
COBOL
From Micro to Mainframe

RT:elEntT T. [3Ft.AUEnl
AR{f L VnzcpuEz VtLL,A,Fl

ATTTHUR R. EIUgs
THIRD EDITIOil

ISBN O-I3_?1DBI7-A

lffifiilflillilililllililtlflll

The fo l lowing software a n d s u p p l e m e n t s are available from Prent ice Hall:

• SOFTWARE—Micro F o c u s Personal COBOL for W i n d o w s 3.1 w i t h object -
or ientat ion a n d Personal D ia log System. C o m p a t i b l e wi th W i n d o w s 9 5 a n d
W i n d o w s N T , Personal COBOL prov ides all the too l s to h e l p y o u learn a n d
u s e COBOL. The software inc ludes a n integrated editor, c o m p i l e r a n d
an imator for creating, d e b u g g i n g a n d execut ing COBOL programs . Prent ice
Hall offers a n affordable package of COBOL: From Micro to Mainframe, Third
Edition w i t h the Micro F o c u s Personal COBOL Compi ler . P lease order ISBN
0 -13 -975178-5 .

e WEB SITE—Download every COBOL program in the text as we l l as data files
for the nearly o n h u n d r e d s tudent projects from the COBOL: From Micro to
Mainframe web s ite at: h t t p : / / w w w . p r e n h a l l . c o m / g r a u e r _ c o b o l .

• Instructor's Resource M a n u a l (ISBN# 0-13-081513-6)

• Prent ice Hall C u s t o m Test. Based o n the powerfu l tes t ing t e c h n o l o g y
d e v e l o p e d b y Engineer ing Software Assoc iates , Inc. (EAS), Prent ice Hall
C u s t o m Test a l lows the e d u c a t o r to create a n d tailor the e x a m to their o w n
n e e d s . P lease order ISBN* 0 -13-081515-2

W e are espec ia l ly grateful to our edi tors at Prent ice Hall, Laura Steele , Alan Apt, a n d
Marcia Horton , w i t h o u t w h o m this project w o u l d n o t h a v e b e e n p o s s i b l e . W e also
w a n t to thank the m a n y o ther indiv iduals w h o h e l p e d p r o d u c e the third ed i t ion .
Irwin Zucker, w h o s u p e r v i s e d the product ion , Kate Kaibni, editorial ass istant , w h o
w o r k e d hard to prov ide u s w i t h t ime ly chapter reviews, a n d Joel B e r m a n , our
market ing m a n a g e r at Prent ice Hall, w h o d e v e l o p e d the innovat ive c a m p a i g n to
m a k e this b o o k a s u c c e s s .

W e also w a n t to a c k n o w l e d g e our reviewers , w h o through their c o m m e n t s a n d
construct ive crit ic ism, m a d e this a far better book:

Robert V. Binder, Robert Binder S y s t e m s Consul t ing , Inc.
D i n o n Boyer, Univers i ty of Akron
Georgia Brown, N o r t h e r n Ill inois Univers i ty
Jan D e Lassen, Br igham Y o u n g Univers i ty
Ida M. Flynn, Univers i ty of Pittsburgh
Frank T. Gergelyi , NJIT
Ken G o l d s m i t h , Univers i ty of M i a m i
T o m Gorecki, St. Charles C o m m u n i t y Col lege
Carol C. G r i m m , P a l m B e a c h C o m m u n i t y Col lege
M o n i c a H o l m e s , Central M i c h i g a n Univers i ty
A n n W. Houck , P i m a C o m m u n i t y Col lege
David Lee
James W. Payne , Kel logg C o m m u n i t y Col lege
N i c h o l a s Ross , Univers i ty of Il l inois at Chicago
Wende l l I. P o p e , U t a h State Univers i ty
Dan ie l H. Rindfle isch, C o m p u t e r Special ist w i t h Federal G o v e r n m e n t
Danie l R. Rota, Robert Morris Col lege
Richard H. Saracusa, N o r t h e a s t e r n Univers i ty
R o n T e e m l e y , DeVry Inst i tute of T e c h n o l o g y
D o n a t Valcourt , N o r t h e a s t e r n Univers i ty
Ron Wil l iams, M c L e n n o n C o m m u n i t y Col lege
Jackie Zucker, Univers i ty of M i a m i

http://www.prenhall.com/grauer_cobol

A final w o r d of thanks to y o u , our readers, for c h o o s i n g th i s book. P lease feel
free to c o n t a c t us wi th a n y c o m m e n t s or s u g g e s t i o n s via emai l .

Robert Grauer
rgrauer@umiami .miarni. e d u

Carol Vazquez Villar

Arthur R. Buss
bussa@will iam.jewell .edu

mailto:bussa@william.jewell.edu

rreiace Mi

Introduction
Overview 2
The First Problem 2

Programming Specifications 3
Required Logic 5

Flowcharts 6
Pseudocode 8

A First Look at COBOL 9
Identification Division 11
Environment Division 11
Data Division 11
Procedure Division 12

Test Data 13
Elements of COBOL 13

Reserved Words 13
Programmer-Supplied Names 14
Literals 15
Symbols 16
Level Numbers 16
Picture Clauses 17

A Second Look at COBOL 17
Summary 19
Fill-in 20 True/False 20 Problems 21

From Coding Form to Computer
Errors in Compilation Overview 26

From Coding Form to Computer 26
The COBOL Coding Form 28
Use of an Editor 28
The Compile, Link, and Execute Sequence

Learning by Doing 32
Errors in Entering the Program 33
Errors in Operating System Commands 33

30

33
Errors in Execution 35
Errors in Data Input 37

Evolution of COBOL 38
There's Always a Reason
Summary 41
Fill-in 41 True/False 42

40

Problems 43

A Methodology for
Overview 48
The Tuition Billing Problem 48
Structured Design 50
Evaluating the Hierarchy Chart 52

Completeness 53
Functionality 54
Span of Control 54

Structured Programming 54

Program Development
Sufficiency of the Basic Structures 56

Expressing Logic 57
The Traditional Flowchart 57
Pseudocode 57
Warnier-Orr Diagrams 59

Top-Down Testing 61
Summary 66
Fill-in 67 True/False 68 Problems 68

Contents

C h a p t e r 4 : T h e I d e n t i f i c a t i o n ,
Overview 74
COBOL Notation 74
Identification Division 75
Environment Division 76

CONFIGURATION SECTION 76
INPUT-OUTPUT SECTION 76

Data Division 77
FILE SECTION 77

Environment, and Data Divisions 7 3
WORKING-STORAGE SECTION 82

The Tuition Billing Program 84
Programming Specifications 84
COBOL Entries 87

Limitations of COBOL-74 90
Summary 90
Fill-in 92 True/False 92 Problems 93

5: T h e Procedure Division 9 7
Overview 98
OPEN 98
CLOSE 99
READ 99

Placement of the READ Statement 100
WRITE 100
STOP RUN 102
MOVE 102

Restrictions on the Move Statement 103
Alphanumeric Field to Alphanumeric Field 103
Numeric Field to Numeric Field 104
Group Moves 105

PERFORM 105
IF 106

The ELSE Clause 106
Indentation 106

EVALUATE 109
Arithmetic Statements 109

The ROUNDED Clause 109
The SIZE ERROR Clause 110
COMPUTE 110
ADD 112
SUBTRACT 112
MULTIPLY 114
DIVIDE 115
Programming Tip: Use the COMPUTE

Statement 116
Assumed Decimal Point 117

The Tuition Billing Program 118
Test Data 126
Hierarchy Chart 127

COBOL Program Skeleton 128
Limitations of COBOL-74 128
Summary 130
Fill-in 131 True/False 132 Problems 133

C h a p t e r 6: D e b u g g i n g
Overview 140
Errors in Compilation 140

Common Compilation Errors 149
Errors in Execution 151

File Status Codes 156
Another Run Time Error 158
Logic Errors 159

1 3 9
Tips for Debugging 160

DISPLAY Statement 161
The Structured Walkthrough
Summary 163
Fill-in 164 True/False 165

162

Problems 165

Contents

Chapter 7: Editing and Coding
Overview 170
Editing 170

The Decimal Point 172
Zero Suppression 172
Dollar Signs 174
Comma 174
Asterisks for Check Protection 175
Insertion Characters 175
Synopsis 175

Signed Numbers 176
CRandDB 176
Plus and Minus Signs 177

Standards 169
BLANK WHEN ZERO Clause 177
The Tuition Billing Program Revisited 178
Coding Standards 179

Data Division 179
Programming Tip; Avoid Literals 180
Procedure Division 181
Programming Tip: Use Scope Terminators 182
Both Divisions 183

A Well-Written Program 184
Summary 189
Fill-in 190 True/False 191 Problems 191

C h a p t e r Us Data Validation
Overview 196
System Concepts: Data Validation 196
The IF Statement 197

Relational Condition 198
Class Test 199
Sign Test 200
Condition-Name Test (88-Level Entries) 200
Compound Test 200
Hierarchy of Operations 201
Implied Conditions 203
Nested IFs 203
NEXT SENTENCE 205

195
ACCEPT Statement 206

Calculations Involving Dates 206
The Stand-Alone Edit Program 207

Programming Specifications 208
Error Messages 211
Pseudocode 211
Hierarchy Chart 212
The Completed Program 212

Limitations of COBOL-74 221
Summary 223
Fill-in 224 True/False 224 Problems 225

Cna^ici- S * More About the
Overview 230
PERFORM 231

TEST BEFORE/TEST AFTER 231
In-line Perform 232
Performing Sections 232
PERFORM THRU 232
Programming Tip: Perform Paragraphs, Not

Sections 233
READ 234

False-Condition Branch 234
READ INTO 235

WRITE FROM 236
INITIALIZE 236
String Processing 237

INSPECT 237

edure Division 229
STRING 238
UNSTRING 240
Reference Modification 240

ACCEPT 242
Duplicate Data Names 243

Qualification 244
MOVE CORRESPONDING 245

The Car Billing Program 246
Programming Specifications 246
Program Design 248
The Completed Program 249

Limitations of COBOL-74 258
Summary 258
Fill-in 259 True/False 260 Problems 260

Contents

w. . -i C: Screen l-O
Overview 266
ACCEPT 266

Programming Tip: Micro Focus Level 78—The Use
of COBOL Constants 267

DISPLAY 269
The Tuition Billing Program Revisited 270

Programming Specifications 270
Hierarchy Chart 271
Pseudocode 271
The Completed Program 273
Programming Tip: The Hidden Power of

the Alt key 274

265
Car Validation and Billing Program 278

Programming Specifications 279
The Screen Section 280
Hierarchy Chart 284
Pseudocode 284
The Completed Program 287

Limitations of COBOL-74 297
Summary 297
Fill-in 298 True/False 299 Problems 299

... i"«» Introduction to Tai
w v e i v l 6 w o u d

introduction to Tables 302
OCCURS Clause 303
Processing a Table 304
PERFORM VARYING 304

A Second Example 306
Problems with the OCCURS Clause 308
Rules for Subscripts 308
Relative Subscripting 308
USAGE Clause 309

s 301
OCCURS DEPENDING ON 310

The Student Transcript Program 311
Programming Specifications 311
Program Design 313
The Completed Program 314

Indexes versus Subscripts 321
The SET Statement 322

Limitations of COBOL-74 322
Summary 325
Fill-in 326 True/False 326 Problems 327

. , u Table Lookups
Overview 332
System Concepts 332

Types of Codes 333
Characteristics of Codes 333
Sequential Table Lookup 334
Binary Table Lookup 335
Positional Organization and Direct Lookups 336

Initializing a Table 336
Hard Coding 336
Input-Loaded Tables 338

Table Lookups 339
PERFORM VARYING Statement 340
SEARCH Statement 340

331
Programming Tip—Restrict Subscripts

and Switches to a Single Use 342
SEARCH ALL Statement 344
Direct Lookup 344
Range-Step Tables 345

A Complete Example 347
Programming Specifications 347
Program Design 349
The Completed Program 350

Limitations of COBOL-74 357
Summary 357
Fill-in 358 True/False 359 Problems 360

Contents

c:; z\n i. \ Multilevel Tables
Overview 364
System Concepts 364
COBOL Implementation 366
One-Level Tables 366

PERFORM VARYING 366
Two-Level Tables 368

Errors in Compilation 369
PERFORM VARYING 370

A Sample Program 373
Programming Specifications 373
Program Design 375
The Completed Program 375

Three-Level Tables 380

3 6 3
PERFORM VARYING 382

A Sample Program 384
Programming Specifications 384
The Completed Program 386

Table Lookups 390
A Calorie Counter's Delight 392

Programming Specifications 392
Range-Step Tables 392
The Completed Program 394

Limitations of COBOL-74 398
Summary 398
Fill-in 399 True/False 399 Problems 400

. ' , [k - , . : S o r t i n g
Overview 404
System Concepts 405
Collating Sequence 405

Embedded Sign 406
COBOL Implementation 408

SORT Statement 409
SD (Sort Description) 410
RELEASE and RETURN 410
Programming Specifications 411

4 0 3
USING/GIVING Option 414
INPUT PROCEDURE/OUTPUT PROCEDURE

Option 419
Comparing Options 426
MERGE Statement 426
Limitations of COBOL-74 428
Summary 428
Fill-in 429 True/False 430 Problems 431

KV\ . s.y\:c,i- i kic Control Breaks
Overview 436
System Concepts 436

Running versus Rolling Totals 440
One-Level Control Breaks 443

Programming Specifications 443
Hierarchy Chart 444
Pseudocode 446
The Completed Program 446

Two-Level Control Breaks 451
Hierarchy Chart 451
Pseudocode 452

40 C

The Completed Program 454
Three-Level Control Breaks 460

Hierarchy Chart 460
Pseudocode 462
The Completed Program 463
Programming Tip: How to Write a Control Break

Program 470
Limitations of COBOL-74 471
Summary 471
Fill-in 472 True/False 472 Problems 473

Contents

<.- j ' v . . Subprograms
Overview 476
Subprograms 477

Called and Calling Programs 477
COPY Statement 479
Calling BY CONTENT and BY REFERENCE 480
Programming Tip: Use COPY to Pass

Parameters 481
INITIAL Clause 482
A System for Physical Fitness 482

Programming Specifications 482
Hierarchy Chart 485
Pseudocode 485

475
The Completed Programs 486

Main Program (FITNESS) 486
Input Program (INPUTSUB) 490
Weight-Range Program (WGTSUB) 495
Training Program (TRAINSUB) 498
Display Program (DSPLYSUB) 498
Time Program (TIMESUB) 503

The Linkage Editor 504
Problems with the Linkage Editor 505

Limitations of COBOL-74 506
Summary 508
Fill-in 509 True/False 509 Problems 510

c L ^ . ; r . ! r t L '. Sequential File M
Overview 516
System Concepts 516

Sequential versus Nonsequential Processing 518
Periodic Maintenance 518

Data Validation 519
Programming Specifications 520
Designing the Program 523
The Completed Program 524

Sequential File Maintenance 528

intenance 515
Programming Specifications 528
The Balance Line Algorithm 529
Designing the Hierarchy Chart 531

Top-Down Testing 535
The Stubs Program 535
The Completed Program 540

Summary 545
Fill-in 546 True/False 546 Problems 547

_. . . Indexed Fi les
Overview 550
System Concepts 550
COBOL Implementation 554
Creating an Indexed File 556

Programming Specifications 556
Pseudocode 557
The Completed Program 557

Additional COBOL Elements 559
OPEN 559
READ 560
WRITE 562
REWRITE 562
DELETE 562

549
Maintaining an Indexed File 563

Programming Specifications 563
Hierarchy Chart 564
Pseudocode 566
The Completed Program 566

Alternate Record Key 570
Programming Specifications 570

Concatenated Key 573
The START Statement 574

Limitations of COBOL-74 574
Summary 576
Fill-in 577 True/False 578 Problems 578

Contents

v J - : ^ , The Year 2000 Problem 583
Overview 584 Leap-Year Problem 594
The Year 2000 Problem 584 Retirement Program Revisited 594
Date Arithmetic 590 Summary 599

COBOL Intrinsic Calendar Functions 591 Fill-in 600 True/False 600 Problems 601

. i v " ' a : Object-Oriented COBOL Programming
Overview 604 The StudentDM Class 621
The Next Generation of COBOL 605

The Development of Structured Programming 606
Terminology 607
The Object-Oriented versus Structured Paradigm 608
Student-Look-UP Program 612
The Registrar Class 616
Classes and Inheritance 619
ProcessRequests Method 619

603

The StudentDM Instance Definition 625
The Student Class 627
The Person Class 630
The Student Ul Class 633
The Student PRT Class 635

Conclusion 639
Summary 640
Fill-in 641 True/False 641 Problems 642

Micro Focus Personal COBOL for Windows: Users
Guide and Tutorial 643

Getting Started

Reserved Words

u i L 1 l : COBOL-85 Reference Summary

C^C^BC ÎiHa 1997j 19<9Ĉ |$ 1 <999̂ Ĉ̂ OĈ §i 01 s

Answers to Odd-Numbered Exerc ises

697

709

711

737

745

Projects 7 5 3

893

Overview
The First Problem

Programming Specifications
Required Logic

Flowcharts
Pseudocode

A First Look at COBOL
Identification Division
Environment Division
Data Division
Procedure Division

Test Data
Elements of COBOL

Reserved Words
Programmer-Supplied Names
Literals
Symbols
Level Numbers
P I C T U R E Clauses

A Second Look at COBOL
Summary
Fill-in

True/False
Problems

Chapter 1 — Introduction

This book is about computer programming. In particular, it is about C O B O L , a
widely used commercial programming language. Programming involves the
translation of an algorithm (a precise means of solving a problem) into a form the
computer can understand. Programming is necessary because, despite reports
to the contrary, computers cannot think for themselves. Instead, they do exactly
what they have been instructed to do, and these instructions take the form of a
computer program. The advantage of the computer stems from its speed and
accuracy. It does not do anything that a human being could not do, given
sufficient time and memory capacity.

We begin our study of computer programming by describing a simple
problem and then developing the logic and C O B O L program to solve it. This
rapid entrance into C O B O L is somewhat different from the approach followed by
most textbooks, but we believe in learning by doing. There is nothing very
mysterious about C O B O L programming, so let's get started.

Our first p r o b l e m is se t in t h e c o n t e x t of a university, a n d i n v o l v e s a set of s tudent
records , o n e record per s tudent . Each record c o n t a i n s the s tudent ' s n a m e , n u m b e r
o f c o m p l e t e d credits , a n d major. Impl ic i t in this s t a t e m e n t are the def in i t ions of
three f u n d a m e n t a l terms: field, record, a n d file. A field is a b a s i c fact, s u c h as the
n a m e , address , major, grade p o i n t average, or n u m b e r of c o m p l e t e d credits . A
record is a s e t of f ields, a n d a file is a se t o f records . Thus , if there w e r e 1,000
s t u d e n t s , there w o u l d b e 1,000 records (o n e for e a c h s tudent) , e a c h c o n s i s t i n g o f
five f ields, a n d c o m p r i s i n g a s ing le s t u d e n t file.

T o clarify this re la t ionsh ip , w e create four h y p o t h e t i c a l s t u d e n t s for our
p r o b l e m : John A d a m s , A m e l i a Earhart, Orville Wright, a n d Georgia O'Keeffe. There
are m a n y facts a b o u t e a c h of our s t u d e n t s , b u t our p r o b l e m ut i l izes o n l y three:

E S

After reading this chapter you will be able to:

Define the terms: field, record, and file.

Name two techniques used to express program logic.

Identify the four divisions of a C O B O L program.

State the six C O B O L language elements.

State the rules for creating a programmer-supplied name; distinguish

between examples of valid and invalid names.

State the difference between numeric and nonnumeric literals; recognize

valid and invalid examples of each.

Follow the logic of a simple program as expressed in a flowchart or

pseudocode.

The First Problem

Fields, Records, and Files

XI,

Name
Credits

Major

Name
Credits.

Major

Name
Credits

Major

A
ji || Name
i* | Credits
i f Major:

(Facts)

John Adams
9G
Political Science

Amelia Earhart
120
Aviation

Orville Wright
115
Engineering

Qgomi» OfKeeffe
125
Art

(Set of Fields)

John Adams f90 [Political Science

(Set of Records)

Amelia Earhart 120 Aviation

[J Orville Wright JTlŜ Tf" Engineering

Johi n Adams

A n i 6 | i a Earhart

0 r v i «e Wright

I Georgia O'Keeffel 125

90

120

Political Science

Aviation

Engineering

n a m e , major, and credits c o m p l e t e d . Figure 1.1 represents these c o n c e p t s in pictorial
fash ion . Each fact about e a c h s t u d e n t c o m p r i s e s a s ingle field. The three fields
co l lec t ive ly m a k e u p that s tudent ' s record. The four records (one for e a c h of our
s tudents) c o m p o s e the s t u d e n t file.

T h e p r o b l e m is to proces s the file of s tudent records and p r o d u c e a list of
e n g i n e e r i n g s t u d e n t s w h o h a v e c o m p l e t e d m o r e than 110 credits . It is a typical
p r o b l e m , in that its so lu t ion will address the three e l e m e n t s c o m m o n to all c o m p u t e r
appl icat ions: input , process ing , a n d output . As s h o w n in Figure 1.2, the s t u d e n t file,
just def ined, is the input, this file is processed by d e t e r m i n i n g w h i c h s t u d e n t s are
e n g i n e e r i n g majors wi th m o r e t h a n 110 credits; a n d consequent ly , a report is created
as output, reflecting t h e s e s tudents .

T h e input to a c o m p u t e r program; that is, the prec ise a r r a n g e m e n t of the
var ious fields in e a c h i n c o m i n g record, h a s to be spec i f ied exactly. Figure 1.3a is a
c o m m o n w a y to c o m m u n i c a t e this informat ion , a n d s h o w s that the s t u d e n t ' s n a m e
is c o n t a i n e d in p o s i t i o n s 1-25, the n u m b e r of credits in pos i t ions 2 6 - 2 8 , and the
s tudent ' s major in p o s i t i o n s 2 9 - 4 3 . N o t e too , that every record in a g i v e n file m u s t
h a v e the ident ical record layout .

In similar fashion, t h e report p r o d u c e d as output is also prec i se ly des igned .
Figure 1.3c s h o w s a print layout chart, in w h i c h descript ive i n f o r m a t i o n appears
o n l ine o n e , w i t h the n a m e s of s e l e c t e d s t u d e n t s in c o l u m n s 9 - 3 3 of s u b s e q u e n t
l ines . Observe a lso that t h e l oca t ion of the n a m e field is different in the input a n d
o u t p u t records (pos i t ions 1-25 a n d 9 - 3 3 , respect ively) , a n d that e a c h i n p u t record
c o n t a i n s three fields, but that e a c h l ine of o u t p u t has b e e n d e s i g n e d to c o n t a i n only
o n e field.

It is i m p o r t a n t that p r o g r a m m i n g spec i f i ca t ion—that is, the input, p r o c e s s i n g , and
o u t p u t r e q u i r e m e n t s — b e p r e s e n t e d i n a c l e a r a n d u n a m b i g u o u s f a s h i o n .

Chapter 1 — Introduction

i^ / e t "i Input, Processing, and Output

IHPUT

John «aams

Atnelii l a Earhart

OrviH, 6 Wright

90

120

115

. Aviation

Engineering

Engineering major
with more than

110 credits

o

0 —-—

STUDENT NAME
ORVILLE WRIGHT

re 1,3 Engineering Senior (Input and Output)

STUDENT NAME CREDITS STUDENT MAJOR

1 2 3 4 5 6 7 !) 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

(s) £ >tt ident Recc rd L ayout

JOHN ADAMS
AMELIA EARHART
ORVILLE WRIGHT
GEORGIA 0'KEEFE

090P0LITICAL SCI
120AVIATI0N
115ENGINEERING
125ART

(b) Test Data

STUDENT NAME
XXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxxxxx

(c) Print Layout

Required Logic

Accord ing ly , the a u t h o r s h a v e a d o p t e d the f o r m a t s h o w n b e l o w , a n d u s e it
throughout the text for b o t h illustrative programs a n d s t u d e n t a s s i g n m e n t s . The
p r o g r a m m i n g spec i f i cat ions b e g i n w i t h the program n a m e and a brief narrative,
fo l lowed by a de ta i l ed descr ipt ion o f the various requirements . N o t e , t o o , that the
spec i f icat ion d o c u m e n t is entirely se l f -conta ined , a n d that if the p e r s o n preparing
t h e s p e c i f i c a t i o n s h a s d o n e a c o m p l e t e job , there wil l b e l itt le n e e d for the
p r o g r a m m e r to s eek addi t ional in format ion .

P R O G R A M M I N G S P E C I F I C A T I O N S

Program Name: Engineering Senior Program

Narrative: This program processes a file of student records and prints the name of every student
who is an engineering major with more than 110 credits.

Input File(s): STUDENT-FILE

Input Record Layout: See Figure 1.3a

Test Data: See Figure 13b

Report Layout: See Figure 1,3c

Processing Requirements: 1. Print a heading iine.

2. Read a file of student records.

3. For every record, determine whether that student has a major of engineering and has
completed more than 110 credits.

4. Print the name of every student who satisfies the requirements in item 3 above. Single-
space the output.

i L ^ v „ L v . ^ . ^ Let us imagine momentari ly that the student records are physically in the form of manila
folders, stored in a filing cabinet, and further that a clerk is available to do our work. Our
problem is to instruct the clerk on h o w to go through the folders. We would say something
to the following effect:

Repeat s t eps 1 through 4 unti l there are n o m o r e folders:

1. Select a folder.

2. E x a m i n e the folder to s e e if that s t u d e n t is a n e n g i n e e r i n g m a j o r a n d has
m o r e t h a n 110 credits .

3. If the s t u d e n t m e e t s b o t h qual i f icat ions , write the s tudent ' s n a m e o n a
r u n n i n g list.

4. Return the folder to the file cabinet .

S top

In e s s e n c e , w e have prepared a ser ies of ins truct ions for the c lerk to follow. If
our ins truct ions are correct a n d if t h e y are fo l lowed exactly, t h e n t h e clerk will
p r o d u c e the des i red results .

Chapter 1 — Introduction

A computer program is a set of ins truct ions , wri t ten a c c o r d i n g to a prec i se
aci e»i iatca, vviix̂ ii uic ^ciiiipuid iiucipicio ajuu ouuotqucntiy CACtuica. umiî c uic

clerk, h o w e v e r , the c o m p u t e r a lways fo l lows our ins t ruc t ions exactly. In o ther
words , the computer does what we tell it to do, which is not necessarily what we
want it to do. A h u m a n clerk, o n the other h a n d , h a s a m i n d o f his or her o w n
a n d c a n q u e s t i o n or alter e r r o n e o u s i n s t r u c t i o n s . S i n c e t h e c o m p u t e r d o e s
precise ly w h a t it is told, it is imperat ive that y o u strive to wri te logical ly correct
programs . Accordingly , y o u m u s t e x p e n d s ignif icant effort prior to actual coding
to d e v e l o p a program's logic correctly. T w o c o m m o n t e c h n i q u e s for express ing
that log ic are flowcharts a n d pseudocode.

A flowchart is a pictorial representa t ion of the log ic i n h e r e n t in a program. It is the
translat ion of a p r o b l e m s t a t e m e n t into a logical b luepr int that is s u b s e q u e n t l y
incorporated in to the COBOL program. A flowchart to list the e n g i n e e r i n g s t u d e n t s
w i t h more than 110 credits is s h o w n in Figure 1.4.

A f lowchart u s e s b locks w i t h specif ic s h a p e s to i n d i c a t e the nature of a n
operat ion . U s i n g Figure 1.4 as a guide , w e s ee that a diamond-shaped block indicates
a d e c i s i o n , a para l le logram d e p i c t s input or output, an e l l ipse shows the b e g i n n i n g
or e n d , a n d a rec tang le i m p l i e s straightforward p r o c e s s i n g . A rec tang le wi th vertical
lines implies that the p r o c e s s i n g within the rectangle will be expanded into a
f lowchart of its o w n .

To u n d e r s t a n d the f lowchart in Figure 1.4, c o n s i d e r t h e nature of a READ
s t a t e m e n t . T h e f u n c t i o n of a READ instruct ion is to o b t a i n a record, but there will
a lways b e a p o i n t w h e n a READ is a t t e m p t e d a n d n o record is found , that is, w h e n
all the records in the file h a v e already b e e n read. S i nce o n e d o e s n o t k n o w in
a d v a n c e h o w m a n y records a file conta ins , the READ ins t ruc t ion m u s t a lso test for
the end-of-file c o n d i t i o n . Thus , if a file c o n t a i n s t w o records , it is actual ly read three
t i m e s (o n c e for e a c h record, a n d o n c e to s e n s e the end-of - f i l e c o n d i t i o n) .

The f lowchart in Figure 1.4 b e g i n s w i t h a start b l o c k (block 1), a n d c o n t i n u e s
w i t h var ious h o u s e k e e p i n g b locks . H o u s e k e e p i n g c o n s i s t s of s t a t e m e n t s that are
d o n e o n c e at the start of proces s ing , for e x a m p l e , o p e n i n g files (block 2), reading
the first record (block 3), a n d wri t ing a h e a d i n g at the start o f a report (block 4).
Control t h e n p a s s e s t h r o u g h a c o n n e c t o r b lock (block 5) to a d e c i s i o n s t a t e m e n t
(block 6).

If the end-of- f i le h a s not b e e n reached, control g o e s to the PROCESS-RECORDS
block, w h i c h is e x p a n d e d in the right s ide of the figure. Each i n c o m i n g record is
c h e c k e d in b l o c k 9 to d e t e r m i n e if it m e e t s b o t h qual i f icat ions . If so , that s tudent ' s
n a m e is wr i t t en to the o u t p u t report in b lock 10; if not , contro l g o e s direct ly to the
c o n n e c t o r in b l o c k 11. (N o t e that b o t h the true a n d false b r a n c h e s for the c o n d i t i o n
in b l o c k 9 m e e t at a s ing le c o n n e c t o r in b lock 11.) T h e next record is read in b lock
12, a n d the PROCESS-RECORDS block is f in ished. Contro l t h e n m o v e s to the left
s ide o f the figure, to the c o n n e c t o r in block 5 to t h e end-of - f i l e test in b lock 6.
Eventual ly , w h e n t h e end-of - f i l e has been r eached , contro l wil l p a s s to c l o s e files
(block 7), t h e n to t h e s t o p s t a t e m e n t in b lock 8.

To bet ter u n d e r s t a n d h o w t h e f lowchart works , w e c a n u s e the test data of
Figure 1.1 a n d p lay c o m p u t e r , b y r u n n i n g t h e data t h r o u g h the f lowchart . Execut ion
b e g i n s by o p e n i n g t h e files, r ead ing the first record (John A d a m s) , a n d writ ing the
h e a d i n g l ine . T h e end-of - f i l e h a s not b e e n reached , s o b l o c k 6 directs f low to b lock
9, the test for e n g i n e e r i n g majors w i t h m o r e than 110 credits . J o h n A d a m s fails the
test , s o contro l p a s s e s to the c o n n e c t o r in b l o c k 11, to the READ in b lock 12,
w h e r e u p o n the da ta for Amel ia Earhart are read in to m e m o r y . Contro l f lows through

Required Logic

Flowchart to Select Engineering Seniors

the c o n n e c t o r o f b lock 5, to the end-of-f i le test in b lock 6, a n d t h e n to t h e qualif ication
test in b l o c k 9. Amel ia Earhart fails the test, a g a i n p a s s i n g contro l to t h e c o n n e c t o r
in b lock 11, to the READ in b lock 12, at w h i c h po in t Orville Wright is read in to
m e m o r y . H o w e v e r , Wright is an e n g i n e e r i n g major w i t h m o r e t h a n 110 credits , s o
h e p a s s e s the test a n d h is n a m e is wri t ten in b l o c k 10.

T h e data for Georgia O'Keeffe are read in b lock 12, a n d c o n t r o l f lows o n c e
m o r e to the c o n n e c t o r in b lock 5, to the end-of- f i le test in b l o c k 6. Real ize , however ,
that e v e n t h o u g h O'Keeffe is the last record, the end-of- f i le c o n d i t i o n has not ye t
b e e n d e t e c t e d . O'Keeffe fails the qual i f icat ion test, w h e r e u p o n c o n t r o l f lows to the
READ in b lock 12. This t i m e the end-of- f i le is d e t e c t e d s o that, w h e n contro l aga in
r e a c h e s the end-of - f i l e test in b lock 6, p r o c e s s i n g will b e d irec ted t o the CLOSE
FILES a n d STOP s t a t e m e n t s in b locks 7 a n d 8.

Chapter 1 Introduction

_' .. i The Flow chart and Test Data

1
2
3
4
5
6

7
8
9

10
11
12

Start
Open files
Initial read
Write heading
Connector
End-of-file test

Close files
Stop
Qualifying test
Write
Connector
Read

At beginning of program
At beginning of program
Reads the first record (Adams)
At K̂ ir̂ ;*-,,-, r̂̂ r̂ m

Entered five times
Once for each of four records; once to sense
end-of-file condition
Once, before execution stops
Executed once, at program's end
Once for each student
Executed for Wright only
Entered four times
Reads every record but the first, and detects
the end-of-file condition

It is useful to summarize this discussion by tabulating the n u m b e r of times
each block in Figure 1.4 is executed. This is s h o w n in Table 1.1.

Pseudocode e x p r e s s e s a program's logic m o r e c o n c i s e l y t h a n a f lowchart. O n e
def in i t ion of p s e u d o c o d e is neat notes to oneself, a n d s i n c e p r o g r a m m e r s d o this
naturally, p s e u d o c o d e h a s rep laced the tradit ional f lowchart in m a n y instal lat ions .
C o n s i d e r Figure 1.5, w h i c h c o n t a i n s ident ica l logic to the f lowchart in Figure 1.4,
a lbeit in a m o r e c o n c i s e fash ion .

As s h o w n in Figure 1.5, the logic of m o s t p r o g r a m s c a n b e d iv ided in to three
major port ions : initialization, processing, a n d termination. Init ial izat ion is d o n e
o n c e at the start o f p r o c e s s i n g — f o r e x a m p l e , o p e n i n g files, r ead ing the first record
in a file, a n d wri t ing a h e a d i n g . This is f o l l owed b y a ser ies of ins truct ions that are
e x e c u t e d repeatedly , o n c e for e a c h i n c o m i n g record; e.g., e a c h record is e v a l u a t e d
for a n e n g i n e e r i n g major w i t h the requis i te n u m b e r of credits . If b o t h c o n d i t i o n s are
m e t , t h e n a m e wil l b e wri t ten o n the registrar's list; if t h e c o n d i t i o n s are n o t met ,

Pseudocode

Initialization

Processing

Termination \

Open f i l e s
Read f i r s t record
Write heading
DO while data remains

IF engineering major with more than 110 c r e d i t s
Write s t u d e n t ' s name

ENDIF
Read next record

ENDDO
Close f i l e s
Stop

A First Look at COBOL

n o t h i n g further is d o n e wi th the particular record. W h e n all of the records in the file
have b e e n read, the l o o p is f inished, a n d a t erminat ion rout ine is e n t e r e d to print a
total or s i m p l y s t o p process ing .

Figure 1.5 also c o n t a i n s vertical l ines c o n n e c t i n g the w o r d s IF and ENDIF, a n d
DO a n d E N D D O . This n o t a t i o n indicates t w o of the bas ic bui ld ing b locks {selection
and iteration) of a d isc ip l ine k n o w n as structured programming w h i c h is fully
exp la ined in Chapter 3.

P s e u d o c o d e u s e s instruct ions similar to t h o s e of a c o m p u t e r language to
descr ibe program logic , but is not b o u n d b y prec ise syntact ical rules f o u n d in
formal p r o g r a m m i n g languages . For example , the vertical l ines referred to previously
are the authors ' c o n v e n t i o n a n d do n o t necessar i ly appear in the p s e u d o c o d e of
others . N o r is p s e u d o c o d e b o u n d by any rules for indenta t ion , w h i c h is d o n e strictly
at the d i scre t ion of the p e r s o n us ing it. T h e p u r p o s e of p s e u d o c o d e is s imply to
c o n v e y p r o g r a m log ic in a straightforward a n d easi ly fo l lowed m a n n e r .

W e p r o c e e d to the COBOL program in Figure 1.6, w h i c h corresponds to the flowchart
in Figure 1.4 a n d the p s e u d o c o d e in Figure 1.5. The syntact ical rules for COBOL are
extremely precise , a n d y o u are certainly not e x p e c t e d to r e m e m b e r t h e m after a
brief e x p o s u r e to Figure 1.6. T h e authors be l i eve , however , that immediate exposure
to a real program is extremely beneficial in stripping the mystical aura that too often

The First COBOL Program

l
2
3
4
5
6
7
8
9
10
11
12

IDENTIFICATION DIVISION.
PROGRAM-ID. SENIOR.
AUTHOR. ROBERT ROBERT GRAUER.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR02\SENI0R.DAT
ORGANIZATION IS LINE SEQUENTIAL.

SELECT PRINT-FILE
ASSIGN TO PRINTER.

13
14
15
16
17
18
19
20
21
22

01 STUDENT-IN.
05 STU-NAME PIC
05 STU-CREDITS PIC
05 STU-MAJ0R PIC

DATA DIVISION.
FILE SECTION.
FD STUDENT-FILE

RECORD CONTAINS 43 CHARACTERS
DATA RECORD IS STUDENT-IN.

PIC X(25).
PIC 9(3).
PIC X(15).

file://'A:/CHAPTR02/SENI0R.DAT

Chapter 1 - Introduction

r e 1 . 6 (continued)

23
24
25
26
27
28
29
30
31
32
33
34

FD PRINT-FILE
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-LINE.

01 PRINT-LINE

WORKING-STORAGE SECTION.
01 DATA-REMAINS-SWITCH

01 HEADING-LINE.
05 FILLER
05 FILLER
05 FILLER

PIC X(132).

PIC X(2)

PIC X(10)
PIC X(12)
PIC X(110)

VALUE SPACES.

VALUE SPACES.
VALUE 'STUDENT NAME'
VALUE SPACES.

~~~Da(a Division 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

01 DETAIL-LINE. 
05 FILLER 
05 PRINT-NAME 
05 FILLER 

PIC X(8) 
PIC 1(25). 
PIC X(99) 

VALUE SPACES. 

VALUE SPACES. I 

PROCEDURE DIVISION. 
PREPARE-SENIOR-REPORT. 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
PERFORM WRITE-HEADING-LINE. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 
CLOSE STUDENT-FILE 

PRINT-FILE. 
STOP RUN. 

WRITE-HEADING-LINE. 
MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE. 

PROCESS-RECORDS. 
IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING' 

MOVE STU-NAME TO PRINT-NAME 
MOVE DETAIL-LINE TO PRINT-LINE 
WRITE PRINT-LINE 

END-IF. 
READ STUDENT-FILE 

AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
END-READ. 

Procedure Division 



surrounds programming. Further, Figure 1.6 will b e c o m e easier to u n d e r s t a n d after 
s o m e brief exp lanat ion . 

Every COBOL program cons i s t s of four div is ions , w h i c h m u s t appear in the 
fo l lowing order: 

IDENTIFICATION DIVISION The Ident i f icat ion Div i s ion c o n t a i n s the 
program n a m e a n d author's n a m e . 

ENVIRONMENT DIVISION The E n v i r o n m e n t Div i s ion as soc ia te s the file 
n a m e s re ferenced in a program to the input a n d 
o u t p u t (I/O) d e v i c e s r e c o g n i z e d by the operat ing 
sys tem. 

DATA DIVISION The Data Div i s ion descr ibes the record layout of 
the i n c o m i n g record(s) a n d the l o c a t i o n of data 
in the g e n e r a t e d report. 

PROCEDURE DIVISION The Procedure Div i s ion c o n t a i n s t h e program 
logic, that is, the instruct ions the c o m p u t e r is to 
e x e c u t e in so lv ing the p r o b l e m . 

Since COBOL is i n t e n d e d to r e s e m b l e English, y o u m a y b e able to get a n 
overall s e n s e of w h a t is h a p p e n i n g , mere ly by reading the program. W e provide an 
intuit ive e x p l a n a t i o n a n d reiterate that, at this t ime , y o u s h o u l d in n o w a y b e 
c o n c e r n e d w i t h the prec ise syntax of the language; that is, our p r e s e n t in tent is to 
t e a c h COBOL by example , w i th the shor t - t erm object ive of ach iev ing a c o n c e p t u a l 
u n d e r s t a n d i n g of a COBOL program. 

T h e Ident i f ica t ion Division .... 

The I D E N T I F I C A T I O N D I V I S I O N (Lines 1-3) appears at the b e g i n n i n g of every 
program. It serves to identify the program (SENIOR) a n d the author (Robert Grauer). 
There is n o t h i n g c o m p l i c a t e d a b o u t this div is ion, a n d it has n o effect o n the results 
of the program. 

The Environment Division 

The E N V I R O N M E N T D I V I S I O N ( l ines 5-11) conta ins the I N P U T - O U T P U T SECTION, 
w h i c h descr ibes the files u s e d by the program. The e n g i n e e r i n g s e n i o r program 
u s e s two files, a n input file c o n t a i n i n g the s t u d e n t records a n d an o u t p u t file for the 
report. Both of t h e s e files are def ined in SELECT s t a t e m e n t s . 

The n a m e s c h o s e n by the p r o g r a m m e r for these files (that is, STUDENT-FILE 
and PRINT-FILE) are a s s i g n e d to logical d e v i c e s k n o w n to the o p e r a t i n g sys t em, by 
the SELECT s t a t e m e n t a n d a s s o c i a t e d ASSIGN c lause . Line 8, for e x a m p l e , t ies the 
i n c o m i n g STUDENT-FILE to the file SENIOR.DAT; this tells the o p e r a t i n g s y s t e m to 
read the file c o n t a i n i n g the i n c o m i n g s t u d e n t records from the file SENIOR.DAT. 
(The format of the file n a m e is instal lat ion d e p e n d e n t a n d varies f rom c o m p u t e r to 
computer . ) The c lause ORGANIZATION IS LINE SEQUENTIAL is required to properly 
p r o c e s s sequent ia l files o n p e r s o n a l c o m p u t e r s . Mainframe s e q u e n t i a l files h a v e a 
different format a n d d o n o t require this c lause . 

T h e Da< ^ &i vision .,..„„.., 

The D A T A D I V I S I O N ( l ines 13-39) descr ibes all data e l e m e n t s u s e d b y t h e program. 
It is d iv ided in to two sec t ions , the FILE SECTION (lines 14-26) and t h e WORKING-
STORAGE SECTION (l ines 2 8 - 3 9 ) . 



Chapter 1 Introduction 

T h e FILE SECTION c o n t a i n s file de scr ip t ion (FD) entr i e s for files prev ious ly 
d e n n e d in SELECT s t a t e m e n t s . The FD for STUDENT-FILE e x t e n d s from l ine 15 to 
l ine 17 a n d c o n t a i n s c l a u s e s that descr ibe the phys ica l character is t ics of t h e file. The 
FD is fo l lowed by a record description, w h i c h def ines the var ious fields w i t h i n the 
record ( l ines 18-21) . 

T h e s t a t e m e n t s w i t h i n the record descr ip t ion are p r e c e d e d b y level numbers, 
in this example , 01 a n d 05. The level n u m b e r 01 is special a n d ind ica tes the b e g i n n i n g 
of a record description entry. T h e fields w i t h i n a record are d e f i n e d through a series 
of PICTURE c lauses (PIC is an a c c e p t a b l e abbreviat ion) , w h i c h indicate the type 
a n d size of the field. A p ic ture o f 9's ind ica tes a n u m e r i c field, w h e r e a s a p ic ture o f 
X's s ignif ies an a l p h a n u m e r i c field. T h e n u m b e r in p a r e n t h e s e s ind icates the s ize 
o f t h e field; for e x a m p l e , PIC 9(3) i n d i c a t e s a t h r e e - p o s i t i o n n u m e r i c f ield, 
a n d PIC X(25) is a 2 5 - p o s i t i o n a l p h a n u m e r i c field. T h e PICTURE c lauses in l ines 
1 9 - 2 1 of Figure 1.6 are c o n s i s t e n t w i t h t h e record d e s c r i p t i o n in the original 
p r o b l e m s t a t e m e n t . 

T h e WORKING-STORAGE SECTION (l ines 2 8 - 3 9 ) is u s e d to def ine any data 
n a m e s that d o not appear in an input or o u t p u t file. The p r o g r a m m i n g spec i f icat ions 
ca l led for t w o dis t inct print l ines (a h e a d i n g l ine a n d a detai l l ine) , e a c h of w h i c h 
c o n t a i n s a different format as per the print layout of Figure 1.3. Accordingly , two 
different 01 entr ies are def ined, HEADING-LINE a n d DETAIL-LINE, e a c h wi th a 
different layout . The func t ion o f DATA-REMAINS-SWITCH wi l l b e m a d e clearer 
after an e x a m i n a t i o n of the Procedure Div i s ion . 

The PROCEDURE DIVISION (l ines 4 1 - 6 7 ) c o n t a i n s the log ic required to so lve the 
p r o b l e m . T h e Procedure D iv i s i on is d iv ided in to paragraphs, w i t h e a c h paragraph 
c o n s i s t i n g of o n e or m o r e s e n t e n c e s . 

T h e first paragraph, PREPARE-SENIOR-REPORT, e x t e n d s from l ine 42 to l ine 
53. It beg ins by o p e n i n g the files, t h e n reading the first s t u d e n t record. The PERFORM 
s t a t e m e n t in l ine 4 8 transfers contro l to the paragraph WRITE-HEADING-LINE 
(l ines 5 5 - 5 7 ) , w h i c h pr ints the h e a d i n g , t h e n returns contro l b a c k to l ine 49 in the 
PREPARE-SENIOR-REPORT paragraph. This t o o is a PERFORM s t a t e m e n t , w h i c h 
transfers c o n t r o l t o t h e p a r a g r a p h PROCESS-RECORDS ( l i n e s 5 9 - 6 7 ) , w h i c h 
p r o c e s s e s i n c o m i n g s t u d e n t records unti l the data file is e x h a u s t e d . 

T h e IF s t a t e m e n t in l ine 60 d e t e r m i n e s w h e t h e r a n i n c o m i n g record m e e t s 
b o t h qual i f icat ions , that is, w h e t h e r the s t u d e n t is a n e n g i n e e r i n g major a n d h a s 
m o r e t h a n 110 credits . If b o t h c o n d i t i o n s are met , that s t u d e n t ' s n a m e is wri t ten to 
the o u t p u t report. T h e IF s t a t e m e n t e x t e n d s to the END-IF scope terminator in l ine 
64; that is, if the c o n d i t i o n in l ine 60 is met , every s t a t e m e n t b e t w e e n the c o n d i t i o n 
a n d the END-IF in l ine 64 will b e e x e c u t e d . N o t e , too , that three COBOL s t a t e m e n t s 
are required to p r o d u c e a detai l l ine; the i n c o m i n g n a m e is m o v e d to the o u t p u t 
n a m e in l ine 61 , the detai l l ine is m o v e d to the print l ine in l ine 62, a n d t h e l ine is 
wri t ten in l ine 63 . 

T h e a c t i o n of the PERFORM s t a t e m e n t is e x p l a i n e d w i t h t h e a id of Figure 1.7. 
T h e P E R F O R M s t a t e m e n t i n l i n e 4 9 t r a n s f e r s c o n t r o l t o t h e p a r a g r a p h 
PROCESS-RECORDS, unti l DATA-REMAINS-SWITCH = 'NO', that is, unt i l the data 
file is e m p t y . Accordingly , the last s t a t e m e n t of the p e r f o r m e d rout ine is a READ 
s t a t e m e n t to read the n e x t record. W h e n the end-of- f i le is r eached , the AT E N D 
c l a u s e of t h e READ s t a t e m e n t wil l m o v e 'NO' to DATA-REMAINS-SWITCH to 
t erminate t h e PERFORM; the READ s t a t e m e n t itself is e n d e d b y the END-READ 
s c o p e terminator . Contro l t h e n returns to the s t a t e m e n t u n d e r t h e PERFORM 
s t a t e m e n t (to l ine 51) , w h i c h c l o s e s t h e files, a n d finally to the STOP R U N s t a t e m e n t , 
w h i c h t e r m i n a t e s the p r o g r a m . 



Procedure Division Logic 

PROCEDURE DIVISION 
PREPARE-SENIOR-REPORT. 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMINS-SWITCH 

END-READ 
PERFORM WRITE-HEADING-LINE. 
PERFORM PROCESS RECORDS 1 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 

PROCESS-RECORDS. 
IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING' 

MOVE STU-NAME TO PRINT-NAME 
MOVE DETAIL-LINE TO PRINT-LINE 
WRITE PRINT-LINE 

END-IF 
READ STUDENT-FILE 

CLOSE STUDENT-FILE 
pKiNl-FiLE. 

STOP RUN. 

Figure 1.8 c o n t a i n s test data a n d the a s soc ia t ed o u t p u t p r o d u c e d by t h e program in 
Figure 1.6. (Five m o r e records have b e e n a d d e d to provide addi t iona l examples . ) 
You s h o u l d b e able to state the r e a s o n s w h y individual records were n o t s e l e c t e d for 
the ou tput report; for e x a m p l e , Amel ia Earhart a n d Alex Bell were re jec ted for the 
w r o n g major and a n insufficient n u m b e r of credits , respect ively . (Can y o u identify 
all n i n e of our f a m o u s students?) 

A l t h o u g h y o u are n o t yet e x p e c t e d to wri te a COBOL program, y o u s h o u l d b e able to 
fo l low s i m p l e p r o g r a m s like the o n e in Figure 1.6 intuitively. This s e c t i o n b e g i n s a 
formal d i s c u s s i o n of COBOL so that y o u will eventua l ly b e able to wr i te a n ent ire 
program. 

COBOL c o n s i s t s of s ix l a n g u a g e e l e m e n t s : reserved w o r d s , p r o g r a m m e r -
s u p p l i e d n a m e s , l iterals, s y m b o l s , level n u m b e r s , and pictures . 

Reserved words h a v e spec ia l s i gn i f i cance to COBOL a n d are u s e d in a rigidly 
prescr ibed m a n n e r . T h e y m u s t b e s p e l l e d correctly, or the c o m p i l e r wi l l n o t b e ab le 



Chapter 1 — Introduction 

Test Data and Associated Output 

JOHN A D A M S 
AMELIA EARHART 
ORVILLE WRIGHT 
GEORGIA O'KEEFE 
MERIWETHER LEWIS 
JOHN KENNEDY 
ALEX BELL 
EMILY DICKINSON \ 
JOHN ROEBLING 

090POLTICAL SCI 
120AVIATION I 
115ENGINEERING 
125ART 
115TRAVEL 
115POLITICAL SCI 
090ENGINEERING 
085LITERATURE 
115ENGINEERING 

STUDENT N A M E 
ORVILLE WRIGHT 
JOHN ROEBLING 

to r e c o g n i z e t h e m . T h e list of reserved w o r d s varies f rom c o m p i l e r to compi ler . A 
c o m p r e h e n s i v e list of reserved w o r d s is g iven in A p p e n d i x C. T h e b e g i n n e r is urged 
to refer frequent ly to this a p p e n d i x for t w o reasons: (1) to e n s u r e t h e proper spe l l ing 
of reserved w o r d s u s e d in h i s or h e r program; a n d (2) to avo id t h e inadver tent u s e of 
reserved w o r d s as p r o g r a m m e r - s u p p l i e d n a m e s . 

You, the p r o g r a m m e r , s u p p l y n a m e s for paragraphs , data e l e m e n t s , a n d files. A 
paragraph name is a tag to w h i c h the program refers, for e x a m p l e , PROCESS-
RECORDS or PREPARE-SENIOR-REPORT in Figure 1.6. Data names are the e l e m e n t s 
o n w h i c h i n s t r u c t i o n s opera te , for e x a m p l e , STU-NAME, STU-CREDITS, and STU-
MAJOR in Figure 1.6. File names are spec i f ied in several p l a c e s t h r o u g h o u t a COBOL 
program, but their initial a p p e a r a n c e is in the E n v i r o n m e n t D i v i s i o n , for e x a m p l e , 
STUDENT-FILE a n d PRINT-FILE in Figure 1.6. All p r o g r a m m e r - s u p p l i e d n a m e s are 
c h o s e n a c c o r d i n g t o t h e f o l l o w i n g rules: 

1. A p r o g r a m m e r - s u p p l i e d n a m e m a y c o n t a i n t h e let ters A t o Z, the digits 0 to 
9, a n d t h e h y p h e n ; n o o t h e r characters are p e r m i t t e d , n o t e v e n b lanks . 



Elements of COBOL 

1.2 Programmer-Supplied Names 

SUM 
SUM-OF-X 
SUM OF X 
SUM-OF-X-
SUM-OF-ALL-THE-XS 
SUM-OF-ALL-THE-XS-IN-ENTIRE-PROGRAM 
GROSS-PAY-IN-$ 
12345 

Invalid—reserved word 
Valid 
Invalid—contains blanks 
invalid—ends with a hyphen 
Valid 
I nva l id -more than 30 characters 
Invalid—contains a $ 
V a l i d as a paragraph name but invalid 
as a data name 

A literal is an exact v a l u e or cons tant . Literals are of two types , numeric (a n u m b e r ) 
or nonnumeric (a character string). Literals of b o t h t y p e s appear t h r o u g h o u t a 
program a n d are u s e d to c o m p a r e the va lue of a data n a m e to a spec i f i ed cons tant . 
Cons ider l ine 60 of Figure 1.6: 

IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING1 

In the first p o r t i o n of the s ta tement , STU-CREDITS is c o m p a r e d to 110, a n u m e r i c 
literal. N u m e r i c literals adhere to the fo l lowing rules: 

1. A n u m e r i c literal c a n b e u p to 18 digits long . 

2. A n u m e r i c literal m a y b e g i n wi th a l ead ing ( leftmost) p lus or m i n u s s ign. 

3 . A n u m e r i c literal m a y c o n t a i n a d e c i m a l point , but it m a y not e n d w i t h a 
d e c i m a l po in t . 

T h e s e c o n d p a r t o f t h e IF s t a t e m e n t c o n t a i n s a n o n n u m e r i c l i teral , 
'ENGINEERING'. N o n n u m e r i c literals a d h e r e to the fo l lowing rules: 

1. A n o n n u m e r i c literal is e n c l o s e d in a p o s t r o p h e s (or q u o t a t i o n marks) as 
spec i f ied b y t h e compi l er . 

2. A n o n n u m e r i c literal m a y b e u p to 160 characters in l ength . 

3 . A n o n n u m e r i c literal m a y c o n t a i n anyth ing , i n c l u d i n g blanks , n u m b e r s , a n d 
reserved w o r d s , but n o t a n o t h e r a p o s t r o p h e (or q u o t a t i o n mark) . 

Examples of b o t h n u m e r i c a n d n o n n u m e r i c literals are s h o w n Table 1.3. 

2. A p r o g r a m m e r - s u p p l i e d n a m e m a y rcof b e g i n or e n d wi th a h y p h e n . 

3 . A p r o g r a m m e r - s u p p l i e d n a m e m u s t b e 30 characters or fewer in l ength . 

4. A reserved w o r d m a y not be u s e d as a p r o g r a m m e r - s u p p l i e d n a m e . 

5. D a t a n a m e s m u s t c o n t a i n at least o n e letter. 

6. Paragraph n a m e s m a y b e all n u m e r i c . 

Table 1.2 i l lustrates e x a m p l e s of the rules a s soc ia ted w i t h p r o g r a m m e r - s u p p l i e d 
n a m e s . 



C h a p t e r 1 Introduction 

Numeric and Nonnumeric Literals 

123.4 Valid numeric literal 
'123.4' Valid nonnumeric literal 
+123 Valid numeric literal 
'IDENTIFICATION DIVISION' Valid nonnumeric literal 
i c^. :t i v a u v j i i u i i i c i ivj n i d i a i i i l a y i u i c i tu w i n i a i j ^ ^ n i ic*i p w n l i 

123- Invalid numeric literal—the minus sign must be in the leftmost 
position 

Symbols are of three t y p e s — p u n c t u a t i o n , ar i thmet ic , a n d relational , as l isted in 
Table 1.4. 

IfelLfr: 1 , 4 Symbols 

Punctuation 

1 or" 

( ) 

Arithmetic + 

/ 

Relational 
> 

< 

>= 
<= 

Denotes end of COBOL entry 
Delineates clauses 
Sets off nonnumeric literals 
Encloses subscripts or expressions 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 
Equal to 
Greater than 
Less than 
Greater than or equal to 
Less than or equal to 

T h e u s e o f relat ional a n d ar i thmet ic s y m b o l s is d e s c r i b e d i n detail later in the 
text, b e g i n n i n g i n Chapter 4. A p e r i o d t erminate s a n entry, a n d its o m i s s i o n (in the 
a b s e n c e o f a s c o p e terminator) c a n c a u s e difficulty. A c o m m a , o n the o ther hand , is 
ent ire ly opt iona l , a n d its o m i s s i o n (or inc lus ion) h a s n o effect w h a t s o e v e r o n the 
program. The u s e of c o m m a s is d i s couraged , h o w e v e r , as a c o m m a c a n b e m i s t a k e n 
for a p e r i o d o n o lder printers, w h i c h t e n d to blur the ou tput . 

Level numbers de scr ibe the re la t ionsh ip of i t e m s in a record. For e x a m p l e , u n d e r 
STUDENT-FILE in Figure 1.6, there w a s a s ingle 01- leve l entry a n d several 05- leve l 
entr ies . In general , the h igher (numerical ly) t h e leve l n u m b e r , t h e less s ignif icant 
t h e entry; t h u s 05 is less i m p o r t a n t than 0 1 . Entries w i t h h igher n u m e r i c va lues are 
said to b e l o n g t o the leve ls a b o v e t h e m . Thus , in Figure 1.6 t h e several 05- leve l 
entr ies b e l o n g t o their re spec t ive 01- leve l entr ies . 



A Second Look at COBOL 

P I C T U R E C l a u s e s , 

Pictures descr ibe the nature of i n c o m i n g or o u t g o i n g data. A picture of 9's m e a n s 
the entry is numer ic ; a picture of X's m e a n s the entry is a l p h a n u m e r i c , that is, it can 
conta in letters, n u m b e r s , and special characters . (Alphabetic pictures , w i th a picture 
of A, are s e l d o m used; e v e n n a m e s can c o n t a i n a p o s t r o p h e s or h y p h e n s , w h i c h are 
a l p h a n u m e r i c rather t h a n a lphabet ic in nature.) Level n u m b e r s and pic tures are 
d i s c u s s e d m o r e fully in Chapter 4. 

I'iguie 1.9 c o n t a i n s a re labeled vers ion of the Engineer ing Senior Program a n d 
represents a s e c o n d look at COBOL. This t i m e our in tent ion is to e m p h a s i z e the 
various COBOL e l e m e n t s as they appear in a c o m p l e t e program. 

The Engineering Senior Program (A Second Look) 

1 IDENTIFICATION DIVISION. | 
2 PROGRAM-ID. SENIOR. | 
3 AUTHOR. ROBERT GRAUER. | 
4 [ 
5 ENVIRONMENT DIVISION. I 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT jSTUDENT-FILE LA&IGN_J0_ ' A:\CHAPTR02\SENI0R.DAT'. 
9 ORGANIZATION IS LIN E SEQUENtYaT." j 

10 SELECT PRINT-FILE 1 
11 ASSIGN TO PRINTER. | 
12 ! 
13 DATA DIVISION. I 
14 FILE SECTION. j 

15 FD [ S J U D E r n Z I L l } ' ' ' I 

16 RECORD CONTAINS 43 CHARACTERS [ 
17 DATA RECORD IS STUDENT-IN. 
18 01 STUDENT-IN. 
19 05 S R I - N A M E " PIC X (?f>) . 
20 ;05 STU-CREDITS PIC 9 ( 3 ) . j - " " " " " " 
21 105 STU-MAJOR PIC X ( 1 5 ) . 1 
22 ' 
23 FD PRINT-FILE 
24 RECORD CONTAINS 132 CHARACTERS 
25 DATA RECORD IS PRINT-LINE. 
26 01 PRINT-LINE P I C X ( 1 3 2 ) . ^ . i ^ : ^ , , ^ , 1 
2 7 ^ , ~ ' i 

28 jWORKING-STORAGE SECTION.| | 
29 01 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES. [ 
30 I 

file://A:/CHAPTR02/SENI0R.DAT'


Chapter 1 — Introduction 

(continued) 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

01 HEADING-LINE. 
05 FILLER 
05 FILLER 
05 FILLER 

01 DETAIL-LINE. 
05 FILLER 
05 PRINT-NAME 
05 FILLER 

PIC X{10) 
PIC X(12) 
PIC X(110) 

PIC X(8) 
PIC X(25). 
PIC X(99) 

VALUE SPACES. 
VALUE 1 STUDENT NAME', 
VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

| PROCEDURE DIVISION, f 
PREPARE-SENIOR-RFPORT. ~ R i 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
PERFORM WRITE-HEADING-LINE. 

[PERFORM proces's-reCorB?! 

UNTIL DATA-REMAINS-SWITCH = 'NO'. ~ ~ 
CLOSE STUDENT-FILE 

PRINT-FILE. / 
STOP RUN. 

WRITE-HEADING-LINE. / 
MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE. / 

>HedL 

/Numeric lite. 
PROCESS-RECORDS. / Nonnumaric liiera! 

IF STU-CREDITS > [110]AND STU-MAJOR 
MOVE STU-NAME TO PRINT-NAME 
MOVE DETAIL-LINE TO PRINT-LINE 
WRITE PRINT-LINE 

END-IF. 
READ STUDENT-FILE 

AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
END-READ. 

"ENGINEERINGT 

Observe , for e x a m p l e , t h e def in i t ion of a file name, STUDENT-FILE, in t h e 
SELECT s t a t e m e n t of l ine 8, a n d its s u b s e q u e n t a p p e a r a n c e in t h e I'D of l ine 15, a n d 
t he OPEN, READ, a n d CLOSE s t a t e m e n t s of l ines 43 , 45, 51 , a n d 65. N o t i c e the 
def in i t ion of the var ious data names in l ines 19 -21 ( a c c o m p l i s h e d t h r o u g h level 
n u m b e r s a n d PICTURE c lauses ) a n d the s u b s e q u e n t a p p e a r a n c e s in the P r o c e d u r e 
Div i s ion . N o t e the c o n s i s t e n c y of the paragraph n a m e in the PERFORM s t a t e m e n t 
of l ine 49 a n d the paragraph h e a d e r in l ine 59 . Observe that l i terals appear in the IF 
s t a t e m e n t of l ine 60 a n d in the AT END c l a u s e of the READ s t a t e m e n t ( l ines 46 a n d 
66) . Finally, n o t e the a b u n d a n t u s e o f COBOL r e s e r v e d w o r d s (PROCEDURE, 
DIVISION, WORKING-STORAGE, SECTION, and s o on) t h r o u g h o u t . 



A field is a basic fact, such as the name, address, major, grade point 
average, or number of completed credits, A record is a set of fields, and a 
file is a set of records. 

Every computer application consists of input, processing, and output. 

The computer cannot think for itself but must be told precisely what to do. 
This is done through a series of instructions known as a program. 

The computer does not do anything that a human being could not do if 
given sufficient time. The advantages of a computer stem from its speed 
and accuracy. 

A flowchart and/or pseudocode represent the logic embodied in a computer 
program. 

Every C O B O L program contains four divisions, which appear in the 
sequence: Identification, Environment, Data, edure. 

C O B O L contains six language elements; reserved words, programmer-
supplied names, literals, symbols, level numbers, and pictures. 

X e y m o r a s a n c 

Alphabetic data 
Alphanumeric data 
Arithmetic symbol 
End-of-file 
Field 
File 
Flowchart 
Initialization 
Level number 
Nonnumeric literal 
Numeric data 
Numeric literal 
Paragraph 

Processing 
Programmer-supplied name 
Programming specifications 
Pseudocode 
Punctuation symbol 
Record 
Record description 
Relational symbol 
Reserved words 
Scope terminator 
Symbol 
Termination 
Test Data 

C 0 B G L E l e m e n t s 

DATA DIVISION 
ENVIRONMENT DIVISION 
FILE SECTION 
IDENTIFICATION DIVISION 

INPUT-OUTPUT SECTION 
PICTURE 
PROCEDURE DIVISION 
WORKING-STORAGE SECTION 



CHAPTER 1 Introduction 

1. All computer applications consist of , . and 

2. The divisions of a COBOL program appear in the order: , 

, , , and , _. 

3. A is a pictorial representation of the logic in a program. 

4. may be described as neat notes to oneself. 

5. A diamond-shaped block in a flowchart indicates a . 

6. have special significance to COBOL and 
must be used in a rigidly prescribed manner and be spelled correctly. 

7. A - may contain the letters 

A to Z, the digits 0 to 9, and the hyphen. 

8. ** is the COBOL symbol for . 

9. =, > , and < are examples of symbols in COBOL. 

10. A is a set of records. 

11. A record consists of one or more . 

12. A is a set of instructions to a computer. 

/ R U E / F A L S E 

1. Nonnumeric literals may not contain numbers. 

2. Numeric literals may not contain letters. 

3. A data name may not contain any characters other than letters or numbers. 

4. The rules for forming paragraph names and data names are exactly the same. 

5. A data name may not consist of more than 30 characters. 

6. A nonnumeric literal may not contain more than 30 characters. 

7. A numeric literal may contain up to 18 digits. 

8. There are four divisions in a COBOL program. 

9. The divisions of a COBOL program may appear in any order. 

10. Data description appears in the Identification Division. 

11. A record contains one or more fields. 

12. A file is a set of records. 

13. Computers can think for themselves. 

14. No statement in a computer program may be executed more than once. 

15. A rectangle is the standard flowchart symbol for a decision block. 

16. Reserved words may appear in a nonnumeric literal. 

17. Reserved words may be used as data names. 



Problems 

18. Pseudocode serves the same function as a flowchart. 

19. Pseudocode must be written according to precise syntactical rules. 

20. The COBOL compiler needs to be installed every time a program is executed. 

P R O B L E M S 

1. Indicate whether the entries below are valid as data names. If any entry is invalid, 
state the reason. 
a. NUMBER-OF-TIMES 
b. CODE 
c. 12345 
d. ONE TWO THREE 
e. IDENTIFICATION-DIVISION 
f. IDENTIFICATION 
g. HOURS 
h. GROSS-PAY 
i. GROSS-PAY-IN-S 

2. Classify the entries below as being valid or invalid literals. For each valid entry, 
indicate whether it is numeric or nonnumeric; for each invalid entry, state why it is 
invalid. 
a. 567 
b. 567. 
c. -567 
d. +567 
e. +567. 
f. '567.' 
g. 'FIVE SIX SEVEN' 
h. '-567' 
i. 567-
j. 567+ 
k. '567+' 

3. a. Which division(s) contain paragraph names? 
b. Which division(s) contain the SELECT statement(s)? 
c. Which division(s) contain level numbers? 
d. Which division(s) contain data names? 
e. Which division(s) contain reserved words? 
f. Which division(s) contain PICTURE clauses? 
g. Which division(s) do not contain file names? 

4. Given the COBOL program in Figure 1.6, indicate what changes would have to be 
made if 
a. We wanted music students rather than engineering students. 
b. We wanted students with 60 or fewer credits. 
c. The student major was contained in columns 60-74 of the incoming record. 
d. We wanted engineering students or students with 110 credits or more. 
Note: Treat parts (a), (b), (c), and (d) independently. 



C h a p t e r 1 — Introduction 

5. Which division in a COBOL program contains 
a. The File Section? 
b. Statements to open and close files? 
c. The description of incoming data? 
d. The description of outgoing data? 
e. The author's name? 
f. The program's name? 
g. Statements to read information? 
h. Statements to write information? 

6. Your programming supervisor has drawn a flowchart for you to code. He left the 
flowchart on his dining room table at home, and unfortunately his three-year-old 
son, Benjy, cut it up into pieces with a pair of scissors. Your supervisor has 
collected the pieces (shown in Figure 1.10) and has asked you to rearrange them 
properly into a correct flowchart; do so. The flowchart is to read a file with each 
record containing three unequal numbers, A, B, and C. Write out the greater of the 
two sums (A + B) and (B + C) for each record only if A is less than 50. Develop the 
equivalent pseudocode. 

7. World Wide Sales, Inc., wishes to promote one of its employees to head the South 
American Division. The selected employee must speak Spanish, be 40 or younger, 
and hold a college degree. The programming manager has prepared the necessary 
flowchart (see Figure 1.11), but unfortunately Benjy and his scissors got to it first 
(see Problem 6). Your job is to put the flowchart together. Note that there may be 
more than one employee who qualifies for the position. Accordingly, the flowchart 
includes the necessary logic to count and print the number of qualified employees 
and to print the name of every such employee. Develop the equivalent pseudocode. 

8. Figure 1.12 contains a COBOL program to process a file of employee records and 
print the names of programmers under 30. Using Figure 1.6 as a guide, restore the 
missing information so that the program will run as intended. 

Flowchart Blocks for Problem 6 



Flowchart Blocks for Problem 7 

May be used more 
than once 

C O B O L Listing for Problem 8 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FIRSTTRY. 

GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTR02\FIRSTTRY.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

PRINT-FILE 
ASSIGN TO PRINTER. 

FILE SECTION. 
FD EMPLOYEE-FILE 

RECORD CONTAINS 44 CHARACTERS 
DATA RECORD IS EMPLOYEE-RECORD. 

01 EMPLOYEE-RECORD. 
05 EMP-NAME PIC X(25). 
05 EMP-TITLE PIC X(10). 
05 EMP-AGE PIC 99. 
05 FILLER PIC XX. 
05 EMP-SALARY PIC 9(5). 

file:///CHAPTR02/FI


Chapter 1 — Introduction 

igure 1.12 COBOL Listing for Problem 8 (continued) 

25 FD 4 

26 RECORD CONTAINS 132 CHARACTERS 
27 DATA RECORD IS PRINT-LINE. 
28 01 PRINT-LINE. 
29 05 FILLER PIC X. 
30 05 PRINT-NAME 5 
31 05 FILLER PIC X(2). 
32 05 PRINT-AGE PIC 99. 
33 05 FILLER PIC X(3). 
34 05 PRINT-SALARY PIC 9(5). 
35 05 FILLER PIC X(94). 
36 
37 6 

38 01 END-OF-DATA-FLAG PIC X(3) 7 
39 PROCEDURE DIVISION. 
40 MAINLINE. 
41 8 INPUT EMPLOYEE-FILE 
42 OUTPUT PRINT-FILE. 
43 MOVE SPACES TO PRINT-LINE. 
44 MOVE 'SALARY REPORT FOR PROGRAMMERS UNDER 30' TO PRINT-LINE. 
45 WRITE PRINT-LINE 
46 AFTER ADVANCING 2 LINES. 
47 READ EMPLOYEE-FILE 
48 AT END MOVE 'YES' TO END-OF-DATA-FLAG 
49 END-READ. 
50 .9 PROCESS-EMPLOYEE-RECORDS 
51 UNTIL END-OF-DATA-FLAG = 'YES'. 
52 CLOSE EMPLOYEE-FILE 
53 PRINT-FILE. 
54 STOP RUN. 
55 
56 PROCESS-EMPLOYEE-RECORDS. ^ ' ? 0 

57 IF EMP-TITLE = 1 PROG RAMMER 'JMSTMP-AGE < 30 
58 MOVE SPACES TO PRINTLINE 
59 MOVE EMP-NAME ,10'PRINT-NAME 
60 MOVE " TO PRINT-AGE 
61 MOVE EMP-SALARY TO PRINT-SALARY 
62 WRITE PRINT-LINE 
63 END-IF. 
64 READ EMPLOYEE-FILE ?' 
65 AT END MOVE "TO END-OF-DATA-FLAG 
66 END-READ. 



Overview 
From Coding Form to Computer 

The C O B O L Coding Form 
Use of an Editor 
The Compile, Link, and Execute Sequence 

Learning by Doing 
Errors in Entering the Program 
Errors in Operating System Commands 
Errors in Compilation 
Errors in Execution 
Errors in Data Input 

Evolution of C O B O L 

There's Always a Reason 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 2 From Coding Form to Computer 

O B J E C T I V E S 

After reading this chapter you will be able to: 

I State the rules associated with the C O B O L coding sheet, and enter a 

program appropriately. 

Distinguish between compilation and execution; describe the function of a 
link program. 

Describe the environmental differences between a P C and a mainframe as 
they relate to execution of C O B O L programs. 

Compile, link, and execute a C O B O L program. 

Find and correct simple errors in compilation or execution. 

O V E R V I E W 

This chapter continues with the engineering senior program of Chapter 1, 
describing how to actually run a C O B O L program. We d iscuss the C O B O L 
coding form and its associated rules, the use of an editor (or word processor) to 
create C O B O L programs and/or data files, and the procedure for submission to 
the computer. We describe the compile, link, and execute sequence. We also 
prepare you for the errors you will inevitably make, d iscuss fundamentals of 
debugging, and alert you to the subtle differences between the two standards in 
use today, COBOL-74 and COBOL-85 . 

At the conclusion of the chapter we ask you to run the engineering senior 
program of Chapter 1. Seeing is believing may be a cliche, but it is only after you 
have seen output from your own program that the material truly begins to make 
sense. Suffice it to say then, that the sooner you are on the computer, the sooner 
you will appreciate the subtleties inherent in programming. 

I* Sf © 6 1 1 C&*disft& Chapter 1 e n d e d w i t h p r e s e n t a t i o n of a c o m p l e t e d COBOL program, and a d i s cus s ion 
P&h'm t& <>f the e l e m e n t s that m a k e u p the COBOL language . T h e p r o g r a m , h o w e v e r , is n o t 

ye t in a form su i table for e x e c u t i o n o n the c o m p u t e r , a n d m u c h h a s to b e d o n e in 
order for this to b e a c c o m p l i s h e d . That is t h e overriding o b j e c t i v e of this chapter . 

T h e flowchart in Figure 2.1 d e p i c t s the var ious s t e p s i n so lv ing a p r o b l e m 
t h r o u g h u s e o f a c o m p u t e r . T h e first s t e p is to obta in a c lear s t a t e m e n t of t h e 
p r o b l e m , c o n t a i n i n g a c o m p l e t e descr ip t ion of the i n p u t a n d des i red ou tput . T h e 
p r o b l e m s t a t e m e n t s h o u l d a lso c o n t a i n de ta i l ed p r o c e s s i n g spec i f i ca t ions . It is n o t 
e n o u g h , for e x a m p l e , to say ca lculate a s tudent ' s grade p o i n t average; i n s t e a d the 
m e t h o d for ca lcu la t ing the average m u s t b e p r o v i d e d as wel l . 

O n c e t h e input , ou tput , and p r o c e s s i n g spec i f i ca t ions h a v e b e e n e n u m e r a t e d , 
a h ierarchy chart ( see Chapter 3) is created , t h e n a f lowchar t or p s e u d o c o d e is 
d e v e l o p e d . Careful a t t e n t i o n to t h e s e s t e p s will s impl i fy the s u b s e q u e n t p r o g r a m 
a n d i n c r e a s e the l ike l ihood it wil l b e correct . 

C o d i n g is t h e trans la t ion of t h e h ierarchy chart, f lowchart , a n d / o r p s e u d o c o d e 
in to COBOL. C o d i n g m u s t b e d o n e wi th in the we l l -de f ined rules o f COBOL regarding 



From Coding Form to Co mp uter 

START 

OBTAIN 
PROGRAM 

SPECS 

DEVELOP A 
HIERARCHY 

CHART 

DEVELOP A 
FLOWCHART OR 

PSEUDOCODE 

ENTER PROGRAM 
ON CODING 

SHEETS 

ENTER PROGRAM 
USING TEXT 

EDITOR 

ENTER 
TEST DATA 

FALSE 

STOP 

TRUE 

REVISE 
COBOL 

PROGRAM 

TRUE 

REVISE 
COBOL 

PROGRAM 

t h e p l a c e m e n t of var ious s t a t e m e n t s in specif ic areas of the c o d i n g form. After 
cod ing , the program is e n t e r e d into a file su i table for input to a c o m p u t e r through 
u s e of an editor. 

The program is t h e n s u b m i t t e d to the c o m p u t e r in c o n j u n c t i o n wi th a set of 
contro l s t a t e m e n t s . The latter provide in format ion to the operat ing s y s t e m as to the 
l o c a t i o n of the COBOL program a n d / o r its a s s o c i a t e d data. The contro l s t a t e m e n t s 
vary greatly from instal lat ion to instal lat ion. 

Next c o m e s c o m p i l a t i o n in w h i c h t h e COBOL program is trans la ted in to 
m a c h i n e l anguage . Initial a t t e m p t s at c o m p i l a t i o n are apt to identify severa l errors, 
d u e to mis spe l l ings , m i s s i n g per iods , m i s p l a c e d p a r e n t h e s e s , etc . Correc t ions are 
m a d e , a n d the p r o g r a m is r e c o m p i l e d . O n l y after t h e c o m p i l a t i o n h a s b e e n 
success fu l ly c o m p l e t e d c a n w e p r o c e e d to e x e c u t i o n . 

Dur ing e x e c u t i o n the c o m p u t e r d o e s exact ly w h a t it w a s ins t ruc ted to do , 
w h i c h m a y b e different from w h a t y o u w a n t it to d o . For e x a m p l e , if OR w e r e 
subs t i tu ted for A N D in l ine 60 of the e n g i n e e r i n g sen ior program, the program 
w o u l d se lec t either e n g i n e e r i n g majors or s en iors . Either way, it w o u l d func t ion 
differently from the original, logical ly correct vers ion , a l t h o u g h the p r o g r a m w o u l d 

Figure 2.1 The Programming Process 



C h a p t e r 2 — From Coding Form to Computer 

still c o m p i l e c leanly . Correct ions are m a d e , the program is r e c o m p i l e d , a n d tes t ing 
c o n t i n u e s . 

T h e p r e s e n c e of the t w o d e c i s i o n b locks in Figure 2.1 ind ica te s the iterative 
nature of the ent ire process . Few, if any, pro g ra m s c o m p i l e correct ly o n the first 
t r y — h e n c e the n e e d to r e c o d e specif ic s t a t e m e n t s . Similarly, pro g ra m s m a y n o t 
e x e c u t e properly o n the first a t t empt , a n d t h u s the n e e d to revise the program, 
recompi l e , reexecute , a n d s o o n . 

T h e COBOL c o m p i l e r is very particular about the informat ion it receives , and requires 
a program to b e wr i t t en wi th in its we l l -de f ined syntax. For e x a m p l e , d iv i s ion a n d 
s e c t i o n h e a d e r s are required to b e g i n b e t w e e n c o l u m n s 8 a n d 11, w h e r e a s m o s t 
o t h e r s t a t e m e n t s b e g i n in or p a s t c o l u m n 12. T h e r e are a d d i t i o n a l ru les for 
c o n t i n u a t i o n (what h a p p e n s if a s t a t e m e n t d o e s n o t fit o n o n e l ine) , c o m m e n t s , 
opt ional s e q u e n c i n g of source s t a t e m e n t s in c o l u m n s 1-6, a n d program identif ication 
in c o l u m n s 7 3 - 8 0 . 

The rules of the c o d i n g s h e e t are s u m m a r i z e d in Table 2 .1 , a n d i l lustrated in 
Figure 2.2. The latter s h o w s c o m p l e t e d forms for the e n g i n e e r i n g sen ior p r o b l e m of 
Chapter I. Several features in Figure 2.2 bear m e n t i o n . N o t e in particular the wavy 
l ine u n d e r var ious PIC entr ies to indicate that ident ica l i n f o r m a t i o n is to b e e n t e r e d 
o n s u b s e q u e n t l ines . Of greatest import , however , is the c o n f o r m i t y b e t w e e n the 
entr ies in Figure 2.2 a n d the COBOL r e q u i r e m e n t s of Table 2 .1 . 

C o d i n g s h e e t s are n o t m a n d a t o r y a n d y o u c a n use ordinary paper ins tead . 
You will find, h o w e v e r , that p r o g r a m m i n g is m u c h easier, if y o u are we l l organ ized . 
A g o o d start is to h a v e the p r o g r a m neat ly e n t e r e d in appropr ia te c o l u m n s before 
s i t t ing d o w n at the c o m p u t e r . 

O n c e a p r o g r a m h a s b e e n wri t ten o n c o d i n g s h e e t s , it is e n t e r e d through a n edi tor 
(or w o r d processor ) in to a file for s u b s e q u e n t input to the c o m p u t e r . In all l ike l ihood 
y o u are a lready famil iar w i t h a w o r d processor , a n d c a n u s e that t o create a n d edi t 
COBOL p r o g r a m s as wel l . According ly , b e sure y o u c a n d o all of t h e fo l lowing: 

1. Save the p r o g r a m as a n u n f o r m a t t e d (ASCII text) file, w i t h a file n a m e of your 
o w n c h o o s i n g , c o n s i s t e n t w i t h the c o m p u t e r o n w h i c h y o u wil l e x e c u t e the 
program. 

2 . Retrieve the file, t h e n resave it after m a k i n g addi t ional m o d i f i c a t i o n s . 

3 . Toggle b e t w e e n the inser t ion a n d r e p l a c e m e n t m o d e s to c h a n g e characters 
w i t h i n a s t a t e m e n t , a n d / o r to insert a n d / o r d e l e t e s t a t e m e n t s w i t h i n a 
program. 

4. Print a l i s t ing of the file. 

You will a l so find it useful to learn the c o m m a n d s to: 

1. Set tabs to m o v e to d e s i g n a t e d c o l u m n s ; for e x a m p l e , c o l u m n s 8 a n d 12 for 
the A a n d B marg ins , respect ive ly . 

2. Search a n d / o r rep lace character strings. 

3 . M o v e to s p e c i f i e d p l a c e s w i t h i n the program; for e x a m p l e , t h e b e g i n n i n g or 
e n d , a part icular l ine, t h e start o f the P r o c e d u r e Div i s ion , a n d s o o n . 

T h e avai labi l i ty o f a n o n - l i n e ed i tor facil itates p r o g r a m m i n g to a n e x t e n t that 
w a s u n i m a g i n a b l e to t e n s of t h o u s a n d s of COBOL p r o g r a m m e r s of the 1960s a n d 



From Coding Form to Computer 

Rules for the COBOL Coding Form 

1-6 Optional sequence numbers, If this field is coded, the compiler performs a sequence check on incoming 
COBOL statements by flagging any statements out of order. Although some commercial installations 
encourage this option, we advise against it, especially since you are entering your own programs, and the 
more you type, the more chance for error. 

7 An asterisk in column 7 indicates a comment, while a hyphen is used for the continuation of nonnumeric 
literals (described further on page 180). Comments may appear anywhere in a program; they are shown on 
the source listing but are otherwise ignored. 

8-11 Known as the A margin, Division headers, section headers, paragraph names, FD's, and 01 's all begin in the 
A margin. 

12-72 Known as the B margin, All remaining entries begin in or past column 12. COBOL permits considerable 
flexibility here, but individual installations have their own requirements. We, for example, begin PICTURE 
clauses in the same column, for example, column 37, for better readability. (We shall discuss this further in 
Chapter 7.) 

73-80 Program identification, a second optional field, which is ignored by the compiler. Different installations have 
different standards regarding use of this field. 

Fhe COBOL Coding Form 

S E N I O R .. 

R O B E R T 6RAUER • .. 9/10/93 

I DENT I F l C A T I ON D I V I 51 ON ; I • R : : I I : I I : I . ! ! I { 
P R O G R A M - I D S E N I O R f 
A U T H O R . . R O B E R T G R A U E R , 

E N V I R O N M E N T D I V I S I O N • : I • < I , I I I I : : I 1 ' 1 M 
I N P U T - O U T P U T S E C T I O N " . ; I I ! ! • I • : I I • I : ; I : ! I I 
F I L E - C O N T R O L 

S E L E C T S T U D E N T - F I L E A S S I G N TO ' A \ C H A P T R O 2 \ S E N I C R D A T ' 
O R G A N I Z A T I O N I S L I N E S E Q U E N T I A L 

1 S E L E C T P R I NTL- PI L|E " " | , ! | | , J I 
A S S I G N TO PRJMTEFT.. 

DATA D I V I S I O N ! 
Fl L E S E C T I O N 
FD S T U D E N T - F I L E 

R E C O R D C O N T A I N S 4 3 C H A R A C T E R S 
DATA- R E C O R D I S S T U D E N T - I N . i 

01 $tu\>zhx-\h i 
05 S T U - NAME P I C X U 5 ) I 
05 S T U - C R E D I T S P I C 9(3) I 
05 S T U - M A O O R P I C X(t 5) j 

FD P R I N T - F I L E I 
R E C O R D C O N T A I N S 1 n C H A R A C T E R S 1 
DATA R E C O R D I S P R I N T - L I N E I 

Ci P R I N T L I N E P I C X ( i 32-) I 

I ! I j , [ 1 ; 1 ! 

I 



Chapter 2 From Coding Form to Computer 

(continued) 

Program S E N I O R Requested by Page 2 ol 5 

Programmer R O B E R T <3RAUER Date 9/10/93 73 
Identification 

ao 

Sequence j | j A : q COBOL Statement 

t 3 \ A 6|7 j 8 

P 5t 

0 I 6 i 

M ' M l l l ! ' 

' Picj X( I'O) 1 

V X(1,Z) 
, A xcio) i 

WORkil NS-SfOR;A<JE S E C T I O N " ! 
i0! D A T A . - R E M A I N S , - S W I T C H , P I C X(2') 
J 1 i|i 1 I 1 ' I 1 i 1 I 
0 1 HEAD|l N G - ' L I NEj 

05 'F ILLER 
:;x, 

io f d e t a ' i l - l ' i n e 
1 05 F!l LLEIR 1 , P I C X(fl) 

X P;Ri NT - N A M E ( , Y, X U 5 ) 

| A F i L L E,R ( , A i X £ 9 9) 
' p r o c e d u r e D I V I S I O N ' 
P R E P A R E - . S E N I O R - R ' E P O R T _ , 

OPtN i N P U T STUDE.Nl - F! LE 
; ' O U T P U T PIRINT-Fi L E 
! R E A D S T U D E N T - F I L'E 

A T E'ND WOVE ' NO 
e n d - R e a d 
p e r f o r m w r l t e - h e , a d i n s - l i n e 

6B 72 
VALINE SPACES j 

1 . i. I i r [ 

VALUE SPjACES' 
V 1 SfTUDEjNT NAME' 
A SPACfeSf K ' i 

|VALtjE SPACES 

i V A l U E SP (ACES, 

T O IdATA - REMA i NS - Stw i TcH 

P E R F O R M 

C L O S 

S T O P 

UNT 
E STUDENT-FI 
PRlMT-FI LE 

RUN 

P R O C E S S 
L DA 

R E C O R D S 
T A - R E M A I 

L E 
N S - S W I T C H = 1 HO' 

f j"" 

It 

early 1970s . COBOL itself is over 3 0 years o ld , a n d for m u c h o f its e x i s t e n c e the 
p u n c h e d card a n d b a t c h p r o c e s s i n g (often w i t h t u r n a r o u n d t i m e s of several h o u r s 
or m o r e ) w a s t h e w a y in w h i c h p r o g r a m s w e r e s u b m i t t e d . S t u d e n t s t o d a y are far 
m o r e fortunate in the avai lable t e c h n o l o g y , taking for granted t h e ability t o e x e c u t e 
a p r o g r a m m a n y t i m e s in a s ing le s e s s i o n , i n s t e a d of h a v i n g to wai t h o u r s (or days) 
to retrieve a s ing le run, wa i t h o u r s m o r e for t h e next run, etc . 

The mater ia l o n t h e c o d i n g s h e e t a n d u s e o f an ed i tor is straightforward, a n d s h o u l d 
p o s e little difficulty. T h e e x e c u t i o n of a COBOL program, h o w e v e r , is m o r e c o m p l e x , 
a n d is e x p l a i n e d i n c o n j u n c t i o n w i t h Figure 2 .3 . T h e figure s h o w s the e x e c u t i o n of 
three dis t inct p r o g r a m s , a compiler, linker (or l inkage-ed i tor o n IBM main frames ) , 
and load module, e a c h o f w h i c h is n e c e s s a r y to p r o d u c e the list of e n g i n e e r i n g 
sen iors . Real ize , t o o , that t h e p r o c e s s d e s c r i b e d in Figure 2.3 i s required for a n y 
COBOL program, e v e n o n e a s s i m p l e as t h e e n g i n e e r i n g s e n i o r e x a m p l e . 

http://STUDE.Nl


From Coding Form to Computer 

(continued) 

Program SENIOR Requested by Page 3 of 3 

Programme, ROBERT ^RACIER Date 9l\ 0/92> 73 
Identification 

80 

Sequence |njA iR COBOL Statement 

WRi TE - tttAD i m - 1 I NE 
MOVE, HEAD INS-L INE TO PRINT-L INE 
WRITE PRINT-L INE 

PROCESS .RECORDS 
IF STU-CREDITS > I t 0 AND STU-MAJOR = ' ENGINEERING' 

MOVE STU-NAME TO PR I NT-NAME 
WOVE DETAIL-L INE TO PRINT-L INE 
WRITE PRINT-L INE 

END-;IF^_ 
READj STUDENT-F I LE 

END-READ ' 

i 

The p r o c e d u r e b e g i n s w i t h the COBOL compiler, a p r o g r a m that a c c e p t s a 
COBOL (source) program as input , a n d p r o d u c e s a m a c h i n e - l a n g u a g e (object) 
program as ou tput . T h e result o f the c o m p i l a t i o n , the objec t program, is input in to a 
s e c o n d program cal led the linker, that c o m b i n e s the object program w i t h subrout ines 
a n d o ther objec t m o d u l e s to p r o d u c e a l oad m o d u l e . Execut ion o f t h e c o m p i l e d 
COBOL p r o g r a m takes p l a c e in the third s t ep as the load module a c c e p t s input data 
a n d p r o d u c e s a n o u t p u t report . 

The e x e c u t i o n of the var ious programs in Figure 2.3 d o e s not h a p p e n through 
wishful thinking, but through spec i f i ca t ion of c o m m a n d s to the operating system to 
descr ibe t h e s e p r o g r a m s a n d their a s s o c i a t e d data files. Every o p e r a t i n g s y s t e m h a s 
its o w n speci f ic c o m m a n d s , but the under ly ing c o n c e p t is the s a m e , n a m e l y that 
three different p r o g r a m s (a c o m p i l e r , linker, a n d l oad m o d u l e ) are required . It wi l l 
b e necessary , therefore , to learn the c o m m a n d s for y o u r particular conf igura t ion in 
order to c o m p i l e , link, and e x e c u t e a COBOL program. ' 

1. Appendices A and B describe the Micro Focus Personal COBOL for Windows that may accompany this 

text. 



C h a p t e r 2 - } torn Coding Form to Computer 

i n n Compile, Link, and Execute Sequence 

O n e learns b y d o i n g . This t i m e - w o r n a x i o m is e spec ia l ly true for p r o g r a m m i n g . W e 
have c o v e r e d a lot of mater ia l s ince y o u first b e g a n reading C h a p t e r 1. N o w it is t i m e 
to put everyth ing toge ther a n d actual ly run your first program. Enter the program 
o n the c o d i n g s h e e t s in Figure 2.2, us ing the appropriate editor. Prepare the neces sary 
control s t a t e m e n t s for the o p e r a t i n g s y s t e m . Create your o w n test data, or use 
Figure 1.8a. S u b m i t the job a n d retrieve y o u r ou tput . 

W e b e l i e v e — i n fact w e are very sure—that after y o u rece ive your first c o m p u t e r 
printout , m a n y th ings will fall into p lace . N e v e r t h e l e s s , the first p r o g r a m is in m a n y 
w a y s the m o s t difficult y o u will a t tempt , a n d y o u s h o u l d b e p r e p a r e d for p r o b l e m s 
a long the w a y . T h e difficulty is n o t in the program's c o m p l e x i t y (the e n g i n e e r i n g 
sen ior p r o g r a m is logical ly trivial). N o r is it in the COBOL syntax, i n that the program 
uses on ly a fract ion of the COBOL features y o u will eventua l ly e m p l o y . The p r o b l e m s 
arise in i n t e r a c t i n g w i t h the c o m p u t e r , u s i n g t h e edi tor , e n t e r i n g t h e p r o p e r 
c o m m a n d s to the o p e r a t i n g s y s t e m , and s o o n . Murphy ' s Law is p e r h a p s the m o s t 
e l o q u e n t s t a t e m e n t of w h a t to expect , a n d t h u s y o u s h o u l d b e prepared for any or 
all of the e n s u i n g errors. 



Learning by Doing 

T h e errors that o c c u r as y o u enter the program are potent ia l ly the m o s t d a m a g i n g , 
e spec ia l ly if y o u s p e n d hours enter ing the program a n d t h e n forget to save it, save it 
incorrectly, or de l e t e it unintent ional ly . A s u g g e s t e d course of ac t ion for your first 
a t t e m p t is to enter o n l y the first two l ines of the program, save these , log off the 
sys t em, t h e n log o n a n d retrieve the file. In this w a y y o u are sure y o u k n o w h o w to 
use the editor. Other frequent errors are to enter in format ion in the w r o n g c o l u m n s , 
to m i s u s e a tab key, a n d s o o n . 

T h e syntax of opera t ing s y s t e m c o m m a n d s h a s to b e fo l lowed exactly, in order for 
the s y s t e m to d o your b idd ing . S imple mis takes result in baffling errors; for e x a m p l e , 
Bad command or file name, w h e n y o u misspe l l an M S - D O S c o m m a n d , a n d / o r fail 
to indicate the proper subdirectory w h e r e the c o m m a n d is located. In similar fa sh ion 
the contro l s t a t e m e n t s s u b m i t t e d o n a m a i n f r a m e m u s t b e syntact ical ly correct, or 
everything e l se wil l fail. Invalid job s t reams result in the s y s t e m b e i n g u n a b l e to 
execute the job, leaving you w i t h the m o s t frustrating of all messages, Job not run 
due to JCL error. 

A compilation error o c c u r s w h e n e v e r y o u v io late a rule of COBOL, for e x a m p l e , 
m i s s p e l l i n g a reserved w o r d or m i s p l a c i n g a per iod . The result of the error is that the 
compi l er is unab le to translate a port ion of the COBOL program to m a c h i n e language , 
a n d any s u b s e q u e n t a t t e m p t at e x e c u t i o n will (mos t likely) b e incorrect . 

Cons ider , for e x a m p l e , Figure 2.4a, w h i c h c o n t a i n s a sl ightly m o d i f i e d v e r s i o n 
of the Eng ineer ing Sen ior Program of Figure 1.6, in w h i c h l ines 5 9 - 6 4 h a v e b e e n 

Engineering Senior Program with Compilation Errors 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. SENIORCE. 
3 AUTHOR. ROBERT GRAUER. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTER02\SENI0R.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 
14 FILE SECTION. 
15 FD STUDENT-FILE 
16 RECORD CONTAINS 43 CHARACTERS 
17 DATA RECORD IS STUDENT-IN. 
18 01 STUDENT-IN. 
19 05 STU-NAME PIC X(25). 

file://'A:/CHAPTER02/SENI0R.DAT'


C h a p t e r 2 From Coding Form to Computer 

Fit (continued) 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
5 JL 
[59 
60 
61 
62 
63 
64 
65 
66 
67 

05 
05 

STU-CREDITS 
STU-MAJOR 

PIC 9(3). 
PIC X(15). 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS 
DATA RECORD IS PRINT-LINE. 

01 PRINT-LINE PIC X(132). 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH PIC X(2) 

01 HEADING-LINE. 
05 FILLER P I C X(10) 
05 FILLER PIC X(12) 
05 FILLER PIC X(110) 

01 DETAIL-LINE. 
05 FILLER PIC X(8) 
05 PRINT-NAME PIC X(25). 
05 FILLER P I C X(99) 

VALUE SPACES. 

VALUE SPACES. 
VALUE 'STUDENT NAME' 
VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

PROCEDURE DIVISION. 
PREPARE-SENIOR-REPORT. 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
PERFORM WRITE-HEADING-LINE. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 
CLOSE STUDENT-FILE 

PRINT-FILE. 
STOP RUN. 

WRITE-HEADING-LINE. 
MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE. 

Period missing after paragraph header 

PROCESS-RECORDSr 
IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING' 

MOVE STU-NAME TO PRINT-NAME 
MOVE DETAIL-LINE TO PRINT-LINE 
WRTE PRINT-LINE. 

END-IF. 
READ STUDENT-FILE 

AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
END-READ. 

WRITE is misspelled 
Period does no! belong before END-IF terminator 

(a) C O B O L Listing 



Learning by Doing 

Flga r (continued) 

LINE ERR# LVL • ERROR TEXT 

0138 W Period assumed before 'IF' 
0787 E Undefined symbol 'WRTE' 
0593 E No corresponding active scope for 'END-IF' 

seniorce has 1 Warning + 2 E Level messages 

c h a n g e d to p r o d u c e c o m p i l a t i o n errors. Figure 2 .4b s h o w s the result ing c o m p i l e r 
d iagnos t i c s . T h e error m e s s a g e a s soc ia t ed w i t h l ine 60 is c a u s e d by the m i s s i n g 
per iod (after the paragraph header) in l ine 59. T h e d iagnos t i c in l ine 63 resulted 
from m i s s p e l l i n g a reserved word, a n d the d iagnos t i c in l ine 64 is p r o d u c e d by the 
super f luous per iod in l ine 63 . 

C o m p i l e r d iagnos t i c s are d i s c u s s e d fully in Chapter 6. Correct ions are m a d e , 
a n d the program is r e c o m p i l e d . Only after the c o m p i l a t i o n has b e e n success fu l ly 
c o m p l e t e d s h o u l d w e p r o c e e d to e x e c u t i o n . 

Execut ion errors o c c u r after c o m p i l a t i o n a n d are general ly d u e to errors in logic. 
Figure 2.5a c o n t a i n s yet a n o t h e r vers ion of t h e e n g i n e e r i n g s e n i o r program in 
w h i c h the credits test w a s deliberately o m i t t e d in l ine 60. The program is syntactical ly 
correct a n d wil l c o m p i l e w i t h o u t error; it is, h o w e v e r , logical ly incorrect a n d h e n c e 
t h e a s s o c i a t e d o u t p u t in Figure 2 .5b is w r o n g . ( R e v i e w the or ig inal p r o g r a m 
speci f icat ions a n d test data; Alex Bell s h o u l d n o t b e se l ec ted b e c a u s e o f a n insufficient 
n u m b e r of credits.) 

.5 Engineering Senior Program with Execution Errors 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. SENI0REE. 
3 AUTHOR. ROBERT GRAUER. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR02\SENIOR.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 

file://'A:/CHAPTR02/SENIOR.DAT'


C h a p t e r 2 From Coding Form to Compute 

Figure (continued) 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

FILE SECTION. 
FD STUDENT-FILE 

RECORD CONTAINS 43 CHARACTERS 
DATA RECORD IS STUDENT-IN. 

01 STUDENT-IN. 
05 
05 
05 

STU-NAME 
STU-CREDITS 
STU-MAJOR 

PIC X(25). 
PIC 9(3). 
PIC X(15). 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS 
DATA RECORD IS PRINT-LINE. 

01 PRINT-LINE 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH 

01 HEADING-LINE. 
05 FILLER 
05 FILLER 
05 FILLER 

01 DETAIL-LINE. 
05 FILLER 
05 PRINT-NAME 
05 FILLER 

PIC X(132), 

PIC X(2) 

PIC X(10) 
PIC X(12) 
PIC X(110) 

PIC X(8) 
PIC X(25). 
PIC X(99) 

VALUE SPACES. 

VALUE SPACES. 
VALUE 'STUDENT NAME' 
VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

PROCEDURE DIVISION. 
PREPARE-SENIOR-REPORT. 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
PERFORM WRITE-HEADING-L1NE. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 
CLOSE STUDENT-FILE 

PRINT-FILE. 
STOP RUN. 

WRITE-HEADING-LINE. 
MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE. 

PROCESS-RECORDS. 
[IF STU-MAJOR = 'ENGINEERING' h 

MOVE STU-NAME TO PRINT-NAME 
MOVE DETAIL-LINE TO PRINT-LINE 
WRITE PRINT-LINE 



Learning by Doing 

64 END-IF. 
65 READ STUDENT-FILE 
66 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
67 END-READ. 

STUDENT NAME 
ORVILLE WRIGHT 
ALEX BELL}--
JOHN ROEBLING 

It is impor tant to remember, therefore, that a computer does exactly what it is 
instructed to do, which may be different from what you want it to do. In other w o r d s 
if y o u (incorrectly) tell the c o m p u t e r to i gnore the credits test, t h e n that is precise ly 
w h a t the program will d o . 

A program m a y also p r o d u c e e r r o n e o u s output , e v e n if it is logical ly correct, w h e n 
the data o n w h i c h the program opera te s are invalid. If, for e x a m p l e , t h e erroneous 
data in Figure 2.6 are s u b m i t t e d to the valid program in Figure 2.2, ne i ther Orville 
Wright nor John Roeb l ing will be se lec ted! Wright's major appears in the data as 
ENGINEER, w h e r e a s l i n e 60 in t h e p r o g r a m is l o o k i n g for ENGINEERING. 
Roebl ing's credits are e n t e r e d in the w r o n g c o l u m n . In other w o r d s , a c o m p u t e r 
o p e r a t e s o n data exact ly as it is s u b m i t t e d , w i th n o regard for i ts correc tness . 
Stated another way, the o u t p u t p r o d u c e d by a program is on ly as g o o d as its input, 
or put e v e n m o r e s imply , garbage in, garbage out, g iv ing rise to t h e wel l k n o w n 
a c r o n y m , GIGO. 

Erroneous Input Data 

JOHN ADAMS 
AMELIA EARHART 
ORVILLE WRIGHT 
GEORGIA 0'KEEFFE 
MERIWETHER LEWIS 
JOHN KENNEDY 
ALEX BELL 
EMILY DICKINSON 
JOHN ROEBLING 

090P0LITICAL SCI 
120AVIATI0N 
115gNGINEERj 
125ART 
115TRAVEL 
115P0LITICAL SCI 
090ENGINEERING 
085LITERATURE 
115ENGINEERING 



Chapter 2 From Coding Form to Computer 

COBOL was in troduced in 1959 through the efforts of Capta in Grace Murray H o p p e r 
of the U n i t e d States Navy. It w a s d e s i g n e d to b e a n o p e n e n d e d language , c a p a b l e of 
a c c e p t i n g c h a n g e and a m e n d m e n t . It w a s a lso i n t e n d e d to b e a highly portable 
language; i.e., a COBOL program writ ten for a n IBM m a i n f r a m e c o m p u t e r s h o u l d 
run equal ly we l l o n any other c o m p u t e r w i t h a COBOL compi l er . Over the years the 
n e e d s of an evo lv ing language , a n d the des ire for compat ib i l i ty a m o n g v e n d o r s 
h a v e g iven rise to several COBOL standards , two of w h i c h are in c o m m o n u s e today, 
COBOL-74 a n d COBOL-85. 

All of the l ist ings in this text are wri t ten to take advantage of features in the 
n e w e s t standard, COBOL-85. W e think it impor tant to e m p h a s i z e COBOL-85 (de-
e m p h a s i z e COBOL-74) b e c a u s e COBOL-85 has b e e n the current s tandard for several 
years. Industry, however , is s l o w to c h a n g e , a n d e v e n as this b o o k is wri t ten in 1993, 
m a n y (perhaps mos t ) of industry's currently runn ing COBOL programs adhere to 
COBOL-74. The reason for the s l o w c o n v e r s i o n is the subt le incompatibilities that 
exist b e t w e e n the t w o c o m p i l e r s . In theory, a program wri t ten u n d e r the earlier 
c o m p i l e r is s u p p o s e d to run w i t h o u t modi f i ca t ion u n d e r the later compi ler . In 
pract ice , however , this is n o t a lways the case . 

Cons ider , for e x a m p l e , the incompat ib i l i t y brought a b o u t b y the i n t r o d u c t i o n 
of n e w features a n d a s s o c i a t e d n e w reserved words , w o r d s s u c h as CONTENT, 
EVALUATE, FALSE, OTHER, TEST, a n d s o o n . A p r o g r a m m e r wri t ing u n d e r COBOL-
74 c o u l d logically h a v e u s e d any or all of t h e s e w o r d s as data n a m e s , w h i c h p o s e d n o 
p r o b l e m u n d e r the o lder compi l er , but w h i c h p r o d u c e s n u m e r o u s c o m p i l a t i o n 
errors under COBOL-85. Thus , a blanket c o n v e r s i o n by an instal lat ion of its h u n d r e d s 
( thousands , or t ens of t h o u s a n d s ) of COBOL programs , w o u l d prove d i sas trous , 
u n l e s s each program w a s m a n u a l l y c h e c k e d for compat ib i l i ty w i t h the n e w standard. 

M a n y ins ta l la t ions s u p p o r t b o t h c o m p i l e r s , u s i n g COBOL-74 to m a i n t a i n 
ex is t ing programs a n d COBOL-85 for n e w d e v e l o p m e n t . It is important , therefore, 
that y o u b e c o m e aware of the d i f ferences b e t w e e n the t w o s tandards . Accordingly , 
w e e n d m o s t chapters wi th a s e c t i o n descr ib ing di f ferences b e t w e e n the s tandards 
as t h e y relate to the p r o g r a m d i s c u s s e d in that chapter . 

Figure 2.7 represent s o u r final look at the e n g i n e e r i n g s e n i o r program as it 
w o u l d b e i m p l e m e n t e d in COBOL-74. N o t e the fo l lowing d i f ferences b e t w e e n this 
program and the COBOL-85 i m p l e m e n t a t i o n of Figure 1.6: 

Engineering Senior Program (COBOL -74 Implementation) 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SENI0R74. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
CON FIGURATION"SECTION'.'| 
SOURCE-COMPUTER. IBM-PC.' 
OBJECT-COMPUTER. IBM-PC. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

jlELECT 'stUDlNl-FILEASSIGN f0 Ut-S-SYSIN. 
\ SELECT PRINT-FILE 
L ASSIGN TO UJ-S-SYSOUT. 

DATA DIVISION. 



Evolution of COBOL 

(continued) 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

FILE SECTION. 
FD STUDENT-FILE 

LABEL RECORDS ARE STANDARD 
RECORD CONTAINS 43 CHARACTERS 
DATA RECORD IS STUDENT-IN. 

01 STUDENT-IN. 
05 STU-NAME PIC X(25). 
05 STU-CREDITS PIC 9(3). 
05 STU-MAJOR PIC X(15) V 

FD PRINT-FILE 
1 LABEL RECORDS ARE STANDARD -" 
RECORD CONTAINS 132 CHARACTERS 
DATA RECORD IS PRINT-LINE. 

01 PRINT-LINE PIC X(132). 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH PIC X(2) 

01 HEADING-LINE. 
05 FILLER PIC X(10) 
05 FILLER PIC X(12) 
05 FILLER PIC X(110) 

01 DETAIL-LINE. 
05 FILLER PIC X(8) 
05 PRINT-NAME PIC X(25). 
05 FILLER PIC X(99) 

VALUE SPACES. 

VALUE SPACES. 
VALUE 1 STUDENT NAME 1 

VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

PROCEDURE DIVISION. 
PREPARE-SENIOR-REPORT. 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH. 

PERFORM WRITE-HEADING-LINE. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 
CLOSE STUDENT-FILE 

PRINT-FILE. 
STOP RUN. 

WRITE-HEADING-LINE. 
MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE. 

PROCESS-RECORDS. _ _ 
IFITU-CREDITS > lib AND~STU-MAJOR = 'ENGINEERING1 

MOVE STU-NAME TO PRINT-NAME 
MOVE DETAIL-LINE TO PRINT-LINE 
WRITE PRINT-LINE. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH. 



C h a p t e r 2 From Coding Form to Computer 

1. CO HO 1.-74 r e q u i r e s a C O N F I G U R A T I O N S E C T I O N w i t h b o t h a 
auuiû E-VjUiviruiEA anu an U D j E ^ i - ^ u i n r u i c n paiagiapn, LU mutuaie 

t h e c o m p u t e r o n w h i c h t h e p r o g r a m wi l l c o m p i l e a n d e x e c u t e . T h e 
CONFIGURATION SECTION is o p t i o n a l in COBOL-85, a n d s ince t h e s e entr ies 
are treated as c o m m e n t s by the compi ler , t h e y are o m i t t e d in the COBOL-85 
listing. 

2. COBOL-74 requires the LABEL RECORDS c lause in a file descr ip t ion to indicate 
w h e t h e r s tandard, n o n s t a n d a r d , or n o labe ls are in effect. (A label c o n t a i n s 
in format ion a bo ut a file s u c h as the date it w a s crea ted a n d the i n t e n d e d 
expirat ion date.) T h e c l a u s e is opt iona l in COBOL-85 w h e r e its o m i s s i o n 
defaults to LABEL RECORDS ARE STANDARD. 

3. S c o p e t erminators (END-IF a n d END-READ) are n o t p e r m i t t e d in COBOL-74 
a n d h e n c e d o n o t a p p e a r in Figure 2.7. S c o p e t erminators are o p t i o n a l in 
COBOL-85, but are u s e d t h r o u g h o u t the text b e c a u s e of a d v a n t a g e s that will 
b e clearly e x p l a i n e d in Chapter 7. 

D e s p i t e t h e s e di f ferences the COBOL-74 i m p l e m e n t a t i o n of the e n g i n e e r i n g sen ior 
program is u p w a r d c o m p a t i b l e w i t h COBOL-85; that is, the p r o g r a m in Figure 2.7 
will run without modi f i ca t ion u n d e r the n e w compi l er . T h e c o n v e r s e is n o t true; the 
COBOL-85 l ist ing in Figure 1.6 will n o t run u n d e r the earlier s tandard. 

X i i tk\ V liVsi W e e x p e c t that y o u c o m p l e t e d the chapter with little difficulty a n d that you w e r e 
A "« able to successful ly run the eng ineer ing senior program. There will b e t imes, however , 

w h e n n o t everyth ing will go as s m o o t h l y a n d s o w e relate a favorite a n e c d o t e 
("Mystery of the Month ," PC World Magaz ine , April 1983) that is as re levant today as 
w h e n it w a s writ ten. As y o u read our tale, r e m e m b e r that a c o m p u t e r d o e s exact ly 
w h a t y o u tell it to do , w h i c h is n o t necessar i ly w h a t y o u w a n t it t o d o . It is a s o u r c e of 
w o n d e r f u l s a t i s f a c t i o n w h e n e v e r y t h i n g w o r k s , b u t a l so t h e c a u s e o f n e a r l y 
u n b e l i e v a b l e frustration w h e n results are n o t w h a t y o u expect . 

Our story c o n c e r n s a m a n a g e r w h o p u r c h a s e d a PC a n d b e g a n to u s e it 
enthusiast ica l ly . Unfortunate ly , t h e feel ing did n o t rub off o n h i s ass istant , w h o w a s 
a p p r e h e n s i v e o f c o m p u t e r s in general , but w h o finally a g r e e d to try the n e w 
t e c h n o l o g y . 

As is frequent ly the case , the ass is tant 's e x p e r i e n c e w i t h t h e c o m p u t e r w a s as 
frustrating as the m a n a g e r ' s w a s rewarding. Every t i m e the ass i s tant tried u s i n g the 
c o m p u t e r a n error m e s s a g e a p p e a r e d , ye t w h e n t h e m a n a g e r tried t h e s a m e 
p r o c e d u r e it w o r k e d fine. Finally, m a n a g e r a n d ass i s tant w e n t t h r o u g h a s y s t e m a t i c 
c o m p a r i s o n o f everyth ing t h e y did: turning the m a c h i n e o n a n d off, h a n d l i n g disks, 
u s i n g the keyboard , etc . T h e y c o u l d find n o dif ference in their p r o c e d u r e s a n d c o u l d 
n o t a c c o u n t for t h e r e p e a t e d disk errors w h i c h p l a g u e d the ass i s tant but left the 
m a n a g e r a lone . 

Just as t h e y w e r e a b o u t to give u p the m a n a g e r n o t i c e d that his ass i s tant 
w a s w e a r i n g a c h a r m bracelet . H e l o o k e d c losely , a n d sure e n o u g h o n e of the 
c h a r m s w a s a t iny m a g n e t c o n t a i n i n g just e n o u g h force to interfere w i t h reading 
the disk. The ass i s tant s tored t h e brace le t in a drawer a n d t h e m a c h i n e h a s b e e n 
fine ever s ince . 

The p o i n t of our s tory is that there is a lways a logical r e a s o n for everyth ing a 
c o m p u t e r d o e s or d o e s n o t d o , a l t h o u g h d i scover ing that r e a s o n m a y b e l e s s t h a n 
o b v i o u s . You are about to e m b a r k o n a wonder fu l j o u r n e y t o w a r d the p r o d u c t i v e 
u s e of a c o m p u t e r , w i t h a virtual ly u n l i m i t e d n u m b e r of po ten t ia l app l i ca t ions . Be 
pat ient , b e inquis i t ive , a n d enjoy . 



The A margin consists of columns 8-11 whereas the B margin is defined as 
columns 12-72. Division and section headers, paragraph names, FD's, 
and 01-level entries must begin in the A margin; all other entries begin in 
the B margin (that is, in or past column 12). 

The execution of a COBOL program is a three part process, involving three 
distinct programs—a compiler, a linker, and the resultant load module. The 
means of communicating information about these programs (and their 
associated files) is dependent on the operating system. 

A compiler is a computer program that translates a higher-level (problem-
oriented) language such as COBOL into machine language; the input to a 
compiler is referred to as a source program, whereas the output is an 
object program. 

The linker combines the output produced by the compiler, with additional 
object modules (such as subroutines and/or Input/Output modules) to 
produce a load module. 

Execution of the COBOL program occurs when the load module processes 
the input file(s) to produce the required reports. 

COBOL-74 is intended to be upward compatible with COBOL-85 although 
subtle incompatibilities do exist between the two standards. The converse 
is not true, as COBOL-85 programs will not run under the earlier standard.  

A margin 
ASCII file 
B margin 
COBOL-74 
COBOL-85 

Debugging 
Editor 
Execution error 
GIGO 
Incompatibility 
Load module 
Object program 
Operating system 
Source, program 
Test data 

Coding form 
Comments 
Compilation error 
Compiler 
Continuation 

A 
language. 

translates a language into an 

2. is the most recently approved COBOL standard, but 
is still widely used in industry. 



C h a p t e r 2 
from Coding Form to Computer 

3. The is in columns 8 to 11 of the coding sheet. 

4. A comment is indicated by an in column . 

5. Entries that are not required to begin in the A margin may begin anywhere in 
columns to __. 

6. Division headers and paragraph names must begin in the . 

7. An is used to enter programs into the computer. 

8. The compile, link, and execute process requires the execution of 

distinct programs. 

9. is the process of finding and correcting errors in a program. 

10. Picture clauses may begin anywhere within the margin. 

11. The output of compilation is input to a second program called the . 
12. A clean compile (does/does not) guarantee that the resulting program execution 

will be correct. 

13. Different mainframe computers will most likely use (different/identical) COBOL 
compilers. 

14. Misspelling a reserved word wili result in a error. 

15. Entering test data in the wrong columns will result in an error. 

TRUE/FALSE 

1. A compiler translates a machine-oriented language into a problem-oriented 
language. 

2. A well-written program will always produce correct results, even with bad data. 

3. A compiler is a computer program. 

4. The COBOL compiler for an IBM mainframe is identical to the compiler for a PC. 

5. A COBOL program can run on a variety of computers. 

6. Division headers must begin in the A margin. 

7. Division headers must begin in column 8. 

8. Section headers must begin in column 12. 

9. Paragraph names must begin in column 8. 

10. PICTURE clauses may appear in column 12 or after. 

11. If a program compiles correctly, then it must execute correctly. 

12. Columns 1-6 are never used on the coding sheet. 

13. The use of columns 73-80 is optional. 

14. Column 8 is used as a continuation column. 

15. All editors have identical commands. 

16. All computers use the same operating system. 

17. Successful execution of the COBOL compiler produces a load module. 



Problems 

PROBLEMS 

1. Figure 2.8a contains data for the COBOL program in Figure 2.8b, which will 
process a file of employee records and print the names of all programmers 
under 30. 

"igure 2.8 C O B O L Program and Associated Data for Problems 1 & 2 

WALT BECHTEL 
NELSON KERBEL 
MARGOT HUMMER 
CATHY BENWAY 
JUD MCDONALD 
JACKIE CLARK 
LOUIS NORIEGA 
JEFF SHEESLEY 

PR0GRAMMER34 
PR0GRAMMER23 
PR0GRAMMER30 
DATA BASE 23 
DATA BASE 29 
PR0GRAMMER22 
PROGRAMER 24 
ANALYST 28 

39700 
30000 
45000 
50000 
55000 
47500 
42500 
46400 

(a) Data 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. FIRSTTRY. 
3 AUTHOR. GRAUER. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTR02\FIRSTTRY.DAT 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 
14 FILE SECTION. 
15 FD EMPLOYEE-FILE 
16 RECORD CONTAINS 44 CHARACTERS 
17 DATA RECORD IS EMPLOYEE-RECORD. 
18 01 EMPLOYEE-RECORD. 
19 05 EMP-NAME PIC X(25). 
20 05 EMP-TITLE PIC X(10). 
21 05 EMP-AGE PIC 99. 
22 05 FILLER PIC XX. 
23 05 EMP-SALARY PIC 9(5). 
24 
25 FD PRINT-FILE 
26 RECORD CONTAINS 132 CHARACTERS 
27 DATA RECORD IS PRINT-LINE. 
28 01 PRINT-LINE. 

file://'A:/CHAPTR02/FIRSTTRY.DAT


C h a p t e r 2 From Coding Form to Computer 

Igure 2 , 8 (continued) 

29 05 FILLER PIC X. 
30 05 PRINT-NAME P I C X ( 2 5 ) . 
31 05 FILLER PIC X(2). 
32 05 PRINT-AGE PIC 99. 
33 05 FILLER PIC X ( 3 ) . 
34 05 PRINT-SALARY PIC 9(5). 
35 05 FILLER PIC X(94). 
36 
37 WORKING-STORAGE SECTION. 
38 01 END-OF-DATA-FLAG PIC X(3) VALUE SPACES. 
39 PROCEDURE DIVISION. 
40 PREPARE-PROGRAMMER-REPORT. 
41 O P E N INPUT EMPLOYEE-FILE 
42 O U T P U T PRINT-FILE. 
43 MOVE SPACES TO PRINT-LINE. 
44 MOVE 'SALARY REPORT FOR PROGRAMMERS U N D E R 30' TO PRINT-LINE. 
45 W R I T E PRINT-LINE 
46 A F T E R A D V A N C I N G 2 LINES. 
47 READ EMPLOYEE-FILE 
48 AT END MOVE 'YES' TO END-OF-DATA-FLAG 
49 END-READ. 
50 PERFORM PROCESS-EMPLOYEE-RECORDS 
51 U N T I L END-OF-DATA-FLAG = 'YES'. 
52 C L O S E EMPLOYEE-FILE 
53 PRINT-FILE. 
54 STOP RUN. 
55 
56 PROCESS-EMPLOYEE-RECORDS. 
57 IF EMP-TITLE = 'PROGRAMMER' A N D EMP-AGE < 30 
58 MOVE SPACES TO PRINT-LINE 
59 M O V E EMP-NAME TO PRINT-NAME 
60 MOVE EMP-AGE TO PRIN T - A G E 
61 MOVE EMP-SALARY TO PRINT-SALARY 
62 WRITE PRINT-LINE 
63 END-IF. 
64 READ EMPLOYEE-FILE 
65 AT END MO V E 'YES' TO END-OF-DATA-FLAG 
66 END-READ. 

(b) C O B O L Program 

a. Compile, link, and execute the COBOL program, using the appropriate commands 
for your system. (The program is on the data disk that accompanies this book.) 

b. Are any potential problems introduced by checking age rather than date of 
birth? 

c. Would processing be simplified if the employee records contained an abbreviated 
title code (for example, 010) rather than an expanded title (for example, 
programmer)? Are there any other advantages to storing codes rather than 
expanded values? 



2. Modify the program in Figure 2.8b to accommodate all of the following. 
a. Employee age is stored in positions 38 and 39 of the incoming record. 
b. The report should list all employees under age 30 who earn at least $30,000, 

regardless of title. 
c. The report should include the title of all selected employees in positions 41-52. 

3. Match each item with its proper description. 
An asterisk in column 7 
First line of any COBOL program 
Often appears in data names 
Columns 12 through 72 
Contains the logic of a program 
Limited to 160 characters, and 
enclosed in quotes or apostrophes 
Where division, section, and 
paragraph headers begin 
Translates COBOL to machine 
language 
Preassigned meaning 
A constant; may be numeric or 
nonnumeric 

4. Indicate the starting column (or columns) for each of the following. 
a. Division headers 
b. Comments 
c. Paragraph names 
d. Statements in the Procedure Division (except paragraph names) 
e. WORKING-STORAGE SECTION 
f. FD 
g. 01 entries 
h. 05 entries 
i. PICTURE clauses 
j. OPEN statement 
k. WRITE statement 
I. SELECT statement 

5. Explain how it is possible for a program) to compile perfectly, be logically correct, 
and still produce invalid results; provide specific examples in conjunction with the 
engineering senior program. 

1. A Margin a. 
2. B Margin b. 
3. Comment c. 
4. IDENTIFICATION DIVISION d. 
5. PROCEDURE DIVISION e. 
6. Hyphen f. 

7. Nonnumeric literal g-

8. Reserved word h. 

9. Compiler i. 
10. Literal i 

j-





Overview 
T h e Tu i t i on Bi l l ing P r o b l e m 
S t r u c t u r e d D e s i g n 
E v a l u a t i n g t h e H i e r a r c h y C h a r t 

Completeness 
Functionality 
Span of Control 

S t r u c t u r e d P r o g r a m m i n g 
Sufficiency of the Basic Structures 

E x p r e s s i n g L o g i c 
The Traditional Flowchart 
Pseudocode 
Wamier-Orr Diagrams 

T o p - D o w n T e s t i n g 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 3 — A Methodology tor Program Development 

After reading this chapter you will be able to: 

Describe how a hierarchy chart is developed; d iscuss three criteria for 
evaluating a completed hierarchy chart. 

Define structured programming; describe its three fundamental building 
blocks and an optional extension. 

Explain the one entry point/one exit point philosophy of structured 
programming. 

Differentiate between structured programming and structured design; 
distinguish between a functionally oriented technique and one that is 
procedurally oriented. 

Describe what is meant by top down design and implementation. 

We stated at the outset that programming is best learned by doing, and so our 
objective in the first two chapters was to put you on the computer as quickly as 
possible. Thus, we jumped immediately into COBOL, without giving much thought 
to the underlying logic of the program you developed. While that approach 
works well initially, it is also important for you to learn how to properly design 
programs, so that they will work correctly, and further so that they can be easily 
read and maintained by someone other than yourself. 

Accordingly, this chapter presents a methodology for program development, 
embracing the techniques of structured design, structured programming, and 
top down testing. We stress that structured design is functionally oriented and 
describes what is to be accomplished; structured programming, on the other 
hand, is procedurally oriented and focuses on how the objectives of the program 
will be realized. The discussion includes hierarchy charts, pseudocode, 
flowcharts, and Warnier-Orr diagrams. 

The presentation is of a practical nature, and stresses application rather 
than theory. Accordingly, we introduce a new program at the beginning of the 
chapter, and develop the methodology in the context of that program. We begin 
with presentation of the program specifications. 

This s e c t i o n c o n t a i n s the spec i f i ca t ions for a n e w p r o b l e m , k n o w n s i m p l y as the 
tu i t ion bi l l ing p r o g r a m . T h e r e q u i r e m e n t s are straightforward a n d parallel t h o s e of 
m a n y o ther COBOL programs , n a m e l y to print a h e a d i n g l ine(s ) at the start of 
p r o c e s s i n g , o n e or m o r e detai l l ines for every record p r o c e s s e d , a n d a total l ine(s) at 
the e n d of p r o c e s s i n g . As s i m p l e as t h e s e spec i f i ca t ions m a y b e , it is critical that y o u 
a v o i d the t e m p t a t i o n to rash i m m e d i a t e l y in to COBOL, a n d c o n c e n t r a t e i n s t e a d o n 
d e s i g n i n g the p r o g r a m y o u will eventua l ly write . 



The Tuition Billing Problem 

P r o g r a m N a m e : 

N a r r a t i v e : 

I n p u t File(s): 

T e s t D a t a : 

R e p o r t L a y o u t : 

P r o c e s s i n g R e q u i r e m e n t s : 

The a p p r o a c h w e fol low b e g i n s w i t h a d e t e r m i n a t i o n of the m o s t general 

smaller p i eces , until the requirements of e a c h p i ece are clearly recognized . Initially 
the des ign p r o c e s s m a y s e e m superf luous in that y o u are conf ident of your ability 
to beg in c o d i n g i m m e d i a t e l y . Rest assured, however , that d e s i g n is product ive 
work, a n d d o e s in fact pay d iv idends in the l o n g run. A w e l l - d e s i g n e d program is 
far m o r e likely to b e correct than o n e wri t ten off-the-cuff. Moreover , a n d this 
m a y b e the a r g u m e n t that m o s t appea l s to y o u , a w e l l - d e s i g n e d program will 
u l t imate ly b e c o m p l e t e d in less t ime t h a n o n e tha t is poor ly d e s i g n e d or o n e that 
h a s n o d e s i g n at all. 

R A M M I N G S P E C I F I C A T I O N S 

Tuition Billing Program 

This program processes a file of student records, computes and prints the tuition bill for 
each student, and prints the total amounts for all students. 

STUDENT-FILE 

See Figure 3.1a 

SMITH JB15Y0000230 
JAMES HR15 0500245 
BAKER bKuy ubuujsu 
PART-TIMER JR03Y0000300 
JONES PL15Y0000280 
HEAVYWORKER HM18 0000200 
LEE BL18 0000335 
CLARK JC06 0000310 
GROSSMAN SE07 0000215 
FRANKEL LF10 0000350 
BENWAY CT03 0250395 
KERBEL NB04 0000100 

See Figure 3.1b 

1. Print a suitable heading at the beginning of the report. 

2. Read a file of student records. 

3. Process each record read by: 
a. Computing an individual bill, equal to the sum of tuition, union fee, and activity fee, 

minus a scholarship (if any), by: 
i. Calculating the tuition due, at a rate of $200 per credit. 
ii. Billing the student $25 for the union fee, if there is a "Y" in the Union Member 

position. 
iii. Computing the activity fee based on the number of credits taken: 

ACTIVITY FEE CREDITS 
$25 6 or fewer 
$50 
$75 

7 - 12 
more than 12 



C h a p t e r 3 — A Methodology for Program Development 

Record Layouts for Tuition Billing Program 

CREDITS UNION MEMBER 
INITIALS SCHOLARSHIP 

S T U D E N T N A M E 
GPA LAST GPA 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25v26 27 

(a) Input Record Layout 

STUDENT NAME 

X X X X X X X X 
X X X X X X X X 

C R E D I T S T U I T I O N UNION F E E ACT F E E S C H O L A R S H I P TOTAL 

X X X X X X X X 
X X X X X X X X 

U N I V E R S I T Y 

$$9 
$$9 

$ $ $ , $ $ 9 

(b) Report forma! 

$ , $ 
$,$S9 

$9 $$ 

B I L L 

, $$9 
,$59 

$ $ $ , $ $ 9 $ $ $ $ , $ $ 9 

iv. Awarding a scholarship equal to the amount in the incoming record if, and only 
if, the GPA is greater than 2.5. (Observe that in the test data on the previous 
page James does not qualify for the $500 scholarship he would otherwise have 
been awarded.) 

v. Incrementing the university totals for tuition, union fee, activity fee, scholarship, 
and overall total. 

b. Printing a detail line for each record read. 

4. Print a total line at the end of the report. 

Structured design ident i f ies t h e tasks a p r o g r a m is to a c c o m p l i s h , t h e n relates t h o s e 
tasks t o o n e a n o t h e r in a hierarchy chart. Figure 3.2 c o n t a i n s a very bas ic e x a m p l e , 
app l i cab le to a n y COBOL p r o g r a m . T h e h ierarchy chart d i v i d e s the p r o g r a m in to 
its funct ional c o m p o n e n t s , for example , init ial ization, p r o c e s s i n g , a n d terminat ion , 



Structured Design 

a n d indicates the m a n a g e r / s u b o r d i n a t e re lat ionships b e t w e e n t h e s e c o m p o n e n t s . 
In this e x a m p l e all three m o d u l e s are s u b o r d i n a t e to the m o d u l e labe led any 
COBOL program. 

To better apprec iate the s ignif icance of a hierarchy chart and its role in program 
d e v e l o p m e n t , c o n s i d e r Figure 3.3, d e p i c t i n g the hierarchy chart for the tui t ion 
bi l l ing program. T h e d e v e l o p m e n t takes p lace in s tages , b e g i n n i n g at the top and 
working d o w n to the b o t t o m . At every level, the major funct ion(s) are subd iv ided 
in to other func t ions that are p laced o n the next lower level in the hierarchy chart. 
T h o s e func t ions are in turn further s u b d i v i d e d into still o ther funct ions , until finally 
the lowes t - l eve l func t ions c a n n o t b e further subdiv ided . 

T h e spec i f i cat ions for the tuit ion bi l l ing p r o b l e m sugges t a su i table n a m e 
for the h ighes t - l eve l m o d u l e , PREPARE-TUITION-REPORT. This in turn is d iv ided 
into its bas ic func t ions of init ial ization (cons i s t ing of WRITE-HEADING-LINE a n d 
R E A D - S T U D E N T - F I L E ) , p r o c e s s i n g ( P R O C E S S - S T U D E N T - R E C O R D ) , a n d 
t erminat ion (WRITE-UNIVERSITY-TOTALS). Levels 1 a n d 2 of the hierarchy chart 
are s h o w n in Figure 3.3a. 

Of t h e s e four m o d u l e s , on ly o n e , PROCESS-STUDENT-RECORD, n e e d s to b e 
subdiv ided . In o ther w o r d s ask yourse l f w h i c h addi t ional lower- leve l funct ions 
s h o u l d b e i n c l u d e d u n d e r PROCESS-STUDENT-RECORD in order to p r o c e s s 
individual s t u d e n t records . The program spec i f i cat ions conta in the r e q u i r e m e n t to 
c o m p u t e the individual 's bill, i n c r e m e n t the universi ty totals to i n c l u d e the a m o u n t 
just c o m p u t e d , and write a detail l ine for the particular s tudent . Each of these tasks 
requ ires its o w n m o d u l e as i n d i c a t e d in Figure 3.3b. In a d d i t i o n , PROCESS-
STUDENT-RECORD m u s t also read the next record so that the program c a n cont inue . 
(The m o d u l e READ-STUDENT-FILE a p p e a r s twice in the hierarchy chart; o n level 
t w o to read the first record a n d o n level three to read all s u b s e q u e n t records . The 
n e c e s s i t y for the dual a p p e a r a n c e s t e m s from a l imitat ion in COBOL-74 rather than 
a r e q u i r e m e n t of s tructured des ign) . 

T h e d e v e l o p m e n t of a hierarchy chart c o n t i n u e s unti l its l owes t - l eve l m o d u l e s 
c a n n o t b e further subd iv ided , that is, unti l the des igner be l i eves t h e y c a n b e easi ly 
translated in to p r o g r a m m i n g s t a t e m e n t s . The d e c i s i o n is subjective in that there is 
n o s ing le correct answer; y o u could , for example , s top at three levels or c o n t i n u e to 
a fourth level as in Figure 3.3c. We c h o s e to divide COMPUTE-INDIVIDUAL-BILL 
in to four a d d i t i o n a l m o d u l e s : C O M P U T E - T U I T I O N , C O M P U T E - U N I O N - F E E , 
COMPUTE-ACTIVITY-FEE, a n d COMPUTE-SCHOLARSHIP. 

T h e hierarchy chart is n o w c o m p l e t e a n d c o n s i s t s of four leve ls , e a c h of 
w h i c h will c o r r e s p o n d to a PERFORM s t a t e m e n t in the eventua l COBOL program; 

F i g u r e 3-2 Overall C O B O L Hierarchy Chart 

ANY COBOL 
PROGRAM 

INITIALIZATION PROCESSING TERMINATION 



C h a p t e r 3 — A Methodology for Program Development 

.3 Hierarchy Chart for Tuition Billing Program 

1st Level 

2nd Level Processing 
Requirements 

1. Print a heading line 
2. Read student 
3. Process each record 
4. Print a total line 

PREPARE 
TUITION 
REPORT 

WRITE 
HEADING 

LINE 

READ 
STUDENT 

FILE 

PROCESS 
STUDENT 
RECORD 

WRITE 
UNIVERSITY 

TOTALS 

PREPARE 
TUITION 
REPORT 

WRITE 
HEADING 

LINE 

READ 
STUDENT 

FILE 

otu t-evet nuuessifiy 
Requirements 

3a) Compute individual bill 
3a) Increment totals 
3a) Write a detail line 
3a) Read a student record 

PROCESS 
STUDENT 
RECORD 

WRITE 
UNIVERSITY 

TOTALS 

COMPUTE 
INDIVIDUAL BILL 

INCREMENT 
UNIVERSITY 

TOTALS 

WRITE 
DETAIL 

LINE 

w 
r READ 

STUDENT 
FILE 

that is, the m o d u l e (paragraph) o n level o n e will perform the m o d u l e s (paragraphs) 
o n level two , t h o s e o n level t w o will per form the m o d u l e s o n level three, a n d s o 
o n . T h e hierarchy chart d o e s n o t specify h o w often t h e s e paragraphs will b e called, 
n o r d o e s it ind ica te the c o n d i t i o n s for cal l ing o n e s u b o r d i n a t e in l ieu of another . 
In o ther words , the h ierarchy chart ind ica tes o n l y w h a t f u n c t i o n s are necessary , 
b u t n o t w h e n t h e y are e x e c u t e d . It c o n t a i n s n o d e c i s i o n - m a k i n g logic, n o r d o e s it 
i m p l y a n y t h i n g a b o u t the order or f r e q u e n c y in w h i c h var ious paragraphs w i t h i n 
a program are e x e c u t e d . That, in turn, is spec i f i ed w i t h i n the l o g i c o f the program, 
d e v e l o p e d a c c o r d i n g to the d i sc ip l ine of s tructured p r o g r a m m i n g as d i s c u s s e d 
later i n the chapter . 

' _<„ As w e h a v e a lready ind icated , t h e d e c i s i o n of h o w m a n y m o d u l e s to i n c l u d e in a 
i * & X L, *' G>< > l ^ L L h i erarchy chart a n d h o w t h e y s h o u l d b e re lated to o n e a n o t h e r is nece s sar i l y 

subjec t ive . N e v e r t h e l e s s , there are certa in e v a l u a t i o n criteria that result in s e l ec t ing 
o n e d e s i g n over another . A m o n g t h e s e are t h e fo l lowing: 



Evaluating the Hierarchy Chart 

F i g u r e 3.3 (continued) 

PREPARE 
TUITION 
REPORT 

WRITE 
HEADING 

LINE 

READ 
STUDENT 

FILE 

PROCESS 
STUDENT 
RECORD 

WRITE 
UNIVERSITY 

TOTALS 

COMPUTE 
INDIVIDUAL 

BILL 

INCREMENT 
UNIVERSITY 

TOTALS 

COMPUTE 
TUITION 

READ 
STUDENT 

FILE 

COMPUTE 
UNION FEE 

COMPUTE 
ACTIVITY 

FEE 

COMPUTE 
SCHOLARSHIP 

4th Level Processing 
Requirements 

3a(1) Compute tuition 
3a(2i Compute union fee 
3a 3 Compute activity tee 
3a(4) Compute scholarship 

(c) Complete Hierarchy Chart (Levels 1-4} 

1. Is the h ierarchy chart comple t e? 

2. Are the m o d u l e s funct ional? 

3. Is there effect ive s p a n o f control? 

Completeness 

A hierarchy chart m u s t b e c o m p l e t e ; that is, it h a s to prov ide for every funct ion 
required by the p r o g r a m as spec i f ied in the p r o g r a m m i n g spec i f i ca t ions . You test 
for c o m p l e t e n e s s level by level , starting at the t o p of the h ierarchy chart, a n d 
working y o u r w a y d o w n , o n e level at a t ime , b y asking t h e q u e s t i o n , "Do the 
subord inate m o d u l e s at the next level c o m p l e t e l y d e v e l o p their c o r r e s p o n d i n g 
m o d u l e s at this level?" If the a n s w e r is yes , m o v e to the next m o d u l e o n the present 
level , or to the first m o d u l e o n the next level, a n d repeat the q u e s t i o n . If the a n s w e r 
is n o , a d d f u n c t i o n s as n e c e s s a r y a n d c o n t i n u e to the nex t m o d u l e . 

For e x a m p l e , b e g i n w i t h t h e c o m p l e t e d h ierarchy chart of Figure 3.3c a n d ask 
yoursel f w h e t h e r the m o d u l e s o n level two are a d e q u a t e to e x p a n d the s ingle m o d u l e 
of level one ; that is, d o the four m o d u l e s o n level t w o c o m p l e t e l y e x p a n d the 
PREPARE-TU1TION-REPORT m o d u l e to w h i c h they are subord inate? T h e a n s w e r is 
yes , so y o u m o v e to level three a n d s e e w h e t h e r the m o d u l e s o n this l eve l adequate ly 
e x p a n d the PROCESS-STUDENT-RECORD m o d u l e from level t w o . O n c e aga in the 
a n s w e r is yes , a n d s o y o u progress to level four. T h e p r o c e s s c o n t i n u e s unti l y o u 
h a v e c h e c k e d every m o d u l e o n every leve l a n d are sat isf ied that all neces sary 
func t ions are i n c l u d e d . 



C h a o t o r 3 ' t h o d o l o g y tor Program Development 

Functionality , 
Every m o d u l e in a h ierarchy chart s h o u l d b e d e d i c a t e d to a single funct ion , the 
nature o f w h i c h s h o u l d b e clear from e x a m i n i n g t h e m o d u l e ' s n a m e . Each of t h e 
m o d u l e n a m e s in Figure 3.3 c o n s i s t s of a verb, adject ive (or two) , a n d an object—for 
e x a m p l e , COMPUTE-INDIVIDUAL-BILL or WRITE-DETAIL-LINE. I n d e e d , if a 
m o d u l e c a n n o t b e n a m e d in this way, its f u n c t i o n is probab ly n o t we l l d e f i n e d a n d 
t h o u g h t s h o u l d b e g i v e n to revis ing the h ierarchy chart. 

Stated a n o t h e r way, y o u s h o u l d reject (or redes ign) a n y m o d u l e that d o e s n o t 
appear to b e funct ional; that is, m o d u l e s w h o s e n a m e s c o n t a i n : 

1. M o r e t h a n o n e verb—for example , READ-AND-WRITE. 

2. M o r e t h a n o n e object—for example , EI) IT-NAM E-AND-ACCOU NT-DATA. 

3 . N o n d e s c r i p t i v e or t ime-re la ted t erms—for e x a m p l e , HOUSEKEEPING, 
TERMINATION-ROUTINE, INITIALIZATION, or MAINLINE. 

A n o t h e r w a y of expres s ing the n e e d for funct ional m o d u l e s is to strive for 
m o d u l e i n d e p e n d e n c e ; that is, the internal work ings of o n e m o d u l e s h o u l d not 
affect t h o s e o f another . P e r h a p s y o u h a v e a lready b e e n a s s o c i a t e d wi th a work ing 
program in w h i c h c h a n g e s w e r e i m p l e m e n t e d , on ly to h a v e s o m e other, apparent ly 
unre lated , p o r t i o n of the program n o longer work properly . T h e p r o b l e m m a y b e 
due to paragraphs in the program being u n n e c e s s a r i l y dependent o n one another. 

What w e are say ing is that in an ideal s i tuat ion, c h a n g e s m a d e to o n e paragraph 
s h o u l d n o t affect the results of a n y other. In a m o r e practical s e n s e , the paragraphs 
h a v e to b e s o m e w h a t related, o therwise they w o u l d not b e parts o f the s a m e program; 
however , the a m o u n t of i n t e r d e p e n d e n c e b e t w e e n paragraphs s h o u l d b e m i n i m i z e d 
to the greatest ex tent pos s ib l e . With respec t to Figure 3 .3 , for e x a m p l e , a c h a n g e in 
t h e p r o c e d u r e for c o m p u t i n g the u n i o n fee s h o u l d n o t affect h o w the activity fee is 
d e t e r m i n e d . That is b e c a u s e t h e m o d u l e s C O M P U T E - U N I O N - F E E a n d COMPUTE-
ACTIVITY-FEE are func t iona l in their o w n right, a n d c o n s e q u e n t l y are i n d e p e n d e n t 
of o n e another . 

Span ©f Control _ „ _ 
T h e span of control o f a m o d u l e is the n u m b e r o f s u b o r d i n a t e s it c o n t a i n s . In 
Figure 3.3, for e x a m p l e , the s p a n o f contro l of b o t h PREPARE-TUITION-REPORT 
a n d COMPUTE-INDIVIDUAL-BILL is four. A n effective s p a n of contro l (for hierarchy 
charts a s s o c i a t e d w i t h COBOL programs) is genera l ly f rom t w o or three to s e v e n , 
a l t h o u g h that m a y vary d e p e n d i n g o n the s i tuat ion . You s h o u l d , h o w e v e r , avo id 
e x t r e m e s in e i ther d irec t ion . P r o g r a m s w i t h ineffect ive s p a n s o f contro l ( too m a n y 
s u b o r d i n a t e s or t o o few) are poor ly d e s i g n e d a n d difficult to fo l low a n d / o r m a i n t a i n . 

Structured Let u s p a u s e for a m o m e n t t o s e e what h a s b e e n a c c o m p l i s h e d . W e h a v e t a k e n the 
Pl»Qgi>gr|irf)Jng original p r o b l e m a n d d i v i ded it in to a ser ies of m a n a g e a b l e p i e c e s , e a c h of w h i c h 

d e s c r i b e s a particular j o b that n e e d s to b e a c c o m p l i s h e d . In o t h e r words , w e h a v e 
sa id w h a t n e e d s to b e d o n e to so lve the p r o b l e m , but h a v e n o t a s ye t sa id h o w w e 
wil l s o l v e it. That in e s s e n c e is t h e d i f ference b e t w e e n s truc tured d e s i g n a n d 
s tructured p r o g r a m m i n g . 

A structured program is o n e cons i s t ing entirely of three types of logic structures: 
s e q u e n c e , s e l e c t i o n (a d e c i s i o n ) , a n d i terat ion (a l oop) . The fact t h a t t h e s e s tructures 



Structured Programming 

(or bas i c b u i l d i n g blocks) are sufficient to express any des i red logic w a s first 
pos tu la t ed in a n o w - c l a s s i c paper by B o h m a n d Jacopini . 1 

T h e e l e m e n t a r y bu i ld ing b locks o f s tructured p r o g r a m m i n g are s h o w n in 
f lowchart form in Figure 3.4. F lowchart s u s e spec ia l s y m b o l s to c o m m u n i c a t e 
in format ion . A rec tang le ind ica tes a p r o c e s s i n g s t a t e m e n t , a d i a m o n d ind ica tes a 
d e c i s i o n , a n d a smal l circle c o n n e c t s p o r t i o n s of the f lowchart . All o f the f lowcharts 
h a v e o n e key feature in c o m m o n , n a m e l y , a single entry point a n d a single exit 
point, that is, there is o n l y o n e w a y to en ter e a c h s tructure a n d o n l y o n e w a y to 
leave . 

The sequence s tructure in Figure 3.4a speci f ies that the p r o g r a m s t a t e m e n t s 
are e x e c u t e d sequent ia l ly , in the order in w h i c h they appear . The t w o b locks , A a n d 
B, m a y d e n o t e a n y t h i n g from s ingle s t a t e m e n t s to c o m p l e t e programs , a n d it is 
clear that there is a s ingle entry p o i n t a n d a s ingle exit p o i n t to the structure. 

1 Bohm and Jacopini, "Flow Diagrams, Turing Machines and Languages with Only Two Formation 
Rules," Communications of the ACM (May 1966). 

The Building Blocks of Structured Programming 

(c) Iteration (d) Case 



C h a p t e r 3 — A Methodology for Program Development 

T h e selection (or IF . . . THEN . . . ELSE) structure in Figure 3.4b spec i f ies a 
c h o i c e b e t w e e n t w o ac t ions . A c o n d i t i o n is t e s t ed w i t h o n e o f two o u t c o m e s ; if 
the c o n d i t i o n is true, b lock A is e x e c u t e d , w h i l e if it is false, b l o c k B is e x e c u t e d . 
T h e c o n d i t i o n itself is the s ingle entry po int , a n d b o t h pa ths m e e t to form a s ingle 
exit po int . 

T h e iteration (or D O . . . WHILE) structure in Figure 3.4c speci f ies r e p e a t e d 
e x e c u t i o n of o n e or m o r e s t a t e m e n t s w h i l e a c o n d i t i o n is true. A c o n d i t i o n is t e s t ed 
and, if it is true, b lock A is e x e c u t e d after w h i c h the c o n d i t i o n is re tes ted . If, however , 
the c o n d i t i o n is false, control p a s s e s to the next s equent ia l s t a t e m e n t after the 
i terat ion structure. Again , there is a s ing le entry p o i n t a n d a s ing le exit p o i n t from 
the structure. 

T h e case structure in Figure 3.4d e x p r e s s e s a m u l t i b r a n c h s i tuat ion . A l t h o u g h 
case is actually a spec ia l in s tance of se lec t ion , it is c o n v e n i e n t to ex tend the def ini t ion 
of s tructured p r o g r a m m i n g to i n c l u d e this fourth type of b u i l d i n g block. T h e case 
s tructure eva luates a c o n d i t i o n a n d b r a n c h e s to o n e o f several pa ths , d e p e n d i n g o n 
the va lue of the c o n d i t i o n . As w i t h the o ther bu i ld ing b locks , there is o n e entry p o i n t 
a n d o n e exit po int . 

fff iciency of the Basic Structures 

T h e theory of s tructured p r o g r a m m i n g says s imply that a n appropriate c o m b i n a t i o n 
of the basic building blocks may be derived to solve any problem. This is possible 
b e c a u s e a n e n t i r e s t ruc ture ( s e q u e n c e , s e l e c t i o n , i t era t ion , or c a s e ) m a y b e 
substituted a n y w h e r e b lock A or B appears . Figure 3.5 s h o w s a c o m b i n a t i o n o f the 
bas i c s tructures to il lustrate this c o n c e p t . 

Figure 3.5 is e s sent ia l ly a s e l e c t i o n structure. H o w e v e r , i n s t e a d of spec i fy ing a 
s ingle s t a t e m e n t for the true or false b r a n c h e s , as w a s d o n e in Figure 3.4, a c o m p l e t e 
bu i ld ing b lock is u s e d ins tead . Thus , if c o n d i t i o n - 1 is true, a n i terat ion structure is 
e n t e r e d , w h e r e a s , if it is false, a s e q u e n c e structure is e x e c u t e d . B o t h the i terat ion 
a n d s e q u e n c e s tructures m e e t at a s ing le exit p o i n t w h i c h b e c o m e s the exit p o i n t for 
the initial s e l e c t i o n structure. 
Figure 3.5 Suf f i c i ency of the B a s i c Structures 

FALSE TRUE 

J 

A 

1 

B 

FALSE 

Sequence Structure 

TRUE 

Iteration Structure 



W e n o w turn o u r a t t e n t i o n to w a y s in w h i c h p r o g r a m m e r s e x p r e s s logic , to 
t h e m s e l v e s a n d to others . W e beg in wi th the traditional f lowchart, t h e n m o v e to 
n e w e r t e c h n i q u e s m o r e c l o s e l y a s s o c i a t e d w i t h s t r u c t u r e d p r o g r a m m i n g : 
p s e u d o c o d e a n d Warnier-Orr d iagrams. 

Every programmer is familiar with the traditional flowchart's descr ibed in Chapter 1. 
Al though f lowcharts have dec l ined in popularity , they r e m a i n in w i d e s p r e a d use , 
primarily for d o c u m e n t a t i o n . Our persona l pre ference is to use p s e u d o c o d e , b u t w e 
inc lude Figure 3.6 for c o m p l e t e n e s s . The d e c i s i o n as to w h i c h t e c h n i q u e to u s e is 
b e t w e e n y o u a n d y o u r instructor. 

The fact that m o s t p r o g r a m m e r s write s i m p l e n o t e s to t h e m s e l v e s prior to c o d i n g 
a program gave rise to pseudocode, a technique associated w i t h structured 
programming. As w e indicated in Chapter 1, pseudocode is defined simply as neat 
n o t e s to yourself, a n d u s e s s t a t e m e n t s s imilar to c o m p u t e r ins truct ions to descr ibe 
logic . Figure 3.7 represents the building blocks of structured programming as they 
w o u l d b e wr i t t en in p s e u d o c o d e a n d c o r r e s p o n d s to the flowcharts s h o w n in 
Figure 3.4. 

P s e u d o c o d e c o m e s in to play after the d e s i g n p h a s e of a p r o g r a m has b e e n 

nature a n d i n d i c a t e s what h a s to b e d o n e , but n o t necessar i ly when or how. 
P s e u d o c o d e , o n the o ther h a n d , is procedural a n d c o n t a i n s s e q u e n c e a n d d e c i s i o n ­
m a k i n g logic . In o ther words , p s e u d o c o d e c o n n e c t s the m o d u l e s i n a hierarchy 
chart through l o o p s a n d d e c i s i o n making . 

To better apprec ia te h o w p s e u d o c o d e e x p r e s s e s p r o g r a m m i n g log ic , cons ider 
Figure 3.8, w h i c h c o n t a i n s p s e u d o c o d e for the tu i t ion bil l ing program. T w o vers ions 
o f the p s e u d o c o d e are p r e s e n t e d — a n initial a t t empt in Figure 3.8a, a n d a n e x p a n d e d 
(more detai led) vers ion in Figure 3.8b. B o t h vers ions are equal ly appropriate , w i t h 
the c h o i c e b e t w e e n t h e m d e p e n d i n g ent ire ly o n the individual , a n d the leve l of 
detai l h e or s h e des ires . 

The logic is straightforward a n d b e g i n s w i t h the s t eps for init ial izat ion; to 
o p e n files, write a h e a d i n g l ine(s) , a n d read the first record. Then , a l o o p (or i terat ion 
structure) is e n t e r e d in w h i c h t h e p r o g r a m c o m p u t e s the s tudent ' s bil l (tuit ion p l u s 
u n i o n a n d activity fees m i n u s scholarship) , i n c r e m e n t s the univers i ty totals to 
inc lude this a m o u n t , writes a detai l l ine, a n d finally reads the next s t u d e n t record. 
The s t a t e m e n t s in the l o o p are e x e c u t e d cont inua l ly unti l all the r e c o r d s have b e e n 
read, at w h i c h p o i n t univers i ty totals are wri t ten , a n d the program t e r m i n a t e s . 

P s e u d o c o d e h a s a dis t inct b lock structure that is c o n d u c i v e t o s tructured 
p r o g r a m m i n g . It is not , h o w e v e r , b o u n d by formal syntact ical rules (a l though s o m e 
organ iza t ions h a v e i m p l e m e n t e d s tandards) , n o r d o e s it h a v e spec i f i c rules of 
indenta t ion , w h i c h is d o n e strictly at the programmer ' s discret ion. Its o n l y l imi tat ion 
is a restriction to the bui ld ing b locks of structured p r o g r a m m i n g ( s e q u e n c e , se lect ion , 
i teration, a n d case ) . 

W i t h p r a c t i c e , p s e u d o c o d e c a n b e d e v e l o p e d qu ick ly a n d eas i ly . G o o d 
p s e u d o c o d e s h o u l d b e suff ic iently prec i se to b e a real a id in w r i t i n g a program, 
wh i l e informal e n o u g h to b e u n d e r s t o o d b y n o n p r o g r a m m e r s . T h e informal i ty of 



C h a p t e r 3 — A Methodology for Program Development 

F i g u r e 3 .6 Flowchart for Tuition Billing Program 

START 

1 
< 

OPEN FILES 

> f 

TRUE 

WRITE / 
UNIVERSITY 

TOTALS 

1 

CLOSE 
FILES 

< 

STOP ^ ) 

PROCESS 
STUDENT 

f PROCESS "A 
V STUDENT J 

\ 

COMPUTE 
TUITION 

COMPUTE 
UNION FEE 

COMPUTE 
ACTIVITY 

FEE 

COMPUTE 
SCHOLARSHIP 

INCREMENT 
UNIVERSITY 

TOTALS 

WRITE 
DETAIL 

LINE 

I 
READ 

STUDENT 
RECORD 

C stop ) 
(a) Overall Flowchart UDENT 

t h e t e c h n i q u e p r e c l u d e s exact rules , b u t w e urge t h e u s e of c o n s i s t e n t c o n v e n t i o n s 
to m a k e it eas ier to read. Our s u g g e s t i o n s : 

1. I n d e n t for readabil i ty. 

2. U s e ENDIF, E N D D O , a n d ENDCASE to i n d i c a t e t h e e n d o f a log ic structure; 
u s e vertical l ines t o i n d i c a t e t h e ex tent of a b lock. 



Pseudocode for Building Blocks 

Statement A 
Statement B 

IF condition is true 
Statement A 

ELSE 
Statement; B 

ENDIF 

DO WHILE condition is true 
Statement A 

ENDDO 

DO CASE 
Case 1 is true 

Statement A 
Case ? is true 

Statement B 

ENDCASE 

3. U s e parenthet ica l expres s ions to clarify s t a t e m e n t s a s soc ia t ed w i t h the ELSE 
p o r t i o n of an IF s t a t e m e n t . 

4. M i n i m i z e or avoid the use of adject ives a n d adverbs . 

Warnier-Orr d iagrams ( n a m e d for their c o - d e v e l o p e r s , Jean D o m i n i q u e Warnier 
a n d K e n n e t h Orr) c o m b i n e e l e m e n t s o f s t r u c t u r e d d e s i g n a n d s t r u c t u r e d 
p r o g r a m m i n g . The d iagrams u s e specif ic s y m b o l s to represent the b a s i c bu i ld ing 
b locks of s tructured p r o g r a m m i n g , t h e n c o m b i n e t h e s e e l e m e n t s i n hierarchical 
fash ion . 

Figure 3.9 s h o w s h o w the bas ic bu i ld ing b locks of structured p r o g r a m m i n g 
w o u l d b e represented in a Warnier-Orr d iagram. Sequent ia l s t a t e m e n t s (Figure 3.9a) 
are l i s ted vertically, o n e u n d e r the other, a n d are g r o u p e d in b r a c e s . A p lus s ign 
e n c l o s e d in a circle ind ica tes se lec t ion , a n d is p l a c e d b e t w e e n the t rue a n d false 
c o n d i t i o n s of the s e l e c t i o n structure (a bar d e n o t e s the false c o n d i t i o n ) . P a r e n t h e s e s 
ind ica te i terat ion (Figure 3.9c), w i th the n u m b e r ins ide the p a r e n t h e s e s ind ica t ing 



C h a p t e r 3 A Methodology for Program Development 

F i g u r e 3 .8 Pseudocode for Tuition Billing Program 

Open files 
Write heading line(s) 
Read STUDENT-FILE at end indicate no more data 

i DO WHILE data remains 
j Compute tuition 

Compute union fee 
'. Compute activity fee 
{ Compute scholarship 
\ Compute bill 

Increment university totals 
Write detail line 

j Read STUDENT-FILE at end indicate no more data 
' ENDDO 

Write university totals 
Close files 
Stop run 

(a) initial attempt 

Open files 
Write heading 1ine(s) 
Read STUDENT-FILE at end indicate no more data 

l DO WHILE data remains 
Compute tuition = 200 * credits 
IF union member 

Union fee = $25 
| ELSE 

Union fee = 0 
! ENDIF 
j DO CASE 
| CASE credits <= 6 
j Activity fee = 25 
j CASE credits > 6 and <= 12 

Activity fee = 50 
j CASE credits > 12 
j Activity fee = 75 
I END CASE 

- — IF gpa > 2.5 
Scholarship = Scholarship amount 

ELSE (no scholarship) 
Scholarship = 0 

I ENDIF 
Compute Bill = Tuition + Union fee + Activity fee - Scholarship 
Increment university totals 
Write detail line 
Read STUDENT-FILE at end indicate no more data 

ENDDO 
Write university totals 
Close files 
Stop run 

(b) Detailed! pseudocode 



l u r e 3.9 Warnier-Orr Diagrams for Building Blocks 

Statement A 
Statement B 

fa) The Sequence Structure 

Condition {statement A 

Condition {Statement B 

(b) The Selection Structure 

(0, End) (Statement A 

(c) The Iteration Structure 

h o w often the l o o p is to b e per formed. A variable n u m b e r of i terat ions is impl i ed by 
e n c l o s i n g two n u m b e r s , for e x a m p l e (0, End) to ind ica te e x e c u t i o n unt i l a n end-of-
file c o n d i t i o n is reached . There is n o specif ic n o t a t i o n for the case cons truc t . 

Figure 3.10 c o n t a i n s a Warnier-Orr d iagram for the tuit ion bi l l ing program. 
T h e d iagram d e p i c t s the s a m e m a n a g e r / s u b o r d i n a t e re lat ionships a s t h e hierarchy 
chart of Figure 3.3c, but unl ike the hierarchy chart, is read from left t o right rather 
t h a n from t o p to b o t t o m . T h e d iagram also c o n t a i n s addi t ional i n f o r m a t i o n n o t 
found in the hierarchy chart, n a m e l y the logic to ind ica te h o w o f ten , a n d in w h a t 
s e q u e n c e , s u b o r d i n a t e m o d u l e s are e x e c u t e d . 

All programs require ex tens ive tes t ing to e n s u r e that t h e y c o n f o r m t o the original 
spec i f icat ions . However , the q u e s t i o n of w h e n c o d i n g e n d s a n d t e s t i n g b e g i n s is 
n o t as straightforward as it m a y appear, a n d gives rise to the p h i l o s o p h y of top-
down testing. 

T o p - d o w n test ing s u g g e s t s that c o d i n g a n d tes t ing are parallel activit ies , a n d 
e s p o u s e s the p h i l o s o p h y that tes t ing b e g i n s e v e n before a p r o g r a m is c o m p l e t e l y 
f inished. This is a c c o m p l i s h e d by initially c o d i n g the in termedia te - a n d / o r lower-
leve l paragraphs as stubs, that is, partially c o d e d paragraphs w h o s e p u r p o s e is to 
indicate on ly that the paragraph has b e e n e x e c u t e d . The s tub p a r a g r a p h s d o n o 
useful work per se , a n d are u s e d on ly to test the overall f low of the program. T h e 
rat ionale is that the h ighes t (and m o s t difficult) m o d u l e s s h o u l d b e te s ted earlier 
and m o r e o f ten than the lower- leve l rout ines; the latter c o n t a i n d e t a i l e d but o f ten 
trivial logic , and are least i m p o r t a n t wi th respec t to the overall p r o g r a m flow. 

Figure 3.11 is a n e x a m p l e o f s u c h a program. It is complete in t h e s e n s e that it 
c o n t a i n s a paragraph for every m o d u l e in the hierarchy chart of F igure 3.3, ye t 
incomplete in that m o s t o f its paragraphs cons i s t of a s ingle DISPLAY s t a t e m e n t . 



C h a p t e r 3 A Methodology for Program Development 

Figure 3.10 Warnier-Orr Diagram for Tuition Billing Program 

I 

Tuition-Billing Program 

Open files 
Write-heading-line 
Read-student-file 

(1) 

Process-record 
(0, End) 

Compute-i ndi vidual-bi11 
(1) 

Compute-tuition 
(1) 

Compute-union-fee 
(1) 

Compute-acti vi t y - f e e 
(1) 

Compute-scholarship 
(1) 

Increment-uni versi ty-total s 
(1) 

Wri te-detai1-1i ne 
(1) 

Read-student-file 
(1) 

Wri te-uni vers i t y - t o t a l s 
(1) 

Close f i l e s 
Stop run 

(DISPLAY is o n e o f the m o s t useful s t a t e m e n t s in COBOL as it a l l o w s the p r o g r a m m e r 
to print a m e s s a g e o n the screen—for e x a m p l e , DISPLAY "COMPUTE-INDIVIDUAL-
BILL paragraph h a s b e e n e n t e r e d " — o r to print the c o n t e n t s o f a data n a m e — f o r 
example , DISPLAY STUDENT-RECORD—without hav ing to o p e n a file. The DISPLAY 
s t a t e m e n t is c o v e r e d in Chapter 6.) 

T h e p r o g r a m in Figure 3.11 w a s t e s t e d w i t h the data o f Figure 3.12a, a n d 
p r o d u c e d t h e o u t p u t o f Figure 3 .12b. Y o u m a y n o t th ink t h a t m u c h h a s b e e n 
a c c o m p l i s h e d , b u t c l o s e r e x a m i n a t i o n s h o w s that all of t h e paragraphs in the 
p r o g r a m w e r e e x e c u t e d , a n d further that they w e r e e x e c u t e d in t h e correct s e q u e n c e . 
T h e t e s t ing h a s d e m o n s t r a t e d that t h e overall p r o g r a m f low is correct . 

Execut ion b e g a n w i t h t h e paragraph PREPARE-TUITION-REPORT fo l l owed 
b y the the paragraph WRITE-HEADING-LINE. T h e record for t h e first s t u d e n t (JB 
Smith) w a s read, a n d t h e paragraph PROC ESS - S T U D ENT- RECORD w a s en tered . 
T h e paragraph COMPUTE-INDIVIDUAL-BILL w a s e x e c u t e d next , and ca l led its 
four s u b o r d i n a t e s to c o m p u t e the tui t ion, u n i o n fee, activity f ee , a n d scho larsh ip . 
T h e paragraphs to i n c r e m e n t univers i ty totals a n d to write a deta i l l ine w e r e a l so 
ca l led . T h e d a t a for t h e s e c o n d s t u d e n t (HR James) w a s r e a d , a n d PROCESS-
STUDENT-RECORD (and all its subord inates ) w e r e r e - e x e c u t e d . Eventual ly the e n d 
of file w a s r e a c h e d , the paragraph WRITE-UNIVERSITY-TOTALS w a s e x e c u t e d , a n d 
the program e n d e d . 

Yes, the p r o g r a m requires addi t iona l d e v e l o p m e n t , b u t t h e hardest part is 
over. A n y errors that m a y h a v e ex i s ted in the h ighes t - l eve l m o d u l e s h a v e already 



Top-Down Testing , . ...» 

F i g u r e 3.11 Tuition Billing Program with Stubs 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. TUITI0N3. 
3 AUTHOR. CAROL VAZQUEZ VILLAR. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR03\TUITI0N.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 
11 DATA DIVISION. 
12 FILE SECTION. 
13 FD STUDENT-FILE 
14 RECORD CONTAINS 27 CHARACTERS. 
15 01 STUDENT-RECORD PIC X(27). 
16 
17 WORKING-STORAGE SECTION. 
18 01 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES. 
19 
20 PROCEDURE DIVISION. 
21 PREPARE-TUIT ION-REPORT. 
22 DISPLAY 'PREPARE-TUITION-REPORT paragraph entered'. 
23 OPEN INPUT STUDENT-FILE. 
24 PERFORM WRITE-HEADING-LINE. 
25 PERFORM READ-STUDENT-FILE. 
26 PERFORM PROCESS-STUDENT-RECORD 
27 UNTIL DATA-REMAINS-SWITCH = 'NO'. 
28 PERFORM WRITE-UNIVERSITY-TOTALS. 
29 CLOSE STUDENT-FILE. 
30 STOP RUN. 
31 
32 WRITE-HEADING-LINE. 
33 DISPLAY 'WRITE-HEADING-LINE paragraph entered'. 
34 
35 READ-STUDENT-FILE. 
36 READ STUDENT-FILE 
37 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
38 END-READ. 
39 
40 PROCESS-STUDENT-RECORD. 
41 DISPLAY ' '. 
42 DISPLAY 'PROCESS-STUDENT-RECORD paragraph entered'. 

[ 43 ~ DISPLAY 'Student record being processed: ' STUDENT-RECORD.| 
44 PERFORM COMPUTE-INDIVIDUAL-BILL. \ 
45 PERFORM INCREMENT-UNIVERSITY-TOTALS \ 
46 PERFORM WRITE-DETAIL-LINE. \Display statement shows current record 
47 PERFORM READ-STUDENT-FILE. 
48 

file://'A:/CHAPTR03/TUITI0N.DAT'


C h a p t e r 3 A Methodology for Program Development 

.11 (continued) 

49 
50 
51 
52 
53 
54 
55 

COMPUTE-INDIVIDUAL-BILL. 
DISPLAY 1 COMPUTE-INDIVIDUAL-BILL paragraph entered', 
PERFORM COMPUTE-TUITION. 
PERFORM COMPUTE-UNION-FEE. 
PERFORM COMPUTE-ACTIVITY-FEE. 
PERFORM COMPUTE-SCHOLARSHIP. 

COMPUTE-UNION-FEE. 
DISPLAY ' COMPUTE-UNION-FEE paragraph entered'. 

COMPUTE-ACTIVITY-FEE. 
DISPLAY ' COMPUTE-ACTIVITY-FEE paragraph entered'. 

COMPUTE-SCHOLARSHIP. 
DISPLAY ' COMPUTE-SCHOLARSHIP paragraph entered'. 

INCREMENT-UNIVERSITY-TOTALS. 
DISPLAY 1 INCREMENT-UNIVERSITY-TOTALS paragraph entered'. 

WRITE-DETAIL-LINE. 
DISPLAY ' WRITE-DETAIL-LINE paragraph entered'. 

WRITE-UNIVERSITY-TOTALS. 
DISPLAY ' '. 
DISPLAY 'WRITE-UNIVERSITY-TOTALS paragraph entered'. 

-roqram siuc 

b e e n f o u n d , a n d w e r e eas ier to correct t h a n h a d tes t ing b e e n deferred. Of course , 
later v e r s i o n s of the p r o g r a m c a n still c o n t a i n bugs , b u t t h e s e errors wil l o c c u r in 
l o w e r level m o d u l e s w h e r e correct ion is general ly easier. T h e m o r e difficult p r o b l e m s 
will a lready h a v e b e e n re so lved in t h e initial tests , a n d that is prec i se ly the goal o f 
t o p - d o w n tes t ing . 

W e urge y o u to i m p l e m e n t t h e t o p - d o w n a p p r o a c h t o p r o g r a m test ing , a n d 
offer F igure 3 .13 as o u r last w o r d o n t h e subjec t . In t h e tradi t iona l m o d e o f 
Figure 3.13a, n o t e s t ing is d o n e unti l the w e e k e n d before the p r o g r a m g o e s l ive (or 
y o u r a s s i g n m e n t is d u e ) . Inevi tably l a s t - m i n u t e p a n i c s e t s in, g i v i n g rise to o v e r t i m e 
and c h a o s , an environment unlikely to produce logically correct programs. By 
contrast , the t o p d o w n a p p r o a c h of Figure 3 .13b p r o v i d e s a m o r e uni form tes t ing 
pattern, b e g i n n i n g a l m o s t i m m e d i a t e l y w i t h the project 's i n c e p t i o n and c o n t i n u i n g 
t h r o u g h o u t its durat ion . T h e results are vast ly superior . 



Top-Down Testing 

Testing the Tuition Billing Program 

SMITH 
JAMES 
BAKER 

GROSSMAN 
FRANKEL 

PART-TIMER 
JONES 
HEAVYWORKER 
LEE 
CLARK 

BENWAY 
KERBEL 

JB15Y0000230 
HR15 0500245 
SR09 0500350 
JR03Y0000300 
PL15Y0000280 
HM18 0000200 
BL18 0000335 
JC06 0000310 
SE07 0000215 
LF10 0000350 
CT03 0250395 
NB04 0000100 

PREPARE-TUITION-REPORT paragraph entered 
WRITE-HEADING-LINE paragraph entered 

PROCESS-STUDENT-RECORD paragraph entered 
Student record being processed: SMITH JB15Y0000230 

COMPUTE-INDIVIDUAL-BILL paragraph entered 
COMPUTE-TUITION paragraph entered 
COMPUTE-UNION-FEE paragraph entered 
COMPUTE-ACTIVITY-FEE paragraph entered 
COMPUTE-SCHOLARSHIP paragraph entered 
INCREMENT-UNIVERSITY-TOTALS paragraph entered 
WRITE-DETAIL-LINE paragraph entered 

PROCESS-STUDENT-RECORD paragraph entered 
Student record being processed: JAMES HR15 0500245 

COMPUTE-INDIVIDUAL-BILL paragraph entered 
COMPUTE-TUITION paragraph entered 
COMPUTE-UNION-FEE paragraph entered 
COMPUTE-ACTIVITY-FEE paragraph entered 
COMPUTE-SCHOLARSHIP paragraph entered 
INCREMENT-UNIVERSITY-TOTALS paragraph entered 
WRITE-DETAIL-LINE paragraph entered 

PROCESS-STUDENT-RECORD paragraph entered 
Student record being processed: KERBEL NB04 0000100 

COMPUTE-INDIVIDUAL-BILL paragraph entered 
COMPUTE-TUITION paragraph entered 
COMPUTE-UN ION-FEE paragraph entered 
COMPUTE-ACTIVITY-FEE paragraph entered 
COMPUTE-SCHOLARSHIP paragraph entered 
INCREMENT-UNIVERSITY-TOTALS paragraph entered 
WRITE-DETAIL-LINE paragraph entered 

WRITE-UNIVERSITY-TOTALS paragraph entered 



C h a p t e r J —- A Methodology (or Program Development 

Figure 3.13 Advantages of Top-Down Testing 

Last-minute panic 

o 
E 
< 

c 

o 

A 

Time 
(a) Traditional Mode (b) Top-Down Mode 

Time 

SUMMARY 

j o i n t s to Remember 

Structured design is a functionally oriented technique that Identifies the 
tasks a program is to accomplish, then relates those tasks to one another 
in a hierarchy chart. 

in a COBOL program. A module (paragraph) can be entered only from the 
module immediately above it, and must return control to that module when 
execution is complete. 

A hierarchy chart is evaluated for completeness, functionality, and span of 
control. 

Structured programming is procedural in nature and contains decision­
making logic depicting the sequence in which the program tasks will be 
executed. 

A structured program consists entirely of the basic building blocks of 
sequence, selection, and iteration; a fourth construct, case, is commonly 
included in the definition of structured programming. 

Each of the elementary building blocks in structured programming has one 
entry point and one exit point. 

Flowcharts and/or pseudocode (defined as neat notes to yourself) describe 
the logic in a program. Warnier-Orr diagrams combine elements of structured 
design and structured programming. 

Top down testing begins early in the development process, even before a 
program is completely coded; it is accomplished through the use of 
program stubs. 



Fill-in 

I L L 

Bohm and Jacopini Pseudocode 
Case structure Selection structure 
Flowchart Sequence structure 
Functional technique Span of control 
Hierarchy chart Structured design 
Iteration structure Structured programming 
One entry point/one exit point Top-down development 
Procedural technique Warnier-Orr diagram 
Program stub 

1. The fundamental building blocks of structured programming are:  
and . 

?. The construct is a fourth structure, which is convenient for 
expressing multibranch situations. 

3, All of the basic building blocks of structured programming have  
entry point and exit point. 

4. In the iteration, or DO WHILE construct, the condition is tested (before/after) the 
procedure is executed. 

5. The primary tool of structured design is the. 

. diagrams combine elements of a hierarchy chart and 
pseudocode. 

7. A hierarchy chart is evaluated according to the criteria of 
, and . 

8. Structured design is a oriented technique, whereas structured 
programming is in nature. 

9. , rather than flowcharting, is the most common technique for 
expressing program logic. 

10. Each module in a represents a 
in a COBOL program. 

11. is the management term for the number of 
subordinate modules. 

12. A well-chosen paragraph name should indicate the function of that paragraph, 
and consist of a , , and . 

13. and are the individuals credited with first 
postulating the structured theorem. 

14. Structured (programming/design) is intended to produce a 
solution with the same components and relationships as the problem it is 
intended to solve. 

15. A program should be tested from the (top down/bottom up). 



C h a p t e r 3 A Methodology for Program Development 

T R U E / F A L S E 

1. A structured program is guaranteed not to contain logical errors. 

2. Structured programming can be implemented in a variety of programming languages. 

3. INITIALIZATION and TERMINATION are good module names. 

4. The logic of any program can be expressed as a combination of only three types of 
logic structures. 

5. The one entry/one exit philosophy is essential to structured programming. 

6. Decision making should generally occur in higher-level, rather than lower-level, 
modules. 

7. The case construct is one of the three basic logic structures. 

8. A flowchart is the only way to communicate program logic. 

9. Pseudocode has precise syntactical rules. 

10. A program's hierarchy chart is developed from the bottom up. 

11 . A program must be completely coded before testing can begin. 

12. A Warnier-Orr diagram combines elements of structured design and structured 
programming. 

13. READ-WRITE-AND-COMPUTE is a good module name. 

14. A single COBOL paragraph should accomplish many functions for optimal efficiency. 

15. Program testing should be concentrated in the last 25% of the development phase. 

16. A span of control from 15 to 25 COBOL paragraphs is desirable for the highest-
level modules. 

17. The optimal number of modules in a system is equal to the number of programmers 
available for coding. 

18. A module in a hierarchy chart can be called from another module on its own level. 

P R O B L EMS 

1. Given the flowchart in Figure 3.14, respond "true" or "false" to the following on the 
basis of the flowchart. 
a. If X > Y and W > Z, then always add 1 to B. 

b. If X < Y, then always add 1 to D. 

c. If Q > T, then always add 1 to B. 

d. If X < Y and W < Z, then always add 1 to D. 

e. There are no conditions under which 1 will be added to both A and B 
simultaneously. 

f. If W > Z and Q < T, then always add 1 to C. 

2. Assume that a robot is sitting on a chair, facing a wall a short distance away. 
Restricting yourself to the basic building blocks of structured programming, develop 
the necessary logic to have the robot walk to the wall and return to its initial position. 
Express your solution in pseudocode. The robot understands the following 
commands: 



sure 3 .14 Flowchart for Problem 1 

ADD 1 TO D 

ADD 1 TO C 

1 

ADO 1 TO B 

ADD 1 TO A 

STAND 
SIT 
TURN (turns right 90 degrees) 
STEP 
In addition, the robot can raise its arms and sense the wall with its fingertips. 
(However, it cannot sense the chair on its return trip, since the chair is below arm 
level.) Accordingly the robot must count the number of steps to the wall or chair by 
using the following commands: 

ADD (increments counter by 1) 
SUBTRACT (decrements counter by 1) 
ZERO COUNTER (sets counter to zero) 
ARMS UP 
ARMS DOWN 

The wall is assumed to be an integer number of steps away. Select a volunteer 
to act as the robot, and see whether the submitted solutions actually accomplish 
the objective. 



3. Identify the elementary building blocks in Figure 3.15. Be sure you get all of them 
(the authors can find eight). 

4. Indicate the output that will be produced by each of the following DISPLAY 
statements. 
a. DISPLAY 'STUDENT RECORD'. 
b. DISPLAY STUDENT-RECORD. 
c. DISPLAY 'STUDENT RECORD IS ' STUDENT-RECORD. 
d. DISPLAY. 
e. DISPLAY STUDENT-NAME, SOC-SEC-NUM. 

5. This non-data-processing problem specifically avoids a business context, and was 
chosen because you are unlikely to have a preexisting bias toward a solution. 



Develop a hierarchy chart to allow a user to play a series of tic-tac-toe games 
interactively against a computer. The following modules were used in the author's 
solution: PLAY-SERIES, PLAY-GAME, CLEAR-BOARD, GET-USER-MOVE, 
VALIDATE-USER-MOVE, CHECK-FOR-WINNER, UPDATE-BOARD, GET-
COMPUTER-MOVE, DISPLAY-BOARD, DISPLAY-MESSAGE. (The last module, 
DISPLAY-MESSAGE, may be called from several places.) The module names 
should in themselves be indicative of the module functions. 

6. Again we have chosen a nonbusiness problem to give you further practice with 
structured design. This time you are asked to develop a hierarchy chart for the 
game of blackjack (also known as "21"). The game is played with a deck of 52 
cards (or more commonly with multiple decks). The player places a bet, and the 
player and dealer are each dealt two cards. Both of the player's cards are face up 
(showing), but one of the dealer's cards is hidden. The player is asked whether he 
or she wishes to draw additional card(s), after which the dealer has the same 
option (provided the player has not gone over 21). The player closest to 21 (without 
going over) wins. The rules of the game require the dealer to draw with 16 or less, 
and stand (not draw) with 17 or more. Your hierarchy chart should contain the 
necessary modules to keep a running total of the player's winnings (or losses) as 
well as the following special situations: 
a. Doubling down—if the player's first two cards total 11, he or she may double the 

bet and receive one additional card. 
b. Purchasing insurance—if the dealer's "up" card is an ace, the player may place 

an additional side bet. If the dealer has "blackjack," the player receives a payout 
of 2 to 1 on the side bet, but loses the initial bet. If the dealer does not have 
blackjack, the side bet is lust and play continues. 

c. Splitting pairs—if the player has a pair, he or she may double the bet and play 
two hands. 





Overview 
C O B O L Notat ion 
I D E N T I F I C A T I O N D I V I S I O N 
E N V I R O N M E N T D I V I S I O N 

CONFIGURATION SECTION 
INPUT-OUTPUT SECTION 

S H I M uiviaivn 

F ILE SECTION 
File Description (FD) 
Record Description 
P I C T U R E Clause 
Level Numbers 
Assumed Decimal Point 

WORKING-STORAGE SECTION 
VALUE Clause 

T h e Tu i t ion Bi l l ing P r o g r a m 
Programming Specifications 
C O B O L Entries 

Limitations of COBOL -74 
Summary 
Fill-in 

True/False 
Problems 



C h a p t e r 4 i 'NORI.'ficatiort, Environment, and Data Divisions 

The overall approach of this book is to provide a rapid introduction to computer 
programming; thus we presented a complete COBOL program in Chapter 1. 
Our objective at that time was to put you on the computer immediately, without 
too much concern for the syntactical rules, which you must eventually master. 

We move now to a formai study of COBOL, beginning with a notation that 
fully explains the variations permitted within any COBOL statement. The chapter 
focuses on the Identification, Environment, and Data Divisions, and concludes 
with a COBOL listing expanding on this material. 

w w d u l . COBOL is a n English-l ike l a n g u a g e w i t h i n h e r e n t flexibility in the way a particular 
Notation entry m a y b e expressed . In o ther words , there are a n u m b e r of different, b u t equa l ly 

acceptab le , w a y s to say the s a m e thing. It is necessary , therefore, to d e v e l o p a 
s tandard n o t a t i o n to provide a clear a n d u n a m b i g u o u s m e a n s of indicat ing prec ise ly 
w h a t is, a n d is not , permi t t ed w i t h i n any g i v e n s ta tement . The n o t a t i o n is i l lustrated 
in Figure 4.1 a n d adheres to the fo l lowing c o n v e n t i o n s : 

1. Lowercase letters signify p r o g r a m m e r - s u p p l i e d informat ion—for e x a m p l e , 
identif ier-1 or l i teral-1. 

2. U p p e r c a s e letters ind ica te reserved words—for example , IF, GREATER, or 
THAN. 

3 . U p p e r c a s e letters that are under l ined are required; u p p e r c a s e letters that are 
not under l ined are opt iona l reserved words . 

4. Brackets [ ] s y m b o l i z e an opt iona l entry—for example , [ N O T ]. 

5. Braces {} imply that o n e of the e n c l o s e d i t e m s m u s t b e c h o s e n — f o r example , 
a c h o i c e is required b e t w e e n identif ier-1, l iteral-1, a n d ari thmetic 
expres s ion-1 . 

6. Three dot s . . . m e a n that the last syntact ical unit c a n b e repea ted a n 
arbitrary n u m b e r of t imes . 

O B J E C T IVES 

After reading this chapter you will be able to: 

Describe the COBOL notation and determine the appropriate syntax for 
any statement. 

Complete the Identification Division of a COBOL program. 

Complete the Environment Division of a COBOL program. 

Code a record description to show hierarchical relationships among fields 
containing numeric and alphanumeric entries. 

Code a Working-Storage Section to define various print lines. 

Explain the use of an assumed decimal point. 

D 1 / cr p 1 / / c: 1/1/ 



IDENTIFICATION DIVISION 

COBOL Notation 

I f 

\ 

UDtiona; entry. 

identlfier-1 
1iteral-1 
arithmetic expression-1 

Optional reserved womisi 

^Reouiivd word 

is [NOT] 

GREATER THAN 
LESS THAN 
EQUAL TO 
GREATER THAN OR EQUAL TO 
LESS THAN OR EQUAL TO 

/Programmer supplied 

identifier-2 
literal-2 
arithmetic expression-2 

The e x a m p l e in Figure 4.1 is assoc ia ted wi th the c o n d i t i o n por t ion in the IF 
s tatement . IF is under l ined and appears in capital letters, indicating it is a required 
reserved word. It is fo l lowed by a set of braces conta in ing three o p t i o n s , o n e of 
w h i c h must be c h o s e n . The reserved word IS appears in uppercase letters but is 
not under l ined, m e a n i n g its u s e is opt ional . The brackets surrounding N O T i m p l y 
that the c lause is opt ional , but if the c lause is c h o s e n , NOT is required b e c a u s e it 
is underl ined. 

The next se t of braces ind ica tes a s e c o n d m a n d a t o r y c h o i c e a m o n g five 
relat ionships: GREATER THAN, GREATER THAN OR EQUAL TO, LESS THAN, LESS 
THAN OR EQUAL TO, or EQUAL TO. The reserved words THAN a n d TO are n o t 
underl ined and are, therefore, opt ional . Alternatively, y o u c a n c h o o s e the appropriate 
symbol : >, >= <, <=, or = ins t ead of spel l ing out the relat ionship. T h e third set of 
braces indicates ye t another cho i ce , this t ime from the entries identif ier-2, literal-2, 
a n d arithmetic expres s ion -2 . 

Returning to the e n g i n e e r i n g senior p r o b l e m of Chapter 1, i n w h i c h STU-
MAJOR is c o m p a r e d to eng ineer ing , w e s e e that all of the fo l lowing are a c c e p t a b l e 
as the cond i t ion port ion of the IF s ta tement : 

IF STU-MAJOR IS EQUAL TO 'ENGINEERING' 
IF STU-MAJOR EQUAL 'ENGINEERING' 
IF 'ENGINEERING' IS EQUAL TO STU-MAJOR 
IF STU-MAJOR = 'ENGINEERING' 

< ̂ C, ' , i , ^ The IDENTIFICATION DIVISION is the first of the four div is ions i n a COBOL 
Us '\#tsl 11,11 program. Its funct ion is to provide identi fying in format ion about the program, s u c h 

as author, date written, a n d security. The divis ion cons i s t s of a d iv i s ion header and 
u p to six paragraphs: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 
rAUTHOR. 
["INSTALLATION. 
[DATE-WRITTEN. 
rPATE-COMPILED. 
fSECURITY. 

program-name. 
[comment-entry] 
[comment-entry] 
[comment-entry] 
[comment-entry] 
[comment-entry] 



C h a p t e r 4 The Identification, Environment, and Data Divisions 

The d iv i s ion h e a d e r a n d PROGRAM-ID paragraph are the o n l y required entr ie s . The 
five r e m a i n i n g paragraphs are opt iona l (as indicated by the COBOL n o t a t i o n ) , and 
o n l y the DATE-COMPILED paragraph meri ts special m e n t i o n . If the p a r a g r a p h is 
speci f ied , the c o m p i l e r will insert the current date dur ing p r o g r a m c o m p i l a t i o n . 
(The paragraph is redundant , however , s ince m o s t compi l er s automat i ca l ly print 
the date of c o m p i l a t i o n o n the top of e a c h page.) A c o m p l e t e d Ident i f icat ion Div i s ion 
is s h o w n : 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FIRSTTRY. 
AUTHOR. ROBERT T. GRAUER. 
INSTALLATION. UNIVERSITY OF MIAMI. 
DATE-WRITTEN. MARCH 16, 1993. 
DATE-COMPILED. The compiler supplies compilation date. 
SECURITY. TOP SECRET-INSTRUCTORS ONLY. 

C o d i n g for the Identif icat ion Div i s ion fol lows the genera l rules d e s c r i b e d in 
Chapter 2. The d iv is ion h e a d e r and paragraph n a m e s b e g i n in t h e A marg in , w i t h all 
c o r r e s p o n d i n g entr ies b e g i n n i n g in or past c o l u m n 12 (B margin) . 

The ENVIRONMENT DIVISION c o n t a i n s t w o sec t ions : 

1. T h e CONFIGURATION SECTION identi f ies the c o m p u t e r s for c o m p i l i n g a n d 
e x e c u t i n g the program, usual ly o n e a n d the s a m e . 

2. T h e I N P U T - O U T P U T SECTION as soc ia t e s the files in the COBOL p r o g r a m 
w i t h the files k n o w n to the opera t ing sy s t em. 

T h e nature of t h e s e func t ions m a k e s the E n v i r o n m e n t Div i s ion d e p e n d e n t on 
the c o m p u t e r o n w h i c h y o u are working; that is, the E n v i r o n m e n t Div i s ion for a 
p r o g r a m o n a VAX is different from that for a p r o g r a m o n a n IBM mainframe . 

/ . O L U V U s L.VC 

Jivision 

The CONFIGURATION SECTION is e n c l o s e d in brackets wi th in the COBOL notat ion 
a n d is therefore opt iona l . A n abbrev iated format is s h o w n be low: 

[CONFIGURATION SECTION.  
fSOURCE-COMPUTER. computer-name.] 
rOBJECT-COMPUTER. computer-name.]] 

The s e c t i o n h e a d e r a n d paragraph n a m e s b e g i n in the A m a r g i n w h e r e a s the 
c o m p u t e r - n a m e entries beg in in or past c o l u m n 12. T h e CONFIGURATION SECTION 
d o e s little to e n h a n c e (the d o c u m e n t a t i o n of) a COBOL p r o g r a m a n d i s typically 
o m i t t e d . 

Input-Output Section .,.. 
The I N P U T - O U T P U T SECTION a s s o c i a t e s the files in a COBOL p r o g r a m wi th files 
k n o w n to the opera t ing s y s t e m . It c o n t a i n s a FILE-CONTROL paragraph, w h i c h in 
turn c o n t a i n s a SELECT s t a t e m e n t for every file in t h e program. Syntact ical ly it has 
the format: 



riNPUT-OUTPUT SECTION.  
FILE-CONTROL. 

SELECT file-name-1 ASSIGN TO implementor-name.] 

A program m a y b e wri t ten w i t h o u t any files a n d h e n c e the I N P U T - O U T P U T 
s e c t i o n is opt iona l . (See Chapter 10 o n s c r e e n I /O for a n e x a m p l e of a p r o g r a m 
written w i t h o u t a n y files.) 

The s e c t i o n h e a d e r ( INPUT-OUTPUT SECTION) a n d paragraph n a m e (FILE-
CONTROL) b e g i n in the A m a r g i n ( c o l u m n s 8 t h r o u g h 11). The SELECT s t a t e m e n t s 
for the indiv idual files b e g i n in the B m a r g i n ( c o l u m n 12 a n d b e y o n d ) . 

The prec i se format of the implementor-name in the SELECT s t a t e m e n t varies 
f rom c o m p i l e r to compi l er , wi th the e x a m p l e b e l o w taken from l ines 8 t h r o u g h 11 in 
t h e e n g i n e e r i n g s e n i o r p r o b l e m . 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR03\TUITI0N.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 
ASSIGN TO PRINTER. 

The d e p e n d e n c e of the E n v i r o n m e n t Div i s ion o n the indiv idual c o m p u t e r 
instal lat ion bears repeat ing . You s h o u l d c o n s u l t e i ther your instructor or your 
c o m p u t e r center for the proper s t a t e m e n t s to use in your program. 

B e l t * * The Data Div i s ion d e s c r i b e s the data i t e m s that a p p e a r in a program. It c o n t a i n s 
Division several s ec t ions , t w o of wh ich , the FILE SECTION a n d the WORKING-STORAGE 

SECTION, will b e d i s c u s s e d in this chapter . T w o o t h e r s e c t i o n s , t h e SCREEN 
SECTION a n d the LINKAGE SECTION, are p r e s e n t e d in later chapters . 

File Sect ion 

T h e FILE SECTION is the first s e c t i o n in the D a t a D i v i s i o n a n d c o n t a i n s a file 
descr ipt ion (FD) for every file prev ious ly de f ined in a SELECT s t a t e m e n t in the 
E n v i r o n m e n t Div i s ion . (If, however , a program is wr i t t en w i t h o u t a n y files, t h e n the 
FILE SECTION wil l n o t appear.) The file descr ip t ion is f o l l o w e d by t h e as soc ia ted 
record d e s c r i p t i o n w h i c h is a c c o m p l i s h e d t h r o u g h PICTURE c l a u s e s a n d level 
n u m b e r s . Each o f t h e s e e l e m e n t s is d i s c u s s e d in turn. 

File D e s c r i p t i o n (FD) The file description (FD) prov ides in format ion about the 
phys ica l characterist ics of a file. It c o n t a i n s four c lauses , all of w h i c h are opt ional , 
a n d w h i c h m a y appear in any order. T h e final entry, h o w e v e r , m u s t b e t erminated 
by a period. An abbrev ia ted format for the file de scr ip t ion is as fo l lows: 

FD f i le-name 
[BLQCjK CONTAINS in teger-1 RECORDS ] 
[RECORD CONTAINS integer-1 CHARACTERS] 

[RECORDS ARE] [OMITTED 1 LABEL — <̂  } 
[RECORD IS j [STANDARDj 

[DATA RECORD IS da ta -name- l ] . 

The BLOCK CONTAINS c lause is u s e d to s p e e d u p i n p u t / o u t p u t operat ions 
for files o n t a p e or disk, b y reduc ing the n u m b e r of phys ica l records (blocks) in a file, 

file://'A:/CHAPTR03/TUITI0N.DAT'


C h a p t e r 4 The Identification, Environment, and Data Divisions 

a n d t h u s r e d u c i n g the n u m b e r of t i m e s t h e i n p u t / o u t p u t d e v i c e is a c c e s s e d . In 
o ther w o r d s , it is m o r e eff icient to a c c e s s a disk o n c e a n d read a b lock c o n t a i n i n g 10 
records , t h a n it is to a c c e s s the disk 10 t i m e s a n d read e a c h record individually. The 
blocking factor is d e f i n e d as the n u m b e r o f logical records in a physical record. The 
c o n c e p t is i l lustrated in Figure 4.2 w h e r e the records o f Figure 4 .2a are u n b l o c k e d , 
w h e r e a s t h o s e in Figures 4 .2b a n d 4 .2c h a v e b lock ing factors of 2 a n d 3, respect ive ly . 

T h e h igher the b lock ing factor, the fewer the n u m b e r of phys i ca l records , a n d 
the m o r e efficient the proces s ing . Thus , the b lock ing factor s h o u l d a lways b e as 
h i g h as p o s s i b l e , w i t h i n t h e l i m i t a t i o n s o f t h e p h y s i c a l d e v i c e . T h e a c t u a l 
d e t e r m i n a t i o n o f t h e b lock ing factor n e e d n o t c o n c e r n u s n o w ; w h a t is i m p o r t a n t is 
the i m p l e m e n t a t i o n o f b lock ing in a COBOL program. 

A s s u m e , for e x a m p l e , a b lock ing factor o f 5, w i th the a s s o c i a t e d entry, BLOCK 
CONTAINS 5 RECORDS. T h e initial e x e c u t i o n of the READ s t a t e m e n t p l a c e s a b lock 
of 5 logical records in m e m o r y , w i t h o n l y the first record avai lable to the program. 
T h e s e c o n d (third, fourth, a n d fifth) e x e c u t i o n of the READ s t a t e m e n t m a k e s a n e w 
logical record avai lable , w i t h o u t a c o r r e s p o n d i n g phys ica l o p e r a t i o n taking place . 
In s imilar f a s h i o n the s ixth e x e c u t i o n o f the READ s t a t e m e n t will br ing a n e w 
phys ica l record in to the I /O area, w i t h n e w logical records m a d e available o n the 
s e v e n t h through t e n t h e x e c u t i o n s of the READ s t a t e m e n t . All of th i s is automat ica l ly 
d o n e for the p r o g r a m m e r as l ong as the BLOCK CONTAINS s t a t e m e n t is spec i f i ed in 
t h e COBOL FD. 



COBOL programs that are writ ten to run o n an IBM m a i n f r a m e typical ly 
c o n t a i n the entry, BLOCK CONTAINS 0 RECORDS. This entry d o e s not m e a n w h a t 
it says literally, but rather that the block s ize will b e e n t e r e d at e x e c u t i o n t ime. 

The RECORD CONTAINS c lause indicates the n u m b e r of characters in a record 
a n d is useful for d o c u m e n t a t i o n . The c lause a lso c a u s e s the c o m p i l e r to verify that 
the s izes o f the individual data i t ems s u m to the s tated value . 

The LABEL RECORDS c lause d e t e r m i n e s w h e t h e r or n o t label p r o c e s s i n g is to 
take p lace . Label records appear at the b e g i n n i n g and e n d of files s tored o n tape or 
disk, a n d c o n t a i n in format ion a b o u t the file, s u c h as the da te created , the logical 
record s ize a n d the b lock size. Label records are created automat i ca l ly w h e n e v e r a 
file is o p e n e d as o u t p u t a n d are checked automat ica l ly w h e n e v e r a file i s o p e n e d as 
input. Label p r o c e s s i n g is neces sary to ensure that the proper file is b e i n g p r o c e s s e d . 
T h e LABEL RECORDS c lause is opt ional a n d its o m i s s i o n defaults to s tandard 
labels . 

The DATA RECORD c lause speci f ies the n a m e of the 01 entry (or entries) 
a s soc ia ted w i t h the particular file. It has l imi ted va lue in d o c u m e n t a t i o n a n d has n o 
o ther funct ion . A n e x a m p l e of a c o m p l e t e d FD is s h o w n be low: 

FD STUDENT-FILE 
BLOCK CONTAINS 10 RECORDS 
RECORD CONTAINS 43 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS STUDENT-IN. 

Record Description A file d e s c r i p t i o n is f o l l o w e d by a n a s s o c i a t e d record 
description that c o n v e y s the fo l lowing informat ion: 

1. The s ize a n d type of e a c h field wi th in a record 

2. The order in w h i c h the fields appear 

3. The re la t ionship of the fields to o n e a n o t h e r 

through a c o m b i n a t i o n of PICTURE c lauses and level n u m b e r s . 

PICTURE Clause A PICTURE c lause descr ibes the s ize a n d type of a field. T h e 
size of a field is equiva lent to the n u m b e r of characters (pos i t ions) in t h e field. The 
type of field is e i ther n u m e r i c or a l p h a n u m e r i c , and is d e n o t e d b y a 9 or a n X, 
respect ively, in the a s s o c i a t e d PICTURE c lause . A numeric item c a n c o n t a i n the 
n u m b e r s 0 - 9 , w h e r e a s a n alphanumeric item m a y c o n t a i n A - Z (alphabet ic) , 0 - 9 
(numeric ) , a n d / o r spec ia l characters . 

The s ize of a field is ind ica ted by the n u m b e r o f t i m e s the 9 or X is repeated . A 
data i tem w i t h a picture of XXXX or X(4) is a four-pos i t ion a l p h a n u m e r i c field. In 
similar fa sh ion 999 or 9(3) d e n o t e s a three -pos i t i on n u m e r i c field. (Alphabet ic data 
i tems , d e n o t e d by an A in the a s soc ia t ed PICTURE c lause , are s e l d o m u s e d b e c a u s e 
e v e n a field as s i m p l e as a person ' s n a m e c a n c o n t a i n a p o s t r o p h e s or h y p h e n s , 
w h i c h are a l p h a n u m e r i c rather t h a n a lphabet i c in nature.) 

Level Numbers Level numbers descr ibe the re lat ionships that ex is t b e t w e e n 
fields w i th in a record. Each field is classif ied as e i ther a group i t e m or a n e l ementary 
i t em. A group item is a field that c a n b e further d i v i d e d — a n elementary item c a n 
not . 

Consider , for example , Figure 4.3, w h i c h dep ic t s a s tudent e x a m i n a t i o n record. 
The field S T U D E N T - N A M E is a group i t e m b e c a u s e it is d iv ided i n t o three fields: 
LAST-NAME, FIRST-NAME, a n d INIT. LAST-NAME, FIRST-NAME, a n d INIT, 
however , are e l e m e n t a r y i t ems , s ince they are not further div ided. In s imi lar fashion, 
S S - N U M is a n e l e m e n t a r y i t em. EXAM-SCORES is a group i t em, as are MATH a n d 
ENGLISH. ALG, GEO, READ, etc. , are e l e m e n t a r y i t ems . 



Chapter 4 — The identification, Environment, and Data Divisions 

^ Student Exam Record 

STUDENT-EXAM-RECORD 
STUDENT-NAME SS-NUM EXAM-SCORES 

LAST 
NAME 

FIRST 
NAME 

INIT 
MATH ENGLISH 

LAST 
NAME 

FIRST 
NAME 

INIT 
ALG GEO READ VOC LIT 

v15 16 

\ / 

ALPHANUMERIC 

32 "40 41 45 46 \ 50 5T 55-56̂ 60"61 65 

NUMERIC 

Level n u m b e r s a n d PICTURE c lauses are u s e d in Figure 4.4 t o define a record 
c o r r e s p o n d i n g to the STUDENT-EXAM-RECORD in Figure 4 .3 . Two e q u i v a l e n t 
se t s of COBOL s t a t e m e n t s (Figures 4.4a a n d 4.4b) are p r e s e n t e d a n d fo l low the 
rules be low: 

1. T h e level n u m b e r s w i t h i n a record descr ip t ion c a n a s s u m e any va lue from 01 
to 49 inc lus ive . 

2. The level n u m b e r 01 d e n o t e s the record as a w h o l e . 

3 . Any level n u m b e r from 02 to 49 c a n b e u s e d for field(s) w i t h i n the record, s o 
l o n g as e l e m e n t a r y i t e m s h a v e a n u m e r i c a l l y h igher n u m b e r than the g r o u p 
i t e m to w h i c h they b e l o n g . 

4. A n e l e m e n t a r y i t e m must h a v e a PICTURE c l a u s e — a g r o u p i t e m cannot h a v e 
a PICTURE c lause . 

In Figure 4.4 STUDENT-EXAM-RECORD h a s a level n u m b e r of 01 to ind ica te 
the record as a w h o l e . S T U D E N T - N A M E is a subf ie ld of STUDENT-EXAM-RECORD; 
h e n c e it h a s a h igher level n u m b e r (05). LAST-NAME, FIRST-NAME, a n d M I D -
INITIAL are s u b o r d i n a t e to S T U D E N T - N A M E a n d thus h a v e a h i g h e r level n u m b e r 
(10). S O C - S E C - N U M a n d EXAM-SCORES are a lso subf ie lds o f STUDENT-EXAM-
RECORD a n d h a v e the s a m e level n u m b e r as S T U D E N T - N A M E . EXAM-SCORES is 
s u b d i v i d e d in to t w o group i t e m s , MATH a n d ENGLISH, w h i c h i n turn are further 
s u b d i v i d e d in to e l e m e n t a r y i t e m s . 

Every e l e m e n t a r y i t e m m u s t h a v e a PICTURE c lause , w h e r e a s a g r o u p i t e m 
c a n n o t h a v e a PICTURE c lause . Thus , LAST-NAME has the entry PICTURE IS X(15) 
to d e n o t e a 15-pos i t ion a l p h a n u m e r i c field; STUDENT-NAME, h o w e v e r , is a group 
i t e m a n d d o e s not h a v e a PICTURE c lause . T h e p a r e n t h e s e s in a PICTURE c lause 
imply repet i t ion; that is, the entry 9(5) for ALGEBRA d e p i c t s a 5 - p o s i t i o n n u m e r i c 
field. 

There is c o n s i d e r a b l e la t i tude w i t h i n COBOL as t o the spec i f i ca t ion o f level 
n u m b e r s a n d PICTURE c lauses . Y o u can , for e x a m p l e , c h o o s e a n y level n u m b e r s 
from 02 to 49 to descr ibe s u b o r d i n a t e fields; for e x a m p l e , 04 , 08, a n d 12 are u s e d in 
Figure 4.4b as o p p o s e d to t h e leve ls 0 5 , 1 0 , a n d 15 in Figure 4.4a. T h e 01 level is u s e d 
in b o t h figures for the record as a w h o l e . 



Data Division 

Level Numbers and PICTURE Clauses 

01 STUDENT-EXAM-RECORD. 
05 STUDENT-NAME. 

10 LAST-NAME 
10 FIRST-NAME 
10 MID-INITIAL 

05 SOC-SEC-NUM 
05 EXAM-SCORES. 

10 

10 

MATH. 
15 ALGEBRA 
15 GEOMETRY 
ENGLISH. 
15 READING 
15 VOCABULARY 
15 LITERATURE 

PICTURE IS X(15). 
PICTURE IS X(15). 
PICTURE IS X. 
PICTURE IS 9(9). 

PICTURE IS 9(5). 
PICTURE IS 9(5). 

PICTURE IS 9(5). 
PICTURE IS 9(5). 
PICTURE IS 9(5). 

01 STUDENT-EXAM-RECORD. 
04 STUDENT-NAME. 

08 LAST-NAME 
08 FIRST-NAME 
08 MID-INITIAL 

04 SOC-SEC-NUM 
04 EXAM-SCORES. 

08 MATH. 
12 ALGEBRA 
12 GEOMETRY 

08 ENGLISH. 
12 READING 
12 VOCABULARY 
12 LITERATURE 

PIC X(15). 
PIC X(15). 
PIC X. 
PIC 9(9). 

PIC 99999. 
PIC 99999. 

PIC 99999. 
PIC 99999. 
PIC 99999. 

The PICTURE c lause itself c a n a s s u m e any o n e of four forms: PICTURE IS, 
PICTURE, PIC IS, or PIC. P a r e n t h e s e s m a y b e u s e d to s ignal repe t i t i on of a p ic ture 
type; that is, X(3) is equiva lent to XXX. Figure 4.4b is the exact equiva lent o f Figure 4.4a 
w i t h e m p h a s i s o n t h e a f o r e m e n t i o n e d flexibility. 

I n c o m i n g n u m e r i c data m a y n o t c o n t a i n actual d e c i m a l 
p o i n t s . O n first reading, that s t a t e m e n t m a y b e s o m e w h a t hard to a c c e p t . How, for 
e x a m p l e , d o e s o n e read a field c o n t a i n i n g dol lars and cents? T h e a n s w e r is an 
a s s u m e d ( impl ied) d e c i m a l po int as i l lustrated in the COBOL entry: 

05 HOURLY-RATE PICTURE IS 99V99. 
Everything is familiar e x c e p t the V e m b e d d e d in the PICTURE c lause . The V 

m e a n s a n implied decimal point, that is, HOURLY-RATE is a four-dig i t (there are 



C h a p t e r 4 The Identification, Environment, and Data Divisions 

Assumed Decimal Point 

I 
I INCOMING RECORD: DATA DiVISt 

01 INCOMING-DATA-RECORD. 
9 87165 4|3|V210 05 FIELD-A PIC 9V99. -9.87 

05 FIELD-B PIC 99V9. *• 65.4 
05 FIELD-C PIC 9. — 3 
05 FIELD-D PIC V999. *- .210 

four 9's) n u m e r i c field, w i t h t w o of the digits c o m i n g after the d e c i m a l po int . S imply 
s tated, the V ind ica te s the p o s i t i o n of the d e c i m a l po in t . 

To c h e c k y o u r unders tand ing , a s s u m e that 9 8 7 6 5 4 3 2 1 0 is f o u n d in p o s i t i o n s 
1 -10 o f an i n c o m i n g record a n d that the fo l lowing D a t a D i v i s i o n entr ies apply: 

01 INCOMING-DATA-RECORD. 
05 FIELD-A PIC 9V99. 
05 FIELD-B PIC 99V9. 
05 FIELD-C PIC 9. 
05 FIELD-D PIC V999. 

T h e v a l u e s of FIELD-A, FIELD-B, FIELD-C, a n d FIELD-D are 9.87, 65 .4 , 3 , a n d 
.210, respect ive ly , as s h o w n in Figure 4.5. FIELD-A is c o n t a i n e d in the first three 
p o s i t i o n s w i t h t w o o f the digits to the right of the d e c i m a l point . FIELD-B is c o n t a i n e d 
in the next three p o s i t i o n s (i.e., 6, 5, a n d 4) w i t h o n e digit to the right of the d e c i m a l 
po int . FIELD-C is c o n t a i n e d in p o s i t i o n 7 w i t h n o d e c i m a l p laces . Finally, FIELD-D 
is c o n t a i n e d in p o s i t i o n s 8, 9, a n d 10, w i t h all three to the right o f the d e c i m a l . 

T h e WORKING-STORAGE SECTION def ines a n y data n a m e that w a s n o t prev ious ly 
re ferenced in the FILE SECTION, that is, any data n a m e that d o e s n o t a p p e a r in a 
file. T h e WORKING-STORAGE SECTION c o n t a i n s data n a m e s t o s tore the results o f 
ca lcu la t ions , s w i t c h e s to contro l the e x e c u t i o n o f p e r f o r m e d paragraphs , a n d / o r 
da ta n a m e s to h o l d c o n s t a n t s n e e d e d b y the program. T h e WORKING-STORAGE 
SECTION will a l so de f ine var ious print l ines (a h e a d i n g , detai l , a n d / o r total l ine) 
required b y a program. 

Figure 4.6 c o n t a i n s a WORKING-STORAGE SECTION for a n e x p a n d e d vers ion 
of t h e e n g i n e e r i n g s e n i o r p r o g r a m to c o u n t the n u m b e r o f qual i f ied s t u d e n t s . 
There are s eparate record d e s c r i p t i o n s for the c o u n t e r s a n d c o n s t a n t s n e e d e d 
b y t h e program, as we l l as a s eparate record descr ip t ion (01 entry) for e a c h type 
o f pr int l ine. 

A FILLER entry de f ines a field that is n o t re ferenced e l s e w h e r e in t h e COBOL 
program. T h e layout of DETAIL-LINE, for example , b e g i n s with e ight spaces , fo l lowed 
b y t h e va lue of PRINT-NAME, an addi t iona l 10 s p a c e s , the va lue of PRINT-MAJOR, 
a n d a final se t o f 74 s p a c e s to c o m p l e t e the print l ine . T h e three fields c o n t a i n i n g 
s p a c e s are n o t r e f e r e n c e d a n y w h e r e e l s e in the p r o g r a m y e t n e e d to b e a c c o u n t e d 
f o r — h e n c e the FILLER entry. 

The w o r d FILLER is opt iona l , h o w e v e r , and c o u l d b e o m i t t e d as s h o w n in the 
def in i t ion of TOTAL-LINE. T h e entr i e s u n d e r TOTAL-LINE l o o k s trange initially, 
b u t m a k e perfect s e n s e w h e n y o u r real ize that the "missing" FILLER entr ie s are n o t 



Data Division 

WORKING-STORAGE SECTION. 

01 COUNTERS-ANO-SWITCHES. 
05 TOTAL-STUDENTS PIC 9(3) VALUE ZEROS. 
05 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES. 

PROGRAM-CONSTANTS. 
05 REQUIRED-CREDITS PIC 999 VALUE 110. 
05 REQUIRED-MAJOR PIC X(10) VALUE 'ENGINEERING 
05 REQUIRED-GPA PIC 9V99 VALUE 3.00. 

01 HEADING-LINE. 
05 FILLER PIC X(10) VALUE SPACES. 
05 FILLER PIC X(12) VALUE 'STUDENT NAME 
05 FILLER PIC X(110) VALUE SPACES. 

01 DETAIL-LINE. 
05 FILLER 
05 PRINT-NAME 
05 FILLER 
05 PRINT-MAJOR 
05 FILLER 

/ 
01 TOTAL-LINE. / 

05 PIC xT*y VALUE SPACES 
05 PIC X(14) VALUE 'TOTAL STUDENTS'. 
05 PIC X(2) VALUE SPACES. 
05 TOT-STUDENTS PIC 9(3) VALUE ZEROS. 
05 PIC X(110) VALUE SPACES. 

PIC X(8) 
PIC X(25). 
PIC X(10) 
PIC X(15). 
PIC X(74) 

VALUE SPACES. 

VALUE SPACES, 

VALUE SPACES. 
-FILLER IS OPTIONAL IN COBOL-85 

01 DASHED-LINE 
05 FILLER PIC X(132) VALUE ALL 

re ferenced in the Procedure Div i s ion , a n d h e n c e their o m i s s i o n h a s n o effect o n t h e 
r e m a i n d e r of t h e program. 

VALUE Clause T h e VALUE c lause init ial izes t h e c o n t e n t s o f a d a t a n a m e w i t h i n 
the WORKING-STORAGE SECTION a n d h a s the genera l form: 

VALUE IS literal 
Literals are of three t y p e s — n u m e r i c , n o n n u m e r i c , a n d f igurative c o n s t a n t s . 

N u m e r i c l i terals—for e x a m p l e , 110 or 3 . 0 0 — c o n t a i n a n u m b e r a n d are u s e d in 
ca lcu lat ions . N o n n u m e r i c literals, s u c h as 'ENGINEERING', c o n t a i n a character 
string a n d are e n c l o s e d in a p o s t r o p h e s or q u o t a t i o n s marks. (Addit ional rules for 
n u m e r i c a n d n o n n u m e r i c literals w e r e p r e s e n t e d in Chapter 1.) 

A figurative constant (ZERO or SPACE) is a COBOL reserved w o r d wi th a pre -
a s s i g n e d v a l u e . T h e s i n g u l a r a n d p lura l f o r m s o f a f igurat ive c o n s t a n t are 
interchangeable ; that is, o n e c a n u s e SPACE or SPACES, or ZERO, ZEROS, or ZEROES. 

Figure 4.6 The Working-Storage Section 



C h a p t e r 4 — T h e Identification, Environment, and Data Divisions 

Figurative c o n s t a n t s are not e n c l o s e d in q u o t a t i o n marks. COBOL also permi t s the 
. 1 ' <1 , , , /VI T 

U.Ofc \JL t i l l . l l l t l C U tVJ I C U C a i a UIICHCH^LCI OIX111K 
T h e VALUE c lause a s s o c i a t e d wi th a particular data n a m e m u s t be c o n s i s t e n t 

wi th the c o r r e s p o n d i n g PICTURE clause; that is, it is incorrect t o u s e a n o n n u m e r i c 
literal w i t h a n u m e r i c p ic ture c l a u s e or a n u m e r i c literal w i th a n o n n u m e r i c picture . 
Consider: 

REQUIRED-CREDITS 
REQUIRED-MAJOR 
REQUIRED-CREDITS 
REQUIRED-MAJOR 

PIC 999 VALUE 110. (valid) 
PIC X(10) VALUE 'ENGINEERING', (valid) 
PIC 999 VALUE '110'. (invalid) 
PIC X(10) VALUE ENGINEERING. (invalid) 

REQUIRED-CREDITS is de f ined as a n u m e r i c i t e m a n d m u s t h a v e a n u m e r i c va lue . 
In similar fash ion , REQUIRED-MAJOR is de f ined as a l p h a n u m e r i c a n d requires a n 
a l p h a n u m e r i c VALUE c lause . 

The tu i t ion bi l l ing p r o g r a m w a s i n t r o d u c e d in Chapter 3 i n c o n j u n c t i o n w i t h 
s tructured p r o g r a m m i n g a n d d e s i g n . T h e s t u b s program did n o t , h o w e v e r , s h o w 
the deta i l ed o u t p u t as p r e s e n t e d in the p r o g r a m m i n g spec i f i cat ions , b e c a u s e the 
object ive at that t i m e w a s o n l y to test the overall flow of the program. It is necessary , 
therefore, to return to the original spec i f i ca t ions to d e v e l o p the Identi f icat ion, 
E n v i r o n m e n t , a n d Data D i v i s i o n s . W e will, h o w e v e r , ampl i fy t h e d e v e l o p m e n t of 
the D a t a D iv i s i on by p r e s e n t i n g three figures that relate var ious por t ions of the 
p r o g r a m m i n g spec i f i ca t ions to their a s s o c i a t e d COBOL entr ies . 

Figure 4.7a d i sp lays the i n p u t record layout from the p r o g r a m m i n g speci f icat ions; 
Figure 4.7b s h o w s the c o r r e s p o n d i n g FD a n d record descript ion. STUDENT-RECORD 
c o r r e s p o n d s to t h e record as a w h o l e a n d thus is a s s i g n e d t h e level n u m b e r 0 1 . 
STUDENT-RECORD in turn is d iv ided into the subordinate fields STU-NAME (which 
is further d iv ided in to STU-LAST-NAME a n d STU-INITIALS), STU-CREDITS, STU-
UNION-MEMBER, a n d STU-SCHOLARSHIP. STUDENT-RECORD and S T U - N A M E 
are group i t e m s a n d d o n o t h a v e a PICTURE clause; all of the o t h e r data n a m e s are 
e l e m e n t a r y i t e m s a n d h a v e a PICTURE c lause . A n i m p l i e d d e c i m a l po in t a p p e a r s 
w i t h i n the PICTURE c l a u s e for STU-GPA. 

Figure 4.8a excerpts the p r o c e s s i n g spec i f i ca t ions for t h e c o m p u t a t i o n of a 
s tudent ' s bill; Figure 4 .8b s h o w s t h e a s soc ia t ed record d e s c r i p t i o n as it a p p e a r s in 
WORKING-STORAGE. T h e entr i e s in Figure 4 .8b are n o t required by COBOL per se , 
a n d are i n c l u d e d t o facil itate d o c u m e n t a t i o n a n d m a i n t e n a n c e . It w o u l d b e poss ib l e , 
for e x a m p l e , to u s e the c o n s t a n t s 200 a n d 25 in the Procedure D i v i s i o n rather t h a n 
t h e c o r r e s p o n d i n g data n a m e s PRICE-PER-CREDIT a n d UNION-FEE. T h e da ta 
n a m e s , h o w e v e r , facil itate p r o g r a m m a i n t e n a n c e ; that is, a c h a n g e in the v a l u e of a 
c o n s t a n t is eas ier to i m p l e m e n t in the Data D iv i s i on t h a n (in m u l t i p l e s t a t e m e n t s ) 
i n the Procedure Div i s ion . 

Figure 4 .9a c o n t a i n s t h e p r o g r a m m i n g spec i f i cat ions for the h e a d i n g a n d 
detai l l ines; Figure 4 .9b s h o w s t h e a s s o c i a t e d COBOL entr ies . N o t e carefully t h e 
exact c o r r e s p o n d e n c e b e t w e e n t h e COBOL entr ies a n d report layout . T h e print 
layout calls for 10 s p a c e s b e t w e e n the literals S T U D E N T NAME a n d CREDITS; t h u s 
there is a 10 p o s i t i o n FILLER entry b e t w e e n t h e s e literals w i t h i n t h e COBOL entr ies . 



The Tuition Billing Program 

Figure 4 .7 Development ot a COBOL Program (File Section) 

CREDITS UNION MEMBER 
INITIALS SCHOLARSHIP 

S T U D E N T NAME 

21 22 23 24 

G P A 

25v26 27 
L A S T 

18 19 20 21 22 23 24 

G P A 

25v26 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G P A 

25v26 27 

(a) Program Specification: 

( FD STUDENT-FILE 
RECORD CONTAINS 27 CHARACTERS. 

01 STUDENT-RECORD. 
05 STU-NAME. 

10 STU-LAST-NAME PIC X(15). 
10 STU-INITIALS PIC XX. 

05 STU-CREDITS PIC 9(2). 
05 STU-UNION-MEMBER PIC X. 
05 STU-SCHOLARSHIP PIC 9(4). 
05 STU-GPA PIC 9V99. 

(b) COBOL Entries 

i r e 4 .6 Development of a COBOL Program (Constants and Rates) 

1. Calculate tuition due at the rate of $200 per credit. 
2. The union fee is $25. 
3. Compute the activity fee based on the number of credits taken; $25 for 6 

credits or less, $50 for 7 to 12 credits, and $75 for more than 12 credits. 
4. Award a scholarship equal to the amount in the incoming record if, and 

only if, the G P A is greater than 2.5. 

(a) Excerpt from the Program Specifications 

WORKING-STORAGE SECTION. 
01 CONSTANTS-AND-RATES. 

05 PRICE-PER-CREDIT 
05 UNION-FEE 
05 ACTIVITY-FEES. 

10 1ST-ACTIVITY-FEE 
10 1ST-CREDIT-LIMIT 
10 2ND-ACTIVITY-FEE 
10 2ND-CREDIT-LIMIT 
10 3RD-ACTIVITY-FEE 

05 MINIMUM-SCHOLAR-GPA 

PIC 9(3) 
PIC 9(2) 

VALUE 200. 
VALUE 25. 

PIC 99 VALUE 25. 
PIC 99 
PIC 99 
PIC 99 
PIC 99 

VALUE 6. 
VALUE 50. 
VALUE 12. 
VALUE 75. 

PIC 9V9 VALUE 2.5. 

(b) COBOL Entries 



Chapter 4 —- Trie Identification, Environment, and Data Division 

F igu re 4,3 Development of a COBOL Program (Print Lines) 

S T U D E N T 'NAME C R E D I T S T U I T I O N U N I O N FEL ACT F E E S C H O L A R S H I P T O T A L B I L L 

XXXXXXXXXXXXXXX 9 
XX X X X X X X X XX XX X X X 

(a) Report Layout 

01 HEADING-LINE. 
05 FILLER PIC X VALUE SPACES. 
05 FILLER PIC X(12) VALUE 'STUDENT NAME 
05 FILLER PIC X(10) VALUE SPACES. 
05 FILLER PIC X(7) VALUE 'CREDITS'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(7) VALUE 'TUITION'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(9) VALUE 'UNION FEE'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(7) VALUE 'ACT FEE'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(ll) VALUE 'SCHOLARSHIP' 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(10) VALUE 'TOTAL BILL'. 
05 FILLER PIC X(48) VALUE SPACES. 

DETAIL-LINE. 
05 FILLER PIC X VALUE SPACES. 
05 DET-LAST-NAME PIC X(15). 
05 FILLER PIC X(2) VALUE SPACES. 
05 DET-INITIALS PIC X(2). 
05 FILLER PIC X(5) VALUE SPACES. 
05 DET-CREDITS PIC 9(2). 
05 FILLER PIC X(6) VALUE SPACES. 
05 DET-TUITI0N PIC 9(6). 
05 FILLER PIC X(7) VALUE SPACES. 
05 DET-UNI0N-FEE PIC 9(3). 
05 FILLER PIC X(6) VALUE SPACES. 
05 DET-ACTIVITY-FEE PIC 9(3). 
05 FILLER PIC X(8) VALUE SPACES. 
05 DET-SCHOLARSHIP PIC 9(5). 
05 FILLER PIC X(6) VALUE SPACES. 
05 DET-IND-BILL PIC 9(6). 
05 FILLER PIC X(49) VALUE SPACES. 

99 
99 

999999 
999999 

999 
999 

999 
99 9 

999)99 
999B9 

99 
99 

9999 
9999 

(b) COBOL Entries 



The Tuition Billing Program 

Figure 4.10 c o n t a i n s t h e c o m p l e t e d entr i e s for the first three d i v i s i o n s . (The 
c o m p l e t e d Procedure Div i s ion appears at the e n d of Chapter 5.) The Ident i f icat ion 
D iv i s i on is u n c h a n g e d from the s tubs program in Chapter 3 and c o n t a i n s o n l y the 
required PROGRAM-ID paragraph a n d a n o p t i o n a l AUTHOR paragraph . T h e 
E n v i r o n m e n t D iv i s i on h a s e x p a n d e d s l ight ly to i n c l u d e a n add i t iona l SELECT 
s t a t e m e n t for the print file ( l ines 10 a n d 11). 

T h e D a t a Div i s ion , however , h a s g r o w n signif icantly. The FILE SECTION 
c o n t a i n s the FD for the i n c o m i n g s t u d e n t record ( l ines 15 a n d 16) f o l l owed by the 
as soc ia t ed record descr ip t ion in l ines 17 through 24. A file descr ipt ion h a s also b e e n 
a d d e d for PRINT-FILE. N o t e , t o o , t h e c o r r e s p o n d e n c e b e t w e e n t h e SELECT 
s t a t e m e n t s in the E n v i r o n m e n t Div i s ion a n d the as soc ia t ed FD entr ies in the Data 
Div i s ion . 

T h e p r o g r a m m i n g s p e c i f i c a t i o n s cal l for m u l t i p l e c a l c u l a t i o n s for e a c h 
s tudent (tuit ion, u n i o n fee, activity fee, scholarship) as wel l as univers i ty totals for 
e a c h i tem. Each of t h e s e ca lculat ions requires a separate data n a m e in WORKING-
STORAGE to store the result. Observe , therefore, the def ini t ion of the e l ementary 
i t e m s IND-TUITION, IND-ACTIVITY-FEE, and so on, which appear t oge ther (for 
c o n v e n i e n c e ) u n d e r the g r o u p item INDIVIDUAL-CALCULATIONS (line 33). In 
s imilar fashion, the e l e m e n t a r y i t e m s UNI-TUITION, UNI-ACTIVITY-FEE, a n d s o 
on, appear u n d e r the g r o u p item UNIVERSITY-TOTALS (line 40). There is also a 
separate 01 entry to h o l d the c o n s t a n t s a n d rates required by the p r o g r a m (lines 
47-56). 

The program requires several different types of print l ines—a h e a d i n g l ine, a 
/-Jo-froil l i n o or-» A 'i tr\*o 1 I m o 0ir>K x*rt*-K o 'i iffc^i-tirit fr\»-mot T h i i c tKoro i r o c o n o r o t a HI 
uwiuu iUiV, unu ct ivy vet j. in i , v/uvn vv mi u um î ̂ ni i vy i niui. i i i u j , tuv> j ci« v.- av>puiuî  vs i 

entr ies for HEADING-LINE (l ines 58-73), DETAIL-LINE (l ines 75-92), a n d TOTAL-
LINE in l ines 107-121. N o t e , t oo , the separate entry for DASH-LINE ( l ines 94-105), 
w h i c h m a k e s u s e o f the ALL literal to e s tab l i sh a r o w of d a s h e s . Look carefully at the 
u s e of the FILLER a n d as soc ia t ed VALUE c l a u s e s in e a c h of these print l ines , to 
create the n e c e s s a r y literal in format ion , a n d the c o r r e s p o n d e n c e b e t w e e n t h e s e 
entr ies a n d the COBOL spec i f icat ions . 

F i g u r e 4 . 1 0 Identification, Environment, and Data Divisions for Tuition Billing Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. TUITI0N5. 
3 AUTHOR. CAROL VAZQUEZ VILLAR. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
/ r l LC-tuii i r\ui_. 

8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR05\TUITI0N.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 

file://'A:/CHAPTR05/TUITI0N.DAT'


C h a p t e r 4 — The Identification, Environment, and Data Divisions 

Figure 4 , 1 0 Identification, Environment, and Data Divisions for Tuition Billing Program (continued) 

13 DATA DIVISION. 
14 FILE SECTION. 
15 FD STUDENT-FILE 
16 RECORD CONTAINS 27 CHARACTERS. 
17 01 STUDENT-RECORD. 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

18 05 STU-NAME. 
19 10 STU-LAST-NAME PIC X(15). 
20 10 STU-INITIALS PIC XX. 
21 05 STU-CREDITS PIC 9(2). 
22 05 STU-UNION-MEMBER PIC X. 
23 05 STU-SCHOLARSHIP PIC 9(4). 
24 05 STU-GPA PIC 9V99. I 

'SiU-NAME is a group item with two elementary item 

s implied decimal point 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS. 

01 PRINT-LINE PIC X(132). 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES. 

01 INDIVIDUAL-CALCULATIONS. 
05 IND-TUITI0N 
05 IND-ACTIVITY-FEE 
05 IND-UNI0N-FEE 
05 IND-SCHOLARSHIP 
05 IND-BILL 

PIC 9(4) VALUE ZEROS. 
PIC 9\2/ VALUE ZEROS. 
PIC 9(2) VALUE ZEROS. 
PIC 9(4) VALUE ZEROS. 
PIC 9(6) VALUE ZEROS. 

PIC 9(6) VALUE ZEROS. 
PIC 9(4) VALUE ZEROS. 
PIC 9(4) VALUE ZEROS. 
PIC 9(6) VALUE ZEROS. 
PIC 9(6) VALUE ZEROS. 

PIC 9(3) VALUE 200. 
PIC 9(2) VALUE 25. 

PIC 99 VALUE 25. 
PIC 99 VALUE 6. 
PIC 99 VALUE 50. 

99 VALUE 12. 
PIC 99 VALUE 75. 
PIC 9V9 VALUE 2.5. 

- VALUE clauses initialize data names 

01 UNIVERSITY-TOTALS. 
05 UNI-TUITION 
05 UNI-UNION-FEE 
05 UNI-ACTIVITY-FEE 
05 UNI-SCHOLARSHIP 
05 UNI-IND-BILL 

01 CONSTANTS-AND-RATES. 
05 PRICE-PER-CREDIT 
05 UNION-FEE 
05 ACTIVITY-FEES. 

10 1ST-ACTIVITY-FEE 
10 1ST-CREDIT-LIMI1 
10 2ND-ACTIVITY-FEE 
1U CnU-^kWL I-LlHi I 

10 3RD-ACTIVITY-FEE 
05 MINIMUM-SCHOLAR-GPA 

-Separate areas for heading and detail lines 
01 HEADING-LINE. 

05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 

PIC X 
PIC X(12) 
PIC X(10) 
PIC X(7) 

VALUE SPACES. 
VALUE 1 STUDENT NAME' 
VALUE SPACES. 
VALUE 'CREDITS'. 



The Tuition Bitting Program 

' ^ o. i J (continued) 

63 05 FILLER 
64 05 FILLER 
65 05 FILLER 
66 05 FILLER 
67 05 FILLER 
68 05 FILLER 
69 05 FILLER 
70 05 FILLER 
71 05 FILLER 
72 05 FILLER 
73 05 FILLER 
74 

[75. 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
?L 

\W 

95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 ~ 
109 
110 
111 
112 

PIC X(2) 
PIC X(7) 
PIC X(2) 
PIC X(9) 
PIC X(2) 
PIC X(7) 
PIC X(2) 
PIC X(ll) 
PIC X(2) 
PIC X(10) 
PIC X(48) 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

SPACES. 
'TUITION'. 
SPACES. 
'UNION FEE'. 
SPACES. 
'ACT FEE'. 
SPACES. 
'SCHOLARSHIP'. 
SPACES. 
'TOTAL BILL'. 
SPACES. 

01 DETAIL-LINE. 

01 

05 FILLER PIC X VALUE SPACES 
05 DET-LAST-NAME PIC X(15) 
05 FILLER PIC X(2) VALUE SPACES 
05 DET-INITIALS PIC X(2). 
05 FILLER PIC X(5) VALUE SPACES 
05 DET-CREDITS D T P QfO\ 

05 FILLER PIC X(6) VALUE SPACES 
05 DET-TUITION PIC 9(6). 
05 FILLER PIC X(7) VALUE SPACES 
05 DET-UNION-FEE 
05 FILLER PIC X(6) VALUE SPACES 
05 DET-ACTIVITY-FEE PIC 9(3). 
05 FILLER PIC X(8) VALUE SPACES 
05 DET-SCHOLARSHIP PIC 9(5). 
05 FILLER PIC X(6) VALUE SPACES 
05 DET-IND-BILL PIC 9(6). 
05 FILLER PIC X(49) VALUE SPACES 

areas tor dash and total lines 01 DASH-LINE. 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 

05 
05 

TOTAL-LINE. 
FILLER 
FILLER 

VALUE 'U 
05 FILLER 
05 TOT-TUITION 

PIC X(31) VALUE SPACES. 
PIC X(8) VALUE ALL '-' 
PIC X(2) VALUE SPACES. 
PIC X(8) VALUE ALL '-' 
PIC X(2) VALUE SPACES. 
PIC X(7) VALUE ALL •-' 
PIC X(6) VALUE SPACES. 
PIC X(7) VALUE ALL '-' 
PIC X(5) VALUE SPACES. 
PIC X(7) VALUE ALL '-' 
PIC X(49) VALUE SPACES. 

PIC X(8) VALUE SPACES. 
PIC X(17) 
TOTALS'. 

PIC X(8) VALUE SPACES. 
PIC 9(6). 



C h a p t e r 4 
The Identification, Environment, and Data Divisions 

Figure 4.10 (continued) 

113 05 FILLER PIC X(6) VALUE SPACES. 
114 05 TOT-UNION-FEE PIC 9(4). 
115 05 FILLER PIC X(5) VALUE SPACES. 
116 05 TOT-ACTIVITY-FEE PIC 9(4). 
117 05 FILLER PIC X(7) VALUE SPACES. 
118 05 TOT-SCHOLARSHIP PIC 9(6). 
119 05 FILLER PIC X(6) VALUE SPACES. 
120 05 TOT-IND-BILL PIC 9(6). 
121 05 FILLER PIC X(49) VALUE SPACES. 

The CONFIGURATION SECTION, SOURCE-COMPUTER, and OBJECT-
COMPUTER entries are optional in COBOL-85 but are required in COBOL-
74. The LABEL RECORDS clause is optional in COBOL-85 but is required in 
COBOL-74. 

The BLOCK CONTAINS clause is optional in both compilers, but its 
omission has different effects. Omitting the clause in COBOL-85 causes the 
system to take the blocking factor from the operating environment (and is 
equivalent to the IBM entry BLOCK CONTAINS 0 RECORDS). Omission of 
the clause in COBOL-74 defaults to the implementor-designated number, 
regardless of what was specified in the control statements to the operating 
system. 

COBOL-85 allows two new relationships, GREATER THAN OR EQUAL 
TO and LESS THAN OR EQUAL TO, in the condition portion of an IF statement. 
These were not allowed in COBOL-74, which used NOT LESS THAN as the 
equivalent of GREATER THAN OR EQUAL TO. 

The word FILLER is optional in COBOL-85, whereas it is required in 
COBOL-74. 

SUMMARY 

Points to Remember 

I I COBOL notation is the standardized form used to express permissible 
COBOL formats. Uppercase letters indicate COBOL reserved words, 
whereas lowercase letters denote programmer-supplied information. 
Brackets [ ] imply an optional entry, whereas braces { } indicate a choice 
between required entries. Any underlined item is required. 

The PROGRAM-ID paragraph is the only required entry in the Identification 
Division; the AUTHOR paragraph is strongly recommended. The 



Environment Division contains the FILE-CONTROL paragraph that defines 
the files used in a program through SELECT statements. 

The FILE SECTION contains a file description for every file previously 
defined in a SELECT statement in the Environment Division. The file 
description is followed by a record description to describe the fields within 
a file. 

The PICTURE clause indicates the size and type of a data name. An 
elementary item always has a PICTURE clause, whereas a group item 
does not. Level numbers assume values from 01 to 49 inclusive, with 01 
assigned to the record as a whole. Level numbers need not be assigned 
consecutive values. 

The WORKING-STORAGE SECTION contains additional record descriptions 
for data names not found in the FILE SECTION. VALUE clauses assign an 
initial value to a data name of a numeric literal, a nonnumeric literal, or a 
figurative constant. 

Key Words and Concepts 

Alphanumeric item 
Assumed (implied) decimal point 
Blocking factor 
Braces 
Brackets 
COBOL notation 
Detail line 
Elementary item 
Figurative constant 
File description 

Group item 
Heading line 
Level numbers 
Logical record 
Numeric item 
Physical record 
Record description 
Size 
Total line 
Type 

COBOL Elements 

ALL 
ASSIGN 
AUTHOR 
BLOCK CONTAINS 
DATA RECORD IS 
DATE-COMPILED 
DATE-WRITTEN 
FD 
FILE SECTION 
FILE-CONTROL 
FILLER 
INPUT-OUTPUT SECTION 

INSTALLATION 
LABEL RECORDS 
PICTURE 
PROGRAM-ID 
RECORD CONTAINS 
SECURITY 
SELECT 
SPACES 
VALUE 
WORKING-STORAGE SECTION 
ZEROS 



C h a p t e r 4 The Identification, Environment, and Data Divisions 

F I L L - I N 

1. The Division is the first division in a COBOL program. 

2. The paragraph is the only required entry in the Identification 
Division. 

3. In the COBOL notation, indicate that one of the enclosed elements 
must be included. 

4. Required reserved words are written in letters and are 

5. Lowercase letters indicate information. 

6. The Environment Division contains sections. 

7. The statement ties a programmer-chosen file name to a system 

name. 

8. A item is divided into one or more elementary items. 

9. An elementary item always has a clause. 

10. Level numbers appearing under a 01 record may range from to 

11 . The Data Division contains the and sections. 

12. The presence of a V in a numeric picture indicates an , decimal 

point. 

13. Incoming numeric fields (may/may not) contain an actual decimal point. 

14. denotes a field that is not referenced by name. 

15. The specifies the number of 
records in one record. 

TRUE/FALSE 

1. The Identification Division may contain up to six paragraphs. 

2. The PROGRAM-ID paragraph is the only required paragraph in the Identification 
Division. 

3. Square brackets indicate a required entry. 

4. Braces imply that one of the enclosed entries must be chosen. 

5. A COBOL program that runs successfully on a PC would also run successfully on a 
mainframe with no modification whatever. 

6. A level number may assume any value from 01 to 49. 

7. A 01-level entry cannot have a PICTURE clause. 

8. All elementary items have a PICTURE clause. 

9. A group item may have a PICTURE clause. 

10. 01-level entries may appear in both the File and Working-Storage Sections of the 
L j a i a [ _ J I V I O I V _ M r. 



PROBLEMS 

11. A data name at the 10 level will always be an elementary item. 
12. A data name at the 05 level may or may not have a PICTURE clause. 
13. PICTURE, PICTURE IS, PIC, and PIC IS are all acceptable forms of the PICTURE 

clause. 
14. PICTURE IS 9(3) and PICTURE IS 999 are equivalent entries. 
15. The File Section is required in every C O B O L program. 
16. An incoming numeric field may contain an actual decimal point. 
17. The R E C O R D CONTAINS clause is required in an FD. 

1. Consider the accompanying time card. Show an appropriate record description for 
this information in C O B O L ; use any PICTURE clauses you think appropriate. 

Time-Record 

Name Number Date Hours 

First Middle Last 

Number 

MO DA 
f 

YR 

Hours 

2. In which division(s) do you find the 
a. PROGRAM-ID paragraph? 
b. FILE-CONTROL paragraph? 
c. CONFIGURATION SECTION? 
d. W O R K I N G - S T O R A G E SECTION? 
e. FILE SECTION? 
f. FD's? 
g. A U T H O R paragraph? 

h. DATE-COMPILED paragraph? 
i. INPUT-OUTPUT SECTION? 
j. File names? 
k. Level numbers? 
I. SELECT statements? 
m. V A L U E clauses? 
n. PICTURE clauses? 

3. Given the following record layout: 
01 EMPLOYEE-RECORD. 

05 SOC-SEC-NUMBER PIC 9(9). 
05 EMPLOYEE-NAME. 

10 LAST-NAME PIC X(12). 
10 FIRST-NAME PIC X(10). 
10 MIDDLE-INIT PIC X. 

05 FILLER PIC X. 
05 BIRTH-DATE. 

10 BIRTH-MONTH PIC 99. 
10 BIRTH-DAY PIC 99. 
10 BIRTH-YEAR PIC 99. 

05 FILLER PIC X(3). 



C h a p t e r 4 The Identification, Environment, and Data Divisions 

05 EMPLOYEE-ADDRESS. 
1 A mi tUDcn_ AMrv„CTDircT 

15 HOUSE-NUMBER 
15 STREET-NAME 

PIC X(6). 
PIC X(10). 

10 CITY-STATE-ZIP. 

05 FILLER 

15 CITY 
15 STATE 
15 ZIP 

PIC X(10). 
PIC X(4). 
PIC 9(5). 
PIC X(3). 

a. List all group items. 
b. List all elementary items. 
c. State the record positions in which the following fields are found: 

• SOC-SEC-NUMBER 
« EMPLOYEE-NAME 
• LAST-NAME 
• FIRST-NAME 
« MIDDLE-INIT 
» BIRTH-DATE 
• BIRTH-MONTH 
• BIRTH-DAY 
• BIRTH-YEAR 
• EMPLOYEE-ADDRESS 
s NUMBER-AND-STREET 
• HOUSE-NUMBER 
• STREET-NAME 
K CITY-STATE-ZIP 
s CITY 
« STATE 
. Z |p 

4. Given the following record layout (assume that FIELD-I is the last entry under 
FIELD-A), 

01 FIELD-A 
05 FIELD-B 

10 FIELD-C 
10 FIELD-D 

05 FIELD-E 
05 FIELD-F 

10 FIELD-G 
10 FIELD-H 
10 FIELD-I 

answer true or false. 
a. FIELD-C is an elementary item. 
b. FIELD-E is an elementary item. 
c. FIELD-E should have a picture. 
d. FIELD-F should have a picture. 
e. FIELD-B must be larger than FIELD-C. 
f. FIELD-C must be larger than FIELD-D. 
g. FIELD-C must be larger than FIELD-H. 



h. FIELD-B and FIELD-D end in the same column. 
i. FIELD-A and FIELD-i end in the same column, 
j. FIELD-E could be larger than FIELD-F. 
k. FIELD-D could be larger than FIELD-E. 
I. FIELD-F and FIELD-G start in the same column. 

5. Use the C O B O L notation introduced at the beginning of the chapter and the 
general format of the FD entry to determine whether the following are valid FD 
entries. 
a. FD EMPLOYEE-FILE. 
b. FD EMPLOYEE-FILE 

BLOCK CONTAINS 10 RECORDS 
RECORD CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS EMPLOYEE-RECORD. 

C . FD EMPLOYEE-FILE 
BLOCK 10 RECORDS 
RECORD 100 CHARACTERS 
LABEL RECORDS STANDARD 
DATA RECORD EMPLOYEE-RECORD. 

6. indicate whether each of the following entries is speiied correctly and whether it is 
syntactically valid. 
a. E N V I R O N M E N T DIVISION 
b. WORKING-STORAGE-SECTION 
c. IDENTIFICATION-DIVISION 
d. WRITTEN-BY 
e. DATA-DIVISION 
f. FILE SECTION 
g. P R O G R A M ID 
h. DATE-WRITTEN 
i. DATE-EXECUTED 
j. INPUT-OUTPUT SECTION 
k. FILE-CONTROL SECTION 
I. D A T E DIVISION 
m. C O M M E N T S 





Overview 
©PE&§ 
C L O S E 
READ 

Placement of the READ Statement 
WRITE 

STOP R U N 
M O V E 

Restrictions on the MOVE Statement 
Alphanumeric Field to 

Alphanumeric Field 
Numeric Field to Numeric Field 
Group Moves 

P E R F O R M 
I F 

The ELSE Clause 
Indentation 

E V A L U A T E 
A r i t h m e t i c S t a t e m e n t s 

The ROUNDED Clause 
The SIZE ERROR Clause 
COMPUTE 
ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
Programming Tip: Use the 

COMPUTE Statement 
Assumed Decimal Point 

T h e Tu i t ion Bi l l ing P r o g r a m 
Test Data 
Hierarchy Chart 

C O B O L P r o g r a m S k e l e t o n 
Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r S The Procedure Division 

OBJECTIVES 

After reading this chapter you will be able to: 

M Write the OPEN, CLOSE, READ, and WRITE statements necessary for 
sequential file processing. 

I§ Describe the purpose of the priming (initial) READ statement, and place it 
correctly in the Procedure Division. 

• Discuss the rules of the MOVE statement as they apply to numeric and 
alphanumeric fields. 

M Describe the PERFORM statement; show how this statement is used to 
process a file until all of its records have been read. 

i £ Describe the IF statement and how it is used with and without an ELSE 
clause; explain the significance of the END-IF scope terminator. 

* Use the EVALUATE statement to implement a case (multibranch) construct. 

H State the hierarchy of operations for a COMPUTE statement; describe the 
individual arithmetic statements, ADD, SUBTRACT, MULTIPLY, and DIVIDE. 

M Describe the ROUNDED and SIZE ERROR options as they apply to any of 
the arithmetic statements. 

B Explain the relationship between a Procedure Division and its associated 
hierarchy chart. 

OVERVIEW 

This is a long chapter—the longest in the text. It focuses on the Procedure 
Division, which is the portion of a COBOL program that contains the logic. The 
chapter is long because it presents the many statements needed to write a basic 
program such as the tuition billing program introduced in Chapter 3. 

We begin with the COBOL statements used for I/O (input/output) operations; 
OPEN, CLOSE, READ, and WRITE, and continue with the STOP RUN statement 
to terminate program execution. We learn about the PERFORM statement to 
implement a loop, the IF statement to implement the selection structure, and the 
EVALUATE statement to implement a case structure. We study the MOVE 
statement to copy data from one location to another and end with the arithmetic 
statements: COMPUTE, ADD, SUBTRACT, MULTIPLY, and DIVIDE. 

The chapter concludes with the completed COBOL listing for the tuition 
billing program of Chapter 3. 

OPEN The OPEN statement initiates process ing for a file. It indicates the nature of the file 
(input or output) and ensures that a specific device is available for the I/O operations. 
The OPEN s tatement also performs validation functions in conjunct ion with the LABEL 



RECORDS clause of the FD; for example, if label records are specified for an input file, 
the OPEN" statement checks the header label of that file to ensure that the proper file is 
a v a i l a b l e for p r o c e s s i n g . An a b b r e v i a t e d f o r m a t of t h e OPEN s t a t e m e n t is: 

If INPUT 1 
OPEN \\ } file-name-1 . . 

(OUTPUT] 
T h e syntax of the OPEN s t a t e m e n t ind ica tes a m a n d a t o r y s e l e c t i o n for the 

type of f i le—INPUT is u s e d for a file that is read, w h e r e a s O U T P U T is u s e d for a file 
that is wri t ten to. T h e brackets a n d el l ipsis a s s o c i a t e d w i t h f i l e -name-2 imply that 
mul t ip l e files c a n b e o p e n e d in the s a m e s t a t e m e n t as w a s d o n e in l ines 4 3 a n d 4 4 of 
t h e e n g i n e e r i n g sen ior program in Figure 1.6: 

OPEN INPUT STUDENT-FILE 
OUTPUT PRINT-FILE. 

Each file re ferenced in a n OPEN s t a t e m e n t m u s t have b e e n prev ious ly de f ined in a 
SELECT s t a t e m e n t in the E n v i r o n m e n t Div i s ion , a n d in a c o r r e s p o n d i n g FD in the 
D a t a Div i s ion . All files m u s t b e o p e n e d before they c a n b e a c c e s s e d ; t h e operat ing 
s y s t e m will t e rminate e x e c u t i o n o f a COBOL program that a t t e m p t s to read (or 
write) a n u n o p e n e d file. 

C L O S E The CLOSE statement is executed w h e n access to a file is no longer necessary, such as 
w h e n all records have been read from an input file or w h e n all records have been written 
to an output file. The CLOSE statement releases the I/O devices associated with the file; 
it also writes trailer labels at the end of files o n disk or tape in conjunct ion with the 
LABEL RECORDS clause of the FD. All o p e n files should be closed before processing 
terminates. The format of the CLOSE is simply: 

CLOSE f i l e -name-1 [, f i l e -name-2 . . . ] 

T h e brackets a n d el l ipsis a s s o c i a t e d w i t h f i l e -name-2 ind ica te that mul t ip l e 
files c a n b e c l o s e d in the s a m e s t a t e m e n t . T h e type of file, INPUT or O U T P U T , is n o t 
spec i f ied w h e n the file is c l o s e d b e c a u s e the d i s t inc t ion b e t w e e n i n p u t a n d o u t p u t 
is n o longer important . Lines 51 a n d 52 in the e n g i n e e r i n g sen ior program prov ide 
a n example : 

CLOSE STUDENT-FILE 
PRINT-FILE. 

A CLOSE s t a t e m e n t c a n a p p e a r a n y w h e r e w i t h i n a p r o g r a m but typical ly a p p e a r s 
i m m e d i a t e l y be fore the p r o g r a m terminates , that is, i m m e d i a t e l y b e f o r e the STOP 
R U N s t a t e m e n t . 

READ The READ statement transfers data from an o p e n file into memory, provided a record is 
available. If, however, no record is present—that is, the end-of-file condi t ion has b e e n 
reached—control passes to the statement(s) following the AT END clause. An abbreviated 
format of the READ statement is s h o w n below: 

nmu i i i e-nanie 
AT END statement 

[END-READl 



C h a p t e r 5 The Procedure Division 

T h e END-READ s c o p e terminator is opt ional but strongly r e c o m m e n d e d . T h e READ 
s t a t e m e n t is i l lustrated in l ines 4 5 - 4 7 of the e n g i n e e r i n g s e n i o r program. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 

Placement ©f the R E A D Statement 

T h e e n g i n e e r i n g s e n i o r p r o g r a m in Figure 1.6 c o n t a i n e d t w o d i s t i n c t READ 
s t a t e m e n t s . There w a s a n initial, or pr iming, READ in l ines 4 5 - 4 7 and a s e c o n d 
READ s t a t e m e n t as the last ins truct ion of the per formed paragraph ( l ines 6 5 - 6 7 ) . 
The neces s i ty for both s t a t e m e n t s is e x p l a i n e d b y c o n s i d e r i n g Figure 5 .1 , w h i c h 
s h o w s correct a n d incorrect w a y s to p r o c e s s a file of transact ions . 

Figure 5.1a, the incorrect i m p l e m e n t a t i o n , c a u s e s the last record of INPUT-
FILE to b e p r o c e s s e d twice . To s e e h o w this h a p p e n s , c o n s i d e r a file w i th on ly two 
records , A a n d B, real iz ing that s u c h a file is read three t i m e s — o n c e for e a c h record 
and o n c e to s e n s e the e n d of file. Realize, too , that the PERFORM s t a t e m e n t eva luates 
the UNTIL c o n d i t i o n before branch ing (a deta i l ed d e s c r i p t i o n of the PERFORM 
s t a t e m e n t is f o u n d in a n u p c o m i n g sec t ion) . 

In Figure 5.1a, record A is read the first t i m e PROCESS-RECORDS is performed, 
wi th e x e c u t i o n c o n t i n u i n g t h r o u g h the r e m a i n d e r of the PROCESS-RECORDS 
paragraph, at w h i c h p o i n t DATA-REMAINS-SWITCH is still s e t to 'YES'. H e n c e , 
PROCESS-RECORDS is e x e c u t e d a s e c o n d t ime , dur ing w h i c h t i m e it reads a n d 
p r o c e s s e s record B. S i nce DATA-REMAINS-SWITCH is still set to 'YES', PROCESS-
RECORDS is e x e c u t e d a third t ime , dur ing w h i c h the end-of - f i l e c o n d i t i o n is s e n s e d 
i m m e d i a t e l y . Execut ion c o n t i n u e s , however , to the e n d o f the paragraph, c a u s i n g 
the last record (record B) to b e p r o c e s s e d twice . 

In the correct i m p l e m e n t a t i o n of Figure 5.1b, a n initial (priming) READ is 
e x e c u t e d before per forming the paragraph PROCESS-RECORDS, w h i c h also c o n t a i n s 
a READ s t a t e m e n t . T h e first t i m e PROCESS-RECORDS is per formed , it p r o c e s s e s 
record A, a n d its last s t a t e m e n t reads record B. S ince DATA-REMAINS-SWITCH is 
still set to 'YES', PROCESS-RECORDS is e x e c u t e d a s e c o n d t i m e to p r o c e s s record B, 
wi th the e n d i n g READ s t a t e m e n t s e n s i n g the end-of-f i le c o n d i t i o n . DATA-REMAINS-
SWITCH is se t to 'NO', w h i c h in turn t erminate s the PERFORM s t a t e m e n t . 

WRITE The WRITE statement transfers data from m e m o r y to the printer (or other o p e n output 
device). Consider: 

WRITE record-name 

AFTER 
[BEFOREj ADVANCING 

integer 
PAGE 

LINE 
LINES 

The ADVANCING o p t i o n contro l s the l ine s p a c i n g o n a printer; for e x a m p l e , 
spec i f i cat ion of AFTER ADVANCING 3 LINES p r o d u c e s triple s p a c i n g (the printer 
skips t w o l ines a n d wri tes o n the third). Converse ly , s p e c i f i c a t i o n of the BEFORE 
o p t i o n first wri tes the l ine, t h e n skips t h e d e s i g n a t e d a m o u n t . Spec i f icat ion o f 



WRITE 

PREPARE-TUITION-REPORT. 

MOVE 'YES' TO DATA-REMAINS-SWITCH. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 

PROCESS-RECORDS. / Hrst statement or performed paragraph is the REAU 

READ INPUT-FILE | , 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH Y 

END-READ. 

(a) Incorrect Implementation 

PREPARE-TUITION-REPORT. 

MOVE 'YES' TO DATA-REMAINS-SWITCH. irnmi READ is mmciAeci once and only once 

READ INPUT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 

PROCESS-RECORDS. 

, Last statement o' performed paragraph is another READ 

READ INPUT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 

(b) Correct If 

F i » u . * 6 « Placement of the READ Statement 



Chapter 5 The Procedure Division 

PAGE, in l ieu of LINES, will c a u s e o u t p u t to b e g i n o n top of a n e w page . O m i s s i o n of 
the ADVANCING o p t i o n defaults to s ingle spac ing . The e x a m p l e s b e l o w 

WRITE PRINT-LINE. 
WRITE PRINT-LINE 

AFTER ADVANCING 2 LINES. 
WRITE PRINT-LINE 

AFTER ADVANCING PAGE. 
will s ing le space , d o u b l e space , a n d a d v a n c e to the t o p of a n e w page , respect ive ly . 

T h e WRITE s t a t e m e n t c o n t a i n s a record n a m e , w h e r e a s t h e READ s t a t e m e n t 
c o n t a i n s a file n a m e . The record n a m e in the WRITE s t a t e m e n t will a p p e a r as a 01 
entry in the File S e c t i o n of the D a t a Div i s ion . T h e file in w h i c h it is c o n t a i n e d will 
a p p e a r in SELECT, FD, OPEN, a n d CLOSE s t a t e m e n t s . 

The format of the STOP RUN statement is simply: 

STOP RUN 
T h e STOP R U N s t a t e m e n t t e r m i n a t e s e x e c u t i o n of a COBOL p r o g r a m a n d returns 
control to the operating system. [STOP R U N need not be (and typically is not) the 
last phys ica l s t a t e m e n t in the program.] All files s h o u l d b e c l o s e d prior to e x e c u t i n g 
the STOP R U N s t a t e m e n t . 

T h e MOVE s t a t e m e n t c o p i e s data from o n e l oca t ion to another ; for e x a m p l e , the 
s t a t e m e n t MOVE A TO B c o p i e s the va lue in l o c a t i o n A to l o c a t i o n B. The va lue of A 
is in t w o p laces after the m o v e h a s taken p lace , w h i l e the init ial va lue o f B is g o n e 
(having b e e n r e p l a c e d b y the v a lue of A). T h e syntax of the MOVE s t a t e m e n t is: 

[ i d e n t i f i e r - ll r , MOVE { )• TO i d e n t i f i e r-2 i d e n t i f i e r-3 . . .  
[ l i t e r a l-1 j ~ L J 

Cons ider the fo l l owing e x a m p l e s : 

1. MOVE200 TO PRICE-PER-CREDIT. 

2. MOVE 'ABC UNIVERSITY' TO SCHOOL-NAME. 

3. MOVE S T U - N A M E TO PRINT-NAME. 

4. MOVE ZEROS TO TOTAL-NUMBER. 

5. MOVE SPACES TO PRINT-LINE. 

Example o n e m o v e s a n u m e r i c literal, 200, to the da ta n a m e PRICE-PER-
CREDIT. Example t w o m o v e s a n o n n u m e r i c literal, 'ABC UNIVERSITY', to SCHOOL-
NAME. E x a m p l e three c o p i e s data from a n i n p u t area to a n o u t p u t area for 
s u b s e q u e n t print ing. E x a m p l e s four a n d five u s e t h e f igurative c o n s t a n t s , ZEROS 
a n d SPACES, to init ial ize a c o u n t e r and print l ine, respect ive ly . 

T h e brackets and e l l ips is a s s o c i a t e d w i t h identifier-3 in t h e COBOL syntax 
ind ica te the s a m e i t e m c a n b e m o v e d to mul t ip l e data n a m e s . Thus t h e s ingle 
s ta t ement : 

MOVE 10 TO FIELD-A FIELD-B FIELD-C. 



is equiva lent to the three individual s ta tements : 

MOVE 10 TO FIELD-A. 
MOVE 10 TO FIELD-B. 
MOVE 10 TO FIELD-C. 

The results of a MOVE s t a t e m e n t d e p e n d o n the type of data in the s e n d i n g a n d / o r 
rece iv ing field. W e c o n c e n t r a t e ini t ia l ly o n MOVE s t a t e m e n t s i n v o l v i n g o n l y 
e l e m e n t a r y i t ems , s ince t h e s e s t a t e m e n t s are by far the m o s t c o m m o n . Recall ( from 
Chapter 4) that e l e m e n t a r y data i t e m s m a y b e of four types: 

N u m e r i c N u m e r i c data i t ems , n u m e r i c literals, and the figurative 
cons tant s , ZERO, ZEROS, or ZEROES. 

Alphabet ic Alphabet ic data i t e m s and the figurative cons tant s , 
SPACE a n d SPACES 

A l p h a n u m e r i c A l p h a n u m e r i c data i t ems , n o n n u m e r i c literals and the 
figurative cons tant s , SPACE and SPACES 

N u m e r i c Edited Numeric ed i ted data i tems (to be discussed in Chapter 7) 

In theory a MOVE s ta tement could involve any combinat ion of these four 
types; in actuality, however , certain types of m o v e s are not permi t ted as ind ica ted 
by Table 5.1. (You d o n o t h a v e to c o m m i t the table to m e m o r y ; s imply b e aware that 
certain restr ict ions exist, a n d k n o w w h e r e to turn s h o u l d q u e s t i o n s arise later.) 

i Rules of the MOVE Statement (Elementary Data Items) 

A l p h a b e t i c Valid Valid Invalid Invalid 

A l p h a n u m e r i c Invalid Valid Invalid Invalid 

N u m e r i c Invalid Integers only Valid Valid 

N u m e r i c E d i t e d Invalid Valid Valid Invalid 

At first g lance Table 5.1 s e e m s o v e r w h e l m i n g , but a s e c o n d l o o k s h o w s it to 
m a k e intuit ive s e n s e . You c a n n o t , for e x a m p l e , m o v e a n a l p h a n u m e r i c field to an 
a lphabet i c field ( b e c a u s e the a l p h a n u m e r i c field m a y c o n t a i n n u m b e r s , w h i c h are 
invalid in a n a lphabet i c field). You can , h o w e v e r , d o the m o v e in t h e o p p o s i t e 
direct ion; that is, y o u c a n m o v e a n a lphabet i c field to a n a l p h a n u m e r i c field. 

Even Table 5.1 d o e s n o t tell u s everyth ing w e n e e d to k n o w a b o u t the MOVE 
s ta tement . What h a p p e n s , for example , w h e n m o v e s wi th like fields (an a l p h a n u m e r i c 
s e n d i n g field to an a lphanumer ic receiving field) involve PICTURE c l a u s e s of different 
lengths? Addi t ional exp lanat ion is required as e x p l a i n e d in the next t w o sec t ions . 

Data moved from an alphanumeric field to an alphanumeric field are moved one 
character at a time from left to right. If the rece iv ing field is larger t h a n the s e n d i n g 
field, it is p a d d e d o n the right w i t h blanks; if the rece iv ing field is sma l l er than the 
s e n d i n g field, the r ightmost characters are truncated . 

A l p h a n u m e r i c m o v e s are i l lustrated in Table 5.2. Example (a) is trivial, in that 
the s e n d i n g a n d rece iv ing fields h a v e the s a m e picture c lause . In e x a m p l e (b) the 
s e n d i n g field is o n e character l onger than the rece iv ing field; h e n c e t h e r ightmos t 



Chapter 5 The Procedure Division 

character is truncated . D a t a are m o v e d from left to right o n e character at a t ime; 
thus A, B, C, a n d D are m o v e d in that order, a n d E is d r o p p e d . In e x a m p l e (c), 
however , the rece iv ing field is o n e character l onger t h a n the s e n d i n g field. A, B, C, 
D , a n d E are m o v e d in that order, a n d a b lank is a d d e d at the right. 

T A B L E 5 , 2 Illustration of the MOVE Statement: Alphanumeric Sending Field to 
Alphanumeric Receiving Field 

M C T O T R E 

(a) X(5) 

C O N T E N T S 

(b) 

(c) 

X(5) 

X(5) 

A B C [ D j E 
A B I C D E 
A B C 

• I C T I J H E 

X(5) 

X(4) 

X(6) 

f E M T S 

A B C | D E 

A j B C D 

A B C D E 

All moves involving numeric fields maintain decimal alignment. If the integer port ion 
of the rece iv ing field is larger t h a n that of the s e n d i n g field, h igh-order (insignificant) 
zeros are added to the receiving field. If, however, the integer por t ion of the receiving 
field is smal ler than that of the s e n d i n g field, the h igh-order (significant) digits of 
the s e n d i n g field are t runcated . 

In s imilar fa sh ion if the d e c i m a l p o r t i o n of the rece iv ing field is larger t h a n 
that of the s e n d i n g field, l o w - o r d e r zeros are a d d e d . A n d finally, if the d e c i m a l 
p o r t i o n o f the rece iv ing field is smal ler than that of t h e s e n d i n g field, the extra 
p o s i t i o n s are t runcated . T h e s e p o i n t s are clarified in Table 5.3. 

Illustration of the MOVE Statement: Numeric Sending Field to 
Numeric Receiving Field 

P I C T U R E c - i. 

(a) 9(5) 1 2 3 4 5 9(5) 1 2 3 4 5 

(b) 9(5) 1 2 3 4 5 9(4) 2 3 4 5 

(c) 9(5) 2 3 4 5 9(6) 0 1 2 3 4 5 
V 

(d) 9(3)V99 1 2 3 4 1 5 9(3) 1 2 3 
— v — 

(e) 9(3)V99 
1 

1 2 3 4 5 9V99 3 4 5 
V 

(f) 9(3) 1 2 3 9(3)V99 1 2 3 0 0 

E x a m p l e (a) is trivial. E x a m p l e (b) a t t e m p t s to m o v e a five-position field to a 
four -pos i t ion field. S i n c e d e c i m a l a l i g n m e n t is a lways m a i n t a i n e d , t h e l e f tmost 
digit (i.e., the most significant digit) is t runcated . Example (c) m o v e s a five-position 
s e n d i n g field t o a s i x - p o s i t i o n rece iv ing field, c a u s i n g the a d d i t i o n o f a l e a d i n g 
(nons igni f icant) zero . T h e s e n d i n g field in e x a m p l e (d) h a s t w o digits after the 
d e c i m a l po in t , b u t the rece iv ing field h a s n o n e . H e n c e t h e 4 a n d 5 d o n o t a p p e a r in 
the rece iv ing field. E x a m p l e (e) t runcates the m o s t s igni f icant digits . E x a m p l e (f) 
a d d s two n o n s i g n i f i c a n t z e r o s to t h e rece iv ing field. 



The preceding discussion concerned M O V E statements in which the receiving field 
was an elementary item. The results are very different if a group item is involved, 
because if the receiving field is a group item, the move takes place as though the 
receiving field were an alphanumeric item, with padding or truncation on the right 
as necessary. M O V E statements involving group items often produce unexpected 
results and should be avoided. 

The P E R F O R M statement transfers control to a procedure (paragraph) elsewhere in the 
program, allowing the program to be divided into functional modules. A n abbreviated 
format of the PERFORM statement is: 

PERFORM procedure-name 
[UNTIL condition] 

Consider first the s ta tement without an UNTIL clause as illustrated below: 

COMPUTE TUITION = CREDITS * CHARGE-PER-CREDIT. 
r - PERFORM WRITE DETAIL-LINE. 

WRITE-DETAIL-LINE. j 
MOVE STUDENT-NAME TO PRINT-NAME. I 
MOVE TUITION TO PRINT-TUITION. \ 
WRITE PRINT-LINE AFTER ADVANCING 2 L I N E S . — J 

WRITE-TOTAL-LINE. 
The statement P E R F O R M WRITE-DETAIL-LINE transfers control to the first 

statement in the paragraph WRITE-DETAIL-LINE. W h e n every statement in W R I T E -
D E T A I L - L I N E has be e n executed (i.e., w h e n the next paragraph n a m e is 
encountered), control returns to the statement immediately after the original 
P E R F O R M , in this case, to the A D D statement. 

A loop (iteration) is implemented through inclusion of an U N T I L clause. The 
condition in the U N T I L clause is tested before the paragraph is executed, and if the 
condition is not met, control is transferred to the designated paragraph. W h e n the 
paragraph has completed execution, the condition is retested, and if it (the condition) 
is still not met, the paragraph is executed a second time. The process continues 
until the condition is finally satisfied. Consider: 

PERFORM PROCESS-RECORDS 

ADD 1 TO NUMBER-OF-STUDENTS. 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 

PROCESS-RECORDS. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 



C h a p t e r 5 - The Procedure Division 

The paragraph P R O C E S S - R E C O R D S is executed repeatedly until D A T A -
REIvLAJNS-SWITCH equals 'NO', that is, until there are no m o r e incoming records. 
The last statement of the performed paragraph is a R E A D statement, so that w h e n 
the end of file is reached, D A T A - R E M A I N S - S W I T C H will be set to 'NO'. This causes 
the next test of the U N T I L condition to be successful a nd prevents further execution 
of the P R O C E S S - R E C O R D S paragraph. 

IF The IF statement is one of the most powerful statements in C O B O L . Our present concern, 
however, is with only a few of the available options, with additional consideration 
deferred to Chapter 8. A n abbreviated format of the IF statement is 

J_F condition THEN 
statement-1 

[ELSE 
statement-2 ] 

[END-IFl 
The IF statement is terminated by the optional (but highly recommended) E N D - I F 
scope terminator and/or a period. Consider: 

IF STU-CREDITS > 110 AND STU-MAJOR = 'ENGINEERING' 
MOVE STU-NAME TO PRINT-NAME 
MOVE STU-CREDITS TO PRINT-CREDITS 
MOVE STU-GPA TO PRINT-GPA 
WRITE PRINT-LINE 

END-IF. 
If the condition is true, then every statement between the IF (condition) and 

the END-IF (and/or period) will be executed. Hence, w h e n an engineering senior is 
processed, three M O V E statements and one W R I T E statement are executed. If, 
however, the condition is false, then all four statements—three M O V E s and a 
W R I T E — a r e bypassed. 

As indicated, the IF statement is terminated by the END-IF scope terminator 
and / or a period, and the inclusion of both appears redundant. (Many programmers 
do, however, use both entries.) END-IF, despite the fact that it is an optional entry, 
has distinct advantages (as will be explained in Chapter 7) a nd should be used in 
every instance. 

The E L S E C lause 

The ELSE clause is optional as implied by the square brackets in its syntax. Figure 5.2a 
contains an ELSE clause, whereas it is omitted in Figure 5.2b. If the condition in 
Figure 5.2a is true, statement-1 is executed; whereas if it is false, statement-2 is 
executed—in either case execution continues with statement-3. Figure 5.2b, however, 
omits the ELSE clause so that if the condition is false, the IF statement is terminated 
immediately. 

Indentation 

Indentation in an IF statement is extremely important to emphasize a programmer's 
understanding of a statement's intended effect. Consider Figure 5.3, which contains 
a flowchart and corresponding C O B O L code. 



Figure 5.2 The IF Statement 

STATEMENT, STATEMENT 

STATEMENT, 

fa) With E L S E Option 

STATEMENT, 

STATEMENT, 

(a) Without E L S E Option 

The flowchart in Figure 5.3a indicates that if the condition A - B is true, the 
statements M O V E I T O C and M O V E 1 T O I) are to be executed. If, however, the 
condition is false, then the statements M O V E Z E R O T O C and M O V E Z E R O T O D are 
to be executed instead. In either case—that is, whether the condition is true or 
false—we are to write a detail line. The latter is indicated by the IF and ELSE 
branches meeting in a c o m m o n exit point, which leads to the final W R I T E statement. 

The C O B O L code in Figure 5.3b is carefully aligned to reflect this interpretation. 
Recall that the rules of C O B O L require only that an IF statement appear in the B 
margin, that is, in columns 12-72. Hence the indentation in Figure 5.3b is done 
solely for the purpose of making a program easier to read, rather than to satisfy a 



C h a p t e r 5 The Procedure Division 

; ig .5 ta S.J The ELSE Clause/ll 

FALSE 

1 
> 

MOVE ZERO 
TOC 

• • 

MOVE ZERO 
TOD 

TRUE 

f 

MOVE 1 
TOC 

> f 

MOVE 1 
TOD 

X 
WRITE 

DETAIL-LINE 

MOVE 1 TO C 
MOVE 1 TO D 

ELSE 
MOVE ZERO TO C 
MOVE ZERO TO D 

END-IF. 
WRITE DETAIL-LINE. 

b ) COBOL Code 

rule of C O B O L . Nevertheless, proper indentation is essential and goes a long w a y to 
improve the quality of your work. Accordingly, w e suggest the following guidelines: 

1. Begin the IF statement in column 12. 
2. Put the w o r d ELSE o n a line by itself and directly under the IF. 
3. Indent detail lines associated with either the IF or ELSE four columns. 
4. Put 1-ND-IF o n a line by itself directly under the IF statement. 



1 he EVALUATE statement implements the case (rnultibranch) construct of 
structured programming. It has what first appears to be a rather complicated syntax, 
but in actuality is quite easy to use. Consider: 

identi fier-1 

EVALUATE expression-
TRUE 
FALSE 

WHEN 
condition-1 
TRUE 
FALSE 

imperati ve-statement - 1 

[WHEN OTHER imperative-statement.-2] 

[END-EVALUATE] 

A n example of the E V A L U A T E statement is shown below in conjunction with the 
tuition billing program presented in Chapter 3. The specifications for the program 
indicate that activity fee is dependent o n the n u m b e r of credits ($25 for 6 credits or 
fewer, $50 for 7 to 12 credits, and $75 for 13 credits or more). Consider: 

EVALUATE TRUE 
WHEN STU-CREDITS <= 6 

MOVE 25 TO IND-ACTIVITY-FFF 
WHEN STU-CREDITS > 6 AND STU-CREDITS <= 12 

MOVE 50 TO IND-ACTIVITY-FEE 
WHEN STU-CREDITS > 12 

MOVE 75 TO IND-ACTIVITY-FEE 
END-EVALUATE. 

The different conditions (i.e., the ranges for the n u m b e r of student credits) are 
presented in the various W H E N clauses. The E N D - E V A L U A T E scope terminator is a 
required entry. 

C O B O L does arithmetic in one of two ways. It has individual statements for the 
basic arithmetic operations (addition, subtraction, multiplication, a n d division), 
and a C O M P U T E statement that combines multiple operations into one statement. 
As you shall see, the C O M P U T E statement is generally easier to use, a n d so w e begin 
with it. Note, too, that all of these statements have optional R O U N D E D and SIZE 
E R R O R clauses, which are discussed prior to the individual statements. 

Th© Rt Li.vl'-j-cJ/ C.~.se 

The R O U N D E D clause (in any arithmetic statement) causes C O B O L to carry a 
calculation to one more decimal place than is specified in the result field. If the 
value of the extra decimal place is 5 or larger, the answer is rounded up; if it is 4 
or less, the answer is unchanged. If the R O U N D E D clause is omitted, C O B O L 
truncates any extra decimal positions regardless of their value. Table 5.4 shows 
the effect of the R O U N D E D option in which the values of A and B are added to 
produce a value for C. 



C h a p t e r 5 The Procedure Division 

The ROUNDED Clause 

Value before execution 123 
Value after execution of 
ADD A B GIVING C 123 
ADD A B GIVING C ROUNDED 123 

Both of the examples in Table 5.4 add the same numbers (1.23 and 4.56) to produce 
a s u m of 5.79. Both examples also specify the same P I C T U R E clause for the sum, 
which contains only a single decimal place. The first statement, however, does not 
contain the R O U N D E D clause, and hence the .09 is truncated, leaving 5.7 as the 
final answer. The second example contains the R O U N D E D clause, producing a 
mor e accurate 5.8. 

The SIZE E R R O R clause is available for all arithmetic statements and produces a 
warning w h e n the result of calculation is too large for the designated field. Consider: 

05 HOURLY-RATE PIC 99. 
05 HOURS-WORKED PIC 99. 
05 GROSS-PAY PIC 999. 

COMPUTE GROSS-PAY = HOURLY-RATE * HOURS-WORKED. 
Let us assume that H O U R L Y - R A T E and H O U R S - W O R K E D are 25 and 40, 

respectively. The result of the multiplication should be 1,000. GROSS-PAY, however, 
is defined as a three-position numeric field and is too small to hold the result. 
Hence its value is truncated and only the three rightmost digits are retained; in 
other words, G R O S S - P A Y becomes 000. 

The situation is prevented by the inclusion of the SIZE E R R O R clause: 
COMPUTE GROSS-PAY = HOURLY-RATE * HOURS-WORKED 

ON SIZE ERROR PERFORM ERROR-ROUTINE 
END-COMPUTE. 
This time, if the results of the computation are too large a nd exceed the size 

allotted in the P I C T U R E clause, control passes to the statement(s) following the 
SIZE E R R O R clause. The latter contains an error routine to display an error message 
or take other corrective action. 

The C O M P U T E statement combines multiple arithmetic operations into a single 
statement of the form: 

COMPUTE {identifier-1 [RQtJNDED]} • • • = expression-1 
[ON SIZE ERROR imperative-statement-1] 

fEND-COMPUTEl 
The C O M P U T E statement first calculates the value of the expression o n the right 
side of the equal sign, then stores that value in the data n a m e o n the left. The 

#99 
456 (immaterial) 

456 57 
456 58 



Arithmetic Statements 

expression within the C O M P U T E statement consists of data names, numeric literals, 
arithmetic symbols, and parentheses. Spaces should precede and follow arithmetic 
symbols. A space is also required before a left parenthesis a n d after a right 
parenthesis. 

Parentheses are used to clarify, and in so m e cases, alter the sequence of, 
operations within an expression, but anything contained within parentheses must 
also be a valid expression. Expressions are evaluated according to the following 
rules: 

1. Anything contained in parentheses is evaluated first as a separate 
expression. 

2. The symbols +, -, *, /, and ** denote addition, subtraction, multiplication, 
division, and exponentiation, respectively. Exponentiation is done first, then 
multiplication or division, then addition or subtraction. 

3. If rule 2 results in a tie (e.g., if both multiplication and division are present), 
then evaluation proceeds from left to right. 
Table 5.5 contains examples to illustrate the formation and evaluation of 

expressions in a C O M P U T E statement. 

TAI1LE S.M The COMPUTE instruction 

Value before execution 2 
Value after execution of 
COMPUTE C = A + B. 2 
COMPUTE C = A + B * 2. 2 
COMPUTE C = (A + B) * 2. 2 
COMPUTE C = A * * B. 2 
COMPUTE C = B " A. 2 

10 

Initial Values 

Simple addition 
Multiplication before addition 
Parenthesis evaluated first 
Algebraically, c = a0 

Draically, c = b a 

Table 5.6 should further clarify the use of this all-important statement. This 
table contains several algebraic expressions and the corresponding C O M P U T E 
statements to accomplish the intended logic. 

- , „ . . The COMPUTE Instruction (continued) 

x = a + b 

a + b 
x = -

(a + £>)c 
2 

a + b 

2c 

x = Va 

COMPUTE X = A + B . 

COMPUTE X = (A + B) / 2 . 

COMPUTE X = ( A + B ) * C / 2 . 

COMPUTE X = (A + B) / (2 * C ) . 

COMPUTE X = A * * . 5 . 

COMPUTE X = (A * * 2 + 2) / C 



Chapter S ----- The Procedure Division 

A Di •D 
The A D D statement has two basic formats: 

[ i d e n t i f i e r - l j ^ ] i d e n t i f i e r - 2 ] 

[ l i t e r a l - 1 J [ l i t e r a l - 2 J 

GIVING j i d e n t i f i e r - 3 [ROUNDED]! . . . 

[ON SIZE ERROR imperative- statement - l] 

[END-ADD] 

In the first format the value of identifier-2 is replaced by the result of the 
addition; in the second format the value of identifier-2 is unchanged, because the 
result is stored in identifier-3 (and beyond). The word T O is required in the first 
format, but optional in the second. The three dots in either format indicate that 
identifier-1 or literal-1 can be repeated as m a n y times as necessary (so that multiple 
items can be added together.) 

Examples 5.1 and 5.2 illustrate the A D D statement. The first instruction adds 
the values of A and B (5 and 10) to the value of C (20), and puts the s u m of 35 back 
into C. Example 5.2, however, does not include the initial value of C in the calculation; 
it adds the values of A and B (5 and 10), and places the s u m of 15 in C. 

Example 5.1 ADD A B TO C 
B C 

After execution: 

B e f or & 6 x ecutio 11: 

Example 5.2 ADD A TO B GIVI N G C 
A B C 

After execution: 

Before execution: 

Table 5.7 contains additional examples of the A D D statement, with all examples 
operating o n the initial values of A, B, and C (5, 10, and 30, respectively). The last 
example changes the values of both B and C. 



Arithmetic Statements 

L _ ft,V The ADD Instruction 

Value before execution 5 10 30 
Value after execution of 
ADD A TO C. 5 10 35 
ADD A B TO C. 5 10 45 
ADD A TO B GIVING C 5 10 15 
ADD A 18 B GIVING C. 5 10 33 
ADD A 18 B T O C . 5 10 63 
ADD 1 TO B C. 5 11 31 

The SUBTRACT statement has two formats: 

fidentifier-l] r r yi 
SUBTRACT { ) . . . FROM ndentifier-2 IROUNDED\>  [literal-1 J 1 1 Ji 

[ON SIZE ERROR imperative - statement -1] 

[END-SUBTRACT] 

fidentifier-l] fidenti fier-2 
SUBTRACT \ \ . . . FROM 

literal-1 j (literal-2 

G I V I N G {identifier-3 [ROUNDED]] . . . 

[ON S I Z E ERROR imperative-statement-l] 

[END-SUBTRACT] 

In the first format the initial value of identifier-2 is replaced by the result of the 
subtraction. In the second format the initial value of either identifier-2 or literal-2 is 
unchanged, as the result is stored in identifier-3 (and beyond). 

Examples 5.3 and 5.4 illustrate the S U B T R A C T statement. In Example 5.3 the 
S U B T R A C T statement causes the value of A (5) to be subtracted from the initial 
value of B (15) and the result (10) to be stored in B. Only the value of B was changed. 

In the F R O M ... G I V I N G format of Example 5.4 the value of A (5) is subtracted 
from the value of B (15), a n d the result (10) is placed in C. The values of A and B are 
unchanged, a nd the initial value of C (100) is replaced by 10. Table 5.8 contains 
additional examples. 

Example 5.3 SUBTRACT A FROM B 

A 



C h a p t e r 5 — The Procedure Division 

Example 5.4 SUBTRACT A FROM B 

B e f o r e e x e c u t i o n : 

A f t e r e x e c u t i o n : 

GIVING C 

A B 

T A B L E 5.8 The SUBTRACT Instruction 

[15] 100 

10 

Value before execution 5 

Value after execution of 

SUBTRACT A FROM C. 5 
SUBTRACT A B FROM C. 5 
SUBTRACT A B FROM C GIVING D. 5 
SUBTRACT 10 FROM C D . 5 

10 

10 
10 
10 
10 

30 

25 
15 
30 
20 

100 

100 
100 
15 
90 

M U L T I P L Y 

The MULTIPLY statement has two formats: 

[identi f i e r - 1 ! r ,- v, 
MULTIPLY { \ BY { i d e n t i f i e r - 2 ROUNDEDU . . . 

[ l i t e r a l - 1 J - l 1 JJ 

[ON S I Z E ERROR imperat ive-s ta tement- l ] 

[END-MULTIPLY] 

[ iden t i f i e r - l | [ i d e n t i f i e r - 2 | 
MULTIPLY { } BY { } 

[ l i t e r a l - 1 J " [ l i t e r a l - 2 J 

G I V I N G | i d e n t i f i e r - 3 [RQUNDEP][ . . . 

[ON S I Z E ERROR imperat ive-s ta tement- l ] 

[END-MULTIPLY] 

If GIVING is used, then the result of the multiplication is stored in identifier-3 
(and beyond). If GIVING is omitted, then the result is stored in identifier-2 (and 
beyond). 

Example 5.5 MULTIPLY A BY B 

A B 

B e f o r e e x e c u t i o n : 



Example 5.6 MULTIPLY A BY B GIVING C 

A n 

jlOj 

j 10) 
|20j 

|20i 

345 

2001 

Table 5.9 contains additional examples of the M U L T I P L Y statement. As in the 
previous examples, the instructions operate on the initial values of A, B, and C. 

TABLE 5..S The MULTIPLY Instruction 

Value before execution 
Value after execution of 
MULTIPLY B BY A GIVING C. 
MULTIPLY A BY B GIVING C. 
MULTIPLY A BY B. 
MULTIPLY B BY A. 
MULTIPLY A BY 3 GIVING B C 

5 10 30 

5 10 50 
5 10 50 
5 50 30 

50 10 30 
5 15 15 

The DIVIDE statement has two formats. In the second format, the primary distinction 
is between the words B Y and INTO, which determine whether identifier-2 is the 
divisor or the dividend. As with the other arithmetic statements, the G I V I N G option 
implies that the result is stored in identifier-3 so that the initial value of identifier-2 
or literal-2 is unchanged. Only the second format makes explicit provision for 
storing the remainder. 

[identifier-1] r , ii DIVIDE \ \ INTO identifier-2 ROUNDED . . . — [literal-1 J I 1 JJ 

[ON SIZE ERROR imperati ve - statement - lj 

[END-DIVIDEl 

fidentifier-ll [INTO] [identifier-2] r r o 
DIVIDE i \ I [ <̂  \ GIVING identifier-3 [ROUNDED . . . 

" [literal-1 j [BY j [literal-2 J 1 1 JJ 

[REMAINDER identifier-4] 

[ON SIZE ERROR imperati ve - statement -1] 

[END-DIVIDE] 
In Example 5.7 the value of B (50) is divided by the value of A (10), and the 

quotient (5) replaces the initial value of B. In Example 5.8, which uses the GIVING 
option, the quotient goes into C, the remainder into D, and the values of A and B are 



C h a p t e r 5 The Procedure Divisio 

The COMPUTE statement should always be used when multiple arithmetic operators are involved. 
Consider two sets of equivalent code: 

MULTIPLY B BY B GIVING B-SQUARED. 
MULTIPLY 4 BY A GIVING FOUR-A. 
MULTIPLY FOUR-A BY C GIVING FOUR-A-C. 
SUBTRACT FOUR-A-C FROM B-SQUARED GIVING RESULT-1. 
COMPUTE RESULT-2 = RESULT-1 ** .5. 
SUBTRACT B FROM RESULT-2 GIVING NUMERATOR. 
MULTIPLY 2 BY A GIVING DENOMINATOR. 
DIVIDE NUMERATOR BY DENOMINATOR GIVING X. 

COMPUTE X = (-B + (B ** 2 - (4 * A * C)) ** .5) / (2 * A). 

Both sets of code apply to the quadratic formula, 

•B + 4¥~-4AC 

It is fairly easy to determine what is happening from the single COMPUTE statement, but next to 
impossible to realize the cumulative effect of the eight arithmetic statements. Interpretation of the unacceptable 
code is further clouded by the mandatory definition of data names for intermediate results, RESULT-1, 
RESULT-2, etc. 

Parentheses are often required in COMPUTE statements to alter the normal hierarchy of operations; for 
example, parentheses are required around 2 * A in the denominator. If they had been omitted, the numerator 
would have been divided by 2 and then the quotient would have been multiplied by A. Sometimes the 
parentheses are optional to the compiler but should be used to clarify things for the programmer. The 
parentheses around 4 * A * C do not alter the normal order of operations and hence are optional. 

Individual arithmetic statements are preferable to the COMPUTE statement when only a single operation 
is required. Hence, ADD 1 TO COUNTER is easier to read than COMPUTE COUNTER = COUNTER + 1. 

P R O G R A M M I N C T I P 



unaffected. Example 5.9 parallels 5.8 except that B Y replaces INTO, resulting in a 
quotient of zero and a remainder of 10. Table 5.10 contains additional examples of 
the DIVIDE statement. 
Example 5.7 DIVIDE A INTO B. 

10| [501 

I 5 I 

Example 5.8 DIVIDE A INTO B GIVING C REMAINDER D. 

|10| |51| 

|10! [51I 

} 13 j 

5 I 

Example 5.9 DIVIDE A BY B GIVING C REMAINDER D. 

,10, 

The DIVIDE Instruction 

\Sl\ 

Value before execution 
Value after execution of 
DIVIDE 2 INTO B. 
DIVIDE 2 INTO B GIVING C. 
D IV IDES BY 5 GIVING A. 
DIVIDE A INTO B C. 
DIVIDE A INTO B GIVING C. 
DIVIDE 3 INTO A GIVING B REMAINDER C. 

10 

5 
10 
10 

2 
10 

1 

30 

30 
5 

30 
6 
2 
2 

Arithmetic is performed o n decimal as well as integer fields. Y o u must be aware of 
the decimal point, and in particular, be sure to define the field holding the result with 
a sufficient number of decimal places. Consider Example 5.10, in which A and B have 
pictures of 99 and 99V9, respectively. 
Example 5.10 ADD A TO B. 



C h a p t e r S The Procedure Division 

In the example, field B is stored with an implied decimal point. The compiler 
generates instructions to add an integer n u m b e r (12) to a n u m b e r with one decimal 
place (34V5). It maintains decimal alignment, obtains 46V5 as a n answer, and stores 
the result in field B. 

N o w consider what happens if the operation is reversed, that is, A D D B T O A. 
The result of the addition is still 46V5; however, the field that stores the sum, A, is 
denned without a decimal point; hence, the .5 will be truncated. It is critical, therefore, 
to define the receiving field with a sufficient number of decimal places. Table 5.11 
contains additional examples. In each instance the instruction is assumed to operate 
o n the initial values of A, B, and C. 

? A&L.E 5 . 1 1 Arithmetic on Fields with Assumed Decimal Points 

P I C T U R E 9 9 99V9 S 3 V S I 

Value before execution 12 345 4712 
Value after execution of 
ADD B TO A. 46 345 4712 

ADD A TO B. 12 465 4712 
ADD B TO C. 12 345 8162 
ADD C TO B. 12 816 4712 

ADD C TO A. 59 345 4712 

ADD A TO C. 12 345 5912 

Tlte YiJiti©tl The tuition billing program was first presented in Chapter 3, where w e produced 
Biliii/ijj Pf €t jjsffiBtfi m e hierarchy chart, pseudocode, and stubs program. W e continued the development 

of the program in Chapter 4, with specifics of the Identification, Environment, and 
Data divisions. N o w w e are able to write the Procedure Division and complete the 
program. 

W e emphasize, however, that the Procedure Division is not written from 
scratch, but is developed from work already done in Chapters 3 and 4. Consider, 
therefore, Figure 5.4, which contains the hierarchy chart and detailed pseudocode, 
and most importantly the already working stubs program. T h e stubs program is 
complete in the sense that it contains all of the paragraphs needed for the eventual 
program; it is incomplete because m a n y of its paragraphs exist as one sentence 
DISPLAY statements that need to be expanded to perform the indicated task. The 
most difficult work has already been done, however, because the testing in Chapter 3 
demonstrated that the overall program flow is correct. 

Thus, it is relatively simple to expand the various stub paragraphs in favor of 
m o r e detailed Procedure Division statements presented in this chapter. T h e 
paragraphs can be implemented one (or several) at a time; for example, begin with 
the paragraph to write a heading line, expand it, then lest it to be sure it executes 
correctly. Develop the paragraph to write a detailed line, then expand the paragraphs 
to compute the individual amounts (tuition, union fee, activity fee, and scholarship), 
testing each paragraph to be sure it works properly. Finally, a d d the paragraphs to 
increment the university totals and write the s u m m a r y line at the end of the report. 

T h e completed p r o g r a m is s h o w n in Figure 5.5. T h e Identification, 
Environment, and Data divisions were developed at the end of Chapter 4 and are 



The Tuition Billing Program 

PREPARE 
TUITION 
REPORT 

WRITE 
HEADING 

LINE 

READ 
STUDENT 

FILE 

PROCESS 
STUDENT 
RECORD 

WRITE 
UNIVERSITY 

TOTALS 

COMPUTE 
INDIVIDUAL 

BILL 

INCREMENT 
UNIVERSITY 

TOTALS 

WRITE 
DETAIL 

LINE 

W 
~ READ 

STUDENT 
FILE 

COMPUTE 
TUITION 

m y pr itf 
UNION FEE 

COMPUTE 
ACTiVITY 

FEE 

COMPUTE 
SCHOLARSHIP 

(a) Hierarchy Chart 

Open files 
Write heading 1ine(s) 
Read STUDENT-FILE at end indicate no more data 
DO WHILE data remains 

Compute tuition = 200 * credits 
IF union member 

Union fee = $25 
ELSE | 

Union fee = 0 I 
ENDIF 
DO CASE 

CASE credits <= 6 
Activity fee = 25 

CASE credits > 6 and <= 12 
Activity fee = 50 

CASE credits > 12 
Activity fee = 75 

END CASE 
IF gpa > 2.5 [ 

Scholarship = Scholarship amount j 
ELSE (no scholarship) I 

Scholarship = 0 | 
ENDIF f 
Compute Bill = Tuition + Union fee + Activity fee - Scholarship j 
Increment university totals j 
Write detail line [ 
Read STUDENT-FILE at end indicate no more data 1 

ENDDO 
Write university totals ) 
Close files [ 
Stop run 

(b) Detailed Pseudocode 

Developing the Procedure Division 



Chapter 5 The Procedure Division 

(continued) 

PROCEDURE DIVISION. 
PREPARE-TUITION-REPORT. 

DISPLAY 'PREPARE-TUITION-REPORT paragraph entered'. 
OPEN INPUT STUDENT-FILE. 
PERFORM WRITE-HEADING-LINE. 
PERFORM READ-STUDENT-FILE. 
PERFORM PROCESS-STUDENT-RECORD 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 
PERFORM WRITE-UNIVERSITY-TOTALS. 
CLOSE STUDENT-FILE. 
STOP RUN. 

WRITE-HEADING-LINE. 
DISPLAY 'WRITE-HEADING-LINE paragraph entered'. 

READ-STUDENT-FILE. 
READ STUDENT-FILE 

AT END MOVE 1 NO' TO DATA-REMAINS-SWITCH 
END-READ. 

PROCESS-STUDENT-RECORD. 
DISPLAY 1 '. 
DISPLAY 'PROCESS-STUDENT-RECORD paragraph entered'. 
DISPLAY 'Student record being processed: ' STUDENT-RECORD. 
PERFORM COMPUTE-INDIVIDUAL-BILL. 
PERFORM INCREMENT-UNIVERSITY-TOTALS 
PERFORM WRITE-DETAIL-LINE. 
PERFORM READ-STUDENT-FILE. 

COMPUTE-INDIVIDUAL-BILL. 
DISPLAY ' COMPUTE-INDIVIDUAL-BILL paragraph entered'. 
PERFORM COMPUTE-TUITION. 
PERFORM COMPUTE-UNION-FEE. 
PERFORM COMPUTE-ACTIVITY-FEE. 
PERFORM COMPUTE-SCHOLARSHIP. 

COMPUTE-TUITION. 
DISPLAY ' COMPUTE-TUITION paragraph entered'. 

COMPUTE-UNION-FEE. 
DISPLAY ' COMPUTE-UNION-FEE paragraph entered'. 

COMPUTE-ACTIVITY-FEE. 
DISPLAY ' COMPUTE-ACTIVITY-FEE paragraph entered'. 

COMPUTE-SCHOLARSHIP. 
DISPLAY 1 COMPUTE-SCHOLARSHIP paragraph entered 1. 

INCREMENT-UNIVERSITY-TOTALS. 
DISPLAY ' INCREMENT-UNIVERSITY-TOTALS paragraph entered'. 

WRITE-DETAIL-LINE. 
DISPLAY ' WRITE-DETAIL-LINE paragraph entered'. 

WRITE-UNIVERSITY-TOTALS. 
f i i r r n A v i i 
u i o r l_M t . 

DISPLAY 'WRITE-UNIVERSITY-TOTALS paragraph entered'. 

(c) Stubs Program 



The Tuition Billing Program 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TUITI0N5. 
AUTHOR. CAROL VAZQUEZ VILLAR. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR05\TUITI0N.DAT1 

ORGANIZATION IS LINE SEQUENTIAL. 
SELECT PRINT-FILE 

ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD STUDENT-FILE 

RECORD CONTAINS 27 CHARACTERS. 
01 STUDENT-RECORD. 

05 STU-NAME. 
10 STU-LAST-NAME PIC X(15). 
10 STU-INITIALS PIC XX. 

05 STU-CREDITS PIC 9(2). 
05 STU-UNION-MEMBER PIC X. 
05 STU-SCHOLARSHIP PIC 9(4). 
05 STU-GPA PIC 9V99. 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS. 

01 PRINT-LINE PIC X(132). 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH 

01 INDIVIDUAL-CALCULATIONS. 

PIC X(2) VALUE SPACES. 

34 05 IND-TUITION PIC 9(4) VALUE ZEROS 
35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZEROS 
36 05 IND-UNION-FEE PIC 9(2) VALUE ZEROS 
37 05 IND-SCHOLARSHIP PIC 9(4) VALUE ZEROS 
38 05 IND-BILL PIC 9(6) VALUE ZEROS 
39 
40 01 UNIVERSITY-TOTALS. 
41 05 UNI-TUITION PIC 9(6) VALUE ZEROS 
42 05 UNI-UNION-FEE PIC 9(4) VALUE ZEROS 
43 05 UNI-ACTIVITY-FEE PIC 9(4) VALUE ZEROS 
44 05 UNI-SCHOLARSHIP PIC 9(6) VALUE ZEROS 
45 05 UNI-IND-BILL PIC 9(6) VALUE ZEROS 
46 
47 01 CONSTANTS-AND-RATES. 
48 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200. 
49 05 UNION-FEE PIC 9(2) VALUE 25. 
50 05 ACTIVITY-FEES. 

The Tuition Billing Program 

file://'A:/CHAPTR05/TUITI0N.DAT1


Chapter S — The Procedure Division 

51 10 1ST-ACTIVITY -FEE PIC 99 VALUE 25. 
52 10 1ST-CREDIT-LIMIT PIC 99 VALUE 6. 
53 10 2ND-ACTIVITY -FEE PIC 99 VALUE 50. 
54 10 2ND-CREDIT-LIMIT PIC 99 VALUE 12. 
55 10 3RD-ACTIVITY -FEE PIC 99 VALUE 75. 
56 05 MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5. 
57 
58 01 HEADING-LINE. 
59 05 FILLER PIC X VALUE SPACES. 
60 05 FILLER PIC X(12) VALUE 'STUDENT NAME 
61 05 FILLER PIC X(10) VALUE SPACES. 
62 05 FILLER PIC X(7) VALUE 'CREDITS'. 
63 05 FILLER PIC X(2) VALUE SPACES. 
64 05 FILLER PIC X(7) VALUE 'TUITION'. 
65 05 FILLER PIC X(2) VALUE SPACES. 
66 05 FILLER PIC X(9) VALUE 1 UNION FEE 1. 
67 05 FILLER PIC X(2) VALUE SPACES. 
68 05 FILLER PIC X(7) VALUE 'ACT FEE'. 
69 05 FILLER PIC X(2) VALUE SPACES. 
70 05 FILLER PIC X(ll) VALUE 'SCHOLARSHIP' 
71 05 FILLER PIC X(2) VALUE SPACES. 
72 05 FILLER PIC X(10) VALUE 'TOTAL BILL'. 
73 05 FILLER PIC X(48) VALUE SPACES. 
74 
75 01 DETAIL-LINE. 
76 05 FILLER PIC X VALUE SPACES. 
77 05 DET-LAST-NAME PIC X(15) 
78 05 FILLER PIC X(2) VALUE SPACES. 
79 05 DET-INITIALS PIC X(2). 
80 05 FILLER PIC X(5) VALUE SPACES. 
81 05 DET-CREDITS PIC 9(2). 
82 05 FILLER PIC X(6) VALUE SPACES. 
83 05 DET-TUITION PIC 9(6). 
84 05 FILLER PIC X(7) VALUE SPACES. 
85 05 DET-UNION-FEE PIC 9(3). 
86 05 FILLER PIC X(6) VALUE SPACES. 
87 05 DET-ACTIVITY-FEE PIC 9(3). 
88 05 FILLER PIC X(8) VALUE SPACES. 
89 05 DET-SCHOLARSHIP PIC 9(5). 
90 05 FILLER PIC X(6) VALUE SPACES. 
91 05 DET-IND-BILL PIC 9(6). 
92 05 FILLER PIC X(49) VALUE SPACES. 
93 
94 01 DASH-LINE. 
95 05 FILLER PIC X(31) VALUE SPACES. 
96 05 FILLER PIC X(8) VALUE ALL 
97 05 FILLER PIC X(2) VALUE SPACES. 
98 05 FILLER PIC X(8) VALUE ALL 
99 05 FILLER PIC X(2) VALUE SPACES. 
100 05 FILLER PIC X(7) VALUE ALL '-'. 

I 

(continued) 



The Tuition Billing Program 

^ f (continued) 

101 05 FILLER PIC X(6) VALUE SPACES 
102 05 FILLER PIC X(7) VALUE ALL '-
103 05 FILLER PIC X(5) VALUE SPACES 
104 05 FILLER PIC X(7) VALUE ALL '-
105 05 FILLER PIC X(49) VALUE SPACES 
106 
107 01 TOTAL-LINE. 
108 05 FILLER PIC X(8) VALUE SPACES 
109 05 FILLER PIC X(17) 
110 VALUE 'UNIVERSITY TOTALS'. 
111 05 FILLER PIC X(8) VALUE SPACES 
112 05 TOT-TUITION PIC 9(6). 
113 05 FILLER PIC X(6) VALUE SPACES 
114 05 TOT-UNION-FEE PIC 9(4). 
115 05 FILLER PIC X(5) VALUE SPACES 
116 05 TOT-ACTIVITY-FEE PIC 9(4). 
117 05 FILLER PIC X(7) VALUE SPACES 
118 05 TOT-SCHOLARSHIP PIC 9(6). 
119 05 FILLER PIC X(6) VALUE SPACES 
120 05 TOT-IND-BILL PIC 9(6). 
121 05 FILLER PIC X(49) VALUE SPACES 
122 
123 PROCEDURE DIVISION. 
124 PREPARE-TUITION-REPORT. 
125 OPEN INPUT STUDENT-FILE 
126 OUTPUT PRINT-FILE. 
127 PERFORM WRITE-HEADING-LINE. ... 
[1283'̂ ^ 
129 PERFORM PROCESS-STUDENT-RECORD 
130 UNTIL DATA-REMAINS-SWITCH = 'NO'. 
131 PERFORM WRITE-UNIVERSITY-TOTALS. 
132 CLOSE STUDENT-FILE 
133 PRINT-FILE. 
134 STOP RUN. 
135 
136 WRITE-HEADING-LINE. 
137 MOVE HEADING-LINE TO PRINT-LINE. 
138 WRITE PRINT-LINE 
139 AFTER ADVANCING PAGE. 
140 MOVE SPACES TO PRINT-LINE. 
141 WRITE PRINT-LINE. 
142 
143 READ-STUDENT-FILE. 
144 READ STUDENT-FILE 
145 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
146 END-READ. 
147 
148 PROCESS-STUDENT-RECORD. 
149 PERFORM COMPUTE-INDIVIDUAL-BILL. 
150 PERFORM INCREMENT-UNIVERSITY-TOTALS 
151 PERFORM WRITE-DETAIL-LINE. 



C h a p t e r 

(continued) 

PERFORM READ-STUDENT-FILE. >• 

COMPUTE-INDIVIDUAL-BILL. 
PERFORM COMPUTE-TUITION. 
PERFORM COMPUTE-UNION-FEE. 
PERFORM COMPUTE-ACTIVITY-FEE. 
PERFORM COMPUTE-SCHOLARSHIP. 
COMPUTE IND-BILL = IND-TUITION + IND-UNION-FEE + 

IND-ACTIVITY-FEE - IND-SCHOLARSHIP. 

COMPUTE-TUITION. 
COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS. 

COMPUTE-UNION-FEE. 
IF STU-UNION-MEMBER = 'V 

MOVE UNION-FEE TO IND-UNION-FEE 
ELSE 

MOVE ZERO TO IND-UNION-FEE 
END-IF. 

COMPU T E - AC TIVITY- FEE. 
EVALUATE TRUE 

WHEN STU-CREDITS <= 1ST-CREDIT-LIMIT 
MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE 

WHEN STU-CREDITS > 1ST-CREDIT-LIMIT 
AND STU-CREDITS <= 2ND-CREDIT-LIMIT 

MOVE 2ND-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN STU-CREDITS > 2ND-CREDIT-LIMIT 

MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN OTHER 

DISPLAY 'INVALID CREDITS FOR: ' STU-NAME 
END-EVALUATE. 

COMPUTE-SCHOLARSHIP. 
3 J F S T U ^ A ^ ^ M I N l S j M ^ j " " ' " 

MOVE STU-SCHOLARSHIP TO IND-SCHOLARSHIP 
ELSE 

MOVE ZERO TO IND-SCHOLARSHIP 
END-IF. 

INCREMENT-UNIVERSITY-TOTALS. 
ADD IND-TUITION TO UNI-TUITION, 
ADD IND-UNION-FEE TO UNI-UNION-FEE. 
ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE. 
ADD IND-SCHOLARSHIP TO UNI-SCHOLARSHIP. 
ADD IND-BILL TO UNI-IND-BILL. 

MOVE STU-LAST-NAME TO DET-LAST-NAME. 
MOVE STU-INITIALS TO DET-INITIALS. 
MOVE STU-CREDITS TO DET-CREDITS. 



The Tuition Billing Program 

rigijf© 5 .5 (continued) 

I 203 MOV E IND-TUITION TO DET-TUITION. 
J 204 MOVE IND-UNION-FEE TO DET-UNION-FEE. 
1 205 MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE. 
| 206 MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP. 
I 207 MOVE IND-BILL TO DET-IND-BILL. 
[ 208 MOVE DETAIL-LINE TO PRINT-LINE. 
| 209 WR I T E PRINT-LINE 
j 210 A F T E R ADVANCING 1 LINE. 
| 211 
| 212 WRITE-UNIVERSITY-TOTALS. 
| 213 MOVE DASH-LINE TO PRINT-LINE. 
j 214 _ _ WRIJF:_PRJ[NJ-LIN_E. 
| '215 " MOVE'UNI-TUITIOITTO T O T - T U T T I O N T " " ! 
1 216 MOVE UNI-UNION-FEE TO TOT-UNION-FEE. 
I 217 MOVE UNI-ACTIVITY-FEE TO TOT-ACTIVITY-FEE. f 
( 218 MOVE UNI-SCHOLARSHIP TO TOT-SCHOLARSHIP. ! 
| 219 M O V E UNI-IND-BILL TO TOT-IND-BILL. j 
• l2?p_ _ MOVE TOTAL-LINE TO PRINT-LINE. __ _ j 
j ""l21 ~ ~ " " " W R I T E PRINT-LINE 

I 222 A F T E R ADVANCING 1 LINE. L 

copied directly from Figure 4.10. The completed program appears somewhat 
formidable the first time you see it, but it has been developed over the last three 
chapters, and you should have no difficulty in following. W e suggest you take it in 
pieces and review sections of the text as you need them with respect to the following: 

1. The Identification Division in lines 1-3 contains only the P R O G R A M - I D and 
A U T H O R paragraphs. 

2. The Environment Division in lines 5-11 contains the SELECT statements for 
the two required files. 

3. The ID's in lines 15-16 and 26-28 correspond to the SELECT statements in 
the Environment Division. 

4. The description for the incoming data in lines 17-24 matches the program 
specifications of Chapter 3. 

5. Separate 01 entries are defined for individual and total calculations (lines 33-
38 and 40-45); also data names for the constants and rates are established in 
lines 47-56. 

6. Heading, detail, dashed, and total lines are described separately in 
W O R K I N G - S T O R A G E (lines 58-73, 75-92, 94-105, and 107-121, respectively); 
note the use of V A L U E clauses to initialize the various print lines. 

7. The paragraphs in the Procedure Division correspond one to o n e with the 
blocks in the hierarchy chart of Figure 5.4a. 

8. A n initial R E A D statement in line 128 is followed by the P E R F O R M statement 
in lines 129 and 130 to execute P R O C E S S - S T U D E N T - R E C O R D (lines 148-
152) until there are no more records. The last statement of the performed 
paragraph is a second R E A D statement. The combination of these 
statements implements the overall logic in the pseudocode of Figure 5.4b. 



C h a p t e r S The Procedure Division 

9. A n EVALUATE s t a t e m e n t in l ines 1 7 3 - 1 8 3 c o m p u t e s t h e activity fee 
accord ing t o the n u m b e r o f credits taken. 

10. Separate paragraphs in t h e Procedure D iv i s i on c o m p u t e a n indiv idual bill 
( l ines 154 -160) , i n c r e m e n t univers i ty totals ( l ines 1 9 2 - 1 9 7 ) , a n d write a detai l 
l ine ( l ines 199-210) . 

11. Mult ip le MOVE s t a t e m e n t s are required w i t h i n the paragraph to write a 
deta i led l ine ( l ines 1 9 9 - 2 1 0 ) , w i t h e a c h s t a t e m e n t m o v i n g a c o m p u t e d va lue 
( such as IND-TUITION) to the c o r r e s p o n d i n g entry in t h e print l ine (DET-
TUITION). T h e n e e d for b o t h data n a m e s will b e m o r e a p p a r e n t after the 
mater ia l o n ed i t ing in Chapter 7. T h e paragraph to write univers i ty totals 
requires s imilar t rea tment . 

12. Mult ip le A D D s t a t e m e n t s are n e e d e d w i t h i n the paragraph to i n c r e m e n t 
univers i ty totals ( l ines 193 -197) . Each total is s tored in a s eparate field a n d 
thus m u s t b e i n c r e m e n t e d separately . 

Figure 5 .6 Test Data and Output 

SMITH JB15Y0000230 
JAMES HR15 0500245 
BAKER SR09 0500350 
PART-TIMER JR03Y0000300 
JONES PL15Y0000280 
HEAVYWORKER HM18 0000200 
LEE BL18 0000335 
CLARK JC06 0000310 
GROSSMAN SE07 0000215 
FRANKEL LF10 0000350 
BENWAY CT03 0250395 
KERBEL NB04 0000100 

(a) Test Data 

STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL 

SMITH JB 15 003000 025 075 00000 003100 
JAMES HR 15 003000 000 075 00000 003075 
BAKER SR 09 001800 000 050 00500 001350 
PART-TIMER JR 03 000600 025 025 00000 000650 
JONES PL 15 003000 025 075 00000 003100 
HEAVYWORKER HM 18 003600 000 075 00000 003675 
LEE BL 18 003600 000 075 00000 003675 
CLARK JC 06 001200 000 025 00000 001225 
GROSSMAN SE 07 001400 000 050 00000 001450 
FRANKEL LF 10 002000 000 050 00000 002050 
BENWAY CT 03 000600 000 025 00250 000375 
KERBEL NB 04 000800 000 025 00000 000825 

UNIVERSITY TOTALS 024600 0075 0625 000750 024550 

(b) Output 



The Tuition Billing Program 

Yii-st Data 
The test data a n d as soc ia t ed o u t p u t are s h o w n in Figures 5.6a a n d 5.6b, respect ive ly . 
The test data are ident ical to t h o s e u s e d in the original s tubs program; the output , 
however , is different and reflects the e x p a n d e d Procedure Div i s ion of Figure 5.5. 
N o t e , too , the c o r r e s p o n d e n c e b e t w e e n individual records in the input data file a n d 
the as soc ia ted l ines in the pr inted report. 

Observe , for example , that JB Smith , JR Part-Timer, and PL Jones e a c h h a v e a Y 
in c o l u m n 20 of their input records, a n d that t h e s e are the o n l y indiv iduals w h o are 
charged a U n i o n Fee . In s imilar fashion, James , Baker, a n d B e n w a y are the o n l y 
s tudent s w i t h potent ia l scho larsh ips in the i n c o m i n g data; James , however , d o e s 
n o t have the requis i te average and so h e d o e s n o t receive a scho larsh ip . T h e s t u d e n t 
file has 12 records , a n d h e n c e 12 s tudents appear in the printed report. 

In retrospect , the o u t p u t p r o d u c e d isn't very pretty as it is u n f o r m a t t e d a n d 
c o n t a i n s ex t raneous zeros throughout . (Editing is p r e s e n t e d in Chapter 7 t oge ther 
wi th a final vers ion of the program.) 

Hierarchy Chart , 

The hierarchy chart was introduced initially as a design, aid and developed before 
the program w a s written; it is a lso u s e d as a d o c u m e n t a t i o n t e c h n i q u e after c o d i n g 
is completed to better unders tand the overall program structure. The hierarchy 
chart d e p i c t s the f u n c t i o n s i n h e r e n t in a program, a n d is c l o s e l y t i ed to t h e 
paragraphs in the Procedure Div is ion . Observe therefore, the proper t i e s of t h e 
hierarchy chart in Figure 5.4a as they relate to the COBOL program in Figure 5.5. 

1. Every b o x (module ) in the h ierarchy chart c o r r e s p o n d s to a paragraph in the 
COBOL program. There are twelve different m o d u l e s (the READ appears 
twice) in the h ierarchy chart, a n d twelve paragraphs in the pro g ra m . 

2. Each paragraph in the COBOL program c o n t a i n s as m a n y PERFORM 
s t a t e m e n t s as there are m o d u l e s in the next lower level of the hierarchy 
chart. T h u s the paragraph at the h ighes t level, PREPARE-TUITION-REPORT, 
c o n t a i n s four PERFORM s t a t e m e n t s , o n e for e a c h subord ina te paragraph. 

3. A paragraph c a n b e entered on ly from the paragraph directly a b o v e it a n d 
m u s t eventua l ly return control to that paragraph. H e n c e , PROCESS-
STUDENT-RECORDS is e n t e r e d via a PERFORM s t a t e m e n t in PREPARE-
TUITION-REPORT. PROCESS-STUDENT-RECORDS in turn i n v o k e s four 
lower level paragraphs , e a c h of w h i c h returns control to PROCESS-
STUDENT-RECORDS, w h i c h eventua l ly returns contro l to PREPARE-
TUITION-REPORT. 

4. Every m o d u l e in a hierarchy chart (paragraph wi th in a program) s h o u l d b e 
d e d i c a t e d to a s ingle funct ion . The nature of that func t ion s h o u l d b e 
apparent from the m o d u l e ' s n a m e a n d s h o u l d cons i s t of a verb, o n e or t w o 
adjectives, and an object. 

R e m e m b e r , t o o , that a hierarchy chart is very different from flowcharts or 
p s e u d o c o d e . A hierarchy chart s h o w s w h a t h a s to b e d o n e , b u t n o t w h e n ; it c o n t a i n s 
n o d e c i s i o n - m a k i n g logic . F lowcharts a n d p s e u d o c o d e , o n the o t h e r h a n d , spec i fy 
w h e n a n d if a g i v e n b l o c k of c o d e is e x e c u t e d . W e say that h i erarchy charts are 
functional i n n a t u r e ; t h e y c o n t a i n t h e t a s k s n e c e s s a r y t o a c c o m p l i s h t h e 
speci f icat ions but d o n o t indicate an order for execut ion . P s e u d o c o d e a n d f lowcharts 
are procedural a n d speci fy logic . 



Chapter S —•• The Procedure Division 

Our objective is for you to write meaningful C O B O L programs, not to memorize 
u hat must appear to be an endless list of rules. Y o u must eventually remember 
certain things, but w e have found the best approach is to pattern your first few 
C O B O L programs after existing examples such as the tuition billing program. 
Everything you need to get started is contained in that program (Figure 5.5) if you 
will look at it carefully. As a further aid, Figure 5.7 contains a skeleton outline of a 
C O B O L program and s o m e helpful hints. Consider: 

1. The four divisions must appear in the order: Identification, Environment, 
Data, and Procedure. Division headers begin in the A margin and always 
appear o n a line by themselves. 

2. The Environment and Data Divisions contain sections with fixed names. The 
Identification Division does not contain any sections. (The Procedure 
Division m a y contain programmer-defined sections; however, this is usually 
not done in beginning programs.) 

3. The Data Division is the only division without paragraph names . In the 
Identification and Environment Divisions, the paragraph n a m e s are fixed. In 
the Procedure Division they are determined by the programmer. Paragraph 
names begin in the A margin. 

4. Any entry not required to begin in the A margin begins in the B margin—that 
is, in or past column 12. 

5. The program executes instructions sequentially, as they appear in the 
Procedure Division, unless a transfer-of-control statement such as 
P E R F O R M is encountered. 

6. Every file must be opened and closed. A file n a m e will appear in at least four 
statements: SELECT, FD, O P E N , and C L O S E . The R E A D statement also 
contains the file n a m e of an input file, whereas the W R I T E statement 
contains the record n a m e of an output file. 

Scope terminators (e.g., END-IF, and END-READ) did not exist in COBOL 74; 
hence all scope terminators in Figure 5.5 must be removed for the program to 
compile under COBOL-74. The advantage of including scope terminators is 
explained further in Chapter 7. j 

The EVALUATE statement is also new to COBOL-85 and hence an j 
alternative way to compute the activity fee (e.g., multiple IF statements) is J 
required to develop the program under the older compiler. j 

The word TO is permitted as an optional reserved word in the GIVING | 
form of the ADD statement in COBOL-85; it was not allowed in COBOL-74. \ 

x 

THEN is an optional reserved word in the IF statement in COBOL-85 but was j 
not allowed in COBOL-74. I 



COBOL Program Skeleton 

Skeleton Outline of a COBOL Program 

IDENTIFICATION DIVISION. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

fSELECT Y N P U T - F I L E " A S S I G N TO 'A:\CHAPTR05\TUITI0N.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

| SELECT P R I N T - F I L E 
A S S I G N TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD INPUT-FILE 

RECORD CONTAINS 8 0 CHARACTERS. 
01 INPUT-RECORD PIC X ( 8 0 ) . 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS. 

01 P R I N T - L I N E PIC X ( 1 3 2 ) . 

WORKING-STORAGE SECTION 
01 DATA-REMAINS-SWITCH P I C X(2) VALU E SPACES. 
oi "HEADING-LINE! """""""" ~ " 

01 DETAIL-LINE. 

01 TOTAL-LINE. 

PROCEDURE DIVISION. 
MAINLINE. 

j O P E N INPUT INPUT-FILE 
O U T P U T PRINT-FILE. 

READ INPUT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
PERFORM PROCESS-RECORDS 

U N T I L DATA-REMAINS-SWITCH = 'NO'. 
CLOS E INPUT-FILE" j 

PRINT-FILE. 
STOP RUN. I r 

PROGRAM-ID. 
AUTHOR. 

PROGNAME. 
JOHN D O E . 

PROCESS-RECORDS. 

[READ"" INPUT-FILE " " " 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 

file://'A:/CHAPTR05/TUITI0N


C h a p t e r 5 The Procedure Division 

SUMMARY 

:-o-».jit« f© Remember 

The READ statement typically appears twice in a COBOL program; as an 
initial (priming) read, and as the last statement of a performed paragraph 
to process a file until its records are exhausted. 

The PERFORM statement may be used with or without an UNTIL clause; 
the latter is used to implement a loop. 

The IF statement may be used with or without an ELSE clause; indentation 
is optional, but strongly suggested, in order to clarify intent. 

The EVALUATE statement implements the case structure and is used 
instead of multiple IF statements. 

The MOVE statement has several precisely defined rules, which govern the 
use of sending and receiving fieids of different lengths and/or data types. 

Arithmetic is done in one of two ways: either through individual statements 
such as ADD, SUBTRACT, MULTIPLY, and DIVIDE, or through a COMPUTE 
statement which combines multiple operations. 

Il Parentheses may clarify and/or alter the normal sequence of operations; 
exponentiation, multiplication or division, addition or subtraction (and from 
left to right, if a tie). 

The hierarchy chart can be used as a design aid before a program is 
written, and as a documentation technique afterward. 

Key Words and Concepts 

Assumed (implied) decimal point Hierarchy of operations 
Decimal alignment Indentation 
Design aid Priming (initial) read 
Documentation Pseudocode 
Exponentiation Receiving (destination) field 
Group move Scope terminator 
Hierarchy chart Source (sending) field 

ADO 
ADVANCING 
CLOSE 
COMPUTE 
DIVIDE 
ELSE 
END-ADD 

tNu-COMKUlt 
END-DIVIDE 
END-EVALUATE 
END-IF 

EVALUATE 
GIVING 
IF 

READ 
ROUNDED 
SIZE ERROR 
STOP RUN 
SUBTRACT 
UNTIL 
WRITE 

MOVE 
END-MULTIPLY 
END-READ 

MULTIPLY 
OPEN 

END-SUBTRACT PERFORM 



1. The statement permits multiple arithmetic operations in a single 

statement. 

2. Most arithmetic statements have distinct formats. 

3. Specification of the clause causes a calculation to be carried to 

one more place than is specified in the result field. 

4. Exponentiation is indicated by . 

5. In the absence of parentheses exponentiation comes (before/after) multiplication. 

6. If both multiplication and division are present, computation proceeds from 
to . 

7. The IF statement fdoes/does not) require an ELSE clause. 
8. The effect of an IF statement is terminated by the presence of a 

or the presence of an clause. 
9. is normally the last statement that is executed in any COBOL 

program. 

10. A typical COBOL program usually has distinct READ statements. 

11. A file containing N records is generally read times. 

12. In COBOL, one reads a and writes a . 

13. Specification of in a WRITE 
statement causes the next line of output to begin on top of a new page. 

14. The type of file—that is, INPUT or OUTPUT^appears in an but 
not in a statement. 

15. When an alphanumeric field is moved to an alphanumeric field, data are moved  
character at a time, from to . 

16. If a five position alphanumeric field is moved to a four position alphanumeric field, 
the low order character is . 

17. A numeric move always maintains . 

18. A PERFORM UNTIL statement always tests the condition (before/after) performing 
the designated paragraph. 

19. A numeric field (may/may not) be moved to an alphabetic field. 

20. If a numeric field with PIC 999 is moved to a numeric field with PIC 99, the 
(most/least) significant digit will be truncated. 

21. The option is available for all arithmetic 
statements, and indicates when the result of a computation is larger than its 
designated PICTURE clause. 

22. The statement has been introduced to express a multibranch 
situation. 



C h a p t e r 5 — The Procedure Division 

1. One ADD instruction can change the value of more than one data name. 

2. Both GIVING and TO may be present in the same ADD instruction. 

3. A valid ADD instruction may contain neither GIVING nor TO. 

4. Both FROM and GIVING may appear in the same SUBTRACT instruction. 

5. The use of GIVING is optional in the MULTIPLY statement. 

6. The reserved word INTO must appear in a DIVIDE statement. 

7. In the DIVIDE statement, the dividend is always identifier-1. 

8. Multiplication and division can be performed in the same MULTIPLY statement. 

9. Multiplication and addition can be performed in the same COMPUTE statement. 

10. In a COMPUTE statement with no parentheses, multiplication is always done before 
subtraction. 

11. in a COMPUTE statement with no parentheses, multiplication is always done before 
division. 

12. Parentheses are sometimes required in a COMPUTE statement. 

13. The COMPUTE statement changes the value of only one data name. 

14. The IF statement must always contain the ELSE option. 

15. The PERFORM statement transfers control to a paragraph elsewhere in the program. 

16. A program may contain more than one STOP RUN statement. 

17. STOP RUN must be the last statement in the Procedure Division. 

18. The ADVANCING option is mandatory in the WRITE statement. 

19. The READ statement contains a record name. 

20. The WRITE statement contains a record name. 

21. The OPEN and CLOSE statements are optional. 

22. The END-IF scope terminator has little effect in an IF statement. 

23. An IF statement can cause the execution of several other statements. 

24. If the ELSE clause is satisfied in an IF statement, it can cause execution of several 
statements. 

25. The ROUNDED clause is required in the COMPUTE statement. 

26. The SIZE ERROR option is allowed only in the COMPUTE statement. 

27. The SIZE ERROR option is required in the COMPUTE statement. 

28. The EVALUATE statement facilitates implementation of the case construct. 



1. Some of the following arithmetic statements are invalid. Identify those, and state 
why they are unacceptable. 
a. ADD A B C . 
b. SUBTRACT 10 FROM A B. 
c. SUBTRACT A FROM 10. 
d. ADD A TO B GIVING C. 
e. SUBTRACT A POUNDED FROM B ROUNDED GIVING C. 
f. MULTIPLY A BY 10. 
g. MULTIPLY 10 BY A ROUNDED. 
h. MULTIPLY A BY 10 GIVING B C. 
i. DIVIDE A BY B. 
j. DIVIDE A INTO B. 
k. DIVIDE A INTO B GIVING C. 
I. DIVIDE B BY A GiVING C. 
m. COMPUTE X ROUNDED = A + B. 
n. COMPUTE X = 2{A + B). 
o. COMPUTE V = 20 /A -C . 

2. Complete the table below. In each instance, refer to the initial values of A, B, C, 
and D. 

Value before execution 4 8 12 2 

Value after execution of 
a. ADD 1 TO D B. 
b. ADD A B C GIVING D. 
c. ADD A B C TO D. 
d. SUBTRACT A B FROM C. 
e. SUBTRACT A B FROM C GIVING D. 
f. MULTIPLY A BY B C. 
g. MULTIPLY B BY A. 
h. DIVIDE A INTO C. 
i. DIVIDE C BY B GIVING D REMAINDER A. 
j. COMPUTE D = A + B / 2 * D. 
k. COMPUTE D = (A + B) / (2 * D). 
i. COMPUTE D = A + B / (2 * D). 
m. COMPUTE D = (A + B) / 2 * D. 
n. COMPUTE D = A + (B / 2) * D. 



Chapter 5 — The Procedure Division 

Indicate the logical errors inherent in the following COBOL fragment: 

FILE SECTION. 
FD EMPLOYEE-FILE 

FD PRINT-FILE 

WORKING-STORAGE SECTION. 
01 END-OF-FILE-SWITCH PIC X(3) VALUE 'YES'. 

PROCEDURE DIVISION. 
PREPARE-EMPLOYEE-REPORT. 

MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE 

AFTER ADVANCING PAGE. 
OPEN INPUT EMPLOYEE-FILE 

OUTPUT PRINT-FILE. 
PERFORM PROCESS-RECORDS 

UNTIL END-OF-FILE-SWITCH - 'YES'. 
CLOSE EMPLOYEE-FILE. 
STOP RUN. 

PROCESS-RECORDS. 
READ EMPLOYEE-FILE 

AT END MOVE 'YES' TO END-OF-FILE-SWITCH 
END-READ. 

Some of the following statements are invalid. Indicate those, and state why they are 
invalid. (Assume FILE-ONE and FILE-TWO are file names and RECORD-ONE is a 
record name.) 
a. OPEN INPUT RECORD-ONE. 
b. OPEN INPUT FILE-ONE OUTPUT FILE-TWO. 
c. OPEN INPUT FILE-ONE. 
d. CLOSE OUTPUT FILE-ONE. 
e. READ FILE-ONE. 
f. READ FILE-ONE AT END PERFORM END-OF-JOB-ROUTINE. 
g. READ RECORD-ONE AT END PERFORM END-OF-JOB. 
h. WRITE RECORD-ONE. 
i. WRITE RECORD-ONE AFTER ADVANCING TWO LINES. 
j. WRITE RECORD-ONE BEFORE ADVANCING TWO LINES, 
k. CLOSE FILE-ONE FILE-TWO. 
I. WRITE FILE-ONE. 
m. WRITE RECORD-ONE AFTER ADVANCING PAGE. 



5. Write COBOL COMPUTE statements to accomplish the intended logic: 

a. x = a + b + c 

a + bc 
b. x = 

2 

c. x = a 2 + b2 + c2 

a + b 
d. x = - — - - c 

2 
e. x = a + b 

[a2 + b2 

f. x = J- — 

V 2c 
g. f = p(Uif 

h. f = - ; 
/ 

(a + bf 
I. X = - r -

(d + e) 

6. Given the following Procedure Division: 
reugcuunc uivj.oj.un. 
FIRST-PARAGRAPH. 

MOVE ZEROS TO FIELD-A FIELD-B. 
PERFORM SECOND-PARAGRAPH. 
PERFORM THIRD-PARAGRAPH. 
PERFORM SECOND-PARAGRAPH. 
STOP RUN. 

SECOND-PARAGRAPH. 
ADD 10 TO FIELD-A. 
ADD 20 TO FIELD-B. 

THIRD-PARAGRAPH. 
MULTIPLY FIELD-A BY FIELD-B GIVING FIELD-C. 
DIVIDE FIELD-A INTO FIELD-B GIVING FIELD-D. 

a. What are the final values for FIELD-A, FIELD-B, FIELD-C, and FIELD-D? 
b. How many times is each paragraph executed? 

http://uivj.oj.un


Chapter 5 — The Procedure Division 

7. Complete the following table, showing the contents of the receiving field. 

SENDING) FIELD 
PICTURE CONTENTS 

RECEIVINGS FiELO 
PICTURE CONTENTS 

a. 

b. 

c. 

d. 

e. 

f. 

g-

h. 

X(4) 

X(4) 

X(4) 

X(4) 

9(4) 

9(4) 

9(4) 

999V9 

999V9 

999V9 

999V9 

H 0 

0 ! P I E 
H i 0 

PIE 

6 17 
L j 

8 9 
6 j 7 

7 8 19 1 
i i 111} 

7 | 8 i 9 

X(4) 

9(4) 

X(3) 

X(5) 

X(4) 

9(3) 

9(5) 

9(4) 

9(4)V9 

9(3)V99 

99V99 

8. Supply Procedure Division statements as indicated: 
a. Code two equivalent statements, an ADD and a COMPUTE, to add 1 to the 

counter NUMBER-QUALIFIED-EMPLOYEES. 
b. Code a COBOL statement to add the contents of five fields, MONDAY-SALES, 

TUESDAY-SALES, WEDNESDAY-SALES, THURSDAY-SALES, and FRIDAY-
SALES, storing the result in WEEKLY-SALES. 

c. Code a COBOL statement to subtract the fields FED-TAX, STATE-TAX, 
FICA, and VOLUNTARY-DEDUCTIONS, from GROSS-PAY, and put the result 
in NET-PAY. 

d. Code a single COBOL statement to calculate NET-AMOUNT-DUE, which is 
equal to the GROSS-SALE minus a 2% discount. 

e. Recode part (d), using two statements (a MULTIPLY and a SUBTRACT). 
f. Code a COBOL statement to compute GROSS-PAY, which is equal to HOURS-

WORKED times HOURLY-RATE. 
g. Code a single COBOL statement to compute GROSS-PAY, which is equal to 

REG-HOURS-WORKED times HOURLY-RATE plus OVERTIME-HOURS times 
HOURLY-RATE times 1.5. 

h. Code a COBOL statement to determine AVERAGE-SALARY by dividing TOTAL-
SALARY by NUMBER-OF-EMPLOYEES. 

i. Code a COBOL Compute statement equivalent to the algebraic formula. 

(a + b)c 
x = - — 

de 
j. Code a COBOL Compute statement equivalent to the algebraic formula. 

x = 
-b + jb2 -4ac 

2a 

9. Write Procedure Division code for the flowchart in Figure 5.8. 



Problems 

F = F - 1 

FALSE 

X = A + B 

y 

N = N + 1 

F = F - 1 

FALSE 

X = A + B 

N = N + 1 

Flowcharts for Problem 9 





Overview 
Errors in Compilation 

Common Compilation Errors 
Errors in Execution 

File Status Codes 
Tips for Debugging 

Cross-Reference Listing 
DISPLAY Statement 
Interactive Debugger 

The Structured Walkthrough 
Summary 
Fill-in 
True/False 
Problems 



Chapter 6 Debugging 

After reading this chapter you will be able to: 

Distinguish between errors in compilation and execution; correct typical 
compilation errors. 

Use the DISPLAY statement as a debugging tool. 

Explain how an interactive debugger can be used to find and correct 
execution errors. 

Describe the use of file status codes in correcting data management 
errors. 

Explain what is meant by a structured walkthrough; be able to participate 
as reviewer, reviewee, moderator, or secretary. 

1/ v 

Very few computer programs run successfully on the first attempt. Indeed, the 
programmer is realistically expected to make errors, and an important test of a 
good programmer is not whether he or she makes mistakes, but how quickly he 
or she is able to detect and correct the errors. Since this process is such an 
integral part of programming, an entire chapter is devoted to debugging. We 
consider errors in both compilation and execution. 

Compilation errors occur during the translation of COBOL to machine 
language and are caused by a mistake in COBOL syntax, for example, a 
missing period or an entry in a wrong column. Execution errors result after the 
program has been translated to machine language and produce results that are 
different from what the programmer expected or intended. 

Compilation errors are easy to find because the compiler produces an 
explicit error message. Execution errors are more difficult to detect and may 
require the use of additional debugging tools, such as the insertion of DISPLAY 
statements into a program and/or the use of an interactive debugger. The 
chapter also considers the structured walkthrough as a means of reducing 
errors before they occur. 

A U. 

C o m p i l a t i o n is t h e p r o c e s s of trans lat ing a s o u r c e (COBOL) p r o g r a m into m a c h i n e 
l anguage . Any m i s t a k e in COBOL syntax c a u s e s t h e c o m p i l e r to m a k e a n a s s u m p t i o n 
in t h e in terpreta t ion o f t h e s t a t e m e n t in w h i c h the error o c c u r s , or, w o r s e yet , 
m a k e s it i m p o s s i b l e for t h e c o m p i l e r t o interpret the s t a t e m e n t at all. Either w a y a 
compilation error results . 



Errors in Compilation 

S o m e errors are less severe than others; for example, the compiler is generally 
able to guess the programmer's intent w h e n periods are omitted in die Data Division, 
whereas it is unable to decipher a misspelled reserved word. Accordingly, most 
compilers provide different levels of compiler diagnostics (error messages) according 
to the severity of the error. Micro Focus Personal C O B O L for Windows, for example, 
produces five types of error messages, which are listed in order of increasing severity. 
Other compilers have similar classifications. Consider: 

I Informational Diagnostics Indicates a coding inefficiency or other 
condition (for example, an incompatibility 
with the A N S standard). The program will 
compile correctly. 

W Warning Diagnostics The statement is syntactically correct, but 
the source of a potential problem. A 
program can compile and execute with 
several Wdevel diagnostics present; 
however, ignoring these messages could 
lead to errors in execution. 

E Error Diagnostics The statement is incorrect as written, and 
requires the compiler to make an 
assumption in order to complete the 
compilation. You m a y wish to correct the 
program in case the compiler's assumption 
is not what you intended. 

S Severe Diagnostics A severe error in that the compiler cannot 
m a k e corrections and therefore cannot 
generate object instructions. A n y 
statement flagged as an Sdevei error is 
ignored and treated as if it were not 
present in the program. 

U Unrecoverable Diagnostics A n error of such severity that the compiler 
does not k n o w what to do and cannot 
continue. IJ level diagnostics are extremely 
rare, and you practically have to submit a 
Visual BASIC program to the C O B O L 
compiler to cause a Udevel message. 

The C O B O L compiler tends to rub salt in a w o u n d in the sense that an error in 
one statement can cause error messages in other statements that appear correct. 
For example, should you have an S-level error in a S E L E C T statement, the compiler 
will flag the error, ignore the S E L E C T statement, and then flag any other statements 
that reference that file even though those other statements are correct. 

Often simple mistakes such as omitting a line or misspelling a reserved wo r d 
can lead to a long and sometimes confusing set of error messages. The only 
consolation is that compiler errors can disappear as quickly as they occurred. 
Correction of the misspelled w o r d or insertion of the missing statement will often 
eliminate several errors at once. 

Proficiency in debugging comes from experience—the more programs you 
write, the better you become. You m a y correct the errors in the order they appear 



Chapter 6 Debugging 

(our preference) , or in the order of severity (from U n r e c o v e r a b l e , Severe, Error, 
Want ing , io Informational ) , or e v e n h a p h a z a r d l y as y o u find t h e m . W h i c h e v e r w a y 
y o u c h o o s e , try to find t h e mi s takes as quickly as p o s s i b l e a n d w i t h o u t w a s t i n g t i m e . 
Moreover , d o n ' t s p e n d t o o m u c h t i m e o n a n y s ingle error; ins tead , if y o u are stuck, 
skip t h e error temporar i ly a n d c o n t i n u e to the next, e l i m i n a t i n g as m a n y errors as 
y o u c a n before y o u r e c o m p i l e . 

Tuition Billing Program with Compilation Errors 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TUIT6C0M. 
AUTHOR. CAROL VAZQUEZ VILLAR. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR06\TUITI0N.DAT' 
ORGANIZTION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 
ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD STUDENT-FILE 

RECORD CONTAINS 27 CHARACTERS. 
01 STUDENT-RECORD. 

05 STU-NAME. 
10 STU-LAST-NAME PIC X(15). 
10 STU-INITIALS PIC XX. 

05 STU-CREDITS PIC 9(2). 
05 STU-UNION-MEMBER PIC X. 
05 STU-SCHOLARSHIP PIC 9(4). 
05 STU-GPA PIC 9V99. 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS. 

01 PRINT-LINE 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH 

PIC X(132). 

PIC X(2) VALUE SPACES. 

33 01 INDIVIDUAL-CALCULATIONS 
34 05 IND-TUITION PIC 9(4) VALUE ZEROS 
35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZEROS 
36 05 IND-UNI0N-FEE PIC 9(2) VALUE ZEROS 
37 05 IND-SCHOLARSHIP PIC 9(3) VALUE ZEROS 
38 
OQ 

05 IND-BILL PIC 9(6) VALUE ZEROS 
J 5 

40 01 UNIVERSITY-TOTALS. " " " " 

41 05 UNI-TUITI0N ^J€^9T6) VALUE ZEROS 
42 05 [UNI UNION FEE DTP Q(A\ . * v ^ VALUE ZEROS 

file://'A:/CHAPTR06/TUITI0N.DAT'


Errors in Compilation 

(continued) 

43 05 UNI-ACTIVITY-FEE PIC 9(4) VALUE ZERQS-- " 
44 05 i UNJ-SCHOLARSHIP " " J l C X(6) ; VALUE ZEROS. 
45 05 U N I - I N D - B I L L P I C 9(6) VALUE ZEROS. 
46 
47 01 CONSTANTS-AND-RATES. 
48 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200. 
49 05 UNION-FEE PIC 9(2) VALUE 25. 
50 05 ACTIVITY-FEES. 
51 10 1ST-ACTIVITY-FEE PIC 99 VALUE 25. 
52 10 1ST-CREDIT-LIMIT PIC 99 VALUE 6. 
53 10 2ND-ACTIVITY-FEE PIC 99 VALUE 50. 
54 10 2ND-CREDIT-LIMIT PIC 99 VALUE 12. 
55 10 3RD-ACTIVITY-FEE PIC 99 VALUE 75. 
56 05 MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5. 
57 
58 01 HEADING-LINE. 
59 05 FILLER PIC X VALUE SPACES. 
60 05 FILLER PIC X(12) VALUE 'STUDENT NAME 
61 05 FILLER PIC X(10) VALUE SPACES7 ] ^ 
62 05 FILLER PIC X(7) VALUE 'CREDITS'. 
63 05 FILLER PIC X(2) VALUE SPACES. 
64 05 FILLER PIC X(7) VALUE 'TUITION'. 
65 05 FILLER PIC X(2) VALUE SPACES. 
66 05 FILLER PIC X(9) VALUE 'UNION FEE'. 
67 05 FILLER PIC X(2) VALUE SPACES. 
68 05 FILLER PIC X(7) VALUE 'ACT FEE'. 
69 05 FILLER PIC X(2) VALUE SPACES. 
70 05 FILLER PIC X ( l l ) VALUE 'SCHOLARSHIP' 
71 05 FILLER PIC X(2) VALUE SPACES. 
72 05 FILLER PIC X(10) VALUE 'TOTAL BILL'. 
73 05 FILLER PIC X(48) VALUE SPACES. 
74 
75 01 DETAIL-LINE. 
76 05 FILLER PIC X VALUE SPACES. 
77 05 DET-LAST-NAME PIC X(15). 
78 05 FILLER PIC X(2) VALUE SPACES. 
79 05 DET-INITIALS PIC X(2). 
80 05 FILLER PIC XfS)"VALUE SPACES. 
81 05 [ STU-CREDITS \~~ " PIC 9(2). 
82 05 FILLER PIC X(6) VALUE SPACES. 
83 05 DET-TUITION PIC 9(6). 
84 05 FILLER PIC X(7) VALUE SPACES. 
85 05 DET-UNION-FEE PIC 9(3). 
86 05 FILLER PIC X(6) VALUE SPACES. 
87 05 DET-ACTIVITY-FEE PIC 9(3). 
88 05 FILLER PIC X(8) VALUE SPACES. 
89 05 DET-SCHOLARSHIP PIC 9(5). 
90 05 FILLER PIC X(6) VALUE SPACES. 
91 05 DET-IND-BILL PIC 9(6). 
92 05 FILLER PIC X(49) VALUE SPACES. 



Chapter 6 — Debugging 

93 
94 01 DASH-LINE. 
95 05 FILLER PIC X(31) VALUE SPACES. 
96 05 FILLER PIC X(8) VALUE ALL 
97 05 FILLER PIC X(2) VALUE SPACES. 
98 05 FILLER PIC X(8) VALUE ALL 
99 05 FILLER PIC X(2) VALUE SPACES. 
100 05 FILLER PIC X(7) VALUE ALL '-'. 
101 05 FILLER PIC X(6) VALUE SPACES. 
102 05 FILLER PIC X(7) VALUE ALL 
103 05 FILLER PIC X(5) VALUE SPACES. 
104 05 FILLER PIC X(7) VALUE ALL '-'. 
105 05 FILLER PIC X(49) VALUE SPACES. 
106 
107 01 TOTAL-LINE. 
108 05 FILLER PIC X(8) VALUE SPACES. 
109 05 FILLER PIC X(17) 
110 VALUE 'UNIVERSITY TOTALS'. 
111 05 FILLER ntf' y /Q\ 

Tit A\Oj VALUE SPACES. 
112 05 TOT-TUITION PIC 9(6). 
113 05 FILLER PIC X(6) VALUE SPACES. 
114 05 TOT-UNION-FEE PIC 9(4). 
115 05 riLLcn PIC X(5) VALUE SPACES. 
116 05 TOT-ACTIVITY-FEE PIC 9(4). 
117 05 FILLER PIC X(7) VALUE SPACES. 
118 05 TOT-SCHOLARSHIP PIC 9(6). 
119 05 FILLER PIC X(6) VALUE SPACES. 
120 05 TOT-IND-BILL PIC 9(6). 
121 05 FILLER PIC X(49) VALUE SPACES. 
122 
123 
124 

PROCEDURE DIVISION. 
START. " " 

Reserved •;•> vd use f- J i 

125 OPEN INPUT STUDENT-FILE 
126 OUTPUT PRINT-FILE. 
127 PERFORM WRITE-HEADING-LINE. 
128 PERFORM READ-STUDENT-FILE. 
129 PERFORM PROCESS-STUDENT-RECORD 
130 UNTIL DATA-REMAINS-SWITCH = 'NO'. 
131 PERFORM WRITE-UNIVERSITY-TOTALS. 
132 CLOSE STUDENT-FILE 
133 PRINT-FILE. 
i i n STOP m ifti 

135 
136 WRITE-HEADING-LINE. 
137 MOVE HEADING-LINE TO PRINT -LINE. 
138 WRITE PRINT-LINE 
139 AFTER ADVANCING PAGE. 
140 MOVE SPACES TO PRINT-LINE. 
141 WRITE PRINT-LINE. 
142 

i 

•"igure s„1 (continued) 



Errors in Compilation 

(continued) 

j 143 READ-STUDENT-FILE. . V l , . , , • S T L 
144 READ STUDNET-FILE j 

! 145 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 
146 END-READ. 
147 
148 PROCESS-STUDENT-RECORD. 

( 149 PERFORM COMPUTE-INDIVIDUAL-BILL. 
150 PERFORM INCREMENT-UNIVERSITY-TOTALS 
151 PERFORM WRITE-DETAIL-LINE. 
152 PERFORM READ-STUDENT-FILE. 
153 
154 COMPUTE-INDIVIDUAL-BILL. 
155 PERFORM COMPUTE-TUITION. 

! 156 PERFORM COMPUTE-UNION-FEE. ,;T.. 
157 PERFORM COMPUTE-ACTIVITY-FEE. 

s 158 PERFORM COMPUTE-SCHOLARSHIP. 
I 159 COMPUTE IND-BILL « IND-TUITION + IND-UNION-FEE + IND-ACTIVITY 
j 160 - IND-SCHOLARSHIP. 
\ 161 
J 162 COMPUTE-TUITION. 
| 163 COMPUTE IND-TUITION pPRICE-PER-CREDIT * STU-CREDITS. 
( 164 
I 165 COMPUTE-UNION-FEE. 
1 166 IF STU-UNION-MEMBER = 1Y 1 . 
| 167 MOVE UNION-FEE TO IND-UNION-FEE 
| 168 ELSE 
I 169 MOVE ZERO TO IND-UNION-FEE 

170 END-IF. 
171 
172 COMPUTE-ACTIVITY-FEE. 

I 173 EVALUATE TRUE ,v 
j 174 WHEN STU-CRLD1TS <~ 1SJ-CREDIT-LIMIT 
j 175 MOVE 1ST-ACTIVITY-FE£ TO IND-ACTIVITY-FEE 
I 1 7 6 WHEN jSTU-CREDfTS[> 1SJ-CREDIT-LIMIT 
| 177 AND STU-CREDITS/= 2ND-CREDIT-LIMIT 
[ 178 MOVE 2ND-ACTIVITY-FEE TO IND-ACTIVITY-FEE 

179 WHEN STU-CREDITS > 2ND-CREDIT-LIMIT 
180 MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE 

j 181 WHEN OTHER 
j 182 DISPLAY 'INVALID CREDITS FOR: ' STU-NAME 
j 183 END-EVALUATE. 

184 
185 COMPUTE-SCHOLARSHIP. 
186 IF_STU-GPA > MINIMUM-SCHOLAR-GPA 
187 [MOVE STU-SCHOLARSHIP 10 IND^CH^RSHJP^ k . ^ 

) 188 ELSE 
1 189 MOVE ZERO TO IND-SCHOLARSHIP ^v: -wi* 

190 END-IF. 
191 
192 INCREMENT-UNIVERSITY-TOTALS. 



Chapter 6 Debugging 

(continued) 

193 ADD IND-TUITION TO UNI-TUITION. 
194 ADD IND-UNION-FEE TO [UNI-UNION-FEE. 
195 ADD INO-ACTIVITY-FEE TO UNI-ACTIVITY-FEE. 
196 ADD IND-SCHOLARSHIP TOtUNI-SCHOLARSHIP. 
197 ADD IND-BILL TO UNI-IND-BILL. 
198 
199 WRITE-DETAIL-LINE. 
200 MOVE STU-LAST-NAME T0 DET-LAST-NAME. 
201 MOVE STU-INITIALS^O DET-INITIALS. ^ ' 
202 MOVE STlJ-CREblTS}TOfblT-CREDITSr 
203 MOVE IND-TUITION TO DET-TUITION'. 
204 MOVE IND-UNION-FEE TO DET-UNION-FEE. 
205 MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE. 
206 MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP. 
207 MOVE IND-BILL TO DET-IND-BILL. 
208 MOVE DETAIL-LINE TO PRINT-LINE. 
209 WRITE j PRINT^FTLEj 
210 AFTER ADVANCING 1 LINE. 
211 
212 WRITE-UNIVERSITY-TOTALS. 
213 MOVE DASH-LINE TO PRINT-LINE. 
214 WRITE PRINT-LINE. .,„....--•'"' 
215 MOVE UNI-TUITION TO TOT-TUITION. 
216 MO V E[UN I-UNTON- FEE]TO TOT-U NION-F E E,-
217 MOVE UNI-ACTIVITY-FEE TO TOT-ACtIVITY-FEE. 
218 MOVE:UNI-SCHOLARSHIP]TO'TOT-SCHOLARSHIP. 
219 MOVE UNI-IND-BILL TO TOT-IND-BILL. 
220 MOVE TOTAL-LINE TO PRINT-LINE. 
221 WRITE PRINT-LINE 
222 AFTER ADVANCING 1 LINE. 

definition line 42 | 

To give y o u a bet ter feel o f w h a t to e x p e c t from your p r o g r a m s , w e h a v e taken 
the Tui t ion Bil l ing p r o g r a m from Chapter 5 a n d del iberate ly c h a n g e d several of the 
s t a t e m e n t s t o c a u s e c o m p i l a t i o n errors as s h o w n in Figures 6.1 a n d 6.2. T h e Personal 
COBOL A n i m a t o r h igh l ights e a c h error l ine in the original c o d e a n d c o o r d i n a t e s the 
error l ine w i t h the error m e s s a g e s l isted in the Syntax Errors w i n d o w s h o w n in 
Figure 6.2. T h e error m e s s a g e s i n c l u d e the a s s i g n e d n u m b e r o f the error a n d the 
error level . For e x a m p l e , 233-S m e a n s that this is error m e s s a g e 233 a n d its error 
level is Severe . T h e s t a t e m e n t is i gnored but the program c a n n o t b e c o m p i l e d . T h e 
error m e s s a g e a l so c o n t a i n s a brief e x p l a n a t i o n of the error. S o m e of the errors will 
b e i m m e d i a t e l y o b v i o u s ; o t h e r s m a y require y o u to look u p t h e m e s s a g e n u m b e r in 
Syntax C h e c k Error M e s s a g e s in A n i m a t o r H e l p . This h e l p feature is i n c l u d e d in the 
Standard COBOL Reference entry in the H e l p m e n u . Still o t h e r errors m a y require 
y o u to seek h e l p . As y o u p r o g r e s s t h r o u g h this b o o k a n d g a i n pract ica l e x p e r i e n c e , 
y o u will b e c o m e increas ing ly self-suff ic ient . 



Errors in C o m pi I at i o n 

Igure 6.2 Compilation Errors 

131*1 f Period alssing. Period assumed. : \ 
13-S Bser-naise required I \ 
12 S Operand STB0NET-FIIE is not declared ! 

56*!-S ft seope-deliaiter did not haoe a Batching uerb and ua-> discarded- ; ! 
12-S Operand 1MB OctIUIIV is not declared 
5-S User-nasse not ssaique i 
5~S Ilser-nana* STu-CR£MT5 not unique j ^ 
5-S User naw> STu-CRtDITS not unique ) \ 
5-S User-name Stll cm.0! IS not unique | ! 

j Operand UNI IMS ON II! is not declared I I 
3* S Operand BHI SCHOtftBSmP should tie numeric [ j 

j S-S User-napte STu-EBEGITS not unique x X 
\ 336's Hot a record nane \ 

12 S Operand UNI UNION m i» net d»r.;ared i [ 

Let us examine the errors: 

This error results from the first omitted hyphen in the definition of UNI 
UNION FEE in line 42; that is, the compiler does not know how to handle what it 
thinks are two data names in a row (UNI and UNION) and hence the error. In this 
case, the compiler has found a S-level error and ignores the rest of the statement. 
The compiler does not detect the missing hyphen between UNION and FEE. If only 
the first hyphen is inserted, on the next recompilation, the compiler will then 
discover the second hyphen is missing. Sometimes, one syntax error hides others 
so that the compiler is not able to detect them. 
Correction: Insert hyphens to read U N I - U N I O N - F E E . 

1014 E Period missing. Period assumed 
A level n u m b e r must follow a completed statement, but the period ending line 

61 has been removed. In this instance, the compiler assumes that the period is 
present, so no harm is done, but it is poor programming to permit such E-level 
diagnostics to remain. Moreover, there are situations in which a missing period can 
be very damaging. 
Correction: Insert a period at the end of line 61. 

This error in line 124 is a subtle one that typically sends the beginner for help. 
S T A R T is intended as a paragraph name, and paragraph names must begin in theA-
margin, so what's the problem? The difficulty is that S T A R T is a reserved word and 
cannot be used as a paragraph name. 
Correction: Choose another name—for example, S T A R T - T H E - P R O G R A M . 

12-S Operand STUDNET-FILE is not declared 
The compiler was expecting a valid file n a m e but didn't find one because line 

144 references S T U D WET-FILE rather than STUDENT-FILE. You k n o w they are the 
same, but the compiler does not and hence the error. 
Correction: Change the file n a m e to S T U D E N T - F I L E in statement 144. 



C h a p t e r 6 — Debugging 

Correction: Change line 209 to W R I T E PRINT-LINE instead of W R I T E PRINT-FILE. 

564-S A scope-delimiter did not have a matching verb and was discarded. 
This error in line 146 will disappear with the correction to the previous R E A D 

statement. 
Correction: N o n e required beyond the correction to line 144. 

12-S Operand 1ND-ACTIVITY is not declared 
The error is subtle because the program file contains IND-ACTIVITY-FEE in 

line 35, yet the data n a m e IND-ACTIVITY appears on the listing and is flagged as an 
error. The problem is that the C O M P U T E statement in line 159 extends beyond 
column 72, into columns 73-76, which are not interpreted by the compiler; that is, 
the compiler reads IND-ACTIVITY rather than IND-ACTIVITY-FEE. 
Correction: Reformat the C O M P U T E statement so that IND-ACTIVITY-FEE appears 
o n the next line. 

5-S User-name STU-CREDITS not unique 
This message appears four times in a row and is associated with lines 163,174, 

176, and 179. This error message implies that two or more data n a m e s are the same; 
in this instance STU-CREDITS is defined in line 21 and again in line 81 (the latter 
should be DET-CREDITS), and the compiler does not k n o w which is which. 
Correction: Restore uniqueness to the data n a m e in line 81, by changing STU-
C R E D I T S to DET-CREDITS. 

12-S Operand UNI-UNTOR-fEE is not declared 
The error message references U N I - U N I O N - F E E as an undefined symbol and 

is another example of h o w one error can cause several others. Hyphens were 
omitted in the definition of U N I - U N I O N - F E E in line 42, and thus (as far as the 
compiler is concerned) the data n a m e U N I - U N I O N - F E E does not exist. 
Correction: This diagnostic will disappear with the correction to line 42. 

34-S Operand UNI-SCHOLARSHIP should be numeric 
Arithmetic is permitted only o n numeric data names. U N I - S C H O L A R S H I P , 

however, was defined in line 44 as an alphanumeric rather than a numeric data 
n a m e , and hence the error. 
Correction: Change the P I C T U R E clause in line 44 from X(6) to 9(6). 

5-S User-name STU-CREDITS not unique 
This error is identical to the earlier non-unique message from lines 163, 174, 

175, 177, and 179. This error disguises another error. D E T - C R E D I T S has not been 
defined and should be flagged. In this case, the same correction fixes both problems. 
Correction: This error will disappear after changing STU-CREDITS to DET-CREDITS 
inline 81. 

330-S Not a record name 
A W R I T E statement, such as the one in line 209, requires a record n a m e rather 

than a file name. 



Errors in Compilation 

This error is identical to the one in line 194 and is due to the omitted hyphens 
in the definition of UNI-UNION-FEE. 
Correction: N o n e required beyond the previous correction to line 42. 

These are all of the compilation errors detected by the Animator. This example 
was prepared for an earlier edition of the book and a different compiler. In making 
the conversion to Personal C O B O L w e found two errors that the Animator did not 
flag. The first was in line 163, where there is no space between the "=" and PRICE-
PER-CREDIT. C O B O L requires spaces before and after arithmetic operators, but 
evidently the Animator tolerates this error. You should always m a k e it a habit to put 
spaces before and after arithmetic operators. Other compilers will not be as forgiving. 

The second error the Animator did not flag was in line 187. The M O V E 
statement moves the value of S T U - S C H O L A R S H I P (a four-position numeric field) 
to I N D - S C H O L A R S H I P (a three-position numeric field). The problem is that the 
sending field is larger than the receiving field, and thus the leftmost (most significant) 
digit m a y be truncated. This error could cause problems and should have had an I-
level or possibly W-level message.  

Compilation errors are a fact of life. Don't be discouraged if you have m a n y 
compilation errors in your first few attempts, and don't be surprised if you have 
several pages of diagnostics. R e m e m b e r that a single error in a C O B O L program can 
result in m a n y error messages, and that several errors often can be m a d e to disappear 
with one correction. Before leaving the subject, it is worthwhile to review a list of 
c o m m o n errors and suggested ways to avoid them: 
Nonuniquedata names. This error occurs because the same data n a m e is defined in 
two different records or twice within the same record. For example, C R E D I T S might 
be specified as an input field in S T U D E N T - F I L E and again as output in a detail line. 
Y o u can avoid the problem by prefixing every data n a m e within a record by a 
unique prefix as s h o w n below: 

01 STUDENT-RECORD 
05 STU-NAME 

10 STU-LAST-NAME 
10 STU-INITIALS 

05 STU-CREDITS 
05 STU-UNION-MEMBER 
05 STU-SCHOLARSHIP 
05 STU-GPA 

Omitted (or extra) periods. Every C O B O L sentence should have a period. Omission 
in the first three divisions often results in the compiler's assumption of a period 
where one belongs, and such errors are generally harmless. The effect is far more 
serious in the Procedure Division, where missing and/or extra periods affect the 
generated logic. 



C h a p t e r 6 — Debugging 

Omitted space before or after an arithmetic operator. The arithmetic operators, **, *, 
/, +, and - ail require a space before and after (a typical error for BASIC programmers, 
since the space is not required in that language). 
Invalid picture clause for numeric entry. All data n a m e s used in arithmetic statements 
must have numeric picture clauses consisting of 9's, an implied decimal point, and 
an optional sign. 
Conflicting picture and value clause. Numeric pictures must have numeric values 
(no quotes); nonnumeric pictures must have nonnumeric values (enclosed in 
quotes). Both entries below are invalid. 

05 TOTAL PIC 9(3) VALUE '123'. 
05 TITLE PIC X(3) VALUE 123. 

Inadvertent use of COBOL reserved words. C O B O L has a list of s o m e 300 reserved 
words that can be used only in their designated sense; any other use results in 
one or several diagnostics. S o m e reserved words are obvious, for example, 
W O R K I N G - S T O R A G E , I D E N T I F I C A T I O N , E N V I R O N M E N T , D A T A , a n d 
P R O C E D U R E . Others—such as C O D E , D A T E , START, a n d R E P O R T — a r e less 
obvious. Instead of memorizing the list or continually referring to it, w e suggest 
this simple rule of thumb: Always use a hyphen in every data name you create. 
This will work m o r e than 9 9 % of the time. 
Conflicting RECORD CONTAINS clause and FD record description. This is a c o m m o n 
error, even for established programmers. It can stem from careless addition in that 
the s u m of the pictures in the F D does not equal the n u m b e r of characters in the 
R E C O R D C O N T A I N S clause. It can also result from other errors within the Data 
Division, for example, w h e n an entry containing a P I C T U R E clause is flagged. 
(Remember that if an E-level diagnostic occurs, that entry will be ignored, and the 
count is thrown off.) 
Receivingfield too small to accommodate sending field. This is an extremely c o m m o n 
error, often associated with edited pictures (editing is discussed in Chapter 7). 
Consider the entries: 

05 PRINT-TOTAL-PAY PIC $$,$$$. 
05 WS-T0TAL-PAY PIC 9(5). 

MOVE WS-T0TAL-PAY TO PRINT-TOTAL-PAY. 
The M O V E statement would generate the warning that the receiving field m a y be 
too small to accommodate the sending field. The greatest possible value for W S -
T O T A L - P A Y is 99,999; the largest possible value that could be printed by PRINT-
T O T A L - P A Y is $9,999. Even though the picture for the print field contains five $'s, 
one $ must always be printed along with the numeric characters, hence the warning. 
Omitted (or extra) hyphens in a data name. This is a careless error, but one that 
occurs too often. If, for example, w e define PR I N T -T( )TAL- P A Y i n the Data Division 
and then reference P R I N T T O T A L - P A Y in the Procedure Division, the compiler 
catches the inconsistency. It doesn't state that a hyphen was omitted, but indicates 
that P R I N T and T O T A L - P A Y are undefined. 

A related error is the insertion of extra hyphens where they don't belong, for 
example, W O R K I N G - S T O R A G E S E C T I O N or DATA-DIVISION. 



Errors in Execution 

Misspelled data names or reserved words. Too m a n y C O B O L students are poor 
spellers. Sound strange? H o w do you spell environment1. O n e or m a n y errors can 
result, depending o n which word was spelled incorrectly. 
Reading a record name or writing a file name. The C O B O L rule is very simple—read 
a file and write a record—but m a n y people get it confused. Consider: 

FD STUDENT-FILE 
DATA RECORD IS STUDENT-RECORD. 

FD PRINT-FILE 
DATA RECORD IS PRINT-RECORD. 

Correct entries: 
READ STUDENT-FILE . . . 
WRITE PRINT-RECORD . . . 

READ STUDENT-RECORD . . . 
WRITE PRINT-FILE . . . 

Going past column 72. This error can cause any of the preceding errors as well as a 
host of others. A C O B O L statement must end in column 72 or before; columns 73-
80 are left blank or used for program identification. (The 72-column restriction does 
not apply to data.) 

After a program has been successfully compiled, it can proceed to execution, and 
therein lies the strength and weakness of the computer. The primary attractiveness 
of the machine is its ability to perform its task quickly; its weakness stems from the 
fact that it does exactly what it has been instructed to do. The machine cannot think 
for itself; the programmer must think for the machine. If you were to inadvertently 
instruct the computer to compute tuition by charging $20 instead of $200 per credit, 
then that is what it would do. 

To give you an idea of what can happen, w e have deliberately altered the 
original tuition billing program of Chapter 5 and created a n e w program, s h o w n in 
Figure 6.3. Incorporated into this program are two types of errors: run time errors 
and logic errors. R u n time errors prevent the program from carrying out its task 
even though the program compiled properly. Logic errors do not stop the program, 
but they cause invalid output from the program. 

Tuition Billing Program with Execution Errors 

2 
3 
4 
5 
6 
7 
8 
9 
10 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TUIT6EXE. 
AUTHOR. CAROL VAZ CAROL VAZQUEZ VILLAR. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR06\TUITII0N.DAT  
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 

file://'A:/CHAPTR06/TUITII0N.DAT


C h a p t e r 6 — Debugging 

11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 
14 FILE SECTION. 
15 FD STUDENT-FILE 
16 RECORD CONTAINS 27 CHARACTERS. 
17 01 STUDENT-RECORD. 
18 05 STU-NAME. 
19 10 STU-LAST-NAME PIC X(15) 
20 10 STU-INITIALS PIC XX. 
21 05 STU-CREDITS PIC 9(2). 
22 05 STU-UNION-MEMBER PIC X. 
23 05 STU-SCHOLARSHIP PIC 9(4). 
24 05 STU-GPA - - — _ _ 

25 
26 FD PRINT-FILE 
27 RECORD CONTAINS 132 CHARACTERS. 
28 
on 

01 PRINT-LINE PIC X(132). 

30 WORKING-STORAGE SECTION. 
31 01 DATA-REMAINS-SWITCH PIC X(2) VALUE SPACES 
32 
33 01 INDIVIDUAL-CALCULATIONS. 
34 05 IND-TUITION PIC 9(4) VALUE ZEROS. 
35 05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZEROS. 
36 05 IND-UNION-FEE PIC 9(2) VALUE ZEROS. 
37 05 IND-SCHOLARSHIP PIC 9(4) VALUE ZEROS. 
38 05 IND-BILL PIC 9(6) VALUE ZEROS. 
39 
40 01 UNIVERSITY-TOTALS. 
41 05 UNI-TUITION PIC 9(6) VALUE ZEROS. 
42 05 UNI-UNION-FEE PIC 9(4) VALUE ZEROS. 
43 05 UNI-ACTIVITY-FEE PIC 9(4) VALUE ZEROS. 
44 05 UNI-SCHOLARSHIP PIC 9(6) VALUE ZEROS. 
45 05 UNI-IND-BILL PIC 9(6) VALUE ZEROS. 
46 
47 01 CONSTANTS-AND-RATES. 
48 05 PRICE-PER-CREDIT PIC 9(3) VALUE 200. 
49 05 UNION-FEE PIC 9(2) VALUE 25. 
50 05 ACTIVITY-FEES. 
51 10 1ST-ACTIVITY-FEE PIC 99 VALUE 25. 
52 10 IST-CREDIT-LIMIT PIC 99 VALUE 6. 
53 10 2ND-ACTIVITY-FEE PIC 99 VALUE 50. 
54 10 2ND-CREDIT-LIMIT PIC 99 VALUE 12. 
55 10 3RD-ACTIVITY-FEE PIC 99 VALUE 75. 

(continued) 



Errors in Execution 

(continued) 

56 05 MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5. 
57 
58 01 HEADING-LINE. 
59 05 FILLER PIC X VALUE SPACES. 
60 05 FILLER PIC X(12) VALUE 'STUDENT NAME 
61 05 FILLER PIC X(10) VALUE SPACES. 
62 05 FILLER PIC X(7) VALUE 'CREDITS'. 
63 05 FILLER PIC X(2) VALUE SPACES. 
64 05 FILLER PIC X(7) VALUE 'TUITION'. 
65 05 FILLER PIC X(2) VALUE SPACES. 
66 05 FILLER PIC X(9) VALUE 'UNION FEE'. 
67 05 FILLER PIC X(2) VALUE SPACES. 
68 05 FILLER PIC X(7) VALUE 'ACT FEE'. 
69 05 FILLER PIC X(2) VALUE SPACES. 
70 05 FILLER PIC X(ll) VALUE 'SCHOLARSHIP' 
71 05 FILLER PIC X(2) VALUE SPACES. 
72 05 FILLER PIC X{10) VALUE 'TOTAL BILL'. 
73 
7 A 

05 FILLER PIC X(48) VALUE SPACES. 

/4 
75 

01 DETAIL-LINE. 
76 05 FILLER PIC X VALUE SPACES. 
77 05 DET-LAST-NAME PIC X(15) 
78 05 FILLER PIC X(2) VALUE SPACES. 
79 05 DET-INITIALS PIC X(2). 
80 05 FILLER PIC X(5) VALUE SPACES. 
81 05 DET-CREDITS PIC 9(2). 
82 05 FILLER PIC X(6) VALUE SPACES. 
83 05 DET-TUITION PIC 9(6). 
84 05 FILLER PIC X(7) VALUE SPACES. 
85 05 DET-UNION-FEE PIC 9(3). 
86 05 FILLER PIC X(6) VALUE SPACES. 
87 05 DET-ACTIVITY-FEE PIC 9(3). 
88 05 FILLER PIC X(8) VALUE SPACES. 
89 05 DET-SCHOLARSHIP PIC 9(5). 
90 05 FILLER PIC X(6) VALUE SPACES. 
91 05 DET-IND-BILL PIC 9(6). 
92 05 FILLER PIC X(49) VALUE SPACES. 
93 
94 01 DASH-LINE. 
95 05 FILLER PIC X(31) VALUE SPACES. 
96 05 FILLER PIC X(8) VALUE ALL'-'. 
97 05 FILLER PIC X(2) VALUE SPACES. 
98 05 FILLER PIC X(8) VALUE ALL'-'. 
99 05 FILLER PIC X(2) VALUE SPACES. 
100 05 FILLER PIC X(7) VALUE ALL '-'. 



Chapter S — Debugging 

101 05 FILLER PIC X(6) VALUE SPACES 
102 05 FILLER PIC X(7) VALUE ALL '-
103 05 FILLER PIC X(5) VALUE SPACES 
104 05 FILLER PIC X(7) VALUE ALL '-
105 05 FILLER PIC X(49) VALUE SPACES 
106 
107 01 TOTAL-LINE. 
108 05 FILLER PIC X(8) VALUE SPACES 
109 05 FILLER PIC X(17) 
110 VALUE 'UNIVERSITY TOTALS'. 
111 05 FILLER PIC X(8) VALUE SPACES 
112 05 TOT-TUITION PIC 9(6). 
113 05 FILLER PIC X(6) VALUE SPACES 
114 05 TOT-UNION-FEE PIC 9(4). 
115 05 FILLER PIC X(5) VALUE SPACES 
116 05 TOT-ACTIVITY-FEE PIC 9(4). 
117 05 FILLER PIC X(7) VALUE SPACES 
118 05 TOT-SCHOLARSHIP PIC 9(6). 
119 05 FILLER PIC X(6) VALUE SPACES 
120 05 TOT-IND-BILL PIC 9(6). 
121 05 FILLER PIC X(49) VALUE SPACES 
122 
123 PROCEDURE DIVISION. 
124 PREPARE-TUIT ION-REPORT. 
125 OPEN INPUT STUDENT-FILE 
126 OUTPUT PRINT-FILE. 
127 PERFORM WRITE-HEADING-LINE. 
128 PERFORM READ-STUDENT-FILE. 
129 PERFORM PROCESS-STUDENT-RECORD 
130 UNTIL DATA-REMAINS-SWITCH = 'NO'. 
131 PERFORM WRITE-UNIVERSITY-TOTALS. 
132 CLOSE STUDENT-FILE 
133 PRINT-FILE. 
134 STOP RUN. 
135 
136 WRITE-HEADING-LINE. 
137 MOVE HEADING-LINE TO PRINT-LINE. 
138 WRITE PRINT-LINE 
139 AFTER ADVANCING PAGE. 
140 MOVE SPACES TO PRINT-LINE. 
141 WRITE PRINT-LINE. 
142 
143 READ-STUDENT-FILE. 
144 READ STUDENT-FILE 
145 AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

(continued) 



Errors in Execution 

iguu& £ .3 (continued) 

146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 

END-READ. 

PROCJiS^-^TUDENT-REXJORD. 
j PERFORM READ-STUDENT-FILET j - " " " " 
PERFORM COMPUTE-INDIVIDUAL-BILL. 
PERFORM INCREMENT-UNIVERSITY-TOTALS 
PERFORM WRITE-DETAIL-LINE. 

COMPUTE-INDIVIDUAL-BILL. 
PERFORM COMPUTE-TUITION. 
PERFORM COMPUTE-UNION-FEE. 
PERFORM COMPUTE-ACTIVITY-FEE. 
PERFORM COMPUTE-SCHOLARSHIP. 
COMPUTE IND-BILL = IND-TUITION + IND-UNION-FEE + 

IND-ACTIVITY-FEE - IND-SCHOLARSHIP. 

STU-CREDITS. 
COMPUTE-TUITION. 

COMPUTE IND-TUITION = PRICE-PER-CREDIT 

COMPUTE-]JN ION^FEE^ _ _ 
ITsTU-UNION-MEMBER = 'Y' 

MOVE ZERO TO IND-UNION-FEE ! 
ELSE r~~" 

MOVE UNION-FEE TO IND-UNION-FEE j 
END-IF. j 

COMPUTE-ACTIVITY-FEE. 
EVALUATE TRUE 

WHEN STU-CREDITS <= 1ST-CREDIT-LIMIT 
MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE 

WHEN STU-CREDITS > 1ST-CREDIT-LIMIT 
AND STU-CREDITS <= 2ND-CREDIT-LIMIT 

MOVE 2ND-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN STU-CREDITS > 2ND-CREDIT-LIMIT 

MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN OTHER 

DISPLAY 'INVALID CREDITS FOR: ' STU-NAME 
END-EVALUATE. 

COMPUTE-SCHOLARSHIP. 
IF STU-GPA > MINIMUM-SCHOLAR-GPA 

MOVE STU-SCHOLARSHIP TO IND-SCHOLARSHIP 
ELSE 

MOVE ZERO TO IND-SCHOLARSHIP 



C h a p t e r 6 
Debugging 

(continued) 

END-IF. 

INCREMENT-UNIVERSITY-TOTALS. 
ADD IND-TUITION TO UNI-TUITION. 
ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE. I....---
ADD IND-SCHOLARSHIP TO UNI-SCHOLARSHIP. 1 

I ADD I N D - B I L L _ TO UNI-IND-BILL. 

WRITE-DETAIL-LINE. 
MOVE STU-LAST-NAME TO DET-LAST-NAME. 
MOVE STU-INITIALS TO DET-INITIALS. 
MOVE STU-CREDITS TO DET-CREDITS. 
MOVE IND-TUITION TO DET-TUITION. 
MOVE IND-UNION-FEE TO DET-UNION-FEE. 
MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE. 
MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP. 
MOVE IND-BILL TO DET-IND-BILL. 
MOVE DETAIL-LINE TO PRINT-LINE. 
WRITE PRINT-LINE 

AFTER ADVANCING 1 LINE. 

WRITE-UNIVERS ITY-TOTALS. 
MOVE DASH-LINE TO PRINT-LINE. 
WRITE PRINT-LINE. 
MOVE UNI-TUITION TO TOT-TUITION. 
MOVE UNI-UNION-FEE TO TOT-UNION-FEE. 
MOVE UNI-ACTIVITY-FEE TO TOT-ACTIVITY-FEE. 
MOVE UNI]:-SCHOLARSHIP TO TOT-SCHOLARSHIP. 
. MOVE IND-BILL TO TOT-1ND-BILL. j \ 
MOVE TOTAL-LINE TO PRINT-LINE. 
WRITE PRINT-LINE 

AFTER ADVANCING 1 LINE. 

I n p u t / O u t p u t o p e r a t i o n s o c c u r t h r o u g h o u t t h e e x e c u t i o n of a COBOL p r o g r a m a n d 
c o n s e q u e n t l y are a s o u r c e of frequent r u n - t i m e errors. T h e w i n d o w s h o w n in 
Figure 6.4a r e p r e s e n t s o n e o f t h e m o s t c o m m o n types of e r r o r s — a t t e m p t i n g to read 
f r o m a file that d o e s n ' t exist . 

After w e click o n OK, the Animator s h o w s u s the l ine w h e r e the error w a s 
d e t e c t e d , as in Figure 6 .4b. T h e OPEN s t a t e m e n t relates to t h e SELECT . . . ASSIGN 
s t a t e m e n t s in t h e E n v i r o n m e n t Div i s ion . T h e COBOL SELECT s t a t e m e n t t ies a 
p r o g r a m m e r - c h o s e n file n a m e to an i m p l e m e n t o r n a m e . In W i n d o w s - b a s e d COBOL 
c o m p i l e r s the ASSIGN c l a u s e a l l o w s the def in i t ion of a file n a m e . T h e c o m b i n a t i o n 
o f SELECT a n d ASSIGN a s s o c i a t e s a COBOL file, s u c h as STUDENT-FILE, w i t h a file 
o n disk s u c h as TUITION.DOT in Figure 6.4c, l ine 8. 

T h e p r o b l e m is that T U I T I O N . D O T d o e s n o t exist; l o o k careful ly at the 
proper t i e s o f TUITION in Figure 6.4d. T h e file e x t e n s i o n is D/17Tather t h a n DOT. In 
o ther w o r d s , t h e COBOL p r o g r a m is a t t e m p t i n g to read f rom a file that isn't there, 
an i m p o s s i b l e s i tuat ion for t h e p r o g r a m that l e a d s to an e x e c u t i o n or run time 
system (RTS) error. 



Errors in Execution 

File Status Errors 

JJS 
ms 12* tn 
ui 
: •» 
i - l 1 (35 
I . M 135 
1 1 1 iil in 
139 
Me 

J i l y « . « * , l w . i 

f * 

f ' 

»s 

t -

'TUinOH.DOT' 

The Animator is very picky about file names . For example, even if you spell 
the n a m e correctly bu t do not correctly specify the path, the Animator may not be 
able to find the file. If the program specifies only the n a m e and extension, but the 
actual file is in a working directory other than that expected by the Animator, the 
program will not be able to find the file. Appendix B shows you h o w to make sure 
that the Animator knows where to look for files. 



C h a p t e r 6 — Debugging 

l i e 
After correct ing the file n a m e , w e r e c o m p i l e d the p r o g r a m a n d ran it again , this 
t i m e w i t h the results in Figure 6.5. Figure 6.5a s h o w s a n o t h e r c o m m o n RTS error, 
"Illegal Character in N u m e r i c Field." This error a l m o s t a lways c o m e s f rom having 
s p a c e s in a n u m e r i c field. O n e c a u s e of t h o s e s p a c e s is w h e n the program reads a 
data file that actual ly h a s s p a c e s in the field. In o ther w o r d s , if the field h a s a 
PICTURE of 9(5) a n d the actual c o n t e n t s are " 123", t h e p r o g r a m will fail if it tries to 
u s e this field in a c o m p u t a t i o n . This p r o b l e m is a data p r o b l e m rather than a 
p r o g r a m p r o b l e m . W h e n y o u create test data, b e sure to ty pe in l ead ing zeros for 
a n y n u m e r i c fields. In this c a s e the field s h o u l d h a v e b e e n "00123". 

A s e c o n d r e a s o n for s p a c e s in a n u m e r i c field is w h e n the p r o g r a m a t t e m p t s to 
read b e y o n d the e n d of a file. T h e incorrect p l a c e m e n t of the READ in l ine 149 of 
Figure 6.3 c a u s e s this c o n d i t i o n . Figure 6 .5b s h o w s t h e l ine w h e r e the error w a s 
d e t e c t e d . W e c l icked o n e a c h data n a m e in the s t a t e m e n t , a n d the A n i m a t o r 
s h o w e d us the current c o n t e n t s o f the field. STU-CREDITS c o n t a i n s o n l y s p a c e s 
a n d c a u s e d t h e error. In this case , w h e n the p r o g r a m read b e y o n d the e n d of the 
file, COBOL inser ted s p a c e s in to STUDENT-RECORD (l ine 17), inc lud ing STU-
CREDITS. To correct the p r o b l e m w e restored the READ to t h e e n d of PROCESS-
STUDENT-RECORD, r e c o m p i l e d the program, a n d reran it. This ac t ion corrects 
the r u n - t i m e errors, but there are still log ic errors to deal w i th . 

f a r e 6.5 Illegal Character Run Time Error 

Illegal character in numeric field (Error 163) 

) OK j 

in time error messaoe 

162 
ffi3 
>(,< 
ICS 
1S>6 
16? 
1&« 
16} 
m 

J72 

l?« 
!V4 
iVT. 
i n 

COHJ'UII. rt>i f ! U N . 

COHP-JIL UNION F i t . 
Si' STl) UNI ON- MF 

HOBE ZERO 10 
ELSE 

MOUf UNION-F 
EHD-IF. 

court) r* ficnuitv-pe 
EUALUAIE TRUE 

— — 2 

j|A»piyi A(Ml*l!tii Man llorj !i:jst! 
mi-H SIU-CREDITS <-- 1ST CREDIT-LIMIT 

rtOUi: iST-BCTIUIIi-FEE TO IND OCTIUI 
WHEN STU-CREDITS > 1ST CRKDIT I.IfllT 

J 



There are several subtle errors in Figure 6.6: 
1. The university total for union fees is zero rather than a computed amount. 
2. The s u m of the individual fills in the total line appears as 850 (the a m o u n t for 

the last record), rather than a running total of 24550. 
3. The union fees are reversed for each student. For example, lames and Baker 

are charged $25 w h e n they should be charged nothing; conversely, Part-
Timer and Jones are charged nothing w h e n their fee is $25. 

4. James was erroneously awarded a scholarship of $500; James, however, does 
not qualify because his average is below 2.5. 
W e emphasize that these logic errors are not contrived but are typical of 

students and beginning programmers. Even the accomplished practitioner can be 
guilty of similar errors w h e n rushed or careless. Realize also that logic errors occur 
without fanfare. There are no compiler diagnostics or RTS error messages to warn 
of impending trouble. The program has compiled cleanly and runs smoothly to the 
end; there is nothing to indicate a problem. 

The errors in Figure 6.3 are errors in execution, rather than in compilation. 
The program compiled cleanly because it is syntactically correct, but it executed 
improperly because it is logically incorrect. Nevertheless, the program did precisely 
what it was instructed to do, which, unfortunately, is not what the programmer 
wanted it to do. It is necessary, therefore, to find the source of each logic error, as 
discussed below. 

1. The totals for the university are computed in the paragraph I N C R E M E N T -
UNIVERSITY-TOTALS (lines 192-196), in which the individual amounts for 
the student being processed are added to the running university totals. Note, 
however, that the A D D statement for U N I - U N I O N - F E E is conspicuously 
absent, and hence the value of U N I-UNION-FEE remains unchanged 
throughout the program. 

2. UNI-IND-BILL is defined in line 45 and correctly incremented for each 
record in line 196; so far, so good. Flowever, w h e n the total line is built in line 
218, IND-BILL rather than UNI-IND-BILL is m o v e d to TOT - I N D - B I L L , 
causing the individual last bill (for Kerbel) to be printed as the total. 

3. I N D - U N I O N - F E E is calculated in a simple IF statement in lines 166-170, in 
which the IF and ELSE clauses are reversed; that is, the union fee is $25 for 
students w h o belong to the union as indicated by a Y in the appropriate 
incoming field. 

4. The definition S T U - G P A in line 24 incorrectly omits the implied decimal 
point in the P I C T U R E clause. Hence all incoming averages will be 
interpreted as ten times their true value (i.e., 2.5 will be stored as 25). Thus, 
all s tudents will have an average greater than 2.5, and hence all students with 
potential scholarships will receive the award. 



Chapter 6 — D ebugging 

Tuition Billing Report Comparisons—Invalid and Valid 

STUDENT NAME CREDITS TUITION UNION FEE/ACT FEE SCHOLARSHIP TOTAL BILL 

SMITH JB 15 003000 000 075 00000 003075 
JAMES HR 15 003000 025 j 075 00500 002600 
BAKER SR 09 001800 025 1 050 00500 001375 
PART-TIMER JR 03 000600 000 j 025 00000 000625 
JONES PL 15 003000 000 | 075 00000 003075 
HEAVYWORKER HM 18 003600 025 1 075 00000 003700 
LEE BL 18 003600 025 I 075 00000 003700 
CLARK JC 06 001200 025 | 025 00000 001250 
GROSSMAN SE 07 001400 025 | 050 00000 001475 
FRANKEL LF 10 002000 025 | 050 00000 002075 
BENWAY CT 03 000600 025 I 025 00250 000400 
KERBEL NB 04 000800 025 | 025 00000 000850 

UNIVERSITY TOTALS 024600 f "0000 ]-... 0625 001250 I 000850] 

STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL 

SMITH JB 15 003000 025 075 00000 003100 
JAMES HR 15 003000 000 075 00000 003075 
BAKER SR 09 001800 000 050 00500 001350 
PART-TIMER JR 03 000600 025 025 00000 000650 
JONES PL 15 003000 025 075 00000 003100 
HEAVYWORKER HM 18 003600 000 075 00000 003675 
LEE BL 18 003600 000 075 00000 003675 
CLARK JC 06 001200 000 025 00000 001225 
GROSSMAN SE 07 001400 000 050 00000 001450 
FRANKEL LF 10 002000 000 050 00000 002050 
BENWAY CT 03 000600 000 025 00250 000375 
KERBEL NB 04 000800 000 025 00000 000825 

UNIVERSITY TOTALS 024600 0075 0625 000750 024550 
(b) Valid Output { from Cha oter 5} 

' S „ ',, X >Sl r It was easy to find the execution errors just discussed because w e created t h e m in 
j \ , - j|Cjf|jflt| the first place, and hence we knew exactly where to look. In practice, however, it is not so 

~ **' easy. Fortunately, the Personal C O B O L Animator provides some powerful tools to help 



with debugging programs. Appendix A gives an extended discussion of the Animator 
arid even has a short debugging tutorial. However, w e can provide a few tips here as 
well. 

1. Step through the program using the Watch Button. This button shows the 
contents of each field in the current statement. 

2. Use breakpoints to stop the program at critical junctures in the program. By 
using breakpoints, you can run the program at full speed until the 
breakpoint is encountered and then step through the questionable code. 

3. To save paper, write your output to the screen rather than the printer. W h e n 
you are actually ready to print the report, a simple change to the A S S I G N will 
accomplish the task. For example: 
To print to screen: S E L E C T PRINT-FILE A S S I G N T O P R I N T E R 'CON'. 
To print to printer: S E L E C T PRINT-FILE A S S I G N T O PRINTER. 

4. Double-clicking o n any data n a m e will bring up the current value of the field, 
whether it is in the current execution line or not. 

5. Using the Find option in the Edit M e n u will highlight all occurrences of a 
data n a m e in the program. 
There are m a n y other features in the Animator to help with debugging, and as 

you gain proficiency in programming you will see h o w to use them. 

It is often helpful to display intermediate results of a program as the program is 
being executed. O n e w a y to accomplish this is through the insertion of DISPLAY 
statements at strategic points in the program. The statement enables you to print 
the value of one or more data n a m e s and/or one or more literals without having to 
format a record description. Consider: 

identifier- 1 
DISPLAY 

1iteral-1 
identifier-2 
literal-2 

The DISPLAY statement produces the contents of each item listed in the order 
shown. For example, 

1. DISPLAY S T U D E N T - R E C O R D . 
2. DISPLAY 'Record being processed: ' S T U D E N T - R E C O R D . 
3. DISPLAY ' C O M P U T E - T U I T I O N paragraph is entered' 
4. DISPLAY'Student data:'STU-NAME STU-CREDITS. 

Examples one and two both display the value of the data n a m e S T U D E N T -
R E C O R D ; the second example, however, precedes the data n a m e with a literal to 
facilitate interpretation of the output. Example three displays just a literal but 
could be used (in conjunction with similar D I S P L A Y statements in other 
paragraphs) to show the flow of program execution. Example four displays a literal 
and two data names. 



Chapter 6 Debugging 

Although it is reasonable to expect errors, the programmer is also expected 
(reasonably) to find and correct them. Until recently, error detection and correction 
was a lonely activity. A programmer was encouraged to desk check—that is, read 
and reread the code—in an attempt to discern logical errors before they occurred. 
Desk checking is still an important activity, but it is frequently supplemented by a 
newer technique, the structured walkthrough. 

The walkthrough brings the evaluation into the open. It requires a programmer 
to have his or her work reviewed formally and periodically by a peer group. The 
theory is simple—a programmer is too close to his or her work to see potential 
problems adequately and evaluate them objectively. The purpose of the walkthrough 
is to ensure that all specifications are met, and that the logic and its C O B O L 
implementation are correct. 

The earlier an error is found, the easier it is to correct and thus the single most 
important objective of a walkthrough is early error detection. Walkthroughs occur at 
several stages during a project, beginning in the analysis phase, where the purpose 
is to ensure that the systems analyst has understood the user's requirements. 
Walkthroughs occur again during the design phase, after the programmer has 
developed a hierarchy chart and/or associated pseudocode. Finally, walkthroughs 
occur during the implementation phase, during which the programmer presents 
actual code prior to testing. 

Walkthroughs are scheduled by the person being reviewed, w h o also selects 
the reviewers. The programmer distributes copies of the work (for example, a 
hierarchy chart, pseudocode, or a C O B O L program) prior to the session. Reviewers 
are supposed to study the material in advance so that they can discuss it intelligently. 
At the walkthrough itself, the programmer presents the material objectively, 
concisely, and dispassionately. H e or she should encourage discussion and be 
genuinely glad w h e n errors are discovered. 

O n e of the reviewers should function as a moderator to keep the discussion 
o n track. Another should act as a secretary and maintain an action list of problems 
uncovered during the session. At the end of the walkthrough the action list is given 
to the programmer, w h o in turn is expected to correct the errors a nd notify attendees 
accordingly. The objective of the walkthrough is to find errors, not to correct them. 
The latter is accomplished by the programmer upon receipt of the action list. 

The preceding discussion m a y read well in theory, hut programmers often 
dislike the walkthrough concept. The probable reason is that they dislike having 
their work reviewed and regard criticism of code as a personal affront, intended or 
otherwise. This attitude is natural and stems from years of working as individuals. 

In addition, walkthroughs can and have b e c o m e unpleasant and ego-deflating 
experiences. "Structured walkover" and "stomp through" are terms that have been 
applied to less-than-successful sessions. Only if the atmosphere is kept open and 
nondefensive, only if the discussion is restricted to major problems rather than 
trivial errors, and only if personality clashes are avoided can the walkthrough be an 
effective technique. To have any chance of success, programmers w h o function as 
both reviewer and reviewee must adhere to the following guidelines: 

1. The program, and not the programmer, is reviewed. Structured walkthroughs 
are intended to find programming problems; they will not be used by 
ma n a g e m e n t as an evaluation tool. N o one should keep count of h o w m a n y 



The Structured Walkthrough 

errors are found in an individual's work or h o w m a n y errors one finds in 
someone else's. It is quite logical, therefore, to exclude the project m a n a g e r — 
that is, the individual in charge of salaries and promotions—from review 
sessions. 

2. Emphasis is on error detection, not correction. It is assumed that the individual 
being reviewed will take the necessary corrective action. Reviewers should not 
harp on errors by discussing how to correct them; indeed, no corrections 
whatever are m a d e during a walkthrough. 

3. Everyone, from senior analyst to trainee, has his or her work reviewed. This 
avoids singling out an individual and further removes any stigma from having 
one's work reviewed. It also promotes the give-and-take atmosphere that is so 
vital to making the concept work. 

4. A list of well-defined objectives for each session should be specified in advance. 
Adherence to this guideline keeps the discussion on track and helps to 
guarantee productive discussions. Another guideline is to impose a 
predetermined time limit, from half an hour to two hours. Walkthroughs will 
eventually cease to be productive and degenerate into a discussion of last 
night's ball game, the n e w manager, the latest rumor, or some other "hot" 
topic. The situation should be anticipated and avoided, perhaps by scheduling 
walkthroughs an hour before lunch. If all of the walkthrough 's objectives have 
not been met w h e n the deadline is reached, schedule a second session. 

5. Participation must be encouraged and demanded from the reviewers. A 
walkthrough will indeed become a waste of t ime if no one has anything to say. 
Let it be k n o w n in advance that each reviewer will be expected to m a k e at least 
two comments, one positive and one negative. Alternatively, require each 
reviewer to c o m e to the session with a list of at least three questions. 

S U M M A R Y 

'omts i o Remember 

Compilation errors occur in the translation of COBOL to machine language 
and result from a violation of COBOL syntax—for example, a misspelled 
data name or an entry in the wrong column. 

Run time and execution errors develop after compilation has taken place, 
and are caused by improper logic and/or improper COBOL implementation 
of valid logic. 

A program may compile cleanly and be logically correct, yet still fail to 
execute if there are problems with the associated data files. Run time 
errors will occur and generate RTS error messages to help determine the 
cause of such data management errors. 

Sometimes data file problems are not the fault of the program, but are from 
the data file itself. The most common problem occurs when a numeric field 
includes spaces rather than zeroes. 



Chapter 6 — Debugging 

The Animator provides many tools for debugging and can be quite helpful 
in tracking both syntax and logic errors. 

A structured walkthrough is an open evaluation of an individual's work by a 
group of his or her peers, with the primary objective of detecting errors as 
soon as possible in the development cycle. 

Key Words and Concepts 

Action list 
Compilation error 
Compiler option 
Cross-reference listing 
Debugging 
Desk checking 
Early error detection 

COBOL Element 

D1S P LAY 

F I L L - I N 

Execution error 
File status codes 
Interactive debugger 
Moderator 
Run Time System 
Secretary 
Structured walkthrough 

1. errors occur in the translation of COBOL to machine language. 

2. errors occur after a program has been successfully translated to 
machine language. 

3. Incorrect translation of valid pseudocode into COBOL will most likely produce  
errors. 

4. Misspelling a reserved word will most likely produce a error. 

5. If a program cleanly, it means only that the program has been 
successfully translated into machine language. 

6. errors are accompanied by some type of error message, whereas 

errors are frequently undetected by the computer. 

7. The process of peer review is known as a . 

8. The errors that are detected during a are 
entered on an , which is maintained by the 
secretary. 

9. The emphasis in a structured walkthrough is on error , not error 

10. One suggestion for conducting successful walkthroughs is to remember that the  
and not the is reviewed. 



i 1. cause a program to stop 
processing even though it is syntactically correct. 

12. are helpful in detecting 
errors in execution that pertain to data management. 

1. If a program compiles with no diagnostics, it must execute correctly. 

2. if a program compiles with warning diagnostics, execution will be suppressed. 

3. If a program contains logical errors but not syntactical errors, the compiler will print 
appropriate warnings. 

4. A COBOL program is considered data by the COBOL compiler. 

5. An error in one COBOL statement can cause errors in several other, apparently 
unrelated, statements. 

6. There are several different levels (of severity) of compilation errors. 

7. Paragraph names begin in the A margin. 

8. Spaces are required before and after arithmetic symbols. 

9. Spaces are required before and after punctuation symbols. 

10 A data name that appears in a COMPUTE statement can be defined with a picture 
of X's. 

11. Data names may contain blanks. 

12. The contents of columns 73-80 are ignored by the compiler. 

13. In a COBOL program one reads a record name and writes a file name. 

14. The emphasis in a structured walkthrough is on error detection rather than error 
correction. 

15. Walkthroughs should be held for trainees only, as these are the individuals most 
likely to make mistakes. 

16. Managers typically do not attend walkthroughs. 

17. A walkthrough generally takes a minimum of two hours. 

18. Walkthroughs should be restricted to the coding phase of a project. 

1. Has your work ever been the subject of a structured walkthrough? Was the 
experience helpful or a waste of time, or worse? Are you looking forward to your 
next walkthrough? 

2. Do you agree with banning managers from walkthroughs? Is it possible that the role 
of moderator in a walkthrough might best be filled by the project manager? 



C h a p t e r 6 Debugging 

3. Do you agree with the authors' suggestions for successful walkthroughs? Are there 
any guidelines you wish to add to the list? To remove from the iist? 

4. Identify the syntactical errors in the COBOL fragment in Figure 6.8. 

5. Identify the logical errors in the COBOL fragment in Figure 6.9. (Assume there are 
no other READ statements in the program.) 

6. The COBOL fragment in Figure 6.10a is taken from a program that compiled 
cleanly but failed to execute. The error message is in Figure 6.10b. Explain 
the problem. 

COBOL Fragment for Problem 4 

IDENTIFICATION DIVISION. 
PROGRAM ID. ERRORS. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTR06\EMP.DAT' 

ORGANIZATION IS LINE SEQUENTIAL. 
DATA DIVISION. 
FILE SECTION. 
FD EMPLOYEE-FILE 

RECORD CONTAINS 50 CHARACTERS 
DATA RECORD IS EMPLOYEE-RECORD. 
EMPLOYEE-RECORD. 
05 EMP-NAME PIC X(20). 
05 EMP-NUMBER PIC X(9). 
05 FILLER PIC X(20). 

WORKING STORAGE SECTION. 
10 END-OF-FILE-SWITCH PIC X(3) VALUE BLANKS. 

m m 6 .8 COBOL Fragment for Problem 5 

WORKING-STORAGE SECTION. 
01 END-OF-FILE-SWITCH PIC X(3) VALUE 'YES'. 

PROCEDURE DIVISION. 
MAINLINE. 

PERFORM PROCESS-RECORDS 
UNTIL END-OF-FILE-SWITCH = 'YES' 

PROCESS-RECORDS. 
READ EMPLOYEE-FILE 

AT END MOVE 'YES' TO END-OF-FILE-SWITCH 
END-READ. 

file://'A:/CHAPTR06/EMP.DAT'


Problems 

COBOL Fragment for Problem 6 

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR06\TUITI0N.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 
ASSIGN TO PRINTER. 

PROCEDURE DIVISION. 
PREPARE-SENIOR-REPORT. 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 
OPEN INPUT STUDENT-FILE 

OUTPUT PRINT-FILE. 
PERFORM WRITE-HEADING-LINE. 
PERFORM PROCESS-RECORDS 

UNTIL DATA-REMAINS-SWITCH = 'NO'. 
CLOSE STUDENT-FILE 

PRINT-FILE. 
STOP RUN. 

Wrong open mode or access m o d e for read/start (Error 147) 

M -«-H 

file://'A:/CHAPTR06/TUITI0N.DAT'




Overview 
Edi t ing 

The Decimal Point 
Zero Suppression 
Dollar Signs 
Commas 
Asterisks for Check Protection 
Insertion Characters 
Synopsis 

S i g n e d N u m b e r s 
CR and DB 
Plus and Minus Signs 

B L A N K W H E N Z E R O C l a u s e 
T h e Tu i t ion Bi l l ing P r o g r a m R e v i s i t e d 
C o d i n g S t a n d a r d s 

Data Division 
Procedure Division 
Both Divisions 

Programming Tip: Avoid Literals 
Programming Tip: Use Scope Terminators 
A Wel l -Wri t ten P r o g r a m 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 7 — Editing and Coding Standards 

OBJECTIVES  

After reading this chapter you will be able to: 

List the complete set of COBOL editing characters. 

Differentiate between a numeric field and a numeric-edited field; predict 
the results when a numeric field is moved to a numeric-edited field. 

Understand the difference between an implied decimal point and an actual 
decimal point; state the role of each in editing. 

Describe the rules for signed numbers and the editing characters +, CR, 
and DB. 

Describe the rationale for coding standards that go beyond the syntactical 

requirements of COBOL. 

OVERVIEW 

The chapter introduces editing—the ability to dress up printed reports by inserting 
dollar signs, decimal points, and so on, into numeric fields prior to printing. The 
chapter also introduces the concept of signed numbers and the use of CR and 
DB, or a plus and minus sign, to indicate positive or negative results. All ot this 
material is incorporated into the tuition billing program from Chapter 5. 

The second half of the chapter develops the rationale for coding standards, 
or requirements imposed by an installation to increase the readability (and 
maintainability) of COBOL programs. We present a series of typical standards 
and show how they are incorporated into existing programs. 

Editing The importance of editing is best demonstrated by comparing outputs from two 
programs. Figure 7.1a contains the original (unedited) output produced by the 
tuition billing program of Chapter 5. Figure 7.1b contains edited output, produced 
by a modified version of the program, which is presented later in the chapter. The 
last line of Figure 7.1b displays a n e w student, Lucky One, w h o s e scholarship grant 
exceeds the total a m o u n t of his bill, producing a credit of $150. (Lucky O n e is not 
s h o w n in Figure 7.1a as the original program did not address signed numbers.) The 
superiority of the edited output speaks for itself. 

The editing characters of Table 7.1 enable the kind of output s h o w n in 
Figure 7.1b. Editing is achieved by incorporating these characters into the various 
P I C T U R E clauses within a C O B O L program. 

The editing characters are not associated with the numeric fields used in 
computations, as these fields m a y contain only digits, an implied decimal point, 
and an optional sign. Additional data names, k n o w n as numeric-edited fields, are 
necessary within the program, a n d it is the picture clauses for the latter that contain 
editing characters from Table 7.1. In other words, arithmetic is performed o n numeric 
fields, whose computed values are subsequently m o v e d to numeric-edited fields, 
and the latter are printed. 



Editing 

Figure 7,1 Comparison of Outputs 
i 

SMITH JB 15 003000 025 075 00000 003100 
JAMES HR 15 003000 000 075 00000 003075 
BAKER SR 09 001800 000 050 00500 001350 
PART-TIMER JR 03 000600 025 025 00000 000650 
JONES PL 15 003000 025 075 00000 003100 
HEAVYWORKER HM 18 003600 000 075 00000 003675 
LEE BL 18 003600 000 075 00000 003675 
CLARK JC 06 001200 000 025 00000 001225 
GROSSMAN SE 07 001400 000 050 00000 001450 
FRANKEL LF 10 002000 000 050 00000 002050 
BENWAY CT 03 000600 000 025 00250 000375 
KERBEL NB 04 000800 000 025 00000 000825 

UNIVERSITY TOTALS 024600 0075 0625 000750 024550 

(a) Without Editing 

STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL 

SMITH JB 15 $3,000 $25 $75 $3,100 
JAMES HR 15 $3,000 $75 $3,075 
BAKER SR 9 $1,800 $50 $500 $1,350 
PART-TIMER JR 3 $600 $25 $25 $650 
JONES PL 15 $3,000 $25 $75 $3,100 
HEAVYWORKER HM 18 $3,600 $75 $3,675 
LEE BL 18 $3,600 $75 $3,675 
CLARK JC 6 $1,200 $25 $1,225 
GROSSMAN SE 7 $1,400 $50 $1,450 
FRANKEL LF 10 $2,000 $50 $2,050 
BENWAY CT 3 $600 $25 $250 $375 
KERBEL NB 4 $800 $25 $825 
LUCKY ONE FR 9 $1,800 $50 $2000 S150CR : 

UNIVERSITY TOTALS $26,400 / $75 $675 $2,750 $24,400 
Student has been added to the original data ^ 

(a) With Editing 

;  

T A b L E 7.i Editing Characters 

Actual decimal point 
Zero suppression 
Dollar sign 
Comma 
Check protection 
Zero 

/ 
CR 
DB 
+ 

Blank 
Slash 
Credit character 
Debit character 
Plus sign 
Minus sign 

STUDENT NAME CREDITS TUITION UNION FEE ACT FEE SCHOLARSHIP TOTAL BILL 



C h a p t e r 7 — Editing and Coding Standards 

The relationship between numeric fields and numeric-edited fields is illustrated 
in Figure 7.2, which depicts the calculation of tuition as credits times the rate ($200 
per credit). The incoming student record contains the field STU-CREDITS, with the 
calculated result defined in Working-Storage as IND-TUITION. The two fields are 
numeric, and do not contain any editing characters. 

O n the other hand, DETAIL-LINE contains two numeric-edited fields (I)ET-
C R E D I T S and DET-TUITION), each of which holds one or m o r e editing characters 
from Table 7.1. It is not necessary for you to k n o w the precise function of the various 
editing characters at this time; you need only perceive the difference between 
numeric and numeric-edited fields. 

The calculations within Figure 7.2 are done with the numeric fields (IND-
TU I T I O N and STU-CREDITS). Then, just prior to printing, the values in the numeric 
fields are m o v e d to the corresponding numeric-edited fields, which are printed. 

Let us consider the various editing characters from Table 7.1, in turn. 

- h e Decimal Point 
The actual decimal point is the most basic editing character. In reviewing this and 
other examples, it is essential that you remember that any move of a numeric field to 
a numeric-edited field maintains decimal alignment. Consider: 

05 FIELD-A PIC 9V99. 
05 FIELD-A-EDITED PIC 9.99. 
FIELD-A is a numeric field, with two digits after an implied decimal point. 

FIELD-A-EDITED is a numeric-edited field containing an actual decimal point. All 
calculations are done using FIELD-A, which is m o v e d to FIELD-A-EDITED prior to 
printing by m e a n s of the statement M O V E FIELD-A T O FIELD-A-EDITED. Thus: 

Before move: 

After e x e c u t i o n 

The decimal point requires a position in FIELD-A-EDITED, but not in FIELD-A; that 
is, FIELD-A-EDITED is a/our-position field, whereas FIELD-A requires only three 
positions. 

H E L B - J t 

9 i . 9 9 

8 3 

Zevo Suppress ion ..„. . 

O n e of the simplest editing requirements is to eliminate high-order (insignificant) 
zeros. For example, consider a numeric field defined with a P I C T U R E clause of 9(5), 
but whose value is 00120; in other words the two high-order positions contain 
insignificant zeros. It is likely that you would prefer the printed output to appear as 
120, rather than 00120, which is accomplished by the statement M O V E FIELD-B T O 
FIELD-B-EDITED as shown: 

05 FIELD-B PIC 9(5). 
05 FIELD-B-EDITED PIC 11219 

F I E L C m 

Be 

A ft 

Of(3 n i o v s : 0 j 0 1 £ 0 Be 

A ft 

Be 

A ft & ? SX'3 c u t i o n ' 0 | 0 1 2 0 

, 0 - B » E D I T E E 

Z Z I Z Z 9 



Editi n g 

"•iejars 7 , 2 Numeric and Numeric-Edited Fields 

FD STUDENT FILE 

01 STUDENT-RECORD. 

| 05 STU-CREDITS PIC 99. 

WORKING-STORAGE SECTION. 

05 IND-TUITION PIC 9(4). 

/ 
0 1 CON S TANT-AND-RAT E S. _ 

05 PRICE-PER-CREDlf PIC~9(3) JIIMMIMO 

01 DETAIL-LINE. 

PROCEDURE DIVISION. 

COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS 
SIZE ERROR DISPLAY 'Tuition exceeds expected maximum' 

END-COMPUTE. 

MOVE STU-CREDITS TO DET-CREDITS. { 
MOVE IND-TUITION TO DET-TUITION. I 

05 DET-CREDITS 
05 FILLER 
05 DET-TUITION 

PIC Z9. 

PIC X(5) I 
PIC~$$$$7$$9. 

VALUE SPACES, 



Chapter 7 — Editing and Coding Standards 

The editing character Z indicates zero suppression, and prevents the printing of 
leading zeros. However, as soon as the first significant digit is reached (the 1 in this 
example), all subsequent digits are printed. Note, too, that the picture for FIELD-B-
E D I T E D has a 9 as the low-order character, to print a zero, rather than blank out the 
field entirely, in the event of a zero value. 

The dollar sign is used as an editing character in one of two ways, either in a fixed or 
/Zoatingposition. A single dollar sign in the numeric-edited picture will always print 
the dollar sign in the same (fixed) position. Consider the following data n a m e s with 
the statement M O V E FIELD-C T O FIELD-C-EDITED: 

05 FIELD-C 
05 FIELD-C-EDITED 

PIC 9(4). 
PIC $ZZZ9. 

Before 0 0 14 3 $ Z 

0 0 14 

A floating dollar sign is obtained by using multiple dollar signs in the edited 
field. Consider the following data names in conjunction with the statement M O V E 
FIELD-D T O FIELD-D-EDITED: 

05 FIELD-D 
05 FIELD-D-EDITED 

PIC 9(4). 
PIC $$$$9. 

before move 

After e>, 

0 0 2 13 $ $ ! $ ! $ 

0 0 

A single (floating) dollar sign is printed before the first significant digit in the 
edited field, with the leading zero digits, if any, replaced by blanks. In other words, 
the floating dollar sign has the same effect as zero suppression. Note, too, that the 
receiving field must be at least one character longer than the sending field to 
accommodate the dollar sign; otherwise, a compiler warning results. 

A comma used as an editing character causes a c o m m a to be printed, provided a 
significant digit appears to the left of the c o m m a . The c o m m a will be suppressed, 
however, if it is preceded by leading zeros. Consider the following data n a m e s in 
conjunction with the statement M O V E FIELD-E T O FIELD-E-EDITED: 

05 FIELD-E 
05 FIELD-E-EDITED 

PIC 9(4). 
PIC $$,$$9. 

Arter 

I E L B - E F I E I ,-iSIMTEB 

8 7 6 

$ $ $ $ 9 

T 8 , | 7 |6 5 

The c o m m a is printed in the indicated position. Suppc 
contents of the sending field are less than 1,000, and that the statement M O V E 
FIELD-F T O FIELD-F-EDITED is executed in conjunction with the fields: 



05 FIELD-F PIC 9 ( 4 ) . 
05 FIELD-F-EDITED PIC $$ ,$$9 . 

0 | 0 co
j 

7 I ) $ ' $ ; . 

0 | 0 j 8 i 
7 1 

j ! j 
i i ! $|8|7 

The c o m m a is suppressed because it was not preceded by a significant digit. 
Observe also h o w the c o m m a is used in conjunction with a floating dollar sign. 

The asterisk is used as a fill character to avoid blanks between a fixed dollar sign and 
the first significant digit as in $****B7. Consider the following fields in conjunction 
with the statement M O V E FIELD-G T O FIELD-G-EDITED: 

05 FIELD-G 
05 FIELD-G-EDITED 

PIC 9 ( 5 ) . 
PIC $ * * , * * 9 . 

j 0 [ 0 | 0 

0 I 0 0 I 8 7 1 * * i * 

The dollar sign will print in its fixed position, with asterisks replacing leading 
zeros. The use of the asterisk as a fill character is c o m m o n l y referred to as check 
protection. 

The slash, blank, and zero ( /, B, and 0, respectively) are insertion characters, 
meaning that they are printed exactly where they appear in an edited field. Consider 
the following fields together with the statement M O V E FIELD-H T O FIELD-H-
EDITED: 

05 
05 

FIELD-H 
FIELD-H-EDITED 

PIC 9 ( 6 ) . 
PIC 9 9 / 9 9 / 9 9 . 

0 3 1 6 1 8 9 

o 3 1 6 | 8 | 9 

9 9 ; / 9 | 9 / 9 9 

0 3 / 1 | 6 / 8 9 

FIELD-H-EDITED is an eight-position field and is typical of h o w a date field m a y be 
edited. Blanks and zeros m a y be inserted in .similar fashion. Note, however, that the 
hyphen is not an insertion character and cannot, be used to place hyphens within a 
social security number. 

Table 7.2 provides an effective review of the editing characters covered so far. Each 
entry in the table shows the result of a M O V E statement of a numeric source field to 
a numeric-edited receiving field. All of the examples maintain decimal alignment as 
required. (The p which appears in several examples indicates a space.) 



Chapter 7 — Fditmg and Coding Standards 

Review of Editing Characters 

PICTURE VALUE 

a. 9(4) 0678 
b. 9(4) 0678 
c. 9(4) 0678 
d. 9(4)V99 123456 
e 9(4)V99 123456 
r. 9(4)V99 123456 
3 9(4) 0008 
h. 9(4)V9 12345 
i. 9(4)V9 12345 
i 9(5) 00045 
k 9(9) 123456789 
'•• 9(4) 1234 
•v.. 9(6) 080594 
n. 9(6) 080594 

PICTURE EBfTED RESU 

Z(4) ^678 
$9(4) $0678 
$Z(4) $^678 
9(4).99 1234.56 
$9(4).99 $1234.56 
$9,999.99 
<£ •£ <t £ <£ Q 

$1,234.56 
b( y, y, \k y& q 

9(4) 
ppppp$o 
1234 

9(4).99 1234.50 
$***45 

999B99B9999 123^45^6789 
$$,$$9.00 $1,234.00 
99/99/99 08/05/94 
Z9/99/99 ^8/05/94 

Thus far w e have considered only positive numbers, a rather unrealistic limitation. 
Numeric fields with negative values require an S in their P I C T U R E clause to indicate 
a signed field, that is, a field that m a y contain either positive or negative values. If 
the sign (the S in the P I C T U R E clause) is omitted, the value of the data n a m e will 
always be converted to a positive number, regardless of the result of the computation. 
Consider: 

05 FIELD-A PIC S99 VALUE -20. 
05 FIELD-B PIC 99 VALUE 15. 
05 FIELD-C PIC S99 VALUE -20. 
05 FIELD-D PIC 99 VALUE 15. 

ADD FIELD-B TO FIELD-A. 
ADD FIELD-C TO FIELD-D. 

Numerically, the s u m of -20 and +15 is -5, and there is no problem w h e n the 
result is stored in FIELD-A as in the first c o m m a n d . In the second c o m m a n d , 
however, the s u m is stored in FIELD-D (an unsigned field), and thus it will assume a 
value of+5. Accordingly m a n y programmers adopt the habit of always using signed 
fields to avoid any difficulty. Signed numbers require additional editing characters. 

Financial statements use either the credit (CR) or debit (1)1$) character to indicate a 
negative number. In other words, the representation of a negative n u m b e r can be 
either C R or D B , and depends entirely on the accounting system in use; s o m e 
systems use CR, whereas others will use D B . 

Table 7.3 contains four examples that should clarify the matter. In each 
instance, C R or D B appears only w h e n the sending field is negative [examples (b) 



use 

and (d)j. If the source field is positive or zero, C R and/or D B are replaced by blanks. 
T h e essential point is that C O B O L treats C R a n d D B identically, a n d the 
determination of which negative indicator to use depends o n the accounting system. 
'. • . .-• J= C R and D B Editing Characters 

PICTURE V A L U E PICTURE eaiX&Z RESULT 

a S9(5) 98765 $$$,999CR $98,765 
b. S9(5) -98765 $$$,999CR $98,765CR 
c S9(5) 98765 , $$$,999DB $98,765 
ci. S9(5) -98765 $$$,999DB S98.765DB 

P i u s a n d M i i i i i s S i g n s . . . . . . . 

Table 7.4 illustrates the use of plus and minus signs. The repetition of a (plus or 
minus) sign within the edited P I C T U R E clause denotes a floating (plus or minus) 
sign, which will appear in the printed field immediately to the left of the first 
significant digit. A single (plus or minus) sign, however, indicates a fixed (plus or 
minus) sign, which prints in the indicated position. 

Specification of a (fixed or floating) plus sign displays the sign of the edited 
field if the n u m b e r is positive, negative, or zero [examples (a), (b), and (c)J. 
Specification of a minus sign, however, displays the sign only w h e n the edited 
result is negative. The receiving field must be at least one character longer than 
the sending field to accommodate the sign; otherwise, a compiler warning results. 

kBLE 7*4 Floating Plus and Minus Sign 

S9(4) 
S9(4) 
S9(4) 
S9(4) 
S9(4) 
S9(4) 
S9(4) 
S9(4) 

VALUE PICTURE EDITED R E S U L 

1234 ++,+++ +1,234 
0123 ++,+++ 00+123 

-1234 ++,+++ -1,234 
1234 - - , ,234 
0123 — , 000123 

-1234 - - , -1,234 
1234 11,119+ 01,234+ 

-1234 11,119+ 01,234-

The B L A N K W H E N Z E R O clause produces a blank field w h e n the associated numeric 
value is zero. Although the same effect can be achieved with certain editing strings, 
such as Z Z Z Z Z or $$$$$, there are times w h e n the clause is essential. A field with 
dollars and cents—for example, $$$9.99, formatted to print a digit immediately to 
the left of the decimal point—will print $0.00. In similar fashion it might be desirable 
to blank out a date field with PIC Z9/Z9/Z9 if the values are unavailable. The 
inclusion of B L A N K W H E N Z E R O at the end of the P I C T U R E clause in all three 
instances will accomplish the desired result. 



C h a p t e r 7 Editing and Coding Standards 

Xh© Tuition W e return once more to Figure 7.1, the example with which w e began the chapter. 

Billing Program The e a r " e r version of the tuition billing program in Chapter 5 did not include 
D A u i c i t a f i editing characters, and so produced the output in Figure 7.1a. N o w w e incorporate 
n t ? V i s i l e ? U . ^ . , . . , . . , . r . , the material just presented into a revised version of the program to produce the 

edited output of Figure 7.1b. 
The necessary changes are highlighted in Figure 7.3, which compares edited 

and unedited P I C T U R E clauses. The changes affect only the detail (7.3a) and total 

Figure 7.3 Edited versus Unedited P ICTURE Clauses 

E D I T E D FIELDS U N E D I T E D FIELDS 

01 DETAIL-LINE. 
05 FILLER PIC X VALUE SPACES. PIC X VALUE SPACES 
05 DET-LAST-NAME PIC X(15). PIC X(15) 
05 FILLER PIC X(2) VALUE SPACES. PIC X(2) VALUE SPACES 
05 DET-INITIALS PIC X(2). PIC X(2). 
05 FILLER PIC X(5) VALUE SPACES. PIC X(5) VALUE SPACES 
05 DET-CREDITS PIC Z9. PIC 9(2). 
05 FILLER PIC X(4) VALUE SPACES. PIC X(6) VALUE SPACES 
05 DET-TUITI0N PIC $$$$,$ 19. PIC 9(6). 
05 FILLER PIC X(6) VALUE SPACES. PIC X(7) VALUE SPACES 
05 DET-UNION-FEE PIC $$$9 BLANK WHEN ZERO. PIC 9(3). 
05 FILLER PIC X(5) VALUE SPACES. PIC X(6) VALUE SPACES 
05 DET-ACTIVITY-FEE PIC $$$9 BLANK WHEN ZERO. PIC 9(3). 
05 FILLER PIC X(6) VALUE SPACES. PIC X(8) VALUE SPACES 
05 DET-SCHOLARSHIP PIC $$.$$$' ) BLANK WHEN ZERO PIC 9(5). 
05 FILLER PIC X(4) VALUE SPACES. PIC X(6) VALUE SPACES 
05 DET-IND-BILL PIC $$$$,$$9CR. PIC 9(6). 
05 FILLER PIC X(47) VALUE SPACES. PIC X(49) VALUE SPACES 

!a) Detail Line 

01 TOTAL-LINE. 
05 FILLER PIC X(8) VALUE SPACES. PIC X(8) VALUE SPACES 
05 FILLER PIC X(17) PIC X(17) 

VALUE 'UNIVERSITY TOTALS'. VALUE 'UNIVERSITY 
05 FILLER PIC X(6) VALUE SPACES. PIC X(8) VALUE SPACES 
05 TOT-TUITION PIC $$$$,$$9. PIC 9(6). 
05 FILLER PIC X(2) VALUE SPACES. PIC X(6) VALUE SPACES 
05 TOT-UNION-FEE PIC $$$$,$$9. PIC 9(4). 
05 FILLER PIC X VALUE SPACES. PIC X(5) VALUE SPACES 
05 TOT-ACTIVITY-FEE PIC $$$$, f$9. PIC 9(4). 
05 FILLER PIC X(5) VALUE SPACES. PIC X(7) VALUE SPACES 
05 TOT-SCHOLARSHIP PIC $$$$,, m . PIC 9(6). 
05 FILLER PIC X(4) VALUE SPACES. PIC X(6) VALUE SPACES 
05 T0T-IND-BILL PIC $$$$,< E$9CR. PIC 9(6). 
05 FILLER PIC X(47) VALUE SPACES. PIC X(49) VALUE SPACES 

(b) Total Lirv 



(7.3b) lines. Computations are m a d e within the program using the unedited 
P I C T U R E clauses found in I N D I V I D U A L - C A L C U L A T I O N S a n d UNIVERSITY-
TOTALS, then m o v e d to edited P I C T U R E clauses found in DETAIL-LINE a n d 
TOTAL-LINE, respectively. 

All of the calculations and editing are accomplished as illustrated earlier in 
Figure 7.2. The computed value of tuition, for example, is stored in the data n a m e 
IND-TUITION with PIC 9(6), then m o v e d to the edited field D E T - T U I T I O N with a 
PIC $$$$,$$9 prior to printing. 

Observe the presence of a C R within the P I C T U R E clauses for both DET-IND-
BILL and TOT-IND-BILL in Figures 7.3a and 7.3b, respectively. The C R is blanked 
out w h e n students o w e m o n e y to the university, but appears w h e n the student is 
due a credit (Lucky O n e in Figure 7.1b). Note, too, the various B L A N K W H E N Z E R O 
clauses throughout Figure 7.3, which produce the more appealing edited output of 
Figure 7.1b contrasted to the zeros in Figure 7.1a. 

A good program is easily read and maintained by someone other than the author. 
Indeed, continuing success in a commercial installation depends on someone other 
than the author being able to maintain a program. Most installations impose a set 
of coding standards, such as those described here, which go beyond the 
requirements of the C O B O L compiler. These standards are optional for the student, 
but typical of what is required in the real world. 

The next several pages suggest a series of coding standards for you to use. 
However, there are no absolute truths—no right or wrong—insofar as programming 
style is concerned. Different programmers develop slightly or even radically different 
styles that are consistent with the rules of C O B O L and with the programmer's 
objective. The discussion that follows reflects the viewpoint of the authors and is 
necessarily subjective. 

W e begin with suggestions for the Data Division. 

Choose meaningful names. Avoid taking the easy w a y out with two- or three-
character data names. It is impossible for the maintenance programmer, or even 
the original author, to determine the meaning of abbreviated data names. The 
usual student response is that this adds unnecessarily to the burden of writer's 
cramp. Initial coding, however, takes only 5-10% of the total time associated with a 
program (maintenance, testing, and debugging take the vast majority), and the 
modest increase in coding time is more than compensated by improvements in the 
latter activities. 
Prefix all data names within the same FD or 01 with two or three characters unique to 
the FD; for example, O M - L A S T - N A M E , O M-BIRTH - D A T E . The utility of this 
guideline becomes apparent in the Procedure Division if it is necessary to refer back 
to the definition of a data n a m e . 
Begin all PICTURE clauses in the same column. Usually in columns 36-48, but the 
choice is arbitrary. D o not be unduly disturbed if one or two entries stray from the 
designated column, because of long data names and/or indentation of level numbers. 
Choose one form of the PICTURE clause. Choose PIC, PIC IS, P I C T U R E , or 
P I C T U R E IS and follow it consistently. PIC is the shortest and is as g o o d as any. 



C h a p t e r 7 — Editing and Coding Standar 

P R O G R A M M I N G T I P 

The constant (literal) portion of a print line should be defined in Working-Storage, rather than moved to the print 
line in the Procedure Division. Consider the following: 

MOVE 'STUDENT NAME SOC SEC NUM CREDITS TUITION 
- j_ J SCHOLARSHIP FEES' TO PRINT-LINE. 

WRITE PRINT-LINE. ^ n e n r?4ui.>ea » continue nonnumenc u-ei s; 

01 HEADING-LINE. 
05 PIC X(12) VALUE 'STUDENT NAME' 
05 PIC X(10) VALUE SPACES. 
05 PIC X(ll) VALUE 'SOC SEC NUM'. 
05 PIC X(2) VALUE SPACES. 
05 PIC X(7) VALUE 'CREDITS' . 
05 PIC X(2) VALUE SPACES. 
05 PIC X(7) VALUE 'TUITION'. 
05 PIC X(3) VALUE SPACES. 
05 PIC X(ll) VALUE 'SCHOLARSHIP'. 
05 PIC X(2) VALUE SPACES. 
05 PIC X(4) VALUE 'FEES'. 

WRITE PRINT-LINE FROM HEADING-LINE. 

The poor code illustrates continuation of a nonnumeric literal. The first line begins with an apostrophe 
before STUDENT NAME and ends without a closing apostrophe in column 72. The continued line contains a 
hyphen in column 7, and both a beginning and ending apostrophe. 

The improved code may appear unnecessarily long in contrast to the poor code. However, it is an 
unwritten law that users will change column headings, and/or spacing at least twice before being satisfied. 
Such changes are easily accommodated in the improved code but often tedious in the original solution. 
Assume, for example, that four spaces are required between CREDITS and TUITION, rather than the two that 
are there now. Modification of the poor code requires that both lines in the MOVE statement be completely 
rewritten, whereas only a PICTURE clause changes in the improved version. Note, too, that the improved code 
can be rewritten to reduce the number of FILLER entries, and also to eliminate the word FILLER, as 
shown below. 

01 HEADING-LINE. 
05 PIC X(22) VALUE 'STUDENT NAME'. 
05 PIC X(13) VALUE 'SOC SEC NUM'. 
05 PIC X(9) VALUE 'CREDITS'. 
05 PIC X(10) VALUE 'TUITION'. 
05 PIC X(13) VALUE 'SCHOLARSHIP'. 
05 PIC X(4) VALUE 'FEES'. 

In this example each VALUE clause contains fewer characters than the associated PICTURE clause. 
Accordingly, alignment is from left to right, with the extra (low-order) positions padded with blanks. 



Indent successive level numbers under a 01 consistently. For example, two or four 
columns. Leave gaps between adjacent levels (for example, 01, 05, 10, 15 or 01, 04, 
08, 12) instead of using consecutive numbers; that is, avoid 01 , 02, 03 (as discussed 
in Chapter 4). Use the same level numbers from F D to FD to maintain consistency 
within a program. 
Avoid 77-level entries. 77-Ievel entries have not been ment ioned in the text, because 
current programming practice argues for their elimination. Nevertheless, they are 
apt to be found in existing programs and are discussed now for that reason. 

A 77-level entry was originally defined as an independent data n a m e with no 
relationship to any other data name in a program. (77-level entries are coded as 
elementary items in Working-Storage.) However, few if any data n a m e s are truly 
independent, and 77-level entries should be avoided for that reason. The authors, 
for example, have gotten along quite nicely by grouping related entries under a 
common 01 description. Consider the following: 

77 TUITION PIC 9 ( 4)V99 VALUE ZEROS. 
77 ACTIVITY-FEE PIC 9(2) VALUE ZEROS. 
77 U N I O N - F E E PIC 9(2) VALUE ZEROS. 

01 INDIVIDUAL-CALCULATIONS. 
05 IND-TUITION PIC 9 ( 4 ) V 9 9 VALUE ZEROS. 
05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZEROS. 
05 IND-UNION-FEE PIC 9(2) VALUE ZEROS. 

The improved code also uses a c o m m o n prefix, which reflects the similarities 
among the related i tems. There is simply no reason to use the older approach of 
independent data items. 

Procedure I M v i s i o i i 

Develop functional paragraphs. Every.' statement in a paragraph should be related 
to the overall function of that paragraph, which in m m should be reflected in the 
paragraph name. A well-chosen n a m e will consist of a verb, one or two adjectives, 
and an object; for example, READ-STUDENT-FILE, WRITE -HEADING-LINE, and 
so on. If a paragraph cannot be named in this manner, it is probably no t functional, 
and consideration should be given to redesigning the program and/or paragraph. 
Sequence paragraph names. Programmers and managers alike accept the utility of 
this guideline to locate paragraphs in the Procedure Division quickly. However, 
there is considerable disagreement on just what sequencing scheme to use: all 
numbers , a single letter followed by numbers , and so on. We m a k e no strong 
argument for one scheme over another, other than to insist that a consistent 
sequencing rule be followed. S o m e examples are A 0 1 0 - W R I T E - N E W - M A S T E R -
R E C O R D and 1 0 0 - P R O D U C E - E R R O R - R E P O R T . 
Avoid commas. The compiler treats a c o m m a as noise; it has no effect o n the 
generated object code. M a n y programmers have acquired the habit of inserting 
c o m m a s to increase readability. Though this works rather well with prose, it can 
have just the opposite effect in C O B O L , because of blurred print chains, which 
make it difficult to distinguish a c o m m a from a period. The best solution is to try to 
avoid c o m m a s altogether. 
Use scope terminators. E N D - I F (see programming tip on page 182) is one of several 
scope terminators included in C O B O L - 8 5 that should be used whenever possible to 



Chapter 7 — Editing and Coding Standards 

P R O G R A M M I N G T I P 

Scope terminators are one of the most powerful enhancements in COBOL-85, and in the opinion of the 
authors, justify in and of themselves, conversion to the new standard. In its simplest role a scope terminator is 
used in place of a period to end a conditional statement—for example, END-IF to terminate an IF statement. 
(A scope terminator and a period should not appear together unless the period also ends the sentence.) 

One of the most important reasons for using scope terminators is that they eliminate the very subtle 
column 73problem which has always existed, and which is depicted below. The intended logic is straightforward, 
and is supposed to apply a discount of two percent on an order of $2,000 or more. The amount due (NET) is 
equal to the amount ordered less the discount (if any). 

IF AMOUNT-ORDERED-Til ISWEEK < 2000 
MOVE ZEROS TO CUSI0MER-DISC0UNT 

ELSE 
COMPUTE CUSTOMER-DISCOUNT = AMOUNT-ORDERED-THISWEEK * .02,].. 

I COMPUTEJET = ATOUNT-ORDERED-THISWEEK - CUSTOMER-DISCOUNT.\ 

Amount ordered Discount Net 
3000 60 2940 
4000 80 3920 
1000 0 3920 
5000 100 4900 
1500 0 [ 49oo ] 

The COBOL statements appear correct, yet the output is wrong! In particular, the net amounts are 
wrong for any order less than $2,000 (but valid for orders of $2,000 or more). The net amount for orders less 
than $2,000 equals the net for the previous order (that is, the net for an order of $1,000 is incorrectly printed as 
$3,920, which was the correct net for the preceding order of $4,000). The net amount for an order of $1,500 
was printed as $4,900, and so on. Why? 

The only possible explanation is that the COMPUTE NET statement is not executed for net amounts less 
than $2,000. The only way that can happen is if the COMPUTE NET statement is taken as part of the ELSE 
clause, and that can happen only if the ELSE is not terminated by a period. The period is present, however, so 
we are back at ground zero—or are we? The period is present, but in column 73, which is ignored by the 
compiler. Hence the visual code does not match the compiler interpretation, and the resulting output is 
incorrect. Replacing the period by the END-IF delimiter will eliminate this and similar errors in the future. 
(Remember, a period may appear af the end of the sentence after the END-IF terminator.) 



Coding Standards 

Space attractively. The adoption of various spacing conventions can go a long w a y 
toward improving the appearance of a program. The authors believe very strongly 
in the insertion of blank lines throughout a program to highlight important 
statements. Specific suggestions include a blank line before all paragraphs, FDs, 
and 01 entries. 

You can also force various portions of a listing to begin o n a n e w page, by 
putting a slash in column 7 of a separate statement. 
Avoid constants. A significant portion of maintenance programming (and headaches) 
could be avoided if a program is written with an eye toward change. Consider: 

COMPUTE IND-TUITION = 200 * STU-CREDITS. 

WORKING-STORAGE SECTION. 
01 CONSTANTS-AND-RATES. 

05 PRICE-PER-CREDIT PIC 9(4) VALUE 200. 

PROCEDURE DIVISION. 

COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS. 
The improved code is easy to modify w h e n (not if) the tuition rate changes as the 
only required modification is to the V A L U E clause in Working Storage. The poor 

terminate a conditional statement. The E N D - R E A D terminator should be used in 
similar fashion to end the conditional A T E N D clause in the R E A D statement. 
Indent. Virtually all programmers indent successive level numbers in the Data 
Division, yet m a n y of these same individuals do not apply a similar principle in the 
Procedure Division. The readability of a program is enhanced significantly by 
indenting subservient clauses under the main statements. S o m e examples: 

READ STUDENT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH 

END-READ. 

PERFORM 0020-PROCESS-A-RECORD 
UNTIL DATA-REMAINS-SWITCH = 'NO'. 

IF STU-UNION-MEMBER = 1Y' 
MOVE UNION-FEE TO IND-UNION-FEE 

ELSE 
MOVE ZERO TO IND-UNION-FEE 

END-IF. 

COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS 
SIZE ERROR DISPLAY 'Size error for individual tuition' 

END-COMPUTE. 



C h a p t e r 7 Editing and Coding Standards 

code requires changes to the appropriate Procedure Division statement(s), and if 
the constant 200 appears more than once in the Procedure Division, it is very easy 
to miss s o m e of the statements in which the change is required. There is less 
possibility for error in the improved code. 
Don't overcomment. Contrary to popular belief, the mere presence of c o m m e n t s 
does not ensure a well-documented program, and poor c o m m e n t s are sometimes 
worse than no c o m m e n t s at all. The most c o m m o n fault is redundancy with the 
source code. Consider: 

* CALCULATE NET PAY 
COMPUTE NET-PAY = GROSS-PAY - FED-TAX - VOL-DEDUCT. 

The c o m m e n t detracts from the readability of the statement because it breaks the 
logical flow as you read the Procedure Division. Worse than redundant, c o m m e n t s 
m a y be obsolete or inconsistent with the associated code, as is the case w h e n 
program statements are changed during maintenance, and the c o m m e n t s are not 
correspondingly altered. 

T h e authors certainly do not advocate the elimination of c o m m e n t s 
altogether, but argue simply that care, more than is c o m m o n l y exercised, should 
be applied to developing them. O n e guideline is to provide a c o m m e n t whenever 
the purpose of a program statement is not immediately obvious. Imagine, for 
example, that you are turning the program over to someone else for maintenance, 
and insert a c o m m e n t whenever you would explain a statement to the other 
person. C o m m e n t s should be used only to show why you are doing something, 
rather than what you are doing. Assume that the maintenance programmer is as 
competent in C O B O L as you are; avoid using comments to explain h o w a particular 
C O B O L statement works. 

Figure 7.4 is our final pass at the tuition hilling program, with attention drawn to the 
application of the coding standards just developed. All data n a m e s within a 01 entry 
are given a c o m m o n prefix: S T U for entries in S T U D E N T - R E C O R D (lines 17-24), 
I N D for data n a m e s under I N D I V I D U A L - C A L C U L A T I O N S (lines 34-38), and so 
on. This guideline applies equally well to record descriptions in both the File and 
Working-Storage Sections. 

Blank lines highlight 01 entries in the Data Division and paragraph headers in 
the Procedure Division. All P I C T U R E clauses are vertically aligned. Indentation is 
stressed in the Procedure Division with subservient clauses four columns under the 
associated statements. 

Paragraph headers are sequenced and functional in nature. All statements 
within a paragraph pertain to the function of that paragraph, as indicated by its 
name. W e have chosen a three-digit numerical sequencing scheme, in which the 
first digit reflects the hierarchy chart level and the remaining two digits reflect the 
order in which the paragraphs are performed. 



A Well-Written Program 

A Well-Written C O B O L Program 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TUITI0N7. 
AUTHOR. CAROL VAZQUEZ VILLAR. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR07\TUITI0N.DAT 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 
ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD STUDENT-FILE 

RECORD CONTAINS 27 CHARACTERS. 
STUDENT-RECORD. 01 
05 STU -NAME. 

10 STU-lAST-NAME PIC X(15) 
10 STU-INITIALS PIC XX. 

05 STU -CREDITS PIC 9(2). 
05 STU--UNION-MEMBER PIC X. 
05 STU--SCHOLARSHIP r* T r> n 1 * \ 

05 STU--GPA PIC 9V99. 

FD 

01 

PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS. 
PRINT-LINE PIC X(132). 

WORKING-STORAGE SECTION. 
01 DATA-REMAINS-SWITCH 

34 05 IND-TUITION PIC 9(4) 
35 05 IND-ACTIVITY-FEE PIC 9(2) 
36 05 IND-UNION-FEE PIC 9(2) 
37 05 IND-SCHOLARSHIP PIC 9(4) 
38 05 IND-BILL PIC S9(6) 
39 j 
40 01 UNIVERSITY-TOTALS. 
41 05 UNI-TUITION PIC 9(6) 
42 05 UNI-UNION-FEE PIC 9(4) 
43 05 UNI-ACTIVITY-FEE PIC 9(4) 
44 05 UNI-SCHOLARSHIP PIC 9(6) 
45 05 UNI-IND-BILL PIC S9(6) 
46 I 
47 01 "CONSTANTS-AND-RATES. 
48 05 PRICE-PER-CREDIT PIC 9(3) 
49 05 UNION-FEE PIC 9(2) 
50 05 Ml, ! I ¥ i I i - r c t j . 

PIC X(2) VALUE SPACES. 

VALUE ZEROS. 
VALUExZEROS. 
VALUE ZEROS. 
VALUE ZERuS\ 

VALUE ZEROS. 
VALUE ZERjBS. 
VALUEXZEROS. 
VAj_UE ZEROS. 
/VALUE ZEROS. 

VALUE 200. 
VALUE 25. 

file://'A:/CHAPTR07/TUITI0N.DAT


Chapter 7 — Editing and Coding Standard 

10 1ST-ACTIVITY-FEE PIC 99 VALUE 25. 
10 IST-CREDIT-LIMIT PIC 99 VALUE 6. 
10 2ND-ACTIVITY-FEE PIC 99 VALUE 50. 
10 2ND-CREDIT-LIMIT PIC 99 VALUE 12. 
10 3RD-ACTIVITY-FEE PIC 99 VALUE 75. 

05 MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5. 

HEADING-LINE. 
05 FILLER PIC X VALUE SPACES. 
05 FILLER PIC X(12) VALUE 'STUDENT NAME' 
05 FILLER PIC X(10) VALUE SPACES. 
05 FILLER PIC X(7) VALUE 'CREDITS'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(7) VALUE 'TUITION' . 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(9) VALUE 'UNION FEE'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(7) VALUE 'ACT FEE'. 
05 F ILLER PIC X{2) VALUE SPACES. 
05 FILLER PIC X(ll) VALUE 'SCHOLARSHIP'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(10) VALUE 'TOTAL BILL'. 
05 FILLER PIC X(48) VALUE SPACES. 

01 DETAIL-LINE. 
05 FILLER PIC X VALUE SPACES. 
05 DET-LAST-NAME PIC X(15). 
05 FILLER PIC X(2) VALUE SPACES. 
05 DET-INITIALS PIC X(2). 
05 FILLER PIC X(5) VALUE SPACES. 
05 DET-CREDITS PIC Z9. 
05 FILLER PIC X(4) VALUE SPACES. 
05 DET-TUITION PIC $$$$,$$9. 
05 FILLER PIC X(6) VALUE SPACES. 
05 DET-UNION-FEE PIC $$$9 BLANK WHEN ZERO 
05 FILLER PIC X(5) VALUE SPACES. 
05 DET-ACTIVITY-FEE PIC $$$9 BLANK WHEN ZERO 
05 FILLER PIC X(6) VALUE SPACES. 
05 DET-SCHOLARSHIP PIC $$,$$$9 BLANK WHEN ZERO 
05 FILLER PIC X(4) VALUE SPACES. 
05 DET-IND-BILL PIC $$$$,$$9CR. 
05 r- r I t r rj 

r i L L Q K PIC X(47) VALUE SPACES. 

DASH-LINE. 
05 FILLER PIC X(31) VALUE SPACES. 
05 FILLER PIC X(8) VALUE ALL '-'. 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(8) VALUE ALL 
05 FILLER PIC X(2) VALUE SPACES. 
05 FILLER PIC X(7) VALUE ALL '-'. 

(continued) 



A Well-Written Program 

(continued) 

101 05 FILLER PIC X(6) VALUE SPACES. 
102 05 FILLER PIC X(7) VALUE ALL '-' 
103 05 FILLER PIC X(5) VALUE SPACES. 
104 05 FILLER PIC X(7) VALUE ALL '-' 
105 05 FILLER PIC X(49) VALUE SPACES. 
106 
107 01 TOTAL-LINE. 
108 05 FILLER PIC X(8) VALUE SPACES. 
109 05 FILLER PIC X(17) 
110 VALUE 'UNIVERSITY TOTALS'. 
111 05 FILLER PIC X(6) VALUE SPACES. 
112 05 iTOT-TUITIONj _^ PIC $$$$,$ E9. 
113 05 FILLER " P I C X(2) VALUE SPACES. 
114 05 "TOT-UNION-FEE PIC $$$$,$ t9. 
115 05 FILLER PIC X VALUE SPACES. 
116 05 TOT-ACTIVITY-FEC" - PIC $$iS,$ 19. 
117 05 FILLER PIC X(5) VALUE SPACES-
118 05 iTOT-SCHOLARSHIP ! PIC $$$$",$ 59. 
119 05 FILLER PIC X{4) VALUE SPACES. 
120 05 TOT-1ND-BiLI PIC $$$$,$$9CR. 
121 05 FILLER PIC X(47) VALUE SPACES. 
122 
123 PROCEDURE DIVISION. 
124 100 -PREPARE-TUITION-REPORT. 
125 OPEN INPUT STUDENT-FILE 
126 OUTPUT PRINT-FILE. 
127 PERFORM 210-WRITE-HEADING-LINE. 
128 PERFORM 230-READ-STUDENT-FILE. 
129 PERFORM 260-PROCESS-STUDENT-RECORD 
130 UNTIL DATA-REMAINS-SWITCH = 'NO 
131 PERFORM 290-WRITE-UNIVERSITY-TOTALS. 
132 CLOSE STUDENT-FILE 
133 PRINT-FILE. 
134 STOP RUN. 
135 
136 210--WRITE-HEADING-LINE. 
137 MOVE HEADING-LINE TO PRINT-LINE. 
138 WRITE PRINT-LINE 
139 AFTER ADVANCING PAGE. 
140 MOVE SPACES TO PRINT-LINE. 
141 WRITE PRINT-LINE. 
142 
143 230- READ-STUDENT-FILE. 
144 READ STUDENT-FILE 
145 AT END MOVE 'NO' TO DATA-REMAINS- SWITCH 
146 END-READ. 
147 
148 260- PROCESS-STUDENT-RECORD. 
149 PERFORM 310-COMPUTE-INDIVIDUAL-BILL. 
150 PERFORM 330-INCREMENT-UN IVER-TOTALS 



Chapter 7 — Editing and Coding Standard 

}ure 7 .4 (continued) 

151 PERFORM 360-WRITE-DETAIL-LINE. 
152 PERFORM 230-READ-STUDENT-FILE. 
153 
154 [29£^rfE^i|vppfprOTLs7} 
155 " MO V E D AS H - L IN E TO P RI NT - LINE. _ 
156 WRITE PRINT-LINE. 
157 MOVE UNI-TUITION TO TOT-TUITION. 
158 MOVE UNI-UNION-FEE TO TOT-UNION-FEE. 
159 MOVE UNI-ACTIVITY-FEE TO TOT-ACTIVITY-FEE. 
160 MOVE UNI-SCHOLARSHIP TO TOT-SCHOLARSHIP. 
161 MOVE UNI-IND-BILL TO TOT-IND-BILL. 
162 MOVE TOTAL-LINE TO PRINT-LINE. 
163 WRITE PRINT-LINE 
164 AFTER ADVANCING 1 LINE. 
165 
166 310-COMPUTE-INDIVIDUAL-BILL. 
167 PERFORM 410-C0MPUTE-TUITI0N. 
168 PERFORM 430-C0MPUTE-UNI0N-FEE. 
169 PERFORM 460-COMPUTE-ACTIVITY-FEE. 
170 PERFORM 490-C0MPUTE-SCH0LARSHIP. _ ^-Continued Ima is indented 
171 ' ~ ~ " " " " " 
172 
173 
174 j 330-INCREMENT-UN IVER-TOTALS. 
175 ADD IND-TUITION TO UNI-TUITION. 
176 ADD IND-UNION-FEE TO UNI-UNION-FEE. 
177 ADD IND-ACTIVITY-FEE TO UNI-ACTIVITY-FEE. 
178 ADD IND-SCHOLARSHIP TO UNI-SCHOLARSHIP. 
179 ADD IND-BILL TO UNI-IND^-MllTf 
180 _ _____ 
181 " 360 - W RITE-D ETA I L-LINE\ 1 " " " " 

COMPUTE IND-BILL - IND-TUITION + IND-UNION-FEE + 
IND-ACTIVITY-FEE - IND-SCHOLARSHIP. 

182 MOVE STU-LAST-NAME TO DET-LAST-NAME. 
183 MOVE STU-INITIALS TO DET-INITIALS. 
184 MOVE STU-CREDITS TO DET-CREDITS. 
185 MOVE IND-TUITION TO DET-TUITION. 
186 MOVE IND-UNION-FEE TO DET-UNION-FEE. 
187 MOVE IND-ACTIVITY-FEE TO DET-ACTIVITY-FEE. 
188 MOVE IND-SCHOLARSHIP TO DET-SCHOLARSHIP. 
189 MOVE IND-BILL TO DET-IND-BILL. 
190 MOVE DETAIL-LINE TO PRINT-LINE. 
191 WRITE PRINT-LINE 
192 AFTER ADVANCING 1 LINE. 
193 
194 410-COMPUTE-TUITION. 
195 COMPUTE IND-TUITION - PRICE-PER-CREDIT * STU-CREDITS. 
196 
197 430-COMPUTE-UNION-FEE. 
198 
199 
200 

IF STU-UNION-MEMBER = 'Y 
Mi 

ELSE 
MOVE UNION-FEE TO IND-UNION-FEE ) — " " " " 



(continued) 

MOVE ZERO TO IND-UNION-FEE 
END-IF. 

460-COMPUTE-ACTIVITY-FEE. 
EVALUATE TRUE 

WHEN STU-CREDITS <= 1ST-CREDIT-LIMIT 
MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE 

WHEN STU-CREDITS > 1ST-CREDIT-LIMIT 
AND STU-CREDITS <= 2ND-CREDIT-LIMIT 

MOVE 2ND-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN STU-CREDITS > 2ND-CREDIT-LIMIT 

MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN OTHER 

DISPLAY 'INVALID CREDITS FOR: ' STU-NAME 
END-EVALUATE. 

490-COMPUTE-SCHOLARSHIP. 
IF STU-GPA > MINIMUM-SCHOLAR-GPA 

MOVE STU-SCHOLARSHIP TO IND-SCHOLARSHIP 
ELSE 

MOVE ZERO TO IND-SCHOLARSHIP 
END-IF. 

A 

A numeric field contains digits, an (optional) implied decimal point, and/or 
an optional sign. A numeric-edited field may contain any editing character. 
All calculations in a COBOL program are done on numeric fields, whose 
computed values are moved to numeric-edited fields prior to printing. 

Any move involving a numeric field and a numeric-edited field maintains 
decimal alignment. 

Only a signed numeric field can hold a negative value; that is, a numeric 
field cannot retain a negative value unless it has been defined with an S in 
its PICTURE clause. 

Coding standards are intended to improve the readability and maintainability 
of COBOL programs. They are imposed by individual installations and go 
beyond the requirements of COBOL. 



Chapter 7 — Editing and Coding Standards 

Key Words and Concepts 

Actual decimal point 
Check protection 
Coding standards 
CR 
DB 
Decimal alignment 
Editing 
Editing characters 
Fixed dollar sign 
Floating dollar sign 
Floating minus sign 
Floating plus sign 
Functional paragraph 

Implied decimal point 
Indentation 
Insertion characters 
Maintainability 
Numeric field 
Numeric-edited field 
Prefixing data names 
Readability 
Receiving field 
Sequencing paragraph names 
Signed numbers 
Source (sending) field 
Zero suppression 

BLANK WHEN ZERO 

1. are a set of rules unique to each installation, 
which go beyond the rules of COBOL, to improve the readability of a COBOL 
program. 

2. The editing characters, and , will appear if and 
only if the sending field is and are suppressed otherwise. 

3. The presence of multiple dollar signs in the PICTURE clause of an edited field 
indicates a dollar sign, whereas a single dollar sign indicates a 

dollar sign. 

4. The , is the character used for check protection. 

5. The PICTURE clause of a numeric field may consist of 9's, a to 
indicate an implied decimal point, and the letter to indicate a 
signed field. 

6. Continuation of a literal requires a in column 

7. A well-chosen paragraph name consists of a , , 
and to indicate the function of that paragraph. 

8. All data names within the same 01 record should begin with a common 

9. of COBOL statements within the B margin does not affect compiler 
interpretation but goes a long way toward improving the readability of a program. 

10. , may be left before 01 records and paragraph 
names to enhance readability. 



11. If a numeric field is defined without an S in its PICTURE clause, the field will never 
assume a value. 

12. All calculations in a COBOL program are performed on (numeric/numeric-edited) 
fields. 

1. Indentation within the B margin affects compiler interpretation. 

2. Blank lines are not permitted within a COBOL program. 

3. The COBOL coding standards for AT&T and IBM are apt to be identical. 

4. COBOL requires that paragraph names be sequenced. 

5. Data names should be as short as possible to cut down on the coding effort. 

6. Indentation in COBOL is a waste of time. 

7. A well-commented COBOL program should contain half as many comment lines as 
Procedure Division statements. 

8. All continued statements require a hyphen in column 7. 

9. COMPUTE-AND-WRITE is a good paragraph name. 

10. Heading, detail, and total lines may be established as separate 01 entries in 
Working-Storage. 

11. Every PICTURE clause requires a corresponding VALUE clause. 

12. Arithmetic may be done on numeric-edited fields. 

13. A positive field should always be defined with a CR in its PICTURE clause, whereas 
a negative field requires DB. 

14. A single numeric-edited field may contain a dollar sign, comma, decimal point, 
asterisk, and the character string CR in its PICTURE clause. 

15. The same numeric-edited field may contain both CR and DB in its PICTURE clause. 

16. Hyphens may be used as insertion characters in a social security number. 

17. Slashes may be used as insertion characters in a date. 

18. The presence of CR or DB in a numeric-edited field implies that the sending field is 
signed. 

19. Zero is a valid insertion character. 

1. Supply PICTURE clauses for the receiving fields needed to accomplish the following: 
a. A floating dollar sign, omission of cents, printing (or suppression) of commas as 

appropriate, and a maximum value of $9,999,999. 
b. A fixed dollar sign, asterisk fill for insignificant leading zeros, printing (or 

suppression) of commas as appropriate, a maximum value of $9,999, and a 
trailing DB if the sending field is negative. 



Chapter 7 - Editing and Coding Standards 

A fixed dollar sign, zero suppression or insignificant leading zeros, omission of 

d. A floating dollar sign, printing (or suppression) of commas as appropriate, a 
maximum value of $9,999.00, and a trailing CR if the sending field is negative. 

2. Show the value of the edited result for each of the following entries: 

S O U R C E FIELD 1 O - n v* 

a. 9(6) 123456 9(6) 
b. 9(6) 123456 9(8) 
c. 9(6) 123456 9(6).99 
d. 9(4)V99 123456 9(6) 
e. 9(4)V99 123456 9(4) 
T. 9(4)V99 123456 $$$$$9.99 

g 9(4)V99 123456 $$$,$$9.99 
h. 9(6) 123456 $$$$,$$9.99 
i. 9(6) 123456 Z(8) 

j- 9(4)¥99 123456 $ZZZ,ZZZ.99 

Show the edited 'esuits for each er itry: 

SOURCE SME1.B BECEi 

l^llSTIIIIE V A L U E PICTURE 

a. S9(4)V99 45600 $$$$$.99CR 
b. S9(4)V99 45600 $$,$$$.99DB 
c. S9(4) 4567 $$,$$$.00 
d. S9(6) 122577 99B99B99 
e. S9(6) 123456 ++++,+++ 

f. S9(6) -123456 ++++,+++ 

g. S9(6) 123456 , — 

h. S9(6) -123456 , — 

9(4)V99 567890 $$$$,$$$.99 

i- 9(4)V99 567890 $ZZZ,ZZZ.99 
k. 9(4)V99 567890 

E B 1 T E O RESULT 

4. What, if anything, is wrong (either syntactically or logically) with the following 
PICTURE clauses? 
a. $,$$$,$$9.99 
b. 999999999 
c. $$$$,$$$,$$$ 
d. $ZZZ.ZZ 

e. $999V99 
f. $999,999,999.99 
g. $$$$$,$$9.99 



5. Do you agree with all of the coding standards suggested by the authors? Can you 
suggest any others? Do you think the imposition of coding standards within an 
installation impinges on the creativity of individual programmers? Are coding 
standards worth the extra time and trouble they require? 

6. Consider the following code: 
01 AMOUNT-REMAINING PIC 9(3} VALUE 100. 
01 WS-INPUT-AREA. 

05 QUANTITY-SHIPPED PIC 99. 
05 REST-0F-A-REC0RD PIC X(50). 

READ TRANSACTION-FILE INTO WS-INPUT-AREA 
AT END MOVE 'YES' TO E0F-SWITCH 

END-READ. 
PERFORM PROCESS-TRANSACTIONS 

UNTIL EOF-SWITCH = 'YES'. 

PROCESS-TRANSACTIONS. 
SUBTRACT QUANTITY-SHIPPED FROM AMOUNT-REMAINING. 
READ TRANSACTION-FILE INTO WS-INPUT-AREA 

AT END MOVE 'YES' TO EOF-SWITCH 
END-READ. 

a. Why will AMOUNT-REMAINING never be less than zero? 
b. What will be the final value of AMOUNT-REMAINING, given successive values 

of 30, 50, 25, and 15 for QUANTITY-SHIPPED? 





Overview 
System Concepts: Data Validation 
The IF Statement 

Relational Condition 
Class Test 
Sign Test 
Condition-Name Test (88-Level Entries) 
Compound Test 

Hierarchy of Operations 
Implied Conditions 
Nested IFs 
NEXT SENTENCE 

ACCEPT Statement 
Calculations Involving Dates 

Stand-Alone Edit Program 
Programming Specifications 
Error Messages 
Pseudocode 
Hierarchy Chart 
The Completed Program 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 8 — Data Validation 

U 8 J t u I i y c: D 

After reading this chapter you will be able to: 

Describe the importance of data validation and its implementation in a 
stand-alone edit program. 

Define the following validity tests: numeric test, alphabetic test, consistency 
check, sequence check, completeness check, date check, and subscript 
check. 

Describe the various types of conditions in an IF statement. 

Define a nested IF; indicate guidelines for proper indentation in coding 
such statements. 

Describe the advantages of the END-IF scope terminator; show how the 
scope terminator eliminates the need for the NEXT SENTENCE clause. 

Obtain the date (calendar and Julian) and time of execution; implement 
date checking in a program to ensure that the day and month are consistent. 

This chapter introduces the concept of data validation, the process of ensuring 
that data entered into a system is as error-free as possible. It begins by 
describing various types of error checking, then focuses on the IF statement, the 
means by which data validation is implemented in COBOL. We cover the 
different types of conditions that exist within an IF statement (relation, class, 
sign, and condition name), the concept of a nested IF, and the importance of the 
END-IF scope terminator. 

The second half of the chapter develops a stand-alone edit program to 
illustrate the implementation of data validation. The program is designed to 
process a file of incoming transactions, reject invalid transactions with appropriate 
error messages, and write valid transactions to an output file. The latter is then 
input to a reporting (or other) program. 

A well-written program is not limited to merely computing answers, but must also 
validate the data o n which those answers are based. Failure to do so results in 
programs that produce meaningless or inaccurate information, a situation described 
by the cliche G I G O (Garbage In, Garbage Out). It is the job of the programmer or 
analyst to ensure that a system remains as error-free as possible and that the 
"garbage" does not enter the system in the first place. 

Incoming data m a y be validated within the program in which it is used or in a 
separate stand-alone edit program. The essential point is that incoming data must 



be checked; when and how this is done is of secondary importance. The following 
are typical types of data validation: 

Numeric test. Ensures that a numeric field contains numeric data. Commas, dollar 
signs, decimal points, blanks, or other alphabetic characters are not numeric, and 
will cause problems in execution. 

Alphabetic test. Analogous to a numeric test, except that alphabetic fields should 
contain only alphabetic data. Any errors detected here are typically less serious 
than for numer ic fields. 

Reasonableness (limit or range) check. Ensures that a number is within expected 
limits; that is, that a value does not exceed a designated upper or lower extreme. 

Consistency check. Verifies that the values in two or more fields are consistent, for 
example, salary and job title. Other examples of consistency checks are an individual's 
credit rating and the amount of credit a bank is willing to extend, or (as used by the 
Internal Revenue Service) an individual's reported income and the zip code. 

Existing code check. One of the most important tests, the omission of which produces 
countless errors. Consider: 

IF SEX = 'M' 
ADD 1 TO NUMBER-OF-MEN 

ELSE 
ADD 1 TO NUMBER-OF-WOMEN 

END-IF. 
It is decidedly poor practice to assume that an incoming record is female if it is 

not male. Both codes should be explicitly checked, and if neither occurs, a suitable 
error should be printed. 

Sequence check. Ensures that incoming records are in proper order. It can also be 
used when one record is cont inued over several lines to ensure that the lines within 
a record are in p roper sequence. 

Completeness check. Verifies that data in all required fields are present; this check is 
normally used when new records are added to a file. 

Date check. Ensures that an incoming date is acceptable—for example, that the day 
is from 1 to 31, the mon th from 1 to 12, and the year within a designated period, 
often just the current year. A further check is that the mon th and day are consistent 
with one another—for example, a date of April 31 is invalid. 

Subscript check. Validates that a subscript or index is within a table 's original 
definition. (Table processing is discussed fully in Chapter 11.) 
Diligent app l ica t ion of data val idat ion ( somet imes referred to as defensive 
programming) minimizes the need for subsequent debugging. It a s sumes that errors 
will occur and takes steps to make them apparent to the p rog rammer and/or user 
before a program terminates, is it worth the extra time? Emphatically yes, especially 
if you have ever been called at two in the morning to hear that your program 
"bombed" because of invalid data. 

The impor tance of the IF s ta tement is obvious, yet the large n u m b e r of options 
make it one of the more difficult s ta tements to master. Essential to any IF s tatement, 
however, is the condition, the port ion of the s ta tement that is evaluated as either 



C h a p t e r 8 Data Validation 

true or false. Four types of conditions are possible: relational, class, sign, and 
condition-name, each of which is discussed m a separate section. 

The relational condition is the most c o m m o n type of condition and has appeared 
throughout the book. As you already k n o w there is considerable variation in the w a y 
the relational operator m a y be expressed. In all instances, however, the condition 
compares the quantities o n either side of the relational operator to determine 
whether (or not) the condition is true. 

The data type of the quantities being compared must be the same; for example, 
a numeric data item must be compared to a numeric literal a n d a nonnumeric data 
item to a nonnumeric literal. Failure to do so produces a syntax error during 
compilation. The relational condition is illustrated in Figure 8 .1 . 

The Relational Condition 

identifier-l 

expression-1 

IS NOT GREATER THAN 
IS NOT > 
IS ;NOT LESS THAN 
IS NOT < 

IS [NOT EQUAL TO 
IS NOTj = 

IS NOT GREATER THAN OR EQUAL TO 
IS NOT >= 

IS NOT LESS THAN OR EQUAL TO 
IS NOT <= 

identifier-2 
1 i teral-2 
expression-2 

05 NUMERIC-FIELD PIC 9(5). 
05 ALPHANUMERIC-FIELD PIC X(5). 

IF NUMERIC-FIELD = 10 . . . (valid entry) 
IF NUMERIC-FIELD = '10' . . . (invalid entry) 
IF ALPHANUMERIC-FIELD = IO . . . (invalid entry) 
IF ALPHANUMERIC-FIELD = '10' . . . (valid entry) 



The clans test ensures that a field contains numeric or alphabetic data in accordance 
with its P I C T U R E clause. A valid numeric field will contain only the digits 0 to 9 (a 
sign is optional); blanks, decimal points, c o m m a s , and other editing characters are 
not valid as numeric characters. A valid alphabetic field will contain the letters A to 
Z (upper or lower case) and/or blanks. A n alphanumeric field m a y contain any 
character; letters, numbers, and/or special characters. 

The class test cannot be used indiscriminately; that is, a numeric test cannot 
be used for data n a m e s defined as alphabetic, nor can an alphabetic test be used for 
numeric data names. Either test, however, m a y be performed on alphanumeric 
items. The class test is illustrated in Figure 8.2 

The Class Test 

IF identifier IS [NOT] 

NUMERIC 
ALPHABETIC 
ALPHABETIC - UPPER 
ALPHABETIC-LOWER 

(a) Syntax 

05 NUMERIC-FIELD PIC 9(5). 
05 ALPHABETIC-FIELD PIC A(5). 

1 IF NUMERIC-FIELD IS NUMERIC f 
j PERFORM DO-ARITHMETIC-CALCULATIONS j 
j END-IF. | 
I I 
1 IF NUMERIC-FIELD IS NOT NUMERIC \ 
| DISPLAY 1 ERROR - NUMERIC FIELD CONTAINS INVALID DATA' | 
I END-IF. | 

IF ALPHABETIC-FIELD IS ALPHABETIC j 
DISPLAY 'ALPHABETIC FIELD CONTAINS UPPER AND/OR LOWER CASE LETTERS' j 

END-IF. 1 

IF ALPHABETIC-FIELD IS NOT ALPHABETIC J 
DISPLAY 'ALPHABETIC FIELD CONTAINS NON-ALPHABETIC DATA' | 

END-IF. I 



C h a p t e r 8 Data Validation 

F •e 8 ,3 The Sign Test 

IF 
{: arithmetic expression 
identi fier POSITIVE 

i s [NOT] JNEGATIVE -
ZERO 

(a) Syntax 

IF NET-PAY IS NOT POSITIVE 
PERFORM TOO-MUCH-TAXES 

END-IF. 
IF CHECK-BALANCE IS NEGATIVE 

PERFORM OVERDRAWN 

The sign test determines whether a numeric field is positive, negative, or zero. The 
test is of limited value and could in fact be replaced with the equivalent relational 
condition. Nevertheless, the sign test is illustrated in Figure 8.3. 

Condition-Name Test . ... 
A condition name (88-level entry) is a special w a y of writing a relational condition 
that makes it (the condition) easier to read. Condition n a m e s are defined in the 
Data Division, then referenced in the Procedure Division as s h o w n in Figure 8.4. 
Condition n a m e s are used for elementary items only. 

The definition of a condition n a m e in the Data Division simplifies subsequent 
coding in the Procedure Division; for example, IF F R E S H M A N is equivalent to 
IF Y E A R - C O D E = 1. 88-level entries provide improved documentation in that 
IF F R E S H M A N is inherently clearer than IF Y E A R - C O D E = I. 

The use of an 88-level entry also allows multiple codes to be grouped under a 
single data name; for example, V A L I D - C O D E S is defined as any value from 1 to 8. 
This in turn makes it possible to test for an invalid code with a simple IF statement 
as s h o w n in Figure 8.4b. Note, too, that condition n a m e s permit a given value to 
appear under m o r e than one classification; for example, records containing a 3 
belong to JUNIOR, U P P E R - C L A S S M A N , and V A L I D - C O D E S . 

C o m p o u n d 

A n y two simple tests m a y be combined to form a compound test through the logical 
operators A N D and O R . A N D implies that both conditions must be satisfied for the 
IF to be considered true, whereas O R requires that only one of the conditions be 
satisfied. A flowchart is shown in Figure 8.5a depicting the A N D condition. It requires 
that both A be greater than B and C be greater than I) in order to proceed to T R U E . If 
either of these tests fails, the c o m p o u n d condition is judged false. The general 
format is: 

END-IF. 
(b) Examples 



Condition Names (88-level entries) 

88 data-name jVALUE IS 
[VALUES ARE 

literal-1 (THROUGH! < > literal-2 [THRU J 
fa) Syntax 

05 YEAR-CODE PIC 9. 
88 FRESHMAN VALUE 1. 
88 SOPHOMORE VALUE 2. 
88 JUNIOR VALUE 3. 
88 SENIOR VALUE 4. 
88 GRAD-STUDENT VALUES ARE 5 THRU 8. 
88 UNDER-CLASSMAN VALUES ARE 1, 2. 
88 UPPER-CLASSMAN VALUES ARE 3, 4. 
88 VALID-CODES VALUES ARE 1 THRU 8. 

IF FRESHMAN [ 
PERFORM WELCOME-NEW-STUDENTS I 

END-IF. 
I 

IF VALID-CODES | 
PERFORM PROCESS-STUDENT-RECORD j 

ELSE | 
DISPLAY 'INCOMING YEAR CODE IS IN ERROR' 1 

END-IF. j 
t 
I 

(b) Examples \ 

Figure 8.5b contains a flowchart for a c o m p o u n d O R in which only one of two 
conditions needs to be m e t for the condition to be considered true. Thus, if either A 
is greater than B or C is greater than D, processing is directed to T R U E . 

IF statements containing c o m p o u n d conditions can b e c o m e difficult to interpret; 
for example, in the statement, 

IF X > Y OR X - Z AND X < W ... 
which takes precedence, A N D or O R ? To provide an unequivocal evaluation of 
c o m p o u n d conditions, the following hierarchy for evaluation is established: 

1. Arithmetic expressions 
2. Relational operators 
3. N O T condition 
4. A N D (from left to right if m o r e than one) 
5. O R (from left to right if m o r e than one) 



C h a p t e r 8 Data Validation 

Thus, for the preceding statement to be true, either 
X > Y 
or 
X = Z and X < W 
Parentheses can (and should) be used to clarify the programmer's intent and 

the preceding statement is m a d e clearer if it is rewritten as 
IF X > Y OR (X = Z AND X < W) . . . 

Parentheses can also alter the outcome in that the expression in parentheses is 
evaluated first. The following statement is logically different from the original 
statement: 

IF (X > Y OR X = Z) AND X < W . . . 
In this example the condition in parentheses (X> Y O R X = Z) is evaluated first, after 
which X is compared to W. Both conditions (the one in parentheses and X < W) must 
be true for the c o m p o u n d condition to be considered true. 



The simple conditions within a c o m p o u n d condition often have the same subject as 
in the statement: 

IF SALARY > 30000 AND SALARY < 40000 
A more concise w a y of expressing this logic is with an implied condition, which 
requires only the first occurrence of the subject; that is, 

IF SALARY > 30000 AND < 40000 
is equivalent to the earlier entry. If both the subject and relational operator are the 
same, then only the first occurrence of both needs to be written; that is, 

IF DEPARTMENT = 10 OR 20 
is equivalent to 

IF DEPARTMENT = 10 OR DEPARTMENT = 20 
Implied conditions are often confusing and the following are provided as additional 
examples: 

IF X = Y OR Z is equivalent to IF X = Y OR X = Z 
IF A = B OR C OR D is equivalent to IF A = B OR A = C OR A = D 
IF A = B AND C is equivalent to IF A = B AND A = C 

The general format of the IF statement is: 

IF condition-1 THEN statement-1.., 
NEXT SENTENCE 

statement-2... [END-IF] 
NEXT SENTENCE 

A nested IF results w h e n either statement-1 or statement-2 is itself another IF 
statement, that is, w h e n there are two or more IFs in one sentence. For example, 
consider 

IF A > B 
IF C > D 

MOVE S TO W 
MOVE X TO Y 

ELSE 
ADD 1 TO Z 

END-IF 
END-IF. 

The ELSE clause is associated with the closest previous IF that is not already paired 
with another ELSE. Hence, in this example, Z is incremented by 1 if A is greater than 
B, but C is not greater than D. If, however, A is not greater than B, control passes to 
the statement immediately following the period with no further action being taken. 
(The END-IF scope terminator is optional in both instances, but is included as per 
our coding standard of Chapter 7 of always specifying the scope terminator.) 

Figure 8.6 shows a flowchart and corresponding C O B O L code to determine 
the largest of three quantities A, B, and C. (They are assumed to be unequal numbers.) 
Observe h o w the true and false branches of each decision block meet in a single exit 
point and h o w this corresponds to the C O B O L code. Notice also h o w the indentation 



IF A > B 
IF A > C 

MOVE A TO BIG 
ELSE 

MOVE C TO BIG 
END-IF 

ELSE 
IF C > B 

MOVE C TO BIG 
ELSE 

MOVE B TO BIG 
END-IF 

END-IF 
(b> COBOL Statements 

in the COBOL statement facilitates interpretation of the statement. (The compiler 
pays no attention to the indentation, which is done strictly for programmer 
convenience.) 

W e advocate careful attention to indentation and r e c o m m e n d the following 
guidelines: 

1. Each nested IF should be indented four columns from the previous IF. 
2. ELSE should appear o n a line by itself directly under its associated IF. 
3. Detail lines should be indented four columns under both IF and ELSE. 



The IF Statement 

4. The END-IF scope terminator should always be used and appear o n a line by 
itself directly under its associated IF. 

These guidelines were used in Figure 8.6. 

The N E X T S E N T E N C E clause directs control to the statement following the period 
in an IF statement. It was an essential clause in COBOL-74 to implement certain 
types of nested IF statements, but is no longer needed due to the the END-IF scope 
terminator in COBOL-85. The use of N E X T S E N T E N C E is compared to the scope 
terminator in Figure 8.7. 

Figure 3 ,7 Nested IF Statements/11 

FALSE TRUE 

ADD 1 
TOY 

ADD 1 
TOX 

IF A > B IF A > B 
IF C > D 

ADD 1 TO X 
ELSE 

NEXT SENTENCE 

IF C > D 
ADD 1 TO X 

END-IF 
ELSE 

ELSE ADD 1 TO Y 
ADD 1 TO Y. END-IF. 

(b) NEXT SENTENCE 
(COBOL-74) 

(c) Scope Terminators 
(COBOL-85) 



C h a p t e r 8 Data Validation 

The intended logic is to add 1 to X if A is greater than B and C is greater than D; 
if, however, A is greater than B, but C is not greater than D, no further action is to be 
taken. The N E X T S E N T E N C E clause in Figure 8.7b terminates the IF statement if the 
second condition (C > D) is not met. The identical effect is achieved by the END-IF 
scope terminator in Figure 8.7c. 

The A C C E P T statement is used to obtain the day of the week, date, and/or time of 
program execution. Consider: 

ACCEPT identifier-1 FROM -
DAY-OF-WEEK 
DATE 
DAY 
TIME 

Identifier-1 is a programmer -de f ined work area that holds the information 
being accepted such as the DAY-OF-WEEK, D A T E , DAY, or T I M E . The DAY-OF-
W E E K is returned as a single digit, from one to seven inclusive, corresponding to 
Monday through Sunday. (See Figure 9,8 in the next chapter.) DATE and DAY both 
reflect the current date, but in different formats. Specification of D A T E places a six-
digit numeric field into identifier-1 in the form yymmdd; the first two digits contain 
year; the next two, month; and the last two, the day of the month; for example, 
930316, denotes March 16, 1993. 

Specification of DAY, rather than D A T E , returns a five-digit numeric field to 
the work area. The first two digits represent year and the last three the day of the 
year, n u m b e r e d from 1 to 365 (366 in a leap year). M a r c h 16, 1993, would be 
represented as 93075, but M a r c h 16,1992, as 92076, since 1992 is a leap year. (A date 
written in this format is k n o w n as a Julian date.) 

T I M E returns an eight-digit numeric field, hhmmsshh, in a 24-hour system. It 
contains the n u m b e r of elapsed hours, minutes, seconds, and hundredths of seconds 
after midnight, in that order, from left to right. 10:15 A.M. would return as 10150000, 
10:15 P.M. as 22150000. 

Calculations Involving Dates 
Once the date of execution is obtained, it can be used for various types of date 
validation such as checking that an employee's hire date is within the current year. 
It can also be used in various calculations, for example, to compute an employee's 
age, or to determine which accounts haven't been paid in 30 days. Figure 8.8 
illustrates h o w an employee's age m a y be calculated from the date of execution and 
the employee's birth date. 

Y o u should verify that the COMPUTE statement in Figure 8.8 works as intended, 
and further that it works for all combinations of data. This is best accomplished by 
"playing computer" and plugging in numbers. Accordingly, consider two examples: 
Example 8.1 

Date of birth: 3/73 
Date of execution: 6/93 
Expected age: 20 1/4 
Calculation: 93 - 73 + (6 - 3)/12 = 20 + 3/12 = 20.25 



The Stand-Alone Edit Program 

The ACCEPT Statement 

WORKING-STORAGE SECTION. 

01 EMPLOYEE-RECORD. 

05 EMP-DATE-OF-BIRTH. 
10 EMP-BIRTH-MONTH 
10 EMP-BIRTH-YEAR 

PIC 99. 
PIC 99. 

01 EMPLOYEE-AGE PIC 99V99. 

01 DATE-WORK-AREA. 
05 TODAYS-YEAR 
05 TODAYS-MONTH 
05 TODAYS-DAY 

PIC 99. 
PIC 99. 
PIC 99. 

PROCEDURE DIVISION. 

ACCEPT DATE-WORK-AREA FROM DATE. 

COMPUTE EMPLOYEE-AGE = TODAYS-YEAR - EMP-BIRTH-YEAR 
+ (TODAYS-MONTH - EMP-BIRTH-MONTH) / 12. 

Example 8.2 
Date of birth: 9/73 
Date of execution: 6/93 
Expected age: 19 3/4 
Calculation: 93 - 73 + (6 - 9)/12 = 20 + -3/12 = 19.75 
The calculations are correct, and they work for both combinations of data; it 

doesn't matter whether the m o n t h of execution is before or after the birth month. 
(For simplicity only m o n t h and year were used in the calculation of age.) 

The validation of incoming data is often done in a stand-alone edit program as 
opposed to the reporting program that processes the data. The sequence is s h o w n 
in Figure 8.9. A transaction file is input to the edit program, which checks each 
incoming record for validity. Invalid transactions are rejected with a n appropriate 
error message(s), whereas valid transactions are written to an output file. The valid 
transaction file (i.e., the output file from the edit program) is then input to a 
reporting program. 



Chapter 8 — Data Validation 

The flowchart in Figure 8.9 serves as an effective blueprint for the combina­
tion of programs that are developed in this chapter and the next. The programs 
are related to one another in that the output of the edit program in this chapter 
will be input to the reporting program in Chapter 9. Specifications for the edit 
program are given below, whereas the requirements of the reporting program are 
presented in Chapter 9. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Car Rental Validation 

N a r r a t i v e : The specifications describe a stand-alone edit program for car rental transactions, each 
of which is subject to multiple validity checks. Invalid transactions are to be rejected with 
appropriate error message(s), whereas valid transactions are to be written in their entirety 
to an output file; the latter will be input to a reporting program developed in the next 
chapter. 

I n p u t F i l e (s ) : RENTAL-RECORD-FILE 

I n p u t R e c o r d L a y o u t : 01 RENTAL-RECORD-IN. 
05 REN-CONTRACT-NO PIC 9(6). 

REN-NAME. 
10 REN-LAST-NAME PIC X(15). 
10 REN-FIRST-NAME PIC X(10). 
10 REN-INITIAL PIC X. 
REN-RETURNED-DATE. 
10 REN-RETURNED-YEAR PIC 9(2). 
10 REN-RETURNED-MONTH PIC 9(2). 
10 REN-RETURNED-DAY PIC 9(2). 
REN-CAR-TYPE PIC X. 
REN-DAYS-RENTED PIC 99. 
REN-MILEAGE. 
10 REN-MILES-IN PIC 9(6). 
10 REN-MILES-OUT PIC 9(6). 
10 REN-MILEAGE-RATE PIC 99. 

05 REN-INSURANCE PIC X. 

05 

05 

05 
05 
05 

F i g u r e 8.9 The Stand-Alone Edit Program 

I i 



The Stand-Alone Edit Program 

T e s t D a t a ; See Figure 8.10a (Four errors are identified.) 

R e p o r t L a y o u t : See Figure 8.10b 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of car rental records. 

2. Validate each input record for all of the following: 
a. A numeric contract number; print the message Nonnumeric Contract Number for 

any nonnumeric contract. 
b. The presence of both a first and last name; print the message Missing last name or 

Missing first name for a record missing either field. A middle initial is not required, 
but if present, the initial must be alphabetic; print the message Nonalphabetic initial 
as appropriate. 

c. A valid car type where the code is one of five values; E, C, M, F, or L. Print the 
message Car type must be: E, C, M, F, or L for any record with an invalid car type. 

d. Valid dates: 
(1) A valid month; that is, a month must be from 1 to 12; print the message Month 
must be between 1 and 12 for any invalid month. 
(2) A valid day; that is, the day cannot e x c e e d the maximum days in the 
corresponding month; print the message Invalid Dayfor any date that is inconsistent 
with the month—for example, April 31. 

(3) A valid date; that is, a date that is less than or equal to the system date; print 
the message Date has not yet occurred for any date in the future. 

e. A valid number of days rented where the number of days is numeric, is greater than 
zero, and iess than or equal to 35. Print appropriate error messages for any 
condition that is not met; e.g., Days rented must be numeric, Days rented must be 
> zero, or Refer to Long-Term Leasing. 

Transaction Files and Error Reports 

123459BAKER 
987651BR0WN 
999999J0NES 

PETER 
TOM 
PAULA 
TERRY 
DAN 
PAUL 

ROBERT G93J04311F0500670000664025X 
G930112M1000353000352000N 
J931309E35|)645000Tj466q05Y 

886222V0GEL 
008632TOWER 

233432BEINH0RN 
556564HUMMER 
677844MCD0NALD 

X93477BUTLER 
354679KERBEL 
264805CLARK 
846440 

987655BR0WNING 
999777ELSIN0R 
655443FITZPATRICK 
987654SMITH 

PINNOCK 
JOHN 
NORMAN 
JANE 
SAM 
CATHY 
MARGO 
JAMES 
JANICE 
DARREN 

J93102400700240000252500Y 
R921126F0500168000159005N 
T930532L0701000000987000C 
G921213M0300510000500502Y 
1931012F1000342450l31OO0N 
H930631C0000423000419075N 
X930331E100O34000032430OY 
S921101F0700561500551200N 
92123 If §1500182 300169802 N 
B921122M0200123400113402Y 
R920815C0800234500123403Y 
930123C0500423500402300N 
D930518F1200634500612302Y 
R930429L0900700200689300N 



Chapter 8 Data Validation 

(continued) 

CONTRACT # LAST NAME 

123459 
123459 

987651 

999999 
999999 
999999 

987655 
987655 
987655 

655443 
655443 

X93477 
X93477 
X93477 
X93477 

BAKER 
BAKER 

BROWN 

JONES 
JONES 
JONES 

BROWNING 
BROWNING 
BROWNING 

FITZPATRICK 
FITZPATRICK 

PINNOCK 
PINNOCK 
PINNOCK 
PINNOCK 
PINNOCK 

BUTLER 
BUTLER 
BUTLER 
BUTLER 

ERROR REPORT AS OF 07/03/93 

ERROR MESSAGE & FIELD 

INVALID DAY 
INSURANCE CODE MUST BE Y OR N 

MILES DRIVEN UNREASONABLY LOW 

MONTH MUST BE BETWEEN 1 AND 12 
MILEAGE IN LESS THAN MILEAGE OUT 
NON-NUMERIC MILEAGE RATE 

CAR TYPE MUST BE: E, C, M, F, 
DATE HAS NOT YET OCCURRED 
NON-NUMERIC MILES IN 

INVALID DAY 
INSURANCE CODE MUST BE Y OR N 

NON-NUMERIC CONTRACT NUMBER 
MISSING FIRST NAME 
NON ALPHABETIC INITIAL 
DATE HAS NOT YET OCCURRED 
NON-NUMERIC MILES OUT 

NON-NUMERIC CONTRACT NUMBER 
INVALID DAY 
DAYS RENTED MUST BE > ZERO 
MILEAGE RATE OUT OF RANGE 

OR L 

CONTENTS 

DAYS: 10 MILES: 000010 

13 
IN: 004500 OUT: 004600] 
0 5 " 

0 
10/24/93 
002400 

05/32 
C 

10/12/93 
003310 

X93477 
06/31 
00 
75 

846440 
846440 
846440 
846440 
846440 

NON-NUMERIC CONTRACT NUMBER 
MISSING LAST NAME 
CAR TYPE MUST BE: E, C, M, F, OR L 
DAYS RENTED MUST BE NUMERIC 
MILES DRIVEN UNREASONABLY LOW 

846440 

[X! 
15 
DAYS: 15 MILES: 000125 

999777ELSINOR TERRY R921126F0500168000159005N 
987654SMITH PAUL G921213M0300510000500502Y 
354679KERBEL NORMAN X930331E1000340000324300Y 
264805CLARK JANE S921101F0700561500551200N 
233432BEINH0RN CATHY B921122M0200123400113402Y 
556564HUMMER MARGO R920815C0800234500123403Y 
677844MCD0NALD JAMES 930123C0500423500402300N 
886222V0GEL JANICE D930518F1200634500612302Y 
008632T0WER DARREN R930429L0900700200689300N 

I 



The Stand-Alone Edit Program 

f. Valid values for the mileage in and out: 
(1) The values for both miles in and miles oul must be numeric; print the message 
Nonnumeric miles in or nonnumeric miles out, respectively. 
(2) The mileage reported when the car is turned in cannot be less than the 
mileage when the car was taken out; print the message Mileage in less than 
mileage out as appropriate. 
(3) The number of miles driven must pass a reasonableness test of 10 miles or 
more per day; Display the message, Miles driven unreasonably low as appropriate. 

g. The mileage rate must be numeric and less than or equal to 50 cents per day; print 
the message Mileage rate out of range for an invalid rate. 

h. The value of the insurance field must be either Y or N; print the message Insurance 
code must be Y or Nfor an invalid value. 

3. Any record that fails any validity test is to be rejected and omitted from the valid record 
file. It is quite possible that a given record may contain more than one error, and all 
errors are to be printed except where noted. 

4. Valid records are to be written to a file. 

Eff©f l i f e 'S sa j f i&s 

The utility of a data validation program is determined by the n u m b e r of potential 
errors that it can detect as well as the clarity of the resulting error messages. A truly 
useful program must check for a variety of errors and explain to the user the nature 
of any errors that are detected. These concepts are illustrated in Figure 8.10. The 
incoming transaction file is shown in Figure 8.10a, the associated error messages (in 
conjunction with the programming specifications) in Figure 8.10b, and the valid 
transaction file in Figure 8.10c. 

The n u m b e r e d callouts in Figure 8.10 highlight s o m e of the erroneous 
transactions a nd the corresponding error message; for example, the date of April 
31 is highlighted in the first transaction of Figure 8.10a as is the corresponding 
error message in Figure 8.10b. Three other erroneous transactions are similarly 
highlighted. 

The individual error messages are fully descriptive and list both the contract 
n u m b e r and last n a m e of the associated transaction. In addition, the contents of the 
erroneous field(s) are s h o w n to the right of the error message, making it even easier 
to correct the invalid transaction. Note, too, that the program can also detect multiple 
errors for the same transaction; for example, three errors are identified in the single 
transaction for Jones. 

u d t a s o d e ....... 

The pseudocode in Figure 8.11 begins with statements to obtain the date of execution, 
write the heading for the error report, and read the first record. The m a i n loop of the 
program is executed next and does the following: 

1. The incoming transaction is assumed to be valid by moving 'YES' to a valid-
record-switch. 

2. The incoming transaction is subject to all of the individual validity checks, any 
one of which can set the valid-record-switch to 'NO'. Note, too, that since 
each transaction record is subject to every validity check, multiple errors can 
be detected for a single transaction. 

3. The valid-record-switch is checked to see if the record is still valid, and if so, 
the transaction is 'written to the valid record file. If, o n the other hand, the 
record is no longer valid, a blank line is written to the error report, which 
double spaces between the error messages for one transaction a n d the next. 



C h a p t e r 8 Data Validation 

Open f i l e s 
Get t oday ' s date 
W r i t e e r ro r headings 
Read ren ta l f i l e 
DO WHILE data remains 

Move ' Y E S ' to v a l i d record swi tch 
V a l i d a t e con t rac t number 
V a l i d a t e l a s t name, f i r s t name, and i n i t i a l 
V a l i d a t e car type 
Va l i da te month, day, and non- future date 
Va l i da te days rented 
Va l i da te mi leage i n , mi leage ou t , and computed mi les 
Va l i da te mi leage r a t e 
Va l i da te insurance code 

— - I F v a l i d record swi tch = ' Y E S ' 

ENDIF 
Read next record 

—• ENDDO 
Close f i l e s 
Stop run 

4. T h e next record is read a n d the l o o p c o n t i n u e s unti l the t ransac t ion file is 
e x h a u s t e d . 

T h e p s e u d o c o d e is c o n c i s e in that the spec i f ic na ture of e a c h error c h e c k is n o t 
s h o w n ; n e v e r t h e l e s s it ( the p s e u d o c o d e ) is a n effect ive aid in wr i t ing the program. 

T h e h ierarchy chart for the data va l ida t ion p r o g r a m is s h o w n i n Figure 8.12. The 
m o d u l e CREATE-VALID-FILE sits at the t o p of t h e h ierarchy chart a n d invokes four 
s u b o r d i n a t e s , o n e o f w h i c h is PROCESS-RENTAL-RECORDS, w h i c h i m p l e m e n t s 
t h e m a i n l o o p o f t h e program. 

PROCESS-RENTAL-RECORDS in turn h a s three s u b o r d i n a t e s , VALIDATE-
RENTAL-RECORD t o per form t h e individual error c h e c k s , WRITE-VA1.1D-RECORD 
to wr i te valid t ransac t ions to t h e o u t p u t file, a n d READ-RENTAL-RECORD to read 
t h e next t ransact ion . Each of the required validity c h e c k s is i m p l e m e n t e d in its o w n 
m o d u l e , a n d all o f t h e s e m o d u l e s call a c o m m o n rout ine t o wri te a n error m e s s a g e . 

W r i t e v a l i d record 
ELSE 

W r i t e blank 1ine in e r r o r report 

l_. 

T h e c o m p l e t e d p r o g r a m is s h o w n in Figure 8 .13. It is c o n s i d e r a b l y l onger t h a n the 
tu i t ion bi l l ing p r o g r a m of the p r e v i o u s chapters , b u t n o n e t h e l e s s straightforward 



The Stand-Alone Edit Program 

Hierarchy Chart for Validation Program 

CREATE 
VALID FILE 

GET 
TODAYS 

DATE 

WRITE 
ERROR 

HEADINGS 

VALIDATE 
RENTAL 
RECORD 

VALIDATE 
CONTRACT 
NUMBER 

VALIDATE 
NAME 

READ 
RENTAL 
RECORD 

WRITE 
VALID 

RECORD 

PROCESS 
RENTAL 

RECORDS 

READ 
RENTAL 
RECORD 

VALIDATE 
CAR 
TYPE 

VALIDATE 
DATE 

RETURNED 

WRITE 
ERROR LINE 

WRITE 
ERROR LINE 

WRITE 
ERROR LINE 

VALIDATE 
DAYS 

RENTED 

WRITE 
ERROR LINE 

VALIDATE 
MILES 

DRIVEN 

VALIDATE 
MILEAGE 

RATE 

VALIDATE 
INSURANCE 

WRITE 
ERROR LINE 

WRITE 
ERROR LINE 

WRITE 
ERROR LINE 

V WRITE 
ERROR LINE 

Data Validation Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. VALCARS8. 
3 AUTHOR. CVV. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT RENTAL-FILE ASSIGN TO 'A:\CHAPTR08\VALCARS.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT VALID-RENTAL-FILE ASSIGN TO 'A:\CHAPTR08\VALRENT.DAT 
11 ORGANIZATION IS LINE SEQUENTIAL. 
12 SELECT ERROR-FILE 
13 ASSIGN TO PRINTER. 
14 
15 DATA DIVISION. 
16 FILE SECTION. 
17 FD RENTAL-FILE 
18 RECORD CONTAINS 56 CHARACTERS. 
19 01 RENTAL-RECORD. 
20 05 REN-CONTRACT-NO PIC 9(6). 
21 05 REN-NAME. 
22 10 REN-LAST-NAME PIC X(15). 
23 10 REN-FIRST-NAME PIC X(10). 

file://'A:/CHAPTR08/VALCARS.DAT'
file://'A:/CHAPTR08/VALRENT.DAT


. 1 3 (continued) 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

10 REN-INITIAL 
05 REN-RETURNED-DATE. 

10 REN-RETURNED-YEAR 
10 REN-RETURNED-MONTH 

88 VALID-MONTHS 
88 FEBRUARY 
88 30-DAY-MONTH 
88 31-DAY-MONTH 

10 REN-RETURNED-DAY 
05 REN-CAR-TYPE 

88 VALID-CAR-TYPES 
05 REN-DAYS-RENTED 

PIC X. 

PIC 9(2). 
PIC 9(2). 

VALUES 1 THRU 12. 
VALUE 2. 
VALUES 4 6 9 11. 
VALUES 1 3 5 7 8 10 12. 

PIC 9(2). 
PIC X. 

VALUES 'E' 'C 'M' 'F' 1L'. 
PIC 99. 

88 ZERO-DAYS-RENTED 
88 VALID-DAYS-RENTED 

VALUE 0. 
VALUES 1 THRU 35. 

05 REN-MILEAGE. 
10 REN-MILES-IN 
10 REN-MILES-OUT 
10 REN-MILEAGE-RATE 

PIC 9(6). 
PIC 9(6). 
PIC 99. 

88 VALID-MILEAGE-RATES VALUES 00 THRU 50. 
05 REN-INSURANCE PIC X. 

88 VALID-INSURANCE VALUES 'Y' 'N' 

FD VALID-RENTAL-FILE 
RECORD CONTAINS 56 CHARACTERS. 

01 VALID-RENTAL-RECORD PIC X(56). 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

FD ERROR-FILE 
RECORD CONTAINS 132 CHARACTERS. 

01 ERROR-RECORD 

WORKING-STORAGE SECTION. 
01 PROGRAM-SWITCHES. 

05 NO-DATA-REMAINS-SWITCH 
88 NO-DATA-REMAINS 

05 VALID-RECORD-SWITCH 
88 VALID-RECORD 

PIC X(132). 

PIC XXX VALUE SPACES. 
VALUE 'NO'. 

PIC X(3). 
VALUE 'YES 1. 

01 VALIDATION-CONSTANTS-AND-CALCS. 
05 MILES-PER-DAY-FACTOR PIC 99 VALUE 10. 
05 EXPECTED-MILES PIC 9(6). 
05 ACTUAL-MILES PIC 9(6). 

01 ERROR-REASONS. 
05 NON-NUMERIC-CONTRACT-MSG PIC X(40) 

VALUE 'NON-NUMERIC CONTRACT NUMBER' 
05 LAST-NAME-MSG PIC X(40) 

VALUE 'MISSING LAST NAME'. 
05 FIRST-NAME-MSG PIC X(40) 

VALUE 'MISSING FIRST NAME'. 
05 INITIAL-MSG PIC X(40) 



The Stand-Alone Edit Program 

(continued) 

74 VALUE 'NON ALPHABETIC INITIAL'. 
75 05 CAR-TYPE-MSG PIC X(40) 
76 VALUE 'CAR TYPE MUST BE: E, C, M, F, OR L'. 
77 | 05 MONTH-MSG PIC X(40) j 
78 VALUE 'MONTH MUST BE BETWEEN 1 AND 12'. I 
79 | 05 DAY-MSG PIC X(40) | 
80 j VALUE 'INVALID DAY'. \ 
81 1 05 FUTURE-DATE-MSG PIC X(40) j 
82 | VALUE 'DATE HAS NOT YET OCCURRED1. 
83 | 05 NON-NUM-DAYS-RENTED-MSG PIC X(40) 
84 ! VALUE 'DAYS RENTED MUST BE NUMERIC. j 
85 j 05 ZERO-DAYS-MSG PIC X(40) I 
86 j VALUE 'DAYS RENTED MUST BE > ZERO'. j 
87 05 LEASING-MSG PIC X(40) 
88 VALUE 'REFER TO LONG-TERM LEASING'. \— 
89 i 05 NON-NUM-MILES-IN-MSG PIC X(40) ! 
90 I VALUE 'NON-NUMERIC MILES IN'. 
91 | 05 NON-NUM-MILES-OUT-MSG PIC X(40) 
92 VALUE 'NON-NUMERIC MILES OUT'. 
93 ! 05 LESS-THAN-MILES-MSG PIC X(40) 
94 | VALUE 'MILEAGE IN LESS THAN MILEAGE OUT' . 
95 : 05 INVALID-MILES-MSG PIC X(40) 
96 ! VALUE 'MILES DRIVEN UNREASONABLY LOW 1. 
97 j 05 NON-NUM-RATE-MSG PIC X(40) 
98 VALUE 'NON-NUMERIC MILEAGE RATE 1. 
99 05 MILEAGE-RATE-MSG PIC X(40) 
100 i VALUE 'MILEAGE RATE OUT OF RANGE 1. 
101 | 05 INSURANCE-MSG PIC X(40) | 
102 !_ __ VALUE 'INSURANCE CODE MUST BE Y OR N'. j 
103 " _ ~ ~ ~ " - - — 
104 01 TODAYS-DATE. 
105 05 TODAYS-YEAR PIC 99. 
106 05 TODAYS-MONTH PIC 99. 
107 05 TODAYS-DAY PIC 99. 
108 
109 01 HEADING-ERROR-LINE-ONE. 
110 05 FILLER PIC X(26) VALUE SPACES. 
111 05 FILLER PIC X(19) 
112 VALUE 'ERROR REPORT AS OF '. 
113 05 HDG-DATE. 
114 10 HDG-MONTH PIC 99/. 
1.15 10 HDG-DAY PIC 99/. 
116 10 HDG-YEAR PIC 99. 
117 05 FILLER PIC X(79) VALUE SPACES. 
118 
119 01 HEADING-ERROR-LINE-TWO. 
120 05 FILLER PIC X(10) VALUE 'CONTRACT # 
121 05 FILLER PIC XX VALUE SPACES. 
122 05 FILLER PIC X(9) VALUE 'LAST NAME' 
123 05 FILLER PIC X(8) VALUE SPACES. 



P c. ^ - e s . L(continued) 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
i yi A 
1 H U 

141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 

05 FILLER PIC X(21) 
VALUE 'ERROR MESSAGE & FIELD'. 

05 FILLER 
05 FILLER 
05 FILLER 

01 ERROR-LINE. 
05 FILLER 
05 ERR-CONTRACT-NO 
05 FILLER 
05 ERR-LAST-NAME 
05 FILLER 
05 ERR-MESSAGE 
05 FILLER 
05 ERR-CONTENTS 
05 FILLER 

01 

PIC X(21) VALUE SPACES. 
PIC X(8) VALUE 'CONTENTS' 
PIC X(46) VALUE SPACES. 

PIC XX VALUE SPACES. 
PIC 9(6). 
PIC X(4) VALUE SPACES. 
PIC X(15). 
PIC XX VALUE SPACES. 
PIC X(40). 
PIC XX VALUE SPACES. 
PIC X(23). 
PIC X(38) VALUE SPACES. 

ERROR-DETAILS. 
05 ERR-MILES-IN-OUT. 

10 FILLER 
10 ERR-MILES-IN 
10 FILLER 
10 ERR-MILES-OUT 

05 ERR-RETURNED-DATE. 
10 ERR-RETURNED-MONTH-DAY 

15 ERR-RETURNED-MONTH 
15 ERR-RETURNED-DAY 

10 ERR-RETURNED-YEAR 
ERR-EXPECTED-MILES. 
10 FILLER 
10 ERR-DAYS-RENTED 
10 FILLER 
10 ERR-MILES 

PROCEDURE DIVISION. 
OOO-CREATE-VALID-RENTAL-FILE. 

05 

PIC X(4) VALUE 
PIC 9(6). 
PIC X(6) VALUE 
PIC 9(6). 

PIC 99. 
PIC /99. 
PIC /99. 

PIC X(6) VALUE 
PIC 99. 
PIC X(9) VALUE 
PIC 9(6). 

'IN: 

OUT: 

DAYS: 

MILES: 

OPEN INPUT RENTAL-FILE 
OUTPUT VALID-RENTAL-FILE 

ERROR-FILE. 
PERFORM 100-GET-TODAYS-DATE. 
PERFORM 200-WRITE-ERROR-HEADINGS. 
PERFORM 300-READ-RENTAL-RECORD. 
PERFORM 400-PR0CESS-RENTAL-REC0RDS 

UNTIL NO-DATA-REMAINS. 
CLOSE RENTAL-FILE 

VALID-RENTAL-FILE 
ERROR-FILE. 

STOP RUN. 

100-GET-TODAYS-DATE. 



The Stand-Alone Edit Program 

1 (continued) 

174 [ A C T E P J ~ ^ } 
175 MOVETODAYS-MONTH'TO' HOG-MONTH. 
176 M O V E TODAYS-DAY TO HDG-DAY. 
177 M O V E TODAYS-YEAR TO HDG-YEAR. 
178 
179 200-WRITE-ERROR-HEADINGS. 
180 M O V E HEADING-ERROR-LINE-ONE TO ERROR-RECORD. 
181 W R I T E ERROR-RECORD 
182 A F T E R ADVANCING PAGE. 
183 M O V E HEADING-ERROR-LINE-TWO TO ERROR-RECORD 
184 W R I T E ERROR-RECORD 
185 A F T E R ADVANCING 2 LINES. 
186 MOVE SPACES TO ERROR-RECORD. 
187 W R I T E ERROR-RECORD. 
188 
189 300-READ-RENTAL-RECORD. 
190 READ RENTAL-FILE 
191 AT END MOVE 'NO' TO NO-DATA-REMAINS-SWITCH 
192 END-READ. 
193 
194 400-PR0CESS-RENTAL-REC0RDS. 
195 [ MOVj_' Y E V ~ T0~ VAJLID-RECORD-SWITCH. , -
196 PERFORM 500-VALIDATE-RENTAL-RECORD. 
197 PERFORM 600-WRITE-VALID-RECORD. 
198 PERFORM 300-READ-RENTAL-RECORD. 
199 
200 500-VALIDATE-RENTAL-RECORD. 
201 PERFORM 510-VALIDATE-CONTRACT-NO. 
202 PERFORM 520-VALIDATE-NAME. 
203 PERFORM 530-VALIDATE-CAR-TYPE. 
204 PERFORM 540-VALIDATE-DATE-RETURNED. 
205 PERFORM 550-VALIDATE-DAYS-RENTED. 
206 PERFORM 560-VALIDATE-MILES-DRIVEN 
207 PERFORM 570-VALIDATE-MILEAGE-RATE. 
208 PERFORM 580-VALIDATE-INSURANCE. 
209 
210 510-VALIDATE-CONTRACT-NO. 
211 IILM^NJMI^^ 
212 MOVE NON-NUMERIC-CONTRACT-MSG TO ERR-MESSAGE 
213 MOVE REN-CONTRACT-NO TO ERR-CONTENTS 
214 PERFORM 599-WRITE-ERROR-LINE 
215 END-IF. 
216 
217 520-VALIDATE-NAME. 
218 I F REN-LAST-NAME = SPAC E S 
219 MOVE LAST-NAME-MSG T O ERR-MESSAGE 
220 M O V E SPACES TO ERR-CONTENTS 
221 PERFORM 599-WRITE-ERROR-LINE 
222 END-IF. 
223 IF REN-FIRST-NAME = SPAC E S 



C h a p t e r 

its (continued) 

224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
O/l/l 

245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 

MOVE FIRST-NAME-MSG TO ERR-MESSAGE 
MOVE SPACES TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF. 
IIF R E!HM T I A L N 0IJ* L P H A B E T ILT' 
" ~MOVE INITIAL-MSG TO ERR-MESSAGE 

MOVE REN-INITIAL TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF. 
530-VALIDATE-CAR-TYPE. 

IF NOT VALID-CAR-TYPES 
MOVE CAR-TYPE-MSG TO ERR-MESSAGE 
MOVE REN-CAR-TYPE TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF. 

540-VA LIDAT E\-DATE-RETURNED. 
!IF VALID-MONTHS 

IF 30-DAY-MONTH AND REN-RETURNED-DAY <= 30 OR 
31-DAY-MONTH AND REN-RETURNED-DAY <= 31 OR 
FEBRUARY AND REN-RETURNED-DAY <= 29 

IF REN-RETURNED-DATE > TODAYS-DATE 
MOVE FUTURE-DATE-MSG TO ERR-MESSAGE 
MOVE REN-RETURNED-MONTH TO ERR-RETURNED-MONTH 
MOVE REN-RETURNED-DAY TO ERR-RETURNED-DAY 
MOVE REN-RETURNED-YEAR TO ERR-RETURNED-YEAR 
MOVE ERR-RETURNED-DATE TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF 
ELSE 

MOVE DAY-MSG TO ERR-MESSAGE 
MOVE REN-RETURNED-MONTH TO ERR-RETURNED-MONTH 
MOVE REN-RETURNED-DAY TO ERR-RETURNED-DAY 
MOVE ERR-RETURNED-MONTH-DAY TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF 
ELSE 

MOVE MONTH-MSG TO ERR-MESSAGE 
MOVE REN-RETURNED-MONTH TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF. 

550-VALIDATE-DAYS-RENTED. 
IF REN-DAYS-RENTED NOT NUMERIC 

MOVE NON-NUM-DAYS-RENTED-MSG TO ERR-MESSAGE 
MOVE REN-DAYS-RENTED TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

ELSE 
IF ZERO-DAYS-RENTED 



The Stand-Alone Edit Program 

(continued) 

274 M O V E ZERO-DAYS-MSG TO ERR-MESSAGE 
275 M O V E REN-DAYS-RENTED TO ERR-CONTENTS 
276 PERFORM 599-WRITE-ERROR-LINE 
277 ELSE 
2 7 8 I F NOT VALID-DAYS-RENTED 
279 MOVE LEASING-MSG TO ERR-MESSAGE 
280 MOVE REN-DAYS-RENTED TO ERR-CONTENTS 
281 PERFORM 599-WRITE-ERROR-LINE 
282 E N D - I F 
283 E N D - I F 
284 END-IF. 
285 
286 560-VALIDATE-MILES-DRIVEN. 
287 I F REN-MILES-IN NOT NUMERIC 
288 MOVE NON-NUM-MILES-IN-MSG TO ERR-MESSAGE 
289 MOVE REN-MILES-IN TO ERR-CONTENTS 
290 PERFORM 599-WRITE-ERROR-LINE 
291 ELSE 
292 IF REN-MILES-OUT NOT NUMERIC 
293 M O V E NON-NUM-MILES-OUT-MSG TO ERR-MESSAGE 
294 MOVE REN-MILES-OUT T O ERR-CONTENTS 
295 PERFORM 599-WRITE-ERROR-LINE 
296 ELSE 
297 I F REN-MILES-IN < REN-MILES-OUT 
298 MOVE LESS-THAN-MILES-MSG TO ERR-MESSAGE 
299 MOVE REN-MILES-IN TO ERR-MILES-IN 
300 MOVE REN-MILES-OUT TO ERR-MILES-OUT 
301 MOVE ERR-MILES-IN-OUT TO ERR-CONTENTS 
302 PERFORM 599-WRITE-ERROR-LINE 
303 E L S E 
304 COMPUTE EXPECTED-MILES = 
305 M I L E S - P E R - D A Y - F A C T O R / REN-DAYS-RENTED 
306 "sizFERROfi! DISPLAY" 'SIZE ERROR EXPECT M I L E S 
307 END-COMPUTE 
308 COMPUTE A C T U A L - M I L E S = 
309 J R E N - M R J S - I N - RjEN_-MILES-OUT_ 
310 I SIZE ERROR DISPLAY 'SIZE J R J R O F A C T U A L _ MTL.ES 
311 END-COMPUTE 
312 IF ACTUAL-MILES < EXPECTED-MILES 
313 MOVE INVALID-MILES-MSG TO ERR-MESSAGE 
314 MOVE REN-DAYS-RENTED TO ERR-DAYS-RENTED 
315 MOVE A C T U A L - M I L E S TO ERR-MILES 
316 MOVE ERR-EXPECTED-MILES TO ERR-CONTENTS 
317 PERFORM 599-WRITE-ERROR-LINE 
318 E N D - I F 
319 E N D - I F 
320 E N D - I F 
321 END-IF. 
322 
323 570-VALIDATE-MILEAGE-RATE. 

http://mTl.ES


Chapter 8 Data Validation 

13 (continued) 

324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 

IF REN-MILEAGE-RATE NOT NUMERIC 
MOVE NON-NUM-RATE-MSG TO ERR-MESSAGE 
MOVE REN-MILEAGE-RATE TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

ELSE 
IF NOT VALID-MILEAGE-RATES 

MOVE MILEAGE-RATE-MSG TO ERR-MESSAGE 
MOVE REN-MILEAGE-RATE TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

END-IF 
END-IF. 

580-VALIDATE-INSURANCE. 
IF NOT VALID-INSURANCE 

MOVE INSURANCE-MSG TO ERR-MESSAGE 
MOVE REN-INSURANCE TO ERR-CONTENTS 
PERFORM 599-WRITE-ERROR-LINE 

rrjrj_ TC 

599-WRITE-ERROR-LINE. 
MOVE 'NO ' TO VALID-RECORD-SWITCH. 
MOVE REN-CONTRACT-NO TO ERR-CONTRACT-NO. 
MOVE REN-LAST-NAME TO ERR-LAST-NAME. 
MOVE ERROR-LINE TO ERROR-RECORD. 
WRITE ERROR-RECORD. 

600-WRITE-VALID-RECORD. 
|IF VALID-RECORD 
| MOVE RENTAL-RECORD TO VALID-RENTAL-RECORD 
j WRITE VALID-RENTAL-RECORD 
' ELSE 

MOVE SPACES TO ERROR-RECORD 
WRITE ERROR-RECORD 

END-IF. 

a n d easy to fol low. T h e logic in t h e program parallels that of t h e p s e u d o c o d e just 
d e v e l o p e d , w h e r e a s t h e paragraphs in the P r o c e d u r e D i v i s i o n c o r r e s p o n d o n e to 
o n e w i t h the m o d u l e s in the h i erarchy chart. T h e p r o g r a m c o m p l i e s c o m p l e t e l y 
w i t h the p r o c e s s i n g r e q u i r e m e n t s a n d also i l lustrates t h e v a r i o u s COBOL features 
p r e s e n t e d earlier. Cons ider: 

1. T h e u s e of c o n d i t i o n n a m e s w i t h i n the F D for RENTAL-RECORD (e.g., l ines 
28-31, 34, 36-37, etc.) to d e f i n e valid va lues for the var ious i n p u t f ields. 

2. A tab le o f error m e s s a g e s in l i n e s 66-102; g r o u p i n g t h e error m e s s a g e s 
i n t h i s w a y m a k e s it e a s y t o d e t e r m i n e p r e c i s e l y w h i c h error c h e c k s 
are i m p l e m e n t e d . It a l s o f a c i l i t a t e s u n i f o r m f o r m a t t i n g o f t h e v a r i o u s 
error m e s s a g e s . 



The Stand'Alone Edit Program 

3. The A C C E P T statement in line 174 to obtain the system date; also the definition 
of T O D A Y S - D A T E in WORKING-STORAGE to h o l d the date after it is read. 

4. The M O V E statement to initialize V A L I D - R E C O R D - S W I T C H to 'YES' for each 
incoming transaction record (line 195). A second M O V E statement in the 
WRITE-ERROR-LINE paragraph (line 344) to reset the switch to 'NO' if the 
current transaction fails any one of the validity tests. 

5. Various class tests for numeric and alphabetic data as in lines 211 and 228. 
6. A nested IF statement in lines 242-265 to implement the various types of date 

validation. A second nested IF statement in lines 287 through 321 performs 
the various checks on the incoming, outgoing, and computed mileage. 

7. SIZE E R R O R clauses within the C O M P U T E statements, lines 306 and 310, in 
anticipation of unexpectedly large fields. 

8. The IF statement in lines 351-357 that determines whether the transaction is 
written to the valid file. Note, too, the ELSE clause within this IF statement, 
which writes a blank line for every invalid record, which in turn puts a blank 
line before each group of invalid transactions in the error report. 

COBOL-85 introduced two additional relational conditions into the IF statement, 
GREATER THAN OR EQUAL TO and LESS THAN OR EQUAL TO; these 
conditions were not allowed in COBOL-74, which used NOT LESS THAN as 
the equivalent of GREATER THAN OR EQUAL TO and NOT GREATER THAN 
for LESS THAN OR EQUAL TO. 

COBOL-85 enables the testing of upper- and/or lowercase letters 
through expansion of the alphabetic class test. In COBOL-85 the ALPHABETIC 
test is true for uppercase letters, lowercase letters, and the space character; 
the ALPHABETIC-UPPER test is true for uppercase letters and the space 
character; and the ALPHABETIC-LOWER test is true for lowercase letters 
and the space character. There were no UPPER/LOWER tests in COBOL-74 
and the ALPHABETIC test was true only for uppercase letters and space 
characters. 

The most significant change, however, is the introduction of the END-IF 
scope terminator, which did not exist in COBOL-74. We have already seen 
how the scope terminator eliminates the column-73 problem in conjunction 
with a "missing period" (page 182) and how it eliminates the need for the 
NEXT SENTENCE clause (Figure 8.7). The scope terminator also facilitates 
the nesting of conditional statements as shown in Figure 8.14. 

Consider, for example, the flowchart of Figure 8.14a, and the contrasting 
implementations in COBOL-85 and COBOL-74 in Figures 8.14b and 8.14c, 
respectively. The END-IF terminator transforms a conditional statement to an 
imperative (complete) statement, making it possible to express the required 
logic as a single IF statement in COBOL-85. By contrast, the COBOL-74 
implementation requires an additional PERFORM statement and is more 
difficult to follow. 



Chapter 8 Data Validation 

4 Limitations of COBOL-74 

ADD 1 TO 
MALE-COUNTER 

;hart 

IF VALID-RECORD-SW = 1Y' 
IF SEX = 'M' 

ADD 1 TO MALE-COUNTER 
END-IF 
IF INCOME > 50000 

ADD 1 TO HIGH-INCOME-CTR 
END-IF 

END-IF. 
(b) COBOL-85 

IF VALID-RECORD-SW = 'Y' 
PERFORM DO-MORE-TESTS. 

DO-MORE-TESTS. 
IF SEX = 'M' 

ADD 1 TO MALE-COUNTER. 
IF INCOME > 50000 

ADD 1 TO HIGH-INCOME-CTR. 



Data validation is a critical portion of any system, as the output produced 
by any program is only as good as its input. 

Data validation is often done in a stand-alone edit program as opposed to 
the reporting program that processes the data; that is, the valid transaction 
file produced as output by the edit program becomes the input file to the 
reporting program. 

The ACCEPT statement is used to obtain the date of execution for use in 
implementing various types of date checks. 

There are four types of conditions in the IF statement: relation, class, sign, 
and condition name (88-level entries). 

Any two simple conditions may be combined to form a compound condition 
using the logical operators AND and OR. An IF statement may also use 
implied conditions, in which the subject and/or operation is understood. 

A nested IF statement contains two or more IF statements within a sentence. 
The scope of the condition in the IF statement is terminated by the ELSE 
clause, the END-IF scope terminator, and/or a period. The scope terminator 
is optional but strongly recommended in all instances. 

Indentation within an IF statement is not required by the compiler but 
recommended to facilitate the programmer's interpretation. 

The NEXT SENTENCE clause directs control to the statement immediately 
following the period and is required (in COBOL-74) to implement certain 
types of nested conditional statements. The END-IF scope terminator, 
introduced in COBOL-85, eliminates the need for the NEXT SENTENCE 
clause in all instances. 

88-level entry 
Alphabetic test 
Class test 
Completeness check 
Compound test 
Condition name 
Consistency check 
Data validation 
Date check 
Edit program 
Existing code check 

Implied condition 
Limit check 
Nested IF 
Numeric test 
Range check 
Reasonableness check 
Scope terminator 
Sequence check 
Sign test 
Subscript check 



Chapter 8 - Data Validation 

L - / N 

Bl&ments 

ACCEPT 
AND 
DATE 
DAY 
DAY-OF-WEEK 

END-IF 
IF 
NEXT SENTENCE 
NOT 
OR 
TIME 

1. Incoming data should be prior to being used in computations. 

2. The valid transaction file produced as output by an edit program is 
to a reporting program. 

3. A test ensures that numeric fields do in fact contain numeric 
data. 

4. A check tests that a value does not exceed a designated upper 

or lower bound. 

5. A check verifies that all required fields are present. 

6. In evaluating a compound condition, AND comes (before/after) OR. 

7. A condition name is also known as an -level entry. 

8. The clause directs control to the statement 
immediately following the period. 

9. The scope terminator eliminates the need for the NEXT SENTENCE 
clause. 

10. The statement, ACCEPT DATE-WORK-AREA FROM DATE requires specification of 
a user-defined work area in the form, . 

T R U E / F A L S E 

1 . Output from a reporting program is typically input to an edit program. 

2. The numeric class test can be applied to alphanumeric data. 

3. The alphabetic class test can be applied to alphanumeric data. 

4. The numeric class test can be applied to alphabetic data. 

5. The alphabetic class test can be applied to numeric data. 

6. A nested IF statement contains two or more IF statements within a single sentence. 

7. The NEXT SENTENCE clause may be associated with either an IF or an ELSE. 

8. The END-IF scope terminator eliminates the need for a NEXT SENTENCE clause. 

9. The ACCEPT statement is used to obtain the date of execution. 

10. DATE is a COBOL reserved word, containing the date of execution in the form 
yymmdd. 

11. DAY and DATE produce the same results. 

12. TIME returns a six-digit numeric field, indicating the time of program execution. 



1. Recode the following statements to include scope terminators and proper indentation 
with the ELSE clause indented under the relevant IF. 
a. IF A > B, IF C > D, M O V E E T O F, 

ELSE M O V E G T O H. 
b. IF A > B, IF C > D, M O V E E T O F, 

ELSE M O V E G T O H, ELSE M O V E X T O Y. 
c. IF A > B, IF C > D, M O V E E T O F, 

A D D 1 T O E, ELSE M O V E G T O H, 
A D D 1 T O G. 

d. IF A > B, M O V E X T O Y, M O V E Z T O W, 
ELSE IF C > D M O V E 1 T O N, 
ELSE M O V E 2 T O Y, A D D 3 T O Z. 

2. Given the nested IF statement: 
IF SEX = 1M' 

PERFORM PROCESS-MALE-RECORD 
ELSE 

IF SEX = 'F' 
PERFORM PROCESS-FEMALE-RECORD 

ELSE 
PERFORM WRITE-ERROR-MESSAGE 

END-IF 
END-IF. 

and the logically equivalent code: 
IF SEX = 'M' 

PERFORM PROCESS-MALE-RECORD 
END-IF. 
IF SEX = 'F' 

PERFORM PROCESS-FEMALE-RECORD 
END-IF. 
IF SEX NOT = 'M' AND SEX NOT = 'F' 

PERFORM WRITE-ERROR-MESSAGE 
END-IF. 

a. Discuss the relative efficiency of the two alternatives. 
b. What would be the effect of changing A N D to O R in the third IF of the second set 

of statements? 
c. What would be the effect of removing the word ELSE wherever it occurs in the 

first set of IF statements? 
3. Are the two IF statements logically equivalent? 

Statement 1: 
IF A > B 

IF C > D 
ADD 1 TO X 

ELSE 
ADD 1 TO Y 

END-IF 
END-IF. 



C h a p t e r 8 Data Validation 

Statement 2: 
IF A > B AND C > D 

ADD 1 TO X 
ELSE 

ADD 1 TO Y 
END-IF. 

I ry the following sets of values to aid in answering the question: 
a. A = 5,B = 1,C= 10, D= 15. 
b. A=1,B = 5, C = 10, D = 15. 

4. Company XYZ has four corporate functions: manufacturing, marketing, financial, 
and administrative. Each function in turn has several departments, as shown: 

FUNCTION D E P A R T M E N T S 
MANUFACTURING 10, 12, 16-30, 41 , 56 

MARkETING 6-9,15,31-33 

FINANCIAL 60-62, 75 

ADMINISTRATIVE 1-4, 78 

Establish condition-name entries so that, given a value of EMPLOYEE-DEPARTMENT, 
you can determine the function. Include an 88-ievel entry, VALID-CODES, to verify 
that the incoming department is indeed a valid department (any department 
number not shown is invalid). 

5. Given the following COBOL definitions: 
05 LOCATION-CODE PIC 99. 

88 NEW-YORK VALUE 10. 
88 BOSTON VALUE 20. 
88 CHICAGO VALUE 30. 
88 DETROIT VALUE 40. 
88 NORTH-EAST VALUES 10 20. 

Are the following entries valid as the condition portion of an IF statement? 
a. IF LOCATION-CODE = '10' 
b. IF LOCATION-CODE = 40 
c. IF NEW-YORK 
d. IF LOCATION-CODE = 10 OR 20 OR 30 
e. IF NEW-YORK OR BOSTON OR CHICAGO 
f. IF DETROIT = 40 

Would the following be valid examples of MOVE statements? 
g. MOVE 20 TO BOSTON. 
h. MOVE 20 TO LOCATION-CODE. 
i. MOVE '20' TO LOCATION-CODE. 

6. Given the following pairs of IF statements, indicate whether the statements in each 
pair have the same effect: 
a. IF A > B OR C > D AND E = F 

IF A > B OR (C > D AND E = F) 
b. IF A > B OR C > D AND E = F 

IF (A > B OR C > D) AND E = F 
c. IF A > B OR A > C OR A > D 

IF A> B OR C OR D 
d. IF A > B 

IF A NOT < B OR A NOT = B 



Problems 

7. Consider the following code, intended to calculate an individual's age from a 
stored birth date and the date of execution. 

01 EMPLOYEE-RECORD. 
05 EMP-BIRTH-DATE. 

10 BIRTH-MONTH PIC 99. 
10 BIRTH-YEAR PIC 99. 

01 DATE-WORK-AREA. 
05 TODAYS-MONTH PIC 99. 
05 TODAYS-DAY PIC 99. 
05 TODAYS-YEAR PIC 99. 

PROCEDURE DIVISION. 
ACCEPT DATE-WORK-AREA FROM DATE. 

COMPUTE EMPLOYEE-AGE = TODAYS-YEAR - BIRTH-YEAR 

I here are two distinct reasons why the code will not work as intended. Find and 
correct the errors. 

8. Implement the logic in Figure 8.15 with and without scope terminators, corresponding 
to the implementations in COBOL-74 and COBOL-85. Do you see any distinct 
advantages to the latter compiler? 

Figuufe i i . i S Flowcharts for Problem 8 

+ TODAYS-MONTH - BIRTH-MONTH. 

statement^ statement,, 

statement, 





I" 1 1 I 

Overview 
P E R F O R M 

TEST BEFORE/TEST AFTER 
In-line Perform 
Performing Sections 
PERFORM THRU 
P r o n r a m m i n n Tin- P e r f o r m PptranrpnhQ Mot Sections 

R E A D 

False-Condition Branch 
READ INTO 

W R I T E FROM 
I N I T I A L I Z E 

S t r i n g P r o c e s s i n g 

INSPECT 
STRING 
UNSTRING 
Reference Modification 

A C C E P T 

D u p l i c a t e D a t a N a m e s 

Qualification 
MOVE CORRESPONDING 

T h e C a r Billing P r o g r a m 

Programming Specifications 
Program Design 
The Completed Program 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 9 More About the Procedure Division 

O B J E C T IVES 

After reading this chapter you will be able to: 

Differentiate between the DO WHILE and DO UNTIL structures; describe 
how each is implemented in conjunction with a PERFORM statement. 

> Define an in-line perform and a false-condition branch; explain how the 
combination of these features eliminates the need for a priming read 
statement. 

Differentiate between a paragraph and a section. 

Code the READ INTO and WRITE FROM statements in the Procedure 
Division. 

Use the INITIALIZE statement. 

Perform basic string processing operations through use of the INSPECT, 
STRING, and UNSTRING statements. 

Define a duplicate data name and use qualification to eliminate ambiguity; 
describe the use of the MOVE CORRESPONDING statement. 

O V E R VIEW 

This chapter completes the two-program sequence begun in Chapter 8 by 
developing the reporting program for the valid transaction file. The program is 
also intended to illustrate a series of advanced Procedure Division statements 
that are presented in the chapter. Many of the statements are new to COBOL-85 
and were not available in COBOL-74. 

We begin with the PERFORM statement and include material on the TEST 
BEFORE and TEST AFTER clauses which correspond to the DO WHILE and DO 
UNTIL constructs of structured programming. The in-line perform is presented, 
as is the THROUGH clause, to perform multiple paragraphs; the use of sections 
in lieu of paragraphs is also covered. The READ INTO and WRITE FROM 
clauses are introduced to combine the effects of a MOVE statement with the 
indicated I/O operation. The ACCEPT statement is expanded to include the 
DAY-OF-WEEK clause, and the INITIALIZE statement establishes values for 
multiple data names in a single statement. The INSPECT, STRING, and UNSTRING 
statements are introduced to implement string processing operations. Duplicate 
data names, qualification, and the MOVE CORRESPONDING statement are 
introduced as well. 



The program at the end of the chapter is designed very differently from the 
programs presented thus far as it uses an in-line perform and a false-condition 
branch to eliminate the priming read used in earlier programs. The program also 
makes extensive use of scope terminators throughout the Procedure Division. 

A simple form of the P E R F O R M statement has been used throughout the text to 
implement the iteration construct of structured programming: 

PERFORM procedure-name UNTIL condition 
The condition in the U N T I L clause is tested before the procedure is executed, and if 
the condition is not met, control is transferred to the designated procedure. W h e n 
the procedure has completed execution, the condition is retested, and if it (the 
condition) is still not met, the procedure is executed a second time. The process 
continues indefinitely until the condition is finally satisfied. 

In actuality the P E R F O R M statement is considerably more complex with m a n y 
additional options. Consider: 

PERFORM procedure-name - 1 JTHRQUGH] 'THRU procedure - name - 2 

WITH TEST [BEFORE UNTIL condition-1 

[imperati ve-statement-1 END-PERFORM] 

The optional T E S T B E F O R E / T E S T A F T E R clause is explained in conjunction with 
Figure 9.1. Figure 9.1a depicts the D O W H I L E structure that has been used 

The Iteration Structure 

(a) BO WHILE Construct (b) DO UNTIL Construct 



Chapter 9 More About the Procedure Division 

throughout the book, while Figure 9.1b illustrates the slightly different D O U N T I L 
structure. The difference between the two (aside from the semantics of switching 
the true and false branches) pertains to the sequence in which the condition and 
statement are executed. 

The D O W H I L E structure of Figure 9.1a tests the condition before executing 
Block A; the D O U N T I L structure in Figure 9.1b tests the condition after executing 
Block A. The D O W H I L E structure does not execute Block A if the condition is 
initially false, whereas D O UNTIL guarantees that Block A is executed at least once. 

The P E R F O R M statement includes the TEST B E F O R E and TEST A F T E R phrases, 
corresponding to a D O W H I L E and D O UNTIL, respectively. Specification of TEST 
B E F O R E tests the condition before performing the procedure, a n d corresponds to 
the D O W H I L E . Specification of TEST A F T E R performs the procedure and then tests 
the condition, and corresponds to a D O UNTIL. Omission of both TEST B E F O R E 
and TEST A F T E R (as has been done throughout the text) defaults to TEST B E F O R E . 

The procedure-name is enclosed within brackets within the syntax of the P E R F O R M 
statement and thus is an optional entry. Omission of the procedure n a m e produces 
an in-line perform, where the statements to be executed appear immediately below 
the P E R F O R M statement itself, as opposed to the out-of-line execution of a 
designated procedure elsewhere in the program. For example: 

PERFORM 
Statement 1 
Statement 2 

END-PERFORM 
A n in-line perform functions just as a regular P E R F O R M , except that the 

statements to be executed are contained entirely within the statement—that is, 
between P E R F O R M and E N D - P E R F O R M . Omission of the procedure n a m e (that is, 
specification of an in-line perform) requires the E N D - P E R F O R M delimiter; 
conversely, the E N D - P E R F O R M m a y nothe specified in conjunction with performing 
a paragraph.  

The procedure n a m e in the P E R F O R M statement can be either a paragraph or a 
section. A paragraph consists of one or m o r e sentences, whereas a section is m a d e 
up of one or more paragraphs. Paragraph headers are required to begin in the A-
margin (columns 8-11), whereas sentences begin in the B-margin (columns 12-72). 
The compiler recognizes the end of one paragraph w h e n it senses the beginning of 
the next paragraph—that is, w h e n it finds the next entry in the A-margin. Section 
headers also begin in the A margin and are distinguished from paragraph headers 
by the reserved word SECTION. 

W h e n a paragraph is performed, control is transferred to the first sentence in 
that paragraph and remains in that paragraph until the next paragraph is reached. 
In similar fashion, if the procedure n a m e in a P E R F O R M statement refers to a 
section (rather than a paragraph), control is transferred to the first paragraph in 
that section and remains in that section until the next section is reached. 

The authors suggest that you avoid sections altogether (see tip o n page 233); 
the material is included here because sections appear in m a n y older C O B O L 
programs. 

Other statements to be executed 



PERFORM 

P R O G R A M M I N G . T I P 

The motivation behind this guideline is best demonstrated by example. Given the following Procedure 
Division, what will be the final value of X? 

PROCEDURE DIVISION. 

MAINLINE SECTION. 
MOVE ZERO TO X. 
PERFORM A. 
PERFORM B. 
PERFORM C. 
PERFORM D. 
STOP RUN. 

A SECTION. 
ADD 1 TO X. 

B. 
ADD I TO X. 

C. 
ADD 1 TO X. 

D. 
ADD 1 TO X. 

The correct answer is 7, not 4. A common error made by many programmers is a misinterpretation of the 
statement PERFORM A. Since A is a section and not a paragraph, the statement PERFORM A invokes every 
paragraph in that section, namely, paragraphs B, C, and D, in addition to the unnamed paragraph immediately 
after the section header. 

A PERFORM statement specifies a procedure, which is either a section or a paragraph, yet there is no 
way of telling the nature of the procedure from the PERFORM statement itself. Consequently, when a section 
is specified as a procedure, the unfortunate result is too often execution of unintended code. Can't happen? 
Did you correctly compute the value of X? 

The T H R O U G H (THRU) clause executes all statements between the specified 
procedure names. The procedures m a y be paragraphs or sections, but procedure-
name-1 must be physically before procedure-name-2 within the C O B O L program. 

A c o m m o n practice is to m a k e procedure-name-2 a single-sentence paragraph 
consisting of the word EXIT. The EXIT statement causes no action to be taken; its 
function is to delineate the end of the P E R F O R M . Consider: 

PERFORM PROCESS-RECORDS THRU PROCESS-RECORDS-EXIT. 

PROCESS-RECORDS. 



C h a p t e r 9 More About the Procedure Division 

PROCESS-RECORDS-EXIT. 
EXIT. 

The only practical reason to use a P E R F O R M T H R U statement with an EXIT 
paragraph is to enable downward branching to the EXIT statement depending o n a 
condition within the paragraph. Although an argument could be m a d e for this 
usage in limited instances, the need for such statements as G O T O PRO C E S S -
R E C O R D S - E X I T should generally be avoided. 

The R E A D statement includes two important clauses—INTO and N O T A T END—that 
were not previously presented. Consider: 

READ file-name RECORD [ JJfJO identifier ] 
[AT END imperative-statement-1] 
[NOT AT END imperative-statement-2] 

[END-READ] 

•igure 9.2 Structure of a COBOL Prograrr 

READ INPUT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH. 

PERFORM PROCESS-RECORDS 
UNTIL DATA-REMAINS-SWITCH = 'NO'. 

PROCESS-RECORDS. 

READ INPUT-FILE 
AT END MOVE 'NO' TO DATA-REMAINS-SWITCH. 

(a) Priming Read j 

l 

PERFORM UNTIL DATA-REMAINS-SWITCH = 'NO' j 
READ INPUT-FILE [ 

AT END j 
MOVE 'NO' TO DATA-REMAINS-SWITCH j 

NOT AT END j 

F'v-^t'rp D'v'sr-n - - ' ^ o ^ . ^ >n n,-^.^ ~ , „ , * n t r c r , y , { 
I 
| 

END-READ j 
END-PERFORM. I 

(b) False Condition Branch with In-iine Perioral 



READ 

The NOT AT E N D clause specifies an action for the false branch of a conditional 
statement; it is c o m m o n l y used is in conjunction with a scope terminator and an in­
line perform to eliminate the priming read, as s h o w n in Figure 9.2. 

The choice between the priming read in Figure 9.2a and the equivalent logic 
in Figure 9.2b is one of personal preference. The earlier listings (e.g., the tuition 
billing program in Chapter 5) used the priming read because it was required in 
COBOL-74 as the earlier compiler had neither the false-condition branch nor the 
in-line perform. M a n y programmers are, in fact, so accustomed to the priming read 
that they continue to use it even though it is no longer necessary. W e prefer the in­
line perform and false-condition branch, but both techniques are equally acceptable. 

The READ INTO phrase causes the input record to be stored in two places: in the 
I/O area of the designated file and in the identifier n a m e specified in the I N T O 
phrase in Working-Storage. The statement is illustrated in Figure 9.3, where the 
input data are available in both E M P L O Y E E - R E C O R D and W S - E M P L O Y E E - R E C O R D . 
READ INTO is equivalent to the combinat ion of a READ statement and a MOVE 
statement as shown: 

READ EMPLOYEE-FILE 
AT END 

MOVE 'NO' TO DATA-REMAINS-SWITCH 
NOT AT END 

.3 The READ INTO Statement 

FD EMPLOYEE-FILE 
DATA RECORD IS EMPLOYEE-RECORD. 

01 EMPLOYEE-RECORD PIC X(60). 

WORKING-STORAGE SECTION. 
01 FILLER PIC X(14) VALUE 'WS BEGINS HERE' 
01 WS-EMPLOYEE-RECORD. 

05 EMP-NAME PIC X(25). 

PROCEDURE DIVISION. 

READ EMPLOYEE-FILE INTO WS-EMPLOYEE-RECORD 
AT END 

MOVE 'NO' TO DATA-REMAINS-SWITCH 
NOT AT END 

PERFORM PROCESS-THIS-RECORD 
END-READ. 



C h a p t e r 9 More About the Procedure Division 

PERFORM PROCESS-THIS-RECORD 
r u n n r- A n 
MOVE EMPLOYEE-RECORD TO WS-EMPLOYEE-RECORD. 
The advantage of the R E A D I N T O statement is in debugging. If a program 

ends prematurely, the first task is to identify the record being processed at the 
instant the problem occurred. The F D area is difficult to find, a nd identification of 
the specific logical record is further complicated by considerations of blocking. 
Working-Storage, however, is easy to find because of the literal W S B E G I N S H E R E . 
The technique is not sophisticated, but it does work. Once Working-Storage is 
found, you can identify the record in question as well as the values of all other data 
n a m e s defined in Working-Storage. 

The WRITE FROM statement is analogous to R E A D I N T O in that it combines the 
effects of a M O V E and a W R I T E into a single statement. The general format of the 
W R I T E statement is: 

WRITE record-name [FROM i d e n t i f i e r - l l 

[BEFORE] 
, , a d v a n c i n g 4 

[AFTER J 

[identifier-2 
[integer 
[mnemonic-name) 
Ipaqf I 

LINE 
LINES 

A single W R I T E F R O M statement, for example, 
WRITE PRINT-LINE FROM HEADING-LINE 

AFTER ADVANCING PAGE. 
is equivalent to the combination of a M O V E and a W R I T E statement: 

MOVE HEADING-LINE TO PRINT-LINE. 
WRITE PRINT-LINE 

AFTER ADVANCING PAGE. 
W R I T E F R O M can be used throughout a program to write heading, detail, and total 
lines. 

The I N I T I A L I Z E statement sets multiple data n a m e s to initial values in a single 
statement. Consider: 

INITIALIZE [identifier-l] 

ALPHABETIC 

REPLACING 
ALPHANUMERIC 
NUMERIC 
ALPHANUMERIC-EDITED 
NUMERIC-EDITED 

DATA BY identifier-2 
1iteral- 1 



The brackets indicate that all parameters are optional; that is, INITIALIZE in and of 
itself is a valid statement that initializes all numeric items in a program to zeros, and 
all nonnumeric items to spaces. You can also restrict the INITIALIZE statement to 
one (data n a m e or more,) initialize only specific categories of data names, and/or 
initialize to values other than zeros or spaces. Thus given the C O B O L fragment: 

01 GROUP-ITEM. 

05 NUMERIC-FIELD-1 PIC 9 ( 4 ) . 

05 NUMERIC-FIELD-2 PIC 9 ( 4 ) . 

05 ALPHANUMERIC-FIELD-1 PIC X ( 1 5 ) . 

05 ALPHANUMERIC-FIELD-2 PIC X ( 2 0 ) . 

The statement INITIALIZE G R O U P - I T E M is equivalent to: 
MOVE ZEROS TO NUMERIC-FIELD-1. 

MOVE ZEROS TO NUMERIC-FIELD-2. 

MOVE SPACES TO ALPHANUMERIC-FIELD-1. 

MOVE SPACES TO ALPHANUMERIC-FIELD-2. 

In similar fashion, INITIALIZE G R O U P - I T E M R E P L A C I N G N U M E R I C B Y Z E R O is 
equivalent to: 

MOVE ZEROS TO NUMERIC-FIELD-1. 

MOVE ZEROS TO NUMERIC-FIELD-2. 

A n d finally, INITIALIZE G R O U P - I T E M R E P L A C I N G A L P H A N U M E R I C B Y SPACES is 
equivalent to: 

MOVE SPACES TO ALPHANUMERIC-FIELD-1. 

MOVE SPACES TO ALPHANUMERIC-FIELD-2. 

It is often necessary to operate on individual characters within a field, w h e n the 
field is alphanumeric. Operations of this type are called string processing operations, 
and are accomplished with the INSPECT, STRING, and U N S T R I N G statements in 
C O B O L . Each of these statements is discussed in detail. 

The INSPECT statement is a convenient w a y to replace one character (or character 
string) with another. Consider: 

INSPECT i d e n t i f i e r - 1 REPLACING 

CHARACTERS BY 
i d e n t i f i e r - 2 

ALL 

LEADING 

FIRST 

1 i teral-1 

j i d e n t i f i e r - 4 

i1i teral- 3 BY 

[BEFORE i d e n t i f i e r - 3 
} INITIAL [ 

AFTER literal-2 
i d e n t i f i e r - 5 

1 i t e r a l - 4 

BEFORE i d e n t i f i e r - 6 
\ \ INITIAL 
[AFTER J [ l i t e r a l - 5 

The I N S P E C T statement can be used with the editing characters of Chapter 7 
as illustrated in Figure 9.4. Assume, for example, that social security n u m b e r is 
stored as a nine-position field (with no hyphens) in the input record, but is to 
appear with hyphens in the printed report. The M O V E statement transfers the 
incoming social security n u m b e r to an 11-position field containing two blanks 



Chapter 9 — More About the Procedure Division 

(denoted by B in the P I C T U R E clause). The INSPECT statement replaces every 
occurrence of a blank in S O C - S E C - N U M - O U T by the desired hyphen. 

Another frequent use of the INSPECT statement is the elimination of leading 
blanks in numeric fields. (Numeric fields in C O B O L should not contain anything 
other than the digits 0 to 9 and a sign over the rightmost (low-order) position.) 
Leading blanks can be replaced with zeros as follows: 

INSPECT FIELD-WITH-BLANKS REPLACING LEADING ' ' BY '0'. 

The S T R I N G statement joins (concatenates) one or more fields and/or one or more 
literals into a single field. Thus a S T R I N G statement has the s a m e effect as a series of 
M O V E statements, except that the destination fields are one a n d the same. A n 
abbreviated form of the C O B O L notation for the S T R I N G follows: 

STRING identi fier-1 
literal-1 

identifier-2 
literal-2 DELIMITED BY 

identifier-3 
1iteral-3 
SIZE 

INTO identifier-4 [WITH POINTER identifier-5] 

[END-STRING] 

The above notation can be simplified, for our discussion, in the following manner: 
STRING sending item INTO receiving field 

A sending item m a y be either an identifier or a literal. Each sending item must be 
accompanied by a delimiting clause, which indicates w h e n to stop moving characters 
from the sending field. The delimiter can take one of three forms: 

1. A n identifier n a m e that contains the delimiting character(s), 
2. A figurative literal or constant whose value is the delimiting character(s), or 
3. SIZE, which transfers the entire contents of the sending item. 

f i g u r e 9.4 The INSPECT Statement 

01 RECORD-IN. j 
05 SOC-SEC-NUM PIC 9(9). j 

01 PRINT-LINE. 
05 S0C-SEC-NUM-0UT PIC 999B99B9999. i 

| 
PROCEDURE DIVISION. | 

I 
[ MOVE SOC-SEC-NUM TO SOC-SEC-NUM-OUT. j 
I INSPECT SOC-SEC-NUM-OUT REPLACING ALL ' 1 BY | 



tring Processing 

The delimiting character(s) itself is not transferred. Figure 9.5 contains an 
example of the S T R I N G statement in which the components of an individual's 
n a m e are stored separately, then put together to form a single character string. The 
application is not unusual in that a program often requires a person's n a m e in two 
formats. It is easy, for example, to visualize the n a m e (John H. Smith) as a single 
entity as it might appear o n an address label. Y o u would not, however, want to store 
the n a m e as a single field as that would preclude the ability to obtain an alphabetical 

Figure 9,S The STRING Sta tement 
~ ~ — — — — — — — - — — 

05 NAME-IN-PIECES. 1 
10 LAST-NAME PIC X(16) [ 
10 FIRST-NAME PIC X(10) j 
10 MIDOLE-INTITIAL PIC X. 

05 ENTIRE-NAME PIC X(29) 
(a) Working-Storage holding Areas 

MOVE SPACES TO ENTIRE-NAME. 
STRING FIRST-NAME DELIMITED BY SPACE 

' 1 DELIMITED BY SIZE 
MIDDLE-INITIAL DELIMITED BY SPACE 
' ' DELIMITED BY SIZE 
LAST-NAME DELIMITED BY SPACE 
INTO ENTIRE-NAME 

(b) STRING Statement 

LAST-NAME S I M I I T I H 

MIDDLE-INITIAL j H 

FIRST-NAME 

ENTIRE-NAME 

Ni 

(1) ENTIRE-NAME j j 

(2) ENTIRE-NAME 

(3) ENTIRE-NAME 

(4) ENTIRE-NAME 

(5) ENTIRE-NAME 

N I B 

OIH 

H I N Bf i H 

(c) Sequence of Transfer 



Chapter 9 — More A bout the Pi oc edure Division 

list on last name; that is you must have access to last n a m e as a separate entity, in 
order to alphabetize a list. (See problem 3.) 

The Data Division entries in Figure 9.5a define NAME-IN-PIECES to hold the 
individual fields, and E N T I R E - N A M E to hold the concatenated result. Five distinct 
steps are required to string the individual fields together to form a single n a m e : 

1. M o v e F I R S T - N A M E to E N T I R E - N A M E . 
2. M o v e a space to E N T I R E - N A M E after the first name. 
3. M o v e MIDDLE-INITIAL to E N T I R E - N A M E after the space. 
4. M o v e a space to E N T I R E - N A M E after the initial. 
5. M o v e L A S T - N A M E to E N T I R E - N A M E after the second space. 

The S T R I N G statement in Figure 9.5b accomplishes all five tasks and is illustrated in 
Figure 9.5c. The S T R I N G statement executes as follows: 

1. The characters in the F I R S T - N A M E field are m o v e d (from left to right) to 
E N T I R E - N A M E until a space is encountered (the delimiter), or the entire 
contents of F I R S T - N A M E are transferred. 

2. The literal ' ' (delimiter is SIZE) is m o v e d to the position following the last 
character of FIRST-NAME. 

3. The MIDDLE-INITIAL is moved. 
4. The literal ' ' (delimiter is SIZE) is m o v e d to the position following the 

MIDDLE-INITIAL. 
5. Finally, each character in L A S T - N A M E is m o v e d until either a space is 

encountered (the delimiter), or the entire field is transferred. 

The U N S T R I N G statement breaks a concatenated field into its components and is 
the opposite of the S T R I N G statement. A n abbreviated form of the C O B O L notation 
for the U N S T R I N G follows: 

identi f i e r - 3l 

l i t e r a l - 2 J 

INTO iden t i f i e r -4 

[END-UNSTRING] 

W e reverse the previous example and divide E N T I R E - N A M E into its three 
components, F I R S T - N A M E , MIDDLE-INITIAL, and L A S T - N A M E , as s h o w n in 
Figure 9.6. The U N S T R I N G statement operates from left to right o n E N T I R E - N A M E , 
moving characters into F I R S T - N A M E until a space is encountered, then into 
MIDDLE-INITIAL, a nd finally into L A S T - N A M E . 

ident i f ie r -2 
UNSTRING iden t i f i e r -1 |DELIMITED BY 

1iteral-1 

Reference modification enables you to address a character string that was not 
explicitly defined—that is, a character string within an existing data n a m e . This is 
done by specifying the leftmost (starting) position of the string within the data 
n a m e and the length of the string, separating the parameters by a colon. The format 
for reference modification is s h o w n below and is illustrated in Figure 9.7. 



String Processing 

The UNSTRING Statement 

05 NAME-IN-PIECES. 
10 LAST-NAME PIC X(16). 
10 FIRST-NAME PIC X(10). 
10 MIDDLE-INTITIAL PIC X. 

05 ENTIRE-NAME PIC X(31). 

MOVE SPACES TO NAME-IN-PIECES. 
UNSTRING ENTIRE-NAME DELIMITED BY ' ' 

INTO FIRST-NAME MIDDLE-INITIAL LAST-NAME. 

FIRST-NAME 

MIDDLE-INITIAL 

LAST-NAME 

(1) ENTIRE NAME 

J 0 H N » H B S M 1 T H 

J 0 H N 16 H » S M 1 T H 

(1) ENTIRE NAME J 0 H|N H s M I T H 

fC-r-r-r-, J 
H J O H N H S M I |T 

I 
H 

FIRST-NAME MIDDLE-NAME LAST-NAME 

data-name (leftmost position: [length]) 

In Figure 9.7 TELEPHONE-NUMBER is de f ined as a 10 p o s i t i o n field w i t h i n a n 
i n c o m i n g record. Port ions of this field are then m o v e d to EDITED- PH O N E-N UM B ER 
t h r o u g h reference modi f i ca t ion; for e x a m p l e , TELEPHONE-NUMBER (4:3) refers t o 
p o s i t i o n s 4, 5, a n d 6 w i t h i n TELEPHONE-NUMBER. T h e spec i f i ca t ion of l ength is 
opt iona l , a n d its o m i s s i o n defau l t s to t h e e n d o f t h e data n a m e ; i.e., TELEPHONE-
N U M B E R (7:4) a n d TELEPHONE-NUMBER (7:) are equivalent . 



Gfcspter S — More About the Procedure Division 

:iam& $ .7 Reference Modification 

01 INCOMING-RECORD. 

05 TELEPHONE-NUMBER PIC X(10), 

01 EDITED-PHONE-NUMBER. 
05 FILLER 
05 AREA-CODE 
05 FILLER 
05 EXCHANGE 
05 FILLER 
05 DIGITS 

PIC X VALUE '(', 
PIC X(3). 
PIC X VALUE ')', 
PIC X(3). 
PIC X VALUE 
PIC X(4). 

MOVE TELEPHONE-NUMBER (1:3) TO AREA-CODE. 
MOVE TELEPHONE-NUMBER (4:3) TO EXCHANGE. 
MOVE TELEPHONE-NUMBER (7:4) TO DIGITS. 

T h e ACCEPT s t a t e m e n t w a s i n t r o d u c e d in Chapter 8 to obta in t h e date of e x e c u t i o n 
a n d i m p l e m e n t var ious forms of da te va l idat ion . T h e s t a t e m e n t is e x p a n d e d in this 
c h a p t e r to i n c l u d e the day of t h e w e e k as wel l as the date . Cons ider : 

ACCEPT identifier-1 FROM < 
f DAY-OF-WEEK" 
DATE  
DAY  
TIME 

T h e DAY-OF-WEEK c l a u s e re turns a n integer f rom 1 to 7 r e p r e s e n t i n g the day 
a c c o r d i n g to t h e fo l l owing table: 

I N T E G E R D A Y 

1 Monday 
2 Tuesday 
3 Wednesday 
4 Thursday 
5 Friday 
6 Saturday 
7 Sunday 

T h e ACCEPT s t a t e m e n t is i l lustrated in Figure 9.8. T h e user d e f i n e s a data n a m e i n 
Working-Storage—for e x a m p l e , DAY-CODE-VALUE in Figure 9.8a—then a c c e p t s 



The ACCEPT Statement 

01 DAY-CODE-VALUE PIC 9. 

01 TODAYS-DATE. 
05 TODAYS-YEAR 
05 TODAYS-MONTH 
05 TODAYS-DAY 

PIC 99. 
PIC 99. 
PIC 99. 

01 HDG-LINE. 
05 HDG-DAY-OF-WEEK 
05 FILLER 
05 HDG-DATE 

PIC X(9). 
PIC XX 
PIC X(8). 

VALUE 

ACCEPT DAY-CODE-VALUE FROM DAY-OF-WEEK. 
EVALUATE DAY-CODE-VALUE 

WHEN 1 MOVE ' Monday' TO HDG- DAY -OF -WEEK 
WHEN 2 MOVE ' Tuesday' TO HDG- DAY -OF--WEEK 
WHEN 3 MOVE 'Wednesday' TO HDG- DAY -OF--WEEK 
WHEN 4 MOVE ' Thursday' TO HDG- DAY -OF--WEEK 
WHEN 5 MOVE ' Friday' TO HDG- DAY -OF--WEEK 
WHEN 6 MOVE ' Saturday' TO HDG- DAY -OF- WEEK 
WHEN 7 MOVE ' Sunday1 TO HDG- DAY -OF- WEEK 

END-EVALUATE. 

ACCEPT TODAYS-DATE FROM DATE. 
STRING TODAYS-MONTH '/' TODAYS-DAY '/' TODAYS-YEAR 

DELIMITED BY SIZE INTO HDG-DATE 
END-STRING. 

the value from D A Y - O F - W E E K into that tlata name. The subsequent E V A L U A T E 
statement expands the one-position code to a literal day. 

The D A T E and D A Y clauses were described in Chapter 8 and represent the 
date (in the form y y m m d d ) and Julian date (in the form yyddd), respectively. The 
D A T E clause is illustrated in Figure 9.8c for purposes of review. 

Most programs require that the output contain s o m e of the input, for example, 
n a m e and social security number. C O B O L permits the definition of duplicate data 
names in the Data Division, provided all Procedure Division references to duplicate 
n a m e s use the appropriate qualification. W e prefer not to use duplicate n a m e s 
because they violate the prefix coding standard discussed in Chapter 7, but they are 
used in older programs, and are covered here for completeness. 



Chapter 9 - More About the Procedure Division 

The Data Division entries in Figure 9.9a contain several data n a m e s that appear in 
both S T U D E N T - R E C O R D and PRINT-LINE—for example, C R E D I T S — a n d any 
Procedure Division reference to C R E D I T S will produce a compiler error indicating a 
nonunique data name. This is because the compiler cannot determine which 
C R E D I T S (in S T U D E N T - R E C O R D or PRINT-LINE) is referenced. O n e solution is 

F i g u r e 9.9 Duplicate Data Names 

01 STUDENT-RECORD. 
05 STUDENT-NAME PIC X(20). 
05 SOCIAL-SECURITY-NUM PIC 9(9). 
05 STUDENT-ADDRESS. 

10 STREET PIC X(15). 
10 CITY-STATE PIC X(15). 

05 ZIP-CODE PIC X(5). 
05 CREDITS PIC 9(3). 
05 MAJOR PIC X(10). 
05 FILLER PIC X(3). 

PRINT-LINE. 
10 STUDENT-NAME PIC X(20). 
10 FILLER PIC XX. 
10 CREDITS PIC ZZ9. 
10 FILLER PIC XX. 
10 TUITION PIC $$,$$9.99. 
10 FILLER PIC XX. 
10 STUDENT-ADDRESS. 

15 STREET PIC X(15). 
15 CITY-STATE PIC X(15). 
15 ZIP-CODE PIC X(5). 

10 FILLER PIC XX. 
10 SOCIAL-SECURITY-NUM PIC 999B99B9999 
10 FILLER PIC X(47). 

| (a) Duplicate Data Marries 
f 

I 
MOVE CORRESPONDING STUDENT-RECORD TO PRINT-LINE. 

MOVE STUDENT-NAME OF STUDENT-RECORD 
TO STUDENT-NAME OF PRINT-LINE. 

MOVE SOCIAL-SECURITY-NUM OF STUDENT-RECORD 
TO SOCIAL-SECURITY-NUM OF PRINT-LINE. 

| MOVE STREET OF STUDENT-RECORD 
I TO STREET OF PRINT-LINE. 

MOVE CITY-STATE OF STUDENT-RECORD 
TO CITY-STATE OF PRINT-LINE. 

MOVE CREDITS OF STUDENT-RECORD 
TO CREDITS OF PRINT-LINE. 



to qualify the data name, using O F or IN, and refer to CREDITS O F S T U D E N T -
IIEUJUIJ Ul CftDUlia ii\ 3 1 U 1 J D I N 1 -ftEUUttU. 

Qualification is sometimes necessary over several levels. For example, the use 
of STREET O F S T U D E N T - A D D R E S S in the statement below is still ambiguous. 

MOVE STREET O F STUDENT-ADDRESS TO OUTPUT-AREA. 

The qualifier S T U D E N T - A D D R E S S appears in both 01 records and thus the ambiguity 
was not resolved. T w o levels of qualification are necessary to m a k e the intent clear: 

MOVE STREET O F STUDENT-ADDRESS OF STUDENT-RECORD TO OUTPUT-AREA. 

Alternatively, you could skip the intermediate level and rewrite the statement as: 
MOVE STREET IN STUDENT-RECORD TO OUTPUT-AREA. 

O F and IN can be used interchangeably. Duplicate data n a m e s offer the 
advantage of not having to invent different names for the same item—for example, 
an employee n a m e appearing in both an input record and output report. They also 
permit use of the M O W C O R R E S P O N D I N G statement which is nor r e c o m m e n d e d 
by the authors, but which is covered for completeness. 

The M O V E C O R R E S P O N D I N G statement in Figure 9.9b is the equivalent of 
the individual M O V E statements in Figure 9.9c; that is, the single M O V E 
C O R R E S P O N D I N G statement has the same effect as the five individual M O V E 
statements. The C O R R E S P O N D I N G option searches every data n a m e in S T U D E N T -
R E C O R D for a matching (duplicate) data n a m e in PRINT-LINE, then generates an 
individual M O V E statement whenever a match is found. It is very convenient because 
you have to code only the single M O V E C O R R E S P O N D I N G statement. 

The level numbers of the duplicate data names in Figure 9.9a do not have to 
match for a m o v e to be generated—only the data n a m e s must be the same. The 
order of the data n a m e s in the 01 records is also immaterial; for example, SOC1AL-
S E C U R I T Y - N U M is the second field in S T U D E N T - R E C O R D , and the next to last in 
PRINT-LINE. T w o other conditions must be satisfied, however, in order for a m o v e 
to be generated: 

1. At least one item in each pair of C O R R E S P O N D I N G items must be an 
elementary item; that is, S T U D E N T - A D D R E S S of S T U D E N T - R E C O R D is not 
m o v e d to S T U D E N T - A D D R E S S of PRINT-LINE. (The elementary items STREET 
and CITY-STATE are m o v e d instead.) 

2. Corresponding elementary items are m o v e d only if they have the same n a m e 
and qualification, up to but not including identifier-1 and identifier-2. ZIP-
C O D E , for example, belongs directly to S T U D E N T - R E C O R D , but has an 
intermediate qualifier ( S T U D E N T - A D D R E S S ) in PRINT-LINE, a n d thus ZIP-
C O D E is not moved. 



Chapter 9 - More About the Procedure Division 

Ios v'.-cv t Our fundamental approach throughout the text is to learn by doing. To that end w e 
111 i t Q> I r ' -Q £2 ;.-a | f | have developed a complete C O B O L program that incorporates the various statements 

presented in the chapter. Specifications follow in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Car Billing Program 

Narrative: This program processes the file of valid car rental records that was created in the 
validation program of Chapter 8 to produce a report reflecting the amounts owed by 
individual customers. 

Input F i l e ( s ) : RENTAL-FILE 
01 RENTAL-RECORD-IN. 

05 REN-CONTRACT-NO PIC 9(6). 
05 REN-NAME. 

10 REN-LAST-NAME PIC X(15). 
10 REN-FIRST-NAME PIC X(10). 
10 REN-INITIAL PIC X. 

05 REN-RETURNED-DATE. 
10 REN-RETURNED-YEAR PIC 9(2). 
10 REN-RETURNED-MONTH PIC 9(2). 
10 REN-RETuRNED-DAY PIC 9(2). 

05 REN-CAR-TYPE PIC X. 
05 REN-DAYS-RENTED PIC 99. 
05 REN-MILEAGE. 

10 REN-MILES-IN PIC 9(6). 
10 REN-MILES-OUT PIC 9(6). 
10 REN-MILEAGE-RATE PIC V99. 

05 REN-INSURANCE PIC X. 

T e s t D a t a : The input file used by this program was created by the data validation program of 
Chapter 8 and was shown earlier as Figure 8.10c. The data are repeated below for 
convenience: 

999777ELSINOR TERRY R921126F0500168000159005N 
987654SMITH PAUL G921213M0300510000500502Y 
354679KERBEL NORMAN X930331E1000340000324300Y 
264805CLARK JANE S921101F0700561500551200N 
233432BEINH0RN CATHY B921122M0200123400113402Y 
556564HUMMER MARG0 R920815C0800234500123403Y 
677844MCD0NALD JAMES 930123C0500423500402300N 
886222V0GEL JANICE D930518F1200634500612302Y 
008632T0WER DARREN R930429L0900700200689300N 

R e p o r t L a y o u t : 

P r o c e s s i n g R e q u i r e m e n t s : 

See Figure 9.10. 

1. Read the file of valid car rental records that was produced by the editing program of 
Chapter 8. No further validation is required in this program. 



The Car Billing Program 

2. Calculate the amount due for each incoming record as a function of car type, days 
rented, miles driven, mileage rate, and insurance. 
a. The mileage rate is different for each customer and appears as a field in 

the incoming record; the mileage total is the mileage rate times the number of 
miles driven. 

b. The daily rate is a function of the type of car rented. Economy cars cost $15 a 
day, compact cars $20 a day, mid-size cars $24 a day, full-size cars $28 a day, 
and luxury cars $35 a day. The daily total is the daily rate times the number of 
days rented. 

c. Insurance is optional and is indicated by a T in the appropriate position in the 
incoming record. Insurance is $10.50 a day (for customers who choose it), regardless 
of the type of car rented. 

d. A customer's total bill consists of the mileage total, daily total, and insurance total 
as described in parts (a), (b), and (c). 

3. A heading is required at the top of every page, as shown in Figure 9.10. Detail lines 
are to be double-spaced and limited to five per page. 

4. A total line for all computed fields is required at the end of the report. 

Car Rental Report 

Mavis Car Rental Report 

Contract 
Number Name 

5-565-64 HUMMER, MARGO R. 

6-778-44 MCDONALD, JAMES 

8-862-22 VOGEL, JANICE D. 

Saturday - 07/03/93 

Date Car Days Rental Miles Mileage Mileage Insurance 
Total Returned Type Rented Total Driven Rate Total 

08/15/92 C 8 

01/23/93 C 5 

05/18/93 E 12 

160.00 1,111 .03 

100.00 212 .00 

336.00 222 .02 

Mavis Car Rental Report Saturday - 07/03/93 

Contract 
Number Name 

9-997-77 ELSIN0R, TERRY R. 

9-876-54 SMITH, PAUL G. 

3-546-79 KERBEL, NORMAN X. 

2-648-05 CLARK, JANE S. 

2-334-32 BEINH0RN, CATHY B. 

Date Car Days 
Returned Type Rented 

11/26/92 F 5 

12/13/92 M 3 

03/31/93 E 10 

11/01/92 F 7 

11/22/92 M 2 

Rental Miles Mileage Mileage Insurance 
Total Driven Rate Total Total 

140.00 

72.00 

90 .05 

95 .02 

150.00 157 .00 

196.00 

48.00 

103 .00 

100 .02 

4.50 

1.90 31.50 

0.00 105.00 

0.00 

2.00 21.00 

33.33 

0.00 

4.44 126.G 

Page 1 

Amount 
Due 

144.50 

105.40 

255.00 

196.00 

71.00 

.00 

Page 2 

Amount 
Due 

277.33 

100.00 

466.44 

315.00 

$1,930.67 



Chapter 9 More About the Procedure Division 

Program Design .. 
The car billing program has two objectives: to complete the two-program sequence 
begun in Chapter 8 and to illustrate the Procedure Division statements presented in 
this chapter. Both objectives impact the design of the pseudocode and associated 
hierarchy chart. 

The hierarchy chart in Figure 9.11 is written without the priming read of 
earlier programs. The highest-level module, PREPARE-RENTAL-REPORT, has three 
subordinates: G E T - T O D A Y S - D A T E , P R O C E S S - R E N T A L - R E C O R D S , and W R I T E -
R E N T A L - T O T A L S . P R O C E S S - R E N T A L - R E C O R D S in turn is the driving module of 
the program and performs four lower-level paragraphs: C O M P U T E - I N D T v T D U A L -
BILL, WRITE-HEADING-LINES, WRITE-DETAIL-LINE, and I N C R E M E N T - R E N T A L -
TOTALS. COMPUTE-INDIVIDUAL-BILL has three subordinate modules, C O M P U T E -
M I L E A G E - T O T A L , C O M P U T E - D A I L Y - T O T A L , and C O M P U T E - I N S U R A N C E - T O T A L 
to compute the components of a customer's bill. 

The paragraph WRITE-HEADING-LINES is subordinate to PROCESS-RENTAL-
R E C O R D S , which differs from an earlier hierarchy chart (page 119) that placed the 
heading routine o n a higher level. The earlier structure, however, produced only a 
single heading at the start of processing, whereas the current requirement is to 
produce a heading at the top of every page; hence the heading routine will be 
executed several times and is subordinate to processing a record. 

T h e pseudocode in Figure 9.12 takes advantage of the in-line perforin and 
false-condition branch to eliminate the priming read used in earlier examples. The 
pseudocode also implements the required page heading routine by initializing the 
line counter to six and testing its value prior to writing each detail line. The heading 

9.11 Hierarchy Chart 

PREPARE 
RENTAL 
REPORT 

GET 
TODAYS 

DATE 

PROCESS 
RENTAL 

RECORDS 

WRITE 
RENTAL 
TOTALS 

COMPUTE 
INDIVIDUAL 

BILL 

WRITE 
HEADING 

LINES 

WRITE 
DETAIL 

LINE 

INCREMENT 
RENTAL 
TOTALS 

COMPUTE 
MILEAGE 

TOTAL 

COMPUTE 
DAILY 
TOTAL 

COMPUTE 
INSURANCE 

TOTAL 



The Car Billing Program 

\. i Pseudocode 

i Open Files I 
| Get today's date 
[ — DO WHILE data remains 
I | | Read Rental File 
| | AT END 
I j Indicate no more data 
| I NOT AT END ; 
| i Initialize individual calculations j 
1 j Compute miles driven = miles in - miles out j 
j I r D O CASE I 

Car Type E - Move economy rate to mileage rate [ 
Car Type C - Move compact rate to mileage rate | 

| ! Car Type M - Move midsize to mileage rate ! 
| Car Type F - Move full size rate to mileage rate 
! j Car Type L - Move luxury rate to mileage rate j 

I 1 - END CASE I 
j j | Compute mileage total = miles driven * mileage rate 
j j Compute daily total = days rented * daily rate 
5 i r~~ IF insurance taken 
| | | j Compute insurance = insurance rate * days rented * 
| | L - E N D - I F 
] Compute total bill = mileage amount + daily amount + insurance 
j - IF line count greater than 5 
j Initialize line count to 1 
| Increment page count 

Write heading 1ines 
> END-IF 

Write detail line 
Add 1 to line count 

i Increment rental totals 
END READ 

L - E N D D O j 
Write rental totals I 
Close files j 

I Stop run j 

I I I _ _ „ __ _ ,, ,,..J 

will be written prior to the first detail record because it (the line counter) is greater 
than five (the desired n u m b e r of lines per page). The line counter is then reset to 
one so that the heading will be produced for every fifth record. 

The completed program in Figure 9.13 illustrates m a n y of the statements presented 
in the chapter. The logic of the program is straightforward a n d parallels the 
pseudocode just discussed. Several features of the program merit attention: 

1. The combination of the in-line perform and false-condition branch (lines 
209-216) to eliminate the priming read used in all previous programs. 



Chapter 9 More About the Procedure Division 

Figure 9.13 The Completed Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. CARSRPT. 
3 
A 

AUTHOR. CVV. 

5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT RENTAL-FILE ASSIGN TO 'A:\CHAPTR09\VALCARS. 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 
14 FILE SECTION. 
15 FD RENTAL-FILE 
16 RECORD CONTAINS 56 CHARACTERS. 
17 01 RENTAL-RECORD PIC X(56). 
18 
i n x y FD PRINT-FILE 
20 RECORD CONTAINS 132 CHARACTERS. 
21 
00 

01 PRINT-LINE PIC X(132). 
LL 

23 WORKING-STORAGE SECTION. 
24 01 FILLER PIC X(14) 
25 VALUE 'WS BEGINS HERE'. 
26 
27 01 RENTAL-RECORD-IN. 
28 05 REN-CONTRACT-NO PIC 9(6). 
29 05 REN-NAME. 
30 10 REN-LAST-NAME PIC X(15). 
31 10 REN-FIRST-NAME PIC X(10). 
32 10 REN-INITIAL PIC X. 
33 05 REN-RETURNED-DATE. 
34 10 REN-RETURNED-YEAR PIC 9(2). 
35 10 REN-RETURNED-MONTH PIC 9(2). 
36 10 REN-RETURNED-DAY PIC 9(2). 
37 05 REN-CAR-TYPE PIC X. 
38 05 REN-DAYS-RENTED PIC 99. 
39 05 REN-MILEAGE. 
40 10 REN-MILES-IN PIC 9(6). 
41 10 REN-MILES-OUT PIC 9(6). 
42 10 REN-MILEAGE-RATE PIC V99. 
43 05 REN-INSURANCE PIC X. 
44 
45 01 PROGRAM-SWITCHES. 
46 05 DATA-REMAINS-SWITCH PIC XX VALUE SPACES. 
47 05 NAME-POINTER PIC 999 VALUE 1. 
48 
49 01 PAGE-AND-LINE-COUNTERS. 
50 i 05 LINE-COUNT PIC 9(2) VALUE 6. 

file://'A:/CHAPTR09/VALCARS


The Car Billing Program 

(continued) 

51 05 PAGE-COUNT PIC 9(2) VALUE ZEROS. 
52 05 LINES-PER-PAGE PIC 9(2) VALUE 5. 
53 
54 01 DAILY-RATES. 

. J 05 PIC 9(3)V99 VALUE 15. 
56 05 COMPACT-RATE PIC 9(3)V99 VALUE 20. 
57 05 MID-RATE PIC 9(3)V99 VALUE 24. 
58 05 FULL-RATE PIC 9(3)V99 VALUE 28. 
59 05 LUXURY-RATE PIC 9(3)V99 VALUE 35. 
60 05 INSURANCE-RATE PIC 99V99 VALUE 10.50. 
61 
62 01 IND -BILL-INFORMATION. 
63 05 IND-MILES-DRIVEN PIC 9(5). 
64 05 IND-DAILY-RATE PIC 9(3)V99. 
65 05 IND-DAILY-TOTAL PIC 9(4)V99. 
66 05 IND-MILEAGE-TOTAL PIC 9(3}V99. 
67 05 IND-INSURANCE-TOTAL PIC 9(3)V99. 
68 05 IND-AMOUNT-DUE PIC 9(4)V99. 
69 
70 01 TOTALS-FOR-REPORT. 
71 05 TOTAL-DAYS-RENTED PIC 9(4) VALUE ZEROES. 
72 05 TOTAL-DAILY-RENTAL PIC 9(6)V99 VALUE ZEROES. 
73 05 TOTAL-MILES-DRIVEN PIC 9(6) VALUE ZEROES. 
74 05 TOTAL-MILEAGE PIC 9(4)V99 VALUE ZEROES. 
75 05 TOTAL-INSURANCE PIC 9(4)V99 VALUE ZEROES. 
76 05 TOTAL-AMOUNT-DUE PIC 9(6)V99 VALUE ZEROES. 
77 
78 01 TODAYS-DATE-AREA. 
79 05 TODAYS-YEAR PIC 99. 
80 05 TODAYS-MONTH PIC 99. 
81 05 TODAYS-DAY PIC 99. 
82 
83 01 DAY--CODE-VALUE PIC 9. 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

01 HEADING-LINE-ONE. 
05 FILLER 
05 FILLER 

VALUE 
05 FILLER 
05 HDG-DAY 
Q5 FILLER 
05 HDG-DATE 
05 FILLER 
05 FILLER 
05 HDG-PAGE-NUMBER 
05 FILLER 

PIC X(20) 
PIC X(25) 

Mavis Car Rental Report' 
PIC X(16) 
PIC X(9). 
PIC X(3) 
PIC X(8). 
PIC X(41) 
PIC X(5) 
PIC Z9. 
PIC X(3) 

VALUE SPACES. 

VALUE SPACES. 

VALUE ' - '. 

VALUE SPACES. 
VALUE 'Page '. 

VALUE SPACES. 

01 HEADING-LINE-TWO. 
05 FILLER 
05 FILLER 

PIC X(8) VALUE 'Contract' 
PIC X(38) VALUE SPACES. 



Chapter 9 — More About the Procedure Division 

'igur® @„13 (continued) 

101 05 FILLER PIC X(4) VALUE 'Date'. 
102 05 FILLER PIC X(5) VALUE SPACES. 
103 05 FILLER PIC X(3) VALUE 'Car'. 
104 05 FILLER PIC X(3) VALUE SPACES. 
105 05 FILLER PIC X(4) VALUE 'Days'. 
106 05 FILLER PIC X(6) VALUE SPACES. 
107 05 FILLER PIC X(6) VALUE 'Rental'. 
108 05 FILLER PIC X(4) VALUE SPACES. 
109 05 FILLER PIC X(5) VALUE 'Miles'. 
110 05 FILLER PIC X(2) VALUE SPACES. 
111 05 FILLER PIC X(7) VALUE 'Mileage'. 
112 05 FILLER PIC X(2) VALUE SPACES. 
113 05 FILLER PIC X(7) VALUE 'Mileage'. 
114 05 FILLER PIC X(2) VALUE SPACES. 
115 05 FILLER PIC X(9) VALUE 'Insurance'. 
116 05 FILLER PIC X(6) VALUE SPACES. 
117 05 FILLER PIC X(6) VALUE 'Amount'. 
118 05 FILLER PIC X(5) VALUE SPACES. 
119 
120 01 HEADING-LINE-THREE. 
121 05 FILLER PIC X VALUE SPACES. 
122 05 FILLER PIC X(6) VALUE ' Number 
123 05 FILLER PIC X(4) VALUE SPACES. 
124 05 FILLER PIC X(4) VALUE 'Name'. 
125 05 FILLER PIC X(29) VALUE SPACES 
126 05 FILLER PIC X(8) VALUE 'Return 
127 05 FILLER PIC X(2) VALUE SPACES. 
128 05 FILLER PIC X(4) VALUE 'Type'. 
129 05 FILLER PIC X(2) VALUE SPACES. 
130 05 FILLER PIC X(6) VALUE 'Rented 
131 05 FILLER PIC X(6) VALUE SPACES. 
132 05 FILLER PIC X(5) VALUE 'Total' 
133 05 FILLER PIC X(3) VALUE SPACES. 
134 05 FILLER PIC X(6) VALUE 'Driven 
135 05 FILLER PIC X(4) VALUE SPACES. 
136 05 FILLER PIC X(4) VALUE 'Rate'. 
137 05 FILLER PIC X(4) VALUE SPACES. 
138 05 FILLER PIC X(5) VALUE 'Total' 
139 05 FILLER PIC X(6) VALUE SPACES. 
140 05 FILLER PIC X(5) VALUE 'Total' 
141 05 FILLER PIC X(9) VALUE SPACES. 
142 05 FILLER PIC X(3) VALUE 'Due'. 
143 05 FILLER PIC X(6) VALUE SPACES. 
144 
145 01 DETAIL-LINE. le INSPtCT 
146 [~05 P E T - C O N T R A C T - N O P i £ " 9 B 9 9 9 B 9 9 . \ 
147 05 FILLER " " " " ~ PIC X(3)" VALUE SPACES. 
148 05 DET-NAME PIC X(30). 
149 05 FILLER PIC X(3) VALUE SPACES. 
150 05 DET-RETURN-DATE PIC X(8). 



The Car Billing Program 

m m (continued) 

151 05 FILLER PIC X(4) VALUE SPACES. 
152 05 DET-CAR-TYPE PIC X. 
153 05 FILLER PIC X(5) VALUE SPACES. 
154 05 DET-DAYS-RENTED PIC Z9. 
155 05 FILLER PIC X(5) VALUE SPACES. 
156 05 DET-DAILY-TOTAL PIC Z,ZZ9. 99. 
157 05 FILLER PIC X(3) VALUE SPACES. 
158 05 DET-MILES-DRIVEN PIC 12,119. 
159 05 FILLER PIC X(5) VALUE SPACES. 
160 05 DET-MILEAGE-RATE PIC .99. 
161 05 FILLER PIC X(5) VALUE SPACES. 
162 05 DET-MILEAGE-TOTAL PIC ZZ9.99. 
163 05 FILLER PIC X(4) VALUE SPACES. 
164 05 DET-INSURANCE-TOTAL PIC ZZ9.99 BLANK WHEN ZERO 
165 05 FILLER PIC X(4) VALUE SPACES. 
166 05 DET-AMOUNT-DUE PIC Z.ZZ9.99. 
167 05 FILLER PIC X(5) VALUE SPACES. 
168 
169 01 TOTAL-DASH-LINE. 
170 05 FILLER PIC X(59) VALUE SPACES. 
171 05 FILLER PIC X(5) VALUE ALL 
172 05 FILLER PIC X(3) VALUE SPACES. 
173 05 FILLER PIC X{10) VALUE ALL 
174 05 FILLER PIC XX VALUE SPACES. 
175 05 FILLER PIC X(7) VALUE ALL 
176 05 FILLER PIC X(ll) VALUE SPACES. 
177 05 FILLER PIC X(8) VALUE ALL 
178 05 FILLER PIC XX VALUE SPACES. 
179 05 FILLER PIC X(8) VALUE ALL 
180 05 FILLER PIC XX VALUE SPACES. 
181 05 FILLER PIC X(10) VALUE ALL 
182 05 FILLER PIC X(5) VALUE SPACES. 
183 
184 01 TOTAL-LINE. 
185 05 FILLER PIC XX VALUE SPACES. 
186 05 FILLER PIC X(6) VALUE 'Totals'. 
187 05 FILLER PIC X(51) VALUE SPACES. 
188 05 TOT-DAYS-RENTED PIC 1,119. 
189 05 FILLER PIC X(2) VALUE SPACES. 
190 05 TOT-DAILY-RENTAL PIC $$$$,$ $9.99. 
191 05 FILLER PIC XX VALUE SPACES. 
192 05 TOT-MILES-DRIVEN PIC 111,119. 
193 05 FILLER PIC X(9) VALUE SPACES. 
194 05 TOT-MILEAGE PIC $$$,$$ 9.99. 
195 05 FILLER PIC X VALUE SPACES. 
196 05 TOT-INSURANCE PIC $$,$$9 .99. 
197 05 FILLER PIC X VALUE SPACES. 
198 05 TOT-AMOUNT-DUE PIC *t *t *t $ $ 

-4> 4> 4) 4) 9 .p $9.99. 
199 05 FILLER PIC X(5) VALUE SPACES. 
200 



Chapter 9 More About the Procedure Division 

1 3 (continued) 

201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 

222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 

01 FILLER 
VALUE 'WS ENDS HERE'. 

PROCEDURE DIVISION. 
000-PREPARE-RENTAL-REPORT. 

OPEN INPUT RENTAL-FILE 
OUTPUT PRINT-FILE. 

PERFORM 100-GET-TODAYS-DATE. 

PIC X(12) 

PERFORM UNTIL DATA-REMAINS-SWITCH = 'NO' j 
READ RENTAL-FILE INTO RENTAL-RECORD-IN 

AT END | 
MOVE 'NO' TO DATA-REMAINS-SWITCH I -

NOT AT END 
PERFORM 200-PR0CESS-RENTAL-REC0RDS j 

END-READ 
, END-PERFORM. j 
PERFORM 700-WRITE-RENTAL-TOTALS. 
CLOSE RENIAL-FILE 

PRINT-FILE. 
STOP RUN. 

,.- ACCEPT 
100-GET-TODAYS-DATE. _ 

j ACTEPT TODAYS -DATE-AREA FROM DATE. 
STRTNG TODAYS-MONTH '/' TODAYS-DAY '/' TODAYS-YEAR 

DELIMITED BY SIZE INTO HDG-DATE 
'END-STRING . 1 
"ACCEPT DAY-CODE-VALUE FROM DAY-OF-WEEK. 
EVALUATE DAY-CODE-VALtiE. 

WHEN 1 MOVE 
WHEN 2 MOVE 

Monda>Vro HDG-DAY 
Tuesday' TO"HOG-DAY 

WHEN 3 MOVE 'Wednesday' TO HDG-TJAY^ 
WHEN 4 MOVE ' Thursday' TO HDG-DAY 
WHEN 5 MOVE ' Friday' TO HDG-DAY 

Saturday1 TO HDG-DAY 
Sunday' TO HDG-DAY 

WHEN 
WHEN 

6 MOVE 
_ 7 MOVE 
END-EVALIJATET]---

200-PROCESS-RENTAL-RECORDS. 
PERFORM 300-COMPUTE-IND-BIji^-
IF LINE-COUNT > LINES-PER-PAGE 

PERFORM 400-WRITE-HEADING-LINES 
jjEND-IFTk'^ 
PERFORM 500-WRITE-DETAIL-LINE. 
PERFORM 600-INCREMENT-TOTALS. 

300-COMPUTE-IND-BILL. 
INITIALIZE IND-BILL-INFORMATION. 
PERFORM 320-COMPUTE-MILEAGE-TOTAL. 
PERFORM 340-COMPUTE-DAILY-TOTAL. 
PERFORM 360-COMPUTE-INSURANCE-TOTAL. 



The Car Billing Program 

(continued) 

251 COMPUTE IND-AMOUNT-DUE ROUNDED 
252 = IND-MILEAGE-TOTAL + IND-DAILY-TOTAL 
253 + IND-INSURANCE-TOTAL 
254 SIZE ERROR DISPLAY 'SIZE ERROR ON AMOUNT DUE FOR ' 
255 [ REN-CONTRACT-NO  
256 E N D - C O M P U T E . " ~ 
257 
258 320-COMPUTE-MILEAGE-TOTAL. 
259 COMPUTE IND-MILES-DRIVEN 
260 = REN-MILES-IN - REN-MILES-OUT 
261 END-COMPUTE. 
262 COMPUTE IND-MILEAGE-TOTAL ROUNDED 
263 = IND-MILES-DRIVEN * REN-MILEAGE-RATE 
264 SIZE ERROR 
265 DISPLAY 'COMPUTED B I L L EXCESSIVELY LARGE' 
266 END-COMPUTE. 
267 
268 340-COMPUTE-DAILY-TOTAL. 
269 ! EVA1^AT¥TE¥^CAR :TYPE 
270 ' WH E N 'E' MOVE ECONOMY-RATE TO IND-DAILY-RATE j 
271 ! WH E N ' C MOVE COMPACT-RATE TO IND-DAILY-RATE j 
272 i W H E N 'M' MOVE MID-RATE TO IND-DAILY-RATE 
273 W H E N 'F' MOVE FULL-RATE TO IND-DAILY-RATE \'~ 
274 W H E N 'L' MOVE LUXURY-RATE TO IND-DAILY-RATE 
275 W H E N O T H E R MOVE ZEROES TO IND-DAILY-RATE 
276 j END-EVALUATE. _ 
277 ^ M U L T I P L Y I N D - D A I L Y - R A T E BY REN-DAY S-R EN T E D 
278 GIVING IND-DAILY-TOTAL 
279 SIZE ERROR DISPLAY 'SIZE ERROR ON RENTAL TOTAL' 
280 END-MULTIPLY. 
281 
282 360-C0MPUTE-INSURANCE-TOTAL. _ _ _ 
283 nF ~REN-INSURANCE = ' Y' ~ " 
284 i MULTIPLY INSURANCE-RATE BY REN-DAYS-RENTED 
285 1 GIVING IND-INSURANCE-TOTAL 
286 S I Z E ERROR DISPLAY 'SIZE ERROR ON INSURANCE TOTAL' 
287 j END-MULTIPLY 
288 \ END-IF\ 
289 " 
290 400-WRITE-HEADING-LINES. 
291 MOVE 1 TO LINE-COUNT. 
292 ADD 1 TO PAGE-COUNT. 
293 MOVE PAGE-COUNT TO HDG-PAGE-NUMBER. 
294 W R I T E PRINT-LINE FROM HEADING-LINE-ONE 
295 A F T E R ADVANCING PAGE. 
296 W R I T E PRINT-LINE FROM HEADING-LINE-TWO 
297 A F T E R A D V A N C I N G 2 LINES. 
298 W R I T E PRINT-LINE FROM HEADING-LINE-THREE. 
299 
300 500-WRITE-DETAIL-LINE. 



Chapter 9 Moie About the Procedure Division 

gyre 9.13 (continued) 
— _ _ _ _ _ _ _ _ _ _ _ _ _ _ „ _ . „ „ „ . . . _ ™ _ _ „ _ _ . _ _ _ — _ — _ — j 

301 MOVE REN-CONTRACT-NO TO DET-CONTRACT-NO. 
302 INSPECT DET-CONTRACT-NO REPLACING ALL 1 ' BY 
303 MOVE 1 TO NAME-POINTER. 
304 JWVEJSPACES TO PET-NAME. | 
305 STRING r<EN-LAST-NAME DELIMITED BY 1 R] 1 
306 ', ' DELIMITED BY SIZE | 
307 REN-FIRST-NAME DELIMITED BY 1 1 ' I 
308 INTO DET-NAME POINTER NAME-POINTER 
309 END-STRING. 
310 IFRE¥-INITIAL NOT^ s"PACES 
311 STRING 1 1 REN-INITIAL '.' DELIMITED BY SIZE 
312 INTO DET-NAME POINTER NAME-POINTER 
313 END-STRING 
314 END-IF. 
315 STRING REN-RETURNED-MONTH '/' REN-RETURNED-DAY '/" 

I 316 REN-RETURNED-YEAR DELIMITED BY SIZE 
[ 317 INTO DET-RETURN-DATE 
; 318 END-STRING. 
j 319 MOVE REN-CAR-TYPE TO DET-CAR-TYPE. 
j 320 MOVE REN-DAYS-RENTED TO DET-DAYS-RENTED. 
I 321 MOVE IND-DAILY-TOTAL TO DET-DAILY-TOTAL. 
i 322 MOVE IND-MILES-DRIVEN TO DET-MILES-DRIVEN. 
j 323 MOVE REN-MILEAGE-RATE TO DET-MILEAGE-RATE. 
! 324 MOVE IND-MILEAGE-TOTAL TO DET-MILEAGE-TOTAL. 
| 325 MOVE IND-INSURANCE-TOTAL TO DET-INSURANCE-TOTAL. 

326 MOVE IND-MILEAGE-TOTAL TO DET-MILEAGE-TOTAL. 
327 MOVE IND-AMOUNT-DUE TO DET-AMOUNT-DUE. 
328 WRITE PRINT-LINE FROM DETAIL-LINE 
329 AFTER ADVANCING 2 LINES. 
3 3 0 ;̂ D"ITonTjE-̂ Mî ."r  
331 - • - - - - Line couner :s incremented 
332 600-INCREMENT-TOTALS. 
333 ADD REN-DAYS-RENTED TO TOTAL-DAYS-RENTED 
334 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL DAYS RENTED' 
335 END-ADD. 
336 ADD IND-DAILY-TOTAL TO TOTAL-DAILY-RENTAL 
337 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL RENTAL' 
338 END-ADD. 
339 ADD IND-MILES-DRIVEN TO TOTAL-MILES-DRIVEN 
340 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL MILES DRIVEN' 
341 END-ADD. 
342 ADD IND-MILEAGE-TOTAL TO TOTAL-MILEAGE 
343 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL MILEAGE' 

[ 344 END-ADD. 
345 ADD IND-INSURANCE-TOTAL TO TOTAL-INSURANCE 
346 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL INSURANCE' 
347 END-ADD. 
348 ADD IND-AMOUNT-DUE TO TOTAL-AMOUNT-DUE 
349 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL AMOUNT DUE' 
350 END-ADD. 
351 



The Car Billing Program 

(continued) 

352 
353 
354 
355 
356 
357 
358 
359 
360 
361 

700-WRITE-RENTAL-T0TALS. 
WRITE PRINT-LINE FROM TOTAL-OASH-LINE 

AFTER ADVANCING 2 LINES. ! ^ ,. 
MOVE TOTAL-DAYS-RENTED TO TOT-DAYS-RENTED. 
MOVE TOTAL-DAILY-RENTAL TO TOT-DAILY-RENTAL. 
MOVE TOTAL-MILES-DRIVEN TO TOT-MILES-DRIVEN. 
MOVE TOTAL-MILEAGE TO TOT-MILEAGE. 
MOVE TOTAL-INSURANCE TO TOT-INSURANCE. 
MOVE TOTAL-AMOUNT-DUE TO TOT-AMOUNT-DUE.. 
WRITE PRINT-LINE FROM TOTAL-LINE. 

(A period m a y not be present after the E N D - R E A D scope terminator because 
it is nested within the in-line perform statement. See problem 2 at the end of 
the chapter.) 

2. The use of scope terminators throughout the Procedure Division—for example, 
E N D - R E A D in line 215, E N D - C O M P U T E in lines 256 and 266, and E N D II in 
lines 242, 288, and 314. 

3. The establishment of a heading routine (lines 290-298) and the associated 

in lines 50 and 51. L I N E - C O U N T is tested prior to writing a detail line (lines 
240-242). Since it was initialized to six (a value greater than the desired n u m b e r 
of detail lines per page), a heading is written prior to the first detail record. The 
heading routine resets the line counter (line 291), which is subsequently 
incremented after every detail line is written (line 330). The page counter is 
also incremented in the heading routine (line 292), so that the page n u m b e r 
can appear o n the top of every page in the report. 

4. The A C C E P T statement (line 223) to obtain the date of execution and again to 
accept the corresponding day of the week (line 227). The E V A L U A T E statement 
of lines 228-236 converts the numeric D A Y - O F - W E E K code to its literal 
equivalent. 

5. The INITIALIZE statement in line 247 to initialize the six data n a m e s defined 
under IND-BILL-INFORMATION. 

6. The R E A D I N T O statement in line 210 and the associated W S B E G I N S H E R E 
literal at the start of Working-Storage (lines 24-25) to facilitate debugging. The 
W R I T E F R O M statement is used throughout the Procedure Division with 
various print lines. 

7. The indentation of subservient clauses throughout the Procedure Division to 
enhance the readability of the program. A T E N D and N O T A T E N D are indented 
under R E A D , A F T E R A D V A N C I N G is indented under W R I T E , a n d so on. Blank 
lines are used throughout the program and appear before 01 entries in the 
Data Division and before paragraph headers in the Procedure Division. 

8. The S T R I N G statements in lines 305-309 and 311-313; the latter statements 
use the P O I N T E R phrase to place the middle initial (if one is present) after the 
first n a m e . 

utiimtiuii ui v. u u i n ^ i j i n LINE C O U N T and P A G E C O U N T 



Chapter 9 - More About the Procedure Division 

The chapter focused on advanced statements in the Procedure Division, 
many of which were not available in COBOL-74. The most significant 
enhancements include scope terminators, the in-line perform, and false-
condition branch, all of which are new to COBOL-85. The TEST BEFORE and 
TEST AFTER clauses are also new, as are the INITIALIZE statement and 
DAY-OF-WEEK clause. 

The statements for string processing (INSPECT, STRING, and 
UNSTRING) were previously available in COBOL-74; reference modification, 
however, is new to COBOL-85. Duplicate data names, qualification, and the 
MOVE CORRESPONDING statement are unchanged from the earlier compiler. 

The PERFORM statement contains the optional TEST BEFORE and TEST 
AFTER clauses, corresponding to the DO WHILE and DO UNTIL iteration 
structures. 

The combination of an in-line PERFORM and false-condition branch within 
the READ statement eliminates the need for a priming read. 

The procedure-name in a PERFORM statement may be either a paragraph 
or a section. The THRU clause enables the execution of multiple procedures, 
which typically include an EXIT paragraph. 

READ INTO and WRITE FROM combine the effects of a MOVE statement 
with the indicated I/O operation. READ INTO is also used in conjunction 
with the literal WS BEGINS HERE to facilitate debugging. 

String processing is accomplished through the INSPECT, STRING, and 
UNSTRING statements, which provide flexibility in character manipulation. 

The ACCEPT statement includes the DAY and DAY-OF-WEEK clauses to 
obtain the date and corresponding day of the week on which a program 
executes. 

The INITIALIZE statement sets multiple data names to initial values in a 
single statement. 

Duplicate data names may be defined (but are not recommended) provided 
all Procedure Division references to the duplicate names use appropriate 
qualification. The MOVE CORRESPONDING statement is the equivalent of 
several individual MOVE statements. 



DO UNTIL structure Procedure name 
DO WHILE structure Qualification 
Duplicate (nonunique) datanames Reference modification 
False-condition branch Section 
In-line perform String processing 

ACCEPT 
DAY 
DAY-OF-WEEK 
EXIT 
IN 
INITIALIZE 
INSPECT 
MOVE CORRESPONDING 
NOT AT END 

OF 
PERFORM THRU 
PERFORM UNTIL 
READ INTO 
STRING 
TEST AFTER 
TEST BEFORE 
UNSTRING 
WRITE FROM 

1. The R E A D INTO statement causes each incoming record to be moved to  
areas. 

2. The WRITE F R O M statement is the equivalent of two statements, a 
and a , . 

3. A consists of one or more paragraphs. 
4. The statement causes no action to be taken and is often used to 

delineate the end of a P E R F O R M T H R U statement. 
5. Nonunique data names within a C O B O L program may be using 

the reserved words or . 
6. The statement is a convenient way to replace leading blanks in a 

field with zeros. 
7. String processing operations are accomplished through the , 

, and statements. 
8. The R E A D statement includes an optional false-condition branch implemented by 

the clause. 
9. The D O WHILE and D O UNTIL constructs of structured programming are 

implemented with the TEST and TEST clauses 
in the P E R F O R M statement. 

10. makes it possible to address a string of 
characters contained within another string. 



Chapter 9 --• More About the Procedure Division 

11. Omission of the procedure n a m e in a P E R F O R M statement creates an  
perform. 

12. The statement enables the initialization of multiple data types in 
a single statement. 

1. The INSPECT statement facilitates the elimination of leading blanks. 
2. A paragraph consists of one or more sections. 
3. A P E R F O R M statement must include a procedure (paragraph or section) name. 
4. Qualification over a single level will always remove ambiguity of duplicate data 

names. 
5. The C O R R E S P O N D I N G option is required if duplicate data names are used. 
6. The STRING statement is used to combine several fields together. 
7. For the C O R R E S P O N D I N G option to work, both duplicate names must be at the 

same level. 
8. The UNSTRING statement is used to separate a field into a maximum of three 

distinct fields. 
9. The EXIT statement is required to delineate the end of a performed routine. 

10. A P E R F O R M statement must specify either TEST B E F O R E or TEST AFTER. 
11. The R E A D statement may include both an AT E N D and a N O T AT E N D clause. 
12. The R E A D statement must be terminated by an END-READ scope terminator. 

R O B L E M S 

1. Given the code: 
PROCEDURE DIVISION. 
MAINLINE SECTION. 
FIRST-PARAGRAPH. 

PERFORM SEC-A. 
PERFORM PAR-C THRU PAR-E. 
MOVE 1 TO N. 
PERFORM PAR-G 

WITH TEST AFTER 
UNTIL N > 2. 

STOP RUN. 
SEC-A SECTION. 

ADD 1 TO X. 
ADD 1 TO Y. 
ADD 1 TO Z. 

PAR-B. 
ADD 2 TO X. 

PAR-C. 
ADD 10 TO X. 



PAR-D. 
ADD 10 TO Y 
ADD 20 TO Z. 

PAR-E. 
EXIT. 

PAR-F. 
MOVE 2 TO N. 

PAR-G. 
ADD 1 TO N 
ADD 5 TO X. 

a. How many times is each paragraph executed? 
b. What are the final values of X, Y, and Z? (Assume they were all initialized to 0.) 
c. What would happen if the statement ADD 1 TO N were removed from PAR-G? 

2- Figure 9.14a contains a slightly modified version of the first paragraph in the car 
reporting program in which two periods have been added to produce the indicated 
compilation errors. Indicate the erroneous periods and explain why they produce 
the error messages. 

Figure 9 ,14 COBOL Listing for Problem 2 

204 PROCEDURE DIVISION. 
205 000-PREPARE-RENTAL-REPORT. 
206 OPEN INPUT RENTAL-FILE 
207 OUTPUT PRINT-FILE. 
208 PERFORM 100-GET-T0DAYS-DATE. 
209 PERFORM UNTIL DATA-REMAINS-SWITCH = 'NO' 
210 READ RENTAL-FILE INTO RENTAL-RECORD-IN 
211 AT END 
212 MOVE 'NO' TO DATA-REMAINS-SWITCH. 
213 NOT AT END 
214 PERFORM 200-PR0CESS-RENTAL-REC0RDS. 
215 END-READ. 
216 END-PERFORM. 
217 PERFORM 700-WRITE-RENTAL-T0TALS. 
218 CLOSE RENTAL-FILE 
219 PRINT-FILE. 
220 STOP RUN. 

(a) Modified Procedure Division 

209 W Explicit scope terminator END- 'PERFORM' assumed present 
213 E AT END exception only valid for READ or SEARCH verbs 
215 E No corresponding active scope for 'END-READ1 

216 E No corresponding active scope for 'END-PERFORM' 

(b) Error Messages 



Chapter 9 More About the Procedure Division 

3. Is the following list of names in alphabetical order? 

Joel Stutz 
Maryann Barber 
Shelly Parker 

Your answer depends on the record layout, that is, whether Name is a single field or 
whether Last Name, First Name, and Middle Initial are defined as individual fields. 
Can you see the need to define separate fields for these items? Can you appreciate 
the utility of the STRING statement to concatenate the fields together when 
necessary? 

4. Given the following Data Division entries: 

01 EMPLOYEE-RECORD. 
05 EMP-NAME. 

10 EMP-LAST-NAME PIC X(16). 
10 EMP-FIRST-NAME PIC X(10). 
10 EMP-MIDDLE-INITIAL PIC X. 

05 ADDRESS. 
10 EMP-STREET-ADDRESS PIC X(20). 
10 EMP-CITY PIC X(20). 
10 EMP-STATE PIC XX. 
10 EMP-ZIP PIC X(5). 

Write the necessary STRING statements to create a mailing label with the format: 
First-Name Middle-Initial Last-Name 
Street-Address 
City, State Zip 

5. Given the following COBOL fragment: 
01 DATE-W0RK-AREA-1. 

05 YEAR-1 PIC 99. 
05 MONTH-1 PIC 99. 
05 DAY-1 PIC 99. 

01 DATE-WORK-AREA-2. 
05 YEAR-2 PIC 99. 
05 DAY-2 PIC 999. 

01 DATE-W0RK-AREA-3. 
05 DAY-3 PIC 9. 

ACCEPT DATE-WORK-AREA-1 FROM DATE. 
ACCEPT DATE-WORK-AREA-2 FROM DAY. 
ACCEPT DATE-WORK-AREA-3 FROM DAY-OF-WEEK. 

Indicate the stored values of each of the elementary items in the program. Assume 
a date of execution of March 16, 1993 (a Tuesday). 



Problems 

6. Given the following C O B O L fragment: 
01 
01 

DATE-WORK-AREA 
EDITED-DATE. 
05 EDIT-MONTH 

PIC X(6). 

05 FILLER 
05 EDIT-DAY 
05 FILLER 
05 EDIT-YEAR 

PIC XX. 
PIC X 
PIC XX. 
PIC X 
PIC XX. 

VALUE '/'. 

VALUE '/ 

ACCEPT DATE-WORK-AREA FROM DATE. 
MOVE DATE-WORK-AREA (3:2) TO EDIT-MONTH. 
MOVE DATE-WORK-AREA (5:2) TO EDIT-DAY. 
MOVE DATE-WORK-AREA (1:2) TO EDIT-YEAR. 

indicate the stored values of EDIT-MONTH, EDIT-DAY, and EDIT-YEAR. (Assume 
the same date as in the previous problem.) 

7. Given the following C O B O L definition: 
01 GROUP-ITEM 

05 NUMERIC-FIELD-1 PIC 9(4). 
05 NUMERIC-FIELD-2 PIC 9(4). 
05 ALPHANUMERIC-FI ELD-1 PIC X(15). 
05 ALPHANUMERIC-FIELD-2 PIC X(20). 

What difference (if any) is there between the following statements? 
a. INITIALIZE, 

and 

INITIALIZE GROUP-ITEM. 
b. INITIALIZE GROUP-ITEM, 

and 

INITIALIZE GROUP-ITEM 
REPLACING NUMERIC DATA BY ZERO 

ALPHANUMERIC DATA BY SPACES. 
c. INITIALIZE GROUP-ITEM, 

and 

MOVE ZEROS TO NUMERIC-FIELD-1 NUMERIC-FIELD-2. 
MOVE SPACES TO ALPHANUMERIC-FIELD-1 ALPHANUMERIC-FIELD-2. 





j j J-U 

Overview 
ACCEPT 

Programming Tip: The Use of COBOL Constants 
DISPLAY 
The Tuition Billing Program Revisited 

Programming Specifications 
Hierarchy Chart 
Pseudocode 
The Completed Program 
Programming Tip: The Hidden Power of the Alt Key 

Car Validation and Billing Program 
Programming Specifications 
The Screen Section 
Hierarchy Chart 
Pseudocode 
The Completed Program 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



Chapter 10 — Screen 1-0 

U 

After reading this chapter you will be able to: 

Discuss the concept of screen 1-0 versus the file-oriented approach of 
earlier chapters. 

Describe the ACCEPT and DISPLAY statements; discuss at least three 
optional clauses for each statement. 

Describe the SCREEN SECTION and indicate why its use may be preferable 
to individual ACCEPT and DISPLAY statements. 

Differentiate between the background and foreground colors; implement a 
color scheme using ACCEPT and DISPLAY statements and/or the Screen 

Describe how interactive data validation is implemented in a screen 1-0 
program; contrast this technique to the batch-oriented procedure in 
Chapter 8. 

c n v i cz vv 

The proliferation of the PC has increased the importance of screen 1-0, whereby 
input to a program is received from the keyboard and output is displayed on the 
monitor. The specific options (color, highlighting, positioning, and so on) vary 
according to the particular keyboard or monitor (display terminal) and are nor 
part of the COBOL-85 standard. Virtually all compilers, however, include these 
capabilities as an extension to the 85 standard, and hence we do our best to 
describe them in general fashion. The syntax is that of Micro Focus Personal 
COBOL that accompanies this text. (Personal COBOL conforms to the X-Open 
standard, developed by of a consortium of software vendors including Microsoft, 
and has been proposed as an official extension to the 2000 standard.) 

The chapter begins with the ACCEPT and DISPLAY statements that are 
used for low-volume input and output and that reference specific line and 
column positions. Both statements contain an abundance of optional clauses 
that are illustrated in a final version of the tuition-billing program that first 
appeared in Chapter 5. 

The second half of the chapter focuses on the Screen Section to define an 
entire screen as opposed to individual lines. We combine the data validation 
and reporting programs of Chapters 8 and 9 to produce an interactive program 
that validates data as it is entered, and produces an on-screen result. 

The A C C E P T statement enables data to be entered in specific positions according 
to a precise format. The statement contains a required identifier—that is, a data 



ACCEPT 

n a m e to hold the input data, followed by optional clauses that can be entered in 
any order. 

As indicated, the specific implementation lor screen 1-0 is not defined in the 
C O B O L - 8 5 standard, but has been proposed as an extension to that standard. Our 
examples follow the syntax of Personal C O B O L that accompanies this text. 
Consider: 

ACCEPT i d e n t i f i e r [ATJ 

LINE NUMBER 
iden t i f i e r-1 
i n t e g e r -1 

WITH IAUTOI [BACKGROUND- COLOR IS in teger -3 

COLUMN i d e n t i f i e r - 2 
NUMBER \ 

COL i n tege r -2 

j BELL[ 

[BEEPJ 
BLINK 

FOREGROUND - COLOR I S inteqer-4 j [HIGHLIGHT] [SECURE] [REVERSE - VIDEO 

CONTROL I S { i d e n t i f i e r - 3 } ] 

[LEFT-JUSTIFY ] [SPACE-F ILL i r , r ir l 
\ { } TRAILING SIGN UNDERLINE UPDATE [RIGHT-JUSTIFY [ZERO-FILL 1 ' 1 1 1 

The LINE and C O L U M N clauses provide the location for the data. (The typical 
screen displays 25 lines of 80 columns.) Both clauses are optional with default 
actions as follows. Omission of the LINE clause defaults to line one if a previous 
screen element has not been defined, or to the existing line otherwise. Omission of 
the C O L U M N clause defaults to column one if the LINE clause is also specified, and 
to the next column (after the last screen element) if the LINE clause is also omitted. 

The B A C K G R O U N D - C O L O R and F O R E G R O U N D - C O L O R clauses specify the 
background and foreground colors, respectively, with the available colors listed in 
Table 10.1. A n y of the sixteen listed colors m a y be specified for the foreground, but 
only the first eight (numbered from zero to seven) m a y be specified as the 
background. The default colors for the background and foreground are black and 
white, respectively, corresponding to white text on a black background. In Personal 
C O B O L the integer or a constant representing that integer must be used. A data 
n a m e does nor work. See Programming Tip o n Micro Focus constants. 

P R O G R A M M I N G T I P 

In Micro Focus's version of the Screen Section, the ACCEPT and DISPLAY verbs require the use of an integer 
to specify BACKGROUND-COLOR and FOREGROUND-COLOR. Specifying colors by number rather than 
name can be confusing. Fortunately, there is a way to meet the requirements of using an integer while 
maintaining the clarity of a color name. Micro Focus provides for a new level number - 78-level. The 78-level is 
a way of defining and naming a constant value. The syntax for a 78-level is similar to that of the 88-level, but 
only one literal can be specified. 



Chapter 10 — Screen l-O 

7 8 D A T A - N A M E V A L U E L I T E R A L . 

The 78-level does not need a PIC clause since the compiler will allocate space on the basis of the data 
format of the literal. Examples: 

78 MAGENTA VALUE 5. 
78 YES VALUE 'Y\ 
78 ERROR-1 VALUE 'Entry must be Y or N'. 

Wherever each of these entries are referenced the constant values are used. Constants are particularly 
useful when a literal must be used. The BACKGROUND-COLOR and FOREGROUND-COLOR clauses for 
defining ACCEPT and DISPLAY statements are the prime examples. 

Level-78s are standalone data-items and the compiler does not treat them as subordinate to any group 
item. Therefore, if you wish to group the items as in line 16-34 of Figure 10-4, the 01-level must have a PIC 
clause. The PIC has no effect on the following level-78s. Without the PIC, COBOL thinks that the 01-level has 
no length. 

You should remember that level-78s are not standard COBOL entries. We have introduced them simply 
to make the screen l-O programs more readable. 

x**si...,i. -„<•)/: Foreground and Background Colors 

0 Black 
1 Blue 

2 Green 
3 Cyan 
4 Red 
5 Magenta 
6 Brown 
7 White 
8 Bright black (gray) 
9 Bright blue 

10 Bright green 
11 Bright cyan 
12 Bright red 
13 Bright magenta 
14 Bright brown (yellow) 
15 Bright white 

The A U T O clause terminates the A C C E P T statement w h e n the last character 
in the data item has been entered; the user does not have to press the return key for 
processing to continue. If, however, multiple data n a m e s are entered into the same 
A C C E P T statement, the A U T O clause m o v e s the cursor to the first character of the 
next item. 

The HIGHLIGHT, R E V E R S E - V I D E O , BLINK, and U N D E R L I N E clauses are 
used for emphasis, and their intended effects are apparent: B L I N K causes characters 
to blink o n and off, U N D E R L I N E underlines each character as it is displayed o n the 
screen, and H I G H L I G H T displays a field at its highest intensity. The REVERSE-
V I D E O clause displays light characters o n a dark background; that is, the characters 
are dark and the area surrounding the characters is light. The synonymous B E L L 
and B E E P clauses sound the system's audio tone w h e n the referenced data item is 
processed during execution of the A C C E P T statement. 



The CONTROL option allows any of the other clauses to be specified in an 
identifier. The identifier can be changed by the program allowing flexibility in 
appearance of the entry. 

The ZERO-FILL option displays a numeric item with high-order zeros, whereas 
the (default) SPACE-FILL clause displays data with zero suppression. The RIGHT-
JUSTIFY clause makes operator-keyed characters align in the rightmost character 
position of the field and is for elementary items only. LEFT-JUSTIFY (the default) is 
for documentation only and has no effect. The SPACE-FILL, ZERO-FILL, LEFT-
JUSTIFY, and RIGHT-JUSTIFY clauses are allowed only for elementary items. 

The UPDATE option displays the initial value of the data item before the 
operator is prompted for n e w input, and if no n e w data are entered, the initial data 
are treated as though they were operator keyed. U P D A T E is not allowed for a 
numeric-edited item. 

The SECURE clause prevents the accepted data item from appearing on the 
screen and is useful in implementing password protection and/or other security 
considerations. 

The DISPLAY statement was introduced in Chapter 3 in conjunction with top-down 
testing and referenced again in Chapter 6 for use in debugging. In both instances 
the simplest form of the statement was used at strategic points in a program, to 
display messages and/or intermediate results to help monitor program execution. 
The DISPLAY statement also has m a n y additional options to enhance its output. 

DISPLAY 
identi fier- 1 
1i teral-1 

AT LINE N U M B E R 
identifier-2 
integer- 1 COLUMN NUMBER 

WITH [BACKGROUND-COLOR IS integer-3] 
JBELL 
IBEEP 

identifier-3 
integer-2 

[BLINK] 

F O R E G R O U N D - C O L O R IS integer-4 | |HIGHLIGHT| [REVERSE-VIDE0[ 

identifier-4] 
CONTROL IS 

UNDERLINE 

iteral 

BLANK 
[SCREEN] 
[LINE J 

M a n y of the clauses in the DISPLAY statement have been explained in 
conjunction with the A C C E P T statement; for example, you can use the LINE and 
C O L U M N clauses to control the specific position where the displayed output is to 
appear. Y o u can also emphasize the displayed message by blinking, beeping, 
underlining, or reverse video. Y o u can (on a color monitor) implement a variety of 
color schemes for both the foreground (text) and background. 

The DISPLAY statement also enables you to clear all or a portion of the screen 
prior to displaying a data element. The B L A N K S C R E E N clause clears the entire 
screen and leaves the cursor positioned in line 1, column 1. The B L A N K LINE clause 
blanks the associated line beginning in column 1 unless a column is specified. 
Specification of either entry, B L A N K S C R E E N or B L A N K LINE, also reactivates the 
default background a nd foreground colors. 



Chapter 10 — Screen I-O 

The tuition-billing program has appeared several times throughout the text. It was 
first presented in Chapter 3 in conjunction with structured methodology, used in 
Chapters 4 and 5 to introduce basic C O B O L statements, and expanded in Chapter 7 
to include editing characters. W e continue n o w with one final version to illustrate 
screen I-O, whereby student data are accepted for one student at a time, after which 
the computed bill (for that student) is displayed o n the monitor. 

The programming specifications parallel the original problem statement o n 
page 49 with minor modifications to reflect the interactive nature of screen I-O. 
Thus, unlike the original file-based program, which processed students until the 
input file was exhausted, the screen-based program accepts data for one student at 
a time, then asks the user whether data for another student are to be entered. The 
screen I-O program also imposes the requirement for a valid password prior to 
processing the first student, and it eliminates the calculation of university totals. 
The formal specifications follow in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Tuition Billing Program (Screen Version) 

Narrative: 

Screen Layouts: 

This program modifies the specifications for the original tuition billing program to 
accommodate screen I-O. Incoming records are to be entered one at a time via the 
keyboard with computed results for each student displayed as they are calculated. 

The password is to be masked and entered as per the screen in Figure 10.1a, student 
data are to be entered according to the screen in Figure 10.1b, and the computed results 
displayed as in Figure 10.1c. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Develop an interactive program to accept student data, then compute and display 
the student's bill. The program is to execute continually until it receives a response 
indicating that no more students are to be processed. 

2. The program is to check for a valid password prior to accepting data for the first 
student. (The password is C O B O L in either all upper- or all lowercase letters) The user 
is allowed a maximum of two tries to enter the password correctly, after which the 
program is to terminate with an appropriate error message. 

3. The specifications for computing an individual student's bill are the same as in the 
original program: 
a. Compute the individual bill as the sum of tuition, union fee, and activity fee, minus a 

scholarship (if any). 
b. The tuition is $200 per credit. 
c. The union fee is $25. 
d. The activity fee is based on the number of credits taken: 

ACTIVITY FEE CREDITS 

$25 6 or less 
$50 7-12 
$75 more than 12 

e. Award a scholarship equal to the amount in the incoming record if the G P A is 
greater than 2.5. 

4. The requirement to compute university totals has been deleted. 



The Tuition Billing Program Revisited 

Tuition: 3,600 
Activity Fee: 75 
Union Fee: 25 
Less Scholarship: -4,000 

Amount Due: $ 300CR 

Enter another student? (Y/N): 

The hierarchy chart for the screen version of the tuition billing program is shown in 
Figure 10.2. The highest-level module, P R O C E S S - S T U D E N T - D A T A , has four 
subordinates: P R O C E S S - P A S S W O R D , I N P U T - S T U D E N T - I N F O , C O M P U T E -
INDIVIDUAL-BILL, and DISPLAY-STUDENT-BILL. C O M P U T E - S T U D E N T - B I L L has 
four subordinates of its o w n : C O M P U T E - T U I T I O N , C O M P U T E - U N I O N - F E E , 
COMPUTE-ACTIVITY-FEE, and C O M P U T E - S C H O L A R S H I P , all of which appeared 
in the original hierarchy chart. 

The requirement to compute university totals has been dropped from the 
programming specifications, and thus the modules associated with this function 
that appeared in the original hierarchy chart (Figure 3.3) have been dropped from 
the current version. 

The pseudocode in Figure 10.3 contains two iterative structures, a D O U N T I L 
associated with obtaining the password, and a D O W H I L E to process student data. 
The difference between the two is significant and was explained previously in 
Chapter 9 (see Figure 9.1). Recall, therefore, that the D O U N T I L structure tests the 
condition after executing the indicated statements and thus ensures that those 
statements are executed at least once. A D O W H I L E , however, tests the condition 
before executing the statements, and hence the indicated statements need not be 
executed at all. 

'1.. , v ,('.. Tuition Billing Program (Screen l-O) 

ENTER PASSWORD: ***** 

j Enter the following information: 

| Last Name: Zobrist Initials: W 

j Credits: 18 Union Member (Y/N): Y 

j GPA: 3.20 Scholarship Amount: 4000 



Chapter 10 — Screen 1-0 

Hierarchy Chart for Tuition Billing Program (Screen Version) 

PROCESS 
STUDENT 

DATA 

PROCESS 
PASSWORD 

COMPUTE 
TUITION 

COMPUTE 
INDIVIDUAL 

BILL 

DISPLAY 
STUDENT 

BILL 

COMPUTE 
UNION 

FEE 

COMPUTE 
ACTIVITY 

FEE 

COMPUTE 
SCHOLARSHIP 

m 10.3 Pseudocode for Tuition Billing Program (Screen Version) 

DO UNTIL password-valid OR too-many-tries 
ACCEPT and validate password 
Increment number of tries 

ENDDO 
IF too-many-tries 

Set continue-processing-switch to 'N' 
Display 'SORRY, you tried too many times' 

END-IF 
DO WHILE continue-processing-switch not equal to 'N' 

Compute tuition 
Compute union fee 
Compute activity fee 
Compute scholarship 
Compute bill 
DISPLAY computed results 
ACCEPT continue-processing-switch 

ENDDO 
Stop run 

or n 



The Tuition Billing Program Revisited 

The user must be given at least one try to enter the password and hence the 
D O U N T I L structure is used to accept and validate (reject) the user's entry, if the 
user fails to enter the correct password within the allocated n u m b e r of tries, the 
continue-processing-switch will be set to 'N', which prevents the execution of 
statements within the D O W H I L E loop; that is, the program terminates without 
processing a student record. 

The completed program is shown in Figure 10.4 and reflects the hierarchy chart and 
pseudocode just discussed. It is different from all previous programs in that input is 
received from the keyboard and output is displayed o n the monitor. Thus, there are 
no files in this program, and hence no need for an Environment Division (and the 
associated S E L E C T statements), nor for the File Section in the Data Division. The 
absence of all files also means that the Procedure Division does not contain the 
familiar O P E N , C L O S E , R E A D , and W R I T E statements that were present in all 
previous programs. 

All 1-0 is screen based and accomplished through A C C E P T and DISPIAY 
statements with LINE and C O L U M N clauses to control the location of the displayed 
fields. Different colors are used for different areas of the screen as implemented 
through the C O L O R clauses that appear throughout the program; the available 
colors are defined as data n a m e s in lines 16-34, then referenced as necessary in the 
various A C C E P T and DISPIAY statements. 

The imposition of a password is accomplished through the in-line P E R F O R M 
statement in lines 80-89, which uses the TEST A F T E R clause to give the user two 
chances to enter the password correctly. The S E C U R E clause, in the A C C E P T 
statement of lines 87 and 88, prevents the user's response from appearing o n the 
screen, and the A U T O clause saves the user from having to press the return key. The 
B L A N K S C R E E N clause in line 84 clears the screen before requesting the password. 
The program accepts either C O B O L or cobol as a valid password according to the 
88-level entry in line 38; it will not, however, recognize a combination of upper- and 
lowercase letters. 

Once a valid password has been entered, the program processes students one 
at a time through the in-line P E R F O R M statement in lines 72-76, which invokes 
three lower-level paragraphs for each student: 200-INPUT-STUDENT-lNFO, 310-
C O M P U T E - I N D I V I D U A L - B 1 L L , a n d 500-DISPIAY-STUDENT-BILL. The latter 
paragraph ends by obtaining the user response regarding another student (lines 
189-191). Note, too, the provision for both upper- and lowercase data entry as the 
C O N T I N U E - P R O C E S S I N G - S W I T C H in line 72 is compared to both 'N' and V . 

O n e last c o m m e n t concerns the double line that appeared around the user's 
input in the screen of Figure 10.1b. This was accomplished by including the necessary 
ASCII (graphics) characters in the DISPLAY statements of lines 99 through 117. (See 
programming tip o n the Alt key and numeric keypad.) 



Chapter 10 — Screen 1-0 

P R O G R A M M I N G T I P 

Newcomers to the computer recognize the Alt key as the middle key in the Ctrl, Alt, and Del sequence to 
reboot the computer. It has many more uses, however, one of which is to reproduce any character within the 
256 ASCII character set shown in the table below. 

0 1 2 3 4 5 6 7 8 9 
00 © • • * s • 0 

01 Si cf 9 •« t II 
02 f § _ i t 4- >- •+ 
03 A • i II # $ % & 1 

04 ( ) * + - . / 0 1 

05 2 3 4 5 6 7 8 9 : f 
06 < = > 2 § A B C D E 
07 F G H I J K L M N O 
08 P Q R S T u V W X Y 
09 Z [ \ ] a b c 
10 d e f g h i i k 1 m 
11 n o P q r s t u V w 
12 X y z { i 

i } C i i 
13 e a a a a 9 e c © •» 

JL 

14 i i A A E ae 6 6 6 

15 u u 1J 6 U C £ ¥ I? 

16 a i 6 u n N s c 
17 — i i 

i « » 1 
18 \ w n 1 I'll"}- % 

+ 
i 

19 J L j _ T r _ % 
+ r 1 

20 It 
If 

JL |L I _L JL 20 It 
If Tf lr j — i r 

JL 
T 1 21 ¥ IL L- F IT f + J r 
T 1 

22 • I I • a 6 r 7T s a 
23 T e n 6 00 <P e n 

24 = ± > < R J "I" 
o • 

25 y n 2 • 

The double vertical line, for example, is found in row 18, column 6 of the table, and thus, is ASCII 
character 186; it is entered into a program file by holding the Alt key down, and typing 1, 8, and 6, from 
the numeric keyboard. In similar fashion, a double horizontal line is found in row 20, column 5, and thus 
is ASCII character number 205. Four other characters, corresponding to the four corners, are required to 
complete the box. 

The printer, however, is a limiting factor, because while all of the 256 symbols will appear on an ordinary 
| monitor, they are not necessarily supported on every printer. 
I 
I 
I ... 



The Tuition Billing Program Revisited 

. = t . . ' t t Screen version of Tuition billing Program 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SCRNTUIT. 
AUTHOR. CAROL VAZQUEZ VILLAR. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 STUDENT-DATA. 

05 STU-NAME. 
10 STU-LAST-NAME 
10 STU-INITIALS 

05 STU-CREDITS 
05 STU-UNION-MEMBER 
05 STU-SCHOLARSHIP 
05 STU-GPA 

01 SCREEN-COLORS 

PIC X(15). 
PIC XX. 
PIC 9(2). 
PIC X. 
PIC 9(4). 
PIC 9V99. 
PIC S9(4) COM'P-5. 

01 

LORS FOR FOREGROUND AND BACKGROUND 78~ BLACK VALUE 0. 

78 j BLUE VALUE 1. 
78 > GREEN VALUE 2. 
78 CYAN VALUE 3. 
78 RED ~ VALUE 4. 
78 MAGENTA VALUE 5. 
/8 BROWN VALUE 6. 
78 j WHITE VALUE 7. 
DITIONAL COLORS FOR FOREGROUND ONLY 
78 j BRIGHT-BLACK VALUE 8. -
78 [ BRIGHT-BLUE VALUE 9. 
78 | BRIGHT-GREEN....--- VALUE 10. 
78 j BRIGHT-CYAN VALUE 11. 
78 j BRIGHT-RED VALUE 12. 
78 1 BRIGHT-MAGENTA VALUE 13. 
78 | BRIGHT-BROWN VALUE 14. 
78 I BRIGHT-WHITE VALUE 15. 
PASSWORD-VARIABLES. 
05 PASSWORD-ENTERED PIC X(5) 

88 VALID-PASSWORD VALUE 'COBOL' 
05 TRIES-COUNTER PIC 9. 

88 TOO-MANY-TRIES VALUE 3. 
CONTINUE-PROCESSING-SWITCH PIC X VALUE ' Y' . 
INDIVIDUAL-CALCULATIONS. 
05 IND-TUITION PIC 9(4) VALUE ZEROS. 
05 IND-ACTIVITY-FEE PIC 9(2) VALUE ZEROS. 
05 IND-UNION-FEE PIC 9(2) VALUE ZEROS. 
05 IND-SCHOLARSHIP PIC 9(4) VALUE ZEROS. 
05 IND-BILL PIC S9(6) VALUE ZEROS. 

01 DISPLAY-CALCULATIONS. 



(continued) 

05 
05 
05 
05 
05 

DIS-TUITION 
DIS-ACTIVITY-FEE 
DIS-UNION-FEE 
DIS-SCHOLARSHIP 
DIS-BILL 

PIC 
PIC 
PIC 
PIC 
PIC 

Z.ZZ9. 
19. 
19. 
1,119. 
$ZZZ,ZZ9CR. 

01 CONSTANTS-AND-RATES. 
05 PRICE-PER-CREDIT 
05 UNION-FEE 

PIC 
PIC 

9(3) 
9(2) 

VALUE 200. 
VALUE 25. 

05 ACTIVITY-FEES. 
10 1ST-ACTIVITY-FEE PIC 99 VALUE 25. 
10 1ST-CREDIT-LIMIT PIC 99 VALUE 6. 
10 2ND-ACTIVITY-FEE PIC 99 VALUE 50. 
10 2ND-CREDIT-LIMIT PIC 99 VALUE 12. 
10 3RD-ACTIVITY-FEE PIC 99 VALUE 75. 
MINIMUM-SCHOLAR-GPA PIC 9V9 VALUE 2.5 

PROCEDURE DIVISION. j n 

000-PROCESS-STUDENT-DATA. / " 
PERFORM 100-PROCESS-PASSWORD. / _ 
PERFORM UNTIL COmNUE-PROCESSING-SWITCH = 1N' OR 'n 

i PERFORM 200-INPUT-STUDENT-INFO 
| PERFORM 310-COMPUTE-INDIVIDUAL-BILL 
j PERFORM 500-D1SPLAY-STUDENT-BILL 
j END-PERFORM. 
STOP RUN. 

100-PROCESS-PASSWORD^ /_ _ 
PERFORM WITH TEST A F T E R ~ 

VARYING TRIES-COUNTER FROM 1 BY 1 
UNTIL VALID-PASSWORD OR TOO-MANY-TRIES 

DISPLAY 'ENTER PASSWORD: 1 LINE 12 COLUMN 30 

ACCEPT PASSWORD-ENTERED LINE 12 COLUMN 46 
WITH REVERSE-VIDEO AUTO SECURE 

ENJJ-PERFORM_ _ 
IF TOO-MANY-TRIES 

MOVE 'N' TO CONTINUE-PROCESSING-SWITCH 
DISPLAY 'SORRY, You tried too many times' 

LINE 24 COLUMN 22 WITH BLINK 
FOREGROUND-COLOR WHITE"1 
BACKGROUND-COLOR RED f"'\ 

200-INPUT-STUDENT-INFO. 
DISPLAY ' —»-- " — " » 

AT LINE 2 COLUMN 5 WITH BLANK SCREEN 
FOREGROUND-COLOR BRIGHT-BROWN 
BACKGROUND-COLOR BLUE. 

TESTA 

WITH BLANK SCREEN 
FOREGROUND-COLOR BRIGHT-GREEN 
BACKGROUND-COLOR MAGENTA 



The Tuition Billing Program Revisited 

• u -3 (continued) 

103 DISPLAY '" Enter the following information: "' 
104 AT LINE 3 COLUMN 5. 
105 DISPLAY '" 
106 AT LINE 4 COLUMN 5. 
107 DISPLAY '" Last Name: Initials: 
108 AT LINE 5 COLUMN 5. 
109 DISPLAY '" 
110 AT LINE 6 COLUMN 5. 
111 DISPLAY '" Credits: Union Member (Y/N): 
112 AT LINE 7 COLUMN 5. 
113 DISPLAY '" 
114 AT LINE 8 COLUMN 5. 
115 DISPLAY '" GPA: Scholarship Amount: 
116 AT LINE 9 COLUMN 5. 
117 DISPLAY ' " " " " " " " " " 
118 AT LINE 10 COLUMN 5. 
119 ACCEPT STU-LAST-NAME AT LINE 5 COLUMN 18. 
120 ACCEPT STU-INITIALS AT LINE 5 COLUMN 45. 
121 ACCEPT STU-CREDITS AT LINE 7 COLUMN 16. 
122 ACCEPT STU-UNION-MEMBER AT LINE 7 COLUMN 45 WITH AUTO. 
123 ACCEPT STU-GPA AT LINE 9 COLUMN 16 WITH AUTO. 
124 ACCEPT STU-SCHOLARSHIP AT LINE 9 COLUMN 45. 
125 
126 310-COMPUTE-INDIVIDUAL-BILL. 
127 PERFORM 410-C0MPUTE-TUITI0N. 
128 PERFORM 430-C0MPUTE-UNI0N-FEE. 
129 PERFORM 460-COMPUTE-ACTIVITY-FEE. 
130 PERFORM 490-COMPUTE-SCHOLARSHIP. 
131 COMPUTE IND-BILL = IND-TUITION + IND-UNION-FEE + 
132 IND-ACTIVITY-FEE - IND-SCHOLARSHIP 
133 SIZE ERROR DISPLAY 'SIZE ERROR FOR INDIVIDUAL BILL' 
134 END-COMPUTE. 
135 
136 410-C0MPUTE-TUITI0N. 
137 COMPUTE IND-TUITION = PRICE-PER-CREDIT * STU-CREDITS 
138 SIZE ERROR DISPLAY 'SIZE ERROR FOR INDIVIDUAL TUITION 
139 END-COMPUTE. 
140 
141 430-COMPUTE-UNIQN-FEE. 
142 [iF STU-UNION-MEMBER = 'Y' or 'y'K, 
143 MOVE UNION-FEE TO IND-UNION-FEE \ / f statement c . k c . 
144 ELSE 
145 MOVE ZERO TO IND-UNION-FEE 
146 END-IF. 
147 
148 460-COMPUTE-ACTIVITY-FEE. 
149 EVALUATE TRUE 
150 WHEN STU-CREDITS <= 1ST-CREDIT-LIMIT 
151 MOVE 1ST-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
152 WHEN STU-CREDITS > 1ST-CREDIT-LIMIT 
153 AND STU-CREDITS <= 2ND-CREDIT-LIMIT 



Chapter 10 - Screen 1-0 

Figure 1 0 . 4 (continued) 

154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 

MOVE 2ND-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN STU-CREDITS > 2ND-CREDIT-LIMIT 

MOVE 3RD-ACTIVITY-FEE TO IND-ACTIVITY-FEE 
WHEN OTHER 

DISPLAY 'INVALID CREDITS FOR: 1 STU-NAME 
END-EVALUATE. 

490-COMPUTE-SCHOLARSHIP. 
IF STU-GPA > MINIMUM-SCHOLAR-GPA 

MOVE STU-SCHOLARSHIP TO IND-SCHOLARSHIP 
ELSE 

MOVE ZERO TO IND-SCHOLARSHIP 
END-IF, 

500-DISPLAY-STUDENT-BILL. 
MOVE TO-TUITION TO DIS-TUITI0_N. 

[1)1 SPLAY' 'Tuition:' AT LINE 12 COLUMN 10. 1 
i DISPLAY DIS-TUITION AT LINE 12 COLUMN 29. 

MOVE IND-ACTIVITY-FEE TO DIS-ACTIVITY-FEE. 
"DISPLAY 'Activity Fee:' AT LINE 13 COLUMN 107 
DISPLAY DIS-ACTIVITY-FEE AT LINE 13 COLUMN 32. 

MOVE IND-UNION-FEE TO DIS-UNION-FEE. 
DISPLAY 'Union Fee:' AT LINE 14 COLUMN 10. 
DISPLAY DIS-UNION-FEE AT LINE 14 COLUMN 32. 

MOVE IND-SCHOLARSHIP TO DIS-SCHOLARSHIP. 
DISPLAY 'Less Scholarship: -' AT LINE 15 COLUMN 10. 
DISPLAY DIS-SCHOLARSHIP AT LINE 15 COLUMN 29. 

DISPLAY ' ' AT LINE 16 COLUMN 27. 
MOVE IND-BILL TO DIS-BILL. 
DISPLAY 'Amount Due:' AT LINE 17 COLUMN 9. 
DISPLAY DIS-BILL AT LINE 17 COLUMN 26. 
DISPLAY 'Enter another student? (Y/N):' 

AT LINE 20 COLUMN 7. 
ACCEPT CONTINUE-PROCESSING-SWITCH AT LINE 20 COLUMN 37. 

v " «/ .. ' . t l t i i t̂&GiJI; The concept of data validation was introduced in Chapter 8 in the form of a stand-
•> L l t i jt.JIifl€| alone edit program that processed a file of incoming transactions, rejected invalid 
0* ' r "i * ' IH transactions with appropriate error message (s), and wrote valid transactions to a 
1 ' ''~'~L " n e w file; the latter w a s then input to a reporting program that was developed in 

Chapter 9. This chapter combines the data validation and reporting programs into 
a single program to validate data as they are entered and produce an on-screen 
result. 

The biggest difference between this program and its predecessor(s) is that the 
data are validated interactively as they are entered, as opposed to the batch-oriented 
approach in Chapter 8. The advantage of the interactive program is that the user is 



Car Validation and Billing Program 

given the opportunity to correct the invalid transaction at the time the error is 
detected, as opposed to receiving a report listing the errors. Realize, however, that 
interactive (screen-based) programs are restricted to low-volume applications and 
that their execution is far more time consuming than programs that are file-driven. 
Specifications follow in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Car Validation and Billing Program (Screen Version) 

Narrative: This program combines the specifications for data validation and reporting as presented 
earlier in Chapters 8 and 9. The fields in each incoming transaction are accepted and 
validated one at time, after which the bill is computed and displayed on the screen. Valid 
transactions are alscfwritten to an output file. 

Screen Layout: See Figure 10.5 (page 280). 

P r o c e s s i n g R e q u i r e m e n t s : 1. Develop an Interactive program to accept and validate car rental data, then compute 
and display the associated bill. The program is to execute continually until it receives a 
response indicating that no more records are to be processed. 

2. Each incoming field is to be validated as it is entered; that is, the user cannot move to 
the next field until valid data have been entered in the current field. The requirements 
for validation were presented in Chapter 8 and are summarized below. Each transaction 
is tn he> rhprkfid fnr thfl fnllnwinn-
._ — — . 
a. A numeric contract number. 
b. The presence of both a first and last name; a middle initial is not required, but if 

present, the initial must be alphabetic. 
c. A valid car type where the code is one of five values; E, C, M, F, or L. 
d. A valid date in which the month is between 1 and 12, the day is consistent with the 

month (e.g., April 31 should be rejected), and the date is less than or equal to the 
system date. 

e. A valid number of days rented that is greater than zero and less than or equal to 35. 
f. Numeric values for the mileage in and out; and further, that the mileage reported 

when the car is turned in is greater than the mileage when the car was taken out. 
The number of miles driven must also pass a reasonableness test of 10 miles or 
more per day 

g. A numeric mileage rate less than or equal to 50 cents per day. 
h. An insurance field of either Y or N. 

3. Write the validated transaction to a file as per the original program in Chapter 8. 

4. Calculate the customer's bill after all fields have been validated. The amount due is a 
function of car type, days rented, miles driven, mileage rate, and insurance. 
a. The mileage rate is different for each customer and appears as a field in the 

incoming transaction; the mileage total is the mileage rate times the number of 
miles driven. 

b. The daily rate is a function of the type of car rented. Economy cars cost $15 a day, 
compact cars $20 a day, mid-size cars $24 a day, full-size cars $28 a day, and 
luxury cars $35 a day. The daily total is the daily rate times the number of days 
rented. 

c. Insurance is optional at $10.50, regardless of the type of car rented. 



Chapter 10 Screen 1-0 

d. A customer's total bill consists of the mileage total, daily total, and insurance total as 
riot-to /o\ /K\ 

5. Display the computed bill on the screen as per the screen layout of Figure 10.5. 

6. The requirement to compute totals has been deleted. 

m 
The tuition billing program illustrated the use of A C C E P T and DISPLAY statements 
within the Procedure Division. This approach is useful to display individual lines 
and/or to accept a limited n u m b e r of fields as input, but awkward w h e n you need to 
fill an entire screen. A second limitation of individual A C C E P T and DISPLAY 
statements is that they are scattered throughout the Procedure Division, making it 
difficult to reproduce consistent screens from program to program within a system. 

The Screen Section specifies the characteristics of an entire screen in the Data 
Division, then accepts or displays that screen in a single statement in the Procedure 
Division. The Screen Section is physically the last section in the Data Division, and 
its structure is similar to that of the File and/or Working-Storage Sections. Consider: 

level-number screen-name| 
FILLER BLANK SCREEN LINE 

BELL 
BEEP BLINK 

[HIGHLIGHT] [REVERSE-VIDEO] [UNDERLINE] 

BACKGROUND COLOR IS integer - 1 data-name-1 FOREGROUND - COLOR IS integer data-
ei - L 

name-2| 

LINE NUMBER identifier-1 COLUMN NUMBER integer-3 
[VALUE IS literal-l] 
[PICTURE] JFROM identifier-4 TO identifier-5| 
[PIC J [USING identifier-6 j 

identifier-2 
integer-4 

CONTROL IS [l i teral -1 
I i denti fi er-7 

[AUTO] [SECURE] 
A n appreciation for the Screen Section can best be gained by viewing sample 

screens and the associated C O B O L entries. Consider n o w Figure 10.5, which displays 
three screens from the car validation and billing program to be developed later in 
the chapter. Figure 10.5a displays the opening screen, consisting entirely of prompts 
for the various fields. Figure 15.5b displays a completed screen for Janice Vogel with 
valid entries in all fields, and Figure 10.5c displays the computed results. 

The screens are produced in the sequence shown; that is, the system displays 
the opening screen of Figure 10.5a and the user enters the fields one at a time. Each 
field is validated as it is entered; the user cannot m o v e to the next field until he or she 
has entered a valid value for the current field. Once all fields have been entered the 
system computes the bill and displays the results. 

A n abbreviated Screen Section, extracted from the completed program at the 
end of the chapter, is s h o w n in Figure 10.6. The entries in the Screen Section are 
similar to those in the File or Working-Storage Section; that is, they consist of group 
items divided into elementary items. The entry at the 01 level m u s t specify a screen­
n a m e — f o r example, O P E N I N G - S C R E E N and U P D A T E - S C R E E N in Figure 10.6. The 



The Screen Section 

Screen Layouts 

Mavis Car Rental Company 07/03/98 

Contract No: 

Customer Information: 
Last Name First Initial 

Car Information 
Type Code 

Date Returned 
Days Rented 
Mileage: 

Miles In: 
Miles Out: 
Insurance: 

(Compact, Economy, Midsize, Fullsize, Luxury) 

Mi 1eage Rate: 
(Y/N) 

Above information correct? 
(Y - Yes, N - No) 

Mavis Car Rental Company 

Contract No: 886222 

07/03/98 

Customer Information: 
Last Name First Initial 
VOGEL JANICE D 

Car Information 
Type Code 

Date Returned 
Days Rented 
Mileage: 

Miles In: 6,345 
Miles Out: 6,123 
Insurance: Y (Y/N) 

F (Compact, Economy, Midsize, Fullsize, Luxury) 
05/18/93 
12 

Mileage Rate: .02 

Above information correct? Y 
(Y - Yes, N - No) 

(b) Validated Record 



Chapter 10 Screen 1-0 

(continued) 

Mavis Car Rental Company 07/03/98 

Contract No: 886222 

Customer Information: 
Last Name First Initial 
VOfiEL JANICE D 

Car Information: 
Type Code: F (Compact, Economy, Midsize, Fullsize, Luxury) 

Date Returned: 05/18/93 Totals j j 
Days Rented: 12 Rental Rate: $28.00 $336.00 | j 
Mileage: j | 

Miles In: 6,345 Miles Driven: 222 j j 
Miles Out: 6,123 Mileage Rate: .02 $4.44 | J 
Insurance: Y (Y/N) Insurance Rate: $10.50 $126.00 f j 

Amount Due: $466.44 

Enter another record? N 
(Y - Yes, N - No) 

Abbreviated Screen Section 

I SCREEN SECTION. 
[ 01 OPENING-SCREEN. 

05 BLANK SCREEN 
| BACKGROUND-COLOR BLUE FOREGROUND-COLOR WHITE. 

05 SCREEN-PROMPTS. 

10 LINE 3 COLUMN 7 VALUE 'Contract No:'. 
10 LINE 5 COLUMN 7 VALUE 'Customer Information 
10 LINE 6 COLUMN 9 VALUE 'Last Name'. 
10 COLUMN 25 VALUE 'Fi rst'. 
10 COLUMN 36 VALUE 'Initial'. 
10 LINE 9 COLUMN 6 VALUE 'Car Information:'. 
10 LINE 10 COLUMN 12 VALUE 'Type Code:'. 

05 SCREEN-INPUTS. 
10 SCR-CONTRACT-NO 

LINE 3 COLUMN 20 
PIC 9(6) USING REN-CONTRACT-NO 
REVERSE-VIDEO. 



The Tuition Billing Program Revisited 

(continued) 

10 SCR-LAST-NAME 
LINE 7 COLUMN 9 

10 SCR-FIRST-NAME 
LINE 7 COLUMN 25 

10 SCR-INITIAL 
LINE 7 COLUMN 36 

10 SCR-CAR-TYPE 
LINE 10 COLUMN 23 

PIC X(15) USING REN-LAST-NAME 
REVERSE-VIDEO. 
PIC X(10) USING REN-FIRST-NAME 
REVERSE-VIDEO. 
PIC X USING REN-INITIAL 
REVERSE-VIDEO. 
PIC X USING REN-CAR-TYPE 
REVERSE-VIDEO AUTO. 

01 UPDATE-SCREEN. 
05 LINE 11 COLUMN 67 

LINE 12 COLUMN 38 
UPD-DAILY-RATE 
LINE 12 COLUMN 50 
UPD-DAILY-TOTAL 

COLUMN 63 
LINE 14 COLUMN 37 
UPD-MILES-DRIVEN 

COLUMN 50 
UPD-MILEAGE-TOTAL 

05 
05 

05 

05 
05 

05 

05 
05 

05 

05 
05 
05 

LINE 15 COLUMN 64 
LINE 16 COLUMN 35 
UPD-INSURANCE-RATE 
LINE 16 COLUMN 51 
UPD-INSURANCE-TOTAL 

COLUMN 64 
LINE 17 COLUMN 63 
LINE 18 COLUMN 48 
UPD-AMOUNT-DUE 

COLUMN 62 

VALUE 'Totals' HIGHLIGHT. 
VALUE 'Rental Rate:' HIGHLIGHT. 
PIC $$$9.99 FROM IND-DAILY-RATE 
HIGHLIGHT. 
PIC $$$,$$9.99 FROM IND-DAILY-TOTAL 
HIGHLIGHT. 
VALUE 'Miles Driven:1 HIGHLIGHT. 
PIC 111,129 FROM IND-MILES-DRIVEN 
HIGHLIGHT. 
PIC $$,$$9.99 
FROM IND-MILEAGE-TOTAL 
HIGHLIGHT. 
VALUE 'Insurance Rate:' HIGHLIGHT. 
PIC $$9.99 FROM INSURANCE-RATE 
HIGHLIGHT. 
PIC $$,$$9.99 
FROM IND-INSURANCE-TOTAL 
HIGHLIGHT. 
VALUE ' ' HIGHLIGHT. 
VALUE 'Amount Due: ' HIGHLIGHT. 
PIC $$$$,$$9.99 FROM IND-AMOUNT-DUE 
HIGHLIGHT. 

screen (data) n a m e is optional at any other level; for example, the first 05-level entry 
in Figure 10.6 omits the screen (data) n a m e and specifies a blank screen with a blue 
background and white foreground. The next 05-level entry includes a data name, 
S C R E E N - P R O M P T S , which is divided into multiple elementary items, each of which 
omits the data name. 

If a screen (data) n a m e or FILLER is specified, then it must be the first word 
following the level name. The remaining clauses can appear in any order, but each 
elementary item must contain at least one of the following clauses: BELL, B L A N K 
LINE, B L A N K S C R E E N , C O L U M N , LINE, P I C T U R E , or V A L U E . (The V A L U E 
and P I C T U R E clauses are mutually exclusive in the Screen Section.) A n y clause 
that appears o n a group item applies to all elementary items within the group where 
it is allowed. If the same clause is specified at multiple levels in the hierarchy, the 
lowest level takes effect. The various optional clauses are illustrated in Figure 10.6 
and function as explained previously in conjunction with the A C C E P T and 
DISPLAY statements. 



Chapter 10 Screen 1-0 

Note, too, the correspondence between the line and column positioning within 
S C R E E N - P R O M P T S and SCREEN-INPUT; for example, a prompt for 'Contract No:' 
appears o n line 3 and extends from column 7 to 18; the data n a m e S C R - C O N T R A C T -
N O is subsequendy accepted in column 20 o n the same line. The action of the LINE 
a n d C O L U M N clauses is the s a m e as with individual A C C E P T and DISPLAY 
statements: omission of the LINE clause defaults to the same line as the previously 
specified element. Thus the prompt for last n a m e is displayed o n line 6, column 9 
followed by the prompt for first n a m e in column 25 of the s a m e line, followed by the 
initial in column 36 of the same line. 

The Screen Section makes possible the definition of multiple screens within 
the same program as implied by the screen in Figure 10.5c, in which the computed 
results are displayed o n the same (expanded) screen as the original inputs. Thus the 
Screen Section in Figure 10.6 contains a second 01 entry, U P D A T E - S C R E E N , with 
multiple entries that display both text and computed information; the latter is 
displayed after all data have been entered and the bill has been computed. 

The TO clause in a screen description entry indicates an input field; the FROM 
clause indicates an output field. The USING clause—for example, U S I N G REN-
C O N T R A C T -N O — i s equivalent to the combination of F R O M a nd T O clauses each 
specifying the same data n a m e . In this instance the screen input in line 3, column 
20 is accepted from and/or m o v e d to the data n a m e SCR-CONTRACT-NO, which is 
defined elsewhere in the Data Division. 

Unlike the A C C E P T a n d D I S P L A Y statements, S C R E E N S E C T I O N 
F O R E G R O U N D - C O L O R and B A C K G R O U N D - C O L O R can use identifiers as well as 
integers. Level-78 can be used as well. However, the B R I G H T colors are not 
acceptable. Using values 0-7 and H I G H L I G H T is the equivalent of 8-15. 

Hierarchy Chart 
The hierarchy chart in Figure 10.7 combines the functions of the data validation 
and reporting programs of Chapters 8 and 9. The second-level module, P R O C E S S -
R E N T A L - R E C O R D S , effectively drives the program a n d contains subordinates to 
VALIDAI E-REN'I A L - R E C O R D , C O M P U T E - I N D - B I L L , W R I T E - V A L 1 D - R E C O R D , and 
I N P U T - S C R E E N - C O N F I R M . 

The validation module, VALI D A T E - R E N T A L - R E C O R D , contains a lower-level 
module for every validity check (identical to those in Chapter 8), each of which calls 
a c o m m o n routine that displays the indicated error message or clears the error line. 
The computation module, C O M P U T E - I N D - B I L L , has three subordinates of its own: 
C O M P U T E - M I L E A G E - T O T A L , C O M P U T E - D A I L Y - T O T A L , a n d C O M P U T E -
I N S U R A N C E - T O T A L . The remaining modules under P R O C E S S - R E N T A L - R E C O R D S 
write the validated record, then determine whether another record is to be processed. 

Pseudocode 

The pseudocode in Figure 10.8 is driven by an overall loop to process transactions 
until the user elects to quit. Each n e w transaction begins with validation of individual 
fields, which continues until the user indicates that the entire screen is accurate; 
that is, the user is given the opportunity to change any field that has been previously 
validated. Within this loop, each field is validated interactively; that is, the user 
cannot enter the next field until the current field has been accepted as valid. 

Once all fields have been entered and validated, the program moves to the 
computation of the bill according to the specifications presented earlier. The 
computed bill is displayed o n the screen, the validated record is written to a valid 
record file, and the user is given the opportunity to process another transaction. 



The Tuition Billing Program Revisited 

Hierarchy Chart 

VALIDATE 
CONTRACT 
NUMBER 

w DISPLAY 
ERROR 

MESSAGE 

VALIDATE 
RENTAL 
RECORD 

INPUT 
SCREEN 

CONFIRM 

PRODUCE 
CUSTOMER 

BILLS 

CLEAR 
ERRORS 

PROCESS 
RENTAL 

RECORDS 

COMPUTE 
IND 
BILL 

COMPUTE 
MILEAGE 

TOTAL 

WRITE 
VALID 

RECORD 

COMPUTE 
DAILY 
TOTAL 

DISPLAY 
ERROR 

MESSAGE 

INPUT 
SCREEN 

CONFIRM 

COMPUTE 
INSURANCE 

TOTAL 

CLEAR 
ERRORS 

Pseudocode for Car Validation and Billing Program (Screen Version) 

Open valid-rental-file j 
Get today's date | 
DO WHILE another record is desired 
• DO UNTIL information correct 

r-- DO UNTIL valid-field-switch = spaces 
Accept contract number 

r - IF contract number = zeros 
! Display 'Contract number must not be zero' '. 

Move 'NO' to valid-field-switch 
! ELSE | 

Move spaces to valid-field-switch j 
^ - ENDIF | 
ENDDO \ 

I 
1 



Chapter 10 — Screen I-

(coniinued) 

i 
] DO UNTIL valid-field-switch = spaces 
| Accept last-name 
| J {— IF last-name = spaces 
j | Display 'Error - Missing last name' 
| j Move 'NO' to valid-field-switch 
j I ELSE 
S I Move spaces to valid-field-switch 
j | — ENDIF 
I ENDDO 
I . . . Validation checks for remaining fields 
| Display information correct message 
I p - DO UNTIL valid confirmation ("Y", "y", "N", or "n") 
j Accept confirm-switch 
I '— IF valid confirmation 

Clear previous error message 
ELSE 

I Display 'Must be "Y" or "N"' 
| L . ENDIF 

! | — ENDDO 
l- ENDDO 

Compute miles driven = miles in - miles out 
r - DO CASE 
| Car Type E - Move economy rate to mileage rate 

Car lype C - Move compact rate to mileage rate 
Car Type M - Move midsize to mileage rate 
Car Type F - Move full size rate to mileage rate 
Car Type L - Move luxury rate to mileage rate 

L - END CASE 
Compute mileage total = miles driven * mileage rate 
Compute daily total = days rented * daily rate 

— IF insurance taken 
Compute insurance = insurance rate * days rented 

—• END-IF 
Compute total bill = mileage amount + daily amount + insurance 
Display computed bill 
Write valid record to valid record file 
Display Another record message 

— DO UNTIL valid confirmation ("Y", " y " , "N", or "n") 
Accept confirm-switch 

— IF valid confirmation 
Clear previous error message 

f ELSE 
| Display 'Must be "Y" or "N"' 
I — ENDIF 
I— ENDDO 

- ENDDO 
Close valid-rental-file 
Stop run 



The Tuition1 Billing Program Revisited 

The completed program is shown in Figure 10.9 and includes m a n y statements 
from the earlier programs in Chapters 8 and 9. The most significant difference 
is that 1-0 is screen based, with transactions entered via the keyboard and 
computed results displayed on the monitor, as provided through the extended 
Screen Section (lines 135-244). The program also creates a VALID-RENTAL-FILE 
as output, illustrating that the same program can contain both a File Section and 
a Screen Section 

Car Validation and Billing Program 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SCRNCARS. 
AUTHOR. CVV. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT VALID-RENTAL-FILE 
ORGANIZATION IS LINE 

DATA DIVISION. 

ASSIGN TO 'A:\CHAPTR10\VALRENT.DAT' 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

FD VALID-RENTAL-FILE. 
01 VALID-RENTAL-RECORD 

WORKING-STORAGE SECTION. 
01 RENTAL-RECORD-IN. 

05 REN-CONTRACT-NO 
05 REN-NAME. 

10 REN-LAST-NAME 
10 REN-FIRST-NAME 
10 REN-INITIAL 

05 REN-RETURNED-DATE. 
10 REN-RETURNED-YEAR 
10 REN-RETURNED-MONTH 

88 VALID-MONTHS 
88 FEBRUARY 
88 30-DAY-M0NTH 
88 31-DAY-M0NTH 

10 REN-RETURNED-DAY 
05 REN-CAR-TYPE 

88 VALID-CAR-TYPES 
05 REN-DAYS-RENTED 

88 ZERO-DAYS-RENTED 
88 VALID-DAYS-RENTED 

05 REN-MILEAGE. 
10 REN-MILES-IN 
10 REN-MILES-OUT 

PIC X(57). 

PIC 9(6). 

PIC X(15). 
PIC X(10). 
PIC X. 

PIC 9(2). 
PIC 9(2). 

VALUES 1 
VALUE 2. 
VALUES 4 

THRU 12. 

VALUES 
PIC 9(2). 
PIC X. 

VALUES 
PIC 99. 

VALUE 
VALUES 

PIC 9(6). 
PIC 9(6). 

1 3 
9 11. 
5 7 8 10 12. 

'E' 'C 'M' 'F' 

THRU 35. 

file://'A:/CHAPTR10/VALRENT.DAT'


Chapter 10 — Screen l-O 

(continued) 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

01 

01 

10 REN-MILEAGE-RATE PIC V99. 
88 VALID-MILEAGE-RATES VALUES 00 THRU .50. 

05 REN-INSURANCE PIC X. 
88 VALID-INSURANCE VALUE 'Y' 'y' 'N' 
88 INSURANCE VALUE 'Y' 'y'. 

01 PROGRAM-SWITCHES-AND-CONSTANTS. 
05 
05 

MILES-PER-DAY-FACTOR 
VALID-FIELD-SWITCH 
88 VALID-FIELD 

05 CONFIRM-SWITCH 
I N F 0 _ C 0 R R E C T 

NO-MORE-RECORDS 
VALID-CONFIRMED 

PIC 99 
PIC XX. 

PIC X 

VALUE 10. 

VALUE SPACES. 
VALUE SPACES. 

VALUE 'Y' 'y' 
VALUE 'N' V 
VALUE 'N' 'n' 

TODAYS-DATE-INFORMATION. 
05 TODAYS-DATE. 

10 TODAYS-YEAR 
10 TODAYS-MONTH 
10 TODAYS-DAY 

05 SCREEN-DATE 

PIC 99. 
PIC 99. 
PIC 99. 
PIC X(8). 

CONFIRM-MESSAGES. 
05 CONHRM-MESSAGE PIC X(27). 
05 INFO-CORRECT-MESSAGE PIC X(27) 

VALUE 'Above information correct? 
05 ANOTHER-RECORD-MESSAGE PIC X(27) 

VALUE ' Enter Another Record? 

01 ERROR-MESSAGES. 
05 ERROR-MESSAGE PIC X(40). 
05 ZERO-CONTRACT-NO-MSG PIC X(40) 

VALUE ' CONTRACT NUMBER MUST NOT BE ZERO'. 
05 LAST-NAME-MSG PIC X(40) 

VALUE ' MISSING LAST NAME'. 
05 FIRST-NAME-MSG PIC X(40) 

VALUE ' MISSING FIRST NAME'. 
05 INITIAL-MSG PIC X(40) 

VALUE ' NON ALPHABETIC INITIAL'. 
05 CAR-TYPE-MSG PIC X(40) 

VALUE 1 CAR TYPE MUST BE: E, C, M, F, OR L'. 
05 MONTH-MSG PIC X(40) 

VALUE ' MONTH MUST BE BETWEEN 1 AND 12'. 
05 DAY-MSG PIC X(40) 

VALUE ' INVALID DAY'. 
05 FUTURE-DATE-MSG PIC X(40) 

VALUE ' DATE HAS NOT YET OCCURRED'. 
05 NON-NUM-DAYS-RENTED-MSG PIC X(40) 

VALUE ' DAYS RENTED MUST BE NUMERIC. 
05 ZERO-DAYS-MSG PIC X(40) 



The Tuition Billing Program Revisited 

, i < i (continued) 

89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

01 

01 

01 

VALUE 1 DAYS RENTED MUST BE > ZERO'. 
05 LEASING-MSG PIC X(40) 

VALUE ' REFER TO LONG-TERM LEASING'. 
05 NON-NUM-MILES-IN-MSG PIC X(40) 

VALUE ' NON-NUMERIC MILES IN'. 
05 NON-NUM-MILES-OUT-MSG PIC X(40) 

VALUE 1 NON-NUMERIC MILES OUT'. 
05 LESS-THAN-MILES-MSG PIC X(40) 

VALUE 1 MILEAGE IN LESS THAN MILEAGE OUT' 
05 INVALID-MILES-MSG PIC X(40) 

VALUE 1 MILES DRIVEN UNREASONABLY LOW. 
05 NON-NUM-RATE-MSG PIC X(40) 

VALUE ' NON-NUMERIC MILEAGE RATE'. 
05 MILEAGE-RATE-MSG PIC X(40) 

VALUE ' MILEAGE RATE OUT OF RANGE'. 
05 INSURANCE-MSG PIC X(40) 

VALUE ' INSURANCE CODE MUST BE Y OR N'. 
05 YES-NO-MSG PIC X(40) 

VALUE ' MUST BE "Y" OR "N"'. 

DAI LY-RATES. 
05 ECONOMY-RATE PIC 9(3)V99 VALUE 15. 
05 COMPACT-RATE PIC 9(3)V99 VALUE 20. 
05 MID-RATE PIC 9(3)V99 VALUE 24. 
05 FULL-RATE PIC 9(3)V99 VALUE 28. 
05 LUXURY-RATE PIC 9(3)V99 VALUE 35. 
05 INSURANCE-RATE PIC 99V99 VALUE 10.50 

IND -BILL-INFORMATION. 
05 IND-MILES-DRIVEN PIC 9(6). 
05 IND-DAILY-RATE PIC 9(3)V99. 
05 IND-DAILY-TOTAL PIC 9(5)V99. 
05 IND-MILEAGE-TOTAL PIC 9(4)V99. 
05 IND-INSURANCE-TOTAL PIC 9(4)V99. 
05 IND-AMOUNT-DUE PIC 9(6)V99. 

SCREEN-COLORS. 
05 BLUE 
05 CYAN 
05 RED 
05 MAGENTA 
05 WHITE 
05 BRIGHT-GREEN 
05 BRIGHT-MAGENTA 
05 BRIGHT-WHITE 

PIC S9(4) 
PIC S9(4) 
PIC S9(4) 
PIC S9(4) 
PIC S9(4) 
PIC S9(4) 
PIC S9(4) 
PIC S9(4) 

COMP-5 VALUE 1. 
COMP-5 VALUE 3. 
COMP-5 VALUE 4. 
COMP-5 VALUE 5. 
COMP-5 VALUE 7. 
COMP-5 VALUE 10. 
COMP-5 VALUE 13. 
COMP-5 VALUE 15. 

iSCREEN SECTION. 
01 OPENING-SCREEN. 

05 BLANK SCREEN 
BACKGROUND-COLOR BLUE FOREGROUND-COLOR WHITE. 



Chapter 10 — Screen l-O 

c (continued) 

139 05 SCREEN-PROMPTS. 
140 10 LINE 1 BLANK LINE BACKGROUND-COLOR MAGENTA. [ 
141 10 COLUMN 20 VALUE 'Mavis Car Rental Company' , 
142 BACKGROUND -COLOR MAGENTA 
143 FOREGROUND -COLOR BRIGHT-GREEN. 
144 10 SCR-DATE PIC X(8) FROM SCREEN-DATE 
145 COLUMN 55 BACKGROUND-COLOR MAGENTA 
146 FOREGROUND-COLOR BRIGHT-GREEN. 
147 10 LINE 3 COLUMN 7 VALUE 'Contract No:'. 
148 J0_ LINE 5 COLUMN 7 VALUE 'Customer Information:1. 
149 ! 10 LINE 6 COLUMN 9 VALUE 'Last Name 1. ; 
150 ! 10 COLUMN 25 VALUE 'First'. ' 
151 10 COLUMN 36 VALUE 'Initial'. 
152 10 LINE 9 COLUMN 6 VALUE 'Car Information:'. 
153 10 LINE 10 COLUMN 12 VALUE 'Type Code:'. 
154 10 COLUMN 25 
155 VALUE '(Compact, Economy, Midsize, Fullsize, Luxury)' 
156 FOREGROUND -COLOR CYAN. 
157 10 COLUMN 26 VALUE 'C HIGHLIGHT. 
158 10 COLUMN 35 VALUE ' E' HIGHLIGHT. 
159 10 COLUMN 44 VALUE 'M' HIGHLIGHT. 
160 10 COLUMN 53 VALUE 'F' HIGHLIGHT. 
161 10 COLUMN 63 VALUE 'L' HIGHLIGHT. 
162 10 LINE 11 COLUMN 8 VALUE 'Date Returned:'. 
163 10 COLUMN 23 VALUE 'mm/dd/yy' 
164 FOREGROUND -COLOR BRIGHT-WHITE. 
165 10 LINE 12 COLUMN 10 VALUE 'Days Rented:'. 
166 10 LINE 13 COLUMN 10 VALUE 'Mileage:'. 
167 10 LINE 14 COLUMN 13 VALUE 'Miles In:'. 
168 10 LINE 15 COLUMN 12 VALUE 'Miles Out:'. 
169 10 COLUMN 37 VALUE 'Mileage Rate:'. 
170 10 LINE 16 COLUMN 12 VALUE ' Insurance:'. 
171 10 COLUMN 25 VALUE '(Y/N)' 
172 FOREGROUND--COLOR CYAN. 
173 
174 05 SCREEN-INPUTS. 
175 10 SCR-CONTRACT-NO PIC 9(6) USING REN-CONTRACT-NO 
176 LINE 3 COLUMN 20 REVERSE-VIDEO. 
177 10 SCR-LAST-NAME PIC X(15) USING REN-LAST-NAME 
178 LINE 7 COLUMN 9 REVERSE-VIDEO. 
179 10 SCR-FIRST-NAME PIC X( 10) USING REN-FIRST-NAME 
180 LINE 7 COLUMN 25 REVERSE-VIDEO. 
181 10 SCR-INITIAL PIC X USING REN-INITIAL '< 
182 LINE 7 COLUMN 36 REVERSE-VIDEO. 
183 10 SCR-CAR-TYPE PIC X USING REN-CAR-TYPE 
184 LINE 10 COLUMN 23 REVERSE-VIDEO AUTO. 
185 10 SCR-RETURNED-MONTH PIC 99 USING REN-RETURNED-MONTH 
186 LINE 11 COLUMN 23 REVERSE-VIDEO AUTO. t 

187 10 SCR-RETURNED-DAY PIC 99 USING REN-RETURNED-DAY > 
188 LINE 11 COLUMN 26 REVERSE-VIDEO AUTO. 



The Tuition Billing Program Revisited 

(continued) 

189 10 SCR-RETURNED-YEAR PIC 99 USING REN-RETURNED-YEAR 
190 LINE 11 COLUMN 29 REVERSE-VIDEO AUTO. 
191 10 SCR-DAYS-RENTED PIC 99 USING REN-DAYS-RENTED 
192 LINE 12 COLUMN 23 REVERSE-VIDEO AUTO. 
193 10 SCR-MILES-IN PIC 111,119 USING REN-MILES-IN 
194 LINE 14 COLUMN 23 REVERSE-VIDEO. 
195 10 SCR-MILES-OUT PIC 111,119 USING REN-MILES-OUT 
196 LINE 15 COLUMN 23 REVERSE-VIDEO. 
197 10 SCR-MILEAGE-RATE PIC .99 USING REN-MILEAGE-RATE 
198 LINE 15 COLUMN 54 REVERSE-VIDEO. 
199 10 SCR-INSURANCE PIC X USING REN-INSURANCE 
200 LINE 16 COLUMN 23 REVERSE-VIDEO AUTO. 
201 05 LINE 24 BLANK LINE. 
202 05 LINE 25 BLANK LINE. 
203 ' ' " / ; - d , 7 t e , b £ " ^ " ' ' ; ' c ; ; ' ^ '•<•'•-••'•< 

204 !01 UPDATE-SCREEN.i' 
205 05 LINE 11 COLUMN 67 VALUE 'Totals' HIGHLIGHT. 
206 05 LINE 12 COLUMN 38 VALUE 'Rental Rate:' HIGHLIGHT. 
207 05 UPD-DAILY-RATE PIC $$$9.99 FROM IND-DAILY-RATE 
208 LINE 12 COLUMN 50 HIGHLIGHT. 
209 05 UPD-DAILY-TOTAL PIC $$$,$$9.99 FROM IND-DAILY-TOTAL 
210 COLUMN 63 HIGHLIGHT. 
91 1 
CXI 

nc i tuc 1/1 rni i imm m 
i-itii. j.-r vui-urm *t i 

Vlfll IIC l l l i ] ^ nvi'.mn.l UTCUI ICUT 
¥ nuuL. riiiwj u I i «cu. iiiuml^uii I . 

111 05 UPD-MILES-DRIVEN PIC 111,119 FROM IND-MILES-DRIVEN 
213 COLUMN 50 HIGHLIGHT. 
214 05 UPD-MILEAGE-TOTAL PIC $$,$$9.99 
215 FROM IND-MILEAGE-TOTAL 
216 LINE 15 COLUMN 64 HIGHLIGHT. 
217 05 LINE 16 COLUMN 35 VALUE 'Insurance Rate:' HIGHLIGHT. 
218 05 UPD-INSURANCE-RATE PIC $$9.99 FROM INSURANCE-RATE 
219 LINE 16 COLUMN 51 HIGHLIGHT. 
220 05 UPD-INSURANCE-TOTAL PIC $$,$$9.99 
221 FROM IND-INSURANCE-TOTAL 
222 COLUMN 64 HIGHLIGHT. 
223 05 LINE 17 COLUMN 63 VALUE ' ' HIGHLIGHT. 
224 05 LINE 18 COLUMN 48 VALUE 'Amount Due: ' HIGHLIGHT. 
225 05 UPD-AMOUNT-DUE PIC $$$$,$$9.99 FROM IND-AMOUNT-DUE 
226 COLUMN 62 HIGHLIGHT. 
227 
228 01 ERROR-LINE. 
229 05 LINE 25 BLANK LINE BACKGROUND-COLOR RED. 
230 05 PIC X(40) FROM ERROR-MESSAGE 
231 COLUMN 20 HIGHLIGHT BLINK BEEP 
232 FOREGROUND-COLOR BRIGHT-WHITE BACKGROUND-COLOR RED. 
233 
234 01 CONFIRM-SCREEN. 
235 05 LINE 24 BLANK LINE BACKGROUND-COLOR MAGENTA. 
236 05 PIC X(27) FROM CONFIRM-MESSAGE 
237 LINE 24 COLUMN 25 
238 BACKGROUND-COLOR MAGENTA FOREGROUND-COLOR BRIGHT-GREEN. 



Chapter 10 — Screen l-O 

'{ " (continued) 

239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 

05 

05 
05 

PIC X USING CONFIRM-SWITCH 
LINE 24 COLUMN 52 BLINK AUTO 
BACKGROUND-COLOR MAGENTA FOREGROUND-COLOR BRIGHT-GREEN. 
LINE 25_BLAI^LINEJBACraROU(W-COLOR MAGENTA^ 
LINE 25 COLUMN 32 VALUE '(V - Yes, N~- No) 1 

BACKGROUND-COLOR MAGENTA FOREGROUND-COLOR BRIGHT-GREEN. 

PROCEDURE DIVISION. ^Cc-rnmna'ion cv crs-: 
000-CREATE-VALID-RENTAL-FILE. 

OPEN OUTPUT VALID-RENTAL-FILE. 
PERFORM 100-GET-TODAYS-DATE. 
PERFORM 200-INPUT-RENTAL-RECORDS 

UNTIL NO-MORE-RECORDS. 
CLOSE VALID-RENTAL-FILE. 
STOP RUN. 

100-GET-TODAYS-DATE. 
ACCEPT TODAYS-DATE FROM DATE. 
STRING TODAYS-MONTH '/' TODAYS-DAY '/' TODAYS-YEAR 

DELIMITED BY SIZE INTO SCREEN-DATE. 

200-INPUT-RENTAL-RECORDS. 
INITIALIZE RENTA1-RFCORD-IN. 
PERFORM 400-VALIDATE-RENTAL-RECORD WITH TEST AFTER 

UNTIL INFO-CORRECT. 
PERFORM 500-COMPUTE-IND-BILL. 
DISPLAY UPDATE-SCREEN. 
PERFORM 600-WRITE-VALID-RECORD. 
MOVE ANOTHER-RECORD-MESSAGE TO CONFIRM-MESSAGE. 
PERFORM 700-INPUT-SCREEN-CONFIRM. 

400-VALI DATE-RENTAL-RECORD. -DISPL A Y •i^m^v 
DI SPLAY OPEN ING-SCRFEN.- ' ' 
PERFORM 410-VALIDATE-C0NTRACT-N0. 
PERFORM 420-VALIDATE-NAME. 
PERFORM 430-VALIDATE-CAR-TYPE. 
PERFORM 440-VALIDATE-DATE-RETURNED 

WITH TEST AFTER UNTIL VALID-FIELD. 
PERFORM 450-VALIDATE-DAYS-RENTED. 
PERFORM 460-VALIDATE-MILES-DRIVEN. 
PERFORM 470-VALIDATE-MILEAGE-RATE. 
PERFORM 480-VALIDATE-INSURANCE. 
MOVE INFO-CORRECT-MESSAGE TO CONFIRM-MESSAGE. 
PERFORM 700-INPUT-SCREEN-CONFIRM. 

410-VALIDATE-C0NTRACT-N0. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-CONTRACT-NO 
IF REN-CONTRACT-NO = ZEROES 

MOVE ZERO-CONTRACT-NO-MSG TO ERROR-MESSAGE 



The Tuition Billing Program Revisited 

(continued) 

289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
in/1 

305 
306 
307 
308 
309 
310 
n i l o n 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 

PERFORM 499-DISPLAY-ERROR-MESSAGE 
ELSE 

PERFORM 498-CLEAR-ERRORS 
E N D - I F 

END-PERFORM. 

420-VALIDATE-NAME. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-LAST-NAME 
IF REN-LAST-NAME = SPACES 

MOVE LAST-NAME-MSG TO ERROR-MESSAGE 
PERFORM 499-DISPLAY-ERROR-MESSAGE 

ELSE 
PERFORM 498-CLEAR-ERRORS 

E N D - I F 
END-PERFORM. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-FIRST-NAME 
IF REN-FIRST-NAME = SPACES 

MOVE FIRST-NAME-MSG TO ERROR-MESSAGE 
PERFORM 499-DISPLAY-ERROR-MESSAGE 

ELSE 
n c n c n n M nno ri c a d rnnnnc r Li\rui\n tju"ULLni\-Li\i\uiw 

E N D - I F 
END-PERFORM. 
PERFORM WITH TEST A F T E R U N T I L VALID-FIELD 

ACCEPT SCR-INITIAL 
IF REN-INITIAL NOT ALPHABETIC 

MOVE INITIAL-MSG TO ERROR-MESSAGE 
PERFORM 499-DISPLAY-ERROR-MESSAGE 

ELSE 
PERFORM 498-CLEAR-ERRORS 

E N D - I F 
END-PERFORM. 

430-VALIDATE-CAR-TYPE. 
PERFORM WITH TEST A F T E R U N T I L VALID-FIELD 

ACCEPT SCR-CAR-TYPE 
I F NOT VALID-CAR-TYPES 

MOVE CAR-TYPE-MSG TO ERROR-MESSAGE 
PERFORM 499-DISPLAY-ERROR-MESSAGE 

ELSE 
PERFORM 498-CLEAR-ERRORS 

E N D - I F 
END-PERFORM. 

440-VALIDATE-DATE-RETURNED. 
PERFORM WITH TEST A F T E R U N T I L VALID-FIELD 

ACCEPT SCR-RETURNED-MONTH 
IF VALID-MONTHS 



Chapter 10 Screen 1-0 

re iQM (continued) 

339 PERFORM 498-CLEAR-ERRORS 
340 ELSE 
341 MOVE MONTH-MSG TO ERROR-MESSAGE 
342 PERFORM 499-0ISPLAY-ERR0R-MESSAGE 
343 END-IF 
344 END-PERFORM. 
345 PERFORM WITH TEST AFTER UNTIL VALID-FIELD 
346 ACCEPT SCR-RETURNED-DAY 
347 IF 30-DAY-MONTH AND REN-RETURNED-DAY > 0 AND <= 30 OR 
348 31-DAY-MONTH AND REN-RETURNED-DAY > 0 AND <= 31 OR 
349 FEBRUARY AND REN-RETURNED-DAY > 0 AND <= 29 
350 PERFORM 498-CLEAR-ERRORS 
351 ELSE 
352 MOVE DAY-MSG TO ERROR-MESSAGE 
353 PERFORM 499-DI SPLAY-ERROR-MESSAGE 
354 END-IF 
355 END-PERFORM. 
356 | PERFORM WITH TEST AFTER UNTIL VALID-FIELD 
357 I ACCEPT SCR-RETURNED-YEAR 
358 IF REN-RETURNED-DATE > TODAYS-DATE 
359 MOVE FUTURE-DATE-MSG TO ERROR-MESSAGE 
360 PERFORM 499-DI SPLAY-ERROR-MESSAGE 
361 ELSE 
362 | PERFORM 498-CLEAR-ERRORS 
363 ; END-IF 
364 j END-PERFORM. 
365 1 
366 450-VALIDATE-DAYS-RENTED. j 
367 PERFORM WITH TEST AFTER UNTIL VALID-FIELD j 
368 ACCEPT SCR-DAYS-RENTED j 
369 IF ZERO-DAYS-RENTED j 
370 MOVE ZERO-DAYS-MSG TO ERROR-MESSAGE j 
371 PERFORM 499-DISPLAY-ERROR-MESSAGE I 
372 ELSE f 
373 IF NOT VALID-DAYS-RENTED j 
374 MOVE LEASING-MSG TO ERROR-MESSAGE I 
375 PERFORM 499-DISPLAY-ERROR-MESSAGE 
376 ELSE j 
377 PERFORM 498-CLEAR-ERRORS i 
378 END-IF \ 
379 END-IF 1 
380 END-PERFORM. j 
381 I 
382 460-VALIDATE-MILES-DRIVEN. | 
383 PERFORM WITH TEST AFTER UNTIL VALID-FIELD j 
384 ACCEPT SCR-MILES-IN I 
385 ACCEPT SCR-MILES-OUT [ 
386 IF REN-MILES-IN < REN-MILES-OUT [ 
387 MOVE LESS-THAN-MILES-MSG TO ERROR-MESSAGE | 
388 PERFORM 499-DISPLAY-ERROR-MESSAGE \ 



The Tuition Billing Program Revisited 

(continued) 

j 389 ELSE 
390 IF REN-MILES-IN - REN-MILES-OUT < 
391 MILES-PER-DAY-FACTOR * REN-DAYS-RENTED 

j 392 MOVE INVALID-MILES-MSG TO ERROR-MESSAGE 
j 393 PERFORM 499-DISPLAY-ERROR-MESSAGE 
j 394 ELSE 
| 395 PERFORM 498-CLEAR-ERRORS 
j 396 END-IF 
j 397 END-IF 
{ 398 END-PERFORM. 
| 399 
j 400 470-VALIDATE-MILEAGE-RATE. _ _ 
I 401 (PERFORM WITH TEST AFTER UNTIL VALID-FIELD " j 
j 402 j ACCEPT SCR-MILEAGE-RATE 
) 403 IF NOT VALID-MILEAGE-RATES | 
| 404 MOVE MILEAGE-RATE-MSG TO ERROR-MESSAGE I 
I 405 PERFORM 499-DISPLAY-ERROR-MESSAGE i 
[ 406 | ELSE ; 
j 407 | PERFORM 498-CLEAR-ERRORS 
I 408 | END-IF 
I 409 j END-PERFORM. 
| 410 
( 411 480-VALIDATE-INSURANCE. 
j 412 PERFORM WITH TEST AFTER UNTIL VALID-FIELD 
) 413 ACCEPT SCR-INSURANCE 
| 414 IF NOT VALID-INSURANCE 
j 415 MOVE INSURANCE-MSG TO ERROR-MESSAGE 
I 416 PERFORM 499-DISPLAY-ERROR-MESSAGE 
j 417 ELSE 
| 418 PERFORM 498-CLEAR-ERRORS 
j 419 END-IF 
1 420 END-PERFORM. 
j 421 
j 422 498-CLEAR-ERRORS. 
j 423 INITIALIZE VALID-FIELD-SWITCH. 
j 424 DISPLAY 1 1 LINE 25 WITH BLANK LINE. 
| 425 
j 426 499-DISPLAY-ERROR-MESSAGE. 
j 427 MOVE 'NO' TO VALID-FIELD-SWITCH. 
I 428 DISPLAY ERROR-LINE. 

I 4 2 9 

j 430 500-COMPUTE-IND-BILL. 
J 431 PERFORM 520-COMPUTE-MILEAGE-TOTAL. 
| 432 PERFORM 540-C0MPUTE-DAILY-T0TAL. 
I 433 PERFORM 560-COMPUTE-INSURANCE-TOTAL. 
I 434 COMPUTE IND-AMOUNT-DUE ROUNDED 
j 435 = IND-MILEAGE-TOTAL + IND-DAILY-TOTAL 
I 436 + IND-INSURANCE-TOTAL 

437 SIZE ERROR DISPLAY 'SIZE ERROR ON AMOUNT DUE FOR ' 
438 REN-CONTRACT-NO 
439 END-COMPUTE. 



Chapter 10 — Screen I-O 

j 440 

j 441 520-COMPUTE-MILEAGE-TOTAL. 
j 442 COMPUTE IND-MILES-DRIVEN 

443 = REN-MILES-IN - REN-MILES-OUT 
444 END-COMPUTE. 
445 COMPUTE IND-MILEAGE-TOTAL ROUNDED 

j 446 = IND-MILES-DRIVEN * REN-MILEAGE-RATE 
I 447 SIZE ERROR 
t 448 DISPLAY 'COMPUTED BILL EXCESSIVELY LARGE' 
\ 449 END-COMPUTE. 
i 450 
! 451 540-C0MPUTE-DAILY-T0TAL. 
[ 452 [EVALUATE REN-CAR-TYPE 
I 453 | WHEN 'E' MOVE ECONOMY-RATE TO IND-DAILY-RATE 
| 454 WHEN 'C MOVE COMPACT-RATE TO IND-DAILY-RATE 
[ 455 ! WHEN 'M' MOVE MID-RATE TO IND-DAILY-RATE 
j 456 WHEN 'F' MOVE FULL-RATE TO IND-DAILY-RATE 
j 457 , WHEN 'L' MOVE LUXURY-RATE TO IND-DAILY-RATE 
| 458 WHEN OTHER MOVE ZEROES TO IND-DAILY-RATE 
j 459 ;END-EVALUATE. 
\ 460 MULTIPLY IND-DAILY-RATE BY REN-DAYS-RENTED 
j 461 GIVING IND-DAILY-TOTAL 
j 462 SIZE ERROR DISPLAY 'SIZE ERROR ON RENTAL TOTAL' 
j 463 END-MULTIPLY. 

464 
465 560-COMPUTE-INSURANCE-JOTAL._ 
466 [IF I N S U R A N C E " " 

I 467 i MULTIPLY INSURANCE-RATE BY REN-DAYS-RENTED 
| 468 j GIVING IND-INSURANCE-TOTAL 
I 469 [ SIZE ERROR DISPLAY 'SIZE ERROR ON INSURANCE TOTAL 
5 470 END-MULTIPLY 
[ 471 : ELSE 
| 472 MOVE ZEROES TO IND-INSURANCE-TOTAL 
| 473 END-IF. 
1 474 " ~ " " " 
[ 475 600-WRITE-VALID-RECORD. 
j 476 WRITE VALID-RENTAL-RECORD FROM RENTAL-RECORD-IN. 
J 477 
I 478 700-INPUT-SCREEN-CONFIRM. 
I 479 DISPLAY CONFIRM-SCREEN. 
I 480 PERFORM WITH TEST AFTER UNTIL VALID-CONFIRMED 
[ 481 ACCEPT CONFIRM-SCREEN 

482 IF VALID-CONFIRMED 
483 PERFORM 498-CLEAR-ERRORS 

( 484 ELSE 
485 MOVE YES-NO-MSG TO ERROR-MESSAGE 
486 PERFORM 499-DISPLAY-ERROR-MESSAGE 
487 END-IF 
488 END-PERFORM. 

K .̂r'c i (continued) 



Summary 

The requirements for the validation of individual fields parallel those in 
Chapter 8, and thus the table of error messages (lines 68-107) is repeated from the 
validation program. The validation process is different, however, as each field is 
checked interactively, so that the user cannot m o v e to the next field until a valid 
value has been entered for the current field. 

Consider, for example, the validation of car type in lines 324-333. The TEST 
A F T E R clause guarantees that the performed statements are executed at least once; 
that is, the car type is accepted into SCR-CAR-TYPE (defined in lines 183-184), then 
tested by the IF statement in lines 327-332. A valid car type will reset VALID-FTELD-
S W I T C H to 'NO', which in turn satisfies the condition in the P E R F O R M statement 
in line 325. A n invalid response, however, displays the appropriate error message, 
then requests a n e w response from the user. A similar process is followed for the 
other fields in each transaction. A n appreciation for the interactive nature of the 
program can best be gained by executing the program as it exists o n the 
accompanying data disk. 

The remainder of the Procedure Division is straightforward with applicable 
paragraphs copied from the earlier programs—for example, C O M P U T E - M I L E A G E -
T O T A L , C O M P U T E - D A I L Y - T O T A L , and C O M P U T E - I N S U R A N C E - T O T A L . 

The Screen Section and extended options of the ACCEPT and DISPLAY 
statements are nor included in either the COBOL-74 or COBOL-85 standard, 
and thus there are no limitations per se in the earlier compiler In other words, 
any differences that do exist are due to vendor-specific extensions, which 
vary significantly from compiler to compiler. 

The extended screen handling capabilities in the Screen Section and the 
ACCEPT and DISPLAY statements are not part of the COBOL-85 standard. 
The examples in this chapter follow the syntax of the Classroom COBOL 
compiler that accompanies the text, which conforms to the X-Open standard. 

The ACCEPT and DISPLAY statements display individual lines and/or 
accept a limited number of fields as input. Both statements contain an 
abundance of optional clauses, the functions of which are generally apparent 
from the c lause itself: BLINK, BEEP, BACKGROUND-COLOR, 
FOREGROUND-COLOR, and so forth. 

The Screen Section facilitates the production of uniform screens within a 
system as an entire screen may be easily copied from one program to the 
next. This is in contrast to individual ACCEPT and DISPLAY statements that 
are scattered throughout the Procedure Division. 



Chapter 10 — Screen l-O 

The format of the Screen Section parallels that of the File and Working-
Storage sections in the Data Division; that is, it consists of 01-level entries 
that are further divided into group and elementary items. The Screen 
Section must be the last section in the Data Division. 

Data validation may be implemented interactively through an in-line perform 
and through TEST AFTER clauses, which accept a data name, perform the 
indicated validation, then repeat the process until a valid field has been 
entered. 

f Words and Concepts 

Alt key 
ASCII characters 
Background color 
Batch-oriented program 
Data validation 
Foreground color 

Interactive program 
Password protection 
Prompt 
Reversed video 
Screen attribute 
Screen-name 

ACCEPT 
AUTO 
BACKGROUND-COLOR 
COLUMN 
DISPLAY 
FOREGROUND-COLOR 
FROM 

HIGHLIGHT 
LINE 
REVERSE-VIDEO 
SCREEN SECTION 
SECURE 
TO 
USING 

/ N 

1. The Screen Section ( ) part of the COBOL-85 standard. 

2. The typical screen displays lines of columns 
each. 

3. The clause in the ACCEPT statement prevents the user's response 
from being displayed on the monitor. 

4. The LINE and COLUMN clauses ( ) required in the ACCEPT and/or 

DISPLAY statements 

5. The Screen Section is the ( ) section in the Data Division. 

6. The key, in conjunction with the numeric keyboard, can be used 
to enter any of the 256 characters into a program. 

7. In general, the foreground and background colors ( ) be the 
same. 



Problems 

8. The ( ) statement is often used in conjunction with top-down 
testing and/or debugging. 

9. An in-line PERFORM statement, coupled with the ( ) 
clause, is used to implement interactive data validation. 

10. The facilitates the production of uniform screens 
within a system in that its entries can be easily copied from program to program. 

11. Screen l-O makes possible the implementation of ( ) 
programs. 

12. An in-line perform, in conjunction with the TEST AFTER clause, can be used to  
a field as it is entered. 

1. The same COBOL program cannot contain a Screen Section and a File Section. 

2. The File Section is required in every program. 

3. The LINE and/or COLUMN clauses are required in the DISPLAY statement. 

4. The Screen Section is required in all programs that display output on the monitor. 

5. The ACCEPT and DISPLAY statements are used for low-volume output. 

6. The options and syntax for screen l-O are unlikely to change from one compiler to 
the next. 

7. Text is typically displayed on screens in which the foreground and background 
colors are the same. 

8. COBOL-85 makes little provision for screen l-O, and thus its implementation varies 
greatly from compiler to compiler. 

9. The optional clauses in the ACCEPT statement can appear in any order. 

10. Interactive data validation cannot be implemented in programs with extensive 
screen l-O. 

1. Which clause is used to implement the following in an ACCEPT and/or DISPLAY 
statement? 
a. Invert the specified or default background and foreground colors 
b. Prevent the referenced field from being displayed on the screen 
c. Require that at least one character is entered in the referenced field 
d. Automatically position the cursor to the first character of the next field after the 

last character of the current field has been entered 
e. Clear the screen before accepting (displaying) a data element 
f. Emphasize the displayed field (multiple clauses are acceptable) 



Chapter 10 — Screen l-O 

2. Indicate the exact effect of each of the following DISPLAY statements. Note, 
however, that some of the statements are invalid syntactically, in which case you 
should indicate the nature of the error. Other statements are valid syntactically, but 
most probably do not do what the programmer intended. 
a. DISPLAY 
b. DISPLAY 'COMPUTE-TUITION paragraph is entered' 
c. DISPLAY TUITION = IND-TUITION' 
d. DISPLAY TUITION = ', IND-TUITION 
e. DISPLAY'Initials: AT LINE 5 COLUMN 5' 
f. DISPLAY initials:' AT LINE 5 COLUMN 5 
g. The two statements, DISPLAY 'Less Scholarship' AT LINE 15 COLUMN 10 

followed by DISPLAY 'Amount due' AT LINE 15 COLUMN 16 

3. Modify the tuition billing program to accommodate the following: 
a. A new password, RTG, which should be accepted as valid in all uppercase, all 

lowercase, or any combination of upper- and lowercase letters. 
b. Data validation as you see fit; the program as presently written does no validation 

whatsoever. Suggest and implement validation checks for at least three fields. 
c. Display a total screen at the conclusion of processing that contains the number 

of students processed and the corresponding totals for total tuition, total activity 
fee, total union fee, total scholarship awarded, and the total amount due. 

d. Create a valid record file as output—that is, a file containing the valid student 
records that could be input into the edited version of the tuition billing program in 
Chapter 7. 

4. Answer the following with respect to the car validation and billing program: 
a. Is the program case-sensitive; that is, is there any difference between entering 

an upper- or lowercase C to denote a compact car? 
b. What changes (if any) have to be made to VALUE clauses in the Data Division to 

make the program case-insensitive for car type? 
c. What changes (if any) have to be made in the Procedure Division to support 

those made in the Data Division in part (b)? 
d. What other changes (if any) are needed to make the program case-insensitive to 

other data names? 

5. The car validation and billing program makes extensive use of the in-line PERFORM 
statement to validate data as it is entered. 
a. What is the minimum number of times the statements within an in-line perform 

(e.g., lines 305-313) will be executed? 
b. Do the PERFORM statements (e.g., lines 305-313) implement a DO WHILE or a 

DO UNTIL structure? 
c. What is the effect (if any) of substituting TEST BEFORE for TEST AFTER in line 

305? 
d. What is the effect (if any) of removing the TEST clause in line 305? 



Overview 
In t roduct ion t o T a b l e s 

OCCURS Clause 
Processing a Table 
PERFORM VARYING 

A S e c o n d E x a m p l e 
Problems with the OCCURS Clause 
Rules for Subscripts 
Relative Subscripting 
USAGE Clause 
OCCURS DEPENDING ON 

T h e S t u d e n t T r a n s c r i p t P r o g r a m 
Programming Specifications 
Program Design 
The Completed Program 

I n d e x e s v e r s u s S u b s c r i p t s 
The SET Statement 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



• Chapter 11 — Introduction to Tables 

O B J E C T I V E S 

After reading this chapter you will be able to: 

Define a table and describe its use in programming. 

j Use the OCCURS (at either the group or elementary level) to implement a 
table in COBOL. 

Use the PERFORM VARYING statement to process a table. 

Distinguish between fixed and variable length records; use the OCCURS 
DEPENDING ON clause to implement a variable length table. 

State the purpose of the USAGE clause. 

Differentiate between a subscript and an index. 

OVERVIEW 

This is the first of three chapters that deal exclusively with tables, a topic of major 
importance in any programming language. A table is a grouping of similar data 
whose values are stored in consecutive storage locations and assigned a single 
data name. Any reference to an individual element within a table is accomplished 
by a subscript or an index. 

The present chapter introduces the basic statements for table processing. 
We begin with the OCCURS clause to define a table and show how it can be 
used at both the group and elementary levels. We discuss the DEPENDING ON 
phrase to specify a variable-length table and the concept of relative subscripting. 
We cover the PERFORM VARYING statement to process the elements in a table 
by repeatedly executing a paragraph or a series of in-line statements. We also 
differentiate between an index that is specified in an INDEXED BY clause and a 
subscript defined in Working-Storage. All of this material is summarized by the 
illustrative program at the end of the chapter. 

The motivation for using a table comes from examination of Figure 11.1. Let us 
assume that a c o m p a n y tabulates its sales o n a monthly basis and that the sales of 
each m o n t h are to be referenced within a C O B O L program. Without tables, as in the 
brute force approach of Figure 11.1a, 12 different data n a m e s are required: JAN-
SALES, FEB-SALES, and so on. A table, however, enables you to define a single data 
n a m e such as SALES, then subsequently refer to individual months by an appropriate 
subscript. SALES (2), for example, refers to the sales for the second month, February. 



Introduction to Tables 

The Table Concept 

01 ANNUAL-SALES-DATA. 
05 JAN-SALES PIC 9(6). 
05 FEB-SALES PIC 9(6). 
05 MAR-SALES PIC 9(6). 
05 APR-SALES PIC 9(6). 
05 MAY-SALES PIC 9(6). 
05 JUN-SALES PIC 9(6). 
05 JUL-SALES PIC 9(6). 
05 AUG-SALES PIC 9(6). 
05 SEP-SALES PIC 9(6). 
05 OCT-SALES PIC 9(6). 
05 NOV-SALES PIC 9(6). 
05 DEC-SALES PIC 9(6). 

01 ANNUAL-SALES-DATA. 
05 SALES OCCURS 12 TIMES PIC 9(6). 

SALES (1) 
ANNU> 

SALES (2) 

\L-SALES-DATA 

SALES (3) 

. . . 

The OCCURS clause defines the n u m b e r of entries in a table and is covered in 
detail later in the chapter. For the time being, however, w e consider only its 
simplest form: 

OCCURS integer TIMES 
The O C C U R S clause is illustrated in Figure 11.1b to define a table of 12 elements, 
with each element in the table having the identical format; that is, each element is a 
six-position numeric field. The entire table takes a total of 72 positions (12 entries x 
6 positions per entry), as s h o w n in the schematic of Figure 11.1c. As indicated, 
individual entries in the table are referenced by the table name, SALES, and an 
appropriate subscript—for example, SALES (1) to refer to the first element (January 
sales), SALES (2) to refer to the second element (February sales), and so on. 

The O C C U R S clause is not permitted at the 01 level and thus the sales table 
was defined under the entry A N N U A L - S A L E S - D A T A in Figure 11.1b. T h e 12 elements 
m a y be referenced collectively by the data n a m e A N N U A L - S A L E S - D A T A although 
such a reference is unlikely to be used. 

file:///L-SALES-DATA


Chapter 11 — introduction to Tables 

IPtt ieessLtc, V JL& 

After a table has been defined, w e shall want to s u m the 12 monthly totals to 
produce an annual total. There are several approaches, the first of which is brute 
force: 

COMPUTE ANNUAL-TOTAL 
= SALES (1) + SALES (2) + SALES (3) 
+ SALES (4) + SALES (5) + SALES (6) 
+ SALES (7) + SALES (8) + SALES (9) 
+ SALES (10) + SALES (11) + SALES (12) 

END-COMPUTE. 
This technique is cumbersome to code, and defeats the purpose of defining the 
table in the first place, but it does explicitly illustrate the concept of table 
processing. Fortunately, however, there is a better w a y through the P E R F O R M 
V A R Y I N G statement. 

The P E R F O R M V A R Y I N G statement causes repeated execution of a designated 
procedure or series of in-line statements a n d is the most c o m m o n m e a n s of 
processing a table. Consider: 

PERFORM [procedure - name - ij 
[BEFORE] WITH TEST [AFTER j 

literal-1 literal-2 VARYING identifier-1 FROM \ \ BY \ identifier-2 identifier-3 

UNTIL condition- 1 
[imperative-statement-1 END-PERFORM] 
The TEST B E F O R E / T E S T A F T E R clause is n e w to C O B O L - 8 5 and was explained 

in Chapter 9. The clause is optional and typically omitted; the default is TEST 
B E F O R E and corresponds to the COBOL-74 implementation. 

The P E R F O R M V A R Y I N G statement (with test before) initializes a variable, 
tests a condition, and if the condition is not satisfied, enters a loop to execute a 
procedure, increment a variable, and retestthe condition (condition-1). The loop is 
executed repeatedly until the condition is finally satisfied, at which point the 
P E R F O R M V A R Y I N G statement ends, and control passes to the next sequential 
statement in the program. The sequence just described is illustrated in Figure 11.2 
and is restated below: 

1. Identifier-1 is initialized to the value in the F R O M clause 
2. Condition-1 is evaluated and is either true or false: 

a. If the condition is true, the P E R F O R M V A R Y I N G is terminated and control 
passes to the next sequential statement. 

b. If the condition is false, procedure-name-1 or imperative-statement-1 is 
executed, after which identifier-1 is incremented with the value in the B Y 
clause. Condition-1 is reevaluated as either true or false with subsequent 
action as just described. 



Introduction to Tables 

Figure 11 .2 PERFORM VARYING (with TEST BEFORE) 

Initialize 
identifier-1 

to FROM value 

Increment 
identifier-1 

with BY value 

The condition in the P E R F O R M V A R Y I N G statement typically includes a greater 
than sign, rather than an equal sign, to execute the designated procedure an integer 
n u m b e r of times; for example, the statement 

PERFORM COMPUTE-PAYMENT 
VARYING SUBSCRIPT FROM 1 BY 1 

UNTIL SUBSCRIPT > 3 
executes the procedure C O M P U T E - P A Y M E N T three times. T h e sequence is 
explained as follows: 

1. S U B S C R I P T is initially set to 1 and the condition SUBSCRIPT > 3 is evaluated. 
The condition is not true, so the designated procedure, C O M P U T E - P A Y M E N T , 
is executed the first time. 

2. S U B S C R I P T is incremented to 2 and the condition is retested. T h e condition is 
still not satisfied, so C O M P U T E - P A Y M E N T is executed a second time. 

3. SUBSCRIPT is incremented to 3, but the condition is still false—3 is not greater 
than 3—and hence C O M P U T E - P A Y M E N T is executed a third (and final) time. 

4. S U B S C R I P T is incremented to 4, satisfying the condition in the U N T I L clause 
and terminating the P E R F O R M statement. (Note that, had the condition been 
specified as S U B S C R I P T = 3, C O M P U T E - P A Y M E N T would have been executed 
only twice.) 



Chapter 11 — introduction to Tables 

Extending this reasoning to the general case of executing a procedure N times 
requires a statement of the form: 

PERFORM PARAGRAPH 
VARYING SUBSCRIPT FROM 1 BY 1 

UNTIL SUBSCRIPT > N. 
The data n a m e used to monitor execution—for example, S U B S C R I P T — m u s t be 
explicitly defined in Working-Storage. 

The P E R F O R M V A R Y I N G statement is illustrated a final time in Figure 11.3. 
The choice between performing a paragraph as in Figure 11.3a, or using an in-line 
perform as in Figure 11.3b, is one of personal preference. Both techniques are 
equally acceptable and achieve identical results. 

Figure 11 .3 Processing a Table 

MOVE ZERO TO ANNUAL-TOTAL. 
PERFORM 

VARYING SALES-SUB FROM 1 BY 1 
UNTIL SALES-SUB > 12 

ADD SALES (SALES-SUB) TO ANNUAL-TOTAL 
END-PERFORM. 

Let us consider a second example in which three sets of salary data are kept for each 
employee; that is, each employee record contains the employee's present salary 
and date o n which it became effective, the previous salary and date, and the second 
previous salary and date. (Not all employees have all three salaries.) 

It is, of course, possible to develop unique data n a m e s for each occurrence of 
salary information, for example, 

05 SALARY-DATA. 

MOVE ZERO TO ANNUAL-TOTAL. 
PERFORM INCREMENT-ANNUAL-TOTAL 

VARYING SALES-SUB FROM 1 BY 1 
UNTIL SALES-SUB > 12. 

INCREMENT-ANNUAL-TOTAL. 
ADD SALES (SALES-SUB) TO ANNUAL-TOTAL. 

(a) Performing a Paragraph 

(b) In-line Perform 

10 PRESENT-SALARY 
10 PRESENT-SALARY-DATE 
10 PREVIOUS-SALARY 
10 PREVIOUS-SALARY-DATE 
10 SECOND-PREVIOUS-SALARY 
10 SECOND-PREVIOUS-SALARY-DATE 

PIC 9(6). 
PIC 9(4). 
PIC 9(6). 
PIC 9(4). 
PIC 9(6). 
PIC 9(4). 



A Second E xampIe 

F i g u r e 11 -4 OCCURS Clause at the Group Level 

05 SALARY-DATA OCCURS 3 TIMES. 
10 SALARY PIC 9(6). 
10 SAL-DATE PIC 9(4). 

(a) COBOL Statements 

S A L A R Y - D A T A ( t ) S A L A R Y - D A T A (2) SALARY-DATA (3) 

S A L A R Y (1) S A L - D A T E ( 1 ) S A L A R Y (2) S A L - D A T E ( 2 ) S A L A R Y (3) S A L - D A T E ( 3 ) 

(b) Storage Schematic 

F igure i 1.5 OCCURS Clause at the Elementary Level 

05 SALARY-DATA. 
10 SALARY OCCURS 3 TIMES PIC 9(6). 
10 SAL-DATE OCCURS 3 TIMES PIC 9(4). 

(a) COBOL Siaternenis 

S A L A R Y - D A T A 

S A L A R Y (1) S A L A R Y (2) S A L A R Y (3) S A L - D A T E ( 1 ) S A L - D A T E ( 2 ) S A L - D A T E ( 3 ) 

(b) Storage Schemat ic 

W h a t if, however, it were suddenly decided that four, five, or even ten levels of 
historical data were required? The situation is neatly circumvented by establishing 
a table that enables the programmer to define logically similar elements under a 
c o m m o n n a m e , and to reference the desired entry subsequently by an appropriate 
subscript. Hence S A L A R Y (1) denotes the present salary, SALARY (2) the previous 
salary, SALARY (3) the second previous salary, a n d so on. Figure 11.4 shows the 
C O B O L statements and corresponding storage allocation for such a scheme. 

Figure 11.4 depicts a total of 30 storage positions for the table SALARY-DATA, 
with the O C C U R S clause at the group level. Positions 1-6 refer to SALARY (1), 
positions 7-10 refer to S A L - D A T E (1), and positions 1-10 collectively to SALARY-
D A T A (1). In similar fashion, positions 11-16 refer to S A I A R Y (2), positions 17-20 
refer to S A L - D A T E (2), a n d positions 11-20 collectively to S A I A R Y - D A T A (2). 
Whenever a subscript is used, it is enclosed in parentheses. 

Figure 11.5 contains an alternate implementation with two O C C U R S clauses 
at the elementary level. A total of 30 storage positions are still assigned to the table, 
but the storage allocation is different; i.e., positions 1-6 contain S A L A R Y (1), positions 
7-12 contain S A L A R Y (2), a nd positions 13-18 contain SAIARY (3). In similar fashion, 



Chapter 11 Introduction to Tables 

positions 19-22 correspond to SAL-DATE (1), positions 23-26 to SAL-DATE (2), and 
T - 7 O n O A T H A ^Yl T7:*l ~. T~?i ~ I T A T^l , . 1 1 IT '. • 

p u s i u o i i b i i - o u LU o n L - L i n i c (Oj. c i u i c i a i i a i i g c i i i c i i i , r i g u i e x i . t u i n g u i c I J U J , i s 
appropriate; the choice is u p to the programmer. 

Problems with the OCCURS Clause ... 
The most c o m m o n error associated with tables is the omission of a subscript where 
one is required, or the inclusion of a subscript where it is not needed. The rule is 
very simple. Any data name that has been defined with an OCCURS clause, or any 
data name subservient to a group item containing an OCCURS clause, must always 
be referenced with a subscript. Failure to do so results in a compilation error. Thus 
all of the following are valid references with respect to the table definition of 
Figure 11.4: S A L A R Y - D A T A (2), SALARY (2), and SAL-DATE (2). 

In the table definition of Figure 11.5, however, the O C C U R S clause exists at 
the elementary, rather than the group, level. S A L A R Y - D A T A is referenced without a 
subscript and refers collectively to the 30 bytes in the table. S A L A R Y and SAL-DATE 
are both defined with O C C U R S clauses and require subscripts: SALARY (2) and SAL-
D A T E (2), for example. 

The compiler checks only for the existence of a subscript, but not its value; for 
example, the entry SALARY (20) is syntactically correct in that a subscript is present, 
but logically incorrect as the O C C U R S clause defines only three elements. The error 
would not be detected during compilation; it would pose a problem during execution 
as it references an invalid storage location with unpredictable results. S o m e 
compilers offer the option of including a subscript check whereby an error message 
will be produced during execution if an invalid subscript is referenced. 

Rules for Subscr ipts 

C O B O L subscripts m a y be either variable or constant, but in either case must 
adhere to the following: 

1. At least one space is required between the data n a m e a n d the left 
parenthesis. 

SALES (2) 

SALES(SUB) 

SALES(2) 

2. A space m a y not follow the left parenthesis nor precede the right 
parenthesis. 

Valid: SALES (SUB) 
! / ' ' " ' SALES (2) 

SALES( 2) 

SALES(2 ) 

3. A subscript can be a data n a m e or a numeric literal with a n integer value. 
Relative subscripting—that is, a data n a m e plus or minus an integer—is also 
permitted. 

Valid' SALES (SUB + 1) 

Invalid: SALES (1.2) 

Relative Subscripting 
Relative subscripting—that is, the ability to add or subtract an integer from a 
subscript—is a tremendous convenience in certain situations. The report in Figure 



Relative Subscripting 

CURRENT SALARY EFFECTIVE DATE PERCENT INCREASE 
$46,000 09/93 15.0% 
$40,000 09/92 11.1% 
$36,000 09/91 12.5% 
$32,000 09/90 

(a) Salary History 

PERFORM VARYING SUB FROM 1 BY 1 
UNTIL SUB > 3 OR SALARY (SUB + 1) = 0 

COMPUTE PCT-SALARY-INC (SUB) 
= 100 * ((SALARY (SUB) - SALARY (SUB + 1)) 
/ SALARY (SUB + 1) 

END-COMPUTE 
END-PERFORM. 

(b) Computation of Percent Salary Increase 

11.6a displays four levels of salary, the date on which each salary became effective, 
and the associated percent increase for each pair of salaries. (The percent increase 
is not calculated for the last salary.) Percent increase is computed according to the 
general formula: 

A _ , T New Salary - Old Salary A n n 

Percent Salary Increase = x 100 
Old Salary 

The current salary of $46,000 in Figure 11.6a reflects a 15 percent increase over the 
previous salary of $40,000 and was computed as follows: 

D *c i , 46,000-40,000 , n n . c 

Percent Salary increase = x 100 = .15 
40,000 

The percent salary increase is a repetitive calculation that is required for each pair 
of salaries stored within the salary table. O n e (tedious) approach is to use a different 
formula for each pair of salaries—that is, one formula to reference S A L A R Y (1) and 
SALARY (2), a second formula to reference S A L A R Y (2) and SALARY (3), and so on. A 
more elegant solution is to develop a general formula that references S A L A R Y (SUB) 
and SALARY (SUB + 1) as s h o w n in Figure 11.6b. 

The C O M P U T E statement is executed three times if all four salaries are present. 
Newer employees will not have a complete salary history, however, a n d hence the 
second condition in the U N T I L clause will cease execution if an earlier salary is not 
present; that is, the latter condition prevents a division by zero w h e n an earlier 
salary is not available. 

The U S A G E clause is intended to m a k e a program more efficient. T h e clause is 
entirely optional as the presence (or absence) of a U S A G E clause does not alter the 
logic of a program, but affects only the generated object code. A true understanding, 
therefore, requires a knowledge of assembler fundamentals which is beyond the 



Chapter 11 Introduction to Tables 

present discussion. Suffice it to say that subscripts are best defined with a U S A G E 
clause in one of four equivalent formats as follows: 

05 SUBSCRIPT-1 
05 SUBSCRIPT-2 
05 SUBSCRIPT-3 
05 SUBSCRIPT-4 

PIC S9(4) USAGE IS COMPUTATIONAL. 
PIC S9(4) COMPUTATIONAL. 
PIC S9(4) USAGE IS COMP. 
PIC S9(4) COMP. 

OCCURS DEPEM>.'. .^ JH 
W e began the chapter with the simplest form of the O C C U R S clause to define a 
table. The clause has several additional options, however, as s h o w n below: 

OCCURS nteger-1 JO i n t e g e r - 2 TIMES [DEPENDING ON data - name-l]j 
i n t e g e r - 2 TIMES 

jASCENDING 1 

[DESCENDING] 
KEY IS da ta -name-2 [data-name-3] 

[INDEXED BY index-name-1 [i ndex - name-2j . . . J 

The D E P E N D I N G O N clause defines a variable-length table. This in turn 
produces a variable-length record, which is reflected in the R E C O R D C O N T A I N S 
clause of the F D as s h o w n in Figure 11.7. 

The records in STU D E N T - T R A N S C R I P T - F I L E will vary in length from 42 to 
1,131 characters, depending o n the n u m b e r of courses a student has completed. 
The m i n i m u m record length is 42 characters; 30 for name, 10 for major, and 2 for 
the number of courses. The records for incoming freshmen will contain the m i n i m u m 
42 characters, whereas the records for upperclassmen contain an additional 11 
bytes for every completed course. A n arbitrary m a x i m u m of 99 courses is permitted 
in a record. 

The advantage of variable-length records is that they allocate only as m u c h 
space as necessary in the storage m e d i u m . Fixed-length records, o n the other hand, 
assign the s a m e (maximum) a m o u n t of disk space to every record in the file. 

jure 1 1 . 1 Variable-length Records 

FD STUDENT-TRANSCRIPT-FILE 
RECORD CONTAINS 42 TO 1131 CHARACTERS 
DATA RECORD IS STUDENT-RECORD. 

01 STUDENT-RECORD. 
05 ST-NAME PIC X(30). 
05 ST-MAJ0R PIC X(10). 
05 ST-C0URSES-C0MPLETED PIC 99 . 
05 ST-COURSE-GRADE OCCURS 0 TO 99 TIMES 

DEPENDING ON ST-C0URSES-C0MPLETED. 
10 ST-COURSE-NUMBER PIC 9 ( 6 ) . 
10 ST-GRADE PIC X. 
10 ST-C0URSE-DATE PIC 9 ( 4 ) . 



The Student Transcript Program 

What, then, is the m a x i m u m n u m b e r of courses? Is it five per semester, times 8 
semesters, or 40 courses? W h a t about the student w h o fails a course or the one with 
two majors, or the one w h o remains in the university to pursue a master's or 
doctoral degree? Perhaps w e should allocate space for 100 courses, just to be safe. If 
w e do, every student record will require 1,100 bytes (11 bytes per course times 100 
courses). But at any given time the average student probably has completed twenty 
or fewer courses (that is, there are freshmen, sophomores, juniors, and seniors in 
the file), and hence most records would require only 220 (20 x 11) or fewer characters. 
In other words, approximately 900 bytes per record would be wasted in the storage 
medium. Multiply this by the n u m b e r of students in the university, and you can 
quickly see the inefficiency of fixed-length records in certain applications. 

Variable-length records, o n the other hand, allow only as m u c h space in each 
record as is actually required. Each variable-length record contains a specific field 
from which the length of the record can be calculated—for example, the n u m b e r of 
completed courses, which becomes the data n a m e specified in the O C C U R S 
D E P E N D I N G O N clause. 

The I N D E X E D B Y clause is covered later in this chapter (on page 321). The 
A S C E N D I N G / D E S C E N D I N G K E Y clause is presented in Chapter 12 in conjunction 
with table lookups. 

W e are ready to incorporate the basic material on table processing into an 
illustrative program. Specifications follow in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Student Transcript Program 

N a r r a t i v e : This program processes a file of student records to produce a set of student transcripts. 
Each incoming record contains a variable-length table with the student's grades from the 
preceding semester. The program computes the grade point average for every student, 
prints individual transcripts for each student, and produces a table of students on the 
dean's list at the end of processing. 

Input File(s): STUDENT-FILE 

I n p u t R e c o r d L a y o u t : 01 STUDENT-RECORD. 
05 ST-NAME 
05 ST-NUMBER-0F-C0URSES 
05 ST-C0URSE-INF0 OCCURS 1 TO 8 TIMES 

DEPENDING ON ST-NUMBER-0F-C0URSES. 
10 ST-COURSE-NUMBER 
10 ST-COURSE-GRADE 
10 ST-COURSE-CREDITS 

PIC X(19). 
PIC 99. 

PIC X(3). 
PIC X. 
PIC 9. 

Test Data: See Figure 11.8a. 

Report Layout: See Figure 11.8b and 11.8c. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of student records. 



Chapter 11 — Introduction to Tables 

Figure 11.8 Test Data and Required Output 

BENJAMIN, L 05111A3222A2333A3444A3555B3 
BORROW, J 04666B3777B3888B3999B4 
MILGROM, M 06123C4456C4789C4012C4345C3678C4 

(a) Test Data 

NAME:BENJAMIN, L OFFICIAL TRANSCRIPT 

COURSE # CREDITS GRADE 
111 3 A 
222 2 A 
333 3 A 
444 3 A 
555 3 B 

AVERAGE: 3.79 *DEANS LIST* 

NAME:BORROW, J OFFICIAL TRANSCRIPT 

COURSE # CREDITS GRADE 
666 3 B 
777 3 B 
888 3 B 
999 4 B 

AVERAGE: 3.00 

NAME:MILGROM, M OFFICIAL TRANSCRIPT 

COURSE # CREDITS GRADE 
123 4 C 
456 4 C 
789 4 C 
012 4 C 
345 3 C 
678 4 C 

AVERAGE: 2.00 
(b) individual Transcripts 

STUDENTS ON THE DEANS LIST 

TOTAL TOTAL QUALITY 
NAME COURSES CREDITS POINTS GPA 

BENJAMIN, L 5 14 53 3.79 

(c) The Dean's List 



The Student Transcript Program 

COURSE COURSE GRADE COURSE CREDITS 
Course Number 1 A 2 
Course Number 2 B 4 

ides 

SUB GRADE(SUB) CREDITS(SUB) MULTIPLIER TOTAL-QUALITY-POINTS TOTAL-CREDITS 
1 A 2 4 8 (0 + 2*4) 2 
2 B 4 3 20 (8 + 4*3) 6 

(b) Incrementing Counters 

GRADE-POINT-AVERAGE = TOTAL-QUALITY-POINTS / TOTAL-CREDITS = 20 / 6 = 3.33 

(c) Calculation of Grade Point Average 

2. For every record read, 
a. Calculate the grade point average (GPA) according to a four-point scale with 

grades of A, B, C, D, and F, worth 4, 3, 2, 1, and 0, respectively. Courses are 
weighted according to their credit value in computing the GPA. The number of 
quality points for a given course is equal to the number of credits for that course 
times the numeric value of that grade. The GPA is equal to the total number of 
quality points (for all courses) divided by the total number of credits. The computation 
of the GPA is further illustrated in Figure 11.9. 

b. Print the student's name, list of courses with associated grades, and computed 
grade point average according to the format in Figure 11.8b. Every transcript is to 
begin on a new page. 

c. Determine whether the student qualifies for the dean's list, which requires a GPA of 
3.5 or higher; if so, print the dean's list designation on the last line of the transcript. 

3. Print a list of all students on the dean's list at the end of processing as shown in 
Figure 11.8c. 

- . . . U L 1 

The development of this (or any other) program begins with a hierarchy chart that 
includes all necessary functions to implement the processing requirements. The 
output in Figure 11.8 shows individual transcripts and a composite dean's list, both 
of which represent major tasks to be fully expanded; thus the highest-level module 
in the hierarchy chart will have two subordinates, CREATE-TRANSCRIPT and W R I T E -
DEANS-LIST, corresponding to the major functions. Each of these is expanded 
further as s h o w n in the hierarchy chart of Figure 11.10. 

The C R E A T E - T R A N S C R I P T module has four subordinates: W R I T E - T R A N S -
HFADING, P R O C E S S - C O U R S E S , WRITE GPA, a n d A D D - T O - D E A N S - L I S T . 
P R O C E S S - C O U R S E S , in turn, has two subordinates: I N C R E M E N T - C O U N T E R S and 
WRITE-DETAIL-LINE. WRITE-DEANS-LIST also has two subordinates: W R I T E -
DEANS-LIST-i (LADING and WRITE-DEANS-LIST-DETAILS. The hierarchy chart is 
straightforward a n d easy to follow with the functions of all modules readily apparent 
from the module names. 

Calculation of Grade Point Average 



Chapter 11 Introduction to Tables 

- iqurc -> (l Hierarchy Chart for Transcript Program 

PROCESS 
STUDENT 
RECORDS 

INCREMENT 
COUNTERS 

WRITE 
DETAIL 

LINE 

The pseudocode in Figure 11.11 uses an in-line perform to eliminate the 
priming read used in earlier programs. The false-condition branch in the read 
statement drives the program a n d contains the logic to compute an individual's 
grade point average, produce the transcript, and determine whether the individual 
qualifies for the dean's list. 

The processing of each incoming record focuses o n the production of a 
transcript, a process that begins with the initialization of two counters, for total 
quality points and total credits, respectively. Next, an inner loop is executed for 
every course in the current record, to determine the appropriate multiplier for the 
course (4 for an A, 3 for a B, and so on), to increment the counters for quality points 
and credits, and to write the detail line. This loop terminates after all courses (for 
one student) have been processed, after which the grade point average is computed 
by dividing the total quality points by the total n u m b e r of credits. 

The pseudocode next determines whether the student qualifies for the dean's 
list, and if so, increments the n u m b e r of students o n the dean's list, then moves the 
student's data to the appropriate place in a dean's list table. T h e table containing 
the students o n the dean's list is written at the end of processing. 

The Completed Program 

The completed program is s h o w n in Figure 11.12. The paragraphs in the Procedure 
Division correspond one to one with the modules in the hierarchy chart, and its 
logic in the program parallels that of the pseudocode just developed. The program 
complies with the processing requirements and also illustrates the various C O B O L 
features presented earlier. Note the following: 



The Student Transcript Program 

i Pseudocode for Transcript Program 

Open files 
; DO WHILE data remains 
| READ Student file 
j , AT END 
! ; Indicate no more data 

| NOT AT END 
i Write transcript heading 

Move zero to quality-point and credit counters 
j ! ; DO for each course 
j Determine multiplier for this course 

i Increment total quality points 
I Increment total credit counter 

i | Write detail line for this course 
! — E N D D O 

! | COMPUTE grade-point-average 
= total quality points/ total credits 

j Write grade-point-average 
i , IF dean's list 
i | 

I | IF students on dean's list > 100 
Display appropriate error message 

I ; ELSE 
I Increment students on dean's list 

I \ | Move this student to dean's list table 
| ! END-IF 
1 END-IF 

1 ENDREAD 
- — ENDDO 

Write heading for dean's list 
i DO for every student on dean's list 

Write student data 
- — ENDDO 

Close files 
Stop run 

1. The O C C U R S D E P E N D I N G O N clause in lines 21 and 22 defines a variable-
length table for the n u m b e r of courses, which in turn produces a variable-
length record in lines 15-17 of the F D for STUDENT-FILE. 

2. The definition of two subscripts in Working-Storage—COURSE-SUB and 
D E A N - S U B — b o t h ofwhich contain the ( U S A G E IS) C O M P clause for efficiency. 

3. The in-line P E R F O R M statement of lines 133-140, coupled with the false-
condition branch in the R E A D statement, drives the program by performing 
the paragraph 200-CREATE-TRANSCRIPT (lines 146-159) for every record 
in the file. This critical paragraph computes the grade point average, 
produces the transcript, and determines whether the student qualifies for 
the dean's list. 



Chapter 11 Introduction to Table 

Figure 11.12 The Student Transcript Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. TRANSCRP. 
3 AUTHOR. ROBERT GRAUER. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT STUDENT-FILE ASSIGN TO 'A:\CHAPTR11\STUDENT.DAT1 

9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 
14 FILE SECTION. 
15 FD STUDENT-FILE 
16 RECORD CONTAINS 26 TO 61 CHARACTERS 
17 DATA RECORD IS STUDENT-RECORD. 
18 01 STUDENT-RECORD. 
19 05 ST-NAME PIC X(19). 
20 05 ST-NUMBER-OF-COURSES PIC 99. 
21 (^^sT-TSu^SE-rNroTccORS"T T O n T T T M E S H 

22 | DEPENDING ON ST-NUMBER-OF-COURSES. ["""""--r 

23 ^ 10 ST-COURSE-NUMBER PIC X(3). ;-,/-;^^ 
24 10 ST-COURSE-GRADE PIC X. 
25 10 ST-COURSE-CREDITS PIC 9. 
26 
27 FD PRINT-FILE 
28 RECORD CONTAINS 132 CHARACTERS 
29 DATA RECORD IS PRINT-LINE. 
30 01 PRINT-LINE PIC X(132). 
31 
32 WORKING-STORAGE SECTION. 
33 01 SUBSCRIPTS. 
34 05 COURSE-SUB PIC S9(4) COMP. 
35 05 DEAN-SUB PIC 9(3) VALUE ZERO |COMI\ 
36 \ 
37 01 SWITCHES-AND-COUNTERS. 
38 05 END-OF-FILE-SWITCH PIC X(3) V A L U E ' N O 1 . 
39 05 STUDENTS-ON-DEANS-LIST PIC 9(3) VALUE ZERO. 
40 
41 01 INDIVIDUAL-GPA-VARIABLES. 
42 05 IND-TOTAL-CREDITS PIC 999. 
43 05 IND-TOTAL-QUAL-POINTS PIC 999. 
44 05 IND-MULTIPLIER PIC 9. 
45 05 IND-GRADE-POINT-AVERAGE PIC S9V99. 
46 88 DEANS-LIST VALUES 3.5 THRU 4. 
47 
48 01 DEANS-LIST-TABLE. 
49 05 DEANS-LIST-INFO OCCURS 100 TIMES. 
50 10 DL-NAME PIC X(19). 

file:///CHAPTR11/STUDENT.DAT


The Student Transcript Program 

Figure 1 1 . 1 2 (continued) 

I 
51 10 DL-COURSES PIC 99. 
52 10 DL-CREDITS PIC 999. 
53 10 DL-QUAL-POINTS PIC 999. 
54 10 DL-GPA PIC S9V99. 
55 
56 01 TRANS-HEADING-LINE -ONE. 
57 05 FILLER PIC X(6) VALUE ' NAME:'. 
58 05 HDG-NAME PIC X(15). 
59 05 FILLER PIC X(10) VALUE SPACES. 
60 05 FILLER PIC X(19) 
61 VALUE 'OFFICIAL TRANSCRIPT 
62 05 FILLER PIC X(82) VALUE SPACES. 
63 
64 01 TRANS-HEADING-LINE- TWO. 
65 05 FILLER PIC X(10) VALUE SPACES. 
66 05 FILLER PIC X{9) VALUE 'COURSE # 
67 05 FILLER PIC X{9) VALUE 'CREDITS 
68 05 FILLER PIC X(5) VALUE 'GRADE'. 
69 05 FILLER PIC X(99) VALUE SPACES. 
70 
71 01 DETAIL-LINE. 
72 05 FILLER PIC X(13) VALUE SPACES. 
73 05 DET-COURSE PIC X(3). 
74 05 FILLER PIC X(9) VALUE SPACES. 
75 05 DET-CREDITS PIC 9. 
76 05 FILLER PIC X(5) VALUE SPACES. 
77 05 DET-GRADE PIC X. 
78 05 FILLER PIC X(100) VALUE SPACES. 
79 
80 01 LAST-LINE. 
81 05 FILLER PIC X(16) VALUE SPACES. 
82 05 FILLER PIC X(9) VALUE 'AVERAGE: 
83 05 LAST-GPA PIC 9.99. 
84 05 FILLER PIC X(4) VALUE SPACES. 
85 05 LAST-DEANS-LIST PIC X(12) VALUE SPACES. 
86 05 FILLER PIC X(87) VALUE SPACES. 
87 
88 01 DEANS-LIST-HEADING-LINE--ONE. 
89 05 FILLER PIC X(20) VALUE SPACES. 
90 05 FILLER PIC X(26) 
91 VALUE 'STUDENTS ON THE DEANS LIST'. 
92 05 FILLER PIC X(86) VALUE SPACES. 
93 
94 01 DEANS-LIST-HEADING-LINE- TWO. 
95 05 FILLER PIC X(25) VALUE SPACES. 
96 05 FILLER PIC X(5) VALUE 'TOTAL1. 
97 05 FILLER PIC X(5) VALUE SPACES. 
98 05 FILLER PIC X(5) VALUE 'TOTAL'. 
99 05 FILLER PIC X(4) VALUE SPACES. 
100 05 FILLER PIC X(7) VALUE 'QUALITY 



Chapter 11— Introduction to Tables 

(continued) 

101 05 FILLER PIC X(81) VALUE SPACES. 
102 
103 01 DEANS-LIST-HEADING-LINE-THREE. 
104 05 FILLER PIC X VALUE SPACES. 
105 05 FILLER PIC X(4) VALUE 1 NAME 1. 
106 05 FILLER PIC X(19) VALUE SPACES. 
107 05 FILLER PIC X(7) VALUE 'COURSES 
108 05 FILLER PIC X(3) VALUE SPACES. 
109 05 FILLER PIC X(7) VALUE 'CREDITS 
110 05 FILLER PIC X(4) VALUE SPACES. 
111 05 FILLER PIC X(6) VALUE 'POINTS' 
112 05 FILLER PIC X(5) VALUE SPACES. 
113 05 FILLER PIC X(3) VALUE 'GPA'. 
114 05 FILLER PIC X(73) VALUE SPACES. 
115 
116 01 DEANS-LIST-DETAIL-LINE. 
117 05 FILLER PIC X VALUE SPACES. 
118 05 DL-DET-NAME PIC X(19). 
119 05 FILLER PIC X(7) VALUE SPACES. 
120 05 DL-DET-TOT-COURSES PIC Z9. 
121 05 FILLER PIC X(7) VALUE SPACES. 
122 05 DL-DET-TOT-CREDITS PIC ZZ9. 
123 05 FILLER PIC X(8) VALUE SPACES. 
124 05 DL-DET-TOT-QUAL-POINTS PIC ZZ9. 
125 05 FILLER PIC X(6) VALUE SPACES. 
126 05 DL-DET-GPA PIC 9.99. 
127 05 FILLER PIC X(72) VALUE SPACES. 
128 
129 PROCEDURE DIVISION. 
130 100 -PROCESS-STUDENT-RECORDS. 
131 OPEN INPUT STUDENT-FILE 
132 OUTPUT PRINT-FILE. 
133 PERFORM UNTIL END-OF-FILE-SWITCH = 'YES' 
134 READ STUDENT-FILE 
135 AT END 
136 MOVE 'YES' TO END -OF- FILE-SWITCH I / " ' 
137 NOT AT END 
138 PERFORM 200-CREATE-TRANSCRIPT 
139 END-READ 
140 END-PERFORM. 
141 PERFORM 300-WRITE-DEANS-LIST. 
142 CLOSE STUDENT-FILE 
143 PRINT-FILE. 
144 STOP RUN. 
145 
146 200 -CREATE-TRANSCRIPT. 
147 PERFORM 210-WRITE-TRANS-HEADING. 
148 MOVE ZERO TO IND-TOTAL-QUAL-POINTS IND-TOTAL-CREDITS. 
149 PERFORM 220-PROCESS-COURSES 1 
150 VARYING COURSE-SUB FROM 1 BY 1 
151 UNTIL COURSE-SUB > ST -NUMBER-OF-COURSES 



The Student Transcript Program 

(continued) 

152 COMPUTE IND-GRADE-POINT-AVERAGE ROUNDED 
153 = IND-TOTAL-QUAL-POINTS / IND-TOTAL-CREDITS 
154 SIZE ERROR DISPLAY 'SIZE ERROR ON GPA' 
155 END-COMPUTE. 
155 PERFORM 250-WRITE-GPA. 
157 IF DEANS-LIST 
158 PERFORM 260-ADD-TO-DEANS-LIST 
159 END-IF. 
160 
161 210-WRITE-TRANS-HEADING. 
162 MOVE ST-NAME TO HDG-NAME. 
163 WRITE PRINT-LINE FROM TRANS-HEADING-LINE-ONE 
164 AFTER ADVANCING PAGE. 
165 WRITE PRINT-LINE FROM TRANS-HEADING-LINE-TWO 
166 AFTER ADVANCING 2 LINES. 
167 
168 220-PROCESS-COURSES. 
169 PERFORM 230-INCREMENT-COUNTERS. 
170 PERFORM 240-WRITE-DETAIL-LINE. 
171 
172 230-INCREMENT-COUNTERS. 
173 EVALUATE ST-COURSE-GRADE (COURSE-SUB) 
174 WHEN 'A' 
175 MOVE 4 TO IND-MULTIPLIER 
176 WHEN 'B' 
177 MOVE 3 TO IND-MULTIPLIER 
178 WHEN 'C 
179 MOVE 2 TO IND-MULTIPLIER 
180 WHEN 'D' 
181 MOVE 1 TO IND-MULTIPLIER 
182 WHEN OTHER 
183 MOVE 0 TO IND-MULTIPLIER 
184 DISPLAY 'INVALID COURSE GRADE' 
185 END-EVALUATE. 
186 COMPUTE IND-TOTAL-QUAL-POINTS = IND-TOTAL-QUAL-POINTS 
187 + ST-COURSE-CREDITS (COURSE-SUB) * IND-MULTIPLIER 
188 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL QUALITY POINTS' 
189 END-COMPUTE. 
190 ADD ST-COURSE-CREDITS (COURSE-SUB) TO IND-TOTAL-CREDITS 
191 SIZE ERROR DISPLAY 'SIZE ERROR ON TOTAL CREDITS' 
192 END-ADD. 
193 _ _ 
194 ; 240-WRITE-DETATL-LINE". " ~ " ~ 
195 MOVE ST-COURSE-NUMBER (COURSE-SUB) TO DET-COURSE. 
196 MOVE ST-COURSE-CREDITS (COURSE-SUB) TO DET-CREDITS.̂  
197 MOVE ST-COURSE-GRADE (COURSE-SUB) TO DET-GRADE. 
198 WRITE PRINT-LINE FROM DETAIL-LINE. 
199 
200 250-WRITE-GPA. 
201 MOVE IND-GRADE-POINT-AVERAGE TO LAST-GPA. 



Chapter 11 Introduction to Tables 

i 2 (continued) 

202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 

IF DEANS-LIST 
MOVE '*DEANS LIST*' TO LAST-DEANS-LIST 

ELSE 
MOVE SPACES TO LAST-DEANS-LIST 

END-IF. 
WRITE PRINT-LINE FROM LAST-LINE 

AFTER ADVANCING 2 LINES. 

260-ADD-TO-DEANS-LIST. 
IF STUDENTS-ON-DEANS-LIST > 100 

DISPLAY 'DEAN LIST TABLE EXCEEDED' 
ELSE 

ADD 1 TQ l5TUDENTS-0N-DEANS-LIST>" 
ADD 1 TO DEAN-SUB 
MOVE ST-NAME TO DL-NAME (DEAN-SUB) 
MOVE ST-NUMBER-OF-COURSES TO DL-COURSES (DEAN-SUB) 
MOVE IND-TOTAL-CREDITS TO DL-CREDITS (DEAN-SUB) 
MOVE IND-TOTAL-QUAL-POINTS TO DL-QUAL-POINTS (DEAN-SUE 
MOVE IND-GRADE-POINT-AVERAGE TO DL-GPA (DEAN-SUB) 

END-IF. 

300-WRITE-DEANS-LIST. 
PERFORM 310-WRITE-DEANS-LIST-HEADINGS. 
PERFORM 320-WRITE-DEANS-LIST-DETAILS 

VARYING DEAN-SUB FROM 1 BY 1 
UNTIL DEAN-SUB > STUDENTS-ON-DEANS-LIST. 

ie aean s iisi 

310-WRITE-DEANS-LIST-HEADINGS. 
WRITE PRINT-LINE FROM DEANS-LIST-HEADING-LINE-ONE 

AFTER ADVANCING PAGE. 
WRITE PRINT-LINE FROM DEANS-LIST-HEADING-LINE-TWO 

AFTER ADVANCING 2 LINES. 
WRITE PRINT-LINE FROM DEANS-LIST-HEADING-LINE-THREE. 
MOVE SPACES TO PRINT-LINE. 
WRITE PRINT-LINE. 

320-WRITE-DEANS-LIST-DETAILS. 
MOVE DL-NAME (DEAN-SUB) TO DL-DET-NAME. 
MOVE DL-COURSES (DEAN-SUB) TO DL-DET-TOT-COURSES. 
MOVE DL-CREDITS (DEAN-SUB) TO DL-DET-TOT-CREDITS. 
MOVE DL-QUAL-POINTS (DEAN-SUB) TO DL-DET-TOT-QUAL-POINTS. 
MOVE DL-GPA (DEAN-SUB) TO DL-DET-GPA. 
WRITE PRINT-LINE FROM DEANS-LIST-DETAIL-LINE. 



4. The computation of the grade point average is described as follows: 
a. The counters IND-TOTAL-QUALITY-POINTS and IND-TOTAL-CREDITS 

are set to zero by the M O V E Z E R O statement in line 148. 
b. The P E R F O R M V A R Y I N G statement in lines 149-151 executes the paragraph 

2 2 0 - P R O C E S S - C O U R S E S , w h i c h in turn performs two lower-level 
paragraphs for every course in the current record, one course at a time. 

c. Each time the paragraph 2 3 0 - I N C R E M E N T - C O U N T E R S is executed, the 
course multiplier is determined (4 for an A, 3 for a B, and so on), after which 
the cumulative values of the quality points and credits are updated. 

d. The P E R F O R M V A R Y I N G terminates, after which the G P A is determined in 
lines 152-155. 

5. The definition of a counter S T U D E N T S - O N - D E A N S - L I S T (line 39) and the 
definition of the associated DEANS-LIST-TABLE in lines 48-54 to hold data for 
qualifying students. The IF statement in lines 157-159 determines whether 
the current student qualifies for the dean's list, then executes paragraph 260-
ADD-TO-DFANS-I.IST (lines 210-221) to increment the counter a nd m o v e the 
student's values to the appropriate place in the table. 

6. The P E R F O R M V A R Y I N G statement in lines 225-227 to produce the dean's list 
based on the n u m b e r of students (i.e., the final value of S T U D E N T S - O N -
DEANS-LIST) and the entries in the table. 

The transcript program just completed illustrates the basics of table processing, 
and as such goes a long w a y toward increasing your proficiency in C O B O L . There is, 
however, a good deal more to learn about tables, and so w e return to the syntax of 
the O C C U R S clause s h o w n earlier in the chapter. 

The O C C U R S clause includes an optional I N D E X E D B Y entry to define an 
index for use with a particular table. A n index is conceptually the same as a subscript 
in that both reference an entry in a table. Indexes, however, produce more efficient 
object code and are preferred (by s o m e programmers) for that reason. The difference 
is subtle; an index represents a displacement (the n u m b e r of positions into a table), 
whereas a subscript indicates an occurrence. Consider: 

05 ST-COURSE-INFO OCCURS 10 TIMES 

The C O B O L statements establish a table with 10 entries which occupy a total 
of 60 positions in m e m o r y . Valid subscripts for ST-COURSE-INFO are 1, 2,3,... 10, 
because the table entries occur 10 times. The first occurrence of S T - C O U R S E - I N F O 
is at the start of the table (displacement zero), the second occurrence begins 6 bytes 
into the table, the third occurrence 12 bytes into the table, and so on. The value of 
the index is the value of the displacement, that is, the n u m b e r of positions into a 
table to the entry in question; hence valid displacements for S T - C O U R S E - I N F O are 
0, 6,12,... 54. 

Fortunately, you need not be concerned with the actual value (displacement) 
of an index, and can regard it conceptually as a subscript. In other words, you will 

INDEXED BY COURSE-INDEX. 
10 ST-COURSE-NUMBER 
10 ST-COURSE-GRADE 
10 ST-COURSE-CREDITS 

PIC X(3). 
PIC X. 
PIC 99. 



Chapter 11 — Introduction to Tables 

indicate index values of 1,2,3, and so on, which will be converted by the compiler to 
internal displacements of 0,6,12, and so on. Indexes can not, however, be initialized 
with a M O V E statement, nor can they be incremented with an A D D statement. The 
SET statement is used instead. 

The SET Statement 

The SET statement has two formats and is used only with indexes. 
Format 1 

SET 

Format 2 

jidentifier-1 [, identifier-2] . , 
index-name-1 [, index-name-2] . TO 

identifier- 3 
index-name-3 
i nteger-1 

SET index-name-4 [, index-name-5] JUP BY I jidentifier-4) 
[DOWN BYj {integer-2 j 

Figures 11.13 and 11.14 compare indexes and subscripts. Figure 11.13a depicts the 
definition of a table without an index, which in turn requires the definition of a 
subscript elsewhere in the Data Division. Figure 11.13b uses a P E R F O R M V A R Y I N G 
statement to manipulate this table (in conjunction with COURSE-SUBSCRIPT), 
while Figure 11.13c shows the P E R F O R M T I M E S statement to accomplish the same 
objective. The latter is yet another form of the P E R F O R M statement and performs 
the designated procedure (or in-line statement) the indicated n u m b e r of times. It is 
less convenient than a comparable P E R F O R M V A R Y I N G statement as the 
programmer has to vary the subscript (index) explicitly. 

Figure 11.14 contains parallel code, except that the table is defined in 
Figure 11.14a with an index (so there is no need to define a subscript). Figure 11.14b 
is virtually identical to its predecessor in that the P E R F O R M V A R Y I N G statement 
can manipulate either subscripts or indexes. Finally, Figure 11.14c shows the 
alternate (less desirable) w a y to process the table. Observe, therefore, the use of SET 
statements to initialize and increment the index (as opposed to the M O V E and A D D 
statements in Figure 11.13c. 

Indexing is not required in C O B O L , a n d thus y o u can choose between 
subscripts and indexes in any given application. Indeed, you m a y wonder w h y 
bother with indexes at all, if they provide the same capability as subscripts. The 
answer is twofold: 

1. Indexes provide more efficient object code than subscripts. 
2. Indexes are required for S E A R C H and S E A R C H ALL, two powerful statements 

that are presented in Chapter 12. 
Differences between indexes and subscripts are summarized in Table 11.1. 

Table 11.1 Indexes versus Subscripts 

Defined with a specific table; can be used 
only with the table with which they are 
defined 

Initialized and incremented via the SET 
statement; can also be manipulated in 
PERFORM statements 

Provide more efficient object code than 
subscripts 

Defined in Working-Storage; the same subscript 
can be used with multiple tables although this is 
not recommended 

May not be used with SET statements (MOVE 
and ADD are used instead); can also be 
manipulated in PERFORM statements 

USAGE IS COMPUTATIONAL makes subscripts 
more efficient, although indexes are still faster 



Indexes versus Subscripts 

Indexes versus Subscripts (Subscripts) 

05 
05 

ST-NUMBER-OF-COURSES PIC 99 
ST-COURSE-INFO OCCURS 1 TO 8 TIMES 
DEPENDING ON ST-NUMBER-OF-COURSES. 
10 ST-COURSE-NUMBER PIC X(3). 
10 ST-COURSE-GRADE PIC X. 
10 ST-COURSE-CREDITS PIC 99 

^-Subscript de--'' scga:e'i:••</ ,n Working-Sioi 

05 COURSE-SUBSCRIPT PIC S9(4) COMP. r 

(a) Table Definition 

PERFORM WRITE-COURSE-DATA 
VARYING COURSE-SUBSCRIPT FROM 1 BY 1 

UNTIL COURSE-SUBSCRIPT > ST-NUMBER-OF-COURSES. 

WRITE-COURSE-DATA. 
MOVE ST-COURSE-NUMBER (COURSE-SUBSCRIPT) TO PL-NUMBER. 
MOVE ST-COURSE-GRADE (COURSE-SUBSCRIPT) TO PL-GRADE. 
WRITE PRINT-LINE FROM PRINT-LINE-ONE 

AFTER ADVANCING 1 LINE. 

PERFORM WRITE-COURSE-DATA ST-NUMBER-OF-COURSES TIMES. 

WRITE-COURSE-DATA. 
MOVE ST-COURSE-NUMBER (COURSE-SUBSCRIPT) TO PL-NUMBER. 
MOVE ST-COURSE-GRADE (COURSE-SUBSCRIPT) TO PL-GRADE. 
WRITE PRINT-LINE FROM PRINT-LINE-ONE 

AFTER ADVANCING 1 LINE. 
ADD 1 TO COURSE-SUBSCRIPT. 

fb) PERFORM VARYING 

MOVE 1 TO COURSE-SUBSCRIPT. 

(c) P E R F O R M TIMES 



Chapter 11 Introduction to Tables 

Indexes versus Subscripts (Indexes) 

05 
05 

ST-NUMBER-OF-COURSES PIC 99. 
ST-C0URSE-INF0 OCCURS 1 TO 8 TIMES 
DEPENDING ON ST-NUMBER-OF-COURSES 
INDEXED BY COURSE-INDEX.3'""""" 
ToST-COURSE-NUMBER"PIC X(3). 
10 ST-COURSE-GRADE PIC X. 
10 ST-COURSE-CREDITS PIC 99. 

PERFORM WRITE-COURSE-DATA 
VARYING COURSE-INDEX FROM 1 BY 1 

UNTIL COURSE-INDEX > ST-NUMBER-OF-COURSES. 

WRITE-COURSE-DATA. 
MOVE ST-COURSE-NUMBER (COURSE-INDEX) TO PL-NUMBER. 
MOVE ST-COURSE-GRADE (COURSE-INDEX) TO PL-GRADE. 
WRITE PRINT-LINE FROM PRINT-LINE-ONE 

AFTER ADVANCING 1 LINE. 

SET COURSE-INDEX TO 1.] " " 
PERFORM WRITE-COURSE-DATA ST-NUMBER-OF-COURSES TIMES. 

WRITE-COURSE-DATA. 
MOVE ST-COURSE-NUMBER (COURSE-INDEX) TO PL-NUMBER. 
MOVE ST-COURSE-GRADE (COURSE-INDEX) TO PL-GRADE. 
WRITE PRINT-LINE FROM PRINT-LINE-ONE 

AFTER ADVANCING 1 LINE. 
SET COURSE-INDEX UP BY 1. 

(b) P E R F O R M VARYING 

Index initialized by a SETeta:eniei-i 

(c) P E R F O R M T IMES 



COBOL-85 introduced several minor changes in conjunction with table 
processing. The new compiler allows seven levels of subscripting as opposed 
to the earlier limit of three, but given that the typical programmer seldom uses 
three-level tables, this extension is of little practical benefit. (Multiple-level 
tables are covered in Chapter 13.) The OCCURS DEPENDING ON clause 
may specify a value of zero, whereas at least one occurrence was required in 
COBOL-74. 

A more significant change is the introduction of relative subscripting 
(as explained in Figure 11.6), enabling the reference DATA-NAME 
(SUBSCRIPT + integer). Relative subscripting was not permitted in COBOL-
74 (although relative indexing was). 

A table is a grouping of similar data whose values are stored in contiguous 
storage locations and assigned a single name. Tables are implemented in 
COBOL through the OCCURS clause with subscripts or indexes used to 
reference individual items in a table. The OCCURS DEPENDING ON clause 
implements a variable-length table. 

An index is conceptually the same as a subscript but provides more 
efficient object code. Indexes are manipulated with the SET statement, 
whereas subscripts are initialized with a MOVE statement and incremented 
with an ADD statement. 

The PERFORM VARYING statement manipulates an index or a subscript to 
execute a procedure or series of in-line statements. Omission of the TEST 
BEFORE and TEST AFTER clauses defaults to TEST BEFORE and 
corresponds to the COBOL-74 implementation. 

The PERFORM TIMES statement also provides for repeated execution of a 
procedure or in-line statement, but requires the programmer to explicitly 
vary the value of the subscript or index. 

The optional USAGE IS COMPUTATIONAL clause is used to improve 
the efficiency of a program's generated object code, but does not affect 
its logic. 



Chapter 11 — Introduction to Tables 

PERFORM VARYING 
SET 
TEST AFTER 
TEST BEFORE 
UNTIL 
USAGE IS COMPUTATIONAL 

1. A table is defined throuah the clause. 

2. Entries in a table may be referenced bv either a or an 

3. 

4. 

A lenath table is defined by the 
clause. 

The USAGE clause is a (required/optional) entrv for a subscript. 

5. A table (must/may) be defined with an index. 

6. (Subscripts/indexes) are manipulated with a SET statement. 

7. 

8. 

Arithmetic (is/is not) permitted for subscripts and indexes. 

levels of subscriptina are permitted in COBOL-85. 

9. The TEST BEFORE clause (changes/does not change) the effect of a PERFORM 
VARYING statement. 

J f. ? U E / F /-

10. 

\ L S E 

The OCCURS DEPENDING ON, ASCENDING/DESCENDING KEY, and INDEXED 
BY clauses are (optional/required) entries in an OCCURS clause. 

1. Tables are established by a DIMENSION statement. 

2. The same entry may not contain both an OCCURS clause and a PICTURE clause. 

3. When using subscripts, a space is required between a data name and the left 
parenthesis. 

4. The USAGE clause is required when defining a subscript in Working-Storage. 

5. The entry, DATA-NAME (0) would not cause a compilation error, provided that an 
OCCURS clause had been used in the associated definition. 

Displacement 
Fixed-length record 
Index 
Relative indexing 
Relative subscripting 

BY 
FROM 
INDEXED BY 
OCCURS 
OCCURS DEPENDING ON 
PERFORM TIMES 

Key Words and Concepts 

Subscript 
Table 
Variable-length record 
Variable-length table 



Problems 

6. The same subscript can be used to reference different tables. 

7. The same index can be used to reference different tables 

8. A subscript may be a constant or a variable. 

9. All records in the same file must be the same length. 

10. The SET statement is used to manipulate subscripts or indexes. 

11. An index may be modified by either an ADD or a MOVE statement. 

12. The PERFORM VARYING statement may manipulate both subscripts and indexes. 

1. Indicate which entries are incorrectly subscripted. Assume that SUB1 has been set 
to 5, and that the following entry applies: 

05 SALES-TABLE OCCURS 12 TIMES PIC 9(5). 
a. SALES-TABLE (1) 
b. SALES-TABLE (15) 
c. SALES-TABLE (0) 
d. SALES-TABLE (SUB1) 
e. SALES-TABLE(SUBI) 
f. SALES-TABLE (5) 
« C M E C T A D I ET /Ql t C M Ct I O Q \ 
y . o / ~ \ L _ i _ o ~ i h u l l \ O u u i t o u u n ; 

h. SALES-TABLE (3) 
i. SALES-TABLE ( 3) 
j. SALES-TABLE (SUB1 + 1) 

2. How many times will PARAGRAPH-A be executed by each of the following PERFORM 
statements? 
a. PERFORM PARAGRAPH-A 

VARYING SUBSCRIPT FROM 1 BY 1 
UNTIL SUBSCRIPT > 5. 

b. PERFORM PARAGRAPH-A 
VARYING SUBSCRIPT FROM 1 BY 1 

WITH TEST BEFORE 
UNTIL SUBSCRIPT > 5. 

c. PERFORM PARAGRAPH-A 
VARYING SUBSCRIPT FROM 1 BY 1 

WITH TEST AFTER 
UNTIL SUBSCRIPT > 5. 

d. PERFORM PARAGRAPH-A 
VARYING SUBSCRIPT FROM 1 BY 1 

UNTIL SUBSCRIPT = 5. 

e. PERFORM PARAGRAPH-A 
VARYING SUBSCRIPT FROM 1 BY 1 

WITH TEST BEFORE 
UNTIL SUBSCRIPT = 5. 



Chapter 11 Introduction to Tables 

f. PERFORM PARAGRAPH-A 
VARYING SUBSCRIPT FROM 1 BY 1 

WITH TEST AFTER 
UNTIL SUBSCRIPT = 5. 

3. Given the following Working-Storage entries: 
01 SAMPLE-TABLES. 

05 FIRST-TABLE OCCURS 10 TIMES 
INDEXED BY FIRST-INDEX. 
10 FIRST-TABLE-ENTRY PIC X(5). 

05 SECOND-TABLE OCCURS 10 TIMES 
INDEXED BY SECOND-INDEX. 
10 SECOND-TABLE-ENTRY PIC X(5). 

01 SUBSCRIPT-ENTRIES. 
05 FIRST-SUBSCRIPT PIC 9(4). 
05 SECOND-SUBSCRIPT PIC 9(4). 

Indicate whether the following table references are valid syntactically. 
a. FIRST-TABLE-ENTRY (FIRST-INDEX) 
b. FIRST-TABLE-ENTRY (FIRST-SUBSCRIPT) 
c. SECOND-TABLE-ENTRY (FIRST-INDEX) 
d. SECOND-TABLE-ENTRY (SECOND-INDEX) 
e. SECOND-TABLE-ENTRY (FIRST-SUBSCRIPT) 
f. SECOND-TABLE-ENTRY (SECOND-SUBSCRIPT) 
g. FIRST-TABLE-ENTRY (FIRST-INDEX + 1) 
h. FIRST-TABLE-ENTRY (FIRST-SUBSCRIPT + 1) 

Indicate whether the following Procedure Division statements are valid. 
i. MOVE 1 TO FIRST-SUBSCRIPT 
j. SET FIRST-SUBSCRIPT TO 1 
k. MOVE 1 TO FIRST-INDEX 
I. SET FIRST-INDEX TO 1 
m. SET FIRST-INDEX UP BY 1 
n. ADD 1 TO FIRST-INDEX 

4. Use the general format of the OCCURS clause to determine whether the following 
are valid entries (the level number has been omitted in each instance): 
a. TABLE-ENTRY OCCURS 4 TIMES. 
b. TABLE-ENTRY OCCURS 4. 
C . TABLE-ENTRY OCCURS 3 TO 30 TIMES 

DEPENDING ON NUMBER-OF-TRANS. 

d. TABLE-ENTRY OCCURS 5 TIMES 
INDEXED BY TABLE-INDEX. 

e. TABLE-ENTRY OCCURS 5 TIMES 
SUBSCRIPTED BY TABLE-SUBSCRIPT. 



f. TABLE-ENTRY OCCURS 5 TO 50 TIMES 
DEPENDING ON NUMBER-OF-TRANSACTIONS 
INDEXED BY TABLE-INDEX. 

g. TABLE-ENTRY OCCURS 6 TIMES 
ASCENDING KEY TABLE-CODE 
INDEXED TABLE-INDEX. 

h. TABLE-ENTRY OCCURS 6 TIMES 
ASCENDING KEY TABLE-CODE-1 
DESCENDING KEY TABLE-CODE-2 INDEXED BY TABLE-INDEX. 

5. How many storage positions are allocated for each of the following table definitions? 
Show an appropriate schematic indicating storage assignment for each table. 
a. 01 STATE-TABLE. 

05 STATE-NAME OCCURS 50 TIMES PIC X(15). 
05 STATE-POPULATION OCCURS 50 TIMES PIC 9(8). 

b. 01 STATE-TABLE. 
05 NAME-POPULATION OCCURS 50 TIMES. 

6. Show Procedure Division statements to determine the largest and smallest 
population in POPULATION-TABLE. (Assume the table has been initialized 
elsewhere.) Move these values to BIGGEST and SMALLEST, respectively. Move 
the state names to BIG-STATE and SMALL-STATE, respectively. POPULATION-
TABLE is defined as follows: 
01 POPULATION-TABLE. 

10 STATE-NAME 
10 STATE-POPULATION 

PIC X(15). 
PIC 9(8). 

05 P0PULATI0N-AND-NAME OCCURS 50 TIMES 
INDEXED BY POP-INDEX. 
10 POPULATION PIC 9(8). 
10 STATE-NAME PIC X(15). 





Overview 
Systonn C o n c e p t s 

Types of Codes 
Characteristics of Codes 
Sequential Table Lookup 
Binary Table Lookup 
Positional Organization and Direct Lookups 

in i t ia l iz ing a T a b l e 
Hard Coding 
Input-loaded Tables 

Programming Tip—Restrict Subscripts and Switches to a Single Use 
T a b l e Lookups 

PERFORM VARYING Statement 
SEARCH Statement 
SEARCH ALL Statement 
Direct Lookup 
Range-Step Tables 

A C o m p l e t e E x a m p l e 
Programming Specifications 
Program Design 
The Completed Program 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



Chapter 12 — Table Lookups 

OBJECTIVES 

After reading this chapter you will be able to: 

Define a table lookup and describe why it is used. 

Distinguish between a numeric, alphabetic, and alphanumeric code; 
describe severai attributes of a good coding system. 

Distinguish between a sequential table lookup, a binary table lookup, and 
direct access to table entries. 

Distinguish between a table that is hard coded versus one that is input 
loaded. 

State the purpose of the VALUE, OCCURS, and REDEFINES clauses as 
they pertain to table definition and initialization. 

Define a range-step table. 

Code SEARCH and SEARCH ALL statements to implement table lookups. 

O V E R V I E W 

One-level tables, subscripts, and indexes were introduced in Chapter 11. This 
chapter extends that information to include table lookups—the conversion of 
incoming data from a concise, coded format to a descriptive and more 
meaningful result. 

The System Concepts section begins with a discussion of codes, then 
proceeds to techniques for table organization, table initialization, and table 
lookups. The body of the chapter covers the COBOL implementation of the 
conceptual material, and includes the REDEFINES, VALUE, and OCCURS 
clauses, and the SEARCH and SEARCH ALL statements. All of this material is 
effectively summarized in a COBOL program at the end of the chapter. 

Figure 12.1 depicts a table of student major codes and the associated descriptions. 
Records in the storage m e d i u m contain a two-position code, whereas printed reports 
display the descriptive (expanded) value. The conversion is accomplished through 
a table lookup, with the obvious advantage that less space is required to store codes 
rather than descriptive values. (Consider the implications for large files with 
thousands, perhaps millions of records.) 

A second, perhaps m o r e important, reason for using codes is to assign records 
to consistent classes. It is a simple matter for a data-entry clerk to look u p a unique 
code for a Computer Information Systems major (e.g., 24 in Figure 12.1), and different 
clerks will always obtain the s a m e code for the same major. It is far less likely that 
different clerks will always use identical spellings for a given major; even the same 
individual is apt to use different spellings at different times, especially w h e n one 
begins to abbreviate. By assigning a code, rather than a descriptive value, individuals 



f i gure 12.1 Table of Major Codes 

02 ART HISTORY 

04 BIOLOGY 

19 CHEMISTRY 

21 CIVIL ENGINEERING 

24 COMP INF SYS 

32 ECONOMICS 

39 FINANCE 

43 MANAGEMENT 

49 MARKETING 

54 STATISTICS 

with the same major will have a c o m m o n identifying characteristic that can be 
subsequently processed by a program. 

Types of Codes . 
The codes in a table m a y be numeric, alphabetic, or alphanumeric. A numeric code 
consists entirely of digits; for example, the zip code is a numeric code familiar to all 
Americans. A three-digit numeric code has 1.000 possible values (from 0 through 
999). In similar fashion, four- and five-digit numeric codes have 10,000 and 100,000 
values, respectively. 

Alphabetic codes contain only letters—for example, state abbreviations. A 
two-position alphabetic code has 676 possible values. (Each character can assume 
one of 26 values, A through Z. Thus, a two-position alphabetic code has 26 x 26 = 26 2 

= 676 possible values. In similar fashion, a three-position alphabetic code has 26' = 
17,576 possible values.) 

Alphanumeric codes contain both letters and numbers— f o r example, license 
plates. Alphanumeric codes offer the advantage of providing a greater number of 
combinations than either pure numeric or pure alphabetic codes. A three-digit 
numeric code has 1,000 (10') variations, a three-digit alphabetic code has 17,576 
(26:l) possibilities, but a three-position alphanumeric code (in which each character 
can be either a letter or number) has 46,656 (36') choices. Table 12.1 summarizes 
the various types of codes. 

12.1 Types of Table Codes 

CODE TYPE USED 1 POSITION 2 POSITIONS n POSITIONS 

Numeric 0-9 10 1 = 10 10 2 = 100 10 n 

Alphabetic A Z 26 1 = 26 26 2 = 676 26 n 

Alphanumeric A Z, 0-9 36 1 = 36 36 2 = 1,296 36 n 

Characteristics of Codes . . ... 
A good coding system is precise, mnemonic, and expandable. A precise code is 
unique; that is, it should not be possible to select alternative choices from a table of 
codes for a given entry. Indeed, codes are often assigned because the original 



Chapter 12 Table Lookups 

attribute is not unique. Universities, for example, assign student numbers because 
different students m a y have the same name. 

G o o d codes are m n e m o n i c , that is, easy to remember. State abbreviations are 
alphabetic rather than numeric for this reason. Thus N Y and T X are inherently 
easier to learn as abbreviations for N e w York and Texas than random two-digit 
numbers. 

A coding system should also be expandable so that future additions can be 
easily handled. It is poor design, for example, to allocate only two positions in a 
record for a numeric branch office code, if 98 unique branch offices already exist. 

Sequent!*. C&t.le Lookup 

A table lookup occurs w h e n an incoming code is compared to entries in a table in 
order to convert the code to an expanded value. In a sequential table lookup the 
entries in the table are checked in order, as s h o w n in Figure 12.2. 

. 2 Sequential Table Lookup 

1st try 

6th try 

7th try 

2nd try 

3rd try 

5th try 

02 ART HISTORY 

04 BIOLOGY 

19 CHEMISTRY 

21 CIVIL ENGINEERING 

24 COMPINFSYS 

32 ECONOMICS 

39 I FINANCE h 

43 MANAGEMENT 

49 MARKETING 

54 STATISTICS 

Match 

Assume, for example, an incoming code of 39. A sequential lookup begins 
with the first entry, then the second entry, and so o n until a match is found or the 
table is exhausted. In this instance, 7 tries are required. O n the average, a sequential 
table lookup requires N/2 tries (where N is the n u m b e r of entries in the table) to 
find a match, assuming that each entry is equally likely. 

The codes in Figure 12.2 were arranged sequentially. A n alternative form of 
table organization, by frequency of occurrence, is sometimes used to reduce the 
n u m b e r of trials needed to find a match in a sequential lookup. Assume, for example, 
that Computer Information Systems is the most c o m m o n major, followed by 
Management. It is reasonable, therefore, to list these majors first and second in the 
table. In other words, majors are listed according to the likelihood of finding a 
match, rather than by a strict numeric sequence. The codes in the table are still 
examined in order, but the table itself has been rearranged. 

M a n y tables follow a so-called 80/20 rule; that is, 8 0 % of the matches c o m e 
from 2 0 % of the entries. (For example, 8 0 % of the questions raised in class m a y 
c o m e from 2 0 % of the students; 8 0 % of the United States population lives in 2 0 % of 
the states, and so on. The numbers 80 and 20 are approximate, but the concept is 
valid over a surprising n u m b e r of applications.) 



Organization by frequency of occurrence requires a knowledge of 
code probabilities that is often unavailable. Sequential organization is therefore 
more c o m m o n . 

A binary lookup makes the n u m b e r of comparisons relatively independent of where 
in the table the match occurs, but requires that the entries in the table be in 
sequence (either ascending or descending). The action of a binary lookup is 
illustrated in Figure 12.3. 

Binary Lookup 

1st try 

3rd try 

2nd try 

02 ART HISTORY 

04 BIOLOGY 

19 CHEMISTRY 

21 CIVIL ENGINEERING 

24 COMP INF SYS 

32 ECONOMICS 

39 '[FINANCE P 
43 MANAGEMENT 

49 MARKETING 

54 STATISTICS 

Match 

A binary search begins in the middle of the table, for example, at the fifth entry 
in Figure 12.3, and eliminates half the table with every comparison. The search then 
proceeds as follows: 

1. Is the value of the incoming entry (the code you want to find) greater than the 
middle entry in the table? The answer is yes in this example in that 39 (the 
incoming code) is greater than 24 (the value of the middle entry). The search 
algorithm therefore eliminates table entries one through five. 

2. There are five remaining entries (positions 6-10) that could yet contain a 
value equal to the incoming code. The middle (eighth) entry is selected and 
the comparison is m a d e again; that is, is the value of incoming code 39 greater 
than the value of the eighth (middle) entry of 43? It isn't, which eliminates 
table entries eight through 10. 

3. There are two remaining entries (positions 6-7). The middle (seventh) entry is 
selected, and its value of 39 matches that of the incoming code. The search is 
terminated. 
A total of three comparisons was required to match the incoming code, 39. (If 

32 had been the incoming entry, four comparisons would have been needed, but 
this is the maximum n u m b e r that would ever be required for a 10-position table.) A 
sequential lookup, o n the other hand, required seven comparisons until a match 
was found o n 39. 



Chapter 12 - Table Lookups 

If all 10 entries in a table have an equal chance of occurring, the average 
n u m b e r of comparisons for a sequential search o n a table of 10 entries is five. This is 
greater than the maximum n u m b e r for a binary search. Indeed, as table size 
increases, the advantage of the binary search increases dramatically. Table 12.2 
shows the m a x i m u m n u m b e r of comparisons for tables with 8 to 4,095 entries. 
T . A ^ L . k - • Required Number of Comparisons for Binary Search 

8-15 (less than 2 4) 4 
16-31 (less than 2 5) 5 
32-63 (less than 2B) 6 

64-127 (less than 2 7) 7 
128-255 (less than 23) 8 
256-511 (less than 2'<) 9 
512-1023 (less than 2 1 0) 10 
1024-2047 (less than 2 1 " 11 
2048-4095 (less than 2U >) 12 

A positional table is a sequential table with a consecutive set of numeric codes. It 
permits immediate retrieval of a table value at the expense of unused storage space. 
Figure 12.4 depicts positional organization and the associated direct lookup. 

The table in Figure 12.4 is considerably larger than the sequential table in 
Figures 12.2 and 12.3. Fifty-four entries are present in Figure 12.4, as opposed to 10 
in the earlier tables. Observe also that codes are not stored in a positional table; that 
is, the value of the associated code is the position of the descriptive value within the 
table. Hence, A R T H I S T O R Y is stored in the second position and has an associated 
code of 2; B I O L O G Y is stored in the fourth position with an associated code of 4; and 
so forth. As can be seen, this arrangement results in considerable empty (wasted) 
space, as only 10 of the 54 table entries contain descriptive values. 

The advantage of a positional table is that a match is found immediately; for 
example, to obtain the descriptive value for an incoming code of 39, you go directly 
to the 39th entry in the table. (Prudent practice dictates that the programmer 
ensure the incoming code is valid, that is, within the table's range, before attempting 
a direct lookup.) 

A table is initialized in one of two ways, by hard coding it into a program, or by 
reading its values from a file. (A table m a y also be initialized through the C O P Y 
statement, which is presented in Chapter 16.) Both techniques are discussed in 
detail. 

A table m a y be hard-coded directly in a program as s h o w n in Figure 12.5. This is 
accomplished through a combination of the V A L U E , O C C U R S , and R E D E F I N E S 
clauses, which are explained below: 

V A L U E Assigns an initial value to a specified area in m e m o r y . 
R E D E F I N E S Assigns another n a m e to previously allocated m e m o r y locations. 



Initializing a Table 

Positional Organization and Direct Lookup 

39 

(02) 

(04) 

(19) 

(21) 

(24) 

(32) 

1st try 
* - (39) 

(43) 

(49) 

ART HISTORY 

BIOLOGY 

CHEMISTRY 

CIVIL ENGINEERING 

COMP INF SYS 

ECONOMICS 

FINANCE 

MANAGEMENT 

MARKETING 

(54)| STATISTICS 

Match 

Initialization via Hard Coding 

01 MAJOR-VALUE. 
05 FILLER PIC X(14) VALUE ' 02ART HISTORY'. 
05 FILLER PIC X(14) VALUE '04BI0L0GY'. 
05 FILLER PIC X(14) VALUE '19CHEMISTRY'. 
05 FILLER PIC X(14) VALUE •21CIVIL ENG' . 
05 FILLER PIC X(14) VALUE '24C0MP INF SYS' 
05 FILLER PIC X(14) VALUE '32EC0N0MICS'. 
05 FILLER PIC X(14) VALUE '39FINANCE'. 
05 FILLER PIC X(14) VALUE '43MANAGEMENT' . 
05 FILLER PIC X(14) VALUE '49MARKETING'. 
05 FILLER PIC X(14) VALUE '54STATISTICS' . 

01 MAJOR-TABLE REDEFINES MAJOR-VALUE. 
05 MAJORS OCCURS 10 TIMES. 

10 MAJOR-CODE PIC 9(2). 
10 EXP-MAJOR PIC X(12). 



Chapter 12 Table Lookups 

i.u Table Initialization (Storage Schematic) 

o o 

CD(1) E X P - M A J O R (1) CD(2) E X P - M A J O R (2) CD(10) E X P - M A J O R (10)  
i i 

ABLE 

O C C U R S Establishes a table, that is, permits different locations to be 
referenced by the same data name, but with different subscripts. 

The need for the V A L U E and O C C U R S clauses is somewhat intuitive, whereas 
the R E D E F I N E S clause is m o r e obscure. The 01 entry M A J O R - V A L U E contains 10 
successive FILLER entries, each with a different V A L U E clause, which collectively 
initialize 140 consecutive positions with the indicated values. T h e first two positions 
under M A J O R - V A L U E contain 02, positions 3-14 contain A R T HISTORY, positions 
15 and 16 contain 04, positions 17-28 contain BIOLOGY, and so on. 

The R E D E F I N E S clause assigns a different n a m e (MAJOR-TABLE) to these 
same 140 positions, and the subsequent O C C U R S clause creates a table with 10 
occurrences. The first two positions in the table are designated M A J O R - C O D E (1) 
and contain 02, the first major code. Positions 3-14 are k n o w n as E X P - M A J O R (1) 
and contain A R T HISTORY, and so on. The conceptual view of these storage locations 
is s h o w n in Figure 12.6. 

Input-loaded Tables 

Initialization of a table through hard coding is a c o m m o n l y used technique, but one 
that presents problems in program maintenance w h e n the table changes. A n y 
change to a hard-coded table requires a corresponding change in the program, 
which in turn requires that the program be recompiled and retested. Moreover, if 
the same table is used in multiple programs, then the same change has to be m a d e 
in every program that uses the table, a time-consuming and error-prone procedure. 

A better technique is to initialize the table dynamically, by reading values 
from a file w h e n the program is executed. This is k n o w n as an input-loaded table 
and is illustrated in Figure 12.7. The Data Division entries in Figure 12.7a establish 
space for the variable-length major table without assigning values; the latter is 
accomplished at execution time by the Procedure Division entries in Figure 12.7b. 
(The statements in Figure 12.7b use the in-line P E R F O R M statement a n d 
false-condition branch of the R E A D statement to process a file until its records 
are exhausted.) 

The process is further illustrated by Figure 12.8, in which records from the 
external file (containing the table codes and descriptive values) are read one at a 
time and m o v e d to the appropriate table entries. The first record in M A J O R - C O D E -
FILE contains the first code and descriptive value, 02 and A R T HISTORY, respectively, 
which are m o v e d into M A J O R - C O D E (1) and E X P - M A J O R (1). Subsequent table 
values are m o v e d in similar fashion. 

The advantage of a n input-loaded table (over one that is hard coded) is that 
any change to the table is a c c o m m o d a t e d by modifying the file that contains the 
table values. The program (or programs) that access that table are unaffected. 



Input-Loaded Table 

FD MAJOR-CODE-FILE 
RECORD CONTAINS 14 CHARACTERS 
DATA RECORD IS MAJOR-CODE-RECORD. 

01 MAJOR-CODE-RECORD. 
05 INCOMING-FILE-CODE PIC 9(2). 
05 INCOMING-FILE-NAME PIC X(12). 

WORKING-STORAGE SECTION. 
01 MAJOR-TABLE. 

05 MAJORS OCCURS 1 TO 10 TIMES 
DEPENDING ON NUMBER-OF-MAJORS 
INDEXED BY MAJOR-INDEX. 
10 MAJOR-CODE PIC 9(2). 
10 EXP-MAJOR PIC X(12). 

01 NUMBER-OF-MAJORS PIC 99 VALUE ZERO. 

OPEN INPUT MAJOR-CODE-FILE. 
PERFORM VARYING MAJOR-INDEX FROM 1 BY 1 

UNTIL MAJOR-INDEX > 10 
OR END-OF-MAJOR-FILE = 'YES' 

READ MAJOR-CODE-FILE 
AT END 

MOVE 'YES' TO END-OF-MAJOR-FILE 
NOT AT END 

ADD 1 TO NUMBER-OF-MAJORS 
MOVE INCOMING-FILE-CODE TO MAJOR-CODE (MAJOR-INDEX) 
MOVE INCOMING-FILE-NAME TO EXP-MAJOR (MAJOR-INDEX) 

END-READ 
END-PERFORM. 
IF MAJOR-INDEX > 10 

DISPLAY 'MAJOR TABLE TOO SMALL' 
END-IF. 
CLOSE MAJOR-CODE-FILE. 

(b) In-l ine Perform 

Once a table has been established, the table lookup procedure is coded in the 
Procedure Division. W e illustrate four alternative COBOL techniques: PERFORM 
VARYING, S E A R C H , SEARCH ALL, a nd Direct Access to table entries. 



Chapter 12 — Table Lookups 

Input-Loaded Tables 

19CHEMISTRY 

04BI0L0GY 

02ART HISTORY I 

02 ART HISTORY 04 BIOLOGY 19 CHEMISTRY 

EXP-MAJOR(I) 

MAJOR-CODE(I) 

EXP-MAJ0R(2) 

MAJ0R-CODE(2) 

A A 

EXP-MAJOR(3) 

MAJOR-CODE(3) 

Figure 12.9 contains the C O B O L statements to implement the sequential table 
lookup of Figure 12.2. Entries in the table are compared sequentially to the incoming 
code SI - M A J O R - C O D E with one of two outcomes. Either a match is found, in which 
case the corresponding descriptive value is m o v e d to the output area, or the incoming 
code is not in the major table, which produces an appropriate error message. 

The check for an invalid code is accomplished by comparing the value of the 
subscript W S - M A J O R - S U B , to the n u m b e r of entries in the table. This type of error 
checking is extremely important and is one w a y of distinguishing between 
professional work a n d sloppy coding. (What would happen if the check were 
not included a n d an u n k n o w n code did appear?) Observe also the need to 
initialize both switches prior to the lookup, and h o w the switches are reset w h e n the 
search is terminated. 

The S E A R C H statement implements a sequential table lookup and is easier to 
use than the corresponding P E R F O R M V A R Y I N G statement. S E A R C H has the 
following syntax: 

SEARCH identifier-1 VARYING index-name-1 
identifier 

AT END imperative-statement-lj 

jimperati ve- statement - 2 WHEN condition- 1 

WHEN condition-2 

NEXT SENTENCE 

imperative-statement- 3 
NEXT SENTENCE 

[END-SEARCH] 



Table Lookups 

? l S « r e i 2 . d Sequential Lookup with PERFORM VARYING 

WORKING-STORAGE SECTION. 

01 TABLE-PROCESSING-ELEMENTS. 

01 

05 WS-MAJ0R-SUB PIC S9(4) USAGE IS COMP. 
05 WS-FOUNO-MAJOR-SWITCH PIC X(3) VALUE 'NO' 
05 WS-END-OF-TABLE-SWITCH PIC X(3) VALUE 'NO'. 

MAJOR-VALUE. 
05 FILLER PIC X(14) VALUE '02ART HISTORY' 
05 FILLER PIC X(14) VALUE '04BIOLOGY'. 
05 FILLER PIC X(14) VALUE ' 19CHEMISTRY'. 
05 FILLER PIC X(14) VALUE '21CIVIL ENG'. 
05 FILLER PIC X(14) VALUE 124COMP INF SYS 
05 FILLER PIC X(14) VALUE ' 32ECONOMICS'. 
05 FILLER PIC X(14) VALUE '39FINANCE'. 
05 FILLER PIC X(14) VALUE '43MANAGEMENT'. 
05 FILLER PIC X(14) VALUE '49MARKETING'. 
05 FILLER PIC X(14) VALUE ' 54STATISTICS'. 

01 MAJOR-TABLE REDEFINES MAJOR-VALUE. 
05 MAJORS OCCURS 10 TIMES. 

10 MAJOR-CODE PIC 9(2). 
10 EXP-MAJOR PIC X(12). 

PROCEDURE DIVISION. 
MOVE 'NO' TO WS-FOUND-MAJOR-SWITCH WS-END-OF-TABLE-SWITCH. 
PERFORM FIND-MAJOR 

VARYING WS-MAJOR-SUB FROM 1 BY 1 
UNTIL WS-END-OF-TABLE-SWITCH = 'YES' 

OR WS-FOUND-MAJOR-SWITCH = 'YES 1. 

| FIND-MAJOR. 
1 IF WS-MAJOR-SUB > 10 
| MOVE 'YES' TO WS-END-OF-TABLE-SWITCH 
j MOVE 'UNKNOWN' TO HDG-MAJOR 
| ELSE 
I IF ST-MAJOR-CODE = MAJOR-CODE (WS-MAJOR-SUB) 
| MOVE 'YES' TO WS-FOUND-MAJOR-SWITCH 
) MOVE EXP-MAJOR (WS-MAJOR-SUB) TO HDG-MAJOR 
j END-IF 
j END-IF. 



Chapter 12 — Table Lookup 

P R O G R A M M I N G T I P 

Data names defined as switches and/or subscripts should be restricted to a single use. Consider: 

Poor Code 

01 SUBSCRIPT PIC S9(4) COMP. 
01 EOF-SWITCH PIC X(3) VALUE SPACES. 

PERFORM INITIALIZE-TITLE-FILE 
UNTIL EOF-SWITCH = 'YES'. 

MOVE SPACES TO EOF-SWITCH. 
PERFORM PROCESS-EMPLOYEE-RECORDS 

UNTIL EOF-SWITCH = 'YES1. 
PERFORM COMPUTE-SALARY-HISTORY 

VARYING SUBSCRIPT FROM 1 BY 1 
UNTIL SUBSCRIPT > 3. 

PERFORM FIND-MATCH-TITLE 
VARYING SUBSCRIPT FROM 1 BY 1 

UNTIL SUBSCRIPT > 100. 

improved ooae 

01 PROGRAM-SUBSCRIPTS. 
05 TITLE-SUBSCRIPT PIC S9(4) COMP. 
05 SALARY-SUBSCRIPT PIC S9(4) COMP. 

01 END-OF-FILE-SWITCHES. 
05 END-OF-TITLE-FILE-SWITCH PIC X(3) VALUE SPACES. 
05 END-OF-EMPLOYEE-FILE-SWITCH PIC X(3) VALUE SPACES. 

PERFORM INITIALIZE-TITLE-FILE 
UNTIL END-OF-TITLE-FILE-SWITCH = 'YES'. 

PERFORM PROCESS-EMPLOYEE-RECORDS 
UNTIL END-OF-EMPLOYEE-FILE-SWITCH = 'YES'. 

PERFORM COMPUTE-SALARY-HISTORY 
VARYING SALARY-SUBSCRIPT FROM 1 BY 1 

UNTIL SALARY-SUBSCRIPT > 3. 
PERFORM FIND-MATCHING-TITLE 

VARYING TITLE-SUBSCRIPT FROM 1 BY 1 
UNTIL TITLE-SUBSCRIPT > 100. 

At the very least, the improved code offers superior documentation. By restricting data names to a single 
use, one automatically avoids such nondescript entries as EOF-SWITCH or SUBSCRIPT. Of greater impact, 
the improved code is more apt to be correct in that a given data name is modified or tested in fewer places 
within a program. Finally, if bugs do occur, the final values of the unique data names (TITLE-SUBSCRIPT and 
SALARY-SUBSCRIPT) will be of much greater use than the single value of SUBSCRIPT. 



Identifier-1 in the S E A R C H statement designates a table that contains both 
the O C C U R S a n d I N D E X E D B Y clauses. A T E N D is optional, but strongly 
recommended, to detect invalid or u n k n o w n codes. The W H E N clause specifies 
both a condition and an imperative sentence; the latter is executed w h e n the 
condition is satisfied (that is, w h e n a match is found.) Control passes to the statement 
immediately following the S E A R C H statement after the W H E N condition is satisfied 
or the A T E N D clause is reached. (The V A R Y I N G option is covered in Chapter 13.) 

The S E A R C H statement is illustrated in Figure 12.10 (which implements the 
identical logic of Figure 12.9). The table definition includes the I N D E X E D B Y 
clause, which is required by the S E A R C H statement, and establishes values through 
hard coding. 

The S E A R C H statement compares, in sequence, entries in the M A J O R S table 
to S T - M A J O R - C O D E . If no match is found (that is, if the A T E N D condition is 

igure 1 2 , 1 8 SEARCH Statement (Sequential Lookup) 

01 MAJOR-VALUE. 05 FILLER PIC X(14) VALUE '02ART HISTORY'. 
05 FILLER PIC X(14) VALUE '04BI0LOGY'. 
05 FILLER PIC X(14) VALUE '19CHEMISTRY'. 
05 FILLER PIC X(14) VALUE '21CIVIL ENG'. 
05 FILLER PIC X(14) VALUE '24C0MP INF SYS' 
05 FILLER PIC X(14) VALUE ' 32ECONOMICS'. 
05 FILLER PIC X(14) VALUE ' 39FINANCE'. 
05 FILLER PIC X(14) VALUE '43MANAGEMENT'. 
05 FILLER PIC X(14) VALUE '49MARKETING'. 
05 FILLER PIC X(14) VALUE '54STATISTICS1. 

01 MAJOR-TABLE REDEFINES MAJOR-VALUE. 
05 MAJORS OCCURS 10 TIMES 

[INDEXED BY MAJOR-INDEX. , . 
10 MAJOR-CODE PIC 9(2). 
10 EXP-MAJOR PIC X(12). 

PROCEDURE DIVISION. 

[SET'MAJOR̂ TNDEX f0 iTj——... 
SEARCH MAJORS 

AT END 
MOVE 'UNKNOWN' TO HDG-MAJ0R 

WHEN ST-MAJOR-CODE = MAJOR-CODE (MAJOR-INDEX) 
MOVE EXP-MAJOR (MAJOR-INDEX) TO HDG-MAJ0R 

END-SEARCH. 



Chapter 12 - Table Lookups 

reached), then U N K N O W N is m o v e d to H D G - M A J O R . However, if a match does 
occur, [that is, if S T - M A J G R - C Q D E = M A J O R - C O D E (MAJOR-INDEX)], the 
appropriate major is m o v e d to H D G - M A J O R . The search is terminated, and control 
passes to the statement following the S E A R C H . 

The statement SET M A J O R - I N D E X T O 1 is necessary to indicate the point in 
the table where the search is to begin, and appears before the S E A R C H statement. 
Recall also that the SET statement must be used to modify a n index; that is, it is 
incorrect to say M O V E 1 T O MAJ O R - I N D E X . 

S E A R C , Statement 

The S E A R C H A L L statement implements a binary lookup, and is presented below: 

SEARCH ALL identifier-1 

[END SEARCH] 

As with a sequential search statement, S E A R C H A L L requires the associated table be 
defined with an index. In addition, the codes in the table must be in sequence (either 
ascending or descending). 

The implementation of a binary search is s h o w n in Figure 12.11, and is very 
similar in appearance to Figure 12.10. Observe, however, the K E Y clause in the table 
definition to indicate the sequence in which codes appear. (In the event that codes 
in the table are out of sequence, C O B O L will not indicate an explicit error, but the 
results of the search will be incorrect.) Note too that since S E A R C H A L L determines 
its o w n starting position in the table, a SET statement is not used in conjunction 
with a binary lookup. The differences between S E A R C H a n d S E A R C H A L L are 
summarized in Table 12.3. 

[AT END imperative-statement -1] 

I impei WHEN condition-1 {  [NEXT 

1 2 . 3 SEARCH versus SEARCH ALL 

Implements a sequential lookup Implements a binary lookup 

Requires a SET statement prior to 
SEARCH, to establish the initial 
position in the table 

Does not require an initial SET 
statement (calculates its own 
starting position) 

Does not require codes in the 
table to be in any special 
sequence 

Requires codes to be in 
(ascending or descending) 
sequence on the associated KEY 
clause in the table definition 

Contains an optional VARYING 
clause (See Figure 13.18) 

Does not contain a VARYING clause 

May specify more than one 
W H E N clause 

Restricted to a single WHEN clause 

A positional table results in wasted space but permits a far faster table lookup in 
that you go directly to the appropriate table entry. Implementation of a direct 
lookup is s h o w n in Figure 12.12. 



S E A R C H ALL Statement (Binary Lookup) 

01 MAJOR-VALUE 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 

PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 
PIC X(14) 

VALUE '02ART HISTORY' 
VALUE '04BI0L0GY'. 
VALUE '19CHEMISTRY'. 
VALUE '21CIVIL ENG 1. 
VALUE '24C0MP INF SYS 
VALUE '32EC0N0MICS'. 
VALUE '39FINANCE'. 
VALUE '43MANAGEMENT'. 
VALUE '49MARKETING'. 
VALUE '54STATISTICS'. 

01 MAJOR-TABLE REDEFINES MAJOR-VALUE. 
05 MAJORS OCCURS 10 TIMES 

ASCENDING KEY IS MAJOR-CODE 
INDEXED BY MAJOR-INDEX. 
10 MAJOR-CODE PIC 9(2). 
10 EXP-MAJOR PIC X(12). 

PROCEDURE DIVISION. 

SEARCH ALL MAJORS 
AT END 

MOVE 'UNKNOWN' TO HDG-MAJOR 
WHEN MAJOR-CODE (MAJOR-INDEX) = ST-MAJOR-CODE 

MOVE EXP-MAJOR (MAJOR-INDEX) TO HDG-MAJOR 
END-SEARCH. 

The codes themselves are not stored in the table of descriptive values as the 
position of an entry within the table corresponds to its associated code. The direct 
lookup is in essence a single M O V E statement in which the descriptive value in the 
indicated table position is chosen. The associated IF statement ensures that the 
incoming code lies within the range of the table. 

A range-step table is used w h e n the same table value is applicable to multiple 
search arguments—that is, w h e n there is no longer a one-to-one correspondence 
between a table value and the search argument. The computation of federal income 
tax is a well-known example as the same tax rate is applied to an entire tax bracket; 
that is, there is one tax rate for all incomes less than $20,000, a different rate for 
incomes between $20,000 and $40,000, and so on. 

The scholarship table in Figure 12.13a is another example of a range-step 
table in which the a m o u n t of financial aid depends on a student's grade point 



Chapter 12 — Table Lookups 

1 2 Direct Access to Table Entries 

01 MAJOR-VALUE. 
05 FILLER PIC X(12) VALUE 'UNKNOWN'. 
05 FILLER PIC X(12) VALUE 'ACCOUNTING' 
05 FILLER PIC X(12) VALUE 'UNKNOWN'. 
05 FILLER PIC X(12) VALUE 'BIOLOGY'. 

05 FILLER PIC X(12) VALUE 'STATISTICS' 

01 MAJOR-TABLE REDEFINES MAJOR-VALUE. 
05 MAJORS OCCURS 54 TIMES PIC X(12). 

PROCEDURE DIVISION. 

jIF ST-MAJOR-CODE > 0 AND ST-MAJOR-CODE < 55 
MOVE MAJORS (ST-MAJOR-CODE) TO HDG-MAJOR 

ELSE 
MOVE 'UNKNOWN' TO HDG-MAJOR 

END-IF. 

Figure 1 2 . 1 3 Range-step Table 

Grade Point Scholarship 
Average Percentage 

3.75 - 4 00 100 
3.50 - 3 74 75 
3.25 - 3 49 50 
3.00 - 3 24 33 
2.75 - 2 99 25 
2.50 - 2 74 15 

average. Students with a G P A between 2.50 and 2.74 receive a scholarship of 15%, 
students with a G P A between 2.75 and 2.99 an award of 2 5 % , and so on. 

The C O B O L implementation is s h o w n in Figure 12.13b. T h e scholarship table 
is hard coded and parallels the earlier example in Figure 12.5. The G P A table includes 
the m i n i m u m grade point average and corresponding scholarship a m o u n t for each 
of the six table entries. (There is no need to include the corresponding m a x i m u m 
grade point average). 



A Complete Example 

(continued) 

01 SCHOLARSHIP-TABLE. 
05 GPA-SCHOLARSHIP-PERCENTAGES. 

10 FILLER PIC X(6) 
10 FILLER PIC X(6) 
10 FILLER PIC X(6) 
10 FILLER PIC X(6) 
10 FILLER PIC X(6) 
10 FILLER PIC X(6) 

VALUE '375100' . 
VALUE '350075'. 
VALUE '325050'. 
VALUE '300033'. 
VALUE '275025'. 
VALUE '250015'. 

PERCENTAGES 05 GPA-TABLE REDEFINES GPA-SCHOLARSHIP 
OCCURS 6 TIMES 
INDEXED BY GPA-INDEX. 

10 GPA-MINIMUM PIC 9V99. 
10 SCHOLARSHIP-PCT PIC 999. 

SET GPA-INDEX TO 1. 
SEARCH G P A - T A B L E 

AT END 
MOVE ZERO TO SCHOLARSHIP-AWARD 

| W H E N ITUDENT-GPA > = GPA-MJNIMUM J G P A - I N D E X ) j 
MOVE SCHOLARSHIP-PCT (GPA-INDEX) TO SCHOLARSHIP-AWARD 

END-SEARCH. 

The S E A R C H statement implements a sequential search similar to the earlier 
example in Figure 12.10. Note, however, that the W H E N condition uses a greater 
than or equal condition in accordance with the definition of the range-step table. 

W e are ready n o w to incorporate the material o n table lookups and initialization 
procedures into a complete example. Specifications are as follows: 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Tables 

Narrative: This program fully illustrates table processing. Two distinct means for initialization (hard 
coding and input loaded tables) are shown, as are three techniques for table lookups 
(sequential, binary, and direct access to table entries). 

Input File(s): EMPLOYEE-FILE 

TITLE-FILE 



Chapter 12 ----- Table Lookups 

Employee Record: 

Title Record: 

COLUMNS FIELD PICTURE 

1-20 Name X(20) 

21-24 Title Code X(4) 

25-27 Location Code X(3) 

28 Education Code 9 

29-34 Employee Salary 9(6) 

C O L U M N S FIELD PICTURE 

1-4 Title Code X(4) 

5-19 Descriptive Value X(15) 

Test Data: See Figure 12.14a for TITLE-FILE. See Figure 12.14b for EMPLOYEE-FILE. 

Report Layout: See Figure 12.14c. 

Processing Requirements: 1. Process an employee file, with each record containing the employee's salary as well 
as coded data on an employee's location, education, and title. 

2. The table of location codes is to be hard-coded into the program and expanded via a 
sequential search. Location codes and their descriptive values are shown below: 

CODE CITY 

ATL Atlanta 
BOS Boston 
CHI Chicago 
DET Detroit 
KC Kansas City 
LA Los Angeles 
MIN Minneapolis 
NY New York 
PHI Philadelphia 
SF San Francisco 

3. The education codes are to be stored in a positional table and expanded via a direct 
lookup. Education codes and their descriptive values are shown below: 

CODE EDUCATION 

1 Some high school 
2 High school diploma 
3 Two-year degree 
4 Four-year degree 
5 Some graduate work 
6 Master's degree 
7 Doctorate degree 
8 Other 

4. The table of title codes is to be read from a file and expanded via a binary search. The 
title codes and their descriptive values were shown earlier in Figure 12.14a. 

5. The amount of life insurance is determined by the employee's salary according to the 
following range-step table: 



A Complete Example 

Test Data and Report 

1000PROGRAMMER 
1500DATA BASE 
20000PERATOR 
2999SYSTEMS ANALYST 
3499DATA DICTIONARY 

JACKIE CLARK 2999CHI4025000 
MARGOT HUMMER 1000LA 6080000 
PERCY GARCIA 2999IND3015000 
CATHY BENWAY 3499ATL5110000 
LOUIS NORIEGA 0100NC 9035000 
JUD MCDONALD 1500ATL3065000 
NELSON KERBEL 1000PHI3038000 

Employee P i e 

EMPLOYEE LOCATION TITLE EDUCATION SALARY LIFE INS 

JACKIE CLARK CHICAGO SYSTEMS ANALYST 4YR DEGREE $25,000 $80,000 
MARGOT HUMMER LOS ANGELES PROGRAMMER MASTERS $80,000 $250,000 
PERCY GARCIA UNKNOWN SYSTEMS ANALYST 2YR DEGREE $15,000 $40,000 
CATHY BENWAY ATLANTA DATA DICTIONARY SOME GRAD $110,000 $500,000 
LOUIS NORIEGA UNKNOWN UNKNOWN UNKNOWN $35,000 $80,000 
JUD MCDONALD ATLANTA DATA BASE 2YR DEGREE $65,000 $175,000 
NELSON KERBEL PHILADELPHIA PROGRAMMER 2YR DEGREE $38,000 $80,000 

SALARY R A N G E LIFE INSURANCE 

<=$ 20,000 $40,000 
$20,001-$ 40,000 $80,000 
$ 40,001-$ 75,000 $ 175,000 
$ 75,001-$ 100,000 $ 250,000 
$ 100,001-$ 200,000 $ 500,000 

6. Print a detail line for each employee with descriptive information for location, education, 
title, and life insurance. Single-space this report. 

The hierarchy chart for the table lookup is s h o w n in Figure 12.15. T h e highest-level 
module, P R O D U C E - E M P L O Y E E - R E P O R T , contains three subordinates to initialize 
the title table (the specifications called for an input-loaded table), write a heading 



Chapter 12 Table Lookups 

1„> i? Hierarchy Chart for I able-Lookup Program 

INITIALIZE 
TITLE 
TABLE 

PRODUCE 
EMPLOYEE 

REPORT 

WRITE 
HEADING 

LINE 

PROCESS 
EMPLOYEE 
RECORDS 

EXPAND 
TITLE 
CODE 

EXPAND 
LOCATION 

CODE 

EXPAND 
EDUCATION 

CODE 

DETERMINE 
INSURANCE 

AMOUNT 

WRITE 
DETAIL 

LINE 

line, and process employee records; the latter includes four lower modules for the 
four table lookups. 

The associated pseudocode is shown in Figure 12.16 a nd uses the in-line 
perform and false-condition branch first to process both the title and employee 
files. The title file is processed first and includes a check to ensure that the size of the 
title table is not exceeded. After the last record from the title file has been read, the 
employee file is opened and processed in its entirety. Each incoming employee 
record has its title, location, and education codes expanded, the a m o u n t of insurance 
determined, and a detail line written. 

The Completed P rogram „._ .„ 

The completed program is s h o w n in Figure 12.17. The paragraphs in the Procedure 
Division correspond one to one with the modules in the hierarchy chart, and its 
logic in the program parallels that of the pseudocode just developed. The program 
complies with the processing requirements a nd also illustrates the various C O B O L 
features presented earlier. Note the following: 

1. The use of three S E L E C T statements for EMPLOYEE-FILE, PRINT-FILE, and 
TITLE-FILE; the latter is used to dynamically load the title table. 

2. Omission of all optional clauses in the F D entries in the Data Division; that 
is, the F D contains only the file name. The optional reserved word FILLER 
is also omitted throughout the Data Division (see Limitations of C O B O L - 7 4 
o n page 357). 

3. The use of R E A D I N T O and W R I T E F R O M throughout the Procedure Division; 
this is not a requirement of table processing per se, but a coding style used 
throughout the text. 

4. The definition of the location table in lines 43-59 through combination 
of the V A L U E S , O C C U R S , a n d R E D E F I N E S clauses. T h e location table 
includes the I N D E X E D B Y clause as required by the S E A R C H statement in 
lines 190-196. 



A Complete Example 

Pseudocode for Table-Lookup Program 

Open title file 
DO WHILE title data remains or title table not exceeded 

READ title file 
AT END 

Indicate no more title data 
NOT AT END 

Increment number of titles in table 
Move incoming title to current position in table 

1 ENDREAD 
ENDDO 
IF title table exceeded 

Display error message 
ENDIF 
Close title file 
Open employee file and print file 
DO WHILE employee data remains 
— READ employee file 
| AT END 
j Indicate no more data 

NOT AT END 
Expand title code 
Expand location code 
Expand education code 
Determine insurance amount 

: Write detail line 
ENDREAD 

ENDDO 
Close employee file and print file 
Stop run 

Table-Lookup Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. TABLES. 
3 AUTHOR. ROBERT GRAUER 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTR12\TABLES.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 
14 
15 DATA DIVISION. 

SELECT TITLE-FILE ASSIGN TO 'A:\CHAPTR12\TITLES.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

file://'A:/CHAPTR12/TABLES.DAT'
file://'A:/CHAPTR12/TITLES.DAT'


Chapter 12 Table Lookups 

A 7 (continued) 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

F I L E SECTION. 
FD TITLE-FILE. 
01 T I T L E - I N 

FD EMPLOYEE-FILE. 
01 EMPLOYEE-RECORD 

FD PRINT-FILE. 
01 PRINT-LINE 

PIC X ( 1 9 ) . 

PIC X ( 3 4 ) . 

PIC X ( 1 3 2 ) . 

WORKING-STORAGE SECTION. 
01 PIC X(14) 

VALUE 'WS BEGINS HERE'. 

01 PROGRAM-SWITCHES-AND-COUNTERS. 
•^S-"END^-flTLl^FiLE PTC"X{3) 
05 END-OF-EMP-FILE PIC X(3) 
05 NUMBER-OF-TITLES 

VA L U E 'NO 
'NO 

PIC 999 VALUE ZEROS. 

01 TITLE-TABLE. 
05 T I T L E S OCCURS 1 TO 999 TIMES 

DEPENDING ON NUMBER-OF-TITLES 
r A S C E N D JTWHCEYIS - TTTLI: - cobT~l ̂ 

39 INDEXED BY TITLE-INDEX. SCtNUING KEYciauSx r 

40 10 T I T L E - C O D E PIC X ( 4 ) . 
41 10 T I T L E - N A M E P I C X(15) 
42 
43 01 LOCATION-VALUE. 
44 05 PIC X(16) VALUE 'ATLATLANTA'. 
45 05 PIC X(16) VALUE 'BOSBOSTON'. 
46 05 PIC X(16) VALUE 'CHICHICAGO'. 
47 05 PIC X(16) VA L U E 'DETDETROIT'. 
48 05 PIC X(16) VALUE 1 K C KANSAS CITY'. 
49 05 PIC X(16) VA L U E 'LA LOS ANGELES'. 
50 05 PIC X(16) VALUE 'MINMINNEAPOLIS'. 
51 05 PIC X(16) VALUE 'NY NEW YORK'. 
52 05 PIC X(16) VALUE ' PHIPHILADELPHIA'. 
53 05 PIC X(16) VALUE 'SF SAN FRANCISCO'. 
54 
55 01 LOCATION-TABLE REDEFINES LOCATION- VALUE. 
56 05 LOCATIONS OCCURS 10 TIME S 
57 INDEXED BY LOCATION- INDEX. 
58 10 LOCATION-CODE PIC X ( 3 ) . 
59 10 LOCATION-NAME PIC X(13) 
60 
61 01 EDUCATION-TABLE. X. 

62 05 EDUCATION-VALUES. 
63 10 PIC X(10) VA L U E 'SOME HS'. 
64 10 PIC X(10) V A L U E 'HS DIPLOMA'. 



A Complete Example 

(continued) 

65 10 PIC X(10) VALUE '2YR DEGREE 1. 
66 10 PIC X(10) VALUE '4YR DEGREE'. 
67 10 PIC X(10) VALUE 'SOME GRAD'. 
68 10 PIC X(10) VALUE 'MASTERS'. 
69 10 PIC X(10) VALUE 'PH. D.'. 
70 10 PIC X(10) VALUE 'OTHER'. 
71 05 EDU-NAME REDEFINES EDUCATION-VALUES 
72 OCCURS 8 TIMES PIC X(10). 
73 
74 01 SALARY-INSURANCE-TABLE 
75 05 INSURANCE-VALUES. 
76 10 PIC X(12) VALUE '020000040000'. 
77 10 PIC X(12) VALUE '040000080000'. 
78 10 PIC X(12) VALUE '075000175000'. 
79 10 PIC X(12) VALUE '100000250000'. 
80 10 PIC X(12) VALUE '200000500000'. 
81 05 INSURANCE-TABLE REDEFINES INSURANCE-VALUES 
82 OCCURS 5 TIMES 
83 INDEXED BY INSURANCE-INDEX. 
84 10 SALARY-MAXIMUM PIC 9(6). 
85 10 INSURANCE-AMOUNT PIC 9(6). 
86 
87 01 HEADING-LINE. 
88 05 PIC X(2) VALUE SPACES. 
89 05 PIC X(10) VALUE 'EMPLOYEE'. 
90 05 PIC X(10) VALUE SPACES. 
91 05 PIC X(8) VALUE 'LOCATION'. 
92 05 PIC X(7) VALUE SPACES. 
93 05 PIC X(5) VALUE 'TITLE'. 
94 05 PIC X(12) VALUE SPACES. 
95 05 PIC X(10) VALUE 'EDUCATION'. 
96 05 PIC X(4) VALUE SPACES. 
97 05 PIC X(6) VALUE 'SALARY'. 
98 05 PIC X(3) VALUE SPACES. 
99 05 PIC X(8) VALUE 'LIFE INS'. 
100 05 PIC X(47) VALUE SPACES. 
101 
102 01 DASHED-LINE. 
103 05 PIC X(85) VALUE ALL '-'. 
104 05 PIC X(47) VALUE SPACES. 
105 
106 01 DETAIL-LINE. 
107 05 DET-NAME PIC X(20). 
108 05 PIC XX VALUE SPACES. 
109 05 DET-LOCATION PIC X(13). 
110 05 PIC XX VALUE SPACES. 
111 05 DET-TITLE PIC X(15). 
112 05 PIC XX VALUE SPACES. 
113 05 DET-EDUCATION PIC X(10). 
114 05 PIC XXX VALUE SPACES. 



Chapter 12 — Table Lookups 

^i"' (continued) 

115 05 DET-SALARY PIC $$$$,$$$. 
116 05 PIC XX VALUE SPACES. 
117 05 DET-INSURANCE PIC $$$$,$$$. 
118 05 PIC X(47) VALUE SPACES. 
119 
120 01 WS-EMPLOYEE-RECORD. 
121 05 EMP-NAME PIC X(20). 
122 05 EMP-TITLE-CODE PIC X(4). 
123 05 EMP-LOC-CODE PIC X(3). 
124 05 EMP-EDUC-CODE PIC 9. 
125 05 EMP-SALARY PIC 9(6). 
126 
127 01 WS-TITLE-RECORD. 
128 05 TITLE-IN-CODE PIC X(4). 
129 05 TITLE-IN-NAME PIC X(15). 
130 
131 PROCEDURE DIVISION. 
132 100 -PRODUCE-EMPLOYEE-REPORT. 
1 ?i "PERFORM 200- IN ITIALIZE -TIT LE - TAB LE 7h 
134 OPEN INPUT EMPLOYEE-FILE 
135 OUTPUT PRINT-FILE. 
136 PERFORM 300-WRITE-HEADING-LINES. 
137 PERFORM UNTIL END-OF-EMP-FILE = 'YES' 
138 READ EMPLOYEE-FILE INTO WS-EMPLOYEE-RECORD 
139 AT END 
140 MOVE 'YES' TO END-OF-EMP-FILE 
141 NOT AT END 
142 PERFORM 400-PROCESS-EMPLOYEE-RECORDS 
143 END-READ 
144 END-PERFORM. 
145 CLOSE EMPLOYEE-FILE 
146 PRINT-FILE. 
147 STOP RUN. 
148 
149 200 -INITIALIZE-TITLE-TABLE. 
150 OPEN INPUT TITLE-FILE. 
151 PERFORM VARYING TITLE-INDEX FROM 1 BY 1 
152 UNTIL END-OF-TITLE-FILE = 'YES' -Checks tlx 
153 [OR TITLE-INDEX > 999i 
154 READ TITLE-FILE INTO WS-TITLE-RECORD 
155 AT END 
156 MOVE 'YES' TO END-OF-TITLE-FILE 
157 NOT AT END 
158 ADD 1 TO NUMBER-OF-TITLES 
159 MOVE TITLE-IN-CODE TO TITLE-CODE (TITLE-INDEX) 
160 MOVE TITLE-IN-NAME TO TITLE-NAME (TITLE-INDEX) 
161 END-READ 
162 END-PERFORM. 
163 IF TITLE-INDEX > 999 
164 DISPLAY 'SIZE OF TITLE TABLE IS EXCEEDED' 



A Complete Example 

(continued) 

165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
1 0 7 

188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 

END-IF. 
CLOSE TITLE-FILE. 

300-WRITE-HEADING-LINES. 
WRITE PRINT-LINE FROM HEADING-LINE 

AFTER ADVANCING PAGE. 
WRITE PRINT-LINE FROM DASHED-LINE 

AFTER ADVANCING 1 LINE. 

400-PR0CESS-EMPL0YEE-REC0RDS. 
PERFORM 420-EXPAND-TITLE-CODE. 
PERFORM 430-EXPAND-L0CATI0N-C0DE. 
PERFORM 440-EXPAND-EDUCATI0N-C0DE. 
PERFORM 450-DETERMINE-INSURANCE-AMOUNT. 
PERFORM 470-WRITE-DETAIL-LINE. 

420-EXPAND-TITLE-CODE. _ 
! SEARCH ALL TITLES 

AT END 
MOVE 'UNKNOWN' TO DET-TITLE 

WHEN TITLE-CODE (TITLE-INDEX) = EMP-TITLE-CODE 
MOVE TITLE-NAME (TITLE-INDEX) TO DET-TITLE 

430-EXPAND-LOCATION-CODE^ 
; SET LOCATION-INDEX TO 1. 
! SEARCH LOCATIONS 

AT END 
MOVE 'UNKNOWN' TO DET-LOCATION 

WHEN EMP-LOC-CODE = LOCATION-CODE (LOCATION-INDEX) 
MOVE LOCATION-NAME (LOCATION-INDEX) TO DET-LOCATION 

END-SEARCH. 

440-EXPAND-EDJJ^ATI0N-C0DE. 
IF EMP-EDUC-CODE < 1 OR > 8 

MOVE 'UNKNOWN' TO DET-EDUCATION 
ELSE 

MOVE EDU-NAME (EMP-EDUC-CODE) TO DET-EDUCATION 
END-IF.' 

450-DETERMINE-INSURANCE-AMOUNT. 
IF EMP-SALARY IS NUMERIC 

SET INSURANCE-INDEX TO 1 
SEARCH INSURANCE-TABLE 

AT END 
MOVE ZERO TO DJ^T-INSURANCE 

I WHEN EMP-SALARY <= SALARY-MAXIMUM (INSURANCE-INDEX) 
MOVE INSURANCE-AMOUNT (INSURANCE-INDEX) 

TO DET-INSURANCE 
END-SEARCH 



Chapter 12 — Table Lookups 

(continued) 

215 
216 
217 
218 

ELSE 
DISPLAY 'INCOMING SALARY NOT NUMERIC' 
MOVE ZERO TO DET-INSURANCE 

END-IF. 

220 
221 
222 
223 
224 
225 

470-WRITE-DETAIL-LINE. 
MOVE SPACES TO PRINT-LINE. 
MOVE EMP-NAME TO DET-NAME. 
MOVE EMP-SALARY TO DET-SALARY. 
WRITE PRINT-LINE FROM DETAIL-LINE 

AFTER ADVANCING 1 LINE. 

5. The definition of the education table (lines 61-72) as a positional tabie; that is, 
the education codes themselves (1, 2, ... ,8) are not entered in the table, and 
the incoming employee education code is expanded via direct access to a 
table entry in the M O V E statement of line 202. (The IF statement in line 199 is 
executed prior to the M O V E to ensure a valid education code.) 

6. The definition of the insurance table (lines 74-85), which includes an I N D E X E D 

W H E N clause in line 211 includes a less than or equal condition consistent 
with the implementation of a range-step table. 

7. The definition of the title table as input loaded in lines 35-41; that is, the 
O C C U R S clause merely allocates spaces for the table but does not assign 
values to it; the latter is done dynamically in lines 150-166 of the Procedure 
Division. Note, too, the inclusion of the I N D E X E D B Y and A S C E N D I N G K E Y 
clauses that are required by the S E A R C H A L L statement in lines 182-187. 

The flow in the Procedure Division is straightforward and easy to follow. The 
P E R F O R M statement in line 133 initializes the title table, after which the employee 
and print files are opened and a heading line is written. The combination of the in­
line perform and false-condition branch in lines 137 through 144 processes employee 
records until the file is exhausted. 



Summary 

The optional END-SEARCH scope terminator is new to COBOL-85 and 
terminates the conditional portion of the SEARCH and SEARCH ALL 
statements. 

The word FILLER is optional, making possible Data Division entries of 
the form: 

01 MAJOR-VALUE. 
05 PIC X(14) VALUE '02ART HISTORY'. 
05 PIC X(14) VALUE '04BI0L0GY'. 
05 PIC X(14) VALUE ' 19CHEMISTRY'. 

The entries look strange initially, but make perfect sense when you realize 
that data names defined as FILLER are not referenced in the Procedure 
Division; that is, omission of the word FILLER has no effect on the remainder 
of a program. 

i c s i s K e m e m o e r 

Codes may be alphabetic, numeric, or alphanumeric. A good coding 
system will be precise, mnemonic, and expandable. 

The VALUE, OCCURS, and REDEFINES clauses are used in combination 
to define and initialize a table within a COBOL program. 

A table lookup may be implemented sequentially, in binary fashion, or 
through direct access to table entries. 

A range-step table occurs when there is no one-to-one correspondence 
between a table value and the search argument. 

Tables may be initialized through hard coding or dynamically loaded at 
execution time. 

A SEARCH statement is used to implement a sequential lookup. The 
statement requires the INDEXED BY clause in the table definition. 

A SEARCH ALL statement is used to implement a binary lookup. The 
statement requires the INDEXED BY and KEY clauses in the table 
definition, and requires the keys in the table to be in either ascending or 
descending sequence. 



Chapter 12 Table Lookups 

«3B€f 

Alphabetic code 
Alphanumeric code 
Binary table lookup 
Direct access to table entries 
Hard coding 
Index 
Input-loaded table 
Mnemonic code 

Numeric code 
Positional organization 
Precise code 
Range-step table 
Sequential table lookup 
Subscript 
Table lookup 

ASCENDING KEY 
AT END 
DESCENDING KEY 
END-SEARCH 
INDEXED BY 
OCCURS 
PERFORM VARYING 

REDEFINES 
SEARCH 
SEARCH ALL 
SET 
VALUE 
WHEN 

1. A two-position numeric code has combinations; a two-position 
alphabetic code has ; and a two-position alphanumeric code 
has . 

2. A table lookup does not require its entries to be in any special 
order, whereas a binary table lookup requires that the entries be in either  

or sequence. 

3. If a table is then the program in which it is 
found must be recompiled in order to change the table. 

4. An table makes it possible to change entries 
in the table without recompiling the program. 

5. Direct access to table entries is possible only if the table has 
organization. 

6. A sequential table lookup in a table of 500 elements could require as many as 
tries, whereas a binary lookup for the same table would take no 

more than tries. 

7. The clause gives another name to previously allocated space. 

8. A sequential table lookup is implemented by the statement, 
whereas a binary lookup is implemented by . 

9. The ASCENDING/DESCENDING clause is required in the table 
definition if a binary table lookup is to be implemented. 

10. The statement appears before a sequential search, but is not 
used prior to a binary search. 

11. The clause is required in a table's definition if either a sequential 
or binary search is used. 



12. The REDEFINES clause (must/may) be used when initializing a table. 

13. If the wrong number of subscripts are used with a particular data name, a 
(compilation/execution) e r r o r w j | | result. 

14. A SET statement (is/is not) U S ed before a SEARCH ALL statement, as the binary 
algorithm calculates its own starting position. 

15. A table occurs when there is no longer a one-
to-one correspondence between a table value and the search argument. 

1. A binary search over a table of 500 elements requires 9 or fewer comparisons. 

2. A sequential search over a table of 500 elements could require 500 comparisons. 

3. Direct access to table entries requires no comparisons. 

4. The SEARCH statement requires an index. 

5. SEARCH ALL denotes a binary search, 

6. There are no additional requirements of table organization In order to implement a 
binary rather than a sequential search. 

7. An index (that is, displacement) of zero refers to the first element in a table. 

8. A subscript of zero refers to the first element in a table. 

9. An index cannot be manipulated by a MOVE statement. 

10. PERFORM VARYING can manipulate both indexes and subscripts. 

11. A SEARCH statement can contain only a single WHEN clause. 

12. The ASCENDING (DESCENDING) KEY clause is required whenever the SEARCH 
statement is applied to a table. 

13. The INDEXED BY clause is required whenever the SEARCH statement is applied to 
a table, 

14. The same index can be applied to many tables. 

15. The same subscript can be applied to many tables. 

16. An index and a subscript can be applied to the same table. 

17. The REDEFINES clause provides another name for previously allocated space. 

18. The REDEFINES clause must be used in initializing a table. 

19. A binary search could be applied to a table if its elements were arranged in 
descending (rather than ascending) sequence. 

20. A numeric code of four digits provides a greater number of possibilities than a 
three-digit alphabetic code. 

21. Codes are used for reasons other than to conserve space. 

22. Alphabetic codes are more likely to be mnemonic than numeric codes. 

23. Numeric codes, such as Social Security numbers, should not be unique to 
accommodate individuals with the same last name. 

24. Positionally organized tables require the first code to begin at 1. 



Chapter 12 — Table Lookups 

25. Positionally organized tables require numeric codes. 

26. Positionally organized tables often result in large amounts of wasted space. 

27. A range-step table requires a one-to-one correspondence between the table value 
and search argument. 

28. The federal income tax table is an example of a range-step table. 

1. How many unique codes can be developed from a four-position numeric code? 
From a four-position alphabetic code? From a four-position alphanumeric code? 

2. Ask a friend to pick a number from 1 to 2,000. What is the maximum number of 
guesses required to find the number if 
a. a binary search is used? 
b. a sequential search is used? 
Answer parts (a) and (b), if the selected number is between 1 and 4,000. 

3. What, if anything, is wrong with the following table definition? 
01 MONTH-TABLE. 

05 MONTH OCCURS 12 TIMES PIC X(4). 
05 MONTH-VALUES REDEFINES MONTH PIC X(36) 

VALUE 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC1. 

4. The DAY-OF-WEEK phrase was introduced in Chapter 9 (page 242) to obtain a 
one-position code corresponding to the day of the week. An alternate way of 
expanding the code (as opposed to the EVALUATE statement in Chapter 9) is to 
use a positional table and direct lookup. 
a. Use the data names in Figure 12.18 to write the appropriate ACCEPT statement. 
b. Write the necessary statements to implement a direct lookup on the table of 

Figure 12.18. 

_ >' DAY-OF-WEEK Table 

DAY -CODE-VALUE PIC 9. 

DAY -HEADING. 
05 FILLER PIC X(9) VALUE 'TODAY IS 
05 TODAYS-DAY PIC X(9). 

DAY -0F-WEEK-VALUE. 
05 FILLER PIC X(9) VALUE 'MONDAY'. 
05 FILLER PIC X(9) VALUE 'TUESDAY'. 
05 FILLER PIC X(9) VALUE 'WEDNESDAY 
05 FILLER PIC X(9) VALUE 'THURSDAY' 
05 FILLER PIC X(9) VALUE 'FRIDAY'. 
05 FILLER PIC X(9) VALUE 'SATURDAY' 
05 FILLER PIC X(9) VALUE 'SUNDAY'. 

01 DAY-OF-WEEK-TABLE REDEFINES MAJOR-VALUE. 
05 DAY OCCURS 7 TIMES PIC X(9). 



5. Given the following table definition: 
01 LOCATION-VALUE. 

05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 
05 FILLER PIC 

PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 
PIC X(16) 

VALUE '010ATLANTA'. 
VALUE '020B0ST0N'. 
VALUE '030CHICAG0'. 
VALUE '040DETR0IT'. 
VALUE '050KANSAS CITY'. 
VALUE '060L0S ANGELES'. 
VALUE '070NEW YORK 1. 
VALUE '080PHILADELPHIA' 
VALUE '090SAN FRANCISCO 
VALUE '045DENVER'. 

01 LOCATION-TABLE REDEFINES LOCATION-VALUE. 
05 LOCATION OCCURS 10 TIMES 

ASCENDING KEY IS LOCATION-CODE 
INDEXED BY LOCATION-INDEX. 
10 LOCATION-CODE PIC X(3). 
10 LOCATION-NAME PIC X(13). 

and the following Procedure Division code: 
SET LOCATION-INDEX TO 1. 
SEARCH LOCATION 

AT END 
DISPLAY '*ERROR IN SEQUENTIAL SEARCH FOR DENVER' 

WHEN LOCATION-CODE (LOCATION-INDEX) = '045' 
DISPLAY 'SEQUENTIAL SEARCH OK FOR DENVER' 

END-SEARCH. 
SEARCH LOCATION 

DISPLAY 1*ERROR IN SEQUENTIAL SEARCH FOR NEW YORK' 
WHEN LOCATION-CODE (LOCATION-INDEX) = '070' 

DISPLAY 'SEQUENTIAL SEARCH OK FOR NEW YORK' 
END-SEARCH. 

a. Indicate the output that will be produced. 
b. Code a binary search statement to expand code 045 for Denver. Do you expect 

any trouble in the execution of that statement? 

AT END 





Overview 
System C o n c e p t s 
COBOL Implementation 
One-Level T a b l e s 

PERFORM VARYING 
T w o - L e v e l T a b l e s 

Errors In Compilation 
PERFORM VARYING 

A Sample Program 
Programming Specifications 
Program Design 
The Completed Program 

T h r e e - L e v e l T a b l e s 
PERFORM VARYING 

A Sample Program 
Programming Specifications 
The Completed Program 

Table L o o k u p s 
A C a l o r i e Counte r ' s Del ight 

Programming Specifications 
Range-Step Tables 
The Completed Program 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 1 3 Multilevel Tables 

O 8 J E 

After reading this chapter you will be able to: 

Describe a conceptual (user's) view of one-, two-, and three-level tables; 
implement (that is, define and initialize) one-, two-, and three-level tables in 
COBOL. 

Differentiate between the VALUE, O C C U R S , and R E D E F I N E S c lauses as 
they relate to table definition and initialization. 

Distinguish between errors in compilation versus errors in execution; give 
an example of each as it pertains to multilevel table processing. 

Explain the operation of a PERFORM VARYING statement; develop suitable 
examples to process tables in one, two, and three dimensions. 

Use the VARYING option of the S E A R C H statement; nest S E A R C H 
statements 'within one another for multilevel-table lookups. 

V E Fi V I E W 

COBOL -85 allows multilevel tables of up to seven dimensions as opposed to the 
earlier limit of three in COBOL -74 . Most applications do not require anything 
beyond a three-level table, and thus our coverage is limited to two- and three-
level tables. The underlying concepts are identical regardless of a table's 
complexity, and hence our approach to multilevel tables will be a simple extension 
of the single-level problem. 

We begin with a one-level example and develop it completely. This material 
reviews some discussion from the previous chapter, but is included nonetheless, 
in order to build the parallel between one-, two-, and three-level examples. Our 
presentation reexamines the O C C U R S , VALUE, and R E D E F I N E S c lauses in the 
Data Division, and the P E R F O R M VARYING statement in the Procedure Division. 
We then extend the discussion to two and three dimensions and present complete 
programs to illustrate all statements. 

The chapter concludes with a third program to implement table lookups in 
a multilevel table. The example introduces the VARYING option of the S E A R C H 
statement and also nests S E A R C H statements within one another. 

Figure 13.1a depicts the user's view of a table of starting salaries within a company. 
In this example, an employee starts at one of 10 salaries, depending o n the 
responsibility level for his or her job. A junior account executive, for example, m a y 
be designated as having a responsibility level of 1, whereas a divisional manager 
m a y be assigned level 10. The 10 salaries together comprise a salary table, with 
individual values designated by a subscript. The starting salary at responsibility 
level four, for example, is $30,000. 



System 

Multilevel Tables 

1 26,000 

2 27,000 

3 28,000 

4 [ . i s m ; -
5 32,000 

Responsibly 6 34,000 Responsibly 
7 36,000 

8 39,000 

9 42.000 

10 46,000 

Experience 1 2 3 4 .-• " 5 

1 26,000 27,000 28,000 29.000_ 30,000 

2 27,000 28,000 29,000 30.000 31,000 

3 28,000 29,000 30,000 _ .ai.-oeo-
4 1 ~3Q5DO'— Hzpof 34,000 36,000 38,000 

Responsibility 5 32,000 34,000 36,000 38,000 40,000 Responsibility 
6 34,000 36,000 38,000 40,000 42,000 

7 36.000 39,000 42,000 45.000 48,000 

8 39,000 42,000 45,000 48,000 51,000 

9 42,000 45,000 48,000 51,000 54,000 

10 46,000 50,000 54,000 58,000 62,000 

Region 1 

Region 2 Experience 1 2 3 4 5 

1 28,000 29,000 30,000 21.000 32,000 

2 29,000 30,000 31,000 32,000 33,000 

3 30,000 31,000 32,000 33,000 34,000 

Responsibility 4 a .ooo —34,000.... 36,000 38,000 40,000 

Experience 1 2 3 4 5 — - 42.Q00 

1 26,000 27,000 28,000 . 29.000 • .30,000 44,000 

2 27,000 23,000 29,000 ~ l ib \0 i0cP 3iT56o~J 50,000 

3 28,000 29,000 30,000 31,000 32,000 53,000 

4 I annonK -.32,000 34,000 36,000 38,000 56,000 

Responsibility 5 32,000 3 4 , 0 0 0 ' '•36,0.00 38,000 40,000 64,000 

6 34,000 36,000 38,000 "40,800., 42,000 

7 36,000 39,000 42,000 45,000 48,000- -

8 39,000 42,000 45,000 48,000 51,000 

9 42,000 45,000 48,000 51,000 54,000 

10 46,000 50,000 54,000 58,000 62,000 

Figure 13.1b extends the user's view to two dimensions, in which salary is a 
function of two variables, responsibility and experience. The additional variable 
enables individuals with the s a m e responsibility to be assigned different salaries, 
depending on experience. A n individual at responsibility level four, for example, 
earns one of five salaries ($30,000, $32,000, $34,000, $36,000, or $38,000), depending 



Chapter 13 — Multilevel Tables 

on his or her experience level (which varies from one to five, respectively.) T w o 
subscripts are necessary to designate a specific value in a two-level table; it should 
be apparent that the order of the subscripts is important; that is, the entry in row 4, 
column 1 ($30,000) is different from the entry in row 1, column 4 ($29,000). 

Figure 13.1c extends the user's view to a third dimension, region, in which 
salary is a function of three variables; region (based o n cost of living), responsibility, 
and experience. A n y reference to a specific entry in a three-level table requires three 
subscripts, and again the order is important. Look again at Figure 13.1c and verify 
that the salary for region 1, responsibility 4, and experience 1 is $30,000, while the 
entry in region 2, responsibility 4, and experience 1 is $32,000. 

A table is initialized either by hard-coding it in a program or by dynamically loading 
( l it at execution time. Once initialized, the entries in a table can be accessed through 

a P E R F O R M V A R Y I N G or S E A R C H statement, and these statements are applicable 
to tables in one, two, or three dimensions. W e have, however, for the sake of 
simplicity, chosen to focus o n hard-coding and the P E R F O R M V A R Y I N G statement. 
As previously indicated, our approach will be to develop the material for the simplest 
application (one-level tables), and then extend the concepts to two and three 
dimensions. 

Figure 13.2 depicts three different views of the one-level table shown earlier in 
Figure 13.1. Figure 13.2a repeats the user's view in which salary is a function of 
responsibility, Figure 13.2b contains the C O B O L statements to define and initialize 
the table in C O B O L , and Figure 13.2c shows the resulting storage allocation. 

Figure 13.2b creates the 01 entry SALARY-VALUES with 10 successive V A L U E 
clauses that initialize 50 consecutive locations in m e m o r y . The first five locations 
contain 26000, the next five contain 27000, and so on. 

The R E D E F I N E S clause assigns another n a m e , SALARY-TABLE, to these same 
50 locations, and the subsequent O C C U R S clause establishes the table. (The O C C U R S 
clause cannot appear o n the 01 level and hence SALARY is defined under SALARY-
TABLE.) The first five positions in SALARY-VALUES are r e n a m e d SALARY (1) and 
contain 26000, the starting salary for responsibility level one. T h e next five positions 
are renamed S A I A R Y (2) and contain 27000, and so on. The conceptual view of the 
storage allocation is s h o w n in Figure 13.2c. 

PERFORM WARYIf§6 
The P E R F O R M V A R Y I N G statement (explained previously in Chapter 11) processes 
the elements in a table. For example, the statement 

PERFORM WRITE-STARTING-SALARY 
VARYING RESPONSIBILITY-SUB FROM 1 BY 1 

UNTIL RESPONSIBILITY-SUB > 10 
executes the procedure W R I T E - S T A R T I N G - S A L A R Y 10 times, changing the value of 
RESPONSIBILITY-SUB each time the procedure is executed. The P E R F O R M 
V A R Y I N G statement initializes (increments) a subscript (index), tests a condition, 
then performs the designated procedure, depending o n whether the condition is 
true. In the example, RESPONSIBILITY-SUB is initialized to 1, and the condition 



One-Level 

One-level Table 

1 26,000 

2 27,000 

3 28,000 

4 _30j00JT 

Responsibilty 5 32,000 Responsibilty 
6 34,000 

7 36,000 

8 39,000 

9 42,000 

10 46,000 

fetj lJS0f S ¥ l @ W 

01 SALARY-VALUES. 
05 FILLER PIC X(5) VALUE '26000 
05 FILLER PIC X(5) VALUE '27000 
05 FILLER PIC X(5) VALUE 128000 
05 FILLER PIC X(5) VALUE 130000 
05 FILLER PIC X(5) VALUE '32000 
05 FILLER PIC X(5) VALUE '34000 
05 FILLER PIC X(5) VALUE '36000 
05 FILLER PIC X(5) VALUE '39000 
05 FILLER PIC X(5) VALUE '42000 
05 FILLER PIC X(5) VALUE '46000 

01 SALARY-TABLE REDEFINES SALARY-VALUES. 
05 SALARY OCCURS 10 TIMES PIC 9(5). 

SALARY-TABLE 

SALARY (1) SALARY (2) SALARY (3) SALARY (4) SALARY (5) SALARY (6) SALARY (7) SALARY (8) SALARY (9) SALARY (10) 

2 6 0 0 0 2 7 0 0 0 2 8 0 0 0 3 0 0 0 0 3 2 0 0 0 3 4 0 0 0 3 6 0 0 0 3 9 0 0 0 4 2 0 0 0 4 6 0 0 0 

SALARY-VALUES 

(c) Storage Schematic 

RESPONSIBILITY-SUB > 10 is evaluated. The condition is not satisfied, so the 
designated procedure, WRITE-STARTING-S/ALARY, is executed for the first time. 
RESPONSIBILITY-SUB is incremented to 2, and the condition is retested. The 
condition is still false, so WRITE-STARTING-SALARY is executed a second time. The 
loop (testing, executing, and incrementing) continues for values of RESPONSIBILITY-
S U B of 3, 4, 5, and so on, until RESPONSIBILITY-SUB reaches 10. Even then the 
condition is still not satisfied, because 10 is not greater than 10, a n d so W R I T E -
STARTING-SALARY is executed a tenth (and last) time. RESPONSIBILITY-SUB is 
incremented to 11, the condition is finally satisfied (11 > 10), and the P E R F O R M 
V A R Y I N G is terminated. 



Chapter 13 — Multilevel Tables 

All of this material is easily extended to two levels as shown in Figure 13.3. Figure 13.3a 
_ ̂  ^ - repeats the user's view of the table in which salary is a function of both responsibility 

and experience, Figure 13.3b shows the C O B O L definition a nd initialization, and 
Figure 13.3c depicts the storage allocation. 

-'igure 1 3 . 3 Two-level Tables 

Experience 1 2 3 4 5 
1 26,000 27,000 28,000 29.000 . - 30,000 
2 27,000 28,000 29,000 30,000 31,000""' 
3 28,000 29,000 30,000 31,000 32,000 
4 30.000 32.000 34,000 36,000 38,000 

Responsibility 5 32,000 34,000 "-36fl00 38,000 40,000 Responsibility 
6 34,000 36,000 38,000 •HltitW , 42.000 
7 36,000 39,000 42,000 45,000 48,QUff 
8 39,000 42,000 45,000 48,000 51,000 
9 42,000 45,000 48,000 51,000 54.000 

10 46,000 50,000 54,000 58,000 62,000 

(a) User's View 

01 SALARY-VALUES. 
05 FILLER PIC X(25) VALUE '2600027000280002900030000 
05 FILLER PIC X(25) VALUE '2700028000290003000031000 
05 FILLER PIC X(25) VALUE '2800029000300003100032000 
05 FILLER PIC X(25) VALUE '3000032000340003600038000 
05 FILLER PIC X(25) VALUE '3200034000360003800040000 
05 FILLER PIC X(25) VALUE '3400036000380004000042000 
05 FILLER PIC X(25) VALUE '3600039000420004500048000 
05 FILLER PIC X(25) VALUE '3900042000450004800051000 
05 FILLER PIC X(25) VALUE '4200045000480005100054000 
05 FILLER PIC X(25) VALUE '4600050000540005800062000 

01 SALARY-TABLE REDEFINES SALARY-VALUES. j 
05 RESPONSIBILITY OCCURS 10 TIMES. j 

10 EXPERIENCE OCCURS 5 TIMES. [ 
15 SALARY PIC 9(5). j 

(b) initialization via the REDEFINES and V A L U E S Clauses | 
( 

SALARY-TABLE 

RESPONSIBILITY (1) RESPONSIBILITY (10) 

Exp(1) Exp(2) Exp (3) Exp (4) Exp (5) Exp(1) Exp (2) Exp (3) Exp (4) Exp (5) 

2 6 0 0 0 2 7 0 0 0 2 8 0 0 0 2 9 0 0 0 3 0 0 0 0 4 6 0 0 0 5 0 0 0 0 5 4 0 0 0 5 8 0 0 0 6 2 0 0 0 

SALARY-VALU ES 



Establishment of a two-level table requires two O C C U R S clauses, each at a 
different level, in the table definition as shown: 

01 SALARY-TABLE. 
05 RESPONSIBILITY OCCURS 10 TIMES. 

10 EXPERIENCE OCCURS 5 TIMES. 
15 SALARY PIC 9(5). 

The above entries establish a 50-element table (10 rows and 5 columns) with each 
element assigned five m e m o r y locations (according to the P I C T U R E clause). There 
are a total of 250 m e m o r y locations (10 x 5 x 5) allocated to the table as shown in 
Figure 13.3c. The first 25 locations contain the salaries for the five experience levels 
at the first responsibility level. Locations 1-5 contain the salary at responsibility 
level I, experience level 1; locations 6-10 contain the salary at responsibility level I, 
experience level 2; and so on. In similar fashion, locations 26-50 refer to the salaries 
for the five experience levels at responsibility level 2; locations 51-75 to the salaries 
at the five experience levels for responsibility level 3; and so on. 

As in the one-level example, the table is initialized through combination of 
the O C C U R S , V A L U E , and R E D E F I N E S clauses. This t ime, however, each V A L U E 
clause fills an entire row (consisting of five experience levels or 25 positions in all). 
The first V A L U E clause fills the first 25 locations (corresponding to the five experience 
levels for responsibility one), the second V A L U E clause fills locations 26-50 (the five 
experience levels for responsibility two), and so on. The order of the VALUE clauses 
is critical and coincides with Figure 13.3a. The resulting storage allocation is shown 
in Figure 13.3c and further clarifies the discussion. 

Newcomers to multilevel tables find it all too easy to use the wrong number of 
subscripts, specify subscripts in improper sequence, and/or supply an invalid 
subscript value (that is, a value beyond the definition in the O C C U R S clause.) The 
rule is very simple, namely that the n u m b e r of subscripts is equal to the n u m b e r of 
O C C U R S clauses used to define the entry and further, that the order of subscripts 
corresponds to the order of the OCCURS clauses. 

Consider again the table definition in Figure 13.3b, observing that SA1ARY is 
subordinate to EXPERIENCE, that E X P E R I E N C E is subordinate to RESPONSIBILITY, 
and that both RESPONSIBILITY and E X P E R I E N C E were defined with an O C C U R S 
clause. In other words an O C C U R S clause appears in both group items prior to the 
definition of SALARY, and thus two subscripts will be required for all Procedure 
Division references to SALARY. A n y reference to SALARY that does not include two 
subscripts will be flagged during compilation. SALARY (1,4) is a valid reference to 
indicate the element in row 1, column 4 of the two-level table; S A L A R Y (1) is invalid 
and will be flagged accordingly. 

The compiler, however, is concerned only with syntax (namely that the proper 
n u m b e r of subscripts is supplied), and not with the values of those subscripts. In 
other words, a reference to SALARY (20, 20) would not produce a compilation error, 
because it contains two subscripts and is syntactically valid. It would, however, 
cause problems during execution as the subscript values are inconsistent with the 
table definition. (The execution results are unpredictable.) 

C O B O L also allows reference to data names at different hierarchical levels of 
a table (although such reference m a y not m a k e sense logically). Thus the definition 
of a two-dimensional table automatically allows reference to other one-dimensional 
tables. Refer again to the storage schematic of Figure 13.3c and/or the examples 
below to clarify the issue. 



Chapter 1 3 — Multilevel Tables 

S A L A R Y (6, 5) 

SALARY (5, 6) 

SALARY-TABLE 

RESPONSIBILITY (1) 

E X P E R I E N C E (6, 5) 

A valid entry in all respects, w h i c h refers to salary 
responsibility level 6, experience level 5. The data n a m e 
SALARY must always be referenced with two subscripts. 
Syntactically correct in that S A L A R Y has two subscripts. 
The entry will compile cleanly but will cause problems in 
execution because it refers to responsibility and experience 
levels of 5 and 6, respectively, which are inconsistent with 
the table definition. 
Refers to the entire table of 50 elements (250 locations). 
SALARY-TABLE is referenced without any subscripts. 
Refers collectively to the five experience levels for the first 
level of salary responsibility; R E S P O N S I B I L I T Y is 
referenced with a single subscript. 
A valid entry equivalent to S A L A R Y (6,5); the entries are 
equivalent because SALARY is the only elementary item 
defined under the group item E X P E R I E N C E . 

The P E R F O R M V A R Y I N G statement was introduced in Chapter 11 in conjunction 
with processing a one-level table. Its syntax is easily extended to process a two-level 
table as s h o w n below. Consider: 

PERFORM [procedure-name-l] WITH TEST [BEFORE^ [AFTER 

identifier-1 , VARYING { } FROM index-name - 1 

identifier-2 
index-name-2 
1iteral-1 

BY literal-2 [ 
identifier- 31 

UNTIL condition-1 

identifier-4 AFTER I } FROM 
I iteral-3 

UNTIL condition-2 

identifier-5 
index-name - 3 
literal-4 

BY identifier-6[ 
literal-5 

[imperative-statement-1 END PERFORM] 

The P E R F O R M V A R Y I N G statement accommodates a two-level table through 
inclusion of the AFTER clause that varies two subscripts (indexes) simultaneously. 
As in the case of a one-level table, the TEST B E F O R E / T E S T A F T E R clause is optional 
and is typically omitted; the default is TEST B E F O R E and corresponds to the C O B O L -
74 implementation. 

The P E R F O R M V A R Y I N G statement executes a designated procedure as in 
Figure 13.4a, or the statements in an in-line perform as in Figure 13.4b. Either w a y 
two subscripts are used as s h o w n in Figure 13.4c. RESPONSIBILITY-SUB is varied 
from 1 to 10, in conjunction with E X P E R I E N C E - S U B changing from 1 to 5, so that 
the performed statements are executed 50 times in all. 

The bottom subscript (EXPERIENCE-SUB in this example) is varied first. Thus 
RESPONSIBILITY-SUB is initially set to 1 while E X P E R I E N C E - S U B is varied from 
1 to 5. RESPONSIBILITY-SUB is then incremented to 2, while E X P E R I E N C E - S U B 



Two-Level Tables 

f i g u r e 13-4 PERFORM VARYING with Two Subscripts 

PERFORM INITIALIZE-SALARIES 
VARYING RESPONSIBILITY-SUB FROM 1 BY 1 

UNTIL RESPONSIBILITY-SUB > 10 
AFTER EXPERIENCE-SUB FROM 1 BY 1 

UNTIL EXPERIENCE-SUB > 5, 

INITIALIZE-SALARIES. 
MOVE ZERO TO SALARY (RESPONSIBILITY-SUB, EXPERIENCE-SUB). 

(a) Performing a Paragraph 

PERFORM 
VARYING RESPONSIBILITY-SUB FROM 1 BY 1 

UNTIL RESPONSIBILITY-SUB > 10 
AFTER EXPERIENCF-SUB FROM 1 BY 1 

UNTIL EXPERIENCE-SUB > 5 
MOVE ZERO TO SALARY (RESPONSIBILITY-SUB, EXPERIENCE-SUB) 

END-PERFORM. 

(b) In-Une Perform 

Responsibility 
Subscript 

Experience 
Subscript 

RESPONSIBILITY-SUB is set to 1 whil 
EXPERIENCE-SUB varies from 1 to 5 

RESPONSIBILITY-SUB is set to 2 whil 
EXPERIENCE-SUB varies from 1 to 5 

10 1 
10 2 
10 3 
10 4 
10 5 

RESPONSIBILITY-SUB reaches 10 and 
EXPERIENCE-SUB varies from 1 to 5 

(c) Variation of Subscripts 



C h a p t e r 1 3 Multilevel Tables 

•igure 13»S Varying Column and/or Row Subscripts 

Question: What is the average salary for responsibility level three? 
Answer: Sum the five salaries in row three of the salary table, then divide that total by five. 

MOVE ZERO TO TOTAL-SALARY. 
PERFORM 

VARYING EXPERIENCE-SUB FROM 1 BY 1 
UNTIL EXPERIENCE-SUB > 5 

ADD SALARY (3, EXPERIENCE-SUB) TO TOTAL-SALARY 
END-PERFORM. 
COMPUTE AVERAGE-SALARY = TOTAL-SALARY / 5. 

Question: What is the average salary for experience level four? 
Answer: Sum the 10 salaries in column four of the salary table, then divide that total by 10. 

MOVE ZERO TO TOTAL-SALARY. 
PERFORM 

VARYING RESPONSIBILITY-SUB FROM 1 BY 1 
UNTIL EXPERIENCE-SUB > 10 

ADD SALARY (RESPONSIBILITY-SUB, 4) TO TOTAL-SALARY 
END-PERFORM. 
COMPUTE AVERAGE-SALARY = TOTAL-SALARY / 10. 

Question: What is the average salary over all responsibility and experience levels? 
Answer: Sum all 50 salaries in the table, then divide that total by 50. 

MOVE ZERO TO TOTAL-SALARY. 
PERFORM 

VARYING RESPONSIBILITY-SUB FROM 1 BY 1 
UNTIL RESPONSIBILITY-SUB > 10 

AFTER EXPERIENCE-SUB FROM 1 BY 1 
UNTIL EXPERIENCE-SUB > 5 

ADD SALARY (RESPONSIBILITY-SUB, EXPERIENCE-SUB) TO TOTAL-SALARY 
END-PERFORM. 
COMPUTE AVERAGE-SALARY = TOTAL-SALARY / 50. 

is again varied from 1 to 5. The process continues until all 50 combinations have 
been reached. 

It is not necessary to always vary both subscripts in a two-level table; that is, 
you can hold the row constant and vary the column, or keep the column constant 
and vary the row. Indeed, different types of information are obtained according to 



Sam pie Progra m 

the subscript that is used. Figure 13.5a, for example, varies the column subscript 
(EXPERIENCE-SUB) while keeping the row constant, to obtain the average starting 
salary at the third responsibility level. In similar fashion, Figure 13.5b varies the row 
subscript (RESPONSIBILITY-SUB) while keeping the column constant, to obtain 
the average starting salary for the fourth experience level. Figure 13.5c varies both 
subscripts to compute the average salary over all 50 row-column combinations. 

LSI _ t Ci W e incorporate the material o n two-level tables into a C O B O L program. 
- ̂  -Kt Specifications follow in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Two-Level Tables 

Narrative: This program illustrates the definition, initialization, and processing of two-level tables, 
building directly on the examples just presented. The specifications call for the processing 
of an employee file and the printing of each individual's salary, based on his or her 
responsibility and experience. In addition, the number of employees in each responsibility/ 
experience combination is to be computed. 

I n c u t F i l e t s ) : EMPLOYEE-FILE 

Input R e c o r d Layout: 01 EMPLOYEE-RECORD. 
05 EMP-NAME 
05 EMP-SALARY-DETERMINANTS. 

10 EMP-RESP 
10 FILLER 
10 EMP-EXP 
10 FILLER 

05 FILLER 

PIC X(15). 

PIC 99. 
PIC X. 
PIC 99. 
PIC X(3). 
PIC X(5). 

Test Data: ADAMS 04 01 
BAKER 01 04 
BROWN 08 02 
CHARLES 09 02 
DAVIDSON 09 04 
DAVIS 10 04 
EPSTEIN 04 05 
FRANKEL 03 03 
GOODMAN 03 03 
GULFMAN 03 05 
HATHAWAY 07 02 
INGLES 03 01 
JACKSON 06 03 
JORDAN 06 03 
KING 07 02 
LIPMAN 07 01 
LOWELL 01 04 



C h a p t e r 1 3 — Multilevel Tables 

Report Layout: See Figure 13.6. 

Processing Requirements: 1. Read a file of employee records, and for each record: 
a. Determine the employee's starting salary as a function of responsibility and 

experience. 
b. Print a detail line for this employee showing his or her name and starting salary. 

2. Compute the number of employees for each responsibility-experience combination. 
This requires creation of a 10-by-5 table to store the number of individuals in each 
responsibility-experience combination, and implies that as each employee record is 

Figure 13.6 Output of Two-Levei Program 

STARTING SALARIES OF ALL NEW EMPLOYEES I 

jj 

ADAMS $30,000 
BAKER $29,000 
BROWN $42,000 
CHARLES $45,000 
DAVIDSON $51,000 
DAVIS $58,000 
EPSTEIN $38,000 
FRANKEL $30,000 
GOODMAN $30,000 
GULFMAN $32,000 
HATHAWAY $39,000 
INGLES $28,000 
JACKSON $38,000 
JORDAN $38,000 
KING $39,000 
LIPMAN $36,000 
LOWELL $29,000 

(a) Detail Report I 

STARTING SALARY SUMMARY REPORT 

EXPERIENCE 
RESPONSIBILITY 1 2 3 4 5 

1 0 0 0 2 0 
2 0 0 0 0 0 
3 1 0 2 0 1 
4 1 0 0 0 1 
5 0 0 0 0 0 
6 0 0 2 0 0 
7 1 2 0 0 0 
8 0 1 0 0 0 
9 0 1 0 1 0 
10 0 0 0 1 0 



read, the corresponding table entry (the particular responsibility-experience 
combination) has to be incremented by one. 

3. When all employees have been processed, print the table containing the number of 
employees in each category as shown in Figure 13.6b. 

Program Design 
The report layout in Figure 13.6 requires both a detail report containing a line for 
every employee, as well as a summary report displaying the total n u m b e r of 
employees in each of the 50 responsibility-experience combinations. The program 
will evaluate each incoming record to determine in which of the 50 categories the 
employee fits, then increment the appropriate counter. At the conclusion of 
processing—after all employee records have been read—the table of 50 totals will 
be printed as the s u m m a r y report. 

The functions needed in the eventual program are shown in the expanded 
hierarchy chart of Figure 13.7. The purpose of the individual modules should be 
apparent from the module n a m e and/or the eventual C O B O L program (shown later 
in the chapter). 

The pseudocode in Figure 13.8 is succinct and is restricted to the basic building 
blocks of structured programming. The initial statements open the files and write 
an appropriate heading. The program is driven by a "loop that determines the 
appropriate responsibility/experience combination for each employee record, writes 
the detail line, and increments the appropriate counter. The s u m m a r y report is 
written after this loop has ended (when all employee records have been processed). 

The Completed fV-oram 

M u c h of the completed program in Figure 13.9 is already familiar as it repeats the 
C O B O L statements used in the explanation of two-level tables. T h e C O B O L 
statements to define the salary table (lines 42-57), appeared earlier in Figure 13.3b 
and were discussed fully at that time. A second two-level table, for the nu m b e r of 
employees in each category, is defined in lines 59-62; the definition uses the O C C U R S 

: »gure 13.7 Hierarchy Chart for Two-Level Program 

PREPARE 
SALARY 
REPORT 

WRITE 
DETAIL 

HEADING 

PROCESS 
EMPLOYESS 

WRITE 
SUMMARY 

REPORT 

WRITE 
SUMMARY 
HEADING 

WRITE 
RESPONSIBILITY 

LINE 



C h a p t e r 1 3 — Multilevel Tables 

Figure i 3.8 Pseudocode for Two-Level Program 

Open files 
Write heading lines 

r~- DO WHILE data remains 
:— READ employee file 
i AT END 
I Indicate no more data 
j NOT AT END 

Determine responsibility/experience combination 
| Increment number of employees in that combination 
j Write detail line 

END-READ 
- ENDDO 
Write summary report 
Close files 
Stop run 

1 3 , 3 Two-Level Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. 2LVTABLE. 
3 AUTHOR. ROBERT T. GRAUER. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTR13\TABLES.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 
13 DATA DIVISION. 
14 FILE SECTION. 
15 FD EMPLOYEE-FILE 
16 DATA RECORD IS EMPLOYEE-RECORD. 
17 01 EMPLOYEE-RECORD PIC X(23). 
18 
19 FD PRINT-FILE 
20 DATA RECORD IS PRINT-LINE. 
21 01 PRINT-LINE PIC X(132). 
22 
23 WORKING-STORAGE SECTION. 
24 01 FILLER PIC X(14) 
25 VALUE 'WS BEGINS HERE'. 
26 
27 01 WS-EMPLOYEE-RECORD. 
28 05 EMP-NAME PIC X(15). 

file://'A:/CHAPTR13/TABLES.DAT'


A Sample Program 

(continued) 

29 _ 05 EMP-SALARY-DETERMINANTS. 
3 0 1 " _ 7 " ~ 1 0 EMP-RESP~"2""""" [ P I C 99."k-
3 1 " ' 1 _ J 1 0 1 FILLER' _ '_ ' _PIC J ' > 0 ' s e ' O 3 5 

[ 3 2 1 10 EMP-LXP _ PIC 99. — 
3 3 " 1 0 FILLER " " ~ ~ PIC X(3). 
34 
35 01 PROGRAM-SUBSCRIPTS. 
36 05 RESP-SUB PIC S9(4) COMP. 
37 05 EXP-SUB PIC S9(4) COMP. 
38 
39 01 WS-END-OF-DATA-SWITCH PIC X(3) VALUE SPACES. 
40 88 END-OF-DATA VALUE 'YES 1. 
41 _ _ _ _ _ _ _ _ _ _ 
42 01 SALARY-VALUES. 
; 43 05 FILLER PIC X(25) VALUE '2600027000280002900030000' 
! 44 05 FILLER PIC X(25) VALUE ' 2700028000290003000031000' 
| 45 05 FILLER PIC X(25) VALUE '2800029000300003100032000' 
I 46 05 FILLER PIC X(25) VALUE '3000032000340003600038000' 
! 4 7 05 FILLER PIC X(25) VALUE '3200034000360003800040000' 
' 48 05 FILLER PIC X(25) VALUE '3400036000380004000042000' 
49 05 FILLER PIC X(25) VALUE '3600039000420004500048000' 

! 50 05 FILLER PIC X(25) VALUE '3900042000450004800051000' 
; 51 05 FILLER PIC X(25) VALUE '4200045000480005100054000' 
52 05 FILLER PIC X(25) VALUE '4600050000540005800062000' 

I ; 53 
| i 54 01 SALARY-TABLE REDEFINES SALARY-VALUES. 
| i 55 05 RESPONSIBILITY OCCURS 10 TIMES. 
1 | 56 10 EXPERIENCE OCCURS 5 TIMES. 
j | 57 _ 15 SALARY _ PIC 9(5). 
i 'MUZ. 11111.111 '.111' .111111111111 ["1.1" . _ 1 

59 01 NUMBER-OF-EMPLOYEES-TABLE. 
60 05 NUMBER-RESPONSIBILITY OCCURS 10 TIMES. 

[ | 6 1 10 NUMBER-EXPERIENCE OCCURS 5 TIMES. 
62 _ 15 NUMB-EMf PIC 99 VALUE ZERfĴ . 

j "63 
| 64 01 DETAIL-REPORT-HEADING-LINE. 
I 65 05 FILLER PIC X(9) VALUE SPACES, 
j 66 05 FILLER PIC X(39) 
j 67 VALUE 'STARTING SALARIES OF ALL NEW EMPLOYEES'. 
| 68 05 FILLER PIC X(82) VALUE SPACES. 
| 69 
j 70 01 DETAIL-LINE-1. 
1 71 05 FILLER PIC X(12) VALUE SPACES. 
j 72 05 DET-EMP-NAME PIC X(15). 
I 73 05 FILLER PIC X(4) VALUE SPACES. 
J 74 05 DET-SALARY PIC $99,999. 
j 75 05 FILLER PIC X(94) VALUE SPACES. 
j 76 

77 01 SUMMARY-REPORT-HEADING-LINE-l. 
78 05 FILLER PIC X(24) VALUE SPACES. 



C h a p t e r 1 3 — Multilevel Table 

79 05 FILLER PIC X(39) 
80 VALUE 'STARTING SALARY SUMMARY REPORT'. 
81 05 FILLER PIC X(69) VALUE SPACES. 
82 
83 01 SUMMARY-REPORT-HEADING-LINE-2. 
84 05 FILLER PIC X(36) VALUE SPACES. 
85 05 FILLER PIC X(10) VALUE 'EXPERIENCE'. 
86 05 FILLER PIC X(86) VALUE SPACES. 
87 
88 01 SUMMARY-REPORT-HEADING-LINE-3. 
89 05 FILLER PIC X(5) VALUE SPACES. 
90 05 FILLER PIC X(14) VALUE 'RESPONSIBILITY' 
91 05 FILLER PIC X(48) 
92 VALUE ' 1 2 3 4 5'. 
93 05 FILLER PIC X(65) VALUE SPACES. 
94 
95 01 SUMMARY-LINE-1. 
96 05 FILLER PIC X(9). 
97 05 SUMMARY-RESPONSIBILITY PIC Z(4). 
98 05 FILLER PIC X(4) VALUE SPACES. 
99 05 SUMMARY-TOTAL-VALUES OCCURS 5 TIMES. 
100 10 FILLER PIC X(4). 
101 10 SUMMARY-NUMBER PIC Z(4)9. 
102 05 FILLER PIC X(70). 
103 
104 PROCEDURE DIVISION. 
105 100 -PREPARE-SALARY-REPORT. 
106 OPEN INPUT EMPLOYEE-FILE 
107 OUTPUT PRINT-FILE. 
108 PERFORM 200-WRITE-DETAIL -REPORT-HDG. 

p F R | Q R M U N T U END-OF-DATA 
READ EMPLOYEE-FILE INTO WS-EMPLOYEE-RECORD 

AT END 
MOVE 'YES' TO WS-END-OF-DATA-SWITCH 

NOT AT END 
PERFORM 300-PROCESS-EMPLOYEES 

END-PERFORM. 
PERFORM 400-WRITE-SUMMARY-REPORT. 
CLOSE EMPLOYEE-FILE 

PRINT-FILE. 
STOP RUN. 

200-WRITE-DETAIL-REPORT-HDG. 
WRITE PRINT-LINE FROM DETAIL-REPORT-HEADING-LINE 

AFTER ADVANCING PAGE. 
MOVE SPACES TO PRINT-LINE. 
WRITE PRINT-LINE. 

300j^OCESS-_EMPL0YJES. _ 
~ ADD"'TJOJ^MB~-^MP~U'I^R|S^ EMPJEXP) ."} 

f f 

| ! 109 
! ! n o 

! | i n 

I 1 1 1 2 

[ 113 
j 114 
I 115 
| 116 
j 117 
! 118 
i 119 

120 
121 
122 
123 

i 124 
[ 125 
i 126 
| 127 
| 128 

Figure 1 3 . 9 (continued) 



A Sample Program 

(continued) 

j 129 M O V E EMP-NAME TO DET-EMP-NAME. [ 
I 130 MOVE SALARY (EMP-RESP, EMP-EXP) TO DET-SALARY. I 
| 131 I \T1JWVFTEJ^ I 
I 132 ^--^ Pyti , . , . . , . . - „ - , , , • , , . , , . o W . . „ , „ . , j 
i 133 400-WRITE-SUMMARY-REPORT. ' " ' " Z ! ' " ' J " J y M j 
j 134 PERFORM 500-WRITE-SUMMARY-HEADING. [ 
j 135 PERFORM 520-WRITE-RESPONSIBILITY-LINE ) 

136 VARYING RESP-SUB FROM 1 BY 1 I 
j 137 UN T I L RESP-SUB > 10. I 

| 138 
| 139 500-WRITE-SUMMARY-HEADING. 
| •140 " W R I T E PR I NT -I INE FROM SUMMARY-REPORT-H EADING-LINE-I ! 
I 1141 AF T E R ADVANCING PAGE. 
| 1142 WR I T E PRINT-LINE FROM SUMMARY-REPORT-HEADING-LINE-2 | ! 
| |143 AF T E R ADVANCING 2 LINES. | j 

!144 WR I T E PRINT-LINE FROM SUMMARY-REPORT-HEADING-LINE-3. ( 
;145 MOVE SPACES TO PRINT-LINE. I 
j 146 W R I T E PRINT-LINE. _ _ ^ _ j 

j 1 4 7 " " ~ " ' """"""^ . [ 
[ 148 520-WRITE-RESPONSIBILITY-LINE. J 
j 149 MO V E SPACES TO SUMMARY-LINt-1. I 

i 150 " " P E R F O M " V A R Y I N G " E X P - S U B " F M M T B Y I " " ~ " " j j 

t 1̂51 UNTIL EXP-SUB > 5 ! \ 
1 f 1 5 2 MOVE NUMB-EMP (RESP-SUB, EXP-SUB) | j 
J ;153 TO SUMMARY-NUMBER (EXP-SUB) I | 
1 [154 _ END-PERFORM. I 
I 155 MO V E RESP-SUB TO SUMMARY-RESPONSIBILITY. j 
I 156 WR I T E PRINT-LINE FROM SUMMARY-LINE-1. I 

clauses to allocate space for the table, but omits the RE D E F I N E S clause, because 
(unlike the salary table) the n u m b e r of employees is computed during processing. 
The 50 elements in the table are initialized to zero by the V A L U E Z E R O clause in line 
62. (See limitations of COBOL-74 at the end of the chapter.) 

The Procedure Division follows both the hierarchy chart a n d pseudocode. 
The key to the program is the A D D statement in line 128, which increments the 
nu m b e r of employees for the particular responsibility-experience combination. 
The subscript values in this statement are taken directly from the incoming employee 
record, which defines E M P - R E S P and E M P - E X P in lines 30 and 32, respectively. The 
detail line for the individual employee is written in lines 129-131. 

The s u m m a r y report is produced after the end of file has been reached by the 
P E R F O R M W R I T E - S U M M A R Y R E P O R T statement of line 116. The heading lines 
are written in lines 140-146, after which the paragraph WRITE-RESPONSIBILITY-
LINE is executed 10 times (once for each responsibility level) in lines 148-156. The 
latter paragraph contains its o w n P E R F O R M V A R Y I N G statement to write each of 
the five experience totals for each of the 10 responsibility levels. 



Chapter 13 Multilevel Tables 

The material o n two-level tables is easily extended to a third dimension. W e continue 
therefore with our two-level example, in which salary is a function of responsibility 
and experience, but this time add a third determinant, region (due to different costs 
of living in different areas of the country). Figure 13.10a depicts the user's view 
showing salary as a function of three variables (region, responsibility, a n d 
experience), Figure 13.10b contains the C O B O L definition, and Figure 13.10c shows 
the storage allocation. 

Establishment of a three-level table requires three O C C U R S clauses in the 
table definition: 

01 SALARY-TABLE. 
05 REGION OCCURS 2 TIMES. 

10 RESPONSIBILITY OCCURS 10 TIMES. 
15 EXPERIENCE OCCURS 5 TIMES. 

20 SALARY PIC 9(5). 
These entries establish a 100-element table (2 x 10 x 5) with each element assigned 
five m e m o r y locations (according to the P I C T U R E clause). Thus there are a total of 
500 m e m o r y locations allocated to the table as indicated In Figure 13.10c. The first 
25 locations refer to the five experience levels at the first responsibility level in the 
first region; the next 25 locations to the five experience levels at the second 
responsibility level in the first region, and so on. 

As in the two-level example, the table is initialized through combinations of 
the O C C U R S , V A L U E , and R E D E F I N E S clauses. Each VALUE clause fills an entire 
r n w (rrmcictina n f five* f»Yn**ri£»ni"£» <4£»m«=>ntc n r 9 ^ n n c i H n n c in qIH wif-H 9 0 o n r h 

v . . . „ . . — * j , „ „ » „ ^ . x ^ o u v ^ . i 

statements needed to initialize ail 500 storage locations. The first V A L U E clause fills 
the first 25 locations (corresponding to the five experience levels for responsibility 
one in region one), the second V A L U E clause fills locations 26-50 (the five experience 
levels for responsibility two in region one), and so on. The order of the V A L U E 
clauses is critical and coincides with Figure 13.10a. The resulting storage allocation 
is s h o w n in Figure 13.10c and further clarifies the discussion. 

Once again you must be careful to use the correct n u m b e r of subscripts, as 
well as specify the subscripts in the proper order. The rule is the same as for two-
level tables, namely that the n u m b e r of subscripts is equal to the n u m b e r of O C C U R S 
clauses used to define the entry, and further, that the order of the subscripts 
corresponds to the order of the O C C U R S clauses. 

Return to the table definition of Figure 13.10b, observing that three O C C U R S 
clauses are associated with SALARY, and hence three subscripts are necessary; that 
is, SALARY is subordinate to R E G I O N , RESPONSIBILITY, and E X P E R I E N C E , each of 
which was defined with its o w n O C C U R S clause. Hence any Procedure Division 
reference to S A L A R Y must include three subscripts—for example, S A L A R Y (2, 4, 1) 
to indicate the salary for region 2, responsibility 4, and experience 1. 

As is the case with one- and two-level tables, the compiler is concerned only 
with syntax (that the proper n u m b e r of subscripts is supplied), and not with the 
values of those subscripts. A reference to SA L A R Y (3, 1, 1) would not produce a 
compilation error because it is syntactically valid. It would, however, cause problems 
during execution because the subscript value for region 3 is inconsistent with the 
table definition. The execution results are unpredictable. 

C O B O L also permits reference at different hierarchical levels, so that the 
definition of a three-level table automatically allows reference to other one- and 
two-dimensional tables (although such references m a y not m a k e sense logically). 
Refer again to the storage schematic in Figure 13.10c and/or the examples below to 
further clarify this discussion. 



ree-Level Tables 

• i, Three-level Tables 

Region 1 

Region 2 Experience 1 2 3 4 5 

1 28,000 29,000 30,000 L3l,fl0flJ- -32,000 

2 29,000 30,000 31,000 32,000 33,000 

3 30,000 31,000 32,000 33,000 34,000 

Responsibility 4 1.32,000 J -34,000..... 36,000 38,000 40,000 

Experience 1 2 3 4 ' 5 - •42.000 

1 26,000 27,000 28,000 L29J)ffiLh ,30,000 44,000 

2 27,000 28,000 29,000 30,000 31.000 50,000 

3 28,000 29,000 30,000 31,000 32,000 53,00fr . 

4 imooo f •42,000 34,000 36,000 38,000 56,000 

Responsibility 5 32,000 34,000 ~~ ~-36,Onp^ 38,000 40,000 64,000 

6 34,000 36,000 38,000 ~~4o;m... 42,000 

7 36,000 39,000 42,000 45,000 48,000-

8 39,000 42,000 45,000 48,000 51,000 

9 42,000 45,000 48,000 51,000 54,000 

10 46,000 50,000 54,000 58,000 62,000 

(a) User's View 

01 SALARY-VALUES. 
05 REGION-ONE. 

10 FILLER PIC X(25) VALUE 126000270002800029000300001 

10 FILLER PIC X(25) VALUE '2700028000290003000031000' 
10 FILLER PIC X(25) VALUE '2800029000300003100032000' 
10 FILLER PIC X(25) VALUE '30000320003400036000380001 

10 FILLER PIC X(25) VALUE '32000340003600038000400001 

10 FILLER PIC X(25) VALUE '3400036000380004000042000' 
10 FILLER PIC X(25) VALUE '3600039000420004500048000' 
10 FILLER PIC X(25) VALUE '39000420004500048000510001 

10 FILLER PIC X(25) VALUE 14200045000480005100054000' 
10 FILLER PIC X(25) VALUE 14600050000540005800062000' 
05 REGION-TWO. 
10 FILLER PIC X(25) VALUE 12800029000300003100032000' 
10 FILLER PIC X(25) VALUE '2900030000310003200033000' 
10 FILLER PIC X(25) VALUE '30000310003200033000340001 

10 FILLER PIC X(25) VALUE '3200034000360003800040000' 
10 FILLER PIC X(25) VALUE '3400036000380004000042000' 
10 FILLER PIC X(25) VALUE '3600038000400004200044000' 
10 FILLER PIC X(25) VALUE '38000410004400047000500001 

10 FILLER PIC X(25) VALUE '4100044000470005000053000' 
10 FILLER PIC X(25) VALUE 14400047000500005300056000' 
10 FILLER PIC X(25) VALUE '4800052000560006000064000' 

01 SALARY-TABLE REDEFINES SALARY-VALUES. 
05 REGION OCCURS 2 TIMES. 

10 RESPONSIBILITY OCCURS 10 TIMES. 
15 EXPERIENCE OCCURS 5 TIMES. 

20 SALARY PIC 9(5). 

(b) initialization via the REDEFINES and V A L U E S Clauses 

« 1 » ™ . S 

R SPGHSIBILHY 1) 1 

m i j l „ . 1 | - , 1 j w, j - 1 
SPOHaShiLITY 10) 

fxj>1 Exp 2 

,|,|.|.|. M'H-
SA ARY-VAL E5 

±1* •Itl'l' im MM-



Chapter 13 — Multilevel Tables 

SALARY (1, 2, 3) 

SALARY (2, 12, 7} 

SALARY-TABLE 

R E G I O N (1) 

RESPONSIBILITY (1, 2) 

E X P E R I E N C E (1, 2, 3) 

A valid reference in all respects, which refers to the salary 
for region 1, responsibility 2, and experience 3. SALARY 
must always be referenced with three subscripts. 
Syntactically correct in that S A L A R Y has three subscripts. 
The entry compiles cleanly but will cause problems in 
execution, because it refers to responsibility a n d 
experience levels of 12 and 7, respectively, which are 
inconsistent with the table definition. 
Refers to the entire table of 100 elements (500 m e m o r y 
locations in all). SALARY-TABLE is referenced without any 
subscripts. 
Refers collectively to the 10 responsibility levels, each 
containing five experience levels associated with the first 
region; R E G I O N is referenced with a single subscript. 
Refers collectively to the five experience levels for 
responsibility level 2 for region 1; RESPONSIBILITY is 
referenced with two subscripts. 
A valid entry equivalent to SALARY (1, 2,3); the entries are 
equivalent because S A L A R Y is the only elementary item 
defined under the group item E X P E R I E N C E . 

P E R F O R M V A R Y I N G 

The syntax of the P E R F O R M V A R Y I N G statement shows the A F T E R clause enclosed 
in brackets a n d followed by three dots to indicate the clause can be repeated. 
Accordingly, three-level tables are processed with a P E R F O R M V A R Y I N G statement 
that includes two A F T E R clauses as s h o w n in Figure 13.11. The statement m a y 
execute either a designated procedure as in Figure 13.11a, or a series of in-line 
statements as in Figure 13.1 lb. 

As in the two-level example, all possible combinations of the three subscripts 
are executed, causing the designated statements to be executed a total of 100 

F i g u r e 1 3 . 1 1 PERFORM VARYING with Three Subscripts 
: — — — — — — — " " — • — j 

PERFORM INITIALIZE-SALARIES | 
VARYING REGION-SUB FROM 1 BY 1 

UNTIL REGION-SUB > 2 
AFTER RESPONSIBILITY-SUB FROM 1 BY 1 

UNTIL RESPONSIBILITY-SUB > 10 
AFTER EXPERIENCE-SUB FROM 1 BY 1 

UNTIL EXPERIENCE-SUB > 5. ] 

INITIALIZE-SALARIES. 
MOVE ZERO TO SALARY (REGION-SUB, RESPONSIBILITY-SUB, EXPERIENCE-SUB). 

(a) Performing a Paragraph 



Three-Level Tables 

(continued) 

PERFORM 
VARYING REGION-SUB FROM 1 BY 1 

UNTIL REGION-SUB > 2 
AFTER RESPONSIBILITY-SUB FROM 1 BY 1 

UNTIL RESPONSIBILITY-SUB > 10 
AFTER EXPERIENCE-SUB FROM 1 BY 1 

UNTIL EXPERIENCE-SUB > 5 
MOVE ZERO TO SALARY (REGION-SUB, RESPONSIBILITY-SUB, EXPERIENCE-SUB) 

END-PERFORM. 
(b) in-Line Perform 

Region Responsibility Experience 
Subscript Subscript Subscript 

1 1 1 
1 1 2 
1 1 3 
1 1 4 
1 1 5 

R E G I O N - S U B and R E S P O N S I B I L I T Y - S U B 
are both set to 1 while E X P E R I E N C E - S U B 
varies from 1 to 5 

R E G I O N S U B remains at 1 while 
R E S P O N S I B I L I T Y - S U B is incremented 
* ~ o c v d c d i c 

varied from 1 to 5 

10 
10 
10 
10 
10 

2 1 1 
2 1 2 
2 1 3 
2 1 4 
2 1 5 

At the 50th iteration, R E G I O N - S U B is still set to 1, 
but R E S P O N S I B I L I T Y - S U B has reached 10 

R E G I O N - S U B is incremented to 2, 
R E S P O N S I B I L I T Y - S U B is reset to 1 while 
E X P E R I E N C E - S U B varies from 1 to 5 

2 10 1 
2 10 2 
2 10 3 
2 10 4 
2 10 5 

At the 100th iteration, R E G I O N - S U B reaches 2, 
R E S P O N S I B I L I T Y - S U B reaches 10 and 
E X P E R I E N C E - S U B reaches 5 

ina i ion of jscrspts 



Chapter 13 — Multilevel Tables 

(2 x 10 x 5) times. The bottom subscript (EXPERIENCE-SUB in the example) is 
varied first, then the middle subscript (RESPONSIBILITY-SUB), and finally the top 
subscript (REGION-SUB). The sequence in which the 100 combinations are 
executed is s h o w n in Figure 13.11. 

W e incorporate the material o n three-level tables into our previous sample C O B O L 
program on two-level tables. The specifications have been updated and are presented 
in their entirety. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : rhree-Level Tables 

N a r r a t i v e : This program extends the example on two-level tables to a third dimension in that salary 
is now a function of three variables (region, responsibility, and experience). As in the 
earlier program, a detail report is required showing the salary of each employee. In 
addition a summary report containing the number of employees in each region/ 
responsibility/experience combination is to be produced. 

I n p u t F i l e ( s ) : EMPLOYEE-FILE 

I n p u t R e c o r d L a y o u t : 01 EMPLOYEE-RECORD. 
05 EMP-NAME 
05 EMP-SALARY-DETERMINANTS. 

10 EMP-RESP 
10 FILLER 
10 EMP-EXP 
10 FILLER 
10 EMP-REGI0N 

05 FILLER 

PIC X(15). 

PIC 99. 
PIC X. 
PIC 99. 
PIC X(3). 
PIC 99. 
PIC X(5). 

T e s t D a t a : ADAMS 04 01 01 
BAKER 01 04 01 
BROWN 08 02 02 
CHARLES 09 02 02 
DAVIDSON 09 04 02 
DAVIS 10 04 01 
EPSTEIN 04 05 02 
FRANKEL 03 03 01 
GOODMAN 03 03 01 

GULFMAN 03 05 01 
HATHAWAY 07 02 01 
INGLES 03 01 01 
JACKSON 06 03 01 
JORDAN 06 03 01 
KING 07 02 01 

LIPMAN 07 01 01 
LOWELL 01 04 02 

R e p o r t L a y o u t : See Figure 13.12. 



A Sample Program 

Output of Three-Level Program 

STARTING SALARIES OF ALL NEW EMPLOYEES 
ADAMS $30 000 
BAKER $29 000 
BROWN $44 000 
CHARLES $47 000 
DAVIDSON $53 000 
DAVIS $58 000 
EPSTEIN $40 000 
FRANKEL $30 000 
GOODMAN $30 000 
GULFMAN $32 000 
HATHAWAY $39 000 
INGLES $28 000 
JACKSON $38 000 
JORDAN $38 000 
KING $39 000 
LIPMAN $36 000 
LOWELL $31 000 

STARTING SALARY SUMMAR Y REPORT - REGION 1 
EXPERIENCE 

RESPONSIBILITY 1 2 3 4 5 

1 0 0 0 1 0 
2 0 0 0 0 0 
3 1 0 2 0 1 
4 1 0 0 0 0 
5 0 0 0 0 0 
6 0 0 2 0 0 
7 1 2 0 0 0 
8 0 0 0 0 0 
9 0 0 0 0 0 
10 0 0 0 1 0 

STARTING SALARY SUMMARY REPORT - REGION 2 
EXPERIENCE 

RESPONSIBILITY 1 2 3 4 5 

1 0 0 0 1 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 1 
5 0 0 0 0 0 
6 0 0 0 0 0 
7 0 0 0 0 0 
8 0 1 0 0 0 
9 0 1 0 1 0 
10 0 0 0 0 0 



C h a p t e r 1 3 — Multilevel Tables 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of employee records, and for each record: 
a. Determine the employee's starting saiary as a function of region, responsibility, and 

experience. 
b. Print a detail line for this employee showing his or her name and starting salary. 

2. Compute the number of employees for each region-responsibility-experience 
combination. This requires creation of a 2 x 10 x 5 table to store the number of 
individuals in each region-responsibility-experience combination, and implies that as 
each employee record is read, the corresponding table entry is incremented by one. 

3. When all employees have been processed, print the table containing the number of 
employees in each category as shown in Figure 13.12b. 

The extension of the original program from two to three dimensions is so direct 
that the hierarchy chart and pseudocode are virtually unchanged. The completed 
program is s h o w n in Figure 13.13, and should already appear familiar, as it repeats 
the C O B O L statements used in the explanation of three-level tables. The C O B O L 
statements to define the salary table (lines 44-73), appeared earlier in Figure 13.10b 
and were discussed fully at that time. Observe also the definition of a second 

Figure 1 3 . 1 3 Three-Level Program 

I 
1 IDENTIFICATION DIVISION. j 
2 PROGRAM-ID. 3LVTABLE. | 
3 AUTHOR. ROBERT T. GRAUER. j 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT EMPLOYEE-FILE ASSIGN TO 'A:\CHAPTR13\TABLES.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. I 
10 SELECT PRINT-FILE j 
11 ASSIGN TO PRINTER. \ 
12 [ 
13 DATA DIVISION. j 
14 FILE SECTION. j 
15 FD EMPLOYEE-FILE 
16 DATA RECORD IS EMPLOYEE-RECORD. 
17 01 EMPLOYEE-RECORD PIC X(23). \ 
18 
19 FD PRINT-FILE I 
20 DATA RECORD IS PRINT-LINE. j 
21 01 PRINT-LINE PIC X(132). j 
22 \ 
23 WORKING-STORAGE SECTION. j 
24 01 FILLER PIC X(14) | 
25 VALUE 'WS BEGINS HERE'. I 
26 | 
27 01 WS-EMPLOYEE-RECORD. I 

file://'A:/CHAPTR13/TABLES.DAT'


A Sample Program 

Figure 1 3 . 1 3 (continued) 

28 05 EMP-NAME PIC X(15). 
29 05 EMP-SALARY-DETERMJINANTS^ 
30 10 E M P - R E S P ~ ~ ~ PIC 99. 
31 10 FILLER PIC X. 
32 10 EMP-EXP PIC 99. - 1\ 
33 10 FILLER PIC X. ' 
34 10 EMP~-REG PIC 99. 
35 
36 01 PROGRAM-SUBSCRIPTS. 
37 05 RESP-SUB PIC S9(4) COMP. 
38 05 EXP-SUB PIC S9(4) COMP. 
39 05 REG-SUB PIC S9(4) COMP. 
40 
41 01 WS-END-OF-DATA-SWITCH PIC X(3) VALUE SPACES. 
42 88 END-OF-DATA VALUE 'YES'. 
43 _ _ 
44 ; 01 SALARY-VALUES. 
45 05 REGION-ONE. 
46 10 FILLER PIC X(25) VALUE '2600027000280002900030000' 
47 10 FILLER PIC X(25) VALUE '2700028000290003000031000' 
48 10 FILLER PIC X(25) VALUE '2800029000300003100032000' 
49 10 FILLER PIC X(25) VALUE '3000032000340003600038000' 
50 10 FILLER PIC X(25) VALUE '3200034000360003800040000' 
51 10 FILLER PIC X(25) VALUE '3400036000380004000042000' 
52 10 FILLER PIC X(25) VALUE '3600039000420004500048000' 
53 10 FILLER PIC X(25) VALUE '3900042000450004800051000' 
54 10 FILLER PIC X(25) VALUE '4200045000480005100054000' 
55 10 FILLER PIC X(25) VALUE '4600050000540005800062000' 
3D 

57 05 REGION-TWO. 
58 10 FILLER PIC X(25) VALUE '2800029000300003100032000' 
59 10 FILLER PIC X(25) VALUE '2900030000310003200033000' 
60 10 FILLER PIC X(25) VALUE '3000031000320003300034000' 
61 10 FILLER PIC X(25) VALUE '3200034000360003800040000' 
62 10 FILLER PIC X(25) VALUE '3400036000380004000042000' 
63 10 FILLER PIC X(25) VALUE '3600038000400004200044000' 
64 10 FILLER PIC X(25) VALUE '3800041000440004700050000' 
65 10 FILLER PIC X(25) VALUE '4100044000470005000053000' 
66 10 FILLER PIC X(25) VALUE '4400047000500005300056000' 
67 10 FILLER PIC X(25) VALUE '4800052000560006000064000' 
68 
69 01 SALARY-TABLE REDEFINES SALARY-VALUES. 
70 05 REGION OCCURS 2 TIMES. 
71 10 RESPONSIBILITY OCCURS 10 TIMES. 
72 15 EXPERIENCE OCCURS 5 TIMES. 
73 20 SALARY PIC 9(5). 

75 01 NUMBER-OF-EMPLOYEES-TABLE. 
76 05 NUMBER-REGION OCCURS 2 TIMES. 
77 10 NUMBER-RESPONSIBILITY OCCURS 10 TIMES. 

L 



Chapter 13 — Multilevel Tables 

(continued) 

78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

15 NUMBER-EXPERIENCE OCCURS 5 TIMES. 
20 NUMB-EMP PIC 99 VALUE ZERO. 

01 DETAIL-REPORT-HEADING-LINE. 
05 FILLER PIC X(9) VALUE SPACES. 
05 FILLER PIC X(39) 

VALUE 'STARTING SALARIES OF ALL NEW EMPLOYEES'. 
05 FILLER PIC X(82) VALUE SPACES. 

01 DETAIL-LINE-1. 
05 FILLER 
05 DET-EMP-NAME 
05 FILLER 
05 DET-SALARY 
05 FILLER 

PIC X(12) VALUE SPACES. 
PIC X(15). 
PIC X(4) VALUE SPACES. 
PIC $99,999. 
PIC X(94) VALUE SPACES. 

01 SUMMARY-REPORT-HEADING-LINE-1. 
05 FILLER PIC X(24) VALUE SPACES. 
05 FILLER PIC X(39) 

VALUE 'STARTING SALARY SUMMARY REPORT - REGION'. 
05 SUM-REGION-NUMBER PIC ZZZ9. 
05 FILLER PIC X(65) VALUE SPACES. 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 

01 SUMMARY-REPORT-HEADING-LINE-2. 
05 FILLER PIC X(36) 
05 FILLER PIC X(10) 
05 FILLER PIC X(86) 

01 SUMMARY-REPORT-HEADING-LINE-3. 

01 

05 FILLER 
05 FILLER 
05 FILLER 

VALUE 
05 FILLER 

PIC X(5) 
PIC X(14) 
PIC X(48) 

2 
PIC X(65) 

05 
05 
05 

VALUE SPACES. 
VALUE 'EXPERIENCE'. 
VALUE SPACES. 

VALUE SPACES. 
VALUE 'RESPONSIBILITY' 

3 4 
VALUE SPACES. 

5'. 

SUMMARY-LINE-1. 
05 FILLER PIC X(9). 

SUMMARY-RESPONSIBILITY PIC Z(4). 
FILLER PIC X(4) 
SUMMARY-TOTAL-VALUES OCCURS 5 TIMES 
10 FILLER PIC X(4). 
10 SUMMARY-NUMBER PIC Z(4)9. 

05 FILLER PIC X(70). 

PROCEDURE DIVISION. 
100-PREPARE-SALARY-REPORT. 

OPEN INPUT EMPLOYEE-FILE 
OUTPUT PRINT-FILE. 

PERFORM 200-WRITE-DETAIL-REPORT-HDG. 

VALUE SPACES. 



A Sample Program 

3 (continued) 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 

PERFORM UNTIL EN0-0F-DATA 
READ EMPLOYEE-FILE INTO WS-EMPLOYEE-RECORD 

AT END 
MOVE 'YES' TO WS-END-OF-DATA-SWITCH 

NOT AT END 
PERFORM 300-PROCESS-EMPLOYEES 

END-PERFORM. 
PERFORM 400-WRITE-SUMMARY-REPORT 

VARYING REG-SUB FROM 1 BY 1 
UNT I L REG-SUB > 2. 

CLOSE EMPLOYEE-FILE 
PRINT-FILE. 

STOP RUN. 

200-WRITE-DETAIL-REPORT-HDG. 
WRITE PRINT-LINE FROM DETAIL-REPORT-HEADING-LINE 

A F T E R ADVANCING PAGE. 
MOVE SPACES TO PRINT-LINE. 
WRITE PRINT-LINE. 

300-PROCESS-EMPLOYEES. 
]ADD 1 TO NUMB-EMP (EMP-REG, EMP-RESP, E M P - E X P ) . 
MOVE EMP-NAME TO DET-EMP-NAME. 
MOVE SALARY (EMP-REG, EMP-RESP, EMP-EXP) TO DET-SALARY 
[WRLTE^RIiTf . ' 

400-WRITE-SUMMARY-REPORT .J-
MOVE REG-SUB TO SUM-REGION-NUMBER. " 
PERFORM 500-WRITE-SUMMARY-HEADING. 
PERFORM 520-WRITE-RESPONSIBILITY-LINE 

VARYING RESP-SUB FROM 1 BY 1 
UN T I L RESP-SUB > 10. 

500-WRITE-SUMMARY-HEADING. 
WRITE PRINT-LINE FROM SUMMARY-REPORT-HEAD ING-LINE-1 

A F T E R ADVANCING PAGE. 
WRITE PRINT-LINE FROM SUMMARY-REPORT-HEADING-LINE-2 

A F T E R ADVANCING 2 LINES. 
WRITE PRINT-LINE FROM SUMMARY-REPORT-HEADING-LINE-3. 
MOVE SPACES TO PRINT-LINE. 
WRITE PRINT-LINE. 

520-WRITE-RESPONSIBILITY-LINE. 
MOVE SPACES TO SUMMARY-LINE-1. 
" PERFORM "VARYING EXP-SUB* 1Y I 

UN T I L EXP-SUB > 5 
MOVE NUMB-EMP (REG-SUB, RESP-SUB, EXP-SUB) 

TO S U M M A R Y - N U M B E R (EXP-SUB) 
END-PERFORM. 
MOVE RESP-SUB TO SUMMARY-RESPONSIBILITY. 
WRITE PRINT-LINE FROM SUMMARY-LINE-1. 



C h a p t e r 1 3 ~~ Multilevel Tables 

three-level table, for the n u m b e r of employees in each category in lines 75-79; 
tlic ciciiniLiuii u o c a L i l t w t j i j u i i o u a u a t o i u cxiiu^ciit. opcii^o ivi ixi<^ ictuic;, i»ift ^iiiiio 

the R E D E F I N E S clause, because (unlike the salary table) the n u m b e r of employees 
is computed during processing. The 100 elements in the table are initialized to 
zero by the V A L U E Z E R O clause in line 79. (See limitations of COBOL-74 at the 
end of the chapter.) 

The Procedure Division of Figure 13.13 follows both the hierarchy chart and 
pseudocode. The key to the program is the A D D statement of line 148, which 
increments the n u m b e r of employees for the particular region/responsibility/ 
experience combination. The subscript values in this statement are taken directly 
from the incoming employee record, which define E M P - R E G , EMP-RESP, and E M P -
EXP. The detail line for the individual employee is created in lines 149-151. 

The s u m m a r y report is produced after the end of file has been reached by the 
P E R F O R M statement of lines 134-136, which executes the paragraph W R I T E -
S U M M A R Y - R E P O R T twice, once for each region. The heading lines are written 
(statements 160-167), after which the paragraph WRITE-RESPONSIBILLTY-LINE is 
executed 10 times (once for each responsibility level) in lines 171-175. The latter 
paragraph contains its o w n P E R F O R M V A R Y I N G statement to write the five 
experience totals for each responsibility level. 

The examples thus far took advantage of a direct lookup in which the table elements 
were referenced directly by the value of the subscript; that is, the examples used 
numeric subscripts for responsibility and experience that corresponded directly to 
the row and column of the table. This is not always true as indicated by the example 
in Figure 13.14. 

The table in Figure 13.14a depicts a user's view in which quarterly sales are 
recorded for every branch within the corporation. The C O B O L implementation in 
Figure 13.14b establishes B R A N C H as a one-level table with 25 rows; it also establishes 
Q U A R T E R L Y - S A L E S as a two-level table consisting of 25 rows and 4 columns. A n y 
reference to B R A N C H - N A M E requires a single subscript (index)— for example, 
B R A N C H - N A M E (2) to obtain the branch-name in the second row. Any reference to 
Q U A R T E R L Y - S A I . E S requires two subscripts (indexes) to indicate the branch a n d 
quarter—for example, Q U A R T E R L Y - S A L E S (2, 1), Q U A R T E R L Y - S A L E S (2, 2), 
Q U A R T E R L Y - S A L E S (2,3), and Q U A R T E R L Y - S A L E S (2,4) to reference the four sales 
figures for the branch in row two. Figure 13.14c shows the corresponding storage 
schematic. 

Assume n o w that w e want to obtain the annual sales for a specific branch, for 
example, Boston. A n individual could tell at a glance that the data for Boston are in 
the second row of the table and would k n o w automatically to s u m the figures in row 
two to obtain the annual sales. The computer, however, has to first search the table 
of branch n a m e s to locate the proper row before s u m m i n g the quarterly sales. The 
process is illustrated in Figure 13.4d, which contains the Procedure Division 
statements necessary to obtain the annual sales for Boston. 

The SET statement is required prior to a sequential search in order to begin 
the search in row one of the B R A N C H table. The S E A R C H statement varies B R A N C H -
I N D E X until a match is found o n branch n a m e ; the W H E N clause includes a 
P E R F O R M V A R Y I N G statement that varies Q U A R T E R L Y - I N D E X from one to four in 
the appropriate ( B R A N C H - I N D E X ) row in order to obtain the annual total. Note, 
too, the use of scope terminators ( E N D - A D D , E N D - P E R F O R M , and E N D - S E A R C H ) 
and h o w the various statements are nested within one another. 

http://QUARTERLY-SAI.es


Table Lookups 

Two-Level Table Lookup 

Branch Name 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 

Atlanta $100,000 $200,000 $300,000 $400,000 

Boston $50,000 $150,000 $250,000 $350,000 

Chicago $150,000 $165,000 $400,000 $275,000 

San Diego $25,000 $50,000 $75,000 $100,000 

(a) User's View 

01 SALES-TABLE REDEFINES SALES-DATA. 
05 BRANCH OCCURS 25 TIMES 

INDEXED BY BRANCH-INDEX. 
10 BRANCH-NAME PIC X(12). 
10 QUARTERLY-SALES OCCURS 4 TIMES 

INDEXED BY QUARTERLY-INDEX PIC 9(6). 
(b) Table Definition 

SALES-TAB LE 

BRANCH (1) BRANCH (25) 

BRANCH QUARTERLY QUARTERLY BRANCH QUARTERLY QUARTERLY 
NAME (1) SALES (1,1) SALES (1,4) NAME (25) SALES (25,1) SALES (25,4) 

PIC X(12) PIC 9(6) PIC 9(6) PIC X(12) PIC 9(6) PIC 9(6) 

(c) Storage Schematic 

MOVE ZEROS TO ANNUAL-TOTAL. 
SET BRANCH-INDEX TO 1. 
SEARCH BRANCH 

AT END 
DISPLAY 'Boston not in table' 

WHEN BRANCH-NAME (BRANCH-INDEX) = 'Boston' 
PERFORM VARYING QUARTERLY-INDEX FROM 1 BY 1 

UNTIL QUARTERLY-INDEX > 4 
ADD QUARTERLY-SALES (BRANCH-INDEX, QUARTERLY-INDEX) 

TO ANNUAL-TOTAL 
SIZE ERROR 

DISPLAY 'ANNUAL TOTAL TOO LARGE' 
END-ADD 

END-PERFORM 
END-SEARCH. 

(d) S E A R C H Statement 



C h a p t e r 1 3 — Multilevel Tables 

W e c o m e n o w to our final example, which ties together material from several 
previous 
chapters. The specifications call for an interactive program that accepts information 
from the console and displays the results o n the monitor. Specifications follow in 
the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : A Calorie Counter's Delight 

Narrative: Develop a program that will prompt the operator for an age and weight, then display the 
number of calories needed to maintain that weight. The table of daily maintenance 
calories is given in the second processing requirement. 

Input File(s): None; input will be accepted from the console. 

R e p o r t L a y o u t : None; output will be displayed on the monitor. 

1. Prompt the user for age and weight; validate the parameters immediately as they are 
input and prompt the user continually until valid values are received. Age must be 
between 18 and 75 years, inclusive; weight between 90 and 165 pounds, inclusive. 

2. Display the calories required to maintain the indicated weight according to the 
table below. 

90 99 1,700 1,500 1,300 
100 110 1,850 1,650 1,400 
111 121 2,000 1,750 1,550 
122 128 2,100 1,900 1,600 
129 132 2,150 1,950 1,650 
133 143 2,300 2,050 1,800 
144 154 2,400 2,150 1,850 
155 165 2,550 2,300 1,950 

3. Ask the user whether s/he wishes to input another set of parameters; if yes, repeat 
steps one and two above; if not, terminate the program. 

The concept of a range-step table was introduced in the previous chapter and is 
essential to the solution of the present problem. A range-step table occurs w h e n the 
s a m e table value—for example, 1,700 calories—is applicable to m a n y search 
arguments—for example, any weight between 90 and 99 pounds coupled with any 
age between 18 and 35. W e need to recognize, therefore, that two range-step tables, 
for weight and age, are necessary in addition to the calorie maintenance table. 



Calorie 

Ranqe-step Tables 

99 

110 
121 
128 

132 

143 

154 

165 

35 55 75 

1,700 1,500 1,300 

1,850 1,650 1,400 

2,000 1,750 1,550 

2,100 1,900 1,600 

2,150 1,950 1,650 

2,300 2,050 1,800 

2,400 2,150 1,850 

2,550 2,300 1,950 

01 

01 

CALORIE-VALUES. 
05 FILLER 

FILLER 
FILLER 
FILLER 
FILLER 
FILLER 
FILLER 
FILLER 

05 
05 
05 
05 
05 
05 
05 

PIC X(12) 
PIC X(12) 
PIC X(12) 
PIC X(12) 
PIC X(12) 
PIC X(12) 
D T T Y(10\ 

PIC X(12) 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

'170015001300' 
'185016501400' 
'200017501550' 
'210019001600' 
'215019501650' 
'230020501800' 
'240021501850' 
'255023001950' 

CALORIE-TABLE REDEFINES CALORIE-VALUES. 
05 CALORIE-WEIGHTS OCCURS 8 TIMES 

INDEXED BY CAL-WGT-INDEX. 
10 CALORIE-AGES OCCURS 3 TIMES 

INDEXED BY CAL-AGE-INDEX. 
PIC 9(4). 15 CALORIES 

01 WEIGHT-LIMIT-VALUES. 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 

01 WEIGHT-TABLE REDEFINES WEIGHT-LIMIT-VALUES. 
05 WEIGHT-LIMIT OCCURS 8 TIMES 

INDEXED BY WEIGHT-INDEX PIC 9(3). 

PIC X(3) VALUE '099' 
PIC X(3) VALUE '110' 
PIC X(3) VALUE '121' 
PIC X(3) VALUE '128' 
PIC X(3) VALUE '132' 
PIC X(3) VALUE '143' 
PIC X(3) VALUE '154' 
PIC X(3) VALUE '165' 

01 AGE-LIMIT-VALUES. 
05 FILLER 
05 FILLER 
05 FILLER 

PIC XX VALUE '35', 
PIC XX VALUE '55', 
PIC XX VALUE '75' , 

01 AGE-TABLE REDEFINES AGE-LIMIT-VALUES. 
05 AGE-LIMIT OCCURS 3 TIMES 

INDEXED BY AGE-INDEX PIC 99. 

:atiofi 



Chapter 13 — Multilevel Tables 

ia Hierarchy Chart 

PROCESS 
CALORIES 
INQUIRY 

FIND 
CALORIES 

DISPLAY 
RESULTS GO AGAIN 

Our solution is s h o w n in Figure 13.15. The user's view of the three tables is 
shown in Figure 13.15a and the C O B O L implementation in Figure 13.15b. The 
definition of the C A L O R I E - T A B L E is straightforward and uses the O C C U R S , V A L U E , 
and R E D E F I N E S clauses as explained earlier. The W E I G H T - L I M I T table stores only 
the upper limit for each weight class because the ranges overlap from one class to 
the next—that is, 90-99 pounds, 100 110 pounds, 111-121 pounds, and so on. In 
similar fashion the age-limit table stores only the upper limit for each age class. 

The hierarchy chart in Figure 13.16 contains the modules to get the user's age 
and weight, determine the n u m b e r of calories, display the results, then determine 
whether the entire process is to be repeated. The pseudocode in Figure 13.17 
continually prompts the user until a valid age is received, then prompts the user for 
a valid weight. The nested search statement mimics the process a person would 
follow to determine the n u m b e r of calories based o n weight a n d age—that is, to 
search the weight limits in the various rows, then go across the appropriate row to 
search the age limits for that weight. Note, too, the less than or equal condition in 
the search argument, which checks only the upper limit in each weight (age) class. 

The completed program is s h o w n in Figure 13.18 and parallels the pseudocode and 
hierarchy chart just discussed. Several features of the program merit attention. 

1. The definition of C A L O R I E - T A B L E in lines 17-32 as a two-level 8 x 3 table; the 
indexes C A L - W G T - I N D E X a nd C A L - A G E - I N D E X are defined with the table to 
reference the row and column, respectively. 

2. The definition of two range-step tables for weight and age limits in lines 34-46 
a n d lines 48-55, a n d referenced by W E I G H T - I N D E X a n d A G E - I N D E X , 
respectively. 

3. The nested SEARCH statements in lines 82-94, which identify the row 
containing the weight limit (from the one-level weight-limit table), the column 
containing the age limit (from the one-level age-limit table), then reference 
the corresponding r ow and column in the calorie table to display the answer. 

4. The SET statement in line 81 that initializes W E I G H T - I N D E X (from the weight-
limit table) and C A L - W G T - I N D E X (from the two-level calorie table); the 



A Calorie Counter's Delight 

Figure 1 3 , 1 7 Pseudocode 

I DO WHILE user wants to inquire 
I Initialize age & weight 
j DO WHILE invalid age 
! Display age prompt 

Accept age from user 
1 — ENDDO 

j r DO WHILE invalid weight 
| Display weight prompt 

Accept weight from user  
ENDDO 

r SEARCH weight-limit-table 
AT END 

| Display invalid weight 
WHEN user's weight <= table value 

: r- SEARCH age-limit table 
i AT END 

| | Display invalid age 
| | WHEN user's age <= table value 

! MOVE c a l o r i e s (wgt-1imt, a g e - l i m i t ) t o output 

| L- END-SEARCH 
1 — END-SEARCH 

Display required calories 
Display prompt to go again 
Accept user's response 

ENDDO 
Stop Run 

Calories Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. CALORIE. 
3 AUTHOR. CVV. 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 INDIVIDUAL-DATA. 

05 IND-AGE 
88 VALID-AGE 

05 IND-WEIGHT 
88 VALID-WEIGHT 

01 PROGRAM-VARIABLES. 
05 CALORIES-NEEDED 
05 GO-AGAIN-SWITCH 

01 CALORIE-VALUES. 
05 FILLER 

PIC 99. 

PIC 9(3). 
VALUE 18 THRU 75. 

VALUE 90 THRU 165. 

PIC 2,119 VALUE ZEROS. 
PIC X. 

PIC X(12) VALUE '170015001300' 



C h a p t e r 

B (continued) 

05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 

PIC X(12) VALUE 
PIC X(12) VALUE 
PIC X(12) VALUE 
PIC X(12) VALUE 
PIC X(12) VALUE 
PIC X(12) VALUE 
PIC X(12) VALUE 

'185016501400', 
'200017501550'. 
'210019001600', 
'215019501650'. 
'230020501800', 
'240021501850'. 
'255023001950', 

01 CALORIE-TABLE REDEFINES CALORIE-VALUES. 
05 CALORY-WEIGHTS OCCURS 8 TIMES 

INDEXED BY CAL-WGT-INDEX. 
10 CALORY-AGES OCCURS 3 TIMES 

INDEXED BY CAL-AGE-INDEX. 
15 CALORIES 

01 WEIGHT-LIMIT-VALUES. 

PIC 9(4). 

05 FILLER PIC X(3) VALUE '099 
05 FILLER PIC X(3) VALUE '110 
05 FILLER PIC X(3) VALUE '121 
05 FILLER PIC X(3) VALUE '128 
05 FILLER PIC X(3) VALUE '132 
05 FILLER PIC X(3) VALUE '143 
05 FILLER PIC X(3) VALUE '154 
05 FILLER PIC X(3) VALUE '165 

01 WEIGHT-TABLE REDEFINES WEIGHT-LIMIT-VALUES. 
05 WEIGHT-LIMIT OCCURS 8 TIMES 

INDEXED BY WEIGHT-INDEX PIC 9(3). 

01 AGE-LIMIT-VALUES. 
05 FILLER 
05 FILLER 
05 FILLER 

PIC XX VALUE '35' 
PIC XX VALUE '55' 
PIC XX VALUE '75' 

01 AGE-TABLE REDEFINES AGE-LIMIT-VALUES. 
05 AGE-LIMIT OCCURS 3 TIMES 

INDEXED BY AGE-INDEX PIC 99. 

PROCEDURE DIVISION. 
PROCESS-CALORIE-INQUIRY. 

PERFORM UNTIL GO-AGAIN-SWITCH = 'n' OR 
MOVE ZEROS TO IND-AGE IND-WEIGHT 

' PERFORM GET-AGE 
UNTIL VALID-AGE 

PERFORM GET-WEIGHT 
UNTIL VALID-WEIGHT 

PERFORM FIND-CALORIES 
PERFORM DISPLAY-RESULTS 
PERFORM GO-AGAIN 

END-PERFORM. 
DISPLAY 'May all your calories be non-fat' 



A Calorie Counter's Deiigirt 

(continued) 

70 STOP RUN. 
71 
72 GET-AGE. 
73 DISPLAY 'Enter Age (18-75): 1 NO ADVANCING. 
74 ACCEPT IND-AGE. 
75 
76 GET-WEIGHT. 
77 DISPLAY 'Enter Weight (90-165): ' NO ADVANCING. 
78 ACCEPT IND-WEIGHT. 
79 
80 FIND-CALORIES. 
81 SET WEIGHT-INDEX CAL-WGT-INDEX TO 1. 
82 \ SEARCH WEIGHT-LIMIT VARYING CAL-WGT-INDEX 
83 AT END 
84 DISPLAY 'Weight not found in table' 
85 ; WH E N IND-WEIGHT < = WEIGHT-LIMIT (WEIGHT-INDEX) 
86 ; SET AGE-INDEX CAL-AGE-INDEX TO 1 
87 SEARCH AGE-LIMIT VARYING CAL-AGE-INDEX 
88 ! AT END 
89 DISPLAY 'Age not found in table' 
90 WHEN IND-AGE <= AGE-LIMIT (AGE-INDEX) 
91 MOVE CALORIES (CAL-WGT-INDEX, CAL-AGE-INDEX) 
92 i TO CALORIES-NEEDED 
93 1 END-SEARCH 
94 ! ENp-SEARCH_. 
95 
96 DISPLAY-RESULTS. 
97 DISPLAY ' «. 
98 DISPLAY CALORIES-NEEDED ' calories/day will maintain ' 
99 'a weight of ' IND-WEIGHT ' pounds at age ' IND-AGE. 
100 DISPLAY ' 1. 
101 
102 GO-AGAIN. 
103 DISPLAY 'Go again? (Y/N) ' NO ADVANCING. 
104 ACCEPT GO-AGAIN-SWITCH. 

SEARCH VARYING statement in line 82 manipulates these indexes in 
conjunction with one another so that w h e n the weight limit is found in the 
first table, the corresponding row is set in the second table. The SET statement 
in line 86 and the S E A R C H V A R Y I N G statement in line 87 function in similar 
fashion for the age limit a nd corresponding column in the calorie table. 

5. The M O V E statement in line 91 is a direct lookup that uses values of CAL-
W G T - I N D E X a n d C A L - A G E - I N D E X established by the nested S E A R C H 
statements. 

6. The various A C C E P T a nd DISPLAY statements throughout the program that 
utilize screen I-O. 



C h a p t e r 1 3 Multilevel Tables 

Seven levels of subscripting are permitted in COBOL-85 as opposed to the 
earlier limit of three; most applications, however, do not require even three-
level tables. 

COBOL-85 facilitates the initialization of a table in which all elements 
have the same value by allowing the VALUE clause to be specified In 
the same entry as an OCCURS clause. (The technique was illustrated in 
lines 61-62 of Figure 13.9.) This was not permitted in COBOL-74, which 
required a PERFORM VARYING statement or REDEFINES clause to achieve 
the same result. 

The optional END-SEARCH scope terminator is new to COBOL-85 and 
terminates the conditional portion of the SEARCH and SEARCH ALL 
statements; the scope terminator makes it possible to nest SEARCH 
statements. 

.Q u H Y 

Multilevel tables of up to seven leveis are possible in COBOL-85 although 
most applications use tables of only one, two, or three dimensions. 

The entries in multiple-level tables may be referenced in different hierarchical 
levels. The number of subscripts (indexes) needed is equal to the number 
of OCCURS clauses in the entry definition. 

Tables at any level may be initialized through a combination of the OCCURS, 
VALUES, and REDEFINES clauses. The OCCURS clause allocates space 
for the table, the VALUE clause places data in these locations, and the 
REDEFINES clause assigns another name to previously allocated space. 

Multilevel tables can be manipulated by using the PERFORM VARYING 
statement with the addition of the appropriate AFTER clause(s). The bottom 
subscript (index) is always manipulated first. 

The SEARCH VARYING statement manipulates the indexes in two tables in 
conjunction with one another; the technique is often used with range-step 
tables, in which the table arguments are stored in a separate table. 

Compilation error 
Detail report 
Execution error 
Hierarchical level 
Nested search statement 

Range-step table 
Summary report 
Three-level table 
Two-level table 
User view 



True/False 

P I I I . i l\S 

AFTER REDEFINES 
BY SEARCH VARYING 
END-SEARCH UNTIL 
OCCURS VALUE 
PERFORM VARYING 

1. A two-level table requires two clauses in its definition. 
2. In a PERFORM VARYING statement with two subscripts, the (bottom/top) subscript 

is varied first. 

3. COBOL-85 permits a maximum of subscripts. 

4. If a Procedure Division reference is made to FIELD-ONE (SUB1, SUB2), SUB1 
refers to the level OCCURS clause, whereas SUB2 refers to the 

level OCCURS clause. 

5. In COBOL-74 a VALUE clause (may/may not) be used in conjunction with an 
clause to initialize a table, and so a clause is 

used as weil. 

6. The statement: 
PERFORM PARAGRAPH-A 

VARYING SUB1 FROM 1 BY 1 UNTIL SUB1 > 5 
AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 6. 

will perform PARAGRAPH-A a total of times. 

7. The PERFORM statement of question 6 begins execution by setting SUB1 to 1, and 
varying SUB2 from to , after which SUB1 will 
be incremented to , and SUB2 will again vary from 

to . 

8. Given the COBOL definition: 
01 CORPORATION. 

05 REGION OCCURS 4 TIMES. 
10 STATE OCCURS 5 TIMES. 

15 CITY OCCURS 6 TIMES PIC 9(6). 

A total of elements are present in the table. 

9. Answer with respect to the table of question 8. Any reference to REGION requires 
subscript(s), a reference to STATE requires 

subscript(s), and a reference to CITY requires subscript(s). 

J E / F A L o r. 

1. 

2. 

3. 

A maximum of seven OCCURS clauses in a given table is permitted in COBOL-85. 

A given entry may contain both an OCCURS clause and a PICTURE clause. 

A given entry may contain both an OCCURS clause and a VALUE clause. 



Chapter 13 - Multilevel Tables 

4. The REDEFINES clause is required whenever a table is initialized. 

5. A PERFORM VARYING statement may vary indexes as well as subscripts. 

6. Referencing a data name with two subscripts, when only a single OCCURS clause 
appears in the table definition, produces a compilation error. 

7. Referencing a data name with a subscript value of 50, when the OCCURS clause 
indicates only 10 entries, produces a compilation error. 

8. SEARCH statements may be nested. 

9. The VARYING, FROM, BY, and AFTER clauses are mandatory in a PERFORM 
statement. 

10. A PERFORM VARYING statement will always execute the designated procedure at 
least once. 

1. Write out the 12 pairs of values that will be assumed by SUB-1 and SUB-2 as a 
result of the statement: 

PERFORM 10-PROCESS-TABLE 
VARYING SUB-1 FROM 1 BY 1 

UNTIL SUB-1 > 4 
AFTER SUB-2 FROM 1 BY 1 

UNTIL SUB-2 > 3. 

2. Indicate the 24 sets of values that will be assumed by SUB-1, SUB-2, and SUB-3 
as a result of the following statement. Remember that the bottom subscript is 
varied first. 

PERFORM 10-PROCESS-TABLE 
VARYING SUB-1 FROM 1 BY 1 

UNTIL SUB-1 > 3 
AFTER SUB-2 FROM 1 BY 1 

UNTIL SUB-2 > 2 
AFTER SUB-3 FROM 1 BY 1 

UNTIL SUB-3 > 4. 

3. Given the following table definition: 
01 CORPORATE-DATA. 

05 COMPANY OCCURS 10 TIMES. 
10 DIVISION-NAME PIC X(15). 
10 YEARLY-FINANCIAL-DATA OCCURS 4 TIMES. 

15 REVENUE PIC 9(7) 
15 NET-INCOME PIC 9(7). 

a. Indicate an appropriate storage schematic. 
b. State whether the following are valid or invalid references, and if invalid, indicate 

whether the problem occurs during compilation or execution: 
CORPORATE-DATA 
COMPANY 

in. COMPANY (8) 
iv. DIVISION-NAME (8) 
v. DIVISION-NAME (12) 



vi. YEARLY-FINANCIAL-DATA (4) 
vii. REVENUE (10, 4) 
viii. NET-INCOME (10,4) 
ix. REVENUE (4, 10) 

4. A corporation monitors monthly sales for its six branch offices according to the 
following table definition: 
01 CORPORATE-SALES-TABLE. 

05 BRANCH-OFFICE OCCURS 6 TIMES. 
10 BRANCH-NAME PIC X(10). 
10 MONTHS OCCURS 12 TIMES. 

15 SALES-AMOUNT PIC 9(6). 

a. Indicate the appropriate storage schematic. 
b. Write a PERFORM VARYING statement to determine the annual sales for the 

third branch office. 
c. Write a PERFORM VARYING statement to determine the corporate sales for 

May. 
d. Write a PERFORM VARYING statement to determine the corporate sales for the 

entire year. 
e. Develop an FD, corresponding record description, and associated Procedure 

Division statements, to read the data for CORPORATE-SALES-TABLE from a file 
of six records; that is, each incoming record has the 12 monthly sales for a 
particular branch office. 

f. Develop an FD, corresponding record description, and associated Procedure 
Division statements, to read the data for CORPORATE-SALES-TABLE from a file 
of 12 records; that is, each incoming record has the six branch office amounts 
for a particular month. 

5. Your professor has two sections of COBOL. Each section has 40 students. Each 
student is expected to submit six projects and take three examinations. Develop a 
file structure suitable to all of this data in a single table. 

6. The following table was suggested to tabulate enrollments for the various colleges 
within a university. Each college, such as the College of Engineering, has multiple 
majors: Mechanical Engineering, Electrical Engineering, and so on. 
01 ENROLLMENT-DATA. 

05 COLLEGE OCCURS 3 TIMES. 
10 MAJOR OCCURS 50 TIMES. 

15 YEAR OCCURS 4 TIMES. 
20 NUMBER-OF-STUDENTS PIC 9(4). 

a. Indicate an appropriate storage schematic. 
b. State whether the following are valid or invalid references, and if invalid, indicate 

whether the problem occurs during compilation or execution: 
i. ENROLLMENT-DATA 
ii. COLLEGE (1) 
iii. MAJOR (1) 
iv. YEAR (1) 
v. NUMBER-OF-STUDENTS (1) 
vi. NUMBER-OF-STUDENTS (1, 2, 3) 
vii. NUMBER-OF-STUDENTS (4, 5, 6) 



C h a p t e r 1 3 - Multilevel Tables 

Write PERFORM VARYING statements to determine: 
The total number of students in the university. 
The total number of seniors in the first college. 
The total number of students in the first major of the first college. 
The total number of freshmen (year 1) in the first college. 
The total number of freshmen in the university. 



Overview 
S y s t e m C o n c e p t s 
Co l la t ing S e q u e n c e 

Embedded Sign 
C O B O L i m p l e m e n t a t i o n 

SORT Statement 
SD (Sort Description) 
RELEASE and RETURN 
Programming Specifications 

U S I N G / G I V I N G Opt ion 
I N P U T P R O C E D U R E / O U T P U T P R O C E D U R E Opt ion 
C o m p a r i n g O p t i o n s 
M E R G E S t a t e m e n t 
Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 1 4 — Sorting 

O B J E C T IVES 

After reading this chapter you will be able to: 

Distinguish between an internal sort, a utility sort, and the COBOL SORT 
statement. 

Differentiate between an ascending and a descending sort; between major, 
intermediate, and minor keys; and between primary, secondary, and tertiary 
keys. 

Define collating sequence; discuss the most significant differences between 
EBCDIC and ASCII and how the collating sequence affects fields with an 
embedded sign. 

Explain the syntax of the COBOL SORT statement, and the supporting 
RELEASE, RFTURN, and SD statements. 

Explain the use of INPUT PROCEDURE to sort on a calculated field, and/or 
to selectively pass records to the sort work file. 

Distinguish, between a merge and a sort. 

D 1 / F n 1 / / F w 

Sorting (the rearrangement of data) is one of the most frequent operations in 
data processing, making it possible to present data in a variety of sequences 
according to the analysis required. Transactions may be listed alphabetically, 
alphabetically by location, in ascending or descending sequence by account 
balance, and so on. The sorting procedure itself is accomplished in one of 
three ways: 

1. An internal sort, in which the programmer develops his or her own logic 
within the application program. (This approach is typically not used by the 
COBOL programmer.) 

2. A utility sort, in which an independent sort program is executed outside of 
the application program as a separate step. 

3. The COBOL SORT statement, in which control is passed to the independent 
sort program from within the COBOL program. (Our discussion deals 
exclusively with this approach.) 

We begin the chapter by developing the general concepts associated with 
sorting, then present the necessary statements to implement sorting within a 
COBOL program. We develop two parallel programs to illustrate variations 
within the SORT statement and conclude with a brief discussion of merging, 
which is a special case of sorting. 



Collating Sequence 

i> ^ e M A sort key is a field within a record that determines h o w the file is to be arranged. C l- « © p t S Several keys m a y be specified in a single sort, as in the case of a departmental 
census in which employees are to appear alphabetically within department. In 
other words, the file is to be rearranged (that is, sorted) so that all employees in the 
same department appear together, and further, so that employees in the same 
department appear alphabetically. Department is a more important key than 
employee name; thus department is considered the major key and employee n a m e 
the minor key. (Other, equally correct, terminology refers to department as the 
primary key and n a m e as the secondary key.) 

Sorting is done in one of two sequences: ascending (low to high) or descending 
(high to low). Listing employees in increasing order of salary is an example of an 
ascending sort, whereas listing them in decreasing order (that is, with the highest 
salary first) represents a descending sort. Any sort on an alphabetic field, (employee 
name, for example) is always perceived as an ascending sort. (An ascending sort is 
assumed if the sequence is not specified.) 

To be absolutely sure of this terminology, consider Figure 14.1. Figure 14.1a 
lists unsorted data for 12 s tudents . Figure 14.1b displays these records after they 
have been sorted by n a m e only. Figure 14.1c shows a pr imary sort on year 
(descending) and a secondary sort on name. Thus, all students in year four are 
listed first (in alphabetical order), then all s tudents in year three, and so on. Finally, 
Figure 14.Id illustrates primary, secondary, and tertiary sorts. All business majors 
are listed first, then all engineering majors, and finally all liberal arts majors. Within 
each major, students are listed by year in descending order and are also listed 
alphabetically within year. 

I he sequencing of numeric items is done strictly according to their algebraic values; 
j>-1_-£ ̂ (/T for example, -10 is less than +5, which is less than +10. The length of a numeric field 

does not enter into the comparison; for example, a four-digit integer field equal to 
0099 is less than a three-digit field equal to 100. 

The sequencing of alphabetic and/or alphanumeric fields is m o r e subtle with 
fields of different length—for example, G R E E N and G R E E N F I E L D . The sorting 
algorithm compares the two n a m e s one character at a time, from left to right and 
determines that the first five letters, G, R, E, E, and N, are the same in both names. 
The shorter field ( G R E E N in the example) is then extended with blanks so that 
comparison m a y continue. A blank, however, is always considered smaller than 
any other letter, so that G R E E N will be placed ahead of G R E E N F I E L D . 

The sorting of alphanumeric fields is further complicated w h e n the sort key 
contains letters and numbers. Comparison still proceeds from left to right, but 
which alphanumeric key should c o m e first, 111 or AAA? Surprisingly, either answer 
could be correct, depending o n the collating sequence in effect. Collating sequence 
is defined, as the ordered list (from low to high) of all valid characters and is a 
function of manufacturer; I B M mainframes use E B C D I C , whereas almost every 
other computer, including the PC, uses ASCII. Both sequences are shown in 
Figure 14.2 for selected characters. 

As can be seen from Figure 14.2, the n u m b e r one I comes after the letter A in 
EBCDIC, but before the letter A in ASCII. In other words, in an alphanumeric sort a 
key of 111 will precede a key of A A A under the ASCII collating sequence, but follow it 
under EBCDIC. It is imperative, therefore, that you be aware of the collating sequence 
in effect w h e n alphanumeric keys are specified. This is especially true in a 



Chapter 14 — Sorting 

Sorting Vocabulary 

Primary Key: Name (Ascending) 

NAME YEAR MAJOR NAME YEAR MAJOR 

Smith 1 Liberal arts Adams 3 Business 
Jones 4 Engineering Benjamin 4 Business 
Adams 3 Business Crawford 2 Engineering 
Howe 2 Liberal arts Deutsch 4 Business 
Frank 1 Engineering Epstei n 2 Engineering 
Epstein 2 Engineering Frank 1 Engineering 
Zev 4 Busi ness Grauer 3 Liberal arts 
Benjami n 4 Business Howe 2 Liberal arts 
Grauer 3 Liberal arts Jones 4 Engineering 
Crawford 2 Engineering Makoske 1 Business 
Deutsch 4 Business Smith 1 Liberal arts 
Makoske 1 Business Zev 4 Business 

(a) Unsorted Data (b) Sorted Date J. Oris K©y 

Primary Key: Major (Ascending) 
Primary Key: Year (Descending) Secondary Key: Year (Descendi ng) 
Secondary Key : Name (Ascending) Tertiary Key: Name (Ascending) 

NAME YEAR MAJOR NAME YEAR MAJOR 

Benjami n 4 Business Benjamin 4 Business 
Deutsch 4 Business Deutsch 4 Business 
Jones 4 Engineering Zev 4 Business 
Zev 4 Business Adams 3 Business 
Adams 3 Business Makoske 1 Business 
Grauer 3 Liberal arts Jones 4 Engineering 
Crawford 2 Engineering Crawford 2 Engineering 
Epstein 2 Engineering Epstei n 2 Engineering 
Howe 2 Liberal arts Frank 1 Engineering 
Frank 1 Engi neeri ng Grauer 3 Liberal arts 
Makoske 1 Business Howe 2 Liberal arts 
Smith 1 Liberal arts Smith 1 Liberal arts 

(c) Sorted D ata, Two Keys (d) Sorted £ Three Keys 

multivendor environment, as w h e n on-site mini- or microcomputers offload to an 
IBM mainframe. 

Embedded Sign .. 
The collating sequence has yet an additional consequence with signed numeric 
fields. Arithmetic operations require positive and negative numbers, and hence, 
w h e n w e do arithmetic with pencil and paper, w e precede the numbers with plus 



Collating Sequence 

EBCDIC ASCi l 

(space) (space) 
(period) (quotation mark) 
(less than) $ (currency symbol) 
(left parenthesis) (apostrophe) 
(plus symbol) ( (left parenthesis) 
(currency symbol) ) (right parenthesis) 
(asterisk) * (asterisk) 
(right parenthesis) + (plus symbol) 
(semicolon) (comma) 
(hyphen, minus symbol) - (hyphen, minus symbol) 
(slash) (period, decimal point) 
(comma) /' (slash) 
(greater than) 0 through 9 
(apostrophe) ; (semicolon) 
(equal sign) < (less than) 
(quotation mark) = (equal sign) 
a through z (lower case) > (greater than) 
A through Z (upper case) A through Z (upper case 
0 through 9 a through z (lower case) 

PSgiitfe 1 4 . 3 . Embedded Signs (ASCII versus EBCDIC) 

; h a r a c e e r C h a r a c t e r Dim C h a r a c t e r Digit 

+1 1 -1 q + 1 A -1 J 
+2 2 -2 r +2 B -2 K 
+3 3 -3 s +3 C -3 L 
+4 4 -4 t +4 D -4 M 
+5 5 -5 u +5 E -5 N 
+6 6 -6 V +6 F -6 O 
+7 7 -7 w +7 G -7 P 
+8 8 -8 X +8 H -8 Q 
+9 9 -9 y +9 I -9 R 
+0 0 -0 p +0 { -0 } 

and minus signs. The computer, however, embeds the sign within the low-order 
digit of the n u m b e r according to the table in Figure 14.3. The advantage of an 
embedded sign is that a position is saved in the storage m e d i u m ; for example, only 
one position is needed for a single-digit numeric field versus two (one for the digit 
and one for the sign) if the sign were stored separately. 

Figure 14 ,2 EBCDIC and ASCII Collating Sequences 



Chapter 14 — Sorting 

Igure 14 .4 Embedded Signs (ASCII versus EBCDIC)/II 

Name Account Balance 
John Doe $1,005 
Mary Smith $1,005CR 
Frank Coulter $2,000 
Erik Parker $2,000CR 

(a) Report 

John Doe 1005 
Mary Smith lOOu 
Frank Coulter 2000 
Erik Parker 200z 

(b) Data (ASCII) 

John Doe 100E 
Mary Smith 100N 
Frank Coulter 200( 
Erik Parker 200} 

(c) Data (EBCDIC) 

The effect ofthe collating sequence is seen in Figure 14.4. Figure 14.4a contains 
a simple report in which John D o e and Mary Smith have positive and negative 
balances of $1,005. The data that produce the report are s h o w n in Figure 14.4b for 
ASCII and in Figure 14.4c for EBCDIC. The record for Mary Smith contains a 
percent sign in the lower-order digit under ASCII according to the character for -5 in 
Figure 14.3a, but an upper case N under E B C D I C as indicated in Figure 14.3b. 

The optional SIGN clause (entered after the P I C T U R E clause) makes it possible 
to e m b e d the sign as the leading rather than the trailing character, and/or to establish 
a separate position for the sign. Consider: 

r i [LEADING ) r , 
SIGN IS { \ SEPARATE CHARACTER 

[TRAILING j L J 

The vast majority of applications, however, e m b e d the sign as the trailing character 
(the default action taken by C O B O L ) as w a s illustrated in Figure 14.4. 

O O l i C L ~ The C O B O L requirements for implementing a sort center o n the S O R T statement. 
jSCr'f»i\* JVl!.vLli«Ati ~>n m addition, you must be familiar with an SI) (sort description) and with the R E L E A S E 

and R E T U R N statements. 



COBOL Implementation 

The syntax for the S O R T statement is as follows: 
SORT file-name-1 

[WITH DUPLICATES IN ORDER] 

[COLLATING SEQUENCE IS alphabet-name] 

DESCENDING , , 
j [ASCENDING J 1 J J 

[WITH DUPLICATES IN ORDER] 

INPUT PROCEDURE IS procedure - name - 1 JTHRU  
USING {fine-name-2J {THROUGH j procedure-name-2 

OUTPUT PROCEDURE IS procedure-name-3 
GIVING (file-name-3} THROUGH 

THRU procedure-name - 4 I 
Multiple sort keys are listed in the order of importance, with the major (primary) 
key listed first. Thus, the statement: 

SORT STUDENT-FILE 
ASCENDING KEY STUDENT-MAJOR 
DESCENDING KEY YEAR-IN-SCHOOL 
ASCENDING KEY STUDENT-NAME 

corresponds to the order of the keys in Figure 14.Id. ( S T U D E N T - M A J O R is the 
primary key, Y E A R - I N - S C H O O L is the secondary key, and S T U D E N T - N A M E is the 
tertiary key.) As can be seen from the general syntax, K E Y is an optional reserved 
word, so that the preceding statement could have been written as: 

SORT STUDENT-FILE 
ASCENDING STUDENT-MAJOR 
DESCENDING YEAR-IN-SCHOOL 
ASCENDING STUDENT-NAME 

W h e n consecutive keys have the same sequence (both ascending or both 
descending), A S C E N D I N G (or D E S C E N D I N G ) need not be repeated. Hence, if it 
were necessary to obtain a master list of students in ascending order by year in 
school, and alphabetically within year, you could code: 

SORT STUDENT-FILE 
ASCENDING YEAR-IN-SCHOOL 

STUDENT-NAME 
The W I T H D U P L I C A T E S IN O R D E R phrase in the S O R T statement ensures 

that the sequence of records with duplicate keys in the output file will be identical 
to the sequence of the records in the input file. The phrase is illustrated in Figure 14.9, 
which appears later in the chapter. 

The C O L L A T I N G S E Q U E N C E clause allows you to change the collating 
sequence; that is, you can specify ASCII o n an I B M mainframe or E B C D I C on a PC. 
(Implementation of an alternate collating sequence is less than straightforward, 
and you should consult an appropriate vendor manual if you wish to use one.) 



C h a p t e r 1 4 — Sorting 

The S O R T statement requires a choice between I N P U T P R O C E D U R E and 
USING, and between O U T P U T P R O C E D U R E and GIVING, resulting in four possible 
combinations: U S I N G / G I V I N G , U S I N G / O U T P U T P R O C E D U R E , I N P U T 
P R O C E D U R E / G I V I N G , and I N P U T P R O C E D U R E / O U T P U T P R O C E D U R E . The 
choice between the different options depends o n the specific application. (The 
chapter contains two listings for USING/GIVING and I N P U T P R O C E D U R E / O U T P U T 
P R O C E D U R E . ) 

The difference between U S I N G and I N P U T P R O C E D U R E is that I N P U T 
P R O C E D U R E requires the programmer to do the I/O to and from the sort utility, 
whereas the U S I N G option does the I/O automatically. I N P U T P R O C E D U R E is thus 
a more general technique in that it permits sorting o n a calculated field, a field not 
contained in the input record. Assume, for example, that an employee record 
contains the present and previous salary, but not the percent of salary increase. 
The U S I N G option can sort o n either salary, but not on the salary increase because 
the latter is a calculated field that it is not present in the input record. 

The I N P U T P R O C E D U R E also allows you to selectively pass records to the sort 
utility, a desirable practice in instances where only s o m e of the records in an input 
file are to appear in a subsequent report. Sorting is time consuming and thus, it is 
highly inefficient to sort an entire file only to eliminate records after sorting. It is far 
better to select the records prior to the sort by using the I N P U T P R O C E D U R E . 

The difference between O U T P U T P R O C E D U R E and G I V I N G is the status of 
the sorted file. The O U T P U T P R O C E D U R E uses a temporary work file, which 
disappears after the program ends so that the results of the sort are lost. The 
GIVING option creates a permanent file containing the sorted results that remains 
after the program has ended. 

SB i i i o s t t - i scription) 

The first file in the S O R T statement references the sort work file that was previously 
defined in an SD (Sort Description) statement in the Data Division. The S D is 
analogous to an F D except that it refers to a sort work file, rather than an ordinary 
file used for I/O. The S D has the general syntax: 

SD file-name-1 

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS] 

RELEAl- L RETURN 
The RELEASE and RETURN statements are required in the I N P U T and O U T P U T 
P R O C E D U R E , respectively. The R E L E A S E statement is analogous to a W R I T E 
statement and writes a record to the sort work file (the file defined in the SD). 

RELEASE record-name [FROM identifier] 
The R E L E A S E statement appears in the I N P U T P R O C E D U R E . The R E T U R N 
statement, o n the other hand, is analogous to a R E A D statement and appears in the 
O U T P U T ' P R O C E D U R E . It has the format: 



COBOL Implementation 

RETURN file-name [INTO identifier] 

[AT END imperative-statement-1] 
1N0T AT END imperative-statement-2] 

[END-RETURN] 

The R E T U R N statement reads a record from the sort work file (the file defined in the 
SD) for subsequent processing in the program. 

The S O R T statement and its related statements can be integrated into any 
C O B O L program. W e proceed to develop a typical application, with specifications 
in the usual format. In actuality w e present two separate programs, to illustrate 
both the I N P U T P R O C E D U R E / O U T P U T P R O C E D U R E and U S I N G / G I V I N G options 
of the S O R T statement. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Sort Programs 

N a r r a t i v e : The specifications call for two programs to illustrate the USING/GIVING and INPUT 
PROCEDURE/OUTPUT PROCEDURE options of the SORT statement. The programs use 
the same data file but produce different reports. 

I n p u t F i l e ( s ) : SALES-FILE 

I n p u t R e c o r d L a y o u t : 01 SALES-RECORD-IN. 
05 SR-ACCOUNT-NUMBER PIC 9(6). 
05 FILLER PIC X. 
05 SR-NAME PIC X(15) 
05 SR-SALES PIC S9(4) 
05 FILLER PIC XX. 
05 SR-C0MMISSI0N-PERCENT PIC V99. 
05 FILLER PIC XX. 
05 SR-L0CATI0N PIC X(15) 
05 SR-REGI0N PIC X( l l ) 

T e s t D a t a : See Figure 14.5. 

R e p o r t L a y o u t : See Figure 14.6a and 14.6b. The report layout—the heading, detail, and total lines—is 
the same for both programs, but the contents of the reports—the specific records as well 
as the sequence of those records—are different. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Develop two parallel programs, each of which processes a file of sales records and 
computes the commission due for each incoming transaction. The amount of the 
commission is equal to the sales amount times the commission percentage. 

2. The first program is to use the USING/GIVING option to produce a master list of all 
incoming records. The records are to be in sequence by region, location, and name 
as shown in Figure 14.6a. 

3. The second program is to use the INPUT PROCEDURE/OUTPUT PROCEDURE option 
and list only the transactions with a commission greater than $100. The records are to 
appear in decreasing order of commission as shown in Figure 14.6b. 



C h a p t e r 1 4 Sorting 

i gare 14.5 Test Data (ASCII Format) 

000069 BENWAY 023q 10 CHICAGO MIDWEST 
000100 HUMMER OlOw 05 CHICAGO MIDWEST 
000101 CLARK 1500 10 TRENTON NORTHEAST 
000104 CLARK 0500 03 TRENTON NORTHEAST 
100000 JOHNSON 030s 06 ST. PETERSBURG SOUTHEAST 
130101 CLARK 3200 20 TRENTON NORTHEAST 
203000 HAAS 8900 05 ST. LOUIS MIDWEST 
248545 JOHNSON 0345 14 ST. PETERSBURG SOUTHEAST 
277333 HAAS 009x 08 ST. LOUIS MIDWEST 
400000 JOHNSON 070y 08 ST. PETERSBURG SOUTHEAST 
444333 ADAMS lOOv 01 NEW YORK NORTHEAST 
444444 FEGEN 0100 02 ST. PETERSBURG SOUTHEAST 
475365 HAAS 0333 05 ST. LOUIS MIDWEST 
476236 FEGEN 037v 03 ST. PETERSBURG SOUTHEAST 
476530 BENWAY 023u 05 CHICAGO MIDWEST 
555555 FEGEN 0304 05 ST. PETERSBURG SOUTHEAST 
555666 ADAMS 2003 i r; 

C\) NEW YORK NORTHEAST 
576235 CLARK 0100 03 TRENTON NORTHEAST 
583645 KARLSTROM 0145 04 BALTIMORE NORTHEAST 
649356 HUMMER 0345 05 CHICAGO MIDWEST 
694446 HUMMER 0904 10 CHICAGO MIDWEST 
700039 MARCUS 0932 10 BALTIMORE NORTHEAST 
750020 MARCUS 0305 05 BALTIMORE NORTHEAST 
800396 KARLSTROM 3030 09 BALTIMORE NORTHEAST 
878787 JOHNSON 1235 12 ST. PETERSBURG SOUTHEAST 
987654 ADAMS 2005 10 NEW YORK NORTHEAST 
988888 BENWAY 0450 01 CHICAGO MIDWEST 
999340 BENWAY 0334 30 CHICAGO MIDWEST 

Fi£-*-'& i Sorted Reports 

SALES ACTIVITY REPORT 04/21/93 PAGE 1 

REGION LOCATION NAME ACCOUNT i f SALES COMMISSION 
MIDWEST CHICAGO BENWAY 000069 $ 231- $ 23-
MIDWEST CHICAGO BENWAY 476530 $ 235- $ 12-
MIDWEST CHICAGO BENWAY 988888 $ 450 $ 5 
MIDWEST CHICAGO BENWAY 999340 $ 334 $ 100 
MIDWEST CHICAGO HUMMER 000100 $ 107- $ 5-
MIDWEST CHICAGO HUMMER 649356 $ 345 $ 17 
MIDWEST CHICAGO HUMMER 694446 $ 904 $ 90 
MIDWEST ST. LOUIS HAAS 203000 $8,900 $ 445 
MIDWEST ST. LOUIS HAAS 277333 $ 98- $ 8-
MIDWEST ST. LOUIS HAAS 475365 $ 333 $ 17 

(a) By Region, Location, and Name (Ml Records) 



BOL I triple m entatian 

pur© 14 .6 (continued) 

SALES ACTIVITY REPORT 04/21/93 PAGE 3 

REGION LOCATION NAME ACCOUNT # SALES COMMISSION 
NORTHEAST TRENTON CLARK 576235 $ 100 $ 3 
SOUTHEAST ST. PETERSBURG FEGEN 444444 $ 100 $ 2 
SOUTHEAST ST. PETERSBURG FEGEN 476236 $ 376- $ 11-
SOUTHEAST ST. PETERSBURG FEGEN 555555 $ 304 $ 15 
SOUTHEAST ST. PETERSBURG JOHNSON 100000 $ 303- $ 18-
SOUTHEAST ST. PETERSBURG JOHNSON 248545 $ 345 $ 48 

SALES ACTIVITY REPORT 04/21/93 PAGE 2 

REGION LOCATION NAME ACCOUNT t t SALES COMMISSION 
NORTHEAST BALTIMORE KARLSTROM 583645 $ 145 $ 6 
NORTHEAST BALTIMORE KARLSTROM 800396 $3,030 $ 273 
NORTHEAST BALTIMORE MARCUS 700039 $ 932 $ 93 
NORTHEAST BALTIMORE MARCUS 750020 $ 305 $ 15 
NORTHEAST NEW YORK ADAMS 444333 $1,005- $ 10-
NORTHEAST NEW YORK ADAMS 555666 $2,003 $ 401 
NORTHEAST NEW YORK ADAMS 987654 $2,005 $ 201 
NORTHEAST TRENTON CLARK 000101 $1,500 $ 150 
NORTHEAST TRENTON CLARK 000104 $ 500 $ 15 
NORTHEAST TRENTON CLARK 130101 $3,200 $ 640 

(a) By Region, Location, and Name (Aft Records) 

SALES ACTIVITY REPORT 04/21/93 PAGE 1 

REGION LOCATION NAME ACCOUNT # SALES COMMISSION 
NORTHEAST TRENTON CLARK 130101 $3,200 $ 640 
MIDWEST ST. LOUIS HAAS 203000 $8,900 $ 445 
NORTHEAST NEW YORK ADAMS 555666 $2,003 $ 401 
NORTHEAST BALTIMORE KARLSTROM 800396 $3,030 $ 273 
NORTHEAST NEW YORK ADAMS 987654 $2,005 $ 201 
NORTHEAST TRENTON CLARK 000101 $1,500 $ 150 
SOUTHEAST ST. PETERSBURG JOHNSON 878787 $1,235 $ 148 

*** COMPANY TOTAL = $ 21,873 $ 2,258 

>) By Decreasing Commisfon (Commission > $100} 



Chapter 14 Sorting 

v v , W t , ^ t t v vl The specifications are similar to those of any other reporting program that requires 
O a combination of heading, detail, a n d total lines. T h e hierarchy chart a n d 

pseudocode for the U S I N G / G I V I N G option are s h o w n in Figures 14.7 and 14.8, 
respectively. The hierarchy chart contains m a n y of the modules found in earlier 
programs—for example, G E T - T O D A Y S - D A T E , WRITE-HEADING-1.1 N F S , a n d 
WRITE-DETAIL-LINE. In addition, it contains the module SORT-SALES-FILE to 
sequence records in the sales file. 

F i g u r e 14 .7 Hierarchy Chart (USING/GIVING) 

PREPARE 
COMMISION 

REPORT 

GET 
TODAYS 

DATE 

PROCESS 
SORTED 

RECORDS 

WRITE 
COMPANY 

TOTAL 

CALCULATE 
COMMISSION 

igure 1 4 . 8 Pseudocode (USING/GIVING) 

Sort Sales File i 
Open Sorted Sales File, Print File [ 
Get today's date 
DO WHILE sorted data remains 
, — READ Sorted Sales File 

AT END 
Indicate no more data | 

NOT AT END | 
Calculate commission j 

— IF line count greater than lines per page I 
Initialize line count to 1 j 
Increment page count j 

i Write heading lines j 
| END-IF j 
1 Write detail line [ 
i i 

I Increment company total J 
1 END READ j 
ENDDO ( 
Write company total j 
Close files I 
Stop run J 



USING/GIVING Option 

The pseudocode in Figure 14.8 contains a sort statement prior to the main 
1 U U | J , W l l l l . l l U U l l i a i l l S L l l C i l l - l l l l C : p C l l U l l l l C111CI 1 C U 3 U - I . U I I U J 1 1 U 1 I L t l L l l l l . i l U j L U 1 1 1 t i l l 

other programs. The sales commission is calculated for each incoming record, a 
detail line is written, and the co m p a n y total is incremented. The pseudocode 
also contains the logic to implement a page heading routine as explained 
previously in Chapter 9. 

The US I N G / G I V I N G format is illustrated in Figure 14.9. The S O R T statement 
in lines 149-155 references three files—SORT-WQRK-FTLE, SALES-FILE, and, 
SORTED-SALES-FILE—each of which has the identical record layout. The S O R T 
statement implicitly opens SALES-FILE and reads every record in that file, releasing 
each record as it is read to the sort work file. It then sequences the sort work file 
according to designated keys and writes the newly ordered file to SORTED-SALES-
FILE. The programmer does not open or close S O R T - W O R K - F I L E or SALES-FILE as 
this is done by the S O R T statement. 

SORT Program (USING/GIVING) 

1 
2 
i -» 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

IDENTIFICATION DIVISION. 
PROGRAM-ID. S0RT1. 
AUTHOR. CVV. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT SALES-FILE ASSIGN TO 'A:\CHAPTR14\S0RTIN.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE S o f„ 
ASSIGN TO PRINTER. / ' 

SELECT SORT-WORK-FILE 
ASSIGN TO 'A:\CHAPTR14\S0RWK.DAT' 

SELECT SORTED-SALES-FILE ASSIGN TO 'A:\CHAPTR14\S0RT0UT.DAT'  
ORGANIZATION IS LINE SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD SALES-FILE 

RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SALES-RECORD. 

01 SALES-RECORD PIC X(58). 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS 
DATA RECORD IS PRINT-LINE. 

01 PRINT-LINE PIC X(132). 

SD SORT-WORK-FILE 
RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SORT-RECORD. 

01 S0r£-REC0RJj\. 
05 SORT-ACCOUNT-NUMBER PIC 9(6), 

http://Wllll.ll
http://LtlLllll.il
file://'A:/CHAPTR14/S0RTIN.DAT'
file://'A:/CHAPTR14/S0RWK.DAT'
file://'A:/CHAPTR14/S0RT0UT.DAT'


.9 (continued) 

05 FILLER PIC X. 
05 SORT-NAME PIC X(15).( 
05 FILLER PIC X(10). 
05 SORT-LOCATION PIC X(15). 
05 SORT-REGION PIC Xfllh 

FD SORTED-SALES-FILE 
RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SORTED-SALES-RECORD. 

01 SORTED-SALES-RECORD PIC X(58). 

WORKING-STORAGE SECTION. 
01 FILLER PIC X(14) 

VALUE 'WS BEGINS HERE 1. 

01 SALES-RECORD-IN. 
05 SR-ACCOUNT-NUMBER PIC 9(6). 
05 FILLER PIC X. 
05 SR-NAME PIC X(15) 
05 SR-SALES PIC S9(4) 
05 FILLER PIC XX. 
05 SR-COMMISSION-PERCENT PIC V99. 
05 FILLER PIC XX. 
05 SR-LOCATION PIC X(15) 
05 SR-REGION PIC X(ll) 

01 TODAYS-DATE-AREA. 
05 TODAYS-YEAR PIC 99. 
05 TODAYS-MONTH PIC 99. 
05 TODAYS-DAY PIC 99. 

01 PROGRAM-SWITCHES. 
05 DATA-REMAINS-SWITCH PIC X(3) VALUE 'YES' 

88 NO-DATA-REMAINS VALUE 'NO'. 

01 PAGE-AND-LINE-COUNTERS. 
05 LINE-COUNT PIC 9(2) VALUE 11. 
05 PAGE-COUNT PIC 9(2) VALUE ZEROS. 
05 LINES-PER-PAGE PIC 9(2) VALUE 10. 

01 INDIVIDUAL-CALCULATIONS. 
05 IND-COMMISSION PIC S9(4). 

01 COMPANY-TOTALS. 
05 COMPANY-SALES-TOT 
05 COMPANY-COMM-TOT 

PIC S9(6) 
PIC S9(6) 

VALUE ZEROES 
VALUE ZEROES 

01 HDG-LINE-ONE. 
05 FILLER 
05 FILLER 

PIC X(25) 
PIC X(21) 

VALUE SPACES 



USING/GIVING Option 

(continued) 

84 VALUE 'SALES ACTIVITY REPORT'. 
85 05 FILLER PIC X(8) VALUE SPACES. 
86 05 HDG-DATE PIC X(8). 
87 05 FILLER PIC X(10) VALUE SPACES. 
88 05 FILLER PIC X(5) VALUE 'PAGE '. 
89 05 HDG-PAGE PIC 29. 
90 05 FILLER PIC X(53) VALUE SPACES. 
91 
92 01 HDG -LINE-TWO. 
93 05 FILLER PIC X(7) VALUE ' REGION'. 
94 05 FILLER PIC X(5) VALUE SPACES. 
95 05 FILLER PIC X(8) VALUE 'LOCATION'. 
96 05 FILLER PIC X(ll) VALUE SPACES. 
97 05 FILLER PIC X(4) VALUE 'NAME'. 
98 05 FILLER PIC X(10) VALUE SPACES. 
99 05 FILLER PIC X{11) VALUE 'ACCOUNT t 

100 05 FILLER PIC X(5) VALUE SPACES. 
101 05 FILLER PIC X(5) VALUE 'SALES'. 
102 05 FILLER PIC X(3) VALUE SPACES. 
103 05 FILLER PIC X(10) VALUE 'COMMISSION 
104 05 FILLER PIC X(53) VALUE SPACES. 
105 
i r\c 
1 U U 

A1 r\CTATI i TMC 
\JX U L I H i L - L i t l L . 107 05 DET-REGION PIC X(ll). 

108 05 FILLER PIC X VALUE SPACES. 
109 05 DET-LOCATION PIC X(15). 
110 05 FILLER PIC X(3) VALUE SPACES. 
111 05 DET-NAME PIC X(15). 
112 05 FILLER PIC X(2) VALUE SPACES. 
113 05 DET-ACCOUNT-NUMBER PIC 9(6). 
114 05 FILLER PIC X(5) VALUE SPACES. 
115 05 DET-SALES PIC $Z,ZZ9-
116 05 FILLER PIC X(7) VALUE SPACES. 
117 05 DET-COMMISSION PIC $Z,ZZ9-
118 05 FILLER PIC X(50) VALUE SPACES. 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 

[132] 

01 COMPANY-TOTAL-LINE. 
05 FILLER 

FILLER 05 

05 
05 
05 
05 

PIC X(31) 
PIC X(25) 

VALUE SPACES. 

VALUE '*** COMPANY TOTAL = '. 
COMPANY-SALES-TOTAL PIC $Z(3),ZZ9-. 
FILLER PIC X(5) VALUE SPACES. 
COMPANY-COMM-TOTAL PIC $Z(3),ZZ9-. 
FILLER PIC X(51) VALUE SPACES. 

PROCEDURE DIVISION. 
100-PREPARE-COMMISSION-REPORT. 

PERFORM 210-SORT-SALES-RECORDS. 
OPEN INPUT SORTED-SALES-FILE 

-wfpw>MNT-Ffnn 



Chapter 14 — Sorting 

l 134 PERFORM 230-GET-T0DAYS-DATE. 
j 135 PERFORM UNTIL NO-DATA-REMAINS 
I 136 READ SORTED-SALES-FILE INTO SALES-RECORD-IN 
i 137 AT END 
I 138 MOVE 'NO' TO DATA-REMAINS-SWITCH 
I 139 NOT AT END 
I 140 PERFORM 250-PROCESS-SORTED-RECORDS 

141 END-READ 
| 142 END-PERFORM. 
j 143 PERFORM 290-WRITE-COMPANY-TOTAL. 
I 144 CLOSE SORTED-SALES-FILE 
j 145 PRINT-FILE. 

146 STOP RUN. 
147 
148 210-S0RT-SALES-REC0RDS. 
149 ; SORT SORT - WORK - FIL E 
150 ! ASCENDING KEY SORT-REGION 
151 | SORT-LOCATION ! 
152 \ SORT-NAME ; 

[ 153 j WITH DUPLICATES IN ORDER 
j 154 | USING SALES-FILE 
j 155 | GmNG SORTED-SALES-FILE^ j 
i 156 
1 157 230-GET-TODAYS-DATE. 
| 158 ACCEPT TODAYS-DATE-AREA FROM DATE. 

159 STRING TODAYS-MONTH '/' TODAYS-DAY '/' TODAYS-YEAR 
160 DELIMITED BY SIZE INTO HDG-DATE. 
161 

j 162 250-PROCESS-SORTED-RECORDS. 
I 163 PERFORM 310-CALCULATE-COMMISSION. 
j 164 IF LINE-COUNT > LINES-PER-PAGE 
[ 165 PERFORM 330-WRITE-HEADING-LINES 
i 166 END-IF. 
| 167 PERFORM 350-WRITE-DETAIL-LINE. 

168 PERFORM 370-INCREMENT-COMPANY-TOTAL. 
169 
170 290-WRITE-COMPANY-TOTAL. 
171 MOVE COMPANY-SALES-TOT TO COMPANY-SALES-TOTAL. 
172 MOVE COMPANY-COMM-TOT TO COMPANY-COMM-TOTAL. 
173 WRITE PRINT-LINE FROM COMPANY-TOTAL-LINE 
174 AFTER ADVANCING 2 LINES. 

I 175 
I 176 310-CALCULATE-COMMISSION. 

177 COMPUTE IND-COMMISSION ROUNDED = 
178 SR-SALES * SR-COMMISSION-PERCENT 
179 SIZE ERROR DISPLAY 'SIZE ERROR ON COMMISSION FOR 

| 180 SR-NAME 
[ 181 END-COMPUTE. 
| 182 
( 183 330-WRITE-HEADING-LINES. 

F i g u r e i 4 . 8 (continued) 



INPUT PROCEDURE/OUTPUT PROCEDURE Option 

(continued) 

184 MOVE 1 TO LINE-COUNT. 
185 ADD 1 TO PAGE-COUNT. 
186 MOVE PAGE-COUNT TO HDG-PAGE. 
187 WRITE PRINT-LINE FROM HDG-LINE-ONE 
188 AFTER ADVANCING PAGE. 
189 WRITE PRINT-LINE FROM HDG-LINE-TWO 
190 AFTER ADVANCING 2 LINES. 
191 
192 350-WRITE-DETAIL-LINE. 
193 MOVE SR-REGION TO DET-REGION. 
194 MOVE SR-LOCATION TO DET-LOCATION. 
195 MOVE SR-NAME TO DET-NAME. 
196 MOVE SR-ACCOUNT-NUMBER TO DET-ACCOUNT-NUMBER. 
197 MOVE SR-SALES TO DET-SALES. 
198 MOVE IND-COMMISSION TO DET-COMMISSION. 
199 WRITE PRINT-LINE FROM DETAIL-LINE. 
200 ADD 1 TO LINE-COUNT. 
201 
202 370-INCREMENT-COMPANY-TOTAL. 
203 ADD SR-SALES TO COMPANY-SALES-TOT. 
204 ADD IND-COMMISSION TO COMPANY-COMM-TOT. 

T h r e e k e y s — S O R T - R E G I O N , SORT-LOCATION, a n d S O R T - N A M E — a r e 
speci f ied in l ines 1 5 0 - 1 5 2 as the primary, s econdary , a n d tertiary key, respect ively . 
The WITH DUPLICATES IN ORDER phrase k e e p s records wi th dup l i ca te keys in the 
s a m e s e q u e n c e as the input file. Note , therefore, that s ince the input file in Figure 
14.5 is already in s e q u e n c e by a c c o u n t n u m b e r , records wi th the s a m e region, 
locat ion , a n d n a m e will b e in s e q u e n c e by a c c o u n t n u m b e r as well . 

After the file h a s b e e n sorted, control returns to the OPEN s t a t e m e n t in l ine 
132, w h i c h o p e n s SORTED-SALES-FILE as input a n d PRINT-FILE a s output . T h e 
r e m a i n d e r of the Procedure Div i s ion reads records from the sorted file in order to 
p r o d u c e the report of Figure 14.6a. Its logic parallels that of any o t h e r report ing 
program that p r o d u c e s a c o m b i n a t i o n of head ing , detail , a n d total l ines . 

I h e hierarchy chart to i m p l e m e n t the INPUT P R O C E D U R E / O U T P U T PROCEDURE 
o p t i o n is s h o w n in Figure 14.10. It c o n t a i n s the ident ica l m o d u l e s as i ts p r e d e c e s s o r 
for the USING/GIVING o p t i o n , but the p l a c e m e n t of the m o d u l e s ( the subord ina te 
re lat ionships a n d a s s o c i a t e d s p a n of control) is s ignif icantly different. 

The m o s t o b v i o u s c h a n g e is the sort m o d u l e itself, w h i c h sits a t o p t h e hierarchy 
chart in Figure 14.10, but w h i c h is subordinate to PREPARE-COMMISSION-REPORT 
in Figure 14.7. This is b e c a u s e the SORT s t a t e m e n t effectively dr ives the INPUT 
P R O C E D U R E / O U T P U T PROCEDURE o p t i o n as it cal ls the respect ive p r o c e d u r e s . A 
s e c o n d major c h a n g e is the p l a c e m e n t of CALCULATE-COMMISSION, w h i c h is 
subordinate to the sort m o d u l e in Figure 14.10, b e c a u s e the c o m m i s s i o n is calculated 



C h a p t e r 14 — Sort in ( 

jure 1 4 . 1 0 Hierarchy Chart (INPUT PROCEDURE/OUTPUT PROCEDURE) 

SORT 
SALES 

RECORDS 

CALCULATE 
COMMISSION 

GET 
TODAYS 

DATE 

PREPARE 
COMMISSION 

REPORT 

PROCESS 
SORTED 

RECORDS 

WRITE 
DETAIL 

LINE 

WRITE 
COMPANY 

TOTAL 

INCREMENT 
COMPANY 

TOTAL 

prior to sorting, and only those records with sufficient commission are written to 
the sort work file. In the earlier hierarchy chart, however, every record in the 
incoming file appears in the report; the commission is calculated after sorting so 
that C A L C U L A T E - C O M M I S S I O N is subordinate to P R O C E S S - S O R T E D - R E C O R D S . 

The pseudocode in Figure 14.11 contains two loops, whereas its predecessor 
in Figure 14.8 contained only one. This is because the U S I N G / G I V I N G option does 
the I/O for the programmer a nd thus is transparent to the programmer. However, 
I N P U T P R O C E D U R E / O U T P U T P R O C E D U R E requires the programmer to do the 
I/O and this is reflected in the pseudocode. The initial loop opens the (unsorted) 
sales file, calculates the commission for each incoming record, then selectively 
releases records to the sort work file. The second loop (which corresponds to the 
only loop in Figure 14.8) reads records from the sorted file and prepares the report. 

The program containing the I N P U T P R O C E D U R E / O U T P U T P R O C E D U R E 
format is illustrated in Figure 14.12. Explanation begins with the S O R T statement 
itself, lines 125-128, which references a sort work file defined in a n SI) in lines 27-37 
of the Data Division. S O R T - W O R K - F I L E is to be sorted o n S O R T - C O M M I S S I O N , a 
calculated field that is not contained in the incoming sales record. 

The I N P U T P R O C E D U R E / O U T P U T P R O C E D U R E involves several implicit 
transfers of control as follows: 

1. Control passes from the S O R T statement to the I N P U T P R O C E D U R E , which 
reads records from an input file and builds the sort work file. 

2. W h e n the I N P U T P R O C E D U R E is finished, control passes to the sort utility, 
which sorts the work file created by the I N P U T P R O C E D U R E . 



INPUT PROCEDURE/OUTPUT PROCEDURE Option 

Figure 14.11 P s e u d o c o d e (INPUT PROCEDURE/OUTPUT PROCEDURE) 
I ' " — — — - - - -

Input Procedure 
) Open Input Sales File 
| ,— DO WHILE data remains 
I ,— READ Sales File 

| AT END 
I Indicate no more data 
I NOT AT END 

Calculate commission 
— IF commission greater than 100 

RELEASE sort record 
END-IF 

- END-READ 
...... ENDDO 

Sort utility takes control 

Output Procedure 
Open Output Print File 
Get today's date 

— DO WHILE sorted data remains 
1 r - RETURN Sorted Sales File 
| | AT END 
[ Indicate no more data 
| NOT AT END 
i i — IF line count greater than lines per page 

Initialize line count to 1 
j Increment page count 
i Write heading lines 
I — END-IF 
| Write detai1 line 
| Increment company total 
I !—- END RETURN 
I 1 — ENDDO 
j Write company total 
| Close files 
[ Stop run 1 
L _ _.. _ . i 

3. After the sort has taken place, control passes to the O U T P U T P R O C E D U R E , 
which reads records from the sorted file in order to produce the required 
report. 

4. W h e n the O U T P U T P R O C E D U R E is finished, control returns to the 
statement directly (physically) following the actual S O R T statement. 
The I N P U T P R O C E D U R E is the paragraph 1 0 0 - C A L C U I A T E - C O M M I S S I O N 

and extends from lines 131 to 148. It begins by opening SALES-FILE, after which the 
combination of the in-line P E R F O R M and false condition branch processes records 
until the file is empty. The commission is calculated for each incoming record, and 



C h a p t e r 1 4 — Sorting 

Figu RT Program (INPUT PROCEDURE/OUTPUT P R O C E D U R E ) 
I I 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. S0RT2. 
3 
/i 

AUTHOR. CVV. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT SALES-FILE ASSIGN TO 'A:\CHAPTR14\S0RTIN 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 SELECT SORT-WORK-FILE 
13 ASSIGN TO 'A:\CHAPTR14\S0RTWK.DAT'. 
14 
15 DATA DIVISION. 
16 FILE SECTION. 
17 FD SALES-FILE 
18 RECORD CONTAINS 57 CHARACTERS 
19 DATA RECORD IS SALES-RECORD. 
20 01 SALES-RECORD PIC X(57). 
21 
22 FD PRINT-FILE 
O Q 
L, _> 

Demon, rnMTATwe n o ruADAncnc 

24 DATA RECORD IS PRINT-LINE. 
25 01 PRINT-LINE PIC X(132). 
26 
27 SD SORT-WORK-FILE i 

28 RECORD CONTAINS 62 CHARACTERS 
29 L_ DATA RECORD IS SORT-RECORD. 30 01 SORT-RECORD. 
31 05 SORT-ACCOUNT-NUMBER PIC 9(6). 
32 05 FILLER PIC X. 
33 05 SORT-NAME PIC X(15). 
34 05 FILLER PIC X(10). 
35 05 SORT-LOCATION PIC X(15). 
36 05 SORT-REGION PIC X(ll). 
37 105 SORT-COMMISSION PIC S 9 ( 4 ) . f \ 
38 C 

39 WORKING-STORAGE SECTION. 
40 01 FILLER PIC X(14) 
41 VALUE 'WS BEGINS HERE'. 
42 
43 01 SALES-RECORD-IN. 
44 05 SR-ACCOUNT-NUMBER PIC 9(6). 
45 05 FILLER PIC X. 
46 05 SR-NAME PIC X(15). 
47 05 SR-SALES PIC S9(4). 
48 05 FILLER PIC XX. 
49 05 SR-COMMISSION-PERCENT PIC V99. 
50 05 FILLER PIC XX. 
51 05 SR-LOCATION PIC X(15). 

file://'A:/CHAPTR14/S0RTIN
file://'A:/CHAPTR14/S0RTWK.DAT'


INPUT PROCEDURE/OUTPUT PROCEDURE Option 

(continued) 

52 05 SR-REGION PIC X(ll). 
53 05 SR-C0MMISSI0N PIC S9{4). 
54 
55 01 TODAYS-DATE-AREA. 
56 05 TODAYS-YEAR PIC 99. 
57 05 TODAYS-MONTH PIC 99. 
58 05 TODAYS-DAY PIC 99. 
59 
60 01 PROGRAM-SWITCHES. 
61 05 DATA-REMAINS-SWITCH PIC X(3) VALUE 
62 88 NO-DATA-REMAINS VALUE 
63 05 SORTED-DATA-REMAINS-SW PIC X(3) VALUE 
64 88 NO-SORTED-DATA-REMAINS VALUE 
65 
66 01 PAGE-AND-LINE-COUNTERS. 
67 05 LINE-COUNT PIC 9(2) VALUE 
68 05 PAGE-COUNT PIC 9(2) VALUE 
69 05 LINES-PER-PAGE PIC 9(2) VALUE 
70 
71 01 COMPANY-TOTALS. 
72 05 COMPANY-SALES-TOT PIC S9(6) VALUE 
73 05 COMPANY-COMM-TOT PIC S9(6) VALUE 
74 
75 01 HDG-LINE-ONE. 
76 05 FILLER PIC X(25) VALUE 
77 05 FILLER PIC X(21) 
78 VALUE 'SALES ACTIVITY REPORT'. 
79 05 FILLER PIC X(8) VALUE 
80 05 HDG-DATE PIC X(8). 
81 05 FILLER PIC X(10) VALUE 
82 05 FILLER PIC X(5) VALUE 
83 05 HDG-PAGE PIC Z9. 
84 05 FILLER PIC X(53) VALUE 
85 
86 01 HDG-LINE-TWO. 
87 05 FILLER PIC X(7) VALUE 
88 05 FILLER PIC X(5) VALUE 
89 05 FILLER PIC X(8) VALUE 
90 05 FILLER PIC X(ll) VALUE 
91 05 FILLER PIC X(4) VALUE 
92 05 FILLER PIC X(10) VALUE 
93 05 FILLER PIC X(ll) VALUE 
94 05 FILLER PIC X(5) VALUE 
95 05 FILLER PIC X(5) VALUE 
96 05 FILLER PIC X(3) VALUE 
97 05 FILLER PIC X(10) VALUE 
98 05 FILLER PIC X(53) VALUE 
99 
100 01 DETAIL-LINE. 
101 05 DET-REGION PIC X(ll). 
102 05 FILLER PIC X VALUE 

PAGE 

' REGION 1. 
SPACES. 
'LOCATION'. 
SPACES. 
'NAME'. 
SPACES. 
'ACCOUNT #' 
SPACES. 
'SALES'. 
SPACES. 
'COMMISSION 
SPACES. 



C h a p t e r 1 4 Sortinc 

(continued) 

05 DET-L0CATI0N 
05 FILLER 
05 DET-NAME 
05 FILLER 
05 DET-ACCOUNT-NUMBER 
05 FILLER 
05 DET-SALES 
05 FILLER 
05 DET-COMMISSION 
05 FILLER 

PIC X(15). 
PIC X(3) VALUE SPACES. 
PIC X(15). 
PIC X(2) VALUE SPACES. 
PIC 9(6). 
PIC X(5) VALUE SPACES. 
PIC $Z,ZZ9-. 
PIC X(7) VALUE SPACES. 
PIC $Z,ZZ9-. 
PIC X(50) VALUE SPACES. 

01 COMPANY-TOTAL-LINE. 
05 FILLER 
05 FILLER 

05 
05 
05 
05 

PIC X(31) 
PIC X(25) 

VALUE COMPANY TOTAL 

VALUE SPACES. 

COMPANY-SALES-TOTAL 
FILLER 
COMPANY-COMM-TOTAL 
FILLER 

PIC $Z(3),ZZ9-. 
PIC X(5) VALUE SPACES. 
PIC $Z(3),ZZ9-. 
PIC X(51) VALUE SPACES. 

PROCEDURE DIVISION. 
0000-SORT-SALES-RECORDS. 

DESCENDING KEY SORT-COMMISSION 
INPUT PROCEDURE 100-CALCULATE-COMMISSION 
OUTPUT PROCEDURE 200-PREPARE-COMMISSION-REPORT. 

STOPRUN. 

INPUT zDUF 

|100-CALCULATE-COMMISSION. 
' OPlN^NPUrSALES^FILE^ 

PERFORM UNTIL NO-DATA-REMAINS 
READ SALES-FILE INTO SALES-RECORD-IN 

AT END 
MOVE 'NO' TO DATA-REMAINS-SWITCH 

NOT AT END 
COMPUTE SR-COMMISSION ROUNDED = 

SR-SALES * SR-COMMISSION-PERCENT 
SIZE ERROR DISPLAY 'ERROR ON COMMISSION FOR 
SR-NAME 

END-COMPUTE /' 
I IF SR-COMMISSION > 100 

RELEASE SORT-RECORD FROM SALES-RECORD-IN 
END-IF 

END-READ 
END-PERFORM. 
CLOSE SALES-FILE. 

! 200-PREPARE-COMMISSION-REPORT. 
OPEN OUTPUT PRINT-FILE. 
PERFORM 230-GET-TODAYS-DATE. 

::EDUR 



INPUT PROCEDURE/OUTPUT PROCEDURE Option 

(continued) 

j 153 PERFORM UNTIL NO-SORTJiD-DATA-REMAINS 
154 S RETURN "SORT-WORK-TTLE TNTO SALES - RECORD - IN ~ j 

I 155 i AT END 
I 156 1 MOVE 'NO' TO SORTED-DATA-REMAINS-SW |̂  
1 157 j NOT AT END f 
| 158 PERFORM 250-PROCESS-SORTED-RECORDS j 
| 159 | END-RETURN^ J 
| 160 END-PERFORM~ 
i 161 PERFORM 290-WRITE-C0MPANY-T0TAL. 
[ 162 CLOSE PRINT-FILE. 
1 1 6 3 

I 164 230-GET-TODAYS-DATE. 
| 165 ACCEPT TODAYS-DATE-AREA FROM DATE. 

166 STRING TODAYS-MONTH '/' TODAYS-DAY '/' TODAYS-YEAR 
167 DELIMITED BY SIZE INTO HDG-DATE. 

j 168 
j 169 250-PROCESS-SORTED-RECORDS. 
1 170 IF LINE-COUNT > LINES-PER-PAGE 
j 171 PERFORM 330-WRITE-HEADING-LINES 
| 172 END-IF. 
I 173 PERFORM 350-WRITE-DETAIL-LINE. 
| 174 PERFORM 370-INCREMENT-COMPANY-TOTAL. 
I 1 7 5 

j 176 290-WRITE-COMPANY-TOTAL. 
177 MOVE COMPANY-SALES-TOT TO COMPANY-SALES-TOTAL, 

j 178 MOVE COMPANY-COMM-TOT TO COMPANY-COMM-TOTAL. 
179 WRITE PRINT-LINE FROM COMPANY-TOTAL-LINE 
180 AFTER ADVANCING 2 LINES. 
181 

j 182 330-WRITE-HEADING-LINES. 
| 183 MOVE 1 TO LINE-COUNT. 
| 184 ADD 1 TO PAGE-COUNT. 
| 185 MOVE PAGE-COUNT TO HDG-PAGE. 
! 186 WRITE PRINT-LINE FROM HDG-LINE-ONE 
j 187 AFTER ADVANCING PAGE. 
j 188 WRITE PRINT-LINE FROM HDG-LINE-TWO 
! 189 AFTER ADVANCING 2 LINES. 
| 190 
j 191 350-WRITE-DETAIL-LINE. 
j 192 MOVE SR-REGION TO DET-REGION. 
j 193 MOVE SR-LOCATION TO DET-LOCATION. 
' 194 MOVE SR-NAME TO DET-NAME. 

195 MOVE SR-ACCOUNT-NUMBER TO DET-ACCOUNT-NUMBER. 
196 MOVE SR-SALES TO DET-SALES. 
197 MOVE SR-COMMISSION TO DET-COMMISSION. 
198 WRITE PRINT-LINE FROM DETAIL-LINE. 
199 ADD 1 TO LINE-COUNT. 
200 
201 370-INCREMENT-COMPANY-TOTAL. 
202 ADD SR-SALES TO COMPANY-SALES-TOT. 
203 ADD SR-COMMISSION TO COMPANY-COMM-TOT. 



Chapter 14 — Sorting 

only those records with a commission greater than $100 are written (released) to the 
sort work file. The I N P U T P R O C E D U R E ends by closing SALES-FILE, after which 
control passes to the sort utility. The sort work file is neither opened nor closed 
explicitly by the programmer as that is done by the sort utility. 

The O U T P U T P R O C E D U R E is the paragraph 2 0 0 - P R E P A R E - C O M M I S S I O N -
R E P O R T and extends from lines 150 to 162. It begins by opening PRINT-FILE, after 
which the combination of the in-line P E R F O R M a n d false-condition branch 
processes records until the sort work file is empty. The report is produced by using 
m a n y of the identical paragraphs from the earlier program. The O U T P U T 
P R O C E D U R E ends by closing PRINT-FILE after which control passes to the S T O P 
R U N statement in line 129 immediately under the S O R T statement. 

The differences between the two C O B O L programs is highlighted by comparing the 
generated reports in Figure 14.6. Figure 14.6a was produced by the USING/GIVING 
option and lists all records in sequence by region, location, and name. Figure 14.6b lists 
a subset of selected records in decreasing order of commission, a calculated field. The 
following are other differences between the two programs: 

1. Figure 14.9 sorts o n three fields, S O R T - R E G I O N , S O R T - L O C A T I O N , and SORT-
N A M E , each of which is contained in the incoming record. Figure 14.12 sorts 
on S O R T - C O M M I S S I O N , a calculated field not found in the incoming record. 

2. The U S I N G option in Figure 14.9 does the I/O for the programmer; that is, it 
opens SALES-FILE, reads and writes every record from this file to the sort 
work file, then closes SALES-FILE w h e n the sort work file has been created. 

3. The I N P U T P R O C E D U R E in Figure 14.12 requires the programmer to do the 
I/O; that is, the programmer has to open SALES-FILE, read records from the 
input file and write (release) them to the sort work file, then close the input 
file. 

4. The GIV I N G option in Figure 14.9 creates a permanent file, SORTED-SALES-
FILE, that contains the results of the sort; the O U T P U T P R O C E D U R E in Figure 
14.12 creates a temporary work file that disappears w h e n the program 
terminates. The GIV I N G option uses an extra file; that is, four files are present 
in Figure 14.9 versus three in Figure 14.12. 

5. The O U T P U T P R O C E D U R E uses a R E T U R N statement in lines 154-159 because 
the sorted records are read from the sort work file. This is in contrast to the 
R E A D statement in lines 136-141 of Figure 14.9, which reads records from 
SORTED-SALES-FILE, an ordinary file defined in an FD. 

6. The record lengths in Figure 14.9 of SORT-FILE, SALES-FILE, and S O R T E D -
SALES-FILE, must be the same (58 characters). The record lengths of SORT-
FILE and SALES-FILE in Figure 14.12 are different. 

Merging files is a special case of sorting. The MERGE statement takes several input 
files, which have identical record formats and which have been sorted in the same 
sequence, a nd combines t h e m into a single output file (device type and blocking 
m a y differ for the various files). A merge achieves the same results as sorting, but 



m o r e e f f ic ient ly; that is, the severa l i n p u t f i les to a m e r g e c o u l d a l s o b e 
c o n c a t e n a t e d as a s ingle input file to a sort. The advantage of the m e r g e over a 
sort is in e x e c u t i o n speed; a m e r g e will e x e c u t e faster b e c a u s e its logic real izes 
that the several input files are already in order. 

The format of the MERGE s t a t e m e n t is as fol lows: 

MERGE file-name-1 

ON 
DESCENDING r 

ASCENDING 1 J 

COLLATING SEQUENCE IS alphabet- name 

USING file-name-2 [file-name-3] . . 

OUTPUT PROCEDURE IS procedure-name - 1 

GIVING {file-name-4} . . . 
)THRU j 

I THROUGH I 
procedure-name-2 

F i l e - n a m e - 1 m u s t b e s p e c i f i e d in a n SD. R u l e s for A S C E N D I N G 
(DESCENDING) KEY, COLLATING SEQUENCE, USING/GIVING, a n d O U T P U T 
PROCEDURE are ident ical to t h o s e of the SORT s t a t e m e n t . 

Unl ike the SORT s ta tement , however , there is n o INPUT PROCEDURE opt ion . 
In other w o r d s you m u s t specify USING, and list all files from w h i c h i n c o m i n g 
records will b e c h o s e n . H e n c e every record in every file speci f ied in USING will 
appear in the m e r g e d file. However , y o u d o have a c h o i c e b e t w e e n GIVING a n d 
O U T P U T PROCEDURE. 

N o n e of the files spec i f ied in a MERGE s t a t e m e n t can be o p e n w h e n the 
s t a t e m e n t is e x e c u t e d , as the m e r g e o p e r a t i o n impl ic i t ly o p e n s t h e m . In similar 
fashion, the files will b e automat ica l ly c l o s e d by the MERGE. 

An e x a m p l e of a MERGE s t a t e m e n t is s h o w n be low: 

MERGE WORK-FILE 
ON ASCENDING CUSTOMER-ACCOUNT-NUMBER 

DESCENDING AMOUNT-OF-SALE 
USING 

MONDAY-SALES-FILE 
TUESDAY-SALES-FILE 
WEDNESDAY-SALES-FILE 
THURSDAY-SALES-FILE 
FRIDAY-SALES-FILE 

GIVING 
WEEKLY-SALES-FILE. 

WORK-FILE is d e f i n e d in a COBOL SD. WEEKLY-SALES-FILE, MONDAY-
SALES-FILE, TUESDAY-SALES-FILE, and s o o n are e a c h spec i f ied in b o t h FD a n d 
SELECT s t a t e m e n t s . T h e s e files m u s t b e in s e q u e n c e a n d are b o t h o p e n e d a n d 
c l o s e d by the m e r g e operat ion . 

The pr imary key is CUSTOMER-ACCOUNT-NUMBER (ascend ing) , and the 
s e c o n d a r y key is AMOUNT-OF-SALE ( d e s c e n d i n g ) . All records w i t h the s a m e 
a c c o u n t n u m b e r will b e g r o u p e d toge ther w i t h the h i g h e s t sale for e a c h a c c o u n t 
n u m b e r l i s ted first. Records wi th ident ical keys in o n e or m o r e i n p u t files will b e 
l i s ted in t h e order in w h i c h the files a p p e a r in the MERGE s t a t e m e n t itself. H e n c e , 
in the e v e n t of a tie o n b o t h a c c o u n t n u m b e r and a m o u n t of sa l e , M o n d a y ' s 
t ransac t ions will a p p e a r before Tuesday's , a n d s o o n . 



Chapter 14 Sorting 

The SORT statement in COBOL-74 is signiticantly more restrictive than its | 
counterpart in COBOL-85. In particular: | 

1. The INPUT (OUTPUT) PROCEDURE in COBOL-74 was required to be a j 
section rather than a paragraph, which necessitated that other paragraphs | 
In the program be organized into sections as well. j 

2. The INPUT (OUTPUT) PROCEDURE in COBOL-74 could not transfer j 
control to points outside the designated procedure, requiring the use of a | 
GO TO statement within the procedure. The GO TO statement was j 
directed to an EXIT paragraph at the end of the section. \ 

Both of these restrictions have been removed from COBOL-85 as j 
illustrated in the INPUT PROCEDURE/OUTPUT PROCEDURE example in \ 
Figure 14.12. An additional change in COBOL-85 is the introduction of the [ 
WITH DUPLICATES IN ORDER phrase, which was not present in the earlier j 
compiler. | 

S U M M A R Y 

Points to Remember 

A Sorting is done in one of two sequences, ascending or descending. 
Multiple sort keys are listed in order of importance— primary, secondary, 
and tertiary; or major, intermediate, and minor. 

Two collating sequences are in common use, EBCDIC (on IBM mainframes) 
and ASCII (on the PC and other mainframes). The difference is significant 
when an alphanumeric key is used and/or with an embedded sign in a 
numeric field. 

The SORT statement has four combinations: INPUT PROCEDURE/OUTPUT 
PROCEDURE, USING/GIVING, USING/OUTPUT PROCEDURE, and INPUT 
PROCEDURE/GIVING. 

The INPUT PROCEDURE requires the programmer to do the I/O associated 
with the sort work file, whereas the USING option does the I/O automatically. 
The advantage of the INPUT PROCEDURE is the ability to sort on a 
calculated field and/or to selectively pass records to the sort work file. 

a The INPUT PROCEDURE contains a RELEASE statement to transfer (write) 
records to the sort work file; the OUTPUT PROCEDURE contains a RETURN 
statement to read the sorted data. 

The GIVING option specifies a permanent file that remains after the program 
has ended and that contains the sorted results; the OUTPUT PROCEDURE 
uses a temporary work file, which is deleted after the program has ended. 



Fill-in 

Regardless of which option is chosen, file-name-1 of the SORT statement 
must be described in an SD. Further, each key (that is, data name) 
appearing in the SORT statement must be described in the sort record. 

If the USING / GIVING option is used, file-name-2 and file-name-3 each 
require an FD. The record sizes of file names 1, 2, and 3 must all be the 
same. 

Minor key 
Primary key 
Secondary key 
Sort key 
Sort work file 
Temporary work file 
Tertiary key 
Utility sort program 

RELEASE 
RETURN 
SD 
SIGN IS LEADING SEPARATE CHARACTER 
SIGN IS TRAILING SEPARATE CHARACTER 
SORT 
USING 

F I L L - I N 

1. A sort is a field within a record that determines how the file is to 
be arranged. 

2. The most important key is known as the or 
key. 

3. and are widely used collating sequences. 

4. If records in a file have been sorted by salary so that the employee with the highest 
salary appears first, the records are in sequence by salary. 

5. If a file has been sorted by state, city within state, and employee within city, then 
state, city, and name are the , , and 

keys, respectively. 

6. In a sort on an alphanumeric part number, AAA would precede 111 using the  
collating sequence, but follow it under . 

7. The USING option may be used with either or 

ASCII 
Ascending sort 
Calculated field 
Collating sequence 
Descending sort 
EBCDIC 
Embedded sign 
Intermediate key 
Major key 

ASCENDING KEY 
DESCENDING KEY 
DUPLICATES IN ORDER 
GIVING 
INPUT PROCEDURE 
MERGE 
OUTPUT PROCEDURE 



C h a p t e r 14 — Sorting 

8. The statement is analogous to WRITE and appears in the 

9. A sort work file must be defined in a statement in the Environment 
Division and in an in the Data Division. 

10. An embedded sign (requires/does not require) an extra position within a signed 
field. 

11. The default placement of a sign is as the (leading/trailing) character in a(n) 
(embedded/separate) position. 

12. The , may be used to sort on a 
field, and also to pass records to the sort work file to increase 
efficiency. 

13. The MERGE statement requires that its input files have record 
layouts. 

14. The MERGE statement (does/does not) permit the INPUT PROCEDURE option. 

TRUE/FALSE 

1. The SORT statement cannot be used on a calculated field. 

2. If USING is specified in the SORT statement, then GIVING must also be specified. 

3. If INPUT PROCEDURE Is specified in the SORT statement, then OUTPUT 
PROCEDURE is also required. 

4. Only one ascending and one descending key are permitted in the SORT statement. 

5. Major key and primary key are synonymous. 

6. Minor key and secondary key are synonymous. 

7. RELEASE and RETURN are associated with the USING/GIVING option. 

8. RELEASE is present in the INPUT PROCEDURE. 

9. RETURN is specified in the OUTPUT PROCEDURE. 

10. If a record is released, it is written to the sort file. 

11. If a record is returned, it is read from the sort file. 

12. If USING/GIVING is used, the sorted file must contain every record in the input file. 

13. If INPUT PROCEDURE/OUTPUT PROCEDURE is used, the sorted file must contain 
every record in the input file. 

14. XYZ will always come before 123 in an alphanumeric sort. 

15. ADAMS will always appear before ADAMSON, regardless of collating sequence. 

16. The file specified immediately after the word MERGE must be defined in an MD 
rather than an SD. 

17. The MERGE statement can specify INPUT PROCEDURE/OUTPUT PROCEDURE. 

18. The MERGE statement can specify USING/GIVING. 

19. The MERGE statement can be applied to input files with different record layouts. 

20. The sort work file (the file defined in the SD) is a temporary file and does not exist 
after the COBOL program has finished execution. 



Given the following data: 
Name Location Department 
Milgrom New York 1000 
Samuel Boston 2000 
Isaac Boston 2000 
Chandler Chicago 2000 
Lavor Los Angeles 1000 
El si nor Chicago 1000 
Tater New York 2000 
Craig New York 2000 
Bo row Boston 2000 
Kenneth Boston 2000 
Renaldi Boston 1000 
Gulfman Chicago iOOO 

Rearrange the data according to the following sorts: 
a. Major field: department (descending); minor field, name (ascending). 
b. Primary field: department (ascending); secondary field: location (ascending); 

tertiary field, name (ascending). 
Given the statement 

SORT SORT-FILE 
ASCENDING KEY STUDENT-MAJOR DESCENDING YEAR-IN-SCH00L 
ASCENDING STUDENT-NAME 

USING FILE-ONE 
GIVING FILE-TWO. 

a. What is the major key? 
b. What is the minor key? 
c. Which file will be specified in an SD? 
d. Which file will contain the sorted output? 
e. Which file(s) will be specified in a SELECT? 
f. Which file contains the input data? 
g. Which file must contain the data names STUDENT-NAME, YEAR-IN-SCHOOL, 

and S T U D E N T - M A J O R ? 
The following code is intended to sort a file of employee records in order of age, 
listing the oldest first: 

FD EMPLOYEE-FILE 

01 EMPLOYEE-RECORD. 
05 EMP-NAME 
05 EMP-BIRTH-DATE. 

10 EMP-BIRTH-MONTH 
10 EMP-BIRTH-YEAR 

05 FILLER 

PIC X(25). 

PIC 99. 
PIC 99. 
PIC X(51). 



C h a p t e r 1 4 — Sorting 

SD SORT-FILE 

01 SORT-RECORD. 
05 FILLER PIC X(20). 
05 SORT-BIRTH-DATE. 

10 SORT-BIRTH-MONTH PIC 99. 
10 SORT-BIRTH-YEAR PIC 99. 

05 FILLER PIC X(55). 
PROCEDURE DIVISION. 

SORT SORT-FILE 
DESCENDING KEY SORT-BIRTH-MONTH SORT-BIRTH-YEAR 
USING EMPLOYEE-FILE 
GIVING ORDERED-FILE. 

There are three distinct reasons why the intended code will not work. Find and 
correct the errors. 

4. The registrar has asked for a simple report listing students by year, and 
alphabetically within year. Thus all freshmen are to appear first, followed by all 
sophomores, juniors, seniors, and graduate students. The incoming record has 
the following layout: 

01 STUDENT-RECORD. 

05 ST-CREDITS PIC 99. 
05 ST-COLLEGE PIC X(10). 

The ST-YEAR field uses the codes, FR, SO, JR, SR, and GR for freshman, sophomore, 
junior, senior, and graduate student, respectively. Develop the Procedure Division 
code to accomplish the desired sort. (It is not as easy as it looks.) 

5. Indicate the form of the SORT statement (USING, INPUT PROCEDURE, GIVING, 
OUTPUT PROCEDURE) that would most likely be used for the following applications: 
a. Conversion of an incoming inventory file that has its part numbers in ASCII 

sequence to a new file, having its numbers in EBCDIC sequence. 
b. Preparation of a report to select all graduating seniors (those with completed 

credits totaling 90 or more), listed in order of decreasing grade point average. 
c. A data-validation program that reads unedited transactions, rejects those with 

invalid data, and prepares a sorted transaction file containing only valid records. 
d. A program to prepare mailing labels in zip code order from a customer list. 

6. Given the statement: 
MERGE WORK-FILE 

ASCENDING ACCOUNT-NUMBER 
DESCENDING AMOUNT-OF-SALE 

USING 
JANUARY-SALES 
FEBRUARY-SALES 
MARCH-SALES 

GIVING 
FIRST-QUARTER-SALES. 

05 ST-NAME 
05 ST-MAJ0R 
05 ST-YEAR 

PIC X(15). 
PIC X(15). 
PIC XX. 



a. Which file(s) are specified in an SD? 
b. Which file(s) are specified in an FD? 
c. Which file(s) contain the key A C C O U N T - N U M B E R ? 
d. What is the primary key? 
e. What is the secondary key? 
f. If a record on the JANUARY-SALES file has the identical A C C O U N T - N U M B E R 

as a record on the FEBRUARY-SALES file, which record would come first on the 
merged file? 

g. If a record on the JANUARY-SALES file has the identical AMOUNT-OF-SALE as 
a record on the FEBRUARY-SALES file, which record would come first on the 
merged file? 

h. If a record on the JANUARY-SALES file has the identical AMOUNT-OF-SALE 
and A C C O U N T - N U M B E R as a record on the FEBRUARY-SALES file, which 
record would come first on the merged file? 

7. Given the following C O B O L definition: 
05 TRANSACTION-DATE. 

10 TRANS-MONTH PIC 99. 
10 TRANS-DAY PIC 99. 
10 TRANS-YEAR PIC 99. 

Write a portion of the S O R T statement necessary to put transactions in sequence, 
with the earliest transaction listed first. Are there any problems in your solution 
when the century changes? Should you be concerned about those problems now? 

8. The registrar requires an alphabetical list of graduating seniors. The report will be 
generated from the student master file, which contains every student in the school, 
in social security number sequence. 

Two approaches have been suggested. The first uses the USING/GIVING 
option to sort the file alphabetically, after which the desired records are selected for 
inclusion in the report. The second selects the desired records in the INPUT 
P R O C E D U R E , after which the file is sorted and the report prepared in the O U T P U T 
P R O C E D U R E . 

Both approaches will produce a correct report. Is there any reason to choose 
one over the other? 





Overview 
S y s t e m C o n c e p t s 

Running versus Roiiing Totals 
O n e - L e v e l C o n t r o l B r e a k s 

Programming Specifications 
Hierarchy Chart 
Pseudocode 
The Completed Program 

T w o - L e v e l Cont ro l B r e a k s 
Hierarchy Chart 
Pseudocode 
The Completed Program 

T h r e e - L e v e l Cont ro l B r e a k s 
Hierarchy Chart 
Pseudocode 
The Completed Program 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 1 5 Control Breaks 

OBJECTIVES 

After reading this chapter you will be able to: 

Define control break; distinguish between a single control break and a 
multilevel control break. 

Explain the relationship between sorting and control breaks. 

Design a hierarchy chart and pseudocode to implement any number of 
control breaks; evaluate the hierarchy chart with respect to completeness, 
functionality, and span of control. 

Use a general purpose algorithm to write a COBOL program for any 
number of control breaks. 

Develop COBOL programs for one-, two-, and three-level control breaks. 

Distinguish between rolling and running totals. 

O V E R V I E W 

This chapter does not introduce any new COBOL per se, but uses the COBOL 
you already know to present one of the most important applications in data 
processing, that of control breaks. A control break is defined as a change in a 
designated field, which in turn requires that the incoming file be in sequence by 
the designated field. There is, therefore, a close relationship between sorting 
and control breaks, a relationship that will be stressed throughout the chapter. 

The logic associated with control breaks is more complex than many of the 
examples presented earlier in the text. The difficulty, if any, stems from a rush 
into coding a program, without giving suitable thought to its design. Accordingly, 
we emphasize the importance of proper design, and the use of hierarchy charts 
and pseudocode, to simplify the eventual coding. 

Control breaks may be implemented at several levels, just as a file may be 
sorted on multiple keys. The system concepts section distinguishes between 
one-, two-, and three-level control breaks, each of which is developed in a 
separate program. 

This chapter continues the example of Chapter 14, beginning with a review of the 
file in Figure 15.1 (shown previously as Figure 14.5). Six fields are present in every 
record: account number, salesperson, sales amount, commission percentage, 
location, and region. The sales a m o u n t contains an e m b e d d e d sign to reflect negative 
numbers (i.e., returns rather than sales) as previously discussed. Recall, too, that 
the commission a m o u n t is determined by multiplying the commission percentage 
(contained in the record) by the sales amount. 



Figure 15 .1 Transaction File ( The sales amount shows ASCII rather than 
EBCDIC characters.) 

Acct Salesperson Sales Coram Location Region 
Num Amount Pet 
000069 BENWAY 023q 10 CHICAGO MIDWEST 
000100 HUMMER OlOw 05 CHICAGO MIDWEST 
000101 CLARK 1500 10 TRENTON NORTHEAST 
000104 CLARK 0500 03 TRENTON NORTHEAST 
100000 JOHNSON 030s 06 ST. PETERSBURG SOUTHEAST 
130101 CLARK 3200 20 TRENTON NORTHEAST 
203000 HAAS 8900 05 ST. LOUIS MIDWEST 
248545 JOHNSON 0345 14 ST. PETERSBURG SOUTHEAST 
277333 HAAS 009x 08 ST. LOUIS MIDWEST 
n nnr\nr\ 4 U U U U U JOHNSON 070y 08 ST. PETERSBURG JUU 1M Lnj1 

444333 ADAMS lOOv 01 NEW YORK NORTHEAST 
444444 FEGEN 0100 02 ST. PETERSBURG SOUTHEAST 
475365 HAAS 0333 05 ST. LOUIS MIDWEST 
476236 FEGEN 037v 03 ST. PETERSBURG SOUTHEAST 
476530 D riULIA V 023u 05 CHICAGO MIDWEST 
555555 FEGEN 0304 05 ST. PETERSBURG SOUTHEAST 
555666 ADAMS 2003 20 NEW YORK NORTHEAST 
576235 CLARK 0100 03 TRENTON NORTHEAST 
583645 KARLSTROM 0145 04 BALTIMORE NORTHEAST 
649356 HUMMER 0345 05 CHICAGO MIDWEST 
694446 HUMMER 0904 10 CHICAGO MIDWEST 
700039 MARCUS 0932 10 BALTIMORE NORTHEAST 
750020 MARCUS 0305 05 BALTIMORE NORTHEAST 
800396 KARLSTROM 3030 09 BALTIMORE NORTHEAST 
878787 JOHNSON 1235 12 ST. PETERSBURG SOUTHEAST 
987654 ADAMS 2005 10 NEW YORK NORTHEAST 
988888 BENWAY 0450 01 CHICAGO MIDWEST 
999340 BENWAY 0334 30 CHICAGO MIDWEST 

The records in Figure 15.1 are in sequence by account number, so that the 
transactions associated with any particular salesperson are scattered throughout 
the file. W h a t if, however, w e wanted to k n o w the total sales and/or commission 
amount for a particular salesperson or for every salesperson? The easiest w a y to 
produce such a report would be to sort the file by salesperson so that all of the 
transactions for each salesperson appear together. It would then be a simple matter 
to look at all the transactions for A d a m s in order to compute his total sales and 
commission, then look at the transactions for Benway, then for Clark, etc. This is 
precisely what is meant by control break processing. 

The records in Figure 15.2a have been sorted by salesperson in order to produce 
the report of Figure 15.2b. A control break, defined as a change in a control field 
(salesperson in the example), occurs w h e n the value of the control field changes 
from record to record—for example, w h e n w e go from the last transaction for 
A d a m s to the first transaction for Benway, and again from the last transaction for 
Benway to the first transaction for Clark. The detection of a control break signals the 
creation of one or m o r e control totals, which in this example would be the sales and 
commissions for a given salesperson. 



Chapter 15 — Control Break 

Figure 1 5 . 2 One-Level Control Break 

444333 ADAMS lOOv 01 
555666 ADAMS 2003 20 
987654 ADAMS 2005 10 
000069 BENWAY 023q 10 
476530 BENWAY 023u 05 
988888 BENWAY 0450 01 
999340 BENWAY 0334 30 
000101 CLARK 1500 10 
000104 CLARK 0500 03 
130101 CLARK 3200 20 
576235 CLARK 0100 03 
444444 FEGEN 0100 02 
476236 FEGEN 037v 03 
555555 FEGEN 0304 05 

HAAS 8900 05 
277333 HAAS 009x 08 
475365 HAAS 0333 05 
000100 HUMMER OlOw 05 
649356 HUMMER 0345 05 
694446 HUMMER 0904 10 
100000 JOHNSON 030s 06 
248545 JOHNSON 0345 14 
400000 JOHNSON 070y 08 
878787 JOHNSON 1235 12 
583645 KARLSTR0M 0145 04 
800396 KARLSTR0M 3030 09 
700039 MARCUS 0932 10 
750020 MARCUS 0305 05 

(a) Sorted Data (b 

SALES ACTIVITY REPORT PAGE 3 

SALESPERSON: CLARK 
ACCOUNT # SALES COMMISSION 

SALES ACTIVITY REPORT PAGE 2 

SALESPERSON: BENWAY 
ACCOUNT # SALES COMMISSION 

SALES ACTIVITY REPORT PAGE 1 

SALESPERSON: ADAMS 
ACCOUNT # 

444333 
555666 
987654 

SALES 
1,005-
2,003 
2,005 

COMMISSION 
10-

401 
201 

** SALESPERSON TOTAL $ 3,003 592 

(b) Partial Output 



System Concep(s 

A two-level control break is illustrated in Figure 15.3. The data in Figure 15.3a 
have been sorted by location, and by salesperson within location, in order to produce 
the report in Figure 15.3b. All salespersons in the same location appear together, as 
do all transactions for the same salesperson. A one-level control break occurs from 
Karlstrom to Marcus as salesperson changes, but location does not. A two-level 
control break occurs from Marcus to Benway, w h e n the values of two control fields, 
salesperson a n d location, change simultaneously. The two-level control break 
produces two sets of control totals: the sales and commission totals for Marcus, as 
well as the sales and commission totals for all salespersons in Baltimore. 

A three-level control break is s h o w n in Figure 15.4. The data in Figure 15.4a 
have been sorted by region, location within region, and salesperson within location, 
in order to produce the report of Figure 15.4b. A one-level control break occurs from 
Benway to H u m m e r as salesperson changes, but location and region do not. A two-
level control break occurs from H u m m e r to Haas w h e n salesperson and location 
change simultaneously but regions remains constant, and a three-level control 
break occurs from Haas to Karlstrom as all three fields change together. 

There is no theoretical limit to the n u m b e r of control breaks that can be 
computed; there is a practical limit, however, in that most people lose track after 
three (or at most four) levels. Regardless of the n u m b e r of control breaks in effect, 
the file used to create the control totals must be in sequence according to the 
designated control fields. 

Two-Level Control Break 

583645 KARLSTROM 
80039 6JCAR LSJROM 
700039 MARCUS 
750020 MARCUS 

0145 04 BALTIMORE 
3030_0?_ BALTIMORE 
0932 10 BALTIMORE 
0305_05_ BALTIMORE 
023q 10 (JUS'AGO 
023u 05 CHICAGO 
0450 01 CHICAGO 
0334 30 CHICAGO 
OlOw 05 CHICAGO 
0345 05 CHICAGO 
0904 10 CHICAGO 
lOOv 01 NEW YORK 
2003 20 NEW YORK 
2005 10 NEW YORK 
8900 05 ST. LOUIS 
009x 08 ST. LOUIS 
0333 05 ST. LOUIS 
0100 02 ST. PETER! 
037v 03 ST. PETER! 

000069 BENWAY 
476530 BENWAY 
988888 BENWAY 
999340 BENWAY 
000100 HUMMER 
649356 HUMMER 
694446 HUMMER 
444333 ADAMS 
555666 ADAMS 
987654 ADAMS 
203000 HAAS 
277333 HAAS 
475365 HAAS 
444444 FEGEN 
476236 FEGEN 
555555 FEGEN 
100000 JOHNSON 
248545 JOHNSON 
400000 JOHNSON 
878787 JOHNSON 
000101 CLARK 
000104 CLARK 
130101 CLARK 
576235 CLARK 

1500 10 TRENTON 
0500 03 TRENTON 
3200 20 TRENTON 
0100 03 TRENTON 

0304 05 ST. 
030s 06 ST. 
0345 14 ST. 
070y 08 ST. 
1235 12 ST. 

PETERSBURG 
PETERSBURG 
PETERSBURG 
PETERSBURG 
PETERSBURG 
PETERSBURG 
PETERSBURG 



Chapter 15 Control Breaks 

F i g u r e 1 5 . 3 (continued) 

[ — — — — — . — — — — ^ 

SALES ACTIVITY REPORT PAGE 3 

LOCATION: NEW YORK 
SALESPERSON: ADAMS 

SALES ACTIVITY REPORT PAGE 2 

LOCATION: CHICAGO 
SALESPERSON: BENWAY 

SALES ACTIVITY REPORT PAGE 1 

LOCATION: BALTIMORE 
SALESPERSON: KARLSTROM 

ACCOUNT # SALES COMMISSION 
583645 145 6 
800396 273 

** SALESPERSON TOTAL J 3,175 $ 279 

SALESPERSON: MARCUS 
ACCOUNT # SALES COMMISSION 

700039 932 93 
750020 305 15 

** SALESPERSON TOTAL $ 1,237 $ 108 

**** LOCATION TOTAL $ 4,412 $ 387 

ION 

ON 

(b) Partial Output 

Running versus Rol l ing Totals , 

Each of the reports in Figures 15.2 through 15.4 computes totals at one or more 
levels (at salesperson, location, region, and company), according to the n u m b e r of 
control breaks. The c o m p a n y totals are printed at the end of processing and appear 
o n the last page of each report, but are not visible in the individual figures. (The 
total sales for the c o m p a n y and corresponding commission are $23,906 and $2,540, 
respectively.) 

Consider for a m o m e n t h o w the computations might be accomplished in the 
one-level report of Figure 15.2b. There is only one w a y to compute the total for 
individual salespersons—by initializing the total for each n e w salesperson to zero, 
then adding the a m o u n t o n every transaction for that salesperson to his or her total. 
There are, however, two ways to compute the c o m p a n y total—by adding the value 
for every transaction to a running company total, or by waiting for a break on 



salesperson and then adding, or rolling, the salesperson total to the c o m p a n y total. 
The latter is more efficient in that fewer additions are performed. 

Similar reasoning applies to the two-level report of Figure 15.3b, in which the 
location total can be computed two different w a y s — b y adding the value of each 
incoming transaction to a running location total, or by waiting for a control break 
o n salesperson, then rolling the salesperson total to the location total. In similar 
fashion, the c o m p a n y total m a y be obtained in three ways. First, by adding the 
value of every incoming transaction to a running c o m p a n y total. Second, by rolling 
the salesperson total into the c o m p a n y total after a one-level break o n salesperson. 
Or third, by rolling the location total into the c o m p a n y total after a two-level break 
o n location. The third approach is the most efficient. 

Y o u should be able to extend this logic to the three-level report of Figure 15.4b, 
which maintains a running total for each salesperson, then roils the salesperson 
total into the location total (after a break on salesperson), rolls the location total 
into the region total (after a break o n location), and finally rolls the region total into 
the c o m p a n y total (after a break o n region). 

Three-Level Control Break 

000069 BENWAY 
476530 BENWAY 
988888 BENWAY 
999340 BENWAY 

023q 10 CHICAGO MIDWEST 
023u 05 CHICAGO MIDWEST 
0450 01 CHICAGO MIDWEST 
0334 30 CHICAGO MIDWEST 

000100 HUMMER 
649356 HUMMER 
694446 HUMMER 

OlOw 05 CHICAGO MIDWEST 
0345 05 CHICAGO MIDWEST 
0904 10 CHI C A M MIDWEST 
8900 05 ST. LOUIS " MIDWEST 
009x 08 ST. LOUIS MIDWEST 
0333 05 ST. LOUIS MIDWEST 

203000 HAAS 
277333 HAAS 
475365 HAAS 
583645 KARLSTROM 
800396 KARLSTROM 

0145 04 BALTIMORE NORTHEAST 
3030 09 BALTIMORE NORTHEAST 
0932 10 BALTIMORE NORTHEAST 
0305 05 BALTIMORE NORTHEAST 
lOOv 01 NEW YORK NORTHEAST 
2003 20 NEW YORK NORTHEAST 
2005 10 NEW YORK NORTHEAST 
1500 10 TRENTON NORTHEAST 
0500 03 TRENTON NORTHEAST 
3200 20 TRENTON NORTHEAST 
0100 03 TRENTON NORTHEAST 
0100 02 ST. PETERSBURG SOUTHEAST 
037v 03 ST. PETERSBURG SOUTHEAST 
0304 05 ST. PETERSBURG SOUTHEAST 
030s 06 ST. PETERSBURG SOUTHEAST 
0345 14 ST. PETERSBURG SOUTHEAST 
070y 08 ST. PETERSBURG SOUTHEAST 
1235 12 ST. PETERSBURG SOUTHEAST 

break 

700039 MARCUS 
750020 MARCUS 
444333 ADAMS 
555666 ADAMS 
987654 ADAMS 
000101 CLARK 
000104 CLARK 
130101 CLARK 
576235 CLARK 
444444 FEGEN 
476236 FEGEN 
555555 FEGEN 
100000 JOHNSON 
248545 JOHNSON 
400000 JOHNSON 
878787 JOHNSON 



C h a p t e r 1 5 — Control Breaks 

(continued) 

SALES ACTIVITY REPORT PAGE 3 

REGION: SOUTHEAST 
LOCATION: ST. PETERSBURG 

SALES ACTIVITY REPORT PAGE 2 

REGION: NORTHEAST 
LOCATION: BALTIMORE 

SALES ACTIVITY REPORT PAGE 1 

REGION: MIDWEST 
LOCATION: CHICAGO 

SALESPERSON: BENWAY 
ACCOUNT t 

U U U U U 3 

476530 
988888 
999340 

SALES 
231-
235-
450 
334 

COMMISSION 
23-
12-
5 

100 

** SALESPERSON TOTAL $ 318 $ 70 

SALESPERSON: HUMMER 
ACCOUNT # 

000100 
649356 
694446 

SALES 
107-
345 
904 

COMMISSION 
5-
17 
90 

** SALESPERSON TOTAL $ 1,142 $ 102 

**** LOCATION TOTAL $ 1,460 $ 172 

LOCATION: ST. LOUIS 
SALESPERSON: HAAS 

ACCOUNT # 
203000 
277333 
475365 

SALES 
8,900 

98-
333 

COMMISSION 
445 

8-
17 

** SALESPERSON TOTAL $ 9,135 $ 454 

**** LOCATION TOTAL $ 9,135 $ 454 

****** REGION TOTAL $ 10,595 $ 626 

i: 



One-Level Control Breaks 

The development of the one- (two- and three-) level programs is not difficult given a 
clear understanding of the requirements and the distinction between running and 
rolling totals. W e begin with the specifications for the one-level program. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : One-Level Control Break 

Narrative: The specifications are for the one-level control break program. Changes to the 
specifications to accommodate two- and three-level control breaks are provided later in 
the chapter. 

I n p u t F i l e ( s ) : SALES-FILE 

I n p u t R e c o r d L a y o u t : 01 SALES-RECORD-IN. 
05 SR-ACCOUNT-NUMBER PIC 9(6). 
05 FILLER PIC X. 
05 SR-NAME PIC X(15) 
05 SR-SALES PIC S9(4) 
05 FILLER PIC XX. 
05 SR-COMMISSION-PERCENT PIC V99. 
05 FILLER PIC XX. 
05 SR-LOCATION PIC X(15) 
05 SR-REGION PIC X(ll) 

T e s t D a t a : See Figure 15.1. 

R e p o r t L a y o u t : See Figure 15.2b. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Sort the incoming transaction file by salesperson; use the WITH DUPLICATES IN 
O R D E R phrase of the S O R T statement to keep the sorted file in sequence by transaction 
number within salesperson. 

2. Process transactions until a control break is encountered on salesperson, then for 
each new salesperson: 
a. Initialize the total sales and commission for that salesperson to zero. 
b. Print a heading for this salesperson on a new page. 

3. Process all transactions for each salesperson as follows: 
a. Compute the commission for each transaction by multiplying the amount of the sale 

by the commission percentage. 
b. Print a detail line for each transaction containing the account number, sales 

amount, and computed commission. 
c. Increment the total sales and commissions for that salesperson by the corresponding 

amounts for this transaction. 
4. Print a total line for each salesperson whenever salesperson changes. Print dashes as 

indicated between the last detail line and the total line. 
5. Increment the company totals with the salesperson's accumulated totals as salesperson 

changes. 
6. Print the company totals after all records have been processed. 



Chapter 15 — Conti ol Breaks 

Hierarchy Chart 
The report in Figure 15.2b contains a heading line prior to the first transaction for 
each salesperson, detail lines containing the sales and commission for the individual 
transactions, and a total line after all transactions for each salesperson. The c o m p a n y 
total appears at the end of the report (but is not visible in Figure 15.2b). 

All of these functions are recognized in the hierarchy chart of Figure 15.5a, 
which was developed in stages, beginning at the top and working d o w n to the 
bottom. The functions at every level in the hierarchy chart are divided into 
component functions that appear on the next lower-level. The lower-level functions 
are further subdivided into other functions o n a still lower-level, until finally the 
lowest-level functions cannot be further subdivided. 

The module at the top (or first level) of the hierarchy chart, PREPARE-SALES-
R E P O R T , depicts the overall program function. It is divided into four subordinate 
functions, each of which was taken directly from the programming specifications. 
These modules are placed o n the second level of the hierarchy chart: 

1. SORT-TRANSACTION-FILE to sort the transaction file (as indicated in item 1 
of the processing requirements) 

2. R E A D - SO R T E D - SALES - FILE to read a record from the sorted file 
3. P R O C E S S - O N E - S A L E S P E R S O N to process each salesperson (from items 2 

through 5 of the processing requirements) 
4. W R I T E - C O M P A N Y - T O T A L to write the c o m p a n y total (from item 6 of the 

processing requirements) 
Each of these modules is considered for further subdivision, but only P R O C E S S -
O N E - S A L E S P E R S O N is divided into component functions for the next level. Once 
again, w e use the processing requirements as a guide to determine the subordinate 
functions for the third level: 

1. INITIALIZE-SALESPERSON to initialize the sales and commission amounts 
for this salesperson (item 2a of the processing requirements) 

2. W R I T E - S A L E S P E R S O N - H E A D I N G to write a heading for each salesperson 
(item 2b of the processing requirements) 

3. P R O C E S S - O N E - T R A N S A C T I O N to process the transaction (item 3 of the 
processing requirements) 

4. W R I T t S A L E S P E R S O N - T O T A L to print the salesperson total (item 4 of the 
processing requirements) 

5. I N C R E M E N T - C O M P A N Y - T O T A L to increment the c o m p a n y total (item 5 of 
the processing requirements) 

Each function is evaluated for further subdivision, but only P R O C E S S - O N E -
T R A N S A C T I O N is developed further. Repeating the earlier procedure, and again 
using the processing requirements, w e obtain the modules for the fourth and 
final level: 

1. C A L C U L A T E - C O M M I S S I O N to calculate the commission for the transaction 
(item 3a of the processing requirements) 

2. WRITE-DETAIL-LINE to write a detail line for each transaction (item 3b of 
the processing requirements) 

3. I N C R E M E N T - S A L E S P E R S O N - T O T A L to increment the salesperson's total 
(item 3c of the processing requirements) 

4. READ-SORTED-SALES-FILE to read the next record and avoid an endless loop 



One-Level Control Breaks 

•Sgpj. v* \ £>.& One-Level Algorithm 

SORT 
TRANSACTION 

FILE 

INITIALIZE 
SALESPERSON 

CALCULATE 
COMMISSION 

PREPARE 
SALES 

REPORT 

READ 
SORTED 

SALES-FILE 

WRITE 
SALESPERSON 

HEADING 

WRITE 
DETAIL LINE 

PROCESS ONE 
SALESPERSON 

PROCESS ONE 
TRANSACTION 

INCREMENT 
SALESPERSON 

TOTAL 

WRITE 
COMPANY 

TOTAL 

WRITE 
SALESPERSON 

TOTAL 

INCREMENT 
COMPANY 

TOTAL 

READ 
SORTED 

SALES-FILE 

(a) Hierarchy Chart 

Sort transaction file on salesperson 
Open sorted-file, print-file 
Read first record 
PERFORM UNTIL no more data 

Initialize salesperson totals 
Move SR-NAME to PREVIOUS-NAME 
Write salesperson headings 

- PERFORM UNTIL SR-NAME NOT = PREVIOUS-NAME 
or no more data 

Calculate commission 
Write detail line 
Increment salesperson totals 
Read next record 

- ENDPERFORM 
Write salesperson totals 
Increment company totals by salesperson totals 

ENDPERFORM 
Write company totals 
Close files 
Stop run 

(b)Pseudocode 



C h a p t e r 1 5 — Control Breaks 

The completed hierarchy chart is evaluated according to the criteria presented 
in Chapter 3—completeness, functionality, and span of control. The hierarchy chart 
is complete because it contains a module corresponding to every processing 
requirement. Its modules are functional (i.e., each module accomplishes a single 
task) as can be implied from the module n a m e s that consist of a verb, an adjective 
or two, and an object—for example, I N C R E M E N T - S A L E S P E R S O N - T O T A L or W R I T E -
DETAIL-LINE. 

Finally, the span of control (number of subordinate modules) is reasonably 
set at three or four throughout the hierarchy chart, and the relationship of the 
modules to one another appears to be correct. Observe, for example, that W R I T E -
DETAIL-LINE, I N C R E M E N T - S A L E S P E R S O N - T O T A L , and R E A D - S O R T E D - SALES -
FILE are subordinate to P R O C E S S - O N E - T R A N S A C T I O N , which in turn is subordinate 
to P R O C E S S - O N E - S A L E S P E R S O N , which is subordinate to PREPARE-SALES-
R E P O R T . There is no other reasonable w a y to relate these functions, all of which are 
required to maintain completeness. 

Pseudocode 
The pseudocode in Figure 15.5b introduces specific C O B O L data names, such as 
S R - N A M E and P R E V I O U S - N A M E , that enable the p rogram to detect a control 
break. In other words, a C O B O L statement cannot simply process records until a 
control break occurs, but must specify precisely h o w to determine w h e n the value 
of salesperson changes. Thus in order to detect a control break, the program 
compares the n a m e o n the record just read to the n a m e o n the previous record; 
that is, it compares S R - N A M E to P R E V I O U S - N A M E , and detects a break w h e n the 
values are different. 

The pseudocode sorts the transaction file according to salesperson, reads the 
first transaction record, then executes the statements in the outer loop for every 
salesperson until the entire file has been processed. The (sales and commission) 
totals for each n e w salesperson are initialized, then an inner loop is executed until a 
control break is detected. The inner loop processes all transactions for the current 
salesperson by calculating the commission amount, writing a detail line, and 
incrementing the running salesperson totals. The inner loop is terminated by the 
control break—that is, w h e n S R - N A M E is not equal to P R E V I O U S - N A M E — a f t e r 
which the sales and commission totals for the salesperson are written and rolled 
into the corresponding c o m p a n y totals. 

It is n o w a simple matter to write the required program. 

The j"cirv vv*ted Program 
The completed program in Figure 15.6 is straightforward and easy to follow, especially 
after the preceding discussion o n hierarchy charts and pseudocode. Note especially 
the relationship of the hierarchy chart in Figure 15.5a to the paragraphs in the 
Procedure Division. The modules in the hierarchy chart correspond one to one with 
the paragraphs in the program. Observe also that each level in the hierarchy chart 
corresponds to a C O B O L P E R F O R M statement. 

The Working-Storage Section contains multiple 01 entries for the various 
print lines required by the program. There are multiple heading lines, a detail line, 
and two total lines. Working-Storage also contains separate counters for the 
salesperson and c o m p a n y totals, as well as a switch, P R E V I O U S - N A M E , to detect 
the control break o n salesperson. 

The S O R T statement (lines 151-156) specifies S O R T - N A M E as the primary key 
in accordance with the requirements of the control break o n salesperson. The 



One-Level Control Breaks 

W I T H D U P L I C A T E S IN O R D E R phrase keeps the transactions for a given salesperson 
in sequence by account n u m b e r because the input file (Figure 15 1) w a s already in 
sequence by this field. 

One-Level Control Break Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. ONELEVEL. 
3 AUTHOR. CVV. 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT SALES-FILE ASSIGN TO 'A:\CHAPTR15\S0RTIN.DAT' 
9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE 
11 ASSIGN TO PRINTER. 
12 SELECT SORT-WORK-FILE 
13 ASSIGN TO 'A:\CHAPTR15\S0RTWK.DAT'. 
14 SELECT SORTED-SALES-FILE ASSIGN TO 'A:\CHAPTR15\S0RT0UT.DAT' 
15 ORGANIZATION IS LINE SEQUENTIAL. 
16 
17 DATA DIVISION. 
18 FILE SECTION. 
19 FD SALES-FILE 
20 RECORD CONTAINS 58 CHARACTERS 
21 DATA RECORD IS SALES-RECORD. 
22 01 SALES-RECORD PIC X(58). 
23 
24 FD PRINT-FILE 
25 RECORD CONTAINS 132 CHARACTERS 
26 DATA RECORD IS PRINT-LINE. 
27 01 PRINT-LINE PIC X(132). 
28 
29 SD SORT-WORK-FILE 
30 RECORD CONTAINS 58 CHARACTERS 
31 DATA RECORD IS SORT-RECORD. 
32 01 SORT-RECORD. 
33 05 SORT-ACCOUNT-NUMBER PIC 9(6). 
34 05 FILLER PIC X. 
35 05 SORT-NAME PIC X(15). 
36 05 FILLER PIC X(10). 
37 05 SORT-LOCATION PIC X(15). 
38 05 SORT-REGION PIC X(ll). 
39 
40 FD SORTED-SALES-FILE 
41 RECORD CONTAINS 58 CHARACTERS 
42 DATA RECORD IS SORTED-SALES-RECORD. 
43 01 SORTED-SALES-RECORD PIC X(58). 

file://'A:/CHAPTR15/S0RTIN.DAT'
file://'A:/CHAPTR15/S0RTWK.DAT'
file:///CHAPTR15/S0RT0UT


Chapter 15 — Control Break 

mt& " iS .S (continued) 

44 
45 WORKING -STORAGE SECTION. 
46 01 FILLER PIC X(14) 
47 VALUE 'WS BEGINS HERE'. 
48 
49 01 SALES-RECORD-IN. 
50 05 SR-ACCOUNT-NUMBER PIC 9(6). 
51 05 FILLER PIC X. 
52 05 SR-NAME PIC X(15). 
53 05 SR-SALES PIC S9(4). 
54 05 FILLER PIC XX. 
55 05 SR-COMMISSION-PERCENT PIC V99. 
ETC 

uu 05 FILLER PIC XX. 
57 05 SR-LOCATION PIC X(15). 
58 05 SR-REGION PIC X( l l ) . 
59 
60 01 PROGRAM-SWITCHES-AND-COUNTERS 
si 
V X 

\j ~> DATA-REMAINS-SW PIC X(3) U A I i ir 
K t t L U t 'YES'. 

62 88 NO-DATA-REMAINS VALUE 'NO' . 
63 05 PREVIOUS-NAME PIC X(15) VALUE SPACES. 
64 05 PAGE-COUNT PIC 99 VALUE ZEROES. 
65 
66 01 CONTROL-BREAK-TOTALS. 
67 05 INDIVIDUAL-TOTALS. 
68 10 IND-COMMISSION PIC S9(4). 
69 05 SALESPERSON-TOTALS. 
70 10 SALESPERSON-SALES-TOT PIC S9(6). 
71 10 SALESPERSON-COMM-TOT PIC S9(6). 
72 05 COMPANY-TOTALS. 
73 10 COMPANY-SALES-TOT PIC S9(6) VALUE ZEROS. 
74 10 COMPANY-COMM-TOT PIC S9(6) VALUE ZEROS. 
75 
76 01 REPORT-HEADING-LINE. 
77 05 FILLER PIC X(25) VALUE SPACES. 
78 05 FILLER PIC X(21) 
79 VALUE 'SALES ACTIVITY REPORT'. 
80 05 FILLER PIC X(19) VALUE SPACES. 
81 05 FILLER PIC X(5) VALUE 'PAGE ' 
82 05 HDG-PAGE PIC Z9. 
83 05 FILLER PIC X(60) VALUE SPACES. 
84 
85 01 SALESPERSON-HEADING-LINE-ONE. 
86 05 FILLER PIC X(15) VALUE SPACES. 
87 
88 

05 FILLER 
VALUE 'SALESPERSON: '. 

PIC X(13) 

89 05 HDG-NAME PIC X(15). 
90 05 FILLER PIC X(89) VALUE SPACES. 
91 
92 01 SALESPERSON-HEADING-LINE-TWO. 
93 05 FILLER PIC X(23) VALUE SPACES. 



One-Level Control Breaks 

(continued) 

94 05 FILLER PIC X(ll) VALUE 'ACCOUNT 
95 05 FILLER PIC X(9) VALUE SPACES. 
96 05 FILLER PIC X(5) VALUE 'SALES'. 
97 05 FILLER PIC X(8) VALUE SPACES. 
98 05 FILLER PIC X(10) VALUE 'COMMISS 
99 05 FILLER PIC X(66) VALUE SPACES. 
100 
101 01 DETAIL-LINE. 
102 05 FILLER PIC X(25) VALUE SPACES. 
103 05 DET-ACCOUNT-NUMBER PIC 9(6). 
104 05 FILLER PIC X(9) VALUE SPACES. 
105 | 05 DET-SALES PIC Z(3), 7/9-.'} 
106 05 FILLER PIC X(7J VALUE SPACES. 
107 I 05 DET-COMMISSION PIC Z(3), ZZ9- .']-
108 05 FILLER PIC X(69) VALUE SPACES. 
109 
110 01 DASHED-LINE. 
111 
X X X 

05 FILLER PIC X(40) VALUE SPACES. 
112 05 FILLER PIC X(8) VALUE ALL '-'. 
113 05 FILLER PIC X(7) VALUE SPACES. 
114 05 FILLER PIC X(8) VALUE ALL '-'. 
115 
1 1 C 

05 FILLER PIC X(69) VALUE SPACES. 
1 J . U 

117 01 SALESPERSON-TOTAL-LINE. 
118 05 FILLER PIC X(15) VALUE SPACES. 
119 05 FILLER PIC X(21) 
120 VALUE '** SALESPERSON TOTAL'. 
121 05 FILLER PIC X(3) VALUE SPACES. 
122 05 SALESPERSON-SALES-TOTAL PIC $Z(3) ,119-. 
123 05 FILLER PIC X(6) VALUE SPACES. 
124 05 SALESPERSON-COMM-TOTAL PIC $Z(3) ,119-. 
125 05 FILLER PIC X(69) VALUE SPACES. 
126 
127 01 COMPANY-TOTAL-LINE. 
128 05 FILLER PIC X(9) VALUE SPACES. 
129 05 FILLER PIC X(22) 
130 VALUE ********* COMPANY TOTAL'. 
131 05 FILLER PIC X(8) VALUE SPACES. 
132 05 COMPANY-SALES-TOTAL PIC $Z(3) ,ZZ9-. 
133 05 FILLER PIC X(6) VALUE SPACES. 
134 05 COMPANY-COMM-TOTAL PIC $Z(3),ZZ9-. 
135 05 FILLER PIC X(69) VALUE SPACES. 
136 
137 PROCEDURE DIVISION. 
138 100 -PREPARE-SALES-REPORT. f -
139 PERFORM 200-SORT-TRANSACTION-FILE. 
140 OPEN INPUT SORTED-SALES- FILE 
141 OUTPUT PRINT-FILE. 
142 PERFORM 220-READ-SORTED-SALES -FILE. 
143 PERFORM 240-PR0CESS-0NE-SALESPERSON 



Chapter 15 — Control Break 

(continued) 

144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 

UNTIL NO-DATA-REMAINS. 
PERFORM 260-WRITE-COMPANY-TOTAL. 
CLOSE SORTED-SALES-FILE 

PRINT-FILE. 
STOP RUN. 

200-SORT-TRANSACTION-FILE. 
SORT SORT-WORK-FILE 

ASCENDING KEY 
SORT-NAME 

WITH DUPLICATES IN ORDER 
USING SALES-FILE 
GIVING SORTED-SALES-FILE. 

220-READ-SORTED-SALES-FILE. 
READ SORTED-SALES-FILE INTO SALES-RECORD-IN 

AT END MOVE 'NO' TO DATA-REMAINS-SW 
END-READ. 

240-PROCESS-ONE-SALESPERSON. 
PERFORM 300-INITIAL 12E-SALESPERS0N. 
PERFORM 320-WRITE-SALESPERSON-HEADING. 
PER FORM J4p-T3R0CESS:0N E-TRANSACT I ON _ 

UNTIL SR-NAME NOT EQUAL PREVIOUS-NAME 
OR NO-DATA-REMAINS. 

[PERFORM 360-WRITE-SALESPERSON-TOTAL. 
PERFORM 380-1NCREMENT-COMPANY-TOTAL. 

260-WRITE-COMPANY-TOTAL. 
MOVE COMPANY-SALES-TOT TO COMPANY-SALES-TOTAL. 
MOVE COMPANY-COMM-TOT TO COMPANY-COMM-TOTAL. 
WRITE PRINT-LINE FROM COMPANY-TOTAL-LINE 

AFTER ADVANCING 2 LINES. 

300-INITIALIZE-SALESPERSON. 
MOVE SR-NAME TO PREVIOUS-NAME. 
INITIALIZE SALESPERSON-TOTALS. 

320-WRITE-SALESPERSON-HEADING. 
ADD 1 TO PAGE-COUNT. 
MOVE PAGE-COUNT TO HDG-PAGE. 
WRITE PRINT-LINE FROM REPORT-HEADING-LINE 

AFTER ADVANCING PAGE. 
MOVE SR-NAME TO HDG-NAME. 
WRITE PRINT-LINE FROM SALESPERSON-HEADING-LINE-ONE 

AFTER ADVANCING 2 LINES. 
WRITE PRINT-LINE FROM SALESPERSON-HEADING-LINE-TWO 

AFTER ADVANCING 1 LINE. 

340-PROCESS-ONE-TRANSACTION. 
PERFORM 400-CALCULATE-C0MMISSI0N. 



Two-Level Control Breaks 

*igur» iS.6 (continued) 

j 195 PERFORM 420-WRITE-DETAIL-LINE. 
I 196 PERFORM 440-INCRMENT-SALESPERS0N-T0TAL. 
j 197 PERFORM 220-READ-SORTED-SALES-FILE. 
| 198 
| 199 360-WRITE-SALESPERSON-TOTAL. 
| 200 WRITE PRINT-LINE FROM DASHED-LINE 
I 201 AFTER ADVANCING 1 LINE. 
| 202 MOVE SALESPERSON-SALES-TOT TO SALESPERSON-SALES-TOTAL. 
I 203 MOVE SALESPERSON-COMM-TOT TO SALESPERSON-COMM-TOTAL. 
j 204 WRITE PRINT-LINE FROM SALESPERSON-TOTAL-LINE 
( 205 AFTER ADVANCING 1 LINE, 
j 206 MOVE SPACES TO PRINT-LINE. 

207 WRITE PRINT-LINE 
208 AFTER ADVANCING 1 LINE. 
209 
210 380-INCREMENT-COMPANY-TOTAL. 

| 211 ADD SALESPERSON-SALES-TOT TO COMPANY-SALES-TOT. /-""^ 
111 ADD SALESPERSON-COMM-TOT TO COMPANY-COMM-TOT. j 
213 
214 400-CALCULATE-COMMISSION. 
215 COMPUTE IND-COMMISSION ROUNDED = 
216 SR-SALES * SR-COMMISSION-PERCENT 
217 SIZE ERROR DISPLAY 'SIZE ERROR ON COMMISSION FOR ' 
218 SR-NAME 
219 END-COMPUTE. 
220 

j 221 420-WRITE-DETAIL-LINE. 
[ 222 MOVE SR-ACCOUNT-NUMBER TO DET-ACCOUNT-NUMBER. 
I 223 MOVE SR-SALES TO DET-SALES. 
| 224 MOVE IND-COMMISSION TO DET-COMMISSION. 
| 225 WRITE PRINT-LINE FROM DETAIL-LINE. 
| 226 
| 227 440-1NCRMENT-SALESPERSON-TOTAL. 
1 228 ADD SR-SALES TO SALESPERSON-SALES-TOT. 

229 , ADD IND-COMMISSION TO SALESPERSON-COMM-TOT. 

I he reports in Figures 15.2, 15.3, and 15.4 presented a logical progression of one, 
U L CCCx i two, and three control breaks—for salesperson; location and salesperson; and region, 

location, and salesperson, respectively. This section extends the hierarchy chart, 
pseudocode, and C O B O L program for the one-level application to include a second 
control break. 

The development of the two-level hierarchy chart is best accomplished as an 
extension of its existing one-level counterpart. O n e easy w a y to anticipate the 
changes is to compare the one- and two-level reports in Figures 15.2b and 15.3b, 



Chapter 15 — Control Breaks 

then consider the following questions with respect to the hierarchy chart of 
Figure 15.5a: 

1. W h a t additional (i.e., new) modules are necessary? 
2. W h i c h existing modules (if any) have to be modified? 
3. W h i c h existing modules (if any) have to be deleted? 

Every module that appeared in the one-level hierarchy chart will also appear in its 
two-level counterpart; that is, no modules will be deleted because every function in 
the one-level application is also required in the two-level example. In addition, 
several n e w functions have to be added to accommodate the control break o n 
location. These include: 

1. P R O C E S S - O N E - L O C A T I O N to process all salespersons in one location 
2. INITIALIZE-LOCATION to initialize the sales and commission amounts for 

this location 
3. W R I T E - L O C A T I O N - H E A D I N G to print a location heading prior to each n e w 

location 
4. I N C R E M E N T - L O C A T I O N - T O T A L to increment the sales and commission 

totals for each location 
5. WRIT E - L O C A T I O N - T O T A L to print the location totals after a control break 

o n location 
Changes will also be required in the logic of s o m e existing modules; for example, 

the module SORT-TRANSACTION-FILE must n o w reflect a sort on location and 
salesperson within location. A m o r e subtle change is in W R I T E - S A L E S P E R S O N -
H E A D I N G , which previously began the report for each salesperson o n a n e w page, 
but which n o w lists all salespersons in one location o n the s a m e page. 

The computation of the c o m p a n y total changes as well. The one-level example 
waited for a control break o n salesperson, then rolled the salesperson total into the 
c o m p a n y total. Although the same approach could be used in the two-level example, 
it is m o r e efficient to wait for a control break o n location, then roll the location total 
into the c o m p a n y total. 

The hierarchy chart for the two-level problem is s h o w n in Figure 15.7a, with 
the additional and/or modified modules shaded for emphasis. The placement of 
the n e w modules is important, and you should notice that the module P R O C E S S -
O N E - L O C A T I O N appears o n the second level of the hierarchy chart; this in turn 
forces the existing m o d u l e P R O C E S S - O N E - S A L E S P E R S O N , a n d all of its 
subordinates, d o w n a level. 

Figure 15.7b is subject to the same design considerations as its predecessor, 
namely, completeness, functionality, and span of control. All design criteria appear 
satisfactory and the hierarchy chart is finished. 

Pseudocode „ 

The pseudocode for the one-level control example is expanded to its two-level 
counterpart in Figure 15.7b. N e w and/or modified statements are highlighted to be 
consistent with the associated hierarchy chart. 

The sort statement includes location as an additional key as previously 
indicated. The major change, however, is the modification of the outer loop to 
include a series of repetitive statements for each n e w location that initialize the 
location totals, write the location heading, and process all salespersons in that 
location. The detection of a control break on location occurs w h e n S R - L O C A T I O N 
is unequal to P R E V I O U S - L O C A T I O N , and produces the location total, which is then 
rolled into the c o m p a n y total. 



Two-Level Control Breaks 

igure 15,7 Two-Level Algorithm 

SORT 
TRANSACTION 

FILE 

IWllAUZE 
tOCATIOtJ 

INITIALIZE 
SALESPERSON 

CALCULATE 
COMMISSION 

PREPARE 
SALES 

REPORT 

READ 
SORTED 

SALES-FILE 

ftWE 
1 OCATfOfc 
HtADilfc 

WRITE 
SALESPERSON 

HEADIMS 

WRITE 
DETAIL LINE 

PROCESS ONE 
LOCATION 

WRITE 
COMPANY 

TOTAL 

PROCESS ONE 
SALESPERSON 

iWRi E 
lOCAWA 

T01Al 

PROCESS ONE 
TRANSACTION 

WRITE 
SALESPERSON 

TOTAL 

INCREMENT 
SALESPERSON 

TOTAL 

READ 
SORTED 

SALES-FILE 

INCREMENT 
COMPANY 

TOTAL 

INCREMENT 
LOCATION 

TOTAL 

Sort transaition file on location, salespeison 
Open sorted-file, print-file 
Read first record 
PERFORM UNTIL no more data 

Initialize location totals 
MOVE SR-LOCATION to PREVIOUS-LOCATION 
Write location headings 

• PERFORM UNTIL SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 
or no more data 

Initialize salesperson totals 
MOVE SR-NAME to PREVIOUS-NAME 
Write salesperson headings 
PERFORM UNTIL SR-NAME NOT EQUAL PREVIOUS-NAME 

or SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 
or no more data 

Calculate commission 
Write detail line (if any) 
Increment salesperson totals 
Read next record 

ENDPERFORM 
Write salesperson totals 
Increment location totals 

- ENDPERFORM 
Write location totals 
Increment company totals by location totals 

ENDPERFORM 
Write company totals 
Close files 
Stop run 



C h a p t e r 1 5 Control Breaks 

Within each location, there is a second loop (carried over from the one-level 

compound c o n d i t i o n in the test for a control break o n salesperson that n o w includes 
both salesperson and location. This dual test is necessary in the unusual instance 
where the last salesperson in the current location and the first salesperson in the 
next location have the same n a m e . (A general rule for the detection of a control 
break requires a c o m p o u n d condition, which includes a check for the level you are 
on, as well as any levels above the current level.) 

The completed program is s h o w n in Figure 15.8 and reflects all of the indicated 
changes. Once again, w e call your attention to the relationship between the hierarchy 
chart in Figure 15.7a and the paragraphs in the Procedure Division. The modules in 
the hierarchy chart correspond one to one with the paragraphs in the program. 
Observe also that each level in the hierarchy chart can be matched with a C O B O L 
P E R F O R M statement. 

F i g u r e 15 .8 Two-Level Control Break k Prograi 11 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TWOLEVEL. 
AUTHOR. CVV. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT SALES-FILE ASSIGN TO 'A:\CHAPTR15\S0RTIN.DAT'  
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 
ASSIGN TO PRINTER. 

SELECT SORT-WORK-FILE 
ASSIGN TO 'A:\CHAPTR15\S0RTWK.DAT'. 

SELECT SORTED-SALES-FILE ASSIGN TO 'A:\CHAPTR15\S0RTWK.DAT  
ORGANIZATION IS LINE SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD SALES-FILE 

RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SALES-RECORD. 

01 SALES-RECORD PIC X(58). 

01 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS 
DATA RECORD IS PRINT-LINE. 
PRINT-LINE PIC X(132). 

SD SORT-WORK-FILE 
RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SORT-RECORD. 

file://'A:/CHAPTR15/S0RTIN.DAT'
file://'A:/CHAPTR15/S0RTWK.DAT'
file://'A:/CHAPTR15/S0RTWK.DAT


Two-L e veI Control Breaks 

(continued) 

32 01 SORT-RECORD. 
33 05 SORT-ACCOUNT-NUMBER PIC 9(6). 
34 05 FILLER PIC X. 
35 05 SORT-NAME PIC X(15). 
36 05 FILLER PIC X(10). 
37 05 SORT-LOCATION PIC X(15). 
38 05 SORT-REGION PIC X(ll). 
39 
40 FD SORTED-SALES-FILE 
41 RECORD CONTAINS 58 CHARACTERS 
42 DATA RECORD IS SORTED-SALES-RECORD. 
43 01 SORTED-SALES-RECORD PIC X(58). 
44 
45 WORKING-STORAGE SECTION. 
46 01 FILLER PIC X(14) 
47 
A Q 

VALUE 'WS BEGINS HERE 1. 
4o 
49 01 SALES-RECORD-IN. 
50 05 SR-ACCOUNT-NUMBER PIC 9(6). 
51 05 FILLER PIC X. 
52 05 SR-NAME PIC X(15). 
53 05 SR-SALES PIC S9(4). 
54 05 FILLER PIC XX. 
55 05 SR-COMMISSION-PERCENT PIC V99. 
56 05 FILLER PIC XX. 
57 05 SR-LOCATION PIC X(15). 
58 05 SR-REGION PIC X(ll). 
59 
60 01 PROGRAM-SWITCHES-AND-COUNTERS 
61 05 DATA-REMAINS-SW PIC X(3) VALUE 'YES'. 
62 88 NO-DATA-REMAINS VALUE 'NO'. 
63 05 PREVIOUS-NAME PIC X(15) VALUE SPACES 
64 05 PREVIOUS-LOCATION PIC X(15) VALUS SPACES 
65 05 PAGE-COUNT PIC 99 VALUE ZEROES 
66 
67 01 CONTROL-BREAK-TOTALS. 
68 05 INDIVIDUAL-TOTALS. 
69 10 IND-COMMISSION PIC S9(4). 
70 05 SALESPERSON-TOTALS. 
71 10 SALESPERSON-SALES-TOT PIC S9(6). 
72 10 SALESPERSON-COMM-TOT PIC S9(6). 
73 05 LOCATION-TOTALS. j 
74 10 LOCATION-SALES-TOT PIC S9(6). Y 
75 10 LOCATION-COMM-TOT PIC S9(6). 
76 05 COMPANY-TOTALS. 
77 10 COMPANY-SALES-TOT PIC S9(6) VALUE ZEROS. 
78 10 COMPANY-COMM-TOT PIC S9(6) VALUE ZEROS. 
79 
80 01 REPORT-HEADING-LINE. 
81 05 FILLER PIC X(25) VALUE SPACES 



Chapter 15 - Control Brea 

gyre 1 5 . 8 (continued) 

82 
83 
84 
85 
86 
87 

05 FILLER PIC X(21) 
VALUE 'SALES ACTIVITY REPORT'. 

05 FILLER PIC X(19) VALUE SPACES. 
05 FILLER PIC X(5) VALUE 'PAGE ' 
05 HDG-PAGE PIC 19. 
05 FILLER PIC X(60) VALUE SPACES. 

89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 

01 LOCATION-HEADING-LINE. 
05 FILLER 
05 FILLER 

VALUE 'LOCATION: 
05 HDG-LOCATION 
05 FILLER 

01 

01 

01 

PIC X(8) 
PIC X(10) 

PIC X(19) 
PIC X(95) 

VALUE SPACES. 

VALUE SPACES. 
VALUE SPACES. 

01 SALESPERSON-HEADING-LINE-ONE. 
05 FILLER PIC X(15) VALUE SPACES. 
05 FILLER PIC X(13) 

VALUE 'SALESPERSON: '. 
05 HDG-NAME PIC X(15). 
05 FILLER PIC X(89) VALUE SPACES. 

SALESPERSON-HEADING-LINE-TWO. 
05 FILLER PIC X(23) VALUE SPACES. 
05 FILLER PIC X(ll) VALUE 'ACCOUNT # 
05 FILLER PIC X(9) VALUE SPACES. 
05 FILLER PIC X(5) VALUE 'SALES'. 
05 FILLER PIC X(8) VALUE SPACES. 
05 FILLER PIC X(10) VALUE 'COMMISSION 
05 FILLER PIC X(66) VALUE SPACES. 

DETAIL-LINE. 
05 FILLER PIC X(25) VALUE SPACES. 
05 DET-ACCOUNT-NUMBER PIC 9(6). 
05 FILLER PIC X(9) VALUE SPACES. 
05 DET-SALES PIC Z(3),ZZ9-. 
05 FILLER PIC X(7) VALUE SPACES. 
05 DET-COMMISSION PIC Z(3),ZZ9-. 
05 FILLER PIC X(69) VALUE SPACES. 

DASHED-LINE. 
05 FILLER PIC X(40) VALUE SPACES. 
05 FILLER PIC X(8) VALUE ALL '-'. 
05 FILLER PIC X(7) VALUE SPACES. 
05 FILLER PIC X(8) VALUE ALL '-'. 
05 FILLER PIC X(69) VALUE SPACES. 

SALESPERSON-TOTAL-LINE. 
05 FILLER PIC X(15) 
05 FILLER PIC X(21) 

VALUE SPACES. 

ioGCs 

VALUE SALESPERSON TOTAL'. 



Two-Level Control Break s 

M (continued) 

157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 

132 05 FILLER PIC X(3) VALUE SPACES. 
133 05 SALESPERSON-SALES-TOTAL PIC $Z(3),ZZ9-. 
134 05 FILLER PIC X(6) VALUE SPACES. 
135 05 SALESPERS0N-C0MM-T0TAL PIC $Z(3),ZZ9-. 
136 05 FILLER PIC X(69) VALUE SPACES. 
137 
138 01 LOCATION-TOTAL-LINE. 
139 05 FILLER PIC X(13) VALUE SPACES. 
140 05 FILLER PIC X(19) 
141 VALUE '**** LOCATION TOTAL'. 
142 05 FILLER PIC X(7) VALUE SPACES. 
143 05 LOCATION-SALES-TOTAL PIC $Z(3) .ZZ9-. 
144 05 FILLER PIC X(6) VALUE SPACES. 
145 05 LOCATION-COMM-TOTAL PIC $Z(3),ZZ9-. 
146 05 FILLER PIC X(69) VALUE SPACES. 
147 
148 01 COMPANY-TOTAL-LINE. 
149 05 FILLER PIC X(9) VALUE SPACES. 
150 05 FILLER PIC X(22) 
151 VALUE '******** COMPANY TOTAL' . 
152 05 FILLER PIC X(8) VALUE SPACES. 
153 05 COMPANY-SALES-TOTAL PIC $Z(3),ZZ9-. 
154 05 FILLER PIC X(6) VALUE SPACES. 
155 05 COMPANY-COMM-TOTAL PIC $Z(3),ZZ9-. 
156 05 FILLER PIC X(69) VALUE SPACES. 

PROCEDURE DIVISION. 
100-PREPARE-SALES-REPORT. 

PERFORM 200-S0RT-TRANSACTI0N-FILE. 
OPEN INPUT SORTED-SALES-FILE 

OUTPUT PRINT-FILE. 
PERFORM 220-READ-SORTED-SALES-FILE. 
PERFORM 240-PR0CESS-0NE-L0CATI0N 

UNTIL NO-DATA-REMAINS. 
PERFORM 260-WRITE-C0MPANY-T0TAL. 
CLOSE SORTED-SALES-FILE 

PRINT-FILE. 
STOP RUN. 

200-SORT-TRANSACTION-FILE. 
SORT SORT-WORK-FILE 

ASCENDING KEY 
SORT-LOCATION 
SORT-NAME 

WITH DUPLICATES IN ORDER 
USING SALES-FILE 
GIVING SORTED-SALES-FILE. 

220-READ-SORTED-SALES-FILE. 
READ SORTED-SALES-FILE INTO SALES-RECORD-IN 



Chapter 15 Control Breaks 

~i^uj& (continued) 

182 AT END MOVE 'NO' TO DATA-REMAINS-SW 
183 END-READ. 
184 
185 240-PR0CESS-0NE-L0CATI0N. 
186 J^ERFOJW_30j)-JN^ / ' 
187 [PJRFORM 320^-WRITE-LOCAJ[IOtj-HE]\DIJ^ K 
188 PERFORM 340-PROCESS-ONE-SALESPERSON 
189 UNTIL SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 
190 OR NO-DATA-REMAINS. 
1 9 1 f ^ ™ ? ^ 3 ^ ^ 1 ^ ^ 
192 PERFORM 380-1NCREMENT-COMPANY-TOTAL. 
193 
194 260-WRITE-COMPANY-TOTAL. 
195 MOVE COMPANY-SALES-TOT TO COMPANY-SALES-TOTAL. 
196 MOVE COMPANY-COMM-TOT TO COMPANY-COMM-TOTAL. 
197 WRITE PRINT-LINE FROM COMPANY-TOTAL-LINE 
198 AFTER ADVANCING 2 LINES. 
199 
200 300-INITIALIZE-LOCATION. 
201 MOVE SR-LOCATION TO PREVIOUS-LOCATION. 
202 INITIALIZE LOCATION-TOTALS. 
203 
204 320-WRITE-L0CATION-HEADING. 
205 ADD 1 TO PAGE-COUNT. 
206 MOVE PAGE-COUNT TO HDG-PAGE. 
207 WRITE PRINT-LINE FROM REPORT-HEADING-LINE 
208 AFTER ADVANCING PAGE. 
209 MOVE SR-LOCATION TO HDG-LOCATION. 
210 WRITE PRINT-LINE FROM LOCATION-HEADING-LINE 
211 AFTER ADVANCING 2 LINES. 
212 
213 340-PROCESS-ONE-SALESPERSON. 
214 PERFORM 400-INITIALIZE-SALESPERSON. 
215 PERFORM 420-WRITE-SALESPERSON-HEADING. 
216 PERFORM 440-PR0CESS-0NE-TRANSACTI0N 
217 UNTIL SR-NAME NOT EQUAL PREVIOUS-NAME 
218 ! OR SR-LOCATION NOT EQUAL PREVIOUS-LOCATION ! 
219 OR NO-DATA-REMAINS. 
220 PERFORM 460-WRITE-SALESPERSON-TOTAL. 
221 PERFORM 480-INCREMENT-LOCATION-TOTAL. 
222 
223 360-WRITE-LOCATION-TOTAL. 
224 MOVE LOCATION-SALES-TOT TO LOCATION-SALES-TOTAL. 
225 MOVE LOCATION-COMM-TOT TO LOCATION-COMM-TOTAL. 
226 WRITE PRINT-LINE FROM LOCATION-TOTAL-LINE 
227 AFTER ADVANCING 1 LINE. 
228 MOVE SPACES TO PRINT-LINE. 
229 WRITE PRINT-LINE 
230 AFTER ADVANCING 1 LINE. 
231 
232 380-INCREMENT-COMPANY-TOTAL. 



Two-Level Control Breaks 

(continued) 

233 ) ADD LOCATION-SALES-TOT TO COMPANY-SALES-TOT. | Lu 
234 j ADD L0CATI0N-C0MM-T0T TO j;0MPANY-C0MM-T0T. J 
235 " ~ ~ " " " ~ " " " 
236 400-INITIALIZE-SALESPERSON. 
237 MOVE SR-NAME TO PREVIOUS-NAME. 
238 INITIALIZE SALESPERSON-TOTALS. 
239 
240 420-WRITE-SALESPERSON-HEADING. 
241 MOVE SR-NAME TO HDG-NAME. 
242 WRITE PRINT-LINE FROM SALESPERSON-HEADING-LINE-ONE 
243 AFTER ADVANCING 1 LINE. 
244 WRITE PRINT-LINE FROM SALESPERSON-HEADING-LINE-TWO 
245 AFTER ADVANCING 1 LINE. 
246 
247 440-PR0CESS-0NE-TRANSACTI0N. 
248 PERFORM 500-CALCULATE-C0MMISSI0N. 
249 PERFORM 520-WRITE-DETAIL-LINE. 
250 PERFORM 540-INCRMENT-SALESPERS0N-T0TAL. 
251 PERFORM 220-READ-SORTED-SALES-FILE. 
252 
253 460-WRITE-SALESPERS0N-T0TAL. 
254 WRITE PRINT-LINE FROM DASHED-LINE 
255 AFTER ADVANCING 1 LINE. 
256 MOVE SALESPERSON-SALES-TOT TO SALESPERSON-SALES-TOTAL 
257 MOVE SALESPERSON-COMM-TOT TO SALESPERSON-COMM-TOTAL. 
258 WRITE PRINT-LINE FROM SALESPERSON-TOTAL-LINE 
259 AFTER ADVANCING 1 LINE. 
260 MOVE SPACES TO PRINT-LINE. 
261 WRITE PRINT-LINE 
262 AFTER ADVANCING 1 LINE. 
263 
264 480-INCREMENT-LOCATION-TOTAL. 
265 ["ADD S T L I S ^ 
266 j ADD SALESPERSON-COMM-TOT TO LOCATION-COMM-TOT. i 
267 
268 500-CALCULATE-COMMISSION. 
269 COMPUTE IND-COMMISSION ROUNDED = 
270 SR-SALES * SR-COMMISSION-PERCENT 
271 SIZE ERROR DISPLAY 'SIZE ERROR ON COMMISSION FOR 
272 SR-NAME 
273 END-COMPUTE. 
274 
275 520-WRITE-DETAIL-LINE. 
276 MOVE SR-ACCOUNT-NUMBER TO DET-ACCOUNT-NUMBER. 
277 MOVE SR-SALES TO DET-SALES. 
278 MOVE IND-COMMISSION TO DET-COMMISSION. 
279 WRITE PRINT-LINE FROM DETAIL-LINE. 
280 
281 540-INCRMENT-SALESPERSON-TOTAL. 
282 ADD SR-SALES TO SALESPERSON-SALES-TOT. 
283 ADD IND-COMMISSION TO SALESPERSON-COMM-TOT. 



Chapter 15 — Control Breaks 

The Working-Storage Section contains every statement from the previous 
program plus additional entries to accommodate the second control break. The 
location heading and total lines are defined in lines 89-94 and 138-146, respectively. 
There are n e w counters for the location totals, L O C A T I O N - S A L E S - T O T , a n d 
L O C A T I O N - C O M M - T O T , and a n e w data n a m e , P R E V I O U S - L O C A T I O N , to detect 
the control break o n location. The n e w entries are shaded in the listing for emphasis. 

The S O R T statement (lines 172-178) specifies two keys, S O R T - L O C A T I O N and 
S O R T - N A M E , to sort the transaction file by location and salesperson within location. 
The W I T H D U P L I C A T E S IN O R D E R phrase keeps the transactions for a given 
salesperson in sequence by account n u m b e r since the input file (Figure 15.1) was 
already in sequence by account number. 

The remaining statements in the Procedure Division are straightforward and 
easy to follow, given the earlier discussion of the hierarchy chart and associated 
pseudocode. Observe, for example, the paragraph to increment the c o m p a n y totals 
(lines 232-234), in which location totals are rolled into the c o m p a n y totals. Note, 
too, the c o m p o u n d condition in the P E R F O R M statement of lines 216-219 to detect 
a control break o n salesperson. 

W e return to the reports of Figures 15.2, 15.3, a n d 15.4, which s h o w e d 
the progression of one-, two-, and three-level control breaks. This time, w e will 
expand the hierarchy chart, pseudocode, and C O B O L program from two to three 
levels. 

Hierarchy Chart 

The three-level hierarchy chart will be developed as an extension of the existing 
two-level hierarchy chart. Accordingly, w e will compare the two- and three-level 
reports in Figures 15.3b a n d 15.4b, then consider the following questions with 
respect to the existing chart: 

1. W h a t additional (i.e., new) modules are necessary? 
2. Which existing modules (if any) have to be modified? 
3. Which existing modules (if any) have to be deleted? 

Every module that appeared in the two-level hierarchy chart will also appear in the 
three-level version; no modules will be deleted because every function from the 
two-level example is also required in the three-level example. Several n e w functions 
are necessary to accommodate the control break o n region. These include: 

1. P R O C E S S - O N E - R E G I O N to process all locations in one region 
2. INITIALIZE-REGION to initialize the sales and commission totals for this 

region 
3. W R I T E - R E G I O N - H H A D I N G to print a region heading for each n e w region 
4. I N C R E M E N T - R E G I O N - T O T A L to increment the sales and commission totals 

for each region 
5. W R I T E - R E G I O N - T O T A L to print region totals after a break o n region 

Changes will also be required in the logic of s o m e existing modules—for 
example, a change in S O R T - T R A N S A C T I O N - F I L E to reflect a sort o n region, 
location within region, and salesperson within location. It will also be necessary 
to change W R I T E - L O C A T I O N - H E A D I N G , which previously began the report for 

ontrol Breaks 



Three-Level Control Breaks 

each location o n a n e w page, but which n o w lists all locations in the same region 
o n the same page. 

The computation of the c o m p a n y totals also changes. The two-level example 
waited for a control break on location, then rolled the location total into the c o m p a n y 
total. The same approach could be used in the three-level example, but it is more 
efficient to wait for a control break o n region, then roll the region total into the 
co m p a n y total. 

The hierarchy chart for the three-level problem is shown in Figure 15.9a, with 
the additional and/or modified modules shaded for emphasis. The placement of 
the n e w modules is important, and you should notice that the module P R O C E S S -
O N E - R E G I O N appears on the second level of the hierarchy chart, which in turn 
forces the existing module P R O C E S S - O N E - L O C A T I O N , and all of its subordinates, 
d o w n a level. 

Figure 15.9b is subject to the same design considerations as its predecessor, 
namely, completeness, functionality, and span of control. All design criteria appear 
satisfactory and the hierarchy chart is finished. 

Three-Level Algorithm 

SORT 
TRANSACTION 

FILE 

INITIALIZE 
LOCATION 

INITIALIZE 
SALESPERSON 

CALCULATE 
COMMISSION 

PREPARE 
SALES 

REPORT 

READ 
SORTED 

SALES-FILE 

WRITE 
REGION 

HEADING 

WRITE 
LOCATION 
HEADING 

WRITE 
SALESPERSON 

HEADING 

PROCESS 
ONE 

REGION 

PROCESS 
ONE 

LOCATION 

PROCESS ONE 
SALESPERSON 

PROCESS ONE 
TRANSACTION 

INCREMENT 
SALESPERSON 

TOTAL 

WRITE 
COMPANY 

TOTAL 

WRITE 
REGION 
TOTAL 

WRITE 
LOCATION 

TOTAL 

WRITE 
SALESPERSON 

TOTAL 

V READ 
SORTED 

SALES-FILE 

(a) Hierarchy Chart 

INCREMENT 
COMPANY 

TOTAL 

INCREMENT 
REGION 
TOTAL 

INCREMENT 
LOCATION 

TOTAL 



Chapter 15 Control Breaks 

(continued) 

Sort transaction file on region, location, and salesperson 
Open sorted-file, print-file 
Read first record 

— PERFORM UNTIL no more data 
Initialize region totals 
MOVE SR-REGION to PREVIOUS-REGION 
Write region heading 
PERFORM UNTIL REGION NOT EQUAL PREVIOUS-REGION 

or no more data 
Initialize location totals 
MOVE SR-LOCATION to PREVIOUS-LOCATION 
Write location heading 

:- PERFORM UNTIL SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 
or SR-REGION NOT EQUAL PREVIOUS-REGION 
or no more data 

Initialize salesperson totals 
MOVE SR-NAME to PREVIOUS-NAME 
Write salesperson heading 

I PERFORM UNTIL SR-NAME NOT EQUAL PREVIOUS-NAME 
or SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 
or SR-REGION NOT EQUAL PREVIOUS-REGION 
or no more data 

Calculate commission 
Write detail line 
Increment salesperson totals 
Read next record 

- ENDPERFORM 
Write salesperson totals 
Increment location totals 

- ENDPERFORM 
Write location totals 
Increment region totals 

ENDPERFORM 
Write region totals 
Increment company totals by region totals 

-ENDPERFORM 
Write company totals 
Close files 
Stop run 

The pseudocode for the two-level control break is expanded to its three-level 
counterpart in Figure 15.9b. N e w and/or modified statements are highlighted to be 
consistent with the associated hierarchy chart. 



Three-Level Control Breaks 

The sort statement includes region as an additional key as previously indicated. 
The major change, however, is the modification of the outer loop to include a series 
of repetitive statements for each n e w region that initialize the region totals, write 
the region heading, and process all locations in that region. The detection of a 
control break o n region occurs w h e n SR-REGION is unequal to P R E V I O U S - R E G I O N , 
and produces the region total, which is then rolled into the c o m p a n y total. 

Within each region, there is a second loop (carried over from the two-level 
application) to process all locations in that region. A c o m p o u n d condition, that 
includes location and region, is necessary to detect a control break o n location in 
the unusual instance where the last location in the current region and the first 
location in the next region have the same name. (This is in accordance with the 
general rule to detect a control break, which includes a c o m p o u n d condition that 
checks the level you are on, as well as any levels above the current level. Note, 
therefore, the c o m p o u n d condition associated with a control break o n salesperson 
that includes salesperson, location, and region.) 

The completed program is shown in Figure 15.10 and reflects all of the indicated 
changes. Once again, w e call your attention to the relationship between the hierarchy 
chart in Figure 15.9a and the paragraphs in the Procedure Division. T h e modules in 
the hierarchy chart correspond one to one with the paragraphs in the program. 
Observe also that each level in the hierarchy chart can be matched with a C O B O L 
P E R F O R M statement. 

The Working-Storage Section contains every statement from the previous 
program plus additional entries to accommodate the second control break. The 
region heading and total lines are defined in lines 93-96 and 157-165, respectively. 
There are n e w counters for the region totals, REGION-SALES-TOT, a n d R E G I O N -
C O M M - T O T , and a n e w data name, P R E V I O U S - R E G I O N , to detect the control 
break o n region. The n e w entries are shaded in the listing for emphasis. 

The S O R T statement (lines 191-198) specifies three k e y s — S O R T - R E G I O N , 
S O R T - L O C A T I O N , and S O R T - N A M E — t o sort the transaction file by region, location 
within region, and salesperson within location. The W I T H D U P L I C A T E S IN O R D E R 
phrase keeps the transactions for a given salesperson in sequence by account number 
since the input file (Figure 15.1) was already in sequence by account number. 

The remaining statements in the Procedure Division are straightforward and 
easy to follow given the earlier discussion of the hierarchy chart a n d associated 
pseudocode. Observe, for example, the paragraph to increment the c o m p a n y totals 
(lines 249-251), in which region totals are rolled into the c o m p a n y totals. Note, too, 
the c o m p o u n d condition in the P E R F O R M statement of lines 236-239 to detect a 
control break on salesperson. 

Three-Level Control Break Program 

l 
2 
3 
4 
5 

IDENTIFICATION DIVISION. 
PROGRAM-ID. THRLEVEL. 
AUTHOR. CVV. 

ENVIRONMENT DIVISION. 



Chapter 

CI (continued) 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT SALES-FILE ASSIGN TO 'A:\CHAPTR15\S0RTIN.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE 
ASSIGN TO PRINTER. 

SELECT SORT-WORK-FILE 
ASSIGN TO 'A:\CHAPTR15\S0RTWK.DAT'. 

SELECT SORTED-SALES-FILE ASSIGN TO 'A:\CHAPTR15\S0RT0UT.DAT 
ORGANIZATION IS LINE SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD SALES-FILE 

RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SALES-RECORD. 

01 SALES-RECORD PIC X(58). 

FD PRINT-FILE 
RECORD CONTAINS 132 CHARACTERS 
DATA RECORD IS PRINT-LINE. 

01 PRINT-LINE PIC X(132). 

SD SORT-WORK-FILE 
RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SORT-RECORD. 

01 SORT-RECORD. 
05 SORT-ACCOUNT-NUMBER PIC 9(6). 
05 FILLER PIC X. 
05 SORT-NAME PIC X(15). 
05 FILLER PIC X(10). 
05 SORT-LOCATION PIC X(15). 
05 SORT-REGION PIC X(ll). 

FD SORTED-SALES-FILE 
RECORD CONTAINS 58 CHARACTERS 
DATA RECORD IS SORTED-SALES-RECORD. 

01 SORTED-SALES-RECORD PIC X(58). 

WORKING-STORAGE SECTION. 
01 FILLER PIC X(14) 

VALUE "WS BEGINS HERE'. 

01 SALES-RECORD-IN. 
05 SR-ACCOUNT-NUMBER PIC 9(6). 
05 FILLER PIC X. 
05 SR-NAME PIC X(15). 

file://'A:/CHAPTR15/S0RTIN.DAT'
file://'A:/CHAPTR15/S0RTWK.DAT'
file://'A:/CHAPTR15/S0RT0UT.DAT


Three-Level Control Breaks 

(continued) 

53 05 SR-SALES PIC S9(4). 
54 05 FILLER PIC XX. 
55 05 SR-COMMISSION-PERCENT PIC V99. 
56 05 FILLER PIC XX. 
57 05 SR-LOCATION PIC X(15). —- Region is 

control fit 58 ! 05 SR-REGION PIC X(ll). k ' 
—- Region is 

control fit 
59 
60 01 PROGRAM-SWITCHES-AND-COUNTERS 
61 05 DATA-REMAINS-SW PIC X(3) VALUE 'YES'. 
62 88 NO-DATA-REMAINS VALUE 'NO'. 
63 05 PREVIOUS-NAME PIC X(15) VALUE SPACES. 
64 05 PREVIOUS-LOCATION PIC X(15) VALUE SPACES. 
65 1 05 PREVIOUS-REGION PIC X(ll) VALUE SPACES. '<r 
66 05 PAGE-COUNT PIC 99 VALUE ZEROES. 
67 
68 01 CONTROL-BREAK-TOTALS. 
69 05 INDIVIDUAL-TOTALS. 
70 10 IND-COMMISSION PIC S9{4). 
71 05 SALESPERSON-TOTALS. 
72 10 SALESPERSON-SALES-TOT PIC S9(6). 
73 10 SALESPERSON-COMM-TOT PIC S9{6). 
74 05 LOCATION-TOTALS. 
7 E 
/ J 10 LOCATION-SALES-TOT PIC S9(6). 
76 10 LOCATION-COMM-TOT PIC S9(6). Region to 

three-leve 77 05 REGION-TOTALS. 
Region to 
three-leve 

78 10 REGION-SALES-TOT PIC S9(6). 
79 10 REGION-COMM-TOT PIC S9(6). 
80 05 COMPANY-TOTALS. 
81 10 COMPANY-SALES-TOT PIC S9(6) VALUE ZEROS. 
82 10 COMPANY-COMM-TOT PIC S9(6) VALUE ZEROS. 
83 
84 01 REPORT-HEADING-LINE. 
85 05 FILLER PIC X(25) VALUE SPACES. 
86 05 FILLER PIC X(21) 
87 VALUE 'SALES ACTIVITY REPORT'. 
88 05 FILLER PIC X(19) VALUE SPACES. 
89 05 FILLER PIC X(5) VALUE 'PAGE '. 
90 05 HDG-PAGE PIC Z9. 
91 05 FILLER PIC X(60) VALUE SPACES. 
92 
93 01 REGION-HEADING-LINE. 
94 05 FILLER PIC X(8) VALUE 'REGION: '. 
95 05 HDG-REGION PIC X(ll) VALUE SPACES. 
96 05 FILLER PIC X(113) VALUE SPACES. 
97 
98 01 LOCATION-HEADING-LINE. 
99 05 FILLER PIC X(8) VALUE SPACES. 

jlais ate added to 
' ptogram 

Region heading 
added to three-it 
prog rain 



C h a p t e r 1 5 — Control Breaks 

F i g u r e 1 5 . 1 0 (continued) 

100 05 FILLER PIC X(10) 
101 VALUE 'LOCATION: 
102 05 HDG-LOCATION PIC X(19) VALUE SPACES. 
103 05 FILLER PIC X(95) VALUE SPACES. 
104 
105 01 SALESPERSON-HEADING-LINE-ONE. 
106 05 FILLER PIC X(15) VALUE SPACES. 
107 05 FILLER PIC X(13) 
108 VALUE 'SALESPERSON: '. 
109 05 HDG-NAME PIC X(15). 
110 05 FILLER PIC X(89) VALUE SPACES. 
111 
112 01 SALESPERSON-HEADING-LINE-TWO. 
113 05 FILLER PIC X(23) VALUE SPACES. 
114 05 FILLER PIC X(ll) VALUE 'ACCOUNT 
115 05 FILLER PIC X(9) VALUE SPACES. 
116 05 FILLER PIC X(5) VALUE 'SALES'. 
117 05 FILLER PIC X(8) VALUE SPACES. 
118 05 FILLER PIC X(10) VALUE MMISSION 
119 05 FILLER PIC X(66) VALUE SPACES. 
120 
121 01 DETAIL-LINE. 
122 05 FILLER PIC X(25) VALUE SPACES. 
123 05 DET-ACCOUNT-NUMBER PIC 9(6). 
124 05 FILLER PIC X(9) VALUE SPACES. 
125 05 DET-SALES PIC Z(3),ZZ9-. 
126 05 FILLER PIC X(7) VALUE SPACES. 
127 05 DET-COMMISSION PIC Z(3),ZZ9-. 
128 05 FILLER PIC X(69) VALUE SPACES. 
129 
130 01 DASHED-LINE. 
131 05 FILLER PIC X(40) VALUE SPACES. 
132 05 FILLER PIC X(8) VALUE ALL 
133 05 FILLER PIC X(7) VALUE SPACES. 
134 05 FILLER PIC X(8) VALUE ALL '-'. 
135 05 FILLER PIC X(69) VALUE SPACES. 
136 
137 01 SALESPERSON-TOTAL-LINE. 
138 05 FILLER PIC X(15) VALUE SPACES. 
139 05 FILLER PIC X(21) 
140 VALUE '** SALESPERSON TOTAL'. 
141 05 FILLER PIC X(3) VALUE SPACES. 
142 05 SALESPERSON-SALES-TOTAL PIC $Z(3),ZZ9-. 
143 05 FILLER PIC X(6) VALUE SPACES. 
144 05 SALESPERSON-COMM-TOTAL PIC $Z(3),ZZ9-. 
145 05 FILLER PIC X(69) VALUE SPACES. 
146 



Three-Level Control Breaks 

re 1 5 , 1 0 (continued) 

147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 

01 LOCATION-TOTAL-LINE. 

01 

01 

05 FILLER PIC X(13) VALUE SPACES 
05 FILLER PIC X(19) 

VALUE '**** LOCATION TOTAL'. 
05 FILLER PIC X(7) VALUE SPACES 
05 LOCATION-SALES-TOTAL PIC $Z(3) ,ZZ9-. 
05 FILLER PIC X(6) VALUE SPACES 
05 LOCATION-COMM-TOTAL PIC $Z(3),ZZ9-. 
05 FILLER PIC X(69) VALUE SPACES 

REGION-TOTAL-LINE. 
05 FILLER PIC X(ll) VALUE SPACES 
05 FILLER PIC X(19) 

VALUE '****** REGION TOTAL 1. 
05 FILLER PIC X(9) VALUE SPACES. 
05 REGION-SALES-TOTAL prr $7ni ,779-. 
05 FILLER PIC X(6) VALUE SPACES 
05 REGION-COMM-TOTAL PIC $Z(3),ZZ9-. 
05 FILLER PIC X(69) VALUE SPACES 

COMPANY-TOTAL-LINE. 
05 FILLER PIC X(9) VALUE SPACES 
05 FILLER PIC X(22) 

VALUE ********* COMPANY TOTAL 1. 
05 FILLER PIC X(8) VALUE SPACES 
05 COMPANY-SALES-TOTAL PIC $Z(3) .ZZ9-. 
05 FILLER PIC X(6) VALUE SPACES 
05 COMPANY-COMM-TOTAL PIC $Z(3),ZZ9-. 
05 FILLER PIC X(69) VALUE SPACES 

PROCEDURE DIVISION. 
100-PREPARE-SALES-REPORT. 

PERFORM 200-SORT-TRANSACTION-FIL.E. 
OPEN INPUT SORTED-SALES-FILE 

OUTPUT PRINT-FILE. 
PERFORM 220-READ-SORTED-SALES-FILE. 
PERFORM 240-PR0CESS-0NE-REGI0N 

UNTIL NO-DATA-REMAINS. 
PERFORM 260-WRITE-COMPANY-TOTAL. 
CLOSE SORTED-SALES-FILE 

PRINT-FILE. 
STOP RUN. 

200-S0RT-TRANSACTI0N-FILE. 
SORT SORT-WORK-FILE 

ASCENDING KEY 
SORT-REGION 



C h a p t e r 1 5 Control Breaks 

lure I S . t O (continued) 

194 ! SORT-LOCATION 
195 SORT-NAME 
196 WITH DUPLICATES IN O R D E R 
197 USING S A L E S - F I L E 
198 G I V I N G SORTED-SALES-FILE. 
199 
200 220-READ-SORTED-SALES-FILE. 
201 READ SORTED-SALES-FILE INTO SALES-RECORD-IN 
202 AT END MOVE 'NO' TO DATA-REMAINS-SW 
203 END-READ. 
204 
205 240-PR0CESS-0NE-REGI0N. ^-Region heading written for each new region 
206 PERFORM 300-INITIALIZE-REGI0N. 
207 [PERFORM 3 2 0 - W R I T E - R E G I O N - H E A D I N G T ] ^ 
208 PERFORM 340-PR0CESS-0NE-L0CATI0N 
209 U N T I L SR-REGION NOT EQUAL PREVIOUS-REGION 
210 _ O R NO-DATA-REMAINS. 
211 | PERFORM 360-I^ITE-RW0N-T0TAL71 
212 PERFORM 380-INCREMENT-COMPANY-TOTAL. Region total written alter cont'd break ctetec 

213 
214 260-WRITE-C0MPANY-T0TAL. 
215 MOVE COMPANY-SALES-TOT TO COMPANY-SALES-TOTAL. 
216 MOVE COMPANY-COMM-TOT T O COMPANY-COMM-TOTAL. 
217 WRITE P R I N T - L I N E FROM COMPANY-TOTAL-LINE 
218 A F T E R A D V A N C I N G 2 LINES. 
219 
220 300-INITIALIZE-REGION. 
221 MOVE SR-REGION TO PREVIOUS-REGION. 
222 INITIALIZE REGION-TOTALS. 
223 
224 320-WRITE-REGION-HEADING. 
225 ADD 1 TO PAGE-COUNT. 
226 MOVE PAGE-COUNT TO HD G - P A G E . 
227 WRITE PRINT-LINE FROM REPORT-HEADING-LINE 
2 2 8 A F T E R ADVANCING PAGE. 
229 MOVE SR-REGION TO HDG-REGION. 
230 WRITE PRINT-LINE FROM REGION-HEADING-LINE 
231 A F T E R A D V A N C I N G 2 LINES. 
232 
233 340-PROCESS-ONE-LOCATION. 
234 PERFORM 400-INITIALIZE-LOCATION. 
2 3 5 PERFORM 420-WRITE-L0CATI0N-HEADING. 
236 PERFORM 440-PR0CESS-0NE-SALESPERS0N 
237 U N T I L SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 
238 O R SR-REGION NOT EQUAL PREVIOUS-REGION 
239 OR NO-DATA-REMAINS. 
240 PERFORM 460-WRITE-L0CATI0N-T0TAL. 

Keys in SORT statement match control breaks 



Three-Level Control Breaks 

1© (continued) 

241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 

PERFORM 480-INCREMENT-REGION-TOTAL. 

360-WRITE-REGI0N-T0TAL. 
MOVE REGION-SALES-TOT TO REGION-SALES-TOTAL. 
M O V E REGION-COMM-TOT TO REGION-COMM-TOTAL. 
WRITE PRINT-LINE FROM REGION-TOTAL-LINE 

A F T E R ADVANCING 1 LINE. 

380-INCREMENT-COMPANY-TOTAL. 
ADD REGION-SALES-TOT TO COMPANY-SALES-TOT. 
ADD REGION-COMM-TOT TO COMPANY-COMM-TOT. 

400-INITIALIZE-L0CATI0N. 
MOVE SR-LOCATION TO PREVIOUS-LOCATION. 
INITIALIZE LOCATION-TOTALS. 

420-WRITE-LOCATION-HEADING. 
MOVE SR-LOCATION TO HDG-LOCATION. 
WRITE PRINT-LINE FROM LOCATION-HEADING-LINE 

A F T E R ADVANCING 1 LINE. 

440-PR0CESS-0NE-SALESPERS0N. 
PERFORM 500-INITIALIZE-SALESPERSON. 
PERFORM 520-WRITE-SALESPERSON-HEADING. 
PERFORM 540-PR0CESS-0NE-TRANSACTI0N 

U N T I L SR-NAME NOT EQUAL PREVIOUS-NAME 
OR SR-LOCATION NOT EQUAL PREVIOUS-LOCATION 

OR SR-REGION NOT EQUAL PREVIOUS-REGION 
OR NO-DATA-REMAINS. 

PERFORM 560-WRITE-SALESPERSON-TOTAL. 
PERFORM 580-INCREMENT-LOCATION-TOTAL. 

460-WRITE-L0CATI0N-T0TAL. 
MOVE LOCATION-SALES-TOT TO LOCATION-SALES-TOTAL. 
MOVE LOCATION-COMM-TOT TO LOCATION-COMM-TOTAL. 
W R I T E PRINT-LINE FROM LOCATION-TOTAL-LINE 

A F T E R ADVANCING 1 LINE. 
MOVE SPACES TO PRINT-LINE. 
W R I T E PRINT-LINE 

A F T E R ADVANCING 1 LINE. 

480-INCREMENT-REGION-TOTAL. 
j ADD LOCATION-SALES-TOT TO RIGION-SALES-TOTVI 
[ADD LOCATION-COMM-TOT TO REGION-COMM-TOT. [ 

500-INITIALIZE-SALESPERSON. 
MOVE SR-NAME TO PREVIOUS-NAME. 



C h a p t e r 1 5 — Control Breaks 

Figure 1 5 . 1 0 (continued) 

288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 

INITIALIZE SALESPERSON-TOTALS. 

520-WRITE-SALESPERSON-HEADING. 
MOVE SR-NAME TO HDG-NAME. 
WRITE PRINT-LINE FROM SALESPERSON-HEADING-LINE-ONE 

AFTER ADVANCING 1 LINE. 
WRITE PRINT-LINE FROM SALESPERSON-HEADING-LINE-TWO 

AFTER ADVANCING 1 LINE. 

540-PR0CESS-0NE-TRANSACTI0N. 
PERFORM 600-CALCULATE-COMMISSION. 
PERFORM 620-WRITE-DETAIL-LINE. 
PERFORM 640-INCREMENT-SALESPERSON-TOTAL. 
PERFORM 220-READ-SORTED-SALES-FILE. 

560-WRITE-SALESPERSON-TOTAL. 
WRITE PRINT-LINE FROM DASHED-LINE 

AFTER ADVANCING 1 LINE. 
MOVE SALESPERSON-SALES-TOT TO SALESPERSON-SALES-TOTAL. 
MOVE SALESPERSON-COMM-TOT TO SALESPERSON-COMM-TOTAL. 
WRITE PRINT-LINE FROM SALESPERSON-TOTAL-LINE 

AFTER ADVANCING 1 LINE. 
MOVE SPACES TO PRINT-LINE. 
WRITE PRINT-LINE 

AFTER ADVANCING 1 LINE. 

580-INCREMENT-LOCATION-TOTAL. 
ADD SALESPERSON-SALES-TOT TO LOCATION-SALES-TOT. 
ADD SALESPERSON-COMM-TOT TO LOCATION-COMM-TOT. Sales pe 

into loci 

600-CALCULATE-COMMISSION. 
COMPUTE IND-COMMISSION ROUNDED = 

SR-SALES * SR-COMMISSION-PERCENT 
SIZE ERROR DISPLAY 'SIZE ERROR ON COMMISSION FOR 

SR-NAME 
END-COMPUTE. 

620-WRITE-DETAIL-LINE. 
MOVE SR-ACCOUNT-NUMBER TO DET-ACCOUNT-NUMBER. 
MOVE SR-SALES TO DET-SALES. 
MOVE IND-COMMISSION TO DET-COMMISSION. 
WRITE PRINT-LINE FROM DETAIL-LINE. 

640-INCRMENT-SALESPERS0N-T0TAL. 
ADD SR-SALES TO SALESPERSON-SALES-TOT. 
ADD IND-COMMISSION TO SALESPERSON-COMM-TOT. 



mmary 

P R O G R A M M I N G T I P 

The algorithm for one-, two-, and three-level control breaks follows a general pattern that can be adopted for 
any control break application and/or any number of levels. We suggest, therefore, that you review the 
hierarchy chart, pseudocode, and/or COBOL programs that were developed in this chapter and see how 
those examples fit a general pattern. 

Start by determining the number of levels in the application, their relative importance (sort order), and 
corresponding field names. Identify the field names that will be used to detect a control break at each level— 
for example, SR-REGION, SR-LOCATION, and SR-NAME in the three-level example used in the text. 

Modify the hierarchy chart, pseudocode, and COBOL listings from the chapter to accommodate your 
specific application. Begin with the highest (most important) level and do the following for every level: 

1. Initialize the control totals for this level 

2. Initialize the field name to detect a control break at this level with the previous value 

3. Write the heading for this level (if any) 

4. Process this level until the field name at this level is not equal to the previous value 

OR the field name at a higher level is not equal to the previous value 

OR no data remains 

5. Write this level's total (if required) 

6. Increment the next higher level's total (rolling total) 

At the lowest (transaction) level: 

1. Perform the necessary calculations (if any) 

2. Write a detail line (if any) 

3. Increment the lowest level's total (running total) 

4. Read the next record 

There are no specific enhancements in COBOL-85 intended to facilitate the 
processing of control breaks. Accordingly, all of the listings in this chapter 
could be made to run under COBOL-74 with only minor modification, such as 
the removal of the END-READ scope terminator, and the WITH DUPLICATES 
clause in the sort statement; the latter would require an additional sort key on 
account number. 



Chapter 15 — Control Breaks 

U M M A R Y 

Points to Remember 
A control break is a change in a designated (control) field; any file used to 
process control breaks must be in sequence according to the control field. 

Control breaks may occur at multiple levels; for example, a two-level 
control break occurs when two control fields change simultaneously; in 
similar fashion a three-level control break occurs when three control fields 
change simultaneously. 

» There is no theoretical limit to the number of control breaks; there is a 
practical limit, however, in that most people lose track after three (or at 
most four) levels. 

Programs for one-, two-, and three-level control breaks are developed 
according to a genera! algorithm; the importance of a hierarchy chart and 
pseudocode in the design process cannot be over-emphasized. 

A running total is incremented by the value of the corresponding fieid in 
every transaction; a rolling total is incremented by a lower-level-control 
total only after a control break has occurred; rolling totals are more efficient 
than running totals. 

ICejf Words and Concepts 

Compound condition Pseudocode 
Control field Rolling total 
Control total Running total 
Control break Three-level control break 
Hierarchy chart Two-level control break 
One-level control break 

/ A / 

1. A in a designated field is known as a 

2. Any file used to process control breaks must be in according to 
the control fields. 

3. it (is/is not) possible for data in a given record to produce a control break on more 
than one field. 

4. Control break processing (is/is not) limited to one level. 

5. A program's hierarchy chart is best developed (before/after) the program is written. 

6. The more significant field in a two-level control break application is known as the 
field, whereas the less significant field is the 

field. 



7. (Pseudocode/hierarchy charts) depict a program's logic and decision-making 
sequence. 

8. A COBOL program to process control breaks (requires/does not require) the file to 
be in sequence. 

9. Running totals are (more/less) efficient than rolling totals. 

10. A total increments the value of a counter after every record. 

11. A total increments the value of a counter after a control break. 

T R U t f F A L S E 

1. Control break processing is restricted to a single level. 

2. Input to a control break program need not be in any special order. 

3. Modules in a hierarchy chart and paragraphs in a COBOL program correspond 
one to one. 

4. A hierarchy chart depicts decision-making logic. 

5. Each level In a hierarchy chart corresponds to a COBOL PERFORM statement. 

6. A two-level control break occurs when two control fields change simultaneously. 

7. A three-level control break implies the occurrence of one- and two-level control 
breaks as well. 

8. A three-level control breaks requires that three control totals be computed at each 
level. 

9. Rolling totals is a more efficient means of computation than running totals 

10. A rolling total increments a counter for every transaction. 

PROBLEMS 

1. Return once more to the two-level program in Figure 15.8 and note that the 
PERFORM statement to detect a break in salesperson (lines 188-190) includes the 
clause SR-LOCATION NOT EQUAL PREVIOUS-LOCATION. Why? (What would 
happen if this clause were not present and the last salesperson in one location had 
the same name as the first salesperson in the next location?) State a generalized 
rule for the compound condition in PERFORM statements that is needed to detect 
control breaks. 

2. What would be the consequences of omitting the SORT statement in the one-level 
control break program of Figure 15.6; that is, describe the appearance of the 
resulting report if the unsorted transaction file of Figure 15.1 were used in lieu of the 
sorted file in Figure 15.2a. Explain in general terms the consequences of omitting 
the SORT statement in any of the programs contained in the chapter. 

3. The one-level program of Figure 15.6 uses the data names SALESPERSON-SALES-
TOT and COMPANY-SALES-TOT to accumulate totals. 
a. Which data name(s) are computed as a running total? When, and by what 

amount, is the total incremented? 
b. Which data name(s) are computed as a rolling total? When, and by what 

amount, is the total incremented? 



C h a p t e r 1 5 — Control Breaks 

c. Repeat parts (a) and (b) for the two-level program of Figure 15.8. Answer for the 
data names SALESPERSON-SALES-TOT, LOCATION-SALES-TOT, and 
COMPANY-SALES-TOT. 

d. Repeat parts (a) and (b) for the three-level program of Figure 15.10. Answer for 
the data names SALESPERSON-SALES-TOT, LOCATION-SALES-TOT, REGION-
SALES-TOT, and COMPANY-SALES-TOT. 

4. The hypothetical Continental University is composed of multiple colleges, with 
each college divided into multiple departments. The central administration wants to 
know the total number of students in a variety of categories and uses a university-
wide ENROLLMENT-FILE to compute the desired totals. The following fields are 
present in each enrollment record: COLLEGE, DEPARTMENT, YEAR, NUMBER-
OF-STUDENTS. Identify the control fields and sorting sequence to produce each of 
the following reports. (Each report is to be treated independently.) 
a. The number of students in each year 
b. The number of students in each department 
c. The number of students in each college 
d. The number of students in each college and within college, the number of 

students in each department 
e. The number of students in each college and within college, the number of 

students In each year 



Overview 
S u b p r o g r a m s 

Called and Calling Programs 
COPY Statement 
Calling BY CONTENT and BY REFERENCE 

IN IT IAL C l a u s e 
A S y s t e m for P h y s i c a l F i t n e s s 

Programming Specifications 
Hierarchy Chart 
Pseudocode 

T h e C o m p l e t e d P r o g r a m s 
Main Program (FITNESS) 
Input Program (INPUTSUB) 
Weight-Range Program (WGTSUB) 
Training Program (TRAINSUB) 
Display Program (DSPLYSUB) 
Time Program (TIMESUB) 

T h e L i n k a g e Ed i tor 
Problems with the Linkage Editor 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



Chapter 16 Subprograms 

OBJECTIVES 

After reading this chapter you will be able to: 

I Define a subprogram and describe its implementation in COBOL. 

I Distinguish between a called and calling program; describe the use of a 
hierarchy chart to show the relationship of programs within a system. 

State the purpose of the COPY statement; indicate where it may be used 
within a program and how it can be used to pass a parameter list. 

Distinguish between the BY CONTENT and BY REFERENCE clauses as 
they relate to subprograms. 

Explain the function of the INITIAL phrase in the PROGRAM-ID paragraph. 

Describe the purpose of the linkage-editor; explain the meaning of an 
unresolved external reference. 

O V E R V I E W 

This chapter introduces the concept of subprograms in order to develop a 
system of programs associated with physical fitness. Each program is compiled 
as a separate entity, after which the individual object programs are linked 
together to produce a single load module. The chapter includes material on all 
necessary COBOL elements as well as a conceptual discussion on the role of 
the link program (linkage-editor). 

The COBOL presentation begins with the CALL statement and associated 
parameter list in the calling program, then presents the relationship with data 
names defined in the LINKAGE SECTION of the called program. It describes the 
different ways of passing parameters, either BY REFERENCE or BY CONTENT, 
and introduces the COPY statement as a means of simplifying program 
development. 

The chapter also serves as an effective review of earlier material in that the 
various subprograms utilize many features from previous chapters. Thus, we 
once again emphasize the importance of data validation from Chapter 8, illustrate 
advanced statements from the Procedure Division as covered in Chapter 9, 
review the screen I/O capabilities presented in Chapter 10, and incorporate 
material on both one- and two-level tables from Chapters 11 through 13. 



The P E R F O R M statement has been used throughout the text to divide a program 
into functional paragraphs, each of which is executed as necessary from elsewhere 
within the program. The individual paragraphs are developed in stages and 
implemented in hierarchical fashion through top-down testing. The individual 
paragraphs are, in effect, subroutines that are written, compiled, and executed 
within the main program. 

Alternatively, the performed routines m a y be developed as independent 
entities, k n o w n as subprograms, that are written and compiled separately from the 
main (calling) program. The subprograms within the same system m a y even be 
written by different programmers, but they are always executed under control of 
the main program. Subprograms bring to a system all the advantages of modularity 
that functional paragraphs bring to a program; for example, a change in one 
subprogram should not affect the internal workings of another subprogram nor the 
overall flow of the system. And, like the paragraphs in a program, the subprograms 
in a system m a y be developed and tested in top-down fashion. 

A subprogram contains the four divisions of a regular program, and in addition, 
a L I N K A G E S E C T I O N in its Data Division to hold the data passed to and from the 
calling program. Figure 16.1 contains statements extracted from the listings at the 
end of the chapter to illustrate the use of subprograms. In this example, the calling 
program contains the logic to accept persona! data from a user regarding the 
individual's height, age, and sex. It passes control to the sub (called) program 
W G T S U B , which determines the ideal range for the person's weight based o n the 
data received. The C A L L statement in the calling program matches the entry in the 
P R O G R A M - I D paragraph of the called program (WGTSUB). 

The C A L L statement transfers control to the first executable statement in the 
called program. The C A L L statement contains a U S I N G clause, which specifies the 
data on which the called program is to operate. The called program in turn contains 
a U S I N G clause in its Procedure Division header, indicating which data it is to 
receive from the calling program. The data names in either U S I N G clause are 
k n o w n collectively as the parameter or argument list. 

The data n a m e s in the two parameter lists can (but need not) be the same, but 
the order and structure of data names within the list is critical. The first item in the 
parameter list of the calling program is FITNESS-RECORD, and corresponds to the 
first item in the parameter list of the called program, which is also called ITTNESS-
R E C O R D . In similar fashion, the second and third items in the calling program 
( W E I G H T - F R O M and W E I G H T - T O ) correspond to the second and third items in 
the subroutine ( L S - W E I G H T - F R O M and LS-WEIGHT-TO). The picture clauses of 
the individual parameters (arguments) are the same, but the data names are different. 

The arguments in the calling program are defined either in the File Section or 
in Working-Storage, whereas the arguments in the called program m u s t be defined 
in the Linkage Section. The parameters in either program must be defined as 01 or 
elementary items; that is, group items (other than 01 entries) cannot be passed to a 
subprogram. 

Execution of the C A L L statement in the main program transfers control to the 
first executable statement of the subprogram, which executes exactly as a regular 
C O B O L program; the latter is terminated by an EXIT P R O G R A M statement that 
returns control to the calling program at the statement immediately after the CALL. 

The example in Figure 16.1 included only two programs, one calling program arid 
one called program. M o r e complex arrangements are also possible, for example: 



Chapter 16 — Subprograms 

p r e 1(6.1 COBOL Sta tements for a Subp rog ram 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FITNESS. 

DATA DIVISION. 
FILE SECTION. 
FD FITNESS-FILE 

DATA RECORD IS FITNESS-RECORD. 
01 FITNESS-RECORD. 

05 FULL-NAME PIC X(19). 
05 HEIGHT PIC 99. 
05 SEX PIC X. 
05 AGE PIC 99. 

WORKING-STORAGE SECTION. 

05 WEIGHT-FROM PIC 9(3). 
05 WEIGHT-TO PIC 9(3). 

PROCEDURE DIVISION. 

CALL WGTSUB 
USING FITNESS-RECORD, WEIGHT-FROM, WEIGHT-TO 

END-CALL. 

(Z) Mam program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. WGTSUB. 

iLINKAGE SECTION. 
01 LS-WEIGHT-FROM PIC 9(3). 
01 LS-WEIGHT-TO PIC 9(3). 
01 FITNESS-RECORD. 

05 FULL-NAME PIC X(19). 
05 HEIGHT PIC 99. 
05 SEX PIC X. 
05 AGE PIC 99. 

PROCEDURE DIVISION 
USING FITNESS-RECORD, LS-WEIGHT-FROM, LS-WEIGHT-TO. 

i EXIT PROGRAM. \ 
(b) Subprogram 

1. O n e program can ca l l multiple subprograms; for example, program A can 
call programs B, C, D, and E. 

2. O n e program c a n be called from different programs; for example, program F 
can be called from programs B and C. 



3. The same program can be both a called and calling program; for example, 
program A calls program B, which in turn calls program F. (Program E is 
both a called and calling program.) 
A hierarchy chart depicts the relationship of various programs to one another 

within a system, just as it shows the relationship of paragraphs within a program. 
The hierarchy chart in Figure 16.2, for example, illustrates the relationships just 
expressed. Thus, program A sits at the top of the hierarchy chart and calls programs 
B, C, D, and E. Program F is shown twice in the hierarchy chart, indicating that it 
(program F) is called from programs B and C. Programs B and C function as both 
called and calling programs; they are called from program A a n d in turn call 
program F. 

Called and Calling Programs 

PROGRAM 
A 

PROGRAM PROGRAM 
C 

PROGRAM 
F 

PROGRAM 
D 

PROGRAM 
E 

PROGRAM 
F 

T h e C O P Y Statement 
The data n a m e s used within different programs of the same system are often 
interrelated because the same file is apt to be referenced by several programs. The 
C O P Y statement facilitates the development of such programs by allowing the 
programmer to code a one-line C O P Y statement, which brings the associated entries 
into the C O B O L program. 

Figure 16.3 contains a C O P Y statement in which the programmer coded the 
line C O P Y T R A I N C P Y in line 27. The C O B O L compiler locates the file TRAINCPY, 
and brings in lines 28-34 as though the programmer had coded them explicitly. The 
compiler inserts a C after the statement n u m b e r in the source listing to indicate a 
copied statement. 

A C O P Y statement m a y be used anywhere within a C O B O L program, except 
that the text being copied cannot contain another COPY. The syntax of the C O P Y 
statement is simply: 

COPY text-name 



Chapter 16 Subprograms 

F i g u . ^ 1&..3 The COPY Statement 

27 
28C 
29C 
30C 
31C 
32C 
33C 
34C 

COPY TRAINCPY. 
01 TRAINING-ARGUMENTS. 

05 TRAINING-INPUTS. 
10 TRAIN-AGE 
10 TRAIN-FITNESS-LEVEL 

PIC 99. 
PIC X. 

05 TRAINING-RANGES. 
10 TRAIN-OVERALL-RANGE 
10 TRAIN-FITNESS-RANGE 

PIC X(5). 
PIC X(5). 

where text-name is the n a m e of a file (member, or element) that exists independently 
of the C O B O L program. A C O P Y statement is not restricted to subprograms; it can 
be used with any C O B O L program. C O P Y statements offer the following advantages: 

1. Individual programmers need not code the extensive Data Division entries 
that can m a k e C O B O L so tedious; a programmer can code a one-line C O P Y 
statement, and the compiler will bring the proper entries into the program. 

2. A n y change that affects multiple programs is m a d e only once, in the library 
version of the C O P Y element. Subsequent compilations of all programs 
containing a C O P Y statement for that element will automatically bring in the 
updated version. 

3. Programming errors are reduced through standardization and c o m m o n 
definition of data elements. All fields within a record description (or other 
copied element) in one program will always be correct and consistent with the 
definition in other programs using the same copied element. 

O n e of the most important principles of structured design is program independence, 
which minimizes (eliminates) the effect one program has o n another. The optional 
U S I N G BY CONTENT phrase prevents the values of parameters created in the 
calling program from being changed by the called program. Consider: 

[END-CALL] 

and an example: 
CALL 'SUBRIN' USING FIELD-A 

BY CONTENT FIELD-B FIELD-C 
BY REFERENCE FIELD-D. 

The C A L L statement passes four arguments, FIELD-A, FIELD-B, FIELD-C, and 
FIELD-D, to a subprogram that manipulates any or all of these parameters (referring 
to them by its o w n data n a m e s as defined in its L I N K A G E SECTION). However, the 
U S I N G B Y C O N T E N T phrase will restore the values of FIELD-B and FIELD-C to 
their initial values w h e n control is returned to the calling program, despite any 
changes m a d e to the corresponding parameters by the called program. 

CALL program 



ubprog rams 

P R O G R A M M I N G T I P 

The order of arguments in the CALL USING and P R O C E D U R E DIVISION USING clauses of the calling and 
called programs is critical. You can reduce the chance for error by using a C O P Y clause to pass parameters 
as shown. Consider: 

Poor Code: 

CALL 'WGTSUB' 
USING HEIGHT, SEX, AGE, WEIGHT-FROM, WEIGHT-TO 

END-CALL. 

PROCEDURE DIVISION 
USING LS-HEIGHT, LS-SEX, LS-AGE, LS-WGT-FROM, LS-WGT-TO. 

improved Code: 

COPY WGTLST. 
01 WEIGHT-TABLE-ARGUMENTS. 

05 WT-HEIGHT PIC 99. 
05 WT-SEX PIC X. 
05 WT-AGE PIC 99. 
05 WT-FR0M PIC 9(3). 
05 WT-T0 PIC 9(3) 

CALL 'WGTSUB' 
USING WEIGHT-TABLE-ARGUMENTS 

END-CALL. 

LINKAGE SECTION. 
COPY WGTLST. 

01 WEIGHT-TABLE-ARGUMENTS. 
05 WT-HEIGHT PIC 99. 
05 WT-SEX PIC X. 
05 WT-AGE PIC 99. 
05 WT-FR0M PIC 9(3). 
05 WT-T0 PIC 9(3). 

PROCEDURE DIVISION 
USING WEIGHT-TABLE-ARGUMENTS. 

Use of the single 01 parameter facilitates coding in the USING clauses and also makes them immune to 
change. Use of the same C O P Y member in both programs eliminates any problem with listing arguments in 
the wrong order or inconsistent definition through different pictures. 

N o such restriction is placed o n the value of FIELD-A, which will retain any 
value computed in the called program. The value of FIELD-D will also reflect changes 
m a d e by the called program, as it (FIELD-D) was specified in a U S I N G BY 
REFERENCE phrase; that is, U S I N G B Y R E F E R E N C E is equivalent to a C A L L 
statement with neither phrase. 



Chapter 16 Subprograms 

•A\ \ * ~ t C A s t w i ^ f e The INITIAL clause in the PROGRAM-ID paragraph restores a program to its initial 
state each time it is called; that is, all data n a m e s in Working-Storage are reset to 
their original values via any V A L U E clauses that are present. Consider: 

PROGRAM-ID. program-name [IS INITIAL PROGRAM]. 
The INITIAL clause makes it possible to start with an original (unmodified) copy of 
a called program every time it is executed. Alternatively, omission of the phrase 
causes every execution of a called program to begin with the values established in 
the latest (previous) execution. 

- x - vr l „ . C 3 T h e material o n subprograms will be incorporated into a system for physical fitness 
- 2 m a t obtains input from a user, determines various aspects of the individual's fitness, 

t /, ^ ̂  then displays the results at the end of processing. The individual programs illustrate 
"" ~ the transfer of control and passing of parameters between a called and calling 

program, and also review C O B O L material from earlier chapters as described in the 
chapter overview. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Physical Fitness System 

Narrative: The specifications call for a series of programs that constitute a system for physical 
fitness. A screen I/O program will accept and verify various inputs from a user, such as 
age, sex, and height, then pass control to a series of subprograms to compute the 
desired weight and target heart range at different levels of fitness. 

Input Fi les: There are no input or output files as all data are entered and displayed interactively via 
screen I/O. Figure 16.4 contains a sample screen for a hypothetical individual named 
Mr. Fit. The inputs provided by Mr. Fit are highlighted in the top half of the screen. The 
diagnostic messages produced by the system show Mr. Fit's weight of 185 to be within 
the desired range for his age, sex, and height. The system also suggests a target (10-
second) heart rate (after exercise) between 27 and 30 in accordance with his advanced 
fitness level. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Develop a series of programs that constitute a system for physical fitness as described 
below: 
a. A main program to govern the overall system and pass control to various 

subprograms as appropriate 
b. A subprogram to accept and validate an individual's personal data 
c. A subprogram to compute a goal weight based on an individual's sex, height, and 

age. 
d. A subprogram to compute a target heart rate (after sustained cardiovascular 

exercise) based on age and fitness level 
e. A subprogram to display the computed results for weight and target heart rate 

2. The main program is to control the overall system by passing (receiving) control from 
the various subprograms. The system is to execute continually—that is, for multiple 
individuals—until it receives a response that no one else wishes to use the system. 



A System tor Physical Fitness 

3. The input program is to accept the following fields as indicated in Figure 16.4: Name, 
Age, Sex, Weight, Height, and Fitness level. Validation checks are required as follows: 
a. A name must be entered 
b. Age must be 18 or higher 
c. Sex must be male or female; the system should accept both upper- and lowercase 

letters as valid characters, 
d. Height is to be entered in inches and must be consistent with the tables available to 

the system; valid male heights are between 60 and 76 inches; valid female heights 
must be between 54 and 74 inches. 

e. The fitness level should be entered as a single letter, B, I, or A, corresponding to 
Beginner, Intermediate, or Advanced. The system should accept both upper- and 
lowercase letters as valid characters. 

The input program is to display appropriate prompts and error messages for each of 
these fields. In addition, it should also display the current time as shown in the upper 
right portion of Figure 16.4. 

4. The goal weight is determined from a person's sex, height, and age as shown in the 
tables of Figure 16.5. 

5. The minimum and maximum target (training) heart ranges, expressed for a 10-second 
period after exercise, are determined from an individual's age according to the 
formulas: 

Minimum target (10 seconds) = .60 * (220 - AGE) / 6 
Maximum target (10 seconds) = .90 * (220 - AGE) / 6 

The target range can also be adjusted according to the individual's fitness level and 
the range between the maximum and minimum values; that is, those at a beginner's 
level of fitness should aim for a target heart range in the lower third of the interval, 
those with intermediate fitness in the middle third, and those at an advanced level in 
the upper third. 

Figure 16 .4 Fitness Screen 

) Personal Fitness Evaluation 

j Full Name: Mr. Fit 

I Age: 22 Weight: 185 
| Sex (M/F): M Height: 74 

11:53:10 j 
I 
I 
i 
I 

Fi tness Level: A } 
B - Beginner j 
I - Intermediate j 
A - Advanced \ 

Your Goal Weight Range: 163-196 
CONGRATULATIONS! You are within the range 

Training Heart Rate Range Information (10 Second) 
Overall Heart Rate Range: 20-30 
Adjusted for Fitness Level: 27-30 

Another Person (Y/N): 



C h a p t e r 16 — Subprograms 

Height 
(in inches) 

Age (in years) Height 
(in inches) 18 19-20 21-22 23-24 25 & Over 

54 83-99 84-101 85-103 86-104 88-106 

55 84-100 85-102 86-104 88-105 90-107 

56 86-101 87-103 88-105 90-106 92-108 

57 89-102 90-104 91-106 92-108 94-110 

58 91-105 92-106 93-109 94-111 96-113 

59 93-109 94-111 95-113 96-114 99-116 

60 96-112 97-113 98-115 100-117 102-119 

61 100-116 101-117 102-119 103-121 105-122 

62 104-119 105-121 106-123 107-125 108-126 

63 106-125 107-126 108-127 109-129 111-130 

64 109-130 110-131 111-132 112-134 114-135 

65 112-133 113-134 114-136 116-138 118-139 

66 116-137 117-138 118-140 120-142 122-143 

67 121-140 122-142 123-144 124-146 126-147 

68 123-144 124-146 126-148 128-150 130-150 

69 130-148 131-150 132-152 133-154 134-155 

70 134-151 135-154 136-156 137-158 138-159 

71 138-155 139-158 140-160 141-162 142-163 

72 142-160 143-162 144-164 145-166 146-167 

73 146-164 147-166 148-168 149-170 150-171 

74 150-168 151-170 152-172 153-174 154-175 

(a) Goal Weights for Women 

Height 
(in inches) 

Age (in years) Height 
(in inches) 18 19-20 21-22 23-24 25 & Over 

60 109-122 110-133 112-135 114-137 115-138 

61 112-126 113-136 115-138 117-140 118-141 

62 115-130 116-139 118-140 120-142 121-144 

63 118-135 119-143 121-145 123-147 124-148 

64 120-145 122-147 124-149 126-151 127-152 

65 124-149 125-151 127-153 129-155 130-156 

66 128-154 129-156 131-158 133-160 134-161 

67 132-159 133-161 134-158 136-165 138-166 

68 135-163 136-165 138-167 140-169 142-170 

69 140-163 141-169 142-171 144-173 146-174 

70 143-170 144-173 146-175 148-178 150-179 

71 147-177 148-179 150-181 152-183 154-184 

72 151-180 152-184 154-186 156-188 158-189 

73 155-187 156-189 158-190 160-193 162-194 

74 160-192 161-194 163-196 165-198 167-199 

75 165-198 166-199 168-201 170-203 172-204 

76 170-202 171-204 173-206 175-208 177-209 

(b) Goal Weights for Men 

Figure 16.5 Table of Goal Weights 



A System for Physical Fitness 

The hierarchy chart has been used throughout the text to indicate the required 
functions within a COBOL program. It can also be used to indicate the relationship 
of programs within a system as shown in Figure 16.6. 

Figure 16 .6 Hierarchy Chart of the Overall System 

FITNESS 
EVALUATION 

(FITNESS) 

INPUT 
PERSONAL 

DATA 
(INPUTSUB) 

DETERMINE 
GOAL WEIGHT 

(WGTSUB) 

DETERMINE 
TRAINING 

RANGE 
(TRAINSUB) 

DISPLAY 
EVALUATION 

RESULTS 
(DSPLYSUB) 

w DISPLAY 
UPDATED 

TIME 
(TIMESUB) 

DISPLAY 
UPDATED 

TIME 
(TIMESUB) 

The module at the top of the hierarchy chart, FITNESS-EVALUATION, is the 
main program for the overall system; it has four subordinates (subprograms) in 
accordance with the processing specifications: I N P U T - P E R S O N A L - D A T A , 
DETERMINE-GOAL-WEIGHT, DETERMINE-TRAINING-RANGE, a n d DISPLAY-
EVALUATION-RESULTS. (The entries in parentheses correspond to the n a m e of 
the program as it appears in the PROGRAM-ID paragraph.) A sixth program, 
DISPLAY-UPDATED-TIME, is subordinate to the programs to accept and display 
the data. 

The logic for the overall system (main program) is contained in the pseudocode of 
Figure 16.7. The main program is driven by a single loop to process multiple 
individuals (as per the second processing specification) until a negative response is 
received regarding continuation. This is consistent with the corresponding prompt 
at the bottom of Figure 16.4, which asks whether there is another user. 

The logic within the loop is straightforward and passes control from one 
subprogram to the next in sequential fashion. Note, however, the requirement to 
establish a parameter list prior to calling each subprogram, and further, h o w the 
parameter lists for the different subprograms contain different variables. Observe 
also that the parameter list for the last program references another-person-switch, 
which determines whether execution is to continue. 



C h a p t e r 16 Subprograms 

Pseudocode 

I 
j 

DO WHILE user wants to continue j 

CALL INPUTSUB subprogram to get personal information | 

Establish parameter list (height, age, sex, weight-from, weight-to) ' 
for WGTSUB program I 

Call WGTSUB program to determine weight goals j 

Establish parameter list (age, fitness-level, overall-range, j 
fitness-range) for TRAINSUB program j 

Call TRAINSUB program to determine training ranges j 

Establish parameter list (training ranges, weight-goals, j 
another-person-swi tch) for DSPLYSUB program | 

Call DSPLYSUB program to display results and request continuation 1 

•— ENDDO i 
Stop run | 

i . j , c\ v..-*., The next several pages contain listings for the completed programs according to the 
description in Table 16.1. W e have, however, in the interest of space, omitted the 
pseudocode and hierarchy chart for the individual programs. 

Main Program ( F I T N E S S ) .. 
The main program in Figure 16.8 contains neither an Environment Division nor a 
File Section as all input/output operations are accomplished via the screen. The 
Working-Storage Section consists largely of four C O P Y statements corresponding 
to the parameter lists for each of the four called programs. The programmer codes a 
single statement, such as C O P Y I N P U T R E C in line 10. The compiler locates the file 
I N P U T R E C and brings in lines 11 through 26 as though the programmer had coded 
them explicitly. 

The mainline paragraph in lines 69-76 corresponds exactly to the pseudocode 
in Figure 16.7. The INITIALIZE statement in line 79 clears the parameters passed to 
the input program and is necessary so that the input values from one user are not 
carried over to the next user. The C A L L statement in lines 80-82 transfers control to 
the input subprogram, using a single parameter, I N P U T - I N F O R M A T I O N , which is 
copied into both programs. 

A different parameter list is created immediately prior to calling each of the 
remaining subprograms; for example, lines 85-87 m o v e the data n a m e s for age, 
height, and sex—obtained from the input subprogram—to the corresponding data 
n a m e s in the parameter list for the weight program. Observe also h o w the C A L L 
statement uses a single 01 entry, W E I G H T - A R G U M E N T S , as the parameter list and 
further, h o w the entry is copied into the program (line 40). The same technique is 
used prior to the C A L L statement for the training program in lines 95-97, and prior 
to the C A L L statement for the final display program in lines 105-107. 



The Completed Programs 

Physical Fitness System 

FITNESS 

INPUTSUB 

TRA1NSUE 

Calls INPUTSUB, W G T S U B , Figure 16.1 
TRAINSUB, and DSPLYSUB 

Called from FITNESS; calls 
TIMESUB 

Caiied from FITNESS 

Called from FITNESS 

Figure 16.10 

Figure 16.11 

The mam program governs the overall system; it 
passes control to the input subprogram, which 
accepts input from the user, passes control to the 
weight and training programs, then passes control 
to the display subprogram that displays the 
calculated results. The main program executes 
continually until the user elects to exit. 

Figure 16.9 The input subprogram obtains all required inputs 
from the user (name, age, sex, height, and fitness 
level), validating each field as it is entered. The 
program reviews the screen section that was first 
presented in Chapter 10. 

The weight subprogram accepts an individual's 
sex, height, and age, then determines a range for 
the person's desired weigh!. The program reviews 
two-level tables as presented in Chapter 12. 

The training subprogram determines an individual's 
target heart rate according to age and fitness level. 
The program reviews various Procedure Division 
statements and scope terminators from earlier 
chapters. 

DSPLYSUB Called from Fl TNESS; calls Figure 16.12 The display subprogram updates the original 
T IMESUB screen created by the input program, using various 

options for the ACCEPT and DISPLAY statements, 
thus reviewing additional material from Chapter 10. 

TIMESUB Called from INPUTSUB and Figure 16.13 The time subprogram is included to show that a 
DSPLYSUB subprogram need not contain a Linkage Section, 

and further that it can be called from multiple 
calling programs. It also illustrates the means of 
obtaining the current time from the system and 
reference modification. 

Fitness Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. FITNESS. 
3 AUTHOR. CVV. 
4 
5 DATA DIVISION. 
6 WORKING-STORAGE SECTION. 
7 01 FILLER PIC X(36) 
8 VALUE 'WS BEGINS HERE FOR FITNESS PROGRAM'. 



C h a p t e r 1 6 — Subprogram 

ire 1 6 . 8 (continued) 

10 COPY INPUTREC. 
! STCPY> 

12 
I 13 
1 14 
! 15 
! 16 

17 
18 
19 
20 
21 
22 
23 
24 
25 

E0CPY> 
27 
28 

STCPY> 
30 
31 
32 
33 
34 
35 
36 
37 

EDCPY> 
39 
40 

STCPY> 
42 
43 
44 
45 
46 
47 
48 
49 

EDCPY> 

01 INPUT-INFORMATION. 
05 INP-FULL-NAME 

88 MISSING-NAME 
INP-AGE 
88 INVALID-AGES 
INP-SEX 
88 VALID-SEX 
88 MALE 
88 FEMALE 
INP-HEIGHT 
INP-WEIGHT 
88 INVALID-WEIGHTS 

VALUES 0 THRU 70 500 THRU 999. 
INP-FITNESS-LEVEL PIC X. 
88 VALID-FITNESS-LEVELS 

VALUES 'B' 'I' 'A' 'b' 'i' ' a ' 

05 

05 

05 
05 

05 

PIC X(30). 
VALUE SPACES. 

PIC 99. 
VALUES 0 THRU 17. 

PIC X. 
VALUES 
VALUES 
VALUES 

m 
V 
'f 

PIC 99. 
PIC 9(3). 

01 
COPY TRAINCPY. 

TRAINING-ARGUMENTS. 
05 TRAINING-INPUTS. 

10 TRAIN-AGE 
TRAIN-FITNESS-LEVEL 10 

PIC 99. 
PIC X. 

88 
88 
88 

BEGINNER 
INTERMEDIATE 
ADVANCED 

VALUE 'B' 'b' 
VALUE '11 'i 1 

VALUE 'A' 'a' 
05 TRAINING-RANGES. 

10 TRAIN-OVERALL-RANGE PIC X(5). 
10 TRAIN-FITNESS-RANGE PIC X(5). "•Lowercase responses are accepted 

COPY WGTCOPY. 
01 WEIGHT-ARGUMENTS. 

05 WEIGHT-TABLE-INPUTS. 
10 WGT-HEIGHT 
10 WGT-AGE 
10 WGT-SEX 

88 MALE 
88 FEMALE 

05 WEIGHT-GOALS. 
10 GOAL-WGT-FROM 

-Startof COPY AREA 

PIC 99. 
PIC 99. 
PIC X. 

VALUE 'M' 'm'. 
VALUE ' F' 'f . 

10 GOAL-WGT-TO K 
PIC 999. 
PIC 999. 

€OOPYAREA 51 
52 COPY DISPCPY. 

STCPY> 01 DISPLAY-ARGUMENTS. 
54 05 DISP-TRAINING-RANGES. 
55 10 DISP-TRAIN-OVERALL-RANGE PICX(5). 
56 10 DISP-TRAIN-FITNESS-RANGE PIC X(5). 
57 05 DISP-WEIGHT-GOALS. 
58 10 DISP-GOAL-WGT-FROM PIC ZZ9. 
59 10 DISP-GOAL-WGT-TO PIC ZZ9. 



The Completed Programs 

(continued) 

60 
61 
62 

EDCPY> 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
8 2 
83 
84 
85 
8 6 
87 
8 8 
8 9 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 

05 DISP-INPUT-WEIGHT 
05 ANOTHER-PERSON-SWITCH 

8 8 NO-MORE-PERSONS 
8 8 VALID-ANOTHER 

PIC 9 ( 3 ) . 
PIC X VALUE SPACES. 

VALUE 'N' V . 
VALUE 'N' V ' Y' 

01 FILLER PIC X(32) 
VALUE 'WS ENDS HERE FOR FITNESS PROGRAM' 

PROCEDURE DIVISION. 
000-FITNESS-EVALUATION. 

PERFORM UNTIL NO-MORE-PERSONS 
PERFORM 100-INPUT-PERSONAL-DATA 
PERFORM 200-GOAL-WEIGHT-RANGE 
PERFORM 300-TRAIN-RATE-RANGE 
PERFORM 400-DISPLAY-RESULTS 

END-PERFORM. 
STOP RUN. 

100-INPUT-PERSONAL-DATA. 
INITIALIZE IJNPUT-INFORMATION, 

f C A L L ' I N P U T S U B ' " ~ H 
; USING INPUT-INFORMATION^ j 
I END-CALL. H 

200-GOAL-WEIGHT-RANGE. 
MOVE INP-AGE TO WGT-AGE. 
MOVE INP-HEIGHT TO WGT-HEIGHT. 

_ M O V E INP-SEX TO WGJ-SEX. 
' CALL^'WGfsUB' ~~ / ( 

USING WEIGHT-ARGUMENTS-'^ 
END-CALL. 

300-TRAIN-RATE-RANGE. 
MOVE INP-AGE TO TRAIN-AGE. 
MOVE INP-FITNESS-LEVEL TO TRAIN-FITNESS-LEVEL. 
C A L L 'TRAINSUB 1 

USING TRAINING-ARGUMENTS 
END-CALL. 

400-DISPLAY-RESULTS. 
MOVE TRAIN-OVERALL-RANGE TO DISP-TRAIN-OVERALL-RANGE. 
MOVE TRAIN-FITNESS-RANGE TO DISP-TRAIN-FITNESS-RANGE. 
MOVE GOAL-WGT-FROM TO DISP-GOAL-WGT-FROM. 
MOVE GOAL-WGT-TO TO DISP-GOAL-WGT-TO. 
MOVE INP-WEIGHT TO DISP-INPUT-WEIGHT. 
CALL 'DSPLYSUB' 

USING DISPLAY-ARGUMENTS 
END-CALL. 



C h a p t e r 1 6 — Subprograms 

Input Program fiMPtJTSOlI) 
The input program in Figure 16.9 reviews data validation and screen I/O as presented 
in Chapter 10. It also functions as a subprogram, and hence the Linkage Section in 
lines 53-70 which defines the data names passed from the calling (fitness) program. 
Note the relationship between the C A L L statement in the calling program (lines 
80-82 in Figure 16.8) and the Procedure Division header in line 120 of this program, 
both of which contain the 01 entry, I N P U T - I N F O R M A T I O N . The latter is copied 
into both programs in accordance with the programming tip o n page 481. 

The input program also contains a second C O P Y statement, C O P Y C O L O R C P Y , 
to define the various colors available with screen I/O. The Screen Section defines an 
input screen consistent with the display s h o w n earlier in Figure 16.4; it also utilizes 
various features of screen I/O (line and column positioning, reverse video, and 
underlining) as presented in Chapter 10. 

The Procedure Division accepts and validates the input parameters, one at a 
time, in accordance with the table of error messages defined in lines 37-48. Each 
parameter is processed in a separate paragraph, which utilizes the D O U N T I L 
(TEST AFTER) construct described earlier in Chapters 9 and 10. 

F i g u r e 16.9 Input Subprogram 

1 IDENTIFICATION DIVISION. 
2 PROGRAM- ID. INPUTSUB. _ 
3 AUTHOR. CVV. 
4 
5 DATA DIVISION. 
6 WORKING-STORAGE SECTION. 
7 01 FILLER PIC X(38) 
8 VALUE 'WS BEGINS HERE FOR SUBPROGRAM INPUTSUB'. 
9 
10 01 PROGRAM-SWITCHES. 
11 05 VALID-FIELD-SWITCH PIC XX. 
12 88 VALID-FIELD VALUE SPACES. 
13 05 CONFIRM-SWITCH PIC X. 
14 88 ALL-DATA-VALID VALUE 'Y' 'y'. 
15 
16 COPY COLORCPY. 

STCPY> 01 SCREEN-COLORS. PIC S9(4) C0MP-5. 
18 * COLORS FOR FOREGROUND AND BACKGROUND 
19 78 BLACK VALUE 0. 
20 78 BLUE VALUE 1. 
21 78 GREEN VALUE 2. 
22 78 CYAN VALUE 3. 
23 78 RED 4. 
24 78 MAGENTA 5. 
25 78 BROWN 6. 
26 78 WHITE 7. 
27 * ADDITIONAL COLORS FOR FOREGROUND ONLY 
28 78 BRIGHT-BLACK 8. 
29 78 BRIGHT-BLUE 9. 
30 78 BRIGHT-GREEN 10. 
31 78 BRIGHT-CYAN 11. 



The Completed Programs 

(continued) 

32 
33 
34 

EDCPY> 
36 
37 
38 

47 
48 
49 
50 
51 
52 
53 
54 

STCPY> 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

EDCPY> 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

78 BRIGHT-RED 12. 
78 BRIGHT-MAGENTA 13. 
78 BRIGHT-BROWN 14. 
78 BRIGHT-WHITE 15. 

01 ERROR-VALUES-TABLE. 
05 ERROR-MESSAGE-VALUES. 

39 10 PIC X(30) VALUE ' Name must be Entered 
40 10 PIC X(30) VALUE ' Age must be over 17 
41 10 PIC X(30) VALUE ' Sex must be M or F' 
42 10 PIC X(30) VALUE ' Weight must be > 70 & < 500' 
43 10 PIC X(30) VALUE ' Male Height must be 60"--76"' 
44 10 PIC X(30) VALUE 1 Female Height must be 54 -74" 
45 10 PIC X(30) VALUE 'Fitness Level must be B I or A 
46 05 ERROR-MESSAGE -TABLE REDEFINES ERROR-MESSAGE-VALUES. 

01 

10 ERROR-MESSAGE OCCURS 7 TIMES 
INDEXED BY ERROR-INDEX PIC X(30). 

FILLER PIC X(36) 
VALUE 'WS ENDS HERE FOR SUBPROGRAM INPUTSUB' 

|LINKAGE SECTION. 
COPY INPuTREC. 

01 INPUT-INFORMATION. 
05 INP-FULL-NAME 

88 MISSING-NAME 
INP-AGE 
88 INVALID-AGES 
INP-SEX 
88 VALID-SEX 
88 MALE 
88 FEMALE 
INP-HEIGHT 
INP-WEIGHT 
88 INVALID-WEIGHTS 

VALUES 0 THRU 70 500 THRU 999 
INP-FITNESS-LEVEL PIC X. 
88 VALID-FITNESS-LEVELS 

VALUES 'B' 'I' 'A' 'b' 'i' 'a 

05 

05 

05 
05 

05 

PIC X(30). 
VALUE SPACES. 

PIC 99. 
VALUES 0 THRU 17. 

PIC X. 
VALUES 'M' 'm' ' 
VALUES 'M' 'm'. 
VALUES 'F' 'f'. 

PIC 99. 
PIC 9(3). 

F' ' f 

j SCREEN SECTION, j 
01 INPUT-SCREEN. 

05 BLANK SCREEN FOREGROUND-COLOR WHITE 
BACKGROUND-COLOR BLUE. 

05 SCREEN-PROMPTS. 
10 LINE 1 COLUMN 9 

VALUE 'Personal Fitness Evaluation'. 
10 LINE 3 COLUMN 4 VALUE 'Full Name:'. 
10 LINE 5 COLUMN 4 VALUE 'Age: '. 
10 LINE 5 COLUMN 22 VALUE 'Weight:'. 



Chapter 16 Subprograms 

F i g u r e 1 8 . 9 (continued) 

82 10 LINE 5 COLUMN 44 VALUE 'Fitness Level:'. 
83 10 LINE 6 COLUMN 4 VALUE 'Sex (M/F):'. 
84 10 LINE 6 COLUMN 22 VALUE 'Height:'. 
85 10 LINE 6 COLUMN 45 VALUE 'B - Beginner 
86 FOREGROUND-COLOR BLACK BACKGROUND-COLOR CYAN. 
87 
88 

10 LINE 7 COLUMN 45 VALUE 'I - Intermediate' 
FOREGROUND-COLOR BLACK BACKGROUND-COLOR CYAN. 

89 10 LINE 8 COLUMN 45 VALUE 'A - Advanced 
90 FOREGROUND-COLOR BLACK BACKGROUND-COLOR CYAN. 
91 
92 05 SCREEN-INPUTS. 
93 10 SCR-FULL-NAME LINE 3 COLUMN 15 PIC X(30) 
94 USING INP-FULL-NAME REVERSE-VIDEO. 
95 10 SCR-AGE LINE 5 COLUMN 9 PIC 99 
96 USING INP-AGE REVERSE-VIDEO REQUIRED AUTO. 
97 10 SCR-WEIGHT LINE 5 COLUMN 30 PIC 999 
98 USING INP-WEIGHT REVERSE-VIDEO REQUIRED AUTO. 
99 10 SCR-FITNESS-LEVEL LINE 5 COLUMN 59 PIC X 
100 USING INP-FITNESS-LEVEL REVERSE-VIDEO AUTO. 
101 10 SCR-SEX LINE 6 COLUMN 15 PIC X 
102 USING INP-SEX REVERSE-VIDEO AUTO. 
103 10 SCR-HEIGHT LINE 6 COLUMN 30 PIC 99 
104 USING INP-HEIGHT REVERSE-VIDEO REQUIRED AUTO. 
105 
106 01 CONFIRM-SCREEN HIGHLIGHT. 
107 05 LINE 23 COLUMN 13 UNDERLINE 
108 FOREGROUND-COLOR GREEN 
109 BACKGROUND-COLOR MAGENTA 
110 VALUE 'Is the above information correct? '. 
111 05 LINE 24 COLUMN 21 
112 FOREGROUND-COLOR GREEN 
113 BACKGROUND-COLOR MAGENTA 
114 VALUE ' (Y - Yes, N - No) '. 
115 05 SCR-CONFIRM LINE 23 COLUMN 49 PIC X 
116 FOREGROUND-COLOR MAGENTA 
117 BACKGROUND-COLOR GREEN 
118 USING CONFIRM-SWITCH. 
119 
120 PROCEDURE DIVISION USING INPUT-INFORMATION. 
121 000 -INPUT-PERSONAL-DATA. 
122 INITIALIZE PROGRAM-SWITCHES. | . „,,..,,, 
123 PERFORM UNTIL ALL-DATA-VALID "'~t 

124 DISPLAY INPUT-SCREEN 
125 CALL 'TIMESUB' 
126 PERFORM 200-VALIDATE-DATA 
127 PERFORM 300-CONFIRM-INPUT-SCREEN 
128 END-PERFORM. 
129 EXIT PROGRAM. | _ ^ , 
130 ,„.-\/y h HULr-'nAivi itiiuHlS CL'-lli0! iQ 

131 200 -VALIDATE-DATA. 



The Completed Programs 

(continued) 

132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 

PERFORM 210-VALIDATE-NAME. 
PERFORM 220-VALIDATE-AGE. 
PERFORM 230-VALIDATE-SEX. 
PERFORM 240-VALIDATE-WEIGHT. 
PERFORM 250-VALIDATE-HEIGHT. 
PERFORM 260-VALIDATE-FITNESS-LEVEL. 

210-VALIDATE-NAME. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-FULL-NAME 
IF MISSING-NAME 

SET ERROR-INDEX TO 1 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

ELSE 
PERFORM 288-CLEAR-ERRORS 

END-IF 
END-PERFORM. 

220-VALIDATE-AGE. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-AGE 
IF INVALID-AGES 

SET ERROR-INDEX TO 2 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

ELSE 
PERFORM 288-CLEAR-ERRORS 

END-IF 
END-PERFORM. 

230-VALIDATE-SEX. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-SEX 
IF VALID-SEX 

PERFORM 288-CLEAR-ERRORS 
ELSE 

SET ERROR-INDEX TO 3 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

END-IF 
END-PERFORM. 

240-VALIDATE-WEIGHT. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-WEIGHT 
IF INVALID-WEIGHTS 

SET ERROR-INDEX TO 4 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

ELSE 
PERFORM 288-CLEAR-ERRORS 

END-IF 
END-PERFORM. 



Chapter 1 6 — Subprograms 

~i%m-ii - ; -6J* (continued) 

182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 

250-VALIDATE-HEIGHT. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-HEIGHT 
EVALUATE TRUE ALSO INP-HEIGHT 

WHEN MALE ALSO NOT 60 THRU 76 
SET ERROR-INDEX TO 5 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

WHEN FEMALE ALSO NOT 54 THRU 74 
SET ERROR-INDEX TO 6 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

WHEN OTHER 
PERFORM 288-CLEAR-ERRORS 

END-EVALUATE 
END-PERFORM. 

260-VALIDATE-FITNESS-LEVEL. 
PERFORM WITH TEST AFTER UNTIL VALID-FIELD 

ACCEPT SCR-FITNESS-LEVEL 
IF VALID-FITNESS-LEVELS 

PERFORM 288-CLEAR-ERRORS 
ELSE 

SET ERROR-INDEX TO 7 
PERFORM 299-DISPLAY-ERROR-MESSAGE 

END-IF 
END-PERFORM. 

288-CLEAR-ERRORS. 
INITIALIZE VALID-FIELD-SWITCH. 
DISPLAY ' ' LINE 24 WITH BLANK LINE. 

299-DISPLAY-ERROR-MESSAGE. 
CALL 'TIMESUB'. 
MOVE 'NO' TO VALID-FIELD-SWITCH. 
DISPLAY ERROR-MESSAGE (ERROR-INDEX) 

LINE 24 COLUMN 25 WITH HIGHLIGHT BLINK BEEP 
FOREGROUND-COLOR BRIGHT-WHITE 
BACKGROUND-COLOR RED. 

300-CONFIRM-INPUT-SCREEN. 
DISPLAY CONFIRM-SCREEN. 
ACCEPT SCR-CONFIRM. 

The weight-range program in Figure 16.10 reviews material o n multilevel programs 
as presented in Chapter 13. The Working-Storage Section defines two tables, for 



The Completed Programs 

m e n and women's weights, in accordance with the user's view as presented in 
Figure 16.5. Subsequent statements in the Procedure Division determine the 
suggested range for an individual's weight, based on sex, height, and age. 

T h e sex, height, a n d age are contained within the 01 entry W E I G H T -
A R G U M E N T S that is passed as an argument to the subprogram by the C A L L 
statement in lines 88-90 of the fitness (main) program in Figure 16.8, and which 
coincides with the Procedure Division header in line 101 of this program. The 
parameter list consists of a single 01 entry, which is copied into both the calling and 
called program. Note the C O P Y statement in the Linkage Section of this program 
(lines 89-99,) and the corresponding C O P Y statement in the fitness program (lines 
40-50 in Figure 16.8). Note, too, the use of C O P Y statements to initialize and define 
the tables for male and female weights, in lines 10 and 38, respectively. 

Weight Subprogram 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 
AUTHOR. 

WGTSUB. 
cvv. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 FILLER PIC X(36) 

VALUE 'WS BEGINS HERE FOR SUBPROGRAM WGTSUB 

10 
STCPY> 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

EDCPY> 

COPY MALEWGT. 
01 MALE-WEIGHT-VALUES. 

01 

05 PIC X(30) VALUE '109122110133112135114137115138' 
05 PIC X(30) VALUE '112126113136115138117140118141' 
05 PIC X(30) VALUE '115130116139118140120142121144' 
05 PIC X(30) VALUE '118135119143121145123147124148' 
05 PIC X(30) VALUE '120145122147124149126151127152' 
05 PIC X(30) VALUE '124149125151127153129155130156' 
05 PIC X(30) VALUE '128154129156131158133160134161' 
05 PIC X(30) VALUE '132159133161134158136165138166' 
05 PIC X(30) VALUE '135163136165138167140169142170' 
05 PIC X(30) VALUE '140163141169142171144173146174' 
05 PIC X(30) VALUE '143170144173146175148178150179' 
05 PIC X(30) VALUE '147177148179150181152183154184' 
05 PIC X(30) VALUE '151180152184154186156188158189' 
05 PIC X(30) VALUE '155187156189158190160193162194' 
05 PIC X(30) VALUE '160192161194163196165198167199' 
05 PIC X(30) VALUE '165198166199168201170203172204' 
05 PIC X(30) VALUE '170202171204173206175208177209' 

MALE-WEIGHT-TABLE REDEFINES MALE-WEIGHT-VALUES. 
05 MALE-HEIGHTS OCCURS 17 TIMES 

INDEXED BY MALE-HGT-INDEX. 
10 MALE-AGES OCCURS 5 TIMES 

INDEXED BY MALE-AGE-INDEX. 
15 MALE-WGT-FR0M PIC 9(3). 
15 MALE-WGT-T0 PIC 9(3). 



Chapter 16 Subprograms 

<a (continued) 

37 
38 

STCPY> 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

EDCPY> 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

COPY FEMWGT. 
01 FEMALE-WEIGHT-VALUES. 

01 

05 PIC X(30) VALUE 10830990841010851030861040881061 

05 PIC X(30) VALUE 1084100085102086104088105090107' 
05 PIC X(30) VALUE '086101087103088105090106092108' 
05 PIC X(30) VALUE '089102090104091106092108094110' 
05 PIC X(30) VALUE '091105092106093109094111096113' 
05 PIC X(30) VALUE '093109094111095113096114099116' 
05 PIC X(30) VALUE '096112097113098115100117102119' 
05 PIC X(30) VALUE '100116101117102119103121105122' 
05 PIC X(30) VALUE '104119105121106123107125108126' 
05 . PIC X(30) VALUE '106125107126108127109129111130' 
05 PIC X(30) VALUE '109130110131111132112134114135' 
05 PIC X(30) VALUE '112133113134114136116138118139' 
05 PIC X(30) VALUE '116137117138118140120142122143' 
05 PIC X{30) VALUE '121140122142123144124146126147' 
05 PIC X(30) VALUE '123144124146126148128150130150' 
05 PIC X(30) VALUE '130148131150132152133154134155' 
05 PIC X(30) VALUE '134151135154136156137158138159' 
05 PIC X(30) VALUE '138155139158140160141162142163' 
05 PIC X(30) VALUE '142160143162144164145166146167' 
05 PIC X(30) VALUE '146164147166148168149170150171' 
05 PIC X(30) VALUE '150168151170152172153174154175' 

FEMALE-WEIGHT-TABLE REDEFINES FEMALE-WEIGHT-VALUES. 
05 FEMALE-HEIGHTS OCCURS 21 TIMES 

INDEXED BY FEMALE-HGT-INDEX. 
10 FEMALE-AGES OCCURS 5 TIMES 

INDEXED BY FEMALE-AGE-INDEX. 
15 FEMALE-WGT-FROM PIC 9(3). 
15 FEMALE-WGT-TO PIC 9(3). 

01 AGE-LIMIT-VALUES. 
05 
05 
05 
05 
05 

PIC 99 
PIC 99 
PIC 99 
PIC 99 
PIC 99 

VALUE 18. 
VALUE 20. 
VALUE 22. 
VALUE 24. 
VALUE 99. 

01 

01 

01 

AGE-TABLE REDEFINES AGE-LIMIT-VALUES. 
05 AGE-LIMIT OCCURS 5 TIMES 

INDEXED BY AGE-INDEX PIC 99. 

CONSTANTS-AND-VARIABLES. 
05 MALE-HGT-ADJUST-CONSTANT PIC 99 VALUE 59. 
05 FEMALE-HGT-ADJUST-CONSTANT PIC 99 VALUE 53. 
05 ADJUSTED-HEIGHT PIC 99. 

FILLER PIC X(34) 
VALUE 'WS ENDS HERE FOR SUBPROGRAM WGTSUB'. 



The Completed Programs 

figure 16.16 (continued) 

8 8 pJNKAGE SECTION. \ . 
89 COPY WGTCOPY. 

STCPY> 01 WEIGHT-ARGUMENTS. 
91 05 WEIGHT-TABLE-INPUTS. 
92 10 WGT-HEIGHT PIC 99. 
93 10 WGT-AGE PIC 99. 
94 10 WGT-SEX PIC X. 
95 88 MALE VALUE 'M1 V . 
96 88 FEMALE VALUE 'F' ' f. 
97 05 WEIGHT-GOALS. 
98 10 GOAL-WGT-FROM PIC 999. 

EDCPY> 10 GOAL-WGT-TO PIC 999. 
100 
101 PROCEDURE DIVISION USING WEIGHT-ARGUMENTS. 
102 FIND-GOAL-WEIGHT. 
103 EVALUATE TRUE 
104 WHEN MALE 
105 PERFORM FIND-MALE-WEIGHT-RANGE 
106 WHEN FEMALE 
107 PERFORM FIND-FEMALE-WEIGHT-RANGE 
108 WHEN OTHER 
109 DISPLAY 'INVALID SEX ENTERED' 
110 INITIALIZE WEIGHT-GOALS 
111 END-EVALUATE. 
112 [ EXIT PROGRAM.} c 

113 
114 FIND-MALE-WEIGHT-RANGE. 
115 COMPUTE ADJUSTED-HEIGHT = 
116 WGT-HEIGHT - MALE-HGT-ADJUST-CONSTANT 
117 SIZE ERROR DISPLAY 'SIZE ERROR ADJUSTED HEIGHT' 
118 END-COMPUTE. 
119 SET MALE-AGE-INDEX AGE-INDEX TO 1. 
120 SET MALE-HGT-INDEX TO ADJUSTED-HEIGHT. 
121 SEARCH AGE-LIMIT VARYING MALE-AGE-INDEX 
122 AT END DISPLAY 'MALE AGE NOT FOUND' 
123 INITIALIZE WEIGHT-GOALS 
124 WHEN 
125 WGT-AGE <= AGE-LIMIT (AGE-INDEX) 
126 SET MALE-AGE-INDEX TO AGE-INDEX 
127 MOVE MALE-WGT-FROM (MALE-HGT-INDEX, MALE-AGE-INDEX) 
128 TO GOAL-WGT-FROM 
129 MOVE MALE-WGT-TO (MALE-HGT-INDEX, MALE-AGE-INDEX) 
130 TO GOAL-WGT-TO 
131 END-SEARCH. 
132 
133 FIND-FEMALE-WEIGHT-RANGE. 
134 COMPUTE ADJUSTED-HEIGHT = 
135 WGT-HEIGHT - FEMALE-HGT-ADJUST-CONSTANT 
136 SIZE ERROR DISPLAY 'SIZE ERROR ADJUSTED HEIGHT' 



C h a p t e r 1 6 — Subprograms 

a (continued) 

137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 

END-COMPUTE. 
SET FEMALE-AGE-INDEX AGE-INDEX TO 1. 
SET FEMALE-HGT-INDEX TO ADJUSTED-HEIGHT. _ 
SEARCH AG E - LIMIT VARYING"' FEMALE-AGE-INDEX 

AT END DISPLAY 'FEMALE AGE NOT FOUND' 
INITIALIZE WEIGHT-GOALS 

WHEN 
WGT-AGE <= AGE-LIMIT (AGE-INDEX) 
SET FEMALE-AGE-INDEX TO AGE-INDEX 
MOVE FEMALE-WGT-FROM 

(FEMALE-HGT-INDEX, FEMALE-AGE-INDEX) 
TO GOAL-WGT-FROM 

MOVE FEMALE-WGT-TO 
(FEMALE-HGT-INDEX, FEMALE-AGE-INDEX) 
TO GOAL-WGT-TO 

END-SEARCH. 

G uct 

The training program in Figure 16.11 calculates an individual's target heart rate 
(after exercise) according to the formulas given in the programming specifications. 
The program uses the SIZE E R R O R phrase and associated E N D - C O M P U T E scope 
terminator in several places in the Procedure Division. It also uses the E V A L U A T E 
statement to determine the specific training range according to the user's fitness 
level. 

The m e a n s for passing parameters between this program and the fitness 
program, which calls it, parallels the procedure for the other subprograms. Thus, 
the Linkage Section contains a C O P Y statement (line 29) to define the 01 
parameters that constitute the parameter list; note, too, the correspondence 
between the Procedure Division header in this program and the C A L L statement 
in the fitness program. 

Display Program | I I S P L ¥ S I J B | .. ........... 

The display program in Figure 16.12 uses DISPLAY statements rather than a Screen 
Section to control the displayed output in accordance with earlier material from 
Chapter 10. The m e a n s for passing parameters between this program and the fitness 
program parallel the procedure for the other subprograms. T h e Linkage Section 
contains a C O P Y statement (line 57) to define the single 01 parameter, which 
constitutes the parameter list in the Procedure Division header of lines 70-71. 

Observe also the presence of the identical C O P Y statement found in the input 
program (line 21) to obtain the definition of foreground and background colors. 



The Completed Programs 

Training Subprogram 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

STCPY> 
31 
32 
33 
34 
35 
36 
37 
38 

EDCPY> 
40 
41 
42 
43 
44 
45 
46 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TRAINSUB. 
AUTHOR. CVV. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 

01 FILLER PIC X(38) 
VALUE 'WS BEGINS HERE FOR SUBPROGRAM TRAINSUB' 

01 RATES-AND-CONSTANTS. 
05 TRAIN-CONSTANT 
05 LOW-RATE 
05 HIGH-RATE 

01 RANGE-CALCULATIONS. 
05 OVERALL-RANGES. 

10 OVERALL-HIGH 
10 OVERALL-LOW 

05 FITNESS-RANGES. 
10 FITNESS-HIGH 
10 FITNESS-LOW 

(\ti QANfiF-TNTFRVfll 

PIC 999 VALUE 220. 
PIC V9 VALUE .6. 
PIC V9 VALUE .9. 

PIC 99. 
PIC 99. 

PIC 99. 
PIC 99. 
PIT 0 

01 FILLER PIC X(36) 
VALUE 'WS ENDS HERE FOR SUBPROGRAM TRAINSUB'. 

LINKAGE SECTION. 
COPY TRAINCPY. 

01 TRAINING-ARGUMENTS. 
05 TRAINING-INPUTS. 

10 TRAIN-AGE 
10 TRAIN-FITNESS-LEVEL 

88 BEGINNER 
88 INTERMEDIATE 
88 ADVANCED 

TRAINING-RANGES. 
10 TRAIN-OVERALL-RANGE 
10 TRAIN-FITNESS-RANGE 

PIC 99. 
PIC X. 

VALUE 'B' 'b 
VALUE T 'i 
VALUE 'A' 'a 

05 
PIC X(5). 
PIC X(5). 

PROCEDURE DIVISION 
USING TRAINING-ARGUMENTS. 

FIND-TRAIN-RANGE. 
PERFORM COMPUTE-OVERALL-RANGES. 
PERFORM COMPUTE-FITNESS-RANGES. 
EXIT PROGRAM. 



C h a p t e r 1 6 Subprograms 

Figure 1 6 . 1 1 (continued) 

47 
48 COMPUTE-OVERALL-RANGES. 
49 COMPUTE OVERALL-LOW ROUNDED = 
50 (TRAIN-CONSTANT - TRAIN-AGE) * LOW-RATE / 6 
51 SIZE ERROR. DISPLAY 'SIZE ERROR ON. LOW RANGE' 
52 END-COMPUTE. 
53 COMPUTE OVERALL-HIGH ROUNDED = 
54 (TRAIN-CONSTANT - TRAIN-AGE) * HIGH-RATE / 6 
55 SIZE ERROR DISPLAY 'SIZE ERROR ON HIGH RANGE' 
56 END-COMPUTE. 
57 STRING OVERALL-LOW '-' OVERALL-HIGH DELIMITED BY SIZE 
58 INTO TRAIN-OVERALL-RANGE 
59 END-STRING. 
60 
61 COMPUTE-FITNESS-RANGES. 
62 COMPUTE RANGE-INTERVAL = 
63 (OVERALL-HIGH - OVERALL-LOW) / 3 
64 SIZE ERROR DISPLAY 'SIZE ERROR ON RANGE INTERVAL' 
65 END-COMPUTE. 
66 EVALUATE TRUE 
67 WHEN BEGINNER 
68 MOVE OVERALL-LOW TO FITNESS-LOW 
69 COMPUTE FITNESS-HIGH ROUNDED = 
70 OVERALL-LOW + RANGE-INTERVAL 
71 SIZE ERROR DISPLAY 'SIZE ERROR HIGH FITNESS' 
72 END-COMPUTE 
73 WHEN INTERMEDIATE 
74 COMPUTE FITNESS-LOW ROUNDED = 
75 OVERALL-LOW + RANGE-INTERVAL 
76 SIZE ERROR DISPLAY 'SIZE ERROR LOW FITNESS' 
77 END-COMPUTE 
78 COMPUTE FITNESS-HIGH ROUNDED = 
79 OVERALL-HIGH - RANGE-INTERVAL 
80 SIZE ERROR 
81 DISPLAY 'SIZE ERROR HIGH FITNESS' 
82 END-COMPUTE 
83 WHEN ADVANCED 
84 COMPUTE FITNESS-LOW ROUNDED = 
85 OVERALL-HIGH - RANGE-INTERVAL 
86 SIZE ERROR DISPLAY 'SIZE ERROR LOW FITNESS' 
87 END-COMPUTE 
88 MOVE OVERALL-HIGH TO FITNESS-HIGH 
89 WHEN OTHER 
90 DISPLAY 'INVALID FITNESS LEVEL SEE VALIDATION' 
91 END-EVALUATE. 
92 STRING FITNESS-LOW '-' FITNESS-HIGH DELIMITED BY SIZE 
93 INTO TRAIN-FITNESS-RANGE 
94 END-STRING. 



The Completed Programs 

Display Subprogram 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

STCPY> 

41 
42 
43 
44 
45 
46 
47 
48 
49 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DSPLYSUB. 
AUTHOR. CVV. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 FILLER PIC X(38) 

VALUE 'WS BEGINS HERE FOR SUBPROGRAM UPDTESUB'. 

01 DISPLAY-MESSAGES. 
05 OVER-WEIGHT-COMMENT PIC X(41) 

VALUE ' OH! NO! Your weight exceeds the range'. 
05 UNDER-WEIGHT-COMMENT PIC X(41) 

VALUE ' EAT UP! Your weight is below the range'. 
05 IN-WEIGHT-COMMENT PIC X(41) 

VALUE 'CONGRATULATIONS! You are within the range' 
05 WEIGHT-COMMENT PIC X(41). 
05 ANOTHER-MESSAGE PIC X(14) 

VALUE 'Must be Y or N'. 

COPY COLORCPY. 
of Tc^ElN^raLORsT" - -

* m i noc. fad rnpFCPniiwri 
PIC S9(4) COMP-5. 

awn RiricnDOiiMn 

24 78 BLACK VALUE 0. 
25 78 BLUE VALUE 1. 
26 78 GREEN VALUE 2. 
27 78 CYAN VALUE 3. 
28 78 RED VALUE 4. 
29 78 MAGENTA VALUE 5. 
30 78 BROWN VALUE 6. 
31 78 WHITE VALUE 7. 
32 * ADDITIONAL COLORS FOR FOREGROUND ONLY 
33 78 BRIGHT-BLACK VALUE 8. 
34 78 BRIGHT-BLUE VALUE 9. 
35 78 BRIGHT-GREEN VALUE 10 
36 78 BRIGHT-CYAN VALUE 11 
37 78 BRIGHT-RED VALUE 12 
38 78 BRIGHT-MAGENTA VALUE 13 
39 78 BRIGHT-BROWN VALUE 14 

EDCPY> 78 BRIGHT-WHITE VALUE 15 

01 MESSAGE-COLORS. 
05 COLOR-CONTROL 
05 MAGENTA-BLACK 

VALUE 'BACKGROUND-COLOR 
05 RED-BLACK 

VALUE 'BACKGROUND-COLOR 
05 GREEN-BLACK 

VALUE 'BACKGROUND-COLOR 

PIC X(50). 
PIC X(50). 
FOREGROUND-COLOR 0'. 
PIC X(50). 
FOREGROUND-COLOR 0', 
PIC X(50). 
FOREGROUND-COLOR 0'. 



C h a p t e r 1 6 -- Subprogram 

Figure 1 6 . 1 2 (continued) 

50 
51 01 GOAL-WEIGHT-RANGE PIC X(7). 
52 
53 01 FILLER 
54 VALUE 'WS ENDS HERE FOR SUBPROGRAM UPDTESUB'. 
55 
56 LINKAGE SECTION. 
57 COPY DISPCPY. 

STCPY> 01 DISPLAY-ARGUMENTS. 
59 05 DISP-TRAINING-RANGES. 
60 10 DISP-TRAIN-OVERALL-RANGE PIC X(5). 
61 10 DISP-TRAIN-FITNESS-RANGE PIC X(5). 
62 05 DISP-WEIGHT-GOALS. 
63 10 DISP-GOAL-WGT-FROM PIC ZZ9. 
64 10 DISP-GOAL-WGT-TO PIC ZZ9. 
65 05 DISP-INPUT-WEIGHT PIC 9(3). 
66 05 ANOTHER-PERSON-SWITCH PIC X VALUE SPACES. 
67 88 NO-MORE-PERSONS VALUE 'N' 'n'. 

EDCPY> 88 VALID-ANOTHER VALUE 'N' 'rr !Y' 'y'. 
69 
70 PROCEDURE DIVISION 
71 USING DISPLAY-ARGUMENTS. 
72 000-UPDATE-PERSONAL-DATA. 
73 PERFORM 100-DETERMINE-WEIGHT-COMMENf. 
74 PERFORM 200-UPDATE-SCREEN. 
75 rHuTMriMESUB'. j C a l i l o a n o ! n e r subprogram 
76 PERFORM 300-INPUT-ANOTHER-PERSON. 
77 EXIT PROGRAM. 
78 
79 100-DETERMINE-WEIGHT-COMMENT. 
80 EVALUATE TRUE 
81 WHEN DISP-INPUT-WEIGHT < DISP-GOAL-WGT-FROM 
82 MOVE UNDER-WEIGHT-COMMENT TO WEIGHT-COMMENT 
83 | MOVE MAGENTA-BLACK TO COLOR-CONTROL "" ^ \ 
84 ' WHEN DISP-INPUT-WEIGHT > DISP-GOAL-WGT-TO " "~ 1 
85 MOVE OVER-WEIGHT-COMMENT TO WEIGHT-COMMENT / / 
86 [" MOVE RED-BLACK TO"COLOR^CONTROL f / 
87 WHEN OTHER " / 
88 MOVE IN-WEIGHT-COMMENT TO WEIGHT-COMMENT / 
89 | MOVE GREENBACK TO COlOR^CONTROL f 
90 END-EVALUATE. 
91 
92 200-UPDATE-SCREEN. 
93 STRING DISP-GOAL-WGT-FROM '-' DISP-GOAL-WGT-TO 
94 DELIMITED BY SIZE 
95 INTO GOAL-WEIGHT-RANGE 
96 END-STRING. 
97 DISPLAY 
98 'Your Goal Weight Range: ' LINE 11 COLUMN 4 
99 GOAL-WEIGHT-RANGE LINE 11 COLUMN 28 WITH HIGHLIGHT. 



The Completed Programs 

F i g u r e 16,12 Display Subprogram 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 

DISPLAY 
WEIGHT-COMMENT LINE 12 COLUMN 6 WITH BLINK 

I CONTROL IS COLOR-CONTROL, j ^ 
DISPLAY o o . ^ c 

'Training Heart Rate Range Information (10 Second)' 
LINE 14 COLUMN 4. 

DISPLAY 
'Overall Heart Rate Range: ' 

LINE 15 COLUMN 6 
DISP-TRAIN-OVERALL-RANGE COLUMN 32 WITH HIGHLIGHT 
'Adjusted for Fitness Level: ' LINE 16 COLUMN 6 
DISP-TRAIN-FITNESS-RANGE COLUMN 34 WITH HIGHLIGHT. 

HIGHLIGHT 
DISPLAY ' ' LINE 23 COLUMN 1 WITH BLANK LINE. 
DISPLAY ' ' LINE 24 COLUMN 1 WITH BLANK LINE. 

300-INPUT-ANOTHER-PERSON. 
DISPLAY 'Another Person? (Y/N): ' LINE 24 COLUMN 10 

WITH FOREGROUND-COLOR BRIGHT-GREEN 
BACKGROUND-COLOR MAGENTA. 

PERFORM WITH TEST AFTER UNTIL VALID-ANOTHER 
ACCEPT ANOTHER-PERSON-SWITCH LINE 24 COLUMN 33 

WITH FOREGROUND-COLOR BRIGHT-GREEN 
BACKGROUND-COLOR MAGENTA 

IF VALID-ANOTHER 
DISPLAY ' ' LINE 24 WITH BLANK LINE 

ELSE 
DISPLAY ANOTHER-MESSAGE 

LINE 24 COLUMN 38 WITH HIGHLIGHT BLINK 
FOREGROUND-COLOR BRIGHT-WHITE 
BACKGROUND-COLOR RED 

END-IF 
END-PERFORM. 

T i m e P r o g r a m fTHHSESUBI . 

The program to update the displayed time (Figure 16.13) uses the A C C E P T statement 
to obtain the current time containing hours, minutes, seconds, and hundredths of a 
second as per the discussion in Chapter 8. Reference modification is used in 
conjunction with an INSPECT statement to truncate hundredths of a second in the 
displayed time. 

The program is called from two other programs as per the system hierarchy 
chart in Figure 16.6. This program is different from the other subprograms in that it 
does not contain any parameters; the program is completely self-contained as it 
obtains the current time from the system, and then displays the results directly o n 
the monitor. 



1 C h a p t e r 16 Subprograms 

. 13 Time Subprogram 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. TIMESUB. 
3 AUTHOR. CVV. 
4 
5 DATA DIVISION. 
6 WORKING-STORAGE SECTION. 
7 01 FILLER PIC X(37) 
8 VALUE 'WS BEGINS HERE FOR SUBPROGRAM TIMESUB' 
9 
10 01 TIME-VARIABLES. 
11 05 THE-TIME PIC 9(8). 
12 05 HH-MM-SS PIC 99B99B99. 
13 
14 01 FILLER PIC X(35) 
15 VALUE 'WS ENDS HERE FOR SUBPROGRAM TIMESUB'. 
16 
17 PROCEDURE DIVISION. 
18 000-UPDATE-TIME. 
19 ACCEPT THE-TIME FROM TIME. 
20 fliJvTTHE^ME" (1:6) "TO~HH-MM-SS.~ 
21 INSPECT HH-MM-SS REPLACING ALL ' ' BY 
22 DISPLAY HH-MM-SS LINE 1 COLUMN 60. 
23 EXIT PROGRAM. 

fc^LCkSCcSCjo; Beginning C O B O L programmers often take the link program (or linkage editor as 
iiC^'.Ce* it is called on I B M mainframes) for granted, because it functions transparently as 

the middle step in the compile, link, and execute sequence. Knowledge of the link 
program assumes greater importance, however, in systems of multiple programs as 
in the fitness example just presented. Accordingly, w e review the compile, link, and 
execute sequence that was first presented in Chapter 2. 

Three distinct programs are associated with the execution of a single C O B O L 
program, a relationship that was s h o w n earlier in Figure 2.3. The C O B O L compiler 
translates a source program into an object (machine language) program; the link 
program combines the object program with object modules from other C O B O L 
programs and/or vendor-supplied I/O routines to create an executable load module; 
and finally, the load module accepts the input data and produces the desired results. 

Consider n o w a slightly different scenario in which a system of three C O B O L 
programs (a main program and two subprograms) is to be developed. This time, a 
total of five steps is required in order to execute the main program: 

1. Compile the m a i n program 
2. Compile the first subprogram 
3. Compile the second subprogram 
4. Link the three object programs to produce a load module 
5. Execute the load module 



It is not necessary, however, to repeat the entire five-step sequence every time 
the system undergoes additional testing. W h a t if, tor example, the subprograms 
have been successfully debugged, and only the main program is being changed? 
C a n you see that it is inherently wasteful to continually recompile the subprograms 
if they remain the same? In other words, if only the main program changes, couldn't 
w e just compile the main program (step 1), then link the object program to the 
existing object programs for the subprograms (step 4), and then execute the resulting 
load module (step 5)? 

Other variations are also possible; for example, if the first subprogram changes 
but the other two remain the same, the run stream would consist of steps two, four, 
and five as only the first subprogram would have to be recompiled. Another variation 
would consist solely of step five, to execute the load module (without recompilation 
or linking) w h e n all testing has been completed. 

Figure 16.14 illustrates the compile, link, and execute sequence for the fitness 
system developed earlier in the chapter. Figure 16.14a displays the file names of the 
six programs in the system (as they might appear on a PC); the C O B extension 
indicates a C O B O L source program. 

Figure 16.14b depicts a conceptual view of the associated run stream. Each of 
the six programs is compiled separately in steps 1 through 6, the individual object 
modules are linked together in step 7, and the resulting load module is executed in 
step 8. Figure 16.14c indicates the presence of the six object modules (extension 
OBJ) that are produced as a result of the individual compilations. 

Figure 16.14d shows the two additional files produced by the link program. 
FITNESS.MAP contains the descriptive information produced by the link program 
and is analogous to a C O B O L listing produced by the compiler. FITNESS.EXE is the 
resulting load module that is eventually executed. 

Students are often frustrated in their attempt to produce a load module with multiple 
subprograms. Consider, for example, Figure 16.15, which contains—in outline 
f o r m — a C O B O L main (calling) program and two sub (called) programs. Observe, 
however, that there is an inconsistency between the C A L L statement of the m a i n 
program and the P R O G R A M - I D paragraph of the first subprogram; that is, the main 
program is calling SIJB1, whereas the P R O G R A M - I D paragraph refers to S U B R T N 1 . 
This in turn produces the error message in Figure 16.15d. 

The exact wording of the error message will vary from system to system; for 
example, the linkage editor o n an I B M mainframe will cite an unresolved external 
reference, whereas the link program o n a P C m a y reference an undefined symbol. 
Regardless of the system, however, the link program will not execute cleanly, despite 
the fact that all three programs compiled without error. 

The reason for the problem becomes apparent w h e n w e again consider the 
functions of the C O B O L compiler and the link program. The compiler translates 
C O B O L source statements to machine language, and thus, must accept statements 
that call other (external) programs—for example, C A L L S U B ] . The compiler cannot 
access S U B ! directly, and trusts in the link program to locate the appropriate object 
module and produce an executable load module. The unresolved external reference 
detected by the link program m e a n s there was a call for a program n a m e d SL1B1, 
but that the object module for S U B 1 could not be found. 

Return to the original C O B O L listing of Figure 16.15a and observe once again 
the inconsistency between the C A L L statement in the main program (CALL SUB1) 
and the P R O G R A M - I D paragraph in the subprogram (SUBRTN1). M a k e the entries 
consistent (i.e., change S U B 1 to S U B R T N 1 ) and the problem is solved. 



C h a p t e r 1 6 — Subprograms 

Figure 18.14 The Compile, Link, and Execute Sequence 

DSPLYSUB CBL 
FITNESS CBL 
INPUTSUB CBL 
TIMESUB CBL 
WGTCOPY CBL 
WGTSUB CBL 

(a) Directory before Compilation 

Step 1: Compile fitness program (FITNESS.CBL) 
Step 2: Compile input program (INPUTSUB.CBL) 
Step 3: Compile weight goals program (WGTSUB.CBL) 
Step 4: Compile training program (TRAINSUB.CBL) 
Step 5: Compile format time program (TIMESUB.CBL) 
Step 6: Compile final display program (DSPLYSUB.CBL) 

Step 7: Link the object programs 

Step 8: Execute the load module 
(b) The Hun Stream (Conceputal View) 

DSPLYSUB CBL 
FITNESS CBL 
INPUTSUB CBL 
TIMESUB CBL 
WGTCOPY CBL 
WGTSUB CBL 

DSPLYSUB INT 
FITNESS INT 
INPUTSUB INT 
TIMESUB INT 
TRAINSUB INT 
WGTSUB INT 

(c) Directory after Compilation 

The optional BY R E F E R E N C E and BY C O N T E N T phrases were not present in 
COBOL-74. The omission of both phrases defaults to CAL L I N G BY 
R E F E R E N C E and is the equivalent of the C A L L statement in COBOL-74. The 
INITIAL phrase in the P R O G R A M - I D paragraph is also new to COBOL-85. 
The optional scope terminator, END-CALL, is also new. 

Two other minor changes do not add any additional capability per se, but 
simplify the use of subprograms. These are: 
1. EXIT P R O G R A M (to return control to the calling program) need not be the 

only statement in a paragraph, as was required in COBOL-74. 
2. An elementary item may appear in the parameter list as opposed to the 

COBOL-74 restriction to 01- or 77-level entries. 



The Linkage Editor 

Figure 1 6 , 1 5 Problems with the Linkage Editor 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MAINPROG. 

| 
I PROCEDURE DIVISION. 

• 

rCALL~SU^l~USlNG~PTRAMlfEi-iTK 
CALL 'SUBRTN2' USING PARAMETER-2. 

(a) Main Program 

IDENTIFICATION DIVISION, 
j PROGRAM-ID. SUBRTN1. 

PROCEDURE DIVISION 
USING PARAMETER-1. 

EXIT PROGRAM. 
(b) First Subroutine; 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUBRTN2. 

PROCEDURE DIVISION 
USING PARAMETER-2. 

EXIT PROGRAM. 
(c) Second Subroutine 

ERROR - SUB1 IS AN UNRESOLVED EXTERNAL REFERENCE 
(d) Error Message 



C h a p t e r 1 6 Subprograms 

SUMMARY 

A sub (called) program is a program that is written and compiled 
independently of other programs but which is executed under the control 
of a main (calling) program. 

i A hierarchy chart shows the relationship of paragraphs within a COBOL 
program or programs within a system. The subprograms that comprise a 
system are developed in stages and tested in top-down fashion just as the 
paragraphs within a program. 

The CALL statement in a calling program transfers control to the first 
executable statement in the called program. The EXIT PROGRAM statement 
returns control from the called program to the calling program. 

The argument list is specified in the CALL USING statement of the calling 
program and in the Procedure Division header of the called program. The 
data names in the parameter lists can be, but do not have to be, the same. 

The COPY statement inserts statements into a COBOL program (from a 
copy library) during compilation, as though the statements had been 
coded directly in the program itself. A COPY statement may appear 
anywhere within a program except within another COPY statement. 

CALLING BY CONTENT prevents the value of a passed parameter modified 
in the calling program from being changed in the called program; CALLING 
BY REFERENCE, however, will change the variable in the calling program. 

The INITIAL phrase in the PROGRAM-ID paragraph restores a program to 
its initial state each time it is called; that is, all data names are reset to their 
original values via any VALUE clauses that are present. 

The linkage editor (link program) combines the object modules produced 
by compilation of one or more programs with vendor-supplied I/O routines 
to produce a load module. 

Argument list 
Called program 
Calling program 
Linkage editor (link program) 
Load module 

Main program 
Parameter list 
Subprogram 
Undefined symbol 
Unresolved external reference 

COmOL ktements 

BY CONTENT EXIT PROGRAM 
BY REFERENCE INITIAL 
CALL USING LINKAGE SECTION 
COPY PROCEDURE DIVISION USING 
END-CALL 



1. A called program returns control to its calling program via an 
statement. 

2. The LINKAGE SECTION appears in the (calling/called) program, and indicates that 
space for these data names has already been allocated in the (calling/called) 
program. 

3. The order of arguments in the USING clauses of the called and calling programs 
(is/is not) important. 

4. If program A calls program B, then program A is the main or 
program and program B is the sub or program. 

5. If program A calls program B and program B calls program C, then program B is 
(both/neither) a called and a calling program. 

6. A COBOL program (may/may not) call multiple subprograms. 

7. A statement is used to bring in text from a file on disk into a 
COBOL, program. 

8. Specification of the (BY CONTENT/BY REFERENCE) phrase ensures that the original 
values will be restored when control is returned to the calling program. 

9. Specification of the (BY CONTENT/BY REFERENCE) phrase does not restore the 
values and thus functions identically to the COBOL-74 implementation. 

10. The phrase in the PROGRAM-ID paragraph restores the data 
names in a called program to their initial values. 

11. The PERFORM statement is to a paragraph as the statement is 
to a subprogram. 

T R U E / r A L S E 

1. The COPY clause is permitted only in the Data Division. 

2. The Linkage Section appears in the calling program. 

3. Data names in CALI USING and PROCEDURE DIVISION USING . . . must be 

the same. 

4. A called program contains only the Data and Procedure Divisions. 

5. The COPY statement can be used on an FD only. 
6. A COPY statement takes effect during the linking phase of the compile, link, and 

execution sequence. 

7. A program can contain only one CALL statement. 

8. The same program can function as both a called and a calling program. 

9. The parameter list may contain group items at other than a 01 level. 

10. A hierarchy chart can be used to show the relationship of paragraphs in a program 
or programs in a system. 

11. A CALL statement must include either the BY REFERENCE or BY CONTENT 
phrase. 

12. A CALL statement must contain at least one parameter. 



C h a p t e r 1 6 - Subprograms 

P R O B L E M S 

1. Answer the following questions with respect to the hierarchy chart in Figure 16.16: 
a. Which programs are calling programs? 
b. Which programs are called programs? 
c. Which programs are both called and calling programs? 
d. Which programs contain a CALL statement? 
e. Which programs contain a Linkage Section? 
f. Which programs might contain a COPY statement? 
g. Which programs might contain an INITIAL clause? 

Figure 16.16 Hierarchy Chart for Problem 1 

PROGRAM 
A 

PROGRAM PROGRAM 
C 

PROGRAM 
D 

PROGRAM 
E 

PROGRAM 
F 

PROGRAM 
G 

2. Figure 16.17 shows a partial listing of a called and calling program in which the first 
three Procedure Division statements of the subprogram initialize various counters 
and switches. 
a. Are these statements redundant with the existing VALUE clauses; that is, what 

would be the effect (if any) of removing the MOVE statements from the 
subprogram? 

b. What would be the effect (if any) of removing the MOVE ZERO statements, 
replacing them with VALUE ZERO clauses in the Data Division, and including 
the INITIAL phrase in the PROGRAM-ID header of the called program? 

c. Which Procedure Division statement could be substituted for the MOVE ZERO 
statements with no other changes to the program? 



IMF© T Skeleton Programs for Problem 2 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MAINPROG. 

PROCEDURE DIVISION. 

CALL 'SUB1' USING PARAMETER-LIST. 

(a) Main Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUB1. 

WORKING-STORAGE SECTION. 
01 SUB-COUNTERS-AND-SWITCHES. 

05 FIRST-COUNTER PIC 9(3) VALUE ZERO. 
05 SECOND-COUNTER PIC 9(3) VALUE ZERO. 
05 TABLE-LOOKUP-SWITCH PIC X(3) VALUE SPACES. 

PROCEDURE DIVISION 
USING PARAMTER-LIST. 

RESET-DATA-ITEMS. 
MOVE ZEROS TO FIRST-COUNTER. 
MOVE ZEROS TO SECOND-COUNTER. 
MOVE SPACES TO TABLE-LOOKUP-SWITCH. 

(b) Subprogram 

3. Answer the following with respect to the COBOL fragment of Figure 16.18. 
a. What are the ending values for each of the six data names (that is, for A, B, C, D, 

E, and F)? 
b. What is the effect, if any, of removing the BY CONTENT phrase in the CALL 

statement? 
c. What is the effect, if any, of removing the BY REFERENCE phrase in the CALL 

statement? 



Chapter 16 Subprograms 

Igure 16.16 COBOL Skeleton for Problem 3 

MOVE ZEROS TO A, B, C. j 
CALL SUBRTN \ 

USING A 
BY CONTENT B 
BY REFERENCE C 

END-CALL. 1 
I 

(a) Calling Program 1 

| PROGRAM-ID. SUBRTN. 

| PROCEDURE DIVISION 
| USING D, E, F. 
) 

I 
| MOVE 10 TO D, E, F 
I EXIT PROGRAM. 

(b) Called Program 

4. Answer the following with respect to the COBOL skeleton in Figure 16.19. 
a. Indicate the necessary steps in a conceptual run stream to compile, link, and 

execute all three programs. 
b. Which steps would have to be repeated in the run stream of part (a), given that 

the subprograms were working perfectly, but that the main program needs 
modification? 

c. Which steps would have to be repeated in the run stream of part (a), given that 
the only change was in the copy member INPUTREC? 

d. What problems, if any, would arise in connection with the CALL statement for 
PROGA? In which step (compilation, linking, or execution) would the problem 
arise (be detected)? 

e. What problems, if any, would arise in connection with the CALL statement for 
PROGB? In which step (compilation, linking, or execution) would the problem 
arise (be detected)? 

5. Explain how the concept of top-down testing can be applied to the fitness system 
as depicted by the hierarchy chart of Figure 16.6. 



i r e 16,13 COBOL Programs for Problem 4 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MAINPROG. 

WORKING-STORAGE SECTION. 
COPY INPUTREC 

01 INPUT-DATA. 
05 INPUT-NAME 

01 PASSED-PARAMETERS 
05 PARM-A 
05 PARM-B 

PROCEDURE DIVISION. 

CALL 'PROGA' USING PARM-A, PARM-B, INPUT-DATA. 
CALL 'PROGB' USING PARM-A. 

(a) Main Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PROGA 

LINKAGE SECTION. 
COPY INPUTREC 

01 INPUT-DATA. 
05 INPUT-NAME 

01 NEW-DATA-NAMES. 
05 NEW-NAME-A 
05 NEW-NAME-B 

PROCEDURE DIVISION 
USING NEW-NAME-A, NEW-NAME-B, INPUT-DATA. 

(b) First Subroutine 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PROG-B. 

LINKAGE SECTION. 
01 PASSED-PARAMETERS. 

05 PARM-A PIC 9(4). 

PROCEDURE DIVISION 
USING PARM-A. 

(b) Second Subroutine 

PIC X(15). 

PIC 9(4). 
PIC XX. 

PIC X(15). 

PIC XX. 
PIC 9(4). 





Overview 
S y s t e m C o n c e p t s 

Sequential versus Nonsequential Processing 
Periodic Maintenance 

D a t a Va l ida t ion 
Programming Specifications 
D o Q i n n i n n t h e P r n n r a m 

» " '~ ' 
The Completed Program 

S e q u e n t i a l F i l e M a i n t e n a n c e 
Programming Specifications 
The Balance Line Algorithm 
Designing the Hierarchy Chart 

T o p - D o w n T e s t i n g 
The Stubs Program 
The Completed Program 

Summary 
Fill-in 
True/False 
Problems 



Chapter 1 7 —- Sequential File Maintenance 

After reading this chapter you will be able to: 

Describe the file maintenance operation; distinguish between the old master, 
transaction, and new master files. 

Describe the three transaction types associated with file maintenance. 

Differentiate between sequential and nonsequential file maintenance. 

Describe at least three types of errors that can be detected in a stand­
alone edit program; list two errors that cannot be detected in such a 
program. 

Discuss the balance line algorithm. 

Define top-down testing; explain how a program may be tested before it is 
completely coded. 

A large proportion of data-processing activity is devoted to file maintenance. 
Although printed reports are the more visible result of data processing, all files 
must be maintained to reflect the changing nature of the physical environment. 
In every system new records can be added, while existing records can be 
changed or deleted. 

The chapter begins with a discussion of system concepts, emphasizing 
the importance of data validation in the maintenance process. It continues with 
coverage of the balance line algorithm, a completely general procedure for 
sequential file maintenance. The resulting program is implemented in stages 
through top-down testing. The initial version of the program contains several 
program stubs and validates the interaction among the higher-level paragraphs 
in the hierarchy chart. The second, and completed, version fulfills the requirements 
of the case study. 

In its simplest form, file maintenance implies the existence of three files, an old 
master file, a transaction file, and a new master file, which is produced as a 
consequence of processing the first two files with one another. The situation is 
depicted in Figure 17.1, which contains a system flowchart for the traditional 
sequential update. 

Figure 17.2 is an expanded version of Figure 17.1 with hypothetical data 
included. The old master and transaction files are both in sequence according to 
the same field (key), in this example, by social security number. The transaction file 
contains information on h o w the old master file is to be changed—that is, whether 
n e w records are to be added, or existing records changed or deleted. During the 
update process, every record in the old master file will be copied intact to the n e w 
master file, unless the update program detects a transaction for that record. The 
output produced by the program consists of the n e w master file and various error 
messages if problems are encountered. 



System Concepts 

Pigsure 17-2 Sequential Update with Data Files 

OLD MASTER F I L E : 

111111111ADAMS 015000 NEW YORK 
222222222BAKER 025000 NEW YORK 
333333333ZIDR0W 008000 NEW YORK 
444444444MILGR0M 040000 BOSTON 
555555555BENJAMIN 100000 CHICAGO 
666666666SHERRY 007500 CHICAGO 
777777777BOROW 050000 BOSTON 
888888888JAMES 017500 NEW YORK 
999999999RENAZEV 030000 NEW YORK 

NEW MASTER F I L E : 

111111111ADAMS 015000 NEW YORK 
222222222BAKER 028000 BOSTON 
333333333ZIDROW 008000 NEW YORK 
400000000NEW EMPLOYEE 016000 BOSTON 
444444444MILGR0M 040000 BOSTON 
555555555BENJAMIN 100000 CHICAGO 
610000000NEW EMPLOYEE I I 018000 NEW YORK 
777777777BOROW 055000 BOSTON 
888888888JAMES 017500 NEW YORK 
999999999RENAZEV 030000 NEW YORK 

SEQUENTIAL 
UPDATE 

TRANSACTION F I L E : 

222222222 
222222222 
400000000NEW EMPLOYEE 
500000000 
610000000NEW EMPLOYEE I I 
610000000 
666666666SHERRY 
777777777 
888888888JAMES 

028000 
BOSTON 

016000 BOSTON 
020000 
018000 CHICAGO 

NEW YORK 

055000 
017500 NEW YORK 

ERROR MESSAGES: 

NO MATCH 500000000 
DUPLICATE ADDITION 888888888 

i 



C h a p t e r 1 7 — Sequential File Maintenance 

Every record in the old master file contains four fields: social security number, 
n a m t i cctictrxr q o H ]r\ratir\n T K p rar*r\rrlc i n tlio r%ir\ r r i Q e t o r a r e ir» c a n n o n r o Kir crv^iol 

i x u * * * v . , u u . u * j , m i v i i v _ < » _ . u . i v . i i . A i i w i ^ w i V . . J 1 1 1 l i a w u x u u i L U J t v l . . . • v.. t i l J l . ^ u v i l l . v U Jf J U W U l 

security number, the value of which must be unique for every record in the file. 
Records in the transaction file are also in sequence by social security number, and 
three types of transactions (additions, changes, and deletions) are present. The 
update procedure must be general enough to accommodate multiple transactions 
for the same record; for example, employee 222222222 has two records in the 
transaction file, both of which are corrections. 

Records with a transaction type of A are to be added to the n e w master file in 
their entirety. (Thus, N e w Employee, with social security n u m b e r 400000000, does 
not appear o n the old master but has been added to the n e w master.) Records with a 
transaction type of D are to be deleted. (Hence, Sherry, with social security n u m b e r 
666666666, appears in the old master but not the n e w master.) Records with a 
transaction code of C indicate a change in the value of a specific field(s) and contain 
only the social security n u m b e r and field (s) to be changed. (Accordingly, Baker, 
with social security n u m b e r 222222222, has had his salary and location changed to 
$28,000 and Boston, respectively.) 

Note, too, that in addition to the records for which there is activity, the old 
master contains several records for which there is no corresponding transaction; for 
example, there are no transactions for records with social security numbers of 
333333333 and 999999999. Such records are simply copied intact to the n e w master. 

All of these illustrations assume that the transaction file is valid in and of itself 
by virtue of a previously executed stand-alone edit program. In other words, the 
validation of the incoming transaction file has already been accomplished in an 
earlier program. This enables simplified logic in the maintenance program, as it can 
assume that all transactions contain a valid code OA C or D^ that the transactions 
are in sequence by social security number, that additions contain all necessary 
fields, and so on. (Data validation was first introduced in Chapter 8.) 

There are, however, two types of errors that cannot be detected in the stand­
alone edit, and which must be checked in the update program itself. These are the 
attempted correction or deletion of a nonexistent old master record (a no match), 
and the addition of a n e w record that is already in the old master file (a duplicate 
addition). The transaction file in Figure 17.2 illustrates both errors (with transactions 
500000000 and 888888888, respectively). 

Sequential versus Nonsequent ia l Processing 
This chapter is concerned entirely with a sequential update whereby every record 
in the old master is copied to the n e w master regardless of whether or not it 
changes. This technique is perfectly adequate w h e n there is substantial activity in 
the old master file (that is, w h e n m a n y records change), but inefficient if only a few 
changes are m a d e to the existing master file. 

By contrast, a nonsequential update uses a single master file, which functions 
as both the old and n e w master. The records in the transaction file are processed 
one at a time, in no particular sequence, a nd matched against the existing master 
file. Nonsequential processing works best with low-activity files because unchanged 
records are left alone; that is, only those master records with a matching transaction 
record are written (rewritten) in the master file. Nonsequential processing is 
discussed in Chapter 18. 

All file maintenance is done periodically, with the frequency depending o n the 
application. A file of student transcripts is updated only a few times a year; a bank's 
checking transactions are updated daily, with other types of systems being updated 



weekly or monthly. (Real-time applications, which process transactions as they 
occur, are covered in conjunction with nonsequential processing in the next chapter.) 

A monthly cycle is depicted in Figure 17.3, beginning with a master file o n 
January 1. Transactions are collected (batched) during the m o n t h of January. Then, 
o n February 1, the master file of January 1 (now the old master) is processed with 
the transactions accrued during January, to produce a new master as of February 1. 
The process continues from m o n t h to month. Transactions are collected during 
February. O n March 1, w e use the file created February 1 as the old master, run it 
against the February transactions, and produce a n e w master as of March 1. The 
process continues indefinitely. 

Figure 17.3 also serves as a basis for discussion of h o w backup procedures axe 
implemented. Consider, for example, the situation o n March 1 after the update has 
been run. The installation n o w has three generations of the master file; the file just 
produced (current master), the file produced o n February 1st (previous master), 
and the original master file of January 1st (second previous master). 

The availability of previous generations of the master file enables re-creation 
of the update process, should the need arise. Thus, an installation could rerun the 
update of March 1st, provided it retained the February master a n d associated 
transaction file. It could also go back a generation and recreate the February master, 
given that it retained the original January master and its associated transaction file. 
The n u m b e r of generations that are retained depends o n the individual installation, 
but will seldom be fewer than three. This type of backup is referred to as a 
grandfather-father-son strategy (with apologies to w o m e n ) . 

The need for data validation is paramount, regardless of whether processing is 
done sequentially or nonsequentially, or h o w m a n y generations of backup are 
retained. The example in Figure 17.2 simply assumed a valid transaction file, an 
assumption that is far too unrealistic in practice. Accordingly w e introduce concepts 
of data validation within the basis of a C O B O L case study. 

Figure 17.4 expands the sequential update of Figure 17.1 to include a separate 
step for data validation, in which the transaction file is first input to a stand-alone 



Chapter 17 — Sequential File Maintenance 

Sequential Update with Data Validation 

OLD MASTER 

edit program. This program checks transactions for several errors (invalid transaction 
codes, incomplete additions, and so on), and only those transactions that pass all 
validity checks will be written to the output (valid) transaction file. The latter is then 
input to the sequential update. 

In effect, Figure 17.4 is a blueprint for the remainder of the chapter. W e begin 
with specifications for the edit program, develop the program completely, present a 
second set of specifications for the file maintenance (update) program, and develop 
that program in the second half of the chapter. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Data Validation 

Narrative: This program illustrates typical types of data validation, which are implemented in a 
stand-alone edit program. 

I n p u t F i l e ( s ) : TRANSACTION-FILE 

Input Record Layout: 01 TRANSACTION-RECORD. 
05 TR-SOC-SEC-NUMBER 
05 TR-NAME. 

10 TR-LAST-NAME 
10 TR-INITIALS 

05 TR-L0CATI0N-C0DE 
05 TR-C0MMISSI0N-RATE 
05 TR-SALES-AMOUNT 
05 TR-TRANSACTI0N-C0DE 

88 ADDITION VALUE 
88 CORRECTION VALUE 
88 DELETION VALUE 

'A' . 
'C . 
'D'. 

PIC X(9). 

PIC X(15) 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(5). 
PIC X. 

T e s t D a t a : See Figure 17.5a. 



Data Validation 

O u t p u t F i l e s : VALID-TRANSACTION-FILE 

ERROR-FILE 

O u t p u t R e c o r d L a y o u t : Identical to the input record layout. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Process a file of incoming transactions, rejecting any (and all) invalid transactions with 
an, appropriate error message. Each transaction Is to be checked for the following: 
a. Sequence—The transactions are supposed to be in ascending sequence according 

to social security number by virtue of a previous program. (Multiple transactions 
with the same social security number are allowed). Accordingly, this program is not 
to sort the transaction file but to implement logic to ensure that the transactions are 
in fact in order. (Sorting is time consuming and should not be repeated if the 
transactions are already in order.) 

b. Valid transaction code—Only three types of transaction codes are permitted: A, C, 
or D, denoting additions, corrections, and deletions, respectively. Any other 
transaction code (including a blank) is to be rejected, 

c. Completeness—Additions are to contain the employee's name and initials, location, 
and commission rate. All fields are to be checked with individual messages written 
for any missing fleld(s). Corrections must contain a value for the sales amount. 

d. Data types—TR-COMMISSION-RATE (required for an addition) and TR-SALES-
AMOUNT (required for a correction) must be numeric fields. A violation of either 
condition requires a specific error message. 

e. Valid location code Additions are to contain a valid location code—that is, a 
location code of ATL, BOS, NYC, PHI, or SF (corresponding to the entries in a 
location codes table to be embedded within the program). 

2. All valid transactions are to be written to a VALID-TRANSACTION-FILE, which will be 
created as an output file by the program. Invalid transactions may be discarded after 
the appropriate error message has been printed. 

The function of the edit program is best understood by examining Figure 17.5, 
which contains the input transaction file, associated error messages, and the output 
(valid) transaction file. Fourteen transactions were input to the edit program (Figure 
17.5a), but only eight of these passed all validity checks and thus m a d e it to the 
output file (Figure 17.5c). You m a y find it useful to review each of the rejected 
transactions in conjunction with the associated error message in Figure 17.5b. 

Valid Transaction File 

000000OO0BOR0W JSATL07 A 
000O00O00BOROW JS 10000C 
000000000B0R0W JS 20000C 
100000000GRABER P 30000 
222222222NEW GUY RT A 
333333333ESMAN TNNY 09 A 
400000000MOLDOF BLATL15 A 
444444444RICHARDS IM 05000C 
555555555J0RDAN BOS07 A 
700000000MILGROM A D 
666666666J0HNS0N M NYC12 A 
800000000VAZQUEZ C 55000C 



C h a p t e r 17 — Sequential File Maintenance 

' igure 17 .S (continued) 

800000000VILLAR C 
999999999GILLENS0N MANYC10 

(a) Transaction File 

100000000GRABER P 30000 
222222222NEW GUY RT A 
222222222NEW GUY RT A 
333333333ESMAN TNNY 09 A 
555555555J0RDAN B0S07 A 
666666666J0HNS0N M NYC12 A 
800000000VILLAR C C 

(b) Error Messages 

O0O00OOOOBOROW JSATL07 A 
O0OO0OO0OBOROW JS 10000C 
O000OO0OOBOROW JS 20000C 
400000000MOLDOF BLATL15 A 
444444444RICHARDS IM 05000C 
700000000MILGROM A D 
800000000VAZQUEZ C 55000C 
999999999GILLENS0N MANYC10 A 

(c) Valid Transaction f i le 

i! 

I 
c 
A ! 

INVALID TRANSACTION CODE 
MISSING LOCATION CODE 
MISSING OR NON-NUMERIC COMMISSION RATE 
INVALID LOCATION CODE 
MISSING NAME OR INITIALS 
SOCIAL SECURITY NUMBER OUT OF SEQUENCE 
MISSING OR NON-NUMERIC SALES AMOUNT 

Figure 1 7 . 6 Hierarchy Chart for Data Validation Program 

EDIT 
TRANSACTION 

FILE 

PROCESS 
TRANSACTIONS 

DO SEQUENCE 
CHECK 

DO VALID 
CODE 

CHECK 

DO 
ADDITION 
CHECKS 

DO 
CORRECTION 

CHECKS 

DO WRITE 
VALID 

TRANSACTION 

WRITE ERROR 
MESSAGE 

WRITE ERROR 
MESSAGE 

WRITE ERROR 
MESSAGE 

WRITE ERROR 
MESSAGE 

WRITE ERROR 
MESSAGE 



at a Validation 

The edit program is developed along the same lines as any other program, first by 
designing a hierarchy chart to include the functions required by the program, and 
then by developing pseudocode to embrace sequence and decision-making logic. 

The hierarchy chart in Figure 17.6 is straightforward and should not present 
any difficulty. Note, however, that the module W R I T E - E R R O R - M E S S A G E is called 
from several places in the program because the function is subservient to each of 
the error-checking modules. W e have decided, therefore, to place these statements 
in a separate routine, rather than repeat the identical code in multiple places 
throughout the program. 

The pseudocode for the data validation program is shown in Figure 17.7. Each 
incoming transaction is assumed to be valid initially, so that 'YES' is m o v e d to 

Pseudocode for Data Validation Program 

Open fi1es 
- 00 while data remains 

[ R E A D transaction file 
j AT END 
\ Indicate no more data 
! NOT AT END 

Move 'YES! to valid-record-switch 
\ ......... j p t r a n c - c n r i A1 - Q p r n H f w < nrpv i mis ~<:nr i A1 - <;pr isri t v 
. - . . ..... r. *.. • ~ ~~ — . . . . . . 

Move 'NO' to valid-record-switch 
Write error message 

- ENDIF 
| Move trans-social-security to previous-social-security 

— IF transaction-code is not valid 
Move 'NO' to valid-record-switch 

| Write error message 
END IF 

— IF addition 
:— IF transaction fails addition-check(s) 

Move 'NO' to valid-record-switch 
j Write error message(s) 

I - ENDIF 
I ELSE 
I — IF correction 
| j — IF sales-amount not numeric 
| I Move 'NO' to valid-record-switch 
j j Write error message 
j l—- ENDIF 
j j - ENDIF 
[ i-_ ENDIF 
I | - IF valid-record-switch = 'YES' 

j Write valid-transaction-record 
L- ENDIF 

— ENDREAD 
- ENDDO 

Close files 
Stop run 



Chapter 17 Sequential File Maintenance 

V A L I D - R E C O R D - S W I T C H . The transaction is then subjected to the various editing 
requirements, any one of which could cause V A L I D - R E C O R D - S W I T C H to be set to 
'NO'. Only if the transaction passes all of the individual checks (that is, if VALID-
R E C O R D - S W I T C H is still set to 'YES') is it written to the valid record file at the end of 
the loop. 

T h e C o m p l e t e d Program 

The completed program is s h o w n in Figure 17.8. O n e technique worthy of special 
mention is the establishment of a table for the error messages (lines 47 through 64) 
and the subsequent printing of an error message in the paragraph 400-WRITE-
E R R O R - M E S S A G E (lines 167-172). 

The Edit Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. EDIT. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT TRANSACTION-FILE ASSIGN TO 'A:\CHAPTR17\TRANS.DAT'  
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT VALID-TRANSACTION-FILE ASSIGN~T0'A:\CHAPTR17\VALTRANS.DAT' I 
ORGANIZATION IS LINE SEQUENTIAL. _ | \ 

' SELECT ERROR-FILE ASSIGN TO 'A:\CHAPTR17\ERR0R.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD TRANSACTION-FILE 

DATA RECORD IS TRANSACTION-RECORD. 
01 TRANSACTION-RECORD PIC X(37). 

FD VALID-TRANSACTION-FILE 
DATA RECORD IS VALID-TRANSACTION-RECORD. 

01 VALID-TRANSACTION-RECORD PIC X(37). 

FD ERROR-FILE 
DATA RECORD IS ERROR-RECORD. 

01 ERROR-RECORD PIC X(132). 

WORKING-STORAGE SECTION. 
01 FILLER PIC X(14) 

VALUE 'WS BEGINS HERE'. 

01 WS-TRANSACTION-RECORD. 
05 TR-SOC-SEC-NUMBER 
05 TR-NAME. 

PIC X(9). 

file://'A:/CHAPTR17/TRANS.DAT'
file://'A:/CHAPTR17/VALTRANS.DAT'
file://'A:/CHAPTR17/ERR0R.DAT'


Data Validation 

i r e 17 .8 (continued) 

36 
37 
38 
39 
/in 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

05 
05 
AC 
UJ 

05 

10 TR-LAST-NAME 
10 TR-INITIALS 
TR-LOCATION-CODE 
TR-COMMISSI0N-RATE 
TR-SALES-AMOUNT 
TR-TRANSACTI0N-C0DE 
88 ADDITION VALUE 'A1. 
88 CORRECTION VALUE ' C . 
88 DELETION VALUE 'D'. 
88 VALID-CODES VALUES 'A', 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(5). 
PIC X. 

' C , 'D'. 

01 ERROR-VALUES-TABLE. 
05 ERROR-VALUES. 

10 FILLER PIC X(40) 
VALUE 'SOCIAL SECURITY NUMBER OUT OF SEQUENCE'. 

10 FILLER PIC X(40) 
VALUE 'INVALID TRANSACTION CODE'. 

10 FILLER PIC X(40) 
VALUE 'MISSING NAME OR INITIALS'. 

10 FILLER PIC X(40) 
VALUE 'MISSING LOCATION CODE'. 

10 FILLER PIC X(40) 
VALUE 'INVALID LOCATION CODE'. 

10 FILLER PIC X(40) 
VALUE 'MISSING OR NON-NUMERIC COMMISSION RATE'. 

10 FILLER PIC X(40) 
VALUE 'MISSING OR NON-NUMERIC SALES AMOUNT'. 

05 ERROR-TABLE REDEFINES ERROR-VALUES. 
10 ERROR-MESSAGE OCCURS 7 TIMES PIC X(40). 

01 LOCATION-VALUES-TABLE. 
05 LOCATION-VALUES. 

10 FILLER 
10 FILLER 
10 FILLER 
10 FILLER 
10 FILLER 

05 LOCATION-TABLE REDEFINES LOCATION-VALUES. 
10 LOCATION OCCURS 5 TIMES 

INDEXED BY LOCATION-INDEX PIC X(3). 

PIC X(3) VALUE 'ATL' 
PIC X(3) VALUE 'BOS' 
PIC X(3) VALUE 'NYC 
PIC X(3) VALUE 'PHI' 
PIC X(3) VALUE 'SF ' 

01 WS-ERROR-LINE. 
05 FILLER 
05 EL-REASON 
05 EL-TRANSACTION 
05 FILLER 

01 WS-SWITCHES-AND-DATANAMES. 
05 WS-EOF-SWITCH 
05 WS-VALID-RECORD-SWITCH 

PIC X(2). 
PIC X(40). 
PIC X(37). 
PIC X(54). 

PIC X(3) 
PIC X(3) 

VALUE 'NO '. 
VALUE SPACES. 



Chapter 17 Sequential File Maintenance 

jure 17 .8 (continued) 

86 
87 

05 WS-PREVIOUS-SOC-SEC-NUMBER PIC X(9) 
05 WS-ERR0R-C0DE PIC 99. 

VALUE SPACES. 

89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

PROCEDURE DIVISION. 
100-EDIT-TRANSACTION-FILE. 

OPEN INPUT TRANSACTION-FILE 
OUTPUT VALID-TRANSACTION-FILE 

ERROR-FILE. 
PERFORM UNTIL WS-EOF-SWITCH = 'YES' 

READ TRANSACTION-FILE INTO WS-TRANSACTION-RECORD 
AT END 

MOVE 'YES' TO WS-EOF-SWITCH 
NOT AT END 

PERFORM 210-PR0CESS-TRANSACTI0NS 
END-READ 

END-PERFORM. 
CLOSE TRANSACTION-FILE 

VALID-TRANSACTION-FILE 
ERROR-FILE. 

STOP RUN. 

210-PR0CESS-TRANSACTI0NS. 
MOVE 'YES' TO WS-VALID-RECORD-SWITCH. 
PERFORM 300-DO-SEQUENCE-CHECK. 
PERFORM 310-DO-VALID-CODE-CHECK. 
IF ADDITION 

PERFORM 320-DO-ADDITION-CHECKS 
ELSE 

IF CORRECTION 
PERFORM 330-D0-C0RRECTI0N-CHECKS 

END-IF 
END-IF. 
IF WS-VALID-RECORD-SWITCH = 'YES' 

PERFORM 340-WRITE-VALID-TRANSACTION 
END-IF. to output file 

300-DO-SEQUENCE-CHECK. 
IF TR-SOC-SEC-NUMBER < WS-PREVIOUS-SOC-SEC-NUMBER 

MOVE 1 TO WS-ERROR-CODE 
PERFORM 400-WRITE-ERR0R-MESSAGE~^-~^_^ 

END-IF. 
MOVE TR-SOC-SEC-NUMBER TO WS-PREVIOUS-SOC-SEC-NUMBER. 

310-DO-VALID-CODE-CHECK. 
IF NOT VALID-CODES • ' 

IMOVE 2 TO WS-ERROR-CODE 
PERFORM 400-WRITE-ERROR-MESSAGE 

END-IF. 

320-DO-ADDITION-CHECKS. 



at ion 

(continued) 

IF TR-LAST-NAME = SPACES OR TR-INITIALS = SPACES 
MOVE 3 TO WS-ERROR-CODE 
PERFORM 400-WRITE-ERROR-MESSA6E 

END-IF. 
IF TR-LOCATION-CODE = SPACES 

MOVE 4 TO WS-ERROR-CODE 
PERFORM 400-WRITE-ERROR-MESSAGE 

ELSE 
SET LOCATION-INDEX TO I 
! SEARCH LOCATION " " " " " " ~ " ; 

AT END 
MOVE 5 TO WS-ERROR-CODE 1 

PERFORM 400-WRITE-ERROR-MESSAGE 
WHEN TR-LOCATION-CODE = LOCATION (LOCATION-INDEX) 

NEXT SENTENCE 
END-SEARCH _ j 

END-IF. 
IF TR-COMMISSION-RATE NOT NUMERIC 

MOVE 6 TO WS-ERROR-CODE 
PERFORM 400-WRITE-ERROR-MESSAGE 

END-IF. 

35n nn rnDDcrnnw rurri/e 

IF TR-SALES-AMOUNT NOT NUMERIC 
MOVE 7 TO WS-ERROR-CODE 
PERFORM 400-WRITE-ERROR-MESSAGE 

END-IF. 

340-WRITE-VALID-TRANSACTION. 
WRITE VALID-TRANSACTION-RECORD FROM WS-TRANSACTION-RECORD. 

400-WRITE-ERROR-MESSAGE. j 
MOVE 'NO ' TO WS-VALID-RECORD-SWITCH. ! 

MOVE SPACES TO WS-ERROR-LINE. \ 
MOVE ERROR-MESSAGE (WS-ERROR-CODE) TO EL-REASON, f 
MOVE WS-TRANSACTION-RECORD TO EL-TRANSACTION. j 
WRITE ERROR-RECORD FROM WS-ERROR-LINE. 1 

The use of an error message table enables the programmer to see at a glance 
all of the errors checked by the program, a nd further to format those messages in 
identical fashion. It also facilitates the use of a c o m m o n routine to display the 
individual messages, rather than having to duplicate code throughout the program. 
Observe, therefore, that each error routine moves an appropriate subscript value to 
WS-ERROR-CODE u p o n detection of an error, which is then used by 400-WRITE-
ERROR-MESSAGE to display the appropriate error. 

Is data validation worth the extra time and trouble? Any programmer w h o has 
ever been called at two in the morning will answer strongly in the affirmative. Put 
another way, diligent application of data validation (sometimes k n o w n as defensive 
programming) minimizes the need for subsequent debugging. All debugging 



C h a p t e r 1 7 - Sequential File Maintenance 

techniques, no matter h o w sophisticated, suffer from the fact that they are applied 
after a problem has occurred. The inclusion of data validation within a system 
attempts to detect the (inevitable) errors that will occur before they produce a 
problem. 

W e are n o w ready to proceed with the main objective of the chapter, the development 
of a program for sequential file maintenance. Specifications follow in the usual 
format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Sequential Update 

Narrative: This program implements the traditional sequential update via the balance line algorithm. 

I n p u t F i les: TRANSACTION-FILE 

OLD-MASTER-FILE 

I n p u t R e c o r d L a y o u t : 01 TRANSACTION-RECORD. 
05 TR-SOC-SFC-NUMBFR 

TR-NAME. 
10 TR-LAST-NAME 
10 TR-INITIALS 
TR-L0CATI0N-C0DE 
TR-COMMISSION-RATE 
TR-SALES-AMOUNT 
TR-TRANSACTION-CODE 
88 ADDITION VALUE 'A'. 
88 CORRECTION VALUE ' C . 
88 DELETION VALUE 'D 1. 

05 

05 
05 
05 
05 

01 OLD-MASTER-RECORD. 
05 0M-S0C-SEC-NUMBER 

0M-NAME. 
10 0M-LAST-NAME 
10 0M-INITIALS 
0M-L0CATI0N-C0DE 
0M-C0MMISSI0N-RATE 
0M-YEAR-T0-DATE-SALES 

05 

05 
05 
05 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(5). 
PIC X. 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(8). 

O u t p u t File: NEW-MASTER-FILE 

O u t p u t Record L a y o u t : Identical to old master record. 

T e s t D a t a : 

P r o c e s s i n g R e q u i r e m e n t s : 

See Figure 17.9a (Old Master File) and Figure 17.9b (Valid Transaction File). 

1. Develop a sequential update program to process an incoming transaction file and the 
associated old master file to produce a new master file. 

2. The transaction file is assumed to be valid in and of itself by virtue of a stand-alone edit 
program. Hence, each transaction has a valid transaction code (A, C, or D), numeric 



Sequential File Maintenance 

Test Data 

100000000GRABER 
200000000RUBIN 
300000000ANDERSON 
400000000MOLDOF 
500000000GLASSMAN 
600000000GRAUER 
700000000MILGROM 
800000000VAZQUEZ 
900000000CLARK 

P ATL1500000000 
MAB0S0800020000 
IRBOS1000113000 
BLATL1500000000 
JSNYC1000045000 
RTNYC0800087500 
A SF 0900120000 
C ATL1200060000 
E NYC0700002500 

000000000BOROW 
O00000000BOROW 
OOOOOOOOOBOROW 
400000000MOLOOF 
444444444RICHARDS 
700000000MILGR0M 
800000000VAZQUEZ 

IM 
A 

JSATL07 
JS 
JS 
BLATL15 

A 
10000C 
20000C 

A 
05000C 

D 
55000C 

999999999GILLENS0N MANYC10 A 

fields are numeric, and so on. Nevertheless, the update program must check (and 
flag) two kinds of errors that could not be detected in the stand-alone edit, as they 
require interaction with the old master file. These are: 
a. Duplicate additions, in which the social security number of a transaction coded as 

an addition already exists in the old master, 
b. No matches, in which the social security number of a transaction coded as either a 

deletion or a correction, does not exist in the old master. 

3. Transactions coded as additions are to be added to the new master file in their 
entirety, and will contain a value for every field in the transaction record (except for TR-
SALES-AMOUNT). The value of YEAR-TO-DATE-SALES in the new master record is to 
be initialized to zero. 

4. Transactions coded as deletions are to be removed from the master file. These 
transactions contain only the social security number and transaction code. 

5. Transactions coded as corrections contain only the social security number, name, and 
the transaction sales amount (TR-SALES-AMOUNT). The value of TR-SALES-AMOUNT 
on the incoming transaction is to be added to the value in the YEAR-TO-DATE-SALES 
field in the master record. 

6. Any old master record for which there is no corresponding transaction is to be copied 
intact to the new master. 

Every C O B O L book has confronted the problem of a sequential update. Barry Dwyer 1 

details a general and elegant solution to the problem k n o w n as the balance line 

1. B. Dwyer, "One More Time—How to Update a Master File," Communications of the ACM, vol. 24, 
no.l (lanuary 1981). 



C h a p t e r 1 7 Sequential File Maintenance 

algorithm. To understand this solution, realize that the logic in a sequential update 
it. mr**-r. Al¥£lr.,A+ + U « « I , ,..- U ~ ~ ~ ~ ~ ~ ~ + A : — ~ . ^ ~ L * 1 
iS u i u j c c m i i c u i L m a n v v n a i n a a u c c n c i i n j i i m c i c u 111 p i c v i u u s c i l d p i c ; i ? > u e c a u s t ; 

there are multiple input files. The essence of the problem, then, is to determine 
whether to read from the old master file, the transaction file, or both. The solution is 
handled neatly in the balance line algorithm by the concept of an active key. 

The active key is the smaller of the old master key and transaction key currently 
being processed. Thus, if the transaction key is less than the old master key, the 
active key is equal to the transaction key; if the transaction and old master keys are 
equal, the active key is equal to either; finally, if the old master key is less than the 
transaction key, the active key is the old master. (Note h o w easily the technique can 
be extended to multiple transaction files; the active key is always defined as the 
smallest value of all keys currently processed.) 

The active key determines which records are admitted to the update process, 
and is illustrated with respect to the data in Figure 17.9. At the start of execution, the 
initial social security numbers for the old master and transaction records are 
100000000 and 000000000, respectively, yielding an active key of 000000000. Thus, 
only the transaction record is considered for processing, while the old master record 
is held in abeyance. The algorithm processes this transaction, then reads another 
record from the transaction file, again with social security n u m b e r 000000000. The 
keys are compared and again the transaction key is less than the master key, leaving 
the active key unchanged. After this transaction is processed, a third transaction is 
read, also with social security n u m b e r 000000000, with the s a m e results. 

The fourth transaction with social security n u m b e r 400000000 is read and 
produces a n e w active key of 100000000, which is the lesser of the old master 
(100000000) and transaction (400000000) social security numbers. The old master 
record is admitted to the update process, while the transaction record is he'd. The 
process continues in this fashion until eventually both files are out of data. 

The balance line algorithm is expressed in pseudocode in Figure 17.10. The 
initial records are read from each file, and the first active key is determined. Next 
the major loop is executed until both the old master a nd transaction files are out of 
data. (HIGH-VALUES is a C O B O L figurative literal a nd denotes the largest possible 
value. It is a convenient w a y of forcing end-of-file conditions, as will be seen w h e n 
test data are examined later in the chapter.) 

Within the outer loop, the key of the old master record is compared to the 
active key. If these values are equal, the old master record is m o v e d (but not written) 
to the n e w master file, and another record is read from the old master file. W e are 
not, however, finished with the original master record as it must be determined if 
any transactions exist for that record. Accordingly an inner loop is executed, which 
processes all transactions whose key is equal to the active key. (The transaction file 
is read repeatedly in the inner loop after each transaction is processed.) W h e n the 
transaction key no longer equals the active key, a check is m a d e to see if a deletion 
was processed, a nd if not, the n e w master record is written. T h e next active key is 
chosen, and the outer loop continues. 

Figure 17.10 does not include the logic to accommodate error processing; that 
is, although the transaction file is assumed to be valid in and of itself, there are 
additional errors that c o m e to light only in the actual updating process. Specifically, 
the update program must reject transactions that attempt to add records that already 
exist in the old master (duplicate additions), a nd must also reject transactions that 
attempt to change or delete records that do not exist (a no match). 

The easiest w a y to accomplish this error processing is through the assignment 
of an allocation status to every value of the active key; that is, the value of the key is 
either allocated or it is not. If the allocation status is on, the record belongs in the 
file; if the allocation status is off, the record does not belong. Deletion of an existing 
record changes the status from on to off, whereas addition of a n e w record alters the 



Sequential File Maintenance 

Figure 17.10 Balance Line Algorithm 

I 

Open files | 
Read transaction-file, at end move high-values to transaction-key | 
Read old-master-file, at end move high-values to old-master-key j 
Choose first active-key 

----- DO WHILE active-key not equal high-values 
I — IF old-master-key = active-key 

Move old-master-record to new-master-record 
Read old-master-file, at end move high-values to old-master-key 

ENDIF 
— DO WHILE transaction-key equal active-key 

Apply transaction to new-master-record 
Read transaction-file, at end move high-values to transaction-key j 

— ENDDO I 
i 

i— IF no deletion was processed j 
Write new-master-record 

— ENDIF | 
Choose next active-key j 

^- ENDDO ! 
Close files j 
Stop run I 

status from off to on. A n y attempt to add a record whose status is already o n 
signifies a duplicate addition. In similar fashion, attempting to change or delete a 
record whose allocation status is off also signifies an error, as the transaction key is 
not present in the old master. 

Figure 17.11 expands the pseudocode of Figure 17.10 to include R E C O R D -
K E Y - A L L O C A T E D - S W I T C H to accommodate this discussion. A record is written to 
the n e w master file only w h e n R E C O R D - K E Y - A L L O C A T E D - S W I T C H is set to YES. In 
other words, deletions are accomplished simply by setting the switch to N O and not 
writing the record. 

Y o u should be convinced of the total generality of Figure 17.11 and, further, 
that multiple transactions for the same key m a y be presented in any order. For 
example, if an addition and correction are input in that order, the record will be 
added and corrected in the same run. However, if the correction precedes the 
addition, then the correction will be flagged as a no match, and only the addition 
will take effect. T w o additions for the same key will result in adding the first and 
flagging the second as a duplicate add. A n addition, correction, and deletion m a y be 
processed in that order for the same transaction. A deletion followed by an addition 
m a y also be processed but will produce an error message, indicating an attempt to 
delete a record that is not in the old master. 

Designing the Hierarchy Chart , 
Recall that pseudocode and a hierarchy chart depict different things. Pseudocode 
indicates sequence and decision-making logic, whereas a hierarchy chart depicts 
function, indicating what has to be done, but not necessarily when. Accordingly, w e 



Chapter 17 Sequential File Maintenance 

F i g u r e 1 7 . * 1 Expanded Balance Line Algorithm 

Open files 
Read transaction-file, at end move high-values to transaction-key 
Read old-master-file, at end move high-values to old-master-key 
Choose first active-key 

— D O WHILE active-key not equal high-values 
!— IF old-master-key = active-key 

Move 'yes' to record-key-allocated-switch 
Move old-master-record to new-master-record 
Read old-master-file, at end move high-values to old-master-key 

ELSE (active-key is not in old-master-file) 
Move 'no' to record-key-allocated switch 

'— ENDIF 
r— DO WHILE transaction-key equal active-key 

— DO CASE transaction-code 
CASE addition 
— IF record-key-allocated-switch = 'yes' 

Write 'error - duplicate addition' 
ELSE (active-key is not in old-master-file) 

Move transaction-record to new-master-record 
Move 'yes' to record-key-allocated-switch 

— ENDIF 
CASE correction 
— IF record-key-allocated-switch = 'yes' 

Process correction , 
i 

ELSE (active-key is not in old-master-file) | 
Write 'error - no matching record' 

— ENDIF 
CASE deletion 
r— IF record-key-allocated-switch = 'yes' 

Move 'no' to record-key-allocated-switch 
ELSE (active-key is not in old-master-file) j 

Write 'error - no matching record' | 
I— ENDIF ! 

— END CASE I 
1 

Read transaction-file, at end move high-values to transaction-key 
— END DO 
i — IF record-key-allocated-switch = 'yes' 

write new-master-record 
I— ENDIF 

Choose next active-key 
— END DO | 

Close files I 
Stop run [ 



Sequential File Maintenance 

b e g i n by l ist ing the funct ional m o d u l e s neces sary to a c c o m p l i s h a s e q u e n t i a l u p d a t e 
us ing the b a l a n c e l ine algorithm: 

Overall Program F u n c t i o n UPDATE-MASTER-FILE 

Funct iona l M o d u l e s READ-TRANSACTION-FILE 

READ-OLD-MASTER-FILE 

CHOOSE-ACIIVE-KEY 

PROCESS-ACTIVE-KEY 

BUILD-NEW-MASTER 

WRITE-NEW-MASTER 

APPLY-TRANSACTIONS-TO-MASTER 

ADD-NEW-RECORD 

CORRECT-OLD-RECORD 

DELETE-OLD-RECORD 

T h e h i e r a r c h y chart in Figure 17.12 is d e v e l o p e d in t o p - d o w n f a s h i o n , 
b e g i n n i n g w i t h t h e o v e r a l l p r o g r a m f u n c t i o n , U P D A T E - M A S T E R - F I L E . 
D e v e l o p m e n t of a h ierarchy chart requires explicit spec i f i cat ion of t h e funct ion of 
each module , which should be apparent from the module name, consisting of a 
verb, o n e or t w o adject ives , a n d an object . Never the le s s , the m o d u l e funct ions 
are descr ibed in depth: 

UPDATE-MASTER-FILE T h e m a i n l i n e r o u t i n e t h a t d r i v e s t h e e n t i r e 
p r o g r a m . It o p e n s the p r o g r a m fi les , i n v o k e s 

Hierarchy Chart for Sequential Update 

UPDATE 
MASTER 

FILE 

READ 
TRANSACTION 

FILE 

READ 
OLD-MASTER 

FILE 

CHOOSE 
ACTIVE KEY 

PROCESS 
ACTIVE KEY 

BUILD NEW 
MASTER 

APPLY TRANS 
TO MASTER 

CHOOSE 
ACTIVE KEY 

WRITE NEW 
MASTER 

READ 
OLD-MASTER 

FILE 

ADD NEW 
RECORD 

CORRECT 
EXISTING 
RECORD 

DELETE 
EXISTING 
RECORD 

READ 
TRANSACTION 

FILE 



C h a p t e r 17 — Sequential File Maintenance 

R E A D - T R A N S A C T I O N - F I L E 

R E A D - O L D - M A S T E R - F I L E 

C H O O S E - A C T I V E - K E Y 

PROCESS-ACTIVE-KEY 

B U I L D - N E W - M A S T E R 

W R I T E - N E W - M A S T E R 

A P P L Y - T R A N S - T O - M A S T E R 

ADL) N E W - R E C O R D 

C O R R E C T - O L D - R E C O R D 

D E L E I E - O L D - R E C O R D 

subordinate routines to do an initial read from 
each input file, and determines the first active 
key. It invokes PROCESS-ACTIVE-KEY until all files 
are out of data, closes the files, and terminates 
the run. 
Reads a record from the transaction file and moves 
H I G H - V A L U E S to the transaction key w h e n the 
file is empty. This module is performed from more 
than one place in the program as indicated by the 
shading in the upper left-hand corner. 
Reads a record from the old master file and moves 
H I G H - V A L U E S to the old master key w h e n the 
file is empty. This module is performed from more 
than one place in the program as indicated by the 
shading in the upper left-hand corner. 
Determines the active key for the balance line 
algorithm from the current values of the old 
master and transaction records. This module is 
also performed from more than one place. 
Performs up to four subordinates according to 
the value of active key. All four subordinates are 
invoked w h e n the keys on the old master and 
transaction files equal the active key, and no 
deletions were processed. 
M o v e s the current old master record to a 
corresponding n e w master record. This module 
is mandated by the nature of a sequential update, 
which requires that every record in the old master 
file be copied to the n e w master file, regardless of 
whether the record changes. 
Writes a n e w master record, and is performed 
only after all transactions for that record have 
been processed. 
Performs one of three subordinates to add, correct, 
or delete a record according to the current 
transaction code. Regardless of the transaction 
type, the module invokes R E A D - T R A N S A C T I O N -
FILE to obtain the next transaction and executes 
repeatedly as long as the transaction key equals 
the active key. 
Lowest-level module to add a n e w record, which 
will set R E C O R D - K E Y - A L L O C A T E D - S W I T C H to 
YES. 
Lowest-level module to update (correct) the year-
to-date sales total in an existing master record. 
Lowest-level module to delete a record, which will 
set R E C O R D - K E Y - A L L O C A T E D - S W I T C H to N O . 



Top-down testing implies that the highest (most difficult) modules in a hierarchy 
chart be tested earlier, and more often, than the lower-level (and often trivial) 
routines. It requires that testing begin as soon as possible, and well before the 
program is finished. Testing a program before it is completed is accomplished by 
coding lower-level modules as program stubs, that is, abbreviated versions of 
completed modules. 

The major advantage in this approach is that testing begins sooner in the 
development cycle. Errors that do exist are found earlier and consequently are 
easier to correct. Later versions can still contain bugs, but the more difficult problems 
will already have been resolved in the initial tests. 

Figure 17.9 (shown previously) contains sufficient data to adequately test the 
update program. All transaction types are present with multiple transactions present 
for the s a m e transaction record (000000000). There is a duplicate addition 
(400000000) that should be flagged as an error, as well as an attempted correction 
on a nonexisting social security number (444444444). 

It is highly desirable that a person other than the programmer, preferably the 
user, supply the test data. The latter individual does not k n o w h o w the program 
actually works, and thus is in a better position to m a k e u p objective data. In addition, 
the user knows the original specification and is not subject to distortions from the 
analysis phase. The programmer, o n the other hand, is biased, either consciously or 
subconsciously, and will generate data to accommodate his or her program or 
interpretation of the specifications. W e should also mention that anticipated results 
are best computed before testing begins. Otherwise, it is too easy to assume the 
program works, because the output "looks right." Indeed, trainees are often so 
overjoyed merely to get output that they conclude the testing phase u p o n receiving 
their first printout. 

The Stubs Program ,,. . . 
Figure 17.13 contains the stubs program for a sequential update implemented 
according to the balance line algorithm. It is complete in that it contains a 
paragraph for every module in the hierarchy chart of Figure 17.12, yet incomplete 
because several of the lower-level modules exist only as program stubs, that is, 
abbreviated paragraphs. 

Figure 17.13 uses only two files, the old master and transaction, with record 
descriptions corresponding to the programming specifications. The n e w master file 
is not referenced explicitly in the program; instead, the paragraphs 0060-BUILD-
N E W - M A S T E R and 0 0 8 0 - W R I T E - N E W - M A S T E R contain DISPLAY statements to 
indicate that they have been executed. Indeed, the program contains m a n y such 
DISPLAY statements to facilitate testing by indicating program flow. 

Consider the test data in Figure 17.9, in conjunction with the program in 
Figure 17.13 and its associated output (Figure 17.14). The program begins by reading 
the first record from each file, social security numbers 000000000 and 100000000 for 
the transaction and old master, respectively. The active key is the smaller of the two, 
social security n u m b e r 000000000, and corresponds to the transaction value. The 
paragraph 0070-APPLY-TRANS-TO-MASTER is entered for the first transaction, 
after which the lower-level paragraph 0 0 9 0 - A D D - N E W - R E C O R D is invoked. The 
second and third transactions also have a social security n u m b e r of 000000000, so 
that 0070-APPLY-TRANS-TO-MASTER is executed twice more, each time followed 
by 0100-CORRECT-EXISTING-RECORD. Finally, w h e n the transaction key no longer 



C h a p t e r 1 7 Sequential File Maintenanc 

fare 1 7 . 1 3 Stubs Program 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SEQSTUB. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT TRANSACTION-FILE ASSIGN TO 'A:\CHAPTR17\VALTRANS.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT OLD-MASTER-FILE ASSIGN TO 'A:\CHAPTR17\OLDMAST.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD TRANSACTION-FILE 

DATA RECORD IS TRANSACTION-RECORD. 
01 TRANSACTION-RECORD 

FD OLD-MASTER-FILE 
DATA RECORD IS OLD-MAST-RECORD. 

01 OLD-MAST-RECORD 

WORKING-STORAGE SECTION. 
01 FILLER 

VALUE 'WS BEGINS HERE 1. 

01 WS-TRANS-RECORD. 
05 TR-SOC-SEC-NUMBER 

TR-NAME. 
10 TR-LAST-NAME 
10 TR-INITIALS 
TR-LOCATION-CODE 
TR-COMMISSION-RATE 
TR-SALES-AMOUNT 

05 

05 
05 
05 
05 TR-TRANSACTION-CODE 

88 ADDITION VALUE 'A'. 
88 CORRECTION VALUE ' C . 
88 DELETION VALUE 'D'. 

01 WS-OLD-MAST-RECORD. 
05 OM-SOC-SEC-NUMBER 

OM-NAME. 
10 OM-LAST-NAME 
10 OM-INITIALS 
OM-LOCATION-CODE 
OM-COMMISSION-RATE 
0M-YEAR-TO-DATE-SALES 

05 

05 
05 
05 

01 WS-BALANCE-LINE-SWITCHES. 
05 WS-ACTIVE-KEY 
05 WS-RECORD-KEY-ALLOCATED-SWITCH 

PIC X(37). 

PIC X(39). 

PIC X(14) 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(5). 
PIC X. 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(8). 

PIC X(9). 
PIC X(3). 

squired 

-non types sided 

file://'A:/CHAPTR17/VALTRANS.DAT'
file://'A:/CHAPTR17/OLDMAST.DAT'


Top-Down Testing 

(continued) 

52 
53 PROCEDURE DIVISION. 
54 0010-UPDATE-MASTER-FILE. 
55 OPEN INPUT TRANSACTION-FILE 
56 OLD-MASTER-FILE. 
57 [PERFORM 0020-READ-TRANSACTION-FILE. 1 

58 i PERFORM 0030-READ-OLD-MASTER-FILE. , 
59 PERFORM 0040-CHOOSE-ACTIVE-KEY. 
60 PERFORM 0050-PROCESS-ACTIVE-KEY 
61 UNTIL WS-ACTIVE-KEY = HIGH-VALUES. 
62 CLOSE TRANSACTION-FILE 
63 OLD-MASTER-FILE. 
64 STOP RUN. 
65 
66 0020-READ-TRANSACTION-FILE. 
67 READ TRANSACTION-FILE INTO WS-TRANS-RECORD 
68 AT END MOVE HIGH-VALUES TO TR-SOC-SEC-NUMBER 
69 END-READ. 
70 
71 0030-READ-OLD-MASTER-FILE. 
72 READ OLD-MASTER-FILE INTO WS-OLD-MAST-RECORD 
73 AT END MOVE HIGH-VALUE TO OM-SOC-SEC-NUMBER 
74 END-READ. 
75 
76 0040-CHOOSE-ACTIVE-KEY. 
77 IF TR-SOC-SEC-NUMBER LESS THAN OM-SOC-SEC-NUMBER j 
78 MOVE TR-SOC-SEC-NUMBER TO WS-ACTIVE-KEY 
79 ! ELSE 
80 MOVE OM-SOC-SEC-NUMBER TO WS-ACTIVE-KEY 
81 ! END-IF. 
82 " " ~ _ " " 
83 0050-PROCESS-ACTIVE-KEY. 
84 [ DISPLAY ' " " " ~ 
85 \ DISPLAY ' 
86 ! DISPLAY 'RECORDS BEING PROCESSED'. 
87 j DISPLAY ' TRANSACTION SOC SEC #: ' TR-SOC-SEC-NUMBER 
88 | DISPLAY ' OLD MASTER SOC SEC #: ' OM-SOC-SEC-NUMBER 
89 | DISPLAY ' ACTIVE KEY: ' WS-ACTIVE-KEY. 
90 i DISPLAY ' _ _ _ 
91 " " ~ ~ " " " ~ ~ 
92 IF OM-SOC-SEC-NUMBER = WS-ACTIVE-KEY 
93 MOVE 'YES' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
94 PERFORM 0060-BUILD-NEW-MASTER 
95 ELSE 
96 MOVE 'NO' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
97 END-IF. 
98 
99 PERFORM 0070-APPLY-TRANS-TO-MASTER 
100 UNTIL WS-ACTIVE-KEY NOT EQUAL TR-SOC-SEC-NUMBER. 
101 
102 IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 



C h a p t e r 17 Sequential File Maintenance 

F i g u r e 17 .13 (continued) 

103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 

PERFORM 0080-WRITE-NEW-MASTER 
END-IF. 

PERFORM 0040-CH00SE-ACTIVE-KEY. 

0060-BUILD-NEW-MASTER. 
DISPLAY '0060-BUILD-NEW-MASTER ENTERED'. 
PERFORM 0030-READ-0LD-MASTER-FILE. - DISPLA Y statement indicates 

paragraph has bean called 

0070-APPLY-TRANS-TO-MASTER. 
DISPLAY '0070-APPLY-TRANS-TO-MASTER ENTERED' 

TRANSACTION CODE: ' TR-TRANSACTI0N-C0DE. 

EVALUATE TRUE 
WHEN ADDITION 

PERFORM 0090-ADD-NEW-RECORD 
WHEN CORRECTION 

PERFORM 0100-CORRECT-EXISTING-RECORD 
WHEN DELETION 

PERFORM 0110-DELETE-EXISTING-RECORD 
WHEN OTHER 

DISPLAY 'INVALID TRANSACTION CODE' 
END-EVALUATE. 

module to execute 

PERFORM 0020-READ-TRANSACTION-FILE. 

0080-WRITE-NEW-MASTER.}-
DISPLAY '0080-WRITE-NEW-MASTER ENTERED'. 

0090-ADD-NEW-RECORD. j — " 
DISPLAY '0090-ADD-NEW-RECORD ENTERED'. 
IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 

DISPLAY ' ERROR-DUPLICATE ADDITIO!^' TR-SOC-SEC-NUMBER 
ELSE 

MOVE 'YES' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
END-IF. 

Partially coded paragraphs 

0100-CORRECT-EXISTING-RECORD. 
DISPLAY '0100-CORRECT-EXISTING-RECORD ENTERED.' 
IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 

NEXT SENTENCE 
ELSE 

DISPLAY ' ERROR-NO MATCHING RECORD: ' TR-SOC-SEC-NUMBER 
END-IF. 

0110-DELETE-EXISTING-RECORD. 
DISPLAY '0110-DELETE-EXISTING-RECORD ENTERED' 

, RECORD-KEY-ALLOCA TED-SWITCH 
controls deletion 

IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES 
MOVE 'NO' TO WS-RECORD-KEY-ALLOCATED- SWITCH 

ELSE 
DISPLAY ' ERROR-NO MATCHING RECORD: ' TR-SOC-SEC-NUMBER 

END-IF. 



Figure 17.14 Truncated Output of Stubs Program 

RECORDS BEING PROCESSED 
TRANSACTION SOC SEC #: 000000000 
OLD MASTER SOC SEC #: 100000000 
ACTIVE KEY: 000000000 

0070-APPLY-TRANS-TO-MASTER ENTERED TRANSACTION CODE: A 
0090-ADD-NEW-RECORD ENTERED 
0070-APPLY-TRANS-TO-MASTER ENTERED TRANSACTION CODE: C 
0100-C0RRECT-EXISTING-REC0RD ENTERED. 
0070-APPLY-TRANS-TO-MASTER ENTERED TRANSACTION CODE: C 
0100-CORRECT-EXISTING-RECORD ENTERED. 
0080-WRITE-NEW-MASTER ENTERED 

RECORDS BEING PROCESSED 
TRANSACTION SOC SEC #: 400000000 
OLD MASTER SOC SEC #: lOOOpOOOO 
ACTIVE KEY: 100000000 

0060-BUILD-NEW-MASTER ENTERED 
0080-WRITE-NEW-MASTER ENTERED 

RECORDS BEING PROCESSED 
TRANSACTION SOC SEC #: 400000000 
OLD MASTER SOC SEC #: 200000000 
ACTIVE KEY: 200000000 

0060-BUILD-NEW-MASTER ENTERED 
0080-WRITE-NEW-MASTER ENTERED 

RECORDS BEING PROCESSED 
TRANSACTION SOC SEC #: 400000000 
OLD MASTER SOC SEC #: 300000000 
ACTIVE KEY: 300000000 

0060-BUILD-NEW-MASTER ENTERED 
0080-WRITE-NEW-MASTER ENTERED 

RECORDS BEING PROCESSED 
TRANSACTION SOC SEC #: 400000000 
OLD MASTER SOC SEC #: 400000000 
ACTIVE KEY: 400000000 

0060-BUILD-NEW-MASTER ENTERED 
0070-APPLY-TRANS-TO-MASTER ENTERED TRANSACTION CODE: A 
0090-ADD-NEW-RECORD ENTERED 

ERROR-DUPLICATE ADDITION: 400000000 
0080-WRITE-NEW-MASTER ENTERED 

RECORDS BEING PROCESSED 
TRANSACTION SOC SEC #: 999999999 
OLD MASTER SOC SEC #: 
ACTIVE KEY: 999999999 

0070-APPLY-TRANS-TO-MASTER ENTERED TRANSACTION CODE: A 
0090-ADD-NEW-RECORD ENTERED 
0080-WRITE-NEW-MASTER ENTERED 

1 



C h a p t e r 1 7 Sequential File Maintenance 

equals the active key, that is, w h e n the fourth transaction (Moldof, with social 
security n u m b e r 400000000) is read, the paragraph 0080-VvRITE-NEvV-lviASTER is 
executed to write the n e w (and corrected) record to the n e w master file. 

The next determination of the active key compares the transaction just read 
(social security n u m b e r 400000000) to the current old master social record (social 
security n u m b e r 100000000), producing an active key of 100000000. The program 
decides there are no transactions for this old master record and copies it immediately 
to the n e w master file, as implied by the paragraphs 0 0 6 0 - B U I L D - N E W - M A S T E R 
and 0 0 8 0 - W R I T E - N E W - M A S T E R . The next two determinations of the active key (for 
old master records 200000000 and 300000000) produce a similar result. The fifth 
determination of the active key finds the same social security n u m b e r in both files 
in conjunction with an attempted addition in the transaction file, producing an 
error message for a duplicate addition. 

By n o w you should be gaining confidence that the program is working correctly, 
because the paragraphs are executing in proper sequence for the test data. W e can 
say therefore that the initial testing has concluded successfully and m o v e o n to 
developing the completed program. 

Once the stubs program has been tested and debugged, it is relatively easy to 
complete the program because the most difficult portion has already been written. 
W e k n o w that the interaction between modules works correctly; that the program 
will correctly read from the old master, transaction file, or both; that it will apply 
multiple transactions to the s a m e master record; and that it will properly perform 
the appropriate lower-level module to add, correct, or delete a record. 

Figure 17.15 contains the expanded update program, which defines an 
additional F D for the N E W - M A S T E R - F I L E as well as completed paragraphs for the 
addition and correction routines. The DISPLAY statements associated with the 
testing procedure have also been deleted. 

The files associated with the completed program are s h o w n in Figure 17.16. 
Figures 17.16a and 17.16b repeat the original test data (for convenience), whereas 
Figures 17.16c and 17.16d contain the actual output. Y o u should take a m o m e n t to 
verify the results to satisfy yourself that the program is working correctly. Observe in 
particular h o w multiple transactions were applied to a single old record (Borow), 
h o w Borow and Gillenson were successfully added to the n e w master, and h o w 
Milgrom was deleted. The two error messages correctly reflect both errors, an 
attempted duplicate addition a n d a non matching social security number. 

Figure 1 7 , 1 5 Completed Sequential Update 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SEQUPDT. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT TRANSACTION-FILE ASSIGN 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT OLD-MASTER-FILE ASSIGN 
ORGANIZATION IS LINE SEQUENTIAL. 

ASSIGN TO 'A:\CHAPTR17\VALTRANS.DAT 

ASSIGN TO 'A:\CHAPTR17\0LDMAST.DAT 

file://'A:/CHAPTR17/VALTRANS.DAT
file://'A:/CHAPTR17/0LDMAST.DAT


Top-Down Testing 

i i .c <" . (continued) 

12 
13 

[SELECT NEW-MASTER-FILE ASSIGN 
i ORGANIZATION IS LINE SEQUENTIAL TO 'A:\CHAPTR17\NEWMAST. 

14 -
15 DATA DIVISION. 
16 FILE SECTION. 
17 FD TRANSACTION-FILE 
18 DATA RECORD IS TRANSACTION-RECORD. 
19 01 TRANSACTION-RECORD PIC X(37). 
20 
21 FD OLD-MASTER-FILE 
22 DATA RECORD IS OLD-MAST-RECORD. 
23 01 OLD-MAST-RECORD PIC X(39). 
24 
25 FD NEW -MASTER-FILE 
26 DATA RECORD IS NEW-MAST-RECORD. 
27 01 NEW-MAST-RECORD PIC X(39). 
28 
29 WORKING -STORAGE SECTION. 
30 01 FIL LER PIC X(14) 
31 VALUE 'WS BEGINS HERE' . 
32 
33 01 WS-TRANS-RECORD. 
34 05 TR-SOC-SEC-NUMBER PIC X(9). 
35 05 TR-NAME. 
36 10 TR-LAST-NAME PIC X(15). 
37 10 TR-INITIALS PIC XX. 
38 05 TR-LOCATION-CODE PIC X(3). 
39 05 TR-COMMISSION-RATE PIC 99. 
40 05 TR-SALES-AMOUNT PIC 9(5). 
41 05 TR-TRANSACTION-CODE PIC X. 
42 88 ADDITION VALUE 'A', j 43 88 CORRECTION VALUE 'C . r 44 88 DELETION VALUE 'D'. | 
45 
46 01 WS-OLD-MAST-RECORD.l, 47 05 OM-SOC-SEC-NUMBER\ PIC X(9). 
48 05 OM-NAME. \ 
49 10 OM-LAST-NAME \ PIC X(15). 
50 10 OM-INITIALS \ PIC XX. 
51 05 OM-LOCATION-CODE \ PIC X(3). 
52 05 OM-COMMISSION-RATE \ PIC 99. 
53 05 OM-YEAR-TO-DATE-SALES \ PIC 9(8). 54 3 Record layout* are icieniica! 
55 (01 WS-NEW-MAST-RECORDTI 56 

(01 
05 NM-SOC-SEC-NUMBER PIC X(9). 

57 05 NM-NAME. 
58 10 NM-LAST-NAME PIC X(15). 
59 10 NM-INITIALS PIC XX. 
60 05 NM-LOCATION-CODE PIC X(3). 
61 05 NM-COMMISSION-RATE PIC 99. 

file://'A:/CHAPTR17/NEWMAST


Chapter 17 Sequential File Maintenance 

i g u r e 1 7 . 1 5 (continued) 

62 05 NM-YEAR-TO-DATE-SALES PIC 9(8). 
63 
64 01 WS-BALANCE-LINE-SWITCHES. 
65 05 WS-ACTIVE-KEY PIC X(9). 
66 05 WS-RECORD-KEY-ALLOCATED-SWITCH PIC X(3). 
67 
68 PROCEDURE DIVISION. 
69 0010-UPDATE-MASTER-FILE. 
70 OPEN INPUT TRANSACTION-FILE 
71 OLD-MASTER-FILE 
72 OUTPUT NEW-MASTER-FILE. 
73 PERFORM 0020-READ-TRANSACTION-FILE. 
74 PERFORM 0030-READ-OLD-MASTER-FILE. 
75 PERFORM 0040-CH00SE-ACTIVE-KEY. 
76 PERFORM 0050-PROCESS-ACTIVE-KEY " " 
77 UNTIL WS-ACTIVE-KEY = HIGH-VALUES. 
78 CLOSE TRANSACTION-FILE 
79 OLD-MASTER-FILE 
80 NEW-MASTER-FILE. 
81 STOP RUN. 
82 
83 0020-READ-TRANSACTION-FILE. 
84 READ TRANSACTION-FILE INTO WS-TRANS-RECORD 
85 AT END MOVE HIGH-VALUES TO TR-SOC-SEC-NUMBER 
86 END-READ. 
87 
88 0030-READ-OLD-MASTER-FILE. 
89 READ OLD-MASTER-FILE INTO WS-OLD-MAST-RECORD 
90 AT END MOVE HIGH-VALUE TO OM-SOC-SEC-NUMBER 
91 END-READ. 
92 
93 0040-CHOOSE-ACTIVE-KEY. 
94 IF TR-SOC-SEC-NUMBER LESS THAN OM-SOC-SEC-NUMBER 
95 MOVE TR-SOC-SEC-NUMBER TO WS-ACTIVE-KEY 
96 ELSE 
97 MOVE OM-SOC-SEC-NUMBER TO WS-ACTIVE-KEY 
98 END-IF. 
99 
100 0050-PROCESS-ACTIVE-KEY. 
101 IF OM-SOC-SEC-NUMBER = WS-ACTIVE-KEY 
102 MOVE 'YES' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
103 PERFORM 0060-BUILD-NEW-MASTER 
104 ELSE 
105 MOVE 'NO' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
106 END-IF. 
107 
108 I PERFORM 0070^APPLY-TRANS-T0-MASTER 
109 UNTIL WS-ACTIVE-KEY NOT EQUAL TR-SOC-SEC-NUMBER. 
110 
111 IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 
112 PERFORM 0080-WRITE-NEW-MASTER 



Top-Down Testing 

(continued) 

113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
1.46 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 

END-IF. 

PERFORM 0040-CH00SE-ACTIVE-KEY. 

0060-BUILD-NEW-MASTER. 
MOVE WS-OLD-MAST-RECORD TO WS-NEW-MAST-RECORD. 
PERFORM 0030-READ-OLD-MASTER-FILE. 

0070-APPLY-TRANS-TO-MASTER. 
EVALUATE TRUE 

WHEN ADDITION 
PERFORM 0090-ADD-NEW-RECORD 

WHEN CORRECTION 
PERFORM 0100-CORRECT-EXISTING-RECORD 

WHEN DELETION 
PERFORM 0110-DELETE-EXISTING-RECORD 

WHEN OTHER 
DISPLAY 'INVALID TRANSACTION CODE' 

END-EVALUATE. 

PERFORM 0020-READ-TRANSACTION-FILE. 

0080-WRITE-NEW-MASTER. 
WRITE NEW-MAST-RECORD FROM WS-NEW-MAST-RECORD. txpanaea trom program stuo 

0090-ADD-NEW-RECORD. 
IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 

DISPLAY ' ERROR-DUPLICATE ADDITION: ' TR-SOC-SEC-NUMBER 
ELSE 

MOVE 'YES' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
MOVE SPACES TO WS-NEW-MAST-RECORD 
MOVE TR-SOC-SEC-NUMBER TO NM-SOC-SEC-NUMBER 
MOVE TR-NAME TO NM-NAME 
MOVE TR-LOCATION-CODE TO NM-LOCATION-CODE 
MOVE TR-COMMISSION-RATE TO NM-COMMISSION-RATE 
MOVE ZEROS TO NM-YEAR-TO-DATE-SALES 

END-IF. 

0100-CORRECT-EXISTING-RECORD. 
IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 

ADD TR-SALES-AMOUNT TO NM-YEAR-TO-DATE-SALES 
ELSE 

DISPLAY ' ERROR-NO MATCHING RECORD: ' TR-SOC-SEC-NUMBER 
END-IF. 

0110-DELETE-EXISTING-RECORD. 
IF WS-RECORD-KEY-ALLOCATED-SWITCH = 'YES' 

MOVE 'NO' TO WS-RECORD-KEY-ALLOCATED-SWITCH 
master record 

ELSE 
DISPLAY 

END-IF. 
ERROR-NO MATCHING RECORD: ' TR-SOC-SEC-NUMBER 



Chapter 17 Sequential File Maintenance 

F i g u r e 17 Output of the Sequential Update 

I 
I 
| 100000000GRABER 
j 200000000RUBIN 
I 300000000ANDERSON 
j 400000000MOLDOF 
j 500000000GL.ASSMAN 
j 600000000GRAUER 

700000000MILGR0M 
800000000VAZQUEZ 
900000000CLARK 

0OO0000OOBOROW 
| O0O0OOOO0B0ROW 
j OOOOOOOOOBOROW 
j 400000000MOLDOF 
| 444444444RICHARDS 
j 700000000MILGR0M 
1 800000000VAZQUEZ 
j 999999999GILLENS0N 

1 
1 

OOOOOOOOOBOROW 
! 100000000GRABER 

200000000RUBIN 
300000000ANDERSON 
400000000MOLDOF 
500000000GLASSMAN 
600000000GRAUER 
800000000VAZQUEZ 
900000000CLARK 
999999999GILLENS0N 

P ATL1500000000 
MABOS0800020000 
IRBOS1000113000 
BLATL1500000000 
JSNYC1000045000 
RTNYC0800087500 
A SF 0900120000 
C ATL1200060000 
E NYC07000O250O 

(a) Old Master 

JSATL07 A 
JS 10000C 
JS 20000C 
BLATL15 A 
IM 050O0C 
A D 
C 55000C 
MANYC10 A 

(b) Valid Transaction File 

JSATL0700030000 
P ATLI500000000 
MAB0S0800020000 
IRBOS1000113000 
BLATL1500000000 
JSNYC1000045000 
RTNYC0800087500 
C ATL1200115000 
E NYC0700002500 
MANYC1000000000 

(c) New Master File 

i 

ERROR-DUPLICATE ADDITION: 400000000 
ERROR-NO MATCHING RECORD: 444444444 

(d) Error Messages 



SUMMARY 

iPM/tis to Remember 

File maintenance is a necessity of every system and enables three types of 
transactions. New records may be added, while existing records may be 
changed or deleted. 

A sequential update copies every record from the old master file to the new 
master, regardless of whether it changes. By contrast, a nonsequential 
update uses a single file as both the old and new master. Sequential 
processing is best when the master file is active and has substantial 
activity; nonsequential processing is more efficient for inactive files with 
less activity. 

Data validation is an essential component of file maintenance. The 
transaction file is typically run through a stand-alone edit prior to the 
maintenance program to check for valid codes, complete records, and so 
on. The update program must still check for duplicate additions and/or no 
matches (that is, transactions entered as corrections or deletions for records 
that are not present in the master file). 

The balance iine algorithm is a general approach to sequential file 
maintenance. The algorithm allows multiple transactions from one or more 
transaction files, to reference a single master record. 

Top-down testing was demonstrated through use of a stub program. Early 
testing ensures that modules are performed in proper sequence and 
facilitates the correction of any errors detected. 

Key Words and Concepts 

Active key 
Addition 
Allocation status 
Backup 
Balance line algorithm 
Correction 
Data validation 
Defensive programming 
Deletion 
Duplicate addition 
End-of-file condition 
Error message table 
Grandfather-father-son 
Hierarchy chart 

New master file 
No match 
Nonsequential update 
Old master file 
Periodic file maintenance 
Program stub 
Record-key allocated switch 
Sequential update 
Stand-alone edit program 
Stub program 
Test data 
Top-down testing and implementation 
Transaction file 

COBOL Element 

HIGH-VALUES 



C h a p t e r 1 7 — Sequential File Maintenance 

h I L L - I N 

In a sequential update, record in the old master (except those 
slated for deletion) is copied (rewritten) to the new master, regardless of whether it 

2. Incoming transactions to a sequential update have generally been validated in. a 

3. The balance line algorithm (does/does not) require every record in the old master 
file to have a unique key. 

4. The balance line algorithm (does/does not) require every record in the transaction 
file to have a unique key. 

5. In general, the three transaction types that are input to a sequential update are  
and . 

6. The RECORD-KEY-ALLOCATED-SWITCH is used in checking for two types of 
errors: additions, and/or . 

7. An incomplete addition (can/can not) be detected in a stand-alone edit program. 

8. An invalid transaction code (can/can not) be detected in a stand-alone edit program. 

9. An incorrectly entered social security number on an otherwise valid transaction 
(can/can not) be detected in a stand-alone edit program. 

10. Top-down testing requires that the levels in a hierarchy chart be 
tested and more often than the lower-level routines. 

11. In order to implement top-down testing, a program is developed, 
which contains several one-line paragraphs consisting of 
statements. 

12. The grandfather-father-son backup scheme implies that at least 
generations of files are kept. 

13. is a figurative literal used to force the end-of-
file condition. 

1. The balance line algorithm requires a unique key for every record in the old master 
file. 

2. Transactions to the balance line algorithm must be presented in the following order: 
additions, changes, deletions. 

3. The balance line algorithm permits multiple transactions for the same master 
record and can be generalized to any number of transaction files. 

4. A program must be completely coded before any testing can begin. 

5. The high-level modules in a hierarchy chart should be tested first. 

6. One can logically assume that input to a maintenance program will be valid. 

changes. 

program. 

TRUE/FALSE 



Problems 

7. One need not check for duplicate additions if the transaction file has been run 
through a stand-alone edit program. 

8. A module in a hierarchy chart can be performed from more than one place. 
9. Pseudocode and hierarchy charts depict the same thing. 
10. A program stub may consist of a one-line DISPLAY paragraph. 
11. Test data are best designed by the programmer writing the program. 
12. Top-down testing can begin before a program is completely finished. 
13. The balance line algorithm is restricted to a single transaction file. 
14. A hierarchy chart contains decision-making logic. 

P R O B L E M S 

1. The transaction file in Figure 17.9b has both name and initials entered on correction 
transactions In addition to the social security number, is this necessary according 
to the specifications and subsequent C O B O L implementation (Figure 17.15)? 
Describe both an advantage and a disadvantage of entering the name and initials. 

2. The specifications of the update program do not discuss how to change (i.e., 
correct) the social security number of an existing record. With respect to Figure 
17.9a, for example, how could the social security number of Sugrue, 'who already 
exists in the old master file, be changed to 100000001? Discuss two different 
approaches, with an advantage and a disadvantage for each. 

3. What problems, if any, do you see with each of the following? (Assume no data 
validation has been done.) 
a. IF SEX = 'M' 

ADD 1 TO NUMBER-OF-MEN 
ELSE 

ADD 1 TO NUMBER-OF-WOMEN 
END-IF. 

b. SEARCH LOCATION-TABLE 
WHEN INCOMING-LOCATION-CODE = LOCATION (LOC-INDEX) 

MOVE EXPANDED-LOCATION (LOC-INDEX) TO PRINT-LOCATION 
END-SEARCH. 





Overview 
S y s t e m C o n c e p t s 
C O B O L Imp lementa t ion 
C r e a t i n g a n I n d e x e d F i le 

Programming Specifications 
Pseudocode 
The Completed Program 

Addi t ional C O B O L E l e m e n t s 
OPEN 
READ 
WRITE 
REWRITE 
DELETE 

Mainta in ing a n I n d e x e d F i l e 
Programming Specifications 
Hierarchy Chart 
Pseudocode 
The Completed Program 

A l t e r n a t e R e c o r d K e y 
Programming Specifications 

C o n c a t e n a t e d K e y 
The START Statement 

Limitations of COBOL-74 
Summary 
Fill-in 
True/False 
Problems 



Chapter 18 — Indexed Files 

After reading this chapter you will be able to: 

Describe how an index file enables both sequential and/or nonsequential 
retrieval of individual records. 

Define the specific terms associated with IBM's VSAM implementation of 
indexed files. 

Discuss the clauses in the SELECT statement for an indexed file; indicate 
which clauses are optional and which are required. 

Define file status bytes; state how they may be used to verify the success 
of an I/O operation. 

Differentiate between the READ statements for sequential and nonsequential 
access of an indexed file. 

Differentiate between the WRITE, REWRITE, and DELETE statements as 
they apply to file maintenance of an indexed file. 

Describe the syntax of the START statement and give a reason for its use. 

Distinguish between the primary and alternate keys of an indexed file, and 
the requirements for each. 

OVERVIEW 

This chapter covers all major aspects of indexed files, a type of file organization 
that permits both sequential and nonsequential access to individual records. It 
begins with a general discussion of how indexed files work, with particular 
reference to IBM's VSAM implementation. Different vendors use different 
terminology, but the underlying concepts are the same, namely, a series of 
indexes that access individual records on a sequential or random basis. More 
importantly, the COBOL syntax is identical for all vendors who adhere to the ANS 
85 standard. 

The chapter includes three programs that illustrate all of the COBOL 
elements associated with this type of file organization. The first shows how to 
create an indexed file, the second continues with the file maintenance example 
of the previous chapter, and the last illustrates how individual records may be 
accessed by multiple keys—for example, name and social security number. 

Although different vendors have different physical implementations of indexed 
files, and consequently different terminology, the principles are the same; namely, 
a series of indexes that allow individual records to be accessed either sequentially or 

IVES 



System Concepts 

nonsequentially. This section provides an intuitive discussion of h o w an indexed 
file actually works. 

In reality, the physical implementation of an indexed file is of little or no 
concern to the programmer. The operating system establishes and maintains the 
indexes, and the programmer is concerned primarily with accessing the file through 
the appropriate C O B O L elements. Nevertheless, a conceptual understanding is of 
benefit in developing a more competent and better-rounded individual. Accordingly, 
w e consider IBM's V S A M implementation. 

A V S A M file or data set is divided into control areas and control intervals. A 
control interval is a continuous area of auxiliary storage. A control area contains 
one or more control intervals. A control interval is independent of the physical 
device o n which it resides; that is, a control interval that takes exactly one track of a 
given direct access device might require more or less than one track if the file were 
m o v e d to another type of device). 

A V S A M file is defined with an index so that individual records m a y be located 
o n a random basis, with entries in the index k n o w n as index records. The lowest-
level index is called the sequence set. Records in all higher levels are collectively 
called the index set. 

An entry in a sequence set contains the highest key in a control interval and a 
vertical pointer to that interval. An entry in an index set contains the highest key in 
the index record at the next lower level and a vertical pointer to the sequence set. 
These concepts are m a d e clearer by examination of Figure 18.1. 

Figure 18.1 shows 28 records hypothetically distributed in a V S A M data set. 
The entire file consists of three control areas; each area in turn contains three 
control intervals. The shaded areas shown at the end of each control interval contain 
information required by V S A M . The index set has only one level of indexing. There 
are three entries in the index set, one for each control area. Each entry in the index 

Initial VSAM Data Set 

Index set 377 Vert, 
Pntr. 619 Vert. 

Pntr. 800 Vert, 
Pntr, 

Sequence Set 
Horiz. 
Pntr. Sequence Set 

Horiz, 
Pntr. 

• Vertical Pointer 

Sequence Set 

280 Vert. 327 Vert. 377 Vert. t 469 Vert, 619 Vert, t > 700 Vert. 800 Vert. 280 Pntr, 327 Pntr. 377 Pntr, 469 Pntr, 619 Pntr, 700 Pntr, 800 Pntr. 

7 7 7 
251 312 345 

269 318 346 

280 327 377 

FREE FREE FREE 

Control 
Interval 

Control 
Interval 

Control 
Interval 

7 7 
394 500 

400 502 

449 598 

469 617 

FREE 619 

FREE 

Z 7 
627 

642 

658 

675 

700 

717 

722 

746 

748 

800 

FREE 

Control Area Control Area Control Area 



C h a p t e r 1 8 - Indexed Files 

set contains the highest key in the corresponding control area; thus 377, 619, and 
800 are the highest keys in the first, second, and third control areas, respectively. 
Each control area has its o w n sequence set. The entries in the first sequence set 
s h o w the highest keys of the control intervals in the first control area to be 280, 327, 
and 377, respectively. Note that the highest entry in the third control interval, 377, 
corresponds to the highest entry in the first control area of the index set. 

Figure 18.1 illustrates two kinds of pointers, vertical a n d horizontal. Vertical 
pointers are used for direct access to an individual record. For example, assume 
that the record with a key of 449 is to be retrieved. V S A M begins at the highest level 
of index (that is, at the index set). It concludes that record key 449, if it is present, is 
in the second control area (377 is the highest key in the first area, whereas 619 is the 
highest key in the second control area). V S A M follows the vertical pointer to the 
sequence set for the second control area and draws its final conclusion: record key 
449, if it exists, will be in the first control interval of the second control area. 

Horizontal pointers are used for sequential access only. In this instance, V S A M 
begins at the first sequence set and uses the horizontal pointer to get from that 
sequence set record to the one containing the next highest key. Put another way, the 
vertical pointer in a sequence set points to data; the horizontal pointer indicates the 
sequence set containing the next highest record. 

Figure 18.1 contains several allocations of free space, which are distributed in 
one of two ways: as free space within a control interval or as a free control interval 
within a control area. In other words, as V S A M loads a file, empty space is deliberately 
left throughout the file. This is done to facilitate subsequent insertion of n e w records. 

Figure 18.2 shows the changes brought about by the addition of two n e w 
records, with keys of 410 and 730, to the file of Figure 18.1. Addition of the first 
record, key 410, poses no problem, as free space is available in the control interval 

Control Interval Split 

Index set 377 Vert. 
Pntr. 619 Vert. 

Pntr. 800 Vert. 
Pntr. 

Sequence Set 
Horiz. 
Pntr. W Sequence Set 

Horiz. 
Pntr. Sequence Set 

280 Vert. 327 Vert. 377 Vert. 469 Vert. 619 Vert. 700 Vert. Vert. 800 Vert. 280 Pntr. 
327 Pntr. 377 Pntr. 469 Pntr. 619 

Pntr. 
700 Pntr. Pntr. 800 

Pntr. 

7 7 7 7 7 7 7 7 
251 312 345 394 500 627 717 746 

269 318 346 400 502 642 722 748 

280 327 377 410 598 

FREE 

658 730 800 

FREE FREE FREE 
449 617 

FREE 
675 

FREE FREE FREE FREE FREE 
469 619 700 

FREE FREE 

Control Interval 
Split 

Control Area Control Area Control Area 



System Concepts 

where the record belongs. Record 410 is inserted into its proper place and the other 
records in that control interval are m o v e d down. 

The addition of record key 730 requires different action. The control interval 
that should contain this record is full in Figure 18.1. Consequently V S A M causes a 
control interval split, in which s o m e of the records in the previously filled control 
interval are m o v e d to an empty control interval in the same control area. Entries in 
the sequence set for the third control area will change, as shown in Figure 18.2. This 
makes considerable sense w h e n w e realize that each record in a sequence set 
contains the key of the highest record in the corresponding control interval. Thus 
the records in the sequence set must reflect the control interval split. Note that after 
a control interval split, subsequent additions are facilitated, as free space is again 
readily available. 

Figure 18.3 shows the results of including three additional records, with keys 
of 316, 618, and 680. Record 316 is inserted into free space in the second control 
interval of the first control area, with the other records initially in this interval 
shifted down. Record 618 causes a control interval split in the second control area. 

Record 680 also requires a control interval split except that there are no longer 
any free control intervals in the third control area. Accordingly, a control area split 
is initiated, in which s o m e of the records in the old control area are m o v e d into a 
n e w control area at the end of the data set. Both the old and the n e w control areas 
will have free control intervals as a result of the split. In addition, the index set has a 
fourth entry, indicating the presence of a n e w control area. The sequence set is also 
expanded to accommodate the fourth control area. 

Control Area Split 

Index set 377 Vert. 
Pntr, 619 Vert, 

Pntr. 700 Vert. 
Pntr, 800 Vert. 

Pntr, 

Sequence Set 
Horiz 
Pntr. • Sequence Set 

Horiz. 

Pntr. f Sequence Set 

Horiz 
Pntr. t Sequence Set 

280 Vert. 
Pntr. 327 Vert. 

Pntr. 377 Vert. 
Pntr. 469 Vert. 

Pntr. 593 Vert. 
Pntr. 619 Vert, 

Pntr. 

/ / / / / / 
251 312 345 394 500 617 

269 346 400 502 3:3 

280 318 377 410 598 619 

FREE 
327 

FREE 
449 

FREE FREE FREE 
FREE 

FREE 
469 

FREE FREE 

Vert. 700 Vert. Vert. 
Pntr, 

700 
Pntr, Pntr, 

627 

642 

658 

FREE 

675 

700 

FREE 

FREE 

730 Vert. 
Pntr, 800 Vert. 

Pntr. 
Vert. 
Pntr. 

717 

722 

730 

FREE 

746 

748 

800 

FREE 

FREE 

Control Interval 
Split 

Control Interval 
Split 

Control Area Control Area Control Area Control Area 

Control Area Split 



Chapter IS Indexed Files 

i r n p i e m e n t a t t o i 
The C O B O L implementation of an indexed file centers o n the SEL E C T statement in 
the Environment Division. Consider: 

SELECT file-name 

A C C T P M T A 
jimplementor-name- l| 
{literal-1 

RESERVE integer-1 AREA 
AREAS 

ORGANIZATION IS INDEXED 

ACCESS MODE IS 
SEQUENTIAL 
RANDOM 
DYNAMIC 

RECORD KEY IS data-name-i 

ALTERNATE RECORD KEY IS data-name-2 WITH DUPLICATES 

[FILE STATUS IS data-name-3] 

Three clauses are required: ASSIGN, O R G A N I Z A T I O N IS I N D E X E D , and 
R E C O R D KEY. The function of the ASSIGN clause is the same as with a sequential 
file—to tie a programmer-chosen file n a m e to a system name. T h e O R G A N I Z A T I O N 
IS INDEXED clause indicates an indexed file and needs no further explanation. 

The RECORD KEY clause references a field defined in the F D for the indexed 
record whose value must be unique for each record in the file. The value of the 
record key is used by the operating system to establish the necessary indexes for the 
file, which in turn enables the r a n d o m retrieval of individual records. 

T h e remaining entries—R E S E R V E integer A R E A S , A C C E S S M O D E , 
A L T E R N A T E R E C O R D KEY, and FILE S T A T U S — a r e optional. The RESERVE integer 
AREAS clause functions identically as with a sequential file, to increase processing 
efficiency by allocating alternate I/O areas (or buffers) for the file. If the clause is 
omitted, the n u m b e r of alternate areas defaults to the vendor's implementation, 
which is adequate in most instances. Specification of R E S E R V E Z E R O A R E A S 
will slow processing but will save an am o u n t of storage equal to the buffer size. 
This is generally done only o n smaller systems w h e n the a m o u n t of main m e m o r y 
is limited. 

The meaning of ACCESS M O D E is apparent w h e n either sequential or r a n d o m 
(nonsequential) access is specified. A C C E S S IS D Y N A M I C allows a file to be read 
both sequentially and nonsequentially in the same program a n d is illustrated in 
Figure 18.12 later in the chapter. 

ALTERNATE RECORD KEY provides a second path for r a n d o m access. Unlike 
the record key, which must be unique for every record, the alternate key m a y 
contain duplicate values. This capability is extremely powerful and gives C O B O L 
s o m e limited facility for data base management. Y o u could, for example, specify an 
account n u m b e r as the record key and a person's n a m e as the alternate key. Realize, 
however, that while the alternate key is powerful, it is expensive in terms of overhead, 
in that a second set of indexes must be maintained by the operating system and 
thus, the feature should not be used indiscriminately. The A L T E R N A T E R E C O R D 
K E Y clause is illustrated in Figure 18.12 at the end of the chapter. 



COBOL Implementation 

The FILE S T A T U S clause is available for any type of file organization and 
allows the programmer to distinguish between the m a n y different types of I/O 
error conditions. The concept was first introduced in Chapter 6 in connection 
with debugging (see page 158). The operating system automatically returns a two-
position field k n o w n as the I/O status (or file status bytes) to the data n a m e 
designated in the FILE S T A T U S clause. The value of the file status bytes m a y be 
interrogated by the programmer, w h o is thus able to more closely monitor the 
results of any I/O operation. 

Table 18.1 lists the various file status codes and their meaning. The use of file 
status codes is illustrated in the ensuing program to create an indexed file. 

M e 18.1 File Status Codes 

0 0 A successful input/output operation is performed with no further information available. 
0 2 A successful creation of a record with duplicate alternate key value 
0 4 A READ is successful, but the length of the record being processed does not conform to the fixed file attributes for that file. 
0 5 An OPEN is successful, but the referenced optional file is not present at open time. 

0 7 An input/output statement is successful; however, for a CLOSE with NO REWIND, REEL/UNIT, or FOR REMOVAL or for an 
OPEN with NO REWIND the referenced file is on a nonreel/unit medium 

10 A sequential READ is attempted and no next logical record exists because (1) the end of file has boon reached; or (2) an 
optional input file is not present. 

1 4 A sequential READ is attempted and the number of significant digits in the record number is larger than the size of the key 
data item described for the file. 

1 5 A sequential READ statement is attempted for the first time on an optional file that is not present 
2 1 A sequence error exists for a sequentially accessed indexed file. 
2 2 An attempt is made to write or rewrite a record that would create a duplicate prime record key or duplicate alternate record 

key without the DUPLICATES phrase. 
2 3 An attempt is made to randomly access a record that does not exist in the file, or a START or random READ is attempted on 

an optional input file that is not present. 
2 4 An attempt is made to write beyond the externally defined boundaries. 
2 5 A START statement or a random READ statement has been attempted on an optional file that is not present. 
3 0 A permanent error exists and no further information is available concerning the input/output operation. 
3 4 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally defined 

boundaries, 
3 5 A permanent error exists because an OPEN with the INPUT, I/O, or EXTEND phrase is attempted on a nonoptional file that is 

not present. 
3 7 A permanent error exists because an OPEN is attempted on a file and that file will not support the open mode specified: (1) 

EXTEND or OUTPUT phrase specified but not supported by the file; (2) I/O phrase is specified, but input and output 
operations are not supported by the file; or (3) INPUT phrase is specified, but the file will not support READ operations, 

3 8 A permanent error exists because an OPEN is attempted on a file previously closed with a lock, 
3 9 The OPEN is unsuccessful because a conflict has been detected between the fixed file attributes and the ones specified for 

that file in the program. 
4 1 An OPEN statement is attempted for a file in the open mode. 
4 2 A C L O S E statement is attempted for a file not in the open mode. 
4 3 In the sequential access mode, the last input/output statement executed for the file prior to the execution of a DELETE or 

REWRITE statement was not a successfully executed READ statement, 
4 4 A boundary violation exists because of an attempt to: (1) write or rewrite a record that is larger than the largest or smaller 

than the smallest record allowed by the RECORD IS VARYING clause of the associated file-name, or (2) rewrite a record 
and the record is not the same size as the record being replaced. 

4 6 A sequential READ is attempted on a file open in the input or I/O mode and no valid next record has been established 
because the preceding: (1) START was unsuccessful, (2) READ was unsuccessful but did not cause an at-end condition, or 
(3) READ caused an at-end condition. 

4 7 The execution of a READ or START is attempted on a file not open in the input or I/O mode. 
4 8 The execution of a WRITE is attempted on a file not open in the I/O, output, or extend mode. 
4 9 The execution of a DELETE or REWRITE statement is attempted on a file not open in the I/O mode. 



C h a p t e r 18 ~~ Indexed Files 

<&• \~ ..<: ~ . x f g Our first program creates an indexed file from sequential data, and in so doing, 
IF C v-i<_ h'*, e-ll© illustrates both the S E L E C T statement in the Environment Division and the use of 

the FILE S T A T U S bytes in the Procedure Division. It is important to realize that 
unlike sequential files, which can be created (or displayed) with an ordinary text 
editor or w o r d processor, indexed files require a special procedure to create the 
associated indexes, and hence the need for this program. T h e C O B O L program is 
not difficult and serves as a good introduction to indexed files. Specifications follow 
in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: 

Narrative: 

Input Fiie(s): 

Input Record Layout: 

Creating an Indexed File 

This program copies the data from an incoming sequential file to an output indexed file. 
The logic is trivial in nature as the program is intended primarily to illustrate the SELECT 
statement for indexed files and the use of FILE STATUS bytes. 

SEQUENTIAL-FILE 

01 SEQUENTIAL-RECORD. 
05 SEQ-SOC-SEC-NUMBER 
05 SEQ-REST-OF-RECORD 

PIC X(9). 
PIC X(30). 

Output File: 

Output Record Layout: 

INDEXED-FILE 

01 INDEXED-RECORD. 
05 IND-SOC-SEC-NUMBER 
05 IND-REST-0F-REC0RD 

PIC X(9). 
PIC X(30). 

100000000GRABER 
200000000RUBIN 
300000000ANDERSON 
222222222PANZER 
400000000MOLDOF 
500000000GLASSMAN 
600000000GRAUER 
700000000MILGROM 
800000000VAZQUEZ 
900000000CLARK 

P ATL1500000000 
MABOS0800020000 
IRB0S1000113000 
S NYC0600000000 
BLATL1500000000 
JSNYC1000045000 
RTNYC0800087500 
A SF 0900120000 
C ATL1200060000 
E NYC0700002500 

Processing Requirements: 1. Copy the records in an incoming sequential file to an equivalent indexed file. The 
record layouts in both files are the same, with the first nine positions serving as the 
record key. 

2. Display the FILE STATUS bytes after every I/O operation associated with the indexed 
file (OPEN, CLOSE, and WRITE). 

3. Verify that the newly created indexed file has its records in sequence, and further, that 
every record contains a unique value for the record key. Note, for example, that the 
record for Panzer in the test data is out of sequence and should be flagged accordingly. 



Creating an Indexed File 

The logic for this program is simple indeed as indicated in the programming 
specifications. In essence all w e do is read a record from the sequential file, write it 
to the indexed file, and repeat the loop until the sequential file is out of data. W e do 
not have to concern ourselves with building the indexes per se, as this is done 
automatically through the appropriate C O B O L statements. The logic for the program 
is depicted in the pseudocode of Figure 18.4. 

i 4 Pseudocode for Creating Indexed File 

,— Open files 
! DO WHILE data remains 
I i READ record from sequential file 

| AT END 
| Indicate no more data 
j NOT AT END 

Move sequential record to indexed record 
I Write indexed record 
i 
} r- IF sequence error 

Display error - records out of sequence 
\ L—- ENDIF 
j ; IF duplicate record 
! i Display error - record already exists 

L - ENDIF 
ENDREAD 

L ENDDO 
Close files 
Stop run 

Figure 18.5 displays the completed program and contains little that is n e w in the 
w a y of C O B O L other than the S E L E C T statement of lines 10 through 15. As indicated 
in the previous discussion, the ASSIGN, O R G A N I Z A T I O N IS I N D E X E D , and R E C O R D 
K E Y clauses are required, while the A C C E S S IS S E Q U E N T I A L and FILE S T A T U S 
clauses are optional (and included here for purposes of illustration). 

The R E C O R D KEY clause designates a field within the indexed record (IND-
S O C - S E C - N U M ) that will be used by the operating system to build the necessary 
indexes. Observe, therefore, that I N D - S O C - S E C - N U M is referenced in two places, 
in the R E C O R D KEY clause of line 14 and in the F D for the indexed file in line 30. 

The optional FILE S T A T U S clause of line 15 designates a two-position data 
n a m e , INDEXED - S T A T U S-BYTES, which in turn is defined in Working-Storage (line 
35). The operating system automatically updates the file status bytes after every I/O 
operation, making the result available to the program via the data n a m e I N D E X E D -
STATUS-BYTES. This, in turn, makes it possible to closely monitor the success (or 
failure) of various statements within the program. 

To illustrate the utility of the file status bytes, return to the test data in the 
programming specifications, noting that the record for Panzer is out of sequence. 
The logic in the Procedure Division reads a record from the sequential file and 



Chapter 18 — Indexed Files 

Figure 18.5 Program to Create an Indexed File 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CREATE. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT SEQUENTIAL-FILE ASSIGN TO 'A:\CHAPTR18\SEQUENCE.DAT' 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT INDEXED-FILE 
ASSIGN TO 'A:\CHAPTR18\INDMAST.DAT' 
ORGANIZATION IS INDEXED 
ACCESS IS SEQUENTIAL 
RECORD KEY IS IND-SOC-SEC-NUM 
FILE STATUS IS INDEXED-STATUS-BYTES. 

DATA DIVISION. 
FILE SECTION. 
FD SEQUENTIAL-FILE 

RECORD CONTAINS 39 CHARACTERS 
DATA RECORD IS SEQUENTIAL-RECORD. 
SEQUENTIAL-RECORD. 
05 SEQ-SOC-SEC-NUM PIC X(9). 
05 SEQ-REST-OF-RECORD PIC X(30). 

01 

FD 

01 

INDEXED-FILE 
RECORD CONTAINS 39 CHARACTERS 
DATA RECORD IS INDEXED-RECORD. 
INDEXED-RECORD. 
05 IND-SOC-SEC-NUM  
"05"_IND-REST-OF-RECORD 

WORKING-STORAGE SECTION. 
01 END-OF-FILE-SWITCH 

PIC X(9)_. 
PIC X(30). 

PIC X(3) VALUE 'NO'. 
01 INDEXED-STATUS-BYTES PIC XX. 

PROCEDURE DIVISION. 
0010-UPDATE-MASTER-FILE. 

OPEN INPUT SEQUENTIAL-FILE 
OUTPUT INDEXED-FILE. 

DISPLAY 'OPEN STATEMENT EXECUTED'. 
DISPLAY ' FILE STATUS BYTES = ', 
DISPLAY ' '. 

INDEXED-STATUS-BYTES. 

PERFORM UNTIL END-OF-FILE-SWITCH = 'YES' 
READ SEQUENTIAL-FILE 

AT END 
MOVE 'YES' TO END-OF-FILE-SWITCH 

NOT AT END 
MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEC-NUM 
MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD 
WRITE INDEXED-RECORD 

INVALID KEY PERFORM 0020-EXPLAIN-WRITE-ERROR 
END-WRITE 
DISPLAY 'WRITE STATEMENT EXECUTED FOR ' 

SEQUENTIAL-RECORD 

file://'A:/CHAPTR18/SEQUENCE.DAT'
file://'A:/CHAPTR18/INDMAST.DAT'


Additional COBOL Elements 

iCtlf Program to Create an Indexed File 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

DISPLAY ' FILE STATUS BYTES = 1 

INDEXED-STATUS-BYTES 
DISPLAY ' ' 

END-READ 
END-PERFORM. 
CLOSE SEQUENTIAL-FILE 

INDEXED-FILE. 
DISPLAY 'CLOSE STATEMENT EXECUTED'. 
DISPLAY ' FILE STATUS BYTES = ', INDEXED-STATUS-BYTES. 
DISPLAY ' '. 
STOP RUN. 

' SEQUENTIAL-RECORD 

0020-EXPLAIN-WRITE-ERROR. 
IF INDEXED-STATUS-BYTES = '21' 

DISPLAY 'ERROR (SEQUENCE) FOR 
END-IF. 
IF INDEXED-STATUS-BYTES = '22' 

DISPLAY 'ERROR (DUPLICATE KEY) FOR ' SEQUENTIAL-RECORD 
END-IF. 

copies it to the indexed file, repeating the loop until the sequential file is e m n t v . A 
problem will result, however, because the indexed file requires its records to be in 
sequence, which is not true in this example. Accordingly it is good technique to 
include an INVALID KEY clause in the W R I T E statement of lines 51 through 53, 
which is executed if, and only if, an error is detected. The paragraph performed as a 
consequence of the error, 0020-EXPLAIN-WRITE-ERROR (lines 68-74), interrogates 
the file status bytes to reveal the exact cause of the problem. 

Output of the program is s h o w n in Figure 18.6 and consists entirely of display 
output produced at various points in the program. The first and last lines show the 
results of the O P E N and C L O S E statements, respectively; both operations executed 
successfully as evidenced by file status bytes of 00. Note, too, h o w file status bytes 
of 00 are displayed for every successful write operation, but that a value of 21, 
corresponding to an out-of-sequence record, is displayed for Panzer. 

_a t L H - „ s i i Several statements in the Procedure Division are uniquely associated with indexed 
w ~ V files or have extended formats for indexed files. These include O P E N , R E A D , W R I T E , 

- 7 r . , R E W R I T E , and D E L E T E . W e will discuss each of these statements in isolation, then 
~~ y" " include them in the illustrative programs that follow. 

The 1-0 clause of the O P E N statement, O P E N I-O, is required w h e n updating indexed 
files. Consider: 

OPEN 
INPUT 
OUPUT 
1-0 

f i l e - n a m e 



Chapter 18 — Indexed Files 

Display Output of Create Program 

OPEN STATEMENT EXECUTED 
FILE STATUS BYTES = 00 

WRITE STATEMENT EXECUTED FOR 100000000GRABER 
FILE STATUS BYTES = 00 

P ATL1500000000 

WRITE STATEMENT EXECUTED FOR 200000000RUBIN 
FILE STATUS BYTES = 00 

MABOS0800020000 

WRITE STATEMENT EXECUTED FOR 300000000ANDERS0N 
FILE STATUS BYTES = 00 

IRBOS1000113000 

ERROR (SEQUENCE) FOR 222222222PANZER 
WRITE STATEMENT EXECUTED FOR 222222222PANZER 

FILE STATUS BYTES = 21 

S NYC0600000000 
S NYC0600000000 

WRITE STATEMENT EXECUTED FOR 400000000MOLDOF 
FILE STATUS BYTES = 00 

BLATL1500000000 

WRITE STATEMENT EXECUTED FOR 500000000GLASSMAN 
FILE STATUS BYTES = 00 

JSNYC1000045000 

WRITE STATEMENT EXECUTED FOR 600000000GRAUER 
FILE STATUS BYTES = 00 

RTNYC0800087500 

WRITE STATEMENT EXECUTED FOR 700000000MILGR0M 
FILE STATUS BYTES = 00 

A SF 0900120000 

WRITE STATEMENT EXECUTED FOR 800000000VAZQUEZ 
FILE STATUS BYTES = 00 

C ATL1200060000 

WRITE STATEMENT EXECUTED FOR 900000000CLARK 
FILE STATUS BYTES = 00 

E NYC0700002500 

CLOSE STATEMENT EXECUTED 
FILE STATUS BYTES = 00 

I N P U T and O U T P U T are used w h e n an indexed file is accessed or created. In 
nonsequential maintenance, however, the same indexed file functions as both the 
old and n e w master files, and hence is both an input and an output file. The file is 
opened as an l-O file—for example, O P E N l-O INDEXED-FILE—to enable it to 
serve both functions in the s a m e program; that is, you m a y read records from the 
file (input), as well as write records to the file (output). 

The R E A D statement has two distinct formats, for sequential and nonsequential 
access, respectively. These are: 



Additional COBOL Elements 

Format 1 (Sequential Access ) 
READ file-name [NEXJj RECORD fINTO identifier-1] 

[AT EJD imperati ve-statement-1] 
[NOT AT END imperative-statement-2] 

[END-READ! 
Format 2 (Nonsequential Access) 

READ file-name RECORD [INTO identifier-1] 
[KEY IS data-name-1] 
[INVALID KEY imperative-statement-1] 
[NOT INVALID KEY imperative-statement-2] 

[jEND-READ] 
The first format, for sequential access, has been used throughout the text and 

should present no difficulty. (The N E X T phrase is discussed in conjunction with the 
A C C E S S IS D Y N A M I C clause of the S E L E C T statement, and is illustrated in Figure 
18.12 toward the end of the chapter.) 

The second format, for nonsequential access, must be preceded by a MOVE 
statement, in which the key of the desired record is moved to the data name designated 
as the RECORD KEY in the SELECT statement. Consider: 

SELECT INDEXED-FILE 
ASSIGN TO 'A:\CHAPTR18\INDMAST.DAT'  
ORGANIZATION IS INDEXED 
ACCESS IS RANDOM 

; RECORD KEY'IS IJ^OC^ S E C - N U M . k 

MOVE 888888888 TO IM^S0C-SEC-NUM71 
READ INDEXED-FILE INTO WS-INPUT-AREA 

INVALID KEY 
DISPLAY 'Record 888888888 is not in the indexed file' 

NOT INVALID KEY 

END-READ. 
The R E A D statement accesses the indexed file nonsequentially in an attempt to 
retrieve the record whose key is 888888888. If the record is in the file, it will be read 
and m a d e available in W S - I N P U T - A R E A (as well as in the record area within the F D 
for INDEXED-FILE). If, however, the record does not exist, the INVALID K E Y 
condition is raised and the indicated error message is displayed. 

The KEY I S clause is necessary if multiple keys are specified in the SELECT 
statement (that is, if A L T E R N A T E R E C O R D KEY is included). Consider: 

SELECT INDEXED-FILE 
ASSIGN TO 'A:\CHAPTR18\INDMAST.DAT'  
ORGANIZATION IS INDEXED 
RECORD KEY IS IND-SOC-SEC-NUM 
ACCESS IS RANDOM 
ALTERNATE RECORD KEY IS IND-NAME WITH DUPLICATES. 

[MOVE ^ i B r T 0 T i ^ A M i : > 
"READ INDEXED-FILE INT0~ WS-WORK-AREA 

KEY IS IND-NAME 

file://'A:/CHAPTR18/INDMAST.DAT'
file://'A:/CHAPTR18/INDMAST.DAT'


C h a p t e r 1 8 — Indexed Files 

INVALID KEY 
m e m A V ui jr i_rv i 

NOT INVALID KEY 

END-READ. 

As in the c a s e of a s ingle key, the READ s t a t e m e n t is p r e c e d e d b y a MOVE s t a t e m e n t 
in w h i c h the des i red va lue is m o v e d to the appropr iate key field. T h e file is t h e n 
s e a r c h e d n o n s e q u e n t i a l l y for the v a l u e spec i f i ed (Smith in t h e e x a m p l e ) . T h e 
INVALID KEY c o n d i t i o n is act ivated if the record c a n n o t b e f o u n d . 

W R I T E . „ _ 

T h e WRITE s t a t e m e n t a lso h a s an o p t i o n a l INVALID KEY c lause , as y o u already 
k n o w from the COBOL p r o g r a m to create a n i n d e x e d file (Figure 18.5). Consider: 

WRITE record-name [FROM identifier-1] 
[INVALID KEY imperative statement-1] 
(NOT INVALID KEY imperative-statement-2] 

TEND-WRITEl 

Spec i f i cat ion of ACCESS IS SEQUENTIAL (in the SELECT s t a t e m e n t ) to create the 
i n d e x e d file requires that i n c o m i n g records b e in s e q u e n t i a l order, and further, e a c h 
record is required to h a v e a u n i q u e key. T h e INVALID KEY c o n d i t i o n is raised if 
e i ther of t h e s e r e q u i r e m e n t s is v io la ted . 

R E W R I T E ^ ^ ^ ^ ^ ^ ^ . ^ ___________________ 

T h e REWRITE s t a t e m e n t replaces ex i s t ing records w h e n a file h a s b e e n o p e n e d as 
a n I /O file, as in t h e c a s e of n o n s e q u e n t i a l m a i n t e n a n c e . Its syntax is s imilar to that 
of t h e WRITE s t a t e m e n t : 

REWRITE record-name fFROM identifier-1] 
[INVALID KEY imperative statement-1] 
fNOT INVALID KEY imperative-statement-2] 

fEND-REWRITEl 

T h e INVALID KEY c o n d i t i o n is ra ised if the record key o f t h e last record read d o e s 
n o t m a t c h the key of t h e record to b e rep laced . 

D E L E T E _ _ _ _ _ _ _ ^ — ^ ^ ^ ^ ^ ^ - - ^ 

T h e DELETE s t a t e m e n t r e m o v e s a record from a n i n d e x e d file. Cons ider: 

DELETE file-name RECORD 
riNVALID KEY imperative statement-1] 
[NOT INVALID KEY imperative-statement-2] 

fENO-DE LETE1 

T h e DELETE s t a t e m e n t is appropr ia te o n l y for files o p e n e d in t h e I /O m o d e . 



Maintaining an indexed File 

u " "*"v'x"'f"f*"€j all The distinction between sequential and nonsequential file maintenance was 
— *i 1 © presented in the previous chapter, but is repeated here for emphasis. A sequential 

update uses two distinct master files, an old and a n e w master, with every record in 
the old master rewritten to the n e w master regardless of whether it changes. A 
nonsequential update uses a single master file that functions as both the old and 
n e w master, and only the records that change are rewritten. A sequential update is 
driven by the relationship between the old master and transaction files, whereas a 
nonsequential update is driven solely by the transaction file; that is, transactions 
are processed until the transaction file is empty. Finally, a sequential update requires 
the transaction file to be in sequence, whereas the transactions for a nonsequential 
update can be in any order. 

The sequential update was developed in Chapter 17 through implementation 
of the balance line algorithm. W e continue n o w with a parallel problem for 
nonsequential processing. 

P R O 

Program Name: 

Narrative: 

i n p u t F i l e : 

Input R e c o r d L a y o u t : 

G R A M M ! N G 

Nonsequential Update 

S B B * » I F ! C A T I O N S 

This program parallels the update program of Chapter 17 except that the master file is 
accessed nonsequentially, and thus the transaction file need not be in sequence. In 
addition, the balance line algorithm does not apply. 

TRANSACTION-FILE 

01 TRANSACTION-RECORD. 
05 TR-SOC-SEC-NUMBER 

TR-NAME. 
10 TR-LAST-NAME 
10 TR-INITIALS 
TR-LOCATI0N-CODE 
TR-COMMISSION-RATE 
TR-SALES-AMOUNT 
TR-TRANSACTION-CODE 
88 ADDITION VALUE 
88 CORRECTION VALUE 
88 DELETION VALUE 

05 

05 
05 
05 
05 

'A', 
'C , 
! D \ 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(5). 
PIC X. 

I n p u t / O u t p u t F i l e : 

I n p u t R e c o r d L a y o u t : 

INDEXED-FILE 

01 IND-MASTER-RECORD. 
05 IND-SOC-SEC-NUMBER 

IND-NAME. 
10 IND-LAST-NAME 
10 IND-INITIALS 
IND-L0CATI0N-C0DE 
IND-C0MMISSI0N-RATE 
IND-YEAR-TO-DATE-SALES 

05 

05 
05 
05 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(8). 

T e s t Data: See Figure 18.7a and 18.7b. 



C h a p t e r 1 8 — Indexed Files 

Figure 18.7 Test Data for Nonsequential Update 

100000000GRABER 
200000000RUBIN 
300000000ANDERS0N 
400000000MOLDOF 
500000000GLASSMAN 
600000000GRAUER 
700000000MILGROM 
800000000VAZQUEZ 
900000000CLARK 

P ATL1500000000 
MABOS0800020000 
IRBOS1000113000 
BLATL1500000000 
JSNYC1000045000 
RTNYC0800087500 
A SF 0900120000 
C ATL1200060000 
E NYC0700002500 

(a) Indexed File (before Update) 

444444444RICHARDS IM 05000C 
700000000MILGROM A D 
000O0000OBOROW JSATL07 A 
OO00OO0OOBOROW JS 10000C 
00000OOO0BOROW JS 20000C 
400000000MOLDOF BLATL15 A 
800000000VAZQUEZ C 55000C 
999999999GILLENS0N MANYC10 A 

* Transactions are not in sequential order 

(b) Transaction File 

OOOOOOOOOBOROW 
100000000GRABER 
200000000RUBIN 
300000000ANDERSON 
400000000MOLDOF 
500000000GLASSMAN 
600000000GRAUER 
800000000VAZQUEZ 
900000000CLARK 
999999999GILLENS0N 

JSATL0700030000 
P ATL1500000000 
MABOS0800020000 
IRB0S1000113000 
BLATL1500000000 
JSNYC1000045000 
RTNYC0800087500 
C ATL1200115000 
E NYC0700002500 
MANYC1000000000 

(c) Indexed File (after Update) 

ERROR-NO MATCHING RECORD: 444444444 
ERROR-DUPLICATE ADDITION: 400000000 

(d) Error Messages 



Maintaining an Indexed File 

Processing Requirements: 1. Develop a nonsequential update program to process an incoming transaction file and 
update the associated indexed fiie. The processing requirements paraiiei those of the 
sequential update program of Chapter 17 with the following changes: 
a. There is only a single master file (the indexed file), which functions as both the old 

and new master files. 
b. The transaction file need not be in sequential order. 
c. The balance line algorithm does not apply. 

2. The transaction file is assumed to be valid in and of itself by virtue of a stand-alone edit 
program. Hence, each transaction has a valid transaction code (A, C, or D), numeric 
fields are numeric, and so on. Nevertheless, the update program must check (and 
flag) two kinds of errors that could not be detected in the stand-alone edit, as they 
require interaction with the old master file. These are: 
a. Duplicate additions, in which the social security number of a transaction coded as 

an addition already exists in the old master, 
b. No matches, in which the social security number of a transaction coded as either a 

deletion or a correction does not exist in the old master. 

3. Transactions coded as additions are to be added to the new master file In their 
entirety, and will contain a value for every field in the transaction record (except for TR-
SALES-AMOUNT). The value of IND-YEAR-TO-DATE-SALES in the new master record 
is to be initialized to zero. 

4. Transactions coded as deletions are to be removed from the master file. These 
transactions contain only the social security number and transaction code. 

C Trnnri^tiAno O I - V W A H O C - r*/~\rrr\/^+\r\r\o / ^ n n f o l n / ~ i n l w fha or\/^iol O Q / ~ M iritx/ ni i m h o r n o m a a n H 
vJ . t i at i O C i - O l i V J i t o o u u u u n o o u i i O U L I U I I O o v / r i tcj . i t i w i n y u I V J o u v i u i o v v u i i L y i l u m u o i ji I U I I i i j , u i I M 

the transaction sales amount (TR-SALES-AMOUNT). The value of TR-SALES-AMOUNT 
on the incoming transaction is to be added to the value in the IND-YEAR-TO-DATE-
SALES field in the master record. 

Figure 18.7 contains the indexed and transaction files before the update, the indexed 
file after the update has been run, and the associated error messages (for duplicate 
additions and no matches). The data parallel the example in Chapter 17 except that 
the transaction file is no longer in sequence. Nevertheless, the updated indexed file 
is the same in both examples; that is, Borow and Gillenson have been added, 
Milgrom has been deleted, and Vazquez has had her record changed. Note, however, 
that the error messages in Figure 18.7d are reversed (from those in Chapter 17) to 
match the order in which the transactions were processed. 

H i e r a r c h y C h a r t 

The hierarchy chart of Figure 18.8 is simpler than its counterpart for sequential 
processing; it also contains four modules that were present in the hierarchy chart 
of Chapter 17. In other words, regardless of whether the master file is accessed 
sequentially or nonsequentially, it is still necessary to apply transactions to the 
master file, to add records to the indexed file, and to correct and/or delete existing 
records. 

Conspicuous by its absence, however, is the module to C H O O S E - A C T I V E -
KEY, because the nonsequential update is driven entirely by the transaction file. 
The program processes the transaction file until there are no more transactions; 
that is, there is no need for an active key to determine whether the record from the 
transaction file or the old master file will be admitted to the update process because 
the balance line algorithm does not apply. (See problem 7.) 

http://tcj.it


C h a p t e r 1 8 — Indexed Files 

F i g u r e 1 8 . 8 Hierarchy Chart for Nonsequential Update Program 

PROCESS 
TRANSACTION 

FILE 

APPLY 
TRANS TO 
MASTER 

ADD NEW 
RECORD 

CORRECT 
EXISTING 
RECORD 

DELETE EXISTING 
RECORD 

READ 
INDEXED FILE 

Pseudocode 

The pseudocode for the nonsequential update is driven entirely by the transaction 
file, which reads a transaction, determines whether or not the corresponding social 
security n u m b e r is in the indexed file, then processes the transaction as 
appropriate. The logic is simpler than that of the balance line algorithm, which 
had to determine whether the next record was to be read from the transaction 
file, the old master file, or both. 

The pseudocode reads a record from the transaction file and immediately 
does a ran d o m read o n the indexed file. The social security n u m b e r from the 
transaction file is, or is not, present in the indexed file, which determines the value 
of the record-key-allocated-switch. The transaction is then processed according to 
the transaction code (addition, deletion, or correction) and the value of the record-
key-allocated-switch. The process continues until the transaction file is exhausted. 

The Completed Program . 
The completed program is s h o w n in Figure 18.10. The S E L E C T statement for the 
INDEXED-FILE (lines 10-14) contains the required O R G A N I Z A T I O N IS I N D E X E D 
and R E C O R D K E Y clauses, a nd specifies A C C E S S IS R A N D O M . INDEXED-FILE is 
opened as an I/O file in line 63 because it serves as both the old a n d n e w master file; 
that is, it is read from a nd written to. 

The R E A D statement for the indexed file (lines 79-84) is preceded by a M O V E 
statement, in which the key of the transaction record is m o v e d to 1ND-SOC-SEC-
N U M , the field defined as the R E C O R D KEY. The indexed file is read in an attempt 
to find this record, and the INVALID K E Y condition is triggered if the value is not 
in the file. 

The contents of the lowest-level modules, A D D - N E W - R E C O R D , C O R R E C T -
E X I S T I N G - R E C O R D and D E L E T E - E X I S T I N G - R E C O R D , have been modified slightly 
(from their counterparts in the sequential update) to include the appropriate I/O 
statements and contain W R I T E , R E W R I T E , a nd D E L E T E statements, respectively. 



Maintaining an indexed File 

Pseudocode for Nonsequential Update Program 

Open files 
DO WHILE data remains  

READ transaction file 
AT END 

Indicate no more data 
NOT AT END 

Move transaction social security number to record key 
READ INDEXED-FILE 

INVALID KEY 
Move 'NO' TO record-key-allocated-switch 

NOT INVALID KEY 
Move 'YES' TO record-key-allocated-switch 

END-READ 
EVALUATE transaction-code 

WHEN addition 
IF record-key-allocated-switch = 'yes' 

Write 'error - duplicate addition' 
ELSE (transaction is not in indexed file) 

Move transaction-record to new-master-record 
Wri te i ndexed record 

- ENDIF 
WHEN correction 

IF record-key-allocated-switch = 'yes' 
Process correction 
Rewrite indexed record 

ELSE (transaction is not in indexed file) 
Write 'error - no matching record' 

' ENDIF 
WHEN deletion 

: IF record-key-allocated-switch = 'yes' 
I i Delete indexed record 

i ELSE (transaction is not in indexed file) 
I Write 'error - no matching record' 

1 ENDIF 
WHEN other 

Write 'error - invalid transaction code 
1 END EVALUATE 

-- END READ 
END DO 
Close files 
Stop run 



C h a p t e r 18 Indexed Files 

, 10 Nonsequential Update Program 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

IDENTIFICATION DIVISION. 
PROGRAM-ID. N0NSEQUP. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT TRANSACTION-FILE ASSIGN TO 
ORGANIZATION IS LINE SEQUENTIAL. 

1 A: \CHAPTR18WALTRANS. DAT1 

SELECT INDEXED-FILE 
ASSIGN TO 'A:\CHAPTR18\INDMAST.DAT' 
ORGANIZATION IS INDEXED 
ACCESS IS RANDOM 
RECORD KEY IS IND-SOC-SEC-NUM. 

DATA DIVISION. 
FILE SECTION. 
FD TRANSACTION-FILE 

RECORD CONTAINS 37 CHARACTERS 
DATA RECORD IS TRANSACTION-RECORD. 

01 TRANSACTION-RECORD 

FD INDEXED-FILE 
RECORD CONTAINS 39 CHARACTERS 
DATA RECORD IS INDEXED-RECORD. 

01 INDEXED-RECORD. 
05 IND-SOC-SEC-NUM 
05 IND-REST-OF-RECORD 

WORKING-STORAGE SECTION. 
01 FILLER 

VALUE 'WS BEGINS HERE'. 

01 WS-TRANS-RECORD. 
05 TR-SOC-SEC-NUMBER 

TR-NAME. 
10 TR-LAST-NAME 
10 TR-INITIALS 
TR-LOCATION-CODE 
TR-COMMISSION-RATE 
TR-SALES-AMOUNT 
TR-TRANSACTION-CODE 
88 ADDITION VALUE 'A'. 
88 CORRECTION VALUE ' C . 
88 DELETION VALUE 'D'. 

01 WS-MASTER-RECORD. 
05 MA-SOC-SEC-NUMBER 
05 MA-NAME. 

10 MA-LAST-NAME 

05 

05 
05 
05 
05 

PIC X(37). 

PIC X(9). 
PIC X(30). 

PIC X(14) 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC X(3). 
PIC 99. 
PIC 9(5). 
PIC X. 

•tatermnt lor INDEXED-FILE 

PIC X(9). 

PIC X(15). 

file:///CHAPTR18WALTRANS
file://'A:/CHAPTR18/INDMAST.DAT'


Maintaining an Indexed File 

(continued) 

51 10 MA-INITIALS PIC XX. 
52 05 MA-LOCATION-CODE PIC X(3). 
53 05 MA-COMMISSION-RATE PIC 99. 
54 05 MA-YEAR-TO-DATE-SALES PIC 9(8). 
55 
56 01 PROGRAM-SWITCHES. 
57 05 END-OF-FILE-SWITCH PIC X(3) VALUE 'NO '. 
58 05 RECORD-KEY-ALLOCATED-SWITCH PIC X(3) VALUE 'NO'. 
59 
60 PROCEDURE DIVISION. 
61 0010-PROCESS-TRANSACTION-FILE. 
62 OPEN INPUT TRANSACTION-FILE 
63 1-0 INDEXED-FILE. 
64 : PERFORM UNTIL END-OF-FILE-SWITCH = ' Y E S ' " j 
65 READ TRANSACTION-FILE INTO WS-TRANS-RECORD \ 
66 AT END 
67 MOVE 'YES' TO END-OF-FILE-SWITCH 
68 NOT AT END 
69 PERFORM 0020-READ-INDEXED-FILE 
70 PERFORM 0030-APPLY-TRANS-TO-MASTER ; 
71 END-READ 
72 END-PERFORM. 
73 CLOSE TRANSACTION-FILE 
74 INDEXED-FILE. 
75 STOP RUN. 
76 
77 0020-READ-INDEXED-FILE. / ' 
78 MOVE TR-SOC-SEC-NUMBER TO IND-SOC-SEC-NUM. 
79 READ INDEXED-FILE INTO W S - M A S T E R - R E C O R D " " H 
80 INVALID KEY 
81 MOVE 'NO ' TO RECORD-KEY-ALLOCATED-SWITCH 
82 NOT INVALID KEY 
83 MOVE 'YES' TO RECORD-KEY-ALLOCATED-SWITCH 
84 END-READ. 
85 " " 
86 0030-APPLY-TRANS-TO-MASTER. 
87 F EVALUATE T R U E " ~ ~ ~ ""'] 
88 WHEN ADDITION 
89 PERFORM 0090-ADD-NEW-RECORD 
90 WHEN CORRECTION 
91 PERFORM 0100-CORRECT-EXISTING-RECORD 
92 WHEN DELETION ' 
93 PERFORM 0110-DELETE-EX I STING-RECORD 
94 WHEN OTHER 
95 DISPLAY 'INVALID TRANSACTION CODE 1 

96 , END-EVALUATE. _j 
97 ~ ~ " 
98 0090-ADD-NEW-RECORD. 
99 IF RECORD-KEY-ALLOCATED-SWITCH = 'YES' 
100 DISPLAY ' ERROR-DUPLICATE ADDITION: ' TR-SOC-SEC-NUMBER 



C h a p t e r 1 8 — Indexed Files 

i g u r e 1 8 . 1 0 (continued) 

j 101 ELSE 
| 102 MOVE SPACES TO WS-MASTER-RECORD 

103 MOVE TR-SOC-SEC-NUMBER TO MA-SOC-SEC-NUMBER 
104 MOVE TR-NAME TO MA-NAME 
105 MOVE TR-LOCATION-CODE TO MA-LOCATION-CODE 
106 MOVE TR-COMMISSION-RATE TO MA-COMMISSION-RATE 
107 MOVE ZEROS TO MA-YEAR-TO-DATE-SALES 
108 WRITE INDEXED-RECORD FROM WS-MASTER-RECORD 
109 END-IF. 
110 

| 111 0100-CORRECT-EXISTING-RECORD. 
112 IF RECORD-KEY-ALLOCATED-SWITCH = 'YES' 
113 ADD TR-SALES-AMOUNT TO MA-YEAR-TO-DATE-SALES 

j 114 [j^JIf INDEXED-RECORD"FROM WS-MASTER-RECORD\ 
| 115 ELSE" " ' ~ \ 
j 116 DISPLAY ' ERROR-NO MATCHING RECORD: ' TR-SOC-S^C-NUMBER 
| 117 END-IF. \ 

118 \ 
119 0110-DELETE-EXISTING-RECORD. _ — — 
120 IF RECORD-KEY-ALLOCATED-SWITCH^j^LYiy ~~ 

| 121 [DELETEINDEXED-FILE \ 
122 ELSE~ ' 
123 DISPLAY 1 ERROR-NO MATCHING RECORD: 1 TR-SOC-SEC-NUMBER 
124 END-IF. 

> ti. - Our earlier discussion of the S E L E C T statement included the 7ALTERNATE RECORD 
iri^-^iv^j Zf L\.v_ • KEY phrase to enable a second path for retrieving records from an indexed file. 

Unlike the record key, which must be unique, the alternate key m a y contain duplicate 
values. This capability is illustrated in the third and final program of the chapter, the 
specifications of which follow in the usual format. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Alternate Indexes 

N a r r a t i v e : This program illustrates primary and alternate indexes, as well as nonsequential retrieval 
on either type of key. It does no useful processing per se, other than to illustrate COBOL 
syntax 

I n p u t F i l e : INDEXED-FILE 

I n p u t R e c o r d L a y o u t : 01 INDEXED-RECORD. 
05 IND-SOC-SEC-NUMBER PIC X(9). 
05 IND-NAME PIC X(15). 
05 IND-REST-0F-REC0RD PIC X(16). 



Alternate Record Key 

Figure 18 .11 Alternate Keys 

100000000GRAUER 
100000001GRAUER 
100000002GRAUER 
300000000MILGROM 
300000001MILGR0M 
300000002MIL6R0M 
400000000GRAUER 
500000000J0NES 
600000000SMITH 
700000000MILGR0M 

fa) The Indexed File 

PRIMARY KEY OK - 300000001 

ALTERNATE KEY - MILGROM 300000000 
ALTERNATE KEY - MILGROM 300000001 
ALTERNATE KEY - MILGROM 300000002 
ALTERNATE KEY - MILGROM 700000000 

(0) Displayed jcptit 

Test Data: See Figure 18.11a. 

Report Layout: There is no formal report produced by this program; instead DISPLAY statements are 
used to indicate the results as in Figure 18.11b. 

Processing Requirements: 1. The social security and name fields are designated as the primary and secondary 
keys, respectively. The value of the social security number is unique, whereas the 
value of name is not. 

2. Execute a random read for the record whose social security number is 300000001, 
displaying an appropriate message to indicate whether or not the record was found. 

3. Execute a random read to find the first record whose name is Milgrom, then read 
sequentially to display all other records with this value in the secondary key. 

Figure 18.12 contains the completed program corresponding to these specifications. 
The SELECT statement in lines 8-13 designates I N D - S O C - S E C - N U M and IND-
N A M E as the primary (record) and alternate key, respectively. The record key is 
(and must always be) unique, but the alternate key need not be; hence the W I T H 
D U P L I C A T E S phrase is included in the S E L E C T statement. Both fields are defined 
within the F D for INDEXED-FILE in lines 21 and 22, respectively. T h e A C C E S S IS 
D Y N A M I C phrase (line 11) indicates both r a n d o m and sequential retrieval within 
the same program. 



C h a p t e r 1 8 — Indexed Files 

Alternate Index Program 

9 
10 
l l 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2 8 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ALTINDEX. 
AUTHOR. ROBERT GRAUER. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT INDEXED-FILE 
A S S I G N TO 'A:\CHAPTR18\ALTINDEX.DAT' 
ORGANIZATION IS INDEXED _ 

j A C C E S S ISJDYNAMIC , " """ 
RECORD KEY IS IND-SOC-SEC-NUM 

UETERNATE RECORD KEY IS IND-NAME W I T H DUPLICATES. 

DATA DIVISION. 
FILE SECTION. 
FD INDEXED-FILE 

RECORD CONTAINS 40 CHARACTERS 
DATA RECORD IS INDEXED-RECORD. 
INDEXED-RECORD. 01 
05 IND-SOC-SEC-NUM 
05 IND-NAME 

PIC X ( 9 ) . 
PIC X(15). 

0 5 IND-REST-OF-RECORD 

WORKING-STORAGE SECTION. 
01 END-OF-FILE-SWITCH 

PIC X(16). 

PIC X(3) V A L U E SPACES. 

PROCEDURE DIVISION. 
0010-DISPLAY-INDEXED-RECORDS. 

O P E N INPUT INDEXED-FILE. 
PERFORM 0020-RETRIEVE-BY-PRIMARY-KEY. 
PERFORM 0030-RETRIEVE-BY-SECONDARY-KEY. 
C L O S E INDEXED-FILE. 
STOP RUN. 

0020-RETRIEVE-BY-PRIMARY-KEY. 
MOVE '300000001' TO IND-SOC-SEC-NUM. 
READ INDEXED-FILE 

INVALID KEY 
DISPLAY 'RECORD NOT FOUND - 300000001 

NOT INVALID KEY 
DISPLAY 'PRIMARY KEY OK -

END-READ. 
DISPLAY ' 1. 

IND-SOC-SEC-NUM 

0030-RETRIEVE-BY-SECONDARY-KEY. 
MOVE 'MILGROM' TO IND-NAME. _ 

" READ INDEXED-FILE "KEY ISTND-NAME 
INVALID KEY 

DISPLAY 'RECORD NOT FOUND - MILG R O M ' 

file://'A:/CHAPTR18/ALTINDEX.DAT'


ed Ke y 

(continued) 

NOT INVALID KEY 
PERFORM 0040-RETRIEVE-DUPLICATES " ] 

UNTIL IND-NAME NOT EQUAL 'MILGROM'| 
OR END-OF-FILE-SWITCH = 'YES' K ^ 

END-READ, 

0040-RETRIEVE-DUPLICATES. 
DISPLAY 'ALTERNATE KEY - 1 IND-NAME, IND-SOC-SEC-NUM. 
READ INDEXED-FILE NEXT RECORD 

AT END 
MOVE 'YES' TO END-OF-FILE-SWITCH 

END-READ. 

The Procedure Division illustrates the retrieval of records on either field. Lines 
36-44 contain the logic for the primary key and have already been covered in the 
program for a nonsequential update. The R E A D statement of lines 38-43 is preceded 
by a M O V E statement in which the key of the desired record (300000001 in the 
example) is m o v e d to the data n a m e designated as the R E C O R D KEY in the SELECT 
statement. If the record is in the file, it will be read into the data n a m e I N D E X E D -
R E C O R D ; and the false-condition branch, N O T INVALID KEY, will indicate the 
primary key was found. If the record is not in the file, the INVALID K E Y condition 
will be activated to display an appropriate error message. 

Lines 46-55 contain a parallel procedure based o n the alternate key, but with 
three important differences: 

1. The key value ( M I L G R O M ) is m o v e d to the A L T E R N A T E R E C O R D K E Y (IND-
N A M E rather than I N D - S O C - S E C - N U M ) . 

2. The K E Y IS phrase is used to indicate the retrieval is o n the alternate rather 
than the primary key. 

3. Successful retrieval causes the execution of 0040-RETRIEVE-DUPLICATES, 
which retrieves all records for M I L G R O M . The N E X T R E C O R D phrase (line 
59) in the R E A D statement indicates sequential retrieval. 
The DISPLAY output produced by the program is s h o w n in Figure 18.11b. The 

first message indicates the successful retrieval based o n the primary key (produced 
by the paragraph 0020-RETRIEVE-BY-PRIMARY-KEY). The second set of messages 
reflects all records for Milgrom. 

- t. * The record key in an indexed file m a y be specified as a group item rather than an 
elementary item, producing what is known as a concatenated key, that is, a key consisting 
of two (or more) keys strung together to form a single value. Consider, for example, a 
system for bank loans with a concatenated key defined as follows: 

05 CUSTOMER-LOAN-NUMBER. 
10 CUSTOMER-NUMBER 
10 LOAN-NUMBER 

PIC 9(6). 
PIC 9(3). 



C h a p t e r 1 8 - Indexed Files 

In this e x a m p l e CUSTOMER-LOAN-NUMBER is a g r o u p i t e m a n d c o n s i s t s of the 
. : * / * ' ! I f ' I V MV * 1 ' !> \ ! I I \ « 1 1 1 * I I I I / U \ ' X I I I \ .1 1 1 1 * l > I 1 - . - i ' . I 

ciciiicniaiy nciiis, i j u j 1 u i v i m \ - i i u i v i D m d i m n / m \ - , \ u i v u n c v e i y v a l u e ui m e 
record key (CUSTOMER-LOAN-NUMBER) m u s t b e u n i q u e , b u t there c a n b e several 
l o a n s for the s a m e c u s t o m e r , w i th e a c h l o a n a s s i g n e d a n e w l o a n n u m b e r . C u s t o m e r 
111111, for example , m a y h a v e t w o o u t s t a n d i n g loans , w i t h record keys of 111111001 
a n d 111111004 , respect ive ly . (Loans 002 a n d 003 m a y h a v e b e e n prev ious ly paid 
off.) T h e p r o b l e m is to retrieve all l o a n s for a g iven c u s t o m e r , w h i c h l e a d s to a 
d i s c u s s i o n of the START s t a t e m e n t . 

Ttw S t a t e m e n t 

The START s t a t e m e n t m o v e s n o n s e q u e n t i a l l y (randomly) in to a n i n d e x e d file to 
the first record w h o s e va lue is e q u a l to, greater than , or n o t l e s s than the value 
c o n t a i n e d in the identifier. T h e INVALID KEY c o n d i t i o n is ra i sed if the file d o e s 
n o t c o n t a i n a record m e e t i n g the spec i f i ed criterion. Syntact ical ly , t h e START 
s t a t e m e n t h a s the form: 

START file- name KEY 

IS EQUAL TO 
IS = 
IS GREATER THAN 
IS > 
IS NOT LESS THAN 
IS NOT < 
IS GREATER THAN OR EQUAL TO 
IS >= 

identifier 

[INVALID KEY imperative-statement-l] 

[NOT INVALID KEY imperative-statement-2] 

[END-START] 

T h e START s t a t e m e n t c a n b e u s e d in c o n j u n c t i o n w i t h a c o n c a t e n a t e d key as 
s h o w n in Figure 18.13. Note, however, that START only moves to the designated 
record, but does not read the record. In o ther w o r d s , a READ s t a t e m e n t is required 
i m m e d i a t e l y f o l l o w i n g START. T h e s u b s e q u e n t PERFORM s t a t e m e n t wil l t h e n 
retrieve all l o a n s for the c u s t o m e r in q u e s t i o n . 

The READ, DELETE, WRITE, REWRITE, and START statements contain both 
an optional scope terminator and a false-condition branch. As indicated 
throughout the text, these elements are new to COBOL-85 and were not 
available in COBOL-74. 

Sixteen I/O status codes (i.e., the majority of the entries in Table 
18.1) are new to COBOL-85. The new codes (02, 04, 05, 07, 15, 24, 25, 
34, 35, 37, 38, 39, 41, 42, 43, 46, and 49) were added to eliminate the 
need for vendor-specific file status codes that treated the same error 
condition in different ways. 



on catenated Key 

The START Statement 

SELECT LOAN-FILE 
ASSIGN TO 'A:\CHAPTR18\L0AN.DAT' 
ORGANIZATION IS INDEXED 
ACCESS MODE IS DYNAMIC 
RECORD KEY IS CUSTOMER-LOAN-NUMBER. 

FD LOAN-FILE 
RECORD CONTAINS 120 CHARACTERS 
DATA RECORD IS LOAN-RECORD. 

01 LOAN-RECORD. 
05 CUSTOMER-LOAN-NUMBER. 

10 CUSTOMER-NUMBER PIC 9(6). 
10 LOAN-NUMBER PIC 9(3). 

PROCEDURE DIVISION. 

MOVE 333333000 TO CUSTOMER-LOAN-NUMBER. 
STAR! LOAN-FILE 

KEY IS GREATER THAN CUSTOMER-LOAN-NUMBER 
INVALID KEY DISPLAY 'CUSTOMER 333333 NOT IN FILE 

| END-START. _̂  

READ LOAN-FILE NEXT RECORD 
AT END 

MOVE 'YES' TO END-OF-FILE-SWITCH 
END-READ. 

PERFORM UNTIL CUSTOMER-NUMBER NOT EQUAL 333333 j 
OR END-OF-FILE-SWITCH = 'YES' 

DISPLAY LOAN-RECORD j 
READ LOAN-FILE NEXT RECORD 

AT END 
MOVE 'YES' TO END-OF-FILE-SWITCH 

END-READ 
END-PERFORM. 

file://'A:/CHAPTR18/L0AN.DAT'


Chapter 18 Indexed Files 

S U M M A R Y 

Points to ter 

Indexed files permit sequential and/or nonsequential access to records 
within a file. Different vendors have different physical implementations, but 
the COBOL syntax to access an indexed file is the same for all compilers 
adhering to the ANS 85 standard. VSAM (Virtual Storage Access Method) 
is IBM's implementation for indexed files. 

The SELECT statement for an indexed file has seven clauses: three clauses 
(ASSIGN, ORGANIZATION IS INDEXED, and RECORD KEY) are required, 
and the other four (RESERVE AREAS, ACCESS MODE, ALTERNATE 
RECORD KEY, and FILE STATUS) are optional. 

The RECORD KEY clause in the SELECT statement specifies a field (defined 
within the FD of the indexed record) whose value must be unique; the value 
of the optional alternate record key can contain duplicate values. 

The Procedure Division has several statements uniquely associated with 
indexed files, and/or extends the formats of other statements to 
accommodate indexed files. These include OPEN l-O, READ . . . INVALID 
KEY, WRITE . . . INVALID KEY, and DELETE. 

The transaction file does not have to be in sequence when updating an 
indexed file as the latter can be accessed nonsequentially. The INVALID 
KEY clause will be activated if the transaction record is not found. 

The updated indexed file cannot be used as the old master to retest the 
update program with the same input as previously; you must retain (create) 
a copy of the original indexed file for repeated testing. 

A concatenated key consists of two or more fields strung together. 
Concatenated keys are frequently used in conjunction with the START 
statement, which moves nonsequentially to the first record satisfying a 
specified condition. 

Key Words and Concepts 

Concatenated key 
Control area 
Control area split 
Control interval 
Control interval split 
False-condition branch 
Free space 
Index set 

Indexed file 
I/O status 
Multiple keys 
Nonsequential access 
Scope terminator 
Sequence set 
Sequential access 
VSAM organization 



lemenis 
ACCESS IS DYNAMIC 
ACCESS IS RANDOM 
ACCESS IS SEQUENTIAL 
ACCESS MODE 
ALTERNATE RECORD KEY 
DELETE 
END-DELETE 
END-READ 
END-START 
END-REWRITE 
END-WRITE 

FILE STATUS 
INVALID KEY 
NOT INVALID KEY 
OPEN 1-0 
ORGANIZATION IS INDEXED 
RECORD KEY 
RESERVE AREAS 
REWRITE 
START 
WITH DUPLICATES 
WRITE . . . INVALID KEY 

N 

1. files make it possible to retrieve records sequentially and/or 
nonsequentially. 

2. An active file is best updated sequentially, whereas . 
should be used for inactive files. 

processing 

3. . is the IBM specific implementation of COBOL's. 
file organization. 

4. In IBM's VSAM implementation, a 
one or more 

contains 

5. In IBM's VSAM implementation, each entry in a sequence set contains the  
key for the associated control interval. 

6. The SELECT statement for indexed files requires three clauses: 
, and . 

7. An indexed file requires the primary key to be 
values for its key. 

8. Records are added to an indexed file through the 
existing records are changed through 

statement. 

but allows 

statement; 
and removed by the 

9. The FILE STATUS clause is (optional/required) and requires that a. 
byte area be defined in . 

10. FILE STATUS bytes of 
whereas indicates an end-of-file condition 

ndicate a successful I/O operation, 

11. The. . statement allows one to enter an indexed file randomly and 
read sequentially from that point on. 

12. A random (nonsequential) READ statement is preceded by a MOVE statement in 
which the desired key is moved to the field defined as the 

13. Specification of ACCESS IS permits both sequential and 
nonsequential access of an indexed file in the same program. 

14. When a file is open in the. 
to. 

. mode, it may be read from and written 



• Chapter 18 — Indexed Files 

T R U E / F A L S E 

1. ALTERNATE RECORD KEY should always be specified for indexed files to allow for 
future expansion. 

2. The FILE STATUS clause is permitted only for indexed files. 

3. A READ statement must contain either the AT END or INVALID KEY clause. 

4. Inclusion of the INTO clause in a READ statement is not recommended, as it 
requires additional storage space. 

5. RESERVE 0 AREAS is recommended to speed up processing of an indexed file 
that is processed sequentially. 

6. The value of RECORD KEY must be unique for every record in an indexed file. 

7. The value of ALTERNATE RECORD KEY must be unique for every record in an 
indexed file. 

8. The FILE STATUS clause is a mandatory entry in the SELECT statement for an 
indexed file. 

9. An indexed file can be accessed sequentially and nonsequentially in the same 
program. 

10. The first byte of an indexed record should contain either LOW- or HIGH-VALUES. 

11. WRITE and REWRITE can be used interchangeably. 

12. Records in an indexed file are deleted by moving HIGH-VALUES to the first byte. 

13. The COBOL syntax for IBM VSAM files conforms to the ANS 85 standard. 

14. Active files are best updated nonsequentially. 

PROBLEMS 

1. Describe the changes to Figure 18.3 if record keys 401, 723, 724, and 725 were 
added. What would happen if record keys 502 and 619 were deleted? 

2. Assume that record key 289 is to be inserted in the first control area of the VSAM 
data set in Figure 18.3. Logically, it could be added as the last record in the first 
control interval or the first record in the second control interval. Is there a preference? 

In similar fashion, should record 620 be inserted as the last record in the third 
interval of the second area or as the first record in the first interval of the third area? 

Finally, will record 900 be inserted as the last record in the fourth control area, or 
will it require creation of a fifth control area? Can you describe in general terms how 
VSAM adds records at the end of control areas and/or control intervals? 

3. Indicate whether each of the following SELECT statements is valid syntactically and 
logically. (Some of the statements have more than one error.) 
a. SELECT INDEXED-FILE 

ASSIGN 'A:\CHAPTR18\INDMAST.DAT'  
ORGANIZATION INDEXED 
RECORD IND-S0C-SEC-NUM. 

file://'A:/CHAPTR18/INDMAST.DAT'


b. SELECT INDEXED-FILE 
ASSIGN TO 'A:\CHAPTR18\INDMAST.DAT' 
RECORD KEY IS IND-SOC-SEC-NUM WITH NO DUPLICATES 
ALTERNATE KEY IS IND-NAME WITH DUPLICATES. 

C . SELECT INDEXED-FILE 
ASSIGN 'A:\CHAPTR18\INDMAST.DAT'  
RESERVE 5 AREAS 
ORGANIZATION IS INDEXED 
ACCESS IS SEQUENTIAL 
RECORD KEY IS IND-SOC-SEC-NUM WITH DUPLICATES 
ALTERNATE RECORD KEY IS IND-NAME 
FILE STATUS IS FILE-STATUS-BYTES. 

d. SELECT INDEXED-FILE 
ASSIGN TO 'A:\CHAPTR18\INDMAST.DAT' 
ORGANIZATION IS INDEXED 
ACCESS MODE RANDOM 
RECORD KEY IS IND-SOC-SEC-NUM. IND-NAME. 

4. Given the C O B O L definition: 
05 FILE-STATUS-BYTES PIC 99. 

What is wrong with the following entries? 
a. IF FILE-STATUS-BYTES EQUAL '10" 

DISPLAY 'END OF FILE HAS BEEN REACHED' 
END-IF 

b. IF FILE STATUS-BYTES EQUAL 10 
DISPLAY 'ERROR - DUPLICATE KEY' 

END-IF 

C . IF FILE-STATUS-BYTE EQUAL 1 
DISPLAY 'END OF FILE HAS BEEN REACHED' 

END-IF 

d. IF FILE STATUS BYTES EQUAL 10 
DISPLAY 'END OF FILE HAS BEEN REACHED1 

END-IF 

5. Indicate whether each of the following entries is valid syntactically and logically. 
(Assume INDEXED-FILE and INDEXED-RECORD are valid as a file name and a 
record name, respectively.) 
a. OPEN INPUT INDEXED-FILE 

OUTPUT INDEXED-FILE. 

b.. READ INDEXED-FILE. 
c. READ INDEXED-FILE 

AT END MOVE 'YES' TO END-OF-FILE-SWITCH. 
END-READ. 

file://'A:/CHAPTR18/INDMAST.DAT'
file://'A:/CHAPTR18/INDMAST.DAT'
file://'A:/CHAPTR18/INDMAST.DAT


C h a p t e r 1 8 Indexed Files 

d. READ INDEXED-FILE 
AT END 

MOVE 'YES' TO END-OF-FILE-SWITCH 
NOT AT END 

PERFORM PROCESS-RECORD 
END-READ. 

e. READ INDEXED-FILE 
AT END MOVE 21 TO FILE-STATUS-BYTES. 

f. READ INDEXED-FILE 
INVALID KEY 

DISPLAY 'RECORD IS IN FILE' 
NOT INVALID KEY 

DISPLAY 'RECORD IS NOT IN FILE' 
END-READ. 

g. WRITE INDEXED-RECORD. 
h. WRITE INDEXED-RECORD 

INVALID KEY 
DISPLAY 'INVALID KEY' 

NOT INVALID KEY 
PERFORM CONTINUE-PROCESSING 

END-WRITE. 

i. REWRITE INDEXED-RECORD 
i M U A f i n i / r u 
jmvttL.iu ivc i 

DISPLAY 'INVALID KEY' 
PERFORM ERROR-PROCESSING 

END-REWRITE. 

j. REWRITE INDEXED-FILE. 
k. DELETE INDEXED-RECORD. 
I. DELETE INDEXED-FILE. 

6. Figure 18.14a contains a slightly modified paragraph from the nonsequential update 
program of Figure 18.10, which produces the compiler diagnostics in Figure 
18.14b. W h y do the errors occur? 

7. The balance line algorithm was not used for the nonsequential update program 
(Figure 18.10) developed in the chapter. The resulting program worked correctly, 
but it can be m a d e more efficient by changing its logic to include the concept of the 
active key. 
a. What are the advantages of including the additional logic and using the balance 

line algorithm? 
b. What are the disadvantages to this approach? 
c. Modify the hierarchy chart and pseudocode of Figures 18.8 and 18.9 to 

accommodate the algorithm. 



Problems 

60 PROCEDURE DIVISION. 
61 0010-UPDATE-MASTER-FILE. 
62 OPEN INPUT TRANSACTION-FILE 
63 I-O INDEXED-FILE. 
64 PERFORM UNTIL END-OF-FILE-SWITCH = 'YES' 
65 READ TRANSACTION-FILE INTO WS-TRANS-RECORD 
66 AT END 
67 MOVE 'YES' TO END-OF-FILE-SWITCH 
68 NOT AT END 
69 PERFORM 0020-READ-INDEXED-FILE 
70 PERFORM 0030-APPLY-TRANS-TO-MASTER. 
71 END-READ 
72 END-PERFORM 

(a) Modified Procedure Division 

64 W Explicit scope terminator END- 'PERFORM' assumed present 
71 E No corresponding active scope for 'END-READ' 
72 E No corresponding active scope for 'END-PERFORM' 

(b) Er ror M e s s a g e s 

L j 

F igure 18 .14 Debugging Exercise 





Overview 
T h e Y e a r 2 0 0 0 P r o b l e m 
D a t e A r i t h m e t i c 

COBOL intrinsic Calendar Functions 
Leap-Year Problem 

R e t i r e m e n t P r o g r a m R e v i s i t e d 
Summary 
Fill-in 
True/False 
Problems 
For Further Study 



C h a p t e r 18 — The "rear 2000 Problem 

OBJECTIVES 

After reading this chapter, you will be able to: 

Describe the implications of the Year 2000 problem. 

State the causes of the problem. 

Identify the types of routines that may cause the problem. 

Discuss several types of date arithmetic. 

Use COBOL intrinsic calendar function to do date conversions. 

This chapter discusses a major information system issue at the end of the 
twentieth century. This problem is known by several titles such as "the Year 2000 
problem," "Millennium 2K," or simply "Y2K." Whatever the name, the problem is 
one the industry has brought upon itself—threatening the well-being of many 
companies and governmental organizations. The purpose of this chapter is to 
define what the problem is, show how it came about, and suggest some ways to 
deal with it. 

The first section of the chapter discusses the nature of the problem by 
examining a program typical of those written in the 1960s, 1970s, and 1980s. 
The next section deals with the issues of date arithmetic. The discussion involves 
the two date formats introduced in Chapter 8: DATE format (YYMMDD) and DAY 
(YYDDD). The discussion shows how the DAY format can be used in calculating 
the number of days between two dates. This section of the chapter then looks at 
the COBOL intrinsic calendar functions to see how they can further simplify date 
arithmetic. 

Leap year processing compounds the Year 2000 problem. The last portion 
of the chapter looks at this aspect of the problem and presents a Year 2000 
compliant version of the original program. For further research on the Year 2000 
problem, the section contains a listing of World Wide Web sites dedicated to the 
problem and its solution. 

L C (3 f *. : i r Ix)ok at the retirement program listed in Figure 19.1. This program reads an employee 
y{< ^ («, \jj file and computes the employee's age, years of service to the company, and the date 

of retirement. The program then prints a report showing tire results of its calculations. 
D o you see any problems with this program? First, notice the output format 

for the retirement date. In line 85, just before DET-RET-YR, the programmer has 
coded in a value of " /19." As a result, the output report will print the retirement year 
as "19 FY" no matter w h e n the employee is due to retire. Obviously, in the late 1990s, 
most employees will retire after 1999 and the report format needs to reflect a 



The Year 2000 Problem 

retirement year where the first two digits can be 19, 20, or even 21. The report 
should not state that the retirement date is 1904 w h e n the year actually should be 
2004. 

This program is a simple example of the Year 2000 problem. W h e n programs 
like this one were written, programmers assumed that all dates used would be in the 
twentieth century' and that "19" was the valid prefix for all years. 

This type of thinking meant that m a n y computer systems incorporated only 
two digits for representing a year instead of the four digits normally used. As a 
result, w h e n these systems encounter the year 2000, they act as if the year is 1900. 
This apparently simple oversight means that w h e n January 1, 2000 comes, m a n y 
systems will fail entirely or will produce massive amounts of erroneous information. 
The remedy will not be cheap. S o m e authorities estimate the cost to fix the problem 
at $300 billion to $600 billion worldwide. 2 The Year 2000 problem is one that will 
not go away, and the deadline cannot be delayed. 

Retirement Program, a Year 2000 Problem Example 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. Y2K01. 
3 AUTHOR. ARTHUR R. BUSS 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 FILE-CONTROL. 
8 SELECT EMPLOYEE-FILE ASSIGN TO 1EMPSERV.DAT1 

9 ORGANIZATION IS LINE SEQUENTIAL. 
10 SELECT PRINT-FILE ASSIGN TO PRINTER. 
11 
12 DATA DIVISION. 
13 FILE SECTION. 
14 FD EMPLOYEE-FILE 
15 RECORD CONTAINS 34 CHARACTERS. 
16 01 EMPLOYEE-RECORD PIC X(34). 
17 
18 FD PRINT-FILE 
19 RECORD CONTAINS 80 CHARACTERS. 
20 01 PRINT-LINE PIC X(80). 
21 
22 WORKING-STORAGE SECTION. 
23 01 EMPLOYEE-DATA. 
24 05 EMP-NUM PIC X(05). 
25 05 EMP-NAME. 
26 10 EMP-LAST PIC X(15). 
27 10 EMP-INIT PIC X(02). 
28 05 EMP-BIRTHDATE. 
29 10 EMP-BIRTH-YR PIC 9(02). 
30 10 EMP-BIRTH-M0 PIC 9(02). 
31 10 EMP-BIRTH-DA PIC 9(02). 
32 05 EMP-SERVICE-DATE. 
33 10 EMP-SERVICE-YR PIC 9(02). 
34 10 EMP-SERVICE-MO PIC 9(02). 



C h a p t e r 1 9 

(continued) 

10 EMP-SEfiVICE-DA PIC 9(02). 

01 OATA-REMAINS-SW PIC X(02). 
88 NO-DATA-REMAINS VALUE 'NO1. 

01 INDIVIDUAL-FIELDS. 
05 IND-AGE PIC 9(02). 
05 IND-SERV-YEARS PIC 9(02). 
05 IND-RET-DATE. 

10 IND-RET-YR PIC 9(02). 
10 IND-RET-MO PIC 9(02). 
10 IND-RET-DA PIC 9(02). 

01 TODAYS-DATE. 
05 TODAYS-YR PIC 9(02). 
05 TODAYS-MO PIC 9(02). 
05 TODAYS-DA PIC 9(02). 

01 CONSTANTS. 
05 RETIRE-AGE PIC 9(02) VALUE 65. 

01 HEADING-LINE-1. 
05 PIC X(05) VALUE SPACES. 
05 PIC X(10) VALUE 'EMPLOYEE'. 
05 PIC X(17) VALUE SPACES. 
05 PIC X(09) VALUE 'SERVICE'. 
05 PIC X(10) VALUE 'RETIREMENT'. 

01 HEADING-LINE-2. 
05 PIC X(07) VALUE SPACES. 
05 PIC X(14) VALUE 'NAME'. 
05 PIC X(07) VALUE ' INIT'. 
05 PIC X(06) VALUE 'AGE'. 
05 PIC X(08) VALUE 'YEARS'. 
05 PIC X(10) VALUE 'DATE'. 

01 DETAIL-LINE. 
05 
05 DET-LAST 
05 
05 DET-INIT 
05 
05 DET-AGE 
05 
05 DET-SERV-YEARS 
05 
05 DET-RET-DATE. 

10 DET-RET-MO 
10 
10 DET-RET-DA 
10 
10 DET-RET-YR 

PIC X(05) 
PIC X(15). 
PIC X(02) 
PIC X(02). 
PIC X(05) 
PIC 9(02). 
PIC X(05) 
PIC 9(02). 
PIC X(02) 

PIC Z9. 
PIC X 
PIC Z9. 
PIC X(03) 
PIC 9(02). 

VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

VALUE SPACES. 

VALUE '/'. 

VALUE '/19 1. 



The Year 2000 Problem 

F i g u r e 1 9 . 1 (continued) 

| 87 
88 PROCEDURE DIVISION. 
89 100-PREPARE-RETIREMENT-REPORT. 
90 OPEN INPUT EMPLOYEE-FILE 
91 OUTPUT PRINT-FILE 
92 PERFORM 210-GET-TODAYS-DATE 
93 PERFORM 230-WRITE-HEADERS 
94 PERFORM UNTIL NO-DATA-REMAINS 
95 READ EMPLOYEE-FILE INTO EMPLOYEE-DATA 
96 AT END 
97 SET NO-DATA-REMAINS TO TRUE 
98 NOT AT END 

I 99 PERFORM 260-PROCESS-DETAIL 
| 100 END-READ 
j 101 END-PERFORM 

102 CLOSE EMPLOYEE-FILE 
103 PRINT-FILE 
104 STOP RUN 
105 jTj — " " " 
106 [ 1 

107 210-GET-TODAYS-DATE. 
108 ACCEPT TODAYS-DATE FROM DATE 
109 |* MOVE '0001011 TO TODAYS-DATE ! 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

360-CALCULATE-IND-RET-DATE. 
ADD RETIRE-AGE TO 

330-CALCULATE-EMP-SERVICE. 

310-CALCULATE-EMP-A6E. 

260-PROCESS-DETAIL. 
PERFORM 310-CALCULATE-EMP-AGE 
PERFORM 330-CALCULATE-EMP-SERVICE 
PERFORM 360-CALCULATE-IND-RET-DATE 
PERFORM 390-WRITE-DETAIL-LINE 

230-WRITE-HEADERS. 
WRITE PRINT-LINE FROM HEADING-LINE-1 

COMPUTE IND-SERV-YEARS = TODAYS-YR - EMP-SERVICE-YR 
+ (TODAYS-MO - EMP-SERVICE-MO) / 12 

COMPUTE IND-AGE = TODAYS-YR - EMP-BIRTH-YR 
+ (TODAYS-MO - EMP-BIRTH-MO) / 12 

AFTER ADVANCING PAGE 
WRITE PRINT-LINE FROM HEADING-LINE-2 
INITIALIZE PRINT-LINE 
WRITE PRINT-LINE 

TO EMP-BIRTH-YR GIVING IND-RET-YR 



C h a p t e r 1 9 The Year 2000 Problem 

(continued) 

139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 

MOVE EMP-BIRTH-MO 
MOVE EMP-BIRTH-DA 

TO IND-RET-MO 
TO IND-RET-DA 

390-WRITE-DETAIL-LINE. 
MOVE EMP-LAST 
MOVE EMP-INIT 
MOVE IND-AGE 
MOVE IND-SERV-YEARS 
MOVE IND-RET-MO 
MOVE IND-RET-DA 
MOVE IND-RET-YR 
WRITE PRINT-LINE 

TO DET-LAST 
TO DET-INIT 
TO DET-AGE 
TO DET-SERV-YEARS 
TO DET-RET-MO 
TO DET-RET-DA 
TO DET-RET-YR 
FROM DETAIL-LINE 

At this point, you m a y think that the case is overstated. Certainly a simple 
remedy exists for the problem described above. By expanding the DET-RET-YR field 
size to four positions and eliminating the "19" from the preceding filler field, the 
program can print either 19YY or 20YY. However, having m a d e the change, the 
question becomes, " H o w do I k n o w which lead digits to use, 19 or 20?" It would be 

to assume that the dates should c o m e before 2000. A w a y must be found to determine 
the appropriate digits. 

Y o u can n o w begin to see the essence of the Year 2000 problem. W h e n there 
are only two digits to work with, h o w would the program determine the right 
century? Should it treat "88" as 1888,1988, or 2088? Before answering the question, 
you m a y want to k n o w h o w this problem c a m e about in the first place. 

F r o m the 1960s through the 1980s, m a n y organizations developed systems 
containing programs, and, more importantly, files that used only the last two digits 
of the year whenever a date was required. This practice worked well for a long time 
and did not seem to cause any particular problems. O n e exception was w h e n a 
program had to look far into the future, as in calculating retirement dates. Y o u m a y 
still wonder w h y the system developers did not anticipate the problem and just use 
four-digit years as a standard practice. 

O n e answer is in the hardware used at the time. Mainframes were the primary 
computer of the era, and they ran most systems. O n these machines, disk storage 
and primary m e m o r y were extremely expensive. Thus, programmers had to use 
storage economically, and eliminating two "unnecessary" digits was one w a y to do 
it. The decision was a conscious one m a d e to save money. 3 

A second answer is in the C O B O L compilers. Using the s a m e type of logic in 
the previous answer, the "ACCEPT...FROM D A T E " c o m m a n d returned the system 
date in Y Y M M D D format. This date format is the default even in the newer C O B O L 
standards.4 In order to maintain four-digit years, a programmer would have to 
deliberately add the extra digits to the year field wherever it w a s created. F r o m a 
programming perspective, the course of least resistance w a s to use just two digits. 

A third answer is that most system developers could not envision these 
programs being around long enough for the problem to matter. They expected that 
the programs would be replaced long before 2000, and that the n e w systems would 
deal with the problem. However, s o m e 20 and even 30 years later, these "legacy" 
systems are still running, and the problem faces industry now. 



Look at the program in Figure 19.1 again.'' In paragraph 210-GET-TODAYS-
D A T E (line 107), the A C X E P T statement brings in the current system date and stores 
it in the T O D A Y S - D A T E group item. Paragraph 3 1 0 - C A L C U L A T E - E M P L O Y E E - A G E , 
in line 127, uses the system date information to compute the employee's age by 
using the age calculation introduced in Chapter 8. The code segment below shows 
the date items and the calculations. 

01 EMPLOYEE-DATA. 
05 EMP-NUM 
05 EMP-NAME. 

10 EMP-LAST 
10 EMP-INIT 

05 EMP-BIRTHDATE. 
10 EMP-BIRTH-YR 
10 EMP-BIRTH-M0 
10 EMP-BIRTH-DA 

05 EMP-SERVICE-DATE. 
10 EMP-SERVICE-YR 
10 EMP-SERVICE-MO 
10 EMP-SERVICE-DA 

01 DATA-REMAINS-SW 
88 NO-DATA-REMAINS 

01 INDIVIDUAL-FIELDS. 
05 IND-AGE 
05 IND-SERV-YEARS 
05 IND-RET-DATE. 

10 IND-RET-YR 
10 IND-RET-M0 
10 IND-RET-DA 

01 TODAYS-DATE. 
05 TODAYS-YR 
05 T0DAYS-M0 
05 TODAYS-DA 

310-CALCULATE-EMP-AGE. 
COMPUTE IND-AGE = TODAYS-YR - EMP-BIRTH-YR 

+ (T0DAYS-M0 - EMP-BIRTH-MO) / 12 

As an example, suppose that an employee was born on January 1, 1970. O n 
January 1, 2000, this employee will be 30 years old. Following the logic of the 
program, you should find that it will calculate that the employee is 70 years old and 
overdue for retirement. (Note: If the I N D - A G E field were defined as signed, the 
employee would be -70.) To test this for yourself, remove the asterisk in line 109 
and put an asterisk in column 7 of line 108. This change overrides setting T O D A Y S -
D A T E from the system date and forces it to be January 1,2000. Compile the program 
and check the results. 

In the s a m e way, the program has a problem determining h o w long an 
employee has worked. Notice paragraph 330-CALCULATE-EMP-SERVICE (line 132). 
This paragraph uses the same type of logic to compute the employee's time in 
service. However, if our employee started work o n January 1, 1990, the algorithm 

PIC X(05). 

PIC X(15). 
PIC X(02). 

PIC 9(02). 
PIC 9(02). 
PIC 9(02). 

PIC 9(02). 
PIC 9(02). 
PIC 9(02). 

PIC X(02). 
VALUE 'NO'. 

PIC 9(02). 
PIC 9(02). 

PIC 9(02). 
PIC 9(02). 
PIC 9(02). 

PIC 9(02). 
PIC 9(02). 
PIC 9(02). 



C h a p t e r 1 9 — The Year 2000 Problem 

will compute the service years as 90. This result is particularly interesting, since the 
program claims that the employee is only 70 years old. 

The question then becomes, " H o w does one fix the problem?" The answer, in 
one sense, is quite simple. The programmer must change all of the date fields in the 
program to incorporate four digits for the year portion of the date. Each task is very 
simple if there are not too m a n y date fields and they have clearly identified names. 
However, even in this simple program, you can get a feel for the problem. The 
programmer must find and change five fields representing years and also correct 
the print format line. In a larger program, the programmer m a y easily miss s o m e 
necessary changes 

The problem becomes m o r e complex because there is m o r e to change than 
just the program. The input records also contain two-digit year fields. Thus, the file 
definition must be modified to m a k e sure that all date group items contain four-
digit years. In addition to changing the file definition, the data in the files must be 
changed as well. Thus, s o m e program has to convert the data to the n e w format. 
While this process is going on, someone must convert all other associated programs 
to accept the data in its n e w format, even if those programs do not use the date 
fields directly. Coordination of all this effort is critical to ensure that nothing "drops 
through the cracks." While each change is simple by itself, the implications and 
volume can be overwhelming. 

S o m e companies have thousands of programs affected by the Year 2000 
problem. M a n y organizations m a y have 50 million lines of code to inspect and 
change along with all of the associated files, screens, and reports. Such changes are 
going to be expensive.6 

Another aspect of the problem occurs w h e n a program has to calculate days and not 
years. M a n y applications need to determine h o w m a n y days have occurred between 
two dates. To accomplish this task, C O B O L provides a different type of date structure. 
The D A Y format (YYDDD) describes the sequential n u m b e r of a date within a given 
year. In this structure, the YY refers to the years and the D D D refers to the day of the 
year. December 31 would be 365 in normal years and 366 in leap years. The use of 
the D A Y format makes date arithmetic quite simple as long as the dates involved are 
within the s a m e calendar year. 

01 TWO-DATES. 
05 FIRST-DATE. 
10 FIRST-YEAR 
10 FIRST-DAY 

05 SECOND-DATE 
10 SEC-YEAR 
10 SEC-DAY 

01 DAYS-DIFFERENCE 

MOVE 97234 TO FIRST-DATE. 
MOVE 97100 TO SECOND-DATE. 
SUBTRACT SEC-DAY FROM FIRST-DAY GIVING DAYS-DIFFERENCE. 

In the code fragment above, you can see h o w the D A Y format easily provides 
the n u m b e r of days between two events as long as both dates are in the same year. 
The trick is to determine what to do if the two dates span the year boundary. The YY 
portion of the D A Y format does not help m u c h . 

Date AiitfiiYietiC; 

PIC 99. 
PIC 999. 

PIC 99. 
PIC 999. 
PIC 999. 



Date Arithmetic 

Since there are not 1,000 days in a year, simple subtraction would leave a gap 
of 636 days between December 31, 1997 (97365) and January 1, 1998 (98001), for 
example. Date calculations crossing the year boundary must take the gap into 
account. The following code shows one w a y of handling the problem. 

MOVE 98030 TO FIRST-DATE. 
MOVE 97300 TO SECOND-DATE. 
IF FIRST-YEAR > SEC-YEAR 

ADD 365 TO FIRST-DAY 
END-IF. 
SUBTRACT SEC-DAY FROM FIRST-DAY GIVING DAYS-DIFFERENCE. 

This code treats the date in the n e w year as a continuation of the old year and 
acts as if 98030 were actually 97395. This technique allows the program to compute 
the difference of 95 days. 

Y o u can see what m a y happen w h e n the millennium changes. If FIRST-YEAR 
is 00 and SEC-YEAR is 99, the IF condition is false and D A Y S - D I F F E R E N C E would be 
270 rather than 95. 

Fortunately, the 1989 extensions to C O B O L provide a better w a y to do date 
arithmetic. These extensions include a n u m b e r of intrinsic functions that do the 
kinds of standard operations available in m a n y other languages and in spreadsheet 
programs. Appendix E, o n C O B O L 2000, covers the 1989 intrinsic functions as well 
as the additional functions proposed for the n e w standard. In the next section, you 
will see h o w to use the calendar functions to perform date arithmetic and correct 
the Year 2000 problem. 

If you have worked with an electronic spreadsheet, you m a y k n o w that the 
spreadsheet does not maintain dates Y Y Y Y M M D D format. Rather, the spreadsheet 
maintains a count of the n u m b e r of days from s o m e arbitrary starting point. In 
EXCEL, for example, the starting point is January 1, 1900. In other words, E X C E L 
treats January 1, 1900, as "Day 1." Each day since January 1,1900 is a consecutively 
numbered integer. Date arithmetic is simply a matter of adding to or subtracting 
from these integers. A n y date before the defined starting date is invalid. 

The intrinsic functions of C O B O L allow programmers to use the same type of 
integer date functions as in a spreadsheet. With C O B O L , however, the arbitrary 
starting point is January 1, 1601. This early date allows consideration of more dates 
than E X C E L can handle and should be sufficient for most date applications. O n the 
other hand, the early starting date m e a n s that the integer values of current dates are 
quite large. As an example, January 1, 2000 has an integer value of 145732. This 
m e a n s that programs must allow at least six digits for integer date fields. 

While integer format dates ease the problem of date calculations, h u m a n s 
have trouble reading dates in this format. Therefore, C O B O L has provided functions 
that convert dates from standard formats to integer and back. The 1989 extension to 
C O B O L provides six intrinsic calendar functions for programmer use. 

• C U R R E N T - D A T E — R e t u r n s the current system date in Y Y Y Y M M D D format. 
• W H E N - C O M P I L E D — R e t u r n s the compile date in Y Y Y Y M M D D format. 
• INTEGER-OF-DATE—Converts Y Y Y Y M M D D to an integer. 
• INTEGER-OF-DAY—Converts Y Y Y Y D D D to an integer. 



C h a p t e r 19 The Year 2000 Problem 

* DATE-OF-INTEGER—Converts an integer date to Y Y Y Y M M D D format. 
- DAY-OF-INTEGER—Converts an integer date to Y Y Y Y D D D format. 

The syntax for these functions is: 

F U N C T I O N function-name [(argument-1 [, argument-2] ...)] 

The first two functions do not require an argument since they return specific values. 
The last four functions are the routines that allow C O B O L to convert dates to 
integers and vice versa. These functions work similarly. By reviewing h o w the D A T E -
T O - I N T E G E R function works, you can easily see h o w to use the remaining functions. 

The program s h o w n in Figure 19.2 uses I N T E G E R - O F - D A T E . Y o u m a y want to 
compile and test the program (Y2K02.CBL) for yourself. The program interactively 
takes the year, month, and day from the user and returns the integer value of the 
date. Test the program with your birthdate, February 29, 1900, February 29, 2000, 
and any other date you wish. The program will return zeros for invalid dates. 

Looking at the program, you should note several points. In line 6, the integer 
field has a length of 6. As stated above, six digits are necessary to hold the integer 
value of current dates. In line 11, D A T E - R D F redefines D A T E - I N P U T because the 
function I N T E G E R - O F - D A T E requires an elementary item as the input parameter. 
In line 21 notice that the keyword " F U N C T I O N " tells C O B O L that "INTEGER-OF-
D A T E " is an intrinsic function and not an identifier. 

The syntax is: 

FUNCTION INTEGER-OF-DATE faraument-1) 

The argument is an elementary item in the format Y Y Y Y M M D D , and the 
function returns a six-digit number. 

Y o u m a y want to rewrite this program to accept D A Y values from the user and 
use the I N T E G E R - O F - D A Y function to convert the value to an integer. Y o u can also 
write programs to convert an integer to its corresponding D A T E or D A Y by using the 
D A T E - O F I N T E G E R or D A Y - O F - I N T E G E R functions. These problems are included 
in the exercises at the end of the chapter. 

Date arithmetic using the intrinsic functions can be quite straightforward. 
For example: 

COMPUTE NO-OF-DAYS = FUNCTION INTEGER-OF-DATE (DATE-1) 
- FUNCTION INTEGER-OF-DATE (DATE-2). 

This statement converts DATE-1 and DATE-2 to integers and subtracts D A T E -
2 from DATE-1 storing the result in N O - O F - D A Y S . 

As another exercise, try modifying the program to accept two days and to 
calculate the difference between them. You m a y also want to write another program 
that accepts a date and a n u m b e r of days from the user. The program then would 
calculate and return a n e w date by adding the n u m b e r of days to the integer of the 
original date. 

O n e advantage to using the intrinsic calendar functions is that leap-year 
problems m a y be avoided or at least minimized. 



Date Arithmetic 

_ Example of the Integer-of-Date Function 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. Y2K02. 
3 DATA DIVISION. 
4 WORKING-STORAGE SECTION. 
5 01 DAT E-DATA. 
6 05 DATE-INTEGER j PIC 9(06). 
7 05 DATE-INPUT. ~ ~ " 
8 10 DATE-YEAR PIC 9(04). 
9 10 DATE-MONTH PIC 9(02). 
10 10 DATE-DAY PIC 9(02). 
11 05 DATE-RDF REDEFINES DATE-INPUT 
12 PIC 9(08). 
13 05 LAST-DATE-SW PIC X. 
14 88 LAST-DATE VALUE 'N' V . 
15 
16 PROCEDURE DIVISION. 
17 CONVERT-DATE. 
18 MOVE 'Y' TO LAST-DATE-SW 
19 PERFORM GET-DATE 
20 PERFORM UNTIL LAST-DATE .._ 
21 COMPUTE DATE-INTEGER A FUNCTION 
22 j INTEGER-OF-DATE (DATE-RDF) 
23 DISPLAY DATE-INTEGER 1 " " 
24 DISPLAY 'DO YOU WISH TO CONTINUE (Y OR N)?' 
25 WITH NO ADVANCING 
26 ACCEPT LAST-DATE-SW 
27 IF NOT LAST-DATE 
28 PERFORM GET-DATE 
29 END-IF 
30 END-PERFORM 
31 STOP RUN 
32 
33 
34 GET-DATE. 
35 DISPLAY 'ENTER YEAR IN "YYYY" FORMAT 1 

36 WITH NO ADVANCING 
37 ACCEPT DATE-YEAR 
38 DISPLAY 'ENTER MONTH IN "MM" FORMAT ' 
39 WITH NO ADVANCING 
40 ACCEPT DATE-MONTH 
41 DISPLAY 1 ENTER DAY IN "DD" FORMAT ' 
42 WITH NO ADVANCING 
43 ACCEPT DATE-DAY 



Chapter 19 The Year 2000 Problem 

JL&£ip ,*YC3f A p r o g r a m m e r work ing o n the Year 2000 p r o b l e m a n d l o o k i n g at date h a n d l i n g in 
G b l e i T t COBOL p r o g r a m s w o u l d e n c o u n t e r spec ia l rout ines wr i t ten to dea l w i th l eap years . 

Leap years p o s e spec ia l p r o b l e m s , a n d p r o g r a m s m u s t a c c o u n t for t h e m properly. 
For e x a m p l e , l ook aga in at the program in Figure 19.1 a n d e x a m i n e t h e logic to 
c o m p u t e the e m p l o y e e ' s ret irement date (360-CALCULATE-IND-RET-DATE). Not i ce 
that the logic assumes that the re t irement m o n t h a n d day wi l l b e the s a m e as the 
birth m o n t h a n d day. 

MOVE EMP-BIRTH-MO TO IND-RET-MO. 
MOVE EMP-BIRTH-DA TO IND-RET-DA. 

In m o s t c a s e s this a s s u m p t i o n is valid. H o w e v e r , if a n e m p l o y e e w a s b o r n o n 
February 29, b y def in i t ion h e or s h e w a s b o r n in a l eap year . A p r o b l e m occurs 
b e c a u s e February 29 is inval id for the re t i rement da te 65 years later. For e x a m p l e , a 
p e r s o n born o n February 2 9 , 1 9 4 0 would e x p e c t to retire in t h e year 2005. H o w e v e r , 
2005 is n o t a l eap year, a n d February 29 is inval id. In this case , t h e e m p l o y e e s h o u l d 
retire o n March 1 , 2005 . Code must be added to the program to detect the s i tuat ion 
and m a k e the ad jus tment . 

Unfortunate ly , the rules for d e t e r m i n i n g l e a p years are confus ing . M o s t p e o p l e 
k n o w that leap years occur w h e n the year value is equally divisible by four. M a n y 
p e o p l e d o n o t k n o w that years e n d i n g in 00 are not l eap years . There w a s n o 
February 29 in 1900; yet, s o m e vers ions of Microsoft ' s EXCEL wil l a c c e p t February 
29 as a val id da te for 1900. 

Just to m a k e th ings m o r e difficult, every 4 0 0 years February 29 does o c c u r in 
the year e n d i n g in 00. So, 1600, 2000 , a n d 2 4 0 0 are l eap years . C o n s e q u e n t l y , a 
s i m p l e l e a p year rout ine that s i m p l y d iv ides b y 4 o f ten works o u t better for t h e year 
2000 t h a n a m o r e s o p h i s t i c a t e d rout ine that m a k e s a d j u s t m e n t s for the century 
years. 

COBOL's intr insic f u n c t i o n INTEGER-OF-DATE m a n a g e s l eap years properly 
a n d will return a va lue o f z e r o w h e n it d e t e c t s a n inval id d a t e . Therefore , the 
funct ion a l so prov ides a w a y to val idate da te s . By tes t ing for a zero va lue , the 
program c a n d e t e c t w h e n it h a s e n c o u n t e r e d a n inval id date . Appropr ia te rout ines 
c a n t h e n b e wr i t t en to d e a l w i t h the p r o b l e m . 

H o w c a n t h e s e t e c h n i q u e s i m p r o v e the original program? 

Retif*©II1©rtl Figure 19.3 p r e s e n t s a r e v i s i o n 7 o f the original re t i rement p r o g r a m . This rev is ion 

Progi 
Revis 

e l i m i n a t e s t h e Year 2 0 0 0 p r o b l e m s a n d proper ly d e a l s w i t h l e a p years . This n e w 
program takes a d v a n t a g e o f t h e 1989 COBOL intrinsic f u n c t i o n s a n d a lso ut i l izes a 
date c o n v e r s i o n uti l i ty p r o g r a m YEAR-TO-YYYY 8 s h o w n in Figure 19.4. Th i s utility 
p r o g r a m s i m u l a t e s the COBOL 2 0 0 0 intrinsic f u n c t i o n o f t h e s a m e n a m e . (Note: In 
order to k e e p t h i n g s s i m p l e , th is vers ion of t h e p r o g r a m u s e s t h e s a m e i n p u t file as 
the original.) 

As i n t r o d u c e d i n t h e p r e v i o u s sec t ion , t h e CURRENT-DATE intrinsic func t ion 
returns the s y s t e m da te in YYYYMMDD format a n d c a n rep lace t h e ACCEPT.. . FROM 
DATE s t a t e m e n t . Line 119 u s e s CURRENT-DATE to ge t t h e s y s t e m date . M o r e a b o u t 
CURRENT-DATE c a n b e f o u n d in t h e a p p e n d i x o n COBOL 2 0 0 0 . 

Line 120 h a s b e e n " c o m m e n t e d out." Th i s l ine s e t s t h e s y s t e m date t o January 
1, 2000 . Y o u m a y tes t the p r o g r a m t o s e e h o w it w o u l d w o r k in the year 2 0 0 0 , by 



Retirement Program Revisited 

deleting the "*" and recompiling. Be sure to change line 26 of the utility program 

In line 140, the program CALLs the utility program YEAR-TO-YYYY 9 using the 
data group item D A T E - C O N V E R S I O N - D A T A shown beginning in line 44. The utility 
program takes the value of the first argument "CNV-YY," a two-digit year, and 
returns "CNV-YEAR," a four-digit year. (Similar CALLs occur in lines 147 and 154.) 
Because the program needs to determine the proper century, a "window" is 
necessary. The window is a range of 100 years. The C N V - W I N D O W field serves to 
specify the highest year of the range. YEAR-TO-YYYY adds C N V - W I N D O W to the 
current year determining the latest year the program can return. Thus, if the current 
year is 2000 and C N V - W I N D O W is 15, YEAR-TO-YYYY can return 4 four-digit years 
from 1916 to 2015. With a current year of 2000 and a W I N D O W - M A X set to -15, the 
utility returns four-digit years from 1886 to 1985. 

If years are likely to be equally from the past or the future, the w i n d o w value 
should be set at 50. If all of the years to be converted are expected to be less than the 
current year, the w i n d o w value should be zero. If all dates will reflect the current 
and future years only, the w i n d o w value should be +99. 

In the revised program, lines 159 and following manage the retirement-date 
problem for the employees born o n February 29. As explained above, an employee 
born o n this date could not retire on February' 29,65 years later. The program takes 
advantage of intrinsic function INTEGER-OF-DATES's ability to validate dates. If 
the function returns a zero, the date proposed is invalid and the program changes 
the date to March 1. This technique is appropriate only if the source data (i.e., the 
birthdate) has been previously validated. 

Revised Retirement Program 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

IDENTIFICATION DIVISION. 
PROGRAM-ID. Y2K03. 
AUTHOR. ARTHUR R. BUSS 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT EMPLOYEE-FILE ASSIGN TO DISK 'EMPSERV.DAT 
ORGANIZATION IS LINE SEQUENTIAL. 

SELECT PRINT-FILE ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD EMPLOYEE-FILE 

RECORD CONTAINS 34 CHARACTERS. 
01 EMPLOYEE-RECORD PI PIC X(34). 

FD PRINT-FILE 
RECORD CONTAINS 80 CHARACTERS. 

01 PRINT-LINE PI PIC X(80). 

WORKING-STORAGE SECTION 
01 EMPLOYEE-DATA. 

05 EMP-NUM 
05 EMP-NAME. 

PIC X(05). 



C h a p t e r 1 9 The Year 2000 Problem 

F i g u r e 19 .3 (continued) 

26 10 EMP-LAST PIC X(15). 
27 10 EMP-INIT PIC X(02). 
28 05 EMP-BIRTHDATE. 
29 10 EMP-BIRTH-YR PIC 9(02). 
30 10 EMP-BIRTH-MO PIC 9(02). 
31 10 EMP-BIRTH-DA PIC 9(02). 
32 05 EMP-SERVICE-DATE. 
33 10 EMP-SERVICE-YR PIC 9(02). 
34 10 EMP-SERVICE-MO PIC 9(02). 
35 10 EMP-SERVICE-DA PIC 9(02). 
36 
37 01 DATA-REMAINS-SW PICX(02). 
38 88 NO-DATA-REMAINS VALUE 'NO'. 
39 
40 01 CONSTANTS. 
41 05 RETIRE-AGE PIC 9(02) VALUE 65. 
42 05 YEAR-TO-YYYY PIC X(07) VALUE 'Y2K04'. 
43 
44 01 DATE-CONVERSION-DATA. 
45 05 CNV-YY PIC 9(02). 
46 [_05 CNV-WINDOW _PIC S9(02| VALUE ZERO. | ~--
47 05 CNV-YEAR "" ~ PKT(04) 
48 
49 01 INDIVIDUAL-FIELDS. 
50 05 IND-AGE PIC 9(02). 
51 05 IND-SERV-YEARS PIC 9(02). 
52 05 IND-RET-DATE. 
53 10 IND-RET-YR PIC 9(04). 
54 10 IND-RET-MO PIC 9(02). 
55 10 IND-RET-DA PIC 9(02). 
56 05 IND-RET-DATE-RDF REDEFINES 
57 IND-RET-DATE PIC 9(08). 
58 05 IND-RET-INT-OATE PIC 9(06). 
59 
60 01 TODAYS-DATE. 
61 05 TODAYS-YR PIC 9(04). 
62 05 TODAYS-MO PIC 9(02). 
63 05 TODAYS-DA PIC 9(02). 
64 
65 01 HEADING-LINE-1. 
66 05 PIC X(05) VALUE SPACES. 
67 05 PIC X(10) VALUE 
68 'EMPLOYEE'. 
69 05 PIC X(07) VALUE SPACES. 
70 05 PIC X(10) VALUE SPACES. 
71 05 PIC X(09) VALUE 'SERVICE'. 
72 05 PIC X(10) VALUE 'RETIREMENT'. 
73 
74 01 HEADING-LINE-2. 
75 05 PIC X(07) VALUE SPACES. 
76 05 PIC X(14) VALUE 'NAME'. 



Retirement Program Revisited 

(continued) 

11 05 PIC X(07) VALUE 'INIT'. 
78 05 PIC X(06) VALUE 'AGE'. 
79 05 PIC X(08) VALUE 'YEARS'. 
80 05 PIC X(10) VALUE 'DATE'. 
81 
82 01 DETAIL-LINE. 
83 05 PIC X(05) VALUE SPACES. 
84 05 DET-LAST PIC X(15). 
85 05 PIC X(02) VALUE SPACES. 
86 05 DET-INIT PIC X(02). 
87 
88 

05 
05 DET-AGE 

PIC 
PIC 

X(05) 
9(02). 

VALUE SPACES. 

89 05 PIC X(05) VALUE SPACES. 
90 05 DET-SERV-YEARS PIC 9(02). 
91 05 PIC X(02) VALUE SPACES. 
92 05 DET-RET-DATE. 
93 10 DET-RET-MO n t r r i t Z9. 
94 10 PIC X VALUE • / • • 
95 10 DET-RET-DA PIC Z9. 
96 10 PIC X VALUE ' / ' • 
97 j 10 DET-RET-YR PIC 9(04). ~~——_ — YYYY Fi 98 — YYYY Fi 

99 PROCEDURE DIVISION. 
100 100 -PREPARE-RETIREMENT- REPORT. 
101 OPEN INPUT EMPLOYEE -FILE 
102 OUTPUT PRINT-FILE 
103 PERFORM 210-GET-TODAYS-DATE 
104 PERFORM 230-WRITE-HEADERS 
105 PERFORM UNTIL NO-DATA-REMAINS 
106 READ EMPLOYEE-FILE INTO EMPLOYEE-DATA 
107 AT END 
108 SET NO-DATA-REMAINS TO TRUE 
109 NOT AT END 
110 PERFORM 260-PROCESS-DETAIL 
111 END-READ 
112 END-PERFORM 
113 CLOSE EMPLOYEE-FILE 
114 PRINT-FILE 
115 STOP RUN 
116 
117 
118 210--GET-TODAYS-DATE. 
119 MOVE FUNCTION CURRENT-DATE TO TODAYS-DATE 
120 MOVE '20000101' TO TODAYS-DATE | 

121 
122 
123 230- WRITE-HEADERS. 
124 WRITE PRINT-LINE FROM HEADING-LINE-1 
125 AFTER ADVANCING PAGE 
126 WRITE PRINT-LINE FROM HEADING-LINE-2 
127 INITIALIZE PRINT-LINE 



C h a p t e r 1 9 The Year 2000 Problem 

me 13,3 (continued) 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 

WRITE PRINT-LINE 

260-PROCESS-DETAIL. 
PERFORM 310-CALCULATE-EMP-AGE 
PERFORM 330-CALCULATE-EMP-SERVICE 
PERFORM 360-CALCULATE-IND-RET-DATE 
PERFORM 390-WRITE-DETAIL-LINE 

310-CALCULATE-EMP-AGE. 
MOVE EMP-BIRTH-YR TO CNV-YY 
CALL YEAR-TO-YYYY USING DATE-CONVERSION-DATA 
COMPUTE IND-AGE = TODAYS-YR - CNV-YEAR 

+ (TODAYS-MO - EMP-BIRTH-MO) / 12 

330-CALCULATE-EMP-SERVICE. 
MOVE EMP-SERVICE-YR TO CNV-YY 
CALL YEAR-TO-YYYY USING DATE-CONVERSION-DATA 
COMPUTE IND-SERV-YEARS = TODAYS-YR - CNV-YEAR 

+ (TODAYS-MO - EMP-SERVICE-MO) / 12 

360-CALCULATE-IND-RET-DATE. 
MOVE EMP-BIRTH-YR TO CNV-YY 
CALL YEAR-TO-YYYY USING DATE-CONVERSION-DATA 
ADD RETIRE-AGE TO CNV-YEAR GIVING IND-RET-YR 
MOVE EMP-BIRTH-MO TO IND-RET-MO 
MOVE EMP-BIRTH-DA TO IND-RET-DA 

* TEST FOR INVALID FEBRUARY 29 RETIREMENT DATE 
COMPUTE IND-RET-INT-DATE = FUNCTION INTEGER-OF-DATE 

(IND-RET-DATE-RDF) 
* WHEN FOUND, SET DATE TO MARCH 1. 

IF IND-RET-INT-DATE = ZERO 
ADD 1 TO IND-RET-MO 
MOVE 1 TO IND-RET-DA 

END-IF 

* WHEN FOUND, SET DATE TO MARCH 1. 
IF IND-RET-INT-DATE = ZERO 

ADD 1 TO IND-RET-MO 
MOVE 1 TO IND-RET-DA 

END-IF 

390-WRITE-DETAIL-LINE. 
MOVE EMP-LAST TO 
MOVE EMP-INIT TO 
MOVE IND-AGE TO 
MOVE IND-SERV-YEARS TO 
MOVE IND-RET-MO TO 
MOVE IND-RET-DA TO 
MOVE IND-RET-YR TO 
WRITE PRINT-LINE 

DET-LAST 
DET-INIT 
DET-AGE 
DET-SERV-YEARS 
DET-RET-MO 
DET-RET-DA 
DET-RET-YR 

FROM DETAIL-LINE 



Summary 

Year Conversion Utility Program 

! 1 IDENTIFICATION DIVISION. 
! 2 PROGRAM-ID. YEAR-TO-YYYY. 

3 AUTHOR. ARTHUR R. BUSS 

I 4 

| 5 ENVIRONMENT DIVISION. 
I 6 

j 7 DATA DIVISION, 
i 8 WORKING-STORAGE SECTION. 
! 9 01 TEMPORARY-DATA. 
) 10 05 WORK-YEAR. 
j 11 10 WORK-HIGH-YY PIC 9(02). 
J 12 10 WORK-LOW-YY PIC 9(02). 
I 13 05 WORK-YYYY REDEFINES WORK-YEAR 
j 14 PIC 9(04). 
! 15 LINKAGE SECTION. 
I 16 01 LS-CONVERSION-DATA. 
1 17 05 LS-YY _ PIC 9(02). 
| 18 I 05 LS-WIND PIC S9 ( 0 2 ) . \ 
I 19 ^ " S ^ Y Y Y Y T " " ~ ~ " 
j 20 10 LS-HIGH-YY PIC 9(02). 
| 21 10 LS-LOW-YY PIC 9(02). 
j 22 

o i nnnrcniioc niuicrnm I ICTNC I C rnnn/rDCTrvw n AT A 

I 2 4 

j 25 _M0VEFUNCTION CURRENT-DATE TO WORK-YEAR. 
| 26 f*~ MOVE 2000 TO WORK-YYYY _] 
I 27 " A D D T S - W I N D " TO WORK-YYYY. "~ 
| 28 MOVE WORK-HIGH-YY TO LS-HIGH-YY 
I 29 MOVE LS-YY TO LS-LOW-YY 
I 30 IF LS-YY > WORK-LOW-YY 
! 31 SUBTRACT 1 FROM LS-HIGH-YY 

32 END-IF 
j 33 EXIT PROGRAM 
I 34 

S I I ̂ 4 M A R Y 

The Year 2000 problem has been known for many years, but has drawn 
attention only recently. As January 1, 2000 gets nearer, interest and alarm 
are also growing. This problem will not go away, and the deadline cannot 
be postponed. 

Making the program corrections is not difficult in itself. The difficulty comes 
because so many programs and files must be changed and tested. 



C h a p t e r 1 9 The Year 2000 Problem 

Information Technology departments must find every occurrence of a date 
and convert each date to YYYY format. 

Two kinds of date formats are involved: the DATE format (YYYYMMDD) and 
the DAY format (YYYYDDD). Both types of dates must be corrected. 

The 1989 COBOL extensions to COBOL 85 provide several intrinsic functions 
that can help in the conversion process. These include CURRENT-DATE, 
INTEGER-OF-DATE, INTEGER-OF-DAY, DATE-OF-INTEGER, and DAY-OF-
INTEGER. COBOL 2000 includes other intrinsic functions, but they may not 
be available in time. 

The Year 2000 is a leap year. All date routines that accommodate leap 
years must be checked to assure that 2000 is handled properly. 

Key Words and Concepts 

Y2K 
Millennium Problem 
Date Arithmetic 
intrinsic Function 

COBOL Elements 

FUNCTION 
CURRENT-DATE 
INTEGER-OF-DATE 

INTEGER-OF-DAY 
DATE-OF-INTEGER 
DAY-OF-INTEGER 

F I L L - I 

1. The year 2000 problem resulted from a desire to save on and 

2. The correction of the problem (can/cannot) be delayed beyond January 1, 2000. 
3. Businesses have (been/not been) quick to recognize and to solve the problem. 
4. The 1989 extensions to C O B O L 85 have provided new capabilities called 

5. INTEGER-TO-DATE converts a(n) . 
format. 

6. DAY-TO-INTEGER converts a(n) 

.to a. 

in format to a(n) 

7. The year 2000 (is/is not) a leap year. 

7 R U E F A L S tz 

1. The Year 2000 problem has been known for a number of years. 



For Further Study 1 

2. With the Year 2000 problem, finding the changes to make is more difficult than the 
actual correction. 

3. Intrinsic functions were a part of the original C O B O L 85 standards. 
4. The decision to eliminate the first two positions of the year in dates was a conscious 

one. 
5. INTEGER-TO-DATE and INTEGER-TO-DAY return the same date format. 
6. The C O B O L statement A C C E P T F R O M DATE works the same under the 1985 

standards as it will in the 2000 standards. 
7. Business, in general, has been slow to recognize the Year 2000 problem and has to 

scramble to catch up. 
8. Even if companies cannot make all date routine changes by December 31, 1999, 

they should have at least a year before problems show up. 

1. Write a program that accepts the year and day of the year and displays the integer 
value of that year and day. Test the program with year 1600 day 365, year 1601 day 
1, year 1999 day 365, year 2000 day 1, year 2000 day 366, and any other year and 
day number. Invalid dates should return a 0 integer value. 

2. Write a program that accepts a date and a number of days. The program should 
^̂ rJ ir^r. W^v/r. ;̂ <̂ ,t rirttr* r,r,rl rr.li trr. f rs ^ ^ . . / rl^ + r. Tt.̂  r ~ r. r r. rr* ~ l~ ~ , . i rl ...~~f. 
ctvjci Li ic uayo IKJ u to tt iput uaic ai tu i clui i t u tc t tow uaic. t t to pi uyt at 11 of iuuiu wui t\ 

with negative numbers for the input number of days. Test the program to make sure 
that it works for dates after January 1, 2000. 

3. Accounts Receivable systems need to be able to detect when an invoice is 
overdue. Write a procedure or a subprogram that calculates the date 90 days prior 
to the current date and compares an invoice date to see whether or not it is 
overdue. Use the commenting technique demonstrated in Y2K01 and Y2K02 to test 
to see how the program would work in the year 2000. 

4. Life insurance rates are partially based on the age of the policyholder. Write a 
procedure that will compute a person's age in years based on their birthdate and 
the current date. Test the program to see whether it will work in the year 2000. 

f C ti h I U LJ Y 

This chapter has included Year 2000 problem topics primarily involving C O B O L , 
but the Year 2000 problem has ramifications in other contexts, as well. For example, 
m a n y personal computers will fail w h e n the system clock changes to January 1, 
2000. D O S systems do not recognize dates before January 1, 1980, a n d w h e n 2000 
occurs, m a n y of these systems will assume that 00 must m e a n that the current year 
is 1980. 

The Year 2000 problem is getting increasing press recognition; interest is 
likely to grow as 2000 gets nearer. A nu m b e r of World Wide W e b sites address the 
topic and offer s o m e places to use as starting points for further research. 

http://www.yahoo.com/text/Computers_and_Internet/Year__2000_Problem/  
http: //www.wa.gov/di s/2000/y2000.htm 
http: //www.year2000.com/y2 kli nks.html 
http://www.ttuhsc.edu/pages/year2000/y2k_bib.htm 

http://rr.li
http://www.yahoo.com/text/Computers_and_Internet/Year__2000_Problem/
http://www.wa.gov/di
http://www.year2000.com/y2
http://www.ttuhsc.edu/pages/year2000/y2k_bib.htm


Chapter 19 — The Year 2000 Problem 

' The authors recognize that the year 2000 is technically part of the twentieth century, but the problem 
nonetheless is one that begins on January 1,2000. 

2 According to the Gartner Group, quoted in Leon A. Kappelman and James J. Cappel, "A Problem of 
Rational Origin That Requires a Rational Solution," Journal of Systems Management 47, 4 (July-August 
1996): 6, 8. 

3 Kappelman and Cappel contend that the saving in disk space and memory space over the years actually 
compensates for the conversion costs that are now necessary. 

4 COBOL 2000 can return the year in either YY or YYYY form. The format "ACCEPT identifier FROM DATE 
YYYYMMDD" must be used to get four digits. For compatibility's sake, YYMMDD is the default 
format. 

5 You may have noticed the period standing alone at the end of each paragraph. Some programmers use 
this technique to avoid logic errors resulting from misplaced punctuation. The authors have chosen to 
use introduce this practice here. Scope terminators can replace most uses of the period, as explained 
in the Programming Tip Use Scope Terminators in Chapter 7. The ANS standard requires only a period 
at the end of a paragraph. 

" The Gartner Group has estimated that fixing the problem will cost about $1 for each line of code in the 
organization. Many companies have 50 million or more lines of code. Quoted in Kappelman and 
Cappel. 

7Y2K03.CBL. 
«Y2K04.CBL. 
9 In this case "YEAR-TO-YYYY" is the name of an identifier (line 44). The identifier contains the file name 

"y2k04" for the actual program YEAR-TO-YYYY. See Chapter 16, "Subprograms," for further 
information. 



Overview 
The Next Generation of C O B O L 

The Development of Structured Programming 
Terminology 
The Object-Oriented versus Structured Paradigm 
The Student-Look-Up System 

Student*Look-Up Program 

The Registrar Class 
Classes and Inheritance 
ProcessRequests Method 
The StudentDM Class 
StudentDM Instance Definition 
The Student Class 
The Person Class 
The StudentUI Class 
The StudentPRT Class 

Conclusion 
Summary 
Fill-in 
True/False 
Problems 



C h a p t e r 2 0 - • Object-Oriented COBOL Programming 

OBJECTIVES 

After reading this chapter you will be able to: 

Discuss the concept of Object-Oriented programming as compared to 
structured programming. 

t Describe the structure of classes including the class definition as well as 
the Factory and instance definition. 

I Be able to define some major OO concepts including: encapsulation, 
inheritance, persistence, and polymorphism. 

Describe the similarities and differences between the use of Objects and 
the use of subroutines. 

Describe the advantages OO programming has over Structured 
Programming. 

State why OO programming does not invalidate all of the principles of 
Structured Programming. 

O V E R V I E W 

Objcct-Onentat iOi i (OO) h a s b e c o m e a n i m p o r t a n t n e w w a y to d e v e l o p in format ion 
s y s t e m s . This t e c h n i q u e a l lows for faster d e v e l o p m e n t o f s y s t e m s , reuse o f program 
c o d e , a n d better m a n a g e m e n t o f data. OO is n o w avai lable for u s e wi th COBOL a n d 
p r o m i s e s to give addi t iona l life to this w e l l - e s t a b l i s h e d p r o g r a m m i n g language . T h e 
COBOL 2000 s tandards def ine Objec t -Or iented COBOL, but th i s s tandard h a s n o t 
b e e n c o m p l e t e d a n d a c c e p t e d as yet . H o w e v e r , several v e n d o r s i n c l u d i n g Micro 
F o c u s h a v e d e v e l o p e d their o w n v e r s i o n of OO COBOL a n d h a v e tried to m a k e their 
vers ions as c l o s e as pos s ib l e to the p r o p o s e d s tandards . W e use Micro Focus Personal 
COBOL for W i n d o w s in d e v e l o p i n g the e x a m p l e s y s t e m in this chapter . Di f ferences 
in the c o d e p r e s e n t e d h e r e a n d c o d e that m a t c h e s the official s tandard s h o u l d b e 
m i n i m a l . 

T h e chapter b e g i n s w i t h a n i n t r o d u c t i o n to t h e c o n c e p t s a n d r e a s o n s for OO 
COBOL. Next, w e rev i ew the s t rengths a n d w e a k n e s s e s o f s tructured p r o g r a m m i n g 
a n d t h e n m a k e c o m p a r i s o n s b e t w e e n the t w o p r o g r a m m i n g a p p r o a c h e s . 

T h e r e m a i n i n g p o r t i o n o f the c h a p t e r s h o w s a n OO s y s t e m i m p l e m e n t a t i o n o f 
t h e Eng ineer ing Senior p r o g r a m d e v e l o p e d in Figure 1.6. W h a t w a s in o n e p r o g r a m 
b e c o m e s several c lasses . Each c lass serves to d e m o n s t r a t e o n e or m o r e OO c o n c e p t s . 
As w e p r e s e n t e a c h p o r t i o n of t h e s y s t e m , w e a t t e m p t t o d e m o n s t r a t e the structure 
of O O c lasses a n d m e t h o d s to s h o w h o w OO c a n m a k e s y s t e m d e v e l o p m e n t a n d 
m a i n t e n a n c e s i m p l e . 

This chapter b y itself is n o t e n o u g h to train y o u in OO COBOL. You will n e e d 
further s tudy to b e c o m e prof ic ient . W e h a v e i n c l u d e d the n a m e s of several n e w 
texts of OO COBOL at the e n d of the chapter . T h e i n t e n t o f this chapter is to w h e t 
y o u r appe t i t e to l earn m o r e a b o u t th i s exc i t ing a n d c h a l l e n g i n g n e w p r o g r a m m i n g 
t e c h n i q u e . 



The Next Generation of COBOL 

O n e of the most exciting n e w features of the C O B O L 2000 Standard is its 
incorporation of Object-Orientation (00) into the language. Even though the 
standard will not become official for several years, 0 0 C O B O L is available n o w and 
offered by several vendors including IBM, Hitachi, and Micro Focus. 0 0 C O B O L 
provides the advantages of object-orientation to the business community without 
having to train programmers in n e w languages. In addition, there is no need to 
worry about making these languages work with critical legacy systems. C O B O L , the 
dominant business language, n o w has object-orientated capabilities while retaining 
COBOL's traditional strengths: readability, easy maintenance, powerful file handling, 
and good reporting. 

Previously, 0 0 was limited to such languages as Smalltalk and C++. These 
languages were designed for highly technical applications and for small, rapidly 
developed systems. While there is m u c h to c o m m e n d in these O O languages, they 
do not have the business orientation that is the trademark of C O B O L . For example, 
these languages do not have the powerful file-handling capabilities of C O B O L , nor 
do their data structures work well with the files created by C O B O L legacy systems. 
The syntax of those languages also tends to be rather abstract and hard to read, 
making systems developed in these languages difficult to maintain. 0 0 C O B O L , o n 
the other hand, maintains and even improves COBOL's traditional readability and 
maintainability. 

Other languages, such as Visual BASIC and Delphi, provide a form of 0 0 and 
are relatively easy to use. They also provide a way for end users to develop their o w n 
business systems. Yet these languages are not necessarily efficient; nor are systems 
developed in these languages always effective for large applications. In addition, 
systems developed in Visual BASIC or Delphi are not easily maintained by users 
other than the developers. 

Systems developed in 0 0 C O B O L are maintainable and able to interface with 
the programs and files of traditional C O B O L systems. O n the other hand, the C O B O L 
2000 standard provides for the Boolean, integer, and floating-point data types used 
by other c o m m o n languages. Thus, the n e w C O B O L can work with systems developed 
in all computer languages. 

The concept of object-orientation m a y be somewhat threatening to someone 
w h o has devoted m u c h time and effort to learning structured C O B O L . Students, for 
example, m a y be concerned that they have spent m u c h effort learning h o w to write 
structured programs only to have this skill m a d e obsolete by object-orientation. 
These students m a y wonder, " W h y not just learn 0 0 and forget structured 
programming entirely?" 

In answer to these concerns, w e believe that structured C O B O L will not go 
away soon. Yet O O is coming, and the individual w h o can "speak" both dialects of 
C O B O L will b e c o m e a valuable asset to employers. As businesses begin to adopt 0 0 
C O B O L , they will be seeking out people w h o can help them m a k e the transition. In 
the meantime, structured C O B O L is the predominant dialect and will continue to 
be so for m a n y years. The change m a y be inevitable, but it will be slow. As evidence, 
even today s o m e legacy systems are still in pre-structured programming code. 

A second answer is that object-orientation does not eliminate what is good 
about structured programming. O O promotes and even improves u p o n the best 
features of structured programming. Therefore, even though there is m u c h n e w 
about O O C O B O L , a programmer will not be starting from scratch w h e n learning it. 

At this point, m a n y texts attempt to define object-orientation with a series of 
n e w terms and potentially confusing terms such as encapsulation, inheritance, and 
polymorphism. This discussion delays the introduction and definition of these and 
other terms until they can be demonstrated and defined within the context of a 
functioning system. It is difficult to define object-orientation in a few sentences or 



C h a p t e r 2 0 O b j act-011 ante d C O BOL Programming 

by simply introducing and explaining the n e w terms. This entire chapter is, in a 

programming, just as the structured programming was a n e w w a y of thinking about 
programming in its time. 

The Development of Structured Programming 
W h e n computers were n e w and people were still learning h o w to program them, 
there were few guidelines as to what constituted a "good" program. Programming 
was more an art form than a disciplined craft. As a result, the quality of programs 
varied widely. Programming projects were difficult to estimate a n d manage because 
no one could be sure h o w long a program would take to build. Information systems 
were difficult to build and, w h e n completed, were usually late a nd over budget. In 
m a n y cases, the systems were not completed at all. 

Structured programming w a s developed as a response to this systems 
development crisis. The structured approach introduced a philosophy of program 
development and specified "rules" for writing programs. S o m e of these rules were 
as follows: 

• Break programs into short sections of code called modules. Modules were 
usually implemented as C O B O L paragraphs. 

» Build cohesive modules, where each module performs a single task. 
• Build loosely coupled modules, where each module is as independent as 

possible from the other modules. 
4 Ensure that each module has a single entry and a single exit poini. 
• Avoid the use of G O T O statements. 

The structured techniques brought a n e w degree of order and discipline into 
the programming process. As a result, the quality of programs improved and 
programming projects became m o r e manageable. Structured programming was a 
great step forward in the evolution of programming. 

Unfortunately, the structured paradigm also introduced n e w problems. 
Structured programs tend to be cu m b e r s o m e because the structuring process 
requires an elaborate hierarchy of operations a n d control structures. These 
hierarchies and structures define the operation of a program, but they also m e a n 
that there is duplication of effort in developing programs. T h e higher levels of 
structured programs tend to follow the s a m e patterns, but must be coded into every 
program. Elaborate structures also tend to m a k e programs rigid and difficult to 
change quickly enough to meet n e w processing requirements. For example, review 
the Tuition Billing program developed in Chapters 4-7 and s h o w n in Figure 7.4. 

Paragraph 100-PREPARE-TUITION-REPORT in line 124 maintains overall 
control of the program's process. This paragraph opens and closes files, and performs 
four other paragraphs. O n e of those paragraphs, 2 6 0 - P R O C E S S - S T U D E N T - R E C O R D , 
does the main processing loop in the program (lines 129 and 130). This paragraph, 
in lines 148-152, performs four additional paragraphs. Of these paragraphs, 310-
C O M P U T E - I N D I V T D U A L - B I L L in lines 166-172, performs four more paragraphs 
and makes a computation. Thus, out of the twelve paragraphs in the program, three 
paragraphs are primarily dedicated to controlling the process a nd do little actual 
work. For a simple program, a large part of the code is devoted just to control. 
Figure 3.3 shows the entire hierarchy chart for the program. 

Most structured programs spend a similar proportion of code just controlling 
the process. Unfortunately, these control paragraphs cannot be simply copied from 
one program to another; each program must have its o w n set of control paragraphs. 



The Next Generation of COBOL, 

The problems inherent in structured programming are not limited to the 

report. Only three of the twelve paragraphs actually use those lines. Nevertheless, 
any paragraph in the program can access those items and every other data item. 
Structured C O B O L provides no way to isolate data items so that only the authorized 
paragraphs can use them or change their values. Thus, if the structured rules are not 
followed, code can be inserted in any paragraph to modify data items. Under these 
circumstances, errors m a y be introduced to the program, and these errors m a y be 
difficult to find. 

The Tuition program is a very good structured program. It just reflects the 
conditions inherent in any structured program. Object-orientation can avoid m a n y 
of these problems. 

Structured programming was a n e w w a y of thinking about programming. This 
n e w paradigm was far superior to the w a y people thought about programs before. 
The superiority of this approach led virtually every c o m p a n y to adopt structured 
programming as the standard. In the process of change, programmers w h o had 
learned to program under the old rules (or lack thereof) had a difficult time making 
the transition to structured programming. They had to learn a n e w w a y to think 
about programming. In the same way, the transition to object-orientation will be 
difficult but worthwhile. 

The object-orientation approach is not a complete negation of the structured 
principles. In fact the most important contributions of structured programming are 
maintained and enhanced. For example, O O programs still incorporate the three 
basic control structures—sequence, selection, and iteration—discussed in Chapter 
3. The principles of cohesiveness and loose coupling mentioned above are actually 
ctrprifrt-hpnprt i n O O n r n a r a m m i n o O O rpnrf » C A r i t c n " n a r a r i i c r m Q h i f t " i n itQ flnnrnarh 

lo the overall design issues, but does not contradict the principles of good 
programming that have been proved in structured programming. 

In order to c o m p a r e the object-oriented a n d structured paradigms, s o m e 
terminology needs to be defined. In learning from a book like this, you should have 
developed a good idea of what a program is. As defined in Chapter 1, a program is a 
translation of an algorithm into a form the computer can understand. Usually that 
algorithm requires the program to input data, process it, and output information. 

In working through problems and assignments, you have had to focus o n 
writing individual programs and m a y have formed the impression that programs 
are self-sufficient units. Y o u m a y not have thought about where the input files c a m e 
from or where the output goes. In "real-world" applications, a program is usually 
just one part of a system. Systems are collections of software and data units designed 
to work together to perform an application. 

In structured systems, the software units are programs and the data units are 
files. Generally, one program runs at a time, processing input files and data to 
create output files and reports. Each program runs to completion before the next 
program begins. Files provide the link from one program to another a n d allow the 
system to function as a whole. 

Object-oriented systems consist not of files and programs, but rather of objects. 
The proposed C O B O L 2000 standard defines an object as "an entity that has a 
unique identity, specific data values, and specific behaviors or program code." In 
other words, objects combine the features of files and programs. Objects not only 
store data, but process it as well. Within an O O system, objects pass data directly 
and interactively to each other without the use of files. Unlike programs that run 



C h a p t e r 2 0 Object - Orient e d C O B O L Programming 

one at a time, m a n y objects m a y be active at the same time. Objects are linked by 

The messages are requests for the receiving object to perform s o m e action 
and often to return the results of that action. The messages request the objects to 
perform a method. The C O B O L 2000 standard defines a me t h o d as "procedural 
code that defines a specific function... A method m a y be thought of as a module or 
subroutine." Objects can contain m a n y methods, with each method designed to 
accomplish a particular function. W h e n one object requests (sends a message to) 
another object to perform a function, the process is called invoking a method. 

In summary, systems are m a d e up of numerous units that carry out the 
purposes of the system. In structured systems, these units are programs a nd files. In 
0 0 systems, these units are objects. Objects contain both data and methods. M a n y 
objects m a y be active at one time, and they communicate with each other through 
messages. Messages are requests for other objects to perform a method. 

The Object-Oriented versus Structured Paradigm 
W h e n developing an O O system, the designer tries to identify and represent the 
nouns of the system. The nouns c o m e from the n a m e s of entities necessary to 
accomplish the system's purpose such as Student, Employee, or Invoice. These 
entities become candidates for classes in the system. In O O terminology, a class is 
the generic definition of an object. The term instance is used to refer to a specific 
occurrence of an object. Most authors use "instance" and "object" interchangeably. 
F r o m this point o n w e use the term "class" to refer to the generic model and 
"instance" or "object" to refer to a specific example. 

\ „ r\r\ A—4 — „— l ; „ ; J „ _ i ; t . — A — c *t 1 „ „ .u . : c * u _ 
na yjyj ucaigiicia ucgm tu luciitny emu icmic inc uaasca, uicy aucuny uic types 

of data belonging to and the behaviors associated with the class. As additional 
requirements b e c o m e apparent, additional data items a nd methods m a y be added. 
By looking at the nouns, the O O designer can determine h o w a class should behave 
in general without regard to any specific system. Thus, these general class behaviors 
or methods can be used by m a n y systems. W h e n system-specific requirements 
dictate the need for additional methods or data items, they can be added to the 
class without affecting the previously defined data items and methods in the class. 

By contrast, the structured approach focuses o n the verbs of the system. Verbs 
identify the things a system must do. As each activity of the system is identified, the 
designer specifies a program or programs to carry it out. These programs are custom 
designed for their specific system. 

O O systems are m o r e flexible than structured systems. By placing procedures 
in methods contained in classes rather than programs, O O allows c o m m o n routines 
to be written just once. A n y system that uses the class can use any of its methods. 
Methods are developed just once, but used in a variety of situations. The need for 
duplicate coding is reduced and additional functionality can be added to systems 
with m i n i m u m effort. 

Methods, once developed a nd tested, can be reused with confidence and a 
m i n i m u m of testing. In addition, if s o m e change is necessary in the method, the 
change only has to be m a d e only once in the class. Every system using that class 
then automatically uses the revised method. 

After a class is developed, it becomes a building block available for use in 
future systems. W h e n the developers of a n e w system determine the need for a 
class, they can investigate to see if it is already available. If the n e w system requires 
n e w functionality from a class, n e w methods can be added to the class without 
affecting any of the old methods. As a result, classes b e c o m e more useful and 
powerful as n e w functions are defined and implemented as methods. The same 
cannot be said for structured systems and programs. 



The Next Generation of COBOL 

Structured systems consist of custom-designed programs. Even w h e n c o m m o n 
routines occur, they cannot easily be copied into other programs, nor can other 
systems just use part of a structured program. As a result, each n e w program is built 
from scratch with little use of previously developed routines. Even if the routines 
can be copied into n e w programs, it is almost impossible to update all of the copies 
should s o m e change need to be made. 

As an example, suppose that there is a need for a Student Enrollment system. 
A structured analysis would look at the verbs and might determine that the system 
needs to: 

* Generate a course schedule. 
* Enroll students. 
* Prepare course rosters. 
» Prepare student schedules. 

The structured approach would then design one or more programs to perform 
each of these activities. Files would be developed to link the processes together so 
that the system could perform as a whole. Even though preparing course rosters 
and preparing student schedules are very similar processes, it is unlikely that any of 
the programs would be reused or that routines would be copied from one program 
to another. 

The OO approach to a Student Enrollment system would focus o n the entities 
w h o participate in the system. The analysis then might c o m e up with classes such as: 

» Student 
* Advisor 
* Registrar 
* Course 

From this analysis, the O O designer would determine the functions and the 
data that each of these should handle. In producing the actual Course Rosters and 
the Student Schedules, the system would use methods from both the Student class 
and the Course class. S o m e of the same methods could be used in performing each 
function. In addition, most of these classes developed for Student Enrollment might 
be used in other systems such as Tuition Billing, Advising, or Grade Reporting. 
Therefore, these classes are not useful just for the Student Enrollment system, but 
could be building blocks for other systems as well. 

Another difference between O O and structured systems is in h o w they actually 
operate. Programs run in a standalone m o d e with one program operating at a time. 
Linkages between programs are maintained by passing files. By contrast, m a n y 
objects m a y be functioning interactively and linkages are maintained through 
messages. Objects, unlike programs, are aware of other objects. Since messages, 
rather than files, provide the linkage between objects, files per se are not necessary 
in an OO system except to store data while the system is not running. 

Objects exist in the m e m o r y of the computer only while the system is operating. 
If there were no w a y to store the objects, data would be lost w h e n the system shut 
d o w n . Therefore, O O systems store object data in files until the system starts again. 
These files provide persistence between system runs. A n O O system requires special 
classes called data managers to ensure that the data "persists" from one run of the 
system to another. 



C h a p t e r 2 0 Object-Oriented COBOL Programming 

To illustrate the c o n c e p t s of Objec t -Oriented COBOL a n d t h e dif ferences from 
structured p r o g r a m m i n g , this chapter u s e s a 0 0 vers ion of t h e Eng ineer ing Senior 
program p r e s e n t e d in Chapter 2 . 1 The d e s i g n of the s y s t e m is s h o w n in Figure 20 .1 . 

Whi le the original program w o r k e d o n l y for Eng ineer ing S t u d e n t s wi th m o r e t h a n 
100 credit hours , this v e r s i o n h a s a d d e d funct ional i ty , a l lowing the user to specify a 
m i n i m u m n u m b e r of credit h o u r s required (rather t h a n 100) a n d any major, no t 
just eng ineer ing . For the p u r p o s e of this chapter the OO vers ion is cal led the Student -
L o o k - U p s y s t e m . 

P R O G R A M M I N G S P E C I F I C A T I O N S 

System Name: Student-Look-Up system (Object Version of Engineering Senior program) 

Narrative: This system is an Object-Oriented Enhancement of the Engineering Senior program 
presented in Chapter 1. The system allows the user to interactively enter a major course 
of study and a minimum number of credits earned. The system then produces a report 
listing all students meeting both the major and minimum credit-hours qualifications. 

Input File(s): STUDENT-FILE 

Input Record Layout: See Figure 1.3a. 

Test Data: See Figure 1.3b. 

Report Layout: 

Screen Layout: 

See Figure 1.3c. 

See Figure 20.8. 

Processing Requirements: 1. Print a heading line. 

2. Prompt the user for a major. 

3. Prompt the user for the minimum number of credit hours. 

4. Read a file of student records. 

5. For every record, determine whether that student has the major specified in step 2 and 
has completed more than the number of hours specified in step 3. 

6. Print the name of every student who satisfies the requirements in item 5. Single-space 
the output. 

7. At the end of the Report, print a line that says "* * * End of Report * * *." 

Look at the d e s i g n of t h e S t u d e n t L o o k - U p s y s t e m in Figure 2 0 . 1 . A s y s t e m of 
six c la s se s r e p l a c e s the original p r o g r a m . T h e figure d o e s n o t s h o w a driver p r o g r a m 
u s e d to init iate t h e s y s t e m . V i e w i n g the d iagram, y o u m a y fee l that creat ing s ix 
c l a s s e s a n d a driver p r o g r a m h a s to b e m o r e c o m p l e x t h a n d e v e l o p i n g jus t o n e 
program. To p e r f o r m this very s i m p l e appl i ca t ion , y o u m a y b e right. H o w e v e r , if 
y o u look at the c l a s s e s as p o t e n t i a l bu i ld ing b l o c k s for o ther s y s t e m s , y o u c a n s e e 
that s o m e extra effort h e r e c o u l d m e a n less effort over the l o n g run . T h e Eng ineer ing 
Sen ior p r o g r a m c a n d o o n e f u n c t i o n a n d o n e f u n c t i o n only . 

The trick to developing OO systems is not in implement ing the classes, but in 
knowing h o w to partition out the data and procedures to the various classes. O n e 
accompl i shes this task through Object-Oriented Analysis and Design. A M I discussion of 
that topic is b e y o n d the s c o p e o f this chapter, but it d o e s n e e d to b e m e n t i o n e d briefly. 



The Student• Look•Up System 

Person 
Name 
GetNa 
Popu!« 

me 
iteName 

Registrar 

ProcessRequests 

1-n 

Student 
StudentMajor 
HoursCompleted 
Pnn i i i a tog t i ids«t 

StudentUI 

GetParameters 
DispiayHoursRequest 
DisplayMajorRequest 

StudentPRT 

OpenPrinter 
WriteHeader 
WriteDetail 
FinalizeReport 

StudentDM 

GetStudent 
CreateStudent 
ReadRecord 

As stated before, O O analysis and design focuses o n the nouns used to describe 
the systems. These nouns often can identify the system classes. For example, in the 
Student Look-Up system, Registrar and Student are obvious classes. 

After identifying the class, the analyst asks three questions about each class:2 

* W h a t does it know? W h a t data does it own? 
* W h o m does it know? W h a t other classes are necessary for it to accomplish 

its work? 
* W h a t does it do? W h a t functions does it need to perform? 
After answering these questions, the analyst can develop a model of the system 

such as seen in Figure 20.1. The double boxes with rounded corners represent 
classes. Each class symbol is divided into three sections. The top section contains 
the class name. The middle section contains the n a m e s for data items o w n e d by the 
class and the bottom section contains the names of the methods the class can 
perform. The lines represent the routes messages can take within the system and 
show the answer to the question, " W h o m does it know?" The indicators at either 
end of the line s h o w h o w m a n y instances of another class an instance can k n o w at 
one time. For example, a Student can k n o w only one Registrar object, while the 
Registrar object can k n o w from 1 to n instances of Student. 

Special relationships between classes are shown by symbols o n the connecting 
lines. The half-circle between Person and Student means that Student inherits from 
Person. W e will discuss the concept of inheritance later. The triangle between 
Registrar and Student m e a n s that Student is contained in Registrar. That is, the 
Registrar is responsible for managing the Student class. This concept is not important 
to understanding h o w this system works. 

--. -~ ' . Student-Look-Up System Design 



Chapter 20 Object-Oriented COBOL Programming 

S o m e of the classes represent the problem domain of the system—the purpose 
of the system. These classes do the primary work of the system. However, just as the 
functional workers in an office cannot operate efficiently without support and 
administrative workers such as secretaries, mailroom staff, file clerks, a nd the like, 
support classes are needed as well. S o m e of the support classes include: 

* User Interface Classes. Classes that handle the interactive screens a nd 
windows allowing the users to interact with the system. User interfaces also 
involve the printing of reports for the user and production of external 
documents such as invoices and purchase orders. 

• System Interaction Classes. These classes manage the interfaces to other systems. 
These other systems m a y be object-oriented or traditional legacy systems. System 
Interaction classes would handle files passed between the systems, access to 
centralized data bases or telecommunications between systems. 

* Data Management Classes. These classes administer the storage and 
retrieval of data used by Problem D o m a i n instances. Data M a n a g e m e n t 
classes are necessary to maintain the persistence of objects. 

• Drivers. These programs are not classes at all. They are programs developed 
to initiate and test objects. Driver programs often are temporary in nature 
and allow the system developer to see h o w a class will behave before 
incorporating it into the system. Most O O systems include a driver program 
to start the system. 
Table 20.1 shows the classes of the Student-Look-Up system, the types of class 

they are and c o m m e n t s about the functions performed. 
The starting point for the system is the Student-Look-Up program. Even though 

Student-Look-Up is the driver program for the system and not a class, it introduces 
s o m e of the elements of object-orientation. 

S t u d e n t - L o o k - U p P r o g r a m 

Student-Look-Up is the program s h o w n in Figure 20.2 and m a y be one of the 
shortest C O B O L programs you have ever seen. The program cannot really be called 
structured because it has only three statements in lines 19-21 of the Procedure Division. 
There are several other features in this program that m a y seem strange. The most 
obvious difference is the use of uppercase and lowercase in the source code. C O B O L 85 
has always allowed this practice, but acceptance of this practice has been slow. W e have 
used mixed-cases code to symbolize a n e w age of C O B O L . 3 The Programming Tip 
shows all of the coding conventions w e use in this chapter. 

in'C , Student-Look-Up System Driver and Classes 

StudentPRT 
StudentUI 

Person 
StudentDM 

Student 

Student-
Registrar 

User interface 
User Interface 

Data Management 
Problem Domain 

Problem Domain 

Problem Domain 

Driver Initiates the system and creates Ihe Registrar object 
Maintains overall control of the system, creates the utility objects: 
StudentUI, StudentDM, and StudentPRT. Interacts with Student to get 
the student name. 
Maintains the Student data. Can produce the student's name, credit 
hours taken and major. 
Parent Class to Student. Maintains the student name information. 
Controls the processing of the Student File and creates Student 
Instances based on requested parameters. 
Controls the production of the report. 
Controls the interactive dialog with the user of the system. 



The Student-Look Up System 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Student-Look-Up 

Narrative: This program is the primary driver program for the system. The program creates the 
Registrar object and initiates the system to process a request for a listing of students 
based on user input specifications. 

Objects Created: Registrar 

Objects Referenced: Registrar 

P r o c e s s i n g R e q u i r e m e n t s : 1. Create Registrar object. 

2. Invoke Registrar method ProcessRequest. 

10.2 Student Look-Up Program 

Jset mfoo 
Identification Division. 

Program-id. Student-Look-Up. 
Author. Arthur R. Buss. 

Environment Division. 

9 
10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

jObject Section. 
JC1ass-control. 

Registrar is Class 'Register' 

Data Division. 
Working-storage Section. 

Hand!es 01 object reference. 
05 theRegHandle. 

Procedure Division. — -
j invokejRegistrar 'New' returning theRegHandle 
invoke theRegHandle 'ProcessRequest' 
STOP RUN 



C h a p t e r 2 0 — Object-Oriented COBOL Programming 

P R O G R A M M I N G T I P 

OO COBOL is so new that there are not well-established ways for coding classes. The following are the 
conventions for this book. 

* Division and section names are capitalized. For example, Procedure Division and Working-storage 
Section. 

® Data item name words are capitalized and separated by hyphens. For example, Student-Name. 
t : Linkage-storage data names are prefixed by 1 s-. 

Method name words are capitalized, but not separated by hyphens. For example, ProcessRequests. 
* Handle names do not have an initial capital letter, but each succeeding word is capitalized. The 

words are not separated. For example: theRegHandle. 
« COBOL reserved words other than division and section titles are lowercase. 
* For visibility purposes, FACTORY, OBJECT, and STOP RUN are uppercase. 
« End statements for methods, objects, and classes are capitalized. For example, End Method, End 

Object, and End Class. 
* Division titles are omitted, except where necessary or for clarity. In this system, Student-Look-Up 

includes all four division titles. Identification Division is not included in any class definition. 
Environment Division and Data Division are included only in the classes that handle file processing. 
Procedure Division is included in all classes. 

« Within classes, all methods are separated by a blank line. 
* To ensure that method names are seen as being part of the method, Method-id statements are not 

separated from the next line. 
When a method Procedure Division has using or returning clauses, each clause is separated 
onto a separate line and indented. For example: 

Procedure Division 
using 1s-Stu-Parameters 
returning ls-theStuHandle. 

« Procedure Division code is separated from the division title by one line. 
« In Procedure Division code, only one period is allowed. The period must be after the last line of 

code and alone on a line. End scope terminators are always used. 

Line 1, starting in column 7, contains the compiler directive: $set mfoo. This 
compiler directive tells C O B O L that the program is involved in a n O O system and 
allows the program to use several O O reserved words. 

Object Section in line 8 is n e w to the Environment Division and is similar in 
purpose to the Input-Output Section of traditional C O B O L . T h e Object Section 
defines the interface to classes used in the system. 

Class-control is the main paragraph within the Object Section and relates 
each class to a template file for that class. Template files contain class definitions. 
W h e n the program or class is compiled, these definitions are linked to the program. 
For example, "Register.cbl" is the template for the Registrar class. W h e n Student-
Look-Up is compiled, the definition of Registrar becomes part of the executable 
code. Whenever the program uses the identifier "Registrar," C O B O L refers to that 
class definition. 

The program contains no Input-Output section. Since the classes do all of the 
file processing, the section is not needed and is omitted. 

The Working-Storage Section contains two n e w features. 
1. A n e w data type, object reference. 

2. Data type usage specified at the group item level. 



The Student- Loo k • U p S y s tern 

O O C O B O L uses object reference data as pointers to system objects. In O O 
C O B O L , object pointers are generally called handles. The 05 level item 
"theRegHandle," in line 16, is the handle to the Registrar object. 

C O B O L 2000 allows the data usage to be established at the group item level. 
All elementary items assume the data usage of the group item. In line 15, the 01 level 
item Handles has object reference usage and therefore so does theRegHandle. 

The Procedure Division of the Student Look-Up Driver program has only two 
statements other than STOP RUN. Both statements use a n e w C O B O L verb i nvoke. 
Invoke is similar to a C A L L in that it addresses programs outside of the current 
program and turns control over to that procedure. The invoke verb also can pass 
parameters or arguments to and from the invoked procedure. However, a C A L L 
turns over control to an entire C O B O L program while invoke only references a 
method within an object. 

Syntax of Invoke 

INVOKE object-name { literal-1 | data-name-1 } 
[USING {data-name-2}... 
[RETURNING data-name-3 ] ] 

Figure 20.3 shows the syntax of the i nvoke verb. The object n a m e specifies the 
object containing the desired method. Literal-1 or data-name-1 is the message 
(name of the method) to be passed to the object. Any data items to be passed to the 
object are preceded by using. The data item to be returned must be preceded by 
returni ng. Note that multiple data items can be passed to the method but returni ng 
allows only one data item. The invoke verb requires that the n a m e d data items be at 
the 01 level, but entire data groups can be passed by using a 01 level group item. If 
more than one parameter must be returned, all of the parameters should be 
elementary items under a single 01 level group item. Arrays can be passed in either 
direction as long as they are contained within a 01 level group item. 

The first invoke addresses the Registrar class and passes the message "New." 
New is a generic message required to create a n e w instance or occurrence of a class. 
This process is called instantiation. Hence, to instantiate a class m e a n s to create a 
ne w instance of the class. For example, in the Student Look-Up system, only one 
Registrar instance is required. Universities only have one Registrar office, and this 
instance needs to emulate the functions of that office. However, m a n y students 
attend the university and one would expect the system to instantiate numerous 
instances of the Student class. 

W h e n instantiating a class, the object n a m e in the i nvoke statement is the 
n a m e of the class. The New method instantiates the instance returns its handle. In 
this case, the handle is called "theRegHandle." 

Look again at Figure 20.2 and line 20. The second i nvoke uses theRegHandle 
to request the instance method, "ProcessRequest." The statement invokes 
theRegHandle instead of Registrar because it points to the instance of the class and 
its methods are n o w available. ProcessRequest requires no parameters to be passed. 
U p o n completion, ProcessRequest returns control to the driver program. The driver 
then stops the run. 

After STOP RUN there is a period on a line by itself. A n e w standard is emerging in 
C O B O L programming to minimize use of the period. M a n y programmers will use only 
one period at the end of paragraph and place the period on a separate line for the sake 
of clarity. End statements replace periods whenever possible. Since C O B O L requires 
that each paragraph end with a period, it is placed on a separate line for visibility. 

In examining the driver program, you have encountered several important 
O O topics without even looking at a class. These topics include Object Section and 



C h a p t e r 2 0 Object-Oriented COBOL Programming 

C l a s s Name: 

C l a s s Type: 

Narrative: 

Objects Created: 

Objects Referenced: 

Factory Methods: 

Instance Methods: 

Narrative: 

Processing: 

Class-control, the Object Reference data type, handles, instantiation, methods, 
messages, a nd the Invoke verb. N o w , w e will look at the Registrar class to see h o w 
these and other concepts are used in a class. 

Along with the discussion of each class, you will find the programming specifications 
of that class. Since classes are different from programs, you will notice several n e w 
entries. First, w e use Class N a m e rather than Program N a m e a nd have a n e w entry 
to s h o w what type of class this is. Next, w e describe the purpose of the class in the 
Narrative. The Narrative is followed by the objects created a n d referenced. W e 
specify objects rather than classes because these are actual instances of classes that 
are created or referenced. Finally, w e specify the methods included in the class. 
These methods include both factory methods and instance methods. 

R A M M I N G S P E C I F I C A T I O N S 

Registrar 

Problem Domain Object 

This object represents the role of a registrar department. 

StudentDBI 
StudentPRT 
StudentUI 

StudentDBI 
StudentPRT 
StudentUI 
Student 

None 

ProcessRequests 

This method controls the main processing of the system. 

1. Create the StudentUI objects. 

2. Get student requirements from StudentUI. 

3. Create the StudentDBI and StudentPRT objects. 

4. Get an instance of a Student from StudentDBI that meets the requirements in step 2. 

5. Get the student name from Student. 

6. Send the Student name to StudentPRT to be printed. 

7. Destroy the current Student instance. 

T h e Registrar object contains the attributes and behaviors that are needed to 
represent the university registrar's role in the Student-Look-Up Billing System. The 
registrar knows about student data a nd provides this data o n request. The Registrar 
object, therefore, manages students and can provide data about them. 



The Student - Look Up Sys t e m 

Class Definition of Registrar 

1 $set mfoo 
2 i Class-id.,- Registrar 
3 inherits from Base , i 

5 Author. Arthur R. Buss \_ 
6 
7 Object Section. ! 
8 Class-control. 
9 Base is Class 'base' i 
10 Registrar is Class 'register' 
11 StudentDM is Class 'senDBI' 
12 StudentPRT is Class 'senPrt' 
13 StudentUI is Class 'senui' 
14 
15 
16 OBJECT. 1 

17 
18 ; Object-storage Section. 
19 I 01 Handles object reference. 
20 1 05 theDMHandle. 
21 05 thePRTHandle. j . . .. 
22 0 5 theUIHandle. 
23 05 theStuHandle. 
24 ._ . ' i _ ' y ~ p _ " Z 
25 : Method-id. 'ProcessRequest'. 
26 1 Local-storage Section. 
27 ; 01 Student-Parameters. 
28 05 Stu-Min-Hours pic 9(03) 
29 05 Stu-Major pic X(20) 
30 
31 01 Student-Data. 
32 05 Stu-Name pic X(25) 
33 i 
34 : Procedure Division. 
35 
36 invoke StudentUI 'New' 
37 returning theUIHandle 
38 [ invoke theUIHandle 'GetParameters' 
39 [ returning Student-Parameters 
40 invoke StudentPRT 'New' 
41 ' returning thePRTHandle 
42 invoke StudentDM 'New' 
43 returning theDMHandle 
44 invoke theDMHandle 'GetStudent' ~ 
45 using Student-Parameters 
46 returning theStuHandle 
47 perform until theStuHandle = Null--
48 invoke theStuHandle 'GetName' 
49 returning Stu-Name 
50 invoke thePRTHandle 'WriteDetaiT 
51 using Stu-Name 
52 invoke theStuHandle 'Finalize' 



Chapter 20 Object-Oriented COBOL Programming 

(continued) 

returning theStuHandle | 
invoke theDMHandie 'GetStudent' 

using Student-Parameters [ 
returning theStuHandle f 

end-perform | 
invoke thePRTHandle 'FinalizeReport'-X 

j i 

[JEnd Method 'ProcessRequest'. J 
End Object. 
End Class Registrar. 

The class definition can be m a d e up of three parts: 
• Class identification area that defines the class n a m e and the linkages of the 

class definition files for the other classes associated with this one. 
• The Factory area. The Factory is a special instance of the class that contains 

methods and data used for managing all other instances of the class. 
I™1"!"* <c* lr\ i o « " » i r t r I n p t ' i n i ^ o o » - * i o T V - n o »\ ' i t-i /-v-f o ir» r» t\ * i t s \ »-» ri / A ^ * v » - 1 , , > 4-1-» ,\ V i * j v i KJI n i o t a i i ^ ^ tutv^t i . l i n o j ^ t i i l KJi V / i u a o u ^ i u i i u u n L i l t 

data formats and methods available to each instance. 
Y o u should notice several differences between the class identification area 

and the start of a traditional program. This example contains no Identification 
Division statement and no Program-id statement. The Identification Division 
statement has been left out since it is not required by C O B O L 2000. The statement 
Class-id is the equivalent of the Program-id statement but includes a clause that 
says "inherits from Base." This clause defines the "inheritance" of the class. The 
Registrar class is a "child" of Base. 

As in the Student-Look-Up program, the class identification area contains an 
Object Section and Class-control. O n e of the questions that m u s t be answered for a 
class is, " W h o m does it know?" The Class-control paragraph defines part of the 
answer. Since Registrar is the key class for this system, it needs to k n o w about and 
create several other classes. Registrar needs to k n o w about Base because it is the 
parent class, it needs to k n o w about itself, and, since it instantiates StudentDBI, 
StudentPRT, and StudentUI, all of these are defined in the Class-control paragraph. 
Registrar also needs to k n o w Student, but this class does not have to be defined here 
since Registrar does not instantiate it. 

The Factory definition area follows the Class-control section. This area starts 
with the keyword F A C T O R Y . The Factory is a special instance of the class and 
contains generic data and methods needed to manage the regular instances. Registrar 
requires no special data or methods, and therefore Factory does not have to be 
specified. 

The definition of the instance in Figure 20.4 begins with the keyword OBJECT in 
line 16. As mentioned before, in defining a class the designer needs to ask: 

• W h a t does it know? 
• W h o m does it know? 

W h a t does it do? 



The Student-Look-Up System 

To answer the first question, in the Student-Look-Up system the Registrar 
does not have to have any special knowledge. If the class were to be used with s o m e 
other system it is likely that some d a t a items would have to be defined and stored in 
the Object-storage Section in lines 18-23. 

The Object-storage Section is similar to the Working-storage Section in a 
traditional program and contains data available to any instance method. You will 
see later that methods can o w n their o w n data as well. N o other program, object, or 
even the Factory of the current object can use data in the Object-storage Section 
except through the use of an instance method. 

The Object-storage Section also contains a partial answer to the question, 
" W h o m does it know?" The group item Handles in lines 19-23 contains the pointers 
to the objects the Registrar needs to know. 

The answer to "What does it do?" is defined by the methods. For Registrar, 
there is only one method, ProcessRequests. This method is discussed below. 

Look again at the Class-id paragraph in lines 2-3. Inheritance is an important O O 
concept. By stating that Registrar inherits from Base, the clause is saying that Base is 
the parent class and all of the methods in Base are available to Registrar. Base is a 
special class provided by Micro Focus as part of the O O C O B O L system. The Base 
class serves as a template for all other classes and has specialized methods for the 
m a n a g e m e n t of all classes. 

For an example of h o w inheritance works, consider the method New. New is 
invoked before an instance exists. New also addresses the Class-id rather than an 
instance handle. The Factory contains specialized methods that allow m a n a g e m e n t 
of the instances. The m e t h o d New creates the instance, and therefore it cannot be 
contained in an instance. New is therefore a factory method. 

Y o u should notice that the Registrar Class definition in Figure 20.4 does not 
specify a Factory or its methods. Then where is the method New? New is a factory 
method in Base. Whenever a class is instantiated, the parent class is also instantiated 
and is available to the child class. Because Registrar inherits from Base, Registrar 
can perform New as if it were its o w n method. Thus, w h e n Student-Look-Up invokes 
New, Registrar receives the message and passes it o n to Base. Base then creates the 
instance of Registrar. The invoking program did not need to k n o w anything about 
Base, but just asks the Registrar class to create an instance of Registrar. By taking 
advantage of inheritance, the object programmer does not have to write a method 
to create an instance for every class. This example is just one w a y inheritance works 
to reuse code; other ways are discussed below. 

There is one more point to m a k e about factory methods and instance methods. 
Even though the Factory and instances are parts of the same class, methods belong 
to either the Factoiy or the instances. If the Factory needs to invoke an instance 
method, the i nvoke must specify the instance handle. Instance methods must use 
the class n a m e (for example, Registrar) to invoke a Factory method. O O C O B O L 
maintains a strict separation between the two types of methods. 

The ProcessRequest m e t h o d begins with the Method-id paragraph in line 25. Every 
method begins with a Method-id and ends with an End Method. These statements 
provide the method's boundaries. A method m a y have its o w n Data Division and 
Procedure Division. The Data Division is optional, and, w h e n used, words "Data 
Division," do not have to be specified. Data Division entries contain data used only 
by that method. They are stored in one of three sections. 



C h a p t e r 2 0 Object-Oriented COBOL Programming 

a Working-storage Section—Working storage data are static. That is, these 
data remain from one invocation of the m e t h o d to the next. A ny data that 
need to be available w h e n the method is invoked and to be available each 
time the m e t h o d is invoked should be in the Working-storage Section. Data 
requiring a va l ue clause must be defined in working storage. 

» Local-storage Section—Local storage contains data for the method and is re­
initialized each time the method is invoked. If v a l ue clauses are specified, 
they are ignored and treated as comments. Local storage data is available 
only for the current invocation of the method. 

* Linkage Section—The linkage section works in connection with the 
method's Procedure Division and passes data to a nd from the method. 
ProcessRequest uses only the Local-Storage Section starting in line 26. The 

met h o d keeps the m i n i m u m n u m b e r of credit hours a nd the major for the request. 
The Local-Storage Section also contains the student n a m e once it is determined. 

Not all methods require their o w n Data Division. Often, methods will use the 
Object-storage Section defined at the instance level. In this case, with only one 
method, ProcessRequest could have used either the Object-storage Section for the 
entire instance or the method's Local-Storage Section. Regardless of where the data 
are stored, all methods need to have a Procedure Division. 

The Procedure Division in line 34 begins by creating the StudentUI object and 
requesting it to get the parameters necessary to process the system. T h e n 
ProcessRequest creates the StudentDM and Student PRT objects. The next i nvoke 
goes to theDMHandle to "getStudent." This i nvoke passes the parameters received 
from StudentUI and asks that the StudentDM provide the handle of a Student 
object matching the requested parameters. Notice that the i nvoke does not request 
the StudentDM to get the student n a m e directly. 

For StudentDM to provide the n a m e directly would violate the O O principle of 
encapsulation. This principle requires that only the Student object can manipulate 
Student data. The StudentDM does not have die authorization to deal with Student 
data direcdy. StudentDM can only process tiles and use the control fields to generate 
a Student instance. That instance can then manipulate the data. 

The concept of encapsulation or data hiding, as it is sometimes known, means 
that data are kept in a "capsule" called an instance. The data is the property of the 
instance and can be accessed only through one of the instance methods. Other 
objects must send messages to the instance in order to use any of its data. 
Encapsulation allows the instance to maintain the data's integrity since there can 
be no unauthorized changes by other programs or objects. 

Compare encapsulation to the w a y data is treated in programs. In a program, 
all data are available to every paragraph in the program. A n y paragraph could 
potentially alter any data item in the Data Division. In poorly designed programs or 
ones that have been hastily modified, logic errors can cause data to be improperly 
changed and as a result cause unexpected effects. The source of these errors m a y 
not be easy to detect since any paragraph could have caused the problem. By 
restricting all manipulation to an object a nd its methods, logic errors in methods 
are m u c h easier to detect and fix. 

Returning to ProcessRequests, in line 47 the m e t h o d begins the m a i n 
processing loop of the system. The control variable for the loop is theStudentHandle. 
W h e n the variable becomes "null" the loop stops. Nul 1 is a predefined address used 
by C O B O L to indicate that an object does not exist. If for s o m e reason StudentDM 
cannot create an instance of Student, getStudent returns nu l l in theStudentHandle. 



The Student-Loak-Up System 

Using a valid Student handle, the first statement requests the Student n a m e 
from the Student object and then passes that data to StudentPRT for printing. 
ProcessRequest then "finalizes" the Student object and requests a n e w Student 
object. 

P R O G R A M M I N G T I P 

One problem in object-oriented systems is called memory leakage Memory leakage occurs when 
the system generates a new instance of a class and uses the same handle name as the previous instance. 00 
COBOL will place the new address into the handle overwriting the previous address. The original instance 
remains in the computer's memory, but since the pointer is gone there is no way to access it. The old instance 
has become an orphan and the memory assigned to it cannot be used for any other purpose. 

As orphans accumulate, the memory available is reduced and the performance of the system degrades. 
Some 00 systems provide a service called "garbage collection" where the system looks for and 

removes orphaned instances. The COBOL 2000 standard requires garbage collection but Personal COBOL 
does not provide it. 

In any case, it is a good practice to destroy unneeded instances. The Base method Finalize removes the 
current instance of an object from memory The format or this method is: 

INVOKE identifier-1 'Finalize' RETURNING identifier-1 
Identifier-1 is the handle of the instance. After processing, identifier-1 is returned as null. 

The Registrar object and its method ProcessRequests has served as an introduction 
to the concept of inheritance and demonstrated h o w an object interacts with other 
objects to accomplish a task. This discussion has also included the concept of 
encapsulation and the need to remove objects from m e m o r y w h e n they are no 
longer necessary. 

Objects exist only in the m e m o r y of a computer while a system is running. However, 
a system that cannot maintain data from one run to another has little practical use. 
0 0 systems therefore must provide a w a y to store and recall data whenever 
necessary. The 0 0 term for this requirement is Persistence. O n e m e t h o d of handling 
persistence in a system is to have a data m a n a g e m e n t class for each problem 
domain class. StudentDM is the data manager for the Student class. 

The three questions apply here as well. 
• StudentDM needs to k n o w the file specifications for the Student persistence 

file. 
* The object needs to k n o w the Student object. 
« StudentDM must be able to do all of the file handling to create Student 

instances. 



C h a p t e r 2 0 — Object-Oriented COBOL Programming 

P R O G R A M M I N G S P E C I F I C A T I O N S 

C l a s s Name: StudentDM 

C l a s s Type: Data Management Object 

Narrative: This object performs ali tile processing for the Student file. The object opens, closes, and 
reads records from the file. StudentDM also creates Student instances from the data in 
the file. 

Objects Created: Student 

Objects Referenced: Student 

Factory Methods: New 

Narrative: Overrides the Base New in order to open the file when the object is created. 

Processing: 1. Invoke New from Base. 

2. Open the Student File. 

Instance Method: GetStudent 

Narrative: This method controls the process of finding a student record that meets the user's 
specification. 

Processing: 1 . Set the Student handle to null in case a record cannot be found. 

2. Read the Student data file. 

3. For every record, determine whether it meets the minimum credit hours required and is 
in the required major. 

4. When a matching record is found, create and populate a Student object. Return the 
handle for the Student object. 

Instance Method: ReadRecord 

Narrative: This is a private method to read Student Records. 

Processing: 1. Read records from the Student file. 

2. At end of file, set an end of file switch and close the file. 

Instance Method: CreateStudent 

Narrative: This private method creates an instance of Student and populates it with the values from 
the current Student Record. 

Processing: 1. Invoke a new instance of Student. 

2. Populate the instance. 



e Student-Look• Up System 

Class Definition of StudentDM 

i 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

$set mfoo 
Class-id. StudentDM 

inherits from Base 

Author. Arthur R. Buss 

Environment Division. 
Input-Output Section. 

Fi le-Control. 
Select Student-File Assign to 'Student.Dat' 

Organization is Line Sequential. 

Object section. 
Class-control. 

Base is class 'Base' 
StudentDM is class 'sendbi' 
Student is class 'senstu' 

Data Division. 
File Section. 
fd Student-File. 
01 Student-In. 

05 Stu-Name 
05 Stu-Credits 
05 Stu-Major 

pic X(25). 
pic 9(03). 
pic X(20). 

object reference. 

object reference. 

FACTORY. 
Object-storage Section. 
01 Handles 

05 theDBIHandle. 

Method-id. 'New', 
iLinkage Section. 
101 Is-theDBIHandle 

Procedure Division 
! returning 1s-theDBIHandle. 

invoke super I'New' returning Is-theDBIHandle 
open input Student-file — 

End Method 'New'. 

End Factory. 

OBJECT. 

Method-id. 'ReadRecord'. 
Linkage Section. 
01 1s-Data-Remai ns-Swi tch pic X(03). 



C h a p t e r 2 0 Object-Oriented COBOL Programming 

,5 (continued) 

Procedure D i v i s i on 

' re tu rn i ngUs^Data-Remai ns-Swi t c h . 

Move ' Y E S ' to I s -Data -Remains-Swi tch 
Read S t u d e n t - F i l e 

a t end 
jiiove _|N0|_ to I s -Data -Remains-Swi tch 
i c lose S t u d e n t - F i l e | 

end-Read 

End Method 'ReadRecord ' , 

• Wei 

-cord Reed 

Method- id . ' G e t S t u d e n t ' . 
Loca l - s to rage S e c t i o n . 
01 Data-Remains-Swi tch p ic X ( 0 3 ) . 

Linkage S e c t i o n . 
01 l s - S t u - P a r a m e t e r s . 

05 l s - S t u - C r e d i t s 
05 I s - S t u - M a j o r 

p ic 9 ( 0 3 ) . 
p ic X ( 2 0 ) . 

01 Is - theStuHand le ob jec t r e fe rence . 

Procedure D i v i s i on 
' us ing 1 s -S tu -Parameters 
re turn ing I s - theS tuHand le . 

set I s - theStuHand le to nu l l 
i nvoke jsel f j_JJJeadjtecord' 

re tu rn ing Data-Remains-Swi tch 
perform un t i l Data-Remains-Swi tch 

Is - theStuHand le Not 

'voke Method i 
'NO' or 
nu l l 

eva lua te S t u - C r e d i t s a l so S tu -Ma jo r 
when >= l s - S t u - C r e d i t s a l s o = I s - S t u - M a j o r 

invoke s e l f 'C rea teS tuden t ' 
re turn ing I s - theStuHand le 

when other 
invoke s e l f 'ReadRecord ' 
re tu rn ing Data-Remains-Swi tch 

end-eva luate 
end-perform 

Two Condition Evaluate 
Statement (See 
Programming Tip) 

End Method 'Ge tS tuden t ' 

Method- id . ' C r e a t e S t u d e n t ' . 
Linkage S e c t i o n . 
01 Is - theStudentHand le ob jec t r e f e r e n c e . 

Procedure D i v i s i on 
re turn ing Is - theStuden tHand le . 

invoke Student 'New 



The Student-Look-Up System 

(continued) 

105 
106 
107 
108 
109 
110 
111 
112 
113 

returning 1s-theStudentHandle 
invoke 1s-theStudentHandle 'PopulateStudent 

using Student-In 

End Method 'CreateStudent 

End Object. 
End Class StudentDM. 

The class definition for StudentDM in Figure 20.5 looks more like a traditional 
C O B O L program than did Registrar. The Environment Division includes the Input-
Output Section with the standard File-Control paragraph. The Data Division also 
includes a File Section. Object-orientation uses standard file processing. 

All of the components of the Class definition should be familiar by now. 
However, for the first time, Factoiy is defined and has the factory m e t h o d New. The 
New method has been discussed before as an example of inheritance. Normally Base 
performs the New method. However, there are occasions w h e n s o m e specialized 
processing is needed at the time an instance is created. For a data manager object, 
opening files seems to be that type of process. New, as defined in Base, cannot open 
tiles. Therefore, w e have elected to override the New procedure in Base and to build 
our o w n through a technique called polymorphism. 

Polymorphism is a Greek term meaning m a n y shapes. In O O programming, 
polymorphism m e a n s that a message m a y produce different results based on the 
object it is sent to. Polymorphism is usually achieved by having a me t h o d override 
another, inherited method. Polymorphism can be a powerful tool, a nd this example 
is quite simple. A full treatment of the topic is beyond the scope of this chapter. 

By defining a Factory method called New within StudentDM, the inherited 
method New in the Base m e t h o d is overridden. W h e n StudentDM or any object 
receives a message it checks to see whether that method is available. If the method 
exists within the object, it is executed. If not, the message is passed to the parent 
object. Therefore, since the Factory method New is defined in StudentDM, the local 
method overrides the inherited method. 

Overriding inheritance must be done with caution since the local method 
must be able to handle all of the processing expected of the inherited method. For 
example, New must be able to create an instance of StudentDM. The local method 
New accomplishes this task through the statement Invoke super 'New' returning 
1 s-theDMHandl e in line 40. The message invokes the parent or super class to do its 
method New. By invoking the parent class, Base instantiates StudentDM and returns 
its handle. The handle can then in turn be passed o n to the original invoking 
procedure. Having n o w carried out the primary function of New, the local method 
can go o n to open the file as well. 

StudentDM Instance Definition 

The Instance Definition of StudentDM is straightforward. To answer the three 
questions: 



C h a p t e r 20 — Object-Oriented COBOL Programming 

«• T h e Ins tance d o e s no t h a v e spec ia l data o ther than that n e e d e d to m a n a g e 
L l l C l l l C 

» T h e on ly objec t that it is k n o w s is Student . 

« What it d o e s is to read records from the file, test to s e e w h e t h e r t h e y m e e t the 
spec i f i cat ions , a n d create S t u d e n t i n s t a n c e s c o n t a i n i n g t h e S tudent data. 

Of the three m e t h o d s de f ined for the ins tance , on ly o n e G e t S t u d e n t is i n v o k e d 
from outs ide . T h e o ther t w o m e t h o d s are "private" m e t h o d s to b e u s e d on ly by 
o ther m e t h o d s in the S t u d e n t D M . 

B e g i n n i n g at l ine 65, GetStudent m a i n t a i n s a Local - s torage Sec t ion to h o l d a n 
end-of - f i l e s w i t c h a n d a Linkage Sec t ion to rece ive the i n v o k i n g parameters a n d to 
p a s s back the h a n d l e for the S t u d e n t ins tance . 

The P r o c e d u r e D iv i s i on h a s b o t h us ing a n d r e t u r n i n g c l a u s e s to a l l ow u s e of 
the i t e m s in the Linkage Sec t ion . T h e a lgor i thm of the m e t h o d is to init ial ize the 
S t u d e n t h a n d l e t o nul l a n d t h e n invoke t h e ReadRecord m e t h o d . T h e invoke 
s t a t e m e n t u s e s the keyword se l f. Sel f refers to t h e po inter o f t h e current ins tance . 
A n i n s t a n c e a lways k n o w s its o w n m e m o r y l o c a t i o n a n d c a n re ference that l oca t ion 
b y us ing s e l f. 

O n c e the record is read, GetS tudent eva lua te s the credi t hours against the 
m i n i m u m a n d the major against the required major. If the t e s t is successful , the 
rout ine invokes the CreateStudent m e t h o d , a n d u s e s the result t o return the Student 
H a n d l e a n d to s t o p the l o o p . If the test w a s n o t success fu l , t h e rout ine invokes 
ReadRecord m e t h o d to get t h e nex t record. W h e n ReadRecord runs o u t of records , 
it returns "NO" to the Data -Remains -Swi tch . T h e l o o p s tops , a n d b e c a u s e n o ins tance 
o f S t u d e n t h a s b e e n crea ted t h e m e t h o d returns a nul l h a n d l e to the invoking 
p r o c e d u r e . 

P R O G R A M M I N G T I P 

The C O B O L Evaluate statement is much more powerful than C A S E statements in other languages. In most 
languages, the C A S E statement can test a condition for only one variable at a time. The Evaluate statement, 
however, allows testing of several conditions at once. Consider the Eval uate statement in the GetStudent 
method of StudentDM. 

evaluate Stu-Credits also Stu-Major 
when >= ls-Stu-Credits also = Is-Stu-Major 

invoke self 'CreateStudent' 
returning ls-theStuHandle 

when other 
invoke self 'ReadRecord' 

returning 
Data-Remains-Switch 

end-evaluate 
Notice that the Eval uate statement tests conditions for Stu-Credits but also for Stu-Major. Al so is the 

keyword that tells the Eval uate to test both variables in an A N D relationship. The first When clause compares the 
respective variables to ls-Stu-Credits and Is-Stu-Major. The use of the keyword Al so makes sure that proper 
testing occurs. 

This test will allow only records that have Stu-Credits greater than or equal to ls-Stu-Credits A N D Stu-
Major equal to Is-Stu-Major. 

The Evaluate statement can virtually eliminate the need for nested IFs when used properly. 



The Student-Look-Up System 

The remaining two methods are easily understood. ReadRecord is a simple 
i c a u h j u i i i i c ; i i i c i l i i i i g u t l * c i u u i i u m a n y j i u c i a i n . 

notable feature is that the routine closes the file w h e n AT END is reached. CreateStudent 
is also simple. It invokes the New method to create an instance of Student and then 
invokes the PopulateStudent method to m o v e data from the input file into the 
instance just created. 

In a real system, StudentDM would have more instance methods, such as 
ones which could add, modify, or delete student records. Students acquainted with 
indexed files, direct files, or databases are well aware that the use of a sequential file 
as has been done here, would not be efficient for handling m a n y student records. 
Y o u should be able to see that if StudentDM were rewritten to use another file 
organization, Registrar a n d Student w o u l d never k n o w the difference. By 
encapsulating the file processing in StudentDM, major file changes are invisible to 
the rest of the system. Polymorphism and encapsulation m a k e system modifications 
simple. 

The StudentDM class serves as an example of h o w an object can process files 
and interact with other objects. You have also seen an example of polymorphism 
and h o w inherited methods can be overridden. 

P R 

Class Name: 

Class Type: 

Narrative: 

Objects Created: 

Objects Referenced: 

Factory Methods: 

Instance Method: 

Narrative: 

Processing: 

O G R A M M I N G S P E C I F I C A T I O N S 

Student 

Problem Domain Object 

This class represents the data and behaviors of students in the system. An instance of 
the class may return the student's major and the number of credit-hours earned. 

None 

Person (Parent) 

None 

PopulateStudent 

This method moves the data from the linkage section of the method into the Object-
storage Section, where the data are available to every method of the instance. 

1. Format and store the Student name. 

2. Store the rest of the Student data. 

Instance Method: 

Narrative: 

GetCreditHours 

Returns the Student credit hours. 

Processing: 1. Move Credit Hours to linkage section. 



C h a p t e r 2 0 Object-Oriented COBOL Programming 

Instance Method: GetMajor 

Narrative: Returns the Student major. 

Processing: 1. Move Major to linkage section. 

Student Class Definition 

1 $set mfoo 
2 Class-id. Student 
3 linherits From iPerson ; 
4 
5 
6 Object Section. 
7 Class-control. 
8 Person is Class 'person' 
9 Student is Class 'senstu' 
10 
11 
12 OBJECT. 
13 
14 Object-storage Section. 
15 01 Student-In. 
16 05 Stu-Data. 
17 10 Stu-Credits pic 9(03). 
18 10 Stu-Major pic X(20). 
19 
20 Method-id. 'PopulateStudent'. 
21 Linkage Section. 
22 01 Is-Student-In. 
23 05 Is-Stu-Name pic X(25). 
24 05 ls-Stu-Data. 
25 10 Is-Stu-Credits pic 9(03). 
26 10 Is-Stu-Major pic X(20). 
27 
28 Procedure Division 
29 using ls-Student-In. 
30 TnvoReYeTf rPt^uTaieHame vS 
31 using Is-Stu-Name 
32 move ls-Stu-Data to Stu-Data 
33 
34 End Method 'PopulateStudent'. 
35 
36 Method-id. 'GetCreditHours'. 
37 Linkage Section. 
38 01 ls-Credit-Hours pic 9(03). 
39 
40 Procedure Division 
41 returning ls-Credit-Hours. 
42 
43 move Stu-Credits to 1 s-Credit-Hours 
44 



The Student-Look-up System 

Figure 20-6 (continued) 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

End Method 'GetCreditHours 

Method-id. 'GetMajor1. 
Linkage Section. 
01 Is-Stu-Major pic X(20). 

Procedure Division 
returning 1s-Stu-Major. 

move Stu-Major to 1s-Stu-Major 

End Method 'GetMajor'. 

End Object. 
End Class Student. 

The Student class manages the data for students. Figure 20.6 contains the 
definition of Student. Notice that that this object does not inherit from Base (line 8). 
Student inherits from another class, Person. W e explain the reason for using 
inheritance under the discussion for the class Person. 

The Student object represents a simple application of h o w inheritance can 
work. Student contains three instance methods. Only one, PopulateStudent, is 
actually used by this system. PopulateStudent stores the data in the Object-storage 
section after an instance has been created. GetMajor and GetCreditHours are simple 
methods to s h o w h o w other applications can retrieve those data items. 

PopulateStudent, in line 24, invokes a method called PopulateName. The 
i nvoke statement references sel f. However, Student does not have a method called 
PopulateName. That method is actually in Person. 

By referencing sel f, Student looks for a method by the n a m e PopulateName 
within itself. The Student cannot find the method; it will pass the message to its 
parent—Person. In a case like this, the programmer m a y want to reference super 
rather than self. Yet there m a y be so m e instances where self is actually safer. 
Should PopulateName be added to Student to accommodate s o m e need for 
polymorphism, using super would bypass the local method. Using sel f assures that 
the proper m e t h o d is invoked. 

Because Student inherits from Person, an instantiation of Student means that 
Person is instantiated as well. Both Person and Student exist at the s a m e time, but 
Student does not have to maintain a pointer to Person. The inheritance mechanism 
handles these relationships. 

O n e other example of inheritance should also be noted. In Figure 20.4, line 54, 
the ProcessRequest m e t h o d invokes theStudentHandle with the m e t h o d GetName. 
G e t N a m e is not defined in the Student object. Student will receive the message and 
send it o n to Person to be performed. Registrar neither knows nor cares that the 
work is actually done by Person instead of Student. 

The Student class is an example of inheritance and of h o w O O programmers 
can take advantage of this technique to reuse code in a variety of ways. The Person 
class gives an example of what a parent class could look like. 



Chapter 2 0 Object-Oriented COBOL Programming 

The Person Class 

P R 

Class Name: 

Class Type: 

Narrative: 

Objects Created: 

Objects Referenced: 

Factory Methods: 

Instance Method: 

Narrative: 

Instance Method: 

Narrative: 

Processing: 

O G R A M M I N G S P E C I F I C A T I O N S 

Person 

Problem Domain Object 

This class represents the data and behaviors of persons of any type in the system. 

None 

None 

None 

PopulateName 

This method moves the formatted name data from the linkage section of the method into 
the Object-storage Section where the data are available to every method of the instance. 
The Object-storage Section holds name data in a generalized format and the input name 
is broken up into its parts. 

1 . Find and store the first-name portion of the name and store it in the Object—storage 
Section. 

2. Find the last-name portion of the name and store it in the Object-storage Section. 

GetName 

Produces the Name in a formatted form. 

1. Concatenate the first name and last name and move to linkage section. 

M a n y types of people are involved in the operation of a university. Besides 
students, there are faculty, administration, clerical staff, and facilities staff, to n a m e 
a few. Each of these roles has its o w n specialized functions and data. Yet, if one were 
to ask either a faculty m e m b e r or a facilities person what their n a m e was, the 
questioner would expect that either one could respond. Therefore, if the system 
required a Faculty class or a Staff class in addition to a Student class, each of these 
classes should be able to respond to a message "GetName." 

O n e w a y to accomplish this goal would be to code a "GetName" m e t h o d into 
each of these classes. However, any change to the m e t h o d would have to be m a d e in 
every class using that method. Structured programs often face this problem. 

A better approach to meeting the requirement is to take advantage of 
inheritance. Students, faculty, administration, clerical staff, a n d facilities staff are 
all persons. By defining a generic class called Person, all of the c o m m o n data 
attributes and associated methods could be placed in Person and every class 
inheriting from Person could use the methods and access the data. 

S o m e c o m m o n attributes might be: 



The Student-Look-Up System 

• N a m e 
• Address 
• Telephone 
• Age 

By coding these and other attributes into Person, they have to be coded only 
once, but they are available to any class inheriting from Person. A n y changes to the 
data or the methods is automatically available to the subclasses by making changes 
only in Person. 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

' Person Class Definition 

$set mfoo 
Class-id. Person 

inherits from Base 

Object section. 
Class-control. 

Base is Class 'base' 
Person is Class 'person' 

OBJECT. 

Object-storage Section. 
01 Person-Name. 

05 Per-Last-Name 
05 Per-First-Name 
05 Per-Middle-Name 

01 Counters. 
05 First-Name-Len 
05 Last-Name-Len 

Method-id. 'PopulateName'. 
Linkage Section. 
01 Is-Person-Name 

Procedure Division 
using 1s-Person-Name. 

pic X(20). 
pic X(20). 
pic X(20). 

pic 9(02). 
pic 9(02). 

pic X(60). 

initialize Counters 
inspect 1s-Person-Name 

tallying First-Name-Len 
for characters before initial space 

inspect 1s-Person-Name (First-Name-Len + 2:) 
tallying Last-Name-Len 
for characters before initial space 

move 1s-Person-Name (1:First-Name-Len) 
to Per-First-Name 

move 1s-Person-Name (First-Name-Len + 2 : Last-Name-Len) 
to Per-Last-Name 



Chapter 20 Object-Oriented COBOL Programming 

ire 20.7 (continued) 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

End Method 'PopulateName'. 

Method-id. 'GetName'. 
Working-storage Section. 
01 Blank-Char 

Linkage Section. 
01 ls-Name 

Procedure Division 
returning ls-Name. 

initialize ls-name 

pic X value space. 

pic X(25), 

string Per-First-Name delimited by space 
Blank-Char delimited by size 
Per-Last-Name delimited by space 

into ls-Name 

End Method 'GetName'. 

End Object. 
End Class Person. 

The Person class, s h o w n in Figure 20.7, looks m u c h like any other class. For 
example, Person inherits from Base. Note that because Student inherits from Person 
it also inherits from Base, though indirectly. There m a y be multiple levels of 
inheritance defined with lower-level classes inheriting methods and data from 
grandparent as well as parent classes. Y o u should also note that Person does not 
have to k n o w what classes inherit from it. 

Because Student inherits from Person, any instantiation of Student creates an 
instantiation of Person as well. O O C O B O L then allows Student to access the methods 
in Person without creating a special handle. Person and Student are attached to 
each other. However, even though Student knows about Person, Person does not 
need to k n o w about Student. 

The Object-storage Section in lines 14-17 defines h o w the N a m e is stored. The 
format specified here is quite different from that actually stored in the Student file 
and printed o n the output report. The designers of the class wanted to be able to 
output the n a m e in a variety of formats. Therefore, a m o r e general n a m e format has 
been specified in the Object-storage Section. 

Therefore, PopulateName has to be able to convert a single n a m e field into 
the three attribute fields. The routine uses the i nspect statement to break d o w n the 
n a m e and to store the results in the proper fields. 

G e t N a m e reformats the N a m e into the full-name format and returns the 
n a m e as a single data item. 

The Person class shows h o w a super class and its methods might be used in an 
O O system. The class definition shows h o w objects can input and output data in 
formats different from the w a y the class stores them. 



The Student-Look-Up System 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Class Name: StudentUI 

Class Type: User Interface 

Screen Layout: See Figure 20.8a. 

Narrative: This class controls the interface to the user. The class gathers the requested minimum 
number of credit hours and the name of the desired major. 

Objects Created: None 

Objects Referenced: None 

Factory Methods: None 

Instance Method: GetParameters 

Narrative: This method controls the display of requests to the system user and accepts the 
responses. 

Processing: 1. Invoke DisplayHoursRequest and store the result in the linkage section. 

2. Invoke DisplayMajorRequest and store the result in the linkage section. 

Instance Method: DisplayHoursRequest 

Narrative: This is a private method that displays a user prompt for the minimum number of credit 
hours desired and accepts the response. 

Processing: 1. Display Prompt. 

2. Accept response into the linkage section. 

Instance Method: DisplayMajorRequest 

Narrative: This is a private method that displays a user prompt for the desired major and accepts 
the response. 

Processing: 1. Display Prompt. 

2. Accept response into the linkage section. 



C h a p t e r 2 0 — Object-Oriented COBOL Programming 

-Igure 20.8 Screen Sample 

Enter Minimum Hours: 100 
Enter Student Major : Engineer ing 
(a) Display Parameter Prompts 

STUDENT NAME 

ORVILLE WRIGHT 
JOHN ROEBLING 

* * * End of Report * * * 

(b) Report Sample 

Fiqure 20.9 StudentUI Class Definition 

1 $set mfoo 
2 C l a s s - i d . StudentUI 
3 i n h e r i t s from Base 
4 
5 Author. Arthur R. Buss 
6 
7 Object S e c t i o n . 
8 C l a s s - c o n t r o l . 
9 Base i s C lass ' b a s e ' 

10 StudentUI i s C lass ' s e n u i ' 

13 OBJECT. 
14 
15 Method- id. ' G e t P a r a m e t e r s ' . 
16 Linkage S e c t i o n . 
17 01 I s -S tuden t -Pa rame te rs . 
18 05 l s -S tu -Hours p i c 9 ( 0 3 ) . 
19 05 I s - S t u - M a j o r p i c X ( 2 0 ) . 
20 
21 Procedure D i v i s i on 
22 re turn ing l s - S t u d e n t - P a r a m e t e r s . 
23 
24 invoke s e l f iMlisplayHoursRequest^j— 
25 re turn ing l s -S tu -Hours ~~~~~~^r^-.P(ivaie Methods 
26 invoke s e l f I 'D isp layMajorRequest ' l 
27 re turn ing I s - S t u - M a j o r 
28 
29 End Method ' G e t P a r a m e t e r s ' . 
30 
31 Method- id. 'D isp layHoursReques t ' . 
32 Linkage S e c t i o n . 
33 01 l s -S tu -Hours p i c 9 ( 0 3 ) . 
34 
35 Procedure D i v i s i on 



The Student -Look-up System 

- s y u « e 1.9 (continued) 

36 re turn ing 1s-Stu-Hours . 
37 
38 d i sp lay ' E n t e r Minimum Hours: ' w i th no advancing 
39 accept I s -S tu -Hours 
40 
41 End Method 'D isp layHoursReques t ' . 
42 
43 Method- id . 'D i sp layMa jo rReques t ' . 
44 Linkage S e c t i o n . 
45 01 l s - S t u - M a j o r p ic X ( 2 0 ) . 
46 
47 Procedure D i v i s i on 
48 re turn ing l s - S t u - M a j o r . 
49 
50 d i sp lay ' E n t e r Student Major : ' w i th no advancing 
51 accept l s - S t u - M a j o r 
52 move funct ion Upper-Case ( l s - S t u - M a j o r ) to l s - S t u - M a j o r 
53 
54 End 55Method 'D isp layMa jo rReques t ' . 
55 
56 End Ob jec t . 
57 End C lass S tuden tU I . 

Figure 20.9 shows the class definition for the StudentUI object. This object 
controls the user interface to the system. There are no O O techniques that have not 
been addressed elsewhere. 

StudentUI has been kept very simple for instructional purposes, but more 
elaborate user interfaces could be developed even to the point of using W i n d o w s 
screens without affecting the rest of the system. These more elaborate objects 
would simply replace StudentUI. O O allows "plug compatibility." W h e n an object 
needs enhancement, the changes can be m a d e and tested outside of the production 
system. W h e n ready, the old version of the object can simply be replaced by the n e w 
version. 

The instance m e t h o d GetParameters controls the process and uses the private 
methods DisplayHoursRequest and DisplayMajorRequest to get the user's input. 

The S tudentPRT C l a s s . 

The final class in the system is a print manager, a form of user interface class. This 
class manages the printing of the report and has been slightly enhanced from the 
Engineering Senior program in Figure 1.6. 



Chapter 20 Object-Oriented COBOL Programming 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Class Name: StudentPRT 

Class Type: User Interface 

Narrative: This class controls the printing of the selected student report. 

Report Format: Figure 20.8b 

Objects Created: None 

Objects Referenced: None 

Factory Methods: New 

Narrative: Causes the print file to open. 

Processing: 1. Invoke OpenPrinter. 

insts!*!c© ft^l©tl*iocl * OpsnPrintsr 

Narrative: Opens the printer and causes the report headers to be printed. 

Processing: 1. Open Print File. 

2. Invoke WriteHeader. 

Instance Method: WriteHeader 

Narrative: This is a private method that Writes the Report Header. 

Processing: 1. Write Header Line. 

2. Write Blank Line. 

Instance Method: WriteDetail 

Narrative: This is a private method that prints the Detail Line containing a student name. 

Processing: 1. Move name to Print Line. 

2. Write Print Line. 

Instance Method: FinalizeReport 

Narrative: Prints the final report line and closes the print file. 

Processing: 1. Move End of Report Line to Print Line. 
2. Write the Print Line. 
3. Close the Print File. 



The Student-Look Up System 

1 $set mfoo 
2 Class-id. StudentPRT 
3 inherits from Base 
4 
5 Author. Arthur R. Buss 
6 
7 Environment Division. 
8 Input-output Section. 
9 File-control. 
10 Select PrintFile 
11 Assign to printer 
12 
13 
14 Object Section. 
15 CI ass-control. 
16 Base is Class 'base' 
17 StudentPRT is Class 'senprt' 
18 
19 
20 Data Division. 
21 File Section. 
22 fd PrintFile. 
23 01 Print-Line pic X(45). 
24 
25 FACTORY. 
26 Object-storage Section. 
27 01 thePRTHandle object reference. 
28 
29 Method-id. 'New'. 
30 Linkage Section. 
31 01 1s-thePRTHandle object reference. 
32 
33 Procedure Division 
34 returning 1s-thePRTHandle. 
35 
36 invoke super 'New' returning thePRTHandle 
37 set Is-thePRTHandle to thePRTHandle 
38 invoke thePRTHandle 'OpenPrinter' 
39 " 
40 End Method 'New'. 
41 End Factory. 
42 
43 OBJECT. 
44 
45 Method-id. 'OpenPrinter'. 
46 Procedure Division. 
47 
48 open output PrintFile. 
49 invoke self 'WriteHeader' 
50 
51 End Method 'OpenPrinter'. 
52 

Figure 20.10 StudentPRT Class Definition 



C h a p t e r 2 0 ••- Object-Oriented COBOL Programming 

: igute 20.10 (continued) 

53 Method-id. 'WriteHeader'. 
54 Working-storage Section. 
55 01 Heading-Line. 
56 05 pic X(10) value Spaces. 
57 05 Head-1 pic X(12) value 'STUDENT NAME 1. 
58 05 pic X(58) value Spaces. 
59 
60 Procedure Division. 
61 
62 move Heading-Line to Print-Line 
63 write Print-Line after advancing Page 
64 move Spaces to Print-Line 
65 write Print-Line after advancing 1 
66 
67 End Method 'WriteHeader'. 
68 
69 Method-id. 'WriteDetail'. 
70 Working-storage Section. 
71 01 Detail-Line. 
72 05 pic X(10) value Spaces. 
73 05 Print-Name pic X(25). 
74 05 pic X(45) value Spaces. 
75 
76 Linkage Section. 
77 01 ls-Stu-Name pic X(25). 
78 
79 Procedure Division 
80 using ls-Stu-Name. 
81 
82 move ls-Stu-Name to Print-Name 
83 move Detail-Line to Print-Line 
84 write Print-Line after advancing 1 
85 
86 End Method 'WriteDetail'. 
87 
88 Method-id. 'FinalizeReport'. 
89 Procedure Division. 
90 
91 invoke self 'WriteDetail' using ' ' 
92 invoke self 'WriteDetail' using 
93 '* * * End of Report * * *' 
94 close PrintFile 
95 
96 End Method 'FinalizeReport'. 
97 
98 End Object. 
99 End Class StudentPRT. 



Like StudentDM, Student PET, shown in Figure 20.10, has to m a n a g e a file, in 
this case a print file. Again like StudentDM, the Factory method New overrides the 
Base method in order to open the file. The New method does not open the printer 
directly, but rather invokes the instance m e t h o d OpenPrinter. Notice that 
thePRTHandle is used to invoke the method. The keyword Sel f would not work 
since it would refer to the Factory and not the instance of the class. Instances and 
Factories, though related, are independent and can be addressed only through the 
proper handles. 

OpenPrinter takes on the responsibility to write out the first report header by 
invoking the WriteHeader method. 

StudentPRT, unlike StudentDM, cannot tell w h e n the file should be closed. 
Only Registrar can tell w h e n all of the records have been processed. Therefore, 
Registrar has to invoke the method FinalizeReport. FinalizeReport can print an E n d 
of Report line and then close the file. 

StudentPRT shows h o w a report can be produced by an object-oriented system. 
The only n e w O O concept is in showing h o w a Factory method can invoke an 
instance method within the same class. 

hi summary, why use object-orientation for COBOL programs instead of structured 
programming? Object-Orientation allows systems to use: 

• Shorter code elements 
» Reusable code 
• Simpler control structures 
• W a y s to have better control over data 

Object-Orientation does not invalidate the concept of structured programming. 
OO simply is the next step in providing the capabilities that structured programming 
claimed to supply. 

O n e might observe that O O C O B O L m a y have advantages for n e w development, 
but might question h o w it would work with the massive a m o u n t of C O B O L code 
developed with the traditional methods. The answer is that O O does not have to be 
"either-or." Traditional programs can invoke objects. W e saw that the driver program 
for the Student-Look-Up system is a traditional program. O n the other hand, objects 
can call traditional programs as well. 

A n organization can examine its legacy systems and develop a plan to evolve 
their systems to O O by determining the objects present in the system. Each object 
can then evolve as c o m m o n procedures in the traditional programs are converted 
to methods. The traditional programs can then initially invoke the methods from 
objects. As the organization develops its O O skills and understanding, the legacy 
programs can be slowly eliminated. This process can become part of the regular 
maintenance process and does not have to be overly expensive if good O O analysis 
and design has been done. 



C h a p t e r 2 0 Object-Oriented COBOL Programming 

S U M MARY 

Fuji ' 5 to R&iiitit.cer 

is Even though the COBOL 2000 standard has not been adopted yet, OO 
COBOL compilers are available and can be used to learn this new "dialect." 

The emphasis in OO programming is on the development of systems, not 
just programs. Objects are developed to serve as building blocks for many 
systems. 

The structure of methods is similar to that of programs, but methods are 
simpler and do not need elaborate control structures. 

Programmers who know both structured and OO COBOL will have an 
advantage as companies begin to migrate their legacy systems toward 
object-orientation. 

Structured systems will not disappear soon, and the migration to OO will be 
evolutionary rather than revolutionary. 

Key Words and Concepts 

C j i a s s 

Instance 
Factory 
M e t h o d 
Message 
Encapsulation 
Polymorphism 
Inheritance 
Paradigm 
Structured Programming 
Object-oriented Programming 

system 
Persistence 
User Interface Class 
System Interface Class 
Data Manager Class 
Problem D o m a i n Class 
Driver 
Pointer 
Handle 
Data Hiding 
Static 

COBOL Elements 
Invoke 
Class-id 
Class Control 
OBJECT 
FACTORY 
Object-storage Section 
Method-id 
Local-storage Section 
Object Reference 



Conclusion 

1. Object-oriented C O B O L (is/is not) part of the C O B O L 2000 standard. 
2. is the C O B O L verb for running methods in classes. 
3. A(n) is the definition of an object; a(n) is a specific 

occurrence of an object. 
4. The special instance that allows manipulation of all other instances is called the 

5. is the feature of O O that allows one class to act as if it 
contained the data and methods of another class. 

6. The O O feature that protects the data contained in an object from access by other 
objects except through methods is called . 

7. is a special class and contains methods that are inherited by all other 
classes. 

8. The change to O O represents a shift because it represents a new 
way of thinking about programming. 

9. Sometimes, one class overrides a method in a parent class to provide some new 
capability. This O O feature is called . 

1. Object-Orientation reverses all of the principles of structured programming. 
2. The Identification Division does not have to be specified in class definitions. 
3. The Procedure Division does not have to be specified in a method. 
4. C O B O L is the first language to have O O capability. 
5. It is not likely that O O C O B O L will completely replace structured C O B O L in the 

near future. 
6. W h e n developing the specifications for a class, the designer should ask: 

What does it know? 
W h o m does it know? 
What does it do? 

7. Classes that specifically deal with processing of the application are said to belong 
to the Problem Domain. 

8. O O systems have no need of files. 
9. Files provide the links between programs in structured systems. 

10. O O systems use files to provide persistence between runs of the system. 



C h a p t e r 20 Object-Oriented COBOL Programming 

P ROB L t E M S 

1. W h y is the class name used to invoke a Factory method and a handle to invoke an 
instance method? 

2. H o w does object-orientation promote the reuse of program code? 

3. Write a method for the Person class that would format a name starting with the last 
name followed by ", " and followed by the first name. 

4. Which class should contain a campus phone number if it should be needed by the 
system? 

5. Differentiate between system, program, and class. 

Several texts are n o w avai lable for learning OO COBOL. T h e s e inc lude: 

Arranga, E., a n d Coyle , F. Object-Oriented COBOL. SIGS Publ i ca t ions , 1996. 

Chapin , N. Standard Object-Oriented COBOL. John Wiley & S o n s , 1997. 

D o k e , E. R., a n d Hardgrave, B. C. An Introduction to Object COBOL. John Wiley & 
S o n s , 1998. 

Obin , R. Object-Orientation: An Introduction for COBOL Programmers. 2 n d ed. , 
i v . i i : . — n . . u u 0 u : tone 
i v i i ^ i u i u u u a r u u i i a i i i i l g , i 3 J J . 

Price, W. Elements of Object-Oriented COBOL. Object -Z Publ i sh ing , 1997. 

1 This system can downloaded from http://www.prenhal 1 .com/grauer_cobol. 

2 This discussion is an oversimplification of the analysis and design process. For students interested in 
the OO Analysis and Design process, many books are available. This discussion is based on Peter 
Coad's book Object Models: Strategies, Patterns, and Applications, 2nd ed., Yourdan Press. 

3 COBOL 2000 goes a step beyond and allows free formatting of COBOL programs. This chapter does not 
show this technique because of the awkward way that the Animator handles free format. Future 
versions of the compiler should improve in that respect. Students interested in trying free format 
should place $ set source-format "free" starting in column 7 before the first line of the source code. In 
free format the comment indicator becomes "*>" and can be placed anywhere in a line. All entries to 
the right of the comment indicator are ignored. 

F O R F U R T Pi E R Y 

http://www.prenhal


O v e r v i e w : This appendix describes the use of the Animator portion of Micro 
Focus's Personal COBOL for Windows. Personal COBOL is a powerful package 
of development tools offering two source-code editors and a Windows user 
interfaces generator. The Animator is a version of Micro Focus's professional 
COBOL editor that is restricted in its capabilities. The personal version contains 
all of the features necessary to develop programs for use with this text and most 
GIO! I IUI ILCtl y Q l I^J II ILOI I I l<3(_IICUO U U U U L O U U I O C D , Ul iiy CL I O W ClUJVCll IOC7VJ UQjjaUIIIUCO 

are eliminated. The student should know that Personal COBOL cannot create a 
fully executable program file. Instead, Personal COBOL develops an intermediate 
file executable by the system. As a result, programs using an intermediate file 
have slightly slower performance than a fully executable program. The Animator's 
limitations are not serious for educational purposes. Any program developed in 
the personal version can be recompiled in the professional version to produce 
fully executable programs. 

The second type of editor available with Personal COBOL is the Browser, 
which is a particularly useful tool for developing object-oriented systems. This 
chapter does not cover the Browser, but you may want to look at it in connection 
with Chapter 20, which discusses object oriented COBOL. 

The third tool provided by Personal COBOL is the Personal Dialog System 
(PDS). This tool aids in developing Windows-based user interfaces for COBOL. 
PDS allows the programmer to design the forms for the system and then to link 
those forms to the COBOL programs beneath. PDS is an advanced tool, and this 
chapter does deal with it. 

The student is encouraged to read this appendix while sitting at a computer 
with the Animator program loaded. Most of the examples use the program 
"helloO.cbl" or "helloO.int," which can be found in the normal default directory 
c: \PCOBWIN\SAMPLES. The reader may want to follow along as the material is 
presented, and duplicate the process. 

file://c:/PCOBWIN/SAMPLES


Appendix A ' > Personal COBOL for Windows: Users Guide and Tutorial 

ntroduction to the Animator 
The Animator is a reduced version of Micro Focus's Professional Animator. The 
most useful features of the professional version are available, and the beginning 
programmer should find t h e m to be very powerful. For example, the Animator color 
codes the different types of words used in writing the language after the program 
has been checked (compiled) once. Typically, all of the C O B O L reserved words are 
in green, all of the variables are in maroon, and text items are in black. This color 
coding allows the programmer to see whether the compiler recognizes the code 
being entered as the type of item expected. The wrong color would indicate a 
misspelling of the item. 

The Animator has m a n y debugging tools, extended help screens, and the 
same user interface as the Professional version. The student n e w to the Animator 
m a y find the tool to be overwhelming, rather than finding it limiting. This appendix 
presents most of the Animator's capabilities and is designed to serve as a resource 
for using them. 

Install ing the Animator 

Consult your Getting Started book, page 10, for installing Personal C O B O L for 
Windows. The instructions are for installation in W i n d o w s 3.1; however, the software 
works in Windows95 or W i n d o w s N T as well. \A7indowrs95 users can sirnrihr install 
the software by using the R u n function from the Start m e n u . Appendix B contains 
full instructions for installing Personal C O B O L in Windows95. 

Learning to Use the Animator 

The Getting Started booklet generally is too advanced for the beginning C O B O L 
student, and provides only a minimal introduction to the Animator. Most of the 
book focuses o n the Personal Dialog System and Object Oriented C O B O L . The 
beginning student probably should read only the material in Lesson 1. Even in 
Lesson 1, students should not be concerned about understanding the sample 
program given there. 

Start ing the An imator 

Once Personal C O B O L has been installed, one can start the Animator from the 
program group in which it is installed, as s h o w n in Figure A.l. (All figures appear in 
Windows95 format.) Figure A.2 shows the default icon for the Animator, a picture of 
a w i n d o w with the title Personal C O B O L . This icon starts the Animator in the default 
directory established during installation. Usually this directory will he something 
like C : \ P C 0 B W 1 N \ S A M P L E S . Students wishing to store their programs in a different 
directory should add another icon to the group window. This icon should start the 
Animator using the executable file "{default directoryl\Anim2wg.exe" as the 
executable file. The working directory should point to the location of the desired 
files, as s h o w n in Figure A.3. In the W i n d o w s 3.1 environment the program groups 
can be modified using the File m e n u in the Program Manager. In Windows95, the 
Settings entry controls the creation of n e w m e n u entries. Appendix B contains 
further instructions for setting u p one's o w n "shortcuts." 

file://C:/PC0BW1N/SAMPLES
file://directoryl/Anim2wg.exe


A p p e n d i x A Micro Focus Persona! t mh)t 'e. \,V;r>c,im': ih-ets Guide- J 1,101:41 

O S 

- -~ Starting the Animator 

Figure A . 3 Properties Window for Personal COBOL Shortcut 

f l g y r e A.I Windows95 Startup Menu 



A p p e n d i x A M m Focus Personal COBOL for Windows; Users Guide and Tutorial 

In this section, w e look at the main features and the tools of the Animator. O n e 
feature of the Animator is the ability to modify the user interface. This feature is 
addressed at the appropriate point. For sake of clarity, however, the section relates 
only to the standard interface, as s h o w n in Figure A.4. 

Figure A . 4 Personal COBOL User Interface 

i Main Mei H E 

-end of t e s r t -

Main Menu 
The Main M e n u of the Animator has eight pulldown m e n u entries, shown in Figure 
A.5. S o m e of these entries are familiar to any W i n d o w s user, but s o m e are specific to 
the Animator. Each pulldown m e n u has several subsections arranged by function. 
W e will look at each m e n u item separately. M a n y of the m e n u operations can also 
be performed by using shortcut keys. Experienced users often take advantage of 
these keys to ease the editing process. The shortcut keys are s h o w n in parentheses 
in the m e n u s and the first time the option is mentioned in the text. 

A.5 Animator File Menu 

> Menu 



A p p e n d i x A Micro Focus Personal COBOI tor Windows linen Guide and Tutorial 

File: The File pulldown m e n u in the Animator has four sections, and is shown in 
Figure A.5. The first section included has the s u b c o m m a n d s New and Close, which 
allow the user to create a n e w file and to close the current file without stopping the 
Animator. This section has two types of O p e n instead of one as in m a n y W i n d o w s 
applications. The Animator can open files for Editing Only or for Edit and Execution. 

If Open for edit is chosen, the Animator looks for C O B O L source files with the 
extension "cbl." Figure A.6 shows the w i n d o w with the file selection. These files m a y 
be edited and checked (compiled), but cannot be run as programs. The edit m o d e is 
useful for initially writing programs and checking the syntax for errors. To test 
program logic, the program must be run in Edit and Execution M o d e . A n y n u m b e r 
of edit windows can be open at the s a m e time. 

Open for Edit Window 

. bwJt* is 1 >M 
F-^ILIM Is-' i hi 

»i -- - - '. Ii" 

The Open for execution m o d e , shown in Figure A.7, expands the same capability 
of the edit m o d e to allow program execution. W h e n selecting a file for the execution 
window, the Animator looks for "int" files. The "int" extension stands for intermediate 
file. The distinction is that intermediate files can be executed or run as well as 
edited. Intermediate files are created whenever a program is "checked." Checking is 
Micro Focus's term for compiling. Even w h e n a program is checked in an Edit 
window, an intermediate file is created. However, this file has to be loaded into the 
Execute w i n d o w to be run. 

Open for Execution Window 

iheJfeaQ;** ' 

patriot. «F$ 

$ zmm&m tri 

•i mmmwiu ml 
• \ 

1 

J 

i 

; -• •j 



A p p e n d i x A M i c r o Focus Personal COBOL for Windows Useis Guide and Tutorial 

Referring again to Figure A.5, the second section of the File m e n u contains 
s o m e standard W i n d o w s options: Save (Ctrl + F2), Save As, and Save All. Save stores 
a copy of the current program onto disk. This action can also be accomplished by 
using the shortcut keys "Ctrl + F2." Save As makes a n e w copy of the current 
programs and allows the user to change the n a m e or location. Since Animator 
allows several program windows to be open at the same time, Save All simply saves 
the code and data in all open windows. 

The third section of the File m e n u provides tools for managing the current 
window. The Insert File option allows the user to insert code from another program 
file into the current program at the cursor location. The second option, Show/Hide 
copy file (Alt + F2), allows the user to determine whether Copy files are expanded in 
the program or not. Copy files are library files that allow C O B O L to use the same 
code in m a n y programs. See Chapter 16 for a further description. The Show/Hide 
feature allows the programmer to decide whether or not the contents of the Copy 
file should be seen. In either case the program uses the Copy files in the checking 
process. 

The last two sections of the File m e n u are Print and Exit (Alt + Q). Prim sends 
the program listing to a printer. Exit closes the program, and if any files have not 
been saved, the Message Box shown in Figure A.8 appears. 

Exit Unsaved File Message Box 

, — — | | 
I . : | 

Edit Menu 

[3 

Edit: Figure A.9 shows the Edit m e n u . This m e n u provides useful tools for managing 
the entry and revision of source code. Entries in the first section of the m e n u allow 
the user to m a n a g e the changes to code. The first entry, Undo (Altl + Bspace), 



Appendix A Micro Focus Personal COBOL, for Windows Uieis Guioe an it Tutorial 

reverses the last change m a d e to the code during the current session. U p to 100 
changes m a y be undone, but only one action at a time and in reverse order. The 
Redo (Alt + Shift + Bspace) entry restores the change eliminated by the most recent 
Undo. 

The next two sections of the Edit m e n u allow the manipulation of text. These 
functions are contained in almost all W i n d o w s applications: Cut (Shift + Del), Copy 
(Ctrl + Ins), Paste (Shift + Ins), and Delete (Del). Cut removes highlighted text from 
the program and places it in the W i n d o w s clipboard. Text in the clipboard m a y then 
be placed into another section of the program, another program altogether, or 
s o m e other type of document. Copy places a copy of highlighted text into the 
Wi n d o w s clipboard but does not remove the text. Paste takes text currently in the 
clipboard and inserts it into the program where the cursor is currently located. 
Delete removes the highlighted text, but does not place it into the clipboard. Once 
something is deleted, it can be retrieved only by using the Undo c o m m a n d . 

The next c o m m a n d , Mouse Column Marking, is a toggle c o m m a n d . If the 
entry is not checked, dragging the m o u s e highlights entire lines of code no matter 
where the cursor is located within the line. W h e n the c o m m a n d is checked, dragging 
the mouse operates to highlight only the columns within the line covered by the 
mouse. Figure A.lOa shows normal highlighting and Figure A.lOb shows C o l u m n 
marking. C o l u m n marking is similar to using a word processor, but you must be 
careful about h o w m a n y lines are marked. 

Animator Highlighting 

. » » ( • [ I . H e l l o . 

1 **»W . l l f__S Hells. 

•aaJUl-., 

In the fourth section of the Edit m e n u are six tools for managing lines of text: 
Insert line (F3), Delete line (F4), Repeat line (F5), Restore line (F6), Split line (Ctrl + 
F5), and Join line (Ctrl + F6). 

These c o m m a n d s are largely self-explanatory. 
Insert line allows for a n e w line. 

* Delete line eliminates the current line. 
* Repeat line makes a copy of the current line. 
' Restore line replaces the most recent deleted line. 



A p p e n d i x A ro Focus Persona! COBOL for Windows: Users Guide and Tutorial 

* Split line breaks the current line at the current cursor location and creates 
two lines. 

• Join line combines the current line with the following line. The second line is 
m o v e d to the end of the first line. 
Each c o m m a n d has a shortcut key, and you m a y find using the shortcut keys 

to be faster than trying to do the same operations with the m o u s e or menus. 
The next section of Edit m e n u , Command (Ctrl + Fl 1), allows the user to use 

the C o m m a n d - p r o m p t editor tool. The C o m m a n d - p r o m p t editor is the list box 
(Figure A. 11) at the right side of the screen o n the same line as the tool bar. This 
editor allows the user to enter editing c o m m a n d s . There are too m a n y c o m m a n d 
options to discuss here, but they are all available in the Animator Help system 
under the entry. A simple example of the c o m m a n d line use would be to enter "goto 
10" in the c o m m a n d prompt. The w i n d o w moves and displays the tenth line of 
code. 

figure A . 1 1 Command Prompt Editor 

•stf .• v * : ^ ' . 
1*133 

lit lb €<st 96 P*K ami 

i|uin • i] 

INUiKOHTOHJ ktdZICM. 

Wl» fcltflSIOK. 

WUMMG TuKk'.i S I C M O N . 

The next section of the Edit m e n u contains two c o m m a n d s : Find/Replace (F2) 
a n d Clear finds. Find/Replace allows two different types of finds: C O B O L item 
information is s h o w n in Figure A. 12, and Text is s h o w n in Figure A. 15. In the C O B O L 
Item Information m o d e , the user can enter the n a m e of a data item or a paragraph 
n a m e . The Find operation locates and highlights all occurrences of that data item or 
paragraph including the definition of the item. The usage of the data item within a 
line is described in columns 1 to 6. Such messages might include "Defn," "Mod," or 
"Use." 

FI Find Window 

COBOL Hem informs 
Ltttfff a COBOL procedure- or data 
Hem to rind ilcUHed 
[ntomialtoft on its uu*. 

Hnil: sflttttatlnn 



Appendix A Micro Focus Personal COBOL for Windows: Users Guide and Tutorial 

The C O B O L item information find w i n d o w contains a pulldown list of the last 
several items that have been found, and several buttons: 

OK processes the request and brings up a monitor screen, as in Figure A. 13, 
that displays statistics of the item.1 Also note that a line has been marked 
with the "Defn" message. 

« Options brings up a screen that allows changes to the types of entries found 
in Figure A.51. 

• Suggest produces a list of data items, such as those shown in Figure A. 14, that 
might also be of interest. This option works only if at least one entry has been 
m a d e in list box. 

» Cancel stops the Find process. 
» Help brings up a Help screen explaining the Find Dialog Box. 

: COBOL Item Found 

m • I * : y 

B ti%g—s t® p a n * kfl /~rt~~ leue 

s i z n r e f s 

' J I . H N R S ' A N O N * m i : : i o t t . 
P V » . M * I B . H o l l o . 

U K M ! H . \m. 
«oa*i«', ifosaci •vxia*. 

i !••» j I • - • i l - i i r i i i ^ l i i i i ' <j|,1lim , H r l p 

Find Window With Suggestions 

tEZ',.,?*Z.~ » j:, . r i^ i i i^Wati iwiW!^* . ! rtWiit'rW»ifmiliii , nj..:.f 
£ * I ^ ^ W - ' V * W**53*>-

sransmono 

.end o f t e x t . 

Type: ^ COBOL Item taformstiun r Jcxf 
[ nSer a C O B O L p r o c e d u r e or d a t a 
Hem is f i n d d e t a i l e d 
i n f u r i n a t i o n on fts use. 

M u d : salutation 

The second type of Find/Replace is the more traditional find a n d replace 
c o m m a n d s h o w n in Figure A. 15. Find/Replace allows the user to search for any type 
of text in the code, both forward and backward, and to view one entry at a time. The 
user m a y also replace the selected text with n e w text. 



A p p e n d i x A M -o Focus Personal COBOL for Windows: Users Guide and Tutorial 

Find Window For I ext 

The Text m o d e finds occurrences even in c o m m e n t lines. O n e unique feature 
of the Text find m o d e is the ability to "Find All" occurrences of the text. This option 
works similarly to the Find C O B O L Item m o d e in that it highlights all occurrences of 
the text. However, the message in columns 1 to 6 is simply FIND. 

The Clear finds c o m m a n d removes the markings placed by either the Find 
C O B O L Item or Find All. 

The last item in the Edit m e n u is the Edit lock C o m m a n d . W h e n Edit lock is on, 
the W o r d "EditLock" shows o n the Status Bar, as in Figure A. 16. Edit locking prevents 
the user from changing the source code by mistake. The user m a y want to use this 
feature w h e n examining code that should not be changed. 
View: Figure A. 17 shows the View m e n u . View allows the user to m o v e about within 
the program code. C O B O L programs tend to be long and sometimes difficult to 
maintain o n the screen. The tools in the view m e n u allow users to m o v e easily 
around the program and to keep track of their work. Y o u m a y notice that the last 
entries in the m e n u are unavailable. They b e c o m e available only w h e n checking 
determines that there are syntax errors. Figure A. 19 shows the m e n u w h e n a syntax 
error has been found. 

Interface with Editing Locked 

ESS 



A p p e n d i x A Micro focus Personal COBOL for Wm,tow$ i ' s t i s Qun1& a no iuior 

st€tfjtfe 11.17 View Menu 

The Align (Ctrl + A) command adjusts the entries on the screen so that the 
current line moves to the third line of the screen. 

The Where (CAT) + W) command is available only in Execute mode . When a 
user is debugging a program and looks at another portion of the program, Where 
allows the user to get back to the current program execution line. 

The Last edit position c o m m a n d is similar to Where, but allows the user to go 
back to the point where the last program change was made. 

Collapse copy files is similar to the Show/Hide copy files in the File m e n u . If the 
copy files are in expanded m o d e , the user can use this c o m m a n d to reduce them to 
nic single y^yjt i suueiiieui. 

The next section of the View m e n u deals with placing and removing Tags. 
Tags are simply markers the user can place in the source code to save time moving 
from place to place. The Set Tag (Ctrl + T) c o m m a n d marks the current line with a 
tag, as shown in Figure A. 18. The Unset Tag c o m m a n d removes the Tag from the 
current line and Clear All Tags removes all of the Tags in the program. 

The final section of the View m e n u allows the user to m o v e quickly through 
the program. The first two c o m m a n d s , Go to Next Tag and Go to Previous Tag, 
control m o v e m e n t to tags set by the user. 

The last three c o m m a n d s of the View m e n u are available only during the 
checking process if there are syntax errors. Figure A. 19 shows the m e n u with these 
options available. Notice also that the lines in error are marked. T h e c o m m a n d s 
allow the user to Go to Next Error, Go to Previous Error, and Go to Current Error. The 
last c o m m a n d is useful w h e n the user has m o v e d to s o m e other location in the code 
trying to determine the nature of the problem and wants to return to the current 
error. 



Appendix A Vn.o i:ocus Personal COBOL for Windows: Users Guide and Tutorial 

figure A . 1 9 View Menu when Syntax Errors Exist 

pss^*^^- d^-s Qp&&r& Hmd^ g**̂  

#1: tfttyj.yj?! 

ESQ* 

Compile / R u n : The Compile/Run M e n u , s h o w n in Figure A.20, provides s o m e 
powerful tools for checking and debugging of programs. The first entry is simply 
Compile Program. Compile Program checks the syntax of the current program for 
errors. If the w i n d o w is in Edit m o d e , Compile Program and Compiler Directives are 
the only options available. Figure A.21 shows a compile in process with an error 
message. Figure A.22 shows the results of the compile with lines containing errors 
highlighted and a separate w i n d o w showing the error messages. If the current line 
is an error line, the information area at the bottom of the screen also shows the error 
m i i i . ' m i , 

F i g u r e A . 2 0 Compile/Run Menu 

iflllflttllfi :j'::|||fif|; 
1^§|l§t| 

m 



Appendix A Micro Focus Personal COBOL n>t Windows Users Guide and Tutor,al 

Compile Processing Windows 

1 i/ i O F I E R ^ L d Aht dri.ldif.si 
I ONTiNUI f'HlCHN! ,«G'.IUM '' 

f».. H'l!> * ' Curieiltt!!> hILlQbClit 
',i 1., '. m i ' i l l 1* . 1 . . 

iK,r i \ 

*',e*CTt . I 

» Col.»«-tslit <C> )»••,-!»« Micro V... «.. Ltd. 
noee "Rello wop id." ta an ttrtlutat 

Mm 

Results of Compile with Error 

. i t 

ri • 
2 4 
2S> : 

» r f l , i l l 

.end s»f e e « 

r/ ^ Em*T.«fsf£ AN i-. on* rtri 1 •»«•!*«) 

The next section of the Compile/Run M e n u allows the programmer to run the 
program on a step-by-step basis. Step (Ctrl + S) allows the programmer to execute 
the program one step at a time. Step Over (Ctrl + Z) skips the current line and allow 
execution at the next line. However, if the current execution point is a P E R F O R M , 
Step Over executes the perform at full speed and stops on the statement following 
the P E R F O R M . 

http://dri.ldif.si


A p p e n d i x A ';s> Focus. Personal tJOBOl lor Windows: Users Guide and Tutorial 

Step All runs the entire program at reduced speed. W h e n Step All is selected, 
Animator displays the dialog w i n d o w in Figure A.23, allowing the user to select the 
speed of display, to stop the execution, or to run at full speed. T h e speed of execution 
m a y be modified by clicking o n the scroll arrows. The slowest speed is 1 and the 
fastest speed is 6. 

Step All Control Window 

H*m Mel*,. i 
— Coivrols nessing 

The final option in this section of the Compile/Run M e n u is Watch. Watch acts in 
the same w a y as Step except that, as each line is executed, the value of the data items 
for that line are displayed in monitor windows, as in Figure A.24. This option allows 
the programmer to examine the processing as it occurs. 

A . 2 4 Stepping Through Program using Watch Option 

. J '11.11. UOl-llI" 

The third section of the Compile/Run m e n u allows ways for the user to run a 
program portion or the entire program at full speed. The capability allows the 
programmer to execute tested portions of code without having to step through each 
line. The first option is Run Return. Use this option w h e n the current execution point 
is within a Perform. Run Return executes the rest of the Perform at full speed and 
stops at the first statement after the end of the Perform. A c o m m o n error is to use this 
c o m m a n d w h e n the program is not in a Perform. As a result, Animator returns an 
error message box as shown in Figure A.25. The message m e a n s that the execution 
point is not within a Perform and therefore the c o m m a n d cannot be processed. 

Message Indicating Run Return Cannot be Processed 

I 



Appendix A Micro Focus Personal COtiOt tor Windows User 

A more general and more useful c o m m a n d is Run to Cursor (Ctrl + KJ. Run to 
Cursor allows the user to position the cursor at s o m e point ahead of the current 
execution point and then run the program at full speed up to the line where the 
cursor is located. 

The final c o m m a n d in this section is Run (Ctrl + F12). This c o m m a n d runs the 
program until the end. 

The next section of the Compile/Run m e n u involves Skip c o m m a n d s . 
Programmers should use Skip c o m m a n d s with caution. Skips allow the programmer 
to avoid executing s o m e lines of code. The danger in doing this is that key actions 
m a y not be executed or that key data m a y not be changed; the results m a y be 
unpredictable. 

The Skip c o m m a n d s are straightforward. Skip Statement means that the current 
statement is not executed and control moves to the next line of code. Skip Return 
and Skip to Cursor (Ctrl + H) are similar to Run Return and Run to Cursor, but no 
code is executed. The final Skip c o m m a n d , Skip to Start, repositions the execution 
point at the first line of the program. However, no values are reset and no files are 
closed. If the programmer wishes to start the program from the beginning, Restart 
Application is m o r e useful. 

Restart Application is the fifth section of the Compile/Run M e n u . This 
c o m m a n d resets all of the values in the program, closes the files, a n d resets the 
execution point to the first line of the procedure division. 

The final section of the Compile/Run M e n u includes Compiler Directives and 
Application Command Line. Compiler directives are c o m m a n d s that dictate h o w 
the compiler works with the source code. Since the use of directives is an advanced 
topic, this chapter does not deal with them. Students should ask their instructor for 
any compiler directives to be used. 

Application Command Line brings up the Input box shown in Figure A.26. The 
user can then enter data for the program to use. The program accesses the 
information by using the A C C E P T . . . F R O M C O M M A N D - L I N E statement in a 
program. In the example, the statement "accept salutation from command-line" 
places the words " D e m o Data" into the data item "salutation." As a result, the 
output of the program is " D e m o Data" rather than "Hello World." This option 
allows the programmer to have the program get data from outside without having 
the operator enter it. W h e n the program encounters an A C C E P T . . . F R O M 
C O M M A N D - L I N E statement, the program reads the data placed in the Input Box 
into the variable specified by the A C C E P T statement. 

Entry of Command Line Data 

' t . s i i i . ' t iiS.i 

S 3 K E 8 

i a t e * n e w a p p i £ t 8 & a » mmm$m4 Uttts 

.OK | Cornel; Hrly $ 

4 

Program uses this 
line to access data | 
entered in input box 



A p p e n d i x A A'M 'O focus Personal COBOL for Windows: Users Guide and Tutorial 

Debug: Along with the tools in the Compile /Run m e n u , the Animator provides 
another set of tools, s h o w n in Figure A.27, for debugging programs. Breakpoints are 
major tools for debugging. A simple breakpoint, like that in Figure A.28, marks a line 
of code in m u c h the s a m e w a y as a Tag. However, w h e n a program is executing and 
encounters a breakpoint, the program stops. Tags do not stop execution. A 
programmer can set a breakpoint at the beginning of a problem area in code. The 
programmer can then run the program at full speed until it encounters the 
breakpoint. The program stops and the programmer can then step through the 
problem area to try to detect the nature of the problem. 

,27 Debug Menu 

£13 

E 71 j 
•Jj 

l l l i I 
i l if I 

-'igure A . 2 8 Setting Breakpoints 

•1 .• tat it int. 
Breakpoint mark • 

While the simple breakpoint is a useful tool, the Animator also provides a set 
of breakpoints with advanced features. T h e first section of the m e n u deals with 
setting and removing breakpoints. The Set Breakpoint (Ctrl + B) c o m m a n d sets a 
simple breakpoint at the cursor location. Unset Breakpoint removes the breakpoint 
at the cursor location. A breakpoint can also be set by double-clicking o n the 
C O B O L verb in the statement. Double clicking the verb again unsets the breakpoint. 

Set Advanced displays the dialog w i n d o w s h o w n in Figure A.29 and provides 
several options for breakpoints. 



Appendix A Micro Focus Personal COBOL tor Windows Useis 0moe and Tutorial 

<& & & & & T C ^ T R . M « ^ T D . . ^ ~ L , . ^ ~ ; ^ 4 - ~ 

r Bytirt: M . X » u s e u i o i m c i n c i i i u i c a r \ | _ > u n 1 1 0 

Statement button , 
checked 

Staiament breakpoint f C o n d i t i o n 

tS^y} t»<Mr. U«>«'< C««w«! ttefrj 

J2szi2iiki 

• Standard—The normal breakpoint m o d e as described above. 
• Statement—Allows the programmer to enter a C O B O L statement into the 

Parameter field to be executed w h e n the program reaches the breakpoint 
location. This feature allows the programmer to try out a statement without 
recompiling the program. The execution does not stop at the breakpoint, nor 
does the entered statement replace the breakpoint statement. The 
temporary statement executes before the breakpoint statement. In Figure 
A.29, the parameter box statement m o v e " D e m o Data" to salutation is the 
breakpoint statement. " D e m o Data" replaces "Hello World" in the data item 
"salutation." As a result, " D e m o Data" is displayed as in Figure A.30 rather 
than "Hello World." 

• Data Change—Allows the programmer to specify a data item in the 
parameter field to be watched by the program. Figure A.31 shows the data 
item "salutation" in the Parameter box. Whenever the data changes in 
Salutation the program halts at the next executable line. This feature is a help 
to find h o w data items acquire unexpected values. Only one Data Change 
breakpoint m a y be specified per program. 

• Program—Performs a break w h e n the specified program is entered. This 
feature is useful w h e n the system uses subprograms, or in an Object 
Oriented system that invokes other objects. Only one Program Breakpoint 
m a y be specified at a time. 

• Condition—Stops execution of the program at the breakpoint line only if 
s o m e specified condition is met. The condition is specified in the Parameter 
box and cannot be specified in the form of a C O B O L statement. In other 
words, use "salutation = 'Hello world'" rather than "IF S A L U T A T I O N IS 
E Q U A L T O 'Hello world.'" Figure A.32 shows the correct specification. 

• Until—Similar to Condition, but tests the condition o n every line of code and 
not just a breakpoint line. Until shows exactly where the condition has been 
m e t but slows d o w n the execution of the program, because each line must be 
tested. 



A o p e n t t i * A ' ocus Personal COBOL for Windows: Users Guide and Tutorial 

F igure A . 3 0 Output of Statement Breakpoint 

Output message——— BHHH|HjHHHH ] 

F igure A.31 Setting a Breakpoint on a Change in Date 

Data change selected 

Type: <~ Standard Parameter: 

* fi»t» disogr 

C CsmMlaa 

c Until 

Tested data item 

Figure A.32 Setting a Breakpoint for Meeting a uondition 

Breakpoint message 

Condition selected 

M r e W / display talut«tl»n 

Every; 

fypt-: •'S'amfsi'ii HxKiflcr: isalaUrtfon » "Hello w w W 
r Srstegjent 
r JJata ctmrtge 

r~ gregtam 

~ - » Condition 

UfltH 

' Set] Date! I C»«url i H<lf 

Condition being tested | 

The Advanced dialog box also includes two text boxes—the Parameter box 
and the "Every" box. The Parameter box allows entry of values for all breakpoint 
types except Standard. The Every field allows a periodic use of the breakpoint. If the 
program is in a loop and the programmer wants to execute the breakpoint every 
other time, 002 should be entered in the field. 

The second section of the D e b u g m e n u allows m o v e m e n t from one breakpoint 
to another. Show Next Breakpoint moves forward through the code from one 
breakpoint to the next. Show Previous Breakpoint moves backward to the previous 
breakpoint. 

The third section of D e b u g is the single statement Clear All Breakpoints. This 
c o m m a n d allows removal of the all breakpoints with a single c o m m a n d . 



p p e n d l x A Micro Focus Personal COBOL for Windows Users CUnae and futensil 

T h e final s e c t i o n of D e b u g prov ides s o m e other d e b u g g i n g too l s . Examine 
Data ( F l l ) a l lows the user to v i e w the c o n t e n t s of a Data i t em. This c o m m a n d 
br ings u p the E x a m i n e d ia log b o x as in Figure A.33. T h e d ia log b o x works similarly 
to the Find COBOL Data I tem box. OK d i splays the va lue of the c h o s e n va lue and 
a l lows ac t ions to b e taken o n the data. Cursor m e a n s that the i t e m currently loca ted 
by the cursor is to b e displayed. Suggest present s a list of user de f ined n a m e s a n d 
al lows the user to c h o o s e o n e . Cancel and Help a l low the user to quit the p r o c e s s or 
to seek further h e l p from the sy s t em. 

Examine Window and Suggested Item List 

inti 

__HOTB 

O n c e a n i t e m h a s b e e n c h o s e n a n d prov ided that it is a val id data i tem, a 
m o n i t o r w i n d o w o p e n s s h o w i n g the current va lue of the i t em. Figure A.34 s h o w s an 
e x a m p l e of the w i n d o w . The w i n d o w al lows the user to s e e the c o n t e n t s of the 
w i n d o w a n d to c h a n g e t h e value . As a result, the user c a n "fix" t h e data i t e m if 
neces sary . 

4 Examine Monitor Window 

current venie 01 aata item - — — - — . — — — mrii 

SALUTATION *v*>vj m * . Jj*—"^ "*"•_] 

The Do Statement c o m m a n d also h e l p s the user to temporar i ly fix a p r o b l e m 
w i t h o u t r e c o m p i l i n g a n d restarting t h e proces s . Se lec t ing Do Statement brings u p 
a n i n p u t w i n d o w as in Figure A.35. T h e p r o g r a m m e r c a n enter a s i n g l e COBOL 
s t a t e m e n t a n d h a v e it e x e c u t e d . The f u n c t i o n is s imilar to a Statement Breakpoint , 
but h e r e the COBOL s t a t e m e n t is e x e c u t e d i m m e d i a t e l y and d o e s n o t require a 
breakpoint . 



A p p e n d i x A '..>. •,• • ens Personal COBOL li.i Windov,-s Users Guide and Tutorial 

Figure A.35 Use of Do Statement 

The final option in the Debug m e n u is Backtrack. Backtrack allows the user to 
step backward and forward from the current execution point. For this option to be 
available, the user must specify the Backtrack on option from Execute options under 
the Options M e n u . 

-satire. Ontions Menu 

*» y . * tf 

-22 

H D O F KVXt. 

Options Menu: The Options M e n u , s h o w n in Figure A.36, provides a n u m b e r of 
advanced capabilities for the Animator users. This m e n u manages the user interface 
and allows each user to individualize the Animator to his or her o w n taste. The lull 
customization capability for most items is beyond the scope of this chapter, but 
s o m e features m a y be appropriate for the student programmer. 

The first option of the Options m e n u is Configure Interface. This option provides 
a selection of five dialog screens: 

• Toolbar—Allows configuration of the Toolbar options including the position 
of the toolbar and the buttons contained in the toolbar. 

• Buttonbar—Manages a bar that has similar functions to the tool bar but uses 
words instead of icons to s h o w the c o m m a n d . The button bar is not a default 
configuration, but s o m e users m a y find it to be useful. 



Appendix A Micro Focus Personal COBOL tor Windows Ui-ei s isiitde and Tutorial 

® Keys—Allows the user to examine and define special key combinations for 
executing c o m m a n d s or running macros. 

« Macros—Allows writing and editing of routines for performing a series of 
steps with one step. Macros are n a m e d and can be assigned to key 
combinations. 

* General— Manages the general appearance of the Animator Screen. 
The Toolbar dialog screen in Figure A.37 controls whether or not the toolbar is 

visible. The default is visible and positioned at the top. The visible toolbar can be 
top, bottom left, right, or as a free-floating bar. The user can also add, delete, or 
m o v e various functions to the tool bar. To m a k e the changes to the current toolbar, 
the user needs to click o n one of the icons in the Current toolbar window. This 
action sets the focus in the w i n d o w and activates the buttons at the bottom of the 
window. Students should not m a k e changes to the toolbar unless directed by the 
instructor. 

Configure Toolbar Options 

r* bar vtsibfc 

S** Mian 

*s Jttp r Bottom 

" Left r Right 

* Detach 

r mu nt toolbar 

Copy 

£ Undo 

\ f l»tep 

%\ WiXrh 

Av<ui<sb«- {un< torn 

:0|.c 
PageDown 
Pane-Op 
iPara&ttwn 

i'A U 

Pa*!rC!tp3 
(**̂ iel tip* 

PastrCJipb 
P««.trOip7 

Gprnc an existing file 

1 * "I 

_4 

'1 

*| of program 

The Button Bar option, as s h o w n in Figure A.38, allows the user to have a 
similar function to the toolbar, but instead of showing icons the buttons use words. 
The default for the button bar is visibility off. The student m a y want to turn visibility 
o n since s o m e m a y find the button bar to be useful. The standard button bar is 
sho w n at the bottom of Figure A.39. This discussion does not deal with it further. 



A p p e n d i x A A us Personal COBOi lot Windows: Users Guide and Tutorial 

Figure Configure Button Bar Options 

^nec'K io rnaKe 
DUiion bar visible 

Configure button bar 

\ OttfQn Cmtt$i& buittm fear 

Run retarst 
Hun 

•find... 

'•••end-

Available functions 
:-: Commands ~ Maemn 

"Align <% 
Arraagc-fctonltors ^ 

sedate 
Axttofix 

Mat* ( f k 

-flJgPatfeOfj 

Bottom 
Center 
thangefrir 
.•Check 

Dc<?nip(uin 

igure A .39 Interface with Button Bar Visible 

:||||tili§^ 

S S 3 
ynmand prompt J 

til :.*>l;ii *>r l«n 

Standard button bar 

The A'cy.s- option in Figure A.40 is for users w h o prefer to use special keys for 
most functions rather than using the toolbar or menus. The option allows the user 
to specify the key combinations to be used. Specifying additional special keys should 
be done with caution until the user understands the Animator C o m m a n d s 
thoroughly. 



A p p e n d i x A Micro Focus Personal COBOL for Windows User 

"ICS&0 Configure Special Keys 

Keys 
P T C B S the hey required: 

Alt»R !« mapped to the command RunRtn. I 

A 

I • L U I R S I T - U R L P 

Available ftmctfaiis 
^ Comirtaiifis n Miu-ns 

HunThru 

Save 
SavcAii 
SsveAs 
SaveConfig 

rSaveProgram 
ScfoHBars 
SetectAH 

SetAdvOri; 
iSetBik 
SrtCiiinr 

OeutTiptiuit 
. J T 

I xecule* remaining 
statements irt persurm 
rsege/call 

The Macros option should also be used with caution. This option, shown in 
Figure A.41, allows the user to run a series of c o m m a n d s at one time. A macro is a 
simple program that executes c o m m a n d s in sequence. Once a macro has been 
developed, it can be saved for further use, and a key combination can be defined in 
the key option a nd used to execute the macro. 

The General option in Figure A.42 is the last of five interface options. This 
screen controls three elements of the Animator text editor: 

8 Information Line 

• Status Line 

Command Prompt 

In addition, General controls the "Hinting" capability. The information line 
and hinting go together. The Information Line defaults are Visible and Bottom, 
meaning that the line is present at the bottom of the screen. Several of the screen 
pictures show the information line. In Figure A.36, for example, the Information 
Line says "Executes all statements at full speed (shortcut key is Ctrl + F12)." If you 
m o v e the m o u s e over the tool bar or the button bar, you see a definition of the 
button in the Information Line. This process is called Hinting. O n c e you b e c o m e 
familiar with the Animator, you m a y choose to turn the hinting function off. 

The Status Line is found under the toolbar at the top of the screen, as s h o w n in 
Figure A.39. This line tells h o w m a n y lines are in the program, the current line 
number, the column within the line, and the perforin level of the current line. (A 
perform level greater than one m e a n s that the current line is part of one or more 
Perform statements.) The Status Line should be kept visible. 

The C o m m a n d Prompt, also s h o w n in Fig ure A.39, should remain o n the 
toolbar rather than being detached. If the C o m m a n d Prompt is detached, it is not 
visible unless requested by using Command in the Edit m e n u or Ctrl + FIT. 



A p p e n d i x A V»;< - a Focus Persona! COBOL tor Windows: Users Guide and Tutorial 

figure A.41 Configure Macros 

'onngurt 

Macros, 
Macro dlr : <carre«t dlrsctoty> 

I'ntttrtera 
PcrlMrf 
bSHeip 
P O U M p 
Olillirlp 
tiCOfiHelp 
CI iBHeto 

linpfill 

I'.ditteirt 
tinier maau te^ffunettons itere*' 

£svc Assise ftl£,t,J £«m f̂ j Bi«4,,„ j j 

ties** i*«v«| Help | 

A v i K n b i e t u n c t l o n e 

5 Cotrnnaods r v . 
ItonRbi 
fluorhnt 

sSitve 
S a v e All 

: S a v c A * 
Savr CG«ft§ 
3 s v r Program 
S a a l t U a r i i 

ScqNo& 
SetAdvHrJe 
;SetBrfc 
:&etC»Inr 
LJ 
Description 

" 3 

Configure Genera l Options 

Lonngure general 
options 

Information Line 

I * Bottom 

_ . t Status line • -

.S&jj; PVI.il.lc S T o p 

JBtHm". r Bottom 

I ( Command prompt 

C Detach Htatory ["to"] 

. On toolbar 

I 

Hinting 
P Enabled 

W h e n mouse over Item 

C W h e n H e m selected 

01 

The next section of the Options W i n d o w deals with the Font and the Color 
schemes used in the screen. Figure A.43 shows h o w the Font section allows the user 
to change the default font type. In addition, the font can m a d e bold, italic, or both. 
Font also allows the user to m a k e the character size larger or smaller. The Script box 
is for advanced applications beyond the scope of this discussion. 

http://PVI.il.lc


Appendix A Micro Focus Personal COBOL for Windows Users Quiae and Tutorial 

Font Selection Window 

f * ******** 

{ T Com**)! H*i» |lt<I&i. jfa 

1 I llllfid ' »fi. M il(MU ! . K. 1 -
iii r: H i »i- n-ji i 

ON 

Co/or allows the user to change the color scheme of the source code. This 
color coding is very useful in identifying the purpose of various words in the code. 
Students should look through the default color scheme carefully to learn what the 
colors m e a n . There are two sets of colors. The General set shown in Figure A.44 
refers to the color schemes for marking lines, margins, and other items. The Syntax 
set, in Figure A.45, manages the color scheme for verbs, data items, reserved words, 
and other types of text. 

A.44 Configure General Color Scheme Window 

Vtortifjw* T;»IJITF. I (to .mrt A / H I M 4* I» S okm 

"Tad 

C Execution line 
r BacMracfc line 
r Breakpoint Knee 
*" Syntax error Imrs, 

i urcgraund 

•' Block marks 

" Tag lines 

C (tod line:. 

R' Margins 

tSarJegrosma' 
BUCK WIIIU 

The Animator provides several default color schemes. The color schemes can 
be altered by clicking o n the Default Schemes button in either the General or the 
Syntax window. The button brings up the list box s h o w n in Figure A.46. Students 
w h o work primarily on a m o n o c h r o m e monitor should investigate Plasma Bright or 
Plasma Powersaver. Other students m a y want to consider using Preprocessed color 
scheme rather than the Default. In the Default color scheme the colors for 
unidentified items are white o n magenta. This combination of colors can be 
annoying. In the Preprocessed color scheme, the unidentified words are black o n 
white. 



A p p e n d i x A ii Focus Personal COBOL for Windows: Users Guide and Tutorial 

Syntax color schemes \ 

Press for additional 
Color Schemes 

Ĉomments 
rvcrbk 
C Reserved Words 

r Procedures 

r Identifiers 
r Undefined tttrm 

| S» Colorize syntax r Colorize CICS r Colorize SOL 
i cfcgmund BackgreimrJ 
'BLACK jf JWHITE J 

i mm ooctiotq TO QBcDt'rc 1 

Figure A.46 Alternate Color Scheme List Box 

jMonochrome 
sPtasms Bright 
Piasmi Powersaver 
iPreproceeosed 
U : .... 

T h e next s e c t i o n of the O p t i o n s M e n u d e a l s w i t h conf igur ing the interact ion 
w i t h the Animator . General ly the n e w p r o g r a m m e r s h o u l d n o t d e a l w i t h t h e s e i t e m s 
unt i l e x p e r i e n c e d w i t h the Animator . The first o p t i o n , Edit options, h a s three d ia log 
s c r e e n s : 

• Profile—Controls the format of the A n i m a t o r Source Entry w i n d o w . T h e 
s t u d e n t p r o g r a m m e r m i g h t w a n t to m a k e o n e c h a n g e to t h e profile. If the 
instructor requires p r o g r a m s to b e wr i t t en in U p p e r Case , t h e Force capi ta ls 
o p t i o n c o u l d b e useful . Figure A.47 s h o w s t h e Conf igure Profile w i n d o w . 

• Global— T h e w i n d o w s h o w n in Figure A.48 contro l s b e h a v i o r of the 
A n i m a t o r i n u s i n g external s o u r c e s to t h e p r o c e s s . T h e c l i p b o a r d u s e d , 
external files, a n d typ ing contro l s c a n b e m o d i f i e d in this w i n d o w . T h e 
s t u d e n t p r o g r a m m e r genera l ly s h o u l d l eave t h e s e o p t i o n s a l o n e u n l e s s 
required by the instructor . H o w e v e r , the b a c k u p files o n s a v i n g a n d w a r n o n 
l o a d i n g read o n l y files o p t i o n s c o u l d p r o v e t o b e useful o p t i o n s . N o t e that 
automat i ca l ly b a c k i n g u p files u s e s addi t iona l disk s p a c e . 

• Autofix—Figure A.49 s h o w s t h e Autof ix o p t i o n that a l l o w s t h e p r o g r a m m e r 
to en ter c o m m o n l y m i s s p e l l e d w o r d s a n d to h a v e t h e A n i m a t o r 
automat i ca l ly correct t h e m . To a d d w o r d s to the defaul t s g iven , click o n t h e 
A d d b u t t o n . 

,.45 Configure Syntax Color Scheme Window 



Appendix A Micro Focus personal COBOL rot Windows Users Gmue and tutorial 

• i g u r e A.47 Configure Edit Profiles Window 

CutrrdS pinMe t, i OiK>L 
Available pralite® 

"J ^ I ile , m COBOL : ixmr 

Tab (K>»Mi>t»: ;<* j *•*" 

F Cantprr.KS spaces ta txb tftacmVrrt 

P Want wrap P Autn-lntlcfll r"r orce nstpilals 

Hk-t 
" L)e*eti ASCII cr*4 at t.l« 

Assouan? proSte wi* exanciant: -CSt CPt COB INT (SPACE! 

Scare* lot C O W extemfawi: gVCTO 

I * , tmp 

4 8 Configure Global Settings Window 

i»y*stem 
" t CiLiil 

T Miibiwrt/delete cm itjrmrr: right-hand roarqm 
R Ralmu( replace previous character with space 
P Wrap lines, an ruboui 
r Wrap lines on rtefctt 

r NewtJne esn %rx»re light-hand margin 

P Cut can tsjKoic right hand margin 
P W a r n K block nasties right hand margin 

" Backup Blew when saving ——-
" Warn on loading read outy files 
P Wmn oa loading shared file; J 

f~ Rea# onSy^iecked lifer. ts» he edited 
P I.eeSc evened sinrnx (Hes 
r Pr&Sed; ospy flies against edStinjj 

The Execute Options of the Options m e n u brings up the dialog box in Figure 
A.50.The five check options include: 

• Hide on Run—The default m o d e that hides the Animator Text w h e n the 
program is running at full speed. 

• Backtrack on—Causes Animator to maintain a history of the steps taken in 
running the program. Is used with the Backtrack option of the D e b u g m e n u . 

• Set Threshold level— W h e n turned on, tells Animator not to s h o w the actions 
taken at a level below the current level. In other words, the steps in a perform 
or a call can be hidden. 



A p p e n d i x A >•*, r-ocus Personal COBOL ioi Windows- Users Guide and Tutorial 

Analyze—This function is not available in Personal C O B O L . 
Edit lock on execute—is option keeps the user from making changes to the 
program while it is in the execution phase. The function is intended to 
prevent accidental changes to the program. This is the s a m e function as Edit 
lock in the Edit m e n u . 

Configure Autofix Words 

Aiilftl i* rfMrie-, 
H&mtm m y typing 

If H 
Ui»nge it fa thin: 
the" 

Find options is the third option available in this section. Again, Find options is 
generally best left alone by the student programmer. Figure A.51 shows the C O B O L 
data item finds. O n c e programmers have b e c o m e experienced in debugging 
programs, they m a y want to explore s o m e of the options here. 

»0 Execute Options Window 

P Hide sn Hun 

"~ F}aiilfat k >»« 

r &st threshold levcJ 
f* finely ;?e 

r l do \ock oft execute 

0fe I Hrfe 



Appendix A Micro Focus Personal COBOl t,.u I V i / s u o u s Uian Ouicin a n i l Tu;or,a! 

Configure Options for Find 

I tint i apUoi 

" COBOl Eracedure finds 

> C00OI item tm®$ 

COB'4 J. rt. .n 

r Oiiofity related d»t* 
^ Oiiî Uay sft^ftiefs M tern 

tmms ts height 
•'»' Display Sines 

ORV disfssay wb?rs tisfa is. M*»«*<t«*d 

C Onty ditpiay wtirie data is ijefcnrd 
P Dtspiay nrQtffdufK̂  usimj ?r,e rlata stem 

The final section of the Options M e n u contains toggles for turning on or off 
some of the screen tools. The first option is Scroll bars. The scroll bars are the arrows 
on the right side and bottom of the window. The use of the scroll bars allows rapid 
m o v e m e n t to portions of the source code not currently visible on the screen. There 
is probably no need to turn off the Scroll Bars, but if the Scroll Bars are off, the user 
can still m o v e within the source code by using the arrow keys and by using Tags and 
Breakpoints as discussed in the View and De b u g Menus. 

Tills option sliows or hides t h v 
numbers in columns I to 6 of the source lines. The default is off, but at times these 
numbers m a y be useful particularly if the status line is not visible. Figure A.52 shows 
a program with sequence numbers. 

User Interface Showing Sequence Numbers 

Ml I P I I , LFTI?iiiirrnlm'IJJ 

The final option is Tag markers. Again, this is a toggle. Tag markers are messages 
in columns 1 to 6 as in Figure A.53a. If Tag Markers is off, the messages are not 
shown, but the tagged lines are still highlighted as sh o w n in Figure A.53b. The 
tagged lines m a y be Tags, Breakpoints, or Found lines. If both Sequence Nos. and 
Tag Markers are on, the Tag Marker overrides the line number. 



A p p e n d i x A \h. i i-ocus Personal COBOl for Windows: Users Guide and Tutorial 

Fi< A . 5 3 Tag Marking 

lag Markers 

2bi 

, « N T L S F T E X T . . . . . . „j^j< 

l a r k e r s 

1X1 nr. «tf «' ' . K W » W ! H \ " . A M > " T T (1 TILL INt ( I V F C K . ML t W O * 
' ' ' ' i i i t i s a 

I : I S « L ^ T « « I » N P I E X < 2 8 > . 

V T E P R U N 

» J 

YRT*<rJ»*̂j. 

(b) Tags will 

W i n d o w M e n u : Figure A.54 shows the W i n d o w m e n u . This m e n u is useful w h e n the 
programmer is working with m o r e than one program at the s a m e time a nd while 
debugging programs. R e m e m b e r that while only one program can be in execute 
m o d e , any n u m b e r of programs can be in edit m o d e . The first option of the W i n d o w 
m e n u is Tile. This option allows the programmer to view two or more programs at 
the same time. Only one program has the focus at one time. This program is s h o w n 
o n top and with the full width of the window. A n y other program windows are 
s h o w n across the bottom. Figure A.55 shows three programs in tile m o d e . U p to 
three programs can be s h o w n across the bottom at one time, even though the 
programmer m a y be working o n m o r e programs. 

Clicking o n one of the windows will shift the focus to that window, and the 
programmer m a y change code in the window. Shifting the focus to one of the 
windows o n the bottom of the screen does not m o v e that program to the top. In 
order to m o v e this program to the top half of the screen the user must again select 
Tile. If the user double-clicks o n the title bar of a window, that w i n d o w is expanded 
to full screen. Double-clicking again on the title bar will return the w i n d o w to its 
original size and location. 



Appendix A Micro Focus Personal COROL tot Windows U s e r s Guide and 1 ulortal 

•mm .54 Window Menu 

— ,4cf/i/e Proorams 

: i g u r e A . 5 5 Three Tiled Programs 

/ me bar 
Program with focus 

| Partial code shown 

I „ 1, M •, 
pit 1 

*r; :<h>c ^*0&iwMtc*MllfrWb 
kMt H t V B ' 

?IKP;^J1 ji>. (telle. _ l 

sc.:H ui '.am. 

If. - I - . I TIT. T O N j**.; X < 2 8 > - . J . 
•J _ A L . 

iUiSLsi 
• F 

S Army "ofHUtiEICEOEES;" ; ^ •• 
C A L E N D E R - T U T I N < . * 

rt ~-i fin* iuit -rfa£K-««ni|»ulafcli 
1 v < a l r n d v r sl r«ttn 

;V GI»RIERI*DT.OL I T I F T L U N 'OF I -J 
¥•& stoma in it tz-n^fi I I M L - S T I O N . 

D * V fID- H I 

• 

lllillll 

W h e n showing multiple programs, the Animator shows only partial lines of 
code. Using the scroll bars, the user can view the remaining code to the right.2 

The next option Arrange Monitors is available only to a program in Execute 
m o d e . Monitors are the small windows that display the value of data items. If there 
are a num b e r of monitors being used and if the user moves them around, not all of 
the monitors m a y be visible. Arrange Monitors organizes the monitors along the 
right-hand side of the w i n d o w for better visibility. Figure A.56a shows the monitors 
before alignment, and Figure A.56b shows the monitors after alignment. As can be 
seen in the figures, the alignment m a y not impose visibility m u c h . The user can 
always drag the monitors to where they will be more visible. 



A p p e n d i x A W-- id ,:ocus Personal COBOL tor Windows: Users Guide and Tutorial 

.56 Arranging Monitor Windows 

£fe %•& %*m £J&$&°£<.<J& ^ra*** |î J> 

"Bella wsrlci" fca saltstation 

: : : r 

24 
.end ei? fce&fc. 

H^ndow hidden 

(a) Monitor Window . . . 

l̂ljltlllltttii 

•t . . . . .. . , . .- - .•rVt.-.-^iS-r.^.m 
21 ?ROCfcB*Ifck Inslî EfeW. 

^ ^ " B c l l o world'* t** !. tllit.tt ioo 

.ef.rt of te* 

' i '•'*',:' | , = J r • 

Windows moved 
to right 

ridow partially 
lidden 

(b) Monitor Windows After A r r a n g e m e n t 

The final section of the W i n d o w M e n u in Figure A. 54 shows the n a m e of each 
program currently being used by the Animator. The user can click on any of the 
n a m e s and m a k e it the current program. The listing also shows the m o d e of the 
programs. 
Help Menu: The Help M e n u shown in Figure A.57 contains a n u m b e r of items that 
can help the user while in the process of working with the Animator. Several words 
of caution are necessary, however. Personal C O B O L for W i n d o w s emphasizes Object-
Oriented C O B O L . While a student m a y want to explore this topic in more detail, the 
chapter o n O O C O B O L should be reviewed before getting too involved with the 
tutorials and the use of the browser. Also, the help files were originally developed 
for other Micro Focus products and in s o m e cases referenced topics have not been 
included. Attempting to access t h e m produces an error message. Finally, in s o m e 
cases the references for "hot words" are actually o n the s a m e page as the hot word, 
a n d clicking o n the hot w o r d returns the screen to the top of the page, in this case, 
the user should scroll d o w n to the point where the topic is discussed. 



Appendix A Micro Focus, Personal COftOt lot Windows • Useis Gu:Ov and fulonai 

Figure A.5? Help Menu 

î̂ f̂̂ fe A ' ̂ 4 ~~ 

. . . . . . . .«•!!!{ Ot ! t 

Since the Help process is meant to be self-explanatory, this discussion is 
limited to brief descriptions of the more useful topics. Explore the Help m e n u 
options for yourself. 

The first set of topics under the Help m e n u are Animator Help a n d Keys Help. 
The Animator Help should be useful in learning h o w to use the Animator. M u c h of 
the material in this discussion has been based on the Animator Heln, 

Keys Help provides the user with a table of the key combinat ions used m 
editing programs in Animator. This table can be a good source for programmers 
w h o prefer to use keystrokes rather than the mouse. The student m a y want to print 
this screen for further reference. 

The second section of the Help M e n u contains tutorials and advanced topics 
options. Start Here actually is an introduction to object-oriented programming, and 
probably is not the best place to start in connection with this book. The student 
should hold off o n this section unless otherwise instructed by the teacher. In the 
section On-line Tutorials and Reference, the beginning programmer should look at 
the Animator Tutorials and leave the Browser and O O C O B O L tutorials for later. In 
regard to References, the most useful section for the beginning programmer is the 
System Messages section. This section provides a point for looking up error message 
to see what has gone wrong with a program. Those messages take two forms, 
compiler messages—messages w h e n trying to write the p r o g r a m — a n d run time 
messages—messages w h e n trying to test the program. The other reference topics 
are advanced in nature. 

The Resources section of the Online Tutorials and Reference has some items 
that m a y be useful. The most useful resource is the Glossary, which is a dictionary of 
terms. 

Standard COBOL Reference is the most useful option for the purposes of this 
book. Students should review the topics presented, but should not be concerned if 
they do not understand a lot of the information presented. COBOL Source Syntax 
m a y be the most useful section for the student. However, the same type of help is 
available m o r e directly. By moving the cursor to a C O B O L verb in the source and 
pressing Alt+Fl, the Animator brings up the help screen for that verb. Figure A.58 is 
the help screen for the IF statement. In m a n y cases, the Animator Help has m o r e 
than one screen relating to the topic and it displays a list of options. The option 



A p p e n d i x A Micro Focus Personal COBOL for Windows: Users Guide and Tutorial 

n a m e s in this list are not always helpful. The student should just pick one. If the 
wrong option is chosen, most help screens have hot words, a n d the user can usually 
find the needed information quickly. 

Stl Example of Syntax Help Window 

IF 

;»>*—Ifr condi t ion-•i 1—r~s t a f eraen l -1 j * 
**THEM* «—fi£XT SEMTEHCE*-* 

MJTrCRWI SE-J L*EXT SEKTEHCE-
t atcnent 2-

Re.«ted Topics: 

_ J 

Object COBOL Reference and Q'ass Library Reference deal with O O C O B O L and 
are probably best left until the programmer is ready to deal with O O topics. 

About Animator displays an information screen about the version of Animator 
and current resource statistics. 

The Toolbar, s h o w n in Figure A.59, is the set of 16 icons displayed below the m e n u 
line along with the C o m m a n d Prompt box. The icons are a quick w a y to perform a 
limited set of the m e n u operations. C o m m a n d prompt allows direct entry of 
Animator c o m m a n d s . 

* Animator Toolbar 

The Toolbar groups the icons by their functions. The first set of icons deals 
with file handling, the second with editing source code. The third set is a single item 
to undo changes. The fourth set is for debugging while the fifth set handles 
breakpoints a nd tags. The final set allows compiling programs a n d the help. 
Set 1 : The first two items: 

» Load, a folder with an arrow, allows the user to load a file for editing (not 
execution). Clicking on the Load icon brings u p the O p e n dialog box which 



A p p e n d i x A Micro Focus Personal ( \ W i n o n w z ih*ei $ HiUJe Bn-d 9. 

displays the "cbl" files in the current directory. The user must use the m e n u 
tf\ F V R I ri ( T I N O F I L O fVi.r O R L I ^ - O N H £±-v£j.r*ntir\Tr\ 

\ V/ u t l i j . ^ i i i «_* 1 . 1 1 V 1 T J 1 . I, U I . 1 U I j A l j ^ C i L H J 1 ! ! . 

Y I * Saive, a diskette, saves the file in its current form to the disk. Saving files 
regularly is always a good idea. 

Set 2: This set of icons consists of: 
> , • Cut, a pair of scissors, removes highlighted text and places it into the 

W i n d o w s Clipboard. 
* Copy, two pages, places a copy of the highlighted text into the W i n d o w s 

Clipboard. 
! • Paste, clipboard with a page, copies the current contents of the Clipboard to 

the current location in the code. 
S o m e words about the Clipboard. Only one item can be placed into the 

clipboard at a time. Therefore, if something is already in the clipboard and the user 
cuts or copies a n e w item, the original item is overwritten. The clipboard is not 
limited to just the current window. The clipboard makes it easy to cut or copy code 
from one program and place it in another program in a second window. The 
clipboard can also be used with another W i n d o w s product so that code from a 
program could be copied into a word processor, for example. 
Set 3: 

/j » Undo, a curved error pointing to the left and d o w n , restores the text to the 
previous state. The icon is active only w h e n s o m e change has been m a d e to 
thif* n m u r a n i / fnrln rt*Qtt\r&c t i n 1 1 \ 1 O O r h y n a p c ^ 

» . . _ j j . „ 0 . . „ » „ c . . . J J — . . 

Set 4: This set of buttons is available only in the Edit + Execute window. These 
buttons allow the user to control the process of reviewing code as it runs. 

\ • Step, a footprint, allows the user to "step" through the program one line at a 
time. 

v i j * Watch, a footprint and a magnifying glass, works in the same w a y as Step but 
also displays monitors of the data values for items in the current line of code. 
Examples of a monitor are s h o w n in Figures A.56a and b. Watch is 
particularly useful in debugging code. 

X ] « Run, a figure "running," executes the program at full speed. 
~ «J * Examine, a magnifying glass, allows the user to look at the contents of any 

data item whether or not it is part of the current execution line. This icon 
represents the s a m e function as "Examine Data" under the D e b u g m e n u . 
Clicking Examine brings up the same dialog w i n d o w s h o w n in Figure A.33. 

jg 8 Find, binoculars and lines of code, brings up the Find dialog w i n d o w from 
the Edit m e n u and s h o w n in Figure A. 12. Find allows the user to search for a 
C O B O L item or specific text. 

Set 5: Set 5 consists of 3 buttons that are active only w h e n the user has set 
Breakpoints, Tags, or Finds in the code. If more than one type of marking is being 
used, clicking on any of the buttons will bring up a m e n u to select the desired type. 

• ToggleCompress— arrowheads pointing toward the center of the b u t t o n — 
causes only the highlighted code lines to be visible. W h e n the code has been 
compressed, the arrows change to point to the top and bottom. Clicking 
again expands the code to its original state. Figures A.60a shows an 



A p p e n d i x A Micro Focus Peisonal COBOl tot Windows: Users Guide and Tutorial 

uncompressed portion of a program. After compression the same code looks 
like Figure A.60b. 

• Previous—short lines and an arrow going from bottom to t o p — m o v e s the 
current location to the previous marked line. 

• Afexr— short lines and an arrow going from top to b o t t o m — m o v e s the 
current location to the next marked line. 

Section 6: The last section of the tool bar contains two buttons. 
• Check—a check mark—compiles the current program. Micro Focus uses the 

term Check for compile. 
!1J Help—a question mark—brings u p the Help Screen. 

re A . 6 0 Example of Expand and Compress 

i <« rtr.fottm an ( M M emi 2i7<* 
31* 
HI ? » 
m 
as Ti4 

Hi 

I K 

2 1 * ' 

. , I • ' i l l i i 

f a ! E j 

m 

m 
tUjt ttf H&*t. . . .. . 

PBtFOSl Lo*4-ReearA 
fiwam Stunt- Record 

<ssirf Kr *<**t 

-a 

i| Program Compressea ; %»i:wUw C^v, 

This w i n d o w allows the user to enter Animator c o m m a n d s directly instead of using 
the m e n u or the toolbar. The C o m m a n d Prompt box maintains a history of the last 
10 c o m m a n d s entered so that a previously entered c o m m a n d m a y he reused. Figure 
A.61 s h o w the C o m m a n d Prompt with a list of c o m m a n d s . 

The Animator c o m m a n d s are available in Animator Help under the topic 
C o m m a n d Reference. 



A p p e n d i x A Micro Focus Personal i : i ) B O i / • > / Windows Users Guide and T u t o r i a l 

Command Prompt Box with Recent Commands 

-

d 

2 4 

a.: 

Highlighting: W h e n code is highlighted in the Animator, the entireline is highlighted. 
This feature is unlike a standard word processor where highlighting is independent 
of the lines. This factor can be disconcerting w h e n the user just wants to change one 
word. However, the developers of the Animator felt that in most cases program 
code is m o v e d or changed a full line at a time. Thus, highlighting the full line was a 
better default. 

To highlight only a portion of a line, use Mouse Column Marking in the 
Edit m e n u . 
M o u s e Buttons: Clicking the right m o u s e button in the source code displays a list of 
options that can be performed. The options depend on the context, and a typical list 
is shown in Figure A.62. 
Shortcut Keys: Programmers should take s o m e effort to learn s o m e of the shortcut 
keys to facilitate their entry and maintenance of code. S o m e of the m o r e important 
keys include: 

F l --Help 
F 2 --Find 
F 3 - -Insert Line 
F 4 - -Delete Line 
F 5 - -Repeat Line 
F<>--Restore Line 
111 — E x a m i n e Data 
Ctrl + B — S e t Breakpoint 
Ctrl + R — R u n to Cursor 
Ctrl + S—Step 



A p p e n d i x A Micro f-ocus Peisonal COBOL for Windows: Users Guide and Tutorial 

Options List after Right Click on "Display" 

Si%1ilmt$hWi:Bs 

Loading Errors: In working with Animator in Windows95, occasionally a load error 
occurs. S o m e compatibility problems seem to exist between Windows95 and the 
Animator, but usually these are resolved by restarting the Animator. 

The Animator uses several file types w h e n compiling programs. The user should be 
careful about deleting files through the operating system. S o m e of the more c o m m o n 
fife types include: 

• cbl— standard file for containing C O B O L code. These files are text tiles and 
can be edited by any text processor. 

» cpy—files containing portions of C O B O L code. These files are called by the 
C O P Y c o m m a n d in a C O B O L program. 

• int—intermediate files. These files contain the object code needed to run 
and edit a C O B O L program. The checking process creates int files. 

* idy—utility files. These files allow Animator to show the source code while a 
program is being executed. 

* osv —autosave files. These files contain a copy of the work in process and 
m a y be used to recover programs if there has been s o m e problem. 

Execute W i n d o w : The Edit and Execute w i n d o w is most generally useful w h e n 
developing a single program. Only one Execute w i n d o w can be open at a time. In 
this w i n d o w the program can be edited, run, and debugged. 
Edit W i n d o w : Edit windows can be used for writing and changing programs and 
checking syntax. They cannot be used for running the program. However, as m a n y 
edit windows as necessary m a y be opened. This feature is particularly useful w h e n 
the main program (in the Execute window) calls subprograms. By having the 
subprograms in Edit windows the programmer can quickly m a k e changes in the 
subprograms, check t h e m immediately, and then run them from the main program. 



Appendix A Micro Focus Personal COBOL io> Windows Lrseis Guide and Tutorial 

The purpose of this tutorial is to guide the student through a session with the 
Animator. At the end of the exercise the student should be able to: 

» Start the Animator. 
^ Enter data. 
* Edit and change text. 
" De b u g and test a program. 

You can start the Animator by selecting the Personal C O B O L button either in 
the Personal C O B O L w i n d o w in W i n d o w s 3.1 or in the Personal C O B O L section of 
the Start M e n u in Windows95. After showing a title screen, the Animator will become 
active and will look something like Figure A.63. Windows95 was used in preparing 
these exercises and your screen m a y look slightly different. You m a y want to increase 
the screen to full size by clicking o n the appropriate icon in the upper left corner. 

Animator Interface 

1 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Check Register Program 

Narrative: This program processes any hours worked by employees file, calculates the gross pay, 
and prints the results on a report. 

Input File(s): H O U R S - W O R K E D 

Input Record Layout: See Figure A.64a 

Test Data: 00001TANNER, J 2050400 
00002SOLIGO, K 1875350 
00003LIGHTF00T, J 2575450 
00004SCHLESSER, J 1500400 
00005WINDS0R, C 1250415 



A p p e n d i x A Mn m Focus Personal COBOL for Windows: Users Guide and Tutorial 

Report Layout: See Figure A.64b 

Processing Requirements: 1. Print a heading at the beginning of the report. 

2. Read a file of employee hours worked records. 

3. Process each record by: 

a. Computing gross pay by multiplying pay rate by hours worked. 

b. Printing a detail line for each record read. 

F igure A . 64 Record Layout for Check Register Program 

ID# : NAME P A Y R A T E ; HOURS 
j 1 2 3 4 5 i 6 7 8 9 1 0 1 1 1 2 1 3 14 15 16 17 ^ 18 19^20 ! 21 22 23 24 25 i 25 26 27 

JCHECK REGIjSTER j I 
999919 XXXXXXXXJXXXXXXXX99J.9 99.99 9(999 . 99 
9999^9 X X X X X X X X|X X X X X X X X 9 9I. 9 99.99 9 9 9 9 . 9 9 

Please enter the program s h o w n in Figure A.65 into the Animator. Type the 
program exactly as it is written. Be careful to start each line in column 8 and to type 
the periods where they are placed. There are s o m e deliberate errors in the program, 
but do not correct t h e m yet. 

Figure A . 6 5 Tutorial Program 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. CHECK-REGISTER. 
3 AUTHOR. YOUR NAME 
4 
5 ENVIRONMENT DIVISION. 
6 INPUT-OUTPUT SECTION. 
7 SELECT WEEKLY-HOUR ASSIGN TO 'H0URS.DAT 
8 ORGANIZATION IS LINE SEQUENTIAL. 
9 SELECT REPORT-FILE ASSIGN TO 'CON' 
10 
11 DATA DIVISION. 



Appendix A Micro Focus Personal COBOL for Windows Users Guide and Tutorial 

, . - - > . Continued 

12 FILE SECTION. 
13 FD WEEKLY-HOURS. 
14 01 HOURS-RECORD. 
15 05 HOURS-ID PIC 9(04). 
16 05 HOURS-NAME PIC X(15). 
17 05 H0URS-PAYRATE PIC 99V99. 
18 05 HOURS-WORKED PIC 99V9. 
19 
20 FD REPORT-FILE. 
21 01 PRINT-LINE PIC X(80). 
22 
23 WORKING-STORAGE SECTION. 
24 01 HEADER-LINE-1. 
25 05 PIC X(10) VALUE SPACES. 
26 05 PIC X(18) 
27 VALUE 'CHECK REGISTER1. 
28 05 PIC X(10) VALUE SPACES. 
29 
30 01 DETAIL-LINE. 
31 05 PIC X(05) VALUE SPACES. 
32 05 DET-ID PIC 9(05). 
33 05 PIC X(01) VALUE SPACES. 
34 05 DET-NAME PIC X(15). 
35 05 DET-HOURS PIC 99.9. 
36 05 PIC X VALUE SPACES. 
37 05 DET-PAYRATE PIC 99.99. 
38 05 PIC X VALUE SPACES. 
39 05 DET-GROSS-PAY PIC 9999.99. 
40 
41 01 EOF-SWITCH PIC (03) VALUE 'NO '. 
42 
43 PROCEDURE DIVISION. 
44 0000-MAIN-LINE. 
45 PERFORM 1000-INITIALIZATION 
46 PERFORM 5000-PROCESS-CHECK 
47 UNTIL EOF-SWITCH = 'YES' 
48 PERFORM 9000-FINALIZE 
49 STOP RUN. 
50 
51 1000-INITIALIZATION. 
52 OPEN INPUT WEEKLY-HOURS 
53 OUTPUT REPORT-FILE 
54 PERFORM 1100-WRITE-HEADER 
55 PERFORM 1200-READ-RECORD. 
56 
57 1100-WRITE-HEADER. 
58 WRITE PRINT-LINE FROM HEADER-LINE-1 
59 AFTER ADVANCING PAGE. 
60 
61 1200-READ-RECORD. 
62 READ WEEKLY-HOURS 
63 AT END MOVE 'NO ' TO EOF-SWITCH 



A p p e n d i x A M- m• Focus Peisonal COBOL for Windows: Users Guide and Tutorial 

lliure A . 65 Continued 

64 END-READ. 
65 
66 5000-PROCESS-CHECK. 
67 MOVE HOURS-ID TO DET-ID 
68 MOVE HOURS-NAME TO DET-NAME 
69 MOVE HOURS-PAYRATE TO DET-PAYRATE 
70 MOVE HOURS-WORKED TO DET-HOURS 
71 MULTIPLY HOURS-PAYRATE 
72 BY HOURS-WORKED 
73 GIVING DET-GROSS-PAY 
74 END-MULTIPLY 
75 PERFORM 5100-PRINT-DETAIL 
76 PERFORM 1200-READ-REC0RD. 
77 
78 5100-PRINT-DETAIL. 
79 WRITE PRINT-LINE FROM DETAIL-LINE. 
80 AFTER ADVANCING 1 
81 END-WRITE. 
82 
83 9000-FINALIZE. 
84 CLOSE WEEKLY-HOURS 
85 REPORT-FILE. 

W h e n you have finished entering the program, check the program by clicking 
o n the Check M a r k in the tool bar. The Animator will prompt you to save the 
program. Save it as Chkreg.cbl. 

The Animator then begins to check the program and soon finds an error. Y o u 
should see message boxes similar to those in Figure A.66. The message boxes in the 
figure have been m o v e d to m a k e t h e m more visible. 

-igur< .66 Compile Error Windows 

MNNMNNNMfiiHiii 

mi 

BUCIIFLRL- I I ) . C H E C K - B E G I 
V O U B HTLFTT 

L W I S ' J K M - N ) U I U I S L O * . 
I N P L ' I « H , \ S F S E C T I O N . 

5 L L C O T W E E K I S - M O U R B S S J C N 

waNisatfioN u uttm I 

S L U C F R E P O R T - F I L E S S E I S M 

M I L L T L U ! , ! 3 K . 

(urrcnt Ule 
Lines checked ; 
Errors : 
Severe 

CHKUtG.CBl 
OGQGflfl 
1 Warnings 

6 
Informational : 0 

W E E X I V H O U R S . 
8 1 H O U R S - R E C O R D . 

8 5 H O U R S - I D 
8 5 H O U R S - N O M E 
8 5 H O U H S - P F L V B O T E 
8 5 H O U R S - W O R K E D 

F B R E P O R T - P I L E . 
8 1 P R 1 N I L I N E 

8 1 H E R D E R - L I N E 1 . 

as 

S» C O P Y R I G H T - X > 1 9 8 5 - 1 9 9 6 H I C I - O P O C U S L T D . 
I S E L E C T U E E K L V H U U R A S S I G N T O ' H O U S 
I 1 8 8 4 - E C O N T I N U A T I O N C H A R A C T E R E X P E C T E D . E N D 

CARTEci I 

l 1004-E Continuation character expected. End of literal assumed. 
1 CONTINUE CHECKING P R O G R A M ? 

ho 



A p p e n d i x A Micro Focus Personal COBOL for Windows i ' s « s Guide and Tutorial 

The Checking message window has four buttons: 
» Z o o m — c a u s e s Animator to check the rest of the program without stopping 

until it is through. 
• Yes—has Animator continue to check the program and stop at the next error. 
» No—stops checking the rest of the program. 
* Help—Brings up a help screen that attempts to explain the error. 

Y o u should click o n the Z o o m button to check the rest of the program. 
At the end of the checking process, you should see something like the screen 

in Figure A.67. T w o windows can be seen, but tend to obscure each other. Y o u m a y 
want to m o v e one of the windows so that the screen looks like Figure A.67. The first 
window shows the program source with all error lines marked and highlighted. The 
information line at the bottom of the w i n d o w shows the error message for the 
current error line. The second w i n d o w contains a list of all the error messages and is 
called the syntax error window. D o not be surprised at the n u m b e r of errors found 
during the first check of a C O B O L program. A large n u m b e r of errors is c o m m o n 
w h e n a program is checked the first time. In m a n y cases, one syntax error m a y 
cause a n u m b e r of error messages. 

? Results after Syntax Checking 

; ; t a I l l I i S 

* 
» 

H UI 

1 i * 

0,4 T, , ,< / y 
S, ,.,J.E,. 

US HCAIRS- IV 
***** 

I-

X<(.5>. 
wot. 

2<T~£ 
I? \ 
HII % 

23»-S 
?«« 

1J-S 
12-$ 

33»-S 
12-S 

* * W » T L LITERAL fvpt'< t,M 
»P«-,»O!T » I Kl *R HIHBTI, is TINT declared 
t l i * . . . i f „ i FIR i ' . ,1 TILE n&tw 
p i e n i s . 1 .trtr°Q H.J. , llpqat PRI?E<?DT*NT:S* OR IL.LEN.AI CHARACTER 
id mi, tnij mr i I I I - iK.tn.i-mm 
©NERANO t m i w i f t j s H NOT d e i L.UV,; 
Doer M i d UEIKIV H8URS IS H o t DECLARED 
Hot .] record n^Me 
ILPER.MD WCEKIV-HOUB!. IS NOT ILMLARED 
Operdnrl 111! SMltCB IS BAT taliiH 
ft -IEEPP-DOL IMTI*R DID NOT tuvr * (STERLING OERB JND »<*'* DISCARDED. 
HOT 4 RECORD NANC 
t i e r , COGNISED UERFE 
8PER.MIL WE MI V l i o u a s I& NOT DECLARED 

«f „ Sl*l«a* i i*«Ul« 

There are several ways of moving around to see the errors. O n e w a y is to 
double-click o n a message in the syntax error window. The Animator will m o v e the 
cursor in the source code w i n d o w to the appropriate error line. This action associates 
the messages with the actual lines. Within the source code w i n d o w you can m o v e 

http://il.len.ai
http://iK.tn.i-
http://8per.mil


pendix A M Petsanai COtfOi. fot Windows Users Guide and Tutorial 

from one error line to the other by clicking the Find Next or Find Previous buttons. 
As you change from one error to another, the Information Line will contain the 
error message for the current error line. 

Y o u m a y also want to see the error lines by themselves. T o do this, press F9 or 
click the Compress Button, s h o w n in Figure A.67, to s h o w just the error messages, 
as in Figure A.68. Y o u m a y need to expand the size of the w i n d o w to see all of the 
messages. 

Look at the first error line. The message is "Continuation character expected. 
E n d of literal assumed." The problem here is that H O U R S . D A T has a quote at the 
beginning and not at the end. Data file n a m e s need to be expressed as alphanumeric 
literals and enclosed in quotes. To correct this problem, insert a quote after the 
word D A T . 

M o v e to the next error. Here the error message, "Numeric literal expected," 
does not help in detecting the problem. The compressed m o d e also tends to confuse 
the issue. Expand to the full source code by pressing F9 again or clicking o n the 
Expand key s h o w n in Figure A.68. 

Compressed List of Error Messages 

{iii 

wtj» at i p 

Jrr»r>- if tktGfit fl.'.t . 
Mrni-' *l for-nil! a. 

J",f»S-.fr> LOP t>*ilCU - irî " 

%'mr> MM* MW>n < «<»iir. 

The problem is actually in line 9. S E L E C T statements must end with a period. 
Since the period is missing, C O B O L attempts to include the D A T A DIVISION 
statement as part of the S E L E C T S T A T E M E N T . C O B O L detects that there is an error, 
but unfortunately does not give a helpful message. Place a period at the end of line 9 
to correct the problem. 

This particular error demonstrates several rules of t h u m b in debugging C O B O L 
programs. 

1. Periods are c o m m o n sources of error because they are often misplaced or 
omitted. 

2. The compiler m a y not be able to determine that an error has occurred until 
checking the following line. 

3. All error messages should be examined, but sometimes they are misleading. 
Use the Find Next and Find Previous buttons s h o w n in Figure A.68 to m o v e 

through the rest of the errors and notice the messages in the Information Line. Try 
to understand what C O B O L is saying about each error. 



A p p e n d i x A Micro Focus Personal COBOL :•),< i-Vm.foiv.s t / s^« » Guide .*/>!/ !«;•••;«; 

Notice the message " W E E K L Y - H O U R S not declared" in line 13. The problem 
results from the spelling of " W E E K L Y - H O U R " in the SELECT statement in line 7. 
Incorrect spelling of user defined names are also a major cause of syntax errors. The 
spelling needs to be changed in the SELECT statement. 

M a k e sure that the W E E K L Y - H O U R S is spelled correctly, the quote is inserted 
at the end of line 6, and a period at the end of line 9. Insert a period and the end of 
line and recheck the program. After checking the program, compress the source to 
just show the error lines again as in Figure A.69. 

Errors after Second Compile 

The first error is because the PIC clause does not specify the data type. Correct 
this line by inserting an "X" before the "(03)" so that the line reads: 

01 EOF-SWITCH PIC X(03) VALUE 'NO '. 
This correction will clear up the problems with the next two errors. Since E O F -

S W I T C H was not valid, any references to it are invalid as well. Correcting the one 
error will fix the other two as well. 

M o v e to the last line that says "AFTER A D V A N C I N G 1" and expand the source 
using F9. Figure A.70 shows the result. Using the rules of t h u m b from above, you 
should notice that there is a period at the end of line 79. In this case, the period 
should not be there because A F T E R A D V A N C I N G 1 is part of the W R I T E statement. 
Delete the period and recheck the program. 

This time the program should compile without errors. If your program still 
does not compile, you have m a d e other typing errors. Reexamine the code in Figure 
A.65, m a k e the necessary corrections, and recompile. 

Figure A.71 shows the fully compiled program. Note that the buttons allowing 
testing of the program are n o w active. If the buttons are not active, you probably are 
working in an Edit window. If so, close the w i n d o w by using the File m e n u . Save the 
file if necessary. N o w , in the File m e n u , select O p e n for Execution and select the file 
Chkreg.int. This action loads the file to the Execute W i n d o w , where it can be run 
and tested. 



A p p e n d i x A -Micro fo^us Personal COBOt. tor Windows Users Guide and Tutorial 

Figure A .73 Invalid Period Error 

**» rmf l l h f - M l S . ' i UHS . 

8 « >.'.(•'... 
- • f id o f t »jtt. 

invalid period 

: I | } i i re J L 7 1 Compiled Program—Ready to Run 

iflltflf|flî lfe!siiiflsl|f̂ ^ 

tf. f £ :i;iiiilii*i£tj 

At this point, you are ready to test the program, but need data. Click o n the file 
m e n u and select N e w . This action opens a n e w Edit w i n d o w where you can create 
data for the input file. However, the Animator thinks that you have opened the file 
to enter C O B O L source code and the cursor is positioned in column 8. To m a k e 
things easier for entering data, select the Options m e n u and select Edit options. In 
the profile screen, select D O C U M E N T S from the Profiles list box. As a result, you 
should see the specifications as in Figure A.72. Click on the Set as Current Profile 
Button and then Click o n the O K button. Y o u will n o w be able to enter data. 

Enter the data s h o w n in Figure A.73 exactly as shown. The numbers begin in 
column 21. If you wish, you m a y add s o m e other records to the file. After you have 
entered the data, select Save As from the File m e n u . Save the file as H O U R S . D A T . Be 
sure that the file is saved in the s a m e directory as your program. 
N o w return to your Program. R u n the program by clicking on the Run Button. If 
Animator gives a "File Not F o u n d Message," either the file is not in the same 
directory as the program or the file n a m e has been misspelled. Y o u can correct the 



Appendix A Micro Focus Personal COBOL for Windows Usei s Guide and Tutorial 

»-i>^ - . A . Configure Profile for Entering Data 

C u n m t pioftii. is. COBOl 
Avtttiitrie (Mrohieu ,̂ 

~~ U ' , r tins, pfitfiic for pr .-lues; 

'SYSTEM 
IC0B01 "*' ruifijuii 

Margins: UK tiOO m^,, (ibi Sr(hi«i WMIM , i 

• L . 

Tab poatajarrs: 

r Compress space-, to tab chatacters 

P Word-wtap Auto-indent T rorca capitals 

Hies 

f Delect ASCII end al-filr 

As-.odaie pratiie wdo extensions: pOC 1XT 

ta< rol'/rxarmUons. i 

Create Data File 

«M8l tUHMl-R. J 
»BH82SOI,IG0, K 
utwaiuoirpoor. J 
•aMHSCHLEMHi. J 
w>M5uiimo». c 

2S784SB 

.«nd of text:. 

—^RRRR^R-»N-RFW™T™r«' — ~ 
S« I'tVOIJ1 ' . • . >• • . 
H l i w o a h • •-. . 

H urn it m t m - u m , » ' . * H U M « L I K I 
H T IB HUJUmlk, r»_: _ 

I K 
« « . ' 

if1 

problem by correctly spelling the file n a m e and using by the full path to the file in its 
SELECT statement (line 6). Recheck the program and try again. 

The program should halt with a message "Illegal character in numeric field 
(Error 163)." This type of error is very c o m m o n and usually results because the 
program file specifications do not match the actual fields in the file. Click on the O K 
button. Your program is redisplayed, as in Figure A.74, with the line in error 
highlighted and the error message redisplayed. Click on the O K button again to 
clear the message box. 



A p p e n d i x A .'. Personal COBOL tor Windows Users Guide and Tutorial 

F i g u r e A . 7 4 Error Detected 

jjjjjjjl 

1 

62 
S3 

h ^ R S U O R K L D ^ 0 DEI 110 
.' ' " HOURS PaVRRU 
BV HOURS-tJORKED 
.;j ,\" DEI CROSS-PR* iv ; ft,,. > Ji> J '. t 1 '"V • I 1-1 

U.'IU I'RIN, I.IHl 
int.? jti»*; 

Ji«< " I T . " ! - . B11B!§~ zrror message 

Line 69 should read " M O V E H O U R S - P A Y R A T E T O DET-PAYRATE." Click o n 
the word H O U R S - P A Y R A T E . Clicking o n a Data N a m e brings u p a monitor window, 
as in Figure A.75. The monitor w i n d o w presents the data in two forms: 

• The left side shows the ASCII values for the field. In this case, "20" is the 
ASCII value for a space. 

• The left side shows the text values for the field. The first character is in fact a 
space. 
Since, spaces cannot be part of a numeric field, the error message was correct. 

The problem is to determine h o w the space got there. O n e w a y to find out is to 
"correct" the data item and then step through the program. T h e cursor should be 
blinking on the first 2 of ASCII values field. Change the 2 to 3. This converts the 
character to a zero. Look at the text values to confirm that the change has been 
made. N o w , click o n the Apply button. Y o u have n o w fixed the error so that the 
program can continue. 

Using the Watch Button, step through the program. As you go through the 
program, notice the monitor windows. Y o u should see that the values s e e m to be 
low. Finally, you should c o m e to the Detail-Line monitor box, as shown in Figure 
A.76 . Notice that the n a m e field begins with a " 1." S o m e h o w part of the ID n u m b e r 
has gotten into the N a m e field. 

F igure A . 7 5 Monitor Window of HOURS-PAYRATE Field 

H.dX'i _ _ 
«8 rt'l MOH „ ' 
6S: 

VI ™— tWJ i. N U U s 
msynpi.^! . T . . IHt j Hontiut ] 11 I« 1 • • IHt j Hontiut ] 

'/I STLY 
• 1 
7*J 

'•• U I N 
•17 
?* 

O-,..\T print him I >- DETDIL-LINE S * 1. ,< ,<u&f.N0.eV 1 
81: 

i< . . si • . ' •.: 
81 
St* c T r«" {> ... 

• ASCII code for space 
change to 30 



Appendix A Micro Focus Personal COBOL tor Windows. Users Guide and Tutorta 

Examine the H O U R S . D A T file that you entered. The first 5 characters are the 
ID number. N o w look at your file specification in line 15 of Figure A.65. H O U R S - I D 
is only four characters long. Consequently, every field in the record is off by one 
character. G o to the proper line in your program and correct the PIC to "X(05)." 
Recheck the program. 

Rerun the program and the same error message "Illegal character in numeric 
field" appears. However, w h e n you click on OK , the message refers to line 67. 
Double-click on H O U R S - I D and you will see that the field is totally blank, as s h o w n 
in Figure A.77a. This result does not seem to reflect the same problem as before, but 
you need more information. Select the Examine M e n u in the monitor w i n d o w and 
click o n Ascend level. By selecting Ascend level, you are asking the Animator to 
display the group item that contains HOURS-ID. Therefore, the Animator will display 
H O U R S - R E C O R D , as s h o w n in Figure A.77b. The entire record is filled with spaces. 
In this case, there m a y be a blank record or s o m e type of improper read of the 
record. Y o u will need to investigate further. 

Figure A.76 Alignment Error 

Since the program assigned the print file to " C O N " in line 9 of Figure A.65, the 
Animator directs the output to a wi n d o w called "Animator V2 Text Window." O p e n 
the w i n d o w if it is hot already visible. The results should look like Figure A.78. 

Y o u should notice two things about this figure. 
1. The words C H E C K REGISTER are printed twice. The Animator does not clear 

out the w i n d o w between program tests. The first line is left over from the first 
test of the program. There m a y be additional lines of output at the top if you 
have run the program several times. 

2. The female symbol at the beginning of the first two lines is the ASCII 
character for a page break. If the output had gone to the printer, each line 
would be the start of a n e w page. 
Examining the output in more detail, you should see that all of the input 

records have been processed. Therefore, something seems to be wrong with the end 
of file processing. 

To test the end of file processing, you will need to rerun the program, but 
stepping through all of the records becomes very tediousr Y o u will want to see only 
what happens after the last record is processed. 



A p p e n d i x A M . . so Focus Petsonal COBOL for Windows; Users Guide and Tutorial 

Fiaure A.77 End of File Error 

w 
7? f.r PBlHr-LIHl » M i a n . M M 

HHHHHHHMHHEi 
H - B J«| H M H H . « 

;t 28 t» »« s« 2a ' 

W 'IL J«| H M H H . « 

;t 28 t» »« s« 2a ' 
S« T « 3* » 28 :>«! • 

1 1 . . . 

Jb) Monitor Window for Entire R e c o r d 

M a k e sure that line 67 is highlighted. Select "Set advanced" from the D e b u g 
m e n u , as s h o w n in Figure A.79. This action brings up the Advanced breakpoint 
screen. Click o n the Condition radio button and enter the statement " H O U R S - I D = 
5" into the Parameter box. Your w i n d o w should look like Figure A.80. This advanced 
breakpoint will test the H O U R S - I D field each time the breakpoint line is reached to 
see whether it is equal to 5, the ID n u m b e r for the last record. Click o n the Set button 
and the Animator returns to the Execute screen. The breakpoint line has the message 
"Bcond" as s h o w n in Figure A.81. 

Fi fyre A.?8 Screen Output 



Appendix A Micro Focus Personal COBOL tor Windows: Users Guide and Tutorial 

Set Breakpoint to Find Last Record 

Mot"! UOUK 

MIL >.!-•« v̂ Wsj* 

3 

H PRIHl-UHL If* MlMh-lim 

Set Condition for Last Record 

^ « w « « parameter: 
Statement 

C gaia change 

r Program 

ffEontlHton 

r u r i * 

•1 ( M;i-.ri 1 j-i • H<-I;i' 

tvtty: (101 

The purpose of this breakpoint is to allow the program to run until the last 
record is reached. W h e n Animator reaches the breakpoint line and the H O U R S - I D 
field equals 5, you k n o w that the program is n o w processing the last record. 

Use the Compile/Run m e n u to Restart the program, and rerun it. The program 
runs until it finds the last record and displays the R u n message s h o w n in Figure 
A.82. Click on the O K button and use the watch button to step through the program 
until the R E A D statement occurs. As the highlighting shows in Figure A.83, the 
program has reached the end of the file and moves " N O " to the E O F - S W I T C H . This 
statement is the problem. In lines 47 and 48, the 5000-PROCESS-CHECK paragraph 
is performed until E O F - S W I T C H is equal to "YES." The A T E N D conditional statement 
should read MOVE "YES" TO E O F - S W I T C H . 

Since the wrong value was sent to the switch, the loop continued o n and tried 
to process a nonexistent record. Reading beyond the end of file is another c o m m o n 
error in programming. 

Correct the A T E N D clause, clear the breakpoint and recheck the program. 
W h e n you rerun the program, it should run to completion and produce the proper 
output. 

This tutorial has attempted to show s o m e of the debugging features of the 
Animator and h o w they can assist in the development of programs. Students should 



A p p e n d i x A Micro Focus Personal COBOL tot Windows: Users Guide and Tutorial 

experiment with the various features to find for themselves the features that will 
m a k e their work easier. 

Condition Breakpoint Set in Program 

L » 
1 . 1 

'I 
•n 

•n •n • n 
f 
tl 

I W T e - i t t f j - : ! • • ! n i l i l . •»•« boobs mm ••. mm 
IT-- IKWK: K ! W I)rT- ."OykliSi 
f t * IIOtjRi-tfORJil 8 . MS aasHs 
B i f I . IW. i HOtfiS PXVRflll 

BV HOURS WOMtt* 
I..- .1 .4 err ok»s:. k«y 

^ r 
!'! ,i;-T..d! ; . 
a i l ! - n t l H I-LlMT. t ' K « f DU«11.-1.INI. 

re A .82 Breakpoint Encountered Message 

v i 
Uu.lpu.r.l C I M uuniifri li HOUHS ID • i j 
0>>j C e M t d w c | 

jre A . 8 3 End of File Logic Error 

•houid be 'YES'-

... W 

- 1 

BODE HOUHS IB IO S i I ID T"t~"~"" 1 t , i — I 
r o w hours-nahf. U I W M R !f>»ii«a| i BdM.l 

hour, wmn s i r rttrwm - i - m ' " ^ - • • — > f — » - * — -

rv ' DTT CHBKTSV-
t< K l f ' ' « ' • 
1 ! H M » 

A 



Appendix A Micro Focus Personal COBOL tot Windows Useis Guide ana Tutonat 

M l 

Micro Focus has provided students with a powerful tool for learning the C O B O L 
language. The Animator has m a n y features, and this discussion has addressed only 
the ones that beginning programmers are likely to use. This tool can serve student 
programmers well because it provides an economical w a y to learn C O B O L and it is 
not restricted in any significant way. The programs developed through the use of 
the Animator can be taken to full function compilers, and they can be compiled to 
be production programs. 

W e hope that this discussion of the Animator will m a k e the task of learning 
h o w to use it easier. 

1 The monitor box has several buttons. The Find and Locate defn buttons do not seem to do anything. 
The cursor is located on the definition of the data item, and pressing either button does not move the 
cursor. Print produces a report of the data item statistics and Help brings up the Find Report Window 
help screen. 

2 Note that if the user then moves the program to the top window using the Tile option or expands the 
window to full screen, the program code is still in the same position relative to the left margin. 
Sometimes the left arrow on the scroll bar is not active and does not allow moving the screen to the 
left. If this occurs, click on the right scroll arrow and then the left arrow should become functional. 

3 The Animator does not show a "redo" icon on the tool bar. Redo allows the user to "undo" the most 
recent "undo." In other words, if the user has undone a change by mistake, redo allows the change to 
be restored. Redo can be activated by typing the word "redo" in the command window or pressing 
"Ait +Shift + Backspace." 

If the user wants to modify the toolbar to include a button for redo, the toolbar can be changed by using 
the Configure Interface option of the Options Menu. The toolbar page allows addition of buttons. The 
redo command has its own icon and can be easily inserted before the space after the undo button. 





This appendix consists of four sections that provide instructions for 
installing and making use of Personal COBOL, 

Section 1: Installation 
Section 2 : Creating Shortcuts for the Animator 
Section 3; Downloading Data and Source Files from the Web 
Section 4: Printing from COBOL programs with the Animator 

The installation procedure for the Micro Focus Personal C O B O L 
Animator is largely self-explanatory and similar to the installation for almost any 
other W i n d o w s software. This section steps you through the process and shows you 
the windows and messages you can expect to see as you install the software. W e 
r e c o m m e n d that you adopt all of the defaults unless you have the knowledge and 
need to configure the system differently. 

The installation as s h o w n here is done from the C D - R O M in Windows!).1"). The 
installation process is very similar w h e n using diskettes and w h e n under W i n d o w s 
3.1 or W i n d o w s N T . These alternative installation m o d e s should not cause any serious 
differences. 

Installation of the Animator performs the following tasks. 
1. Create a subdirectory o n the computer's hard disk called P C O B W I N . 

P C O B W I N , in turn, has two additional subdirectories called CLASSLIB and 
S A M P L E S . P C O B W I N contains all of the executable files necessary to run the 
Animator. CLASSLIB contains special files for Object-Oriented C O B O L . 
S A M P L E S contains a n u m b e r of C O B O L source files supplied by Micro 
Focus. These files demonstrate a n u m b e r of C O B O L concepts and 
demonstration programs for traditional and Object-Oriented C O B O L . 

2. Copy files into the appropriate directories. 
3. Build a W i n d o w s Program Manager Group containing icons to run the 

Animator. 
4. Modify the system environmental variables to allow the Animator to run 

properly. 
5. Reboot the system to allow the n e w variables to take effect. 



Appendix B Getting Started 

Open the Windows95 Start Menu 

O p e n the Windows95 Start M e n u by clicking o n the mm4 c o m m a n d button o n the 
task bar or the keyboard Start key. 

Select the Run Option and Start the Setup Process 

Click o n the R u n option from the Start M e n u s h o w n in Figure B.la. This action 
brings up the W i n d o w s h o w n in Figure B.lb. In this example, "D:" refers to the C D -
R O M drive. O n your machine the C D - R O M m a y have s o m e other letter. If you are 
installing from diskettes, you probably would use A: instead off):. "Setup.exe" is the 
n a m e of the program to install Personal C O B O L . Click o n the O K button and the 
W e l c o m e message box s h o w n in Figure B.lc appears. (Tick on O K again. 

Starting Animator Installation 

ZD-Rom dn 

jP 

0 m* 

If** n*on*.tm • Ad <r.n«tl CtruTi.jf l.ffHUI lo t 

yaw tjm&iHm 

I ' I F I ! IFW ILK !RL«LI(N IFF I'LHIH ULF INTT^LWJFFT 
FM.TTL' Y O U I TTF» P I R T I »HT* I .HL< « J I H A I I U I I ) 
•/(HI ILL *K»T W 4 H I !TI iftdJflB THIS S N F L V I W nvm 
M I L N M ^ITLUJI ••ITM •! F I U M F H 



p p e n d i x B - Getting Started 

i tep 3s Enter License Registration Information 
Micro Focus wants you to register your copy of the software and requests that you 
give your n a m e and affiliation information. Figure B.2 shows the License Registration 
process. Enter your n a m e and college or business into the License Registration 
Input w i n d o w in Figure B.2 a and click o n OK. This action will bring u p the License 
Registration Confirmation Window, as in Figure B.2b. If the information is correct, 
click o n the Yes button and the process continues. If you see s o m e error, click o n 
the N o button and the Input w i n d o w reappears for correction. 

License Registration 

\ti ON it* .II-WI II • xM-i-f,; 

| a | Enter Harme arid Aff i l iat ion j 
i 

• IF I I I • I K . » II I.V. RIRTL 

FTITM. I I ( 1 , 1 , 1 I 

Establish the Configuration 
The next step is to establish h o w Personal C O B O L will run. The setup process 
requests that you identify the subdirectory to contain the programs, determine the 
programs to install, a n d to give a n a m e to the Start M e n u Program entry. The 
wi n d o w in Figure B.3a suggests that Personal C O B O L should reside in C: \ P C O B W I N . 
Unless you need to change the drive or directory for s o m e reason, click on the O K 
button. 

The setup program next allows you to select the programs y o u will actually 
install. Figure B.3a shows the C o m p o n e n t Installation window. Be sure that you 
have sufficient hard disk space to install the system and that "Personal C O B O L for 
Windows" is selected. Y o u m a y choose not to install the Personal Dialog System(PDS) 
since it requires 4 megabytes of hard disk space and is not discussed in this book. 
Click o n the O K button to continue o n in the installation. 

The w i n d o w in Figure B.3c allows you to specify where to find the start icons 
for the Animator. The default entry is Personal C O B O L . Y o u have the option of 
including the icons in another program group or creating an entirely n e w group. 
Click o n the O K button w h e n you are ready. 



A p p e n d i x B — Getting Started 

Establishing Installation Preferences 

t *row i m a pittopprnt ywi m m w mcnw 

^ • M l Dutog S^ftwn i«q*ROI IVavnai ( OiQL ID V 

Ins Sbmbv H b b m m n ^ 

f" |-»iimrf l>HflU Hjilca 

aoMU> 

n>M« ctt™«« « m Wmctmn l'iagi*a 
M a m a * Steua » h u m itm im« 
PiHninflrt pi my mi K W H 
You „<in < h » w mi nathne *<»«> tola 

* far) « flCW (MM 
H*fw 

..lAccessoriet 
|CoMpaq Mua.ateetta 
3 Compaq Utilities 
JHdaak PRO 
| U o L M hx Windows 3S 
a Mania 
JMkiniolt Miinup 
JMitiotiWl WihIit 4 li 

I' "w ! ( . M M 

Step Si Establish Environment Variables 
Personal C O B O L uses the environmental variables to link together the various 
programs needed by the system and to assure that the operating system allocates 



Appendix B — Getting Started 

enough resources to those programs. The w i n d o w in Figure B . 4 explains 
environmental variables and the changes that will be made. Y o u should normally 
click o n the Modify button to use the default parameters. If you use s o m e other 
Micro Focus product such as the C O B O L Workbench or NetExpress, you m a y 
encounter s o m e environmental variable conflicts. 

Once you leave this screen, the setup program will begin to copy the files. 

I Setting Environment Variables 

i 

1 

Plrn'ir rtriidr il IIELUJJ ahuiftd muilily yvut iu)r.JIRJ(e-i 
It) >.rt thn enviinmnrnl fin fferaot'*) C U H O L 

tVi-nt-ial t i l M i l I M I mjivumnt unf Tumifjltii' ttj lirwt tynrmm p m u i mv T*Mj nwmwupaoC v a i u H t i 
t-AAhp i r l i^-ij-m*n>fltty n h e n ' i * * M W M U H *l«Hi •)• Ihay i wn t w i r t »«nu.tKp il yuu ha*«t M u o 
I m i l r • v> 4l IMIIV h i ' • J I M I i *F<* i i M i i N i r a i in JUA* • *•>)• n"'* i r 4 * » K b l 
phi r hung* iiii i imttmnr* *fi t M e i firfi m i * W M i thM it |NJV w«nl to wir f . W M WutLb*fM.h 
* o f i . H ' i I •..i)irtwn*ni ioi intuitu* t t i f c i t l ' m H I < « M « I f w a m * laimnam 
:-m-j« nh*,*t 4 ir*** <i (Mich M P f Nrt.QftVflHVI'i.UfttNV M ( 16 *«( U V MvwvMae/*) lot P a n and 
<!MHJl 4«i W.qJ.M. V< . , rAH .Ji l * U ) » i HV &4.J M u t e ,4H> Wffld*p.» I * i«4 I h e w 

I IK*UVI> » » « * 

w w w f i w l V i vim thouhl' hoot* iwi ostium iuiys '.,*tu» mouuv vow O V I O R W I bof 
i M.<: t o r i n a .y. Uk-t lb* the I'njonot Cf l&ui tut W.nacM* env*i<>'il"wi? Whtjn you 

. J . ' T I T Y I A * COthpUtd TL Mil «* HtO SFLVLT^WW**! till tfVKSAvltlJfl̂ t |lt J O U Y**nl to 
tun M u m I ,M m I Ijvi.l it/wklMMfJI tMtH tnmt^tMHttiMi^ttwmwanawnt 
VAI.oWi'i yi).iil**l I 
(Injun; « « L lUiKwi k YI , | dn nut IMyh TO I tumor ouut ouhM-IF* lwu Mvl I unl iu ( » • 
IEI«M I hit w R Mi ,m ti-.WL you Mill nlMdt/c tun 1*1 littt t#V HA I tir'uir yr« slivt 
WmittWI tffum phi M A N W « M yifflUIMI CDOIJI > IK* dOTtrKrt IUI I N I ayah 

Step 6: Copy Files 
The setup program n o w copies the files to the hard disk. The w i n d o w s h o w n 

in Figure B.5a keeps track of the progress. Normally you should allow the installation 
to continue, but it is possible to stop the process by clicking o n the Cancel button. If 
you cancel the process you will need to restart the entire installation process. W h e n 
copying is complete, you will receive the message box s h o w n in Figure B.5b. 

Step 7: Review README file 
The installation process directs you to the R E A D M E file. This document, 

shown in Figure B.6, contains on-line information that was not included in the 
printed documentation. Take note of the topics presented in this file. Y o u m a y find 
them helpful if you are having problems with the Animator. Y o u can also get to the 
file by using the "Readme" icon in the Start M e n u entry. 



Appendix B Getting Started 

Actual Installation 

I . M". LLTLWIHVILL K LIT 1-

sanation b t a t u s 

AF| "FIR TIFOI TARWA T*VRN • U-JURIL LU |WHH 

I ' N I S T O F I N tPi-trf RH-H N T ^ D H « }|B> \ DM i N N 
IT-«D ILN* M R « Q « N TETTT <#Y • FETING N V 

(b) All F i l e s C o p i e d 

README File 

Contents 
Welcome to Personal COBOL for Windows 
VERSION 1 1 

T H I S R E A D M E FILE COR.t3.NS EXTRA INFORMATION THAT IS NOT IRVCLUDED IN THE P E R S O N A ! C O B O L DOCUMENTATION. Y O U C A N READ IT AGAIN LATER FAY 

CLICKING ON THE ' R E A D M E " ICON. 

IF YOU DO NOT READ THIS FILE NOW, P L E A S E R E M E M B E R T H E S E TOPICS ARE AVAILABLE: 

For Heip on Help. Press F 1 

Step 8s Reboot the System 

After reviewing the R E A D M E file, you will see the windows s h o w n in Figure 
B .7. These windows explain that Personal C O B O L will not be functional until the 
system has been restarted a n d the n e w environment variables set. Reboot the 
system if you plan to use Personal C O B O L immediately. 

http://cor.t3.ns


Appendix B — Getting Started 

L . . Request to Restart 

inmpuix « t<i »trt* v»U HM t'&CttWKrf MlfMH fl 

$*«N »«»»<.>> t O B W jrf>*"is *JMH"{^ «««rfonstvfcnt 

Restart 

W i n d o w s allows the creation of "shortcuts" or icons that will start various 
applications. W h e n you installed Personal C O B O L , the installation process set up 
several shortcuts in the Start M e n u entry "Personal C O B O L . " O n e of those shortcuts 
is called Personal C O B O L and starts the Animator. W h e n the Animator begins to 
process, it has a default working directory of C : \ P C O B W I N \ S A M P L E S . However, it 
is likely that you will want to use s o m e other directory or a floppy disk to store your 
programs. Therefore, you m a y want to create one or more n e w shortcuts to m a k e 
things easier. 

By selecting Taskbar within the Start M e n u option Settings, as s h o w n in Figure 
B.8, you can create your o w n shortcuts. This option brings up the Taskbar Properties 
window, as in Figure B.9. M a k e sure that the "Start M e n u Programs" tab is o n top. 
Click o n the A d d button to create a n e w short cut. The A d d button starts a wizard to 
help you create a short cut. Figures B. 10 through B. 12 sh o w the windows the wizard 
presents and the options w e chose to build a shortcut for using C O B O L programs 
o n the A drive. 

The shortcut is not complete after the wizard has finished. F r o m the Taskbar 
Properties w i n d o w s h o w n in Figure B.9, select the Advanced option. A window 
similar to that shown in Figure B. 13 appears. Y o u will probably have to double-click 
o n Programs to show all of the subentries. Click on Personal C O B O L to show its 
contents. Next, select your entry and then click o n the file m e n u . At this point you 
should see something like Figure B. 14. By selecting Properties, you will open the 
window shown in Figure B. 15. M a k e sure that the Shortcut tab is showing, then enter 
the directory you wish to use into the "Start in:" text box. Click o n the O K button and 
you will be able to run the Animator using the directory containing your files. 

W e r e c o m m e n d the use of shortcuts because they help m a k e sure that your 
programs will find the correct input files. 

file://C:/PCOBWIN/SAMPLES


Appendix B — Getting Started 

figure B .8 Preparing to Create a Shortcut 

.JW«*0S»0«uww 

Settings option 

a* »t<t'f« 1 * • • 

Figure 8 .9 Taskbar Properties 

Start menu Sab • 

,4dd button -
Advanced button 



A p p e n d i x B Getting Started 

Set Program Group for Shortcut 

H 'An .ojofi Money 

;k f roe to; Windows 

/- Establish Name for Shortcut 

III 

Expanded List of Folders 

^ Compdq Utiles 
HtJaask PRO 
_apL,riS ta W w , f 

^ Mass? 
M<c ̂  rucu '•.ef-i.-fpfe 
MKucvjysi Monev 

M M . Oil «/ *. 4 0 

^ ' e T ' ' ^ 
_yr| Fteĵ jfourrd 

sALrA iO) IV Ds ktop 

Sfatibp 

J H-fsoras,: COBOL 

i a COBOL Piogom 

J i 



A p p e n d i x B — Getting Started 

r.hannfi ProoertiftR nf Shnrtr.i it 

File rnenu -

Properties option • 

H a t * ̂  i 
UP. ii 

He® 

-] - t -

J 1" 

Lf'JICr: I I T * 'CI W ElOOWi. 
SALSA fof she Desktop 

3/ Readme 
J • .idCOBGLPiogiar 

j jT" 
iliiiiiiiH 

1 5 Change the Default Program Directory 

Shortcut lab • 

Directory for programs 

it i i l j Normal nnndiw.i 

£r*J I ghdnpe SCAT. 



Appendix B — Getting Started 

D o w n l o a d i n g D a t a and S o u r c e Files f r o m the Wefc* 
All of the programs s h o w n in this book and the associated data files are available to 
you. They can be downloaded from the World Wide W e b . Y o u m a y find the entries 
under: www.prenhall.com\grauer_cobol. The process for downloading the files is 
self-explanatory. 

Printing from COBOL Programs with the Animator 
As discussed in Chapter 4, the SELECT and ASSIGN statements define external files 
to the C O B O L program. In mainframe applications, the specific printer is established 
outside the program through the use of Job Control Language (JCL). Hence, in a 
mainframe C O B O L program you might see a statement such as S E L E C T PRINT-
FILE A S S I G N T O UT-S-SYSOUT. UT-S-SYSOUT is a generic n a m e for an output 
device, and a programmer could write a JCL control statement to direct the data to a 
specific printer. 

C O B O L on personal computers works a little differently. Personal computers 
have output ports that can be directed to various peripheral devices. The most 
c o m m o n of these ports is "LPT1:". LPT1 is generally used for the printer directly 
attached to a PC. In s o m e cases, more than one printer can be attached to a PC, and 
in other cases the P C m a y be part of a network and print to a network printer. 

Printing to a n A t t a c h e d Printer 
In printing to an attached printer, there are several methods for defining a printer. 
The simplest method is to say A S S I G N T O PRINTER. The C O B O L compiler directs 
the output to LPT1 as the default system printer. Another w a y of doing the same 
thing is to say A S S I G N T O T .PT1:'. This statement specifically directs the file to the 
printer. In the same way, the programmer can direct a report to a second attached 
printer by coding A S S I G N T O 'LPT2:'. 

Printing t o the Screen or Data Files 

Printed output can also be directed to output devices other than printers. For 
example, you m a y not always want to print your report w h e n debugging the program. 
Instead, you m a y find it m o r e convenient to view the results on the screen. This 
process is quicker than printing and can save paper. To print to the screen, simply 
code A S S I G N T O 'CON'. C O N stands for "console" or display device. Once you 
decide to print a hard copy of the report, change the A S S I G N statement to LP IT and 
recompile. 

The printed output can also be directed to a file capable of being printed 
through the use the Notepad W i n d o w s accessory. Again, this is done through the 
ASSIGN statement. This time m a k e the destination something like "REPORT.TXT". 
The output of the program goes to a file instead of the printer. To print the file, open 
it in Notepad and print from this accessory. However, you m a y want to edit the file 
before printing. 

If you have coded a statement such as: 
WRITE PRINT-LINE AFTER ADVANCING PAGE. 

http://www.prenhall.com/grauer_cobol


Appendix B — Getting Started 

C O B O L will insert a control character into the line telling the printer to start at the 
top of the next page. Notepad does not use this character a n d you will want to 
remove it. 

Print ing to a Network Printer 

Personal C O B O L does not utilize the W i n d o w s 9 5 or W i n d o w s N T spooling 
capabilities, and printing to a network printer can be difficult. Even if a network 
printer is the default printer, A S S I G N T O P R I N T E R causes C O B O L to print to the 
attached printer. The W i n d o w s printer assignments are ignored. 

In order to print directly to a network printer, you will need to consult with 
your instructor or network administrator as to the proper procedure. A beginning 
place is to use the M S - D O S c o m m a n d " N E T U S E " to assign a port n a m e to the 
network printer. The format for this c o m m a n d is: 

net use l p t 3 : \ \ s e r v e r \ p r i n t e r 

In this case, "lpt3:" is the printer n a m e to be used in the program. "Server" is 
the n a m e of the server supporting the printer, and "printer" is the network n a m e for 
the printer. 

j > *:; . t ing O v e r s i z e P**ges 

In the mainframe environment line printers usually have 132 characters per line. 
However, most standard P C printers print 80 characters per line. If the report line is 
longer than 80 characters, most P C printers will "wrap" the print line. That is, the 
printer prints as 80 characters o n the first line and the rest o n a second line. As a 
result, the output is distorted and hard to read. 

There are several solutions to the problem. The first is to see whether the 
printer has s o m e sort of switch or combination of buttons to print in "compressed" 
m o d e . Consult your user's manual to see h o w to accomplish this adjustment. 

A second alternative is to print in "landscape" m o d e . Portrait m o d e , where the 
page is taller than it is wide, is the standard w a y of printing. However, most inkjet 
and laser printers are also capable of printing the page "sideways" so that the 
resulting page is wider than it is tall. This m o d e is called landscape. Again, consult 
your user's manual to see h o w this m a y be accomplished. 

A final alternative is to code your program so that it causes the printer to 
operate in compressed or landscape m o d e . In the subdirectory C : \ P C O B W I N \ 
S A M P L E S , Micro Focus has provided an example program for sending control 
characters directly to the printer. Since m a n y printers use different control 
characters, this process can be confusing, and you will need to find the proper 
characters from your user's manual. 

file:////server/printer


ACCEPT CLASS DEBUG-SUB-1 END-RETURN 
ACCESS CLOCK-UNITS DEBUG-SUB-2 END-REWRITE 
ADD CLOSE DEBUG-SUB-3 END-SEARCH 
ADVANCING COBOL DEBUGGING END-START 
AFTER CODE DECIMAL-POINT END-STRING 
ALL CODE-SET DECLARATIVES END-SUBTRACT 
ALPHABET COLLATING DELETE END-UNSTRING 
ALPHABETIC COLUMN DELIMITED END-WRITE 
ALPHABETIC-LOWER COMMA DELIMITER ENTER 
ALPHABETIC-UPPER COMMON DEPENDING ENVIRONMENT 
ALPHANUMERIC COMMUNICATION DESCENDING EOP 
ALPHANUMERIC-EDI TED COMP DESTINATION EQUAL 
ALSO COMPUTATIONAL DETAIL ERROR 
ALTER COMPUTE DISABLE ESI 
ALTERNATE CONFIGURATION DISPLAY EVALUATE 
AND CONTAINS DIVIDE EVERY 
ANY CONTENT DIVISION EXCEPTION 
ARE CONTINUE DOWN EXIT 
AREA CONTROL DUPLICATES EXTEND 
AREAS CONTROLS DYNAMIC EXTERNAL 
ASCENDING CONVERTING 
ASSIGN COPY EG I FALSE 
AT CORR ELSE FD 
AUTHOR CORRESPONDING EMI FILE 
BEFORE 
BINARY 
BLANK 
BLOCK 
BOTTOM 
BY 

COUNT 
CURRENCY 

ENABLE 
END 
END-ADD 

FILE-CONTROL 
FILLER 
FINAL 

BEFORE 
BINARY 
BLANK 
BLOCK 
BOTTOM 
BY 

DATA END-CALL FIRST 

BEFORE 
BINARY 
BLANK 
BLOCK 
BOTTOM 
BY 

DATE END-COMPUTE FOOTING 

BEFORE 
BINARY 
BLANK 
BLOCK 
BOTTOM 
BY DATE-COMPILED END-DELETE FOR 

BEFORE 
BINARY 
BLANK 
BLOCK 
BOTTOM 
BY DATE-WRITTEN END-DIVIDE FROM 
CALL DAY END-EVALUATE 
CANCEL DAY-OF-WEEK END-IF GENERATE 
CD DE END-MULTIPLY GIVING 
CF DEBUG-CONTENTS END-OF-PAGE GLOBAL 
CH DEBUG-ITEM END-PERFORM GO 
CHARACTER DEBUG-LINE END-READ GREATER 
CHARACTERS DEBUG-NAME END-RECEIVE GROUP 



A p p e n d i x C Reserved Words 

HEADING 
HIGH-VALUE 
HIGH-VALUES 

1-0 
I-O-CONTROL 
IDENTIFICATION 
IF 
IN 
INDEX 
INDEXED 
INDICATE 
INITIAL 
INITIALIZE 
INITIATE 
INPUT 
INPUT-OUTPUT 
INSPECT 
INSTALLATION 
INTO 
INVALID 
IS 

JUST 

JUSTIFIED 

KEY 

LABEL 
LAST 
LEADING 
LEFT 
LENGTH 
LESS 
LIMIT 
LIMITS 
LINAGE 
LINAGE-COUNTER 
LINE 
LINE-COUNTER 
LINES 
LINKAGE 
LOCK 
LOW-VALUE 
LOW-VALUES 
MEMORY 
MERGE 
MESSAGE 
MODE 
MODULES 
MOVE 
MULTIPLE 
MULTIPLY 

NATIVE 
NEGATIVE 
NEXT 

NO 
NOT 
NUMBER 
NUMERIC 
NUMERIC-EDITED 

OBJECT-COMPUTER 
OCCURS 
OF 
OFF 
OMITTED 
ON 
OPEN 
OPTIONAL 
OR 
ORDER 
ORGANIZATION 
OTHER 
OUTPUT 
OVERFLOW 

PACKED-DECIMAL 
PADDING 
PAGE 
PAGE-COUNTER 
PERFORM 
PF 
PH 
PIC 
PICTURE 
PLUS 
POINTER 
POSITION 
POSITIVE 
PRINTING 
PROCEDURE 
PROCEDURES 
PROCEED 
PROGRAM 
PROGRAM-ID 
PURGE 

QUEUE 
QUOTE 
QUOTES 

RANDOM 
RD 
READ 
RECEIVE 
RECORD 
RECORDS 
REDEFINES 
REEL 
REFERENCE 
REFERENCES 
RELATIVE 
RELEASE 

REMAINDER 
REMOVAL 
RENAMES 
REPLACE 
REPLACING 
REPORT 
REPORTING 
REPORTS 
RERUN 
RESERVE 
RESET 
RETURN 
REVERSED 
REWIND 
REWRITE 
RF 
RH 
RIGHT 
ROUNDED 
RUN 

SAME 
SO 
SEARCH 
SECTION 
SECURITY 
SEGMENT 
SEGMENT-LIMIT 
SELECT 
SEND 
SENTENCE 
SEPARATE 
SEQUENCE 
SEQUENTIAL 
SET 
SIGN 
SIZE 
SORT 
SORT-MERGE 
SOURCE 
SOURCE-COMPUTER 
SPACE 
SPACES 
SPECIAL-NAMES 
STANDARD 
STANDARD-1 
STANDARD-2 
START 
STATUS 
STOP 
STRING 
SUB-QUEUE-1 
SUB-QUEUE-2 
SUB-QUEUE-3 
SUBTRACT 
SUM 
SUPPRESS 
SYMBOLIC 

SYNC 
SYNCHRONIZED 

TABLE 
TALLYING 
TAPE 
TERMINAL 
TERMINATE 
TEST 
TEXT 
THAN 
THEN 
THROUGH 
THRU 
TIME 
TIMES 
TO 
TOP 
TRAILING 
TRUE 
TYPE 

UNIT 
UNSTRING 
UNTIL 
UP 
UPON 
USAGE 
USE 
USING 

VALUE 
VALUES 
VARYING 

WHEN 
WITH 
WORDS 
WORKING-STORAGE 
WRITE 

ZERO 
ZEROES 
ZEROS 

/ 



14 imr* ^Ssmm « s J I 

This appendix contains the composite language skeleton of the revised version of 
the American National Standard COBOL. It is intended to display complete and 
syntactically correct formats. 

The leftmost margin on pages 710 through 718 is equivalent to margin A in a 
C O B O L source program. The first indentation after the leftmost margin is equivalent 
to margin B in a COBOL source program. 

O n pages 719 through 729 the leftmost margin indicates the beginning of the 
format for a n e w COBOL verb. The first indentation after the leftmost margin 
indicates continuation of the format of the COBOL verb. The appearance of the 
italic letter S, R, I, or Wto the left of the format for the verbs CLOSE, OPEN, READ, 
and W R I T E indicates the S e q u e n t i a l I-O module, Re la t ive 1-0 module, I n d e x e d I-O 
module, or Report Writer module in which that general format is used. The following 
formats are presented: 

Identification Division 712 
Environment Division 712 
File Control Entry 713 
Data Division 714 
File Description Entry 715 
Data Description Entry 716 
Communication Description Entry 717 
Report Description Entry 718 
Report Group Description Entry 718 
Procedure Division 719 
C O B O L Verbs 720 
C O P Y and R E P L A C E Statements 731 
Conditions 732 
Qualification 733 
Miscellaneous Formats 733 
Nested Source Programs 734 
A Series of Source Programs 735 



A p p e n d i x D COBOL-85 Reference Summary 

IDENTIFICATION DIVISION-

PROGRAM- ID. p rog ram - name IS 
COMMON 

INITIAL 
PROGRAM 

[AUTHOR, [comment-entry] . . . ] 

[INSTALLATION, [comment - en t ry ] . . . ] 

[DATE-WRITTEN, [comment - en t ry ] . . . ] 

[DATE-COMPILED, [comment- en t ry ] . . . ] 

[SECURITY, [comment-entry] . . . ] 

[ENVIRONMENT DIVIS ION. 

[CONFIGURATION SECTION. 

[SOURCE-COMPUTER, [computer-name [WITH DEBUGGING MODE] . ] ] 

[PROGRAM COLLATING SEQUENCE I S alphabet - name - 1] 

[SEGMENT-LIMIT IS segment - number] . ] ] 

[SPECIAL-NAMES. [ [ implementor-name-1 

I S mnemonic-name-1 [ON STATUS I S cond i t i on -name-1 [OFF STATUS I S cond i t i on -name-2 ] ] 

IS mnemonic-name-2 [Off STATUS I S cond i t ion -name-Z [ON STATUS I S condi t i on-name - 1] ] 

[ON STATUS IS condi t i on-name-1 [OFF STATUS IS cond i t ion-name-2 ] ] 

[OFF STATUS I S cond i t ion-name-2 [ON STATUS IS cond i t ion-name-1] ] 

[ALPHABET alphabet - name-1 I S 

STANDARD-1 

STANDARD-2 

NATIVE 

implementor-name-2 

| [THROUGH] 
l i t e r a l - 1 

l i t e r a l - 2 
[THRU j 

(ALSO l i t e r a l - 3 

SYMBOLIC CHARACTERS \ \ {symbol i c - c h a r a c t e r - 1 

] • 

I S 

ARE 
{ i n t e g e r - l j . [IN a lphabet -name-2 ] 

CLASS c lass-name IS - H i t e r a l - 4 
[through] 

[thru J 
1 i t e r a l - 5 

[CURRENCY SIGN I S l i t e r a l - 6 ] 

[DECIMAL-POINT I S COMMA], ] ] ] 

[INPUT-OUTPUT SECTION-

F I L E - CONTROL. 

{ f i l e - c o n t r o l - e n t r y } . . . 



File Control hntry 

(continued) 

[I - 0 - CONTROL. 

RERUN ON 
Jfi 1 e-name - 1 
[implementor- name-1 

EVERY 

[END OF] \ ~ \ OF f i l e - n a m e - 2 jL— J [unit] 
[ i n tege r - 1 RECORDS 
i n t e g e r - 2 CLOCK - UNITS 
condi t ion-name- 1 

SAME 

RECORD  

SORT 

SORT-MERGE 
AREA FOR f i 1 e - name - 1 { f i l e - n a m e - 2 } 

MULTIPLE FILE TAPE CONTAINS 
{ f i l e - n a m e-3 [POSITION IS integer-1] } . . 

SEQUENTIAL FILE 
SELECT [OPTIONAL] f i l e - n a m e - 1 

implementor-name - 1 

l i t e r a l - 1 ASSIGN TO 

RESERVE i n t e g e r - 1 

[ [ORGANIZATION IS] [LINE]SEQUENTIAL] 

I data - name - 1 

"area " 
AREAS 

PADDING CHARACTER IS 

RECORD DELIMITER IS 

[ l i t e r a l - 2 

STANDARD - 1 
[implementor - name - 2 

[ACCESS MODE IS SEQUENTIAL] 

[FILE STATUS IS d a t a - n a m e - 2 ] 

RELATIVE FILE 
SELECT [OPTIONAL] f i l e - name - 1 

[ implementor-name - 1 

[literal - 1 1 

"area " 
AREAS 

ASSIGN TO 

RESERVE i n t e g e r - 1 

[ORGANIZATION IS] RELATIVE 

SEQUENTIAL [RELATIVE KEY IS data - name - 1 ] ' 
ACCESS MODE IS [ [RANDOM [ 

[DYNAMICj RELATIVE KEY IS d a t a - n a m e - 1 

[FILE STATUS IS d a t a - n a m e - 2 ] 



A p p e n d i x D — COBOL-85 Reference Summary 

cvCi'! i t - .iy-. (continued) 

INDEXED FILE 

SELECT [OPTIONAL] f i l e - n a m e - 1 

f implementor- name- 1 

1 i t e r a l - 1 
ASSIGN TO 

RESERVE i n t e g e r - 1 

[ORGANIZATION I S ] INDEXED 

SEQUENTIAL] 

1 

~AREA ' 

AREAS 

ACCESS MODE I S RANDOM 

DYNAMIC 

RECORD KEY I S d a t a - n a m e - 1 

[ALTERNATE RECORD KEY I S d a t a - n a m e - 2 [WITH DUPLICATES] 

SORT OR MERGE FILE 

SELECT f i l e - n a m e - 1 ASSIGN TO 
implementor- name - 1 

l i t e r a l - 1 

[DATA DIVISION, 

[F ILE SECTION. 

[ f i l e - desc r ip t i on - ent ry 

{ r e c o r d - d e s c r i p t i o n - e n t r y ) . . . ] . 

[sor t - merge - f i 1 e - descr i p t i on - entry 

{ r e c o r d - d e s c r i p t i o n - e n t r y } . . . ] . 

[report - f i l e - d e s c r i p t i o n - e n t r y ] . . 

[WORKING - STORAGE SECTION. 

7 7 - l e v e l - d e s c r i p t i o n - e n t r y 

r e c o r d - d e s c r i p t i o n - e n t r y 

[LINKAGE SECTION. 

7 7 - 1 e v e l - d e s c r i p t i o n - e n t r y 

r e c o r d - d e s c r i p t i o n - e n t r y 
] 

[COMMUNICATION SECTION. 

[communi c a t i on -desc r i p t i o n - e n t r y 

[ r e c o r d - d e s c r i p t i o n - e n t r y ] . . . ] . . . ] 

[REPORT SECTION. 

[ report - d e s c r i p t i o n - ent ry 

{ r e c o r d - g r o u p - d e s c r i p t i o n - e n t r y ) . . . ] . . . ] ] 



File Description Entry 

S E Q U E N T I A L F I L E 

FD f i l e - n a m e - 1 

[ IS EXTERNAL] 

[ IS GLOBAL! 

BLOCK CONTAINS [ i n teger - 1 TO] i n t ege r - 2 (RECORDS 1 

CHARACTERS| 

RECORD 

CONTAINS i n t e g e r - 3 CHARACTERS 

I S VARYING IN SIZE [ [FROM i n t e g e r - 4 ] [TO i n t e g e r - 5 ] CHARACTERS] 

[DEPENDING ON data - name-1] 

CONTAINS i n t e g e r - 6 TO i n t e g e r - 7 CHARACTERS 

[RECORD IS ] [ s tandard ] 
LABEL \ \ 

[RECORDS AREJ OMITTED j 

VALUE OF [ implementor-name-
1 t c [da ta -name-2[ | 

1 iteral-1 

DATA 
I RECORD I S j 

[RECORDS ARE j 
(da ta -name-3} . . . 

[ d a t a - n a m e - 4 , 
LINAGE I S i \ LINES 

[ i n t e g e r - 8 

LINES AT TOP 
data-name - 6 

i n teger -10 

[CODE-SET I S a lphabet-name -1] . 

, da ta -name-5 
WITH FOOTING AT i, 

i n t e g e r - 9 

LINES AT BOTTOM l^-" 3 " 1 6 - 7 

[ i n tege r -1 1 

R E L A T I V E F I L E 

FD f i 1 e - name - 1 

[ IS EXTERNAL] 

[ IS GLOBAL] 

BLOCK CONTAINS [ i n tege r - 1 TO] i n t ege r - 2 
[ r e c o r d s 1 

i c h a r a c t e r s [ 

RECORD 

CONTAINS i n t e g e r - 3 CHARACTERS 

I S VARYING IN SIZE [ [FROM i n t e g e r - 4 ] [TO i n t e g e r - 5 ] CHARACTERS] 

[DEPENDING ON data-name -1] 

CONTAINS i n t e g e r - 6 TO i n t e g e r - 7 CHARACTERS 

LABEL 
[RECORD I S ) [STANDARD] 

[RECORDS AREJ [OMITTED j 

VALUE OF \ implementor-name- 1 I S 
data-name -2 

l i t e r a l - 1 

DATA 
JRECORD I S | 

[RECORDS ARE] 
(da ta -name- 3} 



A p p e n d i x D COBOL-85 Reference Summary 

ascription Entry (continued) 

SORT-MERGE FILE 

SO f i l e - n a m e - 1 

RECORD 

CONTAINS i n t e g e r - 1 CHARACTERS 

I S VARYING IN S I Z E [ [FROM in teger - 2 ] [TO in tege r - 3 ] CHARACTERS] 

[DEPENDING ON data-name-1] 

CONTAINS i n t e g e r - 4 TO i n t e g e r - 5 CHARACTERS 

DATA 
/RECORD IS 
[RECORDS ARE 

{data-name -2 ) . . 

REPORT FILE 

FD f i 1 e - name -1 

[ IS EXTERNAL] 

[ IS GLOBAL] 

BLOCK CONTAINS [ i n t e g e r - 1 TO] i n t ege r - 2 
[RECORDS ] 

I CHARACTERS 

RECORD 

CONTAINS i n t e g e r - 3 CHARACTERS 

I S VARYING IN S IZE [ [FROM in tege r - 4 ] [TO in teger - 5 ] CHARACTERS] 

[DEPENDING ON data-name-1] 

CONTAINS i n t e g e r - 6 TO i n t e g e r - 7 CHARACTERS 

LABEL 
[RECORD I S [ [STANDARDl 

[RECORDS ARE[ [OMITTED J 

VALUE OF [ implemented-name-1 I S 

[CODE-SET I S a lphabet-name -1] 

[REPORT I S 

[REPORTS ARE 
{report -name-1} . . 

data-name -2 

l i t e r a l - 1 

INDEXED FILE 

FD f i l e - n a m e - 1 

[ IS EXTERNAL] 

[ IS GLOBAL] 

BLOCK CONTAINS [ i n t e g e r - 1 TO] i n t e g e r - 2 
RECORDS | 

CHARACTERS/ 

RECORD 

CONTAINS i n t e g e r - 3 CHARACTERS 

I S VARYING IN S I Z E [ [FROM i n t e g e r - 4 ] [TO i n t e g e r - 5 ] CHARACTERS] 

[DEPENDING ON data-name -1 ] 

CONTAINS i n t e g e r - 6 TO i n t e g e r - 7 CHARACTERS 

LABEL 
[RECORD IS ] [STANDARD] 
[RECORDS AREj [OMITTED J 

VALUE OF i implementor-name- 1 I S 
da ta -name -2 

l i t e r a l - 1 

DATA 
/RECORD I S 

I RECORDS ARE 
{data-name-3} . . 



Data Description Entry 

i l i l l i 1 

FORMAT 1 

level-number 
data - name - 1 

FILLER 

[REDEFINES da ta -name-2 ] 

[IS EXTERNAL] 

[ IS GLOBAL] 

(PICTURE^ 

m J 

[USAGE IS] 

[SIGN IS] 

IS c h a r a c t e r - s t r i n g 

BINARY 
COMPUTATIONAL 
COMP 
DISPLAY 
INDEX 
PACKED - DECIMAL 

I LEADING ) 
TRAILING] 

OCCURS i n t e g e r - 2 TIMES 

[SEPARATE CHARACTER] 

[ASCENDING 1 
1 } KEY IS da ta -name-3} 
I DESCENDING I 

[INDEXED BY { index-name-1} . . . ] 

OCCURS i n t e g e r - 1 JO i n t e g e r - 2 TIMES DEPENDING da ta -name-4 

[ASCENDING ] 
KEY IS {da ta -name-3 } . . . 

[DESCENDING I 

[INDEXED BY {index - name - 1} . . . ] 

fSYNCHRONIZED "left " 
RIGHT 

RIGHT 

[SYNC 

[ just i f ied 
[JUST 

[BLANK WHEN ZERO] 

[VALUE IS l i t e r a l - 1 ] 

FORMAT 0 

66 d a t a - n a m e - 1 RENAMES da ta -name-2 
[THROUGH] 
[THRU j 

da ta -name-3 

FORMAT 3 

condi t ion-name - 1 
[VALUE IS 
[VALUES ARE 

1 i t e r a l - 1 [THROUGH 1 
[THRU j 

l i t e r a l - 2 



Appendix O COBOL-85 Reference Summary 

IS, ft' 

FORMAT 1 

CD cd-name -1 

FOR [ I N I T I A L ] INPUT 

[ [SYMBOLIC QUEUE IS data-name -1 ] 

[SYMBOLIC SUB-QUEUE - 1 I S data-name-2] 

[SYMBOLIC SUB-QUEUE -2 I S da ta-name -3 ] 

[SYMBOLIC S U B - Q U E U E - 3 I S da ta-name -4 ] 

[MESSAGE DATE I S da ta-name -5 ] 

[MESSAGE TIME I S da ta -name - 6 ] 

[SYMBOLIC SOURCE I S data-name -7 ] 

[TEXT LENGTH I S da ta -name - 8 ] 

[END KEY I S da ta -name - 9 ] 

[STATUS KEY I S data - name - 10] 

[MESSAGE COUNT I S data - name - 11] ] 

[ da ta -name - 1 , da ta -name - 2 , d a t a - n a m e - 3 , 

da ta -name - 4 , da ta -name- 5 , da ta -name - 6 , 

data-name -7 , da ta -name - 8 , da ta -name - 9 , 

data -name -10, data-name -11] 

FORMAT 2 

CD cd-name -1 FOR OUTPUT 

[DESTINATION COUNT I S data-name -1 ] 

[TEXT LENGTH I S da ta-name -2 ] 

[STATUS KEY I S da ta -name-3] 

[DESTINATION TABLE OCCURS i n t e g e r - 1 TIMES 

[INDEXED BY { i ndex - name -1} . . . ] ] 

[ERROR KEY I S data-name -4] 

[SYMBOLIC DESTINATION I S data-name -5] . 

FORMAT 3 

CO cd-name -1 

FOR [ I N I T I A L ] IzO 

[ [MESSAGE DATE I S da ta -name -1 ] 

[MESSAGE TIME I S da ta -name - 2 ] 

[SYMBOLIC TERMINAL I S da ta -name- 3 ] 

[TEXT LENGTH I S da ta -name - 4 ] 

[END KEY IS da ta -name - 5 ] 

[STATUS KEY I S da ta -name - 6 ] ] 

[ da ta -name - 1 , d a t a - n a m e - 2 , d a t a - n a m e - 3 , 

da ta -name - 4 , d a t a - n a m e - 5 , da ta -name -6 ] 



Report Group Description Entry 

RD report-name-1 
[IS GLOBAL] 
[CODE literal-1] 
[CONTROL IS } J{data-name-1} . . . 
[CONTROLS ARE j [FINAL [data - name - 1] . . . 

[PAGE 
LIMIT IS 
LIMITS ARE integer-1 

LINE 
LINES [HEADING integer-2] 

[FIRST DETAIL integer-3] [LAST DETAIL integer-4] 
[FOOTING integer-5] ] . 

FORMAT 1 
01 [data - name -1] 

LINE NUMBER IS integer-! [ON NEXT PAGE] 
PLUS integer-2 

integer-3 
NEXT GROUP IS \ PLUS integer-4 

NEXT PAGE 

[REPORT HEADING] 

TYPE IS 

[Eti 
PAGE HEADING] 
PH j 

[CONTROL HEADING] Jdata-name-2 
I CH J [FINAL 
[detail] 
l5i [ [CONTROL FOOTING! [ d a t a - n a m e - 3 

IQE J [final 
PAGE FOOTING' 
EE 

(REPORT FOOTING 
[BE 

[ [USAGE IS] DISPLAY] . 

FORMAT Z 
level-number [data - name -1] 

[integer-1 [ON NEXT PAGE]] LINE NUMBER IS [PLUS integer-2 

[ [USAGE IS] DISPLAY] 



A p p e n d i x D •-- COBOL-85 Reference Summary 

mm (continued) 

FORMAT 3 

level-number [data-name-1] 

fPICTURE] 
I 1 I S c h a r a c t e r - s t r i n g 

jpjc j 
[ [USAGE I S ] DISPLAY] 

, [LEADING , 
[SIGN I S ] \ } SEPARATE CHARACTER 

TRAILING 

RIGHT 
[justified 

[ JUST 

[BLANK WHEN ZERO] 

LINE NUMBER I S 
i n t e g e r - 1 [ON NEXT P A G E ] | 

PLUS i n t e g e r - 2 

[COLUMN NUMBER I S i n t e g e r - 3 ] 

SOURCE I S i d e n t i f i e r - i 

VALUE I S I i t e r a l - 1 

(SUM { i d e n t i f i e r - 2 } . . . [UPON (da ta -name-2 ) 

[ d a t a - n a m e - 3 ] 

. ] i 

RESET ON 
FINAL 

[GROUP INDICATE] 

FORMAT 1 

[PROCEDURE DIVISION [USING (da ta -name-1 } . . . ] . 

[DECLARATIVES. 

(sect ion-name SECTION [segment - number] . 

USE statement, 

[paragraph-name. 

[sentence] . . . ] . . . } . . . 

END DECLARATIVES.] 

(sect ion-name SECTION [segment - number] . 

[paragraph-name. 

[sentence] . . . ] . . . } . . . ] 

FORMAT 2 

[PROCEDURE DIVISION [USING ( d a t a - n a m e - 1 ) . . . ] . 

[paragraph-name. 

[sentence] . . . } . . . ] 



COBOL Verbs 

ACCEPT ident i f ier -1 [FROM mnemonic-name-1] 

ACCEPT ident i f ier-2 FROM 

DATE 
DAY 
DAY-OF-WEEK 
TIME 

ACCEPT cd-name-1 MESSAGE COUNT 

ADD 
ident i f ier-1 , . TO { ident i f ier-2 [ROUNDED] 

[ l i t e ra l -1 

[ON SIZE ERROR imperative-statement -1] 

[NOT ON SIZE ERROR imperati ve-statement - 2] 

[END - ADD] 

ADD 
ident i f ie r -1 

TO 
ident i f ier-2 

l i t e ra l -1 J [ l i te ra l -2 

GIVING { ident i f ier-3} [ROUNDED] } . . . 

[ON SIZE ERROR imperative-statement - 1] 

[NOT ON SIZE ERROR imperative-statement - 2] 

[END-ADD] 

[CORRESPONDING 
ADD [ [ ident i f ier -1 TO ident i f ier-2 [ROUNDED] 

ICQRR j 

[ON SIZE ERROR imperative- statement - 1] 

[NOT ON SIZE ERROR imperative- statement - 2] 

[END-ADD] 

ALTER {procedure-name-1 TO [PROCEED TO] procedure-name-2} . 

CALL 
ident i f ie r -1 
l i t e ra l - 1 USING 

[BY REFERENCE] { ident i f ier-2} . 
BY CONTENT { ident i f ier-2} . . . 

[ON OVERFLOW imperati ve-statement - 1] [END-CALL] 

CALL 
ident i f ie r -1 

1 i teral -1 
USING 

[BY REFERENCE] { ident i f ier-2} 
BY CONTENT { ident i f ier-2} . . 

[ON EXCEPTION imperative-statement-1] 

[NOT ON EXCEPTION imperati ve-statement-2] 

[END-CALL] 



i A p p e n d i x 0— COBOL-85 Reference Summary 

C O B O L Verbs (continued) 

CANCEL 
iden t i f i e r - 1 

l i t e r a l - 1 

CLOSE f i le-name - 1 

[REEL 
{UNIT 

WITH 

[FOR REMOVAL] 

NO REWIND] 

LOCK I 

CLOSE { f i l e -name - 1 } [WITH LOCK] } . . . 

COMPUTE { i d e n t i f i e r - 1 [ROUNDED] } . . . = a r i t h m e t i c - e x p r e s s i o n - 1 

[Of S IZE ERROR impera t i ve -s ta temen t -1 ] 

[NOT ON SIZE ERROR imperat ive - statement - 2] 

[END-COMPUTE] 

CONTINUE 

nri_ETE fi ]e -name- l RECORD 

[INVALID KEY impera t i ve -s ta temen t -1 ] 

[NOT INVALID KEY impe ra t i ve -s ta temen t - 2 ] 

[END- DELETE] 

[INPUT [TERMINAL] j 

DISABLE • I - O TERMINAL 

OUTPUT 

cd-name-1 WITH KEY 
i d e n t i f i e r - 1 

l i t e r a l - 1 

DISPLAY 
ident i f i e r - 1 

1 i t e r a l - 1 
[UPON mnemonic-name-1] [WITH NO ADVANCING! 

DIVIDE 
i d e n t i f i e r - 1 

l i t e r a l - 1 
INTO { i d e n t i f i e r - 2 [ROUNDED] } 

[ON S IZE ERROR impera t i ve-s ta tement - 1] 

[NOT ON SIZE ERROR imperat i ve -s ta tement - 2] 

[END- DIVIDE] 

ident i f i e r - 1 
DIVIDE \ \ INTO 

[ l i t e r a l - 1 

i den t i f i e r - 2 

l i t e r a l - 2 

GIVING { i d e n t i f i e r - 3 [ROUNDED] } . . . 

[ON SIZE ERROR impe ra t i ve - statement - 1] 

[NOT ON S IZE ERROR imperat i ve -s ta tement - 2] 

[END-DIV IDE] 



COBOL Verbs 

C O B O L Verbs (continued) 

DIVIDE { " e n t 1 f 1 e r . i l B y | i d e n t l f i e r - 2 1  
[ l i t e r a l - 1 j ~ [ l i t e r a l - 2 J 

GIVING { i d e n t i f i e r - 3 [ROUNDED! } . . . 

[ON S IZE ERROR imperat ive-s ta tement -1] 

[NOT ON S I Z E ERROR impe ra t i ve - s ta temen t -2 ] 

[END- DIVIDE] 

j i dent i fi er- 1 j i dent i f i er -~ 2) 
DIVIDE C . , , INTO , \ GIVING i d e n t i f i e r - 3 [ROUNDED] 

[l i t e ra l -1 J [ l i t e r a l - 2 j 

REMAINDER i d e n t i f i e r - 4 

[ON SIZE ERROR impera t i ve - statement - 1] 

[NOT ON SIZE ERROR impe ra t i ve - s t a temen t -2 ] 

[END-DIVIDE] 

„ , . , , „ , - [ i d e n t i f i e r - 1 ] [ i d e n t i f i e r - 2 l 
DIVIDE , , [ B Y GIVING i d e n t i f i e r - 3 [ROUNDED] 

[ l i t e r a l - 1 j " [ l i t e r a l - 2 j 

REMAINDER i d e n t i f i e r - 4 

[ON S I Z E ERROR impera t i ve -s ta temen t - 1 ] 

[NOT ON S IZE ERROR impe ra t i ve - s t a temen t -2 ] 

[END-D IV IDE ] 

[INPUT [TERMINAL]] 
ENABLE i l - 0 TERMINAL cd-name -1 

OUTPUT 

WITH KEY 
i d e n t i f i e r - 1 

l i t e r a l - 1 

EVALUATE 

i d e n t i f i e r - 1 

1 i t e r a l - 1 

express ion -1 

TRUE 

FALSE 

ALSO 

(WHEN 

[NOJJ 

i d e n t i f i e r - 2 

l i t e r a l - 2 

express ion -2 

TRUE 

FALSE 

ANY 

c o n d i t i o n - 1 

TRUE 

FALSE 

i d e n t i f i e r - 3 ] 

l i t e r a l - 3 

a r i t hme t i c -exp ress ion -1 

[THROUGH] 

[THRU J 

iden t i t i e r - 4 

l i t e r a l - 4 

a r i t h m e t i c - e x p r e s s i o n -

http://%7b%22ent1f1er.il


Appendix D - COBOL-85 Reference Summary 

(continued) 

ALSO 

ANY 

cond i t i on -2 

TRUE 

FALSE 

i d e n t i f i e r - 5 I 

l i t e r a l - 5 

a r i t h m e t i c - e x p r e s s i o n - 3 

[NOT] 
ident i f i e r - 6 

THROUGH , , 
\ \ l l i t e r a l - 6 

THRU 
^ ' a n t hme t i c -exp ress ion -4 

impe ra t i ve - s ta temen t -1 } . . . 

[WHEN OTHER impera t i ve -s ta tement - 2] 

[END-EVALUATE] 

EXIT 

EXIT PROGRAM 

GENERATE 
f da ta -name-1 

[ r e p o r t - n a m e - 1 

cn T O l"n . n 

GO TO {procedure-name-1} DEPENDING ON i d e n t i f i e r - 1 

I F c o n d i t i o n - 1 THEN 
[ {s ta tement - 1 } . . 

[NEXT SENTENCE 

ELSE {s ta temen t -2 } 

ELSE NEXT SENTENCE 

. . [END- IF ] 

E N D - I F 

IN IT IAL IZE { i d e n t i f e r - 1 } . . 

REPLACING 

ALPHABETIC 

ALPHANUMERIC 

NUMERIC 

ALPHANUMERIC - EDITED 

NUMERIC-EDITED 

DATA BY 
i d e n t i f i e r - 2 

1 i t e r a l - 1 

INITIATE { repo r t -name-1 } . . . 

INSPECT i d e n t i f i e r - 1 TALLYING 

i d e n t i f i e r - 2 FOR 

CHARACTERS 
fBEFORE [ i d e n t i f i e r - 4 
[ [ IN IT IAL [ 
[AFTER j [ l i t e r a l - 2 

ALL [ J 1 i d e n t i f i e r - 3 

LEADING} ] [ l i t e r a l - 1 

[BEFORE] [ i d e n t i f i e r -
[ \ IN IT IAL [ 
[AFTER [ [ l i t e r a l - 2 



COBOL Verbs 

BOL Verbs (continued) 

INSPECT i d e n t i f i e r-1 REPLACING 

CHARACTERS BY i d e n t i f i e r-5 
1 i t e r a l - 3 

CALL 1 r 
'LEADING I 

FIRST j 

ident i f i e r - 3 

l i t e r a l-1 
BY 

[BEFORE) 
{AFTER j 

INITIAL 
i d e n t i f i e r-4 
l i t e r a l - 2 

i d e n t i f i e r-5 
l i t e r a l-3 

I BEFORE i 
{AFTER j 

INITIAL i d e n t i f i e r-4! 
l i t e r a l-2 

INSPECT i d e n t i f i e r-1 TALLYING 

i d e n t i f i e r-2 FOR 

REPLACING 

CHARACTERS BY 

[ALL 
LEADING 

CHARACTERS 
I AFT; 

[ALL I [ [ i d e n t i f i e r-3 
{LEADING/ 1 [ l i t e r a l-1 

[BEFORE] f i d e n t i f i e r-4 
} INITIAL i 

AFTER [ [ l i t e r a l-2 

1 ^ 1 INITIAL I i d e n t i f 1 e r - 4 ) 
[AFTER j [ l i t e r a l-2 j 

i d e n t i f i e r-5 | 
l i t e r a l - 3 J 

[BEFORE] , „ t t „ , [ i d e n t i f i e r-4 
1 1 INITIAL > 

FIRST 

j i d e n t i f i e r - 3 ] , m c 

{ l i t e r a l - 1 J ~ { l i t 

[AFTER J 

^ i d e n t i f i e r - 5 

e r a l - 3 

j [ l i t e r a l - 2 

[BEFORE] „ , „ „ , f i den t i f i e r-4] 
i \ IN IT IAL { } 

[AFTER j [ l i t e r a l-2 j 

INSPECT i d e n t i f i e r-1 CONVERTING H ^ n t i f i e r-e T Q i d e n t i f i e r-7 
[ l i t e r a l-4 | _ | l i t e r a l-5 

[BEFORE] m „ , [ i d e n t i f i e r-4 
INITIAL 

[AFTER j [ l i t e r a l-2 

[ASCENDING 
MERGE f i l e - n a m e-1 [ON [ [ KEY {data-name-1} 

1 [DESCENDING] 

[COLLATING SEQUENCE IS a lphabet -name-1] 

USING f i l e -name-2 ( f i l e - n a m e -3} . . . 

"[THROUGH] 
{THRU J 

OUTPUT PROCEDURE IS procedure - name - 1 

GIVING { f i l e - n a m e -4} . . . 

i d e n t i f i e r-1 
MOVE I [ TO { i d e n t i f i e r-2} . .  

l i t e r a l-1 ' — 1 

[CORRESPONDING] 
MOVE ] \ i d e n t i f i e r-1 TO i d e n t i f i e r-2 

[CORR j — 

[ i d e n t i f i e r-1 
MULTIPLY [ [ BY { i d e n t i f i e r-2 [ROUNDED] 

[ l i t e r a l-1 j 

[ON SIZE ERROR impe ra t i ve - s t a t emen t -1] 

[NOT ON SIZE ERROR impera t i ve -s ta temen t-2] 

[END-MULTIPLY] 

procedure-name-2 



A p p e n d i x D - - COBOL-85 Reference Summary 

COBOL Verbs (continued) 

MULTIPLY 
l i t e r a l - 1 

BY { iden t i t i e r - 2 [ROUNDED] 

[ON SIZE ERROR imperat i ve-s ta tement - 1 ] 

[NOT ON SIZE ERROR impera t i ve -s ta temen t - 2 ] 

[END-MULTIPLY] 

MULTIPLY 
i d e n t i f i e r - 1 

l i t e r a l - 1 
BY 

i d e n t i f i e r - 2 

l i t e r a l - 2 

GIVING { i d e n t i f i e r - 3 [ROUNDED] } . . . 

[ON SIZE ERROR impera t i ve-s ta tement -1] 

[NOT ON SIZE ERROR impera t i ve -s ta temen t - 2 ] 

[END-MULTIPLY] 

OPEN 

INPUT { f i l e - n a m e - 1 [WITH NO REWIND] } 

OUTPUT { f i l e - n a m e - 2 [WITH NO REWIND] ) 

I - 0 { f i l e - n a m e - 3} . . . 

EXTEND ( f i l e - n a m e - 4 ) . . . 

ft I OPEN 

INPUT { f i l e - n a m e - 1 } . 

OUTPUT { f i l e - n a m e - 2 } 

1-0 { f i l e - n a m e - 3 } . 

EXTEND { f i l e - n a m e - 4 } 

W OPEN 
J OUTPUT { f i l e - n a m e - 1 [WITH NO REWIND] } 

[EXTEND { f i l e - n a m e - 2 } . . . 

PERFORM procedure-name - 1 jTHROUGH| 

[THRU J 
procedure-name -2 

[ impera t i ve -s ta temen t - 1 END-PERFORM] 

PERFORM procedure-name - 1 
fTHROUGH] 
{ > procedure-name -2 
[THRU j 

ident i f i e r - 1 

i n t e g e r - 1 
TIMES [ i m p e r a t i v e - s t a t e m e n t - 1 END - PERFORM] 

PERFORM procedure - name -1 

[BEFORE] 

fTHROUGH] 
< ~ > procedure-name -2 
[THRU [ 

WITH TEST 
[AFTER J 

UNTIL c o n d i t i o n - 1 

[ imperat i ve-s ta tement - 1 END-PERFORM] 

[ i d e n t i f i e r - 1 



COBOL Verbs 

I'L v,: o r b s (continued) 

PERFORM procedure-name-1 

[BEFORE] 

[THROUGH] 
[THRU j 

procedure-name-2 

WITH TEST 
I AFTER I 

, , i d e n t i f i e r - 3 
i d e n t i f i e r - 2 

VARYING \ \ FROM [ i ndex - name - 2 
i ndex-name-1 

1 ' l i t e r a l - 1 

ident i f i e r - 4 
BY \ \ UNTIL c o n d i t i o n - 1 
— l i t e r a l - 2 

i d e n t i f i e r - 6 
, i den t i f i e r - 5 

AFTER { \ FROM i i ndex - name- 4 \ 
' l i t e r a l - 3 [ | 

l i t e r a l - 3 

f i d e n t i f i e r - 7 ] 
BY 1 > UNiIL cond i t i on -2 
— [ l i t e r a l - 4 ] 

[imperat i ve -s ta temen t - 1 END-PERFORM] 

PURGE cd-name-1 

READ f i l e - n a m e - 1 [NEXT] RECORD [INTO i d e n t i f i e r - 1 ] 

[AT END impe ra t i ve -s ta temen t -1 ] 

[NOT AT END impe ra t i ve - s ta temen t -2 ] 

[END-READ] 

READ f i l e - n a m e - 1 RECORD [INTO i d e n t i f i e r - 1 ] 

[INVALID KEY imperat ive-s ta tement - 3 ] 

[NOT INVALID KEY impera t i ve - statement - 4] 

[END-READ] 

READ f i l e - n a m e - 1 RECORD [INTO i d e n t i f i e r - 1 ] 

[KEY IS da ta -name-1 ] 

[INVALID KEY impera t i ve - statement - 3 ] 

[NOT INVALID KEY impera t i ve-s ta tement - 4] 

[END-READ] 

[MESSAGE] 
RECEIVE cd-name-1 \ } INTO i d e n t i f i e r - 1 [SEGMENT] — 

[NO DATA imperati ve-s ta tement - 1 ] 

[WITH DATA imperat i v e - s t a t e m e n t - 2 ] 

[END-RECEIVE] 

RELEASE record-name-1 [FROM i d e n t i f i e r - 1 ] 



A p p e n d i x D COBOL-85 Reference Summary 

COBOL Verbs (continued) 

RETURN f i l e - n a m e - 1 RECORD [INTO i d e n t i f i e r - 1 ] 

AT END i m p e r a t i v e - s t a t e m e n t - 1 

[NOT AT END i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END-RETURN] 

REWRITE reco rd -name- I [FROM i d e n t i f i e r - 1 ] 

REWRITE reco rd -name-1 [FROM i d e n t i f i e r - 1 ] 

[INVALID KEY impe ra t i ve - s t a temen t -1 ] 

[NOT INVALID KEY i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END-REWRITE] 

SEARCH i d e n t i f i e r - 1 VARYING j i d e n t 1 f i e r - 2 

i ndex - name - 2 

[AT END imperat ive-s ta tement -1 ] 

L , . ,r., , (imperative-statement-2 

^WHEN c o n d i t i o n - 1 i 

( I NEXT - SENTENCE 
TEND - SEARCH] 

SEARCH ALL i d e n t i f i e r - 1 [AT END i m p e r a t i v e - s t a t e m e n t - 1 ] 

f l S EQUAL TO 
WHEN 

AND 

d a t a - n a m e - 1 
I S 

cond i t ion-name-2 

da ta -name-2 
I S EQUAL TO 

I S -

cond i t ion-name-2 

i mperati ve - statement - 2 

NEXT SENTENCE 

i d e n t i f i e r-3 
l i t e r a l - 1 1 

a r i t h m e t i c - e x p r e s s i o n - l j 

i d e n t i f i e r - 4 J 
l i t e r a l - 2 

a r i t h m e t i c - e x p r e s s i o n - 2 

[END - SEARCH] 

SEND cd -name-1 FROM i d e n t i f i e r - 1 

SEND cd -name-1 [FROM i d e n t i f i e r - 1 ] 

[BEFORE} 
[AFTER J 

ADVANCING 

WITH i d e n t i f i e r - 2 

WITH E S I 

WITH EMI 

WITH EGI 

ident i f ie r-3 
integer-1 

Jmnemonic-name-1 

[PAGE 

LINE 

LINES 

[REPLACING LINE] 



COBOL Verbs 

IL Verbs (continued) 

SET 
index-name-1 

i d e n t i f i e r - 1 

i ndex - name - 2 

TO \ i d e n t i f i e r - 2 

i n t e g e r - 1 

SET ( index-name-3) . 
UP BY J i d e n t i f i e r - 3 
DOWN BY j j i n t e g e r - 2 

SET |(mnemonic-name-1} . . . TO 
ON 

OFF 

SET (cond i t i on -name-1} . . . TO TRUE 

fASCENDING ] 
SORT f i l e - n a m e - 1 -JON I } KEY (da ta -name-1 } . 

DESCENDING 

[WITH DUPLICATES IN ORDER] 

[COLLATING SEQUENCE I S alphabet - name-1] 

INPUT PROCEDURE I S procedure - name - 1 

USING [ f i l e - n a m e - 2 ] . . . 

f THROUGH 1 
( > procedure-name-2 
[THRU j 

OUTPUT PROCEDURE I S procedure-name - 3 

GIVING [ f i l e -name-3] . . . 

jTHROUGH] 

[THRU J 
procedure-name -4 

START f i l e - n a m e - 1 KEY 

I S EQUAL TO 

I S ' 

I S GREATER THAN 

I S > 

I S NOT LESS THAN 

I S NOT < 

I S GREATER THAN OR EQUAL TO 

I S >= 

[INVALID KEY impe ra t i ve - s ta temen t -1 ] 

[NOT INVALID KEY i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END-START] 

data - name -1 

STOP 
RUN 

1 i t e r a l - 1 



A p p e n d i x D — COBOL-85 Reference Summary 

STRING 

is (continued) 

i den t i t i e r - 1 

l i t e r a l - 1 

i d e n t i f i e r - 2 

DELIMITED BY j l i t e r a l - 2 

S IZE 

INTO i d e n t i f i e r - 3 

[WITH POINTER i d e n t i f i e r - 4 ] 

[ON OVERFLOW impera t i ve-s ta tement - 1 ] 

[NOT ON OVERFLOW i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END - STRING1 

SUBTRACT 
ident i f i e r - 1 

l i t e r a l - 1 
FROM { i d e n t i f i e r [ROUNDED] 

[ON S IZE ERROR impe ra t i ve - statement - 1 ] 

[NOT ON S IZE ERROR i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END-SUBTRACT] 

SUBTRACT ident i f i e r - 1 

l i t e r a l - 1 
FROM 

I i d e n t i f i e r - 2 

l i t e r a l - 2 

GIVING ( i d e n t i f i e r - 3 } [ROUNDED] } . . . 

[ON SIZE ERROR i m p e r a t i v e - s t a t e m e n t - l j 

[NOT ON S IZE ERROR i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END-SUBTRACT] 

fCORRESPONDING 1 

SUBTRACT { — \ i d e n t i f i e r - 1 FROM i d e n t i f i e r - 2 [ROUNDED] 
[CORR 

[ON S I Z E ERROR impe ra t i ve - statement - 1] 

[NOT ON S IZE ERROR i m p e r a t i v e - s t a t e m e n t - 2 ] 

[END-SUBTRACT] 

SUPPRESS PRINTING 

TERMINATE { repor t - name-1} . . . 

UNSTRING i d e n t i f i e r - 1 

DELIMITED BY [ALL] 
i d e n t i f i e r - 2 

l i t e r a l - 1 OR [ALU 
i d e n t i f i e r - 3 

l i t e r a l - 2 

INTO { i d e n t i f i e r - 4 [DELIMITER IN i d e n t i f i e r - 5 ] [COUNT IN iden t i f i e r - 6 ] } 

[WITH POINTER ident i f i e r - 7 ] 

[TALLYING IN i d e n t i f i e r - 8 ] 

[ON OVERFLOW impera t i ve -s ta temen t -1 ] 

[NOT ON OVERFLOW impe ra t i ve - s ta temen t -2 ] 

[END-UNSTRING] 



COPY and REPLACE Statements 

(continued) 

USE [GLOBAL] AFTER STANDARD 
fEXCEPTION { 
[ERROR J PROCEDURE ON 

{file-name -1} 
INPUT 
OUTPUT 

NO 
EXTEND 

USE [GLOBAL] BEFORE REPORTING ident i f ie r -1 

USE FOR DEBUGGING ON 

cd-name-1 
[ALL REFERENCES OF] ident i f ier -1 
file-name - 1 
procedure-name - 1 
ALL PROCEDURES 

WRITE record-name-1 [FROM ident i f ier-1] 

fBEFORE} 
[AFTER j ADVANCING 

J identi f ier-2 | LINE 
[integer-1 j [LINES 
fmnemonic-name - l | 
[PAGE j 

, END-OF-PAGE, 
AT i } imperative-statement-1 

EOP ' 

, END-OF-PAGE, 
NOT AT { ~ } imperati ve-statement-2 

EOP 

TEND-WRITE] 

WRITE record-name-1 [FROM ident i f ier-1] 

[INVALID KEY imperative-statement-1] 

[NOT INVALID KEY imperative-statement - 2] 

[END-WRITE] 

COPY text-name-1 library-name - 1 

REPLACING 

= = pseudo-text-1 
identi f i e r - 1 
1i teral-1 
word - 1 

BY 

= = pseudo-text-2 
ident i f ier-2 
l i te ra l -2 
word-2 

REPLACE {== pseudo-text-1 == BY == pseudo-text-2 = = ) . . . 

REPLACE OFF 



A p p e n d i x D — COBOL -85 Reference Summary 

RELATION CONDITION 

identifier-1 

literal-1 

arithmetic-expression-1 

i ndex - name -1 

IS [NOT] GREATER THAN 

IS [NOT] > 

IS [NOT] LESS THAN 

IS [NOT] < 

IS [NOT] EQUAL TO 

IS [NOT] -

IS GREATER THAN OR EQUAL TO 

IS >• 

IS LESS THAN OR EQUAL TO 

IS <= 

identifier-2 

literal-2 

arithmetic-expression-2 

i ndex - name - 2 

CLASS CONDITION 

i d e n t i f i e r-1 IS [NOT] 

NUMERIC 

ALPHABETIC 
ALPHABETIC-LOWER 

ALPHABETIC-UPPER 
class-name 

C O N D i T i O N - N A M E C O N D I T I O N 

condition-name-1 

SWITCH-STATUS CONDITION 

condition-name-1 

sign condi t ion 

[positive! 

arithmetic-expression-1 IS [NOT] [NEGATIVE 

ZERO 

NEGATED CONDITION 

NOT conditional 

COMBINED CONDITION 

,fAND] 
condition-1 << > condition-2 

I OR 

ABBREVIATED COMBINED RELATION CONDITION 

relation- condition [j^j [NOT] [relational- operator] object \ . . . 



Qualification 

F O R M A T 1 

[ da ta -name - 1 1 

[ cond i t ion-name] IN) [ f i l e - n a m e 

OF I ]cd-name 

J l N j | f i l e - n a m e [ 

[ O f ] [cd-name | 

F O R M A T 2 

IN 

paragraph-name j > sect ion-name 

F O R M A T 3 

IN 
text-name I~ \ l i b ra ry -name 

OF 

F O R M A T 4 

IN 
LINAGE-COUNTER [ - [ report-name 

F O R M A T 5 

[page-counter] [in 

LINE-COUNTER OF 
report - name 

F O R M A T 6 

data -name -3 

— y data-name - 4 
Of f 

repor t - name 

repor t - name 



Appendix D COBOL-85 Reference Summary 

S U B S C R I P T I N G 

j c o n d i t i o n - n a m e - 1 

[ d a t a - n a m e - 1 

i n t e g e r - 1 

da ta -name-2 [ {± j i n t e g e r - 2 ] 

index-name-1 t (±) i n t e g e r - 3 ] 

R E F E R E N C E M O D I F I C A T I O N 

d a t a - n a m e - 1 ( l e f t m o s t - c h a r a c t e r - p o s i t i o n : [ length]) 

IDENTIFIER 

d a t a - n a m e - 1 da ta -name-2 

cd-name 

f i l e - n a m e 

report-name I 

[ ( {subscr ip t } . . . ) ] [ ( l e f t m o s t - c h a r a c t e r - p o s i t i o n : [ length] ) 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name-1 [ IS INITIAL PROGRAM] . 

[ENVIRONMENT DIVISION, envi ronment- di v i s i on - con ten t ] 

[DATA DIVISION, data - d i v i s ion -con ten t ] 

[PROCEDURE DIVISION, p r o c e d u r e - d i v i s i o n - c o n t e n t ] 

[ [nes ted-source-program] . . . 

END PROGRAM program-name-1. ] 

N E S T E D - S O U R C E - P R O Q R A M 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name-2 » 1 
COMMON 

name-2 » 1 1 IN IT IAL 
PROGRAM 

[ENVIRONMENT DIVISION, envi ronment- di v i s i on - con ten t ] 

[DATA DIVISION, data - d i v i s i o n - c o n t e n t ] 

[PROCEDURE DIVISION, p rocedure-d i v i s i o n - c o n t e n t ] 

[nes ted-source-program] . . . 

END PROGRAM program-name-2. 



A Series of Source Programs 

{IDENTIFICATION DIVISION. 

PROGRAM - ID. program-name-3 [IS INITIAL PROGRAM] 

[ENVIRONMENT DIVISION, envi ronment - division- content] 

[DATA DIVISION, data - di vi si on-content ] 

[PROCEDURE DIVISION, procedure-di vi sion-content] 

[nested-source-program] . . . 

END PROGRAM program - name - 3.} . . . 

IDENTIFICATION DIVISION-

PROGRAM -ID. program-name-4 [IS INITIAL PROGRAM] 

[ENVIRONMENT DIVISION, envi ronment - divi sion-content] 

[DATA DIVISION, data - di vi sion-content ] 

[PROCEDURE DIVISION, procedure-di vi si on-content] 

[ [nested-source-program] . . . 

END PROGRAM program - name - 4. ] 





The COBOL language Is overdue for its next major revision. Since 
its origination in 1958, COBOL has had several major revisions reflecting the 
changing needs of business information systems. Each revision has added to 
the power and capability of the language, and now perhaps the most sweeping 
revision is waiting in the wings. 

COBOL was originally designed to be as English-like as possible. Even 
m a t h o m a t i r - a l o v n r o c c i n n q u /o ro t n h o c t a t p H in F n n l i c h T h i ic H O R O l h a c \ / o r h c 

like ADD, SUBTRACT, MULTIPLY, and DIVIDE. Every effort was made to make 
the language readable, so that even a non-programmer could read it. Eventually, 
it became apparent that this idealistic approach was too limiting. Programmers 
found that specifying complex expressions only through the use of ADD, 
SUBTRACT, MULTIPLY, and DIVIDE verbs was too restrictive. COBOL needed a 
way to make writing mathematical expressions easy in a way similar to FORTRAN 
and other languages. The 1964 revision made COBOL more flexible with the 
addition of the COMPUTE verb and other changes. 

By 1974 a new revision was needed. Business applications needed to 
manipulate character data as well as numbers. Thus, new string operations were 
added and the INSPECT verb was improved. However, by the 1980s, structured 
programming had become the standard way to write programs, and COBOL 
needed to change in order to take advantage of this new technique. 

After much discussion in the COBOL community and after the delay of 
several years, COBOL 1985 was finally released. COBOL 1985 had many new 
and important features. For the first time, in-line PERFORM statements meant 
that loops were available directly in the code without having to set up separate 
paragraphs. Statement terminators such as END-IF and END-READ meant that 
logic errors caused by the careless placement of the period could be reduced. 
COBOL 1985 provided a powerful new Case statement, EVALUATE, reducing 
the programmer's reliance on nested IFs. Another major development in COBOL 
1985 was the use of subprograms and new ways of structuring programs. 
COBOL 1985 was a major step forward in the development of the language. The 
new COBOL was less English-like, but still maintained its readability, business 
orientation, and compatibility with previous versions. 



Appendix E — COBOL 1997, 1998, 1999, 2000. or ...? 

In 1989, an enhanced version of the 1985 standard was released. The 
major change in this version was the introduction of intrinsic functions that were 
common in other programs but had been neglected in COBOL. Now COBOL 
programs could use statistical functions such as Average and Standard Deviation 
as well as business functions such as Present Value and Annuity. 

Now, a new COBOL standard is being prepared. Just as the paradigm shift 
to Structured programming meant a revision to the COBOL standards, the new 
paradigm shift to object-oriented programming means that COBOL must again 
be revised. The major addition to the new COBOL is object-orientation, and 
Chapter 20 deals extensively with those changes. However, there are a number 
of less dramatic changes in the next version of COBOL that programmers 
should know about even if they do not use OO COBOL. 

That is the good news; the bad news is that the wheels of standardization 
grind very slowly. The new standards were scheduled to be approved and 
become official in 1997. However, for a variety of reasons the final approval 
appears to be delayed until the year 2000. This delay is extremely unfortunate 
and does not help the cause of the COBOL language. 

In spite of this setback, some compiler vendors who have made good faith 
efforts to begin implementing some of the new language features. The COBOL 
community should push for a quick adoption of the new standards and ask their 
language vendors how they are supporting the new standards. 

The purpose of this appendix is to describe the enhancements to COBOL 
that were included in the 1989 revisions and the projected enhancements for 
COBOL 2000. The appendix does not describe these changes in detail; our aim 
is intended to provide a summary of the major improvements and their impact. 

The major change in the 1989 revision was the addition of intrinsic functions. 
This appendix includes a section on intrinsic functions that presents: 

• The concept of functions. 
• The format of the FUNCTION statement. 
• Classification of the functions by type. 
• Brief descriptions of key functions. 
• An introduction to the proposed additions to the functions. 
• A discussion of user-defined functions. 
The second section of the appendix discusses new data types including 

Boolean and the operators allowed by the new standards. 
Finally, we discuss some of the changes that improve the language, but 

are difficult to classify. 

M o s t computer languages provide a set of predefined functions that save 
p r o g r a m m i n g effort. These functions d o standard a n d well-understood 
mathematical, business, and statistical operations. C O B O L has been slow to adopt 
this capability, but at last, there w a s a general recognition that the language had 
m o v e d beyond being just a specialized business language. Therefore, in 1989 an 



Intrinsic Functions 

enhancement to the 1985 standards defined 42 "intrinsic" functions. Intrinsic m e a n s 
"inherent" or "part of." Thus, these functions are n o w p a n of the language. 

A function performs an operation and returns a result. Generally functions are 
used within assignment statements and can be used instead of a variable or literal. 
Within C O B O L the assignment verbs are M O V E and C O M P U T E . For example would 
be: 
M O V E F U N C T I O N U P P E R C A S E ("abcdef') T O D A T A - S T R I N G 

The function-identifier specifies the function as U P P E R CASE, and the single 
argument shown in the parentheses is "abcdef." The U P P E R C A S E functions converts 
alphanumeric data to upper case, and as a result D A T A - S T R I N G contains the value 
" A B C D E F " after the M O V E statement has been performed. 

A n example of a numeric function-identifier would be: 
C O M P U T E N U M E R I C - I T E M = F U N C T I O N SIN(IO) 

The C O M P U T E statement calculates the sine of 10 and return the value to 
N U M E R I C - I T E M so that the final value of N U M E R I C - I T E M is 0.544. SIN is the 
function identifier and 10 is the argument. 

The format of a function-identifier is as follows: 
F U N C T I O N function-name-1 [({argument-1}...)] 

Numeric functions must be used with C O M P U T E cannot be used with A D D , 
S U B T R A C T , MULTIPLY, or DIVIDE. 

Function Types 
The various types of intrinsic functions are shown in the following tables. W e have 
categorized t h e m according to their purpose. 

T w o business functions are n o w provided to m a k e the computation of 
annuities and the value of investments easier. 

T&.&ki hs\ Business Functions 

ANNUITY Interest rate for Number of Periods The ratio of an annuity paid for an initial 
period investment of $1.00 

PRESENT-VALUE Discount Rate A series of Future The present value of the Future Payments based 
Payments on the Discount Rate 

Date functions are based primarily o n a starting date of January 1, 1601. This 
arbitrary date is established to assure accuracy for date arithmetic under virtually 
all circumstances. All dates are based o n the Gregorian calendar. Dates supplied to 
a date function must be valid calendar dates after December 31, 1600. 

T a b l e £-2 Date Functions 

CURRENT-DATE 

DATE-OF-INTEGER 

DAY-OF-INTEGER 

INTEGER-OF DATE 

INTEGER OF DAY 

None None 

Number of Days 
succeeding December 
31, 1600 
Number of Days 
succeeding December 
31, 1600 
Date in YYYYMMDD 
format 
Date in YYYYDDD 
format 

Returns the current system date and time 
in YYYYMMDDHHMMSShh format 
Returns the date in YYYYMMDD format 

Returns the date in YYYYDDD format 

Returns an integer for the number of days 
succeeding December 31, 1600 
Returns an integer for the number of days 
succeeding December 31, 1600 



A p p e n d i x g — COBOL 1997, 1998, 1999, 2000, or 

There are a n u m b e r of mathematical functions available as intrinsic functions. 
All except the S u m function have a single argument. The S u m function can have as 
m a n y arguments as required, since it adds up a series of numbers. 

T a b l e E . 3 M a t h e m a t i c a l F u n c t i o n s 

ACOS Number None Returns the Arcosine of the number 

ASIN Number None Returns the Arcsine of the number 

ATAN Number None Returns the Arctangent of the number 

C O S Number None Returns the Cosine of the number 

FACTORIAL Number None Returns the Factorial of the number 

LOG Number None Returns the natural Logarithm of the 
number 

LOG 10 Number None Returns the Logarithm to base 10 of the 
number 

SIN Number None Returns the Sine of the number 

SUM Number Number Returns the total of ail values specified 
(as many as needed) 

SORT Number None Returns the Square Root of the number 

TAN Number None Returns the Tangent of the number 

The intrinsic functions also include a n u m b e r of statistical functions. Statistical 
functions work on a series of numbers. The n u m b e r series can be specified by using 
one argument for each value. W h e n tables are involved, there is an easier method. 
Statistical functions can specify A L L for the subscript in the argument, as in the 
following example: 
01 TEST-ARRAY. 

05 TEST-RESULT PIC 9(03). 
05 TEST-ITEMS OCCURS 5 TIMES PIC 9(02). 

COMPUTE TEST-RESULT = FUNCTION SUM (TEST-ITEMS (ALL)). 
This statement adds all of the values in the table TEST-ITEMS and stores the 

results in TEST-RESULT. The S U M function can be considered as a mathematical 
or statistical function. 

'able E.4 Statistical Functions 

MAX 

MEAN 
MEDIAN 

MiDRANGE 

RANDOM 

RANGE 

STANDARD-DEVIATION 
S U M 

VARIANCE 

Number series 

Number series 

Number series 

Number series 

Number 
(not required) 

Number series 

Number series 
Number series 
Number series 

As needed 

As needed 
As needed 

As needed 

None 

As needed 

As needed 
As needed 
As needed 

Returns the value of the highest number in the 
series 
Returns the arithmetic average of the series 

Returns the middle value of the series where 
there are as many values above as below 
Returns the average of the maximum argument 
and the minimum argument 
Returns a random number between 0 and 1. 
If argument-1 is specified, it must be zero or a 
positive integer and is used as a seed value 

Returns a value that is equal to the value of the 
maximum argument minus the value of the 
minimum argument 

Returns the standard deviation of the series 
Returns the sum of the number series 
Returns the variance of the number series 



Intrinsic Functions 

Another set of functions deals with the use of alphanumeric data a n d 
conversion between alphanumeric and numeric data. 

T;-:.iJfc- i:..S Alphanumeric and Conversion Functions 

CHAR 

LENGTH 
LOWER-CASE 
NUMVAL 

NUMVAL-C 

ORD 

ORD-MAX 

ORD-MIN 

R E V E R S E 

UPPER-CASE 

Integer None 

Alphanumeric string None 
Alphanumeric string None 
Edited numeric string None 

Edited numeric string Symbol used as 
with currency symbol currency symbol 

Alphanumeric 
character 
Alphanumeric or 
numeric series 

Alphanumeric or 
numeric series 

None 

None 

None 

Alphanumeric string None 

Alphanumeric string None 

The alphanumeric character corresponding to 
ordinal position in the collating sequence 
Returns the number of characters in the string 
Converts all alphabetic characters to lower case 
Returns the numeric value ot the edited string. 
Cannot be used with currency symbol 
Returns the numeric value of the edited string. 
Uses argument-2 to determine the currency 
symbol 
Returns the ordinal position number of the 
alphanumeric character 
Returns the ordinal position number within the 
series of the element having the highest 
collating value 
Returns the ordinal position number within the 
series of the element having the lowest collating 
value 
Returns an alphanumeric string the same length 
as argument-1 with the characters in reverse 
order 

Converts all alphabetic characters to upper 
case 

Finally, a set of miscellaneous functions that are not easily categorized into 
one of the above tables is provided 

Yak;** iLo Miscellaneous Functions 

INTEGER 

INTEGER-PART 

MOD 

REM 

WHEN-COMPILED 

Numeric value 

Numeric value 

Integer 

Numeric value 

None 

returned 
Integer 

Numeric value 

None 

Largest Integer not greater than Argument-1. If 
Argument-1 is +2.3, +2 is returned. If 
Argument-1 is -2.3, the value returned is -3 
Integer portion of Argument-1. If Argument-1 is 
+2.3, +2 is returned. If Argument-1 is -2.3, -2 is 

Returns the value of the remainder when 
Argument-1 is divided by Argument-2. The 
result is an integer value 

Same as MOD but can use and return non-
integer values. 
Returns the compile date and time in 
YYYYMMDDHHMMDD format 

C O B O L 2000 adds a n u m b e r of functions to the 1989 extensions. Several of these 
functions deal with manipulation of national characters—symbols that are not part 
of the English language, but are used in other languages. There are also functions 
that handle special collating sequences in other languages. The following table 
includes only the n e w functions that are of more general interest. Other functions 
m a y be added or changed before the n e w standards are adopted. 



A p p e n d i x E - COBOL 1997, 1998, 1999, 2000, or ...? 

Tfe.a« £.7 COBOL 2000 Functions 

A B S Numeric value 
ALLOCATED- OCCURRENCES Dynamic Table 

BOOLEAN-OF 

DATE-TO-YYYYMMDD 

DAY-TO-YYYYDDD 

E 

EXP 

EXP 10 

FRACTION-PART 

NUMVAL-B 

NUMVAL-F 

PI 

YEAR-TO-YYYY 

Positive Integer 

Positive Integer 

Positive Integer 

None 

Numeric Item 

Numeric Item 

Numeric Item 

Boolean Value 

Numeric value 
specified as 
floating point 

None 
Positive Integer 

Positive Integer 

Integer 

Integer 

None 

Integer 

Returns the absolute value of Argument-1 
Returns an integer value for the number of 
occurrences allocated in the table 
Returns the binary value of Argument-1 in a 
binary field with Argument-2 number of bits 
Converts YYMMDD date format to YYYYMMDD 
format. Argument-2 allows adjustment to the 
century range Argument-2 defines the ending 
year as a displacement from the current system 
year. If Argument-2 is omitted, the default is 50 

Converts YYDDD date to format to YYYYDDD 
format. Argument-2 allows adjustment to 
century range 
Returns the value of e, the natural logarithm 
base 
Returns the value of e raised to the Argument-1 
power 
Returns the value of 10 raised to the Argument-1 
power 
Returns the fractional part of ArgumenM 
eliminating the integer portion 
Returns the decimal equivalent of the Binary 
value of ArgumenM, Function may use the 
SIGNED keyword following ArgumenM to 
indicate that ArgumenM is a signed value 

Returns the decimal equivalent of 
ArgumenM 

Returns the value of PI up to 31 decimal places 
Converts YY to YYYY. Argument-2 specifies a 
window for candidate dates. 

In addition to the n e w intrinsic functions defined above, C O B O L 2000 also 
allows the creation and use of user defined functions. 

The C O B O L 2000 standards allow for several n e w data types that have been available 
to other languages. These data types include n e w fixed length B I N A R Y data fields, 
Floating-Point data types, and n e w pointer types. These data types can be specified 
by the U S A G E clause of data items within the D A T A DIVISION. 

C O B O L 1985 allowed the B I N A R Y data type. This data type has a variable 
length dependent u p o n places specified in the picture clause. The binary options 
have been expanded to a Boolean data type and several fixed length B I N A R Y data 
types. 

• BIT—this data type is a Boolean Data type used for Boolean Operations. The 
size of the field is specified by the Picture clause. 

• B I N A R Y - C H A R — a binary field using 1 byte for representation. 
• B I N A R Y - S H O R T — a binary file 2 bytes in length. 
• B I N A R Y - L O N G — a binary field 4 bytes in length. 



New Data Types 

• B I N A R Y - D O U B L E — a binary field 8 bytes in length. 
C O M P ( U T A T I O N A L ) usage is left u p to the compiler implementers, but is 

generally the equivalent of BINARY. 
Floating point numbers are specified as F L O A T - S H O R T or F L O A T - L O N G . The 

size of the fields is dependent o n the implementor. Generally, the F L O A T - S H O R T 
will use 2 bytes of storage and F L O A T - L O N G uses 4 bytes. In other languages, these 
data types m a y be called "Single" or "Double." 

These n e w data types will m a k e the linking of C O B O L programs with programs 
developed in other languages m u c h easier. C O B O L will be able to receive and pass 
data directly to programs written in other languages. This n e w compatibility is also 
enhanced by an n e w I N T E G E R data type. This data type accepts Integer data in the 
format of other languages. The use of I N T E G E R is limited to use in the L I N K A G E 
S E C T I O N of programs and must be associated with a BY V A L U E reference. 

In connection with object-oriented C O B O L , the 2000 standard provides a n e w 
pointer type to specify the pointers for Objects. This U S A G E is O B J E C T R E F E R E N C E . 
The pointer type follows the conventions of other pointer and index data types. The 
SET verb must be used to update these fields. 

Free F o r m Source Code: In the n e w C O B O L standards, the C O B O L programmer is 
freed from the confines of the 80-column card. The n e w standards allow source 
code lines to be from 0 to 255 characters in length, and the code can be placed 
anywhere in the line. In order to achieve this n e w freedom, the standards committee 
has decided to change the c o m m e n t indicator from a "*" in column 7 to the characters 
"*>" placed anywhere in the source code line. A n y characters to the right of the 
c o m m e n t indicator are treated as comments. The c o m m e n t stops at the end of a 
line. Therefore, if a c o m m e n t needs to go onto two or lines, each c o m m e n t line or 
area must begin with "*>". There is no symbol to stop the c o m m e n t . 

The free format also provides n e w capability in continuing literals from one 
line to another. The partial literal o n the first line should be ended by a "- or'-. The 
second line of the can start anywhere o n the second line, but must begin with a " or 
'. The literal must conclude with a " or'. 

The n e w free format provides n e w flexibility in writing code and in program 
documentation. 
Fewer Required Entries: Another change in the coding of programs is a loosening of 
the rules for required entries in a program. For example, the Division headers do 
not have to be specified at all. Section headers are still needed, but only for the 
sections actually used. O n e exception to the n e w rule about Division headers is 
w h e n the Procedure Division needs a Linkage Section. The Procedure Division 
header has to specify the use of the Linkage Section. Therefore, the Procedure 
Division header to define Linkage Section entries. 

C O B O L 2000 is part of the language's gradual evolution. While the introduction of 
object-orientation is the primary n e w language feature, the addition of n e w intrinsic 
functions, the n e w data types, and the n e w freedom for coding programs will all 
m a k e the C O B O L programmer's life easier. 





H I 
••IT JThJli 

1. Input, processing, output 
3. Flowchart 
5, Decision 

7, Programmer-supplied-name 
9. Relational 

11. Fields 

1. False. Nonnumeric literals may contain numbers, 
letters, or special characters. 

3. False. A dataname may contain hyphens. 
5. True. 
7. True. 
9. False. They must appear in order: IDENTIFICATION, 

ENVIRONMENT, DATA, and PROCEDURE. 
11. True. 

13. False. They must be told exactly what to do, and the 
instructions take the form of a computer program. 

15. False. A diamond indicates a decision; a rectangle 
implies straight forward processing. 

17. False. Reserved words are restricted to a preassigned 
use. 

19. False. The rules for pseudocode are at the discretion 
of the programmer. 

1. Compiler, source, object (machine) 
3. A margin 
5. 12, 72 
7. Editor (word processor) 

9. 
11. 
13. 
15. 

Debugging 
Linker 
Different 
Execution 

1. False. A compiler translates a problem-oriented 
language into a machine oriented language. 

3. True. 
5. True. 

7. False. Division headers may begin anywhere in the A 
margin (columns 8 to 11), although many people 
begin them in column 8. 

9. False. Paragraph names begin in the A margin. 



Appendix F — Answers to Odd-Numbered Exercises 

11. False. A clean compile means only that the program 
has been translated into machine language; it says 
nothing about whether the logic of the program is 
correct. 

13. True. 
15. False. Each text editor has its own unique commands. 
17. False. The compiler produces an object module which 

is input to the linker, which in turn produces the load 
module. 

1. Sequence, selection, and iteration 
3. One, one 
5. Hierarchy chart 
7. Completeness, functionality, and span of control 

9. Pseudocode 
11. Span of control 
13. Bohm, Jacopini 
15, Top down 

'me/fmse 

1. False. It may still contain logic errors, but presumably 
fewer than non-structured code. 

3. False, Initialization and termination are too vague 
and do not follow the verb, adjective, object convention 
for naming paragraphs. 

5. True. 
7. False. It is an extension to sequence, selection, and 

iteration. 
9. False. The rules of pseudocode are at the discretion 

of the programmer, although individual shops may 
impose standards. 

11. False. Testing should begin as soon as possible with 
the aid of program stubs. 

13. False. The name implies that the paragraph is doing 
three distinct things, as opposed to having a single 
function. 

15. False. Program testing should be ongoing throughout 
the life of the project. 

17. False. The optimal number of modules is a function of 
the program's design. 

1. Identification 
3. Braces 
5. Programmer supplied 
7. SELECT 

9. PICTURE 
11. FILE, WORKING-STORAGE 
13. may not 
15. BLOCK CONTAINS, logical, physical 

1. True. 
3. False. Square brackets indicate the entry is optional. 
5. False. Some modification, generally in the Environment 

Division is required. 
7. False, It will have a picture clause if it is an elementary 

item. 
9. False. A group item never has a picture clause. 

11. False. The determination of whether a data item is a 
group or elementary item depends on the definition of 
subordinate data items. 

13. True. 
15. False. Technically, a program may be written without 

a File Section, although this is unusual. 
17. False. It is optional as indicated by the brackets in 

the COBOL notation. 



Appendix F - Answers to Odd-Numbered Exert ;.%<?•> 

1. COMPUTE 
3. ROUNDED 
5. Before 
7. Does not 
9. STOP RUN 

N + 1 

13. AFTER ADVANCING PAGE 
15. One, left, right 
17. Decimal alignment 
19. May not 
21. SIZE ERROR 

11 

1. 
3. 

5. 
7. 

9. 
11. 

13. 
15. 

True. 
False. An ADD statement must contain one word or 
the other. 
True. 
False. The use of BY or INTO determines which 
operand is the dividend, and which one is the divisor. 
True. 
False. If multiplication and division are both present, 
the order of operations is from left to right. 
True. 
True. 

17. 

19. 
21. 

23. 
25. 

27. 

False. STOP RUN is the last statement executed, but 
it need not be (and usually isn't) the last physical 
statement in the program. 
False. The READ statement specifies a file name. 
False. They are required whenever a file Is present. 
(Strictly speaking, if a program did not reference any 
files, then the statements would not be used). 
True. 
False. ROUNDED Is an optional clause in all the 
arithmetic statements. 
False. It is an optional clause. 

1. Compilation 
3. Execution 
5. Compiles 

7. Structured walkthrough 
9. Detection, correction 

11. Run Time Errors 

False. A clean compile means only that the program 9. 
has been successfully translated into machine 
language. 11. 
False. The compiler checks for syntax only and has 
no way of determining the validity of a program's 13. 
logic. 15. 
True. 17. 
True. 

False. Spaces are generally required after punctuation 
symbols, but not before. 
False. A data name may contain hyphens, letters, or 
digits only. 
False. One reads a file and writes a record. 
False. Walkthroughs should be held for everyone. 
False. A walkthrough should take a maximum of two 
hours. 

1. Coding standards 
3. Floating, fixed 
5. V, S 

7. Verb, adjective, object 
9. Indentation 

11. Negative 



Appendix F - Answers to Odd-Numbered Exercises 

1. False. Indentation is used to improve the readability 
of a program. 

3. False. Coding standards are a function of the 
individual shop. 

5. False. Data names should be meaningful to simplify 
program maintenance, an activity which takes far more 
time than initial coding and data entry. 

7. False. Comments should be used with caution, and 
always for a specific purpose; a common fault of 
beginners is to over comment. 

9. False. The name implies that the paragraph is 
performing two functions. 

11. False. A VALUE clause is used only to assign an 
initial value; for example for heading lines in 
Working-Storage. (VALUE clauses are not permitted 
in the FILE SECTION.) 

13. False. The assignment of CR and/or DB depends on 
the accounting system In use. 

15. False. One or the other should be selected, depending 
on the accounting system. 

17. True. 
19. True. 

1. Validated (checked) 7. 88 
3. Numeric 9. END-IF 
5. Completeness 

False. The output of the edit program is input to the 
reporting program. 
True. 
False. The alphabetic class test can be applied to 
only alphabetic or alphanumeric data. 

7. True. 
9. True. 

11. False. DAY and DATE imply the Julian and calendar 
dates, respectively. 

1. Two 7. STRING, UNSTRING, and INSPECT 
3. Section 9. BEFORE, AFTER 
5. Qualified, OF, IN 11. In-line 

1. True. 9. False. It is an optional statement which is not favored 
3. False. An in-line perform does not specify a procedure. by the authors. 
5. False. CORRESPONDING is always optional. 11. True. 
7. False. The CORRESPONDING option has several 

fine points, but level number is not one of them. 



Appendix F Answers to Odd-Numbered Exercises 

1. Is not 
3. SECURE 
5. Last 

7. Should not 
9. TEST BEFORE 

11. Interactive 

me 

1. False. Both sections may appear in the same program. 
3. False. The clauses are optional. 
5. True. 

7. False. The text would be illegible; i.e., it would blend 
into the background. 

9. True. 

t-m-tn 

1. OCCURS 
3. Variable, OCCURS DEPENDING ON 
5. May 

7. Is 
9. Does not change 

1. False. Tables are established through an OCCURS 7, 
clause. 

3. True. 9. 
5. True. However if a subscript does assume a zero 

value, it would indicate a logic error in the program. 11. 

False. An index can be used only with the table for 
which it was defined. 
False. Variable length records means that records in 
a file are of different lengths. 
False. An index is modified by a SET or PERFORM 
statement. 

i»- L 

*M4M 

1. 100, 676, 1296 
3. Hard-coded 
5. Positional 
7. REDEFINES 

9. KEY 
11. INDEXED BY 
13. Compilation 
15. Range step 

•mm 

1. True. 
3. True. 
5. True. 
7. True. 
9. True. 

me 
11. False. Examination of the COBOL syntax shows an 

additional WHEN clause enclosed in brackets. 
13. True. 
15. True. Good practice however, dictates that a separate 

subscript be used for every table. 



Appendix F —- Answers to Odd-Numbered Exercises 

17. True. 
19. True. 
21. True. 
23. False. All codes should be unique. 

25. True. 
27. False. A range step table occurs when a one-to-one 

correspondence no longer exists. 

3 

Fllhln 

1. OCCURS 
3. Seven 
5. May not, OCCURS, REDEFINES 

7. 1, 6, 2, 1, 6 
9. 1,2,3 

1. True. 
3. True in COBOL-85, but not in COBOL-74. 
5. True. 

7. False. The program would compile cleanly, but 
produce problems during execution. 

9. False. The clauses are all optional 

Fill-in 

1. Key 
3. EBCDIC, ASCII 
5. Primary (major), secondary (intermediate), tertiary 

(minor) 

Yme/faise ,,,, 

1. False. It can be used on a calculated field if INPUT 
PROCEDURE is specified. 

3. False. INPUT PROCEDURE may also be specified 
with GIVING. 

5. True. 
7. False. They are associated with INPUT PROCEDURE 

and OUTPUT PROCEDURE, respectively. 
9. True. 

11. True. 

7. GIVING, OUTPUT PROCEDURE 
9. SELECT, SD 

11. Trailing, embedded 
13. Identical 

13. 

15. 
17. 

19. 

False. The INPUT PROCEDURE is used if you want to 
selectively pass records to the sort work file; for 
example, to increase efficiency by sorting on fewer 
records. 
True. 
False. INPUT PROCEDURE is not used with the 
MERGE statement. 
False. The MERGE statement requires that all input 
files have identical record layouts and appear in the 
same sequence. 

Chapter 13 

1. Change, control break 
3. Is 
5. Before 

7. Pseudocode 
9. Less 

11. Rolling 



ppendix F Answers to Odd-Numbered f xeiases 

1. False. Control breaks can theoretically extend to any 5. True. 
number of levels, although they lose meaning after 7. True. 
three or four 9. True. 

3. True. 

1. EXIT PROGRAM 
3. Is 
5. Both 

7. COPY 
9. BY REFERENCE 

11. CALL 

1. False. The COPY statement is permitted anywhere 
except within another COPY. 

3. False. They can be the same, but there is no COBOL 
requirement stating they must be the same. 

5. False. The COPY statement is permitted anywhere 
except within another COPY. 

11. 

False. A program may call several subprograms. 
False. All parameters must be elementary items except 
for those passed at the 01 level. 
False. Both are optional; omission of both phrases 
defaults to calling BY REFERENCE which is equivalent 
to a CALL statement in COBOL-74. 

1. Every 
3. Does 
5. Additions, changes (corrections), deletions 
7. Can 

9. Can not 
11. Stubs, DISPLAY 
13. HIGH-VALUES 

1. True. 11. 
3. True. 
5. True. 
7. False. Duplicate additions can only be checked 

against the master file; i.e., during the actual update. 
9. False. Pseudocode is procedural in nature and 13. 

indicates sequence and decision making. Hierarchy 
charts are functional and indicate what has to be 
done, not necessarily when or if. 

False. The programmer is biased (either consciously 
or unconsciously), as he or she wrote the program 
and knows what it does or doesn't do. Ideally test 
data should be designed by the user, but this is often 
difficult to achieve. 
False. The balance line algorithm may be used with 
multiple transaction files (as was done in the chapter). 



A p p e n d i x F Answers to Odd-Numbered Exercises 

1. Indexed 
3. VSAM, indexed 
5. Highest 
7. Unique, duplicate, alternate (secondary) 

9. Optional, two, WORKING-STORAGE 
11. START 
13. DYNAMIC 

False. Specification of ALTERNATE RECORD KEY 
will require substantial amounts of overhead in 
retrieving records from an indexed file; it should not 
be used indiscriminately. 
False. The COBOL notation places both clauses in 
brackets to indicate optional entries. Logically however 
one of the two conditions must pertain, and 
consequently either clause should be specified. (The 
authors find these clauses easier to follow than testing 
the equivalent FILE STATUS entries.) 

5. False. Specification of zero alternate areas will slow 
processing. 

7. False. The ALTERNATE RECORD KEY need not be 
unique, as per the WITH DUPLICATES clause. 

9. True. 
11. False. They have different functions; to enter a new 

record and to change an existing record. 
13. True. 

1. storage, memory 
3. not been 

5. integer, date, YYYYMMDD 
7. is 

1. True 
3. False, they were added in 1989 
5. False, INTEGER-TO-DATE returns YYYYMMDD and 

INTEGER-TO-DAY returns YYYYDDD 

7. True 

1. is 
3. class, instance 
5. Inheritance 

7. Base 
9.polymorphism 

fros/itassi 

1. False, many of the basic concepts remain. 
3. False, the Procedure Division is necessary to specify the 

use of the Linkage Section. 
5. True 

True 
True 



P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Price Break Report 

N a r r a t i v e : Write a program to determine whether a customer receives a price break based on 
quantity ordered. 

Input File: OHUER-TRANSACTION-FILE 

Input Record Layout Order Record 

Customer Number Quantity Ordered Item Number 

1 ... 8 9 10 ... 12 13 ... 17 

T e s t D a t a : 

R e p o r t L a y o u t : 

5 1 3 4 7 9 3 5 0 0 0 5 1 1 1 1 1 
4 2 3 0 9 8 4 7 0 1 0 0 2 1 2 2 2 
3 8 9 0 1 9 7 4 0 1 2 5 3 2 3 3 3 
2 1 5 6 4 8 2 3 0 5 0 0 4 3 4 4 4 
1 0 0 2 4 5 6 7 0 9 0 0 5 4 5 5 5 

X X X X X X X X XXXXX 999 99 

Customer Item Qty D i s c o u n t 
Number Number Ordered P e r c e n t 

Processing Requirements: 1. Read a file of order records. 

For every record read, determine the discount the customer will receive. The discounting 
of an item is based on the Item Series and Quantity Ordered. Item Series is indicated 
by the first byte of the Item Number. For example, Item Number 12345 is Item Series 1 
because it starts with a 1. The eligibility of discounting is determined as follows. 



A p p e n d i x G Projects 

Quantity Discount 
Ordered Percent 

Item Series 1 & 2 1-100 0% 
101-500 10% 
501-999 20% 

Item Series 3, 4, & 5 1-50 0% 
51-100 15% 
101-500 20% 
501-999 25% 

3. Print the Customer Number, Item Number, Quantity Ordered, and Discount Percent 
allowed for each customer record. Single-space the output. 

Program Name: Inter-City Piano Program 

Narrative: Write a program for the Inter-City Piano Company. The program is to process a file of 
customer records and produce a list of people eligible for a discount in buying a piano. 

Input File: CUSTOMER-LESSON-FILE 

Input Record Layout: Customer Lesson Record 

Last Name First Name # of Lesson Purchase Indicator 

1 ... 15 16 ... 25 26 ... 28 29 30 

Test Data: 

C R A W F O R D ; S H E R i R Y 0 1 1 JN 

;K A R V A Z Y K A R E N 0 1 7 Ŷ 

M O R S E KENNETH 0 1 4 ;N 
P L U M E T R E E * M I C H T L E 0 2 7 JN 
S L Y MATTHEW 0 1 9 N 

P O W E R S N A N C Y 0 2 4 ;Y 
B L A K E L Y K R I S T EN 0 0 8 

Report Layout: 

xxxxxxxxfxx xxxxx;XXxxxxxxXX 

;;;; szjzzr 
first name last name 

999 

ni l 
lesson 

Processing Requirements: 1. Read a file of customer records. 

2. For every record read, determine whether that person is eligible for a discount to buy a 
piano. Individuals who have taken 15 or more lessons and have not yet purchased a 
piano qualify. Do not consider as eligible anyone with a "Y" in position 30 of the input 
record which indicates that a piano has already been purchased. 

3. Print the names of all qualified individuals according to item 2 above. Single-space the 
output. (Do not print the names of individuals who are not eligible.) 



Project 2-4 

Program Name: Delinquent Accounts 

Narrative: Write a program to process a corporation's account file to select a list of problem 
accounts. The generated list will then be brought to the attention of the comptroller. 

I n p u t F i l e : 

I n p u t R e c o r d Layout: 

CUSTOMER-ACCOUNT-FILE 

Customer Account Record 

Name Account No. Account Owed Days Overdue 

1 ... 15 16 17 ... 22 23 24 ... 28 29 30 ... 32 

ACME E N T E R P R I S E 

B A K E R B R O T H E R S 

BENJAMIN £ 0 
F R A N K E L CORP 
iCLARK PROGRESS 
M A R S H A K B O O K S 

i K A R L S T R O M i I N C 

M I L G R O M T H E A T R E 

S P R I N G S W W T E R 

11 i 1 1 1 0 1 0 0 0 0 1 0 

2 2 2 : 2 2 2 2 0 0 0 0 0 3 0 

3 3 3 3 3 3 0 0 5 0 0 fj 1 5 

4 4 4 4 4 4 2 7 5 0 0 1045 

55 5:5 55 3 2 0 0 0 10 0 5 

6&6!6 6& 0 3 5 0 0 :0 60 

7 7 7 7 7 7 0 0 1 0 0 0 4 b 

8 8 8 ; 8 8 8 1 5 0 0 0 to 1 4 

9 9 9=999 2 0 0 0 0 0 0 7 

Report Layout: Design your own report layout. 

Processing Requirements: 1. Read a file of customer account records. 

2. Determine if the record is a problem account. An account is considered a problem if 
the amount owed is over 20,000 or the account is more than 30 days overdue. 

3. Print the name and associated information (account number, amount owed, and days 
overdue) of all problem accounts. Space this information reasonably over a print line. 
Double-space the report. 

Program Name: Shoe Inventory Program 

Narrative: Write a program to process a file of shoe inventory records and produce a list of shoes 
that need reordering. 

Input File: SHOE-INVENTORY-FILE 



Appendix G — Projects 

Shoe inventory Kecord 

Vendor Name Style No. Quantity on Hand Reorder Quantity 

1 ... 12 13 ... 18 19 ... 22 23 ... 26 

T e s t D a t a : 

I B A S S 12 12 1 2 0 ( 4 5 0 0 3 0 0 

' B R U N O M A G j L I 2 3 2 3 2 3 0 ( 5 0 0 0 5 0 0 

K E D S 3 4 3 4 3 4 0(7 0 0 0 7 5 0 

( J O A N & D A ( V I D 4 5 4 5 4 5 0 | 0 5 0 0 0 2 5 

LA G E A R ! 5 6 5 6 5 6 0 ( 5 0 0 0 5 5 0 

F L 0 R S H E I M 6 7 6 7 6 7 0 ( 1 0 0 0 0 7 5 

( N I K E ! 7 8 7 8 7 8 0 J 3 0 0 0 2 0 0 

I R E E B 0 K 8 9 8 9 8 9 0 7 0 0 0 8 0 0 

Report Layout: 

xxxxxxxxxxxx xxxxxx 

I I 
vendor name style # 

l l l s i l l l l - l l l S i 
9 9 9 9 9 9 9 9 

I I 
QOH Reorder 

P r o c e s s i n g R e q u i r e m e n t s ; 1. Read a file of shoe inventory records. 

2. For each record read, determine whether a particular shoe style should be reordered. 
Shoes should be reordered when the quantity on hand falls below the reorder quantity. 

3. Print the vendor name, style number, quantity on hand, and reorder quantity for only 
the shoes that should be reordered. 

•A it 
P r o g r a m N a m e : Mailing List Program 

N a r r a t i v e : Write a program to process a file of mailing list records and produce a mailing list. 

I n p u t F i l e : MAILING-LIST-FILE 

I n p u t Record L a y o u t : Mailing List Record 

Name Street Address City and State Zip 

1 20 21 45 46 63 64 68 



Project 2-6 

Test Data: 

R O B E R T T . G R A D E R 

J A N E DOE 

i JOHN S M I T H 

;D E B R A L . t i l l 

:MEGAN J . ; A L V 0 R D 

G E O R G E B E R E N S 

GARY F E I N 

60 P A C I F I i C COAST HWY 

123 S O U T H S T R E E T 

2 1 J U M P S T R E E T 

59 BROADWAY 

9 S O U T H SiHORE D R I V E 

73 W E S T F L A G L E R 

45 M A I N S T R E E T W 

C A R O L VAZ:QUEZ V I L A R 9 ROAD TO HANA 

S A N T A B A R B A R A , CA 9 3 1 0 1 

C H A R L O T T E , N C : 2 8 2 0 3 

A U S T I N , TX 7 8 7 0 1 

NEW Y O R K , NY 1 0 0 0 6 

B E V E R L Y H I L L S ,; CA 90.210 

M I A M I , F L 33:130 

C H I C A G O , I L 6 0 6 4 8 

M A U I : , H I 96 7 1 3 

Report Layout: 

X X X X X X X X X X X X X X X X X X X X - name 
X X X X X X X X X X X X X X X X X X X X X X X X X -street address 
X X X X X X X X X X X X X X X X X X X X X X X 

city & state zip 

Processing Requirements: 1. Read a file of mailing list records. 

2. For each record read, create a mailing label. Double-space between each record. 

Program Name: Church Building Fund Report 

Narrative: Write a program to print a Church Building Fund Report containing all church members 
who are behind on their contributions. 

Input File: CHURCH-BLD-FUND-MSTR-FILE 

Input Record Layout: Church Building Fund Master Record 

Member Name Pledged Amount Member Number Amount Given 

1 ... 15 16 ... 20 21 ... 25 26 ... 30 31 ... 34 35 ... 39 

Test Data: 

J O H N S M I T H 

ANN L O V I N G 

MARY B R O W N 

TOM S A W Y E R 

J A C K C A P P S 

J I L L J A C O B S 

S U S A N C L U B 

M I K E C L O U D 

0 0 1 0 0 0 0 0 T 0 0 0 0 1 0 0 0 5 0 

0 0 2 0 0 0 0 S 0 0 0 0 0 2 0 0 0 2 5 

0 O 5 0 O 0 0 C 0 A O 0 0 3 O 0 5 0 O 

0 0 0 7 5 0 0 F G 0 0 0 0 4 0 0 0 0 0 

0 3 4 0 0 3 4 0 0 0 0 0 0 5 0 3 4 0 0 

4 0 0 0 0 1 2 3 4 5 0 0 0 6 0 3 5 0 0 

0 2 0 0 0 X A B C J D 0 0 0 7 0 2 0 0 0 

0 0 3 0 0 0 F C 0 O 0 0 0 8 0 0 1 5 0 : 



A p p e n d i x G — Projects 

Report Layout: 

XXXXXXXX'XXXXXXX 99999 
I I 

MEMBER AMOUNT 
NAME P L E D G E D 

99999 

AMOUNT 
TO DATE 

99999 

I 
G I V E N 
AMOUNT 
OWED 

Processing R e q u i r e m e n t s : 1. Read a fiie of church member building fund master records. 

2. For every record read: 

a. Calculate the AMOUNT OWED = AMOUNT PLEDGED - AMOUNT GIVEN 

b. Print the church member name, the amount pledged, the amount paid to date, and 
the amount owed for each church member who owes money to the church. Single-
space each line. 

Program Name: Telephone Long Distance Carrier Program 

Narrative: Write a program to process a file of telephone records to produce a report list of 
customers who are not using ET&T as a long distance carrier. 

input Fiie: I ELEPFiuNE-HLt 

Input Record Layout: Telephone Record 

Name Area Code Phone No, Long Distance Carrier 

1 ... 18 19 ... 21 22 ... 28 29 ... 35 

i M A R Y A N N B A R B E R 

' J O E L S T U T Z 

i R O B E R T P L A N T 

: G R E G G E L O F S O N 

S A R A R U S H I N E K 

M A R K G I L L E N S O N 

O A V 1 0 H E R T Z 

J O H N S T E W A R T 

3 0 5 5 5 5 7 6 3 4 A T & T 

4 0 7 6 3 4 1 2 3 4 E T & T 

3 1 2 4 3 7 4 9 6 2 S P R I N T 

2 0 3 2 4 6 9 3 6 8 H C I 

2 1 2 6 6 6 2 9 1 6 E T & T 

3 1 6 3 9 6 9 4 7 6 T E L T E C 

6 1 3 2 4 6 3 6 1 8 M C I 

8 1 3 3 2 4 6 8 4 6 T E L T E C 

R e p o r t L a y o u t : 

X X X X X X X X X X X X X X X X X X ( X X X : ) X X X - X X X X: X X X X X X X 

area 
code 

phone #: long distance 
carrier 



Project 3-1 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of telephone records. 

2. For each record read, determine whether the long distance carrier is ET&T or not. 

3. Print the name, complete phone number, and the current long distance carrier of the 
records that are not using ET&T. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Insurance Policy Holder Report 

Narrative: Develop a hierarchy chart and either flowchart, pseudocode, or Warnier-Orr diagram for 
a program to determine which customers have group life insurance policies. 

I n p u t F i l e : CUSTOMER -INSURANCE-FILE 

I n p u t R e c o r d L a y o u t : Customer Insurance Record 

Customer Number First Insurance Policy Held Effective Date Expiration Date 

1 ... 8 9 10 ... 11 12 ... 19 20 ... 27 

Second Insurance Policy Held Effective Date Expiration Date 

28 ... 29 30 ... 37 38 ... 45 

Third Insurance Policy Held Effective Date Expiration Date 

46 . 47 48 ... 55 56 ... 63 

First Insurance Policy Rate First Insurance Policy Ivletnod of Payment 

64 68 69 

Second Insurance Policy Rate Second Insurance Policy Method of Payment 

70 ... 74 75 

Third Insurance Policy Rate Third Insurance Policy Method of Payment 

76 ... 80 81 

T e s t Data: ,> , „ K 

513479359GLO910199709101998ULO8O1199608011998HE05151997O5151999015O0A0040OQ00O25K 
423098479SA0428199604281998HE 11081 996 1108 1997 00010 MO0300Q 
389019749UL0613199706131998GL0101 199801012000 00400 AO0500M 
215648239AS05031996O5031998XL121O199712102000GL01041997O1O419990003OMOO15OQO5OOOA 
100245679HE0404199604041998 00500H 

Report L a y o u t : 

} C U S T O M E R 
' N U M B E R 

i x x x x x x x x " ' ' 

USA I N S U R A N C E COMPANY 
G R O U P L I F E POLICY REPORT 

E F F E C T I V E E X P I R A T I O N 
" ' D A T E " " " " D A T E 

x""x7 x" "x / x x x" x X "X / X X / X X X x" 

POLICY 
PREMIUM' 
9 9 9 9 9 9 9 

T 0 T A L G R O U P P 0 L I C Y? P R EMI U M S 9 9 9 9 9 9 9 9 



A p p e n d i x G Projects 

Processing Requirements: 1. Read a file of customer records. 

2. For every record read: 
a. Determine whether the customer has a group life insurance policy. Each customer 

can have as many as three different insurance policies. Check all three policies to 
determine whether they are group life. A group life insurance policy is indicated 
with the code 'GL'. 

b. Calculate the POLICY PREMIUM for each group life insurance policy by checking 
the METHOD OF PAYMENT field. If the METHOD OF PAYMENT field contains an 
"M," multiply the rate times 12 (months). If the METHOD OF PAYMENT field 
contains a "Q," multiply the rate times 4 (quarterly). If the METHOD OF PAYMENT 
field contains an "A," the rate is the POLICY PREMIUM (annual). 

c. Accumulate the POLICY PREMIUMS, giving the TOTAL GROUP POLICY PREMIUMS. 
d. Print the customer number, effective date, expiration date, rate, and policy premium 

for each customer who has a group life insurance policy. Single-space the output. 

3. After all records have been read, print the total group life policy premiums. 

rujfi I caiil n a m e * 

Narrative: This project builds on Project 2-1. Develop the hierarchy chart and either flowchart, 
pseudocode, or Warnier-Orr diagram to determine whether a customer receives a price 
break based on quantity ordered, and calculate the unit price and extended price. 

Input file: ORDER-TRANSACTION-FILE 

Input Record Layout: 
Order Record 

Customer Name Quantity Ordered Item Number Unit Price 

1 . . . 8 9 10 .. . 12 13 .. . 17 18 19 .. . 21 

Test Data: 

5 1 3 4 7 9 3 5 0 0 0 5 1 1 1 1 1 9 1 0 5 

4 2 3 0 9 8 4 7 0 1 0 0 2 1 2 2 2 8 0 2 0 

3 8 9 0 1 9 7 4 0 1 2 5 3 2 3 3 3 7 3 0 0 

2 1 5 6 4 8 2 3 0 5 0 0 4 3 4 4 4 6 3 4 0 

1 0 0 2 4 5 6 7 0 9 0 0 5 4 5 5 5 5 0 6 5 



Project 3-3 

R e p o r t L a y o u t : mm 
AUSTIN ; R E T A I L COMPANY 

:UST0MER ITEM QTY UNIT EXTENDED TOTAL TOTAL 
NUMBER NUMBER" ORDERED P R I C E P R I C E Q U A N T I T Y : SALES 

<XXXXXXX : " XXXXX 999 999 : 999999 ORDERED 999999999 
. " ' • 999999 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of order records. 

For every record read: 
a. Determine whether the customer will receive a discount based on the specifications 

in Project 2-1. 
b. Calculate the Unit Price by applying the appropriate discount as determined in 2a. 
c. Calculate the Extended Price by multiplying the Quantity Ordered by the Unit Price. 
d. Accumulate the Total Quantity Ordered by adding the Quantity Ordered. Accumulate 

the Total Sales by adding the Extended Price. 
e. Print the customer number, item number, quantity ordered, unit price (calculated), 

and extended price for each customer record. Single-space the output. 

After all records have been read, print the total quantity ordered and the total sales. 

P r o g r a m N a m e : Barcoded Price List 

N a r r a t i v e : Develop the hierarchy chart and either flowchart, pseudocode, or Warnier-Orr diagram 
for a program to create and print a barcoded price list. 

I n p u t F i l e : ITEM-PRICE-FILE 

I n p u t R e c o r d L a y o u t : Item Price Record 

Item Number Quantity on Hand Unit Price 

1 ... 5 6 ... 9 10 ... 14 



A p p e n d i x G Projects 

Test Data: 

R e p o r t L a y o u t : 

T1080105(M)0100 
12400120001400 
13050001000200 
;144500200O1350 
(230 10010000200 
(3 1054100000050 
;05 1000060002 13 
(02 187090600045 
956780020(00300 
T0234001000024 

COMPANY ABC BA R C O D E D PRICE LIST 

B AR C O D E D B ARC0D ED" I T E M U N I T 
I T E M N U M B E R " UNIT P R I C E ' N U M ' B E R P R I CE 
< 9 9 9 9 9 9 9 > < 9 9 9 9 9 9 9 > 999 99 99999 

TOTAL ITEMS: 9 9 9 9 9 9 9 

Processing Requirements: 1. Read a file of price records. 

2. For every record read: 
a. Determine the check digits for the barcoded item number and unit price as follows: 

Add each number in the field together and divide by the number of digits being 
added, then multiply the result by 3. 
Place the check digits to the right of the field for 2 positions and place a < to the left 
of the first digit and > to the right of the last digit. 
When the price list prints, a barcode font should be used to cause the appropriate 
fields to be barcoded (this cannot be done in the lab environment, the fields will just 
print normal). 
For example: ITEM NUMBER = 12345 
check digit =1+2 + 3 + 4 + 5=15 
15/5 = 3 
3*3 = 9 
check digit = 09 
BARCODED ITEM NUMBER = <1234509> 
< indicates the beginning of a barcode field and > indicates the end of a barcode 
field. 
Check digits are used to ensure that proper transmission has occurred. The 
program that uses the data after transmission uses the above algorithm to determine 
whether the proper data has been sent. If the answer derived does not match the 
check digits, something was not transmitted properly. 

b. Increment an accumulator for number of items. 
c. Print the barcoded item number, barcoded unit price, item number, and unit price. 

3. After all records have been read, print the total items. 



Project 3-4 

Program Name: Savings Dividends 

N a r r a t i v e : Develop the hierarchy chart and either flowchart, pseudocode, or Warnier-Orr diagram 
for a program to process a file of savings account records and compute and print a 
dividend report for each account and a total. The Identification, Environment, and Data 
Divisions for this project can be developed after Chapter 4. Completion of the project 
requires you to finish Chapter 5 in order to do the Procedure Division. 

Input File: SAVINGS-FILE 

I n p u t R e c o r d L a y o u t : 
Savings Record 

Account No. Name Amount Term 

1 ... 8 9 24 25 ... 31 32 33 

T e s t D a t a : 

' 1 1 0 0 0 - O l M i I L G R O M 0 0 4 5 : 5 6 0 1 8 

, ' 2 3 0 0 0 - 0 5 P ! E T E R S 0 0 3 0 6 7 0 1 6 

3 1 0 0 1 - 0 2 S M I T H 0 0 2 5 : 8 9 0 1 2 

4 3 0 4 5 - 0 3 J O N E S 0 0 6 9 : 8 8 0 2 4 

"5 1 0 0 5 - 0 1 vi l L L A R 0 0 0 4 5 5 0 0 6 

: 3 5 0 1 0 - 0 2 H A N S E N 0 1 0 9 : 3 6 0 3 6 

R e p o r t L a y o u t : 

A C C O U N T 

N U M B E R 

X X X X X X X X 

NAME 

X X X X X X X X X X X X X X X X 

S A V I N G S D I V I D E N D T O T A L 

AMOUNT P A I D S A V I N G S 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

T O T A L S 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9: 

Processing Requirements: 1. Print a heading at the beginning of the report. 

2. Read a file of savings account records. 

3. Process each record read by: 
a. Determining the interest rate as follows: 

(1) 6% interest on terms of 6 months or less. 
(2) 7% interest on terms of more than 6 months but less than 12. 
(3) 8% interest on terms of more than 12 months but less than 18. 



Appendix G Projects 

(4) 9% interest on terms of more than 18 months but less than 24. 
(5) 10% interest on terms of more than 24 months but less than 30. 
(6) 12% interest on terms of more than 30 months. 

b. Calculating the dividend to be paid by multiplying the amount by the interest rate. 
c. Calculating the total savings by adding the interest to be paid to the account 

amount. 
d. Incrementing savings totals tor savings amount, dividend paid, and total savings. 
e. Printing a detail line for each record read. 

4. Print a total line at the end of the report. 

Project 3-5 

Program Name: 

Narrative: 

Input File: 

Input Record Layout: 

Evaluation of Student Curriculum Records 

Develop the hierarchy chart and either flowchart, pseudocode, or Warnier-Orr diagram 
for a program to evaluate a student's curriculum record and determine the percentage of 
courses a student has left in order to to graduate, the percentage of courses a student 
has transferred, the percentage of courses for which a student has been awarded 
proficiency credit, and the percentage of courses a student has completed. 

STUDENT-CURRICULUM-FILE 

Student Curriculum Record 

Student Id Number Course Number 1 Grade 1 

1 ... 5 6 ... 12 13 

Course Number 2 Grade 2 Course Number 3 Grade 3 

14 ... 20 21 22 ... 28 29 

Course Number 4 Grade 4 Course Number 5 Grade 5 

30 ... 36 37 38 ... 44 45 

Course Number 6 Course Grade 6 Number 7 Grade 7 

46 ... 52 53 54 ... 60 61 

Course Number 8 Course Grade 8 Number 9 Grade 9 

62 ... 68 69 70 ... 76 77 

Course Number 10 Grade 10 

78 ... 84 85 

Test Data: • I 
1 2 345C0MPI110AENG L 11J0 HAT H 1 48 KjMAT H 1 68 PC IjS 1 50 FCIS230 P S Y C 1 0S5 BB U S N 1 10 A;H UMN4 1 0 PHUlMN 4 2 0 A 
;34567ENGlJl 1OCENGL12J0 MATH048CJMATH2 1 ODC lis 1 50 PCIS230 ACIS330: 
78921BUSN;110 BUSN120 ENG L 11 OAJENG L 1 20PMA.TH048KMATH 1 68BMATH22:0 
i346 78PSYCJ105APSYC305 ENGL 11 0AJENG L 1 20 E CON 2 10 AHUMN 41 0 KH UMN 42:0 P HUM N 4 3 0 AJAC C T2 1 3 AA CC T 3 4 7 
47830SPCH275AENGI 110 ACC T 20 5 A;AC C T2 10 P ACJCT3 47 K I 



Project 3-6 

Report Layout: 
U N I V E R S I T Y O F N O W H E R E 

S T U D E N T C U R R I C U L U M E V A L U A T I O N 

i T U D E N T ID P E R C E N T A G E O F C O U R S E S 
N U M B E R C O M P L E T E D R E M A I N I N G T R A N S F E R R E D P-RO F I C I E N C Y 

XXXXX 999 999 999 999 

Processing Requirements: 1. Read a file of student curriculum records. 

2. For every record read: 
a. Add the total number of courses (course name, not spaces) for each student (a 

maximum of 10). 
b. Add the total number of courses where the student was awarded a grade (A, B, C, 

or D), proficiency (P), or transfer credit (K). 
c. Add the total number of courses where the student was awarded transfer credit (K). 
d. Add the total number of courses where the student was awarded proficiency credit (P) . 
e. Determine the percentages of courses left in order to graduate, courses completed, 

courses transferred, and courses awarded proficiency credit. 
f. Print student id number and the percentages of courses left in order to graduate, 

courses completed, courses transferred, and courses awarded proficiency credit. 

Program Name: Inventory Parts List 

Narrative: Develop the hierarchy chart and either flowchart, pseudocode, or Warnier-Orr diagram 
for a program to produce an inventory report. The Identification, Environment, and Data 
Divisions for this project can be developed after Chapter 4. Completion of the project 
requires you to finish Chapter 5 in order to do the Procedure Division. 

Input File: 

Input Record Layout: 

INVENTORY-FILE 

Inventory Record 

Part Name Quantity on Hand Amount Received Amount Shipped Unit Price 

1 ... 20 21 ... 23 24 ... 26 27 ... 29 30 ... 33 



A p p e n d i x G Projects 

Test Data: 

M I D G E T S , S I Z E S 

W I D G E T S , S I Z E M 

: W I D G E T S , S I Z E L 
J W H O S I W H A T S I S 

G I Z M O S , T Y P E A 

G I Z M O S , T Y P E B 

G A D G E T S , S I Z E S 

G A D G E T S , S I Z E L 

1 5 0 0 5 0 0 9 6 0 0 7 0 

2 0 0 0 7 5 0 7 6 0 0 8 0 

0 0 0 5 0 0 4 0 0 0 0 9 0 

3 5 0 1 1 0 0 4 6 0 1 0 0 

2 5 0 0 8 0 0 3 6 0 2 0 0 

0 0 0 0 5 0 0 2 5 0 3 0 0 

0 2 5 0 1 8 0 2 6 : 0 0 1 5 

0 9 0 0 2 8 0 3 5 0 0 2 5 

R e p o r t Layout: 

P A R T NAME 

X X X X X X X X X X X X X X X 

• • * I N V E N T O R Y R E P O R T * * * 

B E G I N N I N G R E C E I V E D S H I P P E D E N D I N G U N I T 

ON HAND ON HAND P R I C E 

T O T A L 

V A L U E 

999 999 999 y y y 9999 9 9 9 9 9 9 9 

T O T A L V A L U E OF A L L I N V E N T O R Y 9 9 9999 99! 

Processing Requirements: 1 . Read a file of inventory records, and for every record read: 
a. Determine the quantity on hand at the end of the period. This is equal to the 

quantity on hand at the start of the period (contained in the input record), plus the 
amount received, minus the amount shipped. 

b. Determine the value of the inventory on hand at the end of the period. This is equal 
to the unit price (contained in the input record) multiplied by the quantity on hand at 
the end of the period [computed in part a.]. 

c. Print a detail line for every part containing the part name, quantity on hand at the 
beginning of the period, the amount shipped, the amount received, the quantity on 
hand at the end of the period, the unit price, and the value of the inventory at the 
end of the period. Double-space detail lines. 

2. When all records have been read, print the total value of all inventory on hand at the 
end of the period. 

Program Name: Money Changer 

Narrative: The ACME Widget Corporation has decided to pay its employees in cash rather than by 
check. Develop the hierarchy chart and either flowchart, pseudocode, or Warnier-Orr 
diagram for a program to read a file of payroll amounts and determine the required 
number of bills in each denomination. The Identification, Environment, and Data Divisions 
for this project can be developed after Chapter 4. Completion of the project requires you 
to finish Chapter 5 in order to do the Procedure Division. 



Project 3-7 

Input File; PAYROLL-FILE 

Input Record Layout: Payroll Record 

Employee Name Soc Sec No. Gross Pay 

1 18 19 27 28 ... 30 

Test Data: 

JOHN SMITH 
i J E S S I C A GRAUER 
CHANDLER LAVOR 
J E F F R Y BtJROW 
;M AR I 0 N MI LGROM 
LYNN FRANKEL 
KARL KARLSTROM 

'K AT H Y MARS IIAK 
RHODA HAftS 
J I M F E G E N ! 
MARIO V I L L A R 

1:23456789350 
33 3 444 5 554 75 
9:8765432 1 1 7 S 
7776688882 19 
9:99887 7 7 7 341 
492 336 78949|2 
3332 288883 1:4 
2 4 5 3 4 7 8 7 8 3 6:8 
1111111113 05 
222222222 5212 
3:3 3 3 3 3 3 3 3 3 7i8 

Report Layout: 

E M P L O Y E E NAME $100< $50 $20 

X X X X X X X X X X X X X X X X X X X X X - X X - X X X X * 9 9 19 

X X X X X X X X X X X X X X X X X X X X X - X X - X X X X 9 9 9 

TOTALS 9 9 

10 $5 $1 PAY: 

9 9 9 999 

~9 9 " 9 9 9 9 

99 9 9 99 9:9 9 9 9 99 

Processing Requirements: 1. Read a file of employee pay records. 

2. For each record read: 
a. Determine the number of bills of each denomination required to pay the employee 

in cash, rather than by check. (Do not include cents in your computation.) 
b. Use denominations of $100, $50, $20, $10, $5, and $1. Pay employees in the 

highest denominations possible; e.g., an employee with a gross pay of $300 should 
be paid with three $100 bills rather than six $50 bills. 

c. Maintain a running total of the total payroll as well as the number of bills in each 
denomination for the company as a whole. 

d. Print a detail line for each employee according to the report format. Double-space 
detail lines. 

3. When all records have been read, print a total line for the company according to 
specification 2c. above. 



Appendix G — Projects 

Program Name: Real Estate Sales 

Narrative: Develop the hierarchy chart and either flowchart, pseudocode, or Warnier-Orr diagram 
for a program to process a file of real estate records and produce a monthly report based 
on transaction types, commissions paid, and summary. The Identification, Environment, 
and Data Divisions for this project can be developed after Chapter 4. Completion of the 
project requires you to finish Chapter 5 in order to do the Procedure Division. 

The sales commission on any real estate sale is 6 percent of the total sale and is divided 
equally between the listing and selling agencies. This produces three possible sales 
types, which in turn determine the commissions paid to the company and its agents. 

1. The company both sells and lists the property (CO-CO). The agent who listed the 
property receives 25 percent of the total (6 percent) commission, and the remaining 
75 percent of the commission is divided equally (50 percent each) between the agent 
who sold the property and the company. 

2. The company sells the property listed by an outside agency (CO-OUT). The agent who 
sells the property listed by an outside agency receives 70 percent of the commission 
due to the company (the commission due to the company is 3 percent of the total 
sales price, or one half of the total 6 percent commission). The company retains the 
remaining 30 percent of the 3 percent commission to the selling agency. 

3. An outside agency sells the property that was listed by the company (OUT-CO). The 
company receives 50 percent of the sales commission (3 percent of the total price), 
which is split equally between the company and the listing agent. 

Input File: REAL-ESTATE-FILE 

Input Record Layout: Real Estate Record 

Salesperson 
Date CO-CO CO-OUT OUT-CO 

Salesperson 
Month Day Year Amount Status Amount Status Amount Status 

1 ... 12 13 14 15 16 17 18 19 ... 24 • 25 26 ... 31 32 33 ... 38 39 

Test Data: 

iVILLAR 0 30593 2(1 5500C130 3I00C234000C 
( V A Z Q U E Z ( 01 30593 3(4 5500C123 0JOOC273400C 
( G A R C I A I Of 30893 1(3 4500K145 0:00C295600C 
i G R A U E R Oi 31093 23 4000C395 0i0 0C124400K IALVORD ( Oi 31293 0|0 000002300:00C234000K (VAZQUEZ ( Oi 31593 1:3 8500K234 0(OOKOOOOOOO :G A RC IA Oi 31793 24 5000C123 0J00C3984O0K 
( V I L L A R i Oi 31894 314 5000C00O0j0 0O27840OC 
(GRAUER j Oi S2193 23 4500C145 5 00K2 25000C 
( G A R C I A Oi 52293 24 5500V1780JOOC298600K JGRAUER j 01 33093 2J6 3500C0000000169600C IALVORD i Oi 33193 4(2 3000C130 0(00 K2 47000C 



Project 3-8 

Report Layout: 

111 ml 
L O T S A H O U S E S R E A L T Y C O M P A N Y ifpifllpl̂ pl 

A T E S A L E S P E R S O N 

M / D D X ; X X X X X X " X X X X X 

P R O P E R T Y S O L D 

CO L I S T I N G 

999999 

T O T A L S A L E S : 9999999 
G R O S S TO L O T S A : 9 9 9 9 9 9 9 
C O M M I S S I O N S P A I D : " 9999999 
N E T TO L O T S A : "9999999 
M O N T H L Y S U M M A R Y 

T O T A L " S A L E S : " 9999999 
C O M M I S S I O N S P A I D : 9999999 
N E T TO L O T S A : 9999999 

P R O P E R T Y 1 S O L D 

O U T S I D E L I S T I N G 

999999 

99 999 9 9 
9999999 
9999999 
99 99 999 

O U T S I D E S A L E 

CO L I S T I N G 

9 999 9 9 

9 9 9 9 9 9 9 
9 9 9 9 9 9 9 
9 9 9 9 9 9 9 
9 9 9 9 9 9 9 

Processing Requirements: 1 . Print the appropriate report headings as shown in the report layout. 

2. Read a file of real estate records and process each record read by: 
a. Incrementing each of the three sales type totals with closed sales only. A closed 

sale is denoted by a "C" in the appropriate STATUS field. 
b. Printing a detail line of the closed sales for each sales type. 

3. For all three sales types: 
a. Process the total sales by: 

(1) Printing the total sales for each of the three types of sale. 
b. Process the gross commission to the company by: 

(1) Calculating the gross commissions to the company for each of the three sales 
types as described in the program narrative. 

(2) Printing the calculated gross commissions for each sales type. 
c. Process the commissions paid by: 

(1) Calculating the commissions paid for each of the three sales types as described 
in the program narrative. 

(2) Printing the calculated commissions paid for each sales type. 
d. Process the net commissions to the company by: 

(1) Calculating the net commissions to the company for each of the three sales 
types as described in the program narrative. 

(2) Printing the calculated net commissions for each sales type. 

4. Process the monthly summary by: 
a. Printing the total sales for the month. 
b. Printing the total commission paid for the month. 
c. Printing the total net commission to the company for the month. 



A p p e n d i x G Projects 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Insurance Policy Holder Report, Price Break Report, Barcoded Price List, Savings 
Dividends, Evaluation of Student Curriculum Records, Inventory Parts List, Money Changer, 
and Real Estate Sales 

N a r r a t i v e : The specifications for these projects were introduced in Chapter 3, at which time you 
were to attempt the hierarchy charts, pseudocode, flowcharts, and/or Warnier-Orr 
diagrams. Now we ask you to develop the Identification, Environment, and Data Divisions, 
but completion of the projects requires you to finish Chapter 5 in order to do the 
Procedure Division. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Insurance Policy Holder Report, Price Break Report, Barcoded Price List, Savings 
Dividends, Evaluation of Student Curriculum Records, Inventory Parts Lists, Money 
Changer, and Real Estate Sales 

N a r r a t i v e : The specifications for these projects were introduced in Chapter 3, at which time you 
were to attempt the hierarchy charts, pseudocode, flowcharts, and/or Warnier-Orr 
diagrams. Completion of Chapter 4 enabled you to code the first three COBOL divisions. 
Now you are expected to develop the Procedure Division and complete the projects. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Insurance Policy Holder Report 

N a r r a t i v e : The specifications for this project were introduced in Chapter 3. Change the input record 
to include two decimal places in the policy premium. Use COBOL's editing facility to 
dress up the reports produced by these changes. Redo the report layout, using any 
editing features you deem appropriate. 

I n p u t F i l e : CUSTOMER-INSURANCE-FILE 

I n p u t R e c o r d L a y o u t : Use the record layout from Chapter 3. 

T e s t D a t a : Use the test data from Chapter 3. 



Project 7-2 

Original Report Layout: Use the Report Layout from Project 3-1 and modify it to look good, using the editing 
facility ($, commas, decimal points, etc.). 

USA I N S U R A N C E C O M P A N Y 
G R O U P L I F E P O L I C Y R E P O R T 

C U S T O M E R 
N U M B E R 
X X X X X X X X 

E F F E C T I V E 
D A T E 

X X / X X / X X X X 

E X P I R A T I O N 
D A T E 

X X / X X / X X X X 

P O L I C Y 
P R E M I U M 
9999999 

T O T A L G R O U P P O L I C Y P R E M I U M S 99999999 

Program Name: Price Break Report 

Narrative: The specifications for this project were introduced in Chapter 3, The input record and 
data file have been updated to Include two decimal places in the unit price, which 
requires that the extended price be extended to two decimal places as well. Use 
COBOL's editing facility to dress up the reports produced by these changes. Redo the 
report layout, using any editing features you deem appropriate. 

Input File: 

Input Record Layout: 

ORDER-TRANSACTION-FILE 

Order Record 

Customer Number Quantity Ordered Item Number Unit Price 

1 ... 8 9 10 ... 12 13 ... 17 18 19(2 decimals) 23 

Test Data: 

1 0 0 0 0 0 0 1 

J 2 0 0 0 0 0 0 2 0 1 0 0 2 1 2 2 2 8 0 2 0 5 6 

, 3 0 0 0 0 0 0 3 0 1 2 5 3 2 3 3 3 7 3 0 0 4 5 

{4 0 0 0 0 0 0 4 0 5 0 0 4 3 4 4 4 6 3 4 0 2 1 

|5 0 0 0 0 0 0 5 0'9 0 0 5 4 5 5 5 5 5 6 5 7 8 

1 1 0 0 0 0 0 0 1 0 0 1 5 1 3 4 5 6 9 1 3 5 3 4 

! 2 0 0 0 0 0 0 2 0 0 1 0 2 1 2 3 4 8 0 1 0 5 6 

13 0 0 0 0 0 0 3 0 1 0 0 3 4 3 2 1 7 3 3 0 4 5 

4 0 0 0 0 0 0 4 0 4 0 0 4 4 3 2 4 6 3 7 0 2 1 

15 0 0 0 0 0 0 5 0 7 0 0 4 2 4 5 6 5 5 6 5 7 8 

; 1 0 0 0 0 0 0 1 0 0 6 0 4 1 1 1 1 9 1 5 5 3 4 

,2 0 0 0 0 0 0 2 0 0 2 5 5 6 6 2 2 8 0 4 0 5 6 

3 0 0 0 0 0 0 3 0 3 1 5 3 1 1 3 3 7 3 3 0 4 5 

[4 0 0 0 0 0 0 4 04 0 0 2 4 2 1 4 6 3 2 0 2 1 

15 0 0 0 0 0 0 5 0 7 8 0 1 6 4 5 5 5 5 1 5 7 8 

Report Layout: Use the Report Layout from Project 3-2 and modify it to look good, using the editing 
facility ($, commas, decimal points, etc.). 



Appendix G Projects 

Program Name: Payroll Program 

Narrative: Write a program to process a file of employee records, compute and print individual 
payroll calculations, and compute and print the company totals. The processing 
specifications are straightforward, but you will have to think about the logic for computing 
the gross pay and withholding tax. We suggest, therefore, that you begin with pseudocode 
and a hierarchy chart. 

input File: 

Input Record Layout: 

EMPLOYEE-FILE 

Employee Record 

Soc Sec No. 
Name 

Hourly Rate Hours Worked Soc Sec No. 
Last Initials 

Hourly Rate Hours Worked 

1 ... 9 10 ... 22 23 24 25 (2 decimals) 30 (2 decimals) 33 

Test Data: 

a 11 1 1 1 1 1 liG RAU E R 
:2 2 2 2 2 2 2 2 2 : J 0 N E S 

3 3 3 3 3 3 3 3 3 IMILGR0M 

4 4 4 4 4 4 4 4 4 J R I C H A R D S 

;5 5 5 S 5 5 5 5 5 j J E F F R I E S 

:6 6 6 6 6 6 6 6 6jS T E V E N S 

7 7 7 7 7 7 7 7 7T3ROWN 

i 8 8 8 8 8 8 8 8 8 ; B A K E R 

9 9 9 9 9 9 9 9 9 S l i G R I . i t  

0 0 0 0 0 0 0 0 0 J V A Z Q U E Z 

RT0 1025J3 550 

J J 0 1 5 0 0 4 0 7 5 

E A 0 0 5 7 5 4 5 5 Q 

5 0 0 0 

3 0 2 5 

I M 0 1 1 0 0 

J B 0 5 5 5 0 

S S 0 0 7 8 0 J 3 500 

B B 0 8 0 2 5 J 2 550 

E D 0 2 5 4 5 J 3 0 7 5 

P K 0 1 5 3 512 500 

C 0 4 0 5 0 | 5 0 2 5 

Report Layout: Design any suitable report layout that includes one or more heading lines, a detail line for 
each employee, and a total line at the end of the report. Use editing characters as 
appropriate. 

AdditionalRequirements: 1. Print a suitable heading line at the beginning of the report. 

2. Read a file of employee pay records. 

3. For^yer^record read, 
a. Calculate the gross pay as follows: 

Straight time for the first 40 hours 
Time and a half for the next 8 hours (more than 40 and up to 48 hours) 
Double time for anything over 48 hours 

b. Calculate federal withholding tax as follows: 
18% on first $200 of gross 
20% on amounts between $200 and less than $240 
22% on amounts between $240 and less than $280 
24% on amounts over $280 

c. Calculate net pay as gross pay minus federal tax. 

http://999999999SliGRI.it


Project 7-4 

. i u r n u u v _ * i u n H I H J i^t u a o i i o n i f j i u y o \ . , w i n i o u i t a u i c o u m i i y n i a n n c i u o . u u u u i c _ C i | j a o c 

detail lines. 

e. Increment company totals for gross pay, federal withholding, and net pay. 

4. When all records have been read, print the company totals for all items in part 3e. 

Program Name: Extended Savings Dividends 

Narrative: The specifications for this project were introduced in Chapter 3. The input record and 
data file have been updated to include two decimal places in the amount field, mandating 
a similar change in the fields for the dividend and total savings. Use COBOL's editing 
facility to appropriately dress up the reports produced by these changes. Redo the report 
layout, using any editing features you deem appropriate. 

Input File: SAVINGS-FILE 

I n p u t Record L a y o u t : Savings Record 

Account No. Name Amount Term 

1 ... 8 9 25 26 (2 decimals) 34 35 36 

Test D a t a : 

:1 1 0 0 0 - 0 I M S LG ROM 

J 2 3 O 0 0 - 0 5 P E T E R S 

3 100 1 - 0 2 S M I T H 

4 3 0 4 5 - 0 3 J O N E S 

|5 1 0 0 5 - 0 1 V I L L A R 

3 5 0 1 0 - 0 2 H A N S I H 

0 0 4 5 0 0 0 0 5 1 8 

0 0 3 0 0 0 0 0 0 1 6 

0 0 2 5 8 0 0 5 7 1 2 

0 0 6 9 8 0 0 9 0 2 4 

0 0 0 4 5 0 0 3 9 0 6 

0 1 0 9 0 0 0 2 9 3 6 

Report L a y o u t : 

A d d i t i o n a l R e q u i r e m e n t s : 

Use the Report Layout from Project 3-4 and modify it to look good, using the editing 
facility ($, commas, decimal points, etc.). Don't forget to show the calculated average 
from additional processing requirement two. 

1. As an aid in maintainability, define the six interest rates in Working-Storage and use 
these data names in your calculations instead of the raw percentage rates. For 
example, for a six month or less account term, change the computation 

Ch C O M P U T E I N D - D I V I D E N D - P A I D = S A V - A M 0 U N T 

C O M P U T E I N D - D I V I D E N D - P A I D 

R A T E 

S A V - A M 0 U N T 

. 0 6 

U P T 0 - 6 M 0 -

where UPTO-6MO-RATE is defined in Working-Storage with a value of .06. 



Appendix G — Projects 

2. Calculate and print the average savings amount for all savings accounts processed. 

3. The savings amount has been extended to two decimal places; extend all other 
calculated amounts to two decimal places as well. 

Update the program and verify your results, then make the following changes. (Hint: You 
should need to change each rate in only one place in the program.) 

(It 7% interest on 6 months or less 
(2) 8% interest on more than 6 months but up to 12. 
(3) 9% interest on more than 12 months but up to 18. 
(4) 10% interest on more than 18 months but up to 24. 
(5) 11 % interest on more than 24 months but up to 30. 
(6) 14% interest on more than 30 months. 

Program Name: Church Building Fund Report 

Narrative: The specifications for this project were introduced in Project 2-6. The input record and 
data file have been updated to include two decimal places in the unit price field, 
mandating a similar extension in the total value. Use COBOL's editing facility to dress up 
the report. Redo the report layout, using any editing features you deem appropriate. Add 
total amount pledged, given, and owed. Print all church members, not just those owing 
money. 

Input File: 

input Record Layout: 

CHURCH-BLD-FUND-MSTR-FILE 

Church Building Fund Master Record 

Master Name Pledged Amount Member Number Amount Given 

1 ... 15 16 ... 20 21 ... 27 28 ... 30 31 ... 34 35 ... 41 

Test Data: 

J O H N S M I T H 

ANN L O V I N G 

MARY B R O W N 

TOM S A W Y E R 

J A C K C A P P S 

J I L L J A C O B S 

S U S A N C L U B 

M I K E C L O U D 

00100550T000010005000 

0 0 2 O 0 5 0 S 0 . O 0 0 0 2 0 O 0 2 5 S 0 

0 0 5 0 0 0 0 C 0 A 0 O O 3 O 0 5 O O O 0 

O 0 0 7 5 0 0 F G O 0 0 O 4 0 O O 0 0 O O 

034003400000050340034 

400001234500060350000 

0 2 0 0 0 2 5 B C D 0 0 0 7 0 2 0 0 0 2 5 

0030030C0000080015000 



oject 7-7 

Program Name: Inventory Parts List 

Narrative: The specifications for this project were introduced in Chapter 3. The input record and 
data file have been updated to include two decimal places in the unit price field, 
mandating a similar extension in the total value. Use COBOL's editing facility to dress up 
the reports produced by these changes. Redo the report layout, using any editing 
features you deem appropriate. 

Input File: INVENTORY-FILE 

I n p u t Record Layout: Inventory Record 

Part Name Quantity on Hand Amount Received Amount Shipped Unit Price 

1 ... 20 21 ... 23 24 26 27 ... 29 30 (2 decimals) 35 

W I D G E T S , S I Z E S 

W I D G E T S , S I Z E M 

W I D G E T S , S I Z E L 

j W H O S I W H A T S I S 

J G I Z M O S , I VIM A 

G I Z M O S , T Y P E B 

i G A D G E T S , S I Z E S 

I G A D G E T S , S I Z E L 

1 5 0 0 5 0 0 9 6 0 0 7 0 5 0 

200075076008075 
0 0 0 5 0 0 4 0 0 : 0 0 9 0 3 4 

3 5 0 1 1 0 0 4 6 0 1 0000 
2 5 0 0 8 0 0 3 6 0 2 0 0 5 5 

0 0 0 0 5 0 0 2 5 0 3 0 0 8 7 

0 2 5 0 1 8 0 2 6 ; 0 0 1 5 9 9 

0 9 0 0 2 8 0 3 5 : 0 0 2 5 6 5 

Program Name: Money Changer 

Narrative: The specifications for this project were introduced in Chapter 3. The input record and 
data file have been updated to include 2 decimal places in the gross pay field; accordingly 
extend the pay to 2 decimal places. Use COBOL's editing facility to appropriately dress 
up the reports produced by these changes. Accordingly redo the report layout, using any 
editing features you deem appropriate. 

Input File: 

I n p u t R e c o r d L a y o u t : 

PAYROLL-FILE 

Payroll Record 

Employee Name Soc Sec No. Gross Pay 

1 ... 18 19 ... 27 28 (2 decimals) 32 



Appendix G — Projects 

Test Data: 

123 

AU E R 3 3 3 

A V O R 9 8 7 

OW 777 

G ROM 99 9 

E L 4 9 2 

T R O M 3 3 3 

HAK 2 4 5 

1 1 1 

2 2 2 

AR 3 3 3 

4 5 6 7 8 9 3 5 0 5 0 

4 4 4 5 5 5 4 7 5 7 7 

6 5 4 3 2 1 1 7 8 5 5 

6 6 8 8 8 8 2 1 9 8 3 

8 8 7 7 7 7 3 4 1 2 2 

3 3 6 7 8 9 4 9 2 3 7 

2 2 8 8 8 8 3 1 4 4 4 

3 4 7 8 7 8 3 6 8 2 8 

1 1 1 1 1 1 3 0 5 9 8 

2 2 2 2 2 2 5 2 2 4 4 

3 3 3 3 3 3 3 7 8 6 9 

P r o c e s s i n g R e q u i r e m e n t s : Extend the calculations to determine the proper number of coins with which to pay the 
individual. Use quarters, dimes, nickels, and pennies in your computations. 

Program Name: Extended Real Estate Sales 

N a r r a t i v e : 

I n p u t F i l e : 

I n p u t R e c o r d L a y o u t : 

R e p o r t L a y o u t : 

P r o c e s s i n g R e q u i r e m e n t s : 

The specifications for this project were introduced in Chapter 3. Use COBOL's editing 
facility to dress up the reports produced by these changes. Redo the report layout, using 
any editing features you deem appropriate. 

REAL-ESTATE-FILE 

Same as project 3-8 

Use the Report Layout from Project 3-8 and modify it to look good, using the editing 
facility ($, commas, decimal points, etc.). 

1. As an aid in maintainability, define the gross and commission rate for all three sales 
types in Working-Storage and use these data names in your calculations. For example, 
change the gross to company 

Change: C O M P U T E T O T - G R O S S - C O - C O = T O T - S A L E S - C O - C O * . 0 6 

To: C O M P U T E T O T - G R O S S - C O - CO = T O T - S A L E S - C O - C O * 

G R O S S - C O - C O - R A T E 

where GROSS-CO-CO-RATE is defined in Working-Storage with a value of .06. 

2. Print the gross percent to the company for each of the three sales types as shown on 
the report layout. 

3. Print the commission percent paid out for each of the three sales types as shown on 
the report layout. 

Update the program and verify your results, then make the following changes. (Hint: You 
should need to change each rate in only one place in the program.) 

J O H N S M I T H 

J E S S I C A GR 

C H A N D L E R L 

J E F F R Y B OR 

M A R I O N M I L 

L Y N N F R A N K 

K A R L K A R L S 

K A T H Y M A R S 

:RH0DA H A A S 

J I M F E G E N ; 

M A R I O V I L L 



The sales commission on any real estate sale is 8 percent of the total sale and is divided 
equally between the listing and selling agencies. This produces three possible sales 
types, which in return determine the commissions paid to the company and its agents. 

1 . The company both sells and lists the property (CO-CO). The agent who listed the 
property receives 35 percent of the total (8 percent) commission, and the remaining 
65 percent of the commission is divided equally (50 percent each) between the agent 
who sold the property and the company. 

2. The company sells the property listed by an outside agency (CO-OUT). The agent who 
sells the property listed by an outside agency receives 60 percent of the commission 
due to the company (the commission due to the company is 4 percent of the total 
sales price, or one half of the total 8 percent commission). The company retains the 
remaining 40 percent of the 4 percent commission to the selling agency. 

3. An outside agency sells the property that was listed by the company (OUT-CO). The 
company receives 50 percent of the sales commission (4 percent of the total price), 
which is split equally between the company and the listing agent. 

Program Name: Car Sales Program 

Narrative: Develop the hierarchy chart and either flowchart or pseudocode ior a program to process 
a file of car sales records to produce a commission report. 

Input File: CAR-SALES-FILE 

Input Record Layout: Car Sales Record 

Invoice No. 
Type information Sales Information 

Invoice No. 
Year Make Model Asking Price Sold Price Salesperson 

1 ... 5 6 7 8 ... 18 19 ... 31 32 ... 37 38 ... 43 44 ... 50 

T e s t D a t a : 

.78 1 7 5 9 2 N I S S A N 

1 4 8 5 1 9 0 A C U R A 

5 7 4 7 6 9 3 C H T V R 0 L E T 

5 8 6 8 1 9 2 B M W 

8 5 6 4 4 9 3 L 0 T U S 

8 7 4 6 5 8 8 F E R R A R I 

2 5 4 8 9 9 1 N I S S A N 

2 5 5 4 4 9 3 R A N G E R 0 V E R 

7 2 4 6 2 9 3 M E R C E D E S 

5 6 8 4 3 9 3 C A D I L L A C 

P A T H F I N D E R 

L E G E N D C O U P E 

C O R V E T T E Z R 1 

53 5 1 
E S P R I T 

T E S T A R 0 S S A 

3 0 0 Z X 

4 DOOR 

5 6 0 S E C 

F L E E T W O O D 

1 5 7 4 6 8 8 R 0 L L S R 0 Y C E C 0 R N I C H E 

1 4 8 4 2 8 4 F E R R A R I 

2 5 5 8 5 9 3 J A G U A R 

4 7 9 1 4 9 I A L F A R O M E O 

2 8 5 3 2 9 3 L E X U S 

1 6 5 4 1 9 0 P O R S C H E 

3 0 8 G T B 

X J S C 0 N V 

S P Y D E R 

L S 4 00 

9 1 1 C A B R I O L E T 

0 1 2 9 9 6 0 1 1 9 9 9 W I L L C 0 X 

0 1 5 9 9 0 0 1 4 5 6 7 S C H U L Z 

0 4 4 9 8 8 0 4 0 1 0 0 M O R I N 

0 2 7 9 9 0 0 2 6 2 0 0 T O R R E S 

0 7 3 5 0 0 0 7 3 2 5 0 W E N D E L 

1 0 5 0 0 0 0 9 7 5 0 0 F I X L E R 

0 0 9 6 8 2 0 0 8 7 1 4 J 0 N E S 

0 2 9 7 7 5 0 2 7 8 6 0 M 0 R I N 

0 6 8 9 0 0 0 6 6 9 0 0 C U L V E R 

0 1 9 9 8 8 0 1 8 9 9 9 T 0 R R E S 

0 7 9 5 0 0 0 7 0 5 9 9 W I L L C 0 X 

0 4 8 5 0 0 0 4 6 2 9 9 F I X L E R 

0 4 0 0 0 0 0 3 5 6 5 0 C U L V E R 

0 1 2 0 0 0 0 1 1 2 9 8 W E N D E L 

0 3 8 9 8 8 0 3 7 9 8 8 S C H U L Z 

0 3 7 9 8 8 0 3 5 9 8 8 J 0 N E S 



Appendix G Projects 

R e p o r t L a y o u t : 

VERY VERY NICE CARS INC. 
COMMISSION REPORT 

INVOICE 

11119 

CAR 
SALESPERSON YEAR 

CAR 
MAKER 

CAR 
MODEL 

ASKING 
PRICE 

PRICE 
SCLD 

>, OF 
ASKING 

99 XXXXXXXXXXX XXXXXXXXXXXXX 111,119 111,119 

COMM 
PAID 

11,119 

NET TO 
DEALER 

111,119 

$2,111 , Mil,m $1,111,119 

Processing Requirements: 1. Print a heading at the beginning of the report. 

2. Read a file of Car Sales records. 

3. For each record read: 
a. Calculate the percent of the asking price at which the car was sold. For example, a 

$10,000 car which sold for $9,500, soid for 95% of the asking price. Note: Aiiow for 
decimal places in your calculations, but do not print them in your report as shown in 
the report layout. 

b. Calculate the commission paid to the salesperson as follows: 
(1) For any car sold above 95 percent of the asking price the salesperson 

receives a 5% commission rate. In addition, the salesperson is paid a bonus 
equal to 40% of the amount in excess of 95% For example, a $10,000 car 
selling at $9,800 yields a commission of $610.00 ($490.00 + $120.00). 

(2) For any car sold between 90 and 95 percent of the asking price the salesperson's 
5% commission is reduced by 10% for every percentage point below 95%. For 
example, a $10,000 car selling at $9,400 results in 94% of the asking price and 
a 4.5% commission rate; therefore the commission paid is $423.00. 

(3) For any car sold below 90 percent of the asking price the amount below 90% 
comes straight out of the salesperson's remaining commission at the 90% level 
as calculated in paragraph (2)—that is, 2.5% of the asking price is all that's left 
to play with. For example, a $10,000 car selling at $8,900 yields a commission 
of only $122.50 ($222.50 - $100.00). 

c. Calculate the Net to the Dealer, assuming the dealer's markup is 25%—that is, the 
asking price is the dealer's cost plus 25%. For example, a $10,000 car selling at 
$9,400 yields a net of $977.00 since the cost to the dealer was $8000.00. 

d. Print a detail line for each record. Double-space all detail lines. 
e. Increment appropriate totals as shown on the report layout. 

4. As an aid in maintainability, define the 5% commission rate, the 40% bonus rate, 95% 
upper level, 90% lower level, the 10% reduction per percentage point below the lower 
level, and the 25% markup as constants in Working-Storage. Use the corresponding 
data names in your calculations instead of the actual values. For example: 

To: COMPUTE IND-BONUS ROUNDED = B O N U S - R A T E * CAR-ASKING= 
PRICE * (IND-PERCENT-ASKING - U P P E R - L E V E L ) 

COMPUTE IND-COMM-PAID ROUNDED = CAR-PR I CE-SOLD 
* COMM - R A T E + IND-BONUS 



Project 8 1 

5. The Final Challenge! Once you have verified that your program works with the 
original rates, determine what effect a 6% commission rate, a 50% bonus, a 15% 
reduction for every percentage point below the upper level, and a 30% markup would 
have on the net to the dealer as well as commissions paid by making the appropriate 
changes in Working-Storage and rerunning the program. Make sure you hand in both 
reports (.RPT). If this was your dealership, which rates would you choose? 

6, Print the totals when all records have been processed. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : Order Transaction File Validation 

N a r r a t i v e : Write a data validation program that will validate an order transaction file. 

I n p u t F i l e : ORDER-TRANSACTION-FILE 

I n p u t R e c o r d L a y o u t : 01 

01 

01 

ORDER-ENTRY-TYPE-1-RFC. 
REC-TYPE-1 
CUST0MER-N0-1. 
10 
10 
PURCH-ORDER-N.0-1 
PURCHASE-DATE. 
10 
10 
10 
PARTIAL-SHIP-IND 
TAXABLE-IND 
HOLD-DELIVERY-DATE. 
10 
10 
10 

ORDER-ENTRY-TYPE-2-REC. 

05 
05 

05 
05 

05 
05 
05 

REC-TYPE-2 
CUST0MER-N0-2. 
10 
10 
PURCH-0RDER-N0-2 
CUSTOMER-NAME 
CUSTOMER-ADDRESS 
CUSTOMER-ZIP 
CREDIT-LIMIT 
BALANCE-DUE 
PHONE-NUMBER 

ORDER-ENTRY-TYPE-3-REC. 
05 REC-TYPE-3 
05 CUST0MER-N0-3. 

10 
10 

05 
05 

05 
05 
05 
05 
05 
05 
05 

REGI0N-1 
REST-CUST-N0-1 

PURCHASE-MM 
PURCHASE-DD 
PURCHASE-YYYY 

H0LD-DEL-MM 
H0LD-DEL-DD 
HOLD-DEL-YYYY 

REGION-2 
REST-CUST-NO-2 

REGI0N-3 
REST-CUST-NO-3 

PIC X. 

PIC X. 
PIC X(5). 

PIC 99. 
PIC 99. 
PIC 9999. 
PIC X. 
PIC X. 

PIC 99. 
PIC 99. 
PIC 9999. 

PIC X. 

PIC X. 
PIC X(5). 
PIC X(5). 
PIC X(15). 
PIC X(15). 
PIC 9(5). 
PIC 9. 
PIC 9(5)V99. 
PIC X(12). 

PIC X. 

PIC X. 
PIC X(5). 



Appendix G Projects 

05 
05 

05 

05 

05 

05 

PURCH-0RDER-N0-3 
ORDER-ITEM-NOI. 
10 
10 
10 
0RDER-ITEM-N02. 
10 
10 
10 
0RDER-ITEM-N03. 
10 
10 
10 
0RDER-ITEM-N04. 
10 
10 
10 
0RDER-ITEM-N05. 
10 
10 
10 

ITEM-NUM1 
ITEM1-QUANTITY 
ITEM1-UNIT-PRICE 

ITEM-NUM2 
ITEM2-QUANTITY 
ITEM2-UNIT-PRICE 

ITEM-NUM3 
ITEM3-QUANTITY 
ITEM3-UNIT-PRICE 

ITEM-NUM4 
ITEM4-QUANTITY 
ITEM4-UNIT-PRICE 

ITEM-NUM5 
ITEMS-QUANTITY 
ITEM5-UNIT-PRICE 

PIC X(5). 

PIC 9(5). 
PIC X. 
PIC 9(4)V99. 

PIC 9(5). 
PIC X. 
PIC 9(4)V99. 

PIC 9(5). 
PIC X. 
PIC 9(4)V99. 

P I C 9 ( 5 ) . 
P IC X . 
P I C 9 (4 )V99 . 

P IC 9 ( 5 ) . 
P I C X . 
P I C 9 (4 )V99. 

Test D a t a : 

1 0 0 4 1 0 0 A A 1 0 2 0 8 0 5 1 9 9 2 N Y 1 0 2 0 1 9 9 2 

3 0 0 4 1 0 0 A A 1 0 2 C 1 2 4 5 L 0 0 1 0 0 0 

3 0 0 4 1 0 0 A A 1 0 2 4 4 0 1 1 A 0 2 5 0 0 0 

3 1 0 8 0 0 0 A M 1 1 1 7 2 9 5 0 P 0 1 5 0 0 0 

17 7 3 1 0 0 A 1 0 0 3 0 9 0 2 1 9 9 2 Y N 0 1 1 5 1 9 9 3 

2 7 7 3 1 O O A 1 O 0 3 B I Z S M A R T 2 1 0 F I R S T S T . I R V I N G 7 5 0 3 8 5 0 0 0 2 0 0 0 8 1 7 - 9 4 9 - 8 2 7 5 

3 7 7 3 1 0 0 A 1 0 0 3 9 0 6 0 0 I 0 0 2 0 0 0 

3 1 4 3 0 0 0 A 3 B 3 3 3 3 3 3 3 C 0 0 8 0 0 0 

10 1 6 0 4 0 B R 5 4 9 0 2 2 8 1 9 9 2 N N 12 16 1 9 9 2 

3 0 1 6 0 4 0 B R 5 4 9 5 8 6 G 3 C 0 4 0 0 5 0 

1 9 9 8 1 0 0 B 4 D 2 2 0 9 0 1 9 2 Y Y 0 1 3 0 9 3 

2 9 9 8 1 0 0 B 4 D 2 2 R Y X C O R P 5 5 5 1 2 N O E L DR D A L L A S 7 5 5 2 2 9 2 2 2 2 2 2 2 2 1 4 - 7 4 1 - 9 9 9 9 

3 9 9 8 1 0 0 B 4 D 2 2 7 2 6 0 0 J 0 9 0 0 0 

3 9 9 8 1 0 0 B 4 D 2 2 3 3 3 3 3 K 0 0 0 5 0 0 

13 6 0 5 0 0 C D 8 8 8 0 8 2 8 1 9 9 2 Y N 1 1 02 1 9 9 2 

2 3 6 0 5 0 0 C D 8 8 8 A B C C O R P 9 5 5 9 K N O B H I L L S A N D I E A G O 8 6 5 0 0 5 0 0 1 0 0 0 0 8 0 5 - 7 4 4 - 9 8 8 9 

3 3 6 0 5 0 0 C D 8 8 8 1 6 7 8 9 A 0 9 9 9 0 0 

33 60 5 0 0 C D 8 8 8 3 2 6 0 0 E 0 0 8 8 0 0 

1 9 9 9 9 9 0 C L 9 9 9 0 2 2 9 1 9 9 2 N Y 1 1 0 1 1 9 9 2 

3 9 9 9 9 9 0 C L 9 9 9 6 6 6 6 6 G 0 2 2 0 0 0 

3 9 9 9 9 9 0 C L 9 9 9 1 2 3 4 5 H 0 0 2 2 0 0 

3 9 9 9 9 9 0 C L 9 9 9 5 5 5 5 5 I 0 0 1 0 5 0 

3 9 9 9 9 9 0 C L 9 9 9 7 2 6 0 0 D 0 1 5 0 5 0 

2 3 5 0 2 0 0 D B 8 9 5 T H E M O N E Y P I T 10 DOWNTOWN A V E D A L L A S 7 5 0 5 2 2 0 1 0 0 0 0 0 2 1 4 - 8 4 5 - 9 6 7 6 

1 1 0 5 1 0 5 D 5 M 0 0 1 0 1 0 1 9 9 2 N N 1 102 1 9 9 2 

2 1 0 5 1 0 5 D 5 M 0 0 C A N D Y I N C . 6 6 6 W Y L I E L A N E H U M B U G 9 9 9 8 8 3 0 0 1 0 0 0 0 7 1 7 - 6 6 6 - 6 6 5 6 

3 1 0 5 1 0 5 D 5 M 0 0 2 6 6 6 6 A 0 0 5 0 0 0 

1 0 2 5 0 0 0 K M 6 6 6 1 0 1 0 1 9 9 2 Y N 1 1 0 2 1 9 9 2 

2 0 2 5 0 0 0 K M 6 6 6 W I D G E T C O R P 9 9 9 5 A B C S T R E E T C A R R O L L T 0 N 7 5 2 0 1 7 9 0 0 0 0 0 0 8 1 8 - 6 6 6 - 9 0 0 0 

3 0 2 5 0 0 0 K M 6 6 6 3 7 7 7 7 F 0 2 5 0 0 0 

1 2 0 0 1 0 0 K T 9 5 5 0 9 2 8 1 9 9 2 N N 1 2 1 2 1 9 9 2 

3 2 0 0 1 0 0 K T 9 5 5 3 3 3 3 3 BOO 1 0 0 0 

3 2 0 0 1 0 0 K T 9 5 5 5 5 5 5 5 C 0 0 0 1 5 0 



Project 8-1 

2 0 0 0 1 0 0 N B 4 5 6 A B C C O M P A N Y N . 123 S T R E E T 7 2 5 O Q Q O 0 5 0 0 0 2 1 5 - 6 2 6 - 4 1 53 

1 6 3 1 6 0 0 N N 2 0 0 0 7 3 0 1 9 9 2 N N 1 1 1 9 1 9 9 2 

3 6 3 1 6 0 0 N N 2 0 0 7 2 6 0 0 A 0 3 0 0 0 0 

1 1 4 3 0 0 0 R T 3 3 3 0 3 3 1 1 9 9 2 Y Y 1 2 0 5 1 9 9 2 

3 1 4 3 0 0 0 R T 3 3 3 5 9 5 X X R 0.4 0 0 0 0 

3 1 4 3 0 0 0 R T 3 3 3 X 2 X 0 0 5 0 0 5 0 0 0 

1 3 1 2 0 0 0 X X X 3 J 0 4 2 7 1 9 9 2 B N 0 6 0 1 1 9 9 2 

3 3 1 2 0 0 0 X X X 3 J 5 5 5 5 2 1 0 9 0 0 0 0 

177 1 6 0 0 X X 2 0 0 0 7 3 0 1 9 9 2 N N 1 102 1 9 9 2 

2 7 7 1 6 0 0 X X 2 0 0 S M I T H I N D U S T R Y N . 3 3 3 H A V E N C O P P E L L 7 5 0 1 6 3 0 0 1 0 0 0 0 2 1 4 - 1 2 3 - 6 6 1 3 

3 7 7 1 6 0 0 X X 2 0 0 3 2 6 0 0 A 0 3 0 0 0 0 

3 7 7 1 6 0 0 X X 2 0 0 1 2 3 4 5 E 0 0 3 0 0 0 

1 8 8 1 6 0 0 Z Z 2 0 0 0 7 3 0 1 9 9 2 N N 1 102 1 9 9 2 

3 8 8 1 6 0 0 Z Z 2 0 0 3 2 6 0 0 6 0 3 0 0 0 0 9 2 

3 8 8 1 6 0 0 Z Z 2 0 0 12 3 4 5 E 0 0 2 0 0 0 

3 8 8 1 6 0 0 Z Z 2 0 0 3 4 5 6 7 K 0 0 3 0 0 0 

3 8 8 1 6 0 0 Z Z 2 0 0 4 5 6 7 8 F O O 1 5 00 

3 8 8 1 6 0 0 Z Z 2 0 0 1 6 7 8 9 A 0 0 0 100 

1 1 0 1 0 0 0 3 3 0 4 1 9 2 8 1 9 9 2 X N 1 1 0 1 1 9 9 2 

R e p o r t L a y o u t : Develop your own report layout in compliance with the processing requirements. Be sure 
to give enough detail on the error report for the user to make the appropriate corrections. 

Processing Requirements: 1. Read a file of order transaction records. 

2. The current run date is typically accepted from a file, but for this lab set up a literal in 
working storage with the run date as November 2, 1992. 

3. Validate each input record field for all of the following: 

All numeric fields should be validated for numeric values and should be greater than 
zero. 

On the type 1 record, the PARTIAL SHIP and TAXABLE fields should contain either a 
"Y" or an "N." 

The HOLD DELIVERY DATE should be a future date. 

The PURCHASE DATE should be the current date or prior to the current date. 

On the type 2 record, all fields should contain data. 

The quantity field on the type 3 record is a 1-byte alphanumeric field. This is a code 
that translates as follows: 

A= 1 E = 300 I = 700 

B = 10 F = 400 J = 800 

C = 100 G = 500 K = 900 

D = 200 H = 600 

The quantity field should be validated for a valid code. 

4. Any record that fails any validity test is to be written to an error file, and an appropriate 
error message should appear on the error report. It is possible that a record may 
contain more than one error, and all errors are to be flagged. 

5. Valid records are to be written to a valid transaction file. The valid transaction file 
should be the same format as the input Order Transaction file with the exception that 
the quantity code on the Type 3 record should be converted to the quantity amount, 
causing the unit price to be moved to the right two bytes. 



Appendix G — Projects 

Program Name: Stock Transactions Validation Program 

Narrative: This project will validate a stock transaction file and produce both a valid stock file and an 
o r r n r r o port. 

Input File: STOCK-TRANSACTION-FILE 

Input Record Layout: 01 STOCK-RECORD. 
05 ST-TRANSACTION-INFORMATION. 

10 ST-TRANSACTION-SHARES PIC 9(3). 
10 ST-TRANSACTION-STOCK PIC X(14). 

05 ST-PURCHASE-INFORMATION. 
10 ST-PURCHASE-PRICE PIC 9(5)V99. 
10 ST-PURCHASE-DATE. 

15 ST-PURCHASE-YEAR PIC 99. 
15 ST-PURCHASE-MONTH PIC 99. 
15 ST-PURCHASE-DAY PIC 99. 

05 ST-SALE-INFORMATION. 
10 ST-SALE-PRICE PIC 9(5)V99. 
10 ST-SALE-DATE. 

15 ST-SALE-YEAR PIC 99. 
15 ST-SALE-M0NTH PIC 99. 
15 ST-SALE-DAY PIC 99. 

Test Data: 

100XYZ CORP 2000000920 1 15300000093:0103 
200ABC CORP 120000093030:52200000920305 
1 00ACME WJ.DGETS 1 1 5 000092 1 10:9500000093033 1 
100BOR0W ASSOC 00500009202290000048 
3001. EE ENTERPRISE45:000009313229000000930422 
200N AT I. GADGET 0100AO09205 1:5 1 1 0000092063 1 
100NATI. G;ISM0 10000009306181200000930606 
400AMFR WTDGETS 0 9 0 000093070:70800000930906 
350MILGR0M POWER 100000090040:5250000093043 1 
200PARKER INC 00 30000920731010000A930428 
100SHEI !.Y CO 003000090043:10000200 
J200STEVENls INC 2 00 0 000 9 3 08 312 2 0 0 00 0 9 309 2 2 

Report Layout: Design your own report layout. Be sure to comply with all the processing requirements. 

Processing Requirements: 1. Read a file of stock records. 

2. Validate each input record for all of the following: 
a. The month, day, and year of both the purchase and sale date must be numeric. 
b. The month must be a valid value, that is, between 1 and 12, inclusive. 
c. The day cannot exceed the maximum days in the corresponding month. 
d. The date of sale cannot be earlier than the date of purchase. 
e. The dollar amount of both purchase and sale must be numeric. 

3. Design an appropriate report layout. Invalid transactions are to be displayed with an 
appropriate error message. If a given transaction contains more than one invalid field, 



Project 8-3 

multiple error messages are required. No further processing is required for invalid 
transactions. 

4. Each valid transaction is to be written to a file to be used in Project 9-2. 

Program Name: Payroll Validation Program 

Narrative: Develop a program to validate a payroll file and produce both a valid payroll file and an 
error report. 

Input File: PAYROLL-FILE 

Input Record Layout: 01 PAYROLL-RECORD. 
PAY -SOC-SEC-NUM PIC 9(9). 
PAY -NAME. 
10 PAY-LAST PIC X(14). 
10 PAY-FIRST PIC X(12). 
10 PAY-INITIAL PIC X. 
PAY -INFO. 
10 PAY-HOURLY-RATE PIC 9(3)V99 
10 PAY-HOURS-WORKED PIC 9(3)V99 
10 PAY-SALARY-TYPE PIC X. 
10 PAY-DEPENDENTS PIC 99. 
10 PAY-TAX-STATUS PIC 9. 
10 PAY-INSURANCE PIC X. 
PAY-•YTD-INF0. 
10 PAY-YTD-EARNINGS PIC 9(6)V99 
10 PAY-YTD-TAXES PIC 9(5)V99 
10 PAY-YTD-FICA PIC 9(4)V99 
10 PAY-YTD-INSURANCE PIC 9(4)V99 

Test Data: 

S 1 0 0 0 0 0 0 0 0 
'111111111B0YER 
2 0 0 0 0 0 0 0 0 M E R A 
2 2 2 2 2 2 2 2 2 D A V E R S A 
;300000000MENENDEZ 
3 3 3 3 3 3 3 3 3 F R E N C H 
4 0 0 0 0 0 0 0 0 B A R B E R 
4 4 4 4 4 4 4 4 4 G E H L E 

! 5 0 0 0 0 0 0 0 0 G R A U E R 
5 5 5 5 5 5 5 5 5 R I C 0 
6 0 0 0 0 0 0 0 0 
:666666666R0WE 
7 0 0 0 0 0 0 0 0 H E M M E R D E 
7 7 7 7 7 7 7 7 7 S H I M 
8 0 0 0 0 0 0 0 0 S T U T Z 
8 8 8 8 8 8 8 8 8 V A S Q U E Z 
9 0 0 0 0 0 0 0 0 P L A N T 
9 9 9 9 9 9 9 9 9 V A Z Q U E Z 

WARD 
SASHA 
NICK 
L0URDES 
M I C H E L L E 
MARY ANN 
SHELLY 
ROBERT 
C H E R Y L 

C A N D A C E 
C L A R K R I C H A R D 

ANNA 
JOEL 
DONNA 
ROBERT 

VI L L A R C A R 0 L 

01000 4000H 3D023 1502201 143401 345 12050000: 
E 0 1 5 0 0 0 4 0 0 0 S 0 1 3 B 0 2 7 0 0 0 0 0 0 5 4 8 5 2 4 2 0 2 7 7 0 0 4 5 0 0 0 
X 0 1 4 0 0 0 4 5 0 0 S 0 4 5 B 
A 0 0 5 5 0 0 4 0 0 0 S 0 1 4 A 0 0 9 9 0 0 0 0 0 1 4 8 5 0 0 0 7 4 3 4 9 0 6 3 0 0 0 
Y 0 2 3 5 0 0 4 0 0 0 X 1 5 2 C 0 4 5 2 9 8 2 2 0 8 9 1 3 0 0 0 2 5 0 5 3 0 5 7 5 0 0 
P 0 6 5 0 0 0 3 5 0 0 H 0 8 2 B 1 1 7 0 0 0 0 0 2 6 7 1 1 3 9 8 7 8 6 7 0 1 0 8 0 0 0 
A 1 8 0 0 0 4 0 0 L H 0 6 A A 8 5 9 2 7 4 0 0 7 1 9 2 6 2 1 4 3 2 9 0 9 0 0 0 0 0 

T01 5 7 5 0 4 3 5 0 H 0 0 2 Z 0 2 8 3 5 0 0 0 0 4 4 4 0 5 5 2 1 2 9 0 9 0 0 0 0 0 0! 
T1500 46000 0 5 2 Z 0 2 9 1 0 4 0 5 0 5 1 3 9 5 0 2 1 4 8 9 0 0 0 0 0 0 0 
S 0 0 7 4 5 0 5 2 0 0 H 0 1 3 C 0 1 3 4 1 0 0 0 0 2 0 1 1 5 0 1 0 0 7 0 9 0 4 5 0 0 Q 

0 4 0 0 0 S 1 0 A B 0 0 9 9 0 0 0 0 0 1 3 7 6 5 0 0 7 3 4 3 6 0 6 0 0 0 0: 
M 0 3 0 0 0 0 4 2 0 0 S 0 3 1 A 0 5 4 0 0 0 0 0 1 2 3 2 4 3 8 0 4 0 5 5 4 0 9 0 0 0 0 
06500 H008Z 1 1 6 0 0 0 0 0 2 5 7 1 1 4 3 8 5 4 3 2 0 0 0 0 0 0 0 

M 0 0 8 0 0 0 4 8 0 0 H 0 4 4 C 0 1 4 4 0 0 0 0 0 2 2 9 1 0 6 1 0 8 1 4 4 0 9 0 0 0 0 
0 0 5 5 0 0 5 0 0 H 0 L 1 1 099 1500 0 7 5 6 0 7 

A 0 2 3 7 5 0 4 0 0 0 M 0 2 2 C 0 4 2 7 5 0 0 0 0 8 4 8 8 1 332 1053058500; 
0 0 7 5 0 0 5 3 0 0 S 0 1 3 0 0 1 4 4 1 0 0 0 0 2 1 0 0 5 0 1 0 0 0 9 0 0 4 5 0 0 01 

0 1 8 0 0 0 4 0 0 0 M 0 5 3 B 0 3 2 4 0 0 0 0 0 6 9 9 7 2 4 2 4 3 3 2 4 1 0 8 0 0 O 



A p p e n d i x G — Projects 

Report Layout: Design your report layout based on the requirements below. 

Processing Requirements: 1. Read a file of sales payroll records. 

2. Validate each input record for all of the following: 
a. The incoming record must contain data for the following fields: social security 

number, name, hourly rate, hours worked, salary type, number of dependents, tax 
status, and insurance. If any field is missing, display the message "INCOMING 
RECORD MISSING DATA" and the input record. 

b. The incoming fields of hourly rate, hours worked, number of dependents, tax 
status, ytd earnings, taxes, fica, and insurance must be numeric. If not, display an 
appropriate error message that contains the entire input record. 

c. The salary type must be either hourly or salaried (H or S). If it is not, display an 
appropriate error message, such as "INVALID SALARY TYPE FOR", the social 
security number, name, and salary type. (Hint: Use a condition name test.) 

d. Salaried employees are not paid overtime; therefore hours worked for salaried 
employees cannot be over 40 hours. Use the message "NO OVERTIME FOR 
SALARIED EMPLOYEES", the social security number, name, and hours worked. 

e. The tax status must be valid (1 through 4). Use the message "INVALID TAX 
STATUS FOR", the social security number, name, and tax status. (Hint: Use a 
condition name test.) 

f. The insurance type must be valid (A, B, C, or Z). Use the message "INVALID 
INSURANCE FOR", the social security number, name, and insurance type. (Hint: 
Use a condition name test.) 

g. A reasonable number of dependents; flag any record where the number of 
dependents is over 10. (Hint: Use a condition name test.) 

3. Any record that fails any validity test is to be rejected with no further processing, other 
than displaying the appropriate error message(s). It is possible that a record may 
contain more than one error (flag all errors). Valid records are to be written to a new file 
to be used in Projects 9-3 and 16-3. 

Program Name: Car Sales Commissions Validation Program 

Narrative: This project will validate a file of car sales records and produce both a valid car file and 
an error report. 

Input File: CAR-SALES-FILE 

Input Record Layout F I E L D N A M E P O S I T I O N S F I E L D T Y P E 

Location 1 - 11 Alphanumeric 
Branch 12 - 15 Numeric 
Salesperson 16 -25 Alphanumeric 
Customer Name 26 -35 Alphanumeric 
Sale Date 36 -41 Numeric 
Sale Amount 42 -47 Numeric 
Commission Rate 48 -50 Numeric 
Car Model 51 -63 Alphanumeric 
Car Year 64 -67 Numeric 



Project 8-4 

T e s t Data: 

(BROWARD i 1 2 3 4 S H I Mi REIMAN 
M O N R O E : 4 5 2 8 V A S Q U E Z HAFEZ 
JDADE ! 4 6 7 9 D A V E R S A 
jBROWARD 1 2 3 4 S H I M PORTO 
M O N R O E 4 5 2 8 B 0 Y E R 
B R O W A R D ; 1 2 3 4 G E H L E LARSH 
DADE 9 8 7 9 F R E N C H 
B R O W A R D 1 2 3 4 G E H L E HOLME 
DADE ' 9879FREN;CH D E G G S 
B R O W A R D 1 2 3 4 G E H L E M O R E N O 
DADE 0 1 2 4 R I C O G O R M A N 
M O N R O E ! 4 5 2 8 V A S Q U E Z HWANG 
B R O W A R D ! 4 5 6 7 R 0 W E T O C K W A N 
DADE 0 1 2 4 R I C Oi C H u A; 
DADE 9 8 7 9 F R E N C H SPEA;RS 
M O N R O E 4528B0YE;R A U G U S M A 
DADE 4 6 7 9 D A V E R S A R E N E S C A 
B R O W A R D 4 5 6 7 R O W E V I ERA 
M O N R O E 4528B0YE;R LOUIS 
B R O W A R D , 4 56 7 ROW E: PINEDA 
DADE 01 ? 4 R IC 0: DI 1 FG0 

1 3 1292 1 8 7 2 5 0 0 2 S A A B 900 19 9 2; 
1013:92 3 2 8 7 5 0 0 3 J A G U A R XJS 1991 
1 1 14920 305 54005 I NFI NIT I Q45 199 1 
1 0 3 2 9 3 0 2 5 5 7 5 0 0 4 M B 300E 1916 
063393 8 1 2 5 0 0 4 M A Z D A 626 1991 
1 1 1 2 9 3 0 2 0 4 7 5 0 0 3 PEUGOT 505GLS1991; 
0 9 2 8 9 2 0 2 2 7 5 0 0 0 3 B M W 3 2 5 i X 1991; 
9 3 1 9 2 0 1 4 7 0 0 0 0 2 P R E L U D E SI 199 2 

0 1 3 1 9 3 0 1 3 0 2 5 0 0 4 N I S S M A X I M A 1992 
101293 17125 5T0Y SUPRA 1991: 
1 0 3 1 9 2 0 3 5 5 0 0 1 8 4 L E X U S LS400 1992 
123 192 25000 4LEGEND C LS 1990! 
01049 1053 150006BMW 750 1 L 19 9 2' 
8 1 5 9 3 0 1 4 7 0 0 0 0 4 T 0 Y CAMRY DE 199L 

1 0 1 6 9 3 0 2 3 9 7 5 0 0 1 N I S S A N 300Z 19 92 
0 4 1 0 9 3 0 6 9 7 9 9 0 0 2 M B 500 SL 1991 
1 0 4 2 9 2 0 0 4 9 5 0 0 0 2 H Y U N EXCEL G 1991 
1 1 5 9 2 0 1 0 3 0 0 0 0 2 S T E R L G 8 2 5 S L 1 9 9 0! 
102 992 1 2 1 7 5 1 0 4 M A Z RX7 GXL 19 9 1 
12 2 4 9 3 0 1 6 1 0 0 3AUDI Q U A T T R O 19 9 0: 
1 126930 1 2 8 0 0 0 0 4 M A Z D A M I ATA 19 91 

R e p o r t L a y o u t : Design your own report layout, subject to the processing requirements. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of car sales records. 

2. Validate each input record for all of the following: 
a. The incoming record must contain data for the following fields: location, branch, 

salesperson, customer, sale amount, commission rate, and model year. If any field 
is missing, display a single message "INCOMING RECORD MISSING DATA", 
followed by the input record. 

b. The incoming fields of branch, sale date, sale amount, and commission rate must 
be numeric. If not, display an appropriate error message that contains the entire 
input record. 

c. Valid dates (sale date): month must be between 1 and 12, inclusive; day should be 
in conjunction with the month; and year must be the current year or the year before. 
Display a suitable message "INVALID MONTH", "INVALID DAY", and/or "INVALID 
YEAR", followed by the input record. 

d. A reasonable commission rate: flag any record where the rate is not between 0% 
and 100%. Use the message "INVALID COMMISSION RATE", followed by the input 
record. 

e. A reasonable car year: flag any record where the car year is not between 1930 and 
1995, inclusive. Use the message "INVALID CAR YEAR", followed by the input 
record. 

3. Any record that fails any validity test is to be rejected with no further processing, other 
than displaying the appropriate error message(s). It is possible that a record may 
contain more than one error (all errors are to be flagged). 

4. Valid records are to be written to a file to be used in Project 9-4. 



A p p e n d i x G Projects 

Program Name: Invoice Validation Program 

Input Record Layout: 01 INVOICE-RECORD-IN. 
05 INV-INV0ICE-N0 PIC X(4). 
05 INV-DATE. 

10 INV-MONTH PIC 9(2). 
10 INV-DAY PIC 9(2). 
10 INV-YEAR PIC 9(2). 

05 INV-CUST0MER-INF0. 
10 INV-CUST-NAME PIC X(10). 
10 INV-CUST-ADDRESS PIC X(10). 
10 INV-CUST-CITY PIC X(10). 
10 INV-CUST-STATE PIC XX. 
10 INV-CUST-ZIP PIC X(5). 

Test Data: 

•2467 1 0 0 4 9 . 3 S c u l l y 2 0 M a i n S t C h i c a g o , I L 6 0 6 6 6 

3 8 4 5 1 3 12 M i n n i e ; D i s n e y 1 T Z 

; 1 5 7 8 0 8 1 2 9 3 S c h u l t z 4 5 5 t h S t L o s A n g e l i e C A 9 0 0 2 4 

; 3 4 4 6 1 2 3 1 9 3 G o o f y M a i n S t O r l a n d o F X 3 9 5 7 5 

0 3 4 2 0 9 1 0 9 3 C u l v e r 1 S u n n y L n S e a t t l e W A 9 8 0 0 8 

4 7 9 0 1 1 1 2 9 3 P e r e z 4 L o n g D r New 0 r 1 e a n L A 7 9 3 4 5 

09 93 N o N a m e S t S ome w h e r ei 4 9 5 7 6 

6 8 3 6 0 7 0 4 9 3 F i x l e r 3 4 2 n d S t ; New Y o r k N Y 1 0 0 2 0 

2 3 4 G 3 2 9 3 P l u t o 2 D o g D r D o g v i l l e : P R 6 7 4 5 3 

4 8 0 7 0 3 1 8 9 3 M o r i n 9 7 t h A v e : N e w a r k : N J 0 7 6 3 2 

0 4 9 8 0 6 3 0 9 3 M u n r o e 10 L o n g S t T u l s a | 0 K 5 9 3 4 5 

6 2 3 4 M i c k e y D i s n e y S t ; : F L 3 3 4 8 0 

Report Layout: Develop your own report layout in compliance with the processing requirements. 
Processing Requirements: 1. Read a file of invoice records. 

2. Validate each input record field for all of the following: 
a. Invoice No: 

(1) If the invoice number is missing, print an appropriate error message: 
Record missing data in INVOICE NO field for: Smith 

(2) If the invoice number is not missing, verify that the value is numeric; if not, 
display an error message: 
Nonnumeric INVOICE NO for: Smith Invoice No: ABC4 

b. Date: 

(1) If the invoice date (i.e., Month, Day, or Year) is missing, print an appropriate 
error message: 
Record missing data in INVOICE DATE field for: Smith 

Narrative: Write a data validation program that will validate an invoice tile and produce both a valid 
invoice file and an error report. 

input File: INVOICE-FILE 



(2) If the invoice date is not missing, verify that the month is valid (i.e., 1 thru 12); 
error message: 
Invalid MONTH for: Smith Invoice No: 1234 Month: 20 

(Hint: Use a condition name test for valid months.) 
(3) Verify that the day is valid (i.e., cannot exceed the maximum days in the 

corresponding month); error message: 
Invalid DAY for: Smith Invoice No: 1234 Month: 12 Day: 35 

(Hint: Yes, use another condition name test for valid days.) 
(4) Verify that the year is valid; the year must be either the current or previous year; 

error message: 
Invalid YEAR for: Smith Invoice No: 1234 Year: 95 

(5) If the date is valid, then verify the complete date against today's date; error 
message: 

Invalid DATE for: Smith Invoice No: 1234 Month: 12 Day: 31 Year: 95 

c. Name: If the name is missing, print an appropriate error message: 
Record missing data in NAME field for Invoice No: 1234 

d. Address: If the city is missing, print an appropriate error message: 
Record missing data in ADDRESS field for: Smith Invoice No: 1234 

e. City: If the address is missing, print an appropriate error message: 
Record missing data in CITY field for: Smith Invoice No: 1234 

f. State: 
(1) If the state is missing, print an appropriate error message: 

Record missing data in STATE field for: Smith Invoice No: 1234 

(2) If the state is not missing, then verify that it is a valid state. Valid States are AK, 
AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA, HI, IA, ID, IL, IN, KS, KY, LA, MA, 
MD, ME, Ml, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, 
PA, Rl, SO SD, TN, TX, UT, VA, VT, WA, Wl, WV, and WY; error message: 

Invalid STATE for: Smith Invoice No: 1234 State: AT 

(Hint: Another condition name test for valid states.) 
g Zip: 

(1) If the zip is missing, print an appropriate error message: 
Record missing data in ZIP field for: Smith Invoice No: 1234 

(2) If the zip is not missing, verify that the value is numeric; if not, display an error 
message: 
Nonnumeric ZIP for: Smith Invoice No: 1234 Zip: 08307 

3. Any record that fails any validity test is to be rejected with no further processing, other 
than displaying or printing the error message(s). It is possible that a record may 
contain more than one error (flag all errors except where noted). 

4. Valid records are to be written to a new file to be used in Project 9-5. 



A p p e n d i x G — Projects 

Program Name: 

Narrative: 

Student Record Validation Program 

Write a data validation program that will validate a student file and produce both a valid 
student file and an error report. 

I n p u t F i l e : STUDENT-FILE 

I n p u t R e c o r d L a y o u t : 01 STUDENT-RECORD. 
05 STU -ID PIC X(9). 
05 STU -NAME PIC X(16) 
05 STU -SCHOOL-INFORMATION. 

10 STU-SCH0OL-CODE PIC X(3). 
10 STU-MAJ0R-C00E PIC X(3). 
10 STU-AID-TYPE PIC X. 
10 STU-GPA PIC 9V999 
10 STU-CREDIT-HOURS PIC 99. 

T e s t D a t a : l i i i l l P i l i l ^ 

|235980890jKostner, Kjevin 
J29376563'5JRoberts , j!u 1 i a 
J32857 6407JMurphy, Edjdie 
| Smith, John 
J37857560OJBaldwin, Alec 
J397 57 5906jHawn , Goldjie 
[4 2749679 4jRussel 1 , KJurt 
J43-4562734JTweety Birjd 
459797G01Stallone, Sly 
(470876493(Gabl e , Cla'rk 
475673723B1rd, Big j 
4927 2947 5|Freeman, Miorgan 
524956063|Newman , Paul 
54039406 5JRedford, Robert 
(S84784755; j 
|586432980;Runner, Road 
|593639456JDavi s , Geena 
j63596869OiSarandon, (Susan 
|6 5829458 5(Douglas, Mjichea 
J693764956!Hi tchcock,! Al 
J732947566(Mouse , Micjkey 
J740685676(Bunny , Bugjs 
j753546833lDuck, Donajld 
J769048304(Streep, Melrril 
J779309498(Gol dberg , 'Woopi 
J794784830sGrant, Carjy 
(816274855(Crystal , B(i 11 y 
!826495896(Letterman ,< Davi 
(834858653JC1 ark , Dicik 
[8430 2 037 5JW i 1 1 i ants , (Robin 
(924649576TT 
|967707888|Hal 1 , Arselni o 

BUSM-KTS 349908 
C0MM(KTG3657 10 
C0MPJHYS2499 12 
MDDECOZ000003 
MUSEEGS 0G 
MEDBJIOG3450 15 
ARTCJI SG369018 
BUSFJINS387 103 
C0MP(HYL2 10500 
EMGBJIOL250L 
LAWSJTAS300509 
MUSCJISG379012 
MEDSJTAS332 101 
ARTACCL267510 
ENGSTTL310520 
C0MAJCCL250006 
BUSFJINS29991 1 
ENGSJTAG349909 

1 BUSMiKTS300004 
MISAJCCL3 55 500 
MUSCISS400016 
MEDPJHYS350002 
LAYM(KTL2499 
ARTFJINS397002 
LAWMIKTG289918 
MESEJEGL2399 G 
COMBJI0L300105 

dC0MC(ISS3001 16 
BUSFJINS37 9817 
ENGE;NGS2 7 6910 
EE.GE|NGZ4001 12 
C0 ;MMiKTG398017 

R e p o r t L a y o u t : Develop your own report layout in compliance with the processing requirements. 



Project 8-6 

Processing Requirements: 1. Read a file of student records. 
2. Validate each input record field for all of the following: 

a. Name: If the name is missing, print an appropriate error message: 
Record missing data in NAME field for Student ID: 123456789 

b. Student ID: 

(1) If the student ID is missing, print an appropriate error message: 
Record missing data in STUDENT ID field for: Smith, AB 

(2) Verify that the value is numeric; if not, display an error message: 
Nonnumeric STUDENT ID for: Smith, AB Student ID: 123456789 

c G P A : 

(1) If the G P A is missing, print an appropriate error message: 
Record missing data in GPA field for: Smith, AB Student ID: 123456789 

(2) If the GPA is not missing, verify that the value is numeric; if not, display an error 
message: 
Nonnumeric GPA for: Smith, AB Student ID: 123456789 GPA: ABCD 

(3) If the GPA is numeric, then verify that the G P A is between 2.5 and 4.0, 
inclusively (students with a G P A below 2.5 are ineligible for any kind of aid); if 
not, display an error message: 
GPA out of limits for: Smith, AB Student ID: 123456789 GPA: 5000 

d Credit Hours: 
(1) if the credit hours are missing, print an appropriate error message: 

Record missing data in CREDIT HOURS field for: Smith, AB Student ID: 
123456789 

(2) If the credit hours are not missing, verify that the value is numeric; if not, 
display an error message: 
Nonnumeric CREDIT HOURS for: Smith, AB Student ID: 123456789 Credit 
Hours: AB 

(3) If the credit hours are numeric, then verify that the hours are between 1 and 18, 
inclusively; if not, display an error message: 
CREDIT HOURS out of limits for: Smith, AB Student ID: 123456789 
Credit Hours: 22 

e. Codes: 

(1) Valid school codes are ART, BUS, C O M , ENG, LAW, MED, and M U S ; error 
message: 
Invalid SCHOOL for: Smith, AB Student ID: 123456789 Major: ABC 

(2) Valid major codes are A C C , BIO, ECO, ENG, FIN, CIS, MKT, PHY, and STA; 
error message: 
Invalid MAJOR for: Smith, AB Student ID: 123456789 MAJOR: ABC 

(3) Valid aid types are S, G, and L; error message: 
Invalid AID TYPE for: Smith, AB Student ID: 123456789 Aid Type: Z 

3. Any record that fails any validity test is to be rejected with no further processing, other 
than displaying or printing the appropriate error message(s). It is possible that a 
record may contain more than one error (all errors are to be flagged except where 
noted). 

4. Valid records are to be written to a new file, which will be used in Projects 9-6 and 16-2. 



Appendix G Projects 

Program Name: Salary Report Validation Program 

Input Record Layout: 01 SALARY-RECORD. 
05 SAL-S0C-SEC-N0 PIC X(9). 
05 SAL-NAME-AND-INITIALS PIC X(15). 
05 SAL-BIRTH-DATE. 

10 SAL-BIRTH-MONTH PIC 9(2). 
10 SAL-BIRTH-YEAR PIC 9(2). 

05 SAL-LOCATION-CODE PIC X(3). 
05 SAL-E0UCATI0N-C0DE PIC 9. 
05 SAL-TITLE-DATA. 

10 SAL-TITLE-CODE PIC 9(3). 
10 SAL-TITLE-DATE. 

15 SAL-TITLE-MONTH PIC 9(2). 
15 SAL-TITLE-YEAR PIC 9(2). 

05 SAL-RATING PIC 9. 
OR SA.l-SALARY PIT Qffil. 

Test Data: 

; 1 2 5 8 9 6 7 9 0 : B e c k e l e s , GG 

] 2 3 5 9 8 0 8 9 0 , B e n n e t t , JA 

J29376563 K B 1 a n e y , WC 

!3 1 2 4 5 8 6 9 7 ; C h a t a n i , D'H 

;3 2 8 5 7 6 4 0 7C h e n , E I 

i C r u m i t y , T R 

j 3 7 8 5 7 5 6 0 0 ' 0 a i 1 e y , T P 

i397 57 5 9 0 6 F e u e r , D 

14 2 7 4 9 6 7 9 4 G a r c i a , A 

J 4 5 9 7 9 7 8 0 8 : G o n z a l e z , I. 

4 7 0 8 7 6 4 9 3 G u t i e r r e z , CM 

:492 7 2 9 4 7 5 : J a c k s o n , NL 

J 5 2 4 9 5 6 0 6 3 L a r g e s s e , CL 

J 5 4 0 3 9 4 0 6 5 L e v y , MS 

S 8 4 7 8 4 7 5 5 

J 5 9 3 6 3 9 4 5 6 ' M o s c a t e l 1 i ' , E J 

; 6 3 5 9 6 8 6 9 0 M u r a t a , Y 

|6 5 8 2 9 4 5 8 5JN i 1 s s o n , P 

J 6 9 3 7 6 4 9 5 6 P a u n c e f o r t , C 

: 7 3 2 9 4 7 5 6 6 R a f f 1 e , AG 

• 7 4 0 6 8 5 G 7 G R o b i n s o n , P J 

| 7 6 9 0 4 8 3 0 4 R o d r i g u e z ,i AM 

: 7 7 9 3 0 9 4 9 8 S a n c h e z , MC 

| 7 9 4 7 8 4 8 3 0 ; S c h a n d , M I 

; 8 1 6 2 7 4 8 5 5 : S h i n a w a t r a , R 

i 8 2 6 4 9 5 8 9 6 T o z z i , GA 

183485 8653 V i 1 1 a r , CV 
:8 4 3 0 2 0 3 7 5 ^ W i l c o x o n , B 

: 9 2 4 6 4 9 5 7 f r Y a d a v , S 

; 9 6 7 7 0 7 8 8 8 l Y a u , S C 

0 3 5 7 M I A 4 0 4 0 0 3 9 0 2 0 5 4 0 0 0 

1 6 6 7 L;A 4 0 6 0 0 3 4 4 4 0 4 6 7 0 0 

0 4 6 7 D H I 5 0 4 0 0 4 8 8 5 0 7 8 0 2 7 

0 6 5 4 N Y 6 0 5 0 0 6 9 0 : 4 1 2 3 0 0 0 

0 9 5 9 M ; i A 2 0 4 0 0 2 9 1 1 0 4 5 9 9 9 

1 6 6 3 A T 4 0 7 1 0 6 9 1 5 0 8 3 0 7 8 

0 5 6 6 A T L 5 0 8 0 0 7 8 4 2 0 6 7 2 0 0 

0 5 7 1 C H I 3 0 9 0 0 6 8 4 4 0 9 0 6 8 0 

0 6 6 8 L A 6 0 7 0 0 2 8 7 2 0 1 8 0 5 0 

0 2 7 4 N Y 3 0 9 0 0 8 8 5 , 5 0 3 0 4 8 0 

0 3 6 7 A T L 2 1 0 0 0 1 9 0 4 0 2 7 0 9 0 

0 4 6 6 M I A 3 0 4 0 0 3 9 0 4 1 4 0 9 8 0 

0 2 5 9 C H 1 4 0 5 0 1 1 8 7 3 0 3 0 8 5 6 

0 5 6 0 L A 2 0 3 0 1 2 8 9 1 0 3 7 4 5 2 

0 2 6 5 A T L 0 1 5 0 1 4 9 2 3 3 5 0 0 0 1 

03 67 A T L 2 0 7 0 1 2 8 5 5 0 5 0 1 2 0 

0 6 7 0 M : I A 5 0 2 0 0 2 8 9 4 0 3 8 5 4 6 

0 I 7 5 C : H I 2 0 6 0 0 3 9 1 5 0 3 6 4 5 6 

0 5 7 1 L A 5 0 7 0 0 2 7 4 2 0 6 3 7 4 0 

0 6 6 8 L A 2 0 5 0 0 7 7 9 5 0 4 6 5 8 9 

1 2 7 7 N Y C 5 0 7 0 0 7 9 5 0 

1 1 6 7 M I A 5 0 3 0 0 3 7 9 1 0 2 8 3 4 5 

0 7 5 9 N Y 2 0 8 0 0 7 9 0 4 0 4 7 2 4 2 

0 4 7 2 L A X 7 0 9 0 0 6 9 1 7 0 6 4 9 0 

0 3 5 6 C ! H I 4 1 0 0 0 7 8 9 3 0 3 6 4 7 8 

0 3 5 1 A T L 4 0 8 0 0 7 8 2 5 1 9 2 3 7 5 

0 8 3 8 M I A 5 0 1 0 0 2 5 5 : 5 3 5 0 0 0 0 

0 4 5 7 A T L 5 0 7 0 0 4 8 7 4 0 4 7 5 6 6 

0 4 6 1 M T A 2 0 9 0 1 2 9 0 1 0 3 7 8 5 6 

0 3 6 7 C H I 3 1 0 0 0 3 8 9 2 2 3 8 7 4 5 

Narrative: Write a data validation program that will validate a salary file and produce a valid salary 
file. 

Input File: SALARY-FILE 



Project 8-7 

Report Layout: Develop your own report layout in compliance with the processing requirements. 
Processing Requirements: 1. Read a file of salary records. 

2. Validate each input record field for all of the following: 
a. Name: If the name is missing, print an appropriate error message: 

Record missing data in NAME field for Soc Sec No: 123456789 
b. Soc Sec No: 

(1) If the social security number is missing, print an appropriate error message: 
Record missing data in SOC SEC NO field for: Smith, AB 

(2) If the social security number is not missing, verify that the value is numeric; if 
not, display an error message: 
Nonnumeric SOC SEC NO for: Smith, AB Soc Sec No: ABCD6789 

c. Salary: 
(1) If the salary is missing, print an appropriate error message: 

Record missing data in SALARY field for: Smith, AB Soc Sec No: 123456789 
(2) If the salary is not missing, verify that the value is numeric; if not, display an 

error message: 
Nonnumeric SALARY for: Smith, AB Soc Sec No: 123456789 Salary: 083078 
(3) If the salary is numeric, then verify that salary is over $10,000 and under 

$350,000; if not, display an error message: 
SALARY out of limits (under $010000 or over $350000} for: Smith, AB 
Soc Sec No: 123456789 Salary: 350001 

d. Codes: 

(1) Valid location codes are MIA, CHI, LA, NY, and ATL; error message: 
Invalid LOCATION for: Smith, AB Soc Sec No: 123456789 Location: AT 

(2) Valid education codes are 1 through 6; error message: 
Invalid EDUCATION for: Smith, AB Soc Sec No: 123456789 Education: 0 

(3) Valid title codes are 010, 020, 030, 040, 050, 060, 070, 080, 090, and 100; error 
message: 
Invalid TITLE for: Smith, AB Soc Sec No: 123456789 Title: 150 

(4) Valid ratings are 1 through 5; error message: 
Invalid RATING for: Smith, AB Soc Sec No: 123456789 Rating: 0 

e. Birth Date and Age: 
(1) Verify that the values in the birth date are valid; error message: 

Invalid BIRTH MONTH for: Smith, AB Soc Sec No: 123456789 
Birth Month: 16 

(2) Verify the employee is not under 16 years of age; error message: 
AGE under 16 for: Smith, AB Soc Sec No: 123456789 Age: 13 

f Title Date: 
(1) Verify that the title month is valid; error message: 

Invalid TITLE MONTH for: Smith, AB Soc Sec No: 123456789 
Title Month: 20 

(2) Verify that the title year is valid; the company was established in 1955; therefore 
no employee should have had a title before that year; error message: 
TITLE YEAR before 1955 for: Smith, AB Soc Sec No: 123456789 
Title Year: 44 



Appendix G — Projects 

(3) Verify that the title year is valid; therefore no employee should have had a title 
year beyond the current year; error message: 
TITLE YEAR beyond 1993 for: Smith, AB Soc Sec No: 123456789 Title 
Year: 95 

(4) If the title year is valid, then verify the complete title date against today's date; 
error message: 

Invalid TITLE DATE for: Smith, AB Soc Sec No: 123456789 Month: 06 Year: 
91 

3. Any record that fails any validity test is to be rejected with no further processing, other 
than displaying or printing the appropriate error message(s). It is possible that a record 
may contain more than one error (all errors are to be flagged except where noted). 

4. Valid records are to be written to a new file to be used in Projects 9-7 and 16-3. 

Program Name: Stock Validation Program 

Narrative: Write a data validation program that will validate a stock file and produce both a valid 
stock file and an error report. 

Input File: STOCK-FILE 

Input Record Layout: 01 STOCK-RECORD-IN. 
05 STOCK-INFO. 

10 STOCK-NAME PIC X(8). 
10 STOCK-EXCHANGE-CODE PIC 9. 
10 STOCK-INDUSTRY-CODE PIC X(3). 

05 STOCK-CURRENT-INFO. 
10 STOCK-PRICE PIC 9(3)V9(3), 
10 ST0CK-PE PIC 9(3). 
10 STOCK-DIVIDEND PIC 9V99. 

05 STOCK-PROJECTION-INFO. 
10 STOCK-RISK-CODE PIC 9. 
10 STOCK-GROWTH-RATE PIC 9V9(4). 
10 ST0CK-SHARES-T0-BUY PIC 9(4). 

Test Data: 

H h h h h h h 0 B E E 0 0 1 0 0 0 9 9 9 5 5 5 6 0 0 1 0 0 

A a a a a a a 1 B A N 0 1 2 3 4 0 0 1 2 2 2 2 0 0 5 4 3 2 0 0 0 0 

A n h e u s 1 B E E 5 2 7 5 0 0 4 6 1 1 2 3 0 0 5 0 0 0 0 1 5 

A T & T 1 T E L 0 4 2 1 2 5 0 < 8 8 1 3 2 4 0 2 5 5 0 0 1 0 0 

B e l 1 S o 1 T E L 0 4 7 7 5 0 0 1 5 2 7 6 4 0 2 9 7 5 0 0 6 5 

C h e v r o n 1 0 I L 0 7 2 7 5 0 0 2 4 3 3 0 4 0 0 9 5 0 0 0 5 0 

C h r y s l r 1 A U T 0 2 0 0 0 0 0 1 5 0 6 0 2 0 0 3 0 0 0 0 2 5 

Corapq 1 C M P 0 2 8 7 5 0 0 3 8 2 3 0 3 0 1 5 5 0 0 0 2 5 

E e e e e e e 1 E L L 1 5 0 0 0 0 0 1 1 8 9 0 0 0 0 0 0 0 0 1 6 8 

E x x o n 1 0 1 L 0 6 2 7 5 0 0 1 4 2 8 8 3 0 0 7 0 0 0 0 3 5 

F f f f f f f 1 F & L 0 1 0 2 5 0 0 1 0 0 0 1 0 0 0 0 

K e l l o g g 1 F 0 0 0 5 8 3 7 5 0 2 2 1 1 2 3 0 2 4 5 5 0 0 1 0 

K m a r t I R E T 0 4 6 0 0 0 0T 1 1 7 6 3 0 0 5 0.0 0 0 0 5 



Project 8-8 

(Gen E l L E L E 0 7 7 5000 :1 5 2 2 0 3 0 0 9 5:000 50 

[ G n M o t r 1JAUT044 12 5Oil 53 3 120067^500 10 

[ I B M 1|CMP09 0 3 7 50:1 3 4 8 4 3 0 1 1 0 ( 0 0 0 5 0 

H a r r i o t 1 F & L 0 1 8 0 0 0 0 2 3 0 2 8 3 0 0 5 0 0 0 0 2 0 

M c D o n l d 1 ( F & L 0 4 6 5 0 0 0 ; 1 9 0 4 0 4 0 1 3 5 J 0 0 0 1 0 

N o r w s t 1 A I R 0 3 7 7 5 0 0 12 1 0 0 2 0 0 4 5 0 0 0 1 5 

R e e b o k 1 R E T 0 2 3 5 0 0 0 0 9 0 3 0 2 0 0 7 7 5 0 0 7 5 

S e a r s IIRETO4 2 5O0 0 ( 1 5 2 0 0 3 0 1 1 5j0 0 0 5 0 

S w B e l l 1 J T E L 0 6 0 3 7 5 o|l 2 2 9 2 3 0 0 7 OJO 0 0 3 0 

U p j o h n 1IDRU0 3 2 6 2 50(1 1 13 6 400801000 2 5 

U S W s t l ' A I R0356250)122 12 10045J00025 
W e n d y s S F & L 0 1 2 0 0 0 0 2 2 0 2 4 4 0 2 9 5 0 0 0 5 0 

B a n k r s 2 B A N 0 0 2 2 7 5 0 0 8 0 5 8 1 0 0 3 2 0 0 0 3 0 

I o m e g a 2 E L E 0 0 6 5 0 0 0 0 9 0 5 0 3 0 0 6 7 5 0 0 4 0 

M a x w e l 2 F 0 0 0 1 3 0 0 0 0 1 3 0 4 0 4 0 0 7 0 0 0 0 1 0 

O r a c l e 2:CMP0 1 5 5000 i5 5 2 2 5 30 12 0 J 0 0 0 1 0 

P o l k A u 2 ' E L E 0 0 6 2 5 0 0 J 3 5 0 7 5 2 0 0 5 5 J 0 0 0 2 5 

S e a g a t e 2 J E L E O 1 7 1 2 5 3 4 3 1 3 0 3 0 0 8 9 ^ 0 0 4 5 

3 ;TEL 1 2 5 0 000(3 4 5 5 0 0 0 4 5 4:502 0 0 

C c c c c c c 3 J B E N 0 1 2 5 5 0 0 i l 2 0 1 5 3 0 1 2 3 4 0 2 5 0 

C m c e B k 3iB A N 0 1 5 5 0 0 010 5 0 1 5 2 0 0 4 0;0 00 19 

J L d m k B 3 J B A N 0 0 0 0 6 3 0JO 7 0 1 0 1 0 0 3 2 5 0 5 0 0 

j D d d d d d d 4 ; d r u 0 0 0 0 0 0 0 J 2 0 4 5 5 1 0 2 3 OJO 0 7 5 0 

( E x c e l 4 C M P 0 1 17 5 00(2 8 0 2 4 4 0 3 50:000 7 5 

J G g g g g g g 4a i r O 1 0 0 0 0 0 ( 2 2 7 5 0 0 0 0 0 2 ( 5 0 1 0 0 

[Li 1 V e r n 4(RE TO 1 4 0 0 00(14 00 52 00 6 51000 5 0 

L u r i a 4 J R E T 0 0 7 1 2 5 0 : 2 9 0 9 5 2 0 0 7 5 J 0 0 0 2 5 

i M e t r b k 4 !BAN0112500sO 9 0 6 0 3 0 0 4 OJO 0 0 5 0 

( S k y w s t 4(A I R 0 Q 7 7 5 0 0 ( 2 0 0 0 5 3 0 0 5 0 : 0 0 0 3 5 

j S o n e s t a 4 F & L 0 0 5 5 000J0 2 1 0 0 3 0089J0 00 5 0 

( T r u s t c o 4 ( B A N 0 2 7 0 0 0 0 ( 1 2 0 6 0 2 0 0 4 0 ( 0 0 0 1 0 

J T y s o n 4 F O O 0 1 8 6 2 50(1 7 0 0 4 3 0 0 5 5(0002 5 

I B b b b b b b 5 S D 0 0 1 3 4 5 0 ! l 2 0 7 5 1 1 25o!o 1 5 0 0 

Report Layout: Develop your own report layout in compliance with the processing requirements. 

Processing Requirements: 1. Read a file of stock records. 

2. Validate each input record field for all of the following: 
a. Stock Name: If the name is missing, print an appropriate error message: 

Record missing data in NAME field Industry Code: XXX 

b. Exchange Code: 
(1) Verify that the value is numeric; if not, display an error message: 

Nonnumeric EXCHANGE CODE for Stock: XXXXXXXX 

(2) If the exchange code is numeric, verify that the code is valid. Valid exchanges 
are 1 through 4. 

Error message: Invalid EXCHANGE for Stock: XXXXXXXX Exchange: X 

(Hint: Use condition name test for valid exchanges.) 
c. Industry Code: Verify that the industry code is valid. Valid industry codes are: AIR, 

AUT, BAN, BEE, CMP, DRU, ELE, F&L, FOO, OIL, RET, S&L, and TEL. 

Error message: Invalid INDUSTRY CODE for Stock: XXXXXXXX Industry: XXX 

(Hint: Use condition name test for valid types.) 



Appendix G — Projects 

d. P E and Dividend: Verify that these values are numeric; if not, display the appropriate 
error message: 

Nonnumeric PE for Stock: XXXXXXXX PE: 999 

Nonnumeric DIVIDEND fo r Stock: XXXXXXXX Dividend: 9.99 

e. Price and Shares to Buy 
(1) Verify that these values are numeric; if not, display the appropriate error 

message: 
Nonnumeric PRICE fo r Stock: XXXXXXXX Price: 999.999 

Nonnumeric SHARES TO BUY for Stock: XXXXXXXX Shares to Buy: 9999 

(2) Verify that both are not zero; if either is zero, display an error message: 
Zero Price and/or Shares to Buy for Stock: XXXXXXXX Price: 999.999 Shares: 
9999 

(3) Finally, when both the price and shares to buy are numeric and not zero, 
verify that the potential stock purchase is not over the limit of $25,000. That is, 
if the product of the stock price and the shares to buy exceeds $25,000, the 
record should be rejected. Display the following error message: 

Total Purchase exceeds l i m i t fo r Stock: XXXXXXXX L i m i t : 9999999 

f. Risk Code and Growth Rate: 

(1) Verify that the value is numeric; if not, display the appropriate error message: 
Nonnumeric RISK CODE f o r Stock: XXXXXXXX Risk Code: X 
Nonnumeric GROWTH RATE fo r Stock: XXXXXXXX Growth Rate: XXXXX 

(2) If the risk code or growth rate is numeric, verify that the codes are valid. Valid 
risk codes are 1 through 5. Valid growth rates are .01% through 100%. 
Appropriate error messages are: 

Invalid RISK CODE fo r Stock: XXXXXXXX Risk Code: X 

Invalid GROWTH RATE f o r Stock: XXXXXXXX Growth Rate: 9.9999 

(Hint: Use a condition name test for valid risks and growth rates.) 

3. Any record that fails any validity test is to be rejected with no further processing, 
other than displaying or printing the appropriate error message(s). It is possible 
that a record may contain more than one error (all errors are to be flagged except 
where noted). 

4. Valid records are to be written to a file to be used in Projects 9-8, 16-4, and 17-6. 

Program Name: Electricity Bill Validation Program 

Narrative: Write a data validation program that will validate an electric file and produce a valid 
electric file. 

Input File: ELECTRIC-FILE 



Project 8-9 

Input R e c o r d Layout: 01 ELECTRIC-RECORD-IN. 
05 EL-ACC0UNT-N0 
05 EL-ACCOUNT-TYPE. 

PIC X(6). 

10 EL-TYPE-CODE PIC X. 
PIC XX. 
PIC X. 
PIC X. 

10 EL-CATEGORY-CODE 
10 EL-DEMAND-CODE 
10 EL-TIME-OF-USE-CODE 

05 EL-METER-INFO. 
10 EL-KW-DEMAND-LEVEL PIC 9(4). 
10 EL-SERVICE-USED-FROM-DATE 

15 EL-FROM-YEAR 
15 EL-FROM-MONTH 
15 EL-FROM-DAY 

PIC 99. 
PIC 99. 
PIC 99. 

10 EL-SERVICE-USED-TO-DATE. 
15 EL-TO-YEAR 
15 EL-TO-MONTH 
15 EL-TO-DAY 

PIC 99. 
PIC 99. 
PIC 99. 

10 EL-METER-READ-INFO. 
15 EL-CURRENT-READING PIC 9(5). 
15 EL-PREVIOUS-READING PIC 9(5). 

3 4 2 5 4 5 R R S N 1 0 0 0 0 9 2 0 1 2 3 9 2 0 2 2 2 3 5 7 4 8 3 4 9 5 3 

:2 3 8 9 4 5 C C S X 1 3 46 7 92 0 2 2 1 9 2 0 3 2 2 3 9i08 1 3 4 5 7 6 

6 8 9 3 5 3 R R S N 2 0 0 0 0 9 2 0 1 2 7 9 2 0 2 2 9 0 0 ; 2 3 4 0 1 0 0 2 

4 6 6 5 6 7 C G S S 1 0 0 4 5 9 2 0 2 2 5 9 2 0 3 2 6 4 0 2 4 2 3 2 9 3 4 

U O O O O O C C S I 1 2 1 9 9 9 2 0 3 1 5 9 2 0 1 1 0 0 2 3 5 7 0 3 4 6 5 

4 6 5 7 5 8 C C S L 2 3 4 5 6 9 1 1 1 3 1 9 1 1 2 1 4 0 0 4 5 6 0 2 3 4 5 

7 6 3 6 4 5 C G S N 1 0 0 0 0 9 2 0 1 2 4 9 2 0 2 1 5 8 3 4 9 3 7 2 4 5 2 

l l l i n R R S N 1 0 1 2 3 9 2 0 2 2 7 9 2 0 2 2 6 0 6 6 7 8 0 5 6 7 8 

4 5 7 6 8 6 C G S M 1 0 5 1 2 9 2 0 2 0 1 9 2 0 3 0 3 3 6 1 3 3 3 5 6 8 8 

4 8 7 6 5 3 C G S N 2 0 0 0 0 9 2 0 2 2 3 9 2 0 3 2 8 0 0 3 8 7 3 7 8 4 6 

2 2 2 2 2 2 C C S M 2 2 1 9 5 9 6 1 4 3 3 9 2 0 5 3 0 5 6 7 5 4 0 2 4 6 6 

3 3 3 3 3 3 C G S S 1 0 5 5 0 9 1 0 6 2 9 9 1 1 1 1 1 1 2 3 4 4 5 7 57 5 

3 4 9 7 6 6 C G S S 2 0 4 9 9 9 2 0 1 2 2 9 2 0 2 1 6 0 0 3 4 6 6 2 7 4 5 

4 5 6 9 7 7 C G S I 2 5 5 5 3 9 2 0 3 0 7 9 2 0 3 1 5 0 0 6 4 3 0 3 2 4 5 

4 4 4 4 4 4 C C S S 2 0 0 2 5 9 2 0 1 1 8 9 2 1 4 1 2 3 7 7 4 2 7 5 6 3 8 

,9 4 5 7 6 6 C C S I 1 2 1 4 5 9 2 0 2 2 1 9 2 0 3 2 2 5 5 4 5 5 4 4 5 4 4 

4 5 7 8 9 7 C G S M 2 0 9 3 7 9 2 0 2 2 5 9 2 0 3 2 2 0 0 4 2 5 0 2 1 4 5 

5 5 5 5 5 5 C C S X 1 1 5 9 0 9 1 0 8 3 2 9 2 0 6 1 5 1 2 4 2 5 4 7 4 2 6 

4 6 0 6 7 4 C G S M 1 0 7 5 0 9 2 0 1 2 0 9 2 0 2 1 9 3 4 2 3 4 2 1 2 1 2 

I9 0 6 6 5 4 R R S N 2 0 0 0 0 9 2 0 1 1 5 9 2 0 2 1 4 0 0 3 3 5 0 0 8 5 6 

:5 4 8 6 4 5 C C S L 2 2 1 0 0 9 2 0 3 0 9 9 2 0 3 2 9 0 0 3 6 4 0 4 7 4 2 

i6 6 6 6 6 6 C G S S 1 0 0 0 0 9 2 0 5 3 0 9 1 0 6 3 2 1 2 4 2 4 2 4 2 4 4 

4 8 6 4 6 7 R R S N 1 0 0 0 0 9 1 1 2 3 1 9 2 0 1 3 1 4 5:8 6 7 2 3 7 4 5 

8 5 9 7 3 4 C G S M 2 0 5 0 0 9 2 0 2 1 8 9 2 0 3 2 0 0 1 3 6 4 0 9 7 3 6 

1 4 6 5 5 7 C G S L 1 2 3 4 5 9 2 0 1 1 8 9 2 0 2 2 2 9 7 2 1 9 9 5 9 8 4 

3 8 7 6 4 3 C C S M 1 1 9 9 9 9 2 0 1 1 7 9 2 0 2 1 0 6 4 5 3 3 4 2 3 4 5 

7 7 7 7 7 7 X X X X 1 2 3 4 5 9 2 1 3 2 8 9 4 1 2 1 2 0 5 3 2 5 0 6 6 4 3 

; 9 8 4 5 4 5 C G S N 1 9 1 0 9 0 3 9 1 1 0 0 4 9 0 3 0 2 8 9 7 3 4 

:89 5 0 9 8 C G S L 1 2 0 0 0 9 2 0 1 1 6 9 2 0 2 1 9 9 4 2 7 4 8 3 4 2 3 

;5 6 7 4 5 5 C G S X 1 4 2 4 3 9 2 0 1 0 6 9 2 0 2 0 8 4 9 3 2 8 4 5 8 3 4 

3 8 7 4 6 4 C C S M 1 0 5 0 0 9 2 0 2 0 2 9 2 0 3 0 3 5 8 4 5 3 3 3 8 4 5 

3 4 5 4 5 6 C G S S 1 0 0 3 0 9 1 1 2 0 8 9 2 0 1 0 8 7 3 4 8 7 7 3 4 6 4 



A p p e n d i x G — Projects 

463454CGS;L22382920 3(0 192032709)34 7 103 74 
888888CCSJM2031 1910 9)3 592081108(6463643 1 
4 363 5 5CCS|M2 182 19 20 i l l 492030108(638 18346 
234557RRSJN 100009202:2 792032517)2 7417234 

CGSJL 25678920 5J3 092052912(34202345 
4 89753CGS|X 12 00 0920 1(1 39202105 3(94739843 
487635CCSJL12001911 1)129201119 4(7 5384653 
7 84567CGSJX 25689910 3J149203310 2J38409549 
84 5 54 3CGS(N200009202il 392032 500)8950 345 3 
3 87 4 5 4CCSiL2 2 003920 111 7 9 2 02 150 1189 3 107 6 3 
999999CGSS1 1 13 09 202139 1 123135215352 18 
223456CCSJM 114569202(2 39203237 8(44673523 
3 4 87 5 6 C C SJX 12 1 5 0 9 1 1 1 1 191 121 17 8164265987 
345464RRSJN2000092013092032200(4580497 5 
6467 5 7CCSJM2 123492030 19 2 03 2 7 0 0i03 002 98 5 
7 58346CGSJX22 1239202(029203 15 10)38400384 
457 46 6CCSJX 23123911 2(129201230 2)7 8818236 
ZZZZZZCGSJN200009602I1 59602 1636(42 6866 3 7 
545465CGSJS 20050910 5(1991062000:02300384 
;3 46768CCSJL143569202J17 9203174 5J98545643 
S59567CC SIX 25574910 720 9108200 4(5 3400454 

R e p o r t L a y o u t : Develop your own report layout in compliance with the processing requirements. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of electric records. 

2. Validate each input record field for all of the following: 
a. Account No: 

(1) If the account number is missing, print an appropriate error message: 
Record missing data in ACCOUNT NO field Account Type: RRSN1 

(2) If the account number is not missing, then verify that the value is numeric; if 
not, display an error message: 

Nonnumeric ACCOUNT NO for Account No: 123456 

b. Account Type: Verify that the account type is a valid account type. Valid account 
types are RRSN1, RRSN2, CGSN1, CGSN2, CGSS1, CGSS2, CGSM1, CGSM2, 
CGSL1, CGSL2, CGSX1, CGSX2, CCSM1, CCSM2, CCSL1, CGCL2, CGCX1, 
CCSX2; 

Error message: Invalid ACCOUNT TYPE for Account: 123456 Type: XXXXX 

(Hint: Use a condition name test for valid types.) 
c. KW Demand Level: 

(1) Verify that the value is numeric; if not, display an error message: 
Nonnumeric KW DEMAND LEVEL for Account No: 123456 

(2) If the k w demand level is numeric, then verify that the value is consistent with 
the demand code in the account type as shown below: 

Demand Code KW Demand Level Range 

N n/a (0) 
S 21-499 
M 500-1999 
L 2000-9999 
X 2000-9999 



Project 9-1 

Error Message: 

Inconsistent DEMAND CODE & DEMAND LEVEL for Account No: 123456 

Demand Code: S Demand Level: 545 

d. Service Used From and To Dates: 
(1) Verify that the from or to month is valid (i.e., 1 thru 12); error message: 

Invalid FROM MONTH for Account No: 123456 Month: 20 
or Invalid TO MONTH for Account No: 123456 Month: 20 

(2) Verify that the from or to day is valid (i.e., cannot exceed the maximum days in 
the corresponding month); error message: 

Invalid FROM DAY for Account No: 123456 Month: 12 Day: 35 

or Invalid TO DAY for Account No: 123456 Month: 12 Day: 35 

(Hint: Use a condition name test for valid months and days.) 
(3) Verify that the from or to year is valid; the year must be either the current or 

previous year; error message: 

Invalid FROM YEAR for Account No: 123456 Year: 95 

or Invalid TO YEAR for Account No: 123456 Year: 95 

(4) If the from or to date is valid, then verify the complete date (year, month, and 
day) against today's date; error message: 

Invalid FROM DATE for Account No: 123456 Mon: 05 Day: 31 Yr: 95 

or Invalid TO DATE for Account No: 123456 Mon: 05 Day: 31 Yr: 95 

(5) Verify that the from date is prior to the to date; error message: 

FROM DATE is not prior to TO DATE for Account No: 123456 

Current Date: 920325 Previous Date: 920220 

e. Current and Previous Readings: Verify that the value is numeric; if not, display an 
error message: 

Nonnumeric CURRENT READING for Account No: 123456 Current Reading: 
346C4 

or Nonnumeric PREVIOUS READING for Account No: 123456 Previous Reading: 
346C4 

3. Any record that fails any validity test is to be rejected with no further processing, other 
than displaying or printing the appropriate error message(s). It is possible that a 
record may contain more than one error (all errors are to be flagged except where 
noted). 

4. Valid records are to be written to a file to be used in Projects 9-9, 16-5, and 17-7. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Doctor Visits Report Program 

Narrative: This program accepts the valid output file produced by Project 8-1 as input and produces 
a report as output. 

Input File: VALID-ORDER-TRANSACTION-FILE 

Input Record Layout: Identical to the output record of Project 8-1. 



Appendix G Projects 

Test Data: Use the output file of valid records created in Project 8-1 as input. 

Report Layout: Design your own report layout, subject to the processing requirements. 

Processing Requirements: 1. Read a file of valid order records. 

2. Write an appropriate heading at the top of each page showing the date the report was 
run and page number. 

3. Write a detail line for each order showing all of the information in the input record. 
Print 5 records per page. 

4. Write a total line to print the total number of records. 

Program Name: Stock Transactions Report Program 

Narrative: This program accepts the valid output file produced by Project 8-2 as input and produces 
a report as output. 

Input File: STOCK-TRANSACTION-FILE 

i n p u t nevuru i ^ i y u u K i fucnucai tu u to U U I J J U I tccui u ui n u j o u i o-<i. 

Test Data: Use the output file of valid records created in Project 8-2 as input. 

Report Layout: 

We Make U Money, Inc. 
Stock Activity Report as of MM/DD/YY 

Page Z9 

Purchase Info Sell Info Profit 
/ Loss 

Stock Shares Date Price/Share Total Date Price/Share Total 

Profit 
/ Loss 

XXXXXXXXXXXXXX ZZ9 MM/DD/YY ZZ.ZZ9.99 ZZZ.ZZ9.99 MM/DD/YY ZZ.ZZ9.99 ZZZ.ZZZ9.99 — ,--9.99 

Totals 1,7.19 Z.ZZZ.ZZ9.99 Z.ZZZ.ZZ9.99 -, — .-9.99 

Processing Requirements: 1. Read a file of valid stock records. 

2. Write the appropriate headings showing the date and page number. 

3. For each record read: 
a. Calculate the 

(1) total purchase by multiplying the number of shares by the purchase price 
per share. 



Project 9-3 

(2) total sale by multiplying the shares by the selling price per share. 
(3) profit/loss by subtracting the total purchase from the total sale. 

b. String the record's purchase and sale date into a month, day, and year format. 
c. Write a detail line for every transaction; print 4 transactions per page. 

4. Write totals as shown in the report layout after all records are processed. 

Program Name: Payroll Report Program 

Narrative: This program accepts the valid output file produced by Project 8-3 as input and produces 
a report as output. 

Input File: PAYROLL-FILE 

Input Record Layout: Identical to the output record of Project 8-3. 

Test Data: Use the output file of valid records created in Project 8-3 as input. 

Report Layout: 

HardWorkers of America as of mm/dd/yy Page 19 

Name Gross Pay Taxes Insurance Net Pay 

last name, first name $$$,$$9.99 $$$9.99 $$$9.99 $$$,$$9.99 

• 

$$$$,$$9.99 $1 ̂,$$9.99 $$,$$9.99 $ $$$,$$9.99 

Processing Requirements: 1. Read a file of valid payroll records. 

2. Write the appropriate headings showing the date and page number. 

3. For each input record read: 
a. Calculate the gross pay as: 

(1) Straight time for the first 40 hours worked 
(2) Time and a half for hours worked over 40 

Note: Salaried workers DO NOT get overtime. 
b. Calculate the deductions: 

(1) Federal withholding tax is based on the gross pay. 
(a) 18% on the first $400 
(b) 23% on amounts over $400 and up to $600, inclusive 
(c) 25% on amounts over $600 

(2) FICA is 6.2% of the gross pay. 



Appendix G — Projects 

(3) Insurance as indicated below depending on the Plan Type. 

Plan Amount Deducted 

A $5 

B $8 

C $10 

Z $0 (no insurance) 

c. Calculate net pay by subtracting all of the deductions (tax, FICA, and insurance) 
from the gross pay. 

d. Write a detail line for each employee. String the name as shown in the report layout. 
Print only 5 employees per page. 

4. Write totals as shown on the report layout after ten records have been processed. 

Program Name: Car Sales Commissions Report Program 

Narrative: This program accepts the valid output file produced by Project 8-4 as input and produces 
a report as output. 

Input File: CAR-SALES-FILE 

Input Record Layout: Identical to the output record of Project 8-4. 

Test Data: Use the output file of valid records created in Project 8-4 as input. 

Report Layout: 
Very Very Nice Cars, Inc. Page Z9 

Commission Report MM/DD/YY 

Salesperson Date Car Sale Commi ssion Net 

XXXXXXXXXX MM/DD/YY 1YY XXXXXXXXXXXX 111,119 111,119 111,119 

1,111,11% 1,111,119 1,111,119 

Processing Requirements: 1. Read a file of valid car sales records. 

2. Write the appropriate headings showing the current date and page. 

3. For each record read: 
a. Calculate the commission paid to the salesperson by multiplying the commission 

rate by the sale amount. 



Project 9-6 

b. Calculate the net to the company by subtracting the commission paid from the 
sale amount. 

c. Write a detail line, printing 8 sales per page. Use reference modification to show 
only the last two digits in the car year on the report line. 

4. Write totals as shown on the report layout after all the records have been processed. 

P r o g r a m N a m e : Invoice Mailing Labels Program 

N a r r a t i v e : This program accepts the valid output file produced by Project 8-5 as input and produces 
a mailing label as output. 

I n p u t F i l e : INVOICE-FILE 

I n p u t R e c o r d L a y o u t : Identical to the output record of Project 8-5. 

T e s t D a t a : Use the output file of valid records created in Project 8-5 as input. 

R e p o r t L a y o u t : 

Scully Schultz 
20 Main St 45 5th St 
Chicago, IL 60666 Los Angeles, CA 90024 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of valid invoice records. 

2. For each input record read create a mailing label. 
a. String the city, state, and zip as shown in the report layout. 
b. Print the labels in two columns as shown in the report layout. 

P r o g r a m N a m e : Student Record Report Program 

N a r r a t i v e : This program accepts the valid output file produced by Project 8-6 as input and produces 
a report as output. 

I n p u t F i l e : STUDENT-FILE 

I n p u t R e c o r d L a y o u t : Identical to the output record of Project 8-6. 

T e s t D a t a : Use the output file of valid records created in Project 8-6 as input. 



Appendix 6 Projects 

Report L a y o u t : 

Smart U 
Student Aid Report 99/99/99 

Page Z9 

StudentID 
Credit Total 

Name School Aid Hours Tuition 
Total 

Aid 
Tuition 

Due 

999999999 XXXXXXXXXXXXXXX XXX X Z9 111,219 111,119 111,119 

119 1,111,119 1,111,119 2,111,119 

P r o c e s s i n g Requirements: 1. Read a file of valid student records. 

2. Write appropriate headings showing the current date and page number. 

3. For each input record read: 
a. Calculate total tuition based on $300 per credit. 
b. Calculate total aid based on the GPA as follows: 

G P A % Aid 

2.5 to 3.0 60% 

3.1 to 3.5 70% 

3.6 to 4.0 80% 

c. Calculate the tuition due by subtracting the total aid from the total tuition. 
d. Write a detail line with the information shown on the report layout, printing 10 

students per page. 

4. Write the totals shown on the report layout after all the records have been processed. 

Program Name: Salary Report Program 

Narrative: This program accepts the valid output file produced by Project 8-7 as input and produces 
a report as output. 

Input File: SALARY-FILE 

Input Record Layout: Identical to the output record of Project 8-7. 



Project 9-8 

Test Data: Use the output file of valid records created in Project 8-7 as input. 

Report Layout: Develop your own report layout in compliance with the processing requirements. 

Processing Requirements: 1. Read a file of valid salary records. 

2. Write an appropriate heading showing the current date and page number. 

3. For each input record read write a detail line showing all of the information in the 
record. Print 10 employees per page. 

4. Write a total for the salary amounts after all records have been processed. 

Program Name: Stock Purchases Report Program 

Narrative: This program accepts the valid output file produced by Project 8-8 as input and produces 
a report as output. 

Input File: STOCK-FILE 

Input Record Layout: Identical to the output record of Project 8-8. 

Test Data: Use the output file of valid records created in Project 8-8 as input. 

Report Layout: 
Stock Purchases 

day of Week MM/DD/YY 
Page Z9 

Name Exchange Shares Price 
XXXXXXXX XXX 1,119 $ZZ9.999 

Total 
$ZZ,ZZ9.99 

ZZ.ZZ9 $ZZZ,ZZ9.99 

Processing Requirements: 1 . Read a file of valid stock records. 

2. Write an appropriate heading, showing the page, day of week, and current date. 

3. For each input record read: 
a. Calculate the total by multiplying the shares to buy by the stock price. 
b. Write a detail line showing all of the information on the report layout, printing 10 

stocks per page. 

4. When all the records are processed, print totals as shown on the report layout. 



A p p e n d i x G — Projects 

Program N a m e : Electricity Bill Report Program 

Narrative: This program accepts the valid output file produced by Project 8-9 as input and produces 
a report as output. 

I n p u t F i l e : ELECTRIC-FILE 

I n p u t R e c o r d L a y o u t : Identical to the output record of Project 8-9. 

T e s t D a t a : Use the output file of valid records created in Project 8-9 as input. 

R e p o r t L a y o u t : 

BRIGHT POWER & LIGHT 

RESIDENTIAL KILOWATT USAGE 

PAGE Z9 

ACCOUNT INFO SERVICE USED METER READINGS TOTAL ESTIMATED 

KILOWATT BILL 

NUMBER TYPE FROM TO PREVIOUS CURRENT HRS USED 

999999 XXXXX MM/DD MM/DD 11,119 11,119 11,119 1,119.99 

111,119 ZZ .ZZ9.99 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of valid electric records. 

2. Write an appropriate heading showing the page number. 

3. For each input record read: 
a. If the account category is residential: 

(1) Calculate the total kilowatt hours used by subtracting the previous reading 
from the current reading. 

(2) Calculate an estimated bill: 

The first 750 kw hours used will be charged at 3.9220 per kw hour. 

Additional kw hours used will be charged at 4.9220. 
b. Print a detail line showing the information in the report layout. 

4. Write the totals shown on the report layout after all records have been processed. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

P r o g r a m N a m e : ORDER TRANSACTIONS, STOCK TRANSACTIONS, PAYROLL, CAR SALES COMMISSIONS, INVOICE MAILING 

LABELS, STUDENT RECORD, SALARY, STOCK PURCHASES, AND ELECTRICITY BILL 



Project 11-1 

Narrative: These projects combine the requirements of projects 8-1 through 8-9 and 9-1 through 
9-9 as presented earlier in Chapters 8 and 9. The fields in each incoming record 
transaction are accepted and validated one at a time, after which the necessary 
computations are done and the report is displayed on the screen. 

Test Data: 

Screen Layout: 

Processing Requirements: 

Use one or more records from the original data in Chapter 8. 

Design your own input and output screen layout (based on the record layout in projects 
8-1 through 8-9 and report layout in projects 9-1 through 9-9). 

1. Display a screen to input and validate a record, repeating the appropriate validations 
in the corresponding projects in Chapter 8. 

2. Display the calculated information from the corresponding projects in Chapter 9 on 
the screen. 

3. Optional: write the validated input records to a file after displaying it on the screen. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Employee Profiles 

organizations, which compare individuals with similar skills to one another. (The project is 
expanded to include material on table lookups in Project 12-1 at the end of the next 
chapter.) 

Input File: EMPLOYEE-FILE 

Input Record Layout: 

05 
05 

05 

05 
05 

01 EMPLOYEE-RECORD. 
05 EMP-SOC-SEC-NUMBER PIC X(9). 

EMP-NAME-AND-INITIALS PIC X(16). 
EMP-DATE-OF-BIRTH. 
10 EMP-BIRTH-MONTH PIC 99. 
10 EMP-BIRTH-YEAR PIC 99. 
EMP-DATE-OF-HIRE. 
10 EMP-HIRE-MONTH PIC 99. 
10 EMP-HIRE-YEAR PIC 99. 
EMP-SEX PIC X. 
EMP-SALARY-DATA OCCURS 3 TIMES. 
10 EMP-SALARY PIC 9(5). 

EMP-SALARY-TYPE PIC X. 
EMP-SALARY-DATE. 
15 EMP-SALARY-MONTH PIC 99. 
15 EMP-SALARY-YEAR PIC 99. 
EMP-SALARY-GRADE PIC 9. 

05 EMP-TITLE-DATA. 
10 EMP-TITLE-C0DE PIC XX. 
10 EMP-TITLE-DATE. 

15 EMP-TITLE-MONTH PIC 99. 
15 EMP-TITLE-YEAR PIC 99. 

05 EMP-L0CATI0N-C0DE PIC 99. 
05 EMP-EDUCATI0N-C0DE PIC 9. 

10 
10 

10 



T e s t D a t a : 

Appendix G — Projects 

1 0 0 0 0 0 0 0 0 D 0 E 

2 0 0 0 0 O 0 0 O W I L C O X 

4 0 0 0 0 0 0 0 0 L E V I N E 

5 0 0 0 0 0 0 0 O S M I T H E R S 

6 0 0 0 0 0 0 0 Q S U P E R P R O G 

7 0 0 0 0 0 0 0 0 - L E E 

8 0 0 0 0 0 0 0 0 P E R S N I C K E T Y 

9 0 0 0 0 0 0 0 O i M I L G R O M 

J 1 2 4 4 0 9 9 1 M 3 3 0 0 0 M 0 9 9 2 3 3 1 5 0 0 H 0 9 9 1 3 3 5 0 9 9 1 104; 

P A 1 0 5 8 1 1 9 1 M 2 9 0 0 0 M 1 1 9 2 2 2 7 5 O 0 H 1 1 9 1 2 3 5 1 1 9 1 1 0 4 ; 

S 0 1 5 0 0 8 9 0 F 3 1 0 0 0 M 0 8 9 2 2 2 9 0 0 0 M 0 8 9 1 2 2 8 0 0 0 M 0 2 9 1 2 3 2 0 8 9 0 1 0 4 J 

M 0 3 5 0 0 1 7 2 M 4 8 0 0 0 M 0 8 9 2 7 4 5 5 0 0 M 0 8 9 1 7 4 0 0 0 0 M 0 8 8 9 4 2 8 0 5 8 8 2 0 4 

S 0 4 5 7 1 0 9 1 F 5 9 0 O O H 1 O 9 1 6 5 0 1 0 9 1 1 0 6 

B 1 0 5 3 0 2 7 7 F 4 0 0 0 O P 0 5 9 2 8 3 7 5 O 0 M 0 2 9 1 8 3 5 O 0 O M 0 2 9 0 7 4 0 ; 0 5 8 9 4 0 5 

P 0 8 5 5 0 3 9 2 M 2 5 6 0 O H 0 3 9 2 3 5 0 0 3 9 2 3 0 6 : 

M B I 15 50 9 8 9 F 3 2 0 0 0 M 1 19 2 3 2 9 0 0 0 M 0 5 9 1 2 2 7 5 0 0 M 0 5 8 9 13 2 1 1 8 9 1 0 3 ; 

R e p o r t L a y o u t : The report below shows required information and illustrative calculations for A. B. Jones. 
Print your report according to these general specifications, but do not be concerned 
about exact line and column positions on a page. (See item 2b in the processing 
requirements for additional guidelines.) 

PERSONNEL PROFILE 
NAME: JONES A.B. S0C-SEC-N0 
AGE: 21.4 YEARS HIRE DATE: 

: 123-45-6789 
1/91 

SALARY DATE TYPE % INC. MBI RSI GRADE MIDPOINT % MIDPOINT 
$24,200 7/94 P 10.0 6 20.0% 4 $28,000 86.4 
$22,000 1/94 M 10.0 12 10.0% 3 $21,000 104.7 
$20,000 1/93 H 3 $21,000 95.2 

Processing Requirements: 1. Read a file of employee records. 

2. For every record read: 
a. Compute and print the employee's age, using the date of birth and date of 

execution. (The age calculation will be approximate, as the input birth date contains 
only the month and year.) 

b. Print all indicated fields with appropriate editing. Print three employees per page; 
leave six blank lines between employees. 

c. Print all associated salary information as described in items 3-6. 

3. Each employee has a salary history with 1, 2, or 3 levels of salary data, denoting 
present, previous, and second previous salary, respectively. Not every employee will 
have all three salaries indicated, but every employee must have a present salary. 

4. Associated with every salary is a salary grade, indicative of the level of responsibility in 
the company (for example, the janitor and president might have grade levels of 1 and 
9, respectively). Each grade has an associated average salary, or midpoint. The 
salary midpoint is computed by multiplying the grade by $7,000. The percent of grade 
midpoint is found by dividing the salary by the grade midpoint and multiplying by 100. 

5. Associated with every pair of salaries are three fields: percent salary increase, months 
between increase (MBI), and annual rate of salary increase (RSI). 



Project 11-2 

Program Name: 

Input File: 

Input Record Layout: 

Test Data: 

Report Layout: 

a. Percent salary increase is found by subtracting the old salary from the new salary, 
dividing by the old salary, and multiplying by 100. For example, new and old 
salaries of $22,000 and $20,000 yield a percent increase of 10%. 

b. Months between increase (MBI) is simply the number of months between the two 
salary dates. 

c. Annual rate of salary increase (RSI) is computed by converting the percent salary 
increase to a 12-month basis; for example, 10% after 6 months is equivalent to an 
annual rate of 20%; 10% after 2 years is an annual rate of 5%. 

6. Calculate percent salary increase, MBI, and RSI for each pair of salaries as appropriate. 
Realize, however, that not every employee will have all three salary levels, and hence 
the calculations cannot be made in every instance. Use an OCCURS clause, subscripts, 
and a PERFORM VARYING statement to do the calculations. Be sure to include a 
suitable test to avoid the computation if historical data are not present. 

Benefit Statement 

their annual salaries. Accordingly, benefit statements are often prepared to remind 
employees how well (their employer thinks) they are being treated. Develop a program to 
read a file of confidential employee data and to compute and print the fringe benefits for 
each employee. 

EMPLOYEE-FILE 

Use the same record layout as for Project 11-1. 

Use the same test data as for Project 11-1. 

Retirement Benefit 
COMPANY CONTRIBUTES: $$$,$$9 INTEREST RATE: .99 AMT AT AGE 65: $$,$$$,$$9  

Life Insurance = $$$$,$$9 

Employee Benefit Statement 
NAME: XXXXXXXXXXXXXXX 
ANNUAL SALARY: $$$,$$9 

BIRTH DATE: 99/99 
HIRE DATE: 99/99 

WEEKS AT FULL PAY: Z9 
Sick Pay Benefit 

WEEKS AT HALF PAY: Z9 

Processing Requirements: 1. Read a file of employee records, preparing an individual benefit statement for every 
record. Each individual statement is to appear on a separate page. 



Appendix G Projects 

2. For every record read: 
a. Calculate the retirement benefit based on an annual company contribution for each 

employee. The contribution is equal to 5% of the first $15,000 of salary plus 3% on 
any salary in excess of $15,000. Hence the company would contribute $840 
annually for an employee earning $18,000 (5% of 15,000 = 750, plus 3% of 3,000 = 
90). The money is invested for the employees and assumed to earn 8% annually. 
Use the following formula: 

Amount at age 65 = -
i 

where / = interest rate (for example, .08) and n = years until age 65 (specify the 
ROUNDED option of any arithmetic statement used in computing n). 

b. Calculate the life insurance benefit as twice an employee's annual salary if the 
employee earns $23,000 or less; it is three times the annual salary for those earning 
more than $23,000. 

c. Calculate the amount of sick pay, which is dependent on the individual's length of 
service. An employee is entitled to one week of full pay and an additional two 
weeks of half pay, for every year (or fraction thereof) of employment. The maximum 
benefit, however, is 10 weeks of full salary and 20 of half salary, which is reached 
after 10 years. (An employee with two years' service, for example, is entitled to two 
weeks full pay and an additional four weeks of half pay.) 

d. Use the individual's present salary, EMP-SALARY (1), in all benefit calculations. 

Program Name: Evaluation of Student Curriculum Records 

Narrative: This project builds on Project 3-5. Write a program using table handling to evaluate a 
student's curriculum record and determine the percentage of courses a student has left 
in order to graduate, the percentage of courses a student has transferred, the percentage 
of courses for which a student has been awarded proficiency credit, and the percentage 
of courses a student has completed. Print the names of students who are close to 
graduation and the courses they have left to complete. Project 3-5 limits a student to 10 
courses in their curriculum. This project allows for as many courses as needed. 

Input File: STUDENT-CURRICULUM-FILE 

Input Record Layout: Student Curriculum Record 

Student Id Number Course Number Grade 

1 ... 5 6 ... 12 13 



Project 1 1 -3 

Test Data: 

Report Layout: Use the same report layout as in Project 3-5. Add editing where appropriate. Add the 
remaining courses to complete for a student who is near graduation (see specifications) 
using an appropriate format. 

Processing Requirements: 1. Read a file of student curriculum records. 

2. Dynamically load a table containing all the student curriculum records for one student. 

3. Once all records for one student are loaded into the table: 
a. Add the total number of courses (course name, not spaces) for each student. 
b. Add the total number of courses where the student was awarded a grade (A, B, C, 

or D), proficiency credit (P), or transfer credit (K). 
c. Add the total number of courses where the student was awarded transfer credit (K). 
d. Add the total number of courses where the student was awarded proficiency credit 

(P). 
e. Determine the percentages of courses left in order to graduate, courses completed, 

courses transferred, and courses awarded proficiency credit. 
f. Print student id number and the percentages of courses left to graduate, courses 

completed, courses transferred, and courses awarded proficiency credit. 
g. If the student has less than 20% of courses left in order to graduate, print the 

courses the student has not completed. 

1 2 3 4 5 C 0 M P 1 1 0 A 

1 2 3 4 5 E N G L 1 10 

1 2 3 4 5 M A T H 1 4 8 K 

1 2 3 4 5 M A T H 1 6 8 P 

1 2 3 4 5 C I S 1 5 0 F 

1 2 3 4 5 C I S 2 3 0 

1 2 3 4 5 P S Y C 1 0 5 B 

12 3 4 5 B U S N 1 10A 

1 2 3 4 5 H U M N 4 1 0 P 

1 2 3 4 5 H U M N 4 2 0 A 

3 4 5 6 7 E N G L 1 I O C 

3 4 5 6 7 E N G L 1 2 0 

3 4 5 6 7 M A T H 0 4 8 C 

3 4 5 6 7 M A T H 2 10D 

3 4 5 6 7 C I S 2 3 0 A 
3 4 5 6 7 C I S 3 3 0 

7 8 9 2 1 B U S N 1 1 0 

7 8 9 2 1 B U S N 1 2 0 

7 8 9 2 1 E N G L 1 10A 

7 8 9 2 1 E N G L 1 2 0 P 

7 8 9 2 1 M A T H 0 4 8 K 

7 8 9 2 1 M A T H 1 6 8 B 

7 8 9 2 1 M A T H 2 2 0 

4 7 8 3 0 S P C H 2 7 5 A 

4 7 8 3 0 E N G L 1 1 0 

.4 7 8 3 0 A C C T 2 0 5 A 

4 7 8 3 0 A C C T 2 1 0 P 

4 7 8 3 0 A C C T 3 4 7 K 



Appendix G Projects 

P r o g r a m N a m e : Computer Status Report 

Narrative: This program will create an individual status report for each record in the file. When all the 
records have been processed, print a summary report showing totals for each status. 
(The project is expanded to include material on table lookups in Project 12-4 in the next 
chapter.) 

I n p u t F i l e : COMPUTER-FILE 

I n p u t R e c o r d L a y o u t : 01 COMPUTER-RECORD. 
05 COM -INVOICE-NO PIC 9(5). 
05 C0M--CUSTOMER-NAME PIC X(18) 
05 C0M--PAYMENT-METHOD PIC XX. 
05 C0M- SHIP-INFO. 

10 COM-SHIP-STATUS PIC X. 
10 COM-SHIP-CHARGE PIC 99V99 

05 C0M- COMPONENT-INFO. 
10 C0M-NO-COMP0NENTS PIC 9. 

10 C0M-C0MP0NENTS OCCURS 1 TO 4 TIMES 
DEPENDING ON C0M-N0- COMPONENTS. 

15 C0M-C0MP0NENT PIC X(12) 
15 C0M-C0ST PIC 9(4). 

T e s t D a t a : 

1 2 8 3 4 B 1 a n c o , E r i ck 
7 9 8 4 5 C a s a l i , J o s e p h 
5 9 7 8 9 D a v i s , K e v i n 
8 5 7 7 8 D e m l e r , L i n d a 

4 7 5 9 7 E C h a v a r r i a , F e l i p e C K 2 6 5 0 0 2 4 8 6 
5 8 6 8 4 F 1 e m m i n g , S h a r o n M C 1 4 5 0 0 2 4 2 5 
4 8 5 7 7 G o n z a l e z , M a r i a 
5 6 7 4 9 K a t a n , M a h a r a n 
9 5 8 7 7 P a r m e n t e r , D o n i t a 
3 8 4 7 6 P i n k w a s s e r , R a n d i 
3 7 5 8 6 S t e w . a r t , R o b e r t o 

A M 1 4 5 5 0 2 4 8 6 33MHz 
A M 3 7 5 0 0 2 3 8 6 33MHz 
V I 1 6 5 5 0 2 4 8 6 33MHz 
C 0 3 8 0 2 5 4 3 8 6 33MHz 

33MHz 2 3 7 9 T a p e BU 250 
N o t e b o o k 2 3 9 5 D o - t M a t r i x 

V I 1 3 5 0 0 3 4 8 6 D X 2 5 0 M H z 2 2 9 5 M o d e m / F A X 
C K 2 4 5 0 0 1 3 2 5 N o t e b o o k l 8 9 5 
C 0 3 3 5 0 0 2 4 8 6 25MHz 1 9 9 5 C D / R 0 M 
V I 3 8 9 0 : 0 4 4 8 6 0 X 2 66MHz 299 5 9 6 0 0 Modem 
C K 2 5 0 0 0 2386 2 5MHz 1 2 9 5 F A X 

1 9 9 5 2 4 0 0 Modem 0099 
1 5 9 5 L a s e r P r i n t r l 3 9 9 T a p e BU 120 0 1 8 9 
2 0 9 5 L a . s e r P r i t n r l 3 9 9 
2 0 4 9 0 o t M a t r i x 0 1 6 9 C o p r o c e s s o r 0 0 9 9 M o d e m / F A X 

02 50 
0169 

0 1 1 9 S o u n d B l s t r 0 1 3 9 

0119 

0 3 4 5 
0 2 9 9 D o t 
1279 

M a t r i x 0 1 6 9 ' S o u n d B l s t r 0 1 3 9 



Project 114 

Report Layout: 
FLY BY NITE COMPUTERS, INC. 

STATUS REPORT 

INVOICE #: XXXXX STATUS: X 
CUSTOMER NAME: XXXXXXXXXXXXXXXX PAYMENT METHOD: XX 

COMPONENT COST 
XXXXXXXXXXXX $$,$$9.99 

SUBTOTAL $$$,$$9.99 
SHIPPING CHARGES $$$9.99 
TOTAL $$$,$$9.99 

FLY BY NITE COMPUTERS, INC. 
SUMMARY BY STATUS 

STATUS ITEMS SHIP CHARGES COST 
1 Z9 $$,$$9.99 $$,$$9.99 
2 Z9 $$,$$9.99 $$,$$9.99 
3 Z9 $$,$$9.99 $$,$$9.99 

TOTAL ZZ9 $$,$$9.99 $ $$,$$9.99 

Processing Requirements: 1. Read a file of customer records. 

2. For each record read: 
a. Print the report for each customer on a separate page; print headings as shown on 

the report layout. 
b. Process each component ordered by 

(1) Printing a detail line as shown on the report layout. 
(2) Incrementing the cost totals for that customer. 

c. When all items for one customer have been processed: 
( 1 ) Calculate the customer total by adding the shipping charges to the cost totals. 
(2) Print the customer total lines as shown in the report layout. 

d. Increment the appropriate status in the summary table with the above information. 

3. After all records have been read, print the a summary table showing totals for each 
status (as shown on the report layout). 



Appendix G — Projects 

Program Name: Credit Report 

Narrative: This program produces a credit report for store accounts. The store offers three types of 
accounts: 20, 40, or 60; a customer may have one of each. The report will show detail 
lines for each type of account for each customer. The last page is a summary of 
payments, purchases, interest charged, and current balance by account type. 

Input File: CREDIT-FILE 

Input Record Layout: 01 CREDIT-RECORD. 
05 CR-ACC0UNT-N0 PIC 9(7). 
05 CR-NAME-AND-INITIALS PIC X(18). 
05 CR-N0-0F-ACC0UNTS PIC 9. 
05 CR-TRANSACTIONS OCCURS 1 TO 3 TIMES 

DEPENDING ON CR-N0-0F-ACC0UNTS. 
10 CR-TYPE PIC 99. 
10 CR-BALANCE PIC 9(4)V99. 
10 CR-PAYMENT PIC 9(4)V99. 
10 CR-PURCHASES PIC 9(4)V99. 

Test Data: 

1 2 3 4 5 2 0 S T U T Z , J D 

1 9 5 7 6 2 0 F R 0 S T , RD 

2 9 4 7 6 6 0 B A R B E R , MM 

3 8 5 6 7 4 0 G O L D S M I T H , KN 

4 2 0 9 5 4 0 G R A U E R , RG 

4 9 0 8 5 6 0 P L A N T , R K 

57 4 8 9 2 0 E L 0 F S 0 N , G S 

6 8 4 7 6 6 0 S T E W A R T , J B 

7 4 5 7 6 2 0 G I L L E N S 0 N , ML 

8 4 6 6 7 4 0 R U S H I N E K , S F 

9 4 3 6 5 6 0 V A Z Q U E Z V I L L A R , 

1 2 0 0 5 8 6 0 0 0 3 4 3 0 0 0 4 5 4 4 4 • . ! 

1 4 0 0 4 5 3 4 5 0 5 0 0 0 0 0 0 5 0 5 5 j 

3 2 0 0 2 3 3 9 0 0 1 0 0 0 0 0 0 9 5 4 5 4 0 0 4 7 5 3 4 0 3 1 5 0 0 0 3 4 2 1 2 6 0 2,3 34 1 2 2 3 3 4 1:2 0 4 3 3 3 2: 

2 4 0 0 2 3 4 3 4 0 1 2 3 3 4 0 3 4 3 2 3 6 0 3 4 2 3 3 0 3 6 2 3 3 0 0 0 5 4 4 3 

3 2 0 0 3 4 2 2 2 0 2 3 4 2 2 1 8 5 3 4 4 4 0 0 6 3 4 4 4 0 3 0 0 0 0 0 3 4 3 3 2 6 0 5:5 6 4 1 2 0 3 4 2 12 0 6 4 5 2 3J 

2 2 0 0 3 4 3 0 0 0 3 4 3 0 0 0 2 2 3 2 3 6 0 0 4 3 4 0 0 0 5 0 0 0 0 0 0 0 0 0 0 j 

2 4 0 0 8 6 4 0 0 0 5 6 4 0 0 0 3 4 2 2 3 6 0 6 7 5 4 0 0 3 7 5 4 0 0 0 4 5 3 3 4 I 

1 6 0 0 5 5 6 0 0 0 0 5 6 0 0 1 6 4 5 4 3 

1 4 0 0 6 5 5 1 3 0 0 5 5 1 3 0 3 5 4 3 4 • 

2 2 0 0 4 5 3 3 4 0 0 5 0 0 0 1 2 3 4 3 4 6 0 0 7 4 5 5 4 0 8 4 5 5 4 0 4 5 3 3 4 | 

C 3 2 0 0 4 5 3 4 5 0 5 0 0 0 0 0 0 3 4 4 5 4 0 0 : 6 5 6 6 6 0 6 5 0 0 0 0 0 4 5 5 0 6 0 0 : 5 4 6 5 6 0 4 4 6 5 6 0 4 3 5 3 4 1 

Report Layout: 

NEEDLESS MARKUP STORES ACCOUNT CREDIT REPORT 

ACCOUNT # 9999999 NAME: XXXXXXXXXXXXXXXXXX 

TYPE PREVIOUS 
BALANCE 

INTEREST 
PAYMENT PURCHASES CHARGE 

99 Z.ZZ9.99 
99 Z.ZZ9.99 
99 Z.ZZ9.99 

Z.ZZ9.99 
Z.ZZ9.99 
Z.ZZ9.99 

Z.ZZ9.99 
Z.ZZ9.99 
Z.ZZ9.99 

ZZ9.99 
ZZ9.99 
ZZ9.99 

CURRENT 
BALANCE 

Z.ZZ9.99CR 
Z.ZZ9.99CR 
Z.ZZ9.99CR 

PAGE Z9 

CREDIT AVAILABLE 
LIMIT CREDIT 

Z.ZZ9.99 Z.ZZ9.99 
Z.ZZ9.99 Z.ZZ9.99 
Z.ZZ9.99 Z.ZZ9.99 

TOTALS ZZ.ZZ9.99 ZZ.ZZ9.99 Z.ZZ9.99 ZZ.ZZ9.99CR 



Project 11-5 

NEEDLESS MARKUP STORES ACCOUNT TYPE SUMMARY 

TYPE INTEREST CURRENT 
PAYMENT PURCHASES CHARGE BALANCE 

20 Z.ZZ9.99 Z.ZZ9.99 ZZ9.99 Z.ZZ9.99CR 
40 Z.ZZ9.99 Z.ZZ9.99 ZZ9.99 Z.ZZ9.99CR 
60 Z,ZZ9.99 Z.ZZ9.99 ZZ9.99 Z.ZZ9.99CR 

TOTALS ZZ.ZZ9.99 ZZ.ZZ9.99 Z.ZZ9.99 ZZ.ZZ9.99CR 

Processing Requirements: 1. Read a file of credit records. 

2. Develop a page heading routine which prints 5 accounts on every page. 

3. For each record read: 
a. Print the appropriate account headings. 
b. Process each account type by 

(1) Calculating the monthly interest charge on the account based on the account 
balance after the payment has been applied. ( To make life a lot easier, use 
simple interest and a rate of 18.5%.) 

(2) Calculating the current balance by adding the interest charge and purchases 
and subtracting the payment. (Note: a customer could overpay the account, 
therefore you should remember to make the field signed and display it as such 
on the report as shown in the report layout or as desired.) 

(3) Determining the credit limit for each account as follows: 

Type Credit Limit 

20 $1,500 

40 $3,500 

60 $5,000 

(4) Calculating the available credit on the account by subtracting the current 
balance from the credit limit determined in (3). 

(5) Printing a detail line as shown on the report layout. 
(6) Incrementing the appropriate totals. 

c. When all accounts for one customer have been processed, print the total lines as 
shown in the report layout. 

d. Increment the appropriate account type in the summary table with the above 
information. 

4. After ail records have been read, print a summary table showing totals for each 
account type (as shown on the report layout). 



A p p e n d i x G — Projects 

Program Name: Software Cost Analysis 

Narrative: The program will determine the following: 

1. The break-even units and revenue for each software product. 

2. The break-even units and revenue for each software product if a $50,000 profit is 
desired. 

3. The break-even units and revenue for each software product if the selling price is 
reduced by 25%. 

Input File: SOFTWARE-FIL 

I n p u t Record Layout: 01 SOFTWARE-RECORD. 
05 SOFT-PROGRAM-INFO. 

10 SOFT-PRODUCT-LINE 
10 SOFT-PRODUCT-NO 
10 SOFT-PROGRAM-NAME 

05 SOFT-VARIABLE-COSTS. 
10 S0FT-PREP-C0STS. 

15 S0FT-L0ADING-PF.R-DISK 
15 SOFT-NO-DISKS-USED 

10 SOFT-MANUAL-PRINTING 
10 SOFT-SHIPPING-N-HANDLING 

05 SOFT-SELL-PRICE 
05 SOFT-FIXED-COST 

PIC X. 
PIC 9(4). 
PIC X(18), 

PIC 9V99. 
PIC 99. 
PIC 99V99. 
PIC 99V99. 
PIC 999V99. 
PIC 9(5). 

Test Data: 

G 4 6 9 5 F 1 i g h t S 

B 3 7 6 4 W o r c f P e r f 

;G 1 6 3 4 L e i s u r e 

! u 3 4 7 6 F a s t b a c k 

! G 6 4 2 4 C h e S : S M a s 

B 4 6 7 6 W o r d 2 . 0 

!M97 7 5 A u t o m a p 

; G 2 5 5 5 P o l i c e Q 

D 4 9 5 4 P o w e : r P o i 

U 7 5 5 8 P R 0 C 0 M M 

B 2 1 S 4 E x c e ; l 4 . 

E 5 7 7 5M i c k e y s 

B 7 5 8 4 1 - 2 - 3 3 . 

D 2 5 8 5 H a r v a r d 

E 6 5 5 5 K i d P i x 

B 4 9 5 4 Q u a t t r o 

U 7 5 8 8 T h e ^ N o r t 

1 m u 1 a 

e c t 5 

S u i t 

P l u s 

t e r 

2 . 0 

u e s t 

n t 2 . 

P l u s 

0 
A B C s 

1 P I u 

G r a p h 

t j o r 1 5 0 0 1 1 : 0 0 0 0 3 2 5 0 3 9 1 5 0 2 5 0 0 0 

. 1 2 2 5 1 1 3 5 5 0 1 0 2 5 2 6 9 0 0 2 3 0 0 0 

L a r r y 1 0 0 0 2 TO 8 5 0 2 0 00 3 9 j 9 5 2 0 0 0 0 

1 7 5 0 1 1 : 5 0 0 0 3 5 0 1 19:502 1 0 0 0 

0 5 0 0 10:7 5 0 0 5 5 0 0 3 5 M 1 8 0 0 0 

2 5 0 0 8 5 : 5 5 0 0 8 5 0 2 9 9 : 7 53 0 0 0 0 

0 7 6 0 1 0 8 2 5 0 2 5 0 0 4 9 0 0 1 8 0 0 0 

0 7 5 0 2 0 4 5 5 0 4 4 5 0 4 5 5 5 0 5 0 0 0 

0 2 2 5 1 0 3 : 5 0 0 0 9 5 0 2 9 9 : 0 0 0 8 0 0 0 

2 . 0 1 0 7 5 0 1 L 0 5 0 0 5 2 5 0 6 9 0 0 0 7 5 0 0 

2 6 5 0 7 2 ; 5 7 5 1 0 2 5 2 9 9 ; 7 5 2 8 7 5 0 

0 8 0 0 1 0 3 5 0 0 2 2 5 0 2 9 0 0 0 3 0 0 0 

s; 2 4 5 0 8 4 5 5 0 0 5 5 5 3 9 9 ; 0 0 3 5 8 0 0 

1 c s 2 1 5 0 5 2 : 5 2 5 0 7 2 5 3 9 9 9 5 3 4 5 0 0 

0 2 5 0 1 0 J 5 4 0 0 2 5 0 0 3 5 J 0 0 0 3 6 5 0 

. 0 1 . 9 5 0 6 4 1 5 0 0 1 2 5 0 3 1 9 5 0 3 5 9 5 0 P r o 4 . 

o n D e s i k t o p l 0 0 0 2 1 ; 8 5 0 0 7 5 0 1 1 5 ! 0 0 2 7 0 0 0 



Project 11-6 

Report Layout: 
Nexus Software Inc. 

Product Cost Analysis as of 99/99/99 
based on Total Fixed Costs: $ZZ,ZZ9 

Product Line: X 
Product Name: XXXXXXXXXXXXXXXXXX 
Sell Price: ZZ9.99 Total Variable Cost: ZZ9.99 

Units Revenue 
Breakeven Z.ZZ9 ZZZ.ZZ9.99 
Profit: $$$,$$9.99 Z.ZZ9 ZZZ.ZZ9.99 
Price Decline: Z9% Z.ZZ9 ZZZ.ZZ9.99 

Nexus Software Inc. 
Product Cost Analysis 

Summary Report by Product Line as of 99/99/99 

Product Breakeven Profit: Price 
Line $ZZ,ZZ9 Decline: Z9% 

X $$$$.$$9 $$$$,$$9 $$$$,$$9 

Totals $$,$$$,$$9 $$,$$$,$$9 $$,$$$.$$9 

Processing Requirements: 1. Read a file of software records. 

2. For each record read: 
a. Calculate the total variable costs for each product using the data in each record; 

include an additional cost of $1.00 for the disk itself. The software preparation costs 
will be the loading cost per disk multiplied by the number of disks used; don't forget 
to add the cost of the blank disk(s) by multiplying the cost of a blank disk by the 
number of disks used. 

b. Create a three-item table containing units and revenues. This table should hold 
break-even units and revenue calculated as described below: 
(1) Calculate the break-even point and revenue for each product. 
(2) Calculate the required number of units and associated revenue to yield a 

$50,000 profit for each product. 
(3) Calculate the price decline break-even units and revenue if the selling price is 

reduced by 25%. 
c. Print a detail line for each record as shown on the report layout. Design your detail 

line with a table that mimics the information calculated in item b. above. 
d. Increment the appropriate revenue totals in your summary table. 

3. After all records have been read, print the summary report and totals on a separate 
page as shown on the report layout. This will require you to create a table to hold all 
the product lines and revenue information. 



A p p e n d i x G Projects 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: 

Narrative: 

Input File: 

Input Record Layout: 

Test Data: 

Report Layout: 

Processing Requirements: 

Employee Profiles 

This project continues the employee profile program of Project 11-1 by introducing 
additional material on table lookups. 

EMPLOYEE-FILE and TITLE-FILE (see processing requirement 3) 

Use the same record layout as Project 11-1. 

Use the same test data as Project 11-1. 

Expand the report layout of the earlier project to include space for the various table 
lookups. You may display the information anywhere you deem appropriate. 
1. The education table is to be initialized through hard-coding and expanded through a 

direct lookup according to the following table: 

Code Description Code Description 

1 Some High School 5 Some Grad School 

2 High School Diploma 6 Master's Degree 

3 Two Year Degree 7 Ph. D. 

4 Four Year Degree 8 Other Graduate Degree 

2. The location table is to be initialized through hard-coding and expanded with a 
sequential search according to the following table: 

Code Description Code Description 

05 Atlanta 30 Los Angeles 

10 Boston 35 Minneapolis 

15 Chicago 40 New York 

20 Detroit 45 Philadelphia 

25 Kansas City 



Project 12-2 

3. The title table is to be input loaded and expanded with a binary search according to 
the following table: 

Code Title 

15 Accountant 

18 Senior Accountant 

30 Jr. Programmer 

32 Senior Programmer 

40 Analyst 

45 Senior Analyst 

50 Programming Manager 

P r o g r a m N a m e : Student Profile Program 

Narrative: Develop a program to print a set of student profiles, showing detailed information on each 
student. A m o n g other functions, the program is to convert an incoming set of codes for 
each student to an expanded, and more readable, format. 

Input File: STUDENT-FILE and COURSE-FILE (see processing requirement 12) 

Input Record Layout: 01 STUDENT-RECORD-IN. 
05 STU-SOC-SEC-NUMBER PIC 9(9). 
05 STU-NAME-AND-INITIALS. 

10 STU-LAST-NAME PIC X(18). 
10 STU-INITIALS PIC XX. 
STU-DATE-OF-BIRTH. 
10 STU-BIRTH-MONTH PIC 99. 
10 STU-BIRTH-YEAR PIC 99. 
STU-SEX PIC X. 
STU-MAJ0R-C0DE PIC X(3). 
STU-SCH00L-C0DE PIC 9. 
STU-CUMULATIVE-CREDITS PIC 999. 
STU-CUMULATIVE-POINTS PIC 999. 
STU-UNION-MEMBER-CODE PIC X. 
STU-SCHOLARSHIP PIC 999. 
STU-DATE-0F-ENROLLMENT PIC 9(4). 
STU-COURSES-THIS-SEMESTER OCCURS 7 TIMES. 
10 STU-COURSE-NUMBER PIC XXX. 
10 STU-COURSE-CREDITS PIC 9. 

05 

05 
05 
05 
05 
05 
05 
05 
05 
05 



Appendix G — Projects 

Test Data: 

1 0 0 0 0 0 0 0 0 A L B E R T 

2 0 0 0 0 0 0 0 0 B R 0 W N 

3 0 0 0 0 0 0 0 0 C H A R L E S 

4 0 0 0 0 0 0 0 0 S M I T H 

5 0 0 0 0 0 0 0 0 B A K E R 

6 0 0 0 0 0 0 0 0 G U L F M A N 

7 0 0 0 0 0 0 0 0 B 0 R 0 W 

8 0 0 0 0 0 0 0 0 M I L G R O M 

9 0 0 0 0 0 0 0 0 M I L L E R 

•9 9 9 9 19 9 9 9,W A Y N E 

A 0 1 7 4 M S T A 1 0 5 9 1 1 8 Y 0 1 5 0 9 9 2 1 0 0 2 2 0 0 3 3 0 0 4 4 0 0 4 5 0 1 3 6 0 0 2 6 0 1 1 

B 0 2 7 5 F S T A 1 0 8 9 2 7 5 N 0 2 5 O 9 9 2 1 0 0 2 2 0 0 3 3 0 0 4 4 0 0 4 ; 

G G 0 6 7 5 M H I S 2 1 0 9 2 8 6 Y 1 0 0 0 9 9 3 5 0 1 3 5 0 3 3 5 0 4 3 5 0 5 3 5 0 6 3 

D 0 7 7 6 F X X X 2 0 9 0 2 6 9 N 0 1 0 0 9 9 2 1 0 0 2 2 0 0 3 3 0 0 4 4 1 9 4 

E F 1 0 7 4 M G E N 3 0 3 2 0 4 9 Y O O O 0 9 9 4 2 2 2 3 3 3 3 3 4 4 4 3 

S F 1 1 7 3 F E L E 4 0 2 9 0 5 9 N 0 0 0 0 9 9 3 2 0 0 3 3 3 3 :3 4 4 4 3 5 5 5 3 6 6 6 3 6 7 5 2 7 0 0 1 

J S 1 2 7 5 M I E N 3 O 3 0 0 9 0 Y 0 0 0 O 9 9 2 2 2 2 3 

M B 0 3 7 6 F 5 O 1 5 0 4 5 Y O 0 0 O 9 9 3 1 1 1 3 1 3 8 3 1 5 0 3 1 6 0 3 

K O 1 7 4 M F R L 2 0 1 5 O 5 4 Y 0 0 0 0 9 9 3 1 1 1 3 1 4 0 3 1 5 0 3 ; ; 

N 0 4 7 3 F H I S 2 0 9 0 2 7 0 Y 0 0 0 O 9 9 4 5 0 1 3 5 0 3 3 5 0 4 3 5 0 5 3 ! 

Report Layout: 
S T U D E N T P R O F I L E S Page Z9 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
NAME: XXXXXXXXXXXXXXXXXX XX AGE: Z9.9 SOC SEC NO: 999-99-9999 
MAJOR: XXXXXXXXXXXXXXX ENROLLED: 99/99 SCHOOL: XXXXXXXXXXXX 
YEAR IN SCHOOL: XXXXXXXXX STATUS: XXXXXXXXX SEX: XXXXXX GPA: 9.99 
COURSES THIS SEMESTER: COURSE CREDITS 

XXXXXXXXXXXXXX Z9 

TOTAL CREDITS Z9 

Processing Requirements: 1. Process a file of student records, printing a complete student profile for each record. 

2. Two students are to appear on each page, with eight blank lines after the last line 
of the first profile on each page. The page number and literal heading S T U D E N T 
P R O F I L E S are to appear only before the first profile on each page. 

3. The detailed layout for each profile can be seen from the report layout. Additional 
specifications are given in items 4-11. 

4. Student age is to be calculated from date of birth and date of program execution. 

5. The social security number requires the insertion of hyphens; accomplish this by 
defining an output picture containing blanks in appropriate positions and then replace 
the blanks through the INSPECT verb. 

6. The status of the student is either part-time or full-time. Part-time students take fewer 
than 12 credits per semester. 

7. GPA is defined as the cumulative points divided by the cumulative credits and does 
not include credits taken this semester. Calculate this field to two decimal places. 

8. Year in school is a function of cumulative credits and again does not include credits 
taken this semester. Freshmen have completed fewer than 30; sophomores between 
30 and 59, inclusive; juniors between 60 and 89, inclusive; and seniors 90 or more. 



9. The incoming STU-SCHOOL-CQDE is to be expanded via a direct lookup. Hard-code 
the ioiiowing table in your program: 

CODE SCHOOL CODE SCHOOL 

1 BUSINESS 3 ENGINEERING 

2 LIBERAL ARTS 4 EDUCATION 

10. The incoming STU-MAJOR-CODE is to be expanded via a sequential search. Hard-
code the following major table: 

CODE MAJOR CODE MAJOR 

STA STATISTICS ECO ECONOMICS 

FIN FINANCE FRL FOREIGN LANG 

MKT MARKETING EEN ELECTRICAL ENG 

MAN MANAGEMENT MEN MECHANICAL ENG 

EDP DATA PROCESSING CEN CHEMICAL ENG 

PHY PHYSICS IEN INDUSTRIAL ENG 

ENG ENGLISH ELE ELEMENTARY EDUC 

BIO BIOLOGY SEE SECONDARY EDUC 

SECONDARY EDUC HIS HISTORY SPE 

SECONDARY EDUC 

SECONDARY EDUC 

11. Expand each value of STU-COURSE-NUMBER to an expanded course name using a 
binary search. An incoming record contains up to seven courses; blanks (that is, 
spaces) appear in an incoming record with fewer than seven courses. 

12. The table of course codes is to be established by reading values from a separate 
COURSE-FILE, with the following format: course code in positions 1-3 and course 
name in positions 4-18. The maximum table length is 100 courses, and the table of 
course codes appears below: 

CODE COURSE CODE COURSE 

100 ENGLISH I 503 EUR HISTORY 

111 COMPUTER SCI 504 ECONOMICS 

140 SPANISH I 505 POL SCIENCE 

150 MUSIC 506 CREATIVE WRIT 

160 ART APPREC 555 EDUC THEORY 

200 BIOLOGY 601 COBOL 

222 CHEMISTRY 666 PSYCHOLOGY 

300 CALCULUS 675 SPECIAL EDUC 

333 ELECT ENG 1 700 THESIS 

501 AM HISTORY 



A p p e n d i x G — Projects 

P r o g r a m Name: Furniture Shipments 

N a r r a t i v e : This program takes Project 11-3 and adds table lookups for warehouse and item 
information. 

I n p u t F i l e : FURNITURE-FILE and ITEM-FILE (see processing requirement 1a) 

I n p u t R e c o r d L a y o u t : 01 FURNITURE-RECORD. 
05 FURN-INVOICE-NO PIC 9(5) . 

FURN-CUSTOMER-NAME-N-INITIALS PIC X(18). 
FURN-DELIVERY-INFO. 
10 FURN-DELIVERY-WAREHOUSE PIC X. 
10 FURN-DELIVERY-DATE PIC 9(6) . 
FURN-0RDER-INFO. 
10 FURN-DEP0SIT-PERCENT PIC 9V99. 
10 FURN-N0-ITEMS-ORDERED PIC 9. 
10 FURN-ITEMS-ORDERED OCCURS 1 TO 3 TIMES 

DEPENDING ON FURN-N0-ITEMS-ORDERED. 
15 FURN-ITEM-NO PIC 9(4) . 

05 
05 

05 

T e s t D a t a : 

•H I I j | jt |:| |l i:
 « f I f || |: |l |j pi || SI ||?̂  :| jl ll ;|: li B 8 fa |S« j | j | ;| 

M 2 3485EDE L,S TE I N , 
jl 2 8 3 4 A L I A(S , Y 
7 984 5 RAH IjM , S 
59 789KELLJY , C 
85778WI LSJON , D 
47597GUDAT, G 
58684HYMo|wiTZ, A I 
4857 7 BOOZi, B 
56749HENNJESSY, L 
95877M0HDI-RAZALLI 
38476TH0M|PS0N , J 
48565JAC0JMIN0, R ; 
67566DESCJHPELLES , M 
0 9 7 7 7 S A N CJH E Z - C A R R 10JN , 
48576WENN;EMAN , M \ 
4533 7AL-DJAKHIL, A 
47567HARDING , J j 

A06109i20052 1345l|386 
B072492004217871798 
A0927920073230023502375 
B082492003236093650 
C07 129J20 123457 54J5904598 
A062892008213451397 
C10289200912350 j 
C12129|2028345993J6093650 
A09099200415500 \ 
B01 12930781 1345 1 

A09239|2009 1 1397 1j399 
A092392010213971345 
B07049J20092 1787 1J798 

VC081292002223504599 
B08169200412300 [ 
A0 7 229J2005 15500 ; 
C 0 8 2 2 9J2 0 0 2 2 13 4 5 13 9 7 

R e p o r t L a y o u t : Use the same report layout as Project 11-3, but expand the warehouse from the table 
lookups in both the detail and summary reports. Include the item number in the detail 
report. 

P r o c e s s i n g R e q u i r e m e n t s : 1. Follow the same processing requirements as Project 11-3 with the following changes. 
a. Note that the item description, item cost, and item weight have been replaced in 

the input record layout by a single item number. Determine the description, cost, 
and weight via a binary lookup. Initialize the following table by reading values from 
a separate ITEM-FILE and input-load it: 



Project 12-4 

item # Description Cost Weight item # Description Cost Weight 

1345 72" Sofa $2,300.00 100 2375 Nightstand $300.00 45 

1386 Love Seat $1,300.00 80 3609 Desk $450.00 98 

1397 Chair $545.00 50 3650 Desk Chair $395.50 45 

1399 Ottoman $350.00 40 4575 Dining Table $3,575.50 135 

1787 Sofa Table $600.00 50 4590 6 Dining Chairs $1,278.00 200 

1798 End Table $545.50 35 4598 Console $2,225.50 115 

2300 Dresser $4,300.00 95 4599 Credenza $1,235.00 250 

2350 Armoire $5,500.00 100 5500 Pool Table $2,300.00 250 

b. The warehouse code is to be expanded via a sequential lookup. Hard-code the 
following table in your program: 

Warehouse Code Description 

A Miami 

B N. Carolina 

C New York 

Program Name: Computer Status Report 

Narrative: This program takes Project 11-4 and adds table lookups for payment method, status, and 
component information. 

input File: COMPUTER-FILE and COMPONENT-FILE (see processing requirement 1a) 

Input Record Layout: 01 COMPUTER-RECORD. 
05 C0M-INV0ICE-N0 PIC 9(5). 
05 C0M-CUST0MER-NAME PIC X(18). 
05 C0M-PAYMENT-METH0D PIC XX. 
05 COM-SHIP-INFO. 

10 COM-SHIP-STATUS PIC X. 
10 C0M-SHIP-CHARGE PIC 99V99. 

05 C0M-C0MP0NENT-INF0. 
10 C0M-N0-C0MP0NENTS PIC 9. 
10 C0M-C0MP0NENTS OCCURS 1 TO 4 TIMES 

DEPENDING ON C0M-N0-C0MP0NENTS. 
15 C0M-C0MP0NENT-N0 PIC 9(4). 



Appendix G — Projects 

Test Data: 

1 2 8 3 4 B 1 a n c o , E r i c k i A M 1 4 5 5-0 2 4 3 3 0 6 2 5 o! 

j 7 9 8 4 5 C a s a : l i , J o s e p h ! A M 3 7 5 0 0 2 3 3 0 5 0 0 0 8 1 2 0 

5 9 7 8 9 D a v i s , K e v i n V i 16 5 5 0 2 4 3 3 0 5 0 0 0 

8 6 7 7 8 D e m l e r , L i n d a ! C 0 3 8 0 2 5 4 3 3 0 0 5 5 0 0 9 2 0 1 6 7 5 0 

[4 7 5 9 7 E c h a ! v a r r i a , F e : l i peCK265ok) 2 4 3 3 0 8 2 5 oi 

1 5 8 6 8 4 F 1 emjmi ng , S h a r o n MC 1 4 5 0 ; 0 2 4 5 0 0 5 5 0 0 : 

| 4 8 5 7 7 G o n z | a l e z , M a r i a V 1 1 3 5 0(0 3 4 5 0 0 6 7 5 0:9 3 0 0 

J 5 6 7 4 9 K a t a j n , M a h a r a n ! C K 2 4 5 0 : 0 1 3 2 5 0 

J 9 5 8 7 7 P a r m j e n t e r , D o n l i t a C 0 3 3 6 0 0 2 4 2 5 0 9 0 0 1 

j 3 8 4 7 6 P i n k ! w a s s e r , R a i n d i V I 3 89 00 4 4 6 6 06 5 0 05 5 0 0 9 3 0 0 

|37586Stewjart, R o b e r t o CK2500J0232507000J 

Report Layout: Use the same report layout as Project 11-4, but expand the status and payment method 
from the table lookups in both the detail and summary reports. Include the component 
number in the detail line. 

Processing Requirements: 1. Follow the same processing requirements as Project 11-4 with the following changes. 
a. Note that the component description and cost have been replaced in the input 

record layout by a single component number. Determine the description and cost 
via a binary lookup for the detail report. Initialize the following table by reading 
values from a separate COMPONENT-FILE and input-load it: 

Component Description Cost Component Description Cost 

3250 386 25MHz $1,295.00 6250 2400 BAUD Modem $99.00 

3330 386 33MHz $1,595.00 6500 9600 BAUD Modem $299.00 

3400 386 DX40 $2,049.00 6750 Modem/FAX Card $119.00 

4250 425 Notebook $1,995.00 7000 FAX $1,279.00 

4330 486 33MHz $1,995.00 8120 Tape Backup Unit 120 $189.00 

4500 486 DX2 50MHz $2,295.00 8250 Tape Backup Unit 250 $250.00 

4660 486 DX2 66MHz $1,895.00 9001 CD/ROM $345.00 

5000 Laser Printer $1,399.00 9201 Coprocessor $99.00 

5500 Dot Matrix Printer $169.00 9300 Sound Blaster $139.00 

b. The status code (printed in both the detail and summary reports) is to be expanded 
via a binary lookup. Hard-code the following table in your program: 

Status Description 

1 Assembly 

2 Packing 

3 Testing 



Project 12-6 

c. The payment method code is to be expanded via a sequential lookup. Hard-code 
the following table in your program: 

Payment Code Method of Payment 

AM American Express 

MC MasterCard 

VI Visa 

CO COD 

CK Check 

Program Name: Credit Report 

Narrative: This program takes Project 11-5 and adds table lookups the 
and account type. 

Input File: CREDIT-FILE 

Input Record Layout: Use the same record layout as Project 11-5. 

Test Data: Use the same test data as Project 11-5. 

Report Layout: Use the same report layout as Project 11-5, but expand the account type with the 
appropriate description. 

Processing Requirements: 1. Follow the same processing requirement as Project 11-5 with the following changes. 
a. Determine the description, credit limit, and interest rate via a sequential lookup. 

Hard-code the following table: 

Type Description Credit Limit interest Rate 

20 Regular $1,500 18.5% 

40 3Pay $3,500 0% 

60 Household $5,500 17.5% 

Program Name: Software Cost Analysis 

Narrative: This program takes Project 11-6 and adds table lookups for product line description. 

Input File: SOFTWARE-FILE 

Input Record Layout: Use the same record layout as Project 11-6. 



Appendix G — Projects 

Test Data: Use the same test data as Project 11-6. 

Report Layout: Use the same report layout as Project 11-6, but expand the product line with the 
appropriate description. 

Processing Requirements: 1. Use the processing requirements from Project 11-6 and add the following: 
a. The product line code should be expanded in the summary report using the 

following code definitions: 

Code Product Line Code Product Line 

G Games D Drawing/Graphics 

B Business Applications E Educational 

U Utility Applications M Miscellaneous 

b. Today's date is to be printed as shown on the report layout. The current month is to 
be expanded via a direct lookup. Hard-code the following table in your program: 

Month Expanded Month Month Expanded Month 

i January 7 July 

2 February 8 August 

3 March 9 September 

A ^^;f i n 
I U 

5 May 11 November 

6 June 12 December 

Program Name: Catalog Orders Program 

Narrative: Develop a program to calculate the total orders and the total handling charges for the 
Regal Catalog Company's monthly orders. The order file has been sorted by date. 

Input File: CATALOG-ORDER-FILE and HANDLING-CLASS-FILE (see processing requirement 7) 

Input Record Layout: 01 CATALOG-ORDER-RECORD. 
05 CAT-ITEM-NO 
05 CAT-DATE. 

10 CAT-MONTH 
10 CAT-DAY 
10 CAT-YEAR 

05 CAT-QUANTITY 
05 CAT-PRICE 
05 CAT-HANDLING-CLASS 

PIC 9(4). 

PIC 99. 
PIC 99. 
PIC 99. 
PIC 9(3). 
PIC 9(3)99. 
PIC X. 



Project 12-7 

Tes t Data: '** »>*$ r.?'* 
- . , , . U & i J L u t -

4 41401048;901011545A| 
177801208J901047995G! 
3 13101298I904004995EJ 
1 183013 18J901008995D 
476502058902008925F 
599202148901007945C 
518602 188901043500F; 
347 502228J902008995E 
B34402288J901005495B! 

R e p o r t Layout: Design your own report layout in accordance with the processing specifications. 

Processing Requirements: 1. Process a file of catalog orders to determine the monthly total for orders and handling 
charges. 

2. Print the month's orders with five blank lines between each month. Print an appropriate 
heading at the beginning of each new month. 

3. The detailed layout can be determined from the report layout. Additional specifications 
are given in items 4 -7 . 

4. The incoming CAT-MONTH is to be expanded via a direct lookup. Hard-code the 
following table in your program: 

Month Expanded Month Month Expanded Month 

1 January 7 July 

2 February 8 August 

3 March 9 September 

4 April 10 October 

5 May 11 November 

6 June 12 December 

5. The incoming CAT-ITEM-NO is to be expanded via a binary search. Input-load the 
following item table: 

Item No. Item Description Item No. Item Description 

1183 Portable Phone 4414 Chess Set 

1778 20" Television 4765 Table Lamp 

2686 Coffee Maker 5186 35mm Camera 

3131 Ceiling Fan 5992 Tennis Racquet 

3475 Bedspread 8344 Vase 

6. Total price is calculated by multiplying the quantity by the price per item. 



Appendix G — Projects 

7. The incoming CAT-HANDLING-CLASS is to be expanded via a sequential search. The 
table for handling classes is to be established by reading values from a separate 
HANDLING-CLASS-FILE, with the following format: handling class code in position 1 
and handling charges in positions 2-5. The maximum table length is 26. The table of 
class codes is shown: 

Code Handling Charges 

A 6.25 

B 12.00 

C 14.25 

b 16.50 

E 18.50 

F 21.25 

G 25.50 

Q H Q Q U Dogi2jQ,r 

Narrative: The dollar amount of any check is written out in words, in addition to appearing as a 
number. This project is intended to accomplish that conversion. 

Input File: CHECKING-ACCOUNT-FILE 

Input Record Layout: 01 CHECKING-RECORD. 
05 CHECK-NUMBER 
05 CHECK-AMOUNT 

PIC 9(4). 
PIC 9(5). 

Test Data: 

J111101234 
(2 2224500 0; 
333345200 
;444445986 
666645906 
777700689 
J888800089 
J999900008 
JIOOOOIOOO 
200000100 
300023000 ; 

Report Layout: The resulting report need not be elaborate. All that is required is a single detail line for 
each input record, containing the dollar amount and associated conversion. 



Project 13- 1 

Processing Requirements: 1. Read a file of checking account records. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Price Break Report 

Narrative: This project builds on Projects 2-1 and 7-2. Write a program to determine whether a 
customer receives a price break based on quantity ordered, and calculate the unit price 
and extended price. Create a report that prints each customer's order, as well as the 
Total Quantity Ordered and Total Sales for the company. 

Input File: ORDER-TRANSACTION-FILE 

Input Record Layout: Order Record 

Customer Number Quantity Ordered Item Number Unit Price 

1 ... 8 9 10 ... 12 13 ... 17 18 19(2 decimals) 23 

Test Data: Use same test data as in Project 7-2. 

Report Layout: Use the same layout designed in Project 7-2. 

Processing Requirements: 1. Read a file of order records. 

2. For every record read: 
a. Determine whether the customer will receive a discount. The discounting of an item 

is based on specifications presented in Project 2-1; only 5-item series are included 
in this exercise, but the program should support up to 100-item series. Because of 
this additional criterion, utilize a two-dimensional table to determine the discount 
percent based on the item series and quantity ordered. 

b. Calculate the unit price by applying the appropriate discount as determined in 2a. 
c. Calculate the extended price by multiplying the quantity ordered by the unit price. 
d. Accumulate the customer's and the company's order totals. 

3. Print the customer number, item number, quantity ordered, unit price (calculated), and 
extended price for each customer record. Single-space the output. 

4. Print the total quantity ordered and the total sales. Double-space the totals. 

2. For each record read: 
a. Convert the dollar amount to a written amount, with the word "dollars" appended at 

the end; for example, 234 should be converted to TWO HUNDRED THIRTY-FOUR 
DOLLARS. 

b. Cents are not included; that is, all incoming amounts are integer amounts. The 
maximum dollar amount to be converted is 99,999. 

c. The report is to contain one line for each record, with the amount expressed in both 
numbers and words. 



Appendix G Projects 

Program Name: Movies 

Narrative: Develop a program to compute the amount due the hundreds of movie extras who 
participated in the latest Hollywood extravaganza. 

Input File: MOVIE-EXTRA-FILE 

Input Record Layout: POSITIONS FIELS 

1-9 SOC-SEC-NUMBER 9(9) 
10-27 NAME X(18) 

28-29 MOVIE-EXPERIENCE 99 

30 TYPE-ROLE X 

31-34 HOURS-WORKED 999V9 

35-36 EXPANDED-ROLE XX 

Test Data: 

o o o o o o o o r 
000000002 
000000003 
000000004 

J O N E S , J . 
J O N E S , R O Y 
W I L L I A M S . JJ0HN 
F O S T E R , RAIYMOND 

OOOOOOOOSHIGH, LUCY 
000000006JHARDING, H 
000000007JZHE, KEVIN 
000000008JJENNINGS, 
000000009JROOSEVELT, 
00 0000010!T RUE LOVE , 

0WARD 

VIVIAN DO 
TIMOTHY07 

BILL 0 9 

OOiGOSOOGN 
02F0450FA 
0l!E0450EA 
11B0425BN 
08A0450AR 
04JA0450AV 
0 5iD04500N 

2 00 DA 
E023 0XX 
G0450EN 

Report Layout: 

HOLLYWOOD EXTRAVAGANZA. INC. PAGE 19 

SOC SEC NO MOVIE EXTRA EXP ROLE HOURLY-RATE REG-HOURS EXTRA-HOURS PAY 
999-99-9999 XXXXXXXXXXXXXXXXXXXX 99 X $Z9.99 ZZ9.9 Z9 $$,$$9.99 

Processing Requirements: 1. Process a file of pay records for movie extras, to determine the pay owed to each 
individual. 

2. An hourly pay scale is used, with the individual's hourly rate a function of the type of 
role and his or her experience in previous movies. The following table contains the pay 
scale and is to be hard-coded in your program: 



Role 

Previous experience (number of movies) 

Role 0 1 2 3 4 5-7 8 and Up 

A 20.00 25.00 30.00 32,00 34.00 38.00 40,00 

B 14.00 17.00 18.00 19.00 21.00 23.00 24.00 

C 7,00 7.00 7.50 8.00 8.50 8.50 9.00 

D 4.00 4.00 5.00 5.50 5.50 6.00 6.00 

E 3.75 4.50 5.00 5,25 5.25 5.50 5.50 

F 3.50 3.50 3,50 3.75 3.75 3,75 4.00 

The number of previous movies for an individual must be converted into a number 
from 1 to 7, so that it can be used as a subscript for access into the table. 

3. Incoming pay records are to be checked for valid data; specifically: 
a. Verify that the value in MOVE-EXPERIENCE is numeric; if not, display an error 

message and do no further processing for that record. 
b. Verify that the value in TYPE-ROLE is valid (i.e., A, B, C, D, E, or F); if not, display an 

error message and do no further processing for that record. 

4. Each employee is to receive, as a bonus, a number of extra hours (not appearing on 
the employee's pay record), for which the employee will be paid at his or her regular 
I IUUI iy IQtC. MIC MUIIIUCI UI C A U O IIUUIO IO O IUIIULIUII 
the incoming record as shown in the following table: 

Expanded Role Extra Hours Expanded Role Extra Hours 

AA 01 DN 08 

AV 01 DR 09 

BA 03 EA 14 

BN 05 EN 03 

CA 05 ER 03 

CN 04 FA 01 

DA 08 FN 06 

5. The bonus table for extra hours is in ascending sequence by the expanded role field. 
Use a binary search to determine the number of extra hours an individual will receive; 
that is, if a match is found, take the hours shown in the table and add it to the hours in 
the incoming record to determine pay. If no match is found, do not add any extra 
hours. An individual with no extra hours will be paid just for the number of hours on his 
or her incoming record. 

6. The printed report should print no more than four valid records per page. (The 
employees with invalid data should be displayed in a separate error report.) Double-
space between detail lines. 



A p p e n d i x G Projects 

Program Name: Two-level Tables 

Narrative: This program illustrates two-level tables and PERFORM VARYING in two dimensions. 
Incoming employee records are checked for one of three locations and one of two 
performance levels, producing six location-performance combinations. The average 
salary for each of these six combinations is computed. 

input File: EMPLOYEE-FILE 

Input Record Layout: 01 

10 
10 

EMPLOYEE-RECORD-IN. 
05 EMP-PERSONAL-INFO. 

10 EMP-S0C-SEC-NUM 
EMP-NAME-AND-INITIALS 
EMP-OATE-OF-BIRTH. 
15 EMP-BIRTH-MONTH 
15 EMP-BIRTH-YEAR 

05 EMP-C0MPANY-INF0. 
10 EMP-DATE-OF-HIRE. 

15 EMP-HIRE-M0NTH 
15 EMP-HIRE-YEAR 
EMP-L0CATI0N-C0DE 
EMP-EDUCATI0N-C0DE 
EMP-TITLE-DATA. 
15 EMP-TITLE-C0DE 
15 EMP-TITLE-DATE 
EMP-PERFORMANCE 
EMP-SALARY 

10 
10 
10 

10 
10 

PIC X(9). 
PIC X(16). 

PIC 9(2). 
PIC 9(2). 

PIC 9(2). 
PIC 9(2). 
PIC 9(2). 
PIC 9. 

PIC 9(3). 
PIC 9(4). 
PIC 9. 
PIC 9(5). 

Test Data: 

[354679876JKERBEL, NX: 
264480529JCLARK, JS \ 
223340090JHUMMER, MR; 
556667856JBENWAY , CX 
667893343FIfZPATRICK, 
j433556767JN0RI EGA, L;A 
455399829V0GEI. , VD j 
6887 734 23BE I NII0RN , |CB 
100334234GARCIA, PJ 
899843328T0WER, DR ' 
J776338380;MCD0NALD, ij 

075 9;0 190802564-0683 11 5500: 
1 16 0:0 7 9 13 0 3 9 9 9|0 18 4 12 5 3 0 0' 
075202928067340683143980 
095 91 19260599 9)0 18413255 4; 
045 7:069 3803878:018422 1550: 
116 0j0 49160245 3:0 683218500] 
0 3 600693 80 3233068312482 5 
0980:089230445 51068312985 0: 
075 9:019060256 410 683212000; 
056007903039990184119000 
0 7 5 31 190806 7 34)0683 1 54380! 

Report Layout: 
LOCATION/PERFORMANCE AVERAGE SALARY REPORT 

LOCATION HIGH PERFORMANCE LOW PERFORMANCE 
MIAMI ZZ.ZZ9.99 ZZ.ZZ9.99 
LOS ANGELES ZZ.ZZ9.99 ZZ.ZZ9.99 
NEW YORK ZZ.ZZ9.99 ZZ.ZZ9.99 



Project 13-4 

Processing Requirements: 1. Read a file of employee records. 

Program Name: Three-level Tables 

Narrative: This program extends the previous project to illustrate three-level tables and PERFORM 
VARYING in three dimensions. Incoming employee records are checked for one of three 
locations, one of six education codes, and one of two performance levels, producing 36 
location-education-performance combinations. The average salary for each of these 36 
combinations is computed. 

Input File: EMPLOYEE-FILE 

Input Record Layout: Same as Project 13-3 

Test Data: Same as Project 13-3 

Report Layout: 
AVERAGE SALARY REPORT FOR LOCATION: MIAMI 

EDUCATION LEVEL HIGH PERFORMANCE LOW PERFORMANCE 
GRADE SCHOOL ZZ.ZZ9.99 ZZ.ZZ9.99 
HIGH SCHOOL ZZ.ZZ9.99 ZZ.ZZ9.99 
ASSOCIATE ZZ.ZZ9.99 ZZ.ZZ9.99 
BACHELOR ZZ.ZZ9.99 ZZ.ZZ9.99 
MASTER ZZ.ZZ9.99 ZZ.ZZ9.99 
DOCTORATE ZZ.ZZ9.99 ZZ.ZZ9.99 

2. For each record read, determine if the employee is in Miami (code 30), Los Angeles 
(code 60), or New York (code 80) and has a performance rating of 1 (high performance) 
or 2 (low performance). Any employee meeting both requirements—that is, an employee 
with a valid location and performance rating—is a qualified employee. No further 
processing is necessary for nonqualified employees. 

3. Establish a 3-by-2 table to compute salary statistics for the 6 location-performance 
combinations. Rows 1, 2, and 3 are for Miami, Los Angeles, and New York. Columns 1 
and 2 designate high and low performance, respectively. 

4. For each qualified employee: 
a. Determine the appropriate row-column (i.e., location-performance) combination. 
b. Increment the total of all employee salaries for that row-column combination by this 

employee's salary. 
c. Increment the number of employees in that row-column combination by 1. 

5. When all employees have been processed, divide the total salaries for each combination 
by the number of employees in that combination, producing the average salary for that 
combination. Produce the required report shown in the report layout, showing the six 
values of average salary. 



Appendix G Projects 

AVERAGE SALARY REPORT FOR LOCATION: LOS ANGELES 

EDUCATION LEVEL HIGH PERFORMANCE LOW PERFORMANCE 
GRADE SCHOOL ZZ.ZZ9.99 ZZ.ZZ9.99 
HIGH SCHOOL ZZ.ZZ9.99 ZZ.ZZ9.99 
ASSOCIATE ZZ.ZZ9.99 ZZ.ZZ9.99 
BACHELOR ZZ.ZZ9.99 ZZ.ZZ9.99 
MASTER ZZ.ZZ9.99 ZZ.ZZ9.99 
DOCTORATE ZZ.ZZ9.99 ZZ.ZZ9.99 

AVERAGE SALARY REPORT FOR LOCATION: NEW YORK 

EDUCATION LEVEL HIGH PERFORMANCE LOW PERFORMANCE 
GRADE SCHOOL ZZ.ZZ9.99 ZZ.ZZ9.99 
HIGH SCHOOL ZZ.ZZ9.99 ZZ.ZZ9.99 
ASSOCIATE ZZ.ZZ9.99 ZZ.ZZ9.99 
BACHELOR ZZ.ZZ9.99 ZZ.ZZ9.99 
MASTER ZZ.ZZ9.99 ZZ.ZZ9.99 
DOCTORATE ZZ.ZZ9.99 ZZ.ZZ9.99 

Processing Requirements: 1. Read a file of employee records. 

2. For each record read, determine if the employee is in Miami, Los Angeles, or New 
York; has an education code of 1 through 6 for Grade School, High School, Associate, 
Bachelor, Master, and Doctorate; and has a performance rating of 1 (high performance) 
or 2 (low performance). Any employee meeting all three requirements—that is, an 
employee with a valid location, education, and performance rating—is a qualified 
employee. No further processing is necessary for nonqualified employees. 

3. Establish a 3-by-6-by-2 table to compute salary statistics for the 36 location-education-
performance combinations. Each location contains rows 1 through 6 for Grade School, 
High School, Associate, Bachelor, Master, and Doctorate; and columns 1 and 2 
designate high and low performance, respectively. 

4. For each qualified employee: 
a. Determine the appropriate row-column (i.e., education-performance) combination 

for each location. 
b. Increment the total of all employee salaries for that row-column combination for 

each location by this employee's salary. 
c. Increment the number of employees in that row-column combination for that location 

by 1. 

5. When all employees have been processed, divide the total salaries for each combination 
by the number of employees in that combination, producing the average salary for that 
combination. Produce the required report shown in the report layout, showing the 36 
values of average salary, printing every location on a separate page. 



Project 13-5 

Program Name: Payroll Program 

Narrative: Develop a program to print complete paycheck (including a check stub) and a payroll 
journal reflecting all checks printed. 

Input File: 

Input Record Layout: 

PAYROLL-FILE 

01 PAYROLL -RECORD-IN. 
05 PAY -S0C-SEC-NUM PIC 9(9). 
05 PAY -NAME. 

10 PAY-LAST PIC X(14). 
10 PAY-FIRST PIC X(12). 
10 PAY-INITIAL PIC X. 

05 PAY -INFO. 
10 PAY-HOURLY-RATE PIC 9(3)V99 
10 PAY-HOURS-WORKED PIC 9(3)V99 
10 PAY-SALARY-TYPE PIC X. 
10 PAY-DEPENDENTS PIC 99. 
10 PAY-TAX-STATUS PIC 9. 
10 PAY-INSURANCE PIC X. 

05 PAY--YTD-INFO. 
10 D A V VTrv CADUtMCC i rv i - i I v- i _ r m n x n u j 

nrr 
1 

n(a\unn 

10 PAY-YTD-TAXES PIC 9(5)V99 
10 PAY-YTD-FICA PIC 9(4)V99 
10 PAY-YTD-INSURANCE PIC 9(3)V99 

Test Data: Use the validated payroll file from Project 8-3. 

Report Layout: 

ANDREW INC. 
PAYROLL JOURNAL AS OF 99/99/99 

PAGE Z9 

DEDUCTIONS 

SOC SEC NO 
999-99-9999 

NAME 
XXXXXXXXXXXXXX, XXXXXXXXXXXX X. 

GROSS 
EARNINGS 

ZZ.ZZ9.99 
TAXES FICA INSURANCE NET PAY 

Z.ZZ9.99 Z.ZZ9.99 Z9.99 ZZ.ZZ9.99 

ZZZ.ZZ9.99 ZZ.ZZ9.99 ZZ.ZZ9.99 ZZ9.99 ZZZ.ZZ9.99 



Appendix G — Projects 

Processing Requirements: 1. Read a file of payroll records. 

Head of Household 

Yearly salary 

over - but not over 
The tax is: of the amount over -

0 24,850 $0 + 15% $0 

24,850 64,200 $3,727.50 + 28% 24,850 

64,200 128,810 14,745.50 + 33% 64,200 

Married Filing Jointly 

Yearly salary 

over - but not over 
The tax is: of the amount over -

0 30,950 $0 + 15% $0 

30,950 74,800 $4,642.50 + 28% 30,950 

74,800 128,810 16,934.50 +33% 74,800 

Single 

Yearly salary 

over - but not over 
The tax is: of the amount over -

0 18,500 $0 + 15% $0 

18,500 44,900 $2,782.50 + 28% 18,500 

44,900 93,130 10,160.50 +33% 44,900 

Married Filing Separately 

Yearly salary 

over - but not over 
The tax is: of the amount over -

0 15,475 $0 + 15% $0 

15,475 37,425 $2,321.50 +28% 15,475 

37,425 117,895 8,467.50 + 33% 37,425 

2. For each record read calculate: 
a. Gross earnings, which is dependent on salary type (salaried or hourly) and can be 

calculated in one of two ways: 
(1) Salaried employees are not paid overtime. Gross pay for salaried employees is 

rate of pay multiplied by the standard 40 hours. If hours exceed 40, place an 
asterisk (*) next to the hours worked in the detail line of the payroll journal and 
calculate the gross earnings using 40 hours. 

(2) Hourly employees are paid overtime at a rate of time and a half for hours 
beyond 40 through 48 and double time for hours beyond 48. 

b. The yearly taxes, which are dependent on two factors: tax status and yearly salary. 
This amount is divided by 52 to obtain the weekly tax deduction. 
(1) The tax status is used to determine the proper tax table. Establish a two-level 

table with the following information to determine the taxes deducted (you may 
pick the type of initialization and lookup technique): 



Project 13-6 

(2) Yearly salary for both salaried and hourly employees is estimated based on a 
40-hour week and a 52-week year. 

c. FICA deduction, which is calculated as 7.51% of gross pay for the first $56,000. 
After year-to-date earnings reach $56,000, no FICA will be deducted. 

d. Insurance deducted, which is also determined by the type of insurance plan and 
number of dependents. Determine the insurance deducted via a table lookup in the 
following two-level table: 

Number of Dependents 
Hea l th P l a n 

Number of Dependents 
B l u e Cross AvMed H u m a n a 

1 14.00 10.00 10.00 

2 15.00 12.00 12.00 

3 20.00 15.00 15.00 

4 23.00 18.00 18 00 

5 25.00 24.00 24.00 

Note; Beyond 5 dependents the cost of the plan remains the same. Therefore, an employee with 8 
dependents pays the 5-dependent rate No insurance is deducted for those with a Z (NO-INSURANCE). 

e. Net earnings, which is calculated as gross earnings minus deductions (taxes, FICA 
[if any], and insurance [if any]). 

3. Print a payroll journal detail line as shown in the report layout. Use the STRING 
statement to print the employee name in the following format: 

lastname, firstname initial 

4. Print a heading on top of each new page. Each page is to contain 10 employees. The 
date of execution should appear on the heading as indicated. 

5. When all records have been read, print totals for hours worked, gross pay, all 
deductions (taxes deducted, FICA deducted, insurance deducted), and net pay. 

Program Name: 

Narrative: 

Extended Student Profile Program 

This program continues the student profile program of Project 12-2 by adding a summary 
report. The summary report will utilize a three-dimensional table to accumulate totals for 
each school, major within school, and year in school within major. 

Input File: STUDENT-FILE and COURSE-FILE from Project 12-2 

Input Record Layout: Use the same record layout as Project 12-2. 

Test Data: Use the same test data as Project 12-2. 



Appendix 6 — Projects 

Report Layout: s U D t N I P K 0 r I L t S Page Z9 
Summary Report for School of XXXXXXXXXX as of 99/99/99 

*********************************************** 
Major: XXXXXXXXXXXXXXX 

Number of Total Average 
Year in School Students Credits Credits 

Freshman 229 11,119 Z.ZZ9 
Sophomore 
Junior . 
Senior • • 

Totals 1,119 111,119 11,219 

******************************************************************** 
Major: XXXXXXXXXXXXXXX 

Number of Total Average 
Year in School Students Credits Credits 

School of XXXXXXXXXX 11,119 1,111,119 111,119 

Processing Requirements: 1. The following are additional processing requirements to Project 12-2 for the summary 
report: 
a. Create a 4 x 18 x 4 (3-dimensional) table to accumulate number of students and 

total credits for the appropriate school-major-year (in school) combination. 
b. When all records have been processed, print the summary as shown in the report 

layout. Each school should begin on a new page. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Price Break Report 

Narrative: This project builds on Project 13-1. Write a program to determine whether a customer 
receives a price break based on quantity ordered and calculate the unit price and 
extended price. Create a report that prints each customer's order, as well as the total 
ordered for each customer and a grand total for the company. 

Input File: ORDER-TRANSACTION-FILE 

Input Record Layout: 

Customer Order Record 

Customer Number Quantity Ordered Item Number Unit Price Salesrep Number 

1 ... 8 9 10 ... 12 13 ... 17 18 19 (2 decimals) 23 24 ... 27 



Project 14-1 

T e s t Data: 

Report Layout: Modify the report designed in Project 7-2, adding salesrep number and region area 
name. 

Requirements: 1. Sort the incoming order file by customer number and within customer number by 
salesrep number. 

2. Read the sorted file of order records. 

3. For every record read: 
a. Determine whether the customer will receive a discount. The discounting is 

determined based on the specifications of Project 13-1. 
b. Calculate the unit price by applying the appropriate discount as determined in 3a. 
c. Calculate the extended price by multiplying the quantity ordered by the unit price. 
d. Determine the region a salesrep is assigned to based on the first byte of the 

salesrep number and utilizing the following table. 
Region Code Region Area Name 
A Arlington 
B Bridgeport 
C Coppell 
D Dallas 
E Euless 

4. Print the customer number, item number, quantity ordered, unit price (calculated), and 
extended price for each customer record. Single-space the output. 

5. Print the total quantity ordered and the total sales. Double-space the totals. 

1 0 0 0 0 0 0 1 0 0 0 5 1 1 1 1 19 1 0 5 3 4 A 1 0 0 

12 0000002 010021222802 056B200 
|3 0 0 0 0 0 0 3 0 1 2 5 3 2 3 3 3 7 3 0 0 4 5 A 1 0 0 

4 0 0 0 0 0 0 4 0 5 0 0 4 3 4 4 4 6 3 4 0 2 1 B 2 0 2 

|5 0 0 0 0 0 0 5 0;9 0 0 5 4 5 5 5 5 56 5 7 8 C 3 0 0 

jl 0 0 0 0 0 0 1 0 0 1 5 1 3 4 5 6 9 1 3 5 3 4 A 1 0 1 

J2 0 0 0 0 0 0 2 0 0 102 1 2 3 4 8 0 1 0 5 6 B 2 0 2 

|3 0 0 0 0 0 0 3 0 1 0 0 3 4 3 2 1 7 3 3 0 4 5 C 3 0 0 

4 0 0 0 0 0 0 4 0 4 0 0 4 4 3 2 4 6 3 7 0 2 1 A 1 0 0 

J5 0 0 0 0 0 0 5 0:7 0 0 4 2 4 5 6 5 5 6 5 7 8 B 2 0 2 

( 1 0 0 0 0 0 0 1 0 0 6 0 4 1 1 1 1 9 1 5 5 3 4 A 1 0 0 

j2 0000002 0.0 2 5 5 6 6 2 2 8 0 4 0 5 6 B 2 0 0 

13 0 0 0 0 0 0 3 0 3 1 53 1 1 3 3 7 3 3 0 4 5 C 3 0 0 

4 0 0 0 0 0 0 4 0 4 0 0 2 4 2 1 4 6 3 2 0 2 1 B 2 0 0 

J5 0000005 0':7 8 0 1 6 4 5 5 5 5 1 5 7 8 B 2 0 0 



Appendix G — Projects 

Program Name: Order Transaction File Validation 

Narrative: This project builds on Project 8-1, utilizing more advanced programming techniques 
such as table handling, redefines, internal sort, and control break logic. Write a data 
validation program that will validate an order transaction file. 

Input File: ORDER-TRANSACTION-FILE, same as Project 8-1. 

Test Data: Same as Project 8-1. 

Report Layout: Same as Project 8-1. 

Processing Requirements: 1. Read a file of order transaction records. 

2. Sort the order transaction records so that all records for one order can be processed 
together and so that the record types 1, 2, and 3 are in the appropriate order. 

3. The current run date is typically accepted from a file, but for this lab set up a literal in 
working storage with the run date as November 2, 1992. 

4. Validate each input record field for all of the following: 

All validations from Project 8-1. 

Change the Quantity Code conversion to Quantity Amount logic in Project 8-1 to utilize 
a hard coded table containing the Quantity Code and the appropriate Quantity 
Amount. 

5. Any record that fails any validity test is to be written to an error file, and an appropriate 
error message should appear on the error report. It is possible that a record may 
contain more than one error, and all errors are to be flagged. 

6. Valid records are to be written to a valid transaction file. The valid transaction file 
should be the same format as the input Order Transaction file, with the exception that 
the quantity code on the Type 3 record should be converted to the quantity amount, 
causing the unit price to be moved to the right two bytes. 

Program Name: Sorted Car Sales Program 

Narrative: Develop a program to process a sales file in order to determine the amount earned by 
each salesperson. 

Input File: SALES-FILE 



Project 14-3 

Input Record Layout: 01 SALES-RECORD-IN. 
05 SA-DEALER PIC X(8). 
05 SA-BRANCH PIC 9(3). 
05 SA-SALESPERSON PIC X(10). 
05 SA-SALES-INFO. 

05 SA-CUST0MER PIC X(10). 
05 SA-SALE-PRICE PIC 9(6). 
05 SA-COMMISSION-RATE PIC 9V99. 

05 SA-CAR-INFO. 
10 SA-CAR-MAKE PIC X(8). 
10 SA-CAR-MODEL PIC X(8). 
10 SA-CAR-YEAR PIC 9(4). 

Test Data: 

; B R O W A R D 0 1 0 G E H L E M O R E N O 0 1 6 1 2 5 0 0 5 T O Y O T A S U P R A 19 90 

JDADE 1 1 0 D A V E R S A R E N E S C A 0 0 4 9 5 0 0 0 2 H Y U N D A I E j X C E L G 1 9 9 0 

J B R O W A R D 0 2 0 R O W E V I E R A 0 1 4 3 0 0 0 0 2 S T E R L I N G 8 J 2 5 S L 1 9 8 9 

iDADE l i O O R I CO GORMAN 0 3 8 5 0 0 0 0 4 L E X U S 40 0 L S 19 9*2 

J B R O W A R D 0 1 0 S H I M P O R T O 0 2 5 5 7 5 0 Q 4 M B E N Z 3;0 0 E 1 9 8 8 

TJADE 1 1 0 F R E N C H D E G G S 0 0 9 0 2 5 0 0 4 N I S S A N M A X I M A 19 88 

MONROE 2 1 0 B 0 Y E R P I R E S 0 0 6 1 2 5 0 0 4 M A Z D A 62 6 19 88 

|DADE 1 0 0 R I C 0 CHUA 0 1 0 7 0 0 0 0 : 4 T 0 Y O T A CiAMRY DE 19 9JQ 

( B R O W A R D 0 i 2 0 R 0 W E P I N E D A 0 0 9 2 0 0 0 0 : 3 A U D I 5,000 198{8 

[DADE L l O D A V E R S A M C D O N A L D 0 4 0 0 0 0 0 0 5 I N F I N I T I Q:4 5 19 9:2 

B R O W A R D 0 1 0 G E H L E L A R S H O 1 2 4 7 5 0 0 3 P U E G O T 5 : 0 5 G L S 19 9:0 

D A D E 1 1 0 F R E N C H S P E A R S 0 1 0 9 7 5 0 0 1 N I S S A N 3 0 0 Z 1 9 8 8 

B R O W A R D 0 2 0 R 0 W E T O C K M A N 0 2 7 1 5 0 0 0 6 B M W &3 5 C S I 19 88 

MONROE 2 1 0 B 0 Y E R A U G U S M A 0 3 9 7 9 9 0 O 2 M B E N Z 56 0 SL 19 8:8 

B R O W A R D 0 1 0 G E H L E H O L M E 9 0 1 3 7 0 0 0 0 2 H O N D A P R E L U D E 1990 

•MONROE 2 1 0 B 0 Y E R L O U I S 0 1 0 1 7 5 0 0 4 M A Z D A R X 7 G X L 1 9 9 0 

i B R O W A R D 0 1 0 S H I M R E I N M A N 0 0 9 7 2 5 0 O 2 S A A B 9 0 0 19 88 

D A D E 1 0 0 R I C O DIL EGO 0 1 5 8 0 0 0 0 4 M A Z D A M I AT A 19 92 

M O N R O E 2 1 0 V A S Q U E Z H A F E Z 0 3 2 8 7 5 0 0 3 J A G U A R X J 6 19 90 

jDAD E 1 1 0 F R E N C H G R A H E 0 1 4 7 5 0 0 0 3 B M W 3 2 5 ES 1 9 8 8 

jMONROE 2 1 0 V A S Q U E Z HWANG 0 2 3 0 0 0 0 0 4 L E G E N D C O U P E 1 S 1 9 8 8 

Report Layout: 

VERY VERY NICE CARS INC. PAGE Z9 

CAR INFORMATION COMMISSION NET TO 
DEALER SALESPERSON YEAR MAKE MODEL CUSTOMER PRICE PAID DEALER 

XXXXXXXX XXXXXXXXXX 9999 XXXXXXXX XXXXXXXX XXXXXXXXXX 112,119 ZZ.ZZ9.99 ZZZ.ZZ9.99 

VERY VERY NICE CARS TOTALS $Z,ZZZ,ZZ9 $ZZZ.ZZ9.99 SZ.ZZZ.ZZ9.99 



A p p e n d i x G — Projects 

Processing Requirements: 1. Sort the incoming sales file by dealer, within dealer by salesperson, and within year by 
car make. 

2. Read the file of sorted sales records, and for each record read: 
a. Calculate the commission paid to the salesperson by multiplying the sale amount 

by the commission rate. 
b. Calculate the net to the dealer by subtracting the commission from the sale 

amount. 
c. Print a detail line for each sale. 
d. Increment the totals as shown on the report layout. 

3. After all records have been read, print Very Very Nice Cars totals. Skip three lines prior 
to printing the company total. 

Program Name: Sorted Bonus Program 

Narrative: Write a program to process a bonus file to determine which employees are eligible for a 
bonus and the bonus amount. 

I n p u t File: BONUS-FILE 

Input Record Layout: 01 BONUS-RECORD-IN. 
05 B0-MANU-PLANT PIC XX. 
05 B0- DEPARTMENT PIC X(8). 
05 B0- EMPLOYEE PIC X(15) 
05 B0-MANAGER PIC X(10) 
05 B0-SALARY PIC 99999 
05 B0- PERCENTAGE PIC 9V99. 
05 B0- ELIGIBILTY PIC X. 

Test Data: 

T N I n t e r i o r K n o w l e s , CD G A R C I A 3 0 1 0 0 0 0 8 Y 

; K Y F e n d e r s P r i c e , MD V I L L A R 2 4 0 0 0 0 0 0 N 

0 H T r i m I nn i s s , ML S P E N C E R 3 2 0 0 0 0 1 2 Y 

: K Y F e n d e r s K a n n i ng , OS V I L L A R 2 8 0 0 0 0 0 8 Y 

O H P a i n t P r a t e s , L S A L V 0 R D 2 9 0 0 0 0 1 5 Y 

K Y I n t e r i o r S a n g a s t i a n o , L A F E I N 3 2 0 0 0 0 1 1Y 

i T N T r i m G i b b s , G J J O N E S 2 6 0 0 0 0 0 6 Y 

K Y F e n d e r s ; B a r n a b a s , SJ G R A U E R 3 0 0 0 0 0 1 0 Y 

I T N I n t e r i o x D a v i s , J L G A R C I A 3 1 0 0 0 0 0 7 Y 

O H I ' a i nt M o n t e s , J A L V 0 R D 2 7 0 0:0 0 12 Y 

KY F e n d e r s : L a m a n i a , NC G R A U E R 3 2 0 0 0 0 0 5 Y 

T N T r i m R o m e r o , CM W I L L I A M S 3 2 0 0 0 0 1 8 Y 

i O H P a i n t S i m o n t o n , DM A L V 0 R D 2 5 0 0-0 0 0 0 N 
J N T r i m W i l s o n , R J J O N E S 2 4 0 0 0 0 0 0 N 

O H P a i n t K e i 1 e r , M S M I T H 2 8 0 0 0 0 0 6 Y 

• T N I n t e r i o . r T w i n n , S A J A M E S 2 2 0 0 :0 0 0 4 Y 

; 0 H P a i n t C h u a , C E ; S M I T H 3 1 0 o;o 0 0 7 Y 

K Y I n t e r i o r A l - A s k a r , E K B A R B E R 3 0 1 0 0 0 0 9 Y 

0 H T r i m C a r d o n e , J F R A N K 3 2 0 0:0 0 0 8 Y 



Project 14-5 

R e p o r t Layout; K Y I n t e r i o r W i n t e r , EK F E I N 2 2 0 0 0 0 0 0 N 

f N f r i in H e s s , AM W I L L I A M S 3 6 0 0 0 0 1 4 Y 

l O H T r i m B o b e r g , DM F R A N K 3 6 0 0 0 0 1 2 Y 

i K Y I n t e r i o r B e h r e n d , TR B A R B E R 3 1 0 0 0 0 0 5 Y 

:0 H T r i m S m i t h , GM F R A N K 2 6 0 0 0 0 0 0 N 

K Y F e n d e r s G i b e r s o n , C J G R A U E R 3 4 0 0 0 0 1 5 Y 

T N T r i m C l a s e n , cc J O N E S 3 2 0 0 0 0 1 0 Y 

O H T r i m A1 - K h u w i t e r , ft c n r M ' r- r n « j r criiLrt 2 4 0 0 0 0 1 1 Y 

i T N I n t e r i o - r A l b e r n i , W J J A M E S 3 2 0 0 0 0 1 0 Y 

K Y I n t e r i o r C h i 1 d e r s , R L B A R B E R 3 5 0 0 0 0 1 2 Y 

T N I n t e r i o r W a r r e n , A;E J A M E S 3 5 0 0 0 0 1 1 Y 

FASSSTCARS MANUFACTURERS PAGE Z9 
PLANT DEPT MANAGER SOC SEC NO SALARY BONUS TOTAL 
XX XXXXXXXX XXXXXXXXXX 999-99-9999 11,119 1,119 111,119 

FASSSTCARS TOTALS 1,111,119 11,119 1,111,119 

Processing Requirements: 1. Sort the incoming bonus file by plant, within plant by department, and within department 
by manager. Sort only the employees that are eligible for a bonus, that is, those that 
contain a "Y" in the eligibility field. 

2. Read the file of sorted bonus records, and for each record read: 
a. Calculate the bonus amount by multiplying the salary by the bonus percentage. 
b. Calculate the total compensation by adding the salary and the bonus. 
c. Print a detail line as shown on the report layout. 
d. Increment the appropriate totals as shown on the report layout. 

3. After all records have been read, print totals for Fassstcars. 

Program Name: 

Narrative: 

Sorted Store Sales Commissions Program 

Develop a program to process sales records for the Needless Markup company. The 
report is to show sales, commissions paid, and net sales for each transaction. 

Input File: SALES-FILE 

Input R e c o r d L a y o u t ; 01 SALES-RECORD. 
05 SAL-PERSON-NAME 
05 SAL-DATE. 

10 SAL-MONTH 
10 SAL-DAY 
10 SAL-YEAR 

PIC X(10). 
PIC 9(2). 
PIC 9(2). 
PIC 9(2). 



Appendix G — Projects 

PIC 9(5)V99 
PIC V99. 
PIC 9(2). 
PIC X(12). 

T e s t D a t a : 

05 SAL-AMOUNT 
05 SAL-COMMISSION-RATE 
05 SAL-STORE-NUMBER 
05 SAL-DEPARTMENT-NAME 

A D A M S 0 4 2 2 9 0 0 2 1 4 0 0 0 0 6 0 3 D E S I G N E R 

H I L L 0 4 3 1 9 0 0 0 0.9 8 0 0 0 5 0 1 S P 0 R T S W E A R 

S M I T H 0 4 2 8 9 0 0 0 0 8 0 0 0 0 5 0 2 L I N G E R I E 

H A R R I S O N 0 4 2 3 9 0 0 0 0 2 6 0 0 0 5 0 4 S P O R T S W E A R 

H I L L 0 4 0 9 9 0 0 0 3 6 9 0 0 0 4 0 1 S H 0 E S & B A G S : 

H A R R I S O N 0 4 1 8 9 0 0 0 1 2 5 5 0 0 5 0 4 S P 0 R T S W E A R 

H I L L 0 4 1 5 9 0 0 0 2 6 3 0 0 0 4 0 1 S H 0 E S & B A G S 

C L A R K 0 4 2 4 9 0 0 0 0 0 4 5 5 0 5 0 4 L I N G E R I E 

T U R N E R 04 1 8 9 0 0 0 0 7 5 0 0 0 3 0 2 A C C E S S O R I E S 

J O N E S 0 4 2 5 9 0 0 0 2 5 6 0 0 0 5 0 1 S P O R T S W E A R 

A D A M S 0 4 1 6 9 0 0 8 3 9 6 0 0 0 6 0 3 0 E S I G N E R 

C L A R K 0 4 1 5 9 0 0 0 4 7 8 0 0 0 5 0 4 S P O R T S W E A R 

S M I T H 0 4 2 5 9 Q 0 0 1 5 5 0 0 0 5 0 2 L I N G E R I E 

J O N E S 0 4 3 0 9 0 0 0 1 5 7 9 9 0 5 0 1 S P O R T S W E A R 

J O N E S 0 4 0 3 9 0 0 0 2 3 0 9 9 0 4 0 1 S H O E S & B A G S 

A D A M S 0 4 0 8 9 0 0 0 3 1 5 0 0 0 5 0 3 S P O R T S W E A R 

L U D L U M 0 4 2 6 9 0 0 6 1 2 0 9 9 0 6 0 3 D E S I G N E R 

A D A M S 0 4 0 5 9 0 0 0 8 3 6 0 0 0 5 0 3 S P 0 R T S W E A R 

S M I T H 0 4 1 2 9 0 0 0 0 4 5 2 5 0 3 0 2 A C C E S S 0 R I E S 

V A N B E R G E R 0 4 2 9 9 0 0 0 0 5 5 0 0 0 5 0 2 L I N G E R I E 

C L A R K 0 4 0 9 9 0 0 0 2 3 7 9 9 0 5 0 4 S P 0 R T S W E A R 

H A R R I S O N 0 4 2 9 9 0 0 0 2 2 5 0 0 0 5 0 4 L I N G E R I E 

H A R R I S O N 0 4 3 0 9 0 0 2 4 9 8 2 5 0 6 0 4 D E S I G N E R 

R e p o r t L a y o u t : 

NEEDLESS MARKUP 99/99/99 PAGE Z9 

STORE DEPARTMENT SALESPERSON DATE SALES COMMISSION NET SALES 
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX 99/99/99 ZZ.ZZ9.99 Z.ZZ9.99 ZZ.ZZ9.99 

NEEDLESS MARKUP TOTALS ZZZ.ZZ9.99 ZZ.ZZ9.99 ZZZ.ZZ9.99 

Processing Requirements: 1. Sort the incoming sales file by store, within store by department, and within department 
by salesperson. 

2. Read the file of sorted sales records, and for each record read: 
a. Calculate the commission by multiplying the sales amount by the commission rate. 
b. Calculate the net sales by subtracting the commission from the sale amount. 
c. Expand the store code via a direct lookup: 



Project 14-6 

LOCATION CODE LOCATION NAME 

1 Bal Harbor 

2 Dadeland 

3 The Galleria 

A Worth Avenue 

d. Print a detail line for each record. 

e. Increment the totals for sale amount, commission paid, and net sales. 

3. Print the totals at the end of the report. 

Hi 
Program Name: Sorted Zoo Program 

Narrative: Write a program to process a zoo's inventory file 

Input File: ZOO-FILE 

Input Record Layout: 01 ZOO-RECORD. 
05 ZOO-SPECIES PIC X(8). 
05 Z00-TYPE PIC X(ll). 
05 Z00-GR0UP PIC X(7). 
05 Z00-SEX PIC X. 
05 ZOO-QUANTITY PIC 99. 
05 ZOO-ACQUISITION-LEVEL PIC 99. 
05 ZOO-SPECIE-VALUE PIC 9(6)V99 

Test Data: 

W h a 1 e H u m p b a c k Mamma 1 F 0 1 0 0 1 2 5 0 9 0 0 1 

T i g e r W h i t e Mamma 1 F 0 5 0 1 6 6 0 0 8 5 0 8 

P a r r o t M a c a w B i r d M 0 5 0 0 0 6 6 0 0 0 0 5 

T i g e r W h i t e Mamma 1 M 0 7 0 1 5 6 0 0 8 5 0 5 

P a r r o t M a c a w B i r d F 1 2 0 0 0 7 5 0 9 9 1 5 

B e a r B l a c k B e a r M a m m a l M 0 0 0 1 0 2 3 3 0 5 0 2 

R a y M a n t a F i s h F 0 4 0 0 0 4 0 0 4 0 0 2 

W h a l e K i l l e r M a m m a l F 0 2 0 0 4 5 0 0 5 0 0 2 

R a y M a n t a F i s h M 0 2 0 0 0 4 5 0 0 5 0 4 

W h a l e K i l l e r M a m m a l M 0 1 0 0 4 2 0 0 5 0 0 1 

S h a r k G r e a t W h i t e F i s h F 0 1 0 1 2 0 1 2 0 0 0 4 

T i g e r B e n g a l Mamma 1 M 0 2 0 0 4 0 2 0 9 0 0 2 

S h a r k Ma ko F i s h F 0 2 0 0 0 8 9 9 0 0 0 2 

W h a l e H u m p b a c k M a m m a l M 0 0 0 0 1 7 5 0 9 0 0 1 

B e a r G r i z z l y Mamma 1 F 0 3 0 0 9 0 0 0 0 0 0 2 

S h a r k Ma ko F i s h M 0 6 0 0 0 9 5 0 0 5 0 8 

B e a r B l a c k B e a r Mamma 1 F 0 3 0 1 0 2 3 3 0 5 0 3 

P a r r o t C o c k a t o o B i r d F 4 5 0 0 0 3 0 5 0 4 3 0 

B e a r G r i z z l y Mamma 1 M 0 4 0 0 9 1 0 1 0 0 0 3 

S h a r k G r e a t W h i t e;F i s h M 0 4 0 1 1 3 0 0 0 0 0 4 

T i g e r B e n g a l Mamma 1 F 1 0 0 0 2 0 5 0 8 0 0 8 



Appendix G Projects 

Report Layout: 
Wild Kingdom Zoo Inventory Report 99/99/99 

Group Species 
XXXXXXX XXXXXXXX 

Type Sex Value Quantity 
XXXXXXXXXXX X ZZZ.ZZ9.99 Z9 

Page Z9 
No. to 

Total Acquire 
ZZZ.ZZ9.99 Z9 

Total for Wild Kingdom ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

Processing Requirements: 1. Sort the incoming animal file by group, within group by species, and within species 
by type. 

2. Read the file of sorted animal records, and for each record read: 
a. Calculate the value of each animal (quantity times value). 
b. Determine whether acquisition of addition animals is justified; the zoo should 

acquire more animals if the acquisition level is below the quantity level. 
c. Print animal information in that record and calculated values on a detail line. 
d. Accumulate the animal quantity totals, total values, and acquisition totals. 

3. After all records have been read, print totals for Wild Kingdom. 

Program Name: Sorted PC Software Program 

Narrative: Write a program to process a PC software file to determine totals for PC software totals. 

Input File: PC-SOFTWARE-FILE 

Input Record Layout: 01 PC-SOFTWARE-RECORD-IN. 
05 PC-ORDER-INFO. 

10 PC-ORDER-NO 
10 PC-ORDER-TYPE 
10 PC-CUSTOMER-NAME 

05 PC-PURCHASE-INFO. 
10 PC-QUANTITY 
10 PC-PRICE 
10 PC-DATE 

05 PC-PROGRAM-INFO. 
10 PC-PROGRAM-ID. 

15 PC-PROGRAM-NO 
15 PC-PLATFORM-CODE 

10 PC-PROGRAM-NAME 
10 PC-VENDOR 

PIC 9(5). 
PIC X. 
PIC X(16). 

PIC 999. 
PIC 9(3)V99. 
PIC 9(6). 

PIC 9(4). 
PIC X. 
PIC X(16). 
PIC X(16). 



Tes t D a t a : 

0 2 6 3 4 P Z e u q z a v - R a l l i v 0 1 5 0 2 8 9 9 0 2 0 3 9 3 5 5 1 4 W E n t e r t a i n m n t P a c M i c r o s o f t 

7 9 4 5 6 P R a c a l D a t a c o m m 0 0 3 3 3 4 9 5 0 2 0 1 9 3 56 53D 1 - 2 - 3 2 . 4 L o t u s 

7 4 5 2 3 P A m e r i c a n E x p r e s s 0 0 8 0 1 9 0 0 1 2 2 2 9 2 3 3 3 8 W M o n e y 2 . 0 M i c r o s o f t 

1 347 3 P R a c a l D a t a c o m m 0 3 5 0 8 4 9 5 0 9 2 4 9 2 3 1 4 6 D N o r t o n A n t i - V i r u S y m a n t e c 

3 4 3 4 2 R N e i m a n M a r c u s 0 2 5 3 2 8 9 5 0 9 2 5 9 2 8 0 0 0 W P e r s u a s i o n 2 . 1 A l d u s 

: 6 3 4 5 2 P A m e r i c a n E x p r e s s 0 1 0 0 9 9 0 0 0 1 1 6 9 3 3 4 2 4 W 1 - 2 - 3 U p g r a d e L o t u s 

5 3 6 2 3 P R a c a l D a t a c o m m 0 3 5 2 4 9 0 0 0 1 3 0 9 3 5 7 9 9 W A m i P r o 3 . 0 L o t u s 

4 3 6 4 6 P N e i m a n M a r c u s 0 1 8 3 2 5 0 0 0 1 0 3 9 3 9 6 9 5 D B o r 1 a n d C + + 3 . 1 B o r l a n d I n t ' l 

43 62 3 P R a c a l D a t a c o m m 0 3 0 0 9 9 0 0 0 2 2 2 9 3 3 4 2 4 W 1 - 2 - 3 U p g r a d e L o t u s 

2 7 3 4 5 R N e i m a n M a r c u s 0 0 3 1 3 9 0 0 1 0 1 5 9 2 6 2 2 3 W G a 1 1 e r y E f f e c t s A l d u s 

5 8 4 2 4 R A m e r i c a n E x p r e s S 0 0 5 3 3 4 9 5 0 1 1 6 9 3 5 6 5 3 D 1 - 2 - 3 2 . 4 L o t u s 

6 4 5 6 4 P N e i m a n M a r c u s 0 1 5 4 9 8 9 5 0 9 2 5 9 2 1 3 3 2 W P a g e m a k e r 5 . 0 A l d u s 

4 7 6 3 5 P Z e u q z a v - R a l l i v 0 1 5 0 3 8 9 5 0 2 0 3 9 3 2 8 5 8 D F 1 i g h t S i m u l a t o rM i c r o s 0 f t 

4 6 3 5 3 P R a c a l D a t a c o m m 07 5 0 9 9 9 9 122 1 9 2 2 3 5 9 W N o r t o n D e s k t o p S y m a n t e c 

6 3 4 5 4 P Z e u q z a v - R a l 1 i v 0 1 5 2 9 9 0 0 0 2 0 3 9 3 2 8 5 6 W E x c e l 4 . 0 M i c r o s 0 f t 

8 4 5 6 3 R R a c a l D a t a c o m m 0 8 5 0 9 9 9 9 122 1 9 2 3 7 8 4 W N o r t o n B a c kk up S y m a n t e c 

4 5 3 6 4 P Z e u q z a v - R a l 1 i v 0 1 5 2 9 9 0 0 0 2 0 3 9 3 7 3 8 7 W P o w e r P o i n t 3 . 0 M i c r o s 0 f t 

; 4453 5 P R a c a l D a t a c o m m 0 5 5 3 4 8 9 5 1 2 2 3 9 2 3 5 2 3 W F r e e l a n c e 2 . 0 L o t u s 

34 59 3 P Z e u q z a v - R a l 1 i v 0 1 5 2 9 9 0 0 0 2 0 3 9 3 6 1 9 5 W W o r d 2 . 0 M i c r o s 0 f t 

7 4 3 8 7 P N e i m a n M a r c u s 0 183 1 8 5 0 1 0 0 7 9 2 6 2 4 2 D Q u a t t r o P r 0 4 . 0 B o r 1 a nd I n t 

2 4 2 5 6 P R a c a l D a t a c o m m 0 0 5 3 9 9 0 0 O 2 0 1 9 3 5 4 1 7 D 1 - 2 - 3 3 . 1 P I u s L o t u s 

7 5 3 5 7 R N e i m a n M a r c u s 0 1 5 5 2 9 9 5 1 1 2 5 9 2 1 5 1 4 D P a r a d o x 4 . 0 B o r 1 a nd I n t 

2 4 2 4 6 R A m e r i c a n E x p r e s S 0 1 0 3 9 9 0 0 0 1 2 0 9 3 5 4 1 7 D 1 - 2 - 3 3 . 1 P I u s L o t u s 

M53iRP\3Cu! Du taco iT im 0 2 0 3 3 5 0 0 1 0 1 4 9 2 2 7 5 5 W 1 - 2 - 3 L o t u s 

2 3 3 3 3 P A m e r i c a n E x p r e s S 0 5 0 3 3 5 0 0 0 1 1 6 9 3 2 7 5 5 W 1 - 2 - 3 L o t u s 

3 2 4 5 3 P R a c a l D a t a c o m m 1 2 5 0 8 9 00 02 1 5 9 3 7 0 l O W W i n d o w s 3 . 1 M i c r o s 0 f t 

7 4 3 8 7 P N e i m a n M a r c u s 0 0 5 1 9 9 0 0 12 1 7 9 2 7 5 4 0 W I n t e l 1 i D r a w 1 . 0 A 1 d u s 

8 5 6 3 4 R A m e r i c a n E x p r e s s 0 1 5 3 4 8 9 5 0 2 2 6 9 3 3 5 2 3 W F r e e l a n c e 2 . 0 L o t u s 

4 3 2 4 4 P A m e r i c a n E x p r e s s 0 2 0 1 2 9 0 0 1 1 2 0 9 2 2 7 3 5 W W o r k s 2 . 0 M i c r o s 0 f t 

4 9 7 8 5 P Z e u q z a v - R a l l i v 0 5 5 0 2 3 0 0 0 1 1 3 9 3 1 1 6 2 D M i c k e y & F r i e n d s W a l t D i s n e y 

4 3 3 5 2 P R a c a l D a t a c o m m 0 2 5 4 4 5 9 5 1 1 1 4 9 2 7 3 8 8 W P r o j e c t .3 • 0 M i c r o S 0 f t 

4 7 6 3 3 P Z e u q z a v - R a l l i v 0 1 5 0 2 9 0 0 0 1 1 3 9 3 2 6 2 9 D M i c k e y ' s 1 23 ' s W a l t D i s n e y 

5 6 3 5 2 P N e i m a n M a r c u s 0 2 5 0 8 9 0 0 1 0 1 6 9 2 1 6 2 4 W V i s u a l B a s i c 2 . 0M i c r o S 0 f t 

4 6 5 2 3 P Z e u q z a v - R a l l i v 0 1 5 0 3 2 0 0 0 2 0 3 9 3 8 7 3 1 W D a s h b o a r d 1 . 0 H e w 1 e t t - P a c 

4 3 2 7 4 P R a c a l D a t a c o m m 0 9 0 4 7 9 0 0 1 2 1 4 9 2 6 1 8 8 D F o x P r o 2 . 0 M i c r o S 0 f t 

2 6 3 4 2 P Z e u q z a v - R a l 1 i v 0 1 5 0 2 9 0 0 0 1 1 39 3 2 6 2 4 D M i c k e y 1 s A B C ' s W a l t D i s n e y Comp. 

2 6 4 3 7 P N e i m a n M a r c u s 0 9 5 0 5 9 0 0 1 22 6 9 2 1 6 2 0 D M S - D 0 S 6 U p g r a d e M i c r o s o f t 

3 7 4 6 6 P A m e r i c a n E x p r e s s 1 2 5 0 5 9 0 0 1 0 1 6 9 2 1 6 2 0 DMS - DOS 6 U p g r a d eM i c r o s o f t 

4 7 3 2 4 R N e i m a n M a r c u s 0 4 5 0 9 5 0 0 1 1 1 4 9 2 2 9 0 4 D W o r k s 2 . 0 M i c r o s o f t 

2 6 4 3 7 P R a c a l D a t a c o m m 0 4 5 0 5 9 0 0 10 1 6 9 2 1 6 2 0 D M S - D 0 S 6 U p g r a d e M i c r o s o f t 

2 4 3 6 4 P Z e u q z a v - R a l 1 i v 0 1 5 1 0 9 0 0 0 2 0 3 9 3 8 1 0 1 W N e w W a v e 4 . 0 H e w l e t t - P a c k a r d 

6 3 4 5 4 P N e i m a n M a r c u s 0 3 5 2 9 9 0 0 0 2 1 7 9 3 2 8 5 6 W E x c e 1 4 . 0 M i c r o s o f t 

9 4 5 3 4 P Z e u q z a v - R a l 1 i v 0 1 50 3 4 0 0 0 2 0 3 9 3 664.9 WS t a r T r e k : S c r e e n B e . r k e l e y S y s t e m s : 

4 8 5 3 6 P N e i m a n M a r c u s 0 5 5 2 9 9 0 0 0 2 1 7 9 3 7 3 8 7 W P o w e r P o i n t 3 . 0 M i c r o s o f t 

7 3 6 2 3 P R a c a l D a t a c o m m 0 1 02 69 0.0 1 2 2 2 9 2 38 0 4 DWo r d P e r f,e c t 5 . 1 Wo r d P e r f e c t C o r p 



A p p e n d i x G — Projects 

Report Layout: 

Software R Us, Inc. 99/99/99 PAGE Z9 

Customer Vendor Platform Program 
XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXX 

Quantity 
ZZ9 

Price 
ZZ9.99 

Total 
ZZ9.99 

Total for Software R Us 1,119 Z.ZZ9.99 

Processing Requirements: 1. Sort the incoming PC software file by customer, within customer by vendor, and within 
vendor by platform. 

2. Read the file of sorted PC software records, and for each record read: 
a. Calculate the total for each program by multiplying the quantity by the price. 
b. Determine whether the order is either a purchase (P) or a return (R) by examining 

the order type field. If the order is a return, then the quantity and total calculated 
should be negated. Make sure your report will show this (use CR, DB, +, or -
editing symbols). 

c. Print information in that record and total on a detail line. Expand the platform code 
as follows: "D" for "DOS", and "W" for "Windows". Print the platform name only for 
the first detail line. 

d. Accumulate totals for quantity and total. 

3. After all the records have been read, print company totals for Software R Us. 

Program Name: Video Program 

Narrative: Write a program to process a video file to determine totals for video rental and sales 
revenue. 

Input File: VIDEO-FILE 

Input Record Layout: 01 VIDEO-RECORD-IN. 
05 VID -TITLE-INF0. 

10 VID-TITLE PIC X(19). 
10 VID-CATEG0RY PIC X(ll). 
10 VID-RATING PIC X(5). 

05 VID--RENTAL-INFO. 
10 VID-RENTAL-FEE PIC 99V99. 
10 VID-RENTED PIC 9(3). 

05 VID--SELL-INFO. 
10 VID-SELL-PRICE PIC 9(3)V99 
10 VID-S0LD PIC 9(3). 
10 VID-RETURNED PIC 9(3). 

05 VID- STORE PIC X(10). 



Project 14-8 

T e s t Data: 

R o c k y H o r r o r D r a m a P G - 1 3 0 2 0 0 4 0 0 0 5 9 9 5 1 0 1 0 5 0 C o C O G r o v e 

D i r t y H a r r y A c t i o n R 0 1 7 5 0 1 0 0 2 0 0 0 0 2 5 0 0 2 M i am i 

B a s i c I n s t i n c t New R e l e a s e R 0 3 0 0 2 0 0 0 3 9 9 5 0 9 9 0 0 2 H i a l e a h 

My G i r l D r a m a PG 0 2 0 0 0 7 0 0 2 0 0 0 0 6 0 0 0 5 M i am i B c h 

C u t t i n g E d g e D r a m a P G - 1 3 0 2 5 0 1 0 0 0 2 0 0 0 0 3 5 0 0 8 C O c 0 G r o v e 

L e t h a l W e a p o n I I I A c t i on R 0 3 0 0 1 5 0 0 2 9 9 5 1 0 3 0 0 0 M 1 am i 

C a n d y M a n New R e l e a s e R 0 3 0 0 2 0 0 0 5 9 9 5 1 0 5 0 4 0 H i a l e a h 

C a p e F e a r D r a m a R 0 2 0 0 0 8 0 0 1 9 9 5 0 2 0 0 0 2 M i am i B c h 

N i g h m a r e on E l m S t H o r r o r R 0 2 5 0 0 6 0 0 1 9 9 5 0 0 6 0 0 6 F t L a u d 

E T C h i 1 d r e n s G 0 1 5 0 0 6 0 0 1 9 9 5 0 4 5 0 1 2 H i a l e a h 

i C a d d y S h a c k C o m e d y PG 0 1 0 O 0 4 5 0 1 0 9 5 0 2 3 0 0 5 M i am i 

C a d d y S h a c k C o m e d y PG 0 1 0 0 0 4 5 0 1 0 9 5 0 2 3 0 0 5 C O c 0 G r o v e 

F i n a l A n a l y s i s S u s p e n s e R 0 3 0 0 1 2 0 0 2 9 9 5 0 7 6 0 0 3 M i a m i B e h 

,D r . G i g g l e s New R e l e a s e R 0 3 0 0 ' 3 0 0 0 7 7 9 5 0 9 2 0 3 0 H i a l e a h 

S t a r W a r s I I A c t i o n G 0 1 7 5 0 5 0 0 1 9 9 5 0 5 0 0 2 0 M i am i 

W a y n e ' s W o r l d C o m e d y PG 0 3 0 0 0 5 0 0 1 5 9 5 0 4 5 0 5 5 M 1 am i 

C a r e B e a r s C h i 1 d r e n s G 0 1 O O O 7 5 O O 9 9 5 0 3 5 0 O 3 H i a l e a h 

iHa 1 1 o w e e n H o r r o r PG- 1 3 0 2 5 0'0 4 0 0 1 9 9 5 0 9 0 0 9 5 F t L a u d 

D a n c e s w i t h W o l v e s D r a m a R 0 3 0 0 1 0 0 0 4 9 9 5 0 1 0 0 0 0 C O c 0 G r o v e 

T h e B l u e s B r o t h e r s C o m e d y PG 0 2 0 0 0 100 1 0 9 5 0 1 5 0 0 5 C O C 0 G r o v e 

: 0 n e F l e w O v e r D r a m a R 0 1 7 50250 1 09 5009OOOCo C 0 G r o v e 

T h e B i r d s H o r r o r P G - 1 3 0 1 5 0:0 1 0 0 1 4 9 5 0 1 0 0 0 0 F t L a u d 

T h e F l y S u s p e n s e R 0 2 0 0 0 7 5 0 2 9 9 5 0 6 5 0 0 5 M i a m i B e h 

;P i n n o c h i o C h i 1 d r e n s G 0 1 0 0 0 3 5 0 1 4 9 5 0 8 0 0 0 3 H i a l e a h 

T h e L i t t l e Me r m a i d Ch i 1 d r e n s G 0 2 5 0 2 0 0 0 1 9 9 5 0 9 8 0 0 3 H i a l e a h 

To K i l l a Mo c k i ti y . D i d III d P G 0 i 0 0 0 1 0 0 0 9 9 5 0 0 2 0 0 1 n i am i B e h 

S n e a k e r s New R e 1 e a s e R 0 3 0 0 4 0 0 0 7 5 0 0 1 2 5 0 0 0 H i a l e a h 

IT h e S h i n i n g S u s p e n s e R 0 1 5 0 0 1 5 0 1 5 0 0 0 1 0 0 0 4 F t L a u d 

T2 - J u d g e m e n t D a y New R e l e a s e R 0 3 0 0 3 5 0 0 3 9 9 5 1 3 5 0 0 1 H 1 a l e a h 

H e l l R a i s e r I I H o r r o r R 0 1 50,0 7 70 1 0 9 5 0 7 5 0 8 0 f t L a u d 

:W a y n e ' s W o r l d C o m e d y PG 0 3 0 0 0 5 0 0 1 5 9 5 0 4 5 0 5 5 C O c 0 G r o v e 

S t a r W a r s A c t i o n G 0 1 7 5 0 5 0 0 1 4 9 5 0 3 0 0 1 0 M i am i 

B e a u t y & t h e B e a s t C h i 1 d r e n s G 0 3 0 0 2 0 0 0 1 9 9 5 2 0 0 0 0 0 H i a l e a h 

Report Layout: 

BlokBuzter Monthly Video Rentals & Sales 99/99/99 PAGE Z9 

Rental Information Sell Information 

Category Rating Movie Title Fee # Rented Revenue Price Net Revenue 
XXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX Z9.99 ZZ9 ZZ9.99 ZZ9.99 ZZ9 ZZ9.99 

Total for BlokBuzter Z.ZZ9 Z.ZZ9.99 Z.ZZ9 Z.ZZ9.99 

Processing Requirements: 1. Sort the incoming video file by store, within each store by rating, and within each rating 
by movie title. 

2. Read the file of sorted video records, and for each record read: 
a. Calculate the rental revenue by multiplying the rental fee by the number of 

times rented. 



A p p e n d i x G Projects 

b. Calculate the net sales by subtracting the videos returned from the videos sold. 
Returns are accepted from other stores so your net could be negative! Make sure 
your report will show this (use CR, DB, +, or - editing symbols). 

c. Calculate the sales revenue for each movie by multiplying the selling price by the 
net sales. 

d. Print a detail line. 
e. Accumulate totals as Indicated on the report layout. 

3. After all the records have been read, print totals for BlokBuzter. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Program Name: Price Break Report (Continuation of Project 14-1) 

Narrative: Write a control break program to determine whether a customer receives a price break 
based on quantity ordered, and calculate the unit price and extended price. Create a 
report which prints each customer's order as well as the total ordered for each customer 
and a grand total for the company. 

Input File: Order Transaction File 

Input Record Layout: 

Order Record 

Customer Number Quantity Ordered Item Number Unit Price Salesrep Number 

1 ... 8 9 10 ... 12 13 ... 17 18 19 (2 decimals) 23 24 ... 27 

Test Data: Use the same test data as Project 14-1. 

Report Layout: You may continue to use the report layout you designed in Project 7-2, or utilize the 
following specifications. 

Two-Level Report Layout: 

AUSTIN RETAIL COMPANY 

SALESREP XXXX REGION AREA: XXXXXXXXXXXXXXX 
CUSTOMER NUMBER: XXXXXXXX 
ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 $$,$$$,$$$.99 
XXXXX ZZ9 $$$$.99 $$,$$$,$$$.99 
CUSTOMER TOTAL SALES: $$,$$$ ,$$$,$$$.99 



Project 15-1 

Three-level Report Layout: 

CUSTOMER NUMBER- XXXXXXXX 

ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 $$,$$$,$$1 5.99 
XXXXX ZZ9 $$$$.99 $$, $$$, $$! 5.99 

CUSTOMER TOTAL SALES : $$,$$$,$$$,$$$. 99 
SALESREP TOTAL SALES $$,$$5 ,$$$,$$$.99 
SALESREP: XXXX REGION AREA: XXXXXXXXXXXXXXX 
CUSTOMER NUMBER: XXXXXXXX 
ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 i t , j>4> $ , J J J 5.99 
XXXXX ZZ9 $$$$.99 $$,$$$,$$! 5.99 
CUSTOMER TOTAL SALES $$,$$3 ,$$$,$$$.99 
CUSTOMER NUMBER: XXXXXXXX 
ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 $$,$$$,$$* 5.99 
XXXXX ZZ9 $$$$.99 $$,$$$,$$ 5.99 
CUSTOMER TOTAL SALES $$,$$5 ,$$$,$$$.99 
SALESREP TOTAL SALES $$,$$$ ,$$$,$$$.99 
TOTAL SALES FOR COMPANY: $$,$$$ ,$$$,$$$.99 

AUSTIN RETAIL COMPANY 
REGION AREA: XXXXXXXXXXXXXXX 
SALESREP: XXXX 
CUSTOMER NUMBER: XXXXXXXX 
ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 $$,$$$,$$' 5.99 
XXXXX ZZ9 $$$$.99 $$,$$$,$$! 1.99 
CUSTOMER TOTAL SALES: $$,$$$ ,$$$,$$$.99 
CUSTOMER NUMBER: XXXXXXXX 
ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 $$,$$$,$$$.99 
XXXXX ZZ9 $$$$.99 $$,$$$,$$: 5.99 
CUSTOMER TOTAL SALES: $$,$$$ ,$$$,$$$.99 
SALESREP TOTAL SALES: $$,$$$ ,$$$,$$$.99 
REGION TOTAL SALES: $ $ > $ $ $ ,$$$,$$$.99 
TOTAL NUMBER OF SALESREP IN REGION: ZZZ9 
REGION AREA: XXXXXXXXXXXXXXX 
SALESREP: XXXX 
CUSTOMER NUMBER: XXXXXXXX 
ITEM QUANTITY UNIT EXTENDED 
NUMBER ORDERED PRICE PRICE 
XXXXX ZZ9 $$$$.99 $$,$$$,$$ 5.99 
XXXXX ZZ9 $$$$.99 $$,$$$,$$ 1.99 
CUSTOMER TOTAL SALES: $$,$$$,$$$,$$$ .99 
SALESREP TOTAL SALES: $$ s$$$-$$$ s$$$ 99 
REGION TOTAL SALES: $$>$$$>$$$»$$$ 99 
TOTAL NUMBER OF SALESREP IN REGION: ZZZ9 
TOTAL SALES FOR COMPANY: $$,$$$,$$$,$$$ 99 



Appendix G Projects 

T w o - l e v e l 

program Name: 

Narrative: 

Input File: 

Test Data: 

Order Transaction File Validation 

This project builds on Project 14-2, utilizing more advanced programming techniques 
such as table handling, redefines, and control break logic. Write a data validation 
program that will validate an order transaction file. 

ORDER-TRANSACTION-FILE, same as Project 14-2. 

Same as Project 14-2. 

Report Layout: Same as Project 14-2. 

Processing Requirements: 1. Read a file of order transaction records. 

2. Sort the order transaction records so that all records for one order can be processed 
together, and so that the record types 1, 2, and 3 are in the appropriate order. 

3. The current run date is typically accepted from a file, but for this lab set up a literal in 
working storage with the run date as November 2, 1992. 

4. Validate each input record field for all of the following: 

All validations from Project 8-1, Project 15-2. 

Each order must have a type 1 record and cannot have more than 1 type 1 record. 

Each order must have a type 2 record and cannot have more than 1 type 2 record. 

Each order must have at least 1 type 3 record and can have up to 5 type 3 records. 

p r o c e s s i n g Requirements: 1. Perform an internal sort on the fiie of customer records so that the report will break on 
customer number within salesrep number. 

2. Read the sorted file of order records. 

3. For every record read: 
a. Determine whether the customer will receive a discount. The discounting of an item 

is based on specifications in Project 13-1. 
b. Calculate the unit price by applying the appropriate discount as determined in 2a. 
c. Calculate the extended price by multiplying the quantity ordered by the unit price. 
d. Accumulate the customer's and the company's order total. 

4. Print the customer number, item number, quantity ordered, unit price (calculated), and 
extended price for each customer record. Single-space the output. Use group indication 
when printing the salesrep number and customer number, only print the salesrep 
number and customer number when the customer number changes. Print the totals 
when appropriate. Double-space between headings and totals. 

T h r e e - l e v e l Extension: Extend the report to Include a third (higher-level) control break on region as shown in the 
report format. Begin each region on a new page (expand the region area In the heading) 
and include multiple salesreps in a region on the same page. Be sure to modify the 
format of the heading and detail lines, to change the SORT statement to include the extra 
level control break, and to modify the program to increment totals as necessary. 



Project 15-3 

(Hint: in order to process the order in its entirety, you will need to process the order 
using control bieak logic, and you will need io hold onto ali the records for the order in 
a table until ready to process,) 

5. If an error occurs in any part of the order, write the entire order, including all type 1, 2, 
and 3 records, to an error file. An order may contain more than one error, and all errors 
are to be flagged. 

6. Valid records are to be written to either a Valid Transaction File or a Future/'Back-order 
File. Both files should be the same format as the input Order Transaction file, with the 
exception that the quantity code on the Type 3 record should be converted to the 
Quantity Amount, as in Project 14-2. 

7. If the hold delivery date is greater than the current run date of November 2, 1992, then 
write the entire order, including the type 1, 2, and 3 records, to the Future/Back-order 
Transaction File; otherwise write the order to the new Order Transaction File, assuming 
that the order passed the validation. 

Program Name: 

Narrative: 

Input File: 

Input Record Layout: 

Test Data: 

Two-level Report Layout: 

Car Sales Control Break (Continuation of Project 14-3) 

Develop a control break program to process a sales file in order to determine totals by 
year, salesperson, and dealer, the choice between a two- or three-level report is 
between you and your instructor. 

SALES-FILE 

Use the same record layout as Project 14-3. 

Use the same test data as Project 14-3. 

VERY VERY NICE CARS INC. 
salesperson name COMMISSION REPORT AS OF 99/99/99 

YEAR: 9999 
CAR INFORMATION 
MAKE MODEL 

XXXXXXXX XXXXXXXX 
CUSTOMER PRICE 

XXXXXXXXXX 111,119 

COMMISSION 
PAID 

ZZ.ZZ9.99 

PAGE Z9 

NET TO 
DEALER 

ZZZ.ZZ9.99 

** TOTAL FOR year $Z.ZZZ,ZZ9 $ZZZ,ZZ9.99 $Z,ZZZ,ZZ9.99 

* TOTAL FOR salesperson name $Z,ZZZ,ZZ9 $ZZZ,ZZ9.99 $Z.ZZZ,ZZ9.99 

VERY VERY NICE CARS TOTALS $Z,ZZZ,ZZ9 $ZZZ,ZZ9.99 $Z,ZZZ,ZZ9.99 



Appendix G — Projects 

Three-level 
Report Layout: VtKI VtKT ! i l C C C M I O 

dealer name COMMISSION REPORT AS OF 99/99/99 

SALESPERSON: XXXXXXXXXX 
CAR INFORMATION CUSTOMER 

YEAR MAKE MODEL 
COMMISSION 

PAID PRICE 

9999 XXXXXXXX XXXXXXXX XXXXXXXXXX 111,119 ZZ.ZZ9.99 

NET TO 
DEALER 

ZZZ.ZZ9.99 

*** TOTAL FOR year $1,111,119 $121,119.99 $1,111,219.99 

** TOTAL FOR salesperson name $1,111,119 $111,119.99 $1,111,119.99 

* TOTAL FOR dealer name $1,111,119 $111,119.99 $1,111,119.99 

VERY VERY NICE CARS TOTALS $1,112,119 $122,129.99 $Z,ZZZ,ZZ9.99 

Two-level 
Processing Requirements: 

Three-level Extension: 

1. Sort the incoming sales file by salesperson, and within salesperson by year. 

2. Read the file of sorted sales records and for each record read: 
a. Print a detail line as shown in the report layout using the processing requirements 

for Project 14-3. 
b. Increment the year, salesperson, and company totals as appropriate. 
c. Begin every salesperson on a new page with an appropriate heading containing 

the salesperson name, current date, and page number of the report. 
d. Print year and salesperson headings whenever the fields change. 
e. Print year and salesperson totals whenever the fields change. 

3. Print the Very Very Nice Cars totals on a separate page at the conclusion of the report. 

Extend the report to include a third (higher-level) control break on dealer as shown in the 
report format. Begin each dealer on a new page and include multiple salespersons in the 
same dealer on the same page. Be sure to modify the format of the heading and detail 
lines, to change the SORT statement to include the extra level control break, and to 
modify the program to increment all totals as necessary. 

Program Name: Bonus Control Break Program (Continuation of Project 14-4) 

Narrative: Write a control break program to process a bonus file to determine bonus totals by 
manager, department, and plant. The choice between a two- or three-level report is 
between you and your instructor. 

Input File: BONUS-FILE 



Project 15-

Input Record Layout: Use the same record layout as Project 14-4 

Test Data: Use the same test data as Project 14-4. 

Two-level Report Layout: 
FASSSTCARS MANUFACTURERS 

BONUS REPORT FOR DEPARTMENT: XXXXXXXX 
PAGE 19 

MANAGER: XXXXXXXXXX 
SOC SEC NO EMPLOYEE 
999-99-9999 XXXXXXXXXXXXXXX 

SALARY 
11,119 

BONUS TOTAL 
1,119 111,119 

** TOTAL FOR manager name 1,111,119 11,119 1,111,119 

*** TOTAL FOR department name 1,111,119 11,119 1,111,119 

TOTAL FOR FASSSTCARS 1,111,119 22 Z19 1 111 119 

Three-level 
Report Layout: FASSSTCARS MANUFACTURERS 

BONUS REPORT FOR PLANT: XX 
PAGE 19 

DEPARTMENT: XXXXXXXX 
MANAGER SOC SEC NO EMPLOYEE SALARY BONUS TOTAL 
XXXXXXXXXX 999-99-9999 XXXXXXXXXXXXXXX 11,119 1,119 111,119 

* TOTAL FOR manager name 

** TOTAL FOR department name 

*** TOTAL FOR plant name 

TOTAL FOR FASSSTCARS 

1,111,119 11,119 1,111,119 

1,111,119 11,119 1,111,119 

1,111,119 11,119 1,111,119 

1,111,119 11,119 1,111,119 

Two-level 
Processing Requirements: 1. Sort the incoming bonus file, sorting only the employees that are eligible for a bonus 

(i.e., those that contain a "Y" in the eligibility field) by department, and within department 
by manager. 

2. Read the file of sorted bonus records and for each record read: 
a. Print a detail line as shown in the report layout using the processing requirements 

for Project 14-4. 
b. Increment the manager, department, and company totals as appropriate. 
c. Begin every department on. a new page with an appropriate heading containing the 

department name and page number of the report. 



Appendix G — Projects 

d. Print manager and department headings whenever the fields change. 
e. Print manager and department totals whenever the fields change. 

3. Print the FassstCars Manufacturers totals at the conclusion of the report. 

Three-level Extension: Extend the report to include a third (higher-level) control break on plant as shown in the 
report format. Begin each plant on a new page and include multiple departments in the 
same plant on the same page. Be sure to modify the format of the heading and detail 
lines, to change the SORT statement to include the extra level control break, and to 
modify the program to increment all totals as necessary. 

Program Name: 

Narrative: 

Input File: 

Input Record Layout: 

Test Data: 

Two-level Report Layout: 

Store Sales Commissions Program (Continuation of Project 14-5) 

Write a control break program to process sales records for Needless Markup to produce 
totals by salesperson, department, and store. The choice between a two- or three-level 
report is between you and your instructor. 

SALES-FILE 

Use the same record layout as Project 14-5. 

Use the same test data as Project 14-5. 

NEEDLESS MARKUP INC 99/99/99 PAGE 19 
COMMISSION REPORT FOR DEPARTMENT: XXXXXXXXXXXX 

SALESPERSON: XXXXXXXXXX 
DATE SALES COMMISSION NET SALES 

99/99/99 ZZ.ZZ9.99 Z.ZZ9.99 ZZ.ZZ9.99 

TOTAL FOR salesperson ZZZ.ZZ9.99 ZZ.ZZ9.99 ZZZ.ZZ9.99 

TOTAL FOR department ZZZ.ZZ9.99 ZZ.ZZ9.99 ZZZ.ZZ9.99 

TOTAL FOR NEEDLESS MARKUP ZZZ.ZZ9.99 ZZ.ZZ9.99 ZZZ.ZZ9.99 



Project 15-6 

Three-level 
R e p o r t L a y o u t : NEEDLESS MARKUP INC 99/99/99 

COMMISSION REPORT FOR STORE: XXXXXXXXXXXX 

DEPARTMENT: XXXXXXXXXXXX 
SALESPERSON DATE SALES 
XXXXXXXXXX 99/99/99 ZZ.ZZ9.99 

TOTAL FOR salesperson ZZZ.ZZ9.99 

TOTAL FOR department name ZZZ.ZZ9.99 

TOTAL FOR store name ZZZ.ZZ9.99 

TOTAL FOR NEEDLESS MARKUP ZZZ.ZZ9.99 

COMMISSION 
Z.ZZ9.99 

ZZ.ZZ9.99 

ZZ.ZZ9.99 

ZZ.ZZ9.99 

ZZ.ZZ9.99 

PAGE Z9 

NET SALES 
ZZ.ZZ9.99 

ZZZ.ZZ9.99 

ZZZ.ZZ9.99 

ZZZ.ZZ9.99 

ZZZ.ZZ9.99 

T w o - l e v e l 
P r o c e s s i n g R e q u i r e m e n t s : 

T h r e e - l e v e l E x t e n s i o n : 

1. Sort the incoming sales file by department, and within department by salesperson. 

2. Read the file of sorted bonus records, and for each record read: 
a. Print a detail line as shown in the report layout using the processing requirements 

for Project 14-5, 
b. Increment the salesperson, department, and company totals as appropriate. 
c. Begin every department on a new page with an appropriate heading containing the 

department name, current date, and page number of the report. 
d. Print salesperson and department headings whenever the fields change. 
e. Print salesperson and department totals whenever the fields change. 

3. Print the Needless Markup total at the conclusion of the report. 

Extend the report to include a third (higher-level) control break on store as shown in 
the report format. Begin each store on a new page (expand the store code in the 
store heading) and include multiple departments in the same store on the same page. 
Be sure to modify the format of the heading and detail lines, to change the SORT 
statement to include the extra level control break, and to modify the program to 
increment all totals as necessary. 

Program Name: Zoo Control Break Program (Continuation of Project 14-6) 

Narrative: Write a control break program to process a zoo's inventory animal file to determine totals 
by group, species, and type of animal. The choice between a two- or three-level report is 
between you and your instructor. 

Input File: ZOO-FILE 



A p p e n d i x G Projects 

Input R e c o r d Layout: 

T e s t D a t a : 

Two-level 
R e p o r t Layout: 

Three-level 
Report Layout: 

T w o - l e v e l 
P r o c e s s i n g R e q u i r e m e n t s : 

Use the same record layout as Project 14-6. 

Use the same test data as Project 14-6. 

WILD KINGDOM ZOO 
INVENTORY REPORT -

99/99/99 
species name 

PAGE Z9 

TYPE: XXXXXXXXXXX 

SEX VALUE 
F ZZZ.ZZ9.99 
M ZZZ.ZZ9.99 

QUANTITY 
Z9 
Z9 

TOTAL 
ZZZ.ZZ9.99 
ZZZ.ZZ9.99 

NO. TO 
ACQUIRE 

Z9 
Z9 

** TOTAL FOR type name ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

* TOTAL FOR species name ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

TOTAL FOR WILD KINGDOM ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

WILD KINGDOM ZOC 99/99/99 PAGE Z9 
INVENTORY REPORT - group name 

SPECIE: XXXXXXXX 
NO. TO 

TYPE SEX VALUE QUANTITY TOTAL ACQUIRE 
xxxxxxxxxxxx F ZZZ.ZZ9.99 Z9 ZZZ.ZZ9.99 Z9 

M ZZZ.ZZ9.99 Z9 ZZZ.ZZ9.99 Z9 

*** TOTAL FOR type ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

** TOTAL FOR species name ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

* TOTAL FOR group name ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

TOTAL FOR WILD KINGDOM ZZ9 Z.ZZZ.ZZ9.99 ZZ9 

1. Sort the incoming zoo file by species, and within species by type. 

2. Read a file of sorted zoo records and for each record read: 
a. Print a detail line as shown in the report layout using the processing requirements 

for Project 14-6. 
b. Increment the type, species, and Wild Kingdom totals as appropriate. 
c. Begin every species on a new page with an appropriate heading containing the 

species name, current date, and page number of the report. 



Project 15-7 

d. Print type and species headings whenever the fields change. 
e. Print type and species totals whenever the fields change. 

3. Print the Wild Kingdom totals at the conclusion of the report. 

Three-level Extension: Extend the report to include a third (higher-level) control break on group as shown in the 
report format. Begin each group on a new page and include multiple species in the same 
group on the same page. Be sure to modify the format of the heading and detail lines, to 
change the SORT statement to include the extra level control break, and to modify the 
program to increment all totals as necessary. 

Program Name: PC Software Control Break Program (Continuation of Project 14-7) 

Narrative: Write a control break program to process a PC software file to determine totals by 
customer, vendor, and platform. The choice between a two- or three-level report is 
between you and your instructor. 

Input File: PC-SOFTWARE-FILE 

Input Record Layout: Use the same record layout as Project 14-7. 

Test Data: Use the same test data as Project 14-7. 

Two-level 
Report Layout: SOFTWARE R US, INC 99/99/99 

SALES REPORT FOR vendor name 

PLATFORM: XXXXXXX 
CUSTOMER PROGRAM NAME DATE QUANTITY PRICE 
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX 99/99/99 ZZ9 ZZ9.99 

PAGE Z9 

TOTAL 
ZZ9.99 

TOTAL FOR platform 

TOTAL FOR vendor name 

SOFTWARE R US TOTAL 

Z,ZZ9 ZZZ.ZZ9.99 

Z.ZZ9 ZZZ.ZZ9.99 

Z.ZZ9 ZZZ.ZZ9.99 



A p p e n d i x G Projects 

Three-level 
Report Layouts iuriwHKt K us, lml yy/yy/yy 

SALES REPORT FOR customer name 
m a t i.y 

VENDOR: XXXXXXXXXXXXXXXX 
PLATFORM PROGRAM NAME DATE QUANTITY PRICE TOTAL 
XXXXXXX XXXXXXXXXXXXXXXX 99/99/99 ZZ9 119.99 ZZ9.99 

TOTAL FOR platform 

TOTAL FOR vendor name 

TOTAL FOR customr name 

SOFTWARE R US TOTAL 

Z.ZZ9 ZZZ.ZZ9.99 

Z.ZZ9 ZZZ.ZZ9.99 

1,119 ZZZ.ZZ9.99 

Z.ZZ9 ZZZ.ZZ9.99 

Two-level 
P r o c e s s i n g Requirements: 1. Sort the incoming PC software file by vendor, and within vendor by platform. 

2. Read the file of sorted PC software records and for each record read: 
a. Print a detail line as shown in the report layout using the processing requirements 

for Project 14-7. 
b. Increment the platform, vendor, and company totals as appropriate. 
c. Begin every vendor on a new page with an appropriate heading containing the 

vendor name, current date, and page number of the report. 
d. Print platform and vendor headings whenever the fields change. 
e. Print platform and vendor totals whenever the fields change. 

3. Print the Software R Us totals at the conclusion of the report. 

T h r e e - l e v e l Extension: Extend the report to include a third (higher-level) control break on customer as shown in 
the report format. Begin each customer on a new page and include multiple vendors for 
the same customer on the same page. Be sure to modify the format of the heading and 
detail lines, to change the SORT statement to include the extra level control break, and to 
modify the program to increment all totals as necessary. 

'•Jt*. 

Program Name: Video Control Break Program (Continuation of Project 14-8) 

Narrative: Write a control break program to process a video file to determine totals by each store, 
category, and rating. The choice between a two- or three-level report is between you and 
your instructor. 

Input File: VIDEO-FILE 

Input Record Layout: Use the same record layout as Project 14-8. 



Project 15-8 

Test Data: Use the same test data as Project 14-8. 

Two-level 
Report Layout: 

Three-level 
Report Layout: 

Blokbuzter Video 
MONTHLY VIDEO RENTALS & SALES FOR 

99/99/99 
category name 

Page Z9 

RATING: XXXXXXX 

Rental Information Sell Information 

MOVIE TITLE FEE #RENTED REVENUE 
XXXXXXXXXXXXXXXXXXX Z9.99 ZZ9 ZZ9.99 

PRICE NET 
ZZ9.99 ZZ9 

REVENUE 
ZZ9.99 

** TOTAL FOR rating 1,119 1,119.99 Z.ZZ9 Z.ZZ9.99 

* TOTAL FOR category name 1,119 1,119.99 Z,ZZ9 Z,ZZ9.99 

TOTAL FOR. BLOKBUZTER Z.ZZ9 Z.ZZ9.99 Z,ZZ9 Z,ZZ9.99 

Blokbuzter Video 
MONTHLY VIDEO RENTALS & SALES FOR 

99/99/99 
store name 

PageZ9 

CATEGORY: XXXXXXXXXXX 

RATING: XXXXXXX Rental Information Sell Information 

MOVIE TITLE FEE #RENTED REVENUE 
XXXXXXXXXXXXXXXXXXX Z9.99 ZZ9 ZZ9.99 

PRICE NET 
ZZ9.99 ZZ9 

REVENUE 
ZZ9.99 

*** TOTAL FOR rating 1,119 1,119.99 Z.ZZ9 Z.ZZ9.99 

** TOTAL FOR category name Z.ZZ9 Z.ZZ9.99 Z.ZZ9 Z.ZZ9.99 

* TOTAL FOR store name 1,119 1,119.99 Z,ZZ9 Z.ZZ9.99 

TOTAL FOR BLOKBUZTER 1,119 1,119.99 Z,ZZ9 Z.ZZ9.99 

Two-level 
Processing Requirements: 1. Sort the incoming video file by category, and within category by rating. 

2. Read the file of sorted video records and for each record read: 
a. Print a detail line as shown in the report layout using the processing requirements 

for Project 14-8. 
b. Increment the rating, category, and Blokbuzter totals as appropriate. 



A p p e n d i x G — Projects 

c. Begin every category on a new page with an appropriate heading containing the 
category name, current date, and page number ot the report. 

d. Print rating and category headings whenever the fields change. 
e. Print rating and category totals whenever the fields change. 

3. Print the BlokBuzter totals on a separate page at the conclusion of the report. 

T h r e e - l e v e l E x t e n s i o n : Extend the report to include a third (higher-level) control break on store as shown in the 
report format. Begin each store on a new page and include multiple categories in the 
same store on the same page. Be sure to modify the format of the heading and detail 
lines, to change the SORT statement to include the extra level control break, and to 
modify the program to increment all totals as necessary. 

P R O G R A M M I N G S P E C I F I C A T I O N S 

Wm • . 

P r o g r a m N a m e : Invoice Program with Subprogram 

Narrative: 

input File: 

Input Record Layout: 

Write a program to produce an invoice for each record in a validated invoice file. 

INVOICE-FILE 
STATE-FILE 

01 

01 

05 

05 

INVOICE-RECORD-IN. 
05 INV-INV0ICE-N0 PIC X(4). 

INV-DATE. 
10 INV-M0NTH PIC 9(2). 
10 INV-DAY PIC 9(2). 
10 INV-YEAR PIC 9(2). 
INV-CUST0MER-INF0. 
10 INV-CUST-NAME PIC X(10). 

INV-CUST-ADDRESS PIC X(10). 
INV-CUST-CITY PIC X(10). 
INV-CUST-STATE PIC XX. 
INV-CUST-ZIP PIC X(5). 

INV-N0-0F-ITEMS PIC 9. 
INV-ITEMS-ORDERED OCCURS 1 TO 4 TIMES 

10 
10 
10 
10 

05 
05 

10 
10 

DEPENDING ON 
INV-ITEM-N0 
INV-QUANTITY 

INV-

STATE-REC0RD. 
05 ST-STATE 
05 ST-Z0NE 

N0-0F-ITEMS. 
PIC 9(4). 
PIC 9. 

PIC XX. 
PIC 9. 

T e s t Data: 

2 4 6 7 1 0 0 4 f t l S c u l l y 

1 5 7 8 0 8 1 2 9 i l S c h u l t z 

0 3 4 2 0 9 1 0 9 ; l C u l v e r 

4 7 9 0 1 1 1 2 9 J 0 P e r e z 

6 8 3 6 0 7 0 4 9 i l F i x l e r 

J480703 1 8 9 j l M o r i n 

J 0 4 9 8 0 6 3 0 9 i l M u n r o e 

20 M a i n S ; t . 5 3 12 5 0 2 1 1 0 0 1 1 5 5 0 1 

45 5 t h S t j L o s A n g e l : e C A 5 6 7 8 6 2 4 5 0 0 2 3 2 0 0 1 i 

1 S u n n y U n S e a t t l e ; W A S 5 9 8 6 1 9 0 0 0 3 i 

4 L o n g Dr; New 0 r 1 e a n L A 7 9 3 4 5 2 6 8 0 0 2 4 5 0 0 1 : 

3 4 2 n d S t ; New Y o r k j N Y 2 0 0 0 1 2 12 5 0 1 1 5 5 0 3 : 

9 7 t h A v e ; N e w a r k ; N J 3 069 743-200 1 9 0 0 0 3 lil 0 0 2 3 0 0 0 2 : 

10 L o n g S t T u l s a : 0 K 5 9 3 4 5 1 9 0 0 0 5 



Project 16-1 

Report Layout: 

Date 99/99/99 Doninoe Catalog Orders Invoice Number 9999 
Ship To: Name Invoice Order Date 99/99/99 

XXXXXXXXXX 
Address 
XXXXXXXXXX 
City State Zip 
XXXXXXXXXX XX XXXXX 

Item No. Description Qty Price Each Total Price Tot Ship Wt 
XXXX XXXXXXXXXXXXXXX 9 Z.ZZ9.99 ZZ.ZZ9.99 ZZ9.99 

XXXX XXXXXXXXXXXXXXX 9 Z.ZZ9.99 ZZ.ZZ9.99 ZZ9.99 
Totals $ZZZ.ZZ9.99 Z.ZZ9.99 

Total delivery charge ZZ9.99 
Handling charge 1.50 

Total amount $ZZZ.ZZ9.99 

Questions? Call Toll Free 1-800-DOMINOE 

Processing Requirements: 1. Create an invoice, one per page, for each record read. 
a. Write appropriate invoice headings. 
b. For each item ordered: 

(1) The incoming item number is to be used to find the description, price, and 
shipping weight via a sequential lookup. Hard-code the following table in the 
program: 

Item Information 

ltem# Item Description Price (each) Ship Wt (each) 

1100 Handwoven Rug 129.00 9.50 

1550 Crystal Frame 39.40 3.00 

1250 Floor Lamp 99.00 20.30 

3000 Ceiling Fan 299.00 50.01 

4500 Wicker Basket 25.00 2.00 

6800 Wall Clock 169.00 19.30 

3200 Ceramic Figure 39.90 10.00 

9000 Wood Wall Shelf 14.90 1.00 

(2) Compute the total price and total shipping weight. 
(3) Write a detail line for the item. 



Appendix G — Projects 

(4) Increment appropriate invoice totals, 
c. After all the items ordered in the record have been processed, calculate the total 

delivery charge and the total invoice amount as follows: 
(1) The total delivery charge should be calculated in a subprogram. There are two 

steps in obtaining the total delivery charge: 
(a) You must first determine the appropriate zone. The incoming state is to be 

used via a binary lookup to determine the appropriate zone (there are 
three zones in total). Input-load this state/zone table (only once per 
execution of the program). The state file (16-1STAT.DAT) can be found on 
the data disk. 

(b) The total delivery charge is based on the zone and total shipping weight. 
Once the correct zone has been found, it is to be used in combination with 
the sum of the total shipping weight as follows: 

Delivery Rates 

Total Ship Wgt Range (in lbs) Zone Number 

From To (inclusive) Zone 1 Zone 2 Zone 3 

0 2 $4.00 $4.25 $4.50 

2 4 $5,75 $6.25 $6.75 
4 9 $7.75 $8.50 $9.25 

9 20 $10.75 $12.00 $14.75 

20 30 $14.00 $15.50 $18.25 
on 50 <M Q OE ct-ntz or. 

50 70 $21.25 $25.00 $30.50 

70 999 $25.50 $29.00 $35.00 

Develop a two-dimensional table to hold the above information and perform a table-
lookup to determine the correct charge. Establish this table via a COPY statement. 
Use a direct lookup for zone dimension. 
(2) The final total amount is calculated by adding the total price, the total delivery 

charge, and the handling charge. The current handling charge is $1.50; code 
this in your program so in the event this charge changes, it can be easily 
updated. 

d. Print appropriate totals (total price, total delivery charge, handling charge, and total 
amount) as shown on the layout. 

e. Increment the totals for price, shipping weight, total delivery charge, handling 
charge, and amount for the Summary Report (see #3). 

2. When all records have been processed, write the Summary Report, on a separate 
page, of all the totals accumulated in e. (Design your summary report.) 

Program N a m e : 

Narrative: 

Input File: 

Student Aid Report Program with Subprogram 

Write the program to print a detailed student aid report for all validated students and a 
summary page depicting totals for each school. 

STUDENT-FILE 
SCHOOL-FILE (See requirement 1b.) 



Project 16-2 

Input Record Layout: Use the same record layout as Project 8-6. 

Smart U 
Student Aid Report 

Page 1 
99/99/99 

Student ID Name School Type of Aid 
Credi t 
Hours 

Total 
Tuf tion 

Total 
Aid 

Tuition 
Due 

999999999 XXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXX 99 $ZZZ,ZZ9 $ZZZ,ZZ9 $ZZZ,ZZ9 

Summary Report of Total Aid per School: 

Smart U Page n 
Summary Report of Total Aid per School 99/99/99 

Total Total Tuition 
School Tuition Aid Due 

Art $ZZ,ZZZ,ZZ9 $ZZ,ZZZ,ZZ9 $ZZ,ZZZ,ZZ9 

University Totals $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 

Processing Requirements: 1 . For each valid record read: 
a. The incoming aid type is to be expanded via a sequential lookup. The table-lookup 

procedure should be coded in a separate subprogram. Hard-code the following 
table: 

Aid Type & Expanded Aid Types 

Aid Type Expanded Aid Type 

S Scholarship 

G Grant 

L Loan 

b. The incoming school code is to be expanded via a binary lookup. The lookup 
procedure should be coded in a separate subprogram. Use the following table and 
input-load it in the subprogram (only once per execution of the program). 

Tes t Data: Use the validated student file from Project 8-6. 

R e p o r t Layout: 

Detailed S t u d e n t A i d Report: 



Appendix G — Projects 

School Codes & Expanded Schools 

School 
Code 

Expanded 
School 

School 
Code 

Expanded 
School 

ART Arts & Sciences LAW Law 

B U S Business MED Medicine 

COM Communications MUS Music 

ENG Engineering 

c. Calculate total tuition based on $300 per credit hour. 
d. Calculate total aid based on the percent of total tuition. This percent is determined 

by a combination of credit hours and GPA as follows: 

Credit Hours GPA 

from to 
from 
2.5 

to 
3 

from 
>3 

to 
3.5 

from 
>3.5 

to 
4.0 

1 3 30% 40% 50% 

>3 6 44% 52% 63% 

>6 9 53% 64% 72% 

>9 12 62% 75% 84% 

>12 15 70% 80% 92% 

>15 18 75% 88% 100% 

Develop a two-dimensional table to hold the above information and perform 
a table-lookup to determine the percent to be used. Establish this table via a 
COPY statement. 

e. Calculate tuition due by subtracting the total aid from the total tuition. 
f. Write a detail line with the information shown on the Detailed Student Aid Report, 

printing ten students per page. 
g. Increment the school's totals for total tuition, total aid, and total due. (Establish a 

table to compute the aid statistics for each school that will print at the conclusion of 
processing, remembering that the number of schools is variable.) 

3. When all records have been processed, write the Summary Report of Total Aid per 
School from the table established in (g). 

Program Name: Salary Report Program 

Narrative: Write a program to print a detailed salary report and average salary summary per location 
for all employees in a validated salary file. 

Input File: SALARY-FILE 
LOCATION-FILE (See requirement 2b.) 



Project 16-3 

Input Record Layout: Use the same record layout as Project 8-7. 

Tes t Data: Use the validated salary file from Project 8-7. 

Report Layout: 

Detailed Salary Report: 

Big Bucks, Inc. Page 1 
Detailed Salary Report for 99/99/99 

Soc Sec No. Name Title Location Education Rating Salary 
XXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX 9 $ZZZ,ZZ9 

Summary R e p o r t of Average Salar ies per Location: 

Education 
Level 

Big Bucks, Inc. 
Average Salary Summary - XXXXXXXXXXXX Location for 99/99/99 

Rating 
1 2 3 4 

Page n 

Grade School $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 

Doctorate $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 $ZZZ,ZZZ,ZZ9 

Processing Requirements: 1. Read a file of salary records. 

2. For each record read: 
a. The incoming title code is to be expanded via a sequential lookup. The table-

lookup procedure should be coded in a separate subprogram. Establish the 
following table via the COPY statement: 

Title Codes & Expanded Titles 

Title 

Code 

Expanded 

Title 

Title 

Code 

Expanded 

Title 

010 President 060 DP VP 

020 Vice Pres 070 DP Mgr 

030 Mkt VP 080 DP Prog 

040 Mkt Mgr 090 Clerk 

050 Mkt Rep 100 Adm Asst 

b. The incoming location code is to be expanded via a binary lookup from the 
following table which is to be input-loaded. Code the lookup and initialization in a 
subprogram (only once per execution of the program). 



A p p e n d i x G Projects 

Location 
Code 

Expanded 
Location 

Location 
Code 

Expanded 
Location 

MIA Miami NY New York 

CHI Chicago ATL Atlanta 

LA Los Angeles 

c. The incoming education code is to be expanded via a direct lookup from the 
following table, which is to be hard-coded in your program. 

Education 
Code 

Expanded 
Education 

Education 
Code 

Expanded 
Education 

i Grade School 4 Bachelors 

2 High School 5 Masters 

3 Associates 6 Doctorate 

d. Write a detail line with the information shown on the Detailed Salary Report, printing 
ten employees per page. 

e. Establish a three-dimensional (5 by 6 by 5) table to compute the salary statistics for 
the 150 location-education-rating combinations. 
(1) Determine the appropriate row-column (i.e., education-rating) combination for 

each location. 
(2) Increment the employee salary total for that row-column combination for each 

location by the employee's salary. 
(3) Increment the number of employees in that row-column combination for that 

location by 1. 

3. When all employees have been processed, write the Summary Report of Average 
Salaries per Location. Obtain the average salary by dividing the salary total for each 
combination by the number of employees in that combination. Print all 150 values of 
average salaries with every location on a separate page (i.e., 30 education-rating 
combinations per page). 

Program Name; Stock Program 

Narrative: Write a program to produce a stock report for each record in a validated stock file. 

Input File: STOCK-FILE 

INDUSTRY-FILE (See requirement 1b.) 

Input Record Layout: Use the same record layout as Project 8-8. 

Test Data: Use the validated stock file from Project 8-8. 



Project 16-4 

Report Layout: 

Stock Evaluation Report as of 99/99/99 Page Z9 

Market Dividend Est. Est. Ind 
Exchange Stock Industry Price EPS Yield PE Growth PE PE Comments 

XXXXXX XXXXXXXX XXXXXXXXXXXXXXX ZZ9.999 Z9.9 ZZ9.99 ZZ9 ZZ9.99% ZZ9 Z9 XXXXXXXXXXXXX 

Summary of Stocks to Buy as of 99/99/99 

Market No. of 
Exchange Stock Price Shares Total 

XXXXXX XXXXXXXX ZZ9.99 1,119 ZZZ.ZZ9.99 

Total 
• 

11,119 $Z.ZZZ,ZZ9.99 

Processing Requirements: 1. Read a file of stock records, and for each record read: 
a. Expand the exchange code, from the incoming record, to the appropriate exchange 

name as shown below. To determine the exchange name, hard-code the table in 
your program and implement a direct (positional) table lookup. 

Exchange Code Exchange Name 

1 NYSE 
2 NASDAQ 
3 OTC 
4 AMEX 

b. Determine the industry description and industry PE. The industry code is to be used 
to find the description and PE via a binary lookup. Input-load this table (only once 
per execution of the program). 



Appendix G — Projects 

Industry 
Code 

Industry 
Description 

Industry PE 

Range 

AIR Airline 12 

AUT Automobile 7 

BAN Bank 7 

B E E Beer 9 

CMP Computers 30 

DRU Drugs 15 

ELE Electronics 25 

F&L Food & Lodging 10 

FOO Food Products 8 

OIL Oil 12 

RET Retail 9 

S&L Savings & Loan 7 

TEL Telephone 8 

c. Calculate earnings per share (EPS) by dividing the PE into the stock price, 
d. Calculate the dividend yield by dividing the stock price into the dividend. 
e. Determine the estimated annual rate ot growth in EPS (Est. Growth) over the next 

3-5 years by multiplying the annual growth rate by the risk factor. To determine the 
risk factor, hard-code the table in your program and implement a direct (positional) 
table lookup. 

Risk Code Risk Factor 
1 .7 

2 .8 

3 .95 

4 1.1 

5 1.3 

f. Calculate the estimated price-to-earnings ratio (Est. PE) based on the estimated 
annual rate of growth in EPS and the current interest rate. 
(1) The current interest rate should be obtained at execution. Use appropriate 

DISPLAY/ACCEPT statements to prompt for the interest rate and to enter it. 
The current interest rate limits are from .5% to 15%. (Remember data validation.) 

(2) Develop a subprogram to determine the estimated PE. Create a two-dimensional 
table to hold the information below and perform a table lookup to determine the 
appropriate PE. Establish this table via a COPY statement in your subprogram. 



Project 16-5 

E s t i m a t e d A n n u a l R a t e ui 
G r o w t h in E P S C u r r e n t Interest Rate 

f r om to . 5 % - 7.9% 8 % - 1 0 . 9 % 11 - 1 5 % 

.01% 5% 18 9 6 

5.01% 10% 20 15 8 

10.01 % 15% 25 20 11 

15.01% 20% 30 21 14 

20.01% 25% 40 30 18 

25.01% 30% 45 35 21 

30.01% 35% 50 40 24 

35.01% 130% 65 55 31 

g. Determine the comments by comparing the PE in the record, estimated PE, and the 
industry PE. 
(1) Print "BUY NOW" in the comments column when the PE is less than both the 

estimated PE and the industry PE. 
(2) Print "Consider" in the comments column when the PE is less than estimated 

PE. 
(3) Print "Potential" in the comments column when the PE is less than the industry 

PE. 
h. Print a detail line for the record in the file, as shown on the layout. Detail lines are to 

be double spaced with 10 records per page. Print appropriate headings (and page 
numbers) on the top of every page in the report. 

i. Create a summary table to hold the stocks deemed to be bought. This table should 
contain the exchange, stock name, market price, and shares to purchase. 

2. When all records have been processed, create the Summary Report showing all the 
"BUY NOW" stocks and appropriate investment totals in the headings. 

Program Name: Electric Program 

Narrative: Write a program to produce an electric report for each record in a validated electric file. 

Input File: ELECTRIC-FILE 

TYPE-FILE (See requirement 1a.) 

Input Record Layout: Use the same record layout as Project 8-9. 

Test Data: Use the validated electric file from project 8-9. 



Appendix G — Projects 

Report Layout: 

Bright Power & Light 
B i l l i ng Report as of XXX Z9, 1999 

Page Z9 

Account 
Number Rate Schedule/Class of Service 

Service Used Meter Readings 

From To Previous Current 

Kilowatt Hours 

On-Peak Off-Peak Total 
Amount 
B i l l ed 

999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX Z9 XXX Z9 11,119 11,119 11,119 11,119 11,119 ZZZ.ZZ9.99 

TOTALS 111,119 111,119 111,119 EZ.ZZZ.ZZ9.99 

P r o c e s s i n g R e q u i r e m e n t s : 1. Read a file of electric records; for each record read: 
a. In a subprogram, determine the corresponding description, customer charge, and 

minimum charge. The incoming account type is to be used to find the description, 
customer, and minimum charges via a binary lookup. Input-load this table (only 
once per execution of the program). 

Account 

Type 

Description 

Type, Category, Demand, Time of Use 

Customer 

Charge 

Minimum 

Charge 

CCSL1 Comm, Curt Svc, 2000+ 170.00 12,670.00 

CCSL2 Comm, Curt Svc, 2000+, ToU 175.00 12,699.00 

CCSM1 Comm, Curt Svc, 500-1999 110.00 3,235.00 

CCSM2 Comm, Curt Svc, 500-1999, ToU 120.00 3,150.99 

CCSX1 Comm, Curt Svc , 2000+(TV) 400.00 13,000.00 

CCSX2 Comm, Curt Svc , 2000+(TV), ToU 410.00 12,900.00 

CGSL1 Comm, Gen Svc, 2000+ 170.00 12,670.00 

C G S L 2 Comm, Gen Svc, 2000+, ToU 180.00 12,550.00 

CGSM1 Comm, Gen Svc, 500-1999 41.00 3,166.00 

CGSM2 Comm, Gen Svc, 500-1999, ToU 55.00 3,100.00 

C G S N 1 Comm, Gen Svc, non-demand 9.00 9.00 

CGSN2 Comm, Gen Svc, non-demand, ToU 12.30 12.30 

C G S S 1 Comm, Gen Svc, 21-499 35.00 166.25 

C G S S 2 Comm, Gen Svc, 21-499, ToU 41.50 1,365.00 

CGSX1 Comm, Gen Svc, 2000+(TV) 400.00 12,500.00 

CGSX2 Comm, Gen Svc , 2000+(TV), ToU 425.00 12,900.00 

RRSN1 Res, Residential Svc 5.65 5.65 

RRSN2 Res, Residential Svc , ToU 8.95 8.95 



Project 16-5 

Demand 

Type 

Commercial Account Category 
Demand 

Type 
General Service (GS) Curtailable Services (CS) 

Demand 

Type 
Energy Rate Energy Rate 

N 4.5640 

S 1.8840 

M 1.5760 1.4730 

L 1.5730 1.3730 

X 1.0140 0.9450 

Time of U s e 
Develop another subprogram to determine the appropriate energy and fuel 
rates. Create a two-dimensional table to hold the information below and perform 
a table-lookup to determine the appropriate energy and fuel rates. Establish 
this table via a COPY statement in your subprogram. The energy charge is the 
on-peak rate multiplied by the on-peak kw hours used plus the off-peak rate 
multiplied by the off-peak kw hours used. (Remember total kw hours used is 
the on-peak kw hours plus the off-peak kw hours.) This subprogram is almost 
identical to the other; debug the first before going on to this one. 

b. The energy charge is determined differently for residential and commercial accounts 
and whether the account is or is not Time of Use: 
(1) Residential Accounts 

Non Time of Use 
The first 750 kw hours used will be charged at 3.9220 per kw hour. 
Additional kw hours used will be charged at 4.9220 per kw hour. 
(Remember total kw hours used is the current reading minus the previous 
reading.) 

Time of Use 
The On-Peak kw hours used will be charged at 7.9620 per kw hour. 
The Off-Peak kw hours used will be charged at 2.7290 per kw hour. 
(Remember total kw hours used is the on-peak kw hours plus the off-peak 
kw hours.) 

(2) Commercial Accounts 

Non Time of Use 
Develop a subprogram to determine the appropriate energy charge. Create a 
two-dimensionai table to hold the information below and perform a table-
lookup to determine the appropriate energy rates. Establish this table via a 
COPY statement in your subprogram. The energy charge is energy rate 
multiplied by the kw hours used. (Remember the kw hours used is the current 
readinn minus the previous reading ) 



Appendix G — Projects 

Demand 

Type 

Commercial Account Category 
Demand 

Type 
General Service (GS) Curtailable Services (CS) 

Demand 

Type 
On-Peak Off-Peak On-Peak Off-Peak 

N 8.5250 2.7520 

S 3.8460 1.3550 

M 2.7150 1.1110 2.6150 1.1020 

L 1.5730. 1.0660 2.7330 1.0460 

X 1.0820 0.9490 1.0620 0.9390 

c. The fuel charge is based on the demand code in the following table. Hard-code this 
table into the program and reference it via a sequential lookup. 

Demand Code Fuel Rate 

N 1.8240 

S 1.8240 

M 1.8230 

L 1.8160 

X 1.7690 

d. The demand charge is calculated by multiplying the kw demand level by the 
demand charge. The current demand charge is $6.25. Note: Residential accounts 
do not have a demand charge. 

e. Calculate the amount billed, which is the customer charge plus the energy charge 
plus the fuel charge plus the demand charge (if any). Verify the amount against the 
minimum charge; if amount calculated is less than the minimum charge, then use 
the minimum charge as the amount billed. 

f. Use a hard-coded table and a direct lookup to translate the numerical From- and 
To- month in the record to a 3-character abbreviation (using the first 3 letters of the 
month) to be printed on the detail line. 

g. Print a detail line for the record in the file, as shown on the layout. Detail lines are to 
be double spaced with 10 records per page. Print appropriate headings (and page 
numbers) on the top of every page in the report. Use the table in 1f. to create the 
format of the date as shown on the layout. 

h. Increment all totals shown in the report layout. 

2. When all records have been processed, write the totals accumulated in 1h. 

lasic Definitions for Account Codes and T y p e s : 

Type Code: C for Commercial Accounts 

R for Residential Accounts 

Category Code: RS for Residential Service 

GS for General Service (Commercial) 

CS for Curtailable Service (Commercial) 



Project 16-6 

Demand C o d e : Demand is the kw to the nearest whole kw, as determined from the metering equipment 
for the 30-rninute period of the customer's greatest use. 
N for non demand 

S for 21 -499 kw demand 

M for 500-1999 kw demand 

L for 2000+ kw demand 

X for 2000+ Transmission Voltage kw demand 

Time of Use: The energy rate is determined by the time in which the electricity is used, either On-Peak 
or Off-Peak. Usually the Off-Peak rate is less than the On-Peak rate. 
On-Peak Hours are: 

from Nov 1-Mar 31, Monday-Friday, 6am-10am & 6pm-10pm 
excluding Thanksgiving, Christmas, and New Year Days 
from Apr 1 Oct 31, Monday Friday, 12noon-9pm 
excluding Memorial, Independence, and Labor Days 

1 for non Time of Use 

2 for Time of Use 

(EL-CURRENT-READING contains On-Peak kw hours used and EL-PREVIOUS-READING 
contains Off-Peak kw hours used.) 

Program Name: Extended Movies Program with Subprograms 

Narrative: This program extends Project 13-2 to contain two subprograms. 

Input File: MOVIE-EXTRA-FILE 

Input Record Layout: Use the same record layout as Project 13-2. 

Test Data: Use the same test data as Project 13-2. 

Report Layout: Use the same report layout as Project 13-2. 

Processing Requirements: Make the following changes to Project 13-2: the table-lookups for pay scale (processing 
requirement #2) and bonus (processing requirement #4) are to be implemented in a 
subprogram. 



Appendix G Projects 

Program Name: 

Narrative: 

I n p u t File: 

I n p u t Record Layout: 

Test Data: 

R e p o r t Layout: 

Processing Requirements: 

Extended Payroll Program with Subprogram 

This program extends Project 13-5 to contain subprograms. 

PAYROLL-FILE 

Use the same record layout as Project 13-5. 

Use the same test data as Project 13-5. 

Use the same report layout as Project 13-5. 

Make the following changes to Project 13-5: the table-lookups for taxes (processing 
requirement #2b) and insurance deduction (processing requirement #2d) are to be 
implemented in a subprogram. 

P R O G R A M M I N G S P E C I F I C A T I O N S 
iiiii§i!i»iiiiiMfiiiiiiiii 

Program Name: Extended Program Maintenance 

Narrative: This project deals with program maintenance, in that some ot the specifications for the 
data validation and sequential update programs presented in the chapter, have been 
changed as indicated below. Implement the changes in whatever program you deem 
appropriate. 

I n p u t File: As indicated in the chapter. 

Input Record Layout: As indicated in the chapter. 

Output File: NEW-MASTER-FILE 

Output Record Layout: As indicated in the chapter. 

Test Data: Use the existing files of Figure 17.5a and 17.9a for the unedited transaction and old 
master files, respectively. 

Report Layout: 

Processing Requirements: 

There is no new report other than the indicated error messages. 

1. Change the stand-alone edit and/or sequential update program (as you deem 
appropriate) to implement all of the following: 
a. SORT the valid transaction file (at the end of the edit program or the beginning 

of the update program). This change also implies that out-of-sequence 
transactions (which are input to the edit program) are no longer invalid (assuming 
that is the only error). 

b. Replace lines 33-45 in the edit program, which describe the transaction file, with a 
COPY statement; use the same COPY statement in the sequential update program. 



Project 17-2 

c. Deleted records are to be written to a new file, DELETED-RECORD-FILE, for 
possible recall at a future date. 

d. Enable the OM-LASTNAME, OM-INITIALS, OM-LOCATION-CODE, and/or OM-
COMMISSION-RATE fields in the old master to be changed if necessary. The 
change is accomplished by coding any (all) of these fields as a correction in the 
transaction file; that is, the update program is to check if a value is present in the 
transaction file, and if so, it will replace the value in the master file with the value in 
the transaction file. 

e. The change involved in item d, above implies it is permissible for a correction not to 
contain a value in the TR-SALES-AMOUNT field. For example, the transaction, 

800000000VILLAR C C 
is now valid and implies a name change for the record in question. (The transaction 
was previously rejected for not containing a sales amount.) 

f. The value in the commission field (on both additions and corrections) is to be 
between 5 and 10 inclusive; any other value is to be rejected with an appropriate 
error message. 

2. Create additional test data (if necessary) so that all of the program modifications can 
be tested. Rerun both programs with the modified test data. 

Program Name: Customer Master Sequential File Update 

Narrative: This project processes output from Project 15-2. Write a program that takes the Valid 
Order Transaction File created in Project 15-2 and update the Customer Master Sequential 
File. 

Input File: VALID-ORDER-TRANSACTION-FILE, created in Project 15-2. 

SEQ-CUSTOMER-MSTR. 

input Record Layout: Sequential Customer Master Record 

01 SEQ-CUSTOMER-MSTR-REC, 

05 CUSTOMER-NUMBER PIC X(6). 

05 CUSTOMER-NAME PIC X(15). 

05 CUSTOMER-ADDRESS PIC X(15). 

05 CUSTOMER-CITY PIC X(10). 

05 CUSTOMER-ZIP PIC 9(5). 

05 CUSTOMER-CREDIT-LIMIT PIC 9. 

05 DATE-OF-LAST-REV PIC 9(8). 

05 BALANCE-DUE PIC 9(5)V99. 

05 CUSTOMER-PHONE-NUM PIC X(12). 

05 FILLER PIC X. 



Appendix G Projects 

Test Data: VALID-ORDER-TRANSACTION-FILE: Created in Project 15-2 

S E Q - C U S T O M E R - M S J R : I 

105 105 TAJRGETWORLD 123 THIS IS IT IR 
661400 MIJLLERS OUTLAW 999 W. BELTLINE I 
771600 C0JMPANY 123 S. 440 
795300 S0|UND STUDIO 26 AIRPORT FRWYIR 
1852300 PE|T WORLD 210 N. LION DR.FT 
881600 GRAND CHICKEN 
'900000 CHRISTMAS, IJNC.100 SNOW DR. 
902900 PAjRTY'S UNLlJMTDSOO NEW; YR'S AVEV 
998000 E-iz CATERING! 250 N ,| MACARTHUR 

VING 
RVING 

CIRCLE DALLAS 
VING 

WORTH 
5600 LU;NCH AVE.ANJYTOWN 

771233 0-5 1019)9 200012342J1 4-123-45 6|7 
7 74303052419)92 00 7 642 1 2jl 4-84 7 -00OJO 
7 501630207 19J9200100383:85-999-444|4 
7 5O3241 12 7 19J92023 50OO&;17-295-43 2}7 
732842120319l920029959 7|7 7-398-384J3 
7 930 5 1 102 6 19|92 00 7 800 0 9J1 5- 3 50-4O8J8 

NOJRTH POLE0000 16 122 5 1 9j92 0 00 00008>00 - 0 10-7 2 5(2 
ERYWHERE999994010119|9 205000009ll5-295-685J9 
IRVING 73027 10920 19|9200 152 7 0211 4-69 5- 543:2 

Report Layout: Create a Customer Master Audit Report showing the data before and after the change, as 
well as the appropriate message indicating the action taken. Create a Customer Master 
report showing all data on the Customer Master. 

Processing Requirements: 1. Sort the order transaction records by record type, keeping only the type 2 records, 
and by customer number. 

2. Process a file of sorted transactions to accomplish both of the following: 
a. A d d a new customer (if the customer does not exist on the current customer master 

file)—enter all information from the transaction record to the new master record, 
b. Change (correct) information on a customer (customer master number equals valid 

order transaction customer number)—transactions to correct will contain all of the 
information, even if it does not change. 

3. All error messages are to appear in one report. 
4. The FD's and record descriptions for both the master and transaction files are to be 

copied into the program. This requires that you establish the necessary C O P Y members 
as separate files, and bring them in at compile time. 

Project 17-3 

Program Name: Inventory Master Sequential File Update 

Narrative: This project processes output from Project 15-2. Write a program that takes the Valid 
Order Transaction File created in Project 15-2, and update the Inventory Master Sequential 
File. 

Input File: VALID-ORDER-TRANSACTION-FILE, created in Project 15-2. 

SEQ-INVENTORY-MSTR. 

Output File: 

Input Record Layout: 

SHIP-BACKORDER-TRANS-FILE 

Sequential Inventory Master Record 
01 
05 
05 
05 
05 

SEQ-INVENTORY-MSTR-REC. 
INV-ITEM-NUMBER PIC 9(5). 
INV-DESCRIPTION PIC X(20). 
INV-QTY-0N-HAND PIC 9(4). 
INV-L0CATI0N PIC X(5). 



Project 17-3 

Test Data: VALID-ORDER-TRANSACTION-FILE: Created in Project 15-2. 

SEQ-INVENTORY-MSTR: 
12345ITEM 0 0000L0C09 
15555ITEM 5 0000L0C12 
16789ITEM 6 0049LOC32 
18633ITEM 1 0700LOC10 
26666ITEM 7 0099LOC14 
32600ITEM 8 0189L0C14 
32950ITEM 9 0100LOC14 
32966ITEM 10 0500L0C13 
33333ITEM 2 1499L0C11 
34567ITEM 3 0100LOC12 
37777ITEM 11 0000LOCI3 
456781TEM 4 1600LOC12 
49880ITEM 12 0010LOC14 

Output Record Layout: Same as VALID-ORDER-TRANSACTION-FILE, with a ship/back-order indicator 
alphanumeric field added to the last byte of the record. 

Report Layout: Create an Inventory Master Audit Report showing the data before and after the change, 
as well as the appropriate message indicating the action taken. Create an Inventory 
Master report showing aii data on the inventory Master. 

Processing Requirements: 1. Sort the order transaction records by order number and record type, keeping only the 
type 1 and 3 records. 

2. Process a file of sorted transactions to accomplish the following: 
a. If a type 1 record, hold onto the partial ship indicator and write the entire record to 

the SHIP-BACKORDER-TRANS-FILE. 
b. If the item ordered is found on the inventory master file (inventory item number 

equals valid order transaction item number on type 3 record), determine whether 
there is enough quantity on hand to ship. 
If there is enough quantity on hand to ship: 

* Update the appropriate inventory master record quantity on hand. 
* Create a ship transaction indicating the quantity shipped, placing an's' in the 

ship/back-order indicator. 
If there is not enough quantity on hand to ship, and a partial ship is okay (check the 
partial ship indicator on the type 1 record): 

* Update the appropriate inventory master record quantity on hand to zero. 
* Create a ship transaction indicating the quantity shipped, placing an's' in the 

ship/back-order indicator. 
* Create a back-order transaction indicating the quantity not shipped, placing 

a 'b' in the ship/back-order indicator. 
If there is not enough quantity on hand to ship, and a partial ship is not okay (check 
the partial ship indicator on the type 1 record): 

* Create a back-order transaction indicating the entire quantity ordered not 
shipped, placing a 'b' in the ship/back-order indicator. 



Appendix G — Projects 

c. If an item is not on the inventory master file, create a back-order transaction for the 
entire quantity and indicate that an error has occurred with an appropriate error 
message on the report. 

3. All error messages are to appear in one report. 

4. The FD's and record descriptions for both the master and the transaction files are to 
be copied into the program. This requires that you establish the necessary COPY 
members as separate files, and bring them in at compile time. 

Program Name: Employee Sequential File Update 

Narrative: This project and the next are more complex applications of the balance line algorithm. 

Input Fi les: OLD-MASTER-FILE 
TRANSACTION-FILE 

Input Record Layouts: 01 

01 

OLD-MASTER-RECORD. 
05 OLD-SOC-SEC-NUMBER 
05 OLD-NAME. 

in n i n i A C T UAMC 
A \J V/LL*- LOJ I "lini'lL 
10 OLD-INITIALS 

05 0LD-DATE-0F-BIRTH. 
10 OLD-BIRTH-MONTH 
10 OLD-BIRTH-YEAR 

05 0LD-DATE-0F-HIRE. 
10 OLD-HIRE-MONTH 
10 OLD-HIRE-YEAR 

05 OLD-LOCATION-CODE 
05 OLD-PERFORMANCE-CODE 
05 OLD-EDUCATION-CODE 
05 OLD-TITLE-DATA OCCURS I 

10 OLD-TITLE-CODE 
10 OLD-TITLE-DATE 

05 OLD-SALARY-DATA OCCURS 
10 OLD-SALARY 
10 OLD-SALARY-DATE 

TRANSACTION-RECORD. 
05 TR-SOC-SEC-NUMBER 
05 TR-NAME. 

10 TR-LAST-NAME 
10 TR-INITIALS 

05 TR-DATE-OF-BIRTH. 

PIC X(9). 

DTP v / n \ 

PIC XX. 

PIC 99. 
PIC 99. 

PIC 99. 
PIC 99. 
PIC X(3). 
PIC X. 
PIC X. 

: TIMES. 
PIC 9(3). 
PIC 9(4). 

3 TIMES. 
PIC 9(6). 
PIC 9(4). 

PIC X(9). 

PIC X(12). 
PIC XX. 



Project 17-4 

10 TR-BIRTH-MONTH PIC 99. 
10 TR-BIRTH-YEAR PIC 99. 

05 TR­ DATE-OF-HIRE. 
IO TR-HIRE-MONTH PIC 99. 
10 TR-HIRE-YEAR PIC 99. 

05 TR- LOCATION-CODE PIC X(3). 
05 TR- PERFORMANCE-CODE PIC X. 
05 TR- EDUCATION-CODE PIC X. 
05 TR-TITLE-DATA. 

10 TR-TITLE-CODE PIC 9(3). 
10 TR-TITLE-DATE PIC 9(4). 

05 TR­ SALARY-DATA. 
IO TR-SALARY PIC 9(6). 
10 TR-SALARY-DATE PIC 9(4). 

05 TR-TRANSACTION-CODE PIC X. 
88 ADDITION VALUE 'A 
88 CORRECTION VALUE !C 
88 DELETION VALUE 'D 

O u t p u t File: NEW-MASTER-FILE 

O u t p u t R e c o r d L a y o u t : Identical to the old master record. 

T e s t D a t a : Old M a s t e r F i l e : 

1 0 0 Q 0 0 0 0 0 S U G R U E 
2 0 0 0 0 0 0 0 O C R A W F O R D 
3 0 0 0 0 0 0 0 O M I L 6 R 0 M 
4 0 0 0 0 0 0 0 0 L E E 
5 0 0 0 0 0 0 0 0 T A T E R 
6 0 0 0 0 0 0 0 0 G R A U E R 
7 0 0 0 0 0 0 0 0 J O N E S 
8 0 0 0 0 0 0 0 0 S M I T H 
900000000:BAKER 

P K 1 2 4 5 0 8 8 8 B O S E 8 1 0 0 0 8 8 8 
MA084 3 0 9 7 3 W A S E 2 2 0 O 0 5 8 9 1 5 0 0 5 8 5 
MB 

1 0 7 4 1 1 8 9 N Y C G 4 4 4 1 1 9 3 
CR12820 5 5 0 C H I P 3 3 3 1187222 118 5 
J E 1 1 8 8 0 3 6 8 W A S G 3 3 3 1 1 9 3 
J J 1 1 8 6 0 6 6 9 B 0 S G 8 9 2 1 1 8 7 8 9 1 1 1 8 6 

118604.48WASG333 IT 874441 186 
ED11780 6 5 2 M I A G 3 2 11187 1231186 

8 0 0 0 0 0 9 9 2 7 0 0 0 0 0 8 9 1 
7 5 0 0 0 1 0 9 2 7 0 0 0 0 1 0 9 1 

3 4 0 0 0 1 1 9 2 
2 9 0 0 0 1 0 9 2 2 8 0 0 0 1 0 9 1 
6 9 0 0 0 1 1 9 1 
3 2 0 0 0 1 0 9 1 3 0 0 0 0 1 0 9 0 
2 9 0 0 0 1 0 9 1 2 6 0 0 0 1 0 9 0 
6 8 0 0 0 1 0 9 1 64000109:0 

6 5 000 1090: 

27000 1090; 

28000 1089 ! 

240001089; 
6 0 0 0 0 1 0 8 9 

T r a n s a c t i o n F i l e : 

l O O O O O O O O R U B I N 

iOOOOOOOOOjRUBIN 

! 2 0 0 0 0 0 0 0 0 X R A W F O R D 

4 0 0 0 0 0 0 0 0 L E E 

4 0 0 0 0 0 0 0 0 L E E 

4 0 0 0 0 0 0 0 0 L E E 

4 0 0 0 0 0 0 0 1 L E E 

5 0 0 0 0 0 0 0 T A T E R 

5 5 5 5 5 5 5 5 N E W E M P L O Y E E 

J 1 0 7 0 1 2 8 9 M I A 5 0 1 0 1 2 9 2 

J X 

M A 0 8 4 3 0 9 7 3 W A S E 2 2 0 0 0 5 9 2 

B L 

1 0 7 3 

1 2 8 9 

M I A 

CR 

XX 

5 5 5 5 5 5 5 5 N E W E M P L O Y E E N E 0 9 54 1 2 8 9 W A S E 2 2 0 0 1 2 9 2 

5 5 5 5 5 5 5 5 N ; E W E M P L O Y E E NE NYC 

7 0 0 0 0 0 0 0 J 0 N E S A 

8 0 0 0 0 0 0 0 S ; M I T H S S 3 0 0 

2 5 0 0 0 1 2 9 2 A 

7 77 4 C 

7 5 0 0 0 1 0 92 A 

C 

C 

C 

C 

D 
C 

7 5 0 0 0 1 2 9 2 A 

C 

3 4 0 0 0 1 2 9 2 C 



Appendix G — Projects 

R e p o r t L a y o u t : 

Processing Requirements: 

Program Name: 

Narrative: 

Input File: 

Input Record Layout: 

There is no report produced by this program, other than the error messages indicated in 
the processing requirements. The latter may be produced using DISPLAY statements 
with programmer discretion as to the precise layout. 

1. Develop a sequential update program to process an incoming transaction file and the 
associated old master file to produce a new master file. 

2. Three transaction codes are permitted: A, C, and D, denoting additions, corrections, 
and deletions, respectively. 

3. The transaction file is assumed to be valid in itself because it has been processed by 
a stand-alone edit program. Hence each transaction has a valid transaction code (A, 
C, or D), numeric fields are numeric, and so on. Nevertheless, the update program 
must check (and flag) two kinds of errors that could not be detected in the stand-alone 
edit, as they require interaction with the old master file. These are: 
a. Duplicate additions, in which the social security number of a transaction coded as 

an addition already exists in the old master. 
b. No matches, in which the social security number of a transaction coded as either a 

deletion or a correction, does not exist in the old master. 

4. Transactions coded as additions are added to the new master file in their entirety. 
These transactions require all fields in the transaction record to be present. 

5. Transactions coded as deletions are removed from the master file. These transactions 
need contain only the social security number and transaction code. 

6. Transactions coded as corrections contain only the social security number and the 
corrected value of any field(s) to be changed and are handled on a parameter-by-
parameter basis. For example, if birth date and location are to be corrected, the 
incoming transaction will contain only the social security number and corrected values 
of birth date and location code in the designated positions on the transaction record. 

7. Any old master record for which there is no corresponding transaction is to be copied 
intact to the new master. 

Extended Employee Sequential File Update 

This program shows the generality of the balance line algorithm by expanding the 
specifications in the previous project to include a second transaction file. You will find 
that even though a new input file has been added, there are no additional modules 
required for the algorithm per se. It will, however, be necessary to change the logic of 
CHOOSE-ACTIVE-KEY in that the active key is now the smallest of three values. 

PROMOTION-FILE 

01 PROMOTION-RECORD. 
05 PR-SOC-SEC-NUMBER 
05 PR-NAME. 

PIC X(9). 

10 PR-LAST-NAME 
10 PR-INITIALS 

PIC X(12). 
PIC XX. 

05 PR-SALARY-DATA. 
10 PR-SALARY PIC 9(6). 



Project 17-6 

10 PR-SALARY-DATE 
05 PR-TITLE-DATA. 

10 PR-TITLE-CODE 
10 PR-TITLE-DATE 

05 PR-PROMOTION-CODE 
88 SALARY-RAISE 
88 PROMOTION 

PIC 9(4). 

T e s t Data: 

j l O O O O O O O O S U G R U E P K 9 0 0 0 0 ; 0 9 9 3 R 

l O Q O O O O O O S U G R U t P K i 9 9 9 0 9 9 3 P 

4 0 0 0 0 0 0 0 0 L E E B L 5 0 0 0 0 : 1 193 ; R 

J666666666 :GLASSMAN C 4 5 0 0 0 : 1 0 9 3 ; R 
8 0 0 0 0 0 0 0 0 S M I T H S S 7 5000=1093 ; R 

Report Layout: Identical to the previous project. 

Processing Requirements: Modify the specifications of Project 17-4 to accommodate all of the following: 

1. Inclusion of a second transaction (i.e., a promotion) file to accommodate promotions 
and/or salary increases. 

2. Salary increases are to be handled in the following manner: the transaction salary 
becomes the present salary in the new master, causing the present salary in the old 
master to become the previous salary in the new master. In similar fashion, the 
previous salary in the old master becomes the second previous salary in the new 
master. (The record layout of the master file in the programming specifications allowed 
three salary levels.) 

Each occurrence of salary is accompanied by a salary date in both the old master 
and promotion record layouts. Accordingly, the salary dates and the salaries are to be 
adjusted simultaneously. 

3. Promotions (i.e., title changes in the new file) are to be handled in a manner analogous 
to salary increases. Hence the transaction title, PR-TITLE-CODE, becomes the present 
title in the new master, causing the present title in the old master to become the 
previous title in the new master. The associated dates are to be adjusted simultaneously. 

4. Deletions (in the original transaction file) are to be written in their entirety to a new file, 
DELETED-RECORD-FILE, for possible recall at a future date. 

5. All error messages are to be expanded to print the entire transaction that is in error. 

Program Name: Stock Sequential File Update 

Narrative: Develop a sequential update program to process an incoming transaction file and the 
associated master stock file to produce a new master stock file. 

Input File: MASTER-STOCK-FILE 

TRANSACTION-FILE 

PIC 9(3). 
PIC 9(4). 
PIC X. 

VALUE 'R' 
VALUE 'P'. 



Appendix Q — Projects 

Input Record Layout: Use the record layout in Project 8-8 for the MASTER-STOCK-FILE. 
01 TRANSACTION-FILE. 

05 TR­ INFO. 
IO TR-NAME PIC X(8). 
10 TR-EXCHANGE-CODE PIC 9. 
10 TR-INDUSTRY-CODE PIC X(3). 

05 TR­CURRENT-INFO. 
IO TR-PRICE PIC 9(3)V9(3) 
10 TR-PE PIC 9(3). 
10 TR-DIVIDEND PIC 9V99. 

05 TR­PROJECTION-INFO. 
IO TR-RISK-C0DE PIC 9. 
10 TR-GR0WTH-RATE PIC 9V9(4). 
10 TR-SHARES-TO-BUY PIC 9(4). 

05 TRANS-CODE PIC X. 
88 ADDITION 
88 CORRECTION 
88 DELETION 

VALUE 'A'. 
VALUE ' C . 
VALUE 'DC 

Output File: NEW-MASTER-STOCK-FILE 

Output Record Layout: S a m e as master stock file. 

Test Data: Use the validated stock file from Project 8-8 as the MASTER-STOCK-FILE. 

Transact ion File: 

Anheu 
Ci ti c 
Chevr 
Compq 
GenEl 
GnMot 
HBO 
Hi I to IBM 
Kmart 
M a r r i 
Pol kA 
Reebo 
OBri e 
Seaga 
Skyws 
Trus^ 
Wendy 

orpl|BAN0262500;l 
on 101 L072 7 5002 

j 0 3 0 5 5 0 0i3 

n 
RET02300002 
F&L0497750I2 

2 
90002 
43304 
2 285 

90302 
21223 
383 

j 01550001 
i 00525002 
j 00 
4RET00487501 

30143 
0 4 
7 3 
50000 

ELE01 7 1253i43 1303 

00550 
0 2 5 5:0 
0095i0 

0 6 5 0(0 
05500 
o i o o b 

4023|0 
00890 

! 06 5 3 
F&L0T20O00i2202440295|0 

C 
0123A 
0050A 

C 
0100C 

D 
0075A 
0025A 

C 
D 
C 
C 

005 5C 
0110A 
0045A 

D 
C 

00 50 A 

Report Layout: There is no output report other than the error messages; use whatever form you deem 
appropriate. 

Processing Requirements: 1. Sort the master file by stock name. 
2. Three transaction codes are permitted: A, C, and D, denoting additions, corrections, 

and deletions, respectively: 
3. The transaction file is assumed to be valid in itself because it has been processed by 

a stand-alone edit program. Hence each transaction has a valid transaction code (A, 



Project 17-7 

C, or D), numeric fields are numeric, and so on. Nevertheless, the update program 
must check (and flag) two kinds of errors that could not be detected in the stand-alone 
edit, as they require interaction with the master file. These are: 
a. Duplicate additions, in which the stock name of a transaction coded as an addition 

already exists in the master. 
b. No matches, in which the stock name of a transaction coded as either a deletion or 

a correction, does not exist In the master. 

4. Transactions coded as additions are added to the new master file in their entirety. 
These transactions require all fields in the transaction record to be present. 

5. Transactions coded as deletions are removed from the master file. These transactions 
need contain only the stock name and transaction code. 

6. Transactions coded as corrections contain only the stock name and the corrected 
value of any field(s) to be changed and are handled on a parameter-by-parameter 
basis. For example, if price and PE are to be corrected, the incoming transaction will 
contain only the stock name and corrected values of price and PE in the designated 
positions on the transaction record. 

7. Any master stock record for which there is no corresponding transaction is to be 
copied intact to the new master. 

Program Name: Church Building Fund Sequential File Maintenance 

Narrative: Write a program to update the church members' balance based on their contributions to 
the church building fund. 

Input File: CHURCH-BLD-FUND-MSTR-FILE 

CHURCH-BLD-FUND-TRAN-FILE 

Church Building Fund Master Record 

Member Name Pledge Amount Member Number Amount Given 

1 ... 15 16 ... 25 19(2 decimals) 27 28-32 33 (2 decimals) 41 42 ... 43 

Church Building Fund Master Record 

Member Name Amount Given Date Given 

1 ... 15 16 ... 24 25 ... 32 

Output File: NEW-CHURCH-BLD-FUND-MSTR 

ERROR-TRANS-FILE 

Output Record Layout: NEW-CHURCH-BLD-FUND-MSTR: same as Church Member Master Record. 

ERROR-TRANS-FILE: same as Church Member Transaction File. 



A p p e n d i x G — Projects 

T e s t D a t a : 

[ M a s t e r F i ;1 e : 

J O H N S M I T H 

[ANN L 0 V I N ; G 

JMARY BROWjN 

JTOM S A W Y E R 

J A C K C A P P S 

T r a n s a c t i o n F i l e : 

| 0 0 0 0 2 

100003 

0 0 0 0 1 

0 0 0 0 1 

0 0 0 0 2 

0 0 0 0 4 

0 0 0 0 1 

0 0 0 0 4 

0 0 0 0 3 

0 0 0 0 3 
0 0 0 0 2 

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 X X 

0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 X X 

O'0 0O500OOOGJ0 03OO0003OJ0 0XX 
0:00 7 5 0 0 0 0 0 0 : 0 0 4 0 0 0 0 0 4 0:00 XX 

0̂ 3 4 00 0 00 0 0 0 0 0 5 0 0 0 0 0 5 OiOO XX 

0 0 0 0 3 0 0 0 0 1 0 0 2 1 9 9 7 

0 0 0 0 5 J 0 0 0 0 0 8 0 5 19:97 

0 0 0 0 2 0 0 0 0 0 6 0 1 1 9 9 7 

0 0 0 0 0 1 0 0 0 0 3 0 2 1 9 : 9 7 

0 0 0 0 1 : 0 0 0 0 0 2 1 0 1 9 9 7 

0 0 0 1 0 0 1 0 1 0 1 1 0 1 9 9 7 

0 0 5 0 0 | 0 4 0 4 0 2 0 2 19:97 

0 0 0 2 0 ( 0 5 0 6 0 3 0 3 19:9 7 
0 0 1 0 0 | 0 2 0 2 0 4 0 4 1 9 : 9 7 

0 1 0 0 0 : 1 0 1 0 0 5 0 5 1 9 : 9 7 

1 5 0 0 0 | 0 3 0 2 0 6 0 6 1 9 : 9 7 

R e p o r t L a y o u t : 

xx/xx/x;xxx 
ItlîiillFif 

IDATE : 

ABC CHURCH M E M B E R B U I L D I N G FUND R E P O R T 

M E M B E R 
NAME 

A M O U N T 
P L E D G E D 

X X X X X X X X X X X X X X X $•$,$$$,$$$ .;99 

P A G E : ZZZ! 

AM O U N T GI V E N 
TO DATE 

$$,$!$$,$$$. 99 

A M O U N T 
OWED ! 

$$;$,$$$. 99 

T O T A L S •¥ ~¥ -V » ,$•$$1.99 $$$:.$$$,$$$,$:$$. 99 $$!$,$$$ ,$$$'.|99 

Error Report: Design any report you deem appropriate in conjunction with the processing specifications. 

Processing Requirements: 1. Read a file of church member building fund transaction records. 

2. Perform an internal sort, sorting the transaction records by church member number. 



Project 17-8 

3. For every record read, accumulate the total amount a church member has given. After 
all transaction records have been read for a church member: 
a. Read the sequential church member building fund master record until the church 

member numbers on the transaction file match the church member numbers on the 
master file. 
Make sure that the master records are coming in sorted by church member number 
by doing a data validation check. 

b. Calculate the AMOUNT OWED = AMOUNT PLEDGED - AMOUNT GIVEN. 
c. Update the master record with the new amount given. 
d. If transaction records exist for a church member who does not have a master 

record, put this on the error report and keep the transactions on an error file. The 
Error File should have the same layout of the Transaction File. The error report 
should contain all the information on the transaction file with an appropriate error 
message. 

e. Accumulate the total amount given, the total amount pledged, and the total amount 
owed by all church members. 

f. Print the CHURCH MEMBER NAME, the AMOUNT PLEDGED, the AMOUNT PAID 
TO DATE, and the AMOUNT OWED for each church member. Single-space each 
line. 

4. Print the TOTAL AMOUNT PLEDGED, AMOUNT PAID, and AMOUNT OWED at the 
end of the report. 

Program Name: Two-file Merge 

Narrative: This project merges two sequential files to produce a third file; all three files have different 
record layouts. 

Input Fi les: EMPLOYEE-MASTER-FILE 

SALARY-FILE 

Input Record Layout: 01 

01 

EMPLOYEE-MASTER-RECORD. 
05 EMP-SOC-SEC-NUMBER 

EMP-NAME. 
10 EMP-LAST-NAME 
10 EMP-INITIALS 
EMP-BIRTH-DATE 
EMP-HIRE-DATE 
EMP-L0C-C0DE 
EMP-TITLE-C0DE 

05 

05 
05 
05 
05 
SALARY-RECORD. 
05 SAL-SOC-SEC-NUMBER 
05 SAL-ANNUAL-SALARY 

PIC X(9). 

PIC X(15), 
PIC XX. 
PIC 9(4). 
PIC 9(4). 
PIC X(3). 
PIC 9(3). 

PIC X(9). 
PIC 9(6). 



A p p e n d i x G — Projects 

Test Data: Employee Master File: 

1 1 1 1 1 1 1 1 1 A D A M S 

2 2 2 2 2 2 2 2 2 M 0 L D 0 F 

3 3 3 3 3 3 3 3 3 F R A N K E L 

5 5 5 5 5 5 5 5 5 B 0 R 0 W 

6 6 6 6 6 6 6 6 6 M I L G R O M 

888888888.J0NES 

J 0 1 0 5 2 1 0 8 2 A T L 1 1 1 

M L 1 0 5 9 0 4 8 4 F L A 2 2 2 

L Y 0 6 5 6 0 5 8 9 N J 1 1 1 

J E 0 1 4 3 0 6 8 Q N Y 2 2 2 

I R 0 3 4 8 0 1 8 7 N Y 2 2 2 

J J 0 9 6 0 0 6 8 4 N Y 2 2 2 

Salary File: 

1 1 1 1 1 1 1 1 1 0 5 0 0 0 0 

2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 

4 4 4 4 4 4 4 4 4 0 7 5 0 0 0 

5 5 5 5 5 5 5 5 5 0 4 0 0 0 0 

7 7 7 7 7 7 7 7 7 0 4 3 5 0 0 

8 8 8 8 8 8 8 8 8 0 3 5 0 0 0 

9 9 9 9 9 9 9 9 9 0 4 2 0 0 0 

Input Fi les: MERGED-FILE 

O u t p u t R e c o r d L a y o u t : 01 MERGED-DATA-RECORD. 
05 MGD-SOC-SEC-NUMBER 
05 MGD-NAME. 

10 MGD-LAST-NAME 
10 MGD-INITIALS 

05 MGD-BIRTH-0ATE 
05 MGD-HIRE-DATE 
05 MGD-L0C-C0DE 
05 MGD-TITLE-C0DE 
05 MGD-ANNUAL-SALARY 

PIC X(9). 

PIC X(15). 
PIC XX. 
PIC 9(4). 
PIC 9(4). 
PIC X(3). 
PIC 9(3). 
PIC 9(6). 

R e p o r t L a y o u t : 

P r o c e s s i n g R e q u i r e m e n t s : 

There is no report produced by this program, other than the error messages indicated in 
the processing requirements. The latter may be produced using DISPLAY statements 
with programmer discretion as to the precise layout. 

1. Write a program to merge two input files, each in sequence by social security number, 
to produce a third file as output. 

2. In order to produce an output record with a given key, that key must be present on 
both input files. With respect to the test data, for example, records 111111111 and 
222222222 should both appear on the merged file. A record is written to the MERGED-
FILE by combining fields on the two input records as per the record layouts. 

3. If a key appears on only one input file, that record key is not to appear in the MERGED-
FILE. With respect to the test data, for example, record 333333333 should not appear 
in the MERGED-FILE, as it is not present in the SALARY-FILE. Nor should record key 
444444444, as it is not present in the EMPLOYEE-MASTER-FILE. 

4. Any key appearing in only one file should be flagged with an appropriate error 
message, for example: 

ERROR - RECORD 333333333 NOT IN SALARY-FILE 
ERROR - RECORD 444444444 NOT IN EMPLOYEE-MASTER-FILE 



Project 18-7 

P R O G R A M M I N G ; S P E C I F I C A T I O N S 

P r o g r a m N a m e : Extended Program Maintenance 

N a r r a t i v e : Change the nonsequential update program of Figure 18.10 to accommodate the various 
changes in specifications listed below. 

I n p u t F i l e : As indicated in the chapter. 

I n p u t R e c o r d L a y o u t : As indicated in the chapter. 

T e s t D a t a : Use the existing files of Figure 18.7a and 18.7b for the transaction and indexed files, 
respectively. 

R e p o r t L a y o u t : There is no new report other than the indicated error messages. 

Processing Requirements: 1. Change the existing program to accommodate all of the following: 
a. Replace the record descriptions in Working-Storage, (lines 34-45 and 47-54 for 

the transaction and master files, respectively) with a COPY statement. This in turn 
requires you to create the necessary copy members. 

b. Deleted records are to be written to a new file, DELETED-RECORD-FILE, for 
possible recall at a future date. 

c. Enable the MA-LAST-NAME, MA-INITIALS, MA-LOCATION-CODE, and/or MA-
COMMISSION-RATE fields in the indexed file to be changed if necessary. The 
change is accomplished by coding any (all) of these fields as a correction in the 
transaction file; that is, the update program is to check if a value is present in the 
transaction file, and if so, it will replace the value in the master file with the value in 
the transaction file. 

d. The change involved in item c. above implies it is permissible for a correction not to 
contain a value in the TR-SALES-AMOUNT field. For example, the transaction, 

800000000VILLAR C C 
is now valid and implies a name change for the record in question. (The transaction 
was previously rejected for not containing a sales amount.) 

2. Create additional test data so that all of the program modifications can be tested. 
Rerun the program with the modified test data. 

P r o g r a m N a m e : Nonsequential File Update 

N a r r a t i v e : Implement the programming specifications for Projects 17-2 through 17-7 as a 
nonsequential (rather than a sequential) update. The file descriptions, test data, and 
programming specifications given with the sequential program apply here as well, except 
that the indexed file in this example functions as both the old and new master files in the 
sequential version. 



Appendix G — Projects 

Program Name: Catalog Orders 

Narrative: Develop an interactive program that will process additions, changes, deletions, and 
inquiries to an indexed file of catalog orders. 

input File: ORDER-FILE 

Input Record Layout: 01 ORDER-RECORD-IN. 
05 ORD-NUMBER PIC 9(6). 
05 0RD-INF0. 

10 ORD-NAME PIC X(10). 
10 0RD-TELEPH0NE PIC 9(10). 

05 0RD-ITEMS-ORDERED OCCURS 3 TIMES. 
10 ORD-ITEM-NUMBER PIC 9(4). 
10 0RD-QUANTITY-0RDERED PIC 9. 

Test Data: 

,2 1 2467 Scully 
;5 6 1 5 7 8 S c h u 1 tz 
036442Culver 
j479350Perez 
683 7 36 Fi xler 
488907Morin 
;043498Munroe 

3052331234125021100115501 
20134715354500232001 
401345234790003 
30 59 7674566800245001 
20136218231250115503 
4 1 3743 5343 320.0 1 90003 1 10;02 
305331485490005 

Screen Layouts: Screen A 

Catalog Orders 

Order #: 

Transaction Types: 
Add 
Change 
Delete 
Inquiry 

Enter transaction type: 



Project 18-8 

Screen B 

Catalog Orders - trans type 

Order #: Name: 
Tel #: ( ) -

Item Description Quantity Price Total 
XXXXXXXXXXXXXXX ZZ9.99 1,119. 99 
XXXXXXXXXXXXXXX ZZ9.99 1,119. 99 
XXXXXXXXXXXXXXX ZZ9.99 1,119. 99 

Total 11,119. 99 

Processing Requirements: 1, Display Screen A to accept an order # and transaction type (vaiid transaction types 
are A, C, D, or I). 

2. Depending on the transaction type, display an appropriate screen using Screen B as 
a model, and processing the transaction as follows: 
a. Additions: 

(1) Accept and validate the order # (don't forget to check for duplicate additions), 
name, telephone number (numeric), item number (valid item numbers are 
found in the item table, see requirement #3), and quantity (numeric). 

(2) For each valid item, look up the price and description from the item table, 
calculate the total (quantity multiplied by price), and display the item detail 
line. 

(3) When all items are entered, display a total for all ordered items. 
(4) Prompt the user for confirmation and write the record to the indexed file, 

b. Changes: 
(1) Display Screen B showing the information found in the order file. 
(2) For each item, look up and display the price and description from the item 

table along with the calculated total. 
(3) Allow modification to the name, telephone, item number, and quantity fields. 
(4) Validate each item changed against the item table, and for each valid item 

display the description and price and calculate the total. 
(5) Prompt the user for confirmation and replace the modified record in the 

indexed file. 
c. Deletions: 

(1) Display Screen B showing the information found in the order file, the 
corresponding information from the item table for each item, and all totals. 

(2) Prompt the user for confirmation to delete, and delete the record. 
d. Inquiries: Display Screen B showing the information found in the order file, the 

corresponding information from the item table for each item, and all totals. 



A p p e n d i x G — Projects 

3. Hard-code the following item table in the program and use a sequential lookup: 

Item Information 

ltem# Item Description Price (each) 

1100 Handwoven Rug 129.00 

1550 Crystal Frame 39.40 

1250 Floor Lamp 99.00 

3000 Ceiling Fan 299.00 

4500 Wicker Basket 25.00 

6800 Wall Clock 169.00 

3200 Ceramic Figure 39.90 

9000 Wood Wall Shelf 14.90 

4. Ail error messages are to be displayed on the bottom of the screen and will allow the 
user to reenter the desired information. 

Program Name: Create Customer Bills 

N a r r a t i v e : This project processes output from Projects 17-2 and 17-3. Write a program that takes the 
Ship/Back-order Transaction File and the VSAM Customer Master file updated in Project 
18-2, and create a bill for each customer. 

I n p u t F i l e : SHIP-BACK-ORDER-TRANS-FILE, created in Project 17-3/Project 18-3. 

VSAM-CUSTOMER-MASTER, updated in Project 18-2. 

Input Record Layout: Ship/back-order transaction record: same as Project 17-3. 

VSAM customer master record: same as Project 18-2. 

Test Data: Ship/back-order transaction record: created in Project 17-3. 

VSAM customer master record: updated in Project 18-2. 



Project 18-9 

Report Layout: Create a Customer Bill 

BILL DATE: XX/XX/XXXX 

CUSTOMER NAME: XXXXXXXXXXXXXXX CUSTOMER NUMBER: XXXXXX 
CUSTOMER ADDRESS: XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXX 

ORDER NUMBER: XXXXX PURCHASE DATE: XX/XX/XXXX 

ITEM NUMBER 
99999 
99999 

QUANTITY 
ZZZ 
ZZZ 

UNIT PRICE 
$ZZ,ZZZ.99 
$ZZSZZZ.99 

EXTENDED PRICE 
$ZZ,ZZZ,ZZZ.99 
$ZZ,ZZZ,ZZZ.99 

SUBTOTAL: 
TAX: 
TOTAL AMT DUE: 

$ZZZ,ZZZ,ZZZ.99 
$ZZZ,ZZZ.99 

$Z,ZZZ,ZZZ,ZZZ.99 

ITEMS BACKORDERED: 

ITEM NUMBER QUANTITY 

XXXXX 
XXXXX 

ZZZ 
ZZZ 

TOTAL ITEMS BACKORDERED ZZZ,ZZZ,ZZZ 
TOTAL ITEMS SHIPPED ZZZ,ZZZ,ZZZ 

Processing Requirements: 1. Sort the order transaction records by order number, record type, and ship/back-order 
indicator 

2. Process a file of sorted transactions to create a customer bill. 
a. The customer number comes from the transaction file and is used to access the 

customer name and address from the VSAM CUSTOMER MASTER file. 
b. The order number and purchase date come from the type 1 record on the new 

transaction file. 
c. Item number and quantity come from the transaction file. 
d. Unit price and extended price are calculated based on the item number and 

quantity as follows: 
Check the first byte of the item number and then check the quantity to determine 
the percent of markup on the item. Take the unit cost from the transaction file and 
use the percent markup to determine the unit price. 



Appendix G Projects 

UNIT-PRICE = UNIT-COST * 1.PERCENT MARKUP 
EXTENDED PRICE = UNIT-PRICE * QUANTITY 
PERCENT MARKUP 

FIRST BYTE 
of ITEM NUMBER 

QTY 
<50 

QTY 
50-99 

QTY 
100-199 

QTY 
200-300 

QTY 
>300 

1 
2 
3 
4 

30% 
25% 
35% 
40% 

25% 
20% 
30% 
35% 

20% 
15% 
25% 
30% 

15% 
10% 
20% 
25% 

10% 
5% 
15% 
20% 

e. The subtotal is the extended price for each item accumulated per order. 
f. The amount of tax is zero if the taxable item indicator on the type 1 transaction 

record contains an "N." If the taxable item indicator on the type 1 transaction is a 
"Y," compute the amount of tax = subtotal * 8.25%. The total amount due is 
calculated by adding the subtotal plus tax. 

g. If an item is backordered, a B will exist in the ship/back-order indicator field on the 
type 3 record of the new Transaction file. 

h. The total items back-ordered is an accumulation of the quantity for each item back-
ordered, and the total items shipped is an accumulation of the quantity for each 
item shipped. 



77-level entry , 181 

88- level entry , 200,201 

A in P I C T U R E c lause , 17, 79 

A marg in , 29 

A C C E P T s ta tement , 206-207, 

242-243 

w i th sc reen l -O , 266-268 

A C C E S S I S D Y N A M I C c lause , 
554 

A C C E S S I S R A N D O M c lause, 
566 

A C C E S S I S S E Q U E N T I A L 

c lause, 562 

A C C E S S M O D E c lause , 554 

Ac t i on list, 163 

Ac t i ve key, 530-531,537 

Ac tua l dec ima l po in t , 172 

A D D s ta tement , 112-113 

A D V A N C I N G c lause. See 
W R I T E 

A F T E R c lause. See P E R F O R M 

V A R Y I N G 

A L L l i teral, 84, 89 

Al locat ion status, 530-531 

A L P H A B E T I C c lause , 199 

A lphabe t i c code , 333 

A L P H A B E T I C - L O W E R c lause , 

221 
Alphabe t i c test, 197,199 

A L P H A B E T I C - U P P E R c lause, 

221 

A l p h a n u m e r i c code , 333 

A l p h a n u m e r i c i t em, 79 

A L T E R N A T E R E C O R D K E Y 

c lause, 554, 561-562, 

570-573 

Alt key, h i d d e n p o w e r of, 274 

A N D operator , 201 

An imato r , 643-695 

C o m m a n d P r o m p t , 678-679 

C o m p i l e / R u n M e n u , 

654-658 

creat ing shor tcuts for, 

703-706 

D e b u g M e n u , 658-662 

d o w n l o a d i n g d a t a / s o u r c e 

files f r o m the W e b , 707 

Ed i t M e n u , 648-652 

edi t ing i n , 679-680 

F i l e M e n u , 646-648 

H e l p M e n u , 674-676 

highl ight ing, 649 

instal l ing, 644, 697-703 

learn ing to use, 644 

M a i n M e n u , 646-676 

Op t i ons M e n u , 662-672 

pr in t ing f rom C O B O L 

p rograms w i t h , 707-708 

start ing, 644-645 

Too lbar , 676-678 

tutor ial , 681-694 

V i e w M e n u , 652-655 

W i n d o w M e n u 672-674 

w i n d o w s , 680 

A r g u m e n t list, 477 

Ar i thmet i c symbo l , 16 

A S C E N D I N G K E Y c lause 

i n O C C U R S c lause , 3 1 1 , 344, 

345 

in S O R T s ta tement , 409 

A s c e n d i n g sort, 405 

A S C I I 

charac te r set, 273 

col la t ing sequence , 405-407, 
586 

A S S I G N c lause. See S E L E C T 

s ta tement 

A s s u m e d dec ima l po in t , 81-82, 

117-118 

Aster isk 

as edi t ing charac ter , 175 

as mu l t ip l i ca t ion s y m b o l , 

111 

A T E N D c lause 

i n R E A D s ta tement , 99 

i n S E A R C H s ta tement , 340, 

343 

A U T H O R pa rag raph , 75 

A U T O c lause, 268 

B as inser t ion charac te r , 175, 

237-238 

B ma rg i n , 29 

B A C K G R O U N D - C O L O R 
c lause, 267, 274, 275 

B a c k u p , 519 

B a l a n c e l ine a lgor i thm, 529-
534 

B a t c h file, 585, 592-593 

B ina ry table lookup, 335-336 

B L A N K W H E N Z E R O c lause , 

177 

B L I N K c lause, 268 

B L O C K C O N T A I N S c lause , 78-

79 

B lock ing factor, 78 

B o h m , C , 55 

B r a c e s , 74 

Bracke ts , 75 

B Y C O N T E N T c lause , 480-481, 

506 
B Y R E F E R E N C E c lause , 480-

481,506 

Ca lcu la ted field (as sort key) , 
410 

C A L L s ta tement , 477-479 

Ca l led p rog ram, 477-479 

Ca l l i ng p rog ram, 477-479 

C a r Va l i da t i on a n d bi l l ing 

p rog ram, 278-297 

c o m p l e t e d p rog ram, 
287-297 

h ie ra rchy char t , 284 

p r o g r a m m i n g 

spec i f ica t ions, 279-280 

p s e u d o c o d e , 284-286 

sc reen sec t ion , 280-284 

C a s e s t ructure, 56 

C h e c k p ro tec t ion , 175 

Class test, 199 

C L O S E s ta tement , 99 

C O B O L 

evo lu t i on of, 38 

no ta t i on , 74-75 

C O B O L rev is ion , 737-743 

C O B O L - 7 4 , 38 

ve rsus C O B O L - 8 5 , 38 
l im i ta t ions of, 90, 2 2 1 , 258, 

325, 357, 398, 428, 506, 
574 

C O B O L - 8 5 , 38 

C O B O L - 8 5 re fe rence 
s u m m a r y , 711-736 

C O B O L ve rbs , 721-731 
c o m m u n i c a t i o n descr ip t ion 

entry, 718 

cond i t ions , 732 

C O P Y a n d R E P L A C E 

s ta tements , 731 

data descr ip t ion entry, 717 

data d iv is ion , 714 

e n v i r o n m e n t d iv is ion, 

712-713 

file cont ro l entry , 713-714 

file descr ip t ion entry, 

715-716 

ident i f icat ion d iv is ion, 712 

m isce l l aneous formats, 734 

nes ted sou rce programs, 734 

p rocedure d iv is ion , 720 

qua l i f i ca t ion, 733 

report descr ip t ion entry, 719 

report g roup descr ip t ion 

entry, 719-720 

series of sou rce p rograms, 

735 

C O B O L 2000 

intr ins ic func t ions , 738-742 

m isce l l aneous n e w features, 

743 

n e w data t ypes , 742-743 

Codes , 332-334 

C o d i n g fo rm, 28 

C o d i n g s tandards , 179-189 

Co l la t ing s e q u e n c e , 405-408 

effect o n s igned n u m b e r s , 
406-408 

C O L L A T I N G S E Q U E N C E 

c lause, 409 

C O L U M N c lause , 267 

C o m m a 

a v o i d a n c e of, 181 

as ed i t ing charac te r , 174-175 

C o m m e n t s , 29 

l im i ta t ion of, 184 

C o m p i l a t i o n error , 33-35, 140-

151 

Comp i l e r , 31 
C o m p i l e r op t i on ( in C l a s s r o o m 

C O B O L ) , 586 



Index 

Completeness check, 197 
Compound test, 200-202 
COMPUTE statement, 110-111 

versus arithmetic 
statements, 116 

Concatenated key, 573-575 
Condition name. See88-level 

entry 
CONFIGURATION SECTION, 

40, 76-77 
Consistency check, 197 
Constant 

avoidance of, 183 
See also Literal 

Continuation, of nonnumeric 
literal, 29 

Control area, 551 
Control break, 435-471 
Control field, 437 
Control interval, 551 
Control total, 437 
COPY statement, 479-480 

with subprograms, 481 
CR editing character, 176-177 
Cross reference listing, 159-

161 

ua ta disk, a84, 586-567 
DATA DIVISION, 11-12, 77-84 
Data name 

choice of, 179 
rules for, 14-15 

Data validation, 195-221, 519-
528 

in interactive program, 277 
Date check, 197,218 
DATE clause, 206-207 
DATE-COMPILED paragraph, 

75 
DATE-WRITTEN paragraph, 75 
DAY clause, 206 
DAY-OF-WEEK clause, 242-

243 
DB editing character, 176-177 
Debugging, 139-164 

compilation errors, 140-151 
execution errors, 151-158 
interactive debugging, 161-

162 
tips for, 160-161 

Decimal alignment (in MOVE 
statement), 104 

Defensive programming, 197, 
527 

DELETE statement, 562 
DESCENDING KEY clause 

in OCCURS clause, 311,344 
in SORT statement, 409 

Descending sort, 405 
Desk checking, 162 

Detail line, 48 
Detaii report, 375 
Direct access to table entries, 

344,345 
Displacement. See Index 
DISPLAY statement 

in debugging, 161 
in top-down testing, 61, 63-

64 
DIVIDE statement, 115-116 
DO UNTIL structure, 231-232 

with data validation, 271, 
275 

DO WHILE structure, 231-232, 
271 

Duplicate addition (error 
condition), 518 

Duplicate (nonunique) data 
names, 243-245 

DUPLICATES IN ORDER 
clause, 409, 443 

Early error detection. See 
Structured walkthrough 

EBCDIC, 405-407, 586 
Edit program. See Stand-alone 

edit 
Editing, 169-179 
Editing characters, 171 
Editor, 28,30 
Elementary item, 79 
ELSE clause, 106 
Embedded sign, 406-408 
END-IF terminator, 12, 182 
End-of-file condition, 6 
END-PERFORM terminator, 

232 
END-READ terminator, 100 
END-SEARCH terminator, 398 
ENVIRONMENT DIVISION, 11 
Error message table, 214, 215, 

220, 525, 527 
EVALUATE statement, 109, 243 
Execution error, 35-37, 151-

158 
Existing code check, 197 
EXIT PROGRAM statement, 

477, 478 
EXIT statement, 233-234 
Expandable code, 333, 334 
Exponentiation, 111 

False condition branch. See 
NOTATEND 

FD. See File description 
Field, 2 
Figurative constant, 83-84 
File, 2 
File description, 77-79 

File maintenance 
nonsequential, 563-570 
sequential, 515-544 

FILE-CONTROL paragraph, 77 
FILE SECTION, 12, 77-82 
FILE STATUS clause, 555, 557-

560 
File status codes 

additions in COBOL-85, 574 
in debugging, 156-157 
list of, 555 

FILLER clause, 82-83 
optional use of, 83, 180, 357 

Fixed dollar sign, 174 
Fixed-length record, 310 
Floating dollar sign, 174 
Floating minus sign, 177 
Floating plus sign, 177 
Flowchart, 6-8, 57,58 
FOREGROUND-COLOR 

clause, 267, 274, 275 
Free space, 552 
Functional paragraph, 54 

GIGO, 37 
GIVING clause 

in arithmetic statements, 
112, 113, 114, 115 

in SORT statement, 410, 
414-419 

Grandfather-father-son 
backup, 519 

Group item, 79 
Group move, 105 

Heading line, 48 
Hierarchy chart, 50-54, 444-

446, 451-453,460-461 
with subprograms, 479, 485 

Hierarchy of operations 
arithmetic, 111 
logical, 201 

HIGH-VALUES, 530 
HIGHLIGHT clause, 268 
Hopper, Grace Murray, 38 

I-O status. See File status codes 
IDENTIFICATION DIVISION, 

11, 75-76 
IF statement, 106-108 

class test, 199 
compound test, 200-202 
condition name, 200, 201 
implied condition, 203 
indentation in, 106-108 
nested, 203-205 
NEXT SENTENCE, 205-206 

relational condition, 198 
scope terminator, 182, 205 
sign test, 200 

Implied decimal point. See 
Assumed decimal point 

IN qualifier, 245 
Indentation, 106-108, 183 
Index, 321-324 
Index set, 551 
INDEXED BY clause, 321-322, 

343 
Indexed file, 549-575 

creation of, 556-559 
maintenance of, 563-570 
utility for, 606-608 

INITIAL clause, 482 
INITIALIZE statement, 236-

237, 486 
In-line perform. See PERFORM 

statement 
Input-loaded table, 338-339 
INPUT-OUTPUT SECTION, 

76-77 
INPUT PROCEDURE, 410, 419-

426 
Insertion characters, 175 
INSPECT statement, 237-238 
INSTALLATION paragraph, 75 
Interactive ^ro^ram, 265-296, 

487-504 
Intrinsic functions, 738-742 

added in COBOL 2000, 
741-742 

miscellaneous new features, 
743 

new data types, 742-743 
Iteration structure, 56 

lacopini, G., 55 

LABEL RECORDS CLAUSE, 40, 
79, 99 

Level numbers, 12,16, 79-81 
Limit check, 197 
LINE CLAUSE, 267 
LINKAGE SECTION, 477-478 
Linker (linkage-editor), 31, 

504-506, 583, 594 
Literal, 15-16 

continuation of, 180 
Load module, 31 
Logic errors, 159-160 
Logical record, 78 

Main program. See Calling 
program 

Major key, 405 
MERGE statement, 426-427 



Index 

Micro Focus Personal COBOL 
for Windows, 643-695 

Minor key, 405 
Mnemonic code, 333, 334 
MOVE CORRESPONDING 

statement, 245 
MOW statement, 102-105 
MULTIPLY statement, 114-115 

Nested IF statement, 203-205 
Nested SEARCH statement, 

394, 397 
NEXT SENTENCE clause, 205-

206 
No match (error condition), 

518 
Nonnumeric iiterai 

(continuation of), 15-16, 
180 

Nonsequential file 
maintenance, 563-570 

versus sequential 

maintenance, 518 
NOT operator, 201 

NOT AT END clause, 234-235 
Numeric code, 333 
Numeric-edited field, 170 

Numeric field, 79, 172-173 
Numeric item, 79 
Numeric literal, 15-16 
Numeric test, 197-199 

OBJECT-COMPUTER 
paragraph, 40, 76 

Object-oriented (OO) COBOL 
programming, 603-642 

classes and inheritance, 619 
next-generation of COBOL, 

605-609 
object orientation, 

defined, 604 
object-oriented vs. 

structured paradigm, 
608-609 

ProcessRequest method, 
619-621 

Registrar class, 616-619 
structured programming, 

development of, 606-607 
Student class, 627-629 
Student-Look-Up program, 

612-616 
Student-Look-Up system, 

610-639 
StudentDM class, 621-625 
StudentDM instance 

definition, 625-627 
StudentPRT class, 635-639 
StudentUI class, 633-635 
terminology, 607-608 

Object program, 31 

OCCURS clause, 303, 307 
problems with, 308 

OCCURS DEPENDING ON 
clause, 310-311,315 

OF qualifier, 245 
One-level control break, 443-

451 
OPEN statement, 98-99 

1-0 clause, 559-560 
Operating system, 31 
OR operator, 201 
ORGANIZATION IS INDEXED 

clause, 554 
OUTPUT PROCEDURE, 410, 

419-426 

Page heading routine, 248, 257 
Paragraph, 12 
Paragraph name 

rules for, 14-15 
standards in, 181 

Parameter list, 477 
Password protection, 268 
PERFORM statement, 105-106 

in-line perform, 232 
sections, 232-233 
TEST BEFORE/AFTER, 231-

232 
TIMES clause, 322 
THRU clause, 232-234 
UNTIL clause, 231 

PERFORM VARYING 
statement 

with one-level table, 304-
306, 340, 366-367 

with two-level table, 370-
373 

with three-level table, 382-
384 

Personal COBOL for Windows, 
643-695 

Physical record, 78 
PICTURE clause, 17, 79 

standards for, 179 
Positional table, 336 
Precedence. See Hierarchy of 

operations 
Primary key, 405 
Priming (initial) read, 100 

elimination of, 234-235, 254 
error in, 157-158 

PROCEDURE DIVISION, 12, 
97-130 

USING clause, 477-478 
Procedure name, 232 
Program specifications, 3-5 
Program stub. See Stub 

program 
PROGRAM-ID paragraph, 76 

in called program, 477 
INITIAL clause, 482 

Programmer-supplied-name, 
14-15 

Projects, 753-892 
Pseudocode, 8-9, 57-59 
Punctuation symbol, 16 

Qualification, 244-245 

Range check, 197 
Range-step table, 345-347 

in two dimensions, 392-394 
READ statement, 99-100 

false condition branch, 234-
235 

INTO clause, 235-236 
INVALID KEY clause, 561 -

562 
NEXT clause, 561 
priming read, 100, 157-158 

Readability. See Coding 
standards 

Reasonableness check, 197 
Record, 2 
RECORD CONTAINS clause, 

79 
Record description, 12, 79 
RECORD KEY clause, 554 
REDEFINES clause, 336, 338 
Reference modification, 240-

242, 504 
Registrar class, 616-619 

programming specifications, 
630 

Relational symbol, 16 
Relative subscripting, 308-309 
RELEASE statement, 410 
RESERVE AREAS clause, 554 
Reserved words, 13-14, 709-

710 
RETURN statement, 410-411 
REVERSE-VIDEO clause, 268 
REWRITE statement, 562 
Rolling total, 440-441 
ROUNDED clause, 109-110 
Running total, 440-441 

S in PICTURE clause, 176-177 
Scope terminator, 182 
Screen I/O 

ACCEPT statement, 266-269 
car validation and billing 

program, 278-297 
DISPLAY statement, 269-278 

SCREEN SECTION, 279-283, 
288-291, 491-492 

SD statement, 410 
SEARCH statement, 340, 343 

nested, 397, 398 

with two-level table, 391, 
498 

VARYING clause, 397, 398, 
498 

SEARCH ALL statement, 344-
345 

Secondary key, 405 
Section, 232 
SECURE clause, 268 
SECURITY paragraph, 75 
SELECT statement, 76 

for indexed file, 554-555, 
558, 561 

Selection structure, 55-56 
Sequence check, 197 
Sequence numbers, 29 
Sequence set, 551 
Sequence structure, 55 
Sequential file maintenance, 

515-544 
versus nonsequential, 518 

Sequential table lookup. 334-
335 

SET statement, 322, 344, 390 
SIGN clause, 408 
Sign test, 200 
Signed numbers, 176-177 

effect of collating sequence, 
406-408 

SIZE ERROR clause, 110 
Slash 

in arithmetic, 111 
to begin a page, 183 
as insertion character, 175 

Sort key, 405 
SORT statement, 409-410 
Sort work file, 410 
Sorting, 404-428 
SOURCE-COMPUTER 

paragraph, 40, 76 
Source program, 31 
SPACE-FILL clause, 268 
SPACES clause, 83 
Span of control, 54 
Stand-alone edit program, 

207-221 
START statement, 574-575 
STOP RUN statement, 102 
String processing, 237-242 
STRING statement, 238-240 
Structured design, 50-54 
Structured programming, 54-

56 
development of, 606-607 

Structured walkthrough, 162-
163 

Stub program, 61, 535 
Student class, 627-629 

programming specification, 
630 

Student-Look-Up program, 
612-616 



programming specifications, 
613 

Student-Look-Up system, 
610-639 

programming specifications, 
610 

Student PRT class, 635-639 
programming 

specifications, 636 
Subprogram, 475-507 

execution of, 585 
Subscript 

versus index, 321-324 
relative, 308-309 
rules for, 308 

Subscript check, 197 
SUBTRACT statement, 113-114 
Summary report, 375 
Symbol, 16 

Table, 302-305 
initialization of, 336-339 
one-level, 366-367, 369 
two-ievel, 368-379 
three-level, 380-390 

Table lookup 
binary, 335-336 
A;~~,~+ . -yna 
uucti aLbcas, J J U 
sequential, 334-335 
with two-level table, 390-

391 
TEST AFTER clause, 231-232 
TEST BEFORE clause, 231-232 
Test data (generation of), 535 
Three-level control break, 460-

470 
Three-level table, 380-390 
TIME clause, 206,503-504 
Top-down testing, 61-66, 535-

540 
Total line, 48 
Transaction file, 516 
Two-level control break, 451-

460 
Two-level table, 368-380 

Utility sort program, 404 

V in PICTURE clause. See 
Assumed decimal point 

VALUE clause, 83-84 
with OCCURS clause, 379, 

398 
Variable-length record, 310-

311 
Variable-length table, 310-311, 

316 
VSAM organization, 551-553 

Warnier-Orr diagram, 59,61, 
62 

WHEN clause. See SEARCH 
and SEARCH ALL 

WORKING-STORAGE 
SECTION, 12,82-84 

WRITE statement, 100-101 
FROM clause, 236 
INVALID KEY clause, 562 

WS BEGINS HERE, 236 

Xin PICTURE clause, 79 

Year 2000 program, 583-602 
COBOL intrinsic calendar 

functions, 591-593 
date arithmetic, 590-593 
leap-year problem, 594 
leap-year processing, 584 
problem description, 

584-590 
retirement program, 

594-599 

ZERO FILL clause, 268 
Zero suppression, 172, 174 
ZEROS clause, 83 

Undefined symbol, 505 
UNDERLINE clause, 268 
Unique code, 333 
Unresolved external reference, 

505 
UNSTRING statement, 240, 

241 
UPDATE clause, 268 
USAGE clause, 309-310 
USING 

in SORT statement, 410, 
414-419 

in subprogram, 471-478 


	Covers
	Covers
	Contents

	Chapters

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	Chapter 8

	Chapter 9

	Chapter 10

	Chapter 11
	Chapter 12

	Chapter 13

	Chapter 14

	Chapter 15

	Chapter 16

	Chapter 17

	Chapter 18

	Chapter 19

	Chapter 20


	Appendixes

	Appendix A

	Appendix B

	Appendix C

	Appendix D

	Appendix E

	Appendix F

	Appendix G


	Index


