIC X{8) VALUE
PIC XX VALUE
PIC X(8) VALUE
PIC XX VALUE
PIC X(10) VALUE
PIC X(5) VALUE

PIC XX VALUE
PIC X{6} VALUE
PIC X(51) VALUE
PIC Z,279.

PIC X(2) VALUE
PIC $$$5,$89.99.
PIC XX VALUE
PIC 277,779.

PIC X{9) VALUE
PIC $33,$%9.99.

PIC X VALUE
PIC $%,5%9.99.
PIC X VALUE

PIC $59%,$89.99,
PIC %(5) VALUE

SPACES.
ALL '-T.
SPACES.
AEL '-T.
SPACES,
ALy -1,
SPACES.
AlLL '-t.
SPACES.
ALL "=
SPACES.
ALL '-'.
SPACES.

SPACES.

'Totals'.

SPACES.

SPACES.

SPACES.

SPACES.

SPACES.

SPACES.

SPACES.

Chnpter 8 - More Aboul the Procedure Division

Blowre G m {continued)

201 01 FILLER PIC X(12)
202 VALUE 'WS ENDS HERE'.
203
204 PROCEDURE DIVISION.
205 000- PREPARE-RENTAL-REPORT .
206 OPEN INPUT RENTAL-FILE
207 OUTPUT PRINT-FILE.
I 208 PERFORM 100-GET-TODAYS-DATE.
- 209 "PERFORM UNTIL DATA-REMAINS-SWITCH = *NO'
210 | READ RENTAL-FILE INTO RENTAL-RECORD-IN
% i AT END
212 | MOVE "NO' TO DATA-REMAINS-SWITCH
P23 ; NOT AT END |
a4 ; PERFORM 200-PROCESS -RENTAL - RECORDS :
;215 [END-READ ; f
L 216 | END-PERFORM. L ;
21 PERFORM 700-WRITE-RENTAL-TOTALS. :
218 CLOSE RENTAL-FILE
219 PRINT-FILE.
220 STOP RUN.
f 221 s ALDENT Fhastss s LTRSS S D0 wasuiion
Lo 100-GET-TODAYS-DATE. -
223 | ACCEPT TODAYS-DATE-AREA FROM DATE.
L2 STRING TODAYS-MONTH '/' TODAYS-DAY '/' TODAYS- YEAR
. 225 DELIMITED BY SIZE INTO HDG-DATE
226 _END-STRING. .
Py ACCEPT DAY-CODE-VALUE FROM DAY-OF-WEEK.
;228 EVALUATE DAY-CODE-VALUE
;229 WHEN I MOVE ' Monday'.TQ HDG-DAY
bo230 WHEN 2 MOVE ' Tuesday' TO HDG-DAY
P23t WHEN 3 MOVE 'Wednesday' TO HDG-DAY
3R WHEN 4 MOVE ' Thursday' TO HDG-DAY .
XX WHEN 5 MOVE ' Friday' TO HDG-DAY .
- 234 WHEN 6 MOVE ' Saturday' TO HDG-DAY
235 WHEN 7 MOVE ' Sunday' TO HDG-DAY _ _ .
i 236 CEND-EVALUATE, - — = T)
o237 P
238 200-PROCESS-RENTAL -RECORDS. T
239 ' PERFORM 300-COMPUTE-IND-BILL
240 IF LINE-COUNT > LINES-PER-PAGE
241 PERFORM _400=WRITE-HEADING-LINES
242 CEND-IF.
243 PERFORM 500-WRITE-DETAIL-LINE.
244 PERFORM 600- INCREMENT-TOTALS. o
245 P
208 300-COMPUTE~ IND-BILL. T
Y INITIALIZE IND-BILL-INFORMATION. |
. 248 PERFORM 320-COMPUTE MILEAGE-TOTAL.
P 249 PERFORM 340-COMPUTE~DAILY-TOTAL.

g 250 PERFORM 360-COMPUTE-INSURANCE-TOTAL.

The Car Billing Frogram

(continued)
251 COMPUTE IND-AMOUNT-BUE ROUNDED
252 = IND-MILEAGE-TOTAL + IND-DAILY-TOTAL
253 + IND-INSURANCE-TOTAL
254 'SIZE ERROR DISPLAY 'SIZE ERROR ON AMOUNT DUE FOR ' .- oo il vl
255 REN-CONTRACT-NO 7 ‘
256 END-~COMPUTE o
257
258 320-COMPUTE-MILEAGE-TOTAL.
259 COMPUTE IND-MILES-DRIVEN
260 = REN-MILES-IN - REN-MILES-0UT
261 END-COMPUTE .
262 COMPUTE IND-MILEAGE-TOTAL ROUNDED
263 = IND-MILES-DRIVEN * REN-MILEAGE-RATE
264 SIZE ERROR
265 DISPLAY 'COMPUTED BYiL EXCESSIVELY LARGE'
266 END-~COMPUTE .
267
268 340-COMPUTE-DAILY-TOTAL.
269 EVALUATE REN-CAR-TYPE T T
270 WHEN 'E' MOVE ECONOMY-RATE TO IND-DAILY-RATE
271 WHEN 'C' MOVE COMPACT-RATE TO IND-DAILY-RATE .
272 . WHEN 'M' MOVE MID-RATE TO IND-DAILY-RATE - N
273 | WHEN 'F' MOVE FULL-RATE TO IND-DAILY-RATE -
274 © WHEN 'L' MOVE LUXURY-RATE TO IND-DAILY-RATE |
275 ~ WHEM OTHER MOVE ZEROES TO IND-DAILY-RATE |
276 (END-EVALUATE. e |
277 MULTIPLY IND-DAILY-RATE BY REN-DAYS-RENTED
278 GIVING IND-DAILY-TOTAL
279 SIZE ERROR DISPLAY 'SIZE ERROR ON RENTAL TOTAL'
280 END-MULTIPLY.
©281
© 282 360-COMPUTE- INSURANCE-TOTAL.
. 283 [IF REN-INSURANCE = 'Y' -)
7 i MULTIPLY INSURANCE-RATE BY REN-DAYS-RENTED
. 285 5 GIVING IND-INSURANCE-TOTAL -
P 286 f SIZE ERROR DISPLAY 'SIZE ERROR ON INSURANCE TOTAL'
287 . END-MULTIPLY
288 END-1F,
a0 Lo . e
290 400-WRITE-HEADING-LINES.
291 MOVE 1 TO LINE-COUNT,
Co292 ADD 1 TO PAGE-COUNT.
{ 293 MOVE PAGE-COUNT TO HDG-PAGE-NUMBER.
. 294 WRITE PRINT-LINE FROM HEADING-LINE-ONE
L 295 AFTER ADVANCING PAGE.
P 296 WRITE PRINT-LINE FROM HEADING-LINE-TWO
L7 AFTER ADVANCING 2 LINES.
298 WRITE PRINT-LINE FROM HEADING-LINE-THREE.
299

300 500-WRITE~DETAIL-LINE.

Chapter 9 — Mnre Aboul the Procsaure

Division

301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

MOVE REN-CONTRACT-NO T0 DET-CONTRACT-NO.
INSPECT DET-CONTRACT-NO REPLACING ALL ' ' BY '-'.
MOVE 1 TO NAME-POTNTER.
MOVE SPACES TO DET-NAME.
T STRING REN-LAST-NAME DELIMITED 8Y ' ' |
| *, ' DELIMITED BY SIZE L
REN-FIRST-NAME DELIMITED BY * ' i
i INTO DET-NAME POINTER NAME-POINTER
| END-STRING.

i

STRING ' * REN-INITEAL '.' DELIMITED BY SIZE
INTO DET-NAME POINTER NAME-POINTER
END-STRING
FND-IF.
STRING REN-RETURNED-MONTH '/® REN-RETURNED-DAY '/'
REN-RETURNED-YEAR DELIMITED BY SIZE
INTO DET-RETURN-DATE
END-STRING.
MOVE REN-CAR-TYPE T(DET-CAR-TYPE,
MOVE REN-DAYS-RENTED 10 DET-DAYS-RENTED.
MOVE IND-GAILY-TOTAL TO DET-DAILY-TOTAL.
MOVE IND-MILES-DRIVEN TO DET-MILES-DRIVEN.
MOVE REN-MILEAGE-RATE TO DET-MILEAGE-RATE.
MOVE TND-MILEAGE-TOTAL TO DET-MILFAGF-TOTAL
MOVE IND-INSURANCE-TOTAL TO DET- INSURANCE-TOTAL.
MOVE IND-MILEAGE-TOTAL TO DET-MILEAGE-TOTAL.
MOYE TND-AMOUNT-DUE TO DET-AMOUNT-DUE,
WRITE PRINT~LINE FROM DETAIL-LINE
AFTER ADVANCING 2 LINES.
CADD 1 TO LINE-COUNT. - _

600-TNCREMENT-TOTALS.

ADD REN-DAYS-RENTED TO TOTAL-DAYS-RENTED

SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL DAYS RENTED'
END-ADD.
ADD IND-DAILY-TOTAL TO TOTAL-DAILY-RENTAL

SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL RENTAL'
END-ADD.
ADD IND-MILES-DRIVEN TO TOTAL-MILES-DRIVEN

SIZE ERROR DESPLAY 'SIZE ERRCR ON TOTAL MILES DRIVEN'
END-ADD.
ADD IND-MILEAGE-TOTAL TO TGTAL-MILEAGE

SIZE ERROR DISPLAY 'SIZE ERROR OM TOTAL MILEAGE'
END-ADD.
ADD IND-INSURANCE-TOTAL TO TOTAL~INSURANCE

SIZE ERROR DISPELAY 'SIZE ERROR ON TOTAL INSURANCE®
END-ADD.
ADD IND-AMOUNT-DUE TO TOTAL-AMOUNT-DUE

SIZE ERROR DiSPLAY 'SIZE ERROR ON TOTAL AMOUNT DUE’
END-ADD.

The Car Billing Program

352
353
354
355
356
357
358
359
360
361

: {continued)

700-WRITE-RENTAL-TOTALS. |
WRITE PRINT-LINE FROM TOTAL-DASH-LINE |
| AFTER ADVANCING 2 LINES. Tl
MOVE TOTAL-DAYS-RENTED TO TOT-DAYS-RENTED. .
MOVE TOTAL-DALLY-RENTAL TO TOT-DAILY-RENTAL.

MOVE TOTAL-MILES-DRIVEN TO TOT-MILES-DRIVEN.

MOVE TOTAL-MILEAGE TO TOF-MILEAGE. .
MOVE TOTAL-INSURANCE TO TOT-INSURANCE. i
MOVE TOTAL-AMOUNT-DUE TO TOT-AMOUNT- DUE '

'_WRITE PRINT LINE FROM TO?AL LINE

]

{A period may not be present after the END-REATY scope terminator because
it is nested within the in-line perform statement. See problem 2 at the end of
the chapter.)

The use of scope terminators throughout the Procedure Division—for exampie,
END-REALY in line 215, END-COMPUTE in lines 256 and 266, and END-IF in
lines 242, 288, and 314.

. The establishment of a heading routine (lines 290-298) and the associated

definition of counters in Working-Storage, LINE-COUNT and PAGE - COUNT
in lines 50 and 51. LINE-COUNT is tested prior to writing a detail line (lines
240--242). Since it was initialized to six (a value greater than the desired number
of detail lines per page;, a heading is written prior to the first detail record. The
heading routine resets the line counter (line 291), which is subsequently
incremented after every detail line is written (line 330}. The page counter is
also incremented in the heading routine (line 292), so that the page number
can appear on the top of every page in the report.

The ACCEPT statement (line 223} to obtain the date of execution and again to
accept the corresponding day of the week (line 227). The EVALUATE statement
of lines 228-236 converts the numeric DAY-OF-WEEK code to its literal
equivalent.

. The INITIALIZE siatement in line 247 to iniiialize the six data names defined

under IND-BILL-INFORMATION.

‘The READ INTO statement in line 210 and the associated WS BEGINS HERE
literal at the siart of Working-Storage {lines 24-25) to facilitate debugging. The
WRITE FROM statement is used throughout the Procedure Division with
various print lines.

The tndeniation of subservient clauses throughout the Procedure Division to
enthance the readability of the program. AT END and NOT AT END are indented
under READ, AFTER ADVANCING is indented under WRITE, and so on. Blank
lines are used throughout the program and appear before 01 entries in the
Data Division and before paragraph headers in the Procedure Division.

The STRING statements in lines 305-309 and 311-313; the latter statements
use the POINTER phrase to place the middle initial (if one is present) after the
first name.

Chapter 9 -— More About the Procedure Division

A PR 5 i R e

The chapter focused on advanced statements in the Procedure Division,
many of which were not availabie in COBOL-74. The most significant
enhancements include scope terminators, the in-line perform, and false-
condition branch, all of which are new to COBOL-85. The TEST BEFORE and
TEST AFTER clauses are also new, as are the INITIALIZE statement and
DAY-OF-WEEK clause.

The statements for string processing (INSPECT, STRING, and
UNSTRING) were previously available in COBOL-74; reference madification,
howeaver, is new to COBOL-85. Duplicate data names, quaiitication, and the
MOVE CORRESPONDING statement are unchanged from the earlier compiter.

The PERFORM statement contains the optiona! TEST BEFORE and TEST
AFTER clauses, corresponding to the DO WHILE and DO UNTIL iteration
structures.

The combination of an in-line PERFORM and false-condition branch within
the READ staterment eliminates the need for a priming read.

The procedure-name in a PERFORM statement may be either a paragraph
or a section. The THRU clause enables the execution of multiple procedures,
which typicaily include an EXIT paragraph.

READ INTO and WRITE FROM combine the effects of a MOVE statement
with the indicated /O operation. READ INTO is also used in conjunction
with the literal WS BEGINS HERE to facilitate debugging.

String processing is accomplished through the INSPECT, STRING, and
LINSTRING statements, which provide fiexibility in characier manipulation.

The ACCEPT statement includes the DAY and DAY-OF-WEEK clauses to
obtain the date and corresponding day of the week on which a program
executes.

The INITIALIZE statement sets multiple data nameas to inifial values in a
single statement.

Duplicate data names may be defined (but are notrecommended) provided
all Procedure Division references to the duplicate names use appropriate
qualification. The MOVE CORRESPONDING stalement is the equivalent of
several individua! MOVE staiements.

Fili-in

Heow Words s

DO UNTIL structure

DO WHILE structure

Duplicate (nonunique) datanames
Fatse-condition branch

in-line periorm

ACCEPT

DAY

DAY-OF-WEEK

EXIT

N

INITIALIZE

INSPECT

MOVE CORRESPONDING
NOT AT £NB

Procedure name
Qualification
Reference maodification
Section

String processing

OF

PERFORM THRU
PERFORM UNTIL
READ INTO
STRING

TEST AFTER
TEST BEFORE
UNSTRING
WRITE FROM

1. The READ INTO statement causes each incoming record te be moved to

areas.

2. The WRITE FROM statement is the equivaient of two staterments, a

and a
3. A consists of one or more paragraphs.
4. The statement causes no action to be taken and is often used 1o

delineate the end of a PERFORM THRU statement.

5. Nenunique data names within a COBOL program may be using
the reserved words ar
8. The statement is a convenient way 1o replace leading biarks ina

field with zeros.

7. Siring processing operations are accomplished through the .

. and

staterments.

8. The READ statement inciudes an optional false-condition branch implemented by

the

clause.

9. The DO WHILE and DG UNTIL constructs of structured programming are

implemented with the TEST

and TEST clauses

in the PERFORM statement.
10,

makes it possible to address a string of

characters containad within another string.

Chapter 8 — More Abou! the Procedure Division

11. Omission of the procedure name in a PERFORM statement ¢reates an
petiurm,

12. The stalement enables the inttialization of multiple data types in

a single statement.

[y

1. The INSPECT statement facilitates the elimination of leading blanks.
A paragraph consists of one or more sections.

A PERFORM statement must include a procedure {paragraph or section) name.

B owow

Qualification over a single level wilt always remove ambiguity of duplicate data
names.

The CORRESPONDING option is required if duplicate data names are used.

o

6. The STRING statemert is used to combine several fieids together,

7. For the CORRESPONDING option to work, both duplicate names must be at the
same lavel,

8. The UNSTRING statement is used to separate a field into a maximum of three
distinct fields.

9. The EXIT statement is required 1o delineate the end of a performed routine.
10. A PERFORM statement must specify either TEST BEFORE or TEST AFTER.
11. The READ statement may include both an AT END and a NOT AT END clause.
12. The READ staterment must be terminated by an END-READ scope terminator.

1. Given the code:
PRGCEDURE DIVISION,
MAINLINE SECTION.
FIRST-PARAGRAPH.

PERFORM SEC-A.
PERFORM PAR-C THRU PAR-E.
MOVE 1 TQ N.
PERFORM PAR-G
WITH TEST AFTER
UNTIL N > 2.
STOP RUN.
SEC-A SECTION.
ADD 1 70 X.
ADD 1 70 Y.
ADD 1 TO Z.
PAR-B.
ADD 2 TO X.
PAR-C.
ADD 10 TO X,

oblems

ADD 10 T0 ¥

ADD 20 TO Z
PAR-E.

EXIT
PAR-F,

MOVE 2 TO N.
PAR-G.

ADD T TO N

AGD 5 10 X.

a. How many times is each gparagraph executed?

b, What are the final values of X, Y, and Z7 (Assume they were all inltializec 10 0))
¢. What would happen if the statement ADD t TC N were removed from PAR-G7
Figure 9 14a containg a slightly moaitied version of the lrst paragraph in the car
reportinig program i which two pericds nave been added to produce ihe indicated
compiiation errors. Indicate the erroneous parinds and expiain why they produce
e error messages

COBOL Listing tor Problen: 2

204 PROCFDIRF DIVISION,
205 000~ PREPARE -RENTAL-REPORT .

206 OPEN INPUT RENTAL-FILE

207 QUTPUT PRINT-FILE.

208 PERFORM 100-GET-TODAYS-DATE.

209 PERFORM UNTIL DATA-REMAINS-SWITCH = 'NO*

210 READ RENTAL-FILE INTG RENTAL-RECORD-IN

211 AT END

212 MOVE ‘NO' TO DATA-REMATNS-SITCH.

213 NOT AT END g
714 PERFORM 200-PROCESS-RENTAL-RECORDS .

215 END-READ. E
216 END--PERFORM. ;
217 PERFORM 700-WRITE-RENTAL-TOTALS. |
218 CLOSE RENTAL-FILE §
219 PRINT-FILE. ;
220 STOP RUN. E

il

{ih Mo o Proe
209 W Explicit scope terminator END- 'PERFORM’ assumed present
213 £ AT END exception oniy valid for READ or SEARCH verbs

215 £ No corresponding active scope for 'END-READ®

216 E No corresponding active scope for 'END-PERFGRM'

Chapter 8 — More About the Procedure Division

3. is the following list of names in alphabetical order?

Joel Stutz
Maryann Barher
Shelly Parker

Your answer depends on the record layout, that is, whether Name is a single field or
whether Last Name, First Name, and Middle initial are defined as individual fields.
Can you see the need o define separate fields for these items? Can you appreciate
the utility of the STRING staterment to concatenate the fields together when
necessary?

4. Given the following Data Division entries:

0F EMPLOYEE-RECORD.

05 EMP-NAME.
10 EMP-LAST-NAME PIC X(16).
10 EMP-FIRST-NAME PIC X{10).
10 EMP-MIDDLE-INITIAL PIC X.

05 ADDRESS.
10 EMP-STREET-ADDRESS PIC X(20).
10 EMP-CITY PIC X(20).
10 EMP-STATF PIC XX,
10 EMP-ZIP PIC X{5).

Write the necessary STRING statements to create a mailing labe! with the format:
First-Name Middle-Initial Last-Name
Street-Address
City, State Zip

5. Given the following COBOL fragment:
01 DATE-WORK-AREA-1.

05 YEAR-1 PIC 99,

05 MONTH-1 PIC 99.

05 DAY-1 PIC 99,
01 DATE-WORK-AREA-Z.

05 VYEAR-2 PIC 99.

05 DAY-2 PIC 999.
01 DATE-WORK-AREA-3.

05 DAY-3 PIC 3.

ACCEPT DATE-WORK-AREA-1 FROM DATE.
ACCEPT DATE-WORK-AREA-2 FROM DAY.
ACCEPT DATE-WORK-AREA-3 FROM DAY-OF-WEEK.

indicate the stored values of each of the elementary items in the program. Assume
a date of execution of March 16, 1893 (a Tuesday).

Problems

a.

=&

Given the following COBOL fragment;

031 DATE-WORK-AREA PIC X{6).

01 EDITED-DATE.
05 EDIT-MONTH PIC XX.
05 FILLER PIC X VALUE '/'.
05 EDIT-DAY PEC XX.
05 FILLER PIC X VALUE '/¢
05 £DIT-YEAR PIC XX.

ACCEPT DATE-WORK-AREA FROM DATE.

MOVE DATE-WORK-AREA (3:2) TO EDLT-MONTH.
MOVE DATE-WORK-AREA (5:2} TO EDIT-DAY.
MOVE DATE-WORK-AREA (1:2) 70 EDIT-YEAR.

Indicate the stored values of EDIT-MONTH, EDIT-DAY, and LDIT-YEAR {Assume
the same date as in the previous problem.}
Given the foliowing COBOL definition:

01 GROUP-ITEM

05 NUMERIC-FIELD-1 PIC 9{4).
05 NUMERIC-FIELD-2 PIC 9(4).
05 ALPHANUMERIC-FIELD-1 PIC X(15).
05 ALPHANUMERIC-FIELD-2 PIC X(20}).

What difference {if any) is there betweean the following statements?

a. INITIALIZE.
and
INITIALIZE GROUP-ITEM.

b. INITIALIZE GROUP-ITEM.
and
INITIALIZE GROUP-ITEM

REPLACING NUMERIC DATA BY ZERQ
ALPHANUMERIC DATA BY SPALES.
¢ INITIALIZE GROUP-ITEM.
and

MOVE ZERDS TO NUMEREC-FIELD-1 NUMERIC-FIELD-2,
MOVE SPACES TO ALPHANUMERIC-FIELD-1 ALPHANUMERIC-FIELD-2.

Overview
ACCEPT
Programming Tip: The Use of COBOL Constanis
DISPLAY
The Tuition Billing Program Revisited
Programming Specifications
Hierarchy Chart
Pseudocode
The Completed Program
Programming Tip: The Hidden Power of the Al Key
Car Validation and Billing Program
Programming Specificalions
The Screen Section
Hierarchy Chart
Pseudocode
The Completed Frogram
Limitations of COBOL-74
Summary
Fill-in
True/False
Problems

Chapter 10 — Screen 1-0

After reading this chapter you will be able to:

Discuss the concept of screen 1-O versus the file-oriented approach of
earlier chapters.

Describe the ACCEPT and DISPLAY statements; discuss at |least three
opticnal clauses for each statement.

Describe the SCREEN SECTION and indicate why its use may be preferable
to individual ACCEPT and DISPLAY statements.

Differentiate between the background and foreground colors; implement a
color scheme using ACCEPT and DISPLAY statements and/or the Screen

Section.

Describe how ieraclive data validation is implemented iri a screen |-O
program, contrast this fechnique fo the batch-oriented procedure in
Chapter 8.

The proliteration of the PC has increased the importance of screen |-G, whereby
input 1o a program is received from the keyboard and cutput is displayed on the
monitor. The specific options {color, highlighting, positioning, and so on) vary
according to the particudar keyboard or monitor {display terminal) and are not
part of the COBOL-85 standard. Virtually all compilers, however, include these
capabilities as an extension o the 85 standard, and hence we do our best to
describe them in general fashion. The syntax is that of Micro Focus Perscnal
COBCL that accompanies this texi. (FPersonal COBOL conforms to the X-Open
standard, developed by of a consortium of software vendors including Microsoft,
and has been proposed as an official extension to the 2000 standard.)

The chapter begins with the ACCEPT and DISPLAY statements that are
used for low-volume input and output and that reference specific line and
column positions. Both statements contain an abundance of optional clauses
that are illustrated in a final version of the tuition-billing program that first
appeared in Chapier 5.

The second haif of the chapter focuses on the Screen Section to define an
entire screen as opposed (o individual lines. We combine the dala validation
and reporting programs of Chapters § and 9 to produce an interactive program
that validates data as it is entered, and produces an on-screen result.

The ACCEPT staiement enables data to be entered in specific positions according
to a precise format. The statement contains a required identifier—that is, a data

ACCEPRPT

name to heold the input data, follewed by optionai clauses that can be entered in
any order.

As indicated, the specific implementation for screen [-0 is not defined in the
COBOL-85 standard, but has been proposed as an extension to that standard. Our
examples follow the syntax of Personal COBOL that accompanies this text.
Consider:

ACCEPT identifier ’lA_T]

. (identifier- 1 | f COLUMN | [identifier. 2 1
LINE NOMBER | ‘ NUMBER
linteger-1 (1 Lo [1nteger~2
d)
[Jors) |
g

WLTH [AUTO| [BACKGROUND - COLOR IS integer- 3] L{m;EPfJ jBLINK|

[FOREGROUND - COLOR 1S integer— 4] [HEGHLIGHT| [SECURE| [REVERSE - VIOEO]
[contRoL 15 {identffier—}}]

|
|

i - JUST
16

EFT i1
[GHY - JUSTiF

|
ITRAILINF SI6N| {UNDERLINE|[UPDATE]
I

The LINE and COLUMN clauses provide the location for the data. (The typical
screen displays 25 lines of 80 columns.) Both clauses are optional with defauklt
actions as follows. Omission of the LINE clause defaults to line one if a previous
screen element has not been defined, or to the existing line otherwise. Omission of
the COLUMN clause defauils to column one if the LINE clause 1s also spectfied, and
to the next column (after the last screen element) if the LINE clause is also omitted.

‘The BACKGROUND-COLOR and FOREGROUND-CCQLOR clauses specity the
background and foreground colors, respectively, with the available colors listed in
Tabie 10.1. Any of the sixteen listed colors may be specitied for the [oreground, but
only the first eight (numbered from zero to seven) may be specified as the
background. The default cclors for the background and foreground are black and
white, respectively, corresponding te white text on a black background. In Personal
COBOL the integer or a constani representing that integer must be used. A data
name does notwork. See Programming Tip on Micro Focus constants.

PROGRAMMING TIP

in Micro Focus’s version of the Screen Section, the ACCEPT and DISPLAY verbs require the use of an integer
to specify BACKGROUND-COLOR and FOREGROUND-COLOR. Specifying colors by number rather than
name can be confusing. Forlunately, there s a way 1o meel the requirements of using an integer while
maintaining the clarity of a color name. Micro Focus provides for a new level number - 78-level. The 78-level is
a way of defining and naming a constant value. The syntax for a 78-level is similar to that of the 88-level, but

only one literal can be spectied.

Chapter 10 —~ Screen i1-0

The 78-level does not need a PIC clausze since the compiler will allocate space on the basis of the data
i format of the literal. Examples:

78 MAGENTA VALUE 5. ;
78 YES VALUE 'Y'. i
78 ERROR-1 YALUE "Entry must be ¥ or NF. :

Wherever cach of these enlries are referenced the constant values are used. Constants are particularly ,
useful when a literal must be used. The BACKGROUND-CCLOR and FOREGROUND-COLOR clauses for
defining ACCEPT and DiSPILAY statements are the prime examples.

Level-78s are standalone data-iterns and the cornpiler does not treat them as subordinate to any group
item. Therefore, if you wish 1o group the items as in line 16-34 of Figure 10-4, Ihe 01-level must have a PIC
clause. The PIC has no effect on the following levet-78s. Without the PIC, COBOL thinks that the 01-level has
no langth.

You shouid remember that level-78s are not standard COBOL enlries. We have introduced them simply
to make the screen |-G programs more readable.

TABLE 16.1 Foreground and Background Colors

0 Black

1 Dl

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White:

B Bright black {gray)
9 Bright blue
10 Bright green
11 Bright cyan
12 Bright red
13 gright magenta
14 Bright brown (yeliow}
15 Brigiit white

The AUTO clause terminates the ACCEPT statement when the last character
in the data item has been entered; the user does niot have to press the return key for
processing to continue, if, however, muliiple data names are entered into the same
ACCEPT staternent, the AUTO clause moves the cursor to the first character of the
next item.

The HIGHLIGHT, REVERSE-VIDEQ, BLINK, and UNDERLINE clauses are
used for emphasis, and their intended effects are apparent: BLINK causes characters
to blink on and off, UNDERLINE underlines each character as it is displayed on the
screen, and HIGHLIGHT displays a field at its highest intensity. The REVERSE-
VIDEO clause displays light characters on a dark background; that is, the characters
are dark and the area surrounding the characters is light. The synonymous BELL
and BEEP clauses sound the system’s audio tone when the referenced data item is
processed during execution of the ACCEPT statement.

PLAY

The CONFROL option allows any of the other clauses to be specified in an
identifier. The identifier can be changed by the program allowing flexibility in
appearance of the entry.

The ZERO-FILL option displays a numeric item with high-order zeros, whereas
the {defauir) SPACE-FILL clause displays data with zero suppression. The RIGHT-
JUSTIFY clause makes operator-keyed characters align in the rightimost character
position of the field and is for elementary items only, LEFT-JUSTIFY (the default) is
for documentation only and has no effect. The SPACE-FILL, ZERO-FILL, LEFT-
JUSTIFY, and RIGHT-JUSTIFY clauses are allowed only for efementary items.

The UPDRATE aption displays the initial value of the data item before the
operator is prompted for new input, and if no new daia are entered, the initial daia
are treated as though they were operator keyed. UPDATE is not allowed for a
numeric-edited itern.

The SECURE clause prevents the accepted data item from appearing on the
screen and is useful in implementing password protectien and/or other security
considerations.

The DISPLAY statement was introduced in Chapter 3 in conjunction with top-down
testing and referenced again in Chapter 6 for use in debugging. In both instances
the simplest form of the statement was used at strategic points in a4 program, 1o
dispiay messages and/or intermediate results to help monitor program execution,
The DISPLAY statement also has many additional options to enhance its output.

nnnnnnnnn

1dentifier-1}
Titeral-1 |

f%denti fier-Zl_

[jridentifier-?;!v
AT LINE NUMBER - .
o]mteger«l]

"""""]\1 nteger-2 i

BEEP

| 4 B 1 e
tygﬁ[BACKGROUND-COLOR IS integer-3| et [BLINK]

[Jidentifier-4li
[CONTROL 1% 13iterai

~L

Many of the clauses in the DISPLAY statement have been cexplained in
conjunction with the ACCEPT statement; for exampile, you can use the LINE and
COLUMN clauses to control the specific position where the displayed oulput is (o
appear. You can also emphasize the displayed message by blinking, beeping,
underlining, or reverse video. You can (on a color monitor) implement a variety of
color schemes for both the foreground (text) and background.

The DISPLAY statement also enables you to clear all or a portion of the screen
prior to displaying a data element. The BLANK SCREEN clause clears the entire
screen and leaves the cursor positioned in line 1, column 1. The BLANK LINE clause
blanks the associated line beginning in column 1 unless a column is specified.
Specification of either entry, BLANK SCREEN or BLANK LINE, also reactivates the
default background and foreground colors.

(¥

[unpERL INE]

LINE

I
CREEN|
|

‘.BLAN K {

L

Chapter 10 — Screen -0

Billing Prourarms
FHavicited

The tuition-billing program has appeared several times throughout the text. Tt was
first presented in Chapter 3 in conjunction with structured methodology, used in
Chapiers 4 and 5 to introduce basic COBOL statements, and expanded in Chapter 7
to include editing characters. We continue now with one final version to iliustrate
screen I-0, whereby student data are accepted for one student at a tirne, after which
the comptted bill (for that student} is displayed on the monitor.

The programming specifications paraliel the original problem statement on
page 49 with minor modifications to reflect the interactive nature of screen 1-03,
Thus, unlike the original file-based program, which processed students until the
input file was exhausted, the screen-based program accepts data for one student at
a time, then asks ihe user whether data for ancther student are (o be entered. The
screen !-O program also imposes the requirement for a valid password prior to
processing the first student, and it eliminates the calculation of university totals.
The tormal specifications follow in the usual format.

Narrative:

Screen Layouts:

Processing Requirements:

Tuition Billing Program (Screen Version)

This program modifies the specifications for the original tuition billing program to
accommaodate screen I-C. incoming records are to be entered one at a time via the
keyboard with computed results for each student displayed as they are calculated.

The password is to be masked and entered as per the screen in Figure 10.1a, student
data are to be entered according to the screen in Figure 10.1b, and the computed results
displayed as in Figure 10.1c.

1. Develop an interactive program 10 accept student data, then compute and display
the student's bill. The program is to execute continually until it receives a response
indicating that no more students are to be processed.

2. The program is to check for a valid password prior to accepting data for the first
student. {The password is COBOL in either all upper- or all lowercase letters) The user
is allowed a maximum of two fries to enter the password correctly, after which the
program is o tenminate with an appropriate error message.

3. The specifications for computing an individual student's bill are the same as in the
original prograrm:
a. Compute the individual bill as the sum of wition, union fee, and activity fee, minus a
schotarship (if any).
b. The tuitior is $200 per credit.
c. The union fee is $25.
d. The activity fee is based on the number of credits takern:

ROTIVITY FEE CHERTS
$25 8 or less
$50 7-12
§75 mote than 12

e. Award a scholarship equal to the amount in the incoming record it the GPA is
greater than 2.5.

4, The requirement to compute university tolals has been deleted.

The Tuition Biiling Frogram Revisited

Tuition Billing Program (Screen |-O)

ENTER PASSWORD: *#¥w»x

Fort Tomprap st 100
-,A\.,; PR Rl S W nys

Enter the following information:

Last Name: Zobrist Initials: W

E e i
]

Credits: 18 Union Member {(Y/N): Y F
GPA: 3.20 Scholarship Amount: 4000

Tuiticn: 3,600
: Activity Fee: 75
i Union Fee: 25

n

tess Schotarship: -4,000

Amount Due: $ 300CR

The hierarchy chart for the screen version of the tuition billing program is shown in
Figure 1.2, The highest-level module, PROCESS-STUDENT-DATA, has four
subordinates: PROCESS-PASSWORD, INPUT-STUDENT-INTQ, COMPUTE-
INIMVIDUAL-BILL, and DISPLAY-STUDENT-BLLL. COMPUTE-STUDENT-BILL has
four subordinates of its own: COMPUTE-TUITION, COMPUTE-UNION-FEE,
COMPUTE-ACTIVITY-FEE, and COMPUTE-SCHOLARSHIP, all of which appeared
in the original hierarchy chart.

The requirement to compute university totals has been dropped from the
programming specifications, and thus the modules associated with this function
that appeared in the original hierarchy chart (Figure 3.3) have been dropped from
the current version.

The pseudocode in Figure 10.3 contains two iterative structures, a DO UNTIL
associated with obtaining the password, and a 130 WHILE to process student data.
The difference between the two is significant and was explained previously in
Chapter 9 (see Figure 9.1). Recall, therefore, that the 120 UNTIL structure tests the
condition after executing the indicated statements and thus ensures that those
statements are executed at least once. A DO WHILE, however, tests the condition
before executing the statements, and hence the indicated statements need not be
executed at all.

Chapler 10 -~ Screen -0

PROCESS
STUOENT
DATA
B R ——
. INPUT COMPUTE BISPLAY
Pig?&ﬂ§§b i STUDENT INDIVIDUAL | STUDENT
& ‘ iNFO BILL f BILL
l'wir;ﬂu‘;iu-i J f I
! i, COMPUTE 1 COMPUTE T | - ,
L COMPUTE I COMPUIE =
UNION ACTIVITY COMPUT :
t TUITICN J i o i 4 l SCHOLARSHEP |
| I L ________ :

Filgure 1.3 Pseudocode for Tuition Billing Program (Screen Version)

f - 00 UNTIL password-valid OR too-many-tries F
ACCEPT and validate password
Increment number of tries
L-—— ENDDO
~—- IF {oo-many-tries
Set continue-processing-switch to 'N'
Display 'SORRY, you tried too many times'
----- END-TF
— - [0 WHILE continue-processing-switch not equal te 'N’ or 'nf
Compute tuition
Compute union fee
: Compute activity fee
Compute scholarship
Compute bill
‘ DISPLAY computed results {
E ACCEPT continue-processing-switch
s ENDDO
Stop run

The Tuition

Bilting FProgram Revisiied

The user must be given at least one try to enter the password and hence the
D0 UNTIL structure is used to accept and validaie {reject) the user's entry. ii the
user fails to enter the correct password within the allocated number of tries, the
continue-processing-switch will be set to “N’, which prevents the execution of
statemenits within the DO WHILE loop; that is, the program terminates without
processing 4 student record.

The completed program is shown in Figure 10.4 and reflects the hierarchy chart and
pseudocode just discussed. it is different from all previous programs in that input is
received from the keyboard and cutput is displayed on the monitor. Thus, there are
no files in this program, and hence no need for an Environrment Division (and the
associated SELECT stateiments), nor for the File Section in the Data Division. The
absence of all files also means that the Procedure Division does not contain the
familiar OPEN, CLOSE, READ, and WRITE statements thai were present in all
Previous programs.

All I-O is screen based and accomplished through ACCEPT and DISPiAY
staternents with LINE and COLUMN clauses to control the location of the displayed
fields. Different colors are used for different areas of the screen as implemented
through the COLOR clauses that appear throughout the program; the available
colors are defined as data names in fines 16-34, then referenced as necessary in the
various ACCEPT and DISPLAY statements.

The impuosition of a password is accomplished through the in-line PERFORM
statement in lines 80-89, which uses the TEST AFTER clause to give the uscr two
chances to enter the password cormrectly. The SECURE clause, in the ACCEPT
statement of lines 87 and 88, prevents the user's response from appearing on the
screen, and the AUTO clause saves the user from having to press the return key. The
BLANK SCREEN clause in line 84 clears the screen before requesting the password.
The program aceepts either COBOL or cobol as a valid password according to the
88-level entry in line 38; it will not, however, recognize a combination of upper- and
lowercase letters.

Once a valid password has been entered, the program piocesses students one
at a time through the in-line PERTORM statement in lines 72-76, which invakes
three lower-level paragraphs for each student: 200-INPUT-STUDENT-INFQO, 310-
COMPUTE-INDIVIDUAL-BILL, and 500-DISPLAY-STUDENT-BILL. The latter
paragraph ends by obtaining the user response regarding another student (lines
189-141}. Note, too, the provision for both upper- and lowercase data entry as the
CONTINUE-PROCESSING-SWITCH in line 72 is compared (o both ‘N’ and ‘n’.

One last comment concerns the double line that appeared around the user’s
input in the screen of Figure 10.1b. This was accomplished by including the necessary
ASCII (graphics) characters in the DISPLAY statements of lines 99 through 117. (See
programming tip on the Alt key and numeric keypad.)

Chapier 10 — Screen -0

s Newcormers to the computer recognize the At key as the middle key in the Ctrl, Alt, and Del sequence to
: reboot the computer. it has many more uses, haowaver, one of which is to reproduce any character within the
256 ASCII characier st shown in the table below.

o
|

-
o g o
= O w

2
e
Q

— > P >

- %

-
=

P 2« % @ o

e O m .
RN

-

%
/

9

C
M
W
a
k
u
0
e
o
¥

»

O = N 0V A o

T Re—— T
- B o~ e

-

s M B ERC WO PO HTXZO O

P
= .

e] WD DX T AT AN 8§
Pt = SO~ QW N H WU+ = g ow

20

DQOMH = E— 1 0 € H G R O

L
RS R "

]
=R =

o B | s

N Ay L e R 0D — OO0 W~ s QO

TNV S -
A © B S

The double vertical iine, for example, is found in row 18, column 6 of the table, and thus, is ASCl
character 186; it is entered into a program file by holding the Alt key down, and iyping 1, 8, and 6, from
the numeric keyboard. In similar fashion, a double horizontai line is found in row 20, column 5, and thus
is ASCI! character number 205. Four other characlers, corresponding to the four corners, are required to
compiete the box.

The printer, however, is a limiting factor, because while all of the 256 symbols will appear on an ordinary _
monitor, they are not necessarily supported on every printer. .

The Tuition Billing FProgram Revisited

Screen Version of Tuition Billing Program

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. SCRNTUIT.

3 AUTHOR. CAROL VAZQUEZ VILLAR.

4

5 DATA DIVISTON.

6 WORKING-STORAGE SECTION.

7 01 STUDENT-DATA.

8 05 STU-NAME.

9 10 STU-LAST-NAME PIC X{15).

10 10 STU-INITIALS PIC XX.

11 05 STU-CREDITS PIC 9(2).

L1z 05 STU-UNION-MEMBER PIC X.

13 05 STU-SCHOLARSHIP PIC 9(4).

14 05 STU-GPA PIC 9v99.

15 K

16 { 01 SCREEN-COLORS PIC S9(4) COMP-5.

? © * COLORS FOR FORFGROUND AND BACKGROUND

18 78 BLACK VALUE 0.

19 , .78 - BLUE VALUE 1.
20 . ' 78 - GREEN VALUE 2.
21 78 CYAM VALUE 3.
22 _ 78 RED ST VALUE 4.
23 ' 178 mAGENTA ' VALUE 5,
24 ? /8 BROWN VALUE 6.
25 i 78 1 WHITE VALUE 7.
26 % ADDITIONAL COLORS FOR FOREGROUND ONLY
27 |78 BRIGHT-BLACK VALUE 8.. -
28 ; 78 | BRIGHT-BLUE . NALUE 9.
29 |78 BRIGHT-GREEN . - VALUE 10.
30 : 78 BRIGHT-CYAN VALUE 11.

31 78 BRIGHT-RED VALUE 12.

32 - 78 BRIGHT-MAGENTA VALUE 13.
33 j | 78 | BRIGHT -BROWN VALUE 14.

34 j . 78 ¢ BRIGHT-WHITE VALUE 15.

. oo 148 PREGAT-WHTTE _ vAttE o

36 01 PASSWORD-VARTABLES.

37 05 PASSWORD-ENTERED PIC X(5).

38 88 VALID-PASSWORD VALUE 'COBOL' ‘coboi'.
39 05 TRIES-COUNTER PIC 9.
40 88 TOO-MANY-TRIES VALUE 3.
41
42 01 CONTINUE-PROCESSING-SWITCH PIC X VALUE 'Y'.
43
44 01 INDIVIDUAL-CALCULATIONS.
45 05 IND-TUITION PIC 9(4) VALUE ZERDS.
46 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZERDS.
47 05 IND-UNION-FEE PIC 9(2) VALUE ZEROS.
48 05 IND-SCHOLARSHIP PIC 9(4) VALUE ZEROS.
49 05 IND-BILL PIC S3{6) VALUE ZEROS.
50

51 01 DISPLAY-CALCULATIGNS.

Chapter 10 — Screen

Figure 10.4 (continued)

52 05 DIS-TUTTION PIC Z,719.
53 05 DIS-ACTIVITY-FEE PIC Z9.
54 05 DIS-UNION-FEE PIC Z9.
55 05 DIS-SCHOLARSHIP PIC Z,229.
56 05 DIS-BILL PIC $77Z,Z79CR.
57
58 01 CONSTANTS-AND-RATES.
59 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200.
60 05 UNION-FEE PIC 9(2) VALUE 25,
61 05 ACTIVITY-FEES.
62 10 1ST-ACTIVITY-FEE PIC 99 VALUE 25.
: 63 10 1IST-CREDIT-LIMIT PIC 99 VALUE 6.
: 64 10 2ND-ACTIVITY-FEE PIC 99 VALUE 50,
65 10 2ND-CREDIT-LIMIT PIC 99 VALUE 12.
66 10 3RD-ACTIVITY-FEE PIC 99 VALUE 75.
57 05 MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5.
68
69 PROCEDURE DIVISION. e e et s e
70 000-PROCESS-STUDENT-DATA. e o
7i PERFORM 100-PROCESS-PASSWORD. e
72 ""PERFORM UNTIL CONTINUE-PROCESSING-SWITCH - 'N‘ OR 'n’
73 4 PERFORM 200- INPUT-STUDENT-INFO
; 74 | PERFORM 310-COMPUTE-INDIVIDUAL-BILL
i % g PERFURM 500-DISPLAY-STUDENT-BILL
76 END-PERFORM. - .)
77 STOP RUN.
8 Ve FEnT AFTOR s DIELIER NN G MO IS Ly 0 nSiaad a0
i 79 100-PROCESS-PASSWORD. -~ -
: 80 'PERFORM WITH TEST AFTER
81 VARYING TRIES-COUNTER FROM 1 BY 1 g
82 . UNTIL VALID-PASSWORD OR TOO-MANY-TRIES
83 : DISPLAY 'ENTER PASSWORD: ' LINE 12 COLUMN 30
84 ? WITH BLANK SCREEN
85 FOREGROUND-COLOR BRIGHT-GREEN
86 BACKGROUND-COLOR MAGENTA
a7 ; ACCEPT PASSWORD-ENTERED LINE 12 COLUMN 46
88 ; WITH REVERSE-VIDEQ AUTO SECURE f
89 | END-PERFORM. R
90 "IF TOO-MANY-TRIES
9] MOVE 'N' TO CONTINUE-PROCESSING-SWITCH
g2 DISPLAY "SORRY, You tried too many times'
93 LINE 24 COLUMN 22 WITH BLINK
94 ! FOREGROUND-COLOR WHITE
a5 { BACKGROUND-COLOR RED ~™~_ _
96 END-IF. e TeLTRE O DS T O i
98 200-INPUT-STUDENT-INFO.
%9 DISPLAY | = msmsesssmsnsomsmsmmsnns i,
100 AT LINE 2 COLUMN 5 WITH BLANK SCREEN
101 FOREGROUND-COLOR BRIGHT-BROWN
102 BACKGROUND-COLOR BLUE.

The Tuition Billing Frogram Havisiled

LG (confinued)

103 DISPLAY ‘7 Enter the followiang information: o
104 AT LINE 3 COLUMN 5.
105 DISPLAY '~ .
106 AT LINE 4 COLUMN 5.
107 DISPLAY '” Last Name: Initials: o
: 108 AT LLINE 5 COLUMN 5.
© 109 DISPLAY '~ “'
R L AT LINE 6 COLUMN 5.
111 DISPLAY ' Credits: Union Member (Y/N):
E 112 AT LINE 7 COLUMN 5,
Co13 DISPLAY '~)
E 114 AT LINE 8 COLUMN 5.
? 115 DISPLAY '7 GPA: Scholarship Amount: ot
;116 AT LINE 9 COLUMN 5.
E 117 DISPLAY PP B0 08 38 00 A 88 b A R P8 B RS R AR B8 AR B LR S PG e 0 3 08 B0 0 5008 08 5 03 05
g 1i8 AT LINE 10 COLUMN 5.
‘ il§ ACCEPT STU-LAST-NAML AT LINE 5 COLUMN 18,
120 ACCERT STU-INITIALS AT LINE & COLUMN 45.
121 ACCEPY STU-CREDITS AT LINE 7 COLUMN 16.
12 ACCEPT STU-UNION-MEMBER AT LINE 7 COLUMN 45 WITH AUTC.
: 123 ACCEPT STU-GPA AT LINE 9 COLUMN 16 WITH AUTG.
; 124 ACCEPT STU-SCHOLARSHIP AT LINE 9 COLUMN 45,
128
é 126 310-COMPUTE- INDIVIDUAL-BILL.
§ 127 PERFORM 410~-COMPUTE~TUITION.
% 128 PERFORM 430-COMPUTE-UNION-FEE.
5 129 PERFORM 460-COMPUTE~ACTIVITY-FEE.
% 130 PERFGRM 490~COMPUTE~SCHUOLARSHIP.
5 131 COMPUTE IND-BILL = IND-TUITION + IND-UNION-FEE +
132 IND-ACTIVITY-FEE - IND-SCHOLARSHIP
133 S1ZE ERROR DISPLAY 'SIZE ERROR FOR INDIVIDUAL BILL'
134 END-COMPUTE.
: 135
% 136 410-COMPUTE-TUITION.
: 137 COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS
138 SIZE ERRGR DISPLAY 'SIZE ERROR FOR INDIVIDUAL TUITION'
139 END-COMPUTE.
140
141 430-COMPUTE-UNION-FEE. _
142 _IF STU-UNLON-MEMBER = 'Y' or 'y' .
; 143 MOVE UNION-FEE TO IND-UMTON-FEE H\“’fffthﬂﬁﬂfG”ﬁdni:J-”iy?'ﬂﬁﬁ'flff;fﬁf
144 ELSE
; 145 MOVE ZERO TO IND-UNION-FEE
© 146 END-1F.
147
i 148 460-COMPUTE-ACTIVITY-FEE.
; 149 EVALUATE TRUE
% 150 WHEN STU-CREDITS <= 1ST-CREDIF-LIMIT
: 151 MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE
f 152 WHEN STU-CREDITS > 1ST-CREDET-LIMIT

153 ANG STU~CREDITS <= ZND-CREDIT-LIMIT

Chapter 10 — Screen i-0

Figure 104 (continued)

154 ' MOVE 2ND-ACTIVITY-FEE TO IND-ACTIVITY-FEE
155 WHEN STU-CREDITS > 2ND-CREDIT-LIMIT
156 MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE
157 WHEN OTHER
158 BISPLAY 'INVALID CREDITS FOR: ' STU-NAME :
{159 END-EVALUATE. g
{160 :
161 490-COMPUTE-SCHOLARSHIP.
162 IF STU-GPA > MINIMUM-SCHOLAR-GPA
163 MOVE STU-SCHOLARSHIP TO IND-SCHOLARSHIP
[164 ELSE
i 165 MOVE ZERO TO IND-SCHOLARSHIP
L1866 END~IF.
167
168 500-DISPLAY-STUDENT-BILL.
169 MOVE IND-TUITION TO DIS-TUITION. ;
170 | DISPLAY 'Tuition:' AT LINE 12 COLUMN 10. | ;
171 | DISPLAY DIS-TUITION AT LINE 12 COLUMN 29. i ™ :
172 - N
173 MOVE IND-ACTIVITY-FEE TO DIS-ACTIVITY-FEE, e o
174 | DISPLAY 'Activity Fee:' AT LINE 13 COLUMN 10. |
175 " DISPLAY DIS-ACTIVITY-FEE AT LINE 13 COLUMN 32. !
176 7
L1177 MOVE IND-UNION-FEE TO DIS-UNTON-FEE.
©178 DISPLAY 'Union Fee:' AT LINE 14 COLUMN 10.
179 DISPLAY DIS-UNTON-FEE AT LINE 14 COLUMN 32.
180
181 MOVE IND-SCHOLARSHIP TO DIS-SCHOLARSHIP.
182 DISPLAY 'Less Scholarship: ~' AT LINE 15 COLUMN 10.
i 183 DISPLAY DIS-SCHOLARSHIP AT LINE 15 COLUMN 26.
P 184
185 DISPLAY f--=mnmm- ' AT LINE 16 COLUMN 27.
{186 MOVE IND-BILL TO DIS-BILL. :
TV DISPLAY ‘Amount Due:' AT LINE 17 COLUMN 9. ;
. 188 DISPLAY DIS-BILL AT LINE 17 COLUMN 26. j
i 189 [GISPLAY 'Enter another student? (¥/N):'] -
190 | AT LINE 20 COLUMN 7. T §
191 | ACCEPT CONTINUE-PROCESSING-SWITCH AT LINE 20 COLUMN 37. | §

i
: et vkt
i
i

Car Yalidation The concept of data validation was intioduced in Chapter 8 in the form of a stand-
¥ alone edit program that processed a file of incoming transactions, rejected invalid
transactions with appropriate error message(s}, and wrote valid transactions to a
new file; the latter was then input to a reporting program that was developed in
Chapter 9. This chapter combines the data validation and reporting programs into
a single program to validate data as they are entered and produce an on-screen
result.

The biggest difference between this program and its predecessor(s) is that the
data are validated interactively as they are entered, as opposed to the batch-oriented
approach in Chapter 8, The advantage of the interactive program is that the user is

FRO AT

Car Validabion and Billing Frogram

given the opporiunity to correct the invalid transaction at the time the error is
detected, as opposed to receiving a report listing the errors. Reaiize, however, that
interactive (screen-based) programs are restricted to low-volume applications and
that their execution is far more time consuming than programs that are file-driven.
Specifications follow in the usual format.

PROGRAMMING SPECLFICATIONS

Program Name:

Narrative:

Screen Layout:

Processing Requirements:

Car Validation and Biliing Program (Screen Version)

This pregram combines lhe specifications for data validation and reporting as presented
earlier in Chapters 8 and 9. The fields in each incoming transaction are accepted and
validated ong at time, after which the bill is computed and displaysd on the screen. Valid
transactions are alschwritten to an output file.

See Figure 10.5 (page 280).

1. Develop an interactive program to accepl and validate car rental data, then compute
afnid dispiay the associated bill. The program is o éxecule continually urdii i receives a
response indicating that no more records are 1o be processed.

2. bach incoming fietd is to be valigated as it is entered; that is, the user cannot move o
the next field until valid data have been entered in the current tield. The reguirements
for validaiion were presented in Chagpter 8 and are summarized beiow. Each transaction
iz ta ha checked for tha tollowing:

0.

O

g.
.

A numenc contract number.
The presence of both a first and fast name; a middie initial is not required, but if
present, the initial must be alphabetic.

. Avalid car type where the code is one of five values, E, C, M, F, or L.
. A valid date in which the menth is between 1 and 12, the day is consistent with the

month (e.q., Aprit 31 should be rejecied), and the date is less than or equal to the
syslem date.

. Avalid number of days rented that is greater than zero and lsss than or egual to 35.

Numeric vaiues for the mileage in and out; and further, that the mileage reported
when the car is turned in is greater than the mileage when the car was taken out.
The number of miles driven must also pass a reascnableness test of 10 miles or
rmore per day

A numeric mileage rate less than or equal to 50 cents per day.

An insurance fietd of ether Y or N,

3. Write the validated transaction to a file as per the originat program in Chapter 8.

4. Calculate the customer's bill after afl fieids have been validated. The amount due is a
function of car type, days renied, miles driven, mileage rate, and insurance.

a.

The milsage rale s different for each customer and appears as a field in the
incoming transaction; the mileage iotal is the mileage rate iimes the number of
riles driven.

. The daily rate is a function of the type of car rented. Economy cars cost $15 a day,

compact cars $20 a day, mid-size cars $24 a day, full-size cars $28 a day, and
luxury cars $35 a day. The daily total is the daily rate times the number of days
rented.

. Insurance is optional at $10.50, regardiess of the type of car rented.

Chapter 10 - Screen -0

1

d. Acustomer's tota
~ i
A= i

rribeaol
LA SRS

bill consists of the mileage total, daity total, and insurance total as
i
1

oft
V(b oand (oY
d{c

arfe
[silte) Fo \RAg, CAFF

~

npa
5. Display the computed bill on the screen as per the screen layout of Figure 10.5.

€. The requirement fo compute totals has been deleted,

The Boreen Section

The tuition billing program illustrated the use of ACCEPT and DISPLAY statements
within the Procedure Division. This approach is useful to display individual lines
and/or to accept a limited number of fields as input, but awkward when you need to
fill an entire screen. A second limitation of individual ACCEPT and DISPLAY
statements is that they are scattered throughout the Procedure Division, making it
difficult to reproduce consistent screens from program to program within a system.

The Screen Section specifies the characteristics of an entire screen in the Data
Divisicn, then accepts or displays that screen in a single statement in the Procedure
Division. The Screen Section is physically the last section in the Data Division, and
its structure is similar to that of the File and/or Working-Storage Sections, Consider:

screen-namel [” (screent | [seLL]
level- number : - i lBLiNKl
FILLER | [J |eee|

[HIGHLIGHT| [REVERSE - VIDFO] [UNDERLINE]

]

[integer-1 | (4 integer-2 l
BACKGROUND COLOR 1S i | FOREGROUND - COLOR IS { H
I \data fname [data-name- Zu
ﬁdenmﬁer 1 identifier-zl
NUMBER COLUMN MUMBER <
1nteger 3) integer-4
VALUE 1S literal-1
l [FROM identifier-4 T0 identifier- 51
PiC I]USING identifier-6 J

CORTROL 15 %denti fier- ?[

{
[ntera]-l]}

[AUTO] SECURE}

An appreciation for the Screen Section can best be gained by viewing sample
screens and the assaciated COBOL. entries. Consider now Figure 10.5, which displays
three screens from the car validation and billing program to be developed later in
the chapter. Figure 10.5a displays the opening screen, consisting entirely of prompts
for the various fieids. Figure 15.5b displays a completed screen for Janice Vogel with
valid entries in all fields, and Figure 10.5¢ dispiays the computed results.

The screens are produced in the sequence shown; that is, the system displays
the opening screen of Figure 10.5a and the user enters the fields one at a time. Each
field is validated as it is entered; the user cannot move to the next field untii he orshe
has entered a valid value for the current field. Once ali fields have been entered the
system computes the bill and displays the results.

An abbreviated Screen Section, extracted lrom the completed program at the
end of the chapter, is shown in Figure 10.6. The entries in the Screen Section are
similar to these in the File or Working-Storage Section; that is, they consist of group
itemns divided into elementary items. The entry at the 01 level must specify a screen-
name--for exampie, OPENING-SCREEN and UPDATE-SCREEN in Figure 10.6. The

The Screen Section

Screen Layouts

Mavis Car Renta? Company 07/03/98 %

i

Contract No: 3 g
Customer Information: ‘

tast Name

Mileaye:

Miles In:
Miltes Out:
Insurance:

Car Information:

Type Code:
X Date Returned:
; Days Rented:

First Initial

(Compact, Economy, Midsize, Fullsize, Luxury)

Mileage Rate:
(Y/N)

Above information correct? .
{Y - Yes, N - Noj

Mavis Car Rental Company 07/03/98

Contract No: 886227

Customer Information:

Last Name

VOGEL. Lo

Car Information:
Type Code:

Date Returned:
Days Rented:

Mileage:

Mites In:
Miles Out:
Insurance:

First Initial

OJANICE: - D

F {Compact, Ecoromy, Midsize, Fullsize, Luxury)
05/ 18793
17

6,345
6,123 Mileage Rate: 502
Y (Y/N)

Ahove information correct? ¥
(Y - Yes, N - No)

Chaptler 10 — Screen -0

Mavis Car Rental Company 07/03/98
: Contract No: BB6Z22 ;
Customer Information: E ?
: lL.ast Name First Initiatl ;
: VOBEL:»..% - - JARICE . D ; ;
E Car Information: 7 f
: Type Code: ¥ {Compact, Economy, Midsize, Fullsize, Luxury)} ; :
* Date Returned: 05/18/93 Totals .
, Days Rented: 12 Rental Rate: $28.00 $336.00 :
i Mileage: §
i Miles In: 6,345 Miles Driven: 222 :
Miles Qut: 6,173 Miieage Rate: 17 $4.44 :
Insurance: ¥ (Y/N) Insurance Rate: $10.50 $i26.00
é Amount Due: $466.44 E
i Enter another record? ¥ § %
! {Y - Yes, ¥ - No) ; i
3 Abbrevialed Screen Section

SCREEN SECTION.
61 OPENING-SCREEN.
05 BLANK SCREEN ;
BACKGROUND-COLOR BLUE FOREGROUND-COLOR WHITE.
05 SCREEN-PROMPTS. ;

i0 LINE 3 COLUMN 7 VALUE 'Contract No:*.
10 LINE &5 COLUMN 7 VALUE 'Customer Informaticn:'.
9

10 LINE 6 COLUMN 9 VALUE 'Last Name'. f

10 COLUMN 25 VALUE ‘First'. ;

10 COLUMN 36 VALUE ‘Initial'. ;

10 LINE 9 COLUMN 6 VALUE 'Car Information:'. :

10 LINE 10 COLUMN 12 VALUE 'Type Code:'. §

f 05 SCREEN-INPUTS. :
: 10 SCR-CONTRACT-NO PIC 9(6) USING REN-CONTRACT-NO ;
LINE 3 COLUMN 20 REVERSE-VIDEQ. g

+

The Tuition Bifing Frogram Revisded

(continued)

10 SCR-LAST-NAME PIC X(15) USING REM-LAST-NAME
LINE 7 COLUMN 9 REVERSE-VIDEO.

10 SCR-FIRST-NAME PIC X{18) USING REN-FIRST-NAME
LIKE 7 COLUMN 25 REVERSE-VIDEQ.

10 SCR-INITIAL PIC X USING REN-INITIAL
LINE 7 COLUMN 36 REVERSE-VIDEO.

10 SCR-CAR-TYPE PIC X USING REN-CAR-TYPE

LINE 10 COLUMN 23

REVERSE-VIDED AUTO.

G1 UPDATE-SCREEN.

05 LINE 11 COLUMN &7 VALUE 'Totals' HIGHLIGHT.
05 LINE 12 COLUMN 38 VALUE 'Rental Rate:' HIGHLIGHT.
05 UPD-DAILY-RATE PIC $%$%9.99 FROM IND-DAILY-RATE
LINE 12 COLUMN 50 HIGHLIGHT.
05 UPD-DALLY-TOTAL PIC $55.559.99 FROM IND-DAILY-TOTAL
COLUMN 63 HIGHLTGHT.
05 LINE 14 COLUMN 37 VALUE ‘Miles Driven:' HIGHLIGHT.
05 UPG-MILES-DRIVEN PIC 777,276 FROM IND-MILES-DRIVEN
COLUMN 50 HIGHLIGHT.
G5 UPD-MILEAGE-TOTAL PIC $$.3$9.99
FROM IND-MILEAGE-TOTAL
LINE 15 COLUMN 63 HIGHLIGHT.
05 LINE 16 COLUMN 35 VALUE 'Tnsurance Rate:* HIGHLIGHT,
05 UPD-INSURANCE-RATE PIC $$9.99 FROM INSURANCE-RATE
LINE 16 COLUMN 51 HIGHLIGHT.
05 UPD-INSURANCE-TOTAL PIC $%,%$$9.99
FROM IND-INSURANCE-TOTAL
COLUMN 64 HIGHLIGHT.
85 LINE 17 COLUMN 63 VALUE ‘- ' HIGHLIGHT.
05 LINE 18 COLUMN 48 VALUE ‘Amount Due: ' HIGHLIGHT.
05 UPD-AMOUNT-DUE PIC $55%,559.99 FROM TND-AMOUNT-DUE

COLUMN 62

HIGHLIGHT.

screerni {data) name is optional at any other level; for example, the first 05-level eniry
in Figure 10.6 omits the screen (data} name and specities a blank screen with a blue
background and white foreground. The next 05-level entry includes a data name,
SCREEN-PROMPTS, which is divided into multiple elementary items, each of which
omits the data name.

If a screen (data) name or FILLER is specilied, then it must be the first word
following the level name. The remaining clauses can appear in any order, but each
elementary itern must contain at least one of the following clauses: BELL, BLANK
LINE, BLANK SCREEN, COLUMN, LINE, PICTURE, or VALUE. (The VALUE
and PICTURE clauses are mutially exclusive in the Screen Section.) Any clause
that appears on a group itern applies to all elementary items within the group where
it is allowed. if the same clause is specified at multiple levels in thie hierarchy, the
lowest level takes effect. The various optional clauses are iliustrated in Figure 10.6
and function as explained previously in conjunction with the ACCEPT and
DISPLAY statements.

Chapter 18 — Screen -0

Note, too, the correspondence between the line and column positioning within
SCREEN-PROMPTS and SCREEN-INPUT; for example, a prompt for ‘Contract No?'
appears on {ine 3 and extends from column 7 to 18; the data name SCR-CONTRACT-
NO is subsequently accepied in column 20 on the same line. The action of the LINE
and COLUMN clauses is the same as with individual ACCEPT and DISPLAY
statements: omission of the LINE clause defaults to the same line as the previously
specified element. Thus the prompt for last name is displayed on line 6, column 9
followed by the prompt for first name in column 25 of the same iine, followed by the
initial in column 36 of the same line.

The Screen Section makes possible the definition of multiple screens within
the same program as implied by the screen in Figure 10.5¢, in which the computed
results are displayed on the same (expanded) screen as the original inputs. Thus the
Screen Section in Figure 10.6 contains a second 01 entry, UPDATE-SCREEN, with
multiple entries that display both text and computed information; the latter is
displayed after all data have been entered and the bill has been computed.

The TO clause in a screen description entry indicates an input field; the FROM
clause indicates an output field. The USING clause—for example, USING REN-
CONTRACT-NO-—is equivalent to the combination of FROM and TO clauses each
specilying the same data name. In this instance the screen input in line 3, column
26 is accepted from and/or moved to the data name SCR-CONTRACT-N(, which is
defined elsewhere in the Data Division.

Unlike the ACCEPT and DISPLAY statements, SCREEN SECTION
FOREGROUND-COLOR and BACKGROUND-COLOR can use identifiers as well as
integers. Level-78 can be used as well. However, the BRIGHT colors are not
acceptable. Using values 0-7 and HIGHLIGHT is the equivalent of 8-15.

Mievarchy Chart

The hierarchy chart in Figure 10.7 combines the functions of the data validation
and reporting programs of Chapters 8 and 9. The second-level module, PROCESS-
RENTAL-RECORDS, effectively drives the program and contains subordinates to
VALIDATE-RENTAL-RECORD, COMPUTE-IND-BILL, WRITE-VALID-RECORD, and
INPUT-SCREEN-CONFIRM.

The validation module, VALIDATE-RENTAL-RECQORD, contains a lower-level
modaule for every validity check (identical to those in Chapter 8), each of which calls
a common routine that displays the indicated error message or clears the error line.
The computaiion module, COMPUTE-IND-BILL, has three subordinates of its own:
COMPUTE-MILEAGE-TOTAL, COMPUTE-DAILY-TOTAL, and COMPUTE-
INSURANCE-TOTAL. The remaining modules under PROCESS-RENTAL-RECORDS
write the validated record, then determine whether another record is to be processed.

Pseudocoda . L e

The pseudocode in Figure 10.8 is driven by an overall loop to process transactions
unttil the user elects to quit. Each new transaction begins with validation of individual
fields, which continues until the user indicates that the entire screen is accurate;
that is, the user is given the opportunity to change any field that has been previously
validated. Within this loop, each field is validated Enterai:tively; that is, the user
cannot enter the next field until the current field has been accepted as valid.

Once all fields have been entered and validated, the program moves to the
computation of the bill according to the specifications presented earlier, The
computed hill is displayed on the screen, the validated record is written to a valid
record file, and the user is given the opportunity to process another ransaction.

The Tuitton Biiting Program Revisited

Hierarchy Chart

PHODLCE

CUSTOMER z

BILLS

GET [process

TODAYS I RENTAL

DATE | RECORDS

E

VALIGATE COMPLITE WRITE ?' INPLT

RENTAL iND YALID SCREEN :

RECGRD Bilk RECORD CORFIRM %

i

_1 [E—

VALIDATE 1 g Py | compute | ! COMPUTE | l COMPUTE :

CONTRACT vy SCREEN | MILEAGE DAiLY | iNSLIRANCE ;

NUMBER | CONFiRM | TOTAL | | TOTAL I TOTAL

j i] i

— P

DISPLAY DISPLAY f

ERROR ERROAS ERROR ERRORS |

’ MESSAGE MESSAGE :

.................. s SN — | 2_

e e e e e
Pseudocode for Car Validation and Billing Program (Screen Version)

, . !

Cpen valid-rental-file :

Get today's date :
DG WHILE another record is desired
DO UNTIL information correct
- DO UKTIL valid-field-switch = spaces
: Accept contract number
IF contract number = zeros
Dispiay 'Contract number must not be zero'
Move 'NO' to valid-field-switch
ELSE
: Move spaces to valid-field-switch ;
L. ENDIF 5
ENDDO

{continued)

Chapter 10 —

-0

- DO UNTIL valid-field-switch = spaces
: Accept last-name
[- IF Tast-name = spaces
i Display ‘Error - Missing last name’
; Move 'NO' to valid-field-switch
| ELSE
@ Move spaces to valid-field-switch
i ENDIF
— ENDDO
. Validation checks for remaining fields
Display information corvect message
-~ DO UNTIL valid confirmation ("Y“, “y", "N", or "n")
Accept confirm-switch
— IF valid confirmation
j Clear previous error message
I ELSE

{ Bisplay 'Must he “Y" or "N%'
----- ENDIF
8 ENDDO
=~ ENDDO
Compute miles driven = miles in - miles out
00 CASE
Car Type E - Move economy rate to mileage rate
Car lype C - Move compact rate to mileage rate
Car Type M - Move midsize to mileage rate
Car Type F - Move fullsize rate to mileage rate
Car Type L - Move Juxury rate to mileage rate
- END CASE

[

Compute mileage total = miles driven * mileage rate
Compute daily total = days rented * daily rate
IF insurance taken
Compute insurance = insurance rate * days rented
END-IF
Compute total bill = mileage amount + daily amount + insurance
Display computed bilt
Write valid record to valid record file
Display Another record message
DO UNTEL valid confirmation (“Y", “y", "N*, or "n"}
Accept confirm-switch
— IF valid confirmation
} Clear previous error message
ELSE
: Display "Must be *Y" or "N
- ENDEF
ENDDO

ENDDQ
Close valid-rental-file
Stop run

The Tuiticr Bitling Program HAevisiled

et = & S = T P R R

w Lo

b
—_ O

13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30

1
4

32
33
34
35
36
37
38

B AR e B B el B e . g
Ve Dornpheted Progrars

The completed program is shown in Figure 10.9 and includes many statements
from the earlier programs in Chapters 8 and 9. The most significant difference
is that 1-O is screen based, with transactions entered via the keyboard and
computed results displayed on the monitor, as provided through the extended
Screen Section (lines 135-244). The program also creates a VALID-RENTAL-FILE
as cutput, illusirating that the same program can contain both a File Section and
a Screen Section

Car Validation and Billing Program

s . . :

IDENTIFECATEON DIVISION.
PROGRAM-ED. SCRNCARS.
AUTHOR. Cvy,

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTEON.
FILE-CONTROL.

SELECT VALID-RENTAL-F

TLE ASSIGN TO 'A:\CHAPTRIO\VALRENT DAT'
ORGANIZATION IS LIKE

SEQUENTIAL.

DATA DIVISION.

[~TT
r;LL SEbIAON.

FD VALID-RENTAL-FILE. :
01 VALID-RENTAL-RECORD PIC X(57). ;

WORKING-STORAGE SECTION. :
01 RENTAL-RECORD-1M.

05 REN-CONTRACT-NO PIC 9{6). :
05 REN-NAME. ;
10 REN-LAST-NAME PIC X(15).
10 REN-FIRST-NAME PIC X(10).
10 REN-INITIAL PIC X.

05 REN-RETURNED-DATE.
10 REN-RETURNED-YEAR PIC 9(2).
10 REN-RETURNED-MONTH PIC 9(2).

88 VALID-MONTHS YALUES 1 THRU 12.
88 FEBRUARY YALUE 2.
88 30-DAY-MONTH VALUES 4 6 9 11.
88 31-DAY-MONTH VALUES 1 3 57 8 10 12.
10 REN-RETURNED-DAY FIC 9(2).
05 REN-CAR-TYPE PiC X.
88 VALID-CAR-TYPES VALUES 'E' 'C' 'M" 'F' "L',
05 REN-DAYS-RENTED PIC 99.
88 ZERO-DAYS-RENTED VALUE 0.
88 VALID-DAYS-RENTED VALUES 1 THRU 35.
05 REN-MILEAGE.
10 REN-MILES-IN PIC 9(6).
10 REN-MILES-QUT PIC 9(6).

file://'A:/CHAPTR10/VALRENT.DAT'

Chapter 10 — Screen -0

Figure 10.9 (continued)

P39 10 REN-MILEAGE-RATE PIC V99.

Ca0 88 VALID-MILEAGE-RATES VALUES 00 THRU .50.

S| 05 REN-INSURANCE PIC X. ,
42 88 VALID-INSURANCE VALUE 'Y' 'y' 'N' 'n’. ;
43 88 INSURANCE VALUE 'Y' 'y'. :
44 :
45 01 PROGRAM-SWITCHES-AND-CONSTANTS. ;

T 05 MILES-PER-DAY-FACTOR PIC 99 VALUE 10. :
a7 05 VALID-FIELD-SWITCH PIC XX. :
48 88 VALID-FIELD VALUE SPACES. i
49 05 CONFIRM-SWITCH PIC X VALUE SPACES. :

L 50 '88 INFO-CORRECT VALUE WY Ty T ;

51 188 NO-MORE-RECORDS VALUE 'N* 'n‘. j §

o® 68 VAUIDCONFIRWED VALUE N nt Yy | |

L83 i

Y 01 TODAYS-DATE-INFORMATION. \\~\

% 55 (5% TODAYS-DATE. \\Jiﬂ"H:@-vﬂﬁ“zy,fﬂf}EuJ.ﬁ;Hﬁz SRTNSE {

156 10 TODAYS-YEAR PIC 99, ;

{57 10 TODAYS-MONTH PIC 9. i

T 16 TODAYS-DAY PIC 99. C

P59 05 SCREEN-DATE PIC X(8). E

{60
63 01 CONFIRM-MESSAGES.
62 05 CONFIRM-MESSAGE PIC X(27}. ?
63 05 INFO-CORRECT-MESSAGE PIC X{27)

E 64 VALUE 'Above information correct? '.

P 65 05 ANOTHER-RECORD-MESSAGE PIC X{27)

§ 66 YALUE ° Enter Anather Record? '.

: 67 T . ;

: 68 01 ERROR-MESSAGES. b-—— "7 7~

P69 05 ERROR-MESSAGE PIC X(40).

L0 05 ZERO-CONTRACT-NO-MSG PIC X{40}

o VALUE ' CONTRACT NUMBER MUST NOT BE ZERG'.

N 05 LAST-NAME-MSG PIC X{40)

§ 73 VALUE MISSING LAST NAME'.

P74 05 FIRST-NAME-MSG PIC X(40)

L5 VALUE MISSING FIRST NAME'.

: 76 05 INITIAL-MSG PIC X{40)

Loy VALUE NON ALPHABETIC INTTIAL'.

: 78 05 CAR-TYPE-M5G PIC X(40)

L VALGE © CAR TYPE MUST BE: E, C, M, F, OR L.

S8 05 MONTH-MSG PIC X(40)

: 81 VALUE ' MONTH MUST BE BETWEEN 1 AND 12'.

- 05 DAY-MSG PIC X(40}

E 83 VALUE ' INVALID DAY’.

I 84 05 FUTURE-DATE-MSG PIC X(40)

©o8s VALUE DATE HAS NOT YET OCCURRED'.

i 86 05 NON-NUM-DAYS-RENTED-MSG PIC X (40}

7/ VALUE * DAYS RENTED MUST BE NUMERIC'.

88 05 ZERC-DAYS-MSG PIC X(40)

The Tuition Billing Pragram Hevisited

{continued)
89 VALUE * DAYS RENTED MUST BE > ZERO'.
90 05 LEASING-MSG PIC X(40)
91 VALUE * REFER TO LONG-TERM LEASING'.
92 05 NON-NUM-MILES~IN-MSG PIC X(40)
93 VALUE NON-NUMERIC MILES IN'.
94 05 NON-NUM-MILES-QUT-MSG PIC X(40)
95 VALUE NON-NUMERIC MILES OUT'.
L 96 05 LESS-THAN-MILES-MSG PIC X(40)
g7 VALUE ' MILEAGE IN LESS THAN MILEAGE OUT' .
98 05 INVALID-MILES-MSG PIC X(40)
99 VALUE MILES DRIVEN UNREASONABLY LOW®.

100 05 NON-NUM-RATE-MSG PIC X(40)

101 VALUE NON-NUMERIC MILEAGE RATE®.
102 05 MILEAGE-RATE-MSG PIC X{40)

103 VALUE MILEAGE RATE OUT OF RANGE'.
Co04 05 INSURANCE-MSG PIC X(40)

L 105 VALUE INSURANCE CODE MUST BE Y OR N*.
[106 05 YES-NO-MSG PIC X(40)

107 VALIIE * MUST BE *Y" OR "N*'.
108

109 01 DAILY-RATES.

i10 05 ECONOMY-RATE PIC 9(3)V99 VALUE 15.

111 05 COMPACT-RATE PIC 9(3)V99 VALUE 20.

112 05 MID-RATE PIC 9{3)¥99 VALUE 24.
Co113 05 FULL-RATE PIC 9{3)V99 VALUE 28.
[o114 05 LUXURY-RATE PIC 9(3)¥99 VALUE 35.
{115 05 INSURANCE-RATE PIC 99V99 VALUE 10.50.
o116

117 01 IND-BILL-INFORMATION.

- 118 05 IND-MILES-DRIVEN PIC 9(6).

©o119 05 IND-DAILY-RATE PIC 9(3)V99.

L1120 05 IND-DAILY-TOTAL PIC 9(5)V99.

L 121 05 IND-MILEAGE-TOTAL PIC 9(8)V99.

b2 05 IND-INSURANCE-TOTAL PIC 9(4)v99.

Co123 05 IND-AMOUNT-DUE PIC 9(6)V99.

Poolea R e
. 125 .01 SCREEN-COLORS.

© 126 05 BLUE PIC S9(4) COMP-5 VALUE 1.
127 ' 05 CYAN PIC S9(4) COMP-5 VALUE 3.

128 ! 05 RED PIC S9(4) COMP-5 VALUE 4. S]
©129 . 05 MAGENTA PIC $O(4) COMP-5 VALUE 5, | - il wsesiidisaiofisns: &
©130 © 05 WHITE PIC S9(4) COMP-5 VALUE 7. U
L1131 | 05 BRIGHT-GREEN PIC S9{4) COMP-5 VALUE 10.
K7 05 BRIGHT-MAGENTA PIC S3{4) COMP-5 VALUE 13. |
C133 05 BRIGHT-WHITE PIC SG(4) COMP-5 VALUE 15.
135 SCREEN SECTION, e

136 01 OPENING-SCREEN. T e S g Blins ek e S "

137 05 BLANK SCREEN

138 BACKGROUND-COLOR BLUE FOREGROUND-COLOR WHITE.

Chapter 10 -~ 8creen -0

L (continued)
139 05 SCREEN-PROMPTS.
140 10 LINE 1 BLANK LINE BACKGROUND-COLOR MAGENTA.
141 10 COLUMN 20 VALUE 'Mavis Car Rental Company’ ;
142 BACKGROUND-COLOR MAGENTA
143 FOREGROUND-COLOR BRIGHT-GREEN, :
144 10 SCR-DATE PIC %{8) FROM SCREEN-DATE
145 COLUMN 55 BACKGROUMD-COLOR MAGENTA
146 FOREGROUND-COLOR BRIGHT-GREEN.
147 10 LINE 3 COLUMN 7 VALUE 'Contract No:®.
148 i0 LINE 5 COLUMN 7 VALUE 'Customer Information:'.
149 10 LINE 6 COLUMN 9 VALUE 'Last Name'. :
150 10 COLUMN 25 VALUE ‘First'. :
151 10 CDLUMN 36 VALUE 'Initial'.
152 10 LINE O COLUMN 6 VALUE 'Car Information:'.
153 10 LINE 10 COLUMN 12 VALUEL ‘Type Code:'.
154 10 COLUMN 25
155 VALUE '{Compact, Economy, Midsize, Fuilsize, Luxury)’ :
156 FOREGROUND-COLOR CYAR. i
157 10 COLUMN 26 VALUE 'C' HIGHLIGHT. :
158 10 COLUMN 35 VALYE 'E' HIGHLIGHT.
159 10 COLUMN 44 VALUE 'M' HIGHLIGHT.
160 14 COLUMN 53 VALUE 'F' HIGHLIGHT.
i6l 10 COLUMN 63 VALUE 'L* HIGHLIGHT. ;
162 10 LINE 11 COLUMN 8 VALUE 'Date Returned:'. i
163 10 COLUMN 23 VALUE 'mm/dd/yy’ ?
164 . FOREGROUND-COLOR BRIGHT-WHITE. :
165 10 LINE 12 COLUMN 10 VALUE 'Days Rented:'. ;
166 10 LINE 13 COLUMN 10 VALUE 'Mileage:’. :
167 10 LINE 14 COLUMN 13 VALUE *Miles In:‘. i
168 10 LINE 15 COLUMN 12 VALUE 'Mites Qut:'. :
169 10 COLUMN 37 VALUE ‘Mileage Rate:'.
170 10 LINE 16 COLUMN 12 VALUE 'Insurance:'. ;
171 10 COLUMN 25 YALYE '{Y/N)' i
172 FOREGROUND-COLGR CYAN. i
173
i74 05 SCREEN-INPUTS. :
175 10 SCR-CONTRACT-NO PIC 9{6) USING REN-CONTRACT-NO |
i76 LINE 3 COLUMN 20 REVERSE-VIDEO. ?
177 10 SCR-LAST-NAME PIC X{15) USING REN-{AST-NAME L
i78 LINE 7 COLUMN 9 REVERSE-VIBEO. E
179 10 SCR-FIRST-NAME PIC X(10) USING REN-FIRST~NAME :
180 LINE 7 COLUMN 25 REVERSE-VIDEOD. :
181 10 SCR-INITIAL PIC X USING REN-INITIAL :
182 LINE 7 COLUMN 36 REVERSE-VIDEO. ;
183 10 SCR-CAR-TYPE PIC X USING REN-CAR-TYPE '
184 LINE 10 COLUMN 23 REVERSE-VIDEG AUTO.
185 10 SER-RETURNED-MONTH PIC 99 USING REN-RETURNED-MONTH
186 LINE 11 COLUMN 23 REVERSE-VIDEQ AUTO.
187 10 SCR-RETURNED-DAY PIC 99 USING REN-RETURNED-DAY

i88 LINE 11 COLUMN 26 REVERSE-VIDED AUTO.

The Tuition Bfiling FProgram HRevisited

= 188 (continued)

01

6l

05

05
05
05

a5

05
b5

05

05

05
05

10

10

16

10

10

10

SCR-RETURNED-YEAR
LINE 11 COLUMN 29
SCR-DAYS-RENTED
LINE 12 COLUMN 23
SCR-MILES-IN

LINE 14 COLUMN 23
SCR-MILES-OUT
LINE 15 COLUMN 23
SCR-MILEAGE-RATE
LINE 15 COLUMN 54
SCR-INSURANCE
LINE 16 COLUMN 23

LINE 24 BLANK LINE.
05 LINE 25 BLARK [INE.

 UPDATE-SCREEN. .~

LINE 11 COLUMN 67
LINE 12 COLUMN 38
UPD-DAILY-RATE
LINE 12 COLUMN 50
UPD-DAILY-TOTAL

LINE 1

COLUMN 63

COLUMN 37

2
UPD-MILES-DRIVEN

COLUMN 50

UPD-MILEAGE-TOTAL

LINE 15 COLUMN 64
LINE 16 COLUMN 35
UPD-INSURANCE-RATE
LINE 16 COLUMN 51
UPD- INSURANCE-TOTAL

COLUMN 64

LINE 17 COLUMN 63
LINE 18 COLUMN 48
UPD-AMOUNT-DUE

COLUMN 62

ERROR-LINE.
05 LINE 25 BLANK LINE BACKGROUND-COLOR RED.

05

COLUMN 20

PIC 99 USING REN-RETURNED-YEAR
REVERSE-VIDEQ AUTO.

PIC 99 USING REN-DAYS-RENTED
REVERSE-VIDEO AUTO.

PIC ZZ7,779 USING REN-MILES-IWN
REVERSE-VIDED.

PIC ZZZ,ZZ9 USING REN-MILES-OUT
REVERSE-VIDEQ,

PIC .99 USING REN-MILEAGE-RATE
REVERSE-VYIDED.

PIC X USING REN-INSURANCE
REVERSE-VIDEQ AUTG.

VALUE ‘Totals' HIGHLIGHT.

VALUE 'Rental Rate:' HIGHLIGHT.

PIC $339.99 FROM IND-DAILY-RATE
HIGHLIGHTY,

PIC $$9,8359.99 FROM TND-DAILY-TOTAL
HIGHLLGHT.

YALUED TMiTn
LAl TP A i |

o]
PO

uT

Nyiyon .
Wi Vil .

ven: ' HIGHLIG
PIC ZZ7,Z779 FROM IND-MILES-DRIVEN
HIGHLIGHT.
PIC $3.$3%9.99
FROM IND-MILEAGE-TOTAL
HIGHLIGHT.
VALUE 'Insurance Rate:' HIGHLIGHT.
PI{ $$9.99 FROM TNSURANCE-RATE
HIGHLIGHT.
PIC $8,339.99
FROM IND-INSURANCE-TOTAL
HIGHLIGHT.
VALUE 'memmme e ' HIGHLIGHT,
VALUE 'Amount Due: ' HIGHLIGHT.
PIC $385.859.99 FROM IND-AMOUNT-DUE
HIGHLIGHT.

G|

PIC X(40} FROM ERROR-MESSAGE
HIGHLIGHT BLINK BEEP

FOREGROUND-COLOR BRIGHT-WHITE BACKGROUND-COLOR RED.

CONFIRM-SCREEN.
05 LINE 24 BLANK LINE

a5

LINE 24 COLUMN 25
BACKGROUND-COLOR MAGENTA FOREGROUND-COLOR BRIGHT-GREEN.

BACKGROUND-COLOR MAGENTA.
PIC X{27) FROM CONFIRM-MESSAGE

Chapter 10 — Screen 1-0

el

Vg 16,5 (continued)

239 0% PIC X USING CONFIRM-SWITCH ;

240 LINE 24 COLUMN 52 BLINK AUTO

241 BACKGROUND-COLOR MAGENTA FOREGROUND-COLOR BRIGHT-GREEN. :

242 (05 LINE 25 BLANK LINE BACKGROUND-COLOR MAGENTA. ?

243 05 LINE 25 COLUMN 3 VALUE '(Y - Yes, N - No)' ; ?

244 . BACKGROUND-COLOR MAGENTA FOREGROUND-COLOR BRIGHT-GREEN. | i

e o SR R S |

246 PROCEDURE DIVISION. N S R R

247 000-CREATE-VALID-RENTAL-FILE.) ,

248 OPEN OUTPUT VALID-RENTAL-FILE. |

249 PERFORM 100-GET-TODAYS-DATE. ;
f250 PERFGRM 200- INPUT-RENTAL-RECORDS ;
25l UNTIL NQ-MORE-RECORDS. ‘
[252 CLOSE VALID-RENTAL-FILE.

L 253 STOP RUN. ;
L 254 ;

755 100-GET-TODAYS-DATE .

256 ACCEPT TODAYS-DATE FROM DATE. :

257 STRING TODAYS-MONTH '/° TODAYS-DAY /' TODAYS-YEAR é

758 DELIMITED BY SIZE INTO SCREEN-DATE, *

259 :
. 260 200- INPUT-RENTAL-RECORDS.. ;
. 76 INTTYALT7F RENTAI -RFCORD-TN, §
. 262 PERFORM 400-VALIDATE-RENTAL-RECORD WITH TEST AFTER ;
263 UNTIL INFO-CORRECT.

[264 PERFORM 500-COMPUTE-IND-BILL.

. 265 DISPLAY UPDATE-SCREEN.

. 266 PERFORM 600-WRITE-VALID-RECORD.

267 MOVF ANOTHER-RECORD-MESSAGE TO CONFIRM-MESSAGE,

. 268 PERFORM 700- INPUT-SCREEN-CONFIRM.

© 269

Looan 400-VAL IDATE-RENTAL-RECORD. I - N g

271 " DISPLAY OPENING-SCREEN .~

272 PERFORM 410-VALIDATE-CONTRACT-NO. %

273 PERFORM 420-VALIDATE-NAME . g

274 PERFORM 430-VALIDATE-CAR-TYPE. E
C275 PERFORM 440-VALIDATE-DATE-RETURNED §
L 276 WITH TEST AFTER UNTIL VALID-FIELD. ;
Y PERFORM 4506-VALIDATE-DAYS-RENTED, |

278 PERFORM 460-VALIDATE-MILES-DRIVEN. |

279 PERFORM 470-VALIDATE-MILEAGE-RATE. j

280 PERFORM 480-VALIDATE-INSURANCE.

281 MOVE INFO-CORRECT-MESSAGE TG CONFIRM-MESSAGE.

282 PERFORM 700~ INPUT-SCREEN-CONFIRM. |
283 i
[T 410-VALIDATE-CONTRACT-NO. !
[285 PERFORM WITH TEST AFTER UNTIL VALID-FIELD

286 ACCEPT SCR-CONTRACT-NO

287 IF REN-CONTRACT-NO = ZEROES

288 MOVE ZERO-CONTRACT-NO-MSG TO ERROR-MESSAGE

The

Tuition

Bilitng Program Revigoled

Figars 10,8 (continued)

s

289
290
291

313

315
316
317
318
319
320
321
327
323
324
32
326
327
328
329
330
331
332
333
334
335
336
337
338

PERFORM 499-DISPLAY-ERROR-MESSAGE
ELSE

PERFORM 498-CLEAR-ERRORS
END-TF

ENe-PERFURM,

420-VALIDATE-NAME .
‘PERFORM WITH TEST AFTER UNTIL VALID-FIELD |
| ACCEPT SCR-LAST-NAME i
IF REN-LAST-NAME = SPACES |
MOVE LAST-NAME-MSG TO ERROR-MESSAGE
PERFORM 499-DISPLAY -ERROR-MESSAGE
FLSE
PERFORM 498-ClL FAR-FRRORS
©END-IF
CEND-PERFORM.
DERFORM WITH TFST AFTER UNTIL VALID-FIELD
ACCEPT SCR-FIRST-NAME
IF REN-FIRST-NAME = SPACES
MOVE FIRST-HAME-MSG TO ERROR-MESSAGE
PERFORM 499-DISPLAY-ERROR-MESSAGE
ELSE

1
!
|
i
i
i
1

END-PERFORM.
PERFORM WITH TEST AFTER UNTIL VALID~FIELD
ACCEPT SCR-INITIAL
IF REN-INITIAL NOT ALPHABETIC
MOVE INITIAL-MSG TG ERROR-MESSAGE
PERFORM 499-DISPLAY-ERROR-MESSAGE
ELSE
PERFORM 408-CLEAR-ERRORS
END-IF
END-PERFORM.

430-VALIDATE-CAR-TYPE.
'PERFORM WITH TEST AFTER UNTIL VALID-FIELD
ACCEPT SCR-CAR-TYPE |
IF NOT VALTD-CAR-TYPES
MOVE CAR-TYPE-MSG TO ERROR-MESSAGE
PERFORM 49G-DISPLAY~ERROR-MESSAGE
ELSE
PERFORM 498-CLFAR-ERRORS
END-TF
| END-PERFORM.

440-VALTDATE-DATE-RETURNED.
PERFORM WITH TEST AFTER UNTIL VALID-FIELD
ACCEPT SCR-RETURNED-MONTH
IF VALID-MONTHS

Chapter ¥0 — Screen (-0

Flowes 168 (continued)

{
{

S 339 PERFORM 498-CLEAR-ERRORS ;

L340 ELSE |

[341 MOVE MONTH-MSG TO ERROR-MESSAGE §

S TY PERFORM 499-D1SPLAY-ERROR-MESSAGE

[343 ENB-1F !

i 344 END-PERFORM, ;

[345 PERFORM WITH TEST AFTER UNTIL VALID-FIELD :

P 346 ACCEPT SCR-RETURNED-DAY

347 IF 30-DAY-MONTH AND REN-RETURNED-DAY > 0 AND <= 30 OR ;
348 31-DAY-MONTH AND REN-RETURNED-DAY > O AND <= 31 OR i
349 FEBRUARY AND REN-RETURNED-DAY > O AND <= 29 ;

L350 PERFORM 498-CLEAR-ERRORS ?

Lo3s1 ELSE §

. 352 MOVE DAY-MSG TO ERROR-MESSAGE

[353 PERFORM 499-DISPLAY-ERROR-MESSAGE

I 354 END-TF :

S END-PERFORM.
356 | PERFORM WITH TEST AFTER UNTIL VALID-FIELD ;

. 357 | ACCEPT SCR-RETURNED-YEAR

© 388 IF REN-RETURNED-DATE > TODAYS-DATE

359 Q MOVE FUTURE-DATE-MSG TO ERROR-MESSAGE |

. 360 PERFORM 499-DISPLAY-ERROR-MESSAGE

36l CRLSE N

362 f PERFORM 498-CLEAR-ERRORS .

363 L END-IF |

L 36 _END-PERFORM. . e

365

L3366 450-VALIDATE-DAYS-RENTED. ;

367 PERFORM WITH TEST AFTER UNTIL VALID-FIELD ;
368 ACCEPT SCR-DAYS-RENTED

. 369 IF ZERO-DAYS-RENTED

370 MOVE ZERO-DAYS-MSG TO ERROR-MESSAGE

L3 PERFORM 499-DISPLAY-ERROR-MESSAGE

io372 ELSE

K IF NOT VALID-DAYS-RENTED

[374 MOVE LEASING-MSG TO ERROR-MESSAGE

L 378 PERFORM 499-DISPLAY-ERROR-MESSAGE

L3786 ELSE

C377 PERFORM 498-CLEAR-ERRORS

- 378 END-IF

© 379 END-IF

© 380 END-PERFORM.

. 381

(- 460-VALIDATE-MILES-DRIVEN.

Lo383 PERFORM WITH TEST AFTER UNTIL VALID-FIELD

384 ACCEPT SCR-MILES-IN

385 ACCEPT SCR-MILES-QUT

L 386 IF REN-MILES-IN < REN-MILES-OUT

. 387 MOVE LESS-THAN-MILES-MSG TO ERROR-MESSAGE

388 PERFORM 499-DISPLAY-ERROR-MESSAGE

The

Tuiticon Biiling Frogram HRevisited

weer 1688 (continued)

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
408
406
407
408

ELSE
IF REM-MILES~IN - REN-MILES-OUT <
MILES-PER-DAY-FACTOR * REN-DAYS-RENTED
MOVL TNVALID-MILES-MSG TO ERROR-MESSAGE
PERFORM 499-DISPLAY-ERRCR-MESSAGE
ELSE
PERFORM 498-CLEAR-ERRORS
END-IF
END-TF
END-PERFORM.

A70-VALIDATE-MILEAGE-RATE.
'PERFORM WITH TEST AFTER UNTIL VALID-FIELD
! ACCEPT SCR-MILEAGE-RATE
IF NOT VALID-MILEAGE-RATES j
MOVE MIiLEAGE-RATE~MSG TO ERROR-MESSAGE !
PERFORM 499-DISPLAY-FERROR-MESSAGE :
ELSE
PERFORM 498-CLEAR-ERRORS
END-TF
LEND-PERFORM.

A80-VALTDATE ~INSURANCE .
PERFORM WITH TEST AFTER UNTIL VALID-FIELD
ACCEPT SCR-INSURANCE
IF NOT VALID-INSURANCE
MOVE INSURANCE-MSG TO ERROR-MESSAGE
PERFORM 499-DISPLAY-ERROR-MESSAGE
ELSE
PERFORM 498-CLEAR-ERRORS
END-IF
END-PERFORM.

498-CLEAR-ERRORS.
INITIALIZE VALID-FIELD-SWITCH.
DISPLAY ' ' LINE 25 WITH BLANK LINE.

499-DISPLAY-ERROR-MESSAGE.
MOVE 'NO' TO VALID-FIELD-SWITCH.
DISPLAY ERROR-LINE.

500-COMPUTE-IND-BILL.
PERFORM 520-COMPUTE-MILEAGE-TOTAL.
PERFORM 540-COMPUTE-DATLY-TOTAL.
PERFORM 560-COMPUTE-INSURANCE-TOTAL.
COMPUTE IND-AMOUNT-DUE ROUNDED
= [ND-MILEAGE-TOTAL + IND-DARLY-TOTAL
+ IND-TINSURANCE-TOTAL
SIZE ERROR DISPLAY 'SIZE ERROR ON AMOUNT OUE FOR '
REN-CONTRACT-NO
END-COMPUTE.

Chapter 10 -~ Scoreen 1-0

(continued)
i 440
Pooa 520-COMPUTE-MILEAGE-TOTAL.
L a4 COMPUTE IND-MILES-DRIVEN
L 443 = REN-MILES-IN - REN-MILES-OUT
Lo END-COMPUTE.
L a5 COMPUTE IND-MILEAGE-TGTAL ROUNDED
446 = IND-MILES-DRIVEN * REN-MILEAGE-RATE
447 SIZE ERROR
448 DISPLAY 'COMPUTED BILL EXCESSIVELY LARGE'
449 END-COMPUTE .
450
451 540-COMPUTE-DAILY-TOTAL .
452 CEVALUATE REN-CAR-TYPE
853 | WHEN 'E' MOVE ECONOMY-RATE TO IND-DALLY-RATE
LY . WHEN 'C’ MOVE COMPACT-RATE TO IND-DAILY-RATE
Lasg | WHEN 'M' MOVE MID-RATE T0 IND-DAILY-RATE
. 456 | WHEN 'F' MOVE FULL-RATE TO IND-DAILY-RATE
| 457 © WHEN 'L‘ MOVE LUXURY-RATE TO TND-DAILY-RATE
48y WHEN OTHER MOVE 7EROES TO IND-DAILY-RATE
L 45S END-EVALUATE.
L 460 MULTIPLY IND-DAILY-RATE BY REN-DAYS-RENTED
L 46l GIVING IND-DAILY-TOTAL
462 SIZE ERROR DISPLAY ‘SIZE ERROR ON RENTAL TOTAL'
. 463 END-MULTIPLY.
. 464
465 560-COMPUTE - INSURANCE - TOTAL .
L s R
L 467 { MULTIPLY INSURANCE-RATE BY REN-DAYS-RENTED
L 468 ; GIVING TND- INSURANCE-TOTAL
. 469 ' SIZE ERROR DISPLAY 'SIZE ERROR ON INSURANCE TOTAL®
470 END-MULTIPLY
~an ELSE
CA72 i MOVE 7EROES TO IND-INSURANCE-TOTAL
473 END-IF. B
Co474
[47% 600-WRITE-VALTD-RECORD.
i 476 WRITE VALID-RENTAL-RECORD FROM RENTAL-RECORD-IN.
Loa77
. 478 700- INPUT-SCREEN-CONFIRM.
boayg DISPLAY CONFIRM-SCREEN.
480 PERFORM WITH TEST AFTER UNTIL VALID-CONFIRMED
481 ACCEPT CONFIRM-SCREEN
482 IF VALID-CONFIRMED
483 PERFORM 498-CLEAR-ERRORS
(a4 ELSE
| ass MOVE YES-NO-MSG TO ERROR-MESSAGE
T PERFORM 499-DISPLAY-FRROR-MESSAGE
487 END-TF

i 488 END-PERFORM.

Summiary

The requirements for the validation of individual fieids parallel those in
Chapter 8, and thus the table of error messages (lines 68-107) is repeated from the
validation program. The validation process is different, however, as each field is
checked interactively, so that the user cannot move to the next field until a valid
value has been entered for the current field.

Consider, for exarnple, the validation of car type in lines 324-333. The TEST
AT'TER clause gudrantees that the performed statements are executed at least once;
that is, the car type is accepted into SCR-CAR-TYPE (defined in lines 183-184), then
tested by the IF statement in lines 327-332. A valid car type will reset VALID-FIELD-
SWITCH to ‘NO', which in turn satisfies the condition in the PERFORM statement
in line 325. An invalid response, however, displays the appropriate error message,
then requests a new response from the user. A similar process is followed for the
other fields in each transaction. An appreciation for the interactive nature of the
program can best be gained by executing the program as it exists on the
accompanying data disk.

The remainder of the Procedure Division is straightforward with applicable
paragraphs copied from the earlier programs—for example, COMPUTE-MILEAGE-
TOTAL, COMPUTE-DAILY-TOTAL, and COMPUTE-INSURANCE-TOTAL.

The Screen Section and exlended options of the ACCEPT and DISPLAY
stalements are nol inciuded i gither the COBOL-74 or COBOL-85 standard,
and thus there are no limitations per se in the earlier compiler I other words,
any ditferences that do exist are due to vendor-specitic extensions, which
vary significantly from compiler to compiler.

wite fo BHenmsemnier

The extended screen handling capabilities in the Screen Secticn and the
ACCEPT and DISPLAY statements are not part of the COBOL-85 standard.
The examples in this chapter foliow the syniax of the Classroom COBOL
compiler that accompanies the text, which conforms to the X-Open standard.

The ACCEPT and DISPLAY statements display individual iines and/or
accept a limited number of fields as input. Beth statements contain an
abundance of opiicnal clauses, the functions of which are generally apparent
from the clause itseif: BLINK, BEEP, BACKGROUND-CCOLOR,
FOREGROUND-COLOR, and so forth.

The Screen Sectior facilitates the production of unitorm screens within a
system as an entire screen may be easily copied from one program to the
next. This is in contrast to individual ACCEPT and DISPLAY statements that
are scattered throughout the Procedure Division,

Chapter 10 ~ Screen (-0

The format of the Screen Section paratleis that of the File and Working-
Storage sections in the Data Division; that is, it consists of 01-level entries
that are further divided into group and elementary items. The Screen

Section must be the last section in the Data Division.

Data validation may be implemented interactively through an in-line perform
and through TEST AFTER clauses, which accept a data name, perform the
indicaled validation, then repeat the process until a valid fieid has been
entered.

Alt key Interactive program
ASCH characters Password protection
Background color Prompt
Batch-crienied program Reversed video
Data validation Screeri attribute
Foreground coior Screen-name

GEIHGE Elemwmonis

ACCEPT HIGHLIGHT
AUTO LINE
BACKGROUND-COLOR REVERSE-VIDEO
CoLUMM SCREEN SECTION
DISPLAY SECURE
FOREGROUND-COLOR TG

FRGM USING

1. The Screen Section () part of the COBQ