

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

Introduction

About the Author

Acknowledgments

Part I—COBOL Program Basics

Hour 1—Getting Started
COBOL Purpose and History

Business Data Processing

COBOL: The Language of Business

The Origin of COBOL

Grace Hopper

The COBOL Standard

Installing the Compiler

Required Hardware and Software

Using the Examples in This Book

How to Install the Fujitsu Compiler

Validating the Install

Summary

Q&A

Workshop

Hour 2—Writing Your First Program in
COBOL

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

COBOL Program Layout

Identification Division

Environment Division

Data Division

Procedure Division

Creating a Simple COBOL Program

Compiling and Linking

When It Won’t Compile

Debugging Your Program

Summary

Q&A

Workshop

Hour 3—Different Data Types
The Picture Clause

The Meaning of the Different Level Numbers

Numeric Fields

Decimal Values

Handling the Sign

The Usage Clause

Alphanumeric Fields

Literals

Numeric Edited Fields

Alphanumeric Edited Fields

Group and Elementary Level Items

Using Data Types in a Program

Summary

Q&A

Workshop

Hour 4—Basic User Interface
Interfacing with the User

Batch Versus Interactive Processing

The Screen Section

Elements of the Screen Section

Special-Names Paragraph

Using the Screen Section in a Program

Summary

Q&A

Workshop

Hour 5—Procedure Division
Procedure Division Organization

Paragraphs

Sections

Arithmetic Statements

The Add Statement

The Subtract Statement

The Multiply Statement

The Divide Statement

The Compute Statement

Simple Data Manipulation

The Move Statement

Summary

Q&A

Workshop

Hour 6—Manipulating Data
The Accept Statement

Accepting from the User

Accepting Data from the System

The Initialize Statement

The Inspect Statement

Reference Modification

Using What You Have Learned in a Program

Summary

Q&A

Workshop

Hour 7—Manipulating String Data
The String Statement

String Delimiters

The Unstring Statement

Unstring Delimiters

Summary

Q&A

Workshop

Hour 8—Conditional Statements
Conditional Statements in COBOL

The If Statement

The Else Clause

Using Complex Conditions

Nesting If Statements

88 Levels and the Set Statement

Using 88 Levels in an If Statement

Summary

Q&A

Workshop

Hour 9—The Evaluate Statement
When to Use Evaluate

Simple Evaluate Statements

More Complex Evaluate Usage

Summary

Q&A

Workshop

Hour 10—Processing Loops
The Basic Perform Statement

Sections and Paragraphs

Creating Processing Loops Using Perform

Use of Go To

Summary

Q&A

Workshop

Hour 11—Advanced Perform Statements
Perform with Varying

Testing Before or After

The Use of the Inline Perform

Nesting Perform Statements

The Inline If Statement and Perform

Using the Debugger

Summary

Q&A

Workshop

Hour 12—Tables
Defining a Table

Basic Table Handling

Populating a Table in Working-Storage

The Redefines Clause

The Search Statement

Multidimensional Tables

Variable-Length Tables

Summary

Q&A

Workshop

Part II—File Handling

Hour 13—Sequential Files
Connecting Your Program to a File

The Select Statement

The File Description

Opening the File

Closing the File

Writing to the File

Reading from the File

Updating the File

Variable-Length Records

Summary

Q&A

Workshop

Hour 14—Indexed Files
Defining the Indexed File

The Select Statement for Indexed Files

Creating an Indexed File from a Sequential File

Creating Indexed File Records from User Input

Other Methods of Handling File Errors

Summary

Q&A

Workshop

Hour 15—Reading Indexed File Records
Various Access Methods

Sequential Access

Random Access

Dynamic Access

Summary

Q&A

Workshop

Hour 16—Updating Indexed File Records
Opening for I-O

Writing Records

Rewriting Records

Deleting Records

Relative Files

Summary

Q&A

Workshop

Hour 17—Sorting
Sorting a File

The Using and Giving Clauses

Manipulating Data During the Sort

The Input Procedure

The Output Procedure

Summary

Q&A

Workshop

Part III—Business Processing

Hour 18—Master File Updating
Programming for Transaction Entry

Data Validation

Updating a Master File

Updating a Sequential Master File

Updating an Indexed Master File

Summary

Q&A

Workshop

Hour 19—Reporting
Creating Reports

Designing Your Report Layout

The Write Statement and Reports

Programming for Page Breaks

Summary

Q&A

Workshop

Hour 20—Advanced Reporting
Reporting with Control Breaks

Determining the Number and Hierarchy of
Control Breaks

Subtotaling

Walking Through a Program with Control
Breaks

Summary

Q&A

Workshop

Part IV—Miscellaneous Functions

Hour 21—Date Manipulation
Determining the Current System Date

The Current-Date Intrinsic Function

Days Between Dates

Determining the Day of the Week for a Particular Date

Validating Dates

Other Kinds of Dates

Fun with Dates

Summary

Q&A

Workshop

Hour 22—Other Intrinsic Functions
Mathematical Functions

Statistical Functions

Financial Functions

String Functions

Miscellaneous Functions

Summary

Q&A

Workshop

PART V—Advanced Topics

Hour 23—The Call Interface
Calling Other Programs

Simple Program Calling

Passing Data Between Programs

The Linkage Section

The Procedure Division of the Called Program

Call By Reference and By Content

Dynamic Versus Static Calls

Using Copybooks

Summary

Q&A

Workshop

Hour 24—The Graphical User Interface
Different Methods of Achieving the Graphical User
Interface

Using sp2 to Create a Graphical User Interface

Designing Your Panel

Modifying the Generated Program

The Future of COBOL

Summary

Index

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

Table of Contents

Introduction
Written in a clear, easy to follow format, this book was designed to help you
learn COBOL as quickly as possible.

The numerous real-world examples and exercises in this book will help you to
understand computer programming, and COBOL in particular. This book
provides a complete grounding in the COBOL language. After completing this
book, you should be able to write useful and meaningful computer programs
using COBOL.

Who Should Read This Book

The lessons in this book assume no previous computer programming
experience. The lessons can be used as an introduction to COBOL specifically,
and computer programming in general. Even experienced COBOL
programmers, who want to find out the latest techniques available in the
current COBOL standard, will find this book valuable.

Special Elements of This Book

This book contains the following special elements that make the presentation
clearer and easier to understand:

• New Term Boxes

• Notes

• Tips

• Cautions

 New terms and definitions are explained in New Term boxes.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

These are introduced throughout the lessons as required by the material
being covered.

Note: Interesting information relating to the discussion is presented in these
notes.

Tip: Tips and interesting shortcuts are represented in this manner, for easy
recognition. Tips can make your coding easier and more accurate.

Caution: Common pitfalls and misconceptions are presented as cautions.
When a caution appears, you can be assured that the potential problems
discussed occur in the real world of COBOL programming.

Throughout the lessons, full and partial examples from actual programs are
listed. When a complete program is included in the text, it will be signified
with a listing heading. This serves to offset the full program listings from the
text. You will often find explanations of the programs embedded in the
listings. The listing itself will appear in an easy to identify, monospace font.
A simple listing example follows:

Listing Introduction.1 Hello World

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Hello.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Procedure Division.
000010 Hello-Start.
000011 Display "Hello World".
000012 Stop Run.

The lines in the program are numbered so that I can refer to them later in the
text, explaining the different elements of the program. The goal is to prevent
the code from being unwieldy for the user—that’s you!

Q&A and Workshop

Following each chapter, you’ll find a “Q & A” section, where issues relating to
the material covered in the lesson are discussed. Selected areas are reinforced
and explanations are expanded.

In the Sams Teach Yourself in 24 Hours series, usually after the Q&A section,
you will find a quiz and a programming exercise. However, to conserve pages,
in Sams Teach Yourself COBOL in 24 Hours, we have opted to move this
information to the CD-ROM accompanying the book. This information is not
just extraneous stuff we’re adding to beef up the CD. Answering the quiz

questions correctly assures you that the material covered has been completely
understood. The programming exercises build on the concepts covered in the
chapter and require you to make that small, but essential extra leap in
understanding to solve the problem. Some are simple modifications of
programs discussed within the chapter, whereas others are completely new
programs that need to be created. For optimum retention and understanding, I
urge you to work through the quiz questions and exercise section as you finish
an hour.

Conventions Used in This Book

This book uses special typefaces to help you differentiate between text used to
explain the concepts, and the elements of the COBOL language. Anytime a
reserved COBOL word is used, or a data item is encountered, it will appear in
a special monospace font.

The CD-ROM that comes with the book contains the Fujitsu compiler and the
third-party GUI screen design tool, COBOL sp2 from Flexus International. In
addition, the source code for all the examples and exercises is included. To aid
you in understanding the examples, each is accompanied by a Lotus
Screencam™ movie, which can be found in the \CAMS directory of the
CD-ROM.

Thane Hubbell

Bryan, Texas

December 1998

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

Table of Contents

About the Author
Thane Hubbell has been programming in COBOL for 15 years. He started in
computer operations and rapidly moved into programming. He has worked on
a variety of platforms, from the PC up to the large MVS mainframe systems.
Along the way, he has had the opportunity to develop new systems ranging in
size from small, isolated programs to large, interactive, enterprise-driving
systems.

He has designed and written applications ranging from a full CICS security
and menuing system in COBOL to a VSAM database inquiry and reporting
tool. Thane is a pilot and one of his more interesting projects was a system to
translate FAA-formatted Aviation weather reports into English.

Thane makes his home in Texas and is married to a wonderful woman,
Darlene, who kindly tolerates the spare time he spends programming on his
computer after work. Occasionally he will even take on a custom programming
project for her.

Thane can be reached via email at redsky@ibm.net, and frequents the
comp.lang.cobol Internet newsgroup.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we
could do better, what areas you’d like to see us publish in, and any other words
of wisdom you’re willing to pass our way.

As the Executive Editor for the Advanced Programming and Distributed
Architectures team at Macmillan Computer Publishing, I welcome your
comments. You can fax, email, or write me directly to let me know what you

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

did or didn’t like about this book—as well as what we can do to make our
books stronger.

Please note that I cannot help you with technical problems related to the topic
of this book, and that due to the high volume of mail I receive, I might not be
able to reply to every message.

When you write, please be sure to include this book’s title and author as well
as your name and phone or fax number. I will carefully review your comments
and share them with the author and editors who worked on the book.

Fax: 317-817-7070
Email: programming@mcp.com

Mail: Tracy Dunkelberger
Executive Editor
Advanced Programming and Distributed Architectures
Team
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

What’s on the CD-ROM

The companion CD-ROM contains all of the author’s source code and samples
from the book and many third-party software products.

Windows 3.1 and Windows NT 3.5.1 Installation
Instructions

1. Insert the CD-ROM disc into your CD-ROM drive.

2. From File Manager or Program Manager, choose Run from the File
menu.

3. Type <drive>\README.TXT and press Enter, where <drive>
corresponds to the drive letter of your CD-ROM. For example, if your
CD-ROM is drive D:, type D:\README.TXT, and press Enter.

4. The README.TXT file contains information concerning installing
the author’s source code and third-party programs.

Windows 95/98/NT4 Installation Instructions
1. Insert the CD-ROM disc into your CD-ROM drive.

2. From the Windows 95 desktop, double-click the My Computer icon.

3. Double-click the icon representing your CD-ROM drive.

4. Double-click the icon titled SETUP.EXE to run the installation
program.

If Windows 95 is installed on your computer, and you have the AutoPlay
feature enabled, the SETUP.EXE program starts automatically when you
insert the disc into your CD-ROM drive.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

Table of Contents

Acknowledgments
Writing a book is not unlike the team effort involved in developing a complex
software system. The people at Sams Publishing are consummate
professionals. Their input, support, encouragement, and guidance have been
invaluable. I want to especially recognize Holly Allender, Sean Dixon, Fran
Hatton, and Heather Talbot.

In the COBOL community, several individuals deserve special recognition.
Bob Wolfe is the individual who first piqued my interest in a book
opportunity. His contacts landed me a spot on the COBOL: Unleashed team,
which in turn led to this work.

I had the utmost privilege of historical perspective from an individual who was
there and involved when COBOL began. Warren G. Simmons’s insight and
advice proved invaluable to the completion of this book.

Another individual who deserves mention is Don Nelson, current COBOL
standards committee member. Don was heavily involved in the 1985 COBOL
standard, and helped me greatly in areas concerning why things are the way
they are, and what really is part of the present standard. For COBOL syntax, I
relied on Don’s excellent book, COBOL85 for Programmers.

The chapter on date manipulation was particularly interesting to write. I want
to thank Judson McClendon for his assistance and advice on those issues, and
on COBOL coding style in general.

Todd Yancy of Fujitsu Software Corporation assisted in securing the compiler
for use with this book. The Fujitsu COBOL compiler is a strong, stable, and
accurate compiler. Todd and Fujitsu have been instrumental in trying to bring
the price of COBOL compilers within the reach of the average individual
programmer.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Last, but certainly not least, I want to thank my very special partner, friend,
and mate—my wife, Darlene. She supported me throughout this all-consuming
process. She gave up much of her time with me to allow me the time to write
this book. Her contribution is personal, and lovingly appreciated.

Lest I forget from whence this talent springs, I must thank God for granting me
the gift of this talent for programming, and the ability to convey it in some
small measure to the reader.

Dedication

For my wife Darlene, for her patience, understanding, and love.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Part I
COBOL Program Basics

Hour
1 Getting Started

2 Writing Your First Program in COBOL

3 Different Data Types

4 Basic User Interface

5 Procedure Division

6 Manipulating Data

7 Manipulating String Data

8 Conditional Statements

9 The Evaluate Statement

10 Processing Loops

11 Advanced Perform Statements

12 Tables

Hour 1
Getting Started
Welcome to Sams Teach Yourself COBOL in 24 Hours. In the first hour, you
learn about the following:

• The history and purpose of COBOL

• The special requirements of business data processing

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• The mother of modern information technology and COBOL in
particular

• Installing and using your compiler

COBOL Purpose and History

 COBOL stands for Common Business Oriented Language. It is
one of the oldest high-level computer programming languages. The purpose
of a programming language is to communicate instructions to the computer.
Each type of central processing unit, or CPU, understands a particular set of
instructions. Because these instructions appear cryptic and confusing to
humans, the early pioneers of the computer industry developed programming
languages. These languages, which add a layer of comprehension for the
programmer and analyst, are translated into the native instructions of the
computer’s processor, otherwise known as machine language. The process
of translating the original program, or source code, into machine language is
called compilation. The compiler program translates (or compiles) the source
code, that is, code with instructions that humans can understand, into
machine language.

Note: A high-level language is one that must be converted or translated into
machine language. The closer a language is to machine language, the lower
its level. Languages in which each statement in the source language
corresponds to only one or two machine language instructions are very
low-level languages. When source statements are converted, or compiled,
into many machine language statements, as is the case with COBOL, the
programming language is considered a high-level language.

COBOL is essentially a recipe for making a program. You list the ingredients,
determine the amounts and proportions for the mixture, and describe the order
and method of their assembly. You could mix the batter for a cake, including
all the proper ingredients in all the proper proportions, but until it is baked, it
can’t be served. The compiler program is what takes your program recipe and
prepares it for the computer’s consumption.

Business Data Processing

Business data processing began long before computers entered the picture. In
the interest of efficiency, businesses found ways to handle the large volume of
information necessary to successfully manage their operation. Computers were
initially considered the tools of scientists and engineers. However, business
rapidly recognized the value of computers in automating tedious and repetitive
tasks that were necessary for the success of commerce.

The computing needs of business are unique and are different from those in the
scientific or engineering fields. Programming languages geared toward solving
complex engineering or mathematical formulas were ill suited to business
processing. Early scientific computations centered on solving complex
mathematical formulas. The computer could make these calculations with
much more speed and accuracy. In contrast, business typically does not need to
solve complex mathematical formulas. Business processing centers more on
large amounts of transactional data and is geared more toward financial

accuracy.

Businesses typically collected transactional data and applied those transactions
manually to books or ledgers. Entire divisions of large companies were
dedicated to bookkeeping. Reports were carefully prepared for management to
analyze. Creating and analyzing these reports was a time-consuming process,
and in many cases businesses were harmed because they were unable to react
to events in a timely manner.

The advent of the computer changed all that. Business readily accepted the
computer into its daily operation. Business now demands fast and reliable
results. These results help businesses stay competitive and viable.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

COBOL: The Language of Business

COBOL is ideally suited to business processing. Business processing involves
data collection, validation, updating, and reporting. The types of data
processed are frequently numbers and amounts. No other computer language is
as well equipped to excel at this type of processing.

COBOL was designed to be an easy-to-understand and self-documenting
language. It intentionally mirrors common English. As a COBOL programmer,
I can testify to the fact that nearly anyone can look at a section of a COBOL
program and see exactly what is happening. I have had people look over my
shoulder as I examine a program and understand exactly what is occurring and
why.

Although COBOL is the language of business, its use has grown over time to
include many other areas. Any organization that follows common business
practices can take advantage of the strengths of the COBOL language.
Governments are a prime example. They operate very much like businesses,
and their needs are often satisfied by the use of COBOL as the primary
computer programming language.

Contrary to popular media description, COBOL is far from a dead language. If
COBOL is dead, someone forgot to tell the computer programs that hold
businesses together! COBOL is the dominant computer language for business
processing applications. Even in areas in which COBOL was once considered
inappropriate, it has made tremendous inroads. Client/server development is
relying more and more upon COBOL.

Client/server processing has become the watchword of the day. In a nutshell, it
involves a central server, usually holding a repository of information that is
accessed by clients that attach to this server. Large mainframes and COBOL
programs have historically carried out these processes. Many businesses have

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

tried to replace these systems with client/server processes, only to find the
reliability and performance to be lacking. Consequently, large mainframes
frequently become the server in client/server processing, with the root business
logic written in COBOL remaining intact. COBOL is used today for both the
client side and the server side of client/server processes.

At the root of COBOL is a very simple set of instructions. Like any good
game, the rules are simple, but using those rules in combination can make for a
very fun and challenging adventure.

This book uses real-world business examples to illustrate and teach
programming techniques. The sample business I have chosen is a small
consignment or antique store. No matter what the source of your interest in
learning COBOL, these examples will help you to understand the language and
make learning fun.

The Origin of COBOL

The first specification for COBOL was developed in 1959 by the Conference
on Data Systems Language, or CODASYL. Its goal was to define a common
business computer programming language, and COBOL was the result. The
design of the language was heavily influenced by the only business
programming language in use at the time, FLOW-MATIC. FLOW-MATIC
was the brainchild of a very interesting and colorful individual, whose
influence on data processing and the use of computers in modern life is often
and frequently understated. That person is Admiral Grace Murray Hopper.

Grace Hopper

Admiral Grace Murray Hopper (1906–1992) is generally considered to be the
mother of business computing and COBOL. Her early insights and ideas have
echoed down through the years and still affect the entire information
technology industry. Admiral Hopper was a strong advocate for the use of
computers in business. She was the first to advocate sharing common libraries
of programming code. Throughout her life, she stressed efficiency in
programming, desiring that programmers not waste even a microsecond of
time. She actively participated in demonstrations of COBOL, showing how the
language lent itself to machine independence. COBOL was the first
cross-platform, compatible language and remains one of the few programming
languages that can easily be rehosted to other platforms.

Note: Rehosting is changing a program to run on a different platform. For
example, you might take a COBOL program written for a mainframe
computer and recompile it, making any necessary changes, and then run it on
a personal computer. This type of change is an example of rehosting.

Grace began her work in computers as a research fellow at Harvard University
from 1946 to 1949 in the computing laboratory. While there she developed the
first compiler, a program that converted mnemonics into machine language,
called A-0. Grace was convinced that computers could be a great boon to
business and, to that end, started working with the UNIVAC series of
computers at a company that later became Sperry. She firmly believed that

computers should be programmed in English, but was admonished that
computers did not understand English. She made sure that they could.

Her first English-like computer language was FLOW-MATIC, which
understood 20 English words. The language was geared toward activities such
as payroll processing and automated billing. It took several years for her
approach to be accepted, and in 1952, she published her first compiler paper.

Grace participated in the early CODASYL meetings that defined the standard
for COBOL. She stayed on the committee as one of its two technical advisors.
She remained a strong COBOL advocate. After entering the U.S. Navy, she
was instrumental in the Department of Defense move to make COBOL its first
required programming language. Her work with the Navy on standardization
remains one of her most important legacies. She developed tests to validate the
different COBOL compilers. Her work led directly to the formation of
different international and national standards for programming languages.

Along with her work on computer programming languages and data processing
in general, Admiral Hopper is credited with coining the term computer bug.
When a computer problem was traced to a moth stuck in one of the electronic
relays, Hopper taped the offender in her logbook next to the entry “bug.”

A famous quote that is widely used in computer circles is attributed to her:
“It’s always easier to ask forgiveness than it is to get permission.”

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The COBOL Standard

In 1968 the American National Standards Institute (ANSI), in an attempt to
eliminate the growing incompatibility between different COBOL compilers,
developed a common standard for the language. This version was called ANS
COBOL. Programs written to this standard will continue to compile 30 years
later. Although the language today has many more features and enhancements,
many programs written in the 1960s are still in use. In the last year, I have
maintained programs that were originally written in 1972.

The COBOL standard was revised in 1974, adding many new features. This
version received wide acceptance and was the basis for IBM’s VS COBOL. In
1985 the language was again revised, further enhancing and enriching
COBOL. Several very powerful features were added to aid in the development
of structured programs.

Note: This book generally follows the structured programming approach.
Structured programs have small, organized sections of processing. Each area
performs only a single function. Structured programming avoids the GO TO
statement, which branches, or jumps, to another place in the program without
returning; structured programs proceed in an organized and orderly fashion
and do not jump from place to place with little rhyme or reason. Structured
programming uses a top-down design approach. Each major function is made
up of smaller functions, each of which is also made up of smaller functions,
and so on until the problem is broken down to individual programming
statements. Structured programs are easy to maintain and debug.

 In 1989 a special modification to the 1985 standard was issued.
This modification introduced an item called intrinsic functions. Intrinsic
functions formalized some of the features most desired by COBOL
programmers, including many that relate to the next century. Prior to the
1989 extensions, COBOL did not have a formally defined method for

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

determining the current four-digit year. The Current Date intrinsic
function solved that problem in 1989, a full 11 years before problems
processing two-digit years would occur, in the year 2000.

The 1985 standard, with the 1989 extensions, is the current standard for
COBOL. The ANSI committee is currently considering the next standard,
which will include object orientation. Several compiler vendors are beginning
to support features that are in the next standard.

This book conforms to the current COBOL standard with one exception. In an
effort to standardize the user interface portion of COBOL, because none was
defined in the ANSI standard, a committee named X/OPEN defined a language
extension called the Screen Section. A form of the Screen Section is
included in the pending COBOL standard. Most compiler vendors already
support the Screen Section , and the examples and exercises in this book
should work with those compilers.

Installing the Compiler

The accompanying CD-ROM contains a Windows-based COBOL compiler.
Fujitsu COBOL has been kind enough to provide its free COBOL starter kit
for your use with this book. This compiler has everything you need to learn
COBOL and to compile and run the exercises and examples. Although the
examples work with other COBOL compilers, many elements related to
writing programs are closely linked to the development tools used. It is beyond
the scope of this book to cover all of the many available COBOL compilers.
All examples and exercises are geared toward the Fujitsu COBOL
development environment.

Required Hardware and Software

The following hardware and software are required to run the Fujitsu COBOL
compiler:

• 486 or better processor

• VGA graphics display monitor

• 25MHz CPU or better (recommended)

• Mouse or other pointing device

• 5MB RAM

• 48MB of available hard disk space for basic configuration; more to
install the on-disk documentation and utilities

• CD-ROM drive

Using the Examples in This Book

All the examples, exercises, and quiz answers are included on the CD-ROM
and can be used with the Fujitsu development environment, also on the
CD-ROM. If you are using a different compiler, you will have to familiarize
yourself with the requirements for that development environment and
compiler.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

How to Install the Fujitsu Compiler

Take the time now to install and test the Fujitsu COBOL 3.0 Starter Set compiler.
You will use the development environment and compiler very shortly. These steps
guide you through the installation process.

1. Insert the CD-ROM into your CD-ROM drive.

2. Click the Start button.

3. Choose Run.

4. Choose Browse.

5. Select the down arrow next to Look In.

6. Choose your CD-ROM drive.

7. Double-click the COBOL32 folder.

8. Choose SETUP.EXE and click the Open button.

9. Click OK.

10. When the required serial number entry appears, type in 99-03811-10092,
making sure to include the dashes. The first portion of the number is provided
for you, and it must remain on the screen. Do not overtype this number; only
complete it with the number above. The full number entered should be
103-2001-1699-03811-10092.
Next, you are prompted to select the different options for the install. I suggest
using the default options. However, if you are interested in installing other
features and tools, feel free to do so. The instructions associated with these
are presented during the install. These additional options require significantly
more disk space.

11. Follow the onscreen instructions, choosing the default values for all
selections.

12. After the setup process is complete, restart your computer.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The following instructions install the 16-bit Windows 3.1 version of the Fujitsu
compiler, also included on the accompanying CD-ROM.

1. Insert the CD-ROM into your CD-ROM drive.

2. From Program Manager, click File, and then click Run.

3. At the command line, type d:\COBOL16\SETUP.EXE.
Replace the d: with the drive letter of your CD-ROM drive.

4. Click OK to begin the installation process.

5. Click Next to acknowledge the copyright.

6. Click Yes to accept the license agreement.

7. Complete the serial number displayed so that the entire number reads as
follows: 103-2001-1699-03811-10092

8. Click Next.

9. Accept the default selections as provided by the install program and click
Next.
The next portion of the installation process selects the location for the install
and copies the programs to your computer.

10. Accept the default installation location and click Next.

11. The default action on the next screen is to copy all the books to your hard
drive. If you do not want to do so, and you want to save disk space, click the
View Books from CD check box. You may then deselect the COBOL 85
Books and the PowerCOBOL Books check boxes. Do not deselect the
PowerCOBOL 16-bit check box. Click Next.

12. Accept the default program folder by clicking Next.

13. Click Next once more to accept the install options. The program files
will now be installed on your computer.

14. After the files are installed, you will be prompted to register the software.
You may complete the registration or cancel that process.
A long delay occurs between completing the registration and the installation
of the Common Ground viewer. Your computer has not locked up, and the
program will eventually proceed with the installation. This delay is upward of
2 minutes and is related to the launching of the secondary installation of the
Common Ground viewer.
In addition to the Common Ground viewer, you may elect to view the
documents in Adobe™ Acrobat format. These viewers are included on the
CD in the SOFTCOPY folder.

15. Continue with the installation of the Common Ground viewer, following
the prompts.

16. After the Common Ground installation is complete, click the Return to
Windows button; the installation of the rest of the system will complete.

17. Click OK to acknowledge the changes made to your AUTOEXEC.BAT
file, adding the compiler to your path.

18. Click Finish to complete the installation.

Validating the Install

To make sure the compiler will run on your computer, you need to try to compile a

program. The Fujitsu compiler comes with many examples and samples. Perform
the following steps to compile and run one of the sample programs. Hour 2, “
Writing Your First Program in COBOL,” discusses the purpose for each of these
steps. Performing them here ensures that the compiler software has installed
properly.

1. Click the Start button.

2. Highlight Programs.

3. Highlight Fujitsu COBOL 3.0.

4. Click Programming Staff.

5. Click the Tools menu option.

6. Click WINCOB[Compile].

7. Click the Browse button.

8. The current folder will be the PCOBOL32 folder. Double-click the
SAMPLES folder.

9. Double-click the SAMPLE1 folder.

At this point, some necessary compiler options must be set. The purpose for these
options is covered in detail in the appropriate hours. To ensure that you can compile
the sample programs and exercises, simply follow these instructions:

1. Single-click the SAMPLE1.COB item and then click Open.

2. Click the Options button.

3. Click the Add button.

4. Scroll down the window until you see Main. Single-click Main and then
click the Add button.

5. The Compiler Option window appears. Click the Compile Program as
Main Program radio button and then click the OK button.

6. Close the Compiler Options window by clicking the X in the upper-right
corner.

7. Click the OK button.

8. Click the Compile button. A countdown clock appears during the
compilation process.

9. When the compile is complete, an Editor window displays the results of
the compiler diagnostics. The message should be the following:

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1.

10. Close the Editor window by clicking on the top X in the upper-right
corner.

11. Close the WINCOB window by clicking the X in the upper-right corner.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Compiling the program is the first step applied against a source program to get
it ready to run. The second step is to link the program. Linking is covered in
more detail in Hour 2.

1. Click Tools again and select WINLINK[Link].

2. Click the Browse button.

3. A Browse Files window shows a single .OBJ file. Select that file and
click Open.

4. Click the Add button.

5. Click the Link button.

6. When the link is finished, close the Link window by clicking the X in
the upper-right corner.

7. Close the WINLINK window by clicking the X in the upper-right
corner of the window.

After successfully compiling and linking the program, it is time to run the
program. The Fujitsu Programming Staff development environment provides a
shortcut for running the programs you have recently compiled and linked.

1. Select the Tools option again.

2. Select the WINEXEC[Execute] option.

3. Click the Browse button.

4. Choose SAMPLE1 and click Open.

5. Click the Execute button.

6. When the Runtime Environment Setup window appears, click OK.

7. This sample program accepts a single lowercase letter and displays a
word that starts with that letter. For this test, type the letter a and press
Enter.

8. The word apple appears and a message box tells you that the Console
window is closed. Click OK. Your screen should now appear as

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

illustrated in Figure 1.1.

Figure 1.1 Results of running the Sample1 program.

9. Close the WINEXEC window by clicking the X in the upper-right
corner.

10. Close the Programming Staff window by clicking the X in the
upper-right corner.

If you are using Windows 3.1 and have installed the 16-bit version of the
Fujitsu COBOL compiler, follow these instructions to compile and link the
sample program:

1. Open the Fujitsu COBOL Family V2 program group by
double-clicking the icon.

2. Start Programming Staff 16 by double-clicking the icon.

3. Click the Utilities menu option.

4. Click WINCOB.

5. Select Browse and double-click the SAMPLES folder.

6. Double-click the SAMPLE1 folder.

7. Click SAMPLE1.COB and then click OK to accept your selection.

At this point, some necessary compiler options must be set. The purpose for
these options is covered in the correct context in later hours. To ensure that
you can compile the sample programs and exercises, simply follow these
instructions:

1. Click the Options menu item.

2. Click the Add button.

3. Scroll down to the word Main. Select it and then click the Add
button.

4. Toggle on the Compile Program as Main Program option by
clicking the radio button.

5. Click OK.

6. Click Exit.

7. Click OK in the Compiler Options window.

8. Click the Compile button to compile the program. A countdown
clock appears during the compilation process.

9. When the compile is complete, an Editor window appears with the
results of the compiler diagnostics. The message should be the
following:
STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM
UNIT=1.

10. Close this window by double-clicking the upper-left corner of the
window.

javascript:displayWindow('images/01-01.jpg',791,505)
javascript:displayWindow('images/01-01.jpg',791,505)

11. Close the WINCOB window by selecting the Exit menu option.
Compiling the program is the first step applied against a source
program to get it ready to run. The second step is to link the program.
Linking is covered in more detail in Hour 2.

12. Click the Utilities menu option.

13. Choose WINLINK.

14. Click the Browse button.

15. Select the Sample1.obj file and click OK.

16. Click the Add button.

17. Click the Build button to link the program.

18. After the program is linked, a message box displays the following
message: Linking files has ended . Click OK.

19. Close the WINLINK window by selecting the Exit menu option.

After successfully compiling and linking the program, it is time to run the
program. The Fujitsu Programming Staff development environment provides
a shortcut for running the programs you have recently compiled and linked.

1. Click the Utilities menu option again.

2. Click WINEXEC.

3. Click the Browse button, select Sample1.EXE, and then click OK.

4. Click the Execute button to run the program.

5. When the Runtime Environment Setup:SAMPLE1 window
appears, click Run.

6. Type the letter a and press Enter.

7. Your screen should display the word apple, and a message box
states The console window is closed . The screen should
look a lot like Figure 1.1. (Because you are using Windows 3.1, the
look of the window border and the message box icon will be slightly
different from the figure’s.)

8. Click OK to close the window. You may exit the WINEXEC utility
by selecting the Exit menu option.

If all the steps completed successfully, you have installed the compiler and it
can be used for all the exercises and examples in this book.

Summary

In this hour, you learned the following:

• COBOL is one of the earliest programming languages.

• COBOL is an English-like programming language, designed to satisfy
the computing needs of business.

• The early design of COBOL, and business programming in general,
was greatly influenced by Admiral Grace Hopper.

• Grace Hopper discovered the earliest computer bug, an actual insect in
a computer.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Q&A

Q Why is COBOL such an accepted language?

A COBOL is an English-based language that is self-documenting and easy to
understand. COBOL is the first language mandated for use by the U.S.
Department of Defense. A version of COBOL exists for virtually every
computing platform, and programs written for one computer are easy to
convert to run on other computers.

Q Is COBOL easy to learn?

A Yes. COBOL is a fairly simple language. The commands and features that
make up the language are in English and are easy to use and comprehend.

Q What is structured programming, and why is it important?

A Structured programming is a reverse building-block approach. The first
element is a wall, which is made up of rows. Each row is made up of
individual bricks, and each brick is made up of mud being poured into a mold
and hardened by heat. In structured programming, the programmer breaks a
large problem—building a wall, for example—into the next smallest task,
which in this analogy is laying the bricks. This task is further broken down
into making the bricks. In structured programming, each task performs one and
only one function. The program follows one orderly path; it doesn’t jump
around from within one task, out to an unrelated task, and back. In contrast, a
nonstructured program might jump to one place; then, depending on a
condition, do something else; and then go in a different direction. This type of
program is extremely hard to follow and debug. It’s like following a piece of
spaghetti through a dish, trying not to disturb the other strands of pasta. That’s
why nonstructured programs are sometimes referred to as “spaghetti code.”

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 2
Writing Your First Program in COBOL
In Hour 1, “Getting Started,” you learned about the history of COBOL. You
also installed and tested the compiler. In this hour, you learn the basic layout
of a COBOL program and write your first program. This hour covers the
following basics:

• The divisions of a COBOL program

• How to key a simple program into the editor

• Compiling, linking, and running your program

• What to do when the program won’t compile

COBOL Program Layout

The layout, or format, of a COBOL program follows certain simple rules,
which originated long ago when programs were punched onto 80-column
punch cards. With COBOL, columns 1–6 are reserved for line numbering.
Line numbers are not mandatory, nor do they have to be in sequence.
However, you can imagine how important these line numbers were if someone
accidentally dropped a deck of program cards on the floor!

Column 7 is the continuation or indicator area. When a line is to be continued
from a previous line, a dash – in column 7 indicates the continued line.
Column 7 can also contain either an asterisk (*) to indicate a comment line or
a slash (/) to cause a page eject, or new page, when printing a listing of the
program.

 A comment line contains any comments the programmer wants

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

to put into the program. Commenting a program is important for many
reasons. It helps other programmers, or even you, figure out what you are
trying to accomplish with the programming statements, or code, that you
have written. In addition to a - or * , most compilers support Debugging
mode. In this mode, a D in column 7 means that the line is to be included
only when the program is compiled in Debugging mode. When Debugging
mode is not selected, these lines are treated as comment lines. The compiler
ignores any other character that appears in column 7.

Note: Code, line, and programming statement are different names that mean
the same thing. The actual programs you write in the COBOL language are
considered source code. In other words, they are the main source that you
wrote. Your programs must be translated for the computer, which is why
they are called code. Writing a program is also referred to as coding. A
programmer’s job is to code a program.

Columns 8–11 are considered Area A . Area A contains Division ,
Section , and Paragraph headings. If other statements appear in Area A ,
the program may or may not compile, depending on your compiler. Having the
Paragraph and Section headings appear in Area A creates a more
readable program. The statements under these headings appear to be indented.
Throughout the lessons, you will see this convention in action.

Area B extends from column 12 through column 72. Some COBOL
compilers ignore this right margin. To be safe, you should limit your code to
column 72. The main body of your program appears in Area B .

Caution: Many modern compilers allow free-form coding. Free-format
source, where the column numbers no longer matter, is being considered in
the next COBOL standard, and many compiler vendors have implemented
this option. However, a number of them have not. If you have source code
that is free format, ignoring the limits of Area A and Area B , and you try
to move this source to another compiler, the code might not compile. The
safest practice is to follow the current standard and keep your code in Area
B within columns 12–72.

Columns 73–80 are for program identification. When programs were on punch
cards, the program name would typically appear here. This book ignores these
columns.

In Hour 1, I compared a COBOL program to a recipe. COBOL programs are
broken into four divisions. Like a recipe, the first sections contain the
ingredients and the last section, the preparation instructions. Each division is
further broken into paragraphs. Each division is explained further in the
sections that follow. The four divisions of a COBOL program are

• Identification Division

• Environment Division

• Data Division

• Procedure Division

Tip: The only required division is the Identification Division ;
the others are optional. If you don’t have anything to put under them, you
may omit them. However, I suggest that you at least include the division

headers, just in case you need to add something later.

Identification Division

The Identification Division identifies the program to the compiler.
In the current defined standard for the COBOL language, the
Identification Division consists of one paragraph: the
Program-Id . The Program-Id contains the name of the program. This
name is very important, as it controls the ultimate name of the program during
execution. Any references the operating system makes to the program depend
on this name. In Hour 23, “The Call Interface,” you learn about COBOL
programs calling and being called by other programs. The Program-Id is
the name that is used when COBOL programs are called. When looking at
older COBOL programs, you might see other paragraphs under the
Identification Division . Although these paragraphs are accepted by
the current COBOL standard, they are slated for removal in the next. The
Identification Divisio n is coded as follows:

000001 Identification Division.
000002 Program-Id. NameOfProgram.

Note: Line numbers are indeed optional. In this book, however, they are
included in all examples for later reference in the text.

Note: The names of the divisions, paragraphs, and statements in COBOL
are not case sensitive. NameOfProgram is exactly the same as
NAMEOFPROGRAM and nameofprogram . Note that each line, or sentence,
in the code ends with a period.

Prior to the 1985 COBOL standard, COBOL was case sensitive. All COBOL
had to be coded with uppercase letters. If you look at older COBOL
programs, you are likely to observe this type of coding.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Environment Division

The Environment Division contains information relating to the
computer on which the program will run. The Environment Division
consists of sections and paragraphs under those sections. The sections in the
Environment Division are

• Configuration Section

• Input-Output Section

The Configuration Section contains three paragraphs. The first
paragraph concerns the type of computer on which the program is being
compiled, that is, the Source-Computer . The compiler vendor for the
environment in which you are running defines the name of the computer. The
programs in this book use IBM-PC . The Source-Computer Paragraph has
one clause, and it is optional. This clause is the With Debugging Mode
clause. Including this clause activates the lines of code with a D in the
indicator column (column 7) the next time the program is compiled. The word
With is optional on the With Debugging Mode clause.

The Object-Computer Paragraph describes the computer on which the
program is designed to run. Rarely will you be compiling on one computer
type and running on another. Again, use IBM-PC for the
Object-Computer Paragraph. Only one clause to the
Object-Computer Paragraph is relevant in normal programming, and that
is the Program Collating Sequence is clause. The Program
Collating Sequence is clause describes the order of the characters for
the program. When this clause is omitted, the collating sequence defaults to the
collating sequence native for the computer on which the program runs. The
programs in this book do not need to code the Program Collating
Sequence is clause.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Note: Collating sequence is very important. Even when you use the native
collating sequence of the computer, you need to understand it. Another way
to think of collating sequence is as a sort sequence, or alphabetic sequence.
You know that ABCDEFGHIJKLMNOPQRSTUVXYZ is the proper
sequence of alphabetic letters. You know that E is greater than A, and the Z
is the highest letter of all. This order describes the alphabet’s collating
sequence. The character set used by personal computers is ASCII. Each
character is assigned a number in ASCII. The ASCII code for the letter A is
65, and the code for the letter E is 69. Therefore, the letter A comes before
the letter E in the ASCII collating sequence. The native alphabet and
collating sequence is ASCII. For other computers, the alphabet is different.
In some cases, programmers working on multiple computers with different
alphabets might want to use the native alphabet, but collate on a specific
machine’s alphabet. That is the purpose of the collating sequence
is clause. In typical COBOL programming, the clause is rarely used.

The Special-Names Paragraph can contain numerous clauses. For the most
part, this flexibility enables you to program for specific items that are provided
either by the compiler being used or by the computer on which the program
runs. The command line from the execution of the program is one of the items
that Fujitsu COBOL lets you retrieve via a special name. Controlling the
cursor position and determining which function keys are pressed are tasks that
are accomplished using Special-Names . These tasks are discussed in more
detail in Hour 4, “Basic User Interface,” and Hour 6, “Manipulating Data.”

Two useful clauses are Currency-Sign is and Decimal-point is
Comma. They do exactly what they appear they do. With the
Currency-Sign is clause, you can specify the symbol to be used for
currency, and with the Decimal-point is Comma clause, you can use a
comma instead of the decimal point to indicate decimal positions. A typical
Configuration Section follows.

000001 Identification Division.
000002 Program-Id. NameOfProgram.
000003 Environment Division.
000004 Configuration Section.
000005 Source-Computer. IBM-PC With Debugging Mode.
000006 Object-Computer. IBM-PC.
000007 Special-Names.
000008 Currency-sign is $.

Notice the With Debugging Mode clause on the Source-Computer
line (line 0005). This clause activates any lines in the program that have a D in
column 7. When With Debugging Mode is specified, the compiler uses
these marked lines as if they were regular source code entries. Its use here is
just to show you how it is turned on. This book does not contain any programs
that use Debugging mode.

The Input-Output Section contains two paragraphs: File-Control
and I-O Control . File-Control describes the use of data files in the
COBOL program and is covered in depth throughout Part 2, “File Handling,”
and Part 3, “Business Processing.” I-O Control describes the behavior and
internal handling of some of the input and output with the associated files. The
I-O Control is not often used.

An example of a typical COBOL program Input-Output Section
follows.

000001 Identification Division.
000002 Program-Id. NameOfProgram.
000003 Environment Division.
000004 Configuration Section.
000005 Source-Computer. IBM-PC.
000006 Object-Computer. IBM-PC.
000007 Input-Output Section.
000008 File-Control.
000009 Select Input-File assign to "IN.DAT".

Data Division

The Data Division describes the data used by the program. The data can
come from input sources such as disk files or from intermediate data fields and
working areas in storage. The Data Division is broken into the following
sections:

• File Section

• Working-Storage Section

• Linkage Section

• Communications Section

• Report Section

• Screen Section

Each section has fairly detailed entries and is discussed in depth in the
appropriate hours, with the exception of the Communications Section
and the Report Section . The Report Section is used by a module of
COBOL that is optional in the COBOL standard, called Report Writer .
The Report Writer is not included in many COBOL implementations and
is not included in this book. The Communications Section is used by
another optional module, the Communications Facility , and it too is
included here only in the interest of presenting a complete picture. Its usage is
not discussed.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The File Section describes the files being used by the COBOL program.
The entries under the File Section include file descriptions for regular
input files, and sort descriptions for sort work files. Sort work files are
temporary files used by the sort process within a COBOL program. Sorting is
discussed in depth in Hour 17, “Sorting.” One of COBOL's strengths is that it
describes the contents of each file in great detail.

The Working-Storage Section describes data areas to be used by the
program during its processing. Like the File Section , data areas are
described in great detail. All data items referenced by the program are declared
in one of the sections of the Data Division .

The Linkage Section passes data between programs.

The Screen Section describes a screen full of input, output, and update
data for the user interface. In this book, the Screen Section
communicates directly with the users of the programs. Each item is carefully
and explicitly defined.

Following is a sample of a typical Data Division in a COBOL program:

000001 Identification Division.
000002 Program-Id. NameOfProgram.
000003 Environment Division.
000004 Configuration Section.
000005 Source-Computer. IBM-PC.
000006 Object-Computer. IBM-PC.
000007 Input-Output Section.
000008 File-Control.
000009 Select Input-File assign to "IN.DAT".
000010 Data Division.
000011 File Section.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000012 FD Input-file.
000013 01 Input-Record Pic X(100).
000014 Working-Storage Section.
000015 01 Work-Field Pic X(20).

Procedure Division

The Procedure Division is where the program’s processing occurs. In
the Procedure Division , you tell the program how to assemble and use
the ingredients you specified in the other divisions. The Procedure
Division is made up of Sections and Paragraphs . Sections may
be omitted if they are not required. For the most part, you will have no need to
program any Sections in your Procedure Division . However, if you
do, please remember that each Section entry must be followed by a
Paragraph name. The use of Paragraphs and Sections is discussed in
detail in Hour 5.

The Procedure Division must contain at least one Paragraph . The
Paragraph name begins in Area A starting in column 8. With COBOL, all
data, paragraph, and section names may be up to 30 characters long. You may
use any convention you desire. Most COBOL programmers use the convention
of separating words within names by dashes. For example:
Read-The-File , could be a paragraph name, as could ReadTheFile .
The dashed separated words are easier to read and understand.

Programming statements, or sentences, that appear under paragraph headings
begin in Area B . Most of this book discusses areas of the Procedure
Division .

Creating a Simple COBOL Program

Now is the time to put all these pieces together and write your first COBOL
program. What would a programming book be without a Hello World
program? This first program displays “Hello World” on the screen and then
ends; it uses the Display statement.

The Display statement outputs data to an output device. Normally, this
device is a CRT (monitor) or printer. The Display statement may use the
Upon phrase to specify the device on which the display is to occur. If the
Upon phrase is omitted, the default device, as defined by the specific
compiler, is used. On IBM mainframes, this device is the printer. With the
Fujitsu compiler, it is the console , which is your monitor. The name
specified in the Upon phrase can also be a device name specified in the
Special-Names clause. An example of the Display statement is

000100 Display "Hello World" Upon Console.

Note: Console is the main operator console. For programming on a PC, it
is the regular PC’s display. Console is a COBOL reserved word. Any word
that makes up the COBOL programming language, or is used for a special
extension or enhancement to the language, is considered a reserved word. A
reserved word cannot be used as a variable or data item name in your

COBOL program. A list of reserved words is available in Appendix A of the
Fujitsu COBOL language reference that is on the CD-ROM.

In addition to the Display statement, you need some way to tell the program
to end. This is done with a Stop Run statement. The Stop Run behaves
just as it sounds. When it is encountered, the program stops running. If you fail
to code a Stop Run statement, most compilers insert it for you. However, it
is good practice to always code the Stop Run statement where you want
your program to stop.

Caution: If you are using a compiler other than the Fujitsu COBOL
compiler that comes on the CD-ROM, you will need to familiarize yourself
with the methods for editing, compiling, and linking your programs with that
compiler. Compiler directives may be different when using other compilers,
and the procedures for compiling, linking, and running your programs will
probably be different.

 Before you start the editor and enter the lines of code for the
program, you need to understand one more item. In addition to regular
COBOL statements, the compiler may have to deal with compiler directives.
Different COBOL compilers understand different compiler directives.
Compiler directives tell the compiler how to behave when compiling this
particular program. They can be used to make the process of compiling and
linking your program much easier. When you compile your program, you
have to tell the provided Fujitsu compiler whether your program is a Main
program or a sub-program. For most of the examples and exercises in this
book, the programs are Main programs. You indicate to the compiler that
your program is a Main program by entering @OPTIONS MAIN on the first
line of the program, before the Identification Division .

You should create a new folder on your computer to hold your source code.
There are two easy ways to create this folder. I suggest you call it \TYCOBOL,
which is the name used in this book.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

One method to create the folder follows.

1. Click the Start button.

2. Select Programs.

3. Click the MS-DOS prompt icon.

4. At the prompt, type MD\TYCOBOL and press Enter.

Another method:

1. Double-click the My Computer icon.

2. Double-click the drive where you want to create the folder.

3. Click the File menu.

4. Select New.

5. Click Folder.

6. The cursor will on the new folder name. Change that name to
TYCOBOL and press Enter.

7. Close the open windows.

The following procedure is used to create the TYCOBOL folder under
Windows 3.1.

1. Open the main program group by double-clicking its icon.

2. Open File Manager by double-clicking its icon.

3. Select the File menu option.

4. Choose the Create Directory option.

5. For the Name, type\TYCOBOL
The \ is very important. If you forget it, the TYCOBOL directory is
not created under your root directory and may be hard to find.

6. Click the OK button to create the directory.

7. Close File Manager by double-clicking the upper-left corner of the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

File Manager window.

Start the Fujitsu COBOL development environment, Programming Staff.

1. Click the Start button.

2. Select Programs.

3. Select Fujitsu Cobol 3.0.

4. Click Programming Staff.

Use the following steps under Windows 3.1 to start the Programming Staff
development environment.

1. Open the Fujitsu COBOL Family V2 group by double-clicking its
icon.

2. Double-click the Programming Staff 16 to start Programming Staff.

Now you need to create your new program.

1. Select the File menu.

2. Click New.

3. When the Editor window appears, again select the File menu.

4. Click New.

5. When the New dialog box appears, use the selection box to change
the extension to COB and click the OK button.

The window shown in Figure 2.1 should now be displayed.

Figure 2.1 The new Editor window.

Notice that the cursor is in column 7 of the first line. Fujitsu inserts a space
between column 6 and column 7 to separate the line numbers from your
programming code. The space does not take up a character position. Before
you enter any lines of code, you should change some of the editor settings.
Normally, the editor numbers the lines in increments of 100. This convention
is from the days when programs were on cards and programmers left a gap in
the numbers so that cards could be inserted later without having to renumber
the entire deck. The compiler reports errors by their relative line number, so to
make finding these errors in your source easier, you should use the Relative
line-numbering option. In addition, the compiler will color COBOL reserved
words for you. This feature will help you tremendously as you start out
programming in COBOL. However, by default, the compiler colors only
words that are in all uppercase characters. You should change that option by
deselecting the Match Case of Keyword check box. To do so, as well to
change the line numbering to Relative, perform the following steps:

1. Select the View menu option.

2. Click Display Format.

javascript:displayWindow('images/02-01.jpg',656,501)
javascript:displayWindow('images/02-01.jpg',656,501)

3. Select the Relative radio button next to Line Number Type.

4. Deselect the Match Case of Keyword check box, making sure it is
not checked.

5. Click the Save Setting check box.

6. Press the OK button.

Note: If you are using the 16-bit version of the compiler, for Windows 3.1,
you will not have the options for Match Case and coloring the source code.
Simply change the Relative radio button, select the Save Setting check box,
and click OK.

You are ready to start entering your program. Start by typing in the necessary
compiler option @OPTIONS MAIN. Make sure that you start in Area A , and
that the phrase @OPTIONS MAIN is all in upper case. Do not terminate the
line with a period. Line numbers are inserted automatically. Press the Enter
key to advance to the next line. Next, type in the Identification
Division . Be sure to start at the beginning of Area A (column 8).

On the next line, type the Program-Id Paragraph, again making sure to start
in Area A . Immediately after Program-Id , on the same line type the name
of your program. Call this one Hello. If you are typing the names correctly,
Identification Division and Program-Id will be blue and the rest
of the text will be black.

Next, type in the Environment Division and Configuration
Section lines. You need to tell the compiler what type of computer will do
the compiling and running. Don’t forget to end each line with a period. Next
type in the Source-Computer and Object-Computer Paragraphs. After
each of these, on the same line, type IBM-PC. Be sure to put a period between
Source-Computer and IBM-PC .

This program doesn’t need anything further in the Environment
Division . Next, enter the Data Division . Again, this program does not
need anything under the Data Division , so go ahead and enter the
Procedure Division .

The Procedure Division is where you tell the program what you want it
to do. Every program must have at least one paragraph under the Procedure
Division . Title the paragraph Hello-Start . Begin the paragraph title in
Area A and make sure to end the title with a period.

The next step is to enter an actual statement telling the program what to do.
Start the statement in Area B (column 12). Type Display "Hello
World"., making sure to enclose the words Hello World in quotation marks.

Tip: The Fujitsu editor will help you find Area s A and B. At the bottom of
the Editing window, the editor displays the line and column number.
Remember that Area A begins in column 8 and Area B begins in column
12. (This feature is not available in the 16-bit Windows 3.1 version.)

Finally, on the next line, in Area B , enter the Stop Run statement telling
the program to stop execution.

Save your program into the \TYCOBOL directory by selecting the File menu
and the Save As option. Change the filename to Hello.Cob. Use the down
arrow next to the Save In box to find and select the \TYCOBOL folder; then
click the Save button.

Your program should appear exactly as illustrated in Figure 2.2. Compare your
program with the figure and correct any obvious differences.

Figure 2.2 The Hello.Cob program.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/02-02.jpg',710,521)
javascript:displayWindow('images/02-02.jpg',710,521)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Compiling and Linking

It’s time to compile your program, but before you do, you need to understand
the compile process. The compiler is a program that analyzes your source
code, which is the program you just entered, performing several functions. The
compiler checks your program for syntax errors. A syntax error occurs when
the statement entered does not follow the defined rules for the language. The
compiler checks for required elements, such as the Identification
Division and Program-Id . It checks to make sure that all of your
Division headings, Sections , and Paragraphs start in the proper
columns. It checks for dependencies, areas where you must define something
before you can reference it later. Some basic logic errors are also checked. For
example, if you define a file to your program, but never open it, the compiler
issues a warning. If your program analyzes correctly, the compiler creates an
object module by translating your source code into machine code. The object
module contains all the instructions necessary for the computer to run your
program. However, the machine addresses for these instructions are not yet
assigned—that is the job of the linkage editor or linker.

To compile your program, follow these steps:

1. Click the X in the upper-right corner of the editor window to close
the window. (In Windows 3.1, double-click the upper-left corner.)

2. Choose the Tools menu option. (In Windows 3.1, choose Utilities.)

3. Click the WINCOB[Compile] menu item.

4. Click the Browse button.

5. Change the Look In to the \TYCOBOL folder. (In Windows 3.1,
change to Directories.)

6. Select Hello.cob and click Open. (In Windows 3.1, click OK.)

7. Click the Compile button. A countdown clock appears.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

If your compilation was not successful, the countdown clock changes
momentarily to an exclamation point. If successful, the countdown clock
counts down to 1 and then shows the word End. After the compile, an Edit
window with the compile results is displayed. If the compile is successful, the
window should say:

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

If it says anything else, skip down to the section “When It Won’t Compile.”

After your program is compiled, it must be linked. The link edit process
assigns the actual internal addressing to the compiler-generated object. In
addition, the linker adds any supporting machine code necessary to run your
program.

Caution: Do not attempt to link your program if the compile was not
successful; there will be no object file to link.

Follow these steps to link your program:

1. Close the edit window by clicking the top-right X. (For Windows
3.1, double-click in the upper-left corner.)

2. Close the WINCOB dialog box by clicking the top-right X. (For
Windows 3.1, choose the Exit menu option.)

3. Choose the Tools menu option. (For Windows 3.1, choose Utilities.)

4. Select the WINLINK[Link] menu selection.

5. Click the Browse button.

6. Select the Hello.Obj file and click the Open button. (For Windows
3.1, click OK.)

7. Click the Add button. C:\TYCOBOL\HELLO.EXE appears in the
Target field.

8. Click the Link button. (For Windows 3.1, click the Build button.)

9. When the link finishes, close the window.

10. Close the WINLINK window.

Now you are ready to run your first COBOL program! Follow these steps:

1. Choose the Tools menu option again. (For Windows 3.1, choose
Utilities.)

2. Select the WINEXEC[Execute] menu item.

3. Click the Browse button.

4. Select Hello (some settings cause Hello.Exe to show) and click
Open. (For Windows 3.1, click OK.)

5. Click the Execute button.

6. When the Runtime Environment Setup appears, click OK. (For
Windows 3.1, select Run.)

7. Your program will run and display "Hello World"! A message
tells you that the Console window is closed. Click OK, and the display
window closes. Close the WINEXEC window.

Your screen should look like Figure 2.3.

Figure 2.3 The output from the Hello program.

Note: It might appear that you have to run your programs from within the
development system. That is not the case. The WINEXEC tool is there for
convenience. You could also run the program by using the Start button,
selecting Run, and then entering \TYCOBOL\Hello.Exe.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/02-03.jpg',791,505)
javascript:displayWindow('images/02-03.jpg',791,505)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When It Won’t Compile

If your program does not compile, you will have to determine the reason by using the compiler diagnostic
messages that are displayed. Don’t let a large number of compiler error messages discourage you.
Sometimes even a single error early on can cascade down through the program. For example, if you don’t
capitalize @OPTIONS MAIN, you will see the following errors:

** DIAGNOSTIC MESSAGE ** (NOPRGMID)
C:\TYCOBOL\hello.cob 0: JMN1102I-S IDENTIFICATION DIVISION HEADER IS
MISSING. HEADER ASSUMED TO BE CODED.
C:\TYCOBOL\hello.cob 1: JMN1000I-S CHARACTER EXCLUDED FROM COBOL
CHARACTER SET IS USED. THAT CHARACTER IS IGNORED.
C:\TYCOBOL\hello.cob 1: JMN1005I-W CHARACTER STRING 'OPTIONS' MUST
START IN AREA B. ASSUMED TO START IN AREA B.
C:\TYCOBOL\hello.cob 1: JMN1356I-W INVALID WORD 'OPTIONS' IS SPECIFIED
IN IDENTIFICATION DIVISION. IGNORED UNTIL NEXT PARAGRAPH OR DIVISION.
C:\TYCOBOL\hello.cob 2: JMN1104I-S PROGRAM-ID PARAGRAPH IS MISSING.
PROGRAM-NAME GENERATED BY SYSTEM.
C:\TYCOBOL\hello.cob 5: JMN1113I-S CONFIGURATION SECTION CANNOT BE
SPECIFIED IN INTERNAL PROGRAM.
C:\TYCOBOL\hello.cob 6: JMN1113I-S CONFIGURATION SECTION CANNOT BE
SPECIFIED IN INTERNAL PROGRAM.
C:\TYCOBOL\hello.cob 7: JMN1113I-S CONFIGURATION SECTION CANNOT BE
SPECIFIED IN INTERNAL PROGRAM.
C:\TYCOBOL\hello.cob 12: JMN1044I-S PROGRAM CONTAINED WITHIN PROGRAM
'NOPRGMID' MUST END WITH END PROGRAM HEADER. END PROGRAM HEADER ASSUMED.
STATISTICS: HIGHEST SEVERITY CODE=S, PROGRAM UNIT=1

The reason for so many errors is that the compiler expects either valid compiler options or the
Identification Division to appear on the first line of the program. The numbers immediately
after the name of the file are the line numbers where the compiler found errors. After these are some error
message numbers and information that is specific to the compiler being used. If you use a different
compiler, you might see different error messages.

Tip: If you place the cursor on the first line that is in error, in the first column, and press F11, the editor loads
your program and sets the cursor on the first line in error.

In this small program, only a limited number of things could go wrong. Check to see whether you put
dashes between the words where they are required; for example, Program-Id . Make sure you haven’t

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

inadvertently mistaken column 7 for Area A (column 8). Check to make sure you included the necessary
division headers. Make sure you enclosed Hello World in quotation marks. Make sure that the word
Display began in Area B . Make sure that you included a period after the divisions, sections, and
paragraph headings. Make sure you have a period after your Stop Run statement.

Correct your problems, comparing your program to Figure 2.1 if necessary, and compile it again. Once you
get a clean compile, link the program and run it! Don’t be the least bit upset; fixing these problems is all
part of being a COBOL programmer!

Caution: When correcting your errors and recompiling your program, make sure to close all Edit windows
before compiling the program again. The compiler will not be allowed to open the program or create the error
message file properly if an old one is still open on your desktop.

Debugging Your Program

Sometimes your programs don’t behave the way you think they should. A “broken” program usually has a
bug in it. A bug is something wrong with the program’s logic. The only bug that could really appear in the
first program is if "Hello World" does not display when you run the program. Perhaps you forgot to
put in the Display statement. Perhaps, instead of displaying “Hello World,” the program displayed
“Hello Wrld.” Both of these are examples of bugs. When a bug appears, you need to edit your program and
correct the bug. After fixing your source code, you can’t just run the program again and expect to have the
change in effect. If you change anything in your source code, you have to recompile and relink your
program. Hour 11, “Advanced Perform Statements,” discusses more advanced debugging procedures.

Summary

In this hour, you learned the following:

• The general layout of a COBOL program, including the different divisions and the purpose of each

• What a compiler is and how it works

• How to use the editor

• How to compile, link, and run a program

• How to correct problems in your programs if they won’t compile or run properly

Q&A

Q How many divisions make up a COBOL program, and what are they called?

A A COBOL program has four divisions: Identification , Environment , Data , and Procedure .

Q What is the minimum item that the Procedure Division must contain?

A At least one paragraph heading.

Q What is the purpose of the compiler?

A The compiler checks your program for COBOL language syntax errors, missing or extra items, and basic
logic errors. If everything passes the edit, then the compiler creates the basic machine code that is linked,
using the link edit program, or linker, to create your actually running program.

Q Do all programs work correctly the first time?

A Of course not! According to an old programmers’superstition, any program that compiles without errors
the first time must have a bug! The compiler is designed to catch these coding errors and allow you to fix
them.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the section “Quiz and
Exercise Questions and Answers” that can be found on the CD. This section contains quiz questions and
exercises for you to complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 3
Different Data Types
Before you can write meaningful programs, you must be able to manipulate
data. In this hour, you learn about many different types of data and how to
declare them in a COBOL program. This hour covers the following topics:

• The Picture clause

• Level numbers in COBOL

• Numeric and alphanumeric fields

• Defining initial values for data items

• Editing fields for an attractive presentation

One of the strengths of COBOL is its explicit definition of various types of
data. In COBOL (as well as other programming languages), data areas are
referred to as fields. A field is a unique and specific piece of data, for example,
an address or telephone number. In programming, when you define an area to
contain this data, the area is called a field. Another term used to reference a
field is data item.

The Picture Clause

In COBOL you must define a field before you can reference it in the program,
using an element called the Picture clause. The word is particularly
descriptive of what happens in COBOL. The Picture clause paints a picture
of how a field looks by defining every detail and characteristic of the field.
The Picture clause is abbreviated PIC .

The Meaning of the Different Level Numbers

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 When a field is defined in the Data Division , a level
number precedes the field. These level numbers separate fields into groups.
The higher level is called a Group Level, and the level where the field’s
Picture clause is coded is called the Elementary Level. A Group Level
item contains all the fields under it with higher level numbers.

01 Data-Field.
 02 Data-Item-1 Pic X(1).
 03 Data-Item-2 Pic X(1).

In the preceding example, Data-Field is a Group Level item. It has the
lowest level number. Data-Item-1 and Data-Item-2 are elementary
items because they contain the Picture clauses, which define the items.

Note: Group Level items are discussed in more detail later this hour in the
“Group and Elementary Level Items” section.

Several level numbers have specific meanings in COBOL. Table 3.1 explains
when each level is used.

Table 3.1 COBOL Levels and Their Uses

Level Description

01-49 May be used to describe data items.
01 May be used to describe a single field or the start of a

group of fields. Level 01 is the only level number that
may be used to either begin a group or describe an
independent field.

02-49 Must appear only under a higher Group Level. These
level numbers may describe further groups or
individual fields under a group.

66
Reserved for the Renames clause. The Renames
clause is rarely used and is not covered in any detail
in this book. The level is included here for reference.

77 Reserved for individual elementary items that are not
part of a group. In practice, a level 77 item is the
same as a level 01 that describes an elementary item.

88 Used for condition names. Level 88 is described in
detail in Hour 8, “Conditional Statements.”

The level numbers and the Picture clause are very closely related. After you
examine the Picture clause, you’ll have an opportunity to review the
meaning of the level numbers and how to put them together in a meaningful
fashion.

Note: The different level numbers can be coded without their leading digits.
In COBOL, 01 levels are the same as 1 levels. However, I have never seen a
program that did not use the leading digits. They facilitate code alignment

and make the program easier to read.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Numeric Fields

COBOL supports three types of data fields: numeric, alphanumeric, and literal. This section considers numeric
fields, which are simply fields containing numbers. Numeric fields are defined in the Data Division as
Pic 9 items.

The 9 in the Picture clause defines a field as numeric. In COBOL a numeric field can be up to 18 digits
long. When you code a Picture clause, you use a 9 to represent every numeric position of your field. If
your field is two digits long, you code Pic 99 . If your field is three digits long, you code Pic 999 . Very
large fields can get confusing, so COBOL allows you to abbreviate by putting the number of digits within
parentheses. For example, Pic 99999 could be coded as Pic 9(5) .

The following code might be in the Working-Storage Section of the Data Division of your
program.

000023 01 Quantity-On-Hand Pic 9(3).
000024 01 Quantity-On-Order Pic 9(2).
000025 01 Quantity-Sold-To-Date Pic 9(12).

Line 23 describes a numeric item that can be from 0 to 999 in value. Line 24, Quantity-On-Order , can
contain from 0 to 99 , and line 25, Quantity-Sold-To-Date , can contain from 0 to
999,999,999,999 .

When you use these fields in the Working-Storage Section , you can initialize them with particular
values. These values are set when the program starts. To use this technique, simply add a Value clause
immediately following the Picture clause and before the period. For example, to initialize your
Quantity-On-Hand to 20 , your Quantity-On-Order to 15 , and your Quantity-Sold-To-Date
to 5021 , you would code the following:

000023 01 Quantity-On-Hand Pic 9(3) Value 20.
000024 01 Quantity-On-Order Pic 9(2) Value 15
000025 01 Quantity-Sold-To-Date Pic 9(12) Value 5021.

Caution: You should always provide an initial value for numeric data items. Most compilers do not place any
special value in numeric data items, and if you use them for computations later in the program, they may contain
invalid data.

When assigning a value to a numeric field, you need not worry about specifying the leading digits. The
computer correctly positions the data in the numeric fields. For example, Value 20 and Value 020 yield
exactly the same result.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Caution: Numeric fields are right-justified. That is, values proceed from the right side of the field to the left.
Therefore, if you have a value of 1000 in a field with a Picture definition of three positions, the actual value
the field will contain when run is 000 . Most compilers warn you of this condition.

Tip: The formatting of the various lines of field definitions is almost entirely up to you. What you see in the
examples is the most common method, but you can line up the clauses any way you desire. Nicely formatted
source code is relatively easy to read, and I suggest that you be as consistent as possible. In reality, the Value
clause does not have to follow the Picture clause, and even can precede it. Remember to terminate each line of
field definition with a period. The field name must always be the first item after the level number. Remember that
field names are limited to 30 characters. Try to make the names as descriptive as possible; doing so makes your
program that much easier to read and maintain.

Decimal Values

 When working with numbers, especially in business, you often need to work with decimal values. In
COBOL specifying the decimal point’s position is extremely easy. In the Picture clause, a v represents the
decimal point. The symbolic v is called an implied decimal position. The decimal point does not take up any
additional storage space.

000026 01 Cost-of-each-item Pic 9(5)v9(2) value 10.00.
000027 01 Average-cost Pic 9(3)v9(4) value 10.0000.
000028 01 Overall-dollars Pic 9(7) value 10.

Line 26 represents a number that contains two decimal positions. The numbers can range in value from 0 to
99999.99 . Line 27 represents a number that contains four decimal positions. Line 28 represents a number
that has no decimal positions. All three examples, however, take up exactly the same amount of internal
storage and, by using the Value clause, have the same values. Notice how the v splits the Picture clause,
and the 9 must be repeated followed by the number of positions desired.

Caution: Remember that the maximum size of a numeric data item in COBOL is 18 digits. Regardless of where
you place the decimal point, the field must not exceed 18 digits.

Handling the Sign

Under many circumstances, you may want to handle numbers that are both positive and negative, or signed
numbers. You specify a signed numeric field by placing an S immediately after the Picture clause and
before the 9s that represent the positions of the numbers.

000029 01 Net-Profit Pic S9(5)v9(2) Value -10.00.

Like the decimal point, unless explicitly stated otherwise, the sign does not take up any storage positions.
Notice how the negative value is represented in the Value clause. Different versions of COBOL on different
types of computers store the sign with different internal representations. For the most part, the COBOL
programmer need not be concerned with this issue. However, if the data is to be shared among different
computers or different programming languages, the programmer might want to make the sign of the number a
separate character, thus eliminating any problems with differences in internal representation. To do so, add the
Sign Separate clause to the definition of the field. With this clause, you must specify the position of the
sign in relation to the rest of the number. Both positive and negative signs are represented—the positive with a
+ character and the negative with a –.

When Sign Separate is used, the sign takes up a position of storage.

000030 01 Monthly-Net-Profit Pic s9(5)v9(2) Sign is Leading
000031 Separate Character.
000032 01 Quarterly-Net-Profit Pic s9(5)v9(2) Sign Trailing Separate.

In line 30, the sign leads the data value; a positive number is represented by a leading + sign, and a negative
with a leading –, for example, +00010.00 and –00010.00 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Line 32 shows an example with the sign trailing. Notice the omission of the words Is and Character .
Many COBOL statements may be abbreviated in this fashion.

The Usage Clause

The Usage clause tells the computer how to represent numbers internally. You can realize performance
gains in your programs by representing numbers in a way that allows the computer to use numbers without
translating them into a more usable (to the computer!) format.

The default usage, when none is specified, is Usage Display . Usage Display works just like it
sounds. The numbers are represented in the same format as a normal display of numbers. All the examples
so far have utilized Usage Display . Each position of a number takes up a character, or byte, of storage.

000033 01 Yearly-Net-Profit Pic s9(5)v9(2) Value Zeros.
000034 01 Yearly-Gross-Profit Pic s9(5)v9(2) Value Zeros Sign Leading
000035 Separate.

Line 33 takes 7 bytes of storage: 5 bytes for the leading digits and 2 bytes for the decimal positions. Notice
that the sign and the implied decimal do not take up any extra storage positions. By contrast, line 34 takes 8
bytes of storage. The extra byte is used because the definition specifies that the sign is a separate character.

In addition to improving performance efficiency, Usage clauses can save storage space.

Caution: Compiler vendors determine the actual internal representation associated with Usage clause
values. The most common representations and uses are discussed here.

The values of the various Usage clauses are

• Computational

• Comp

• Display

• Binary

• Index

• Packed-Decimal

Computational and Comp are the same thing. In addition to Comp, most compiler vendors provide
Comp-1, Comp-2, Comp-3, and so on as values of the Usage clause. Each value represents a different
internal storage method for numeric data. The actual storage space used and how each is represented vary
with different computers and COBOL compilers. Usage Index passes the value of an index item to
other programs or stores an index item in a file. This clause is seldom used, and often discouraged, as

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

different computers represent index values differently. Index values are discussed in more detail in Hour
12, “Tables.”

Packed-Decimal and Binary may or may not be supported by the different compiler vendors,
depending on the target computer’s capability to handle these data types.

For example, Packed-Decimal is a way to “pack” numeric values into a smaller area. Each byte of data
is made up of two sets of half-bytes, or nibbles. A number can be represented in a single nibble of data.
Packed-Decimal reserves the last nibble of the data area representing a number for the sign. Each
number position in Packed-Decimal usage takes one nibble.

Table 3.2 shows the internal byte, or character representation, of two Packed-Decimal defined
numbers. The first is positive, and the second is negative. Notice how the sign is stored as a C in the last
half-byte if the number is positive and as a D if the number is negative. Also, note that five digits are being
stored in 3 bytes. If the number had six or seven digits, it would take 4 bytes.

Table 3.2 Internal Representation of Packed Decimal

Picture Clause
Internal
Representation Byte 1, Byte 2, Byte 3

Pic S9(5) 12 34 5C
Packed-Decimal

Value 12345.

Pic S9(5) 12 34 5D
Packed-Decimal

Value –12345.

Comp fields are also packed in a method similar to Packed-Decimal but with slightly different rules.
Comp fields take up space in 2-byte increments. A single-digit number, Pic 9 Comp , takes 2 bytes. The
sign is stored in the left-most bit of the storage area.

Note: Byte is another word for a single character of data. A byte is made up of 8 bits. Each bit has a value of
either 1 or 0. A nibble is half a byte. When representing these byte values to humans, the computer uses
hexadecimal notation. The binary 1s and 0s are converted into their single-digit base 16 equivalent. These
numbers range from 0–9 and then go to A–F.

The beginning programmer needs to understand that there is a difference between these representations and
needs to know how to determine exactly how much space each number is using. Your compiler’s manual
has a section on the internal representation of Usage clauses. Each vendor may differ in its representation
and the amount of space used by the different Usage types.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Alphanumeric Fields

Alphanumeric fields can contain information other than numbers. An alphanumeric
field could contain any data, including numbers. However, when an alphanumeric
field does contain numeric data, it cannot be used as a number. In COBOL,
alphanumeric fields are indicated in the Picture clause as X items.

000034 01 Customer-Name Pic X(30).

Line 34 defines an item called Customer-Name that contains 30 characters. Just as
with numeric items and the associated placeholder of 9, the X in the Picture clause
of an alphanumeric item corresponds to one position of the field.

Value clauses may be applied to alphanumeric items. Values assigned to
alphanumeric items are enclosed within quotation marks.

000035 01 Customer-Name Pic X(30) Value "John Jones".

Line 35 assigns the value John Jones to the field titled Customer-Name .

You need not specify the trailing spaces when assigning a value to an alphanumeric
data item because COBOL automatically fills the remaining characters of the field
with spaces.

Caution: You should remember that, unlike numeric fields where the numbers of the
Value clause are correctly positioned in the field, alphanumeric items are
left-justified. That is, they start from the left-most position in the field and proceed to
the right. If your field is shorter than you value clause, the right-most characters will
be truncated.

Tip: If you have an alphanumeric field in which you want to repeat a value, for
instance, "*" , you can code the field as either Pic X(20) Value All "*" or

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Pic X(20) Value "********************" .

Literals

Literals are items that are specified explicitly by their values. You have already seen
literals in action. Any of the Value clause items specified earlier are considered
literals. The "Hello World" in your first COBOL program was a literal.
Alphanumeric literals are enclosed within quotation marks, whereas numeric literals
are not.

The following are some examples of numeric literals:

• 1
• 76

• –12.73

The following are some examples of alphanumeric literals:

• "Uncle"

• "Aunt"

• "Computer"

COBOL provides some special-use literals to make programming easier. The values of
these literals are exactly as they sound:

• Spaces . Spaces are blank characters and are part of the alphabetic portion
of the character set used by the computer. Space may be used instead of
Spaces .

• Zeros . Zeros specifies a numeric literal of the value zero. When used with
an alphanumeric field, all characters in that field are changed to a zero.
Zeroes or Zero may be substituted for Zeros .

• Quote . The Quote literal specifies a quotation mark. Most compilers will
accept """" , to indicate a single quotation mark, but this provided literal is
much clearer. Quotes may be substituted for Quote .

• Low-Value . Low-Value is the lowest value of a storage item in the
computer’s collating sequence. It is valid only with alphanumeric fields. When
compared to any other field, Low-Value is always less. The internal
representation of Low-Value in most computers is that of all bits in a byte set
to zero. Low-Value is not equal to either zeros or spaces. Low-Values may
be substituted for Low-Value .

• High-Value . In contrast to Low-Value , High-Value is the highest
value in the computer’s collating sequence. It is valid only with alphanumeric
fields. When compared to any other field, High-Value is always greater. The
internal representation of High-Value in most computers is that of all bits in
a byte set to one. High-Value is not equal to either the letter Z or the number
9 unless those characters are the highest characters in the computer’s collating
sequence. High-Values may be substituted for High-Value .

Literals are used throughout the COBOL language. In this book, you will see
numerous examples of their use.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Numeric Edited Fields

When the computer uses numeric fields internally, their representation does
not much matter to the programmer. However, when these numbers are
reported to the user in output from the program, their appearance becomes
very important. COBOL provides some very powerful tools for editing
numeric fields for either printing or display.

Numbers that are edited are much easier to read than numbers that aren’t. For
example, 123999873.32 is not as easy to read as 123,999,873.32 .
With computers, if you don’t edit the numbers, a large numeric field might
appear to the user as 0000000019.99 . In COBOL you can edit this field to
appear as 19.99 .

When a number is moved to a numeric edited field, the computer treats that
number as an alphanumeric field. You cannot reference the numeric edited
field as a number within your program except as the object of a move or
compute statement (as discussed in Hour 5, “Procedure Division ”).
Numbers moved to numeric edited items remain right justified. This feature is
particularly useful because columns of numbers should remain aligned on a
printed report.

Table 3.3 shows the difference between edited and unedited numbers.

Table 3.3 Edited and Unedited Numbers

Edited Numbers Unedited Numbers

123,456.78 00012345678

1,000.00 000100000

12.99 000001299

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Table 3.4 shows how much easier aligned numbers are to read in a column
compared to nonaligned numbers.

Table 3.4 Aligned and Nonaligned Numbers

Aligned Numbers Nonaligned Numbers

123,456.78 123,456.78

1,000.00 1,000.00

12.99 12.99

Several Picture clause values can be used to edit a number.

. Inserts a decimal point at the position of the
implied decimal point

Z Indicates zero suppression
* Indicates zero suppression and replaces the

zero with an *
- or + Indicates negative or positive sign
CR or DB Indicates credit or debit balances
$ Indicates the currency symbol
B Indicates a blank fill character
/ Inserts a slash character in the representation

of a numeric field
0 Inserts a zero character
, Inserts a comma character

The . Picture item shows the decimal point in a numeric field. When
coded, the . takes the place of the implied decimal point in a numeric field.

The Z Picture item indicates zero suppression of digits. When a Z is used
and the number in that position is a zero, a blank or space is placed in the field
instead. Once the first nonzero value is encountered, no further Z characters
are replaced with blanks.

000036 01 Edited-Number Pic ZZZZZ.
000037 01 Edited-Number-Also Pic Z(5).

Lines 36 and 37 have the same representation. Like the X and 9 items of the
Picture clause, the Z item may be repeated by using the parenthetical
notation for the number of positions to occupy with the Z.

For example, if a numeric field contained 000010.01 and it was moved to a
field defined as Pic ZZZZZZ.ZZ , the actual value in the field would be "
10.01" . Note the four leading spaces and the fact that the 0s after the initial
1 are not replaced with spaces. Instead of coding ZZZZZZ.ZZ , you could
code Z(6).ZZ .

The * performs a similar zero suppression. The only difference is that instead
of replacing the zeros with spaces, they are replaced with * . An item with a

numeric value of 10.00 and a picture of *(5) .** would have a value of
***10.00 .

The – item indicates the position of the sign. If the number is negative, then
the – appears. If the number is positive, the – is not displayed and a space
appears instead. You may use multiple – characters in a single picture clause.
This notation will both zero suppress and place the – sign in the right-most
position that contains a – sign. Consider the following:

000038 01 Edited-Number Pic –9(5).
000039 01 Edited-Number-Also Pic ----9.
000040 01 Edited-Number-Too Pic –(4)9.
000041 01 Edited-Number-Again Pic 9(5)-.

If the number 10 were placed in these fields, line 38 would appear as "
00010" . Note the leading space. Line 39 would appear as " 10" .

If negative 10 were in these fields, line 38 would appear as "–00010" and
line 39 as " –10" . Line 40 depicts exactly the same representation as line 39.
Line 41 shows the sign trailing the field. If the field contained a negative 10 , it
would appear as "00010–" .

The + item works similarly to the – item. The + displays a – sign if the field is
negative and a + sign if the field is positive.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The CR and DB items are related. Each takes two positions and must be
specified either at the beginning or at end of the data item. In either case, if the
number is negative, the CR or DB appears. If the number is positive, the CR or
DB does not appear. This feature is especially useful for credit or debit
balances. If a person owes a negative amount, he or she has a credit, or CR. A
transaction is applied to that account might be a negative number and show as
a debit, or DB.

Table 3.5 illustrates some examples of debit and credit usage.

Table 3.5 Credit and Debit Edited Fields

Value Edited Field Appearance

12345.00 Pic 9(5).99DB 12345.00

12345.00– Pic 9(5).99DB 12345.00DB

12345.00 Pic 9(5).99CR 12345.00

12345.00– Pic 9(5).99CR 12345.00CR

The $ Picture item indicates currency. Like the Z, * , and –, the $
performs zero suppression. You may repeat the character at the start of a field
to “float” the dollar sign along with the numbers, or you may code a single $
and have it fixed in position.

000042 01 Dollar-Field Pic $$$$$.99.
000043 01 Dollar-Field-Too Pic $9999.99.

If each of these fields contained 10.00 , the first would appear as "$10.00"
and the second as "$0010.00" . The $ sign appears by default, but if your
country uses a different symbol for its currency, you may use the
Special-Names paragraph to change the character that appears. The $ is

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

still used to indicate that currency in your picture clause.

Caution: When using the $, realize that the field is always displayed with at
least one leading $. Consequently, if you define a field as $$$.00 and
move 100 into the field, the 1 does not display and the field appears as
$00.00 .

The B (blank), / (slash), comma (,), and 0 characters all behave in the same
manner. They are insertion characters (see Table 3.6) and appear in your
numeric field exactly where coded. They are not replacing values in your
numeric field, but are instead inserting characters.

Table 3.6 Insertion Characters in Numeric Fields

Numeric Value Picture Appearance

12311999 99/99/9999 12/31/1999

123456 999,999 123,456

1234 999900 123400

4095551212 9(3)B9(3)B9(4) 409 555 1212

Alphanumeric Edited Fields

It is also often useful to apply edit patterns to alphanumeric fields. COBOL
provides several edit patterns to make that job easy.

• B to insert a blank character

• / to insert a slash

• 0 to insert a zero

Just as in the numeric data fields, the B, / , and 0 insert these characters
wherever they are encountered. See Table 3.7.

Table 3.7 Insertion Characters in Alphanumeric Fields

Alphanumeric Value Picture Appearance

MMDDYYYY XX/XX/XXXX MM/DD/YYYY

ABCDEFG XBXBXBXBXBXBX A B C D E F G

ABCDEF X0X0X0X0X0X A0B0C0D0E0F

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Group and Elementary Level Items

These levels are basically two methods of referencing items that are defined in
the Data Division . You may reference either an Elementary or Group
level item. Group Level items have subordinate Elementary Level items. Any
item that has items with subordinate level numbers under it is a Group Level
item. The compiler treats Group Level items as alphanumeric variables. Any
item with a final definition, with no further subordinate items, is an Elementary
Item.

000044 01 Numeric-Fields.
000045 03 Field-1 Pic 9(5).
000046 03 Field-2 Pic 9(5).

In this example, line 44 represents the Group Level item. It is made up of two
elementary items: Field-1 and Field-2 . Either the Group Level item or
the elementary items may have a Value clause, but not both. The rules for the
Value clause at the Group Level are the same as those for alphanumeric
items.

Caution: Using the Value clause at the Group Level is strongly
discouraged. It is an easy way to get nonnumeric data into numeric data
fields that appear under the Group Level. No examples or exercise in this
book assign a value to a Group Level Item.

Notice that subordinate items have higher level numbers. Consider this
example:

000047 01 Numeric-Fields.
000048 03 Amount-Fields.
000049 05 Amount-1 Pic 9(5)v99.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000050 05 Amount-2 Pic 9(5)v99.
000051 03 Quantity-Fields.
000052 05 Quantity-1 Pic 9(5).
000053 05 Quantity-2 Pic 9(5).

Line 47 is a group field composed of four elementary items. Lines 48 and 51
are also group fields: They are made up of two elementary fields each.

Tip: In the preceding example, the level numbers are aligned and indented.
This common practice is highly recommended. The compiler is perfectly
capable of figuring out the levels based solely on the level numbers;
however, the programmer would have trouble reading the program if all the
level numbers started in the same column.

Listing 3.1 demonstrates the use of Group and Elementary Levels.

Listing 3.1 Demonstrate Group and Elementary Levels

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt03a.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Hello-Text.
000011 03 Part-One Pic X(6) Value "Hello ".
000012 03 Part-two Pic X(5) Value "World".
000013 Procedure Division.
000014 Chapt03a-Start.
000015 Display Part-One.
000016 Display Part-Two.
000017 Display Hello-Text.
000018 Stop Run.

In Listing 3.1, when the elementary item Part-One is displayed, the word
"Hello" appears. When the elementary item Part-Two is displayed, the
word "World" appears. But when the Group Level item, Hello-Text is
displayed, you see the entire group, "Hello World" , displayed.

Level numbers 02-49 must define elements under a Group Level. Each can
be its own subgroup level if it has further subordinate elementary items under
it. You may skip any level numbers you desire, so long as each subordinate
item starts with a higher level number than the group that contains it.

Figure 3.1 The output from Listing 3.1.

javascript:displayWindow('images/03-01.jpg',791,505)
javascript:displayWindow('images/03-01.jpg',791,505)

Level 01 is unique among the first 49 level numbers in that it can start a group
definition or it may be an elementary item on its own. The first examples
earlier in this hour used level number 01 as an elementary item.

Level 77 items are the same as level 01 elementary items. Level 77 items
must be elementary items, may not be part of a group, and may not define a
group. They must stand alone.

When you need to define a data item, but you do not need to directly reference
it, or when you need to just reserve some space for future expansion, COBOL
allows you to use the reserved word Filler . Filler is essentially what it
sounds like. It is an area that is defined and takes up space, but has no
associated data name. If you wanted to define a Group Level item that
contained a first and last name separated by a space, you could use a Filler
item.

000020 01 Full-Name.
000021 03 First-Name Pic X(20).
000022 03 Filler Pic X Value Spaces.
000023 03 Last-Name Pic X(30).

Note that you may assign a value to a Filler item, just as with any other
elementary item.

Caution: When defining a Filler item, the word Filler is optional.
However, I suggest that you code the word whenever you define Filler
area. I find programs that omit the word very hard to read.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Using Data Types in a Program

The next program uses some of the data types described in this lesson. To use these items, you must first
define them in the Working-Storage Section of the Data Division .

Working-Storage is an area defined in your COBOL program for use by your program, only while
your program is running. Any data that you want to reference internally in your program that does not come
from an outside source, such as a file, is defined in Working-Storage .

Tip: Fields defined in Working-Storage can be as organized or disorganized as you allow them to be.
However, programming is easier if you place like fields into groups. Having similarly used fields scattered
about Working-Storage makes the program harder to maintain later.

Edited fields may have a Value clause associated with them. However, these are rarely used. Edited fields
are treated as alphanumeric items, and thus your Value clause must consist of an alphanumeric item. If
your value does not match the pattern of the edit, the program will still use the “invalid” Value clause
contents.

The edit patterns defined for an edited numeric or alphanumeric data item are applied when data is moved
into the fields with a Move statement. The Move statement is discussed in detail later in the book. This
session uses simple Move statements.

The Move statement causes the first data item to be moved into the second data item.

000050 Move Field-1 To Field-2.

In this example, the contents of Field-1 are moved into Field-2 . If Field-2 is an edited data item,
then the edit pattern specified in your picture clause is applied.

Open the Fujitsu COBOL editor, following the same steps outlined in Hour 2, “Writing Your First Program
in COBOL.” Enter the following program shown in Listing 3.2.

Listing 3.2 Demonstrate Edited Fields

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt03b.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Group-Level-Item.
000011 05 Elementary-Numeric Pic 9(7) Value 12345.
000012 05 Elementary-Numeric-Dec Pic 9(5)v99 Value 123.45.
000013 05 Elementary-Numeric-Sign Pic S9(5)v99 Value -123.45.
000014 01 Edited-Group-Item.
000015 05 Elementary-Zero-Sup Pic Z(6)9.
000016 05 Elementary-Aster-Sup Pic ******9.
000017 05 Elementary-Edited Pic Z,Z(3),Z(3).
000018 05 Elementary-Edited-Dec Pic Z,Z(3),Z(3).99.
000019 01 Group-Alphanumeric-Item.
000020 05 Elementary-Alphanum Pic X(20)
000021 Value "ABCDEFGHIJKLMNOPQRST".
000022 05 Elementary-Alphanum-A Pic X(6)
000023 Value "UVWXYZ".
000024 01 Group-Alphanumeric-Edited.
000025 05 Edited-Alphanumeric Pic X(3)/X(3)/X(3).
000026 Procedure Division.
000027 Chapt03b-Start.
000028 Move Elementary-Numeric to Elementary-Zero-Sup.
000029 Move Elementary-Numeric to Elementary-Edited.
000030 Move Elementary-Numeric to Elementary-Aster-Sup.
000031 Move Elementary-Numeric-Dec to Elementary-Edited-Dec.
000032 Move Elementary-Alphanum to Edited-Alphanumeric.
000033 Display "1 Group Alphanumeric=" Group-Alphanumeric-Item.
000034 Display "2 Elementary Alpha=" Elementary-Alphanum.
000035 Display "3 Elementary Alpha A=" Elementary-Alphanum-A.
000036 Display "4 Edited Alphanumeric=" Edited-Alphanumeric.
000037 Display "5 Group Level Item=" Group Level-Item.
000038 Display "6 Elementary Numeric=" Elementary-Numeric.
000039 Display "7 Elementary Numeric Dec=" Elementary-Numeric-Dec.
000040 Display "8 Elementary Numeric Sign=" Elementary-Numeric-Sign.
000041 Display "9 Elementary Zero Sup=" Elementary-Zero-Sup.
000042 Display "10 Elementary Aster Sup=" Elementary-Aster-Sup.
000043 Display "11 Elementary Edited=" Elementary-Edited.
000044 Display "12 Elementary Edited Dec=" Elementary-Edited-Dec.
000045 Stop Run.

Notice the spacing to align the data names. This type of source formatting is entirely up to you. In this
example, the data items are aligned to make the source easier to read. The number of spaces between the
display literal and the data item does not affect the actual display. Although at least one space must separate
items, the compiler ignores any other spaces.

Each Display statement in this example actually displays two items. The first is an identifying
alphanumeric literal, and the second is the data item.

Save the program as CHAPT03B.COB in your TYCOBOL folder. You might have to reselect that folder.
The name is very important. Make sure that the Program-Id is CHAPT03B. After saving the program,
close the editor and then compile and link the program as you did in Hour 2. If you have any compiler error
messages, remember that you can position the cursor at the start of the line in error and press F11 to
position the editor on the actual source line in error. When you get a clean compile and link, run the
program.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When The console window is closed message appears, move it
down and to the right so you can examine the output of your program.

Figure 3.2 Output from Listing 3.2.

Refer to your output and take note of the following:

• Line 1 shows the entire alphanumeric group item
Group-Alphanumeric-Item made up of the two elementary items
Elementary-Alphanum and Elementary-Alphanum-A . As
you can see from the display, the Group Level is treated as a single
alphanumeric variable.

• Lines 2 and 3 show the individual elementary items that make up the
alphanumeric group: Elementary-Alphanum and
Elementary-Alphanum-A .

• Line 4 demonstrates the insertion of the / characters by the edit
pattern. Note that the / does not replace any letters in
Elementary-Alphanum . Also, notice that the entire elementary
item that was moved to the edit pattern is not displayed. The move
operation stopped when the field you were moving to, also known as the
receiving field, was full.

• Line 5 is perhaps the most interesting. Notice how all the numbers
appear on one line. The group item is made up entirely of numeric
elementary items. No decimal points appear because the decimal
position is implied by the v . Another interesting observation is that the
last character is a U. The computer stores the negative sign within the
same byte as the last number in the numeric item, and when this strange

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-02.jpg',791,505)
javascript:displayWindow('images/03-02.jpg',791,505)

value is translated into a display character, it ends up being a U.
Consequently, you should be very careful with your references to
numeric items and to the groups that might contain them.

• Line 6 shows the first elementary numeric item. The leading zeros are
displayed, even though they were not specified in the Value clause.
The computer handles that for you.

• Line 7 shows the second elementary numeric item. This item was
specified with a decimal point, and yet none is displayed. In this case,
the decimal point position is implied and does not take up a storage
position.

• Line 8 is the display of the field with a negative value. The Fujitsu
compiler converts the item, and the sign is displayed. Other compilers
may not be this forgiving. Some would display the same thing you saw
in the display of the Group Level item containing the numeric fields.

• Line 9 demonstrates your first use of a numeric edited field. The
leading zeros are suppressed, that is, replaced by spaces.

• Line 10 also is an example of a numeric edited field, but this time the
leading zeros are replaced by the * character. Refer to your source code
and see why.

• Line 11 shows the insertion of the , edit character. Although you
specified other commas, those that would have appeared between
leading zeros have been replaced with spaces by the compiler. This
capability is a very powerful editing feature of COBOL.

• Line 12 shows the combination of zero suppression and the placement
of the decimal point. If you had specified the picture clause to be Pic
ZZZZZ.999 , the number would have been displayed as " 123.450" .
The compiler automatically aligns the decimal point at the position of
the implied decimal in the item being moved to the edited field.

Summary

In this hour, you learned many things that will be the foundation for your
future COBOL programming.

• The meaning of the Picture clause

• The various types of data items: numeric and nonnumeric literals,
numeric fields, alphanumeric fields, numeric edited fields, and
alphanumeric edited fields

• The Value and Usage clauses

• The meaning of different level numbers

• The difference between an Elementary and a Group Level item

• How to apply powerful editing to numeric and alphanumeric fields

• How to handle signs and decimal points

Q&A

Q What is the purpose of the Picture clause?

A The Picture clause describes the type of data item to be used in a
COBOL program.

Q Can Group Level items be numeric?

A No, Group Level items are always handled as alphanumeric items by the
compiler.

Q What is the maximum size of a numeric item in COBOL?

A Cobol is limited to 18 digits. It does not matter on which side of the decimal
point these numbers appear. The total number of digits may not exceed 18.

Q Where are data items defined in a COBOL program?

A Data items are always defined in the Data Division . Any item
referenced by your COBOL program must either be a special variable defined
by the COBOL language or declared in the Data Division .

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 4
Basic User Interface
In Hour 3, “Different Data Types,” you learned about the various types of
fields available in a COBOL program and a little bit about how to use them.
The data used by your COBOL programs is useful only when presented to an
end user, the person for whom your program was written. To that end, some
interface with the user must exist. This hour focuses on aspects of the user
interface, including

• Definitions of and the differences between batch and interactive
processing

• Using the keyboard and screen to interface with the user

• Using the COBOL Screen Section to interact with the user

Interfacing with the User

You cannot create a useful program unless you are able to interact with the
user. Your user may be a person who runs your program, or another program
or process that passes information to your program for processing.

Until recently, the COBOL language did not have a built-in method for
interfacing with a human user. By using add-on tools, provided by different
vendors, you may add simple or complex user interfaces to your programs.
COBOL, historically used to process large volumes of business data, did not
initially need a way to gather data from a human user. The invention of the
desktop personal computer changed all of that.

Batch Versus Interactive Processing

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Traditionally, computers processed data in large batches. The transactions
were gathered together in groups, and then these files of transactions were
applied to a master file. Processes with the sole function of reading input data
and writing related output are called batch processes. Batch processes
typically run without any human interaction.

Interactive processing involves a user interacting with a program, somewhat
like having a conversation with the computer. This type of give and take with
the user, accepting data and displaying results, is called interactive processing.
In the early days of COBOL when the language was available only on large
mainframe computers, special methods were developed to communicate
between the user and the COBOL program. One of the more successful and
prevalent in the IBM mainframe world is called Customer Information Control
System, or CICS. CICS is still in use; it relies on a special IBM-defined syntax
for the program to communicate with CICS, which communicates with the
user.

The Screen Section

COBOL compilers were available with the very first PCs. Having no user
interface, the different compilers made use of some vendor-specific extensions
to the Display and Accept verbs.

Note: In reference to COBOL, a verb and a statement are synonymous.

The one revision to the ANSI COBOL standard that has been completed since
the invention of the PC did not address the user interface. The different makers
of compilers for the PC used different methods for addressing the user
interface problem. Before graphical user interfaces came on the scene, a
normal text mode interface, similar to that utilized on large mainframe
computers was used. However, the differences among the different compilers
made it difficult to transition from one COBOL to another. This problem with
the user interface is virtually the only issue that prevents COBOL from being a
truly unrestricted cross-platform-compatible programming language.

COBOL was and is also in heavy use on UNIX systems. The X/Open
committee concerned itself heavily with UNIX issues and worked with the
different compiler vendors to develop a standard for the text mode user
interface. The result of this standard is the Screen Section .

The Screen Section , not being part of the current ANSI standard, is not
implemented exactly the same way among the different compiler vendors, nor
do all of them use it. However, it has gained enough usage to be a part of the
new COBOL standard currently under consideration.

Note: The Screen Section provides a more than adequate user
interface for the programs in this book and for learning COBOL. Most PC
compilers support some minor variation of the Screen Section . Even if
you are not using the Fujitsu compiler that comes with this book, you should
be able to compile and run the examples and exercises with minor
modifications.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Elements of the Screen Section

The Screen Section appears in the Data Division , after the
Working-Storage Section . A Screen Section may have several
screen descriptions. A screen description has several elements. The first is the
screen literal, which is where you want textual information to appear onscreen;
no user entry is necessary. Another element is data you want to display, but not
allow the user to change. A third element is data that you want to display and
preserve. In this case, the user keys into a field on the screen, corresponding to
the same screen location, but the data is stored in a different location in
Working-Storage . The last element of a screen description is a field that
you want to update. In an update field, an initial value is displayed for the user
and is then updated.

The Screen Section works by using simple Display and Accept
statements. A screen is first displayed, and then the same screen definition is
accepted and the input is processed.

The first portion of the screen description is a level 01 group item. This item
describes the name of the screen and any special attributes that are to be
applied to the entire screen. If these are specified, they will be applied to all
subordinate items in this screen. These special attributes are

• Blank Screen

• Foreground-Color

• Background-Color

• Sign

• Usage

• Auto

• Full

• Secure

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Required

The Blank Screen clause clears the screen.

The Foreground-Color and Background-Color clauses specify the
colors for the display. Valid colors are described with integer values between
0 and 7. (See Table 4.1.)

Table 4.1 Display Color Values

Color Numeric Value

Black 0

Blue 1

Green 2

Cyan 3

Red 4

Magenta 5

Brown 6

White 7

The behavior of the Sign clause was described in Hour 2, “Writing Your First
Program in COBOL.” If used at the group level of a screen description, this
clause causes all numeric signed fields to store the sign as specified
(Separate , Leading , or Trailing).

The behavior of the Usage clause was discussed in Hour 3. Applying the
Usage at the group level of a screen description reduces the need for
repetitive specification of the Usage on numeric items.

The Auto clause causes the cursor to skip to the next field onscreen when you
have keyed all available data into the field where the cursor is located. Using
the Auto clause makes data entry much easier for the user. When Auto is
specified, if the last field onscreen is filled, the Accept will be terminated.

Using the Full clause requires the user to fill the entire field before
advancing to the next field. For alphanumeric items, a character must be input
into the first and last positions of the field. For numeric items, zeros or a
number must be input into each position of the field. If the field is zero
suppressed, only those digits not suppressed are required entries.

The Full clause is ignored if the Accept operation is terminated with a
function key.

Secure allows the screen to accept user input, but does not display the
characters that are entered. It is useful for password entry.

Required forces the user to enter at least one character into each input or
update field in the associated screen description. Like the Full clause, if a
function key terminates the Accept , the Required clause is ignored.

In the following example, a Group Level screen description entry requires the

user to enter a value in each input field and automatically advances to the next
field when each field is full. The foreground color is white, and the
background color is blue. The screen is cleared when this screen description is
displayed.

000020 Screen Section.
000021 01 My-Main-Screen
000022 Blank Screen, Auto, Required,
000023 Foreground-Color is 7,
000024 Background-Color is 1.

Note: The commas used as punctuation in the example are optional. The
COBOL compiler ignores them when compiling your program. You may
spread the clauses over multiple lines, terminating the level with a period.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Screen Literals

Screen literals are specified using their values and the Line and Column numbers at which
they are to appear. No Picture clause is coded for a screen literal. A data name may follow the
level number of a literal, or you may use Filler . If no data name is specified, Filler is
assumed. In addition to the Line and Column , the following special clauses may be applied.
The clauses that are the same as those for Group Level screen description entries follow the
previously discussed rules.

• Blank Screen

• Blank Line

• Erase

• Foreground-Color

• Background-Color

• Blink

• Highlight

• Lowlight

• Reverse-Video

• Underline

• Bell

The Blank Line clause causes the line on which the elementary screen item appears to be
cleared before the screen is displayed.

The Erase clause is followed by one of two values. EOL causes the erase to clear from the
beginning column of the screen item to the end of the line. EOS causes the screen to be cleared
from the beginning of the screen item to the end of the screen.

Blink causes the associated screen item to blink onscreen.

Highlight causes the associated screen item to be highlighted, or brightened, onscreen.

Lowlight causes the associated screen item to be dimmed. If the system does not support the
dimming of an item, standard intensity is used. For a PC, this is the case.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Reverse-Video reverses the values of the foreground and background colors of screen items.

Underline causes the screen item to appear underlined on systems that support the underlined
display attribute. The Fujitsu compiler on the PC supports the use of the Underline clause.

The Bell clause causes a beep or bell to sound when the screen item is displayed. It can be used
to get the attention of the user.

The Line Number and Column Number clauses specify the line and column position of the
first character in the screen item. The first line on the screen is Line 1 , and the first column is
Column 1 . You may abbreviate the clause by leaving out the word Number, specifying only
Line or Column . The following expanded example shows some screen literals. The first is an
underlined heading line. The next is a name field heading that is highlighted and sounds the bell
when displayed. Take special note of the subordinate level numbers.

000020 Screen Section.
000021 01 My-Main-Screen
000022 Blank Screen, Auto, Required,
000023 Foreground-Color is 7,
000024 Background-Color is 1.
000025 03 Line 01 Column 27 Value "Name and Address Entry"
000026 Underline.
000027 03 Line 3 Column 5 Value "Last Name " Highlight Bell.

Using From

An output item is described using From on an elementary level of a Screen Section screen
description entry. From utilizes an item described in the Data Division and places it on the
display in the position specified and using the attributes specified. The following special clauses
may be specified with an output, input, or update item. Clauses that have already been discussed
follow the previously covered rules.

• Auto

• Required

• Secure

• Full

• Blank Line

• Blank Screen

• Erase

• Foreground-Color

• Background-Color

• Highlight

• Lowlight

• Underline

• Blink

• Bell

• Sign

• Usage

• Picture

• Justified

• Blank When Zero

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The newly introduced items are Picture , Justified , and Blank When Zero . The Picture
clause can be any valid Picture clause. This clause can be extremely useful. You can specify an
edit pattern for field display while having a very different Usage specified for the field.

Blank When Zero is used for numeric or numeric edited item to cause the screen to display the
field as spaces if the value of the item referenced is zero.

The Justified clause (abbreviated Just) has only one possible value, and that is Justified
Right . This clause positions an alphanumeric field into the screen item that may be smaller or
larger. Normally when an alphanumeric item is moved, if it is larger than the destination field, the
right-most characters are lost. By specifying Justified Right , if a smaller item is referenced,
the characters to the left are truncated. If the item being referenced is smaller, then the left-most
positions are filled with spaces.

Listing 4.1 is an example of a Screen Section using From to display two output fields. The first
is a numeric edited field in which the screen displays spaces if the field is zero. The second is a small
alphanumeric item. The third is the same alphanumeric item with Justified Right specified, as
an illustration of its behavior.

Listing 4.1 Demonstrate Screen Section with Justified Right

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt04a.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Dollar-Amount Pic 9(5)v99 Value 12.99.
000011 01 Item-Description Pic X(10) Value "Gold Coins".
000012 Screen Section.
000013 01 Main-Screen
000014 Blank Screen, Auto, Required,
000015 Foreground-Color is 7,
000016 Background-Color is 1.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000017 03 Line 1 Column 35 Value "Item Entry".
000018 03 Line 3 Column 5 Value "Item Value " Highlight Bell.
000019 03 Line 3 Column 16 Pic $$,$$$.99 From Dollar-Amount.
000020 03 Line 5 Column 5 Value "Item Description" Highlight.
000021 03 Line 5 Column 22 Pic x(10) From Item-Description.
000022 03 Line 6 Column 4 Value "Short Description" Highlight.
000023 03 Line 6 Column 22 Pic x(5) From Item-Description.
000024 Justified Right.
000025 Procedure Division.
000026 Chapt04a-Start.
000027 Display Main-Screen.
000028 Stop Run.

The output of this Screen Section shows the edit pattern applied to the numeric field. It also
shows the action of the Justified Right clause. Notice how with the Short Description ,
only the word Coins is displayed, even though the From clause specifies the same data item in both
lines 5 and lines 6 of the display.

Figure 4.1 Example of a Screen Section .

Note: When displaying or accepting a screen description, if no Line and Column numbers are
specified in the Display or Accept statements, then the Line and Column numbers specified for
the elementary items in the Screen Section are used. However, if Line and Column numbers
are specified on the Display statement, then that Line and Column are the offset for the screen
definition. For example, if an item was defined in a screen description to reside at Line 2 and
Column 10 and the display of the screen description was at Line 5 and Column 15 , the item
would appear at Line 6 , Column 24 .

Using To

Specifying To on a screen description elementary item creates an input field. The same special
clauses that are used with From are available with To. When using To, the contents of the field are
not shown on the screen when the screen description is displayed. As data is keyed into the field, it
appears onscreen. However, the next time the screen description is displayed, it does not appear.
Input is accepted into the data items referenced in the screen description by use of an Accept
statement.

000055 Accept Main-Screen.

Caution: Take special care when using Justified Right with an input field. As your data is
keyed into the input field, it will be left-justified, and will not be positioned in the field as you might
expect when using Justified Right . Justified Right is only used to position the field in
the display. When the screen description is accepted, the field, exactly as the user keyed it, will reside
in the target field. I suggest that Justified Right clause be used sparingly, if at all.

To and From can be used together for the same screen description elementary item. Doing so causes
one item from the Data Division to be displayed while accepting data into a different data item.
This approach can be used to preserve the original display field.

000032 03 Line 6 Column 22 Pic x(5) From Item-Description
000033 To New-Item-Description.

javascript:displayWindow('images/04-01.jpg',798,532)
javascript:displayWindow('images/04-01.jpg',798,532)

Using Using

When Using is specified, an update item is created. An update item displays and accepts input into
the same data area. Any changes are shown when the screen description is next displayed. An update
item may have the same special clauses as input and output items. Using allows you to use a single
data item for display and update by the user.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Special-Names Paragraph

When using the Screen Section , you sometimes have to capture and set
the cursor location. In addition, specific function keys can be activated that
may be detected by your program. If no function keys are activated, the only
key that can terminate the Accept of a screen description is the Enter key.

To capture the cursor and the function keys, you need to make entries in the
Special-Names paragraph of the Configuration Section . These
entries relate the actual cursor position and function key status to
Working-Storage data items that you can reference in the program. The
two special names you will assign are Cursor and Crt Status .

Cursor is the position of the cursor. When you make the Special-Names
entry, you are specifying a data item that contains the row and column of the
position of the cursor. When a screen definition is displayed, the cursor
appears at the field, with the starting position closest to, but not less than, the
row and column specified in the cursor field. The field referenced by the
Cursor special name must be either four or six characters long. If four
characters, the first two are the row and the last two are the column of the
cursor position. If the field is six characters long, then the first three
correspond to the row and the last three to the column.

000005 Configuration Section.
000006 Special-Names.
000007 Cursor is Cursor-Position.
000008 Source-Computer. IBM-PC.
000009 Object-Computer. IBM-PC.
000010 Data Division.
000011 Working-Storage Section.
000012 01 Cursor-Position.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000013 03 Cursor-Row Pic 9(2) value 1.
000014 03 Cursor-Column Pic 9(2) value 1.

Line 6 starts the Special-Names paragraph. Only the last item in the
paragraph should be followed by a period. The Special-Names entry,
Cursor , for example, starts in Area B (column 12).

Note: Some compilers differ in the area of the specifications for the
Cursor Special-Names entry. The cursor position field for the VMS
COBOL compiler DEC/Alpha systems may be either four or five positions
long. If four positions, the first two positions are the row and the last two the
column. If five positions long, the last three are the column number. If you
are not using the Fujitsu compiler, see the language reference provided with
your compiler to determine the proper values for the Cursor
Special-Names entry.

The other Special-Names entry associated with the Screen Section is
Crt Status .

The field assigned to the Crt Status special name is three characters long.
The first two positions provide codes that correspond to the reason for the
termination of the Accept . The system uses the third position for internal
housekeeping and should not be referenced.

It is useful to define this status value as a Group Level item with three
subordinate elementary items corresponding to the three individual return
characters.

000013 01 Keyboard-Status.
000014 03 Accept-Status Pic 9.
000015 03 Function-Key Pic X.
000016 03 System-Use Pic X.

The first character, Accept-Status , contains a 0 if the Accept is
terminated normally, either by the Enter key being pressed or by the last field
in the screen definition being filled when the Auto clause is specified. In this
case, the second character, Accept-Status , contains either a 0 or a 1. A
value of 0 means that the user terminated the Accept by pressing Enter. A
value of 1 means that the user filled the last field of the screen and the
Accept was terminated because the Auto clause was specified.

Accept-Status has a value of 1 or 2 if the accept statement is
terminated by the press of a function key. In this case, the second field
contains a coded value corresponding to the function key that is pressed. A
value of 1 in the Accept-Status field indicates that a default function key
terminated the Accept , whereas a value of 2 indicates a user-defined
function key.

Note: The size and meaning of the Crt Status data item depend on the
COBOL compiler. If you are not using the Fujitsu compiler, check your
documentation for the appropriate size and meanings for the different values.

000005 Configuration Section.
000006 Special-Names.
000007 Crt Status is Keyboard-Status
000008 Cursor is Cursor-Position.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Data Division.
000012 Working-Storage Section.
000013 01 Keyboard-Status.
000014 03 Accept-Status Pic 9.
000015 03 Function-Key Pic X.
000016 03 System-Use Pic X.
000017 01 Cursor-Position.
000018 03 Cursor-Row Pic 9(2) Value 1.
000019 03 Cursor-Column Pic 9(2) Value 1.

Note: Notice the single period after the statements in the Special-Names
paragraph. If you need to specify any other items in the Special-Names
paragraph, remember to use a single period after the last item only.
Additionally, some compilers are sensitive to the order of items listed in the
Configuration Section . If you have trouble compiling the program
under a different compiler, try placing the Special-Names paragraph
after the Source-Computer and Object-Computer paragraphs.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Using the Screen Section in a Program

The simple data entry screen in the following example gathers information about the different sellers in a
consignment store. Before designing any screens, you need to consider the requirements. What kind of data
is to be collected? How is it to be displayed? What do you want the screen to look like? The program
displays a screen and then waits for the user to enter the data. Some default values are provided so that the
user does not need to key everything.

First, decide which items you need to track and the size you want to assign to them. Be very careful to make
the fields large enough without being wasteful. COBOL programmers are always mindful of future
maintenance needs in their programs. Create yours with that in mind, and if you or other programmers have
to modify the program, the task will be easy.

The program tracks the following items for each tenant, using the specified field types and lengths. The
default value to assign is also listed.

• Last Name—Alphanumeric 25 characters

• First Name—Alphanumeric 15 characters

• Middle Name—Alphanumeric 10 characters

• Address Line 1—Alphanumeric 50 characters

• Address Line 2—Alphanumeric 50 characters

• City—Alphanumeric 40 characters

• State or Country—Alphanumeric 20 characters

• Postal Code—Alphanumeric 15 characters

• Home Telephone—Alphanumeric 20 characters

• Work Telephone—Alphanumeric 20 characters

• Other Telephone—Alphanumeric 20 characters

• Start Date—Numeric eight digits, formatted MM/DD/YYYY

• Last Rent Paid Date—Numeric eight digits, formatted MM/DD/YYYY

• Next Rent Due Date — Numeric eight digits, formatted MM/DD/YYYY

• Rent Amount — Numeric six digits, two decimal positions, default $50.00

• Consignment Percentage — Numeric three digits, default 40

Take special notice of the extra space in the Postal Code and Telephone Number fields. Also, notice that the
dates are eight digits long, even though with the slashes they fill 10 display positions.

The required fields are First Name, Last Name, Home Telephone, Start Date, Rent Amount, and
Consignment Percentage. Try to format the screen clearly and neatly, using literals to title the various fields.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Make the entry fields reverse video to differentiate them from the screen literals.

The screen requires a title describing its purpose and a fancy store name. Use Darlene’s Treasures .
Listing 4.2 is one way to code the Screen Section .

Key the following program into the editor and name it Chapt04C.Cob.

Listing 4.2 Screen Section Demonstration

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt04c.
000004* Data entry Screen
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status is Keyboard-Status
000009 Cursor is Cursor-Position.
000010 Source-Computer. IBM-PC.
000011 Object-Computer. IBM-PC.
000012 Data Division.
000013 Working-Storage Section.
000014 01 Keyboard-Status.
000015 03 Accept-Status Pic 9.
000016 03 Function-key Pic X.
000017 03 System-Use Pic X.
000018 01 Cursor-Position.
000019 03 Cursor-Row Pic 9(2) Value 1.
000020 03 Cursor-Column Pic 9(2) Value 1.
000021 01 Screen-Items.
000022 03 Last-Name Pic X(25) Value Spaces.
000023 03 First-Name Pic X(15) Value Spaces.
000024 03 Middle-Name Pic X(10) Value Spaces.
000025 03 Address-Line-1 Pic X(50) Value Spaces.
000026 03 Address-Line-2 Pic X(50) Value Spaces.
000027 03 City Pic X(40) Value Spaces.
000028 03 State-or-Country Pic X(20) Value Spaces.
000029 03 Postal-Code Pic X(15) Value Spaces.
000030 03 Home-Phone Pic X(20) Value Spaces.
000031 03 Work-Phone Pic X(20) Value Spaces.
000032 03 Other-Phone Pic X(20) Value Spaces.
000033 03 Start-Date Pic 9(8) Value Zeros.
000034 03 Last-Rent-Paid-Date Pic 9(8) Value Zeros.
000035 03 Next-Rent-Due-Date Pic 9(8) Value Zeros.
000036 03 Rent-Amount Pic 9(4)V99 Value 50.00.
000037 03 Consignment-Percent Pic 9(3) Value 40.
000038 Screen Section.
000039 01 Data-Entry-Screen
000040 Blank Screen, Auto
000041 Foreground-Color is 7,
000042 Background-Color is 1.
000043 03 Line 01 Column 30 Value "Darlene's Treasures"
000044 Highlight Foreground-Color 4 Background-Color 1.
000045 03 Line 03 Column 30 Value"Tenant Entry Program"
000046 Highlight.
000047*
000048 03 Line 5 Column 01 Value "Name, Last: ".
000049 03 Line 5 Column 13 Pic X(25) Using Last-Name
000050 Reverse-Video Required.
000051 03 Line 5 Column 39 Value "First: ".

000052 03 Line 5 Column 46 Pic X(15) Using First-Name
000053 Reverse-Video Required.
000054 03 Line 5 Column 62 Value "Middle: ".
000055 03 Line 5 Column 70 Pic X(10) Using Middle-Name
000056 Reverse-Video.
000057*
000058 03 Line 6 Column 01 Value "Address 1: ".
000059 03 Line 6 Column 15 Pic X(50) Using Address-Line-1
000060 Reverse-Video.
000061*
000062 03 Line 7 Column 01 Value "Address 2: ".
000063 03 Line 7 Column 15 Pic X(50) Using Address-Line-2
000064 Reverse-Video.
000065*
000066 03 Line 8 Column 01 Value "City: ".
000067 03 Line 8 Column 15 Pic X(40) Using City
000068 Reverse-Video.
000069*
000070 03 Line 9 Column 01 Value "Country/State: ".
000071 03 Line 9 Column 15 Pic X(20) Using State-Or-Country
000072 Reverse-Video.
000073 03 Line 9 Column 36 Value "Postal Code: ".
000074 03 Line 9 Column 50 Pic X(15) Using Postal-Code
000075 Reverse-Video.
000076*
000077 03 Line 11 Column 01 Value "Phone/Home: ".
000078 03 Line 11 Column 13 Pic X(20) Using Home-Phone
000079 Reverse-Video.
000080 03 Line 11 Column 34 Value "Work: ".
000081 03 Line 11 Column 41 Pic X(20) Using Work-Phone
000082 Reverse-Video.
000083*
000084 03 Line 12 Column 06 Value "Other: ".
000085 03 Line 12 Column 13 Pic X(20) Using Other-phone
000086 Reverse-Video.
000087*
000088 03 Line 14 Column 01 Value "Start Date: ".
000089 03 Line 14 Column 13 Pic 99/99/9999 Using Start-Date
000090 Reverse-Video.
000091 03 Line 14 Column 24 Value "Last Paid Date: ".
000092 03 Line 14 Column 40 Pic 99/99/9999 Using Last-Rent-Paid-Date
000093 Reverse-Video.
000094 03 Line 14 Column 50 Value "Next Rent Due on: ".
000095 03 Line 14 Column 68 Pic 99/99/9999 Using Next-Rent-Due-Date
000096 Reverse-Video.
000097 03 Line 15 Column 01 Value "Rent Amount: ".
000098 03 Line 15 Column 14 Pic Z,ZZZ.99 Using Rent-Amount.
000099 03 Line 16 Column 01 Value "Consignment Percent: "
000100 Reverse-Video.
000101 03 Line 16 Column 22 Pic ZZ9 Using Consignment-Percent
000102 Reverse Video.
000103 Procedure Division.
000104 Chapt04c-Start.
000105 display Data-Entry-Screen.
000106 accept Data-Entry-Screen.
000107 Stop Run.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Notice the comment lines (indicated by an * in column 7) that separate the code and make the program
more readable. COBOL also tolerates plain blank lines. The fields are grouped so that the text literal
appears in the screen definition before its associated field. Look at the Value clauses in use and the
special screen colors. Pay special attention to the way that the subordinate data items override the
attributes of the higher levels. If most of a screen is to be one color, you can code that color at the major
Group Level and then override that color for individual fields at the subgroup level or even at the
Elementary item Level.

Tip: When you key this program and compile it, you are liable to have typographical errors. Now is a good
time to get used to correcting these errors from the compile listing. Remember that you can position the
cursor on the first character of an error line and press F11 to jump to the editor screen, where you are
automatically positioned at the source line that is in error. Although your compile listing may seem to
disappear at this point, it hasn’t. You can make your change, realizing that an error, such as a missing period
on one line, can cause errors to be reported on other lines that, in fact, are correct. After making the change,
you can save the program and then exit the editor to return to the compile listing, or you can minimize the
edit window to see the compile listing. Another method is to click on the Window menu and select the
program file you’re working on. Positioning the cursor on the next error and pressing F11 repositions the
cursor in the source edit window. Maximizing the edit window then displays the line in error. Alternatively,
you can choose to tile the two windows.

Caution: When you save your program for the first time, make sure to specify the entire name of the
program file, including the .COB file extension. If you fail to do so, you may not see your program when
you try to reopen it. If that happens, rename the file to have the .COB file extension.

Figure 4.2 Chapt04c screen image.

A better, less verbose way to code the preceding Screen Section is to organize fields with the same
display characteristics under a single group. This way, elements such as Reverse-Video don’t need to
be coded for each elementary item. The following example shows another way to code this Screen
Section .

000038 Screen Section.
000039 01 Data-Entry-Screen
000040 Blank Screen, Auto
000041 Foreground-Color is 7,

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-02.jpg',798,532)
javascript:displayWindow('images/04-02.jpg',798,532)

000042 Background-Color is 1.
000043*
000044 03 Screen-Literal-Group.
000045 05 Line 01 Column 30 Value "Darlene's Treasures"
000046 Highlight Foreground-Color 4 Background-Color 1.
000047 05 Line 03 Column 30 Value "Tenant Entry Program"
000048 Highlight.
000049 05 Line 5 Column 01 Value "Name, Last: ".
000050 05 Line 5 Column 39 Value "First: ".
000051 05 Line 5 Column 62 Value "Middle: ".
000052 05 Line 6 Column 01 Value "Address 1: ".
000053 05 Line 7 Column 01 Value "Address 2: ".
000054 05 Line 8 Column 01 Value "City: ".
000055 05 Line 9 Column 01 Value "Country/State: ".
000056 05 Line 9 Column 36 Value "Postal Code: ".
000057 05 Line 11 Column 01 Value "Phone/Home: ".
000058 05 Line 11 Column 34 Value "Work: ".
000059 05 Line 12 Column 06 Value "Other: ".
000060 05 Line 14 Column 01 Value "Start Date: ".
000061 05 Line 14 Column 24 Value "Last Paid Date: ".
000062 05 Line 14 Column 50 Value "Next Rent Due on: ".
000063 05 Line 15 Column 01 Value "Rent Amount:".
000064 05 Line 16 Column 01 Value "Consignment Percent: ".
000065 03 Required-Reverse-Group Reverse-Video Required.
000066 05 Line 5 Column 13 Pic X(25) Using Last-Name.
000067 05 Line 5 Column 46 Pic X(15) Using First-Name.
000068*
000069 03 Reverse-Video-Group Reverse-Video.
000070 05 Line 5 Column 70 Pic X(10) Using Middle-Name.
000071 05 Line 6 Column 15 Pic X(50) Using Address-Line-1.
000072 05 Line 7 Column 15 Pic X(50) Using Address-Line-2.
000073 05 Line 8 Column 15 Pic X(40) Using City.
000074 05 Line 9 Column 15 Pic X(20) Using State-Or-Country.
000075 05 Line 9 Column 50 Pic X(15) Using Postal-Code.
000076 05 Line 11 Column 13 Pic X(20) Using Home-Phone.
000077 05 Line 11 Column 41 Pic X(20) Using Work-Phone.
000078 05 Line 12 Column 13 Pic X(20) Using Other-phone.
000079 05 Line 14 Column 13 Pic 99/99/9999 Using Start-Date.
000080 05 Line 14 Column 40 Pic 99/99/9999
000081 Using Last-Rent-Paid-Date.
000082 05 Line 14 Column 68 Pic 99/99/9999
000083 Using Next-Rent-Due-Date.
000084 05 Line 15 Column 14 Pic Z,ZZZ.99 Using Rent-Amount.
000085 05 Line 16 Column 22 Pic ZZ9 Using Consignment-Percent.

Run the program and experiment with it. Notice that you cannot leave the Last Name field by tabbing or
by pressing the Enter key until you key some data. You must enter some data because Last Name is a
required field. However, the Enter key does work after some data is keyed into the Last Name field,
although First Name is also a required field. The Required attribute is in effect only while the cursor is
on a field that is required. Once the requirement is satisfied for that field, Enter or Tab will work.

Also, note that only numbers may be entered in the date fields. Try to key in some letters and see what
happens. You may key the slashes or omit them as you desire; the fields are always formatted with the
slashes in the proper positions.

Summary

In this hour, you learned

• About the Screen Section and its development

• How to create a screen definition

• How to apply an edit pattern to a field used in a screen definition

• How to use input, output, and update fields

• How to use Special-Names entries to get and control the cursor position and detect function
keys

• Efficient ways of coding a screen definition

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Q&A

Q What are the different elements of the Screen Section?

A A Screen Section is made up of one or more screen definitions. A
screen definition consists of screen literals and input, output, and update fields.

Q What is the difference between using Using and defining a screen
element with both From and To fields?

A Specifying Using causes a field to be displayed and then updated when the
user keys data into the field. Specifying From and To causes data to be
displayed from one field but accepted into another.

Q How can the position of the cursor be determined?

A As you write more complex programs, you will need to know which field
the cursor was on last and how to position it there. When using a Screen
Section , you use the Special-Names paragraph of the
Configuration Section to specify a field in Working-Storage for
tracking the cursor position.

Q Can more than one screen definition be present in a program?

A Yes. You can specify multiple screen definitions in a Screen Section .
Start each new definition with a new level 01 group.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 5
Procedure Division
In Hour 4, “Basic User Interface,” you learned about the different types of data
declared within a COBOL program. In this hour, you learn how to use that data in
your programs. The main thrust of any programming language is the manipulation
of the input data. This lesson covers the mathematical and basic data manipulation
statements used in COBOL, such as

• The Procedure Division , where the statements are coded

• Arithmetic statements such as Add, Subtract , Multiply , Divide ,
and Compute

• Simple data manipulation using the Move statement

Procedure Division Organization

The Procedure Division is where everything happens. The Procedure
Division contains all of your procedural code. It is like the mixing instructions
in the recipe analogy used earlier. The prior divisions in the program listed the
ingredients, and the Procedure Division is where they are all combined to
create a programming masterpiece.

Keeping the Procedure Division organized and structured is paramount to
creating a functioning, efficient, and useful program. Very few real COBOL rules
govern the flow of logic within the Procedure Division . The flow that the
program follows is from the top of the Procedure Division down. The
Procedure Division must contain at least one paragraph, and a paragraph or
section name must be the first statement in the division.

Paragraphs

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Remember that COBOL was designed to be as English-like as possible. This
similarity is the source of the term paragraph. Like a good essay, each
programming paragraph should have only one topic.

Paragraphs begin with a name, which starts in Area A (column 8), may be up to
30 characters long, and ends with a period. Under a paragraph, you should have at
least one sentence or statement. Groups of programming statements in COBOL are
referred to as sentences. The diagnostic messages issued by the compiler refer to
your Procedure Division code as sentences.

COBOL statements tell the computer what to do. They start in Area B (column
12). Each statement may end with a period, but the end punctuation is not an
absolute requirement. However, each paragraph must have at least one period.
Misplaced periods cause COBOL programmers no end of headaches. If your
programs are structured, you don’t need more than one period per paragraph.

Note: To enforce the one-period-per-paragraph approach, I suggest that you place
the period in column 12 on a single line at the end of the paragraph. The remaining
examples in this book follow this convention.

Sections

Sections are optional in the COBOL language. A Section in the Procedure
Division is made up of paragraphs. The COBOL standard states that when a
section is coded, the next statement must be a paragraph title. Most compilers, but
not all, ignore this standard and allow sections to be coded without paragraph titles
immediately following.

Sections can be used to group paragraphs. A Section is titled in the same manner
as a paragraph except the name is followed by the word Section . Sections and
their use are discussed again in Hour 10, “Processing Loops.”

Arithmetic Statements

COBOL has a full complement of mathematical functions. These can be used for
the simplest of calculations or for complex, intricate formulas. The five basic
arithmetic statements are Add, Subtract , Multiply , Divide , and Compute .
You can combine these statements to accomplish virtually any arithmetic function
you desire.

The Add Statement

The Add statement has three basic formats: You may add a data item or numeric
literal to an existing data item, you may add any combination of numeric data items
and numeric literals together and store the result in a separate data item, or you may
add a group of elementary items to another group of elementary items.

The first format of the Add statement is the most basic:

000078 Add Data-Item-1 To Data-item-2.

The computer adds all the numbers or data items on the left of the To and stores the

result in a temporary internal area. The computer then adds that temporary variable
to every elementary item it finds to the right of the To and stores the result in the
corresponding field (to the right of the To). Numeric data items or numeric literals
may appear to the left of the To, but only data items may appear to the right. For
example, if the value of Data-Item-1 is 5 and the value of Data-Item-2 is
6, the computer adds the 5 in Data-Item-1 to the 6 in Data-Item-2 and
stores the result in Data-Item-2 , which will then be equal to 11 .

Consider this example:

000079 Add 1 2 3 To Data-Item-2.

The computer adds 1, 2, and 3 together to get 6 and then adds the 6 to the value in
Data-Item-2 . If Data-Item-2 contains 4, after the add is performed, it will
contain 10 .

Here’s another example. Assume that Data-Item-1 contains 10 and
Data-Item-2 contains 20 :

000080 Add 5 To Data-Item-1 Data-Item-2.

After the Add is complete, Data-Item-1 will contain 15 and Data-Item-2
will contain 25 .

You may also add multiple data items to multiple data items. For this example,
Data-Item-1 contains 5 and Data-Item-2 contains 10 :

000081 Add 10 Data-Item-1 To Data-Item-1 Data-Item-2.

Can you determine the values in Data-Item-1 and Data-Item-2 after the
Add is complete? Remember that the items to the left of the To are first added
together and then that result is added to the values in the data items to the right of
the To. Data-Item-1 will contain 20 , and Data-Item-2 will contain 25 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

There are some other issues to consider when adding. What happens if you are adding values with differing
decimal positions? For example, you could add an item with three decimal positions to an item with two. In
the examples shown thus far, the extra decimal position would be dropped. If 10.126 is added to 10.00 ,
the result is 20.12 . This outcome may not always be desirable. Rounding may be applied to your Add
statement by coding the word Rounded after the data items to the right of the To.

000082 Add 10.126 to Data-Item-1 Rounded.

If Data-Item-1 had a value of 10.00 , the result of the addition would be 20.13 . COBOL rounds up,
or “half adjusts.” Any value of 5 or above is rounded up.

Another problem that can occur with addition happens when the value of the field you are adding into
exceeds the size of the field you have defined for the item. For example, suppose you define a field as Pic
99 . If it starts with a value of 60 and you add 45 to it, the new value should be 105 , but because the field
is defined as two positions, the high-order digit (1) is lost. The field would end up having a value of 5
because numbers are processed and stored from right to left. If the numeric field overflows, the left-most
positions are lost.

You can detect this condition when performing an Add operation by coding On Size Error . When you
use this clause, the statements you place after the condition are executed. You may also code a Not On
Size Error clause. If your Add statement has multiple data items, the field that caused the size error is
not changed, but the other fields are.

The Add statement will be complete when the compiler encounters a period, an End-Add , or a new
programming statement that is not part of a size error clause. You are encouraged to use the End-Add
explicit scope terminator portion of the Add statement whenever you use the Size Error or Not On
Size Error clauses.

 End-Add is the explicit scope terminator for the Add statement. An explicit scope terminator is
a phrase used to terminate a COBOL statement. Many COBOL statements allow the use of the explicit scope
terminator. Each terminator begins with the word End followed by a dash and the name of the statement being
terminated. Statements that allow explicit scope terminators are pointed out in the relevant discussions.

The following example adds one number to another and displays the completion status of the Add
statement.

000088 Add Data-Item-1 to Data-Item-2
000089 On Size Error
000090 Display "Field Overflowed on Add"

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000091 Not On Size Error
000092 Display "The Field did not Overflow"
000093 End-Add

Notice how the Add statement is coded across multiple lines. If you place a period within the Add
statement, the compiler will issue an error message when you compile the program. In addition to the Add
statement , nearly any other valid COBOL mathematical statement may be coded in the Size Error
and Not On Size Error phrases.

The second format of the Add statement allows you to add a list of data items or literals and store the result
in another data item. In contrast to the first format, the Add operation does not change the values of the
items being added. You may place the optional word To between data items if you desire, but it is not
necessary.

000093 Add 1, 2, 3, 4, Data-Item-1 To Data-Item-2 Giving Data-Item-3
000094 Add 1, 2, 3, 4, Data-Item-1, Data-Item-2 Giving Data-Item-3

The results of lines 93 and 94 are the same. Assuming Data-Item-1 contains 10 and Data-Item-2
contains 5, Data-Item-3 will contain 25 when the Add operation is complete. A temporary variable
holds the intermediate results, and that value is moved into the data item specified after Giving . The
result of the Add statement in this format may be either a numeric data item or a numeric edited data item.
The Rounded and Size Error phrases are available when using this format of the Add statement.

Note: The commas in lines 93 and 94 make the statements easier to read. COBOL allows you to punctuate
your code with commas for readability but ignores the commas when compiling.

Tip: If you need to store the result of the Add statement in multiple data items, you may specify more than
one Giving data item. For example: Add 1, 2, 3, 4 Data-Item-2 Giving Data-Item-3,
Data-Item-4 .

The third format of the Add statement is perhaps the most interesting. If you define two groups of
elementary numeric items, you can add the values of each of the members in one group to each of the
members in the second group. Consider this portion of code:

000020 Working-Storage Section.
000021 01 Field-Group-1.
000022 03 FG-First Pic 9(2) Value 1.
000023 03 FG-Second Pic 9(2) Value 2.
000024 03 FG-Third Pic 9(2) Value 3.
000025 01 Field-Group-2.
000026 03 FG-First Pic 9(2) Value 10.
000027 03 FG-Second Pic 9(2) Value 20.
000028 03 FG-Third Pic 9(2) Value 30.
000029 Procedure Division.
000030 Required-Paragraph.
000031 Add corresponding Field-Group-1 To Field-Group-2
000032 Stop Run
000033 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Add Corresponding causes FG-First to be added to FG-First in the second group, then
FG-Second to FG-Second of the second group, and so on. The results of the operation are that
FG-First of Field-Group-2 contains 11 , FG-Second of Field-Group-2 contains 22 , and
FG-Third of Field-Group-2 contains 33 .

How can this be? How can two elementary items have the same name? In COBOL, elementary items can
have the same name if the items are under different groups. (Under the same group level, the elementary
items must all have unique names.) If you need to reference the elementary items in your program, you have
to specify the elementary item name and the group to which it belongs. For example, to display FG-Third
in the second group, you would code Display FG-Third Of Field-Group-2 .

If you do not specify a group for the field, the compiler issues an error, reminding you to do so, as it cannot
figure out which field you mean. Because of this extra required coding, I recommend that you keep your data
item names unique except when you are using the Corresponding phrase. Corresponding is also
available with statements other than Add.

When a data name is used in multiple locations in the Data Division , it must be qualified. To qualify a
data name, use the word Of (or In) and specify the group under which the item is declared.

The Rounded and On Size Error phrases are available with this format of the Add statement.

The Subtract Statement

The syntax and rules for the Subtract statement are virtually identical to those for the Add. The
differences are that (1) From is used instead of To and (2) that with the first format all data items to the left
of the From are added in a temporary variable and then subtracted from the data items on the right side of
the From. The Rounded and Size Error phrases are available with the Subtract statement as is the
End-Subtract explicit scope terminator.

For this example, assume that Data-Item-1 contains 20 and that Data-Item-2 contains 30 .

000100 Subtract Data-item-1 From Data-item-1 Data-Item-2.

After this subtraction is complete, Data-Item-1 will contain 0 and Data-Item-2 will contain 10 .

Caution: When doing subtraction, keep the sign in mind. If your data item is not a signed field, the sign will be
lost. For example, if Data-Item-2 is defined as Pic S99 and contains 10 and 20 is subtracted from it, the
value of the field will be -10 . However, if Data-Item-2 is defined as Pic 99 and 20 is subtracted, the
result will be 10 . The sign is lost. Coding for Size Error does not capture this condition. Only digit
overflow is captured by Size Error .

In the following example, Data-Item-1 contains 1, and Data-Item-2 contains 10 .

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000101 Subtract 1, Data-Item-1 From Data-Item-2 Giving Data-Item-3.

When this subtraction is complete, Data-Item-1 and Data-Item-2 will still contain their original
values. The value of Data-Item-3 will be 8.

The Multiply Statement

The syntax of the Multiply statement is similar to that of Add and Subtract . Instead of To and From,
the Multiply statement uses By.

000102 Multiply Data-Item-1 By Data-Item-2.

The result of the multiplication is stored in the data items to the right of the By—Data-Item-2 in this
example.

Only one data item may appear to the left of the By in a Multiply statement; however, multiple data items
may appear to the right. The item to the left of the By is multiplied in turn by each item on the right, and the
result is stored in each data item on the right. In the next example, Data-Item-1 contains 4 and
Data-Item-2 contains 5.

000103 Multiply 4 By Data-Item-1, Data-Item-2.

The results of this statement are 16 in Data-Item-1 and 20 in Data-Item-2 .

The second format for the Multiply statement utilizes the Giving phrase. The two operands on either
side of the By are multiplied and the result is stored in the data items after the Giving phrase.

000104 Multiply 4 By 5 Giving Data-Item-1, Data-Item-2.

Data-Item-1 and Data-Item-2 will both contain 20 after the multiplication is complete. The
Rounded and Size Error phrases are available with the Multiply statement, as is the
End-Multiply explicit scope terminator.

000105 Multiply Data-Item-1 By Data-Item-2 Giving Data-Item-3 Rounded
000106 On Size Error Display "Multiplication Error"
000107 Not On Size Error Display "No Multiplication Error"
000108 End-Multiply

If multiple fields follow Giving , only the fields that have a Size Error remain unchanged.

There is no Multiply Corresponding statement.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Divide Statement

The Divide statement has five formats. As in grade school, division can be tricky! Examine
these formats one at a time and look at the examples. Be certain you understand each format
before proceeding to the next. All formats of the Divide statement allow for the use of the
Rounded and On Size Error phrases, in addition to the End-Divide explicit scope
terminator.

The first format is the simplest:

000109 Divide Data-Item-1 Into Data-Item-2.

In this example, assume that Data-Item-1 is 2 and Data-Item-2 is 10 . Data-Item-1 is
divided into Data-Item-2 , and the result stored in Data-Item-2 . In other words, 10 is
divided by 2, and the 5 that results is stored in Data-Item-2 . Multiple data items may appear
to the right of the Into , and each is divided by Data-Item-1 in turn. When On Size
Error is coded, items that cause a Size Error are not changed.

The second format uses the Giving phrase. Like the first format, the data item on the right of
the Into is divided by the data item on the left of the Into , but the result is stored in a third
data item. Multiple data items may be specified after the word Giving .

000110 Divide 5 Into Data-Item-1 Giving Data-Item-2.

If Data-Item-1 contains 10 , then the result of the division is 2, which is stored in
Data-Item-2 . When using Giving , the contents of the two operands are not changed.

The third format is very similar to the second. However, instead of using the word Into , the
word By is used and the functions of the two operands in the Divide are reversed. You are free
to use the syntax and method you most easily understand.

000111 Divide Data-Item-1 By 5 Giving Data-Item-2.

The results of the Divide statement in the example line 111 are exactly the same as those of the
example given as line 110.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The fourth format provides for the capturing of a remainder from the Divide statement. In this
format, only one field can follow the Giving .

000112 Divide 3 Into Data-Item-1 Giving Data-Item-2 Remainder
000113 Data-item-3.

If Data-Item-1 is 10 , the result of this division will be a 3 in Data-Item-2 and the
remainder 1 in Data-Item-000113 .

The final format for the Divide statement is similar to the fourth. However, By is used instead
of Into , and the order of the operands is reversed.

000112 Divide Data-Item-1 By 3 Giving Data-Item-2 Remainder
000113 Data-Item-3.

The results of this division are exactly the same as the previous example.

Caution: You must be very careful when performing division to avoid dividing by zero. The
results are undefined, and most systems cause the program to end abnormally if such a division is
attempted.

The Compute Statement

The Compute statement provides a method of performing a complex calculation in more of an
algebraic or mathematical format. Rounding is available with the Compute , as are the On
Size Error phrase and the End-Compute explicit scope terminator.

Any valid mathematical expression can be used in a Compute statement. For example:

000118 Compute Data-Item-1 Rounded = (Data-Item-2 * 15)
0000119 + (Data-Item-2 * 7).

Multiplication is handled with the * , and division with the / .

Exponents are coded using two asterisks followed by the power. For example, to find out what
36 squared is, you would code:

000118 Compute Data-Item-1 = 36**2.

Caution: When using Compute , be mindful of intermediate results. Different compilers store
the intermediate results of Compute statements in different size fields. This disparity is
especially evident when using division within the Compute statement. If you code Compute
Data-Item-1 = (1 / 3) * 3 and Data-Item-1 is defined as a Pic 9 item, the result
will not be 1 as you might expect, but instead will be 0. That is because the compiler stores the
result of the division 1/3 in an intermediate one-digit field, the same as your destination field.
When the division is performed, the results are less than 1, so 0 is stored in the intermediate
value. When the intermediate field is multiplied by 3, the result is still 0. Even declaring the value
of your destination field with several decimal positions is not sufficient to cure the problem. To
help prevent this occurrence, code the division portion of any Compute statement alone and last.
Coding Compute Data-Item-1 = (3 * 1) / 3 yields the correct result of 1.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Simple Data Manipulation

By using the arithmetic functions of COBOL, you are already manipulating
some data. Manipulating data is the main thing that programs do. Input is
processed, and results are produced. Mathematical statements cause the
contents of data items to be changed. Another very frequently used method of
manipulating data is to move it from one field to another. Advanced data
manipulation is covered in Hour 6, “Manipulating Data.”

The Move Statement

The Move statement moves data from one field to another. The simplest
version of the statement is as follows:

000119 Move Data-Item-1 To Data-Item-2.

This Move transfers the data in Data-Item-1 to Data-Item-2 . The field
to the left of the To is the sending field, and the field or fields to the right of
the To are the receiving fields. The receiving field may not be a literal, but the
sending field may be. How the Move actually occurs depends on the types of
fields defined.

The simplest Move is from alphanumeric item to alphanumeric item. When
this Move is performed, the individual characters of the sending field are
moved one at a time, from left to right, into the receiving field. If the sending
field is longer than the receiving field, then the extra characters are not moved.
The result is said to be “truncated.”

000120 Move "ABCDE" To Field-4.

If Field-4 is defined as Pic X(4) , then the result of this Move is
"ABCD" in Field-4 . As you can see, you may move literals or data items.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

If the receiving alphanumeric field is longer than the sending field, the extra
trailing characters are filled with spaces.

000121 Move "AB" To Field-4.

Assume that before the Move operation Field-4 contains "WXYZ". After
the Move, Field-4 will contain "AB " .

You may specify more than one receiving field with the Move statement.
When you do so, the sending field is first moved to a temporary area, and then
that temporary area is moved to the individual receiving fields.

000122 Move Field-1 To Field-2, Field-3, Field-4.

In this example, the contents of Field-1 are placed into Field-2 ,
Field-3 , and Field-4 .

Another type of Move is numeric item to numeric item. When this Move
occurs, the characters (numeric digits) are moved from the right-most position
to the left. That means that if the receiving field is shorter than the sending
field, the digits to the left-most side of the number will be lost. If the receiving
field is longer than the sending field, then the left-most digits will be padded
with zeros. Truncation of digits can occur both on the right and left side of the
decimal point. Consider the moves and results shown in Table 5.1.

Table 5.1 Truncation Examples

Number Picture Clause Result

123.45 99.99 23.45

123.456 999.99 123.45

123.456 9.9 3.4

Numeric literals or elementary items may be moved to numeric edited items
(see Table 5.2). In this case, the edit pattern is applied to the result.
Additionally, these numeric edited items may be moved either to alphanumeric
data items or to numeric data items. When moved to an alphanumeric data
item, the sending numeric edited item is treated as an alphanumeric item and
the data is moved from the left to the right. When a numeric edited item is
moved to a numeric item, the rules for a numeric-item-to-numeric-item Move
are observed.

Table 5.2 Numeric Edited Move Examples

Edited Number Numeric Result Alphanumeric

123,999.99 000123999.99 123,999.99

12.99 000000012.99 12.99

Caution: Alphanumeric data items can be moved to numeric items, but that

practice is strongly discouraged. You cannot be sure what value the
computer will interpret the number to have! On some computers, the
operation will cause the program to end abnormally. Additionally, numeric
items may be moved to alphanumeric data fields. When this Move is
performed, the decimal point and sign are ignored. Moving a field with a
value of -12345.67 to an alphanumeric field results in a field containing
01234567 . Some compilers issue a warning message about this type of
Move.

Alphanumeric literals or elementary items may also be moved to edited
alphanumeric data items. In this case, the edit pattern is applied. Data is moved
from left to right, and any “left over” characters are truncated.

Caution: When group items are moved to alphanumeric edited or numeric
edited fields, the fields are moved from left to right and no edit pattern is
applied. For example, if a receiving field is defined as Pic XX/XX/XX and
the sending field is a Group Level item having the value of "ABCDEFG", the
value of the receiving field after the move will be "ABCDEFG " , not
"AB/CD/EF" as you might expect. If the elementary item under that group
item is moved, the edit pattern is applied.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

In addition to the Move statement from a sending field to one or more
receiving fields, another format of the Move uses the Corresponding
phrase. Move Corresponding moves fields with the same name under one
group into fields with the same name under another group.

000050 Working-Storage Section.
000051 01 Group-1.
000052 03 Field-1 Pic X(5).
000053 03 Field-2 Pic X(6).
000054 03 Field-3 Pic X(6).
000055 01 Group-2.
000056 03 Field-1 Pic X(6).
000057 03 Field-2 Pic X(6).
000058 03 Field-3 Pic X(6).
000059 Procedure Division.
000060 Start-Paragraph.
000061 Move Corresponding Group-1 To Group-2
000062 Stop Run
000063 .

In the preceding example, the contents of Field-1 , Field-2 , and
Field-3 of Group-1 are moved, one at a time, into Field-1 , Field-2 ,
and Field-3 of Group-2 .

Summary

In this hour, you learned the following:

• That the Procedure Division is made up of paragraphs, which
can be organized into sections.

• How to use Add, Subtract , Multiply , and Divide to
manipulate numeric data items.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• How to use the Compute statement and how to avoid any pitfalls
associated with intermediate results.

• How to move data from one field to another.

• That when the receiving field is alphanumeric, moves proceed from
left to right, and when the receiving field is numeric, moves are from
right to left.

• That group items and alphanumeric items are moved in the same
manner with one exception: When group items are moved to edited
fields, no edit patterns are applied.

Q&A

Q Can the Procedure Division be coded without paragraphs?

A No. The Procedure Division must have at least one paragraph title.

Q Can the Add statement be used to add a single value into multiple
fields?

A Yes. You simply list the items you want to add the value to on the right side
of the To in the Add statement.

Q Can the Compute statement accept complex formulas with multiple
levels of parentheses?

A Yes. Any valid arithmetic expression may be coded; however, use caution
when performing division. It is best to code any required division operations at
the end of the Compute statement.

Q What happens if a numeric field is moved into an alphanumeric field?

A The decimal position is lost as well as the sign. The field is moved from the
left to the right into the alphanumeric field.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 6
Manipulating Data
You have now learned some simple data manipulation statements. You can do some
basic math and move fields around. You have learned some basic features to allow
you to interface with the user. Now it is time to cover some more advanced
statements used to work with data fields.

In its role at fulfilling the needs of business, COBOL works with myriad data. It
must handle the mathematics of business and be able to process textual data. Textual
data consists of items such as names, addresses, and telephone numbers. Textual data
can also contain descriptions of other important data, such as medical procedures.
COBOL comes with a suite of very powerful tools to handle and manipulate this
type of data. In this hour you learn about

• The Accept statement

• The Initialize statement

• The Inspect statement

• Reference modification

The Accept Statement

Some uses of the Accept statement, in the area of communicating with the user,
have already been covered. In addition, you can use the Accept statement for more
than just retrieving user input. You may accept data either from the user or from the
operating system. You have already seen the method for accepting input from a
screen definition.

Accepting from the User

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

When interfacing with the user, the Accept statement moves data from a specific
device into a data field. In the absence of a specifically coded device, the default
device for the Accept is used. For example:

000033 Accept Some-Field.

This Accept statement moves data from the default device, normally the console or
current user terminal, into the data item Some-Field .

The different items that can be accepted using the Accept statement vary from
compiler to compiler. Different computers have different devices and different
requirements.

One of the interesting uses of the Accept with the Fujitsu compiler is to allow the
programmer to retrieve command-line arguments. These are the items passed to the
program on the command line. For example, if your program is CHAPT06A.EXE
and you type CHAPT06A MyName, the command-line argument is MyName. Here
is an example of how Fujitsu allows you to use the Accept statement to retrieve the
command-line argument.

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt06a.
000004* Command Line Argument
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Special-Names.
000010 Argument-Value Is Command-line.
000011 Data Division.
000012 Working-Storage Section.
000013 01 Command-Line-Argument Pic X(80).
000014 Procedure Division.
000015 Chapt06a-Start.
000016 Accept Command-Line-Argument From Command-Line
000017 Display "Command Line: " Command-Line-Argument
000018 Stop Run
000019 .

Take special notice of the Special-Names paragraph. The name
Argument-Value is a Fujitsu provided special name. Using this method of
assigning a value in the Special-Names paragraph sets up most of the special
items that may be accepted.

Enter and compile this program. When you run it, add an argument after the
Chapt06a.exe on the command line. Notice that if you add more than one word, only
the first is displayed. You may code multiple Accept statements to retrieve all the
command-line arguments. In addition, Fujitsu provides a special name,
Argument-Number , that can be used to determine the number of command-line
arguments.

Accepting Data from the System

A number of very useful, predefined Accept variables are part of the COBOL
standard. These relate to retrieving the system date, time, and day of the week. Two
date formats are supported. One is the Gregorian date, and the second is the Julian
date. The Gregorian date is the type of date you are used to seeing; its numbers
correspond to the month, day, and year. The Julian date is made up of the year and
the number of the days in the year to the present date. For example, January 1 is day
1. December 31, during a year that is not a leap year, is day 365. If the year is a leap
year, December 31 is day 366.

The following examples show the syntax for these Accept statements.

000045 Accept Date-Field From Date.
000046 Accept Day-Field From Day.
000047 Accept Week-Day From Day-Of-Week.
000048 Accept Time-Of-Day From Time.

The field that Date is accepted into must be a six-digit numeric data field. The
format of the input is YYMMDD, where YY is the current two-digit year, MM is the
current month where 01 is January and 12 is December, and DD is the day of the
month.

The field that Day is accepted into must be a five-digit numeric data field. The
format of the input is YYDDD, where is the current two-digit year and DDD is the
current Julian day.

Caution: When working with the current date, try to avoid using the Accept
statement with Date and Day. The reason is that only a two-digit year is returned.
To get the current full four-digit year, use the intrinsic function Current Date ,
which is discussed in detail in Hour 21, “Date Manipulation.”

The field that Day-Of-Week is accepted into must be a single-digit numeric field.
If the field contains 1, the current weekday is Monday, 2 is Tuesday, and so on.

The field that Time is accepted into must be an eight-digit numeric field. The format
of the time is HHMMSShh, where HH corresponds to the hour in military time format,
for example: 01 is 1 a.m., 13 is 1 p.m. MM corresponds to the minutes, SS
corresponds to the seconds, and hh to the hundredths of seconds.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Initialize Statement

As you write programs, you may want to reset the values of your fields. If you are accumulating totals for a
report, after you print a total you may want to clear your detail fields. After retrieving a screen from the user,
you may want to clear the screen of all user-entered values. Writing individual Move statements to erase the
values in the fields can be a cumbersome exercise.

The Initialize statement is a very powerful statement for setting the initial values of your data fields. It
can be a very fast and easy way to set the value for a data item or series of data items.

Caution: Exercise caution when using the Initialize statement against items in Working Storage to
which you have assigned a value with the value clause. Initialize sets their value as appropriate for the
type of field and does not set their content to that specified in the value clause.

For example, the following group is defined in the Working-Storage Section of your program.

000040 01 Working-Variables.
000041 03 Numeric-Variables.
000042 05 First-Numeric-Variable Pic 9(5).
000043 05 Second-Numeric-Variable Pic 9(5).
000044 03 Alphanumeric-Variables.
000045 05 First-Alphanumeric-Variable Pic X(20) value all "*".
000046 05 Second-Alphanumeric-Variable Pic X(20).

First, notice line 45. The field contains 20 * characters. The other fields can have any value that your program
has moved into the fields. If you wish to reset all these fields, there are a couple of choices.

You may move spaces to the Working-Variables field. However, this Move places invalid data into the
numeric fields. Another solution is to code multiple Move statements to move zeros to the numeric fields and
spaces to the alphanumeric fields. In that case, you must explicitly move something to each field name. A
better option is to code an Initialize statement.

000101 Initialize Working-Variables.

When the Initialize is performed, each field in the group, at its elementary level, is either set to zeros or
spaces, depending on the type of field. Numeric and numeric edited fields are set to zeros, and alphanumeric
fields are set to spaces, just as if a Move statement had been performed with each field as the receiving field.

The Initialize verb can also target specific field types within a group. If you have a group defined, do not
want to group like field types together, and only want to initialize the numeric fields in the group, you can still
use Initialize if you just add the Replacing clause.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000102 Initialize Working-Variables Replacing Numeric Data By Zeros.

The Replacing clause allows you to specify the type of field, within a group, on which the Initialize
is to operate. In this example, only the numeric elementary fields defined within the Working-Variables
group are set to zero. You may specify Alphanumeric , Alphanumeric-Edited , Numeric , or
Numeric-Edited after the word Replacing .

Another powerful feature is the ability to use Initialize to set fields of various types to unique values
other than spaces and zeros. If you want to change First-Alphanumeric-Variable to contain all
asterisks again, you can code as follows:

000103 Initialize First-Alphanumeric-Variable
000104 Replacing Alphanumeric Data By "********************"

An alternative to coding all the asterisks, and potentially miscounting, is to use All "*" or the Move
statement with the All clause. For example:

000105 Initialize First-Alphanumeric-Variable
000106 Replacing Alphanumeric Data By All "*"

or

000107 Move All "*" To First-Alphanumeric-Variable

Notice that the Initialize is not restricted for use against Group Level items, although in this instance, a
simple Move will accomplish the same thing. If, however, you wanted all alphanumeric fields within a group
to contain the asterisks, then Initialize makes more sense.

Caution: When using Initialize with Replacing , remember that the field or literal you specify after the
word By is not repeated within the object of the Initialize . For example, if you code Initialize
First-Alphanumeric-Variable to "*" , the result will be "*" and not
"********************" as you might expect.

You are not restricted to literals in the Replacing phrase. You may also Initialize a field with the
contents of another field.

000102 Initialize Working-Variables Replacing Numeric Data By Field-1.

In this example, every numeric field defined under the group Working-Variables is initialized to the
current value of Field-1 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Inspect Statement

One of the more versatile and powerful COBOL data manipulation verbs is the Inspect statement.
Inspect can be used for anything from testing a field for specific contents to converting those contents to
other values. The Inspect statement may be coded in several formats.

The first usage allows you to count the occurrences of a particular character or characters within a field. For
example, to determine whether a data item contains a comma, you can use the Inspect statement to
count the commas in the field.

000103 Inspect Data-item tallying Work-Counter For All ",".

After this statement is executed, Work-Counter contains the number of commas in Data-Item . For
example, if Data-Item contains "Hubbell, Darlene" , Work-Counter ’s value is 1.

What if you want to count all of the times that the letter b occurs in the last name? You need to stop
counting when the , is encountered. The Inspect statement makes this very easy by allowing you to add
the phrase, Before Initial .

000104 Inspect Data-item Tallying Work-Counter For All "b" Before
000105 Initial ",".

In this example, the result stored in Work-Counter is 2. In addition to allowing you to code the Before
Initial clause, Inspect also supports the After Initial clause. You can use After Initial
to count the occurrence of a character or characters after the comma.

Instead of counting all occurrences of a single character, you may want to determine the number of leading
characters.

Leading characters precede any other character in a field. For example, if a field contains "****ABC" , it
contains four leading asterisks. If you want to determine the number of leading characters in a field, you
might code as follows:

000105 Inspect Data-Item Tallying Work-Counter For Leading "*".

This format of Inspect also determines the number of total characters in a field that meet specific
conditions. You can determine the number of characters that occur before or after a comma, for example.
Using the earlier example, you can use Inspect to determine the length of the last name.

000106 Inspect Data-Item Tallying Work-Counter For Characters Before

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000107 Initial ",".

If you want to count the number of characters after the comma, you may change the Before Initial
to After Initial .

Tip: The word Initial is optional. You may omit it when coding the Before or After phrases.

A second format of the Inspect statement allows you to replace characters in a field with other
characters. This tool is very powerful for editing data fields into specific formats. For example, if you have
a date field that was entered with "/" characters separating the values and you needed to replace the "/"
with a "-" , you can use the Inspect statement. Assume your date field contains "01/04/1999" .

000107 Inspect Data-item Replacing All "/" By "-".

You may replace literals or data items with either literals or data items. The statement is very flexible. The
following example uses the Inspect statement to format a telephone number for display.

Listing 6.1 Telephone Number Format

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt06b.
000004* Telephone Number Format
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Phone-Number.
000012 03 Area-code Pic XXX Value "409".
000013 03 Prefix-Num Pic XXX Value "555".
000014 03 Last-Four Pic X(4) Value "1212".
000015 01 Formatted-Number Pic X(14) Value "(XXX) YYY-ZZZZ".
000016 01 Formatted-Alternate Pic X(14) Value "(XXX) XXX-XXXX".
000017
000018 Procedure Division.
000019 Start-Of-Program.
000020 Inspect Formatted-Number
000021 Replacing All "XXX" By Area-Code
000022 All "YYY" By Prefix-Num
000023 All "ZZZZ" By Last-Four
000024 Display Formatted-Number
000025 Inspect Formatted-Alternate
000026 Replacing First "XXX" By Area-Code
000027 First "XXX" By Prefix-Num
000028 First "XXXX" By Last-Four
000029 Display Formatted-Alternate
000030 Stop Run
000031 .

Notice that multiple replacing statements may appear within an Inspect statement, and they are
processed in order. The first Inspect in line 21 replaces all occurrences of the text. The second
Inspect statement replaces only the first occurrence of the text: in the example, "XXX" was used
repeatedly, and a single Replacing would have changed all three sets of "XXX" to the area code.

The Leading phrase may be used instead of All if you need to change only the leading characters to
something else.

The Characters phrase is also valid in this format of the Inspect statement. It can be used to change

every character in a field to another character. You can use Inspect to change all characters in a field to
"*&" characters.

000035 Inspect Data-Field Replacing Characters By "*".

This statement replaces every character in a field, regardless of the length of the field, with asterisks.

The third format of the Inspect statement allows you to count characters using Tallying and to
replace characters using Replace . This format can be useful to count the number of characters or
occurrences you have changed.

000036 Inspect Data-Field Tallying Character-Count For All Spaces
000037 After "-" Replacing All Spaces After "-" by "X".

The preceding example converts all spaces that appear after a "-" in a field with the letter X. The
Character-Count field contains the number of spaces that were changed to the letter X.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The final format of the Inspect statement allows you to convert characters from one value to another.
Although similar to Replacing , the Converting allows you to specify a string of single characters
(data item or literal) that will be converted to the values specified in a second string. This can be used to
convert a name, or portion of a name, from lowercase to uppercase letters. For example, to change
"Hubbell, Darlene" to "HUBBELL, DARLENE" , code the following:

000038 Inspect Data-Field Converting "abcdefghijklmnopqrstuvwxyz" To
000039 "ABCDEFGHIJKLMNOPWRSTUVWXYZ".

Every time a character in the string of values on the left of the To is encountered, it is changed to the
matching character on the right of the To. If you want to convert only the last name from the example and
leave the first name alone, code the following:

000038 Inspect Data-Field Converting "abcdefghijklmnopqrstuvwxyz" To
000039 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
000040 Before initial ",".

Do you remember playing code games as a kid? Remember the simple substitution codes? The letters of the
alphabet were rearranged to make a code. If you knew which letters of the alphabet corresponded to the
letters in the code, you could solve the puzzle. The Inspect statement with Converting works in a
similar fashion, performing a single substitution for each character.

In addition to being able to restrict the conversion by specifying the Before Initial phrase, you may
also specify After Initial .

Reference Modification

Reference modification is a method provided to reference a portion of a data item. Reference modification
allows you to use a portion of a field as if it were its own elementary item. You may use reference
modification on alphanumeric fields or on numeric fields that are Usage Display . The way you specify
reference modification in your program is to place a starting position and length in parenthesis separated by
a colon, after your data item.

000041 Display Data-Item (1:4).

If the Data-Item field contains "Inventory" , this Display statement displays "Inve" . The first
number denotes the starting position, and the one after the colon specifies the length. You may use
reference modification with virtually any COBOL statement that references a data item.

The numbers used to define the starting position and length may be in the form of numeric literals as in the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

example, data items, or arithmetic expressions. If an arithmetic expression is used, the values must be
positive. The length item after the colon may be omitted. If it is omitted, then the remaining characters to
the end of the data item are used.

000042 Display Data-Item (5:).

Using the same Data-Item value as the previous example, this example displays "ntory" .

Caution: Reference modification is a very powerful feature. It can be used for many things. However, it can
also be abused. Don’t use reference modification to further divide a data item when it can be more clearly
defined as a group item made up of elementary items. For example, if a data item consists of last and first
name, define a group:

01 Full-Name.

03 Last-Name Pic X(30).
03 First-Name Pic X(20).

If you want to display the last name, code the following:

Display Last-Name.

Don’t use reference modification. Display Full-Name (1:30) is not nearly as clear.

Using What You Have Learned in a Program

It is time to put these pieces together and accomplish a programming task. For this example, you develop a
program that accepts a full name, with the first name separated from the last by a comma, and an email
address. The first and last names are split into separate fields, and the email address is converted to
lowercase. The results are then displayed.

Open the Fujitsu Editor and create a new file in your TYCOBOL folder. Code the normal COBOL
statements required to identify the program.

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt06c.
000004* Name and E-mail Edit
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.

Notice the use of the comment in line 4 to identify the purpose of the program. Now code the Data
Division and the Working-Storage Section . You need fields to hold the input and to display the
output. You also need two numeric fields to contain some numbers that are used in your program.

000009 Data Division.
000010 Working-Storage Section.
000011 01 Screen-Items.
000012 03 Name-Entry Pic X(40) Value Spaces.
000013 03 E-mail Pic X(30) Value Spaces.
000014 03 Last-Name Pic X(30) Value Spaces.
000015 03 First-Name Pic X(30) Value Spaces.
000016 01 Work-Number Pic 99 Value Zeros.
000017 01 Work-Number-1 Pic 99 Value Zeros.

Take special note of the fact that initial values were assigned to these fields. Otherwise, the initial display
of the screen items might contain junk characters. Also, note that only one field is defined for E-mail .
Because you are not splitting the E-mail field into two fields, like the name, you need only the one field.

Next, code the Screen Section for displaying and accepting the entered values.

000018 Screen Section.
000019 01 Name-Entry-Screen
000020 Blank Screen, Auto
000021 Foreground-Color Is 7,
000022 Background-Color Is 1.
000023*
000024 03 Screen-Literal-Group.
000025 05 Line 01 Column 30 Value "Name and E-mail Entry"
000026 Highlight Foreground-Color 4 Background-Color 1.
000027 05 Line 05 Column 05 Value " Name: ".
000028 05 Line 06 Column 05 Value "E-mail: ".
000029 05 Line 08 Column 05 Value " Last: ".
000030 05 Line 09 Column 05 Value " First: ".
000031 03 Reverse-Video-Group Reverse-Video.
000032 05 Line 05 Column 13 Pic X(40) Using Name-Entry.
000033 05 Line 06 Column 13 Pic X(30) Using E-mail.
000034 05 Line 08 Column 13 Pic X(30) From Last-Name.
000035 05 Line 09 Column 13 Pic X(30) From First-Name.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

In the screen definition, note the use of the Using phrase for the Name-Entry and E-mail but the
From phrase for Last-Name and First-Name . Because you will be splitting the name entered into
these two fields, you don’t want the user to enter any data into those fields.

The Procedure Division is coded next, up to the point of displaying and accepting the screen.

000036 Procedure Division.
000037 Chapt06c-Start.
000038 Display Name-Entry-Screen
000039 Accept Name-Entry-Screen

The next step is to determine how many characters in the Name-Entry field appear before the comma.
Then you can move those characters to the new Last-Name field. Notice the use of the comment in the
following code, used to explain what you are trying to do.

000040* Split the first and last name out into separate fields
000041 Inspect Name-Entry Tallying Work-Number
000042 For Characters Before ","
000043 Move Name-Entry (1:Work-Number) To Last-Name

The Inspect statement in lines 41 and 42 counts the number of characters that appear before the
comma. This number is stored in the Work-Number field. Line 43 uses reference modification to move
this portion of the Name-Entry field into the Last-Name . Reference modification causes the
characters starting in position 1 and extending for a length of the value of Work-Number to be moved
into the Last-Name field.

The first part is done; now you need to move the last name into the Last-Name field. To do that, you
need to make sure that the position you start working on in the Name-Entry field is the first position
after the comma. To do that, add 2 to Work-Number because the value of Work-Number is the
number of characters in the field that appear before the comma.

Add 2 to Work-Number

The user may have entered the name with a space after the comma, multiple spaces after the comma, or
no spaces. You want the First-Name field to start in the left-most position, also called left-justified, so
you need to exclude any leading spaces in the first name portion of the input field.

000044* You need to exclude the leading spaces, after the comma
000045 Inspect Name-Entry (Work-Number:)

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000046 Tallying Work-Number-1 For Leading Spaces
000047 Move Name-Entry (Work-Number + Work-Number-1:) To First-Name

The Inspect statement in line 45 uses reference modification on the Name-Entry input field to count
the number of spaces that appear after the comma but before any other character. Note in the reference
modification that only the : is coded, not a length. This format causes the Inspect to start at the
position defined in Work-Number and end at the end of the field.

When you know the number of spaces, you can then move the portion of Name-Entry that is the first
name into the First-Name field. You do so by using reference modification. Within the reference
modification, the starting position is determined by a numeric expression. This expression is the sum of
Work-Number , which is now equal to the first position after the comma, and Work-Number-1 , which
contains the number of spaces that appear after the comma. This step positions the starting point for the
move on the first nonblank character that appears after the comma in the input field.

Now that the first and last names are moved, it’s time to convert the email address to lowercase. This step
is accomplished with a simple Inspect statement.

000048*Change the e-mail address to all lower case letters.
000049 Inspect E-mail Converting "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000050 To "abcdefghijklmnopqrstuvwxyz"

Finally, you need to display the results of the program for the user and then end the program. The screen
display output from this program is shown in Figure 6.1.

Figure 6.1 Output from Chapt06C.

000346* Show the results
000347 Display Name-Entry-Screen
000348 Stop Run
000349 .

Summary

In this hour, you learned the following:

• How to use the Accept statement to get the date and time from the computer

• How to use the Accept statement to find the parameters the user entered on the command line

• How to use the Initialize statement to reset the values in various fields

• How to use the Inspect statement to count characters in a field

• How to use the Inspect statement to convert data in a field from one value to another

• How to use reference modification to address a portion of a data field

• How to combine these elements in a program to perform a useful function

PreviousTable of ContentsNext

javascript:displayWindow('images/06-01.jpg',798,533)
javascript:displayWindow('images/06-01.jpg',798,533)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Q&A

Q Why do you need to be careful when accepting the date from the system
in an Accept statement?

A The Accept statement returns only the last two digits of the current year.
Another COBOL function that returns the entire year is discussed in Hour 21.

Q Are the special names that accept data from the command line the same
for all COBOL compilers?

A No. Although most are similar, the environments, or computers and
operating systems, on which the compilers run have different requirements.
The COBOL standard allows implementers some leeway in defining the
interface to these special areas of their environment. You should review your
compiler documentation, specifically the language reference, to determine
which special names are available for your use.

Q Will the Initialize statement reset a data item to contain the value
that was specified as a value in the picture clause definition of the data
item?

A No. The Initialize statement, by default, sets alphanumeric data fields
to spaces and numeric data fields to zeros. However, you can specify which
values to use when you code the Initialize statement. Doing so allows
you to place specific values in specific field types.

Q Can inspect count the number of times that more than a single
character appears in a data item? For example the combination "JR"?

A Yes. The Inspect statement is not limited to looking at only a single
character. You may code an Inspect statement as follows: Inspect
Data-Item Tallying Numeric-Work For All "JR".

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Q Can reference modification be used on numeric data fields as well as on
alphanumeric data fields?

A Yes. However, the numeric data field must be defined as Usage
Display , which is the default usage. If you have specified any other usage,
such as COMP-3 or Binary , then reference modification may not be used.

Q Can reference modification be used on Group Level items as well as
elementary items?

A Yes. Reference modification treats Group Level items as alphanumeric
items.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 7
Manipulating String Data
In Hour 6, “Manipulating Data,” you learned some basic methods for manipulating data.
However, programming often requires more-complex data manipulation, especially when
working with character strings. In this hour, you learn about manipulating character strings.
The following topics are covered:

• The definition of a string

• The String statement

• Using delimiters with the String statement

• The Unstring statement

• Using delimiters with the Unstring statement

A string is a set of characters. It can be described as being all the characters in any particular
field. The field, or data item, can also be referred to as a string. Working with strings is a
common task in all kinds of computer programming. In your programming, you may need to
disassemble a field, or string, of data. On the other hand, you might be required to create a
string of data for some special use. For example, you might have a file that has first and last
names in separate fields, and you want to print the combined name on an address label.

Some database and spreadsheet systems generate a delimited text file. You may want to read
one of these files and separate the values in the individual delimited records into different
fields. In other cases, you might want to create a comma- or comma-quote—delimited file to
import into one of these systems.

Note: A delimiter is a field-separation character. When data fields are strung together by these
different systems, the compiler needs some way to distinguish the individual fields that make up
the string. Many systems create what is termed a CSV file, which is a file made up of strings
where the individual fields are separated by a comma. CSV stands for “comma-separated value.”
Some systems further separate fields by placing quotation marks around the alphanumeric fields.
This practice is the origin of the term comma-quote—delimited file. The comma separates the
individual fields, and this separation character is known as a delimiter.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The String functions in COBOL are very robust. The two basic statements for manipulating
a string of data are String and Unstring . String combines data into a single string.
Unstring separates a string of data into individual fields.

The String Statement

When you need to merge, or string, multiple data fields into a single field, you should use the
String statement. The simplest form of the String statement uses one or more input fields
and moves them consecutively into an output field, sometimes referred to as the target field.

000032 String "ABC" "123" Delimited By Size Into Output-Field.

This String statement results in the value "ABC123" being stored in Output-Field . The
Delimited By Size clause indicates that the entire input field is to be used in the
String operation.

There are some important rules to remember when using the String statement.

• The target field cannot be reference modified. That is, you may not String Into
Output-Field (3:5) .

• Numeric fields must be Usage Display data items.

• You may string into Group Level items. I discourage this practice, however, because it
is too easy to get invalid data into subordinate numeric data fields.

• The target field is not cleared, or padded with spaces, as in a Move statement. Use
caution to ensure that your target field is properly initialized.

If the target of your String operation is too small to contain the characters that are being
strung into it, an overflow condition occurs. You may capture this occurrence by coding the On
Overflow clause. After this clause, you may place any logic that you desire to execute when
an output field overflow occurs. You can also code a corresponding clause—Not On
Overflow —to execute any time an overflow condition does not occur.

Caution: An overflow condition does not exist if your String statement fails to fill the target
field.

Examine the following snippet of code:

000025 Working-Storage Section.
000026 01 Data-Field Pic X(20).
000027 01 Field-1 Pic X(12) Value "Total".
000028 01 Field-2 Pic X(12) Value "Price".
000029 Procedure Division.
000030 Start-String-Example.
000031 String Field-1 Delimited By Size
000032 Field-2 Delimited By Size
000033 Into Data-Field
000034 On Overflow
000035 Display "String Overflow"
000036 End-String
000037 Stop Run
000038 .

This code contains several notable items. First, the Delimited By clause is repeated on each

field that is being strung into the output field. You may list as many fields as you desire before
any Delimited clause. The next Delimited clause encountered applies to all prior fields
after the preceding Delimited clause. Second, an explicit scope terminator is associated with
the String statement. I suggest you use End-String any time you code an On
Overflow or Not On Overflow clause and any time the String statement is very long
or complex. The End-String makes your code easier to understand.

Notice also that this String always triggers the overflow condition. The reason is that the two
fields being strung together are each 12 characters, and the target field is only 20. Because 24
characters cannot fit into 20 positions, the overflow always occurs. In COBOL the actual values
of the fields used in the String statement have no bearing on the results when Delimited
By Size is used. It is not the size of the data within the field that matters, but the field size
itself.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

String Delimiters

Why would anyone code a String statement where the target field cannot
hold the full size of the source fields? Look at a real-world example. Assume
that you have two fields defined: one for a person’s first name and one for his
or her last name. You want to print an address label with the full name, and
your label is only wide enough for 30 characters. The fields in which you are
storing first and last name are 25 characters each. The potential exists for a
complete name to exceed the target field, especially when the single space
separating the names is added. When you print your label and the name is cut
off, or truncated, because it is too long, you want to print only the last name on
the label. This way you avoid any insulting renditions of the person's name. To
accomplish this task, you need to use a delimiter other than Size in your
String statement.

You may delimit, or stop, the operation of the String statement using any
value you desire. When the value indicated is encountered, the string operation
stops and the delimiter itself is not included in the target field. For the task
specified here, you use the space character to terminate the String for the
first and last names.

Caution: When working with real-world data, you cannot be sure that the
first and last names contain single words. It is essential to remember that
when a character delimiter is specified, the String operation is terminated
the first time that character is encountered. Therefore, if you delimit by space
and the field contains "Bobby Sue" , only "Bobby" makes it to the target
field. Hour 22, “Other Intrinsic Functions,” covers an efficient way to
handle this situation.

Key Listing 7.1 into the editor.

Listing 7.1 String Example

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt07a.
000004* String Example
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 First-Name Pic X(25) Value Spaces.
000012 01 Last-Name Pic X(25) Value Spaces.
000013 01 Combined-Name Pic X(30) Value Spaces.
000014 Procedure Division.
000015 Chapt07a-Start.
000016 Move "First" To First-Name
000017 Move "Last" To Last-Name
000018 String First-Name Delimited By Space
000019 " " Delimited By Size
000020 Last-Name Delimited By Space
000021 Into
000022 Combined-Name
000023 On Overflow
000024 Move Last-name To Combined-Name
000025 End-String
000026 Display "1 " Combined-Name
000027 Move "A" to First-Name
000028 Move "B" to Last-Name
000029 String First-Name Delimited By Space
000030 " " Delimited By Size
000031 Last-Name Delimited By Space
000032 Into
000033 Combined-Name
000034 On Overflow
000035 Move Last-name To Combined-Name
000036 End-String
000037 Display "2 " Combined-Name
000038 Move Spaces To Combined-Name
000039 Move "ReallyLongFirstName" To First-Name
000040 Move "ReallyLongLastName" To Last-Name
000041 String First-Name Delimited By Space
000042 " " Delimited By Size
000043 Last-Name Delimited By Space
000044 Into
000045 Combined-Name
000046 On Overflow
000047 Move Last-name To Combined-Name
000048 End-String
000049 Display "3 " Combined-Name

000050 Stop Run
000051 .

A single alphanumeric literal, space, has been added to the String
statements to separate the two names. For this example, the two input fields,
First-Name and Last-Name , are strung into the target field until a space
is encountered. Compile and run the program. Your output should look like
Figure 7.1.

Figure 7.1 Output from Listing 7.1.

Line 1 of the display is what you might expect. However, line 2 looks strange
because the target field, Combined-Name , was not cleared between the
String statements. Line 3 contains only the Last-Name because the
overflow condition occurred and the Move statement coded for that condition
was executed.

The delimiters used by the String statement need not be single characters
only. Delimiters can be any character or string of characters. Delimiters do not
have to be literals, but can instead be data items. Table 7.1 illustrates the
results of stringing different data items using various delimiters.

Table 7.1 Results of String Operations with Various Delimiters

Strings Delimiter Result

David Jr. Jr David Mike

Mike Jr.

John Sr. Jr John Sr.Mike

Mike Jr.

David123 123 DavidMark

Mark123

Notice in the second example, when in the first field the delimiter is not
encountered, the entire field contents are moved. Notice also that all characters
including and after the delimiter are omitted.

Occasionally, you may want to String fields into a target field starting from
other than the first position. The obvious answer might be to use reference
modification on the target field, but COBOL prohibits that practice. However,
there is another way to accomplish this task.

PreviousTable of ContentsNext

javascript:displayWindow('images/07-01.jpg',791,505)
javascript:displayWindow('images/07-01.jpg',791,505)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

You may add a Pointer clause to the String statement. The Pointer indicates
the starting position in the target field for the String operation. When the String
operation is complete, this Pointer is updated to contain the next position in the
target field. The Pointer must be a numeric variable of sufficient size to hold the
number of character positions in the target field. If the field is 100 characters long, a
pointer variable with a Picture of 9(2) is too small. The pointer variable must
always have a value greater than zero.

Caution: When using the String statement with the Pointer clause, you must be
certain that you have initialized the field with the desired value.

Assume that Target-Field is defined with a value of "TEST FIELD" , and you
want to change the word "FIELD" to "FILES" , using the String statement. You
can define a numeric field named String-Pointer , set its value to 6, and then
issue the following COBOL statement:

000040 String "FILES" Delimited By Size
000041 Into Target-Field
000042 With Pointer String-Pointer
000043 End-String

After this string operation, the value of String-Pointer is 11 .

One common use for the Pointer clause is to format data that requires special edit
patterns. Sometimes these edit patterns can change based on the number of positions
or values of the specific data items. For example, a telephone number might be
formatted (999) 999-9999 , or just 999-9999 if the area code is not provided.
The Pointer clause on the String statement can hold the starting position for the
seven-digit number portion of the telephone number. If the area code exists and is
strung first, the value of the pointer will be 6; otherwise, it will be 1. When the rest of
the telephone number is strung into the target field, the number will be properly
positioned.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The Unstring Statement

Sometimes, instead of creating a new string, you need to separate an existing string
into separate fields. You might receive data in a file that contains a first name, middle
initial, and last name. You need to separate these into separate data fields. To handle
this task, COBOL provides a statement called Unstring .

Unstring Delimiters

Unstring , in its simplest form, merely splits a field into parts based on a delimiter.
Like the String statement, the delimiter may be a single character, a nonnumeric
variable, or a nonnumeric literal. The target field or fields of an Unstring statement
are not initialized before the the Unstring statement moves values into them. You
must use caution to ensure that the target fields are properly initialized.

Unstring uses a single source field and one or more target fields. The source field
may not be reference modified. Unstring examines the source field character by
character, moving the data into the first target field. When the specified delimiter is
encountered, the Unstring process begins to fill the next target field. If you have a
data item that contains a name, for example, "John Joe Jones" , that you want to
split into separate fields, code the following Unstring statement:

000044 Unstring Source-Field Delimited By Space
000045 Into Target-1, Target-2, Target-3
000046 End-Unstring

Tip: Unstring supports the use of the End-Unstring explicit scope terminator.
I suggest that you use End-Unstring whenever your String statement uses any
optional clauses or extends over several lines.

What would happen if your source field contained "John Joe Jones" , where
several spaces separate the fields you want to unstring? If you use the code example in
lines 44-46, you will end up with Target-1 containing "John" , Target-2
containing "Joe" , and Target-3 containing spaces. The Unstring considers
only the first space it encounters to be a delimiter. To handle the possible repetition of
delimiters, insert the word All before the delimiter. The following Unstring
statement properly handles the input field example:

000047 Unstring Source-Field Delimited By All Space
000048 Into Target-1, Target-2, Target-3
000049 End-Unstring

When you use Unstring , you may use multiple delimiters. Your source field might
contain "Jones, Joe John" , and you might want to separate this into three
different fields. If you were restricted to only a single delimiter, you would have to
issue two Unstring statements to handle this input. However, Unstring allows
you to use multiple delimiters:

000050 Unstring Source-Field Delimited By All Space Or

000051 All ","
000052 Into Target-1, Target-2, Target-3
000053 End-Unstring

In this example, if either a space or a comma is encountered, the Unstring proceeds
to the next target field.

In addition, the Unstring statement enables you to count the number of target fields
that it actually changes. For example, you can determine whether the source field has
two names or three by coding the Tallying In clause. When you use this clause,
the numeric variable that is specified after Tallying In is incremented by the
number of target fields changed.

Caution: When using Tallying In , you must make sure to reset to zero the
numeric data item being used before each Unstring statement. The tally is
incremented by the Unstring statement, but is not set to zero at the start.

000050 Move Zeros To Numeric-Counter
000051 Unstring Source-Field Delimited By All Space Or
000052 All ","
000053 Into Target-1, Target-2, Target-3
000054 Tallying In Numeric-Counter
000055 End-Unstring

In this example, if the source field contains "David Jones" , the field
Numeric-Counter has a value of 2 after the Unstring operation.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

It might be desirable to know the total number of characters from the source field that were
moved into the different target fields. You can capture this information by coding the Count
In clause. Delimiters that are encountered are not included in the count. Count In
references a numeric data item.

Caution: When using the Count In clause and a delimiter other than spaces, the result
might not be what you expect. If you are not using spaces as a delimiter, any spaces
encountered are added to the character count that is stored in the associated Count In data
item.

000050 Move Zeros To Numeric-Counter
000051 Move Zeros To Character-Counter
000052 Unstring Source-Field Delimited By All Space Or
000053 All ","
000054 Into Target-1, Target-2, Target-3
000055 Count In Character-Counter
000056 Tallying In Numeric-Counter
000057 End-Unstring

If the source field has a value of "Expect A Miracle" , the value in
Numeric-Counter is 14 after the Unstring is executed; the space character between
the words is the delimiter and is not added to the data item specified by Count In .

If any of the target fields are too small to contain the data from the Unstring operation, an
overflow condition occurs. As with the String statement, you can capture this occurrence
by coding the On Overflow clause. However, the On Overflow clause does not capture
which target field overflowed.

The last delimiter encountered can be captured by using the Delimiter In clause. When
this clause is used, the last delimiter is stored in the associated data item. If the end of the
source field is encountered, the stored delimiter is spaces if alphanumeric or zeros if numeric.

The Pointer clause can indicate the starting position in the source field where you desire
the Unstring operation to begin. The data item associated with the Pointer clause must

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

be numeric and have a value greater than zero. You should be sure the field is properly
initialized before the next Unstring statement. Listing 7.2 combines many of the features
discussed so far. This example accepts a simple mathematical expression and dissects it,
displaying the components of the expression. The program requires two Unstring
statements.

Listing 7.2 Unstring Example

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt07x.
000004* Unstring Example
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Expression-In Pic X(10) Value Spaces.
000012 01 First-Term Pic X(5) Value Spaces.
000013 01 Second-Term Pic X(5) Value Spaces.
000014 01 Operation Pic X Value Spaces.
000015 01 Unstring-Pointer Pic 9(2) Value Zeros.
000016 Screen Section.
000017 01 Main-Screen Blank Screen.
000018 03 Line 01 Column 01 Value "Enter Expression:".
000019 03 Line 01 Column 19 Pic X(10) Using Expression-In.
000020 03 Line 03 Column 01 Value "First Term ".
000021 03 Line 04 Column 01 Value "Second Term ".
000022 03 Line 05 Column 01 Value "Operation ".
000023 03 Line 03 Column 13 Pic X(5) From First-Term.
000024 03 Line 04 Column 13 Pic X(5) From Second-Term.
000025 03 Line 05 Column 13 Pic X From Operation.
000026 Procedure Division.
000027 Chapt07x-Start.
000028 Display Main-Screen
000029 Accept Main-Screen
000030 Unstring Expression-In
000031 Delimited By "+" or "-" or "*" or "/"
000032 Into First-Term
000033 Delimiter In Operation
000034 Count In Unstring-Pointer
000035 End-Unstring
000036 Add 2 To Unstring-Pointer
000037 Unstring Expression-In
000038 Delimited By "="
000039 Into Second-Term
000040 Pointer Unstring-Pointer
000041 End-Unstring
000042 Display Main-Screen
000043 Stop Run
000044 .

It is entirely permissible, and often desirable, to use Unstring to strip off only a single
portion of a source field. The preceding program uses this technique to capture the delimiter.
The delimiter, which is the mathematical symbol of the expression entered, is stored in the
Operation field. The first term of the expression is stored in the First-Term field. The
length of the first term is stored in the Unstring-Pointer field.

The next step is to position the pointer for the start of the next Unstring . The pointer needs
to be positioned at the first character after the delimiter. If the first term had three characters
before the delimiter, the value of String-Pointer is 3. Then 2 is added to achieve the
start position for the next Unstring , which is 5. The delimiter is in the fourth position, and
the first character of the second term is in the fifth.

Enter, compile, and run the program. Experiment with it. Enter various expressions and
examine the results. Try things like "17-6=" , and "A*123=" .

Summary

In this hour, you learned the following:

• You can use the String and Unstring statements to manipulate data fields.

• You can use delimiters to determine the action of the statements.

• With the String statement, Delimited By Size causes the entire source field
to be moved into the target field.

• The Pointer clause can position the String statement at various points in the
target field.

• Unstring can strip characters from a source field into one or more target fields.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Q&A

Q When using the String statement, is the target field cleared before the
String operation is performed?

A No, so that you can execute multiple string operations into a single target.
The Pointer clause allows you to position the next character in the target
field.

Q Can I string more than two fields together in a single String
statement?

A Yes. You can list the different fields you want to use in a single String
statement.

Q What if I want to use a different delimiter for each field?

A You can list the different delimiters with each field you are unstringing. If
all the fields use the same delimiter, you only need to specify the Delimited
By clause once, after all the fields are listed.

Q Must the delimiters always be single characters? Can I use something
like "SEPARATOR" as a delimiter?

A Delimiters can be of any size that can be contained in the source field. The
word "SEPARATOR" can be used as a delimiter.

Q How do I find out how many fields are found when I unstring a field? I
don't know how many to expect.

A You can determine the number of target fields used by an Unstring
operation by specifying the Tallying In clause on your Unstring
statement. The tally field is incremented by the number of fields changed. Be
careful that you initialize the tally field each time it is used, as the Unstring

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

statement does not automatically do this for you.

Q I already used Unstring to operate on part of a field. I want to
Unstring some more data, but I don't want to start over at the
beginning of the field. I know that reference modification is not allowed.
What should I do?

A You may use the Pointer clause of the Unstring statement to indicate
a data field containing the position of the next character that should be
included in the Unstring operation.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 8
Conditional Statements
Computer programs can perform tasks that range from very simple to very
complex. More complicated tasks require making choices. Under some
circumstances, you might want the program to perform one function; but under
other circumstances, you might desire a different function. Conditional
statements perform the act of choosing the appropriate function. A conditional
is the statement or question asked in order to make a choice. It is somewhat
like a question you might ask yourself, for example, “If I have enough money,
can I buy an ice cream sundae?” In this hour, you learn about the various types
of conditional statements available in COBOL, such as

• The If statement.

• Various conditions that can be tested using If .

• The Else clause

• Evaluating complex conditions

• 88 levels and how they relate to conditions.

Conditional Statements in COBOL

Conditional statements control the flow of a program. For the most part, the
examples that have been examined thus far involved statements that were
always executed. With conditional statements, you can decide which
statements to execute under different conditions. For example, if the user can
enter multiple types of transactions, you need the program to decide the
appropriate action to take based on the type of transaction. A debit transaction
cannot be processed the same way as a credit transaction. Conditional
statements are coded to tell the program what to do when various conditions

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

are encountered.

You have already seen some conditional statements in action. The Size
Error phrase that can be coded with mathematical statements is one example.
When a Size Error occurs, the statements coded with the Size Error
phrase are executed. The Size Error is the condition under which the
statements are executed. It is similar to stating, “Do the add operation; then if
there is a size error, do something special.”

The If Statement

The If statement is the most fundamental of the COBOL conditional
statements. With the If statement, you tell the program to make a simple
choice. If the condition stated is true, then do what is specified. It is in stating
these conditions that an infinite variety of possibilities is found. COBOL
allows you much freedom in the coding of conditional statements. They can be
as simple or complex as you allow them to be. These conditional statements
are at the heart of computer programming.

When you code an If statement and the condition tested is true, every
statement after the If is executed until an End-If , Else , or period is
encountered. (Else is discussed in the next section; for now concentrate on
the different conditions.)

The If statement can be used to test the relationship between two or more
data items. When two data items are compared, one of three things can be
determined:

• The data items are equal.

• The first data item is greater in value than the second.

• The second data item is greater in value than the first.

When writing your conditional statement, you are asking if one or more of
these three conditions is true. If the condition is true, then the If statement is
considered to be true.

Tip: As I look over my programming career, I find that two courses I took
in school contributed most to my success. One is typing. The second, and
more important, is a course I took in symbolic logic. I cannot overstress the
value of such a course to the computer programmer. If your local community
college offers such a course, and you are serious about computer
programming in any language, take this course.

The simplest condition is the test for equality. This test can be coded in two
ways. You may use the = sign, or you may spell out Is Equal To . The
words, Is and To are optional. Table 8.1 shows a few examples of tests for
equality and whether or not they are true.

Table 8.1 Testing the Equality Condition

Condition True or False

"A" = "B" False

"A" Is Equal To
"B"

False

"A" Equal "B" False
1 = 10 False
"A " = "A" True
1.0 = 1 True
10 = "Ten" False

To properly understand equality, you need to understand how the different data
items are compared. Different types of data items are compared differently.

Alphanumeric data items and literals are compared from left to right, character
by character. Trailing spaces in an alphanumeric data item do not affect the
comparison. "A" is the same as "A " . The compiler pads the shorter field
with trailing spaces to make the fields of equal length for the comparison.

Numeric fields are compared based on their values. If a field defined as having
one decimal position is compared to a field having three and the numeric
values are equal, the condition is true.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Numeric items may be compared with numeric expressions. That is, you may
perform tests that compare 1 and (3–2). The expressions are evaluated before
the comparison is made.

When numeric and alphanumeric items are compared, the comparison
proceeds as if it were an alphanumeric compare.

Numeric edited items are treated as alphanumeric items for the purpose of
comparisons.

The If statement tests the truth of these conditions. If the test is true, then the
statements following the If are executed. If the test is false, the statements are
not executed. Consider some examples. For clarity, these use numeric
variables and expressions for comparison.

000027 If 1 = 12
000028 Display "Condition True"
000029 End-If

This condition is false, because 1 is not equal to 12 . The Display statement
is not executed. The End-If is an explicit scope terminator that terminates
the If statement. Flow through the program continues immediately following
this End-If .

Note: An If statement may also be terminated with a period. The preceding
example could have been coded: If 1 = 12, Display "Condition
True". However, for the structured programming style used in these
lessons, only one period per paragraph is used. The End-If signifies the
end of the statements to be executed if the condition being tested is true.

More than one statement may be executed after an If statement’s condition is
determined to be true.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000030 If Data-Item-1 = Data-Item-2
000031 Display "The Data Items are The Same"
000032 Unstring Data-Item-1
000033 Delimited By Space
000034 Into Unstring-Field-1
000035 Unstring-Field-2
000036 End-Unstring
000037 End-If

In this example, if the values of Data-Item-1 and Data-Item-2 are true,
then two COBOL statements are executed. The first displays a literal, and the
second performs an Unstring operation. Neither of the statements is
executed if the condition is false, that is, if Data-Item-1 and
Data-Item-2 are not equal. However, if the condition is true, both
statements are executed.

In addition to testing for equality, you may test for inequality. There are two
ways to express the condition. You may code Not Equal or Not = . The
condition is tested, and if true, that is, the data items compared are not the
same, then the statements following the If are executed.

Note: The If statement may be coded with the word Then . Using Then
does nothing special as far as evaluating the If statement, but it can clarify
the If logic, making it a bit easier to understand. For example, you could
code: If 1 = 12 Then … This method is often easier to follow at first. After
you are more comfortable with the If statement, you may find that the word
Then is simply extra typing.

The next condition type is a test to compare the value of two data items to
determine whether the first item is less than the second. Less than is pretty
easy to understand when discussing numbers. It is obvious that 1 is less than
10 . What can be confusing is alphanumeric data items in conditions. Can you
see why "Four" is less than "One" ?

The testing of relative values of alphanumeric data items is controlled by the
collating sequence of the computer’s character set. A character set is simply
the group of characters that the computer understands. For the PC, this
character set is called the ASCII character set. This character set consists of
256 characters. Each character has a ranking within that set. The character with
the lowest ranking is less than one with a higher ranking in any condition.

Caution: The characters might not compare the way you might expect.
Within the alphabet, "A" is less than "Z" , and "0" is less than "9" .
However, a lowercase "a" is greater than an uppercase "Z" . The characters
"A" and "a" are separate and have different values within the ASCII
collating sequence. You must use caution when comparing alphanumeric
variables to ensure that you understand the potential results of your
comparisons.

When two alphanumeric items are compared in a less-than condition, each
character in each item is compared one at a time. The comparison proceeds
from left to right. When the first character that determines the condition is
either true or false is encountered, the comparison is terminated. When

comparing "APPLE" and "ORANGE", only a single character in each needs
be compared to determine which is greater. When "ZZZZZT" and
"ZZZZZP" are tested, seven characters must be compared before it is decided
that "ZZZZZZP" is less than "ZZZZZZT" .

The less-than comparison may be coded as either < or Less Than . For
example:

000038 If Data-A Is Less Than Data-B
000039 Display "A less than B"
000040 End-If

is exactly the same as

000038 If Data-A < Data-B
000039 Display "A less than B"
000040 End-If

The Is in the first example is optional. The condition is true only if Data-A
is less than Data-B . If Data-A and Data-B are the same, or equal, the
condition is not true. The opposite of Less Than is not Greater Than .
Greater Than leaves out the potential for the items to compare equally.
The opposite condition of Less Than is Greater Than Or Equal
To. If you want to test whether Data-A is not less than Data-B , code the
following:

000041 If Data-A Not < Data-B
000042 Display "A not less than B"
000043 End-If

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

In this case, if the values of Data-A and Data-B are the same, the condition
is true. In other words, if the values of Data-A and Data-B are the same,
then the value of Data-A is certainly not less than the value of Data-B !

The next condition is a test for whether the first variable is greater than the
second. This test can be coded with > or Greater Than . If the two items
being compared are equal, then the condition is false. The opposite condition
may be tested by coding Not in front of the > symbol.

The Less Than and Greater Than conditions can be combined with the
Equal . The combination is coded as <= or Less Than Or Equal , and
conversely, >= or Greater Than Or Equal . For the <= condition, the
condition is true if the first data item is either less than the second or the same
as the second. These conditions are sometimes confusing. Here are some
examples of If statements that use these conditions.

000044 If Data-A Not > Data-B
000045 Display "A < B"
000046 End-If
000047 If Data-B >= Data-A
000048 Display "B >= A"
000049 End-If

These two If statements are different ways of coding exactly the same thing.
Plug in various values for Data-A and Data-B and see that both conditions
are true when the same values for Data-A and Data-B are inserted. Using
>= and <= is a way to avoid using the Not , which some people find
confusing.

Literals may be used in conditions. For example, you can test whether
Data-A is Greater Than Spaces .

In addition to comparing the values of data items, a condition can test the class

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

of an item. This test determines whether the item is Numeric , Alphabetic ,
Alphabetic-Lowercase , Alphabetic-Uppercase , or some other
special condition as provided for in the Special-Names paragraph by the
compiler. You may specify Class in the Special-Names paragraph and
create a new class based on a range of values. For example:

000008 Special-Names.
000009 Class ABC is "A" thru "C"
000010 Space.

This Special-Names paragraph defines a new class named ABC, which
consists of the letters A, B, and C and the space. You may test a field to
determine whether it consists of these values by coding:

000100 If Test-Field ABC
000101 Display "Test-Field is of Class ABC"
000102 End-If

If you have an alphanumeric data field that you need to move to a Usage
Display numeric data item, you should test the field first to see whether it is
numeric. Moving nonnumeric data into a numeric field can cause erroneous
results or a program crash. This test may be coded as

000050 If Data-A Is Numeric
000051 Move Data-A To Number-A
000052 End-If

The word Is in the expression is optional.

The Else Clause

When coding your If statements, you may wish to do one thing if the
condition is true but something else if the condition is false. This option is
available to you by using the Else clause. When you code an If statement
and use an Else clause, when the condition being tested is false, the
statements after the Else are executed until an End-If or period is
encountered.

000053 If Data-A < Data-B
000054 Display "A < B"
000055 Else
000056 Display "A not < B"
000057 End-If

Caution: Remember that the statements that are executed when the
condition tested is true stop when the Else is encountered. If the condition
is true, the statements after the Else are not executed. Terminating the If
statement with the End-If explicit scope terminator or period is very
important. You may find that many lines of your program are not being
executed because they fall under an Else statement inside an If that was
not properly terminated.

As with the If , multiple statements may be executed after the Else .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Using Complex Conditions

If statements can test complex conditions. A complex condition is like a series of conditions
combined into a single condition. Complex conditions are created by using And, Or, and Not .

When And is used, all conditions linked by the And must be true for the entire condition to be true.
It is the true or false state of the entire condition that the If statement is testing. Consider an
example:

000058 If Data-A = Data-B And Data-C = Data-D
000059 Display "Condition True"
000060 End-If

In this example, the display only occurs if the values of Data-A and Data-B are the same and if
the values of Data-C and Data-D are the same. For example, if Data-A has a value of 3,
Data-B has a value of 3, Data-C has a value of 5, and Data-D has a value of 5, then the entire
condition is true.

Tip: You may use parentheses to isolate your conditions when using complex conditions.
Parentheses help to clarify the individual conditions that make up your complex conditions. The
preceding example could have been more clearly coded as If (Data-A = Data-B) And
(Data-C = Data-D) .

When Or is used, only a single one of the conditions being tested need be true for the entire
complex condition to be true.

000058 If Data-A = Data-B Or Data-C = Data-D
000059 Display "Condition True"
000060 End-If

In this case, if either Data-A = Data-B or Data-C = Data-D is true, then the entire
condition is true and the Display statement is executed.

The word Not can be used to negate a condition. That is, for a condition preceded by Not to be
true, the condition must be false. When using Not , it is useful to enclose the condition that is being
negated in parentheses. Some examples can help to make this clear.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000061 If Not (Data-A = Data-B)
000062 Display "Condition True"
000063 End-If

This condition first tests Data-A and Data-B for equality. If that condition is false, then the entire
condition is true. It is exactly the same thing as stating If Data-A not = Data-B . The Not
phrase can be very useful but also baffling. Using Not is very similar to using Else , except the
statements normally coded under the Else are coded after the If statement instead. In the next
example, the two If statements perform the same function.

000064 If Data-A = Data-B
000065 Display "A = B"
000066 Else
000067 Display "A not = B"
000068 End-If
000069 If Not (Data-A = Data-B)
000070 Display "A not = B"
000071 Else
000072 Display "A = B"
000073 End-If

Using Not basically reverses the statements that are executed after the If and Else . If you want
to avoid using Not , you can always code If statements with the Else clause. The only problem
with this approach is what to do when you only have statements to execute under the Else clause.
For this problem, COBOL provides the Continue statement.

Continue performs no activity and can be used as a nonoperational statement. It can be coded
when the COBOL syntax requires a statement to be present, but you have nothing you want to do,
as in this example:

000074 If Data-A = Data-B
000075 Continue
000076 Else
000077 Display "A not = B"
000078 End-If

Complex conditions can be abbreviated, but you should be careful. The abbreviated version may be
hard to grasp logically. The two If statements in the next example are the same. The second one is
an abbreviated version of the first:

000079 If Data-A = Data-B Or Data-A = Data-C Or Data-A = Data-D
000080 Display "Condition is True"
000081 End-If
000082 If Data-A = Data-B Or Data-C Or Data-D
000083 Display "Condition is True"
000084 End-If

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The condition is abbreviated by removing the repeated data item.

Examine a variation on one of the examples previously discussed. In an earlier example, you were
formatting a telephone number in the format (999) 999-9999 . If the telephone number does
not include the area code, you want to leave it off. Listing 8.1 is a small program that shows the
use of an If statement to determine the proper formatting logic for the telephone number.

Listing 8.1 Intelligent Telephone Number Format

000000 @OPTIONS MAIN
000001 Identification Division.
000002 Program-Id. Chapt08a.
000003* Intelligent Telephone Number Format
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Phone-Number pic 9(10) Value Zeros.
000011 01 Formatted-Number Pic X(14) Value "(XXX) XXX-XXXX".
000012 01 Formatted-Alternate Pic X(8) Value "XXX-XXXX".
000013 01 The-Edited-Number Pic X(14) Value Spaces.
000014 Screen Section.
000015 01 Phone-Entry Blank Screen.
000016 03 Line 01 Column 01 Value " Enter Phone Number: ".
000017 03 Line 01 Column 22 Pic Z(10) Using Phone-Number.
000018 03 Line 03 Column 01 Value "Edited Phone Number: ".
000019 03 Line 03 Column 22 Pic X(14) From The-Edited-Number.
000020 Procedure Division.
000021 Chapt08a-Start.
000022 Display Phone-Entry
000023 Accept Phone-Entry
000024 If Phone-Number > 9999999
000025* Number large enough to contain area code

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000026 Inspect Formatted-Number
000027 Replacing First "XXX" By Phone-Number (1:3)
000028 First "XXX" By Phone-Number (4:3)
000029 First "XXXX" By Phone-Number (7:4)
000030 Move Formatted-Number To The-Edited-Number
000031 Else
000032* Number not large enough to contain an area code
000033 Inspect Formatted-Alternate
000034 Replacing First "XXX" By Phone-Number (4:3)
000035 First "XXXX" By Phone-Number (7:4)
000036 Move Formatted-Alternate To The-Edited-Number
000037 End-If
000038 Display Phone-Entry
000039 Stop Run
000040 .

This program has several interesting features. First, note that the If , Else , and End-If are
aligned to make the code easier to follow. Notice also the use of reference modification in the
Inspect statements. A numeric data item accepts the telephone number so that the value can be
tested to see whether the number was keyed with an area code. Additionally, using a numeric data
field causes the number to be right-justified. This technique allows you to know where the specific
portions of the telephone number are so that you may use reference modification. The If
statement is used with an Else clause to determine which of the Inspect and Move statements
to execute.

Key the program into the editor. Then compile, link, and run the program. Experiment with
inputting different telephone numbers, and view the results.

Nesting If Statements

 If statements may be nested. That is, after the condition, or the Else , another If
statement can occur. One case in which nesting might be useful is when a variable could have three
possible values that you need to test.

000085 If Data-Item-1 = "A"
000086 Display "Apple"
000087 Else
000088 If Data-Item-1 = "B"
000089 Display "Berry"
000090 Else
000091 Display "Chocolate"
000092 End-if
000093 End-if

After the Else associated with the test for "A" , there is another condition, testing for "B" . You
can nest If statements up to the limit of the compiler. Different compilers allow a different
number of levels of nesting.

Tip: When coding nested If statements, it is a good idea to always make use of the End-If
explicit scope terminator. Your source code will be easier to follow if you align your If , Else ,
and associated End-If statements. Hour 9, “The Evaluate Statement,” and later hours describe
alternatives to deeply nesting If statements.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

88 Levels and the Set Statement

 In the Data Division , you may define a special level numbered item called a
condition name. This condition name can be tested as a condition. Condition names may be
associated with any elementary data item including a Filler data item. Another commonly used
term to describe these condition names is flag. In your program, if you want to perform a special
operation, you might set a flag. For example, after reading the last item from a file, you might set a
flag to indicate that the entire file has been read. Later in the program, you can test that flag to
determine when to stop processing.

Condition names are defined by coding an 88 level with the condition name and the value or
values that cause the condition to be true.

000020 01 Flag-Variable Pic X.
000021 88 Flag-On Value "1".

The condition Flag-On is true when Flag-Variable has a value of 1. You may code as
many 88 levels under a data item as you want. Additionally, an 88 level may specify a range of
values or even multiple ranges. If the data item that the condition name is coded for is equal to any
of the values, then the condition is true.

000022 01 Data-Flags.
000023 03 Filler Pic X(3) Value Spaces.
000024 88 Test-One Value "ONE" "one" "One".
000025 88 Test-Two Value "TWO" "two" "Two".
000026 03 Filler Pic X Value Spaces.
000027 88 A-Thru-Z Value "A" Thru "Z".
000028 88 0-Thru-9 Value "0" Thru "9".
000029 03 Number-Flag Pic 9.
000030 88 Low-Number Value 0 Thru 4.

Test-One is true when the value of the three-character Filler is equal to one of the three
values defined. The condition A-Thru-Z is true when the Filler item has a value of any letter
between "A" and "Z" .

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Because you cannot move a value directly into a Filler item, you might be curious as to how
the condition can become true. Consider this example:

000031 01 Filler Pic X.
000032 88 Letter-A Value "A".

You cannot move a value into the Filler or into the condition name Letter-A . However,
with COBOL you can use the Set verb to set a condition name to a true state. When you code the
statement, Set Letter-A To True , an A is moved into the Filler item and the condition
is true. Using Set is a good way to control the state of conditions.

Caution: Presently in COBOL, there is no way to “unset” a condition, or to set a condition to false.
In the preceding example, when an A gets into the Filler item, there is no way to get it out. When
using conditions with Filler items, you should always allow for a second 88 level item that has a
different state. For example, in the preceding example you could code another 88 level with a
condition name of Space-Item , and then using the Set statement, set that condition true.

 000031 01 Filler Pic X.
 000032 88 Letter-A Value "A".
 000033 88 Space-Item Value Space.

When Space-Item becomes true, a space is moved into the Filler . If you have conditions that
you need to set and reset in your program, you should assign a variable name instead of using
Filler so that you may either use Initialize , or move a value directly into the field.

Using 88 Levels in an If Statement

Condition names, or 88 level items, may be used with an If statement. If the condition name is
true, then the statements after the If are executed. To illustrate, look at Listing 8.2. This program
unstrings a name entry into three fields. Then, depending on the number of names entered, the
code moves the data field to the appropriate name for display.

Listing 8.2 Intelligent Name Separation

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt08b.
000004* Intelligent Name Separation
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Name-Entered Pic X(50) Value Spaces.
000012 01 First-Name Pic X(30) Value Spaces.
000013 01 Middle-Name Pic X(30) Value Spaces.
000014 01 Last-Name Pic X(30) Value Spaces.
000015 01 Unstring-Fields Value Spaces.
000016 03 First-Field Pic X(30).
000017 03 Second-Field Pic X(30).
000018 03 Third-Field Pic X(30).
000019 01 Number-Of-Fields Pic 9 Value Zeros.
000020 88 Last-Name-Only Value 1.
000021 88 First-And-Last Value 2.
000022 88 First-Last-Middle Value 3.

000023 Screen Section.
000024 01 Name-Entry Blank Screen.
000025 03 Line 01 Column 01 Value "Enter Name: ".
000026 03 Line 01 Column 13 Pic X(50) Using Name-Entered.
000027 03 Line 03 Column 01 Value " First: ".
000028 03 Line 03 Column 09 Pic X(30) From First-Name.
000029 03 Line 04 Column 01 Value "Middle: ".
000030 03 Line 04 Column 09 Pic X(30) From Middle-Name.
000031 03 Line 05 Column 01 Value " Last: ".
000032 03 Line 05 Column 09 Pic X(30) From Last-Name.
000033 Procedure Division.
000034 Chapt08b-Start.
000035 Display Name-Entry
000036 Accept Name-Entry
000037* Unstring into possible 3 fields, allow for multiple spaces
000038* between names
000039 Unstring Name-Entered Delimited By All Space
000040 Into First-Field, Second-Field, Third-Field
000041 Tallying In Number-Of-Fields
000042 End-Unstring
000043* Now, move as appropriate.
000044 If Last-Name-Only
000045 Move First-Field To Last-Name
000046 End-If
000047 If First-And-Last
000048 Move First-Field To First-Name
000049 Move Second-Field To Last-Name
000050 End-If
000051 If First-Last-Middle
000052 Move First-Field To First-Name
000053 Move Second-Field To Middle-Name
000054 Move Third-Field To Last-Name
000055 End-If
000056 Display Name-Entry
000057 Stop Run
000058 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Number-Of-Fields is the field that contains the number of fields that are
changed when the Unstring statement is executed. Under that field, three
conditions are defined. Then three If statements follow the Unstring .
Notice how much easier the statements are to understand when the conditions
are spelled out with condition names. The If statements can be coded as If
Number-Of-Fields = 1 and so on, but that is not nearly so clear.

Summary

In this hour, you learned the following:

• Conditions can be tested to cause the COBOL program to execute
different instructions under different circumstances.

• You can test two data items for equality or to determine which of the
two is greater.

• The collating sequence controls how alphanumeric data items are
compared.

• You can use And, Or , and Not to create complex conditional
statements.

• The If statement can test these various conditions.

• Else can execute different statements if a condition is not true.

• The Continue statement can be used when a statement is required,
but you want the program to perform no action.

• If statements can be nested.

• Condition names can be defined in the Data Division and then
tested in your program.

Q&A

Q What is the purpose of the If statement?

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

A The If statement allows the programmer to test for certain conditions and
to perform different statements based on the results of those tests.

Q When creating a complex condition using Or, what determines whether
the entire condition is true?

A When using an Or , if one of the conditions coded is true, then the entire
complex condition is true. You may code a string of Or conditions, and if any
one of them is true, then the entire condition is true.

Q Can I use And and Or in the same condition?

A Yes. You can code something like, If A = 1 and B = 1 or C = 1 .
However, this syntax is hard to understand. It is better to code this condition as
follows: If (A = 1 And B = 1) Or C = 1 . When this statement is
tested, the condition is true if A and B are both 1, or if C is 1 regardless of the
values in A and B.

Q Can I code an If statement under another If statement?

A Yes. These statements are called nested If statements.

Q How do I make a condition name defined with an 88 level true?

A You can do so in two ways. Either you can move the appropriate value into
the elementary item with which the condition name is associated, or you can
use the Set statement to set the condition to the true state.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 9
The Evaluate Statement
In computer programs, it is often necessary to determine which action to take
based on a complex set of conditions. You may end up coding a significant
number of If statements to handle these decisions. As you nest the If
statements deeper and deeper, the code can become very confusing. If you
have to come back later and change the program, you may find yourself
spending a lot of time just trying to figure out what you were attempting to do
with all those If statements.

COBOL comes equipped with a very versatile statement as an alternative to
using complex, highly nested If statements. This statement is the Evaluate
statement.

When to Use Evaluate

After analyzing the decisions you need to make in your program, you will
probably find that some conditions are very simple and can be handled with a
single If statement. Others will be more complex. Evaluate is ideal for
circumstances in which you want to execute different statements based on the
value of a single data item. When more than two values are possible, you may
find yourself coding multiple If statements or creating highly nested If
structures.

You can use Evaluate to simplify the coding and to help keep your code
clear and concise. Imagine that some of the consignment dealers in your
antique store pay you a percentage of their sales. The percentage may vary
from dealer to dealer, but you have instituted four commission plans. The first
plan pays you 10% of every sale. The second pays you 20%, the third pays you

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

25%, and the final plan pays you nothing. For each sale, you must determine
the plan being used and pay yourself the proper commission. Using If
statements is one way to write the necessary code:

000040 If Commission-Plan = "A"
000041 Move 10 To Commission-Percent
000042 Else
000043 If Commission-Plan = "B"
000044 Move 20 To Commission-Percent
000045 Else
000046 If Commission-Plan = "C"
000047 Move 25 To Commission-Percent
000048 Else
000049 Move Zero To Commission-Percent
000050 End-If
000051 End-If
000052 End-If

Another option is to code individual If statements for each commission plan,
but that approach makes the last plan harder to test:

000053 If Commission-Plan = "A"
000054 Move 10 To Commission-Percent
000055 End-If
000056 If Commission-Plan = "B"
000057 Move 20 To Commission-Percent
000058 End-If
000059 If Commission-Plan = "C"
000060 Move 25 To Commission-Percent
000061 End-If
000062 If Commission-Plan Not = "A" And
000063 Commission-Plan Not = "B" And
000064 Commission-Plan Not = "C"
000065 Move Zeros To Commission-Percent
000066 End-If

The Evaluate statement makes this situation much easier to write and
understand:

000067 Evaluate Commission-Plan
000068 When "A"
000069 Move 10 To Commission-Percent
000070 When "B"
000071 Move 20 To Commission-Percent
000072 When "C"
000073 Move 25 To Commission-Percent
000074 When Other
000075 Move Zero To Commission-Percent
000076 End-Evaluate

The Evaluate statement has only one basic format, but that format has many

variations. The preceding code illustrates the simplest format, but conditions
that are more complex can benefit from the use of the Evaluate statement as
well.

Simple Evaluate Statements

The code that immediately follows the word Evaluate defines what you are
testing, or evaluating. You may evaluate an expression, a literal, or a data item,
for a true condition, or for a false condition.

The code that follows the word When within the Evaluate statement does
two things. First, it defines the circumstances under which the statements that
follow are to be executed. Second, the statements after the When are those that
are executed when the circumstances described by the evaluation of code after
the word Evaluate , in conjunction with the code after the When, are
evaluated against each other.

The text that follows the word Evaluate is defined as the selection subject.
The text that follows the word When is defined as the selection object. As the
Evaluate statement is executed, each selection object is evaluated against
each selection subject. When the result of this evaluation is true, the statements
after the When are executed. The evaluations occur in the order of the coded
When items. After a subject and object are evaluated to be true, the statements
after the When are executed and the processing of the Evaluate statement
ends. Statements after the selection object are executed until the next selection
object (When), End-Evaluate , or period, is encountered.

Caution: A common mistake in using the Evaluate statement is to
assume that once the statements coded after one When are executed, the
other When statements continue to be evaluated. That is not so. After a
When selection object is evaluated with the selection subject and the
evaluation is determined to be true, no further selection objects are
evaluated.

The extreme versatility of the Evaluate statement can lead to some
confusion. Examine this example of two different ways to code an Evaluate
that do the same thing. When the condition Data-Item-A =
Data-Item-B is true, one thing is to be displayed, but when it’s not true,
different text is to be displayed.

000061 Evaluate Data-Item-A = Data-Item-B
000062 When True
000063 Display "Items are Equal"
000064 When False
000065 Display "Items are not equal"
000066 End-Evaluate
000067 Evaluate True
000068 When Data-Item-A = Data-Item-B
000069 Display "Items are Equal"
000070 When Data-Item-A not = Data-Item-B
000071 Display "Items are not equal"

000072 End-Evaluate

Note the use of the explicit scope terminator, End-Evaluate . I recommend
that you always use this feature of the statement. The first of these statements
uses the condition Data-Item-A = Data-Item-B as its subject. When
such a condition is used as a selection subject, the only selection objects that
make sense are True and False . This statement is equivalent to coding an
If statement with an Else clause.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The second Evaluate uses True as its selection subject. The condition to be tested is then
coded as a selection object. The second selection object is the opposite condition. The output
of these two statements is the same.

Evaluate also offers a catchall selection object that is coded after the other selection
objects. The statements that follow are always executed when no other selection objects are
evaluated to be true with the selection subject. This is the selection object Other . In the
preceding example, the second Evaluate could have used this selection object as follows:

000067 Evaluate True
000068 When Data-Item-A = Data-Item-B
000069 Display "Items are Equal"
000070 When Other
000071 Display "Items are not equal"
000072 End-Evaluate

Other examples might be helpful in understanding how the Evaluate statement works. If
you have a numeric data item and you want to perform different actions based on its value,
using the Evaluate statement is an excellent choice. For example, you might pay a
different commission based on the price of an item. The more expensive items in your store
might pay a higher commission percentage.

000160 Evaluate Sale-Price
000161 When 1000 Thru 10000
000162 Move 50 To Commission-Percent
000163 When 500 Thru 1000
000164 Move 25 To Commission-Percent
000165 When 250 Thru 500
000166 Move 10 To Commission-Percent
000167 When Other
000168 Move 5 To Commission-Percent
000169 End-Evaluate

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

There are several important considerations in how this Evaluate is coded. First, notice the
order of the selection objects. If the sale price is $1,000, it seems as if the second selection
object should be executed. It is not. The reason is that the first selection object is true for a
sale price of $1,000, so the commission is moved, and no further selection objects are
evaluated. Next, consider the size of the sale price field. The high range of $10,000 is
chosen because the field is hypothetically defined as Pic 9(4)v99 . If the field were
larger, you would need a larger value in the first Thru . If the sale price field had a larger
definition and a sale price greater than $10,000 is encountered, the commission would be
paid at 5%. The logic flow within this Evaluate falls into the Other selection object.

Another method of coding this Evaluate statement follows. This method makes use of the
True selection subject.

000160 Evaluate True
000161 When Sale-Price >= 1000
000162 Move 50 To Commission-Percent
000163 When Sale-Price >= 500
000164 Move 25 To Commission-Percent
000165 When Sale-Price >= 250
000166 Move 10 To Commission-Percent
000167 When Other
000168 Move 5 To Commission-Percent
000169 End-Evaluate

In this second example, the order of the selection objects is very important. For example, if
the >= 500 is coded first, the $1,000 items fall under that condition. Remember that the
selection objects are evaluated against the selection subject one at a time, from the top of the
Evaluate down.

More than one statement may be executed as part of the When. You might want to move the
commission percentage to a display field and Compute the actual commission.

000170 Evaluate True
000171 When Sale-Price >= 1000
000172 Move 50 To Commission-Percent
000173 Compute Commission Rounded = Sale-Price * .5
000174 When Sale-Price >= 500
000175 Move 25 To Commission-Percent
000176 Compute Commission Rounded = Sale-Price * .25
000177 When Sale-Price >= 250
000178 Move 10 To Commission-Percent
000179 Compute Commission Rounded = Sale-Price * .1
000180 When Other
000181 Move 5 To Commission-Percent
000182 Compute Commission Rounded = Sale-Price * .05
000183 End-Evaluate

This statement is the same as the prior example, with only the added computation.

Another situation in which you can use Evaluate is in separating names into groups based
on the first letter of the last name. You might want to divide a mailing into three groups.
Assume that you want last names starting with A through F in one group, G through N in the
second, and the remaining letters in the third group.

000184 Evaluate Last-Name (1:1)
000185 When "A" Thru "F"
000186 Move 1 To Group-Id
000187 When "G" Thru "N"
000188 Move 2 To Group-Id
000189 When Other
000190 Move 3 To Group-Id
000191 End-Evaluate

The use of the Other selection object is very important in this case. If the third selection
object were coded as When "O" Thru "Z" instead and the first character of the name
happened to contain invalid data, such as a number or a space, then no group would be
assigned.

What about the circumstance when a range will not do? What if you wanted to group the last
names based on the first letters, but not in consecutive groups? Perhaps the last names
starting with vowels belong in one group, then those starting with B through J in the second,
and the remaining names in the third group.

You may stack selection objects. If no statements follow the selection object, it is treated as
part of the next selection object. Therefore, if any selection object evaluates with the
selection subject to be true, the statements after the final stacked selection object are
executed.

000192 Evaluate Last-Name (1:1)
000193 When "A"
000194 When "E"
000195 When "I"
000196 When "O"
000197 When "U"
000198 Move 1 To Group-Id
000199 When "B" Thru "J"
000200 Move 2 To Group-Id
000201 When Other
000202 Move 3 To Group-ID
000203 End-Evaluate

In this example, any last name that starts with A, E, I , O, or U will be assigned a group of 1.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

More Complex Evaluate Usage

Like If statements, you may nest Evaluate statements. Subsequent Evaluate statements may
be coded in the statements that appear after the selection objects. Consider the previous example in
which the names were grouped based on the first letter of the last name. You might further
subdivide the names based on the first letter of the first name. Consider this example, which divides
the names into nine groups.

000204 Evaluate Last-Name (1:1)
000205 When "A" Thru "F"
000206 Evaluate First-Name (1:1)
000207 When "A" Thru "F"
000208 Move 1 To Group-Id
000209 When "G" Thru "N"
000210 Move 2 To Group-Id
000211 When Other
000212 Move 3 To Group-Id
000213 End-Evaluate
000214 When "G" Thru "N"
000215 Evaluate First-Name (1:1)
000216 When "A" Thru "F"
000217 Move 4 To Group-Id
000218 When "G" Thru "N"
000219 Move 5 To Group-Id
000220 When Other
000221 Move 6 To Group-Id
000222 End-Evaluate
000223 When Other
000224 Evaluate First-Name (1:1)
000225 When "A" Thru "F"
000226 Move 7 To Group-Id
000227 When "G" Thru "N"
000228 Move 8 To Group-Id
000229 When Other
000230 Move 9 To Group-Id

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000231 End-Evaluate
000232 End-Evaluate

The Evaluate statement can create complex decision-making structures. More than one selection
subject may be used. If multiple selection subjects are used, the same number of items must be
specified on the selection object (When) lines of the Evaluate statement.

This type of structure gives the Evaluate tremendous power. Multiple selection subjects and
objects are separated with the word Also . Another possible value that can be checked as a selection
object is Any. Any means that the evaluation evaluates to be true no matter what the value of the
selection object. Consider another solution to coding the previous example.

000233 Evaluate Last-Name (1:1) Also First-Name (1:1)
000234 When "A" Thru "F" Also "A" Thru "F"
000235 Move 1 To Group-Id
000236 When "A" Thru "F" Also "G" Thru "N"
000237 Move 2 To Group-Id
000238 When "A" Thru "F" Also Any
000239 Move 3 To Group-Id
000240 When "G" Thru "N" Also "A" Thru "F"
000241 Move 4 To Group-Id
000242 When "G" Thru "N" Also "G" Thru "N"
000243 Move 5 To Group-Id
000244 When "G" Thru "N" Also Any
000245 Move 6 To Group-Id
000246 When Any Also "A" Thru "F"
000247 Move 7 To Group-Id
000248 When Any Also "G" Thru "N"
000249 Move 8 To Group-Id
000250 When Other
000251 Move 9 To Group-Id
000252 End-Evaluate

Caution: When creating complex Evaluate statements using multiple selection subjects,
remember that Other is a catchall. You cannot code Other with any other selection object. Instead
of using Other for an individual item when Also is used, the word Any is provided.

Try to follow the tests that are given in this example. For each selection object, both subjects must
be evaluated with the selection objects. If all the different conditions evaluate to true, then the
statements after the selection object line are executed.

Notice that the Other selection object is different from the other selection objects. In the other
selection objects, the number of objects matches the number of selection subjects coded after the
Evaluate statement.

Consider another example. In this example, a commission is calculated based on the price of the
item sold. However, if the commission is less than $1, the commission is made $1 unless the sale
amount is less than $1, in which case the commission is 75% of the total sale price. Under certain
circumstances, the commission is limited to a maximum value.

These rules might seem complex, but this situation is typical in programming. The following
Evaluate statement handles these conditions.

These are the rules:

• Items $1,000 and over earn a commission of 50%.

• Items $500 and over, but less than $1,000, earn a commission of 25%.

• Items $250 and over, but less than $500, earn a commission of 10%.

• Items less than $250 earn a commission of 5%.

• If the commission is less than $1, it is adjusted up to $1 unless the sale price is less than $1,
in which case the commission is 75% of the sale price.

• For the items with the 50% commission, the maximum commission is $750.

• For the items with the 25% commission, the maximum commission is $150.

• For the items with the 10% commission, the maximum commission is $30.

• For the items with the 5% commission, there is no maximum commission.

First, try to find some conditions that can be isolated. The first is which of the four regular
percentages to test for. Next, you need to know whether the commission is too high. The minimum
$1 commission can occur only with the 5% rate plan, so a separate selection subject is not required.
Instead, code an If statement under the appropriate selection object.

000160 Evaluate True Also True
000161 When Sale-Price >= 1000 Also Sale-Price * .5 > 750.00
000162 Move 750.00 To Commission-Amount
000163 When Sale-Price >= 1000 Also Any
000164 Compute Commission-Amount = Sale-Price * .5
000165 When Sale-Price >= 500 Also Sale-Price * .25 > 150.00
000166 Move 150.00 To Commission-Amount
000167 When Sale-Price >= 500 Also Any
000168 Compute Commission-Amount = Sale-Price * .25
000169 When Sale-Price >= 250 Also Sale-Price * .10 > 30.00
000170 Move 30.00 To Commission-Amount
000171 When Sale-Price >= 250 Also Any
000172 Compute Commission-Amount = Sale-Price * .10
000173 When Other
000174 Compute Commission-Amount = Sale-Price * .05
000175 If Commission-Amount < 1.00
000176 Move 1.00 To Commission-Amount
000177 End-If
000178 If Commission-Amount > Sale-Price
000179 Compute Commission-Amount = Sale-Price * .75
000180 End-If
000181 End-Evaluate

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The complex business rules for this example boil down to a straightforward and easy-to-follow
Evaluate statement. Note how the test for each of the first three commission plans is repeated in the
Evaluate . This approach allows the maximum to be checked in the first portion of the selection object,
and the rest of the values to fall through the second selection object for each rate.

The two If statements under the Other selection object handle the problem of the minimum
commission. The first makes sure that the minimum is applied, and the second makes sure that the
commission does not exceed the sale price of the item. Note also how the mathematical expressions and
condition tests are used. The Evaluate statement is checking two conditions for truth. The content of
those conditions can easily be another condition or arithmetic statement.

One more example demonstrates how an Evaluate statement can simplify coding. Your store divides
merchandise into categories. You have agreements with your vendors to put some items, but not all,
within certain categories on sale during certain times of the year. The percentage off depends on that time
of year. Some sale items are on sale at all times. The categories are

• ANTI - Antiques

• CRAF - Crafts

• HOLI - Holiday Items

• JEWL - Jewelry

• MISC - Miscellaneous

• XMAS - Christmas Items

Other categories do not have special time frames for their sales. They are discounted year-round if marked
as sale items. The rules for the discount are

• Item must be a sale item.

• During January, February, and March, antiques, jewelry, and miscellaneous sale items are
discounted 50%.

• During January, February, and March, Christmas and craft items are discounted 75%. All other
sale items receive a 10% discount.

• During April, May, and June, Christmas and craft items are discounted 50%.

• During April, May, and June, antiques, jewelry, and miscellaneous sale items are discounted
25%. All other sale items receive a 10% discount.

• During July, August, and September, all items are discounted at 25%.

• During October, November, and December, antiques are discounted 50%, and all other items
receive a 10% discount.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

First, examine the code necessary to use nested If logic. Check this code carefully and follow it through
different possible conditions. The columns are aligned for easier reading.

000160 If Sale-Item
000161 If Month-Of-Sale = 01 Or 02 Or 03
000162 If Category-Of-Sale = "ANTI" Or "JEWL" Or "MISC"
000163 Move 50 To Discount-Percent
000164 Compute Sale-Price = Full-Price * .5
000165 Else
000166 If Category-Of-Sale = "XMAS" Or "CRAF"
000167 Move 75 To Discount-Percent
000168 Compute Sale-Price = Full-Price * .25
000169 Else
000170 Move 10 To Discount-Percent
000171 Compute Sale-Price = Full-Price * .90
000172 End-If
000173 End-If
000174 Else
000175 If Month-Of-Sale = 04 Or 05 Or 06
000176 If Category-Of-Sale = "XMAS " Or "CRAF"
000177 Move 50 To Discount-Percent
000178 Compute Sale-Price = Full-Price * .5
000179 Else
000180 If Category-Of-Sale = "ANTI" Or "JEWL" Or "MISC"
000181 Move 25 To Discount-Percent
000182 Compute Sale-Price = Full-Price * .75
000183 Else
000184 Move 10 To Discount-Percent
000185 Compute Sale-Price = Full-Price * .90
000186 End-If
000187 End-If
000188 Else
000189 If Month-Of-Sale = 07 Or 08 Or 09
000190 Move 25 To Discount-Percent
000191 Compute Sale-Price = Full-Price * .75
000192 Else
000193 If Category-Of-Sale = "ANTI"
000194 Move 50 To Discount-Percent
000195 Compute Sale-Price = Full-Price * .5
000196 Else
000197 Move 10 To Discount-Percent
000198 Compute Sale-Price = Full-Price * .9
000199 End-If
000200 End-If
000201 End-If
000202 End-If
000203 Else
000204 Move Full-Price To Sale-Price
000205 End-If

As you can see, this code accomplishes the task but is hard to read and follow. What if you had to add
another condition later? What would you code to add a new set of months and a new discount type?
Maintaining this program would be difficult.

Now examine the same problem solved with the Evaluate statement:

000208 Evaluate Sale-Item Also Month-Of-Sale Also Category-Of-Sale
000209 When True Also 1 Thru 3 Also "ANTI"

000210 When True Also 1 Thru 3 Also "JEWL"
000211 When True Also 1 Thru 3 Also "MISC"
000212 Move 50 To Discount-Percent
000213 Compute Sale-Price = Full-Price * .5
000214 When True Also 1 Thru 3 Also "XMAS"
000215 When True Also 1 Thru 3 Also "CRAF"
000216 Move 75 To Discount-Percent
000217 Compute Sale-Price = Full-Price * .25
000218 When True Also 1 Thru 3 Also Any
000219 Move 10 To Discount-Percent
000220 Compute Sale-Price = Full-Price * .9
000221 When True Also 4 Thru 6 Also "XMAS"
000222 When True Also 4 Thru 6 Also "CRAF"
000223 Move 50 To discount-Percent
000224 Compute Sale-Price = Full-Price * .5
000225 When True Also 4 Thru 6 Also "ANTI"
000226 When True Also 4 Thru 6 Also "JEWL"
000227 When True Also 4 Thru 6 Also "MISC"
000228 Move 25 To Discount-Percent
000229 Compute Sale-Price = Full-Price * .75
000230 When True Also 4 Thru 6 Also Any
000231 Move 10 To Discount-Percent
000232 Compute Sale-Price = Full-Price * .90
000233 When True Also 6 Thru 9 Also Any
000234 Move 25 To Discount-Percent
000235 Compute Sale-Price = Full-Price * .75
000236 When True Also 10 Thru 12 Also "ANTI"
000237 Move 50 To Discount-Percent
000238 Compute Sale-Price = Full-Price * .5
000239 When True Also 10 Thru 12 Also Any
000240 Move 10 To Discount-Percent
000241 Compute Sale-Price = Full-Price * .9
000242 When Other
000243 Move Full-Price To Sale-Price
000244 End-Evaluate

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Evaluate statement coded here is much easier to follow than the earlier example but
accomplishes the same task. It would be much easier to add a new set of months or a new category. In
addition to those benefits, you can easily see where you have redundant code: 50%, 25%, and 10%
discounts are applied in several places. You can easily reposition your When lines and reduce the code
further.

000249 Evaluate Sale-Item Also Month-Of-Sale Also Category-Of-Sale
000250 When True Also 1 Thru 3 Also "ANTI"
000251 When True Also 1 Thru 3 Also "JEWL"
000252 When True Also 1 Thru 3 Also "MISC"
000253 When True Also 4 Thru 6 Also "XMAS"
000254 When True Also 4 Thru 6 Also "CRAF"
000255 When True Also 10 Thru 12 Also "ANTI"
000256 Move 50 To Discount-Percent
000257 Compute Sale-Price = Full-Price * .5
000258 When True Also 1 Thru 3 Also "XMAS"
000259 When True Also 1 Thru 3 Also "CRAF"
000260 Move 75 To Discount-Percent
000261 Compute Sale-Price = Full-Price * .25
000262 When True Also 4 Thru 6 Also "ANTI"
000263 When True Also 4 Thru 6 Also "JEWL"
000264 When True Also 4 Thru 6 Also "MISC"
000265 When True Also 6 Thru 9 Also Any
000266 Move 25 To Discount-Percent
000267 Compute Sale-Price = Full-Price * .75
000268 When True Also 1 Thru 3 Also Any
000269 When True Also 4 Thru 6 Also Any
000270 When True Also 10 Thru 12 Also Any
000271 Move 10 To Discount-Percent
000272 Compute Sale-Price = Full-Price * .9
000273 When Other
000274 Move Full-Price To Sale-Price
000275 End-Evaluate

As you can see, the complex set of rules required to figure out the discounted price has become a fairly
simple Evaluate statement.

Caution: When you rearrange your selection objects (When lines) within an Evaluate statement, you

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

must watch for Any clauses because they will always be evaluated to true. The Any items must appear
after all prior selection objects have been tested. In the preceding example, notice where the 10% discount
selection objects were moved.

Summary

In this hour, you learned the following:

• The Evaluate statement can simplify and clarify the conditional logic of your program.

• The code immediately following the word Evaluate is the selection subject.

• The code following the When is the selection object.

• Only one set of statements is executed from within an Evaluate . After a selection object is
evaluated with a selection subject and found true, the subsequent statements are executed. After
that, processing of the Evaluate statement ends.

• Selection objects may be stacked so that if any one of them evaluates to true, the programming
statements after the last stacked object are executed.

• Evaluate statements may be nested.

• Complex Evaluate statements may be used like decision tables for solving complex
conditions. The word Also adds multiple selection subjects and selection objects.

• Evaluate statements, because of their simplicity and easy-to-read format, should be used
instead of complex nested If statements.

Q&A

Q What is one condition in which an Evaluate statement is a better choice than an If
statement?

A When a data item is being tested for more than two possible values. For example, a State field
could cause different actions in your program for every state. The nested If to handle this condition
would be very deep and complex. Evaluate is a better choice.

Q If I want to execute some statements for more than one evaluated condition, do I have to code
the statements over and over?

A No. You may stack your selection objects, and when any one of them is true, the statements after the
last stacked object are executed.

Q Can I test several data items for different values in a single Evaluate statement?

A Yes. You have to make sure that the number of selection objects on each When line matches the
number of selection subjects on the Evaluate line. The Other selection object is the only line in
which this rule does not apply.

Q Can I nest Evaluate statements?

A Yes. Under a selection object, you may code another Evaluate statement.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the section “Quiz
and Exercise Questions and Answers” that can be found on the CD. This section contains quiz questions
and exercises for you to complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 10
Processing Loops
The utility of computer programs is derived from their capability to perform
repetitive tasks accurately and quickly. To do so, a programmer codes a
processing loop. A processing loop is simply something in your program that
happens over and over. The word loop comes from what it looks like in a
flowchart. The flow of your program keeps looping repeatedly until some
specified condition is reached. In this hour, you learn the basic steps you need
to create processing loops in COBOL. The following topics are discussed:

• The Perform statement

• COBOL Section s and Paragraph s

• Program flow in the Procedure Division

• The use of Go To in structured programming design

Figure 10.1 shows a simple processing loop. You can follow the arrows for the
direction of flow through the program. The diamond is a decision box. If the
answer to the question it asks is yes, the loop is finished and the program
stops. However, if the answer is no, then the loop is not finished and the
program repeats the computing process.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 10.1 Flowchart of a processing loop.

A typical computer program will start, perform some function or functions
until a specified condition is encountered, then stop.

The Basic Perform Statement

One way to create a processing loop with COBOL is to use a Perform
statement. The Perform statement executes the code you specify after the
Perform and then returns in your program to the point immediately after the
Perform statement.

The simplest format of the Perform statement allows you to Perform a
Section or Paragraph within the Procedure Division of your
program.

000020 Procedure Division.
000021 Start-Of-Program.
000022 Perform Paragraph-1
000023 Display "Return From Paragraph 1"
000024 Stop Run
000025 .
000026 Paragraph-1.
000027 Display "Paragraph 1"
000028 Display "End of Paragraph 1"
000029 .

The Procedure Division from this example Display s "Paragraph
1" and then "End of Paragraph 1" followed by "Return from
Paragraph 1" . The Perform statement jumps to Paragraph-1 ,
executes the statements in the Paragraph , and then jumps back to the point
in the program immediately following the Perform .

Sections and Paragraphs

Remember that in COBOL you can divide the Procedure Division into
Section s, using Section headings. The examples thus far have not used
Section s. The COBOL standard states that a Paragraph title should
follow any Section headings. Most compilers ignore this rule and allow you
to insert programming statements immediately following Section headings.
These lessons are coded according to the standard and use Paragraph titles

javascript:displayWindow('images/10-01.jpg',141,304)
javascript:displayWindow('images/10-01.jpg',141,304)

after Section headings.

A Section can have many Paragraph s. When you Perform a
Section , all the Paragraph s in the Section are performed from the top
down. At the start of the next Section , the program returns to the next line
after the Perform of that Section . This practice is not often used and is not
recommended. It is not obvious when you read the Perform statement that
multiple Paragraph s are going to be executed.

If a Paragraph in a Section is performed, then the program returns to the
statement immediately after the Perform when the next Paragraph or
Section is encountered. The example from Listing 10.1 should clarify this
sequence of events.

Listing 10.1 Perform Example

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt10a.
000004* Perform Example
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 Procedure Division.
000012 Chapt10a-Section Section.
000013 Chapt10a-Start.
000014 Perform First-Section
000015 Perform Para-2
000016 Stop Run
000017 .
000018 First-Section Section.
000019 Para-1.
000020 Display "Para 1"
000021 .
000022 Para-2.
000023 Display "Para 2"
000024 .
000025 Para-3.
000026 Display "Para 3"
000027 .

As you can see from the output as shown in Figure 10.2, the first Perform
causes each statement in the entire Section to be executed. The second
Perform executes only the statement under Para-2 .

Figure 10.2 Output from Listing 10.1

Aside from performing a Section or a Paragraph , you may Perform a
range of Paragraph s. To do so, state the starting Paragraph , the word
Thru (or Through), and the last Paragraph to be executed. Each
Paragraph between the two Paragraph titles specified is executed, and
all statements under the last Paragraph are executed. For example, to
execute Para-1 and Para-2 in the example, you may code the following:

000063 Perform Para-1 Thru Para-2

The program Display s "Para-1" followed by "Para-2" .

Note: The Perform with the Thru clause has been widely used for years.
However, the advances in the COBOL language that were included in the
1985 standard have made its use unnecessary. As you will see in the next
section, the Perform with Thru is often used when a Go To is used to
control the processing loop. No exercises in this book require the use of
Perform with Thru . I am presenting it because I am sure that if you do
pursue a career in COBOL, you will see it in use, and you should understand
it.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/10-02.jpg',791,505)
javascript:displayWindow('images/10-02.jpg',791,505)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When using Perform with the Thru clause, many programmers code a dummy Paragraph after the
end of the Paragraph . The dummy Paragraph contains only the word Exit . Exit does nothing
and is coded only because each Paragraph has to contain at least one statement.

000060 Perform Para-1 Thru Para-1-Exit
000061 Stop Run
000062 .
000063 Para-1.
000064 Display "Para 1"
000065 .
000066 Para-1-Exit.
000067 Exit.

This example performs both Para-1 and Para-1-Exit , but it looks as though only Para-1 is being
performed because Para-1-Exit has no processing statements. It is important to remember that when
Thru is used with a Perform , all statements in the Thru Paragraph are performed.

Creating Processing Loops Using Perform

You are probably asking yourself how Perform relates to processing loops. If Perform executes a
Paragraph only once, how can it be used to create a loop?

With Perform , you can Perform a Paragraph multiple times. For example, if you want to count to
10, you can Perform a counting Paragraph 10 times.

000078 Move Zeros To Num-Counter
000079 Perform Count-By-1 10 Times
000080 Stop Run
000081 .
000082 Count-By-1.
000083 Add 1 To Num-Counter
000084 Display Num-Counter
000085 .

This Procedure Division code Perform s the Count-By-1 Paragraph 10 times. The program
does not return to the statement after the Perform until the Perform is executed 10 times.

Caution: The Stop Run that is coded after the Perform is very important. If you did not have it, the
flow of the program would fall through the Count-By-1 Paragraph and execute it yet again.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The number of times a Perform is to be executed can be specified by a numeric data item or a numeric
literal.

In addition to performing a Paragraph a certain number of times, you can base a Perform on a
conditional test. You do this by using Until . With Until you tell the program to Perform the
Paragraph , testing for your condition before every execution of the Paragraph , Until the
condition is true. All statements under the Paragraph are executed. The test for your condition occurs
before the Paragraph is next executed. If your condition is true, the Paragraph is not executed.

The program in Listing 10.2 uses Perform with Until to control the processing. This program is a
modification of the program used in Hour 6, “Manipulating Data,” to split up the name and change the
email address to lowercase. Listing 10.2 continues to Accept new input Until the user presses the F1
key.

Listing 10.2 Name and Email Edit Processing Loop

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt10c.
000004* Name And E-Mail Edit - Processing Loop.
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Data Division.
000012 Working-Storage Section.
000013 01 Keyboard-Status.
000014 03 Accept-Status Pic 9.
000015 03 Function-Key Pic X.
000016 88 F1-Pressed Value X"01".
000017 03 System-Use Pic X.
000018 01 Screen-Items.
000019 03 Name-Entry Pic X(40) Value Spaces.
000020 03 E-Mail Pic X(30) Value Spaces.
000021 03 Output-Fields.
000022 05 Last-Name Pic X(30) Value Spaces.
000023 05 First-Name Pic X(30) Value Spaces.
000024 05 Error-Message Pic X(60) Value Spaces.
000025 01 Work-Numbers.
000026 03 Work-Number Pic 99 Value Zeros.
000027 03 Work-Number-1 Pic 99 Value Zeros.
000028 03 Work-Number-2 Pic 99 Value Zeros.
000029 Screen Section.
000030 01 Name-Entry-Screen
000031 Blank Screen, Auto
000032 Foreground-Color Is 7,
000033 Background-Color Is 1.
000034*
000035 03 Screen-Literal-Group.
000036 05 Line 01 Column 30 Value "Name and E-mail Entry"
000037 Highlight Foreground-Color 4 Background-Color 1.
000038 05 Line 05 Column 05 Value " Name: ".
000039 05 Line 06 Column 05 Value "E-mail: ".
000040 05 Line 08 Column 05 Value " Last: ".
000041 05 Line 09 Column 05 Value " First: ".

000042 05 Line 22 Column 05 Value "Press F1 to Exit".
000043 03 Reverse-Video-Group Reverse-Video.
000044 05 Line 05 Column 13 Pic X(40) Using Name-Entry.
000045 05 Line 06 Column 13 Pic X(30) Using E-Mail.
000046 05 Line 08 Column 13 Pic X(30) From Last-Name.
000047 05 Line 09 Column 13 Pic X(30) From First-Name.
000048 05 Line 20 Column 01 Pic X(60)
000049 Highlight From Error-Message.
000050 Procedure Division.
000051 Chapt10c-Start.
000052 Perform Display-And-Accept-Screen Until F1-Pressed
000053 Stop Run
000054 .
000055 Display-And-Accept-Screen.
000056 Display Name-Entry-Screen
000057 Accept Name-Entry-Screen
000058* Reset The Working Fields
000059 Initialize Output-Fields
000060 Work-Numbers
000061* Make Sure There Is A Comma In The Name
000062 Inspect Name-Entry Tallying Work-Number-2 For All ","
000063* Only Try To Split If There Is One
000064 If Work-Number-2 > Zeros
000065 Perform Process-The-Data
000066 Else
000067 Move "Name must contain a comma" To Error-Message
000068 End-If
000069 .
000070 Process-The-Data.
000071* Split The First And Last Name Out Into Separate Fields
000072 Inspect Name-Entry Tallying Work-Number
000073 For Characters Before ","
000074 Move Name-Entry (1:work-Number) To Last-Name
000075 Add 2 To Work-Number
000076* We Need To Exclude The Leading Spaces, After The Comma
000077 Inspect Name-Entry (Work-Number:)
000078 Tallying Work-Number-1 For Leading Spaces
000079 Move Name-Entry (Work-Number + Work-Number-1:) To First-Name
000080* Change The E-Mail Address To All Lower Case Letters.
000081 Inspect E-Mail Converting "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000082 To "abcdefghijklmnopqrstuvwxyz"
000083 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The first item to examine in this program is the addition of the
Special-Names Paragraph . As you learned in Hour 4, “Basic User
Interface,” in relation to the Screen Section , the Special-Names
Paragraph captures the function key pressed by the user. A conditional (88
level) item corresponds to the value in the field when F1 is pressed.

An error message line has been added to the screen. This message appears if
the user does not enter a comma in the name field. A new numeric data item
was added in which to accumulate the number of commas in the
Name-Entry , using the Inspect statement. If no commas occur, an error
message is displayed and the input fields are not processed.

The working fields are initialized between every execution of the logic to split
the name. You don’t need the headache of having any leftover values in these
fields. The initialization of these fields is simplified by grouping them and
using an Initialize statement against the two groups.

Notice the use of the Perform with Until . This Perform continues to be
executed Until the F1 key is pressed. The second Perform is coded as part
of an If statement. You may code a Perform anywhere you would normally
code any other COBOL statement.

Take note of the general program structure. This style of coding is called
structured programming. The program uses what is sometimes referred to as a
top-down design. Top-down design takes the highest level and gradually
breaks down each function into smaller and smaller parts until you have simple
programming statements.

The main Paragraph shows the logic of the program. It is to display and
accept a screen Until the user presses F1 and then terminate. Using the 88
level for the F1 key makes the program self-documenting. Liberal use of
comments helps to clarify the action.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Within the processing Paragraph , you can easily discern what is happening
in the program. There is no jumping around. The only condition that is tested
is the one used to validate the input and determine whether the field should be
processed. If so, that single Paragraph is executed. Its sole function is to
process the input data.

This example uses an 88 level item to determine the termination of the
performed Paragraph . Any condition may be coded with the Perform to
control the processing loop. You must remember that the condition that is
specified in the Perform statement is tested before the Perform is
executed. If the condition is true upon the first pass, your Perform is never
executed. Look at this example:

000086 Move "A" to Test-Item
000087 Perform Para-1 Until Test-Item = "A"
000088 Stop Run
000089 .
000090 Para-1.
000092 If Data-A + Data-B = 25
000093 Move "A" to Test-Item
000094 End-If
000095 .

In this example, Para-1 is never executed. (Remember that the test of the
condition occurs before the Paragraph is executed.) It seems obvious when
you look at the code, but once the program is compiled the computer does not
really know how many times processing has passed through this Perform .
The tests are always the same, whether this is the first execution or the
one-millionth.

Use of Go To

COBOL, like most other programming languages, has a Go To statement.
The Go To causes the program to jump to the Paragraph title or Section
header specified in the Go To statement. As with Perform … Thru , the
advances in the COBOL language with the 1985 standard have eliminated any
need to use Go To . However, it seems to be the “easy way out” for many
programmers, and I think it is worthwhile to spend some time explaining its
use and abuse.

Go To causes what is referred to as an unconditional branch. The logic of
your program jumps to the point of the Go To and does not return, in contrast
to the logic of a Perform . What follows is an example of a processing loop
using Go To .

000096 Start-Of-Loop.
000097 If Data-A + Data-B not = 25
000098 Go To Start-Of-Loop
000099 End-If
000100 Stop Run
000101 .

This code seems simple enough. The loop continues until Data-A +
Data-B is equal to 25 . In its simplest form, Go To doesn’t appear to be so
bad; however, when mixed with more Go To statements, multiple
Paragraphs , and Perform statements, your program soon becomes
unreadable and hard to follow.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

In order to demonstrate the differences between using Go To and Perform , consider this
programming problem. You need a processing loop to Accept a screen of data. The screen has three
fields: First Name , Last Name , and E-mail Address . For each field, check to see whether an
entry was made. If entered, convert the first and last names to uppercase. If the email address was
entered, convert it to lowercase. If the fields are blank, replace them with asterisks. Both approaches
are shown in Chapt10d.Cob , as shown in Listing 10.3.

Listing 10.3 Go To Versus Perform Logic

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt10d.
000004* Go To Vs Perform Logic
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Data Division.
000012 Working-Storage Section.
000013 01 Keyboard-Status.
000014 03 Accept-Status Pic 9.
000015 03 Function-key Pic X.
000016 88 F1-Pressed Value X"01".
000017 03 System-Use Pic X.
000018 01 Screen-Items.
000019 03 Last-Name Pic X(20) Value Spaces.
000020 03 First-Name Pic X(20) Value Spaces.
000021 03 E-mail Pic X(30) Value Spaces.
000022 Screen Section.
000023 01 Entry-Screen
000024 Blank Screen, Auto
000025 Foreground-Color Is 7,
000026 Background-Color Is 1.
000027*
000028 03 Screen-Literal-Group.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000029 05 Line 01 Column 30 Value "Name and E-mail Entry"
000030 Highlight Foreground-Color 4 Background-Color 1.
000031 05 Line 06 Column 05 Value "E-mail: ".
000032 05 Line 08 Column 05 Value " Last: ".
000033 05 Line 09 Column 05 Value " First: ".
000034 05 Line 22 Column 05 Value "Press F1 to Exit".
000035 03 Reverse-Video-Group Reverse-Video.
000036 05 Line 06 Column 13 Pic X(30) Using E-mail.
000037 05 Line 08 Column 13 Pic X(20) Using Last-Name.
000038 05 Line 09 Column 13 Pic X(20) Using First-Name.
000039 Procedure Division.
000040 Chapt10d-Start.

The first part of the program is the same for both approaches. The differences begin in the
Procedure Division .

For the Perform version, the main processing loop can be stated in one simple statement:

Perform Display-And-Accept-Screen Until F1-Pressed

Now the next level down in the top-down design is coded. This is the
Display-And-Accept-Screen Paragraph .

000041 Display-And-Accept-Screen.
000042 Display Entry-Screen
000043 Accept Entry-Screen
000044 If F1-Pressed
000045 Continue
000046 Else
000047 Perform Process-Data-Fields
000048 End-If
000049 .

This Paragraph displays and then accepts the entry screen. The If following the Accept checks
for the F1 key. If it was pressed, the data fields are not processed; however, if it was not pressed, the
data fields are processed.

The processing of the data fields is coded simply. Each field is checked to see whether it was entered.
If so, the conversion is performed. If not, asterisks are placed in the field.

000050 Process-Data-Fields.
000051 If Last-Name > Spaces
000052 Perform Process-Last-Name
000053 Else
000054 Move "********************" To Last-Name
000055 End-If
000056 If First-Name > Spaces
000057 Perform Process-First-Name
000058 Else
000059 Move "********************" to First-Name
000060 End-If
000061 If E-Mail > Spaces
000062 Perform Process-E-Mail
000063 Else
000064 Move "******************************" to E-Mail
000065 End-If
000066 .

As each field is checked, any data that was entered into the field is processed in the appropriate
Paragraph .

000067 Process-Last-Name.
000068 Inspect Last-Name Converting "abcdefghijklmnopqrstuvwxyz"
000069 To "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000070 .
000071 Process-First-Name.
000072 Inspect First-Name Converting "abcdefghijklmnopqrstuvwxyz"
000073 To "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000074 .
000075 Process-E-Mail.
000076 Inspect E-Mail Converting "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000077 To "abcdefghijklmnopqrstuvwzyz"
000078 .

Each Paragraph handles conversion of each associated field. Much more could be happening in
these Paragraph s, but this example is just for demonstration. Normally, you would not code a
Perform with only a single statement under it.

This program is easy to follow. Each Paragraph performs a function and returns. The program was
easy to design. Each step was broken down into smaller steps until the program was written. This
method is top-down, structured programming.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

One interesting feature of this style is that you can rearrange the Paragraph s in any order you desire.
For example, you can put the Process-E-Mail Paragraph before the Process-Last-Name
Paragraph , and everything will function properly. The program will never fall through a
Paragraph name.

Now examine the code and process necessary to produce the same results using the Go To statement.

000079 Process-Screen.
000080 Display Entry-Screen
000081 Accept Entry-screen
000082 If F1-Pressed
000083 Stop Run
000084 End-If
000085 If Last-Name > Spaces
000086 Go To Process-Last-Name-Goto
000087 Else
000088 Move "********************" to Last-Name
000089 End-If
000090 .

Notice lines 82 and 83; the Stop Run statement is coded so that if the user presses the F1 key, the
program stops immediately and does not continue to process. Next, the last name is checked. If it is
entered, the Go To Paragraph processes the last name. If it is not entered, asterisks are moved into
the field.

The logic flow of the program falls through the next Paragraph . The only reason for a Paragraph
name is that after the last name is processed, a label is required as a return point so that the program
can continue to process the screen.

000091 Check-First-Name.
000092 If First-Name > Spaces
000093 Go To Process-First-Name-Goto
000094 Else
000095 Move "********************" To First-Name
000096 End-If
000097 .
000098 Check-E-Mail.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000099 If E-Mail > Spaces
000100 Go To Process-E-Mail-Goto
000101 Else
000102 Move "******************************" to E-mail
000103 End-If
000104 Go To Process-Screen
000105 .

These two Paragraphs determine whether the first name and email need to be processed. Again, the
Check-E-Mail Paragraph is coded so that there is a place to return to from an earlier Go To .

The process Paragraphs are coded as follows:

000106 Process-Last-Name-Goto.
000107 Inspect Last-Name Converting "abcdefghijklmnopqrstuvwxyz"
000108 To "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000100 Go To Check-First-Name
000110 .
000111 Process-First-Name-Goto.
000112 Inspect First-Name Converting "abcdefghijklmnopqrstuvwxyz"
000113 To "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000114 Go To Check-E-Mail
000115 .
000116 Process-E-Mail-Goto.
000117 Inspect E-Mail Converting "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
000118 To "abcdefghijklmnopqrstuvwzyz"
000119 Go To Process-Screen
000120 .

Notice in the first Paragraph , the logic jumps back to Check-First-Name . In the second, the
logic jumps back to Check-E-Mail , and in the third it goes back to the main screen process. See
how hard this logic is to follow? It is also easy to really mess up later. You have to be aware that you
are falling through the Paragraph titles. If you forget, or don’t realize it, you can corrupt the logic of
the program by moving a Paragraph or by inserting a new Paragraph or Go To .

What if you want to add a fourth field? With the Perform method, you it can simply add one more
If statement in the Process-Data-Fields Paragraph and then code that process
Paragraph by itself. Contrast this approach with the modifications needed in the Go To example.

First, you have to change the Process-E-Mail-Go To Paragraph to not Go To
Process-Screen , but instead to go back to your new Paragraph . Your new Paragraph would
assume the role of going back to the Process-Screen Paragraph . In addition, you have to
change the Check-E-Mail Paragraph so that it does not go back to Process-Screen and,
instead, falls through another new Paragraph . This new Paragraph would go back to
Process-Screen .

What if, for some reason, you wanted this new field to be processed first? Nearly every Paragraph
would require a change. With the Perform version, all you have to do is position the new If
statement in the proper place in the Process-Data-Fields Paragraph .

Listing 10.4 shows what happens when you mix Go To with Perform logic.

Listing 10.4 Perform with Go To Example

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt10e.
000004* Perform With Go To Example

000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 Procedure Division.
000012 Chapt10a-Section Section.
000013 Chapt10a-Start.
000014 Perform Para-2
000015 Stop Run
000016 .
000017 First-Section Section.
000018 Para-1.
000019 Display "Para 1"
000020 .
000021 Para-2.
000022 Display "Para 2"
000023 Go To Para-1
000024 .
000025 Para-3.
000026 Display "Para 3"
000027 .

Try to follow the logic and see what you think this program should do. It appears as if the program will
Display "Para 2" , then "Para 1" , and then stop. That’s not what happens. The Perform of
Para-2 is not going to stop until it encounters the next Paragraph title, which is Para-3 . The Go
To prevents this from happening. This program executes an infinite, or endless, loop. After the Go
To, Para-1 is executed. Then the program falls through the Para-2 label and continues. It then hits
the Go To and goes back to Para-1 yet again. If you run the program, you will see endless displays
of "Para 1" and "Para 2" . You can stop the program by right-clicking the toolbar on the
Chapt10e program item and choosing Close.

I strongly suggest that you use the structured approach introduced by this book for your programs. Do
not use Go To . Keeping your programming structured leads to programs that are easy to design,
follow, and understand.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Summary

In this hour, you learned the following:

• A processing loop repeats a task until some specified condition is
reached.

• The Perform statement can execute a Paragraph or Section
and then return to the point in the program immediately after the
Perform .

• Perform can execute a Paragraph once, a specified number of
times, or until a condition is satisfied.

• By performing a Section , you can fall through multiple
Paragraph s, even though this approach is not recommended.

• By using Thru , you can Perform a range of Paragraph s.

• The difference between structured and non-structured programming.

• How mixing structured and non-structured programming can lead to
problems.

• Why Go To causes your programs to be non-structured and should be
avoided.

Q&A

Q I don’t quite understand the term processing loop. Can you explain it?

A A processing loop tells the computer to execute, or Perform , a process
multiple times. The loop is repeated until some specified condition occurs.
Think of it like a race. The cars go round and round until the checkered flag is
thrown. The race track is the loop, and the checkered flag is the condition that
causes the loop to end.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Q When I Perform an individual Paragraph within a Section, when
does the Perform stop and return?

A The Perform terminates when the next Paragraph title, also called a
label or heading, is encountered. The Perform also ends if another
Section is encountered.

Q Besides grouping Paragraphs, is there another purpose for
Sections? They seem unnecessary to me.

A For most of your programming, Section s are unnecessary. Some earlier
versions of COBOL required Section s under certain circumstances, but
modern COBOL doesn’t have that restriction. Section s can also be coded
with Section numbers. They follow the word Section and cause the
compiler to group like numbered Section s into overlays. Some compilers
had limits to the size of a program, and you needed to divide your code into
Section s that could be loaded and unloaded as memory became available.
These overlays were the original purpose for defining Section s as part of
the COBOL language. The behavior of Paragraph s within Section s is
largely a byproduct of the actual behavior of overlays. With modern compilers,
the use of overlays and Section s is no longer an issue.

Q Are you serious when you say I should avoid using Go To? Can’t I just
use it when it’s really convenient?

A Yes, I am serious. You should not use Go To . With structured
programming, Go To is entirely unnecessary. If you find yourself tempted to
use it, you might want to reconsider the design of your program. Some
programmers use Go To statements sparingly to jump either to the start or end
of a Paragraph or Section . Even this use is unnecessary. However, if you
end up programming for a living, you will probably encounter COBOL code
that looks like spaghetti when you try to follow the logic because of all of the
Go To usage. You need to know how to maintain that code, and trying to turn
spaghetti code into structured code is not an easy task. For the most part, when
you are maintaining someone else’s program, you are best advised to follow
the style he or she used.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 11
Advanced Perform Statements

 In Hour 10, “Processing Loops,” you learned the basic format for the Perform
statement. In this hour, among other things you learn some more advanced methods of using
Perform , such as

• Using inline Perform statements

• Using Perform with Varying

• Testing before and after the Perform

• Nesting Perform statements

• Compiling and linking a program for use with the interactive debug utility

Several other ways to use Perform make it a very powerful looping tool. In addition to the
previously discussed methods of using Perform , you may code what is called an inline
Perform. In this type of Perform , the lines of code that are to be performed are located
immediately after the Perform verb and not elsewhere in the program. You may have a
Perform adjust a numeric field up or down by a specified amount as it executes. Instead of
the default behavior of testing for your condition before the Perform is executed, you can
have the Perform statement make the test after the Perform .

Perform with Varying

When Varying is used with the Perform statement, a numeric data item is specified. This
item will be incremented by the value specified in a second data item or literal each time the
Perform is executed. The starting value of the field before the increment is also specified. If
you want the count down, you can vary the data item by a negative number. When Varying is
used, the test for terminating the Perform is usually, but not always, based on the data item
that is being varied. This feature is used often when working with tables. (Tables are discussed
in detail in Hour 12, “Tables.”)

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

When using Varying , the field being varied is incremented after the Perform is executed.
The test for the condition that terminates the Perform , specified by the Until phrase, is
made before the Perform is executed.

In Listing 11.1, a field is incremented from 0 by 1 until that field is greater than 10 . In this
case, the computer counts from 1 to 10 .

Listing 11.1 Count to 10

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt11a.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Counter Pic 9(2) value zeros.
000011 Procedure Division.
000012 Chapt11a-Start.
000013 Perform Count-Routine Varying Counter
000014 From 1 by 1 Until Counter > 10
000015 Stop Run
000016 .
000017 Count-Routine.
000018 Display Counter
000019 .

When using Varying , you specify first the field you are going to adjust. The next item, after
the word From, is the starting value of the variable. The number or data item that follows the
word By is the amount by which you want to adjust the data value for each execution of the
Perform . Any condition may appear after the word Until . When that condition is true, the
Perform stops looping.

Here are some important points to remember about using Varying : First, the initial execution
of the Perform is made with the item you decide to vary set at the initial value as specified
with the word From. At the end of the Perform , the counter is adjusted by the amount
specified after the By. The condition is tested before the Perform is executed.

What if you wanted to count by fives? In that case you would just change the number or data
item after the word From in the Perform statement. If you wanted to count down instead of
up, you could vary from 10 by -1 . This adds a negative 1 to the counter each time, which is
the same as subtracting 1, thus counting down.

000015 Perform Count-Routine With Test After Varying Counter
000016 From 10 by -1 Until Counter = 1

This code displays 10 , counts down until 1 is displayed, and then stops. The value in
Counter when the routine is complete is 1.

Testing Before or After

Notice that you Perform Until the counter is greater than 10 . Why do you think you didn’t

say Until Counter = 10 ? The reason is that the Perform is not executed if the
condition is true. If you coded the Counter = 10 condition, the Perform would not
execute when the counter’s value is 10 and the loop would stop after displaying 9. When using
Varying this way and testing for a value, you need to remember that the counter you use will
have been incremented to a value beyond that which you might expect.

COBOL provides a way around this problem. Instead of the default behavior of testing for the
condition before the Perform is executed, you can code With Test After . This option
causes the Perform to test the condition immediately after the Perform has been executed
and before any adjustment is made by the use of Varying . This approach ensures that you can
use more understandable looping parameters. It also guarantees that the Perform will be
executed at least once because the condition is not tested until after the Perform has
executed. Listing 11.2 revisits the code from Listing 11.1, this time coded With Test
After .

Listing 11.2 Count to 10, Revised

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt11a.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Counter Pic 9(2) value zeros.
000011 Procedure Division.
000012 Chapt11a-Start.
000013 Perform Count-Routine With Test After Varying Counter
000014 From 1 by 1 Until Counter = 10
000015 Stop Run
000016 .
000017 Count-Routine.
000018 Display Counter
000019 .

The With Test After is coded following the Paragraph to be performed. If you want to
make sure you know which method is being used—the default test before the Perform or the
Test After —you may also code With Test Before .

Note: These examples use numeric literals for the starting value and increment. You may also
use numeric data items for each of these.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Use of the Inline Perform

Having Perform statements that execute different Paragraph s is an excellent way to
maintain a structured programming design. However, even these statements can be hard to
follow. If you want to find out what is happening in a Perform , you have to jump to the
portion of your source code where the Paragraph being performed is coded. Then you
have to jump back to the place in your source code where the Perform statement is coded.
This approach can be time-consuming and can easily lead you to lose your train of thought.
COBOL allows you to have the best of both worlds. You can have a structured program,
performing separate tasks, without having to search through your source every time you
want to find what is happening inside a performed Paragraph . This technique uses an
inline Perform .

 The inline Perform has all of the characteristics of a regular Perform with
two exceptions. First, it is always terminated with the explicit scope terminator,
End-Perform . Second, it has no Paragraph or Section name to be performed. The
statements that are to be performed are coded between the Perform statement and the
End-Perform explicit scope terminator.

The next bit of code modifies the program shown in Listing 11.2. Instead of performing the
single-line Count-Routine , the following code uses an inline Perform .

000013 Perform With Test After Varying Counter
000014 From 1 by 1 Until Counter = 10
000017 Display Counter
000015 End-Perform

How do you decide when to use an inline Perform instead of performing a Paragraph ?
Here are some very general guidelines. Each programmer has a different style of
programming. Programming is sometimes a matter of style and sometimes a question of
which method is easier for you to understand and follow.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• If only one or two statements are being executed, use an inline Perform .

• If you are using this code in only one place in the program, use an inline Perform .

• If the code can be reused and is performed from more than one place in the
program, Perform a Paragraph instead. If you end up coding exactly the same
statements inside two inline Performs , you should use a common Paragraph
instead.

• If the Perform is heavily nested or takes up several pages of source code, you
might want to break it down into individual paragraphs. Page after page of inline
Perform code can be as hard or harder to follow than separated paragraphs.

The next example considers a more complex inline Perform and one of the many tasks
that can be accomplished. What if you want to string two names together, but you don’t
want any extra space between the names? You might have a First-Name field that is 20
characters long and a Last-Name field that is 20 characters long that you want to put
together in one field. You can’t use the String statement, because the first name might
contain embedded spaces. You really need to know the actual length of the name in the
First-Name field.

One technique is to look at each character of the field until you find the end of the field.
However, if embedded blanks are present, as in a name such as Daisy Mae, how do you find
the end? The answer is to search from the end of the field toward the front looking for any
character with a value greater than spaces. The program in Listing 11.3 accepts two names
and creates one as the result. Each name may contain embedded spaces.

Listing 11.3 Inline Perform Example, Name Join

000001 @OPTIONS MAIN
000002 Identification Division.
000003 Program-Id. Chapt11b.
000004* Inline Perform Example, name join
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Last-Name Pic X(20) Value Spaces.
000012 01 First-Name Pic X(20) Value Spaces.
000013 01 Combined-Name Pic X(40) Value Spaces.
000014 01 Name-Length Pic 99 Value Zeros.
000015 Screen Section.
000016 01 Name-Entry Blank Screen.
000017 03 Line 01 Column 01 Value " Last Name: ".
000018 03 Line 01 Column 13 Pic X(20) Using Last-Name.
000019 03 Line 03 Column 01 Value "First Name: ".
000020 03 Line 03 Column 13 Pic X(20) Using First-Name.
000021 03 Line 05 Column 01 Value " Full Name: ".
000022 03 Line 05 Column 13 Pic X(40) From Combined-Name.
000023 Procedure Division.
000024 Chapt11b-Start.
000025 Display Name-Entry

000026 Accept Name-Entry
000027 Perform Varying Name-Length from 20 By -1
000028 Until First-Name (Name-Length:1) > Space
000029 or Name-Length = Zeros
000030 Continue
000031 End-Perform
000032 If Name-Length = Zeros
000033 Move Last-Name to Combined-Name
000034 Else
000035 String First-Name (1:Name-Length)
000036 Space
000037 Last-Name
000038 Delimited by Size
000039 Into Combined-Name
000040 End-If
000041 Display Name-Entry
000042 Stop Run
000043 .

Examine the Perform statement that starts in line 27. It uses a numeric data item called
Name-Length to hold the value of Varying . This code does not use Test After ,
because you are starting with a value of 20 . If the field is full, then the Perform is not
executed the first time through and 20 remains in the Length field for the next step.

Notice the complex condition for termination of the Perform . You want the Perform to
stop when it finds a character that is greater than a space. The code uses reference
modification to examine the field contents one character at a time. Reaching zero means that
there are no characters greater than a space, and the field is empty. The Perform is not
executed when the Name-Length field is zeros. This is essential, because testing the zero
offset with reference modification is invalid.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When the Perform is complete, the Name-Length field contains the length of the first name
that the user entered. If no first name is entered, there is no need to even try to construct a full
name. The If statement in line 32 checks for this condition. If there is no first name, then the last
name is just moved into the Combined-Name field. However, if there is something in the first
name, the String statement in line 35 takes care of assembling the name. Only the portion of the
First-Name field that is occupied by the first name the user entered is used, along with a space,
and the last name.

Make a special note of the Continue statement used in the inline Perform . A statement must
occur within the Perform . Because the Perform is actually accomplishing all the necessary
testing and data manipulation, nothing actually happens inside the Perform . The Continue
statement does nothing and is coded just to satisfy the compiler requirement that the inline
Perform contain at least one statement.

Nesting Perform Statements

You already know that you can Perform another Paragraph inside a Paragraph that is
being performed. These multiple Perform statements can get confusing, especially when the
Paragraph s being performed are scattered throughout your source code. Inline Perform s can
be used inside these performed Paragraph s. Additionally, you may also nest inline Perform s.

000050 Perform 10 Times
000051 Perform 20 Times
000052 Add 1 to Data-A
000053 End-Perform
000054 End-Perform
000055 .

In this example, 1 is added to Data-A 200 times. The exterior Perform in line 50, performs
the Perform in line 51 ten times, and this interior Perform adds 1 to Data-A 20 times.

Tip: When nesting Perform s, it is a good idea to keep the End-Perform explicit scope
terminator lined up with the Perform statement. Doing so makes the source code much more
readable and easier to follow. This alignment clearly shows when a nested inline Perform ends.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The Inline If Statement and Perform

You can create complex processing loops using inline If statements with inline Perform
statements. This technique can handle complex processing without having paragraphs in far-flung
areas of your source code. As an example, Listing 11.4 combines some of the programs you have
recently written. The new program Display s and Accept s a screen. It Accept s last name,
first name and telephone number. You should format the number as before, using either 10 or 7
digits and using a proper edit pattern. In addition, however, you want to left-justify the user input
for the names. If someone keys in names with leading spaces, you want the code to remove the
spaces. All of this activity occurs in one paragraph but still maintains a structured design.

Listing 11.4 Inline Perform with Inline If Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt11c.
000004* Inline Perform With Inline If Example
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Data Division.
000012 Working-Storage Section.
000013 01 Keyboard-Status.
000014 03 Accept-Status Pic 9.
000015 03 Function-Key Pic X.
000016 88 F1-Pressed Value X"01".
000017 03 System-Use Pic X.
000018 01 Temp-Field Pic X(20) Value Spaces.
000019 01 Formatted-Number Pic X(14) Value "(XXX) XXX-XXXX".
000020 01 Formatted-Alternate Pic X(8) Value "XXX-XXXX".
000021 01 Name-Length Pic 99 Value Zeros.
000022 01 Counter Pic 99 Value Zeros.
000023 01 Input-Output-Fields.
000024 03 Last-Name Pic X(20) Value Spaces.
000025 03 First-Name Pic X(20) Value Spaces.
000026 03 Phone-Number Pic 9(10) Value Zeros.
000027 03 The-Edited-Number Pic X(14) Value Spaces.
000028 03 Combined-Name Pic X(40) Value Spaces.
000029 Screen Section.
000030 01 Phone-Entry Blank Screen.
000031 03 Line 01 Column 01 Value " Enter Phone Number: ".
000032 03 Line 01 Column 22 Pic Z(10) Using Phone-Number.
000033 03 Line 02 Column 01 Value " Enter Last Name: ".
000034 03 Line 02 Column 22 Pic X(20) Using Last-Name.
000035 03 Line 03 Column 01 Value " Enter First Name: ".
000036 03 Line 03 Column 22 Pic X(20) Using First-Name.
000037 03 Line 05 Column 01 Value " Full Name: ".
000038 03 Line 05 Column 22 Pic X(40) From Combined-Name.
000039 03 Line 07 Column 01 Value "Edited Phone Number: ”.
000040 03 Line 07 Column 22 Pic X(14) From The-Edited-Number.
000041 03 Line 20 Column 01 Value "Press F1 to Exit".

000042 Procedure Division.
000043 Chapt11c-Start.
000044 Perform Until F1-Pressed
000045 Display Phone-Entry
000046 Accept Phone-Entry
000047* Prepare To Format The Numbers
000048 Move "(XXX) XXX-XXXX" To Formatted-Number
000049 Move "XXX-XXXX" To Formatted-Alternate
000050* Format Based On Size
000051 If Phone-Number > 9999999
000052 Inspect Formatted-Number
000053 Replacing First "XXX" By Phone-Number (1:3)
000054 First "XXX" By Phone-Number (4:3)
000055 First "XXXX" By Phone-Number (7:4)
000056 Move Formatted-Number To The-Edited-Number
000057 Else
000058 Inspect Formatted-Alternate
000059 Replacing First "XXX" By Phone-Number (4:3)
000060 First "XXXX" By Phone-Number (7:4)
000061 Move Formatted-Alternate To The-Edited-Number
000062 End-If
000063* Left Justify The First Name
000064* If It's Blank It's A Waste Of Time
000065 If First-Name > Spaces
000066 Perform Varying Counter From 1 By 1 Until
000067 First-Name (Counter:1) > Space
000068 Continue
000069 End-Perform
000070* Counter Contains The Starting Offset
000071 Move First-Name (Counter:) To Temp-Field
000072 Move Temp-Field To First-Name
000073 End-If
000074* Left Justify The Last Name
000075 If Last-Name > Spaces
000076 Perform Varying Counter From 1 By 1 Until
000077 Last-Name (Counter:1) > Space
000078 Continue
000079 End-Perform
000080 Move Last-Name (Counter:) To Temp-Field
000081 Move Temp-Field To Last-Name
000082 End-If
000083* Now Put Them Together
000084 Perform Varying Name-Length From 20 By -1
000085 Until First-Name (Name-Length:1) > Space
000086 Or Name-Length = Zeros
000087 Continue
000088 End-Perform
000089 If Name-Length = Zeros
000090 Move Last-Name To Combined-Name
000091 Else
000092 String First-Name (1:name-Length)
000093 Space
000094 Last-Name
000095 Delimited By Size

000096 Into Combined-Name
000097 End-If
000098* Now We Repeat
000099 End-Perform
000100 Stop Run
000101 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Line 44 starts the outermost Perform . All the logic inside will execute until
the F1 key is pressed. After you Display and Accept the user input, you
process the fields. First, the telephone number is processed in exactly the same
manner as in the previous code example (Listing 11.3).

 The one new element of code introduced here is the
left-justification routine. The example uses an inline Perform in line 182 to
search for the first character of the input field that is greater than spaces. You
don’t Perform the routine at all if the field has no data in it. When you
know the offset of the first character, you move the data from that position to
the end of the field into a temporary variable. This temporary field now
contains the left-justified name. You then move the data back to its original
field. The same routine is used for the last name.

Caution: This move to the temporary field is probably unnecessary.
Because COBOL moves alphanumeric data fields 1 byte at a time from left
to right, you could move the field in place. Move First-Name
(Counter:) to First-Name . I refer to this type of Move as a “stupid
COBOL trick”. It’s pretty neat but also pretty dangerous. It works on every
compiler I tried, but some vendor may implement the mechanics of the
Move statement differently. This technique is something that is more clever
than clear, and I don’t recommend using it.

Using the Debugger

It might be interesting to be able to see exactly what is happening inside the
program when you run this example. Most modern compilers include a tool
called an interactive debugging utility. The debugger enables programmers to
step through the program one statement at a time and examine the values of the
data fields involved.

This kind of facility can be a very powerful tool when it comes to debugging

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

your programs. As an example, try running Listing 11.4 in debugging mode
with the Fujitsu compiler. If you are using a different compiler, you can look at
your documentation for instructions on running a debug session.

First, you need to add a compiler option to the program. Change the options at
the top of the program to read:

000001 @OPTIONS MAIN,TEST

Compile the program with these options, but don’t link it. you also have to
change some options on the link step.

Proceed with the link step as you normally would. Before clicking the Link
button, click the Options button. On the Options window, click the Debug
button. Click the OK button. Then click the Link button. After the program
links, you are ready to run it in debug mode.

If you are running under Windows 3.1, proceed to the link step normally.
Before clicking the Build button, select the Options menu option. Select the
/CO check box and click the OK button. Click the Build button and then link
the program in debug mode.

Select the Tools menu option (Under Windows 3.1, you want the Utilities
menu). Choose WINSVD[Debug], click File, and then click Start Debugging.
In the window that appears, click the Browse button. Choose Chapt011c and
then click OK. Click the OK button to start the debug session. Click OK when
the Runtime Options window appears. The screen shown in Figure 11.1 should
appear.

Figure 11.1 Debug session opening screen.

The current source line is highlighted in yellow. You can do several things in
debug mode. The right mouse button is active and provides quick access to
many functions. To follow the program, however, click the Step Into
button. This executes the highlighted line of source. Step into each source line
until the Accept statement. When you step into it, the Step Into icon should
be grayed out. You need to activate the screen window so that you can enter
the required data.

javascript:displayWindow('images/11-01.jpg',659,646)
javascript:displayWindow('images/11-01.jpg',659,646)

The Fujitsu debug facility under Windows 3.1 is very different from that
provided for Windows NT and Windows 95/98. Follow these steps to start
the debug session under Windows 3.1:

1. From Programming Staff, choose the Utilities menu option.

2. Choose the WINSVD selection.

3. When the Start Parameter screen appears, leave all the fields blank
and click the OK button.

4. Select the \TYCOBOL folder from the Directories window.

5. Select the Chapt11c.exe program and click OK.

6. Click OK again on the Start Parameter screen.

7. When the Runtime Environment Setup appears, click the Run
button.

8. The current source line is indicated by blue superimposed X
characters over the active COBOL verb.

9. To step through the program, use the Step L button.

To activate the Screen window, click on the Screen item on the Windows
taskbar. (Under Windows 3.1, use the ALT+TAB key combination to select
SCREEN:CHAPT11C.) Key in the input data and space over a bit for each
name so that you can see the left-justify routine in action.

As soon as you press Enter, the debug screen is displayed again. Use the Step
Into button and step to the first If statement. Before it is executed, position
the mouse pointer over the Phone-Number field and click the right mouse
button. (Under Windows 3.1, select the Data then Data Control menu options.
You have to key the name of the field you want to view in the Data input field.
Then click OK to view the field contents.) From the pop-up menu, choose the
Data menu option. A new window displays the length, format, and value of
data field you selected. If you want to see the internal representation of the
data value, you may select the Hex radio button. (Under Windows 3.1, use the
Change Format button from the Data Control window.) The data value is
displayed in hexadecimal notation. To modify a data value, you can key over it
and then select the Modify button. Doing so will allow you to test the program
action when a field contains specific data.

Close the data window. Use the Step Into button until you get to the next
Perform statement. Because this Perform s no statements, the active line
remains the End-Perform until the test condition is satisfied.

Use the scroll bar to scroll down to the If statement at line 89. Position the
mouse over this line, click the right mouse button, and choose Set Breakpoint.
(Under Windows 3.1, use the Break menu option followed by the Set
Breakpoint selection.) The selected line turns red. A breakpoint tells the
debugger where to stop while executing. You don’t have to step through every
instruction in the program. You can now click the Go icon. (Under Windows
3.1, choose the Runto menu option and then select Run.) The debugger stops
on the line you have set for a breakpoint.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Another interesting option is Animate. (Under Windows 3.1, use the Runto
menu option and then select Trace.) This option enables you to watch the
program step through its instructions. It stops on any statements requiring user
input or on any breakpoints that have been set. When user input is accepted
and Animate is enabled, you have to use the taskbar to return the focus to the
debugging window. The debugging window does not automatically appear.
While animating, the debugger stops on the last statement prior to a
breakpoint. To step into that breakpoint, click the Breakpoint icon, which will
be enabled.

Continue experimenting with the debugging session. Close the debugger when
you are finished.

Summary

In this hour, you learned the following:

• How to use the Perform option Varying to set a counter,
increment it by a specified amount for each execution, and stop when
the specified condition is reached.

• How to use Test After to change the behavior of the condition
testing in a Perform statement. Normally, your condition is tested
before the statements after the Perform are executed. Using Test
After guarantees at least one execution of the Perform .

• How to place your program statements between a Perform
statement and the End-Perform explicit scope terminator, creating an
inline Perform , instead of performing Paragraph s or Section s.

• How to nest Perform statements and include complex If logic,
even when using the inline Perform . This approach maintains program
design structure, but the statements are not scattered about your source
code.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• How to compile and link a program for use with the interactive
debugger. You found out how to use the debugger and to follow what is
happening inside a program.

Q&A

Q When I use the Varying statement, does the data item I am
incrementing have to be initialized to any particular value?

A No. The word From in the Perform statement specifies the starting value
of the data item. Its value before the Perform does not matter.

Q I am confused about when I should use an inline Perform versus
performing a Paragraph. Can you give me some insight?

A The decision on using an inline Perform instead of an out-of-line
Perform is basically a matter of style. Some people prefer inline Perform s,
and some do not. The inline Perform is particularly useful for tasks like the
left-justify procedure used Listing 11.4. If you have programming statements
that are repeated in several inline Perform statements, you might want to
change these to be distinct Paragraphs .

Q When I nest a Perform within an inline Perform, can I Perform a
Paragraph, or must all the Performs be inline?

A You may Perform a Paragraph or Section . The inline Perform
allows you to use any valid COBOL statements, which includes performing
Paragraphs .

Q What should I watch for when using an inline Perform?

A You should never use a Go To to exit the inline Perform . In addition, you
must be very careful not to terminate any statements inside the Perform ,
with a period. Use the End-If explicit scope terminator with every If
statement you code inside the inline Perform . You should also use caution
not to Perform the paragraph that contains the inline Perform , from within
that inline Perform .

Q When I try to debug my program, what should I do if the debugging
screen does not appear?

A Make sure you have compiled your program with the TEST compiler
option. Then make sure you have chosen the Debug option when linking the
program. (Under Windows 3.1, use the /CO option.)

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 12
Tables
Tables are the COBOL version of an array. Tables have a variety of uses, from subtotal
tracking to data validation. Table handling is an integral part of many COBOL programs. In
this hour, you learn the different aspects of table handling, including

• The definition of a table

• Populating a table in Working-Storage

• Table searches

• Handling variable-length tables

Defining a Table

 A table is a set of different data items with identical definitions. They are
defined so that the individual items in the set can be accessed via a reference, known as a
subscript. Tables are also known as arrays. When a table is defined, the number of
individual items, or elements, in the table is established. You can access the individual
elements of the table by using the proper COBOL syntax.

A table is like a box of sequentially numbered index cards. You can locate a particular card
by using its number and then counting the cards until you get to that number. The computer
can perform this process faster than a person can because it can go directly to that card using
the subscript value and because all the elements of the table have the same definition. The
computer uses the subscript value to find the offset in the table and immediately access the
element. This method is similar to what a person might do if the thickness of each card in
the box of index cards is known. The number of the card sought can be determined and then,
based on the thickness of the cards, the deck can be measured to immediately find the
location of the card being sought. With the computer, table access is very fast.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

A table is defined by using the Occurs clause in the Data Division . The Occurs
clause may not be used on a level 01 or level 77 data item. In the following example, a
table stores the names of the months in the year.

000010 01 Month-Table.
000011 03 Month-Name Pic X(9) Occurs 12 Times.

The Occurs clause in line 11 specifies that this field is repeated 12 times; in other words,
the table has 12 elements. The subscript associated with the first element is 1, and the
subscript associated with the last is 12 .

The Occurs clause may also be used at the Group Level to create an array containing
several elementary items. The next example might be used to define a table containing the
different state abbreviations and state names.

000012 01 State-Table.
000013 03 State-Abbrev-Name Occurs 51 Times.
000014 05 State-Abbrev Pic X(2).
000015 05 State-Name Pic X(30).

Notice that the Occurs clause is specified only at the Group Level above the two
associated elementary items. Therefore, the pairing of State-Abbrev and State-Name
repeats 51 times. The table can be defined as follows:

000012 01 State-Table.
000013 03 State-Abbrev-Name.
000014 05 State-Abbrev Pic X(2) Occurs 51 Times.
000015 05 State-Name Pic X(30) Occurs 51 Times.

Note that the Occurs clause appears only with the elementary items. In this example, if
you looked at the table in memory within the computer, you would see the 50 state
abbreviates listed together, followed by the 50 state descriptions. This arrangement becomes
an important consideration as values are assigned to the individual table elements.

Basic Table Handling

To reference an element within a table, you need to specify the subscript. The first element
of the table has a subscript value of 1. Subscripts are specified by stating the subscript,
enclosed in parentheses, after the field name. For example:

000060 Display State-Name (24)

This line of code displays the 24th occurrence of State-Name .

You may use a table entry in the same way you use any other COBOL data item. You may
move data into it or out if it. If it is a numeric data item, you may perform mathematical
functions against the field.

Populating a Table in Working-Storage

Before a table can be of much use, values must be assigned to the table’s individual
elements. Consider a table that is to contain the individual month names.

000010 01 Month-Table.
000011 03 Month-Name Pic X(9) Occurs 12 Times.

One way to get the individual month names into the table is to move them individually.

000061 Move "January" To Month-Name (1)
000062 Move "February" To Month-Name (2)

This code is repeated for each month. The subscript references in this example are numeric
literals. This need not be the case, as a numeric data item can be used instead.

After the table is loaded, the individual fields can be referenced by using the subscript.

000063 Display Month-Name (10)

This line displays October .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Redefines Clause

 In some cases, loading a table with individual Move statements makes sense. However, for the
preceding example, in which the values in the table never need to change, a better way to initialize the
table is to use a Data Division feature called the Redefines clause. In this case, the contents of the
table can be defined in Working-Storage , instead of being loaded in the Procedure Division .

The Redefines allows you to specify a different Picture clause for a previously defined data item.
An individual item may be the subject of multiple Redefines clauses. Examine this example:

000040 01 Data-Group.
000041 03 Numeric-Item Pic 9(5)V99.
000042 03 Numeric-Split Redefines Numeric-Item.
000043 05 Numeric-Whole-Portion Pic 9(5).
000044 05 Numeric-Decimal-Portion Pic 9(2).

The two fields, Numeric-Item and Numeric-Split , reference the same physical location in
storage. The group item Numeric-Split is further defined as two individual fields: The first part
makes up the whole number, and the second portion makes up the decimal position of
Numeric-Item . If you move 12.99 to Numeric-Item , then Numeric-Whole-Portion
contains 00012 and Numeric-Decimal-Portion contains 99 .

Caution: When using Redefines , you must make sure that the item you are redefining is the same size
as the item in your Redefines clause. The compiler warns you of a size difference if the Redefines
clause does not redefine a level 01 item. In contrast, level 01 items may redefine items with differing size;
in this case, no compiler warning message is issued or required. Because this practice can cause problems,
I suggest that you do not redefine items at the 01 level.

You can take advantage of the Redefines clause to populate the month table in
Working-Storage . First, an area is defined with the different month descriptions listed in order.

000025 01 Month-Table-Area.
000026 03 Month-Descriptions.
000027 05 Filler Pic X(9) Value "January".
000028 05 Filler Pic X(9) Value "February".
000029 05 Filler Pic X(9) Value "March".
000030 05 Filler Pic X(9) Value "April".

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000031 05 Filler Pic X(9) Value "May".
000032 05 Filler Pic X(9) Value "June".
000033 05 Filler Pic X(9) Value "July".
000034 05 Filler Pic X(9) Value "August".
000035 05 Filler Pic X(9) Value "September".
000036 05 Filler Pic X(9) Value "October".
000037 05 Filler Pic X(9) Value "November".
000038 05 Filler Pic X(9) Value "December".

The next step is to redefine this data area with the month table. Then the table is automatically
populated, or loaded, with the appropriate data values.

000039 03 Month-Table Redefines Month-Descriptions.
000040 05 Month-Name Pic X(9) Occurs 12 Times.

Caution: When you use redefines to establish initial values for the elements of a table, you cannot use the
Initialize verb to reset the table to these values. Initialize moves spaces or zeros, as
appropriate, to each element of a table, thus clearing your predefined values.

There are many ways to put tables to good use. One way to take advantage of a table involves the
program you wrote (see Listing 12.1) as an answer to the exercise problem in Hour 10, “Processing
Loops.” This problem involved accepting a date and then reformatting the date to spell out the month,
creating a nicely edited date. You probably used the Evaluate statement to find and use the correct
month name. Using a table simplifies the program.

Listing 12.1 Display the Name of the Month Corresponding to the Date

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt12a.
000004 Environment Division.
000005 Configuration Section.
000006 Special-Names.
000007 Crt Status Is Keyboard-Status.
000008 Source-Computer. IBM-PC.
000009 Object-Computer. IBM-PC.
000010 Data Division.
000011 Working-Storage Section.
000012 01 Keyboard-Status.
000013 03 Accept-Status Pic 9.
000014 03 Function-Key Pic X.
000015 88 F1-Pressed Value X"01".
000016 03 System-Use Pic X.
000017 01 Date-Field Pic 9(8) Value Zeros.
000018 01 Date-Field-Split Redefines Date-Field.
000019 03 Month-Portion Pic 99.
000020 03 Filler Pic X(6).
000021 01 Edited-Date-Field Pic X(20) Value Spaces.
000022 01 Error-Flag Pic X Value Spaces.
000023 88 Month-Error Value "Y".
000024 01 Error-Message Pic X(50) Value Spaces.
000025 01 Month-Table-Area.
000026 03 Month-Descriptions.
000027 05 Filler Pic X(9) Value "January".
000028 05 Filler Pic X(9) Value "February".
000029 05 Filler Pic X(9) Value "March".
000030 05 Filler Pic X(9) Value "April".

000031 05 Filler Pic X(9) Value "May".
000032 05 Filler Pic X(9) Value "June".
000033 05 Filler Pic X(9) Value "July".
000034 05 Filler Pic X(9) Value "August".
000035 05 Filler Pic X(9) Value "September".
000036 05 Filler Pic X(9) Value "October".
000037 05 Filler Pic X(9) Value "November".
000038 05 Filler Pic X(9) Value "December".
000039 03 Month-Table Redefines Month-Descriptions.
000040 05 Month-Name Pic X(9) Occurs 12 Times.
000041 Screen Section.
000042 01 Date-Entry Blank Screen.
000043 03 Line 01 Column 01 Value " Enter Date: ".
000044 03 Line 01 Column 14 Pic 99/99/9999 Using Date-Field.
000045 03 Line 02 Column 01 Value "Edited Date: ".
000046 03 Line 02 Column 14 Pic X(20) From Edited-Date-Field.
000047 03 Line 05 Column 01 Pic X(50) From Error-Message.
000048 03 Line 20 Column 01 Value "Press F1 to Exit".
000049 Procedure Division.
000050 Chapt12a-Start.
000051 Perform Until F1-Pressed
000052 Display Date-Entry
000053 Accept Date-Entry
000054* Clear The Error Message For The Next Display
000055 Move Spaces To Error-Message
000056* If They Did Not Press F1 To Exit, It’s Ok To Process The Input
000057 If Not F1-Pressed
000058 Perform Process-Input
000059 End-If
000060 End-Perform
000061 Stop Run
000062 .
000063 Process-Input.
000064* Reset The Error Flag.
000065 Move Spaces To Error-Flag
000066 If Month-Portion < 01 Or Month-Portion > 12
000067 Set Month-Error To True
000068 Move "Invalid Month" To Error-Message
000069 Else
000070 Move Spaces To Edited-Date-Field
000071 String Month-Name (Month-Portion) Delimited By Space
000072 Space
000073 Date-Field (3:2)
000074 ","
000075 Date-Field (5:4)
000076 Delimited By Size
000077 Into Edited-Date-Field
000078 End-String
000079 End-If
000080 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Redefines appears in two places in the listing. The first Redefines clause, in line 18, handles
the user-entered date. This clause allows numeric fields that contain only the month. This month is
first checked to make sure that it is within the bounds, or “limits,” of the table. The bounds of this
table are 1 through 12 . Most compilers have an option that allows you to capture a so-called
boundary violation, or to not report the error if reported by default. If you reference a table element
that is outside the bounds of your table, you receive a boundary violation.

Tip: I suggest that you always write your programs to check for and eliminate any possible boundary
violations. This does not mean that you have to code your programs with compares before every table
element reference. Simply make sure that any invalid value that can occupy the field is not used as a
table reference.

The second use of Redefines populates the table. This method requires far less code than you
used in the Procedure Division method. The month is formatted using fewer instructions.
Notice that the String statement uses multiple delimiters. The first is by spaces, so the end of the
month name can be detected, and the rest are by size. This program produces a perfectly formatted
date.

 The preceding examples have shown the simplest use of a table. Another use for a table is
as a lookup. You can use a small table, with its extremely fast lookup, to find associated information.
For example, you might have a state table. The states, themselves, do not allow for easy table access.
You can’t subscript a table using a state abbreviation. Instead, you can search the table for the
particular value required. Listing 12.2 is one example of a state search against a state table.

Listing 12.2 State Name Lookup

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt12b.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000010 01 State-Table-Area.
000011 03 State-Table-Data.
000012 05 Filler Pic X(22) Value "ALAlabama".
000013 05 Filler Pic X(22) Value "AKAlaska".
000014 05 Filler Pic X(22) Value "AZArizona".
000015 05 Filler Pic X(22) Value "ARArkansas".
000016 05 Filler Pic X(22) Value "CACalifornia".
000017 05 Filler Pic X(22) Value "COColorado".
000018 05 Filler Pic X(22) Value "CTConnecticut".
000019 05 Filler Pic X(22) Value "DCDistrict of Columbia".
000020 05 Filler Pic X(22) Value "DEDelaware".
000021 05 Filler Pic X(22) Value "FLFlorida".
000022 05 Filler Pic X(22) Value "GAGeorgia".
000023 05 Filler Pic X(22) Value "HIHawaii".
000024 05 Filler Pic X(22) Value "IDIdaho".
000025 05 Filler Pic X(22) Value "ILIllinois".
000026 05 Filler Pic X(22) Value "INIndiana".
000027 05 Filler Pic X(22) Value "IAIowa".
000028 05 Filler Pic X(22) Value "KSKansas".
000029 05 Filler Pic X(22) Value "KYKentucky".
000030 05 Filler Pic X(22) Value "LALouisiana".
000031 05 Filler Pic X(22) Value "MEMaine".
000032 05 Filler Pic X(22) Value "MDMaryland".
000033 05 Filler Pic X(22) Value "MAMassachusetts".
000034 05 Filler Pic X(22) Value "MIMichigan".
000035 05 Filler Pic X(22) Value "MNMinnesota".
000036 05 Filler Pic X(22) Value "MSMississippi".
000037 05 Filler Pic X(22) Value "MOMissouri".
000038 05 Filler Pic X(22) Value "MTMontana".
000039 05 Filler Pic X(22) Value "NENebraska".
000040 05 Filler Pic X(22) Value "NVNevada".
000041 05 Filler Pic X(22) Value "NHNew Hampshire".
000042 05 Filler Pic X(22) Value "NJNew Jersey".
000043 05 Filler Pic X(22) Value "NMNew Mexico".
000044 05 Filler Pic X(22) Value "NYNew York".
000045 05 Filler Pic X(22) Value "NCNorth Carolina".
000046 05 Filler Pic X(22) Value "NDNorth Dakota".
000047 05 Filler Pic X(22) Value "OHOhio".
000048 05 Filler Pic X(22) Value "OKOklahoma".
000049 05 Filler Pic X(22) Value "OROregon".
000050 05 Filler Pic X(22) Value "PAPennsylvania".
000051 05 Filler Pic X(22) Value "RIRhode Island".
000052 05 Filler Pic X(22) Value "SCSouth Carolina".
000053 05 Filler Pic X(22) Value "SDSouth Dakota".
000054 05 Filler Pic X(22) Value "TNTennessee".
000055 05 Filler Pic X(22) Value "TXTexas".
000056 05 Filler Pic X(22) Value "UTUtah".
000057 05 Filler Pic X(22) Value "VTVermont".
000058 05 Filler Pic X(22) Value "VAVirginia".
000059 05 Filler Pic X(22) Value "WAWashington".
000060 05 Filler Pic X(22) Value "WVWest Virginia".
000061 05 Filler Pic X(22) Value "WIWisconsin".
000062 05 Filler Pic X(22) Value "WYWyoming".
000063 03 State-Table Redefines State-Table-Data.
000064 05 State-Table-Occurrences Occurs 51 Times.

000065 10 State-Abbrev Pic XX.
000066 10 State-Name Pic X(20).
000067 01 State-Subscript Pic 99 Value Zeros.
000068 Procedure Division.
000069 Chapt12b-Start.
000070* Search For Texas, By Abbreviation
000071 Perform Varying State-Subscript From 1 By 1 Until
000072 State-Subscript > 51 Or
000073 State-Abbrev (State-Subscript) = "TX"
000074 Continue
000075 End-Perform
000076 If State-Subscript > 51
000077 Display "State Not Found"
000078 Else
000079 Display "TX = "
000080 State-Name (State-Subscript)
000081 End-If
000082 Stop Run
000083 .

The Redefines clause allows the table to be loaded in Working-Storage . The search is an
inline Perform that continues until it reaches the end of the table or until it gets a match. Before
displaying the state description found, the subscript field is checked to ensure it is within the table
boundary. If it is not, you know that the abbreviation was not found in the table.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Search Statement

 COBOL provides a quick way to Search a table for particular values. For you to use this
feature, the table must have an associated index. An index is a system-assigned data field that references
the different elements of a table—you do not define this field in your program. Although an index
behaves like a numeric data item, you cannot adjust it using mathematical statements as you would
normal numeric data items. An index is specified by using the Indexed By clause on the same line as
the Occurs clause. Specify a unique data name after the words Indexed By .

Caution: The compiler vendor determines the actual contents of an index. In most cases, it is an
absolute offset in characters to the particular item within the table. However, you may not reference the
item as a number, and the index does not contain an element number, even though it may be tested in
perform loops as if it does. The compiler handles the actual interpretation of the value for you.

000058 03 Month-Table Redefines Month-Descriptions.
000059 05 Month-Name Pic X(9) Occurs 12 Times Indexed by
000060 Table-Index.

To manipulate the value of an index, you must use the Set statement. You may Set an index to a
particular value or adjust its value up or down by specific amounts.

000061 Set Table-Index To 1
000062 Set Table-Index Up by 2
000063 Set Table-Index Down by 1

Note: Using index values provides faster table access than using a regular numeric data item or numeric
literal. You must remember, however, that you cannot change an index value using standard
mathematical statements. If you need to adjust an index, use the Set statement.

An indexed table may be searched using the COBOL verb Search , which has two formats. The first
format searches the table from the top to the bottom. In the Search statement, you specify the
condition that causes the Search to end. Optionally, you may specify some statements to perform if
the Search does not find any items in the table that satisfy your test condition.

When coding the Search statement, the data item that is specified for the Search is the one for
which the Occurs clause has been coded. The conditions that end the Search are coded using

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

When, in a manner very similar to that used with the Evaluate statement. The statements that are
executed when the Search fails are coded after the clause At End . The Search proceeds from the
present value of the associated index. Consequently, you must be careful to Set the value of the
table’s index to 1 before the Search begins. Failing to do so causes the Search to begin at an entry
in the table other than the first.

If the state table is defined with the index Table-Index , the following code will perform the same
test as the inline Perform from the earlier example. In fact, the following Search statement can
replace the entire Procedure Division from Listing 12.2.

000215 Search State-Table-Occurrences
000216 At End Display "State Not Found"
000217 When State-Abbrev (Table-Index) = "TX"
000218 Display "TX = "
000219 State-Name (Table-Index)
000220 End-Search

Caution: When coding the Search statement, the At End condition, if present, must occur before
any When clauses. At End is optional. If not coded, nothing happens when the Search ends without
meeting your conditions.

You may use multiple When clauses within the Search statement. If any one of them is true, the
statements after the associated When are executed. As soon as a When condition is true, the searching
stops.

The End-Search explicit scope terminator is valid with the Search statement. I strongly suggest
that you use it with every Search statement to clearly separate the code after the When from the rest
of your program.

Tip: Remember that the index of a table has a special internal representation. The only COBOL
statements you can use to address this index are the Set , Search , and Perform with Varying
statements. If you want to do something in your program based on the actual element number of the
found item, COBOL provides a method to increment another data item during the Search . This method
involves the Tally clause. The item being incremented can be the index for another table or a numeric
variable.

The Varying clause specifies the other data item. You should remember that this item is being adjusted
by the Search in addition to the index specified for the table, not instead of that index.

Caution: Because the data item is incremented separately and independently of the table’s defined
index, it is important to initialize that data item in addition to the table’s index. For example, if the
numeric data item started with a value of 10 and the table element that satisfied the search was element
5, the resulting value in the numeric data item is 15 , not 5 like you might expect.

000221 Move Zeros to Numeric-Data-Item
000222 Set Table-Index to 1
000223 Search State-Table-Occurrences
000224 Varying Numeric-Data-Item
000225 At End Display "State Not Found"
000226 When State-Abbrev (Table-Index) = "TX"
000227 Display "TX = "
000228 State-Name (Table-Index)
000229 End-Search

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Search statement, which starts at the front of the table and searches to the end, is not very
efficient on large tables. COBOL provides another format of the Search statement that allows much
faster searching. This format is Search All . For a program to use Search All , the table must be
indexed and keyed. The elements of the table must be in ascending or descending key sequence as
specified in the field’s definition. The key fields are defined in the Data Division , on the same line
as the Occurs clause. The previous example, using the state table, was sorted in ascending state-name
sequence. Therefore, Search All can be used against the state name. However, Search All
cannot be used on the state abbreviations because they are not in sequence. The definition of the state
table keyed on state name follows.

000199 03 State-Table Redefines State-Table-Data.
000200 05 State-Table-Occurrences Occurs 51 Times
000201 Indexed By Table-Index
000202 Ascending Key State-Name.
000203 10 State-Abbrev Pic XX.
000204 10 State-Name Pic X(20).

Here’s how the Search All statement is coded to find the abbreviation of a state name such as Texas:

000230 Search All State-Table-Occurrences
000231 At End Display "State Not Found"
000232 When State-Name (Table-Index) = "Texas"
000233 Display "Texas = "
000234 State-Abbrev (Table-Index)
000235 End-Search

The rules governing Search and Search All are not exactly the same. With Search All , there
may be only one When clause. The When clause must reference one of the key fields. However, the
When may be coded with one or more And statements. The And statements allow you to test for
multiple conditions and must also reference one of the key fields in the table. The key field must
immediately follow the word When.

The Search All performs a binary search. A binary search starts around the middle of the table and
determines whether the value is greater or less than the key being searched. If the value is greater, the
search looks in the higher half of the table. The program continues to split the table into smaller and
smaller search areas until the Search is satisfied or until no more items are in the table. Because of the
binary search, the setting of the table index to 1 before the Search is unnecessary. The initial value of
the index is ignored.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Listing 12.3 shows an example of Search All with When and And clauses. The table being searched
contains multiple city and state entries allowing the program to find the state that corresponds with the
city.

Listing 12.3 Search All Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt12e.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 State-Table-Area.
000011 03 State-Table-Data.
000012 05 Filler Pic X(37) Value "ALBirmingham Alabama".
000013 05 Filler Pic X(37) Value "ALMontgomery Alabama".
000014 05 Filler Pic X(37) Value "AZPhoenix Arizona".
000015 05 Filler Pic X(37) Value "AZTucson Arizona".
000016 03 State-Table Redefines State-Table-Data.
000017 05 State-Table-Occurrences Occurs 4 Times
000018 Indexed By Table-Index
000019 Ascending Key State-Abbrev City-Name.
000020 10 State-Abbrev Pic XX.
000021 10 City-Name Pic X(15).
000022 10 State-Name Pic X(20).
000023 Procedure Division.
000024 Chapt12e-Start.
000025 Search All State-Table-Occurrences
000026 At End Display "State Not Found"
000027 When State-Abbrev (Table-Index) = "AZ"
000028 And City-Name (Table-Index) = "Phoenix"
000029 Display "State = "
000030 State-Name (Table-Index)
000031 End-Search
000032 Stop Run
000033 .

First, notice that the table is keyed by two key fields. This technique can be useful in case two states
have cities with the same name. The key sequence, as defined, is city within state abbreviation. Second,
notice the When and the And clauses in the Search All statement. Each clause refers to a key as
defined on the Occurs line. This syntax is required for the Search All statement. Finally, realize
that the Search does not stop until both conditions, the When and the And, are satisfied.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Multidimensional Tables

 Thus far, the tables discussed here have been one-dimensional. However, in COBOL tables can
have up to seven dimensions. A two-dimensional table is a table within a table. You can visualize a
two-dimensional table as a file within a drawer in a file cabinet. The file cabinet is the table. The first dimension
is the drawer number, and the second is the file within the drawer. The table might be described in your data
division as follows:

000040 01 File-Cabinet.
000041 03 Drawer-Number Occurs 3 Times Indexed By Drawer-Index.
000042 05 File-Number Pic 9(3) Occurs 10 Times Indexed By
000043 File-Index.

To reference a particular file number, a two-dimensional table reference is coded. This is accomplished by
coding both index values within the parenthetical reference to the data item. For example, the following code
references the fifth file in the third drawer:

000100 Display File-Number (3,5)

The comma is optional but helps to make the table reference more readable. The highest level index is
specified first. Another example might make this syntax clearer.

000101 Set Drawer-Index To 3
000102 Set File-Index To 5
000103 Display File-Number (Drawer-Index, File-Index)

You may Search a multidimensional table using the Search verb. The higher-level index values must be
Set before the basic, or lowest-level index can be searched. When you specify the table level to be searched
in the Search statement, you do not need to provide the full reference. However, any When statements
must specify the full qualification of the table entry.

000104 Set Drawer-Index To 2
000105 Search File-Number
000106 At End Display "File Not Found"
000107 When File-Number (Drawer-Index, File-Index) = 123
000108 Display "File Found"
000109 End-Search

In this example, File-Number is being searched. It is a table that exists as the second dimension of the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

larger table, Drawer-Number . Note that in the Search line the element of Drawer-Number is not
specified. The Search statement uses the current index value associated with the Drawer-Number for its
search. Also note that the When statement specifies the full table reference for the purposes of the test
condition.

Now examine a more complex example of multidimensional tables. Consider this classic logic puzzle: “As I
was going to St. Ives, I met a man with seven wives. Every wife had seven sacks, every sack had seven cats,
and every cat had seven kits. Kits, cats, sacks and wives, how many were going to St. Ives?”

Ignore the basic question being asked by the puzzle. To describe this condition in a table, you might code:

000040 01 The-Man-On-The-Road.
000041 03 Wife Occurs 7 Times Indexed By Wife-Index.
000042 05 Wife-Name Pic X(20).
000043 05 Sack Occurs 7 Times Indexed By Sack-Index.
000044 10 Sack-Color Pic X(10).
000045 10 Cat Occurs 7 Times Indexed By Cat-Index.
000046 15 Cat-Name Pic X(20).
000047 15 Kitten Occurs 7 Times Indexed By Kitten-Index.
000048 20 Kitten-Name Pic X(20).

Notice that the tables are not just tables within tables. The Wife-Name has the same level number as the
Sack table, which allows the tracking of each wife and her associated sacks. Each Sack-Color has the
same level number as the Cat table beneath it, which allows each sack color to be tracked.

How might you code a COBOL program to find which wife is carrying a kitten named "Hershey" ? You
need to search through each and every cat, in every sack, carried by every wife, until you either find a match
or don’t find the kitten in any sack. Listing 12.4 is one way to code the Search .

Listing 12.4 Search a Multidimensional Table

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt12g.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 The-Man-On-The-Road.
000011 03 Wife Occurs 7 Times
000012 Indexed By Wife-Index.
000013 05 Wife-Name Pic X(20).
000014 05 Sack Occurs 7 Times
000015 Indexed By Sack-Index.
000016 10 Sack-Color Pic X(10).
000017 10 Cat Occurs 7 Times
000018 Indexed By Cat-Index.
000019 15 Cat-Name Pic X(20).
000020 15 Kitten Occurs 7 Times
000021 Indexed By Kitten-Index.
000022 20 Kitten-Name Pic X(20).
000023 01 Found-Flag Pic X Value Spaces.
000024 88 Kitten-Found Value "Y".
000025 Procedure Division.
000026 Chapt12g-Start.
000027 Move "Hershey" To Kitten-Name (1, 3, 2, 6)
000028 Move "Darlene" To Wife-Name (1)
000029 Move "Yellow" To Sack-Color (1, 3)

000030 Perform With Test After
000031 Varying Wife-Index From 1 By 1 Until
000032 Wife-Index = 7 Or
000033 Kitten-Found
000034 Perform With Test After
000035 Varying Sack-Index From 1 By 1 Until
000036 Sack-Index = 7 Or
000037 Kitten-Found
000038 Perform With Test After
000039 Varying Cat-Index From 1 By 1 Until
000040 Cat-Index = 7 Or
000041 Kitten-Found
000042 Set Kitten-Index To 1
000043 Search Kitten
000044 When
000045 Kitten-Name (Wife-Index, Sack-Index,
000046 Cat-Index, Kitten-Index) =
000047 "Hershey" Set Kitten-Found To True
000048 End-Search
000049 End-Perform
000050 End-Perform
000051 End-Perform
000052 If Kitten-Found
000053 Display "Hershey found in the "
000054 Sack-Color (Wife-Index, Sack-Index)
000055 " Sack, Being carried by "
000056 Wife-Name (Wife-Index)
000057 Else
000058 Display "Hershey Escaped"
000059 End-If
000060 Stop Run
000061 .

Examine this program line by line. The entry to be searched for is first loaded into the table. In actuality, the
full table would be loaded. The specific entry is loaded only as an example.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Next, note the use of the inline Perform statements, which allow nested Perform
statements to search each dimension of the table. Remember that when using
Varying with a Perform , the data item being varied is incremented before each
loop through the Perform . Therefore, the behavior of the Perform has been
changed to Test After . This change allows the different indices to remain set to
the values they are on when the Search completes successfully. Notice also that no
At End clause is coded in the Search statement. The clause is not necessary.
Compile and run the program. Experiment with setting different locations for
"Hershey" . Run the program in the debugger and watch what is happening.
Remember to link the program with the debug option enabled.

Variable-Length Tables

Tables do not have to be of fixed length. You can define a table that contains from one
to any number of entries. You might want to have a variable-length table for several
reasons. For example, you might choose a variable-length table to shorten the response
time on a Search or Search All statement.

You might have a table in which you don’t know the maximum number of entries. It
might be loaded from user input or from a data file. It might even be created during
the course of a program’s execution. If you always allow for the table’s maximum
size, you will be wasting time during the Search operations. Additionally, it will be
virtually impossible to provide a sorted table for Search All . If your table has
1,000 entries, but you load it with only 100, the other 900 entries in the table must be
in ascending sequence. One solution is to load the remaining entries with
High-Values , but that approach wastes time. Instead, you should use a
variable-length table.

You create a variable-length table by specifying Depending On in the Occurs
clause on the item definition. You must have a data item defined that will contain the
number of items in the table. This item is the one that the number of occurrences in the
table depends on and can change during the course of the program. In addition to

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

specifying the Depending On clause, you must specify the minimum and maximum
number of occurrences in the table.

The following table contains dealer numbers and names from your antique store. You
can have any number of dealers, but the number may fluctuate. You might need a table
to find the dealer name with the associated dealer number.

000040 01 Dealer-Table.
000041 03 Dealers Occurs 1 To 1000 Times Depending On
000042 Number-Of-Dealers
000043 Indexed By Dealer-Index
000044 Ascending Key Dealer-Number.
000045 05 Dealer-Number Pic 9(4).
000046 05 Dealer-Name Pic X(20).
000047 01 Number-Of-Dealers Pic 9(4) Value 1.

Note: A variable-length table must have at least one occurrence. The memory
required to contain the maximum size the table may obtain is usually reserved by the
compiler (some COBOL vendors dynamically allocate the storage space). You should
be aware that some compilers limit the maximum size of a table. You should refer to
your compiler documentation to find out what limit, if any, is specified for your
compiler.

Caution: Variable-length tables may be specified only for the highest level of a
table. If your table is multidimensional, the tables that make up the dimensions under
the main table may not be variable length.

When this table is loaded, the Number-Of-Dealers has to be incremented in the
program. You should not reference an element of the table that is higher in number
than the Depending On data item. Doing so will cause a table-boundary violation.

Summary

In this hour, you learned the following:

• Tables are groups of like items arranged in such a way that individual
elements of the group can be referenced.

• Table elements can be initialized to specific values in Working-Storage
by setting up a data area with the various values and using the Redefines
clause.

• Tables elements can be referenced by numeric literals, numeric data items, or
index values.

• Index items may be specified by using Indexed By on the same line as the
Occurs clause.

• Index items are not like normal numeric data items. You must use the Set
statement to set or change the values of index items.

• Tables may be searched using the Search verb.

• For Search All , the items in the table must be in key sequence.

• Tables may be created with multiple dimensions. COBOL supports up to
seven dimensions in a table.

• Tables do not have to contain a fixed number of elements. They can contain a
variable number of elements. Variable-length tables are defined by specifying
the Depending On clause in the table’s definition.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Q&A

Q When I want to Search a table, how can I remember which part of the
table to code after the Search statement?

A Look for the Occurs clause. All of your Search statements Search the
named data items on the same line as the Occurs clause.

Q I tried to use Search All, but I can’t seem to get it right. Can you
give me some pointers?

A Some common mistakes are not specifying the key fields on the table. Other
problems come from the data in the table not being in this key sequence. The
key values can be either ascending or descending. When your table is created
and data is loaded into it, if you are going to use Search All , you must
ensure that the data in the table is in the proper sequence. Nothing in the
COBOL language informs you that your table is out of sequence.

Q When I run my program, I get some strange results. I think I have a
boundary violation, but the program is not reporting it. How do I get it
to?

A With the Fujitsu Compiler you need to add the compiler option CHECK(1)
to the top of the program. This option displays an error message the first time a
boundary violation occurs and terminates the program. (See Program
Chapt12z.Cob on the CD-ROM.)

Q What is a boundary violation?

A A boundary violation occurs when you try to access a table element that is
out of the range of the table. If your table has 50 occurrences and you attempt
to access an element with a subscript of 51 , you will get a boundary violation.
Some compilers report this error by default, and some do not. On those that do

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

not, or where you have disabled boundary or index/subscript range checking,
unpredictable results may occur.

Q My table searches using the Search verb are taking a long time. What
can I do to speed them up?

A You can try to limit the search time by using Search All if it is feasible.
If not, try limiting the table size to the actual number of items you have in the
table by making the table variable length. You do this by using the
Depending On clause with the Occurs clause.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Part II
File Handling

Hour
13 Sequential Files

14 Indexed Files

15 Reading Indexed File Records

16 Updating Indexed File Records

17 Sorting

Hour 13
Sequential Files
One of the many things that makes COBOL such a rich and powerful language
is its ability to clearly, accurately, and quickly handle data files. Business deals
with data files constantly. In this hour, you learn about one type of commonly
used file: the sequential file. You learn

• How to define a sequential file in a COBOL program

• How to Open and Close the file

• How to create records in the file

• How to read records from a sequential file

• How to update existing records in a sequential file

In addition, COBOL uses some terms that you need to understand in order to
discuss data file access.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 First, a file is made up of individual records. A record is a
collection of individual fields or data items. The format or formats of the
records in the file are defined in your COBOL program. A record is a Group
Level item, made up of elementary data items or groups of elementary data
items. The definition for a record is called a record layout, or record
description. The layouts of the records used by the various files in your
COBOL program are specified in the Data Division .

A file is simply a group of records. A sequential file is one that is accessed
sequentially; that is, the records are retrieved from the file in order, from the
first record in the file to the last. Records cannot be retrieved out of order. You
may not jump ahead in the file, nor may you go backward.

When creating, or writing, a sequential file, you must write the records in
order. The physical order of the records in the file is the order in which they
were written.

Most PC-based compilers differentiate between two types of sequential files.
The first is the default type, Record Sequential , and the other is Line
Sequential . Line Sequential files are regular text files, created by
Notepad or some other text editor. Your CONFIG.SYS and AUTOEXEC.BAT
files are examples of Line Sequential files.

 Line Sequential files contain records of varying length.
Trailing space data in the record is not written (that is, it is truncated), thus
saving space. Records are terminated with a platform-dependent delimiter.
Under most PC-based operating systems, this delimiter is a Carriage
Return and Line Feed , in ACSII a X"0D0A" .

Note: On UNIX systems, Line Sequential files are terminated with a
Line Feed only; in ASCII, a X"0A" .

The hexadecimal, or internal representation, of these characters is X"0D" ,
X"0A" . Only textual data may be written to these files. Many implementations
ignore characters less than spaces when they are written to these files. For
example, Low-Values do not appear in your Line Sequential data file
if you attempt to use them in the record.

Line Sequential files are good for reading or writing data that the user
may edit with a standard text editor. If your files are for use only by your
COBOL program and are not to be shared with other systems or if your files
contain packed data such as usage COMP or COMP-3 data items, you should
not use Line Sequential files.

 The other type of file is a Record Sequential file,
normally referred to simply as a Sequential file. The records in a
Record Sequential file are not delimited. Each record in the file is
adjacent to its immediate neighbors. Table 13.1 illustrates the difference
between Line Sequential and Record Sequential files.

Table 13.1 Line Sequential Versus Record Sequential

Organization

Line Sequential Record Sequential

Line 1CRLF
Line
1*********************

Record 1CRLF
Record
1*******************

This is a Sequential
This is a Sequential
record

recordCRLF

The CRLF under the Line Sequential column demonstrates the
delimiters in each record of a Line Sequential file. The delimiter
immediately follows the last character in the record that is greater than a space.
Under the Record Sequential column, imagine that the * characters are
actually spaces. With a Record Sequential file, the trailing spaces are
written to the file, and there is no delimiter. The next record in the file starts
immediately after the current record.

Sequential files have many uses. For example, they can hold the data
necessary to load a table for use in the COBOL program. Such files often hold
transactional data to be used in an update of a master file. You can also use
Sequential files to exchange data between systems and computers. Printers
are written to as if they were Sequential files.

A Sequential file might be a disk file or a tape file. It could even be a
paper tape or punch card file. Any device that can be attached to the computer
and read from or written to in a sequential fashion can contain a
Sequential file. On the PC, most Sequential files are located on disk.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Connecting Your Program to a File

To access a Sequential file, you must establish a connection between the
file and your program. This process requires two steps. The first establishes the
hardware, file type, organization, and filename of the file you are accessing.
The second defines the layout of the records in the file.

The Select Statement

The Select statement connects your program to a file. Several clauses can
be coded with the Select statement. This section considers only the clauses
that relate to Sequential files.

The Select statement is coded in the Environment Division , under the
Input-Output Section , in a paragraph titled File-Control .

An internal filename is specified in the Select statement. This name is the
name by which you refer to the file in your COBOL program. The filename
may be up to 30 characters long.

The Assign clause associates the file with a named file on your system. The
Assign clause can refer to a symbolic name or, in some cases, as on the PC,
an actual physical filename. The symbolic name can later be associated with a
specific file, using runtime options. In the case of IBM mainframes, these files
are associated using Job Control Language (JCL). In this book, the actual
physical filenames to be used are defined. The Organization clause
specifies the type of file you are working with. For Sequential files, the
type can be Sequential or Line Sequential .

The File Status clause associates the system returned File Status
with a field in the Data Division . This field is two characters long and
contains a status value that can be tested after every operation against the file.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The following example is the Select statement for a file called Name-File
in your COBOL program. The organization is Line Sequential . The
actual filename on the PC is NAME.TXT. The File Status is stored in a
field named Name-File-Status . The Select clause starts in Area B
(column 12).

000010 @OPTIONS MAIN,TEST
000020 Identification Division.
000030 Program-Id. Chapt13a.
000031* File Creation Example
000043 Environment Division.
000050 Configuration Section.
000051 Source-Computer. IBM-PC.
000055 Object-Computer. IBM-PC.
000056 Input-Output Section.
000059 File-Control.
000060 Select Name-File Assign To "NAME.TXT"
000061 Organization Is Line Sequential
000062 File Status Is Name-File-Status.

This program contains several new elements. Notice the new Section :
Input-Output . It contains the paragraphs pertaining to external file I-O.
The File-Control Paragraph is the heading under which your Select
statements are coded.

Note: I-O is shorthand for “Input-Output.” Input is information that comes
into your program. It might be user input, such as the data that is entered into
a data entry program, or it might be a data file. Output is any information
that your program produces. It can take many forms. Output might be data
displayed on the screen or a data file, among other things.

The File Description

The File Description (FD) describes the attributes of the file and its
associated data record or records.

With modern COBOL, the only relevant line is the actual FD line. The FD is
coded in the Data Division of the File Section . The Record
Description , or descriptions, immediately follow the FD. The FD contains
the same filename as specified in the Select statement. Every file specified
with a Select statement requires a File Description entry.

The record description must start with an 01 Group Level item. A file may
have more than one record description, and each must follow the associated
FD. Your file has only one field: Full-Name . The FD is coded as follows:

000065 Data Division.
000066 File Section.
000067 FD Name-File.
000068 01 Name-Record.
000069 03 Full-Name Pic X(30).

Note: The 01 level for this record can also be coded as 01
Name-Record Pic X(30) or as 01 Full-Name Pic X(30) .
However, as you will see when you start using this FD, this method is
unclear in the program. A better approach is to name your record
descriptions “record” and to name the individual fields that make up the
record with names that are appropriate for their contents.

The rules for coding data items in the Record Description are nearly
identical to those for dealing with Working-Storage . The data records can
contain 88 level items and Redefines clauses. However, a few restrictions
do apply. Any Value clauses specified are considered comments and do not
set actual values within the fields. In addition, 77 level items may not be used
in a Record Description . Occurs clauses may be used, even those that
describe variable-length tables. However, the result is a variable-length record,
and certain special rules must be followed. These records are discussed later in
the hour.

Caution: You should be aware that if you specify more than one Record
Description for a file, these Record Description s are implicit
Redefines . You can think of them as overlapping each other. Therefore, if
you move data into a field in one Record Description , that data shows
in all Record Description s for the file.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Opening the File

Now that the file is defined to the COBOL program, you may use it. The first step is
to Open the file. Sequential files may be opened in four different modes.

Opening the file for Input allows you to read data from the file. If you open the file
for Output , you can write data to the file. Opening the file I-O allows you to
update records in the file, and opening the file Extend allows you to add records to
the end of the file.

To open a file for Input , code as follows:

000090 Open Input Name-File

The Open will be successful if the file exists. The status value of a successful open
is 00 . This value is stored in the data item assigned by the File Status clause on
the Select statement. If no File Status is defined, the program may end
abnormally, with an error reported by the runtime system.

Standard File Status values contain two characters. The status returned under
“normal” circumstances begins with a zero. If your file does not exist and you Open
it Input , the File Status returned is 35 .

If you don’t want your program to report a serious file error when the file does not
exist, you can code the Optional clause on the Select statement. When
Optional is coded, the File Status reported for the Open of a file that does
not exist is 05 and the Open is successful. The first Read of the file, however,
reports that end of file has been reached. The Optional clause is coded in the
Select statement as follows:

000058 Input-Output Section.
000059 File-Control.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000060 Select Optional Name-File Assign To "NAME.TXT"
000061 Organization Is Line Sequential
000062 File Status Is Name-File-Status.

Note: File Status values are discussed as you learn the different file
operations. For a complete list of File Status values that can be returned with
the Fujitsu compiler, please see the Cobol 85 User’s Guide, which is included with
the Fujitsu compiler on the CD. If you prefer to use the Adobe Acrobat reader for
viewing this document, the PDF format file is in the \SOFTCOPY\PDF directory of
the CD.

Closing the File

When you are finished processing a file, you should release that file to the operating
system so that other programs can use it. The Close statement syntax closely
follows the Open statement. The filename being closed, as stated in the Select
statement and FD, must be specified.

000100 Close Name-File

Most programmers do not check the File Status after the Close statement.
However, the File Status values shown in Table 13.2.can be returned from the
Close of a Sequential file.

Table 13.2 Sequential File Status Values After a Close Statement

Status Meaning

00 Successful completion
30 Physical error, no other information available
42 Close issued for an unopened file
9x Compiler-vendor defined

Note: The last status, 9x , actually contains a 9 in the first position and a
vendor-defined value in the second position. This value can be just about anything
that the compiler vendor desires.

Writing to the File

Before you can accomplish anything meaningful with a Sequential file, you need
to create it. To create the file, it is opened for Output . When a file that does not
exist is opened for Output , it is created. If it does exist, it is replaced by an empty
file. This concept is very important. When you Open a file for Output , you should
intend to create a new file. The statement required to Open the name file for
Output is

000091 Open Output Name-File

After the Open, the File Status is checked to confirm the Open. Any status
other than 00 indicates an error with the Open.

Table 13.3 Sequential File Status Values for Open in Output Mode

Status Meaning

00 Successful completion
30 Physical error, no other information available
9x Compiler-vendor defined

The only error you are likely to encounter when opening a Sequential file for
Output relates to the name chosen for your file or the media on which you are
trying to create the file. For example, if you have a read-only CD in your CD-ROM
drive and you attempt to Open a file Output on that drive, the File Status
returned with the Fujitsu compiler is 90 .

Data records are created in the file by using the Write statement. The only required
operand with the Write statement is a record identifier. The record identifier is one
of the 01 Group Level items coded under the FD.

Caution: Remember, when writing to a file, never specify the filename, but rather
the record identifier. The reason is that multiple record descriptions may exist for a
particular file. Specifying the record description causes the program to Write the
record in the format desired.

Several File Status values can be returned after a Write statement, as shown
in Table 13.4.

Table 13.4 File Status Values from the Write Statement

Status Meaning

00 Successful completion
30 Error, no other information available
34 Boundary error
48 Attempted to write to a file that is either not open or is not

open in an appropriate mode for write
9x Compiler-vendor defined

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

File Status 30 is a kind of catchall. Errors that may occur during the Write that are
not captured any other way may report a File Status 30 . Status 34 is reported if you
exceed the maximum allowable size for the file on your platform or if the media you are
writing to fills up. Status 48 is typically encountered when you have failed to Open the file
or when you have opened it Input and are attempting to Write to the file.

The short program in Listing 13.1 demonstrates how to Open a file for Output , Accept
names, and Write them to the file until F1 is pressed, and then Close the file and exit.

Listing 13.1 File Creation Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt13a.
000004* File Creation Example
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Input-Output Section.
000012 File-Control.
000013 Select Name-File Assign To "NAME.TXT"
000014 Organization Is Line Sequential
000015 File Status Is Name-File-Status.
000016 Data Division.
000017 File Section.
000018 FD Name-File.
000019 01 Name-Record.
000020 03 Full-Name Pic X(30).
000021 Working-Storage Section.
000022 01 Keyboard-Status.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000023 03 Accept-Status Pic 9.
000024 03 Function-key Pic X.
000025 88 F1-Pressed Value X"01".
000026 03 System-Use Pic X.
000027 01 File-Error-Flag Pic X Value Space.
000028 88 File-Error Value "Y".
000029 01 Name-File-Status Pic XX Value Spaces.
000030 88 Name-File-Success Value "00".
000031 01 Error-Message Pic X(50) Value Spaces.
000032 Screen Section.
000033 01 Name-Entry Blank Screen.
000034 03 Line 01 Column 01 Value " Enter Name: ".
000035 03 Line 01 Column 14 Pic X(30) Using Full-Name.
000036 03 Line 05 Column 01 Pic X(50) From Error-Message.
000037 03 Line 20 Column 01 Value "Press F1 to Exit".
000038 Procedure Division.
000039 Chapt13a-Start.
000040 Perform Open-File
000041 If Not File-Error
000042 Perform Process-Input Until F1-Pressed Or
000043 File-Error
000044 Perform Close-File
000045 End-If
000046 Stop Run
000047 .
000048 Open-File.
000049 Open Output Name-File
000050 If Not Name-File-Success
000051 Move Spaces To Error-Message
000052 String "Open Error " Name-File-Status
000053 Delimited By Size
000054 Into Error-Message
000055 Perform Display-And-Accept-Error
000056 End-if
000057 .
000058 Process-Input.
000059 Move Spaces To Full-Name
000060 Display Name-Entry
000061 Accept Name-Entry
000062 Move Spaces To Error-Message
000063 If Not F1-Pressed
000064 Perform Write-Record
000065 End-If
000066 .
000067 Write-Record.
000068 Write Name-Record
000069 If Name-File-Success
000070 Move "Record Written" To Error-Message
000071 Else
000072 String "Write Error " Name-File-Status
000073 Delimited By Size

000074 Into Error-Message
000075 Perform Display-And-Accept-Error
000076 End-if
000077 .
000078 Display-And-Accept-Error.
000079 Set File-Error To True
000080 Display Name-Entry
000081 Accept Name-Entry
000082 .
000083 Close-File.
000084 Close Name-File
000085 .

As you read through this program, notice the File Status checks after the Open and the
Write . If an error of any kind occurs, the error flag is set and the status and type of error
are displayed. Records are written to the file until someone presses the F1 key or a file error
occurs.

After a Write , the contents of the file buffer cannot be counted on. The file buffer is the
area described by the record description under the FD. Therefore, if you need to reference
the contents of the data record after a Write , you need to store the record in
Working-Storage . Simply create a Record Description that is a single
elementary item, long enough to hold the data record. Then manipulate and use the record as
defined in Working-Storage . When you Write the record, you can do one of two
things. You can either move the Working-Storage version of the record to the record
description and then issue the Write , or you can use the Write statement with the From
clause. Using From causes the program to do an implied move. The data in
Working-Storage is moved to the file buffer as the Write is processed.

Instead of the FD coded previously, you may use the following:

000018 FD Name-File.
000019 01 Name-Record Pic X(30).

Add the following line to Working-Storage .

000021 Working-Storage Section.
000022 01 Full-Name Pic X(30) Value Spaces.

The only other change necessary is to the Write statement:

000068 Write Name-Record From Full-Name

Now you can reference Full-Name with the Display statement, after the Write is
complete, without worrying about the integrity of the data in the file buffer.

Enter, compile, link, and run this program. After entering several names and exiting the
program, use Notepad or some other text editor to open and examine Name.Txt in the
\TYCOBOL folder. You can see that each record appears on a separate line.

What happens if you want to add data to the end of the file? Every time you run the program
and the file is opened for Output , the previous data is lost. You can change the Open
statement to Open the file Extend , instead of Output . When the file is opened Extend ,

new data records written to the file are added at the end of the file, after the existing records.

000049 Open Extend Name-File

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When opening a file Extend , two new File Status values come into play. If
the file does not exist, a File Status value of 35 is returned, which tells you that
the file does not exist. If you want to always add to the end of a file, this condition
makes it difficult. When running the program, you may not know whether the file
exists or not! Changing the Select clause to include Optional cures this
problem. If you Open an Optional file Extend and the file does not exist, the
file is created and a File Status value of 05 is returned.

Change the filename that Name-File is assigned to in the sample program to
"NAMES.TXT" . Change the Open statement from Output to Extend . Then
compile, link, and run the program. Notice the File Status of 35 that is returned
when the program runs.

Note: If you run the program with the Fujitsu compiler, a Non File message
appears before the program actually seems to run. These Fujitsu messages are nice
for diagnosing problems but should be turned off when your program is fully
debugged. To turn off this feature, you need to change a runtime option. When you
run the program and the runtime options window appears, in the Environment
Variables Information field type in @NoMessage=YES. Click Set and
then click Save. Follow the prompts. Then click OK to run the program. The error
message window is now disabled.

Add the word Optional to the Select statement:

000013 Select Optional Name-File Assign To "NAME.TXT"

Now compile and run the program. An 05 error is still reported. You need to change
the 88 level conditional item for success to consider 00 and 05 as successful return
codes.

000029 01 Name-File-Status Pic XX Value Spaces.
000030 88 Name-File-Success Value "00" "05".

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

When you run the revised program, new records are added to the end of Names.Txt.
Try exiting and running the program multiple times, examining the file created. (You
can use Notepad or another text editor.) Note that new records are added to the end
of the file.

Reading from the File

You may retrieve data from a sequential data file. Reading from a sequential data file
requires that you Open the file for Input , or for I-O . Opening the file I-O is
covered in following section, “Updating the File.” The statement required to Open
the file for Input is

000110 Open Input Name-File

When a file is Open for Input , you may only retrieve, or Read, data from the file.
You may not update or write data to the file. A few new File Status values are
reported when a file is opened for Input .

Table 13.5 Sequential File Status Values for Open in Input Mode

Status Meaning

00 Successful completion.
05 Successful Open of an optional file that does not exist.
30 Physical error, no other information available.
35 Open failed on a non optional file. The file does not exist.
39 The file being opened is defined differently than the

definition specified in this program.
41 The file being opened is already open.
9x Compiler-vendor defined.

One of the new File Status values is 05 . If a file with Optional coded on the
Select statement is opened for Input and that file does not exist, the Open is
successful and a return code of 05 is returned. The file is not created. This feature is
useful when you have a program that expects input data, but where you may not
always have any input data to provide. By making the file Optional , the Open
never fails, and the file is not created when it is opened. Additionally, you do not
have to create an empty file to satisfy the program’s need for a file.

File Status 35 means that the file is not defined as Optional and does not
exist.

File Status 39 means that the definition of the file being opened differs from
that in the program. This condition usually does not affect Sequential files, but is
possible.

File Status 41 means that you are attempting to Open a file that is already
open.

You may retrieve data from an open file with the Read statement. Sequential
files are read from the first record to the last. You may not skip forward in the file.

Every record is read in order. Each Read returns the next record in the file.

When you code the Read statement, the filename is specified. You do not read using
a record description. The simplest form of the Read statement is

000111 Read Name-File

This Read statement returns the next record in the file and places the contents in the
record description defined for the file under the FD. Several File Status values
can be returned from a Read statement with a Sequential file (see Table 13.6).

Table 13.6 Sequential File Status Values for Read

Status Meaning

00 Successful completion.
04 Successful; however, the record read is not the same

length as the record defined in the FD.
10 The end of the file has been reached.
30 Physical error, no other information available.
46 The Read failed because the previous Read failed.

47
A Read was attempted on a file that is not Open for
Input or I-O .

9x Compiler-vendor defined.

File Status 04 is considered a successful Read. However, the record read has
a different size than your program’s definition.

File Status 10 means that you have reached the end of your input file and no
record is returned. The previously read record was the last one in the file.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

File Status 46 occurs when you attempt to Read a record and the previous Read has
failed. This condition can occur if you happen to have reached end of file and then attempt
to Read another record.

File Status 47 means that you have attempted to Read from a file that is either not
Open or is Open Output or Extend , instead of Input or I-O .

The end-of-file condition can be detected in two ways. One method is to check the File
Status after the Read. If it is 10 , then you have reached the end of the file. Another way
is to code the At End clause on the Read statement.

When At End is coded, the statements after the clause are executed when an end-of-file
condition is detected. When using At End , I suggest you use the End-Read explicit
terminator. In addition to coding At End , you may also code Not At End . This clause
allows you to perform different statements depending on the status of end of file. If you are
at the end of the file, you may want to do some special processing.

000120 Read Name-File
000121 At End Set All-Done To True
000122 Not At End Perform Process-Data
000123 End-read

You may also store the results of a Read statement in a data item in Working-Storage .
This is similar to the Write statement with From where the record is written from another
data item. For the Read statement, you specify Into and the name of the data item in
which you wish to store the record read.

000124 Read Name-File Into Full-Name

Revise the program that wrote the Names.Txt file (see Listing 13.2). It should now Read a
new record every time the user presses Enter and quit when the end of file is reached or the
user presses F1.

Listing 13.2 Read Example

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt13d.
000004* Read Example
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Input-Output Section.
000012 File-Control.
000013 Select Optional Name-File Assign To "NAMES.TXT"
000014 Organization Is Line Sequential
000015 File Status Is Name-File-Status.
000016 Data Division.
000017 File Section.
000018 FD Name-File.
000019 01 Name-Record Pic X(30).
000020 Working-Storage Section.
000021 01 Full-Name Pic X(30) Value Spaces.
000022 01 Keyboard-Status.
000023 03 Accept-Status Pic 9.
000024 03 Function-key Pic X.
000025 88 F1-Pressed Value X"01".
000026 03 System-Use Pic X.
000027 01 File-Error-Flag Pic X Value Space.
000028 88 File-Error Value "Y".
000029 01 Name-File-Status Pic XX Value Spaces.
000030 88 Name-File-Success Value "00" "05".
000031 88 End-of-File Value "10".
000032 01 Error-Message Pic X(50) Value Spaces.
000033 Screen Section.
000034 01 Name-Entry Blank Screen.
000035 03 Line 01 Column 01 Value " Name: ".
000036 03 Line 01 Column 14 Pic X(30) Using Full-Name.
000037 03 Line 05 Column 01 Pic X(50) From Error-Message.
000038 03 Line 20 Column 01 Value "Press F1 to Exit".
000039 Procedure Division.
000040 Chapt13d-Start.
000041 Perform Open-File
000042 If Not File-Error
000043 Perform Process-File Until F1-Pressed Or
000044 File-Error Or
000045 End-Of-File
000046 Perform Close-File
000047 End-If
000048 Stop Run
000049 .
000050 Open-File.

000051 Open Input Name-File
000052 If Not Name-File-Success
000053 Move Spaces To Error-Message
000054 String "Open Error " Name-File-Status
000055 Delimited By Size
000056 Into Error-Message
000057 Perform Display-And-Accept-Error
000058 End-If
000059 .
000060 Process-File.
000061 Move Spaces To Full-Name
000062 Perform Read-File
000063 If Not File-Error
000064 Display Name-Entry
000065 Accept Name-Entry
000066 End-If
000067 Move Spaces To Error-Message
000068 .
000069 Read-File.
000070 Read Name-File Into Full-Name
000071 At End Move "End Of File" To Error-Message
000072 End-Read
000073 If Name-File-Success Or End-Of-File
000074 Continue
000075 Else
000076 Move Spaces To Error-Message
000077 String "Read Error " Name-File-Status
000078 Delimited by Size Into Error-Message
000079 End-String
000080 Perform Display-And-Accept-Error
000081 End-If
000082 .
000083 Display-And-Accept-Error.
000084 Set File-Error To True
000085 Display Name-Entry
000086 Accept Name-Entry
000087 .
000088 Close-File.
000089 Close Name-File
000090 .

Make note of the use of the File Status ; also note the At End condition test on the
Read statement. The Read Into is the Full-Name field, which is used by the Screen
Section .

Caution: When you run the program, you will note that the Full-Name field is cleared
when the At End condition is encountered. This condition may or may not occur with other
compilers. Some compilers leave the value of the last successfully read record in the input
buffer, or record description. Most will not.

Updating the File

 In addition to reading and writing, you may also update the file. Some very
special restrictions apply to updating a Sequential file. Because Line Sequential
File records can be of differing lengths and updated records are written to the original
physical location, you may not update a Line Sequential file. Take a moment now to
change the program that writes the file (Chapt13a.Cob, Listing.13.1) Change the filename
from Names.Txt to Names.Seq. Change the Select statement from Line Sequential
to Sequential . Create some records with this program so that you can update them with
the next example (Listing 13.3).

To update the file, you must Open it for I-O . The File Status values returned by the
Open are the same as those reported for opening the file for Input .

000125 Open I-O Name-File

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

After the file is Open, it is processed by Read statements as if it were Open for Input . However,
you may now update a record by coding the Rewrite statement. Rewrite replaces the last record
read with the new data that you have placed in the record description. Rewrite also supports the use
of From to update the record from a data item in Working-Storage . The File Status values
returned from a Rewrite on a Sequential file are the same as those that are returned as the result
of a Write . The Rewrite statement also requires the record description and not the
filename—exactly the same as the Write statement.

000125 Rewrite Name-Record From Full-Name

Caution: You may not issue a Write statement against a Sequential file that is opened I-O . If you
need to Write more records to a Sequential file, you must open it Extend .

The program in Listing 13.3 updates a Sequential file. If the user presses Enter, the program reads
the next record. Pressing F1 ends the program; pressing F2 updates the last record with the name
entered by the user. Enter, compile, link, and run this program. Experiment with its operation to see
how the Rewrite statement updates records.

Listing 13.3 Update Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt13f.
000004* Update Example
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status.
000009 Source-Computer. IBM-PC.
000010 Object-Computer. IBM-PC.
000011 Input-Output Section.
000012 File-Control.
000013 Select Optional Name-File Assign To "NAMES.SEQ"
000014 Organization Is Sequential
000015 File Status Is Name-File-Status.
000016 Data Division.
000017 File Section.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000018 Fd Name-File.
000019 01 Name-Record Pic X(30).
000020 Working-Storage Section.
000021 01 Full-Name Pic X(30) Value Spaces.
000022 01 Keyboard-Status.
000023 03 Accept-Status Pic 9.
000024 03 Function-Key Pic X.
000025 88 F1-Pressed Value X"01".
000026 88 F2-Pressed Value X"02".
000027 03 System-Use Pic X.
000028 01 File-Error-Flag Pic X Value Space.
000029 88 File-Error Value "Y".
000030 01 Name-File-Status Pic XX Value Spaces.
000031 88 Name-File-Success Value "00" "05".
000032 88 End-Of-File Value "10".
000033 01 Error-Message Pic X(50) Value Spaces.
000034 Screen Section.
000035 01 Name-Entry Blank Screen.
000036 03 Line 01 Column 01 Value " Enter Name: ".
000037 03 Line 01 Column 14 Pic X(30) Using Full-Name.
000038 03 Line 05 Column 01 Pic X(50) From Error-Message.
000039 03 Line 20 Column 01
000040 Value "Press F1 to Exit Press F2 to Update".
000041 Procedure Division.
000042 Chapt13f-Start.
000043 Perform Open-File
000044 If Not File-Error
000045 Perform Process-File Until F1-Pressed Or
000046 File-Error Or
000047 End-Of-File
000048 Perform Close-File
000049 End-If
000050 Stop Run
000051 .
000052 Open-File.
000053 Open I-O Name-File
000054 If Not Name-File-Success
000055 Move Spaces To Error-Message
000056 String "Open Error " Name-File-Status
000057 Delimited By Size
000058 Into Error-Message
000059 Perform Display-And-Accept-Error
000060 End-If
000061 .
000062 Process-File.
000063 Move Spaces To Full-Name
000064 Perform Read-File
000065 If Not File-Error
000066 Display Name-Entry
000067 Accept Name-Entry
000068 Move Spaces To Error-Message
000069 If F2-Pressed And Not End-Of-File
000070 Perform Rewrite-Record
000071 End-If
000072 End-If
000073 .

000074 Read-File.
000075 Read Name-File Into Full-Name
000076 At End Move "End Of File" To Error-Message
000077 End-Read
000078 If Name-File-Success Or End-Of-File
000079 Continue
000080 Else
000081 Move Spaces To Error-Message
000082 String "Read Error " Name-File-Status
000083 Delimited By Size Into Error-Message
000084 End-String
000085 Perform Display-And-Accept-Error
000086 End-If
000087 .
000088 Rewrite-Record.
000089 Rewrite Name-Record From Full-Name
000090 If Name-File-Success
000091 Move "Prior Record Updated" To Error-Message
000092 Else
000093 Move Spaces To Error-Message
000094 String "Rewrite Error " Name-File-Status
000095 Delimited By Size Into Error-Message
000096 End-String
000097 End-If
000098 .
000099 Display-And-Accept-Error.
000100 Set File-Error To True
000101 Display Name-Entry
000102 Accept Name-Entry
000103 .
000104 Close-File.
000105 Close Name-File
000106 .

Take special note of the check for end of file before the attempt at Rewrite . This test prevents you
from trying to Rewrite a record after the end of file has been reached. Read carefully through the
program. If something is not clear, enter, compile, and run the program in Debug mode and watch
what is happening.

Variable-Length Records

Sequential data files can contain variable-length records. These data records contain a table that is
defined with an Occurs and Depending On . The numeric field that determines the number of
occurrences may or may not appear in the data record. If it does appear in the record, it must appear
before the table that it helps to define. If it does not, then the Read of the record will not be successful.
If the field that determines the number of occurrences is not part of the data record, it must be
initialized to the proper number of occurrences before the Read statement is executed. The following
example shows a variable-length record, using a table with Occurs and Depending On . You may
be limited in the absolute size of a data record. If your maximum number of occurrences exceeds the
maximum record size for your system, even if your Depending On number creates a table that
keeps your record under the maximum allowable size, your program will not compile.

000020 FD Name-File.
000021 01 Name-Record.
000022 03 Name-Ctr Pic 9(2).
000023 03 Name-Table Occurs 1 to 20 Times Depending On Name-Ctr.

000024 05 Name-Item Pic X(20).

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Summary

In this hour, you learned the following:

• COBOL has very powerful and simple methods of handling
Sequential file Input and Output .

• Files are identified to the COBOL program by using the Select
statement and a file description entry, called an FD.

• Before files can be accessed, they must be opened with the Open
statement.

• A special field can be defined to capture the status code of any file
operation. This field is called the File Status field.

• Records can be created in a file with the use of the Write statement.
The file must be opened Output or Extend to use Write .

• When writing to a file, the record description entry is specified, not
the filename.

• You can add records to the end of a Sequential file by opening the
file Extend and using the Write statement.

• To retrieve data written to a Sequential file, you must Open the
file either Input or I-O , and use the Read statement.

• To update records in a Sequential file, Open the file for I-O and
use the Rewrite statement. You cannot update records in a Line
Sequential file, because the records are variable length.

Q&A

Q What is the difference between a Line Sequential file and a
Sequential file?

A A Line Sequential file is one kind of Sequential file and is

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

similar to a regular text file. Each record in a Line Sequential file is a
line in a file and is delimited by a carriage return and line feed (or just a line
feed in the UNIX world). The lines may be of various lengths. Each Read
against a Line Sequential file returns a single line as a record. With a
regular Sequential file, otherwise known as a Record Sequential
file, records are read based on their length. If your records are 80 characters
long, every Read returns exactly 80 characters. There are no “lines” and no
delimiters separating the records.

Q When I use Optional in my Select statement and I Open the file
Input, is it automatically created?

A No. To the program, it looks as if the file is there, but it contains no records.
The first Read issued against the file results in an end-of-file condition. The
file is not created.

Q If I want to always add records to the end of a file, can I Open Extend
even if the file does not exist?

A Yes, but you must specify that the file is Optional on the Select
statement. This syntax causes any missing file to be created.

Q I tried to create a Line Sequential file and then open it I-O. The
compiler tells me that I can’t do that with a Line Sequential file.
Why not?

A The records in a Line Sequential file can be virtually any length.
Updating records may involve shortening or lengthening them, which would
mean shifting the entire remainder of the file forward and backward to adjust
for the size difference. Imagine the overhead and time it would take to
accomplish that on large files.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 14
Indexed Files
An Indexed file is a file that allows access to data records by way of a Key
field. The file is said to be “Indexed” by this Key. Indexed files are
sometimes referred to as keyed files. In this hour, you learn the basics of
Indexed file handling, such as

• Defining an Indexed file

• Handling Primary and Alternate Keys

• Writing records with an Indexed file

• Using File Status values

• Using Declaratives

A record in an Indexed file contains at least one Key field. This field is the
index to the file. There must be at least one Key field that contains a value that
is unique. This Key field is the Primary Key . Each record in the file is
uniquely identified by this Key, which functions like a serial number. With
this Key you can find and access the remainder of the record. The Key field
may be anything from a name to a part number.

An Indexed file is similar to the index of a book. You can go to the index of
the book, find a subject, and then go directly to the page on which that subject
is discussed. An Indexed file allows you to go directly to a record based
upon its Key.

COBOL is one of the few programming languages that incorporates Indexed
file methods. Indexed files are very useful. Accessing Indexed files in
COBOL is extremely simple and straightforward.

Different COBOL compilers provide different physical Indexed file

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

structures, with varying efficiency. However, the definition and statements
used to access an Indexed file are always the same.

Indexed files have many uses. You can use an Indexed file to validate
user input. For example, you might store the account numbers of the different
dealers in your store in an Indexed file. When an item is sold, you can ask
the user for a dealer number. If the number is not in the file, you can issue an
error message. This approach is much better than coding each dealer number
in the program, where it has to be changed every time you gain or lose a
dealer. Validating against a Sequential file is inefficient. With a
Sequential dealer file, you might have to Read all the records in the file to
validate the dealer number. With an Indexed file, you can determine
whether the record is in the file with a single Read.

In addition to keeping the dealer number in the file, you can keep all of the
information associated with a dealer in the data record. Doing so allows you to
store only the dealer number in the sale transaction data and does not require
you to enter or store all the dealer information in each sale record.

Indexed files are ideal for storing any information that you can identify by
some Key field. The example in Hour 12 used a table of states. Using a table
for this information is very efficient. However, if the number of states or their
names chaage frequently, an Indexed file is a better idea. Always analyze
your needs to determine which method gives the best performance and is
easiest to maintain.

Indexed files need not be limited to a single Key field. For example, you
might not know a dealer's number. If you want to find the dealer number in the
file, you might have to Read the entire file, looking for that dealer’s name.
Indexed files may have Alternate Key fields. Unlike the Primary
Key field, Alternate Key fields may or may not be unique. When you
define the Key structure of the file in your COBOL program, you must specify
whether any Alternate Key fields may contain duplicates.

Defining the Indexed File

Care should be taken in how you design your Indexed file and its Key
structure. Changing the Key structure of an established Indexed file can be
quite an undertaking. Your main (Primary) Key field must be unique. You
should choose something that you know is not likely to change frequently and
that identifies the data record. The Key field is either a single elementary item
in your record description or a single group field. Most programmers put this
Key field at the front of the file, which can facilitate debugging. In addition,
some earlier compilers required this placement in support of the computer’s
native Indexed file structure. As an example, in this hour you create a dealer
master file. The Key is the dealer number, and an Alternate Key is the
dealer name. Both Keys are unique. Therefore, you can’t have two dealers
with the same name, nor can two dealers share the same dealer number.

You need to decide which information to track for each dealer. The fields used
in the example in Hour 4, “Basic User Interface,” are good items to track.
These are

• Dealer number

• Name: last, first, and middle

• Address lines 1 and 2

• City, state, and postal code

• Home telephone

• Work telephone

• Other phone

• Start date (when someone became a dealer in your store)

• Last rent paid date

• Next rent due date

• Rent amount

• Consignment percent

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Select Statement for Indexed Files

The Select statement is where you define the Key data for the Indexed file. Several items
coded on the Select relate to Indexed files.

• Organization Indexed —Specifies that this file is an Indexed file.

• Access Dynamic , Random, or Sequential —Specifies how the records in the file
are to be retrieved and/or updated.

• Record Key —Specifies the field that is to be the Primary Key for the file. Only one
Primary Key is allowed.

• Alternate Record Key —Specifies a field that is to act as an Alternate Key
field for the file. A single file may have multiple Alternate Key statements.

• With Duplicates —If coded, the associated Alternate Record Key may
contain duplicates; it does not have to uniquely identify the record as does the Primary
Key field.

For an Indexed file, Organization Indexed must be included in the Select statement.
One of the three access methods must be chosen. Sequential access causes the Indexed file to
behave as a Sequential file. However, instead of reading records in their physical sequence in
the file, they are returned in Primary Key sequence. Random access means that every record is
retrieved by specifying a Key field. The records may be retrieved in any order. Dynamic access
allows you to have the best of both Sequential and Random access. Data records may be
accessed randomly via a Key, or you may position the data file at a particular record and then
access the file sequentially. You may choose a starting position based on the Primary Key or
Alternate Record Key , depending on which you have specified when positioning the file.

In this example, the dealer Indexed file uses Sequential access. The Select statement is
coded as follows:

000058 Select Dealer-File Assign to "Dealer.Dat"
000059 Organization Indexed
000060 Access Sequential
000061 Record Key Dealer-Number of Dealer-Record
000062 Alternate Record Key Dealer-Name of Dealer-Record
000063 File Status Dealer-Status.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Caution: Be careful assigning the physical filename for the file. Some compilers store Indexed
files in two components. The index portion might be stored separately from the data portion of the
file. Compilers that use this method use a special file extension for the index portion of the file, for
example .IDX. Therefore, you should be careful to check your documentation so that you do not
assign a name with this extension to your file. The Fujitsu compiler stores the index and data in a
single file.

Take note of the qualification of the Key fields. This example uses an Input file that has the same
field names, making this qualification necessary.

The FD for your file follows.

000066 File Section.
000067 FD Dealer-File.
000068 01 Dealer-Record.
000069 03 Dealer-Number Pic X(8).
000070 03 Dealer-Name.
000071 05 Last-Name Pic X(25).
000072 05 First-Name Pic X(15).
000073 05 Middle-Name Pic X(10).
000074 03 Address-Line-1 Pic X(50).
000075 03 Address-Line-2 Pic X(50).
000076 03 City Pic X(40).
000077 03 State-or-Country Pic X(20).
000078 03 Postal-Code Pic X(15).
000079 03 Home-Phone Pic X(20).
000080 03 Work-Phone Pic X(20).
000081 03 Other-Phone Pic X(20).
000082 03 Start-Date Pic 9(8).
000083 03 Last-Rent-Paid-Date Pic 9(8).
000084 03 Next-Rent-Due-Date Pic 9(8).
000085 03 Rent-Amount Pic 9(4)V99.
000086 03 Consignment-Percent Pic 9(3).
000087 03 Filler Pic X(50).

Notice that the last item in the record description is a 50-character Filler area. This area is
provided for future growth in the file. Some time in the future, you might need to add or expand
other fields in the file. Leaving a Filler area for expansion makes it easier to modify the layout
of the file.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Creating an Indexed File from a Sequential File

To explore the different methods for working with Indexed files, you need to create one. The
CD-ROM contains a data file named DEALER.TXT. It is located in the \Datafile directory. This
file has several records that you can use to create a dealer file.

Listing 14.1 has two files assigned: the Input text file and the Output Indexed file. The start
of the program, Select , and FD statements are coded as follows:

Listing 14.1 Dealer File Creation

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt14a.
000004* Dealer File Creation
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.
000011 Select Dealer-File Assign To "Dealer.Dat"
000012 Organization Indexed
000013 Access Sequential
000014 Record Key Dealer-Number Of Dealer-Record
000015 Alternate Record Key Dealer-Name Of Dealer-Record
000016 File Status Dealer-Status.
000017 Select Dealer-Text Assign To "Dealer.TXT"
000018 Organization Is Line Sequential
000019 File Status Dealer-Text-Status.
000020
000021 Data Division.
000022 File Section.
000023 Fd Dealer-File.
000024 01 Dealer-Record.
000025 03 Dealer-Number Pic X(8).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000026 03 Dealer-Name.
000027 05 Last-Name Pic X(25).
000028 05 First-Name Pic X(15).
000029 05 Middle-Name Pic X(10).
000030 03 Address-Line-1 Pic X(50).
000031 03 Address-Line-2 Pic X(50).
000032 03 City Pic X(40).
000033 03 State-Or-Country Pic X(20).
000034 03 Postal-Code Pic X(15).
000035 03 Home-Phone Pic X(20).
000036 03 Work-Phone Pic X(20).
000037 03 Other-Phone Pic X(20).
000038 03 Start-Date Pic 9(8).
000039 03 Last-Rent-Paid-Date Pic 9(8).
000040 03 Next-Rent-Due-Date Pic 9(8).
000041 03 Rent-Amount Pic 9(4)v99.
000042 03 Consignment-Percent Pic 9(3).
000043 03 Filler Pic X(50).
000044 Fd Dealer-Text.
000045 01 Text-Record.
000046 03 Dealer-Number Pic X(8).
000047 03 Dealer-Name.
000048 05 Last-Name Pic X(25).
000049 05 First-Name Pic X(15).
000050 05 Middle-Name Pic X(10).
000051 03 Address-Line-1 Pic X(50).
000052 03 Address-Line-2 Pic X(50).
000053 03 City Pic X(40).
000054 03 State-Or-Country Pic X(20).
000055 03 Postal-Code Pic X(15).
000056 03 Home-Phone Pic X(20).
000057 03 Work-Phone Pic X(20).
000058 03 Other-Phone Pic X(20).
000059 03 Start-Date Pic 9(8).
000060 03 Last-Rent-Paid-Date Pic 9(8).
000061 03 Next-Rent-Due-Date Pic 9(8).
000062 03 Rent-Amount Pic 9(4)v99.
000063 03 Consignment-Percent Pic 9(3).
000064 03 Filler Pic X(50).
000065
000066 Working-Storage Section.
000067 01 Dealer-Status Pic XX Value Spaces.
000068 01 Dealer-Text-Status Pic XX Value Spaces.
000069 01 Record-Counter Pic 9(5) Value Zeros.

To create the file you need to Open the Indexed file, you Open it Output for creation.

Caution: Creating an Indexed file by opening it output and accessing it sequentially is normally
the most efficient file creation method. In this case, the records being added must already be in
Primary Key sequence. Doing so reduces the computer’s overhead as it creates the index entries
for the file. You have to remember, however, that the data records for the file must be written in
Primary Key sequence. If a record is written out of sequence, an error 21 is reported. The sample
data file provided contains records that are in Primary Key sequence.

000070 Procedure Division.

000071 Chapt14a-Start.
000072 Open Input Dealer-Text
000073 Open Output Dealer-File

The next step is to Read the Sequential file, creating Indexed file records as you go.

000074 Perform Until Dealer-Status Not = "00" Or
000075 Dealer-Text-Status Not = "00"
000076 Read Dealer-Text
000077 If Dealer-Text-Status = "00"
000078 Write Dealer-Record From Text-Record
000079 If Dealer-Status Not = "00"
000080 Display
000081 "Write Error Dealer-Record " Dealer-Status
000082 Else
000083 Add 1 To Record-Counter
000084 End-If
000085 End-If
000086 End-Perform
000087 Close Dealer-Text Dealer-File
000088 Display
000089 "File Processed with " Record-Counter " Records Written"
000090 Stop Run
000091 .

Note the check of the File Status on the Write . Table 14.1 describes the File Status
values that might be returned from a Write to an Indexed file opened for Output in
Sequential access mode.

Table 14.1 Indexed File Status Values for Writes on Open for Output with
Sequential Access

Status Meaning

00 Successful completion.
30 Physical error, no other information available.
21 Primary Record Key value not in ascending Key sequence. This

condition can occur when a duplicate record is encountered, or when the
Primary Key is out of order.

34 Fatal error caused by the inability of the program to Write the record.
Usually occurs because of an inaccurate Key field. Can also be caused by a
hardware problem, such as running out of disk space, or secondary file
allocations of space on some systems.

48 Attempt to Write to a file that is not opened for Output , Extend , or I-O .
9x Compiler-vendor defined.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

In addition to the File Status check, the code adds 1 to the record counter for every successful
Write . At the end of the program, this value is displayed.

Tip: It is always a good idea, especially when there is no special user interaction, to show the user that the
program completed successfully. It is also useful to provide some accounting information such as the
number of records processed. If a problem develops, a low or high record count could help diagnose the
situation.

Running this program creates an Indexed file from the Sequential Input file. Notice the
Perform loop and how the program terminates when there are no more Input records (as indicated
by a non-zero status value on the Input text file) or an error occurs writing to the Output file. Any
errors writing to the Output file are reported.

When the program is complete, the output should look like that shown in Figure 14.1.

Figure 14.1 Results of running Chapt14a.

Creating Indexed File Records from User Input

Another common way to create an Indexed file is to have the user key the information for the data
records into a program. Again, you want to create a new file, so you must Open the file Output . The
program to accept user input and to Write to the Indexed file from that input might be coded as
shown in Listing 14.2.

Listing 14.2 Dealer Data Entry

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt14b.
000004* Dealer Data Entry
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status
000009 Cursor Is Cursor-Position.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/14-01.jpg',791,505)
javascript:displayWindow('images/14-01.jpg',791,505)

000010 Source-Computer. IBM-PC.
000011 Object-Computer. IBM-PC.
000012 Input-Output Section.
000013 File-Control.
000014 Select Dealer-File Assign To "Dealer.Dat"
000015 Organization Indexed
000016 Access Sequential
000017 Record Key Dealer-Number Of Dealer-Record
000018 Alternate Record Key Dealer-Name Of Dealer-Record
000019 File Status Dealer-Status.
000020 Data Division.
000021 File Section.
000022 Fd Dealer-File.
000023 01 Dealer-Record.
000024 03 Dealer-Number Pic X(8).
000025 03 Dealer-Name.
000026 05 Last-Name Pic X(25).
000027 05 First-Name Pic X(15).
000028 05 Middle-Name Pic X(10).
000029 03 Address-Line-1 Pic X(50).
000030 03 Address-Line-2 Pic X(50).
000031 03 City Pic X(40).
000032 03 State-Or-Country Pic X(20).
000033 03 Postal-Code Pic X(15).
000034 03 Home-Phone Pic X(20).
000035 03 Work-Phone Pic X(20).
000036 03 Other-Phone Pic X(20).
000037 03 Start-Date Pic 9(8).
000038 03 Last-Rent-Paid-Date Pic 9(8).
000039 03 Next-Rent-Due-Date Pic 9(8).
000040 03 Rent-Amount Pic 9(4)v99.
000041 03 Consignment-Percent Pic 9(3).
000042 03 Filler Pic X(50).
000043 Working-Storage Section.
000044 01 Keyboard-Status.
000045 03 Accept-Status Pic 9.
000046 03 Function-Key Pic X.
000047 88 F1-Pressed Value X"01".
000048 88 F2-Pressed Value X"02".
000049 03 System-Use Pic X.
000050 01 Cursor-Position.
000051 03 Cursor-Row Pic 9(2) Value 1.
000052 03 Cursor-Column Pic 9(2) Value 1.
000053 01 Dealer-Status Pic X(2) Value Spaces.
000054 88 Dealer-Success Value "00".
000055 01 Error-Message Pic X(60) Value Spaces.
000056 01 Open-Error.
000057 03 Filler Pic X(26)
000058 Value "Error Opening Dealer File ".
000059 03 Open-Error-Status Pic X(2).
000060 01 Write-Error.
000061 03 Filler Pic X(26)
000062 Value "Error Writing Dealer File ".
000063 03 Write-Error-Status Pic X(2).
000064 01 Work-Record."
000065 03 Dealer-Number Pic X(8).
000066 03 Dealer-Name.

000067 05 Last-Name Pic X(25).
000068 05 First-Name Pic X(15).
000069 05 Middle-Name Pic X(10).
000070 03 Address-Line-1 Pic X(50).
000071 03 Address-Line-2 Pic X(50).
000072 03 City Pic X(40).
000073 03 State-Or-Country Pic X(20).
000074 03 Postal-Code Pic X(15).
000075 03 Home-Phone Pic X(20).
000076 03 Work-Phone Pic X(20).
000077 03 Other-Phone Pic X(20).
000078 03 Start-Date Pic 9(8).
000079 03 Last-Rent-Paid-Date Pic 9(8).
000080 03 Next-Rent-Due-Date Pic 9(8).
000081 03 Rent-Amount Pic 9(4)v99.
000082 03 Consignment-Percent Pic 9(3).
000083
000084 Screen Section.
000085 01 Data-Entry-Screen
000086 Blank Screen, Auto
000087 Foreground-Color Is 7,
000088 Background-Color Is 1.
000089*
000090 03 Screen-Literal-Group.
000091 05 Line 01 Column 30 Value "Darlene's Treasures"
000092 Highlight Foreground-Color 4 Background-Color 1.
000093 05 Line 03 Column 30 Value "Tenant Entry Program"
000094 Highlight.
000095 05 Line 4 Column 01 Value "Number: ".
000096 05 Line 5 Column 01 Value "Name, Last: ".
000097 05 Line 5 Column 39 Value "First: ".
000098 05 Line 5 Column 62 Value "Middle: ".
000099 05 Line 6 Column 01 Value "Address 1: ".
000100 05 Line 7 Column 01 Value "Address 2: ".
000101 05 Line 8 Column 01 Value "City: ".
000102 05 Line 9 Column 01 Value "Country/State: ".
000103 05 Line 9 Column 36 Value "Postal Code: ".
000104 05 Line 11 Column 01 Value "Phone/Home: ".
000105 05 Line 11 Column 34 Value "Work: ".
000106 05 Line 12 Column 06 Value "Other: ".
000107 05 Line 14 Column 01 Value "Start Date: ".
000108 05 Line 14 Column 24 Value "Last Paid Date: ".
000109 05 Line 14 Column 51 Value "Next Rent Due on: ".
000110 05 Line 15 Column 01 Value "Rent Amount: ".
000111 05 Line 16 Column 01 Value "Consignment Percent: ".
000112 05 Line 22 Column 01 Value "F1-Exit F2-Save".
000113*
000114 03 Required-Reverse-Group Reverse-Video Required.
000115 05 Line 4 Column 13 Pic X(8) Using Dealer-Number
000116 Of Work-Record.
000117 05 Line 5 Column 13 Pic X(25) Using Last-Name
000118 Of Work-Record.
000119 05 Line 5 Column 46 Pic X(15) Using First-Name
000120 Of Work-Record.
000121*
000122 03 Reverse-Video-Group Reverse-Video.
000123 05 Line 5 Column 70 Pic X(10) Using Middle-Name

000124 Of Work-Record.
000125 05 Line 6 Column 15 Pic X(50) Using Address-Line-1
000126 Of Work-Record.
000127 05 Line 7 Column 15 Pic X(50) Using Address-Line-2
000128 Of Work-Record.
000129 05 Line 8 Column 15 Pic X(40) Using City
000130 Of Work-Record.
000131 05 Line 9 Column 15 Pic X(20) Using State-Or-Country
000132 Of Work-Record.
000133 05 Line 9 Column 50 Pic X(15) Using Postal-Code
000134 Of Work-Record.
000135 05 Line 11 Column 13 Pic X(20) Using Home-Phone
000136 Of Work-Record.
000137 05 Line 11 Column 41 Pic X(20) Using Work-Phone
000138 Of Work-Record.
000139 05 Line 12 Column 13 Pic X(20) Using Other-Phone
000140 Of Work-Record.
000141 05 Line 14 Column 13 Pic 99/99/9999 Using Start-Date
000142 Of Work-Record.
000143 05 Line 14 Column 40 Pic 99/99/9999
000144 Using Last-Rent-Paid-Date Of Work-Record.
000145 05 Line 14 Column 69 Pic 99/99/9999
000146 Using Next-Rent-Due-Date Of Work-Record.
000147 05 Line 15 Column 14 Pic Z,ZZZ.99 Using Rent-Amount
000148 Of Work-Record.
000149 05 Line 16 Column 22 Pic ZZ9 Using Consignment-Percent
000150 Of Work-Record.
000151 03 Blink-Group Highlight Blink.
000152 05 Line 20 Column 01 Pic X(60) From Error-Message.
000153*
000154
000155 Procedure Division.
000156 Chapt14b-Start.
000157 Perform Open-File
000158 If Dealer-Success
000159 Initialize Work-Record
000160 Perform Process-Screen Until F1-Pressed Or
000161 Not Dealer-Success
000162 Perform Close-File
000163 End-If
000164 Stop Run
000165 .
000166 Process-Screen.
000167 Display Data-Entry-Screen
000168 Accept Data-Entry-Screen
000169 If F2-Pressed
000170 Perform Save-Record
000171 End-If
000172 .
000173 Save-Record.
000174 Move Corresponding Work-Record To Dealer-Record
000175 Write Dealer-Record
000176 If Not Dealer-Success
000177 Move Dealer-Status To Write-Error-Status
000178 Move Write-Error To Error-Message
000179 Perform Display-And-Accept-Error
000180 Else

000181 Initialize Work-Record
000182 Move 1 To Cursor-Row
000183 Cursor-Column
000184 End-If
000185 .
000186 Open-File.
000187 Open Output Dealer-File
000188 If Not Dealer-Success
000189 Move Dealer-Status To Open-Error-Status
000190 Move Open-Error To Error-Message
000191 Perform Display-And-Accept-Error
000192 End-If
000193 .
000194 Close-File.
000195 Close Dealer-File
000196 .
000197 Display-And-Accept-Error.
000198 Display Data-Entry-Screen
000199 Accept Data-Entry-Screen
000200 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When you examine this program, notice that it uses the same data names in the record in
Working-Storage and in the data record. Using the same data names allows you to use Move
Corresponding later in the program to fill in the record’s data fields from the screen input .
Because the same data names were used, they must be qualified in the Using clause by specifying
the group of which the data item is a member.

In the program, the data file is Open Output , effectively creating a new file every time the
program runs. Sequential access was chosen for performance reasons. However, try running the
program and note what happens when you enter a record out of sequence. If you do, a File
Status value of 21 is returned. The record was not written in proper Key sequence.

Note: Indexed files may be opened Extend instead of Output and still use Sequential
access. If this option is coded, records added to the file must still be in Primary Key sequence, and
their Primary Key values must be greater than the last record in the file.

One way to avoid this problem is to Open the file with Random access instead of Sequential
access. When Random access is used, records are added based on their Key value. They do not
have to be added in sequence. COBOL and the Indexed file system work together to ensure that
the records are properly added to the file. File Status 21 errors should no longer occur.

A new File Status value—22—is possible when an Indexed file is Open for Output with
Random access. This File Status is returned when a record with a duplicate Key is added to
the file. The Key causing the error can be either the Primary Key or the Alternate Key .
This error is caused by duplicate Alternate Key values only when duplicates are not allowed
on Alternate Key s. If duplicates are allowed on Alternate Key s and a duplicate record is
written, the returned File Status is 02 . When you code your programs, you need to allow for
this status as a valid and successful status.

Change the program to use Random access, instead of Sequential , and recompile the program.
The only thing you need to change is the Select statement.

000014 Select Dealer-File Assign to "Dealer.Dat"
000015 Organization Indexed
000016 Access Random
000017 Record Key Dealer-Number Of Dealer-Record
000018 Alternate Record Key Dealer-Name of Dealer-Record

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000019 File Status Dealer-Status.

Now when you run the program, the order in which the records are added does not matter. Random
access allows you to Write records in any position in the file.

Other Methods of Handling File Errors

Thus far, you have relied on the File Status values to indicate the success or failure of the
Indexed file operations. In addition, two other methods for capturing error conditions are
available when using Indexed files.

On the Write statement, you may code an Invalid Key clause. Any statements coded after this
clause are executed when an Invalid Key condition occurs. These File Status values begin
with a 2. When an Invalid Key condition is encountered, the associated operation is not
successful. In this example, you can replace the code in lines 175 through 184 of Listing 14.2 with
the following:

000175 Write Dealer-Record
000176 Invalid Key
000177 Move Dealer-Status To Write-Error-Status
000178 Move Write-Error To Error-Message
000179 Perform Display-And-Accept-Error
000180 Not Invalid Key
000181 Initialize Work-Record
000182 Move 1 To Cursor-Row
000183 Cursor-Column
000184 End-Write

Notice the use of Invalid Key and Not Invalid Key . When you use Invalid Key , I
suggest that you code the End-Write explicit scope terminator. You should remember that the
Invalid Key condition is triggered only when a File Status value begins with a 2. I still
suggest full and complete File Status value checking as the best way to capture all possible
errors, including those for which the File Status value does not begin with a 2.

 Another way to handle file errors is to use Declaratives . The use of
Declaratives is specified in your program immediately after the Procedure Division by
coding the word Declaratives . After the word Declaratives , a Section is coded for each
file that is to have declarative logic executed when an error condition occurs. These must be
Sections , not Paragraphs . Immediately after the Section header is a Use statement. It tells
the program to execute the Declaratives in this section when a file error is detected for the
specified file. A file error is defined as any returned File Status value in which the first
character is not a zero.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

You may separate the Sections within the Declaratives into Paragraphs . You
need to remember a few simple rules. You may not Perform any code outside the
Declaratives and End-Declaratives labels. However, you may Perform code
from different Sections within the Declaratives . For example, you might have a
common error-display paragraph that is coded in the Declaratives Section for one
file and then performed in the Declaratives Section s for the other files. The
Declaratives are not executed for Invalid Key conditions (that is, File
Status values starting with 2) if the Invalid Key clause is coded for the file
operation. Additionally, File Status 10 (end of file) does not trigger the
Declaratives if the At End clause is coded on the Read statement.

The following code shows the Procedure Division from the previous example
coded to use Declaratives .

000155 Procedure Division.
000156 Declaratives.
000157 Input-File-Error Section.
000158 Use After Standard Error Procedure On Dealer-File.
000159 Dealer-File-Error.
000160 String "Error On Dealer-File " Dealer-Status
000161 Delimited By Size Into Error-Message
000162 End-String
000163 Display Data-Entry-Screen
000164 Accept Data-Entry-Screen
000165 .
000166 End Declaratives.
000167 Chapt14d-Start Section.
000168 Perform Open-File
000169 If Dealer-Success
000170 Initialize Work-Record
000171 Perform Process-Screen Until F1-Pressed Or
000172 Not Dealer-Success

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000173 Perform Close-File
000174 End-If
000175 Stop Run
000176 .
000177 Process-Screen.
000178 Perform Display-And-Accept
000179 If F2-Pressed
000180 Perform Save-Record
000181 End-if
000182 .
000183 Save-Record.
000184 Move Corresponding Work-Record to Dealer-Record
000185 Write Dealer-Record
000186 Invalid Key
000187 Move Dealer-Status to Write-Error-Status
000188 Move Write-Error to Error-Message
000189 Perform Display-And-Accept
000190 Not Invalid Key
000191 Initialize Work-Record
000192 Move 1 to Cursor-Row
000193 Cursor-Column
000194 End-Write
000195 .
000196 Display-And-Accept.
000197 Display Data-Entry-Screen
000198 Accept Data-Entry-Screen
000199 .
000200 Open-File.
000201 Open Output Dealer-File
000202 .
000203 Close-File.
000204 Close Dealer-File
000205 .

In the program, the screen Accept and Display were changed to use a common
routine: Display-And-Accept . However, it is not Perform ed from the
Declaratives Section of the program. You cannot Perform anything outside the
Declaratives from within the Declaratives .

Notice the use of the Invalid Key clause with the Write statement. Because
Invalid Key is coded the Declaratives will be executed on any file error
encountered other than an Invalid Key condition. Coding for the Invalid Key in
addition to using Declaratives allows you to capture any and all file errors that might
occur.

Summary

In this hour, you learned the following:

• Indexed files are those files whose records are keyed by specified Key fields.

• The Primary Key field of an Indexed file must be unique.

• One or more Alternate Key fields may be specified. They are not required.
When specified, they may be defined as allowing duplicate records.

• When an Indexed file is opened for Output and the access mode specified is
Sequential , any records written to the file must be written in Primary key
sequence order.

• When an Indexed file is opened for Output and the access mode specified is
Random, the records may be written in any order.

• File Status values may be checked to determine the result of Indexed file
operations, such as Open, Close , and Write .

• In addition to File Status values, the Invalid Key clause can be coded to
test for the Invalid Key condition.

• Declaratives allow you to code a common error-handling routine for any
invalid File Status values returned for operations against the specified files.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Q&A

Q When using an Indexed file opened for Output with Sequential
access, if I have to be so careful about adding records in the proper
sequence, why would I ever want to use Sequential access?

A When processing large amounts of data, you will find that adding records in
random order is much slower than adding them in Sequential order. For
each Add in random order, the program must check whether the record already
exists, add the record in the proper portion of the data file, and then adjust the
index records accordingly. With Sequential access, the program need only
verify that the Key value currently being written is greater than the last Key
value written. All the records are in sequence and can be added efficiently.
Key maintenance is simplified for the program as well.

Q When I run the example program, I get a File Status 22. What
does that mean?

A Either the Primary Key value of the record you are adding is duplicated,
or the Alternate Key is not specified to allow duplicates, and you have
duplicated that Key value.

Q I understand the various File Status values, but what does
Invalid Key mean?

A The Invalid Key clause is an easy way to catch a range of errors in
Indexed file operations. These errors relate to problems associated with the
Key values. File Status values that are associated with the Invalid
Key condition begin with a 2.

Q I can see some good uses for Declaratives. But if they are a
catch-all, how can I tell exactly what was happening when the error
occurred?

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

A You are right. Using Declaratives can save a lot of coding. However,
because they will be executed for any error not explicitly coded for with an At
End or Invalid Key clause, they are not very specific. You can
compensate by setting up a common area where you store information like the
filename and the type of operation being attempted, for example, Open,
Write , Close . You can use this area to be specific when reporting errors
that occur.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 15
Reading Indexed File Records
In the previous hour, you learned how to create an Indexed file. In this hour, you learn different
ways to Read the records in the file. You will learn about

• The different access methods for Indexed files, such as Sequential , Random, and
Dynamic .

• How to position the file using the Start statement.

• How to Read records randomly.

• How to Read records sequentially from an Indexed file.

Indexed files can provide superior performance and response time in your programs. Imagine
how long the user would have to wait to recall the information for a dealer, when the dealer number
is entered, if the program had to Read through all the records in a large file. Indexed files
provide virtually instant access to the information if the Key field is known. Even if one of the Key
fields in not known, Indexed files can still narrow the search and speed the location of the
information.

Various Access Methods

As mentioned briefly in Hour 14, “Indexed Files,” COBOL offers several ways to access an
Indexed file, depending on the situation. Although these methods have much in common, to a
large extent, the efficiency of Indexed file access varies with each COBOL compiler and the
environment upon which it runs. In addition, these different access methods have specific
performance advantages and disadvantages.

Sequential access, for example, allows the file to be processed from front to back, from lowest
Primary Key to highest, using the same programming statements as a normal Sequential
file. Sequential access can be put to good use when the entire file is to be processed. On the
other hand, Random access provides instant access to a specific record and can be a very fast way
to retrieve information from an Indexed file. Dynamic access allows both Sequential and
Random access. Dynamic access offers the best of both worlds but has the disadvantage of being
slightly more cumbersome than either Random or Sequential access.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Sequential Access

 Think of an Indexed file as a book. Each record in the file is a page in the book. The
Key for the records is the page number. Sequential access allows you to Read through the book,
starting at the first page and ending after the last. You cannot jump ahead in the book. You cannot
jump backward in the book. You can only go forward, page by page. You must Read every page, and
you cannot skip any pages. If you close the book and Open it again, you must start over from the
front of the book.

Sequential access of an Indexed file works exactly as described in this book analogy.
Sequential access is specified in the Select statement for the file:

000058 Select Dealer-File Assign To "Dealer.Dat"
000059 Organization Indexed
000060 Access Sequential
000061 Record Key Dealer-Number Of Dealer-Record
000062 Alternate Record Key Dealer-Name Of Dealer-Record
000063 File Status Dealer-Status.

In order to Read data from an Indexed file, it must be opened for Input . The Open statement is
very simple:

000101 Open Input Dealer-File

When applied against an Indexed file, with Access Sequential , this Open statement allows
you to Read data records from the Indexed file. The Read statement operates exactly the same
way with an Indexed file Open with Sequential access as it does with a regular
Sequential file. Each subsequent Read statement returns the next record in the file, in
Primary Key sequence. The At End condition is true if a Read is attempted after the last
record of a file is read. The File Status returned is 10 if the end of file is reached.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The program in Listing 15.1 returns a record in the file every time the user presses Enter until the answer
to the question Read another record? is N or the end of file is reached.

Listing 15.1 Sequentially Read an Indexed File

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt15a.
000004* Sequentially Read An Indexed File
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.
000011 Select Dealer-File Assign To "Dealer.Dat"
000012 Organization Indexed
000013 Access Sequential
000014 Record Key Dealer-Number
000015 Alternate Record Key Dealer-Name
000016 File Status Dealer-Status.
000017 Data Division.
000018 File Section.
000019 Fd Dealer-File.
000020 01 Dealer-Record.
000021 03 Dealer-Number Pic X(8).
000022 03 Dealer-Name.
000023 05 Last-Name Pic X(25).
000024 05 First-Name Pic X(15).
000025 05 Middle-Name Pic X(10).
000026 03 Address-Line-1 Pic X(50).
000027 03 Address-Line-2 Pic X(50).
000028 03 City Pic X(40).
000029 03 State-Or-Country Pic X(20).
000030 03 Postal-Code Pic X(15).
000031 03 Home-Phone Pic X(20).
000032 03 Work-Phone Pic X(20).
000033 03 Other-Phone Pic X(20).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000034 03 Start-Date Pic 9(8).
000035 03 Last-Rent-Paid-Date Pic 9(8).
000036 03 Next-Rent-Due-Date Pic 9(8).
000037 03 Rent-Amount Pic 9(4)v99.
000038 03 Consignment-Percent Pic 9(3).
000039 03 Filler Pic X(50).
000040 Working-Storage Section.
000041 01 Dealer-Status Pic X(2) Value Spaces.
000042 88 Dealer-Success Value "00".
000043 01 Show-Next-Record Pic X Value "Y".
000044 01 Process-Flag Pic X Value Spaces.
000045 88 End-Process Value "Y".
000046 Screen Section.
000047 01 Data-Entry-Screen
000048 Blank Screen, Auto
000049 Foreground-Color Is 7,
000050 Background-Color Is 1.
000051*
000052 03 Screen-Literal-Group.
000053 05 Line 01 Column 30 Value "Darlene's Treasures"
000054 Highlight Foreground-Color 4 Background-Color 1.
000055 05 Line 03 Column 30 Value "Tenant Display Program"
000056 Highlight.
000057 05 Line 4 Column 01 Value "Number: ".
000058 05 Line 5 Column 01 Value "Name, Last: ".
000059 05 Line 5 Column 39 Value "First: ".
000060 05 Line 5 Column 62 Value "Middle: ".
000061 05 Line 6 Column 01 Value "Address 1: ".
000062 05 Line 7 Column 01 Value "Address 2: ".
000063 05 Line 8 Column 01 Value "City: ".
000064 05 Line 9 Column 01 Value "Country/State: ".
000065 05 Line 9 Column 36 Value "Postal Code: ".
000066 05 Line 11 Column 01 Value "Phone/Home: ".
000067 05 Line 11 Column 34 Value "Work: ".
000068 05 Line 12 Column 06 Value "Other: ".
000069 05 Line 14 Column 01 Value "Start Date: ".
000070 05 Line 14 Column 24 Value "Last Paid Date: ".
000071 05 Line 14 Column 51 Value "Next Rent Due on: ".
000072 05 Line 15 Column 01 Value "Rent Amount: ".
000073 05 Line 16 Column 01 Value "Consignment Percent: ".
000074 05 Line 22 Column 01
000075 Value "Display next Record? (Y/N):".
000076*
000077 03 Required-Reverse-Group Reverse-Video.
000078 05 Line 4 Column 13 Pic X(8) From Dealer-Number.
000079 05 Line 5 Column 13 Pic X(25) From Last-Name.
000080 05 Line 5 Column 46 Pic X(15) From First-Name.
000081 05 Line 5 Column 70 Pic X(10) From Middle-Name.
000082 05 Line 6 Column 15 Pic X(50) From Address-Line-1.
000083 05 Line 7 Column 15 Pic X(50) From Address-Line-2.
000084 05 Line 8 Column 15 Pic X(40) From City.
000085 05 Line 9 Column 15 Pic X(20) From State-Or-Country.
000086 05 Line 9 Column 50 Pic X(15) From Postal-Code.
000087 05 Line 11 Column 13 Pic X(20) From Home-Phone.
000088 05 Line 11 Column 41 Pic X(20) From Work-Phone.
000089 05 Line 12 Column 13 Pic X(20) From Other-Phone.
000090 05 Line 14 Column 13 Pic 99/99/9999 From Start-Date.

000091 05 Line 14 Column 40 Pic 99/99/9999
000092 From Last-Rent-Paid-Date.
000093 05 Line 14 Column 69 Pic 99/99/9999
000094 From Next-Rent-Due-Date.
000095 05 Line 15 Column 14 Pic Z,ZZZ.99 From Rent-Amount.
000096 05 Line 16 Column 22 Pic ZZ9 From Consignment-Percent.
000097 05 Line 22 Column 29 Pic X Using Show-Next-Record.
000098*
000099
000100 Procedure Division.
000101 Chapt15a-Start.
000102 Perform Open-File
000103 If Dealer-Success
000104 Perform Process-Screen Until Show-Next-Record = "N" Or
000105 Show-Next-Record = "n" Or
000106 End-Process
000107 Perform Close-File
000108 End-If
000109 Stop Run
000110 .
000111 Process-Screen.
000112 Read Dealer-File
000113 At End Set End-Process To True
000114 Not At End
000115 Perform Display-And-Accept
000116 End-Read
000117 .
000118 Display-And-Accept.
000119 Display Data-Entry-Screen
000120 Accept Data-Entry-Screen
000121 .
000122 Open-File.
000123 Open Input Dealer-File
000124 .
000125 Close-File.
000126 Close Dealer-File
000127 .

Note: Before running this program, you might want to re-run the program in Listing 14.1 to create the file
from the provided DEALER.TXT file.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

When you run this program, notice that the records are read in Primary Key sequence. The names
do not appear in alphabetical order; instead you see the lowest account number and progress to the
higher ones.

The Start Statement

With a book, you can open to any page and begin reading. The same is true of an Indexed file
accessed in Sequential mode. You can Start at any position within the file and then Read
records. You cannot go backward, and if you Close the file, you have to Start over. But you can
begin reading anywhere in the file by using the Start statement.

The Start statement allows you to specify the position in the file where the next Read will occur.
With the Start statement, you specify the file you want to position—and the location—in reference
to the Key field. Before issuing the Start , you place a value in the Key field to control the
positioning. You can Start the file on a record equal to the Key field, greater than the Key field,
greater than or equal to the Key field, or not less than the Key field. You may not specify less than in
the Start statement. For example, if you want to begin processing on the account numbers
beginning with the letter C, you can code the following statements after the Open and before any
Read statements:

000412 Move "C" to Dealer-Number
000413 Start Dealer-File Key Not < Dealer-Number

Caution: Most compilers allow you to code the Start statement without using the Invalid Key
clause and without having Declaratives associated with the file. The COBOL standard requires
the presence of either Declaratives or an Invalid Key clause. To ensure that your program can
compile on standard COBOL compilers, you should either use Declaratives or specify the
Invalid Key clause.

One new File Status value (status 23) can be returned when you use the Start statement to
position an Indexed file for a Sequential Read . Status 23 means record not found. This status
is returned after a Start statement if a record cannot be found that matches the requested position in
the file. This File Status is returned if there are no greater keys in the file or the specific Key
was not found when Start with Key = is used.

To Start processing the file with account numbers that begin with C, you can use the following
code in the Procedure Division:

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000098 Chapt15b-Start.
000099 Perform Open-File
000100 If Dealer-Success
000101 Move "C" To Dealer-Number
000102 Start Dealer-File Key Not < Dealer-Number
000103 Invalid Key Set End-Process To True
000104 End-Start
000105 Perform Process-Screen Until Show-Next-Record = "N" Or
000106 Show-Next-Record = "n" Or
000107 End-Process
000108 Perform Close-File
000109 End-If
000110 Stop Run
000111 .

An interesting aspect of the Start statement is that it allows you to begin sequentially reading the
Indexed file based on the Alternate Key field. This approach is like creating a new
page-numbering scheme for your book and then rearranging the pages in the book in the new
sequence. COBOL allows you to perform the same task using Indexed files and the Start
statement. Instead of specifying the Primary Key on the Start statement, you may specify an
Alternate Key field. The following example shows the Procedure Division code
necessary to Start reading the file on the Alternate Ke y, beginning with last names that begin
with H.

000098 Chapt15c-Start.
000099 Perform Open-File
000100 If Dealer-Success
000101 Move "H" To Dealer-Name
000102 Start Dealer-File Key Not < Dealer-Name
000103 Invalid Key Set End-Process To True
000104 End-Start
000105 Perform Process-Screen Until Show-Next-Record = "N" Or
000106 Show-Next-Record = "n" Or
000107 End-Process
000108 Perform Close-File
000109 End-If
000110 Stop Run
000111 .

When you run the program with this code inserted, the first name that is displayed begins with an H.
Each subsequent Read returns the records in name sequence, not in account number sequence as you
saw before. The Start statement specifies where to Start in the file and in which Key sequence
to Read the file.

What if you want to Start at the beginning of the file, using the Alternate Key ? You don’t
know what the lowest Key value in the file is, and you want to code a Start statement that ensures
access to every record in the file. In this case, use the Start statement but place Low-Values in
the Key field. When starting, use the not < phrase, not the > phrase. Using not < ensures that the
next record read is the one with Low-Values or something greater in it.

The Start statement might be coded as follows:

000099 Move Low-Values To Dealer-Name
000100 Start Dealer-File Key Not < Dealer-Name
000101 Invalid Key Set End-Process To true

If you know the specific record Key you want to Start on, you may use Start with Key = the
Key field after it has been filled with the appropriate starting Key, for example:

000099 Move "Jennings" To Last-Name
000100 Move "Shelly" To First-Name
000101 Move "Martin" To Middle-Name
000102 Start Dealer-File Key = Dealer-Name
000103 Invalid Key Set End-Process To True

If the name does not exist, you get a File Status 23 and the Invalid Key condition is true.
If the name does exist, the very next Read contains the record with this Key value.

Caution: The Start statement does not return the record; it only positions the file for the next Read.
A Read statement must be executed to retrieve a data record, even after a successful Start .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Random Access

 You have learned how to access records sequentially from an Indexed file. Another
method that can be used to Read records from the file is Random access. Random access is similar
to deciding which page of a book to open to, opening exactly on that page, reading it, and then
closing the book. You may not read the next page or the preceding page without first closing and
reopening the book, but only the page you specified.

The Select statement necessary for Random access is

000058 Select Dealer-File Assign To "Dealer.Dat"
000059 Organization Indexed
000060 Access Random
000061 Record Key Dealer-Number Of Dealer-Record
000062 Alternate Record Key Dealer-Name Of Dealer-Record
000063 File Status Dealer-Status.

When reading from the file using Random access, you must place a value in the Key field of the
file being read. A simple Move statement is all you need.

000101 Move "L3460" To Dealer-Number

The next Read statement for the file returns the record identified by dealer number L3460 .

000102 Read Dealer-File

If the file contains no record matching the Key specified, a File Status of 23 is returned,
which is an Invalid Key condition. You may code the Invalid Key clause after the Read to
handle these conditions if you desire.

000102 Read Dealer-File
000103 Invalid Key Display "No Dealer Record Found"
000104 Not Invalid Key Perform Process-Record
000105 End-Read

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Caution: If a Read is not successful, the content of your data record area is not protected. If data
was in the area from a previous Read or a value was in the Key field, it may not be there after an
unsuccessful Read attempt.

I suggest the use of the End-Read explicit scope terminator whenever you use the Invalid
Key clause.

Unless otherwise specified, the Read statement assumes that you are reading via the Primary
Key field. It is entirely permissible to Read records from an Indexed file opened in Random
mode by the Alternate Key field. When you Read via the Alternate Key , the specific
Key field desired must be coded in the Read statement. You must remember to Move the data
value required to identify the desired record into the Alternate Key field before the Read.

000100 Move "Alan" To First-Name
000101 Move "Aaron" To Middle-Name
000102 Move "Holmes" To Last-Name
000103 Read Dealer-File Key Dealer-Name
000104 Invalid Key Display "Record Not Found"
000105 Not Invalid Key Perform Process-Record
000106 End-Read

If a matching record is not found, a File Status of 23 is returned in the File Status field
if one is defined. Declaratives may be specified for the file and will be executed in case of a Read
that is not successful. The Key clause specifies the Key field to be used for the Random Read .

Some files may be defined with an Alternate Key that allows duplicates. If a Random Read
is attempted against such a Key and a record is identified that has an identical Alternate Key
to another record in the file, a File Status of 02 is returned. The record returned is the oldest
in the file, the first record added with this Alternate Key value.

Caution: The At End clause is not valid for use on a Read statement when the file is Open for
Random access. You will never reach the end of the file, the record being read will exist, or it will
not.

Random reads are useful when you know the Key information of the record you are trying to
retrieve. Random reads are an extremely fast way to retrieve the data record and can be handy in
programs that are used to retrieve information about a specific item or individual.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Dynamic Access

 Dynamic access is the slowest and most versatile of the access methods used to retrieve
records from an Indexed file. This type of access is the slowest because of the overhead required
for the program to keep track of its position in the file. Dynamic access allows you to retrieve
records both randomly and sequentially.

The Select statement used to specify Dynamic access is coded as follows:

000058 Select Dealer-File Assign to "Dealer.Dat"
000059 Organization Indexed
000060 Access Dynamic
000061 Record Key Dealer-Number of Dealer-Record
000062 Alternate Record Key Dealer-Name of Dealer-Record
000063 File Status Dealer-Status.

When Dynamic access is specified, you can perform Random reads using exactly the same
method as if the file were Open with Random access.

To Read records from the file sequentially from an Indexed file Open with Dynamic access,
you must first position the file at a valid record. Correct positioning can be accomplished in three
ways.

One method is to issue a Random Read using the desired Key field. If the Read is successful,
then you may continue to Read subsequent records from the file sequentially in the order of the
Key that was used for the Random Read . Obviously, you need some way to differentiate between
a Random Read and a Sequential Read designed to retrieve the next record in the file.

To indicate that the next record in sequence should be returned, you issue a Read statement with
the Next clause.

000101 Read Dealer-File Next Record

Note: The word record is optional and is specified only to make the code more readable.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The At End clause may be coded to detect the end of file. The Invalid Key clause is not
valid on a Read statement with the Next clause. Some additional File Status values may be
returned after a Read Next statement is executed. In addition to the File Status values
returned as a result of a Read statement, Table 15.1 explains two new File Status values that
may be returned after the Read Next statement.

Table 15.1 Additional File Status Values Returned from a Read with Next

Status Meaning

46 The prior Read or Start statement was unsuccessful, and the next
record cannot be determined.

47 The file is not Open for Input .

The second method that can be used to position the file for a Sequential Read is to issue a
Start statement. The Start statement works as previously discussed and sets the position in the
file for the next Read Next statement.

Caution: Use caution when reading randomly from an Indexed file that is Open with Dynamic
access. Any previous Start statements do not retain the associated Key or file positioning. Any
subsequent Read Next statements may not return the record you expect in the Key sequence you
expect. A successful Read repositions the file and possibly changes the Key by which the file is
being read.

The third method to position the file at a valid record is simply to Open the file. When you Open
an Indexed file with Dynamic access, the next record pointer is set to the beginning of the file.
Subsequent Read statements with the Next clause return records in Primary Key sequence.

The program in Listing 15.2 uses both Sequential and Random access. This program allows the
user to input the information for the Key fields and then choose how to retrieve the record by using
the function keys. The program uses the Start statement to determine which Key to use for
reading sequentially. A function key is provided to clear the screen input.

Listing 15.2 Dynamic Access Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt15d.
000004* Dynamic Access Example
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status
000009 Cursor Is Cursor-Position.
000010 Source-Computer. IBM-PC.
000011 Object-Computer. IBM-PC.

This first part of the program identifies it and specifies the Special Names necessary to capture
and set the cursor position and to capture the various function keys you want to detect.

The file is described here. Notice the access mode is Dynamic . This mode allows you to retrieve
records either sequentially or randomly from the file.

000012 Input-Output Section.
000013 File-Control.
000014 Select Dealer-File Assign To "Dealer.Dat"

000015 Organization Indexed
000016 Access Dynamic
000017 Record Key Dealer-Number
000018 Alternate Record Key Dealer-Name
000019 File Status Dealer-Status.
000020 Data Division.
000021 File Section.
000022 Fd Dealer-File.
000023 01 Dealer-Record.
000024 03 Dealer-Number Pic X(8).
000025 03 Dealer-Name.
000026 05 Last-Name Pic X(25).
000027 05 First-Name Pic X(15).
000028 05 Middle-Name Pic X(10).
000029 03 Address-Line-1 Pic X(50).
000030 03 Address-Line-2 Pic X(50).
000031 03 City Pic X(40).
000032 03 State-Or-Country Pic X(20).
000033 03 Postal-Code Pic X(15).
000034 03 Home-Phone Pic X(20).
000035 03 Work-Phone Pic X(20).
000036 03 Other-Phone Pic X(20).
000037 03 Start-Date Pic 9(8).
000038 03 Last-Rent-Paid-Date Pic 9(8).
000039 03 Next-Rent-Due-Date Pic 9(8).
000040 03 Rent-Amount Pic 9(4)v99.
000041 03 Consignment-Percent Pic 9(3).
000042 03 Filler Pic X(50).

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The various working fields are described here in Working-Storage . Notice the File Status value clause is
coded with an 88 level condition. The condition specified for Dealer-Success to be true is the range of File
Status values from 00 through 09 . Any File Status value that begins with 0 indicates a successful
operation.

000043 Working-Storage Section.
000044 01 Dealer-Status Pic X(2) Value Spaces.
000045 88 Dealer-Success Value "00" Thru "09".

The Keyboard-Status and Cursor-Position fields allow you to capture the key that was pressed and to
position the cursor on the first field when the screen is cleared.

000046 01 Keyboard-Status.
000047 03 Accept-Status Pic 9.
000048 03 Function-Key Pic X.
000049 88 F1-Pressed Value X"01".
000050 88 F2-Pressed Value X"02".
000051 88 F3-Pressed Value X"03".
000052 88 F4-Pressed Value X"04".
000053 88 F5-Pressed Value X"05".
000054 88 F6-Pressed Value X"06".
000055 03 System-Use Pic X.
000056 01 Cursor-Position.
000057 03 Cursor-Row Pic 9(2) Value 1.
000058 03 Cursor-Column Pic 9(2) Value 1.

The screen description uses the Error-Message to hold any error messages you might need to issue.

000059 01 Error-Message Pic X(50) Value Spaces.

The Screen Section describes the input screen. Notice that the only fields that can be used as input are the
Number and Name fields. Text has been added to describe the functions of the various keys that are captured.

000060 Screen Section.
000061 01 Data-Entry-Screen
000062 Blank Screen, Auto
000063 Foreground-Color is 7,
000064 Background-Color is 1.
000065 03 Screen-Literal-Group.
000066 05 Line 01 Column 30 Value "Darlene's Treasures"
000067 Highlight Foreground-Color 4 Background-Color 1.
000068 05 Line 03 Column 30 Value "Tenant Entry Program"

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000069 Highlight.
000070 05 Line 4 Column 01 Value "Number: ".
000071 05 Line 5 Column 01 Value "Name, Last: ".
000072 05 Line 5 Column 39 Value "First: ".
000073 05 Line 5 Column 62 Value "Middle: ".
000074 05 Line 6 Column 01 Value "Address 1: ".
000075 05 Line 7 Column 01 Value "Address 2: ".
000076 05 Line 8 Column 01 Value "City: ".
000077 05 Line 9 Column 01 Value "Country/State: ".
000078 05 Line 9 Column 36 Value "Postal Code: ".
000079 05 Line 11 Column 01 Value "Phone/Home: ".
000080 05 Line 11 Column 34 Value "Work: ".
000081 05 Line 12 Column 06 Value "Other: ".
000082 05 Line 14 Column 01 Value "Start Date: ".
000083 05 Line 14 Column 24 Value "Last Paid Date: ".
000084 05 Line 14 Column 51 Value "Next Rent Due on: ".
000085 05 Line 15 Column 01 Value "Rent Amount: ".
000086 05 Line 16 Column 01 Value "Consignment Percent: ".
000087 05 Line 22 Column 01 Value "F1-Read Random Number".
000088 05 Line 22 Column 23 Value "F2-Read Random Name".
000089 05 Line 22 Column 56 Value "F3-Read Next Number".
000090 05 Line 23 Column 01 Value "F4-Read Next Name".
000091 05 Line 23 Column 23 Value "F5-Clear".
000092 05 Line 23 Column 56 Value "F6-Exit".
000093 03 Required-Reverse-Group Reverse-Video.
000094 05 Line 4 Column 13 Pic X(8) Using Dealer-Number.
000095 05 Line 5 Column 13 Pic X(25) Using Last-Name.
000096 05 Line 5 Column 46 Pic X(15) Using First-Name.
000097 05 Line 5 Column 70 Pic X(10) Using Middle-Name.
000098 05 Line 6 Column 15 Pic X(50) From Address-Line-1.
000099 05 Line 7 Column 15 Pic X(50) From Address-Line-2.
000100 05 Line 8 Column 15 Pic X(40) From City.
000101 05 Line 9 Column 15 Pic X(20) From State-Or-Country.
000102 05 Line 9 Column 50 Pic X(15) From Postal-Code.
000103 05 Line 11 Column 13 Pic X(20) From Home-Phone.
000104 05 Line 11 Column 41 Pic X(20) From Work-Phone.
000105 05 Line 12 Column 13 Pic X(20) From Other-Phone.
000106 05 Line 14 Column 13 Pic 99/99/9999 From Start-Date.
000107 05 Line 14 Column 40 Pic 99/99/9999 From Last-Rent-Paid-Date.
000108 05 Line 14 Column 69 Pic 99/99/9999 From Next-Rent-Due-Date.
000109 05 Line 15 Column 14 Pic Z,ZZZ.99 From Rent-Amount.
000110 05 Line 16 Column 22 Pic ZZ9 From Consignment-Percent.
000111 05 Line 20 Column 01 Pic X(50) Using Error-Message.

The first portion of the actual program opens the dealer file. If the Open fails, an error message is displayed and
processing stops. If the Open is successful, then the file is processed until the user presses the F6 key to exit.

000112 Procedure Division.
000113 Chapt15d-Start.
000114 Perform Open-File
000115 If Not Dealer-Success
000116 String "Error Opening Dealer File "
000117 Dealer-Status
000118 Delimited By Size
000119 Into Error-Message
000120 End-String
000121 Perform Display-And-Accept
000122 Else
000123 Initialize Dealer-Record
000124 Perform Process-File Until F6-Pressed
000125 Perform Close-File
000126 End-If

000127 Stop Run
000128 .

The Process-File Paragraph displays the screen and accepts the user input. The Paragraph tests, via an
Evaluate statement, for the different keystrokes that can be pressed and performs the appropriate function.

000129 Process-File.
000130 Perform Display-And-Accept
000131 Evaluate True
000132 When F1-Pressed
000133 Perform Read-Random-Number
000134 When F2-Pressed
000135 Perform Read-Random-Name
000136 When F3-Pressed
000137 Perform Read-Next-Number
000138 When F4-Pressed
000139 Perform Read-Next-Name
000140 When F5-Pressed
000141 Perform Clear-Screen
000142 When F6-Pressed
000143 Continue
000144 When Other
000145 Continue
000146 End-Evaluate
000147 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Read-Random-Number Paragraph reads the dealer file randomly via the Primary Key of
the file. Notice that no specific Key is specified. If none is specified, then the Primary Key is used.
If an error occurs, the exact error is reported to the user via the error message. The only error that you
should see reported, baring hardware problems, is 23 for record not found. There is no Move of data to
the Key field because this step is automatically handled by the Screen Section .

000148 Read-Random-Number.
000149 Read Dealer-File
000150 Invalid Key
000151 String "Error on Random Read Number "
000152 Dealer-Status
000153 Delimited By Size
000154 Into Error-Message
000155 End-Read
000156 .

The Read-Random-Name Paragraph is nearly identical to the Read-Random-Number
Paragraph . The only real difference is that the Alternate Key field is specified, so the Read is
attempted using that Key.

000157 Read-Random-Name.
000158 Read Dealer-File Key Dealer-Name
000159 Invalid Key
000160 String "Error on Random Read Name "
000161 Dealer-Status
000162 Delimited By Size
000163 Into Error-Message
000164 End-Read
000165 .

The Read-Next-Number Paragraph does two things. First is does a Start on the file to
position it on the next dealer number. The Key specified is the dealer number. If the Start fails, the
reason for the failure is reported to the user in the error message.

If the Start statement is successful, a Read with the next clause is attempted. If the end of the file is
reached, it is reported to the user.

000166 Read-Next-Number.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000167 Start Dealer-File Key > Dealer-Number
000168 Invalid Key
000169 String "Start Error Number "
000170 Dealer-Status
000171 Delimited By Size
000172 Into Error-Message
000173 End-Start
000174 If Dealer-Success
000175 Read Dealer-File Next
000176 At End
000177 Move "End of File, Read by Number" To Error-Message
000178 End-Read
000179 End-If
000180 .

The Read-Next-Name Paragraph performs a similar Start and Read. The Start statement
uses the Dealer-Name field instead of the Dealer-Number . The only difference in the Read with
Next statements in the two paragraphs is the text of the error reported. The Read with Next need not
specify the Key being used; it is assumed from the last successful Read or Start operation.

000181 Read-Next-Name.
000182 Start Dealer-File Key > Dealer-Name
000183 Invalid Key
000184 String "Start Error Name "
000185 Dealer-Status
000186 Delimited By Size
000187 Into Error-Message
000188 End-Start
000189 If Dealer-Success
000190 Read Dealer-File Next
000191 At End
000192 Move "End of File, Read by Name" To Error-Message
000193 End-Read
000194 End-If
000195 .

The Clear-Screen Paragraph clears the dealer record that is used by the screen description and
sets the cursor positioning so that the cursor appears in the first field on the screen.

000196 Clear-Screen.
000197 Initialize Dealer-Record
000198 Move 01 To Cursor-Row Cursor-Column
000199 .

The Display-And-Accept Paragraph displays the screen and accepts the user input. This
Paragraph also clears any remaining error messages after accepting the user input.

000200 Display-And-Accept.
000201 Display Data-Entry-Screen
000202 Accept Data-Entry-Screen
000203 Move Spaces To Error-Message
000204 .

The Open and Close statements grant Input access to the file and release the file to the operating
system when the program is finished with the file.

000205 Open-File.

000206 Open Input Dealer-File
000207 .
000208 Close-File.
000209 Close Dealer-File
000210 .

There are some more advanced ways to use the Start statement. For example, imagine that you are
scrolling through the file by name. However, you want to jump to the next record with a last name that
begins with the next letter in the alphabet. The Start statement offers a simple way to accomplish that
task.

As you know, with Start you must specify the Key field you want to Start on. You may, however,
use just a portion of that field and not specify the entire field. For example, change the Record
Description of the Dealer-Record to look like this:

000022 FD Dealer-File.
000023 01 Dealer-Record.
000024 03 Dealer-Number Pic X(8).
000025 03 Dealer-Name.
000026 05 Last-Name.
000027 10 Last-Name-First-Letter Pic X.
000028 10 Last-Name-Remainder Pic X(24).
000029 05 First-Name Pic X(15).
000030 05 Middle-Name Pic X(10).
000031 03 Address-Line-1 Pic X(50).
000032 03 Address-Line-2 Pic X(50).
000033 03 City Pic X(40).
000034 03 State-or-Country Pic X(20).
000035 03 Postal-Code Pic X(15).
000036 03 Home-Phone Pic X(20).
000037 03 Work-Phone Pic X(20).
000038 03 Other-Phone Pic X(20).
000039 03 Start-Date Pic 9(8).
000040 03 Last-Rent-Paid-Date Pic 9(8).
000041 03 Next-Rent-Due-Date Pic 9(8).
000042 03 Rent-Amount Pic 9(4)V99.
000043 03 Consignment-Percent Pic 9(3).
000044 03 Filler Pic X(50).

Now, when you want to position the file for reading the next record that has a last name that begins with
the next letter of the alphabet, you can issue the following Start statement:

000101 Start Dealer-File Key > Last-Name-First-Letter

If the current last name is "Berg" , the next record returned after a Read with Next will have a last
name of "Colvin" .

The only rule you need to remember is that the field you use must Start is in the same position in the
record as the actual Key field.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Summary

In this hour, you learned the following:

• Indexed files can be read randomly or sequentially. Random reads
are made directly with a known Key, and Sequential reads are made
serially, one after the other, based on the Key sequence of the file.

• You can specify the starting position for Sequential reads by
using the Start statement.

• The Start statement is valid for both Sequential access and
Dynamic access.

• When a Random Read is issued and a matching record is not found,
a File Status 23 is returned. Another way to detect this condition
is to use the Invalid Key clause of the Read statement because any
File Status that begins with 2 indicates an Invalid Key
condition.

• Dynamic access allows you to access an Indexed file randomly or
sequentially. The statement to Read a record sequentially is the Read
statement with the Next clause.

• A Start statement does not return the data record contents; it only
positions the file for the next Read.

Q&A

Q If I am reading an Indexed file with Access Sequential, how do I
ensure that I am reading from the beginning of the file?

A Simply opening the file positions you at the front of the file. If you want to
be certain, you can Move Low-Values to the Key field and issue a Start
statement with Key Not < Your-Key . The very next Read Start s at
the front of the file.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Q I understand that Sequential access allows me to Read the records
in an Indexed file sequentially. Because Dynamic access is slower, why
would I ever need to use Dynamicaccess?

A Although both Dynamic access and Sequential access allow you to
Read sequentially through an Indexed file, in some cases you may need to
execute a Random Read against the same file that you are reading
sequentially. Dynamic access allows you to do both. I suggest that you
evaluate the requirements of your program carefully and choose the most
appropriate access method.

Q How can I ensure that Read with Next reads the file in Key sequence
by the Alternate Key field?

A Issue a Start statement that uses the Alternate Key or do a Random
Read using the Alternate Key .

Q If both Start and a Random Read position the file so that a Read
with Next performs Sequential reads, why do I need to use Start?

A The Read statement with the Next clause can work only if the file is
positioned on a record. This condition happens in one of three ways: opening
the file, a successful Random Read , or a successful Start . If you do not
know the Key value of a record that exists in the file, you cannot perform a
successful Random Read . If your Read or Start fails, the Read statement
with the Next clause that follows will also fail.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 16
Updating Indexed File Records
A large part of business programming involves updating records in data files.
Information is constantly changing, and the files containing this information require
frequent updates. In the examples using the dealer file, you are keeping up with
information such as address and telephone number that could change. To keep these
files current, records have to be updated. Updating an Indexed file record is fairly
simple. In this hour, you learn about updating Indexed files and also about
working with Relative files. The following topics are covered:

• Opening a file for I-O (simultaneous Input and Output)

• Writing records

• Rewriting records

• Deleting records

• Working with Relative files; similarities and differences with Indexed
files

Opening for I-O

You know that when you Open a file Output , you are creating a new file. The only
records it contains are those written after the Open statement. Any records that may
have been in the file are lost. If you want to add records to a file, you know that you
can Open the file Extend . To retrieve records from a file, you Open it Input .
Updating records in an Indexed file requires that you be able to Read a record so
that you can present its contents to the user for modification. You also need to be
able to Write the new record, or update the existing record if a change has been
made. Opening for Output or Extend won’t accomplish either of these goals.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

COBOL provides an Open mode that allows you to Read records from an
Indexed file, Write new records, and update existing records. This Open mode is
I-O , meaning Input-Output . The File Status values returned when
opening a file I-O are the same as those returned when opening the file for Input .

All the statements used when reading from an Indexed file that is Open Input
apply when the file is Open I-O . You may specify Sequential , Random, or
Dynamic access. You may Read records from the file as if it were Open Input .
You may Write new records to the file using Write as if the file were Open
Output . (There are some special considerations for writing to an Indexed file
Open I-O when the Organization is Sequential —these are discussed
shortly.) Finally, you may update existing records.

Writing Records

One way to update an Indexed file is to add new records to the file with the
Write statement. The way the Write statement works depends on the access
method used and Open mode of the file. Remember that access can be
Sequential , Random, or Dynamic .

You may not Open the file I-O with Sequential access mode and Write
records. If you attempt to do so, a File Status of 48 is returned. This status is
returned because you cannot Write to an Indexed file with Sequential access
that is opened for I-O . If you need to add a record to an Indexed file with
Sequential access, you should Open the file for Extend instead of I-O . When
writing to the file, you must ensure that the primary Key of the record being written
is greater than the last record in the file. If not, you receive a File Status 21 ,
record out of sequence, error. The primary Key controls the sequence of records for
Sequential Write operations. Keep in mind that although Sequential
access is pretty fast and has its place, you probably don’t want to try to add records
to an Indexed file Open in Sequential mode.

When you use Random access and have the file Open I-O , you may Write new
records to the file. The order of the writes does not matter. If a duplicate primary
Key is encountered, a File Status of 22 is returned. Your new record does not
replace the existing record. If you have Alternate Record Keys and
duplicates are not allowed—but one is encountered during the Write —a File
Status 22 is also returned. In this case, it is not possible to determine which Key
is being duplicated by the Write : the primary or one of the Alternate Key
fields. If duplicates are allowed on the Alternate Key and one is encountered as
the result of a Write statement, a File Status of 02 is returned.

Another potential File Status value that can be returned from this type of
operation is a 24 . This value means that you have attempted to Write outside the
externally defined boundary of the file. Focus on the term externally defined. Some
systems define Indexed files outside the program. The files must be defined to the
operating system, and specific size limitations may apply. In this case, if the
maximum size of the file is exceeded, a File Status 24 is returned.

Remember that any File Status that begins with 2, such as 22 , is also an
Invalid Key condition and that you may code the Invalid Key clause with
the Write . The COBOL standard requires that you either code the Invalid Key

clause or have Declaratives defined for the file when performing a Write
against an Indexed file.

For the Write statement, Dynamic and Random access work the same way.
Writes to an Indexed file that is Open I-O with Dynamic access are identical to
writes to a file that is Open with Random access. You may not Open an Indexed
file with Dynamic access for Extend .

The Write statement is coded the same as with Sequential files. You specify
the record description to be written, not the file name. The only additional check that
may be coded with Indexed files is the Invalid Key clause.

000101 Write Dealer-Record From Dealer-Work
000102 Invalid Key Perform Invalid-Dealer-Write
000103 End-Write

Remember that the From, when used with Write , moves the contents of
Dealer-Work into the record area defined by Dealer-Record .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Rewriting Records

One very useful feature of Indexed files and COBOL is the capability to update an existing data file
record. The Rewrite statement replaces an existing record with a new record. This statement is especially
useful for updating information that is likely to change or changes frequently. When an address changes for
one of your dealers, you update the dealer file by rewriting that dealer’s record. The behavior of the
Rewrite statement depends on the type of access you have selected for the file. The Rewrite statement is
available only when the file is Open I-O .

When the file is defined with Sequential access, the Rewrite statement overlays the last record read
with the new data record. You should be aware of some issues.

First, a Rewrite can be performed only if the last statement executed against the file was a Read
statement, and the Read was successful. If you attempt to Rewrite a record when access is
Sequential , without first reading a record, the Rewrite fails. The File Status reported for this
failure is 43 , which simply means that the last statement executed for the file was not a successful Read.
This failure occurs even after a successful Rewrite statement if you attempt to execute another Rewrite
without first performing a Read.

Second, when rewriting a record you may not change the primary Key. For this example, that means you
cannot Read the dealer file, change the dealer’s number, and then Rewrite the record. Any attempt to do
so results in a File Status 21 for record out of sequence.

Note: When using Indexed files, regardless of the access mode specified, you cannot change the primary
Key. Think about the implications for your programs if this practice were allowed. You might have a purchase
file that matches merchandise to dealers. In this file, rather than keeping all of the information relating to the
dealer, you just keep the dealer number (for file maintenance). If a dealer’s address changes, all you have to do
is change the dealer file. Because the purchase file refers only to the dealer number, nothing needs to change in
it. Now imagine what would happen if you were allowed to change the dealer number in the dealer master file.
Your number in the purchase file would not be changed! This condition would break the link between the dealer
file and the purchase file. You might use that dealer number again, and then the purchase file would point to the
wrong dealer! Any time you feel you must change the primary Key of an Indexed file, you need to consider
all the places in your system that might use the Key. You may then add the record with your new primary Key
and Delete the one with the old primary Key. (Deleting records is discussed in the “Deleting Records”
section in this hour.)

When Random or Dynamic access is selected for the Indexed file, the Rewrite statement becomes less
restrictive. The Rewrite does not have to be preceded by a successful Read statement. The primary Key
determines the placement of the record in the file. When you execute the Rewrite statement, if the primary
Key does not exist for the record you are rewriting, then the File Status is set to 23—record not
found—and an Invalid Key condition occurs. If you Rewrite a record and cause a duplicate
Alternate Key condition, a File Status of 22 is returned and an Invalid Key condition occurs.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Caution: I suggest that you always Read the record that you are going to Rewrite . Because the Rewrite
statement allows you to replace a record without regard to its contents, erasing information in your data record
with a Rewrite is relatively easy. Imagine that you want to change a dealer’s phone number. If you fill in a
record with dealer number and phone number and then Rewrite the record, all of the other information in the
record is lost. It is replaced by the values that you may have had initialized or have left over from a previous,
but unrelated, Read statement. The best practice is to Read the record, move in the fields being updated, and
then Rewrite the record.

The act of rewriting a record does not change the current record positioning in the file. Therefore, you can
change the contents of a record, even changing the Alternate Key value by which you are reading. The
next record you Read is then based on what that Key used to be and not the new value. For example, if you are
reading the dealer file by Alternate Key value and you change a last name from "Smith" to "Jones" ,
your next Read returns the record after "Smith" , not the record after "Jones" .

The following snippet of code reads a record, moves in replacement values, and then rewrites that record.
The Invalid Key clause on the Rewrite statement is coded to either catch records that do not exist and
disallowed duplicate Alternate Key values.

000201 Move "A1366" To Dealer-Number Of Dealer-Record
000202 Read Dealer-File
000203 Invalid Key Move "Dealer Not Found" To Error-Message
000204 Set File-Error To True
000205 End-Read
000206 If Not File-Error
000207 Move "(909) 555-1212" To Home-Phone Of Dealer-Record
000208 Rewrite Dealer-Record
000209 Invalid Key Move Spaces To Error-Message
000210 String "Error Rewriting Dealer File " Dealer-Status
000211 Delimited By Size Into Error-Message
000212 Set File-Error To True
000213 End-Rewrite
000214 End-If

Note: It should be obvious that you would never code a telephone number update with a literal in a program, as
was done in the preceding example. The example is for illustration only. In reality, this telephone number would
come from user input or a transaction record. Coding items such as this, using a literal, is known as hard coding.
This term describes something that is coded in the program to always occur. Imagine the frustration of trying to
debug the preceding situation if you left this code in a program that actually accepted and updated telephone
numbers. No matter what the user entered, dealer number A1366 would always have the same telephone
number!

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Deleting Records

On occasion you may wish to remove, or delete, records from your Indexed files. Like the
Rewrite statement, the Delete statement is valid only when the file is Open I-O . The
Delete statement removes the records from the file. The primary Key of the file is the
determining factor in deleting a record. Unlike the Write and Rewrite statements, when a
Delete statement is coded, the filename is specified, for example:

000215 Delete Dealer-File

When Organization is Sequential , the record deleted is the last record read. The
Delete statement is valid only when the last operation against the file is a successful Read
statement. If not, the Delete returns a File Status value of 43 . Because a Delete cannot
return File Status values beginning with a 2 when the file is Open with Sequential
access, coding Invalid Key on such a Delete is not allowed.

When Dynamic or Random access is selected for the file, the Delete statement, like the
Rewrite , becomes a little less restrictive. The record being deleted need not have been
previously read. Simply fill in the primary Key information in the record description for the file
and issue the Delete statement. If the record does not exist, a File Status of 23 is
returned and an Invalid Key condition exists. You may code the Invalid Key clause on a
Delete statement if the access mode of the file against which the Delete is being processed
is Random or Dynamic .

Tip: Some programmers fall into the trap of thinking that they can Delete records via the
Alternate Key . They fill in the Alternate Key information and then issue the Delete
statement. This technique does not work. The Delete statement applies only to the record
identified by the primary Key of the data file from which it is to be deleted.

Issuing a Delete statement does not disturb the file positioning if you are reading sequentially
through an Indexed file. The next Read follows the previously issued Read statement.

Relative Files

Relative files are cousins to Indexed files. Relative files behave like Indexed files

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

except the Primary Key for the file is not part of the data record and there are no
Alternate key s. Relative files are keyed by a Relative record number. The first
record in a Relative file is record 1. A Relative file is like a giant array against which you
may perform Indexed file-type operations. The Select statement for the Relative file
defines its Organization and tells the program the name of the data field in
Working-Storage that contains the record number that is the Key for the file.

Select Rel-File Assign To "Relative.Dat"
 Organization Relative
 Access Dynamic
 Relative Key Is Rel-Work-Num
 File Status Rel-Status.

The field that defines the Key is specified with the Relative Key clause, not the Record
Key clause as was the case for an Indexed file. The Relative Key can be any unsigned
integer data item.

When using Sequential access for a Relative file and writing records, the Key of the
record just written is stored in the field identified in the Select statement as the Relative
Key. You must take care to make your Relative Key field large enough to handle the
greatest number of records you expect to have in the file. If the field is too small and you attempt
to Write a record whose Key value exceeds the maximum for the file, an Invalid Key
condition occurs and the File Status is set to 24 .

When reading a Relative file with Sequential access, the Relative Key of the record
just read is stored in the Relative Key field. If the Key for the last record read exceeds the
maximum value that your field can hold, an At End condition occurs and the File Status
value is set to 14 .

The short program in Listing 16.1 illustrates Relative files and their use.

Listing 16.1 Relative File Access Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt16a.
000004* Relative File Access Example
000005 Environment Division.
000006 Configuration Section.
000007 Special-Names.
000008 Crt Status Is Keyboard-Status
000009 Cursor Is Cursor-Position.
000010 Source-Computer. IBM-PC.
000011 Object-Computer. IBM-PC.
000012 Input-Output Section.

Because the file is assigned using Optional , it will be created if it does not exist. Notice the
use of Organization Relative and the Relative Key clause. Note also that
Relative-Key is not a field in the data record. There is nothing special about the name
Relative-Key . It was chosen because the name describes the field’s purpose. You could
easily name the field, Record-Number , Relative-Record-Number , or Field-A .

000014 Select Optional Relative-File Assign To "Relative.Dat"
000015 Organization Relative
000016 Access Dynamic

000017 Relative Key Relative-Key
000018 File Status Relative-Status.
000019 Data Division.
000020 File Section.
000021 Fd Relative-File.
000022 01 Relative-Record.
000023 03 Relative-Data Pic X(20).

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Relative-Key is defined in Working-Storage as a two-character unsigned numeric field.
Because the size is limited to two digits, the maximum Relative Key the file can have is 99 .

000024 Working-Storage Section.
000025 01 Relative-Key Pic 99 Value Zeros.
000026 01 Relative-Status Pic X(2) Value Spaces.
000027 88 Relative-Success Value "00" Thru "09".
000028 01 Keyboard-Status.
000029 03 Accept-Status Pic 9.
000030 03 Function-Key Pic X.
000031 88 F1-Pressed Value X"01".
000032 88 F2-Pressed Value X"02".
000033 88 F3-Pressed Value X"03".
000034 88 F4-Pressed Value X"04".
000035 88 F5-Pressed Value X"05".
000036 88 F6-Pressed Value X"06".
000037 88 F7-Pressed Value X"07".
000038 88 F8-Pressed Value X"08".
000039 03 System-Use Pic X.
000040 01 Cursor-Position.
000041 03 Cursor-Row Pic 9(2) Value 1.
000042 03 Cursor-Column Pic 9(2) Value 1.
000043 01 Error-Message Pic X(50) Value Spaces.

The following table creates the initial Relative file if the program detects that no such file exists.

000044 01 Table-Area.
000045 03 Table-Values.
000046 05 Filler Pic X(20) Value "Entry 1".
000047 05 Filler Pic X(20) Value "Entry 2".
000048 05 Filler Pic X(20) Value "Entry 3".
000049 05 Filler Pic X(20) Value "Entry 4".
000050 05 Filler Pic X(20) Value "Entry 5".
000051 05 Filler Pic X(20) Value "Entry 6".
000052 05 Filler Pic X(20) Value "Entry 7".
000053 05 Filler Pic X(20) Value "Entry 8".
000054 05 Filler Pic X(20) Value "Entry 9".

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000055 05 Filler Pic X(20) Value "Entry 10".
000056 03 Load-Table Redefines Table-Values.
000057 05 Basic-Table Pic X(20) Occurs 10 Times.
000058 Screen Section.
000059 01 Data-Entry-Screen
000060 Blank Screen, Auto
000061 Foreground-Color Is 7,
000062 Background-Color Is 1.
000063*
000064 03 Screen-Literal-Group.
000065 05 Line 01 Column 25 Value "Relative File Example"
000066 Highlight Foreground-Color 4 Background-Color 1.
000067 05 Line 4 Column 01 Value "Current Relative Key: ".
000068 05 Line 5 Column 01 Value "Relative Data: ".
000069 05 Line 22 Column 01 Value "F1-Read Random Number".
000070 05 Line 22 Column 23 Value "F2-Start Number".
000071 05 Line 22 Column 56 Value "F3-Read Next Number".
000072 05 Line 23 Column 01 Value "F4-Delete Record".
000073 05 Line 23 Column 23 Value "F5-Write Record".
000074 05 Line 23 Column 56 Value "F6-Rewrite Record".
000075 05 Line 24 Column 01 Value "F7-Clear".
000076 05 Line 24 Column 23 Value "F8-Exit".
000077 03 Required-Reverse-Group Reverse-Video.
000078 05 Line 4 Column 23 Pic 9(2) Using Relative-Key.
000079 05 Line 5 Column 16 Pic X(25) Using Relative-Data.
000080 05 Line 20 Column 01 Pic X(50) From Error-Message.
000081*
000082 Procedure Division.

The Invalid Key clause captures errors whose status value begins with a 2. Declaratives are
coded to capture any other errors that might occur, such as attempting a sequential Read after the end
of file is reached.

000083 Declaratives.
000084 Relative-File-Error Section.
000085 Use After Standard Error Procedure On Relative-File
000086 .
000087 Relative-Error.
000088 String "Error on Relative.Dat "
000089 Relative-Status
000090 Delimited By Size
000091 Into Error-Message
000092 End-String
000093 .
000094 End Declaratives.

This next segment of code performs the Open of the file and, if it is successful, continues to the
processing loop, where the user interacts with the program.

000095 Chapt16a-Start.
000096 Perform Open-File
000097 If Not Relative-Success
000098 String "Error Opening Relative File "
000099 Relative-Status
000100 Delimited By Size
000101 Into Error-Message

000102 End-String
000103 Move Spaces To Relative-Data
000104 Perform Display-And-Accept
000105 Else
000106 Move Spaces To Relative-Data
000107 Perform Process-File Until F8-Pressed
000108 Perform Close-File
000109 End-If
000110 Stop Run
000111 .

The processing loop continues to execute until the user presses the F8 key. Each time through the loop,
the key pressed is tested and the appropriate action is performed.

000112 Process-File.
000113 Perform Display-And-Accept
000114 Evaluate True
000115 When F1-Pressed
000116 Perform Read-Random-Number
000117 When F2-Pressed
000118 Perform Start-Number
000119 When F3-Pressed
000120 Perform Read-Next-Number
000121 When F4-Pressed
000122 Perform Delete-Number
000123 When F5-Pressed
000124 Perform Write-Record
000125 When F6-Pressed
000126 Perform Rewrite-Record
000127 When F7-Pressed
000128 Perform Clear-Screen
000129 When F8-Pressed
000130 Continue
000131 When Other
000132 Continue
000133 End-Evaluate
000134 .

The Read-Random-Number paragraph performs a random Read against the Relative file. You
can tell that this is a random Read and not a sequential Read because there is no Next . The record
whose Relative record number matches that of the Relative-Key field is returned.

000135 Read-Random-Number.
000136 Read Relative-File
000137 Invalid Key
000138 String "Error on Random Read Number "
000139 Relative-Status
000140 Delimited By Size
000141 Into Error-Message
000142 End-Read
000143 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

As with an Indexed file, the Start statement positions the file for the next Read. Start ,
Read, Write , Rewrite , and Delete can be used in this program because Dynamic access was
specified on the Select statement. What do you think would happen if you tried to Start the file
with this Start statement and a Relative Key value of zeros? That Key value can’t exist in a
Relative data file. The program will try to position the file on this Key value but it will fail. An
Invalid Key condition will exist with a File Status value of 23 .

000144 Start-Number.
000145 Start Relative-File Key = Relative-Key
000146 Invalid Key
000147 String "Start Error Number "
000148 Relative-Status
000149 Delimited By Size
000150 Into Error-Message
000151 Not Invalid Key
000152 String "Start Successful "
000153 Relative-Status
000154 Delimited By Size
000155 Into Error-Message
000156 End-Start
000157 .

The Read statement with Next returns the next record in the file. If you just did the Start as
coded in this program, the record specified by that Start is returned, not the one after it as you
might expect. Remember that Start only positions the file and does not return a record.

000158 Read-Next-Number.
000159 Read Relative-File Next
000160 At End
000161 Move "End of File " To Error-Message
000162 End-Read
000163 .

Delete removes the Relative record whose Relative record number is set in the
Relative-Key field. Be aware that if the fifth record of the file is deleted in this method, the
sixth record does not become the fifth, and so on. The result is a missing record in the Relative

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

file. If you try to do a random Read, Delete , or Rewrite on this record now, you receive a
File Status 23 . If you Write the record again, it is created in its previous physical location
in the file.

000164 Delete-Number.
000165 Delete Relative-File
000166 Invalid Key
000167 String "Delete Error "
000168 Relative-Status
000169 Delimited By Size
000170 Into Error-Message
000171 Not Invalid Key
000172 Move "Record Deleted" To Error-Message
000173 Perform Clear-Screen
000174 End-Delete
000175 .

The Write statement adds a record to the Relative file whose Relative record number is
that of the Relative -Key field. Some performance issues are related to the use of Relative
files. For example, if your Relative file contained records where the highest Relative record
number was 50 and you wrote a record with Relative record number 1,000,050 , the system
would have to reserve the space for one million records between Relative record 50 and
Relative record 1,000,050 . This can take quite a long time.

If the record you are writing already exists, a File Status of 22 is returned and an Invalid
Key condition exists.

000176 Write-Record.
000177 Write Relative-Record
000178 Invalid Key
000179 String "Write Error "
000180 Relative-Status
000181 Delimited By Size
000182 Into Error-Message
000183 Not Invalid Key
000184 Move "Write Successful"
000185 To Error-Message
000186 End-Write
000187 .

The Rewrite statement replaces the record whose Relative record number is the number in
Relative-Key . If you attempt to Rewrite a Relative record number that does not exist, a
File Status 23 is returned.

000188 Rewrite-Record.
000189 Rewrite Relative-Record
000190 Invalid Key
000191 String "Rewrite Error "
000192 Relative-Status
000193 Delimited By Size
000194 Into Error-Message
000195 Not Invalid Key
000196 Move "Rewrite Successful"
000197 To Error-Message
000198 End-Rewrite

000199 .

The Clear-Screen and Display-And-Accept paragraphs help with the interface to the
user. Clear-Screen is executed in two places: after the F7 key is pressed and during the process
of creating the file so that the last Record Key is not left on the display.

000200 Clear-Screen.
000201 Initialize Relative-Record
000202 Move Zeros To Relative-Key
000203 Move 01 To Cursor-Row Cursor-Column
000204 .
000205 Display-And-Accept.
000206 Display Data-Entry-Screen
000207 Accept Data-Entry-Screen
000208 Move Spaces To Error-Message
000209 .

The Open statement opens the file for Input and Output . Because the file was made
Optional , it is created the first time it is opened if it does not already exist. A File Status of
05 is returned, which tells the program to create some base records so that you don’t have to. In this
case, the program creates 10 records, using a table defined in Working-Storage .

000210 Open-File.
000211 Open I-O Relative-File
000212 If Relative-Status = "05"
000213 Perform Create-Base-File Varying Relative-Key
000214 From 1 By 1
000215 Until Relative-Key > 10 Or
000216 Not Relative-Success
000217 Perform Clear-Screen
000218 End-If
000219 .

The Create-Base-File paragraph creates 10 records in the Relative file. This step gives
you a simple file to work with when you run the program.

000220 Create-Base-File.
000221 Write Relative-Record From Basic-Table (Relative-Key)
000222 Invalid Key
000223 String "Creation Write Error "
000224 Relative-Status
000225 Delimited By Size
000226 Into Error-Message
000227 Perform Display-And-Accept
000228 End-Write
000229 .

The Close is coded to release the file to the operating system.

000230 Close-File.
000231 Close Relative-File
000232 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Enter, compile, link, and try running this program. As you run the program,
scroll forward through the file until you reach the end. Then press the F3 key
again to Read another record. Notice that File Status 46 is returned.
This status value means that a sequential Read was attempted, but no next
record is established—the end of the file has been reached! If
Declaratives are not coded to capture this error, you might not know
about it.

Experiment with deleting different Relative record numbers and adding
new ones. Try deleting a record and then writing a new record to the same
Relative Key . Try starting on a Relative record number that you have
deleted. Experiment with the different things you can do and observe the
results. Do things happen the way you expect? If not, why not? If necessary,
follow the program with the debugger and observe what is happening inside
the program.

Summary

In this hour, you learned the following:

• You may update an Indexed file by opening the file I-O or
Extend . Opening Extend limits you to adding new records. To
update existing records, you must Open the file I-O .

• When using Sequential access, you can Rewrite or Delete a
record only when the last operation for the file is a successful Read
statement.

• When using Dynamic or Random access, you can Delete or
Rewrite a record without first reading it. You must use caution when
performing a Rewrite in this manner so as not to erase information in
the record that you want to keep.

• Write statements return a File Status 22 if a record already

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

exists in the file with the same primary Key or Alternate Key that
does not allow duplicates.

• If a Rewrite or Delete is executed for a record that does not exist,
a File Status of 23 is returned.

• Unlike Write and Rewrite , the Delete statement is coded with
the filename, not the record description name, as the identifier for the
operation.

• Relative files are similar to Indexed files. The difference is that
the Key is always a Relative record number, and the field that
contains this number is not a part of the data record. The Key field is
identified in the Select statement as a Relative Key instead of a
Record Key .

• Deleting Relative records does not cause the remaining records to
be renumbered. Instead, the location where that record was located is
cleared, and another record with the same Relative record number
may be written in that place.

• Declaratives can be useful for capturing file errors that are
missed by the coding of the Invalid Key or At End condition.

Q&A

Q When I want to update an Indexed file, can I Open it with
Sequential access, or must I Open it with Random or Dynamic?

A You may Open the file with Sequential access. Depending on the
updates being applied, Sequential may be the most efficient access
method. You have to remember that you cannot perform random reads when
the file is Open with Sequential access. Records may be rewritten only
after a successful Read.

Q I understand Relative files, but I can’t think of a good use for them.
Can you give me some examples?

A You can use a Relative file as an alternative to a table when you don’t
know the number of records that will be in the table. This use is not always
very efficient as far as access time goes, but is a viable solution. Obviously,
you will have to code your own Search of the file, as you cannot use the
Search verb against a Relative file. I have also used Relative files for
storing Key values when paging through an Indexed file. This method
allows me to display a page of data, saving the Key field for the first item on
the screen in a Relative file. Then if the user wants to page backward or
return to a specific page, I use the page number as the Relative Key to
read the Relative file and find the Indexed file Record Key that last
started that page.

Q Can I Open a regular Record Sequential file and address it as if it
were a Relative file?

A You must be very careful because only a few compiler vendors allow this
technique. Usually, some compiler-dependent internal record identifier is
associated with a Relative file, and becomes part of the record. Opening a

Record Sequential file as a Relative file can cause problems and
will most likely result in a File Status 39 .

Q When writing to a Relative file Open with Sequential access, I
get a File Status 24 . What does that mean?

A It means that your Relative Record Key field is too small. If it is
defined as Pic 9(2) and you attempt to write the 100th record, you receive
a File Status 24 .

Q I know that my Relative file has more than 1,000 records, but I can
only Read the first 999. Then I get an At End condition. How can this
be?

A You must be accessing the file with Sequential access. Your
Relative Record Key field is too small. When the maximum value it
can hold is reached when reading a file, a status 14 is returned, which is a
valid At End condition. Increase the size of your Relative Record
Key field.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 17
Sorting
One of the tasks frequently required in business is data file sorting. Reports are
created from data files in different sequences, allowing business professionals to
analyze information and make sound business decisions. Sorting data frequently
occurs within the normal business process. In this hour, various aspects of sorting
are covered, including topics such as

• The Sort Work File

• The Sort Key

• The Using and Giving clauses

• Preprocessing Input , using the Input Procedure

• Post-Sort processing, using the Output Procedure

Sometimes data is sorted prior to being loaded to an Indexed file. As you found
out in Hour 14, “Indexed Files,” you cannot Write records to an Indexed file
Open for Output with Sequential access unless the data is in primary Key
sequence. Sorting the data file can help in the quick creation of the Indexed file.

Data might also be sorted for update purposes. When updating a master file, you
might collect transactional data from many sources. This data is then sorted in the
same sequence as the master file that the data is updating. This process creates an
orderly and fast update sequence. Within the transactions, you might want certain
transactions to be applied before others. For example, you might want all ordering
transactions for an item to be processed before any sales transactions. Sorting can
ensure that the input data is in the proper sequence.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Sorting a File

COBOL provides very easy and efficient sorting methods. You need not write
your own program to sort the data in the desired sequence. With a simple
statement, COBOL allows you to sort a data file. You may even sort the data file
in place. That is, you can take a file, sort it, and not create a separate output file.

Each sort in your program uses a Sort Work File , which contains the
records as they are sorted by the system. You must declare these files in your
program with a Select statement, like any other file. File organization and
access modes are not specified for the file. However, you must select a unique
filename.

Note: In Fujitsu COBOL, Sort Work Files are not assigned to a physical
file. The physical filename in the Sort Work File Assign statement is for
internal purposes only. When the actual Sort Work File is created, Fujitsu
creates it in the directory defined by your TEMP= environment variable. Other
COBOL compilers may require you to specify a physical filename for the Sort
Work File .

Your Sort Work File Select might look something like this:

000010 Select Sort-Work Assign to Symbolic-Sort-Name.

Symbolic-Sort-Name is not defined in your program. Fujitsu uses it to keep
track of the file internally, but assigns its own temporary Sort Work File
with a system-determined unique name.

In addition to the Select statement, a special File Section entry is
required under the Data Division . This entry is the Sort Description ,
or SD. The SD is coded in exactly the same manner as an FD, but identifies the
file as a Sort Work File to the system. A typical SD is coded as follows:

000020 SD Sort-Work.
000021 01 Sort-Record.
000022 03 Sort-Field-1 Pic X(20).
000023 03 Sort-Field-2 Pic X(20).
000024 03 Filler Pic X(20).

As you can see, there is no special difference between an SD and an FD. The SD
simply refers to the Sort Work File .

The Using and Giving Clauses

The simplest sort reads an input file, sorts the records, and creates an output file.
The records in the three files have the same record layout. The following program
sorts the Dealer.TXT file that you have used in previous examples. This Line
Sequential file is now in dealer-number sequence, but the sort puts it in last
name, first name, and middle name sequence. This sort sorts in place, meaning
that it does not create a new file from Dealer.TXT, but rather replaces
Dealer.TXT with a version of itself, sorted in a different sequence.

This work is accomplished by the Sort statement, with a Using and Giving

clause. The Sort statement specifies the name of the Sort Work File ,
which is the file that is actually being sorted, and the data fields that are to be used
as the Key fields for sorting. When sorting, any number of fields may be
specified as Key fields—the fields that are used to control the Sort sequence.
The order of the Sort is also specified. The Sort may be in Ascending or
Descending sequence on the various Key data fields involved.

Using specifies the data file to be used as input into the Sort . Giving
specifies the data file that is to be the output of the Sort . When utilizing the
Sort statement, the input and output files cannot be Open by the program. The
Sort will take care of all I-O against these files, including the Open, Close ,
Read, Write , and Close statements. Listing 17.1 is a simple program to sort
the Dealer.TXT file in the manner described.

The first part of the program is the normal housekeeping and the Select for the
input file for the sort.

Listing 17.1 Simple Sort Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt17a.
000004* Simple Sort Example
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.
000011 Select Dealer-Text Assign To "Dealer.TXT"
000012 Organization Line Sequential
000013 Access Sequential.

The next Select is for the Sort Work File . The name chosen,
Sort-Work , is not significant. Any valid filename will work as well.
Sort-Work is descriptive, and it is a good programming practice to name your
files as descriptively as possible. Note that the physical filename that the Sort
Work File is assigned to is not enclosed in quotation marks. It is not a physical
name, but rather is a symbolic name used internally by the compiler.

000014 Select Sort-Work Assign To Dealer-Sort-Work.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The FD for the input file is the regular, normal FD.

000015 Data Division.
000016 File Section.
000017 Fd Dealer-Text.
000018 01 Dealer-Record.
000019 03 Dealer-Number Pic X(8).
000020 03 Dealer-Name.
000021 05 Last-Name Pic X(25).
000022 05 First-Name Pic X(15).
000023 05 Middle-Name Pic X(10).
000024 03 Address-Line-1 Pic X(50).
000025 03 Address-Line-2 Pic X(50).
000026 03 City Pic X(40).
000027 03 State-Or-Country Pic X(20).
000028 03 Postal-Code Pic X(15).
000029 03 Home-Phone Pic X(20).
000030 03 Work-Phone Pic X(20).
000031 03 Other-Phone Pic X(20).
000032 03 Start-Date Pic 9(8).
000033 03 Last-Rent-Paid-Date Pic 9(8).
000034 03 Next-Rent-Due-Date Pic 9(8).
000035 03 Rent-Amount Pic 9(4)v99.
000036 03 Consignment-Percent Pic 9(3).
000037 03 Last-Sold-Amount Pic S9(7)v99.
000038 03 Last-Sold-Date Pic 9(8).
000039 03 Sold-To-Date Pic S9(7)v99.
000040 03 Commission-To-Date Pic S9(7)v99.
000041 03 Filler Pic X(15).

The SD describes the Sort Work File record. For convenience, the same record layout as the input file
has been used.

000042 Sd Sort-Work.
000043 01 Sort-Record.
000044 03 Dealer-Number Pic X(8).
000045 03 Dealer-Name.
000046 05 Last-Name Pic X(25).
000047 05 First-Name Pic X(15).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000048 05 Middle-Name Pic X(10).
000049 03 Address-Line-1 Pic X(50).
000050 03 Address-Line-2 Pic X(50).
000051 03 City Pic X(40).
000052 03 State-Or-Country Pic X(20).
000053 03 Postal-Code Pic X(15).
000054 03 Home-Phone Pic X(20).
000055 03 Work-Phone Pic X(20).
000056 03 Other-Phone Pic X(20).
000057 03 Start-Date Pic 9(8).
000058 03 Last-Rent-Paid-Date Pic 9(8).
000059 03 Next-Rent-Due-Date Pic 9(8).
000060 03 Rent-Amount Pic 9(4)v99.
000061 03 Consignment-Percent Pic 9(3).
000062 03 Last-Sold-Amount Pic S9(7)v99.
000063 03 Last-Sold-Date Pic 9(8).
000064 03 Sold-To-Date Pic S9(7)v99.
000065 03 Commission-To-Date Pic S9(7)v99.
000066 03 Filler Pic X(15).
000067 Working-Storage Section.
000068 Procedure Division.
000069 Chapt17a-Start.

The Sort statement is very simply stated. The filename specified after Sort is always the Sort Work
File and must be described with an SD entry in the File Section . The fields you wish to sort on are
specified after either Ascending or Descending Key , depending on whether you want to have the
fields sorted from lowest value to highest or from highest to lowest.

The Using clause specifies the input file to be used by the Sort . Giving specifies the file that is to be
created by the Sort . The files specified with Using and Giving can be the same.

000070 Sort Sort-Work Ascending Key Last-Name Of Sort-Record
000071 First-Name Of Sort-Record
000072 Middle-Name Of Sort-Record
000073 Using Dealer-Text
000074 Giving Dealer-Text
000075 Display "Sort Complete"
000076 Stop Run
000077 .

Notice that the program had no Open, Close , Read or Write statements. The Sort performs all of
these operations automatically. Sorting files in COBOL is extremely simple!

Enter, compile, and run this program. Use a text editor, such as Notepad or WordPad to edit the
Dealer.TXT file after running the program. Notice the sort sequence of the data file.

Change the program to sort the file in Descending Key sequence instead of Ascending Key
sequence. The Sort statement is the only one that needs to change:

000070 Sort Sort-Work Descending Key Last-Name Of Sort-Record
000071 First-Name Of Sort-Record
000072 Middle-Name Of Sort-Record

Compile the program with the changes and run it again. Edit the output with WordPad again and notice
how the sort sequence changes.

The Sort statement can sort using complex combinations of Ascending and Descending Key
fields. For example, you can sort the dealer file Descending by state and the names Ascending under
state.

000070 Sort Sort-Work Descending Key State-Or-Country Of Sort-Record
000071 Ascending Key Last-Name Of Sort-Record
000072 First-Name Of Sort-Record
000073 Middle-Name Of Sort-Record

The input and output files from a sort need not be the same file type. In Hour 14, an Indexed file was
created from the Line Sequential file Dealers.TXT. You used a regular COBOL program to handle
the Open, Read, Write , and Close statements. This same task can be accomplished with a Sort . You
simply need to specify the Indexed file as the output in the Giving clause of the Sort statement.

Caution: When an Indexed file is specified in the Giving clause of a Sort statement, the Sort Key
must be the same as the Primary Key of the Indexed file. In addition, the SD must match the FD for
record size and the location and length of the Primary Key field.

Listing 17.2 creates the Indexed Dealer.Dat file from the Line Sequential Dealer.TXT file, using a
Sort .

Listing 17.2 Create an Indexed File from a Sequential File Using Sort

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt17d.
000004* Create An Indexed File From A Sequential File Using Sort
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Select statements are provided for all three files: the Line Sequential input file, the
Indexed output file, and the Sort Work File .

000011 Select Dealer-Text Assign To "Dealer.TXT"
000012 Organization Line Sequential
000013 Access Sequential.
000014 Select Dealer-File Assign To "Dealer.Dat"
000015 Organization Is Indexed
000016 Record Key Dealer-Number Of Dealer-Record
000017 Alternate Key Dealer-Name Of Dealer-Record
000018 Access Is Sequential.
000019 Select Sort-Work Assign To Dealer-Sort-Work.

The File Section of the Data Division contains the FD and SD, File and Sort
Definition s. Notice that the record layouts have been simplified to contain only the essential data
to complete the desired Sort operation.

000020 Data Division.
000020 Data Division.
000021 File Section.
000022 Fd Dealer-File.
000023 01 Dealer-Record.
000024 03 Dealer-Number Pic X(8).
000025 03 Dealer-Name.
000026 05 Last-Name Pic X(25).
000027 05 First-Name Pic X(15).
000028 05 Middle-Name Pic X(10).
000029 03 Filler Pic X(318).
000030 Fd Dealer-Text.
000031 01 Text-Record Pic X(376).
000032 Sd Sort-Work.
000033 01 Sort-Record.
000034 03 Dealer-Number Pic X(8).
000035 03 Dealer-Name.
000036 05 Last-Name Pic X(25).
000037 05 First-Name Pic X(15).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000038 05 Middle-Name Pic X(10).
000039 03 Filler Pic X(318).
000040 Working-Storage Section.
000041 Procedure Division.
000042 Chapt17d-Start.

The Sort statement is coded so that the Sort Key fields and sequence match the Sort Key of
the output file. If they do not, the compiler issues a warning and the program does not compile.

000043 Sort Sort-Work Ascending Key Dealer-Number Of Sort-Record
000044 Using Dealer-Text
000045 Giving Dealer-File
000046 Display "Sort Complete"
000047 Stop Run
000048 .

If you compile and run this program, it creates a new Dealer.Dat file from the Line Sequential
file Dealer.TXT. This method of creating the Indexed file, unlike the version from Hour 14, is not
sensitive to the order of the data in the input file. The Sort statement takes care of that problem and
creates the Indexed file in the proper sequence.

Manipulating Data During the Sort

In addition to the simple sorts discussed in the previous section, COBOL allows you to manipulate
the data going into and coming out of the Sort . This feature allows a single program to read a data
file, manipulate the data to a great degree, sort it, and produce output based on this data.

This diversity is handled by coding Input and Output procedures on the Sort . These procedures
permit you to create a Sort file from various input sources—not just from a single input file. When
utilizing the Input and Output procedure, the Sort file does not need to have the same record
layout as the input file. The output file does not need to have the same layout as the Sort file. In
fact, in some cases the output file is not created at all!

The Input Procedure

The Input Procedure allows you to restrict the records that are used in the Sort . When an
Input Procedure is specified, you are responsible for the file handling necessary to build the
Sort records. However, you do not code any Open, Close , or Write statements for the Sort
Work File .

The Input Procedure specified is performed to create the Sort records, which are released to
the Sort . The Input Procedure is performed only once for each Sort statement coded. You
must handle the necessary processing loop. When the Input Procedure is complete, the Sort
Work File is sorted in the sequence specified.

The statement that writes records to the Sort Work File is the Release statement, and its
coding is similar to the Write statement. You may Release a Sort record by using the From
clause to build the Sort record in Working-Storage if desired. As with the Write statement,
the data in the record description area of the Sort record cannot be relied on after a Release
statement is executed.

By using the Input Procedure , you can create a Sort Work File and output file such that
the record layouts differ, unlike Using and Giving in which the record layouts had to be the same.

Listing 17.3 illustrates the use of an Input Procedure to select dealer records with a state of
"CA" from the file. Only the name and address information is selected for the Sort Work File
and output file.

Listing 17.3 Sort Example with an Input Procedure

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt17e.
000004* Sort Example With An Input Procedure.
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.

Select statements are coded for all three files: the Indexed input file, Dealer.Dat; the output
Line Sequential file, Address.TXT; and the Sort Work File .

000010 File-Control.
000011 Select Dealer-File Assign To "Dealer.Dat"
000012 Organization Indexed
000013 Record Key Dealer-Number Of Dealer-Record
000014 Alternate Record Key Dealer-Name Of Dealer-Record
000015 Access Sequential
000016 File Status Dealer-Status.
000017 Select Address-File Assign To "Address.Txt"
000018 Organization Line Sequential
000019 Access Sequential.
000020 Select Sort-Work Assign To Dealer-Sort-Work.
000021 Data Division.
000022 File Section.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Notice that the FD for the dealer file does not match the SD for the Sort Work File . The FD for
the output file simply has the same number of characters reserved in the record as the Sort Work
File . Because the Giving clause is being used to create the file, the individual fields that make up
the record need not be defined.

000023 Fd Dealer-File.
000024 01 Dealer-Record.
000025 03 Dealer-Number Pic X(8).
000026 03 Dealer-Name.
000027 05 Last-Name Pic X(25).
000028 05 First-Name Pic X(15).
000029 05 Middle-Name Pic X(10).
000030 03 Address-Line-1 Pic X(50).
000031 03 Address-Line-2 Pic X(50).
000032 03 City Pic X(40).
000033 03 State-Or-Country Pic X(20).
000034 03 Postal-Code Pic X(15).
000035 03 Home-Phone Pic X(20).
000036 03 Work-Phone Pic X(20).
000037 03 Other-Phone Pic X(20).
000038 03 Start-Date Pic 9(8).
000039 03 Last-Rent-Paid-Date Pic 9(8).
000040 03 Next-Rent-Due-Date Pic 9(8).
000041 03 Rent-Amount Pic 9(4)v99.
000042 03 Consignment-Percent Pic 9(3).
000043 03 Last-Sold-Amount Pic S9(7)v99.
000044 03 Last-Sold-Date Pic 9(8).
000045 03 Sold-To-Date Pic S9(7)v99.
000046 03 Commission-To-Date Pic S9(7)v99.
000047 03 Filler Pic X(15).
000048 Sd Sort-Work.
000049 01 Sort-Record.
000050 03 Dealer-Name.
000051 05 Last-Name Pic X(25).
000052 05 First-Name Pic X(15).
000053 05 Middle-Name Pic X(10).
000054 03 Address-Line-1 Pic X(50).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000055 03 Address-Line-2 Pic X(50).
000056 03 City Pic X(40).
000057 03 State-Or-Country Pic X(20).
000058 03 Postal-Code Pic X(15).
000059 Fd Address-File.
000060 01 Address-Record Pic X(225).

The File Status field and other necessary fields are coded in Working-Storage .

000061 Working-Storage Section.
000062 01 Done-Flag Pic X Value Spaces.
000063 88 All-Done Value "Y".
000064 01 Dealer-Status Pic XX Value "00".
000065 Procedure Division.

Declaratives capture any unexpected file errors on the input file. Although none are expected, it is
a good practice to code for them. The All-Done flag is Set to true if any errors are encountered.
This flag status terminates the Input Procedure loop coded later in the program.

000066 Declaratives.
000067 Dealer-File-Error Section.
000068 Use After Standard Error Procedure On Dealer-File.
000069 Dealer-Error.
000070 Display "Unhandled error on Dealer File " Dealer-Status
000071 Set All-Done To True
000072 .
000073 End Declaratives.
000074 Chapt17e-Start.

The Sort statement sorts the Sort Work File based on the last, first, and middle names. Because
the file was organized to appear in this sequence with a Group Level item, you could change the Sort
Key to Dealer-Name Of Sort-Record and achieve the same result. The statement as coded is a
little more explicit, however.

The Input Procedure name is not significant. You may call it anything that you desire. One
common mistake is to assume that the Input Procedure will be executed repeatedly until the
input file has been read. In fact, the Input Procedure is performed only once.

000075 Sort Sort-Work Ascending Key Last-Name Of Sort-Record
000076 First-Name Of Sort-Record
000077 Middle-Name Of Sort-Record
000078 Input Procedure Sort-In
000079 Giving Address-File
000080 Display "Sort Complete"
000081 Stop Run
000082 .

The Input Procedure , Sort-In , handles the Open, Read, and Close statements of the input
file. Notice that if the state is not "CA" , the Sort record is not released, which limits the Sort to
records where the state is "CA" . Using an Input Procedure to select the desired records can
speed processing of large volumes of data.

By using the same field names in the Dealer-Record and Sort-Record , you are able to utilize
Move with Corresponding . Notice that more fields are defined in the Dealer-Record than in
Sort-Record , yet Move with Corresponding correctly moves only those fields where the field
names match.

Note the Close of the input file after processing is complete. No Open or Close statements are

coded for the Sort Work File . The only operation relating to the Sort Work File releases the
record to the Sort .

000083 Sort-In.
000084 Open Input Dealer-File
000085 Perform Until All-Done
000086 Read Dealer-File
000087 At End Set All-Done To True
000088 Not At End
000089 If State-Or-Country Of Dealer-Record = "CA"
000090 Move Corresponding Dealer-Record To Sort-Record
000091 Release Sort-Record
000092 End-If
000093 End-Read
000094 End-Perform
000095 Close Dealer-File
000096 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Output Procedure

The Input Procedure processed data before the Sort . If you want to process data after the
Sort , you may code an Output Procedure with your Sort statement. The Output
Procedure is responsible for all necessary file access. The Output Procedure is frequently
used to create a printed report after input data is sorted. The Output Procedure does not
necessarily have to create a sorted output file.

Like the Input Procedure , the Output Procedure is performed only once. It is executed
immediately after the Sort Work File is sorted into the desired sequence. You are responsible
for coding the processing loop necessary for the Output Procedure to work properly.

In the Output Procedure , you may Read records from the Sort Work File . You do not
code normal Open, Read, or Close statements. The Sort positions the file properly and handles
any necessary internal Open and Close operations. The Return statement retrieves records from
the sorted Sort Work File . Return behaves the same as a Sequential Read . You must
code an At End clause to detect the end of file. You may Return the record into another data area,
just as you can with Read, by using Return with an Into clause.

In Hour 16, “Updating Indexed File Records,” the exercise was to modify the record layout of the
dealer file to add four fields: Last-Sold-Amount , Last-Sold-Date , Sold-To-Date and
Commission-To-Date . These fields were to be initialized to zeros. Running the program in
Listing 17.2 (Chap17d) that creates the Indexed Dealer.Dat file erases that file and eliminates the
work you did zeroing those fields. This happens because the input text file does not include the new
fields. You may run the program you created again to fix the problem, or you may modify the Sort
program to include an Output Procedure that initializes these fields as they are written. The
program in Listing 17.4 does just that, and counts the records returned from the Sort . This count is
displayed after the Output Procedure is executed.

The program has all of the normal Select and File Section entries.

Listing 17.4 Sort Example with an Output Procedure

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt17f.
000004* Sort Example With Output Procedure
000005 Environment Division.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.
000011 Select Dealer-Text Assign To "Dealer.TXT"
000012 Organization Line Sequential
000013 Access Sequential.
000014 Select Dealer-File Assign To "Dealer.Dat"
000015 Organization Is Indexed
000016 Record Key Dealer-Number Of Dealer-Record
000017 Alternate Key Dealer-Name Of Dealer-Record
000018 Access Is Sequential
000019 File Status Is Dealer-Status.
000020 Select Sort-Work Assign To Dealer-Sort-Work.
000021 Data Division.
000022 File Section.
000023 Fd Dealer-File.
000024 01 Dealer-Record.
000025 03 Dealer-Number Pic X(8).
000026 03 Dealer-Name.
000027 05 Last-Name Pic X(25).
000028 05 First-Name Pic X(15).
000029 05 Middle-Name Pic X(10).
000030 03 Address-Line-1 Pic X(50).
000031 03 Address-Line-2 Pic X(50).
000032 03 City Pic X(40).
000033 03 State-Or-Country Pic X(20).
000034 03 Postal-Code Pic X(15).
000035 03 Home-Phone Pic X(20).
000036 03 Work-Phone Pic X(20).
000037 03 Other-Phone Pic X(20).
000038 03 Start-Date Pic 9(8).
000039 03 Last-Rent-Paid-Date Pic 9(8).
000040 03 Next-Rent-Due-Date Pic 9(8).
000041 03 Rent-Amount Pic 9(4)v99.
000042 03 Consignment-Percent Pic 9(3).
000043 03 Last-Sold-Amount Pic S9(7)v99.
000044 03 Last-Sold-Date Pic 9(8).
000045 03 Sold-To-Date Pic S9(7)v99.
000046 03 Commission-To-Date Pic S9(7)v99.
000047 03 Filler Pic X(15).
000048 Fd Dealer-Text.
000049 01 Text-Record Pic X(376).
000050 Sd Sort-Work.
000051 01 Sort-Record.
000052 03 Dealer-Number Pic X(8).
000053 03 Dealer-Name.
000054 05 Last-Name Pic X(25).
000055 05 First-Name Pic X(15).
000056 05 Middle-Name Pic X(10).
000057 03 Filler Pic X(318).

Working-Storage contains the flag used to control the processing loop of the Output
Procedure and a field for the record count from the Sort .

000058 Working-Storage Section.
000059 01 Record-Count Pic 9(5) Value Zeros.
000060 01 Dealer-Status Pic XX Value "00".
000061 01 Done-Flag Pic X Value Spaces.
000062 88 All-Done Value "Y".

Declaratives are coded to handle any errors that might occur when creating the Indexed file.
None are likely to occur; however, coding the Declaratives will make you aware of any error
conditions that occur.

000063 Procedure Division.
000064 Declaratives.
000065 Dealer-File-Error Section.
000066 Use After Standard Error Procedure On Dealer-File.
000067 Dealer-Error.
000068 Display "Unhandled error on Dealer File " Dealer-Status
000069 Set All-Done To True
000070 .
000071 End Declaratives.

This particular Sort does not require an Input Procedure . However, in COBOL you may use
an Input Procedure and an Output Procedure in the same Sort statement.

000072 Chapt17f-Start.
000073 Sort Sort-Work Ascending Key Dealer-Number Of Sort-Record
000074 Using Dealer-Text
000075 Output Procedure Sort-Out
000076 Display "Sort Complete with " Record-Count " Records."
000077 Stop Run
000078 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Output Procedure controls the creation of the Indexed Dealer-File . You are
responsible for coding all necessary Open, Write , and Close statements. The Return statement,
like Read, uses the name defined in the FD, not the record description, to describe the data being
returned. The At End clause handles the end-of-file processing. Regular record processing occurs
after the Not At End clause. Notice the use of the End-Return explicit scope terminator.

000079 Sort-Out.
000080 Open Output Dealer-File
000081 Perform Until All-Done
000082 Return Sort-Work Into Dealer-Record
000083 At End Set All-Done To True
000084 Not At End
000085 Add 1 To Record-Count
000086 Move Zeros To Last-Sold-Amount
000087 Last-Sold-Date
000088 Sold-To-Date
000089 Commission-To-Date
000090 Write Dealer-Record
000091 End-Return
000092 End-Perform
000093 Close Dealer-File
000094 .

Note: In these Sort examples, the various record sizes and layouts of the input file, output file, and
Sort Work File have been the same. However, when using Sort , you may use records of varying
sizes. The only restriction is that no input record may be longer than the Sort work record, and if
variable-length records are used, none may be shorter than the shortest allowed record in the Sort
Work File . If you wanted to sort the dealer file into a text file and shorten the output record to not
include some of the extra information at the end of the file, you could modify the FD on the output file
to terminate after the last desired field.

When sorting a file, you may encounter duplicate Sort Keys . Duplicates are allowed and will
cause no problems. The order of the records with the duplicate Key fields in the Sort file is
undetermined. You can control the order, forcing the duplicates to appear in the same order as the
input file, by adding the word Duplicates , which is short for Duplicates In Order , to the
Sort statement.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000073 Sort Sort-Work Ascending Key Dealer-Number Of Sort-Record
000074 With Duplicates
000075 Using Dealer-Text
000076 Output Procedure Sort-Out

Summary

In this hour, you learned the following:

• Files can be sorted quickly and easily by using the Sort statement.

• The input file can be simply specified with a Using clause, and the output file with a
Giving clause. No Open, Read, Write , or Close statements need to be coded for a simple
sort that utilizes Using and Giving .

• Sort Work File s must have Select statements under File-Control and entries
under the File Section . The entry under the File Section , however, is not the normal
FD, but instead is an SD.

• You can use an Input Procedure to manipulate and select records for the Sort .

• When using an Input Procedure , you must handle the Open, Read, and Close
statements associated with the input file or files.

• Records are written to the Sort Work File in the Input Procedure by coding the
Release statement.

• Records can be returned directly from the Sort Work File by using an Output
Procedure .

• The Output Procedure does not necessarily have to create a sorted output file. Any
logic you desire may be executed in the Output Procedure .

• The Return statement can read sorted records from the Sort Work File .

• You can use any combination of Using , Giving , Input Procedure , and Output
Procedure with a Sort statement.

Q&A

Q What happens to the Sort Work File when the Sort is finished?

A On most systems, the Sort Work File is automatically deleted after the processing associated
with the Sort statement is complete.

Q I need to manipulate some fields for the Sort. Should I modify them in the Input
Procedure or in the Output Procedure?

A If any of the fields you are modifying are used as Sort Keys , you should modify them in the
Input Procedure . Remember that records are not sorted as they go into the Input
Procedure , so modifying the Sort Key will not adversely affect the Sort .

Q I noticed that in the examples, there were no performs outside of the Input and Output
Procedures. Am I restricted in what may be performed?

A Only slightly. You may not execute another Sort statement within an Input or Output
Procedure . Also you may not execute a Return within an Input Procedure , and you may
not execute a Release in an Output Procedure . Otherwise, you are free to code any kind of
statements or logic you desire. Just remember that the Input and Output Procedure s are
performed only once per sort.

Q I’m still a little unclear. Which file is actually sorted? Is it the input file?

A No, it’s not the input file. The Sort Work File is the one that is sorted, which explains why
you can manipulate data before the sort, using an Input Procedure . Using a Sort Work

File also ensures that records returned from the Sort in the Output Procedure are in sorted
sequence.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the section “Quiz
and Exercise Questions and Answers” that can be found on the CD. This section contains quiz
questions and exercises for you to complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Part III
Business Processing

Hour
18 Master File Updating

19 Reporting

20 Advanced Reporting

Hour 18
Master File Updating
Much of business processing is centered on updating a central repository of information. Transactions
that are captured from a variety of locations are accumulated and applied to a master file. A typical
transaction in your little shop might be a sale transaction. You need to update the dealer master file with
this sale to capture the commission that you are to collect for handling the sale. In this hour, you learn
the basics of transaction entry and master file update. The following topics are covered:

• Collecting transactional data

• Data validation

• Sequential file updating

• Indexed file updating

Updating a master file requires you to collect transactional data that is as accurate as possible. There is
an old saying in the computer industry: GIGO—Garbage In, Garbage Out. The programmer’s job is to
ensure that the transactional data is as accurate as it can be. Having accurate data can aid in making
processing efficient and accurate.

Programming for Transaction Entry

To update your master file, you need to capture some transactions. For this example (see Listing 18.1),
you need to design and code a program that allows you to enter sale transactions that can be used to
update a master file. You need to capture transaction date, category, dealer, price, and quantity. The
category can be ANTI, CRAF, HOLI, JEWL, MISC, or XMAS. ANTI is for Antiques, CRAF is for
Crafts, HOLI is for Holiday items other than Christmas, JEWL is for Jewelry, MISC is for

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Miscellaneous items, and XMAS is for Christmas items. The Output file is a Line Sequential
file named Trans.Txt. The program used to create the transaction file is shown in Listing 18.1.

The required Division s are coded first.

Listing 18.1 Transaction Entry Program

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt18a.
000004* Transaction Entry
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Special-Names.
000010 Crt Status Is Keyboard-Status
000011 Cursor Is Cursor-Position.
000012 Input-Output Section.

The file is selected Optional , which creates the file when it is opened, if it does not yet exist.

000013 File-Control.
000014 Select Optional Trans-File Assign To "Trans.Txt"
000015 Organization Is Line Sequential
000016 File Status Is Trans-File-Status.
000017 Data Division.
000018 File Section.

In the transaction record, 40 characters of Filler area are reserved for future expansion.

000019 FD Trans-File.
000020 01 Trans-Record.
000021 03 Transaction-Date Pic 9(8).
000022 03 Transaction-Type Pic X(4).
000023 03 Transaction-Dealer Pic X(8).
000024 03 Transaction-Price Pic S9(7)V99.
000025 03 Transaction-Qty Pic 9(3).
000026 03 Filler Pic X(40).

In Working-Storage, the necessary data items are stored for use by the program.

000027 Working-Storage Section.
000028 01 Keyboard-Status.
000029 03 Accept-Status Pic 9.
000030 03 Function-Key Pic X.
000031 88 F1-Pressed Value X"01".
000032 88 F3-Pressed Value X"03".
000033 88 F4-Pressed Value X"04".
000034 03 System-Use Pic X.
000035 01 Cursor-Position.
000036 03 Cursor-Row Pic 9(2) Value 1.
000037 03 Cursor-Column Pic 9(2) Value 1.
000038 01 File-Error-Flag Pic X Value Space.
000039 88 File-Error Value "Y".
000040 01 Trans-File-Status Pic XX Value Spaces.
000041 88 Trans-File-Success Value "00" Thru "09".
000042 01 Error-Message Pic X(50) Value Spaces.

000043 01 Open-Error-Message.
000044 03 Filler Pic X(31)
000045 Value "Error Opening Transaction File ".
000046 03 Open-Status Pic XX Value Spaces.
000047 01 Write-Error-Message.
000048 03 Filler Pic X(31)
000049 Value "Error Writing Transaction File ".
000050 03 Write-Status Pic XX Value Spaces.

The Screen Section contains the screen definition for the data entry program. Notice the use of
color and the different required fields.

000051 Screen Section.
000052 01 Data-Entry-Screen
000053 Blank Screen, Auto
000054 Foreground-Color Is 7,
000055 Background-Color Is 1.
000056*
000057 03 Screen-Literal-Group.
000058 05 Line 01 Column 30 Value "Darlene's Treasures"
000059 Highlight Foreground-Color 4 Background-Color 1.
000060 05 Line 03 Column 28 Value "Transaction Entry Program"
000061 Highlight.
000062 05 Line 4 Column 01 Value "Date: ".
000063 05 Line 5 Column 01 Value "Category: ".
000064 05 Line 6 Column 01 Value "Dealer Number: ".
000065 05 Line 7 Column 01 Value "Price: ".
000066 05 Line 8 Column 01 Value "Quantity: ".
000067 05 Line 22 Column 01 Value "F1-Save Record".
000068 05 Line 22 Column 23 Value "F3-Exit".
000069 05 Line 22 Column 56 Value "F4-Clear".
000070 03 Required-Reverse-Group Reverse-Video Required.
000071 05 Line 4 Column 16 Pic 99/99/9999
000072 Using Transaction-Date.
000073 05 Line 5 Column 16 Pic X(4)
000074 Using Transaction-Type.
000075 05 Line 6 Column 16 Pic X(8)
000076 Using Transaction-Dealer.
000077 05 Line 7 Column 16 Pic ZZ,ZZZ.99-
000078 Using Transaction-Price
000079 Blank When Zero.
000080 05 Line 8 Column 16 Pic ZZ9
000081 Using Transaction-Qty
000082 Blank When Zero.
000083 03 Highlight-Display Highlight.
000084 05 Line 20 Column 01 Pic X(50) From Error-Message
000085 Foreground-Color 5 Background-Color 1.

After opening the transaction file, the processing loop is performed until the user exits by pressing F3 or
a serious file error occurs.

000086 Procedure Division.
000087 Chapt18a-Start.
000088 Perform Open-File
000089 If Not File-Error
000090 Initialize Trans-Record
000091 Perform Process-Input Until F3-Pressed Or

000092 File-Error
000093 Perform Close-File
000094 End-If
000095 Stop Run
000096 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Open with Extend allows the user to enter some data and then exit the
program. When the user returns to the data entry task, the new transactions will be
added to the end of the file. By opening the file Extend instead of Output , you
prevent the previously entered transactions from being lost.

000097 Open-File.
000098 Open Extend Trans-File
000099 If Not Trans-File-Success
000100 Move Trans-File-Status To Open-Status
000101 Move Open-Error-Message To Error-Message
000102 Perform Display-And-Accept-Error
000103 End-If
000104 .

The Process-Input Paragraph displays the screen and accepts the user
input. It then determines the appropriate action based on the key that is pressed.
The Continue statement after the F3 lets the program fall through the end of the
Evaluate and thus the Paragraph . Because the Perform of this
Paragraph is testing for F3, you do not need to Perform any action when F3
is pressed. You may omit checking for the F3 key, and the program will still
function, as it will fall into the Other condition. However, accounting for all
valid function keys is a good practice. This approach makes it much easier if you
later need to add another function key. By accounting for each function key in the
Evaluate , you can decide which one is still available for use.

000105 Process-Input.
000106 Display Data-Entry-Screen
000107 Accept Data-Entry-Screen
000108 Move Spaces To Error-Message
000109 Evaluate True
000110 When F1-Pressed

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000111 Perform Write-Record
000112 When F4-Pressed
000113 Initialize Trans-Record
000114 When F3-Pressed
000115 Continue
000116 When Other
000117 Continue
000118 End-Evaluate
000119 .

After a successful Write , the record is cleared so that no leftover data remains
on the screen. The error message on the screen is updated to indicate a successful
record Write , and the cursor is positioned for the next record entry.

000120 Write-Record.
000121 Write Trans-Record
000122 If Trans-File-Success
000123 Initialize Trans-Record
000124 Move "Record Written" To Error-Message
000125 Move "0101" To Cursor-Position
000126 Else
000127 Move Trans-File-Status To Write-Status
000128 Move Write-Error-Message To Error-Message
000129 Perform Display-And-Accept-Error
000130 End-If
000131 .

The Display-And-Accept-Error Paragraph is used whenever a
serious error should terminate processing. What the user keys to terminate the
Accept does not matter, as the program will end shortly after executing this
paragraph. The File-Error condition is checked in determining when the
processing loop should end.

000132 Display-And-Accept-Error.
000133 Set File-Error To True
000134 Display Data-Entry-Screen
000135 Accept Data-Entry-Screen
000136 .
000137 Close-File.
000138 Close Trans-File
000139 .

Data Validation

This program, as written, has some problems. Although it allows the user to enter
the required data to create a transaction file that can be used for update, there is a
lot of room for input error.

The program will Accept dates that may or may not be dates. The user may key
any number he or she desires into the date field. The dealer number is not
converted to uppercase, although the dealer numbers are all in uppercase letters

with numbers. The user may enter any dealer number he or she can imagine, and
there is no assurance that the dealer being entered is in the dealer file.

The category is not checked for validity, nor is it converted to uppercase. All of
these fields are in need of some type of data validation.

Data validation is what the programmer, and thus the program, does to ensure
that the data being entered is as valid and accurate as possible. You can do several
things to this program to ensure that the user enters accurate data.

Note: Although the date entered should be checked for validity, you are not
checking it in this program. Date validation will be covered in Hour 21, “Date
Manipulation.”

I suggest that you code a data validation paragraph after the Accept and before
the Write . You should not Write the data record unless it passes all data
validations.

Add the following flag field to Working-Storage :

000040 01 Validate-Flag Pic X Value Spaces.
000041 88 Validation-Passed Value "Y".

Then change the Evaluate statement where the save record key is detected to
Perform a data validation paragraph and check the status of that validation
before carrying out the record Write .

000104 Evaluate True
000105 When F1-Pressed
000106 Perform Validate-Data
000107 If Validation-Passed
000108 Perform Write-Record
000109 End-If
000110 When F4-Pressed
000111 Initialize Trans-Record
000112 When F3-Pressed
000113 Continue
000114 When Other
000115 Continue
000116 End-Evaluate

The first thing you can do to help ensure accurate information is to convert the
Pic X fields to uppercase with an Inspect statement. However, the entire
transaction record does not need to be converted. Inspecting two fields means
executing the Inspect twice, which is wasteful. Instead, change the record
description of the transaction file as follows. This code does not change the
position or length of any data in the record. It does, however, group the fields so
that a single Inspect can convert them both to uppercase.

000020 01 Trans-Record.
000021 03 Transaction-Date Pic 9(8).

000022 03 Transaction-Text.
000023 05 Transaction-Type Pic X(4).
000024 05 Transaction-Dealer Pic X(8).
000025 03 Transaction-Price Pic S9(7)V99.
000026 03 Transaction-Qty Pic 9(3).
000027 03 Filler Pic X(40).

Now you may use the Inspect instruction on the field Transaction-Text
and convert both fields to uppercase.

000119 Validate-Data.
000120 Inspect Transaction-Text Converting
000121 "abcdefghijklmnopqrstuvwxyz" To
000122 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Now that the fields are uppercase, you can validate the category against a list of
valid categories. If the category entered is not on the list, you can issue a warning
message to the user and position the cursor on the field in error.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The starting assumption is that the data is valid. A flag is set if any invalid data is encountered.

000124 Move "Y" to Validate-Flag
000125 If Not (Transaction-Type = "ANTI" Or "CRAF" Or "HOLI"Oor "JEWL"
000126 Or "MISC" Or "XMAS")
000127 Set Validation-Error To True
000128 Move "0516" to Cursor-Position
000129 Move
000130 "Invalid Category Must be ANTI CRAF HOLI JEWL MISC or XMAS"
000131 To Error-Message
000132 End-If

This simple validation prevents the user from accidentally entering garbage into the transaction file.

Another field that can be validated is the dealer number. If a copy of the dealer master file exists on the
computer where the data entry is being performed, you can check the dealer number against the dealer file by
doing a Random Read on the dealer file.

First, add the Select and FD for the dealer file. Random access is used because you will be making a single
keyed Read against the file for every dealer number entered.

000017 Select Dealer-File Assign to "Dealer.Dat"
000018 Organization Indexed
000019 Access Random
000020 Record Key Dealer-Number
000021 Alternate Record Key Dealer-Name
000022 File Status Dealer-Status.

Note: For brevity, in this example the normal COBOL verbiage has been removed and only the relevant portions
of the code are presented.

000034 FD Dealer-File.
000035 01 Dealer-Record.
000036 03 Dealer-Number Pic X(8).
000037 03 Dealer-Name.
000038 05 Last-Name Pic X(25).
000039 05 First-Name Pic X(15).
000040 05 Middle-Name Pic X(10).
000041 03 Address-Line-1 Pic X(50).
000042 03 Address-Line-2 Pic X(50).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000043 03 City Pic X(40).
000044 03 State-or-Country Pic X(20).
000045 03 Postal-Code Pic X(15).
000046 03 Home-Phone Pic X(20).
000047 03 Work-Phone Pic X(20).
000048 03 Other-Phone Pic X(20).
000049 03 Start-Date Pic 9(8).
000050 03 Last-Rent-Paid-Date Pic 9(8).
000051 03 Next-Rent-Due-Date Pic 9(8).
000052 03 Rent-Amount Pic 9(4)V99.
000053 03 Consignment-Percent Pic 9(3).
000054 03 Last-Sold-Amount Pic S9(7)V99.
000055 03 Last-Sold-Date Pic 9(8).
000056 03 Sold-to-Date Pic S9(7)V99.
000057 03 Commission-to-Date Pic S9(7)V99.
000058 03 Filler Pic X(15).

Several fields must be added to Working-Storage to handle the file.

000077 01 Dealer-Status Pic X(2) Value Spaces.
000078 88 Dealer-Success Value "00" Thru "09".
000083 01 Dealer-Open-Error-Message.
000084 03 Filler Pic X(31) Value "Error Opening Dealer File ".
000085 03 Open-Dealer-Status Pic XX Value Spaces.

Add the statements necessary to handle opening the file at the beginning of the program and closing the file at
the end. There is no need to Open the file if the transaction file Open fails.

000121 Perform Open-File
000122 If Not File-Error
000123 Perform Open-Dealer-File
000124 End-If

The paragraph that opens the dealer file is coded as follows:

000142 Open-Dealer-File.
000143 Open Input Dealer-File
000144 If Not Dealer-Success
000145 Move Dealer-Status To Open-Dealer-Status
000146 Move Dealer-Open-Error-Message To Error-Message
000147 Perform Display-And-Accept-Error
000148 End-if
000149 .

Don’t forget to close the file at the end of the program.

000129 Perform Close-File
000130 Perform Close-Dealer-File

Now that you have access to the file, you need to code the logic necessary in the validation paragraph.

000181 Move Transaction-Dealer To Dealer-Number
000182 Read Dealer-File
000183 Invalid Key
000184 Set Validation-Error To True
000185 Move "0616" to Cursor-Position
000186 Move "Invalid Dealer Number Entered" To Error-Message
000187 End-Read

These validations greatly reduce the chance of erroneous data entering the system. Data validations such as

these are very common in business systems.

Updating a Master File

The two common methods used to update master files with transaction data are Sequential update and
Random update. Each style has advantages and disadvantages. The Sequential update is easy to recover
from if an error occurs during the update process. The Random update can apply transactions in any order.
These update styles are discussed in detail in the following two sections.

Every file update should include some type of control statistics, which you can use to find and correct any
problems that occur with the update. In the following examples, the dealer master is updated with sales
transactions. To save you time, a sample transaction file has been prepared for each update. The total number
of transactions, the number of rejected transactions, and the commission amount are reported.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Updating a Sequential Master File

Updating a Sequential file involves several elements. The main advantage of such an
update is that transactions are processed against a Sequential Input file, creating a
new master file as Output . If something happens in the update process, the original
Input master file is untouched. Sequential updates require every master file record to
be read and then written to an Output master file. If you are dealing with many
transactions, this approach makes sense. However, if only a single transaction exists, the
entire Input master file must still be read and written. Additionally, in a multiuser or
network environment, where multiple users might need access to the master file
simultaneously, you must prohibit this access until the update process is complete.

When updating a Sequential file, master and transaction files must be in the same
order. The files must be sorted by the field that identifies the master record to the
transaction record. There might be multiple transactions for a single master record. The
programmer must ensure that all transactions for a master record have been applied before
the Output master file record is written and the next master file Input record is read.

The Sequential update proceeds as follows: A record is read from the transaction file
and the master file. One of three things can be true. If the transaction key matches the
master file key, then an update needs to be applied. If the transaction file key is less than
the master file key, then no matching master file record exists and the transaction is
rejected. If the transaction key is greater than the master file key, then no further
transactions, if any, occur for that master record. It should be written to the Output
master, and the next master record Read.

As records are read and processed, one of two things can happen. Either the end of the
master file is reached before the end of the transaction file, or the end of the transaction file
is reached before the end of the master file. When the end of the transaction file is reached,
any remaining master file records can be written directly to the new master file. If the end
of the master file is reached first, then any transactions remaining are rejected, as no more
master file records are available for updating.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

In this update, rejected transactions are saved to a file. When the problem with the
transactions is corrected, then they can be applied in a later update. As a good programmer,
you should never terminate an update process just because you don’t know what to do.
Nothing short of a hardware failure should terminate your update. Writing the rejects to
another file isolates the invalid transactions so that the problem can be researched and
repaired. For these examples, the only error that rejects a transaction is when no matching
master file record exists.

Walking through a Sequential update program is the best way to understand the
process, as shown in Listing 18.2. The program starts as would any other COBOL
program.

Listing 18.2 Sequential File Update

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt18c.
000004* Sequential File Update
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.

The files used by the program are all Line Sequential files. By making the files
Optional , you need not worry about any Open failures. If a file does not exist, it is
created. The files Trans.Seq and Dealer.Seq are provided on the CD-ROM, and after you
install the CD-ROM, they will exist in the \DATAFILE directory of your hard drive as
well. Copy these files into the \TYCOBOL folder. These files are properly formatted and
sorted in dealer number sequence. The transaction file contains numerous records, some
duplicate dealer numbers, and some contain invalid data. The Dealer.Out file is the new
master file, and Reject.Txt contains any rejected transactions.

000010 File-Control.
000011 Select Optional Trans-File Assign To "Trans.Seq"
000012 Organization Is Line Sequential.
000013 Select Optional Dealer-File Assign To "Dealer.Seq"
000014 Organization Is Line Sequential.
000015 Select Optional Dealer-Out Assign To "Dealer.Out"
000016 Organization Is Line Sequential.
000017 Select Optional Reject-File Assign To "Reject.Txt"
000018 Organization Is Line Sequential.

The record layouts for the Output master and the reject file do not need to be coded.
When the records are written, they will be written from the master and transaction Input
file record areas.

000019 Data Division.
000020 File Section.
000021 Fd Trans-File.
000022 01 Trans-Record.

000023 03 Transaction-Date Pic 9(8).
000024 03 Transaction-Text.
000025 05 Transaction-Type Pic X(4).
000026 05 Transaction-Dealer Pic X(8).
000027 03 Transaction-Price Pic S9(7)v99.
000028 03 Transaction-Qty Pic 9(3).
000029 03 Filler Pic X(40).
000030 Fd Reject-File.
000031 01 Reject-Record Pic X(72).
000032 Fd Dealer-File.
000033 01 Dealer-Record.
000034 03 Dealer-Number Pic X(8).
000035 03 Dealer-Name.
000036 05 Last-Name Pic X(25).
000037 05 First-Name Pic X(15).
000038 05 Middle-Name Pic X(10).
000039 03 Address-Line-1 Pic X(50).
000040 03 Address-Line-2 Pic X(50).
000041 03 City Pic X(40).
000042 03 State-Or-Country Pic X(20).
000043 03 Postal-Code Pic X(15).
000044 03 Home-Phone Pic X(20).
000045 03 Work-Phone Pic X(20).
000046 03 Other-Phone Pic X(20).
000047 03 Start-Date Pic 9(8).
000048 03 Last-Rent-Paid-Date Pic 9(8).
000049 03 Next-Rent-Due-Date Pic 9(8).
000050 03 Rent-Amount Pic 9(4)v99.
000051 03 Consignment-Percent Pic 9(3).
000052 03 Last-Sold-Amount Pic S9(7)v99.
000053 03 Last-Sold-Date Pic 9(8).
000054 03 Sold-To-Date Pic S9(7)v99.
000055 03 Commission-To-Date Pic S9(7)v99.
000056 03 Filler Pic X(15).
000057 Fd Dealer-Out.
000058 01 Dealer-Out-Record Pic X(376).

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Working-Storage contains the fields necessary to process the records and to collect
the statistics.

000059 Working-Storage Section.
000060 01 Current-Commission Pic S9(7)v99 Value Zeros.
000061 01 Total-Commission Pic S9(7)v99 Value Zeros.
000062 01 Transactions-Read Pic 9(5) Value Zeros.
000063 01 Transactions-Rejected Pic 9(5) Value Zeros.

Hour 21 is devoted to the intricacies of date processing. However, for this program the
most recent transaction date is being stored in the master record. Because the dates are
stored in month, day, year format, it is impossible to compare them directly to determine
which date is the most recent. The value “01042000 :” evaluates to less than
“08111999 ”, when in actuality the former is a later date. Work-Date and
Reverse-Date in lines 64 through 71 are provided to allow the formatting of the dates
in year, month, day format for comparison.

000064 01 Work-Date.
000065 03 Work-MM Pic 9(2).
000066 03 Work-DD Pic 9(2).
000067 03 Work-YYYY Pic 9(4).
000068 01 Reverse-Date.
000069 03 Work-YYYY Pic 9(4).
000070 03 Work-MM Pic 9(2).
000071 03 Work-DD Pic 9(2).
000072 01 Compare-Date-1 Pic 9(8).
000073 01 Compare-Date-2 Pic 9(8).

These edit fields are used for formatting the audit counts that are displayed at the end of
the program.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000074 01 Edit-Count Pic ZZ,ZZ9.
000075 01 Edit-Amt Pic Z,ZZZ,ZZZ.99-.

The program starts by reading a single record from each file. The Read may result in an
At End condition if the files don’t exist. This condition does not terminate the update
process or cause any problems. The absence of transactions becomes apparent when the
counts are displayed at the end of the process. The Read Paragraphs move
High-Values into the data records when the end of file is reached. This value serves a
dual purpose. First, it is the indicator that is used to terminate the update process. When
both files have been completely read, then both data records are High-Values .
Second, if one file reaches the end first, any comparisons with the remaining file’s data
result in the remaining data values being less. This status ensures that no attempt is made
to read past the end of the master file or transaction file.

000076 Procedure Division.
000077 Chapt18c-Start.
000078 Display "Begin Process Chapt18c"
000079 Open Output Reject-File
000080 Dealer-Out
000081 Input Trans-File
000082 Dealer-File
000083 Perform Read-Dealer
000084 Perform Read-Trans

The process is performed until both records contain High-Values ; that is, each
reaches the end of the file. When both files have been completely read, the update
process is complete. The files may then be closed and the processing statistics displayed.

000085 Perform Process-Files Until
000086 Trans-Record = High-Values And
000087 Dealer-Record = High-Values
000088 Close Reject-File
000089 Dealer-Out
000090 Trans-File
000091 Dealer-File
000092 Move Transactions-Read To Edit-Count
000093 Display "Processing Complete"
000094 Display "Transactions Read " Edit-Count
000095 Move Transactions-Rejected To Edit-Count
000096 Display "Transactions Rejected " Edit-Count
000097 Move Total-Commission To Edit-Amt
000098 Display "Total Commission " Edit-Amt
000099 Stop Run
000100 .
000101

The Process-Files Paragraph is where the actual update process occurs. The
current transaction record is compared to the master record. Based on the results of the
compare, one of three things can happen. If the current dealer number is less than that of
the transaction file, then the process is finished with the present master record and it can
be written to the Output file.

000102 Process-Files.
000103 Evaluate True
000104 When Dealer-Number < Transaction-Dealer
000105 Perform Write-Dealer-Out
000106 Perform Read-Dealer

If the dealer number in the master file is greater than the current transaction, then this
transaction cannot be applied to a dealer record and is rejected. After each valid
transaction is applied, a new one is read. If a dealer number in the master file is greater
than the dealer number in the transaction file, there was no matching dealer number for
the transaction.

000107 When Dealer-Number > Transaction-Dealer
000108 Perform Write-Reject
000109 Perform Read-Trans

If the dealer number in the master file matches the dealer number in the transaction file,
then the dealer record can be updated. After this transaction is used to update the master
file record, a new transaction is read. Notice that no new master file record is read
because multiple transactions might apply for each master file record. Transactions must
be read and applied until no more match. When a transaction is read that has a higher
dealer number, then the existing master file record can be written to the Output file. It
does not matter in the least if the record has been modified or not. All master records
must be written to the new Output file.

000110 When Dealer-Number = Transaction-Dealer
000111 Perform Apply-Transaction
000112 Perform Read-Trans
000113 End-Evaluate
000114 .

This Paragraph is where the master file fields are updated with the appropriate fields
from the transaction record. First the Sold-To-Date is incremented by the proper
amount. The Compute statement takes care of multiplying the unit price by the quantity
and adding the result to the master field. The second Compute figures the commission
on this item based on the consignment percentage that is stored in the dealer file. The
percentage is divided by 100 because it was stored as a whole number. After the
consignment amount is computed, it is added to the master file record and to the audit
totals.

000115 Apply-Transaction.
000116 Compute Sold-To-Date = Sold-To-Date +
000117 (Transaction-Qty * Transaction-Price)
000118 Compute Current-Commission Rounded =
000119 (Transaction-Qty * Transaction-Price) *
000120 (Consignment-Percent / 100)
000121 Add Current-Commission To Commission-To-Date
000122 Total-Commission

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The last sale date from the master file is reversed so that it can be properly
compared. This step is done simply, and the result is stored in a temporary field
that is used in the comparison. The transaction date is similarly reversed. Then the
two dates are compared, and if the transaction date is after the last sold date in the
master file, the transaction date is moved to the master record. It is very important
to remember that the nonreversed date is moved to the record. This step ensures
that all the dates are in the same format.

000123 Move Last-Sold-Date To Work-Date
000124 Move Corresponding Work-Date To Reverse-Date
000125 Move Reverse-Date To Compare-Date-1
000126 Move Transaction-Date To Work-Date
000127 Move Corresponding Work-Date To Reverse-Date
000128 Move Reverse-Date To Compare-Date-2
000129 If Compare-Date-2 > Compare-Date-1
000130 Move Transaction-Date To
000131 Last-Sold-Date
000132 End-If
000133 .

The following Paragraphs are performed from elsewhere in the program.
Notice that when a reject record is written, the count of rejected records is
incremented. Note also that as each file is read, if the end of file is reached,
High-Values is moved into the record area. This step is the key to controlling
the process. By having High-Values in the record, no compare can be greater
than that of the value in the data record, and no further data records will be read.
As each transaction record is read, the count of transactions is incremented. It is
important to realize that this counter is incremented only when the Read is
successful, not At End of file. A frequent error when accumulating these types
of counts is to increment the counter for the Read that resulted in an end of file
condition.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000134 Write-Dealer-Out.
000135 Write Dealer-Out-Record From Dealer-Record
000136 .
000137 Write-Reject.
000138 Add 1 To Transactions-Rejected
000139 Write Reject-Record From Trans-Record
000140 .
000141 Read-Dealer.
000142 Read Dealer-File
000143 At End
000144 Move High-Values To Dealer-Record
000145 End-Read
000146 .
000147 Read-Trans.
000148 Read Trans-File
000149 At End
000150 Move High-Values To Trans-Record
000151 Not At End
000152 Add 1 To Transactions-Read
000153 End-Read
000154 .

As you can see, the Sequential update is straightforward and can be written in
relatively few lines of code. After the Sequential update is complete, the
original master file must be replaced with the new Output file. This step can
occur after the counts are validated and the user is satisfied with the results. If the
update process is interrupted for any reason, you can restart the Sequential
update from the beginning with no ill effects.

Enter, compile, and run the sample program in Listing 18.2. The Output screen
from this program, if it is properly coded, is shown in Figure 18.1.

Figure 18.1 Results of running the program in Listing 18.2.

Updating an Indexed Master File

Random updates are applied against Indexed master files. The update is called
Random because the transactions do not need to be in any particular order. Each
transaction is matched and applied against a master file record. This type of
update is much easier to program than a Sequential file update.

Although a Sequential file update may seem less efficient, as it has to Read
and Write every master file record, in many cases the Indexed file update is
less efficient. Because the transaction records are not in any particular sequence,
after each update is applied, the master file record must be rewritten. If many
transaction records exist for a particular master file record, this process can be
very inefficient.

javascript:displayWindow('images/18-01.jpg',791,505)
javascript:displayWindow('images/18-01.jpg',791,505)

The advantages to this type of update relate to the relative ease of programming
such an update. The process is simple and easy to follow. The transaction file is
processed from beginning to end. As each transaction record is read, the related
master file record is read. If the master file record is not found, then the
transaction is rejected and the program moves on to the next transaction. If the
master file does exist, the transaction is applied and the master file record is
rewritten. When all transactions have been processed, the update is complete.

One disadvantage occurs when a problem develops during the update. It is
virtually impossible to back out the transactions that have been applied. You must
either determine the last successful transaction or restore a backup copy of the
master file and reapply the update.

Review the following program that updates the Indexed file Dealer.Dat from
Trans.Txt. These files are included on the CD-ROM in the \DATAFILE directory.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The example in Listing 18.3 uses one less file than the Sequential update did. There is no
Output master file. The Indexed dealer file is accessed in Random mode.

Listing 18.3 Indexed File Update

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt18d.
000004* Indexed File Update
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.
000011 Select Optional Trans-File Assign To "Trans.Txt"
000012 Organization Is Line Sequential.
000013 Select Optional Dealer-File Assign To "Dealer.Dat"
000014 Organization Indexed
000015 Access Random
000016 Record Key Dealer-Number
000017 Alternate Record Key Dealer-Name
000018 File Status Dealer-Status.
000019 Select Optional Reject-File Assign To "Reject.Txt"
000020 Organization Is Line Sequential.
000021 Data Division.
000022 File Section.
000023 Fd Trans-File.
000024 01 Trans-Record.
000025 03 Transaction-Date Pic 9(8).
000026 03 Transaction-Text.
000027 05 Transaction-Type Pic X(4).
000028 05 Transaction-Dealer Pic X(8).
000029 03 Transaction-Price Pic S9(7)v99.
000030 03 Transaction-Qty Pic 9(3).
000031 03 Filler Pic X(40).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000032 Fd Reject-File.
000033 01 Reject-Record Pic X(72).
000034 Fd Dealer-File.
000035 01 Dealer-Record.
000036 03 Dealer-Number Pic X(8).
000037 03 Dealer-Name.
000038 05 Last-Name Pic X(25).
000039 05 First-Name Pic X(15).
000040 05 Middle-Name Pic X(10).
000041 03 Address-Line-1 Pic X(50).
000042 03 Address-Line-2 Pic X(50).
000043 03 City Pic X(40).
000044 03 State-Or-Country Pic X(20).
000045 03 Postal-Code Pic X(15).
000046 03 Home-Phone Pic X(20).
000047 03 Work-Phone Pic X(20).
000048 03 Other-Phone Pic X(20).
000049 03 Start-Date Pic 9(8).
000050 03 Last-Rent-Paid-Date Pic 9(8).
000051 03 Next-Rent-Due-Date Pic 9(8).
000052 03 Rent-Amount Pic 9(4)v99.
000053 03 Consignment-Percent Pic 9(3).
000054 03 Last-Sold-Amount Pic S9(7)v99.
000055 03 Last-Sold-Date Pic 9(8).
000056 03 Sold-To-Date Pic S9(7)v99.
000057 03 Commission-To-Date Pic S9(7)v99.
000058 03 Filler Pic X(15).
000059 Working-Storage Section.
000060 01 Current-Commission Pic S9(7)v99 Value Zeros.
000061 01 Total-Commission Pic S9(7)v99 Value Zeros.
000062 01 Transactions-Read Pic 9(5) Value Zeros.
000063 01 Transactions-Rejected Pic 9(5) Value Zeros.
000064 01 Work-Date.
000065 03 Work-MM Pic 9(2).
000066 03 Work-DD Pic 9(2).
000067 03 Work-YYYY Pic 9(4).
000068 01 Reverse-Date.
000069 03 Work-YYYY Pic 9(4).
000070 03 Work-MM Pic 9(2).
000071 03 Work-DD Pic 9(2).
000072 01 Compare-Date-1 Pic 9(8).
000073 01 Compare-Date-2 Pic 9(8).
000074 01 Used-Transaction-Flag Pic X Value Spaces.
000075 88 Used-This-Tran Value "Y".
000076 01 Edit-Count Pic ZZ,ZZ9.
000077 01 Edit-Amt Pic Z,ZZZ,ZZZ.99-.

Three new fields are necessary in Working-Storage : one to note when the transaction file has
reached end of file, another to return the File Status value of operations against the dealer
Indexed file, and a flag that is set in case an error occurs on the Indexed file that is captured by
the Declaratives . If such an error exists, processing the update should terminate. The only
error that can occur here is a critical error caused by a serious problem with the Indexed file, such
as a hardware failure.

000078 01 Dealer-Status Pic XX Value Zeros.

000079 88 Dealer-Success Value "00" Thru "09".
000080 01 Trans-Flag Pic X Value Spaces.
000081 88 End-Of-Trans Value "Y".
000082 01 Dealer-Flag Pic X Value Spaces.
000083 88 Dealer-Error Value "Y".
000084 Procedure Division.
000085 Declaratives.
000086 Dealer-File-Error Section.
000087 Use After Standard Error Procedure On Dealer-File
000088 .
000089 Dealer-Error-Paragraph.
000090 Display "Error on Dealer File " Dealer-Status
000091 Set Dealer-Error To True
000092 .

The processing loop is simple. The files are opened, and then the transaction file is read and
processed until the end of file is reached or an error occurs in the Indexed dealer file.

000093 End Declaratives.
000094 Chapt18d-Start.
000095 Display "Begin Process Chapt18d"
000096 Open Output Reject-File
000097 Input Trans-File
000098 I-O Dealer-File
000099 Perform Process-Files Until End-Of-Trans Or Dealer-Error
000100 Close Reject-File
000101 Trans-File
000102 Dealer-File
000103 Move Transactions-Read To Edit-Count
000104 Display "Processing Complete"
000105 Display "Transactions Read " Edit-Count
000106 Move Transactions-Rejected To Edit-Count
000107 Display "Transactions Rejected " Edit-Count
000108 Move Total-Commission To Edit-Amt
000109 Display "Total Commission " Edit-Amt
000110 Stop Run
000111 .
000112
000113 Process-Files.
000114 Read Trans-File
000115 At End Set End-Of-Trans To True
000116 Not At End
000117 Add 1 To Transactions-Read
000118 Perform Attempt-Transaction
000119 End-Read
000120 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Before a master file record can be updated, the program must use a Read statement to
determine whether the corresponding record exists in the master file. If the Read fails
because of an invalid key, then the record is written to the reject file. If the Read is
successful, the master file is updated, using the same logic as in the Sequential
update, and then rewritten.

000121 Attempt-Transaction.
000122 Move Transaction-Dealer To Dealer-Number
000123 Read Dealer-File
000124 Invalid Key
000125 Perform Write-Reject
000126 Not Invalid Key
000127 Perform Apply-Transaction
000128 End-Read
000129 .
000130 Apply-Transaction.
000131 Compute Sold-To-Date = Sold-To-Date +
000132 (Transaction-Qty * Transaction-Price)
000133 Compute Current-Commission Rounded =
000134 (Transaction-Qty * Transaction-Price) *
000135 (Consignment-Percent / 100)
000136 Add Current-Commission To Commission-To-Date
000137 Total-Commission
000138 Move Last-Sold-Date To Work-Date
000139 Move Corresponding Work-Date To Reverse-Date
000140 Move Reverse-Date To Compare-Date-1
000141 Move Transaction-Date To Work-Date
000142 Move Corresponding Work-Date To Reverse-Date
000143 Move Reverse-Date To Compare-Date-2
000144 If Compare-Date-2 > Compare-Date-1
000145 Move Transaction-Date To

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000146 Last-Sold-Date
000147 End-If
000148 Rewrite Dealer-Record
000149 .
000150 Write-Reject.
000151 Add 1 To Transactions-Rejected
000152 Write Reject-Record From Trans-Record
000153 .

As you can see, the Indexed file update is very easy to follow and can be efficient.
However, if the potential exists for many transaction records to be applied against a
single master file record, this approach can be less efficient than a simple
Sequential update.

Summary

In this hour, you learned the following:

• How data validation can eliminate problems that might occur later during an
update process.

• Several methods for validating user entered data. These include checking the
entry against an internal table and validating against an Indexed file.

• Two common file update procedures, Sequential and Random, and the
advantages and disadvantages of each.

• How each of these updates is coded and data is processed.

• The importance of reporting errors, continuing processing when possible, and
accumulating audit totals.

• Why the most efficient update method depends on the types and numbers of
transactions being applied.

Q&A

Q When updating a Sequential file, what do I need to watch for?

A Common mistakes include not processing the remaining records in the file that does
not reach end of file first and writing the new master record before all transactions are
applied.

Q Can I apply the techniques for master file updating to other updates?

A Yes. The Random update, in particular, is very similar to the updates that occur in
interactive programs in which users are entering data and updating a master file record
with each entry.

Q Can’t I just ignore data validation for user input and then take care of the
validation in the update program?

A Sure, but it’s not a good idea. Many systems, people, and procedures can come
between you and the input of the transactional data. Tracing problems to their source
can be very difficult, so you are better off having as much up-front data validation as
possible. However, if you do encounter an error caused by invalid data in a transaction
record, don’t abort the update process. Store the invalid data for later problem

diagnosis.

Q I really think the Sequential update is confusing. Can I use a Random
update all the time instead?

A Maybe and maybe not. Your master file may not be an Indexed file. Additionally,
you may find that a Sequential update is many times more efficient than a
Random update, depending on the transactions you are processing.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the
section “Quiz and Exercise Questions and Answers” that can be found on the CD. This
section contains quiz questions and exercises for you to complete, as well as the
corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 19
Reporting
Business today relies on computers. More specifically, business today relies on the reports generated by
computers. Computers are fantastic for gathering, storing, sorting, analyzing, and generally processing
information. Ultimately the results of this activity must be made available to the end user. This hour covers
the basics of creating a report, including topics such as

• The importance of reports

• Report layout design

• Defining report records in Working-Storage

• Writing Before and After Advancing

• Page breaks

Historically, programs presented output to the user in the form of printed reports. Even today, the printed
report is the primary means of data presentation in business. Nevertheless, reports are not always printed on
paper. They can be saved to files, sent via email, faxed, or displayed on the screen via a Web browser. Today
users receive reports via a nearly infinite variety of methods.

Reports range from large inventory listings that show each and every item to month-end and year-end
summary reports that give a snapshot of a company’s financial status. When you go shopping and the
computer prints your receipts, you are receiving a report. When you open your bank statement, you are
looking at a computer-generated report. Reporting is extremely fundamental to the business process.

Regardless of the delivery method, the basics of reporting have remained the same. The result of the data
processing must be delivered to the user in a clear, concise, and easy-to-understand format.

Creating Reports

An important part of any business-programming task is creating reports. COBOL has some simple features
built into the language to aid in report creation. You are already aware of the different data-editing
capabilities of the language. These play a big part in the reporting process. To make reports readable and
easy to understand, the various data fields are edited. Instead of representing 12 dollars and 99 cents as
00001299, a good report will show $12.99. Dates should be displayed in the format that users expect. In the
United States, this format is MM/DD/YYYY or MM/DD/YY. Showing a report-creation date of 990317 is
cryptic and hard to understand; 03/17/99 more readily identifies the information as a date to the user. Try
to keep your reporting as plain, simple, and clear as possible.

Designing Your Report Layout

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The most important step in developing a useful report is planning. Before you can write a program that
creates a report, you must decide how the final report should look. This planning tool is called the report
layout. The report layout can be anything from a loose sketch on a piece of paper to a tightly controlled
formalized report description. Reports are frequently designed on report layout forms. A report layout form
is simply a paper form with horizontal and vertical lines, corresponding to lines and columns on the page. A
typical page printed on a modern laser printer is 80 columns wide and 60 lines long. The examples in this
book adhere to the 80-by-60 standard. Reports usually have heading lines that describe the contents of the
report and give information about its creation. Page numbers are usually included. It is a good idea to include
information such as the name of the program that created the report with the date and time the report was
produced.

The first reporting example creates a report from the dealer file. This report shows the dealer name, last rent
paid date, next rent due date, and rent amount. One line is printed per entry. The report has a title, page
number, and headings. The layout is as follows:

Created by: CHAPT19A Dealer File Rent Report Page XXXX
Created on: MM/DD/YY
At: HH:MM:SS

 Last Rent Next Rent Rent
Name Paid Due Amount

XX MM/DD/YYYY MM/DD/YYYY $$$,$$$.99

When creating a report, each horizontal print line is represented by a print record. The records are created in
Working-Storage . A typical report has one or more heading lines followed by detail lines. The detail
line contains the report details, hence the name. The following Working-Storage entries describe the
report lines used for this first report.

000050 01 Heading-Line-1.
000051 03 Filler Pic X(12) Value "Created by:".
000052 03 Filler Pic X(8) Value "CHAPT19A".
000053 03 Filler Pic X(11) Value Spaces.
000054 03 Filler Pic X(23) Value "Dealer File Rent Report".
000055 03 Filler Pic X(10) Value Spaces.
000056 03 Filler Pic X(5) Value "Page".
000057 03 Page-No Pic Z(4)9 Value Zeros.
000058 01 Heading-Line-2.
000059 03 Filler Pic X(12) Value "Created on:".
000060 03 Date-MM Pic 99.
000061 03 Filler Pic X Value "/".
000062 03 Date-DD Pic 99.
000063 03 Filler Pic X Value "/".
000064 03 Date-YY Pic 99.
000065 01 Heading-Line-3.
000066 03 Filler Pic X(12) Value "At:".
000067 03 Time-HH Pic 99.
000068 03 Filler Pic X Value ":".
000069 03 Time-MM Pic 99.
000070 03 Filler Pic X Value ":".
000071 03 Time-SS Pic 99.
000072 01 Heading-Line-4.
000073 03 Filler Pic X(41) Value Spaces.
000074 03 Filler Pic X(27) Value "Last Rent Next Rent".
000075 03 Filler Pic X(4) Value "Rent".
000076 01 Heading-Line-5.
000077 03 Filler Pic X(44) Value "Name".
000078 03 Filler Pic X(29) Value "Paid Due Amount".

000079 01 Detail-Line.
000080 03 Detail-Name Pic X(40) Value Spaces.
000081 03 Filler Pic X Value Spaces.
000082 03 Last-Rent-Paid-Date Pic 99/99/9999.
000083 03 Filler Pic X Value Spaces.
000084 03 Next-Rent-Due-Date Pic 99/99/9999.
000085 03 Filler Pic X Value Spaces.
000086 03 Rent-Amount Pic $$$,$$$.99.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Notice the use of literals and Filler areas in the different print line descriptions. You can see
the print lines as they are described in Working-Storage and how they relate to the visual
representation of the report layout. Edit patterns are used for many of the fields.

Creating a report is accomplished by writing the different heading and detail lines to the printer.
The printer is merely another Sequential file as far as the COBOL program is concerned.
Many compilers use a special name to Assign in the Select statement when defining a
printer to the program. This name is Printer . The Select statement for Chapt19a follows.

000011 Select Report-File Assign To Printer.

The newly defined Report-File must have a corresponding FD in the program.

000020 FD Report-File.
000021 01 Report-Record Pic X(80).

Notice that the report record does not have a special record layout. All records are written to the
Report-File using Write with From.

When creating a report, the file assigned to the Printer is opened for Output in the program.

The Write Statement and Reports

The COBOL Write statement has several options that make creating printed reports easy.
These clauses—Before and After —position the print on the page.

The Before and After clauses allow you to Write print records Before and After
Advancing the specified number of print lines. In addition, these clauses allow you to Write
your print records Before or After a Page break.

For example, the normal print logic is to print a line After Advancing a single line. This
clause causes the printer to scroll down a single line and then print the print line. The
corresponding code follows.

000138 Write Report-Record from Detail-Line After Advancing 1

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The word Advancing is optional and may be omitted. When it is time to print the next print
line, the process is repeated. If you want a double-spaced report, you can Write all of your print
lines After Advancing 2 . If you want to Write a print line exactly where the printer is
positioned, without skipping down a line, you can either Write After Advancing 0, or
Write Before Advancing 1 .

Creating a report requires you to control the line spacing of the printer. It’s not the same as
choosing single or double spacing. The programmer is required to control every action that the
printer takes when printing a report. When you Write to the Printer , you send the print line
that you want to have printed, along with the action you want the printer to take in reference to
that line. If you send every line to the Printer with After Advancing 0 , then all the print
lines print on top of one another because the printer does not advance the paper.

After Advancing causes the printer to advance to the next print line before writing the
record. After the record is written, the printer remains positioned on that same print line. This
clause allows you to print over that line again. You may intend to do so, or it may happen to you
by accident! If you print a line After Advancing 1 and then print another line After
Advancing 0 , the second line prints over the first.

Before Advancing does just the opposite. When Before is used, the print line is written to
the Printer , and then the specified printer control is performed. When Before Advancing
is used, unless a value of zero is specified, the printer is always positioned on a blank line.

The number of lines to advance does not need to be a numeric literal. You can also use a numeric
data item. The value must not be a negative number.

000101 Write Report-Record After Advancing Lines-To-Feed

In addition to Advancing a number of lines, you can execute a Write and cause the printer to
advance to a new Page. This type of Write is frequently performed when writing a heading
line.

000147 Write Report-Record From Heading-Line-1 After Page

This statement causes the printer to advance to a new Page and then print your heading line.

Before Advancing works exactly as you would expect. It first prints the line and then
advances the specified number of lines or Page. As you can see, you would not want to use
Before Advancing when printing a heading line. Consider the following instruction:

000147 Write Report-Record From Heading-Line-1 Before Page

If you execute line 147, the printer prints your heading line and then advances to a new Page!
This result is not exactly what you had in mind.

If the Before or After is omitted when writing to a Printer , the compiler assumes After
1.

Programming for Page Breaks

One of the issues that you face when creating reports is the proper printing of the heading and
detail lines. Ideally, the headings should be at the top of each page, with a page number,
followed by the detail. When the page is full, you should advance to a new Page, printing a set
of headings and then more detail, until the report is complete. Starting a new page is called a
page break.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

To control this process, you have to count lines and pages. You need to know how many lines can be
printed on a page. As print lines are written to the Printer , the counter is incremented. When the
maximum number of lines that can be on a page is reached, a new page with headings is printed. One
method programmers use is to Write the first heading lines when the Printer is opened. I dislike this
approach, as it causes a report to be printed when, in fact, there may be no data to print. Instead, I like the
alternative approach.

The second approach involves an initial value in the line counter that is higher than the maximum number
of lines on the page. This method allows the normal program logic to examine the line counter before
printing the detail line and to print a new page and heading lines before printing the report detail if the
maximum line count has been exceeded. The advantage to this approach is that no heading lines will be
printed unless there is a detail record to be printed under them. The page counter starts at zero and is
incremented before each set of report headings is printed.

The following program fulfills the reporting requirements described earlier in the hour. Notice that the
Report-File is assigned to the reserved name Printer. Printer is not a data item declared
anywhere in your program. See Listing 19.1.

Listing 19.1 A Simple Report

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt19a.
000004* Simple Report
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.
000010 File-Control.
000011 Select Report-File Assign To Printer.
000012 Select Dealer-File Assign To "Dealer.Dat"
000013 Organization Indexed
000014 Access Sequential
000015 Record Key Dealer-Number
000016 Alternate Record Key Dealer-Name
000017 File Status Dealer-Status.
000018 Data Division.
000019 File Section.
000020 Fd Report-File.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000021 01 Report-Record Pic X(80).
000022 Fd Dealer-File.
000023 01 Dealer-Record.
000024 03 Dealer-Number Pic X(8).
000025 03 Dealer-Name.
000026 05 Last-Name Pic X(25).
000027 05 First-Name Pic X(15).
000028 05 Middle-Name Pic X(10).
000029 03 Address-Line-1 Pic X(50).
000030 03 Address-Line-2 Pic X(50).
000031 03 City Pic X(40).
000032 03 State-Or-Country Pic X(20).
000033 03 Postal-Code Pic X(15).
000034 03 Home-Phone Pic X(20).
000035 03 Work-Phone Pic X(20).
000036 03 Other-Phone Pic X(20).
000037 03 Start-Date Pic 9(8).
000038 03 Last-Rent-Paid-Date Pic 9(8).
000039 03 Next-Rent-Due-Date Pic 9(8).
000040 03 Rent-Amount Pic 9(4)v99.
000041 03 Consignment-Percent Pic 9(3).
000042 03 Last-Sold-Amount Pic S9(7)v99.
000043 03 Last-Sold-Date Pic 9(8).
000044 03 Sold-To-Date Pic S9(7)v99.
000045 03 Commission-To-Date Pic S9(7)v99.
000046 03 Filler Pic X(15).
000047 Working-Storage Section.
000048 01 Dealer-Status Pic XX Value Zeros.
000049 88 Dealer-Success Value "00" Thru "09".

The heading and detail lines are described here in Working-Storage .

000050 01 Heading-Line-1.
000051 03 Filler Pic X(12) Value "Created by:".
000052 03 Filler Pic X(8) Value "CHAPT19A".
000053 03 Filler Pic X(11) Value Spaces.
000054 03 Filler Pic X(23) Value "Dealer File Rent Report".
000055 03 Filler Pic X(10) Value Spaces.
000056 03 Filler Pic X(5) Value "Page".
000057 03 Page-No Pic Z(4)9 Value Zeros.
000058 01 Heading-Line-2.
000059 03 Filler Pic X(12) Value "Created on:".
000060 03 Date-MM Pic 99.
000061 03 Filler Pic X Value "/".
000062 03 Date-DD Pic 99.
000063 03 Filler Pic X Value "/".
000064 03 Date-YY Pic 99.
000065 01 Heading-Line-3.
000066 03 Filler Pic X(12) Value "At:".
000067 03 Time-HH Pic 99.
000068 03 Filler Pic X Value ":".
000069 03 Time-MM Pic 99.
000070 03 Filler Pic X Value ":".
000071 03 Time-SS Pic 99.
000072 01 Heading-Line-4.
000073 03 Filler Pic X(41) Value Spaces.
000074 03 Filler Pic X(27) Value "Last Rent Next Rent".
000075 03 Filler Pic X(4) Value "Rent".

000076 01 Heading-Line-5.
000077 03 Filler Pic X(44) Value "Name".
000078 03 Filler Pic X(29) Value "Paid Due Amount".
000079 01 Detail-Line.
000080 03 Detail-Name Pic X(40) Value Spaces.
000081 03 Filler Pic X Value Spaces.
000082 03 Last-Rent-Paid-Date Pic 99/99/9999.
000083 03 Filler Pic X Value Spaces.
000084 03 Next-Rent-Due-Date Pic 99/99/9999.
000085 03 Filler Pic X Value Spaces.
000086 03 Rent-Amount Pic $$$,$$$.99.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The necessary counters for tracking the number of lines printed and the page number are coded
next. Notice that the initial value of Line-Count is 99 . The Max-Lines data item contains
the maximum number of lines that is desired per page. Because 99 is greater than this value, a
page break is triggered for the first detail record encountered.

000087 01 Line-Count Pic 99 Value 99.
000088 01 Page-Count Pic 9(4) Value Zeros.
000089 01 Max-Lines Pic 99 Value 60.

Some working fields are set up here to handle date and time formatting for the report headings.

000090 01 Date-And-Time-Area.
000091 03 Work-Date Pic 9(6).
000092 03 Work-Date-X Redefines Work-Date.
000093 05 Date-YY Pic 99.
000094 05 Date-MM Pic 99.
000095 05 Date-DD Pic 99.
000096 03 Work-Time Pic 9(8).
000097 03 Work-Time-X Redefines Work-Time.
000098 05 Time-HH Pic 99.
000099 05 Time-MM Pic 99.
000100 05 Time-SS Pic 99.
000101 05 Filler Pic XX.
000102
000103 Procedure Division.
000104 Declaratives.
000105 Dealer-File-Error Section.
000106 Use After Standard Error Procedure On Dealer-File
000107 .
000108 Dealer-Error-Paragraph.
000109 Display "Error on Dealer File " Dealer-Status
000110 .
000111 End Declaratives.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The program first opens the files, including the Printer file. If the input file Open is
successful, the program retrieves the date and time and places these in the heading lines. No
report records are written yet. The Start statement allows the printing of the report in name
sequence. The file is then processed one record at a time until there is no longer a successful
return code on the dealer file.

000112 Chapt19a-Start.
000113 Display "Begin Process Chapt19a"
000114 Perform Open-Files
000115 If Dealer-Success
000116 Perform Fill-Initial-Headings
000117 Perform Start-Alternate-Key
000118 Perform Process-File Until Not Dealer-Success
000119 Perform Close-Files
000120 End-If
000121 Stop Run.
000122 Start-Alternate-Key.
000123 Move Low-Values To Dealer-Name
000124 Start Dealer-File Key Not < Dealer-Name
000125 .

The Process-File paragraph merely reads the input data file. If it is not the end of file, data
from the record that was just read is printed. If it is the end of file, nothing happens in this
Paragraph , but because the dealer File Status is set to 10 for end of file, the processing
loop terminates.

000126 Process-File.
000127 Read Dealer-File
000128 At End Continue
000129 Not At End
000130 Perform Print-This-Record
000131 End-Read
000132 .

The first thing that happens before the detail record can be printed is the formatting of the
name. In the dealer file, the name is split into its three parts—first, last, and middle. The report
requires them to be in a single field. After that, the fields in the dealer record that are also in the
detail line are moved with a simple Move with Corresponding . The only fields moved
from the dealer file are Last-Rent-Paid-Date , Next-Rent-Due-Date and
Rent-Amount . These three fields are the only fields that the two records have in common.

000133 Print-This-Record.
000134 Perform Format-Name
000135 Move Corresponding Dealer-Record To Detail-Line

After the detail record is constructed, the line counter is checked to see whether a new page
with a set of headings is necessary. If the line count is reached, or exceeded, the heading line is
printed.

000136 If Line-Count >= Max-Lines
000137 Perform Heading-Routine
000138 End-If

Tip:
Why not just check for = when comparing the line count? The reason is that not all reporting
tasks print a single print line per detail record. In some cases, multiple print lines are created for
a single input record. The user does not want the detail for a single item to span multiple pages,
so the line counter is checked only before the first detail Write for a particular input record.
The number of actual print lines may exceed the maximum the next time it is checked, and the
equal condition may never occur, causing the program to print multiple pages of report without
the appropriate page breaks.

After checking for a new page, and printing the heading lines if necessary, the detail line may
be printed. Notice that the detail line is printed After Advancing a single line. The report
is single-spaced. Always add the proper number of lines to the line counter after printing the
detail lines.

000139 Write Report-Record From Detail-Line After 1
000140 Add 1 To Line-Count
000141 .

The heading routine is interesting. The first thing that happens is that the page counter is
incremented and moved to the appropriate field in the heading record for printing. Remember
that the initial value specified in Working-Storage was zero. Notice the check for page 1.
It is executed because the printer is positioned at a new page when the report starts printing.
Sending a page break to the printer on the first page is a waste of paper, and annoys most users.
This check allows the first line to either print after a page break, if this is not the first page, or
on the first line of the current page if it is. After Zero causes the printer to print only the
current line and not change the paper position.

000142 Heading-Routine.
000143 Add 1 To Page-Count
000144 Move Page-Count To Page-No
000145 If Page-Count = 1
000146 Write Report-Record From Heading-Line-1 After Zero
000147 Else
000148 Write Report-Record From Heading-Line-1 After Page
000149 End-If

The second and third heading lines print After 1 line and follow the first one. However, an
extra space is desired before the fourth heading line. Therefore, it is printed using After 2 .
This clause causes the printer to skip two lines and then print the detail line.

000150 Write Report-Record From Heading-Line-2 After 1
000151 Write Report-Record From Heading-Line-3 After 1
000152 Write Report-Record From Heading-Line-4 After 2

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Notice the apparently strange printing of heading line 5 (see lines 153 and 154). First, it is printed
After 1 and then again Before 2 . What does this coding accomplish? On older impact printers,
before the day of lasers, this common technique was used to overstrike a print line and make the
printing appear bold. With Windows-based printing, the line is physically printed only once. Printing
Before 2 inserts a blank line between the last heading line and the first detail line on the page the
second time the line is printed. An alternative to this approach is to Move spaces to the print record
and then print After 1 again.

000153 Write Report-Record From Heading-Line-5 After 1
000154 Write Report-Record From Heading-Line-5 Before 2

When printing your heading lines, you do not have to count lines after every print. Simply move the
total number of lines advanced to the line counter to reset the count.

000155 Move 7 To Line-Count
000156 .

The name formatting that occurs here simply strings the three names into one. It is not as good a
routine as it might be. If embedded spaces occur in any of the names, this method does not properly
assemble the full name. A technique for properly handling this type of situation is discussed in Hour
22, “Other Intrinsic Functions .”

000157 Format-Name.
000158 Move Spaces To Detail-Name
000159 String First-Name Delimited By Space
000160 " " Delimited By Size
000161 Middle-Name Delimited By Space
000162 " " Delimited By Size
000163 Last-Name Delimited By Space
000164 Into Detail-Name
000165 End-String
000166 .

This next paragraph is the one that accepts the system date and time and formats them for the report.
Because the formats of the fields are in the reverse order of what people are used to looking at, the
Move Corresponding handles moving the appropriate fields to the heading record, where they
are formatted in a more normal order. Remember that the date returned has only the last two digits of

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the year and should not be used in any calculations. However, using the two-digit date for cosmetic
purposes on a report is acceptable.

000167 Fill-Initial-Headings.
000168 Accept Work-Date From Date
000169 Accept Work-Time From Time
000170 Move Corresponding Work-Date-X To
000171 Heading-Line-2
000172 Move Corresponding Work-Time-X To
000173 Heading-Line-3
000174 .
000175 Open-Files.
000176 Open Output Report-File
000177 Input Dealer-File
000178 .
000179 Close-Files.
000180 Close Report-File
000181 Dealer-File
000182 .

Compile, link, and run the program. If you allow the report to finish printing, it will be nearly 100
pages, so cancel it if you don’t want the whole document to print. As you run the program, you need
to adjust the printer font, which defaults to a small seven dots per inch. Fujitsu provides a runtime
option that you can change to adjust the print size to a more standard size for the PC. (This option is
not available if you installed the 16-bit version of the compiler.) Selecting the TYPE-PC font results
in larger, monospaced print.

• Select the program from WINEXEC. The runtime environment setup window appears.

• Choose the Environment Setup menu option.

• Select the Keyword menu item.

• Click @CBR_PrinterANK_Size.

• Click the Selection button.

• Click in the field to the left of the Set button and position the cursor after the = sign.

• Enter TYPE-PC after the =. The entire line should now say
@CBR_PrinterANK_Size=TYPE-PC .

• Click the Set button.

• Click the Save button.

• Select OK when asked whether you want to add the entry to the INI file. This setting is in
effect only for the execution of this particular program name.

When you next run the program, it will print with a more reasonable font size.

Printing reports usually does not involve this simple one-data-record, one-print-record approach.
Sometimes multiple data records are read from various files to construct a single print line. At other
times, reporting programs limit the data records that are being reported by allowing the user to
specify certain selection criteria.

What if you want the program to print only those dealers with numbers that begin with the letter C?
When you design and code your programs, remember to keep them clear and easy to follow. Don’t
use strange, inappropriate data names. Try to keep things self-explanatory. If your program is
properly written, using a structured approach, future modification will be a minor task. What change
is necessary to ensure that the program selects only dealer records with numbers that start with the
letter C? Because of the structured approach used, the change is very simple:

000285 Read Dealer-File

000286 At End Continue
000287 Not At End
000288 If Dealer-Number (1:1) = "C"
000289 Perform Print-This-Record
000290 End-If
000291 End-read

For this single selection, the If statement around the Perform will suffice. If you have more
complex selection logic, you can Perform a Paragraph that sets a switch you can check to see
whether this particular record was selected.

000285 Read Dealer-File
000286 At End Continue
000287 Not At End
000288 Perform Check-Record
000289 If Use-Record
000290 Perform Print-This-Record
000291 End-If
000292 End-Read

Occasionally, you might want to underline a line on a report. To do so, define a new line in
Working-Storage .

000020 01 Underline-Line Pic X(80) Value all "_".

Then, when printing the line you wish to underline, make sure not to advance a line afterward. For
example, use After Advancing 0 . The printer remains at the beginning of the last print line
printed. Then print the Underline-Line with the normal After Advancing clause.

000040 Write Report-Record From Underline-Line After Advancing 1

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Reports are frequently written as the Output Procedure from a Sort . In
this situation, instead of a record Read, you are executing a Return on the
Sort record. Functionally, nothing is really different from coding a program
for a report. All the report-printing logic is contained within the Output
Procedure . The exercise at the end of this hour requires you to write a
report in the Output Procedure of a program that uses Sort .

During the development process of a system, you might want to look at a
report without actually printing it. Because a report file assigned and written to
Printer is just another Sequential file as far as the compiler is
concerned, you can change the Select statement and create a file instead.
Instead of assigning the Report-File to Printer , change the Assign to
something similar to “PRINT.IMG”. The report is written to the file, instead
of the printer. You can view the file in your favorite text editor, make
necessary adjustments, and then run the program again.

Summary

In this hour, you learned the following:

• Reporting is an important programming function.

• Reports consist of heading lines and detail lines.

• A report is simply another Sequential file as far as the compiler is
concerned.

• Reports can be written to the Printer or to another Sequential
file.

• When printing a report, the programmer is responsible for controlling
the printer. This task is accomplished using Write , with the Before
and After clauses.

• When creating reports, the programmer must keep track of the number
of lines on a page and the number printed to control the occurrence of

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

page breaks.

• Reporting makes extensive use of the data-editing features of COBOL
to produce clear, easy-to-understand documents.

Q&A

Q If a report file is just a Sequential file, why can’t I just Write
Line Sequential records to the Printer?

A You can. However, you lose the advantage of being able to simply single,
double, and triple space. You can’t cause a page break, and you can’t do things
like overprinting and underlining. The printer control features of COBOL
provide this flexibility.

Q When I execute a Write Print-Record After 1 and then follow
it up with a Write Print-Record Before 1, what happens?

A The first Write advances the printer to the next line and then prints the
record. The next Write prints on top of the last print line and then advances
to the next blank line.

Q Can I make the printer advance backward?

A No. All Advancing is in a forward direction. But you can control whether
the printer Advancing occurs Before or After your print line is written.

Q When I print to a file and I try to underline something, I still get two
records in the file. Why?

A In actuality you really have two records. By controlling the Advancing
when you Write to a Printer , the result just looks like one line because
the printer does not move after printing the first line.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 20
Advanced Reporting
To make good use of the data collected on a daily basis, the data must be analyzed and reported. Quick
reactions to trends and activity can lead to greater profits or prevent disaster. However, simple reports showing
detailed activity do not always help businesses react. Consequently, you frequently need to produce more than
a report of detailed data items.

This hour covers concepts relating to advanced reporting, including topics such as

• The definition of control breaks

• Determining the proper hierarchy of control breaks

• Subtotaling

• Walking through a program with control breaks

Advanced reports often contain summary information that is gathered from individual transactions. This
summary reporting can yield a tremendous amount of information in a short, concise format, usually in the
form of totals and subtotals. A single report might contain several levels of information. For example, the
transactions that are applied to the dealer file might be analyzed before the update is applied, thus
accomplishing several tasks. The business owner can see the impact of the transactions before they are
applied. Any invalid data is exposed, and the problem can be corrected before the actual update is applied. The
totals from the report can be compared with the totals produced by the update process as an audit to ensure
that both processes are operating properly.

The example for this hour reports totals for quantity, amount, and commission for each transaction type,
within each date, for each dealer. It also reports a grand total. There may be multiple transactions for a
particular transaction type for a specific day, and because this report is a summary report, the individual record
detail is not printed. This type of reporting involves control breaks.

 A control break is what happens in a program that produces the types of totals just described. The
program branches out and performs the special subtotal processing when a change or break occurs in the sequence
of data items being tested. This break in sequence causes the control break.

Reporting with Control Breaks

Control breaks are directly related to the sequence that is desired for the report. Examine the report layout
designed for the current example.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Created by: CHAPT20A Transaction Summary by Dealer Page ZZZ9
Created on: MM/DD/YY
At: HH:MM:SS

 Qty Amount Commission

* Total XXXXXXXXXXX Tran Type XXX…XXX ZZZZ9 $$$,$$$.99- $$$,$$$.99-
** Total XXXXXXXXXXX Tran Date XXX…XXX ZZZZ9 $$$,$$$.99- $$$,$$$.99-

***Total XXXXXXXXXXX Dealer Name XXX…XXX ZZZZ9 $$$,$$$.99- $$$,$$$.99-

****Grand Totals ZZZZ9 $$$,$$$.99- $$$,$$$.99-

Determining the Number and Hierarchy of Control Breaks

The subtotal levels determine the number and hierarchy of control breaks. This sequence is one of the most
fundamental to the process. In this hour’s example, the levels are grand totals, dealer totals, transaction date
totals, and transaction type totals. They are listed from highest level to smallest level to help explain what is
happening in the program.

The grand total is the only total not dependent on the contents of the data. It is generated after all of the data is
processed. However, this condition counts as the highest level control break. The next level is the dealer level.
Anytime a new dealer is encountered in the data, this break is triggered. The third break is the transaction date
break. If a new transaction date is encountered, then this control break is activated. The final level is the
transaction type level. This break occurs whenever a new transaction type is encountered in the data. To
summarize, the program has four control-break levels. The highest level is the grand total level. The next level
is the dealer level. The level that occurs under the dealer level is the date level, and the level under that is the
type level.

This hierarchy might appear to be reversed. Because transaction type appears on the report first, you might
think that transaction type is the first level. This is a common conceptual error. As you examine the logic in
the example program, it will become apparent why you must think of these levels as proceeding from the
highest level to the lowest and not the lowest to the highest.

One important issue relating to control breaks is the Sort sequence. The data must be sorted in sequence of
the control-break hierarchy. The Sort sequence for the example is dealer name, transaction date, and then
transaction type. As you can see, the control-break levels required for the report determine this sequence. If
you attempt to create control-break levels that differ from the Sort sequence of the Input data, your report
program will not function properly. The data will be out of order, or items that should be grouped together will
instead appear multiple times.

Subtotaling

When control breaks are used, subtotals are usually associated with each level of control break. Programmers
use several methods to accumulate these subtotals. Some programmers, after retrieving a record, Add the item
to every subtotal field defined for the program. This process can be very inefficient. A better approach is to
Add the subtotals to the next highest level of subtotal when the control break for that level is processed.

In the current example, when a type break occurs, the accumulated subtotals for type are added to the date
subtotal field. When a date break occurs, the date field subtotals are added to the dealer subtotals. When a
dealer break occurs, then the dealer subtotals are added to the grand totals. Each level feeds the preceding
level, which makes for very efficient processing.

Caution: One common mistake relating to subtotals involves the failure of the programmer to reset the value
after using the subtotal. After the subtotal is added to the next highest level, the subtotal field should be
cleared—reset to zero. Another mistake is not initializing the subtotal fields to zero in Working-Storage to
begin with. The best and most efficient method for initializing these values at the start of the program is to use the
Value clause when the item is defined.

The order of operations should be as follows: Write the subtotal record to the report, Add the subtotal to the
next highest level, and then zero the subtotal field that was just processed. If this process occurs for every
control break, the totals are always correct.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Walking Through a Program with Control Breaks

 On several occasions in the previous hours, segments of a program were intermixed
with the text. Most modern programming uses this procedure, called a program walk through, as
a way to explain what a program is doing and why. The walk through is often used as a peer
review of a programmer’s work. Sometimes the walk through finds programming inefficiencies
that can be corrected; other times the activity uncovers serious programming flaws.
Walk-through participants often discover interesting tips and techniques that they can use in
other programs.

In this walk through of a program with multiple levels of control breaks, the reasons behind the
code are explained in detail. In addition, tips and cautions that you can use in your future
control break programming are presented.

Start the walk through by examining the initial program setup and the data files used by the
program. As usual with a report program, you have an Input data file and an assignment to
the printer file. This program also has a reference to the Indexed file Dealer.Dat and a Sort
Work file. The Dealer.Dat file is required to retrieve the dealer name from the dealer file. The
transaction data, on which the report is based, does not contain the dealer name. The Sort
Work file is used by the Sort . The transaction data cannot possibly be in the correct sequence
for the report, because it does not contain the dealer name. The Sort is used to prepare the
Input file and get it in the same sequence as the control break hierarchy previously decided
on.

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt20a.
000004* Control Breaks
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Input-Output Section.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000010 File-Control.

Access to the dealer file is Random. Because the Input data records are out of order, you
need to Read a dealer record for each Input data record to fill in the corresponding dealer
name.

000011 Select Dealer-File Assign To "Dealer.Dat"
000012 Organization Indexed
000013 Access Random
000014 Record Key Dealer-Number
000015 Alternate Record Key Dealer-Name Of Dealer-Record
000016 File Status Dealer-Status.
000017 Select Report-File Assign To Printer.

The Input data file for this program is Trans1.Txt. This data file is provided on the CD-ROM
in the \DATAFILE folder.

The file was carefully constructed and contains data for several dealers who are in the dealer
master file. There are multiple dates, but not enough to make the report extremely large. One
dealer in the transaction file does not correspond to an existing dealer in the dealer master file.
The format of the transaction file is the same as that used in previous hours.

000018 Select Optional Trans-File Assign To "Trans1.TXT"
000019 Organization Is Line Sequential.
000020 Select Sort-File Assign To Sort-Work.
000021 Data Division.
000022 File Section.
000023 Fd Dealer-File.
000024 01 Dealer-Record.
000025 03 Dealer-Number Pic X(8).
000026 03 Dealer-Name.
000027 05 Last-Name Pic X(25).
000028 05 First-Name Pic X(15).
000029 05 Middle-Name Pic X(10).
000030 03 Address-Line-1 Pic X(50).
000031 03 Address-Line-2 Pic X(50).
000032 03 City Pic X(40).
000033 03 State-Or-Country Pic X(20).
000034 03 Postal-Code Pic X(15).
000035 03 Home-Phone Pic X(20).
000036 03 Work-Phone Pic X(20).
000037 03 Other-Phone Pic X(20).
000038 03 Start-Date Pic 9(8).
000039 03 Last-Rent-Paid-Date Pic 9(8).
000040 03 Next-Rent-Due-Date Pic 9(8).
000041 03 Rent-Amount Pic 9(4)v99.
000042 03 Consignment-Percent Pic 9(3).
000043 03 Last-Sold-Amount Pic S9(7)v99.
000044 03 Last-Sold-Date Pic 9(8).
000045 03 Sold-To-Date Pic S9(7)v99.
000046 03 Commission-To-Date Pic S9(7)v99.
000047 03 Filler Pic X(15).
000048 Fd Report-File.

000049 01 Report-Record Pic X(80).
000050 Fd Trans-File.
000051 01 Trans-Record.
000052 03 Transaction-Date Pic 9(8).
000053 03 Transaction-Date-X Redefines Transaction-Date.
000054 05 Trans-Month Pic 99.
000055 05 Trans-Day Pic 99.
000056 05 Trans-Year Pic 9(4).
000057 03 Transaction-Type Pic X(4).
000058 03 Transaction-Dealer Pic X(8).
000059 03 Transaction-Price Pic S9(7)v99.
000060 03 Transaction-Qty Pic 9(3).
000061 03 Filler Pic X(40).

The Sort file is one of the most important areas of the program. It contains a single record for
every record in the transaction file. Several fields in the record do not exist in the Input file.
The record layout of the Sort file is not a copy of the Input file record. The Sort Key is
also very important. Notice that the organization of the Sort Key matches the hierarchy that
was previously discussed for the report.

The names chosen for the elementary items under the date field are significant. They match the
names of the fields in the transaction record; however, they are in a different order. To Sort
by date and to arrange the oldest date first in the file and the newest date last, you must use the
date format as defined in the Sort record. You must use Year , Month , and then Day to force
the Sort into the proper sequence.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Commission is also stored in this field, although that item is not included in the Input data
record. The Commission field is computed during the Input Procedure of the Sort .
Because the dealer record contains the consignment percentage that is used for computing this
field and is read to retrieve the dealer name, calculating the commission at this point makes
sense. You could also perform the calculation in the Output Procedure ; however, that
would mean an additional special Read of the dealer file, which is inefficient. Because you are
already going to Sort on dealer name, the Read must be issued for the dealer file in the
Input Procedure . While the dealer file record is available, the fields used by the program
for calculating the commission are utilized.

000062 Sd Sort-File.
000063 01 Sort-Record.
000064 03 Sort-Key.
000065 05 Dealer-Name.
000066 10 Last-Name Pic X(25).
000067 10 First-Name Pic X(15).
000068 10 Middle-Name Pic X(10).
000069 05 Sort-Trans-Date.
000070 10 Trans-Year Pic 9(4).
000071 10 Trans-Month Pic 9(2).
000072 10 Trans-Day Pic 9(2).
000073 05 Sort-Trans-Type Pic X(4).
000074 03 Sort-Trans-Price Pic S9(6)v99.
000075 03 Sort-Trans-Qty Pic 9(3).
000076 03 Sort-Commission Pic S9(6)v99.

The various heading lines are coded next.

000077 Working-Storage Section.
000078 01 Heading-Line-1.
000079 03 Filler Pic X(12) Value "Created by:".
000080 03 Filler Pic X(8) Value "CHAPT20A".
000081 03 Filler Pic X(8) Value Spaces.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000082 03 Filler Pic X(29)
000083 Value "Transaction Summary by Dealer".
000084 03 Filler Pic X(7) Value Spaces.
000085 03 Filler Pic X(5) Value "Page".
000086 03 Page-No Pic Z(4)9 Value Zeros.
000087 01 Heading-Line-2.
000088 03 Filler Pic X(12) Value "Created on:".
000089 03 Date-MM Pic 99.
000090 03 Filler Pic X Value "/".
000091 03 Date-DD Pic 99.
000092 03 Filler Pic X Value "/".
000093 03 Date-YY Pic 99.
000094 01 Heading-Line-3.
000095 03 Filler Pic X(12) Value "At:".
000096 03 Time-HH Pic 99.
000097 03 Filler Pic X Value ":".
000098 03 Time-MM Pic 99.
000099 03 Filler Pic X Value ":".
000100 03 Time-SS Pic 99.
000101 01 Heading-Line-4.
000102 03 Filler Pic X(51) Value Spaces.
000103 03 Filler Pic X(6) Value " Qty".
000104 03 Filler Pic X(12) Value " Amount".
000105 03 Filler Pic X(10) Value "Commission".

The Blank-Line data item is coded so that you can place blank lines after certain heading
lines and not have to worry about the complexities introduced when Before Advancing is
used with After Advancing on the Write statement.

000106 01 Blank-Line Pic X(80) Value Spaces.

Some programmers use a separate total line description for every total line. This approach
makes sense when the layout of the different columns of data is different. For example, one
technique that makes reports more readable is to offset the totals by one or more positions from
the column of detail data. This simple report does not require an offset, so a single total line is
used.

Caution: The total here uses numeric edited data items with the $ symbol, which displays the
field on the report with a leading dollar sign. This edit pattern produces at least one dollar sign
on the report and thereby limits the size of your data field to one position less that the total
number of $ defined. For example, the dollar amounts in these examples can contain a
maximum value of 99,999.99 , which is one significant position smaller than the
999,999.99 you might expect when you examine the numeric edited data item Picture
clause.

000107 01 Total-Line.
000108 03 Total-Description Pic X(51) Value Spaces.
000109 03 Total-Qty Pic Z(4)9.
000110 03 Filler Pic X Value Spaces.
000111 03 Total-Amt Pic $$$,$$$.99-.
000112 03 Filler Pic X Value Spaces.
000113 03 Total-Commission Pic $$$,$$$.99-.

Because only a single total line is used, you must have different data items in which to build the

different total descriptions. An alternative to this method is to String the various total
descriptions together when required. As much as possible you should avoid this type of coding.
The String statement requires much more computing overhead than the simple Move
required to construct these descriptions.

000114 01 Desc-Type.
000115 03 Filler Pic X(11) Value "* Total".
000116 03 Desc-Type-Type Pic X(4).

Notice the use of Trans-Month , Trans-Day , and Trans-Year in the Desc-Date
Group Level item. These field names are the same as those in the transaction record, the Sort
record, and the save data areas that are defined shortly. This feature allows you to use Move
with Corresponding to reverse the saved date so that it is presented to the users in a more
familiar manner. End users feel more comfortable with reports that present data as they are
used to seeing it; for example, MM/DD/YYYY instead of YYYY/MM/DD.

000117 01 Desc-Date.
000118 03 Filler Pic X(11) Value "** Total".
000119 03 Trans-Month Pic 99.
000120 03 Filler Pic X Value "/".
000121 03 Trans-Day Pic 99.
000122 03 Filler Pic X Value "/".
000123 03 Trans-Year Pic 9(4).
000124 01 Desc-Dealer.
000125 03 Filler Pic X(11) Value "*** Total".
000126 03 Desc-Dealer-Name Pic X(30).

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The save fields help detect the different control breaks. The High-Values assigned as values
to the alphabetic data items ensure that the first record read causes a control break. When
compared against these fields, the data record will be different. The program uses
High-Values to detect the fact that this record is the first record read and that the save fields
are to be initialized with the fields from this data record.

Some programmers handle this condition differently. They code a special Read for the first data
record and initialize the control break save fields. This method requires two Read or Sort
return statements for a file, instead of a single statement. Although this approach is conceptually
correct, I have found that the single Read leads to programs that are clearer and easier to
maintain. A common mistake that programmers make when using a special “seed” Read, as it is
called, is the failure to process the first record in the file and Add its data values to the required
subtotal. Failure to process the first and last records in a file are common mistakes programmers
make when handling control breaks.

Notice that the save fields are defined in exactly the same order as the Sort Key in the Sort
record. This feature permits an easier Move when initializing the fields the first time. The entire
contents of the Sort Key can be moved instead of individually moving fields.

000127 01 Save-Fields.
000128 03 Save-Dealer-Name Value High-Values.
000129 05 Last-Name Pic X(25).
000130 05 First-Name Pic X(15).
000131 05 Middle-Name Pic X(10).
000132 03 Save-Date-X.
000133 05 Trans-Year Pic 9(4).
000134 05 Trans-Month Pic 9(2).
000135 05 Trans-Day Pic 9(2).
000136 03 Save-Type Pic X(4) Value High-Values.

The Accumulators group contains the various fields that are used in the different levels of
subtotal. Notice the use of the same name for every total field used. This feature allows an Add
with Corresponding to accumulate the various subtotals. You will have a group of subtotals
for every level of control break identified for the report.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000137 01 Accumulators.
000138 03 Grand-Totals.
000139 05 Total-Qty Pic 9(5) Value Zeros.
000140 05 Total-Amt Pic S9(6)v99 Value Zeros.
000141 05 Total-Commission Pic S9(5)v99 Value Zeros.
000142 03 Dealer-Totals.
000143 05 Total-Qty Pic 9(5) Value Zeros.
000144 05 Total-Amt Pic S9(6)v99 Value Zeros.
000145 05 Total-Commission Pic S9(5)v99 Value Zeros.
000146 03 Date-Totals.
000147 05 Total-Qty Pic 9(5) Value Zeros.
000148 05 Total-Amt Pic S9(6)v99 Value Zeros.
000149 05 Total-Commission Pic S9(5)v99 Value Zeros.
000150 03 Type-Totals.
000151 05 Total-Qty Pic 9(5) Value Zeros.
000152 05 Total-Amt Pic S9(6)v99 Value Zeros.
000153 05 Total-Commission Pic S9(5)v99 Value Zeros.

As it did in Hour 19, “Reporting,” the line count starts at 99 , thus causing a page break and the
printing of headings when the first line of print is produced. The different date and time fields
print, in the heading, the date and time the report is produced.

000154 01 Line-Count Pic 99 Value 99.
000155 01 Page-Count Pic 9(4) Value Zeros.
000156 01 Max-Lines Pic 99 Value 60.
000157 01 Date-And-Time-Area.
000158 03 Work-Date Pic 9(6).
000159 03 Work-Date-X Redefines Work-Date.
000160 05 Date-YY Pic 99.
000161 05 Date-MM Pic 99.
000162 05 Date-DD Pic 99.
000163 03 Work-Time Pic 9(8).
000164 03 Work-Time-X Redefines Work-Time.
000165 05 Time-HH Pic 99.
000166 05 Time-MM Pic 99.
000167 05 Time-SS Pic 99.
000168 05 Filler Pic XX.

The String-Pointer field and the String statements assemble a single name from the
three parts of the name that are stored in the Sort record. The name is assembled in the
Output Procedure so that it can remain in Last, First, Middle name order during the Sort .

Two separate portions of the program use the Done-Flag field. The first controls the Input
Procedure for the Sort , and the second controls the processing in the Output
Procedure .

000169 01 String-Pointer Pic 99 Value Zeros.
000170 01 Done-Flag Pic X Value Spaces.
000171 88 All-Done Value "Y".
000172 01 Dealer-Status Pic XX Value Zeros.
000173 88 Dealer-Success Value "00" Thru "09".
000174 Procedure Division.

Declaratives catch any unexpected problems that might occur in the Indexed dealer file.

000175 Declaratives.
000176 Dealer-File-Error Section.
000177 Use After Standard Error Procedure On Dealer-File
000178 .
000179 Dealer-Error-Paragraph.
000180 Display "Error on Dealer File " Dealer-Status
000181 .
000182 End Declaratives.
000183 Chapt20a-Start.
000184 Display "Begin Process Chapt20A"

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Sort statement ensures that the Input data is in the same order as the hierarchy of the control
breaks. The Sort-Key Group Level item of Sort-Record defines this hierarchy. The Sort can
be coded specifying the individual fields used in the Sort , but the method shown is slightly more
efficient. The Sort needs to handle only the single field and does not need to compare multiple
fields.

000185 Sort Sort-File Ascending Key Sort-Key
000186 Input Procedure Sort-In
000187 Output Procedure Print-Report
000188 Stop Run
000189 .

The Input Procedure , Sort-In , handles the Input operations related to the file being sorted
and constructs the Sort-Record that is to be sorted. The Process-Input-Records
Paragraph is performed repeatedly until the All-Done condition is Set to true. This flag
indicates that all records in the Input file have been processed and released to the Sort . After the
Input Procedure is complete, the Input files are closed.

000190 Sort-In.
000191 Open Input Trans-File
000192 Dealer-File
000193 Perform Process-Input-Records Until All-Done
000194 Close Trans-File
000195 Dealer-File
000196 .

This Paragraph performs the actual Read of the Input file and, if a record is retrieved, performs
the Paragraph that processes the data and releases it to the Sort . If the end of file is reached, all
records have been processed and the All-Done flag is set so that the Input Procedure will
end.

000197 Process-Input-Records.
000198 Read Trans-File
000199 At End Set All-Done To True
000200 Not At End
000201 Perform Move-And-Release-Input

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000202 End-Read
000203 .

The Move-And-Release-Input Paragraph builds the individual Sort record from the
available Input data. It reads the dealer file to retrieve the name and consignment percentage. The
actual consignment amount for this transaction is then computed and moved to the appropriate Sort
record field. This computation is done here instead of in the Output Procedure so that there can
be a single Read of the dealer file for each record. Because the Sort requires the dealer name, it is
read in the Input Procedure . If the commission were not computed here, another Read of the
dealer master would be required in the Output Procedure to retrieve the consignment
percentage.

Recall that the date format of the transaction date in the Sort record is the “reverse” of that in the
Input record. The Sort record format is YYYYMMDD, and the Input record is MMDDYYYY.

After the necessary fields are moved, the record is released to the Sort .

000204 Move-And-Release-Input.
000205* Reverse The Date
000206 Move Corresponding Transaction-Date-X To
000207 Sort-Trans-Date
000208* Move The Data
000209 Move Transaction-Price To Sort-Trans-Price
000210 Move Transaction-Qty To Sort-Trans-Qty
000211 Move Transaction-Type To Sort-Trans-Type
000212* Read Dealer File To Retrieve Name And Consignment Percent
000213 Perform Retrieve-Dealer-Record
000214* Move The Name And Compute Consignment
000215 Move Dealer-Name Of Dealer-Record To
000216 Dealer-Name Of Sort-Record
000217 Compute Sort-Commission Rounded =
000218 (Transaction-Qty * Transaction-Price) *
000219 (Consignment-Percent / 100)
000220* Release The Record
000221 Release Sort-Record
000222 .

The Retrieve-Dealer-Record Paragraph fills in the required information for the Sort . If
the dealer record is not found, the word **UNKNOWN** is moved into the field, and a default
consignment percentage of 10 is applied.

000223 Retrieve-Dealer-Record.
000224 Move Transaction-Dealer To Dealer-Number Of Dealer-Record
000225 Read Dealer-File
000226 Invalid Key
000227 Move "**UNKNOWN**" To
000228 Dealer-Name Of Dealer-Record
000229 Move 10 To Consignment-Percent
000230 End-Read
000231 .

Print-Report is the Output Procedure from the Sort . It contains the meat of the control
break program. After some initial housekeeping of opening the report file and filling in the date and
time for the headings, each record from the sorted file is returned and processed until all records have
been processed.

000232 Print-Report.
000233 Open Output Report-File
000234 Move Space To Done-Flag
000235 Perform Fill-Initial-Headings
000236 Perform Return-Process-Records Until All-Done
000237 Close Report-File
000238 .

The Return-Process-Records Paragraph handles the actual returning of the Sort records
and the decisions made based on the values of the various data fields in the Input records.

Tip: Always include the final processing described here after the At End condition is encountered on
your Input file. Programmers frequently fail to process the final required control breaks and instead
terminate the program when this end-of-file condition occurs. Note the order of the break processing at
the end of file. The lowest-level break is processed first, then the next highest, and so on. This sequence
is required so that every subtotal on the report is properly printed and processed into the next level’s
subtotal fields.

If the end of file is not reached, the program checks for a change in one of the fields that defines the
control breaks.

000239 Return-Process-Records.
000240 Return Sort-File
000241 At End
000242 Perform Type-Break
000243 Perform Date-Break
000244 Perform Dealer-Break
000245 Perform Print-Grand-Totals
000246 Set All-Done To True
000247 Not At End
000248 Perform Check-For-Break
000249 End-Return
000250 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Check-For-Break paragraph examines the values of the various data fields, comparing them
against the save fields. If a control break occurs, the appropriate break is processed. The order of the
checks is significant. The first check compares the save field value against High-Values . If it is
High-Values , then this data record is the first record into the Output Procedure . The Key
fields from this data record are moved to the save fields.

Next the different levels that were defined for this report are checked. The levels are checked in a
particular order. The highest level item is checked first.

Caution: The order of control break checks really is important. Many programmers check the lowest
level of break first. This is a common mistake. In this example, the lowest level of break is the item type.
If a new record is read with a different date but the same item type, a problem could occur if the breaks
are checked from the lowest level. There would be no break at the item type level, and the program
would continue as if there were no control break, producing erroneous results.

Notice that if a break is detected at a high level, the lower level breaks are performed. They are
performed from lowest level to highest level. This sequence allows the individual lines that make up
the report for the data records prior to the current record to be printed. Each subtotal is executed and
accumulated into the next higher level. Performing each subtotal under the break, in order from lowest
to highest, accounts for all accumulated records.

000251 Check-For-Break.
000252 Evaluate True
000253 When Save-Dealer-Name = High-Values
000254 Move Sort-Key To Save-Fields
000255 When Dealer-Name Of Sort-Record Not = Save-Dealer-Name
000256 Perform Type-Break
000257 Perform Date-Break
000258 Perform Dealer-Break
000259 When Sort-Trans-Date Not = Save-Date-X
000260 Perform Type-Break
000261 Perform Date-Break
000262 When Sort-Trans-Type Not = Save-Type
000263 Perform Type-Break
000264 When Other
000265 Continue
000266 End-Evaluate

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

After any required control break processing, the data for the lowest level is accumulated. This
accumulation occurs any time a valid Input record is returned. The only special computation at the
detail level in this example is that of expanding the total amount based on the quantity and the
individual price.

000267 Perform Accumulate-Details
000268 .
000269 Accumulate-Details.
000270 Add Sort-Trans-Qty To Total-Qty Of Type-Totals
000271 Add Sort-Commission To Total-Commission Of Type-Totals
000272 Compute Total-Amt Of Type-Totals =
000273 Total-Amt Of Type-Totals +
000274 (Sort-Trans-Qty * Sort-Trans-Price)
000275 .

When a break occurs, the prior subtotals are printed first. The subtotals from the previous records are
then added to the next higher level.

Tip: Using Add with Corresponding on the various subtotals helps to eliminate coding errors.
Programmers have a good habit of copying programming statements from other areas of code. This
coding shortcut can, however, lead to errors. Imagine that instead of using Add with Corresponding ,
the individual subtotals were added. Then the programmer copied this code for the logic for the next
control break but failed to change one of the data names in the Add statements. The program would
compile and run because all the data names are properly declared, but the results would be wrong. Using
Add with Corresponding also eliminates the possibility of forgetting to add one of the many
subtotals. It also makes future maintenance of the program easier. Suppose the report is modified to add
another subtotal. All the programmer has to do is add the field to the four different Group Level subtotal
items in Working-Storage . The control break logic need not change. Writing programs for future
maintainability is the goal of any good programmer.

After the next level of subtotal is added, the Initialize verb resets the current level of subtotal
fields to zero. The sequence of events works because the last data record returned has not yet had its
values added to any subtotals. That step occurs after any control break processing.

The final step of any control break logic is to set the value of the save field, which is used in
comparisons to check for control breaks, to the value of the newly returned record.

All control breaks perform along the same lines. They print their appropriate data lines, increment the
next higher subtotal, initialize their own subtotals, and move the data value that defines the break into
the save area.

000276 Type-Break.
000277 Perform Print-Type-Total
000278 Add Corresponding Type-Totals To Date-Totals
000279 Initialize Type-Totals
000280 Move Sort-Trans-Type To Save-Type
000281 .
000282 Date-Break.
000283 Perform Print-Date-Total
000284 Add Corresponding Date-Totals To Dealer-Totals
000285 Initialize Date-Totals
000286 Move Sort-Trans-Date To Save-Date-X
000287 .
000288 Dealer-Break.
000289 Perform Print-Dealer-Total
000290 Add Corresponding Dealer-Totals To Grand-Totals
000291 Initialize Dealer-Totals
000292 Move Dealer-Name Of Sort-Record To Save-Dealer-Name

000293 .

In Print-Type-Total , the subtotal line is created and written to the printer. The line count is
checked and the heading lines are printed if necessary. Notice the use of Move with
Corresponding . This statement ensures that all subtotal fields are moved to the subtotal line.

000294 Print-Type-Total.
000295 Move Corresponding Type-Totals To Total-Line
000296 Move Save-Type To Desc-Type-Type
000297 Move Desc-Type To Total-Description
000298 If Line-Count > Max-Lines
000299 Perform Heading-Routine
000300 End-If
000301 Write Report-Record From Total-Line After 1
000302 Add 1 To Line-Count
000303 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Print-Date-Total Paragraph works like the Print-Type-Total
Paragraph with the exception of the extra print line printed before and after the total. The
line count is checked against two less than the maximum number of lines to allow for the extra
lines and to ensure that no page contains more than 60 lines—the value defined as the
maximum number of print lines. The Blank-Line is used to print a blank line after the total
line. This blank line is required because the very next print line could be one of the
single-spaced type subtotals, and you do not want that line to appear without spacing
immediately after the date subtotal.

000304 Print-Date-Total.
000305 Move Corresponding Date-Totals To Total-Line
000306 Move Corresponding Save-Date-X To Desc-Date
000307 Move Desc-Date To Total-Description
000308 If Line-Count > Max-Lines - 2
000309 Perform Heading-Routine
000310 End-If
000311 Write Report-Record From Total-Line After 2
000312 Write Report-Record From Blank-Line After 1
000313 Add 3 To Line-Count
000314 .

The Print-Dealer-Total Paragraph must perform the additional task of formatting
the name field for printing. The multiple String statements allow for a normalized name
even in the absence of a middle name in the data record. If the middle name is missing and a
single String statement constructs the name, two spaces—the space that follows the first
name and the one that should follow the middle name—separate the first and last names. By
checking the value of the middle name before issuing the String verb, you can avoid this
problem. String-Pointer controls and contains the position used in the next String
statement.

000315 Print-Dealer-Total.
000316 Move Corresponding Dealer-Totals To Total-Line
000317 Move Spaces To Desc-Dealer-Name

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000318 Move 1 To String-Pointer
000319 String First-Name Of Save-Dealer-Name
000320 Delimited By Space
000321 Into Desc-Dealer-Name
000322 With Pointer String-Pointer
000323 End-String
000324 If Middle-Name Of Save-Dealer-Name
000325 > Spaces
000326 String " " Delimited By Size
000327 Middle-Name Of Save-Dealer-Name
000328 Delimited By Spaces
000329 Into Desc-Dealer-Name
000330 With Pointer String-Pointer
000331 End-String
000332 End-If
000333 String " " Delimited By Size
000334 Last-Name Of Save-Dealer-Name
000335 Delimited By Spaces
000336 Into Desc-Dealer-Name
000337 With Pointer String-Pointer
000338 End-String
000339 Move Desc-Dealer To Total-Description
000340 If Line-Count > Max-Lines - 1
000341 Perform Heading-Routine
000342 End-If
000343 Write Report-Record From Total-Line After 1
000344 Write Report-Record From Blank-Line After 1
000345 Add 2 To Line-Count
000346 .

The Print-Grand-Totals Paragraph simply moves and prints the grand totals for the
report.

000347 Print-Grand-Totals.
000348 Move Corresponding Grand-Totals To Total-Line
000349 Move "****Grand Totals" To Total-Description
000350 If Line-Count > Max-Lines - 1
000351 Perform Heading-Routine
000352 End-If
000353 Write Report-Record From Total-Line After 2
000354 .

The Heading-Routine Paragraph is performed when the maximum line count is
exceeded. The page counter is incremented. If this page is the first page of the report, a page
eject is not coded. For all subsequent pages in the report, a new page is started for each
heading.

The Fill-Initial-Headings Paragraph is performed at the beginning of the
Output Procedure to fill in the date and time that the report is created.

000355 Heading-Routine.
000356 Add 1 To Page-Count
000357 Move Page-Count To Page-No

000358 If Page-Count = 1
000359 Write Report-Record From Heading-Line-1 After Zero
000360 Else
000361 Write Report-Record From Heading-Line-1 After Page
000362 End-If
000363 Write Report-Record From Heading-Line-2 After 1
000364 Write Report-Record From Heading-Line-3 After 1
000365 Write Report-Record From Heading-Line-4 After 2
000366 Write Report-Record From Blank-Line After 1
000367 Move 6 To Line-Count
000368 .
000369 Fill-Initial-Headings.
000370 Accept Work-Date From Date
000371 Accept Work-Time From Time
000372 Move Corresponding Work-Date-X To
000373 Heading-Line-2
000374 Move Corresponding Work-Time-X To
000375 Heading-Line-3
000376 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The first page of the printed output follows.

Created by: CHAPT20A Transaction Summary by Dealer Page 1
Created on: 08/23/98
At: 21:38:43
 Qty Amount Commission

* Total CRAF 8 $558.88 $55.89

** Total 01/02/1999 8 $558.88 $55.89

* Total ANTI 3 555.11 $55.51
* Total CRAF 2 $195.40 $19.54
* Total MISC 1 $96.25 $9.63

** Total 04/30/1999 16 $846.76 $84.68

* Total ANTI 16 $1,542.11 $154.21
* Total CRAF 6 $587.43 $58.74
* Total JEWL 9 $1,652.13 $165.21
* Total MISC 7 $711.34 $71.13

** Total 10/12/1999 38 $4,493.01 $449.29

* Total HOLI 6 $244.08 $24.41
* Total JEWL 1 $89.93 $8.99

** Total 01/03/2000 7 $334.01 $33.40

***Total **UNKNOWN** 69 $6,232.66 $623.26

* Total ANTI 12 $1,320.72 $858.46
* Total HOLI 1 $131.19 $85.27
* Total MISC 5 $383.50 $249.28
* Total XMAS 3 $145.71 $94.71

** Total 01/02/1999 21 $1,981.12 $1,287.72

* Total ANTI 9 $577.17 $375.16
* Total CRAF 2 $85.94 $55.86

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

* Total JEWL 3 $464.37 $301.84
* Total XMAS 9 $751.31 $488.35

** Total 04/30/1999 23 $1,878.79 $1,221.21

* Total ANTI 6 $727.74 $473.03
* Total CRAF 5 $999.20 $649.48
* Total JEWL 1 $97.48 $63.36

** Total 10/12/1999 12 $1,824.42 $1,185.87

* Total CRAF 8 $1,291.36 $839.38
* Total XMAS 1 $33.37 $21.69

** Total 01/03/2000 9 $1,324.73 $861.07

* Total MISC 13 $1,387.05 $901.58

** Total 02/07/2000 13 $1,387.05 $901.58

***Total Doug Mitchell Berg 78 $8,396.11 $5,457.45

The final report produced by the program has multiple dealers per page. If your business keeps a separate file
for each dealer, you must start a new page for each new dealer. The simple solution might seem to be to
perform the heading routine after a dealer break. This solution is not a good one, though, because the dealer
being processed might be the last dealer in the file and you will produce a report where the last page contains
headings only. Instead, after the dealer break, Move 99 to the line count field to cause a page break when the
next line is printed. The result is a clean, clear report.

Control breaks can be a confusing subject for programmers. If the reporting requirements are not properly
analyzed before the program is written, or if the programmer has a poor understanding of control breaks, these
programs can become convoluted and difficult to debug and maintain.

A program based on properly analyzed reporting requirements, with clear, concise control break logic,
produces reliable and accurate results and, compared to a report where the logic is based on an improper or
incomplete analysis, is much easier to maintain.

Summary

In this hour, you learned the following:

• Control breaks occur when the criteria defining the subtotal structure of a report change.

• Control breaks are a normal part of everyday business reporting.

• Proper analysis of the reporting requirements is required up-front to create a reliable reporting
program that uses control breaks.

• The Input data for a program that uses control breaks must be sorted in the same hierarchy as that of
the control breaks. The Sort proceeds from the highest control break level to the lowest.

• One common mistake is the failure to properly process the first record in the Input file.

• Another common mistake is the failure to properly add the subtotal fields at each control break. Using
Add with Corresponding can help to eliminate this problem.

• Occasionally, programmers fail to program for the required processing that must occur at the end of
the Input file. When the end of the Input file is reached, every level of control break should be
triggered. Each must be processed from lowest level to highest level.

• When a control break occurs at a particular level, all the breaks for the lower levels must be processed
first. They must be processed from lowest level to highest.

Q&A

Q What are some of the important things I need to remember when creating a control break program?

A The data must be sorted in sequence of the hierarchy of your control breaks. A subtotal area must be defined
for each level of control break. Save fields must be defined in order to check for a new control break. The
subtotal fields must be reset each time they are printed.

Q How often are programs requiring control breaks used in the business world?

A Nearly every report used in business requires the use of some level of control break. Many of these reports
contain only subtotal data. Some combine detail and subtotal data on the same report.

Q What are some common mistakes made when writing a program that uses control breaks?

A Failure to process the first and/or last data records are the most common errors. Failure to properly add and
then initialize the subtotal fields are also common errors.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the section “Quiz and
Exercise Questions and Answers” that can be found on the CD. This section contains quiz questions and
exercises for you to complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Part IV
Miscellaneous Functions

Hour
21 Date Manipulation

22 Other Intrinsic Functions

Hour 21
Date Manipulation
An integral part to most business processes is date manipulation. Dates are
important to business for a number of reasons. Virtually everything related to
business is tied in some way to a date. From birth dates to expiration dates,
dates affect business. Transaction dates track when transactions were created
and applied. Payment due dates track when a payment is due or past due. Birth
dates are used to determine age. Accounting systems use dates for reporting
income and expense. In this hour, concepts relating to date manipulation are
covered. The topics include

• Calendar history and the year 2000 problem

• Determining the current system date

• The Current-Date Intrinsic Function

• Finding the number of days between dates

• Determining the day of the week

• Date validation

• Converting to Greenwich mean time

• Calculating the date of Easter

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Modern COBOL (since 1989) provides a wealth of Functions for working
with and manipulating dates. Before 1989 the only way to determine the
system date was to use the Accept verb with the From Date and Day
clauses. This technique returned only a two-digit date. In 1989 the 1985
COBOL standard was revised to include a new set of features called
Intrinsic Functions . Among these Functions were several relating
to date manipulation. These provided several methods to help solve the
problem related to dates and the year 2000.

The infamous year 2000 problem stems from the fact that most computer
programs use only two digits to represent the year. With the year 2000, this
two-digit year is 00 . This representation causes problems when compared to
previous years, for example 99 . The logic of programs is affected because this
comparison should show that 2000 is greater than 1999 , but 00 compares to
be less than 99 . The program does not perform correctly in this case.

The 1989 extension to the COBOL standard provided a solution to the
problem of retrieving the full 4-digit year from the system. Although every
program must be checked and changed, the language provides the necessary
tools to accomplish the task.

Determining the Current System Date

One function that many programs require is the capability to determine today’s
date. COBOL uses three different, but related, clauses with the Accept verb
to obtain the date.

The first method returns the Gregorian date, which is the date as you are used
to seeing it. Pope Gregory XIII instituted the Gregorian calendar in 1582, and
it was slowly adopted by the entire world. This calendar is a modification of
the Julian calendar that had become incorrect over time. The date correction
involved with the change to the Gregorian calendar did not interrupt the
weekly cycle of days, but did adjust the day of the month. The Julian calendar
had been in use since 45 B.C. and used a standard year of 365 days with every
fourth year being a leap year. Over the centuries, the extra days that were
slowly added to the calendar caused a problem. When the Gregorian calendar
was introduced, a 10-day adjustment was made to the calendar to account for
the extra days that had been added to the calendar. Pope Gregory’s decree
stated that Thursday, October 4, 1582, should be followed by Friday October
15, 1582.

Because of the adjustment in the calendar, any weekday calculations on dates
before 1582 must be adjusted, or considered inaccurate. It’s not likely that you
will need to calculate a date that far back for normal programming, but it does
make for a good trivia question!

At this juncture, the current method of figuring leap years was introduced.
Using the knowledge of the day, it was determined that every fourth year
should be a leap year; however, to avoid the addition of extra days caused by
the Julian calendar, every year that ended in a even century, such as 1800 and
1900, would not be a leap year. Except, that is, years divisible by 400 . Thus

the year 2000 is a leap year.

The three different standard Accept statements related to date processing are

000100 Accept The-Date From Date
000101 Accept The-Day From Day
000102 Accept The-Weekday From Day-Of-Week

The first returns the date in a format known as Year-Month-Day . The field
The-Date is defined as a six-digit numeric field. The first two numbers
represent the last two digits of the current year. The next two represent the
month, and the last two the day of the month. This format has been in use since
the early days of COBOL. When adding the capability for COBOL to retrieve
the current date with a four-digit year, the standards committee had the
foresight not to change the behavior of these features. Doing so would have
broken countless programs. Instead, the committee devised another, better way
to handle the situation.

The second format returns the Julian date. The Julian date is a five-digit
numeric field. It contains the two-digit year and a three-digit number
corresponding to the day of the year. January 1 is day 1; December 31, in a
non-leap year, is day 365. In years with a leap year, the last day is 366.
Programmers frequently used this format because it took up little of the
precious memory and disk storage that was available in early computing.

The third format returns the current day of the week. The value is a single-digit
numeric field. For example, 1 is returned for Monday, 2 for Tuesday, and 3
for Wednesday. This format makes it easy to set up a table in working storage
that can be referenced to display the name of the present weekday on your
screens and on your reports.

The new method for retrieving the current system date and time uses a new
feature called an Intrinsic Function . This hour covers only the
date-related Functions . The remainder of these very powerful and useful
Functions are covered in Hour 22, “Other Intrinsic Functions .”

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Current-Date Intrinsic Function

Intrinsic Functions are used like literals. They are invoked by coding the word
Function followed by the name of the Intrinsic Function to be used. The
Function for returning the current system date and time is Current-Date .
Function Current-Date is one of the few Intrinsic Functions that
return an alphanumeric value. This Function returns a field that is 21 characters long.
The first eight positions are the current date in Year-Month-Day format, using four
digits to represent the year. The next eight positions represent the current system time in
Hour-Minute-Second-Hundredths format. The final five characters return the
offset from Greenwich mean time (GMT) for time-zone conversion. GMT is the
accepted baseline for all time-zone calculations. In computing environments where this
value is not available, it is not returned. In a Windows NT or Windows 95 environment,
the Fujitsu compiler returns the offset from GMT.

Run the small program in Listing 21.1 and examine the results.

Listing 21.1 Using the Current-Date Intrinsic Function

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21a.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Current-Date-Group.
000011 03 Todays-Date.
000012 05 Today-YYYY Pic 9(4).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000013 05 Today-MM Pic 9(2).
000014 05 Today-DD Pic 9(2).
000015 03 Time-Now.
000016 05 Time-Hour Pic 99.
000017 05 Time-Minutes Pic 99.
000018 05 Time-Seconds Pic 99.
000019 05 Time-Hundredths Pic 99.
000020 03 GMT-Offset.
000021 05 GMT-Direction Pic X.
000022 05 GMT-Hours Pic 99.
000023 05 GMT-Minutes Pic 99.
000024 Procedure Division.
000025 Chapt21a.
000026 Move Function Current-Date To Current-Date-Group
000027 Display "Today = " Todays-Date
000028 Display "Time = " Time-Now
000029 Display "GMT offset = " GMT-Offset
000030 Stop Run
000031 .

The field Current-Date-Group is further divided into the individual fields.
Dividing the group in this manner gives you access to each field individually. The
GMT-Direction is either a plus sign or a minus sign (+ or -), indicating the
conversion that was applied to GMT to achieve local time. Therefore, to convert back to
GMT, you must adjust the time in the opposite direction. If the GMT-Direction field
is - and the GMT-Hours field is 5, you must add 5 hours to the current time to arrive
at GMT.

If you want to use the Current-Date Intrinsic Function but require only
the date, not the time values, you can use reference modification. For example, you can
code:

000101 Move Function Current-Date (1:8) to Date-Only

When using the current date for other than cosmetic reasons, it is best to use the
Current-Date Intrinsic Function .

Days Between Dates

One task frequently required when working with dates is computing the number of days
between dates. This value can be useful in a number of applications. For example, you
might require a dealer to bring in new merchandise every 90 days. To derive the next
date that a dealer needs to add merchandise, you can add 90 days to the last date the
dealer did so. When working with a date in Year-Month-Day format, adding days
can be a daunting task.

Adding 90 days might not seem to be a difficult calculation. Simply add 3 months, and
that date should be close enough. But many applications require more precision. For
instance, you might be writing a program for an ice cream factory. The ice cream might
have a shelf life of 37 days. This number of days must be added to the date of
manufacture to determine the expiration date.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Another task might be determining the age of an item. Given two dates in Year-Month-Day
format, you might need to determine the age of the item.

COBOL provides some date-related Intrinsic Functions that make these types of
computations easy to accomplish. These Functions are Integer-Of-Date and
Date-Of-Integer . Integer-Of-Date accepts a single argument: the date in
Year-Month-Day format, using a four-digit year. The Function returns the number of days
since December 31, 1600. Day 1 is January 1, 1601. The standards committee chose this date because
integer day 1, January 1, 1601, is a Monday. Monday is day 1 in the Day-Of-Week format of the
Accept verb.

When arguments are specified with Intrinsic Functions , the argument follows the
Function name and is enclosed in parentheses. The numeric-returning Intrinsic
Functions , such as Integer-Of-Date and Date-Of-Integer , must be used in a
mathematical statement—that is, within a mathematical expression such as Compute . Unlike the
alphanumeric-returning Current-Date Function , you cannot use these Functions in a
Move statement. Listing 21.2 shows the conversion of 12/31/1999 into an integer date.

Listing 21.2 Integer-Of-Date Example

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21b.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Integer-Version-Of-Date Pic 9(7) Value Zeros.
000011 01 Date-To-Convert Pic 9(8) Value 19991231.
000012 Procedure Division.
000013 Chapt21b.
000014 Compute Integer-Version-Of-Date =
000015 Function Integer-Of-Date (Date-To-Convert)
000016 Display "Integer Date Version of " Date-To-Convert
000017 " is " Integer-Version-Of-Date

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000018 .

You can use the opposite procedure to convert a date from an integer date to a regular Gregorian date
in the format YYYYMMDD.

000019 Compute Date-To-Convert =
000020 Function Date-Of-Integer (Integer-Version-Of-Date)

Determining the days between particular dates becomes easy. Simply convert each date to an integer
date and compute the difference. Likewise, if you want to compute a date that is a certain number of
days in the future, convert the date to an integer, add the number of days, and reconvert the result to a
date.

The program in Listing 21.3 will Accept two dates and reports the number of days between them.
Try compiling it and determining how many days old you are!

Listing 21.3 Days Between Dates

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21c.
000004* Days Between Dates
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 First-Date Value Zeros.
000012 03 Date-MM Pic 99.
000013 03 Date-DD Pic 99.
000014 03 Date-YYYY Pic 9(4).
000015 01 Second-Date Value Zeros.
000016 03 Date-MM Pic 99.
000017 03 Date-DD Pic 99.
000018 03 Date-YYYY Pic 9(4).
000019 01 Days-Between Pic S9(12) Value Zeros.
000020 01 Integer-First-Date Pic 9(12).
000021 01 Integer-Second-Date Pic 9(12).
000022 01 Date-Formatting-Items.
000023 03 YYYYMMDD-Format-Date.
000024 05 Date-YYYY Pic 9(4).
000025 05 Date-MM Pic 99.
000026 05 Date-DD Pic 99.
000027 03 YYYYMMDD-Format-Date-N Redefines
000028 YYYYMMDD-Format-Date Pic 9(8).
000029 03 Format-Indicator-F Pic X(8) Value "MMDDYYYY".
000030 03 Format-Indicator-S Pic X(8) Value "MMDDYYYY".
000031 Screen Section.
000032 01 Date-Entry Blank Screen Auto.
000033 03 Line 01 Column 01 Value "Enter First Date: ".
000034 03 Line 01 Column 21 Pic X(8) From Format-Indicator-F
000035 To First-Date.
000036 03 Line 03 Column 01 Value "Enter Second Date: ".
000037 03 Line 03 Column 21 Pic X(8) From Format-Indicator-S
000038 To Second-Date.

000039 03 Line 05 Column 01 Value "Days between dates: ".
000040 03 Line 05 Column 21 Pic -Zzz,ZZ9 From Days-Between.
000041 Procedure Division.
000042 Chapt21c-Start.
000043 Display Date-Entry
000044 Accept Date-Entry
000045 Move Corresponding First-Date To YYYYMMDD-Format-Date
000046 Compute Integer-First-Date =
000047 Function Integer-Of-Date (YYYYMMDD-Format-Date-N)
000048 Move First-Date To Format-Indicator-F
000049 Move Corresponding Second-Date To YYYYMMDD-Format-Date
000050 Compute Integer-Second-Date =
000051 Function Integer-Of-Date (YYYYMMDD-Format-Date-N)
000052 Move Second-Date To Format-Indicator-S
000053 Compute Days-Between = Integer-Second-Date -
000054 Integer-First-Date
000055 Display Date-Entry
000056 Stop Run
000057 .

When you run the program, notice the use of the separate From and To fields in the screen
definition. This syntax allows you to prompt the user for the proper date format.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Determining the Day of the Week for a Particular Date

The Integer-Of-Date Function can also be used in a calculation to determine the day of the
week for a particular day. Because day 1 in the COBOL calendar, January 1, 1601, is a Monday,
figuring the day of the week for any other, later date is fairly easy. All you have to do is divide the
integer value of the date by 7—the number of days in the week—and examine the remainder. If the
remainder is 1, the day of the week is Monday; 2 is Tuesday, 3 is Wednesday, and so on. If the day is
Sunday, the remainder is zeros . The modification of Listing 21.3 that appears in Listing 21.4
determines and displays the weekday of the two dates entered. This program uses a table to reference the
descriptions for the days. Because Sunday is day 0 after the division, the program adds 1 to the
remainder to properly reference a table. The number of weeks is computed, but not used.

Listing 21.4 Days Between Dates, with Weekday

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21d.
000004* Days Between Dates, With Weekday
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 First-Date Value Zeros.
000012 03 Date-MM Pic 99.
000013 03 Date-DD Pic 99.
000014 03 Date-YYYY Pic 9(4).
000015 01 Second-Date Value Zeros.
000016 03 Date-MM Pic 99.
000017 03 Date-DD Pic 99.
000018 03 Date-YYYY Pic 9(4).
000019 01 Days-Between Pic S9(12).
000020 01 Integer-First-Date Pic 9(12).
000021 01 Integer-Second-Date Pic 9(12).
000022 01 Date-Formatting-Items.
000023 03 YYYYMMDD-Format-Date.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000024 05 Date-YYYY Pic 9(4).
000025 05 Date-MM Pic 99.
000026 05 Date-DD Pic 99.
000027 03 YYYYMMDD-Format-Date-N
000028 Redefines YYYYMMDD-Format-Date Pic 9(8).
000029 03 Format-Indicator-F Pic X(8) Value "MMDDYYYY".
000030 03 Format-Indicator-S Pic X(8) Value "MMDDYYYY".
000031 01 Weekday-First Pic X(9) Value Spaces.
000032 01 Weekday-Second Pic X(9) Value Spaces.
000033 01 Weekday-Table-Area.
000034 03 Weekday-Table-Values.
000035 05 Filler Pic X(27) Value "Sunday Monday Tuesday".
000036 05 Filler Pic X(27) Value "WednesdayThursday Friday".
000037 05 Filler Pic X(9) Value "Saturday".
000038 03 Weekday-Table Redefines Weekday-Table-Values.
000039 05 The-Day Pic X(9) Occurs 7 Times.
000040 01 Weeks Pic 9(12) Value Zeros.
000041 01 Remainder-Days Pic 9.
000042 Screen Section.
000043 01 Date-Entry Blank Screen Auto.
000044 03 Line 01 Column 01 Value "Enter First Date: ".
000045 03 Line 01 Column 21 Pic X(8) From Format-Indicator-F
000046 To First-Date.
000047 03 Line 01 Column 30 Pic X(9) From Weekday-First.
000048 03 Line 03 Column 01 Value "Enter Second Date: ".
000049 03 Line 03 Column 21 Pic X(8) From Format-Indicator-S
000050 To Second-Date.
000051 03 Line 03 Column 30 Pic X(9) From Weekday-Second.
000052 03 Line 05 Column 01 Value "Days between dates: ".
000053 03 Line 05 Column 21 Pic -Zzz,ZZ9 From Days-Between.
000054 Procedure Division.
000055 Chapt21d-Start.
000056 Display Date-Entry
000057 Accept Date-Entry
000058 Move Corresponding First-Date To YYYYMMDD-Format-Date
000059 Compute Integer-First-Date =
000060 Function Integer-Of-Date (YYYYMMDD-Format-Date-N)
000061 Move First-Date To Format-Indicator-F
000062 Move Corresponding Second-Date To YYYYMMDD-Format-Date
000063 Compute Integer-Second-Date =
000064 Function Integer-Of-Date (YYYYMMDD-Format-Date-N)
000065 Move Second-Date To Format-Indicator-S
000066 Compute Days-Between =
000067 Integer-Second-Date - Integer-First-Date
000068 Divide Integer-First-Date By 7 Giving Weeks
000069 Remainder Remainder-Days
000070 Add 1 To Remainder-Days
000071 Move The-Day (Remainder-Days) To Weekday-First
000072 Divide Integer-Second-Date By 7 Giving Weeks
000073 Remainder Remainder-Days
000074 Add 1 To Remainder-Days
000075 Move The-Day (Remainder-Days) To Weekday-Second
000076 Display Date-Entry
000077 Stop Run
000078 .

Determining the weekday of any given date is an easy operation in COBOL. An even easier method that

uses another COBOL-provided Intrinsic Function is demonstrated later in this hour.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Validating Dates

In Hour 18, “Master File Updating,” you wrote a transaction file data entry program. This program used
transaction dates. No checks were performed on the dates that the user entered, and invalid data could
enter the transaction file.

Whenever possible you should ensure that invalid data cannot enter the systems that you design and code.
Correcting invalid data after it has been accepted can be a very time-consuming and complex task.
Prevention is the order of the day.

Dates are a particularly sensitive area for business. Ensuring that the dates entered are valid is very
important. Date validation is simple to accomplish.

When validating a date, you must first ensure that it has been entered in the proper format by checking the
values in the individual fields that make up the date. First, check the month value to determine whether it
is between 1 and 12 . Any value outside that range is obviously invalid.

Then you must check the value of the day to determine whether it falls within the prescribed value for the
particular month with which it is associated. Each month, with the exception of February, has a set
number of days. A table of maximum day values is the simplest method of validating the day.

To properly validate days in February, you must determine whether the year being checked is a leap year.
The rules for determining a leap year are simple. Any year evenly divisible by 4, except those years
evenly divisible by 100 and not evenly divisible by 400 , is a leap year. The year 2000 is a leap year
because it is evenly divisible by 400 . The year 1900, although evenly divisible by 4, was not a leap year
because it was evenly divisible by 100 and not by 400 .

After you determine that the month and day are valid, you can check the full date to determine whether it
falls within your desired range. For example, you might want to Accept a date and then ensure that it
falls within 30 days of the current date. Any date that falls outside that range is invalid.

After determining that the month and day are valid, you can convert the day to an integer and check it
against the integer value of the current date.

Caution: One thing you should do before using the Intrinsic Function for converting the entered
date to an integer is ensure that the year entered is 1601 or greater. Any invalid value passed as an argument
to the Intrinsic Function Integer-Of-Date causes the Function to abnormally terminate
your program.

The program in Listing 21.5 accepts a date in MM/DD/YYYY format and validates the date. It then checks
to ensure that the date is within 30 days of the current date. The validity and range are reported on the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

screen before the program ends.

Listing 21.5 Date Validation

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21e.
000004* Validate A Date
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Date-Validation-Work-Fields.
000012 03 Date-To-Validate Pic 9(8) Value Zeros.
000013 03 Date-To-Validate-X Redefines Date-To-Validate.
000014 05 Date-MM Pic 99.
000015 05 Date-DD Pic 99.
000016 05 Date-YYYY Pic 9(4).
000017 03 YYYYMMDD-Format-Date Pic 9(8) Value Zeros.
000018 03 YYYYMMDD-Format-Date-X Redefines YYYYMMDD-Format-Date.
000019 05 Date-YYYY Pic 9(4).
000020 05 Date-MM Pic 99.
000021 05 Date-DD Pic 99.

The Day-Table has an entry containing the number of days in the corresponding month. Only the
second entry, February, requires modification if the year being tested is a leap year.

000022 03 Day-Table-Values Pic X(24) Value
000023 "312831303130313130313031".
000024 03 Day-Table Redefines Day-Table-Values.
000025 05 Days-In-Month Pic 99 Occurs 12 Times.

The work fields below are used in the process of validating the dates. The remainder fields are used with
division statements to determine whether the year in question is a leap year.

000026 01 Valid-Status Pic X(40) Value Spaces.
000027 01 Work-Number Pic 9(5) Value Zeros.
000028 01 Work-Remainder Pic 9(5) Value Zeros.
000029 01 Work-Remainder-100 Pic 9(5) Value Zeros.
000030 01 Work-Remainder-400 Pic 9(5) Value Zeros.
000031 01 Today-Date Pic 9(8) Value Zeros.
000032 01 Today-Integer Pic 9(7) Value Zeros.
000033 01 Test-Integer Pic 9(7) Value Zeros.
000034 01 Test-Range Pic 9(7) Value Zeros.
000035 Screen Section.
000036 01 Date-Entry Blank Screen Auto.
000037 03 Line 01 Column 01 Value "Enter Date: ".
000038 03 Line 01 Column 13 Pic 99/99/9999 Using Date-To-Validate.
000039 03 Line 01 Column 24 Pic X(40) From Valid-Status.
000040 Procedure Division.
000041 Chapt21e-Start.
000042 Display Date-Entry
000043 Accept Date-Entry

The first part of the program determines whether the year entered is a leap year. The first step is to set up
the three conditions that must be checked.

000044 Divide Date-YYYY Of Date-To-Validate-X By 4
000045 Giving Work-Number Remainder
000046 Work-Remainder
000047 Divide Date-YYYY Of Date-To-Validate-X By 100
000048 Giving Work-Number Remainder
000049 Work-Remainder-100
000050 Divide Date-YYYY Of Date-To-Validate-X By 400
000051 Giving Work-Number Remainder
000052 Work-Remainder-400

The conditions are then tested. If Work-Remainder is zeros , the date was divisible by 4, which it
must be to be a leap year. Then if the date is not divisible by 100 or if the date is divisible by 400 , it is a
leap year. The appropriate number of days is moved to the table for February.

000053 If Work-Remainder = Zeros And
000054 (Work-Remainder-100 Not = Zeros Or
000055 Work-Remainder-400 = Zeros)
000056 Move 29 To Days-In-Month (2)
000057 Else
000058 Move 28 To Days-In-Month (2)
000059 End-If

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The conditions that make the date an invalid date are checked. If any of these conditions is true, the date
is invalid. To be valid, the month must be between 1 and 12 . The year must be greater than 1600 or else
the Intrinsic Functions related to Integer-Of-Date fails. The day must be at least 1 and not
greater than the maximum number of days in the month.

000060 If Date-MM Of Date-To-Validate-X > 12 Or
000061 Date-MM Of Date-To-Validate-X < 01 Or
000062 Date-YYYY Of Date-To-Validate-X < 1601 Or
000063 Date-DD Of Date-To-Validate-X Not > Zero Or
000064 Date-DD Of Date-To-Validate-X >
000065 Days-In-Month (Date-MM Of Date-To-Validate-X)
000066 Move "Invalid Date" To Valid-Status
000067 End-If

If the date was not marked invalid by a message in the Valid-Status field, then the number of days
between the dates can be checked.

When comparing the two dates, you will have no idea which is greater. When you do the subtraction of
the two integer dates, you could end up with either a positive or a negative number. To make the
comparison easy, the result of the subtraction is stored in an unsigned field. This step causes the value to
be stored without a sign and treated in comparisons as a positive number.

000068 If Valid-Status = Spaces
000069 Move Corresponding Date-To-Validate-X To
000070 YYYYMMDD-Format-Date-X
000071 Move Function Current-Date (1:8) To Today-Date
000072 Compute Test-Range =
000073 Function Integer-Of-Date (YYYYMMDD-Format-Date) -
000074 Function Integer-Of-Date (Today-Date)
000075 If Test-Range > 30
000076 Move "Date Valid, but out of Range" To Valid-Status
000077 End-If
000078 End-If

If there were no errors, a message to that effect is displayed for the user.

000079 If Valid-Status = Spaces
000080 Move "Date Valid and Within Range" To Valid-Status
000081 End-If

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000082 Display Date-Entry
000083 .

The previous examples use the remainder of a division to calculate the day of the week and to determine
whether a year is a leap year. In COBOL a simpler method can achieve the same results. When you want
to use a remainder only and are not concerned about the whole result of the division, you can use the
Intrinsic Function Rem . Rem returns the remainder of the first argument divided by the second.
When you are concerned only with the remainder, using the Function Rem is more efficient than
coding the necessary Working-Storage and Divide statement.

Function Rem simplifies the day of the week calculation so that it consists of only the following lines
of code:

000065 Compute Remainder-Days =
000066 (Function Rem (Integer-First-Date 7) + 1)
000067 Move The-Day (Remainder-Days) To Weekday-First

Notice that the arguments for the Function are enclosed in parentheses after the Function name.

Tip: When multiple arguments are specified with an Intrinsic Function , they may be separated by a
comma. This visual clue sometimes makes the arguments easier to pick out when examining source code.
For example, the Function Rem noted above, can be coded as Function Rem
(Integer-First-Date, 7) .

Another interesting calculation is the conversion from local time to GMT using the values returned from
the Current-Date Intrinsic Function . The problem in this conversion comes from the fact
that when you subtract or add the time differential, the date may change. Doing math on time fields is
tricky under normal circumstances. With the added complexity of a possibly changing date, the task can
seem rather challenging. Times are tricky to work with because they are not normal base 10 numbers.
When you add to the minutes, anything over 59 requires the hour to be incremented by 1. If you are
subtracting and need to borrow from the hours, you must add 59 to the minutes, not 10 as in more
conventional math. Consequently, normal computational formulas won’t solve the problem.

One simple way to solve the problem is to convert the current time into seconds since midnight
12/31/1600 . The solution is relatively easy if you use these equivalencies: 86,400 seconds in a day;
3,600 seconds in an hour; and 60 seconds in a minute. Multiply the date by 86,400 ; the hour by
3,600 ; and the minutes by 60 ; then add the current time seconds to the result. The current time is now in
seconds. Perform the same type of math against the GMT offset, as reported by the Current-Date
Intrinsic Function , and either add or subtract the amount of seconds from the current date in
seconds.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The only remaining difficulty is to return the resulting seconds to a conventional date and time. Listing
21.6 shows the program required to perform the calculation. Find the number of the day by dividing the
resulting seconds by 86,400 and save the remainder, as it is the time. Convert this integer date to a
Gregorian date. Divide the remaining seconds by 3,600 to find the hour, again saving the remainder.
Then divide the remainder of that calculation by 60 to find the minutes. The remainder of this
computation is the seconds! Simple.

Listing 21.6 Convert Local Time to GMT

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21g.
000004* Convert Local Time To Gmt
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Current-Date-Group.
000012 03 Todays-Date.
000013 05 Today-YYYY Pic 9(4).
000014 05 Today-MM Pic 9(2).
000015 05 Today-DD Pic 9(2).
000016 03 Todays-Date-N Redefines Todays-Date Pic 9(8).
000017 03 Time-Now.
000018 05 Time-Hour Pic 99.
000019 05 Time-Minutes Pic 99.
000020 05 Time-Seconds Pic 99.
000021 05 Time-Hundredths Pic 99.
000022 03 GMT-Offset.
000023 05 GMT-Direction Pic X.
000024 05 GMT-Hours Pic 99.
000025 05 GMT-Minutes Pic 99.
000026 01 Display-Date.
000027 03 Today-MM Pic 9(2).
000028 03 Filler Pic X Value "/".
000029 03 Today-DD Pic 9(2).

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000030 03 Filler Pic X Value "/".
000031 03 Today-YYYY Pic 9(4).
000032 01 Display-Time.
000033 03 Time-Hour Pic 99.
000034 03 Filler Pic X Value ":".
000035 03 Time-Minutes Pic 99.
000036 03 Filler Pic X Value ":".
000037 03 Time-Seconds Pic 99.
000038 01 Total-Seconds Pic 9(15) Value Zeros.
000039 01 Work-Number Pic 9(15) Value Zeros.
000040 01 Work-Remainder Pic 9(15) Value Zeros.
000041 01 GMT-Offset Pic 9(15) Value Zeros.
000042 Procedure Division.
000043 Chapt21g.
000044 Move Function Current-Date To Current-Date-Group
000045* Convert Today To Seconds
000046 Compute Work-Number =
000047 Function Integer-Of-Date (Todays-Date-N)
000048 Compute Total-Seconds = (Work-Number * 86400) +
000049 (Time-Hour Of Time-Now * 3600) +
000050 (Time-Minutes Of Time-Now * 60) +
000051 Time-Seconds Of Time-Now
000052 Compute Work-Number = (GMT-Hours * 3600) +
000053 (GMT-Minutes * 60)
000054* We Need To Change By The Opposite Of The Direction From Gmt
000055 If GMT-Direction = "+"
000056 Subtract Work-Number From Total-Seconds
000057 Else
000058 Add Work-Number To Total-Seconds
000059 End-If
000060* Convert The Time In Seconds Back To A Date And Time
000061 Divide Total-Seconds By 86400 Giving Work-Number
000062 Remainder Work-Remainder
000063 Compute Todays-Date-N =
000064 Function Date-Of-Integer (Work-Number)

Note: This next computation uses the remainder from the last division and stores the new remainder in
Work-Number , which is used in the next calculation. Although the names don’t match their Function ,
this technique saves having to move the fields before the next calculation.

000065 Divide Work-Remainder By 3600 Giving Time-Hour Of Time-Now
000066 Remainder Work-Number
000067 Divide Work-Number By 60 Giving Time-Minutes Of Time-Now
000068 Remainder Time-Seconds Of Time-Now
000069 Move Corresponding Todays-Date To Display-Date
000070 Move Corresponding Time-Now To Display-Time
000071 Display "Current GMT " Display-Date " " Display-Time
000072 Stop Run
000073 .

Other Kinds of Dates

Occasionally, you may need to use the Julian date instead of the Gregorian date. The Intrinsic
Functions provide an easy way to convert to and from the Julian date. These Functions are
similar to the Date-Of-Integer and Integer-Of-Date Functions .

The Functions related to the Julian date are Day-Of-Integer and Integer-Of-Day . These

Functions make conversion to and from the Gregorian date simple. If you want to convert from
Gregorian date, use the Function Integer-Of-Date to find the integer date of the day in
question. Then, using that integer, execute the Function Day-Of-Integer . The Julian date is
returned in YYYYDDD format, where YYYY is the full four-digit year and DDD is the day of the year.

To convert from Julian date to Gregorian date, use the Function Integer-Of-Day to determine
the integer date; then use the Function Date-Of-Integer to find the Gregorian date.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Fun with Dates

Now that you know how to do nearly everything there is to do with dates, you
can have some fun. You can create your own calendar program. You can
determine the holidays and print these on the calendar. Most holidays fall on
specific days of the month or on the closest Monday to that day. The only
really tricky holiday to figure is the date for Easter.

In 325 A.D., the Council of Nicaea determined that Easter should be
celebrated on the first Sunday after the first full moon after the vernal equinox.
If the full moon fell on a Sunday, causing it to coincide with the Passover, it
would be celebrated the following Sunday.

Problems soon beset this method because of the difference between the solar
year and the lunar year, known as the epact. Over time, the difference became
increasingly pronounced. It was the problem of fixing the date of Easter that
ultimately led to the calendar reform of 1582.

The method for calculating the date of Easter is fairly complex. However,
because it has a series of steps that follow a specific set of rules, a program can
be created that accurately calculates the date.

The algorithm chosen first appeared in volume 1 of The Art of Computer
Programming by Donald Knuth. The steps are as follows:

• First, the current position in the metonic cycle is determined by the
remainder of the full four-digit year divided by 19 . Every 19 years, the
phases of the moon repeat on the same calendar days of the year. This
cycle is the metonic cycle, and the result of this computation is known
as the “golden number.”

• Next, the century number is determined by dividing the year by 100 ,
disregarding the remainder, and adding 1.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Next, the number of years that the leap year was dropped in the even
centuries is determined. Remember that if the century is divisible by
100 and not by 400 , the year, which is divisible by 4, is not a leap
year. The number of years in which this condition occurs is determined
by multiplying the century previously computed by 3, dividing the
result by 4, and subtracting 12 . The remainder portion of the division is
discarded. After 1900 and until the year 2100, this number is 3—the
number of even centuries without a leap year since calendar reform.
(Recall that 1600 was a leap year, 1700 was not, 1800 was not, 1900
was not, and 2000 is.)

• A special correction is computed to synchronize Easter with the orbit
of the moon. This value is 8 times the century, plus 5, divided by 25 .
The remainder is discarded, and 5 is subtracted from the result of the
division.

• A factor is determined to adjust the date to the next Sunday. This
factor is computed by multiplying the full four-digit year by 5 and
dividing the result by 4. Again, the remainder is discarded. The number
of skipped leap years plus 10 is then subtracted from the result.

• Next, the epact is computed. It is the remainder of 11 times the
golden number, plus 20 , plus the correction factor, minus the number of
skipped leap years, all divided by 30 . The epact is always a positive
number. If you achieve a negative result, change the sign to positive. In
the COBOL program, you can just compute the value into an unsigned
field.

• If the epact is 24, or if the epact is 25 and the golden number is
greater than 11 , 1 is added to the epact.

• The day of the first full moon in March is then computed. This value
is 44 minus the epact. If the result of this subtraction is less than 21 ,
then 30 is added to it.

• This day is then advanced to the following Sunday by subtracting the
remainder of the sum of this date and the correction factor divided by 7
from the day plus 7. That is, day plus 7 minus remainder, or ((Day +
Correction) / 7) .

• If this resulting day is greater than 31 , then Easter falls in April
instead of March and 31 is subtracted from the day.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Taking this type of algorithm and creating a program that performs the task is the COBOL
programmer’s job. Chapt21h.Cob, shown in Listing 21.7, computes the date of Easter for any
given year.

Listing 21.7 Easter Date Calculation

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt21h.
000004* Compute The Date Of Easter For The Given Year
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Easter-Work-Fields.
000012 03 The-Year Pic 9(4) Value Zeros.
000013 03 Easter-Date Pic 9(8) Value Zeros.
000014 03 Easter-Date-X Redefines Easter-Date.
000015 05 Easter-Month Pic 99.
000016 05 Easter-Day Pic 99.
000017 05 Easter-Year Pic 9(4).
000018 03 Golden-Number Pic 9(6).
000019 03 Century Pic 9(3).
000020 03 Skipped-Leap-Year Pic 9(6).
000021 03 Correction Pic 9(8).
000022 03 Factor Pic 9(8).
000023 03 Epact Pic 9(8).
000024 01 Temp-Work Pic 9(8).
000025 01 Temp-Work-1 Pic 9(8).
000026 Screen Section.
000027 01 Date-Entry Blank Screen Auto.
000028 03 Line 01 Column 01 Value "Enter Year: ".

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000029 03 Line 01 Column 14 Pic 9(4) Using The-Year.
000030 03 Line 03 Column 01 Value "Easter is: ".
000031 03 Line 03 Column 15 Pic 99/99/9999 From Easter-Date.
000032 Procedure Division.
000033 Chapt21h-Start.
000034 Display Date-Entry
000035 Accept Date-Entry
000036 Move The-Year To Easter-Year
000037*
000038 Compute Golden-Number = Function Rem (The-Year 19)
000039 Add 1 To Golden-Number
000040*
000041 Divide The-Year By 100 Giving Century
000042 Add 1 To Century
000043*
000044 Compute Temp-Work = 3 * Century
000045 Divide Temp-Work By 4 Giving Skipped-Leap-Year
000046 Subtract 12 From Skipped-Leap-Year
000047*
000048 Compute Temp-Work = (8 * Century) + 5
000049 Divide Temp-Work By 25 Giving Correction
000050 Subtract 5 From Correction
000051*
000052 Compute Temp-Work = 5 * The-Year
000053 Divide Temp-Work By 4 Giving Factor
000054 Subtract Skipped-Leap-Year From Factor
000055 Subtract 10 From Factor
000056*
000057 Compute Temp-Work = (11 * Golden-Number) + 20
000058 + Correction - Skipped-Leap-Year
000059 Compute Epact = Function Rem (Temp-Work 30)
000060*
000061 If Epact = 25 And Golden-Number > 11 Or
000062 Epact = 24
000063 Add 1 To Epact
000064 End-If
000065*
000066 Compute Temp-Work = 44 - Epact
000067 If Temp-Work < 21
000068 Add 30 To Temp-Work
000069 End-If
000070*
000071 Compute Temp-Work-1 = Factor + Temp-Work
000072 Compute Easter-Day = Temp-Work + 7 -
000073 Function Rem (Temp-Work-1 7)
000074*
000075 If Easter-Day > 31
000076 Move 4 To Easter-Month
000077 Subtract 31 From Easter-Day
000078 Else
000079 Move 3 To Easter-Month
000080 End-If
000081 Move The-Year To Easter-Year

000082*
000083 Display Date-Entry
000084 Stop Run
000085 .

Summary

In this hour, you learned the following:

• COBOL provides several powerful Functions for date processing.

• Today’s date, time, and offset from Greenwich mean time can be determined with the
Intrinsic Function Current-Date .

• When using Intrinsic Functions , the argument or arguments are enclosed in
parentheses after the name of the Function .

• The Function Integer-Of-Date returns a value that is the number of days since
December 31, 1600, for the date used as the argument.

• When using the Intrinsic Functions for dates, the Gregorian date format is
YYYYMMDD and the Julian date format is YYYYDDD.

• The current state of the calendar is directly related to the 1582 calendar reform that
corrected the number of days in the year, by adjusting the years that have a leap year, in an
effort to solidify and correct the calculation of Easter.

• You can use the Intrinsic Function Rem instead of the Divide statement to
find the remainder of a division.

Q&A

Q Why did the standards committee choose January 1, 1601, as day 1 in the COBOL
calendar?

A It was the closest year to calendar reform that began on a Monday. When accepting the current
weekday from the system, 1 is the value returned for Monday.

Q When I want to figure out what the date is 90 days from now, what is the easiest
method?

A Convert the date to an integer, using the Function Integer-Of-Date , and then add 90 .
Convert that number back to a date using the Function Date-Of-Integer .

Q What happens if I use an invalid date as an argument for one of the date Intrinsic
Functions?

A The Function fails, and in most COBOL implementations your program ends abnormally.

Q My program won’t compile when I try to code Move Function Integer-Of-Date
(The-Date) to Integer-Date. Why not?

A Numeric Intrinsic Functions must be used in mathematical expressions.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the section
“Quiz and Exercise Questions and Answers” that can be found on the CD. This section contains
quiz questions and exercises for you to complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 22
Other Intrinsic Functions
In Hour 21, “Date Manipulation,” you learned about the Intrinsic Functions associated
with date processing. In addition to these functions, COBOL comes equipped with a wealth of
additional Intrinsic Functions that fill the need for a variety of items such as

• Mathematical and statistical Functions

• Financial application Functions

• String manipulation Functions

• Miscellaneous Functions such as random number generation

These functions bring features to COBOL that, prior to their introduction in 1989, had to be
designed and coded by programmers, sometimes using complex algorithms. Many of these
functions can help make programming much easier for the COBOL programmer.

Mathematical Functions

The first subset of Functions relates to trigonometric Functions . These Functions can be
used for calculations normally reserved for scientific programming languages such as FORTRAN.
Many governments and universities rely on COBOL as their main programming language. Having
these Functions available from COBOL means that these institutions don’t have to develop
these processes in other programming languages.

Caution: The trigonometric Functions and the square root Function are approximations.
Different compilers can produce different results for these Functions .

Note: Explaining trigonometric Functions is beyond the scope of this book. However, this
section does explain the values returned and the methods used to obtain those values.

Each trigonometric Function accepts a single argument, which is specified within parentheses
following the Function name. These Functions are

• Cosine Function Cos

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Sin Function Sin

• Tangent Function Tan

• Arcsin Function Asin

• Arccosine Function Acos

• ArctangentFunction Atan

The Cosine Function returns a numeric value in the range of plus or minus 1. As with all
numeric Intrinsic Functions , the value is returned by using the Function in an
arithmetic statement such as Compute . The argument used with the Cos Function must be
numeric and is specified in radians. For example, to find the cosine of .785 radians, you code the
following:

000100 Compute The-Cosine = Function Cos (.785)

The value returned is .707388269 .

Because the argument is in radians, you might need to convert an angle to radians. You may
approximate the radians with the following Compute statement (pi is approximated and is the
value that is divided by 180):

000101 Compute Radians = Angle * (3.14159265358979324 / 180)

The Sin Function returns a numeric value in the range of plus or minus 1 that approximates
the value of the Sin of the argument. As with Cosine, the argument value is specified in radians.
To find the Sin of .875 radians, code the following:

000102 Compute The-Sin = Function Sin (.875)

The Tan Function returns a numeric value that approximates the value of the Tangent of the
argument. The argument value is specified in radians. To find the Tangent of .785 radians, code
the following:

000103 Compute The-Tangent = Function Tan (.785)

The Asin and Acos Functions return an approximation of the ArcSin and ArcCosine of the
argument. The argument must fall within the range of plus or minus 1. The value returned is in
radians. To figure the Acos of .707388269 , code the following:

000104 Compute The-Arc-Cosine = Function Acos (.707388269)

The Atan Function returns an approximation of the ArcTangent of the specified argument.
The value is returned in radians.

Two different logarithm Functions are provided. These numeric Functions accept a single
numeric argument. The Log Function returns an approximation of the natural logarithm of the
specified argument. The Log10 Function returns an approximation of logarithm to base 10 of
the argument. The argument must be a positive number.

You can use the Factorial Function to find the factorial of an argument. The argument
specified must be either zero or a positive integer. When the argument specified is zero, a value of
1 is returned from the Function ; otherwise, the factorial is returned. Make sure that the numeric
field you are computing the result into is large enough to contain the value. To compute the
factorial of 7, code the following:

000105 Compute The-Factorial = Function Factorial (7)

Note: The examples thus far have used numeric literals as the arguments for the Functions . You
may also use any numeric data item defined in the Data Division of your COBOL program.

The Sqrt Function approximates the square root of the argument. For example, if you have a
number stored in Numeric-Field and you want to determine its square root, you may code the
following:

000106 Compute Square-Root = Function Sqrt (Numeric-Field)

COBOL has two Functions that can find the integer portion of a numeric field. The two
Functions differ in how they handle negative numbers. The first Function ,
Integer-Part , returns the integer portion of the argument. For example:

000107 Compute The-Integer-Part = Function Integer-Part (-1.9)

returns negative 1 in The-Integer-Part . Any decimal positions are removed.

If the argument were 1.9 , the value returned would be 1.

The sister Function , Integer , returns the greatest integer value that is less than or equal to
the argument. With Integer , the example

000108 Compute The-Integer-Part = Function Integer (-1.9)

returns a value of negative 2. Negative 2 is the greatest integer value that is less than or equal to
negative 1.9 . For positive numbers, the two Functions , Integer-Part and Integer ,
return the same result.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch22/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

In Hour 21, you learned about the Rem Function . This Function returns the remainder of the first
argument divided by the second. You may be interested to know that the actual calculation performed to
return this value is

000109 Compute Remainder = First-Argument –
000110 (Second-Argument *
000111 Function Integer-Part (First-Argument/Second-Argument))

A Function that is very similar to Rem, and often used erroneously instead, is Mod. Mod accepts two
arguments, and returns an integer that is the value of the first argument using the second argument as the
modulus. For positive numbers, the value returned is the same as that of Rem. However, when negative
numbers are involved, the values returned by Mod and Rem differ because of the slight variation in the
calculation used to arrive at the Mod result. The calculation for Mod uses Integer rather than
Integer-Part .

000112 Compute Mod-Value = First-Argument –
000113 (Second-Argument *
000114 Function Integer (First-Argument/Second-Argument))

To find 14 modulus 7 , the statement is coded as follows:

000115 Compute Mod-Value = Function Mod (14 7)

Statistical Functions

The COBOL Intrinsic Functions are rich in statistical analysis tools. There are Functions for
Max, Min , Mean, Median , Midrange , Range, Sum, Variance , and Standard-Deviation . Two
related Functions are Ord-Max and Ord-Min .

The Function Max returns the maximum value from a list of arguments. For example, if you have three
numeric fields—Field-1 , Field-2 , and Field-3 —you can determine the minimum value stored in the
fields.

Note: For this section, only numeric values are discussed with the statistical Functions . Many of these
Functions accept alphanumeric arguments. Alphanumeric argument values are covered in the upcoming
“String Functions ” section.

000116 Compute Max-Value = Function Max (Field-1 Field-2 Field-3)

Similarly, the Min Function returns the minimum value of the arguments specified for the Function .

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Ord-Max and Ord-Min are related to Max and Min . Instead of returning the highest or lowest value,
Ord-Max and Ord-Min return the relative position of the argument in the list that contains the highest or
lowest value. Table 22.1 shows the various values returned from Max, Min , Ord-Max , and Ord-Min when
Field-1 is 10 , Field-2 is 30 , and Field-3 is 15 .

Table 22.1 Values Returned by Functions Max, Min , Ord-Max , and Ord-Min

Function Value Returned

Function Max (Field-1, Field-2, Field-3) 30

Function Min (Field-1, Field-2, Field-3) 10

Function Ord-Max (Field-1, Field-2, Field-3) 2

Function Ord-Min (Field-1, Field-2, Field-3) 1

The Functions Mean and Midrange are closely related. Both Functions return numeric values. The
Mean Function returns the average value of all of the arguments specified for the Function . The
Midrange Function returns the average value of the highest and lowest argument values. Arguments
are specified just as for the Max Function .

The Median Function sorts the values of the arguments and returns the value of the argument that is in
the middle of the sorted list. If Field-1 has a value of 3, Field-2 has a value of 300 and Field-3 has
a value of 10 , the following code returns a value of 10 :

000117 Compute The-Median = Function Median (Field-1 Field-2 Field-3)

If the three fields are arranged in sorted order, the middle value is 10 .

The Range Function returns the range of numbers involved in the argument list. The Function
returns a number that is the difference between the highest and lowest value in the argument list. If you have
arguments where the lowest value is 10 and the highest value is 20 , the range is 10 .

The Sum Function adds all the arguments specified together and reports that result. The following two
lines of code produce identical results:

000118 Compute The-Result = Function Sum (Field-1 Field-2 Field-3)
000119 Add Field-1, Field-2, Field-3 Giving The-Result

The Standard-Deviation Function returns an approximation of the standard deviation of the
arguments. If all the arguments have the same value, 0 is returned; otherwise, the algorithm is fairly
involved. First, the mean of the arguments is calculated. Then the square of the difference between the mean
and each argument is summed. This sum is divided by the number of arguments and the absolute value of the
square root is the result.

The Variance Function returns a numeric value that approximates the variance between the list of
arguments specified. It is simply the square of the standard deviation of the list of arguments.

These Functions can be very useful in statistical calculations. Prior to the introduction of these
Functions , the COBOL programmer had to write the lines of code necessary to complete these
often-complex calculations. If the number of arguments changed, the program required significant
modification. These Intrinsic Functions make for much easier program maintenance.

In addition to accepting a list of data items, you might have a set of items that vary in number. Sometimes
you might need to calculate the Min of three numbers and other times the Min of five numbers. Obviously,
you don’t want to have to code two different Functions for this purpose.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch22/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The statistical Functions , Max, Min , Ord-Max , Ord-Min , Mean, Median , Midrange ,
Standard-Deviation , Sum, and Variance , accept a table as the argument. The Elementary Level of
the table must be specified. If the entire table is to be processed, the subscript specified is the word All .
By using a variable-length table defined with the Depending On clause, you can process a variable
number of items with these Functions . For example, you might have the following table defined:

000011 01 Work-Table.
000012 03 Work-Entry Pic 9(3) Occurs 1 To 20 Times
000013 Depending On Num-Entries.
000014 01 Num-Entries Pic 9(3) Value 3.

Assume that the first element of the table is equal to 5, the second is equal to 20 , and the third 10 . The
following line finds the minimum value in the table:

Compute Result = Function Min (Work-Entry (All))

When a Function Ord-Min or Ord-Max is used with a table, the element that is the Min or the Max
is returned. Function Ord-Min provides a simple method to find the element of the table that contains
the lowest value.

Financial Functions

Financial institutions are heavy users of COBOL. Many different financial algorithms have been coded in
COBOL over the years. Two of these are now available as Intrinsic Functions: Annuity and
Present-Value .

The Annuity Function returns the approximate value of the ratio of an annuity paid at the end of each
period for the number of periods specified to an initial investment of 1. The number of periods is specified
in the second argument. The rate of interest is specified by the first argument, and is applied at the end of
the period, before payment. The actual calculation is

When Argument-1 (interest rate) is 0, the value is 1/Argument-2 .

When Argument-1 is not 0, the value is Argument-1/(1 - (1 + Argument-1) ** (-
Argument-2)) . (Remember that ** specifies an exponent).

You can use the Annuity Function to calculate a monthly payment on a loan, as shown in Listing
22.1.

Listing 22.1 Demonstrate the Annuity Function

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt22b.
000004* Annuity Example
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Loan-Amt Pic 9(6)v99 Value Zeros.
000012 01 Interest-Rate Pic 9(3)v99 Value Zeros.
000013 01 Loan-Years Pic 9(3) Value Zeros.
000014 01 Payment-Amt Pic 9(6)v99 Value Zeros.
000015 01 Monthly-Interest Pic 9(3)v9(9) Value Zeros.
000016 Screen Section.
000017 01 Data-Entry Blank Screen Auto.
000018 03 Line 01 Column 01 Value "Enter Principal: ".
000019 03 Line 01 Column 18 Pic Z(6).99 Using Loan-Amt.
000020 03 Line 03 Column 1 Value "Enter Interest Rate: ".
000021 03 Line 03 Column 22 Pic Z(2)9.99 Using Interest-Rate.
000022 03 Line 04 Column 1 Value "Number of Years of Loan: ".
000023 03 Line 04 Column 26 Pic ZZ9 Using Loan-Years.
000024 03 Line 06 Column 1 Value "Monthly Payment: ".
000025 03 Line 06 Column 18 Pic Z(3),Z(3).99 From Payment-Amt.
000026 Procedure Division.
000027 Chapt22b-Start.
000028 Display Data-Entry
000029 Accept Data-Entry
000030 Compute Monthly-Interest Rounded = (Interest-Rate / 12) / 100
000031 Compute Payment-Amt Rounded = Loan-Amt *
000032 Function Annuity (Monthly-Interest, Loan-Years * 12)
000033 Display Data-Entry
000034 Stop Run
000035 .

Before the calculation can occur, all the variables must have the same relationship. Since the monthly
payment is to be determined, all items are changed into their monthly equivalents. In line 30, the interest
rate is divided by 12 to give the monthly interest rate. It is again divided by 100 because the Annuity
Function accepts the rate as a positive value and actual rate. When someone says the interest rate of
7.25 , he or she means 7.25% , which is an actual rate of .0725 . To keep data entry simple for the user,
the rate is accepted at the percentage level and then changed to an actual rate.

In lines 31 and 32, where the Annuity Function is used, the number of years of the loan is multiplied
by 12 to find the number of months of the loan. You do not have to calculate this value outside the
Function . The value is determined as part of the Function calculation.

The other financial Function is Present-Value . Present-Value is the number that the principal
must be to achieve a certain goal value at the end of the period for the specified interest rate. It is used
frequently in bond calculation to determine the initial purchase price of a bond. Generally, bonds return a
fixed specified rate of return monthly before paying back a specified principal. When deciding whether a
bond is worthwhile, the buyer has to consider what kind of return he or she could make on the investment
at a fixed interest rate. Consider the following example: If you give me a certain amount of money now, I
will give you $1,000.00 at the end of the year. If you can earn 5% on your money right now, what is the
present value of the $1,000.00 I will give you in the future?

The Function to compute this amount is

000100 Compute Result = Function Present-Value (.05 1000)

The value returned is $952.38 . If I want you to give me any more than this amount, then the deal is not
lucrative for you. You could make more money placing the money in a regular certificate of deposit.

Consider a more realistic investment situation. If you were to put $100 a year into an investment fund for
20 years at a rate of return of 4.5%, what is the present value of that money? In other words, what would
you have to invest now as a single value to have the same amount of money at the end of 20 years?
Considering the $100 every year for 20 years, you would put in a total of $2,000. How much would you
have to put in today as a lump sum to achieve the same net value after 20 years?

One way to code the problem is

000017 Compute Result = Function Present-Value (.045,
000018 100, 100, 100, 100, 100
000019 100, 100, 100, 100, 100
000020 100, 100, 100, 100, 100
000021 100, 100, 100, 100, 100)

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch22/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

This methods appears cumbersome. The Present-Value Function accepts a table as an
argument. Instead of coding the problem as shown, you can create a table and populate it with
$100.00 in each element. The Function could then be simplified to

000022 Compute Result =
000023 Function Present-Value (.045, Value-Element (All))

Interestingly, rather than put away $100.00 a year for 20 years, you could start with $1,300.79 and
reach the same net value at maturity.

String Functions

Several Intrinsic Functions can be used in string processing. Some of these Functions
were described for numeric usage, but can also be used with alphanumeric arguments for string
processing. The Functions related to working with strings are Length , Min , Max, Ord-Min ,
Ord-Max , Char , Ord , Upper-Case , Lower-Case , Reverse , Numval , and Numval-C .

The Length Function returns a numeric value that corresponds to the length of the argument. It
may seem to have limited value, but actually the Function can be quite valuable. For instance, you
might have a routine that centers a field. The method used might count backward from the end until a
character greater than spaces is encountered. Then using that count, divide it in half and shift the field
over to the right by that amount. Coding the program for a particular field is quite easy. But what if
you want to reuse the code in another program with a different field length? You would have to change
the routine for that field length. Instead, you could use the Length Function in the routine to
determine the field length and never have to change the routine to use it in new programs.

Consider the program in Listing 22.2 for this purpose.

Listing 22.2 Center a Field

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt22d.
000004* Center A String
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000009 Data Division.
000010 Working-Storage Section.
000011 01 String-Length Pic 9(6) Value Zeros.
000012 01 Counter Pic 9(6) Value Zeros.
000013 01 String-To-Center Pic X(60) Value
000014 "Teach Yourself COBOL in 24 Hours".
000015 01 Centered-String Pic X(60) Value Spaces.
000016 Procedure Division.
000017 Chapt22d-Start.
000018 If String-To-Center > Spaces
000019 Compute String-Length =
000020 Function Length (String-To-Center)
000021 Perform Varying Counter From
000022 String-Length By -1 Until
000023 String-To-Center (Counter:1) > Spaces
000024 Continue
000025 End-Perform
000026 Compute Counter Rounded = (String-Length - Counter) / 2
000027 Move String-To-Center To
000028 Centered-String (Counter:)
000029 End-If
000030 Display "Centered-String=" Centered-String
000031 Stop Run.
000032 .

First, notice that the centering attempt is not made unless the field contains some data. Then the length
of the field is calculated using the Length Function .

Caution: Some people think the Length Function returns the number of characters in a field less
the trailing blanks. This is not the case. Even if the field contains spaces, the Length Function
returns the full field defined length.

If you need to change the size of the field to be centered, simply modify the two fields in
Working-Storage , String-To-Center and Centered-String , to have a new length.
Because you are using the Length Function to find this field length, nothing else in the program
needs to change.

Another use for the Length Function is to return the actual length of a variable-length table.
When you use the Function with a table, the actual used length is returned. For example, if your
table is defined as

000011 01 Variable-Table.
000012 03 Table-Items Occurs 1 To 500 Times
000013 Depending On Table-Occurrences.
000014 05 Table-Element Pic 9(3).
000015 01 Table-Occurrences Pic 9(3) Value 237.

You can determine the actual utilized length of the table using the Length Function as follows:

000019 Compute Item-Length = Function Length (Variable-Table)

The Min , Max, Ord-Min , and Ord-Max Functions work with alphanumeric data items in the
same way that they work with numeric items. You can use the Min and Max Functions to find the
minimum and maximum values in a series of strings stored in a table. Or you can use Ord-Max and
Ord-Min to determine which elements of a table have the greatest and least value.

The Char Function accepts a numeric argument and returns the character that corresponds with

that numeric value in the collating sequence in use by the program. For example, if the following
statement is executed, the letter "X" is returned.

000016 Move Function Char (89) to Character-Returned

The converse Function is the Ord Function . When passed a character, the Ord Function
returns the numeric position of the character in the computer’s collating sequence. The following line
of code returns the position in the collating sequence of the letter "Q" .

000017 Compute Position-Returned = Function Ord ("Q")

Note: Obviously, these Functions do not have to be used with numeric and alphanumeric literals.
You could use these Functions with data items as the arguments of the Functions —for example,
Function Ord (Character-Item) . However, with the Ord Function only a single character
field is valid.

The Upper-Case Function converts an alphanumeric data item to uppercase. The argument can
be any Elementary or Group Level alphanumeric data item. Each character within the field is
converted to all capital letters.

000018 Move Function Upper-Case (Input-Field) To Output-Field

A related Function , Lower-Case , converts a data item to all lowercase characters.

000019 Move Function Lower-Case (Input-Field) To Output-Field

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch22/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

A very interesting and useful Function is the Reverse Function . The Reverse Function
reverses the order of the characters in the argument. For example, your program might contain the
following Working-Storage entries:

000010 01 Input-Field Pic X(15) Value "COBOL".
000011 01 Output-Field Pic X(15) Value Spaces.

If you code the following:

000025 Move Function Reverse (Input-Field) To Output-Field

Output-Field will contain " LOBOC" . You may be asking yourself how you can use this
Function . In Hour 7, “Manipulating String Data,” you used the String statement to construct a full
name from a first, middle, and last name. A difficulty arose when the first name field had more than one
name. Names such as Daisy Mae were not correctly used in the full name, as Delimited By Space
was coded with the String statement. One way to correct this problem is to know the name within the
name field. For example, the name field might be defined as Pic X(25) , and "Daisy Mae" might be
the value of the field. In this case, the field length is 25 , but the name within the field is 9 characters long.

The Inspect statement enables you to easily determine the number of leading spaces, but determining
the number of trailing spaces is not so easy. The Reverse Function allows you to reverse the order
of the characters in Input-Field so that what were trailing spaces become leading spaces. You may
then use the Inspect statement to count the spaces.

000025 Move Function Reverse (Input-Field) To Output-Field
000026 Inspect Output-Field Tallying
000027 Trailing-Spaces For Leading Spaces

The field, Trailing-Spaces , is initialized to Zero in Working-Storage .

You can use this technique, along with the Length Function , to properly assemble names regardless
of the various field lengths as shown in Listing 22.3.

Listing 22.3 Assemble First and Last Name into a Full Name

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt22h.
000004*Assemble Full Name From First And Last

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 First-Name Pic X(15) Value Spaces.
000012 01 Last-Name Pic X(25) Value Spaces.
000013 01 Work-Field Pic X(15) Value Spaces.
000014 01 Full-Name Pic X(51) Value Spaces.
000015 01 Trailing-Spaces Pic 9(3) Value Zeros.
000016 01 Field-Length Pic 9(3) Value Zeros.
000017 Screen Section.
000018 01 Data-Entry Blank Screen Auto.
000019 03 Line 01 Column 1 Value "First Name: ".
000020 03 Line 01 Column 13 Pic X(15) Using First-Name.
000021 03 Line 03 Column 1 Value "Last Name: ".
000022 03 Line 03 Column 13 Pic X(25) Using Last-Name.
000023 03 Line 06 Column 1 Value "Full Name: ".
000024 03 Line 06 Column 13 Pic X(51) From Full-Name.
000025 Procedure Division.
000026 Chapt22h-Start.
000027 Display Data-Entry
000028 Accept Data-Entry
000029 Move Function Reverse (First-Name) To Work-Field
000030 Inspect Work-Field Tallying Trailing-Spaces For
000031 Leading Spaces
000032 Compute Field-Length = Function Length (First-Name)
000033 String First-Name (1:Field-Length - Trailing-Spaces)
000034 " "
000035 Last-Name
000036 Delimited By Size, Into Full-Name
000037 Display Data-Entry
000038 Stop Run
000039 .

Lines 29 through 31 determine the number of trailing spaces. Line 32 determines the full length of the
input field. The difference between these two fields is used with the String statement for assembling
the name.

On occasion, you may need to read input data prepared by another system or programming language. As
is often the case, the numeric fields passed to you by these systems are edited fields. That is, instead of
numbers such as 0001000 , the numbers are passed as 10.00 or " 10.00" . You can spend quite some
time creating a complex routine using String and Unstring statements, along with Inspect , to
return this field to a proper numeric value. Fortunately, COBOL provides a much simpler method of
converting these edited fields back into numbers.

Two related Function s handle this type of data conversion. These are Numval and Numval-C . When
passed a valid edited numeric field, Numval returns a numeric value that is equal to the numeric value of
the input field. Numval cannot handle input with currency symbols, commas, CR, or DB. Numval is
simply coded as shown here:

000025 Compute Converted-Value = Function Numval (Field-To-Convert)

Numval-C accepts a second argument, which is the currency symbol to expect in the input field. If this
argument is omitted, the currency symbol for the current character set is used. In addition to handling the
currency, Numval-C handles embedded commas and the CR and DB characters that might appear at the
end of a numeric edited field.

000026 Compute Converted-Value =
000027 Function Numval-C (Field-To-Convert "$")

Tip: If Numval-C is so much more capable than Numval , you may wonder why you would ever want to
use Numval . Because Numval-C can handle many more types of input characters, it has to do more work
and is therefore slower. Normally, you want the best performance possible from your programs. If the fields
you are converting to numbers do not have commas or currency, you will see faster results by using
Numval instead of Numval-C .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch22/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Miscellaneous Functions

The two remaining Intrinsic Functions are When-Compiled and Random. The
When-Compiled Function returns the date and time the program was compiled. The format
of the value returned is the same as that of the Current-Date Function . This Function
can be useful on a multiuser or complex environment to make sure the version of the program
being executed is the one you think it is. The following code displays the compilation date of a
program:

000100 Display Function When-Compiled (1:8)

The Random Function returns a pseudo-random value that is less than one but greater than or
equal to zero. The value is not truly random, but is a good approximation. The Function accepts
a single integer argument that is the “seed” value for the random number Function . If you need
to reproduce a series of random numbers, simply code the Random Function with the same
starting seed value. After the initial execution of the Function , the argument should be omitted.
Many programmers use the time as the initial seed value when a random number is desired.

To create a valid, random, whole number from the decimal value returned by the Random
Function , you must multiply the value by your maximum value and then add 1. For example, to
generate a random number, (Random-Number Pic 9(3)) between 1 and 500 , you may code
the following:

000100 Compute Random-Generate = Function Random (Seed-Number)
000101 Compute Random-Number = (Random-Generate * 500) + 1

Caution: You might be tempted to code a one-step process for random number generation, such as
Compute Random-Number = ((Function Random (Seed-Number) * 500) + 1 .
If you do, the highest random number generated is 451 . The reason is that the compiler bases the
precision of the random generation on the size of the data items used in the Compute statement.
Because Random-Number and all of the other variables used are whole numbers with no decimal
positions, the largest number returned from the Random Function is .9 . Obviously, .9 times
500 is 450 , and 450 plus the 1 yields 451 . To avoid this problem, it is best to declare a separate
data item with a high level of precision for the Random Function and then do the multiplication
in a separate step.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The Random Function is frequently used to generate a data file of random selections from
another file. Listing 22.4 uses the time as the seed value and generates a series of random numbers
between 1 and 21 .

Listing 22.4 Demonstrate Random Function

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt22j.
000004*Random Function
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Random-Seed Pic 9(8) Value Zeros.
000012 01 Random-Number Pic 99 Value Zeros.
000013 01 Random-Generate Pic V9(18) Value Zeros.
000014 Procedure Division.
000015 Chapt22j-Start.
000016 Move Function Current-Date (9:8) To Random-Seed
000017 Compute Random-Generate = Function Random (Random-Seed)
000018 Compute Random-Number = (Random-Generate * 21) + 1
000019 Display Random-Number
000020 Perform 19 Times
000021 Compute Random-Generate = Function Random
000022 Compute Random-Number = (Random-Generate * 21) + 1
000023 Display Random-Number
000024 End-Perform
000025 Stop Run
000026 .

Summary

In this hour, you learned the following:

• That numerous useful Intrinsic Functions are available to the COBOL
programmer

• How to use advanced mathematical Functions such as Sin , Cos, Tan, Log , and
Log10

• How to use the different statistical Intrinsic Functions such as Max, Min ,
Median , Range, Midrange , and Standard-Deviation

• The purpose and use of the financial Functions , Annuity and Present-Value

• How to handle string data with the following Functions : Length , Reverse ,
Upper-Case , and Lower-Case

• How to determine when your program was compiled with the When-Compiled
Function

• How to generate pseudorandom numbers with the Random Function

Q&A

Q How closely do the trigonometric Functions approximate their real values?

A The answer depends on the compiler vendor. The approximations are very good, but may be
different and accurate to different numbers of decimal positions with different compilers. You
cannot count on identical answers from different compilers.

Q I want to find the standard deviation between a list of values from a data file. I don’t know
how many different items there will be. How can I accomplish the task?

A You can define a variable-length table with occurrences depending on a data value that you
increment for each item loaded into the table. You need to know the maximum number of items
you will be handling. After the table is loaded, you may use it with the subscript (All) as the
argument for the Standard-Deviation Function .

Q What can the Annuity Function help me compute?

A One thing that you can compute with the Annuity Function is the monthly payment of a
fixed-rate mortgage.

Q Does the Length Function return the number of characters in a field or the field size?

A The Length Function returns the size of the field passed as an argument to the
Function . The contents of the field do not figure in the calculation.

Q The Random Function returns an extremely small number. How do I use this number
to calculate a larger random number?

A You multiply the small number by the maximum number you want to generate and then add 1
to the result. If Zero is a valid value for your number, instead of adding 1 to the result, simply
multiply by 1 more than the highest number you want to generate. Do not round the result.

Workshop

To help reinforce your understanding of the material presented in this hour, refer to the section
“Quiz and Exercise Questions and Answers” that can be found on the CD. This section contains
quiz questions and exercises for you to complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch22/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

PART V
Advanced Topics

Hour
23 The Call Interface

24 The Graphical User Interface

Hour 23
The Call Interface
COBOL programs may execute other COBOL programs or even programs written in a different
source language. The COBOL standard defines a simple method for accomplishing this task: the
Call statement. In this hour, you learn how to write a program that calls another program and how
to write the program that is called. You learn the information necessary to successfully interface and
communicate between calling and called programs, such as

• How to Call another program

• Passing data to a called program from a calling program By Reference and By
Content

• Coding the Linkage Section and the Procedure Division to allow a program to
be called

• Static versus dynamic calls

• The importance of synchronizing the calling parameters and the Linkage Section , and
how to use Copybooks to accomplish this task

Calling Other Programs

One important necessity of computer programming is the ability to reuse programming logic. If you
have a really neat date-validation routine, you don’t want to have to cut the paragraph out of one
program and paste it into another. The data items used by the routine might have names that conflict
with the data items in the new program. You have to remember to copy not only the routine but also
the logic that performs it and the Working-Storage items used by the routine.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Instead of doing all of this work, COBOL allows you to Call other programs, passing and returning
data values in the process. A Call is similar to a Perform . The called program is executed and
then control returns to the calling program immediately after the Call statement.

The simplest form of calling a program involves the execution of another program without any
program-to-program communication. An example of this approach is a menu program.

 A menu is a screen or window that is displayed with a list of items from which the user
may choose. A menu program typically performs little function and is used merely to allow the user to
choose an option to be executed. Normally, making a menu choice causes the menu program to call a
program that performs the associated function.

A menu program can be the control center for your application. A normal system is made up of
related programs. A menu allows the user to choose the desired function from a list.

Simple Program Calling

The menu program being considered is the calling program. The calling program is simply the
program that issues the Call statement, causing another program to be executed. No special setup is
required for a calling program in general. With Fujitsu COBOL, the very first program that issues a
Call must be compiled as a Main program, just as all the programs and examples have been so far.

The menu program in Listing 23.1 calls two of the examples from previous hours. The programs
being called require a few simple changes, so they are given new names for this example. The first
program being called is the telephone-number-formatting program from Hour 8, “Conditional
Statements,” Chapt08a, which appeared in Listing 8.1. It has been renamed Chapt23b. The second
program being called is the days-between-dates program from Hour 21, “Date Manipulation,”
Chapt21c, which appeared in Listing 21.3. It has been renamed Chapt23c.

Listing 23.1 Menu Program

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt23a.
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Special-Names.
000009 Crt Status Is Keyboard-Status.
000010 Data Division.
000011 Working-Storage Section.
000012 01 Dummy-Field Pic X Value Spaces.
000013 01 Keyboard-Status.
000014 03 Accept-Status Pic 9.
000015 03 Function-Key Pic X.
000016 88 F1-Pressed Value X"01".
000017 88 F2-Pressed Value X"02".
000018 88 F3-Pressed Value X"03".
000019 03 System-Use Pic X.
000020 01 Done-Flag Pic X Value Spaces.
000021 88 All-Done Value "Y".
000022 Screen Section.
000023 01 Main-Screen
000024 Blank Screen, Auto, Required,
000025 Foreground-Color Is 7,

000026 Background-Color Is 1.
000027 03 Line 1 Column 29 Value "Program Selection Menu".
000028 03 Line 3 Column 1 Value "F1 Telephone Number Format".
000029 03 Line 5 Column 1 Value "F2 Days Between Dates".
000030 03 Line 7 Column 1 Value "F3 Exit".
000031 03 Line 9 Column 1 Pic X To Dummy-Field Secure.
000032 Procedure Division.
000033 Chapt023a-Start.
000034 Perform Until All-Done
000035 Display Main-Screen
000036 Accept Main-Screen
000037 Evaluate True
000038 When F1-Pressed
000039 Call "Chapt23b"
000040 When F2-Pressed
000041 Call "Chapt23c"
000042 When F3-Pressed
000043 Set All-Done To True
000044 When Other
000045 Continue
000046 End-Evaluate
000047 End-Perform
000048 Stop Run
000049 .

Notice the definition of Dummy-Field . The program must have some field to use in conjunction
with the Accept statement. Dummy-Field is defined not to actually collect any user information,
but simply as a field to Accept so the function key pressed may be captured.

The Call statements that cause the other programs to be executed are in lines 39 and 41. These
called programs are often referred to as subprograms because they are called from a Main program.

The Call statement demonstrated here is the simplest form of the statement. It causes the
subprogram specified to be executed. When the subprogram finishes its processing, control returns to
the calling program at the statement immediately following the Call .

The subprograms require some special setup also. First, copy the original programs to the new
program names. Then you need to make some minor modifications. Remove the @OPTIONS line at
the top of the subprograms. You do not want the subprograms to be compiled as Main programs as
the directive specifies. Omitting the MAIN causes the programs to be compiled as subprograms.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

A new statement is required to return from the called program to the calling program. Replace the
Stop Run in the programs with Exit Program . Exit Program causes control to return
immediately to the calling program. Any files that are open in the subprogram are automatically
closed as if a Close statement were executed. The only difference is that no Declaratives are
processed, even if they are coded. Remember also, when changing the programs, to change the
Program-Id to reflect the new names. After making the necessary changes, the two subprograms
should appear as shown in Listings 23.2 and 23.3.

Listing 23.2 Called Phone Number Format Program

000001 Identification Division.
000002 Program-Id. Chapt23b.
000003* Intelligent Telephone Number Format
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Phone-Number Pic 9(10) Value Zeros.
000011 01 Formatted-Number Pic X(14) Value "(XXX) XXX-XXXX".
000012 01 Formatted-Alternate Pic X(8) Value "XXX-XXXX".
000013 01 The-Edited-Number Pic X(14) Value Spaces.
000014 Screen Section.
000015 01 Phone-Entry Blank Screen.
000016 03 Line 01 Column 01 Value " Enter Phone Number: ".
000017 03 Line 01 Column 22 Pic Z(10) Using Phone-Number.
000018 03 Line 03 Column 01 Value "Edited Phone Number: ".
000019 03 Line 03 Column 22 Pic X(14) From The-Edited-Number.
000020 Procedure Division.
000021 Chapt23b-Start.
000022 Display Phone-Entry
000023 Accept Phone-Entry
000024 If Phone-Number > 9999999
000025* Number Large Enough To Contain Area Code
000026 Inspect Formatted-Number

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000027 Replacing First "XXX" By Phone-Number (1:3)
000028 First "XXX" By Phone-Number (4:3)
000029 First "XXXX" By Phone-Number (7:4)
000030 Move Formatted-Number To The-Edited-Number
000031 Else
000032* Number Not Large Enough To Contain An Area Code
000033 Inspect Formatted-Alternate
000034 Replacing First "XXX" By Phone-Number (4:3)
000035 First "XXXX" By Phone-Number (7:4)
000036 Move Formatted-Alternate To The-Edited-Number
000037 End-If
000038 Display Phone-Entry
000039 Accept Phone-Entry
000040 Exit Program
000041 .

Note: In addition to replacing Stop Ru n with Exit Program , an Accept is added in both
programs before the Exit Program statement. If you fail to add this Accept , the program will run,
but then return directly to the menu program without pausing to display its output.

Listing 23.3 Called Days Between Dates Program

000001 Identification Division.
000002 Program-Id. Chapt23c.
000003* Days Between Dates
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 First-Date Value Zeros.
000011 03 Date-MM Pic 99.
000012 03 Date-DD Pic 99.
000013 03 Date-YYYY Pic 9(4).
000014 01 Second-Date Value Zeros.
000015 03 Date-MM Pic 99.
000016 03 Date-DD Pic 99.
000017 03 Date-YYYY Pic 9(4).
000018 01 Days-Between Pic S9(12) Value Zeros.
000019 01 Integer-First-Date Pic 9(12).
000020 01 Integer-Second-Date Pic 9(12).
000021 01 Date-Formatting-Items.
000022 03 YYYYMMDD-Format-Date.
000023 05 Date-YYYY Pic 9(4).
000024 05 Date-MM Pic 99.
000025 05 Date-DD Pic 99.
000026 03 YYYYMMDD-Format-Date-N Redefines
000027 YYYYMMDD-Format-Date Pic 9(8).
000028 03 Format-Indicator-F Pic X(8) Value "MMDDYYYY".
000029 03 Format-Indicator-S Pic X(8) Value "MMDDYYYY".
000030 Screen Section.
000031 01 Date-Entry Blank Screen Auto.
000032 03 Line 01 Column 01 Value "Enter First Date: ".
000033 03 Line 01 Column 21 Pic X(8) From Format-Indicator-F

000034 To First-Date.
000035 03 Line 03 Column 01 Value "Enter Second Date: ".
000036 03 Line 03 Column 21 Pic X(8) From Format-Indicator-S
000037 To Second-Date.
000038 03 Line 05 Column 01 Value "Days between dates: ".
000039 03 Line 05 Column 21 Pic -Zzz,ZZ9 From Days-Between.
000040 Procedure Division.
000041 Chapt23c-Start.
000042 Display Date-Entry
000043 Accept Date-Entry
000044 Move Corresponding First-Date To YYYYMMDD-Format-Date
000045 Compute Integer-First-Date =
000046 Function Integer-Of-Date (YYYYMMDD-Format-Date-N)
000047 Move First-Date To Format-Indicator-F
000048 Move Corresponding Second-Date To YYYYMMDD-Format-Date
000049 Compute Integer-Second-Date =
000050 Function Integer-Of-Date (YYYYMMDD-Format-Date-N)
000051 Move Second-Date To Format-Indicator-S
000052 Compute Days-Between = Integer-Second-Date -
000053 Integer-First-Date
000054 Display Date-Entry
000055 Accept Date-Entry
000056 Exit Program
000057 .

After you alter the programs and have created Chapt23a.Cob (refer to Listing 23.1), you need to
compile the programs. The process for compiling and linking a main program that calls subprograms
can be complex. Fujitsu provides a simple method—called a Project—to accomplish the task. Follow
these steps to create your Project file and compile the programs.

1. Start Programming Staff.

2. Choose the Project Menu option and then click Open.

3. Next to File Name, type \Tycobol\Chapt23a.Prj.
4. Click the Open button. (Under Windows 3.1, click OK.)

5. Click the Yes button when asked whether you want to create the file.

6. A Target Files dialog box is displayed. Click the Add button to add Chapt23a.Exe to the
Project.

7. Click the OK button to accept the Project.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The next few steps select the source files that make up the project. These are the dependencies.

8. Under Dependent Files, type \Tycobol\Chapt23a.Cob and click the Add button.

9. The file is shown in the box under Dependent Files. Highlight the program by clicking on it.
You need to specify that this file is the Main program. After selecting the program, click the Main
Program button. The box to the left of the program name turns from white to red.

10. Change the filename in the Dependent Files field to \Tycobol\Chapt23b.cob and click the Add
button.

11. Do the same for Chapt23c.

12. Click the OK button to accept the dependent files. A window appears onscreen with a title of
Chapt23a.Prj, and several icons appear in the window. (See Figure 23.1.) Click the Build button to
compile and link all the files in the project.

Figure 23.1 The Project window.

13. A message indicates that the Make has ended. Close that window. (Click OK under Windows
3.1.)

14. If your program has any compile errors, you must fix them and then click the Build button to
compile and link the programs again. If the compile is clean, close the Edit window. (Under
Windows 3.1, a clean compile does not show the Edit window.)

15. You are now ready to run the program. Click the Execute button to run the program. (Under
Windows 3.1, the Execute button starts the debugger, so instead select the Utilities menu, choose
Winexec, and type Chapt23a.Exe).

Run the program. Try the different menu options. Notice that if you select a program from the menu more
than once, your last input is displayed and the program does not start in a fresh state. The telephone
number reformat program does not function properly, because Working-Storage is left intact
between calls of the subprograms. This condition can cause problems in many programs, especially if any
Value clause items that you are counting on for proper program function are specified in
Working-Storage .

A simple method to correct this problem is to code the clause Is Initial after the name of the
program on the Program-Id line of the called program. Is Initial causes any
Working-Storage items with a Value clause to be reinitialized to that value when the program is
called. The utility provided by the ability to code Is Initial is one reason that you should always

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/23-01.jpg',390,262)
javascript:displayWindow('images/23-01.jpg',390,262)

code a Value clause on Working-Storage items. Add the Is Initial clause after the name of
the program on the Program-Id line of Chapt23b and Chapt23c .

000002 Program-Id. Chapt23b Is Initial.

Then rebuild your project and try the programs again. Notice that they operate properly.

Note: To rebuild a project after you have closed the project, select the Project menu item from
Programming Staff. Then choose Open and open the desired project. Then you can use the previously
explained procedure to build and rebuild the open project. Rebuilding forces a recompile on all programs.
Build recompiles only those programs that changed since the last build.

Passing Data Between Programs

In addition to simply calling a subprogram, you can pass data to and from the subprogram. A good
example of this technique appears in the date-validation program coded in Hour 21. This program is an
ideal candidate for a called subprogram. You can pass the date to be validated and a status flag that the
called program can set to indicate the validity of the date.

When passing data to a subprogram, the Call statement is altered slightly with the addition of the
Using clause. The various Call parameters are specified after the Using clause. COBOL passes the
memory address of these data items to the subprogram, which then has access to those data items. The
Call parameters may be any literals or data items. The program in Listing 23.4 accepts a date and then
calls a date-validation program based on the validation program coded in Hour 21 to validate the date.

Listing 23.4 Date Entry, Calling Validation Program

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt23d.
000004* Enter A Date For Validation
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Passed-Date.
000012 03 Date-To-Validate Pic 9(8).
000013 03 Date-To-Validate-X Redefines Date-To-Validate.
000014 05 Date-MM Pic 99.
000015 05 Date-DD Pic 99.
000016 05 Date-YYYY Pic 9(4).
000017 01 Valid-Status Pic X(40) Value Spaces.
000018 Screen Section.
000019 01 Date-Entry Blank Screen Auto.
000020 03 Line 01 Column 01 Value "Enter Date: ".
000021 03 Line 01 Column 13 Pic 99/99/9999 Using Date-To-Validate.
000022 03 Line 01 Column 24 Pic X(40) From Valid-Status.
000023 Procedure Division.
000024 Chapt23d-Start.
000025 Initialize Date-To-Validate
000026 Display Date-Entry
000027 Accept Date-Entry
000028 Call "Chapt23e" Using Passed-Date Valid-Status
000029 Display Date-Entry
000030 .

Notice the addition in line 28 of the Using clause with two Call parameters being passed to the called
program, Chapt23e (see Listing 23.5). Nothing else is necessary for a calling program to pass data to a
called program.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Linkage Section

The called program must have some way to find the data being passed by the calling
program. Remember that the data itself is not passed, but the location or address in memory
of that data is. The data is located in the called program by using what is known as the
Linkage Section . The Linkage Section appears immediately before the
Procedure Division of the called program. Under the Linkage Section , the data
description of the same information that is passed is coded. Each item passed, however,
must have a Group Level definition in the Linkage Section . Each item must match
exactly what is passed in the Call statement of the calling program. The simplest way to
meet this requirement is to ensure that the items defined in Working-Storage of the
calling program and passed to the called program are used exactly the same way in the
Linkage Section of the called program. The Linkage Section of Chapt23e
(Listing 23.5) is coded as follows:

000023 Linkage Section.
000024 01 Passed-Date.
000025 03 Date-To-Validate Pic 9(8).
000026 03 Date-To-Validate-X Redefines Date-To-Validate.
000027 05 Date-MM Pic 99.
000028 05 Date-DD Pic 99.
000029 05 Date-YYYY Pic 9(4).
000030 01 Valid-Status Pic X(40).

The Procedure Division of the Called Program

In addition to the Linkage Section , the called program must identify the data items
being passed to it on the Procedure Division line. This step is accomplished in a
method that is very similar to the Call statement in the calling program. The Procedure
Division is coded with a Using clause, which references the Call parameters as named
in the Linkage Section . This combination of Linkage Section and Procedure
Division setup allows the called program to reference the passed data in its exact

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

memory location. The called program may modify this data, and when control is passed
back to the calling program, the modified data will be available. The Procedure
Division line for Chapt23e (Listing 23.5) is coded as follows:

Procedure Division Using Passed-Date Valid-Status.

The full version of Chapt23e, which validates the passed date appears in Listing 23.5.

Listing 23.5 Date Validation Subprogram

000001 Identification Division.
000002 Program-Id. Chapt23e Is Initial.
000003* Validate A Date
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Work-Number Pic 9(5) Value Zeros.
000011 01 Work-Remainder Pic 9(5) Value Zeros.
000012 01 Work-Remainder-100 Pic 9(5) Value Zeros.
000013 01 Work-Remainder-400 Pic 9(5) Value Zeros.
000014 01 Today-Date Pic 9(8) Value Zeros.
000015 01 Today-Integer Pic 9(7) Value Zeros.
000016 01 Test-Integer Pic 9(7) Value Zeros.
000017 01 Test-Range Pic 9(7) Value Zeros.
000018 01 Day-Table-Area.
000019 03 Day-Table-Values Pic X(24) Value
000020 "312831303130313130313031".
000021 03 Day-Table Redefines Day-Table-Values.
000022 05 Days-In-Month Pic 99 Occurs 12 Times.
000023 Linkage Section.
000024 01 Passed-Date.
000025 03 Date-To-Validate Pic 9(8).
000026 03 Date-To-Validate-X Redefines Date-To-Validate.
000027 05 Date-MM Pic 99.
000028 05 Date-DD Pic 99.
000029 05 Date-YYYY Pic 9(4).
000030 01 Valid-Status Pic X(40).
000031 Procedure Division Using Passed-Date Valid-Status.
000032 Chapt23e-Start.
000033 Divide Date-YYYY Of Date-To-Validate-X By 4
000034 Giving Work-Number Remainder
000035 Work-Remainder
000036 Divide Date-YYYY Of Date-To-Validate-X By 100
000037 Giving Work-Number Remainder
000038 Work-Remainder-100
000039 Divide Date-YYYY Of Date-To-Validate-X By 400
000040 Giving Work-Number Remainder
000041 Work-Remainder-400

000042 If Work-Remainder = Zeros And
000043 (Work-Remainder-100 Not = Zeros Or
000044 Work-Remainder-400 = Zeros)
000045 Move 29 To Days-In-Month (2)
000046 Else
000047 Move 28 To Days-In-Month (2)
000048 End-If
000049 If Date-MM Of Date-To-Validate-X > 12 Or
000050 Date-MM Of Date-To-Validate-X < 01 Or
000051 Date-YYYY Of Date-To-Validate-X < 1601 Or
000052 Date-DD Of Date-To-Validate-X Not > Zero Or
000053 Date-DD Of Date-To-Validate-X >
000054 Days-In-Month (Date-MM Of Date-To-Validate-X)
000055 Move "Invalid Date" To Valid-Status
000056 Else
000057 Move "Valid Date" To Valid-Status
000058 End-If
000059 Exit Program
000060 .

The program is coded with the Is Initial clause on the Program-Id line. This clause
allows you to use the routine multiple times, without worrying about leftover values in the
Working-Storage fields.

Create a new Project named Chapt23d.Prj. Use Chapt23d.cob as your Main program and
Chapt23e.cob as the subprogram. Build the project and run the program. Notice how the
date-validation functions seamlessly?

Caution: The COBOL standard provides no method for a COBOL program to Call itself
or another program that calls a program that in turn issues a Call to the original program.
This type of operation is defined as recursion. Standard COBOL does not support recursion;
however, many COBOL vendors provide a method for accomplishing recursion. Check your
COBOL documentation if you want to use recursion.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Call By Reference and By Content

The method of calling demonstrated thus far, where data values may be changed in the called program, is
referred to as calling By Reference . When a parameter is passed By Reference , its address is
passed to the called program. Another option is to call the subprogram specifying By Content before
the data item being passed. You may mix By Reference and By Content items in the same Call
statement. Calling By Content causes the program to copy the data being passed to a temporary area,
passing the address of that temporary area to the called program instead of the address of the actual data
item. This method allows the called program to modify this data, but upon return to the calling program,
the original data is left intact, thus protecting it.

Modify Chapt23d.Cob (refer to Listing 23.4) to call the date-validation program By Content . The
Call statement becomes

000028 Call "Chapt23e" Using By Content Passed-Date Valid-Status

Rebuild the project and run the program. Notice that the message about the validity of the date is not
returned! This is because By Content is specified. If you need a value returned, you must always issue
the call using By Reference or by not specifying By Content or By Reference and thus
defaulting to By Reference .

Under certain circumstances, such as calling a program that needs to manipulate the input field as part of
the validation process, you should specify By Content . This step allows the called program to
manipulate the passed data as necessary without disturbing the original data. In this case, you still need to
be able to return a value. You now have Call parameters that require different methods of being
passed—some By Reference and some By Content . Modify the Call statement in Chapt23d.Cob
(Listing 23.4) once again, this time adding By Reference before the Valid-Status data item.

000028 Call "Chapt23e" Using By Content Passed-Date
000029 By Reference Valid-Status

Rebuild the project and run the program again. Notice that it has started working properly again. The
Valid-Status field is being properly passed both to and from the called program.

Dynamic Versus Static Calls

The programs called so far in these examples have been static calls. These programs are actually linked
into and become part of the program that issues the Call . If the subprogram is changed, then the calling
program must be recompiled or at least relinked so that the new called program can be linked with the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

calling program.

Most compilers also support a feature called dynamic calls. Dynamically called programs are loaded into
memory when the Call is issued. Therefore, these programs can be changed and recompiled
independently of the calling program. The use of dynamic calls is specified mainly by the method in
which the programs are linked.

Tip: When using dynamic calls, you can very easily change the name of the program being called. Instead
of coding the Call statement using a literal for the program to be called, refer to a data item defined in
Working-Storage . For example, you can define an item in Working-Storage as 01
Program-To-Call Pic X(8) Value “CHAPT23E” . Coding Call Program-To-Call , issues
a dynamic call for CHAPT23E. To call a different program, simply move its name into the
Program-To-Call field and issue the Call .

Dynamically called programs can be removed from memory and reinitialized upon the next Call by
coding a Cancel statement. The Cancel statement is followed by the name of the program being
canceled or the data field containing the name of the program to be canceled. For example:

000103 Cancel Program-To-Call

When a Cancel statement is encountered, all files opened by the program are closed as if a Close
statement were issued for each one. No Declaratives that might be coded for the file are performed
with this implied Close .

If for some reason the Call is not successful, either because of a memory problem or because the called
program is not found, an exception occurs. You may capture this exception by coding the On
Exception clause with the Call statement. Similarly, the Not On Exception clause is also
supported. If you choose to use On Exception or Not On Exception , I suggest that you use the
End-Call explicit scope terminator.

000104 Call Program-To-Call
000105 On Exception Display "The Call Failed"
000106 Not On Exception Display "The Call was Successful"
000107 End-Call

Copy the programs Chapt23d.Cob (refer to Listing 23.4) and Chapt23e.Cob (refer to Listing 23.5).
Change their names to Chapt23f and Chapt23g. Modify Chapt23f to Call Chapt23g with a dynamic call.
The modified program follows.

000001 @OPTIONS MAIN,TEST
000002 Identification Division.
000003 Program-Id. Chapt23f.
000004* Enter a date for Validation - Dynamic Call
000005 Environment Division.
000006 Configuration Section.
000007 Source-Computer. IBM-PC.
000008 Object-Computer. IBM-PC.
000009 Data Division.
000010 Working-Storage Section.
000011 01 Passed-Date.
000012 03 Date-To-Validate Pic 9(8).
000013 03 Date-To-Validate-X redefines Date-To-Validate.
000014 05 Date-MM Pic 99.
000015 05 Date-DD Pic 99.
000016 05 Date-YYYY Pic 9(4).
000017 01 Valid-Status Pic X(40) Value Spaces.
000018 01 Program-To-Call Pic X(8) Value "CHAPT23G".
000019 Screen Section.
000020 01 Date-Entry Blank Screen Auto.

000021 03 Line 01 Column 01 Value "Enter Date: ".
000022 03 Line 01 Column 13 Pic 99/99/9999 Using Date-To-Validate.
000023 03 Line 01 Column 24 Pic X(40) From Valid-Status.
000024 Procedure Division.
000025 Chapt23f-Start.
000026 Initialize Date-To-Validate
000027 Display Date-Entry
000028 Accept Date-Entry
000029 Call Program-To-Call Using Passed-Date Valid-Status
000030 Display Date-Entry
000031 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Fujitsu COBOL handles dynamic calls by creating DLL files, or dynamic link libraries, for
the programs being called. To do so, some new options must be set within the project file.

Caution: The calling and called Program-Id are critical. This name is contained
internally within the DLL that is the called program. Fujitsu COBOL creates this program
name in all uppercase when the DLL is compiled and linked. If you are issuing a dynamic
Call and you do not specify the program name being called in all uppercase, an error
message tells you that the program is unable to make the Call . You can correct this
problem by using all uppercase letters when you code the called program name in the calling
program.

Use the previously discussed steps to create a new project for Chapt23f and then do the
following:

1. Add Chapt23f.Exe.

2. Before proceeding to the Dependencies selection, change the filename displayed
from Chapt23f.Exe to Chapt23g.Dll and click Add.

3. Click OK to proceed to the Dependencies selection. The first target is
Chapt23f.Exe. Add Chapt23f.Cob as a dependent file.

4. Select the program and click the Main button to make it a main program.

5. Click the field down arrow in the target field and select Chapt23g.Dll.

6. Under the Dependent File, type the name Chapt23g.Cob and then click Add.

7. Click OK to proceed to the Project Manager. Click Build to compile and link the
programs that are part of the project.

Caution: If you fail to change the Program-Id in Chapt23g.Cob from Chapt23e to
Chapt23g, the build issues an Unresolved External message. In this case, the build
routine cannot find the program that you are attempting to Call . The Program-Id is very
important.

Using Copybooks

Another common problem relating to calling subprograms is failure to ensure that the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

parameters specified for the Call in the calling program match the parameters coded in the
Linkage Section of the called program.

You can alleviate this problem by ensuring that source code that is included in the calling
program is exactly the same as that coded in the Linkage Section of the called
program. COBOL provides a simple method of handling this situation. It uses the Copy
statement.

The Copy statement simply inserts another file containing source code into your program.
When compiled, the compiler assembles the full program by expanding the copy members
into the source of the program. These copy members are referred to as Copybooks . The
following Copybook (see Listing 23.6) and modification of the called program, Chapt23g,
(see Listing 23.7) illustrate the concept.

Listing 23.6 Dateval.Cpy, Date Validation Copybook

000001 01 Passed-Date.
000002 03 Date-To-Validate Pic 9(8).
000003 03 Date-To-Validate-X Redefines Date-To-Validate.
000004 05 Date-MM Pic 99.
000005 05 Date-DD Pic 99.
000006 05 Date-YYYY Pic 9(4).
000007 01 Valid-Status Pic X(40).

Listing 23.7 Date Validation Program Using Dateval.Cpy Copybook

000001 Identification Division.
000002 Program-Id. Chapt23h.
000003* Validate A Date
000004 Environment Division.
000005 Configuration Section.
000006 Source-Computer. IBM-PC.
000007 Object-Computer. IBM-PC.
000008 Data Division.
000009 Working-Storage Section.
000010 01 Work-Number Pic 9(5) Value Zeros.
000011 01 Work-Remainder Pic 9(5) Value Zeros.
000012 01 Work-Remainder-100 Pic 9(5) Value Zeros.
000013 01 Work-Remainder-400 Pic 9(5) Value Zeros.
000014 01 Today-Date Pic 9(8) Value Zeros.
000015 01 Today-Integer Pic 9(7) Value Zeros.
000016 01 Test-Integer Pic 9(7) Value Zeros.
000017 01 Test-Range Pic 9(7) Value Zeros.
000018 01 Day-Table-Area.
000019 03 Day-Table-Values Pic X(24) Value
000020 "312831303130313130313031".
000021 03 Day-Table Redefines Day-Table-Values.
000022 05 Days-In-Month Pic 99 Occurs 12 Times.
000023 Linkage Section.
000024 Copy "Dateval.Cpy".
000025 Procedure Division Using Passed-Date Valid-Status.
000026 Chapt23h-Start.

000027 Divide Date-YYYY Of Date-To-Validate-X By 4
000028 Giving Work-Number Remainder
000029 Work-Remainder
000030 Divide Date-YYYY Of Date-To-Validate-X By 100
000031 Giving Work-Number Remainder
000032 Work-Remainder-100
000033 Divide Date-YYYY Of Date-To-Validate-X By 400
000034 Giving Work-Number Remainder
000035 Work-Remainder-400
000036 If Work-Remainder = Zeros And
000037 (Work-Remainder-100 Not = Zeros Or
000038 Work-Remainder-400 = Zeros)
000039 Move 29 To Days-In-Month (2)
000040 Else
000041 Move 28 To Days-In-Month (2)
000042 End-If
000043 If Date-MM Of Date-To-Validate-X > 12 Or
000044 Date-MM Of Date-To-Validate-X < 01 Or
000045 Date-YYYY Of Date-To-Validate-X < 1601 Or
000046 Date-DD Of Date-To-Validate-X Not > Zero Or
000047 Date-DD Of Date-To-Validate-X >
000048 Days-In-Month (Date-MM Of Date-To-Validate-X)
000049 Move "Invalid Date" To Valid-Status
000050 Else
000051 Move "Valid Date" To Valid-Status
000052 End-If
000053 Exit Program
000054 .

The use of the Copy statement is not limited to the Linkage Section . You can use the
Copy statement anywhere in a program except within Copybooks .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Summary

In this hour, you learned the following:

• The Call statement executes other programs from within your
program.

• The term that describes these called programs is subprogram.

• The Is Initial clause of the Program Id reinitializes any
Working-Storage entries with a Value clause every time the
subprogram is called.

• Programs can be called statically or dynamically.

• Dynamically called programs may be canceled, thus unloading them
from memory and resetting their values for the next Call . The
Cancel statement accomplishes this job.

• The On Exception clause captures errors that occur while making
a Call .

• You can use the Copy statement to include other files containing
source code within your COBOL programs.

Q&A

Q Can the Call statement be used to Call programs written in a
language other than COBOL?

A Yes. The various COBOL vendors might use a different syntax for the
Call statement to accomplish the task. Check your compiler documentation
to be sure.

Q What is one advantage of using a dynamic Call over a static Call?

A If you need to change the called program, you can and you don’t have to

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

recompile the calling program.

Q Why would I want to ever Cancel a called program?

A One reason is good housekeeping. At the end of your program, you should
Cancel any dynamically called programs. Another reason to Cancel a
program is to initialize its Working-Storage to a fresh state upon the next
Call of the program. Remember that the Cancel statement closes any open
files that the called program was using.

Q Can I use the Copy statement to include FD information for a file?

A Yes. This popular use of the Copy statement ensures consistency of file
definitions.

Workshop

To help reinforce your understanding of the material presented in this hour,
refer to the section “Quiz and Exercise Questions and Answers” that can be
found on the CD. This section contains quiz questions and exercises for you to
complete, as well as the corresponding answers.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch23/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Hour 24
The Graphical User Interface
Most modern computer users are very familiar with the graphical user
interface, or GUI. This method of interfacing with the user is very different
from the historical approach of the text mode screen. Some argue that the GUI
is not well suited to the tasks of business, and there may be some truth to that
criticism. Business demands streamlined, fast, accurate, and simple-to-operate
applications to minimize training costs and ease user operation.

Unlike a text mode screen, where every field is displayed, the GUI relies on
user action to open specific areas of the application. Text mode applications
guide the user through the process, but the GUI allows the user to control the
process. This type of process is often referred to as event driven. Event-driven
logic, relating to a GUI, can be very difficult to handle and code. However,
COBOL is more than adequate to handle the business logic required behind the
scenes in a GUI type of application.

In this hour, you learn about the GUI, concentrating on such items as

• Different methods of achieving a GUI in COBOL

• Using COBOL sp2 to generate a complete GUI program

• What a panel is, and how to define one using sp2

• Using the COBOL Call interface to communicate with the GUI

Different Methods of Achieving the Graphical User
Interface

The Graphical User Interface (GUI) has been used on multiple platforms, from
UNIX to the PC. COBOL itself has no built-in GUI. The multiple platforms

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

and operating systems that support COBOL make a standard GUI nearly
impossible. However, each compiler vendor supports some form of GUI.

One way to produce a GUI for your application is to use one of these
vendor-provided solutions. However, they may not be portable to another
vendor’s compiler and may not be available on all platforms.

Many of these products use a special scripting language to control the user
interface, requiring the programmer to learn another set of rules and language
elements to create the desired user interface. Some use enhanced Accept and
Display statements to actually create a GUI. Still others use COBOL
statements to handle the manipulation of data from the GUI.

One method that has some following is using a language other than COBOL to
create the interface. Languages such as Visual Basic and Visual C++ handle
the user interface, making calls to COBOL programs to carry out the file
access and business processing.

Another method that is very popular is to use a third-party tool designed to
work with COBOL for the user interface. These tools support multiple
compilers and platforms. If at some point you require a different COBOL
compiler or are running on a different platform, you do not need to change
your COBOL programs. Simply change the version of the third-party tool in
use.

One such third-party tool that supports virtually every COBOL compiler
available on the PC is COBOL sp2 from Flexus International.

In this hour, you use the COBOL sp2 product to create a GUI program.

Using sp2 to Create a Graphical User Interface

sp2 uses panels to represent each window displayed to the user. Call
statements are issued in your COBOL program to manipulate these panels.
sp2 creates a Copybook , containing all of data fields that are passed to and
from the panel for the user to modify, for use with your program. Additionally,
sp2 generates a skeleton COBOL program for you to use with your
application. For the demonstration in this hour, you create a GUI interface for
the Chapt15d program in Listing 15.3. The program covers dynamic access to
an Indexed file.

The first step is to install the COBOL sp2 evaluation version onto your PC.
The file is located on the CD-ROM that came with this book. To install the
Windows 95, 98, and NT version, run the following, where D: is the drive
letter of your CD-ROM drive: D:\3rdparty\SPFJ3224.EXE. Follow the
prompts to install the programs. To install the Windows 3.1 version, run
D:\3rdparty\SPFJ1624.EXE. If you are using a compiler other than the
provided Fujitsu compiler, you may download the version of sp2 that works
with your compiler from the Flexus Web site at http://www.flexus.com.

After installing the software, you should become familiar with the sp2 panel
editor. Start the editor by clicking Start, Programs, Fujitsu 32 Bit
Version-COBOL sp2, and COBOL sp2 60 Day Evaluation. The window

http://www.flexus.com/

shown in Figure 24.1 should be displayed.

Figure 24.1 The COBOL sp2 panel editor.

Familiarize yourself with the icons available on the toolbar. Their descriptions
are shown in the figure. These buttons are used throughout this hour.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/24-01.jpg',700,836)
javascript:displayWindow('images/24-01.jpg',700,836)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Designing Your Panel

The first step in designing the panel for your GUI is to title the panel and
choose a window border style. To do so, select the Panel menu option and
click Display. The display shown in Figure 24.2 appears.

Figure 24.2 Selecting panel display options.

For the title, type Tenant Display Program and enter the same for the
description. Select the radio button next to Main to use a Main Window style
display. Click the OK button to accept the selections.

The next step is to add the various fields to the screen display. The first field to
add is the dealer number. Some text should be added to describe the field.
Click the Text button on the sp2 toolbar. Next, position your mouse at the
location on the screen where you want this text to appear. Start near the
upper-left corner of the screen but leave some room at the edges. Click the
location you desire, and the word Text appears.

In the second field of the Field Control Ribbon, you will see the word Text .
This field is where you modify the text being displayed on the panel. Click on
the field, change the text to Number:, and press Enter. The text in the panel
changes from the word Text to the word Number: .

Next, you need to add the field for entering the dealer number. Select the
System Default Entry Field icon from the sp2 toolbar. Position the mouse so
that the pointer is immediately after the text added for Number: and click to
position the field. If you do not like the position of the field, double-click the
field to select it, drag the field to a new location, and click to accept the

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/24-02.jpg',574,286)
javascript:displayWindow('images/24-02.jpg',574,286)

position.

The new field is not long enough to display the entire number, so you need to
extend the field to the right. Double-click the field to select it, position the
mouse over the right border, and drag the edge of the field to the right. This
step expands the displayed size of the input field. Make the field
approximately the size shown in Figure 24.3.

Figure 24.3 Adding a system default entry field.

The size of the data to be placed in the field is defined by entering a Picture
clause definition into the third field of the Field Control Ribbon. Select the
field again by double-clicking it. The dealer number is a Pic X(8) field, so
in the third field of the Field Control Ribbon, where the default value of
X(10) is displayed, type X(8) and press Enter.

The field must have a name attached to it for use in the Copybook generated
by sp2 . In addition, your program uses that name to fill in the panel with data.
To name the Number field, type the name Number into the first field of the
Field Control Ribbon.

Follow the same steps to set up the other entry fields on the screen. These
fields are for the dealer name (Last , First , and Middle). The panel should
now resemble Figure 24.4. Remember that Last name is 25 characters,
First is 15, and Middle is 10.

1. Click the Text icon and position the field description on the panel.

2. Change the text displayed by modifying the second field of the Field
Control Ribbon.

3. Click the System Default Entry Field icon and position the field
where desired, clicking to place the field.

4. Expand the field to a reasonable length by double-clicking to select it
and then dragging the mouse from the right border of the field.

5. Set the length of the field by selecting it and then changing the value
as appropriate in the third field of the Field Control Ribbon .

6. Name the field by selecting it and then enter the name of the field in
the first field of the Field Control Ribbon .

Figure 24.4 Panel editor after adding the first few fields.

The next set of fields is for display only, and no data may be keyed into them.
These fields are added to the screen in the same manner as those described
earlier except now you must set a field attribute to indicate that the data is

javascript:displayWindow('images/24-03.jpg',640,417)
javascript:displayWindow('images/24-03.jpg',640,417)
javascript:displayWindow('images/24-04.jpg',640,417)
javascript:displayWindow('images/24-04.jpg',640,417)

display only. This setting prevents the user from keying any data into the field.
The field names and lengths follow:

Address-Line-1 X(50)

Address-Line-2 X(50)

City X(40)

State-Or-Country X(20)

Postal-Code X(15)

Home-Phone X(20)

Work-Phone X(20)

Other-Phone X(20)

Add the fields to the panel as described in the earlier steps. After specifying
the name of each field, click the Protection Type icon. The fourth field of the
field control ribbon is a drop-down box. Select the down arrow in the field and
then choose the Display Only option for the field. You do not want users to tab
into or key anything in these fields. Your panel should now resemble Figure
24.5.

Figure 24.5 Panel editor after adding display-only fields.

Scroll the display window down a bit so that you can add the remaining
display fields. The three date fields are next. Add them in the manner
described above. sp2 knows about date fields and date formatting. Place
MM/DD/YYYYY where the Picture clause would normally go, in the third
field of the Field Control Ribbon . Click the Input Type icon and use
the fourth field of the Field Control Ribbon to select Date as the field
type.

Name the fields as follows: Start-Date , Last-Rent-Paid-Date , and
Next-Rent-Due-Date . Don’t neglect to set the protection type on these
fields to Display Only . The panel should now resemble Figure 24.6.

Figure 24.6 Panel editor after adding dates.

The final two display-only entry fields to add are the Rent-Amount and
Consignment-Percent fields. Use the same method to add these two
fields. However, in the Picture field for the Rent-Amount , enter
Z,ZZZ.99, and for Consignment-Percent enter ZZ9. Click the Input
Type icon and select Numeric as the input type. The panel should now
resemble Figure 24.7. Don’t forget to enter the field names.

javascript:displayWindow('images/24-05.jpg',640,417)
javascript:displayWindow('images/24-05.jpg',640,417)
javascript:displayWindow('images/24-06.jpg',640,417)
javascript:displayWindow('images/24-06.jpg',640,417)

Figure 24.7 Panel editor—panel nearly complete.

Finally, it is time to add some push buttons. This program can perform several
operations: Read Random Number , Read Random Name , Read Next
Number, and Read Next Name . In addition, Clear or Exit are valid
operations. Rather than add a button for each read function, add a drop-down
box that allows the user to select the desired function.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/24-07.jpg',640,417)
javascript:displayWindow('images/24-07.jpg',640,417)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Scroll the panel down a little so that you can add a drop-down box. Follow these steps to add the field.

1. Click the Combination Box icon.

2. Position the field immediately under Rent: by clicking once to place the field.

3. Type in the field name Operation-Type in the first field of the Field Control
Ribbon .

4. Change the Picture clause to X(18).

5. The second field of the Field Control Ribbon contains the text that is to appear in the
drop-down list. Use a comma to separate the items. The first item is repeated because it is to
appear by default, and the following items are all of the items that may appear. Change the text
to read as follows: Read Random Number, Read Random Number, Read Random
Name, Read Next Number, Read Next Name.

Caution: You must be very careful in your spelling. If an entry is not spelled properly, it may not show
up in the display. Also, make sure you change the Picture clause to X(18) before entering the text;
otherwise, it will be truncated.

Your panel now should resemble Figure 24.8.

Figure 24.8 Panel editor after adding the drop-down list.

To complete the panel definition, you need to add three push buttons to the panel. One is Read, the
next is Clear, and the final one is Exit. Follow these steps to add the buttons to your panel. You
complete panel should resemble Figure 24.9.

1. Click the Push Button icon.

2. Place the button next to the drop-down box that you just added by positioning the mouse and
clicking.

3. Change the text that appears on the button by typing Read in the second field of the Field
Control Ribbon , where OK appears by default. Press Enter to accept the change.

4. sp2 detects push buttons as if they were function keys or other special keys. To assign a
value to a button that can be detected in your program, click in the third field of the Field
Control Ribbon . Then press F2 to activate a feature called Easy Key. The code for the next

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/24-08.jpg',640,417)
javascript:displayWindow('images/24-08.jpg',640,417)

keystroke you make is entered into the field for you. When you press the F3 key, 317 appears in
the field.

5. Change the name of the push button to Read, by typing Read into the first field of the
Field Control Ribbon .

6. Repeat these steps to add push buttons for Clear and Exit to the right of the Read button. Use
the F4 key as the Easy Key value for Clear and F5 for Exit. Name the buttons Clear and Exit .

Figure 24.8 Panel editor after adding the drop-down list.

To save your work, select File and then Save. Panels are saved into panel files that may contain more
than one panel. When you click Save, you are prompted for a filename. Enter Chapt24.Pan for the
panel filename. Then click Open. (Under Windows 3.1, click OK.) Choose Yes when asked whether
you want to create the file. Type in Chapt24a as the panel name and then click OK.

COBOL sp2 needs to generate a Copybook for use in your program and, in fact, generates a skeleton
program for your use as a starting point. This skeleton contains the bare basics required for the
interface with sp2 to function. This program is generated in the directory where sp2 was installed,
which is SPFJ3224 under Windows 95, 98, and NT and SPFJ1624 under Windows 3.1.

To generate these files, select File and then click Generate.

You may now close the sp2 panel editor window. When asked whether you want to save your work,
click Yes.

Modifying the Generated Program

Before changing the program, become familiar with it. The generated program has a file extension of
CBL rather than COB. The Fujitsu COBOL compiler recognizes either extension as a COBOL source
file. Review Listing 24.1.

Listing 24.1 sp2 Generated Program

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. chapt24a.
000003
000004* TITLE - Tenant Display Program
000005* DESCRIPTION - Tenant Display Program
000006
000007 ENVIRONMENT DIVISION.
000008 CONFIGURATION SECTION.
000009 SOURCE-COMPUTER. IBM-PC.
000010 OBJECT-COMPUTER. IBM-PC.
000011
000012 DATA DIVISION.
000013 WORKING-STORAGE SECTION.
000014
000015 COPY "sp2.cpy".
000016
000017 COPY "chapt24a.cpy".
000018
000019 PROCEDURE DIVISION.
000020 MAINLINE.
000021******************

javascript:displayWindow('images/24-09.jpg',640,417)
javascript:displayWindow('images/24-09.jpg',640,417)

000022* MAINLINE LOGIC *
000023******************
000024 PERFORM PROC-OPEN-FILE
000025 MOVE LOW-VALUES TO chapt24a-DATA
000026 MOVE "chapt24a" TO chapt24a-NEXT-PANEL
000027 MOVE "y" TO chapt24a-NEW-WINDOW
000028 MOVE LOW-VALUES TO chapt24a-FIELDS
000029 MOVE LOW-VALUES TO chapt24a-COLRS
000030 MOVE LOW-VALUES TO chapt24a-TYPES
000031 PERFORM PROC-CON-chapt24a
000032 PERFORM PROC-CLOSE-WINDOW
000033 PERFORM PROC-CLOSE-FILE
000034 PERFORM PROC-END-SESSION
000035 STOP RUN
000036 .
000037
000038 PROC-OPEN-FILE.
000039*****************
000040* OPEN SP2 FILE *
000041*****************
000042 MOVE LOW-VALUES TO SP2-FI-DATA
000043 MOVE "C:\SPFJ3224\chapt24.pan" TO SP2-FI-NAME
000044 CALL "SP2" USING SP2-OPEN-FILE SP2-FILE-DEF
000045 .
000046
000047 PROC-CON-chapt24a.
000048******************
000049* CONVERSE PANEL *
000050******************
000051 CALL "SP2" USING SP2-CONVERSE-PANEL chapt24a-CONVERSE-DATA
000052 MOVE LOW-VALUE TO chapt24a-NEW-WINDOW
000053 .
000054
000055 PROC-CLOSE-WINDOW.
000056************************
000057* CLOSE CURRENT WINDOW *
000058************************
000059 CALL "SP2" USING SP2-CLOSE-WINDOW SP2-NULL-PARM
000060 .
000061
000062 PROC-CLOSE-FILE.
000063**********************
000064* CLOSE CURRENT FILE *
000065**********************
000066 CALL "SP2" USING SP2-CLOSE-FILE SP2-NULL-PARM
000067 .
000068
000069 PROC-END-SESSION.
000070*******************
000071* END SP2 SESSION *
000072*******************
000073 CALL "SP2" USING SP2-END-SESSION SP2-NULL-PARM
000074 .

Caution: The case (upper versus lower) used for the COBOL statements and variable names in the
generated code is not quite what you are used to seeing in these lessons. Remember that for the COBOL

statements themselves, COBOL is not case sensitive, and it does not matter whether the letters are in
upper- or lowercase.

The Proc-Open-File Paragraph makes a call to sp2 to open the panel file that is used by the
program.

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Proc-Con-Chapt24a is used to “converse” with the panel and thus the user. When the
Converse-Panel call is made to sp2 , sp2 handles the interaction between the user and the
panel. When the user clicks one of the buttons or closes the window, control returns to your
program. Based on the values of the fields returned, the program can take appropriate action.

The first time a panel is conversed, it must be displayed in a new window. Use the following code:

000027 MOVE "y" TO chapt24a-NEW-WINDOW

The value "y" is lowercase and is case sensitive when passed to sp2 . Notice in line 52 that
Low-Values is moved to this field. This step prevents a new window from being created the next
time the panel is displayed.

When exiting the program, sp2 must be called for three purposes: first to close the window that is
currently open, handled by the PROC-CLOSE-WINDOW Paragraph; second to close the panel
file, handled by the PROC-CLOSE-FILE Paragraph ; and last to perform any necessary
housekeeping and unload the sp2 program from memory, handled by the PROC-END-SESSION
Paragraph .

Working-Storage contains two Copybooks . The first, sp2.Cpy , holds fields and values that
sp2 uses. The second is generated by sp2 (Listing 24.2) and includes data to manipulate the fields
that your panel uses.

Listing 24.2 sp2 Generated Copybook

000001********************************
000002* parameter for CONVERSE-PANEL *
000003* parameter for GET-INPUT *
000004********************************
000005 01 chapt24a-CONVERSE-DATA.
000006 05 chapt24a-RET-CODE
000007 PIC S9(4) COMP-5.
000029 05 chapt24a-DATA.
000030******** chapt24a-IP-NUM-DATA ********
000031 10 chapt24a-KEY
000032 PIC S9(4) COMP-5.
000033 88 chapt24a-Read-HIT

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000034 VALUE 317.
000035 88 chapt24a-Clear-HIT
000036 VALUE 318.
000037 88 chapt24a-Exit-HIT
000038 VALUE 319.

000114******** chapt24a-OP-VAR-DATA ********
000115 05 chapt24a-FIELDS.
000116 10 chapt24a-Number
000117 PIC X(0008).
000118 10 chapt24a-Last
000119 PIC X(0025).
000120 10 chapt24a-First
000121 PIC X(0015).
000122 10 chapt24a-Middle
000123 PIC X(0010).
000124 10 chapt24a-Address-Line-1
000125 PIC X(0050).
000126 10 chapt24a-Address-Line-2
000127 PIC X(0050).
000128 10 chapt24a-City
000129 PIC X(0040).
000130 10 chapt24a-State-Or-Country
000131 PIC X(0020).
000132 10 chapt24a-Postal-Code
000133 PIC X(0015).
000134 10 chapt24a-Home-Phone
000135 PIC X(0020).
000136 10 chapt24a-Work-Phone
000137 PIC X(0020).
000138 10 chapt24a-Other-Phone
000139 PIC X(0020).
000140 10 chapt24a-Start-Date
000141 PIC 9(0008).
000142 10 chapt24a-Last-Rent-Paid-Date
000143 PIC 9(0008).
000144 10 chapt24a-Next-Rent-Due-Date
000145 PIC 9(0008).
000146 10 chapt24a-Rent-Amount
000147 PIC 9(04)V9(02).
000148 10 chapt24a-Consignment-Percent
000149 PIC 9(003).
000150 10 chapt24a-Operation-Type
000151 PIC X(0018).

Note: The sp2 generated Copybook contains many items that are used internally by sp2 , but are
not directly referenced in the program. The Copybook in Listing 24.2 is an abbreviated version
showing only fields with which you are concerned.

When you examine this listing, start by noticing the 88 levels defined in lines 33 through 38. The
program checks these conditional fields to determine which button the user selected.

The second set of important fields starts at line 115. These fields display the user data and are the
fields by which you communicate with the user.

The next step in creating your program is to add the specific logic you need to perform the

functions. Start by adding the Select and FD for the dealer file. In the Select , because the
program is not in the \TYCOBOL directory, specify the full filename of the dealer file. Add
Select , FD, Open, and Close statements for the file.

When you open the file \SPFJ3224\Chapt24a.Cbl with Programming Staff, you receive a warning
message about line numbers being invalid. This message appears because the generated code has no
line numbers. Answer Yes to the question and let the COBOL editor assign the line numbers in the
program.

Make sure to specify the whole path to the dealer file in the Select statement. Because the
program does not run from the \Tycobol directory, you need to provide the full path information.

000013 Select Dealer-File Assign to "\Tycobol\Dealer.Dat"
000014 Organization Indexed
000015 Access Dynamic
000016 Record Key Dealer-Number
000017 Alternate Record Key Dealer-Name
000018 File Status Dealer-Status.

When inserting the code for the file access, you will find several places where error messages
should be displayed. You should not use the Display statement within a GUI program. Instead,
use the facility provided to display a message box. COBOL sp2 accomplishes this by using a
special Call to display the message box:

000064 MOVE LOW-VALUES TO SP2-MS-DATA
000065 MOVE "b" TO SP2-MS-ICON
000066 MOVE "File Error" TO SP2-MS-TITLE
000067 MOVE "o" TO SP2-MS-BUTTON
000068 MOVE 1 TO SP2-MS-LINE-CNT
000069 String "Error Opening Dealer File "
000070 Dealer-Status
000071 Delimited by Size
000072 Into Sp2-Ms-Text
000073 End-String
000074 Call "SP2" Using Sp2-Display-Message Sp2-Message-Data

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The SP2-MS-ICON field contains a value that corresponds to the value of the icon to appear in the
message box. Valid values are “b” for bang, (the Exclamation point), “s” for the Stop sign, “i” for
Information, and “q” for Question. The SP2-MS-TITLE field contains the title for the message
box. SP2-MS-BUTTON indicates the type of push button or buttons to be displayed for termination
of the message box. “o” is OK, “y” is Yes/No, “n” is No/Yes, and “r” is Retry. The
SP2-MS-LINE-CNT is the number of lines into which your message is split. For the purposes of
this book, you always use 1. SP2-MS-TEXT is the error message text. The Call to sp2 using the
parameters shown will display a message box, warning the user of the error.

After inserting the Select , FD, file Open, and file Close statements, it’s time to code the steps
necessary to perform the functions. You need to set up a repeating processing loop. This loop will
converse the panel, return to the program, and take appropriate action based on the values returned
by sp2 . Then the loop is repeated. Two conditions terminate the loop. First, the user clicks the Exit
button. Second, the user selects the Close option by clicking the X in the upper-right corner under
Windows 95/98 or NT, or the user double-clicks in the upper-left corner under Windows 3.1. One
of these conditions is checked by testing the conditional item, Chapt24a-Exit-Hit . This
condition is coded under a data value named Chapt24a-Key . This field has the value associated
with the reason that sp2 returned to your program. The SP2.Cpy Copybook includes a set of
fields that assist you in detecting which key or activity occurred that caused sp2 to return to your
program. The key value associated with closing the window is SP2-KEY-CLOSE.

The main logic in the program revolves around the Proc-Con-Chapt24a Paragraph . It is
the one modified to handle the testing and performing of the various conditions. Walk through the
entire program, examining each area and the steps required to perform the operations. The full
listing of the program is shown in Listing 24.3.

Listing 24.3 Final Dealer Display Program

000001 @OPTIONS MAIN,TEST
000002 IDENTIFICATION DIVISION.
000003 PROGRAM-ID. chapt24a.
000004
000005* TITLE - Tenant Display Program
000006* DESCRIPTION - Tenant Display Program
000007
000008 ENVIRONMENT DIVISION.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000009 CONFIGURATION SECTION.
000010 SOURCE-COMPUTER. IBM-PC.
000011 OBJECT-COMPUTER. IBM-PC.
000012 Input-Output Section.
000013 File-Control.
000014 Select Dealer-File Assign to "\Tycobol\Dealer.Dat"
000015 Organization Indexed
000016 Access Dynamic
000017 Record Key Dealer-Number
000018 Alternate Record Key Dealer-Name
000019 File Status Dealer-Status.

Notice the use of the full path to the Dealer.Dat file. Because this program will not be executed
from that directory, specifying the full path allows the program to find the data file.

000020 DATA DIVISION.
000021 File Section.
000022 FD Dealer-File.
000023 01 Dealer-Record.
000024 03 Dealer-Number Pic X(8).
000025 03 Dealer-Name.
000026 05 Last-Name Pic X(25).
000027 05 First-Name Pic X(15).
000028 05 Middle-Name Pic X(10).
000029 03 Address-Line-1 Pic X(50).
000030 03 Address-Line-2 Pic X(50).
000031 03 City Pic X(40).
000032 03 State-or-Country Pic X(20).
000033 03 Postal-Code Pic X(15).
000034 03 Home-Phone Pic X(20).
000035 03 Work-Phone Pic X(20).
000036 03 Other-Phone Pic X(20).
000037 03 Start-Date Pic 9(8).
000038 03 Last-Rent-Paid-Date Pic 9(8).
000039 03 Next-Rent-Due-Date Pic 9(8).
000040 03 Rent-Amount Pic 9(4)V99.
000041 03 Consignment-Percent Pic 9(3).
000042 03 Filler Pic X(50).
000043 WORKING-STORAGE SECTION.
000044 01 Dealer-Status Pic X(2) Value Spaces.
000045 88 Dealer-Success Value "00" Thru "09".
000046 01 Error-Message Pic X(60) Value Spaces.
000047 COPY "sp2.cpy".
000048
000049 COPY "chapt24a.cpy".
000050 01 Date-Reverse-Area.
000051 03 Date-YYYYMMDD Pic 9(8).
000052 03 Date-YYYYMMDD-X Redefines Date-YYYYMMDD.
000053 05 Date-YYYY Pic 9(4).
000054 05 Date-MM Pic 9(2).
000055 05 Date-DD Pic 9(2).
000056 03 Date-MMDDYYYY Pic 9(8).
000057 03 Date-MMDDYYYY-X Redefines Date-MMDDYYYY.
000058 05 Date-MM Pic 9(2).
000059 05 Date-DD Pic 9(2).

000060 05 Date-YYYY Pic 9(4).
000061 PROCEDURE DIVISION.
000062 MAINLINE.
000063******************
000064* MAINLINE LOGIC *
000065******************
000066 PERFORM PROC-OPEN-FILE
000067 MOVE LOW-VALUES TO chapt24a-DATA
000068 MOVE "chapt24a" TO chapt24a-NEXT-PANEL
000069 MOVE "y" TO chapt24a-NEW-WINDOW
000070 MOVE LOW-VALUES TO chapt24a-FIELDS
000071 MOVE LOW-VALUES TO chapt24a-COLRS
000072 MOVE LOW-VALUES TO chapt24a-TYPES
000073 Perform Open-File
000074 If not Dealer-Success
000075* message box display!
000076 MOVE LOW-VALUES TO SP2-MS-DATA
000077 MOVE "b" TO SP2-MS-ICON
000078 MOVE "File Error" TO SP2-MS-TITLE
000079 MOVE "o" TO SP2-MS-BUTTON
000080 MOVE 1 TO SP2-MS-LINE-CNT
000081 String "Error Opening Dealer File "
000082 Dealer-Status
000083 Delimited by Size
000084 Into Sp2-Ms-Text
000085 End-String
000086 Call "SP2" Using Sp2-Display-Message Sp2-Message-Data

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

A message box is shown instead of a Display statement.

000087 Else
000088* there is no reason to perform these if the open fails
000089 PERFORM PROC-CON-chapt24a
000090 PERFORM PROC-CLOSE-WINDOW
000091 Perform Close-File
000092 End-if
000093 PERFORM PROC-CLOSE-FILE
000094 PERFORM PROC-END-SESSION
000095 STOP RUN
000096 .
000097 Open-File.
000098 Open Input Dealer-File
000099 .
000100 Close-File.
000101 Close Dealer-File
000102 .
000103 PROC-OPEN-FILE.
000104*****************
000105* OPEN SP2 FILE *
000106*****************
000107 MOVE LOW-VALUES TO SP2-FI-DATA
000108 MOVE "C:\SPFJ3224\chapt24.pan" TO SP2-FI-NAME
000109 CALL "SP2" USING SP2-OPEN-FILE SP2-FILE-DEF
000110 .
000111
000112 PROC-CON-chapt24a.
000113******************
000114* CONVERSE PANEL *
000115******************
000116 Perform With Test After Until
000117 Chapt24a-Key = Sp2-Key-Close or
000118 Chapt24a-Exit-Hit
000119 CALL "SP2" USING SP2-CONVERSE-PANEL chapt24a-CONVERSE-DATA
000120 MOVE LOW-VALUE TO chapt24a-NEW-WINDOW
000121 Perform Determine-Action
000122 End-Perform
000123 .

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The Determine-Action Paragraph checks the return fields from the Call to sp2 and performs
the appropriate action based on those values.

000124 Determine-Action.
000125 Evaluate True
000126 When Chapt24a-Exit-Hit
000127 When Chapt24a-Key = Sp2-Key-Close
000128 Continue

The Continue coded here works because the Perform statement is checking for these values after
performing this routine. These two conditions cause the processing loop to terminate.

000129 When Chapt24a-Read-Hit
000130 Evaluate Chapt24a-Operation-Type
000131 When "Read Random Number"
000132 Perform Read-Random-Number
000133 When "Read Random Name"
000134 Perform Read-Random-Name
000135 When "Read Next Number"
000136 Perform Read-Next-Number
000137 When "Read Next Name"
000138 Perform Read-Next-Name
000139 End-Evaluate

If the user presses the Read button, the program evaluates the value selected in the drop-down list box to
determine which type of Read is desired. The appropriate action is performed based on the value of the
field.

000140 When Chapt24a-Clear-Hit
000141 Initialize Chapt24a-Fields
000142 Move "Read Random Number" To Chapt24a-Operation-Type

The Clear button causes the fields controlled by sp2 to be initialized. The reason for moving Read
Random Number back into the Chapt24a-Operation-Type is that the act of initializing the field
erases its value and prevents the field from functioning properly.

000143 When Other
000144 Continue
000145 End-Evaluate
000146 .
000147 Read-Random-Number.
000148 Move Chapt24a-Number to Dealer-Number
000149 Read Dealer-File
000150 Invalid Key
000151 String "Error on Random Read Number "
000152 Dealer-Status
000153 Delimited by Size
000154 Into Error-Message
000155 End-String
000156 Perform Show-Error-Message

Show-Error-Message is a common routine that displays the text in Error-Message in a Windows
message box.

000157 Not Invalid Key
000158 Perform Fill-Panel-Data
000159 End-Read
000160 .

000161 Read-Random-Name.
000162 Move Chapt24a-Last To Last-Name
000163 Move Chapt24a-First To First-Name
000164 Move Chapt24a-Middle To Middle-Name
000165 Read Dealer-File Key Dealer-Name
000166 Invalid Key
000167 String "Error on Random Read Name "
000168 Dealer-Status
000169 Delimited by Size
000170 Into Sp2-Ms-Text
000171 End-String
000172 Perform Show-Error-Message
000173 Not Invalid Key
000174 Perform Fill-Panel-Data
000175 End-Read
000176 .
000177 Read-Next-Number.
000178 Move Chapt24a-Number to Dealer-Number
000179 Start Dealer-File Key > Dealer-Number
000180 Invalid Key
000181 String "Start Error Number "
000182 Dealer-Status
000183 Delimited by Size
000184 Into Error-Message
000185 End-String
000186 Perform Show-Error-Message
000187 End-Start
000188 If Dealer-Success
000189 Read Dealer-File Next
000190 At End
000191 Move "End of File, Read by Number" To Error-Message
000192 Perform Show-Error-Message
000193 Not At End
000194 Perform Fill-Panel-Data
000195 End-Read
000196 End-if
000197 .
000198 Read-Next-Name.
000199 Move Chapt24a-Last To Last-Name
000200 Move Chapt24a-First To First-Name
000201 Move Chapt24a-Middle To Middle-Name
000202 Start Dealer-File Key > Dealer-Name
000203 Invalid Key
000204 String "Start Error Name "
000205 Dealer-Status
000206 Delimited by Size
000207 Into Error-Message
000208 End-String
000209 Perform Show-Error-Message
000210 End-Start
000211 If Dealer-Success
000212 Read Dealer-File Next
000213 At End
000214 Move "End of File, Read by Name" To Error-Message
000215 Perform Show-Error-Message
000216 Not At End
000217 Perform Fill-Panel-Data
000218 End-Read

000219 End-if
000220 .

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

Fill-Panel-Data moves the data from the record that was just retrieved to the fields that are passed
to sp2 for displaying the data on the panel.

000221 Fill-Panel-Data.
000222 Move Dealer-Number To Chapt24a-Number
000223 Move Last-Name To Chapt24a-Last
000224 Move First-Name To Chapt24a-First
000225 Move Middle-Name To Chapt24a-Middle
000226 Move Address-Line-1 To Chapt24a-Address-Line-1
000227 Move Address-Line-2 To Chapt24a-Address-Line-2
000228 Move City To Chapt24a-City
000229 Move State-or-Country To Chapt24a-State-or-Country
000230 Move Postal-Code To Chapt24a-Postal-Code
000231 Move Home-Phone To Chapt24a-Home-Phone
000232 Move Work-Phone To Chapt24a-Work-Phone
000233 Move Other-Phone To Chapt24a-Other-Phone
000234 Move Start-Date To Date-MMDDYYYY
000235 Move Corresponding Date-MMDDYYYY-X To Date-YYYYMMDD-X
000236 Move Date-YYYYMMDD To Chapt24a-Start-Date
000237 Move Last-Rent-Paid-Date To Date-MMDDYYYY
000238 Move Corresponding Date-MMDDYYYY-X To Date-YYYYMMDD-X
000239 Move Date-YYYYMMDD To Chapt24a-Last-Rent-Paid-Date
000240 Move Next-Rent-Due-Date To Date-MMDDYYYY
000241 Move Corresponding Date-MMDDYYYY-X To Date-YYYYMMDD-X
000242 Move Date-YYYYMMDD To Chapt24a-Next-Rent-Due-Date

When a field is defined to sp2 as a date field, the assumed format is YYYYMMDD, or Year , Month ,
Day. Because the data in the Dealer.Dat file is stored in MMDDYYYY format, the date must be rearranged
before being moved to the display fields.

000243 Move Rent-Amount To Chapt24a-Rent-Amount
000244 Move Consignment-Percent To Chapt24a-Consignment-Percent
000245 .
000246 Show-Error-Message.
000247 MOVE LOW-VALUES TO SP2-MS-DATA
000248 MOVE "b" TO SP2-MS-ICON
000249 MOVE "File Error" TO SP2-MS-TITLE

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

000250 MOVE "o" TO SP2-MS-BUTTON
000251 MOVE 1 TO SP2-MS-LINE-CNT
000252 Move Error-Message To Sp2-Ms-Text
000253 Move Spaces To Error-Message
000254* Spaces Are Moved into Error-Message is preparation of the next
000255* String statement that will occur using the field.
000256 Call "SP2" Using Sp2-Display-Message Sp2-Message-Data
000257 .
000258 PROC-CLOSE-WINDOW.
000259************************
000260* CLOSE CURRENT WINDOW *
000261************************
000262 CALL "SP2" USING SP2-CLOSE-WINDOW SP2-NULL-PARM
000263 .
000264
000265 PROC-CLOSE-FILE.
000266**********************
000267* CLOSE CURRENT FILE *
000268**********************
000269 CALL "SP2" USING SP2-CLOSE-FILE SP2-NULL-PARM
000270 .
000271
000272 PROC-END-SESSION.
000273*******************
000274* END SP2 SESSION *
000275*******************
000276 CALL "SP2" USING SP2-END-SESSION SP2-NULL-PARM
000277 .

The program compiles normally. However, to link the program you need to include the Sp2.Lib file
provided with COBOL sp2. Perform the following steps to link Chapt24a.

1. In the WINLINK window, for the first link file enter \SPFJ3224\Chapt24a.Obj. (Under
Windows 3.1, use \SPFJ1624\Chapt24a.Obj). Click Add.

2. Then for the next link file, in the same place that you just entered the program object name,
enter \SPFJ3224\SP2.Lib. (Use the appropriate directory if using Windows 3.1.) Click Add.

3. Then click OK to link the program. Under Windows 3.1, click Build.

When you run the program, it should display a window that looks like Figure 24.10. Experiment with
the operation of the program.

Figure 24.10 Chapt24a—display when the program is run.

This small demonstration only begins to touch on the features of COBOL sp2 and a GUI with COBOL.
If you are interested in further GUI programming, please read the help file—COBOL sp2 Online Users
Guide—that comes with COBOL sp2. It is the complete user’s manual.

PreviousTable of ContentsNext

javascript:displayWindow('images/24-10.jpg',632,368)
javascript:displayWindow('images/24-10.jpg',632,368)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

PreviousTable of ContentsNext

The Future of COBOL

COBOL has a vibrant present and a bright future. The COBOL standards
committee is actively working on the next version of COBOL. This new
version promises to build on the present strengths of COBOL to make the
language that has been used since the dawn of business computing, robust,
stable, and useable well into the twenty-first century.

One expected feature is built-in validations using a new verb, Validate ,
which will simplify the coding of date validations and the like. Another new
feature will specify a standard for COBOL program recursion. File and record
locking, used in multiuser environments, are being standardized. Currently,
COBOL vendors provide different methods of handling these situations.
Numeric fields are being expanded from 18 digits to 31 digits, which should
eliminate any need to use imprecise floating-point math.

One of COBOL’s strengths has always been its capability to accurately handle
financial transactions without relying on the inaccuracies inherent in
floating-point arithmetic. Several changes in the COBOL language will yield
even greater portability. Some complex mathematical operations produce
different results on different compilers. In the next COBOL standard, the
programmer will be able to specify the use of a set of arithmetic rules that will
provide predictable and identical results across the different compilers. The
capability to read backward through an Indexed or Relative file is being
standardized. Most compiler vendors already have a method to accomplish the
read, but each differs slightly from the others.

One of the largest changes evident in the next COBOL standard is object
orientation. The new COBOL standard will provide COBOL with this very
powerful programming method, designed to support easy reuse of code. The
COBOL version of object-oriented programming promises to be a very clean
and reliable implementation.

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Although it may be several years yet before the standard is approved and
implemented by the different COBOL compiler vendors, the language remains
in wide use today with a rich feature set that makes development a joy.
COBOL has been and continues to be a strong performer in business-related
programming.

What should your next COBOL programming book be? For a more advanced
view of COBOL, try COBOL: Unleashed! (ISBN: 0-672-31254-9; Jon
Wessler et al.).

Summary

I would like to thank you for taking the time and energy to work your way
through Sams Teach Yourself COBOL in 24 Hours. I hope that you join me in
finding COBOL to be a strong, rich, and interesting programming language.
No matter what your interest in COBOL, I sincerely hope that this book is
your first step in a strong relationship with this historically colorful language
and its very bright future. Welcome to the world of computer programming,
fellow COBOL programmer!

PreviousTable of ContentsNext

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ch24/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full

 Advanced

 Search

 Search Tips

To access the contents, click the chapter and section titles.

Sams Teach Yourself COBOL in 24 Hours
(Publisher: Macmillan Computer Publishing)
Author(s): Thane Hubbell
ISBN: 0672314533
Publication Date: 12/01/98

Search this book:

Table of Contents

Index

Symbols
$ (currency symbol), 49, 51
() (parentheses), 132
* (asterisk), 49
+ (positive), 49
, (comma character), 49, 65
- (negative), 49
. (decimal point), 49
/ (slash), 49, 51
0 (zero character), 49, 51, 89
21 File Status error, 270, 272
24 File Status error, 284
39 File Status error, 284
43 File Status error, 272
48 File Status error, 270
88 level items (condition names), 136–140

A
A-0 programming language, 11
abbreviating complex conditional statements, 133
Accept statement, 62–63, 96–98

attributes, 64

date, 108

Go!

Keyword

Go!

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Day clause, 368

Exit Program clause, 413

From Date clause, 368

Gregorian calendar, 97

Julian calendar, 97

screen descriptions, 69

Special-Names paragraph, 97

terminating, 70

values, 71–72

accessing
Dynamic, 234, 270

Indexed files, 232

Random, 234, 270

Relative files, 275–283

Sequential, 234, 270, 284

Accumulator statement, control break program, subtotals, 351
Add statement, 83–86, 93

compiler options to programs, 181

data items, 85

end-of-file, 219, 230

files, 270

group-level items, 85

Random access, 270

records, 220

Relative file, 280

Sequential access, 270

subtotals, 345

Add with Corresponding statement, 357
add-on tools, user interface, 61
Advancing statement, printers, 341
After clause, 330–331
After Initial clause, 100–103
After Zero clause, 336
alert sounds, screen items, 66
aligned numeric fields, 49
alphanumeric fields, 41

blank characters, 51

comparing, 127–128

edited, 51–52, 55, 92

Initialize statement, 99

justification, 46

literals, 47–48

moving, 90, 131

numeric fields, 94

Picture clause, 46

reference modification, 103, 109

slash (/), 51

truncating, 68

Value clause, 46

greater, 130

less than, 129–130

relative, 129

zeros, 98

Alternate Key, 232
beginning-of-file, 255

File Status values, 244

Random access, 257

Select statement, 234

Start statement, 255

American National Standards Institute (ANSI), 11, 62
And statement, 39, 132
Animate option (debugging utility), 183
Annuity Intrinsic Function, 395–396
ANSI (American National Standards Institute), 11, 62
Any clause, 153
Arccosine Intrinsic Function, 390–391
Arcsin Intrinsic Function, 390–391
Arctangent Intrinsic Function, 390–391
arguments (functions)

average values, 393

integers, 392

Intrinsic Functions, 371

multiple, 380

numeric literals, 391

square root, 392

standard deviation, 394

values, 393

arithmetic statements
add, 83–86

compute, 89–90

divide, 88–89

improvements, 449

multiply, 87–88

reference modification, 104

subtract, 86–87

arrays, see tables
Ascending sorts, 290
Assign clause

data values, 189

numeric fields, 42

Select statement, 212

asterisk (*) in numeric fields, 49
At End clause, 299

Full-Name field, 225

Read statement, 257

Sequential files, 251

audit editing fields, 317
Auto clause, 64, 67

B
B (Blank fill), 49
Background Color clause, 64–67
batch processes, 62
Before clause, 330–331
Before Initial clause, 100–103
beginning-of-file, 255
Bell clause, 66–67
binary search

Search All statement, 198

Usage clause, 45

blank characters
alphanumeric fields, 51

numeric fields, 49

Blank Erase clause, 65
Blank Line clause, 65, 67, 349, 358
Blank Screen clause, 63, 65, 67
Blank When Zero clause, 67
Blink clause, 66–67
bold printing, 337
bonds, calculating, 397
boundary violations, 193, 204–205

breakpoint (debugging utility), 183
brightening screens, 66
bugs, see debugging
built-in validations, 449
business processing

client/server, 9

computing needs, 8

data, 8

By Content, 420–421
By Reference, 420–421
bytes, 45

C
calculating

bonds, 397

Easter dates, 383–386

fields, 123

calendars
COBOL, 387

dates, 368–369

Gregorian, 382–383

Julian, 382–383

Call statement
By Content, 420–421

By Reference, 420–421

canceling, 426

COBOL sp2, 429

dynamic, 421–423, 426

Not On Exception clause, 422

On Exception clause, 422

programming languages, 426

static, 421–423, 426

subprograms, 417

Using clause, 417

called programs, see subprograms
Cancel statement

programs, 422

Call statement, 426

capturing
errors, 277, 294

function keys, 70

transaction data, 306–309

Carriage Return/Line Feed (CRLF), 210–211
case sensitivity, 24
central processing unit (CPU), 7
Char Intrinsic Function, 399
characters

converting, 103

counting, 100–101

replacing, 101–102

checking control break sequence, 356
CICS (Customer Information Control System), 62
clauses

After Initial, 100–101

And, 132, 199

Any, 153

Assign, 212

At End, 299

Auto, 64, 67

Background Color, 63, 65, 67

Before Initial, 100–101

Bell, 66–67

Blank Erase, 65

Blank Line, 65, 67

Blank Screen, 63, 65, 67

Blank When Zero, 67

Blink, 66–67

Count In, 119–120

Currency-Sign is, 25

Decimal-point is Comma, 25

decimal position, 43

Delimited By, 122

Delimited By Size, 112

Delimiter In, 120

Depending On, 203

Else, 131

Erase, 67

File Status, 212

Foreground Color, 63, 65, 67

Full, 64, 67

Giving, 287, 290

Highlight, 66–67

Indexed By, 195

Invalid Key, 244–245, 277

Justified, 67

Justified Right, 68, 70

Leading, 102

Line, 65–66

Lowlight, 66–67

Not, 133

numeric fields, 44–46

Occurs, 188

On Overflow, 120

Or, 132

Other, 148

Picture, 40–41, 46–47, 59, 67

Pointer, 117, 123

Redefines, 189–193, 195

Relative Key, 275

Renames, 40

Replacing, 99, 102

Required, 64–65, 67

Reverse-Video, 66

Secure, 64–65, 67

Sign, 67

Sign Separate, 43

Tallying In, 102, 119, 123

To, 69–70

Underline, 66–67

Until, 162

Upon, 28

Usage, 67

Using, 70, 287

Value, 42, 98

Varying, 197

When, 145, 199

Clear push button, 435–436
Clear Screen statement, 281
clearing

Full-Name field, 225

lines, 66

screens, 64, 265

target fields, 122

client/server processing, 9
Close statement

COBOL sp2 panels, 441

files, 313

Dynamic access, 265

Sequential access, 215

Status values, 215

COBOL (Common Business Oriented Language), 7
calendar, 387

Data division, 38

ease-of-use, 19

Environment division, 38

future versions, 449

Identification division, 38

industry standards, 11–12

intrinsic functions, 12

Procedure division, 38

recursion, 420

structured programming, 12

COBOL sp2, 428
Call statement, 429

Clear push button, 435–436

Close statement, 441

conversing, 439

designing, 429–436

drop-down boxes, 434–435

editing, 429, 437–449

error message, 441

evaluation version, 429

Exit push button, 435–436, 439

FD statement, 441

fields, 429, 431–433

generated program, 436–438

icons, 441

line numbers, 441–442

linking, 448

lowercase, 438

Open statement, 438, 441

panels, 429

Picture clause, 435

processing loops, 442

Read push button, 434–436, 441

saving, 436

Select statement, 441

text display, 430

titles, 429, 441

uppercase, 438

CODASYL committee, 11
coding

If statement, 142

Screen_Section program, 77–78

collating sequence, 25
color

screens, 64, 76

toggling, 66

comma character (,) in numeric fields, 49, 65
command-line arguments

data, 108

retrieving, 96

special names, 108

comment lines, 22, 105
Common Business Oriented Language, see COBOL
Communications Section (Data Division), 26
COMP data items, 210
Comp value (Usage clause), 45
comparing

alphanumeric fields, 127–130

Call statement, 421–423

data items, 126, 128

date, 319

Line Sequential, 210, 229

literals, 127–128

master files, 319

numeric fields, 127–129

Perform statement with Go To statement, 163

compatibility platforms, GUI, 428
compilers

16-bit version, 32

collating sequence, 25

compute statement, 90

computers, 24

debugging utilities, 181

diagnostic messages, 36–37

directives, 29

division headers, 37

Fujitsu, 71–72

Editing window, 33

error messages, 57

executing, 17–19

hardware requirements, 13

installation, 12–19

object modules, 34

options

adding, 181

configuration, 16, 18

linking, 181

TEST, 185

output devices, 28

Programming Staff, 30, 33–34, 415

recompiling, 37

reporting, 31

software requirements, 13

Special-Names paragraph, 71

statements, 62

syntax errors, 33, 38

text mode, 63

troubleshooting, 36–37

user interface, 62

validating, 15–19

VMS COBOL, 71

Windows 3.1, 14–15

complex conditional statements, 134–135, 139
abbreviating, 133

isolating, 132

compute statement, 89, 90, 93, 156
computers

bugs, 11

compilers, 24

condition names, 136
conditional statements

abbreviating, 133

And clause, 132

comparing data items, 126, 128

complex, 132–135, 139

Continue, 133

Else clause, 131

equal, 127

Evaluate statement, 141, 143

executing, 128

false, 137, 143–144

If, 126–131

isolating, 132

less than values, 129

literals, 131

multiple, 139

names, 137–138

nesting, 135

Not clause, 133

Or clause, 132

Perform statement, 160

resetting, 137

Set, 136–137

Size Error phrase, 126

terminating, 128

testing, 136, 139, 150

Then phrase, 129

true, 126, 128, 140, 143–144, 148–149

unequal, 128

values, 129

variable names, 137

Configuration Section
Fujitsu compilers, 16, 18

Object-Computer paragraph, 24

Source-Computer paragraph, 24

Special-Names paragraph, 25, 70, 72

statements, 72

Console reserved word, 28

Continue statement, 133
control break programs (reports)

blank lines, 349

checking order, 356

creating, 363

date format, 350

dealer totals, 345, 359

Declaratives statement, 353

end-of-file, 353

errors, 357, 364

grand totals, 345, 360

headings, 362

hierarchy, 345

Initialize statement, 351

Input Procedure, 348

layout, 344

line count, 360-362

master files, 347

Random access, 347

resetting values, 346, 357

save fields, 351, 357

Sort sequence, 345-346, 348, 353-354

String statement, 350

subtotals, 344

Accumulator statement, 351

Add statement, 345

total lines, 350

transaction date, 345–348, 358

usage, 364

walk through, 346–363

conversing COBOL sp2 panels, 439
converting

characters, 103

Gregorian to/from Julian, 382–383

Copy statement, file definitions (FD), 426
Copybooks statement, source code, 424–425
correcting errors, 76
corresponding fields, 86, 295
corrupting Perform statement, 167
Cosine Intrinsic Function, 390

Count In clause, 119
counting

characters, 100–101, 119

print lines, 332

records, 298

target fields, 119

CPU (central processing unit), 7
CR (credit balance), 49
creating

control break programs, 363

folders, 29–30

Indexed files, 290–292

input fields, 69–70

Perform logic, 159–163

processing loops, 30–31

records, 281

Relative file, 277

Sequential files, 210, 215–217, 235–238

user input, 239–244

variable-length tables, 203–204

see also writing

credit balance (CR), numeric fields, 49
CRLF (Carriage Return/Line Feed), 211
cross-platforming, 10
Crt Status data item, 71–72
currency symbol ($), 49, 51
Currency-Sign is clause, 25
current date/time, 12, 97, 369–371, 380
Cursor statement, 261

capturing, 70

length, 71

positioning, 64, 70, 76, 79

Customer Information Control System (CICS), 62

D
data

entering in programs, 32–33

moving between fields, 90–93

passing, 27, 410

on-screen, 63

returning, 410

Data Division, 27, 32, 38
Occurs clause, 188

Redefines clause, 189–193

sections, 26

data items
88 levels, 136

accepting, 96

adding, 85

COMP, 210

condition names, 136

Crt Status, 72

decimal limit, 59

defining, 54, 59

elementary-level, 40–41, 53–54

Evaluate statement, 112, 141–143, 146, 154

Filler, 54

formatting, 117

group-level, 40, 53–54, 59, 188

If statements, 126, 128

incrementing, 197

index values, 200

initializing, 197

level numbers, 40–41

moving, 55

numeric, 59

Read statement, 351

Redefine clause, 189–193

reference modification, 103–104

sizing limitations, 190

storing, 85

subprograms, 416–417

tables, 187

testing, 154

validation, 310–313

Value clause, 52, 144–145, 172–173, 189

see also fields

data processing, 8
date

Accept statement, 108

comparing, 319

converting from seconds, 380

Current, 97

fields, 78

format, 98, 317

Gregorian, 97

Julian, 97

validations, 449

Date-Of-Integer Intrinsic Function, 371, 387
dates

COBOL calendar, 387

current days, 369

days, 371–373, 376, 413–414

Easter, 384–386

epact, 384

errors, 379

field values, 376

format, 350, 354

Gregorian calendar, 368, 382–383

headings, 352

history, 368

integers, 372, 377

Intrinsic Functions, 368, 387

Julian calendar, 368–369, 382–383

leap years, 369, 376, 378

months, 376

printing, 337–338

ranges, 377

Sort statement, 348, 350

subprograms, 418–420

two-digit, 368

validation, 376–382

Day clause, 368
Day-Of-Integer Intrinsic Function, 383
days

between dates, 371–375, 413–414

format, 317

values, 376

weekdays, 374–375

DB (debit balance), 49
dealer totals (reports), 345, 359

debit balance (DB), 49
debugging utility, 11

Animate option, 183

breakpoint, 183

compilers, 181

programs, 37

TEST compiler option, 185

troubleshooting, 185

Windows 3.1, 181–182

decimal limit, numeric fields, 41, 43, 59
decimal point (.) position

implied, 43

numeric fields, 49, 58

Decimal-point is Comma clause, 25
Declaratives statement, 248

errors, 245–246, 298

reports, 353

Sections headers, 245

transaction data, 323

default
output devices, 28

sequential files, 210

defining
condition names, 136

data items, 54, 59

fields, 40–41, 55

screens, 79

tables, 188

Delete statement
records, 274, 280

Sort Work File, 300

Delimited By clause, 112, 122
Delimiter In clause, 120
delimiters

Carriage Return, 210–211

Count In clause, 120

length, 122

Line Feed, 210–211

multiple, 119

spaces, 114, 118, 120

String statement, 116

Unstring statement, 118

Depending On statement, 203, 228, 395
Descending sorts, 290
designing

COBOL sp2 panels, 429–436

fields, 73

layout, 328

programs, 338–339

records, 329

reports, 328–330

Screen_Section program, 72

detail lines (reports), 331, 333–336
diagnostic messages, compilers, 36–37
dimming screens, 66
disabling Fujitsu compiler messages, 220
Display statement, 57, 62–63

attributes, 64

edited numeric fields, 67

field contents, 69

on-screen, 63, 69, 263, 265

Upon clause, 28

Usage clause, 45

Display-And-Accept statement, 281
Divide statement

case sensitivity, 24

Data, 26–27, 32, 38

Environment, 24–26, 32, 38

formats, 88–89

headers, 37

Identification, 23–24, 32, 38

Procedure, 27–28, 32, 38, 106

required, 23

sections, 24, 26

statements, 88–89

zero, 89

DLLs (dynamic link libraries), 423
dollar sign ($), 49, 51
drop-down boxes, COBOL sp2 panels, 434–435
Duplicate Key (Indexed files), 248

File Status values, 244

Select statement, 234

Sort Keys sequence, 299

Dynamic access, 270
Indexed files, 234, 258–266, 272, 274

Close statement, 265

error messages, 263

File Status values, 261

Open statement, 259, 262–263, 265

Random Read, 258

Read statement, 264

Relative file, 279

retrieving records, 250

Select statement, 258

Sequential Read, 259

Start statement, 259, 264–265

dynamic Call statement, 421–423, 426
dynamic link libraries (DLLs), 423

E
Easter, 383–386
edit fields

alphanumeric, 51–52, 55, 92

audit, 317

date, 317

day, 317

displaying as spaces, 67

month, 317

numeric, 48–51, 91–92

zero suppression, 49–50

editing
COBOL sp2 panels, 437–449

fields, 55–58

Fujitsu compiler, 33

index values, 196

Line Sequential files, 210

primary Key, 272

screens, 76

subprograms, 412

elementary-level items, 40–41, 53–54
condition names, 136

reference modification, 104, 189

Else clause, 131
End-Compute explicit scope terminator, 89
End-Evaluate scope terminator, 144
End-If explicit scope terminator, 184
end-of-file condition

adding, 230

Output Procedure, 296

records, 219

report control breaks, 353

Rewrite statement, 228

Sequential files, 222

status, 251

transaction data, 323

End-Read explicit scope terminator, 257
End-Return explicit scope terminator, 298
End-Search explicit scope terminator, 197
End-Unstring explicit scope terminator, 118
entering data in programs, 32–33
Environment Division, 24–26, 32, 38
epact (dates), 384
equal conditions, 127
Erase clause, 66–67
errors

Alternate Key, 244

capturing, 277

COBOL sp2 panels, 441

compiler, 57

control break programs, 364

correcting, 76

date validation, 379

File Status, 270, 284

Indexed files, 263, 298

Input Procedure, 294

Primary Key, 244

Procedure Division, 245–246

Sequential files, 216

subtotals, 357

syntax, 31

transaction data, 309

Write statement, 244–245

Evaluate statement, 143, 154
conditions, 141, 143

data items, 143

executing, 154

false, 143–144

format, 143

group-level items, 146

If logic, 151

literals, 143

multiple, 147–148

nesting, 147, 154

numeric, 144–145

Other clause, 148

rearranging, 153

scope terminators, 144

selection objects/subjects, 143, 145, 147–148

sequence, 145

source code, 142, 150, 152–153

stacking, 146

testing, 150

true, 143–145, 148–149

values, 141–143, 154

When clause, 152–153

event-driven logic, 427
executing

conditional statements, 128

Evaluate statement, 154

Fujitsu compilers, 17–19

Input/Output Procedure, 296, 301

multiple, 132, 145

Perform statement, 160

programs, 35–36

selection objects, 148–149

statements, 175, 301

Exit Program statement
Accept clause, 413

COBOL sp2 panels, 435–436, 439

subprograms, 412

explicit scope terminators, 84

End-Compute, 89

End-Evaluate, 144

End-If, 184

End-Read, 257

End-Return, 298

End-Search, 197

End-Unstring, 118

exponents, 89

F
Factorial Intrinsic Function, 391
false conditions

Evaluate statement, 143–144

setting to false, 137

FD (File Description) statement, 213
fields, 39

aligned, 49

alphanumeric, 41, 46, 99, 127–128

calculating, 123

characters, 51, 100–101

COBOL sp2 panels, 429, 431–433

comparing, 127–128

contents, 69

corresponding, 295

counting, 119

creating, 69–70

cursor, 79

data, 90–93

date, 78, 376

decimal positions, 41, 43, 58

defining, 40–41, 55

delimiters, 122

editing, 48–52, 55–58, 67, 91–92

filling, 64

formatting, 42

From, 79

initializing, 118

input/output, 79, 105

Inspect statement, 400

justification, 42, 46

length, 398–400

literals, 41, 47–48

moving, 90–91

multiple, 112, 122

name entries, 137–138

numeric, 40–41, 94

Output Procedure, 296

overflowing, 120

packing, 45

quotation marks, 47

receiving, 58

reference modification, 103, 109, 112

Relative-Key, 276

required, 65, 73, 78

resetting, 119

Screen Section program, 71, 73, 76

separating, 118–121

signed, 43–44, 87

slash (/), 51

Sort, 300

source, 118

storage, 44–45

stringing, 117

target, 112

To, 79

troubleshooting, 84

truncating, 90–91

unique, 99

Unstring statement, 138

update, 79

Using, 79

validation, 310, 312

Value clause, 42, 46, 98–99, 129–130

zeros, 49–50, 98

see also data items

File Description (FD) statement, 213
COBOL sp2 panels, 441

Copy statement, 426

File Section (Data Division), 26–27
File Status clause, 270, 284

Alternate Key, 244

capturing, 277

Close statement, 215

Duplicate Key, 244

Dynamic access, 261

Indexed files, 248

Open statement, 214

in Extend, 219

in Output, 216, 219

Random access, 244, 256

Read statement, 222, 259

reports, 335

Rewrite statement, 225

Select statement, 212

Sequential access, 221

Start statement, 254

transaction data, 317, 323

Write statement, 216–217, 219, 238

filenames
physical, 212

Sequential files, 216

symbolic, 212

files
adding, 270

closing, 313

Copy statement, 426

data items, 209

extensions, 77

fields, 209

Indexed files, 231, 292

Line Sequential, 210, 229

opening, 313

reading, 270

Record Sequential, 210

retrieving, 270

saving, 77

Sequential, 214–217, 225–228

sorting, 286–291

Write statement, 210, 219, 270–271, 340

Filler data item, 54, 64
financial functions, 395–396

flags, condition names, 136
Flexus web site, 429
FLOW-MATIC language, 11
folders, 29–30
fonts, 338
Foreground Color clause, 63–67
format

COBOL programs, 21

data items, 117

date, 98

Evaluate statement, 143

numeric fields, 42

free-form source code, 23
From Date clause, 368
From statement, 67, 79
Fujitsu compiler, 71–72

Editing window, 33

executing, 17–19

hardware requirements, 13

installation, 12–19

messages, 220

options, 16, 18

output devices, 28

Programming Staff, 30

software requirements, 13

Sort Work Files, 286

validating, 15–19

Windows 3.1, 14–15

Full clause, 64, 67
Full-Name field, 225
functions

arguments, 380

capturing keys, 70

Factorial, 391

financial

Annuity, 395–396

Present-Value, 396

integer

Integer-Of-Date, 371-372, 374, 387

Integer-Part, 392

Intrinsic

Current-Date, 12, 370–371, 380

Rem, 379, 392

logarithm, 391

miscellaneous

Mod, 392

Random, 403–404

When-Compiled, 403–404

Sqrt, 392

statistical

Max, 393

Mean, 393

Median, 394

Midrange, 393

Min, 393

Ord-Max, 393

Ord-Min, 393

Range, 394

Standard-Deviation, 394

Sum, 394

Variance, 394

string

Char, 399

Length, 398

Lower-Case, 400

Max, 399

Min, 399

Numval, 402

Numval-C, 402

Ord, 400

Ord-Max, 399

Ord-Min, 399

Random, 397

Reverse, 400

Upper-Case, 400

trigonometric

Arccosine, 390–391

Arcsin, 390–391

Arctangent, 390–391

Cosine, 390

Sin, 390–391

Tangent, 390–391

G
generating COBOL sp2 panels, 436
Giving clause, 287, 290
GMT (Greenwich Mean Time), 380–382
Go To statement

infinite loops, 168

Paragraph title, 163–169

Perform statement, 163–164, 168, 184

processing loops, 163, 170

Section header, 163–169

unconditional branch, 163

government use of COBOL, 9
grand totals (control break programs), 345, 360
Graphical User Interface, see GUI
greater than values, 130
Greenwich Mean Time (GMT), 380–382
Gregorian calendar

converting from Julian, 382–383

dates, 97, 368

group-level items, 40, 53–54, 59
adding, 85

Evaluate statement, 146

Initialize statement, 99

moving, 92

paragraphs, 82, 169

records, 210

reference modification, 104, 109

stringing, 112

tables, 188

Value clause, 52

GUI (Graphical User Interface)
add-on tools, 61

COBOL sp2 panels, 428–429

event-driven logic, 427

platform compatibility, 428

third-party tools, 428

Visual Basic, 428

Visual C++, 428

see also user interface

H
hardware requirements for Fujitsu compiler, 13
headings (reports)

control breaks, 362

dates, 352

reports, printing, 331, 333–337

times, 352

hierarchy in control break programs, 345
High-Value (literals), 48
Highlight clause, 66–67
history of

dates, 368

Hopper, Grace (Admiral), 11
A-0 language, 11

CODASYL committee, 11

computer bug, 11

FLOW-MATIC, 11

influence, 10

I
I-O (Open in Input) mode

Dyanmic access, 270

Random access, 270

Sequential access, 214, 221, 270

updating, 221

IBM mainframes, 28, 62
icons in COBOL sp2 panels, 441
Identification Division, 223–224, 32, 38
If conditional statement, 139, 142, 154

abbreviating, 133

coding, 142

complex, 132–135

condition names, 137–138

data items, 126, 128

Else clause, 131

equal conditions, 127

literals, 131

nesting, 135, 139, 151

terminating, 128

Then phrase, 129

true conditions, 126, 128

values, 129

implied decimal position, 43, 58
increasing Sort statement speed, 295
incrementing

data items, 197

values, 172–173

Index values
contents, 195

editing, 196

element numbers, 195

referencing, 200

Search statement

starting, 196

tables, 200

Usage clause, 45

Indexed By clause, 195
Indexed files

Alternate Key, 232, 234, 244, 257

At End condition, 251

Close statement, 265

creating, 235–244, 290–292

Declaratives, 248

definitions, 232

deleting, 274

Duplicate Key, 234, 248

Dynamic access, 234, 258–266, 272, 274

efficiency, 320

error messages, 244, 263, 298

File Status values, 248, 256, 261

Input/Output, 235–238, 250

Invalid Key, 248

Key field, 231–233, 235

Move statement, 256

Open statement, 244, 259, 262–263, 283

Primary Key, 232–233, 244, 272

Random access, 234, 244, 256–257, 272, 274

Read statement, 237, 251, 257–258, 264, 273, 324–325, 450

records, 232–233, 250–253, 270–271

rewriting, 271–272

Select statement, 233–235, 256, 258

Sequential access, 234–239, 247, 250, 259

sorting, 292

Start statement, 254–256, 259, 264–265

storing, 234

structures, 232

updating, 233, 271–273, 283, 320–325

user input, 239–244

validating, 232

Write statement, 238, 244

industry standards
COBOL, 11–12

future improvements, 449–450

infinite loops, 168
Initialize statement, 108

alphanumeric fields, 99

data items, 197

group-level items, 99

Output Procedure fields, 296

Redefines clause, 191

Replacing clause, 100

reports, 98, 351

target fields, 113, 118

Varying statement, 184

inline Perform statement, 171, 174–177
Go To clause, 184

inline If statement, 178–180

left-justification routine, 180

nesting, 177, 184

Paragraph, 184

Input Procedure
control breaks, 348

data, 105

errors, 294

fields, 69–70, 79

Justified Right clause, 70

processing loop, 292

records, 292

screens, 261

size, 299

Sort statement, 293–296, 301

text file, 235–237

Input-Output Section (Environment Division), 24
Input-Output, see I-O mode
Inspect statement

characters, 103, 108

clause, 100–102

counting, 100–101

fields, 400

leading character phrases, 103

replacing, 101–102

installation
COBOL sp2 evaluation version, 429

Fujitsu compilers, 12–19

validating, 15–19

Windows 3.1, 14–15

integer functions
Integer, 392

Integer-Part, 392

Mod, 392

date validation, 377

positive numbers, 392

interactive debugging utility, see debugging utliity
interactive processing, 62
interface, see GUI; user interface
Intrinsic Functions, 12, 369

arguments, 317

Current Date, 12, 370–371, 380

Date-Of-Integer, 371–372, 374, 387

Day-Of-Integer, 383

dates, 368, 387

Factorial, 391

financial, 395–396

Integer, 392

Integer-Part, 392

logarithm, 391

mathematical, 392

miscellaneous

Random, 403–404

When-Compiled, 403–404

Mod, 392

multiple, 380

numerical, 387

Present-Value, 396

Rem, 379

Sqrt, 392

statistical

Max, 393

Mean, 393

Median, 394

Midrange, 393

Min, 393

Ord-Max, 393

Ord-Min, 393

Range, 394

Standard-Deviation, 394

Sum, 394

Variance, 394

string

Char, 399

Length, 398

Lower-Case, 400

Max, 399

Min, 399

Numval, 402

Numval-C, 402

Ord, 400

Ord-Max, 399

Ord-Min, 399

Output-Field, 400

Random, 397

Reverse, 400

Upper-Case, 400

trigonometric

Arccosine, 390–391

Arcsin, 390–391

Arctangent, 390–391

Cosine, 390

Sin, 390–391

Tangent, 390–391

Invalid Key clause, 248, 277
errors, 244–245

Read statement, 257

Start statement, 254

Is Initial clause subprograms, 416
isolating complex conditional statements, 132

J
Job Control Language (JCL), 212
Julian calendar, 97

converting from Gregorian, 382–383

dates, 368–369

Intrinsic Functions

Day-Of-Integer, 383

justification
alphanumeric fields, 46

left, 106

numeric fields, 42

Justified clause, 67
Justified Right clause, 68, 70

K
Key fields, see Indexed files
Keyboard-Status field, 261
keys

master files, 314

transaction data, 314

L
layouts

description, 210

records, 293

Leading clause, 102
counting, 101

level numbers, 41

numeric fields, 42

leap years, 369, 376–378
left-justification, 106, 180
Length Intrinsic Function, 122, 398
less than values, 129–130

level numbers
data items, 40–41

elementary, 41, 53–54

fields, 40

group, 52–54

leading digits, 41

Renames clause, 40

Line clause, 65–66
line count

control break, 360–362

printing, 332, 334, 336–337

Line Feed delimiter, 210
line numbers

COBOL sp2 panels, 441–442

programs, 22

Line Sequential files, 229
delimiters, 211

editing, 210

master files, 315–316

records, 230

updating, 225–228, 315–316

lines, clearing, 66
Linkage Section (Data Division), 26–27

called programs, 418

COBOL sp2

panels, 448

compiler options, 181

object modules, 34

programs, 35

listings
3.1 Demonstrate Group/Elementary Levels, 53–54

3.2 Demonstrate Edited Fields, 55–58

4.1 Screen_Section with Justified Right, 68

4.2 Screen_Section Demonstration, 74–76

7.1 String Example, 114–115

7.2 Unstring Example, 120

8.1 Intelligent Telephone Number Format, 134

8.2 Intelligent Name Separation, 137–138

10.1 Perform logic, 157–158

10.2 Processing Loop, 160–161

10.3 Go To with Perform, 164

10.4 Perform with Go To, 168

11.1 Count to 10, 172

11.2 Count to 10, Revised, 173

11.3 Inline Perform Example, 176–177

11.4 Inline Perform with Inline If, 178–180

12.1 Month/Date Name Display, 191–192

12.2 State Name Lookup, 193–195

12.4 Search Multidimensional Table, 201–203

13.1 File Creation Example, 217–218

13.2 Read statement, 223–224

13.3 Update Sequential files, 226–227

14.1 Dealer File Creation, 235–237

14.2 Dealer Data Entry, 239–243

15.1 Indexed File/Sequential Access, 251–253

15.3 Dynamic Access Example, 260

16.1 Relative file access, 275–282

17.1 Sort statement, 287

17.2 Creating Indexed File Using Sort, 290–292

17.3 Sort with Input Procedure, 293–296

17.4 Sort with Output Procedure, 297–299

18.2 Sequential File Update, 315

18.3 Indexed File Update, 321–323

21.1 Current-Date Intrinsic Function, 370–371

21.2 Integer-Of-Date, 372

21.3 Days Between Dates, 372–373

21.4 Days between Dates/Weekday, 374–375

21.5 Date Validation, 377

21.6 Convert Local Time to GMT, 381–382

21.7 Easter Date Calculation, 384–386

22.1 Annuity Function, 395–396

22.2 Center a Field, 398–399

22.3 Assemble Full Name, 401–402

22.4 Random Function, 404

23.1 Menu Program, 411

23.2 Called Phone Number Format, 412–413

23.3 Called Days Between Dates, 413–414

23.4 Date Entry, Calling Validation, 417

23.5 Date Validation Subprogram, 418–420

23.6 Date Validation Copybook, 424

23.7 Date Validation Copybook, 424–425

24.1 sp2 Generated Program, 437–438

24.3 Final Dealer Display, 442–448

literals
alphanumeric, 47–48

comparing, 127–128

Evaluate statement, 143

fields, 41

If conditional statements, 131

numeric, 47–48, 391

quotation marks, 47

screen, 79

values, 47–48

loading tables, 189–193, 195, 211
local time, 380
location of Sequential files, 211
logarithm functions391
lookups in tables, 193–195
Low-Value (literals), 47
Lower-Case Intrinsic Function, 400
Lowlight clause, 66–67

M
machine language, 8
main programs, 410, 415
mainframes (IBM)

CICS, 62

output devices, 28

master files
comparing, 319

control breaks, 347

Indexed

efficiency, 320

Read statement, 324–325

updating, 320–325

keys, 314

Sequential files

Line Sequential, 315–316

updating, 313–320

transaction data, 314

Matchcase of Keyword check box, 32

mathematical functions, 89, 392
Max Intrinsic Function, 393, 399
Mean Intrinsic Function, 393
Median Intrinsic Function, 394
menu programs, 410–411
merging, see String statement
messages, Fujitsu compiler, disabling, 220
Midrange Intrinsic Function, 393
Min Intrinsic Function, 393, 399
miscellaneous functions, 403–404
Mod Intrinsic Function, 392
modifying Sort fields, 300
month

dates, 376

format, 317

Move statement, 55, 90–93
alphanumeric fields to numeric, 131

Indexed files, 256

data items, 55, 90–93

fields, 295

group-level items, 92

spaces, 98

zeros, 98

multidimensional tables, 200–203
Multiply statement, 87–89

N
name entries

unstringing, 137–138

reports, 337

naming programs, 421
negative (-), 43, 49
nesting

Evaluate statements, 147, 154

If statements, 135, 139, 151

inline Perform statement, 177, 184

Next clause
Read statement, 258

File Status values, 259

nibbles (bytes), 45

Not clause, 133
Not On Exception clause, 422
numeric fields, 41

alphanumeric fields, 94

aligned, 49

arguments, 391

asterisk (*), 49

Blank fill (B), 49

comma character (,), 49

comparing, 127–128

credit balances (CR), 49

currency symbol ($), 49

debit balance (DB), 49

decimal point positions, 41, 43, 49, 58

defining, 41

edited, 48–51, 67, 91–92

literals, 47–48

moving, 91

negative (-), 49

packing, 45

Perform statement, 174

positive (+), 49

reference modification, 103, 109

Relative-Key, 276

right justification, 42

signed, 43–44

slash (/), 49

storage, 44–45

saving, 44

tables, 189

Usage clause, 44–46

values, 42, 129, 144–145, 172–173

zero suppression, 42, 49–50, 98

numeric Intrinsic Functions, 387, 402
Numval-C Intrinsic Function, 402

O
object modules, 34
Object-Computer paragraph (Configuration section), 24
object-oriented programming, 450
Occurs clause, 188, 203, 228

On Exception clause, 422
On Overflow clause, 120
On Size Error phrase, 86
Open in Extend mode

File Status clause, 219

Indexed files, 244

Sequential files, 214

transaction data, 308

Open in Input, see I-O mode
Open in Output mode

errors, 216

File Status values, 215, 219

Indexed files, 235–238

Sequential, 214–215, 247

Open statement
COBOL sp2 panels, 438, 441

Dynamic access, 262–263

File Status values, 214, 313

Indexed files, 259, 265, 283

Record Sequential file, 284

Relative file, 284

reports, 334–335

Sequential files, 214, 283

Optional clause
Select statement, 229

options, Fujitsu compilers configuration, 16, 18
Or clause, 132, 139
Ord Intrinsic Function, 400
Ord-Max/Ord-Min Intrinsic Function, 393, 399
Other clause, 148
Output Procedure

clauses, 67

data, 105

default, 28

end-of-file detection, 296

executing, 296

fields, 79, 296

processing loop, 296, 298

records, 296

size, 299

reports, 296

Sort statement, 297–299, 301

see also target fields

Output-Field Intrinsic Function, 400
overflowing target fields, 113–114, 120

P
Packed-Decimal value (Usage clause), 45
page breaks (reports)

line counters, 334

printing, 331–339

panels (COBOL sp2)
Clear push button, 435–436

Close statement, 441

conversing, 439

designing, 429–436

drop-down boxes, 434–435

editing, 429, 437–449

error messages, 441

Exit push button, 435–436, 439

FD statement, 441

fields, 429, 431–433

generating, 436

icons, 441

line numbers, 441–442

linking, 448

Open statement, 441

opening, 438

Picture clause, 435

processing loops, 442

push buttons, 434, 441

Read push button, 435–436

saving, 436

Select statement, 441

text display, 430

titles, 429, 441

window display, 429

Paragraph title, 27–28, 157–158
case sensitivity, 24

Go To statement, 163–169

grouping, 82, 169

Perform statement, 159, 167, 184

periods, 82

Procedure Division, 82, 93

Special-Names, 162

Thru clause, 158

passing data, 410
Perform
Perform logic, 157–158
Perform statement, 156

corrupting, 167

executing, 160

Go To statement, 164, 168

comparing, 163

inline, 171, 174–177

left-justification, 180

nesting, 184

Paragraph, 184

nesting, 177

numeric data items, 174

numeric literal items, 174

Paragraph title, 158, 167

multiple, 159

processing loops, 159–161, 169

creating, 159–163

Section headers, 157

Stop Run statement, 159

terminating, 169, 172

testing, 173

Thru clause, 158

Until clause, 162, 172

Varying clause, 172–173

With Test After clause, 173–174

phrases
After Initial, 103

Before Initial, 103

Size Error, 126

Then, 129

physical filenames, 212
Picture clause, 40, 59, 67

alphanumeric fields, 46

COBOL sp2

decimal position, 43

edited, 49–50

fields, 40–45

panels, 435

platforms, GUI, 428
Pointer clause

data, 117

positioning, 121

Unstring statement, 123

positioning
Auto clause, 64

cursor, 70, 76, 79

Pointer clause, 121

Relative file, 279

positive (+), 43, 49
Present-Value Intrinsic Function, 396
preserving on-screen data, 63
Primary Key, 231–233, 244, 272
printing

Advancing statement, 341

bold, 337

dates, 337–338

dealer totals, 359

detail records, 335–336

File Status values, 335

fonts, 338

grand totals, 360

headings, 331, 333–337

lines, 331, 333–334

multiple records, 338

name formatting, 337

opening, 334–335

Output Procedure, 296

page breaks, 332

requirements, 332–333

sorting records, 339

time, 337–338

transaction date, 358

underlining, 339

Write statement, 340

Proc-Open-File Paragraph sp2 program, 438
Procedure Division, 28, 32, 38, 81, 106

batch, 62

called programs, 418–420

Declaratives, 245–246

divide statement, 88–89

Input, 292–296

Paragraphs, 27–28, 82, 93, 157–158

Output, 296

Sections, 27–28, 82, 157–158

statements

add, 83–86, 93

compute, 89–90, 93

move, 90–93

multiple, 87–88

Start statement, 255

subtract, 86–87

Process-Files Paragraph, 318
processing

client/server, 9

interactive, 62

processing loop
Input Procedure, 292

Output Procedure, 296, 298

Relative file, 278

transaction data, 324

processing loops, 156
COBOL sp2 panels, 442

creating, 159–163

Go To statement, 163, 170

Perform statement, 160–161, 169

terminating, 445

Program-Id paragraph (Identification Division), 23, 38
programming languages

A-0, 11

business needs, 8

Call statement, 426

files, 77

FLOW-MATIC, 11

object-oriented, 450

sentences, 82

structured, 12, 20

tutorials, 127

Programming Staff (Fujitsu compiler), 30
programs

called, 410–415

Cancel statement, 422

collating sequence, 25

comment lines, 22, 105

compilers, 33–34, 181

directives, 29

division headers, 26–27, 36–37

control breaks, 362

creating, 30–31

data

entering, 32–33

passing, 27, 410

returning, 410

debugging, 37

designing, 338–339

Environment, 32

executing, 35–36

formats, 21

Fujitsu compilers, 16–19

line numbers, 22

linking, 34–35

menus, 410–411

naming, 421

object modules, 34

Procedure Division, 418–420

recompiling, 37

recursion, 420, 449

reinitializing, 421

removing, 421

reserved words, 28

saving, 33

source code, 23

statements, 32

terminating, 29, 107

walk through, 346–363

Project method, 415
projects, subprograms, 416
push buttons, COBOL sp2 panels, 434, 441

Q—R
Quote value (literals), 47
radians, 391
Random access, 270
Alternate Key, 257

control breaks, 347

Dynamic access, 258

File Status values, 244, 256

Indexed files, 234, 244, 256–257, 272, 274, 320–325

Move statement, 256

Read statement, 257–258, 450

records, 270

Select statement, 256

update procedures, 313, 326

Random Intrinsic Function, 397, 403–404
Range Intrinsic Function, 394
ranges, dates, 377
Read statement, 221, 223–224
At End clause, 257

clearing, 225

COBOL sp2 panels, 435–436

Dynamic access, 264

File Status values, 259

Full-Name field, 237, 251

Indexed files, 250–253, 273, 450

Invalid Key clause, 257

master Indexed files, 324–325

Next clause, 258

Output Procedure, 296

records, 254–258, 270, 314

Relative file, 279

reports, 351

Random access, 257

Sequential files, 222

transaction data, 318

see also retrieving

rearranging selection objects, 153
rebuilding subprogram projects, 416
receiving fields, 58
recompiling programs, 37
Record Sequential
opening, 284

Line Sequential files, 210

trailing spaces, 211

records
accessing, 232, 283–284

adding, 220, 230, 270

counting, 298

creating, 281

deleting, 274, 280

description, 213

Dynamic Access, 250

end-of-file, 219, 230, 270, 280

first, 351

identifiers, 216, 329

Indexed files, 232, 250–253

Input/Output Procedure, 296, 299

last, 351

layout, 210, 293

opening, 283

Random access, 250

Read statement, 254–258, 270, 273, 314, 351

Relative file, 282

reports, 338

restricting, 292

retrieving, 220–221, 260, 270

Rewrite statement, 228, 271–272, 281

Sequential access, 210, 219, 250

size limitations, 228

Sort statement, 299, 339

storing, 219

terminating, 210

underlining, 341

updating, 271–273

variable-length, 228

writing in files, 270–271, 292

recursion, 420, 420, 449
Redefines clause, 195
boundary violations, 193

Initialize statement, 191

tables, 189–193

reducing source code, 142, 150, 152–153
reference modification, 103–104
arithmetic expressions, 104

elementary-level items, 104

fields, 103–104, 109

statements, 103

target fields, 112, 117

referencing
called programs, 418–420

elements, 189

index values, 200

Sequential files, 219

reinitializing programs, 421
rejecting transaction data, 314
Relative file, 129
accessing, 275–282, 284

creating, 277

Dynamic access, 279

field size, 275

opening, 284

positioning, 279

processing loop, 278

reading, 279

records, 283

adding, 280

creating, 281

deleting, 280

end-of-file, 282

Select statement, 275, 279

Sequential access, 275

storing, 275

Release statement, 292
Rem Intrinsic Function, 379, 392
removing programs, 421
Renames clause, 40

Replacing clause, 99
characters, 101–102

Initialize statement, 100

Report Section (Data Division), 26
reports
control break programs, 363–364

blank lines, 349

checking order, 356

layout, 344

dates, 337–338, 350–352

dealer totals, 359

Declaratives statement, 353

designing, 328–330, 338–339

detail records, 335–336

end-of-file, 353

File Status values, 335

first, 351

fonts, 338

formats, 354

grand totals, 360

headings, 335–337, 352, 362–363

hierarchy, 345

Initialize statement, 351

last, 351

layout, 328

master files, 347

maximum line count, 360–362

multiple records, 338

name formatting, 337

opening, 334–335

Output Procedure, 296

printing, 331–334

Random access, 347

requirements, 332–333

save fields, 339, 351

Sort statement, 339, 345–348, 353–354

String statement, 350

subtotals, 344–346, 357

syntax errors, 31

time, 337–338, 352

total lines, 350

transaction date, 358

underlining, 339

Write statement, 330–331

Required clause, 23, 64–65, 67, 78
reserved words, 28
resetting
numeric fields, 119

subtotal values, 346, 357

restricting records, 292
retrieving
command-line arguments, 96

Indexed files, 233

records, 220–221, 250, 260

Sequential access, 250, 270

see also Read statement

returning data, 410
Reverse Intrinsic Function, 400
Reverse-Video clause, 66
Rewrite statement, 281
File Status values, 225

records, 228

Sequential access, 225, 271–272

Rounded phrase, 86
rounding, 89

S
save fields (reports)

Initialize statement, 351

subtotal values, 357

saving
COBOL sp2 panels, 33, 77, 436

reports to files, 314, 339

storage space, 44

scope terminators
End-Compute, 89

End-Evaluate, 144

End-If, 184

End-Read, 257

End-Return, 298

End-Search, 197

End-Unstring, 118

screens
background/foreground toggle, 66

brightening, 66

clearing, 64, 265

color, 64, 76

definition, 79, 105

Accept statement, 69–70

alert sounds, 66

blinking, 66

cursor, 70

erasing, 66

fields, 76, 79

literals, 63, 65–66, 79

underlining, 66

dimming, 66

displaying, 69, 263, 265

editor, 76

input, 261

user interface, 27, 65

Screen Section (Data Division), 26–27, 63, 70, 307
clauses, 65–66

coding, 77–79

cursor, 70

data

displaying, 63

preserving, 63

Justified Right clause, 68

screen literals, 65

designing, 72

example, 74–76

fields, 73, 78

literals, 63

multiple, 79

Special-Names, 71–72

statements

accept, 63

attributes, 64

display, 63

SD (Sort Description), 286

Search All statement, 205
And clause, 199

binary search, 198

When clause, 198–199

Search statement
End-Search explicit scope terminator, 197

Indexed By clause, 195–198

multidimensional, 200–203

speed, 205

tables, 205

Varying clause, 197

seconds, converting to conventional date and time, 380
Section (Procedure Division), 82
Section headers (Procedure Division), 27–28

Declaratives, 245

Go To statement, 163–169

headers, 157–159

Paragraph title, 157–158, 169

Perform statement, 157

Secure clause, 64–65, 67
Select statement

Alternate Key, 234

Assign clause, 212

COBOL sp2 panels, 441

Duplicate Key, 234

File Status clause, 212

Indexed files, 233–235, 258

Optional clause, 229

Primary Key, 233

Random access, 256

Relative file, 275, 279

Sequential files, 211

storing, 234

selection objects/subjects
Evaluate statement, 143, 145, 147

multiple, 147–148

Other clause, 148

executing, 148–149

multiple, 147–148

Other clause, 148

rearranging, 153

sentences, 82
sequence, 145

stacking, 146, 154

True, 145

When, 143

separating fields, 118–121
Sequential access, 234, 270

adding, 219–220

At End condition, 251

Close statement, 215

creating, 215–217

Depending On statement, 228

delimiters, 211

errors, 216

end-of-file condition, 222

File Description (FD) statement, 213

File Status values, 215–217, 219, 225

filenames, 216

I-O (Open in Input mode), 214, 221

Indexed files, 234–239, 247, 250, 283

Line Sequential, 210–211, 225–230, 314–320

Occurs statement, 228

Open for Input/Output/Extend, 214–215, 219, 225, 238

Read statement, 222, 237

Record Sequential, 210–211

records, 250–253, 270

description, 213

identifiers, 216

referencing, 219

retrieving, 220–221

size limitations, 228

storing, 219

variable-length, 228

Relative file, 275, 284

Rewrite statement, 225, 272

Select statement, 145, 211

Start statement, 254–256

tables, 211

update procedure, 313, 326

Write statement, 210, 216–217

Set conditional statement, 136
conditions, 137

to false, 137

fields, 98–99

index values, 196

Sign clause, 64, 67
Sign Separate clause, 43
signed fields

subtract statement, 87

numeric, 43–44

Sin Intrinsic Function, 390–391
single characters

converting, 103

Inspect statement, 108

sizing
data items, 190

fonts, 338

records in Sequential files, 228

slash (/), 49, 51
software requirements

Fujitsu compiler, 13

Sort Description (SD), 286
Sort statement, 287

Ascending field, 290

control breaks, 345–348, 353–354

data, 292

dates, 348–350

Descending field, 290

duplication, 300

executing, 301

files, 286–291

Giving clause, 287, 290

Indexed files, 290–292

Input/Output Procedure, 287, 291, 293–299

records, 298, 339

restricting, 292

sequence, 299

speed, 295

Using clause, 287

Sort Work File, 346
deleting, 300

Fujitsu COBOL, 286

records, 299

sorting, 301

writing, 292

source code, 8, 118
characters, 119

delimiters, 118

free-form, 23

reducing, 142, 150, 152–153

separating, 119, 121

storing, 29–30

subprograms, 424–425

Source-Computer paragraph (Configuration section), 24
sp2 program, 437–438
spaces

delimiters, 114

moving, 98

source fields, 118

using as delimiters, 120

Spaces value (literals), 47
special names in command lines, 108
Special-Names Paragraph, 25, 70, 162

Accept statement, 97

Crt Status, 71–72

cursor, 70–71

function keys, 70

statements, 72

speed
Sort statement, 295

tables, 205

Sqrt Intrinsic Function, 392
square root of argument, 392
stacking selection objects, 146, 154
Standard-Deviation Intrinsic Function, 394
standards

improvements, 449–450

industry, 11–12

Start statement

Alternate Key field, 255

beginning-of-file, 255

Dynamic access, 259, 264

File Status values, 254

Indexed files, 259, 264

Invalid Key clause, 254

Key fields, 265–266

Search statement, 196

Sequential access, 254–256

String statement, 117

Unstring statement operations, 120–121

statements
add, 83–86, 93

case sensitivity, 24

complex, 132–135

compute, 89–90, 93

conditional, 126

delimiters, 118

divide, 88–89

entering, 32

executing, 128, 132, 145, 175

fields, 87, 122

format, 88–89, 143

multiple, 87–88, 139

phrases, 126

reference modification, 103

starting, 117, 120–121

subtract, 86–87

terminating, 84

see also specific statements

static Call statement, 421–423, 426
statistical functions

Max, 393

Mean, 393

Median, 394

Midrange, 393

Min, 393

Ord-Max, 393

Ord-Min, 393

Range, 394

Standard-Deviation, 394

Sum, 394

Variance, 394

Stop Run statement, 29, 166
Perform statement, 159

subprograms, 412

storing
bytes, 44

data items, 85

Indexed files, 234

numeric fields, 45

records, 219

Relative Key clause, 275

source code, 29–30

string functions
Char, 399

Length, 398

Lower-Case, 400

Max, 399

Min, 399

Numval, 402

Numval-C, 402

Ord, 400

Ord-Max, 399

Ord-Min, 399

Output-Field, 400

Random, 397

Revers, 400

Upper-Case, 400

String statement
clearing, 122

control breaks, 350

delimiters, 114–116

space, 114

fields, 115, 118–121

multiple, 122

group-level data items, 112

Pointer clause, 117

formatting data, 117

initializing, 113

overflowing, 113–114

reference modification, 112, 117

starting, 117

target fields, 112

structured programming, 12, 20
called programs, 410–415
subprograms, 410–414

Call statement, 417

Call By Reference, 420–421

date validation, 418–420

editing, 412

Exit Program statement, 412

Is Initial clause, 416

Linkage Section, 418

main programs, 415

projects, 416

source code, 424–425

Stop Run statement, 412

subscripts, tables, 187
subtotals (reports)

Add with Corresponding statement, 357

control break programs, 344–346, 351

dealer, 345

errors, 357

grand, 345

resetting values, 357

save fields, 357

transaction date totals, 345

subtract statement, 86–87
Sum Intrinsic Function, 394
symbolic filenames, 212
syntax errors, 38

in compilers, 33

reporting, 31

T
tables, 187

assigning values, 189

binary search, 198

boundary violations, 193, 204–205

creating, 203–204

data items, 191–192

defining, 188

editing, 196

elements, 189, 195

Group Level elementary items, 188

incrementing, 197

index values, 195–198, 200

initializing, 197

loading, 189–193, 195, 211

lookups, 193–195

multidimensional, 200–204

numeric data items, 189, 195

occurrences, 203

Redefine clause, 191–192

referencing, 200

Search statement, 195–198, 200–203, 205

speed, 205

subscripts, 187, 189

values, 399

variable-length, 395, 399

Tallying clause, 102, 119, 123
Tangent Intrinsic Function, 390–391
target fields

clearing, 122

initializing, 113, 118

overflowing, 113–114, 120

reference modification, 112, 117

terminating
Accept, 70

If conditional statements, 128

Line Sequential files, 210

Perform statement, 169, 172

processing loops, 445

programs, 29, 107

records, 210

statements, 84

update procedures, 317

TEST compiler option, debugging screen, 185
testing

conditions, 127, 136, 139

Evaluate statement, 150

numeric fields, 129

Perform statement, 173

values, 129–130

text display
COBOL sp2

Input, 235–237

panels, 430

text mode user interface, 63
Then phrase, 129
Thru clause, 158
time

converting from seconds, 380

current, 380

GMT, 380–382

headings, 352

local, 380–382

printing, 337–338

titles in COBOL sp2 panels, 429, 441
To clause, 69–70, 79
total lines (control breaks), 350
transaction data (reports)

capturing, 306–309

control break programs, 345–348

end-of-file field, 323

errors, 309

File Status values, 317, 323

keys, 314

Open with Extend, 308

printing, 358

processing loop, 324

reading, 318

rejecting, 314

saving, 314

updating, 321

validation, 310–313, 326

trigonometric functions
Arccosine, 390–391

Arcsin, 390–391

Arctangent, 390–391

Cosine, 390

Sin, 390–391

Tangent, 390–391

troubleshooting
compilers, 36–37

debugging screen, 185

field length, 84

true conditions, 145
Evaluate statement, 143–144

executing, 128

If statements, 126, 128

truncating, 68, 90–91
tutorials for programming courses, 127
two-digit dates, 368

U
unaligned numeric fields, 49
unconditional branch, 163
Underline clause, 67

records, 341

reports, 339

screens, 66

unedited numeric fields, 48
unequal conditional statements, 128
UNIX

compatibilty, 63

Line Sequential files, 210

user interface, 63

Unstring statement, 118, 138
Count In clause, 119–120

Delimiter In clause, 118, 120

fields, 119, 123

initializing, 118

multiple, 119

name entries, 137–138

On Overflow clause, 120

Pointer clause, 123

positioning, 121

spaces, 118

source fields, 118

separating, 121

starting, 120–121

Tallying In clause, 123

target fields, 119–120

Until clause, 162, 172
update items, 70
update procedures

I-O mode, 221

Indexed files, 233, 283

Line Sequential files, 225–228

master, 320–325

Process-Files Paragraph, 318

Random, 313, 326

records, 271–273

Sequence, 313–320, 326

terminating, 317

transaction data, 321

see also Write statement

Upon clause, 28
Upper-Case Intrinsic Function, 400
Usage clause, 44, 64, 67

numeric fields, 44–46

storage of bytes, 44

values, 44–45

user interface
add-on tools, 61

ANSI COBOL standard, 62

compilers, 62

Indexed files, 239–244

Screen_Section, 27, 63, 65

text mode, 63

see also GUI

Using clause, 70, 79, 287, 417
utilities, debugging, 181–183

V
Validate statement, 449

data subprograms, 416–417

dates, 376–382

days, 376

errors, 379

fields, 310, 312, 376

Fujitsu compiler installation, 15–19

integers, 377

leap years, 376, 378

months, 376

ranges, 377

records, 232

subprograms, 418–420

transaction data, 310–313, 326

Value clause
accept statement, 71–72

alphanumeric fields, 46

characters, 103

data items, 144–145

dates, 376

Evaluate statement, 141–143, 154

fields, 98–99, 376

greater than, 130

group-level items, 52

incrementing, 172–173

less than, 129–130

literals, 47–48

leading digits, 42

numeric fields, 42

ranges, 129, 136

subtotals, 346, 357

tables, 399

testing, 154

Usage clause, 44–45

variable-length records in Sequential files, 228, 399
creating, 203–204

multidimensional, 204

variables, 137
Variance Intrinsic Function, 394
Varying clause, 197

initializing values, 184

Perform statement, 172–173

verbs, see statements
versions of COBOL, 449
Visual Basic, 428

Visual C++, 428
VMS COBOL compiler, 71

W
walk through (programs), 346–363
Web sites, 429
weekdays, 374–375
When clause, 143, 145, 152–153
When-Compiled Intrinsic Function, 403–404
Windows 3.1

debugging utility, 181–182

Fujitsu compilers, 14–15, 17

Matchcase of Keyword check box, 32

With Test After clause, 173–174
Working Storage Section (Data Division), 26–27, 55

Read statement, 222

records, 219

tables, 189, 195

Write statement, 270–271
files, 270–271

buffers, 219

Status values, 219, 238

Indexed files errors, 244

Invalid Key errors, 244–245

opened I-O, 225

printers, 340

records

adding, 219

identifiers, 216

reports, 330–331

Sequential, 210, 216–217

Sort Work File, 292
see also creating; updating

X-Y-Z
Y2K (Year 2000), 368
zero (0)

alphanumeric fields, 98

division, 89

insertion, 51

moving, 98

numeric fields, 49, 98

suppression (Z), 49–50

Zeros value (literals), 47

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.

All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is

prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/0672314533/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

