
•ThebasicsofCOBOLanditscontrolstructures
•Howtodeclareandmanipulatedata,includingtabulardata
•Howtohandlesequential,indexed,andrelativefiles
•HowtoSORTdataanduseInputandOutputprocedures
•HowtoSEARCHtabulardata
•Howtousecontainedandexternalsubprogramstocreatemodularprograms
•HowtousetheCOBOLReportWriter
•HowtowriteISO2002object-orientedCOBOLprograms

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ... xxi

About the Technical Reviewer ... xxiii

Acknowledgments .. xxv

Preface ... xxvii

Chapter 1: Introduction to COBOL ■ ..1

Chapter 2: COBOL Foundation ■ ..17

Chapter 3: Data Declaration in COBOL ■ ...37

Chapter 4: Procedure Division Basics ■ ...55

Chapter 5: Control Structures: Selection ■ ...73

Chapter 6: Control Structures: Iteration ■ ..109

Chapter 7: Introduction to Sequential Files ■ ...131

Chapter 8: Advanced Sequential Files ■ ...157

Chapter 9: Edited Pictures ■ ...181

Chapter 10: Processing Sequential Files ■ ...205

Chapter 11: Creating Tabular Data ■ ..247

Chapter 12: Advanced Data Declaration ■ ..273

Chapter 13: Searching Tabular Data ■ ..303

Chapter 14: Sorting and Merging ■ ..327

Chapter 15: String Manipulation ■ ...361

■ CONTENTS AT A GLANCE

vi

Chapter 16: Creating Large Systems ■ ...399

Chapter 17: Direct Access Files ■ ...435

Chapter 18: The COBOL Report Writer ■ ...477

Chapter 19: OO-COBOL ■ ...519

Index ...547

1

CHAPTER 1

Introduction to COBOL

When, in 1975, Edsger Dijkstra made his comment that “The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence,1” he gave voice to, and solidified, the opposition to COBOL in academia.
That opposition has resulted in fewer and fewer academic institutions teaching COBOL so that now it has become
difficult to find young programmers to replace the aging COBOL workforce.2-3 This scarcity is leading to an impending
COBOL crisis. Despite Dijkstra’s comments and the claims regarding COBOL’s imminent death, COBOL remains
a dominant force in the world of enterprise computing, and attempts to replace legacy COBOL systems have been
shown to be difficult, dangerous, and expensive.

In this chapter, I discuss some of the reasons for COBOL’s longevity. You’re introduced to the notion of an
application domain and shown the suitability of COBOL for its target domain. COBOL is one of the oldest computer
languages, and the chapter gives a brief history of the language and its four official versions. Later, the chapter presents
the evidence for COBOL’s dominance in enterprise computing and discusses the enigma of its relatively low profile.

An obvious solution to the scarcity of COBOL programmers is to replace COBOL with a more fashionable
programming language. This chapter exposes the problems with this approach and reveals the benefits of retaining,
renovating, and migrating the COBOL code.

Finally, I discuss why learning COBOL and having COBOL on your résumé could be useful additions to your
armory in an increasingly competitive job market.

What Is COBOL?
COBOL is a high-level programming language like C, C#, Java, Pascal, or BASIC, but it is one with a particular focus
and a long history.

COBOL’s Target Application Domain
The name COBOL is an acronym that stands for Common Business Oriented Language, and this expanded acronym
clearly indicates the target domain of the language. Whereas most other high-level programming languages are
general-purpose, domain-independent languages, COBOL is focused on business, or enterprise, computing. You
would not use COBOL to write a computer game or a compiler or an operating system. With no low-level access, no
dynamic memory allocation, and no recursion, COBOL does not have the constructs that facilitate the creation of
these kinds of program. This is one of the reasons most universities do not teach COBOL. Because it cannot be used
to create data structures such as linked lists, queues, or stacks or to develop algorithms like Quicksort, some other
programming language has to be taught to allow instruction in these computer science concepts. The curriculum is so
crowded nowadays that there is often no room to introduce two programming languages, especially when one of them
seems to offer little educational benefit.

CHAPTER 1 ■ INTRODUCTION TO COBOL

2

Although COBOL’s design may preclude it from being used as a general-purpose programming language, it is
well suited for developing long-lived, data-oriented business applications. COBOL’s forte is the processing of data
transactions, especially those involving money, and this focus puts it at the heart of the mission-critical systems
that run the world. COBOL is found in insurance systems, banking systems, finance systems, stock dealing systems,
government systems, military systems, telephony systems, hospital systems, airline systems, traffic systems, and
many, many others. It may be only a slight exaggeration to say that the world runs on COBOL.

COBOL’s Fitness for Its Application Domain
What does it mean to say that a language is well suited for developing business applications? What are the
requirements of a language working in the business applications domain? In a series of articles on the topic, Professor
Robert Glass4-7 concludes that such a programming language should exhibit the following characteristics:

• It should be able to declare and manipulate heterogeneous data. Unlike other application
domains, which mainly manipulate floating-point or integer numbers, business data is a
heterogeneous mix of fixed and variable-length character strings as well as integer, cardinal,
and decimal numbers.

• It should be able to declare and manipulate decimal data as a native data type. In accounting,
bank, taxation, and other financial applications, there is a requirement that computed
calculations produce exactly the same result as those produced by manual calculations. The
floating-point calculations commonly used in other application domains often contain minute
rounding errors, which, taken over millions of calculations, give rise to serious accounting
discrepancies.

Note ■ The requirement for decimal data, and the problems caused by using floating-point numbers to represent

money values, is explored more fully later in this book.

• It should have the capability to conveniently generate reports and create a GUI. Just as
calculating money values correctly is important for a business application, so is outputting
the results in the format normally used for such business output. GUI screens, with their
interactive charts and graphs, although a welcome addition to business applications, have not
entirely eliminated the need for traditional reports consisting of column headings, columns of
figures, and a hierarchy of subtotals, totals, and final totals.

• It should be able to access and manipulate record-oriented data masses such as files and
databases. An important characteristic of a business application programming language is
that it should have an external, rather than internal, focus. It should concentrate on processing
data held externally in files and databases rather than on manipulating data in memory
through linked lists, trees, stacks, and other sophisticated data structures.

In an analysis of several programming languages with regard to these characteristics, Professor Glass6 finds that
COBOL is either strong or adequate in all four of these characteristics, whereas the more fashionable domain-independent
languages like Visual Basic, Java, and C++ are not. This finding is hardly a great surprise. With the exception of GUIs and
databases, these characteristics were designed into COBOL from the outset.

Advocates of domain-independent languages claim that the inadequacies of such a language for a particular
application domain can be overcome by the use of function or class libraries. This is partly true. But programs written
using bolted-on capabilities are never quite as readable, understandable, or maintainable as programs where these
capabilities are an intrinsic part of the base language. As an illustration of this, consider the following two programs:
one program is written in COBOL (Listing 1-1), and the other is written in Java (Listing 1-2).

CHAPTER 1 ■ INTRODUCTION TO COBOL

3

Listing 1-1. COBOL Version

IDENTIFICATION DIVISION.
PROGRAM-ID. SalesTax.
WORKING-STORAGE SECTION.
01 beforeTax PIC 999V99 VALUE 123.45.
01 salesTaxRate PIC V999 VALUE .065.
01 afterTax PIC 999.99.
PROCEDURE DIVISION.
Begin.
 COMPUTE afterTax ROUNDED = beforeTax + (beforeTax * salesTaxRate)
 DISPLAY "After tax amount is " afterTax.

Listing 1-2. Java Version (from http://caliberdt.com/tips/May03_Java_BigDecimal_Class.htm)

import java.math.BigDecimal;
public class SalesTaxWithBigDecimal
{
 public static void main(java.lang.String[] args)
 {
 BigDecimal beforeTax = BigDecimal.valueOf(12345, 2);
 BigDecimal salesTaxRate = BigDecimal.valueOf(65, 3);
 BigDecimal ratePlusOne = salesTaxRate.add(BigDecimal.valueOf(1));
 BigDecimal afterTax = beforeTax.multiply(ratePlusOne);
 afterTax = afterTax.setScale(2, BigDecimal.ROUND_HALF_UP);
 System.out.println("After tax amount is " + afterTax);
 }
}

The programs do the same job. The COBOL program uses native decimal data, and the Java program creates
data-items using the bolted-on BigDecimal class (itself an acknowledgement of the importance of decimal data for
this application domain). The programs are presented without explanation (we’ll revisit them in Chapter 12; and, if
you need it, you can find an explanation there). I hope that, in the course of trying to discover what the programs do,
you can agree that the COBOL version is easier to understand—even though you do not, at present, know any COBOL
but are probably at least somewhat familiar with syntactic elements of the Java program.

History of COBOL
Detailed histories of COBOL are available elsewhere. The purpose of this section is to give you some understanding
of the foundations of COBOL, to introduce some of the major players, and to briefly describe the development of the
language through the various COBOL standards.

Beginnings
The history of COBOL starts in April 1959 with a meeting involving computer people, academics, users, and
manufacturers to discuss the creation of a common, problem-oriented, machine-independent language specifically
designed to address the needs of business8. The US Department of Defense was persuaded to sponsor and organize
the project. A number of existing languages influenced the design of COBOL. The most significant of these were
AIMACO (US Air Force designed), FLOW-MATIC (developed under Rear Admiral Grace Hopper) and COMTRAN
(IBM’s COMmercial TRANslator).

http://caliberdt.com/tips/May03_Java_BigDecimal_Class.htm

CHAPTER 1 ■ INTRODUCTION TO COBOL

4

The first definition of COBOL was produced by the Conference on Data Systems Languages (CODASYL)
Committee in 1960. Two of the manufacturer members of the CODASYL Committee, RCA and Remington-Rand-Univac,
raced to produce the first COBOL compiler. On December 6 and 7, 1960, the same COBOL program (with minor changes)
ran on both the RCA and Remington-Rand-Univac computers.8

After the initial definition of the language by the CODASYL Committee, responsibility for developing new
COBOL standards was assumed by the American National Standards Institute (ANSI), which produced the next three
standards: American National Standard (ANS) 68, ANS 74, and ANS 85. Responsibility for developing new COBOL
standards has now been assumed by the International Standards Organization (ISO). ISO 2002, the first COBOL
standard produced by this body, defines the object-oriented version of COBOL.

COBOL Standards
Four standards for COBOL have been produced, in 1968, 1974, 1985, and 2002. As just mentioned, the most recent
standard (ISO 2002) introduced object orientation to COBOL. This book mainly adheres to the ANS 85 standard;
but where this standard departs from previous standards, or where there is an improvement made in the ISO 2002
standard, a note is provided.

The final chapter of the book previews ISO 2002 COBOL. In that chapter, I discuss why object orientation is
desirable and what new language elements make it possible to create object-oriented COBOL programs.

COBOL ANS 68

The 1968 standard resolved incompatibilities between the different COBOL versions that had been introduced
by various producers of COBOL compilers since the language’s creation in 1960. This standard reemphasized the
common part of the COBOL acronym. The idea, contained in the 1960 language definition, was that the language
would be the same across a range of machines.

COBOL ANS 74 (External Subprograms)

The major development of the 1974 standard was the introduction of the CALL verb and external subprograms.
Before ANS 74 COBOL, there was no real way to partition a program into separate parts, and this resulted in the huge
monolithic programs that have given COBOL such a bad reputation. In these programs, which could be many tens of
thousands of lines long, there was no modularization, no functional partitioning, and totally unrestricted access to
any variable in the Data Division (more on divisions in Chapter 2).

COBOL ANS 85 (Structured Programming Constructs)

The 1985 standard introduced structured programming to COBOL. The most notable features were the introduction
of explicit scope delimiters such as END-IF and END-READ, and contained subprograms. In previous versions of COBOL,
the period (full stop) was used to delimit scope. Periods had a visibility problem that, taken along with the fact that
they delimited all open scopes, was the cause of many program bugs. Contained subprograms allowed something
approaching procedures to be used in COBOL programs for the first time.

COBOL ANS 2002 (OO Constructs)

Object orientation was introduced to COBOL in the ISO 2002 standard. Whereas previous additions had significantly
increased the huge COBOL reserved word list, object orientation was introduced with very few additions.

CHAPTER 1 ■ INTRODUCTION TO COBOL

5

The Argument for COBOL (Why COBOL?)
As you’ve seen, COBOL is a language with a 50-year history. Many people regard it as a language that has passed its
sell-by date—an obsolete language with no relevance to the modern world. In the succeeding pages, I show why,
despite its age, programmers should take the time to learn COBOL.

Dominance of COBOL in Enterprise Computing
One reason for learning COBOL is its importance in enterprise computing. Although the death of COBOL has been
predicted time and time again, COBOL remains a dominant force at the heart of enterprise computing. In 1997, the
Gartner group published a widely reported estimate that of the 300 billion lines of code in the world, 240 billion
(80%) were written in COBOL.9 Around the same time, Capers Jones10 identified COBOL as the major programming
language in the United States, with a software portfolio of 12 million applications and 605 million function points.
To put this in perspective, in the same study he estimated that the combined total for C and C++ was 4 million
software applications and 261 million points. According to Jones, each function point requires about 107 lines of
COBOL; so, in 1996, the software inventory for the United States contained about 64 billion lines of COBOL code.
Extrapolating for the world, the Gartner estimate does not seem outside the realms of possibility.

Of course, the 1990s were a long time ago, and in 1996/97, Java had just been created. You might have expected
that as Java came to the fore, COBOL would be eclipsed. This did not happen to any significant extent. Much
new development has been done in Java, but the existing inventory of COBOL applications has largely remained
unaffected. In an OVUM report in 2005,11 Gary Barnett noted, “Cobol remains the most widely deployed programming
language in big business, accounting for 75% of all computer transactions” and “90% of all financial transactions.”
In that report, Barnett estimated that there “are over 200 billion lines of COBOL in production today, and this number
continues to grow by between three and five percent a year.”

Even today, COBOL’s position in the domain of business computing does not seem to be greatly eroded. In a
survey of 357 IT professionals undertaken by ComputerWorld in 2012,2, 12 54% of respondents said that more than
half of all their internal business application code was written in COBOL. When asked to quantify the extent to which
languages were used in their organization, 48% said COBOL was used frequently, while only 39% said the same of
Java. And as the 2005 OVUM report11 predicted, new COBOL development is still occurring; 53% of responders said
that COBOL was still being used for new development in their organization. Asked to quantify what proportion of new
code was written in COBOL 27% said that it was used for more than half of their new development.

Although only tangentially relevant to the issue of COBOL’s importance in business computing, one other item of
interest came out of the ComputerWorld survey.2, 12 Responders were asked to compare Visual Basic, C#, C++, and Java
to COBOL for characteristics such as batch processing, transaction processing, handling of business-oriented features,
runtime efficiency, security, reporting, development cost, maintenance cost, availability of programmers, and agility.
In every instance except the last two, COBOL scored higher than its more recent counterparts.

Finally, in a May 2013 press release, IBM noted that nearly 15% of all new enterprise application functionality is
written in COBOL and that there are more than “200 billion lines of COBOL code being used.13”

Danger, Difficulty, and Expense of Replacing Legacy COBOL Applications
The custodians of legacy systems come under a lot of pressure to replace their legacy COBOL code with a more
modern alternative. The high cost of maintenance, obsolete hardware, obsolete software, the scarcity of COBOL
programmers, the need to integrate with newer software and hardware technologies, the relentless hype surrounding
more modern languages—these are all pressures that drive legacy system modernization in general and language
replacement in particular. How is it then that the COBOL software inventory seems largely unchanged?

When a legacy system is considered for modernization, a number of alternatives might be considered:

Replacement with a commercial off-the-shelf (COTS) package•

Complete rewrite•

CHAPTER 1 ■ INTRODUCTION TO COBOL

6

Automatic language conversion•

Wrapping the legacy system to present a more modern interface•

Code renovation•

Migration to commodity hardware and software•

The problem is, experience shows that most modernization attempts that involve replacing the COBOL code fail.
Some organizations have spent millions of dollars in repeated attempts to replace their COBOL legacy systems, only to
have each attempt fail spectacularly.

Replacement with a COTS Package

Replacement is much harder than it seems. Many legacy COBOL systems implement functionality such as payroll,
stock control, and accounting that today would be done by a COTS system. Replacing such a legacy system with a
standard COTS package might seem like an attractive option, and in some cases it might be successful; but in many
legacy systems, so many proprietary extensions have been added to the standard functionality that replacement is no
longer a viable option. Attempting to replace such a legacy system with a COTS package will fail—either completely,
causing the replacement attempt to be abandoned; or partially, leading to cost and time overruns and failures in
functionality fit.

I know of one instance where a university attempted to replace a COBOL-based Student Record System with a
bought-in package as a solution to the Y2K problem. Around September 1999, the school realized that, due to
database migration difficulties, the package solution would not be ready in time for the millennium changeover.
A successful Y2K remediation of the existing COBOL legacy system was then done, and this bought sufficient time
for the new package to be brought on line. Even then, the package only implemented about 80% of the functionality
formerly provided by the legacy system.

Complete Rewrite

A complete rewrite in another language is often seen as a viable modernization option. Again, in a restricted set of
circumstances, this might be the case. When the documentation created for original legacy system is still available,
there is no reason the rewritten replacement should not be as successful as the original. Unfortunately, this happy
circumstance is not the case with most legacy systems.

These systems often represent the first parts of the organization to be computerized. They embody the core
functionality of the organization; its mission-critical operations; its beating heart. When these systems were created,
they replaced the existing manual systems. In the intervening years, the requirements, system architecture, and other
documentation have long since been lost. The people who operated the manual system and knew how it worked have
either retired or moved on. The rewrite cannot be treated as a greenfield site would be treated, where the requirements
could be elicited from stakeholders. For all sorts of legal, customer, and employee reasons, the functionality of the new
system must match that of the old. The only source of information about how the system works is embedded in the
COBOL code itself. Extracting the business rules from existing legacy code, in order to specify the requirements of the
new system, is a very difficult task. The failure rates for most legacy system rewrites are very high.

Automatic Language Conversion

Automatic language conversion is often touted as a solution to the lack of architectural and functional documentation
in legacy systems. You don’t have to know how the system works, goes the mantra; you can just automatically convert
it into a more modern language. But converting legacy COBOL code is a much more difficult task than people
realize.14 Even if the functionality can be reproduced (and this is highly problematic),3 the resulting code is likely to
be an unmaintainable, unreadable mess. It is likely to consist of many more lines of code than the original15 and

CHAPTER 1 ■ INTRODUCTION TO COBOL

7

to retain the idiom or flavor of COBOL. Although such converted software may be written in the syntax of the target
language, it will not look like any kind of a program that a programmer in that language would normally produce.
Such automatically produced programs14 will be so foreign to those who have to maintain them that they are likely to
be received with some hostility.

Some organizations advertise their ability to convert legacy COBOL to another language. This is a given; the
questions are: how faithful is the conversion and how maintainable is the converted code? Few if any case studies
(where they exist at all) mentioned by these organizations address the maintainability problems that may be expected
of code produced by automatic language conversion. Although such conversions may alleviate the shortage of COBOL
programmers, they probably cause an increase in maintenance costs. It is doubtful if any of these conversions can be
deemed a success.

Approaches to legacy system modernization that involve replacing the COBOL code have not been very
successful. They either fail completely and have to be abandoned, fail in terms of cost and deadline overruns, or fail in
terms of not delivering on maintainability promises.

Wrapping the Legacy System

Most successful modernization efforts retain the COBOL code. Wrapping the legacy code solves interfacing problems
but does not address the cost of maintenance, or hardware or software obsolescence problems. On the other hand,
it is cheap, it is safe, and it provides an obvious, and immediate, return on investment (ROI).

Code Renovation

Code renovation addresses the cost-of-maintenance problem but none of the others. It is safe and has very good tool
support from both COBOL vendors and third parties, but it does not provide an obvious ROI.

Migration to Commodity Hardware and Software

Migration involves moving the legacy COBOL code to modern commodity hardware and software. This approach
has some risks, because the COBOL code may have to be changed to accommodate the new hardware and software.
However, there is significant tool support to assist migration, and this greatly mitigates the risk of failure. Many case
studies point to the success of the migration approach, as borne out by a 2010 report from the Standish Group.16 This
report found that migration and enhancement “stands out as having the highest chance of success and the lowest
chance of failure” with the new software development project “six times more likely” and the package replacement
project “twice as likely” to fail as migration and enhancement.

Migration solves many of the problems with legacy systems. Obsolescence is addressed by moving to more
modern hardware and software. General costs are addressed through the elimination of licensing fees and other costs
(in one case study, replacing printed reports with online versions saved $22,000 per year).17-18 Maintenance costs
are often also addressed because code renovation usually precedes a migration. However, interfacing with modern
technologies might still be a problem, and there remains the problem of the scarcity of COBOL programmers.

Shortage of COBOL Programmers: Crisis and Opportunity
A major issue that prompts companies to attempt replacement of their legacy COBOL with some other alternative
is the perceived scarcity of COBOL programmers. Harry Sneed states this baldly: “The reason for this conversion is
that there are no COBOL programmers available. Otherwise the whole system could have been left in COBOL.3”
He comments that COBOL “is no longer taught in the technical high schools and universities. Therefore, it is very
difficult to recruit COBOL programmers. In Austria it is almost impossible to find programmers with knowledge of
COBOL. Those few that are left are all close to retirement.” Because of their seniority, they are also more expensive
than cheap, young Java programmers.

CHAPTER 1 ■ INTRODUCTION TO COBOL

8

However, the problem is not that there are no COBOL programmers. Capers Jones estimated that there were
550,000 COBOL programmers in the United States to deal with the Y2K problem.10 Even now, Scott Searle of IBM
estimates that the current worldwide population of COBOL programmers is about two million programmers, with
about 50,000 of these in India.19 The real problem is that most of the population of COBOL programmers are nearing
retirement age. This is a crisis in the making. As already discussed, it is dangerous and expensive to attempt to replace
COBOL legacy systems; but when these COBOL programmers retire, who will maintain the legacy systems?

Legacy system stakeholders are gradually waking up to the problem. Since 2008, there has been a gradual
increase in awareness of the need to do something about it. COBOL vendors have encouraged academic training of
a new crop of COBOL developers. Micro Focus does this through its Micro Focus Academic Program and Academic
Alliance programs, and an IBM initiative in this area has resulted in COBOL being taught in 400 colleges and
universities around the world.19 In addition, the training companies and in-house training groups that traditionally
were the main source of COBOL developers are once more starting to take up the strain. For example, the US Postal
Service will start its own COBOL training program as its COBOL programmers retire,20 and the Social Security
Administration (SSA)20 in the United States is going the same route. Manta Technologies is reported to be developing
a COBOL training series consisting of nine or ten courses.21 The company hopes to complete the series by the end of
2013. Some COBOL vendors like Veryant22 are also providing training courses.

Motivational speakers are often heard to say that the Chinese word for crisis is composed of two characters that
represent danger and opportunity. Although there seems to be some doubt about the veracity of this claim, there
is no doubt that in the coming years the crisis caused by the tsunami of retiring programmers represents a golden
opportunity for those who can grasp it. The number of students earning computing degrees fell sharply after the
year 2000, and this led to a programmer shortfall that has made it a seller’s market for computer skills. But student
numbers are recovering; and as the job market gets more competitive, having COBOL on your résumé may be a very
useful differentiating skill—especially if it is combined with knowledge of Java.

COBOL: The Hidden Asset
The numbers supporting the dominance of COBOL in the business application domain sound incredible. Certainly, a
lot of skepticism has been voiced about them on the Internet and elsewhere. But much of the skepticism comes from
those who have little or no knowledge of the mainframe arena, an area in which COBOL is strong, if not supreme.
You can gain an appreciation for the opposing points of view by reading Jeff Atwood’s post “COBOL: Everywhere
and nowhere” and the associated comments. His comment that “I have never, in my entire so-called ‘professional’
programming career, met anyone who was actively writing COBOL code23” is indicative of the problem programmers
often have when presented statistics regarding the importance of COBOL. Many of the comments that followed
Atwood’s post reflected that disbelief; but as one commentator remarked, “You want to see COBOL? Go look at a
company that processes payroll, or handles trucking, food delivery, or shipping. Look at companies that handle book
purchase orders or government disbursements or checking account reconciliation. There’s a huge ecosystem of code
out there that’s truly invisible to those of us who work in and around the Internet.24”

Many programmers with a conspiracy-theory bent attempt to prove the impossibility of the COBOL statistics
by pointing to the number of lines of code that could be produced by programmers in the given time frame, or by
pointing to the impossibility of maintaining the claimed number of lines with the estimated number of COBOL
programmers. There are a number of answers to these points.

One answer is that the COBOL code inventory has been hugely bulked out by fourth-generation languages
(4GLs) and other COBOL-generating software.25 4GLs were all the rage between the 1970s and 1990s, and many
produced COBOL code instead of machine code. This was done to give buyers confidence that if the 4GL vendor
failed, they would not be left high and dry. In many cases, the vendors did fail, and only the COBOL code was left. In
other cases, the programmers took to maintaining the COBOL code directly, and it is now so divorced from the 4GL
that there is no point in trying to return to the 4GL code.

Another answer is that programmer productivity seems high because many programs are simply near-copies of
existing work. In a legacy system, the enterprise data is often trapped in a variety of storage technologies, from various
kinds of database to direct access files and flat files. Nearly every user request to get at that data requires a COBOL
program to be written. But these programs are not written from scratch. A programmer creates the program by using

CHAPTER 1 ■ INTRODUCTION TO COBOL

9

the copy, paste, and amend method. The programmer simply copies a similar program, make a few changes, and
voilà: a new COBOL program and a big boost to apparent programmer productivity.

If the number of bugs found in legacy systems approached that found in newly minted systems, 2 million
programmers might find it very difficult to maintain upwards of 200 billion lines of code. The fact is, though, that unless
an environmental change or a user request forces a modification of a legacy system, not much maintenance is required.
When a system has been in production for many tens of years, only the blue-moon bugs remain. There is an old joke that
goes, “What’s the difference between computer hardware and computer software?” The answer is, “If you use hardware
long enough, it breaks. But if you use software long enough, it works.” A real-world manifestation of David Brin’s26 practice
effect, perhaps?

Note ■ Blue-moon bugs are bugs that manifest themselves only as a result of the coincidence of an unusual set of

circumstances.

A considerable amount of evidence points to the relatively bug-free status of legacy systems. For instance, when
an inventory of software systems was taken in preparation for the Y2K conversion, it was discovered that it had been
so long since some of the programs in the inventory had been modified that the source code had been lost. In the
opinion of Chris Verhoef, “about 5% of the object code lacks its source code.27”

In his paper “Migrating from COBOL to Java,15” Harry Sneed mentions that 5 COBOL programmers were
responsible for 15,486 function points of legacy COBOL whereas 25 Java developers were responsible for 13,207
function points of Java code. Although it might suit COBOL advocates to believe that COBOL developers are five times
more efficient than Java developers, a more realistic explanation is that the legacy system had settled into a largely
bug-free equilibrium while the newly minted Java code was still awash with them.

COBOL definitely has a visibility problem. The hype that surrounds some computer languages would have you
believe that most of the production business applications in the world are written in Java, C, C++, or Visual Basic and
that only a small percentage are written in COBOL. In reality, COBOL is arguably the major programming language for
business applications.

One reason for COBOL’s low profile lies in the difference between the vertical and horizontal software markets.
To use a clothing analogy, an application created for the vertical software market is like a tailored, bespoke suit,
whereas an application created for the horizontal software market is like a commodity, off-the-rack suit.

Advantages of Bespoke Software
Why should a company spend millions of dollars to create a bespoke application when it could buy a COTS package?
One reason is that because a bespoke application is specifically designed for an organization’s particular requirements,
it can be tailored to fit in exactly with the way the business or organization operates. Another reason is that it can
be customized to interface with other software the company operates, providing a fully integrated IT infrastructure
across the whole organization. Yet another reason is that because the company “owns” the software, the company has
control over it. But the primary reason for creating a bespoke application is that it can offer an enterprise a competitive
advantage over its rivals. Because a bespoke application can incorporate the business processes and business rules
that are specific to the company and that do not exist in any packaged solution, it can offer a considerable advantage
over competing companies. Owens and Minor28-29 refer to the specific business rules and processes embedded in their
bespoke applications as their “secret sauce.”

An example of the effectiveness of bespoke software is the software that first allowed an airline to offer a
frequent-flyer program (air miles). That software conferred such an advantage on the airline that competitors were
forced to catch up, and frequent-flyer programs are now almost ubiquitous.

CHAPTER 1 ■ INTRODUCTION TO COBOL

10

Characteristics of COBOL Applications
Software produced for the vertical software market has characteristics that distinguish it from the commodity software
you are probably more familiar with. This section examines some characteristics of COBOL applications that you may
find surprising.

COBOL Applications Can Be Very Large

Many COBOL applications consist of more than 1 million lines of code, and applications consisting of 6 million lines
or more are not considered unusually large in many programming shops:

In “Revitalizing modifiability of legacy assets,• 30” Niels Veerman mentions a banking company
that had “one large system of 2.6 million LOC in almost 1000 programs.”

The Irish Life Group, Ireland’s leading life and pensions company, is reported• 31 to have
completed a legacy system migration project to rehost 3 million lines of COBOL code.

A Microsoft case study reported that Simon & Schuster had a code inventory of some 5 million •
lines of COBOL code.32

The Owens and Minor case study mentioned earlier reported that “the company ran its •
business on 10 million lines of custom COBOL/CICS code.29”

In his paper “A Pilot Project for Migrating COBOL Code to Web Services,” Harry Sneed •
reported a “legacy life insurance system with more than 20 million lines of COBOL code
running under IMS on the IBM mainframe.33”

The authors of “Industrial Applications of ASF+SDF” talk about a large suite of •
mainframe-based COBOL applications that consist of 25,000 programs and 30 million lines
of code.34

An audit report by the Office of the Inspector General in 2012 noted that as of June 2010, •
the US SSA had a COBOL code inventory of “over 60 million lines of COBOL code.35”

The Bank of New York Mellon is quoted as having a software inventory of 112,500 Cobol •
programs consisting of 343 million lines of code.2

Kwiatkowski and Verhoef report a case study where “a Cobol software portfolio of a large •
organization operating in the financial sector” consisted of over “18.2 million physical lines
of code (LOC).25”

COBOL Applications Are Very Long-Lived

The huge investment in creating a software application consisting of millions of lines of COBOL code means the
application cannot simply be discarded when a new programming language or technology appears. As a consequence,
business applications between 10 and 30 years old are common, and some have been in existence for around 50 years.

A Microsoft case study on the Swedish company Stockholmshem noted that its computer system “was created
in 1963 and had been expanded over the years to include roughly 170 online Customer Information Control System
(CICS)/COBOL programs and 370 batch COBOL programs.36”

Kwiatkowski and Verhoef25 published a version log (reproduced in Figure 1-1) for a module in the software portfolio of
a large financial organization that illustrates the longevity of COBOL programs. Each line of the log is a comment that shows
a version number, the name of a programmer, and the date the software was modified. The log shows that maintenance of
this module started in 1975. Nor was this the oldest module found. That honor belonged to a program that had been written
in 1967. For some readers of this book, the software in this portfolio started life long before they were born.

CHAPTER 1 ■ INTRODUCTION TO COBOL

11

The longevity of COBOL applications can also be held largely accountable for the predominance of COBOL
programs in the Y2K problem (12,000,000 COBOL applications versus 1,400,000 C++ applications in the United States
alone).10 Many years ago, when programmers were writing these applications, they just did not anticipate that the
software would last into this millennium.

COBOL Applications Often Run in Critical Areas of Business

COBOL is used for mission-critical applications running in vital areas of the economy. Datamonitor reports that
75% of business data and 90% of financial transactions are processed in COBOL.37 The serious financial and legal
consequences that can result from an application failure is one of the reasons for the near panic over the Y2K
problem.

COBOL Applications Often Deal with Enormous Volumes of Data

COBOL’s forte is file and record processing. Single files or databases measured in terabytes are not uncommon.
The SSA system mentioned earlier, for instance, manages over 1 petabyte (1 petabyte = 1,000 terabytes = 1,000,000
gigabytes) of data,38 and “Terabytes of new data come in daily.39”

Characteristics of COBOL
Although COBOL is a high-level programming language, it is probably quite unlike any language you have ever
used. A genealogical tree of programming languages usually places COBOL by itself with no antecedents and no
descendants. Occasionally a tree might include FLOW-MATIC and COMTRAN or might show a connection to PL/I
(because that language incorporated some COBOL elements). By and large though, COBOL is unique. So even
though COBOL supports the familiar elements of a programming language such as variables, arrays, procedures,
and selection and iteration control structures, these familiar elements are implemented in an unfamiliar way. It’s like
going to a foreign country and finding that your rental car uses a stick shift and people drive on the other side of the
road: disconcerting.

This section examines some of the general characteristics of COBOL that distinguish it from languages with
which you might be more familiar.

COBOL Is Self-Documenting

The most obvious characteristic of COBOL programs is their textual, rather than mathematical, orientation. One of
the design goals for COBOL was to make it possible for non-programmers such as supervisors, managers, and users
to read and understand COBOL code. As a result, COBOL contains such English-like structural elements as verbs,

Figure 1-1. COBOL module version log. Published in “Recovering Management Information from Source Code,”
Kwiatkowski and Verhoef 25

CHAPTER 1 ■ INTRODUCTION TO COBOL

12

clauses, sentences, sections, and divisions. As it happens, this design goal was not realized. Managers and users
nowadays do not read COBOL programs. Computer programs are just too complex for most nonprofessionals to
understand them, however familiar the syntactic elements. But the design goal and its effect on COBOL syntax had
one important side effect: it made COBOL the most readable, understandable, and self-documenting programming
language in use today. It also made it the most verbose.

It is easy for programmers unused to the business programming paradigm, where programming with a view to
ease of maintenance is very important, to dismiss the advantage of COBOL’s readability. Not only does this readability
generally assist the maintenance process, but the older a program gets, the more valuable readability becomes.

When programs are new, both the in-program comments and the external documentation accurately reflect
the program code. But over time, as more and more revisions are applied to the code, it gets out of step with the
documentation until the documentation is actually a hindrance to maintenance rather than a help. The self-
documenting nature of COBOL means this problem is not as severe with COBOL as it is with other languages.

Readers who are familiar with C, C++, or Java might want to consider how difficult it becomes to maintain
programs written in these languages. C programs you wrote yourself are difficult enough to understand when you
return to them six months later. Consider how much more difficult it would be to understand a program that was
written 15 years previously, by someone else, and which had since been amended and added to by so many others
that the documentation no longer accurately reflected the program code. This is a nightmare awaiting maintenance
programmers of the future, and it is already peeking over the horizon.

COBOL Is Stable

As a computer language, COBOL evolves with near-glacial slowness. The designers of COBOL do not jump on the
bandwagon of every new, popular fad. Changes incorporating new ideas are made to the language only when the new
idea has proven itself.

Since its creation in 1960, only four COBOL standards have been produced:

• ANS 68 COBOL: Resolved incompatibilities between different COBOL versions

• ANS 74 COBOL: Introduced the CALL verb and external subprograms

• ANS 85 COBOL: Introduced structured programming and internal subprograms

• ISO 2002 COBOL: Introduced object orientation to COBOL

Enterprises running mission-critical applications are unsurprisingly suspicious of change. Many of these
organizations stay one version behind the very slow leading edge of COBOL. It is only now that the 2002 version of
COBOL has been specified that many will start to move to the 1985 standard. This is one reason this book mainly
adheres to the ANS 85 standard.

Conscious of the long life of COBOL applications, backward compatibility has been a major concern of the
ANSI COBOL Committee. Very few language elements have been dropped from the language. As a result, programs I
wrote in the 1980s for the DEC VAX using VAX COBOL compile, with little or no alteration, on the Micro Focus Visual
COBOL compiler. Java, although only created in 1995, is now on its seventh version and already has a very long list of
obsolete, deprecated, and removed features. In the years since its creation, Java has removed more language features
than COBOL has in the whole of its 50-year history.

COBOL Is Simple

COBOL is a simple language (until the most recent version, it had no pointers, no user-defined functions, and no
user-defined types). It encourages a simple, straightforward programming style. Curiously enough, though, despite
its limitations, COBOL has proven itself well suited to its target problem domain (business computing). Most COBOL
programs operate in a domain where the program complexity lies in the business rules that have to be encoded rather
than in the sophistication of the data structures or algorithms required. In cases where sophisticated algorithms are
needed, COBOL usually meets the need with an appropriate verb such as SORT or SEARCH.

CHAPTER 1 ■ INTRODUCTION TO COBOL

13

Earlier in this book, I noted that the limitations of COBOL meant it could not be used to teach computer science
concepts. And in the previous paragraph, I noted that COBOL is a simple language with a limited scope of function.
These comments pertain to versions of COBOL prior to the ANS 2002 version. With the introduction of OO COBOL,
everything has changed. OO COBOL retains all the advantages of previous versions but now includes the following:

User-defined functions•

Object orientation•

National characters (Unicode)•

Multiple currency symbols•

Cultural adaptability (locales)•

Dynamic memory allocation (pointers)•

Data validation using the new • VALIDATE verb

Binary and floating-point data types•

User-defined data types•

COBOL Is Nonproprietary

The COBOL standard does not belong to any particular vendor. It was originally designed to be a “machine independent
common language8” and to be ported to a wide range of machines. This capability was demonstrated by the first COBOL
compilers when the same program was compiled and executed on both the RCA and the Remington-Rand-Univac
computers.8 The ANSI COBOL committee, and now the ISO, define the non-vendor-specific syntax and semantic
language standards. COBOL has been ported to virtually every operating system, from every flavor of Windows to every
flavor of Unix; from IBM’s VM, zOS, and zVSE operating systems, to MPE, MPE-iX, and HP-UX on HP machines; from
the Wang VS to GCOS on Bull machines. COBOL runs on computers you have probably never heard of, such as the Data
General Nova, SuperNova, and Eclipse MV series; the DEC PDP-11/70 and VAX; the Univac 9000s and the Unisys 2200s;
and the Hitachi EX33 and the Bull DPX/20.

COBOL Is Maintainable

COBOL has a 50-year proven track record for application production, maintenance, and enhancement. The
indications from the Y2K problem that COBOL applications were cheaper to fix than applications written in more
recent languages ($28 per function point versus $35 for C++ and $65 for PL/1) have been supported by the 2012
ComputerWorld survey12 and the 2011/12 CRASH Report.40 When comparing COBOL maintenance costs to those
of Visual Basic, C#, C++, and Java, the ComputerWorld survey reported that 72% of respondents found that COBOL
was just as good (29%) as these languages or better (43%). Similarly, the CRASH Report found that COBOL had the
lowest technical debt (defined in the report as “the effort required to fix problems that remain in the code when an
application is released”) of any mainstream language, whereas Java-EE, averaging $5.42 per LOC, had the highest.

One reason for the maintainability of COBOL programs was mentioned earlier: the readability of COBOL
code. Another reason is COBOL’s rigid hierarchical structure. In COBOL programs, all external references, such as
references to devices, files, command sequences, collating sequences, the currency symbol, and the decimal point
symbol, are defined in the Environment Division.

When a COBOL program is moved to a new machine, has new peripheral devices attached, or is required to
work in a different country, COBOL programmers know that the parts of the program that will have to be altered
to accommodate these changes will be isolated in the Environment Division. In other programming languages,
programmer discipline might ensure that the references liable to change are restricted to one part of the program
but they could just as easily be spread throughout the program. In COBOL programs, programmers have no choice.
COBOL’s rigid hierarchical structure ensures that these items are restricted to the Environment Division.

CHAPTER 1 ■ INTRODUCTION TO COBOL

14

Summary
Unfortunately, the leaders of the computer science community have taken a very negative view of
COBOL from its very inception and therefore have not looked carefully enough to see what good
ideas are in there which could be further enlarged, expanded or generalized.

Jean Sammet, “The Early History of COBOL,”
ACM Sigplan Notices 13(8), August 1978

The problem with being such an old language is that COBOL suffers from 50 years of accumulated opprobrium.
Criticism of COBOL is often based—if it is based on direct experience at all—on programs written 30 to 50 years ago.
The huge monolithic programs, the tangled masses of spaghetti code, and the global data are all hallmarks of COBOL
programs written long before programmers knew better. They are not characteristic of programs written using more
modern versions of COBOL.

Critics also forget that COBOL is a domain-specific language and criticize it for shortcomings that have little
relevance to its target domain. There is little acknowledgement of how well suited COBOL is for that domain.
The performance of COBOL compared to other languages in recent surveys underlines its suitability. The 2012
ComputerWorld survey12 compared COBOL with Visual Basic, C#, C++, and Java and reported that, among other
things, respondents found it better in terms of batch processing, transaction processing, handling business-oriented
features, and maintenance costs. Nor is this a one off: similar results have been reported by other surveys.

There is enormous pressure to replace COBOL legacy systems with systems written in one of the more
fashionable languages. The many failures that have attended replacement attempts, however, have given legacy
system stakeholders pause for thought. The well-documented dangers of the replacement approach and the relative
success of COBOL system migration is leading to a growing reassessment of options. Keeping the COBOL codebase
is now seen as a more viable, safer, cheaper alternative to replacement. But this reassessment reveals a problem.
Keeping, and even growing, the COBOL codebase requires COBOL programmers, and the COBOL workforce is aging
and nearing retirement.

For some years now, programmers have luxuriated in a seller’s market. The demand for programmers has been
far in advance of the supply. But student numbers in computer science courses around the world are recovering
from the Y2K downturn. As these graduates enter the job market, it will become more and more competitive. In a
competitive environment, programmers may find that having a résumé that includes COBOL is a useful differentiator.

References
 1. Dijkstra EW. How do we tell truths that might hurt? ACM SIGPLAN Notices. 1982; 17(5): 13–15.

http://doi.acm.org/10.1145/947923.947924
 doi: 10.1145/947923.947924. Originally issued as Memo EWD 498. 1975 Jun.
 2. Mitchell RL. Brain drain: where Cobol systems go from here. ComputerWorld. 2012 Mar 14.

www.computerworld.com/s/article/9225079/Brain_drain_Where_Cobol_systems_go_from_here_
 3. Sneed HM, Erdoes K. Migrating AS400-COBOL to Java: a report from the field. CSMR 2013. Proceedings of the

17th European Conference on Software Maintenance and Reengineering; 2013; Genova, Italy. CSMR; 231–240.
 4. Glass R. Cobol—a contradiction and an enigma. Commun ACM. 1997; 40(9): 11–13.
 5. Glass R. How best to provide the services IS programmers need. Commun ACM. 1997; 40(12): 17–19.
 6. Glass R. COBOL: is it dying—or thriving? Data Base Adv Inf Sy. 1999; 30(1).
 7. Glass R. One giant step backward. Commun ACM. 2003; 46(5): 21–23.
 8. Sammet J. The early history of COBOL. ACM SIGPLAN Notices. 1978; 13(8) 121–161.
 9. Brown GDeW. COBOL: the failure that wasn’t. COBOL Report; 1999. CobolReport.com (now defunct)
10. Jones C. The global economic impact of the Year 2000 software problem. Capers Jones. 1996; version 4.
11. Barnett G. The future of the mainframe. Ovum Report. 2005.
12. ComputerWorld. COBOL brain drain: survey results. 2012 Mar 14.

www.computerworld.com/s/article/9225099/Cobol_brain_drain_Survey_results
13. Topolski E. IBM unveils new software to enable mainframe applications on cloud, mobile devices. IBM News

Room. 2012 May 17. www-03.ibm.com/press/us/en/pressrelease/41095.wss

http://dx.doi.org/http://doi.acm.org/10.1145/947923.947924
http://dx.doi.org/10.1145/947923.947924
http://www.computerworld.com/s/article/9225079/Brain_drain_Where_Cobol_systems_go_from_here_
http://libra.msra.cn/Journal/209/cacm-communications-of-the-acm
http://libra.msra.cn/Journal/209/cacm-communications-of-the-acm
http://cobolreport.com/
http://www.computerworld.com/s/article/9225099/Cobol_brain_drain_Survey_results
http://www-03.ibm.com/press/us/en/pressrelease/41095.wss

CHAPTER 1 ■ INTRODUCTION TO COBOL

15

14. Terekhov AA, Verhoef C. The realities of language conversions. Software, IEEE. 2000; 17(6): 111,124.
15. Sneed HM. Migrating from COBOL to Java. ICSM 2010. Proceedings of International Conference on Software

Maintenance; 2010; Timisoara, Romania. IEEE; 1-7.
16. The Standish Group. Modernization: clearing a pathway to success. Report. Boston: The Group; 2010.
17. Organizational tool manufacturer cuts costs by 94 percent with NetCOBOL and NeoTools. Microsoft. 2011.

www.gtsoftware.com/resource/organizational-tool-manufacturer-cuts-costs-by-94-percent-with-net-
cobol-and-neotools/

18. Productivity tools maker cuts costs 94% with move from mainframe to Windows. Microsoft. 2009 Jul.
www.docstoc.com/docs/81151637/Daytimer_MainframeMigration

19. Waters J. Testing mainframe code on your laptop. WatersWorks blog, Application Development Trends (ADT).
2010 Jul 27. http://adtmag.com/blogs/watersworks/2010/07/ibm-mainframes-cobol-recruits.aspx

20. Robinson B. COBOL remains old standby at agencies despite showing its age. Federal Computer Week. 2009 Jul 9.
www.fcw.com/Articles/2009/07/13/TECH-COBOL-turns-50.aspx

21. Thomas J. Manta’s IBM i COBOL training trifecta. IT Jungle. 2012 Oct 22. www.itjungle.com/tfh/tfh102212-story10.html
22. Veryant announces new COBOL training class. Veryant. 2012 Apr.

www.veryant.com/about/news/cobol-training-class.php
23. Atwood J. COBOL everywhere and nowhere. Coding Horror. 2009 Aug 9.

www.codinghorror.com/blog/2009/08/cobol-everywhere-and-nowhere.html
24. Campbell G. 2009 Aug 10. Comment on Atwood J. COBOL everywhere and nowhere. Coding Horror. 2009 Aug 9.

www.codinghorror.com/blog/2009/08/cobol-everywhere-and-nowhere.html
25. Kwiatkowski ŁM, Verhoef C. Recovering management information from source code. Sci Comput Program. 2013;

78(9): 1368-1406.
26. Brin D. The practice effect. 1984. Reprint, New York: Bantam Spectra; 1995.
27. Verhoef C. The realities of large software portfolios. 2000 Feb 24. www.cs.vu.nl/~x/lsp/lsp.html
28. Case study: Owens & Minor. Robocom. 2011.

www.robocom.com/Portals/0/Images/PDF/Owens%20&%20Minor%20Case%20Study.pdf
29. Medical supply distributor avoids costly ERP replacement with migration to Windows Server and SQL Server.

Microsoft. 2010 Feb.
www.docstoc.com/docs/88231164/Medical-Supply-Distributor-Avoids-Costly-ERP-Replacement-with

30. Veerman N. Revitalizing modifiability of legacy assets. J Softw Maint Evol-R. 2004; 16: 219–254.
31. Holloway N. Micro Focus International plc: Irish Life delivers cost savings and productivity gains through

application modernzation program with Micro Focus. 4-Traders.com. 2013 May 30. www.4-traders.com/
MICRO-FOCUS-INTERNATIONAL-12467060/news/Micro-Focus-International-plc-Irish-Life-Delivers-Cost-
Savings-and-Productivity-Gains-through-Appl-16916097/

32. Mainframe-to-Windows move speeds agility up to 300 percent for global publisher. Microsoft. 2007 Sep.
www.platformmodernization.org/microsoft/Lists/SuccessStories/DispForm.aspx?ID=6&RootFolder=%2Fmi
crosoft%2FLists%2FSuccessStories

33. Sneed H. A pilot project for migrating COBOL code to web services. Int J Softw Tools Tech Transf. 2009; 11(6): 441–451.
34. Brand M, Deursen A, Klint P, Klusener AS, Meulen E. Industrial applications of ASF+SDF. Amsterdam, The

Netherlands: CWI; 1996. Technical report. Also Wirsing M, editor. AMAST’96. Proceedings of the Conference on
Algebraic Methodology and Software Technology; 1996; Munich, Germany. Springer-Verlag; 1996.

35. Social Security Administration. The Social Security Administration’s software modernization and use of common
business oriented language. Audit Report. Office of the Inspector General, Social Security Administration. 2012
May. http://oig.ssa.gov/sites/default/files/audit/full/pdf/A-14-11-11132_0.pdf

36. Property firm migrates from mainframe to Windows, cuts costs 60 percent, ups speed. Microsoft. 2006 Jul.
http://cloud.alchemysolutions.com/case-studies/Watch-Stockholmshem-describe-the-modernization-experience

 Or www.gtsoftware.com/resource/property-management-firm-migrates-from-mainframe-to-windows-cuts-
costs-60-percent-ups-speed/

 Or http://download.microsoft.com/documents/customerevidence/27759_Stockholmshem_migration_case_study.doc
37. Datamonitor. COBOL—continuing to drive value in the 21st century. Datamonitor; 2008 Nov. Reference code

CYBT0006.
38. National Council of Social Security Management Associations Transition White Paper. 2008 Dec.

http://otrans.3cdn.net/bfb27060430522c5ae_n0m6iyt3y.pdf
39. Hoover JN. Stimulus funds will go toward new data center for Social Security Administration.

InformationWeekUK. 2009 Feb 28.
www.informationweek.co.uk/internet/ebusiness/stimulus-funds-will-go-toward-new-data-c/214700005

40. Executive Summary—The CRASH report, 2011/12. CAST. 2012. www.castsoftware.com/research-labs/crash-reports

http://www.gtsoftware.com/resource/organizational-tool-manufacturer-cuts-costs-by-94-percent-with-netcobol-and-neotools/
http://www.gtsoftware.com/resource/organizational-tool-manufacturer-cuts-costs-by-94-percent-with-netcobol-and-neotools/
http://www.docstoc.com/docs/81151637/Daytimer_MainframeMigration
http://adtmag.com/blogs/watersworks/2010/07/ibm-mainframes-cobol-recruits.aspx
http://www.fcw.com/Articles/2009/07/13/TECH-COBOL-turns-50.aspx
http://www.itjungle.com/tfh/tfh102212-story10.html
http://www.veryant.com/about/news/cobol-training-class.php
http://www.codinghorror.com/blog/2009/08/cobol-everywhere-and-nowhere.html
http://www.codinghorror.com/blog/2009/08/cobol-everywhere-and-nowhere.html
http://www.cs.vu.nl/~x/lsp/lsp.html
http://www.robocom.com/Portals/0/Images/PDF/Owens%20&%20Minor%20Case%20Study.pdf
http://www.docstoc.com/docs/88231164/Medical-Supply-Distributor-Avoids-Costly-ERP-Replacement-with
http://4-traders.com/
http://www.4-traders.com/MICRO-FOCUS-INTERNATIONAL-12467060/news/Micro-Focus-International-plc-Irish-Life-Delivers-Cost-Savings-and-Productivity-Gains-through-Appl-16916097/
http://www.4-traders.com/MICRO-FOCUS-INTERNATIONAL-12467060/news/Micro-Focus-International-plc-Irish-Life-Delivers-Cost-Savings-and-Productivity-Gains-through-Appl-16916097/
http://www.4-traders.com/MICRO-FOCUS-INTERNATIONAL-12467060/news/Micro-Focus-International-plc-Irish-Life-Delivers-Cost-Savings-and-Productivity-Gains-through-Appl-16916097/
http://www.platformmodernization.org/microsoft/Lists/SuccessStories/DispForm.aspx?ID=6&RootFolder=%2Fmicrosoft%2FLists%2FSuccessStories
http://www.platformmodernization.org/microsoft/Lists/SuccessStories/DispForm.aspx?ID=6&RootFolder=%2Fmicrosoft%2FLists%2FSuccessStories
http://oig.ssa.gov/sites/default/files/audit/full/pdf/A-14-11-11132_0.pdf
http://cloud.alchemysolutions.com/case-studies/Watch-Stockholmshem-describe-the-modernization-experience
http://cloud.alchemysolutions.com/case-studies/Watch-Stockholmshem-describe-the-modernization-experience
http://www.gtsoftware.com/resource/property-management-firm-migrates-from-mainframe-to-windows-cuts-costs-60-percent-ups-speed/
http://www.gtsoftware.com/resource/property-management-firm-migrates-from-mainframe-to-windows-cuts-costs-60-percent-ups-speed/
http://download.microsoft.com/documents/customerevidence/27759_Stockholmshem_migration_case_study.doc
http://otrans.3cdn.net/bfb27060430522c5ae_n0m6iyt3y.pdf
http://www.informationweek.co.uk/internet/ebusiness/stimulus-funds-will-go-toward-new-data-c/214700005
http://www.castsoftware.com/research-labs/crash-reports

17

CHAPTER 2

COBOL Foundation

This chapter presents some of the foundational material you require before you can write COBOL programs. It starts
by identifying some elements of COBOL that programmers of other languages find idiosyncratic and it explains the
reasons for them. You’re then introduced to the unusual syntax notation (called metalanguage) used to describe
COBOL verbs and shown some examples.

COBOL programs have to conform to a fairly rigid hierarchical structure. This chapter introduces the structural
elements and explains how each fits into the overall hierarchy. Because the main structural element of a COBOL
program is the division, you spend some time learning about the function and purpose of each of the four divisions.

COBOL programs, especially in restrictive coding shops, are required to conform to a number of coding rules.
These rules are explained and placed in their historical context.

The chapter discusses the details of name construction; but because name construction is about more than
just the mechanics, you also learn about the importance of using descriptive names for both data items and blocks
of executable code. The importance of code formatting for visualizing data hierarchy and statement scope is also
discussed.

To whet your appetite for what is coming in the succeeding chapters, the chapter includes a number of small
example programs and gives brief explanations. The chapter ends by listing the most important COBOL compilers,
both free and commercial, available for Windows and UNIX.

COBOL Idiosyncrasies
COBOL is one of the oldest programming languages still in use. As a result, it has some idiosyncrasies, which
programmers used to other languages may find irritating. One of the design goals of COBOL was to assist readability
by making the language as English-like as possible.1 As a consequence, the structural concepts normally associated
with English prose, such as division, section, paragraph, sentence, verb, and so on, are used in COBOL programs. To
further aid readability, the concept of noise words was introduced. Noise words are words in a COBOL statement that
have no semantic content and are used only to enhance readability by making the statement more English-like.

One consequence of these design decisions is that the COBOL reserved-word list is extensive and contains
many hundreds of entries. The reserved words themselves also tend to be long, with words like UNSTRING, EVALUATE,
and PERFORM being typical. The English-like structure, the long reserved words, and the noise words makes COBOL
programs seem verbose, especially when compared to languages such as C.

When COBOL was designed, today’s tools were not available. Programs were written on coding forms
(see Figure 2-1), passed to punch-card operators for transfer onto punch cards (see Figure 2-2), and then submitted
to the computer operator to be loaded into the computer using a punch-card reader. These media (coding sheets
and punch cards) required adherence to a number of formatting restrictions that some COBOL implementations still
enforce today, long after the need for them has gone. This book discusses these coding restrictions but doesn’t adhere
to them. You should be aware, though, that depending on the coding rules in a particular coding shop, you might be
obliged to abide by these archaic conventions.

CHAPTER 2 ■ COBOL FOUNDATION

18

Figure 2-1. COBOL coding sheet

Figure 2-2. COBOL punch card for line 11 of the coding sheet2

CHAPTER 2 ■ COBOL FOUNDATION

19

The final COBOL irritant is that although many of the constructs required to write well-structured programs have
been introduced into modern COBOL (ANS 85 COBOL and OO-COBOL), the need for backward compatibility means
some language elements remain that, if used, make it difficult and in some cases impossible to write good programs.
ALTER verb, I’m thinking of you.

COBOL Syntax Metalanguage
COBOL syntax is defined using a notation sometimes called the COBOL metalanguage. In this notation

Words in uppercase are reserved words. When underlined, they are mandatory. When not •
underlined, they are noise words, used for readability only, and are optional.

Words in mixed case represent names that must be devised by the programmer (such as the •
names of data items).

When material is enclosed in curly braces • { }, a choice must be made from the options within
the braces. If there is only one option, then that item is mandatory.

When material is enclosed in square brackets • [], the material is optional and may be
included or omitted as required.

When the ellipsis symbol • ... (three dots) is used, it indicates that the preceding syntactic
element may be repeated at your discretion.

To assist readability, the comma, semicolon, and space characters may be used as separators •
in a COBOL statement, but they have no semantic effect. For instance, the following
statements are semantically identical:

ADD Num1 Num2 Num3 TO Result
ADD Num1, Num2, Num3 TO Result
ADD Num1; Num2; Num3 TO Result

In addition to the metalanguage diagrams, syntax rules govern the interpretation of metalanguage. For instance,
the metalanguage for PERFORM..VARYING (see Figure 2-3) implies that you can have as many AFTER phrases as desired.
In fact, as you will discover when I discuss this construct in Chapter 6, only two are allowed.

Figure 2-3. PERFORM..VARYING metalanguage

CHAPTER 2 ■ COBOL FOUNDATION

20

Some Notes on Syntax Diagrams
As mentioned in the previous section, the interpretation of the COBOL metalanguage is modified by syntax rules.
Because it can be tedious to wade through all the rules for each COBOL construct, this book uses a modified form
of the syntax diagram. In this modified diagram, special operand suffixes indicate the type of the operand; these are
shown in Table 2-1.

Example Metalanguage
As an example of how the metalanguage for a COBOL verb is interpreted, the syntax for the COMPUTE verb is shown
in Figure 2-4. I’m presenting COMPUTE here because, as the COBOL arithmetic verb (the others are ADD, SUBTRACT,
MULTIPLY, DIVIDE) that’s closest to the way things are done in many other languages, it will be a point of familiarity.
The operation of COMPUTE is discussed in more detail in Chapter 4.

The COMPUTE verb assigns the result of an arithmetic expression to a variable or variables. The interpretation of
the COMPUTE metalanguage is as follows:

A • COMPUTE statement must start with the keyword COMPUTE.

The keyword must be followed by the name of a numeric data item that receives the result of •
the calculation (the suffix #i indicates that the operand must be the name of a numeric data
item [variable]).

The equals sign (• =) must be used.

An arithmetic expression must follow the equals sign.•

The square braces • [] around the word ROUNDED indicate that rounding is optional. Because
the word ROUNDED is underlined, the word must be used if rounding is required.

The ellipsis symbol (• ...) indicates that there can more than one Result#i data item.

The ellipsis occurs outside the curly braces • {}, which means each result field can have its own
ROUNDED phrase.

Table 2-1. Special Metalanguage Operand Suffixes

Suffix Meaning

$i Uses an alphanumeric data item

$il Uses an alphanumeric data item or a string literal

#i Uses a numeric data item

#il Uses a numeric data item or numeric literal

$#i Uses a numeric or an alphanumeric data item

Figure 2-4. COMPUTE metalanguage syntax diagram

CHAPTER 2 ■ COBOL FOUNDATION

21

In other words, you could have a COMPUTE statement like

COMPUTE Result1 ROUNDED, Result2 = ((9 * 9) + 8) / 5

where Result1 would be assigned a value of 18 (rounded 17.8) and Result2 would be
assigned a value of 17 (truncated 17.8), assuming both Result1 and Result2 were defined
as PIC 99.

Structure of COBOL Programs
COBOL is much more rigidly structured than most other programming languages. COBOL programs are hierarchical
in structure. Each element of the hierarchy consists of one or more subordinate elements. The program hierarchy
consists of divisions, sections, paragraphs, sentences, and statements (see Figure 2-5).

A COBOL program is divided into distinct parts called divisions. A division may contain one or more sections.

A section may contain one or more paragraphs. A paragraph may contain one or more sentences, and a sentence one
or more statements.

Note ■ Programmers unused to this sort of rigidity may find it irksome or onerous, but this layout offers some practical

advantages. Many of the programmatic items that might need to be modified as a result of an environmental change are

defined in the ENVIRONMENT DIVISION. External references, such as to devices, files, collating sequences, the currency

symbol, and the decimal point symbol are all defined in the ENVIRONMENT DIVISION.

Divisions

The division is the major structural element in COBOL. Later in this chapter, I discuss the purpose of each division.
For now, you can note that there are four divisions: the IDENTIFICATION DIVISION, the ENVIRONMENT DIVISION, the
DATA DIVISION, and the PROCEDURE DIVISION.

Sections

A section is made up of one or more paragraphs. A section begins with the section name and ends where the next
section name is encountered or where the program text ends.

A section name consists of a name devised by the programmer or defined by the language, followed by the word
Section, followed by a period (full stop). Some examples of section names are given in Example 2-1.

Figure 2-5. Hierarchical COBOL program structure

CHAPTER 2 ■ COBOL FOUNDATION

22

In the first three divisions, sections are an organizational structure defined by the language. But in the PROCEDURE
DIVISON, where you write the program’s executable statements, sections and paragraphs are used to identify blocks of
code that can be executed using the PERFORM or the GO TO.

Example 2-1. Example Section Names

SelectTexasRecords SECTION.
FILE SECTION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

Paragraphs

A paragraph consists of one or more sentences. A paragraph begins with a paragraph name and ends where the next
section name or paragraph name is encountered or where the program text ends.

In the first three divisions, paragraphs are an organizational structure defined by the language (see Example 2-2).
But in the PROCEDURE DIVISON, paragraphs are used to identify blocks of code that can be executed using PERFORM or
GO TO (see Example 2-3).

Example 2-2. ENVIRONMENT DIVISION Entries Required for a File Declaration

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT ExampleFile ASSIGN TO "Example.Dat"
 ORGANIZATION IS SEQUENTIAL.

Example 2-3. PROCEDURE DIVISION with Two Paragraphs (Begin and DisplayGreeting)

PROCEDURE DIVISION.
Begin.
 PERFORM DisplayGreeting 10 TIMES.
 STOP RUN.

DisplayGreeting.
 DISPLAY "Greetings from COBOL".

Sentences

A sentence consists of one or more statements and is terminated by a period. There must be at least one sentence,
and hence one period, in a paragraph. Example 2-4 shows two sentences. The first sentence also happens to be a
statement; the second consists of three statements.

Example 2-4. Two Sentences

SUBTRACT Tax FROM GrossPay GIVING NetPay.

MOVE .21 TO VatRate
COMPUTE VatAmount = ProductCost * VatRate
DISPLAY "The VAT amount is - " VatAmount.

CHAPTER 2 ■ COBOL FOUNDATION

23

Statements

In COBOL, language statements are referred to as verbs. A statement starts with the name of the verb and is followed
by the operand or operands on which the verb acts. Example 2-5 shows three statements.

Example 2-5. Three Statements

DISPLAY "Enter name " WITH NO ADVANCING
ACCEPT StudentName
DISPLAY "Name entered was " StudentName

In Table 2-2, the major COBOL verbs are categorized by type. The arithmetic verbs are used in computations,
the file-handling verbs are used to manipulate files, the flow-of-control verbs are used to alter the normal sequential
execution of program statements, the table-handling verbs are used to manipulate tables (arrays), and the string-
handling verbs allow such operations as character counting, string splitting, and string concatenation.

The Four Divisions
At the top of the COBOL hierarchy are the four divisions. These divide the program into distinct structural elements.

Although some of the divisions may be omitted, the sequence in which they are specified is fixed and must be as
follows. Just like section names and paragraph names, division names must be followed by a period:

IDENTIFICATION DIVISION. Contains information about the program

ENVIRONMENT DIVISION. Contains environment information

DATA DIVISION. Contains data descriptions

PROCEDURE DIVISION. Contains the program algorithms

IDENTIFICATION DIVISION
The purpose of the IDENTIFICATION DIVISION is to provide information about the program to you, the compiler,
and the linker. The PROGRAM-ID paragraph is the only entry required. In fact, this entry is required in every program.
Nowadays all the other entries have the status of comments (which are not processed when the program runs), but
you may still find it useful to included paragraphs such as AUTHOR and DATE-WRITTEN.

Table 2-2. Major COBOL Verbs, Categorized by Type

Arithmetic File Handling Flow of Control Assignment & I-O Table Handling String Handling

COMPUTE
ADD

SUBTRACT
MULTIPLY
DIVIDE

OPEN
CLOSE
READ
WRITE
DELETE
REWRITE
START
SORT
RETURN
RELEASE

IF
EVALUATE
PERFORM
GO TO
CALL

STOP RUN
EXIT PROGRAM

MOVE
SET

INITIALIZEACCEPT
DISPLAY

SEARCH
SEARCH ALL

SET

INSPECT
STRING
UNSTRING

CHAPTER 2 ■ COBOL FOUNDATION

24

The PROGRAM-ID is followed by a user-devised name that is used to identify the program internally. This name
may be different from the file name given to the program when it was saved to backing storage. The metalanguage for
the PROGRAM-ID is

PROGRAM–ID. UserAssignedProgramName.
[IS [COMMON] [INITIAL] PROGRAM].

The metalanguage items in square braces apply only to subprograms, so I will reserve discussion of these items
until later in the book.

When a number of independently compiled programs are combined by the linker into a single executable run-
unit, each program is identified by the name given in its PROGRAM-ID. When control is passed to a particular program
by means of a CALL verb, the target of the CALL invocation is the name given in the subprogram’s PROGRAM-ID for
instance:

CALL "PrintSummaryReport".

Example 2-6 shows an example IDENTIFICATION DIVISION. Pay particular attention to the periods — they are
required.

Example 2-6. Sample IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.
PROGRAM-ID. PrintSummaryReport.
AUTHOR. Michael Coughlan.
DATE-WRITTEN. 20th June 2013.

ENVIRONMENT DIVISION
The ENVIRONMENT DIVISION is used to describe the environment in which the program works. It isolates in one place
all aspects of the program that are dependent on items in the environment in which the program runs. The idea is
to make it easy to change the program when it has to run on a different computer or one with different peripheral
devices or when the program is being used in a different country.

The ENVIRONMENT DIVISION consists of two sections: the CONFIGURATION SECTION and the INPUT-OUTPUT
SECTION. In the CONFIGURATION SECTION, the SPECIAL-NAMES paragraph allows you to specify such environmental
details as what alphabet to use, what currency symbol to use, and what decimal point symbol to use. In the
INPUT-OUTPUT SECTION, the FILE-CONTROL paragraph lets you connect internal file names with external devices and files.

Example 2-7 shows some example CONFIGURATION SECTION entries. A few notes about the listing:

In some countries the meaning of the decimal point and the comma are reversed. For •
instance, the number 1,234.56 is sometimes written 1.234,56. The DECIMAL-POINT IS COMMA
clause specifies that the program conforms to this scheme.

The • SYMBOLIC CHARACTERS clause lets you assign a name to one of the unprintable characters.
In this example, names for the escape, carriage return, and line-feed characters have been
defined by specifying their ordinal position (not value) in the character set.

The • SELECT and ASSIGN clauses let you connect the name you use for a file in the program with
its actual name and location on disk.

CHAPTER 2 ■ COBOL FOUNDATION

25

Example 2-7. CONFIGURATION SECTION Examples

IDENTIFICATION DIVISION.
PROGRAM-ID. ConfigurationSectionExamples.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 DECIMAL-POINT IS COMMA.
 SYMBOLIC CHARACTERS ESC CR LF
 ARE 28 14 11.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT StockFile ASSIGN TO "D:\DataFiles\Stock.dat"
 ORGANIZATION IS SEQUENTIAL.

DATA DIVISION
The DATA DIVISION is used to describe most of the data that a program processes. The obvious exception to this is
literal data, which is defined in situ as a string or numeric literal such as “Freddy Ryan” or -345.74.

The DATA DIVISION is divided into four sections:

The • FILE SECTION

The • WORKING-STORAGE SECTION

The • LINKAGE SECTION

The • REPORT SECTION

The first two are the main sections. The LINKAGE SECTION is used only in subprograms, and the REPORT SECTION
is used only when generating reports. The LINKAGE and REPORT sections are discussed more fully when you encounter
the elements that require them later in the book. For now, only the first two sections need concern you.

File Section
The FILE SECTION describes the data that is sent to, or comes from, the computer’s data storage peripherals. These
include such devices as card readers, magnetic tape drives, hard disks, CDs, and DVDs.

Working-Storage Section
The WORKING-STORAGE SECTION describes the general variables used in the program. The COBOL metalanguage
showing the general structure and syntax of the DATA DIVISION is given in Figure 2-6 and is followed by a fragment of
an example COBOL program in Example 2-8.

CHAPTER 2 ■ COBOL FOUNDATION

26

Example 2-8. Simple Data Declarations

IDENTIFICATION DIVISION.
PROGRAM-ID. SimpleDataDeclarations.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CardinalNumber PIC 99 VALUE ZEROS.
01 IntegerNumer PIC S99 VALUE -14.
01 DecimalNumber PIC 999V99 VALUE 543.21.
01 ShopName PIC X(30) VALUE SPACES.
01 ReportHeading PIC X(25) VALUE "=== Employment Report ===".

Data Hierarchy
All the data items in Example 2-8 are independent, elementary, items. Although data hierarchy is too complicated a
topic to deal with at this point, a preview of hierarchical data declaration is given in BirthDate (see Example 2-9).

Example 2-9. Example of a Hierarchical Data Declaration

01 BirthDate.
 02 YearOfBirth.
 03 CenturyOB PIC 99.
 03 YearOB PIC 99.
 02 MonthOfBirth PIC 99.
 02 DayOfBirth PIC 99.

Figure 2-6. DATA DIVISION metalanguage

CHAPTER 2 ■ COBOL FOUNDATION

27

In this declaration, the data hierarchy indicated by the level numbers tells you that the data item BirthDate
consists of (is made up of) a number of subordinate data items. The immediate subordinate items (indicated by the
02 level numbers) are YearOfBirth, MonthOfBirth, and DayOfBirth. MonthOfBirth and DayOfBirth are elementary,
atomic, items that are not further subdivided. However, YearOfBirth is a data item that is further subdivided
(indicated by the 03 level numbers) into CenturyOB and YearOB.

In typed languages such as Pascal and Java, understanding what is happening to data in memory is not important.
But understanding what is happening to the data moved into a data item is critical in COBOL. For this reason,
when discussing data declarations and the assignment of values to data items, I often give a model of the storage.
For instance, Figure 2-7 gives the model of the storage for the data items declared in Example 2-9 and shows what
happens to the data when you execute the statement - MOVE "19451225" TO BirthDate.

PROCEDURE DIVISION
The PROCEDURE DIVISION is where all the data described in the DATA DIVISION is processed and produced. It is
here that you describe your algorithm. The PROCEDURE DIVISION is hierarchical in structure. It consists of sections,
paragraphs, sentences, and statements. Only the section is optional; there must be at least one paragraph, one
sentence, and one statement in the PROCEDURE DIVISION.

Whereas the paragraph and section names in the other divisions are defined by the language, in the PROCEDURE
DIVISION they are chosen by you. The names chosen should reflect the function of the code contained in the
paragraph or section.

In many legacy COBOL programs, paragraph and section names were used chiefly as labels to break up the
program text and to act as the target of GO TO statements and, occasionally, PERFORM statements. In these programs,
GO TOs were used to jump back and forward through the program text in a manner that made the program logic very
difficult to follow. This programmatic style was derisively labeled spaghetti code.

In this book, I advocate a programming style that eschews the use of GO TOs as much as possible and that uses
performs and paragraphs to create single-entry, single-exit, open subroutines. Although the nature of an open
subroutine is that control can drop into it, adherence to the single-entry, single-exit philosophy should ensure that
this does not happen.

Shortest COBOL Program
COBOL has a very bad reputation for verbosity, but most of the programs on which that reputation was built were
written in ANS 68 or ANS 74 COBOL. Those programs are 40 years old. In modern versions of the language, program
elements are not required unless explicitly used. For instance, in the ShortestProgram (see Listing 2-1), no entries are
required for the ENVIRONMENT and DATA DIVISIONs because they are not used in this program. The IDENTIFICATION
DIVISION is required because it holds the mandatory PROGRAM-ID paragraph. The PROCEDURE DIVISION is also required,
there must be at least one paragraph in it (DisplayPrompt), and the paragraph must contain at least one sentence
(DISPLAY "I did it".). STOP RUN, a COBOL instruction to halt execution of the program, would normally appear in a
program but is not required here because the program will stop when it reaches the end of the program text.

Figure 2-7. Memory model for the data items declared in Example 2-9

CHAPTER 2 ■ COBOL FOUNDATION

28

Listing 2-1. Shortest COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. ShortestProgram.
PROCEDURE DIVISION.
DisplayPrompt.
 DISPLAY "I did it".

Note ■ Some COBOL compilers require that all the divisions be present in a program. Others only require the

IDENTIFICATION DIVISION and the PROCEDURE DIVISION.

COBOL Coding Rules
Traditionally, COBOL programs were written on coding sheets (see Figure 2-8), punched on to punch cards, and then
loaded into the computer via a card reader. Although nowadays most programs are entered directly via screen and
keyboard, some COBOL formatting conventions remain that derive from its ancient punch-card history:

On the coding sheet, the first six character positions are reserved for sequence numbers. •
Sequence numbers used to be a vital insurance against the disaster of dropping your stack of
punch cards.

The seventh character position is reserved for the continuation character or for an asterisk •
that denotes a comment line. The continuation character is rarely used nowadays because any
COBOL statement can be broken into two lines anywhere (other than in a quoted string) there
is a space character.

COBOL Detail ■ While other programming languages permit a variety of comment forms (Java for instance sup-

ports multiline comments, documentation comments, and end of line comments) COBOL allows only full-line comments.

Comment lines are indicated by placing an asterisk in column 7 (if adhering to the strict formatting conventions - see

Figure 2-8) or the the first column if using a version of COBOL that does not adhere to archaic formatting conventions.

One further note; the Open Source COBOL at Compileonline.com requires comments to begin with *> but like Java you

can also place these comments at the end of the line.

Figure 2-8. Fragment of a coding sheet showing the different program areas

http://compileonline.com/

CHAPTER 2 ■ COBOL FOUNDATION

29

The actual program text starts in column 8. The four positions from 8 to 11 are known as Area •
A, and the positions from 12 to 72 are called Area B.

The area from position 73 to 80 is the identification area; it was generally used to identify •
the program. This again was disaster insurance. If two stacks of cards were dropped, the
identification allowed the cards belonging to the two programs to be identified.

When a COBOL compiler recognizes the Areas A and B, all division names, section names, paragraph names, file-
description (FD) entries, and 01 level numbers must start in Area A. All other sentences must start in Area B.

In some COBOL compilers, it is possible to set a compiler option or include a compiler directive to free you from
these archaic formatting conventions. For instance, the Micro Focus Net Express COBOL uses the compiler directive -
$ SET SOURCEFORMAT"FREE". Although modern compilers may free you from formatting restrictions, it is probably still
a good idea to position items according to the Area A and Area B rule.

Name Construction
COBOL has a number of different user-devised names, such as data names (variable names), paragraph names,
section names, and mnemonic names. The rules for name construction are given here along with some advice which
all programmers should embrace.

All user-defined names in COBOL must adhere to the following rules:

They must contain at least 1 character and not more than 30 characters.•

They must contain at least one alphabetic character and must not begin or end with a hyphen.•

They must be constructed from the characters • A to Z, the numbers 0 to 9, and the hyphen.
Because the hyphen can be mistaken for the minus sign, a word cannot begin or end with a
hyphen.

Names are not case-sensitive. • SalesDate is the same as salesDate or SALESDATE.

None of the many COBOL reserved words may be used as a user-defined name. The huge •
number of reserved words is one of the annoyances of COBOL. One strategy to avoid tripping
over them is to use word doubles such as using IterCount instead of Count.

Here are some examples of user-defined names:

TotalPay
Gross-Pay
PrintReportHeadings
Customer10-Rec

Comments about Naming

Data-item names are used to identify variables. In COBOL, all variable data is defined in the DATA DIVISION rather
than throughout the program as is done in many other languages. In the PROCEDURE DIVISION, section names and
paragraph names are devised by you and are used to identify blocks of executable code.

The proper selection of data-item, section, and paragraph names is probably the most important thing you can
do to make your programs understandable. The names you choose should be descriptive. Data-item names should
be descriptive of the data they contain; for instance, it is fairly clear what data the data items TotalPay, GrossPay,
and NetPay hold. Section and paragraph names should be descriptive of the function of the code contained in
the paragraph or section; for instance, these seem fairly descriptive: ApplyValidInsertion, GetPostage, and
ValidateCheckDigit. Difficulty in assigning a suitably descriptive name to a block of code should be taken as a sign
that the program has been incorrectly partitioned and is likely to offend the Module Strength/Cohesion guidelines3-6.

CHAPTER 2 ■ COBOL FOUNDATION

30

Authors writing about other programming languages often make the same point: programmers should choose
descriptive names. But in many of these languages, where succinctness appears to be a highly lauded characteristic,
the ethos of the language seems to contradict this advice. In COBOL, the language is already so verbose that the added
burden of descriptive names is not likely to be a problem.

Comments about Program Formatting

In COBOL, hierarchy is vitally important in the declaration of data. Proper indentation is a very useful aid to
understanding data hierarchy (more on this later). Misleading or no indentation is often a source of programming
errors. Good programmers seem to understand this instinctively: when student programs are graded, those that
correctly implement the specification are often found to have excellent formatting, whereas those with programming
errors are often poorly formatted. This is ironic, because the programmers who are most in need of the aid of a well-
formatted program seem to be those who pay formatting the least attention. Weak programmers never appear to
understand how a poorly formatted program conspires against them and makes it much more difficult to produce
code that works.

Proper formatting is also important in the PROCEDURE DIVISION. Even though the scope of COBOL verbs is
well-signaled using END delimiters, indentation is still a very useful aid to emphasize scope.

This discussion brings me to an important piece of advice for COBOL programmers. This advice is a restatement
of the Golden Rule promulgated by Jesus, Confucius, and others:

Write your programs as you would like them written if you were the one who had to
maintain them.

Comments about Programming Style

As noted earlier, data names and reserved words are not case sensitive. The reserved words PROCEDURE DIVISION
can be written as uppercase, lowercase, or mixed case. My preference, developed during years of reading program
printouts, is to put COBOL reserved words in uppercase and user-defined words in mixed case with capitals at the
beginning of each word. Sometimes, for clarity, the words may be separated by a hyphen. This is the style I have
chosen for this book because I believe it is the best for a printed format.

I want to stress, though, that this stylistic scheme is a personal preference. Programmers in other languages may
be more used to a different scheme, and as long as the scheme is consistently used, it should present no problem. It
is worth mentioning that when you start to work in a programming shop, a naming scheme may be forced on you. So
perhaps it is not a bad thing to get some practice fitting in with someone else’s scheme.

Example Programs
This section provides some example programs to whet your appetite and give you a feel for how a full COBOL
program looks. In particular, they give advance warning about how variables (data items) are declared in COBOL. This
differs so much from other languages such as C, Java, and Pascal that it is likely to be a matter of some concern, if not
consternation. These programs also introduce some of the more interesting and useful features of COBOL.

CHAPTER 2 ■ COBOL FOUNDATION

31

The COBOL Greeting Program
Let’s start with the program you last saw in the COBOL coding sheet (see Figure 2-1). In Listing 2-2 it has been
modernized a little by introducing lowercase characters. This basic program demonstrates simple data declaration
and simple iteration (looping). The variable IterNum is given a starting value of 5, and the PERFORM executes the
paragraph DisplayGreeting five times:

Listing 2-2. The COBOL Greeting Program

IDENTIFICATION DIVISION.
PROGRAM-ID. CobolGreeting.
*>Program to display COBOL greetings
DATA DIVISION.
WORKING-STORAGE SECTION.
01 IterNum PIC 9 VALUE 5.

PROCEDURE DIVISION.
BeginProgram.
 PERFORM DisplayGreeting IterNum TIMES.
 STOP RUN.

DisplayGreeting.
 DISPLAY "Greetings from COBOL".

The DoCalc Program
The DoCalc program in Listing 2-3 prompts the user to enter two single-digit numbers. The numbers are added
together, and the result is displayed on the computer screen.

Listing 2-3. The DoCalc Example Program

IDENTIFICATION DIVISION.
PROGRAM-ID. DoCalc.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FirstNum PIC 9 VALUE ZEROS.
01 SecondNum PIC 9 VALUE ZEROS.
01 CalcResult PIC 99 VALUE 0.
01 UserPrompt PIC X(38) VALUE
 "Please enter two single digit numbers".
PROCEDURE DIVISION.
CalculateResult.
 DISPLAY UserPrompt
 ACCEPT FirstNum
 ACCEPT SecondNum
 COMPUTE CalcResult = FirstNum + SecondNum
 DISPLAY "Result is = ", CalcResult
 STOP RUN.

CHAPTER 2 ■ COBOL FOUNDATION

32

The program declares three numeric data items (variables): FirstNum for the first number input, SecondNum for
the second, and CalcResult to hold the result of the calculation. It also declares a data item to hold the string used to
prompt the user to enter two single-digit numbers.

Data declarations in COBOL are very different from the type-based declaration you might be used to in other
languages, so some explanation is required. In COBOL, every data-item declaration starts with a level number. Level
numbers are used to represent data hierarchy. Because all the items in this example program are independent,
elementary data items, they have a level number of 01.

Following the level number is the name of the data item, and this in turn is followed by a storage declaration for
the data item. The storage declaration defines the type and size of the storage required. To do this, COBOL uses a kind
of “declaration by example” strategy. An example, or picture (hence PIC), is given of the maximum value the data item
can hold. The symbols used in the picture declaration indicate the basic type of the item (numeric = 9, alphanumeric
= X, alphabetic = A), and the number of symbols used indicates the size.

Consider the following declarations in DoCalc:

01 FirstNum PIC 9 VALUE ZEROS.
01 SecondNum PIC 9 VALUE ZEROS.

These indicate that FirstNum and SecondNum can each hold a cardinal number with a value between 0 and 9. If
these data items were required to hold an integer number, the pictures would have to be defined as PIC S9
(signed numeric).

In this program, the picture clauses (which is what they are called) are followed by VALUE clauses specifying that
FirstNum and SecondNum start with an initial value of zero. In COBOL, unless a variable is explicitly given an initial
value, its value is undefined.

Bug Alert ■ Numeric data items must be given an explicit numeric starting value by means of the VALUE clause, using

the INITIALIZE verb, or by assignment. If a numeric data item with an undefined value is used in a calculation, the pro-

gram may crash. Of course, a data item with an undefined value may receive the result of a calculation because in that

case any non-numeric data is overwritten with the calculation result.

The CalcResult data item is defined as follows:

01 CalcResult PIC 99 VALUE 0.

This indicates that CalcResult can hold a cardinal number between 0 and 99. It too is initialized to zero, but
in this case the value 0 is used rather than the word ZEROS. The word ZEROS is a special COBOL data item called a
figurative constant. It has the effect of filling the data item with zeros. I have chosen to initialize this variable with the
value 0 to make two points. First, numeric values can be used with the VALUE clause. Second, the figurative constant
ZEROS should be used in preference to the numeric value because it is clearer than 0, which in some fonts can easily be
mistaken for an O.

The UserPrompt data item is defined as follows:

01 UserPrompt PIC X(24) VALUE
 "Please enter two single digit numbers".

This indicates that it can hold an alphanumeric value of up to 24 characters. It has been initialized to a starting
string value.

CHAPTER 2 ■ COBOL FOUNDATION

33

COBOL Detail ■ UserPrompt should have been defined as a constant, but COBOL does not allow constants to be

created. The nearest you can get to a user-defined constant in COBOL is to assign an initial value to a data item and then

not change it. This is a serious deficiency that has finally been addressed in the ISO 2002 version of COBOL by means of

the CONSTANT clause.

COBOL PUZZLE

Given the description of BirthDate in Example 2-10, what do you think would be displayed by the COBOL code in

Example 2-11?

Example 2-10. BirthDate Data Description

01 BirthDate.
 02 YearOfBirth.
 03 CenturyOB PIC 99.
 03 YearOB PIC 99.
 02 MonthOfBirth PIC 99.
 02 DayOfBirth PIC 99.

Example 2-11. Code That Manipulates BirthDate and Its Subordinate Items

MOVE 19750215 TO BirthDate
DISPLAY "Month is = " MonthOfBirth
DISPLAY "Century of birth is = " CenturyOB
DISPLAY "Year of birth is = " YearOfBirth
DISPLAY DayOfBirth "/" MonthOfBirth "/" YearOfBirth
MOVE ZEROS TO YearOfBirth
DISPLAY "Birth date = " BirthDate.

The answer is at the end of the chapter.

The Condition Names Program
The final example program for this chapter previews COBOL condition names and the EVALUATE verb. A condition
name is a Boolean item that can only take the value true or false. But it is much more than that. A condition name is
associated (via level 88) with a particular data item. Rather than setting the condition name to true or false directly,
as you might do in other languages, a condition name automatically takes the value true or false depending on the
value of its associated data item.

Listing 2-4 accepts a character from the user and displays a message to say whether the character entered was a
vowel, a consonant, or a digit. When CharIn receives a character from the user, the associated condition names are all
set to true or false depending on the value contained in CharIn.

The EVALUATE verb, which is COBOL’s version of switch or case, is shown here at its simplest. It is immensely
powerful, complicated to explain, but intuitively easy to use. In this program, the particular WHEN branch executed
depends on which condition name is true. See anything familiar, Ruby programmers?

CHAPTER 2 ■ COBOL FOUNDATION

34

Listing 2-4. Using the EVALUATE Verb

IDENTIFICATION DIVISION.
PROGRAM-ID. ConditionNames.
AUTHOR. Michael Coughlan.
* Using condition names (level 88's) and the EVALUATE
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CharIn PIC X.
 88 Vowel VALUE "a", "e", "i", "o", "u".
 88 Consonant VALUE "b", "c", "d", "f", "g", "h"
 "j" THRU "n", "p" THRU "t", "v" THRU "z".
 88 Digit VALUE "0" THRU "9".
 88 ValidCharacter VALUE "a" THRU "z", "0" THRU "9".
PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter lower case character or digit. Invalid char ends."
 ACCEPT CharIn
 PERFORM UNTIL NOT ValidCharacter
 EVALUATE TRUE
 WHEN Vowel DISPLAY "The letter " CharIn " is a vowel."
 WHEN Consonant DISPLAY "The letter " CharIn " is a consonant."
 WHEN Digit DISPLAY CharIn " is a digit."
 END-EVALUATE
 ACCEPT CharIn
 END-PERFORM
 STOP RUN.

Chapter Exercise
Write a version of the ConditionNames program in your favorite language. See if you can convince yourself that your
version is as clear, concise, readable, and maintainable as the COBOL version.

Where to Get a COBOL Compiler
Now that you’ve seen the basics of COBOL, it’s time to get the software. A couple of years ago, the question of where to
get a free COBOL compiler would have been difficult to answer. The policies of COBOL vendors, who were locked into
mainframe thought patterns and pricing structures, made it very difficult for interested students to get access to
a COBOL compiler. In very recent years, though, and probably in response to the shortage of COBOL programmers,
a number of options have become available.

Micro Focus Visual COBOL
Micro Focus COBOL is probably the best-known version of COBOL for Windows PCs. Micro Focus Visual COBOL
is the company’s most recent version of COBOL. It implements the OO-COBOL standard and integrates either
with Microsoft Visual Studio (where it acts as one of the standard .NET languages) or with Eclipse. It is available on
Windows, Linux (Red Hat and SuSE) and Unix (Aix, HP-UX, and Solaris).

CHAPTER 2 ■ COBOL FOUNDATION

35

A personal edition of Visual COBOL is available that is free for non-commercial use. The Visual Studio version
can be installed even if Visual Studio is not available, because in that case the Visual Studio Shell edition is installed.

www.microfocus.com/product-downloads/vcpe/index.aspx

OpenCOBOL
OpenCOBOL is an open source COBOL compiler. The OpenCOBOL web site claims to implement a substantial part
of the ANS 85 and ANS 2002 COBOL standards as well as many of the extensions introduced by vendors such as Micro
Focus and IBM.

OpenCOBOL translates COBOL into C. The C code can be compiled using the native C compiler on a variety of
platforms including Windows, Unix/Linux, and Mac OS X.

The compiler is free and is available from www.opencobol.org/.

Raincode COBOL
Raincode is a supplier of programming-language analysis and transformation tools. The company has a version of
COBOL available that integrates with Microsoft Visual Studio and generates fully managed .NET code. The COBOL
compiler is free from www.raincode.com/mainframe-rehosting/.

Compileonline COBOL
An online COBOL compiler is available at compileonline.com. Its data input is somewhat problematic, which limits
its usefulness, but it can be handy if you just want a quick syntax check. See
www.compileonline.com/compile_cobol_online.php.

Fujitsu NetCOBOL
Fujitsu NetCOBOL is a very well-known version of COBOL for Windows. NetCOBOL implements a version of the
OO-COBOL standard, compiles on the .NET Framework, and can interoperate with other .NET languages such as
C# and VB.NET.

A number of other versions of this COBOL are available, including a version for Linux. A trial version is available
for download but there is no free version: www.netcobol.com/product/netcobol-for-net/.

Summary
This chapter explored part of the foundational material required to write COBOL programs. Some of the material
covered was informational, some practical, and some advisory. You saw how COBOL programs are organized
structurally and learned the purpose of each of the four divisions. You examined COBOL metalanguage diagrams
and the COBOL coding and name construction rules. I offered advice concerning name construction and the proper
formatting of program code. Finally, you examined some simple COBOL programs as a preview of the material in
coming chapters.

The next chapter examines how data is declared in COBOL. This chapter is only an introduction, though.
Data declaration in COBOL is complicated and sophisticated because COBOL is mainly about data manipulation.
COBOL data declarations offer many data-manipulation opportunities. Later chapters explore many advanced
data-declaration concepts such as condition names, table declarations, the USAGE clause, and data redefinition using
the REDEFINES clause.

http://www.microfocus.com/product-downloads/vcpe/index.aspx
http://www.cobolstandards.com/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28805
http://www.opencobol.org/
http://www.raincode.com/mainframe-rehosting/
http://compileonline.com/
http://www.compileonline.com/compile_cobol_online.php
http://www.netcobol.com/product/netcobol-for-net/

CHAPTER 2 ■ COBOL FOUNDATION

36

References
 1. Sammet J. The early history of COBOL, 2.6: intended purpose and users. ACM SIGPLAN Notices. 1978; 13(8): 121-161.
 2. Kloth RD. Cardpunch emulator. www.kloth.net/services/cardpunch.php
 3. Myres G. Composite/structured design. New York: Van Nostrand Reinhold; 1978.
 4. Constantine L, with Yourdon E. Structured design. Yourdon Press; 1975.
 5. Page-Jones M. Practical guide to structured systems design. 2nd ed. Englewood Cliffs (NJ): Prentice Hall, 1988.
 6. Stevens W, Myers G, Constantine L. Structured design. In Yourdon E, editor. Classics in software engineering.

Yourdon Press; 1979: 205-232.

COBOL PUZZLE ANSWER

Given the description of BirthDate in Listing 2-5, what do you think would be displayed by the COBOL code in

Listing 2-6?

Listing 2-5. BirthDate data description

01 BirthDate.
 02 YearOfBirth.
 03 CenturyOB PIC 99.
 03 YearOB PIC 99.
 02 MonthOfBirth PIC 99.
 02 DayOfBirth PIC 99.

Listing 2-6. Code manipulating BirthDate and its subordinate items

MOVE 19750215 TO BirthDate
DISPLAY "Month is = " MonthOfBirth
DISPLAY "Century of birth is = " CenturyOB
DISPLAY "Year of birth is = " YearOfBirth
DISPLAY DayOfBirth "/" MonthOfBirth "/" YearOfBirth
MOVE ZEROS TO YearOfBirth
DISPLAY "Birth date = " BirthDate.

COBOL Puzzle Answer

Month is = 02
Century of birth is = 19
Year of birth is = 1952
15/02/1952
Birth date = 00000215

http://www.kloth.net/services/cardpunch.php

37

CHAPTER 3

Data Declaration in COBOL

As you explore the COBOL language, you will notice many differences between it and other programming languages.
Iteration, selection, and assignment are all done differently in COBOL than in languages like C, Java, and Pascal. But
on the whole, these differences are fairly minor—more a question of nuance than a radical departure. When you are
familiar with how iteration and selection work in other languages, COBOL’s implementation requires only a small
mental adjustment. Assignment might create more of a hiccup, but there is nothing too radical even in that. The real
difference between COBOL and these other languages lies in how data is declared.

This chapter explores the different categories of data used in COBOL. It demonstrates how you can create and
use items of each category. Because COBOL’s approach to data declaration affects assignment in COBOL, that topic is
also examined in this chapter.

Categories of Program Data
COBOL programs basically use three categories of data:

Literals•

Figurative constants •

Data items (variables)•

Unlike other programming languages, COBOL does not support user-defined constants.

COBOL Literals
A literal is a data item that consists only of the data item value itself. It cannot be referred to by a name. By definition,
literals are constants in that they cannot be assigned a different value.

There are two types of literal:

Alphanumeric (text/string) literals •

Numeric literals •

Alphanumeric Literals

Alphanumeric literals are enclosed in quotes and consist of alphanumeric characters. Here are some examples:

"William Murphy", "1528", "-1528", "1528.95"

CHAPTER 3 ■ DATA DECLARATION IN COBOL

38

Note ■ Enclosing the text in quotes defines the item as an alphanumeric literal even though the literal value may be

entirely numeric.

Numeric Literals

Numeric literals may consist of numerals, the decimal point, and the plus or minus sign. Numeric literals are not
enclosed in quotes. Here are some examples:

1528, 1528.95, -1528, +1528

Data Items (Variables)
A data item can be defined as a named location in memory in which a program can store a data value and from which
it can retrieve the stored value. A data name, or identifier, is the name used to identify the area of memory reserved
for a data item.

In addition to the data name, a data item must also be described in terms of its basic type (alphabetic,
alphanumeric, numeric) and its size. Every data item used in a COBOL program must have a description in the
DATA DIVISION.

Data Type Enforcement

Languages such as Pascal, Java, and C# may be described as strongly typed languages. In these languages, there are a
number of different data types, and the distinction between them is rigorously enforced by the compiler. For instance,
if a variable is defined as a float, the compiler will reject a statement that attempts to assign a character value to
that variable.

In COBOL, there are only three types of data: numeric, alphanumeric (text/string), and alphabetic. The
distinction between these data types is only weakly enforced by the compiler. In COBOL, it is possible to assign a
non-numeric value to a data item that has been declared to be numeric.

The problem with this lax approach to data typing is that COBOL programs crash (halt unexpectedly) if they
attempt to do computations on numeric data items that contain non-numeric data. In COBOL, therefore, it is the
responsibility of the programmer to ensure that non-numeric data is never assigned to a numeric data item intended
for use in a calculation. Programmers who use strongly typed languages do not need to have this level of discipline
because the compiler ensures that a variable of a particular type can only be assigned an appropriate value.

Bug Alert ■ Attempting to perform computations on numeric data items that contain non-numeric data is a frequent

cause of program crashes for beginning COBOL programmers. This can easily happen if the data item has not been

initialized to a valid starting value.

Figurative Constants
Unlike most other programming languages, COBOL does not provide a mechanism for creating user-defined, named
constants. This is a serious deficiency. Named constants make a program more readable and more maintainable.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

39

For instance, although a literal value of .06 (representing the current sales tax rate of 6%) could be used
throughout a program whenever the sales tax rate was required, the program would be more readable if the value was
assigned to the named constant SalesTaxRate. Similarly, using a named constant would make maintenance easier.
If the actual sales tax rate changed, only the constant definition would have to be updated instead of all the places
in the program where the literal sales tax rate value was used.

In COBOL, a data item can be assigned a value, but there is no way to ensure that, somewhere in the program,
some maintenance programmer has not assigned a different value to the data item.

ISO 2002 ■ Although this book adheres to the ANS 85 standard, you may be interested to know that this deficiency has

been addressed in ISO 2002 COBOL standard by means of the CONSTANT clause entry.

Code example:

01 SalesTaxRate CONSTANT AS .06.

Although COBOL does not allow user-defined named constants, it does have a set of special constants called
figurative constants. Figurative constants are special constant values that may be used wherever it is legal to use a
literal value. However, unlike a literal, when a figurative constant is assigned to a data item, it fills the entire item,
overwriting everything in it. Figurative constants are often used to initialize data items. For instance, MOVE SPACES TO
CustomerName fills the whole data item with spaces, and MOVE ZEROS TO FinalTotal fills that data item with zeros.
Table 3-1 shows the COBOL figurative constants.

Table 3-1. Figurative Constants

Figurative Constant Behavior

ZERO
ZEROS
ZEROES

Behaves like one or more instances of the literal value 0. The constants ZERO, ZEROS, and
ZEROES are all synonyms. Whichever is used, the effect is exactly the same.

SPACE
SPACES

Behaves like one or more instances of the space character. SPACE and SPACES are
synonyms.

HIGH-VALUE
HIGH-VALUES

Behaves like one or more instances of the character in the highest ordinal position in the
current collating sequence (usually the ASCII character set).
HIGH-VALUE and HIGH-VALUES are synonyms.

LOW-VALUE
LOW-VALUES

Behaves like one or more instances of the character in the lowest ordinal position in the
current collating sequence (the null character [hex 00] in the ASCII character set).
LOW-VALUE and LOW-VALUES are synonyms.

QUOTE
QUOTES

Behaves like one or more instances of the quote character. However, it cannot be used to
bracket a non-numeric literal instead of the actual quote character. For instance, QUOTE
Freddy QUOTE cannot be used in place of "Freddy".
QUOTE and QUOTES are synonyms.

ALL literal Allows an ordinary literal character to behave as if it were a figurative constant.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

40

Elementary Data Items
An elementary item is the equivalent of a variable in other languages. It is an atomic data item that is not further
subdivided. The type and size of an elementary data item are the type and size specified in its PICTURE clause.

In COBOL, an elementary data item declaration consists of a line of code containing the following
mandatory items:

A level number •

A data-name or identifier•

A • PICTURE clause

The declaration may also take a number of optional clauses. The most common optional clause is the VALUE
clause, which assigns an initial, or starting, value to a data item.

Elementary data items that are not a subdivision of a group item must use a level number of 01 or 77. This book
uses 01 for these items. A discussion of the role of level 77s is reserved for later in this chapter.

Note ■ A data item declaration may also take a number of other optional clauses such as USAGE, BLANK WHEN ZERO,

and JUSTIFIED.

Declaring Elementary Data Items
In typed languages, the data type specified is important because the type determines the range of values that the
item can store and governs the operations that can be applied to it. For instance, a Java int data item can store values
between -2,147,483,648 and 2,147,483,647 and can only be used in operations that expect an operand of that, or a
compatible, type. From the type of the item, the compiler can establish how much memory to set aside for storing
its values.

COBOL is not a typed language, so it employs a very different mechanism for describing its data items. COBOL
uses what could be described as a “declaration by example” strategy. In effect, you provide the system with an
example, or template, or picture of the size and type (alphabetic, numeric, alphanumeric) of the item. From this
PICTURE clause, the compiler derives the information necessary to allocate the item.

PICTURE Clause Symbols
To create the required picture, you use a set of symbols. The most common symbols used in standard PICTURE clauses
are shown in Table 3-2.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

41

Note ■ There are many more picture symbols than those listed in Table 3-2. Most of the remaining symbols will be

introduced when you explore edited pictures in Chapter 9.

PICTURE Clause Notes
Although the word PICTURE can be used when defining a PICTURE clause, it is normal to use the abbreviation PIC. The
recurring symbols in a PICTURE clause can become difficult to count, especially at a glance, so it is normal practice to
specify recurring symbols by using a repeat factor inside brackets. For instance:

PIC 9(8) is equivalent to PICTURE 99999999.

PIC 9(7)V99 is equivalent to PIC 9999999V99.

PICTURE X(15) is equivalent to PIC XXXXXXXXXXXXXXX.

PIC S9(5)V9(4) is equivalent to PIC S99999V9999.

PICTURE 9(18) is equivalent to PIC 999999999999999999.

The repeat factor in brackets is normally used for any picture string with more than three symbols. For instance,
a three-digit data item might be described as PIC 999, but a four-digit item would be PIC 9(4).

Numeric values can have a maximum of 18 digits, whereas the limit on string values (PIC X) is usually system
dependent.

ISO 2002 ■ In the 2002 standard, the maximum number of digits in a numeric literal or PICTURE clause was increased

from 18 digits to 31 digits.

Table 3-2. Common Symbols Used in Standard PICTURE Clauses

Symbol Meaning

A Indicates an occurrence of any alphabetic character (a to z plus blank) at the corresponding position in
the picture:

01 ThreeLetterAcronym PIC AAA VALUE "DNA".

X Indicates an occurrence of any character from the character set at the corresponding position in the
picture:

01 Salutation PIC XXX VALUE "Mr.".

9 Indicates the occurrence of a digit at the corresponding position in the picture:

01 CardinalValue PIC 9(4) VALUE 1234.

V Indicates the position of the decimal point in a numeric value. It is often referred to as the assumed
decimal point because it is not part of the value but is rather information about the value:

01 TotalSales PIC 9(5)V99 VALUE ZEROS.

S Indicates the presence of a sign, and can only appear at the beginning of a picture:

01 IntegerValue PIC S9(4) VALUE -1234.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

42

Example Declarations
In typed languages, because the memory required is defined by a variable’s data type, a picture of what is happening
to the data in the memory is not useful. In COBOL, however, knowing what is happening to the data in memory is very
important for a proper understanding of how data declaration and data movement work. For this reason, many of the
examples in this book are accompanied by an illustration that attempts to show what is happening to the data.

Consider the examples that follow. A simplified version of what is happening in memory is shown in Example 3-1.
Later examples use more granular illustrations that show each character of storage. One thing you can already note
from even this simple example is that although TaxRate is given an initial value of .35, what is actually in memory
is 35. The V in the PICTURE clause tells COBOL to treat this item as if it had a decimal point in the leftmost character
position. Example 3-1 also reveals that the values in alphanumeric data items are left aligned and space filled
(the example shows the space character as *), whereas numeric data items seem to be right aligned (they aren’t—see
the “MOVE Rules” section later in this chapter) and zero filled.

Example 3-1. Data Items and Memory Representation

WORKING-STORAGE SECTION

Num1 Num2 TaxRate CustomerName

000 015 35 Mike***********

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 999 VALUE ZEROS.
01 Num2 PIC 999 VALUE 15.
01 TaxRate PIC V99 VALUE .35.
01 CustomerName PIC X(15) VALUE "Mike".

Assignment in COBOL
In typed languages, the assignment operation is simple because assignment is only allowed between items with
compatible types. The simplicity of assignment in these languages is achieved at the cost of having a large number
of data types.

In COBOL, there are only three basic data types:

Alphabetic (• PIC A)

Alphanumeric (• PIC X)

Numeric (• PIC 9)

But this simplicity is achieved at the cost of having a complex assignment statement.

The MOVE Verb
Assignment in COBOL is achieved using the MOVE verb. The COMPUTE verb, which assigns the result of an arithmetic
expression to a data item, should never be used to assign the value of one item to another. Similarly, the SET verb,
which can be used to set a condition name to TRUE or to change the value in a table index, should only be used for
these specialized purposes. All ordinary assignments should use MOVE.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

43

MOVE Syntax
The MOVE metalanguage makes the verb seem simple but its operation is complicated by a set of governing rules. The
metalanguage for MOVE is as follows:

MOVE Source$#il TO Destination$#i…

MOVE copies data from the source identifier (or literal) to one or more destination identifiers. The source and
destination identifiers can be group or elementary data items.

In most programming languages, the data movement in an assignment statement is from right to left. That is,
data is copied from the source item on the right to the destination item on the left (for example, Dest := Source Modula-2
or Dest = Source Java). COBOL does things differently. In COBOL, the MOVE verb copies data from the source item on the
left to the destination item(s) on the right. Almost all the COBOL verbs conform to this pattern of data movement. The
COMPUTE verb, which has its destination data item on the left, is the one exception.

MOVE Rules
The major rules for the MOVE verb are given here. As with all the other verbs, you need to consult your COBOL manual
for the more esoteric rules:

The source and destination identifiers can be either elementary or group data items. •

When data is copied into a destination item, the contents of the destination item are •
completely replaced. The contents of the source item are undisturbed.

If the number of characters in the source item is • too few to fill the destination item, the rest of
the destination item is filled with zeros or spaces.

If the number of characters in the source item is • too many to fit in the destination item, the
characters that cannot fit are lost. This is known as truncation.

When the destination item is alphanumeric or alphabetic (• PIC X or A), data is copied into the
destination area from left to right, with space-filling or truncation on the right.

When the destination item is numeric or edited numeric, data is • aligned along the decimal
point with zero-filling or truncation as necessary.

When the decimal point is not explicitly specified in either the source or destination item(s), •
the item is treated as if it had an assumed decimal point immediately after its rightmost
character.

MOVE Combinations
Although COBOL is much less restrictive in this respect than many other languages, certain combinations of sending
and receiving data types are not permitted (even by COBOL) and will be rejected by the compiler. The valid and
invalid MOVE combinations are shown in Figure 3-1.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

44

MOVE Examples
Having a dusty set of rules is all very well, but the operation of the MOVE verb can only be appreciated by examining
some examples. The examples in this section only feature elementary data items. Things get a lot more exciting when
MOVE is used with a group item; you will see some examples of group item moves at the end of the chapter.

Alphanumeric MOVEs

Remember the following rule for alphanumeric MOVEs: when the destination item is alphanumeric or alphabetic
(PIC X or A), data is copied into the destination area from left to right with space-filling or truncation on the right.

In Example 3-2, the data item Surname is described as having sufficient storage for eight alphanumeric characters.
It has been assigned an initial value of "COUGHLAN".

Example 3-2. Alphanumeric Moves with Truncation and Space Filling

01 Surname PIC X(8) VALUE "COUGHLAN". Surname

MOVE "SMITH" TO Surname C O U G H L A N

MOVE "FITZWILLIAM" TO Surname S M I T H * * *

F I T Z W I L L

When the first move is executed, "SMITH" is copied into Surname from left to right. Because "SMITH" has too few
characters to fill Surname, the rest of the data item is filled with spaces.

The second move copies "FITZWILLIAM" into Surname from left to right. Because the literal is too large to fit into
Surname, the last three letters (IAM)are truncated.

Figure 3-1. Valid and invalid MOVE combinations
Source: J.M. Triance, Structured COBOL Reference Summary, National Computing Centre Limited, N.C.C Publications,
1984, page 48.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

45

Numeric MOVEs

Remember the following rule for numeric MOVEs: when the destination item is numeric or edited numeric, data is
aligned along the decimal point with zero-filling or truncation as necessary. An edited numeric data item is one that
contains symbols such as $ and , and . that format data for output. They are not numeric items, and they can’t be
used in calculations (except as the receiving field), but they do obey the decimal-point alignment and zero-filling
rules. Edited numeric data items are discussed in Chapter 9.

When the decimal point is not explicitly specified in either the source or destination item(s), the item is treated as
if it had an assumed decimal point immediately after its rightmost character.

Example Set 1

In Example 3-3, SalePrice is a data item described as PIC 9(4)V99: that is, a decimal number with four digits before
the decimal point and two after it. For each MOVE statement, a diagram showing the contents of the SalePrice data
item is given. Each diagram shows the actual data moved in black, the filled zeros in grey, and the truncated digits
outside the memory area. The position of the assumed decimal point is indicated with an arrow.

When the figurative constant ZEROS (or ZERO or ZEROES) is moved to SalePrice, the data item is filled with zeros.
When the numeric literal 25.5 is moved to SalePrice, there is alignment along the decimal point of the literal and

the assumed decimal point in SalePrice, with the result being zero-filling on both the left and right sides.
When 7.553 is moved to SalePrice, there is alignment of the decimal points, with the result being zero-filling on

the left and truncation of the digit 3 on the right. In the diagram the truncated digit is shown outside the memory area.
When 93425.158 is moved to SalePrice, there is alignment of the decimal points, with the result that the most

significant digit is truncated on the left and the least significant on the right.
The literal value 128 contains no decimal point, so it is treated as if it had a decimal point in the rightmost

position. This decimal point is aligned with assumed decimal point in SalePrice, with the result that there is zero
filling on the left and right.

Example 3-3. Numeric MOVEs with Alignment Along the Decimal Point, Truncation, and Zero-Filling

01 SalePrice PIC 9(4)V99. SalePrice

MOVE ZEROS TO SalePrice 0 0 0 0 0 0

MOVE 25.5 TO SalePrice 0 0 2 5 5 0

MOVE 7.553 TO SalePrice 0 0 0 7 5 5 3

MOVE 93425.158 TO SalePrice 9 3 4 2 5 1 5 8

MOVE 128 TO SalePrice 0 1 2 8 0 0

•

Inadvertent truncation is obviously not desirable; but unfortunately, for MOVE operations at least, there is
no protection against it. It is up to you to ensure that the data item is large enough to take the data moved into it.
Inadvertent truncation is much more likely when calculations are involved. When a number of values are multiplied
together, you might not realize that in some cases the result will be too large for the receiving data item. For
computations, you can protect against inadvertent truncation by means of the ON SIZE ERROR clause. When this
clause is used, it acts like a specialized exception handler. Chapter 4 discusses ON SIZE ERROR when you examine the
operation of the COBOL arithmetic verbs.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

46

Example Set 2

In Example 3-4, NumOfEmployees is described as a cardinal number capable of holding a value between 0 and 999.
Salary is a decimal number data item with four digits before the decimal point and two after it. CountyName is an
alphanumeric data item nine characters long.

The literal value 6745 has no decimal point, so it is treated as if the number has a decimal point in the rightmost
position (6745.). NumOfEmployees also contains no explicit decimal point, so it is treated as if the data item has an
assumed decimal point specified in the rightmost position:

01 NumOfEmployees PIC 999V

When the literal 6745 is moved to NumOfEmployees, there is alignment along these decimal points. The result is
truncation of the most significant digit.

When NumOfEmployees (treated as if defined as 01 NumOfEmployees PIC 999V) is moved to Salary, which does
have an explicit decimal point, there is alignment along the decimal points, with the result being zero-filling on both
the left and right.

When the literal value 12.4 is moved to NumOfEmployees (treated as if defined as 01 NumOfEmployees PIC 999V),
there is alignment along the decimal points with truncation of the digit 4 on the right and zero-filling on the left.

When the literal “Galway” is moved to CountyName, the data movement starts filling the data item from the left.
When the value does not entirely fill the data item, the remaining character positions are space-filled.

When the figurative constant ALL and its associated character literal are moved to a data item, the data item is
entirely filled with the character specified. In this example, the character specified after ALL is the hyphen,
so CountyName is filled with hyphens.

Example 3-4. Numeric and Alphanumeric MOVEs

01 NumOfEmployees PIC 999.
NumOfEmployees

MOVE 12.4 TO NumOfEmployees 0 1 2 4 0
MOVE 6745 TO NumOfEmployees 6 7 4 5 0 0

•

01 Salary PIC 9999V99.
Salary

MOVE NumOfEmployees TO Salary 0 7 4 5 0 0

•

01 CountyName PIC X(9).
CountyName

MOVE "GALWAY" TO CountyName G A L W A Y * * *
MOVE ALL "@" TO CountyName @ @ @ @ @ @ @ @ @

Structured Data
In COBOL, the term elementary item describes an ordinary data item or variable. An elementary item is a data item
that is atomic: it has not been further subdivided. Every elementary item must have a PICTURE clause. The PICTURE
clause specifies the type and size of the storage required for the data item.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

47

Group Data Items
Sometimes when you are manipulating data it is convenient to treat a collection of elementary items as a single
group. For instance, you might want to group the data items Forename, MiddleInitial, and Surname as the group
EmployeeName. Alternatively, you might want to group the YearOfBirth, MonthOfBirth, DayOfBirth data items as the
group DateOfBirth. In addition, you might want to collect both these group items and some elementary items in an
employee record description.

In COBOL, you can easily create groups like these using group items. A group item in COBOL is a data item that is
a collection of elementary and/or group data items. It is a heterogeneous data structure. In languages like Pascal and
Modula-2, group items are referred to as records. In C and C++, they are called structs. Java has no real equivalent.

The constituent parts of a group item may be elementary items or other group items. But ultimately, every
group item must be defined in terms of its subordinate elementary items. Because a group item is ultimately defined
in terms of elementary items, it cannot have a PICTURE clause, and its size is the sum of the sizes of its subordinate
elementary items. A group item is simply a convenient name that you give to a collection of (ultimately) elementary
items. Using that name, you can manipulate the collection.

In a group item, the hierarchical relationship between the various subordinate items of the group is expressed
using level numbers. The higher the level number, the lower the item is in the hierarchy and the more atomic it is.
If a group item is the highest item in a data hierarchy, it is referred to as a record and uses the level number 01.

The type of a group item is always assumed to be alphanumeric (PIC X, even if it contains only numeric data
items) because a group item may have several different data items and types subordinate to it, and an alphanumeric
picture is the only one that can support such collections.

Level Numbers
Level numbers 01 through 49 are the general level numbers used to express data hierarchy. There are also special level
numbers such as 66, 77, and 88:

Level • 66 is used with the RENAMES clause. The RENAMES clause allows you to apply a new name
to a data-name or group of contiguous data-names. It is similar to the REDEFINES clause; but
because of the maintenance problems associated with it, the RENAMES clause has largely fallen
into disuse and in some programming shops is banned. You learn more about the operation
and shortcomings of the RENAMES clause when the REDEFINES clause is examined later in
the book.

Level • 77 is used to identify a noncontiguous, single data item in the WORKING-STORAGE or
LINKAGE sections; it cannot be subdivided, and it cannot be part of a group item. In the past,
77s were used for efficiency purposes (77s used less memory than the same items defined as
a level 01). Nowadays level 01 is often used instead of 77. Some programming shops take the
view that, instead of declaring large numbers of indistinguishable 77s, it is better to collect the
individual items into named groups for documentation purposes even if the group, as a group,
has no practical purpose. For instance, you might group individual totals such as ShopTotal,
CityTotal, StateTotal, and CountryTotal under the group item Totals for documentation
purposes. You could not create such a grouping if the items were declared using level 77s.

Level • 88 is used to implement condition names. Whereas level 66 and level 77 are not used
in modern COBOL, level 88s and condition names are very important, useful, and unique
weapons in COBOL’s armory. Chapter 5 provides a detailed examination of the declaration
and use of level 88s and condition names.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

48

Data Hierarchy
Level numbers are used to express data hierarchy. The best way to understand the data hierarchy and the data-
manipulation opportunities afforded by this organization is by means of an example.

Suppose you want to store information about students. You can create a data item called StudentRec and
describe it as follows:

01 StudentRec PIC X(44).

You can load some data into StudentRec using this statement:

MOVE "1205621William Fitzpatrick 19751021LM051385" TO StudentRec.

Once you have done this, the StudentRec area of storage is instantiated with the data as shown in Example 3-5.

Example 3-5. StudentRec as an Elementary Data Item

WORKING-STORAGE SECTION.
01 StudentRec PIC X(44).

StudentRec

1 2 0 5 6 2 1 W I l l i a m F i t z p a t r i c k 1 9 7 5 1 0 2 1 L M 0 5 1 3 8 5

You can see that the data in StudentRec consists of a number of pieces of information: the student’s ID, the
student’s name, the date of birth, the course ID, and the student’s grade point average (GPA). But because you have
defined StudentRec as an elementary item (an undifferentiated string of characters), you have no easy way of getting
at the individual pieces of data. You can move or display the contents of the entire string, but you cannot easily, for
instance, display only the date of birth or the student’s name.

What you need to do is to describe StudentRec as a group item that is subdivided into StudentId, StudentName,
DateOfBirth, CourseId, and GPA. The revised StudentRec description and the way it appears in storage are shown
in Example 3-6.

Example 3-6. StudentRec as a Group Data Item

WORKING-STORAGE SECTION.
01 StudentRec.
 02 StudentId PIC 9(7).
 02 StudentName PIC X(21).
 02 DateOfBirth PIC X(8).
 02 CourseId PIC X(5).
 02 GPA PIC 9V99.

StudentRec

StudentId StudentName DateOfBirth CourseId GPA

1 2 0 5 6 2 1 W I l l i a m F i t z p a t r i c k 1 9 7 5 1 0 2 1 L M 0 5 1 3 8 5

StudentRec has been subdivided into a number of individual data items. Because StudentRec is now a group
item, it has no PICTURE clause. Its size is the sum of the sizes of the elementary items, and its type is alphanumeric.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

49

Defining StudentRec this way presents you with a number of data-manipulation opportunities. You can still
manipulate the whole record. For instance, you can flush the entire 44-character area with spaces using a statement
like this:

MOVE SPACES TO StudentRec

Or you can move the entire contents to another data item with a statement such as

MOVE StudentRec to StudentRecCopy

But now you can manipulate the individual pieces of data with statements such as these:

DISPLAY "Student name = " StudentName
MOVE ZEROS TO StudentId
MOVE "LM067" TO CourseId
DISPLAY "Current GPA = " GPA
MOVE 2.55 TO GPA
MOVE 19751022 TO DateOfBirth

It is useful to be able to access the individual pieces of data that constitute StudentRec, but the structure is still
not quite granular enough. For instance, you can only access the entire student name. It would be nice to be able to
manipulate the forename and the surname individually. Similarly, you would like to be able to access the year, month,
and day of birth as separate items.

To make these changes, you need to describe StudentName and DateOfBirth as group items. The revised
StudentRec description and the effect of this restructuring on the data storage are shown in Example 3-7.

Example 3-7. StudentRec as a Group Data Item

WORKING-STORAGE SECTION.
01 StudentRec.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Forename PIC X(9).
 03 Surname PIC X(12).
 02 DateOfBirth.
 03 YOB PIC 9(4).
 03 MOB PIC 99.
 03 DOB PIC 99.
 02 CourseId PIC X(5).
 02 GPA PIC 9V99.

StudentRec

StudentId
StudentName DateOfBirth

CourseId GPA
Forename Surname YOB MOB DOB

1 2 0 5 6 2 1 W I l l i a m F i t z p a t r i c k 1 9 7 5 1 0 2 1 L M 0 5 1 3 8 5

CHAPTER 3 ■ DATA DECLARATION IN COBOL

50

With this new structure, many more data-manipulation opportunities become available. You can still access
StudentRec, StudentId, StudentName, DateOfBirth, CourseId, and GPA as before, but now you can also manipulate
the data at a more granular level using statements like these:

DISPLAY "Student date of birth is " DOB "/" MOB "/" YOB
DISPLAY "Student name = " Surname "," SPACE Forename
MOVE "Billy" TO Forename
MOVE 22 TO DOB

The first statement displays the date of birth on the computer screen:

Student date of birth is 21/10/1975

The second statement displays the student’s name:

Student name = Fitzpatrick, William

COBOL Detail ■ When a figurative constant is used with the DISPLAY verb, it inserts only one character; it does not

matter if SPACE or SPACES is used, because they are synonyms. If you wanted to insert two spaces in the previous statement,

you would have to write the statement as follows:

DISPLAY "Student name = " Surname "," SPACE SPACE Forename

Level-Number Relationships Govern Hierarchy
Level numbers express the data hierarchy. A data hierarchy starts with level number 01; the subdivisions then use any
number between 02 and 49 to express the hierarchy. The rule to remember is this: a data item with a level number
higher than the preceding data item is a subdivision of that data item; a data item with the same level number as
the preceding item is at the same level as that item; a data item with a level number lower than the preceding item
is at the same level as its first matching preceding level number. For instance, in Example 3-7, Forename has a level
number higher than StudentName, so Forename is a subdivision of StudentName. Surname has the same level number
as Forename, so it too is a subdivision of StudentName.

In a hierarchical data description, what is important is the relationship of the level numbers to one another,
not the actual level numbers used. For instance, the record descriptions shown in Example 3-8, Example 3-9, and
Example 3-10 are equivalent.

Example 3-8 shows my preferred organization and the one used in this book. This organization seems logical and
offers benefits of clarity by making the level numbers coincidental with the levels in the structure.

Example 3-8. Preferred Format

01 StudentRec.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Forename PIC X(9).
 03 Surname PIC X(12).
 02 DateOfBirth.
 03 YOB PIC 9(4).
 03 MOB PIC 99.
 03 DOB PIC 99.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

51

 02 CourseId PIC X(5).
 02 GPA PIC 9V99.

Example 3-9 shows that level numbers are used only to show the relationship with the immediately preceding
items. For instance, the fact that YOB, MOB, and DOB use level number 14 and Forename and Surname use level 12 is not
relevant. What is relevant is that the level numbers show that the items are subordinate to their respective preceding
items (StudentName in the first case and DateOfBirth in the second).

Example 3-9. Arbitrary Format

01 StudentRec.
 07 StudentId PIC 9(7).
 07 StudentName.
 12 Forename PIC X(9).
 12 Surname PIC X(12).
 07 DateOfBirth.
 14 YOB PIC 9(4).
 14 MOB PIC 99.
 14 DOB PIC 99.
 07 CourseId PIC X(5).
 07 GPA PIC 9V99.

Example 3-10 uses a layout often found in programming shops and COBOL books. This organization lets you
create group items by slipping a group item into the description without otherwise disturbing the layout (see the
MOBandDOB data item in Example 3-11). This seems like a good idea, and it is is part of the coding standards for
some programming shops; but over time, this approach causes the structure’s clarity to deteriorate. In my view,
if the data hierarchy needs to be reorganized, then it should be reorganized properly, so that future maintenance
programmers will have no difficulty in comprehending the structure created.

Example 3-10. Common Format

01 StudentRec.
 05 StudentId PIC 9(7).
 05 StudentName.
 10 Forename PIC X(9).
 10 Surname PIC X(12).
 05 DateOfBirth.
 10 YOB PIC 9(4).
 10 MOB PIC 99.
 10 DOB PIC 99.
 05 CourseId PIC X(5).
 05 GPA PIC 9V99.

Example 3-11. Common Format in Use

01 StudentRec.
 05 StudentId PIC 9(7).
 05 StudentName.
 10 Forename PIC X(9).
 10 Surname PIC X(12).
 05 DateOfBirth.
 08 YOB PIC 9(4).

CHAPTER 3 ■ DATA DECLARATION IN COBOL

52

 08 MOBandDOB.
 10 MOB PIC 99.
 10 DOB PIC 99.
 05 CourseId PIC X(5).
 05 GPA PIC 9V99.

Summary
This chapter provided an introduction to data in COBOL. It introduced the different types of data used, and it showed
how you can create and use variable data in the form of elementary data items. The chapter examined the assignment
operation and discussed the data-manipulation opportunities afforded by the hierarchical structure of group item
data declarations.

But this is just an introduction to data declaration in COBOL. In the rest of this book, you expand your knowledge
of data declaration by exploring such topics as the implicit redefinition of data items in the FILE SECTION, the
operation of the REDEFINES clause, the preparation of data for output using edited pictures, the USAGE clause, and the
declaration of tabular information.

LANGUAGE KNOWLEDGE EXERCISE

Using a 2B pencil, write your answer to each exercise question in the area provided.

1. Create an elementary data item called TaxAmount to hold a value between 0 and 99,999.99.

2. Create an alphanumeric elementary data item called VideoName large enough to hold 35

characters. Define VideoName so that it is initialized with spaces when the program starts.

3. A data item called MinimumWage is defined as PIC 9V99. Show what happens to the data

after execution of the statement

MOVE 123.5 TO MinimumWage

MinimumWage

4. A group item called CustomerRec is defined

01 CustomerRec.
 02 CustId PIC 9(5) VALUE ZEROS.
 02 CustName.
 03 Initials PIC XX VALUE SPACES.
 03 Surname PIC X(4) VALUE SPACES.
 02 Gender PIC X. VALUE SPACES.
 02 Payment PIC 9(5)V99 VALUE ZEROS.

CHAPTER 3 ■ DATA DECLARATION IN COBOL

53

 a. A partial diagram representing the CustomerRec is provided. Complete the diagram by

showing how the subordinate data items map to the 19 characters of storage reserved

for CustomerRec.

 b. In the first row of the diagram, show how each VALUE clause initializes the data items in

CustomerRec.

 c. For each statement in the following program, show what happens to the data in

CustomerRec. Use a row for each statement.

PROCEDURE DIVISION.
10-BEGIN.
MOVE "45145MCRyanF23445.67" TO CustomerRec
MOVE "Male" TO Gender
MOVE "GSPower" TO CustName
MOVE "Fitzroy" TO Surname
MOVE 34 TO Cust-Payment
STOP RUN.

CustomerRec

CustId
CustName

Gender Payment
Initials� Surname

LANGUAGE KNOWLEDGE EXERCISE—ANSWERS

1. Create an elementary data item called TaxAmount to hold a value between 0 and 99,999.99.

01 TaxAmount PIC 9(5)V99.

2. Create an alphanumeric elementary data item called VideoName large enough to hold 35

characters. Define VideoName so that it is initialized with spaces when the program starts.

01 VideoName PIC X(35).

CHAPTER 3 ■ DATA DECLARATION IN COBOL

54

3. A data item called MinimumWage is defined as PIC 9V99. Show what happens to the data

after execution of the statement

MOVE 123.5 TO MinimumWage

MinimumWage

3 5 0

•

4. A group item called CustomerRec is defined as

01 CustomerRec.
 02 CustId PIC 9(5) VALUE ZEROS.
 02 CustName.
 03 Initials PIC XX VALUE SPACES.
 03 Surname PIC X(4) VALUE SPACES.
 02 Gender PIC X. VALUE SPACES.
 02 Payment PIC 9(5)V99 VALUE ZEROS.

 a. A partial diagram representing the CustomerRec is provided. Complete the diagram by

showing how the subordinate data items map to the 19 characters of storage reserved

for CustomerRec.

 b. In the first row of the diagram, show how each VALUE clause initializes the data items in

CustomerRec.

 c. For each statement in the following program, show what happens to the data in

CustomerRec. Use a row for each statement.

PROCEDURE DIVISION.
10-BEGIN.
MOVE "45145MCRyanF23445.67" TO CustomerRec
MOVE "Male" TO Gender
MOVE "GSPower" TO CustName
MOVE "Fitzroy" TO Surname
MOVE 34 TO Cust-Payment
STOP RUN.

CustomerRec

CustId
CustName

Gender Payment
Initials Surname

0 0 0 0 0 * * * * * * * 0 0 0 0 0 0 0

4 5 1 4 5 M C R y a n F 2 3 4 4 5 6 7

4 5 1 4 5 M C R y a n M 2 3 4 4 5 6 7

4 5 1 4 5 G S P o w e M 2 3 4 4 5 6 7

4 5 1 4 5 G S F i t z M 2 3 4 4 5 6 7

4 5 1 4 5 G S F i t z M 0 0 0 3 4 0 0

55

CHAPTER 4

Procedure Division Basics

The three preceding chapters covered much of the background material you need before you can write useful
programs. Chapter 1 was motivational, Chapter 2 dealt with the structure of COBOL programs, and in Chapter 3 you
learned how to define the data storage that dynamic programs require to be useful.

The PROCEDURE DIVISION contains the code used to manipulate data described in the DATA DIVISION. This
chapter examines some of the basic PROCEDURE DIVISION commands. You learn how to get data from the user, how to
use the COBOL arithmetic verbs to do calculations on the data, and how to display the results on the computer screen.

Input and Output with ACCEPT and DISPLAY
In COBOL, the ACCEPT and DISPLAY verbs are used to read from the keyboard and write to the screen. Input
and output using these commands is somewhat primitive. The original purpose of these commands was not to
communicate with the end user but for use in a batch-programming environment, to allow interaction with the
computer operators. Because computer operators are expert users and the level of their interaction with the program
was limited to viewing alerts and action prompts or entering the occasional file name, no great sophistication was
required in the ACCEPT and DISPLAY commands.

In recent years, however, many implementers have found a need for more powerful versions of ACCEPT and
DISPLAY in order to allow online systems to be created. These implementers have augmented the ACCEPT and DISPLAY
syntax to allow such things as cursor positioning, character attribute control, and auto-validation of input. In some
cases, they have even implemented a special SCREEN SECTION in the DATA DIVISION.

In a real environment, console-based (as opposed to Windows-based) input and output operations would
be handled either by implementer-enhanced versions of ACCEPT and DISPLAY or by calls to forms-management or
transaction-processing software such as Terminal Data Management System (TDMS), DECforms, and Customer
Information Control System (CICS).

This book considers only the standard ACCEPT and DISPLAY syntax. If the vendor of your version of COBOL offers
extended ACCEPT and DISPLAY syntax, you should read the manual to discover how these extensions work.

The DISPLAY Verb
The DISPLAY verb is used to send output to the computer screen or to a peripheral device. A single DISPLAY can be
used to display several data items or literals or any combination of these. The concatenation required by some other
languages is not required for the DISPLAY verb.

Metalanguage diagrams are used to describe the syntax of COBOL verbs and other elements. The metalanguage
for the DISPLAY verb is given in Figure 4-1. In case you have forgotten how to interpret these diagrams, see
“Metalanguage Reminder” for a brief refresher on the meaning of the symbols.

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

56

METALANGUAGE REMINDER

In the COBOL syntax diagrams (the COBOL metalanguage), uppercase words are keywords. If underlined, they are

mandatory. In addition

• { } brackets mean one of the options must be selected.

• [] brackets mean the item is optional.

An ellipsis (• ...) means the item may be repeated at the programmer’s discretion.

The symbols used in the syntax diagram identifiers have the following significance:

• $ indicates a string (alphanumeric) item.

• # indicates a numeric item.

• i indicates that the item can be a variable identifier.

• l indicates that the item can be a literal.

Notes

As the ellipsis (...) in the metalanguage shows, a single DISPLAY can be used to display several data items or literals
or any combination of these. The items displayed must be USAGE DISPLAY items. USAGE COMP or INDEX will not display
correctly. USAGE IS DISPLAY is the default for COBOL data items; it means the data is held in a displayable format. For
efficiency purposes, it is also possible to hold data in a binary format that is not displayable. The USAGE clause, which
you examine later in the book, is used when you want to hold a data item in one of the more computationally efficient
binary formats. For instance:

01 SaleValue PIC 9(5)V99 USAGE IS COMP.
01 TableSubscript USAGE IS INDEX.

The default display device is the computer screen, but you can use other devices for output by specifying a
mnemonic-name with the UPON clause. Mnemonic-names are used to make programs more readable and more
maintainable; they are devised by programmers to represent peripheral devices (such as serial ports). A name is
connected to an actual device by an entry in the SPECIAL-NAMES paragraph of the CONFIGURATION SECTION in the
ENVIRONMENT DIVISION. The actual device to which the mnemonic-name is connected is defined by the language
implementer. Consult your COBOL manual to learn what devices your implementer supports.

Ordinarily, after data is displayed on the computer screen, the onscreen cursor moves to the next row.
Sometimes, however, you want the cursor to remain on the same row. In these cases, you can use the WITH NO
ADVANCING clause to ensure that the cursor does not move to the next row.

Figure 4-1. Metalanguage for the DISPLAY verb

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

57

DISPLAY Examples

This section gives some illustrative DISPLAY examples. The DISPLAY in eg1 sends the data in PrinterSetupCodes to
the device represented by the mnemonic-name PrinterPort1. The output from the remaining examples is shown
in the Display Results diagram. Note that in eg4, the separator spaces inserted between the statement operands have
no effect on the output. In a COBOL statement, you can insert separator commas, spaces or semicolons wherever
you want to make a statement more readable. Also note that in eg5, the figurative constants SPACE and SPACES are
synonyms; they both insert only a single space. Note too that no concatenation operator is required to bind the data
items and figurative constants into a single string

eg1. DISPLAY PrinterSetupCodes UPON PrinterPort1

eg2. MOVE 3456 TO FinalTotal
 DISPLAY "The final total is " FinalTotal

eg3. DISPLAY "One, " WITH NO ADVANCING
 DISPLAY "two, " WITH NO ADVANCING
 DISPLAY "three."

eg4. DISPLAY 1 "," 2 "," 3 "."

eg5. MOVE 10 TO DayOfBirth
 MOVE 12 TO MonthOfBirth
 MOVE 1975 TO YearOfBirth
 DISPLAY "Date of birth is - "
 DayOfBirth SPACES MonthOfBirth SPACE YearOfBirth

The ACCEPT Verb
There are two formats for the ACCEPT verb:

The first gets data from the keyboard or a peripheral device.•

The second lets you access the system date and time (that is, the date and time held in the •
computer’s internal clock) by using certain system variables.

The metalanguage for the two formats of the ACCEPT are shown in Figure 4-2.

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

58

Rules

When you use the first format, ACCEPT inserts the data typed on the keyboard into the receiving data item. If the
FROM option is used, the data inserted into the receiving data item comes from the device indicated by the
mnemonic-name. Data is sent to the ReceivingItem according to the rules for alphanumeric moves. If the
ReceivingItem is too small to hold the data, the rightmost characters that do not fit are lost. If the ReceivingItem
is too large, there is space-filling on the right.

The default input device is the computer keyboard, but you can use other devices by specifying a
mnemonic-name with the FROM clause. The mnemonic-name is connected to the actual device by an entry
in the SPECIAL-NAMES paragraph, CONFIGURATION SECTION, ENVIRONMENT DIVISION.

When you use the second format, ACCEPT moves the data from one of the system variables (DATE, DAY, DAY-OF-WEEK,
TIME) into the receiving data item. Two of the system variables also have optional syntactic elements that allow you to
specify that the date be supplied with a four-digit year.

Required Format for System Variables

The declarations and comments that follow show the format required for the data items that ACCEPT values from each
of the system variables:

01 CurrentDate PIC 9(6).
* Receiving data item for DATE system variable: Format is YYMMDD

01 DayOfYear PIC 9(5).
* Receiving data item for DAY system variable: Format is YYDDD

01 Day0fWeek PIC 9.
* Receiving item for DAY-OF-WEEK: Format is D (1=Monday)

01 CurrentTime PIC 9(8).
* Receiving item for TIME: Format is HHMMSSss s = S/100

01 Y2KDate PIC 9(8).
* Receiving item for DATE YYYYMMDD system variable: Format is YYYYMMDD

01 Y2KDayOfYear PIC 9(7).
* Receiving item for DAY YYYYDDD system variable: Format is YYYYDDD

Figure 4-2. Metalanguage for the ACCEPT verb

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

59

Example Program: ACCEPT and DISPLAY
Listing 4-1 gives some examples of how to use the ACCEPT and DISPLAY verbs. The examples use both formats of
ACCEPT. The first form of ACCEPT is combined with DISPLAY to prompt for and receive a username. The second form
gets data from some of the date and time system variables. Finally, all the gathered information is displayed on the
computer screen. The results of running the program are shown in the results diagram.

Listing 4-1. ACCEPT and DISPLAY Examples

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing4-1.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 UserName PIC X(20).

*> Receiving data item for DATE system variable: Format is YYMMDD
01 CurrentDate.
 02 CurrentYear PIC 99.
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

*> Receiving data item for DAY system variable: Format is YYDDD
01 DayOfYear.
 02 FILLER PIC 99.
 02 YearDay PIC 9(3).

*> Receiving item for TIME: Format is HHMMSSss s = S/100
01 CurrentTime.
 02 CurrentHour PIC 99.
 02 CurrentMinute PIC 99.
 02 FILLER PIC 9(4).

*> Receiving item for DATE YYYYMMDD system variable: Format is YYYYMMDD
01 Y2KDate.
 02 Y2KYear PIC 9(4).
 02 Y2KMonth PIC 99.
 02 Y2KDay PIC 99.

*> Receiving item for DAY YYYYDDD system variable: Format is YYYYDDD
01 Y2KDayOfYear.
 02 Y2KDOY-Year PIC 9(4).
 02 Y2KDOY-Day PIC 999.
PROCEDURE DIVISION.
Begin.
 DISPLAY "Please enter your name - " WITH NO ADVANCING
 ACCEPT UserName
 DISPLAY "**********************"
 ACCEPT CurrentDate FROM DATE
 ACCEPT DayOfYear FROM DAY
 ACCEPT CurrentTime FROM TIME
 ACCEPT Y2KDate FROM DATE YYYYMMDD

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

60

 ACCEPT Y2KDayOfYear FROM DAY YYYYDDD
 DISPLAY "Name is " UserName
 DISPLAY "Date is " CurrentDay "-" CurrentMonth "-" CurrentYear
 DISPLAY "Today is day " YearDay " of the year"
 DISPLAY "The time is " CurrentHour ":" CurrentMinute
 DISPLAY "Y2KDate is " Y2kDay SPACE Y2KMonth SPACE Y2KYear
 DISPLAY "Y2K Day of Year is " Y2KDoy-Day " of " Y2KDOY-Year
 STOP RUN.

Note ■ The example programs in this book were compiled by using Micro Focus Visual COBOL and capturing the

 output results. In most cases, the programs were also compiled and run using the web-based open source COBOL

 compiler at www.compileonline.com/compile_cobol_online.php. If you want to use this compiler, be aware that

 interactivity is limited and you must enter keyboard input via the site’s STDIN Input box. Some tweaking may be required.

Arithmetic in COBOL
Most procedural programming languages perform computations by assigning the result of an arithmetic expression
(or function) to a variable. In COBOL, the COMPUTE verb is used to evaluate arithmetic expressions, but there are also
specific commands for adding (ADD), subtracting (SUBTRACT), multiplying (MULTIPLY), and dividing (DIVIDE).

Common Arithmetic Template
With the exception of COMPUTE, DIVIDE with REMAINDER, and some exotic formats of ADD and SUBTRACT, most COBOL
arithmetic verbs conform to the template metalanguage shown in Figure 4-3. It is useful to review this metalanguage
template because it allows me to discuss the clauses and issues that apply to all the arithmetic verbs.

Figure 4-3. Metalanguage for a common arithmetic template

http://www.compileonline.com/compile_cobol_online.php

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

61

Arithmetic Template Notes

All the arithmetic verbs move the result of a calculation into a receiving data item according to the rules for a numeric
move: that is, with alignment along the assumed decimal point and with zero-filling or truncation as necessary. In all
the arithmetic verbs except COMPUTE, the result of the calculation is assigned to the rightmost data item(s).

All arithmetic verbs must use numeric literals or numeric data items (PIC 9) that contain numeric data. There is
one exception: data items that receive the result of the calculation but are not themselves one of the operands (do not
contribute to the result) may be numeric or edited numeric.

Where the GIVING phrase is used, the item to the right of the word giving receives the result of the calculation
but does not contribute to it. Where there is more than one item after the word giving, each receives the result of the
calculation.

Where the GIVING phrase is not used and there is more than one OperandResult#i, Operand#il is applied to each
OperandResult#i in turn, and the result of each calculation is placed in each OperandResult#i.

The maximum size of each operand is 18 digits (31 in ISO 2002 COBOL).

Examples of COBOL Arithmetic Statements

Here are a number of examples, each followed by an explanation of the operation:

ADD Takings TO CashTotal
* Adds the value in Takings to the value in CashTotal and puts the result in CashTotal

ADD Males TO Females GIVING TotalStudents
* Adds the value in Males to the value in Females and overwrites
* the value in TotalStudents with the result.

ADD Sales TO ShopSales, CountySales, CountrySales
* Adds the value of Sales to ShopSales and puts the result in ShopSales.
* Adds the value of Sales to CountySales and puts the result in CountySales
* Adds the value of Sales to CountrySales and puts the result in CountrySales

SUBTRACT Tax FROM GrossPay
* Subtracts the value in Tax from the value in GrossPay and puts the result in GrossPay.

SUBTRACT Tax FROM GrossPay GIVING NetPay
* Subtracts the value in Tax from the value in GrossPay and puts the result in NetPay.

DIVIDE Total BY Members GIVING MemberAverage ROUNDED
* Divides the value in Total by the value in Members and puts
* the rounded result in MemberAverage.

DIVIDE Members INTO Total GIVING MemberAverage
* Divides the value in Members into the value in Total and puts the result in MemberAverage.

MULTIPLY 10 BY Magnitude
* Multiplies 10 by the value in Magnitude and puts the result in Magnitude.

MULTIPLY Members BY Subs GIVING TotalSubs
* Multiplies the value of Members by the value of Subs and puts the result in TotalSubs.

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

62

Note that when separating contiguous operands, you may insert commas for clarity. They have no semantic
effect, as you will see if you use the following example:

DISPLAY "Date of birth = " DayOB, SPACE, MonthOB, SPACE, YearOB
ADD Sales TO ShopSales, CountySales, CountrySales

The ROUNDED Phrase

If you use the ROUNDED phrase, then, after decimal point alignment, if the result of the calculation must be truncated
on the right side (least significant digits) and the leftmost truncated digit has an absolute value of five or greater, the
rightmost digit is increased by one when rounded. That sounds complicated, but it isn’t. Let’s look at some examples,
as shown in Table 4-1.

The ON SIZE ERROR

A size error occurs when the computed result is too large or too small to fit into the receiving field. When the ON SIZE
ERROR phrase is used, it is followed by a block of COBOL statements that usually alert you that an error condition
has occurred. For instance, in the following example, if FinalResult is too small to hold the result of all these
multiplications, the ON SIZE ERROR activates and the alert message is displayed:

COMPUTE FinalResult = Num1 * Num2 * Num3 * Num4
 ON SIZE ERROR DISPLAY "Alert: FinalResult too small to hold result"
END-COMPUTE

The scope of the statement block is delimited by the appropriate END delimiter (END-ADD, END-SUBTRACT,
END-MULTIPLY, END-DIVIDE, END-COMPUTE).

The ON SIZE ERROR acts like a specialized exception handler that comes into play if there is division by zero or if
unexpected truncation occurs. When a computation is performed and decimal point alignment has occurred between
the calculated result and the receiving data item, the result may be truncated on either the left side or the right. If the
most significant digits are truncated, the size error activates. If there is truncation of the least significant digits, size
error activation depends on whether the ROUNDED phrase is specified. If it is, then truncation of the least significant
digits is ignored because using the ROUNDED phrase indicates that you know there will be truncation and have specified
rounding to deal with it. Table 4-2 gives some ON SIZE ERROR examples.

Table 4-1. ROUNDED Examples. Digits in the Actual Result column that will be truncated are not in bold

Actual Result Receiving Data Item Truncated Result Rounded Result

342.736 PIC 999V99 342.73 342.74

342.734 PIC 999V99 342.73 342.73

342.534 PIC 999 342 343

342.464 PIC 999 342 342

5.958 PIC 9V99 5.95 5.96

12.821565 PIC 99V9(5) 12.82156 12.82157

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

63

Nonconforming Arithmetic Verbs
When the common arithmetic verb template was introduced, I mentioned that there are forms of some verbs that
do not conform to the template. This section gives the full metalanguage for COMPUTE, ADD, SUBTRACT, MULTIPLY, and
DIVIDE and discusses in more detail the versions of these verbs that do not conform to the template.

The COMPUTE Verb

COMPUTE assigns the result of an arithmetic expression to a data item. The arithmetic expression to the right of the
equal sign is evaluated, and the result is assigned to the data item(s) on the left of the equal sign. The arithmetic
expression is evaluated according to the normal arithmetic rules. That is, the expression is normally evaluated from
left to right, but bracketing and precedence rules (see Table 4-3) can change the order of evaluation.

Table 4-2. ON SIZE ERROR Examples. Digits in the Actual Result column that will be truncated are not in bold

Actual Result Result Data item Truncated Result SIZE ERROR?

761.758 999V99 761.75 YES
8 is truncated on the right.

1761.78 999V99 761.78 YES
1 is truncated on the left.

374 999 374 NO

1761 999 761 YES
1 is truncated on the left.

326.475 999V99 326.47 YES
5 is truncated on the right.

326.475 999V99 ROUNDED 326.48 NO
5 is truncated on the right, but rounding is specified.

1326.475 999V99 ROUNDED 326.48 YES
1 is truncated on the left.

Table 4-3. Precedence Rules

Precedence Symbol Meaning

1 ** Power

2 * Multiply

/ Divide

3 + Add

- Subtract

Note ■ Unlike some other programming languages, COBOL provides the ** expression symbol to represent raising

to a power.

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

64

COMPUTE is the COBOL verb most similar to assignment in other programming languages. For that reason, you
may be tempted to use it for plain assignments of data items to data items. COMPUTE should never be used for that
purpose; in COBOL, you have the MOVE verb for that.

The familiarity of COMPUTE may also cause you to use it in preference to the other arithmetic verbs. There is no
major objection to doing so, but knowledge of the other arithmetic verbs is required if you will be working with legacy
systems.

Figure 4-4 shows the metalanguage for the COMPUTE verb.

COMPUTE Examples

Each example in this section is followed by a diagram that shows the value of the data items before and after COMPUTE
executes.

Let’s start with some literal values:

COMPUTE Result = 90 - 7 * 3 + 50 / 2

01 Result PIC 9(4) VALUE 3333.

Before 3333

After 0094

This is equivalent to

COMPUTE Result = 90 - (7 * 3) + (50 / 2)

01 Result PIC 9(4) VALUE 3333.

Before 3333

After 0094

Here’s another example:

COMPUTE Euro ROUNDED = Dollar / ExchangeRate
01 Euro PIC 9(5)V99 VALUE 3425.15.
01 Dollar PIC 9(5)V99 VALUE 1234.75.
01 ExchangeRate PIC 9V9(4) VALUE 1.3017.

Euro Dollar Exchange Rate

Before 3425.15 1234.75 1.3017

After 0948.57 1234.75 1.3017

Figure 4-4. COMPUTE metalanguage

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

65

The ADD Verb

The ADD verb is used for addition. You might think COMPUTE could be used for that, and of course it can, but sometimes
it can be simpler to use ADD. For instance, to increment a counter, you need COMPUTE ItemCount = ItemCount + 1,
whereas you could just use ADD 1 TO ItemCount.

The metalanguage for the ADD verb is given in Figure 4-5.

Notes

The ADD verb mostly conforms to the common template, but note the ellipsis after the first operand. This means you
could have a statement like

ADD Num1, Num2, Num3 TO Num4 GIVING Result.

What are the semantics of this version of ADD? The items before TO are all added together, and then the result is
applied to the operand or operands after TO.

Note also that in the GIVING version of the ADD verb, the word TO is optional (square brackets). This means you
could have a statement like

ADD Num1, Num2, Num3 GIVING Result.

In this version, all the operands before GIVING are added together, and the result is placed in the
Result data item.

ADD Examples

Each example in this section is followed by a figure that shows the value of the data items before and after ADD
executes:

ADD Cash TO Total.
01 Cash PIC 9(3) VALUE 364.
01 Total PIC 9(4) VALUE 1000.

Cash Total

Before 364 1000

After 364 1364

ADD Cash, 20 TO Total.
01 Cash PIC 9(3) VALUE 364.
01 Total PIC 9(4) VALUE 1000.

Figure 4-5. ADD verb metalanguage

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

66

Cash Total

Before 364 1000

After 364 1384

ADD Cash, Checks TO Total.
01 Cash PIC 9(3) VALUE 364.
01 Total PIC 9(4) VALUE 1000.
01 Checks PIC (4) VALUE 1445.

Cash Checks Total

Before 364 1445 1000

After 364 1445 2809

The SUBTRACT Verb

The SUBTRACT verb is a specialized verb used for subtraction. It can be more convenient to use SUBTRACT to decrement
a counter rather than COMPUTE. For instance, to decrement a counter you need COMPUTE ItemCount = ItemCount – 1,
whereas you could just use SUBTRACT 1 FROM ItemCount.

The metalanguage for the SUBTRACT verb is given in Figure 4-6.

Notes

The SUBTRACT verb mostly conforms to the common template, but just as with ADD, there is an ellipsis after the first
operand. This means you could have statements like these:

SUBTRACT Num1, Num2 FROM Num3 GIVING Result.
SUBTRACT Num1, Num2 FROM NumResult1, NumResult2.

In the first example, all the items before the word FROM are added together, the combined result is subtracted from
num3, and the result is placed in the Result data item.

In the second example, all the items before the word FROM are added together. The combined result is subtracted
from NumResult1, and the result is placed in NumResult1. The combined result is also subtracted from NumResult2,
and the result of that calculation is placed in NumResult2.

Figure 4-6. Metalanguage for the SUBTRACT verb

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

67

SUBTRACT Examples

Here are some examples of SUBTRACT:

SUBTRACT Num1, Num2 FROM Num3 GIVING Result.
01 Num1 PIC 9(4) VALUE 364.
01 Num2 PIC 9(4) VALUE 1000.
01 Num3 PIC 9(4) VALUE 5555.
01 Result PIC 9(4) VALUE 1445.

Num1 Num2 Num3 Result

Before 364 1000 5555 1445

After 364 1000 5555 4191

SUBTRACT Num1, Num2 FROM NumResult1, NumResult2.
01 Num1 PIC 9(4) VALUE 364.
01 Num2 PIC 9(4) VALUE 1000.
01 NumResult1 PIC 9(4) VALUE 5555.
01 NumResult2 PIC 9(4) VALUE 1445.

Num1 Num2 NumResult1 NumResult2

Before 364 1000 5555 1445

After 364 1000 4191 0081

SUBTRACT Tax, PRSI, Pension, Levy FROM GrossPay GIVING NetPay.
01 GrossPay PIC 9(4)V99 VALUE 6350.75.
01 Tax PIC 9(4)V99 VALUE 2333.25.
01 PRSI PIC 9(4)V99 VALUE 1085.45.
01 Pension PIC 9(4)V99 VALUE 1135.74.
01 Levy PIC 9(3)V99 VALUE 170.50.
01 NetPay PIC 9(4)V99 VALUE ZEROS.

GrossPay Tax PRSI Pension Levy NetPay

Before 6350.75 2333.25 1085.45 1135.74 170.50 0000.00

After 6350.75 2333.25 1085.45 1135.74 170.50 1625.81

The MULTIPLY Verb

The MULTIPLY verb is one of the arithmetic verbs that fully conforms to the common template given in Figure 4-3.
The metalanguage for the MULTIPLY verb is given in Figure 4-7.

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

68

MULTIPLY Examples

Here are some examples of MULTIPLY:

Multiply Fees BY Members GIVING TotalFees
 DISPLAY "Alert: result to large for TotalFees"
01 Fees PIC 9(3)V99 VALUE 052.24
01 Members PIC 9(4) VALUE 1024.
01 TotalFees PIC 9(5)V99 VALUE ZEROS.

Fees Members TotalFees

Before 052.24 1024 00000.00

After 052.24 1024 53493.76

The DIVIDE Verb

The DIVIDE verb has two main formats. The metalanguage for the first format is given in Figure 4-8. This format
is unremarkable in that it conforms to the common template. The metalanguage for the second format is given in
Figure 4-9. This format does not conform to the common template, and it provides operations that cannot be done
with COMPUTE. The second format of DIVIDE allows you to get the quotient and the remainder in one operation.

Figure 4-8. Metalanguage for format 1 of the DIVIDE verb

Figure 4-9. Metalanguage for format 2 of the DIVIDE verb

Figure 4-7. Metalanguage for the MULTIPLY verb

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

69

DIVIDE Examples

Following are some DIVIDE examples; the third example uses the second format.
In this example, 15 is divided into Amount1, and the result is placed in Amount1; 15 is also divided into Amount2,

and result is placed in Amount2. The results calculated are not integer values, so there is truncation of the digits to the
left of the decimal point:

DIVIDE 15 INTO Amount1, Amount2.
01 Amount1 PIC 9(4) VALUE 2444.
01 Amount2 PIC 9(3) VALUE 354.

Amount1 Amount2

Before 2444 354

After 162 023

In this example, the calculated result is not an integer value, so there is truncation of the digits to the left of the
decimal point. But because rounding is requested, the result is rounded to 272 (from 271.7826086956522):

DIVIDE Qty By Units GIVING Average ROUNDED.
01 Qty PIC 9(5) VALUE 31255.
01 Units PIC 9(3) VALUE 115.
01 Average PIC 9(4) VALUE ZEROS.

Qty Units Average

Before 31255 115 0000

After 31255 115 0272

This example uses the second format of DIVIDE. It shows how you can use DIVIDE to get both the quotient and the
remainder in one operation:

DIVIDE 215 BY 10 GIVING Quotient REMAINDER Rem.
01 Quotient PIC 999 VALUE ZEROS.
01 Rem PIC 9 VALUE ZEROS.

Quotient Rem

Before 000 0

After 021 5

Let’s Write a Program
Listing 4-2 presents a very simple program that takes two single-digit numbers from the keyboard, multiplies them
together, and then displays the result. This program uses only one of the three classic constructs of structured
programming. These constructs are

Sequence•

Selection•

Iteration•

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

70

In this program, execution starts in the PROCEDURE DIVISION paragraph CalculateResult and then continues
through the program statements one by one, in sequence, until STOP RUN is reached.

Obviously, a program like this has limited usefulness. To make it really useful, you need to be able to selectively
execute program statements (selection) and specify that others are to be executed over and over again (iteration).
You revisit this program in the next two chapters when you are armed with the necessary selection and iteration
constructs.

Listing 4-2. Example Program: ACCEPT, DISPLAY, and MULTIPLY

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing4-2.
AUTHOR. Michael Coughlan.
*> Accepts two numbers from the user, multiplies them together
*> and then displays the result.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE 5.
01 Num2 PIC 9 VALUE 4.
01 Result PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
CalculateResult.
 DISPLAY "Enter a single digit number - " WITH NO ADVANCING
 ACCEPT Num1
 DISPLAY "Enter a single digit number - " WITH NO ADVANCING
 ACCEPT Num2
 MULTIPLY Num1 BY Num2 GIVING Result
 DISPLAY "Result is = ", Result
 STOP RUN.

Summary
In this chapter, you examined the operation of the arithmetic verbs COMPUTE, ADD, SUBTRACT, MULTIPLY, and DIVIDE.
The ACCEPT and DISPLAY verbs, which allow you to get input from the keyboard and send output to the screen, were
also explored.

The final example program consisted of a sequence of statements that are executed one after another. This kind
of program is of limited usefulness. To be truly useful, a program must incorporate iteration and selection. These
control structures are explored in the next chapter, along with the jewel in COBOL’s crown: condition names.

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

71

LANGUAGE KNOWLEDGE EXERCISES

Sharpen up the 2B pencil you used to answer the questions in the last chapter, and fill in the after positions for

data items that have a before entry:

01 Num1 PIC 99.
01 Num2 PIC 99.
01 Num3 PIC 99.
01 Num4 PIC 99.

Before Values After Values

Statement Num1 Num2 Num3 Num4 Num1 Num2 Num3 Num4

ADD Num1 TO Num2 25 30

ADD Num1, Num2 TO Num3, Num4 13 04 05 12

ADD Num1, Num2, Num3 GIVING Num4 04 03 02 01

SUBTRACT Num1 FROM Num2
GIVING Num3

04 10 55

SUBTRACT Num1,Num2 FROM Num3 05 10 55

SUBTRACT Num1, Num2 FROM Num3
GIVING Num4

05 10 55 20

MULTIPLY Num1 BY Num2 10 05

MULTIPLY Num1 BY Num2
GIVING Num3

10 05 33

DIVIDE Num1 INTO Num2 05 64

DIVIDE Num2 BY Num1
GIVING Num3 REMAINDER Num4

05 64 24 88

COMPUTE Num1 = 5 + 10 * 30 / 2 25

CHAPTER 4 ■ PROCEDURE DIVISION BASICS

72

LANGUAGE KNOWLEDGE EXERCISES - ANSWERS

Sharpen up the 2B pencil you used to answer the questions in the last chapter, and fill in the after positions for

data items that have a before entry:

01 Num1 PIC 99.
01 Num2 PIC 99.
01 Num3 PIC 99.
01 Num4 PIC 99.

Before Values After Values

Statement Num1 Num2 Num3 Num4 Num1 Num2 Num3 Num4

ADD Num1 TO Num2 25 30 25 55

ADD Num1, Num2 TO Num3, Num4 13 04 05 12 13 04 22 29

ADD Num1, Num2, Num3 GIVING Num4 04 03 02 01 04 03 02 09

SUBTRACT Num1 FROM Num2
GIVING Num3

04 10 55 04 10 06

SUBTRACT Num1,Num2 FROM Num3 05 10 55 05 10 40

SUBTRACT Num1, Num2 FROM Num3
GIVING Num4

05 10 55 20 05 10 55 40

MULTIPLY Num1 BY Num2 10 05 10 50

MULTIPLY Num1 BY Num2
GIVING Num3

10 05 33 10 05 50

DIVIDE Num1 INTO Num2 05 64 05 12

DIVIDE Num2 BY Num1
GIVING Num3 REMAINDER Num4

05 64 24 88 05 64 12 04

COMPUTE Num1 = 5 + 10 * 30 / 2 25 55

73

CHAPTER 5

Control Structures: Selection

The last chapter noted that programs that consist only of a sequence of statements are not very useful. To be useful,
a program must use selection constructs to execute some statements rather than others and must use iteration
constructs to execute certain statements repeatedly.

In this chapter, you examine the selection constructs available to COBOL. In addition to discussing the
IF and EVALUATE statements, this chapter also discusses the condition types recognized by the selection constructs,
the creation and use of condition names, the use of the SET verb to manipulate condition names, and the proper
naming of condition names.

A number of short example programs are introduced in this chapter. Please keep in mind that these are only
used to demonstrate particular language elements. They are not intended as realistic examples.

Selection
In most procedural languages, if and case/switch are the only selection constructs supported. COBOL supports
advanced versions of both of these constructs, but it also supports a greater variety of condition types including
relation conditions, class conditions, sign conditions, complex conditions, and condition names.

IF Statement
When a program runs, the program statements are executed one after another, in sequence, unless a statement is
encountered that alters the order of execution. An IF statement is one of the statement types that can alter the order
of execution in a program. It allows you to specify that a block of code is to be executed only if the condition attached
to the IF statement is satisfied. The basic metalanguage for the IF statement is given in Figure 5-1.

Figure 5-1. Metalanguage for the IF statement/verb

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

74

The StatementBlock following the THEN executes, if the condition is true. The StatementBlock following the ELSE
(if used) executes, if the condition is false. The StatementBlock(s) can include any valid COBOL statement including
further IF constructs. This allows for nested IF statements.

One difference from many other programming languages is that when a condition is evaluated, it evaluates to
either true or false. It does not evaluate to 1 or 0.

The explicit scope delimiter END-IF was introduced in ANS 85 COBOL. In the previous versions of COBOL, scope
was delimited by means of the period. Although the scope of the IF statement may still be delimited by a period, the
END-IF delimiter should always be used because it makes explicit the scope of the IF statement.

There are two problems with using a period as a scope delimiter:

Periods are hard to see, and this makes it more difficult to understand the code. •

A period delimits all open scopes, and this is a source of many programming errors. •

You explore this topic more fully later in the chapter.

Condition Types
The IF statement is not as simple as the metalanguage in Figure 5-1 seems to suggest. The condition that follows the
IF is drawn from one of the condition types shown in Table 5-1. If a condition is not a complex condition, then it is
regarded as a simple condition. A simple condition may be negated using the NOT keyword. Bracketing a complex
condition causes it to be treated as a simple condition.

Relation Conditions
Relation conditions are used to test whether a value is less than, equal to, or greater than another value.
These conditions will be familiar to programmers of other languages. The use of words as shown in the relation
condition metalanguage in Figure 5-2 may come as bit of a shock, but for most conditions the more familiar
symbols (= < > >= <=) may be used. There is one exception to this: unlike in many other languages, in COBOL
there is no symbol for NOT. You must use the word NOT if you want to express this condition.

Table 5-1. Condition Types

Condition Type

Relation

Class

Sign

Complex

Condition names

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

75

Note that the compared values must be type compatible. For instance, it is not valid to compare a string value to
a numeric value. Some examples of relation conditions are shown in Example 5-1. Most of these examples are straight
forward, but the final example includes an arithmetic expression. In this case, the arithmetic expression is evaluated
and then the result is compared with the value in Num1.

Example 5-1. Some Sample Relation Conditions

IF Num1 < 10 THEN
 DISPLAY "Num1 < 10"
END-IF

IF Num1 LESS THAN 10
 DISPLAY "Num1 < 10"
END-IF

IF Num1 GREATER THAN OR EQUAL TO Num2
 MOVE Num1 TO Num2
END-IF

IF Num1 < (Num2 + (Num3 / 2))
 MOVE ZEROS TO Num1
END-IF

Class Conditions
A class condition does not refer to a class in the OO sense. Instead, it refers to the broad category or class (such as
numeric, alphabetic, or alphabetic lower or upper) into which a data item may fall (see the metalanguage for class
conditions in Figure 5-3). A class condition is used to discover whether the value of data item is a member of one
these classes. For instance, a NUMERIC class condition might be used on an alphanumeric (PIC X) or a numeric (PIC 9)
data item to see if it contained numeric data. Or an ALPHABETIC-UPPER class condition might be used to discover if a
data item contained only capital letters (see Example 5-2).

Figure 5-2. Metalanguage for relation conditions

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

76

Example 5-2. Class Condition That Checks Whether the StateName Contains All Capitals

IF StateName IS ALPHABETIC-UPPER
 DISPLAY "All the letters in StateName are upper case"
END-IF

Notes on Class Conditions

The target of a class test must be a data item with an explicit or implicit usage of DISPLAY. In the case of numeric tests,
data items with a usage of PACKED-DECIMAL may also be tested.

The numeric test may not be used with data items described as alphabetic (PIC A) or with group items when
any of the elementary items specifies a sign. An alphabetic test may not be used with any data items described
as numeric (PIC 9).

The UserDefinedClassName is a name that you can assign to a set of characters. You must use the CLASS clause
of the SPECIAL-NAMES paragraph, of the CONFIGURATION SECTION, in the ENVIRONMENT DIVISION, to assign a class
name to a set of characters. A data item conforms to the UserDefinedClassName if its contents consist entirely of the
characters listed in the definition of the UserDefinedClassName (see Listing 5-1 in the next section).

User-Defined Class Names

Whereas ALPHABETIC and NUMERIC are predefined class names that identify a subset of the character set, the
UserDefinedClassName in the metalanguage (see Figure 5-3) is a name that you can assign to a defined subset of
characters. To define the subset, you must create a CLASS entry in the SPECIAL-NAMES paragraph, of the CONFIGURATION
SECTION, in the ENVIRONMENT DIVISION. The CLASS clause assigns a class name to a defined subset of characters.
In a class condition, a data item conforms to the UserDefinedClassName if its contents consist entirely of the
characters listed in the definition of the UserDefinedClassName.

Listing 5-1 is an example program that shows how to define and use a user-defined class name. In this listing,
two class names are defined: HexNumber and RealName. HexNumber is used to test that NumIn contains only hex digits
(0–9 and A–F). RealName is used to test that NameIn contains only valid characters. RealName was created because
you can’t just use the IS ALPHABETIC class condition to test a name—sometimes names, especially Irish names,
contain other characters; such as the apostrophe (’). RealName allows you to test that the name entered contains only
characters from the set you have defined.

Figure 5-3. Metalanguage for class conditions

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

77

Listing 5-1. User-Defined Class Names Used with a Class Condition

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-1.
AUTHOR. Michael Coughlan.
*> Shows how user defined class names are created and used

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 CLASS HexNumber IS "0" THRU "9", "A" THRU "F"
 CLASS RealName IS "A" THRU "Z", "a" THRU "z", "'", SPACE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumIn PIC X(4).
01 NameIn PIC X(15).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter a Hex number - " WITH NO ADVANCING
 ACCEPT NumIn.
 IF NumIn IS HexNumber THEN
 DISPLAY NumIn " is a Hex number"
 ELSE
 DISPLAY NumIn " is not a Hex number"
 END-IF

 DISPLAY "----------------------------------"
 DISPLAY "Enter a name - " WITH NO ADVANCING
 ACCEPT NameIn
 IF NameIn IS ALPHABETIC
 DISPLAY NameIn " is alphabetic"
 ELSE
 DISPLAY NameIn " is not alphabetic"
 END-IF

 IF NameIn IS RealName THEN
 DISPLAY NameIn " is a real name"
 ELSE
 DISPLAY NameIn " is not a real name"
 END-IF
 STOP RUN.

How the Program Works

The program accepts a hex number from the user, tests that it contains only valid hex digits, and then displays the
appropriate message. The program then accepts a name from the user, uses a class condition to test whether the
contents are alphabetic, and displays the appropriate message. The program next tests that NameIn contains only
the allowed characters and displays the appropriate message. To give you a feel for how the program works, I ran
it a number of times and captured the output (see the output attached to Listing 5-1).

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

78

Sign Conditions
The sign condition (see the metalanguage in Figure 5-4) is used to discover whether the value of an arithmetic expression
is less than, greater than, or equal to zero. Sign conditions are a shorter way of writing certain relation conditions.

Figure 5-5. Metalanguage for complex conditions

Figure 5-4. Metalanguage for sign conditions

In Example 5-3, a sign condition is used to discover whether the result of evaluating an arithmetic expression is a
negative value. This example also shows the equivalent relation condition.

Example 5-3. Sign Condition Used to Discover Whether a Result Is Negative

 IF (Num2 * 10 / 50) - 10 IS NEGATIVE
 DISPLAY "Calculation result is negative"
 END-IF

*> the equivalent Relation Condition is

 IF (Num2 * 10 / 50) - 10 LESS THAN ZERO
 DISPLAY "Calculation result is negative"
 END-IF

Complex Conditions
Unlike sign conditions and class conditions, complex conditions (sometimes called compound conditions) should
be familiar to programmers of most languages. Even here, however, COBOL has a tweak—in the form of implied
subjects—that you may find unusual. The metalanguage for complex conditions is given in Figure 5-5.

Complex conditions are formed by combining two or more simple conditions using the conjunction operator
OR or AND. Any condition (simple, complex, condition name) may be negated by preceding it with the word NOT.
When NOT is applied to a condition, it toggles the true/false evaluation. For instance, if Num1 < 10 is true then
NOT Num1 < 10 is false.

Like other conditions in COBOL, a complex condition evaluates to either true or false. A complex condition is
an expression. Like arithmetic expressions, a complex condition is evaluated from left to right unless the order of
evaluation is changed by precedence rules or by bracketing.

The precedence rules that apply to complex conditions are given in Table 5-2. To assist your understanding,
the equivalent arithmetic precedence rules have been given alongside the condition rules.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

79

Example 5-4. Complex Condition to Detect Whether the Cursor Is Onscreen

*> A complex condition example that detects if the cursor position located at
*> ScrnRow, ScrnCol is on screen (the text screen is 24 lines by 80 columns)
 IF (ScrRow > 0 AND ScrRow < 25) AND (ScrCol > 0 AND ScrCol < 81) THEN
 DISPLAY "On Screen"
 END-IF

Truth Tables

When a complex condition is being evaluated, it is useful to consider the OR and AND truth tables, shown in Table 5-3.

Table 5-2. Precedence Rules

Precedence Condition Value Arithmetic Equivalent

1 NOT **

2 AND * or /

3 OR + or -

Table 5-3. OR and AND Truth Tables

OR Truth Table AND Truth Table

Condition Condition Result Condition Condition Result

T T True T T True

T F True T F False

F T True F T False

F F False F F False

The Effect of Bracketing

Bracketing can make the order of evaluation explicit or can change it. Complex conditions are often difficult to
understand, so any aid to clarity is welcome. For that reason, when you have to write a complex condition, you should
always use bracketing to make explicit what is intended.

Consider the statement

IF NOT Num1 < 25 OR Num2 = 80 AND Num3 > 264 THEN
 DISPLAY "Done"
END-IF

The rules of precedence govern how this IF statement is evaluated. You can leave it like this and hope that future
readers will understand it, or you can assist their understanding by using bracketing to make explicit the order of
evaluation already governed by those rules.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

80

To apply bracketing, you note that NOT takes precedence, so you write (NOT Num1 < 25). AND is next according
to the precedence rules, so you bracket the ANDed conditions to give (Num2 = 80 AND Num3 > 264). Finally, the OR
is evaluated to give the full condition as

IF (NOT Num1 < 25) OR (Num2 = 80 AND Num3 > 264)THEN
 DISPLAY "Done"
END-IF

Of course, you can use bracketing to change the order of evaluation. For instance, you can change the previous
condition to

IF NOT (Num1 < 25 OR Num2 = 80) AND Num3 > 264 THEN
 DISPLAY "Done"
END-IF

In the original condition, the order of evaluation was NOT..AND..OR, but the new bracketing changes that order
to OR..NOT..AND. This change has a practical effect on the result of the condition.

Suppose all the simple conditions in the original expression are true. The truth table for that expression
yields Table 5-4.

Table 5-4. IF Statement Evaluation When All the Simple Conditions Are True

Condition IF(NOT Num1 < 25) OR (Num2 = 80 AND Num3 > 264)

Expressed as (NOT T) OR (T AND T)

Evaluates to (F) OR (T AND T)

Evaluates to (F) OR (T)

Evaluates to True

Table 5-5. The Rebracketed Truth Table

Condition IF NOT (Num1 < 25 OR Num2 = 80) AND Num3 > 264

Expressed as NOT (T OR T) AND T

Evaluates to NOT (T) AND T

Evaluates to (F) AND T

False

The re-bracketed expression yields Table 5-5.

Implied Subjects
Although COBOL is often verbose, it does occasionally provide constructs that enable quite succinct statements to be
written. The implied subject is one of those constructs.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

81

When, in a complex condition, a number of comparisons have to be made against a single data item, it can be
tedious to have to repeat the data item for each comparison. For instance, the example code fragment you saw earlier
could be rewritten using implied subjects as

IF (ScrRow > 0 AND < 25) AND (ScrCol > 0 AND < 81) THEN
 DISPLAY "On Screen"
END-IF

In this case, the implied subjects are ScrRow and ScrCol.
Similarly, using Grade = as the implied subject, you can rewrite

IF Grade = "A" OR Grade = "B" OR Grade = "C" THEN DISPLAY "Passed"

as

IF Grade = "A" OR "B" OR "C" THEN DISPLAY "Passed"

Finally, you can use the implied subject Num1 > to rewrite the expression

IF Num1 > Num2 AND Num1 > Num3 AND Num1 > Num4 THEN
 DISPLAY "Num1 is the largest"
END-IF

as

IF Num1 > Num2 AND Num3 AND Num4
 DISPLAY "Num1 is the largest"
END-IF

Nested IFs
COBOL allows nested IF statements (see Example 5-5). But be aware that although nested IF statements may be easy
to write, they are somewhat difficult to understand when you return to them after an interval of time. Complex, and
nested IF, statements are often used as a substitute for clear thinking. When you first attempt to solve a problem,
you often don’t have a full understanding of it. As a result, your solution may be convoluted and unwieldy. It is often
only after you have attempted to solve the problem that you gain sufficient insight to allow you to generate a simpler
solution. When you have a better understanding of the problem, you may find that a mere reorganization of your code
will greatly reduce both the number and complexity of the IF statements required. Simplicity is difficult to achieve but
is a highly desirable objective. It is a principle of good program design that your solution should be only as complex as
the problem demands.

Example 5-5. Nested IF..ELSE Statements

*> This example uses nested IF statements including IF..THEN..ELSE statements
*> This is quite a straight forward example of nested IFs but nested If & IF.. ELSE statements
*> can get a lot more convoluted and difficult to understand. It is especially difficult if
*> some nested IF statements do not have ELSE branches and others do. It can take some time
*> to untangle which ELSE belongs with which IF

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

82

 IF InputVal IS NUMERIC
 MOVE InputVal to Num1
 IF Num1 > 5 AND < 25
 IF Num1 < Num2
 MOVE Num2 TO Num1
 ELSE
 MOVE Num1 TO Num2
 END-IF
 DISPLAY "Num1 & Num2 = " Num1 SPACE Num2
 ELSE
 DISPLAY "Num 1 not in range"
 END-IF
 ELSE
 DISPLAY "Input was not numeric"
 END-IF

Delimiting Scope: END-IF vs. Period
The scope of an IF statement may be delimited by either an END-IF or a period (full stop). For a variety of reasons,
the explicit END-IF delimiter should always be used instead of a period. The period is so problematic that one of the
most useful renovations you can perform on legacy COBOL code is to replace the periods with explicit scope delimiters.

There are two main problems with using a period as a scope delimiter. The first is that periods are hard to see,
which makes it more difficult to understand the code. The second problem is that a period delimits all open scopes.
This is a source of many programming errors.

The code fragments in Example 5-6 illustrate the readability problem. Both IF statements are supposed to
perform the same task. But the scope of the IF statement on the left is delimited by an END-IF, whereas the statement
on the right is delimited by a period.

Example 5-6. Comparing END-IF and Period-Delimited IF Statements

Statement1
Statement2
IF Num1 > Num2 THEN
 Statement3
 Statement4
END-IF
Statement5
Statement6.

Statement1
Statement2
IF Num1 > Num2 THEN
 Statement3
 Statement4
Statement5
Statement6.

Unfortunately, on the right, the programmer has forgotten to follow Statement4 with a delimiting period.
This means Statement5 and Statement6 will be included in the scope of the IF. They will be executed only if the
condition is true. When periods are used to delimit the scope of an IF statement, this is an easy mistake to make;
and, once made, it is difficult to spot. A period is small and unobtrusive compared to an END-IF.

The problem caused by unexpectedly delimiting scope is illustrated by the following code fragment:

IF Num1 < 10
 ADD 10 TO Num1
 MULTIPLY Num1 BY 1000 GIVING NUM2
 ON SIZE ERROR DISPLAY "Error: Num2 too small".
 DISPLAY "When is this shown?".

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

83

In this fragment, it looks as if the DISPLAY on the final line is executed only when Num1 is less than 10. However,
a period has been used to delimit the scope of the ON SIZE ERROR (instead of an END-MULTIPLY delimiter), and that
period also delimits the scope of the IF (all open scopes). This means the DISPLAY lies outside the scope of the IF and
so is always executed.

If you replace the periods with explicit scope delimiters, you can see more clearly what is happening:

IF Num1 < 10
 ADD 10 TO Num1
 MULTIPLY Num1 BY 1000 GIVING NUM2
 ON SIZE ERROR DISPLAY "Error: Num2 too small"
 END-MULTIPLY
END-IF
 DISPLAY "When is this shown?".

Even though the indentation used in this version is just as misleading as the period-based version, you are not
misled. The explicit scope delimiters used for the IF and the MULTIPLY make the scope of these statements clear.

The use of delimiting periods in the PROCEDURE DIVISION is such a source of programming errors that a
minimum period style of programming has been advocated by Howard Tompkins1 and Robert Baldwin2. In the
examples in this book, I use a variation of the style suggested by Tompkins. Tompkins was writing before the 1985
standard was produced and so was not able to incorporate END delimiters into his scheme. Nowadays, you can adopt
a style that uses only a single period per paragraph. Although Tompkins has persuasive arguments for placing that
period alone on the line in column 12, for aesthetic reasons I use it to terminate the last statement in the paragraph.
Whether you prefer the Tompkins lonely period style or my variation, I strongly suggest that you adopt the minimum
period style. That way you will save yourself a world of hurt.

Condition Names
Wherever a condition tests a variable for equality to a value, a set of values, or a range of values, that condition can
be replaced by a kind of abstract condition called a condition name. Wherever it is legal to have a condition, it is legal
have a condition name. Just like a condition, a condition name is either true or false.

Condition names allow you to give a meaningful name to a condition while hiding the implementation details
of how the condition is detected. For instance,

IF CountryCode = 3 OR 7 OR 10 OR 15 THEN
 MOVE 14 TO CurrencyCode
END-IF

may be replaced with

IF BritishCountry THEN
 SET CurrencyIsPound TO TRUE
END-IF

This example illustrates the readability benefits of using condition names. When you encounter code such as

IF CountryCode = 3 OR 7 OR 10 OR 15

the meaning of what the IF statement is testing is not obvious. You can see that CountryCode is being tested for
particular values, but why? What is the significance of the values 3,7,10, and 15? What is the significance of moving 14
to the CurrencyCode? To discover this information, a maintenance programmer has to read external documentation
or in-code comments. Now consider the condition name version of the IF statement. It is obvious what you are testing

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

84

because the test has been given a meaningful name. Similarly, the action taken when BritishCountry is true is also
obvious. No documentation and no comments are required.

Ease of maintenance is also improved. If the coding system changed and the countries of the British Isles were
now represented by the codes 4, 12, 18, and 25, only the definition of the condition name would have to be changed.
In the version that did not use the condition name, you would have to change the code values in all the places in the
program where the condition was tested.

Defining Condition Names
Condition names are sometimes called level 88s because they are created in the DATA DIVISION using the special level
number 88. The metalanguage for defining condition names is given in Figure 5-6.

Rules

Condition names are always associated with a particular data item and are defined immediately after the definition of
that data item. A condition name may be associated with a group data item and elementary data, or even the element
of a table. The condition name is automatically set to true or false the moment the value of its associated data item
changes.

When the VALUE clause is used with condition names, it does not assign a value. Instead, it identifies the value(s)
which, if found in the associated data item, make the condition name true.

When identifying the condition values, a single value, a list of values, a range of values, or any combination of
these may be specified. To specify a list of values, the entries are listed after the keyword VALUE. The list entries may
be separated by commas or spaces but must terminate with a period.

Single Condition Name, Single Value

In Example 5-7, the condition name CityIsLimerick has been associated with CityCode so that if CityCode contains
the value 2 (listed in the CityIsLimerick VALUE clause), the condition name will be automatically set to true.

Example 5-7. Defining and Using a Condition Name

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CityCode PIC 9 VALUE ZERO.
 88 CityIsLimerick VALUE 2.

PROCEDURE DIVISION.
Begin.
 : : : : : : : :
 DISPLAY "Enter a city code (1-6) - " WITH NO ADVANCING
 ACCEPT CityCode

Figure 5-6. Metalanguage for defining condition names

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

85

 IF CityIsLimerick
 DISPLAY "Hey, we're home."
 END-IF
 : : : : : : : :

In the program fragment, DISPLAY and ACCEPT get a city code from the user. The instant the value in CityCode
changes, the CityIsLimerick condition name will be set to true or false, depending on the value in CityCode.

Multiple Condition Names

Several condition names may be associated with a single data item. In Example 5-8, a number of condition names
have been associated with CityCode. Each condition name is set to true when CityCode contains the value listed in the
condition name VALUE clause. Condition names, like Booleans, can only take the value true or false. If a condition name
is not set to true, it is set to false. Table 5-6 shows the Boolean value of each condition name for each value of CityCode.

Example 5-8. Associating Many Condition Names with a Data Item

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CityCode PIC 9 VALUE ZERO.
 88 CityIsDublin VALUE 1.
 88 CityIsLimerick VALUE 2.
 88 CityIsCork VALUE 3.
 88 CityIsGalway VALUE 4.
 88 CityIsSligo VALUE 5.
 88 CityIsWaterford VALUE 6.
PROCEDURE DIVISION.
Begin.
 : : : : : : : :
 DISPLAY "Enter a city code (1-6) - " WITH NO ADVANCING
 ACCEPT CityCode
 IF CityIsLimerick
 DISPLAY "Hey, we're home."
 END-IF
 IF CityIsDublin
 DISPLAY "Hey, we're in the capital."
 END-IF
 : : : : : : : :

Table 5-6. Results for Each Value of CityCode

Data Item / Condition Name Data Value / Condition Name Result

CityCode 0 1 2 3 4 5 6 7–9

CityIsDublin False TRUE False False False False False False

CityIsLimerick False False TRUE False False False False False

CityIsCork False False False TRUE False False False False

CityIsGalway False False False False TRUE False False False

CityIsSligo False False False False False TRUE False False

CityIsWaterford False False False False False False TRUE False

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

86

Overlapping and Multiple-Value Condition Names

When multiple condition names are associated with a single data item, more than one condition name can be
true at the same time. In Listing 5-2, UniversityCity is true if CityCode contains any value between 1 and 4.
These values overlap the values of the first four condition names, so if UniversityCity is true, then one of those
four must also be true.

Listing 5-2. Multiple Condition Names with Overlapping Values

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-2.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CityCode PIC 9 VALUE ZERO.
 88 CityIsDublin VALUE 1.
 88 CityIsLimerick VALUE 2.
 88 CityIsCork VALUE 3.
 88 CityIsGalway VALUE 4.
 88 CityIsSligo VALUE 5.
 88 CityIsWaterford VALUE 6.
 88 UniversityCity VALUE 1 THRU 4.
 88 CityCodeNotValid VALUE 0, 7, 8, 9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter a city code (1-6) - " WITH NO ADVANCING
 ACCEPT CityCode
 IF CityCodeNotValid
 DISPLAY "Invalid city code entered"
 ELSE
 IF CityIsLimerick
 DISPLAY "Hey, we're home."
 END-IF
 IF CityIsDublin
 DISPLAY "Hey, we're in the capital."
 END-IF
 IF UniversityCity
 DISPLAY "Apply the rent surcharge!"
 END-IF
 END-IF
 STOP RUN.

The list of values that follows a condition name may be a single value, a number of values, or a range of values,
or any mixture of these. When a range is specified, the word THROUGH or THRU is used to separate the minimum and
maximum values in the range. In Listing 5-2, UniversityCity is true if CityCode contains any value between 1 and 4,
whereas CityCodeNotValid is true if CityCode contains a value of 0 or 7 or 8 or 9. In Listing 5-2 I have chosen to list
the individual values for CityCodeNotValid, but the value list could have been written as:

88 CityCodeNotValid VALUE 0, 7 THRU 9.

Table 5-7 shows the Boolean value of the condition names for each value of CityCode.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

87

Table 5-7. Results for Each Value of CityCode

Data Item / Condition Name Data Value / Condition Name Result

CityCode 0 1 2 3 4 5 6 7 - 9

CityIsDublin False TRUE False False False False False False

CityIsLimerick False False TRUE False False False False False

CityIsCork False False False TRUE False False False False

CityIsGalway False False False False TRUE False False False

CityIsSligo False False False False False TRUE False False

CityIsWaterford False False False False False False TRUE False

UniversityCity False TRUE TRUE TRUE TRUE False False False

CityCodeNotValid TRUE False False False False False False TRUE

Values Can Be Alphabetic or Numeric

The list of values specified for a condition name can be numeric or alphabetic, as shown in Listing 5-3.

Listing 5-3. Multiple Condition Names with Overlapping Values

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-3.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 InputChar PIC X.
 88 Vowel VALUE "A","E","I","O","U".
 88 Consonant VALUE "B" THRU "D", "F","G","H"
 "J" THRU "N", "P" THRU "T"
 "V" THRU "Z".
 88 Digit VALUE "0" THRU "9".
 88 ValidChar VALUE "A" THRU "Z", "0" THRU "9".

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter a character :- " WITH NO ADVANCING
 ACCEPT InputChar
 IF ValidChar
 DISPLAY "Input OK"
 ELSE
 DISPLAY "Invalid character entered"
 END-IF
 IF Vowel
 DISPLAY "Vowel entered"
 END-IF
 IF Digit
 DISPLAY "Digit entered"
 END-IF
 STOP RUN.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

88

List Values Can Be Whole Words

Although I have used single characters in the examples so far, condition names are not restricted to values with only
single characters. Whole words can be used if required, as shown in Listing 5-4.

Listing 5-4. Words as Value Items

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-4.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MakeOfCar PIC X(10).
 88 VolksGroup VALUE "skoda", "seat",
 "audi", "volkswagen".
 88 GermanMade VALUE "volkswagen", "audi",
 "mercedes", "bmw",
 "porsche".
PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter the make of car - " WITH NO ADVANCING
 ACCEPT MakeOfCar
 IF VolksGroup AND GermanMade
 DISPLAY "Your car is made in Germany by the Volkswagen Group."
 ELSE
 IF VolksGroup
 DISPLAY "Your car is made by the Volkswagen Group."
 END-IF
 IF GermanMade
 DISPLAY "Your car is made in Germany."
 END-IF
 END-IF
 STOP RUN.

Using Condition Names Correctly
A condition name should express the true condition being tested. It should not express the test that sets the condition
name to true. For instance, in Listing 5-2, a value of 1 in the data item CityCode indicates that the city is Dublin,
a value of 2 means the city is Limerick, and so on. These condition names allow you to replace conditions such as

IF CityCode = 1

and

IF CityCode = 2

with the more meaningful statements

IF CityIsDublin

and

IF CityIsLimerick.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

89

Many COBOL beginners would use condition names such as CityCodeIs1 or CityCodeIs2 to express these
conditions. Those condition names are meaningless because they express the value that makes the condition name
true instead of expressing the meaning or significance of CityCode containing a particular value. A value of 1 or 2 in
CityCode is how you detect that the city is Dublin or Limerick. It is not the value of CityCode that ultimately interests
you; it is the meaning or significance of that value.

Example Program
Listing 5-5 is a small but complete program showing how the BritishCountry and CurrencyIsPound condition names
might be defined and used. There is something unusual about this example, however. What do you imagine happens
to the associated data item when the CurrencyIsPound condition name is set to true?

Listing 5-5. Detecting BritishCountry and Setting and Using CurrencyIsPound

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-5.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CountryCode PIC 999 VALUE ZEROS.
 88 BritishCountry VALUES 3, 7, 10, 15.

01 CurrencyCode PIC 99 VALUE ZEROS.
 88 CurrencyIsPound VALUE 14.
 88 CurrencyIsEuro VALUE 03.
 88 CurrencyIsDollar VALUE 28.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter the country code :- " WITH NO ADVANCING
 ACCEPT CountryCode

 IF BritishCountry THEN
 SET CurrencyIsPound TO TRUE
 END-IF
 IF CurrencyIsPound THEN
 DISPLAY "Pound sterling used in this country"
 ELSE
 DISPLAY "Country does not use sterling"
 END-IF
 STOP RUN.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

90

Setting a Condition Name to True
In Listing 5-5, the SET verb is used to set CurrencyIsPound to true. The way condition names normally work is that a
value placed into the associated data item automatically sets the condition names that list that value to true. When a
condition name is manually set to true using the SET verb, the value listed for that condition name is forced into the
associated data item. In Listing 5-5, when the SET verb is used to set CurrencyIsPound to true, the value 14 is forced
into CurrencyCode.

When a condition name that lists more than one value is set to true, the first of the values listed is forced into
the associated data item. For instance, if BritishCountry were set to true, then the value 3 would be forced into
CountryCode.

ISO 2002 ■ In standard ANS 85 COBOL, the SET verb cannot be used to set a condition name to false. This can be

done in ISO 2002 COBOL, but in that case the level 88 entry must be extended to include the phrase

WHEN SET TO FALSE IS LiteralValue$#

To set a condition name to true, you use the SET verb. You might think, therefore, that the SET verb is used only
for manipulating condition names. But the SET verb is a strange fish. It is used for a variety of unconnected purposes.
For instance, it is used to set a condition name to true. It is used to increment or decrement an index item. It is used to
assign the value of an index to an ordinary data item and vice versa. It is used to set On or Off the switches associated
with mnemonic names. In ISO 2002 COBOL, it is used to manipulate pointer variables (yes, ISO 2002 COBOL has
pointers) and object references. It is often the target of implementer extensions.

Because the SET verb has so many different unrelated uses, instead of dealing with it as a single topic I discuss
each format as you examine the construct to which it is most closely related.

SET Verb Metalanguage

Figure 5-7 shows the metalanguage for the version of the SET verb that is used to set a condition name to true. When
the SET verb is used to set a condition name, the first condition value specified after the VALUE clause in the definition
is moved to the associated data item. So setting the condition name to true changes the value of the associated data
item. This can lead to some interesting data-manipulation opportunities.

Figure 5-7. Metalanguage for the SET verb condition name version

In summary, any operation that changes the value of the data item may change the status of the associated
condition names, and any operation that changes the status of a condition name will change the value of its
associated data item.

SET Verb Examples

In ANS 85 COBOL, you cannot use the SET verb to set a condition name to false. But you can work around this
restriction. Consider Example 5-9. This is more a pattern for processing sequential files than real COBOL code,
but it serves to illustrate the point.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

91

Example 5-9. Setting the EndOfFile Condition Name

01 EndOfFileFlag PIC 9 VALUE ZERO.
 88 EndOfFile VALUE 1.
 88 NotEndOfFile VALUE 0.

 : : : : : : : :

READ InFile
 AT END SET EndOfFile TO TRUE
END-READ
PERFORM UNTIL EndOfFile
 Process Record
 READ InFile
 AT END SET EndOfFile TO TRUE
 END-READ
END-PERFORM
Set NotEndOfFile TO TRUE.

In this example, the condition name EndOfFile has been set up to flag that the end of the file has been
reached. You cannot set EndOfFile to false, but you can work around this problem by setting another condition
name associated with the same data item to true. When EndOfFile is set to true, 1 is forced into the data item
EndOfFileFlag, and this automatically sets NotEndOfFile to false. Similarly, when NotEndOfFile is set to true,
0 is forced into EndOfFileFlag, and this automatically sets EndOfFile to false.

Design Pattern: Reading a Sequential File

Because this is your first look at how COBOL processes sequential (as opposed to direct access) files, it might be
useful to preview some of the material in Chapter 7 by providing a brief explanation now. The READ verb copies a
record (a discrete package of data) from the file on backing storage and places it into an area of memory set up to
store it. When the READ attempts to read a record from the file but discovers that the end of the file has been reached,
it activates the AT END clause and executes whatever statements follow that clause.

Example 5-9 shows the pattern you generally use to process a stream of items when you can only discover that
you have reached the end of the stream by attempting to read the next item. In this pattern, a loop processes the data
in the stream. Outside the loop, you have a read to get the first item in the stream or to discover that the stream is
empty. Inside the loop, you have statements to process the stream item and get the next item in the stream.

Why do you have this strange arrangement? The chief reason is that this arrangement allows you to place the
read at the end of the loop body so that as soon as the end of the file is detected, the loop can be terminated. If you
used a structure such as

PERFORM UNTIL EndOfFile
 READ InFile
 AT END SET EndOfFile TO TRUE
 END-READ
 Process Record
END-PERFORM

then when the end of file was detected, the program would still attempt to process the nonexistent record.
Of course, the last valid record would still be in memory, so that last record would be processed twice. Many COBOL
beginners make this programming error.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

92

Many beginners attempt to solve this problem by only processing the record if the end of file has not been
detected. They use a structure like this:

PERFORM UNTIL EndOfFile
 READ InFile
 AT END SET EndOfFile TO TRUE
 END-READ
 IF NOT EndOfFile
 Process Record
 END-IF
END-PERFORM

The problem with this arrangement is that the IF statement will be executed for every record in the file. Because
COBOL often deals with very large data sets, this could amount to the execution of millions, maybe even hundreds
of millions, of unnecessary statements. It is more elegant and more efficient to use what is called the read-ahead
technique. The read-ahead has a read outside the loop to get the first record and a read inside the loop to get the
remaining records. This approach has the added advantage of allowing the empty file condition to be detected before
the loop is entered.

Group Item Condition Names

In Example 5-9, stand-alone condition names were used to flag the end-of-file condition. Because the EndOfFile
condition name is closely related to the file, it would be better if the declaration of the condition name were kept with
the file declaration. The example program in Listing 5-6 shows how that might be done. It also demonstrates how a
condition name can be used with a group (as opposed to elementary) data item.

Listing 5-6. Reading a File and Setting the EndOfStudentFile Condition Name

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-6.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT StudentFile ASSIGN TO "Listing5-6-TData.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.
 88 EndOfStudentFile VALUE HIGH-VALUES.
 02 StudentId PIC X(8).
 02 StudentName PIC X(25).
 02 CourseCode PIC X(5).

PROCEDURE DIVISION.
Begin.
 OPEN INPUT StudentFile
 READ StudentFile
 AT END SET EndOfStudentFile TO TRUE
 END-READ

•

•

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

93

 PERFORM UNTIL EndOfStudentFile
 DISPLAY StudentName SPACE StudentId SPACE CourseCode
 READ StudentFile
 AT END SET EndOfStudentFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE StudentFile
 STOP RUN.

In Listing 5-6, the condition name EndOfStudentFile is associated with the group item (which also happens to
be a record) StudentDetails. When EndOfStudentFile is set to true, the entire StudentDetails area of storage
(38 characters) is flushed with highest possible character value.

This arrangement has two major advantages:

The • EndOfStudentFile condition name is kept with its associated file.

Flushing the record with • HIGH-VALUES at the end of the file eliminates the need for an explicit
condition when doing a key-matching update of a sequential file.

Condition Name Tricks

When you become aware that setting a condition name forces a value into the associated data item, it is tempting to
see just how far you can take this idea. Listing 5-7 takes advantage of the way condition names work to automatically
move an appropriate error message into a message buffer. The program is just a stub to test this error-messaging idea;
it doesn’t actually validate the date. Instead, the user manually enters one of the codes that would be returned by the
date-validation routine.

Listing 5-7. Using Condition Names to Set Up a Date-Validation Error Message

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-7.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ValidationReturnCode PIC 9.
 88 DateIsOK VALUE 0.
 88 DateIsInvalid VALUE 1 THRU 8.
 88 ValidCodeSupplied VALUE 0 THRU 8.

01 DateErrorMessage PIC X(35) VALUE SPACES.
 88 DateNotNumeric VALUE "Error - The date must be numeric".
 88 YearIsZero VALUE "Error - The year cannot be zero".
 88 MonthIsZero VALUE "Error - The month cannot be zero".
 88 DayIsZero VALUE "Error - The day cannot be zero".
 88 YearPassed VALUE "Error - Year has already passed".
 88 MonthTooBig VALUE "Error - Month is greater than 12".
 88 DayTooBig VALUE "Error - Day greater than 31".
 88 TooBigForMonth VALUE "Error - Day too big for this month".

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

94

PROCEDURE DIVISION.
Begin.
 PERFORM ValidateDate UNTIL ValidCodeSupplied
 EVALUATE ValidationReturnCode
 WHEN 0 SET DateIsOK TO TRUE
 WHEN 1 SET DateNotNumeric TO TRUE
 WHEN 2 SET YearIsZero TO TRUE
 WHEN 3 SET MonthIsZero TO TRUE
 WHEN 4 SET DayIsZero TO TRUE
 WHEN 5 SET YearPassed TO TRUE
 WHEN 6 SET MonthTooBig TO TRUE
 WHEN 7 SET DayTooBig TO TRUE
 WHEN 8 SET TooBigForMonth TO TRUE
 END-EVALUATE

 IF DateIsInvalid THEN
 DISPLAY DateErrorMessage
 END-IF
 IF DateIsOK
 DISPLAY "Date is Ok"
 END-IF
 STOP RUN.

ValidateDate.
 DISPLAY "Enter a validation return code (0-8) " WITH NO ADVANCING
 ACCEPT ValidationReturnCode.

EVALUATE
In Listing 5-7, the EVALUATE verb is used to SET a particular condition name depending on the value in the
ValidationReturnCode data item. You probably did not have much difficulty working out what the EVALUATE
statement is doing because it has echoes of how the switch/case statement works in other languages. Ruby
programmers, with their when-branched case statement, were probably particularly at home. But the resemblance
of EVALUATE to the case/switch used in other languages is superficial. EVALUATE is far more powerful than these
constructs. Even when restricted to one subject, EVALUATE is more powerful because it is not limited to ordinal types.
When used with multiple subjects, EVALUATE is a significantly more powerful construct. One common use for the
multiple-subject EVALUATE is the implementation of decision-table logic.

Decision Tables
A decision table is a way to model complicated logic in a tabular form. Decision tables are often used by systems
analysts to express business rules that would be too complicated and/or too confusing to express in a textual form.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

95

For instance, suppose an amusement park charges different admission fees depending on the age and height of
visitors, according to the following rules:

If the person is younger than 4 years old, admission is free. •

If the person is between 4 and 7, admission is $10. •

If between 8 and 12, admission is $15. •

If between 13 and 64, admission is $25. •

If 65 or older, admission is $10. •

In addition, in view of the height restrictions on many rides, persons shorter than 48 inches •
who are between the ages of 8 and 64 receive a discount. Persons between 8 and 12 are
charged a $10 admission fee, whereas those between the ages of 13 and 64 are charged $18.

You can represent this textual specification using the decision table in Table 5-8.

Table 5-8. Amusement Park Decision Table

Age Height in inches Admission

< 4 NA $0

4 - 7 NA $10

8 - 12 Height >= 48 $15

8 - 12 Height < 48 $10

13 - 64 Height >= 48 inches $25

13 - 64 Height < 48 $18

>= 65 NA $10

EVALUATE Metalanguage
The EVALUATE metalanguage (see Figure 5-8) looks very complex but is actually fairly easy to understand. It is, though,
somewhat difficult to explain in words, so I mainly use examples to explain how it works.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

96

Figure 5-8. Metalanguage for the EVALUATE verb

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

97

Notes
The following are the WHEN branch rules:

Only one • WHEN branch is chosen per execution of EVALUATE.

The order of the • WHEN branches is important because checking of the branches is done from
top to bottom.

If any • WHEN branch is chosen, the EVALUATE ends. The break required in other languages to
stop execution of the remaining branches is not required in COBOL.

If none of the • WHEN branches can be chosen, the WHEN OTHER branch (if it exists) is executed.

If none of the • WHEN branches can be chosen, and there is no WHEN OTHER phrase, the EVALUATE
simply terminates.

The items immediately after the word EVALUATE and before the first WHEN are called subjects. The items between
the WHEN and its statement block are called objects.

The number of subjects must equal the number of objects, and the objects must be compatible with the subjects.
For instance, if the subject is a condition, then the object must be either TRUE or FALSE. If the subject is a data item,
then the object must be either a literal value or a data item.

Table 5-9 lists the combinations you may have. If there are four subjects, then each WHEN branch must list four
objects. If the value of a particular object does not matter, the keyword ANY may be used.

EVALUATE Examples
This section looks at three examples of the EVALUATE verb.

Payment Totals Example

Shoppers choose the method of payment as Visa, MasterCard, American Express, Check, or Cash. A program totals
the amount paid by each payment method. After a sale, the sale value is added to the appropriate total. Condition
names (ByVisa, ByMasterCard, ByAmericanExpress, ByCheck, ByCash) have been set up for each of the payment
methods.

Table 5-9. EVALUATE Subject/Object Combinations

Subject 1 Subject 2 Subject 3 Subject 4 Action

EVALUATE Condition ALSO True
False

ALSO Identifier ALSO Literal Statement
Block

WHEN True
False

ALSO Condition ALSO Literal ALSO Identifier Statement
Block

WHEN ANY ALSO ANY ALSO Identifier ALSO Literal Statement
Block

WHEN OTHER Statement
Block

END-EVALUATE Object 1 Object 2 Object 3 Object 4

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

98

You could code this as follows:

IF ByVisa ADD SaleValue TO VisaTotal
 ELSE
 IF ByMasterCard ADD SaleValue TO MasterCardTotal
 ELSE
 IF ByAmericanExpress ADD SaleValue TO AmericanExpressTotal
 ELSE
 IF ByCheck ADD SaleValue TO CheckTotal
 ELSE
 IF ByCash ADD SaleValue TO CashTotal
 END-IF
 END-IF
 END-IF
 END-IF
END-IF

You can replace these nested IF statements with the neater and easier-to-understand EVALUATE statement:

EVALUATE TRUE
 WHEN ByVisa ADD SaleValue TO VisaTotal
 WHEN ByMasterCard ADD SaleValue TO MasterCardTotal
 WHEN ByAmericanExpress ADD SaleValue TO AmericanExpressTotal
 WHEN ByCheck ADD SaleValue TO CheckTotal
 WHEN ByCash ADD SaleValue TO CashTotal
END-EVALUATE

In this example, the objects must all be either conditions or condition names, because the subject is TRUE.

Amusement Park Example

EVALUATE can be used to encode a decision table. Listing 5-8 shows how the Amusement Park decision table from
Table 5-8 might be encoded.

Listing 5-8. Amusement Park Admission

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-8.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Age PIC 99 VALUE ZERO.
 88 Infant VALUE 0 THRU 3.
 88 YoungChild VALUE 4 THRU 7.
 88 Child VALUE 8 THRU 12.
 88 Visitor VALUE 13 THRU 64.
 88 Pensioner VALUE 65 THRU 99.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

99

01 Height PIC 999 VALUE ZERO.

01 Admission PIC $99.99.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter age :- " WITH NO ADVANCING
 ACCEPT Age
 DISPLAY "Enter height :- " WITH NO ADVANCING
 ACCEPT Height

 EVALUATE TRUE ALSO TRUE
 WHEN Infant ALSO ANY MOVE 0 TO Admission
 WHEN YoungChild ALSO ANY MOVE 10 TO Admission
 WHEN Child ALSO Height >= 48 MOVE 15 TO Admission
 WHEN Child ALSO Height < 48 MOVE 10 TO Admission
 WHEN Visitor ALSO Height >= 48 MOVE 25 TO Admission
 WHEN Visitor ALSO Height < 48 MOVE 18 TO Admission
 WHEN Pensioner ALSO ANY MOVE 10 TO Admission
 END-EVALUATE

 DISPLAY "Admission charged is " Admission
 STOP RUN.

Acme Book Club Example

The Acme Book Club is the largest online book club in the world. The book club sells books to both members and
non-members all over the world. For each order, Acme applies a percentage discount based on the quantity of books
in the current order, the value of books purchased in the last three months (last quarter), and whether the customer is
a member of the Book Club.

Acme uses the decision table in Table 5-10 to decide what discount to apply. Listing 5-9 is a small test program
that uses EVALUATE to implement the decision table.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

100

Listing 5-9. Acme Book Club Example

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-9.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Member PIC X VALUE SPACE.

01 QP PIC 9(5) VALUE ZEROS.
*> QuarterlyPurchases

01 Qty PIC 99 VALUE ZEROS.

01 Discount PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter value of QuarterlyPurchases - " WITH NO ADVANCING
 ACCEPT QP
 DISPLAY "Enter qty of books purchased - " WITH NO ADVANCING
 ACCEPT Qty

Table 5-10. Acme Book Club Discount Decision Table

QtyOfBooks QuarterlyPurchases (QP) ClubMember % Discount

1–5 < 500 ANY 0

1–5 < 2000 Y 7

1–5 < 2000 N 5

1–5 >= 2000 Y 10

1–5 >= 2000 N 8

6–20 < 500 Y 3

6–20 < 500 N 2

6–20 < 2000 Y 12

6–20 < 2000 N 10

6–20 >= 2000 Y 25

6–20 >= 2000 N 15

21–99 < 500 Y 5

21–99 < 500 N 3

21–99 < 2000 Y 16

21–99 < 2000 N 15

21–99 >= 2000 Y 30

21–99 >= 2000 N 20

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

101

 DISPLAY "club member enter Y or N - " WITH NO ADVANCING
 ACCEPT Member

 EVALUATE Qty ALSO TRUE ALSO Member
 WHEN 1 THRU 5 ALSO QP < 500 ALSO ANY MOVE 0 TO Discount
 WHEN 1 THRU 5 ALSO QP < 2000 ALSO "Y" MOVE 7 TO Discount
 WHEN 1 THRU 5 ALSO QP < 2000 ALSO "N" MOVE 5 TO Discount
 WHEN 1 THRU 5 ALSO QP >= 2000 ALSO "Y" MOVE 10 TO Discount
 WHEN 1 THRU 5 ALSO QP >= 2000 ALSO "N" MOVE 8 TO Discount

 WHEN 6 THRU 20 ALSO QP < 500 ALSO "Y" MOVE 3 TO Discount
 WHEN 6 THRU 20 ALSO QP < 500 ALSO "N" MOVE 2 TO Discount
 WHEN 6 THRU 20 ALSO QP < 2000 ALSO "Y" MOVE 12 TO Discount
 WHEN 6 THRU 20 ALSO QP < 2000 ALSO "N" MOVE 10 TO Discount
 WHEN 6 THRU 20 ALSO QP >= 2000 ALSO "Y" MOVE 25 TO Discount
 WHEN 6 THRU 20 ALSO QP >= 2000 ALSO "N" MOVE 15 TO Discount

 WHEN 21 THRU 99 ALSO QP < 500 ALSO "Y" MOVE 5 TO Discount
 WHEN 21 THRU 99 ALSO QP < 500 ALSO "N" MOVE 3 TO Discount
 WHEN 21 THRU 99 ALSO QP < 2000 ALSO "Y" MOVE 16 TO Discount
 WHEN 21 THRU 99 ALSO QP < 2000 ALSO "N" MOVE 15 TO Discount
 WHEN 21 THRU 99 ALSO QP >= 2000 ALSO "Y" MOVE 30 TO Discount
 WHEN 21 THRU 99 ALSO QP >= 2000 ALSO "N" MOVE 20 TO Discount
 END-EVALUATE
 DISPLAY "Discount = " Discount "%"
 STOP RUN.

Summary
The three classic constructs of structured programming are sequence, selection, and iteration. You have already
noted that a COBOL program starts execution with the first statement in the PROCEDURE DIVISION and then continues
to execute the statements one after another in sequence until the STOP RUN or the end-of-the-program text is
encountered, unless some other statement changes the order of execution. In this chapter, you examined the IF
and EVALUATE statements. These statements allow a program to selectively execute program statements. In the next
chapter, you discover how iteration, the final classic construct, is implemented in COBOL.

References
 1. Tompkins HE. In defense of teaching structured COBOL as computer science (or, notes on

being sage struck). ACM SIGPLAN Notices. 1983; 18(4): 86-94.

 2. Baldwin RR. A note on H.E. Tompkins’s minimum-period COBOL style. ACM SIGPLAN
Notices. 1987; 22(5): 27-31. http://doi.acm.org/10.1145/25267.25273

doi: 10.1145/25267.25273

http://dx.doi.org/http://doi.acm.org/10.1145/25267.25273
http://dx.doi.org/10.1145/25267.25273

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

102

LANGUAGE KNOWLEDGE EXERCISES

Getting out your 2B pencil once more, write answers to the following questions.

1. For each of the following condition names, which do you consider to be inappropriately

named? Suggest more suitable names for these only.

01 Country-Code PIC XX.
 88 Code-Is-US VALUE "US".
 __

01 Operating-System PIC X(15).
 88 Windows-Or-UNIX VALUE "WINDOWS".

 __

01 Room-Type PIC X(20).
 88 Double-Room VALUE "DOUBLE".

 __

 88 Single-Room VALUE "SINGLE".

 __

2. Write an IF statement that uses the SET verb to manually set the condition name

InvalidCode to true if DeptCode contains anything except 1, 6, or 8.

3. Assume the variable DeptCode in question 2 is described as

01 DeptCode PIC 9.

__

Write a level 88 condition name called InvalidCode that is automatically set to true when

the statement ACCEPT DeptCode accepts any value other than 1, 6, or 8.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

103

4. In each of the following five groups of skeleton IF statements, state whether the statements

in each group have the same effect (in the sense that they evaluate to true or false). Answer

yes or no.

Do these statements have the same effect? Answer

IF Num1 = 1 OR Num1 NOT = 1...
IF NOT (Num1 = 1 AND Num1 = 2) ...

IF TransCode IS NOT = 3 OR Total NOT > 2550 ...
IF NOT (TransCode IS = 3 OR Total > 2550) ...

IF Num1 = 31 OR Num2 = 12 AND Num3 = 23 OR Num4 = 6 ...
IF (Num1 = 31 OR (Num2 = 12 AND Num3 = 23)) OR Num4 = 6 ...

IF Num1 = 15 OR Num1 = 12 OR Num1 = 7 AND City = "Cork" ...
IF (Num1 = 15 OR Num1 = 12 OR Num1 = 7) AND City = "Cork" ...

IF (Num1 = 1 OR Num1 = 2) AND (Num2 = 6 OR Num2 = 8) ...
IF Num1 = 1 OR Num1 = 2 AND Num2 = 6 OR Num2 = 8 ...

5. Write an EVALUATE statement to implement the decision part of a game of rock, paper, scissors.

Most of the program has been written for you. Just complete the EVALUATE. ADD a WHEN OTHER

branch to the EVALUATE to detect when a player enters a code other than 1, 2, or 3.

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-10.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PlayerGuess-A PIC 9 VALUE 1.
 88 Rock-A VALUE 1.
 88 Paper-A VALUE 2.
 88 Scissors-A VALUE 3.

01 PlayerGuess-B PIC 9 VALUE 2.
 88 Rock-B VALUE 1.
 88 Paper-B VALUE 2.
 88 Scissors-B VALUE 3.

PROCEDURE DIVISION.
BEGIN.
 DISPLAY "Guess for player A (1=rock, 2=scissors, 3=paper) : "
 WITH NO ADVANCING
 ACCEPT PlayerGuess-A
 DISPLAY "Guess for player B (1=rock, 2=scissors, 3=paper) : "
 WITH NO ADVANCING
 ACCEPT PlayerGuess-B

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

104

 EVALUATE ___

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

PROGRAMMING EXERCISE

Listing 4-2 is a program that accepts two numbers from the user, multiplies them together, and then displays the

result. Modify the program so that

It also accepts an operator symbol (• + - / *).

It uses • EVALUATE to discover which operator has been entered and to apply that operator to the

two numbers entered.

It uses the condition name • ValidOperator to identify the valid operators and only displays the

result if the operator entered is valid.

The • Result data item is changed to accommodate the possibility that subtraction may result in a

negative value.

The • Result data item is changed to accommodate the decimal fractions that may result from

division. The result data item should be able to accept values with up to two decimal places (for

example, 00.43 or 00.74).

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

105

LANGUAGE KNOWLEDGE EXERCISES—ANSWERS

1. For each of the following condition names, which do you consider to be inappropriately

named? Suggest more suitable names for these only.

01 Country-Code PIC XX.
 88 UnitedStates VALUE "US".
* Change
* Example of use - IF UnitedStates DISPLAY "We are in America" END-IF

01 Operating-System PIC X(15).
 88 Windows VALUE " WINDOWS".
* Change
* Example of use - IF Windows DISPLAY "Windows is best" END-IF

01 Room-Type PIC X(20).
 88 Double-Room VALUE "DOUBLE".
 88 Single-Room VALUE "SINGLE".
* No change.
* Example of use -IF Double-Room ADD DoubleRoomSurchage TO RoomRent END-IF

2. Write an IF statement that uses the SET verb to manually set the condition name

InvalidCode to true if DeptCode contains anything except 1, 6, or 8.

IF NOT (DeptCode = 1 OR DeptCode = 6 OR DeptCode = 8) THEN
 SET InvalidCode TO TRUE
END-IF.

Or, using implied subjects:

IF NOT (DeptCode = 1 OR 6 OR 8) THEN
 SET InvalidCode TO TRUE
END-IF.

3. Assume the variable DeptCode in question 2 is described as

01 DeptCode PIC 9.
 88 InvalidCode VALUE 0, 2 THRU 5,7,9.

Write a level 88 condition name called InvalidCode that is automatically set to true when

the statement ACCEPT DeptCode accepts any value other than 1, 6, or 8.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

106

4. In each of the following five groups of skeleton IF statements, state whether the statements

in each group have the same effect (in the sense that they evaluate to true or false). Answer

yes or no.

Do these statements have the same effect? Answer

IF Num1 = 1 OR Num1 NOT = 1...
IF NOT (Num1 = 1 AND Num1 = 2)...

YES

In the sense that they

are both always true.

IF TransCode IS NOT = 3 OR Total NOT > 2550 ...
IF NOT (TransCode IS = 3 OR Total > 2550)...

NO

IF Num1 = 31 OR Num2 = 12 AND Num3 = 23 OR Num4 = 6...
IF (Num1 = 31 OR (Num2 = 12 AND Num3 = 23)) OR Num4 = 6...

YES
The brackets only make

explicit what is ordained

by the precedence rules.

IF Num1 = 15 OR Num1 = 12 OR Num1 = 7 AND City = "Cork"...
IF (Num1 = 15 OR Num1 = 12 OR Num1 = 7) AND City =
"Cork"...

NO
In the first Num1=7

AND City=SPACES are

ANDed together but in

the second City=“Cork”

is ANDed with the result

of the expression in the

parentheses

IF (Num1 = 1 OR Num1 = 2) AND (Num2 = 6 OR Num2 = 8) ...
IF Num1 = 1 OR Num1 = 2 AND Num2 = 6 OR Num2 = 8 ...

NO

5. Write an EVALUATE statement to implement the decision part of a game of rock, paper, scissors.

Most of the program has been written for you. Just complete the EVALUATE. ADD a WHEN OTHER

branch to the EVALUATE to detect when a player enters a code other than 1, 2, or 3.

Listing 5-10. Rock, Paper, Scissors Game

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-10.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 PlayerGuess-A PIC 9 VALUE 1.
 88 Rock-A VALUE 1.
 88 Paper-A VALUE 2.
 88 Scissors-A VALUE 3.

01 PlayerGuess-B PIC 9 VALUE 2.
 88 Rock-B VALUE 1.
 88 Paper-B VALUE 2.
 88 Scissors-B VALUE 3.

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

107

PROCEDURE DIVISION.
BEGIN.
 DISPLAY "Guess for player A (1=rock, 2=scissors, 3=paper) : "
 WITH NO ADVANCING
 ACCEPT PlayerGuess-A
 DISPLAY "Guess for player B (1=rock, 2=scissors, 3=paper) : "
 WITH NO ADVANCING
 ACCEPT PlayerGuess-B
 EVALUATE TRUE ALSO TRUE
 WHEN Rock-A ALSO Rock-B DISPLAY "Draw"
 WHEN Rock-A ALSO Paper-B DISPLAY "Player B wins"
 WHEN Rock-A ALSO Scissors-B DISPLAY "Player A wins"
 WHEN Paper-A ALSO Rock-B DISPLAY "Player A wins"
 WHEN Paper-A ALSO Paper-B DISPLAY "Draw"
 WHEN Paper-A ALSO Scissors-B DISPLAY "Player B wins"
 WHEN Scissors-A ALSO Rock-B DISPLAY "Player B wins"
 WHEN Scissors-A ALSO Paper-B DISPLAY "Player A wins"
 WHEN Scissors-A ALSO Scissors-B DISPLAY "Draw"
 WHEN OTHER DISPLAY "Evaluate problem"
 END-EVALUATE

 STOP RUN.

PROGRAMMING EXERCISE ANSWER

Listing 5-11. Simple Calculator

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing5-11.
AUTHOR. Michael Coughlan.
*> Accepts two numbers and an operator from the user.
*> Applies the appropriate operation to the two numbers.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE 7.
01 Num2 PIC 9 VALUE 3.
01 Result PIC --9.99 VALUE ZEROS.
01 Operator PIC X VALUE "-".
 88 ValidOperator VALUES "*", "+", "-", "/".

PROCEDURE DIVISION.
CalculateResult.
 DISPLAY "Enter a single digit number : " WITH NO ADVANCING
 ACCEPT Num1
 DISPLAY "Enter a single digit number : " WITH NO ADVANCING

CHAPTER 5 ■ CONTROL STRUCTURES: SELECTION

108

 ACCEPT Num2
 DISPLAY "Enter the operator to be applied : " WITH NO ADVANCING
 ACCEPT Operator EVALUATE Operator
 WHEN "+" ADD Num2 TO Num1 GIVING Result
 WHEN "-" SUBTRACT Num2 FROM Num1 GIVING Result
 WHEN "*" MULTIPLY Num2 BY Num1 GIVING Result
 WHEN "/" DIVIDE Num1 BY Num2 GIVING Result ROUNDED
 WHEN OTHER DISPLAY "Invalid operator entered"
 END-EVALUATE
 IF ValidOperator
 DISPLAY "Result is = ", Result
 END-IF
 STOP RUN.

109

CHAPTER 6

Control Structures: Iteration

The previous chapter dealt with COBOL’s selection constructs: IF and EVALUATE. In this chapter, you examine the last
of the classic structured programming constructs: iteration.

In almost every programming job, there is some task that needs to be done over and over again. The job of
processing a file of records is an iteration of this task: get and process record. The job of getting the sum of a stream of
numbers is an iteration of this task: get and add number. The job of searching through an array for a particular value is an
iteration of this task: get next element and check element value. These jobs are accomplished using iteration constructs.

Other languages support a variety of iteration constructs, each designed to achieve different things. In Modula-2
and Pascal, While..DO and Repeat..Until implement pre-test and post-test iteration. The for loop is used for
counting iteration. The many C-language derivatives use while and do..while for pre-test and post-test iteration,
and again the for loop is used for counting iteration.

COBOL supports all these different kinds of iteration, but it has only one iteration construct: the PERFORM verb
(see Table 6-1). Pre-test and post-test iteration are supported by PERFORM WITH TEST BEFORE and PERFORM WITH TEST
AFTER. Counting iteration is supported by PERFORM..VARYING. COBOL even has variations that are not found in other
languages. PERFORM..VARYING, for instance, can take more than one counter, and it has both pre-test and post-test
variations. Whereas in most languages the loop target is an inline block of code, in COBOL it can be either an inline
block or a named out-of-line block of code.

Paragraphs Revisited
In the PROCEDURE DIVISION, a paragraph is a block of code to which you have given a name. A paragraph begins with
the paragraph name (see Example 6-1) and ends when the next paragraph or section name is encountered or when
the end of the program text is reached. The paragraph name must always be terminated with a period (full stop).

There may be any number of statements and sentences in a paragraph; but there must be at least one sentence,
and the last statement in the paragraph must be terminated with a period. In fact, as I mentioned in the previous
chapter, there is a style of COBOL programming called the minimum-period style1-2, which you should adopt. This
style suggests that there should be only one period in the paragraph. It is particularly important to adhere to this style
when coding inline loops, because a period has the effect of delimiting the scope of an inline PERFORM.

Table 6-1. Iteration Constructs and Their COBOL Equivalents

C, C++, Java Modula-2, Pascal COBOL

Pre-test while {} While..DO PERFORM WITH TEST BEFORE UNTIL

Post-test do {}
while

Repeat..Until PERFORM WITH TEST AFTER UNTIL

Counting for For..DO PERFORM..VARYING..UNTIL

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

110

Example 6-1. Two Paragraphs: ProcessRecord Ends Where ProcessOutput Begins

ProcessRecord.
 DISPLAY StudentRecord
 READ StudentFile
 AT END MOVE HIGH-VALUES TO StudentRecord
 END-READ.

ProduceOutput.
 DISPLAY "Here is a message".

The PERFORM Verb
Unless it is instructed otherwise, a computer running a COBOL program processes the statements in sequence,
starting at the first statement of the PROCEDURE DIVISION and working its way down through the program until the
STOP RUN, or the end of the program text, is reached. The PERFORM verb is one way of altering the sequential flow of
control in a COBOL program. The PERFORM verb can be used for two major purposes;

To transfer control to a designated block of code•

To execute a block of code iteratively•

Whereas the other formats of the PERFORM verb implement iteration of one sort or another, this first format is used
to transfer control to an out-of-line block of code—that is, to execute an open subroutine. You have probably have
come across the idea of a subroutine before. A subroutine is a block of code that is executed when invoked by name.
Methods, procedures, and functions are subroutines. You may not have realized that there are two types of subroutine:

Open subroutines•

Closed subroutines•

If you have learned BASIC, you may be familiar with open subroutines. If you learned C, Modula-2, or Java,
you are probably familiar with closed subroutines.

Open Subroutines
An open subroutine is a named block of code that control (by which I mean program statement execution) can fall
into, or through. An open subroutine has access to all the data items declared in the main program, and it cannot
declare any local data items.

Although an open subroutine is normally executed by invoking it by name, it is also possible, unless you are
careful, to fall into it from the main program. In BASIC, the GOSUB and RETURN commands allow you to implement
open subroutines. Example 6-2 is a short BASIC program that illustrates the fall-through problem. Two outputs are
provided: one where the EXIT statement prevents fall-through and the other where control falls through into OpenSub
because the EXIT statement has been removed.

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

111

Example 6-2. Open Subroutine in Yabasic3 Showing Output With and Without the EXIT Statement

REM Demonstrates Open subroutines in Yabasic
REM When the EXIT is removed, control falls
REM through into OpenSub
REM Author. Michael Coughlan
PRINT "In main"
GOSUB OpenSub
PRINT "Back in main"
EXIT

LABEL OpenSub
 PRINT "In OpenSub"
 RETURN

In some legacy COBOL programs, falling through the program from paragraph to paragraph is a deliberate
strategy. In this scheme, which has been called gravity-driven programming, control falls through the program until it
encounters an IF and GO TO combination that drives it to a paragraph in the code above it; after that, control starts to
fall through the program again. Example 6-3 provides an outline of how such a program works (P1, P2, P3, and P4 are
paragraph names).

Example 6-3. Model for a Gravity-Driven COBOL Program

P1.
 statement
 statement
 statement

P2.
 statement
 statement

P3.
 statement
 IF cond GO TO P2
 statement
 statement
 IF cond GO TO P3

P4.
 statement
 IF cond GO TO P2
 statement
 statement
 STOP RUN

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

112

Closed Subroutines
A closed subroutine is a named block of code that can only be executed by invoking it by name. Control cannot
“fall into” a closed subroutine. A closed subroutine can usually declare its own local data, and that data cannot be
accessed outside the subroutine. Data in the main program can be passed to the subroutine by means of parameters
specified when the subroutine is invoked. In C and Modula-2, procedures and functions implement closed subroutines.
In Java, methods are used.

COBOL Subroutines
COBOL supports both open and closed subroutines. Open subroutines are implemented using the first format of the
PERFORM verb. Closed subroutines are implemented using the CALL verb and contained or external subprograms.
You learn about contained and external subprograms later in the book.

ISO 2002 ■ ISO 2002 COBOL provides additional support for closed subroutines in the form of methods. Methods in

COBOL bear a very strong syntactic resemblance to contained subprograms.

Why Use Open Subroutines?
The open subroutines represented by paragraphs (and sections) are used to make programs more readable and
maintainable. Although PERFORMed paragraphs are not as robust as the user-defined procedures or functions found
in other languages, they are still useful. They allow you to partition code into a hierarchy of named tasks and subtasks
without the formality or overhead involved in coding a procedure or function. COBOL programmers who require the
protection of that kind of formal partitioning can use contained or external subprograms.

Partitioning a task into subtasks makes each subtask more manageable; and using meaningful names for the
subtasks effectively allows you to document in code what the program is doing. For instance, a block of code that
prints report headings can be removed to a paragraph called PrintReportHeadings. The details of how the task is
being accomplished can be replaced with a name that indicates what is being done.

Consider the partitioning and documentation benefits provided by the program skeleton in Example 6-4. The
skeleton contains no real code (only PERFORMs and paragraph names), but the hierarchy of named tasks and subtasks
allows you to understand that the program reads through a file containing sales records for various shops and for each
shop prints a line on the report that summarizes the sales for that shop.

Example 6-4. Program Skeleton

PrintSummarySalesReport.
 PERFORM PrintReportHeadings
 PERFORM PrintSummaryBody UNTIL EndOfFile
 PERFORM PrintFinalTotals
 STOP RUN.

PrintSummaryBody.
 PERFORM SummarizeShopSales
 UNTIL ShopId <> PreviousShopId
 OR EndOfFile
 PERFORM PrintShopSummary

SummarizeShopSales.
 Statements

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

113

PrintReportHeadings.
 Statements

PrintShopSummary.
 Statements

PrintFinalTotals.
 Statements

Obviously, it is possible to take partitioning to an extreme. You should try to achieve a balance between making
the program too fragmented and too monolithic. As a rule of thumb, there should be a good reason for creating a
paragraph that contains five statements or fewer.

PERFORM NamedBlock
This first format of the PERFORM (see Figure 6-1) is not an iteration construct. It simply instructs the computer to
transfer control to an out-of-line block of code (that is, an open subroutine). The block of code may be a paragraph
or a section. When the end of the block is reached, control reverts to the statement (not the sentence) immediately
following the PERFORM.

In Figure 6-1, StartblockName and EndblockName are the names of paragraphs or sections. PERFORM..THRU
instructs the computer to treat the paragraphs or sections from StartblockName TO EndblockName as a single
block of code.

PERFORM s can be nested. A PERFORM may execute a paragraph that contains another PERFORM, but neither direct
nor indirect recursion is allowed. Unfortunately, this restriction is not enforced by the compiler, so a syntax error does
not result; but your program will not work correctly if you use recursive PERFORMs.

The order of execution of the paragraphs is independent of their physical placement. It does not matter where
you put the paragraphs—the PERFORM will find and execute them.

How PERFORM Works
Listing 6-1 shows a short COBOL program that demonstrates how PERFORM works. The program executes as follows:

 1. Control starts in paragraph LevelOne, and the message “Starting to run program” is
displayed.

 2. When PERFORM LevelTwo is executed, control is passed to LevelTwo and the statements in
that paragraph start to execute.

 3. When PERFORM LevelThree is executed, control passes to LevelThree. When PERFORM
LevelFour is executed, the message “Now in LevelFour” is displayed.

 4. When the end of LevelFour is reached, control returns to the statement following the
PERFORM that invoked it, and the message “Back in LevelThree” is displayed.

Figure 6-1. Metalanguage for PERFORM format 1

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

114

 5. When LevelThree ends, control returns to the statement following the PERFORM, and the
message “Back in LevelTwo” is displayed. Finally, when LevelTwo ends, control returns to
paragraph LevelOne, and the “Back in LevelOne” message is displayed.

 6. When STOP RUN is reached, the program stops.

Notice that the order of paragraph execution is independent of physical placement. For instance, although the
paragraph LevelTwo comes after LevelThree and LevelFour in the program text, it is executed before them.

As I mentioned earlier, although PERFORMs can be nested, neither direct nor indirect recursion is allowed. So it
would not be valid for paragraph LevelThree to contain the statement PERFORM LevelThree. This would be direct
recursion. Neither would it be valid for LevelTwo to contain the statement PERFORM LevelOne. This would be indirect
recursion because LevelOne contains the instruction PERFORM LevelTwo.

A frequent mistake made by beginning COBOL programmers is to forget to include STOP RUN at the end of
the first paragraph. Example 6-5 shows the output that would be produced by Listing 6-1 if you forgot to include
STOP RUN. From the output produced, try to follow the order of execution of the paragraphs.

Example 6-5. Output when STOP RUN is missing

> Starting to run program
> > Now in LevelTwo
> > > Now in LevelThree
> > > > Now in LevelFour
> > > Back in LevelThree
> > Back in LevelTwo
> Back in LevelOne
> > > > Now in LevelFour
> > > Now in LevelThree
> > > > Now in LevelFour
> > > Back in LevelThree
> > Now in LevelTwo
> > > Now in LevelThree
> > > > Now in LevelFour
> > > Back in LevelThree
> > Back in LevelTwo

Listing 6-1. Demonstrates How PERFORM Works

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-1.
AUTHOR. Michael Coughlan.
PROCEDURE DIVISION.
LevelOne.
 DISPLAY "> Starting to run program"
 PERFORM LevelTwo
 DISPLAY "> Back in LevelOne"
 STOP RUN.

LevelFour.
 DISPLAY "> > > > Now in LevelFour".

LevelThree.

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

115

 DISPLAY "> > > Now in LevelThree"
 PERFORM LevelFour
 DISPLAY "> > > Back in LevelThree".

LevelTwo.
 DISPLAY "> > Now in LevelTwo"
 PERFORM LevelThree

 DISPLAY "> > Back in LevelTwo".

PERFORM..THRU Dangers
One variation that exists in all the PERFORM formats is PERFORM..THRU. When you use PERFORM..THRU, all the code from
StartblockName to EndblockName is treated as a single block of code. Because PERFORM..THRU is generally regarded as
a dangerous construct, it should only be used to PERFORM a paragraph and its immediately succeeding paragraph exit.

The problem with using PERFORM..THRU to execute a number of paragraphs as one unit is that, in the
maintenance phase of the program’s life, another programmer may need to create a new paragraph and may
physically place it in the middle of the PERFORM..THRU block. Suddenly the program stops working correctly.
Why? Because now PERFORM..THRU is executing an additional, unintentional, paragraph.

Using PERFORM..THRU Correctly
The warning against using PERFORM..THRU is not absolute, because when used correctly, PERFORM..THRU can be very useful.
In COBOL there is no way to break out a paragraph that is the target of a PERFORM. All the statements have to be executed
until the end of the paragraph is reached. But sometimes, such as when you encounter an error condition, you do not want
to execute the remaining statements in the paragraph. This is a circumstance when PERFORM..THRU can be handy.

Consider the program outline in Example 6-6. In this example, control will not return to Begin until SumEarnings
has ended, but you do not want to execute the remaining statements if an error is detected. The solution adopted is
to hide the remaining statements behind an IF NoErrorFound statement. This might be an adequate solution if there
were only one type of error; but if there is more than one type, then nested IF statements must be used. This quickly
becomes unsightly and cumbersome.

Example 6-6. Using IFs to Skip Statements When an Error Is Detected

PROCEDURE DIVISION.
Begin.
 PERFORM SumEarnings
 STOP RUN.

SumEarnings.
 Statements
 Statements
 IF NoErrorFound
 Statements
 Statements
 IF NoErrorFound
 Statements
 Statements
 Statements
 END-IF
 END-IF.

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

116

In Example 6-7, PERFORM..THRU is used to deal with the problem in a more elegant manner. The dangers of
PERFORM..THRU are ameliorated by having only two paragraphs in the target block and by using a name for the second
paragraph that clearly indicates that it is bound to the first.

Example 6-7. Using PERFORM..THRU and GO TO to Skip Statements

PROCEDURE DIVISION
Begin.
 PERFORM SumEarnings THRU SumEarningsExit
 STOP RUN.

SumEarnings.
 Statements
 Statements
 IF ErrorFound
 GO TO SumEarningsExit
 END-IF
 Statements
 Statements

 IF ErrorFound
 GO TO SumEarningsExit
 END-IF
 Statements
 Statements
 Statements

SumEarningsExit.
 EXIT.

When the statement PERFORM SumEarnings THRU SumEarningsExit is executed, both paragraphs are performed as if
they are one paragraph. The GO TO jumps to the exit paragraph, which, because the paragraphs are treated as one, is the end
of the block of code. This technique allows you to skip over the code that should not be executed when an error is detected.

The EXIT statement in SumEarningsExit is a dummy statement. It has absolutely no effect on the flow of control. It is in
the paragraph merely to conform to the rule that every paragraph must have one sentence. It has the status of a comment.

The PERFORM..THRU and GO TO constructs used in this example are dangerous. GO TO in particular is responsible
for the “spaghetti code” that plagues many COBOL legacy systems. For this reason, you should use PERFORM..THRU
and GO TO only as demonstrated in Example 6-7.

PERFORM..TIMES
PERFORM..TIMES (see Figure 6-2) is the second format of the PERFORM verb.

Figure 6-2. Metalanguage for PERFORM format 2

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

117

This format has no real equivalent in most programming languages, perhaps because of its limited usefulness. It simply
allows a block of code to be executed RepeatCount#il times before returning control to the statement following PERFORM.

Like the other formats of PERFORM, this format allows two types of execution:

Out-of-line execution of a block of code•

Inline execution of a block of code•

Example 6-8 gives some example PERFORM..TIMES statements. These examples specify the RepeatCount using
both literals and identifiers and show the inline and out-of-line variants of PERFORM.

Example 6-8. Using PERFORM..TIMES

PERFORM PrintBlankLine 10 Times

MOVE 10 TO RepetitionCount
PERFORM DisplayName RepetitionCount TIMES

PERFORM 15 TIMES
 DISPLAY "Am I repeating myself?"
END-PERFORM

Inline Execution
Inline execution will be familiar to programmers who have used the iteration constructs (while, do/repeat, for) of
most other programming languages. An inline PERFORM iteratively executes a block of code contained within the same
paragraph as the PERFORM. That is, the loop body is inline with the rest of the paragraph code. The block of code to be
executed starts at the keyword PERFORM and ends at the keyword END-PERFORM (see Listing 6-2).

Listing 6-2. Demonstrates PERFORM..TIMES and Inline vs. Out-of-Line Execution

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-2.
AUTHOR. Michael Coughlan.
*> in-line and out-of-line PERFORM..TIMES

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumOfTimes PIC 9 VALUE 5.

PROCEDURE DIVISION.
Begin.
 DISPLAY "About to start in-line Perform"
 PERFORM 4 TIMES
 DISPLAY "> > > > In-line Perform"
 END-PERFORM
 DISPLAY "End of in-line Perform"

 DISPLAY "About to start out-of-line Perform"
 PERFORM OutOfLineCode NumOfTimes TIMES
 DISPLAY "End of out-of-line Perform"
 STOP RUN.

OutOfLineCode.
 DISPLAY "> > > > > Out-of-line Perform".

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

118

ANS 85 ■ In-line PERFORMs were only introduced as part of the ANS 85 COBOL specification. In older legacy systems,

the loop body is always out of line.

Out-of-Line Execution
In an out-of-line PERFORM, the loop body is a separate paragraph or section. This is the equivalent, in other languages,
of having a procedure, function, or method invocation inside the loop body of a while or for construct.

When a loop is required, but only a few statements are involved, you should use an inline PERFORM. When
a loop is required, and the loop body executes some specific task or function, out-of-line code should be used.
The paragraph name chosen for the out-of-line code should identify the task or function of the code.

PERFORM..UNTIL
PERFORM..UNTIL (see Figure 6-3) is the third format of the PERFORM verb. This format implements both pre-test and
post-test iteration in COBOL. It is the equivalent of Java’s while and do..while or Pascal’s While and Repeat..Until
looping constructs.

Figure 6-3. Metalanguage for PERFORM format 3

Pre-test and post-test iteration structures seem to be strangely implemented in many languages. Some languages
confuse when the test is done with how the terminating condition is tested (Pascal’s While and Repeat structures,
for example). In many languages, the test for how the loop terminates emphasizes what makes the loop keep going,
rather than what makes it stop. Although this may make formal reasoning about the loop easier, it does not come
across as an entirely natural way of framing the question. In your day-to-day life, you do not say, “Heat the water while
the water is not boiled” or “Pour water into the cup while the cup is not full.”

Pre-test and post-test looping constructs are one area where COBOL seems to have things right. Whether the
loop is pre-test or post-test, it is separated from how the terminating condition is tested; and the test for termination
emphasizes what makes the loop stop, rather than what makes it keep going. In COBOL you might write

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

119

PERFORM ProcessSalesFile WITH TEST BEFORE
 UNTIL EndOfSalesFile

or

PERFORM GetNextCharacter WITH TEST AFTER
 UNTIL Letter = "s"

Notes on PERFORM..UNTIL
If you use the WITH TEST BEFORE phrase, PERFORM behaves like a while loop and the condition is tested before the loop
body is entered. If you use the WITH TEST AFTER phrase, PERFORM behaves like a do..while loop and the condition is
tested after the loop body is entered. The WITH TEST BEFORE phrase is the default and so is rarely explicitly stated.

How PERFORM..UNTIL Works
Although flowcharts are generally derided as a program-design tool, they are very useful for showing flow of control.
The flowcharts in Figure 6-4 and Figure 6-5 show how the WITH TEST BEFORE and WITH TEST AFTER variations of
PERFORM..UNTIL work.

Figure 6-4. Pre-test loop

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

120

Note that the terminating condition is checked only at the beginning of each iteration (PERFORM WITH TEST
BEFORE) or at the end of each iteration (PERFORM WITH TEST AFTER). If the terminating condition is reached in the
middle of the iteration, the rest of the loop body is still executed. The terminating condition cannot be checked until
all the statements in the loop body have been executed. COBOL has no equivalent of the break command that allows
control to break out of a loop without satisfying the terminating condition.

PERFORM..VARYING
PERFORM..VARYING (see Figure 6-6) is the final format of the PERFORM verb.

Figure 6-5. Post-test loop

Figure 6-6. Metalanguage for PERFORM format 4

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

121

PERFORM..VARYING is used to implement counting iteration. It is similar to the for construct in languages like
Pascal, C, and Java. However, there are some differences:

Most languages permit only one counting variable per loop instruction. COBOL allows up to •
three. Why only three? Before ANS 85 COBOL, tables were allowed only a maximum of three
dimensions, and PERFORM..VARYING was used to process them.

Both pre-test and post-test variations of counting iteration are supported.•

The terminating condition does not have to involve the counting variable. For instance:•

PERFORM CountRecordsInFile
 VARYING RecordCount FROM 1 BY 1 UNTIL EndOfFile

Notes on PERFORM..VARYING
The inline version of PERFORM..VARYING cannot take the AFTER phrase. This means only one counter may be used with
an inline PERFORM.

When you use more than one counter, the counter after the VARYING phrase is the most significant, that after the
first AFTER phrase is the next most significant, and the last counter is the least significant. Just like the values in an
odometer, the least-significant counter must go through all its values and reach its terminating condition before the
next-most-significant counter can be incremented.

The item after the word FROM is the starting value of the counter (initialization). An index item is a special data
item. Index items are examined when tables are discussed.

The item after the word BY is the step value of the counter (increment). It can be negative or positive. If you use a
negative step value, the counter should be signed (PIC S99, for instance). When the iteration ends, the counters retain
their terminating values.

The WITH TEST BEFORE phrase is the default and so is rarely specified.

How PERFORM..VARYING Works
Figure 6-7 shows the flowchart for PERFORM..VARYING..AFTER. Because there is no WITH TEST phrase, WITH TEST
BEFORE is assumed. The table shows the number of times the loop body is processed and the value of each counter as
displayed in the loop body. The terminating values of the counters are also given.

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

122

Note how the counter Idx2 must go through all its values and reach its terminating value before the Idx1 counter
is incremented. An easy way to understand this is to think of it as an odometer. In an odometer, the units counter must
go through all its values 0–9 before the tens counter is incremented.

Many of the example programs in this book provide a gentle preview of language elements to come. Listing 6-3
previews edited pictures. Examine the description of PrnRepCount provided by its picture, and review the output
produced. Can you figure out how the edited picture works? Why do you think it was necessary to move RepCount to
PrnRepCount? Why not just use the edited picture with RepCount?

Listing 6-3. Using PERFORM..VARYING for Counting

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-3.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 RepCount PIC 9(4).
01 PrnRepCount PIC Z,ZZ9.
01 NumberOfTimes PIC 9(4) VALUE 1000.

PROCEDURE DIVISION.
Begin.
 PERFORM VARYING RepCount FROM 0 BY 50
 UNTIL RepCount = NumberOfTimes
 MOVE RepCount TO PrnRepCount
 DISPLAY "counting " PrnRepCount
 END-PERFORM
 MOVE RepCount TO PrnRepCount
 DISPLAY "If I have told you once, "
 DISPLAY "I've told you " PrnRepCount " times."

 STOP RUN.

Figure 6-7. PERFORM..VARYING..AFTER

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

123

Answer ■ RepCount can’t be an edited picture because an edited picture contains non-numeric characters (spaces,

in this case), and you can’t do computations with non-numeric characters. You have to do the computations with the

numeric RepCount and then move it to the edited field PrnRepCount when you want it printed.

The explanation of the operation of PERFORM..VARYING..AFTER compares the construct to an odometer.
The program in Listing 6-4 reinforces this idea by using PERFORM..VARYING to emulate an odometer. The program
uses both out-of-line and inline versions of PERFORM..VARYING. Notice that when the inline variation is used, you
cannot have an AFTER phrase but must instead use nested PERFORMs just as in Java or Pascal. Because the output is
voluminous, only the final part is shown here.

Listing 6-4. Odometer Simulation

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-4.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Counters.
 02 HundredsCount PIC 99 VALUE ZEROS.
 02 TensCount PIC 99 VALUE ZEROS.
 02 UnitsCount PIC 99 VALUE ZEROS.

01 Odometer.
 02 PrnHundreds PIC 9.
 02 FILLER PIC X VALUE "-".
 02 PrnTens PIC 9.
 02 FILLER PIC X VALUE "-".
 02 PrnUnits PIC 9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Using an out-of-line Perform".
 PERFORM CountMileage
 VARYING HundredsCount FROM 0 BY 1 UNTIL HundredsCount > 9
 AFTER TensCount FROM 0 BY 1 UNTIL TensCount > 9
 AFTER UnitsCount FROM 0 BY 1 UNTIL UnitsCount > 9

 DISPLAY "Now using in-line Perform"
 PERFORM VARYING HundredsCount FROM 0 BY 1 UNTIL HundredsCount > 9
 PERFORM VARYING TensCount FROM 0 BY 1 UNTIL TensCount > 9
 PERFORM VARYING UnitsCount FROM 0 BY 1 UNTIL UnitsCount > 9
 MOVE HundredsCount TO PrnHundreds
 MOVE TensCount TO PrnTens
 MOVE UnitsCount TO PrnUnits
 DISPLAY "In - " Odometer
 END-PERFORM
 END-PERFORM
 END-PERFORM

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

124

 DISPLAY "End of odometer simulation."
 STOP RUN.

CountMileage.
 MOVE HundredsCount TO PrnHundreds
 MOVE TensCount TO PrnTens
 MOVE UnitsCount TO PrnUnits
 DISPLAY "Out - " Odometer.

You might be wondering why the word FILLER is used in the description of Odometer. In COBOL, instead of
having to make up dummy names, you can use FILLER when you need to reserve an area of storage but are never
going to refer to it by name. For instance, in the data item Odometer, you want to separate the digits with hyphens,
so you declare a character of storage for each hyphen and assign it the value -. But you will never refer to this part
of Odometer by name. The hyphens only have significance as part of the group item.

Summary
This chapter examined the iteration constructs supported by COBOL. You learned the differences between COBOL’s
version of pre-test and post-test iteration and those of other languages. I contrasted counting iteration in its
PERFORM..VARYING..AFTER implementation, which has both pre-test and post-test variations, with the offerings of
other languages. You also explored the ability to create open subroutines in COBOL, and I provided a rationale for
using them.

LANGUAGE KNOWLEDGE EXERCISE

Unleash your 2B pencil. It is exercise time again.

In the columns provided, write out what you would expect to be displayed on the computer screen if you ran the

program shown in Listing 6-5. Use the Continue Run column to show what happens after the statement DISPLAY

"STOP RUN should be here". has been executed.

Listing 6-5. Program to Test Your Knowledge of the PERFORM Verb

DATA DIVISION.
IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-5.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LoopCount PIC 9 VALUE 1.
01 LoopCount2 PIC 9 VALUE 1.

Start Run Continue Run

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

125

 PROCEDURE DIVISION.
P1.
DISPLAY "S-P1"
PERFORM P2
PERFORM P3
MOVE 7 TO LoopCount
PERFORM VARYING LoopCount
FROM 1 BY 1 UNTIL LoopCount = 2
DISPLAY "InLine - " LoopCount
END-PERFORM
DISPLAY "E-P1".
DISPLAY "STOP RUN should be here".

P2.
DISPLAY "S-P2"
PERFORM P5 WITH TEST BEFORE VARYING LoopCount
FROM 1 BY 1 UNTIL LoopCount > 2
DISPLAY "E-P2".

P3.
DISPLAY "S-P3"
PERFORM P5
PERFORM P6 3 TIMES
DISPLAY "E-P3".

P4.
DISPLAY "P4-" LoopCount2
ADD 1 TO LoopCount2.

P5.
DISPLAY "S-P5"
DISPLAY LoopCount "-P5-" LoopCount2
PERFORM P4 WITH TEST AFTER UNTIL LoopCount2 > 2
DISPLAY "E-P5".

P6.
DISPLAY "P6".

Start Run Continue Run

PROGRAMMING EXERCISE 1

In this programming exercise, you amend the program you wrote for the programming exercise in Chapter 5

(or amend the answer provided in Listing 5-11). That programming exercise required you to create a calculator

program, but the program halted after only one calculation.

Amend the program so it runs until the user enters the letter s instead of an operator (+ - / *). The result of

running the program is shown in the sample output in Example 6-9.

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

126

Example 6-9. Sample Run (User Input Shown in Bold)

Enter an arithmetic operator (+ - * /) (s to end) : *
Enter a single digit number - 4
Enter a single digit number - 5
Result is = 20.00
Enter an arithmetic operator (+ - * /) (s to end) : +
Enter a single digit number - 3
Enter a single digit number - 3
Result is = 06.00
Enter an arithmetic operator (+ - * /) (s to end) : -
Enter a single digit number - 5
Enter a single digit number - 3
Result is = -02.00
Enter an arithmetic operator (+ - * /) (s to end) : /
Enter a single digit number - 5
Enter a single digit number - 3
Result is = 00.60
Enter an arithmetic operator (+ - * /) (s to end) : s

End of calculations

PROGRAMMING EXERCISE 2

Write a program that gets the user’s name and a countdown value from the keyboard and then displays a

countdown before displaying the name that was entered. Use PERFORM..VARYING to create the countdown.

The program should produce results similar to those shown in Example 6-10. For purposes of illustration,

user input is in bold.

Example 6-10. Sample Run

Enter your name :- Mike Ryan
Enter the count-down start value :- 05
Getting ready to display your name.
05
04
03
02
01

Your name is Mike Ryan

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

127

LANGUAGE KNOWLEDGE EXERCISE—ANSWER

DATA DIVISION.
IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-5.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LoopCount PIC 9 VALUE 1.
01 LoopCount2 PIC 9 VALUE 1.

PROCEDURE DIVISION.
P1.
DISPLAY "S-P1"
PERFORM P2
PERFORM P3
MOVE 7 TO LoopCount
PERFORM VARYING LoopCount
FROM 1 BY 1 UNTIL LoopCount = 2
DISPLAY "InLine - " LoopCount
END-PERFORM
DISPLAY "E-P1".
DISPLAY "STOP RUN should be here".

P2.
DISPLAY "S-P2"
PERFORM P5 WITH TEST BEFORE VARYING LoopCount
FROM 1 BY 1 UNTIL LoopCount > 2
DISPLAY "E-P2".

P3.
DISPLAY "S-P3"
PERFORM P5
PERFORM P6 3 TIMES
DISPLAY "E-P3".

P4.
DISPLAY "P4-" LoopCount2
ADD 1 TO LoopCount2.

P5.
DISPLAY "S-P5"
DISPLAY LoopCount "-P5-" LoopCount2
PERFORM P4 WITH TEST AFTER UNTIL LoopCount2 > 2
DISPLAY "E-P5".

P6.
DISPLAY "P6".

Start Run Continue Run

S-P1
S-P2
S-P5
1-P5-1
P4-1
P4-2
E-P5
S-P5
2-P5-3
P4-3
E-P5
E-P2
S-P3
S-P5
3-P5-4
P4-4
E-P5
P6
P6
P6
E-P3
InLine - 1
E-P1
STOP RUN should be here

S-P2
S-P5
1-P5-5
P4-5
E-P5
S-P5
2-P5-6
P4-6
E-P5
E-P2
S-P3
S-P5
3-P5-7
P4-7
E-P5
P6
P6
P6
E-P3
P4-8
S-P5
3-P5-9
P4-9
E-P5
P6

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

128

PROGRAMMING EXERCISE 1—ANSWER

Listing 6-6. The Full Calculator Program

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-6.
AUTHOR. Michael Coughlan.
*> Continually calculates using two numbers and an operator
*> Ends when "s" is entered instead of an operator.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZERO.
01 Num2 PIC 9 VALUE ZERO.
01 Result PIC --9.99 VALUE ZEROS.
01 Operator PIC X VALUE SPACE.
 88 ValidOperator VALUES "*", "+", "-", "/", "s".
 88 EndOfCalculations VALUE "s".

PROCEDURE DIVISION.
Begin.
 PERFORM GetValidOperator UNTIL ValidOperator
 PERFORM UNTIL EndOfCalculations OR NOT ValidOperator
 PERFORM GetTwoNumbers
 EVALUATE Operator
 WHEN "+" ADD Num2 TO Num1 GIVING Result
 WHEN "-" SUBTRACT Num2 FROM Num1 GIVING Result
 WHEN "*" MULTIPLY Num1 BY Num2 GIVING Result
 WHEN "/" DIVIDE Num1 BY Num2 GIVING Result ROUNDED
 END-EVALUATE
 DISPLAY "Result is = ", Result
 MOVE SPACE TO Operator
 PERFORM GetValidOperator UNTIL ValidOperator
 END-PERFORM
 DISPLAY "End of calculations"
 STOP RUN.

GetValidOperator.
 DISPLAY "Enter an arithmetic operator (+ - * /) (s to end) : "
 WITH NO ADVANCING
 ACCEPT Operator.

GetTwoNumbers.
 DISPLAY "Enter a single digit number - " WITH NO ADVANCING
 ACCEPT Num1

 DISPLAY "Enter a single digit number - " WITH NO ADVANCING
 ACCEPT Num2.

CHAPTER 6 ■ CONTROL STRUCTURES: ITERATION

129

PROGRAMMING EXERCISE 2—ANSWER

Listing 6-7. Uses PERFORM..VARYING to Display a Countdown from XX to 01

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing6-7.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 UserName PIC X(20).
01 StartValue PIC 99 VALUE ZEROS.
01 Countdown PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
DisplayCountdown.
 DISPLAY "Enter your name :- " WITH NO ADVANCING
 ACCEPT UserName

 DISPLAY "Enter the count-down start value :- " WITH NO ADVANCING
 ACCEPT StartValue

 PERFORM VARYING Countdown FROM StartValue BY -1 UNTIL Countdown = ZERO
 DISPLAY Countdown
 END-PERFORM

 DISPLAY "Your name is " UserName

 STOP RUN.

References
 1. Tompkins HE. In defense of teaching structured COBOL as computer science (or, notes on

being sage struck). ACM SIGPLAN Notices. 1983; 18(4): 86-94.

 2. Baldwin, RR. A note on H.E. Tompkins’s minimum-period COBOL style. ACM SIGPLAN
Notices. 1987; 22(5): 27-31. http://doi.acm.org/10.1145/25267.25273

 doi: 10.1145/25267.25273

 3. Compiled and run at compileoneline.com—Execute BASIC Program Online
(Yabasic 2.9.15). www.compileonline.com/execute_basic_online.php

http://dx.doi.org/http://doi.acm.org/10.1145/25267.25273
http://www.compileonline.com/execute_basic_online.php

131

CHAPTER 7

Introduction to Sequential Files

An important characteristic of a programming language designed for enterprise or business computing is that it
should have an external, rather than an internal focus. It should concentrate on processing data held externally in files
and databases rather than on manipulating data in memory through linked lists, trees, stacks, and other sophisticated
data structures. Whereas in most programming languages the focus is internal, in COBOL it is external. A glance at
the table of contents of any programming book on Java, C, Pascal, or Ruby emphasizes the point. In most cases, only
one chapter, if that, is devoted to files. In this book, over a quarter of the book deals with files: it covers such topics as
sequential files, relative files, indexed files, the SORT, the MERGE, the Report Writer, control breaks, and the file-update
problem.

COBOL supports three file organizations: sequential files, relative files, and indexed files. Relative and indexed
are direct-access file organizations that are discussed later in the book. They may be compared to a music CD on
which you select the track you desire. Sequential files are like a music cassette: to listen to a particular song, you must
go through all the preceding songs.

This chapter provides a gentle introduction to sequential files. I introduce some of the terminology used when
referring to files and explain how sequential files are organized and processed. Every COBOL file organization requires
entries in the INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION and the FILE SECTION of the DATA DIVISION,
and these declarations are specified and explained. Because files require more sophisticated data definition than the
elementary data items introduced in Chapter 3, this chapter also introduces hierarchically structured data definitions.

What Is a File?
A file is a repository for data that resides on backing storage (hard disk, magnetic tape, or CD-ROM). Nowadays,
files are used to store a variety of different types of information such as programs, documents, spreadsheets, videos,
sounds, pictures, and record-based data. In a record-based file, the data is organized into discrete packages of
information. For instance, a customer record holds information about a customer such as their identifying number,
name, address, date of birth, and gender. A customer file may contain thousands or even millions of instances of the
customer record. In a picture file or music file, by way of contrast, the information is essentially an undifferentiated
stream of bytes.

COBOL is often used in systems where the volume of data to be processed is large—not because the data is
inherently voluminous, as it is in video or sound files, but because the same items of information have been recorded
about a great many instances of the same object. Although COBOL can be used to process other kinds of data files,
it is generally used only to process record-based files.

There are essentially two types of record-based file organization—serial files (COBOL calls these sequential files)
and direct-access files:

In a serial file, the records are organized and accessed serially (one after another).•

In a direct-access file, the records are organized in a manner that allows direct access to a •
particular record based on a key value. Unlike serial files, a record in a direct-access file can be
accessed without having to read any of the preceding records.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

132

Terminology
Before I discuss sequential files, I need to introduce some terminology:

• Field: An item of information that you are recording about an object (StockNumber,
SupplierCode, DateOfBirth, ValueOfSale)

• Record: The collection of fields that record information about an object (for example, a
CustomerRecord is a collection of fields recording information about a customer)

• File: A collection of one or more occurrences (instances) of a record template (structure)

Files, Records, and Fields
It is important to distinguish between the record occurrence (the instance or values of a record) and the record
template (the structure of the record). Every record in a file has a different value but the same structure. For instance,
the record template illustrated in Figure 7-1 describes the structure of each record occurrence (instance).

Figure 7-1. Record template/structure

Figure 7-2. Record occurrences/instances

The occurrences of the employee records (Figure 7-2) are the actual values in the file. There is only one record
template, but there are many record instances.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

133

How Files Are Processed
Before a computer can process a piece of data, the data must be loaded into the computer’s main memory (RAM).
For instance, if you want to manipulate a picture in Photoshop or edit a file in Word, you have to load the data file into
main memory (RAM), make the changes you want, and then save the file on to backing storage (disk).

Programmers in other languages, who may not be used to processing record-based data, often seek to load the
entire file into memory as if it were an undifferentiated stream of bytes. For record-based data, this is inefficient and
consumes unnecessary computing resources.

A record-based file may consist of millions, tens of millions, or even hundreds of millions of records and may
require gigabytes of storage. For instance, suppose you want to keep some basic census information about all the
people in the United States. Suppose that each record is about 1,000 characters/bytes (1KB) in size. If you estimate the
population of the United States at 314 million, this gives you a size for the file of 1,000 × 314,000,000 = 314,000,000,000
bytes = 314GB. Most computers do not have 314GB of RAM available, and those that do are unlikely to be stand-alone
machines running only your program. The likelihood is that your program is only one of many running on the
machine at the same time. If your program is found to be using a substantial proportion of the available RAM, your
manager is going to be less than gruntled.

Note ■ I once asked an M.Sc. student who was a proficient C++ programmer to write the C++ equivalent of a COBOL

file processing program I had written. His first action was to load the entire file into memory. Doing this used an inordinate

amount of memory and offered no benefit. He still had to read the file from disk, and the file size so overwhelmed the

available RAM that the virtual memory manager had to keep paging to disk.

The data in a record-based file consists of discrete packages of information (records). The correct way to process
such a file is to load a record into RAM, process it, and then load the next record. To store the record in memory and
allow access to its individual fields, you must declare the record structure (Figure 7-1) in your program. The computer
uses your description of the record (the record template) to set aside sufficient memory to store one instance of the
record.

The memory allocated for storing a record is usually called a record buffer. To process a file, a program reads the
records, one at a time, into the record buffer, as shown in Figure 7-3. The record buffer is the only connection between
the program and the records in the file.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

134

Implications of Buffers
If your program processes more than one file, you have to describe a record buffer for each file. To process all the
records in an input file, each record instance must be copied (read) from the file into the record buffer when required.
To create an output file, each record must be placed in the record buffer and then transferred (written) to the file.
To transfer a record from an input file to an output file, your program will have to do the following:

Read the record into the input record buffer.•

Transfer it to the output record buffer.•

Write the data to the output file from the output record buffer.•

This type of data transfer between buffers is common in COBOL programs.

File and Record Declarations
Suppose you want to create a file to hold information about your employees. What kind of information do you need
to store about each employee?

One thing you need to store is the employee’s Name. Each employee is also assigned a unique Social Security
Number (SSN), so you need to store that as well. You also need to store the employee’s date of birth and gender.

These fields are summarized here:

Employee SSN•

Employee Name•

Employee DOB•

Employee Gender•

Figure 7-3. Reading records into the record buffer

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

135

Note ■ This is for demonstration only. In reality, you would need to include far more items than these.

Creating a Record
To create a record buffer large enough to store one instance of the employee record you must decide on the type and
size of each of the fields:

Employee SSN is nine digits in size, so the data item to hold it is declared as • PIC 9(9).

To store Employee Name, you can assume that you require only 25 characters. So the data item •
can be declared as PIC X(25).

Employee Date of Birth requires eight digits, so you can declare it as • PIC 9(8).

Employee Gender is represented by a one-letter character, where • m is male and f is female,
so it can be declared as PIC X.

These fields are individual data items, but they are collected together into a record structure as shown in Example 7-1.

Example 7-1. The EmployeeDetails Record Description/Template

01 EmployeeDetails.
 02 EmpSSN PIC 9(9).
 02 EmpName PIC X(25).
 02 EmpDateOfBirth PIC 9(8).
 02 EmpGender PIC X.

This record description reserves the correct amount of storage for the record buffer, but it does not allow access
to all the individual parts of the record that might be of interest.

For instance, the name is actually made up of the employee’s surname and forename. And the date consists
of four digits for the year, two digits for the month, and two digits for the day. To be able to access these fields
individually, you need to declare the record as shown in Example 7-2.

Example 7-2. A More Granular Version of the EmployeeDetails Record

01 EmployeeDetails.
 02 EmpSSN PIC 9(9).
 02 EmpName.
 03 EmpSurname PIC X(15).
 03 EmpForename PIC X(10).
 02 EmpDateOfBirth.
 03 EmpYOB PIC 9(4).
 03 EmpMOB PIC 99.
 03 EmpDOB PIC 99.
 02 EmpGender PIC X.

Declaring the Record Buffer in Your Program
The record description in Example 7-2 sets aside sufficient storage to store one instance of the employee record.
This area of storage is the record buffer; it’s the only connection between the program and the records in the file.
To process the file, you must read the records from the file, one at a time, into the record buffer. The record buffer

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

136

is connected to the file that resides on backing storage by declarations made in the FILE SECTION of the DATA
DIVISION and the SELECT and ASSIGN clause of the ENVIRONMENT DIVISION.

A record template (description/buffer) for every file used in a program must be described in the FILE SECTION by
means of an FD (file description) entry. The FD entry consists of the letters FD and an internal name that you assign to
the file. The full file description for the employee file might be as shown in Example 7-3.

Example 7-3. The DATA DIVISION Declarations for the Employee File.

DATA DIVISION.
FILE SECTION.
FD EmployeeFile.
01 EmployeeDetails.
 02 EmpSSN PIC 9(9).
 02 EmpName.
 03 EmpSurname PIC X(15).
 03 EmpForename PIC X(10).
 02 EmpDateOfBirth.
 03 EmpYOB PIC 9(4).
 03 EmpMOB PIC 99.
 03 EmpDOB PIC 99.
 02 EmpGender PIC X.

In this example, the name EmployeeFile has been assigned as the internal name for the file. This name is then
used in the program for file operations such as these:

OPEN INPUT EmployeeFile
READ EmployeeFile
CLOSE EmployeeFile

The SELECT and ASSIGN Clause
Although you are going to refer to the employee file as EmployeeFile in the program, the actual name of the file on
disk is Employee.dat. To connect the name used in the program to the file’s actual name on backing storage, you
require entries in the SELECT and ASSIGN clause of the FILE-CONTROL paragraph, in the INPUT-OUTPUT SECTION of the
ENVIRONMENT DIVISION. As shown in Example 7-4, the SELECT and ASSIGN clause allows you to specify that an internal
file name is to be connected to an external data resource. It also lets you specify how the file is organized. In the case
of a sequential file, you specify that the file organization is sequential. Sequential files are ordinary text files such as
you might create with a text editor.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

137

Example 7-4. Using SELECT and ASSIGN

SELECT and ASSIGN Syntax
Here is the SELECT and ASSIGN syntax:

 SELECT InternalFileName

 ASSIGN TO ExternalFileSpecification

 ORGANIZATION IS SEQUENTIAL

Note ■ The SELECT and ASSIGN clause has far more entries (even for sequential files) than those shown here.

I deal with these entries in this book as you require them.

As illustrated by the examples in Example 7-5, ExternalFileSpecification can be either an identifier or a
literal. The identifier or literal can consist of a simple file name or a full or partial file specification. If you use a simple
file name, the drive and directory where the program is running are assumed.

When you use a literal, the file specification is hard-coded into the program; but if you want to specify the name
of a file when you run the program, you can use an identifier. If an identifier is used, you must move the actual file
specification into the identifier before the file is opened.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

138

Example 7-5. Some Example SELECT and ASSIGN Declarations

SELECT EmployeeFile
 ASSIGN TO "D:\Cobol\ExampleProgs\Employee.Dat"
 ORGANIZATION IS SEQUENTIAL.

SELECT EmployeeFile
 ASSIGN TO "Employee.Dat"
 ORGANIZATION IS SEQUENTIAL.

SELECT EmployeeFile
 ASSIGN TO EmployeeFileName
 ORGANIZATION IS SEQUENTIAL.
: : : : : : : : : : : :
MOVE "C:\datafiles\Employee.dat" TO EmployeeFileName
OPEN INPUT EmployeeFile

EXTENDED SELECT AND ASSIGN

I mentioned that sequential files are ordinary text files such as might be created with a text editor. This is not

entirely true. A text editor appends the Carriage Return (CR) and Line Feed (LF) characters to each line of text.

If you specify ORGANIZATION IS SEQUENTIAL and create your test data as lines of text in an ordinary text editor,

these extra characters will be counted, and this will throw your records off by two characters each time you read

a new record. For this reason, some vendors have extended SELECT and ASSIGN to allow these line-terminating

characters to be either ignored or included. For instance, in Micro Focus COBOL, the metalanguage for the SELECT

and ASSIGN is

[]

 SELECT InternalFileName

 ASSIGN TO ExternalFileSpecification

LINE SEQUENTIAL
 ORGANIZATION IS

RECORD SEQUENTIAL

Here LINE SEQUENTIAL means the CR and LF characters are not considered part of the record, and RECORD

SEQUENTIAL means they are (same as the standard SEQUENTIAL).

Because it is very convenient to be able to use an ordinary text editor to create test data files, I use the Micro

Focus LINE SEQUENTIAL extension in the example programs.

Processing Sequential Files
Unlike direct-access files, sequential files are uncomplicated both in organization and in processing. To write
programs that process sequential files, you only need to know four new verbs: OPEN, CLOSE, READ, and WRITE.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

139

The OPEN Statement
Before your program can access the data in an input file or place data in an output file, you must make the file
available to the program by OPENing it. When you open a file, you have to indicate how you intend to use it
(INPUT, OUTPUT, EXTEND) so the system can manage the file correctly:

INPUT

OPEN OUTPUT InternalFileName …

EXTEND

Opening a file does not transfer any data to the record buffer; it simply provides access.

Notes on the OPEN Statement

When a file is opened for INPUT or EXTEND, the file must exist or the OPEN will fail.
When a file is opened for INPUT, the Next Record Pointer is positioned at the beginning of the file. The Next

Record Pointer is conceptual; it points to the position in the file where the file system will get or put the next record.
When the file is opened for EXTEND, the Next Record Pointer is positioned after the last record in the file. This

allows records to be appended to the file.
When a file is opened for OUTPUT, it is created if it does not exist, and it is overwritten if it already exists.

Bug Alert ■ Although the ellipses after InternalFileName in the metalanguage indicate that it is possible to open a

number of files with one OPEN statement, it is not advisable to do so. If an error is detected on opening a file and only one

OPEN statement has been used to open all the files, the system will not be able to indicate which particular file is causing

the problem. If all the files are opened separately, it will.

The CLOSE Statement
The metalanguage for the CLOSE statement is fairly simple:

CLOSE InternalFilename …

Notes

Before the program terminates, you must make sure the program closes all the open files. Failure to do so may result
in some data not being written to the file or users being prevented from accessing the file.

Hard disk access is about a million times slower than RAM access (hard disk access times are measured in
milliseconds, whereas RAM access is measured in nanoseconds: 1 millisecond = 1,000 microseconds = 1,000,000
nanoseconds), so data is often cached in memory until a sufficient quantity of records have been accumulated to
make the write to disk worthwhile. If the file is not closed, it is possible that these cached records will never be sent
to the file.

Bug Alert ■ The ellipses in the CLOSE metalanguage indicate that you may specify more than one file name. I advised

against this for the OPEN statement; but because very few errors affect the CLOSE statement, the same advice does not

hold. For convenience, you can often choose to close multiple files in one CLOSE statement.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

140

The READ Statement
Once the system has opened a file and made it available to the program, it is your responsibility to process it correctly.
To process all the records in the file, the program has to transfer them, one record at a time, from the file to the file’s
record buffer. The READ is provided for this purpose:

[]
[]
[]
[]

[]

READ InternalFilename NEXT RECORD

 INTO Identifier

 AT END StatementBlock1

 NOT AT END StatementBlock2

END-READ

The READ statement copies a record occurrence (instance) from the file on backing storage and places it in the
record buffer defined for it.

Notes

When the READ attempts to read a record from the file and encounters the end of file marker, the AT END is triggered
and StatementBlock1 is executed. If the NOT AT END clause is specified then StatementBlock2 is executed.

When the INTO clause is used, the data is read into the record buffer and then copied from there, to the Identifier,
in one operation. This option creates two copies of the data: one in the record buffer and one in the Identifier. Using
the INTO clause is equivalent to reading a record and then moving the contents of the record buffer to the Identifier.

COBOL Detail ■ Because AT END is an optional element, you might have wondered how the end-of-file condition can

be detected in its absence. COBOL has a special kind of exception handler for files called declaratives. When declaratives

are specified for a file, any file error—including the end-of-file condition, causes the code in the declaratives to execute.

Declaratives are an advanced topic that I address later in the book.

How READ Works
Listing 7-1 is a small program that simply reads the records in the employee file: employee.dat. The test data for the
program is given in Figure 7-4. The effect on the data storage of running the program with this data is shown in Figure 7-5.

Listing 7-1. Reading the Employee File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing7-1.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EmployeeFile ASSIGN TO "Employee.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD EmployeeFile.
01 EmployeeDetails.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

141

 88 EndOfEmployeeFile VALUE HIGH-VALUES.
 02 EmpSSN PIC 9(9).
 02 EmpName.
 03 EmpSurname PIC X(15).
 03 EmpForename PIC X(10).
 02 EmpDateOfBirth.
 03 EmpYOB PIC 9(4).
 03 EmpMOB PIC 99.
 03 EmpDOB PIC 99.
 02 EmpGender PIC X.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT EmployeeFile
 READ EmployeeFile
 AT END SET EndOfEmployeeFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfEmployeeFile
 READ EmployeeFile
 AT END SET EndOfEmployeeFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE EmployeeFile
 STOP RUN.

Figure 7-5. Effect on data storage of reading each record in the file

Figure 7-4. Employee.dat test data file

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

142

The effect on the data storage each time the READ is executed is shown in Figure 7-5:

• Read1 shows the effect of reading the first record. When the record is read from Employee.dat,
it is copied into the EmployeeDetails area of storage as shown.

• Read2 and Read3 show the results of reading the second and third records.

• Read4 shows what happens when an attempt to read a fourth record is made. Because there
is no fourth record, the AT END activates and the condition name EndOfEmployeeFile is set to
TRUE. This condition name is defined on the whole record, and as a result the whole record is
filled with HIGH-VALUES (represented here as the ◆ symbol).

Note ■ Because of space constraints in this book, the various pieces of test data given obviously are

not comprehensive enough to test any of the programs adequately. The test data is provided for the purposes

of illustration only. You should create your own, more comprehensive test data if you want to test the programs.

Of course, this program does not do anything practical. It reads the file but doesn’t do anything with the records
it reads. Listing 7-2 tweaks the program a little so that it displays the name and date of birth of each employee in the
file. Notice that I have chosen not to display the data items in the same order they are in in the record. The employee
name is displayed in forename-surname order, and the date of birth is displayed in the standard U.S. order (month,
day, year).

Listing 7-2. Reading the Employee File and Displaying the Records

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing7-2.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EmployeeFile ASSIGN TO "Employee.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD EmployeeFile.
01 EmployeeDetails.
 88 EndOfEmployeeFile VALUE HIGH-VALUES.
 02 EmpSSN PIC 9(9).
 02 EmpName.
 03 EmpSurname PIC X(15).
 03 EmpForename PIC X(10).
 02 EmpDateOfBirth.
 03 EmpYOB PIC 9(4).
 03 EmpMOB PIC 99.
 03 EmpDOB PIC 99.
 02 EmpGender PIC X.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

143

PROCEDURE DIVISION.
Begin.
 OPEN INPUT EmployeeFile
 READ EmployeeFile
 AT END SET EndOfEmployeeFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfEmployeeFile
 DISPLAY EmpForename SPACE EmpSurname " - "
 EmpMOB "/" EmpDOB "/" EmpYOB
 READ EmployeeFile
 AT END SET EndOfEmployeeFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE EmployeeFile
 STOP RUN.

The WRITE Statement
The WRITE statement is used to copy data from the record buffer (RAM) to the file on backing storage (tape, disk,
or CD-ROM). To write data to a file, the data must be moved to the record buffer (declared in the file’s FD entry),
and then the WRITE statement is used to send the contents of the record buffer to the file:

[]WRITE RecordName FROM Identifier

LINE
AdvanceNum

LINES
BEFORE

 ADVANCING MnemonicName
AFTER

PAGE

When WRITE..FROM is used, the data contained in the Identifier is copied into the record buffer and is then
written to the file. WRITE..FROM is the equivalent of a MOVE Identifier TO RecordName statement followed by
a WRITE RecordName statement.

Note ■ The full metalanguage for the sequential-file version of WRITE statement is given here, but I postpone

 discussion of the ADVANCING clause until later in the book. This clause is used when writing print files and is a bit more

complicated than it appears on the surface. It is best discussed when considering files with multiple record types.

Write a Record, Read a File

You probably noticed that the metalanguage for the READ and WRITE statements indicates that while you read a file,
you write a record. You may have wondered why there is this difference.

So far, you have only seen files that contain one type of record. In the employee file, for example, there is only
one type of employee record. But a file may contain a number of different types of record. For instance, if you wanted
to update the employee file, you might have a file of transaction records containing both Employee Insertion records
and Employee Deletion records. Although an Insertion record would have to contain all the fields in the employee
record, a Deletion record would only need the Employee SSN.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

144

The reason you read a file, not a record, is that until the record is in the buffer you cannot tell what type of
record it is. You have to read the file and then look at the data in the buffer to see what type of record has been
supplied. It is your responsibility to discover what type of record has been read into the buffer and then to take
the appropriate actions.

The reason you write a record instead of a file is that when the output file will contain multiple types of record,
you have to specify which record type you want to write to the file.

How WRITE works

Suppose you want to add some records to the end of the employee file. To do so, you use this statement:

OPEN EXTEND EmployeeFile

This tells the system that you are going to add records to the end of the file. If you opened the file for OUTPUT, then
Employee.dat would be replaced (overwritten) with a new version of the employee file.

To write a record to the file, you place the data in the EmployeeDetails record buffer and then use the following
statement:

WRITE EmployeeDetails

The example program fragment in Example 7-6 writes two records to the end of the employee file. Figure 7-6
shows the interaction between the data in memory and the file on backing storage. The first MOVE statement places
the record data in the record buffer, and the WRITE statement (Write1) copies it to the file. The second MOVE places the
second record in the record buffer, and the WRITE (Write2) copies it to the file.

Example 7-6. Writing Records to the End of a Sequential File

PROCEDURE DIVISION.
Begin.
 OPEN EXTEND EmployeeFile

 MOVE "456867564NEWGIRL MARTHA 19820712f"
 TO EmployeeDetails
 WRITE EmployeeDetails

 MOVE "622842649NEWBOY MALCOLM 19810925m"
 TO EmployeeDetails
 WRITE EmployeeDetails

 CLOSE EmployeeFile
 STOP RUN.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

145

Reading and Writing to the Employee File

The program in Listing 7-3 extends the fragment in Example 7-3 into a full-blown program. However, whereas the
data sent to the employee file in Example 7-3 was hard-coded in the form of literal values, in Listing 7-3 the records
to be added to the file are obtained from the user. A very simple interface is used to get the records. A template for
the record is displayed, and the user then enters the data based on the template. A screen capture shows the data
requested from the user and then output when the file is read.

Listing 7-3. Writing and Reading the Employee File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing7-3.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EmployeeFile ASSIGN TO "Employee.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD EmployeeFile.
01 EmployeeDetails.
 88 EndOfEmployeeFile VALUE HIGH-VALUES.
 02 EmpSSN PIC 9(9).
 02 EmpName.
 03 EmpSurname PIC X(15).
 03 EmpForename PIC X(10).

Figure 7-6. Writing two records to the employee file (see Example 7-6)

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

146

 02 EmpDateOfBirth.
 03 EmpYOB PIC 9(4).
 03 EmpMOB PIC 99.
 03 EmpDOB PIC 99.
 02 EmpGender PIC X.

PROCEDURE DIVISION.
Begin.
 OPEN EXTEND EmployeeFile
 PERFORM GetEmployeeData
 PERFORM UNTIL EmployeeDetails = SPACES
 WRITE EmployeeDetails
 PERFORM GetEmployeeData
 END-PERFORM
 CLOSE EmployeeFile
 DISPLAY "************* End of Input ****************"

 OPEN INPUT EmployeeFile
 READ EmployeeFile
 AT END SET EndOfEmployeeFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfEmployeeFile
 DISPLAY EmployeeDetails
 READ EmployeeFile
 AT END SET EndOfEmployeeFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE EmployeeFile
 STOP RUN.

GetEmployeeData.
 DISPLAY "nnnnnnnnnSSSSSSSSSSSSSSSFFFFFFFFFFyyyyMMddG"
 ACCEPT EmployeeDetails.

Summary
This chapter provided a gentle introduction to sequential files. You learned how to declare the record buffer for a file.
You learned how to connect the file’s internal file name with its name and location on the backing storage device. You
saw how to READ records from a file and how to WRITE them to a file.

Although this chapter is a good start, there is still much more to discover about sequential files. Although I
touched on the idea of files that contain multiple record types, I did not explore the full ramifications of this concept;
nor did I discuss the true magic of the FILE SECTION. I mentioned print files, but I did not explore the relevant options
in the metalanguage; nor did I discuss how to create a print file. I also have not mentioned or discussed the idea
of variable-length records. I discussed some of the mechanics of using sequential files in this chapter, but I did not
discuss sequential-file processing issues. The chapters that follow explore some of those issues by examining the
control-break and file-update problems.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

147

LANGUAGE KNOWLEDGE EXERCISE

Unsheathe your 2B pencil. It is exercise time again.

1. Locate errors in these FILE SECTION entries.

(a)

 FD SalesFile.
 01 SalesRecord PIC X(13).
 02 SalesmanNumber PIC 9(7).
 02 SaleValue PIC 9(5)V99.

(b)

 FD TemperatureFile.
 01 DayRecord.
 05 MonthNumber PIC 99
 05 MaxTemp PIC 999
 05 MinTemp PIC 999
 06 AverageTemp PIC 999

(c)

 FD StudentFile
 01 StudentRecord.
 02 StudentName. PIC X(20).
 05 StudentInitials PIC XX.
 05 StudnetSurname PIC X(18).
 02 StudentAddress PIC X(65).
 03 AddressLine1. PIC X(10).
 03 AddressLine2 PIC X(10)
 03 AddressLine3 PIC X(10).
 02 StudentGPA.
 05 Year1GPA
 10 Sem1GPA PIC 9V99.
 10 Sem2GPA PIC 9V99.
 05 Year2GPA.
 10 Sem1GPA PIC 9V99.
 10 Sem2GPA PIC 9V99.
 05 Year3GPA
 10 Sem1GPA PIC 9V99.
 10 Sem2GPA PIC 9V99.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

148

2. Complete the SELECT and ASSIGN clause for a sequential file called Stock.dat in the

directory C:\COBOL-Data\. The record buffer for the file has this description:

 FD StockFile.
 01 StockRec.
 02 StockNumber PIC 9(5)
 02 ManfNumber PIC 9(4)
 02 QtyInStock PIC 9(6)
 02 ReorderLevel PIC 9(6)
 02 ReorderQty PIC 9(6).

Write your answer here:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. Exercise7-2.
 ENVIRONMENT DIVISION.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

149

PROGRAMMING EXERCISE 1

A StockFile holds details of gadgets sold by the Gadget Shop (GadgetShop.Com). The StockFile is a sequential

file sorted in ascending GadgetId order. It is named GadgetStock.dat. Each record has the following description:

Field Type Length Value

GadgetID N 6 000001–999999

GadgetName X 30 –

QtyInStock N 4 0000–9999

Price N 6 0000.00–9999.99

Write a program to process the data in the StockFile and, for each record, display the item’s GadgetName and

the total value of the quantity in stock (QtyInStock * Price). When the StockFile has ended, display the total

value of all the stock.

Example Test Data

123456SoundDisk MP3 Player 4GB 0650003095
234567BioLite Camp Stove 0057029550
345678Collapsible Kettle - Green 0155002590
456789Digital Measuring Jug 0325000895
567890MicroLite LED Torch 0512000745
678901Pocket Sized Fishing Rod 0055001799

Note: Place the test data in the data file as one long string.

Example Run

SoundDisk MP3 Player 4GB $20,117.50
BioLite Camp Stove $16,843.50
Collapsible Kettle - Green $4,014.50
Digital Measuring Jug $2,908.75
MicroLite LED Torch $3,814.40
Pocket Sized Fishing Rod $989.45
 Stock Total: $48,688.10

http://dx.doi.org/GadgetShop.Com

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

150

PROGRAMMING EXERCISE 2

Amend the program you wrote for exercise 1 so that it adds the following two records to the end of the file. Then

display the stock report as before:

313245Spy Pen - HD Video Camera 0125003099
593486Scout Cash Capsule - Red 1234000745

The records in the StockFile are held in ascending GadgetID order. When you add these two records to the file,

the records will be out of order. Without sorting the StockFile after the update, how could you update the file so

that the ordering of the records was maintained?

Example Run

SoundDisk MP3 Player 4GB $20,117.50
BioLite Camp Stove $16,843.50
Collapsible Kettle - Green $4,014.50
Digital Measuring Jug $2,908.75
MicroLite LED Torch $3,814.40
Pocket Sized Fishing Rod $989.45
Spy Pen - HD Video Camera $3,873.75
Scout Cash Capsule - Red $9,193.30
 Stock Total: $61,755.15

LANGUAGE KNOWLEDGE EXERCISES: ANSWERS

Unsheath your 2B pencil. It is exercise time again.

1. Locate errors in these FILE SECTION entries.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

151

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

152

2. Complete the SELECT and ASSIGN clause for a sequential file called Stock.dat in the

directory C:\COBOL-Data\. The record buffer for the file has this description:

FD StockFile.
01 StockRec.
 02 StockNumber PIC 9(5)
 02 ManfNumber PIC 9(4)
 02 QtyInStock PIC 9(6)
 02 ReorderLevel PIC 9(6)
 02 ReorderQty PIC 9(6).

Write your answer here:

IDENTIFICATION DIVISION.
PROGRAM-ID. Exercise7-2.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT StockFile ASSIGN TO "C:\COBOL-Data\Stock.dat"
 ORGANIZATION IS SEQUENTIAL.

PROGRAMMING EXERCISE 1: ANSWER

A StockFile holds details of gadgets sold by the Gadget Shop (GadgetShop.Com). The StockFile is a sequential

file sorted in ascending GadgetId order. It is named GadgetStock.dat. Each record has the following description.

Field Type Length Value

GadgetID N 6 000001–999999

GadgetName X 30 –

QtyInStock N 4 0000–9999

Price N 6 0000.00–9999.99

Write a program to process the data in the StockFile and, for each record, display the item’s GadgetName and

the total value of the quantity in stock (QtyInStock * Price). When the StockFile has ended, display the total

value of all the stock.

Example Test Data

123456SoundDisk MP3 Player 4GB 0650003095
234567BioLite Camp Stove 0057029550
345678Collapsible Kettle - Green 0155002590
456789Digital Measuring Jug 0325000895
567890MicroLite LED Torch 0512000745
678901Pocket Sized Fishing Rod 0055001799

http://dx.doi.org/GadgetShop.Com

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

153

Note: Place the test data in the data file as one long string.

Example Run

SoundDisk MP3 Player 4GB $20,117.50
BioLite Camp Stove $16,843.50
Collapsible Kettle - Green $4,014.50
Digital Measuring Jug $2,908.75
MicroLite LED Torch $3,814.40
Pocket Sized Fishing Rod $989.45
 Stock Total: $48,688.10

Listing 7-4. Displays the Value of the Gadgets in Stock

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing7-4.
AUTHOR. Michael Coughlan

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT GadgetStockFile ASSIGN TO "input.txt"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD GadgetStockFile.
01 StockRec.
 88 EndOfStockFile VALUE HIGH-VALUES.
 02 GadgetID PIC 9(6).
 02 GadgetName PIC X(30).
 02 QtyInStock PIC 9(4).
 02 Price PIC 9(4)V99.

WORKING-STORAGE SECTION.
01 PrnStockValue.
 02 PrnGadgetName PIC X(30).
 02 FILLER PIC XX VALUE SPACES.
 02 PrnValue PIC $$$,$$9.99.

01 PrnFinalStockTotal.
 02 FILLER PIC X(16) VALUE SPACES.
 02 FILLER PIC X(16) VALUE "Stock Total:".
 02 PrnFinalTotal PIC $$$,$$9.99.

01 FinalStockTotal PIC 9(6)V99.
01 StockValue PIC 9(6)V99.

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

154

PROCEDURE DIVISION.
Begin.
 OPEN INPUT GadgetStockFile
 READ GadgetStockFile
 AT END SET EndOfStockFile TO TRUE
 END-READ
 PERFORM DisplayGadgetValues UNTIL EndOfStockFile
 MOVE FinalStockTotal TO PrnFinalTotal
 DISPLAY PrnFinalStockTotal
 CLOSE GadgetStockFile
 STOP RUN.

DisplayGadgetValues.
 COMPUTE StockValue = Price * QtyInStock
 ADD StockValue TO FinalStockTotal
 MOVE GadgetName TO PrnGadgetName
 MOVE StockValue TO PrnValue
 DISPLAY PrnStockValue
 READ GadgetStockFile
 AT END SET EndOfStockFile TO TRUE

 END-READ.

PROGRAMMING EXERCISE 2: ANSWER

Amend the program you wrote for exercise 1 so that it adds the following two records to the end of the file.

Then display the stock report as before:

313245Spy Pen - HD Video Camera 0125003099
593486Scout Cash Capsule - Red 1234000745

The records in the StockFile are held in ascending GadgetID order. When you add these two records to the file,

the records will be out of order. Without sorting the StockFile after the update, how could you update the file so

that the ordering of the records was maintained?

Example Run

SoundDisk MP3 Player 4GB $20,117.50
BioLite Camp Stove $16,843.50
Collapsible Kettle - Green $4,014.50
Digital Measuring Jug $2,908.75
MicroLite LED Torch $3,814.40
Pocket Sized Fishing Rod $989.45
Spy Pen - HD Video Camera $3,873.75
Scout Cash Capsule - Red $9,193.30
 Stock Total: $61,755.15

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

155

Listing 7-5. Adds Two Records and Then Displays Stock Values Again

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing7-5.
AUTHOR. Michael Coughlan

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT GadgetStockFile ASSIGN TO "input.txt"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD GadgetStockFile.
01 StockRec.
 88 EndOfStockFile VALUE HIGH-VALUES.
 02 GadgetID PIC 9(6).
 02 GadgetName PIC X(30).
 02 QtyInStock PIC 9(4).
 02 Price PIC 9(4)V99.

WORKING-STORAGE SECTION.
01 PrnStockValue.
 02 PrnGadgetName PIC X(30).
 02 FILLER PIC XX VALUE SPACES.
 02 PrnValue PIC $$$,$$9.99.

01 PrnFinalStockTotal.
 02 FILLER PIC X(16) VALUE SPACES.
 02 FILLER PIC X(16) VALUE "Stock Total:".
 02 PrnFinalTotal PIC $$$,$$9.99.

01 FinalStockTotal PIC 9(6)V99.
01 StockValue PIC 9(6)V99.

PROCEDURE DIVISION.
Begin.
 OPEN EXTEND GadgetStockFile
 MOVE "313245Spy Pen - HD Video Camera 0125003099"
 TO StockRec
 WRITE StockRec
 MOVE "593486Scout Cash Capsule - Red 1234000745"
 TO StockRec
 WRITE StockRec
 CLOSE GadgetStockFile

 OPEN INPUT GadgetStockFile
 READ GadgetStockFile
 AT END SET EndOfStockFile TO TRUE
 END-READ

CHAPTER 7 ■ INTRODUCTION TO SEQUENTIAL FILES

156

 PERFORM DisplayGadgetValues UNTIL EndOfStockFile
 MOVE FinalStockTotal TO PrnFinalTotal
 DISPLAY PrnFinalStockTotal
 CLOSE GadgetStockFile
 STOP RUN.

DisplayGadgetValues.
 COMPUTE StockValue = Price * QtyInStock
 ADD StockValue TO FinalStockTotal

 MOVE GadgetName TO PrnGadgetName
 MOVE StockValue TO PrnValue
 DISPLAY PrnStockValue
 READ GadgetStockFile
 AT END SET EndOfStockFile TO TRUE

 END-READ.

157

CHAPTER 8

Advanced Sequential Files

In the previous chapter, you saw how sequential files are declared, written, and read. In this chapter, you continue
your exploration of sequential files by examining advanced issues such as multiple-record-type files, print files, and
variable-length records.

The previous chapter dealt with sequential files that contained only fixed-length records of a single record
type. This chapter shows how a file may have records of different lengths either because the file contains a number
of different types of fixed-length records or because it contains variable-length records. The discussion of files that
contain multiple record types also considers the implications of these multiple record types for the record buffer.

When the WRITE verb was introduced in the previous chapter, I ignored some of the metalanguage because it
dealt with print files. This chapter addresses the issue of print files and shows how they are declared and used. I also
discuss the problem caused by the different types of print lines that must be sent to a print file.

Files with Multiple Record Types
Quite often, complex data sets cannot store all their data in just one record type. In such cases, a single file contains
more than one type of record. For instance, consider the following problem specification.

Problem Specification
A company has shops all over Ireland. Every night, a sequential file of cash register receipts is sent from each branch
to the head office. These files are merged into a single, large, sequential file called the ShopReceiptsFile.

In the ShopReceiptsFile, there are two types of records:

A • ShopDetails record, used to record the ShopId and ShopLocation

A • SaleReceipt record, used to record the ItemId, QtySold, and ItemCost for each item sold

In the file, a single shop record precedes all the SaleReceipt records for a particular shop.
Write a program to process the ShopReceiptsFile and, for each shop in the file, produce a summary line that

shows the ShopId of the shop and the total value of sales for that shop.

Implications of Files with Multiple Record Types
As you can see from the previous specification, the ShopReceiptsFile contains two different types of records.
When a file contains different record types, the records will have different structures and, possibly, different lengths.
In a specification, the different record types are usually represented as shown in Figure 8-1 and Figure 8-2. The
ShopDetails record is 35 characters in size, but the SaleReceipt record is only 16 characters. For each shop in the file,
there is one ShopDetails record but many SaleReceipt records.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

158

The different types of records in the ShopReceiptsFile means you need more than one record description in the
file’s file description (FD) entry. Because record descriptions always begin with level 01, you must provide a 01-level
description for each type of record in the file.

Example 8-1 shows the file description for the ShopReceiptsFile. What is not obvious from this description is
that even though there are two record descriptions, only one area of memory is reserved for the record buffer, and it
is only able to store a single record at a time. Because only one area of memory is reserved, both record descriptions
map on to the same record buffer. The size of that record buffer is the size of the largest record.

Example 8-1. File Description for the ShopReceiptsFile

FILE SECTION.
FD ShopReceiptsFile.
01 ShopDetails.
 02 ShopId PIC X(5).
 02 ShopLocation PIC X(30).

01 SaleReceipt.
 02 ItemId PIC X(8).
 02 QtySold PIC 9(3).
 02 ItemCost PIC 999V99.

This is the magic of the FILE SECTION. When, in the FILE SECTION, multiple records are defined in a file’s FD
entry, all the record descriptions share (map on to) the same area of memory, and all the record descriptions are
current (live) at the same time.

Figure 8-1. ShopDetails description

Figure 8-2. SaleReceipt description

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

159

Multiple Record Descriptions, One Record Buffer
When multiple records are described for the same FD entry, only a single area of storage (record buffer) is created (the
size of the largest record). All the record descriptions map on to this single area of storage, and all the descriptions are
current no matter which record is actually in the buffer. Obviously, though, even though both record descriptions are
available, only one makes sense for the values in the buffer. For instance, Figure 8-3 is a graphical representation of the
shared buffer for the ShopReceiptsFile, and the record currently in the buffer is a SaleReceipt record. If you execute
the statement DISPLAY ItemId, the value ABC12345 is displayed. If you execute DISPLAY QtySold, you get the value 003.
But because both record descriptions are current at the same time, you can also execute DISPLAY ShopLocation, which
displays the nonsensical value 34500300399. It is up to the programmer to know what type of record is in the buffer and
to use only the record description that makes sense for those values. The question is, how can you know what type of
record has been read into the buffer?

Figure 8-3. A graphical representation of the shared record buffer

The Type Code
When a record is read into a shared record buffer, it is your responsibility to discover what type of record has been
read in and to refer only to the fields that make sense for that type of record. Looking at the record in Figure 8-3, you
might wonder how you can discover what type of record had been read into the buffer. Sometimes you can determine
the record type by looking for identifying characteristics that are unique to that type of record, such as a particular
value or data type. However, generally it is not possible to establish reliably what type of record is in the buffer simply
by examining the buffer values.

A special identifying data item called the type code is usually inserted into each record to allow you to distinguish
between record types. The type code is usually one character in size and is the first field in each record, but its size and
placement are merely conventions. The type code can be placed anywhere in the record and be of any size and
any type.

The ShopReceiptsFile uses the character H to indicate the ShopDetails record (the header record) and S to
indicate the SaleReceipt record (the sales record). To detect the type of record read into the buffer, you could use
statements such as IF TypeCode = "H" or IF TypeCode = "S". But this is COBOL. It offers a better way. You can
define condition names to monitor the type code so that if it contains H the condition name ShopHeader is set to true,
and if it contains S the condition name ShopSale is set to true. The record descriptions required to accommodate
these changes for the ShopReceiptsFile are shown in Example 8-2.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

160

Example 8-2. ShopReceiptsFile Record Descriptions with Type Code

FILE SECTION.
FD ShopReceiptsFile.
01 ShopDetails.
 02 TypeCode PIC X.
 88 ShopHeader VALUE "H".
 88 ShopSale VALUE "S".
 02 ShopId PIC X(5).
 02 ShopLocation PIC X(30).

01 SaleReceipt.
 02 TypeCode PIC X.
 02 ItemId PIC X(8).
 02 QtySold PIC 9(3).
 02 ItemCost PIC 999V99.

A graphical representation of the new record descriptions is shown in Figure 8-4. In this case, there is a
ShopDetails record in the buffer. Again, both record descriptions are current (live), but only the ShopDetails record
description makes sense for the values in the buffer.

Figure 8-4. Representation of a record buffer that includes the TypeCode

When you examined the file description given in Example 8-2, perhaps it occurred to you to ask, why have
condition names been defined only for the ShopDetails record and not for the SaleReceipt record? The answer
is that TypeCode in both records maps on to the same area of storage; and that because both record descriptions,
including the condition names, are current, it does not matter which record is read into the buffer—the condition
names can detect it.

Example Program

The program specification given at the beginning of the chapter required you to write a program to process the
ShopReceiptsFile. For each shop in the file, you were asked to produce a summary line that shows the ShopId and
the total value of sales for that shop. The program to implement the specification is given in Listing 8-1.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

161

Listing 8-1. Summarizes the Header and Sale records of the ShopReceiptsFile

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing8-1.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 Select ShopReceiptsFile ASSIGN TO "Listing8-1-ShopSales.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD ShopReceiptsFile.
01 ShopDetails.
 88 EndOfShopReceiptsFile VALUE HIGH-VALUES.
 02 RecTypeCode PIC X.
 88 ShopHeader VALUE "H".
 88 ShopSale VALUE "S".
 02 ShopId PIC X(5).
 02 ShopLocation PIC X(30).

01 SaleReceipt.
 02 RecTypeCode PIC X.
 02 ItemId PIC X(8).
 02 QtySold PIC 9(3).
 02 ItemCost PIC 999V99.

WORKING-STORAGE SECTION.
01 PrnShopSalesTotal.
 02 FILLER PIC X(21) VALUE "Total sales for shop ".
 02 PrnShopId PIC X(5).
 02 PrnShopTotal PIC $$$$,$$9.99.

01 ShopTotal PIC 9(5)V99.

PROCEDURE DIVISION.
ShopSalesSummary.
 OPEN INPUT ShopReceiptsFile
 READ ShopReceiptsFile
 AT END SET EndOfShopReceiptsFile TO TRUE
 END-READ
 PERFORM SummarizeCountrySales
 UNTIL EndOfShopReceiptsFile
 CLOSE ShopReceiptsFile
 STOP RUN.

SummarizeCountrySales.
 MOVE ShopId TO PrnShopId
 MOVE ZEROS TO ShopTotal
 READ ShopReceiptsFile
 AT END SET EndOfShopReceiptsFile TO TRUE
 END-READ

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

162

 PERFORM SummarizeShopSales
 UNTIL ShopHeader OR EndOFShopReceiptsFile
 MOVE ShopTotal TO PrnShopTotal
 DISPLAY PrnShopSalesTotal.

SummarizeShopSales.
 COMPUTE ShopTotal = ShopTotal + (QtySold * ItemCost)
 READ ShopReceiptsFile
 AT END SET EndOfShopReceiptsFile TO TRUE
 END-READ.

Some basic test data and the results produced by running the program against this test data are shown in Figure 8-5.

Figure 8-5. Basic test data for Listing 8-1

When you consider the solution produced in Listing 8-1, you may be a little puzzled. Where is the IF statement
that checks whether the record is a ShopHeader or a ShopSale record? The answer to this question lies in the approach
to the problem solution. Many programmers would solve the problem by having a loop to read the records in the
file and an IF statement to check what kind type of record has been read. If a ShopSale record was read, then the
required computations would be done; and if a ShopDetails record was read, the summary line would be produced
and displayed. This is not a terrible solution for a problem of this size; but when you get to control breaks—a type of
problem of which this is a near relation—this type of solution quickly becomes complicated.

The solution adopted in Listing 8-1 involves examining the structure of the records in the ShopReceiptsFile and
producing a solution that reflects that structure. What do I mean by the structure of the file? The records in the file
are not thrown randomly into the file: they are grouped by shop, and each grouping starts with a ShopDetails header
record followed by many SaleReceipt records. The solution in Listing 8-1 reflects the structure of the file. It has a loop

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

163

to process the SaleReceipt records and an outer loop to process the whole file. You know you have come to the end
of the sales records for a particular shop when you encounter the ShopDetails record for the next shop. At that point,
you display the summary information you have accumulated for the previous shop. A graphical representation of this
solution as applied to the test data is given in Figure 8-6.

Figure 8-6. Representation of the solution as applied to the test data

Note ■ This solution uses the Micro Focus LINE SEQUENTIAL extension. The reason is that when a file contains

records of different lengths, the system has to use a record terminator to detect when one record ends and the next

begins. The record terminator is specified by the language implementer. Where the terminator is not a fixed implementer

default, it can be specified by using the RECORD DELIMITER IS clause in the file’s SELECT and ASSIGN clause.

Because there is no generic, standard way of specifying the terminator, I chose to use the Micro Focus LINE SEQUENTIAL

extension. When LINE SEQUENTIAL is used, each record is terminated by the carriage return and line feed ASCII

characters. Adopting this extension has the added benefit that the test data can be written using a standard text editor

such as Microsoft Notepad.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

164

Specification Amendment

In a file such as ShopReceiptsFile, which consists of groups that contain a header record followed by many body
records, there is often a third type of record. A footer record is frequently used to ensure that the group is complete
and that none of the records in the group body has been lost. The footer record might simply contain a count of the
records in the group body, or it might do some calculations to produce a checksum.

Let’s amend the ShopReceiptsFile to include the footer record; and let’s amend the specification to say that
if the record count in the footer record is not the same as the actual record count, then an error message should be
displayed instead of the sales total. The footer record is indicated by the F character.

A program to implement the specification is given in Listing 8-2.

Listing 8-2. Summarizes the Header, Sale, and Footer records of the ShopReceiptsFile

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing8-2.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 Select ShopReceiptsFile ASSIGN TO "Listing8-2-ShopSales.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD ShopReceiptsFile.
01 ShopDetails.
 88 EndOfShopReceiptsFile VALUE HIGH-VALUES.
 02 TypeCode PIC X.
 88 ShopHeader VALUE "H".
 88 ShopSale VALUE "S".
 88 ShopFooter VALUE "F".
 02 ShopId PIC X(5).
 02 ShopLocation PIC X(30).

01 SaleReceipt.
 02 TypeCode PIC X.
 02 ItemId PIC X(8).
 02 QtySold PIC 9(3).
 02 ItemCost PIC 999V99.

01 ShopSalesCount.
 02 TypeCode PIC X.
 02 RecCount PIC 9(5).

WORKING-STORAGE SECTION.
01 PrnShopSalesTotal.
 02 FILLER PIC X(21) VALUE "Total sales for shop ".
 02 PrnShopId PIC X(5).
 02 PrnShopTotal PIC $$$$,$$9.99.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

165

01 PrnErrorMessage.
 02 FILLER PIC X(15) VALUE "Error on Shop: ".
 02 PrnErrorShopId PIC X(5).
 02 FILLER PIC X(10) VALUE " RCount = ".
 02 PrnRecCount PIC 9(5).
 02 FILLER PIC X(10) VALUE " ACount = ".
 02 PrnActualCount PIC 9(5).

01 ShopTotal PIC 9(5)V99.
01 ActualCount PIC 9(5).

PROCEDURE DIVISION.
ShopSalesSummary.
 OPEN INPUT ShopReceiptsFile
 PERFORM GetHeaderRec
 PERFORM SummarizeCountrySales
 UNTIL EndOfShopReceiptsFile
 CLOSE ShopReceiptsFile
 STOP RUN.

SummarizeCountrySales.
 MOVE ShopId TO PrnShopId, PrnErrorShopId
 MOVE ZEROS TO ShopTotal

 READ ShopReceiptsFile
 AT END SET EndOfShopReceiptsFile TO TRUE
 END-READ
 PERFORM SummarizeShopSales
 VARYING ActualCount FROM 0 BY 1 UNTIL ShopFooter
 IF RecCount = ActualCount
 MOVE ShopTotal TO PrnShopTotal
 DISPLAY PrnShopSalesTotal
 ELSE
 MOVE RecCount TO PrnRecCount
 MOVE ActualCount TO PrnActualCount
 DISPLAY PrnErrorMessage
 END-IF
 PERFORM GetHeaderRec.

SummarizeShopSales.
 COMPUTE ShopTotal = ShopTotal + (QtySold * ItemCost)
 READ ShopReceiptsFile
 AT END SET EndOfShopReceiptsFile TO TRUE
 END-READ.

GetHeaderRec.
 READ ShopReceiptsFile
 AT END SET EndOfShopReceiptsFile TO TRUE
 END-READ.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

166

The new test data and the result of running the program against that test data are shown in Figure 8-7.

Some Comments about the Program

The GetHeaderRec paragraph has only one statement. Ordinarily this would be bad practice, but in this instance,
I wanted to use the paragraph name to indicate the purpose of this particular READ statement. In a real program,
the PERFORM GetHeaderRec statements would be replaced with the READ in the GetHeaderRec paragraph.

The logic of the program has been changed, because now the end of the shop group is indicated by the presence
of a footer record. The sale records for each shop group are counted by means of the PERFORM..VARYING. For a variety
of reasons, including book space constraints, the only error the program checks for is missing sale receipt records.
It is assumed that in all other respects, the file is correct.

Printer Sequential Files
In a business or enterprise environment, the ability to print reports is an important property for a programming
language. COBOL allows programmers to write to the printer, either directly or through an intermediate print file.
COBOL treats the printer as a serial file but uses a special variant of the WRITE verb to control the placement of lines on
the page. Printing is regarded as so important that not only does COBOL have the printer sequential files discussed in this
section, but it also supports a special set of declarations and verbs that together constitute the COBOL Report Writer.
The Report Writer introduces elements of declarative programming to COBOL. It is discussed in detail in a later chapter.

Figure 8-7. Test data and results for Listing 8-2

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

167

SELECT and ASSIGN
As with ordinary sequential files, the internal name used for the print file is associated with an external device, which
could be an actual printer or a print file. A print file is a file that contains embedded printer control codes such as
form feed. Generally, you write to a print file; but in a COBOL programming shop, your program may well have direct
control of the printer. The metalanguage for print files is given in Figure 8-8. Since ORGANIZATION IS SEQUENTIAL
is the default it may be omitted.

Figure 8-8. Print file SELECT and ASSIGN metalanguage

Notes

Where direct control of the printer is assumed, the internal print name is assigned to an ImplementerName, which
depends on the vendor. For instance, in HP COBOL (really VAX COBOL), the ImplementerName is LINE-PRINTER
(see Example 8-3) and the name is attached to an actual printer by a LINE-PRINTER IS DeviceName entry in the
SPECIAL-NAMES paragraph (CONFIGURATION SECTION, ENVIRONMENT DIVISION).

Example 8-3. SELECT and ASSIGN clauses for a Print File and a Print Device

SELECT MembershipReport ASSIGN TO "MembershipRpt.rpt".
SELECT MembershipReport ASSIGN TO LINE-PRINTER.

What Is in a Report
Even when the Report Writer is not directly used, a report created with a printer sequential file consists of groups of
printed lines of different types. For instance, suppose you want to print a report that lists the membership of your local
golf club. This report might consist of the following types of print lines:

• Page Heading
Rolling Greens Golf Club - Membership Report

• Page Footing
Page: PageNum

• Column Headings
MemberID Member Name Type Gender

• Membership detail line
MemberID MemberName MembershipType Gender

Report Footing•
**** End of Membership Report ****

To set up the printer sequential file, you must create an FD for the file and a print record for each type of print line
that will appear on the report. For instance, for the golf club membership report, you have to have the records shown
in Example 8-4.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

168

Example 8-4. Print Lines Required for the Golf Club Membership Report

01 PageHeading.
 02 FILLER PIC X(44)
 VALUE "Rolling Greens Golf Club - Membership Report".

01 PageFooting.
 02 FILLER PIC X(15) VALUE SPACES.
 02 FILLER PIC X(7) VALUE "Page : ".
 02 PrnPageNum PIC Z9.

01 ColumnHeadings PIC X(41)
 VALUE "MemberID Member Name Type Gender".

01 MemberDetailLine.
 02 FILLER PIC X VALUE SPACES.
 02 PrnMemberId PIC 9(5).
 02 FILLER PIC X(4) VALUE SPACES.
 02 PrnMemberName PIC X(20).
 02 FILLER PIC XX VALUE SPACES.
 02 PrnMemberType PIC X.
 02 FILLER PIC X(4) VALUE SPACES.
 02 PrnGender PIC X.

01 ReportFooting PIC X(38)
 VALUE "**** End of Membership Report ****".

Problem of Multiple Print Records
When you reviewed the different types of print lines in Example 8-4, you may have realized that there is a problem.
As you saw in the previous section, if a file is declared as having multiple record types, all the records map on to the
same physical area of storage. This does not cause difficulties if the file is an input file, because only one type of record
at a time can be in the buffer. But as you can see from the print line declarations in Example 8-4, the information in
many print lines is static. It is assigned using the VALUE clause and instantiated as soon as the program starts. This
means all the record values have to be in the record buffer at the same time, which is obviously impossible. In fact, to
prevent the creation of print records in the FILE SECTION, there is a COBOL rule stating that, in the FILE SECTION, the
VALUE clause can only be used with condition names (that is, it cannot be used to give an item an initial value).

Solution to the Multiple Print Record Problem
The solution to the problem of declaring print records is to declare the print line records in the WORKING-STORAGE
SECTION and to declare a record in the file’s FD entry in the FILE SECTION, which is the size of the largest print line
record. You print a print line by moving it from the WORKING-STORAGE SECTION, to the record in the FILE SECTION;
then that record is written to the print file. This is shown graphically in Example 8-5.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

169

Example 8-5. Writing to a Print File

WRITE Syntax Revisited
When I discussed the WRITE statement in the previous chapter, I noted that I was postponing discussion of the ADVANCING
CLAUSE until I dealt with print files. To refresh your memory, the metalanguage for the WRITE statement is given in Figure 8-9.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

170

The syntax for writing to print files is more complicated than that used for writing in ordinary sequential files
because it must contain entries to allow you to control the vertical placement of the print lines. For instance, the
statement WRITE PrintLine BEFORE ADVANCING 2 LINES sends the data in PrintLine to the printer, after which the
printer advances two lines.

Notes on WRITE

The ADVANCING clause is used to position the lines on the page when writing to a print file or a printer. The ADVANCING
clause uses the BEFORE or AFTER phrase to specify whether advancing is to occur before the line is printed or after.

The PAGE option writes a form feed (goes to a new page) to the print file or printer. MnemonicName refers to a
vendor-specific page control command. It is defined in the SPECIAL-NAMES paragraph.

When you write to a print file, you generally use the WRITE..FROM option because the print records are described
in the WORKING-STORAGE SECTION. When the WRITE..FROM option is used, the data in the source area is moved into the
record buffer and then the contents of the buffer are written to the print file. WRITE..FROM is the equivalent of a MOVE
SourceItem TO RecordBuffer statement followed by a WRITE RecordBuffer statement.

SOME IGNORED WRITE VERB ENTRIES

I have ignored some print-related formats of the WRITE verb on the basis that if you need this level of print

sophistication, you should be using the Report Writer. The full WRITE syntax includes the END-OF-PAGE clause,

as shown in the following illustration; this is connected to the LINAGE clause specified in the file’s FD entry. The

LINAGE clause specifies the number of lines that can fit on a page, and this in turn allows the end of the page to

be automatically detected. If you want to explore this further, you should read your implementer manual.

Figure 8-9. Metalanguage for the WRITE verb

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

171

Example Program

Listing 8-3 contains a program that produces a simple report to show a golf club’s membership list. The program
keeps a count of the number of lines printed; it changes the page and prints the headings again when the line count
is greater than 49. A page count is also kept, and this is printed at the bottom of each page. The report produced by
running the program is shown in Figure 8-10.

Listing 8-3. Program to Print the Golf Club Membership Report

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing8-3.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MembershipReport
 ASSIGN TO " Listing8-3-Members.rpt"
 ORGANIZATION IS SEQUENTIAL.

 SELECT MemberFile ASSIGN TO "Listing8-3Members.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MembershipReport.
01 PrintLine PIC X(44).

FD MemberFile.
01 MemberRec.
 88 EndOfMemberFile VALUE HIGH-VALUES.
 02 MemberId PIC X(5).
 02 MemberName PIC X(20).
 02 MemberType PIC 9.
 02 Gender PIC X.

WORKING-STORAGE SECTION.
01 PageHeading.
 02 FILLER PIC X(44)
 VALUE "Rolling Greens Golf Club - Membership Report".

01 PageFooting.
 02 FILLER PIC X(15) VALUE SPACES.
 02 FILLER PIC X(7) VALUE "Page : ".
 02 PrnPageNum PIC Z9.

01 ColumnHeadings PIC X(41)
 VALUE "MemberID Member Name Type Gender".

01 MemberDetailLine.
 02 FILLER PIC X VALUE SPACES.
 02 PrnMemberId PIC 9(5).

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

172

 02 FILLER PIC X(4) VALUE SPACES.
 02 PrnMemberName PIC X(20).
 02 FILLER PIC XX VALUE SPACES.
 02 PrnMemberType PIC X.
 02 FILLER PIC X(4) VALUE SPACES.
 02 PrnGender PIC X.

01 ReportFooting PIC X(38)
 VALUE "**** End of Membership Report ****".

01 LineCount PIC 99 VALUE ZEROS.
 88 NewPageRequired VALUE 40 THRU 99.

01 PageCount PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
PrintMembershipReport.
 OPEN INPUT MemberFile
 OPEN OUTPUT MembershipReport
 PERFORM PrintPageHeadings
 READ MemberFile
 AT END SET EndOfMemberFile TO TRUE
 END-READ
 PERFORM PrintReportBody UNTIL EndOfMemberFile
 WRITE PrintLine FROM ReportFooting AFTER ADVANCING 5 LINES
 CLOSE MemberFile, MembershipReport
 STOP RUN.

PrintPageHeadings.
 WRITE PrintLine FROM PageHeading AFTER ADVANCING PAGE
 WRITE PrintLine FROM ColumnHeadings AFTER ADVANCING 2 LINES
 MOVE 3 TO LineCount
 ADD 1 TO PageCount.

PrintReportBody.
 IF NewPageRequired
 MOVE PageCount TO PrnPageNum
 WRITE PrintLine FROM PageFooting AFTER ADVANCING 5 LINES
 PERFORM PrintPageHeadings
 END-IF.
 MOVE MemberId TO PrnMemberId
 MOVE MemberName TO PrnMemberName
 MOVE MemberType TO PrnMemberType
 MOVE Gender TO PrnGender
 WRITE PrintLine FROM MemberDetailLine AFTER ADVANCING 1 LINE
 ADD 1 TO LineCount
 READ MemberFile
 AT END SET EndOfMemberFile TO TRUE
 END-READ.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

173

Report Writer Version

The Report Writer has been mentioned a number of times in this chapter, so it might be useful to compare the
PROCEDURE DIVISION of the program in Listing 8-3 with the PROCEDURE DIVISION of the Report Writer version of the
report shown in Example 8-6. How is it able to do so much work with so little PROCEDURE DIVISION code? A short
answer is that that is the magic of the Report Writer and declarative programming. A detailed answer will have to wait
until I examine the Report Writer in a later chapter.

Figure 8-10. Report produced by Listing 8-3

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

174

Example 8-6. PROCEDURE DIVISION for Report Writer Version of the Golf Club Membership Report

PROCEDURE DIVISION.
PrintMembershipReport.
 OPEN INPUT MemberFile
 OPEN OUTPUT MembershipReport
 INITIATE ClubMemebershipReport
 READ MemberFile
 AT END SET EndOfMemberFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfMemberFile
 GENERATE MemberLine
 READ MemberFile
 AT END SET EndOfMemberFile TO TRUE
 END-READ
 END-PERFORM
 TERMINATE ClubMemebershipReport
 CLOSE MemberFile, MembershipReport
 STOP RUN.

Variable-Length Records
COBOL programs normally process fixed-length records, but sometimes files contain records of different lengths.
In the first section of this chapter, you saw that a file might consist of a number of different record types. But even though,
taken as a whole, the records in the file vary in size, each record type is a fixed-length record. You can, however, have
true variable-length records, meaning you do not know the structure or size of the records (although you have to know
the maximum size and may know the minimum size). For instance, in an ordinary text file such as might be produced
by MS Notepad, the lines of text have no structure and vary in size from line to line. This section demonstrates how
files containing true variable-length records may be declared and processed.

FD Entries for Variable-Length Records
When the FD entry for sequential files was introduced, you only saw a simplified version that consisted of the letters
FD followed by the file name. Actually, the FD entry can be more complex than you have seen so far, and it can have
a large number of subordinate clauses (see your implementer manual or help files). Some of these clauses are not
required for all computers. For instance, the BLOCK CONTAINS clause is only required for computers where the number
of characters read or written in one I/O operation is under programmatic control. If the block size is fixed, it is not
required. Other clauses are syntax retained from previous versions of COBOL and are now treated as comments.
I ignore these. Some clauses are important for direct-access file organizations; I deal with these when I examine these
file organizations. The RECORD IS VARYING IN SIZE clause allows you to specify that a file contains variable-length
records. The metalanguage for the expanded FD entry is given in Figure 8-11 and Example 8-7 demonstrates how to
use these new FD entries.

Figure 8-11. RECORD IS VARYING clause for variable-length records

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

175

Notes on Varying-Length Records
The RECORD IS VARYING IN SIZE clause without the DEPENDING ON phrase is not strictly required, because the compiler
can work out this information from the record sizes. That is why it was not included in the multiple record-type
declarations in the first section of this chapter.

The RecordSize#i in the DEPENDING ON phase must be an elementary unsigned integer data-item declared in the
WORKING-STORAGE SECTION. When a record defined with the RECORD IS VARYING IN SIZE..DEPENDING ON phrase is
read from a file, the length of the record read in to the buffer is moved into the RecordSize#i data item. When a record
defined with RECORD IS VARYING IN SIZE..DEPENDING ON is written to a file, the length of the record to be written
must first be moved to RecordSize#i data-item, and then the WRITE statement must be executed.

Example 8-7. FD Entries with the RECORD IS VARYING Phrase

FD Textfile
 RECORD IS VARYING IN SIZE
 FROM 1 TO 80 CHARACTERS
 DEPENDING ON TextLineLength.

Or we may define the file as -

FD Textfile
 RECORD IS VARYING IN SIZE
 DEPENDING ON TextLineLength.

Example Program
Listing 8-4 is an example program that demonstrates how to read a file that contains variable-length records. One
problem with variable-length records is that although the records are variable length, the buffer into which they are
read is fixed in size. So if only the characters that have been read from the file are required, they must be extracted
from the record buffer. In this program, reference modification and NameLength are used to slice NameLength number
of characters from the buffer. Reference modification is a COBOL string-handling facility that you explore in a later
chapter. To demonstrate that you have extracted only the required characters, asterisks are used to bracket the names.
Figure 8-12 is a diagrammatic representation of how reference modification is used to extract the name from the
record buffer.

Listing 8-4. Processing Variable-Length Records

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing8-4.
AUTHOR. Michael Coughlan.
* This program demonstrates how to read variable length records.
* It also demonstrates how a file may be assigned its actual name
* at run time rather than compile time (dynamic vs static).
* The record buffer is a fixed 40 characters in size but the
* lengths or names vary so Reference Modification is used to extract
* only the number of characters from the record buffer.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT LongNameFile
 ASSIGN TO NameOfFile
 ORGANIZATION IS LINE SEQUENTIAL.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

176

DATA DIVISION.
FILE SECTION.
FD LongNameFile
 RECORD IS VARYING IN SIZE
 DEPENDING ON NameLength.
01 LongNameRec PIC X(40).
 88 EndOfNames VALUE HIGH-VALUES.

WORKING-STORAGE SECTION.
01 NameLength PIC 99.
01 NameOfFile PIC X(20).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter the name of the file :- "
 WITH NO ADVANCING
 ACCEPT NameOfFile.
 OPEN INPUT LongNameFile.
 READ LongNameFile
 AT END SET EndOfNames TO TRUE
 END-READ
 PERFORM UNTIL EndOfNames
 DISPLAY "***" LongNameRec(1:NameLength) "***"
 READ LongNameFile
 AT END SET EndOfNames TO TRUE
 END-READ
 END-PERFORM
 CLOSE LongNameFile
 STOP RUN.

Summary
This chapter examined how files that contain records of different lengths may be defined and used. The first section
of the chapter dealt with files in which the record lengths are different because the file contains fixed-length records
of different types. The last section dealt with files that contain real variable-length records. The middle section of the
chapter discussed the problem of print files. It explained why the different types of print lines required when printing
a report cannot be declared as different records in the file’s FD entry but must instead be declared in the
WORKING-STORAGE SECTION.

Figure 8-12. Using reference modification to extract the name from the record

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

177

In the next chapter, you continue your exploration of printed output by examining edited pictures. Edited
pictures allow you to format data for output. In some of the example programs in this and previous chapters, I have
used edited pictures without explanation because the context made obvious what was happening. But seeing edited
pictures in action and knowing how to use them are different things. The next chapter examines edited pictures
in detail and discusses how to format data so that leading zeros are suppressed; so that the currency symbol floats
against the non-zero digits of the number; and so that blanks, commas, zeros, and slashes are inserted where they are
required. Table 8-1 gives a preview of some of the formatting that can be applied to data.

Table 8-1. Preview of Some of the Edited Picture Formatting Effects

Effect Value

Original value 00014584.95

With commas inserted 00,014,584.95

With zero-suppression added 14,584.95

With check security and currency symbol added $***14,584.95

With floating + sign +14,584.95

With floating currency symbol $14,584.95

With zeros inserted after the decimal point $14,584.00

With slashes inserted in the middle of the number 00/014/584.95

With three zeros inserted in the number 00014000584.95

With three blanks inserted in the number 00014 584.95

PROGRAMMING EXERCISE 1

It is exercise time again. Now, where did you put that 2B pencil? Write a program to satisfy the following

specification.

University Entrants Summary Report

A program is required that will process the first-year-student entrants file (Entrants.dat) to produce a summary

that shows the number of first-year students in each course. The summary should be displayed on the screen

ordered by ascending CourseCode. An output template is given next.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

178

Output Template

 First Year Entrants Summary
 Course Code NumOfStudents
 LM999 9,999
 LM999 9,999
 : :
 : :
 LM999 9,999
 LM999 9,999

 Total Students: 99,999

Entrants File

The entrants file (Entrants.dat) is a sequential file sequenced on ascending CourseCode. The records in the file have
the following description:

Field Type Length Value

StudentId 9 8 0-99999999

CourseCode X 5 -

Gender X 1 M/F

Some Statements You Need for Your Program

To make this programming exercise easier, some of the statements and data declarations required for your program
are given next.

Executable Statements
DISPLAY Headingline1
DISPLAY Headingline2
DISPLAY CourseLine
DISPLAY SPACES
DISPLAY FinalTotalLine
MOVE CourseCode TO PrnCourseCode
MOVE CourseTotal TO PrnCourseTotal
MOVE FinalTotal TO PrnFinalTotal
READ EntrantsFile
 AT END SET EndOfFile TO TRUE
END-READ
OPEN INPUT EntrantsFile
CLOSE EntrantsFile
ADD 1 TO CourseTotal, FinalTotal
MOVE ZEROS TO CourseTotal
MOVE ZEROS TO FinalTotal
MOVE CourseCode TO PrevCourseCode

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

179

Some Data Descriptions
01 HeadingLine1 PIC X(31) VALUE " First Year Entrants Summary".
01 HeadingLine2 PIC X(31) VALUE " Course Code NumOfStudents".
01 CourseLine.
 02 FILLER PIC X(5) VALUE SPACES.
 02 PrnCourseCode PIC X(5).
 02 FILLER PIC X(10) VALUE SPACES.
 02 PrnCourseTotal PIC Z,ZZ9.
01 FinalTotalLine.
 02 FILLER PIC X(19) VALUE " Total Students:".
 02 PrnFinalTotal PIC ZZ,ZZ9.
01 CourseTotal PIC 9(4).
01 FinalTotal PIC 9(5).
01 PrevCourseCode PIC X(5).

PROGRAMMING EXERCISE 2

Change the program you wrote for Programming Exercise 1 so that it now writes the report to a print file.

The answer to this exercise is given below. Because exercise 1 is substantially the same as exercise 2, the same

answer should serve both.

PROGRAMMING EXERCISES 1 AND 2: ANSWER

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing8-5.
AUTHOR. Michael Coughlan.
* This program processes the first year students entrants file to produce
* a summary report sequenced on ascending Course Code that shows the number
* of first year students* in each course.
* The Entrants File is a sequential file sequenced on ascending CourseCode.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EntrantsFile ASSIGN TO "Listing8-5-Entrants.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT SummaryReport ASSIGN TO "Listing8-5-Summary.Rpt"
 ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD EntrantsFile.
01 StudentRecord.
 88 EndOfEntrantsFile VALUE HIGH-VALUES.
 02 StudentId PIC 9(8).
 02 CourseCode PIC X(5).
 02 Gender PIC X.

CHAPTER 8 ■ ADVANCED SEQUENTIAL FILES

180

FD SummaryReport.
01 PrintLine PIC X(35).

WORKING-STORAGE SECTION.
01 HeadingLine1 PIC X(31) VALUE " First Year Entrants Summary".

01 HeadingLine2 PIC X(31) VALUE " Course Code NumOfStudents".

01 CourseLine.
 02 FILLER PIC X(5) VALUE SPACES.
 02 PrnCourseCode PIC X(5).
 02 FILLER PIC X(10) VALUE SPACES.
 02 PrnCourseTotal PIC BBZZ9.

01 FinalTotalLine.
 02 FILLER PIC X(19) VALUE " Total Students:".
 02 PrnFinalTotal PIC BZ,ZZ9.

01 CourseTotal PIC 9(4) VALUE ZEROS.
01 FinalTotal PIC 9(5) VALUE ZEROS.
01 PrevCourseCode PIC X(5) VALUE ZEROS.

PROCEDURE DIVISION.
ProduceSummaryReport.
 OPEN INPUT EntrantsFile
 OPEN OUTPUT SummaryReport
 WRITE PrintLine FROM HeadingLine1 AFTER ADVANCING PAGE
 WRITE PrintLine FROM HeadingLine2 AFTER ADVANCING 2 LINES
 READ EntrantsFile
 AT END SET EndOfEntrantsFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfEntrantsFile
 MOVE CourseCode TO PrnCourseCode, PrevCourseCode
 MOVE ZEROS TO CourseTotal
 PERFORM UNTIL CourseCode NOT = PrevCourseCode
 ADD 1 TO CourseTotal, FinalTotal
 READ EntrantsFile
 AT END SET EndOfEntrantsFile TO TRUE
 END-READ
 END-PERFORM
 MOVE CourseTotal TO PrnCourseTotal
 WRITE PrintLine FROM CourseLine AFTER ADVANCING 1 LINE
 END-PERFORM
 MOVE FinalTotal TO PrnFinalTotal
 WRITE PrintLine FROM FinalTotalLine AFTER ADVANCING 2 LINES
 CLOSE EntrantsFile, SummaryReport

 STOP RUN.

181

CHAPTER 9

Edited Pictures

In the previous chapter, you saw how a printed report may be created by sending data directly to the printer or to a
print file. In this chapter, you continue your exploration of printed output by examining how data may be formatted
for output.

Most users of the data produced by a COBOL report program are not content with the simple raw, unformatted
data. Unformatted data is difficult to read, so users want it presented in a way that makes it easier to understand.
This is especially true of numeric data. Users may want numeric values separated into thousands, and they may want
leading zeros to be suppressed. If the report contains currency values, then users may want the currency symbol to
be printed, and they may want the symbol floated up against the first non-zero digit. In COBOL, all these effects and
more can be achieved using edited pictures.

Edited Pictures
Edited pictures are picture clauses that format data intended for output to a screen or a printer. To enable the data
items to be formatted, special symbols are embedded in the picture clause. These symbols supplement the basic 9,
X, A, V, and S picture clause symbols. The additional symbols are referred to as edit symbols, and picture clauses that
include edit symbols are called edited Pictures. The term edit is used because the edit symbols cause the data in the
edited item to be changed or “edited.”

When numeric data is moved into an edited numeric data item, it obeys the rules for numeric moves, with
decimal-point alignment and zero-filling or truncation as necessary. Although an edited numeric data item cannot be
used as an active operand in a computation, it may be used as the receiving field of a computation. That is, it may be
used to the right of the word GIVING.

Formatting Output
The last chapter ended with an example that showed a number of the formatting effects that may be applied to a data
value. The example did not show how those effects were achieved. You start this chapter by revisiting that example
and examining a program that shows how edited pictures were used to achieve those effects. After you have seen how
edited pictures are used in a program, this chapter explores the topic of edited pictures in detail. You examine the
different kinds of editing that may be applied to data, and you expand your knowledge of the special symbols used to
create edited pictures.

Table 9-1 restates the example given in Table 8-1 in the previous chapter. This example shows some of the
different kinds of formatting that may be applied to a data value. Among the effects are numeric values divided into
thousands by commas, suppression of leading zeros, and the plus sign and the currency symbol floating up against
the first non-zero value.

CHAPTER 9 ■ EDITED PICTURES

182

Immediate Editing
The most important thing to know about an edited picture is that the data formatting is not done when the edited data
is output to a printer or a computer screen; it is immediate. The moment data is moved into an edited item, the data
itself is modified according to the formatting instructions specified by the edited picture.

It can be very useful to know that when a data value is moved into an edited item, it is immediately formatted;
once you know that, you can think of a number of manipulations that you can do to the edited data to achieve
interesting effects. For instance, you could use COBOL string-handling to replace the floating dollar sign with the
Euro, Yen, or other currency symbol; or you might replace the slash symbol in a date with the hyphen or some other
separator. Later, this chapter returns to this idea and looks at some examples.

Example Program
Listing 9-1 is a simple program that shows how the formatting effects of Table 9-1 were achieved. This program has
been pared down to its essential elements so that you can concentrate on the editing effects. The program uses the
DISPLAY statement to output the edited data to the screen.

Listing 9-1. Using Edited Pictures to Format Data for Output

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing9-1.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumericValue PIC 9(8)V99 VALUE 00014584.95.
01 Edit1 PIC 99,999,999.99.
01 Edit2 PIC ZZ,ZZZ,ZZ9.99.
01 Edit3 PIC $*,***,**9.99.
01 Edit4 PIC ++,+++,++9.99.
01 Edit5 PIC $$,$$$,$$9.99.
01 Edit6 PIC $$,$$$,$$9.00.

Table 9-1. Edited Picture Formatting Effects

Effect Value

Original value 00014584.95

With commas inserted 00,014,584.95

With zero-suppression added 14,584.95

With check security and currency symbol added $***14,584.95

With floating + sign +14,584.95

With floating currency symbol $14,584.95

With zeros inserted after the decimal point $14,584.00

With slashes inserted in the middle of the number 00/014/584.95

With three zeros inserted in the number 00014000584.95

With three blanks inserted in the number 00014 584.95

CHAPTER 9 ■ EDITED PICTURES

183

01 Edit7 PIC 99/999/999.99.
01 Edit8 PIC 99999000999.99.
01 Edit9 PIC 99999BBB999.99.

PROCEDURE DIVISION.
Begin.
MOVE NumericValue TO Edit1
DISPLAY "Edit1 = " Edit1

MOVE NumericValue TO Edit2
DISPLAY "Edit2 = " Edit2

MOVE NumericValue TO Edit3
DISPLAY "Edit3 = " Edit3

MOVE NumericValue TO Edit4
DISPLAY "Edit4 = " Edit4

MOVE NumericValue TO Edit5
DISPLAY "Edit5 = " Edit5

MOVE NumericValue TO Edit6
DISPLAY "Edit6 = " Edit6

MOVE NumericValue TO Edit7
DISPLAY "Edit7 = " Edit7

MOVE NumericValue TO Edit8
DISPLAY "Edit8 = " Edit8

MOVE NumericValue TO Edit9
DISPLAY "Edit9 = " Edit9

STOP RUN.

The data item NumericValue is a decimal number. The V in the picture clause indicates the position of the
assumed decimal point; but the actual decimal point, which is a text character, is not held in the data item. To display
or print an actual decimal point, you must use an edited picture containing the decimal-point editing symbol. If you
examine the Edit1 data item in Listing 9-1, you see that the V, which normally indicates the position of the decimal
point, has been replaced by the actual decimal-point character.

When the value in NumericValue is moved into the edited item, the data is immediately modified according to
the formatting specified by the edit symbols. A brief explanation of the effect of moving data from NumericValue to
each of the edited items is given next:

When • NumericValue is moved to Edit1, the assumed decimal point in NumericValue aligns
with the actual decimal point in Edit1, and the actual decimal-point character is inserted.
In addition, commas are inserted where they are specified in the edited picture.

CHAPTER 9 ■ EDITED PICTURES

184

The zero-suppression symbol • Z in Edit2 modifies the data so that leading zeros are replaced
with spaces.

In • Edit3, the edit symbols cause the dollar sign to be inserted and the leading zeros to be
replaced with asterisks.

The plus-sign symbols in • Edit4 cause the sign to float up against the first non-zero digit.

The data in • Edit5 is similarly modified, but using the dollar sign.

The editing specified for • Edit6 inserts two zeros after the decimal point. This means when the
data is moved into Edit6 and there is alignment along the decimal point, there is no room for
the digits 9 and 5, which are truncated.

• Edit7 shows how the slash character can be inserted into a number. The slash is used to good
effect when formatting dates, but it is used here to show that it is not restricted to date values.

In • Edit8, the zero edit symbol is used to insert zeros into the middle of the number.

In • Edit9, the blank symbol B is used to insert spaces or blanks into the middle of the number.
This can be useful for formatting dates or for aligning report headings or values.

Types of Editing
There are two basic types of editing in COBOL: insertion editing, and suppression and replacement editing.
Insertion editing modifies the data value by inserting additional characters into the data. This type of editing has
the following subcategories:

Simple insertion•

Special insertion•

Fixed insertion•

Floating insertion•

Suppression and replacement editing modifies the data value by suppressing leading zeros and replacing them
with a replacement character. This type of editing has the following subcategories:

Zero-suppression and replacement with spaces•

Zero-suppression and replacement with asterisks (*)•

COBOL Detail ■ Zero-suppression and replacement with spaces can also be achieved by using the BLANK WHEN ZERO

clause. This clause can sometimes be useful because it may be used with a picture clause that contains editing symbols

(except the asterisk [*] replacement symbol). For instance, 01 BlankedNumber PIC +$$$,$$9 BLANK WHEN ZERO.

CHAPTER 9 ■ EDITED PICTURES

185

Editing Symbols
Special picture symbols are used in an edited-picture clause to specify the formatting required. Table 9-2 shows the
special picture clause symbols used in edited pictures and categorizes them by the type of editing they are used for.

Table 9-2. Editing Symbols

Edit Symbol Editing Type

, B 0 / Simple insertion

. Special insertion

+ - CR DB $ Fixed insertion

+ - $ Floating insertion

Z * Suppression and replacement

Insertion Editing
Insertion editing is so named because the edit symbol is inserted into the data value at the same position it occupies
in the picture clause. As mentioned earlier, there are four types of insertion editing: simple insertion, special insertion,
fixed insertion, and floating insertion. The following sections explore these types of editing in more detail.

Simple-Insertion Editing
A simple-insertion edited picture consists of a PICTURE string that specifies the relevant insertion character(s) in the
required character position. When a data value is moved into the edited item, the insertion characters are inserted
into the item at the position specified in the PICTURE. Simple insertion may be used with both numeric-edited and
alphanumeric-edited data items.

As shown in Table 9-2, the comma, the blank or space, the zero, and the slash are the simple-insertion editing
symbols. In simple insertion, all the inserted characters count toward the number of characters printed or displayed.
For instance, an item described as PIC 9999/99/99 occupies ten character positions when printed. You need to be
aware of this when designing report layouts.

How the Symbols Work

The comma symbol (,) instructs the computer to insert a comma at the character position where the symbol occurs.
The comma counts toward the size of the printed item. When used with zero-suppression and replacement or floating
insertion, the comma operates in a special way: if all characters to the left of the comma are zeros, the comma is
replaced with the appropriate character (currency symbol, asterisk, or space).

The space or blank (B), slash (/), and zero (0) symbols instruct the computer to insert the appropriate character
at the position where the symbol occurs in the PICTURE string.

Simple-Insertion Examples

Table 9-3 gives some simple-insertion example PICTURE strings, shows the formatting that these edited pictures apply
to data values, and provides a comment that explains what is done.

CHAPTER 9 ■ EDITED PICTURES

186

Table 9-3. Simple-Insertion Examples

Sending Receiving Comments

Picture Data Picture Result

PIC X(8) MikeRyan PIC X(4)BBX(4) MikeRyan Spaces are inserted.

Size = 10 characters.

PIC X(9) 10Jan2013 PIC XX/XXX/(4) 10/Jan/2013 Slashes are inserted.

Size = 11 characters.

PIC 9(6) 123456 PIC 999,999 123,456 Comma is inserted.

Size = 7 characters.

PIC 9(6) 000045 PIC 9(3),9(3) 000,045 Comma is inserted. Note the leading zeros.

Size = 7 characters.

PIC 9(6) 000045 PIC ZZZ,ZZZ 45 Leading zeros are replaced with spaces
(represented by). Because there is a zero to
the left of the comma, it is replaced by a space.

Size = 7 characters.

PIC 9(6) 000345 PIC ***,*** ****345 Zero-suppression and the zero to the left of the
comma cause the comma to be replaced by
an asterisk.

Size = 7 characters.

PIC 9(6) 002345 PIC ***,*** **2,345 Zero-suppression is used, but there is a
non-zero to the left of the comma, so the
comma is inserted.

Size = 7 characters.

PIC 9(8) 12252013 PIC 99B99B9999 12252013 Spaces are inserted.

Size = 10 characters.

PIC 9(8) 12252013 PIC 99/99/9999 12/25/2013 Slashes are inserted.

Size = 10 characters.

PIC 9(6) 7654329 PIC 990099 430029 No explicit decimal point in either the sending
or receiving field means each is treated as if it
had a decimal point in the rightmost position.
The zero characters are inserted, so there is
only room in the data for four of the sending
field’s digits. After decimal-point alignment,
digits 765 are truncated.

Size = 6 characters.

PIC 9(4)V999 7654329 PIC 999.009 654.003 The assumed decimal point aligns with the actual
decimal point in the receiving field, causing the
most significant digit (7) to be truncated. The
zero characters are inserted after the decimal
point, which only leaves room for one digit; so
the digits 29 are truncated on the left.

Size= 7 characters.

CHAPTER 9 ■ EDITED PICTURES

187

Special-Insertion Editing
The only special-insertion symbol is the decimal point. The decimal-point insertion symbol has the effect of inserting
an actual decimal point into the edited item. This type of editing is called special insertion because of the effect on
data moved into the edited item. Data sent to the edited field is aligned along the decimal point, with zero-filling or
truncation as required. The decimal point is inserted in the character position where the symbol occurs, and there
may be only one decimal point. The decimal-point symbol cannot be mixed with either the V (assumed decimal
point) or the P (scaling position) symbol. The purpose and operation of the P symbol is explored later in this chapter.

Special-Insertion Examples

Table 9-4 gives some special-insertion example picture strings and shows the formatting that these edited pictures
apply to data values. You probably noticed that the last example in Table 9-3 was an example of special insertion
as well as simple insertion.

Table 9-4. Special-Insertion Editing Examples

Sending Receiving Comments

Picture Data Picture Result

PIC 9(3)V99 63485 PIC 9999.99

0634.85 The decimal point is inserted; and after
alignment, the digits of the sending item are
inserted to the left and right of the decimal
point, with the result that there is zero-filling
on the left.

Size = 7 characters.

PIC 9(4)V99 063485 PIC 9999.9 0634.8 The decimal point is inserted; and after
alignment, the digits of the sending item are
inserted to the left and right of the decimal
point, with the result that there is truncation on
the right (5).

Size = 6 characters.

PIC 9(4)V99 363485 PIC 999.99 634.85 The decimal point is inserted; and after
alignment, the digits of the sending item are
inserted to the left and right of the decimal
point with the result that there is truncation on
the left (3).

Size = 6 characters.

PIC 9(4) 3485 PIC 999.99 485.00 The decimal point is inserted. The sending
field is treated as if it had a decimal point in
the rightmost position. After alignment, there
is truncation of the leftmost digit (3) and
zero-filling on the left.

Size = 6 characters.

CHAPTER 9 ■ EDITED PICTURES

188

Fixed-Insertion Editing
Fixed-insertion editing is so named because it inserts the edit symbol in a fixed position at the beginning or end of the
edited item. The fixed insertion editing symbols are as follows:

The plus (• +) and minus (-) signs

The letters • CR and DB, representing credit and debit

The currency symbol (usually the • $ sign)

Like the other insertion edit symbols, the fixed-insertion symbols count toward the size of the printed item.

Plus and Minus Symbols

The plus (+) and minus (-) symbols must be placed in the first or last character position of the PICTURE string. The
operation of the plus and minus edit symbols is not as straightforward as it may appear. The rules governing their
operation are as follows:

If the plus symbol is specified, then a minus sign is inserted if the value is negative and a plus •
sign is inserted if the value is positive.

If the minus symbol is specified, then a minus sign is inserted if the value is negative but a •
space is inserted if the value is positive. So the minus symbol is only used to highlight negative
values. If you always want the appropriate sign to be inserted, use the plus symbol.

CR and DB

CR and DB stand for credit and debit, respectively. But what a credit is and what a debit is depends on which side of the
balance sheet you are on. Therefore, the rule with the CR and DB symbols is that both are inserted only if the value is
negative. CR and DB count toward the data-item size, occupy two character positions, and may only appear in the last
character position of the edit PICTURE string.

The Currency Symbol

The currency symbol (usually $) must be one of the leading characters of the edit PICTURE string. It may be preceded
by a plus or a minus sign.

The default currency symbol is the dollar sign ($); but as shown in Listing 9-2, it may be changed to a different
symbol by the CURRENCY SIGN IS clause, in the SPECIAL-NAMES paragraph, CONFIGURATION SECTION, ENVIRONMENT
DIVISION.

Listing 9-2. Using the CURRENCY SIGN Clause to Change the Currency Symbol

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing9-2.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

CHAPTER 9 ■ EDITED PICTURES

189

 CURRENCY SIGN IS "£".
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Edit1 PIC £££,££9.99.

PROCEDURE DIVISION.
Begin.
 MOVE 12345.95 TO Edit1
 DISPLAY "Edit1 = " Edit1
 STOP RUN.

In Listing 9-3, multiple currency sign declarations are used to create a currency converter program. Several
CURRENCY SIGN declarations are made (note that while there are several clauses there is only one sentence and hence
one period) and then each edited picture uses the appropriate currency symbol.

Listing 9-3. Using Multiple CURRENCY SIZE clauses

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing9-3.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 CURRENCY SIGN IS "£"
 CURRENCY SIGN IS "$"
 CURRENCY SIGN IS "¥".
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DollarValue PIC 9999V99.

01 PrnDollarValue PIC $$$,$$9.99.
01 PrnYenValue PIC ¥¥¥,¥¥9.99.
01 PrnPoundValue PIC £££,££9.99.

01 Dollar2PoundRate PIC 99V9(6) VALUE 0.640138.
01 Dollar2YenRate PIC 99V9(6) VALUE 98.6600.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter a dollar value to convert :- " WITH NO ADVANCING
 ACCEPT DollarValue
 MOVE DollarValue TO PrnDollarValue

 COMPUTE PrnYenValue ROUNDED = DollarValue * Dollar2YenRate

 COMPUTE PrnPoundValue ROUNDED = DollarValue * Dollar2PoundRate

CHAPTER 9 ■ EDITED PICTURES

190

 DISPLAY "Dollar value = " PrnDollarValue
 DISPLAY "Yen value = " PrnYenValue
 DISPLAY "Pound value = " PrnPoundValue

 STOP RUN.

Fixed-Insertion Examples

Table 9-5 gives examples of fixed insertion using the plus and minus edit symbols. Table 9-6 does the same for the CR
and DB edit symbols.

Table 9-5. Fixed-Insertion Editing with the Plus and Minus Symbols

Sending Receiving Comments

Picture Data Picture Result

PIC S9(4) –4174 PIC –9999 –4174 A negative value moved into an item edited
with a minus sign inserts the minus sign.

Size = 5 characters.

PIC S9(4) –4174 PIC 9999– 4174– When the minus sign is in the last character
position, the minus is inserted into the last
character position.

Size = 5 characters.

PIC S9(4) +4174 PIC –9999 4174 A positive value moved into an item edited
with a minus sign inserts a space character in
the position of the minus symbol.

Size = 5 characters.

PIC S9(4) +4174 PIC +9999 +4174 A positive value moved into an item edited
with a plus sign inserts a plus sign.

Size = 5 characters.

PIC S9(4) –174 PIC +9999 –0174 A negative value moved into an item edited
with a plus sign inserts a minus sign.

Size = 5 characters.

PIC S9(4) –174 PIC 9999+ 0174– A negative value moved into an item edited
with a plus sign inserts a minus sign in the
character position of the plus symbol.

Size = 5 characters.

CHAPTER 9 ■ EDITED PICTURES

191

Floating Insertion
The problem with fixed-insertion editing is that data formatted using it can be somewhat unsightly. Values like
$00019,825.75 and -0000135 are more acceptably presented as $19,825.75 and -135. What makes these formats more
presentable is that the leading zeros have been suppressed and the editing symbol has been “floated” up against the
first non-zero digit. In COBOL, this effect can be achieved using floating insertion. Floating insertion can only be
applied to numeric-edited data items.

The floating-insertion symbols are the plus and minus signs and the currency symbol. Floating insertion
suppresses leading zeros and floats the insertion symbol up against the first non-zero digit. Every floating symbol
counts toward the size of the printed item. Each floating-insertion symbol—with the exception of the leftmost symbol,
which is always inserted—is a placeholder that may be replaced by a space or a digit. This means at least one symbol
is always inserted, even though this may be at the cost of truncating the number.

Table 9-6. Fixed-Insertion Editing with CR, DB, and the Currency Symbol

Sending Receiving Comments

Picture Data Picture Result

PIC 999 174 PIC $9999 $0174 The $ sign is inserted.

Size = 5 characters.

PIC S999 –174 PIC –$9999 –$0174 The minus symbol is used before the $ and the
value is negative, so both are inserted.

Size = 6 characters.

PIC S999 –174 PIC –$9999CR –$0174CR The minus symbol is used at the start of the edit
string and CR at the end. The value is negative,
so the minus and CR are both inserted.

Size = 8 characters.

PIC S999 +174 PIC +$9999CR +$0174 A plus sign is used before the $ and the value
is positive, so a plus sign is inserted. The
CR symbol is used; but because the value is
positive, spaces are inserted.

Size = 8 characters.

PIC S9(4) -4174 PIC 9999CR 4174CR The value is negative, so CR is inserted.

Size = 6 characters.

PIC S9(4) +4174 PIC 9999CR 4174 The value is positive, so spaces are inserted.

Size = 6 characters.

PIC S9(4) –4174 PIC 9999DB 4174DB The value is negative, so DB is inserted.

Size = 6 characters.

PIC S9(4) +4174 PIC 9999DB 4174 The value is positive, so spaces are inserted.

Size = 6 characters.

PIC S9(4) –174 PIC 9999+ 0174– A negative value moved into an item edited
with a plus sign inserts a minus sign in the
character position of the plus symbol.

Size = 5 characters.

CHAPTER 9 ■ EDITED PICTURES

192

Floating-Insertion Examples

The examples in Table 9-7 show how you can use floating-insertion editing. You should pay particular attention to
how floating insertion deals with the comma when this symbol is combined with the floating-insertion symbols
(see the second example).

Table 9-7. Floating-Insertion Editing with Plus, Minus, and the Currency Symbol

Sending Receiving Comments

Picture Data Picture Result

PIC 9(4)V99 000000 PIC $$,$$9.99 ****$0.00 The currency symbol floats against the
digit in the leftmost numeric position. The
zeros to the left of the currency symbol are
replaced by spaces.

Size = 9 characters.

PIC 9(4)V99 174.75 PIC $$,$$9.99 **$174.75 The currency symbol replaces the comma
because there are no digits to the left of the
comma (rule prevents $,174.75).

Size = 9 characters.

PIC 9(4)V99 4174.75 PIC $$,$$9.99 $4,174.75 A comma is inserted.

Size = 9 characters.

PIC 9(4)V99 4174.75 PIC $$,$$9.00 $4,174.00 The zeros are inserted to the right of
the decimal point. After decimal-point
alignment, the least significant digits (75)
of the value are lost.

Size = 9 characters.

PIC 9(5)V99 34174.75 PIC $$,$$9.99 $4,174.75 The leftmost currency symbol cannot be
replaced by a digit, which means after
alignment the most significant digit (3) is lost.

Size = 9 characters.

PIC S9(3) -26 PIC +++9 *-26 The character positions to the left of the
currency symbol are occupied by spaces.

Size = 4 characters.

PIC S9(3) +426 PIC +++9 +426 Size = 4 characters.

PIC S9(3) -426 PIC ---9 -426 Size = 4 characters.

PIC S9(3) +426 PIC ---9 426 A positive value and the minus symbol
mean the symbol is replaced by space.

Size = 4 characters.

PIC S9(4) +6426 PIC +++9 +426 The leftmost plus symbol cannot be replaced
by a digit, which means after alignment the
most significant digit (6) is lost.

Size = 4 characters.

CHAPTER 9 ■ EDITED PICTURES

193

Suppression-and-Replacement Editing
Suppression-and-replacement editing is used to replace leading zeroes from the value to be edited with the
replacement symbol. Like floating insertion, suppression and replacement can only be applied to numeric-edited
data items. There are two varieties of suppression-and-replacement editing:

Suppression of leading zeros and replacement with spaces•

Suppression of leading zeros and replacement with asterisks•

The suppression and replacement symbols are the letter Z and the asterisk (*). Using Z in an edited picture
instructs the computer to suppress a leading zero in that character position and replace it with a space. Using * in an
edited picture instructs the computer to replace a leading zero with an asterisk. The picture clause symbol 9 cannot
appear to the left of the replacement symbols (Z or *). If all the character positions in a data item are Z editing symbols
and the sending item is 0, then only spaces will be printed. Replacement with spaces is done for aesthetic reasons, but
replacement with asterisks is often done as a security measure on checks.

Suppression-and-Replacement Examples
Table 9-8 shows how you can use suppression and replacement. As with the examples in Table 9-7, you should
pay particular attention to how suppression-and-replacement editing deals with the comma when this symbol is
combined with the replacement symbols.

Table 9-8. Suppression-and-Replacement Editing Examples

Sending Receiving Comments

Picture Data Picture Result

PIC 9(4) 0000 PIC Z,ZZZ The value is zero, and the edit string instructs the
computer to replace the leading zeros with spaces.

Size= 5 characters.

PIC 9(4) 8317 PIC Z,Z99 8,317 If there are no leading zeros, there is no replacement.

Size= 5 characters.

PIC 9(4) 0317 PIC Z,Z99 317 When there are only zeros to the left of the comma,
the comma is replaced with the replacement symbol.

Size= 5 characters.

PIC 9(4) 0007 PIC Z,Z99 07 The edited value is 07 because the edit picture does
not require replacement for the last two digits.

Size= 5 characters.

PIC 9(4) 0000 PIC **** **** The value is zero, and the edit string instructs the
computer to replace the leading zeros with asterisks.

Size= 4 characters.

PIC 9(4) 0083 PIC **** **83 Leading zeros are replaced with asterisks.

Size= 4 characters.

(continued)

CHAPTER 9 ■ EDITED PICTURES

194

Example Print Lines
Example 9-1 shows some print lines. Note how the edit symbol B is used for spacing. If this were not done, additional
data items filled with spaces, as shown in Example 9-2, would have to be used.

Example 9-1. Example Print Lines Containing Edited Pictures

01 Cust-Sales-Line.
 02 Prn-Cust-Name PIC X(20).
 02 Prn-Cust-Id PIC BBB9(5).
 02 Prn-Cust-Sales PIC B(5)ZZ9.
 02 Prn-Qty-Sold PIC B(5)ZZ,ZZ9.
 02 Prn-Sales-Value PIC BBBB$$$,$$9.99.

01 Total-Sales-Line.
 02 FILLER PIC X(33) VALUE SPACES.
 02 FILLER PIC X(19) VALUE "TOTAL SALES :".
 02 Prn-Total-Sales PIC B(6)ZZ,ZZ9.

Example 9-2. Spacing with Space-Filled Data Items

01 Cust-Sales-Line.
 02 Prn-Cust-Name PIC X(20).
 02 FILLER PIC XXX VALUE SPACES.
 02 Prn-Cust-Id PIC 9(5).
 02 FILLER PIC X(5) VALUE SPACES.
 02 Prn-Cust-Sales PIC ZZ9.
 02 FILLER PIC X(5) VALUE SPACES.
 02 Prn-Qty-Sold PIC ZZ,ZZ9.
 02 FILLER PIC X(4) VALUE SPACES.
 02 Prn-Sales-Value PIC $$$,$$9.99.

Sending Receiving Comments

Picture Data Picture Result

PIC 9(4) 8317 PIC $*,**9.00 $8,317.00 No replacement occurs, but the currency symbol,
comma, and zeros are inserted.

Size = 9 characters.

PIC 9(4) 0317 PIC $*,**9.00 $**317.00 The comma is replaced with an asterisk.

Size = 9 characters.

PIC 9(4) 0017 PIC $*,999.00 $**017.00 The comma is replaced with an asterisk.

Size = 9 characters.

Table 9-8. (continued)

CHAPTER 9 ■ EDITED PICTURES

195

Immediate Editing
I noted earlier that the moment a value is placed into an edited data item, the value is modified according the
formatting specified by the edit string. This section examines examples that show some of the interesting effects you
can achieve by taking advantage of the way editing works.

In Figure 9-1, the data item SouthAfricanPay uses the dollar sign as the floating-insertion symbol. Obviously,
this is a problem. The currency of South Africa is the Rand, which is represented by the character R. What you want is
a floating R character rather than a floating dollar sign. Unfortunately, you cannot change the currency symbol to R
using the CURRENCY SIGN clause: restrictions are placed on the characters that can be used with that clause, and R is
one of the restricted characters. So what can you do? Immediate editing gives you the answer. You replace the dollar
sign that has floated against the number, with an R.

Figure 9-1. The floating Rand symbol

 Example Program
Listing 9-4 uses zero suppression and replacement by asterisks to create a starred rating system. In this system,
a rating of 5 is shown as 5 asterisks, 4 is shown as 4 asterisks, and so on. The COMPUTE statement produces the values
10000, *1000, **100, ***10, ****1, and *****. The INSPECT replaces each 1 and each 0 in Stars with a space. INSPECT
Stars CONVERTING "10" TO SPACES is a shorthand way of writing - INSPECT Stars REPLACING ALL "1" BY SPACE,
ALL "0" BY SPACE. You'll examine INSPECT in detail in Chapter 15.

Listing 9-4. Starred Rating System

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing9-4.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Stars PIC *****.
01 NumOfStars PIC 9.

CHAPTER 9 ■ EDITED PICTURES

196

PROCEDURE DIVISION.
Begin.
 PERFORM VARYING NumOfStars FROM 0 BY 1 UNTIL NumOfStars > 5
 COMPUTE Stars = 10 ** (4 - NumOfStars)
 INSPECT Stars CONVERTING "10" TO SPACES
 DISPLAY NumOfStars " = " Stars
 END-PERFORM
 STOP RUN.

PICTURE String Restrictions
Some combinations of picture symbols are not permitted. Table 9-9 shows the combinations of symbols that
are allowed. You should now be familiar with all these PICTURE symbols except P: the P symbol is a
scaling symbol.

CHAPTER 9 ■ EDITED PICTURES

197

The PICTURE Clause Scaling Symbol
The P symbol in a PICTURE clause specifies a decimal-point scaling position. It is used to save storage when the
magnitude of a number is significantly larger than the required precision. For instance, suppose you are required
to store numbers that contain whole billions. You could use a declaration such as PIC 9(12), which requires 12
characters, or you could use the scaling symbol P to define the item as PIC 999P(9). This definition requires only
three characters and can store a value between 001,000,000,000 and 999,000,000,000.

The P symbol is not often used, but a description of how it operates is included here for completeness. By default,
when no assumed decimal point is explicitly defined, the data item is treated as if it had a decimal point in the
rightmost position. The P symbol allows you to change that by defining the assumed decimal point to be to the left or
right of the digits, depending on where the P symbol is placed. Each P symbol represents one decimal scaling position.

In Example 9-3, LargeScaledNumber occupies only three characters of storage but can hold a value as high as
99,900,000. Similarly, ScaledBillions occupies only three characters of storage but can hold a number as large as
999,000,000,000, while SmallScaledNumber can hold a number as small as 0.00000001.

Example 9-3. Scaling, Which Allows Numbers to Be Defined Using Less Storage

01 SmallScaledNumber PIC P(5)999 VALUE .00000423.
01 LargeScaledNumber PIC 999P(5) VALUE 45600000.00.
01 ScaledBillions PIC 999P(9) VALUE ZEROS.

Rules
If the symbol P is used more than once, it can only occur as a contiguous string of Ps at the leftmost or rightmost end
of the PICTURE string. The assumed decimal point symbol (V) can be used for clarity, but it has no semantic effect, and
when used it must appear to the left of the leftmost P or to the right of the rightmost P. For instance, to clarify where
the decimal point is, you could define the Example 9-3 data items as follows:

01 SmallScaledNumber PIC VPPPPP999 VALUE .00000423.
01 LargeScaledNumber PIC 999PPPPPV VALUE 45600000.00.
01 ScaledBillions PIC 999PPPPPPPPPV VALUE ZEROS.

The P symbols do not count toward the size of the item. However, each P counts toward the maximum number of
digit positions (18) in a numeric item.

Table 9-9. PICTURE String Restrictions

Character May Be Followed By

P
B
0
/
,
.
+
-
CR or DB
$
9
V

P B 0 / , + - CR DB 9 V
P B 0 / , . + - CR DB 9 V
P B 0 / , . + - CR DB 9 V
P B 0 / , . + - CR DB 9 V
P B 0 / , . + - CR DB 9 V
B 0 / , . + - CR DB 9
P B 0 / , . + $ 9 V
P B 0 / , . - $ 9 V
Nothing at all
P B 0 / , . + - CR DB $ 9 V
P B 0 / , . + - CR DB 9 V
B 0 / , + - CR DB 9

CHAPTER 9 ■ EDITED PICTURES

198

The P symbol cannot be used if the explicit decimal-point edit symbol is used in the PICTURE string.
All computations and other operations performed against scaled data items behave as if the decimal point were

in the scaled position. For instance, as shown in Listing 9-5, the result of adding LargeScaledNumber to the data item
containing the value 11,111,111.00 is 56,711,111.00.

Listing 9-5. Using the Scaling Symbol P

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing9-5.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SmallScaledNumber PIC VP(5)999 VALUE .00000423.
01 LargeScaledNumber PIC 999P(5)V VALUE 45600000.00.
01 ScaledBillions PIC 999P(9) VALUE ZEROS.

01 SmallNumber PIC 9V9(8) VALUE 1.11111111.
01 LargeNumber PIC 9(8)V9 VALUE 11111111.

01 PrnSmall PIC 99.9(8).
01 PrnLarge PIC ZZ,ZZZ,ZZ9.99.
01 PrnBillions PIC ZZZ,ZZZ,ZZZ,ZZ9.

PROCEDURE DIVISION.
Begin.
 MOVE SmallScaledNumber TO PrnSmall
 MOVE LargeScaledNumber TO PrnLarge
 DISPLAY "Small scaled = " PrnSmall
 DISPLAY "Large scaled = " PrnLarge

 ADD SmallScaledNumber TO SmallNumber
 ADD LargeScaledNumber TO LargeNumber
 MOVE SmallNumber TO PrnSmall
 MOVE LargeNumber TO PrnLarge
 DISPLAY "Small = " PrnSmall
 DISPLAY "Large = " PrnLarge

 MOVE 123456789012 TO ScaledBillions
 MOVE ScaledBillions TO PrnBillions
 DISPLAY "Billions = " PrnBillions
 STOP RUN.

CHAPTER 9 ■ EDITED PICTURES

199

Summary
This chapter continued the exploration of printed output that began in the last chapter. You discovered how data
can be formatted for output using edited pictures. You explored the different kinds of editing supported by COBOL,
from simple insertion of the comma, the currency symbol, and the plus and minus signs; to the more sophisticated
floating insertion, which floats these last symbols against the number being displayed or printed; to zero-suppression
and replacement with asterisks or spaces. You learned that the editing effect is immediate, and you saw some of
the interesting post-edit manipulations you can do on the edited data item. Finally, you examined how the PICTURE
symbol P may be used to store a very large or very small value in only a few characters of storage.

The next chapter examines some of the problems of processing sequential files. In particular, you look at some of
the difficulties of the file-update problem and learn how to write control-break programs.

LANGUAGE KNOWLEDGE EXERCISE

The time has come once more to unlimber those 2B pencils and answer some exercise questions.

1. For each part, examine the formatted results produced for the various data values. Deduce

what the edited picture would have to be to produce the formatted results shown from the

data values given.

a.

Sending Data Result Edited Picture

PIC 9(5) 12345 12345

01234 *1234

00123 **123

00012 **012

b.

Sending Data Result Edited Picture

PIC 9(6) 412345 $12345

000123 **$123

000001 ****$1

000000 ******

c.

Sending Data Result Edited Picture

PIC 9(6)V99 012345 $123.00

000123 $**1.00

000025 $**0.00

000000 $**0.00

CHAPTER 9 ■ EDITED PICTURES

200

d.

Sending Data Result Edited Picture

PIC S9(4) 1234 +1234

-0012 **-12

0004 ***+4

0000 *****

2. Show the formatted result that will be produced when the data value is moved to the

edited picture.

Sending Data Result Edited Picture

9(6) 000321 PIC ZZZ,999

9(6) 004321 PIC ZZZ,999

9(6) 000004 PIC ZZZ,999

9(6) 654321 PIC ZZZ,ZZZ.00

9999V99 654321 PIC ZZZ,ZZZ.ZZ

9999V99 004321 PIC $$,$$9.99

9999V99 000078 PIC $$,$$9.99

9999V99 000078 PIC $Z,ZZ9.99

S9999V99 000078 PIC $Z,ZZ9.99CR

S9999V99 -045678 PIC $Z,ZZ9.99CR

S9(6) -123456 PIC -999,999

S9(6) 123456 PIC -999,999

S9(6) 123456 PIC +999,999

S9(6) -123456 PIC +999,999

S9(6) 001234 PIC ++++,++9

9(6) 123456 PIC 99B99B99

9(6) 001234 PIC Z(6).00

9(6) 000092 PIC ZZZZZZ00

X(5) 123GO PIC XBXBXBBXX

9999V99 000123 PIC $***,**9.99

99999V99 24123.45 PIC $$,$$9.99

CHAPTER 9 ■ EDITED PICTURES

201

PROGRAMMING EXERCISE 1

The Genealogists Society of Ireland wishes to discover the most popular surname used in each of the 26 counties

in the Irish Republic. In order to obtain this information, the society has acquired a file containing a subset of data

from the most recent census.

Write a program that will process the census file and produce a report that shows, for each county, the most

popular surname and the number of times it occurs.

The census file is a standard sequential file with fixed-length fields. Each record contains a census number,

a surname, and a county name. The file has been sorted and is now ordered on ascending Surname within

ascending CountyName. Each record in the file has the following description:

Field Type Length Value

CensusNumber N 8 00000001-99999999

Surname X 20 -

CountyName X 9 -

The report should take the format shown in the following report template. The Count field is a count of the

number of times the surname occurs in the county. In the Count field, thousands should be separated using a

comma; and the field should be zero-suppressed up to, but not including, the last digit:

 Popular Surname Report
CountyName Surname Count
Carlow XXXXXXXXXXXXXXXXXXXX XXX,XXX
Cavan XXXXXXXXXXXXXXXXXXXX XXX,XXX
Clare XXXXXXXXXXXXXXXXXXXX XXX,XXX
:: :: :: :: :: :: :: :: :: :: ::
Westmeath XXXXXXXXXXXXXXXXXXXX XXX,XXX
Wicklow XXXXXXXXXXXXXXXXXXXX XXX,XXX
Wexford XXXXXXXXXXXXXXXXXXXX XXX,XXX

************* end of report ***************

CHAPTER 9 ■ EDITED PICTURES

202

LANGUAGE KNOWLEDGE EXERCISES: ANSWERS

The time has come once more to unlimber those 2B pencils and answer the following exercise questions.

1. For each part, examine for formatted results produced for the various data values.

Deduce what the edited picture would have to be to produce the formatted results from

the data values given.

a.

Sending Data Result Edited Picture

PIC 9(5) 12345 12345 PIC ZZ999

01234 *1234

00123 **123

00012 **012

b.

Sending Data Result Edited Picture

PIC 9(6) 412345 $12345 PIC $(6) or $$$$$$

000123 **$123

000001 ****$1

000000 ******

c.

Sending Data Result Edited Picture

PIC 9(6)V99 012345 $123.00 PIC $ZZ9.00

000123 $**1.00

000025 $**0.00

000000 $**0.00

d.

Sending Data Result Edited Picture

PIC S9(4) 1234 +1234 PIC +(5) or +++++

-0012 **-12

0004 ***+4

0000 *****

CHAPTER 9 ■ EDITED PICTURES

203

2. Show the formatted result that will be produced when the data value is moved to the

edited picture.

Sending Data Result Edited Picture

9(6) 000321 ***321 PIC ZZZ,999

9(6) 004321 **4,321 PIC ZZZ,999

9(6) 000004 ****004 PIC ZZZ,999

9(6) 654321 654,321.00 PIC ZZZ,ZZZ.00

9999V99 654321 **6,543.21 PIC ZZZ,ZZZ.ZZ

9999V99 004321 ***$43.21 PIC $$,$$9.99

9999V99 000078 ****$0.78 PIC $$,$$9.99

9999V99 000078 $****0.78 PIC $Z,ZZ9.99

S9999V99 000078 $****0.78 PIC $Z,ZZ9.99CR

S9999V99 -045678 $**456.78CR PIC $Z,ZZ9.99CR

S9(6) -123456 -123,456 PIC -999,999

S9(6) 123456 *123,456 PIC -999,999

S9(6) 123456 +123,456 PIC +999,999

S9(6) -123456 -123,456 PIC +999,999

S9(6) 001234 **+1,234 PIC ++++,++9

9(6) 123456 12*34*56 PIC 99B99B99

9(6) 001234 **1234.00 PIC Z(6).00

9(6) 000092 ****9200 PIC ZZZZZZ00

X(5) 123GO 1*2*3**GO PIC XBXBXBBXX

9999V99 000123 $******1.23 PIC $***,**9.99

99999V99 24123.45 $4,123.45 PIC $$,$$9.99

PROGRAMMING EXERCISE 1: ANSWER

The answer to this exercise is found in the next chapter, where it appears an an example.

205

CHAPTER 10

Processing Sequential Files

Previous chapters introduced the mechanics of creating and reading sequential files. This chapter introduces the two
most important sequential-file processing problems: control breaks and the file update problem.

Both control breaks and the file update problem involve manipulating ordered sequential files so the chapter
begins with a discussion of how sequential files are organized and the difference between ordered and unordered
sequential files.

The next section discusses control-break problems. These normally occur when a hierarchically structured
printed report has to be produced. But control breaks are not limited to printed reports. Any problem that processes a
stream of ordered data and requires action to be taken when one of the items on which the stream is ordered changes,
is a control-break problem.

The final section introduces the file-update problem. This involves the thorny difficulty of how to apply a
sequential file of ordered transaction records to an ordered sequential master file. This section starts gently by
showing how transaction files containing updates of only a single type may be applied to a master file. I then discuss
the record buffer implications of transaction files that contain different types of records and introduce a simplified
version of the file-update problem. Finally, I discuss and demonstrate an algorithm, based on academic research,
which addresses the full complexity of the file-update problem.

File Organization vs. Method of Access
Two important characteristics of files are data organization and method of access. Data organization refers to the way
the file’s records are organized on the backing storage device. COBOL recognizes three main types of file organization:

• Sequential: Records are organized serially.

• Relative: A direct-access file is used and is organized on relative record number.

• Indexed: A direct-access file is used and has an index-based organization.

Method of access refers to the way in which records are accessed. Some approaches to organization are more
versatile than others. A file with indexed or relative organization may still have its records accessed sequentially; but
the records in a sequential file can only be accessed sequentially.

To understand the difference between file organization and method of access, consider them in the context of
a library with a large book collection. Most of the books in the library are organized by Dewey Decimal number; but
some, awaiting shelving, are organized in the order in which they were purchased. A reader looking for a book in
the main part of the library might find it by looking up its Dewey Decimal number in the library index or might just
go the particular section and browse through the books on the shelves. Because the books are organized by Dewey
Decimal number, the reader has a choice regarding the method of access. But if the desired book is in the newly
acquired section, the reader has no choice. They have to browse through all the titles to find the one they want. This
is the difference between direct-access files and sequential files. Direct-access files offer a choice of access methods.
Sequential files can only be processed sequentially.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

206

Sequential Organization
Sequential organization is the simplest type of file organization. In a sequential file, the records are arranged serially,
one after another, like cards in a dealing shoe. The only way to access a particular record is to start at the first record
and read all the succeeding records until the required record is found or until the end of the file is reached.

Ordered and Unordered Files
Sequential files may be ordered or unordered (they should really be called serial files). In an ordered file, the records
are sequenced (see Table 10-1) on a particular field in the record, such as CustomerId or CustomerName. In an
unordered file, the records are not in any particular order.

Table 10-1. Ordered and Unordered Files

Ordered File Unordered File

Record-KeyA
Record-KeyB
Record-KeyD
Record-KeyG
Record-KeyH
Record-KeyK
Record-KeyM
Record-Key0
Record-KeyT

Record-KeyM
Record-KeyH
Record-Key0
Record-KeyB
Record-KeyN
Record-KeyA
Record-KeyT
Record-KeyK
Record-KeyG

The ordering of the records in a file has a significant impact on the way in which it is processed and the
processing that can be applied to it.

Control-Break Processing
Control-break processing is a technique generally applied to an ordered sequential file in order to create a printed
report. But it can also be used for other purposes such as creating a summary file. For control-break processing to
work, the input file must be sorted in the same order as the output to be produced.

A control-break program works by monitoring one or more control items (fields in the record) and taking
action when the value in one of the control items changes (the control break). In a control-break program with
multiple control-break items, the control breaks are usually hierarchical, such that a break in a major control item
automatically causes a break in the minor controls even if the actual value of the minor item does not change. For
instance, Figure 10-1 partially models a file that holds details of magazine sales. When the major control item changes
from England to Ireland, this also causes the minor control item to break even though its value is unchanged. You can
see the logic behind this: it is unlikely that the same individual (Maxwell) lives in both countries.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

207

Specifications that Require Control Breaks
To get a feel for the kinds of problems that require a control-break solution, consider the following specifications.

Specification Requiring a Single Control Break

Write a program to process the UnemploymentPayments file to produce a report showing the annual Social Welfare
unemployment payments made in each county in Ireland. The report must be printed and sequenced on ascending
CountyName. The UnemploymentPayments file is a sequential file ordered on ascending CountyName.

In this specification, the control-break item is the CountyName. The processing required is to sum the
payments for a particular county and then, when the county names changes, to print the county name and the total
unemployment payments for that county.

Specification Requiring Two Control Breaks

A program is required to process the MagazineSales file to produce a report showing the total spent by customers in
each country on magazines. The report must be printed on ascending CustomerName within ascending CountryName.
The MagazineSales file is a sequential file ordered on ascending CustomerName within ascending CountryName.

Figure 10-1. Partial model of a file containing details of magazine sales. A major control break also causes a break of
the minor control item

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

208

Figure 10-1 models the MagazineSales file and shows what is meant by “ordered on ascending CustomerName within
ascending CountryName.” Notice how the records are in order of ascending country name, but all the records for a
particular country are in order of ascending customer name.

In this specification, the control-break items are the CountryName (major) and the CustomerName (minor).

Specification Requiring Three Control Breaks

Electronics2Go has branches in a number of American states. A program is required to produce a report showing the
total sales made by each salesperson, the total sales for each branch, the total sales for each state, and a final total of
sales for the entire United States. The report must be printed on ascending SalespersonId within ascending BranchId
within ascending StateName.

The report is based on the CompanySales file. This file holds details of sales made in all the branches of the
company. It is a sequential file, ordered on ascending SalespersonId, within ascending BranchId, within ascending
StateName.

In this specification, the control-break items are the StateName (major), the BranchId (minor), and the
SalespersonId (most minor).

Detecting the Control Break
A major consideration in a control-break program is how to detect the control break. If you examine the data in
Figure 10-1, you can see the control breaks quite clearly. When the country name changes from England to Ireland,
a major control break has occurred. When the customer surname changes from Molloy to Power, a minor control
break has occurred. It is easy for you to see the control breaks in the data file, but how can you detect these control
breaks programmatically?

The way you do this is to compare the value of the control field in the record against the previous value of the
control field. How do you know the previous value of the control field? You must store it in a data item specifically set up
for the purpose. For instance, if you were writing a control-break program for the data in Figure 10-1, you might create
the data items PrevCountryName and PrevCustomerName to store the control-break values. Detecting the control break
then simply becomes a matter of comparing the values in these fields with the values in the fields of the current record.

Writing a Control-Break Program
The first instinct programmers seem to have when writing a control-break program is to code the solution as a single
loop and to use IF statements (often nested IF statements) to handle the control breaks. This approach results in a
cumbersome solution. A better technique is to recognize the structure of the data in the data file and in the report
and to create a program that echoes that structure. This echoed structure uses a hierarchy of loops to process the
control breaks. This idea is not original; it is essentially that advocated by Michael Jackson in Jackson Structured
Programming (JSP).1

When you use this approach, the code for processing each control item becomes

Initialize control items (Totals and PrevControlItems)
Loop Until control break
Finalize control items (Print Totals)

1Michael Jackson. Principles of Program Design. Academic Press, 1975.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

209

Control-Break Program Template
Example 10-1 gives a template for writing a control-break program. The program structure echoes the structure of the
input and output data. The control breaks are processed by a hierarchy of loops, where the inner loop processes the
most minor control break.

Example 10-1. Template for Control-Break Programs

OPEN File
Read next record from file
PERFORM UNTIL EndOfFile
 MOVE ZEROS TO totals of ControlItem1
 MOVE ControlItem1 TO PrevControlItem1
 PERFORM UNTIL ControlItem1 NOT EQUAL TO PrevControlItem1
 OR EndOfFile
 MOVE ZEROS TO totals of ControlItem2
 MOVE ControlItem2 TO PrevControlItem2
 PERFORM UNTIL ControlItem2 NOT EQUAL TO PrevControlItem2
 OR ControlItem1 NOT EQUAL TO PrevControlItem1
 OR EndOfFile
 Process record
 Read next record from file
 END-PERFORM
 Process totals of ControlItem2
 END-PERFORM
 Process totals of ControlItem1
END-PERFORM
Process final totals
CLOSE file

Three-Level Control Break
Let’s see how all this works in an actual example. As the basis for the example, let’s use a modified version of the
three-control-break specification given earlier.

Electronics2Go has branches in a number of American states. A program is required to produce a summary
report showing the total sales made by each salesperson, the total sales for each branch, the total sales for each state,
and a final total of sales for the entire United States. The report must be printed on ascending SalespersonId in
ascending BranchId in ascending StateName.

The report is based on the Electronics2Go sales file. This file holds details of sales made in all the branches of the
company. It is a sequential file, ordered on ascending SalespersonId, within ascending BranchId, within ascending
StateName. Each record in the sales file has the following description:

Field Type Length Value

StateName X 14 -

BranchId X 5 -

SalespersonId X 6 99999X (M/F)

ValueOfSale 9 6 0000.00–9999.99

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

210

The report format should follow the template in Figure 10-2. In the report template, the SalesTotal field is the
sum of the sales made by this salesperson. The Branch Total is the sum of the sales made by each branch. The State
Total is the sum of the sales made by all the branches in the state. The Final Total is the sum of the sales made in the
United States.

Figure 10-2. Template for the Electronics2Go sales report

In all sales value fields, leading zeros should be suppressed and the dollar symbol should float against the value.
The State Name and the Branch should be suppressed after their first occurrence. For simplicity, the headings are
only printed once, so no page count or line numbers need be tracked.

Note ■ The full state name is used in every record of the sales file. This is a waste of space. Normally a code

representing the state would be used, and the program would convert this code into a state name by means of a lookup

table. Because you have not yet encountered lookup tables, I have decided to use the full state name in the file.

Three-Level Control-Break Program

Listing 10-1 shows a program that implements the Electronics2Go Sales Report specification.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

211

Listing 10-1. Three-Control-Break Electronics2Go Sales Report

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing10-1.
AUTHOR. Michael Coughlan.
* A three level Control Break program to process the Electronics2Go
* Sales file and produce a report that shows the value of sales for
* each Salesperson, each Branch, each State, and for the Country.
* The SalesFile is sorted on ascending SalespersonId within BranchId
* within Statename.
* The report must be printed in the same order

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT SalesFile ASSIGN TO "Listing10-1TestData.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

SELECT SalesReport ASSIGN TO "Listing10-1.RPT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD SalesFile.
01 SalesRecord.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 StateName PIC X(14).
 02 BranchId PIC X(5).
 02 SalesPersonId PIC X(6).
 02 ValueOfSale PIC 9(4)V99.

FD SalesReport.
01 PrintLine PIC X(55).

WORKING-STORAGE SECTION.
01 ReportHeading.
 02 FILLER PIC X(35)
 VALUE " Electronics2Go Sales Report".

01 SubjectHeading.
 02 FILLER PIC X(43)
 VALUE "State Name Branch SalesId SalesTotal".

01 DetailLine.
 02 PrnStateName PIC X(14).
 88 SuppressStateName VALUE SPACES.
 02 PrnBranchId PIC BBX(5).
 88 SuppressBranchId VALUE SPACES.
 02 PrnSalespersonId PIC BBBBX(6).
 02 PrnSalespersonTotal PIC BB$$,$$9.99.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

212

01 BranchTotalLine.
 02 FILLER PIC X(43)
 VALUE " Branch Total: ".
 02 PrnBranchTotal PIC $$$,$$9.99.

01 StateTotalLine.
 02 FILLER PIC X(40)
 VALUE " State Total : ".
 02 PrnStateTotal PIC $$,$$$,$$9.99.

01 FinalTotalLine.
 02 FILLER PIC X(39)
 VALUE " Final Total :".
 02 PrnFinalTotal PIC $$$,$$$,$$9.99.

01 SalespersonTotal PIC 9(4)V99.
01 BranchTotal PIC 9(6)V99.
01 StateTotal PIC 9(7)V99.
01 FinalTotal PIC 9(9)V99.

01 PrevStateName PIC X(14).
01 PrevBranchId PIC X(5).
01 PrevSalespersonId PIC X(6).

PROCEDURE DIVISION.
Begin.
 OPEN INPUT SalesFile
 OPEN OUTPUT SalesReport
 WRITE PrintLine FROM ReportHeading AFTER ADVANCING 1 LINE
 WRITE PrintLine FROM SubjectHeading AFTER ADVANCING 1 LINE

 READ SalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSalesFile
 MOVE StateName TO PrevStateName, PrnStateName
 MOVE ZEROS TO StateTotal
 PERFORM SumSalesForState
 UNTIL StateName NOT = PrevStateName
 OR EndOfSalesFile
 MOVE StateTotal TO PrnStateTotal
 WRITE PrintLine FROM StateTotalLine AFTER ADVANCING 1 LINE
 END-PERFORM

 MOVE FinalTotal TO PrnFinalTotal
 WRITE PrintLine FROM FinalTotalLine AFTER ADVANCING 1 LINE

 CLOSE SalesFile, SalesReport
 STOP RUN.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

213

SumSalesForState.
 WRITE PrintLine FROM SPACES AFTER ADVANCING 1 LINE
 MOVE BranchId TO PrevBranchId, PrnBranchId
 MOVE ZEROS TO BranchTotal
 PERFORM SumSalesForBranch
 UNTIL BranchId NOT = PrevBranchId
 OR StateName NOT = PrevStateName
 OR EndOfSalesFile
 MOVE BranchTotal TO PrnBranchTotal
 WRITE PrintLine FROM BranchTotalLine AFTER ADVANCING 1 LINE.

SumSalesForBranch.
 MOVE SalespersonId TO PrevSalespersonId, PrnSalespersonId
 MOVE ZEROS TO SalespersonTotal
 PERFORM SumSalespersonSales
 UNTIL SalespersonId NOT = PrevSalespersonId
 OR BranchId NOT = PrevBranchId
 OR StateName NOT = PrevStateName
 OR EndOfSalesFile
 MOVE SalespersonTotal TO PrnSalespersonTotal
 WRITE PrintLine FROM DetailLine AFTER ADVANCING 1 LINE
 SET SuppressBranchId TO TRUE
 SET SuppressStateName TO TRUE.

SumSalespersonSales.
 ADD ValueOfSale TO SalespersonTotal, BranchTotal, StateTotal, FinalTotal
 READ SalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ.

Program Notes

The program in Listing 10-1 is fairly straightforward, once you understand that its structure mirrors the structure of
the data and the report. It is interesting to contrast this program with a similar program given on the web site The
American Programmer2. That program uses the single loop and IF statement approach mentioned earlier. One
objection to this approach is that the three control items are tested for every record in the file.

I draw your attention to the way in which the StateName and BranchId are suppressed after their first
occurrence in Listing 10-1. This is done to make the report look less cluttered. To implement the suppression,
the condition-name technique that you have seen in a number of other example programs is used. I could have
implemented the suppression using a statement such as MOVE SPACES TO PrnStateName, but it would not have been
obvious why the data item was being filled with spaces. The purpose of the statement SET SuppressStateName TO
TRUE is easier to understand.

Test Data and Results

Due to space constraints, Figure 10-3 shows only a portion of the test data file and the report produced from that data
is shown.

2TheThreeLevelSubtotal(ControlBreak)COBOLProgram,TheAmericanProgrammer.Com,http://theamericanprogrammer.com/
programming/08-brklv3.shtml.

http://theamericanprogrammer.com/programming/08-brklv3.shtml
http://theamericanprogrammer.com/programming/08-brklv3.shtml

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

214

An Atypical Control Break
The program in Listing 10-1 is a typical control-break program, but control-break problems come in a variety of
shapes and sizes. For instance, you have probably realized by now that Exercise 1 at the end of the last chapter is a
control-break problem but not a typical one. I didn’t provide a solution at the time because I wanted you discover for
yourself some of the difficulties with this kind of problem and how easy it is to get dragged into a convoluted solution.
Before I present my solution, let’s look at the specification again.

Specification

The Genealogists Society of Ireland wishes to discover the most popular surname used in each of the 26 counties in
the Irish Republic. In order to obtain this information, the society has acquired a file containing a subset of data from
the most recent census.

A program is required that will process the census file and produce a report that shows, for each county, the most
popular surname and the number of times it occurs.

Figure 10-3. Fragment of the report produced and part of the test data file

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

215

The census file is a standard sequential file with fixed-length fields. Each record contains a census number,
a surname, and a county name. The file has been sorted and is now ordered on ascending Surname in ascending
CountyName. Each record in the file has the following description:

Field Type Length Value

CensusNumber 9 8 00000001–99999999

Surname X 20 -

CountyName X 9 -

The report should take the format shown in the following report template. The Count field is a count of the
number of times the Surname occurs in the county. In the Count field, thousands should be separated using a comma,
and the field should be zero-suppressed up to, but not including, the last digit:

 Popular Surname Report
CountyName Surname Count
Carlow XXXXXXXXXXXXXXXXXXXX XXX,XXX
Cavan XXXXXXXXXXXXXXXXXXXX XXX,XXX
Clare XXXXXXXXXXXXXXXXXXXX XXX,XXX
:: :: :: :: :: :: :: :: :: :: ::
Westmeath XXXXXXXXXXXXXXXXXXXX XXX,XXX
Wicklow XXXXXXXXXXXXXXXXXXXX XXX,XXX
Wexford XXXXXXXXXXXXXXXXXXXX XXX,XXX

************* end of report ***************

Atypical Control-Break Program

This is not a typical control-break program (see Listing 10-2). Instead of printing the total number of occurrences of
the surname when there is a change of surname (as a classic control-break program would do), there is a check to see
if this surname is the most popular. A line is printed only when the major control item (the county name) changes.
When that happens, the county name and the most popular surname are printed. There is a trap here for the unwary:
when the control break occurs, it is too late to move the county name to the print line, because at this point the county
name in the buffer is the next county. The solution is to move PrevCountyName to the print line or to, as is done in this
program, prime the print line with the correct county name before entering the loop that processes all the surnames
in that county.

Listing 10-2. Two-Level Control-Break Program Showing the Most Popular Surnames in the Counties of Ireland

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing10-2.
AUTHOR. Michael Coughlan.
* Control Break program to process the Census file and produce
* a report that shows, for each county, the most popular surname
* and the number of times it occurs.
* The Records in the sequential Census file are ordered on
* ascending Surname within ascending CountyName.
* The report must be printed in ascending CountyName order

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

216

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CensusFile ASSIGN TO "Listing10-2TestData.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

SELECT SurnameReport ASSIGN TO "Listing10-2.RPT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CensusFile.
01 CensusRec.
 88 EndOfCensusFile VALUE HIGH-VALUES.
 02 CensusNum PIC 9(8).
 02 Surname PIC X(20).
 02 CountyName PIC X(9).

FD SurnameReport.
01 PrintLine PIC X(45).

WORKING-STORAGE SECTION.
01 ReportHeading.
 02 FILLER PIC X(13) VALUE SPACES.
 02 FILLER PIC X(22)
 VALUE "Popular Surname Report".

01 SubjectHeading.
 02 FILLER PIC X(42)
 VALUE "CountyName Surname Count".

01 CountySurnameLine.
 02 PrnCountyName PIC X(9).
 02 FILLER PIC X(3) VALUE SPACES.
 02 PrnSurname PIC X(20).
 02 PrnCount PIC BBBZZZ,ZZ9.

01 ReportFooter PIC X(43)
 VALUE "************* end of report ***************".

01 PrevCountyName PIC X(9).
01 PrevSurname PIC X(20).
01 MostPopularSurname PIC X(20).
01 MostPopularCount PIC 9(6).
01 SurnameCount PIC 9(6).

PROCEDURE DIVISION.
Begin.
 OPEN INPUT CensusFile
 OPEN OUTPUT SurnameReport
 WRITE PrintLine FROM ReportHeading AFTER ADVANCING 1 LINE
 WRITE PrintLine FROM SubjectHeading AFTER ADVANCING 1 LINE

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

217

 READ CensusFile
 AT END SET EndOfCensusFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfCensusFile
 MOVE CountyName TO PrevCountyName, PrnCountyName
 MOVE ZEROS TO MostPopularCount
 MOVE SPACES TO MostPopularSurname
 PERFORM FindMostPopularSurname
 UNTIL CountyName NOT EQUAL TO PrevCountyName
 OR EndOfCensusFile
 MOVE MostPopularCount TO PrnCount
 MOVE MostPopularSurname TO PrnSurname
 WRITE PrintLine FROM CountySurnameLine AFTER ADVANCING 1 LINE
 END-PERFORM

 WRITE PrintLine FROM ReportFooter AFTER ADVANCING 2 LINES
 CLOSE CensusFile, SurnameReport
 STOP RUN.

FindMostPopularSurname.
 MOVE Surname TO PrevSurname
 PERFORM CountSurnameOccurs VARYING SurnameCount FROM 0 BY 1
 UNTIL Surname NOT EQUAL TO PrevSurname
 OR CountyName NOT EQUAL TO PrevCountyName
 OR EndOfCensusFile

 IF SurnameCount > MostPopularCount
 MOVE SurnameCount TO MostPopularCount
 MOVE PrevSurname TO MostPopularSurname
 END-IF.

CountSurnameOccurs.
 READ CensusFile
 AT END SET EndOfCensusFile TO TRUE
 END-READ.

Program Notes

The census file is ordered on ascending Surname in ascending CountyName, and that is the same order required for
the printed report. The control items are CountyName and Surname. The data items PrevSurname and PrevCountyName
are used to detect the control breaks. Similar to Listing 10-1, the structure of this program echoes the structure of the
input file and the output report.

Test Data and Results

Figure 10-4 shows the report produced by the program and a small portion of the test data file used.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

218

Updating Sequential Files
It is easy to add records to an unordered sequential file because you can simply add them to the end of the file by
opening the file for EXTEND. For instance:

OPEN EXTEND UnorderedFile
WRITE UnorderedRec

When a file is OPENed for EXTEND, the Next Record Pointer is positioned at the end of the file. When records are
written to the file, they are appended to the end.

Although you can add records to an unordered sequential file, the records in a sequential file cannot be deleted or
updated in situ. The only way to delete records from a sequential file is to create a new file, which does not contain them;
and the only way to update records is to create a new file that contains the updated records. A record update involves
changing the value of one or more of its fields. For instance, you might change the value of the CustomerAddress or
CustomerPhoneNumber field of a customer record, or you might change the value of the QtyInStock or ReorderLevel field
of a stock record.

COBOL Detail ■ Although, in standard COBOL, sequential files cannot be deleted or updated in situ many vendors,

including Micro Focus, allow this for disk-based files.

Figure 10-4. The report produced by the program, and part of the test data file

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

219

Because updating or deleting records in a sequential file requires you to read all the records in the file and to
create a new file that has the changes applied to it, it is computationally too expensive to apply these operations to the
file one at a time. Updates to sequential files are normally done in batch mode. That is, all the updates are gathered
together into what is often referred to as the transaction file and then applied to the target file in one go or batch. The
target file is often referred to as the master file.

As you have seen, you can add records to an unordered sequential file by opening the file for EXTEND and writing
the records to the end of it. But if you want to update or delete records, you must have a way of identifying the record
you want to update or delete. A key field is normally used to achieve this. A key field is a field in the record whose value
can be used to identify that record. For instance, in a stock record, the StockNumber might be used as the key field.
When you apply transaction records to a master file, you compare the key field in the transaction record with that in the
master file record. If there is a match, you can apply the delete or update to that master file record. This key-comparison
operation is called record matching.

For record matching to work correctly, the transaction file and the master file must be ordered on the same key
value. Record matching does not work if either file is unordered or if the files are ordered on different key fields. If you
need convincing of this, PERFORM (that is, go there, do the exercise, and then come back) the Language Knowledge
Exercise at the end of the chapter. That exercise will help you understand the problems of trying to apply batched
transactions to an unordered master file.

Applying Transactions to an Ordered Sequential File
You start this section by looking at programming templates that show how to apply each type of transaction (insertion,
deletion, and update) to an ordered sequential file. To complicate matters, most transaction files consist of a mixture
of transaction types. Therefore, this section considers the data-declaration implications of mixed transaction types,
and you examine an example program that applies a variety of transaction types to an ordered sequential file.

Inserting Records in an Ordered Sequential File

When you want to add records to an unordered sequential file, you just OPEN the file for EXTEND and then write the records
to the file. You can’t do that with an ordered sequential file because if you do, the records will no longer be in order.

When you insert records into an ordered sequential file, a major consideration must be to preserve the ordering.
To insert records, you must create a new file that consists of all the records of the old file with the new records inserted
into their correct key-value positions. When you are inserting records into an ordered file, you also have to be aware of
the possibility that the record you are trying to insert will have the same key value as one already in the file. This is an
error condition. For instance, you can’t have two customer records with the same CustomerId value.

Figure 10-5 is a template that outlines the algorithm required to insert records from an ordered transaction file
into their correct positions in an ordered master file. There are three files. The transaction file (TF) contains the three
records you want to insert. The master file (MF) is the file into which you wish to insert these records. Because the MF
is a sequential file, the only way to insert the records is to create a new file that contains the inserted records. This is
the new master file (NMF).

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

220

The program starts by opening the files and reading a record from each of the two input files. This is the
equivalent of the read-ahead technique that you saw in Chapter 5. Before you enter the loop that processes the files,
you start with a record in each file buffer. The loop is executed until the end of both files, because regardless of which
file ends first, the remaining records of the other must be written to the NMF.

With Record-KeyC in one buffer (TF) and Record-KeyA in the other (MF), the key field values are compared.
When the transaction is greater than the master (as is the case here), the condition indicates that the position where
the transaction record must be inserted has not yet been reached, so the MF record is written to the NMF. Because
the MF record in the buffer has been dealt with (consumed), you read the MF to get a new record. This is the record:
Record-KeyB.

When the key values are compared, the transaction key is still greater the master, so this record too is written to
the NMF and another is read from the MF. This is the record: Record-KeyG.

Now you have reached the point in the program captured by Figure 10-5. This time, the key value in the TF is
less than that of the MF, so the transaction record is written to the NMF. Because the record in the TF buffer has been
consumed, a new record is read into the buffer, and the process continues until both files end.

To simplify the template, the condition where the key values are equal has been omitted. If this condition occurs,
then a transaction error has occurred, because for record-matching purposes, the key values must be unique.

If you examine the algorithm provided, you might be puzzled that there appears to be no code to write out the
remaining records to the NMF when one file ends before the other. The explanation for this lies in the end-of-file
condition name associated with each file. These might be described as in Example 10-2.

Figure 10-5. Inserting records into an ordered sequential file

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

221

Example 10-2. Partial Record Descriptions for the Transaction and Master Files

FD TransactionFile
01 TFRec.
 88 EndTF VALUE HIGH-VALUES.
 02 TFKey PIC X(?).
 etc

FD MasterFile
01 MFRec.
 88 EndMF VALUE HIGH-VALUES.
 02 MFKey PIC X(?).
 etc

When the end of either file is encountered, its associated condition name is set to true; this has the side effect of
filling its record area (including its key field) with HIGH-VALUES (the highest possible character value). Subsequent key
comparisons cause the remaining records to be written to the NMF. For instance, from the test data in Figure 10-1,
it is clear that the TF will end first. When the EndTF condition name is set to true, TFkey contains HIGH-VALUES. In the
key comparison, TFKey is greater than MFKey, and this results in the master record being written to the NMF. If the MF
ends first, MFKey is filled with HIGH-VALUES, and the key comparisons then causes the remaining transaction records to
be written to the NMF.

Updating Records in an Ordered Sequential File

The template for updating records in an ordered sequential file is shown in Figure 10-6. The diagram captures the
program action at the point where Record-KeyH has been read into the TF record buffer and the MF record buffer.
Both records are combined to produce the updated record Record-KeyH+, which is then sent to the NMF.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

222

When you apply an update to the MF, you combine the records from the TF and the MF because the transaction
record only consists of the key field and the field(s) to be updated. For instance, in a stock-file update, the update record
in the TF might contain the fields shown in Example 10-3, whereas the MF might contain those shown in Example 10-4.

Example 10-3. Fields in the Update Record of a Transaction File

FD TransactionFile.
01 TFRec.
 02 StockId-TF PIC X(?).
 02 QtyInStock-TF PIC 9(?).

Example 10-4. Fields in the Record of a Stock Master File

FD StockMasterFile.
01 StockMFRec.
 02 StockId-MF PIC X(?).
 02 Description-MF PIC X(?).
 02 ManfId-MF PIC X(?).
 02 ReorderLevel-MF PIC 9(?).
 02 ReorderQty-MF PIC 9(?).
 02 QtyInStock-MF PIC 9(?).

Figure 10-6. Updating records in an ordered sequential file

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

223

The template in Figure 10-6 does not check for the error condition where the record to be updated does not exist
in the MF. This condition is detected when the value in TFKey is less than that in MFKey. You can test this yourself by
including the record Record-KeyD in the transaction file and then applying the transactions manually.

Deleting Records from an Ordered Sequential File

Figure 10-7 shows the template for deleting records from an ordered sequential file. The diagram captures the action
just after Record-KeyK has been read into the MF record buffer. When the keys are equal, you have found the MF record
to be deleted. So what action do you take to delete it? No action! You just don’t send it to the NMF. Because both the
transaction record and the master record have been consumed, you need to get the next record from each file.

Figure 10-7. Deleting records from an ordered sequential file

When I discussed how to update an ordered sequential file, I noted that the transaction record contained fewer
fields than the MF record. The delete operation takes this even further. To delete a record, the transaction record only
needs the key field.

As before, the template does not check for the error condition where the record to be deleted does not exist
in the MF. Just like the update operation, this condition is detected when the value in TFKey is less than that in
MFKey. You can test this yourself by adding the record Record-KeyC to the records in the TF and then applying the
transactions manually.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

224

The File-Update Problem: Simplified
The previous section showed how various types of updates can be applied to an ordered sequential file. But you
considered each of these types of updates in isolation. The TF consisted of records of only one type; it contained a
batch of deletions, or a batch of insertions, or a batch of updates. In reality, all these different kinds of transaction
records would be gathered together into one transaction file. Having multiple record types in the transaction file is
good for processing efficiency, but it considerably complicates the update logic.

The problem of how to update an ordered sequential file is known as the file-update problem. The file-update
problem is much more difficult than it appears on the surface and has been the subject of some research. Of particular
interest is Barry Dwyer’s paper “One More Time—How to Update a Master File.3” The algorithm described in his
paper is implemented in Listing 10-2.

This section considers a simplified version of updating a file containing multiple record types. In this version,
multiple updates for a particular master record are allowed, but an insertion record cannot be followed by any other
operation for the same record. That restriction reveals the further levels of complexity of the file-update problem.
Obviously, in a stock file, there might be a number of stock movements (additions and subtractions from stock) for
a particular stock item. But in some cases, there might be an insertion for a particular stock item followed by stock
movements and other updates for that item. In such a situation, the order in which the transactions are applied is
important, because obviously you want to insert the record before you apply updates to it. These and other issues
considerably complicate the file-update problem.

Updating a Stock File: Problem Specification

To explore some of the complexities of applying transactions of different types to a master file, consider the following
problem specification.

A stock file holds details of gadgets sold by Gadget Shop (GadgetShop.Com). It is a sequential file sorted on
ascending GadgetId. Each record in the file has the following description:

Field Type Length Value

GadgetId 9 6 000001–999999

GadgetName X 30 -

QtyInStock 9 4 0000–9999

Price 9 6 0000.00–9999.99

To update the stock file, a number of different kinds of update records have been gathered together into a
sequential transaction file.

The records in transaction file have seen sorted into ascending GadgetId order. Within GadgetId, the
transactions are sorted by the order in which they were submitted. There are three different types of transaction
records: insertion records to add a new line of stock, deletion records to delete a line of stock, and price-change
records change the Price of a line of stock. Obviously, you could also have stock-movement records to add and
subtract inventory from the QtyInStock field, but that would needlessly complicate this example.

Because there are three different types of records in the transaction file, you need to have three different record
descriptions. But as you discovered in Chapter 8, when a file contains multiple types of records, you must have some
way of identifying which record type has been read into the record buffer. To distinguish one type of record from

3BarryDwyer.1981.Onemoretime—howtoupdateamasterfile.Commun.ACM24,1(January1981),3-8.DOI=10.1145/358527.358534
http://doi.acm.org/10.1145/358527.358534.

http://dx.doi.org/GadgetShop.Com
http://doi.acm.org/10.1145/358527.358534

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

225

another, a special field called a type code is inserted into each transaction record. In the transaction file used to update
Gadget Shop’s stock file, a type code value of 1 is used to represent insertions, 2 represents deletions, and 3 represents
a price change. The records in the transaction file have the following descriptions:

Insertion Record

Field Type Length Value

TypeCode 9 1 1

GadgetId 9 6 000001-999999

GadgetName X 30 -

QtyInStock 9 4 0000–9999

Price 9 6 0000.00–9999.99

Deletion Record

Field Type Length Value

TypeCode 9 1 2

GadgetId 9 6 000001–999999

Price Change Record

Field Type Length Value

TypeCode 9 1 3

GadgetId 9 6 000001–999999

Price 9 6 0000.00–9999.99

Because there are three different types of records in the file, you must have three record descriptions in
the FD entry for the transaction file (see Example 10-5).

Example 10-5. Record Descriptions for the Transaction File

FD TransactionFile.
01 InsertionRec.
 02 TypeCode PIC 9.
 02 GadgetId PIC 9(6).
 02 GadgetName PIC X(30).
 02 QtyInStock PIC 9(4).
 02 Price PIC 9(4)V99.

01 DeletionRec.
 02 TypeCode PIC 9.
 02 GadgetID PIC 9(6).

01 PriceChangeRec.
 02 TypeCode PIC 9.
 02 GadgetID PIC 9(6).
 02 Price PIC 9(4)V99.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

226

Buffer Implications of Multiple Record Types

You discovered in Chapter 8 that when a file contains multiple record types, a record declaration (starting with a
01 level number) must be created for each type of record. But even though there are different types of records in the
file, and there are separate record declarations for each record type, only a single record buffer is created for the file.
All the record descriptions map on to this area of storage, which is the size of the largest record. Figure 10-8 shows
the mapping of the transaction records on to the record buffer. All the identifiers in all the mapped records are
current/active at the same time, but only one set of identifiers makes sense for the particular record in the buffer.
In Figure 10-8, the record in the buffer is an insertion record (TypeCode = 1), so even though you could execute the
statement MOVE Price TO PrnPrice, it wouldn’t make sense to do so. Because there is an insertion record in the
buffer, Price has the value “Ice Cr.”

Figure 10-8. Schematic showing the mapping of records on to the record buffer

When you examine the record descriptions in Example 10-5 and the record schematic in Figure 10-8, you may
notice that both TypeCode and GadgetId occur in all three record descriptions. You may wonder if is it permitted to
use the same data name in different records. And if it is permitted, how can the data name be referenced uniquely?

Although it is legal to use the same data name in different records (but not in the same group item), in order to
uniquely identify the record you want, you must qualify it with the record or group name. For instance, you can refer
to the GadgetId in PriceChangeRec by using the form GadgetId OF PriceChangeRec.

But even though it is legal to declare GadgetId in all the records, and even though you must declare the storage
for GadgetId in all the records, you don’t actually need to use the name GadgetId in all the records. Because all the
records map on to the same area of storage, it does not matter which GadgetId you refer to—they all access the same
value in the record. So no matter which record is in the buffer, a statement that refers to GadgetId OF InsertRec will
still access the correct value.

The same logic applies to the TypeCode. The TypeCode is in the same place in all three record types, so it doesn’t
matter which one you use—they all access the same area of memory. When an area of storage must be declared, but
you don’t care what name you give it, you don’t have to make up a dummy name. You use the special name FILLER.

Example 10-6 shows a revised version of the three record descriptions. In this version, only the items that have to
be named are given data names. The record schematic for this revised version is shown in Figure 10-9.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

227

Example 10-6. Revised Record Descriptions

FD TransactionFile.
01 InsertionRec.
 02 TypeCode PIC 9.
 02 GadgetId PIC 9(6).
 02 GadgetName PIC X(30).
 02 QtyInStock PIC 9(4).
 02 Price PIC 9(4)V99.

01 DeletionRec.
 02 FILLER PIC 9(7).

01 PriceChangeRec.
 02 FILLER PIC 9(7).
 02 Price PIC 9(4)V99.

File Update Program

The program required to apply the transaction file to the gadget stock file is shown in Listing 10-3.

Listing 10-3. File Update—Insert not followed by updates to inserted record

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing10-3.
AUTHOR. Michael Coughlan
* Applies the transactions ordered on ascending GadgetId-TF to the
* MasterStockFile ordered on ascending GadgetId-MF.
* Assumption: Insert not followed by updates to inserted record
* Multiple updates per master record permitted

Figure 10-9. Mapping of transaction records on to the record buffer

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

228

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MasterStockFile ASSIGN TO "Listing10-3Master.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT NewStockFile ASSIGN TO "Listing10-3NewMast.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT TransactionFile ASSIGN TO "Listing10-3Trans.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MasterStockFile.
01 MasterStockRec.
 88 EndOfMasterFile VALUE HIGH-VALUES.
 02 GadgetId-MF PIC 9(6).
 02 GadgetName-MF PIC X(30).
 02 QtyInStock-MF PIC 9(4).
 02 Price-MF PIC 9(4)V99.

FD NewStockFile.
01 NewStockRec.
 02 GadgetId-NSF PIC 9(6).
 02 GadgetName-NSF PIC X(30).
 02 QtyInStock-NSF PIC 9(4).
 02 Price-NSF PIC 9(4)V99.

FD TransactionFile.
01 InsertionRec.
 88 EndOfTransFile VALUE HIGH-VALUES.
 02 TypeCode-TF PIC 9.
 88 Insertion VALUE 1.
 88 Deletion VALUE 2.
 88 UpdatePrice VALUE 3.
 02 GadgetId-TF PIC 9(6).
 02 GadgetName-IR PIC X(30).
 02 QtyInStock-IR PIC 9(4).
 02 Price-IR PIC 9(4)V99.

01 DeletionRec.
 02 FILLER PIC 9(7).

01 PriceChangeRec.
 02 FILLER PIC 9(7).
 02 Price-PCR PIC 9(4)V99.

WORKING-STORAGE SECTION.
01 ErrorMessage.
 02 PrnGadgetId PIC 9(6).
 02 FILLER PIC XXX VALUE " - ".

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

229

 02 FILLER PIC X(45).
 88 InsertError VALUE "Insert Error - Record already exists".
 88 DeleteError VALUE "Delete Error - No such record in Master".
 88 PriceUpdateError VALUE "Price Update Error - No such record in Master".

PROCEDURE DIVISION.
Begin.
 OPEN INPUT MasterStockFile
 OPEN INPUT TransactionFile
 OPEN OUTPUT NewStockFile
 PERFORM ReadMasterFile
 PERFORM ReadTransFile
 PERFORM UNTIL EndOfMasterFile AND EndOfTransFile
 EVALUATE TRUE
 WHEN GadgetId-TF > GadgetId-MF PERFORM CopyToNewMaster
 WHEN GadgetId-TF = GadgetId-MF PERFORM TryToApplyToMaster
 WHEN GadgetId-TF < GadgetId-MF PERFORM TryToInsert
 END-EVALUATE
 END-PERFORM

 CLOSE MasterStockFile, TransactionFile, NewStockFile
 STOP RUN.

CopyToNewMaster.
 WRITE NewStockRec FROM MasterStockRec
 PERFORM ReadMasterFile.

TryToApplyToMaster.
 EVALUATE TRUE
 WHEN UpdatePrice MOVE Price-PCR TO Price-MF
 WHEN Deletion PERFORM ReadMasterFile
 WHEN Insertion SET InsertError TO TRUE
 DISPLAY ErrorMessage
 END-EVALUATE
 PERFORM ReadTransFile.

TryToInsert.
 IF Insertion MOVE GadgetId-TF TO GadgetId-NSF
 MOVE GadgetName-IR TO GadgetName-NSF
 MOVE QtyInStock-IR TO QtyInStock-NSF
 MOVE Price-Ir TO Price-NSF
 WRITE NewStockRec
 ELSE
 IF UpdatePrice
 SET PriceUpdateError TO TRUE
 END-IF
 IF Deletion
 SET DeleteError TO TRUE
 END-IF
 DISPLAY ErrorMessage
 END-IF
 PERFORM ReadTransFile.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

230

ReadTransFile.
 READ TransactionFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 MOVE GadgetId-TF TO PrnGadgetId.

ReadMasterFile.
 READ MasterStockFile
 AT END SET EndOfMasterFile TO TRUE
 END-READ.

Program Notes

Three files are used in the program. The master file, the transaction file and the new master file. The gadget stock file is
known as the MasterStockFile, the transaction file is called the TransactionFile, and the new master file, produced
by applying the transactions to the master file is known as the NewStockFile.

Applying the updates requires a considerable amount of data movement from fields in one stock record
to another. To avoid the tedium of having to qualify each field reference, a suffix has been applied to the
relevant fields to distinguish them from one another. The suffix MF (master File) is applied to records of the
MasterStockFile, NSF is applied to records of the NewStockFile, and TF is applied to the common fields
(TypeCode and GadgetId) of the TransactionFile.

Reading the TransactionFile and the MasterStockFile are operations that occur in a number of places. To
avoid having to write out the READ statement in full each time, I have placed them in a paragraph which I then invoke
by means of a PERFORM. While this makes the program textually shorter, you should be aware that performance will
be impacted. Similarly, I have placed the statement MOVE GadgetId-TF TO PrnGadgetId in the ReadTransFile
paragraph where it sets the GadgetId into the ErrorMessage every time a record is read. This placement means
only one instance of this statement is required but again this saving is achieved at the cost of a slight impact on
performance (because you really only need to do this if there is an error).

The GadgetId is moved into the ErrorMessage area every time a transaction record is read but you may be
wondering how the actual error message gets into the ErrorMessage area. I won’t go into a full explanation here but
I will remind you that when a condition name is set to TRUE it pushes its value item into the associated data item.
If that isn’t a sufficient hint, then you may need to review Chapter 5 where condition names were discussed.

The paragraph CopyToNewMaster copies the MasterStockFile record to the NewStockFile when there are no
transactions to be applied to the MasterStockFile record (GadgetId-TF > GadgetId-MF) but it is also the paragraph
that writes the MasterStockRec after updates have been applied to it. How does this happen? Consider this sequence
of events happening in the program:

GadgetId-TF = GadgetId-MF and an update is applied to the MasterStockRec

The next transaction record is read

GadgetId-TF = GadgetId-MF and another update is applied to the MasterStockRec

The next transaction record is read (because the transaction records are in ascending sequence this transaction
must be equal to or greater than the master)

GadgetId-TF > GadgetId-MF and the updated MasterStockRec is written to the NewStockFile

When the keys are equal, the update is applied to the MasterStockRec, when eventually the transaction key is
greater than the master file key (the only possible condition because the files are ordered), the updated record is
written to the new master file.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

231

Test Data and Results

The test data files for the program are given Figure 10-10. As usual, I’ve kept them short because of space constraints
and to make them easy to understand. For the transaction file, I have taken advantage of the fact the record buffer is
the size of the largest record, to add text that identifies the purpose of each test. For instance, a delete record in a real
transaction file would only consist of the type code and the key.

Figure 10-11. Listing 10-3 results

Figure 10-10. Test data and results

The results from running the program are shown in Figure 10-11.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

232

The Full File Update Problem
Listing 10-3 provides a gentle introduction to the file update problem but the algorithm used in that program only
works for a limited form of the problem. The algorithm does not work when an insert can be followed by updates to
the record to be inserted. The reason the algorithm does not work for the extended version of problem is that now the
updates can be applied to either the master file or the transaction file. In the Listing 10-3 algorithm, the updates are
applied only to the master file. This seemingly small change makes the task a very slippery fish indeed. The moment
you think you have solved the problem by placing a read here or a write there some other difficulty rears its ugly head.
The best way to get a feel for the complications that this simple specification change causes, is to try it yourself. Using
Listing 10-3 as the basis for your program, attempt to change the program so that it also allows an insertion to be
followed by updates to the inserted record.

Fortunately, you don’t have to rely on your own resources to come up with a solution. People have gone before
you, and you can stand on their shoulders. Listing 10-4 demonstrates a solution to the problem based on the
algorithm described by Barry Dwyer in “One More Time - How to Update a Master File.”3

The main elements of the algorithm are the ChooseNextKey and SetInitialStatus paragraphs, the
RecordInMaster and RecordNotInMaster condition names, and the loop PERFORM ProcessOneTransaction UNTIL
GadgetID-TF NOT = CurrentKey.

ChooseNextKey allows the program to decide if the transaction file or the master file will be the focus of updates.
The key of whichever file is the focus is recorded in CurrentKey.

SetInitialStatus uses the condition names RecordInMaster and RecordNotInMaster to record whether or
not the record is currently included in the master file. Later the RecordInMaster condition name is used to decide
whether the record is to be included in the new master file.

The ProcessOneTransaction loop applies all the transactions that apply to the record of focus while the keys
are equal. When the loop exits, the RecordInMaster condition name is tested to see if the record of focus should be
included in the new master file.

Full File Update Program
Listing 10-4 is the final program.

Listing 10-4. Caption

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing10-4.
AUTHOR. Michael Coughlan
* File Update program based on the algorithm described by Barry Dwyer in
* "One more time - How to update a Master File"
* Applies the transactions ordered on ascending GadgetId-TF to the
* MasterStockFile ordered on ascending GadgetId-MF.
* Within each key value records are ordered on the sequence in which
* events occurred in the outside world.
* All valid, real world, transaction sequences are accommodated

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MasterStockFile ASSIGN TO "Listing10-4Master.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

233

 SELECT NewStockFile ASSIGN TO "Listing10-4NewMast.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT TransactionFile ASSIGN TO "Listing10-4Trans.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MasterStockFile.
01 MasterStockRec.
 88 EndOfMasterFile VALUE HIGH-VALUES.
 02 GadgetID-MF PIC 9(6).
 02 GadgetName-MF PIC X(30).
 02 QtyInStock-MF PIC 9(4).
 02 Price-MF PIC 9(4)V99.

FD NewStockFile.
01 NewStockRec.
 02 GadgetID-NSF PIC 9(6).
 02 GadgetName-NSF PIC X(30).
 02 QtyInStock-NSF PIC 9(4).
 02 Price-NSF PIC 9(4)V99.

FD TransactionFile.
01 InsertionRec.
 88 EndOfTransFile VALUE HIGH-VALUES.
 02 TypeCode-TF PIC 9.
 88 Insertion VALUE 1.
 88 Deletion VALUE 2.
 88 UpdatePrice VALUE 3.
 02 RecordBody-IR.
 03 GadgetID-TF PIC 9(6).
 03 GadgetName-IR PIC X(30).
 03 QtyInStock-IR PIC 9(4).
 03 Price-IR PIC 9(4)V99.

01 DeletionRec.
 02 FILLER PIC 9(7).

01 PriceChangeRec.
 02 FILLER PIC 9(7).
 02 Price-PCR PIC 9(4)V99.

WORKING-STORAGE SECTION.
01 ErrorMessage.
 02 PrnGadgetId PIC 9(6).
 02 FILLER PIC XXX VALUE " - ".
 02 FILLER PIC X(45).
 88 InsertError VALUE "Insert Error - Record already exists".
 88 DeleteError VALUE "Delete Error - No such record in Master".
 88 PriceUpdateError VALUE "Price Update Error - No such record in Master".

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

234

01 FILLER PIC X VALUE "n".
 88 RecordInMaster VALUE "y".
 88 RecordNotInMaster VALUE "n".

01 CurrentKey PIC 9(6).

PROCEDURE DIVISION.
Begin.
 OPEN INPUT MasterStockFile
 OPEN INPUT TransactionFile
 OPEN OUTPUT NewStockFile
 PERFORM ReadMasterFile
 PERFORM ReadTransFile
 PERFORM ChooseNextKey
 PERFORM UNTIL EndOfMasterFile AND EndOfTransFile
 PERFORM SetInitialStatus
 PERFORM ProcessOneTransaction
 UNTIL GadgetID-TF NOT = CurrentKey
* CheckFinalStatus
 IF RecordInMaster
 WRITE NewStockRec
 END-IF
 PERFORM ChooseNextKey
 END-PERFORM

 CLOSE MasterStockFile, TransactionFile, NewStockFile
 STOP RUN.

ChooseNextKey.
 IF GadgetID-TF < GadgetID-MF
 MOVE GadgetID-TF TO CurrentKey
 ELSE
 MOVE GadgetID-MF TO CurrentKey
 END-IF.

SetInitialStatus.
 IF GadgetID-MF = CurrentKey
 MOVE MasterStockRec TO NewStockRec
 SET RecordInMaster TO TRUE
 PERFORM ReadMasterFile
 ELSE SET RecordNotInMaster TO TRUE
 END-IF.

ProcessOneTransaction.
* ApplyTransToMaster
 EVALUATE TRUE
 WHEN Insertion PERFORM ApplyInsertion
 WHEN UpdatePrice PERFORM ApplyPriceChange
 WHEN Deletion PERFORM ApplyDeletion
 END-EVALUATE.
 PERFORM ReadTransFile.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

235

ApplyInsertion.
 IF RecordInMaster
 SET InsertError TO TRUE
 DISPLAY ErrorMessage
 ELSE
 SET RecordInMaster TO TRUE
 MOVE RecordBody-IR TO NewStockRec
 END-IF.

ApplyDeletion.
 IF RecordNotInMaster
 SET DeleteError TO TRUE
 DISPLAY ErrorMessage
 ELSE SET RecordNotInMaster TO TRUE
 END-IF.

ApplyPriceChange.
 IF RecordNotInMaster
 SET PriceUpdateError TO TRUE
 DISPLAY ErrorMessage
 ELSE
 MOVE Price-PCR TO Price-NSF
 END-IF.

ReadTransFile.
 READ TransactionFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 MOVE GadgetID-TF TO PrnGadgetId.

ReadMasterFile.
 READ MasterStockFile
 AT END SET EndOfMasterFile TO TRUE
 END-READ.

Program Notes
I have incorporated an optimization in Listing 10-4 that might welcome some explanation. Before you write an insert
record to the master file in Listing 10-3, the fields in the record are transferred one by one to the NewStockRec. You
couldn’t just move the InsertionRec to the NewStockRec because the InsertionRec also includes the TypeCode field.
In Listing 10-4, this problem has been solved by restructuring the Insertion records so that the fields you have to
move to the NewStockRec are subordinate to a group item called RecordBody-IR. This means in Listing 10-4, instead
of moving the contents of the insertion record to the new master record field by field, you just MOVE RecordBody-IR
TO NewStockRec. The record schematic for this restructured record is shown in Figure 10-12. The record remains the
same size. But now you have an additional data name with which to manipulate the data in the record.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

236

Figure 10-12. Revised record schematic showing the restructured Insertion record

Test Data and Results
The test data for the program is shown in Figure 10-13.

Figure 10-13. Test data for Listing 10-4

The result of running the program against that test data is shown in Figure 10-14.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

237

Summary
This chapter introduced two of the most important sequential file processing problems. The chapter began by
examining how sequential files are organized and discussing the difference between ordered and unordered
sequential files. The next section introduced the class of problems known as control-break problems. The final
section introduced the thorny problem of the sequential File Update.

The section that discussed control-break problems included an example program to produce a printed report
involving a three level control break. A second example program implemented an atypical control break problem and
was intended to show that a control break solution may be applied to a number of different types of problem.

In the final section, I discussed how to apply updates to an ordered sequential file and included two examples
programs. The first example implemented a solution to a simplified version of the file update problem while the
second applied the algorithm described by Dwyer3 and Dijkstra.4

In the specification for Listing 10-1, I mentioned that using the full state name in every record was very wasteful
and that a more realistic scenario would use a state code instead of the full name. I noted that in that case you would
have to convert the state code to a state name by means of a lookup table. In the next chapter, which will discuss how
tabular data is implemented in COBOL, you revisit the Listing 10-1 specification to create a more realistic scenario
that will require you to incorporate a state lookup table into the program.

LANGUAGE KNOWLEDGE EXERCISE

Unleash your 2B pencil once more. It is time for some exercises. These exercises are designed to allow you to

prove to yourself that it is not possible to update an unordered sequential file.

No answers are provided for these questions.

1. The transaction file and the master file in Figure 10-15 are unordered sequential files. Using

the algorithm outlined in Figure 10-15 manually attempt to update the master file records to

produce a new master file that contains the updated records.

Figure 10-14. Results of running Listing 10-4

4Dijkstra,E.W.ADisciplineofProgramming.Prentice-Hall,EnglewoodCliffs,N.J.,1976.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

238

2. The transaction file and the master file in Figure 10-15 are unordered sequential files. Using

the algorithm outlined in Figure 10-16 manually attempt to delete the master file records to

produce a new master file that does not contain the deleted records.

Figure 10-15. Attempting to update an unordered sequential file

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

239

PROGRAMMING EXERCISE

Listing 10-4 applies the File Update algorithm described by Dwyer3 to implement an update of the Gadget Shop’s

Stock MF. However, in that implementation only the Price field is updated. Now you need to modify that program

so that it can also update the QtyInStock field.

Change the program in Listing 10-4 so that it handle stock movement updates as well as price change

updates. To accommodate this change in the specification two new record types will have to be added to the

transaction file. These new transaction records are the AddToStock record indicated by a type code of 4 and the

SubtractFromStock record indicated by a type code of 5.

The record descriptions for the MF and the new version of the TF are given here.

The Stock MF is a sequential file ordered on ascending GadgetId. Each record has the following description.

StockMaster Record

Field Type Length Value

GadgetId 9 6 000001–999999

GadgetName X 30 -

QtyInStock 9 4 0000–9999

Figure 10-16. Attempting to delete from an unordered sequential file

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

240

Field Type Length Value

Price 9 6 0000.00–9999.99

The TF is a sequential file ordered on ascending GadgetId. In each set of records with the same GadgetId the

records are ordered in sequence in which the transactions occurred in the real world. Records in the TF have the

following descriptions:

Insertion record

Field Type Length Value

TypeCode 9 1 1

GadgetId 9 6 000001–999999

GadgetName X 30 -

QtyInStock 9 4 0000–9999

Price 9 6 0000.00–9999.99

Deletion record

Field Type Length Value

TypeCode 9 1 2

GadgetId 9 6 000001–999999

PriceChange record

Field Type Length Value

TypeCode 9 1 3

GadgetId 9 6 000001–999999

Price 9 6 0000.00–9999.99

AddToStock record

Field Type Length Value

TypeCode 9 1 4

GadgetId 9 6 000001–999999

QtyToAdd 9 4 0000–9999

SubtractFromStock record

Field Type Length Value

TypeCode 9 1 5

GadgetId 9 6 000001–999999

QtyToSubtract 9 4 0000–9999

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

241

TestData
To test your program you can use the test data shown below in Figure 10-17.

Figure 10-17. Test data including add and subtract from stock transactions

Notes
There is an additional error conditions to be noted. If the GadgetId-TF < GadgetId-MF and the type code is 4 or 5 then
an error has occurred (no matching master file record) but it is also an error if the transaction is a SubtractFromStock
record but the QtyInStock in the MF is less than the QtyToSubtract in the SubtractFromStock record

PROGRAMMING EXERCISE - ANSWER

Listing 10-5. Update with added AddToStock and SubtractFromStock transactions

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing10-5.
AUTHOR. Michael Coughlan
* File Update program based on the algorithm described by Barry Dwyer in
* "One more time - How to update a Master File"
* Applies the transactions ordered on ascending GadgetId-TF to the
* MasterStockFile ordered on ascending GadgetId-MF.
* Within each key value records are ordered on the sequence in which

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

242

* events occurred in the outside world.
* All valid, real world, transaction sequences are accommodated
* This version includes additions and subtractions from QtyInStock

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MasterStockFile ASSIGN TO "Listing10-5Master.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT NewStockFile ASSIGN TO "Listing10-5NewMast.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT TransactionFile ASSIGN TO "Listing10-5Trans.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MasterStockFile.
01 MasterStockRec.
 88 EndOfMasterFile VALUE HIGH-VALUES.
 02 GadgetID-MF PIC 9(6).
 02 GadgetName-MF PIC X(30).
 02 QtyInStock-MF PIC 9(4).
 02 Price-MF PIC 9(4)V99.

FD NewStockFile.
01 NewStockRec.
 02 GadgetID-NSF PIC 9(6).
 02 GadgetName-NSF PIC X(30).
 02 QtyInStock-NSF PIC 9(4).
 02 Price-NSF PIC 9(4)V99.

FD TransactionFile.
01 InsertionRec.
 88 EndOfTransFile VALUE HIGH-VALUES.
 02 TypeCode-TF PIC 9.
 88 Insertion VALUE 1.
 88 Deletion VALUE 2.
 88 UpdatePrice VALUE 3.
 88 StockAddition VALUE 4.
 88 StockSubtraction VALUE 5.
 02 RecordBody-IR.
 03 GadgetID-TF PIC 9(6).
 03 GadgetName-IR PIC X(30).
 03 QtyInStock-IR PIC 9(4).
 03 Price-IR PIC 9(4)V99.

01 DeletionRec.
 02 FILLER PIC 9(7).

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

243

01 PriceChangeRec.
 02 FILLER PIC 9(7).
 02 Price-PCR PIC 9(4)V99.

01 AddToStock.
 02 FILLER PIC 9(7).
 02 QtyToAdd PIC 9(4).

01 SubtractFromStock.
 02 FILLER PIC 9(7).
 02 QtyToSubtract PIC 9(4).

WORKING-STORAGE SECTION.
01 ErrorMessage.
 02 PrnGadgetId PIC 9(6).
 02 FILLER PIC XXX VALUE " - ".
 02 FILLER PIC X(46).
 88 InsertError VALUE "Insert Error - Record already exists".
 88 DeleteError VALUE "Delete Error - No such record in Master".
 88 PriceUpdateError VALUE "Price Update Error - No such record in Master".
 88 QtyAddError VALUE "Stock Add Error - No such record in Master".
 88 QtySubtractError VALUE "Stock Subtract Error - No such record in Master".
 88 InsufficientStock VALUE "Stock Subtract Error - Not enough stock".

01 FILLER PIC X VALUE "n".
 88 RecordInMaster VALUE "y".
 88 RecordNotInMaster VALUE "n".

01 CurrentKey PIC 9(6).

PROCEDURE DIVISION.
Begin.
 OPEN INPUT MasterStockFile
 OPEN INPUT TransactionFile
 OPEN OUTPUT NewStockFile
 PERFORM ReadMasterFile
 PERFORM ReadTransFile
 PERFORM ChooseNextKey
 PERFORM UNTIL EndOfMasterFile AND EndOfTransFile
 PERFORM SetInitialStatus
 PERFORM ProcessOneTransaction
 UNTIL GadgetID-TF NOT = CurrentKey
* CheckFinalStatus
 IF RecordInMaster
 WRITE NewStockRec
 END-IF
 PERFORM ChooseNextKey
 END-PERFORM

 CLOSE MasterStockFile, TransactionFile, NewStockFile
 STOP RUN.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

244

ChooseNextKey.
 IF GadgetID-TF < GadgetID-MF
 MOVE GadgetID-TF TO CurrentKey
 ELSE
 MOVE GadgetID-MF TO CurrentKey
 END-IF.

SetInitialStatus.
 IF GadgetID-MF = CurrentKey
 MOVE MasterStockRec TO NewStockRec
 SET RecordInMaster TO TRUE
 PERFORM ReadMasterFile
 ELSE SET RecordNotInMaster TO TRUE
 END-IF.

ProcessOneTransaction.
* ApplyTransToMaster
 EVALUATE TRUE
 WHEN Insertion PERFORM ApplyInsertion
 WHEN UpdatePrice PERFORM ApplyPriceChange
 WHEN Deletion PERFORM ApplyDeletion
 WHEN StockAddition PERFORM ApplyAddToStock
 WHEN StockSubtraction PERFORM ApplySubtractFromStock
 END-EVALUATE.
 PERFORM ReadTransFile.

ApplyInsertion.
 IF RecordInMaster
 SET InsertError TO TRUE
 DISPLAY ErrorMessage
 ELSE
 SET RecordInMaster TO TRUE
 MOVE RecordBody-IR TO NewStockRec
 END-IF.

ApplyDeletion.
 IF RecordNotInMaster
 SET DeleteError TO TRUE
 DISPLAY ErrorMessage
 ELSE SET RecordNotInMaster TO TRUE
 END-IF.

ApplyPriceChange.
 IF RecordNotInMaster
 SET PriceUpdateError TO TRUE
 DISPLAY ErrorMessage
 ELSE
 MOVE Price-PCR TO Price-NSF
 END-IF.

CHAPTER 10 ■ PROCESSING SEQUENTIAL FILES

245

ApplyAddToStock.
 IF RecordNotInMaster
 SET QtyAddError TO TRUE
 DISPLAY ErrorMessage
 ELSE
 ADD QtyToAdd TO QtyInStock-NSF
 END-IF.

ApplySubtractFromStock.
 IF RecordNotInMaster
 SET QtySubtractError TO TRUE
 DISPLAY ErrorMessage
 ELSE
 IF QtyInStock-NSF < QtyToSubtract
 SET InsufficientStock TO TRUE
 DISPLAY ErrorMessage
 ELSE
 SUBTRACT QtyToSubtract FROM QtyInStock-NSF
 END-IF
 END-IF.

ReadTransFile.
 READ TransactionFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 MOVE GadgetID-TF TO PrnGadgetId.

ReadMasterFile.
 READ MasterStockFile
 AT END SET EndOfMasterFile TO TRUE
 END-READ.

247

CHAPTER 11

Creating Tabular Data

This chapter and the next return to the DATA DIVISION to explore more data-declaration concepts. In this chapter,
I discuss how to create and manipulate tabular data. I compare and contrast COBOL tables with the arrays used in
many other programming languages. Chapter 12 covers more advanced data declaration using the USAGE, REDEFINES,
and RENAMES clauses.

The chapter starts with a discussion of the similarities and differences between arrays and tables. You then
see how COBOL tables are declared using the OCCURS clause and manipulated using subscripts. I introduce a
scenario to explain why tabular data is required and end the scenario with an example program that uses a simple
one-dimensional table as part of the solution.

The middle section of the chapter introduces the concept of group items as table elements and demonstrates
this in an example program. Multidimensional tables are then introduced. You learn the best way to depict a
multidimensional COBOL table graphically; and I again address the contrast between arrays and tables, which is more
pronounced with multidimensional tables. I present an example program using a two-dimensional table as part of its
solution and introduce a scenario requiring a three-dimensional table.

In the chapter’s final section, I show how to create prefilled tables using the REDEFINES clause. You see this
demonstrated in an example program that uses a table prefilled with the names of the American states. I also discuss
some of the table declaration changes introduced with the ANS 85 standard.

Tables vs. Arrays
Most programming languages have a facility to create tabular information. Tabular information consists of multiple
occurrences of a homogeneous data item.

Most programming languages use the term array to describe these multiple-occurrence data items, but COBOL
uses the term table. This is not just a difference of nomenclature. In most languages (including Basic, Pascal, Java,
FORTRAN, and Ada), arrays look and work similarly; but COBOL tables, although they have some similarities to
arrays, have a number of minor and major differences.

Table/Array Definition
Tables and arrays are so similar that you can use the same definition for them. A table/array may be defined as a
contiguous sequence of memory locations that all have the same name and that are uniquely identified by that name
and by their position in the sequence. The position index is called a subscript, and the individual components of the
table/array are referred to as elements.

CHAPTER 11 ■ CREATING TABULAR DATA

248

Table/Array Differences
If the same definition can be used for tables and arrays, what is the difference between them? The first difference
affects the C language derivatives (C++, Java, and C#). In these languages, arrays start at element 0 and go to the
maximum size of the array minus one. This arrangement is a rich source of programming errors for beginner
programmers who have difficulty coming to grips with this displaced referencing: for instance, element[9] is the tenth
element in the array. In COBOL, tables start at element 1 (not 0) and go to the maximum size of the table. In a COBOL
table, element(9) is the ninth element of the table.

A major difference between COBOL tables and arrays is that COBOL tables are declared using record
descriptions. The nature of a record description is that there is a hierarchical relationship between the items in the
record. Consequently, one item in a multidimensional table must always be subordinate to another. Arrays have
no such hierarchical relationship. An array is simply a matrix of cells that are referenced using row and column
subscripts. The hierarchical structuring of COBOL tables allows data-manipulation opportunities that are not
available to languages that use arrays.

Declaring Tables
Tables are declared using an extension to the PICTURE clause, called the OCCURS clause. The metalanguage for the
basic OCCURS clause is as follows:

OCCURS TableSize#1 TIMES

To declare a table, you define the type and size of the table element, and then you use the OCCURS clause to specify
how many times the element occurs. In the following NFL-Stadium example, the type and size of the element are
defined by its subordinate data items. Each element is alphanumeric and 35 characters (30 + 5) in size:

01 SoccerStadiumName PIC X(25) OCCURS 20 TIMES.

01 NFL-Stadium OCCURS 31 TIMES.
 02 NFL-StadiumName PIC X(30).
 02 NFL-StadiumCapacity PIC 9(5).

OCCURS Clause Rules
Here are the rules for the OCCURS clause:

Any data item whose description includes an • OCCURS clause must be subscripted when
referred to. For example:

DISPLAY SoccerStadiumName(15)
MOVE NFL-Stadium(12) TO NFL-Stadium(7)

Any data item that is subordinate to a group item whose description contains an • OCCURS clause
must be subscripted when referred to. For example:

DISPLAY NFL-StadiumName(7)
DISPLAY NFL-StadiumCapacity(7)

CHAPTER 11 ■ CREATING TABULAR DATA

249

Subscript Rules
Now let’s look at the subscript rules:

A subscript is a bracketed numeric index (or something that evaluates to one) that points to a •
particular element (or part of an element) of the table. The subscript immediately follows the
element name.

The numeric index must be a positive integer, a data name that represents one, or a simple •
expression that evaluates to one.

The numeric index is a value between one and the number of elements in the table, inclusive. •

When more than one subscript is used, they must be separated from one another by commas. •

One subscript must be specified for each dimension of the table. There must be one subscript •
for a one-dimensional table, two subscripts for a two-dimensional table, and three for a
three-dimensional table.

The first subscript applies to the first • OCCURS clause, the second applies to the second OCCURS
clause, and so on.

Subscripts must be enclosed in rounded brackets: • ().

Here are some examples:

MOVE ZEROS TO StateSalesTotal(35)
ADD BranchSales TO StateSalesTotal(StateNum)
ADD BranchSales TO StateSalesTotal(StateNum + 1)
ADD BranchSales TO StateSalesTotal(StateNum - 2)
ADD MonthlyBranchSales TO StateSalesTotal(StateNum, MonthNum)
DISPLAY "Stadium Name is " StadiumName(24)
DISPLAY "Stadium Capacity is " StadiumCapacity(24)

Why Use Tabular Data?
Let’s start this introduction to tabular data by setting up a hypothetical problem. In the course of exploring the
problem and a number of variations, I will show how tables are defined and used in COBOL.

First Specification
YoreCandyShoppe is a franchise that sells old-time candy at branches all over the United States. A program is required
that will sum the candy sales for all the YoreCandyShoppe branches in the country. The sales data is obtained from
a sales file containing the candy sales for each branch. The sales file is a sequential file sequenced on ascending
BranchId. Each record of the file may be described using the following record description:

01 BranchSalesRec.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 BranchId PIC 9(7).
 02 StateNum PIC 99.
 02 CandySales PIC 9(7)V99.

To save file space, a two-digit numeric value is used to represent the state instead of a state name.

CHAPTER 11 ■ CREATING TABULAR DATA

250

The program to perform this task is very simple. All you have to do is set up a variable to hold the total candy
sales and then add CandySales from each record to TotalCandySales. A fragment of the program required to do this is
given in Example 11-1.

Example 11-1. PROCEDURE DIVISION of a Program to Sum Total Candy Sales

PROCEDURE DIVISION.
Begin.
 OPEN INPUT SalesFile
 READ SalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSalesFile
 ADD CandySales TO TotalCandySales
 READ SalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 END-PERFORM.
 DISPLAY "Total candy sales for the US : ", TotalCandySales
 CLOSE SalesFile
 STOP RUN.

Second Specification
The program to solve the problem set in the first specification is simple. But suppose the specification is changed so
that instead of being asked for the country’s total candy sales, you are asked to calculate the total sales for each state.

One approach to this new problem would be to sort the file on StateNum. This would turn the requirement into
a simple control-break problem (that is, process all the records for one state, output the result, and then go on to the
next). But the issue with this solution is that sorting is a comparatively slow, disk-intensive procedure. You want to
avoid having to adopt this solution if possible. Is there any other way to solve the problem?

You could create 50 variables (one for each state) to hold the sales totals. Then, in the program, you could use an
EVALUATE statement to add CandySales to the appropriate total. For example:

EVALUATE StateNum
 WHEN 1 ADD CandySales TO State1SalesTotal
 WHEN 2 ADD CandySales TO State2SalesTotal
 WHEN 3 ADD CandySales TO State3SalesTotal
 47 more WHEN branches
END-EVALUATE

This solution is not very satisfactory. You need a specific WHEN branch to process each state, and you have to
declare 50 data items to hold the sales totals. And when you want to display the results, you must use 50 DISPLAY
statements:

DISPLAY "State 1 total is ", State1SalesTotal
DISPLAY "State 2 total is ", State2SalesTotal
DISPLAY "State 3 total is ", State3SalesTotal
 47 more DISPLAY statements

CHAPTER 11 ■ CREATING TABULAR DATA

251

But this poor attempt at a solution does contain the germ of an idea of how to solve the problem. It is interesting
to note that the processing of each WHEN branch is the same: CandySales is added to the sales total for a particular
state. You could replace all 50 WHEN branches with one statement if you could generalize to something like this:

ADD the CandySales to the StateSalesTotal location indicated by the StateNum.

There is also something interesting about the 50 data items. They all have exactly the same PICTURE, and
they all have, more or less, the same name: StateSalesTotal. The only way you can distinguish between one
StateSalesTotal and another is by attaching a number to the name: State1SalesTotal, State2SalesTotal,
State3SalesTotal, and so on.

When you see a group of data items that all have the same name and the same description and are only
distinguished from one another by a number attached to the name, you know that you have a problem crying out for a
table-based solution.

Using a Table for the State Sales Totals
In COBOL, you declare a table by specifying the type (or structure) of a single item (element) of the table and then
specifying that the data item is to be repeated a given number of times. For instance, StateSalesTable may be
defined as follows:

01 StateSalesTable.
 02 StateSalesTotal PIC 9(8)V99 OCCURS 50 TIMES.

StateSalesTable can be represented diagrammatically as shown in Figure 11-1. All the elements of the table
have the name StateSalesTotal; you can refer to a specific one by using that name followed by an integer value in
brackets. So, StateSalesTotal(3) refers to the third element of the table, and StateSalesTotal(13) refers to the
thirteenth element.

But when you refer to an element, you don’t have to use a numeric literal. You can use anything that evaluates
 to a numeric value between 1 and the size of the table—even a simple arithmetic expression.

So the solution to the problem of summing the candy sales for each state is to use a table to hold a
StateSalesTotal for each state and to use StateNum to access the correct element in the table.

Once you realize that you can use a table to hold the sales totals and StateNum as an index into the table, the
solution to the problem becomes very simple. A program to read the sales file, sum the sales, and display the results is
given in Listing 11-1. In this example, to keep the program simple and focus on table creation and handling, I chose to
display the results rather than write them to a print file.

Figure 11-1. Diagrammatic representation of StateSalesTable

CHAPTER 11 ■ CREATING TABULAR DATA

252

Listing 11-1. Summing Candy Sales for Each State

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing11-1.
AUTHOR. Michael Coughlan
* Program to sum the CandySales for each branch of YoreCandyShoppe
* and display the results in StateNum order
* Using as input the Sequential BranchSalesFile ordered on ascending BranchId

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT BranchSalesFile ASSIGN TO "Listing11-1BranchSales.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BranchSalesFile.
01 BranchSalesRec.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 BranchId PIC 9(7).
 02 StateNum PIC 99.
 02 CandySales PIC 9(7)V99.

WORKING-STORAGE SECTION.
01 StateSalesTable.
 02 StateSalesTotal PIC 9(8)V99 OCCURS 50 TIMES.

01 StateIdx PIC 99.
01 PrnStateSales PIC $$$,$$$,$$9.99.

PROCEDURE DIVISION.
Begin.
 MOVE ZEROS TO StateSalesTable
 OPEN INPUT BranchSalesFile
 READ BranchSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSalesFile
 ADD CandySales TO StateSalesTotal(StateNum)
 READ BranchSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 END-PERFORM
 DISPLAY " YoreCandyShoppe Sales by State"
 DISPLAY " ------------------------------"
 PERFORM VARYING StateIdx FROM 1 BY 1
 UNTIL StateIdx GREATER THAN 50
 MOVE StateSalesTotal(StateIdx) TO PrnStateSales

CHAPTER 11 ■ CREATING TABULAR DATA

253

 DISPLAY "State ", StateIdx
 " sales total is " PrnStateSales
 END-PERFORM
 CLOSE BranchSalesFile
 STOP RUN.

Third Specification: Group Items as Table Elements
The elements of a table do not have to be elementary items. An element can be a group item. In other words, each
element can be subdivided into two or more subordinate items.

Suppose the specification of the YoreCandyShoppe sales-report program changes so that in addition to
summing the candy sales for each state, the program should count the number of branches and compute the average
sales for the state. Final country totals should also be produced, showing Total-US-Sales, US-BranchCount, and
Average-US-Sales.

One solution to this problem would be to set up two separate tables: one to hold state sales and another to hold
the count of the number of branches in the state (see Example 11-2).

Example 11-2. The Two-Table Solution

01 StateSalesTable.
 02 StateSalesTotal PIC 9(8)V99 OCCURS 50 TIMES.

01 StateBranchesTable.
 02 StateBranchCount PIC 9(5) OCCURS 50 TIMES.

Then all that would be required to calculate the average sales for the state would be a statement such as

COMPUTE AverageStateSales = StateSalesTotal(StateNum) / StateBranchCount(StateNum)

This is probably the way you would solve the problem in most languages. But in COBOL you can also set
up a single table in which each element is defined as a group item that consists of the StateSalesTotal and the
StateBranchCount (see Example 11-3).

Example 11-3. Solution Using the Group Item as a Table Element

01 StateSalesTable.
 02 StateTotals OCCURS 50 TIMES.
 03 StateSalesTotal PIC 9(8)V99.
 03 StateBranchCount PIC 9(5).

To calculate the average sales, you can use the same COMPUTE statement as before:

COMPUTE AverageStateSales = StateSalesTotal(StateNum) / StateBranchCount(StateNum)

A diagrammatic representation of this table description is shown in Figure 11-2. Each element of the table now
consists of two parts: StateSalesTotal and StateBranchCount. These are subordinate to the StateTotals element.
Data-manipulation opportunities abound. All these data names allow you to manipulate the data in the table at
different levels of granularity. You can use the following commands:

• MOVE ZEROS TO StateSalesTable: See Figure 11-2. Fills the whole table with zeros.

• MOVE StateTotals(2) TO StateTotals(5): See Figure 11-2. Copies the contents of one
element, including both subordinate items, to another element.

CHAPTER 11 ■ CREATING TABULAR DATA

254

• DISPLAY StateBranchCount(3): Displays the contents of the StateBranchCount part of
element 3.

• ADD CandySales TO StateSalesTotal(3): Adds CandySales to the contents of the
StateSalesTotal part of element 3.

Tabular Data Program
Listing 11-2 is a solution to the problem posed by the changed specification. It uses the table defined in Example 11-3.

Listing 11-2. Table Elements as Group Items

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing11-2.
AUTHOR. Michael Coughlan
* Program that for each state and for the whole US
* sums the CandySales for each branch of YoreCandyShoppe
* counts the number of branches
* calculates the average sales per state and displays the results in StateNum order
* Uses as input the Sequential BranchSalesFile ordered on ascending BranchId

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT BranchSalesFile ASSIGN TO "Listing11-2BranchSales.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BranchSalesFile.
01 BranchSalesRec.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 BranchId PIC 9(7).
 02 StateNum PIC 99.
 02 CandySales PIC 9(7)V99.

Figure 11-2. Table elements as group items. Element 3 is exploded to show details

CHAPTER 11 ■ CREATING TABULAR DATA

255

WORKING-STORAGE SECTION.
01 StateSalesTable.
 02 StateTotals OCCURS 50 TIMES.
 03 StateSalesTotal PIC 9(8)V99.
 03 StateBranchCount PIC 9(5).

01 StateIdx PIC 99.

01 ReportHeading1 PIC X(35)
 VALUE " YoreCandyShoppe Sales by State".
01 ReportHeading2 PIC X(35)
 VALUE " ------------------------------".
01 ReportHeading3 PIC X(47)
 VALUE "State Branches StateSales AverageSales".

01 DetailLine.
 02 PrnStateNum PIC BZ9.
 02 PrnBranchCount PIC B(3)ZZ,ZZ9.
 02 PrnStateSales PIC B(5)$$$,$$$,$$9.99.
 02 PrnAveageSales PIC BB$$$,$$$,$$9.99.

01 US-Totals.
 02 US-TotalSales PIC 9(9)V99.
 02 US-BranchCount PIC 9(6).
 02 PrnUS-TotalSales PIC $,$$$,$$$,$$9.99.
 02 PrnUS-BranchCount PIC B(9)ZZZ,ZZ9.
 02 PrnUS-AverageSales PIC BBBB$$$,$$$,$$9.99.

PROCEDURE DIVISION.
Begin.
 MOVE ZEROS TO StateSalesTable
 OPEN INPUT BranchSalesFile
 READ BranchSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSalesFile
 ADD CandySales TO StateSalesTotal(StateNum), US-TotalSales
 ADD 1 TO StateBranchCount(StateNum), US-BranchCount
 READ BranchSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 END-PERFORM
 PERFORM PrintResults

 CLOSE BranchSalesFile
 STOP RUN.

PrintResults.
 DISPLAY ReportHeading1
 DISPLAY ReportHeading2

CHAPTER 11 ■ CREATING TABULAR DATA

256

 DISPLAY ReportHeading3
 PERFORM VARYING StateIdx FROM 1 BY 1
 UNTIL StateIdx GREATER THAN 50
 MOVE StateIdx TO PrnStateNum
 MOVE StateSalesTotal(StateIdx) TO PrnStateSales
 MOVE StateBranchCount(StateIdx) TO PrnBranchCount
 COMPUTE PrnAveageSales = StateSalesTotal(StateIdx) / StateBranchCount(StateIdx)
 DISPLAY DetailLine
 END-PERFORM
 MOVE US-TotalSales TO PrnUS-TotalSales
 MOVE US-BranchCount TO PrnUS-BranchCount
 COMPUTE PrnUS-AverageSales = US-TotalSales / US-BranchCount
 DISPLAY "YoreCandyShoppe branches in the US = " PrnUS-BranchCount
 DISPLAY "YoreCandyShoppe sales in the US = " PrnUS-TotalSales
 DISPLAY "YoreCandyShoppe average US sales = " PrnAveageSales.

Multidimensional Tables
Listing 11-2 uses a table in which each element is a group item that consists of the StateSalesTotal and the
StateBranchCount. But the table is still a single-dimensional table. Sometimes the solution to a problem demands a
multidimensional table approach. A multidimensional table is one in which each element of the table is itself a table.
This section considers multidimensional tables in the context of a specification change for the YoreCandyShoppe
sales report.

Suppose each YoreCandyShoppe branch is asked to provide more granular sales data. Instead of reporting sales
for the entire year, each branch must now report sales for each month. To do this, the sales record for each branch must
be changed to accommodate a 12-element table of sales data. The new record description is given in Example 11-4.

Example 11-4. New Record Description That Records Candy Sales for Each Month

01 BranchSalesRec.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 BranchId PIC 9(7).
 02 StateNum PIC 99.
 02 SalesForMonth PIC 9(5)V99 OCCURS 12 TIMES.

The report produced from the sales file must reflect this more granular data and is now required to show the
following:

Total sales for each state•

The count of the number of branches in the state•

Average sales per branch for each state•

Sales per month for each state•

Final country totals showing • Total-US-Sales, US-BranchCount, and Average-US-Sales

In the program that implemented the previous specification, the sales for each state and the number of branches
in each state were recorded in a 50-element table. In this version, instead of the total sales for the year, you have to
record the sales per month. To do that, you need a two-dimensional table as described in Example 11-5.

CHAPTER 11 ■ CREATING TABULAR DATA

257

Example 11-5. Two-dimensional Table to Record Sales per Month and the Number of Branches in the State

01 StateSalesTable.
 02 State OCCURS 50 TIMES.
 03 StateBranchCount PIC 9(5).
 03 StateMonthSales PIC 9(5)V99 OCCURS 12 TIMES.

COBOL DETAIL

If you wanted to manipulate the table at a further level of granularity, you could describe the table as

01 StateSalesTable.
 02 State OCCURS 50 TIMES.
 03 StateBranchCount PIC 9(5).
 03 StateSales.

 04 StateMonthSales PIC 9(5)V99 OCCURS 12 TIMES.

The table description in Example 11-5 highlights a difference between COBOL tables and arrays. In other
languages, two arrays would be required to record this information: a two-dimensional table to record the state sales
per month and a one-dimensional table to record the number of branches per state. You can also record the data
using two tables in COBOL, as shown in Example 11-6; but COBOL’s hierarchical structuring allows you to combine
both tables so that each element of the first dimension consists of the BranchCount and a 12-element table containing
the sales for each month.

Example 11-6. A Two-Table Solution

01 StateSalesTable.
 02 State OCCURS 50 TIMES.
 03 StateMonthSales PIC 9(5)V99 OCCURS 12 TIMES.

01 StateBranchesTable.
 02 State OCCURS 50 TIMES.
 03 StateBranchCount PIC 9(5).

Multidimensional Program
Listing 11-3 is a solution to the changed specification that uses the two-dimensional table described in Example 11-5.

Listing 11-3. Using a Two-dimensional Table to Solve the Problem Posed by the Changed Specification

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing11-3.
AUTHOR. Michael Coughlan
* Program that for each state and for the whole US
* sums the Monthly Sales for each branch of YoreCandyShoppe, counts the number of
* branches and displays the State Sales per month in StateNum order
* Calculates the US sales, the number of branches in the US and the average US sales
* Uses as input the Sequential BranchSalesFile ordered on ascending BranchId

CHAPTER 11 ■ CREATING TABULAR DATA

258

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT BranchSalesFile ASSIGN TO "Listing11-3BranchSales.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BranchSalesFile.
01 BranchSalesRec.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 BranchId PIC 9(7).
 02 StateNum PIC 99.
 02 SalesForMonth PIC 9(5)V99 OCCURS 12 TIMES.

WORKING-STORAGE SECTION.
01 StateSalesTable.
 02 State OCCURS 50 TIMES.
 03 StateBranchCount PIC 9(5).
 03 StateMonthSales PIC 9(5)V99 OCCURS 12 TIMES.

01 ReportHeading.
 02 FILLER PIC X(20) VALUE SPACES.
 02 FILLER PIC X(38) VALUE "YoreCandyShoppe Monthly Sales by State".

01 ReportUnderline.
 02 FILLER PIC X(20) VALUE SPACES.
 02 FILLER PIC X(38) VALUE ALL "-".

01 ReportSubjectHeadings1.
 02 FILLER PIC X(12) VALUE "State NOBs".
 02 FILLER PIC X(63)
 VALUE " Jan Feb Mar Apr May Jun".

01 ReportSubjectHeadings2.
 02 FILLER PIC X(12) VALUE SPACES.
 02 FILLER PIC X(63)
 VALUE " Jul Aug Sep Oct Nov Dec".

01 DetailLine1.
 02 PrnStateNum PIC BZ9.
 02 PrnBranchCount PIC BBZZ,ZZ9.
 02 PrnMonthSales1 PIC B$$$,$$9.99 OCCURS 6 TIMES.

01 DetailLine2.
 02 FILLER PIC X(11) VALUE SPACES.
 02 PrnMonthSales2 PIC B$$$,$$9.99 OCCURS 6 TIMES.

CHAPTER 11 ■ CREATING TABULAR DATA

259

01 US-Totals.
 02 US-TotalSales PIC 9(9)V99.
 02 US-BranchCount PIC 9(6).
 02 PrnUS-TotalSales PIC $,$$$,$$$,$$9.99.
 02 PrnUS-BranchCount PIC B(9)ZZZ,ZZ9.
 02 PrnUS-AverageSales PIC BB$$$,$$$,$$9.99.

01 StateIdx PIC 99.
01 MonthIdx PIC 99.

PROCEDURE DIVISION.
Begin.
 MOVE ZEROS TO StateSalesTable
 OPEN INPUT BranchSalesFile
 READ BranchSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSalesFile
 ADD 1 TO StateBranchCount(StateNum), US-BranchCount
 PERFORM VARYING MonthIdx FROM 1 BY 1 UNTIL MonthIdx > 12
 ADD SalesForMonth(MonthIdx) TO
 StateMonthSales(StateNum, MonthIdx), US-TotalSales
 END-PERFORM
 READ BranchSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 END-PERFORM
 PERFORM DisplayResults
 CLOSE BranchSalesFile
 STOP RUN.

DisplayResults.
 DISPLAY ReportHeading
 DISPLAY ReportUnderline
 DISPLAY ReportSubjectHeadings1
 DISPLAY ReportSubjectHeadings2
 PERFORM VARYING StateIdx FROM 1 BY 1
 UNTIL StateIdx GREATER THAN 50
 MOVE StateIdx TO PrnStateNum
 MOVE StateBranchCount(StateIdx) TO PrnBranchCount
 PERFORM VARYING MonthIdx FROM 1 BY 1 UNTIL MonthIdx > 6
 MOVE StateMonthSales(StateIdx, MonthIdx) TO PrnMonthSales1(MonthIdx)
 END-PERFORM
 PERFORM VARYING MonthIdx FROM 7 BY 1 UNTIL MonthIdx > 12
 MOVE StateMonthSales(StateIdx, MonthIdx) TO PrnMonthSales2(MonthIdx - 6)
 END-PERFORM
 DISPLAY DetailLine1
 DISPLAY DetailLine2
 DISPLAY SPACES
 END-PERFORM

CHAPTER 11 ■ CREATING TABULAR DATA

260

 MOVE US-TotalSales TO PrnUS-TotalSales
 MOVE US-BranchCount TO PrnUS-BranchCount
 COMPUTE PrnUS-AverageSales = US-TotalSales / US-BranchCount
 DISPLAY "YoreCandyShoppe branches in the US = " PrnUS-BranchCount
 DISPLAY "YoreCandyShoppe sales in the US = " PrnUS-TotalSales
 DISPLAY "YoreCandyShoppe average US sales = " PrnUS-AverageSales.

Correct Depiction of COBOL Tables
Two-dimensional tables are often depicted using a grid of rows and columns. This is an accurate representation for
arrays, but for COBOL tables it has the flaw that it does not accurately reflect the data hierarchy.1

The table described in Example 11-5 allows you to manipulate the table using statements such as MOVE ZEROS
TO State(1) and MOVE 123 TO BranchCount(2). In a row-and-column grid depiction, it is not clear how such
manipulations are possible.

The diagram in Figure 11-3 uses the correct representation for StateSalesTable. This diagram expresses the data
hierarchy inherent in the table description where one OCCURS clause is subordinate to another. With this representation,
you can see how statements such as MOVE ZEROS TO State(1) and MOVE 123 TO StateBranchCount(2) affect the
values in the table.

Three-Dimensional Tables
In COBOL, multidimensional tables rarely have more than three dimensions. Prior to the ANS 85 version of COBOL,
a maximum of three dimensions were permitted; the restriction on PERFORM..VARYING that allows only three
counting variables harks back to those days. In the ANS 85 and ISO 2002 COBOL standards, the maximum number of
dimensions is seven.

A discussion of how three-dimensional tables are created and processed should help to solidify your
understanding of multidimensional tables. This time, however, I present the problem specification and show the
declarations necessary to create the three-dimensional table, but I don’t write a full program. I leave that as an
exercise for you at the end of the chapter.

Keep in mind that this specification is designed with an eye toward what is easy to present diagrammatically
rather than toward realism.

Figure 11-3. Diagram showing the hierarchy in a COBOL table description

CHAPTER 11 ■ CREATING TABULAR DATA

261

Problem Specification

The U.S. Census Bureau has provided you with a subset of census data in a file containing the age category, gender,
state number, and car-ownership information of every person in the country. The CensusFile is an unordered
sequential file, and its records have the following description:

Field Type Length Value

StateNum 9 2 1–50

AgeCategory 9 1 1 = Child
2 = Teen
3 = Adult

GenderCategory 9 1 1 = Female
2 = Male

CarOwner X 1 Y or N

You are required to write a program to process the CensusFile and display the number of males and females in
each AgeCategory (Child, Teen, and Adult) in each state, as shown in Figure 11-4.

 To accumulate the population totals for each state, you use the three-dimensional table defined in Example 11-7.

Example 11-7. Three-dimensional Table to Hold Population Totals

01 US-PopulationTable.
 02 State OCCURS 50 TIMES.
 03 AgeCategory OCCURS 3 TIMES.
 04 GenderCategory OCCURS 2 TIMES.
 05 PopTotal PIC 9(8).

For each record that you read from the CensusFile, you execute the following statement:

ADD 1 TO PopTotal(StateNum, Age, Gender)

Figure 11-4. Report template

CHAPTER 11 ■ CREATING TABULAR DATA

262

Depicting a Three-dimensional Table

Figure 11-5 is a depiction of the three-dimensional table defined in the Example 11-7.

The data in the table has been changed by executing the following statements:

MOVE ZEROS TO State(1)
MOVE ZEROS TO AgeCategory(2,3)
MOVE ZEROS TO GenderCategory (3,1,1)
MOVE ZEROS TO PopTotal(2,1,2)
MOVE 156 TO PopTotal(2,2,2)

As you can see from these statements, the data names defined in the table allow you to manipulate the table at
various levels of granularity. When you refer to the State data item, you must use one subscript because it is a data
item whose description contains an OCCURS clause. When you refer to AgeCategory, you must use two subscripts
because AgeCategory is subordinate to an item that contains an OCCURS clause, and it itself contains an OCCURS
clause. Finally, when you refer to GenderCategory and PopTotal, you must use three subscripts: GenderCategory
is subordinate to two items that contain an OCCURS clause, and it contains an OCCURS clause itself; and PopTotal is
subordinate to three items that contain an OCCURS clause. PopTotal and GenderCategory are data names that refer to
the same area of storage. The US-PopulationTable could have been defined as

01 US-PopulationTable.
 02 State OCCURS 50 TIMES.
 03 AgeCategory OCCURS 3 TIMES.
 04 GenderCategory PIC 9(8) OCCURS 2 TIMES.

However, the PopTotal data item was added for clarity, as documentation.

Prefilled Tables
In all the examples in this chapter, the table used has been filled with data in the course of running the program.
Sometimes, however, the table needs to be prefilled with data values. When the program starts, the table must already
have been instantiated with the data values.

For instance, in Listing 11-3, when you display the results, you display a state number instead of the name of
the state. Obviously it would be better to display the actual state name. A simple way to do this is to set up a prefilled
table containing the names of the states and then display the appropriate name using a statement such as DISPLAY
StateName(StateIdx).

Figure 11-5. Structure of a three-dimensional table

CHAPTER 11 ■ CREATING TABULAR DATA

263

REDEFINES Clause
To set up a prefilled table in COBOL, you have to use a special data-description clause called the REDEFINES clause.
The REDEFINES clause is not limited to creating prefilled tables. It is a powerful data-manipulation language element
that is used for a number of purposes. I discuss the REDEFINES clause in detail in Chapter 12, including its full syntax,
the semantic rules that apply to it, and the many ways it may be used. In this chapter, I discuss the REDEFINES clause
only in the context of creating prefilled tables.

When a file contains different types of records, a record description is created for each record type in the FILE
SECTION. However, all these record descriptions map on to the same area of storage. They are, in effect, redefinitions of
the area of storage. The REDEFINES clause allows you to achieve the same effect for units smaller than a record and in
the other parts of the DATA DIVISION—not just the FILE SECTION.

Creating Prefilled Tables of Values
You can use the REDEFINES clause to create a prefilled table by applying the following procedure:

 1. Reserve an area of storage, and use the VALUE clause to fill it with the values required
in the table.

 2. Use the REDEFINES clause to redefine the area of memory as a table.

For instance, to create a table prefilled with the names of the months, the first step is to reserve an area of storage and
fill it with the names of the months (see Example 11-8). The diagram in Example 11-8 depicts the undifferentiated
area of storage filled with the month names.

Example 11-8. Setting Up an Area of Storage Containing the Month Names

01 MonthTable.
 02 MonthValues.
 03 FILLER PIC X(18) VALUE "January February".
 03 FILLER PIC X(18) VALUE "March April".
 03 FILLER PIC X(18) VALUE "May June".
 03 FILLER PIC X(18) VALUE "July August".
 03 FILLER PIC X(18) VALUE "SeptemberOctober".
 03 FILLER PIC X(18) VALUE "November December".

The next step is to redefine the area of storage to impose a table definition on it, as shown in Example 11-9.
Now MonthName(3) contains the value "March", and MonthName(6) contains "June".

Example 11-9. Redefining the Area of Storage as a Table

01 MonthTable.
 02 MonthValues.
 03 FILLER PIC X(18) VALUE "January February".
 03 FILLER PIC X(18) VALUE "March April".
 03 FILLER PIC X(18) VALUE "May June".
 03 FILLER PIC X(18) VALUE "July August".
 03 FILLER PIC X(18) VALUE "SeptemberOctober".

CHAPTER 11 ■ CREATING TABULAR DATA

264

 03 FILLER PIC X(18) VALUE "November December".
 02 FILLER REDEFINES MonthValues.
 03 MonthName OCCURS 12 TIMES PIC X(9).

Creating a Prefilled Two-dimensional Table
To set up a two-dimensional table prefilled with data values, you use the same procedure as for a one-dimensional
table. First you create an area of storage that contains the values you want in the table, and then you redefine the area
as a table.

Suppose a company pays a bonus depending on ServiceCategory and MaritalStatus, as shown in Table 11-1.
You can set up a prefilled table as shown in Example 11-10. In this table, Bonus(4,1) = 135 and Bonus(2,2) = 085.
The data items MaritalStatus and Bonus refer to the same area of storage. The Bonus data item has been added for
purposes of clarity.

Example 11-10. Two-dimensional Bonus Table

01 BonusTable.
 02 BonusValues PIC X(24) VALUE "050075085120100150135175".
 02 FILLER REDEFINES BonusValues.
 03 ServiceCategory OCCURS 4 TIMES.
 04 MaritalStatus OCCURS 2 TIMES.
 05 Bonus PIC 9(3).

Prefilled Table Program

The program in Listing 10-1 in Chapter 10 implemented a three-level control break. In the discussion of that program,
I noted that in order to reduce the amount of storage occupied by the data file, the normal practice would be to use a
state number instead of a state name. I mentioned that in such a program, when it is necessary to print out the state
name, the state number is converted to a name by means of a lookup table.

Table 11-1. Bonus Table

Service Category

5–10 years 11–20 years 21–30 years 30–50 years

Single 050 085 100 135

Married 075 120 150 175

CHAPTER 11 ■ CREATING TABULAR DATA

265

So let’s write a program to the same specification as Listing 10-1, except that now the records in the Sales file should
use a state number rather than the full state name. The revised program specification follows.

Revised Specification

Electronics2Go has branches in a number of American states. A program is required to produce a report showing the
total sales made by each salesperson, the total sales for each branch, the total sales for each state, and a final total
showing the total sales for the entire United States. The report must be printed by ascending SalespersonId within
ascending BranchId within ascending StateName.

The report is based on the Electronics2Go sales file. This file holds details of sales made in all the branches
of the company. It is a sequential file, ordered on ascending SalespersonId within ascending BranchId within
ascending StateNum. Each record in the sales file has the following description:

Field Type Length Value

StateNum 9 2 01–50

BranchId X 5 -

SalespersonId X 6 99999X (M/F)

ValueOfSale 9 6 0000.00–9999.99

The report format should follow the template shown in Figure 11-6.

Figure 11-6. Template for the Electronics2Go sales report

CHAPTER 11 ■ CREATING TABULAR DATA

266

Final Prefilled Table Program

The program in Listing 11-4 implements the final specification.

Listing 11-4. Report with Three Control Breaks, Using a State Name Table (Changes from Listing 10-1 Shown in Bold)

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing11-4.
AUTHOR. Michael Coughlan.
* A three level Control Break program to process the Electronics2Go
* Sales file and produce a report that shows the value of sales for
* each Salesperson, each Branch, each State, and for the Country.
* The SalesFile is sorted on ascending SalespersonId within BranchId
* within StateNum.
* The report must be printed in SalespersonId within BranchId
* within StateName. There is a correspondence between StateNum order
* and StateName order such that the order of records in
* the file is the same if the file is ordered on ascending StateNum
* as it is when the file is ordered on ascending StateName

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT SalesFile ASSIGN TO "Listing11-4TestData.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

SELECT SalesReport ASSIGN TO "Listing11-4.RPT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD SalesFile.
01 SalesRecord.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 StateNum PIC 99.
 02 BranchId PIC X(5).
 02 SalesPersonId PIC X(6).
 02 ValueOfSale PIC 9(4)V99.

FD SalesReport.
01 PrintLine PIC X(55).

WORKING-STORAGE SECTION.
01 StateNameTable.
 02 StateNameValues.
 03 FILLER PIC X(14) VALUE "Alabama".
 03 FILLER PIC X(14) VALUE "Alaska".
 03 FILLER PIC X(14) VALUE "Arizona".
 03 FILLER PIC X(14) VALUE "Arkansas".
 03 FILLER PIC X(14) VALUE "California".
 03 FILLER PIC X(14) VALUE "Colorado".
 03 FILLER PIC X(14) VALUE "Connecticut".

CHAPTER 11 ■ CREATING TABULAR DATA

267

 03 FILLER PIC X(14) VALUE "Delaware".
 03 FILLER PIC X(14) VALUE "Florida".
 03 FILLER PIC X(14) VALUE "Georgia".
 03 FILLER PIC X(14) VALUE "Hawaii".
 03 FILLER PIC X(14) VALUE "Idaho".
 03 FILLER PIC X(14) VALUE "Illinois".
 03 FILLER PIC X(14) VALUE "Indiana".
 03 FILLER PIC X(14) VALUE "Iowa".
 03 FILLER PIC X(14) VALUE "Kansas".
 03 FILLER PIC X(14) VALUE "Kentucky".
 03 FILLER PIC X(14) VALUE "Louisiana".
 03 FILLER PIC X(14) VALUE "Maine".
 03 FILLER PIC X(14) VALUE "Maryland".
 03 FILLER PIC X(14) VALUE "Massachusetts".
 03 FILLER PIC X(14) VALUE "Michigan".
 03 FILLER PIC X(14) VALUE "Minnesota".
 03 FILLER PIC X(14) VALUE "Mississippi".
 03 FILLER PIC X(14) VALUE "Missouri".
 03 FILLER PIC X(14) VALUE "Montana".
 03 FILLER PIC X(14) VALUE "Nebraska".
 03 FILLER PIC X(14) VALUE "Nevada".
 03 FILLER PIC X(14) VALUE "New Hampshire".
 03 FILLER PIC X(14) VALUE "New Jersey".
 03 FILLER PIC X(14) VALUE "New Mexico".
 03 FILLER PIC X(14) VALUE "New York".
 03 FILLER PIC X(14) VALUE "North Carolina".
 03 FILLER PIC X(14) VALUE "North Dakota".
 03 FILLER PIC X(14) VALUE "Ohio".
 03 FILLER PIC X(14) VALUE "Oklahoma".
 03 FILLER PIC X(14) VALUE "Oregon".
 03 FILLER PIC X(14) VALUE "Pennsylvania".
 03 FILLER PIC X(14) VALUE "Rhode Island".
 03 FILLER PIC X(14) VALUE "South Carolina".
 03 FILLER PIC X(14) VALUE "South Dakota".
 03 FILLER PIC X(14) VALUE "Tennessee".
 03 FILLER PIC X(14) VALUE "Texas".
 03 FILLER PIC X(14) VALUE "Utah".
 03 FILLER PIC X(14) VALUE "Vermont".
 03 FILLER PIC X(14) VALUE "Virginia".
 03 FILLER PIC X(14) VALUE "Washington".
 03 FILLER PIC X(14) VALUE "West Virginia".
 03 FILLER PIC X(14) VALUE "Wisconsin".
 03 FILLER PIC X(14) VALUE "Wyoming".
02 FILLER REDEFINES StateNameValues.
 03 StateName PIC X(14) OCCURS 50 TIMES.

CHAPTER 11 ■ CREATING TABULAR DATA

268

01 ReportHeading.
 02 FILLER PIC X(35)
 VALUE " Electronics2Go Sales Report".

01 SubjectHeading.
 02 FILLER PIC X(43)
 VALUE "State Name Branch SalesId SalesTotal".

01 DetailLine.
 02 PrnStateName PIC X(14).
 88 SuppressStateName VALUE SPACES.
 02 PrnBranchId PIC BBX(5).
 88 SuppressBranchId VALUE SPACES.
 02 PrnSalespersonId PIC BBBBX(6).
 02 PrnSalespersonTotal PIC BB$$,$$9.99.

01 BranchTotalLine.
 02 FILLER PIC X(43)
 VALUE " Branch Total: ".
 02 PrnBranchTotal PIC $$$,$$9.99.

01 StateTotalLine.
 02 FILLER PIC X(40)
 VALUE " State Total : ".
 02 PrnStateTotal PIC $$,$$$,$$9.99.

01 FinalTotalLine.
 02 FILLER PIC X(39)
 VALUE " Final Total :".
 02 PrnFinalTotal PIC $$$,$$$,$$9.99.

01 SalespersonTotal PIC 9(4)V99.
01 BranchTotal PIC 9(6)V99.
01 StateTotal PIC 9(7)V99.
01 FinalTotal PIC 9(9)V99.

01 PrevStateNum PIC 99.
01 PrevBranchId PIC X(5).
01 PrevSalespersonId PIC X(6).

 PROCEDURE DIVISION.
Begin.
 OPEN INPUT SalesFile
 OPEN OUTPUT SalesReport
 WRITE PrintLine FROM ReportHeading AFTER ADVANCING 1 LINE
 WRITE PrintLine FROM SubjectHeading AFTER ADVANCING 1 LINE

 READ SalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSalesFile

CHAPTER 11 ■ CREATING TABULAR DATA

269

 MOVE StateNum TO PrevStateNum,
 MOVE StateName(StateNum) TO PrnStateName
 MOVE ZEROS TO StateTotal
 PERFORM SumSalesForState
 UNTIL StateNum NOT = PrevStateNum
 OR EndOfSalesFile
 MOVE StateTotal TO PrnStateTotal
 WRITE PrintLine FROM StateTotalLine AFTER ADVANCING 1 LINE
 END-PERFORM

 MOVE FinalTotal TO PrnFinalTotal
 WRITE PrintLine FROM FinalTotalLine AFTER ADVANCING 1 LINE

 CLOSE SalesFile, SalesReport
 STOP RUN.

SumSalesForState.
 WRITE PrintLine FROM SPACES AFTER ADVANCING 1 LINE
 MOVE BranchId TO PrevBranchId, PrnBranchId
 MOVE ZEROS TO BranchTotal
 PERFORM SumSalesForBranch
 UNTIL BranchId NOT = PrevBranchId
 OR StateNum NOT = PrevStateNum
 OR EndOfSalesFile
 MOVE BranchTotal TO PrnBranchTotal
 WRITE PrintLine FROM BranchTotalLine AFTER ADVANCING 1 LINE.

SumSalesForBranch.
 MOVE SalespersonId TO PrevSalespersonId, PrnSalespersonId
 MOVE ZEROS TO SalespersonTotal
 PERFORM SumSalespersonSales
 UNTIL SalespersonId NOT = PrevSalespersonId
 OR BranchId NOT = PrevBranchId
 OR StateNum NOT = PrevStateNum
 OR EndOfSalesFile
 MOVE SalespersonTotal TO PrnSalespersonTotal
 WRITE PrintLine FROM DetailLine AFTER ADVANCING 1 LINE
 SET SuppressBranchId TO TRUE
 SET SuppressStateName TO TRUE.

SumSalespersonSales.
 ADD ValueOfSale TO SalespersonTotal, BranchTotal, StateTotal, FinalTotal
 READ SalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-READ.

CHAPTER 11 ■ CREATING TABULAR DATA

270

ANS 85 Table Changes
The ANS 85 COBOL standard introduced a number of changes to tables. Among these changes is a method that lets
you create prefilled tables without using the REDEFINES clause, as long as the number of values is small. For large
amounts of data, the REDEFINES clause is still required.

The new method works by assigning the values to a group name defined over a subordinate table. For instance,
in Example 11-11, the data item Day actually declares the table, but I have given the table the overall group name
DayTable. Assigning the values to this group name fills the area of the table with the values.

Example 11-11. Creating a Prefilled Table Without the REDEFINES Clause

01 DayTable VALUE "MonTueWedThrFriSatSun".
 02 Day OCCURS 7 TIMES PIC X(3).

The ANS 85 COBOL standard also introduced some changes to the way tables are initialized. In the previous
versions of COBOL, initializing a table was never a problem if the elements of the table were elementary items. All that
was required was to move the initializing value to the table’s group name. For instance, the statement MOVE ZEROS TO
DriverTable initializes the following table to zeros:

01 DriverTable.
 02 StateDrivers PIC 9(7) OCCURS 50 TIMES.

But initializing a table was much more difficult if each element was a group item that contained different types of
data. For instance, in the following table, the StateDrivers part of the element had to be initialized to zeros, and the
StateName part had to be initialized to spaces. The only way do this was to initialize the items, element by element,
using iteration:

01 DriverTable.
 02 State OCCURS 50 TIMES.
 03 StateDrivers PIC 9(7).
 03 StateName PIC X(14).

The ANS 85 standard introduced a new way to initialize table elements that solves this problem. A table cannot
be initialized by assigning an initial value to each part of an element using the VALUE clause. The following description
initializes the StateDrivers part of the element to zeros and the StateName part to spaces:

01 DriverTable.
 02 State OCCURS 50 TIMES.
 03 StateDrivers PIC 9(7) VALUE ZEROS.
 03 StateName PIC X(14) VALUE SPACES.

This example shows the ANS 85 changes that allow table elements to be initialized when a program starts; but
sometimes data items need to be reinitialized while a program is running. The ANS 85 standard added the INITIALIZE
verb for this purpose. The INITIALIZE verb sets data items, including table elements, either to their MOVE fill value
(zero for numeric items, spaces for alphabetic or alphanumeric items) or to a specified compatible replacement value.
The metalanguage for the INITIALIZE verb is given in Figure 11-7.

CHAPTER 11 ■ CREATING TABULAR DATA

271

A large number of rules govern the operation of the INITIALIZE verb. For full details, please consult your COBOL
manual. To get a feel for how INITIALIZE operates, examine output produced by the code in Example 11-12.

Example 11-12. Example Uses of the INITIALIZE Verb

01 GroupItem.
 02 Data1 PIC X(7).
 02 Data2 PIC 9(5).
 02 Data3 PIC 99/99/99.
 02 Data4 PIC +99.99.
 02 Data5 PIC $$,$$9.99.
: : : : : : : : : : : :
PROCEDURE DIVISION.
Begin.
 MOVE ALL "-" TO GroupItem
 INITIALIZE GroupItem
 DISPLAY "Init1__" Data1 "__" Data2 "__" Data3 "__" Data4 "__" Data5.

 INITIALIZE GroupItem REPLACING ALPHANUMERIC BY "Michael"
 NUMERIC BY 54321.

 DISPLAY "Init2__" Data1 "__" Data2 "__" Data3 "__" Data4 "__" Data5.

 STOP RUN.

Summary
This chapter introduced the concept of tabular data. You learned how to create tables using the OCCURS clause and were
introduced to the notion of group items as table elements. I discussed multidimensional tables and showed how to
create, use, and graphically depict them. In the final section, you saw how to use the REDEFINES clause to create a table
prefilled with table values, and I discussed the table declaration changes that were introduced with the ANS 85 standard.

The next chapter discusses the other uses of the REDEFINES clause and introduces the similar but ill-favored
RENAMES clause. You learn about the importance of decimal arithmetic for the business and enterprise programming
domains and discover the use and purpose of the USAGE clause.

PROGRAMMING EXERCISE

Earlier in this chapter, I presented a problem specification and suggested an approach to solving the problem that

involved using a three-dimensional table. Although the table was defined in Example 11-7, no solution was given.

Because you have a problem and no solution, this is an excellent opportunity for you to get some practice using

three-dimensional tables.

Figure 11-7. Metalanguage for the INITIALIZE verb

CHAPTER 11 ■ CREATING TABULAR DATA

272

A subset of the U.S. census data has been made available to you by the U.S. Census Bureau (not really—this is

just the specification scenario) in an unordered sequential file called the CensusFile. The CensusFile contains

the age category (adult, teen, child), gender, state number, and car-ownership information of every person in the

country. Each record in the file has the following description:

Field Type Length Value

StateNum 9 2 1–50

Age 9 1 1 = Child
2 = Teen
3 = Adult

Gender 9 1 1 = Female
2 = Male

CarOwner X 1 Y or N

Write a program to process the CensusFile and produce a Population Details Report that displays the number of

males and females in each AgeCategory (Child, Teen, and Adult) in each state. The report format should be as

shown in Figure 11-8.

Specification Extension
Change the three-dimensional table so that it can be used to accumulate the number of car owners in each state.
Change the program so that the format of the report now conforms to the template in Figure 11-9.

 References
 1. Fowler GC, Glorfeld LW. COBOL tables: A proposed standard of presentation. SIGCSE

Bull. 1983; 15(1): 200-203. http://doi.acm.org/10.1145/952978.801046

 doi=10.1145/952978.801046

Figure 11-8. Template for the Population Details Report

Figure 11-9. Template for the Population Details Report that includes car ownership details

http://dx.doi.org/http://doi.acm.org/10.1145/952978.801046

273

CHAPTER 12

Advanced Data Declaration

In the last chapter, you learned how to create and use a one-dimensional prefilled table. In this chapter, I continue the
discussion of the REDEFINES clause and demonstrate how you can use it to create a two-dimensional prefilled table.

When I introduced the REDEFINES clause in the previous chapter, I did so informally. This chapter formally
introduces the REDEFINES clause, including the metalanguage syntax and the semantic rules that apply. It also
includes several examples of the other ways in which REDEFINES may be applied.

Because the RENAMES clause is similar to REDEFINES, I introduce RENAMES in this chapter. You learn about the
metalanguage syntax for the clause, explore the semantic rules, and see some examples of how to use RENAMES.

The sections discussing the REDEFINES and RENAMES clauses are followed by an introduction to the USAGE clause.
I discuss the advantages and disadvantages of USAGE IS DISPLAY (the default). I cover the metalanguage syntax and
the semantic rules and examine USAGE IS COMP, USAGE IS PACKED-DECIMAL, and USAGE IS INDEX in more detail.
Finally, you learn about the purpose and operation of the SYNCHRONIZED clause.

The final section discusses the importance of fixed-point decimal arithmetic to COBOL’s claim of fitness for
creating business or enterprise applications. You learn about the problems with doing financial and commercial
calculations using floating-point arithmetic. I discuss the Java BigDecimal class and highlight some of the problems
with using it, and I contrast COBOL’s native support for decimal arithmetic with the bolted-on capability provided by
BigDecimal.

The Redefines Clause
In the previous chapter, you used the REDEFINES clause to create a prefilled table of values. I noted at the time that the
REDEFINES clause has a number of other uses; this chapter discusses how you can use REDEFINES to achieve powerful
data-manipulation effects. However, before I discuss the other uses of REDEFINES, let’s revisit its use in creating
prefilled tables. Listing 11-4 used the REDEFINES clause to create a table prefilled with the names of the American
states. Although it was interesting to see how to create a prefilled table by laying down the values in memory and then
using REDEFINES to redefine the area of memory as a table, the mapping between the actual values in memory and the
table definition was straightforward because only a one-dimensional table was required. In Listing 12-1, later in this
section, you see how to create a prefilled two-dimensional table of values.

Specification: Aromamora Base Oil Sales Report
The following specification defines a program that demonstrates how to create and use a prefilled two-dimensional
table of values.

Aromamora PLC is a company that sells essential and base (carrier) oils to aromatherapists, health shops,
and other mass users of essential oils. Every month, details of the sales of base oils to these customers are gathered
together into a sales file (Listing 12-1.Dat in the code download). A program is required that produces a summary
report from this file. The report should show the value of the base oils purchased by each customer and should be
printed sequenced on ascending CustomerId.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

274

The Sales File

The sales file contains details of sales to all Aromamora customers. It is a sequential file ordered on ascending
CustomerId. The records in the sales file have the following description:

Field Type Length Value

CustomerId 9 5 0–99999

CustomerName X 20 -

OilId X 3 B01–B14

UnitSize 9 1 1/2/3

UnitsSold 9 3 1–999

Report Template

The report format is given in the template shown in Figure 12-1.

Notes

Here are some things to consider:

The • B in the OilId indicates that this is a base oil.

• UnitSize represents the size of the oil container purchased. There are only three sizes for base
oils: 1 (50ml), 2 (100ml), and 3 (200ml).

• ValueOfSales is the sum of the ValueOfSale calculated for each record.

Figure 12-1. Report template for Aromamora Summary Sales Report

CHAPTER 12 ■ ADVANCED DATA DECLARATION

275

• ValueOfSale is UnitsSold * UnitCost(OilNum,Unitsize).

The • OilName and UnitCost are obtained from a prefilled table of values (see the program
outline for details). The two-dimensional table required to hold these values is shown in
Figure 12-2.

Oil Costs Table

Aromamora sells 14 kinds of base oil. The cost of each type of base oil in each of the three container sizes (50ml, 100ml,
and 200ml) is given by the table in Figure 12-2. For instance, almond oil costs $02.00 for the 50ml size, $03.50 for
100ml size, and $06.50 for 200ml size.

Example 12-1 demonstrates how you can translate the information given in Figure 12-1 into a prefilled COBOL
table. You start by laying down in memory the information you want in the table. Obviously you have to omit the
dollar sign and decimal point because those are text and you need to do calculations on the data in the table. At this
point, you have a block of undifferentiated data in memory as follows:

Almond 020003500650
Aloe vera 047508501625
Apricot kernel 025004250775
Avocado 027504750875
Coconut 027504750895
Evening primrose037506551225
Grape seed 018503250600
Peanut 027504250795

Figure 12-2. Table of oil names and unit costs

CHAPTER 12 ■ ADVANCED DATA DECLARATION

276

Jojoba 072513252500
Macadamia 032505751095
Rosehip 052509951850
Sesame 029504250750
Walnut 027504550825
Wheatgerm 045007751425

The final step in creating the table is to use the REDEFINES clause to impose a table definition on the area of
memory, as shown in Example 12-1. Once the data is redefined, you can access it using the table. For instance,
OilName(9) = Jojoba, and UnitCost(9,2) = 1325.

Example 12-1. Table Definition of the Two-Dimensional Table Shown in Figure 12-1

01 OilsTable.
 02 OilTableValues.
 03 FILLER PIC X(28) VALUE "Almond 020003500650".
 03 FILLER PIC X(28) VALUE "Aloe vera 047508501625".
 03 FILLER PIC X(28) VALUE "Apricot kernel 025004250775".
 03 FILLER PIC X(28) VALUE "Avocado 027504750875".
 03 FILLER PIC X(28) VALUE "Coconut 027504750895".
 03 FILLER PIC X(28) VALUE "Evening primrose037506551225".
 03 FILLER PIC X(28) VALUE "Grape seed 018503250600".
 03 FILLER PIC X(28) VALUE "Peanut 027504250795".
 03 FILLER PIC X(28) VALUE "Jojoba 072513252500".
 03 FILLER PIC X(28) VALUE "Macadamia 032505751095".
 03 FILLER PIC X(28) VALUE "Rosehip 052509951850".
 03 FILLER PIC X(28) VALUE "Sesame 029504250750".
 03 FILLER PIC X(28) VALUE "Walnut 027504550825".
 03 FILLER PIC X(28) VALUE "Wheatgerm 045007751425".
 02 FILLER REDEFINES OilTableValues.
 03 BaseOil OCCURS 14 TIMES.
 04 OilName PIC X(16).
 04 UnitCost PIC 99V99 OCCURS 3 TIMES.

Program

This is a typical one-level control-break program. I have kept the program simple (see Listing 12-1) to allow you to
focus on the declaration and use of the two-dimensional table. Note that in a real situation, the oil-cost table would
not be static as it is in this program. The cost data is likely to change, so for maintenance reasons the table would
probably be instantiated from a file. A portion of the sales file used to the test the program and the summary report
produced from that file are shown in Figure 12-3 in the next section.

Listing 12-1. Aromamora Base Oils Summary Sales Report

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing12-1.
AUTHOR. Michael Coughlan.
* This program produces a summary report showing the sales of base oils
* to Aromamora customers by processing the OilSalesFile. The OilSalesFile is a
* sequential file ordered on ascending CustomerId. The report is required to be
* printed in ascending CustomerId order.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

277

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT BaseOilsSalesFile ASSIGN TO "Listing12-1.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT SummaryReport ASSIGN TO "Listing12-1.Rpt"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BaseOilsSalesFile.
01 SalesRec.
 88 EndOfSalesFile VALUE HIGH-VALUES.
 02 CustomerId PIC X(5).
 02 CustomerName PIC X(20).
 02 OilId.
 03 FILLER PIC X.
 03 OilNum PIC 99.
 02 UnitSize PIC 9.
 02 UnitsSold PIC 999.

FD SummaryReport.
01 PrintLine PIC X(45).

WORKING-STORAGE SECTION.
01 OilsTable.
 02 OilTableValues.
 03 FILLER PIC X(28) VALUE "Almond 020003500650".
 03 FILLER PIC X(28) VALUE "Aloe vera 047508501625".
 03 FILLER PIC X(28) VALUE "Apricot kernel 025004250775".
 03 FILLER PIC X(28) VALUE "Avocado 027504750875".
 03 FILLER PIC X(28) VALUE "Coconut 027504750895".
 03 FILLER PIC X(28) VALUE "Evening primrose037506551225".
 03 FILLER PIC X(28) VALUE "Grape seed 018503250600".
 03 FILLER PIC X(28) VALUE "Peanut 027504250795".
 03 FILLER PIC X(28) VALUE "Jojoba 072513252500".
 03 FILLER PIC X(28) VALUE "Macadamia 032505751095".
 03 FILLER PIC X(28) VALUE "Rosehip 052509951850".
 03 FILLER PIC X(28) VALUE "Sesame 029504250750".
 03 FILLER PIC X(28) VALUE "Walnut 027504550825".
 03 FILLER PIC X(28) VALUE "Wheatgerm 045007751425".
 02 FILLER REDEFINES OilTableValues.
 03 BaseOil OCCURS 14 TIMES.
 04 OilName PIC X(16).
 04 UnitCost PIC 99V99 OCCURS 3 TIMES.

01 ReportHeadingLine PIC X(41)
 VALUE " Aromamora Base Oils Summary Sales Report".

CHAPTER 12 ■ ADVANCED DATA DECLARATION

278

01 TopicHeadingLine.
 02 FILLER PIC X(9) VALUE "Cust Id".
 02 FILLER PIC X(15) VALUE "Customer Name".
 02 FILLER PIC X(7) VALUE SPACES.
 02 FILLER PIC X(12) VALUE "ValueOfSales".

01 ReportFooterLine PIC X(43)
 VALUE "************** End of Report **************".

01 CustSalesLine.
 02 PrnCustId PIC B9(5).
 02 PrnCustName PIC BBBX(20).
 02 PrnCustTotalSales PIC BBB$$$$,$$9.99.

01 CustTotalSales PIC 9(6)V99.
01 PrevCustId PIC X(5).
01 ValueOfSale PIC 9(5)V99.

PROCEDURE DIVISION.
Print-Summary-Report.
 OPEN OUTPUT SummaryReport
 OPEN INPUT BaseOilsSalesFile

 WRITE PrintLine FROM ReportHeadingLine AFTER ADVANCING 1 LINE
 WRITE PrintLine FROM TopicHeadingLine AFTER ADVANCING 2 LINES

 READ BaseOilsSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-Read

 PERFORM PrintCustomerLines UNTIL EndOfSalesFile

 WRITE PrintLine FROM ReportFooterLine AFTER ADVANCING 3 LINES

 CLOSE SummaryReport, BaseOilsSalesFile
 STOP RUN.

PrintCustomerLines.
 MOVE ZEROS TO CustTotalSales
 MOVE CustomerId TO PrnCustId, PrevCustId
 MOVE CustomerName TO PrnCustName

 PERFORM UNTIL CustomerId NOT = PrevCustId
 COMPUTE ValueOfSale = UnitsSold * UnitCost(OilNum, UnitSize)
 ADD ValueOfSale TO CustTotalSales
 READ BaseOilsSalesFile
 AT END SET EndOfSalesFile TO TRUE
 END-Read
 END-PERFORM

 MOVE CustTotalSales TO PrnCustTotalSales
 WRITE PrintLine FROM CustSalesLine AFTER ADVANCING 2 LINES.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

279

Test Data and Results

Due to space constraints, only a portion of the test data file is shown (see Figure 12-3).

Figure 12-3. Partial test data and results produced

CHAPTER 12 ■ ADVANCED DATA DECLARATION

280

The REDEFINES Clause
So far, I have dealt informally with the REDEFINES clause. You have seen how to use it to create a prefilled table of
values, but I have not formally defined what REDEFINES does or explored its other uses.

When a file contains different types of records, you must create a separate record description for each record type
in the file’s FD entry. You have seen that all these record descriptions map on to the same area of storage. They are, in
effect, redefinitions of the area of storage. What the REDEFINES clause allows you to do is to achieve the same effect for
units smaller than a record and in parts of the DATA DIVISION other than the FILE SECTION. The REDEFINES clause lets
you give different data descriptions to the same area of storage.

REDEFINES Syntax
The syntax metalanguage for the REDEFINES clause is given in Figure 12-4. Identifier1 is the data item that originally
defines the area of storage, and Identifier2 is the data item that redefines it.

REDEFINES Notes
The metalanguage defines the syntax of the REDEFINES clause, but there are also a number of semantic rules that must
be obeyed when you use REDEFINES:

The • REDEFINES clause must immediately follow Identifier2 (that is, REDEFINES must come
before PIC [see Example 12-2]).

The level numbers of • Identifier1 and Identifier2 must be the same and cannot be 66 or 88.

The data description of • Identifier1 cannot contain an OCCURS clause (that is, you can’t
redefine a table element).

If there are multiple redefinitions of the same area of storage, then they must all redefine the •
data item that originally defined the area (see Example 12-5).

The redefining entries (• Identifier2) cannot contain VALUE clauses except in condition
name entries.

No entry with a level number lower (that is, higher in the hierarchy) than the level number of •
Identifier1 and Identifier2 can occur between Identifier1 and Identifier2.

Entries redefining the area must immediately follow those that originally defined it.•

Only entries subordinate to • Identifier1 are allowed between Identifier1 and Identifier2.

The • REDEFINES clause must not be used for records (01 level) described in the FILE SECTION
because multiple 01 entries for the same file are implicit redefinitions of the first 01 level
record.

Figure 12-4. Syntax metalanguage for the REDEFINES clause

CHAPTER 12 ■ ADVANCED DATA DECLARATION

281

REDEFINES Examples
The best way to understand how the REDEFINES clause works is to explore some of the ways it may be used through a
number of examples.

REDEFINES Example 1

Some COBOL statements, such as UNSTRING, require their receiving fields to be alphanumeric (PIC X) data items. This
is inconvenient if the value of the data item is actually numeric, because then a MOVE is required to place the value into
a numeric item. If the value contains a decimal point, this creates even more difficulties.

For example, suppose an UNSTRING statement has just extracted the text value “5432195” from a string, and you
want to move this value to a numeric item described as PIC 9(5)V99. An ordinary MOVE is not going to work because
the computer will not know that you want the item treated as if it were the value 654321.95.

The REDEFINES clause allows you to solve this problem neatly because you can UNSTRING the number into
TextValue and then treat TextValue as if it were described as PIC 9(5)V99 (see Example 12-2). If TextValue contains the
alphanumeric value “65432195”, then NumericValue, which REDEFINES it, sees the value as 654321.95 (see Figure 12-5).

Example 12-2. Redefining an Alphanumeric Item as a Decimal Data Item

01 RedefinesExample1.
 02 TextValue PIC X(8).
 02 NumericValue REDEFINES TextValue PIC 9(6)V99.

REDEFINES Example 2

The first example showed how you can use the REDEFINES clause to treat a set of alphanumeric digits as a decimal
number. This example explores a similar problem. When a program ACCEPTs a decimal number from a user, the
decimal point is included. This is a problem because this decimal point is a text character. If you move a numeric
literal (such as 1234.55) that contains a decimal point into a numeric data item that contains an assumed decimal
point (such as PIC 9(5)V99), the actual and assumed decimal points align. This does not happen when you move an
item containing the decimal point text character. In fact, if you move an item containing an actual decimal point
into a numeric data item and then try to perform an arithmetic calculation on that data item, the program will crash
(halt unexpectedly).

Figure 12-5. Memory model showing the result of redefinition

CHAPTER 12 ■ ADVANCED DATA DECLARATION

282

A solution to this problem is given in Example 12-3. When a number containing an actual decimal point is
accepted from the user, the UNSTRING verb is used to split the input string into the digits before the decimal point and
those after the decimal point. Although WorkArea contains only numeric digits, because it is a group item, its type is
alphanumeric, and so it can’t be used in a calculation. The solution is to redefine WorkArea as WorkNum, which is a
numeric data item that can be used in calculations. A model of the redefined data items is given in Figure 12-6.

Example 12-3. Redefining Two Data Items as a Single Numeric Item

WORKING-STORAGE SECTION.
01 InputString PIC X(8).

01 WorkArea.
 02 Fnum PIC 9(5) VALUE ZEROS.
 02 Snum PIC 99 VALUE ZEROS.
01 WorkNum REDEFINES WorkArea PIC 99999V99.

01 EditedNum PIC ZZ,ZZ9.99.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter a decimal number - " WITH NO ADVANCING
 ACCEPT InputString
 UNSTRING InputString DELIMITED BY ".", ALL SPACES
 INTO Fnum, Snum
 MOVE WorkNum TO EditedNum
 DISPLAY "Decimal Number = " EditedNum
 ADD 10 TO WorkNum
 MOVE WorkNum TO EditedNum
 DISPLAY "Decimal Number = " EditedNum

REDEFINES Example 3

Working with percentages often presents a problem. If the percentage is held as an integer, then calculations are
complicated by having to divide by 100. For instance, COMPUTE PercentOfBase = BaseAmount * PercentToApply /100.

On the other hand, if the percentage is held as a decimal fraction, then calculations are made simpler but
communication with users is complicated because now they have to input or print the percentage as a decimal
fraction rather than a whole number.

Figure 12-6. Model showing WorkArea, Fnum, and Snum redefined as WorkNum

CHAPTER 12 ■ ADVANCED DATA DECLARATION

283

The solution is to take in the percentage as an integer value and then use REDEFINES to treat it as a decimal
fraction. Example 12-4 is a program fragment that shows how this works.

Example 12-4. Using REDEFINES to Allow Different Views of a Percentage Value

DATA DIVISION.
WORKING-STORAGE SECTION.
01 PercentToApply PIC 9(3).
01 Percentage REDEFINES PercentToApply PIC 9V99.

01 BaseAmount PIC 9(5) VALUE 10555.
01 PercentOfBase PIC ZZ,ZZ9.99.
01 PrnPercent PIC ZZ9.

PROCEDURE DIVISION.
Begin.
 MOVE 23 TO PercentToApply
 COMPUTE PercentOfBase = BaseAmount * Percentage
 DISPLAY "23% of 10555 is = " PercentOfBase
 MOVE PercentToApply to PrnPercent
 DISPLAY "Percentage applied was " PrnPercent "%"
 STOP RUN.

REDEFINES Example 4

The REDEFINES clause is also useful when you need to treat a numeric item as if it had its decimal point in a different
place. For instance, Example 12-5 shows how you can use the REDEFINES clause to provide time conversions between
seconds, milliseconds, microseconds, and nanoseconds.

The main purpose of Example 12-5 is to illustrate the rule that if there are multiple redefinitions of an area of
storage, they must all refer to the data item that originally defined the area of storage.

Example 12-5. Time Conversion by Multiple Redefinition

WORKING-STORAGE SECTION.
01 NanoSecs PIC 9(10).
01 MicroSecs REDEFINES NanoSecs PIC 9999999V999.
01 MilliSecs REDEFINES NanoSecs PIC 9999V999999.
01 Seconds REDEFINES NanoSecs PIC 9V999999999.

01 EditedNum PIC Z,ZZZ,ZZZ,ZZ9.99.

PROCEDURE DIVISION.
Begin.
 MOVE 1234567895 TO NanoSecs
 MOVE NanoSecs TO EditedNum
 DISPLAY EditedNum " NanoSecs"

CHAPTER 12 ■ ADVANCED DATA DECLARATION

284

 MOVE MicroSecs TO EditedNum
 DISPLAY EditedNum " MicroSecs"

 MOVE MilliSecs TO EditedNum
 DISPLAY EditedNum " MilliSecs"

 MOVE Seconds TO EditedNum
 DISPLAY EditedNum " Seconds"
 STOP RUN.

The RENAMES Clause
As you have seen, the REDEFINES clause allows you to give a new data definition and name to an area of storage. The
RENAMES clause lets you give a new name (or alias) to a data item or a collection of data items. This can be useful when
you want to regroup a number of elementary data items in a record so that they can belong to the original as well as to
the new group.

The RENAMES clause is used with the special level number 66. In the same way that condition names are
sometimes called level eighty-eights, RENAMES data items are sometimes called level sixty-sixes.

Because of the maintenance problems associated with RENAMES , it has largely fallen into disuse; and in some
programming shops, it is banned. I include it here only for completeness.

RENAMES Syntax
The syntax metalanguage for the RENAMES clause is given in Figure 12-7. Identifier2 [THRU Identifier3] is the
original area of storage, and Identifier1 is the new name that you can use to manipulate it.

RENAMES Notes
The syntax diagram in Figure 12-7 is modified by the following semantic rules:

The level number of • Identifier2 and Identifier3 cannot be 77, 88, 01, or 66.

• Identifier2 and Identifier3 must not contain an OCCURS clause or be subordinate to a data
item that contains an OCCURS clause.

No data item between • Identifier2 and Identifier3 can contain an OCCURS clause.

• RENAMES entries must follow the last data-description entry of a record (can’t be in the middle
of a record description).

Figure 12-7. RENAMES metalanguage

CHAPTER 12 ■ ADVANCED DATA DECLARATION

285

RENAMES Examples
Listing 12-2 contains a number of examples that show how to use the RENAMES clause.

Listing 12-2. RENAMES Examples

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing12-2
AUTHOR. Michael Coughlan.
* RENAMES clause examples
DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentRec.
 02 StudentId PIC 9(8) VALUE 12345678.
 02 GPA PIC 9V99 VALUE 3.25.
 02 ForeName PIC X(6) VALUE "Matt".
 02 SurName PIC X(8) VALUE "Cullen".
 02 Gender PIC X VALUE "M".
 02 PhoneNumber PIC X(14) VALUE "3536120228233".

66 PersonalInfo RENAMES ForeName THRU PhoneNumber.
66 CollegeInfo RENAMES StudentId THRU SurName.
66 StudentName RENAMES ForeName THRU SurName.

01 ContactInfo.
 02 StudName.
 03 StudForename PIC X(6).
 03 StudSurname PIC X(8).
 02 StudGender PIC X.
 02 StudPhone PIC X(14).

66 MyPhone RENAMES StudPhone.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Example 1"
 DISPLAY "All information = " StudentRec
 DISPLAY "College info = " CollegeInfo
 DISPLAY "Personal Info = " PersonalInfo

 DISPLAY "Example 2"
 DISPLAY "Combined names = " StudentName

 MOVE PersonalInfo TO ContactInfo

 DISPLAY "Example 3"
 DISPLAY "Name is " StudName
 DISPLAY "Gender is " StudGender
 DISPLAY "Phone is " StudPhone

 DISPLAY "Example 4"
 DISPLAY "MyPhone is " MyPhone
 STOP RUN.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

286

Listing Notes
Listing 12-2 contains a number of RENAMES clause examples. The first example uses the RENAMES clause to rename
sections of the StudentRec to allow the college and personal information parts of the record to be accessed separately.
No new data storage is created when this is done, but the existing storage is given new names. This example also
shows that multiple, overlapping, RENAMES may be used.

The second example renames the elementary data items ForeName and SurName as StudentName so they can be
treated as a single item (that is, members of a group item). For the purpose of contrast, in the record ContactInfo I
made these items subordinate to a group item.

The third example shows that the renamed data can be manipulated using the new name. I moved PersonalInfo
to ContactInfo and then displayed the individual fields in ContactInfo.

The final example shows that you can also use RENAMES to rename a single item.

The USAGE Clause
Computers store their data in the form of binary digits. Apart from cardinal numbers (positive integers), all other data
stored in the computer’s memory uses some sort of formatting convention.

For instance, text data is stored using an encoding sequence like ASCII or EBCDIC. An encoding system is simply
a convention that specifies that a particular set of bits represents a particular character. For instance, Figure 12-8
shows the bit configuration used to represent an uppercase A in the ASCII and EBCDIC encoding sequences.

Representation of Numeric Data
COBOL gives you a lot of control over how numeric data is held in memory. In COBOL, numeric data can be held
as text digits (ASCII digits), as twos-complement binary numbers, or as decimal numbers (using binary-coded
decimal [BCD]).

You use the USAGE clause to specify how a data item is to be stored in the computer’s memory. Every data item
declared in a COBOL program has a USAGE clause—even when no explicit clause is specified. When there is no explicit
USAGE clause, the default USAGE IS DISPLAY is applied. USAGE IS DISPLAY has been used in all the examples so far.

Disadvantage of USAGE DISPLAY

For text items, or for numeric items that will not be used in a computation (phone numbers, account numbers, and
so son), the default of USAGE IS DISPLAY presents no problems. But the default usage is not the most efficient way to
store data that will be used in a calculation.

When numeric items (PIC 9 items) have a usage of DISPLAY, they are stored as ASCII digits (see the ASCII digits
0–9 in the ASCII table in Figure 12-9).

Figure 12-8. Uppercase A in the ASCII and EBCDIC encoding sequences

CHAPTER 12 ■ ADVANCED DATA DECLARATION

287

Consider the program fragment in Example 12-6. Figure 12-10 shows what would happen if computations were
done directly on numbers stored in this format. Because none of the data items have an explicit USAGE clause, they
default to USAGE IS DISPLAY. This means the values in the variables Num1, Num2, and Num3 are stored as ASCII digits.
This in turn means the digit 4 in Num1 is encoded as 00110100 and the digit 1 in Num2 is encoded as 00110001. When
these binary numbers are added together, the result, as shown in Figure 12-10, is the binary value 01100101, which is
the ASCII code for the lowercase letter e.

Example 12-6. Arithmetic on Items Held as USAGE IS DISPLAY

Num1 PIC 9 VALUE 4.
Num2 PIC 9 VALUE 1.
Num3 PIC 9 VALUE ZERO.
: : : : : : : : :
ADD Num1, Num2 GIVING Num3.

Figure 12-9. Table of ASCII digits

Figure 12-10. Adding two ASCII digits gives the wrong result

When calculations are done with numeric data items using USAGE IS DISPLAY, the computer has to convert the
numeric values to their binary equivalents before the calculation can be done. When the result has been computed,
the computer must reconvert it to ASCII digits. Conversion to and from ASCII digits slows down computations.

For this reason, data that is heavily involved in computation is often declared using one of the usages optimized
for computation, such as USAGE IS COMPUTATIONAL.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

288

Advantage of USAGE IS DISPLAY

Although it is computationally inefficient, there are a number of advantages to holding numeric data as text digits.
One obvious advantage is that USAGE DISPLAY items can be output to the computer screen by the DISPLAY verb
without the need for conversion. Another advantage is portability. Files whose data is encoded as text can be
processed without difficulty on different makes of computers or using other programming languages. In contrast, the
chosen binary formats of some computers and the Big Endian/Little Endian byte order preference of others means
that non-text files produced on one make of computer are often difficult to read on another make of computer or even
using another programming language or utility program on the same computer.

STORAGE OF MULTIBYTE NUMBERS

Some computers store numeric binary values using a byte order where the low-order byte of a number is stored

at the lowest memory address, and the high-order byte at the highest address. This is known as the Little Endian

byte order. For instance, a four-byte-long integer value would be stored as

Byte0 at BaseAddress+0
Byte1 at BaseAddress+1
Byte2 at BaseAddress+2
Byte3 at BaseAddress+3

In contrast, in Big Endian computers, the high-order byte of the number is stored at the lowest memory address,

and the low-order byte at the highest address. For instance:

Byte3 at BaseAddress +0
Byte2 at BaseAddress +1
Byte1 at BaseAddress +2

Byte0 at BaseAddress +3

The advantages of the USAGE IS DISPLAY format and the speed of modern computers means that the USAGE
clause is an optimization that is only worth doing if the data item will be used in thousands of computations.

USAGE Clause Syntax

As you have seen, the default representation (USAGE IS DISPLAY) used by COBOL for numeric data items can
negatively impact the speed of computations. USAGE is used for purposes of optimization of both speed and storage. It
allows you to control the way data items (normally numeric data items) are stored in memory. One important point to
note is that because computers can be quite different under the skin (for instance, register size and Endian order), the
COBOL standard leaves the actual implementation of the binary data items to the compiler implementer. This means
a COMP item on one computer may not be exactly the same as a COMP item on another computer.

The metalanguage syntax diagram for the USAGE clause is given in Figure 12-11, and some example declarations
are shown in Example 12-7.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

289

Example 12-7. Example USAGE Clause Declarations

01 Num1 PIC 9(5)V99 USAGE IS COMP.
01 Num2 PIC 99 USAGE IS PACKED-DECIMAL.
01 IdxItem USAGE IS INDEX.

01 FirstGroup COMP.
 02 Item1 PIC 999.
 02 Item2 PIC 9(4)V99.
 02 Item3 PIC S9(5) COMP SYNC.

Notes

Here are some things to note:

The • USAGE clause may be used with any data description entry except those with level
numbers of 66 or 88.

When the • USAGE clause is declared for a group item, the usage specified is applied to
every item in the group. The group item itself is still treated as an alphanumeric data item
(see FirstGroup in Example 12-7).

The • USAGE clause of an elementary item cannot override the USAGE clause of the group to
which it is subordinate (for instance, in Example 12-7, the USAGE of Item3 is COMP because that
is the USAGE of FirstGroup).

• USAGE IS COMPUTATIONAL and COMP or BINARY are synonyms of one another.

The • USAGE IS INDEX clause is used to provide an optimized table subscript.

Any item declared with • USAGE IS INDEX can only appear in

A • SEARCH or SET statement

A relation condition•

The • USING phrase of the PROCEDURE DIVISION

The • USING phrase of the CALL statement

The picture string of a • COMP or PACKED-DECIMAL item can contain only the symbols 9, S, V, and/or P.

The picture clause used for • COMP and PACKED-DECIMAL items must be numeric.

Figure 12-11. The USAGE clause metalanguage

CHAPTER 12 ■ ADVANCED DATA DECLARATION

290

Bug Alert ■ Group items are always treated as alphanumeric, and this can cause problems when there are

subordinate COMP items. For instance, suppose you defined a group of data items as follows:

01 SecondGroup.

 02 NumItem1 PIC 9(3)V99 USAGE IS COMP.

 02 NumItem2 PIC 99V99 USAGE IS COMP.

and then applied a statement such as MOVE ZEROS TO SecondGroup to it.

On the surface, it appears that the statement is moving the numeric value 0 to NumItem1 and NumItem2; but because

SecondGroup is an alphanumeric item, what is actually moved into NumItem1 and NumItem2 is the ASCII digit “0”. When

an attempt is made to use NumItem1 or NumItem2 in a calculation, the program will crash because these data items

contain non-numeric data.

COMP Explanation

COMP items are held in memory as pure binary twos-complement numbers. You don’t have to understand how
twos-complement numbers work or how they are stored, but you must understand the storage requirements for fields
described as COMP. The storage requirements are shown in Table 12-1. For instance, the declaration

01 TotalCount PIC 9(7) USAGE IS COMP

requires a LongWord (4 bytes) of storage.

Table 12-1. Storage Requirements of COMP Data Items

Number of Digits Storage Required

PIC 9(1 to 4) 1 Word (2 bytes)

PIC 9(5 to 9) 1 LongWord (4 bytes)

PIC 9(10 to 18) 1 QuadWord (8 bytes)

PACKED-DECIMAL Explanation

Data items declared as PACKED-DECIMAL are held in binary-coded decimal (BCD) form. Instead of representing the
value as a single binary number, the binary value of each digit is held in a nibble (half a byte). The sign is held in a
separate nibble in the least significant position of the item (see Figure 12-12).

CHAPTER 12 ■ ADVANCED DATA DECLARATION

291

The SYNCHRONIZED Clause

The SYNCHRONIZED clause is sometimes used with USAGE IS COMP or USAGE IS INDEX items. It is used to optimize
speed of processing, but it does so at the expense of increased storage requirements.

Many computer memories are organized in such a way that there are natural addressing boundaries, such as word
boundaries. If no special action is taken, some data items in memory may straddle these boundaries. This may cause
processing overhead because the CPU may need two fetch cycles to retrieve the data from memory. The SYNCHRONIZED
clause is used to explicitly align COMP and INDEX items along their natural word boundaries. Without SYNCHRONIZED,
data items are aligned on byte boundaries. The metalanguage for SYNCHRONIZED is given in Figure 12-13.

Figure 12-12. Memory representation of BCD numbers

Figure 12-13. Metalanguage for the SYNCHRONIZED clause

The effect of the SYNCHRONIZED clause is implementation dependent. You need to read your implementer manual
to see how it works on your computer (in some cases it may have no effect). To illustrate how SYNCHRONIZED works in
general, assume that a COBOL program is running on a word-oriented computer where the CPU fetches data from
memory a word at a time. Suppose the program performs a calculation on the number stored in the variable TwoBytes
(as shown in Figure 12-14). Because of the way the data items have been declared, the number stored in TwoBytes
straddles a word boundary. In order to use the number, the CPU has to execute two fetch cycles: one to get the first
part of the number in Word2 and the second to get the second part of the number in Word3. This double fetch slows
down calculations.

Figure 12-14. With no SYNCHRONIZED clause, numbers may straddle word boundaries

When the SYNCHRONIZED clause is used, as shown in Figure 12-15, TwoBytes is aligned along the word boundary,
so the CPU only has to do one fetch cycle to retrieve the number from memory. This speeds up processing, but at the
expense of wasting some storage (the second byte of Word2 is no longer used).

CHAPTER 12 ■ ADVANCED DATA DECLARATION

292

Nonstandard USAGE Extensions
The USAGE clause is one of the areas where many implementers have introduced extensions to the COBOL standard. It
is not uncommon to see COMP-1, COMP-2, COMP-3, COMP-4, COMP-5, and POINTER usage items in programs written using
these extensions.

Even though COMP-1 and COMP-2 are extensions to the COBOL standard, many implementers seem to use
identical representations for these usages. Comp-1 is usually defined as a single-precision, floating-point number,
adhering to the IEEE specification for such numbers (Real or float in typed languages). Comp-2 is usually defined as
an IEEE double-precision, floating-point number (LongReal or double in typed languages). COMP-3 items are usually
defined as BCD numbers. The official introduction of PACKED-DECIMAL in the ANS 85 version of COBOL has made this
extension unnecessary.

Decimal Arithmetic
One of COBOL’s strengths, and one of its main claims to fitness for writing business and enterprise applications, is
its native support for fixed-point decimal arithmetic. Until the problems associated with floating-point arithmetic
are pointed out to them, most programmers are not even aware that there is a problem. In the Java community, this
is such a problem that even now articles and forum posts are still produced warning of the dangers of using float or
double for currency calculations.

The problem with floating-point arithmetic is this: binary floating-point numbers (such as those with a type of
real, float, or double) cannot represent common decimal fractions exactly. For instance, common decimal fractions
like 0.1 do not have a terminating binary representation. Just as 1/3 is a repeating fraction in decimal, 1/10 is a repeating
fraction in binary. As a result, floating-point numbers can’t be used safely for financial calculations. In fact, they cannot
be used for any calculations where the result produced is required to match those that might be calculated by hand.

In an article on the Java Performance Tuning Guide1, Mikhail Vorontsov emphasizes this point when he notes
that double calculations are not precise even for simple operations such as addition and subtraction. For instance,
he notes that the Java statement

System.out.println("362.2 - 362.6 = " + (362.2 - 362.6));

produces the output

362.2 - 362.6 = -0.4000000000000341

The advantage of doing computations using fixed-point decimal arithmetic, as COBOL does, is that everyday
numbers such as 0.1 can be represented exactly and the results of COBOL calculations do exactly match those that
might be produced by hand.

Doing computations using floating-point arithmetic causes tiny inaccuracies that lead to unacceptable errors
when taken over millions of computations. For instance, suppose you are required to calculate a tax of 15% on a 70-cent
telephone call that is then rounded to the nearest cent2. Using the Java compiler at compileonline.com, the calculation
0.70 * 1.15 produces a result of 0.8049999999999999, which rounds down to 0.80 cents. The correct result should

Figure 12-15. With the SYNCHRONIZED, clause numbers are aligned along word boundaries

http://compileonline.com/

CHAPTER 12 ■ ADVANCED DATA DECLARATION

293

have been 0.805, which would round up to 0.81 cents. This difference of a cent per calculation, when taken over a
million calculations of this kind, would result in an undercharge of ten thousand dollars.

If floating-point arithmetic is so problematic, how do languages that do not have native support for fixed-point
decimal arithmetic deal with the problem? Nowadays, they implement a class to support decimal arithmetic operations.
However, implementing such a class is not a trivial undertaking. Java’s original implementation of the BigDecimal class
was so flawed that IBM raised a Java Specification Request (JSR)2 detailing the problems and requesting changes. These
changes were implemented and shipped with Java 1.5 in 2004.

So does the revised BigDecimal class solve the problems with decimal arithmetic in Java? Only partly; decimal
arithmetic in Java is implemented as a class instead of as a native type, and computations using the class are
cumbersome, unnatural, and slow. For instance, Vorontsov1 found that 100 million BigDecimal calculations took
8.975 seconds, while the same number of double calculations took only 0.047 seconds. BigDecimal operations can be
called unnatural in the sense that Java floating-point numbers and integers can use the standard assignment operator
(=) and the standard arithmetic operators (+ - / *), whereas the BigDecimal class has to use its class methods. For
instance, to multiply two BigDecimal numbers, you might use a statement like

calcResult = num1.multiply(num2);

instead of

calcResult = num1 * num2;

Early in Chapter 1, I showed you a Java program that used the BigDecimal class and asked you to compare it to
the COBOL version for readability. I was confident then that you would be able to appreciate the readability of the
COBOL version even though at the time you had not yet been introduced to the elements of the language. However,
now that we have a more level playing field, let’s look at those programs again (reprinted Listings 1-1 and 1-2).

Listing 1-1. COBOL Version

IDENTIFICATION DIVISION.
PROGRAM-ID. SalesTax.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 beforeTax PIC 999V99 VALUE 123.45.
01 salesTaxRate PIC V999 VALUE .065.
01 afterTax PIC 999.99.
PROCEDURE DIVISION.
Begin.
 COMPUTE afterTax ROUNDED = beforeTax + (beforeTax * salesTaxRate)
 DISPLAY "After tax amount is " afterTax.

Listing 1-2. Java Version (from http://caliberdt.com/tips/May03_Java_BigDecimal_Class.htm)

import java.math.BigDecimal;
public class SalesTaxWithBigDecimal
{
 public static void main(java.lang.String[] args)
 {
 BigDecimal beforeTax = BigDecimal.valueOf(12345, 2);
 BigDecimal salesTaxRate = BigDecimal.valueOf(65, 3);
 BigDecimal ratePlusOne = salesTaxRate.add(BigDecimal.valueOf(1));

http://caliberdt.com/tips/May03_Java_BigDecimal_Class.htm

CHAPTER 12 ■ ADVANCED DATA DECLARATION

294

 BigDecimal afterTax = beforeTax.multiply(ratePlusOne);
 afterTax = afterTax.setScale(2, BigDecimal.ROUND_HALF_UP);
 System.out.println("After tax amount is " + afterTax);
 }
}

The COBOL version uses native fixed-point decimal arithmetic and is able to use all the standard arithmetic
operators. The Java version has to use the BigDecimal methods to do even simple calculations. The COBOL program
is 10 lines and 335 characters long, whereas the Java program is 13 lines and 484 characters long. Reminded me again.
Which one is the verbose language?

Summary
This chapter explored the operation of advanced data-declaration clauses such as the REDEFINES clause, the RENAMES
clause, and the USAGE clause. It showed how you can use REDEFINES clauses to redefine an area of storage with a new
name and new data description. You saw how to use RENAMES to group a set of data items under a new name. You
also learned how to use the USAGE clause to change the default DISPLAY data format to one of the binary formats
such as COMPUTATIONAL or PACKED-DECIMAL. The operation of these binary formats was explored in more depth, and
the computational efficiency of the binary formats was weighed against the portability of the DISPLAY format. You
investigated the operation-modifying SYNCHRONIZED clause and learned about the USAGE clause extensions provided
by many COBOL implementers. The chapter ended with a discussion of the problems inherent in using floating-point
arithmetic for financial and commercial calculations and the contrast between COBOL’s native support for decimal
arithmetic and the bolted-on capability provided by Java’s BigDecimal class.

The next chapter returns to the topic of tabular data to introduce the SEARCH and SEARCH ALL verbs. Searching
tabular data for a particular value is a common operation, but it can be tricky to get the search algorithms right. For
this reason, COBOL provides SEARCH and SEARCH ALL. The SEARCH ALL verb allows you to apply a binary search to a
table, and SEARCH applies a linear search.

LANGUAGE KNOWLEDGE EXERCISES

Sometimes the most instructive lessons arise from the mistakes you make. The debugging exercises that follow

are based on some programming errors I made when I was learning to program in COBOL.

Locate your 2B pencil, and provide answers to the problems.

The Problems
The first two programs go into an infinite loop (never halt) and have to be stopped by the user. The third program
sometimes crashes with the error message shown in the accompanying runs. The fourth program sometimes goes
into an infinite loop.

Examine each program, and use the accompanying runs to discover the bug or bugs responsible for the problem.
Identify the problem, and show how you would correct the program to make it work correctly.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

295

Program 1

This program goes into an infinite loop. Examine the program in Listing 12-3 and the program output and try to figure
out what is going wrong. Identify the problem, and suggest a solution.

Listing 12-3. Program Does Not Halt

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing12-3.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Counters.
 02 Counter1 PIC 99.
 02 Counter2 PIC 99.
 02 Counter3 PIC 9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Debug 1. Discover why I can't stop."
 PERFORM EternalLooping VARYING Counter1
 FROM 13 BY -5 UNTIL Counter1 LESS THAN 2
 AFTER Counter2 FROM 15 BY -4
 UNTIL Counter2 LESS THAN 1
 AFTER Counter3 FROM 1 BY 1
 UNTIL Counter3 GREATER THAN 5

 STOP RUN.

EternalLooping.
 DISPLAY "Counters 1, 2 and 3 are -> "
 Counter1 SPACE Counter2 SPACE Counter3.

Answer:
__
__
__
__
__
__
__
__
__
__

CHAPTER 12 ■ ADVANCED DATA DECLARATION

296

Program 2

This program also goes into an infinite loop. Examine the program in Listing 12-4 and the program output, and try to
figure out what is going wrong. Identify the problem, and suggest a solution.

Listing 12-4. What Is Wrong with This Program?

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing12-4.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Counters.
 02 Counter1 PIC 99.
 02 Counter2 PIC 9.
 02 Counter3 PIC 9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Debug2. Why can't I stop?"
 PERFORM EternalLooping VARYING Counter1
 FROM 1 BY 1 UNTIL Counter1 GREATER THAN 25
 AFTER Counter2 FROM 1 BY 1
 UNTIL Counter2 GREATER THAN 9
 AFTER Counter3 FROM 1 BY 1
 UNTIL Counter3 EQUAL TO 5
 STOP RUN.

 EternalLooping.
 DISPLAY "Counters 1, 2 and 3 are "
 Counter1 SPACE Counter2 SPACE Counter3.
Answer: _______________________________________

CHAPTER 12 ■ ADVANCED DATA DECLARATION

297

Program 3

This program sometimes crashes. When it crashes, it produces the error message shown. From the two program
outputs shown (one successful and one where the program crashes to produce the error message) and an
examination of the program, try to work out why the program crashes. Identify the problem, and suggest a solution.

Listing 12-5. Program Crashes When Numbers Are Even; OK When Odd.

IDENTIFICATION DIVISION.
PROGRAM-ID. Debug3.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT PersonFile ASSIGN TO "PERSON.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD PersonFile.
01 PersonRec PIC X(10).
 88 EndOfFile VALUE HIGH-VALUES.

WORKING-STORAGE SECTION.
01 Surname PIC X(10).
 88 EndOfData VALUE SPACES.
01 Quotient PIC 9(3).
01 Rem PIC 9(3).
01 NumberOfPeople PIC 9(3) VALUE ZERO.

PROCEDURE DIVISION.
Begin.
 OPEN OUTPUT PersonFile
 DISPLAY "Debug3"
 DISPLAY "Enter list of Surnames."
 DISPLAY "Press RETURN after each name."
 DISPLAY "To finish press return
with no value."
 DISPLAY "This will fill Surname
with spaces"
 DISPLAY "Name -> " WITH NO ADVANCING
 ACCEPT Surname
 PERFORM GetPersons UNTIL EndOfData
 CLOSE PersonFile

CHAPTER 12 ■ ADVANCED DATA DECLARATION

298

 OPEN INPUT PersonFile
 READ PersonFile
 AT END SET EndOfFile TO TRUE
 END-READ
 PERFORM CountPersons UNTIL EndOfFile.
 CLOSE PersonFile

 DIVIDE NumberOfPeople BY 2
 GIVING Quotient REMAINDER Rem

 IF Rem = 0
 DISPLAY "Even number of people"
 ELSE
 DISPLAY "Odd number of people"

 STOP RUN.

GetPersons.
 WRITE PersonRec FROM Surname
 DISPLAY "Name -> " WITH NO ADVANCING
 ACCEPT Surname.

CountPersons.
 DISPLAY PersonRec
 ADD 1 TO NumberOfPeople
 READ PersonFile
 AT END SET EndOfFile TO TRUE
 END-READ.

Program 4

Sometimes this program goes into an infinite loop (does not halt). From the two program outputs shown (one where
the program halts naturally and one where it has to be halted by the user) and an examination of the program, try to
work out why the program sometimes does not halt. Identify the problem, and suggest a solution.

Listing 12-6. Program Sometimes Goes into an Infinite Loop

IDENTIFICATION DIVISION.
PROGRAM-ID. Debug4.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Counter1 PIC 99.
01 InNumber PIC 9.
01 Result PIC 999.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

299

PROCEDURE DIVISION.
Begin.
 DISPLAY "DEBUG4. Sometimes I just don't stop"
 DISPLAY "Enter number 0-9 :--> " WITH NO ADVANCING
 ACCEPT InNumber
 PERFORM EternalLooping
 VARYING Counter1 FROM 1 BY 1
 UNTIL Counter1 GREATER THAN 10

 DISPLAY "Back in main paragraph now"
 STOP RUN.

EternalLooping.
 COMPUTE Result = InNumber * Counter1
 IF Result > 60
 MOVE 99 TO Counter1
 END-IF
 DISPLAY "Counter1 = " Counter1 " Result = " Result.

LANGUAGE KNOWLEDGE EXERCISES—ANSWERS

Program 1
Problem Cause

The problem here is that Counter1 and Counter2 go negative but are described as PIC 99—a description that only
allows positive values. The problem with Counter1 is masked by the problem with Counter2. You can see the effect of
the problem with Counter2 in the program output fragment shown in Figure 12-16. When Counter2 has a value of 03,
the next value it should take is -1; but because Counter2 is described as PIC 99, it cannot hold a negative value. This
means the sign is lost, and instead of -1, the value of Counter2 is 1. Therefore, Counter2 never reaches its terminating
value, and the loop never terminates.

PERFORM EternalLooping VARYING Counter1
 FROM 13 BY -5 UNTIL Counter1 LESS THAN 2
 AFTER Counter2 FROM 15 BY -4
 UNTIL Counter2 LESS THAN 1
 AFTER Counter3 FROM 1 BY 1
 UNTIL Counter3 GREATER THAN 5

CHAPTER 12 ■ ADVANCED DATA DECLARATION

300

Problem Solution

The solution to the problem is to describe Counter1 and Counter2 as PIC S99.

Program 2
Problem Cause

The problem here is that Counter2 is described as PIC 9. You can see the problem by examining the flowchart in
Figure 12-17.

Figure 12-16. Fragment of output from Listing 12-3 highlighting the problem area

Figure 12-17. Flowchart showing how the three-counter PERFORM..VARYING works

CHAPTER 12 ■ ADVANCED DATA DECLARATION

301

Suppose the program is at the point where Counter2 has a value of 9 and Counter3 has a value of 5. At this point
the condition Counter3 = 5 is satisfied, and Counter3 is reset to 1 while Counter2 is incremented, making it equal to
10. Because Counter2 is described as PIC 9, there is only room for one digit, so the 1 is truncated, leaving Counter2
with a value of 0. When the Counter2 > 9 condition is tested, it is not satisfied, and the loop never ends.

Problem Solution

The solution to the problem is to describe Counter2 as PIC 99.

Program 3
Problem Cause

The problem here is that the IF before the STOP RUN does not have an explicit terminator. This means the scope of
the IF is terminated by the period that follows the STOP RUN; and this means the scope of the ELSE branch of the IF
includes the STOP RUN:

 DIVIDE NumberOfPeople BY 2
 GIVING Quotient REMAINDER Rem

 IF Rem = 0
 DISPLAY "Even number of people"
 ELSE
 DISPLAY "Odd number of people"

 STOP RUN.

GetPersons.
 WRITE PersonRec FROM Surname
 DISPLAY "Name -> " WITH NO ADVANCING
 ACCEPT Surname.

Failing to specify the scope of the IF with an explicit terminator has the following effect. When there is an odd
number of people, the ELSE branch is taken, the STOP RUN is executed, and the program stops normally; but when
there is an even number of people, the ELSE branch is not taken, the STOP RUN is not executed, and control falls into
the GetPersons paragraph where it tries to write to the closed PersonFile. This write attempt crashes the program
and produces the error message.

Problem Solution

Add an explicit scope delimiter to the IF statement:

 IF Rem = 0
 DISPLAY "Even number of people"
 ELSE
 DISPLAY "Odd number of people"
 END-IF

 STOP RUN.

CHAPTER 12 ■ ADVANCED DATA DECLARATION

302

Program 4
Problem Cause

The problem with this program is that the programmer tries to modify the PERFORM..VARYING counter variable Counter1
in order to force the loop to terminate prematurely. Unfortunately, the programmer has not consulted the flowchart
shown in Figure 12-18. That flowchart shows that as control exits, the paragraph Counter1 is incremented. Because
Counter1 has been given a value of 99 in the paragraph, the increment brings it to 100. But Counter1 is described as
PIC 99 and only has room for two digits. This means the 1 is truncated, leaving Counter1 with a value of 00. Because the
terminating condition Counter1 > 10 has not been satisfied, the loop will not terminate.

Problem Solution

A simple solution is to change the description of Counter1 to PIC 999. A more complex solution would require
you rewrite the program so that it does not require the counting variable to be changed in the loop. When you use
a construct such as the PERFORM..VARYING, you make a contract with the reader that construct will operate in the
normal way and that the counting variable will take the values specified in the PERFORM. If you break that contract, you
create uncertainty in the mind of the reader not only for this loop but also for all the loops in the program. Now the
reader has to scrutinize each one to make sure they work as expected.

References
 1. Vorontsov M. Using double/long vs. BigDecimal for monetary calculations. 2013 Feb. http://java-performance.

info/bigdecimal-vs-double-in-financial-calculations/
 2. IBM. Decimal arithmetic FAQ. 2008. http://speleotrove.com/decimal/decifaq.html

Figure 12-18. Flowchart showing how the single-counter PERFORM..VARYING works

http://java-performance.info/bigdecimal-vs-double-in-financial-calculations/
http://java-performance.info/bigdecimal-vs-double-in-financial-calculations/
http://speleotrove.com/decimal/decifaq.html

303

CHAPTER 13

Searching Tabular Data

In previous chapters, you saw how to create and use tabular data. This chapter returns to the issue of processing
tabular data to examine the operation of the SEARCH and SEARCH ALL verbs. SEARCH is used for linear searches, and
SEARCH ALL is used for binary searches.

The chapter begins by noting that when you use SEARCH or SEARCH ALL, the table they are searching must have
an associated table index. You learn the metalanguage for the INDEXED BY clause used to specify the table index and
explore the nature of the index data item. Because index data items can’t be manipulated by ordinary COBOL verbs,
the chapter introduces the versions of the SET verb that are used to assign, increment, and decrement table index values.

With the background material covered, you see how the SEARCH verb operates on single-dimension tables
and work through an example. The chapter highlights the limitations of the SEARCH with regard to searching
multidimensional tables and suggests, and demonstrates, a solution.

The SEARCH verb searches a table serially. To search a table using a binary search, you must use SEARCH ALL. You
learn that the SEARCH ALL can only work correctly if the table is ordered, and the chapter discusses the extension to
the OCCURS clause that allows you to identify the data item on which the table is ordered. You see how a binary search
works along with an example of the operation of SEARCH ALL.

Finally, the chapter introduces the notion of variable-length tables. Although variable-length tables are not truly
dynamic, they are still useful, because the variable size limitations are obeyed by COBOL verbs such as the SEARCH and
SEARCH ALL. You see this with an example program.

SEARCHING Tabular Data
The task of searching a table to determine whether it contains a particular value is a common operation. The method
used to search a table depends heavily on the way the values are organized in the table. If the values are not ordered,
then the only strategy available is a linear search. A linear search starts at the first element and then examines each
succeeding element until the item is found or until the end of the table is reached (item not found). If the values are
ordered, then you have the option of using either a linear search or a binary search. A binary search works by dividing
the table in half and determining whether the item sought is in the top half of the table or the bottom half. This
process continues until the item is found or it is determined that the item is not in the table.

COBOL has special verbs that let you search tables using either strategy. The SEARCH verb is used for linear
searches, and the SEARCH ALL verb is used for binary searches.

Searching Using SEARCH and SEARCH ALL
One advantage of using SEARCH or SEARCH ALL rather than a handcrafted search is that because these are specialized
instructions, their operation can be optimized. Part of that optimization involves creating a special subscript to be
used when searching the table. You create this special subscript using an extension to the OCCURS clause called the
INDEXED BY clause.

CHAPTER 13 ■ SEARCHING TABULAR DATA

304

INDEXED BY Clause
Before you can use SEARCH or SEARCH ALL to search a table, you must define the table as having an index item
associated with it. Using an index makes the searching more efficient. Because the index is linked to a particular table,
the compiler—taking into account the size of the table—can choose the most efficient representation possible for the
index. This speeds up the search.

The index is specified by the IndexName given in an INDEXED BY clause attached to the OCCURS clause. The
extended OCCURS clause metalanguage is shown in Figure 13-1.

Figure 13-1. OCCURS metalanguage, including the INDEXED BY clause

Figure 13-2. Metalanguage for SET formats used to manipulate index values

The following are some things to consider about Figure 13-1:

The index defined in a table declaration is associated with that table and is the subscript that •
SEARCH or SEARCH ALL uses to access the table.

The only entry that needs to be made for an • IndexName is to use it in an INDEXED BY phrase. It
does not require a PICTURE clause, because the compiler handles its declaration automatically.

Because of its special binary representation, the table index cannot be displayed, and its •
value cannot be manipulated using ordinary COBOL verbs such as MOVE, ADD, and SUBTRACT.
Only four COBOL verbs can change the value of a table index: SEARCH, SEARCH ALL,
PERFORM..VARYING, and SET.

Index names must be unique.•

An index is only valid for the table to which it is bound. An index bound to one table cannot •
be used with another table.

Using SET to Manipulate the Table Index
A table index is a special data item. It has no PICTURE clause, it is associated with a particular table, and the compiler
defines the index using the most computationally efficient representation possible. Because of its special binary
representation, the table index cannot be displayed and can only be assigned a value, or have its value assigned, by
the SET verb. Similarly, the SET verb must be used to increment or decrement the value of an index item.

The metalanguage for the formats of the SET verb that are used to manipulate the value of an index item are given
in Figure 13-2.

CHAPTER 13 ■ SEARCHING TABULAR DATA

305

The SEARCH Verb
When the values in a table are not ordered, the only searching strategy available is a linear search. You start at the first
element and then search through the table serially, element by element, until either you find the item you seek or
you reach the end of the table. You use the SEARCH verb when you want to search a table serially. The metalanguage for
the SEARCH verb is given in Figure 13-3.

Figure 13-3. Metalanguage for the SEARCH verb

Note the following about Figure 13-3:

Before you can use • SEARCH to search TableName, you must define a table index for the table in
an INDEXED BY clause attached to the OCCURS clause that defines the table. The index specified
in the INDEXED BY clause of TableName is the controlling index (subscript) of SEARCH. The
controlling index controls the submission of the elements, or element items, for examination
by the WHEN phrase of SEARCH. A SEARCH can have only one controlling index.

• TableName must identify a data item in the table hierarchy with both OCCURS and INDEXED BY
clauses.

• SEARCH searches a table serially, starting at the element pointed to by the table index. This
means the table index is under your control.

Because the table index is under your control, before • SEARCH executes you must SET the table
index to point to one of the elements in the table (usually the first element).

When • SEARCH executes, the table index cannot have a value less than one or greater than the
size of the table, or SEARCH will immediately terminate.

The • VARYING phrase is used for a number of purposes:

When more than one index is attached to the table (note the ellipsis after • IndexName in
Figure 13-1), IndexItem identifies the IndexName that SEARCH uses as the table index.

When • IndexItem is an index attached to another table or is a data item defined as USAGE
IS INDEX, SEARCH increments the IndexItem at the same time and by the same amount as
the table index.

When a non-index data item is used, • SEARCH increments the data item by one each time it
increments the table index.

If • AT END is specified and the index is incremented beyond the highest legal occurrence for the
table (that is, the item has not been found), then the statement following AT END is executed
and SEARCH terminates.

The • WHEN conditions attached to SEARCH are evaluated in turn. As soon as one is true, the
statements following the WHEN phrase are executed, SEARCH ends, and the table index remains
set at the value it had when the condition was satisfied.

CHAPTER 13 ■ SEARCHING TABULAR DATA

306

SEARCH Examples
This section contains a number of examples that show how SEARCH is used. The section starts with a simple example
by way of introduction and then ratchets up the complexity.

Letter Position Example

The example shown in Listing 13-1 uses SEARCH to discover the alphabet position of a letter entered by the user.

Listing 13-1. Finding the Position of a Letter in the Alphabet

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-1.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LetterTable.
 02 TableValues.
 03 FILLER PIC X(13)
 VALUE "ABCDEFGHIJKLM".
 03 FILLER PIC X(13)
 VALUE "NOPQRSTUVWXYZ".
 02 FILLER REDEFINES TableValues.
 03 Letter PIC X OCCURS 26 TIMES
 INDEXED BY LetterIdx.

01 IdxValue PIC 99 VALUE ZEROS.

01 LetterIn PIC X.
 88 ValidLetter VALUE "A" THRU "Z".

PROCEDURE DIVISION.
FindAlphabetLetterPosition.
 PERFORM WITH TEST AFTER UNTIL ValidLetter
 DISPLAY "Enter an uppercase letter please - " WITH NO ADVANCING
 ACCEPT LetterIn
 END-PERFORM
 SET LetterIdx TO 1
 SEARCH Letter
 WHEN Letter(LetterIdx) = LetterIn
 SET IdxValue TO LetterIdx
 DISPLAY LetterIn, " is in position ", IdxValue
 END-SEARCH
 STOP RUN.

I use a loop to get a valid uppercase letter from the user. Because the loop will exit only when a valid letter has
been entered, the AT END clause is not used in SEARCH because the letter is always found in the table.

CHAPTER 13 ■ SEARCHING TABULAR DATA

307

LetterIdx is the table index. It is automatically incremented by SEARCH. Note how it is associated with the table
by means of the INDEXED BY clause.

Before SEARCH executes, the SET verb is used to set the table index (LetterIdx) to the position in the table where I
want SEARCH to start.

Finally, because LetterIdx is a special binary index item, you can’t display its value directly. So IdxValue,
a numeric data item whose value can be displayed, is set to value of LetterIdx, and then IdxValue is displayed.

American States Example

The program in Listing 13-2 uses SEARCH to interrogate a table of American states, their ISO two-letter codes, and
their capitals. The user is asked to choose the state code, state name, or state capital as their search term. Whichever
is chosen, the program displays the other two. For instance, if the user chooses to search on the state code, then the
program displays the state name and the state capital. If the state name is chosen, then the program displays the state
code and state capital.

Listing 13-2. Given One of StateCode, StateName, or StateCapital, Display the Other Two

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-2.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 StatesTable.
 02 StateValues.
 03 FILLER PIC X(60)
 VALUE "ALAlabama Montgomery AKAlaska Juneau".
 03 FILLER PIC X(60)
 VALUE "AZArizona Phoenix ARArkansas Little Rock".
 03 FILLER PIC X(60)
 VALUE "CACalifornia Sacramento COColorado Denver".
 03 FILLER PIC X(60)
 VALUE "CTConnecticut Hartford DEDelaware Dover".
 03 FILLER PIC X(60)
 VALUE "FLFlorida Tallahassee GAGeorgia Atlanta".
 03 FILLER PIC X(60)
 VALUE "HIHawaii Honolulu IDIdaho Boise".
 03 FILLER PIC X(60)
 VALUE "ILIllinois Springfield INIndiana Indianapolis".
 03 FILLER PIC X(60)
 VALUE "IAIowa Des Moines KSKansas Topeka".
 03 FILLER PIC X(60)
 VALUE "KYKentucky Frankfort LALouisiana Baton Rouge".
 03 FILLER PIC X(60)
 VALUE "MEMaine Augusta MDMaryland Annapolis".
 03 FILLER PIC X(60)
 VALUE "MAMassachusetts Boston MIMichigan Lansing".
 03 FILLER PIC X(60)
 VALUE "MNMinnesota Saint Paul MSMississippi Jackson".
 03 FILLER PIC X(60)
 VALUE "MOMissouri Jefferson CityMTMontana Helena".

CHAPTER 13 ■ SEARCHING TABULAR DATA

308

 03 FILLER PIC X(60)
 VALUE "NENebraska Lincoln NVNevada Carson City".
 03 FILLER PIC X(60)
 VALUE "NHNew Hampshire Concord NJNew Jersey Trenton".
 03 FILLER PIC X(60)
 VALUE "NMNew Mexico Santa Fe NYNew York Albany".
 03 FILLER PIC X(60)
 VALUE "NCNorth CarolinaRaleigh NDNorth Dakota Bismarck".
 03 FILLER PIC X(60)
 VALUE "OHOhio Columbus OKOklahoma Oklahoma City".
 03 FILLER PIC X(60)
 VALUE "OROregon Salem PAPennsylvania Harrisburg".
 03 FILLER PIC X(60)
 VALUE "RIRhode Island Providence SCSouth CarolinaColumbia".
 03 FILLER PIC X(60)
 VALUE "SDSouth Dakota Pierre TNTennessee Nashville".
 03 FILLER PIC X(60)
 VALUE "TXTexas Austin UTUtah Salt Lake City".
 03 FILLER PIC X(60)
 VALUE "VTVermont Montpelier VAVirginia Richmond".
 03 FILLER PIC X(60)
 VALUE "WAWashington Olympia WVWest Virginia Charleston".
 03 FILLER PIC X(60)
 VALUE "WIWisconsin Madison WYWyoming Cheyenne".
 02 FILLER REDEFINES StateValues.
 03 State OCCURS 50 TIMES
 INDEXED BY StateIdx.
 04 StateCode PIC XX.
 04 StateName PIC X(14).
 04 StateCapital PIC X(14).

01 StateNameIn PIC X(14).

01 StateCapitalIn PIC X(14).

01 StateCodeIn PIC XX.

01 SearchChoice PIC 9 VALUE ZERO.
 88 ValidSearchChoice VALUES 1, 2, 3, 4.
 88 EndOfInput VALUE 4.

PROCEDURE DIVISION.
Begin.
 PERFORM WITH TEST AFTER UNTIL EndOfInput
 PERFORM WITH TEST AFTER UNTIL ValidSearchChoice
 DISPLAY SPACES
 DISPLAY "Search by StateCode (1), StateName (2), StateCapital (3), STOP (4) - "
 WITH NO ADVANCING
 ACCEPT SearchChoice
 END-PERFORM

CHAPTER 13 ■ SEARCHING TABULAR DATA

309

 SET StateIdx TO 1
 EVALUATE SearchChoice
 WHEN 1 PERFORM GetNameAndCapital
 WHEN 2 PERFORM GetCodeAndCapital
 WHEN 3 PERFORM GetCodeAndName
 END-EVALUATE
 END-PERFORM
 STOP RUN.

GetNameAndCapital.
 DISPLAY "Enter the two letter State Code - " WITH NO ADVANCING
 ACCEPT StateCodeIn
 MOVE FUNCTION UPPER-CASE(StateCodeIn) TO StateCodeIn
 SEARCH State
 AT END DISPLAY "State code " StateCodeIn " does not exist"
 WHEN StateCode(StateIdx) = StateCodeIn
 DISPLAY "State Name = " StateName(StateIdx)
 DISPLAY "State Capital = " StateCapital(StateIdx)
 END-SEARCH.

GetCodeAndCapital.
 DISPLAY "Enter the State Name - " WITH NO ADVANCING
 ACCEPT StateNameIn
 SEARCH State
 AT END DISPLAY "State Name " StateNameIn " does not exist"
 WHEN FUNCTION UPPER-CASE(StateName(StateIdx)) = FUNCTION UPPER-CASE(StateNameIn)
 DISPLAY "State Code = " StateCode(StateIdx)
 DISPLAY "State Capital = " StateCapital(StateIdx)
 END-SEARCH.

GetCodeAndName.
 DISPLAY "Enter the State Capital - " WITH NO ADVANCING
 ACCEPT StateCapitalIn
 SEARCH State
 AT END DISPLAY "State capital " StateCapitalIn " does not exist"
 WHEN FUNCTION UPPER-CASE(StateCapital(StateIdx)) = FUNCTION UPPER-CASE(StateCapitalIn)
 DISPLAY "State Code = " StateCode(StateIdx)
 DISPLAY "State Name = " StateName(StateIdx)
 END-SEARCH.

CHAPTER 13 ■ SEARCHING TABULAR DATA

310

The program contains a table prefilled with the state codes, state names, and state capitals of the American states.
The user provides any one of the three (state code, state name, or state capital), and SEARCH returns the other two from
the table.

Most of the program is straightforward and doesn’t require any explanation. However, each of the three
paragraphs GetNameAndCapital, GetCodeAndCapital, and GetCodeAndName makes use of intrinsic functions. You have
not encountered intrinsic functions yet. You won’t examine them formally until chapter 15, but I have introduced
them here by way of a preview.

A function is a closed subroutine (block of code) that substitutes a returned value for its invocation. In Java, a
method with a non-void return value type is a function. COBOL does not have user-defined functions, but it does have
a number of built-in system functions called intrinsic functions.

The problem with using user input for comparison purposes is that you have to compare like with like. Alaska
is not the same as alaska or ALASKA or aLaska. In GetCodeAndCapital and GetCodeAndName, the intrinsic function
UPPER-CASE is used to convert the table data item and the data entered by the user to uppercase to ensure that the
program is comparing like with like. In the comparison, the intrinsic function invocation is replaced by the returned
function result, and then the comparison is done. For instance, an IF statement such as

IF FUNCTION UPPER-CASE("rEdMond") = FUNCTION UPPER-CASE("REDmond")

becomes

IF "REDMOND" = "REDMOND"

In GetNameAndCapital, I could have used the intrinsic function the same way as in GetCodeAndCapital and
GetCodeAndName; but because the state code is already in uppercase, I took the opportunity to show another way
of using intrinsic functions. In this paragraph, I use the intrinsic function to convert the user input to uppercase by
moving the converted input data back into the input data item StateCodeIn.

CHAPTER 13 ■ SEARCHING TABULAR DATA

311

Searching Multidimensional Tables
In the notes on SEARCH, I observed that SEARCH can have only one controlling index (the IndexName specified in the
INDEXED BY phrase attached to the table being searched). Because SEARCH can have only one controlling index, SEARCH
can only be used to search a single dimension of a table at a time. If the table to be searched is multidimensional, then
you must control the indexes of the other dimensions.

Listing 13-3 is a small program that demonstrates how to use SEARCH to search a two-dimensional table. The
program sets Appointment(3, 2) and Location(3, 2) to “Peter’s Wedding” and “Saint John’s Church”. SEARCH is
then used to search the appointments timetable for the appointment details of “Peter’s Wedding”. When found, these
details are displayed.

Listing 13-3. Program Demonstrating How to Search a Two-Dimensional Table

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-3.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MyTimeTable.
 02 DayOfApp OCCURS 5 TIMES INDEXED BY DayIdx.
 03 HourOfApp OCCURS 9 TIMES INDEXED BY HourIdx.
 04 Appointment PIC X(15).
 04 Location PIC X(20).

01 AppointmentType PIC X(15).

01 DaySub PIC 9.
01 HourSub PIC 9.

01 FILLER PIC 9 VALUE ZERO.
 88 AppointmentNotFound VALUE ZERO.
 88 AppointmentFound VALUE 1.

01 DayValues VALUE "MonTueWedThuFri".
 02 DayName PIC XXX OCCURS 5 TIMES.

01 TimeValues VALUE " 9:0010:0011:0012:0013:0014:0015:0016:0017:00".
 02 TimeValue PIC X(5) OCCURS 9 TIMES.

PROCEDURE DIVISION.
Begin.
 MOVE "Peter's Wedding" TO AppointmentType, Appointment(2, 3)
 MOVE "Saint John's Church" TO Location(2, 3)
 SET DayIdx TO 1.
 PERFORM UNTIL AppointmentFound OR DayIdx > 5
 SET HourIdx TO 1
 SEARCH HourOfApp
 AT END SET DayIdx UP BY 1
 WHEN AppointmentType = Appointment(DayIdx, HourIdx)
 SET AppointmentFound TO TRUE
 SET HourSub TO HourIdx
 SET DaySub TO DayIdx

CHAPTER 13 ■ SEARCHING TABULAR DATA

312

 DISPLAY AppointmentType " is on " DayName(DaySub)
 DISPLAY "at " TimeValue(HourSub) " in " Location(DayIdx, HourIdx)
 END-SEARCH
 END-PERFORM
 IF AppointmentNotFound
 DISPLAY "Appointment " AppointmentType " was not in the timetable"
 END-IF
 STOP RUN.

The table used to hold the appointment timetable is described in Example 13-1 and is graphically depicted in
Figure 13-4.

Example 13-1. Declarations for the Table Used to Record Appointments

01 MyTimeTable.
 02 DayOfApp OCCURS 5 TIMES INDEXED BY DayIdx.
 03 HourOfApp OCCURS 9 TIMES INDEXED BY HourIdx.
 04 Appointment PIC X(15) VALUE SPACES.
 04 Location PIC X(20) VALUE SPACES.

Figure 13-4. Graphical depiction of the two-dimensional table MyTimeTable

As you can see by examining Figure 13-4, in this two-dimensional table each day element consists of a table of
hour elements. The table of hour elements is the SEARCH target. In most searches of a multidimensional table, the
SEARCH target is the lowest data item in the hierarchy that contains both a OCCURS and an INDEXED BY clause. In this
case, HourOfApp is the SEARCH target. In SEARCH, the controlling index is the item attached to the target table by an
INDEXED BY clause. In this case, it is HourIdx.

Because SEARCH can have only one controlling index, you have to control the other. In this program, the SET verb
is used to control the value in DayIdx, and HourIdx is under the control of SEARCH.

When SEARCH executes, it searches whichever of the HourOfApp tables is pointed to by DayIdx. If the appointment
is not found, AT END activates, DayIdx is incremented, and SEARCH is executed again, this time examining the
HourOfApp table in the next DayOfApp element. If the appointment is found, WHEN activates, and the HourIdx and
DayIdx values are used to display the time (24-hour format) and day of the appointment. DayName and TimeValue are
set up using the facility introduced in the ANS 85 version of COBOL that allows you to create prefilled tables without
using the REDEFINES clause.

CHAPTER 13 ■ SEARCHING TABULAR DATA

313

Searching the First Dimension of a Two-Dimensional Table
Listing 13-3 uses SEARCH to search the second dimension of the two-dimensional table. It does not normally make
sense to search the first dimension of a two-dimensional table, because as you can see from Figure 13-4, each element
at that level contains a table, not a discrete value. Sometimes, though, you need to perform such a search.

Suppose you have a two-dimensional table that records the number of jeans sold in three different colors in
150 shops. Suppose for each group of jeans sales totals, you also record the shop name. The table to record this
information is described in Example 13-2 and is graphically depicted in Figure 13-5.

Example 13-2. Description of JeansSalesTable

01 JeansSalesTable.
 02 Shop OCCURS 150 TIMES INDEXED BY ShopIdx.
 03 ShopName PIC X(15).
 03 JeansColor OCCURS 3 TIMES INDEXED BY ColorIdx.
 04 TotalSold PIC 9(5).

Figure 13-5. Graphical depiction of JeansSalesTable

Listing 13-4 is a simple program that shows how to use SEARCH to search the first dimension of a two-dimensional
table. To keep the program simple, I haven’t filled the table with all the values shown in Figure 13-5; only the element
Shop(3) is filled with data values.

Listing 13-4. Searching the First Dimension of a Two-Dimensional Table

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-4.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 JeansSalesTable.
 02 Shop OCCURS 150 TIMES INDEXED BY ShopIdx.
 03 ShopName PIC X(15) VALUE SPACES.
 03 JeansColor OCCURS 3 TIMES.
 04 TotalSold PIC 9(5) VALUE ZEROS.

01 ShopQuery PIC X(15).

01 PrnWhiteJeans.
 02 PrnWhiteTotal PIC ZZ,ZZ9.
 02 FILLER PIC X(12) VALUE " white jeans".

CHAPTER 13 ■ SEARCHING TABULAR DATA

314

01 PrnBlueJeans.
 02 PrnBlueTotal PIC ZZ,ZZ9.
 02 FILLER PIC X(12) VALUE " blue jeans".

01 PrnBlackJeans.
 02 PrnBlackTotal PIC ZZ,ZZ9.
 02 FILLER PIC X(12) VALUE " black jeans".

PROCEDURE DIVISION.
Begin.
 MOVE "Jean Therapy" TO ShopName(3), ShopQuery
 MOVE 00734 TO TotalSold(3, 1)
 MOVE 04075 TO TotalSold(3, 2)
 MOVE 01187 TO TotalSold(3, 3)

 SET ShopIdx TO 1
 SEARCH Shop
 AT END Display "Shop not found"
 WHEN ShopName(ShopIdx) = ShopQuery
 MOVE TotalSold(ShopIdx, 1) TO PrnWhiteTotal
 MOVE TotalSold(ShopIdx, 2) TO PrnBlueTotal
 MOVE TotalSold(ShopIdx, 3) TO PrnBlackTotal
 DISPLAY "Sold by " ShopQuery
 DISPLAY PrnWhiteJeans
 DISPLAY PrnBlueJeans
 DISPLAY PrnBlackJeans
 END-SEARCH
 STOP RUN.

The SEARCH ALL Verb
As I noted earlier in this chapter, the method used to search a table depends heavily on the way the values are
organized in the table. If the values are not ordered, then the only strategy available is a linear search. If the values are
ordered, then you have the option of using either a linear search or a binary search. This section introduces SEARCH
All, the COBOL verb used for binary searches.

Because SEARCH ALL implements a binary search, it only works on an ordered table. The table must be ordered
on the values in the element or, where the element is a group item, on a data item within the element. The item on
which the table is ordered is known as the key field and is identified using the KEY IS phrase in the table declaration.

KEY IS Clause
The KEY IS clause is used to identify the data item on which the table to be searched is ordered. If you want to search
a table using SEARCH ALL, the table declaration must contain a KEY IS phrase. The OCCURS metalanguage that includes
the KEY IS clause is given in Figure 13-6.

CHAPTER 13 ■ SEARCHING TABULAR DATA

315

How a Binary Search Works
I have mentioned that SEARCH ALL implements a binary search. Before discussing SEARCH ALL itself, let’s take the time
to refresh your memory about how a binary search works.

A binary search works by repeatedly dividing the search area into a top half and a bottom half, deciding which
half contains the required item, and making that half the new search area. The search continues halving the search
area like this until the required item is found or the search discovers that the item is not in the table.

The algorithm for a binary search is given in Example 13-3.

Example 13-3. Binary Search Algorithm

PERFORM UNTIL ItemFound OR ItemNotInTable
 COMPUTE Middle = (Lower + Upper) / 2
 EVALUATE TRUE
 WHEN Lower > Upper THEN SET ItemNotInTable TO TRUE
 WHEN KeyField(Middle) < SearchItem THEN Lower = Middle + 1
 WHEN KeyField(Middle) > SearchItem THEN Upper = Middle -1
 WHEN KeyField(Middle) = SearchItem THEN SET ItemFound TO TRUE
 END-EVALUATE
END-PERFORM

To illustrate how this algorithm works, let’s consider it in the context of a table containing the letters of the
alphabet. The table holding the letters is described in Example 13-4, and its representation in memory is illustrated
pictorially in Figure 13-7.

Example 13-4. Table Prefilled with the Letters of the Alphabet

01 LetterTable.
 02 LetterValues.
 03 FILLER PIC X(13)
 VALUE "ABCDEFGHIJKLM".
 03 FILLER PIC X(13)
 VALUE "NOPQRSTUVWXYZ".
 02 FILLER REDEFINES LetterValues.
 03 Letter PIC X OCCURS 26 TIMES
 ASCENDING KEY IS Letter
 INDEXED BY LetterIdx.

Figure 13-6. OCCURS metalanguage including the KEY IS clause

Figure 13-7. Table containing the letters of the alphabet

CHAPTER 13 ■ SEARCHING TABULAR DATA

316

Suppose you want to search LetterTable to find the position of the letter R. The general binary search algorithm
introduced in Example 13-3 can be made more specific to the problem, as shown in Example 13-5. Figure 13-8 shows
a succession of diagrams illustrating the application of this algorithm.

Example 13-5. Binary Search to Find the Letter R

PERFORM UNTIL ItemFound OR ItemNotInTable
 COMPUTE Middle = (Lower + Upper) / 2
 EVALUATE TRUE
 WHEN Lower > Upper THEN SET ItemNotInTable TO TRUE
 WHEN Letter(Middle) < "R" THEN Lower = Middle + 1
 WHEN Letter(Middle) > "R" THEN Upper = Middle -1
 WHEN Letter(Middle) = "R" THEN SET ItemFound TO TRUE
 END-EVALUATE
END-PERFORM

Figure 13-8. Finding the letter R using a binary search

CHAPTER 13 ■ SEARCHING TABULAR DATA

317

SEARCH ALL
The metalanguage for SEARCH ALL is given in Figure 13-9.

Figure 13-9. Metalanguage for SEARCH ALL

Consider the following:

The • OCCURS clause of the table to be searched must have a KEY IS clause in addition to an
INDEXED BY clause. The KEY IS clause identifies the data item on which the table is ordered.

When you use • SEARCH ALL, you do not need to set the table index to a starting value because
SEARCH ALL controls it automatically.

• ElementIdentifier must be the item referenced by the table’s KEY IS clause.

• ConditionName may have only one value, and it must be associated with a data item
referenced by the table’s KEY IS clause.

Bug Alert ■ SEARCH ALL presents no problems when the table is fully loaded (all the elements have been assigned

data values); but if the table is not fully loaded, then SEARCH ALL may not function correctly because the values in the

unloaded part of the table will not be in key order. To rectify this problem, before you load the table you should fill it with

HIGH-VALUES if the key is ascending or LOW-VALUES if the key is descending. See Listing 13-5 for an example.

Listing 13-5 is a simple program that displays the country name when the user enters a two-letter Internet
code. Unlike the other example programs in this chapter, the table data in Listing 13-5 is obtained from a file that is
loaded into the table at runtime. This is a much more realistic scenario for any sort of volatile data. Countries come
and go and change their names with sufficient frequency that loading the table from a file makes good sense from a
maintenance perspective. The table can hold up to 250 countries, but the country-code file contains only 243 entries
at present.

CHAPTER 13 ■ SEARCHING TABULAR DATA

318

Listing 13-5. Displaying the Corresponding Country Name When the User Enters a Country Code

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-5.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT CountryCodeFile ASSIGN TO "Listing13-5.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CountryCodeFile.
01 CountryCodeRec.
 88 EndOfCountryCodeFile VALUE HIGH-VALUES.
 02 CountryCodeCF PIC XX.
 02 CountryNameCF PIC X(25).

WORKING-STORAGE SECTION.
01 CountryCodeTable.
 02 Country OCCURS 300 TIMES
 ASCENDING KEY IS CountryCode
 INDEXED BY Cidx.
 03 CountryCode PIC XX.
 03 CountryName PIC X(25).

01 CountryCodeIn PIC XX.
 88 EndOfInput VALUE SPACES.

01 FILLER PIC 9 VALUE ZERO.
 88 ValidCountryCode VALUE 1.

PROCEDURE DIVISION.
Begin.
 PERFORM LoadCountryCodeTable
 PERFORM WITH TEST AFTER UNTIL EndOfInput
 PERFORM WITH TEST AFTER UNTIL ValidCountryCode OR EndOfInput
 DISPLAY "Enter a country code (space to stop) :- "
 WITH NO ADVANCING
 ACCEPT CountryCodeIn
 SEARCH ALL Country
 AT END IF NOT EndOfInput
 DISPLAY "Country code " CountryCodeIn " is not valid"
 END-IF
 WHEN CountryCode(Cidx) = FUNCTION UPPER-CASE(CountryCodeIn)
 DISPLAY CountryCodeIn " is " CountryName(Cidx)
 END-SEARCH
 DISPLAY SPACES
 END-PERFORM
 END-PERFORM
 STOP RUN.

CHAPTER 13 ■ SEARCHING TABULAR DATA

319

LoadCountryCodeTable.
* Loads table with HIGH-VALUES so the SEARCH ALL works when the table is partially loaded
 MOVE HIGH-VALUES TO CountryCodeTable
 OPEN INPUT CountryCodeFile
 READ CountryCodeFile
 AT END SET EndOfCountryCodeFile TO TRUE
 END-READ

 PERFORM VARYING Cidx FROM 1 BY 1 UNTIL EndOfCountryCodeFile
 MOVE CountryCodeRec TO Country(Cidx)
 READ CountryCodeFile
 AT END SET EndOfCountryCodeFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE CountryCodeFile.

Variable-Length Tables
All the examples you have seen so far have used fixed-length tables. You may have wondered if COBOL supports
variable-length tables. The answer is that it does support variable-length tables—of a sort.

You can declare variable-length tables using extensions to the OCCURS clause, as shown in Figure 13-10. Although
you can dynamically alter the number of element occurrences in a variable-length table, the amount of storage
allocated is fixed. It is defined by the value of LargestSize#i and is assigned at compile time. Standard COBOL has no
mechanism for dynamically changing the amount of storage allocated to a table.

Figure 13-10. Full OCCURS metalanguage, including the entries required for variable-length tables and the SEARCH
and SEARCH ALL verbs

Note that this format of the OCCURS clause may only be used to vary the number of elements in the first dimension
of a table.

An example declaration is shown in Example 13-6.

Example 13-6. Example Variable-Length Table Declaration

01 BooksReservedTable.
 02 BookId PIC 9(7) OCCURS 1 TO 10
 DEPENDING ON NumOfReservations.

The program in Listing 13-5 fills the table with HIGH-VALUES in order to get SEARCH ALL to work correctly, because
the table was only partially populated (250 elements in size but only 243 countries). You could achieve the same effect
by declaring the table as a variable-length table.

Although variable-length tables are not dynamic (the storage allocated is defined by the table’s maximum size),
they are treated by COBOL verbs as if they were dynamic. For instance, when you use SEARCH or SEARCH ALL with the
table, only the elements between SmallestSize#i and TableSize#i are interrogated.

CHAPTER 13 ■ SEARCHING TABULAR DATA

320

Listing 13-6 revisits the program from Listing 13-5 to emphasize these points.

Listing 13-6. SEARCH ALL Used with a Variable-Length Table

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-6.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT CountryCodeFile ASSIGN TO "Listing13-6.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CountryCodeFile.
01 CountryCodeRec.
 88 EndOfCountryCodeFile VALUE HIGH-VALUES.
 02 CountryCodeCF PIC XX.
 02 CountryNameCF PIC X(25).

WORKING-STORAGE SECTION.
01 CountryCodeTable.
 02 Country OCCURS 1 TO 300 TIMES
 DEPENDING ON NumberOfCountries
 ASCENDING KEY IS CountryCode
 INDEXED BY Cidx.
 03 CountryCode PIC XX.
 03 CountryName PIC X(25).

01 CountryCodeIn PIC XX.
 88 EndOfInput VALUE SPACES.

01 FILLER PIC 9 VALUE ZERO.
 88 ValidCountryCode VALUE 1.

01 NumberOfCountries PIC 999.

PROCEDURE DIVISION.
Begin.
 PERFORM LoadCountryCodeTable
 PERFORM WITH TEST AFTER UNTIL EndOfInput
 PERFORM WITH TEST AFTER UNTIL ValidCountryCode OR EndOfInput
 DISPLAY "Enter a country code (space to stop) :- "
 WITH NO ADVANCING
 ACCEPT CountryCodeIn
 PERFORM SearchCountryCodeTable
 DISPLAY SPACES
 END-PERFORM
 END-PERFORM

CHAPTER 13 ■ SEARCHING TABULAR DATA

321

 MOVE 244 TO NumberOfCountries
 MOVE "ZZ" TO CountryCodeIn
 PERFORM SearchCountryCodeTable
 STOP RUN.

SearchCountryCodeTable.
 SEARCH ALL Country
 AT END IF NOT EndOfInput
 DISPLAY "Country code " CountryCodeIn " is not valid"
 END-IF
 WHEN CountryCode(Cidx) = FUNCTION UPPER-CASE(CountryCodeIn)
 DISPLAY CountryCodeIn " is " CountryName(Cidx)
 END-SEARCH.

LoadCountryCodeTable.
 OPEN INPUT CountryCodeFile
 READ CountryCodeFile
 AT END SET EndOfCountryCodeFile TO TRUE
 END-READ

 PERFORM VARYING NumberOfCountries FROM 1 BY 1 UNTIL EndOfCountryCodeFile
 MOVE CountryCodeRec TO Country(NumberOfCountries)
 READ CountryCodeFile
 AT END SET EndOfCountryCodeFile TO TRUE
 END-READ
 END-PERFORM
 MOVE "ZZ **** FOUND ****" TO Country(244)
 CLOSE CountryCodeFile.

The program in Listing 13-6 is the same as Listing 13-5, with the following changes:

Variable-length tables are used. When the country data is loaded into the table from the file, •
the table increases in size as each record is read (see VARYING NumberOfCountries).

Once the table has been loaded from the file, the value • "ZZ **** FOUND ****" is loaded
into element 244. The purpose of this is to prove that SEARCH ALL recognizes the table size
specified in NumberOfCountries.

In this program, I moved • SEARCH ALL to its own paragraph because I need to use it in two
different parts of the program and I don’t want to repeat the code.

When the program runs, the user enters a number of country codes, and the country names •
are returned. Note that this all works correctly even though the table has not had HIGH-VALUES
moved to it.

Then user enters • ZZ. This is the country code of the entry I placed beyond the end of the table
(as identified by NumberOfCountries). SEARCH ALL reports that it can’t find this country code.

When the loop exits, the program increases • NumberOfCountries to 244, and the search is
attempted again. This time SEARCH ALL does find the ZZ country code, because this time the
code is the table.

CHAPTER 13 ■ SEARCHING TABULAR DATA

322

Summary
This chapter examined SEARCH and SEARCH ALL, the COBOL verbs that allow you to search tabular data. The chapter
introduced the INDEXED BY and KEY IS extensions to the OCCURS clause. These extensions are required when you want
to use SEARCH and SEARCH ALL to search a table. You saw how to use SEARCH for linear searches of single-dimension
tables and how, by controlling one of the indexes yourself, you can even use SEARCH to search a multidimensional
table. The chapter showed how a binary search works and demonstrated how to use SEARCH ALL to search a table.
Finally, you were introduced to the topic of variable-length tables and learned to declare and use them.

The next chapter introduces the SORT and MERGE verbs. SORT is generally used to sort files, but it may also be used
to sort a table. As I noted when discussing sequential files in Chapter 7, many operations on sequential files are not
possible unless the files are ordered. For this reason, many programs begin by sorting the file into the required order.

PROGRAMMING EXERCISE 1

Prepare your 2B pencil; it’s exercise time again. In this program, you will use your knowledge of variable-length

tables and the SEARCH verb.

A program is required that will report the frequency of all the words in a document. To make the problem easier,

the document has been split into individual words, one word per record. The program should be able to report on

a maximum of 1,000 words.

The document words are held in an unordered sequential file called DocWords.dat. Each record has the following

description:

Field Type Length Value

Word X 20 -

Write a program to read a file of document words and produce a report that shows the top ten words in

descending order of frequency. The report template is as follows:

Top Ten Words In Document
Pos Occurs Document Word
 1. XXX XXXXXXXXXXXXXXXXXXXX
 2. XXX XXXXXXXXXXXXXXXXXXXX
 3. XXX XXXXXXXXXXXXXXXXXXXX
 4. XXX XXXXXXXXXXXXXXXXXXXX
 5. XXX XXXXXXXXXXXXXXXXXXXX
 6. XXX XXXXXXXXXXXXXXXXXXXX
 7. XXX XXXXXXXXXXXXXXXXXXXX
 8. XXX XXXXXXXXXXXXXXXXXXXX
 9. XXX XXXXXXXXXXXXXXXXXXXX
10. XXX XXXXXXXXXXXXXXXXXXXX

CHAPTER 13 ■ SEARCHING TABULAR DATA

323

PROGRAMMING EXERCISE 2

The task in this exercise is to write a program that accepts ten numbers from the user, places them in a table,

and then detects and reports on the following states:

No zeros found in the table•

Only one zero found in the table•

Two zeros found, but no numbers between the two zeros•

Two zeros, and between them an even number of non-zeros•

Two zeros, and between them an odd number of non-zeros•

PROGRAMMING EXERCISE 1: ANSWER

Listing 13-7. Program to Find the Top Ten Words in a Document

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-7.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT DocWordsFile ASSIGN TO "Listing13-7.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD DocWordsFile.
01 WordIn PIC X(20).
 88 EndOfDocWordsFile VALUE HIGH-VALUES.

WORKING-STORAGE SECTION.
01 WordFreqTable.
 02 Word OCCURS 0 TO 2000 TIMES
 DEPENDING ON NumberOfWords
 INDEXED BY Widx.
 03 WordFound PIC X(20).
 03 WordFreq PIC 9(3).

01 TopTenTable.
 02 WordTT OCCURS 11 TIMES
 INDEXED BY TTidx.
 03 WordFoundTT PIC X(20) VALUE SPACES.
 03 WordFreqTT PIC 9(3) VALUE ZEROS.

01 NumberOfWords PIC 9(4) VALUE ZERO.

CHAPTER 13 ■ SEARCHING TABULAR DATA

324

01 ReportHeader PIC X(27) VALUE " Top Ten Words In Document".

01 SubjectHeader PIC X(29) VALUE "Pos Occurs Document Word".

01 DetailLine.
 02 PrnPos PIC Z9.
 02 FILLER PIC X VALUE ".".
 02 PrnFreq PIC BBBBBZZ9.
 02 PrnWord PIC BBBBBX(20).

01 Pos PIC 99.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT DocWordsFile
 READ DocWordsFile
 AT END SET EndOfDocWordsFile TO TRUE
 END-READ
 PERFORM LoadWordFreqTable UNTIL EndOfDocWordsFile
 PERFORM FindTopTenWords
 VARYING Widx FROM 1 BY 1 UNTIL Widx > NumberOfWords
 PERFORM DisplayTopTenWords
 CLOSE DocWordsFile
 STOP RUN.

LoadWordFreqTable.
* The AT END triggers when Widx is one greater than the current size of the
* table so all we have to do is extend the table and write into the new table
* element
 SET Widx TO 1
 SEARCH Word
 AT END ADD 1 TO NumberOfWords
 MOVE 1 TO WordFreq(Widx)
 MOVE FUNCTION LOWER-CASE(WordIn) TO WordFound(Widx)
 WHEN FUNCTION LOWER-CASE(WordIn) = WordFound(Widx)
 ADD 1 TO WordFreq(Widx)
 END-SEARCH
 READ DocWordsFile
 AT END SET EndOfDocWordsFile TO TRUE
 END-READ.

FindTopTenWords.
 PERFORM VARYING TTidx FROM 10 BY -1 UNTIL TTidx < 1
 IF WordFreq(Widx) > WordFreqTT(TTidx)
 MOVE WordTT(TTidx) TO WordTT(TTidx + 1)
 MOVE Word(Widx) TO WordTT(TTidx)
 END-IF
 END-PERFORM.

DisplayTopTenWords.

CHAPTER 13 ■ SEARCHING TABULAR DATA

325

 DISPLAY ReportHeader
 DISPLAY SubjectHeader
 PERFORM VARYING TTidx FROM 1 BY 1 UNTIL TTIdx > 10
 SET Pos TO TTidx
 MOVE Pos TO PrnPos
 MOVE WordFoundTT(TTidx) TO PrnWord
 MOVE WordFreqTT(TTidx) TO PrnFreq
 DISPLAY DetailLine

 END-PERFORM

PROGRAMMING EXERCISE 2: ANSWER

Listing 13-8. Program to Find the Number of Zeros in a List of Ten Numbers

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing13-8.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumberArray.
 02 Num PIC 99 OCCURS 10 TIMES
 INDEXED BY Nidx.

01 FirstZeroPos PIC 99 VALUE ZERO.
 88 NoZeros VALUE 0.

01 SecondZeroPos PIC 99 VALUE ZERO.
 88 OneZero VALUE 0.

01 ValuesBetweenZeros PIC 9 VALUE ZERO.
 88 NoneBetweenZeros VALUE 0.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter 10 two digit numbers "
 PERFORM VARYING Nidx FROM 1 BY 1 UNTIL Nidx > 10
 DISPLAY "Enter number - " SPACE WITH NO ADVANCING
 ACCEPT Num(Nidx)
 END-PERFORM

 SET Nidx TO 1
 SEARCH Num
 AT END SET NoZeros TO TRUE
 WHEN Num(Nidx) = ZERO
 SET FirstZeroPos TO Nidx
 SET Nidx UP BY 1
 SEARCH Num
 AT END SET OneZero TO TRUE
 WHEN Num(Nidx) = ZERO

CHAPTER 13 ■ SEARCHING TABULAR DATA

326

 SET SecondZeroPos TO Nidx
 COMPUTE ValuesBetweenZeros = (SecondZeroPos - 1) - FirstZeroPos
 END-SEARCH
 END-SEARCH

 EVALUATE TRUE
 WHEN NoZeros DISPLAY "No zeros found"
 WHEN OneZero DISPLAY "Only one zero found"
 WHEN NoneBetweenZeros DISPLAY "No numbers between the two zeros"
 WHEN FUNCTION REM(ValuesBetweenZeros, 2)= ZERO
 DISPLAY "Even number of non-zeros between zeros"
 WHEN OTHER DISPLAY "Odd number of non-zeros between zeros"
 END-EVALUATE

 STOP RUN.

327

CHAPTER 14

Sorting and Merging

If there is one thing you should have learned from the chapters on sequential files, it is that your processing options
are very limited if a sequential file is not ordered. Solutions based on control breaks, and the file-update problem, are
impossible unless the file is ordered on some key field. In previous chapters, I mentioned the very useful program
design technique called beneficial wishful thinking in which, when you are confronted by a difficult programming
problem, you imagine a set of circumstances under which the difficulty would be greatly reduced and then try to
bring about that set of circumstances. In the context of sequential files, you will often find yourself confronted with
problems that would be much easier to solve if the file was ordered. A solution based on the beneficial wishful
thinking approach first puts the file into the required order.

In this chapter, you discover how to use the SORT verb to sort a sequential file in ascending or descending order.
You learn how to use an INPUT PROCEDURE to filter or modify the records presented for sorting and how to use an
OUTPUT PROCEDURE to process the sorted records instead of sending them directly to an output file. In addition, you see
how to use the MERGE verb to merge the records in two or more ordered files to create a combined file with the records
in the correct order.

SORTING
I noted in previous chapters that it is possible to apply processing to an ordered sequential file that is difficult,
or impossible, when the file is unordered. In cases where you need to apply ordered processing to an unordered
sequential file, part of the solution must be to sort the file. COBOL provides the SORT verb for this purpose.

The SORT verb is usually used to sort sequential files. Some programmers claim that the SORT verb is unnecessary,
preferring to use an implementer-provided or “off-the-shelf” sort. However, one major advantage of using the SORT
verb is that it enhances the portability of COBOL programs. Because the SORT verb is available in every COBOL
compiler, when a program that uses SORT has to be moved to a different computer system, it can make the transition
without requiring any changes to the SORT. This is rarely the case when programs rely on an implementer-supplied or
bought-in sort.

Simple Sorting
The syntax for the simple SORT is given in Figure 14-1. This version of SORT takes the records in the InFileName file,
sorts them on the WorkSortKey#$i key or keys, and writes the sorted records to the OutFileName file.

CHAPTER 14 ■ SORTING AND MERGING

328

Some example SORT statements are given in Example 14-1.

Example 14-1. Example SORT Statements

SORT WorkFile
 ON ASCENDING BookId-WF
 AuthorName-WF
 USING BookSalesFileUS, BookSalesFileEU
 GIVING SortedBookSales

SORT WorkFile
 ON DESCENDING NCAP-Result-WF
 ASCENDING ManfName-WF, VehicleName-WF
 USING NCAP-TestResultsFile
 GIVING Sorted-NCAP-TestResultsFile

Simple Sorting Notes

Consider the following:

• SDWorkFileName identifies a temporary work file that the sort process uses as a kind of scratch
pad for sorting. The file is defined in the FILE SECTION using a sort description (SD) rather
than a file description (FD) entry. Even though the work file is a temporary file, it must still
have associated SELECT and ASSIGN clauses in the ENVIRONMENT DIVISION. You can give this
file any name you like; I usually call it WorkFile as I did in Example 14-1.

• SDWorkFileName file is a sequential file with an organization of RECORD SEQUENTIAL. Because
this is the default organization, it is usually omitted (see Listing 14-1).

Each • WorkSortKey#$i identifies a field in the record of the work file. The sorted file will be
ordered on this key field(s).

When more than one • WorkSortKey#$i is specified, the keys decrease in significance from left
to right (the leftmost key is the most significant, and the rightmost is the least significant).

• InFileName and OutFileName are the names of the input and output files, respectively.

If more than one • InFileName is specified, the files are combined (OutFileSize = InFile1Size
+ InFile2Size) and then sorted.

If more than one • OutFileName is specified, then each file receives a copy of the sorted records.

Figure 14-1. Metalanguage for the simple version of SORT

CHAPTER 14 ■ SORTING AND MERGING

329

If the • DUPLICATES clause is used, then when the file has been sorted, the final order of records
with duplicate keys (keys with the same value) is the same as that in the unsorted file. If no
DUPLICATES clause is used, the order of records with duplicate keys is undefined.

• AlphabetName is an alphabet name defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. This clause is used to select the character set the SORT verb uses for
collating the records in the file. The character set may be STANDARD-1 (ASCII), STANDARD-2
(ISO 646), NATIVE (may be defined by the system to be ASCII or EBCDIC; see your
implementer manual), or user defined.

• SORT can be used anywhere in the PROCEDURE DIVISION except in an INPUT PROCEDURE (SORT)
or OUTPUT PROCEDURE (SORT or MERGE) or in the DECLARATIVES SECTION. The purpose of the
INPUT PROCEDURE and OUTPUT PROCEDURE is explained later in this chapter, but an explanation
of the DECLARATIVES SECTION has to wait until Chapter 18.

The records described for the input file (• USING) must be able to fit into the records described
for SDWorkFileName.

The records described for • SDWorkFileName must be able to fit into the records described for
the output file (GIVING).

The description of • WorkSortKey#$i cannot contain an OCCURS clause (it cannot be a table), nor
can it be subordinate to an entry that contains one.

The • InFileName and OutFileName files are automatically opened by the SORT. When the SORT
executes, they must not already be open.

How the Simple SORT Works

Figure 14-2 shows how the simple version of SORT works. In this case, the diagram uses the example in Listing 14-1
to illustrate the point. The sort process takes records from the unsorted BillableServicesFile, sorts them using
WorkFile (the temporary work area), and, when the records have been sorted, sends them to SortedBillablesFile.
After sorting, the records in the SortedBillablesFile will be ordered on ascending SubscriberId.

Figure 14-2. Diagram showing how the simple SORT works

CHAPTER 14 ■ SORTING AND MERGING

330

Simple Sorting Program

Universal Telecoms has subscribers all over the United States. Each month, the billable activities of these subscribers are
gathered into a file. BillableServicesFile is an unordered sequential file. Each record has the following description:

Field Type Length Value

SubscriberId 9 10 –

ServiceType 9 1 1(text)/2(voice)

ServiceCost 9 6 0.10–9999.99

A program is required to produce a report that shows the value of the billable services for each subscriber (see
Listing 14-1). In the report, BillableValue is the sum of the ServiceCost fields for each subscriber. The report must
be printed on ascending SubscriberId and have the following format:

Universal Telecoms Monthly Report
SubscriberId BillableValue
 XXXXXXXXXX XXXXXXXXXXX
 XXXXXXXXXX XXXXXXXXXXX
 XXXXXXXXXX XXXXXXXXXXX

Listing 14-1. A simple SORT applied to the BillableServicesFile

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-1.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT WorkFile ASSIGN TO "WORK.TMP".

 SELECT BillableServicesFile ASSIGN TO "Listing14-1.dat"
 ORGANIZATION LINE SEQUENTIAL.

 SELECT SortedBillablesFile ASSIGN TO "Listing14-1.Srt"
 ORGANIZATION LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.

FD BillableServicesFile.
01 SubscriberRec-BSF PIC X(17).

SD WorkFile.
01 WorkRec.
 02 SubscriberId-WF PIC 9(10).
 02 FILLER PIC X(7).

FD SortedBillablesFile.
01 SubscriberRec.
 88 EndOfBillablesFile VALUE HIGH-VALUES.
 02 SubscriberId PIC 9(10).

CHAPTER 14 ■ SORTING AND MERGING

331

 02 ServiceType PIC 9.
 02 ServiceCost PIC 9(4)V99.

WORKING-STORAGE SECTION.
01 SubscriberTotal PIC 9(5)V99.

01 ReportHeader PIC X(33) VALUE "Universal Telecoms Monthly Report".

01 SubjectHeader PIC X(31) VALUE "SubscriberId BillableValue".

01 SubscriberLine.
 02 PrnSubscriberId PIC 9(10).
 02 FILLER PIC X(8) VALUE SPACES.
 02 PrnSubscriberTotal PIC $$$,$$9.99.

01 PrevSubscriberId PIC 9(10).

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING KEY SubscriberId-WF
 USING BillableServicesFile
 GIVING SortedBillablesFile
 DISPLAY ReportHeader
 DISPLAY SubjectHeader
 OPEN INPUT SortedBillablesFile
 READ SortedBillablesFile
 AT END SET EndOfBillablesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfBillablesFile
 MOVE SubscriberId TO PrevSubscriberId, PrnSubscriberId
 MOVE ZEROS TO SubscriberTotal
 PERFORM UNTIL SubscriberId NOT EQUAL TO PrevSubscriberId
 ADD ServiceCost TO SubscriberTotal
 READ SortedBillablesFile
 AT END SET EndOfBillablesFile TO TRUE
 END-READ
 END-PERFORM
 MOVE SubscriberTotal TO PrnSubscriberTotal
 DISPLAY SubscriberLine
 END-PERFORM
 CLOSE SortedBillablesFile
 STOP RUN.

Program Notes

I have kept this program simple for reasons of clarity and space, and because you will meet a more fully worked
version of the program when I explore advanced versions of the SORT. Because the SORT uses a disk-based WorkFile, it
is slower than purely RAM-bound operations. You should be aware of this whenever you are considering using SORT.
You should probably use SORT only when no practical RAM-based solution is available; and even then, you should
ensure that only the data items required in the sorted file are sorted. This may involve leaving out some of the records
or changing the record size.

CHAPTER 14 ■ SORTING AND MERGING

332

In this instance, sorting the file does seem to be the only viable option. There are millions of telephone subscribers,
and, in the course of a month, they make many calls and send hundreds of texts. So BillableServicesFile contains
tens of millions, or hundreds of millions, of records. In COBOL, the only possible RAM-based solution (you can't
create dynamic structures like trees or linked lists pre–ISO 2002) would be to use a table (one element per subscriber)
to sum the subscribers’ ServiceCost fields. That solution has many problems. The array would have to contain
millions of elements, you would have to ensure that the elements were in SubscriberId order, and, because new
subscribers are constantly joining, the table would have to be redimensioned every time the program ran.

You may wonder why the example uses different record descriptions for the three files when the records are
identical. The reason is that although the records are identical, they are used in different ways in the program, and the
granular data descriptions reflect way the records are used.

The input file is used only by the SORT, so while you have to define how much storage a record will occupy you
never need to refer to the individual fields. You could fully define the record as follows:

01 UnsortedSubcriberRec.
 02 SubscriberId PIC 9(10).
 02 ServiceType PIC 9.
 02 ServiceCost PIC 9(4)V99

But then you would either have to use slightly different field names for the sorted file or qualify them using
references such as SubscriberId OF SubscriberRec.

In WorkFile, only the data items on which the file is to be sorted (mentioned in the KEY phrase) need to be
explicitly defined. In this case, the only item that must be explicitly identified is SubscriberId-WF.

The sorted file is normally the file that the program uses to do whatever work is required. This generally means
that all, or nearly all, of the data items are mentioned by name in the program; and, hence, they have to be declared.
Normally, the record description for this file fully defines the record.

Using Multiple Keys
If you examine the SORT metalanguage in Figure 14-1, you will realize not only that can a file be sorted on a number of keys
but also that one key can be ascending while another is descending. This is illustrated in Table 14-1 and Example 14-2.
The table contains student results that have been sorted into descending StudentId order within ascending GPA
order. Notice that GPA is the major key and that StudentId is only in descending sequence within GPA. This is because
the first key named in a SORT statement is the major key, and keys become less significant with each successive
declaration.

Example 14-2. SORT with One Key Descending and Another Ascending

SORT WorkFile ON DESCENDING GPA
 ASCENDING StudentId
 USING StudentResultsFile
 GIVING SortedStudentsResultsFile

CHAPTER 14 ■ SORTING AND MERGING

333

SORT with Procedures
The simple version of SORT takes the records from InFileName, sorts them, and then outputs them to OutFileName.
Sometimes, however, not all the records in the unsorted file are required in the sorted file, or not all the data items
in the unsorted file record are required in the record of the sorted file. For instance, suppose the specification for the
Universal Telecoms Monthly Report changes so that you are only required to show the value of the voice calls made
by subscribers. In that situation, the text records (ServiceType = 1) are not required in the sorted file. Similarly, if the
specification changes so that the number of texts and phone calls is required rather than their value, you do not need
the ServiceCost data item in sorted file records. In both cases, processing must be applied, to eliminate unwanted
records or alter their format, before the records are submitted to the sort process. This processing is achieved by
specifying INPUT PROCEDURE with SORT.

Sometimes, to reduce the number of files that have to be declared, you may find it useful to process the records
directly from the sort process instead of creating a sorted file and then processing that. For instance, you could create
the Universal Telecoms Monthly Report directly instead of creating a sorted file and then processing the sorted file to
create the report. Such processing is accomplished by using OUTPUT PROCEDURE with SORT.

An INPUT PROCEDURE is a block of code that consists of one or more sections or paragraphs that execute, having
been passed control by SORT. When the block of code has finished, control reverts to SORT. An OUTPUT PROCEDURE
works in a similar way.

Table 14-1. Ascending StudentId within Descending GPA

-

CHAPTER 14 ■ SORTING AND MERGING

334

Figure 14-3 gives the metalanguage for the full SORT including the INPUT PROCEDURE and the OUTPUT PROCEDURE.

Figure 14-3. Metalanguage for the full version of the SORT verb

INPUT PROCEDURE Notes

You should consider the following when using an INPUT PROCEDURE:

The block of code specified by the • INPUT PROCEDURE allows you to select which records,
and what format of records, are submitted to the sort process. Because an INPUT PROCEDURE
executes before the SORT sorts the records, only the data that is actually required in the sorted
file is sorted.

When you use an • INPUT PROCEDURE, it replaces the USING phrase. The ProcedureName in
the INPUT PROCEDURE phrase identifies a block of code that uses the RELEASE verb to supply
records to the sort process. The INPUT PROCEDURE must contain at least one RELEASE statement
to transfer the records to the work file (identified by SDWorkFileName).

The • INPUT PROCEDURE finishes before the sort process sorts the records supplied to it by the
procedure. That's why the records are RELEASEd to the work file. They are stored there until the
INPUT PROCEDURE finishes, and then they are sorted.

Neither an • INPUT PROCEDURE nor an OUTPUT PROCEDURE can contain a SORT or MERGE
statement.

The pre–ANS 85 COBOL rules for the • SORT verb stated that the INPUT PROCEDURE and OUTPUT
PROCEDURE had to be self-contained sections of code and could not be entered from elsewhere
in the program.

In the ANS 85 version of COBOL, the • INPUT PROCEDURE and OUTPUT PROCEDURE can be
any contiguous group of paragraphs or sections. The only restriction is that the range of
paragraphs or sections used must not overlap.

CHAPTER 14 ■ SORTING AND MERGING

335

OUTPUT PROCEDURE Notes

You should consider the following when using an OUTPUT PROCEDURE:

An • OUTPUT PROCEDURE retrieves sorted records from the work file using the RETURN verb. An
OUTPUT PROCEDURE must contain at least one RETURN statement to get the records from the
work file.

An • OUTPUT PROCEDURE only executes after the file has been sorted.

If you use an • OUTPUT PROCEDURE, the SORT..GIVING phrase cannot be used.

How an INPUT PROCEDURE Works
A simple SORT works by taking records from the USING file, sorting them, and then writing them to the GIVING file.
When an INPUT PROCEDURE is used, there is no USING file, so the sort process has to get its records from the INPUT
PROCEDURE. The INPUT PROCEDURE uses the RELEASE verb to supply the records to the work file of the SORT, one at a
time.

Although an INPUT PROCEDURE usually gets the records it supplies to the sort process from an input file, the
records can originate from anywhere. For instance, if you wanted to sort the elements of a table, you could use INPUT
PROCEDURE to send the elements, one at a time, to the sort process (see Listing 14-7, in the section “Sorting Tables
Program”). Or, if you wanted to sort the records as they were entered by the user, you could use INPUT PROCEDURE to
get the records from the user and supply them to the sort process (see Listing 14-3, later in this section). When an
INPUT PROCEDURE gets its records from an input file, it can select which records to send to the sort process and can
even alter the structure of the records before they are sent.

Creating an INPUT PROCEDURE

When you use an INPUT PROCEDURE, a RELEASE verb must be used to send records to the work file associated with
SORT. The work file is declared in an SD entry in the FILE SECTION. RELEASE is a special verb used only in INPUT
PROCEDUREs to send records to the work file. It is the equivalent of a WRITE command and works in a similar way. The
metalanguage for the RELEASE verb is given in Figure 14-4.

Figure 14-4. Metalanguage for the RELEASE verb

A template for an INPUT PROCEDURE that gets records from an input file and releases them to the SORT work file is
given in Example 14-3. Notice that the work file is not opened in the OUTPUT PROCEDURE. The work file is automatically
opened by the SORT.

Example 14-3. INPUT PROCEDURE File-Processing Template

OPEN INPUT InFileName
READ InFileName RECORD
PERFORM UNTIL TerminatingCondition
 RELEASE SDWorkRec
 READ InFileName RECORD
END-PERFORM
CLOSE InFileName

CHAPTER 14 ■ SORTING AND MERGING

336

Using an INPUT PROCEDURE to Select Records

Suppose that the specification for the Universal Telecoms Monthly Report is changed so that only the value of the
voice calls made by subscribers is required. Figure 14-5 shows how you can use an INPUT PROCEDURE between the
input file and the sort process to filter out the unwanted text (ServiceType = 1) records. Listing 14-2 implements the
specification change and also produces a more fully worked version. In this program, the report is written to a print
file rather than just displayed on the computer screen.

Figure 14-5. INPUT PROCEDURE used to select the voice call records

Listing 14-2. Using an INPUT PROCEDURE to Select Only Voice Calls Records

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-2.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT WorkFile ASSIGN TO "WORK.TMP".

 SELECT BillableServicesFile ASSIGN TO "Listing14-2.dat"
 ORGANIZATION LINE SEQUENTIAL.

 SELECT SortedCallsFile ASSIGN TO "Listing14-2.Srt"
 ORGANIZATION LINE SEQUENTIAL.

 SELECT PrintFile ASSIGN TO "Listing14-2.prn"
 ORGANIZATION LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BillableServicesFile.
01 SubscriberRec-BSF.

CHAPTER 14 ■ SORTING AND MERGING

337

 88 EndOfBillableServicesFile VALUE HIGH-VALUES.
 02 FILLER PIC X(10).
 02 FILLER PIC 9.
 88 VoiceCall VALUE 2.
 02 FILLER PIC X(6).

SD WorkFile.
01 WorkRec.
 02 SubscriberId-WF PIC 9(10).
 02 FILLER PIC X(7).

FD SortedCallsFile.
01 SubscriberRec.
 88 EndOfCallsFile VALUE HIGH-VALUES.
 02 SubscriberId PIC 9(10).
 02 ServiceType PIC 9.
 02 ServiceCost PIC 9(4)V99.

FD PrintFile.
01 PrintRec PIC X(40).

WORKING-STORAGE SECTION.
01 SubscriberTotal PIC 9(5)V99.

01 ReportHeader PIC X(33) VALUE "Universal Telecoms Monthly Report".

01 SubjectHeader PIC X(31) VALUE "SubscriberId BillableValue".

01 SubscriberLine.
 02 PrnSubscriberId PIC 9(10).
 02 FILLER PIC X(8) VALUE SPACES.
 02 PrnSubscriberTotal PIC $$$,$$9.99.

01 PrevSubscriberId PIC 9(10).

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING KEY SubscriberId-WF
 INPUT PROCEDURE IS SelectVoiceCalls
 GIVING SortedCallsFile
 OPEN OUTPUT PrintFile
 OPEN INPUT SortedCallsFile
 WRITE PrintRec FROM ReportHeader AFTER ADVANCING PAGE
 WRITE PrintRec FROM SubjectHeader AFTER ADVANCING 1 LINE

 READ SortedCallsFile
 AT END SET EndOfCallsFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfCallsFile
 MOVE SubscriberId TO PrevSubscriberId, PrnSubscriberId
 MOVE ZEROS TO SubscriberTotal
 PERFORM UNTIL SubscriberId NOT EQUAL TO PrevSubscriberId

CHAPTER 14 ■ SORTING AND MERGING

338

 ADD ServiceCost TO SubscriberTotal
 READ SortedCallsFile
 AT END SET EndOfCallsFile TO TRUE
 END-READ
 END-PERFORM
 MOVE SubscriberTotal TO PrnSubscriberTotal
 WRITE PrintRec FROM SubscriberLine AFTER ADVANCING 1 LINE
 END-PERFORM
 CLOSE SortedCallsFile, PrintFile
 STOP RUN.

SelectVoiceCalls.
 OPEN INPUT BillableServicesFile
 READ BillableServicesFile
 AT END SET EndOfBillableServicesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfBillableServicesFile
 IF VoiceCall
 RELEASE WorkRec FROM SubscriberRec-BSF
 END-IF
 READ BillableServicesFile
 AT END SET EndOfBillableServicesFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE BillableServicesFile.

The file declarations are once more of interest. Because only the voice call records are released to the work file,
you need to be able to detect which records are voice call records. To do this, you cannot declare SubscriberRec-
BSF as an undifferentiated group of 17 characters, as in Listing 14-1. Instead, you isolate the ServiceType character
position so that you can monitor it with the condition name VoiceCall. Because you never refer to ServiceType in the
PROCEDURE DIVISION, you do not explicitly name it but instead give it the generic name FILLER.

Using an INPUT PROCEDURE to Modify Records

In addition to selecting which records to send to be sorted, you can also use an INPUT PROCEDURE to modify the
records before releasing them to the sort process. Suppose the specification for the Universal Telecoms Monthly
Report is changed again. Now you are now required to count the number of calls made and the number of texts sent
by each subscriber. Because sorting is a slow, disk-based process, every effort should be made to reduce the amount
of data that has to be sorted. The ServiceCost data item is not required to produce the report, so you do not need to
include it in the records sent to the work file. You can use an INPUT PROCEDURE to modify the input record so that only
the required data items are submitted to the SORT.

Listing 14-3 implements the specification change, and Figure 14-6 shows how the INPUT PROCEDURE sits between
the input file and the sort process to modify the records before they are released to the work file.

Listing 14-3. Using an INPUT PROCEDURE to Modify the Record Structure

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-3.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

CHAPTER 14 ■ SORTING AND MERGING

339

 SELECT WorkFile ASSIGN TO "WORK.TMP".

 SELECT BillableServicesFile ASSIGN TO "Listing14-3.dat"
 ORGANIZATION LINE SEQUENTIAL.

 SELECT SortedSubscriberFile ASSIGN TO "Listing14-3.Srt"
 ORGANIZATION LINE SEQUENTIAL.

 SELECT PrintFile ASSIGN TO "Listing14-3.prn"
 ORGANIZATION LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BillableServicesFile.
01 SubscriberRec-BSF.
 88 EndOfBillableServicesFile VALUE HIGH-VALUES.
 02 SubscriberId-BSF PIC 9(10).
 02 ServiceType-BSF PIC 9.
 02 FILLER PIC X(6).

SD WorkFile.
01 WorkRec.
 02 SubscriberId-WF PIC 9(10).
 02 ServiceType-WF PIC 9.

FD SortedSubscriberFile.
01 SubscriberRec.
 88 EndOfCallsFile VALUE HIGH-VALUES.
 02 SubscriberId PIC 9(10).
 02 ServiceType PIC 9.
 88 VoiceCall VALUE 2.

FD PrintFile.
01 PrintRec PIC X(40).

WORKING-STORAGE SECTION.
01 CallsTotal PIC 9(4).

01 TextsTotal PIC 9(5).

01 ReportHeader PIC X(33) VALUE "Universal Telecoms Monthly Report".

01 SubjectHeader PIC X(31) VALUE "SubscriberId Calls Texts".

01 SubscriberLine.
 02 PrnSubscriberId PIC 9(10).
 02 FILLER PIC X(6) VALUE SPACES.
 02 PrnCallsTotal PIC Z,ZZ9.
 02 FILLER PIC X(4) VALUE SPACES.
 02 PrnTextsTotal PIC ZZ,ZZ9.

CHAPTER 14 ■ SORTING AND MERGING

340

01 PrevSubscriberId PIC 9(10).

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING KEY SubscriberId-WF
 INPUT PROCEDURE IS ModifySubscriberRecords
 GIVING SortedSubscriberFile
 OPEN OUTPUT PrintFile
 OPEN INPUT SortedSubscriberFile
 WRITE PrintRec FROM ReportHeader AFTER ADVANCING PAGE
 WRITE PrintRec FROM SubjectHeader AFTER ADVANCING 1 LINE

 READ SortedSubscriberFile
 AT END SET EndOfCallsFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfCallsFile
 MOVE SubscriberId TO PrevSubscriberId, PrnSubscriberId
 MOVE ZEROS TO CallsTotal, TextsTotal
 PERFORM UNTIL SubscriberId NOT EQUAL TO PrevSubscriberId
 IF VoiceCall ADD 1 TO CallsTotal
 ELSE ADD 1 TO TextsTotal
 END-IF
 READ SortedSubscriberFile
 AT END SET EndOfCallsFile TO TRUE
 END-READ
 END-PERFORM
 MOVE CallsTotal TO PrnCallsTotal
 MOVE TextsTotal TO PrnTextsTotal
 WRITE PrintRec FROM SubscriberLine AFTER ADVANCING 1 LINE
 END-PERFORM
 CLOSE SortedSubscriberFile, PrintFile
 STOP RUN.

ModifySubscriberRecords.
 OPEN INPUT BillableServicesFile
 READ BillableServicesFile
 AT END SET EndOfBillableServicesFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfBillableServicesFile
 MOVE SubscriberId-BSF TO SubscriberId-WF
 MOVE ServiceType-BSF TO ServiceType-WF
 RELEASE WorkRec
 READ BillableServicesFile
 AT END SET EndOfBillableServicesFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE BillableServicesFile.

CHAPTER 14 ■ SORTING AND MERGING

341

As before, the record declarations are of some interest. For reasons of clarity, I chose to explicitly identify the
data items in SubscriberRec-BSF that are being preserved in WorkRec. You may, on consideration of the character
positions, wonder if you could simply move SubscriberRec-BSF to WorkRec and let MOVE truncation eliminate the
unwanted data. If those are your thoughts, then you are correct. You could save yourself some typing by doing that.

Feeding SORT from the Keyboard

As I mentioned earlier, and as you can see from Figure 14-5 and Figure 14-6, when an INPUT PROCEDURE is used, it is
responsible for supplying records to the sort process. The records supplied can come from anywhere. They can come
from a file, a table, or (as in this example) directly from the user.

The program in Listing 14-4 gets records directly from the user, sorts them on ascending StudentId, and then
outputs them to SortedStudentFile. The diagram in Figure 14-7 represents the process. Note that the sort process
only sorts the file when the INPUT PROCEDURE has finished.

Listing 14-4. Feeding SORT from the Keyboard

IDENTIFICATION DIVISION.
PROGRAM-ID. Lsiting14-4.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT StudentFile ASSIGN TO "Listing14-4.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT WorkFile ASSIGN TO "WORK.TMP".

Figure 14-6. Using an INPUT PROCEDURE to modify the subscriber records

CHAPTER 14 ■ SORTING AND MERGING

342

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails PIC X(32).
* The StudentDetails record has the description shown below.
* But in this program I don't actually need to refer to any
* of the items in the record and so have described it as PIC X(32)
* 01 StudentDetails
* 02 StudentId PIC 9(8).
* 02 StudentName.
* 03 Surname PIC X(8).
* 03 Initials PIC XX.
* 02 DateOfBirth.
* 03 YOBirth PIC 9(4).
* 03 MOBirth PIC 9(2).
* 03 DOBirth PIC 9(2).
* 02 CourseCode PIC X(5).
* 02 Gender PIC X.

SD WorkFile.
01 WorkRec.
 88 EndOfInput VALUE SPACES.
 02 FILLER PIC X(8).
 02 SurnameWF PIC X(8).
 02 FILLER PIC X(16).

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING KEY SurnameWF
 INPUT PROCEDURE IS GetStudentDetails
 GIVING StudentFile
 STOP RUN.

GetStudentDetails.
 DISPLAY "Use the template below"
 DISPLAY "to enter your details."
 DISPLAY "Enter spaces to end.".
 DISPLAY "NNNNNNNNSSSSSSSSIIYYYYMMDDCCCCCG".
 ACCEPT WorkRec.
 PERFORM UNTIL EndOfInput
 RELEASE WorkRec
 ACCEPT WorkRec
 END-PERFORM.

CHAPTER 14 ■ SORTING AND MERGING

343

OUTPUT PROCEDURE
An INPUT PROCEDURE allows you to filter, or alter, records before they are supplied to the sort process. This can
substantially reduce the amount of data that has to be sorted. An OUTPUT PROCEDURE has no such advantage. An
OUTPUT PROCEDURE only executes when the sort process has already sorted the file.

Nevertheless, an OUTPUT PROCEDURE is useful when you don’t need to preserve the sorted file. For instance, if
you are sorting records to produce a one-off report, you can use an OUTPUT PROCEDURE to create the report directly,
without first having to create a file containing the sorted records. This saves you the effort of having to define an
unnecessary file. An OUTPUT PROCEDURE is also useful when you want to alter the structure of the records written to
the sorted file. For instance, if you were required to produce a summary file from the sorted records, you could use an
OUTPUT PROCEDURE to summarize the sorted records and then write each of the summary records to summary file. The
resulting file would contain summary records, rather than the detail records contained in the unsorted file.

How the OUTPUT PROCEDURE Works
A simple SORT takes the records from the unsorted input file, sorts them, and then outputs them to the sorted output
file. As Figure 14-8 shows, the OUTPUT PROCEDURE breaks the connection between the SORT and the output file. The
OUTPUT PROCEDURE uses the RETURN verb to retrieve sorted records from the work file. It may then send the retrieved
records to the output file, but it doesn’t have to. Once the OUTPUT PROCEDURE has retrieved the sorted records from the
work file, it can do whatever it likes with them. For instance, it can summarize them, alter them, put them into a table,
display them on the screen, or send them to the output file. When the OUTPUT PROCEDURE does send the sorted records
to an output file, it can control which records, and what type of records, appear in the file.

Figure 14-7. Supplying SORT records directly from the user

CHAPTER 14 ■ SORTING AND MERGING

344

Figure 14-8. Using an OUTPUT PROCEDURE TO summarize records

Figure 14-9. Metalanguage for the RETURN verb

Creating an OUTPUT PROCEDURE

When you use an OUTPUT PROCEDURE, you must use the RETURN verb to retrieve records from the work file associated
with the SORT. RETURN is a special verb used only in OUTPUT PROCEDUREs. It is the equivalent of the READ verb and
works in a similar way. The metalanguage for the RETURN verb is given in Figure 14-9.

Example 4-4 shows an operational template for an OUTPUT PROCEDURE that gets records from the work file
and writes them to an output file. Notice that the work file is not opened in the OUTPUT PROCEDURE; the work file is
automatically opened by the SORT.

Example 14-4. OUTPUT PROCEDURE File-Processing Template

OPEN OUTPUT OutFile
RETURN SDWorkFile RECORD
PERFORM UNTIL TerminatingCondition
 Setup OutRec
 WRITE OutRec
 RETURN SDWorkFile RECORD
END-PERFORM
CLOSE OutFile

CHAPTER 14 ■ SORTING AND MERGING

345

Using an OUTPUT PROCEDURE to Produce a Summary File

The example in Listing 14-5 returns to the specification for the Universal Telecoms Monthly Report. However,
the specification has been changed again. This time, instead of producing a report, you are required to produce a
summary file. The summary file is a sequential file, ordered on ascending SubscriberId. Each subscriber record in
the summary file summarizes all the records in BillableServicesFile for that subscriber. Each record in the file has
the following description:

Field Type Length Value

SubscriberId 9 10 –

CostOfTexts 9 6 0.10–9999.99

CostOfCalls 9 8 0.10–999999.99

Listing 14-5. Using an OUTPUT PROCEDURE to Create a Summary File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-5.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT WorkFile ASSIGN TO "WORK.TMP".

 SELECT BillableServicesFile ASSIGN TO "Listing14-5.dat"
 ORGANIZATION LINE SEQUENTIAL.

 SELECT SortedSummaryFile ASSIGN TO "Listing14-5.Srt"
 ORGANIZATION LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BillableServicesFile.
01 SubscriberRec-BSF PIC X(17).

SD WorkFile.
01 WorkRec.
 88 EndOfWorkFile VALUE HIGH-VALUES.
 02 SubscriberId-WF PIC 9(10).
 02 FILLER PIC 9.
 88 TextCall VALUE 1.
 88 VoiceCall VALUE 2.
 02 ServiceCost-WF PIC 9(4)V99.

FD SortedSummaryFile.
01 SummaryRec.
 02 SubscriberId PIC 9(10).
 02 CostOfTexts PIC 9(4)V99.
 02 CostOfCalls PIC 9(6)V99.

CHAPTER 14 ■ SORTING AND MERGING

346

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING KEY SubscriberId-WF
 USING BillableServicesFile
 OUTPUT PROCEDURE IS CreateSummaryFile
 STOP RUN.

CreateSummaryFile.
 OPEN OUTPUT SortedSummaryFile
 RETURN WorkFile
 AT END SET EndOfWorkFile TO TRUE
 END-RETURN
 PERFORM UNTIL EndOfWorkFile
 MOVE ZEROS TO CostOfTexts, CostOfCalls
 MOVE SubscriberId-WF TO SubscriberId
 PERFORM UNTIL SubscriberId-WF NOT EQUAL TO SubscriberId
 IF VoiceCall
 ADD ServiceCost-WF TO CostOfCalls
 ELSE
 ADD ServiceCost-WF TO CostOfTexts
 END-IF
 RETURN WorkFile
 AT END SET EndOfWorkFile TO TRUE
 END-RETURN
 END-PERFORM
 WRITE SummaryRec
 END-PERFORM
 CLOSE SortedSummaryFile.

Figure 14-8 illustrates the process of producing the summary file. The SORT takes records from
BillableServicesFile and sorts them, and then the OUTPUT PROCEDURE summarizes them and writes the summary
records to SortedSummaryFile.

The data items in BillableServicesFile are not referred to in the program and so are not explicitly defined,
although the storage they require is reserved (PIC X(17)). For reasons of brevity, and because it would obscure the
core logic, the program does not check the data for validity.

Some Interesting Programs
You have seen how you can use an INPUT PROCEDURE to process records before they are sent to a SORT and how you
can use an OUTPUT PROCEDURE to process the sorted records. But each was used in isolation. You can achieve some
interesting results by using them in concert.

CHAPTER 14 ■ SORTING AND MERGING

347

Sorting Student Records into Date-of-Entry Order

Suppose there exists an unordered sequential file of student records, and each record in the file has the following
description:

Field Type Length Value

StudentId 9 7 YYxxxxx

CourseCode 9 5 LMxxx

StudentId is a number that consists of two digits representing the year of entry followed by six other digits. Write
a program to sort StudentFile on the “real” ascending StudentId.

This specification presents an interesting issue. It says that the file should be ordered on the “real” ascending
StudentId. This means the IDs of students who entered the university after the year 2000 should appear after those
of students who entered the university before 2000. This is a problem because you can't just sort the records in
ascending StudentId order, as is demonstrated in Figure 14-10.

Figure 14-10. Showing the real StudentId sort order

How can this be done? Listing 14-6 solves the problem by using an INPUT PROCEDURE to alter StudentId to add
the millennium to the date-of-entry part. Then the altered records are sorted, and the OUTPUT PROCEDURE strips off the
millennium digits.

Listing 14-6. Using INPUT PROCEDURE and OUTPUT PROCEDURE in Concert

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-6.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT UnsortedStudentsFile ASSIGN TO "Listing14-6.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT WorkFile ASSIGN TO "Workfile.tmp".

 SELECT SortedStudentsFile ASSIGN TO "Listing14-6.srt"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD UnsortedStudentsFile.

CHAPTER 14 ■ SORTING AND MERGING

348

01 StudentRecUF.
 88 EndOfUnsortedFile VALUE HIGH-VALUES.
 02 StudentIdUF.
 03 MillenniumUF PIC 99.
 03 FILLER PIC 9(5).
 02 RecBodyUF PIC X(14).

SD WorkFile.
01 StudentRecWF.
 88 EndOfWorkFile VALUE HIGH-VALUES.
 02 FullStudentIdWF.
 03 MillenniumWF PIC 99.
 03 StudentIdWF PIC 9(7).
 02 RecBodyWF PIC X(14).

FD SortedStudentsFile.
01 StudentRecSF.
 02 StudentIdSF PIC 9(7).
 02 RecBodySF PIC X(14).

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING KEY FullStudentIdWF
 INPUT PROCEDURE IS AddInMillennium
 OUTPUT PROCEDURE IS RemoveMillennium
 STOP RUN.

AddInMillennium.
 OPEN INPUT UnsortedStudentsFile
 READ UnsortedStudentsFile
 AT END SET EndOfUnsortedFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfUnsortedFile
 MOVE RecBodyUF TO RecBodyWF
 MOVE StudentIDUF TO StudentIdWF
 IF MillenniumUF < 70
 MOVE 20 TO MillenniumWF
 ELSE
 MOVE 19 TO MillenniumWF
 END-IF
 RELEASE StudentRecWF
 READ UnsortedStudentsFile
 AT END SET EndOfUnsortedFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE UnsortedStudentsFile.

RemoveMillennium.
 OPEN OUTPUT SortedStudentsFile
 RETURN WorkFile
 AT END SET EndOfWorkFile TO TRUE

CHAPTER 14 ■ SORTING AND MERGING

349

 END-RETURN
 PERFORM UNTIL EndOfWorkFile
 MOVE RecBodyWF TO RecBodySF
 MOVE StudentIdWF TO StudentIdSF
 WRITE StudentRecSF
 RETURN WorkFile
 AT END SET EndOfWorkFile TO TRUE
 END-RETURN
 END-PERFORM
 CLOSE SortedStudentsFile.

Sorting Tables

Versions of COBOL before ISO 2002 did not allow you to apply a SORT to a table. But it was possible to work around
this restriction by using an INPUT PROCEDURE to release table elements to the work file and an OUTPUT PROCEDURE
to get the sorted element-records from the work file and put them back into the table. The process is illustrated in
Figure 14-11; see Listing 14-7.

Figure 14-11. Using INPUT PROCEDURE and OUTPUT PROCEDURE to sort a table

Listing 14-7. Sorting a Table Using INPUT PROCEDURE and OUTPUT PROCEDURE

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-7.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CountyTable.
 02 TableValues.
 03 FILLER PIC X(16) VALUE "kilkenny 0080421".
 03 FILLER PIC X(16) VALUE "laois 0058732".
 03 FILLER PIC X(16) VALUE "leitrim 0025815".
 03 FILLER PIC X(16) VALUE "tipperary0140281".
 03 FILLER PIC X(16) VALUE "waterford0101518".

CHAPTER 14 ■ SORTING AND MERGING

350

 03 FILLER PIC X(16) VALUE "westmeath0072027".
 03 FILLER PIC X(16) VALUE "carlow 0045845".
 03 FILLER PIC X(16) VALUE "wicklow 0114719".
 03 FILLER PIC X(16) VALUE "cavan 0056416".
 03 FILLER PIC X(16) VALUE "clare 0103333".
 03 FILLER PIC X(16) VALUE "meath 0133936".
 03 FILLER PIC X(16) VALUE "monaghan 0052772".
 03 FILLER PIC X(16) VALUE "offaly 0063702".
 03 FILLER PIC X(16) VALUE "roscommon0053803".
 03 FILLER PIC X(16) VALUE "sligo 0058178".
 03 FILLER PIC X(16) VALUE "cork 0448181".
 03 FILLER PIC X(16) VALUE "donegal 0137383".
 03 FILLER PIC X(16) VALUE "dublin 1122600".
 03 FILLER PIC X(16) VALUE "galway 0208826".
 03 FILLER PIC X(16) VALUE "wexford 0116543".
 03 FILLER PIC X(16) VALUE "kerry 0132424".
 03 FILLER PIC X(16) VALUE "kildare 0163995".
 03 FILLER PIC X(16) VALUE "limerick 0175529".
 03 FILLER PIC X(16) VALUE "longford 0031127".
 03 FILLER PIC X(16) VALUE "louth 0101802".
 03 FILLER PIC X(16) VALUE "mayo 0117428".
 02 FILLER REDEFINES TableValues.
 03 CountyDetails OCCURS 26 TIMES
 INDEXED BY Cidx.
 04 CountyName PIC X(9).
 04 CountyPop PIC 9(7).

01 PrnCountyPop PIC Z,ZZZ,ZZ9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "County name order"
 SORT CountyDetails ON ASCENDING KEY CountyName
 PERFORM DisplayCountyTotals
 VARYING Cidx FROM 1 BY 1 UNTIL Cidx GREATER
THAN 26.

 DISPLAY SPACES
 DISPLAY "County population order"
 SORT CountyDetails ON DESCENDING KEY CountyPop
 PERFORM DisplayCountyTotals
 VARYING Cidx FROM 1 BY 1 UNTIL Cidx GREATER
THAN 26.

 STOP RUN.

DisplayCountyTotals.
 MOVE CountyPop(Cidx) TO PrnCountyPop
 DISPLAY CountyName(Cidx) " is " PrnCountyPop

CHAPTER 14 ■ SORTING AND MERGING

351

Sorting Tables: ISO 2002 Changes
Listing 14-7 shows how to sort a table using an INPUT PROCEDURE and an OUTPUT PROCEDURE. The problem with this
solution is the work file. The sort operation, being bound to a file on backing storage, is comparatively slow. Sorting
the table would be faster if it could be done wholly in memory.

Sorting a table directly in memory is exactly what the ISO 2002 version of COBOL now allows. The metalanguage
for this SORT format is given in Figure 14-12, and Listing 14-8 shows how you can use this format to sort the County
table from Listing 14-7.

Figure 14-12. Metalanguage for the ISO 2002 version of SORT

Listing 14-8. Applying SORT Directly to a Table

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-8.
*> ISO 2002 Applying the SORT to a table
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CountyTable.
 02 TableValues.
 03 FILLER PIC X(16) VALUE "kilkenny 0080421".
 03 FILLER PIC X(16) VALUE "laois 0058732".
 03 FILLER PIC X(16) VALUE "leitrim 0025815".
 03 FILLER PIC X(16) VALUE "tipperary0140281".
 03 FILLER PIC X(16) VALUE "waterford0101518".
 03 FILLER PIC X(16) VALUE "westmeath0072027".
 03 FILLER PIC X(16) VALUE "carlow 0045845".
 03 FILLER PIC X(16) VALUE "wicklow 0114719".
 03 FILLER PIC X(16) VALUE "cavan 0056416".
 03 FILLER PIC X(16) VALUE "clare 0103333".
 03 FILLER PIC X(16) VALUE "meath 0133936".
 03 FILLER PIC X(16) VALUE "monaghan 0052772".
 03 FILLER PIC X(16) VALUE "offaly 0063702".
 03 FILLER PIC X(16) VALUE "roscommon0053803".
 03 FILLER PIC X(16) VALUE "sligo 0058178".
 03 FILLER PIC X(16) VALUE "cork 0448181".
 03 FILLER PIC X(16) VALUE "donegal 0137383".
 03 FILLER PIC X(16) VALUE "dublin 1122600".
 03 FILLER PIC X(16) VALUE "galway 0208826".
 03 FILLER PIC X(16) VALUE "wexford 0116543".
 03 FILLER PIC X(16) VALUE "kerry 0132424".
 03 FILLER PIC X(16) VALUE "kildare 0163995".
 03 FILLER PIC X(16) VALUE "limerick 0175529".

CHAPTER 14 ■ SORTING AND MERGING

352

 03 FILLER PIC X(16) VALUE "longford 0031127".
 03 FILLER PIC X(16) VALUE "louth 0101802".
 03 FILLER PIC X(16) VALUE "mayo 0117428".
 02 FILLER REDEFINES TableValues.
 03 CountyDetails OCCURS 26 TIMES
 INDEXED BY Cidx.
 04 CountyName PIC X(9).
 04 CountyPop PIC 9(7).

01 PrnCountyPop PIC Z,ZZZ,ZZ9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "County name order"
 SORT CountyDetails ON ASCENDING KEY CountyName
 PERFORM DisplayCountyTotals
 VARYING Cidx FROM 1 BY 1 UNTIL Cidx GREATER THAN 26.

 DISPLAY SPACES
 DISPLAY "County population order"
 SORT CountyDetails ON ASCENDING KEY CountyPop
 PERFORM DisplayCountyTotals
 VARYING Cidx FROM 1 BY 1 UNTIL Cidx GREATER THAN 26.

 STOP RUN.

DisplayCountyTotals.
 MOVE CountyPop(Cidx) TO PrnCountyPop
 DISPLAY CountyName(Cidx) " is " PrnCountyPop.

Note ■ For full details, read your implementer manual.

Merging Files
It is often useful to combine two or more files into a single large file. If the files are unordered, this is easy to
accomplish because you can simply append the records in one file to the end of the other. But if the files are ordered,
the task is somewhat more complicated—especially if there are more than two files—because you must preserve the
ordering in the combined file.

In COBOL, instead of having to write special code every time you want to merge files, you can use the MERGE verb.
MERGE takes a number of files, all ordered on the same key values, and combines them based on those key values. The
combined file is then sent to an output file or an OUTPUT PROCEDURE.

CHAPTER 14 ■ SORTING AND MERGING

353

MERGE Verb
The metalanguage for the MERGE verb is given in Figure 14-13. It should be obvious from the metalanguage that MERGE
shares many of same declarations required for SORT. Just like SORT, MERGE uses a temporary work file that must be
defined using an SD entry in the FILE SECTION. Also just as with SORT, the KEY field (on which the files are merged) must
be a data item declared in the work file. And just as with SORT, you can use an OUTPUT PROCEDURE to get records from the
work file before sending them to their ultimate destination. Unlike with SORT, however, no INPUT PROCEDURE is permitted.

Figure 14-13. Metalanguage for the MERGE verb

MERGE Notes
You should consider the following when using MERGE:

The results of the • MERGE verb are predictable only when the records in the USING files are
ordered as described in the KEY clause associated with the MERGE. For instance, if the MERGE
statement has an ON DESCENDING KEY StudentId clause, then all the USING files must be
ordered on descending StudentId.

As with • SORT, SDWorkFileName is the name of a temporary file, with an SD entry in the FILE
SECTION, SELECT and ASSIGN entries in the INPUT-OUTPUT SECTION, and an organization of
RECORD SEQUENTIAL.

Each • MergeKeyIdentifier identifies a field in the record of the work file. The merged files are
ordered on this key field(s).

When more than one • MergeKeyIdentifier is specified, the keys decrease in significance from
left to right (the leftmost key is most significant, and the rightmost is least significant).

• InFileName and MergedFileName are the names of the input file to be merged and the
resulting combined file produced by the MERGE, respectively. These files are automatically
opened by the MERGE. When the MERGE executes, they must not be already open.

• AlphabetName is an alphabet name defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. This clause is used to select the character set the SORT verb uses for
collating the records in the file. The character set may be STANDARD-1 (ASCII), STANDARD-2
(ISO 646), NATIVE (may be defined by the system to be ASCII or EBCDIC; see your
implementer manual), or user defined.

• MERGE can use an OUTPUT PROCEDURE and the RETURN verb to get merged records from
SDWorkFileName.

The • OUTPUT PROCEDURE executes only after the files have been merged and must contain at
least one RETURN statement to get the records from SortFile.

CHAPTER 14 ■ SORTING AND MERGING

354

Merging Province Sales Files
Listing 14-9 is an example program that uses MERGE to combine four sequential files, each ordered on ascending
ProductCode. The program is based on the following specification.

Listing 14-9. Merging ProvinceSales Files and Producing a Sales Summary File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-9.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT UlsterSales ASSIGN TO "Listing14-9ulster.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT ConnachtSales ASSIGN TO "Listing14-9connacht.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT MunsterSales ASSIGN TO "Listing14-9munster.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT LeinsterSales ASSIGN TO "Listing14-9leinster.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT SummaryFile ASSIGN TO "Listing14-9.sum"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT WorkFile ASSIGN TO "WORK.TMP".

DATA DIVISION.
FILE SECTION.
FD UlsterSales.
01 FILLER PIC X(12).

FD ConnachtSales.
01 FILLER PIC X(12).

FD MunsterSales.
01 FILLER PIC X(12).

FD LeinsterSales.
01 FILLER PIC X(12).

FD SummaryFile.
01 SummaryRec.
 02 ProductCode-SF PIC X(6).
 02 TotalSalesValue PIC 9(6)V99.

CHAPTER 14 ■ SORTING AND MERGING

355

SD WorkFile.
01 WorkRec.
 88 EndOfWorkfile VALUE HIGH-VALUES.
 02 ProductCode-WF PIC X(6).
 02 ValueOfSale-WF PIC 9999V99.

PROCEDURE DIVISION.
Begin.
 MERGE WorkFile ON ASCENDING KEY ProductCode-WF
 USING UlsterSales, ConnachtSales, MunsterSales, LeinsterSales
 OUTPUT PROCEDURE IS SummarizeProductSales

 STOP RUN.

SummarizeProductSales.
 OPEN OUTPUT SummaryFile
 RETURN WorkFile
 AT END SET EndOfWorkfile TO TRUE
 END-RETURN

 PERFORM UNTIL EndOfWorkFile
 MOVE ZEROS TO TotalSalesValue
 MOVE ProductCode-WF TO ProductCode-SF
 PERFORM UNTIL ProductCode-WF NOT EQUAL TO ProductCode-SF
 ADD ValueOfSale-WF TO TotalSalesValue
 RETURN WorkFile
 AT END SET EndOfWorkfile TO TRUE
 END-RETURN
 END-PERFORM
 WRITE SummaryRec
 END-PERFORM
 CLOSE SummaryFile.

Every month, the TrueValue head office receives a file from its branch in each of the four provinces of Ireland.
Each file records the sales made in that province. A program is required that will combine these four files and, from
them, produce a summary file that records the total value of the sales of each product sold by the company. The
summary file must be ordered on ascending ProductCode. The record description for each of the four files is as
follows:

Field Type Length Value

ProductCode X 6 –

ValueOfSale 9 6 0–9999.99

The record description for the summary file is shown next:

Field Type Length Value

ProductCode X 6 –

TotalValueOfSale 9 8 0–999999.99

CHAPTER 14 ■ SORTING AND MERGING

356

Summary
This chapter explored the SORT and MERGE verbs. You discovered how to define the work file that SORT uses as a
temporary scratch pad when sorting. You saw how to create an INPUT PROCEDURE to filter or alter the records sent to
the work file and how to create an OUTPUT PROCEDURE to get and process the sorted records from the work file. You also
learned that you can use the INPUT PROCEDURE and OUTPUT PROCEDURE in concert to achieve interesting results: you
can sort a table by using an INPUT PROCEDURE to get the elements from the table and release them to the work file and
an OUTPUT PROCEDURE to retrieve the sorted element-records from the work file and place them back in the table. In
addition, the ISO 2002 version of COBOL allows you to sort a table directly. Finally, you saw how to use the MERGE verb
to combine identically ordered files into one file that preserves the ordering.

The next chapter introduces COBOL string handling. In many other languages, string manipulation is achieved
by using a library of string functions. In COBOL, string manipulation uses intrinsic functions, reference modification,
and the STRING, UNSTRING, and INSPECT verbs.

PROGRAMMING EXERCISE 1

Visitors to an Irish web site are asked to fill in a guestbook form. The form requests the name of the visitor,

their country of origin, and a comment. These fields are stored as a fixed length record in GuestBookFile.

GuestBookFile is an unordered sequential file, each record of which has the following description:

Field Type Length Value

GuestName X 20 –

CountryName X 20 –

GuestComment X 40 –

You are required to write a program to print a report that shows the number of visitors from each foreign

(non-Irish) country. The report must be printed in ascending CountryName sequence. Because the records in

GuestBookFile are not in any particular order, before the report can be printed, the file must be sorted by

CountryName. The report template is as follows:

 Foreign Guests Report
Country Visitors
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXX

 ***** End of report *****

CHAPTER 14 ■ SORTING AND MERGING

357

PROGRAMMING EXERCISE 1: ANSWER

Because only foreign visitors are of interest, there is no point in sorting the entire file. An INPUT PROCEDURE is

used to select only the records of visitors from foreign (non-Irish) countries. An OUTPUT PROCEDURE is used to

create the report.

When you examine the fields of a GuestBookFile record, notice that, for the purposes of this report, GuestName

and GuestComment are irrelevant. The only field you need for the report is the CountryName field. So in addition

to selecting only foreign guests, the INPUT PROCEDURE alters the structure of the records supplied to the sort

process. Because the new records are only 20 characters in size, rather than 80 characters, the amount of data

that has to be sorted is substantially reduced.

Listing 14-10. Using an INPUT PROCEDURE to Modify and Filter the Records in the Input File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing14-10.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT GuestBookFile
 ASSIGN TO "Listing14-10.Dat"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT WorkFile
 ASSIGN TO "Work.Tmp".

 SELECT ForeignGuestReport
 ASSIGN TO "Listing14-10.rpt"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD GuestBookFile.
01 GuestRec.
 88 EndOfFile VALUE HIGH-VALUES.
 02 GuestNameGF PIC X(20).
 02 CountryNameGF PIC X(20).
 88 CountryIsIreland VALUE "IRELAND".
 02 GuestCommentGF PIC X(40).

SD WorkFile.
01 WorkRec.
 88 EndOfWorkFile VALUE HIGH-VALUES.
 02 CountryNameWF PIC X(20).

FD ForeignGuestReport.
01 PrintLine PIC X(38).

CHAPTER 14 ■ SORTING AND MERGING

358

WORKING-STORAGE SECTION.
01 Heading1 PIC X(25)
 VALUE " Foreign Guests Report".

01 Heading2.
 02 FILLER PIC X(22) VALUE "Country".
 02 FILLER PIC X(8) VALUE "Visitors".

01 CountryLine.
 02 PrnCountryName PIC X(20).
 02 PrnVisitorCount PIC BBBZZ,ZZ9.

01 ReportFooting PIC X(27)
 VALUE " ***** End of report *****".

01 VisitorCount PIC 9(5).

PROCEDURE DIVISION.
Begin.
 SORT WorkFile ON ASCENDING CountryNameWF
 INPUT PROCEDURE IS SelectForeignGuests
 OUTPUT PROCEDURE IS PrintGuestsReport.

 STOP RUN.

PrintGuestsReport.
 OPEN OUTPUT ForeignGuestReport
 WRITE PrintLine FROM Heading1
 AFTER ADVANCING PAGE
 WRITE PrintLine FROM Heading2
 AFTER ADVANCING 1 LINES

 RETURN WorkFile
 AT END SET EndOfWorkfile TO TRUE
 END-RETURN
 PERFORM PrintReportBody UNTIL EndOfWorkfile

 WRITE PrintLine FROM ReportFooting
 AFTER ADVANCING 2 LINES
 CLOSE ForeignGuestReport.

PrintReportBody.
 MOVE CountryNameWF TO PrnCountryName
 MOVE ZEROS TO VisitorCount
 PERFORM UNTIL CountryNameWF NOT EQUAL TO PrnCountryName
 ADD 1 TO VisitorCount
 RETURN WorkFile
 AT END SET EndOfWorkfile TO TRUE
 END-RETURN
 END-PERFORM

CHAPTER 14 ■ SORTING AND MERGING

359

 MOVE VisitorCount TO PrnVisitorCount
 WRITE PrintLine FROM CountryLine
 AFTER ADVANCING 1 LINE.

SelectForeignGuests.
 OPEN INPUT GuestBookFile.
 READ GuestBookFile
 AT END SET EndOfFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfFile
 IF NOT CountryIsIreland
 MOVE CountryNameGF TO CountryNameWF
 RELEASE WorkRec
 END-IF
 READ GuestBookFile
 AT END SET EndOfFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE GuestBookFile.

361

CHAPTER 15

String Manipulation

In many languages, string manipulation is achieved by using a library of string functions or, as in Java, the methods
of a String class. COBOL also uses a library of string-manipulation functions, but most string manipulation is done
using reference modification and the three string-handling verbs: STRING, UNSTRING, and INSPECT.

This chapter starts by examining the string-handling verbs. These verbs allow you to count and replace
characters, and concatenate and split strings. You are then introduced to reference modification, which lets you
treat any string as an array of characters. Finally, you learn about the intrinsic functions used for string and date
manipulation.

The INSPECT Verb
The INSPECT verb has four formats;

The first format is used for counting characters in a string.•

The second replaces a group of characters in a string with another group of characters.•

The third combines both operations in one statement.•

The fourth format converts each character in a set of characters to its corresponding character •
in another set of characters.

Before starting a formal examination of the INSPECT formats, let’s get a feel for how the verb operates by looking
at a short program (see Listing 15-1). The program accepts a line of text from the user and then counts and displays
how many times each letter of the alphabet occurs in the text.

Listing 15-1. Finding the Number of Times Each Letter Occurs in a Line of Text

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-1.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TextLine PIC X(80).

01 LowerCase PIC X(26) VALUE "abcdefghijklmnopqrstuvwxyz".

01 UpperCase VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
 02 Letter PIC X OCCURS 26 TIMES.

CHAPTER 15 ■ STRING MANIPULATION

362

01 idx PIC 99.

01 LetterCount PIC 99

01 PrnLetterCount PIC Z9.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter text : " WITH NO ADVANCING
 ACCEPT TextLine
 INSPECT TextLine
 CONVERTING LowerCase TO UpperCase

 PERFORM VARYING idx FROM 1 BY 1 UNTIL idx > 26
 MOVE ZEROS TO LetterCount
 INSPECT TextLine TALLYING LetterCount FOR ALL Letter(idx)
 IF LetterCount > ZERO
 MOVE LetterCount TO PrnLetterCount
 DISPLAY "Letter " Letter(idx) " occurs " PrnLetterCount " times"
 END-IF
 END-PERFORM
 STOP RUN.

The program gets a line of text from the user. It then uses INSPECT..CONVERTING to convert all the characters to
their uppercase equivalents.

The UpperCase data item in this program does double duty. It is used in INSPECT CONVERTING as an ordinary
alphanumeric data item, but it is also defined as a 26-element prefilled table of letters. Using this table, the PERFORM
loop supplies the letters one at a time to INSPECT..TALLYING, which counts the number of times each letter occurs in
TextLine. It stores the count in LetterCount. If the letter occurred in TextLine, then the count is displayed.

There are some interesting things to note about this program. First, since intrinsic functions were introduced
in the ANS 85 version of COBOL, is it no longer necessary to use INSPECT.. CONVERTING to convert characters to
uppercase. Nowadays you can use the UPPER-CASE function. This function has the added benefit that it can do the
conversion without changing the original text. Second, you don’t actually need to hold the letters of the alphabet as
a table. Reference modification allows you to treat any alphanumeric data item as a table of characters. Listing 15-2
shows a version of the program that incorporates these modernizations.

Listing 15-2. Modernized Version of the Program in Listing 15-1

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-2.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TextLine PIC X(80).

01 Letters PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

01 LetterPos PIC 99.

01 LetterCount PIC 99.

01 PrnLetterCount PIC Z9.

CHAPTER 15 ■ STRING MANIPULATION

363

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter text : " WITH NO ADVANCING
 ACCEPT TextLine
 PERFORM VARYING LetterPos FROM 1 BY 1 UNTIL LetterPos > 26
 MOVE ZEROS TO LetterCount
 INSPECT FUNCTION UPPER-CASE(TextLine)
 TALLYING LetterCount FOR ALL Letters(LetterPos:1)
 IF LetterCount > ZERO
 MOVE LetterCount TO PrnLetterCount
 DISPLAY "Letter " Letters(LetterPos:1) " occurs " PrnLetterCount " times"
 END-IF
 END-PERFORM
 STOP RUN.

INSPECT .. TALLYING: Format 1
INSPECT..TALLYING counts the number of occurrences of a character in a string. The metalanguage for this version of
INSPECT is given in Figure 15-1.

Figure 15-1. Metalanguage for INSPECT..TALLYING

This version of INSPECT works by scanning the source string SourceStr$i from left to right, counting the
occurrences of all characters or just a specified character:

The behavior of • INSPECT is modified by the LEADING, ALL, BEFORE, and AFTER phrases. An ALL,
LEADING, or CHARACTERS phrase may only be followed by one BEFORE and one AFTER phrase.

As indicated by the ellipsis after the final bracket, you can use a number of counters—each •
with its own modifying phrases—with an INSPECT..TALLYING statement.

If • Compare$il or Delim$il is a figurative constant, it is one character in size.

Modifying Phrases

The operation of INSPECT is governed by the modifying phrases used. The meaning of these phrases is as follows:

BEFORE: Designates the characters to the left of the associated delimiter (Delim$il) as valid.
If the delimiter is not present in SourceStr$i, then using the BEFORE phrase implies that all
the characters are valid.

AFTER: Designates the characters to the right of the associated delimiter (Delim$il) as valid.
If the delimiter is not present in the SourceStr$i, then using the AFTER phrase implies that
there are no valid characters in the string.

CHAPTER 15 ■ STRING MANIPULATION

364

ALL: Counts all Compare$il characters from the first matching valid character to the first
invalid one.

LEADING: Counts leading Compare$il characters from the first matching valid character
encountered to the first nonmatching or invalid character.

INSPECT .. TALLYING Examples

Example 15-1 shows some example INSPECT statements, and Listing 15-3 presents a small program. The program’s
task is to count the number of vowels and the number of consonants in a line of text entered by the user.

Example 15-1. Some INSPECT..TALLYING Example Statements

INSPECT TextLine TALLYING UnstrPtr FOR LEADING SPACES.

INSPECT TextLine TALLYING
 eCount FOR ALL "e" AFTER INITIAL "start"
 BEFORE INITIAL "end".

INSPECT TextLine TALLYING
 aCount FOR ALL "a"
 eCount FOR ALL "e"
 oCount FOR ALL "o"

INSPECT FUNCTION REVERSE(TextLine) TALLYING
 TrailingSpaces FOR LEADING SPACES
COMPUTE StrLength = FUNCTION LENGTH(TextLine) - TrailingSpaces

Listing 15-3. Counting Vowels and Consonants

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-3.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TextLine PIC X(80).

01 VowelCount PIC 99 VALUE ZERO.

01 ConsonantCount PIC 99 VALUE ZERO.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter text : " WITH NO ADVANCING
 ACCEPT TextLine
 INSPECT FUNCTION UPPER-CASE(TextLine) TALLYING
 VowelCount FOR ALL "A" "E" "I" "O" "U"
 ConsonantCount FOR ALL
 "B" "C" "D" "F" "G" "H" "J" "K" "L" "M" "N" "P"
 "Q" "R" "S" "T" "V" "W" "X" "Y" "Z"

 DISPLAY "The line contains " VowelCount " vowels and "
 ConsonantCount " consonants."
 STOP RUN.

CHAPTER 15 ■ STRING MANIPULATION

365

Programmatic Detour

There are a number of ways to solve the problem of finding the number of vowels and consonants in a line of text.
Although it is not strictly string manipulation, I’d like to explore an alternative solution to Listing 15-3 here, because
it allows me to introduce an aspect of condition names that you have not seen before. In the solution in Listing 15-4,
TextLine is defined as an array of characters. A PERFORM is used to step through the array and, at each character,
test whether it is a vowel or a consonant; whichever it is, the PERFORM then increments the appropriate total. The
interesting part is the way you discover whether the character is a vowel or a consonant.

You may not have realized that a condition name can be set to monitor a table element. That is what the program
in Listing 15-4 does. Once the condition names for vowels and consonants are set up, all the program needs to do is
test which condition name is set to TRUE for the character under consideration and then increment the appropriate
count.

Listing 15-4. Using a Table Element Condition to Count Vowels and Consonants

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-4.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TextLine.
 02 Letter PIC X OCCURS 80 TIMES.
 88 Vowel VALUE "A" "E" "I" "O" "U".
 88 Consonant VALUE "B" "C" "D" "F" "G" "H" "J" "K" "L" "M" "N" "P"
 "Q" "R" "S" "T" "V" "W" "X" "Y" "Z".
01 VowelCount PIC 99 VALUE ZERO.
01 ConsonantCount PIC 99 VALUE ZERO.
01 idx PIC 99.
PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter text : " WITH NO ADVANCING
 ACCEPT TextLine
 MOVE FUNCTION UPPER-CASE(TextLine) TO TextLine
 PERFORM VARYING idx FROM 1 BY 1 UNTIL idx > 80
 IF Vowel(idx) ADD 1 TO VowelCount
 ELSE IF Consonant(idx) ADD 1 TO ConsonantCount
 END-IF
 END-PERFORM
 DISPLAY "The line contains " VowelCount " vowels and " ConsonantCount " consonants."
 STOP RUN.

INSPECT .. REPLACING: Format 2
INSPECT..REPLACING replaces characters in the string with a replacement character. The metalanguage for this
version of INSPECT is given in Figure 15-2.

CHAPTER 15 ■ STRING MANIPULATION

366

This version of INSPECT works by scanning the source string SourceStr$i from left to right and replacing
occurrences of all characters with a replacement character, or replacing specified characters with replacement
characters:

The behavior of the • INSPECT is modified by the LEADING, ALL, FIRST, BEFORE, and AFTER
phrases. An ALL, LEADING, FIRST, or CHARACTERS phrase may only be followed by one BEFORE
phrase and one AFTER phrase.

If • Compare$il or Delim$il is a figurative constant, it is one character in size. But when
Replace$il is a figurative constant, its size equals that of Compare$il.

The sizes of • Compare$il and Replace$il must be equal.

When there is a • CHARACTERS phrase, the size of ReplaceChar$il and the delimiter that may
follow it (Delim$il) must be one character.

Modifying Phrases

Like INSPECT..TALLYING, the operation of INSPECT..REPLACING is governed by the modifying phrases used.
The meaning of these phrases is as follows:

BEFORE: Designates the characters to the left of its associated delimiter (Delim$il) as valid.
If the delimiter is not present in SourceStr$i, then using the BEFORE phrase implies that all
the characters are valid.

AFTER: Designates the characters to the right of its associated delimiter (Delim$il) as valid.
If the delimiter is not present in the SourceStr$i, then using the AFTER phrase implies that
there are no valid characters in the string.

ALL: Replaces all Compare$il characters with the Replace$il characters from the first
matching valid character to the first invalid one.

FIRST: Causes only the first valid character(s) to be replaced.

INSPECT .. REPLACING Examples

The INSPECT..REPLACING statements in Example 15-2 work on the data in StringData to produce the results shown
in the storage schematics. Assume that before each INSPECT executes, the value "FFFAFFFFFFQFFFZ" (shown in the
Before row) is moved to StringData.

Figure 15-2. Metalanguage for INSPECT..REPLACING

CHAPTER 15 ■ STRING MANIPULATION

367

Example 15-2. Example INSPECT..REPLACING Statements with Results

 1. INSPECT StringData REPLACING ALL "F" BY "G"
 AFTER INITIAL "A" BEFORE INITIAL "Q"

 2. INSPECT StringData REPLACING ALL "F" BY "G"
 AFTER INITIAL "A" BEFORE INITIAL "Z"

 3. INSPECT StringData REPLACING FIRST "F" BY "G"
 AFTER INITIAL "A" BEFORE INITIAL "Q"

 4. INSPECT StringData REPLACING
 ALL "FFFF" BY "DOGS"
 AFTER INITIAL "A" BEFORE INITIAL "Z"

 5. INSPECT StringData REPLACING
 CHARACTERS BY "z" BEFORE INITIAL "Q"

INSPECT: Format 3
The third format of INSPECT simply allows you to combine the operation of the two previous formats in one statement.
Please see those formats for explanations and examples. The metalanguage for the third INSPECT format is shown in
Figure 15-3. This format is executed as though two successive INSPECT statements are applied to SourceStr$i, the first
being an INSPECT..TALLYING and the second an INSPECT.. REPLACING.

CHAPTER 15 ■ STRING MANIPULATION

368

INSPECT .. CONVERTING: Format 4
INSPECT..CONVERTING seems very similar to INSPECT..REPLACING but actually works quite differently. It is used to
convert one list of characters to another list of characters on a character-per-character basis. The metalanguage for
this version of INSPECT is given in Figure 15-4.

Using INSPECT .. CONVERTING

INSPECT..CONVERTING works on individual characters. If any of the Compare$il list of characters are found in
SourceStr$i, they are replaced by the characters in Convert$il on a one-for-one basis. For instance, in Figure 15-5,
an F found in StringData is converted to z, X is converted to y, T is converted to a, and D is converted to b.

Figure 15-4. Metalanguage for INSPECT..CONVERTING

Figure 15-5. INSPECT..CONVERTING showing the conversion strategy

Figure 15-3. Metalanguage for format 3 of INSPECT

CHAPTER 15 ■ STRING MANIPULATION

369

The INSPECT..CONVERTING in Figure 15-5 is the equivalent of the following:

INSPECT StringData REPLACING
ALL "F" BY "z",
 "X" BY "y",
 "T" BY "a",
 "D" BY "b"

These are some rules for INSPECT..CONVERTING :

• Compare$il and Convert$il must be equal in size.

When • Convert$il is a figurative constant, its size equals that of Compare$il.

The same character cannot appear more than once in • Compare$il, because each character
in the Compare$il string is associated with a replacement character. For instance, INSPECT
StringData CONVERTING "XTX" TO "abc" is not allowed because the system won’t know if X
should be converted to a or c.

INSPECT .. CONVERTING Examples

You saw an example of INSPECT..CONVERTING in Listing 15-1, where it was used to convert text to uppercase. That
example is repeated in Listing 15-3, but here it demonstrates that Compare$il and Convert$il can be either strings or
data items containing string values.

Example 15-3. Using INSPECT..CONVERTING to Convert Text to Uppercase or Lowercase

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TextLine PIC X(60).
01 LowerCase PIC X(26) VALUE "abcdefghijklmnopqrstuvwxyz".
01 UpperCase PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter text : " WITH NO ADVANCING
 ACCEPT TextLine

 INSPECT TextLine CONVERTING
 "abcdefghijklmnopqrstuvwxyz" TO
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 DISPLAY "Entered text in upper case = " TextLine

 INSPECT TextLine CONVERTING UpperCase TO LowerCase
 DISPLAY "Entered text in lower case = " TextLine.

Sometimes when you want to process the words in a line of text, especially if you want to recognize the words,
you may need to get rid of the punctuation marks. Example 15-4 uses INSPECT..CONVERTING to convert punctuation
marks in the text to spaces. UNSTRING is then used to unpack the words from the text.

CHAPTER 15 ■ STRING MANIPULATION

370

Example 15-4. Using INSPECT..CONVERTING to Convert Punctuation Marks to Spaces

ACCEPT TextLine
INSPECT TextLine CONVERTING ",.;:?!-_" TO SPACES
MOVE 1 TO UnstrPtr
PERFORM UNTIL EndOfText
 UNSTRING TextLine DELIMITED BY ALL SPACES
 INTO UnpackedWord
 WITH POINTER UnstrPtr
 DISPLAY UnpackedWord
END-PERFORM

The final example (Example 15-5) shows how you can use INSPECT..CONVERTING to implement a simple
encoding mechanism. It converts the character 0 to character 5, 1 to 2, 2 to 9, 3 to 8, and so on. Conversion starts when
the characters @> are encountered in the string and stops when <@ appears.

Example 15-5. Using INSPECT..CONVERTING to Implement an Encoding Mechanism

WORKING-STORAGE SECTION.
01 TextLine PIC X(70).

01 UnEncodedText PIC X(10) VALUE "0123456789".

01 EncodedText PIC X(10) VALUE "5298317046".

PROCEDURE DIVISION.
Begin.
 DISPLAY "Text : "
 WITH NO ADVANCING
 ACCEPT TextLine
 INSPECT TextLine CONVERTING
 UnEncodedText TO EncodedText
 AFTER INITIAL "@>"
 BEFORE INITIAL "<@"

 DISPLAY "Encoded = " TextLine

 INSPECT TextLine CONVERTING
 EncodedText TO UnEncodedText
 AFTER INITIAL "@>"
 BEFORE INITIAL "<@"

 DISPLAY "UnEncoded = " TextLine

 STOP RUN.

String Concatenation
String concatenation involves joining the contents of two or more source strings or partial source strings to create a
single destination string. In COBOL, string concatenation is done using the STRING verb. Before I discuss the STRING
verb formally, let’s look at some examples to get a feel for what it can do.

CHAPTER 15 ■ STRING MANIPULATION

371

The first example concatenates the entire contents of the identifiers String1 and String2 with the literal "LM051"
and puts the resulting sting into DestString:

STRING String1, String2, "LM051" DELIMITED BY SIZE
 INTO DestString
END-STRING

The second example concatenates the entire contents of String1, the partial contents of String2 (all the
characters up to the first space), and the partial contents of String3 (all the characters up to the word unique) and
puts the concatenated string in DestString.

STRING
 String1 DELIMITED BY SIZE
 String2 DELIMITED BY SPACES
 String3 DELIMITED BY "unique"
INTO DestString
END-STRING

The STRING Verb
The metalanguage for the STRING verb is given in Figure 15-6.

Figure 15-6. Metalanguage for the STRING verb

The STRING verb moves characters from the source string (SourceString$il) to the destination string
(DestString$il). Data movement is from left to right. The leftmost character of the source string is moved to the
leftmost position of the destination string, then the next-leftmost character of the source string is moved to the
next-leftmost position of the destination string, and so on. Note that no space filling occurs; and unless characters in
the destination string are explicitly overwritten, they remain undisturbed.

When a number of source strings are concatenated, characters are moved from the leftmost source string first
until either that string is exhausted or the delimiter (Delim$il) is encountered in that string. When transfer from that
source string finishes, characters are moved from the next-leftmost source string. This proceeds until either the strings
are exhausted or the destination string is full. At that point, the STRING operation finishes.

The following rules apply to the operation of the STRING verb:

The • ON OVERFLOW clause executes if valid characters remain to be transferred in the source
string but the destination string is full.

When a • WITH POINTER phrase is used, its value determines the starting character position for
insertion into the destination string. As each character is inserted into the destination string,
the pointer is incremented. When the pointer points beyond the end of the destination string,
the STRING statement stops.

CHAPTER 15 ■ STRING MANIPULATION

372

When the • WITH POINTER phrase is used, then before the STRING statement executes, the
program must set Pointer#i to an initial value greater than zero and less than the length of
the destination string.

If the • WITH POINTER phrase is not used, operation on the destination field starts from the
leftmost position.

• Pointer#i must be an integer item, and its description must allow it to contain a value one
greater than the size of the destination string. For instance, a pointer declared as PIC 9 is too
small if the destination string is ten characters long.

The • DELIMITED BY SIZE clause causes the whole of the sending field to be added to the
destination string.

Where a literal can be used, you can use a figurative constant (such as • SPACES) except for the
ALL literal figurative constant.

When a figurative constant is used, it is one character in size.•

The destination item • DestString$i must be either an elementary data item without editing
symbols or the JUSTIFIED clause.

Data movement from a particular source string ends when one of the following occurs:•

The end of the source string is reached.•

The end of the destination string is reached.•

The delimiter is detected.•

The • STRING statement ends when one of the following is true:

All the source strings have been processed.•

The destination string is full.•

The pointer points outside the string.•

String Concatenation Example
Example 15-6 shows how you can build a destination string a piece at a time by executing several separate STRING
statements. Each time a STRING statement executes, the current value of StrPtr governs where the characters from the
source string are inserted into the destination string.

Example 15-6. STRING Examples Showing How to Use the WITH POINTER Phrase

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DayStr PIC XX VALUE "5".
01 MonthStr PIC X(9) VALUE "September".
01 YearStr PIC X(4) VALUE "2013".
01 DateStr PIC X(16) VALUE ALL "@".
01 StrPtr PIC 99.

PROCEDURE DIVISION.
Begin.
DISPLAY DateStr
MOVE 1 TO StrPtr

CHAPTER 15 ■ STRING MANIPULATION

373

STRING DayStr DELIMITED BY SPACES
 "," DELIMITED BY SIZE
 INTO DateStr WITH POINTER StrPtr
END-STRING
DISPLAY DateStr

STRING MonthStr DELIMITED BY SPACES
 "," DELIMITED BY SIZE
 INTO DateStr WITH POINTER StrPtr
END-STRING
DISPLAY DateStr

STRING YearStr DELIMITED BY SIZE
 INTO DateStr WITH POINTER StrPtr
END-STRING
DISPLAY DateStr.

String Splitting
String splitting involves chopping a string into a number of smaller strings. In COBOL, string splitting is done using
the UNSTRING verb. Before I discuss the UNSTRING verb formally, let’s look at some examples to see what UNSTRING
can do.

The first example uses UNSTRING to break a customer name into its three constituent parts: first name, middle
name, and surname. For instance, the string “John Joseph Ryan” is broken into the three strings “John”, “Joseph”,
and “Ryan”:

UNSTRING CustomerName DELIMITED BY ALL SPACES
 INTO FirstName, SecondName, Surname
END-UNSTRING

The second example breaks an address string (where the parts of the address are separated from one another by
commas) into separate address lines. The address lines are stored in a six-element table. Not all addresses have six
parts exactly, but you can use the TALLYING clause to discover how many parts there are:

UNSTRING CustAddress DELIMITED BY ","
 INTO AdrLine(1), AdrLine(2), AdrLine(3),
 AdrLine(4), AdrLine(5), AdrLine(6)
 TALLYING IN AdrLinesUsed
END-UNSTRING

The final example breaks a simple comma-delimited record into its constituent parts. Because the fields are not
fixed length, they need to be validated for length—and that requires finding out how long each field is. The COUNT IN
clause, which counts the number of characters transferred to a particular destination field, is used to determine the
actual length of the field:

UNSTRING SupplierRec DELIMITED BY ","
 INTO Supplier-Code COUNT IN SuppCodeCount
 Supplier-Name COUNT IN SuppNameCount
 Supplier-Address COUNT IN SuppAdrCount
END-UNSTRING

CHAPTER 15 ■ STRING MANIPULATION

374

The UNSTRING Verb
The metalanguage for the UNSTRING verb is given in Figure 15-7.

Figure 15-7. Metalanguage for the UNSTRING verb

UNSTRING copies characters from the source string to the destination string until a condition is encountered that
terminates data movement. When data movement ends for a particular destination string, the next destination string
becomes the receiving area, and characters are copied into it until once again a terminating condition is encountered.
Characters are copied from the source string to the destination strings according to the rules for MOVE, with space
filling or truncation as necessary.

Strictly speaking, END-UNSTRING is only required to delimit the scope of the OVERFLOW statement block. You will
notice, however, that I have a tendency to use it to indicate the end of every UNSTRING statement. This is just a personal
preference.

Data-Movement Termination

When you use the DELIMITED BY clause, data movement from the source string to the current destination string ends
when either of the following occurs:

A delimiter is encountered in the source string•

The end of the source string is reached•

When the DELIMITED BY clause is not used, data movement from the source string to the current destination
string ends when either of these is true:

The destination string is full.•

The end of the source string is reached.•

UNSTRING Termination

The UNSTRING statement terminates in the following cases:

All the characters in the source string have been examined.•

All the destination strings have been processed.•

Some error condition is encountered (such as the pointer pointing outside the source string).•

CHAPTER 15 ■ STRING MANIPULATION

375

UNSTRING Clauses

As you can see by examining the metalanguage, the operation of UNSTRING is modified by a number of clauses. These
clauses affect the operation of UNSTRING as follows:

DELIMITED BY: When the DELIMITED BY clause is used, characters are examined in the
source string and copied to the current destination string until one of the specified
delimiters is encountered in the source string or the end the source string is reached.
If there is not enough room in the destination string to take all the characters sent to it
from the source string, the remaining characters are truncated/lost. When the delimiter
is encountered in the source string, the next destination string becomes current, and
characters are transferred into it from the source string. Delimiters are not transferred or
counted in CharCounter#i.

ON OVERFLOW: When ON OVERFLOW activates, the statement block following it is executed.
ON OVERFLOW activates if

The unstring pointer (• Pointer#i) is not pointing to a character position within the
source string when UNSTRING executes (that is, Pointer#i is 0 or is greater than the size of
the string).

All the destination strings have been processed, but there are still valid unexamined •
characters in the source string.

The statements following NOT ON OVERFLOW are executed if UNSTRING is about to terminate
successfully.

COUNT IN: The COUNT IN clause is associated with a particular destination string and holds
a count of the number of characters passed to the destination string, regardless of whether
they were truncated.

DELIMITER IN: A DELIMITER IN clause is associated with a particular destination string.
HoldDelim$i holds the delimiter that was encountered in the source string. If the DELIMITER
IN phrase is used with the ALL phrase, then only one occurrence of the delimiter is moved
to HoldDelim$i.

TALLYING IN: Only one TALLYING clause can be used with each UNSTRING. It holds a count
of the number of destination strings affected by the UNSTRING operation.

WITH POINTER: When the WITH POINTER clause is used, the Pointer#i data item holds the
position of the next non-delimiter character to be examined in the source string. Pointer#i
must be large enough to hold a value one greater than the size of the source string, because
when UNSTRING ends, it will be pointing to one character position beyond the end of the string.

ALL: When the ALL phrase is used, contiguous delimiters are treated as if only one delimiter
had been encountered. If ALL is not used, contiguous delimiters result in spaces being sent
to some of the destination strings.

Notes on UNSTRING

Bear the following in mind when you use UNSTRING:

Where a literal can be used, any figurative constant can be used except the • ALL literal
figurative constant.

When a figurative constant is used, it is one character long.•

CHAPTER 15 ■ STRING MANIPULATION

376

The delimiter is moved into • HoldDelim$i according to the rules for MOVE.

The • DELIMITER IN and COUNT IN phrases may be specified only if the DELIMITED BY
phrase is used.

Language Knowledge Examples

This section presents a number of UNSTRING examples. These are not real-world examples but are rather intended to
show how UNSTRING and its clauses operate.

UNSTRING: Demonstrating the COUNT IN Clause

Listing 15-5 demonstrates how to chop a string into separate strings based on a delimiter and how to keep a count of
the number of characters transferred to each destination string. Note that DestStr2 is larger than the data copied to it
and so is space filled. DestStr3 is too small to hold the characters transferred to it, so they are truncated; but the count
still notes how many characters were transferred (08). The count for DestStr4 seems incorrect, but the literal assigned
to xString is not long enough to fill it and so it is space filled. When UNSTRING copies “of sweet silent” to DestStr4, it
copies these trailing spaces; they can’t all fit into DestStr4 and so are truncated but counted.

Listing 15-5. UNSTRING Example 1

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-5.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 xString PIC X(45) VALUE "When,to the,sessions,of sweet silent".
01 DestinationStrings.
 02 DestStr1 PIC X(4).
 02 DestStr2 PIC X(10).
 02 DestStr3 PIC X(3).
 02 DestStr4 PIC X(18).

01 CharCounts.
 02 CCount PIC 99 OCCURS 4 TIMES.

PROCEDURE DIVISION.
Begin.
 UNSTRING xString delimited by ","
 INTO DestStr1 COUNT IN CCount(1)
 DestStr2 COUNT IN CCount(2)
 DestStr3 COUNT IN CCount(3)
 DestStr4 COUNT IN CCount(4)
 END-UNSTRING

 DISPLAY DestStr1 " = " CCount(1)
 DISPLAY DestStr2 " = " CCount(2)
 DISPLAY DestStr3 " = " CCount(3)
 DISPLAY DestStr4 " = " CCount(4)
 STOP RUN.

CHAPTER 15 ■ STRING MANIPULATION

377

UNSTRING: Demonstrating ON OVERFLOW and the Effect of Delimiters

Listing 15-6 contains three UNSTRING examples. Example 2 demonstrates the activation of the ON OVERFLOW clause.
Because no delimiter is specified, all the text in DateStr is eligible for transfer; and as each destination item is filled,
the next one becomes the current target. There are not enough destination items to take all the data: the remaining
characters (“19” and the trailing spaces) are eligible for transfer, but there are no destination strings left to take them.
So, ON OVERFLOW activates, and the message “Characters unexamined” is displayed.

Listing 15-6. The ON OVERFLOW Clause and the Effect of Delimiters

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-6.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DateStr PIC X(15).

01 DateRec.
 02 DayStr PIC XX.
 02 MonthStr PIC XX.
 02 YearStr PIC X(4).

PROCEDURE DIVISION.
Begin.
*>Unstring example 2
 MOVE "19-08-2012" TO DateStr
 UNSTRING DateStr INTO DayStr, MonthStr, YearStr
 ON OVERFLOW DISPLAY "Characters unexamined"
 END-UNSTRING
 DISPLAY DayStr SPACE MonthStr SPACE YearStr
 DISPLAY "__________________________"
 DISPLAY SPACES

*>Unstring example 3
 MOVE "25-07-2013lost" TO DateStr.
 UNSTRING DateStr DELIMITED BY "-"
 INTO DayStr, MonthStr, YearStr
 ON OVERFLOW DISPLAY "Characters unexamined"
 END-UNSTRING.
 DISPLAY DayStr SPACE MonthStr SPACE YearStr
 DISPLAY "__________________________"
 DISPLAY SPACES

*>Unstring example 4
 MOVE "30end06end2014" TO DateStr
 UNSTRING DateStr DELIMITED BY "end"
 INTO DayStr, MonthStr, YearStr
 ON OVERFLOW DISPLAY "Characters unexamined"
 END-UNSTRING
 DISPLAY DayStr SPACE MonthStr SPACE YearStr

 STOP RUN.

CHAPTER 15 ■ STRING MANIPULATION

378

Example 3 demonstrates the difference when a delimiter is specified. ON OVERFLOW does not activate in this case
because all the characters have been copied to the destination strings. UNSTRING tries to copy “2013lost” into YearStr,
but because there is not sufficient room, some of the transferred characters are truncated.

Example 4 demonstrates that the delimiter does not have to be a single character. It can be a word or any other
group of characters.

UNSTRING: The Effect of the ALL Delimiter

Listing 15-7 also contains three UNSTRING examples. Example 5 demonstrates the use of the ALL delimiter, which treats
successive occurrences of a delimiter as one occurrence. This is contrasted with Example 6, where the same delimiter
configuration is used but the ALL phrase is omitted. In this example, each occurrence of the delimiter is treated as
separate instance; the result is shown in the following storage schematic.

Listing 15-7. The ALL Delimiter and the DELIMITER IN Phrase

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-7.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DateStr PIC X(15).

01 DateRec.
 02 DayStr PIC XX.
 02 MonthStr PIC XX.
 02 YearStr PIC X(4).

01 Delims.
 02 HoldDelim OCCURS 3 TIMES PIC X.

PROCEDURE DIVISION.
Begin.
*>Unstring example 5
 MOVE "15---07--2013" TO DateStr.
 UNSTRING DateStr DELIMITED BY ALL "-"
 INTO DayStr, MonthStr, YearStr
 ON OVERFLOW DISPLAY "Characters unexamined"

CHAPTER 15 ■ STRING MANIPULATION

379

 END-UNSTRING
 DISPLAY DayStr SPACE MonthStr SPACE YearStr
 DISPLAY "__________________________"
 DISPLAY SPACES

*>Unstring example 6
 MOVE "15---07--2013" TO DateStr.
 UNSTRING DateStr DELIMITED BY "-"
 INTO DayStr
 MonthStr
 YearStr
 ON OVERFLOW DISPLAY "Characters unexamined"
 END-UNSTRING
 DISPLAY DayStr SPACE MonthStr SPACE YearStr
 DISPLAY "__________________________"
 DISPLAY SPACES

*>Unstring example 7
 MOVE "15/07-----2013@" TO DateStr
 UNSTRING DateStr DELIMITED BY "/" OR "@" OR ALL "-"
 INTO DayStr DELIMITER in HoldDelim(1)
 MonthStr DELIMITER in HoldDelim(2)
 YearStr DELIMITER in HoldDelim(3)
 ON OVERFLOW DISPLAY "Characters unexamined"
 END-UNSTRING
 DISPLAY HoldDelim(1) " delimits " DayStr
 DISPLAY HoldDelim(2) " delimits " MonthStr
DISPLAY HoldDelim(3) " delimits " YearStr

 STOP RUN.

Example 7 shows how you can use the DELIMITER IN clause to store a delimiter that causes character transfer to
cease for a particular destination field.

String-Splitting Program
The examples so far have shown you aspects of the UNSTRING verb’s operation. Listing 15-8 is a more real-world
example. The problem specification is as follows: Write a program that accepts a person’s full name from the user
and reduces it to the initials of the first and middle names followed by the surname. For instance, William Henry Ford
Power becomes W. H. F. Power.

Listing 15-8. UNSTRING and STRING Used in Combination

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-8.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OldName PIC X(80).

CHAPTER 15 ■ STRING MANIPULATION

380

01 TempName.
 02 NameInitial PIC X.
 02 FILLER PIC X(19).

01 NewName PIC X(30).

01 UnstrPtr PIC 99.
 88 NameProcessed VALUE 81.

01 StrPtr PIC 99.

PROCEDURE DIVISION.
ProcessName.
 DISPLAY "Enter a name - " WITH NO ADVANCING
 ACCEPT OldName
 MOVE 1 TO UnstrPtr, StrPtr
 UNSTRING OldName DELIMITED BY ALL SPACES
 INTO TempName WITH POINTER UnstrPtr
 END-UNSTRING
 PERFORM UNTIL NameProcessed
 STRING NameInitial "." SPACE DELIMITED BY SIZE
 INTO NewName WITH POINTER StrPtr
 END-STRING
 UNSTRING OldName DELIMITED BY ALL SPACES
 INTO TempName WITH POINTER UnstrPtr
 END-UNSTRING
 END-PERFORM
 STRING TempName DELIMITED BY SIZE
 INTO NewName WITH POINTER StrPtr
 END-STRING
 DISPLAY "Processed name = " NewName
 STOP RUN.

Reference Modification
Reference modification is a special COBOL facility that allows you to treat any USAGE IS DISPLAY item as if it were
an array of characters but it defines access to the characters in a special way. To access substrings using reference
modification, as shown in the metalanguage in Figure 15-8, you must specify the following:

The name of the data item (• DataItemName) to be referenced

The start-character position of the substring (• StartPos)

The number of characters in the substring (• SubStrLength)

Figure 15-8. Metalanguage syntax for reference modification

CHAPTER 15 ■ STRING MANIPULATION

381

The metalanguage syntax is modified by the following sematic rules:

• StartPos is the character position of the first character in the substring, and SubStrLength
is the number of characters in the substring. StartPos and SubStrLength must each be a
positive integer or an expression that evaluates to one.

• DataItemName can be subscripted and/or qualified.

• DataItemName can be the alphanumeric value returned by a function.

As indicated by the square brackets, • SubStrLength may be omitted, in which case the
substring from StartPos to the end of the string is assumed.

You can use reference modification almost anywhere an alphanumeric data item is permitted.•

To get a feel for the way reference modification works, let’s look at some examples. You start with some abstract
examples and then see how you can use reference modification in a more practical situation.

The three DISPLAYs in Example 15-7 use reference modification to display substrings of xString. The storage
schematic shows how each example extracts the substring from xString:

• DISPLAY xString(11:5) displays a substring of five characters starting at the position of the
eleventh character.

• DISPLAY xString(17:SubStrSize) demonstrates that you can use a numeric data item in
place of the literal and displays eight characters starting with the seventeenth.

• DISPLAY xString(StartPos:) shows that when you omit SubStrLength, the substring
consists of the characters from the start character to the end of the string.

Example 15-7. Extracting a Substring Using Reference Modification

CHAPTER 15 ■ STRING MANIPULATION

382

The two DISPLAY statements in Example 15-8 demonstrate the other ways of defining the substring. The MOVE
statement shows how you can use reference modification to insert characters into a string:

• DISPLAY xString(12:SubstrSize - 5) shows that you can use an arithmetic expression as
SubStrLength.

• DISPLAY FUNCTION UPPER-CASE(xString)(Startpos - 7 : 4) demonstrates that you can
apply reference modification to a function result. It also shows that StartPos may be an
arithmetic expression.

• MOVE " text insert " TO XString(31:6) demonstrates how to use reference modification
to insert text into a string. Note that the SubStrLength given specifies the number of characters
in the string that will be overwritten. For instance, in this example only 6 characters are
overwritten, even though there are 13 characters in the moved text.

Example 15-8. Applying Reference Modification to an Alphanumeric String

Example 15-9 shows how to apply reference modification to the numeric data item nString and the edited
numeric data item enString:

In • nString, reference modification is used to display the dollars and cents parts of a
numeric value.

In • enString, reference modification is used to overwrite the check-security asterisks with
the @ symbol. Note that ALL "@" is a figurative constant that is used to fill the four character
positions specified by the reference modifier.

CHAPTER 15 ■ STRING MANIPULATION

383

Example 15-9. Applying Reference Modification to Numeric Data Items

Intrinsic Functions
User-defined functions of one sort or another are a standard part of many programming languages. The ANS 85
version of COBOL does not support user-defined functions, but it has introduced a library of standard functions called
intrinsic functions.

Intrinsic functions fall into three broad categories: date functions, numeric functions, and string functions.
Because this chapter is about string manipulation, I discuss the string functions in some detail. I also look at the date
functions and some of the numeric functions that I have found particularly useful. For the remaining functions you
should consult your implementer manual.

Using Intrinsic Functions
Like a function in another language, an intrinsic function is replaced by the function result in the position where the
function occurs. Wherever you can use a literal, you can use an intrinsic function that returns a result of the same type.

An intrinsic function consists of three parts:

The start of the function is signalled by the • FUNCTION keyword.

The • FUNCTION keyword is followed by the name of the function.

The name of the function is immediately followed by a bracketed list of •
parameters or arguments.

CHAPTER 15 ■ STRING MANIPULATION

384

The intrinsic function template is•

FUNCTION FunctionName(Parameter)

where FunctionName is the name of the function and Parameter is one or
more parameters/arguments supplied to the function.

For instance, the following examples show how to use intrinsic functions in a number of different contexts. In
some cases, the result of the function is assigned to a data item; in others (as in the first example), it is used directly
in the place of a literal or data item. Sometimes the parameters/arguments are numeric, and other times they are
alphabetic. Some functions use only one parameter, others take multiple parameters, and still others do not require a
parameter:

DISPLAY FUNCTION UPPER-CASE("this will be in upper case").
MOVE FUNCTION ORD("A") TO OrdPos
MOVE FUNCTION RANDOM(SeedValue) TO RandomNumber
MOVE FUNCTION RANDOM TO NextRndNumber
COMPUTE Result = FUNCTION MOD(25, 10)
MOVE FUNCTION ORD-MAX(12 23 03 78 65) TO MaxOrdPos

When you use intrinsic functions, you must bear in mind a number of things:

Intrinsic functions return a result of Alphanumeric, Numeric (includes integer), or Integer •
(does not allow the decimal point).

The result returned by an alphanumeric function has an implicit usage of • DISPLAY. This is why
the result returned by FUNCTION UPPER-CASE may be used directly with the DISPLAY verb.

Intrinsic functions that return a numeric value are always considered to be signed and can •
only be used in an arithmetic expression or a MOVE statement.

Intrinsic functions that return a non-integer numeric value can’t be used where an integer •
value is required.

String Functions
Table 15-1 lists the intrinsic functions that allow manipulation of strings. The table uses the parameter name to
indicate the type of the parameter required, as follows:

Alpha indicates Alphanumeric.

Num indicates any Numeric.

PosNum indicates a positive Numeric.

Int indicates any Integer.

PosInt indicates a positive Integer.

Any indicates that the parameter may be of any type.

CHAPTER 15 ■ STRING MANIPULATION

385

Table 15-1. String Functions, Grouped by Type of Operation

Function Name Result Type Comment

CHAR(PosInt) Alphanumeric Returns the character in the collating sequence at ordinal position
PosInt.

ORD(Alpha) Integer Returns the ordinal position of character Alpha.

ORD-MAX({Any}...) Integer Returns the ordinal position of whichever parameter in the list has
the highest value. All parameters must be of the same type. The
parameter list may be replaced by an array. If an array is used, the
reserved word ALL may be used as the array subscript to indicate
all the elements of the array.

ORD-MIN({Any}...) Integer Returns the ordinal position of whichever parameter in the list
has the lowest value. All parameters must be of the same type. The
parameter list may be replaced by an array.

LENGTH(Any) Integer Returns the number of characters in the data item Any. Not as
useful as it sounds. It returns the value given in the item’s picture
clause. For instance, Length(StrItem) returns 18 if the picture
clause is PIC X(18).

REVERSE(Alpha) Alphanumeric Returns a character string with the characters in Alpha reversed.

LOWER-CASE(Alpha) Alphanumeric Returns a character string with the characters in Alpha changed to
their lowercase equivalents.

UPPER-CASE(Alpha) Alphanumeric Returns a character string with the characters in Alpha changed to
their uppercase equivalents.

If a function takes a parameter list (indicated by {Any}... in the function definition), the parameter list may be
replaced by an array. The reserved word ALL is used as the array subscript to indicate all the elements of the array.

For instance, the ORD-MAX function may take a parameter list, or you can use an array as the parameter, as shown
in the following example:

MOVE FUNCTION ORD-MAX(12 23 03 78 65) TO OrdPos

or

MOVE FUNCTION ORD-MAX(IntElement(ALL)) TO OrdPos

String Intrinsic Function Examples

Listing 15-9 solves no specific problem. It merely consists of a number of intrinsic function examples.

Listing 15-9. String Manipulation with Intrinsic Functions

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-9.
AUTHOR. Michael Coughlan.
*> Intrinsic Function examples

CHAPTER 15 ■ STRING MANIPULATION

386

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OrdPos PIC 99.

01 TableValues VALUE "123411457429130938637306851419883522700467".
 02 Num PIC 99 OCCURS 21 TIMES.

01 idx PIC 9.

01 xString PIC X(45)
 VALUE "This string is 33 characters long".

01 xWord PIC X(10).

01 CharCount PIC 99.

01 TextLength PIC 99.

PROCEDURE DIVISION.
Begin.
*> eg1. In the ASCII collating sequence W has a code of 87 but an ordinal
*> position of 88.
 DISPLAY "eg1. The character in position 88 is = " FUNCTION CHAR(88)

*> eg2. Using ordinal positions to spell out my name
 DISPLAY SPACES
 DISPLAY "eg2. My name is " FUNCTION CHAR(78) FUNCTION CHAR(106)
 FUNCTION CHAR(108) FUNCTION CHAR(102)

*> eg3. Finding the ordinal position of a particular character
 DISPLAY SPACES
 MOVE FUNCTION ORD("A") TO OrdPos
 DISPLAY "eg3. The ordinal position of A is = " OrdPos

*> eg4. Using CHAR and ORD in combination to display the sixth letter of the alphabet
 DISPLAY SPACES
 DISPLAY "eg4. The sixth letter of the alphabet is "
 FUNCTION CHAR(FUNCTION ORD("A") + 5)

*> eg5. Finding the position of the highest value in a list of parameters
 DISPLAY SPACES
 MOVE FUNCTION ORD-MAX("t" "b" "x" "B" "4" "s" "b") TO OrdPos
 DISPLAY "eg5. Highest character in the list is at pos " OrdPos

*> eg6. Finding the position of the lowest value in a list of parameters
 DISPLAY SPACES
 MOVE FUNCTION ORD-MIN("t" "b" "x" "B" "4" "s" "b") TO OrdPos
 DISPLAY "eg6. Lowest character in the list is at pos " OrdPos

CHAPTER 15 ■ STRING MANIPULATION

387

*> eg7.Finding the position of the highest value
in a table
 DISPLAY SPACES
 MOVE FUNCTION ORD-MAX(Num(ALL)) TO OrdPos
 DISPLAY "eg7. Highest value in the table is at pos "
 OrdPos

*> eg8. Finding the highest value in a table
 DISPLAY SPACES
 DISPLAY "eg8. Highest value in the table = "
Num(FUNCTION ORD-MAX(Num(ALL)))

*> eg9. Finds the top three values in a table by finding the top
*> overwrites it with zeros to remove it from consideration
*> then finds the next top and so on
 DISPLAY SPACES
 DISPLAY "eg9."
 PERFORM VARYING idx FROM 1 BY 1 UNTIL idx > 3
 DISPLAY "TopPos " idx " = " Num(FUNCTION ORD-MAX(Num(ALL)))
 MOVE ZEROS TO Num(FUNCTION ORD-MAX(Num(ALL)))
 END-PERFORM

*> eg10. Finding the length of a string
 DISPLAY SPACES
 DISPLAY "eg10. The length of xString is " FUNCTION LENGTH(xString) " characters"

*> eg11. Finding the length of the text in a string
 DISPLAY SPACES
 INSPECT FUNCTION REVERSE(xString) TALLYING CharCount
 FOR LEADING SPACES
 COMPUTE TextLength = FUNCTION LENGTH(xString) - CharCount
 DISPLAY "eg11. The length of text in xString is " TextLength " characters"

*> eg12. Discover if a word is a palindrome
 DISPLAY SPACES
 DISPLAY "eg12."
 MOVE ZEROS TO CharCount
 DISPLAY "Enter a word - " WITH NO ADVANCING
 ACCEPT xWord
 INSPECT FUNCTION REVERSE(xWord)
 TALLYING CharCount FOR LEADING SPACES
 IF FUNCTION UPPER-CASE(xWord(1:FUNCTION LENGTH(xWord) - CharCount)) EQUAL TO
 FUNCTION UPPER-CASE(FUNCTION REVERSE(xWord(1:FUNCTION LENGTH(xWord)- CharCount)))
 DISPLAY xWord " is a palindrome"
 ELSE
 DISPLAY xWord " is not a palindrome"
 END-IF
 STOP RUN.

CHAPTER 15 ■ STRING MANIPULATION

388

Program Explanation

These examples build on one another so that although the early ones are straightforward, the later ones are somewhat
more complex and require explanation. One thing you will realize from these examples is that COBOL’s intrinsic
functions are not as effective as functions in other languages. For one thing, the requirement to precede every
intrinsic function with the word FUNCTION makes nesting functions cumbersome. For another, the function library is
incomplete. You often have to use INSPECT, UNSTRING, and STRING to compensate for omissions. On the other hand,
not being able to nest functions deeply may be a good thing. For instance, eg12 would require more typing but would
be easier to understand and debug if coded as follows:

*>eg12. Discover if a word is a palindrome
 DISPLAY SPACES
 DISPLAY "eg12."
 MOVE ZEROS TO CharCount
 DISPLAY "Enter a word - " WITH NO ADVANCING
 ACCEPT xWord

 INSPECT FUNCTION REVERSE(xWord) TALLYING CharCount
 FOR LEADING SPACES

 MOVE FUNCTION UPPER-CASE(xWord) TO xWord

 COMPUTE TextLength = FUNCTION LENGTH(xWord) - CharCount

 IF xWord(1:TextLength) EQUAL TO FUNCTION REVERSE(xWord(1:TextLength))
 DISPLAY xWord " is a palindrome"
 ELSE
 DISPLAY xWord " is not a palindrome"
 END-IF

Let’s look at how these examples work:

• eg1 uses the CHAR function to return the eighty-eighth character (W) of the ASCII collating
sequence. In most languages, you would be required to supply the ASCII value, whereas in
COBOL you supply the ordinal position. If you are used to dealing with ASCII values, the
ordinal position will seem to be off by one: for example, the ASCII value of W is 87.

• eg2 uses the CHAR function to display the name Mike.

• eg3 demonstrates that the ORD function is the opposite of CHAR. Whereas CHAR returns the
character at the ordinal position supplied, ORD returns the ordinal position of the character
supplied. As you no doubt know, A is ASCII value 65, but its ordinal position is returned as 66.

• eg4 is the first use of nested functions. CHAR and ORD are used in combination. ORD("A")
returns the position of the first letter in the alphabet, and the sixth is five letters on from that.

• eg5 and eg6 demonstrate using the ORD-MAX function to find the position of the highest value
in the supplied list.

• eg7 demonstrates how to use ORD-MAX to find the position of the highest value in a table.

• eg8 uses nesting and ORD-MAX to find the highest value in a table.

• Eg9 uses the techniques demonstrated in eg7 and eg8 to find the top three values in a table.
Each time through the loop, the highest value is found, displayed, and then overwritten with
zeros to remove it from consideration the next time around. This solution does have the
drawback of destroying some of the values in the table.

CHAPTER 15 ■ STRING MANIPULATION

389

• eg10 and eg11: one problem COBOL has is that alphanumeric data items are fixed in length, so
if the text does not fill the data item, the data item is space-filled to the right. For certain kinds
of processing, this is a problem. eg10 shows how to get the length of a data item, and eg11
shows how to use the length of the data item to get the length of the text in that data item.

• eg12 brings together much of the material covered in this chapter. The task is to discover
whether a word entered by the user is a palindrome (reads the same backward as forward). As
I noted earlier, the nesting of functions makes the program much more difficult to understand.

This is the algorithm: using the technique of eg11, find the actual length of the word.
Use reference modification to select only the word from the data item xWord, change it
to uppercase, and compare it to a reversed, uppercased, version of the word. If they are
equal, then the word is a palindrome.

DATE Functions
Date functions are a homogeneous group of functions that are often very useful. Table 15-2 lists the functions.
The table uses the same parameter type indicators as Table 15-1 (Alpha, Num, PosNum, Int, PosInt, Any).

Table 15-2. Date Functions

Function Name Result Type Comment

CURRENT-DATE Alphanumeric Returns a 21-character string representing the current
date and time, and the difference between the local time
and Greenwich Mean Time. The format of the string is
YYYYMMDDHHMMsshhxhhmm, where YYYY is the year,
MM is the month, DD is the day of the month, HH is the hour
(24-hour time), MM is the minutes, ss is the seconds, and
hh is the hundredths of a second. In addition, xhhmm is the
number of hours and minutes the local time is ahead of or
behind GMT (x = + or - or 0). If x = 0, the hardware cannot
provide this information.

DATE-OF-INTEGER(PosInt) Integerof the
form YYYYMMDDD

Converts the integer date PosInt (representing the number
of days that have passed since Dec 31, 1600 in the Gregorian
calendar) to a standard date. Returns the standard date in the
form YYYYMMDD. This function can be useful when you are
calculating the number of days between two dates.

DAY-OF-INTEGER(PosInt) Integer of the
form YYYYDDD

Converts the integer date PosInt(representing the number
of days that have passed since Dec 31, 1600 in the Gregorian
calendar) to a standard date of the form YYYYDDD
(sometimes called a Julian date).

INTEGER-OF-DATE(PosInt) Integer Converts the standard date PosInt (in the form YYYYMMDD)
into the equivalent integer date. If PosInt is not a valid date,
then zeros are returned.

INTEGER-OF-DAY(PosInt) Integer Converts the standard date PosInt (in the form YYYYDDD—a
Julian date) into the equivalent integer date.

WHEN-COMPILED Integer Returns the date and time the program was compiled. Uses
the same format as CURRENT-DATE.

CHAPTER 15 ■ STRING MANIPULATION

390

DATE Examples

Like the previous listing, Listing 15-10 solves no specific problem but is instead a collection of examples that show
how to use intrinsic functions to manipulate dates.

Listing 15-10. Using Intrinsic Functions to Manipulate Dates

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing15-10.
AUTHOR. Michael Coughlan.
*> Date Functions

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DateAndTimeNow.
 02 DateNow.
 03 YearNow PIC 9(4).
 03 MonthNow PIC 99.
 03 DayNow PIC 99.
 02 TimeC.
 03 HourNow PIC 99.
 03 MinNow PIC 99.
 03 SecNow PIC 99.
 03 FILLER PIC 99.
 02 GMT.
 03 GMTDiff PIC X.
 88 GMTNotSupported VALUE "0".
 03 GMTHours PIC 99.
 03 GMTMins PIC 99.

01 BillDate PIC 9(8).
01 DateNowInt PIC 9(8).
01 DaysOverdue PIC S999.
01 NumOfDays PIC 999.

01 IntFutureDate PIC 9(8).
01 FutureDate PIC 9(8).
01 DisplayDate REDEFINES FutureDate.
 02 YearD PIC 9999.
 02 MonthD PIC 99.
 02 DayD PIC 99.

01 DateCheck PIC 9(8) VALUE ZEROS.
 88 DateIsNotValid VALUE ZEROS.
 88 DateIsValid VALUE 1 THRU 99999999.

PROCEDURE DIVISION.
Begin.
*> eg1 This example gets the current date and displays
*> the constituent parts.
 DISPLAY "eg1 - get the current date"
 MOVE FUNCTION CURRENT-DATE TO DateAndTimeNow

CHAPTER 15 ■ STRING MANIPULATION

391

 DISPLAY "Current Date is "
 MonthNow "/" DayNow "/" YearNow
 DISPLAY "Current Time is "
 HourNow ":" MinNow ":" SecNow
 IF GMTNotSupported
 DISPLAY "This computer cannot supply the time"
 DISPLAY "difference between local and GMT."
 ELSE
 DISPLAY "The local time is - GMT "
 GMTDiff GMTHours ":" GMTMins
 END-IF.

*> eg2. In this example bills fall due 30 days
*> from the billing date.
 DISPLAY SPACES
 DISPLAY "eg2 - find the difference between two dates"
 DISPLAY "Enter the date of the bill (yyyymmdd) - " WITH NO ADVANCING
 ACCEPT BillDate
 MOVE DateNow TO DateNowInt
 COMPUTE DaysOverDue =
 (FUNCTION INTEGER-OF-DATE(DateNowInt))
 - (FUNCTION INTEGER-OF-DATE(BillDate) + 30)

 EVALUATE TRUE
 WHEN DaysOverDue > ZERO
 DISPLAY "This bill is overdue."
 WHEN DaysOverDue = ZERO
 DISPLAY "This bill is due today."
 WHEN DaysOverDue < ZERO
 DISPLAY "This bill is not yet due."
 END-EVALUATE

*> eg3. This example displays the date NumOfDays days
*> from the current date
 DISPLAY SPACES
 DISPLAY "eg3 - find the date x days from now"
 DISPLAY "Enter the number of days - " WITH NO ADVANCING
 ACCEPT NumOfDays
 COMPUTE IntFutureDate = FUNCTION INTEGER-OF-DATE(DateNowInt) + NumOfDays + 1
 MOVE FUNCTION DATE-OF-INTEGER(IntFutureDate) TO FutureDate
 DISPLAY "The date in " NumOfDays " days time will be "
 MonthD "/" DayD "/" YearD

*> eg4. This takes advantage of the fact that DATE-OF-INTEGER
*> requires a valid date to do some easy date validation

 DISPLAY SPACES
 DISPLAY "eg4 - validate the date"
 PERFORM WITH TEST AFTER UNTIL DateIsValid
 DISPLAY "Enter a valid date (yyyymmdd) - " WITH NO ADVANCING
 ACCEPT DateNowInt

CHAPTER 15 ■ STRING MANIPULATION

392

 COMPUTE DateCheck = FUNCTION INTEGER-OF-DATE(DateNowInt)
 IF DateIsNotValid
 DISPLAY DateNowInt " is not a valid date"
 DISPLAY SPACES
 END-IF
 END-PERFORM
 DISPLAY "Thank you! " DateNowInt " is a valid date."

 STOP RUN.

DATE Program Explanation

Most of these examples are straightforward and require little explanation. Only eg2 and eg4 should present any
difficulty:

• eg2 calculates the difference between the due date (bill date + 30) and today’s date and,
by subtracting one from the other, determines whether the bill is overdue (more than
30 days old).

• eg4 invokes the INTEGER-OF-DATE function for the sole purpose of checking whether the date
is valid. If an invalid date is supplied to INTEGER-OF-DATE, the function returns zeros.

CHAPTER 15 ■ STRING MANIPULATION

393

Summary
This chapter introduced COBOL string manipulation. You discovered how to use INSPECT to count, convert, and
replace characters in a string. You saw how to use the STRING verb to concatenate strings and UNSTRING to split a
string into substrings. In addition to learning the basics of the string-handling verbs, you saw how to augment their
capabilities by using reference modification and intrinsic functions.

All the examples you have examined so far have been small, stand-alone programs. But in a large COBOL system,
the executables usually consist of a number of programs, separately compiled and linked together to produce a single
run unit. In the next chapter, you learn how to use contained and external subprograms to create a single run unit
from a number of COBOL programs. COBOL subprograms introduce a number of data-declaration issues, so
Chapter 16 also examines the COPY verb and the IS GLOBAL and IS EXTERNAL clauses.

LANGUAGE KNOWLEDGE EXERCISES

Ah! Exercise time again. Now, where did you put your 2B pencil?

Q1 Assume that for each INSPECT statement, StringVar1 has the value shown in the Ref row of the following

table. Show what value StringVar1 holds after each INSPECT statement is executed:

1. INSPECT StringVar1 REPLACING LEADING "W" BY "6"

2. INSPECT StringVar1 REPLACING ALL "W" BY "7" AFTER INITIAL "Z"

BEFORE INITIAL "Q"

3. INSPECT StringVar1 REPLACING ALL "WW" BY "me" BEFORE INITIAL "ZZ"

4. INSPECT StringVar1 CONVERTING "WZQ" TO "abc"

Q2 Assume that for each STRING statement, StringVar2 has the value shown in the Ref row of the following

table. Show what value StringVar2 holds after each STRING statement is executed:

01 Source1 PIC X(10) VALUE "the grass".
01 Source2 PIC X(6) VALUE "is ris".
01 StrPtr PIC 99 VALUE 3.

1. STRING Source2 DELIMITED BY SPACES

 SPACE DELIMITED BY SIZE

 Source1 DELIMITED BY SIZE

 INTO StringVar2

CHAPTER 15 ■ STRING MANIPULATION

394

2. STRING SPACE, "See" DELIMITED BY SIZE

 Source1 DELIMITED BY SPACES

 INTO StringVar2 WITH POINTER StrPtr

Q3 A four-line poem is accepted into StringVar3 as a single line of text. Each line of the poem is separated

from the others by a comma. Using the declarations that follow, write an UNSTRING statement to unpack the

poem into individual poem lines and then display each poem line as well the number of characters in the

line. For instance, given the poem

"I eat my peas with honey,I've done it all my life,It makes the peas taste funny,But it

keeps them on the knife,"

Display

24 - I eat my peas with honey
24 – I've done it all my life
29 - It makes the peas taste funny
30 - But it keeps them on the knife
01 StringVar3 PIC X(120).
01 PoemLine OCCURS 4 TIMES.
 02 PLine PIC X(40)
 02 CCount PIC 99.

Q4 Given these strings, write what will be displayed by the following DISPLAY statement:

01 Str1 PIC X(25) VALUE "I never saw a purple cow".
01 Str2 PIC X(25) VALUE "I never hope to see one".

DISPLAY Str3((36 - 12) + 1:)
DISPLAY Str1(1:2) Str2(9:5) Str2(1:7) Str2(16:4) Str1(12:)

__

Q5 Given the following string description, write what will be displayed by the following DISPLAY statement:

01 Str3 PIC X(36) VALUE "abcdefghijklmnopqrstuvwxyz0123456789".

DISPLAY Str3((36 - 12) + 1:)

__

CHAPTER 15 ■ STRING MANIPULATION

395

Q6 Given the following ACCEPT statement, using INSPECT, reference modification, and intrinsic functions, write

a set of statements to discover the actual size of the string entered and store it in StrSize. Hint: The actual

string is followed by trailing spaces:

01 Str4 PIC X(60).
01 StrSize PIC 99.

ACCEPT Str4.

Q7 Given Str4 and the ACCEPT statement in Q6, write statements to trim any leading spaces from the string

entered and then store the trimmed string back in Str4.

LANGUAGE KNOWLEDGE EXERCISES: ANSWERS

Q1 Assume that for each INSPECT statement, StringVar1 has the value shown in the Ref row of the following

table. Show what value StringVar1 holds after each INSPECT statement is executed:

1. INSPECT StringVar1 REPLACING LEADING "W" BY "6"

2. INSPECT StringVar1 REPLACING ALL "W" BY "7"

 AFTER INITIAL "Z" BEFORE INITIAL "Q"

3. INSPECT StringVar1 REPLACING ALL "WW" BY "me" BEFORE INITIAL "ZZ"

CHAPTER 15 ■ STRING MANIPULATION

396

4. INSPECT StringVar1 CONVERTING "WZQ" TO "abc"

Q2 Assume that for each STRING statement, StringVar2 has the value shown in the Ref row of the following

table. Show what value StringVar2 holds after each STRING statement is executed:

01 Source1 PIC X(10) VALUE "the grass".
01 Source2 PIC X(6) VALUE "is ris".
01 StrPtr PIC 99 VALUE 3.

1. STRING Source2 DELIMITED BY SPACES

 SPACE DELIMITED BY SIZE

 Source1 DELIMITED BY SIZE

 INTO StringVar2

STRING SPACE, "See" DELIMITED BY SIZE
 Source1 DELIMITED BY SPACES

 INTO StringVar2 WITH POINTER StrPtr

Q3 A four-line poem is accepted into StringVar3 as a single line of text. Each line of the poem is separated

from the others by a comma. Using the declarations that follow, write an UNSTRING statement to unpack the

poem into individual poem lines and then display each poem line as well the number of characters in the

line. For instance, given the poem

"I eat my peas with honey,I've done it all my life,It makes the peas taste funny,But it

keeps them on the knife,"

Display

24 - I eat my peas with honey
24 – I've done it all my life
29 - It makes the peas taste funny
30 - But it keeps them on the knife

CHAPTER 15 ■ STRING MANIPULATION

397

01 StringVar3 PIC X(120).
01 PoemLine OCCURS 4 TIMES.
 02 PLine PIC X(40)
 02 CCount PIC 99.
UNSTRING StringVar3 DELIMITED BY "," INTO
 PLine(1) COUNT IN CCount(1)
 PLine(2) COUNT IN CCount(2)
 PLine(3) COUNT IN CCount(3)
 PLine(4) COUNT IN CCount(4)
END-UNSTRING

Q4 Given these strings, write what will be displayed by the following DISPLAY statement:

01 Str1 PIC X(25) VALUE "I never saw a purple cow".
01 Str2 PIC X(25) VALUE "I never hope to see one".

DISPLAY Str3((36 - 12) + 1:)
DISPLAY Str1(1:2) Str2(9:5) Str2(1:7) Str2(16:4) Str1(12:)

I hope I never see a purple cow

Q5 Given the following string description, write what will be displayed by the following DISPLAY statement:

01 Str3 PIC X(36) VALUE "abcdefghijklmnopqrstuvwxyz0123456789".

DISPLAY Str3((36 - 12) + 1:)

yz0123456789

Q6 Given the following ACCEPT statement, using INSPECT, reference modification, and intrinsic functions, write

a set of statements to discover the actual size of the string entered and store it in StrSize. Hint: The actual

string is followed by trailing spaces:

01 Str4 PIC X(60).
01 StrSize PIC 99.
01 NumOfChars PIC 99.

ACCEPT Str4.

ACCEPT Str4.
INSPECT FUNCTION REVERSE(Str4) TALLYING NumOfChars
 FOR LEADING SPACES
COMPUTE StrSize = (60 - NumOfChars)
DISPLAY Str4(1:StrSize) ": is " StrSize " characters in size."

Q7 Given Str4 and the ACCEPT statement in Q6, write statements to trim any leading spaces from the string

entered and then store the trimmed string back in Str4.

DISPLAY "Old string is - " Str4
MOVE 1 TO NumOfChars
INSPECT Str4 TALLYING NumOFChars FOR LEADING SPACES
MOVE Str4(NumOfChars :) TO Str4
DISPLAY "New string is - " Str4

399

CHAPTER 16

Creating Large Systems

All the programs you have seen so far in this book have been small stand-alone programs. But a large software system
is not usually written as a single monolithic program. Instead, it consists of a main program and many independently
compiled subprograms, linked together to form one executable run-unit. In COBOL, a program that is invoked from
another program is called a subprogram. In other languages, these might be called procedures or methods.

This chapter shows you how to create a software system that consists of a number of programs linked together
into one executable run-unit. You see how to create contained (internal) and external subprograms and how to use
the CALL verb to pass control to them. You discover how to pass data to a subprogram through its parameter list, and
you learn about state memory and how to create subprograms that exhibit state memory and subprograms that do
not. Because COBOL subprograms introduce a number of data-declaration issues, this chapter also examines the
COPY verb and the IS GLOBAL and IS EXTERNAL clauses.

Subprograms and the COPY Verb
Prior to the ANS 74 version, a large software system written in COBOL consisted of a series of large monolithic
programs that ran under the control of a Job Control Language. Each program in the series did a piece of work and
then passed the resulting data to the next program through the medium of files. The Job Control Language controlled
the order of execution of the programs and provided access to the required files. For instance, a validation program
might validate the data in a file to create a validated file that was then passed to the next program for processing.

The ANS 74 version of COBOL introduced external subprograms and the CALL and COPY verbs. These changes
allowed you to create software systems that consisted of the following:

A main program•

Record, file, and table descriptions imported from a central source text library•

A number of independently compiled external subprograms•

These elements were linked together to form one executable run-unit.
The ANS 85 version of COBOL improved on this by introducing the concept of contained subprograms. These

subprograms are called contained because their source code is contained within the source code of the main program.
Contained subprograms are closed subroutines. They are very similar to the procedures or methods found in other
languages. As you will discover, OO-COBOL methods are so similar to contained subprograms that once you have
learned how to create one, the other requires little additional instruction.

It is easy to see how a system that consists of a main program and its contained subprograms can be compiled
to create one executable image. It is perhaps not so obvious how a system that consists of a number of external
subprograms, all independently compiled at different times, can be made into a single executable.

To create a single executable from a number of independently compiled programs, the object code (binary
compiled code) of the main program and the subprograms must be bound together by a special program called a
linker. One purpose of the linker is to resolve the subprogram names (given in the PROGRAM-ID clause) into actual

CHAPTER 16 ■ CREATING LARGE SYSTEMS

400

physical addresses so that the computer can find a particular subprogram when it is invoked. Nowadays many
software development environments hide the linker step in this traditional sequence:

source code (.cbl) -> compiler -> object code (.obj) -> linker -> executable code (.exe)

A system that consists of a main program and linked subprograms requires a mechanism that allows one
program to invoke another and to pass data to it. In many programming languages, the procedure or function call
serves this purpose. In COBOL, the CALL verb is used to invoke one program from another.

The CALL Verb
The CALL verb is used to transfer control (program execution) to an external, independently compiled subprogram
or a contained subprogram. When the subprogram terminates, control reverts to the statement after CALL. The
metalanguage for the CALL verb is given in Figure 16-1.

Figure 16-1. Metalanguage for the CALL verb

Some notes relating to the metalanguage follow:

• BY REFERENCE and BY CONTENT are parameter-passing mechanisms. BY REFERENCE is the
default and so is sometimes omitted (hence the square brackets).

If the called program has not been linked (does not exist in the executable image), the •
statements following ON EXCEPTION execute. Otherwise, the program terminates abnormally.

If the • CALL passes parameters, then the called subprogram must have a USING phrase after the
PROCEDURE DIVISION header and a LINKAGE SECTION to describe the parameters that are passed.

The • CALL statement may only have a USING phrase if the PROCEDURE DIVISION header of the
called subprogram also has a USING phrase.

Both • USING phrases must have the same number of parameters.

Unlike some languages, COBOL does not check the type of the parameters passed to a called •
subprogram. It is your responsibility to make sure that only parameters of the correct type and
size are passed.

As shown in Figure • 16-2, the parameters passed from the calling program to the called
subprogram correspond by position, not by name. That is, the first parameter in the USING phrase
of the CALL corresponds to the first parameter in the USING phase of the called program, and so on.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

401

Implementers often extend • CALL by introducing BY VALUE parameter passing and by including
a GIVING phrase. These are nonstandard extensions.

Parameter-Passing Mechanisms
As you can see from the metalanguage in Figure 16-1, the CALL verb has two parameter-passing mechanisms:
BY REFERENCE and BY CONTENT. You should use BY REFERENCE only when the called subprogram needs to pass data
back to the caller. You should always use BY CONTENT when data needs to be passed to, but not received from, the
called program.

It is a principle of good program design that you should not expose a subprogram to more data than it needs
in order to work. If you pass your data BY REFERENCE, the possibility exists that it may be corrupted by the called
subprogram. When you pass data BY CONTENT, there is no possibility of that happening.

Figure 16-3 and Figure 16-4 show how each of these mechanisms works.

Figure 16-2. CALL parameters correspond by position not name

Figure 16-3. The CALL..BY REFERENCE parameter-passing mechanism

Figure 16-4. The CALL..BY CONTENT parameter-passing mechanism

CHAPTER 16 ■ CREATING LARGE SYSTEMS

402

CALL..BY REFERENCE

When data is passed BY REFERENCE, the address of the data item is supplied to the called subprogram (see Figure 16-3).
Therefore, any changes made to the data item in the subprogram are also made to the data item in the main program,
because both items refer to the same memory location.

CALL..BY CONTENT

When a parameter is passed BY CONTENT, a copy of the data item is made, and the address of the copy is supplied to
subprogram (see Figure 16-4). Any changes made to the data item in the subprogram affect only the copy.

Subprograms
I have said that a subprogram is just a program that is invoked by another program rather than by the user/operator.
In most ways, this is true. A subprogram may have all the divisions, sections, and paragraphs that a program has, but
subprograms may also have additional sections and phrases. In addition, because it is contained within the source
text of a containing program, a contained subprogram is not quite the same as an external subprogram (one whose
source code is in a document separate from the main program source).

Example 16-1 is a template for a subprogram that shows the additional sections and clauses in bold. The
subprogram in Example 16-1 might be invoked with a CALL statement such as this:

CALL "ValidateCheckDigit" USING BY CONTENT StudentId
 BY REFERENCE CKD-Result

Note that the CALL uses a literal value to identify the subprogram being invoked and that therefore the name is
enclosed in quotes. This is the usual way a subprogram is invoked, because when you write a program, you usually
know which subprogram you want to call. If you wanted to choose dynamically which program to call, you would use
a data item to hold the program name. For instance:

DISPLAY "Enter the subprogram name - " WITH NO ADVANCING
ACCEPT SubprogramName
CALL SubprogramName

Example 16-1. Subprogram Template

IDENTIFICATION DIVISION.
PROGRAM-ID. ValidateCheckDigit IS INITIAL.
DATA DIVISION.
WORKING-STORAGE SECTION.
: : : : : : :
: : : : : : :
LINKAGE SECTION.
01 NumToValidate PIC 9(7).
01 Result PIC 99.

PROCEDURE DIVISION USING NumToValidate, Result.
Begin.
: : : : : : :
: : : : : : :
 EXIT PROGRAM.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

403

Note that the name given in the CALL statement (ValidateCheckDigit) corresponds to the name given in the
PROGRAM-ID of the called program. The main purpose of the PROGRAM-ID clause is to identify programs in a run-unit
(the group of programs that have been compiled and linked into one executable image). The CALL transfers control
from one program in the run-unit to another.

In this template, the IS INITIAL clause is attached to the PROGRAM-ID. I discuss the IS INITIAL clause and the
problem of state memory, which it solves, in the next section.

This template uses a LINKAGE SECTION. A LINKAGE SECTION (which comes after the WORKING-STORAGE SECTION)
is always required if parameters are passed to a subprogram. The LINKAGE SECTION is used to define the parameters
and reserve storage for them. If a LINKAGE SECTION is required, then the subprogram’s PROCEDURE DIVISION header
requires a USING phrase. The USING phrase matches the actual parameters of the CALL (by position in the parameter
list) to the formal parameters in the subprogram.

Note ■ You probably know what I mean by actual parameters and formal parameters; but in case you don’t, here is an

explanation. Any useful subprogram is likely to be called from a number of different places and for different purposes.

For instance, the check-digit validation subprogram might be called by various programs to validate NewStudentId,

OldStudentId, GraduatedStudentId, TransferStudentId, or even (because it validates any seven-digit number) StockId.

These data-item names are the names of the actual parameters that are passed to the subprogram. When you write the

subprogram, you don’t always know the names of the data items that will be passed as parameters (a maintenance

programmer, for instance, might write a new routine and call your subprogram); and in any case, there are multiple

names—which do you choose? So, the name that you use in the subprogram is a placeholder (or formal parameter) for

the actual parameter that is passed to the subprogram.

The EXIT PROGRAM statement in Example 16-1 stops the execution of the subprogram and transfers control
back to the caller. You place the EXIT PROGRAM statement where you would normally place STOP RUN. The difference
between STOP RUN and an EXIT PROGRAM statement is that STOP RUN causes the entire run-unit to stop (even if STOP
RUN is encountered in a subprogram) instead of just the subprogram.

Contained Subprograms

As I explained earlier, a contained subprogram is a program contained within the source code of another program.
When you use contained subprograms, the END PROGRAM header is required to delimit the scope of each subprogram
and to wrap your subprograms within the scope of the main (container) program. The END PROGRAM header has this
format: END PROGRAM ProgramIdName.

Example 16-2 shows the ValidateCheckDigit subprogram implemented as a contained subprogram. In this
instance, it is contained within a main program called CheckDigitDrv.

Example 16-2. Outline of a Main Program and Its Contained Subprogram

IDENTIFICATION DIVISION.
PROGRAM-ID. CheckDigitDrv.
: : : : : : :
: : : : : : :
 CALL "ValidateCheckDigit" USING BY CONTENT StockId
 BY REFERENCE CKD-Result
: : : : : : :
: : : : : : :

CHAPTER 16 ■ CREATING LARGE SYSTEMS

404

IDENTIFICATION DIVISION.
PROGRAM-ID. ValidateCheckDigit IS INITIAL.
: : : : : : :
: : : : : : :
PROCEDURE DIVISION USING NumToValidate, Result.
: : : : : : :
: : : : : : :
END PROGRAM ValidateCheckDigit.
END PROGRAM CheckDigitDrv.

Contained Subprograms vs. External Subprograms

I mentioned that contained subprograms are not quite the same as external subprograms. You have already seen one
difference: the END PROGRAM header. Another difference is the visibility of data. In an external subprogram, it is obvious
that it can’t see data declared in the main program or other subprograms (although this is not entirely true, as you will
see when you examine the IS EXTERNAL clause), because it is a separate, independent program. But because the text
of a contained subprogram is contained within the text of the main (container) program, you may wonder whether the
subprogram can see the data declared in the main program and whether the main program can see the data declared
in the subprogram. In COBOL, data declared in a subprogram cannot be seen outside it, and data declared in the
main (containing) program cannot be seen in the subprogram, unless … unless what? For the answer, you have to wait
for the explanation of the IS GLOBAL clause later in this chapter.

An issue that does not arise in relation to external subprograms but is a burning issue for contained subprograms
is invokability. Contained subprograms can be nested: that is, a contained subprogram may itself contain a
subprogram. So the question arises, can a nested subprogram be called from anywhere? Or are there restrictions?
Sadly, there are restrictions. A contained subprogram can only be called by its immediate parent (container) program
or by a subprogram at the same level. Even this isn’t entirely true; a subprogram can only be called by a subprogram
(sibling) at the same level if the called program uses the IS COMMON PROGRAM clause (see the next section) in its
PROGRAM-ID.

State Memory and the IS INITIAL Phrase
The first time a subprogram is called, it is in its initial state: all files are closed, and the data items are initialized to
their VALUE clauses. The next time the subprogram is called, it remembers its state from the previous call. Any files that
were opened are still open, and any data items that were assigned values still contain those values.

Although it can be useful for a subprogram to remember its state from call to call, systems that contain subprograms
with state memory are often less reliable and more difficult to debug than those that do not. A subprogram that does not
have state memory is predictable, because for the same input value, it produces the same result. Subprograms that have
state memory are more difficult to debug because they may produce different results for the same input values.

You can force a subprogram into its initial state each time it is called by including the IS INITIAL clause in the
PROGRAM-ID. The metalanguage for the IS INITIAL clause is given in Figure 16-5. Note that INITIAL is only one of the
clauses that can be attached to the PROGRAM-ID. IS COMMON PROGRAM may also be applied to a subprogram. I examine
the IS COMMON PROGRAM clause in more detail later in the chapter.

Figure 16-5. Metalanguage for the IS COMMON and IS INITIAL clauses

CHAPTER 16 ■ CREATING LARGE SYSTEMS

405

Listing 16-1 has a dual purpose. It shows how contained subprograms are created and used, and it demonstrates
the difference between a subprogram that has state memory and one that does not. The listing consists of a main
program and two subprograms named Steady and Dynamic. Steady is so named because every time you call it
with the same parameter values, it produces the same results. But Dynamic, because it remembers its state from the
previous call, produces different results when it is called with the same input values.

Listing 16-1. State Memory Demonstration with Steady and Dynamic

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-1.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Increment PIC 99 VALUE ZERO.
 88 EndOfData VALUE ZERO.

PROCEDURE DIVISION.
Begin.
*> Demonstrates the difference between Steady
*> and Dynamic. Entering a zero ends the iteration
 DISPLAY "Enter an increment value (0-99) - " WITH NO ADVANCING
 ACCEPT Increment
 PERFORM UNTIL EndOfData
 CALL "Steady" USING BY CONTENT Increment
 CALL "Dynamic" USING BY CONTENT Increment
 DISPLAY SPACES
 DISPLAY "Enter an increment value (0-99) - " WITH NO ADVANCING
 ACCEPT Increment
 END-PERFORM
 STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. Dynamic.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RunningTotal PIC 9(5) VALUE ZERO.
01 PrnTotal PIC ZZ,ZZ9.

LINKAGE SECTION.
01 ValueToAdd PIC 99.
PROCEDURE DIVISION USING ValueToAdd.
Begin.
 ADD ValueToAdd TO RunningTotal
 MOVE RunningTotal TO PrnTotal
 DISPLAY "Dynamic total = " PrnTotal
 EXIT PROGRAM.
END PROGRAM Dynamic.

IDENTIFICATION DIVISION.
PROGRAM-ID. Steady IS INITIAL.
DATA DIVISION.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

406

WORKING-STORAGE SECTION.
01 RunningTotal PIC 9(5) VALUE ZERO.
01 PrnTotal PIC ZZ,ZZ9.

LINKAGE SECTION.
01 ValueToAdd PIC 99.
PROCEDURE DIVISION USING ValueToAdd .
Begin.
 ADD ValueToAdd TO RunningTotal
 MOVE RunningTotal TO PrnTotal
 DISPLAY "Steady total = " PrnTotal
 EXIT PROGRAM.
END PROGRAM Steady.
END PROGRAM Listing16-1.

Notice that each time Steady is passed the same value, it produces the same result; but each time Dynamic
is passed the same value, it produces a different result, because it remembers the state of the data items from the
previous invocation. Sometimes, such as when you need to keep a running total, you want the subprogram to have
state memory. But as a rule, unless you explicitly want a subprogram to remember its state, you should use the
IS INITIAL phrase to set the program to its initial state each time it is called.

The CANCEL Verb
A program may need state memory only part of the time. That is, it needs to be reset to its initial state periodically.
In COBOL, you can do this using the CANCEL verb. The metalanguage for the CANCEL verb is given in Figure 16-6.

Figure 16-6. Metalanguage for the CANCEL verb

When the CANCEL command is executed, the memory space occupied by the subprogram is freed. If the subprogram
is called again, it is in its initial state (all files declared in the subprogram are closed, and all data items are initialized to
their VALUE clauses). As shown in Example 16-3, you can use the CANCEL verb to force Dynamic to act like Steady.

Example 16-3. Using the CANCEL Verb to Force Dynamic to Act Like Steady

DISPLAY "First Call"
CALL "Dynamic" USING BY CONTENT 77.
CANCEL "Dynamic"
DISPLAY SPACES
DISPLAY "Second Call"
CALL " Dynamic" USING BY CONTENT 77.

The IS GLOBAL Clause
I noted earlier that data declared in a contained subprogram cannot be seen in the main (containing) program, and
data declared in the main program cannot be seen inside a contained subprogram. In general, this is true;
but sometimes you may want to share a data item with a number of contained subprograms. For instance, consider

CHAPTER 16 ■ CREATING LARGE SYSTEMS

407

the program fragments in Example 16-4. This program produces a report showing the purchases of new automobiles
in the United States. The data is accumulated in a table and then printed.

The program is partitioned into a main program and two subprograms. One subprogram adds the value of each
new car purchase to the appropriate state in the table. The other subprogram prints the report when the new car
purchases have been processed. Both subprograms need access to the table. The table cannot be declared local to the
subprogram because any local declarations cannot be seen outside the subprogram. So the table must be declared in the
outer scope: the main (container) program. The problem then is how to allow the table to be seen by the subprograms.

One approach might be to pass the table through the parameter list. The problem with this approach is that there
is a lot of data in the table, and every time AddToStateTotal is called, the table must be passed. A better solution is to
make the table visible inside the subprograms. You can do this using the IS GLOBAL clause. Any data item to which the
IS GLOBAL clause is attached is visible within the subordinate subprograms.

Example 16-4. Program Outline Showing the Use of the IS GLOBAL Clause

IDENTIFICATION DIVISION.
PROGRAM-ID. CarPurchasesReport.
 : : : : : : :
01 StateTable IS GLOBAL.
 02 State OCCURS 50 TIMES.
 03 TotalCarPurchases PIC 9(9)V99.
 : : : : : : :
PROCEDURE DIVISION.
 : : : : : :
 CALL AddToStateTotal USING BY CONTENT StateNo, ValueOfCarPurchase
 : : : : : :
 CALL PrintTotalCarPurchases
 STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. AddToStateTotal.
 : : : : : : :
END-PROGRAM AddToStateTotal.

IDENTIFICATION DIVISION.
PROGRAM-ID. PrintTotalCarPurchases.
 : : : : : : :
END PROGRAM PrintTotalCarPurchases.
END PROGRAM CarPurchasesReport.

The IS COMMON PROGRAM Clause
I mentioned earlier that a contained subprogram can only be called by its immediate parent (container) program or
by a subprogram at the same level. I noted that even then, a contained subprogram can call a subprogram at the same
level only if the subprogram to be called uses the IS COMMON PROGRAM clause in its PROGRAM-ID. You already saw the
metalanguage for the IS COMMON PROGRAM clause in Figure 16-5, but it is repeated here for convenience:

IS COMMON INITIAL PROGRAM.[] []

CHAPTER 16 ■ CREATING LARGE SYSTEMS

408

When IS COMMON PROGRAM is attached to the PROGRAM-ID clause of a contained subprogram, that subprogram
may be invoked by any subprograms at the same level (siblings) but only by them. As you can see from the
metalanguage, both the COMMON and INITIAL clauses may be used in combination. The words IS and PROGRAM are
noise words that may be omitted. The IS COMMON PROGRAM clause can be used only in nested programs.

Example Programs and Their Subprograms
Listing 16-2, Listing 16-3, and Listing 16-4 are programs that consist of simple examples to demonstrate some of the
issues discussed so far. Listing 16-5 is a more practical example that implements a game to test your knowledge of
the American states. Listing 16-6 is a demonstrator for the external subprogram used by Listing 16-5.

External Subprogram

Listing 16-2 is an example program that calls an external subprogram to validate Student IDs. It is followed by the
external subprogram Listing 16-2sub, which applies check-digit validation to any seven-digit number supplied to it.

Listing 16-2. Creating and Calling an External Subprogram

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-2.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentId PIC 9(7).

01 ValidationResult PIC 9.
 88 ValidStudentId VALUE ZERO.
 88 InvalidStudentId VALUE 1.

PROCEDURE DIVISION.
Begin.
 PERFORM 3 TIMES
 DISPLAY "Enter a Student Id : " WITH NO ADVANCING
 ACCEPT StudentId
 CALL "ValidateCheckDigit" USING BY CONTENT StudentID
 BY REFERENCE ValidationResult
 IF ValidStudentId
 DISPLAY "The Student id - " StudentId " - is valid"
 ELSE
 DISPLAY "The Student id - " StudentId " - is not valid"
 END-IF
 DISPLAY SPACES
 END-PERFORM
 STOP RUN.

Listing 16-2sub. The ValidateCheckDigit External Subprogram

IDENTIFICATION DIVISION.
PROGRAM-ID. ValidateCheckDigit IS INITIAL.
DATA DIVISION.
WORKING-STORAGE SECTION.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

409

01 SumOfNums PIC 9(5).
01 Quotient PIC 9(5).
01 CalcResult PIC 99.

LINKAGE SECTION.
01 NumToValidate.
 02 D1 PIC 9.
 02 D2 PIC 9.
 02 D3 PIC 9.
 02 D4 PIC 9.
 02 D5 PIC 9.
 02 D6 PIC 9.
 02 D7 PIC 9.

01 Result PIC 9.
 88 InvalidCheckDigit VALUE 1.
 88 ValidCheckDigit VALUE 0.

PROCEDURE DIVISION USING NumToValidate, Result.
*> Returns a Result of 1 (invalid check digit) or 0 (valid check digit)
Begin.
 COMPUTE SumOfNums = (D1 * 7) + (D2 * 6) + (D3 * 5) + (D4 * 4) +
 (D5 * 3) + (D6 * 2) + (D7).
 DIVIDE SumOfNums BY 11 GIVING Quotient REMAINDER CalcResult
 IF CalcResult EQUAL TO ZERO
 SET ValidCheckDigit TO TRUE
 ELSE
 SET InvalidCheckDigit TO TRUE
 END-IF
 EXIT PROGRAM.

Parameter Passing and Data Visibility

Listing 16-3 is an abstract example that demonstrates how to create contained subprograms. It shows the various
kinds of parameters and parameter-passing mechanisms you can use and demonstrates the visibility of any data item
declared with the IS GLOBAL clause.

Listing 16-3. Contained Subprograms and Parameter Passing and Data Visibility

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-3.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DaysOfTheWeek VALUE "MonTueWedThuFriSatSun" IS GLOBAL.
 02 DayName PIC XXX OCCURS 7 TIMES.

01 Parameters.
 02 Number1 PIC 9(3) VALUE 456.
 02 Number2 PIC 9(3) VALUE 321.
 02 FirstString PIC X(20) VALUE "First parameter = ".

CHAPTER 16 ■ CREATING LARGE SYSTEMS

410

 02 SecondString PIC X(20) VALUE "Second parameter = ".
 02 Result PIC 9(6) USAGE IS COMP.
 02 DiscountTable VALUE "12430713862362".
 03 Discount PIC 99 OCCURS 7 TIMES.

01 PrnResult PIC ZZZ,ZZ9.

PROCEDURE DIVISION.
DemoParameterPassing.
 DISPLAY "FirstString value is - " FirstString
 DISPLAY "SecondString value is - " SecondString

 CALL "MultiplyNums"
 USING BY CONTENT Number1, Number2, FirstString,
 BY REFERENCE SecondString, Result
 BY CONTENT DiscountTable

 DISPLAY SPACES
 DISPLAY "FirstString value is - " FirstString
 DISPLAY "SecondString value is - " SecondString
 MOVE Result TO PrnResult
 DISPLAY "COMP value is " PrnResult
 STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. MultiplyNums.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 idx PIC 9.

LINKAGE SECTION.
01 Param1 PIC 9(3).
01 Param2 PIC 9(3).
01 Answer PIC 9(6) USAGE IS COMP.
01 StrA PIC X(20).
01 StrB PIC X(20).
01 TableIn.
 02 TNum PIC 99 OCCURS 7 TIMES.

PROCEDURE DIVISION USING Param1, Param2, StrA,
StrB, Answer, TableIn.
Begin.
 DISPLAY SPACES
 DISPLAY ">>> In the MultiplyNums subprogram"
 DISPLAY StrA Param1
 DISPLAY StrB Param2
 MULTIPLY Param1 BY Param2 GIVING Answer.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

411

*> Displays table values. One passed as a parameter and the other global
 DISPLAY SPACES
 PERFORM VARYING idx FROM 1 BY 1 UNTIL idx > 7
 DISPLAY DayName(idx) " discount is " Tnum(idx) "%"
 END-PERFORM

*> Transfer control to a subprogram contained within MultiplyNums
 CALL "InnerSubProg"

*> Demonstrates the difference between BY CONTENT and BY REFERENCE.
 MOVE "VALUE OVERWRITTEN" TO StrA
 MOVE "VALUE OVERWRITTEN" TO StrB
 DISPLAY SPACES
 DISPLAY "<<<< Leaving MultiplyNums"
 EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. InnerSubProg.
AUTHOR. Michael Coughlan.
PROCEDURE DIVISION.
Begin.
*> Demonstrates that the GLOBAL data item is even visible here
 DISPLAY SPACES
 DISPLAY ">>>> In InnerSubProg"
 DISPLAY "Days of the week = " DaysOfTheWeek
 DISPLAY "<<<< Leaving InnerSubProg"
 EXIT PROGRAM.

END PROGRAM InnerSubProg.
END PROGRAM MultiplyNums.
END PROGRAM LISTING16-3.

The first displayed items show the current value of the two strings in the main program. There is a purpose to
this. One string is passed BY REFERENCE and the other BY CONTENT. When these strings are displayed after the CALL has
executed, the one passed BY REFERENCE has been corrupted. The lesson should be obvious.

In addition to normal numeric items, one of the parameters is a USAGE IS COMP data item. It holds the result of
multiplying the two numbers Param1 and Param2. One thing I must stress here is that the description of numeric items
in the main program must be the same as the description in the LINKAGE SECTION. If you describe an item as signed
in the subprogram, it must be signed in the main program. If it is a USAGE IS COMP item in the subprogram, it must be
the same in the main program. Be aware that the complier provides you with absolutely no protection in this regard.
It is up to you to make sure the data types and sizes correspond. Working with COBOL subprograms is akin to driving
down a twisty mountain road with no protection barrier—one mistake, and you plunge into the abyss.

The percentage displays are used to show that an array can be passed as a parameter. But in this example I also
take the opportunity to show that the DaysOfTheWeek table, which is declared as GLOBAL in the outer scope
(main program), is also visible inside the contained subprogram.

Just to emphasize the visibility of GLOBAL data items, the subprogram InnerSubProg is nested within the
subprogram MultiplyNums. Even in InnerSubProg, the DaysOfTheWeek table is visible.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

412

Using IS COMMON PROGRAM

Listing 16-4 shows that the program to be called can be assigned at runtime. In this example, instead of using a literal
value as the target of the CALL, a data item containing the name of the subprogram to be called is used. The name of
the subprogram is supplied by the user. Because the user is supplying the name of the program, there is a possibility
that they will get the name wrong; the ON EXCEPTION clause is used to make sure the named program exists.

Listing 16-4. Creating and Using a COMMON Subprogram

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-4.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Operation PIC XXX.
01 NumericValue PIC 999.
 88 EndOfData VALUE ZEROS.

01 FILLER PIC 9.
 88 ValidSubprogName VALUE ZERO.
 88 InvalidSubprogName VALUE 1.

PROCEDURE DIVISION.
Begin.
 PERFORM 3 TIMES
 SET ValidSubprogName TO TRUE
 DISPLAY SPACES
 DISPLAY "Ente r the required operation (Dec or Inc) : " WITH NO ADVANCING
 ACCEPT Operation
 DISPLAY "Enter a three digit value : " WITH NO ADVANCING
 ACCEPT NumericValue
 PERFORM UNTIL EndofData OR InvalidSubprogName
 CALL Operation USING BY CONTENT NumericValue
 ON EXCEPTION DISPLAY Operation " is not a valid operation"
 SET InvalidSubprogName TO TRUE
 NOT ON EXCEPTION SET ValidSubprogName TO TRUE
 DISPLAY "Enter a three digit value : "
 WITH NO ADVANCING
 ACCEPT NumericValue
 END-CALL
 END-PERFORM
 CANCEL Operation
 END-PERFORM
 STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. Inc.
AUTHOR. Michael Coughlan.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

413

DATA DIVISION.
WORKING-STORAGE SECTION.
01 RunningTotal PIC S9(5) VALUE ZEROS.

LINKAGE SECTION.
01 ValueIn PIC 9(3).

PROCEDURE DIVISION USING ValueIn.
Begin.
 ADD ValueIn TO RunningTotal
 CALL "DisplayTotal" USING BY CONTENT RunningTotal
 EXIT PROGRAM.
END PROGRAM Inc.

IDENTIFICATION DIVISION.
PROGRAM-ID. Dec.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RunningTotal PIC S9(5) VALUE ZEROS.

LINKAGE SECTION.
01 ValueIn PIC 9(3).

PROCEDURE DIVISION USING ValueIn.
Begin.
 SUBTRACT ValueIn FROM RunningTotal
 CALL "DisplayTotal" USING BY CONTENT RunningTotal
 EXIT PROGRAM.
END PROGRAM Dec.

IDENTIFICATION DIVISION.
PROGRAM-ID. DisplayTotal IS COMMON INITIAL PROGRAM.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PrnValue PIC +++,++9.

LINKAGE SECTION.
01 ValueIn PIC S9(5).

PROCEDURE DIVISION USING ValueIn.
Begin.
 MOVE ValueIn TO PrnValue
 DISPLAY "The current value is " PrnValue
 EXIT PROGRAM.
END PROGRAM DisplayTotal.
END PROGRAM LISTING16-4.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

414

In this example, both Inc and Dec display RunningTotal via a CALL to their sibling program DisplayTotal, which
has the IS COMMON PROGRAM clause.

A Practical Example

In Chapter 13, I introduced a table that held the codes, names, and capitals of all the states in America. You might
have thought at the time that that information could prove useful in a number of programs. In the next example I
take that table, expand it to include the population of each state and from it create an external subprogram called
GetStateInfo. Listing 16-5 and Listing 16-6 both use GetStateInfo, but in different ways. Listing 16-5 is a game that
uses GetStateInfo to test your knowledge of the American states. Listing 16-6 simply returns the other information
about a state when you give it one piece of information, such as the state name.

GetStateInfo External Subprogram

Before examining Listing 16-5 and Listing 16-6, let’s look at the external subprogram that both of these programs call
(see Listing 16-5sub).

Listing 16-5sub. External Subprogram to Supply Information About the States

IDENTIFICATION DIVISION.
PROGRAM-ID. GetStateInfo IS INITIAL.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 StatesTable.
 02 StateValues.
 03 FILLER PIC X(38) VALUE "ALAlabama Montgomery 04822023".
 03 FILLER PIC X(38) VALUE "AKAlaska Juneau 00731449".
 03 FILLER PIC X(38) VALUE "AZArizona Phoenix 06553255".
 03 FILLER PIC X(38) VALUE "ARArkansas Little Rock 02949131".
 03 FILLER PIC X(38) VALUE "CACalifornia Sacramento 38041430".
 03 FILLER PIC X(38) VALUE "COColorado Denver 05187582".
 03 FILLER PIC X(38) VALUE "CTConnecticut Hartford 03590347".
 03 FILLER PIC X(38) VALUE "DEDelaware Dover 00917092".
 03 FILLER PIC X(38) VALUE "FLFlorida Tallahassee 19317568".
 03 FILLER PIC X(38) VALUE "GAGeorgia Atlanta 09919945".
 03 FILLER PIC X(38) VALUE "HIHawaii Honolulu 01392313".
 03 FILLER PIC X(38) VALUE "IDIdaho Boise 01595728".
 03 FILLER PIC X(38) VALUE "ILIllinois Springfield 12875255".
 03 FILLER PIC X(38) VALUE "INIndiana Indianapolis 06537334".
 03 FILLER PIC X(38) VALUE "IAIowa Des Moines 03074186".
 03 FILLER PIC X(38) VALUE "KSKansas Topeka 02885905".
 03 FILLER PIC X(38) VALUE "KYKentucky Frankfort 04380415".
 03 FILLER PIC X(38) VALUE "LALouisiana Baton Rouge 04601893".
 03 FILLER PIC X(38) VALUE "MEMaine Augusta 01329192".
 03 FILLER PIC X(38) VALUE "MDMaryland Annapolis 05884563".
 03 FILLER PIC X(38) VALUE "MAMassachusetts Boston 06646144".
 03 FILLER PIC X(38) VALUE "MIMichigan Lansing 09883360".
 03 FILLER PIC X(38) VALUE "MNMinnesota Saint Paul 05379139".
 03 FILLER PIC X(38) VALUE "MSMississippi Jackson 02984926".
 03 FILLER PIC X(38) VALUE "MOMissouri Jefferson City06021988".

CHAPTER 16 ■ CREATING LARGE SYSTEMS

415

 03 FILLER PIC X(38) VALUE "MTMontana Helena 01005141".
 03 FILLER PIC X(38) VALUE "NENebraska Lincoln 01855525".
 03 FILLER PIC X(38) VALUE "NVNevada Carson City 02758931".
 03 FILLER PIC X(38) VALUE "NHNew Hampshire Concord 01320718".
 03 FILLER PIC X(38) VALUE "NJNew Jersey Trenton 08864590".
 03 FILLER PIC X(38) VALUE "NMNew Mexico Santa Fe 02085538".
 03 FILLER PIC X(38) VALUE "NYNew York Albany 19570261".
 03 FILLER PIC X(38) VALUE "NCNorth CarolinaRaleigh 09752073".
 03 FILLER PIC X(38) VALUE "NDNorth Dakota Bismarck 00699628".
 03 FILLER PIC X(38) VALUE "OHOhio Columbus 11544225".
 03 FILLER PIC X(38) VALUE "OKOklahoma Oklahoma City 03814820".
 03 FILLER PIC X(38) VALUE "OROregon Salem 03899353".
 03 FILLER PIC X(38) VALUE "PAPennsylvania Harrisburg 12763536".
 03 FILLER PIC X(38) VALUE "RIRhode Island Providence 01050292".
 03 FILLER PIC X(38) VALUE "SCSouth CarolinaColumbia 04723723".
 03 FILLER PIC X(38) VALUE "SDSouth Dakota Pierre 00833354".
 03 FILLER PIC X(38) VALUE "TNTennessee Nashville 06456243".
 03 FILLER PIC X(38) VALUE "TXTexas Austin 26059203".
 03 FILLER PIC X(38) VALUE "UTUtah Salt Lake City02855287".
 03 FILLER PIC X(38) VALUE "VTVermont Montpelier 00626011".
 03 FILLER PIC X(38) VALUE "VAVirginia Richmond 08185867".
 03 FILLER PIC X(38) VALUE "WAWashington Olympia 06897012".
 03 FILLER PIC X(38) VALUE "WVWest Virginia Charleston 01855413".
 03 FILLER PIC X(38) VALUE "WIWisconsin Madison 05726398".
 03 FILLER PIC X(38) VALUE "WYWyoming Cheyenne 00576412".
 02 FILLER REDEFINES StateValues.
 03 State OCCURS 50 TIMES
 INDEXED BY StateIdx.
 04 StateCode PIC XX.
 04 StateName PIC X(14).
 04 StateCapital PIC X(14).
 04 StatePop PIC 9(8).

LINKAGE SECTION.
01 StateNum-IO PIC 99.
 88 ValidStateNum VALUE 1 THRU 50.
01 StateCode-IO PIC XX.
01 StateName-IO PIC X(14).
01 StateCapital-IO PIC X(14).
01 StatePop-IO PIC 9(8).
01 ErrorFlag PIC 9.
 88 NoErrorFound VALUE ZERO.
 88 InvalidStateNum VALUE 1.
 88 NoSearchItems VALUE 2.
 88 NoSuchStateCode VALUE 3.
 88 NoSuchStateName VALUE 4.
 88 NoSuchCapital VALUE 5.

PROCEDURE DIVISION USING StateNum-IO, StateCode-IO, StateName-IO,
 StateCapital-IO, StatePop-IO, ErrorFlag.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

416

Begin.
 SET NoErrorFound TO TRUE
 SET StateIdx TO 1
 EVALUATE TRUE
 WHEN StateNum-IO NOT EQUAL ZEROS PERFORM SearchUsingStateNum
 WHEN StateCode-IO NOT EQUAL SPACES PERFORM SearchUsingStateCode
 WHEN StateName-IO NOT EQUAL SPACES PERFORM SearchUsingStateName
 WHEN StateCapital-IO NOT EQUAL SPACES PERFORM SearchUsingStateCapital
 WHEN OTHER SET NoSearchItems TO TRUE
 END-EVALUATE
 EXIT PROGRAM.

SearchUsingStateNum.
 IF NOT ValidStateNum SET InvalidStateNum TO TRUE
 ELSE
 MOVE StateCode(StateNum-IO) TO StateCode-IO
 MOVE StateName(StateNum-IO) TO StateName-IO
 MOVE StateCapital(StateNum-IO) TO StateCapital-IO
 MOVE StatePop(StateNum-IO) TO StatePop-IO
 END-IF.

SearchUsingStateCode.
 SEARCH State
 AT END SET NoSuchStateCode TO TRUE
 WHEN FUNCTION UPPER-CASE(StateCode(StateIdx)) EQUAL TO
 FUNCTION UPPER-CASE(StateCode-IO)
 SET StateNum-IO TO StateIdx
 MOVE StateCode(StateIdx) TO StateCode-IO
 MOVE StateName(StateIdx) TO StateName-IO
 MOVE StateCapital(StateIdx) TO StateCapital-IO
 MOVE StatePop(StateIdx) TO StatePop-IO
 END-SEARCH.

SearchUsingStateName.
 SEARCH State
 AT END SET NoSuchStateName TO TRUE
 WHEN FUNCTION UPPER-CASE(StateName(StateIdx)) EQUAL TO
 FUNCTION UPPER-CASE(StateName-IO)
 SET StateNum-IO TO StateIdx
 MOVE StateCode(StateIdx) TO StateCode-IO
 MOVE StateName(StateIdx) TO StateName-IO
 MOVE StateCapital(StateIdx) TO StateCapital-IO
 MOVE StatePop(StateIdx) TO StatePop-IO
 END-SEARCH.

SearchUsingStateCapital.
 SEARCH State
 AT END SET NoSuchCapital TO TRUE
 WHEN FUNCTION UPPER-CASE(StateCapital(StateIdx)) EQUAL TO
 FUNCTION UPPER-CASE(StateCapital-IO)
 SET StateNum-IO TO StateIdx

CHAPTER 16 ■ CREATING LARGE SYSTEMS

417

 MOVE StateCode(StateIdx) TO StateCode-IO
 MOVE StateName(StateIdx) TO StateName-IO
 MOVE StateCapital(StateIdx) TO StateCapital-IO
 MOVE StatePop(StateIdx) TO StatePop-IO
 END-SEARCH.

This program takes as parameters StateNum-IO, StateCode-IO, StateName-IO, StateCapital-IO, StatePop-IO,
and ErrorFlag. Whichever of the first four parameters has a value is used as the search term to find the other
information about the state. For instance, if StateName-IO has a value, then that is used as the search term to find the
state number, state code, state capital, and state population.

If an error condition is detected, such as none of the fields having a value, then the appropriate error condition is
set; this results in an error code being returned in the ErrorFlag parameter. If ErrorFlag contains zero, then no error
was detected. The errors detected are given by the following condition names:

 88 NoErrorFound VALUE ZERO.
 88 InvalidStateNum VALUE 1.
 88 NoSearchItems VALUE 2.
 88 NoSuchStateCode VALUE 3.
 88 NoSuchStateName VALUE 4.
 88 NoSuchCapital VALUE 5.

The State Knowledge Game

Listing 16-5 is a game to test your knowledge of the names, codes, capitals, and populations of American states. It uses
the GetStateInfo external subprogram.

Listing 16-5. A Game to Test Your Knowledge of American States

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-5.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Parameters.
 02 StateNum PIC 99.
 02 StateCode PIC XX.
 02 StateName PIC X(14).
 02 StateCapital PIC X(14).
 02 StatePop PIC 9(8).
 02 ErrorFlag PIC 9.

01 idx PIC 99.

01 CurrentTime.
 02 FILLER PIC 9(4).
 02 Seed PIC 9(4).
01 RandState PIC 99.
01 RandChoice PIC 9.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

418

01 Answer PIC X(14).
01 PopAnswer PIC 9(8).
01 MinPop PIC 9(8).
01 MaxPop PIC 9(8).
01 PrnStatePop PIC ZZ,ZZZ,ZZ9.
01 StrLength PIC 99.

PROCEDURE DIVISION.
Begin.
 ACCEPT CurrentTime FROM TIME
 COMPUTE RandState = FUNCTION RANDOM(Seed)
 PERFORM 8 TIMES
 COMPUTE RandState = (FUNCTION RANDOM * 50) + 1
 COMPUTE RandChoice = (FUNCTION RANDOM * 4) + 1
 CALL "GetStateInfo"
 USING BY REFERENCE RandState, StateCode, StateName,
 StateCapital, StatePop, ErrorFlag
 EVALUATE RandChoice
 WHEN 1 PERFORM TestCapitalFromState
 WHEN 2 PERFORM TestCodeFromState
 WHEN 3 PERFORM TestPopFromState
 WHEN 4 PERFORM TestStateFromCapital
 END-EVALUATE
 DISPLAY SPACES
 END-PERFORM
 STOP RUN.

TestCapitalFromState.
 CALL "GetStringLength" USING BY CONTENT StateName
 BY REFERENCE StrLength
 DISPLAY "What is the capital of " StateName(1:StrLength) "? "
 WITH NO ADVANCING
 ACCEPT Answer
 IF FUNCTION UPPER-CASE(Answer) = FUNCTION UPPER-CASE(StateCapital)
 DISPLAY "That is correct"
 ELSE
 DISPLAY "That is incorrect. The capital of " StateName(1:StrLength)
 " is " StateCapital
 END-IF.

TestCodeFromState.
 CALL "GetStringLength" USING BY CONTENT StateName
 BY REFERENCE StrLength
 DISPLAY "What is the state code for " StateName(1:StrLength) "? "
 WITH NO ADVANCING
 ACCEPT Answer
 IF FUNCTION UPPER-CASE(Answer) = FUNCTION UPPER-CASE(StateCode)
 DISPLAY "That is correct"
 ELSE
 DISPLAY "That is incorrect. The code for " StateName(1:StrLength)
 " is " StateCode
 END-IF.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

419

TestPopFromState.
 CALL "GetStringLength" USING BY CONTENT StateName
 BY REFERENCE StrLength
 DISPLAY "What is the population of " StateName(1:StrLength) "? "
 WITH NO ADVANCING
 ACCEPT PopAnswer
 COMPUTE MinPop = PopAnswer - (PopAnswer * 0.25)
 COMPUTE MaxPop = PopAnswer + (PopAnswer * 0.25)
 MOVE StatePop TO PrnStatePop
 IF StatePop > MinPop AND < MaxPop
 DISPLAY "That answer is close enough. The actual population is " PrnStatePop
 ELSE
 DISPLAY "That is incorrect. The population of " StateName(1:StrLength)
 " is " PrnStatePop
 END-IF.

TestStateFromCapital.
 CALL "GetStringLength" USING BY CONTENT StateCapital
 BY REFERENCE StrLength
 DISPLAY "Of what state is " StateCapital(1:StrLength) " the capital? "
 WITH NO ADVANCING
 ACCEPT Answer
 IF FUNCTION UPPER-CASE(Answer) = FUNCTION UPPER-CASE(StateName)
 DISPLAY "That is correct"
 ELSE
 DISPLAY "That is incorrect. The state for " StateCapital(1:StrLength)
 " is " StateName
 END-IF.

IDENTIFICATION DIVISION.
PROGRAM-ID. GetStringLength IS INITIAL.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CharCount PIC 99 VALUE ZEROS.

LINKAGE SECTION.
01 StringParam PIC X(14).
01 StringLength PIC 99.

PROCEDURE DIVISION USING StringParam, StringLength.
Begin.
 INSPECT FUNCTION REVERSE(StringParam) TALLYING CharCount
 FOR LEADING SPACES
 COMPUTE StringLength = 14 - CharCount
 EXIT PROGRAM.
END PROGRAM GetStringLength.
END PROGRAM Listing16-5.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

420

This program contains a number of interesting features. First, it uses the RANDOM intrinsic function. The first time
RANDOM is invoked, it generates a sequence of pseudo-random numbers using the current time as a seed. Subsequent
uses of RANDOM return instances of those numbers.

The program gets two random numbers: one to choose which state to ask about and the other to choose what
kind of question to ask. Once the program has chosen the number of the state to ask about, it uses the CALL verb to
get all the other information about the state. Depending on what question is asked, the program gets an answer from
the user and then compares it with state information returned by the CALL.

Although most answers must be exact, conversion to uppercase is done so the letter case of the answer is not
an issue. And because you can’t expect users to know the exact population of a state, any answer within 25 percent
(higher or lower) of the actual value is accepted as correct.

An interesting problem is caused by displaying state names and capitals when the text does not fill the data item.
In that case, the data item is space filled, which causes unsightly output when the text is be displayed. For instance, a
question about the capital of Delaware might display as follows:

: Of what state is Dover the capital?

To solve this issue, reference modification is used to slice out the actual text. To enable this slicing, the program
calculates the length of the text. Because this operation is performed a number of times, it is removed to the contained
subprogram GetStringLength.

Getting State Information

Listing 16-6 also uses the subprogram GetStateInfo, but in a more straightforward way. When the user provides a
piece of information, such as a state name, the program displays all the other information about the state. The state
number and the state code are two of the items displayed and you might think that having both of these items in the
table is redundant. However, the importance of the state code is obvious and when I wrote the game in Listing 16-5
the state number proved useful because it made it easy to select the state at random. One other advantage of the state
number is that you can use it to dump out all the values in the table (see Example 16-5).

Example 16-5. Fragment Showing How to Display the State Table Values

PERFORM VARYING idx FROM 1 BY 1 UNTIL idx > 50
 MOVE idx TO StateNum
 CALL "GetStateInfo"
 USING BY REFERENCE StateNum, StateCode, StateName,
 StateCapital, StatePop, ErrorFlag
 DISPLAY StateNum ". " StateCode SPACE StateName
 SPACE StateCapital SPACE StatePop
END-PERFORM

Listing 16-6. Using the GetStateInfo Subprogram as Intended

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-6.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Parameters.
 02 StateNum PIC 99.
 02 StateCode PIC XX.
 02 StateName PIC X(14).

CHAPTER 16 ■ CREATING LARGE SYSTEMS

421

 02 StateCapital PIC X(14).
 02 StatePop PIC 9(8).
 02 ErrorFlag PIC 9.
 88 NoError VALUE ZERO.

01 CurrentTime.
 02 FILLER PIC 9(4).
 02 Seed PIC 9(4).
01 RandChoice PIC 9.
01 PrnStatePop PIC ZZ,ZZZ,ZZ9.

PROCEDURE DIVISION.
Begin.
 ACCEPT CurrentTime FROM TIME
 COMPUTE RandChoice = FUNCTION RANDOM(Seed)
 PERFORM 8 TIMES
 DISPLAY SPACES
 INITIALIZE Parameters
 COMPUTE RandChoice = (FUNCTION RANDOM * 4) + 1
 EVALUATE RandChoice
 WHEN 1 DISPLAY "Enter a state number - " WITH NO ADVANCING
 ACCEPT StateNum
 WHEN 2 DISPLAY "Enter a two letter code - " WITH NO ADVANCING
 ACCEPT StateCode
 WHEN 3 DISPLAY "Enter a state name - " WITH NO ADVANCING
 ACCEPT StateName
 WHEN 4 DISPLAY "Enter a state capital - " WITH NO ADVANCING
 ACCEPT StateCapital
 END-EVALUATE
 CALL "GetStateInfo"
 USING BY REFERENCE StateNum, StateCode, StateName,
 StateCapital, StatePop, ErrorFlag
 IF NoError
 MOVE StatePop TO PrnStatePop
 DISPLAY StateNum ". " StateCode SPACE StateName
 SPACE StateCapital SPACE PrnStatePop
 ELSE
 DISPLAY "There was an error. Error Code = " ErrorFlag
 END-IF
 END-PERFORM
 STOP RUN.

In this program the search term type is chosen at random, the user is asked to supply a value for it, and then
GetStateInfo is called to return the appropriate values for that search term.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

422

The IS EXTERNAL Clause
The IS GLOBAL clause allows a program and its contained subprograms to share access to a data item. The IS EXTERNAL
clause does the same for any subprogram in a run-unit (that is, any linked subprogram), but it has restrictions that make
it much more cumbersome to use than the IS GLOBAL phrase. Whereas a data item that uses the IS GLOBAL phrase only
has to be declared in one place, each of the subprograms that wish to access an EXTERNAL shared item must declare the
item—and it must be declared exactly the same way in each subprogram. Figure 16-7 illustrates the IS EXTERNAL
data-sharing mechanism.

Figure 16-7. The IS EXTERNAL data-sharing mechanism

Figure 16-7 shows the calling structure of a run-unit that consists of four linked programs: a main program
(ProgramA) and three subprograms. In the illustration, ProgramB and ProgramD share data using the IS EXTERNAL
mechanism. In order to share the data, both subprograms must declare the data, and the declarations have to be
exactly the same. That is, they must each have the following declaration:

01 SharedRec IS EXTERNAL.
 02 Stock-Id PIC 9(7).
 02 Manf-Id PIC X(5).

In this system, ProgramB communicates with ProgramD by passing it data through the shared data item
SharedRec. This might work as follows: ProgramA does some work and then calls ProgramB, which moves a value into
SharedRec as part of its work. When control returns to ProgramA, it does some more work, calls ProgramC to do some
work, and then calls ProgramD. ProgramD then uses the data from the shared area SharedRec to perform its task.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

423

IS EXTERNAL Problems

The problem with using the IS EXTERNAL phrase is that the transfer of data between ProgramB and ProgramD is
detectable only by inspecting B and D. Even though ProgramA invokes B and D, a programmer inspecting A will not
realize that B and D are secretly communicating. Even worse, at some point in the future, a maintenance programmer
may decide that ProgramC needs to communicate with ProgramD using the shared area and may overwrite the data
placed there by ProgramB.

The kind of hidden data communication between subprograms that you see when you use the IS EXTERNAL
clause is generally regarded as very poor practice. According to the measures of module goodness discussed by
Myers1 common coupling is almost the worst kind of data connection you can have between modules. Subprograms
that use the IS EXTERNAL clause to create shared data items are common coupled. Common-coupled modules exhibit
a number of problems, such as naming dependencies, creation of dummy structures, and exposure to unnecessary
data. Most of these issues are caused by the requirement that each subprogram that wants to use the shared area must
describe it exactly the same way.

To illustrate the problem, consider the following scenario. A programmer creates a module to do check digit
validation for the Stock-Id. Instead of using the parameter list to get the number to be validated, the programmer
takes advantage of the fact that the Stock-Id is an EXTERNAL shared data item and gets access to the Stock-Id using
this shared area. The first problem the programmer has is to make sure that their module is not overwriting the
data moved into the shared area by some other subprogram. The second problem the programmer has is that their
module has to describe the shared area as follows:

01 SharedRec IS EXTERNAL.
 02 Stock-Id PIC 9(7).
 02 Manf-Id PIC X(5).

Even though the module only requires access to the Stock-Id, the programmer has to create a dummy Manf-Id
data item also. A maintenance programmer who was trying to understand how this subprogram worked might spend
quite a bit of time trying to figure out the role of the dummy Manf-Id. A naming dependency problem might occur later.

Suppose a programmer writing a subprogram for the system to validate customer records discovers that the
seven-digit Customer-Id uses a check digit for validation; so, the programmer decides to use the check-digit validation
subprogram that has already been written. To use the subprogram, the programmer must pass the number to be
validated through the shared data item. This requires the use of the following declaration:

01 SharedRec IS EXTERNAL.
 02 Stock-Id PIC 9(7).
 02 Manf-Id PIC X(5).

Again, a maintenance programmer examining the ValidateCustomerRecord subprogram might wonder why the
program includes references to Stock-Id and Manf-Id when it is about validating customer records. The maintenance
programmer might also wonder why the subprogram has the statement MOVE Customer-Id TO Stock-Id when these
are clearly two very different items.

Using IS EXTERNAL Data Items
Even though using the IS EXTERNAL phrase to create a shared data item has many drawbacks, it may still be preferable
to alternative solutions. For instance, sometimes a data item may need to be accessed by many of the subprograms
in a system. In that case, your alternatives are to use the IS EXTERNAL phrase to allow the data item to be seen by

1MyersG.Composite/structureddesign.NewYork:VanNostrandReinhold;1978.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

424

any subprogram that requires it or to pass the data item as a parameter. The problem with passing the data item as
a parameter is that many of the subprograms that do not require access to the data item then only serve as conduits
through which the data item is passed to a subordinate subprogram. This kind of data is called tramp data.

Tramp data has a number of drawbacks. It widens the parameter list for subprograms that don’t directly use the
data; it exposes those subprograms to unnecessary data, which increases the risk that the data will be compromised;
and it unnecessarily complicates the code of those subprograms. Figure 16-8 illustrates the problem. In this system,
the data item used by ProgG, ProgI, and ProgK is created in ProgJ. Because none of the subprograms that use the data
item are directly called by ProgJ, the data item has to be passed up and down the calling chain as tramp data.

Figure 16-8. The problem of tramp data. Connecting arrows show the direction of calls. Circle arrows show the
direction of data flow

If you have to use the IS EXTERNAL phrase, there are some things you can do to ameliorate the problems. First,
to eliminate the need to create dummy structures, and to reduce exposure to unnecessary data, you should use IS
EXTERNAL only with elementary data items. Second, only one subprogram should be permitted to assign a value to an
IS EXTERNAL data item. All other subprograms should only be allowed to read that value.

The COPY Verb
The COPY verb is a library statement that includes prewritten library source code in a COBOL program or a
subprogram. It is generally used when creating large software systems. These systems are subject to a number of
problems that the COPY verb helps to alleviate. For instance, many of the files in a large software system are processed
by more than one program. One issue with this is that if each programmer who creates a program or subprogram
is allowed to define the files and records used, then there is a strong possibility that in some cases they will get the
definitions wrong. They may make errors in defining the key fields (Indexed files); the file organization; the type
of access allowed; or the number, type, and size of the fields in a record. At the very least, these kinds of errors will
likely result in the failure of the program that contains the erroneous descriptions; but if the program writes to a file,

CHAPTER 16 ■ CREATING LARGE SYSTEMS

425

bugs may result that are much harder to find. For instance, if one program writes to a file using an incorrect record
description while other programs read from the file using the correct description, a crash may occur in one of the
correct subprograms rather than in the one that actually has the problem.

In a large software system, when file, record, or other data descriptions are common to a number of programs,
it is very important that those descriptions be described in a central source text library under the control of a copy
librarian. In such a system, only the copy librarian has permission to change the data definitions, but any programmer
who needs to use the data resource can copy its description into their program using the COPY verb. Using copy
libraries makes it more difficult for programmers to make ad hoc changes to file and record formats and makes
implementation simpler by reducing the amount of coding required and by eliminating transcription errors. For
instance, when a number of programs need to access the same file, the relevant file and record descriptions can be
copied from a copy library instead of each programmer having to type their own (and possibly get them wrong).

The COPY verb can also make some maintenance tasks easier and safer. For instance, if a record description in a copy
library is changed, then all that is required for that change to take effect is for each affected program to be recompiled.

The COPY Metalanguage
The metalanguage for the COPY verb is given in Figure 16-9. Text can be copied from the copy file or copy library and
inserted into the program source code as is, or text words in the copied text can be replaced by the text specified in the
REPLACING phrase. If REPLACING is used, then the items before the word BY are the text-matching arguments used to
identify the text words in the copied text that should be replaced by the text specified.

Figure 16-9. COPY verb metalanguage

How COPY Works
The COPY verb operates in an unusual way. Whereas other COBOL statements are executed at runtime, a COPY
statement is executed at compile time. A COPY statement allows programmers to include in their programs the text of
frequently used file, record, or other data descriptions. The included text is copied from a copy file or a copy library.
The COPY statement is similar to the #include used in C or C++.

When a COPY statement is used in a COBOL program, the source-code text is copied into the program from a copy
file or from a copy library before the program is compiled. A copy file is a file containing a segment of COBOL code.
A copy library is a collection of code segments, each of which can be referenced using a name. Each client program
that wants to use the items described in the copy library uses the COPY verb to include the descriptions it requires.
When COPY statements copy source code into a program, the code can be included without change or the text can
be changed as it is copied into the program. The ability to change the code as it is being included greatly adds to the
versatility of the COPY verb.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

426

How the REPLACING Phrase Works
When the REPLACING phrase is used, as the text is copied from the copy file, each properly matched occurrence of
Pseudo-Text1, Identifier1, Literal1, and COBOL-Word1 in the library text is replaced by the corresponding
Pseudo-Text2, Identifier2, Literal2, or COBOL-Word2 in the REPLACING phrase:

• Pseudo-Text is any COBOL text enclosed in double equal signs (for example, ==ADD 1==).
It allows you to replace a series of words or characters as opposed to individual items.

• COBOL-Word is any single COBOL reserved word.

For the purposes of matching, the REPLACING phrase operates on text words. A text word may be defined
as follows:

Any literal, including opening and closing quotes•

Any separator except a space, a pseudo-text delimiter (• ==), a comma, or a semicolon

Any other sequence of contiguous characters bounded by separators, except comment lines•

COPY Examples
It can be very difficult to get a feel for how REPLACING works by reading textual descriptions alone, so this section
presents a number of examples that I hope help your understanding. Listing 16-7 is a simple example that shows
how you can use the COPY statement to copy a record description from a copy file. It also shows how to copy a table
description from a copy file in a copy library. The REPLACING phrase is used with the second COPY statement to change
the size of the table when the text is copied. Don’t look for any significant meaning in this program—it simply shows
how you can the COPY statement to include text in your program source code.

Listing 16-7. Using the COPY Statement to Include Text

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-7.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
FILE-CONTROL.
 SELECT StudentFile ASSIGN TO "STUDENTS.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
COPY StudentRec.

WORKING-STORAGE SECTION.
01 Idx PIC 9(3).

01 NameTable.
COPY StudentNameTable IN EG-Lib
 REPLACING XYZ BY 120.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

427

PROCEDURE DIVISION.
BeginProg.
 OPEN INPUT StudentFile
 READ StudentFile
 AT END SET EndOfSF TO TRUE
 END-READ
 PERFORM VARYING Idx FROM 1 BY 1 UNTIL EndOfSF
 MOVE Surname TO StudSurname(Idx)
 DISPLAY StudentNumber SPACE StudentName SPACE CourseCode
 READ StudentFile
 AT END SET EndOfSF TO TRUE
 END-READ
 END-PERFORM
 CLOSE StudentFile
 STOP RUN.

Listing 16-8 is a program used as a container for a number of COPY..REPLACING examples. I inserted comments
into the program to indicate the purpose of the particular example, and the output shows that the replacements have
been made.

Listing 16-8. COPY Statements with REPLACEMENT Text

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-8
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CopyData.

COPY Copybook1
 REPLACING S BY 15.
* Changes the size of a data item

COPY Copybook2 REPLACING ==V99== BY ====.
* Changes the type of a data item to an integer

COPY Copybook3 REPLACING "CustKey" BY "MyValue".
COPY Copybook3 REPLACING CustKey BY NewKey.
* demonstrates the difference between a literal and a COBOL-Word

COPY Copybook3 REPLACING CustKey BY
==CustAddress.
 03 Adr1 PIC X(10).
 03 Adr2 PIC X(10).
 03 Adr3 PIC X(10).
 02 CustId==.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

428

*Changes the CustKey declaration to add some new data items.
*After REPLACEMENT the included text will be -
* 02 CustAddress.
* 03 Adr1 PIC X(10).
* 03 Adr2 PIC X(10).
* 03 Adr3 PIC X(10).
* 02 CustId PIC X(7) VALUE "CustKey".

PROCEDURE DIVISION.
BeginProg.
 MOVE "123456789012345678901234567890" TO CustomerName
 DISPLAY "CustomerName - " CustomerName

 MOVE 1234.56 TO CustomerOrder
 DISPLAY "CustomerOrder - " CustomerOrder

 DISPLAY "CustKey value changed to - " CustKey

 DISPLAY "NewKey value - " NewKey

 MOVE "Dublin" TO Adr3

 DISPLAY "CustId value - "CustId

STOP RUN.

Summary
This chapter introduced you to the COBOL elements required when you create a large software system. You learned
about subprograms and how to create both contained and external subprograms. The chapter discussed the COBOL
parameter-passing mechanisms and introduced the LINKAGE SECTION. You learned about state memory and saw how
to use the IS INITIAL phrase or the CANCEL verb to create a subprogram that does not have state memory. The chapter
covered the need for some shared data items in a system partitioned into subprograms and introduced the IS GLOBAL
and IS EXTERNAL clauses.

The final section explored the benefits of holding file, record, and other data descriptions in a centralized library.
You also learned about the COPY verb, which allows you to include such descriptions in your program’s source code.
You saw how to use the COPY verb to include the text from a copy file or copy library in your program.

The next chapter returns to the subject of file handling. You learn about COBOL’s direct-access file organizations:
relative files and indexed files. These direct-access file organizations are more versatile than sequential files, and
to take advantage of that versatility, COBOL introduces a number of new verbs and makes changes to some of the
file-handling verbs with which you are already familiar. Chapter 17 introduces the DELETE, REWRITE, and START verbs
and the concepts of the key of reference and the next record pointer. The chapter concludes with a discussion of the
advantages and disadvantages of all the COBOL file organizations and when to use one rather than another.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

429

PROGRAMMING EXERCISE

Ah! Exercise time again. If only I had shares in a 2B pencil company.

Introduction
It has long been suspected that compatibility of Zodiac signs (also called star signs or birth signs) is a strong

indicator of sexual and emotional compatibility. By processing the information in the Married Persons Date of Birth

file, the program you write will test this hypothesis empirically. For each record in the file, the program will use

the couple’s dates of birth to identify their signs and discover whether those signs are compatible.

The program should display the following items:

The count of the total number of records in the file•

The count of the total number of valid records (that is, records where neither is a cusp birth)•

The count of the number of compatible pairs, and the percentage of the total valid records that •
this represents

The count of the number of incompatible pairs, and the percentage of the total valid records that •
this represents

Every Zodiac sign is compatible with itself and five other signs. A chance selection of life partner should therefore

result in 50% of the pairings having compatible Zodiac signs. A significant deviation either way would be of

interest, but if significantly more than 50% of the pairings have compatible signs, you would have to conclude

that Zodiac signs are a good indicator of compatibility.

TheFile
The Census Office has made available to you the Married Persons Date of Birth file (Listing16-9MPDOB.Dat).

This file consists of information extracted from the most recent census. The file is an unordered sequential file;

each record contains the dates of birth of a married couple. The records have the following description:

Field Type Length Value

MaleDOB 9 8 Date in mmddyyyy format

FemaleDOB 9 8 Date in mmddyyyy format

TheProblemoftheCusp
In astrology, people whose birth dates fall near the changeover from one sign to the next are said to be “born on

the cusp.” The problem is that these persons may exhibit characteristics from both signs. If this is true, then being

born on the cusp may distort the compatibility results. To prevent this, the program should treat as invalid all

records where one or both of the dates of birth fall on the cusp.

TheZodiacTable
The Zodiac Table is given next. It contains the SignName, SignType, StartDate, and EndDate of each sign. The

cusp is defined as a two-day gap between the EndDate of one sign and the StartDate of the next and is built into

the dates shown in the table.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

430

SignType indicates sign compatibility where

Air and Fire signs are compatible with themselves and with each other.•

Earth and Water signs are compatible with themselves and with each other.•

TheZodiacTable

SignCode Sign SignType StartDate EndDate

1 Aquarius Air 01-22 02-18

2 Pisces Water 02-21 03-19

3 Aries Fire 03-22 04-19

4 Taurus Earth 04-22 05-20

5 Gemini Air 05-23 06-20

6 Cancer Water 06-23 07-22

7 Leo Fire 07-25 08-22

8 Virgo Earth 08-25 09-22

9 Libra Air 09-25 10-22

10 Scorpio Water 10-25 11-21

11 Sagittarius Fire 11-24 12-20

12 Capricorn Earth 12-23 01-19

13 Cusp Cusp Cusp Cusp

Processing
Write a contained subprogram called IdentifySign to identify the Zodiac sign for a given birth date. The

IdentifySign subprogram should take DateOfBirth as an input parameter and should return SignCode

(shown in the previous table) as its return/output parameter. A code of 13 should be returned for cusp births.

For each record in the file, do the following:

Increment the • TotalRecords count.

Call • IdentifySign to get ZodiacSign for MaleDOB.

Call • IdentifySign to get ZodiacSign for FemaleDOB.

If either spouse had a cusp birth, then ignore the record. Otherwise, if the signs are compatible, increment the

CompatiblePairs count; and if they are incompatible, increment the IncompatiblePairs count.

CHAPTER 16 ■ CREATING LARGE SYSTEMS

431

PROGRAMMING EXERCISE: ANSWER

Listing 16-9. Zodiac Sign Compatibility Tester

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing16-9.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT BirthsFile ASSIGN TO "Listing16-9MPDOB.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD BirthsFile.
01 BirthsRec.
 88 EndOfFile VALUE HIGH-VALUES.
 02 MaleDOB PIC X(8).
 02 FemaleDOB PIC X(8).

WORKING-STORAGE SECTION.
01 Counts.
 02 CompatiblePairs PIC 9(7) VALUE ZEROS.
 02 CompatiblePrn PIC ZZZZ,ZZ9.
 02 CompatiblePercent PIC ZZ9.
 02 IncompatiblePairs PIC 9(7) VALUE ZEROS.
 02 IncompatiblePrn PIC ZZZZ,ZZ9.
 02 IncompatiblePercent PIC ZZ9.
 02 ValidRecs PIC 9(8) VALUE ZEROS.
 02 ValidRecsPrn PIC ZZ,ZZZ,ZZ9.
 02 TotalRecs PIC 9(9) VALUE ZEROS.
 02 TotalRecsPrn PIC ZZ,ZZZ,ZZ9.

01 MaleSignType PIC 99.
 88 ValidMale VALUE 1 THRU 12.

01 FemaleSignType PIC 99.
 88 ValidFemale VALUE 1 THRU 12.

01 SumOfSigns PIC 99.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT BirthsFile.
 READ BirthsFile
 AT END SET EndOfFile TO TRUE
 END-READ
 PERFORM ProcessBirthRecs UNTIL EndOfFile

CHAPTER 16 ■ CREATING LARGE SYSTEMS

432

 COMPUTE ValidRecs = CompatiblePairs + IncompatiblePairs
 COMPUTE CompatiblePercent ROUNDED = CompatiblePairs / ValidRecs * 100
 COMPUTE InCompatiblePercent ROUNDED = InCompatiblePairs / ValidRecs * 100

 PERFORM DisplayResults

 CLOSE BirthsFile.
 STOP RUN.

DisplayResults.
 MOVE CompatiblePairs TO CompatiblePrn
 MOVE IncompatiblePairs TO IncompatiblePrn
 MOVE TotalRecs TO TotalRecsPrn
 MOVE ValidRecs TO ValidRecsPrn

 DISPLAY "Total records = " TotalRecsPrn
 DISPLAY "Valid records = " ValidRecsPrn
 DISPLAY "Compatible pairs = " CompatiblePrn
 " which is " CompatiblePercent "% of total".
 DISPLAY "Incompatible pairs = " IncompatiblePrn
 " which is " InCompatiblePercent "% of total".

ProcessBirthRecs.
* Get the two sign types and add them together
* If the result is even then they are compatible
 ADD 1 TO TotalRecs
 CALL "IdentifySign" USING BY CONTENT MaleDOB
 BY REFERENCE MaleSignType

 CALL "IdentifySign" USING BY CONTENT FemaleDOB
 BY REFERENCE FemaleSignType
 IF ValidMale AND ValidFemale
 COMPUTE SumOfSigns = MaleSignType + FemaleSignType
 IF FUNCTION REM(SumOfSigns 2) = ZERO
 ADD 1 TO CompatiblePairs
 ELSE
 ADD 1 TO IncompatiblePairs
 END-IF
 END-IF
 READ BirthsFile
 AT END SET EndOfFile TO TRUE
 END-READ.

IDENTIFICATION DIVISION.
PROGRAM-ID. IdentifySign IS INITIAL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WorkDate.
 88 Aquarius VALUE "0122" THRU "0218".
 88 Pisces VALUE "0221" THRU "0319".
 88 Aries VALUE "0322" THRU "0419".

CHAPTER 16 ■ CREATING LARGE SYSTEMS

433

 88 Taurus VALUE "0422" THRU "0520".
 88 Gemini VALUE "0523" THRU "0620".
 88 Cancer VALUE "0623" THRU "0722".
 88 Leo VALUE "0725" THRU "0822".
 88 Virgo VALUE "0825" THRU "0922".
 88 Libra VALUE "0925" THRU "1022".
 88 Scorpio VALUE "1025" THRU "1121".
 88 Sagittarius VALUE "1124" THRU "1220".
 88 Capricorn VALUE "1223" THRU "1231", "0101" THRU "0119".
 02 WorkMonth PIC XX.
 02 WorkDay PIC XX.

LINKAGE SECTION.
01 DateOfBirth.
 02 BirthMonth PIC XX.
 02 BirthDay PIC XX.
 02 FILLER PIC 9(4).

01 SignType PIC 99.

PROCEDURE DIVISION USING DateOfBirth, SignType.
Begin.
 MOVE BirthDay TO WorkDay.
 MOVE BirthMonth TO WorkMonth.
 EVALUATE TRUE
 WHEN Aquarius MOVE 1 TO SignType
 WHEN Pisces MOVE 2 TO SignType
 WHEN Aries MOVE 3 TO SignType
 WHEN Taurus MOVE 4 TO SignType
 WHEN Gemini MOVE 5 TO SignType
 WHEN Cancer MOVE 6 TO SignType
 WHEN Leo MOVE 7 TO SignType
 WHEN Virgo MOVE 8 TO SignType
 WHEN Libra MOVE 9 TO SignType
 WHEN Scorpio MOVE 10 TO SignType
 WHEN Sagittarius MOVE 11 TO SignType
 WHEN Capricorn MOVE 12 TO SignType
 WHEN OTHER MOVE 13 TO SignType
 END-EVALUATE.
 EXIT PROGRAM.
END PROGRAM IdentifySign.

END PROGRAM Listing16-9.

435

CHAPTER 17

Direct Access Files

When I learned COBOL many years ago, direct access files, and particularly indexed files, were the jewel in COBOL’s
crown. No other mainstream programming language provided native support for file organizations of such versatility.
Nowadays, the predominance of databases means that the importance of direct access files in modern COBOL
programming is greatly reduced. Nevertheless, the huge inventory of legacy programs that still use direct access files
makes these file organizations a worthwhile topic of discussion.

This chapter introduces you to COBOL’s direct access file organizations: indexed and relative files. These
organizations are called direct access organizations because they allow you to access data records directly based on a
key field. Direct access files are more versatile than sequential files. They let you update or delete records in situ and
access records sequentially or directly using a key field. Needless to say, direct access files only work on direct access
media such as hard disks. You can’t use indexed or relative files with serial media such as magnetic tapes. To take
advantage of the versatility of direct access files, you use a number of new COBOL verbs and concepts. This chapter
introduces the DELETE, REWRITE, and START verbs and the concepts of file status, the key of reference, and the
next-record pointer.

Sequential, indexed, and relative file organizations all have strengths and weaknesses. No one organization is
best for all situations. This chapter concludes with a discussion of the advantages and disadvantages of all the COBOL
file organizations and when you should use one rather than another.

Direct Access vs.Sequential Files
As you learned in Chapter 10, access to records in a sequential file is serial. To reach a particular record, you must read
all the preceding records. You also learned that if the sequential file is unordered, the only practical operations are to
read records from the file or add records to the end of the file. It is impractical to update records or delete records in an
unordered sequential file. In addition, even if the file is ordered, inserting, updating, or deleting records is a problem
because when you apply these operations, you must preserve the ordering of the file—and the only way to do that is to
create a copy of the file to which these operations have been applied.

Although sequential files have a number of advantages over other types of file organization (as discussed in the
final section of this chapter), the fact that you must create a new file when you delete, update, or insert records is
problematic.

These problems are addressed by direct access files. Direct access files allow you to read, update, delete, and
insert individual records in situ on the basis of a key value. For instance, to delete a customer record in a direct access
file, you supply the customer ID of the record to be deleted and then execute a DELETE statement.

In COBOL, there are two direct access file organizations: relative files and indexed files.

CHAPTER 17 ■ DIRECT ACCESS FILES

436

Organization of Relative Files
Before you see how relative files are declared and used, let’s look at how they are organized. As you can see from
the schematic representation in Figure 17-1, the records in a relative file are organized on ascending relative record
number. You can visualize a relative file as a one-dimensional table stored on disk, and you can think of the relative
record number as the index into that table.

Figure 17-1. Schematic representation of a relative file

Some restrictions should be obvious from Figure 17-1. First, only one relative key is supported, and that key
must be numeric and take a value between 1 and the number of the highest relative record written to the file. Another
restriction is that, even when the file is only sparsely populated, enough disk space has to be allocated to hold all the
records between 1 and the record with the highest relative record number. For instance, if a record with a relative
record number of 150,000 is written to the file, then room sufficient for 150,000 records is allocated to the file—even
though that may be the only record actually written to the file. You can see this illustrated in Figure 17-1. In the
example file, the record with the highest relative record number is 5,888, so disk space sufficient to store 5,888 records
has been allocated. However, not all the record locations contain records. The record areas labelled “free” have been
allocated but have not yet had record values written to them.

Being restricted to a single numeric key in a defined range is onerous, but there are ways to loosen the shackles.
For instance, you might add a base value to the relative record number to change the range. For instance, in Figure 17-1
you could use a base of 10,000 so that the first record key value would be 10,001 and the last would be 15,888. Obviously,
before you used the key, you would subtract 10,000 to convert it into the relative record number.

Using a base value is a very simple key transformation, and in COBOL this is probably about as much
manipulation as you want to do. In other languages, you might write a sophisticated hashing algorithm to map even
alphanumeric keys onto range of relative record numbers; but in COBOL, when you need keys with this level of
sophistication, you use indexed files.

CHAPTER 17 ■ DIRECT ACCESS FILES

437

In addition to showing how records are organized in a relative file, Figure 17-1 also shows how updates,
insertions and, deletions are applied:

To update a record, you use the relative record number to • READ the record from the file into the
record buffer. Then you make the changes to the record data and REWRITE the record to the file.

To insert a record, you use the relative record number to tell the system where to • WRITE the
record. Obviously, the allocated space must be free, or an error condition will occur.

To delete a record, you use the relative record number to tell the system which record to •
DELETE. Obviously, the record must exist. For instance, in Figure 17-1, an error condition
would occur if you tried to delete the record with the relative record number 5,887 because
there is no record in that position. In a relative file, when you delete a record, all the file system
does is to mark it as deleted. It does not really delete the record.

Processing Relative Files
As mentioned at the beginning of this chapter, direct access files are declared and processed using a number of new
declaration clauses and verbs. Instead of boring you with a dry, formal introduction, this section shows you some
simple examples. Once you have a feel for how it all works, I introduce the required clauses and verbs more formally.

Let’s start with a simple program that reads a relative file both sequentially and directly. Then you learn how to
create a relative file from a sequential file. Most programming environments have tools that allow you to do this, but it is
interesting to see how to do it by hand. The final example shows you how to apply a file of transactions to the relative file.

Reading a Relative File
The program in Listing 17-1 reads a relative file either sequentially or directly, depending on the choice made by the user.

Listing 17-1. Reading a Relative File Sequentially or Directly Using a Key

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-1.
AUTHOR. MICHAEL COUGHLAN.
* Reads a Relative file directly or in sequence

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT VehicleFile ASSIGN TO "Listing17-1.DAT"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS DYNAMIC
 RELATIVE KEY IS VehicleKey
 FILE STATUS IS VehicleStatus.

DATA DIVISION.
FILE SECTION.
FD VehicleFile.
01 VehicleRec.
 88 EndOfVehiclefile VALUE HIGH-VALUES.
 02 VehicleNum PIC 9(4).
 02 VehicleDesc PIC X(25).
 02 ManfName PIC X(20).

CHAPTER 17 ■ DIRECT ACCESS FILES

438

WORKING-STORAGE SECTION.
01 VehicleStatus PIC X(2).
 88 RecordFound VALUE "00".

01 VehicleKey PIC 9(4).

01 ReadType PIC 9.
 88 DirectRead VALUE 1.
 88 SequentialRead VALUE 2.

01 PrnVehicleRecord.
 02 PrnVehicleNum PIC 9(4).
 02 PrnVehicleDesc PIC BBX(25).
 02 PrnManfName PIC BBX(20).

PROCEDURE DIVISION.
BEGIN.
 OPEN INPUT VehicleFile
 DISPLAY "Read type : Direct read = 1, Sequential read = 2 --> "
 WITH NO ADVANCING.
 ACCEPT ReadType
 IF DirectRead
 DISPLAY "Enter vehicle key (4 digits) --> " WITH NO ADVANCING
 ACCEPT VehicleKey
 READ VehicleFile
 INVALID KEY DISPLAY "Vehicle file status = " VehicleStatus
 END-READ
 PERFORM DisplayRecord
 END-IF

 IF SequentialRead
 READ VehicleFile NEXT RECORD
 AT END SET EndOfVehiclefile TO TRUE
 END-READ
 PERFORM UNTIL EndOfVehiclefile
 PERFORM DisplayRecord
 READ VehicleFile NEXT RECORD
 AT END SET EndOfVehiclefile TO TRUE
 END-READ
 END-PERFORM
 END-IF
 CLOSE VehicleFile
 STOP RUN.

DisplayRecord.
 IF RecordFound
 MOVE VehicleNum TO PrnVehicleNum
 MOVE VehicleDesc TO PrnVehicleDesc
 MOVE ManfName TO PrnManfName
 DISPLAY PrnVehicleRecord
 END-IF.

CHAPTER 17 ■ DIRECT ACCESS FILES

439

The first thing to note is that the SELECT and ASSIGN clause has a number of new entries. First, ORGANIZATION is
now RELATIVE. Second, because a relative file allows you to access the records in the file directly or sequentially, you
must have an ACCESS MODE phrase to say what kind of access you desire on the file. Three types of access are available:
RANDOM (key-based access only), SEQUENTIAL (sequential only), and DYNAMIC (a mixture of keyed and sequential
access). Third, to allow key-based access, you must specify a RELATIVE KEY phrase to tell the system where it can find
the key value used for direct access. Note that the key mentioned here cannot be part of the record description.

The final entry is the FILE STATUS clause. The FILE STATUS clause allows you to identify a two-character area of
storage to hold the result of every I/O operation for the file. The FILE STATUS data item is declared as PIC X(2)
in the WORKING-STORAGE SECTION. Whenever an I/O operation is performed on the file, some value is returned to
FILE STATUS indicating whether the operation was successful. I introduce these FILE STATUS values as and when
they occur; for this program, you only need to know that a value of "00" indicates that the operation (READ, in this
case) was successful.

The FILE STATUS clause is not restricted to direct access files. You can use it with sequential files, but that isn’t
necessary because with those files there are not many states that you need to detect. However, with direct access files,
a number of file states need to be detected. For instance, you need to detect when an attempt is made to READ, DELETE,
or REWRITE a record when a record with that key value does not exist in the file. Similarly, you need to be able to
detect when an attempt to WRITE a record finds that there is already a record with that key value in the file.

The next item of note is the change to the READ verb. The direct READ now takes the INVALID KEY clause. This
clause allows you to execute some code when an error condition is detected. The sequential read may now use the
NEXT RECORD phrase. This phrase is required when ACCESS MODE is DYNAMIC, to indicate that this is a sequential read.
If ACCESS MODE is SEQUENTIAL, then you use the standard READ statement.

Creating a Relative File from a Sequential File
Listing 17-2 shows how to create a relative file from a sequential file. A relative file is a binary file. It can’t be edited in
a standard text editor. This makes it a bit awkward to create test data, but most COBOL programming environments
have tools that allow you to generate a relative file from a sequential one. Of course, you don’t have to use the tools;
you can write a program to do it, as in this example.

Listing 17-2. Creating a Relative File from a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-2.
AUTHOR. MICHAEL COUGHLAN.
* Reads a Relative file directly or in sequence

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT VehicleFile ASSIGN TO "Listing17-2.DAT"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS RANDOM
 RELATIVE KEY IS VehicleKey
 FILE STATUS IS VehicleStatus.

 SELECT Seqfile ASSIGN TO "Listing17-2.SEQ"
 ORGANIZATION IS LINE SEQUENTIAL.

CHAPTER 17 ■ DIRECT ACCESS FILES

440

DATA DIVISION.
FILE SECTION.
FD VehicleFile.
01 VehicleRec.
 02 VehicleNum PIC 9(4).
 02 VehicleDesc PIC X(25).
 02 ManfName PIC X(20).

FD SeqFile.
01 VehicleRec-SF.
 88 EndOfSeqfile VALUE HIGH-VALUES.
 02 VehicleNum-SF PIC 9(4).
 02 VehicleDesc-SF PIC X(25).
 02 ManfName-SF PIC X(20).

WORKING-STORAGE SECTION.
01 VehicleStatus PIC X(2).
 88 RecordFound VALUE "00".

01 VehicleKey PIC 9(4).

PROCEDURE DIVISION.
BEGIN.
 OPEN INPUT SeqFile
 OPEN OUTPUT VehicleFile
 READ SeqFile
 AT END SET EndOfSeqFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfSeqFile
 MOVE VehicleNum-SF TO VehicleKey
 WRITE VehicleRec FROM VehicleRec-SF
 INVALID KEY DISPLAY "Vehicle file status = " VehicleStatus
 END-WRITE
 READ SeqFile
 AT END SET EndOfSeqFile TO TRUE
 END-READ
 END-PERFORM

 CLOSE SeqFile, VehicleFile
 STOP RUN.

In this program, the first thing to note is that because the relative file only uses direct access, the ACCESS MODE
specified is RANDOM.

The relative file is created as follows. For each record in the sequential file, the program reads the record, moves
the contents of the VehicleNum field to the relative key VehicleKey, and then writes the relative record from the
sequential record. The record is written into the position indicated by the relative record number in VehicleKey.

CHAPTER 17 ■ DIRECT ACCESS FILES

441

Applying Transactions to a Relative File
In this final example program (see Listing 17-3), you see how to apply a sequential file of transactions to the relative
vehicle master file. The transaction file contains only enough transactions to demonstrate valid and invalid insertions,
valid and invalid updates (VehicleDesc is updated), and valid and invalid deletions. To keep the program short, it uses
displays to report transaction errors. To make the updates clear, the contents of the vehicle master file are displayed
before and after the transactions are applied. The contents of the transaction file are shown in Example 17-1.

Example 17-1. Contents of the Transaction File

I0001 *** invalid insert *** Tesla Motors
D0006 *** invalid delete ***
U0017FCV +valid update
U0117 *** invalid update ***
D0135 +valid delete
I0205Model C +valid insert Tesla Motors
I0230 *** invalid insert *** Peugeot

Listing 17-3. Applying a Sequential File of Transactions to a Relative File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-3.
AUTHOR. MICHAEL COUGHLAN.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT VehicleMasterFile ASSIGN TO "Listing17-3.DAT"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS DYNAMIC
 RELATIVE KEY IS VehicleKey
 FILE STATUS IS VehicleFileStatus.

 SELECT TransFile ASSIGN TO "Listing17-3Trans.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD VehicleMasterFile.
01 VehicleRec-VMF.
 88 EndOfVehiclefile VALUE HIGH-VALUES.
 02 VehicleNum-VMF PIC 9(4).
 02 VehicleDesc-VMF PIC X(25).
 02 ManfName-VMF PIC X(20).

CHAPTER 17 ■ DIRECT ACCESS FILES

442

FD TransFile.
01 InsertionRec.
 88 EndOfTransFile VALUE HIGH-VALUES.
 02 TransType PIC X.
 88 InsertRecord VALUE "I".
 88 DeleteRecord VALUE "D".
 88 UpdateRecord VALUE "U".
 02 VehicleNum-IR PIC 9(4).
 02 VehicleDesc-IR PIC X(25).
 02 ManfName-IR PIC X(20).

01 DeletionRec PIC X(5).

01 UpdateRec.
 02 FILLER PIC X(5).
 02 VehicleDesc-UR PIC X(25).

WORKING-STORAGE SECTION.
01 VehicleFileStatus PIC X(2).
 88 OperationSuccessful VALUE "00".
 88 VehicleRecExists VALUE "22".
 88 NoVehicleRec VALUE "23".

01 VehicleKey PIC 9(4).

01 ReadType PIC 9.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT TransFile
 OPEN I-O VehicleMasterFile
 DISPLAY "Vehicle Master File records before transactions"
 PERFORM DisplayVehicleRecords
 DISPLAY SPACES

 READ TransFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfTransFile
 MOVE VehicleNum-IR TO VehicleKey
 EVALUATE TRUE
 WHEN InsertRecord PERFORM InsertVehicleRec
 WHEN DeleteRecord PERFORM DeleteVehicleRec
 WHEN UpdateRecord PERFORM UpdateVehicleRec
 WHEN OTHER DISPLAY "Error - Invalid Transaction Code"
 END-EVALUATE
 READ TransFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 END-PERFORM

CHAPTER 17 ■ DIRECT ACCESS FILES

443

 DISPLAY SPACES
 DISPLAY "Vehicle Master File records after transactions"
 PERFORM DisplayVehicleRecords

 CLOSE TransFile, VehicleMasterFile
 STOP RUN.

InsertVehicleRec.
 MOVE ManfName-IR TO ManfName-VMF
 MOVE VehicleDesc-IR TO VehicleDesc-VMF
 MOVE VehicleNum-IR TO VehicleNum-VMF
 WRITE VehicleRec-VMF
 INVALID KEY
 IF VehicleRecExists
 DISPLAY "InsertError - Record at - " VehicleNum-IR " - already exists"
 ELSE
 DISPLAY "Unexpected error. File Status is - " VehicleFileStatus
 END-IF
 END-WRITE.

DeleteVehicleRec.
 DELETE VehicleMasterFile RECORD
 INVALID KEY
 IF NoVehicleRec
 DISPLAY "DeleteError - No record at - " VehicleNum-IR
 ELSE
 DISPLAY "Unexpected error1. File Status is - " VehicleFileStatus
 END-IF
 END-DELETE.

UpdateVehicleRec.
 READ VehicleMasterFile
 INVALID KEY
 IF NoVehicleRec
 DISPLAY "UpdateError - No record at - " VehicleNum-IR
 ELSE
 DISPLAY "Unexpected error2. File Status is - " VehicleFileStatus
 END-IF
 END-READ
 IF OperationSuccessful
 MOVE VehicleDesc-UR TO VehicleDesc-VMF
 REWRITE VehicleRec-VMF
 INVALID KEY DISPLAY "Unexpected error3. File Status is - " VehicleFileStatus
 END-REWRITE
 END-IF.

DisplayVehicleRecords.
* Position the Next Record Pointer to the start of the file
 MOVE ZEROS TO VehicleKey
 START VehicleMasterFile KEY IS GREATER THAN VehicleKey

CHAPTER 17 ■ DIRECT ACCESS FILES

444

 INVALID KEY DISPLAY "Unexpected error on START"
 END-START
 READ VehicleMasterFile NEXT RECORD
 AT END SET EndOfVehiclefile TO TRUE
 END-READ

 PERFORM UNTIL EndOfVehiclefile
 DISPLAY VehicleNum-VMF SPACE VehicleDesc-VMF SPACE ManfName-VMF
 READ VehicleMasterFile NEXT RECORD
 AT END SET EndOfVehiclefile TO TRUE
 END-READ
 END-PERFORM.

The most interesting thing about this program is that it uses all five of the direct access file processing verbs: READ,
WRITE, REWRITE, DELETE, and START. The program begins by displaying the current contents of the vehicle master file.
You may wonder what the purpose of the START verb is at the beginning of DisplayVehicleRecords. For relative files,
the START verb is used to position the next-record pointer. When a file is accessed sequentially, the next-record pointer
points to the position in the file where the next record will be read from or written to.

This first time through DisplayVehicleRecords, the START verb is not strictly necessary, because when you open the
file, the next-record pointer points to the first record in the file by default. But the second time through the file, the START
verb is required in order to position the next-record pointer at the beginning of the file—when you read through the file
the first time, the next-record pointer was left pointing to the last record in the file. Closing the file and opening it again
also positions the next-record pointer at the first record in the file, but doing so carries a significant processing penalty.

Note how you use the START verb. You move zeros into the relative-key data item; then, when START executes,
its meaning is this: position the next-record pointer such that the relative record number of the record pointed to is
greater than the current value of the relative-key data item. Because the current value of the relative-key data item is
zero, the first valid record in the file satisfies the condition.

The first statement in the PERFORM UNTIL EndOfTransFile iteration is MOVE VehicleNum-IR TO VehicleKey.
This takes the key value in the transaction record and places it in the relative-key data item. Now any direct access
operation such as WRITE, REWRITE, or DELETE will use that key value.

If the transaction is an insertion, then a direct WRITE is used to write the transaction record to the vehicle master
file at the relative record number indicated by the value in VehicleKey. If the WRITE fails, then INVALID KEY activates,
and the file status is checked to see if it has failed because there is already a record in that relative record number
position or because of an unexpected error. If the anticipated error condition occurs, an error message is displayed,
indicating the offending record’s key value; otherwise, an error message and the current value of the file status are
displayed. The second part of the IF statement is there as an alert regarding a possible programming or test data error;
you don’t expect this branch of IF to be triggered.

If the transaction is a deletion, then the direct DELETE is used to delete the record at the relative record number
position pointed to by the value in VehicleKey. If there is no record at that position, INVALID KEY activates.

If the transaction is an update, then a direct READ is used to fetch the record from the file and place it in the record
buffer. If the record exists, the VehicleDesc-VMF field is updated, and REWRITE is used to write the record back to the
file. REWRITE has to be used because WRITE would return an error if it found a record already in place.

Relative Files: Syntax and Semantics
This section provides a formal introduction to the file-processing verbs and declarations specific to relative files.

Relative Files: SELECT and ASSIGN Clause
The metalanguage for the SELECT and ASSIGN clause for relative files is shown in Figure 17-2.

CHAPTER 17 ■ DIRECT ACCESS FILES

445

Normally, when a file is opened for INPUT, I-O, or EXTEND, the file must exist or an error condition occurs. The
OPTIONAL phrase allows you to specify that the file does not have to exist (presumably because you are going to write
records to and read records from it) when OPEN INPUT, OPEN I-O, or OPEN EXTEND executes.

ACCESS MODE refers to the way in which the file is to be used. If you specify that ACCESS MODE is SEQUENTIAL, then
it is only possible to process the records in the file sequentially. If RANDOM is specified, it is only possible to access the
file directly. If DYNAMIC is specified, the file may be accessed both directly and sequentially.

The RECORD KEY phrase is used to define the relative key. There can be only one key in a relative file. RelKey must
be a numeric data item and must not be part of the file’s record description, although it may be part of another file’s
record description. It is normally described in the WORKING-STORAGE SECTION.

The FILE STATUS clause identifies a two-character area of storage that holds the result of every I/O operation
for the file. The FILE STATUS data item is declared as PIC X(2) in the WORKING-STORAGE SECTION. Whenever an I/O
operation is performed, some value is returned to FILE STATUS, indicating whether the operation was successful.

There are a large number of FILE STATUS values, but three of major interest for relative files are as follows:

• "00" means the operation was successful.

• "22" indicates a duplicate key. That is, you are trying to write a record, but a record already
exists in that position.

• "23" means the record was not found. That is, you are trying to access a record, but there is no
record in that position.

Relative File Verbs
Direct access files are more versatile than sequential files and support a greater range of operations. In addition to the
new file-processing verbs DELETE, REWRITE, and START, many of the verbs you already know—such as OPEN, CLOSE,
READ, and WRITE—operate differently when processing direct access files.

INVALID KEY Clause

If you examine the metalanguage of any of the direct access verbs, you see that the INVALID KEY clause is in square
brackets, indicating that this clause is optional. In reality, the INVALID KEY clause is mandatory unless declaratives
have been specified. Declaratives allow you to create specialized exception-handling code. You explore declaratives in
the next chapter.

When the INVALID KEY clause is specified, any I/O error, such as attempting to read or delete a record that does
not exist or write a record that already exists, activates the clause and causes the statement block following it to be
executed.

Figure 17-2. Metalanguage for the specific relative SELECT and ASSIGN clause

CHAPTER 17 ■ DIRECT ACCESS FILES

446

OPEN/CLOSE

The CLOSE syntax is the same for all file organizations.
The syntax for OPEN changes when used with direct access files: an I-O (input/output) entry is added. I-O is used

with direct access files when you intend to update or both read from and write to the file. The full metalanguage for
the OPEN verb is given in Figure 17-3.

Figure 17-4. Metalanguage for the sequential READ when the ACCESS MODE is DYNAMIC

Figure 17-3. Full metalanguage for the OPEN verb

Consider the following:

If the file is opened for • INPUT, then only READ and START are allowed.

If the file is opened for • OUTPUT, then only WRITE is allowed.

If the file is opened for • I-O, then READ, WRITE, START, REWRITE, and DELETE are allowed.

If • OPEN INPUT is used, and the file does not possess the OPTIONAL clause, the file must exist or
the OPEN will fail.

If • OPEN OUTPUT or I-O is used, the file will be created if it does not already exist, as long as the
file possesses the OPTIONAL clause.

READ Verb

There are two new formats for the READ verb. One format is used for a direct READ on a relative file, and the other is
used when you want to read the file sequentially but an ACCESS MODE of DYNAMIC has been specified for the file. When
an ACCESS MODE of SEQUENTIAL is specified, all file organizations use the standard READ format.

The metalanguage in Figure 17-4 shows the READ format used to read a relative file sequentially when an ACCESS
MODE of DYNAMIC has been specified. The only difference between this format and the format of the ordinary sequential
READ is the NEXT RECORD phrase. This format of READ reads the record pointed to by the next-record pointer (the
current record if positioned by START, or the next record if positioned by a direct READ).

The format of READ used for a direct read on a relative file is shown in Figure 17-5. To read a relative file using
a key, the relative record number of the required record is placed in the RELATIVE KEY data item (specified in the
RELATIVE KEY phrase of the file’s SELECT and ASSIGN clause), and then READ is executed. When READ executes, the
record with the relative record number equal to the present value of the relative key is read into the file’s record
buffer (defined in the FD entry). If READ fails to retrieve the record, the INVALID KEY activates, and the statement block
following the clause is executed. If READ is successful, NOT INVALID KEY (if present) activates, and the next-record
pointer is left pointing to the next valid record in the file.

CHAPTER 17 ■ DIRECT ACCESS FILES

447

WRITE Verb

The format for writing sequentially to a direct access file is the same as that used for writing to a sequential file. But when
you want to write directly to a relative file, a key must be used, and this requires the WRITE format shown in Figure 17-6.

Figure 17-5. Metalanguage for the direct READ

Figure 17-6. Metalanguage for writing to a relative file using a key

Writing a record to a relative file using a key requires you to place the record in the record buffer, place the key
value in the RELATIVE KEY data item, and then execute the WRITE statement. When WRITE executes, the data in the
record buffer is written to the record position with a relative record number equal to the present value of the key.

If WRITE fails, perhaps because a record already exists at that relative record number position, the INVALID KEY
clause activates, and the statements following the clause are executed.

REWRITE Verb

The REWRITE verb is used to update a record in situ by overwriting it. The format of REWRITE is given in Figure 17-7. The
REWRITE verb is generally used with READ because you can only update a record by bringing it into the record buffer
first. Once the record is in the buffer, you can make the changes to the required fields; when the changes have been
made, you REWRITE the record to the file.

Figure 17-7. Metalanguage for the REWRITE verb

To use REWRITE to update fields in a record, you first place the key value in the RELATIVE KEY data item and do a
direct READ. This brings the required record into the record buffer. Next you make the required changes to the data in
the record. Then you execute a REWRITE to write the record in the buffer back to the file.

Keep the following in mind:

If the file has an • ACCESS MODE of SEQUENTIAL, then the INVALID KEY clause cannot be specified,
and the record to be replaced must have been the subject of a READ or START before the
REWRITE is executed.

For all access modes, the file must be opened for • I-O.

CHAPTER 17 ■ DIRECT ACCESS FILES

448

DELETE Verb

The syntax for the DELETE verb is given in Figure 17-8. To delete a record, you place the key value in the RELATIVE KEY
data item and then execute DELETE. The record in the relative record number position indicated by the RELATIVE KEY
data item is marked as deleted (it is not actually deleted). If the DELETE attempt fails, perhaps because there is no
record at that position, INVALID KEY activates.

Figure 17-8. Metalanguage for the DELETE verb

Figure 17-9. Metalanguage for the START verb

Note the following:

To use • DELETE, the file must have been opened for I-O.

When • ACCESS MODE is SEQUENTIAL, a READ statement must have accessed the record to be
deleted (that’s how the system knows which record to delete).

START Verb

For relative files, the START verb is only used to control the position of the next-record pointer. Where the START verb
appears in a program, it is usually followed by a sequential READ or WRITE because START does not get data from or put
data into the file. It merely positions the next-record pointer.

To use the START verb to position the next-record pointer at a particular record (so that subsequent sequential
accesses will use that record position), you place the key value of the record at the desired position into the RELATIVE
KEY data item and then execute a START..KEY IS EQUAL TO statement.

To use the START verb to position the next-record pointer at the first active record in the file, you move zeros to the
RELATIVE KEY data item and then execute a START..KEY IS GREATER THAN statement. You can’t move the number 1
to the RELATIVE KEY data item, because there may be no active record in the first record position.

The metalanguage for the START verb is given in Figure 17-9. When START executes, it has the following
interpretation: position the next-record pointer such that the relative record number of the record pointed to is EQUAL
TO or GREATER THAN or NOT LESS THAN or GREATER THAN OR EQUAL TO the current value of the RELATIVE KEY data item.

CHAPTER 17 ■ DIRECT ACCESS FILES

449

Organization of Indexed Files
Unlike relative files, which only allow a single, numeric key, an indexed file may have up to 255 alphanumeric keys.
The key on which the data records are actually ordered is called the primary key. The other keys are called alternate
keys. Although a relative file allows you to access records sequentially or directly by key, an indexed file lets you access
the records directly or sequentially using any of its keys. For instance, suppose an indexed file supporting a video
rental system has VideoId as its primary key and VideoTitle and SupplierId as its alternate keys. You can read a
record from the file using any of the keys, and you can also read through the file in VideoId sequence, VideoTitle
sequence, or SupplierId sequence. This versatility is what makes indexed files so useful.

How is this flexibility achieved? How can it be possible to read through the file sequentially in different
sequences?

The data records in an indexed file are sequenced in ascending primary-key order. Over the data records, the file
system builds an index. This arrangement is shown schematically in Figure 17-10.

Figure 17-10. Primary-key index: seeking a record with a key value of 43

A number of terms relating to Figure 17-10 need clarification. A bucket is the smallest number of characters of
disk storage that can be read or written in one I/O operation. It is the equivalent of a block on a PC disk—the smallest
segment of disk space that can be addressed. Index depth is the number of levels of index above level 0, which is the
data bucket (or base bucket) level (in Figure 17-10, the index depth is 2).

When direct access is required, the file system uses the index to find, read, insert, update, or delete the required
record. Figure 17-11 shows how the index is used to locate the record with a key value of 43. The file system starts at
the first level of index (one I/O operation is required to bring the records in this bucket into memory). In the index
buckets, each index record contains a pointer to the highest key value in the next-level buckets. Using the condition IF
SeekVal <= IndexKeyVal, a bucket is retrieved from the next level of index (another I/O operation is required to bring
the records in this bucket into memory). Again the condition is applied, and the bucket at level 0 (the data buckets) is
retrieved (another final I/O is required to bring the records in this bucket into memory). Once the actual data records
are in memory, the file system searches them sequentially until the required record is found.

CHAPTER 17 ■ DIRECT ACCESS FILES

450

In addition to allowing direct access to records on the primary key or any of the 254 alternate keys, indexed
files may also be processed sequentially. When you process an indexed file sequentially, you can read the records in
ascending order on the primary key or on any of the alternate keys.

Because the data records are held in ascending primary-key sequence, it is easy to see how the file may be
accessed sequentially on the primary key. It is not quite so obvious how you achieve sequential access on the alternate
keys. For this, you need to examine the alternate index schematic in Figure 17-11.

For each of the alternate keys specified in an indexed file, an alternate index is built. However, unlike the
primary-key index, which contains the data buckets at the lowest level of the index, the lowest level of an alternate
index is made up of base records that contain only the alternate-key value and a pointer to where the actual record is.
These base records are organized in ascending alternate-key order; by reading though these base records in sequence,
you achieve sequential access using the alternate key. This arrangement is shown schematically in Figure 17-11.

Figure 17-11 shows how the index is used to locate the record with a key value of Vt. As with the primary key, each
level of index points to the next level until level 0 is reached. Each of the base buckets at level 0 contains records that
consist of the alternate-key value and a pointer to the data bucket where the record with that key value is to be found.
In Figure 17-11, for example, the Vt record in the base buckets points to a bucket that actually contains the record.
Note that the records in this bucket are in ascending primary key order.

Processing Indexed Files
Just as with relative files, this section introduces indexed files by showing you some simple examples. When you have
a feel for how it all works, you learn about the required clauses, verbs, and concepts more formally.

Let’s start with a simple program that reads an indexed file both sequentially and directly on a number of keys.
Then you see how to create an indexed file from a sequential file. In the third example, you learn how to use indexed
files in combination: you use an indexed file of film directors and an indexed file containing film details together to
display all the films directed by a particular director. In the final example, you apply a set of transactions to the film file
and cover the issue of referential integrity that crops up when a new film record is inserted.

Figure 17-11. Alternate-key index: seeking a record with a key value of Vt

CHAPTER 17 ■ DIRECT ACCESS FILES

451

Reading an Indexed File
Listing 17-4 displays the contents of an indexed file in the key sequence chosen by the user and then displays one
record directly using the key chosen by the user.

Listing 17-4. Reading an indexed file sequentially and then directly using any key

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-4.
AUTHOR. Michael Coughlan.
*Reads the file sequentially and then directly on any key

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
 SELECT FilmFile ASSIGN TO "Listing17-4Film.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS FilmId
 ALTERNATE RECORD KEY IS FilmTitle
 WITH DUPLICATES
 ALTERNATE RECORD KEY IS DirectorId
 WITH DUPLICATES
 FILE STATUS IS FilmStatus.

DATA DIVISION.
FILE SECTION.
FD FilmFile.
01 FilmRec.
 88 EndOfFilms VALUE HIGH-VALUES.
 02 FilmId PIC 9(7).
 02 FilmTitle PIC X(40).
 02 DirectorId PIC 999.

WORKING-STORAGE SECTION.
01 FilmStatus PIC XX.
 88 FilmOK VALUE ZEROS.

01 RequiredSequence PIC 9.
 88 FilmIdSequence VALUE 1.
 88 FilmTitleSequence VALUE 2.
 88 DirectorIdSequence VALUE 3.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT FilmFile
 DISPLAY "*** Get Records Sequentially ***"
 DISPLAY "Enter key : 1 = FilmId, 2 = FilmTitle, 3 = DirectorId - "
 WITH NO ADVANCING.
 ACCEPT RequiredSequence.

 EVALUATE TRUE
 WHEN FilmIdSequence PERFORM DisplayFilmData

CHAPTER 17 ■ DIRECT ACCESS FILES

452

 WHEN FilmTitleSequence MOVE SPACES TO FilmTitle
 START FilmFile KEY IS GREATER THAN FilmTitle
 INVALID KEY DISPLAY "FilmStatus = " FilmStatus
 END-START
 PERFORM DisplayFilmData
 WHEN DirectorIdSequence MOVE ZEROS TO DirectorId
 START FilmFile KEY IS GREATER THAN DirectorId
 INVALID KEY DISPLAY "FilmStatus = " FilmStatus
 END-START
 PERFORM DisplayFilmData
 END-EVALUATE

 DISPLAY SPACES
 DISPLAY "*** Get Records Directly ***"
 DISPLAY "Enter key : 1 = FilmId, 2 = FilmTitle, 3 = DirectorId - "
 WITH NO ADVANCING.
 ACCEPT RequiredSequence.
 EVALUATE TRUE
 WHEN FilmIdSequence PERFORM GetFilmByFilmId
 WHEN FilmTitleSequence PERFORM GetFilmByFilmTitle
 WHEN DirectorIdSequence PERFORM GetFilmByDirectorId
 END-EVALUATE

 CLOSE FilmFile
 STOP RUN.

DisplayFilmData.
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 PERFORM UNTIL EndOfFilms
 DISPLAY FilmId SPACE FilmTitle SPACE DirectorId
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 END-PERFORM.

GetFilmByFilmId.
 DISPLAY "Enter the FilmId - " WITH NO ADVANCING
 ACCEPT FilmId
 READ FilmFile
 KEY IS FilmId
 INVALID KEY DISPLAY "Film not found - " FilmStatus
 NOT INVALID KEY DISPLAY FilmId SPACE FilmTitle SPACE DirectorId
 END-READ.

GetFilmByFilmTitle.
 DISPLAY "Enter the FilmTitle - " WITH NO ADVANCING
 ACCEPT FilmTitle

CHAPTER 17 ■ DIRECT ACCESS FILES

453

 READ FilmFile
 KEY IS FilmTitle
 INVALID KEY DISPLAY "Film not found - " FilmStatus
 NOT INVALID KEY DISPLAY FilmId SPACE FilmTitle SPACE DirectorId
 END-READ.

GetFilmByDirectorId.
 DISPLAY "Enter the Director Id - " WITH NO ADVANCING
 ACCEPT DirectorId
 READ FilmFile
 KEY IS DirectorId
 INVALID KEY DISPLAY "Film not found - " FilmStatus
 NOT INVALID KEY DISPLAY FilmId SPACE FilmTitle SPACE DirectorId
 END-READ.

There is quite a bit to talk about in this program. The first thing to note is the new entries in the SELECT and ASSIGN
clause. Because an indexed file has a primary key and, perhaps, some alternate keys, you must have entries in SELECT
and ASSIGN for each key, and you must distinguish the primary key from the alternate keys. One very important thing
to remember is that whereas the key defined in the RELATIVE KEY entry of a relative file cannot be a field in the relative
file’s record description, the keys defined for an indexed file must be fields in the record defined for the file.

Another item of interest is the WITH DUPLICATES phrase, which is specified with the ALTERNATE KEY clause in the
SELECT and ASSIGN clause. In a relative file, the key must be unique; and in an indexed file, the primary key defined in
the RECORD KEY clause must be unique, but the alternate keys may have duplicates if they use the WITH DUPLICATES
phrase. For instance, in this program, the same DirectorId appears for many films. If the WITH DUPLICATES phrase is
omitted, the alternate key has to be unique.

CHAPTER 17 ■ DIRECT ACCESS FILES

454

The program starts by asking the user what key to use when displaying the contents of the file sequentially. This
raises an interesting question. If you examine the code in the paragraph DisplayFilmData, you see that the READ
format used is the one for reading a file sequentially. So the question is, how does the system know to read through the
file in FilmId order on one occasion, in FilmTitle order on another occasion, and in DirectorId order on yet another
occasion? The answer is that the system relies on a concept called the key of reference. The key of reference refers to
the key that is used to process an indexed file sequentially. A particular key is established as the key of reference by
using that key with START or a direct READ. You can see this in the program. If FilmTitleSequence is selected, START is
used with the FilmTitle key to both establish FilmTitle as the key of reference and position the next-record pointer
at the first record. Similarly, if DirectorIdSequence is selected, START is used to establish DirectorId as the key of
reference and to position the next-record pointer at the first record in the file. What about FilmIdSequence, though?
Why doesn’t that WHEN branch have a START verb? I could have used START with that branch, too, but I wanted to make
the point that when the file is opened, the primary key is the default key of reference and the next-record pointer is
pointing at the first record in the file.

When the program has displayed the contents of the file in the required sequence, the user is asked which key
they wish to use for a direct READ. Then that key is used to read the required record from the file. If you examine the
READ operation in any of the paragraphs that read the record from the file, you see that this format of READ is different
from that used for relative files. For relative files, READ does not require a KEY IS phrase because there is only one key;
but because indexed files use many keys, you have to say which key you are using to read the record.

One final issue needs to be discussed. The paragraph GetFilmByDirectorId returns only one record, but the
same director occurs many times in the file. How can you show the other films made by this director? The answer
lies once more in the key of reference. When a direct READ is made, the key used is established as the key of reference,
and the next-record pointer is pointing at the next record in the file. You can display all the films made by a particular
director by doing a direct READ followed by sequential READs. You stop reading the records when the Director Id
changes. This procedure is shown in the revised version of GetFilmByDirectorId in Example 17-2.

Example 17-2. Revision of GetFilmByDirectorId to Show All of a Director’s Films

GetFilmByDirectorId.
 DISPLAY "Enter the Director Id - " WITH NO ADVANCING
 ACCEPT DirectorId
 READ FilmFile
 KEY IS DirectorId
 INVALID KEY DISPLAY "Film not found - " FilmStatus
 NOT INVALID KEY DISPLAY FilmId SPACE FilmTitle SPACE DirectorId
 PERFORM GetOtherFilmsByThisDirector
 END-READ.

GetOtherFilmsByThisDirector.
 MOVE DirectorId TO PrevDirectorId
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 PERFORM UNTIL DirectorId NOT EQUAL TO PrevDirectorId
 OR EndOfFilms
 DISPLAY FilmId SPACE FilmTitle SPACE DirectorId
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 END-PERFORM.

CHAPTER 17 ■ DIRECT ACCESS FILES

455

Creating an Indexed File from a Sequential File
In Listing 17-5, an indexed file is created from a sequential file. Sequential files are useful because you can create
them with an ordinary editor. There are tools available that can convert a sequential file into an indexed file, but this
program does the job itself.

Listing 17-5. Creating an Indexed File from a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-5.
AUTHOR. Michael Coughlan.
*Creating an Indexed File from a Sequential File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
 SELECT FilmFile ASSIGN TO "Listing17-5Film.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS FilmId
 ALTERNATE RECORD KEY IS FilmTitle
 WITH DUPLICATES
 ALTERNATE RECORD KEY IS DirectorId
 WITH DUPLICATES
 FILE STATUS IS FilmStatus.

 SELECT SeqFilmFile ASSIGN TO "Listing17-5Film.SEQ"
 ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD FilmFile.
01 FilmRec.
 02 FilmId PIC 9(7).
 02 FilmTitle PIC X(40).
 02 DirectorId PIC 999.

FD SeqFilmFile.
01 SeqFilmRec PIC X(50).
 88 EndOfFilmFile VALUE HIGH-VALUES.

WORKING-STORAGE SECTION.
01 FilmStatus PIC XX.
 88 FilmOK VALUE ZEROS.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT SeqFilmFile
 OPEN OUTPUT FilmFile

 READ SeqFilmFile
 AT END SET EndOfFilmFile TO TRUE
 END-READ

CHAPTER 17 ■ DIRECT ACCESS FILES

456

 PERFORM UNTIL EndOfFilmFile
 WRITE FilmRec FROM SeqFilmRec
 INVALID KEY DISPLAY "Error writing to film file"
 END-WRITE
 READ SeqFilmFile
 AT END SET EndOfFilmFile TO TRUE
 END-READ
 END-PERFORM
 CLOSE SeqFilmFile, FilmFile
 STOP RUN.

The first issue to bring to your attention is the statement WRITE FilmRec FROM SeqFilmRec. When you consider
this statement, you may wonder why there is no KEY IS phrase as there is with the direct READ. The reason is that
records are always written to an indexed file based on the value in the primary key, so no KEY IS phrase is required.

You may also wonder why I don’t put the key value into the primary-key data item before the WRITE is executed.
The answer is that I do put the key value into the primary-key data item—but I do it in a different way. WRITE FilmRec
FROM SeqFilmRec has the same effect as

MOVE SeqFilmRec TO FilmRec
WRITE FilmRec
 INVALID KEY DISPLAY "Error writing to film file"
END-WRITE

Using Indexed Files in Combination
Listing 17-6 uses an indexed file of film directors and an indexed file containing film details in combination to display
all the films directed by a particular director. The program accepts the name of a director from the user and then
displays all the films made by that director. For each film, the director ID, the surname of the director, the film ID, and
the title of the film are displayed.

Listing 17-6. Using Indexed Files in Combination

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-6.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
 SELECT FilmFile ASSIGN TO "Listing17-6Film.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS FilmId-FF
 ALTERNATE RECORD KEY IS FilmTitle-FF
 WITH DUPLICATES
 ALTERNATE RECORD KEY IS DirectorId-FF
 WITH DUPLICATES
 FILE STATUS IS FilmStatus.

 SELECT DirectorFile ASSIGN TO "Listing17-6Dir.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC

CHAPTER 17 ■ DIRECT ACCESS FILES

457

 RECORD KEY IS DirectorId-DF
 ALTERNATE RECORD KEY IS DirectorSurname-DF
 FILE STATUS IS DirectorStatus.

DATA DIVISION.
FILE SECTION.
FD FilmFile.
01 FilmRec-FF.
 88 EndOfFilms VALUE HIGH-VALUES.
 02 FilmId-FF PIC 9(7).
 02 FilmTitle-FF PIC X(40).
 02 DirectorId-FF PIC 999.

FD DirectorFile.
01 DirectorRec-DF.
 88 EndOfDirectors VALUE HIGH-VALUES.
 02 DirectorId-DF PIC 999.
 02 DirectorSurname-DF PIC X(20).

WORKING-STORAGE SECTION.
01 AllStatusFlags VALUE ZEROS.
 02 FilmStatus PIC XX.
 88 FilmOk VALUE "02", "00".

 02 DirectorStatus PIC XX.

01 DirectorName PIC X(20).

PROCEDURE DIVISION.
Begin.
 OPEN INPUT FilmFile
 OPEN INPUT DirectorFile
 DISPLAY "Please enter the director surname :- "
 WITH NO ADVANCING
 ACCEPT DirectorSurname-DF
 READ DirectorFile
 KEY IS DirectorSurname-DF
 INVALID KEY DISPLAY "-DF ERROR Status = " DirectorStatus
 NOT INVALID KEY PERFORM GetFilmsForDirector
 END-READ

 CLOSE FilmFile
 CLOSE DirectorFile
 STOP RUN.

GetFilmsForDirector.
 MOVE DirectorId-DF TO DirectorId-FF
 READ FilmFile
 KEY IS DirectorId-FF

CHAPTER 17 ■ DIRECT ACCESS FILES

458

 INVALID KEY DISPLAY "-FF ERROR Status = " FilmStatus
 END-READ
 IF FilmOk
 PERFORM UNTIL DirectorId-DF NOT Equal TO DirectorId-FF OR EndOfFilms
 DISPLAY DirectorId-DF SPACE DirectorSurname-DF SPACE
 FilmId-FF SPACE FilmTitle-FF
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 END-PERFORM
 END-IF.

This program uses two indexed files in combination. Used this way, indexed files are similar to a database where
each file is a table, the records in the file are the table rows, and the fields in the records are the table columns.

The program starts by getting the name of the director from the user. This name is used as the key value for a
direct READ on the director file. When the record is retrieved, DirectorId-DF is used to get all the director’s film titles.

One item of interest in the program is the file status for FilmFile. Note that one of two codes is specified to
indicate the operation was successful. Normally, "00" indicates that the operation was successful; but in this case, the
code "02" indicates success and also carries extra information. A code of "02" may be returned for indexed files only
and is returned in these cases:

When after a • READ operation, the next record has the same key value as the key used for the READ

When a • WRITE or a REWRITE creates a duplicate key value for an alternate key that has the WITH
DUPLICATES phrase

If you want to detect when you have processed all the films directed by a particular director without having to
compare keys, you can use the returned "02" code as shown in Example 17-3.

Example 17-3. Using the "02" File Status to Create a More Succinct Loop

01 AllStatusFlags VALUE ZEROS.
 02 FilmStatus PIC XX.
 88 AnotherFilmForThisDirector VALUE "02".

: : : : : : : : : : : : : : : :

GetFilmsForDirector.
 MOVE DirectorId-DF TO DirectorId-FF
 READ FilmFile
 KEY IS DirectorId-FF
 INVALID KEY DISPLAY "-FF ERROR Status = " FilmStatus

CHAPTER 17 ■ DIRECT ACCESS FILES

459

 NOT INVALID KEY DISPLAY DirectorId-DF SPACE DirectorSurname-DF SPACE
 FilmId-FF SPACE FilmTitle-FF
 END-READ
 PERFORM UNTIL NOT AnotherFilmForThisDirector
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 DISPLAY DirectorId-DF SPACE DirectorSurname-DF SPACE
 FilmId-FF SPACE FilmTitle-FF
 END-PERFORM.

Applying Transactions to an Indexed File
Listing 17-7 applies a set of transactions (deletions, insertions, and updates) to the film file. The result of applying the
transactions is shown in Figure 17-12. Applying the insertions to the film file is complicated by the issue of referential
integrity. It should not be valid to insert a new film record when there is no record in the directors file for the director
of the film. In a relational database system, referential integrity is automatically enforced by the database; but in
COBOL, you have to do it yourself. The failure of programs to enforce referential integrity in COBOL legacy systems
is one of the problems of legacy data. If you try to load such legacy data into a relational database that does enforce
referential integrity, uniqueness, and other standards, the database system will probably crash.

Listing 17-7. Applying Transactions to an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-7.
AUTHOR. Michael Coughlan.
*Applies transactions to the Indexed FilmFile and enforces referential integrity
*with the Indexed Directors File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
 SELECT FilmFile ASSIGN TO "Listing17-7Films.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS FilmId-FF
 ALTERNATE RECORD KEY IS FilmTitle-FF
 WITH DUPLICATES
 ALTERNATE RECORD KEY IS DirectorId-FF
 WITH DUPLICATES
 FILE STATUS IS FilmStatus.

 SELECT DirectorsFile ASSIGN TO "Listing17-7Dir.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS DirectorId-DF
 ALTERNATE RECORD KEY IS DirectorSurname-DF
 FILE STATUS IS DirectorStatus.

 SELECT TransFile ASSIGN TO "Listing17-7Trans.dat"
 ORGANIZATION IS LINE SEQUENTIAL.

CHAPTER 17 ■ DIRECT ACCESS FILES

460

DATA DIVISION.
FILE SECTION.
FD FilmFile.
01 FilmRec-FF.
 88 EndOfFilms VALUE HIGH-VALUES.
 02 FilmId-FF PIC 9(7).
 02 FilmTitle-FF PIC X(40).
 02 DirectorId-FF PIC 9(3).

FD DirectorsFile.
01 DirectorsRec-DF.
 88 EndOfDirectors VALUE HIGH-VALUES.
 02 DirectorId-DF PIC 9(3).
 02 DirectorSurname-DF PIC X(20).

FD TransFile.
01 DeletionRec-TF.
 88 EndOfTrans VALUE HIGH-VALUES.
 02 TypeId-TF PIC X.
 88 DoDeletion VALUE "D".
 88 DoInsertion VALUE "I".
 88 DoUpdate VALUE "U".
 02 FilmId-TF PIC 9(7).

01 InsertionRec-TF.
 02 FILLER PIC 9.
 02 InsertionBody-TF.
 03 FILLER PIC X(47).
 03 DirectorId-TF PIC 9(3).

01 UpdateRec-TF.
 02 FILLER PIC X(8).
 02 FilmTitle-TF PIC X(40).

WORKING-STORAGE SECTION.
01 AllStatusFlags VALUE ZEROS.
 02 FilmStatus PIC XX.
 88 FilmOK VALUE ZEROS.
 02 DirectorStatus PIC XX.
 88 MatchingDirectorFound VALUE ZEROS.

PROCEDURE DIVISION.
Begin.
 OPEN I-O FilmFile
 OPEN INPUT DirectorsFile
 OPEN INPUT TransFile
 DISPLAY "*** Film file before updates ***"
 PERFORM DisplayFilmFileContents
 DISPLAY SPACES
 READ TransFile
 AT END SET EndOfTrans TO TRUE
 END-READ

CHAPTER 17 ■ DIRECT ACCESS FILES

461

 PERFORM UpdateFilmFile UNTIL EndofTrans
 DISPLAY SPACES
 DISPLAY "*** Film file after updates ***"
 PERFORM DisplayFilmFileContents
 CLOSE FilmFile, DirectorsFile, TransFile
 STOP RUN.

DisplayFilmFileContents.
 MOVE ZEROS TO FilmId-FF
 START FilmFile KEY IS GREATER THAN FilmId-FF
 INVALID KEY DISPLAY "Error1 - FilmStatus = " FilmStatus
 END-START
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 PERFORM UNTIL EndOfFilms
 DISPLAY FilmId-FF SPACE DirectorId-FF SPACE FilmTitle-FF
 READ FilmFile NEXT RECORD
 AT END SET EndOfFilms TO TRUE
 END-READ
 END-PERFORM.

UpdateFilmFile.
 EVALUATE TRUE
 WHEN DoDeletion PERFORM DeleteFilmRec
 WHEN DoInsertion PERFORM InsertFilmRec
 WHEN DoUpdate PERFORM UpdateFilmRec
 END-EVALUATE
 READ TransFile
 AT END SET EndOfTrans TO TRUE
 END-READ.

DeleteFilmRec.
 MOVE FilmId-TF TO FilmId-FF
 DELETE FilmFile RECORD
 INVALID KEY DISPLAY FilmId-FF " - Delete Error. No such record"
 END-DELETE.

InsertFilmRec.
*To preserve Referential Integrity check director exists for this Film
 MOVE DirectorId-TF TO DirectorId-DF
 START DirectorsFile
 KEY IS EQUAL TO DirectorId-DF
 INVALID KEY DISPLAY FilmId-FF " - Insert Error. No matching entry for director - "
DirectorId-TF
 END-START

 IF MatchingDirectorFound
 MOVE InsertionBody-TF TO FilmRec-FF
 WRITE FilmRec-FF
 INVALID KEY DISPLAY FilmId-FF " - Insert Error. That FilmId already exists."
 END-WRITE
 END-IF.

CHAPTER 17 ■ DIRECT ACCESS FILES

462

UpdateFilmRec.
 MOVE FilmId-TF TO FilmId-FF
 READ FilmFile RECORD
 KEY IS FilmId-FF
 INVALID KEY DISPLAY FilmId-FF " - Update error. No such record exists"
 END-READ
 IF FilmOk
 MOVE FilmTitle-TF TO FilmTitle-FF
 REWRITE FilmRec-FF
 INVALID KEY DISPLAY "Unexpected Error1. FilmStatus - " FilmStatus
 END-REWRITE
 END-IF.

Figure 17-12. Output from Listing 17-7

CHAPTER 17 ■ DIRECT ACCESS FILES

463

There is not much to talk about here that I have not already discussed in relation to relative files, but let’s touch
once more on the issue of referential integrity. When an insertion record has to be applied to FilmFile, you must
make sure the director of that film has an entry in DirectorsFile. You do this in InsertFilmRec by using START with
DirectorsFile and the director ID from TransFile to make sure there is a director with that ID in DirectorsFile. If
there is a director with that ID, you try to apply the insertion.

Indexed Files: Syntax and Semantics
This section formally introduces the specific verb formats, clauses, and concepts required for indexed files.

Indexed Files: SELECT and ASSIGN Clause
The metalanguage for the SELECT and ASSIGN clause for indexed files is shown in Figure 17-13.

Figure 17-13. Metalanguage for SELECT and ASSIGN specific to indexed files

Consider the following:

The key defined for a relative file by the • RELATIVE KEY phrase in the SELECT and ASSIGN clause
cannot be a field in the record of the relative file. In total contrast to this, every key (primary
and alternates) defined for an indexed file must be a field in record of the indexed file.

Every indexed file must have a primary key and may have up to 254 alternate keys.•

The primary key must be unique for each record and must be a numeric or alphanumeric data •
item. The primary key is identified by the RECORD KEY IS phrase in the SELECT and ASSIGN
clause.

Each alternate key must be numeric or alphanumeric and may be unique or may have •
duplicate values. The alternate keys are identified by the ALTERNATE RECORD KEY IS phrase in
the SELECT and ASSIGN clause.

If an alternate key can have duplicate values, then the • WITH DUPLICATES phrase must be
used. If WITH DUPLICATES is not used and you attempt to write a record that contains an
alternate-key value that is already present in another record in the file, WRITE will fail,
and a file status "22" (record already exists) will be returned.

CHAPTER 17 ■ DIRECT ACCESS FILES

464

The Key of Reference
When you define an indexed file with ACCESS MODE IS SEQUENTIAL, the file is always processed in ascending
primary-key order. But if the file is defined with ACCESS MODE IS DYNAMIC and is processed sequentially, the file system
must be able to tell which of the keys to use as the basis for processing the file. Because the format of the sequential
READ does not have a key phrase, the file system refers to a special item called the key of reference to discover which key
to use for processing the file. Before reading a file defined as ACCESS MODE IS DYNAMIC sequentially, you must establish
one of the file’s keys as the key of reference. You do so by using the key in a START or a direct READ. When the file is
opened, the primary key is by default the key of reference, and the next-record pointer is pointing at the first record.

Indexed File Verbs
Indexed files use the same verbs for file manipulation as relative files, but in some cases there are syntactic or semantic
differences. This section examines only those verbs that differ in syntax or semantics from those used with relative files.

The READ Verb

When an indexed file is defined with ACCESS MODE IS SEQUENTIAL, the READ format is the same as for sequential
files. But when the file is defined with ACCESS MODE IS DYNAMIC, sequential processing of the file is complicated by
the presence of a number of indexes. The order in which the data records are read depends on which index is being
processed sequentially, and the index used is established by the key of reference.

For indexed files, the format of the READ used to read sequentially is the same as for relative files. But in the
case of the direct READ, the format requires a KEY IS phrase to specify the key on which the file is to be read. The
metalanguage for this format of READ is given in Figure 17-14.

Figure 17-14. READ format used to read an indexed file directly

To read a record directly from an indexed file, a key value must be placed in the KeyName data item (the KeyName data
item is the area of storage identified as the primary key or one of the alternate keys in the SELECT and ASSIGN clause).
When READ executes, the record with a key value equal to the present value of KeyName is read into the file buffer.

After the record has been read, the next-record pointer points to the next logical record in the file. If the key of
reference is the primary key, then this record is an actual data record; but if the key of reference is one of the alternate
keys, the pointer points to the next alternate index base record.

If duplicates are allowed, only the first record in a group with duplicates can be read directly. The rest of the
duplicates must be read sequentially using the READ NEXT RECORD format.

Here are some things to remember:

If the record does not exist, the • INVALID KEY clause activates, and the statement block
following the clause is executed.

If the • KEY IS clause is omitted, the key used is the primary key.

When • READ is executed, the key mentioned in the KEY IS phrase is established as the key of
reference.

CHAPTER 17 ■ DIRECT ACCESS FILES

465

If there is no • KEY IS phrase, the primary key is established as the key of reference.

The file must have an • ACCESS MODE of DYNAMIC or RANDOM and must be opened for I-O or INPUT.

The WRITE, REWRITE and DELETE Verbs

The syntax and semantics of the WRITE, REWRITE, and DELETE verbs is the same as for relative files, except that

Direct access for all these verbs is based on the primary key only.•

Although • REWRITE may not change the value of the primary key, it may change the value of any
of the alternate keys.

The START Verb

The syntax for the START verb is the same as for relative files, except that instead of the format START FileName KEY
Condition RelKey, the format is as is shown in Figure 17-15. The key of comparison is any of the keys specified in the
indexed file’s SELECT and ASSIGN clause.

Figure 17-15. Metalanguage for the START verb

Just as with relative files, the START verb may be used to control the position of the next-record pointer. In addition,
with indexed files, the START verb may be used to establish a particular key as the key of reference.

The primary key or one of the alternate keys is the key of comparison. To establish a particular key as the key of
reference and position the next-record pointer at a particular record, you first move the key value to the key-of-comparison
data item. Then you execute the statement START..KEY IS EQUAL TO .. if you want to position the next-record pointer
at the record with a key equal to the value in the key of comparison, or START..KEY IS GREATER THAN .. if you want to
position the next-record pointer at the succeeding record.

Remember these things:

The file must be opened for • INPUT or I-O when START is executed.

Execution of the • START statement does not change the contents of the record area (that is, START
does not read the record—it merely positions the next-record pointer and establishes the key
of reference).

When • START is executed, the next-record pointer is set to the first logical record in the file whose
key satisfies the condition. If no record satisfies the condition, the INVALID KEY clause is activated.

CHAPTER 17 ■ DIRECT ACCESS FILES

466

Comparison of COBOL File Organizations
Now that you have examined all the COBOL file organizations, you may wonder which is the best one to use. The
answer is that it depends. This section examines the advantages and disadvantages of each organization; from this
information, you should be able to figure out which organization to use in a given situation.

First some terminology. The hit rate refers to the number of records in the file that are impacted when you
process a file. For instance, if only 100 records are affected by an insert, a delete, or an update operation in a file of
100,000 records, the hit rate is low. But if 90,000 records are affected, the hit rate is high.

Sequential File Organization
The records in a sequential file are held serially, one after another, on disk, tape, or other media. This organization has
both advantages and disadvantages.

Disadvantages of Sequential File Organization

Sequential files have the following disadvantages:

• They are slow when the hit rate is low. To read a particular record, you have to read all the
preceding records. To update records, you have to read all the records in the file and write
them to a new file. This is a lot of work if all you are doing is changing a few of the records in
the file.

• They are complicated to change. Changes to sequential files are batched together in a
transaction file to minimize the low-hit-rate problem, but this makes updating sequential
files much more complicated than updating direct access files. The complications arise from
having to match the records in the transaction file with those in the master file (that is, the file
to be updated).

• They take up double the storage when they are updated. The records in sequential files cannot
be updated in situ; instead, a new file must be created that consists of all the records in the
old file plus the insertions and minus the deletions. Of course, this storage problem may be
transient, because once the new file has been created, you can delete the old file.

Advantages of Sequential File Organization

Sequential file organization also has a number of advantages:

• When the hit rate is high, it is the fastest file organization because the record position does
not have to be calculated and no indexes have to be traversed. Because the records are stored
contiguously, this organization takes advantage of the fact that the file system doesn’t access
records on a per-record basis but instead scoops up a block or bucket at a time. When a block
contains a number of records, the number of disk accesses required to process the file is
greatly reduced.

• It is the most storage efficient of all the file organizations. No indexes are required, the space
from deleted records is recovered, and only the storage actually required to hold the records is
allocated to the file.

• It is the simplest file organization. Records are held serially, so you read them one after another.

CHAPTER 17 ■ DIRECT ACCESS FILES

467

• It allows the space from deleted records to be recovered. To delete records from a sequential file,
you create a new file that does not contain the deleted records. Once you delete the old file,
all the storage previously used by the deleted records is recovered and can be used for storing
something else.

• Sequential files may be stored and processed on serial media such as magnetic tape. These
media are cheap, removable, and voluminous.

Relative File Organization
You can think of the records in a relative file as a one-dimensional table stored on disk. The file system can calculate
where each record is on the disk because it knows the start location for the file, and it knows the amount of storage
required to store each record. The record location is calculated as RecordLocation = BaseLocation + (SizePerRecord
* (RelativeRecordNumber - 1)).

Disadvantages of Relative File Organization

Relative file organization has a number of disadvantages:

• It wastes storage if the file is only partially populated with records. The file is allocated enough
disk storage to hold records from 1 to the highest relative record number used, even if only a
few records have been written to the file. For instance, if the first record written to the file has a
relative record number of 100,000, room for that many records is allocated to the file.

• It cannot recover the space from deleted records. When a record is deleted in a relative file, it
is marked as deleted, but the space that was occupied by the record is still allocated to the
file. This means if a relative file takes up 1.5MB of disk space when full, it still occupies 1.5MB
when 99% of the records have been deleted.

• It allows only a single, numeric key. The single key is limiting because often you need to access
a file on more than one key. For instance, in a file of student records, you might want to access
the records on student ID, student name, course code, or module code. The mention of using
student name, course code, or module code highlights another drawback with relative files:
you frequently need to access a file using an alphanumeric key.

• The relative file key must map on to the range of the relative record numbers for the file. The
facts that the key must be in the range between 1 and the highest key value and that the file
system allocates space for all the records between 1 and the highest relative record number
used impose severe constraints on the key. For instance, even though StudentId is numeric,
you can’t use it as a key because the file system allocates space for records between 1 and the
highest StudentId written to the file. If the highest StudentId written to the file is 9976683,
the file system will allocate space for 9,976,683 records. Universities rarely have this many
students, so most of the file will be wasted space.

Sometimes you can get around the limitations of the relative key by using a transformation
function to map the actual key onto the range of relative record numbers. There are a number
of possible transformation or hashing functions. These transformations include truncation
(using only some of the digits in the key as the relative record number), folding (breaking the
key into two or more parts and summing the parts), digit manipulation (manipulating some
of the digits in the key to produce a relative record number), and modulus division (using
the remainder of a division operation as the relative record number). Some sophisticated
transformation functions may even allow alphanumeric keys.

CHAPTER 17 ■ DIRECT ACCESS FILES

468

• Relative files must be stored and processed on direct access media. Because relative files are
direct access files, they must be processed on direct access media such as a hard disk. They
cannot be processed on magnetic tape or other cheap serial media; and if stored on tape, they
must be loaded onto a hard disk before they can be used.

Advantages of Relative File Organization

Although relative file organization has many disadvantages, it also has the following advantages:

• It is the fastest direct access organization. Only a few simple calculations have to be done to
locate a particular record.

• Records in a relative file have very little storage overhead. Unlike indexed files, which must
store the indexes as well as the data, relative files have only a small storage overhead for each
record (such as the record-deletion indicator).

• Records in a relative file can be read sequentially. In addition to allowing direct access, relative
files allow sequential access to the records in the file.

Indexed File Organization
As shown in the Figure 17-10 earlier, the records in an indexed file are arranged in ascending primary-key order in
a series of chained buckets/blocks. In addition to the actual data records, the primary key has a number of index
records. For each alternate key specified for the file, there is a similar arrangement; but instead of data records at the
final level, there are records arranged in ascending alternate-key order that consist only of the key and a pointer to
where the actual record may be found. As shown earlier in Figure 17-11, in addition to the records at the base level,
there are a number of alternate-key index records.

Disadvantages of Indexed File Organization

Indexed file organization has many disadvantages:

• It is the slowest direct access organization, because indexed files achieve direct access by
traversing a number of levels of index. Indexed files must have a primary-key index and an
index for each alternate key. Each level of index implies an I/O operation on the hard disk. For
instance, three I/O operations are required to read the record shown earlier in Figure 17-10:
two for the index records and one for data record).

• It especially slow when writing or deleting records because then the primary-key index and the
alternate-key indexes may need to be rebuilt.

• It is not very storage efficient, because indexed files must store the index records, the alternate
index records, the data records, and the alternate data records.

• Space from deleted records is only partially recovered until the indexes are rebuilt (which has to
be done periodically).

• Indexed files may only be processed on direct access media, because they are direct access files.
They cannot be processed on magnetic tape.

CHAPTER 17 ■ DIRECT ACCESS FILES

469

Advantages of Indexed File Organization

As you have seen, indexed files have many disadvantages, but these are far outweighed by their advantages:

They can use multiple, alphanumeric keys.•

They can have duplicate alternate keys.•

They can be read sequentially on any of their keys.•

They can partially recover space from deleted records.•

They can have multiple alphanumeric keys, and only the primary key must be unique.•

Although indexed files have their disadvantages, the versatility afforded by having multiple, alphanumeric keys
and being able to process the file both directly and sequentially on any of its keys overrides all their disadvantages.
As a result, indexed files are the most widely used direct access file organization.

Summary
This chapter introduced COBOL’s direct access file organizations: indexed and relative files. You learned about the
arrangement of records in each of these file organizations, along with new concepts such as file status, the next-record
pointer, and key of reference. You explored the syntactic and semantic changes that allow the existing file-processing
verbs to process direct access files, and you were introduced to new COBOL file-processing verbs such as DELETE,
REWRITE, and START. In the final section of the chapter, you saw the advantages and disadvantages of each of the
COBOL file organizations.

The next chapter discusses the COBOL Report Writer. The Report Writer allows you to write programs that
produce reports using declarative rather than procedural/imperative techniques. In imperative programming, you tell
the computer how to do what you want done. In declarative programming, you tell the computer what you would like
done, and the computer works out how to do it.

The Report Writer also uses a kind of specialized exception handling called declaratives. You can also use
declaratives with files. When you specify the declaratives for a file, an exception that would normally activate the AT
END or INVALID KEY clause instead executes the code you have written in the DECLARATIVE SECTION to deal with the
problem.

By way of introduction, the answer to the exercise at the end of this chapter uses the Report Writer to print a small
report. Because you don’t know how to use the Report Writer yet, you have to do the exercise the hard way. There is
nothing like the pain of coding a report program to make you appreciate the benefits of the Report Writer!

PROGRAMMING EXERCISE

Time for a little exercise. Whip out your 2B pencil and see if you can come up with a solution to this problem.

Introduction
Acme Automobile Parts Limited sells motorcycle and automobile spare parts. Recently, the company purchased a
computer and retained your firm to write the programs required. Your supervisor has asked you to write the program
detailed next.

CHAPTER 17 ■ DIRECT ACCESS FILES

470

General Description
The program is required to perform file maintenance on the vehicle master file using a transaction file of validated
amendment records. The transaction file has been sorted on ascending date (YYYYMMDD). If an error is encountered
when attempting to apply transactions to the vehicle master file, then the transaction record must be written to an
error file (Listing17-8-Err.DAT). When a vehicle record is deleted, the spare parts stocked for that vehicle are no
longer required and so must be printed to a redundant stock report (Listing17-8-Stk.RPT).

There are two types of records in the transaction file, and they are distinguished from one another by the codes
"I" (insert vehicle record) and "D" (delete vehicle record) in the first character position of the record.

Vehicle Master File

The vehicle master file (Listing17-8-VMF.DAT) is a relative file. VehicleNumber is used for the relative record number.
Each record has following description:

Field Type Length Value

VehicleNumber 9 4 1–9999

VehicleDescription X 25 –

ManufacturerName X 20 –

Stock Master File

The stock master file (Listing17-8-SMF.DAT) is an indexed file. It is required so that you can report all the stock
records that are affected when a vehicle is deleted from the vehicle master file. Each record in the stock master file has
the following record description:

Field Key Type Type Length Value

PartNumber Primary 9 7 1–9999999

VehicleNumber Alt with duplicates 9 4 1–9999

PartDescription – X 25 –

Transaction File

The transaction file (AcmeTrans.DAT) is validated file, sequenced on ascending DateOfEntry. Records in the file have
the following description:

Record Type Field Type Length Value

InsertVehicleRecord TypeCode X 1 I

DateOfEntry 9 8 YYYYMMDD

VehicleNumber 9 4 1–9999

VehicleDescription X 25 –

DeleteVehicleRecord TypeCode X 1 D

DateOfEntry 9 8 YYYYMMDD

VehicleNumber 9 4 1–9999

CHAPTER 17 ■ DIRECT ACCESS FILES

471

Maintenance Procedure

Type Code Action

I If a record with this VehicleNumber already exists in either the stock or vehicle master
file, then write the transaction record to the error file. Otherwise, insert the record.

D If the record does not exist in the vehicle master file, then write the transaction record
to the error file.

If there is no error, then read all the stock records with the same VehicleNumber as
the record to be deleted and write the details to the redundant stock report.

Rewrite the VehicleNumber field in each of these stock records with zeros. Delete the
vehicle master file record.

The Redundant Stock Report
Headings should be printed at the top of each page. See the print specification in Figure 17-16 for further details.

Figure 17-16. Print specification. Line numbers and column numbers added

CHAPTER 17 ■ DIRECT ACCESS FILES

472

PROGRAMMING EXERCISE: ANSWER

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing17-8.
AUTHOR. MICHAEL COUGHLAN.
*Applies Insertions and Deletions in TransFile to the VehicleFile.
*For Insertions - If a vehicle already exists in either the Stock or
*Vehicle file, the transaction record is written to the Error File otherwise inserted
*For Deletions - If the vehicle does not exist in the Vehicle File the transaction
*record is written to the Error File otherwise the Vehicle record is deleted
*If the vehicle record is deleted all the Stock records with the same VehicleNumber
*as the deleted record are written to the Redundant Stock Report and the VehicleNumber
*field in each of these Stock records is overwritten with zeros.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT StockFile ASSIGN TO "Listing17-8-SMF.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PartNumSF
 ALTERNATE RECORD KEY IS VehicleNumSF
 WITH DUPLICATES
 FILE STATUS IS StockErrStatus.

 SELECT VehicleFile ASSIGN TO "Listing17-8-VMF.DAT"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS DYNAMIC
 RELATIVE KEY IS VehicleNumKey
 FILE STATUS IS VehicleErrStatus.

 SELECT TransFile ASSIGN TO "Listing17-8-TRANS.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT ErrorFile ASSIGN TO "Listing17-8-ERR.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT RedundantStockRpt ASSIGN TO "Listing17-8-STK.RPT".

DATA DIVISION.
FILE SECTION.
FD StockFile.
01 StockRecSF.
 02 PartNumSF PIC 9(7).
 02 VehicleNumSF PIC 9(4).
 02 PartDescSF PIC X(25).

CHAPTER 17 ■ DIRECT ACCESS FILES

473

FD VehicleFile.
01 VehicleRecVF.
 02 VehicleNumVF PIC 9(4).
 02 VehicleDescVF PIC X(25).
 02 ManfNameVF PIC X(20).

FD TransFile.
01 TransRecTF.
 02 TransTypeTF PIC X.
 88 InsertionRec VALUE "I".
 88 DeletionRec VALUE "D".
 02 DateTF PIC X(8).
 02 VehicleNumTF PIC 9(4).
 02 VehicleDescTF PIC X(25).
 02 ManfNameTF PIC X(20).

FD RedundantStockRpt REPORT IS StockReport.

FD ErrorFile.
01 ErrorRec PIC X(56).

 WORKING-STORAGE SECTION.
01 ErrorStatusCodes.
 02 StockErrStatus PIC X(2).
 88 StockFileOpOK VALUE "00", "02".
 88 StockRecExistis VALUE "22".
 88 NoStockRec VALUE "23".
 02 VehicleErrStatus PIC X(2).
 88 VehicleFileOpOK VALUE "00".
 88 VehicleRecExists VALUE "22".
 88 NoVehicleRec VALUE "23".

01 FileVariables.
 02 VehicleNumKey PIC 9(4).
 02 PrevVehicleNum PIC 9(4).

01 ConditionNames.
 02 FILLER PIC X.
 88 EndOfStockFile VALUE HIGH-VALUES.
 88 NotEndOfStockFile VALUE LOW-VALUES.
 02 FILLER PIC X.
 88 EndOfTransFile VALUE HIGH-VALUES.

REPORT SECTION.
RD StockReport
 PAGE LIMIT IS 66
 HEADING 1
 FIRST DETAIL 6
 LAST DETAIL 50
 FOOTING 55.

CHAPTER 17 ■ DIRECT ACCESS FILES

474

01 TYPE IS PAGE HEADING.
 02 LINE 2.
 03 COLUMN 31 PIC X(24) VALUE
 "REDUNDANT STOCK REPORT".
 02 LINE 3.
 03 COLUMN 30 PIC X(26) VALUE ALL "-".

 02 LINE 6.
 03 COLUMN 2 PIC X(36) VALUE
 "PART NUMBER PART DESCRIPTION".
 03 COLUMN 45 PIC X(35) VALUE
 "VEHICLE NO. MANUFACTURER NAME".

01 DetailLine TYPE IS DETAIL.
 02 LINE IS PLUS 2.
 03 COLUMN 3 PIC 9(7) SOURCE PartNumSF .
 03 COLUMN 17 PIC X(25) SOURCE PartDescSF.
 03 COLUMN 48 PIC 9(4) SOURCE VehicleNumSF.
 03 COLUMN 60 PIC X(20) SOURCE ManfNameVF.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT TransFile.
 OPEN I-O StockFile
 VehicleFile.
 OPEN OUTPUT ErrorFile
 RedundantStockRpt.

 INITIATE StockReport

 READ TransFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 PERFORM UNTIL EndOfTransFile
 MOVE VehicleNumTF TO VehicleNumKey
 VehicleNumSF
 EVALUATE TRUE
 WHEN InsertionRec PERFORM CheckStockFile
 WHEN DeletionRec PERFORM DeleteVehicleRec
 WHEN OTHER DISPLAY "NOT INSERT OR DELETE"
 END-EVALUATE
 READ TransFile
 AT END SET EndOfTransFile TO TRUE
 END-READ
 END-PERFORM

 TERMINATE StockReport

CHAPTER 17 ■ DIRECT ACCESS FILES

475

 CLOSE ErrorFile
 RedundantStockRpt
 TransFile
 StockFile
 VehicleFile

 STOP RUN.

CheckStockFile.
 READ StockFile KEY IS VehicleNumSF
 INVALID KEY CONTINUE
 END-READ
 IF StockFileOpOK
 PERFORM WriteErrorLine
 ELSE IF NoStockRec
 PERFORM InsertVehicleRec
 ELSE
 DISPLAY "Unexpected Read Error on Stockfile"
 DISPLAY "Stockfile status = " StockErrStatus
 END-IF
 END-IF.

InsertVehicleRec.
 MOVE ManfNameTF TO ManfNameVF
 MOVE VehicleDescTF TO VehicleDescVF
 MOVE VehicleNumTF TO VehicleNumVF
 WRITE VehicleRecVF
 INVALID KEY CONTINUE
 END-WRITE
 IF VehicleRecExists PERFORM WriteErrorLine
 ELSE IF NOT VehicleFileOpOK
 DISPLAY "Unexpected Write Error on VehicleFile."
 DISPLAY "Vehicle file status = " VehicleErrStatus
 END-IF
 END-IF.

DeleteVehicleRec.
 READ VehicleFile
 INVALID KEY CONTINUE
 END-READ
 IF NoVehicleRec PERFORM WriteErrorLine
 ELSE IF VehicleFileOpOK
 DELETE VehicleFile RECORD
 INVALID KEY
 DISPLAY "Unexpected Delete Error on VehicleFile"
 DISPLAY "Vehicle file status = " VehicleErrStatus
 END-DELETE
 PERFORM UpdateStockFile
 ELSE
 DISPLAY "DeleteProblem = " VehicleErrStatus
 END-IF
 END-IF.

CHAPTER 17 ■ DIRECT ACCESS FILES

476

WriteErrorLine.
 MOVE TransRecTF TO ErrorRec
 WRITE ErrorRec.

UpdateStockFile.
 MOVE VehicleNumSF TO PrevVehicleNum
 READ StockFile KEY IS VehicleNumSF
 INVALID KEY CONTINUE
 END-READ
 IF StockFileOpOK
 SET NotEndOfStockFile TO TRUE
 PERFORM PrintStockRpt
 UNTIL VehicleNumSF NOT EQUAL TO PrevVehicleNum
 OR EndOfStockFile
 END-IF.

PrintStockRpt.
 GENERATE DetailLine
 MOVE ZEROS TO VehicleNumSF
 REWRITE StockRecSF
 INVALID KEY DISPLAY "ERROR ON REWRITE"
 END-REWRITE
 READ StockFile NEXT RECORD
 AT END SET EndOfStockFile TO TRUE

 END-READ.

477

CHAPTER 18

The COBOL Report Writer

This chapter introduces the COBOL Report Writer. In a series of increasingly complex programs, you learn how to use
the Report Writer to create control-break-based report programs. By examining these programs, you are gradually
introduced to the new verbs, clauses, sections and concepts of the Report Writer. You see how to use the RD entry in
the REPORT SECTION to specify control-break items and define the basic layout of the page. The chapter explores report
groups and how to create report groups linked to the control-break items specified in the report’s RD entry. You learn
how to use the SUM clause for subtotaling and rolling forward. The final program introduces declaratives and how to use
them to extend the capabilities of the Report Writer. Once you’ve seen the capabilities of the Report Writer through the
example programs, the chapter explores the verbs, clauses, and concepts of the Report Writer more formally.

Declaratives can be used to extend the capabilities of the Report Writer, but you can also use them to define
exception-handling procedures for files. The final section explains how to create declaratives for file error handling.

Report Writer
Producing reports is an important aspect of business programming. Nowadays, reports may consist of rows and
columns of figures and be supported by summary information in the form of a variety of charts and graphs. In the
past, reports consisted solely of printed figures. You’ve probably seen such reports in old films, where a management
person is poring over page after page of green-lined, fan-fold computer printout.

Although producing reports is important, unfortunately the report programs produced using standard COBOL
print files (see Chapter 8) are often tedious to code. Report programs are long, achieving correct placement of
horizontal and vertical print items is laborious, and the programs frequently consist of repetitions of the tasks and
techniques (such as control-break processing) used in other report programs. In recognition of the importance of
reports in the business domain, and to simplify the task of writing report programs, COBOL provides the Report Writer.

Like indexed files, the COBOL Report Writer used to be one of the jewels in COBOL’s crown. But today, just as
relational databases have eroded the importance of indexed files, so off-the-shelf packages such as Crystal Reports
with its array of charts and graphs have put COBOL’s Report Writer in the shade. Nevertheless, although summary
information in the form of charts and graphs is very useful, there is still a need for printed reports; and you can learn a
lot from a close acquaintance with the Report Writer.

I start by showing you an example of a report produced by the Report Writer. Then, through a series of
increasingly complex report programs, you learn how to create the program that produced that report. The final
example program takes the complexity one stage further.

Example Report: Solace Solar Solutions
This report shows the sales made by agents selling solar power products in each of the 50 American states. You see
the program specification and the report, and then I follow up with a discussion that highlights the report’s features.
After discussing the report, I show you the PROCEDURE DIVISION code that produced the report.

CHAPTER 18 ■ THE COBOL REPORT WRITER

478

Problem Specification

Solace Solar Solutions is a company that sells solar power products through its sales agents all over the United States.
Sales agents are paid a base salary (which is different from state to state) and a commission of 8% on the value of the
products they sell.

The monthly report shows the value of the individual sales and the total sales made by each Solace sales agent.
The total sales made for the state and the base salary for the state are also shown. The report is printed on ascending
sales agent number within ascending state name.

The report is based on a sequential sales file, which contains details of each sale made in the country. The sales
file is ordered on ascending sales agent number within ascending state number. Each record of the sales file has the
following description:

Field Type Length Value

StateNum 9 2 1–50

SalesAgentNum 9 3 1–999

ValueOfSale 9 7 0.50–99999.99

Example Report

The first page of the example report is shown in Example 18-1. For ease of reference, I have attached line numbers
to the report.

Example 18-1. Solace Solar Solutions Example Report: First Page

01 Solace Solar Solutions
02 Sales Agent - Sales and Salary Report Monthly Report
03
04 State Agent Value
05 Name Number Of Sales
06 Alabama 38 $9,325.14
07 $11,839.19
08 $19,102.61
09 Sales for sales agent 38 = $40,266.94
10
11
12 Alabama 73 $4,503.71
13 $11,659.87
14 $19,540.19
15 Sales for sales agent 73 = $35,703.77
16
17 Total sales for Alabama $75,970.71
18 Base salary for Alabama $1,149.00
19 --
20
21

CHAPTER 18 ■ THE COBOL REPORT WRITER

479

22 Alaska 55 $18,981.84
23 $3,065.97
24 $10,686.92
25 Sales for sales agent 55 = $32,734.73
26
27
28 Alaska 89 $11,187.72
29 $14,145.82
30 Sales for sales agent 89 = $25,333.54
31
32
33 Alaska 104 $18,005.42
34 $17,614.20
35 Sales for sales agent 104 = $35,619.62
36
37 Total sales for Alaska $93,687.89
38 Base salary for Alaska $1,536.00
39 --
40
41
42 Arizona 23 $4,237.72
43
44
45
46
47
48
49 Programmer - Michael Coughlan Page : 1

Report Writer Tasks

To get a feel for what the Report Writer can do, let’s examine in some detail what it has to do to produce this report:

Print the report heading lines (lines 01–02). These are printed, once only, at the beginning of •
the report.

Print the subject heading lines (page headings). These are printed at the top of each page—on •
lines 04–05 on the first page and lines 01–02 on subsequent pages.

Print a footer at the bottom of each page (showing the name of the programmer and a page •
number: line 49). To print the page number, the Report Writer must keep a page count.

Keep a line count, and change the page when the count is greater than 42 (unless the next thing •
to print is a sales agent total line, a state total line, a base salary line, or the final total line).

Print the details of a sales agent’s sales (for example, as shown for sales agent 38 on lines 06–08). •
Because the sales file only contains a state number, the Report Writer must get the state name
from a lookup table.

Suppress the sales agent number and state name after their first occurrence (but restore them •
if there is a change of page, sales agent, or state name: see lines 06, 12, 22, 28, 33, 42).

When the sales agent number changes, print the total sales accumulated for the sales agent •
(lines 15, 25, 35)

CHAPTER 18 ■ THE COBOL REPORT WRITER

480

When the state number changes, print the total sales accumulated for the state (lines 17, 37).•

When the state number changes, get the base salary for the state from a lookup table, and print •
it (lines 18, 38).

When the state number changes, print a line of hyphens to separate this state from the next •
(lines 19, 39).

Accumulate all the sales values, and print them as a final total at the end of the report (not shown on the
example page).

Report Writer PROCEDURE DIVISION

If you had to create the Solace Solar Solutions sales report using the approach shown in Chapter 8 (that is, using a
control-break program and the WRITE verb), you would probably write a program that had a PROCEDURE DIVISION
with more than 100 lines of code. It is interesting to discover that the Report Writer can do all this work in just the 10
COBOL statements shown in Example 18-2.

Example 18-2. PROCEDURE DIVISION That Produces the Sales Report

PROCEDURE DIVISION.
Begin.
 OPEN INPUT SalesFile.
 OPEN OUTPUT PrintFile.
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ.
 INITIATE SolaceSalesReport.
 PERFORM PrintSalaryReport
 UNTIL EndOfFile.
 TERMINATE SolaceSalesReport.
 CLOSE SalesFile, PrintFile.
 STOP RUN.

PrintSalaryReport.
 GENERATE DetailLine.
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ.

So Much Work, So Little Code

How can so much work be done in so little PROCEDURE DIVISION code? How does the Report Writer know that page
headings or page footers are required? If you wrote a program to print this report using WRITE statements, you would
need a control-break program with a PERFORM UNTIL StateNum NOT EQUAL TO PrevStateNum loop to process each
state and an inner loop PERFORM UNTIL SalesAgentNum NOT EQUAL TO PrevSalesAgentNum to process the sales for
each sales agent. Without those loops, how does the Report Writer know it is time to print the sales agent totals or the
state totals, and how does it accumulate those totals in the first place?

To achieve so much in so little PROCEDURE DIVISION code, the Report Writer uses a declarative approach to
programming rather than the imperative (procedural) approach familiar to most programmers. In imperative
programming, you tell the computer how to do what you want done. In declarative programming, you tell the
computer what you would like done, and the computer works out how to do it. When you use the Report Writer, you

CHAPTER 18 ■ THE COBOL REPORT WRITER

481

declare what to print when a page heading, page footer, sales agent total, state total, or final total is required, and the
Report Writer works out when to print these items. In keeping with the adage that “there is no such thing as a free
lunch,” the PROCEDURE DIVISION of a Report Writer program is short because most of the work is done in the (greatly
expanded) DATA DIVISION.

How the Report Writer Works
The Report Writer works by recognizing that many reports take (more or less) the same shape. There may be headings
at the beginning of the report and footers at the end. There may be headings at the top of each page and footers at the
bottom. Headings or footers may need to be printed whenever there is a control break (that is, when the value in a
specified field changes, such as when the sales agent number or state number changes in Example 18-1). In addition,
the detail lines that display the information summarized in control-break totals also need to be printed.

The Report Writer calls these different report items report groups. Reports are organized around report groups.
The Report Writer recognizes the seven types of report group shown in Example 18-3; the indentation shows their
relative importance/order of execution.

Example 18-3. Report Group Types

REPORT HEADING or RH group
- printed once at the beginning of the report
 PAGE HEADING or PH group
 - printed at the top of each page
 CONTROL HEADING or CH group
 - printed at the beginning of each control break
 DETAIL or DE group
 - printed each time the GENERATE statement is executed
 CONTROL FOOTING or CF group
 - printed at the end of each control break
 PAGE FOOTING or PF group
 - printed at the bottom of each page
REPORT FOOTING or RF group
- printed once at the end of the report.

For each report, there must be a Report Description (RD) entry in the REPORT SECTION of the DATA DIVISION that
fully describes the report. The report groups that describe the report are defined as records in the RD entries. Most
groups are defined once for each report, but control groups are defined for each control-break item. For instance,
in the example program, control footings are defined on SalesAgentNum, StateNum, and FINAL. FINAL is a special
control group that is invoked before or after the normal control groups (before if CONTROL HEADING FINAL is used, and
after if CONTROL FOOTING FINAL is used).

Ordinary control groups are defined on a control-break data item. The Report Writer monitors the contents of the
designated data item, and when the value changes, a control break is automatically initiated. When the control break
is initiated, the CONTROL FOOTING group of the breaking item (if there is one) and the CONTROL HEADING group of the
next item are printed.

Writing a report program consists of a number of tedious tasks such as keeping track of the line count to ensure
that page headings or footers are printed when required, or simply moving data values into their corresponding items
in the print line. In addition, when you write a report according to a program specification, you often have to adhere to
the report layout specified in a print layout form such as that shown in Figure 18-1. When you have to adhere to such
a form, it can be tricky to get the vertical and horizontal placement of printed items correct. Counting characters to
figure out what size to make each of the fields that define a print line is tedious and time consuming.

CHAPTER 18 ■ THE COBOL REPORT WRITER

482

The Report Writer makes it easier to write report programs by

Allowing simple vertical and horizontal placement of printed items using the • LINE IS and
COLUMN IS phrases in the data declaration

Automatically moving data values to output items using the • SOURCE phrase

Keeping a line count, and automatically generating report and page headers and footers at the •
appropriate times

Keeping a page count that can be referenced in the report declaration•

Recognizing control breaks, and automatically generating the appropriate control headings •
and footers

Automatically accumulating totals, subtotals, and final totals•

Writing a Report Program
Let’s see how to write a report program using the Report Writer. I start with a simplified version of the program
that produced the report in Example 18-1. Succeeding examples add to it to demonstrate additional Report Writer
facilities. The final example demonstrates even more than the report in Example 18-1.

Figure 18-1. Print layout form showing the layout required for a report

CHAPTER 18 ■ THE COBOL REPORT WRITER

483

Modifying the Specification

This first example program creates a report program that does the following:

Prints a report heading•

Prints a heading and a footer on each page•

For each sale record, prints the state name (obtained from a table), the sales agent number, •
and the value of the sale

Prints the total value of the sales made by each sales agent•

Prints a line of hyphens at the end of each state to separate the states from one another•

The first page of the report produced by this program is shown in Example 18-4 (line numbers have been added).
The program that produces the report is shown in Listing 18-1.

Example 18-4. Simplified Version of the Report Showing Only Sales Agent Totals

01 Solace Solar Solutions
02 Sales Agent - Sales and Salary Report Monthly Report
03
04 State Agent Value
05 Name Number Of Sales
06 Alabama 38 $9,325.14
07 Alabama 38 $11,839.19
08 Alabama 38 $19,102.61
09 Sales for sales agent 38 = $40,266.94
10
11
12 Alabama 73 $4,503.71
13 Alabama 73 $11,659.87
14 Alabama 73 $19,540.19
15 Sales for sales agent 73 = $35,703.77
16 --
17
18
19 Alaska 55 $18,981.84
20 Alaska 55 $3,065.97
21 Alaska 55 $10,686.92
22 Sales for sales agent 55 = $32,734.73
23
24
25 Alaska 89 $11,187.72
26 Alaska 89 $14,145.82
27 Sales for sales agent 89 = $25,333.54
28
29
30 Alaska 104 $18,005.42
31 Alaska 104 $17,614.20
32 Sales for sales agent 104 = $35,619.62
33 --
34
35

CHAPTER 18 ■ THE COBOL REPORT WRITER

484

36 Arizona 23 $4,237.72
37 Arizona 23 $13,315.00
38 Sales for sales agent 23 = $17,552.72
39
40
41 Arizona 90 $2,078.93
42 Arizona 90 $17,228.88
43 Arizona 90 $8,929.96
44 Sales for sales agent 90 = $28,237.77
45 --
46
47
48
49 Programmer - Michael Coughlan Page : 1

Listing 18-1. Simplified Report Program

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing18-1.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT SalesFile ASSIGN TO "Listing18-1-Sales.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT PrintFile ASSIGN TO "Listing18-1.Rpt".

DATA DIVISION.
FILE SECTION.
FD SalesFile.
01 SalesRecord.
 88 EndOfFile VALUE HIGH-VALUES.
 02 StateNum PIC 99.
 02 SalesAgentNum PIC 999.
 02 ValueOfSale PIC 9(5)V99.

FD PrintFile
 REPORT IS SolaceSalesReport.

WORKING-STORAGE SECTION.
01 StateNameTable.
 02 StateNameValues.
 03 FILLER PIC X(14) VALUE "Alabama".
 03 FILLER PIC X(14) VALUE "Alaska".
 03 FILLER PIC X(14) VALUE "Arizona".
 03 FILLER PIC X(14) VALUE "Arkansas".
 03 FILLER PIC X(14) VALUE "California".
 03 FILLER PIC X(14) VALUE "Colorado".
 03 FILLER PIC X(14) VALUE "Connecticut".
 03 FILLER PIC X(14) VALUE "Delaware".
 03 FILLER PIC X(14) VALUE "Florida".
 03 FILLER PIC X(14) VALUE "Georgia".

CHAPTER 18 ■ THE COBOL REPORT WRITER

485

 03 FILLER PIC X(14) VALUE "Hawaii".
 03 FILLER PIC X(14) VALUE "Idaho".
 03 FILLER PIC X(14) VALUE "Illinois".
 03 FILLER PIC X(14) VALUE "Indiana".
 03 FILLER PIC X(14) VALUE "Iowa".
 03 FILLER PIC X(14) VALUE "Kansas".
 03 FILLER PIC X(14) VALUE "Kentucky".
 03 FILLER PIC X(14) VALUE "Louisiana".
 03 FILLER PIC X(14) VALUE "Maine".
 03 FILLER PIC X(14) VALUE "Maryland".
 03 FILLER PIC X(14) VALUE "Massachusetts".
 03 FILLER PIC X(14) VALUE "Michigan".
 03 FILLER PIC X(14) VALUE "Minnesota".
 03 FILLER PIC X(14) VALUE "Mississippi".
 03 FILLER PIC X(14) VALUE "Missouri".
 03 FILLER PIC X(14) VALUE "Montana".
 03 FILLER PIC X(14) VALUE "Nebraska".
 03 FILLER PIC X(14) VALUE "Nevada".
 03 FILLER PIC X(14) VALUE "New Hampshire".
 03 FILLER PIC X(14) VALUE "New Jersey".
 03 FILLER PIC X(14) VALUE "New Mexico".
 03 FILLER PIC X(14) VALUE "New York".
 03 FILLER PIC X(14) VALUE "North Carolina".
 03 FILLER PIC X(14) VALUE "North Dakota".
 03 FILLER PIC X(14) VALUE "Ohio".
 03 FILLER PIC X(14) VALUE "Oklahoma".
 03 FILLER PIC X(14) VALUE "Oregon".
 03 FILLER PIC X(14) VALUE "Pennsylvania".
 03 FILLER PIC X(14) VALUE "Rhode Island".
 03 FILLER PIC X(14) VALUE "South Carolina".
 03 FILLER PIC X(14) VALUE "South Dakota".
 03 FILLER PIC X(14) VALUE "Tennessee".
 03 FILLER PIC X(14) VALUE "Texas".
 03 FILLER PIC X(14) VALUE "Utah".
 03 FILLER PIC X(14) VALUE "Vermont".
 03 FILLER PIC X(14) VALUE "Virginia".
 03 FILLER PIC X(14) VALUE "Washington".
 03 FILLER PIC X(14) VALUE "West Virginia".
 03 FILLER PIC X(14) VALUE "Wisconsin".
 03 FILLER PIC X(14) VALUE "Wyoming".
02 FILLER REDEFINES StateNameValues.
 03 State OCCURS 50 TIMES.
 04 StateName PIC X(14).

REPORT SECTION.
RD SolaceSalesReport
 CONTROLS ARE StateNum
 SalesAgentNum
 PAGE LIMIT IS 54
 FIRST DETAIL 3
 LAST DETAIL 46
 FOOTING 48.

CHAPTER 18 ■ THE COBOL REPORT WRITER

486

01 TYPE IS REPORT HEADING NEXT GROUP PlUS 1.
 02 LINE 1.
 03 COLUMN 20 PIC X(32)
 VALUE "Solace Solar Solutions".

 02 LINE 2.
 03 COLUMN 6 PIC X(51)
 VALUE "Sales Agent - Sales and Salary Report Monthly Report".

01 TYPE IS PAGE HEADING.
 02 LINE IS PLUS 1.
 03 COLUMN 2 PIC X(5) VALUE "State".
 03 COLUMN 16 PIC X(5) VALUE "Agent".
 03 COLUMN 32 PIC X(8) VALUE "Value".

 02 LINE IS PLUS 1.
 03 COLUMN 2 PIC X(4) VALUE "Name".
 03 COLUMN 16 PIC X(6) VALUE "Number".
 03 COLUMN 31 PIC X(8) VALUE "Of Sales".

01 DetailLine TYPE IS DETAIL.
 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(14)
 SOURCE StateName(StateNum).
 03 COLUMN 17 PIC ZZ9
 SOURCE SalesAgentNum.
 03 COLUMN 30 PIC $$$,$$$.99 SOURCE ValueOfSale.

01 SalesAgentGrp
 TYPE IS CONTROL FOOTING SalesAgentNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(21) VALUE "Sales for sales agent".
 03 COLUMN 37 PIC ZZ9 SOURCE SalesAgentNum.
 03 COLUMN 43 PIC X VALUE "=".
 03 TotalAgentSales COLUMN 45 PIC $$$$$,$$$.99 SUM ValueOfSale.

01 StateGrp TYPE IS CONTROL FOOTING StateNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(58) VALUE ALL "-".

01 TYPE IS PAGE FOOTING.
 02 LINE IS 49.
 03 COLUMN 1 PIC X(29) VALUE "Programmer - Michael Coughlan".
 03 COLUMN 55 PIC X(6) VALUE "Page :".
 03 COLUMN 62 PIC ZZ9 SOURCE PAGE-COUNTER.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT SalesFile.
 OPEN OUTPUT PrintFile.
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ.

CHAPTER 18 ■ THE COBOL REPORT WRITER

487

 INITIATE SolaceSalesReport.
 PERFORM PrintSalaryReport
 UNTIL EndOfFile.
 TERMINATE SolaceSalesReport.
 CLOSE SalesFile, PrintFile.
 STOP RUN.

PrintSalaryReport.
 GENERATE DetailLine.
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ.

The first thing to note is that the PROCEDURE DIVISION for this program is the same as for the program that
produced the report in Example 18-1. This is your first indication that most of the work is being done in the DATA
DIVISION. As I add complexity to the program in the succeeding examples, eventually I have to make some changes to
the PROCEDURE DIVISION code.

The second thing to note is that just like an ordinary print file, a Report Writer file must have a SELECT and ASSIGN
clause in the ENVIRONMENT DIVISION and an FD entry in the DATA DIVISION. But look at the FD entry. Instead of a
record description, you have a REPORT IS SolaceSalesReport entry. This entry tells you that the Report Writer is
being used and that this particular report is called SolaceSalesReport. This entry links the PrintFile with the report
described in the REPORT SECTION. That is the next thing to note; when you use the Report Writer, you describe the
report in the REPORT SECTION.

The first entry in the REPORT SECTION is the RD entry, which is followed by the name of the report. This is the same
name you use in the REPORT IS entry in the FD entry of the PrintFile. The RD entry has a number of clauses. The
first is the CONTROLS ARE clause, which allows you to identify the control-break item(s) that the Report Writer must
monitor in order to detect a control break. These entries usually identify fields in an input file, but they don’t have to.
The remaining RD clauses specify information about the page, such as the size of the page, the first line where a detail
line may be printed, and the line after which the footer may be printed.

The remaining entries identify the required report groups. Each report group is a record and must start with a
01 level number. As noted in Example 18-3, there are seven possible types of report groups, and the first entry in the
report group must specify the type of the group. Listing 18-1 has the following report groups:

A • REPORT HEADING group that specifies what is to be printed at the start of the report.

A • PAGE HEADING group that specifies what is to be printed at the top of each page.

A • DETAIL group that specifies what is to be printed for each sales record.

• CONTROL FOOTING groups for the SalesAgentNum control-break item and the StateNum
control-break item. These groups specify what is printed when a control break occurs on
SalesAgentNum or StateNum.

A • PAGE FOOTING group that specifies what is to be printed at the bottom of each page.

Report Groups

Let’s look at some of the entries in these report groups in more detail. The REPORT HEADING group is of interest
because it demonstrates absolute position using the LINE clause. It also demonstrates the COLUMN clause, which you
use to specify the horizontal placement of the material to be printed. The final item of interest in this group is the NEXT
GROUP PLUS clause, which specifies that the next group will start one line down from this group. Although, as you see
with the PAGE HEADING group, you can specify vertical placement using a relative reference rather than an absolute
line number, that is not always sufficient for all your positioning needs. Sometimes you require a combination of the
NEXT GROUP PLUS and the LINE IS PLUS clauses.

CHAPTER 18 ■ THE COBOL REPORT WRITER

488

You might think that the PAGE HEADING group would also use absolute positioning, but in this example, the page
headings are not printed on the same line on every page. On the first page, they are printed after the report heading
lines; but on the other pages, they are printed on the first line. For this reason, LINE IS PLUS relative positioning is
used for this group. Because the other groups, except the PAGE FOOTING group, are also printed on different lines on
the page, they also use LINE IS PLUS relative positioning.

The main clause of interest in the DETAIL report group is the SOURCE clause. This clause specifies that the data for
this print item is to come from some source data item. This is how the Report Writer gets values for the state name
(from the table), the sales agent number, and the value of the sale.

SalesAgentGrp is a CONTROL FOOTING group. It is printed whenever there is a control break on SalesAgentNum.
When you create a CONTROL group, you have to associate the group with a control item mentioned in the RD..CONTROLS
ARE phrase. This is how the Report Write associates a particular control-break item with a CONTROL HEADING or
FOOTING group. At the moment, this group only prints a line of hyphens; but the next program uses it to accumulate
and print the total sales agent sales.

The final group to consider is the PAGE FOOTING group. The item of interest in this group is PAGE-COUNTER, which
is identified as the source of the page number printed in this footer. PAGE-COUNTER is a special Report Writer register
that automatically keeps a count of the pages printed.

PROCEDURE DIVISION Notes

Now that you have seen the role played by the DATA DIVISION entries in producing the report, you need to know
how the report is driven from the PROCEDURE DIVISION. The Report Writer introduces three new verbs: INITIATE,
GENERATE, and TERMINATE.

When the INITIATE verb is executed, all the heading groups, such as REPORT HEADING and the first PAGE HEADING,
are produced. All the system registers, such as PAGE-COUNTER, are set to their starting values.

When the TERMINATE verb is executed, all the relevant FOOTING groups, such as REPORT FOOTING and the last PAGE
FOOTING, are produced.

The report is driven by the GENERATE verb. GENERATE is normally associated either with the DETAIL group (as it is
in this example) or with the report name. When GENERATE is associated with a DETAIL group, each time the GENERATE
statement is executed, the DETAIL group is printed. Obviously this makes sense only if each time GENERATE executes,
the DETAIL group is fed new data. In this program, the new data is provided by reading the sales file.

Adding Features to the Report Program
Let’s add some features to the Solace Sales Report program. Let’s change the program so that the report now shows
the total sales for the sales agent, total sales for the state, and a final total for the country. The report should also show
the base salary paid to sales agents in each state. To do this, the state table has to be modified to include the salary
information. One final thing needs to change. If you look at the report in Example 18-4, you see that each line that
prints a sales value also prints the state name and the sales agent number. This looks unsightly. The state name and
the sales agent number should be suppressed after their first occurrence. Instead of this

04 State Agent Value
05 Name Number Of Sales
06 Alabama 38 $9,325.14
07 Alabama 38 $11,839.19
08 Alabama 38 $19,102.61
09 Sales for sales agent 38 = $40,266.94

CHAPTER 18 ■ THE COBOL REPORT WRITER

489

the report should print this:

04 State Agent Value
05 Name Number Of Sales
06 Alabama 38 $9,325.14
07 $11,839.19
08 $19,102.61
09 Sales for sales agent 38 = $40,266.94

You probably have realized by now that these specification changes are satisfied by the report shown in
Example 18-1. Listing 18-2 is the program that produced that report.

Listing 18-2. Program to Create a Report with Sales Totals

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing18-2.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT SalesFile ASSIGN TO "Listing18-2-Sales.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT PrintFile ASSIGN TO "Listing18-2.Rpt".

DATA DIVISION.
FILE SECTION.
FD SalesFile.
01 SalesRecord.
 88 EndOfFile VALUE HIGH-VALUES.
 02 StateNum PIC 99.
 02 SalesAgentNum PIC 999.
 02 ValueOfSale PIC 9(5)V99.

FD PrintFile
 REPORT IS SolaceSalesReport.

WORKING-STORAGE SECTION.
01 StateNameTable.
 02 StateNameValues.
 03 FILLER PIC X(18) VALUE "1149Alabama".
 03 FILLER PIC X(18) VALUE "1536Alaska".
 03 FILLER PIC X(18) VALUE "1284Arizona".
 03 FILLER PIC X(18) VALUE "1064Arkansas".
 03 FILLER PIC X(18) VALUE "1459California".
 03 FILLER PIC X(18) VALUE "1508Colorado".
 03 FILLER PIC X(18) VALUE "1742Connecticut".
 03 FILLER PIC X(18) VALUE "1450Delaware".
 03 FILLER PIC X(18) VALUE "1328Florida".
 03 FILLER PIC X(18) VALUE "1257Georgia".

CHAPTER 18 ■ THE COBOL REPORT WRITER

490

 03 FILLER PIC X(18) VALUE "1444Hawaii".
 03 FILLER PIC X(18) VALUE "1126Idaho".
 03 FILLER PIC X(18) VALUE "1439Illinois".
 03 FILLER PIC X(18) VALUE "1203Indiana".
 03 FILLER PIC X(18) VALUE "1267Iowa".
 03 FILLER PIC X(18) VALUE "1295Kansas".
 03 FILLER PIC X(18) VALUE "1126Kentucky".
 03 FILLER PIC X(18) VALUE "1155Louisiana".
 03 FILLER PIC X(18) VALUE "1269Maine".
 03 FILLER PIC X(18) VALUE "1839Maryland".
 03 FILLER PIC X(18) VALUE "1698Massachusetts".
 03 FILLER PIC X(18) VALUE "1257Michigan".
 03 FILLER PIC X(18) VALUE "1479Minnesota".
 03 FILLER PIC X(18) VALUE "0999Mississippi".
 03 FILLER PIC X(18) VALUE "1236Missouri".
 03 FILLER PIC X(18) VALUE "1192Montana".
 03 FILLER PIC X(18) VALUE "1261Nebraska".
 03 FILLER PIC X(18) VALUE "1379Nevada".
 03 FILLER PIC X(18) VALUE "1571New Hampshire".
 03 FILLER PIC X(18) VALUE "1743New Jersey".
 03 FILLER PIC X(18) VALUE "1148New Mexico".
 03 FILLER PIC X(18) VALUE "1547New York".
 03 FILLER PIC X(18) VALUE "1237North Carolina".
 03 FILLER PIC X(18) VALUE "1290North Dakota".
 03 FILLER PIC X(18) VALUE "1256Ohio".
 03 FILLER PIC X(18) VALUE "1155Oklahoma".
 03 FILLER PIC X(18) VALUE "1309Oregon".
 03 FILLER PIC X(18) VALUE "1352Pennsylvania".
 03 FILLER PIC X(18) VALUE "1435Rhode Island".
 03 FILLER PIC X(18) VALUE "1172South Carolina".
 03 FILLER PIC X(18) VALUE "1206South Dakota".
 03 FILLER PIC X(18) VALUE "1186Tennessee".
 03 FILLER PIC X(18) VALUE "1244Texas".
 03 FILLER PIC X(18) VALUE "1157Utah".
 03 FILLER PIC X(18) VALUE "1374Vermont".
 03 FILLER PIC X(18) VALUE "1607Virginia".
 03 FILLER PIC X(18) VALUE "1487Washington".
 03 FILLER PIC X(18) VALUE "1062West Virginia".
 03 FILLER PIC X(18) VALUE "1393Wisconsin".
 03 FILLER PIC X(18) VALUE "1393Wyoming".
02 FILLER REDEFINES StateNameValues.
 03 State OCCURS 50 TIMES.
 04 BaseSalary PIC 9(4).
 04 StateName PIC X(14).

REPORT SECTION..
RD SolaceSalesReport
 CONTROLS ARE FINAL
 StateNum
 SalesAgentNum

CHAPTER 18 ■ THE COBOL REPORT WRITER

491

 PAGE LIMIT IS 54
 FIRST DETAIL 3
 LAST DETAIL 42
 FOOTING 48.

01 TYPE IS REPORT HEADING NEXT GROUP PlUS 1.
 02 LINE 1.
 03 COLUMN 20 PIC X(32)
 VALUE "Solace Solar Solutions".

 02 LINE 2.
 03 COLUMN 6 PIC X(51)
 VALUE "Sales Agent - Sales and Salary Report Monthly Report".

01 TYPE IS PAGE HEADING.
 02 LINE IS PLUS 1.
 03 COLUMN 2 PIC X(5) VALUE "State".
 03 COLUMN 16 PIC X(5) VALUE "Agent".
 03 COLUMN 32 PIC X(8) VALUE "Value".

 02 LINE IS PLUS 1.
 03 COLUMN 2 PIC X(4) VALUE "Name".
 03 COLUMN 16 PIC X(6) VALUE "Number".
 03 COLUMN 31 PIC X(8) VALUE "Of Sales".

01 DetailLine TYPE IS DETAIL.
 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(14)
 SOURCE StateName(StateNum) GROUP INDICATE.
 03 COLUMN 17 PIC ZZ9
 SOURCE SalesAgentNum GROUP INDICATE.
 03 COLUMN 30 PIC $$$,$$$.99 SOURCE ValueOfSale.

01 SalesAgentGrp
 TYPE IS CONTROL FOOTING SalesAgentNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(21) VALUE "Sales for sales agent".
 03 COLUMN 37 PIC ZZ9 SOURCE SalesAgentNum.
 03 COLUMN 43 PIC X VALUE "=".
 03 TotalAgentSales COLUMN 45 PIC $$$$$,$$$.99 SUM ValueOfSale.

01 StateGrp TYPE IS CONTROL FOOTING StateNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 2.
 03 COLUMN 15 PIC X(15) VALUE "Total sales for".
 03 COLUMN 31 PIC X(14) SOURCE StateName(StateNum).
 03 TotalStateSales COLUMN 45 PIC $$$$$,$$$.99 SUM TotalAgentSales.

 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(15) VALUE "Base salary for".
 03 COLUMN 31 PIC X(14) SOURCE StateName(StateNum).
 03 COLUMN 48 PIC $$,$$$.99 SOURCE BaseSalary(StateNum).

CHAPTER 18 ■ THE COBOL REPORT WRITER

492

 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(58) VALUE ALL "-".

01 TotalSalesGrp TYPE IS CONTROL FOOTING FINAL.
 02 LINE IS PLUS 2.
 03 COLUMN 15 PIC X(11)
 VALUE "Total sales".
 03 COLUMN 46 PIC X VALUE "=".
 03 COLUMN 48 PIC $$,$$$,$$$.99 SUM TotalStateSales.

01 TYPE IS PAGE FOOTING.
 02 LINE IS 49.
 03 COLUMN 1 PIC X(29) VALUE "Programmer - Michael Coughlan".
 03 COLUMN 55 PIC X(6) VALUE "Page :".
 03 COLUMN 62 PIC ZZ9 SOURCE PAGE-COUNTER.

PROCEDURE DIVISION.
Begin.
 OPEN INPUT SalesFile.
 OPEN OUTPUT PrintFile.
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ.
 INITIATE SolaceSalesReport.
 PERFORM PrintSalaryReport
 UNTIL EndOfFile.
 TERMINATE SolaceSalesReport.
 CLOSE SalesFile, PrintFile.
 STOP RUN.

PrintSalaryReport.
 GENERATE DetailLine.
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ.

Let’s look at the changes. The major differences between Listing 18-1 and Listing 18-2 are shown in bold. The
PROCEDURE DIVISION has not changed. But there is a new control group: in order to print the final total for the country,
a CONTROL FOOTING group is required. This control group is controlled by a special control item called FINAL. Note
that now the CONTROLS ARE phrase in the report’s RD contains the word FINAL. The FINAL control-break item activates
when the report is terminated. You should also take note of the order of the control-break items in the CONTROLS ARE
phrase. FINAL is the major control break, StateNum is next in importance, and SalesAgentNum is the least important.
A break on a major control item causes a break on all the subordinate control items.

If you examine the report in Example 18-5, you’ll see that now StateName and SalesAgentNum are suppressed
after their first occurrence. This is done by specifying the GROUP INDICATE clause for the data item.

Another change to the program was required to accumulate and print the total sales for the sales agent. The
Report Writer has three ways of incrementing totals: subtotaling, rolling forward, and crossfooting. All these methods
use the SUM clause but target different types of data item. Subtotaling targets data items in the FILE SECTION or the
WORKING-STORAGE SECTION. Rolling forward targets data items in a subordinate CONTROL FOOTING group. Crossfooting
targets data items in the same group. This example uses subtotaling and rolling forward.

CHAPTER 18 ■ THE COBOL REPORT WRITER

493

Subtotaling is used in SalesAgentGrp to sum the sales made by the agent. A SUM clause is used that targets the
ValueOfSale data item so that every time a GENERATE statement is executed, the current value of ValueOfSale is added
to a sum counter. When the control break occurs, the CONTROL FOOTING group activates, and the value accumulated in
the sum counter is printed.

There is something else here that you note. As you have no doubt noticed, in the REPORT SECTION you don’t have
to follow a level number with a data-item name or even the word FILLER. This saves a lot of unnecessary work. But
you can include a name if you want to. In the SalesAgentGrp, I have included the name TotalAgentSales. The reason
for naming this item is shown in the StateGrp CONTROL FOOTING group, where it is used as the target of the SUM clause.
Every time there is a control break on SalesAgentNum, the current value of TotalAgentSales is added to the sum
counter in StateGrp. When there is a control break on StateNum, the accumulated value of the sum counter is printed.
This is an example of rolling forward.

Rolling forward is also used with TotalStateSales in StateGrp. TotalStateSales is used as the target of the
SUM clause in TotalSalesGrp to sum each state total into a final total. When the TERMINATE statement is executed, the
final total is printed.

Adding More Features to the Report Program
In the specification at the start of this section, I mentioned that Solace sales agents are paid a base salary and a
commission of 8% on the value of the products they sell. In Listing 18-3, each time the total sales for an agent are
printed, the commission they have earned and their total salary (base salary + commission) should also be printed.
The first page of the report produced by Listing 18-3 is shown in Example 18-5.

Listing 18-3. Adding the Sales Agent Commission and Salary to the Report

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing18-3.
AUTHOR. Michael Coughlan.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT SalesFile ASSIGN TO "Listing18-3-Sales.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT PrintFile ASSIGN TO "Listing18-3.Rpt".

DATA DIVISION.
FILE SECTION.
FD SalesFile.
01 SalesRecord.
 88 EndOfFile VALUE HIGH-VALUES.
 02 StateNum PIC 99.
 02 SalesAgentNum PIC 999.
 02 ValueOfSale PIC 9(5)V99.

FD PrintFile
 REPORT IS SolaceSalesReport.

CHAPTER 18 ■ THE COBOL REPORT WRITER

494

WORKING-STORAGE SECTION.
01 StateNameTable.
0 02 StateNameValues.
 03 FILLER PIC X(18) VALUE "1149Alabama".
 03 FILLER PIC X(18) VALUE "1536Alaska".
 03 FILLER PIC X(18) VALUE "1284Arizona".
 03 FILLER PIC X(18) VALUE "1064Arkansas".
 03 FILLER PIC X(18) VALUE "1459California".
 03 FILLER PIC X(18) VALUE "1508Colorado".
 03 FILLER PIC X(18) VALUE "1742Connecticut".
 03 FILLER PIC X(18) VALUE "1450Delaware".
 03 FILLER PIC X(18) VALUE "1328Florida".
 03 FILLER PIC X(18) VALUE "1257Georgia".
 03 FILLER PIC X(18) VALUE "1444Hawaii".
 03 FILLER PIC X(18) VALUE "1126Idaho".
 03 FILLER PIC X(18) VALUE "1439Illinois".
 03 FILLER PIC X(18) VALUE "1203Indiana".
 03 FILLER PIC X(18) VALUE "1267Iowa".
 03 FILLER PIC X(18) VALUE "1295Kansas".
 03 FILLER PIC X(18) VALUE "1126Kentucky".
 03 FILLER PIC X(18) VALUE "1155Louisiana".
 03 FILLER PIC X(18) VALUE "1269Maine".
 03 FILLER PIC X(18) VALUE "1839Maryland".
 03 FILLER PIC X(18) VALUE "1698Massachusetts".
 03 FILLER PIC X(18) VALUE "1257Michigan".
 03 FILLER PIC X(18) VALUE "1479Minnesota".
 03 FILLER PIC X(18) VALUE "0999Mississippi".
 03 FILLER PIC X(18) VALUE "1236Missouri".
 03 FILLER PIC X(18) VALUE "1192Montana".
 03 FILLER PIC X(18) VALUE "1261Nebraska".
 03 FILLER PIC X(18) VALUE "1379Nevada".
 03 FILLER PIC X(18) VALUE "1571New Hampshire".
 03 FILLER PIC X(18) VALUE "1743New Jersey".
 03 FILLER PIC X(18) VALUE "1148New Mexico".
 03 FILLER PIC X(18) VALUE "1547New York".
 03 FILLER PIC X(18) VALUE "1237North Carolina".
 03 FILLER PIC X(18) VALUE "1290North Dakota".
 03 FILLER PIC X(18) VALUE "1256Ohio".
 03 FILLER PIC X(18) VALUE "1155Oklahoma".
 03 FILLER PIC X(18) VALUE "1309Oregon".
 03 FILLER PIC X(18) VALUE "1352Pennsylvania".
 03 FILLER PIC X(18) VALUE "1435Rhode Island".
 03 FILLER PIC X(18) VALUE "1172South Carolina".
 03 FILLER PIC X(18) VALUE "1206South Dakota".
 03 FILLER PIC X(18) VALUE "1186Tennessee".
 03 FILLER PIC X(18) VALUE "1244Texas".
 03 FILLER PIC X(18) VALUE "1157Utah".
 03 FILLER PIC X(18) VALUE "1374Vermont".
 03 FILLER PIC X(18) VALUE "1607Virginia".
 03 FILLER PIC X(18) VALUE "1487Washington".
 03 FILLER PIC X(18) VALUE "1062West Virginia".

CHAPTER 18 ■ THE COBOL REPORT WRITER

495

 03 FILLER PIC X(18) VALUE "1393Wisconsin".
 03 FILLER PIC X(18) VALUE "1393Wyoming".
02 FILLER REDEFINES StateNameValues.
 03 State OCCURS 50 TIMES.
 04 BaseSalary PIC 9(4).
 04 StateName PIC X(14).

01 MiscVariables.
 02 SalesCommission PIC 9(5)V99.
 02 Percentage PIC V99 VALUE .08.
 02 FullSalary PIC 9(6)V99.
 02 ActualStateNum PIC 99.

REPORT SECTION.
RD SolaceSalesReport
 CONTROLS ARE FINAL
 StateNum
 SalesAgentNum
 PAGE LIMIT IS 66
 HEADING 1
 FIRST DETAIL 6
 LAST DETAIL 54
 FOOTING 56.

01 TYPE IS PAGE HEADING.
 02 LINE 1.
 03 COLUMN 20 PIC X(32)
 VALUE "Solace Solar Solutions".

 02 LINE 2.
 03 COLUMN 6 PIC X(51)
 VALUE "Sales Agent - Sales and Salary Report Monthly Report".

 02 LINE 4.
 03 COLUMN 2 PIC X(5) VALUE "State".
 03 COLUMN 16 PIC X(5) VALUE "Agent".
 03 COLUMN 32 PIC X(8) VALUE "Value".

 02 LINE 5.
 03 COLUMN 2 PIC X(4) VALUE "Name".
 03 COLUMN 16 PIC X(6) VALUE "Number".
 03 COLUMN 31 PIC X(8) VALUE "Of Sales".

01 DetailLine TYPE IS DETAIL.
 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(14)
 SOURCE StateName(StateNum) GROUP INDICATE.
 03 COLUMN 17 PIC 999
 SOURCE SalesAgentNum GROUP INDICATE.
 03 COLUMN 30 PIC $$$,$$$.99 SOURCE ValueOfSale.

CHAPTER 18 ■ THE COBOL REPORT WRITER

496

01 SalesAgentGrp
 TYPE IS CONTROL FOOTING SalesAgentNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(21) VALUE "Sales for sales agent".
 03 COLUMN 37 PIC 999 SOURCE SalesAgentNum.
 03 COLUMN 43 PIC X VALUE "=".
 03 TotalAgentSales COLUMN 45 PIC $$$$$,$$$.99 SUM ValueOfSale.

 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(19) VALUE "Sales commission is".
 03 COLUMN 43 PIC X VALUE "=".
 03 COLUMN 45 PIC $$$$$,$$$.99 SOURCE SalesCommission.

 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(22) VALUE "Sales agent salary is".
 03 COLUMN 43 PIC X VALUE "=".
 03 COLUMN 45 PIC $$$$$,$$$.99 SOURCE FullSalary.

01 StateGrp TYPE IS CONTROL FOOTING StateNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 2.
 03 COLUMN 15 PIC X(15) VALUE "Total sales for".
 03 COLUMN 31 PIC X(14) SOURCE StateName(StateNum).
 03 TotalStateSales COLUMN 45 PIC $$$$$,$$$.99 SUM TotalAgentSales.

 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(15) VALUE "Base salary for".
 03 COLUMN 31 PIC X(14) SOURCE StateName(StateNum).
 03 COLUMN 48 PIC $$,$$$.99 SOURCE BaseSalary(StateNum).

 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(26)
 VALUE "Actual state number is -".
 03 COLUMN 42 PIC Z9 SOURCE ActualStateNum.

 02 LINE IS PLUS 1.
 03 COLUMN 15 PIC X(26)
 VALUE "Supplied state number is -".
 03 COLUMN 42 PIC Z9 SOURCE StateNum.

 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(58) VALUE ALL "-".

01 TotalSalesGrp TYPE IS CONTROL FOOTING FINAL.
 02 LINE IS PLUS 4.
 03 COLUMN 15 PIC X(11)
 VALUE "Total sales".
 03 COLUMN 46 PIC X VALUE "=".
 03 COLUMN 48 PIC $$,$$$,$$$.99 SUM TotalStateSales.

CHAPTER 18 ■ THE COBOL REPORT WRITER

497

01 TYPE IS PAGE FOOTING.
 02 LINE IS 58.
 03 COLUMN 1 PIC X(29) VALUE "Programmer - Michael Coughlan".
 03 COLUMN 55 PIC X(6) VALUE "Page :".
 03 COLUMN 62 PIC ZZ9 SOURCE PAGE-COUNTER.

PROCEDURE DIVISION.
DECLARATIVES.
Calc SECTION.
 USE BEFORE REPORTING SalesAgentGrp.
Calculate-Salary.
 MULTIPLY TotalAgentSales BY Percentage
 GIVING SalesCommission ROUNDED
 ADD SalesCommission, BaseSalary(StateNum)
 GIVING FullSalary.
END DECLARATIVES.

Main SECTION.
Begin.
 OPEN INPUT SalesFile
 OPEN OUTPUT PrintFile
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ
 INITIATE SolaceSalesReport
 PERFORM PrintSalaryReport
 UNTIL EndOfFile
 TERMINATE SolaceSalesReport
 CLOSE SalesFile, PrintFile
 STOP RUN.

PrintSalaryReport.
 GENERATE DetailLine
 READ SalesFile
 AT END SET EndOfFile TO TRUE
 END-READ
 MOVE StateNum TO ActualStateNum.

Example 18-5. Report Showing Commission Earned and Total Salary

 Solace Solar Solutions
 Sales Agent - Sales and Salary Report Monthly Report

 State Agent Value
 Name Number Of Sales
Alabama 038 $9,325.14
 $11,839.19
 $19,102.61
 Sales for sales agent 038 = $40,266.94
 Sales commission is = $3,221.36
 Sales agent salary is = $4,370.36

CHAPTER 18 ■ THE COBOL REPORT WRITER

498

Alabama 073 $4,503.71
 $11,659.87
 $19,540.19
 Sales for sales agent 073 = $35,703.77
 Sales commission is = $2,856.30
 Sales agent salary is = $4,005.30

 Total sales for Alabama $75,970.71
 Base salary for Alabama $1,149.00
 Actual state number is - 2
 Supplied state number is - 1
--

Alaska 055 $18,981.84
 $3,065.97
 $10,686.92
 Sales for sales agent 055 = $32,734.73
 Sales commission is = $2,618.78
 Sales agent salary is = $4,154.78

Alaska 089 $11,187.72
 $14,145.82
 Sales for sales agent 089 = $25,333.54
 Sales commission is = $2,026.68
 Sales agent salary is = $3,562.68

Alaska 104 $18,005.42
 $17,614.20
 Sales for sales agent 104 = $35,619.62
 Sales commission is = $2,849.57
 Sales agent salary is = $4,385.57

 Total sales for Alaska $93,687.89
 Base salary for Alaska $1,536.00
 Actual state number is - 3
 Supplied state number is - 2
--

Programmer - Michael Coughlan Page : 1

The major differences between Listing 18-2 and Listing 18-3 are shown in bold. To print the agent commission
and total salary, I have added a number of entries to SalesAgentGrp. Note, though, that the sources of these items are
data items declared outside the REPORT SECTION. The reason is that these items require calculations beyond what the
Report Writer can handle automatically. To calculate these items, you must use declaratives. I discuss declaratives
presently; but for now, I want to discuss another issue.

Look at the StateGrp CONTROL FOOTING and in particular at these lines:

03 COLUMN 31 PIC X(14) SOURCE StateName(StateNum).
03 COLUMN 48 PIC $$,$$$.99 SOURCE BaseSalary(StateNum).

CHAPTER 18 ■ THE COBOL REPORT WRITER

499

Notice anything strange? This footer is printed when there is a control break on StateNum—in other words, when
the value of StateNum changes. This means StateNum in the previous lines should refer to the next state and not the
one for which the totals have just been accumulated. And yet, if you examine the report, you see that the correct state
name and base salary are printed. How can this be? Remember this:

In a CONTROL FOOTING or in the DECLARATIVES SECTION, when a control data item is
referenced, the value supplied is the previous value and not the value that has just
caused the control break.

To emphasize this point, I have printed the actual state number value (the one in the record buffer) and the state
number supplied by the Report Writer. To get the actual state number, each time a record is read, the StateNum in the
record is moved to the ActualStateNum in the WORKING-STORAGE SECTION. This data item is used as a SOURCE when the
CONTROL FOOTING is printed.

Report Writer Declaratives
The Report Writer is a wonderful tool if the structure of the required report fits the way the Report Writer does
things. But sometimes the structure or requirements of a report are such that the standard Report Writer alone is not
sufficient. In these cases, you can use declaratives to extend the functionality of the Report Writer.

The USE BEFORE REPORTING phrase allows code specified in the declaratives to be executed just before the
report group mentioned in the USE BEFORE REPORTING phrase is printed. The code in the declaratives extends the
functionality of the Report Writer by performing tasks or calculations that the Report Writer cannot do automatically
or by selectively stopping a report group from being printed (using the SUPPRESS PRINTING command).

In Listing 18-3, declaratives are used to calculate SalesCommission and FullSalary before SalesAgentGrp is printed.

Report Writer Syntax and Semantics
I have shown you a number of example programs that use the Report Writer. That informal introduction should have
given you a good idea of the new verbs and declarations required when you write a Report Writer program. This
section deals with the syntax and semantics of Report Writer elements.

ENVIRONMENT DIVISION Entries

Just like ordinary reports, the reports generated by the Report Writer are written to an external device—usually a
report file. The ENVIRONMENT DIVISION entries for a report file are the same as those for an ordinary file. The same
SELECT and ASSIGN clauses apply. You can either omit the ORGANIZATION phrase as in the example programs, in which
case the default of ORGANIZATION IS SEQUENTIAL applies, or you can specify ORGANIZATION IS SEQUENTIAL explicitly,
as in the following example:

FILE-CONTROL.
 SELECT SalesFile ASSIGN TO "Listing18-4-Sales.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT PrintFile ASSIGN TO "Listing18-4.Rpt"
 ORGANIZATION IS SEQUENTIAL.

CHAPTER 18 ■ THE COBOL REPORT WRITER

500

FILE SECTION Entries

The entries in the ENVIRONMENT DIVISION are the same as those for ordinary print files. But in the FILE SECTION, the
normal file description is replaced by the REPORT IS phrase, which points to the RD in the REPORT SECTION. The
metalanguage for the phrase is

where ReportName must be the same as the ReportName used in the RD entry. You can see this in Listing 18-3, where
the REPORT IS SolaceSalesReport phrase links the PrintFile with the RD in the REPORT SECTION.

Note that before the report can be used, it must be opened for output. For instance, in Listing 18-3, the PrintFile
is opened for output before the SolaceSalesReport is generated.

Report Description (RD) Entries

The RD entry in the REPORT SECTION defines the report. There must be a separate RD entry for each report you want to
print. The RD entry names the report, specifies the format of the printed page, and identifies the control-break items.

Each RD entry is followed by one or more 01 level-number entries. Each 01 level-number entry identifies a report
group and consists of a hierarchical structure similar to a COBOL record. Each report group is a unit consisting of one
or more print lines and cannot be split across pages. The metalanguage for the RD is given in Figure 18-2.

Figure 18-2. Metalanguage for the Report Description (RD) entry

Keep the following points in mind:

• ReportName can appear in only one RD entry.

When more than one report is declared in the • REPORT SECTION, ReportName may be used to
qualify the LINE-COUNTER and PAGE-COUNTER report registers.

• ControlName$#i must not be a data item defined in the REPORT SECTION.

Each occurrence of • ControlName$#i must identify a different data item.

CHAPTER 18 ■ THE COBOL REPORT WRITER

501

• ControlName$#i must not have a variable-length table subordinate to it.

• ControlName$#i and FINAL specify the levels of the control-break hierarchy, where FINAL (if
specified) is the highest, the first ControlName$#i is the next highest, and so on.

When the value in any • ControlName$#i changes, a control break occurs. The level of the
control break depends on the position of the ControlName$#i in the control-break hierarchy.

• HeadingLine#l must be greater than or equal to 1.

The following must hold: • HeadingLine#l <= FirstDetailLine#l <= LastDetailLine#l <=
FootingLine#l <= PageSize#l

The line numbers used in a • REPORT HEADING or PAGE HEADING group must be greater than or
equal to HeadingLine#l and less than FirstDetailLine#l. But when a REPORT HEADING appears
on a page by itself, any line number between HeadingLine#l and PageSize#l may be used.

The line numbers used in a • DETAIL or CONTROL HEADING group must be in the range
FirstDetailLine#l to LastDetailLine#l, inclusive.

The line numbers used in • CONTROL FOOTING groups must be in the range FirstDetailLine#l
to FootingLine#l, inclusive.

The line numbers used in a • REPORT FOOTING or PAGE FOOTING group must be greater than
FootingLine#l and less than or equal to PageSize#l. But when a REPORT FOOTING appears on
a page by itself, any line number between HeadingLine#l and PageSize#l may be used.

All the report groups must be defined so that they can be presented on one page. The Report •
Writer never splits a multiline group across page boundaries.

Report Group Entries

The RD entry specifies the name of the report, identifies the control items, and lays down the basics of how the page
is to be formatted. After the RD entry, you specify the report groups to be used in the report. Each report group is
represented by a report-group record. As with all record descriptions in COBOL, a report-group record starts with
level number 01. The subordinate items in the record describe the report lines and columns in the report group.

Each report group starts with a level 01 report group definition. The metalanguage for the report group definition
is given in Figure 18-3.

CHAPTER 18 ■ THE COBOL REPORT WRITER

502

RD Entry

When you create an RD entry, keep in mind that ReportGroupName is required only when the group

Is a • DETAIL group referenced by a GENERATE statement or the UPON phrase of a SUM clause

Is referenced in a • USE BEFORE REPORTING sentence in the declaratives

Is required to qualify the reference to a • SUM counter

LINE NUMBER Clause

When you use the LINE NUMBER clause, keep the following in mind:

The • LINE NUMBER clause is used to specify the vertical positioning of print lines. Lines can be
printed on

A specified line (absolute)•

A specified line on the next page (absolute)•

The current line number plus some increment (relative)•

The • LINE NUMBER clause specifies where each line is to be printed, so no item that contains a
LINE NUMBER clause may contain a subordinate item that also contains a LINE NUMBER clause
(subordinate items specify the column items).

Figure 18-3. Metalanguage for the report group definition

CHAPTER 18 ■ THE COBOL REPORT WRITER

503

Where absolute • LINE NUMBER clauses are specified, all absolute clauses must precede all
relative clauses, and the line numbers specified in the successive absolute clauses must be in
ascending order.

The first • LINE NUMBER clause specified in a PAGE FOOTING group must be absolute.

The • NEXT PAGE clause can appear only once in a given report group description, and it must
be in the first LINE NUMBER clause in the report group.

The • NEXT PAGE clause cannot appear in any HEADING group.

NEXT GROUP Clause

When you use the NEXT GROUP clause, keep the following things in mind:

The • NEXT GROUP clause is used to specify the vertical positioning of the start of the next group.
This clause can be used to specify that the next report group should be printed on

A specified line (absolute) •

The current line number plus some increment (relative)•

The next page•

The • NEXT PAGE option in the NEXT GROUP clause must not be specified in a page footer.

The • NEXT GROUP clause must not be specified in a REPORT FOOTING or PAGE HEADING group.

When used in a • DETAIL group, the NEXT GROUP clause refers to the next DETAIL group to be printed.

The TYPE Clause

The TYPE clause specifies the type of the report group. The type of the report group governs when and where it is
printed in the report (for instance, a REPORT HEADING group is printed only once: at the beginning of the report).

When you use the TYPE clause, keep the following things in mind:

Most groups are defined once for each report, but control groups (other than • CONTROL ..FINAL
groups) are defined for each control-break item.

In • REPORT FOOTING, and CONTROL FOOTING groups, SOURCE and USE clauses must not reference
any data item that contains a control-break item or is subordinate to a control-break item.

• PAGE HEADING and FOOTING groups must not reference a control-break item or any item
subordinate to a control-break item.

• DETAIL report groups are processed when they are referenced in a GENERATE statement.
All other groups are processed automatically by the Report Writer. There can be more than
one DETAIL group.

The • REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL FOOTING FINAL, PAGE
FOOTING, and REPORT FOOTING report groups can each appear only once in the description
of a report.

Report Group Lines

The subordinate items in a report-group record describe the report lines and columns in the report group. There are
two formats for defining items subordinate to the report-group record. The first is usually used to define the lines of
the report group, and the second defines and positions the elementary print items.

CHAPTER 18 ■ THE COBOL REPORT WRITER

504

Figure 18-5. Metalanguage to define elementary report items

Defining the Print Lines

Print lines in a report group are usually defined using the metalanguage given in Figure 18-4. This format is used to
specify the vertical placement of a print line, and it is always followed by subordinate items that specify the columns
where the data items are to be printed.

Figure 18-4. Metalanguage for vertical print line positioning

As shown in the metalanguage, the level number is from 2 to 48, inclusive. If ReportLineName is used, its only
purpose is to qualify a SUM counter reference.

Defining the Elementary Print Items

The elementary print items in the print line of a report group are described using the metalanguage shown in
Figure 18-5. As you can see, the normal data-description clauses such as PIC, USAGE, SIGN, JUSTIFIED, BLANK WHEN
ZERO, and VALUE may be applied when describing an elementary print item. The Report Writer provides a number of
additional clauses that may also be used with these items.

SumCounterName can only be referenced if the entry uses the SUM clause to define a sum counter.

CHAPTER 18 ■ THE COBOL REPORT WRITER

505

The COLUMN NUMBER Clause

When you use the COLUMN NUMBER clause, keep the following things in mind:

• COLUMN NUMBER specifies the position of a print item on the print line. When this clause is used,
it must be subordinate to an item that contains a LINE NUMBER clause.

In a given print line, the • ColNum#ls should be in ascending sequence.

• ColNum#l specifies the column number of the leftmost character position of the print item.

The GROUP INDICATE Clause

The GROUP INDICATE clause can only appear in a DETAIL report group. It is used to specify that a print item should
be printed only on the first occurrence of its report group after a control break or page advance. For instance, in
Listing 18-3, the state name and sales agent number are suppressed after their first occurrence. As a reminder, I have
repeated the DETAIL group declaration here:

01 DetailLine TYPE IS DETAIL.
 02 LINE IS PLUS 1.
 03 COLUMN 1 PIC X(14)
 SOURCE StateName(StateNum) GROUP INDICATE.
 03 COLUMN 17 PIC 999
 SOURCE SalesAgentNum GROUP INDICATE.
 03 COLUMN 30 PIC $$$,$$$.99 SOURCE ValueOfSale.

The SOURCE Clause

The SOURCE clause is used to identify a data item that contains the value to be used when the print item is printed. For
instance, the SOURCE ValueOfSale clause in the previous example specifies that the value of the item to be printed in
column 30 is to be found in the data item ValueOfSale.

The SUM Clause

The SUM clause is used both to establish a sum counter and to name the data items to be summed. A SUM clause can
appear only in the description of a CONTROL FOOTING report group. Statements in the PROCEDURE DIVISION can be
used to alter the contents of the sum counters.

You can do three forms of summing in the Report Writer:

Subtotaling•

Rolling forward•

Crossfooting•

Subtotaling

When the SUM clause is used with a data item declared in the FILE or WORKING-STORAGE SECTION, then each time a
GENERATE is executed, the value to be summed is added to the sum counter. If there is more than one DETAIL group in
the report, the SUM..UPON option allows you to select which sum counter to total. For instance, if the report contains
two DETAIL groups—one called DetailLine and the other called AlternateDetailLine—you can use SUM..UPON to
specify that subtotaling is to be done only each time a GENERATE AlternateDetailLine is executed.

CHAPTER 18 ■ THE COBOL REPORT WRITER

506

Rolling Forward

When the SUM clause is used with a data item representing the sum counter of another CONTROL FOOTING group, then
each time the other group is executed, the value of its sum counter is added to the value of the sum counter of the
current group.

Listing 18-3 contains good examples of both subtotaling and rolling forward. Example 18-6 provides a reminder
of the relevant code. Each time a DETAIL line is GENERATED, the ValueOf Sale is added to the TotalAgentSales
sum counter. When a control break occurs on SalesAgentNum, the accumulated sum is printed and is added
to the TotalStateSales sum counter. When a control break occurs on StateNum, the sum accumulated in the
TotalStateSales sum counter is added to the final total sum counter.

Example 18-6. Subtotaling and Rolling Forward from Listing 18-3

01 SalesAgentGrp
 TYPE IS CONTROL FOOTING SalesAgentNum NEXT GROUP PLUS 2.
 : : : : : : : : : : : : : : :
 03 TotalAgentSales COLUMN 45 PIC $$$$$,$$$.99 SUM ValueOfSale.

01 StateGrp TYPE IS CONTROL FOOTING StateNum NEXT GROUP PLUS 2.
 02 LINE IS PLUS 2.
 : : : : : : : : : : : : : : :
 03 TotalStateSales COLUMN 45 PIC $$$$$,$$$.99 SUM TotalAgentSales.

01 TotalSalesGrp TYPE IS CONTROL FOOTING FINAL.
 : : : : : : : : : : : : : : :
 03 COLUMN 48 PIC $$,$$$,$$$.99 SUM TotalStateSales.

Crossfooting

In crossfooting, the sum counters in the same CONTROL FOOTING group can be added together to create another sum
counter. In Example 18-7, each time a GENERATE statement is executed, the value of NetWeightOfGoods (in the file
record) is added to the NWG sum counter, and the value of WeightOfPackingMaterials (in the file record) is added to
WPM (subtotaling). When a control break occurs on OrderNumber, the values of the NWG and WPM sum counters are added
together to give the combined total identified as GrossWeight and printed in column 40 (crossfooting).

Example 18-7. Crossfooting to Create the GrossWeight Sum Counter

01 ShippingGrp
 TYPE IS CONTROL FOOTING OrderNumber NEXT GROUP PLUS 3.
 : other entries :
 : other entries :
 03 NWG COLUMN 20 PIC Z,ZZ9 SUM NetWeightOfGoods.
 03 WPM COLUMN 30 PIC ZZ9 SUM WeightOfPackingMaterials.
 03 GrossWeight COLUMN 40 PIC ZZ,ZZ9 SUM GNW, PMW.

The RESET ON Clause

Sum counters are normally reset to zero after a control break on the control-break item associated with the report
group. For instance, in Example 18-6, if you wanted SalesAgentGrp to show a rolling total of the sales in the state,
you could change SalesAgentGrp as shown in Example 18-8. In this example, TotalAgentSales prints the sales of a
particular agent and is reset to zero when the footer group is printed, whereas StateSalesToDate prints a rolling total
of sales for the state and is reset to zero only when there is a control break on StateNum.

CHAPTER 18 ■ THE COBOL REPORT WRITER

507

Example 18-8. Using the RESET ON Clause

01 SalesAgentGrp
 TYPE IS CONTROL FOOTING SalesAgentNum NEXT GROUP PLUS 2.
 : : : : : : : : : : : : : : :
 03 TotalAgentSales COLUMN 45 PIC $$$$$,$$$.99 SUM ValueOfSale.
 03 StateSalesToDate COLUMN 60 PIC $$$$$,$$$.99 SUM ValueOfSale
 RESET ON StateNum.

Special Report Writer Registers
The Report Writer maintains two special registers for each report declared in the REPORT SECTION.: LINE-COUNTER and
PAGE-COUNTER.

LINE-COUNTER

LINE-COUNTER is a reserved word that can be used to access a special register that the Report Writer maintains for each
report in the REPORT SECTION. The Report Writer uses the LINE-COUNTER register to keep track of where the lines are
being printed on the report. It uses this information and the information specified in the PAGE LIMIT clause in the RD
entry to decide when a new page is required.

Although the LINE-COUNTER register can be used as a SOURCE item in the report, no statements in the PROCEDURE
DIVISION can alter the value in the register.

References to the LINE-COUNTER register can be qualified by referring to the name of the report given in the RD entry.

PAGE-COUNTER

The reserved word PAGE-COUNTER is used to access a special register that the Report Writer maintains for each report
in the REPORT SECTION. It keeps track of the number of pages printed in the report. The PAGE-COUNTER register can
be used as a SOURCE item in the report, but the value of the PAGE-COUNTER may also be changed by statements in the
PROCEDURE DIVISION .

PROCEDURE DIVISION Report Writer Verbs
The Report Writer introduces four new verbs for processing reports:

• INITIATE

• GENERATE

• TERMINATE

• SUPPRESS PRINTING

The first three are normal PROCEDURE DIVISION verbs, but the last one can only be used in the declaratives. I will
postpone discussion of that verb until I deal with declaratives.

The INITIATE Verb

An INITIATE statement starts the processing of the ReportName report or reports. The metalanguage for the INITIATE
verb is given in Figure 18-6.

CHAPTER 18 ■ THE COBOL REPORT WRITER

508

Figure 18-7. Metalanguage for the GENERATE verb

Before INITIATE is executed, the file associated with the ReportName must have been opened for OUTPUT or
EXTEND. This is illustrated in Listing 18-3 by these statements:

SELECT PrintFile ASSIGN TO "Listing18-3.Rpt".
 : : : : : : : : :
FD PrintFile
 REPORT IS SolaceSalesReport.
 : : : : : : : : :
RD SolaceSalesReport
 : : : : : : : : :
OPEN OUTPUT PrintFile
 : : : : : : : : :
INITIATE SolaceSalesReport

The GENERATE Verb

The GENERATE statement drives the production of the report. The metalanguage for GENERATE is given in Figure 18-7.

Figure 18-6. Metalanguage for the INITIATE verb

The target of a GENERATE statement is either a DETAIL report group or a ReportName. When the target is a
ReportName, the report description must contain the following:

A • CONTROL clause

Not more than one • DETAIL group

At least one group that is not a • PAGE or REPORT group

When all the GENERATE statements for a particular report target the ReportName, the report performs summary
processing only, and the report produced is called a summary report. For instance, to make a summary report using
Listing 18-3, all you have to do is change

GENERATE DetailLine

to

GENERATE SolaceSalesReport.

If you specify GENERATE SolaceSalesReport, then the DETAIL group is never printed, but the other groups are printed.

The TERMINATE Verb

You use a TERMINATE statement to instruct the Report Writer to finish the processing of the specified report. The
metalanguage for TERMINATE is given in Figure 18-8.

CHAPTER 18 ■ THE COBOL REPORT WRITER

509

Figure 18-8. Metalanguage for the TERMINATE verb

Figure 18-9. Metalanguage for the Report Writer version of USE

When TERMINATE is executed, the Report Writer prints the PAGE and REPORT FOOTING groups, and all the
CONTROL FOOTING groups are printed as if there had been a control break on the most senior control group.

After the report has been terminated, the file associated with the report must be closed. For instance, in Listing 18-3,
the TERMINATE SolaceSalesReport statement is followed by the CLOSE PrintFile statement.

Declaratives
The main structural elements of a COBOL program are divisions, sections, and paragraphs. This section introduces a
new structural element: declaratives. When declaratives are used, they are the first element in the PROCEDURE DIVISION
and start with the word DECLARATIVES and end with END DECLARATIVES. Declaratives specify USE procedures that are
executed when certain conditions occur. You write the USE procedures in the declaratives in consecutive sections.

When declaratives are used, the remainder of the PROCEDURE DIVISION must consist of at least one section.
Example 18-9 is a template the shows the structure of declaratives.

Example 18-9. Structure of Declaratives

PROCEDURE DIVISION.
DECLARATIVES
SectionName SECTION.
 USE statement
ParagraphName.
 COBOL Statements
END DECLARATIVES.
Main SECTION.

Declaratives are used for two main purposes:

To extend the functionality of the Report Writer•

To handle file operation errors•

Using Declaratives with the Report Writer
Declaratives are used to extend the functionality of the Report Writer by performing tasks or calculations that the
Report Writer cannot do automatically or by selectively stopping a report group from being printed (using the
SUPPRESS PRINTING command). When you use declaratives with the Report Writer, the USE BEFORE REPORTING phrase
lets you specify that a particular section of code is to be executed before the identified report group is printed. The
metalanguage for the USE statement used with the Report Writer is given in Figure 18-9.

CHAPTER 18 ■ THE COBOL REPORT WRITER

510

Note the following:

• ReportGroupName must not appear in more than one USE statement.

The • GENERATE, INITIATE, and TERMINATE statements must not appear in the declaratives.

The value of any control data items must not be altered in the declaratives.•

Statements in the declaratives must not reference procedures outside the declaratives.•

Listing 18-3 has a good example of how declaratives may be used to extend the functionality of the Report Writer.
They are used to calculate the sales agent SalesCommission and FullSalary before SalesAgentGrp is printed. For
convenience, the code is repeated in Example 18-10.

Example 18-10. Declaratives from Listing 18-3

PROCEDURE DIVISION.
DECLARATIVES.
Calc SECTION.
 USE BEFORE REPORTING SalesAgentGrp.
Calculate-Salary.
 MULTIPLY TotalAgentSales BY Percentage
 GIVING SalesCommission ROUNDED
 ADD SalesCommission, BaseSalary(StateNum)
 GIVING FullSalary.
END DECLARATIVES.
Main SECTION.
Begin.
 OPEN INPUT SalesFile
 OPEN OUTPUT PrintFile

The SUPPRESS PRINTING Statement

The SUPPRESS PRINTING statement is used in a DECLARATIVES section to stop a particular report group from being
printed. The report group suppressed is the one mentioned in the USE statement associated with the section
containing the SUPPRESS PRINTING statement. The SUPPRESS PRINTING statement must be executed each time you
want to stop the report group from being printed.

In Example 18-11, the CONTROL FOOTING data for StateGrp is printed only if the state sales total is above a
certain threshold.

Example 18-11. Suppressing the Printing of a Report Group

PROCEDURE DIVISION.
DECLARATIVES.
CheckStateSales SECTION.
 USE BEFORE REPORTING StateGrp.
PrintImportantStatesOnly.
 IF TotalStateSales < 100000
 SUPPRESS PRINTING
 END-IF.
END DECLARATIVES.

CHAPTER 18 ■ THE COBOL REPORT WRITER

511

Control-Break Registers

The Report Writer maintains a special control-break register for each control-break item mentioned in the CONTROLS
ARE phrase in the RD entry. When a control-break item is referred to in a control footer or in the declaratives, the
Report Writer supplies the value held in the control-break register and not the value in the item itself. If a control
break has just occurred, the value in the control-break register is the previous value of the control-break item.

This point is demonstrated in the report produced by Listing 18-3 by printing the actual state number (the one
in the record buffer) and the supplied state number (the one in the control-break register) each time StateGrp group
is printed.

Using Declaratives with Files
You can also use declaratives to handle file operation errors. The metalanguage for the version of USE used with files
is given in Figure 18-10.

Figure 18-10. Metalanguage for the files version of USE

When you use this version of the declaratives, you can create code that deals with any I-O error on a particular file
or more generalized code that deals with INPUT, OUTPUT, I-O, or EXTEND errors on any file. When declaratives exist for a
file, the INVALID KEY clause and the AT END clause are optional.

The program fragment in Example 18-12 shows how you can use declaratives to handle errors on a particular file.

Example 18-12. Declarative Procedures to Handle Unexpected File Errors

PROCEDURE DIVISION.
DECLARATIVES.
SupFile SECTION.
 USE AFTER ERROR PROCEDURE ON SupplierFile.
DisplaySupplierFileStatus.
 DISPLAY "Unexpected error on Supplier file. Status = " SupplierStatus
 DISPLAY "The file name used was :- " SupplierFileName
 STOP RUN.

VidFile SECTION.
 USE AFTER ERROR PROCEDURE ON VideoFile.
DisplayVideoFileStatus.
 DISPLAY "Unexpected error on Video file. Status = " VideoStatus
 DISPLAY "The file name used was :- " VidFileName
 STOP RUN.

CHAPTER 18 ■ THE COBOL REPORT WRITER

512

END DECLARATIVES.
Main SECTION.
Begin.
 OPEN INPUT SupplierFile
 OPEN INPUT VideoFile
 etc

Summary
This chapter introduced you to the COBOL Report Writer. In a series of increasingly complex programs, you learned
how to use the Report Writer to create control-break-based reports. You were introduced to a number of new verbs,
clauses, sections, and concepts. You saw how to use the RD entry in the REPORT SECTION to specify control-break items
and define the basic layout of the report page. You were introduced to the idea of a report group and shown how to
create report groups linked to control-break items. You learned how to use the SUM clause for totaling and rolling
forward. The final program demonstrated how to extend the capabilities of the Report Writer by using declaratives.
You then covered the verbs, clauses, and concepts of the Report Writer. And in the final section, you saw how to use
declaratives for error handling in files.

The final chapter introduces OO-COBOL. This book adheres to the ANS 85 COBOL standard, so the ISO 2002
OO-COBOL is somewhat outside its remit. Nevertheless, some of the drawbacks of contained subprograms are remedied
by OO-COBOL, and it is from this perspective that I examine the topic. Do not expect a course in object-oriented
programming.

PROGRAMMING EXERCISE

And now for a programming exercise that tests your understanding of the last two chapters. For this, you need a

really sharp 2B pencil.

Introduction
Two months before the beginning of each semester, Campus Bookshop produces a Purchase Requirements Report.
This report details the books that have to be purchased for the coming semester. In the past, this was done manually;
but now management has decided to computerize the operation. Accordingly, lecturers’ requirements have been
captured and the results used to update a purchase requirements file. This is a permanent file that contains details of
the lecturers’ book requirements for both semesters.

You are required to write a program to produce a Purchase Requirements Report from the publisher, book, and
purchase requirements files. The report should be sequenced on ascending publisher name and should only detail
the purchase requirements for the semester under scrutiny.

The semester number (1 or 2) should be accepted from the user at the start of the program using a simple ACCEPT
and DISPLAY.

CHAPTER 18 ■ THE COBOL REPORT WRITER

513

File Descriptions
Purchase Requirements File (Indexed)

There is a record for each book title required by a lecturer. Note that a book may be required by more than one lecturer.

Field KeyType Type Length Value

PR-Number Primary 9 4 1–9999

Lecturer-Name Alt with duplicates X 20 --

Book-Number Alt with duplicates 9 4 1–9999

Module-Code -- X 5 --

Copies-Required -- 9 3 1–999

Semester -- 9 1 1/2

Book File (Indexed)

Field KeyType Type Length Value

Book-Number Primary 9 4 1–9999

Publisher-Number Alt with duplicates 9 4 1–9999

Book-Title -- X 30 --

Publisher File (Indexed)

Field KeyType Type Length Value

Publisher-Number Primary 9 4 1–9999

Publisher-Name Alt with duplicates X 20 --

Publisher-Address -- X 40 --

Print Specification
The report must be printed according to the print specification given in Figure 18-11.

CHAPTER 18 ■ THE COBOL REPORT WRITER

514

The publisher name must be suppressed after its first occurrence. The headings should be printed at the top of
each page, and *** END OF REPORT *** should be printed on line 56 on the last page of the report.

Ordinarily, a new page is required after line 50.
The Qty field, which is a synonym for Copies-Required, should be zero suppressed up to but not including the

last digit.
The page number field should also be zero suppressed.

PROGRAMMING EXERCISE: SOLUTION

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing18-4.
AUTHOR. MICHAEL COUGHLAN.
*The Campus Bookshop Purchase Requirements Report (DP291-91-EXAM)
*Originally written for VAX COBOL 1991
*Converted to Microfocus COBOL 2002
*Modified for COBOL book 2014

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT PurchaseReqFile ASSIGN TO "Listing18-4-PRF.DAT"

Figure 18-11. Print specification for the Purchase Requirements Report

CHAPTER 18 ■ THE COBOL REPORT WRITER

515

 ORGANIZATION IS INDEXED
 FILE STATUS IS FileStatus-PRF
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PRNumber-PRF
 ALTERNATE RECORD KEY IS LecturerName-PRF
 WITH DUPLICATES
 ALTERNATE RECORD KEY IS BookNum-PRF
 WITH DUPLICATES.

 SELECT BookFile ASSIGN TO "Listing18-4-BF.DAT"
 ORGANIZATION IS INDEXED
 FILE STATUS IS FileStatus-BF
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS BookNum-BF
 ALTERNATE RECORD KEY IS PublisherNum-BF
 WITH DUPLICATES.

 SELECT PublisherFile ASSIGN TO "Listing18-4-PF.DAT"
 ORGANIZATION IS INDEXED
 FILE STATUS IS FileStatus-PF
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PublisherNum-PF
 ALTERNATE RECORD KEY IS PublisherName-PF.

 SELECT ReportFile ASSIGN TO "Listing18-4.RPT".

DATA DIVISION.
FILE SECTION.
FD PurchaseReqFile.
01 PurchaseRec-PRF.
 88 EndOfPRequirements VALUE HIGH-VALUES.
 88 NotEndOfPRequirements VALUE LOW-VALUES.
 02 PRNumber-PRF PIC 9(4).
 02 LecturerName-PRF PIC X(20).
 02 BookNum-PRF PIC 9(4).
 02 ModuleCode-PRF PIC X(5).
 02 CopiesRequired-PRF PIC 9(3).
 02 Semester-PRF PIC 9.

FD BookFile.
01 BookRec-BF.
 88 EndOfBooks VALUE HIGH-VALUES.
 88 NotEndOfBooks VALUE LOW-VALUES.
 02 BookNum-BF PIC 9(4).
 02 PublisherNum-BF PIC 9(4).
 02 BookTitle-BF PIC X(30).

FD PublisherFile.
01 PublisherRec-PF.
 88 EndOfPublishers VALUE HIGH-VALUES.
 02 PublisherNum-PF PIC 9(4).

CHAPTER 18 ■ THE COBOL REPORT WRITER

516

 02 PublisherName-PF PIC X(20).
 02 PublisherAddress-PF PIC X(40).

FD ReportFile
 REPORT IS PurchaseRequirementsReport.

WORKING-STORAGE SECTION.
01 File-Stati.
 02 FileStatus-PRF PIC X(2).
 88 PurchaseRec-PRF-Not-Found VALUE "23".
 02 FileStatus-BF PIC X(2).
 88 BookRec-Not-Found VALUE "23".
 02 FileStatus-PF PIC X(2).

01 Current-Semester PIC 9.

REPORT SECTION.
RD PurchaseRequirementsReport
 CONTROLS ARE FINAL
 PublisherName-PF
 PAGE LIMIT IS 66
 HEADING 2
 FIRST DETAIL 8
 LAST DETAIL 50
 FOOTING 55.

01 TYPE IS REPORT FOOTING.
 02 LINE 56.
 03 COLUMN 29 PIC X(23)
 VALUE "*** END OF REPORT ***".

01 TYPE IS PAGE HEADING.
 02 LINE 2.
 03 COLUMN 27 PIC X(30)
 VALUE "PURCHASE REQUIREMENTS REPORT".
 03 COLUMN 77 PIC X(6)
 VALUE "PAGE :".
 03 COLUMN 84 PIC Z9 SOURCE PAGE-COUNTER.

 02 LINE 3.
 03 COLUMN 26 PIC X(32) VALUE ALL "-".

 02 LINE 6.
 03 COLUMN 2 PIC X(24) VALUE "PUBLISHER NAME".
 03 COLUMN 33 PIC X(11) VALUE "BOOK TITLE".
 03 COLUMN 57 PIC X(3) VALUE "QTY".
 03 COLUMN 65 PIC X(14) VALUE "LECTURER NAME".

CHAPTER 18 ■ THE COBOL REPORT WRITER

517

01 PReq-PrintLine TYPE IS DETAIL.
 02 LINE IS PLUS 2.
 03 COLUMN 1 PIC X(20) SOURCE PublisherName-PF
 GROUP INDICATE.
 03 COLUMN 24 PIC X(30) SOURCE BookTitle-BF.
 03 COLUMN 57 PIC ZZ9 SOURCE CopiesRequired-PRF.
 03 COLUMN 63 PIC X(20) SOURCE LecturerName-PRF.

PROCEDURE DIVISION.
BEGIN.
 DISPLAY "Enter the semester number (1 or 2) - " WITH NO ADVANCING
 ACCEPT Current-Semester
 OPEN INPUT PurchaseReqFile
 OPEN INPUT BookFile
 OPEN INPUT PublisherFile
 OPEN OUTPUT ReportFile
 INITIATE PurchaseRequirementsReport

 MOVE SPACES TO PublisherName-PF
 START PublisherFile
 KEY IS GREATER THAN PublisherName-PF
 INVALID KEY DISPLAY "START Pub file status" FileStatus-PF
 END-START
 READ PublisherFile NEXT RECORD
 AT END SET EndOfPublishers TO TRUE
 END-READ
 PERFORM PrintRequirementsReport UNTIL EndOfPublishers

 TERMINATE PurchaseRequirementsReport
 CLOSE PurchaseReqFile, BookFile,
 PublisherFile, ReportFile
 STOP RUN.

PrintRequirementsReport.
 SET NotEndOfBooks TO TRUE
 MOVE PublisherNum-PF TO PublisherNum-BF
 READ BookFile
 KEY IS PublisherNum-BF
 INVALID KEY
 DISPLAY SPACES
 DISPLAY "Book File Error. FileStatus = " FileStatus-BF
 DISPLAY "Publisher Number - " PublisherNum-BF
 DISPLAY "Publisher Rec = " PublisherRec-PF
 MOVE ZEROS TO PublisherNum-BF
 END-READ

 PERFORM ProcessPublisher
 UNTIL PublisherNum-PF NOT EQUAL TO PublisherNum-BF
 OR EndOfBooks

CHAPTER 18 ■ THE COBOL REPORT WRITER

518

 READ PublisherFile NEXT RECORD
 AT END SET EndOfPublishers TO TRUE
 END-READ.

ProcessPublisher.
 SET NotEndOfPRequirements TO TRUE
 MOVE BookNum-BF TO BookNum-PRF
 READ PurchaseReqFile
 KEY IS BookNum-PRF
 INVALID KEY
 DISPLAY SPACES
 DISPLAY "PurchReqFile Error. FileStatus = " FileStatus-PRF
 DISPLAY "Book Num PRF = " BookNum-PRF
 DISPLAY "Book Rec = " BookRec-BF
 MOVE ZEROS TO BookNum-PRF
 END-READ

 PERFORM UNTIL BookNum-BF NOT EQUAL TO BookNum-PRF
 OR EndOfPRequirements
 IF Current-Semester = Semester-PRF THEN
 Generate PReq-PrintLine
 END-IF
 READ PurchaseReqFile NEXT RECORD
 AT END SET EndOfPRequirements TO TRUE
 END-READ
 END-PERFORM

 READ BookFile NEXT RECORD
 AT END SET EndOfBooks TO TRUE

 END-READ.

519

CHAPTER 19

OO-COBOL

This chapter introduces you to OO-COBOL. This book adheres to the ANS 85 COBOL standard, so ISO 2002 OO-COBOL
is somewhat outside its remit. The ANS 85 version of COBOL was designed to bring structured programming to COBOL,
but failings in the way contained subprograms were implemented meant this version did not fully live up to its promise.
However, the structured programming weaknesses of ANS 85 COBOL are remedied by OO-COBOL, and the chapter
examines OO-COBOL from this perspective. In this chapter, you see how OO-COBOL can be used to create informational
strength modules that fully realize Parnas’s1 idea of information hiding. I show you some OO-COBOL programs
and introduce you to classes and methods, but the chapter does not delve deeply into topics such as inheritance,
polymorphism, properties, and interfaces. In other words, do not expect a course in object-oriented programming.

Module Strength and Module Coupling
Prior to the introduction of the ANS 74 version of COBOL, many COBOL systems consisted of huge, monolithic
programs containing as many as 100,000 lines of code. It soon became clear that it was difficult, if not impossible,
to maintain programs of this size. As a result, the ANS 74 version of COBOL introduced external subprograms that
allowed programmers to create modular systems consisting of a number of independently compiled programs bound
together into one run-unit. Unfortunately, this did not entirely solve the maintenance crisis. It turned out that some
kinds of partitioned programs were as bad, or worse, than the monolithic programs they replaced. Using empirical
research done at IBM as the basis for their ideas, Stevens, Myers, and Constantine2 addressed this issue by introducing
structured programming and the criteria for decomposing a system into modules. In structured programming, a
module is defined as any collection of executable program statements that meets all the following criteria:

It is a closed subroutine.•

It can be called from any other module in the system.•

It has the potential of being independently compiled.•

Although structured programming introduced a number of criteria for decomposing a system into modules, the
main criteria for judging the quality of a module were module strength and module coupling (see Table 19-1).

1OntheCriteriatoBeUsedinDecomposingSystemsintoModules.Commun.ACM15,no.12(December1972).
2Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. “Structured Design,” in Classics in Software Engineering,
ed.EdwardN.Yourdon(UpperSaddleRiver,NJ:YourdonPress,1979),205–232.

CHAPTER 19 ■ OO-COBOL

520

Module strength (sometimes called module cohesion) is a measure of the association between the elements of
a module. Modules whose elements are strongly related to each other are regarded as more desirable than modules
whose elements only have a weak or nonexistent connection. For instance, a functional-strength module is one in
which all the elements combine to perform a single specific function or is one that coordinates subordinate modules
such that they perform a single function. Modules such as ValidateCheckDigit, ValidateDate, GetStateCode, and
GetCustomerRecord are functional-strength modules: they perform one specific task. On the other end of the scale,
a coincidental-strength module is one in which the elements are only weakly related to one another and are more
strongly related to the elements of other modules. Coincidental-strength modules are likely to be created when, for
example, management mandates that a monolithic program be partitioned into subprograms, each 100 lines long.

Module coupling is a measure of the degree to which one module is connected to another. Modules that have low
coupling are regarded as being more desirable than those that are highly coupled. A module with no direct coupling
(the best) does not rely on data from other modules and provides no data to other modules. This data independence
means this module is unlikely to be affected by bugs in other modules, and a bug in this module is unlikely to affect
other modules.

In terms of module strength, a functional-strength module is often considered to be the best. However, this is not
always the case. An informational-strength module has characteristics that may make it even more desirable than a
functional-strength module. An informational-strength module has the following characteristics:

It contains multiple entry points.•

Each entry point performs a single function.•

All the functions are related by a concept, data structure, or resource that is hidden in the module•

For instance, in the dictionary module shown in Figure 19-1, the dictionary is held in a table. The
DictionaryModule has four separate entry points: one that allows words to be added to the dictionary, one that allows
the dictionary to be searched for a particular word, one that prints the contents of the dictionary, and a final entry
point that allows the definition of a dictionary word to be retrieved. Each entry point has functional strength but
shares access to the table.

The advantage of this arrangement is that because knowledge of how the dictionary is represented is hidden in the
module, you can change it without causing knock-on effects for the modules that use it. In Figure 19-1, the dictionary
is held in a table; but if you decide to hold it as a dynamic structure or even an indexed file, the modules that use the
dictionary will not be affected. This is the benefit of information hiding:4 the knowledge of the data structure, concept,
or resource is isolated in a single module. It is the idea on which information-strength modules are based.5

Table 19-1. Module Strength and Module Coupling3

Module Coupling Module Strength/Cohesion

Best 1 No direct coupling Functional strength
and
informational strength

 2 Data coupling

Better 3 Stamp coupling Communicational strength

4 Control coupling Procedural strength

Worse 5 External coupling Classical strength

 6 Common coupling Logical strength

Worst 7 Content coupling Coincidental strength

3GlenfordJ.Myers,Composite/StructuredDesign(NewYork:VanNostrandReinhold,1978).
4DavidParnas,“OntheCriteriatoBeUsedinDecomposingSystemsintoModules.Commun.ACM15,no.12(December1972).
5GlenfordJ.Myers,ReliableSoftwarethroughCompositeDesign(NewYork:VanNostrandReinhold,1975).

http://www.google.ie/search?tbo=p&tbm=bks&q=inauthor:%22Glenford+J.+Myers%22

CHAPTER 19 ■ OO-COBOL

521

Informational-Strength Modules in COBOL
The desirability of being able to create informational-strength modules is self evident. In COBOL, the combination
of the IS GLOBAL phrase and contained subprograms seems to allow you create modules of this type. For instance,
you could imagine that the dictionary module is an external subprogram that contains the AddWordToDictionary,
SearchDictionaryForWord, PrintDictionaryContents, and GetWordDefinition subprograms and in which the
dictionary is held in a table made available to all the contained subprograms. Example 19-1 shows the outline of an
attempt to create such an external subprogram. This arrangement reflects the structure of the informational-strength
module shown in Figure 19-1. Unfortunately, the attempt to create an informational-strength module in this way is
prevented by the rule that says a subprogram may only be called by its parent. In other words, the only program that
can call AddWordToDictionary, SearchDictionaryForWord, PrintDictionaryContents, and GetWordDefinition is
the containing program DictionaryModule. They can’t be called by any other program in the run-unit that wants to
use the dictionary. This situation is illustrated in Figure 19-2, where the program UseDictionary is not permitted to
call the subprograms contained in DictionaryModule. You might think the IS COMMON PROGRAM clause provides a
solution to the problem, but unfortunately that clause only allows the sibling subprograms to call one another.

Example 19-1. Attempting to Create an Informational-Strength Module

IDENTIFICATION DIVISION.
PROGRAM-ID. DictionaryModule.
WORKING-STORAGE SECTION.
01 DictionaryTable IS GLOBAL.
 02 DictionaryEntry OCCURS 1000 TIMES.
 03 DictionaryWord PIC X(20).
 03 WordDefinition PIC X(1000)

IDENTIFICATION DIVISION.
PROGRAM-ID. AddWordToDictionary IS INITIAL.
PROCEDURE DIVISION USING WordToAdd, WordDefinition.
END PROGRAM AddWordToDictionary.

IDENTIFICATION DIVISION.
PROGRAM-ID. SearchDictionaryForWord IS INITIAL.
PROCEDURE DIVISION USING WordToFind, WordFoundFlag.
END PROGRAM SearchDictionaryForWord.

IDENTIFICATION DIVISION.
PROGRAM-ID. PrintDictionaryContents IS INITIAL.
PROCEDURE DIVISION.
END PROGRAM PrintDictionaryContents.

IDENTIFICATION DIVISION.
PROGRAM-ID. GetWordDefinition IS INITIAL.
PROCEDURE DIVISION USING WordToFind, WordDefinition.
END PROGRAM GetWordDefinition.
END PROGRAM DictionaryModule.

Figure 19-1. Dictionary module with four entry points

CHAPTER 19 ■ OO-COBOL

522

Figure 19-3. Workaround to create an informational-strength module in COBOL

Figure 19-2. COBOL only allows a subprogram to be called by its parent

The only way any kind of informational-strength module can be achieved is for UseDictionary to call the
external subprogram DictionaryModule and for DictionaryModule to call the appropriate subprogram, as shown in
Figure 19-3. To do this, UseDictionary has to pass a code to DictionaryModule to tell it which of the subprograms
to use; and the parameter list passed to DictionaryModule has to be wide enough to accommodate the needs of
the contained subprograms. This means even when PrintDictionaryContents is called, you must pass WordToAdd,
WordToFind, WordFoundFlag, and WordDefinition as parameters. The problem with this solution is that although
you may have created a kind of informational-strength module, the programs UseDictionary and DictionaryModule
are now control coupled. The exposure to unnecessary data is not particularly egregious in this example, but it might
prove a serious drawback if the contained programs had more significant data needs.

CHAPTER 19 ■ OO-COBOL

523

The workaround to the problem of creating an informational-strength module in COBOL is not very satisfactory.
Module coupling has been traded for module strength. A kind of informational-strength module has been created, but
at the expense of control coupling the DictionaryModule and UseDictionary programs.

When you come to use DictionaryModule, you may discover another limitation: there is only one instance of
the dictionary. This means you cannot use the DictionaryModule to create specialized dictionaries for acronyms,
networking terms, or slang words without running the program multiple times.

OO-COBOL
OO-COBOL provides a solution to many of the problems outlined so far. In OO-COBOL, you can create a class
in which to hide the implementation details of the dictionary, and you can create methods to put words into the
dictionary and retrieve word definitions from the dictionary. In addition, a class-based solution goes one step beyond
the informational-strength module because it allows you to create instances of the dictionary. This means you can
create a dictionary to hold acronyms, a dictionary to hold networking terms, or even a dictionary to hold slang words.

The UseDictionary Program
Listing 19-1 uses OO-COBOL to create a Dictionary class and shows how it can be used to create and use multiple
instances of dictionaries. Once you have seen an example program and have a feel for how OO is implemented
in COBOL, I introduce the topic more formally. I have kept the Dictionary class short by only implementing the
AddWordToDictionary and PrintDictionaryContents methods as well as the internal method SetDictionaryName.

Listing 19-1. COBOL Program that Uses the Dictionary Class

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing19-1.
AUTHOR. Michael Coughlan.
*UseDictionary program

REPOSITORY.
 CLASS DictionaryCls AS "dictionary".

DATA DIVISION.
WORKING-STORAGE SECTION.
01 AcronymDictionary USAGE OBJECT REFERENCE DictionaryCls.
01 NetworkDictionary USAGE OBJECT REFERENCE DictionaryCls.
01 SlangDictionary USAGE OBJECT REFERENCE DictionaryCls.
01 CurrentDictionary USAGE OBJECT REFERENCE.

01 WordToAdd PIC X(20).
 88 EndOfInput VALUE SPACES.

01 WordDefinition PIC X(1000).

PROCEDURE DIVISION.
Begin.
 INVOKE DictionaryCls "new" USING BY CONTENT "Acronym Dictionary"
 RETURNING AcronymDictionary
 INVOKE DictionaryCls "new" USING BY CONTENT "Network Dictionary"
 RETURNING NetworkDictionary

CHAPTER 19 ■ OO-COBOL

524

 INVOKE DictionaryCls "new" USING BY CONTENT "Slang Dictionary"
 RETURNING SlangDictionary

 SET CurrentDictionary TO AcronymDictionary
 DISPLAY "Fill the Acronym dictionary"
 PERFORM FillTheDictionary WITH TEST AFTER UNTIL EndOfInput

 SET CurrentDictionary TO NetworkDictionary
 DISPLAY "Fill the Network dictionary"
 PERFORM FillTheDictionary WITH TEST AFTER UNTIL EndOfInput

 SET CurrentDictionary TO SlangDictionary
 DISPLAY "Fill the Slang dictionary"
 PERFORM FillTheDictionary WITH TEST AFTER UNTIL EndOfInput

 DISPLAY SPACES
 INVOKE AcronymDictionary "PrintDictionaryContents"

 DISPLAY SPACES
 INVOKE NetworkDictionary "PrintDictionaryContents"

 DISPLAY SPACES
 INVOKE SlangDictionary "PrintDictionaryContents"

 INVOKE SlangDictionary "finalize" RETURNING SlangDictionary
 INVOKE NetworkDictionary "finalize" RETURNING NetworkDictionary
 INVOKE AcronymDictionary "finalize" RETURNING AcronymDictionary
 STOP RUN.

FillTheDictionary.
 DISPLAY "Enter a word to add (press return to end) - " WITH NO ADVANCING
 ACCEPT WordToAdd

 DISPLAY "Enter the word definition - " WITH NO ADVANCING
 ACCEPT WordDefinition

 INVOKE CurrentDictionary "AddWordToDictionary"
 USING BY CONTENT WordToAdd, WordDefinition.

Listing 19-1 uses the dictionary class to create three instances of the dictionary: one to hold acronyms, one for
network terms, and the third to hold slang words. The program demonstrates that three instances of the dictionary
have been created by filling each with relevant words and then displaying the words in each dictionary.

It is interesting to note how little the language has been changed to accommodate the syntax required to write
OO-COBOL programs. In Listing 19-1, the first difference between this and an ordinary COBOL program is the
REPOSITORY paragraph. This paragraph lists the classes used in the program. The AS clause specifies the external name
for the class.

The second difference is the USAGE OBJECT REFERENCE clause, which is an extension of the USAGE clause that
allows you to specify that a data item is capable of holding a reference (handle) to an object. In the program, three
data items capable of holding references to dictionary objects are created, and a fourth is created that can hold a
reference to any object. I could have made this last a dictionary reference also, but I wanted to show that you can
create object-reference data items that are not bound to a particular type of object.

CHAPTER 19 ■ OO-COBOL

525

The first thing done in the PROCEDURE DIVISION is to create three instances of the dictionary and assign their
references (handles) to the appropriate object-reference data item. This is done by using the INVOKE verb to execute
the new method in the dictionary class (or, to describe it in OO-COBOL terms, the INVOKE verb is used to send the new
message to the dictionary class.) Because there are three instances of the dictionary, you need to tell each instance its
name, so the name of the dictionary is passed to new as a parameter. The new method creates an object instance and
places a reference to the instance (the object handle) in the object-reference data item.

At this point, three instances of the dictionary object have been created, and the next step is to fill each dictionary
with the appropriate words. I could have done this by repeating the code in the paragraph FillTheDictionary three
times and each time targeting a different dictionary (this is what I do to display the contents of each dictionary). But I
wanted to create one piece of code to handle all three dictionaries. To do this, instead of referring to a specific dictionary
in the FillTheDictionary paragraph, I refer to the CurrentDictionary object reference and then, just before the
FillTheDictionary paragraph is performed, move the appropriate dictionary object reference to CurrentDictionary.

When the dictionaries have been filled with words, the contents of the dictionaries are displayed. This is done by
sending the PrintDictionaryContents message to the appropriate dictionary object.

Finally, the storage used by the dictionaries is released by sending a finalize message to the appropriate
dictionary object. This is often a vital step because if the program ends without destroying the object, the memory
allocated to the object is still allocated but the object references that allow you to access the object in memory are lost.

The Dictionary Class
Listing 19-1 showed how to use the dictionary class to create and use dictionary object instances. Listing 19-1-cls
(identified as Listing 19-1-cls.cbl in the online sources) shows how to define the dictionary class.

Listing 19-1-cls. The Dictionary Class

CLASS-ID. DictionaryCls AS "dictionary"
 INHERITS FROM Base.
AUTHOR. Michael Coughlan.

REPOSITORY.
 CLASS Base AS "base"
 CLASS DictionaryCls AS "dictionary".

FACTORY.
METHOD-ID. New.
LINKAGE SECTION.
01 TestObject-lnk OBJECT REFERENCE.
01 DictionaryName PIC X(20).

PROCEDURE DIVISION USING DictionaryName RETURNING TestObject-lnk.
Begin.
*Create a new dictionary object by invoke "new" in the base class
 INVOKE SUPER "new" RETURNING TestObject-lnk.

*Set the dictionary name in the dictionary object
 INVOKE TestObject-lnk "SetDictionaryName"
 USING BY CONTENT DictionaryName
 EXIT METHOD.
END METHOD New.
END FACTORY.

CHAPTER 19 ■ OO-COBOL

526

OBJECT.
WORKING-STORAGE SECTION.
*Items declared here are visible only to methods of this
*instance. They have state memory.
01 DictionaryTable.
 02 DictionaryEntry OCCURS 0 TO 1000 TIMES
 DEPENDING ON NumberOfWords
 INDEXED BY WordIdx.
 03 DictionaryWord PIC X(20).
 03 WordDefinition PIC X(1000).

01 NumberOfWords PIC 9(4) VALUE ZERO.

01 DictionaryName PIC X(20).

METHOD-ID. SetDictionaryName.
LINKAGE SECTION.
01 DictionaryNameIn PIC X(20).
PROCEDURE DIVISION USING DictionaryNameIn.
Begin.
 MOVE DictionaryNameIn TO DictionaryName
END METHOD SetDictionaryName.

METHOD-ID. AddWordToDictionary.
LINKAGE SECTION.
01 WordIn PIC X(20).
01 DefinitionIn PIC X(1000).
PROCEDURE DIVISION USING WordIn, DefinitionIn.
Begin.
 MOVE FUNCTION UPPER-CASE(WordIn) TO WordIn
 SET WordIdx TO 1
 SEARCH DictionaryEntry
 AT END ADD 1 TO NumberOfWords
 MOVE WordIn TO DictionaryWord(NumberOfWords)
 MOVE DefinitionIn TO WordDefinition(NumberOfWords)
 WHEN WordIn = DictionaryWord(WordIdx)
 DISPLAY WordIn " is already in the dictionary"
 END-SEARCH
 EXIT METHOD.
END METHOD AddWordToDictionary.

METHOD-ID. PrintDictionaryContents.
LOCAL-STORAGE SECTION.
PROCEDURE DIVISION.
Begin.
 DISPLAY "Words in - " DictionaryName
 PERFORM VARYING WordIdx FROM 1 BY 1 UNTIL WordIdx = NumberOfWords
 DISPLAY "Word = " DictionaryWord(WordIdx)

CHAPTER 19 ■ OO-COBOL

527

 END-PERFORM
 DISPLAY "------ End of dictionary words --------"
 EXIT METHOD.
END METHOD PrintDictionaryContents.
END OBJECT.
END CLASS DictionaryCls.

The first difference between this class program and a normal COBOL program is that there is no IDENTIFICATION
DIVISION. Actually, the IDENTIFICATION DIVISION is now optional. If you are nostalgic, you can still use it. The
second difference is that instead of the PROGRAM-ID, you have a CLASS-ID. The CLASS-ID names the class and specifies
from what classes it inherits. In this program, the DictionaryCls class inherits from the Base class. The Base class is a
system class from which all classes inherit. It corresponds to the class Object in many other OO languages.

The REPOSITORY paragraph allows you to associate internal names with the name of the external file that
contains the code for the class. Internally the dictionary class is known as DictionaryCls, but the system knows it
as dictionary.

The next item to consider is the FACTORY. The entries from FACTORY to END FACTORY specify the factory object. The
main function of the factory object is to create new object instances where initialization is required. If initialization
is not required, the new method inherited from the Base class may be used. For instance, if no initialization was
required, you could create new acronym dictionary using the statement

INVOKE DictionaryCls "new" RETURNING AcronymDictionary

In this example, initialization is required, so FACTORY contains a new method that overrides the new method
inherited from the Base class. What this new method does is to create a new dictionary object. It does this by using the
predefined object identifier SUPER to invoke the new method in the Base class. Once a new dictionary object has been
created, it is sent the SetDictionaryName message, and this sets the dictionary name into the dictionary instance
object by storing it in a data item declared in the instance object. The factory object could not be used for this purpose
because there is only one instance of the factory object (created by including the CLASS entries in the REPOSITORY),
and the next time you tried to create a new dictionary, the previous name would be overwritten.

You have probably noticed by now that methods in COBOL bear a very strong resemblance to contained
subprograms (with some minor differences). Instead of a PROGRAM-ID, you use a METHOD-ID; instead of delimiting the
scope with END PROGRAM, you use END METHOD; instead of terminating the method using an EXIT PROGRAM statement,
you use EXIT METHOD; and instead of WORKING-STORAGE SECTION, you use LOCAL-STORAGE SECTION.

In Listing 19-1-cls, the next item of interest is the entries that define the instance object. These entries start
at OBJECT and end at END OBJECT and specify the data and methods of each dictionary instance. This is where the
table that holds the dictionary entries is defined; each dictionary instance has a separate table. Defining the table in
the WORKING-STORAGE SECTION of the OBJECT keeps it alive for the life of the instance and makes it available to the
methods of the object. It is also where DictionaryName is defined.

SetDictionaryName is an internal method. It is only invoked by the new method in the factory. Its only purpose
is to take the dictionary name passed as a parameter and move it to less transient storage. It can’t be stored in the
method because method storage only persists as long as the method is alive. When the method ends, any data stored
in the method is lost.

AddWordToDictionary adds the word and definition passed as parameters to the appropriate place in the table.
PrintDictionaryContents displays the words in the dictionary. The list of words is preceded by the name of the
dictionary. The name of the dictionary is obtained from DictionaryName in the WORKING-STORAGE SECTION of the OBJECT.

To keep the class short, so that you are not overwhelmed by detail, I did not include the methods
SearchDictionaryForWord and GetWordDefinition. These are left as an exercise for you.

CHAPTER 19 ■ OO-COBOL

528

A Formal Introduction to OO-COBOL
Now that you have seen an OO-COBOL program and have an idea about how to create such programs, this section
introduces some of the elements of OO-COBOL more formally. But keep in mind that this book is not about OO-COBOL
or object-oriented programming, so I skim over many of the constructs and only stop to deal more thoroughly with
those I consider particularly salient.

When you remember all the new syntax that was required for the Report Writer, you may find it amazing that
object orientation has been brought to COBOL with so few additions to the language. There is only one new verb
(INVOKE), one new data type (OBJECT REFERENCE), and a few new entries such as these:

• CLASS-ID and END CLASS

• REPOSITORY

• FACTORY and END FACTORY

• METHOD-ID and END METHOD

• OBJECT and END OBJECT

• EXIT METHOD

Objects, Classes, and Methods
Before I begin a discussion about creating objects, classes, and methods in COBOL, I should define some of
these terms. An object is an encapsulation of data and procedures that operate on that data. In object orientation,
the data is known as the object's attributes, and the procedures are known as its methods. For instance, a Stock
object might need attributes such a StockId, QtyInStock, ReorderLevel and ReorderQty and might support such
methods as GetStockId, AddToStockQty, SubtractFromStockQty, GetStockQty, GetReorderQty, ChangeReorderQty,
GetReorderLevel, and ChangeReorderLevel. Encapsulation means the structure and implementation of the attributes
(data) is completely hidden in the object and the only access to the attributes of an object is through the object’s
methods. For instance, the only way to change the ReorderLevel of a particular stock item is to invoke that item’s
ChangeReorderLevel method.

The user of an object can only discover the value of an attribute or change the value of an attribute by making
requests to the object. These requests are known as messages. Each message invokes a method supported by the
object. The messages to which an object responds is known as the object interface. Each class actually defines two
interfaces: an interface defining the methods supported by the class object (such as the new method) and the interface
defining the methods supported by each instance of the class (such as ChangeReorderQty).

A class is a template for creating objects. A class contains all the information you need to create objects of a
particular type. In OO-COBOL, a class is called an object factory because it “manufactures” the object instances.
This idea is reinforced by identifying the area of the program where the factory object is defined using the keywords
FACTORY and END FACTORY. The factory object may contain its own factory methods and its own factory data. For
instance, the Stock class would allow you to create instances of Stock items by sending the new message to the factory
object of the Stock class.

In OO-COBOL, a class definition is a program that starts with a CLASS-ID and ends with an END CLASS statement.
The class program may contain its own ENVIRONMENT, DATA, and PROCEDURE DIVISIONS. When you write a class
program, you need to distinguish between three different but related entities:

The • class is the source code program defining the class.

The • factory object is the class at runtime.

• Instance objects are created by the factory object at runtime.

CHAPTER 19 ■ OO-COBOL

529

Programming with Objects
OO-COBOL is not a fully object-oriented language. This means objects can be used inside a COBOL program that
is not itself object oriented. However, whether the program you want to write is an OO-COBOL class or an ordinary
procedural COBOL program that uses OO-COBOL objects, the same rules for using the objects apply.

Your program must have a REPOSITORY paragraph. The REPOSITORY lists all the class that the program is going
to use. If the program itself is an OO-COBOL class, the REPOSITORY paragraph also lists its superclass (the class from
which it is derived).

Your program must declare one or more data items of type OBJECT REFERENCE. An OBJECT REFERENCE data item
holds an object handle. An object handle enables you to send messages to the object. Object references can be moved
from one OBJECT REFERENCE data item to another or can be passed as parameters when you INVOKE a method or CALL
a subprogram.

Your program must use the INVOKE verb to send messages to the object. Sending a message to an object invokes
the named method in the object. A method is a piece of code that performs one of the functions of the object. Some
methods receive or return parameters, so when you invoke a method you may have to include the parameters as part
of the message in the INVOKE statement.

Registering a Class
Before you can use an OO-COBOL class, you must register it by declaring it in the REPOSITORY paragraph. Entries
in this paragraph link the internal class name with the name of the external file that contains the code for the class.
Registering the class in the REPOSITORY using the CLASS clause creates a data item for each class named, and at
runtime this data item holds an object handle to the factory object.

Declaring Object References
When you have declared the class in the REPOSITORY (an action that creates a factory object for the class), you have to
declare the data items that will hold the handles of any instance object you may create. To do this, you declare the data
items as USAGE OBJECT REFERENCE. For instance, the following data items are declared in Listing 19-1:

01 AcronymDictionary USAGE OBJECT REFERENCE DictionaryCls.
01 NetworkDictionary USAGE OBJECT REFERENCE DictionaryCls.
01 SlangDictionary USAGE OBJECT REFERENCE DictionaryCls.
01 CurrentDictionary USAGE OBJECT REFERENCE.

An object reference can be used

As the target of an • INVOKE statement

As a parameter to a program or method•

With the • SET verb to set one object reference to the value of another or to NULL

In a comparison comparing one object reference for equality with another or to • NULL

The object reference for the factory objects is automatically created when you register a class.
An object reference may be typed or untyped. As demonstrated in Listing 19-1, an untyped object reference data

item (called a universal object reference) can hold an object reference for any object. A typed object reference data
item can only hold an object reference of the type specified. For instance, the AcronymDictionary data item can only
hold a handle (object reference) to a DictionaryCls object instance.

CHAPTER 19 ■ OO-COBOL

530

Sending Messages to Instance Objects
You interrogate, or change, the values of an object’s attributes by sending messages to the object instance. You send
messages to an object instance using the INVOKE verb. When you send a message to an object instance, it causes the
method named in the message text to execute. If the method is not found in the object, it is passed up the method
inheritance chain until it is recognized and executed. This is how the new and finalize methods that create and
destroy object instances are executed. These methods are part of the system provided Base class inherited by every
COBOL class.

As you can see from Figure 19-4, the INVOKE verb has a strong similarity to the CALL verb and so requires little
in the way of explanation. The ObjectIdentifier is the data item that holds the object reference. MessageLiteral is
the name of the method to be invoked. Parameters are passed using the same syntax as the CALL verb except that an
additional mechanism (BY VALUE) has been added. The RETURNING phrase allows the invoked method to return a value.

Figure 19-4. Metalanguage for the INVOKE verb

Creating a New Object Instance
Once you have created a data item capable of holding an object reference, you need to create an object instance
and store its reference in the data item. You create an object instance by sending a creation message to its factory
object (the factory object itself is created when you register it in the REPOSITORY). For objects that do not have any
initialization parameters, the creation message is new (see Example 19-2 and Example 19-3). When the new method
executes, it allocates the storage required for the object and returns the object handle.

Example 19-2. Registering a Class, Declaring an Object Reference Data Item, and Creating an Object Instance

REPOSITORY.
 CLASS StockCls AS "stockclassprogram"
 : : : : : : : :
WORKING-STORAGE SECTION.
 01 StockItem USAGE OBJECT REFERENCE StockCls.
 : : : : : : : :
PROCEDURE DIVISION.
 : : : : : : : :
 INVOKE StockCls "new" RETURNING StockItem

CHAPTER 19 ■ OO-COBOL

531

Example 19-3. Registering a Class, Declaring an Object Reference Data Item, and Invoking new with an Initialization
Parameter to Create a Dictionary Instance

REPOSITORY.
 CLASS DictionaryCls AS "dictionary".
 : : : : : : : :
WORKING-STORAGE SECTION.
01 AcronymDictionary USAGE OBJECT REFERENCE DictionaryCls.
 : : : : : : : :
PROCEDURE DIVISION.
 : : : : : : : :
 INVOKE DictionaryCls "new" USING BY CONTENT "Acronym Dictionary"
 RETURNING AcronymDictionary

Destroying Objects
When you have finished using an object, you must destroy it. This frees the memory it uses. There is no automatic
garbage collection in OO-COBOL, so the memory for objects that have been allocated but whose object handles have
been lost cannot be recovered. Once an object has been created, it remains in existence until it is destroyed explicitly,
even if the data item that holds its object handle is destroyed or the object handle is overwritten.

You destroy an object by sending it the finalize message. Like the new method, finalize is a method provided
by the Base class and inherited by all classes. When you finalize an object, the method returns a NULL object
reference. Example 19-4 shows how to use INVOKE with the finalize message to destroy an object.

Example 19-4. Using finalize to Destroy an Object

INVOKE AcronymDictionary "finalize" RETURNING AcronymDictionary

Predefined Object Identifiers
I mentioned the NULL object reference in the previous section. NULL is one of three predefined object identifiers.
The identifiers and their significance are given in Table 19-2.

CHAPTER 19 ■ OO-COBOL

532

Writing Your Own Classes
When you write an OO application, you need to create your own classes. A class program has the structure shown in
Figure 19-5, and the entries required are outlined in the class template in Example 19-5.

Table 19-2. Predefined Object Identifiers

Predefined Object Identifier Meaning

NULL The predefined object reference NULL contains the null object-reference value that
is a unique value guaranteed by the implementer never to reference an object.
It represents a value used to indicate that data items defined as USAGE OBJECT
REFERENCE do not contain a valid address. NULL must not be specified as a receiving
operand, but it can be used in a comparison such as

IF AcronymDictionary = NULL
 DISPLAY "The acronym dictionary object does not exist"
END-IF

SELF SELF is a predefined object identifier used in the PROCEDURE DIVISION of a method.
SELF refers to the object instance used to invoke the currently executing method.
By using SELF you can cause an object to send a message to itself. This is useful if
you want a method to invoke one of its siblings. For instance, in Listing 19-1-cls
you could use SELF to invoke the SetDictionaryName method from one of the
other methods using a statement such as

INVOKE SELF "SetDictionaryName"
 USING BY CONTENT NewDictionaryName

You might want to use SELF because you have placed a piece of code that is used by
several different methods in a method on its own and want to use this method like
a subroutine.

SUPER SUPER allows an object to send a message to itself, but the method invoked is a not a
method in the class itself but rather a method in one of the superclasses of the class.
If SUPER is used from an instance method, the system searches its way up through
the instance methods of all the superclasses until it finds a method matching the
message.

If SUPER is used from a factory method, the system searches for a factory method
beginning with the factory object code of the superclass immediately above the
class and searches its way up through the factory methods of all the superclasses
until it finds a method matching the message.

For instance, in Listing 19-1-cls, the new method in the FACTORY needs to invoke the
new method in the base class. This is achieved using the statement

INVOKE SUPER "new" RETURNING TestObject-lnk.

CHAPTER 19 ■ OO-COBOL

533

Example 19-5. A Class Program Template

CLASS-ID. Template-cls AS "template"
 inherits from Base.
* Class identification.
ENVIRONMENT DIVISION.
* Optional but when used all normal ENVIRONMENT DIVISION entries are valid
 : : : : : : : : :

CONFIGURATION SECTION.
* Optional entry but the REPOSITORY is part of the CONFIGURATION SECTION
 : : : : : : : : :
REPOSITORY.
* The Repository paragraph names the files containing the executables
* for each class.
* The executable for Template-cls is in the file template.
 CLASS BASE AS "base"
 CLASS Template-cls AS "tester".

FACTORY
* Defines the start of the factory object.
ENVIRONMENT DIVISON.
DATA DIVISION.

Figure 19-5. Structure of a class program

CHAPTER 19 ■ OO-COBOL

534

* Defines factory object data
WORKING-STORAGE SECTION.
* Defines factory object data
 : : : : : : : : :
METHOD-ID. new.
* If initialization is required there may be a "new" of factory method.
* This overrides "new" coming from Base.
 : : : : : : : : :
END METHOD new.
END FACTORY.

OBJECT.
* Start of the code that defines the behaviour of class instances.
WORKING-STORAGE SECTION.
* Defines instance data visible to all methods of the instance.
 : : : : : : : : :
METHOD-ID. ExampleTemplateMethod.
* Start of instance method "ExampleTemplateMethod "
 ...
END METHOD ExampleTemplateMethod.
END OBJECT.
* End of code for instance objects.
END CLASS Example.

The Issue of Scope
Whenever you write a class program, you have to be aware of the consequences of declaring data items in various
parts of the program. When I refer to the scope of a data item, I am referring to its lifetime: how long it persists.
The scoping issues of data items declared in the class program are summarized in Table 19-3, and Listing 19-2
demonstrates these issues in an example program.

Table 19-3. Class Program Scoping Issues

Where Declared Scope

WORKING-STORAGE SECTION of the FACTORY A data item declared in the WORKING-STORAGE SECTION of the
FACTORY is visible only to factory methods; and because there is only
one factory object, there is only one instance of the data item. The
item persists as long as the class program is alive.

WORKING-STORAGE SECTION of the OBJECT A data item declared in the WORKING-STORAGE SECTION of the OBJECT
is visible only to object instance methods. There is an instance of the
data item for each object, and the data item will persist as long as the
instance is alive (has not been finalized).

LOCAL-STORAGE SECTION of any method A data item declared in the LOCAL-STORAGE SECTION of any method
(factory of instance object) visible only to the method, and it persists
only as long has the method is alive.

CHAPTER 19 ■ OO-COBOL

535

Listing 19-2. Example Program to Demonstrate Scoping Issues

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing19-2.
* AUTHOR. Michael Coughlan.
* Demonstrates the difference between Factory methods & data
* and instance methods & data.
* It is also used to demonstrate the scope of
* data items declared in different parts of the program.

REPOSITORY.
 CLASS Tester-cls AS "tester".

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Test1-obj OBJECT REFERENCE Tester-cls.
01 Test2-obj OBJECT REFERENCE Tester-cls.
01 Test3-obj OBJECT REFERENCE Tester-cls.

PROCEDURE DIVISION.
Begin.
 INVOKE Tester-cls "new" RETURNING Test1-obj
 INVOKE Tester-cls "new" RETURNING Test2-obj
 INVOKE Tester-cls "new" RETURNING Test3-obj

 DISPLAY SPACES
 DISPLAY "--------- Test3-obj ViewData -----------"
 INVOKE Test3-obj "ViewData"

 DISPLAY SPACES
 DISPLAY "--------- Test1-obj ViewData -----------"
 INVOKE Test1-obj "ViewData"

 DISPLAY SPACES
 DISPLAY "--------- Test3-obj ViewData again -----"
 INVOKE Test3-obj "ViewData"

 DISPLAY SPACES
 DISPLAY "--------- Test2-obj ViewData -----------"
 INVOKE Test2-obj "ViewData" USING BY CONTENT 5

 INVOKE Test1-obj "finalize" RETURNING Test1-obj
 INVOKE Test2-obj "finalize" RETURNING Test2-obj
 INVOKE Test3-obj "finalize" RETURNING Test3-obj
 STOP RUN.

CHAPTER 19 ■ OO-COBOL

536

The program starts by creating three instances of the tester class object. It does this by sending the new message
to the class. There is a new method in the class factory, so that method is executed. The purpose of the new method
is to demonstrate the difference between data items declared in the WORKING-STORAGE SECTION of the factory and
items declared in the LOCAL-STORAGE SECTION of a factory method. The output from the program shows that while
the WORKING-STORAGE data items remember their values from invocation to invocation, which allows them to be
incremented each time new is invoked, the LOCAL-STORAGE items always show the same value.

There is one other thing going on here under the surface. If you look at the ViewData displays in the Listing 19-2
output, note that the first line displayed shows which instance it is and how many instances there are. In order to
display this information, you must note the instance when new is invoked. But although the number of instances can
be stored in the factory, the particular instance number cannot. It has to be stored with the particular instance. When
you examine the class program, you can see how this is done.

The ViewData displays are also used to show that there are separate data items for each instance. The increment
value used to show the difference between data items declared in the WORKING-STORAGE of the OBJECT and those
declared in LOCAL-STORAGE of the ViewData method is computed as 10 multiplied by the instance number. That is 10
for instance one, 20 for instance two, and 30 for instance three.

CHAPTER 19 ■ OO-COBOL

537

The purpose of the ViewData displays is to show that separate instances have been created and that when you
invoke an object for the second time, you can see that it has remembered the contents of one variable but not the
other. The class program used by Listing 19-2 is given in Listing 19-2-cls.

Listing 19-2-cls. Class Program Used by Listing 19-2

CLASS-ID. Tester-cls AS "tester"
 INHERITS FROM Base.
* AUTHOR. Michael Coughlan.
* Demonstrates the difference between Factory methods and data and Instance methods
* and data. Also demonstrates persistence of data items declared in different areas.

REPOSITORY.
 CLASS BASE AS "base"
 CLASS Tester-cls AS "tester".

FACTORY.
WORKING-STORAGE SECTION.
*Items declared here are visible only to factory methods and have state memory
01 InstCounter-fws PIC 9 VALUE ZEROS.
01 FactoryData-fws PIC 9 VALUE ZEROS.

METHOD-ID. New.
LOCAL-STORAGE SECTION.
*Items declared here are visible only to this method but do not have state memory.
01 LocalData-mls PIC 9 VALUE ZEROS.

LINKAGE SECTION.
01 TestObject-lnk OBJECT REFERENCE.

PROCEDURE DIVISION RETURNING TestObject-lnk.
Begin.
 ADD 2 TO FactoryData-fws LocalData-mls
 DISPLAY "Factory Working-Storage data has state memory - "
 FactoryData-fws
 DISPLAY "but Factory Method Local-Storage data does not - "
 LocalData-mls
 DISPLAY SPACES
 INVOKE SUPER "new" RETURNING TestObject-lnk
 ADD 1 TO InstCounter-fws
 INVOKE TestObject-lnk "InitialiseData"
 USING BY CONTENT InstCounter-fws
 EXIT METHOD.
END METHOD New.

METHOD-ID. GetTotalInstCount.
LINKAGE SECTION.
01 TotalInstCount-lnk PIC 9.
PROCEDURE DIVISION RETURNING TotalInstCount-lnk.
Begin.

CHAPTER 19 ■ OO-COBOL

538

 MOVE InstCounter-fws TO TotalInstCount-lnk.
END METHOD GetTotalInstCount.
END FACTORY.

OBJECT.
WORKING-STORAGE SECTION.
*Items declared here are visible only to methods of this
*instance. They are persist for the life of the object instance.
01 ThisInstanceNum-ows PIC 9 VALUE ZEROS.
01 InstObjectData-ows PIC 99 VALUE ZEROS.

METHOD-ID. InitialiseData.
LINKAGE SECTION.
01 InstNumIn-lnk PIC 9.
PROCEDURE DIVISION USING InstNumIn-lnk.
Begin.
 MOVE InstNumIn-lnk TO ThisInstanceNum-ows
 EXIT METHOD.
END METHOD InitialiseData.

METHOD-ID. ViewData.
LOCAL-STORAGE SECTION.
*Items declared here only exist for the life of the method.
*They do not retain their values between invocations.
01 InstMethodData-mls PIC 99 VALUE ZEROS.
01 TotalInstCount-mls PIC 9 VALUE ZEROS.
01 Increment-mls PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
Begin.
 COMPUTE Increment-mls = 10 * ThisInstanceNum-ows
 ADD Increment-mls TO InstObjectData-ows, InstMethodData-mls
 INVOKE Tester-cls "GetTotalInstCount"
 RETURNING TotalInstCount-mls
 DISPLAY "This is instance " ThisInstanceNum-ows
 " of " TotalInstCount-mls
 DISPLAY "Instance Object Data = " InstObjectData-ows
 DISPLAY "Instance Method Data = " InstMethodData-mls
 EXIT METHOD.
END METHOD ViewData.
END OBJECT.
END CLASS Tester-cls.

The first thing to note about Listing 19-2-cls is that I have attached a suffix to each data item to assist your
understanding. The suffix meanings are as follows:

-ows indicates a data item in the OBJECT WORKING-STORAGE
-mls indicates a data item in the method LOCAL-STORAGE
-lnk indicates a data item in the LINKAGE-SECTION
-fws indicates a data item in the FACTORY WORKING-STORAGE

CHAPTER 19 ■ OO-COBOL

539

The factory contains a new method. This method overrides the new method in the Base class and its purpose
is to note the number of the particular object instance created and to keep a count of how many instances have
been created. There are two data items in the WORKING-STORAGE SECTION of the FACTORY: FactoryData-fws and
InstCounter-fws. FactoryData-fws is used for the purpose of contrast with the LocalData-mls data item declared
in the new method. As you can see from the output, FactoryData-fws remembers its value from invocation to
invocation, whereas LocalData-mls starts with a value of ZEROS each time the new method is called. InstCounter-fws
holds the count of the number of instances that have been created. Each time new is invoked, this count is incremented.
InstCounter-fws, however, can’t be used to hold the instance number (as soon as the next instance is created, the
number is overwritten). Instead, as soon as an instance has been created by the statement

INVOKE SUPER "new" RETURNING TestObject-lnk

the method InitialiseData in the instance just created is invoked and is passed the current value
of InstCounter-fws. InitialiseData then records the number in the instance variable ThisInstanceNum-ows.

Two data items have been declared in the WORKING-STORAGE SECTION of the OBJECT: ThisInstanceNum-ows
and InstObjectData-ows. As I have already mentioned, ThisInstanceNum-ows is used to hold the instance number.
InstObjectData-ows is used to show the contrast between items declared in the WORKING-STORAGE of the OBJECT and
items declared in the LOCAL-STORAGE of the method.

One last issue needs some explanation. ViewData can display the instance number because it is stored in the
instance data item ThisInstanceNum-ows, but ViewData does not know how many instances have been created. That
information is stored in the factory in InstCounter-fws. The problem is that an instance method cannot see a data
item declared in the factory. In order to get access to that information the statement

INVOKE Tester-cls "GetTotalInstCount"
 RETURNING TotalInstCount-mls

invokes the factory method GetTotalInstCount. This method returns the number of instances as a parameter. Pay
particular attention to the target of the INVOKE statement. Instead of targeting the instance object, or SELF, or SUPER,
the class name is used (registering the class in the REPOSITORY created the factory object.)

Summary
This chapter introduced OO-COBOL from a particular perspective. The ANS 85 version of COBOL was supposed to
bring structured programming to COBOL, but although it had many fine features, it was not entirely successful in this
respect. This chapter discussed the shortcomings of the ANS 85 version when attempting to create informational-strength
modules and showed how OO-COBOL can be used to fulfill the structured programming promise of ANS 85 COBOL.
You then saw an OO program that implemented the information hiding techniques of an informational-strength module.
Having demonstrated how to create an OO program through an example, I introduced the topic more formally, and you
saw the entries required to use a class, invoke a method, and create a class program. The final section discussed the issue
of data-item scope and demonstrated the effect of declaring data items in various parts of the class program.

This has been a long journey. I hope that you have enjoyed the trip and have learned something along the way.
Although COBOL has its flaws, its many strengths in the area of its chosen domain account for its dominance in the
world of enterprise computing.

CHAPTER 19 ■ OO-COBOL

540

PROGRAMMING EXERCISE

Well, it’s time for the final exercise. If you can locate the stub of your 2B pencil, why not have a go at writing an

OO-COBOL program?

The Zodiac Signs Compatibility exercise in Chapter 16 required you to write a program that used a contained

subprogram called IdentifySign to identify the Zodiac sign for a given birth date. Using the program that you

wrote for that exercise as a starting point, write a Zodiac class that supplies the following methods, and then

rewrite the Zodiac Sign Compatibility Experiment program so that it uses that Zodiac class:

METHOD-ID. "getSignHouse".
LINKAGE SECTION.
01 InDate.
 02 InDay PIC XX.
 02 InMonth PIC XX.
01 OutZodiacHouse PIC 99.
01 OpStatus PIC 9.
* value of 0 indicates operation was successful
* value of 1 indicates sign is a Cusp Sign
* value of 2 indicates date supplied was invalid
PROCEDURE DIVISION USING InDate, OutZodiacHouse RETURNING OpStatus.
*Accepts a date in form DDMM and returns the Zodiac House value (01-12)
*The twelve houses are Aries, Taurus,Gemini, Cancer, Leo, Virgo,
*Libra, Scorpio, Sagittarius Capricorn, Aquarius, Pisces
*Method should note if the sign is a cusp sign
END METHOD "getSignHouse".

METHOD-ID. "getSignName".
LINKAGE SECTION.
01 INZodiacHouse PIC 99.
01 OutSignName PIC X(11).
01 OpStatus PIC 9.
* value of 0 indicates operation was successful
* value of 1 indicates InZodiacHouse value not in range 01-12
PROCEDURE DIVISION USING InZodiacHouse, OutSignName RETURNING OpStatus.
*Accepts a Zodiac House value and returns the Zodiac Sign name
*For instance house 3 = Gemini
END METHOD "getSignName".

METHOD-ID. "getSignElement".
LINKAGE SECTION.
01 InZodiacHouse PIC 99.
 88 ValidSignHouse VALUE 01 THRU 12.
01 OutSignElement PIC X(5).

01 OpStatus PIC 9.
 88 InvalidSignHouse VALUE 1.
 88 OperationOk VALUE 0.

CHAPTER 19 ■ OO-COBOL

541

PROCEDURE DIVISION USING InZodiacHouse, OutSignElement RETURNING OpStatus.
*Accepts a Zodiac House value and returns the element of the sign
*Viz – Fire Earth Air Water.
*Houses 1,5,9 = Fire; 2,6,10 = Earth; 3,7,11 = Air; 4,8,12 = Water
END METHOD "getSignElement".

Before you rewrite the Zodiac Sign Compatibility Experiment program, you can test the Zodiac class you have

written using the following test program:

IDENTIFICATION DIVISION.
PROGRAM-ID. UseZodiac.
AUTHOR. Michael Coughlan.
REPOSITORY.
 CLASS ZodiacFactory AS "zodiac".

DATA DIVISION.
WORKING-STORAGE SECTION.
01 MyZodiac USAGE OBJECT REFERENCE ZodiacFactory.

01 Date-DDMM PIC X(4).
 88 EndOfData VALUE SPACES.

01 SignCode PIC 99.

01 OpStatus1 PIC 9.
 88 CuspSign VALUE 1.

01 OpStatus2 PIC 9.
 88 OperationOK VALUE ZEROS.

01 SignName PIC X(11).

01 SignElement PIC X(5).

PROCEDURE DIVISION.
Begin.
 INVOKE ZodiacFactory "new" RETURNING MyZodiac
 DISPLAY "Enter the Date DDMM :- " WITH NO ADVANCING
 ACCEPT Date-DDMM

 PERFORM GetAndDisplay UNTIL EndOfdata
 INVOKE MyZodiac "finalize" RETURNING MyZodiac
 DISPLAY "End of Program"
 STOP RUN.

GetAndDisplay.
 INVOKE MyZodiac "getSignHouse" USING BY CONTENT Date-DDMM
 BY REFERENCE SignCode
 RETURNING OpStatus1

 INVOKE MyZodiac "getSignName" USING BY CONTENT SignCode
 BY REFERENCE SignName
 RETURNING OpStatus2

CHAPTER 19 ■ OO-COBOL

542

 INVOKE MyZodiac "getSignElement" USING BY CONTENT SignCode
 BY REFERENCE SignElement
 RETURNING OpStatus2

 DISPLAY "SignCode = " SignCode
 DISPLAY "Sign name is " SignName
 DISPLAY "Sign Element is " SignElement
 IF CuspSign
 DISPLAY "The sign is a cusp"
 END-IF
 DISPLAY "Enter the Date DDMM :- " WITH NO ADVANCING

 ACCEPT Date-DDMM.

PROGRAMMING EXERCISE: ANSWER

Listing 19-3. Zodiac Compatibility Program Using the Zodiac Class

IDENTIFICATION DIVISION.
PROGRAM-ID. Listing19-3.
* Zodiac Compatibility program
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT BirthsFile ASSIGN TO "Listing19-3-MPDOB.DAT"
 ORGANIZATION IS LINE SEQUENTIAL.

CLASS-CONTROL.
 ZodiacFactory IS CLASS "zodiac".

DATA DIVISION.
FILE SECTION.
FD BirthsFile.
01 BirthsRec.
 88 EndOfFile VALUE HIGH-VALUES.
 02 MaleDOB.
 03 MaleDate PIC X(4).
 03 FILLER PIC X(4).
 02 FemaleDOB.
 03 FemaleDate PIC X(4).
 03 FILLER PIC X(4).

WORKING-STORAGE SECTION.
01 MyZodiac USAGE OBJECT REFERENCE.

01 Counts.
 02 CompatiblePairs PIC 9(7) VALUE ZEROS.
 02 CompatiblePrn PIC ZZZZ,ZZ9.
 02 CompatiblePercent PIC ZZ9.

CHAPTER 19 ■ OO-COBOL

543

 02 IncompatiblePairs PIC 9(7) VALUE ZEROS.
 02 IncompatiblePrn PIC ZZZZ,ZZ9.
 02 IncompatiblePercent PIC ZZ9.
 02 ValidRecs PIC 9(8) VALUE ZEROS.
 02 ValidRecsPrn PIC ZZ,ZZZ,ZZ9.
 02 TotalRecs PIC 9(9) VALUE ZEROS.
 02 TotalRecsPrn PIC ZZ,ZZZ,ZZ9.

01 MaleSign PIC 99.
01 FemaleSign PIC 99.
01 SumOfSigns PIC 99.

01 OpStatusM PIC 9.
 88 ValidMale VALUE ZEROS.

01 OpStatusF PIC 9.
 88 ValidFemale VALUE ZEROS.

PROCEDURE DIVISION.
Begin.
 INVOKE ZodiacFactory "new" RETURNING MyZodiac
 OPEN INPUT BirthsFile.
 READ BirthsFile
 AT END SET EndOfFile TO TRUE
 END-READ
 PERFORM ProcessBirthRecs UNTIL EndOfFile

 COMPUTE ValidRecs = CompatiblePairs + IncompatiblePairs
 COMPUTE CompatiblePercent ROUNDED = CompatiblePairs / ValidRecs * 100
 COMPUTE InCompatiblePercent ROUNDED = InCompatiblePairs / ValidRecs * 100

 PERFORM DisplayResults

 CLOSE BirthsFile.
 STOP RUN.

DisplayResults.
 MOVE CompatiblePairs TO CompatiblePrn
 MOVE IncompatiblePairs TO IncompatiblePrn
 MOVE TotalRecs TO TotalRecsPrn
 MOVE ValidRecs TO ValidRecsPrn

 DISPLAY "Total records = " TotalRecsPrn
 DISPLAY "Valid records = " ValidRecsPrn
 DISPLAY "Compatible pairs = " CompatiblePrn
 " which is " CompatiblePercent "% of total".
 DISPLAY "Incompatible pairs = " IncompatiblePrn
 " which is " InCompatiblePercent "% of total".

CHAPTER 19 ■ OO-COBOL

544

ProcessBirthRecs.
* Get the two sign types and add them together
* If the result is even then they are compatible
 ADD 1 TO TotalRecs
 INVOKE MyZodiac "getSignHouse" USING BY CONTENT MaleDate
 BY REFERENCE MaleSign
 RETURNING OpStatusM

 INVOKE MyZodiac "getSignHouse" USING BY CONTENT FemaleDate
 BY REFERENCE FemaleSign
 RETURNING OpStatusF

 IF ValidMale AND ValidFemale
 COMPUTE SumOfSigns = MaleSign + FemaleSign
 IF FUNCTION REM(SumOfSigns 2) = ZERO
 ADD 1 TO CompatiblePairs
 ELSE
 ADD 1 TO IncompatiblePairs
 END-IF
 END-IF
 READ BirthsFile
 AT END SET EndOfFile TO TRUE
 END-READ.

Listing 19-3-cls. The Zocodiac Class Program

CLASS-ID. Zodiac AS "zodiac" INHERITS FROM Base.
* AUTHOR. Michael Coughlan.

REPOSITORY.
 CLASS BASE AS "base"
 CLASS Zodiac AS "zodiac".

* No FACTORY in this program

OBJECT.
WORKING-STORAGE SECTION.
01 ZodiacTable.
 02 ZodiacTableData.
 03 FILLER PIC X(20) VALUE "Aries 103210419".
 03 FILLER PIC X(20) VALUE "Taurus 204200520".
 03 FILLER PIC X(20) VALUE "Gemini 305210620".
 03 FILLER PIC X(20) VALUE "Cancer 406210722".
 03 FILLER PIC X(20) VALUE "Leo 107230822".
 03 FILLER PIC X(20) VALUE "Virgo 208230922".
 03 FILLER PIC X(20) VALUE "Libra 309231022".
 03 FILLER PIC X(20) VALUE "Scorpio 410231121".
 03 FILLER PIC X(20) VALUE "Sagittarius111221221".
 03 FILLER PIC X(20) VALUE "Capricorn 212221231".
 03 FILLER PIC X(20) VALUE "Aquarius 301200218".
 03 FILLER PIC X(20) VALUE "Pisces 402190320".

CHAPTER 19 ■ OO-COBOL

545

 02 ZodiacSign REDEFINES ZodiacTableData
 OCCURS 12 TIMES
 INDEXED BY Zidx.
 03 SignName PIC X(11).
 03 SignElement PIC 9.
 03 StartDate PIC X(4).
 03 EndDate PIC X(4).

01 ElementTable VALUE "Fire EarthAir Water".
 02 Element OCCURS 4 TIMES PIC X(5).

METHOD-ID. getSignHouse.
LOCAL-STORAGE SECTION.
01 WorkDate.
 88 SignIsCusp VALUE "0120", "0121", "0219", "0220",
 "0320", "0321", "0420", "0421",
 "0521", "0522", "0621", "0622",
 "0723", "0724", "0823", "0824",
 "0923", "0924", "1023", "1024",
 "1122", "1123", "1221", "1222".
 02 WorkMonth PIC XX.
 02 WorkDay PIC XX.

LINKAGE SECTION.
01 InDate.
 02 InDay PIC XX.
 02 InMonth PIC XX.

01 House PIC 99.
01 OpStatus PIC 9.
 88 CuspSign VALUE 1.
 88 InvalidDate VALUE 2.

PROCEDURE DIVISION USING InDate, House RETURNING OpStatus.
 MOVE InDay TO WorkDay
 MOVE InMonth TO WorkMonth
 MOVE 0 TO OpStatus
 SET Zidx TO 1
 SEARCH ZodiacSign
 AT END IF WorkDate >= "0101" AND <= "0119"
 MOVE 11 TO House
 END-IF
 WHEN WorkDate >= StartDate(Zidx) AND <= EndDate(Zidx)
 SET House TO Zidx
 END-SEARCH
 IF SignIsCusp SET CuspSign TO TRUE
 END-IF

 EXIT METHOD.
END METHOD getSignHouse.

CHAPTER 19 ■ OO-COBOL

546

METHOD-ID. getSignName.
LINKAGE SECTION.
01 House PIC 99.
 88 ValidSignHouse VALUE 01 THRU 12.
01 OutSignName PIC X(11).

01 OpStatus PIC 9.
 88 InvalidSignHouse VALUE 1.
 88 OperationOk VALUE 0.

PROCEDURE DIVISION USING House, OutSignName RETURNING OpStatus.
 IF NOT ValidSignHouse
 SET InvalidSignHouse TO TRUE
 ELSE
 MOVE SignName(House) TO OutSignName
 SET OperationOk TO TRUE
 END-IF
 EXIT METHOD.
END METHOD getSignName.

METHOD-ID. getSignElement.
LINKAGE SECTION.
01 House PIC 99.
 88 ValidSignHouse VALUE 01 THRU 12.
01 OutSignElement PIC X(5).

01 OpStatus PIC 9.
 88 InvalidSignHouse VALUE 1.
 88 OperationOk VALUE 0.

PROCEDURE DIVISION USING House, OutSignElement RETURNING OpStatus.
 IF NOT ValidSignHouse
 SET InvalidSignHouse TO TRUE
 ELSE
 MOVE Element(SignElement(House)) TO OutSignElement
 SET OperationOk TO TRUE
 END-IF
 EXIT METHOD.
END METHOD getSignElement.
END OBJECT.

END CLASS Zodiac.

A���������
Acme Automobile Parts Limited

ile transaction, 470
maintenance, 471
redundant stock report, 471
stock master ile, 470
vehicle master ile, 470

Alphanumeric literals, 37
AND truth table, 79
Arithmetic verbs, 60

GIVING phrase, 61
metalanguage, 60
ON SIZE ERROR phrase, 62
ROUNDED phrase, 62
statements, 61

Aromamora Base Oil Sales report, 273
considerations, 274
control-break program, 276
oil names and unit costs, 275
report template, 274
sales ile, 274
test data and results, 279

Automatic language conversion, 6

B���������
Bespoke application, 9
Binary search, 303
Bracketing, 79

C���������
Class conditions, 75

example program, 77
metalanguage, 76
numeric tests, 76
StateName capitals, 76
UserDeinedClassName, 76

Closed subroutines, 112
CLOSE statement, 139
COBOL, 1

application domain
characteristics, 2
domain-independent languages, 2
version, 3

bespoke application, 9
bug-free status, 9
characteristics

enormous volumes, 11
maintainable, 13
many programming shops, 10
mission-critical applications, 11
module version log, 11
nonproprietary, 13
self-documenting programming language, 12
simple language, 12
stable, 12

coding rules (see Coding rules)
compiler, 34

Fujitsu NetCOBOL compiler, 35
Micro Focus Visual compiler, 34
online compiler, 35
open source COBOL compiler, 35
Raincode compiler, 35

conspiracy-theory, 8
crisis and opportunity, 7
deinition, 4
DoCalc program, 31
enterprise computing, 5
greeting program, 31
hidden asset, 8
hierarchical program structure, 21

divisions (see Divisions, COBOL program)
paragraph, 22
sections, 21
sentence, 22
statements, 23

Index

547

high-level programming language, 1
history, 3
idiosyncrasies, 17
legacy system

automatic language conversion, 6
code renovation, 7
commodity hardware and

software, 7
complete rewrite, 6
COTS package, 6
danger, diiculty and expense, 5
wrapping, 7

metalanguage syntax, 19
COMPUTE statement, 20
diagram, 19
notation, 19
operand suixes, 20

references, 14
standards, 4

COBOL ANS 4, 68
COBOL ANS 74 (External Subprograms), 4
COBOL ANS 85 (Structured Programming

Constructs), 4
COBOL ANS 2002 (OO Constructs), 4

target application domain, 1
using EVALUATE Verb, 34

COBOL subroutines, 112
Coding rules, 28

coding sheet, 28
name construction, 29

data-item names, 29
program formatting, 30
programming style, 30

Common Business Oriented Language (COBOL).
See COBOL

Compiler
Fujitsu NetCOBOL compiler, 35
Micro Focus Visual compiler, 34
online compiler, 35
open source COBOL compiler, 35
Raincode compiler, 35

Complex conditions, 78
bracketing, 79
cursor detection, 79
metalanguage, 78
OR, AND truth tables, 79
precedence rules, 79

COMPUTE statement, 20
Condition names, 83

correct use of, 88
Date-Validation Error Message, 93
deinition, 84

multiple names, 85
numeric or alphabetic values, 87

overlapping and multiple-value names, 86
rules, 84
single name and value, 84
whole word values, 88

design patterns
sequential ile reading, 91

example program, 89
group item, 92
set to true, 90
SET verb examples, 90
SET verb metalanguage, 90

Control-break processing, 206
detection, 208
program template, 209
program writing, 208
speciications required, 207

single control break, 207
three control breaks, 208
two control breaks, 207

three-level control break, 209
program implementation, 210
test data ile, 213

typical control break
program implementation, 215
speciication required, 214
test data ile, 217

Control structures
iteration (see Iteration constructs)
selection (see Selection constructs)

D���������
Data declaration, 37

assignment operation
alphanumeric MOVEs, 44
data types, 42
MOVE combinations, 43
MOVE rules, 43
MOVE syntax, 43
MOVE verb, 42
numeric MOVEs, 45

categories
data item (variables), 38
elementary item, 40
igurative constants, 39
literals, 37

data items
example declarations, 42
PICTURE clauses, 40

exercise
answers, 53
question, 52

numeric MOVEs
example set 1, 45
example set 2, 46

■INDEX

548

COBOL (cont.)

structured data
data hierarchy, 48
group item, 47
level number(s), 47
level number relationships govern hierarchy, 50

Data type enforcement, 38
Date-Validation Error Message, 93
Decimal arithmetic

ixed-point, 292, 294
loating-point, 292–293

Decision tables, 94
Direct access iles, 435

COBOL ile organizations
relative ile (see Relative ile organization)
sequential ile (see Sequential ile organization)

indexed iles, 450
applied transactions, 459
index ile combination (see Index ile

combination)
key references, 464
reading an indexed ile (See Reading an

indexed ile)
SELECT and ASSIGN clause, 463
verbs (see Index ile verbs)
sequential ile, 455

index ile organization, 449
alternate-key index, 450
data buckets, 449
primary-key index, 449

processing relative iles, 437
Reads (see Reading a relative ile)
sequential ile, 439
transactions (see Relative ile transaction)

relative ile
SELECT and ASSIGN clause, 444

verbs (see Relative ile verbs)
relative iles organization

one-dimensional table, 436
records, 437
single numeric key, 436
sparsely populated, 436

vs.sequential iles, 435
DISPLAY verb, 55
Divisions, COBOL program, 23

CONFIGURATION SECTION, 24–25
DATA DIVISION, 25

FILE SECTION, 25
WORKING-STORAGE SECTION, 25

ENVIRONMENT DIVISION, 24
hierarchical data declaration, 26
IDENTIFICATION DIVISION, 23–24
PROCEDURE DIVISION, 27
ShortestProgram, 27

Domain-independent languages, 2

E���������
Edited pictures, 181

editing types, 184
formatting efects, 181–182
immediate editing, 182
insertion, 185

ixed-insertion, 188
loating, 191
simple-insertion, 185
special-insertion, 187

picture clause, 197
print lines, 194

immediate editing, 195
program implementation, 195

program implementation, 182
string restrictions, 196
suppression-and-replacement editing, 193
symbols editing, 185

Elementary data item, 40
Encapsulation, 528
END-IF vs. period, 82
EVALUATE

Acme Book Club example, 99
amusement park example, 98
decision tables, 94
metalanguage, 95
objects, 97
payment totals example, 97
subjects, 97
WHEN branch rules, 97

F���������
Field, 132
Figurative constants, 39
File(s), 131

deinition, 131–132
ield, 132
practical exercise, 147, 150
processing of, 133
record, 132

bufer, 133–134
bufer declaration, 135
creation, 135
declarations, 134
occurrence, 132
template, 132

record-based iles, 131
direct-access ile organization, 131
serial ile organization, 131

SELECT and ASSIGN clause, 136
declarations, 137–138
extension, 138

■INDEX

549

syntax, 137
usage, 137

sequential (see Sequential iles)
File-update problem, 224

multiple record types, 226
mapping transcations, 227
schematic representation, 226

program implementation, 227
test data ile, 231
update stock ile, 224

change record, 225
deletion, 225
insertion, 225
transaction ile, 225

Fourth-generation languages (4GLs), 8
Fujitsu NetCOBOL compiler, 35

G���������
GIVING phrase, 61
Gravity-driven programming, 111

H���������
Hierarchical data description, 50
Hierarchical program structure, 21

divisions (see Divisions, COBOL program)
paragraph, 22
sections, 21
sentence, 22
statements, 23

I, J, K���������
IF statement, 73

condition types, 74
class conditions, 75
complex conditions, 78
relation conditions, 74
sign conditions, 78

END-IF vs. period, 82
nested IF statements, 81

Implied subjects, 80
INDEXED BY clause, 304
Index ile combination

DirectorId-DF, 458
index ile used, 456

Index ile verbs
ile manipulation, 464
READ verb

ACCESS MODE IS DYNAMIC, 464
ACCESS MODE IS SEQUENTIAL, 464

KeyName, 464
READ NEXT RECORD format, 464

START verbs, 465
WRITE, REWRITE and DELETE verbs, 465

Inline execution, 117
Insertion, 185

ixed insertion
CR and DB, 188
currency symbol, 188
examples, 190
Plus and Minus Symbols, 188

loating-insertion, 192
simple-insertion, 185

examples, 185
working principle, 185

special-insertion, 187
INSPECT Verb, 393, 395

CONVERTING format, 368
formats, 361
program, 361–362
reference modiication, 380
REPLACING format

metalanguage, 366
phrases, 366
statements, 367–368

TALLYING format
counting vowels and consonants, 364–365
metalanguage, 363
phrases, 363
programmatic detour, 365
statements, 364

UPPER-CASE function, 362
Intrinsic functions, 383

date functions
program, 390–392
types, 389

deinition, 383
parameters/arguments, 384
string

CHAR and ORD, 386
LENGTH function, 387
ORD-MAX function, 385, 387
ORD-MIN function, 386
REVERSE function, 387
types, 384
working principle, 388

IS EXTERNAL Clause
common coupling, 423
data-sharing mechanism, 422
naming dependency problem, 423

IS EXTERNAL Data Items
data low, tramp data, 424
IS EXTERNAL phrase, 423
tramp data, 424

■INDEX

550

File(s) (cont.)

Iteration constructs, 109
PERFORM, 109–110

closed subroutines, 112
COBOL subroutines, 112
format 1, 113
inline execution, 117
open subroutines, 110, 112
out-of-line execution, 118
PERFORM..THRU, 115
PERFORM..TIMES, 116
PERFORM..UNTIL, 118
PERFORM..VARYING, 120
PERFORM..VARYING UNTIL, 109
PERFORM WITH TEST AFTER UNTIL, 109
PERFORM WITH TEST BEFORE UNTIL, 109
working principle, 113

L���������
Level number relationships govern hierarchy, 50
Level sixty-sixes, 284
Linear search, 303
Literals, 37

alphanumeric literals, 37
numeric literals, 38

M���������
Master ile (MF), 219
Metalanguage syntax, 19

COMPUTE statement, 20
diagram, 19
notation, 19
operand suixes, 20

Micro Focus Visual compiler, 34
Multidimensional, 256

deinition, 256
granular data, 256
hierarchical structure, COBOL, 257
program, 257
record description, 256

N���������
Nested IF statements, 81
Nonconforming arithmetic verbs, 63

Add verb, 65
COMPUTE Verb, 63
DIVIDE Verb, 68
MULTIPLY Verb, 67
SUBTRACT Verb, 66

Numeric literals, 38

O���������
OCCURS clause metalanguage, 304
Online compiler, 35
ON SIZE ERROR phrase, 62
OO-COBOL, 519

class, 528
CLASS clause, 529
class program, 537–538

scoping issues, 534–535
structure, 533
template, 533
hisInstanceNum-ows, 539
WORKING-STORAGE SECTION vs.

LOCAL-STORAGE SECTION, 536
destroying objects, 531
dictionary class, 525

acronym dictionary creation, 527
creation, 523–524
END OBJECT, 527
FACTORY, 527
IDENTIFICATION DIVISION, 527
PROCEDURE DIVISION, 525
USAGE OBJECT REFERENCE clause, 524

encapsulation, 528
exercise program, 540
informational-strength modules

AddWordToDictionary, 521
creation, 521
DictionaryModule, 522

instance object, 530
INVOKE verb, 530
module coupling, 520
module dictionary module, 521
module strength, 520
object, 528–529
OBJECT REFERENCE, 528
predeined object identiiers, 532
USAGE OBJECT REFERENCE, 529

Open source COBOL compiler, 35
OPEN statement, 139
Open subroutines, 110, 112
Ordered sequential ile

delete records, 223
insert records, 219–220

master ile (MF), 219
partial record description, 221
transaction ile (TF), 219

update records, 221–222
master ile, 222
transaction ile, 222

OR truth table, 79
Out-of-line execution, 118

■INDEX

551

P, Q���������
Paragraphs, PROCEDURE DIVISION, 109
PERFORM, 109–110

closed subroutines, 112
COBOL subroutines, 112
format 1, 113
inline execution, 117
open subroutines, 110, 112
out-of-line execution, 118
PERFORM..THRU, 115

correct usage, 115
GO TO and Skip statements, 116
IF and Skip statements, 115

PERFORM..TIMES, 116
examples, 117
format 2, 116

PERFORM..UNTIL, 118
format 3, 118
post-test loop, 120
pre-test loop, 119
terminating condition, 120
WITH TEST AFTER, 119
WITH TEST BEFORE, 119

PERFORM..VARYING
counting, 122
counting iteration, 121
format 4, 120
odometer simulation, 123–124
syntax description, 121
WITH TEST AFTER, 121–122

PERFORM..VARYING UNTIL, 109
PERFORM WITH TEST AFTER UNTIL, 109
PERFORM WITH TEST BEFORE UNTIL, 109
PRACTICAL EXERCISES, 124
working principle, 113

Procedure division, 55
ACCEPT and DISPLAY program, 59
ACCEPT verb, 57

rules, 58
system variables format, 58

arithmetic verbs, 60
GIVING phrase, 61
metalanguage, 60
ON SIZE ERROR phrase, 62
ROUNDED phrase, 62
statements, 61

DISPLAY verb, 55
GENERATE verb, 508
INITIATE verb, 508
nonconforming arithmetic verbs, 63

Add verb, 65
COMPUTE Verb, 63
DIVIDE Verb, 68
MULTIPLY Verb, 67
SUBTRACT Verb, 66

programming structure, 69
TERMINATE verb, 509
transaction-processing software, 55

R���������
Raincode compiler, 35
RANDOM intrinsic function, 420
Reading an indexed ile

data division, 451
environment division, 451
GetFilmByDirectorId, 454
procedure division, 451
RELATIVE KEY entry, 453
working-storage section, 451

Reading a Relative File
data division, 437
display record, 438
environment division, 437
FILE STATUS clause, 439
procedural division, 438
READ verb, 439

READ statement, 140
data storage, 141–142
employee.dat ile, 140
syntax description, 140
test data ile, 140–141
with records display, 142

Record, 132
bufer, 133–134
bufer declaration, 135
creation, 135
declarations, 134
occurrence, 132
template, 132

REDEFINES clause, 273
Aromamora PLC speciication (see Aromamora Base

Oil Sales report)
data items, 282
percentages, 282
semantic rules, 280
syntax metalanguage, 280
time conversions, 283
UNSTRING statement, 281

Registers, 507
LINE-COUNTER, 507
PAGE-COUNTER, 507

Relation conditions, 74
metalanguage, 75
samples, 75

Relative ile organization
advantages, 468
disadvantages, 467
indexed ile, 468
one-dimensional table, 467

■INDEX

552

Relative ile transaction
content, 441
DisplayVehicleRecords, 444
ile processing verbs, 444
sequential ile to, 441

Relative ile verbs
DELETE verb, 448
INVALID KEY clause, 445
OPEN/CLOSE syntax, 446
read verb

ACCESS MODE, 446
direct read, metalanguage, 447
sequential read, metalanguage, 446

REWRITE verb, 447
START verb

metalanguage for, 448
position controller, 448

write verb, 447
RENAMES clause, 284

identiication division, 285
procedure division, 285
semantic rules, 284
syntax metalanguage, 284
working-storage section, 285

REPLACING phrase, 426
Report writer, 477

book ile, 513
control-break processing, 477
declaratives

COLUMN NUMBER clause, 505
control-break register, 511
crossfooting, 506
elementary print items, 504
ENVIRONMENT DIVISION, 499
FILE SECTION, 500
group deinition, 501
GROUP INDICATE clause, 505
handle unexpected ile errors, 511
LINE NUMBER clause, 502
NEXT GROUP clause, 503
print lines, 504
Report Description (RD), 500–501
RESET ON clause, 507
rolling forward, 506
SOURCE clause, 505
structure of, 509
subtotaling, 505
SUM clause, 505
SUPPRESS PRINTING statement, 510
TYPE clause, 503
version of USE, 509, 511

group types, 481
layout requirement, 482
print speciication, 514
PROCEDURE DIVISION

GENERATE verb, 508
INITIATE verb, 508
TERMINATE verb, 509

program creation, 514
CONTROL FOOTING group, 487, 492
DATA DIVISION, 489
DETAIL group, 487
features, 493
PAGE FOOTING group, 487–488
PAGE HEADING group, 487, 491
PROCEDURE DIVISION, 488, 492
REPORT HEADING group, 487
REPORT SECTION, 490
speciication modiication, 483
SUM clause, 492
WORKING-STORAGE SECTION, 489

publisher ile, 513
registers, 507

LINE-COUNTER, 507
PAGE-COUNTER, 507

solace solar, 477
irst page, 478–479
PROCEDURE DIVISION, 480
speciication, 478
tasks, 479

ROUNDED Phrase, 62

S���������
SEARCH ALL verb, 303, 314

binary search algorithm, 315
KEY IS clause, 314
metalanguage, 317

SEARCH verb, 303
advantages, 303
American states, 307
letter position, 306
metalanguage, 305
two-dimensional table

declarations, 312
graphical depiction, 312
JeansSalesTable, 313

SELECT and ASSIGN clause, 136
declarations, 137–138
extension, 138
syntax, 137
usage, 137

Selection constructs, 73
condition names, 83

correct use of, 88
Date-Validation Error Message, 93
design patterns, 91
example program, 89
group item, 92
multiple names, 85

■INDEX

553

numeric or alphabetic values, 87
overlapping and multiple-value names, 86
rules, 84
set to true, 90
SET verb examples, 90
SET verb metalanguage, 90
single name and value, 84
whole word values, 88

EVALUATE, 94
Acme Book Club example, 99
amusement park example, 98
decision tables, 94
metalanguage, 95
objects, 97
payment totals example, 97
subjects, 97
WHEN branch rules, 97

IF statement, 73–74
class conditions, 75
complex conditions, 78
END-IF vs. period, 82
relation conditions, 74
sign conditions, 78

implied subjects, 80
nested IF statements, 81
practical exercises, 102

Sequential ile(s), 138, 157, 205
CLOSE statement, 139
control-break processing, 206

detection, 208
program writing, 208
speciications required, 207
template, 209
three-level control break (see Control break

processing)
typical control break (see Control break

processing)
data organization, 205
ile organization vs. method of access, 205
ile update program, 232

program implementation, 232
test data ile, 236

method of access, 205
multiple record types, 157

implications, 157
problem speciications, 157
record bufer, 159

type code (see Type code)
OPEN statement, 139
ordered and unordered iles, 206
practical exercises, 149, 152
printer iles, 166

multiple record types, problems, 168
multiple record types, solutions, 168

Report Writer, 167
select and assign, 167
WRITE statement, 169

reading, 91
READ statement, 140

data storage, 141–142
employee.dat ile, 140
syntax description, 140
test data ile, 140–141
with records display, 142

update iles, 218
ile-update problem (see File-update problem)
key ield, 219
ordered sequential ile (see Ordered

sequential ile)
record matching, 219
transaction ile, 219

variable-length records, 174
FD entries, 174
program implementation, 175
varying phrase, 175

WRITE statement, 143
reading and writing to employee ile, 145
WRITE..FROM, 143
writing record and reading ile, 143–144
writing records to ile end, 144–145

Sequential ile organization
advantages, 466
disadvantages, 466

SET verb, 304
Sign conditions, 78
Software System creation, 399

CALL verb
CANCEL verb, 406
external subprogram, 408, 414
getting state information, 420
IS COMMON PROGRAM Clause, 407
IS EXTERNAL Clause (see IS EXTERNAL Clause)
IS EXTERNAL Data Items (see IS EXTERNAL

Data Items)
IS GLOBAL Clause, 407
IS INITIAL Phrase, 404
knowledge game, 417
metalanguage, 400
parameter passing and data visibility, 409
parameter-passing mechanisms, 401
subprograms (see Subprograms)
uses, 400
using COMMON Subprogram, 412

COPY verb
copy library, 425
COPY Statement, 426
COPY Statements with REPLACEMENT

Text, 427
data resource, 425

■INDEX

554

Selection constructs (cont.)

library statement, 424
metalanguage, 425
REPLACING phrase, 426
subprograms, 399–400

Solace solar, 477
irst page, 478–479
PROCEDURE DIVISION, 480
speciication, 478
tasks, 479

String concatenation, 370
deinition, 371
STRING verb

DELIMITED BY SIZE clause, 372
JUSTIFIED clause, 372
metalanguage, 371
ON OVERFLOW clause, 371
Pointer#i, 372
reference modiication, 380
rules, 371
statement, 372, 393, 396
WITH POINTER phrase, 372

String manipulation, 361
String splitting

COUNT IN clause, 373
deinition, 373
program, 379
TALLYING clause, 373
UNSTRING verb

ALL phrase, 375
COUNT IN clause, 375–376
DELIMITED BY clause, 374–375
DELIMITER IN phrase, 375, 378–379
END-UNSTRING, 374
metalanguage, 374
ON OVERFLOW clause, 375, 377
reference modiication, 380
statement, 374
TALLYING clause, 375
WITH POINTER clause, 375

STRING verb
DELIMITED BY SIZE clause, 372
JUSTIFIED clause, 372
metalanguage, 371
ON OVERFLOW clause, 371
Pointer#i, 372
reference modiication, 381
rules, 371
statement, 372, 393, 396
WITH POINTER phrase, 372

Strongly typed languages, 38
Subprograms

contained subprograms, 403
vs.external subprograms, 404

EXIT PROGRAM, 403

LINKAGE SECTION, 403
literal value, 402

Subroutines
closed subroutines, 112
COBOL subroutines, 112
open subroutines, 110, 112

T���������
Tables

ANS 85, 270
DriverTable, 270
group name, 270
INITIALIZE verb, 271
metalanguage, 270
REDEFINES clause, 270
StateDrivers, 270
VALUE clause, 270

vs. arrays, 247
average sales, 253
candy sales, 250, 252–253
control-break problem, 250
data program, 255
declaration, 248

OCCURS clause rules, 248
subscript rules, 249

deinition, 247
diagrammatic representation, 251
diferences, 248
display statements, 250
EVALUATE statement, 250
granularity levels, 253
multidimensional, 256

deinition, 256
depiction, 260
granular data, 256
hierarchical structure, COBOL, 257
program, 257
record description, 256
three dimensional (see hree dimensional)

preilled table
creation, 263
Electronics2Go sales ile, 265
program, 264, 266–269
REDEFINES clause, 263
two-dimensional, 264

procedure, 250
program, 254
sales-report program, 253
StateSalesTable, 251
StateSalesTotal, 251

hree dimensional
AgeCategory, 261
CensusFile, 261

■INDEX

555

population totals, 261
structure, 262

Transaction ile (TF), 219
Truth tables, 79
Type code, 159

graph representation, 160
program implementation, 160
record descriptions, 160
speciication required, 164

U���������
UNSTRING verb

ALL phrase, 375
COUNT IN clause, 375–376
DELIMITED BY clause, 374–375
DELIMITER IN phrase, 375, 378
END-UNSTRING, 374
metalanguage, 374
ON OVERFLOW clause, 375, 377
reference modiication, 380
statement, 374
TALLYING clause, 375
WITH POINTER clause, 375

USAGE clause, 286
advantages, 288
COMP, 290
considerations, 289
disadvantages, 286
extensions, 292
memory storage, 288
metalanguage syntax, 288

numeric data, 286
PACKED-DECIMAL, 290
SYNCHRONIZED clause, 291

USAGE IS COMP, 411

V���������
Variable-length tables, 319

declaration, 319
OCCURS clause, 319
SEARCH ALL verb, 320

W, X, Y���������
WHEN branch rules, 97
WRITE statement, 169

ADVANCING clause, 170
metalanguage, 170
PAGE option, 170
program implementation, 171
reading and writing to employee ile, 145
Report Writer, 173
WRITE..FROM, 143
writing record and reading ile, 143–144
writing records to ile end, 144–145

Z���������
Zodiac signs compatibility

cusp problem, 429
information ile, 429
processing, 430
zodiac table, 429

■INDEX

556

hree dimensional (cont.)

Beginning COBOL for
Programmers

Michael Coughlan

Beginning COBOL for Programmers

Copyright © 2014 by Michael Coughlan

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6253-4

ISBN-13 (electronic): 978-1-4302-6254-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editors: Anamika Panchoo and Melissa Maldonado
Copy Editor: Tifany Taylor
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

To my students in grateful thanks for everything you taught me.

vii

Contents

About the Author ... xxi

About the Technical Reviewer ... xxiii

Acknowledgments .. xxv

Preface ... xxvii

Chapter 1: Introduction to COBOL ■ ..1

What Is COBOL? ...1

COBOL’s Target Application Domain ... 1

COBOL’s Fitness for Its Application Domain ... 2

History of COBOL ...3

Beginnings ... 3

COBOL Standards .. 4

The Argument for COBOL (Why COBOL?) ...5

Dominance of COBOL in Enterprise Computing ... 5

Danger, Difficulty, and Expense of Replacing Legacy COBOL Applications .. 5

Shortage of COBOL Programmers: Crisis and Opportunity .. 7

COBOL: The Hidden Asset .. 8

Advantages of Bespoke Software .. 9

Characteristics of COBOL Applications .. 10

Characteristics of COBOL ... 11

Summary ...14

References ..14

■ CONTENTS

viii

Chapter 2: COBOL Foundation ■ ..17

COBOL Idiosyncrasies ..17

COBOL Syntax Metalanguage ..19

Some Notes on Syntax Diagrams .. 20

Example Metalanguage ... 20

Structure of COBOL Programs ...21

Divisions .. 21

The Four Divisions ...23

IDENTIFICATION DIVISION ... 23

ENVIRONMENT DIVISION .. 24

DATA DIVISION ... 25

File Section .. 25

Working-Storage Section .. 25

Data Hierarchy ... 26

PROCEDURE DIVISION .. 27

Shortest COBOL Program ... 27

COBOL Coding Rules ...28

Name Construction .. 29

Example Programs ..30

The COBOL Greeting Program .. 31

The DoCalc Program .. 31

The Condition Names Program .. 33

Chapter Exercise .. 34

Where to Get a COBOL Compiler..34

Micro Focus Visual COBOL ... 34

OpenCOBOL ... 35

Raincode COBOL .. 35

Compileonline COBOL .. 35

Fujitsu NetCOBOL .. 35

Summary ...35

References ..36

■ CONTENTS

ix

Chapter 3: Data Declaration in COBOL ■ ...37

Categories of Program Data ..37

COBOL Literals ... 37

Data Items (Variables).. 38

Figurative Constants .. 38

Elementary Data Items .. 40

Declaring Elementary Data Items ..40

PICTURE Clause Symbols ... 40

PICTURE Clause Notes ... 41

Example Declarations .. 42

Assignment in COBOL ..42

The MOVE Verb .. 42

MOVE Syntax ... 43

MOVE Rules ... 43

MOVE Combinations .. 43

MOVE Examples ... 44

Structured Data ...46

Group Data Items ... 47

Level Numbers ... 47

Data Hierarchy ... 48

Level-Number Relationships Govern Hierarchy ... 50

Summary ...52

Chapter 4: Procedure Division Basics ■ ...55

Input and Output with ACCEPT and DISPLAY ...55

The DISPLAY Verb .. 55

The ACCEPT Verb ... 57

Example Program: ACCEPT and DISPLAY ... 59

■ CONTENTS

x

Arithmetic in COBOL ..60

Common Arithmetic Template .. 60

Nonconforming Arithmetic Verbs ... 63

Let’s Write a Program ..69

Summary ...70

Chapter 5: Control Structures: Selection ■ ...73

Selection ...73

IF Statement ..73

Condition Types ...74

Relation Conditions .. 74

Class Conditions .. 75

Sign Conditions .. 78

Complex Conditions ... 78

Implied Subjects ..80

Nested IFs ...81

Delimiting Scope: END-IF vs. Period ..82

Condition Names ...83

Defining Condition Names ... 84

Using Condition Names Correctly .. 88

Example Program .. 89

Setting a Condition Name to True .. 90

EVALUATE ..94

Decision Tables .. 94

EVALUATE Metalanguage ... 95

Notes ... 97

EVALUATE Examples .. 97

Summary ...101

References ..101

■ CONTENTS

xi

Chapter 6: Control Structures: Iteration ■ ..109

Paragraphs Revisited ..109

The PERFORM Verb ..110

Open Subroutines .. 110

Closed Subroutines .. 112

COBOL Subroutines ... 112

Why Use Open Subroutines? ... 112

PERFORM NamedBlock.. 113

How PERFORM Works .. 113

PERFORM..THRU Dangers .. 115

Using PERFORM..THRU Correctly ... 115

PERFORM..TIMES ..116

Inline Execution ... 117

Out-of-Line Execution .. 118

PERFORM..UNTIL ...118

Notes on PERFORM..UNTIL .. 119

How PERFORM..UNTIL Works... 119

PERFORM..VARYING ...120

Notes on PERFORM..VARYING .. 121

How PERFORM..VARYING Works .. 121

Summary ...124

References ..129

Chapter 7: Introduction to Sequential Files ■ ...131

What Is a File? ...131

Terminology ... 132

Files, Records, and Fields .. 132

How Files Are Processed ... 133

Implications of Buffers .. 134

File and Record Declarations ... 134

■ CONTENTS

xii

Creating a Record .. 135

Declaring the Record Buffer in Your Program .. 135

The SELECT and ASSIGN Clause .. 136

SELECT and ASSIGN Syntax ... 137

Processing Sequential Files ..138

The OPEN Statement ... 139

The CLOSE Statement .. 139

The READ Statement ... 140

How READ Works ... 140

The WRITE Statement .. 143

Summary ...146

Chapter 8: Advanced Sequential Files ■ ...157

Files with Multiple Record Types ..157

Problem Specification.. 157

Implications of Files with Multiple Record Types .. 157

Multiple Record Descriptions, One Record Buffer ... 159

The Type Code ... 159

Printer Sequential Files ...166

SELECT and ASSIGN ... 167

What Is in a Report .. 167

Problem of Multiple Print Records ... 168

Solution to the Multiple Print Record Problem .. 168

WRITE Syntax Revisited ... 169

Variable-Length Records ...174

FD Entries for Variable-Length Records ... 174

Notes on Varying-Length Records ... 175

Example Program .. 175

Summary ...176

■ CONTENTS

xiii

Chapter 9: Edited Pictures ■ ...181

Edited Pictures ..181

Formatting Output ...181

Immediate Editing .. 182

Example Program .. 182

Types of Editing ...184

Editing Symbols ...185

Insertion Editing ..185

Simple-Insertion Editing .. 185

Special-Insertion Editing ... 187

Fixed-Insertion Editing... 188

Floating Insertion ... 191

Suppression-and-Replacement Editing ...193

Suppression-and-Replacement Examples .. 193

Example Print Lines ...194

Immediate Editing .. 195

PICTURE String Restrictions ..196

The PICTURE Clause Scaling Symbol ..197

Rules .. 197

Summary ...199

Chapter 10: Processing Sequential Files ■ ...205

File Organization vs. Method of Access ...205

Sequential Organization ..206

Ordered and Unordered Files ... 206

Control-Break Processing ...206

Specifications that Require Control Breaks ... 207

Detecting the Control Break .. 208

Writing a Control-Break Program .. 208

■ CONTENTS

xiv

Control-Break Program Template .. 209

Three-Level Control Break ... 209

An Atypical Control Break .. 214

Updating Sequential Files..218

Applying Transactions to an Ordered Sequential File .. 219

The File-Update Problem: Simplified ... 224

The Full File Update Problem ..232

Full File Update Program ... 232

Program Notes ... 235

Test Data and Results .. 236

Summary ...237

TestData ... 241

Notes ... 241

Chapter 11: Creating Tabular Data ■ ..247

Tables vs. Arrays ...247

Table/Array Definition .. 247

Table/Array Differences ... 248

Declaring Tables ..248

OCCURS Clause Rules .. 248

Subscript Rules ... 249

Why Use Tabular Data? ..249

First Specification .. 249

Second Specification ... 250

Using a Table for the State Sales Totals ... 251

Third Specification: Group Items as Table Elements .. 253

Tabular Data Program .. 254

Multidimensional Tables ..256

Multidimensional Program .. 257

Correct Depiction of COBOL Tables .. 260

Three-Dimensional Tables ... 260

■ CONTENTS

xv

Prefilled Tables ..262

REDEFINES Clause ... 263

Creating Prefilled Tables of Values... 263

Creating a Prefilled Two-dimensional Table ... 264

ANS 85 Table Changes ..270

Summary ...271

Specification Extension ... 272

Chapter 12: Advanced Data Declaration ■ ..273

The Redefines Clause ..273

Specification: Aromamora Base Oil Sales Report .. 273

The REDEFINES Clause ..280

REDEFINES Syntax ... 280

REDEFINES Notes .. 280

REDEFINES Examples .. 281

The RENAMES Clause ..284

RENAMES Syntax ... 284

RENAMES Notes .. 284

RENAMES Examples .. 285

Listing Notes .. 286

The USAGE Clause ...286

Representation of Numeric Data ... 286

Nonstandard USAGE Extensions .. 292

Decimal Arithmetic ..292

Summary ...294

The Problems ... 294

Program 1 .. 299

Program 2 .. 300

Program 3 .. 301

Program 4 .. 302

References ..302

■ CONTENTS

xvi

Chapter 13: Searching Tabular Data ■ ..303

SEARCHING Tabular Data ...303

Searching Using SEARCH and SEARCH ALL ..303

INDEXED BY Clause.. 304

Using SET to Manipulate the Table Index ... 304

The SEARCH Verb ..305

SEARCH Examples ... 306

Searching Multidimensional Tables ... 311

Searching the First Dimension of a Two-Dimensional Table .. 313

The SEARCH ALL Verb ..314

KEY IS Clause ... 314

How a Binary Search Works .. 315

SEARCH ALL ... 317

Variable-Length Tables ..319

Summary ...322

Chapter 14: Sorting and Merging ■ ..327

SORTING ..327

Simple Sorting ... 327

Using Multiple Keys ... 332

SORT with Procedures ... 333

How an INPUT PROCEDURE Works ... 335

OUTPUT PROCEDURE ... 343

How the OUTPUT PROCEDURE Works .. 343

Some Interesting Programs ... 346

Sorting Tables: ISO 2002 Changes ... 351

Merging Files ...352

MERGE Verb ... 353

MERGE Notes ... 353

Merging Province Sales Files .. 354

Summary ...356

■ CONTENTS

xvii

Chapter 15: String Manipulation ■ ...361

The INSPECT Verb ..361

INSPECT .. TALLYING: Format 1 ... 363

INSPECT .. REPLACING: Format 2 .. 365

INSPECT: Format 3 ... 367

INSPECT .. CONVERTING: Format 4 ... 368

String Concatenation ...370

The STRING Verb .. 371

String Concatenation Example .. 372

String Splitting ..373

The UNSTRING Verb ... 374

String-Splitting Program .. 379

Reference Modification ...380

Intrinsic Functions ...383

Using Intrinsic Functions ... 383

String Functions .. 384

DATE Functions .. 389

Summary ...393

Chapter 16: Creating Large Systems ■ ...399

Subprograms and the COPY Verb ..399

The CALL Verb ...400

Parameter-Passing Mechanisms ... 401

Subprograms ... 402

State Memory and the IS INITIAL Phrase ... 404

The CANCEL Verb ... 406

The IS GLOBAL Clause ... 406

The IS COMMON PROGRAM Clause ... 407

Example Programs and Their Subprograms .. 408

The IS EXTERNAL Clause ... 422

Using IS EXTERNAL Data Items .. 423

■ CONTENTS

xviii

The COPY Verb ...424

The COPY Metalanguage ... 425

How COPY Works ... 425

How the REPLACING Phrase Works.. 426

COPY Examples .. 426

Summary ...428

Chapter 17: Direct Access Files ■ ...435

Direct Access vs.Sequential Files ..435

Organization of Relative Files ..436

Processing Relative Files ..437

Reading a Relative File .. 437

Creating a Relative File from a Sequential File .. 439

Applying Transactions to a Relative File .. 441

Relative Files: Syntax and Semantics ..444

Relative Files: SELECT and ASSIGN Clause .. 444

Relative File Verbs ... 445

Organization of Indexed Files ..449

Processing Indexed Files ...450

Reading an Indexed File .. 451

Creating an Indexed File from a Sequential File .. 455

Using Indexed Files in Combination ... 456

Applying Transactions to an Indexed File .. 459

Indexed Files: Syntax and Semantics ..463

Indexed Files: SELECT and ASSIGN Clause .. 463

The Key of Reference .. 464

Indexed File Verbs ... 464

Comparison of COBOL File Organizations ..466

Sequential File Organization .. 466

Relative File Organization .. 467

Indexed File Organization .. 468

■ CONTENTS

xix

Summary ...469

Introduction ...469

General Description ... 470

Maintenance Procedure... 471

The Redundant Stock Report ... 471

Chapter 18: The COBOL Report Writer ■ ...477

Report Writer ...477

Example Report: Solace Solar Solutions .. 477

How the Report Writer Works .. 481

Writing a Report Program .. 482

Adding Features to the Report Program .. 488

Adding More Features to the Report Program ... 493

Report Writer Declaratives ... 499

Report Writer Syntax and Semantics ... 499

Special Report Writer Registers ... 507

PROCEDURE DIVISION Report Writer Verbs .. 507

Declaratives...509

Using Declaratives with the Report Writer ... 509

Using Declaratives with Files .. 511

Summary ...512

Introduction ...512

File Descriptions ..513

Print Specification ...513

Chapter 19: OO-COBOL ■ ...519

Module Strength and Module Coupling ...519

Informational-Strength Modules in COBOL ...521

OO-COBOL ...523

The UseDictionary Program ... 523

The Dictionary Class .. 525

■ CONTENTS

xx

A Formal Introduction to OO-COBOL ..528

Objects, Classes, and Methods .. 528

Programming with Objects .. 529

Registering a Class .. 529

Declaring Object References ... 529

Sending Messages to Instance Objects ... 530

Creating a New Object Instance .. 530

Destroying Objects .. 531

Predefined Object Identifiers ... 531

Writing Your Own Classes .. 532

The Issue of Scope .. 534

Summary ...539

Index ...547

xxi

About the Author

Michael Coughlan is a lecturer in the Department of Computer Science and
Information Systems at the University of Limerick, Ireland where he teaches
e-business, legacy systems, and business oriented programming languages. He has
been responsible for teaching COBOL to University of Limerick students since 1980.

Michael wrote the COBOL quick reference for the book Year 2000 in a Nutshell
by Norman Shakespeare (O’Reilly, 1998), and he created the free online learning
resource for COBOL at www.csis.ul.ie/COBOL. his resource is used by students
and instructors all over the world, and notes from the website have been translated
into a number of languages.

Taught by Cistercian monks in the Knockmealdown mountains of County
Waterford, Michael received a B.A. (Mod) in History from Trinity College Dublin, a
Graduate Diploma in Computing from the University of Limerick, and an M.Sc. in
Information Technology from the University of Ulster.

www.csis.ul.ie/COBOL

xxiii

About the Technical Reviewer

Massimo Nardone holds a Master of Science degree in Computer Science from the
University of Salerno, Italy. He worked as a PCI QSA and senior lead IT security/
cloud architect for many years, and currently he leads the Security Consulting
Team for Hewlett Packard Finland. With more than 19 years of work experience in
SCADA, cloud computing, IT infrastructure, mobile, security, and web technology
for both national and international projects, Massimo has worked as a project
manager, software engineer, research engineer, chief security architect, and
software specialist. He worked as visiting lecturer and supervisor for exercises
at the Networking Laboratory of the Helsinki University of Technology (Helsinki
University of Technology TKK became a part of Aalto University) for the course
“Security of Communication Protocols.” He holds four international patents
(PKI, SIP, SAML, and Proxy areas). his book is dedicated to Pia, Luna, Leo, and
Neve, who are my reasons for living.

xxv

Acknowledgments

Special thanks go to Steve Anglin, who started the whole process of my writing this book, and to Matthew Moodie,
Anamika Panchoo, Melissa Maldonado, and Massimo Nardone, the team of editors at Apress whose work was so
invaluable in shaping the text. I would especially like to thank Tifany Taylor for her excellent suggestions and for all
her work in eliminating my errors. Any errors that remain are my responsibility, but without her help, there would be
many more of them.

I thank my family for all their support. I thank Redmond O’Brien, who acted as a patient sounding board for
ideas, and Dermot Shinners-Kennedy, for our discussions about COBOL. he results of those discussions ind many a
relection in this book. Finally, I thank Annette McElligott (HOD) for her support and encouragement in this endeavor.

hanks also are due to Bill Qualls and Caliber Data Training for granting permission to use their BigDecimal Java
example program.

he following acknowledgment is from American National Standard Programming Language COBOL, X3.23-1985:

Any organization interested in reproducing the COBOL report and speciications in whole or
in part, using ideas taken from this report as the basis for an instruction manual or for any
other purpose is free to do so. However, all such organizations are requested to reproduce this
section as part of the introduction to the document. hose using a short passage, as in a book
review, are requested to mention ‘COBOL’ in acknowledgment of the source, but need not
quote this entire section.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

NO warranty, expressed or implied, is made by any contributor or by the COBOL Committee
as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

he authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming far the UNIVAC (R)
I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation:
IBM Commercial Translator, Form No. F28-80l3, copyrighted 1959 by IBM: FACT, DSI
27A5260-2760, copyrighted 1960 by Min~eapolis- Honeywell

have speciically authorized the use of this material in whole or in part, in the COBOL
speciications. such authorization extends to the reproduction and use of COBOL
speciications in programming manuals or similar publications.”

xxvii

Preface

It seems strange to be writing a book on COBOL so many years after its death was irst predicted. Indeed, COBOL
has had such a low proile in recent years that you might be forgiven for thinking that it had all but disappeared.
he nature of our industry is such that the new and exciting always gets more airplay than the secure, the accurate,
and the reliable. But while Java, C#, Ruby, Python, and Objective C have dominated our consciousness in recent
times, in the background billions of lines of COBOL code have quietly gone about supporting the mission-critical
applications that make the world work.

Now, after many years, awareness is increasing about COBOL and the huge body of legacy COBOL code. COBOL
is mentioned more and more in magazines, in trade journals, and in newspapers. Indeed, you may be reading this
book because you have noticed this activity and have become curious about COBOL. You may have wondered why
this supposedly dying language is attracting attention recently. he reason is simple. here is a legacy crisis just
around the corner, and stakeholders are trying to do something about it.

he problem is, so many attempts to rewrite COBOL legacy systems or replace them with of-the-shelf solutions
have ended in failure that custodians of legacy systems are now wary of these approaches to modernization. Migrating
the COBOL codebase to take advantage of less-expensive hardware and software is now seen as a more viable, safer,
and cheaper alternative to replacement. But keeping, and even growing, the COBOL codebase requires COBOL
programmers—and the COBOL workforce is aging and nearing retirement. In an efort to avert the workforce crisis,
legacy system stakeholders have implemented initiatives to increase the number of new COBOL programmers
entering the marketplace. COBOL implementers such as IBM and Micro Focus have introduced initiatives to
encourage colleges and universities around the world to teach COBOL as part of their curriculum, training companies
and in-house training groups are once more starting to provide instruction in COBOL, and employers have begun to
ofer a number of entry-level COBOL positions.

Over the last few years, the demand for programmers has far exceeded the supply. However, as the number of
students graduating from computer science courses recovers from the year 2000 downturn, the job market is likely to
become more and more competitive. In such a competitive environment, and at a time when the demand for COBOL
programmers is increasing, you may ind it proitable to have a résumé that includes a knowledge of COBOL.

Who This Book Is For
his book is aimed at programmers familiar with other languages who are curious about COBOL or are working with
COBOL legacy systems or who wish to take advantage of COBOL job opportunities. To get the most from this book,
you must have some knowledge of programming. It is not an introductory programming text.

■ PREFACE

xxviii

How You Should Read This Book
If you are using this book to learn to program in COBOL, rather than just dipping into it to ind out how a particular
construct or verb works, then you should read the book in the chapter order provided. Many chapters foreshadow
or preview material that is dealt with more completely in succeeding chapters. If you read the chapters out of order,
you may ind the discussion confusing. However, if you wish, you may skip the irst chapter, because it deals with
such matters as the history of COBOL, the importance for COBOL, and the characteristics of COBOL and COBOL
applications. Even if you do skip Chapter 1, you may ind it rewarding to read it later. It should provide a ready source
of ammunition with which to respond to any expressions of amazement that you are learning COBOL.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface

