

From COBOL to OOP

This Page Intentionally Left Blank

From COBOL to OOP

Markus Knasmüller
BMD Business Software

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Publishing Director Diane D. Cerra
Senior Editor Tim Cox
Publishing Services Manager Simon Crump
Production Editor Justin Palmeiro
Editorial Assistant Richard Camp
Project Management Graphic World Publishing Services
Cover Design Monty Lewis
Technical Illustration Graphic World Illustration Studio
Composition SNP Best-set Typesetter Ltd., Hong Kong
Copyeditor Graphic World Publishing Services
Proofreader Graphic World Publishing Services
Indexer Graphic World Publishing Services
Cover Printer Phoenix Color Corporation
Interior Printer The Maple-Vail Book Manufacturing Group

Morgan Kaufmann Publishers is an imprint of Elsevier
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

Copyright © 2001 by dpunkt.verlag GmbH, Heidelberg, Germany.
Title of the German original: Von COBOL zu OOP

ISBN: 3-932588-95-9
Translation Copyright © 2004 by Elsevier, Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed
as trademarks or registered trademarks. In all instances in which Morgan
Kaufmann Publishers is aware of a claim, the product names appear in initial
capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request
on-line via the Elsevier homepage (http://elsevier.com), by selecting “Customer
Support” and then “Obtaining Permissions.”

Library of Congress Control Number: Application submitted.

ISBN: 1-55860-822-2

For information on all Morgan Kaufmann Publications
visit our website at www.mkp.com

Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

Preface to the German Version

It was Tuesday, May 15, 1990, 10.20 AM—my first contact with object-
oriented programming. When I made my first experiences with this pro-
gramming form as a student back then, I did not even have a compiler for
it, so the only way to do my exercises was on paper. Nevertheless, I was
impressed by this new concept, and later, I wrote various programming
projects and even my degree and dissertation about this topic. Together
with Professor Mössenböck, himself a developer of the object-oriented pro-
gramming language Oberon-2, at the Johannes Kepler University of Linz,
Austria, I introduced hundreds of students to the art of object-oriented
programming. In 1997, BMD Systemhaus GmbH, Austria’s leading manu-
facturer of accounting software, offered me a chance to manage their soft-
ware development division with the main responsibility of converting their
current COBOL development to object-oriented programming—a great
challenge for me. The experiences I gained in this project, and the tech-
nique applied to convey object-oriented techniques to COBOL program-
mers, formed the basis for this book.

Consequently, this book addresses not only all COBOL programmers
but also all other programmers interested in making a switch from con-
ventional to object-oriented programming. It is also addressed to project
managers who are interested in implementing larger projects with the use
of object-oriented techniques. This means that this book has a fairly large
target group—there are no doubt hundreds of thousands of programmers
all over the world who have yet made this transition.

This book is aimed at facilitating exactly this for all these people. In this
book, we try to show one possible, efficient way, including experiences we

We build
software like

cathedrals: First
we build—then

we pray

vi Preface to the German Version

gained and well-known errors we found, so that our readers may benefit
from what we already went through and (hopefully) avoid the same errors.

I remember when I began working on that project with BMD; a book
like this would have helped a great deal. Unfortunately, there was no such
book, a fact that I found equally surprising and disappointing, because it
would have been a useful guideline for so many people. Since then, I have
had the idea of writing such kind of a book, and now, after many privations
and spending almost every spare minute on it, it is finally finished.

The fact that I am the only author of this book is a little misleading; like
most textbooks, this book involved some group effort, and it would prob-
ably not have come into being without the help of so many people. First
and foremost, I would like to give credit to Professor Mössenböck, who
extended me his invaluable support, both in his book [Mös99] and in his
lectures on object-oriented programming, showing me a meaningful way
to teach and learn object-oriented programming. Together with Bruno
Schäffer, Professor Mössenböck also read the manuscript and made sug-
gestions, enabling me to improve the quality of the book considerably. I
owe great thanks to the staff of BMD; all of them supported my efforts to
introduce object-oriented programming throughout the project and when
I wrote this book. Representative for all employees of BMD, my special
thanks goes to the so-called NTCS (New Technology Commercial Software)
team, namely Günther Freudenthaler, Horst and Sylvia Hagmüller, Franz
Pfeiler, and Robert Zeiml. Last, but not least, I would like to thank BMD
managing director, Ferdinand Wieser, for his encouragement and con-
tinued support. This NTCS project was sponsored by the Austrian Innova-
tion and Technology Fund (ITF) under project number 801813.

Also, I am thankful to my trainee student, Matthias Rumplmaier, who is
the author of a large number of figures included in this book. Ursula
Zimpfer proofread the manuscript to (hopefully) find any remaining typos.
I also appreciate the assistance of Christa Preisendanz of dpunkt.verlag,
who put a lot of organizational work in making this book happen. Sigrid
Haberkorn of Borland made it possible for us to add test versions of Delphi
and JBuilder to the CD attached to this book.

Finally, I would like to thank my beloved wife, Ulrike, although it will
not make up for all those hours we would otherwise have spent together.

Markus Knasmüller

Preface to the English Edition

Two years have passed since the German edition of this book appeared.
Although the computer industry made tremendous progress during these
2 years, it advanced very little (if at all) from the economic stance. Major
crises have brought many IT corporations to the brink of ruin, and many
programmers are unemployed today. This is the reason why excellent
qualification is more important than ever. This is what this book wants
to convey to traditional COBOL programmers, who will find these times
especially hard.

However, this book has further developed during these 2 years. Not only
the experiences gained from tutorials held about this issue at the OOPSLA
in Tampa Bay [Kna01] and OOP 2002 in Munich, Germany, but also the
invaluable suggestions of the four experts appointed by Morgan Kaufmann,
namely Raimund K. Ege, Chien Yueh, Markku Sakkinen, and Gene
Kozlowski, have made this English edition much more extensive than the
original German version.

We appreciate the input of these experts and are grateful to Stacie Pierce
and Tim Cox of Morgan Kaufmann for their patience during the past 2
years. Gudrun Wilhelm of Borland made it possible that this book now
includes new demo versions of Delphi and JBuilder.

Last but not least, we would like to thank our translator, Angelika Shafir,
who contributed to making the rare case happen where the translated
version seems to be better than the original.

Markus Knasmüller

This Page Intentionally Left Blank

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Advantages of the New Technologies 4
1.3 Organization of This Book 5
1.4 Selecting a Programming Environment 8
1.5 Object-Oriented COBOL 9
1.6 Notation and Conventions 10
1.7 The Book CD 11
1.8 A Real-World Example 11

2 Programming as an Engineering Discipline 13
2.1 Software Engineering Basics 14

2.1.1 Software Quality 14
2.1.2 Programming and Specification Concepts 15

2.2 Readability of a Program 16
2.2.1 Comments 16
2.2.2 Naming Conventions 17
2.2.3 Source Code 18

2.3 Program Structure 19
2.3.1 Procedures 19
2.3.2 Types 20
2.3.3 Class Libraries versus Keywords 21
2.3.4 Detailed Comparison of COBOL and OOP 21

2.4 Stepwise Refinement 23
2.4.1 General Approach 24
2.4.2 Example 25

x Contents

2.4.3 Summary 28
2.4.4 Exercises 28

3 Basics 29
3.1 Replacement for the Data Division: Symbols and Data Types 30

3.1.1 Symbols 30
3.1.2 Standard Types 32
3.1.3 Declarations 34
3.1.4 Expressions 35
3.1.5 Exercises 38

3.2 Replacement for the Procedure Division: Instructions 39
3.2.1 Assigning Values 39
3.2.2 Instruction Sequence 41
3.2.3 The if Instruction 42
3.2.4 The switch or case Instruction 42
3.2.5 Loops 44
3.2.6 Summary 47
3.2.7 Exercises 48

3.3 Procedures 49
3.3.1 Parameterless Procedures 50
3.3.2 Parameters 53
3.3.3 Local Names (Visibility, Validity) 55
3.3.4 Functions 57
3.3.5 Terminating a Procedure 59
3.3.6 Recursion 59
3.3.7 Exercises 61

3.4 Arrays, Strings, Records 63
3.4.1 Arrays 64
3.4.2 Strings 67
3.4.3 Records 71
3.4.4 Summary 76
3.4.5 Exercises 83

3.5 Language Particularities 84
3.5.1 Delphi Particularities 84
3.5.2 Java Particularities 88
3.5.3 Exercises 89

3.6 Modules 90
3.6.1 Motivation 91
3.6.2 Export 91
3.6.3 Import 94
3.6.4 Modularization 95
3.6.5 Exercises 95

3.7 Pointers: Introduction 97
3.7.1 Explanation of Terms 97
3.7.2 Pointers 99

Contents xi

3.7.3 Standard Algorithms 101
3.7.4 Delete 103
3.7.5 Other Examples for Dynamic Lists 104
3.7.6 Exercises 105

4 Data Structures and Algorithms 107
4.1 Abstract Data Types 107

4.1.1 Term: Abstraction 108
4.1.2 Abstract Data Structures 108
4.1.3 Abstract Data Types 111
4.1.4 Exercises 114

4.2 Dynamic Data Structures in Detail 116
4.2.1 Linear Lists 116
4.2.2 Stacks 119
4.2.3 Queues 120
4.2.4 Exercises 122

4.3 Trees 124
4.3.1 Definition of Terms 124
4.3.2 Binary Trees 125
4.3.3 Balanced Trees 132
4.3.4 Exercises 133

4.4 Algorithms 135
4.4.1 Heaps 136
4.4.2 Graphs 138
4.4.3 Hashing 140
4.4.4 Sort Algorithms 141
4.4.5 Exercises 143

5 True Object-Oriented Programming 145
5.1 Classes 145

5.1.1 Class Definition 146
5.1.2 Creating and Releasing Objects 149
5.1.3 Frequent Errors 152
5.1.4 The Main Ideas of Object-Oriented Programming 153
5.1.5 Terminology 154
5.1.6 Exercises 154

5.2 Inheritance and Dynamic Binding 154
5.2.1 Introduction 155
5.2.2 Type Compatibility 159
5.2.3 Dynamic Binding 161
5.2.4 Object-Oriented COBOL 162
5.2.5 Abstract Classes 163
5.2.6 Options to Access Attributes and Methods 164
5.2.7 Overloading Methods 165
5.2.8 Exercises 166

xii Contents

5.3 Typical Applications of Object-Oriented Programming 167
5.3.1 Data Abstraction 167
5.3.2 Generic Components 167
5.3.3 Replaceable Behavior 168
5.3.4 Extensible Components 169
5.3.5 Heterogeneous Data Structures 169
5.3.6 Example 170
5.3.7 Drawbacks of Object-Oriented Programming 176
5.3.8 Exercises 177

5.4 Class Libraries 177
5.4.1 Introduction 178
5.4.2 Delphi 180
5.4.3 Java 182
5.4.4 Creating Your Own Class Library 184
5.4.5 Exercises 185

5.5 Particularities of the Selected Programming Languages 185
5.5.1 Exceptions and Error Handling 185
5.5.2 Interfaces 191
5.5.3 Delphi Particularities 194
5.5.4 Java Particularities 196
5.5.5 Exercises 199

6 Object-Oriented Design 201
6.1 Object-Oriented Design and UML 201

6.1.1 Comparison with the Procedural Design 201
6.1.2 The Abbot Method 202
6.1.3 CRC Cards 204
6.1.4 Unified Modeling Language 204
6.1.5 Tips 206
6.1.6 Exercises 208

6.2 Design Patterns and Components 209
6.2.1 Design Patterns 209
6.2.2 Components 213
6.2.3 Exercises 216

7 Databases 217
7.1 Introduction and Differences from COBOL IS Files 217

7.1.1 The Basic Concept of a Database 218
7.1.2 SELECT: One Word—Two Meanings 219
7.1.3 Data Security, Data Protection, and Recovery 220
7.1.4 Parallel Processing 222
7.1.5 Possibility for End Users 223
7.1.6 Requirements to a Relational Database 225
7.1.7 Client/Server Solution 225

Contents xiii

7.1.8 Object-Oriented Databases 227
7.1.9 Changing from ISAM to RDBMS 228
7.1.10 Exercises 230

7.2 Data Modeling 230
7.2.1 Introduction 231
7.2.2 Normalization 233
7.2.3 The Entity-Relationship Model 236
7.2.4 Views 239
7.2.5 Other Particularities 240
7.2.6 Exercises 241

7.3 Introduction to SQL 241
7.3.1 Creating Tables 242
7.3.2 Inserting and Deleting Records 243
7.3.3 Functions 244
7.3.4 SELECT Instruction 245
7.3.5 Set Operations 248
7.3.6 The UPDATE Instruction 250
7.3.7 Other Instructions 251
7.3.8 Exercises 253

7.4 SQL: Program Access 254
7.4.1 Setting Up a Connection 255
7.4.2 Sending SQL Instructions to the Database 257
7.4.3 Evaluating the Result 259
7.4.4 Summarizing Example 261
7.4.5 Exercises 263

8 Graphical User Interfaces 265
8.1 Structure of a Graphical User Interface 265
8.2 Event-Oriented Programming 268
8.3 Short Overview of Class Libraries 270
8.4 Tips for Designing a User Interface 278
8.5 Online Applications 279

9 COBOL to OOP in Practice 281
9.1 Summary 281
9.2 Changing to OOP in Practice 283

9.2.1 Main Tasks 283
9.2.2 Implementing the Required Windows Tools 284
9.2.3 Retraining COBOL Programmers 284
9.2.4 Experiences 285

9.3 Career Switch to OOP in Practice 285
9.3.1 Knowledge 286
9.3.2 Human Background 286

xiv Contents

9.3.3 Problems 287
9.3.4 Results 290

9.4 Accompanying Activities 290
9.4.1 ISO 9001 290
9.4.2 Automatic Tests 292
9.4.3 Version Management 293

9.5 Stick to COBOL All the Same? 293
9.6 One Last Word 294

Appendix A Using the Development Environments 295
A.1 Delphi 295
A.2 Java 297

Appendix B Sample Solutions 299
B.1 Solutions to Chapter 3 299

B.1.1 Exercises in Section 3.1.5 299
B.1.2 Exercises in Section 3.2.7 300
B.1.3 Exercises in Section 3.3.7 303
B.1.4 Exercises in Section 3.6.5 303
B.1.5 Exercises in Section 3.7.6 305

B.2 Solutions to Chapter 4 307
B.2.1 Exercises in Section 4.1.4 307
B.2.2 Exercises in Section 4.2.4 310
B.2.3 Exercises in Section 4.4.5 313

B.3 Solutions to Chapter 5 313
B.3.1 Exercises in Section 5.1.6 313

B.4 Solutions to Chapter 6 317
B.4.1 Exercises in Section 6.1.6 317

B.5 Solutions to Chapter 7 318
B.5.1 Exercises in Section 7.1.10 318
B.5.2 Exercises in Section 7.2.6 318
B.5.3 Exercises in Section 7.3.8 321

Appendix C Glossary 323

Appendix D References 329

Index 333

1
Introduction

1.1 Motivation

The third millennium has begun, and with it a new information technol-
ogy age. Fast developments have to be expected, because together with the
new millennium, a new age began without the Y2K problem. The Y2K
problem involved huge manpower capacities to solve a simple but very
costly problem with date formats. The removal of the Y2K problem was not
creative—as we can see, for instance, in the following example of a letter
written by a software development manager, probably not meant to be
taken all too seriously:

Dear Boss,

Our staff has completed the 18 months of work on time and on budget. We have

gone through every line of code in every program in every system. We have ana-

lyzed all databases and all data files, including backups and historic archives,

and modified all data to reflect the change.

We are proud to report that we have completed the “Y2K” date change

mission and have now implemented all changes to all programs and all data to

reflect your new standards: Januark, Februark, March, April, Mak, June, Julk,

Y2K taken
literally

Y2K problem

2 Chapter 1 Introduction

August, September, October, November, December. As well as Sundak, Mondak,

Tuesdak, Wednesdak, Thursdak, Fridak, Saturdak.

I trust that this is satisfactory, because to be honest, none of this “Y to K”

problem has made any sense to me. But I understand it is a global problem, and

our team is glad to help in any way possible.

And what does the year 2000 have to do with it? Speaking of which, what do

you think we ought to do next year, when the two-digit year rolls over from 99 to

00? We’ll await your direction.

Joan Duh

Senior Programer

Although this change of programs brought little progress, it tied up a lot
of resources—the more so as a new currency, the Euro, also had to be built
into many programs. This situation paved the way for programmers,
particularly those of the old school, to find suitable jobs. Because most
of the programs that had to be rewritten were old programs, most of them
in COBOL, COBOL programmers were suddenly in demand, although
the situation had looked grim for them only a few years before the turn
of the century, as new and more comfortable programming languages
emerged.

The Y2K problem created plenty of jobs not only for existing COBOL
programmers—many newcomers to the programming field were encour-
aged to study COBOL, and an equally large number of corporate program-
mers were retrained for this language. However, as an expert in the field
once said, “Before January 1, software developers will make money from
the Y2K problem, while only lawyers will make even more money from it
after that date.”

In this new age after the Y2K problem, everybody can now fully con-
centrate on progress and further development. Naturally, this will create a
high demand for professionals, including programmers, in the field of
information technology. But these jobs will require more creativity and per-
formance and less tedious code writing. Also, new technologies, such as the
Internet, UMTS, and WAP, are making progress. This means that today’s
COBOL programmers will have to evolve. A labor market study published
by JOBSTATS in November 2002 (www.jobstats.com) shows that only 0.9%
of all open IT jobs ask for COBOL. This demand is far below that for Java
(8.4%) or C++ (10.4%), although there are now about three million COBOL
programmers worldwide.

Job prospects

1.1 Motivation 3

Thanks to the enormous benefits of object-oriented programming,
which is discussed in the next section, it is not hard to understand why an
object-oriented language is in greater demand. For this reason, it is impor-
tant to learn this technique, and it should not be too difficult: You are only
about 300 pages away from it. Of course, certain efforts will still have to be
made, and some may be reluctant, asking themselves whether there are any
alternatives.

Of course there are! Taking an analogy from natural life, although the
dinosaurs are extinct, a species called crossopterygian (a large group of
fishes that have paired fins suggesting limbs; Figure 1.1) have been around
250 million years longer than dinosaurs and are still here. Therefore, no
doubt COBOL programmers will also survive without going to the effort of
making an evolutionary adjustment.

All jokes aside, not just COBOL programmers but all programmers
nowadays must evolve or become extinct. This book can be a step forward
to avoid extinction.

Although learning object-oriented programming is necessary, it is a
rather hard task. Therefore, it is useful to give some motivation now. We
think that it is much easier for an experienced COBOL programmer to learn
OOP than a newcomer. A COBOL programmer knows how to program and
has to learn only the object-oriented features. This book teaches exactly
that.

Former COBOL programmers have another advantage: an above-
average knowledge of and experience with domains. We believe that this
domain knowledge and experience in implementing such a software
product are far more important than the programming knowledge itself.
Therefore, an experienced COBOL programmer with some knowledge of
object-oriented programming is a much better choice for a manager than
a newcomer with perfect OO knowledge but no experience.

Alternatives: even
crossopterygian

species may
survive

Figure 1.1 The crossopterygian: an alternative for COBOL users?

4 Chapter 1 Introduction

The rest of this chapter discusses the advantages of object-oriented
programming. It also describes the necessary preparations and how this
course is organized and gives a practical example for all those who are still
in doubt. The example shows two things: first, that it is recommended to
switch from COBOL to object-oriented programming, and second, that the
concept covered in this book has been successfully applied in practice.

1.2 Advantages of the New Technologies

The most important advantages of object-oriented programming are as
follows:

� Reusability: Object-oriented programming allows an existing program
code to be reused, even in a totally different program. This technique
helps reduce development costs. A simple example is accounting func-
tionality written only once and used by all programs.

� Extensibility: Not only can existing program codes be reused, they can
also be extended by inheritance, as discussed in Section 5.2, without any
effect on existing program codes or on programs that already use these
code pieces. A simple example is a program written for British payroll
software that could reuse many code parts from existing U.S. payroll
accounting software.

� Class libraries: The possibility of reusing code takes us a step further,
allowing us to group the most important program parts into libraries.
The programmer can use these libraries, select program parts matching
the new code, and extend it directly or by inheritance, without the need
to change the existing program parts.

� Uniform look of programs: Class libraries not only reduce development
costs but also ensure uniform design of new programs. For example, if
the class library includes objects to design a graphical user interface,
new programs written with these objects naturally have a similar look
and feel. The user will find these programs friendlier, and the program-
mer will find the source code easier to handle.

� Object-oriented thinking: The biggest advantage is the new object-
oriented thinking. Object-oriented programming views a program as a
collection of loosely connected agents, termed objects. Each object is

The advantages
of OOP

1.3 Organization of This Book 5

responsible for specific tasks. It is by the interaction of objects that
computation proceeds. In a certain sense, therefore, programming is
nothing more or less than the simulation of a model universe. Object-
oriented programming is a new way of thinking about the process
of decomposing problems and developing programming solutions
[Bud02, p. 19].

All these advantages would be reason enough to switch to an object-
oriented programming language. However, to make this switch as efficient
as possible, it would be a good idea to learn other useful techniques in
parallel. The most important of these techniques are described in this
book. Briefly, two of them are as follows:

� Object-oriented modeling: In general, a project begins with a difficult
and complex situation. The object-oriented design, with its holistic
approach, considering both static structural properties and dynamic
state changes, helps represent such a complex situation in a simple
model. Object-oriented modeling analysis, design, and implementation
of software happen under one conceptual umbrella.

� Databases: Databases can be thought of as an expansion of the princi-
ple of index-sequential files. They offer the benefit of providing many
additional functions, such as recovery (ensuring that the database
contents remain consistent even if a program crashes) or SQL (a simple
query language). In addition, they allow end users to write their own
evaluations, which means that individual adaptations are no longer
required. Of course, databases are not really a feature of object-oriented
programming—they can also be used in traditional programming
languages, even in COBOL. However, most traditional COBOL programs
(not the new one, of course) use index-sequential files instead of rela-
tional or object-relational databases.

1.3 Organization of This Book

We think the aforementioned reasons represent enough motivation to get
started right away—for example, by reading the next chapter, which takes
you to the actual learning material. Before dealing with the nuts and bolts
of object-oriented programming, however, it is worthwhile to explain how
this book is organized.

OO techniques

Interested in
perfection? This
book helps you

learn it

6 Chapter 1 Introduction

This book does not attempt to train you for an object-oriented pro-
gramming job nor does it concentrate on a specific development environ-
ment. Although most modern development environments are powerful,
enabling you to create cute programs in almost no time (sometimes even
without writing a single line of code), such an approach has inherent risks,
particularly for the beginner. First of all, “creating” seems to be a better
word than “programming,” because this programming approach has
little to do with real programming—it normally takes not much more than
a few mouse clicks. Many technical books begin with exactly these mouse
clicks.

The problem is that the applications built by such an approach may look
nice but will somehow (and usually soon) not stand the test in practice.
They will require modifications and extensions, which take more than a few
mouse clicks. Instead, applications require sound basic knowledge,
because code has to be modified and produced.

In fact, such an enterprise requires perfection—which has to be
acquired, even in object-oriented programming. This book is aimed at
helping you gain exactly this perfection. As rocky as the way to get there
may be, because your first result will most likely not be a killer Windows
application, the final result—the acquired perfection—will make up for
every effort you made.

Another important thing to say here is that this book is about object-
oriented programming and not about COBOL. So, whenever it is useful,
we compare COBOL constructs with object-oriented programming struc-
tures. However, the former are not explained in detail when it is not
necessary, because we assume that the typical reader knows all the
COBOL details.

Preceding the tutorial sections of this book, which are about the differ-
ences between COBOL and object-oriented programming, there is first a
section about software engineering. This section presents fundamental
concepts without getting into the specific syntax of a language. Some basic
concepts that are discussed there are, for example, names, types, proce-
dural abstraction, and the important topic of keywords versus class
libraries. This section is an introduction to the basic concepts of modern
programming in general, before the similarities and differences between
COBOL and object-oriented programming are presented.

When the world of traditional COBOL is compared with that of object-
oriented programming, several fundamental differences are noted, shown
in Table 1.1. It should be mentioned here that object-oriented COBOL

1.3 Organization of This Book 7

(OO-COBOL) also supports many of these functions. Section 1.5 presents
more about OO-COBOL.

We took these differences between COBOL and OOP as a basis to
prepare and design the following OOP course, one full chapter being
dedicated to each of them. Building on these fundamental differences
between COBOL and OOP, the tutorial sections are divided into seven
blocks (including a total of 27 exercises).

Each block consists of several separate tutorial sections, which should
be worked through. Each section concludes with exercises (mostly pro-
gramming tasks). They should be worked through, because programming
is not something that can be learned by heart and recited from memory, by
attending theoretical lectures, or by reading textbooks (although it helps).

When I studied programming, there was one 90-minute lecture per
week, supplemented by a practical exercise that had to be worked out at
home (or rather at the university’s mainframe, at that time). Each exercise
took about 10 hours to complete. This was a very efficient learning method,
showing that programming can be learned only at the computer.

For this reason, the tutorial sections in this book are organized so that
they will take about 60 minutes each, and each is followed by exercises that
require a multiple of this time. (The approximate time to allow yourself for
each exercise is indicated in parentheses.) It is not necessary to work all
exercises thoroughly, and a (short!) look at the sample solutions (in Appen-
dix B and on the CD) is also allowed.

Basically, this book follows a textbook approach, where the material
contained in the chapters can be read sequentially, from front to back.
However, advanced readers may choose to skip some sections. I recom-
mend skimming the exercises of a tutorial section you intend to skip to find
out this is a good idea.

The author’s
experience:

practice makes
perfect

Skipping tutorial
sections

Table 1.1 Comparing COBOL with OOP

COBOL Object-oriented programming

Terms (OCCURS, PERFORM, . . .) Terms (records, arrays)

Static data types Dynamic data types

Types Classes

(Index-) sequential files Databases

Terminal solutions Graphical user interfaces

8 Chapter 1 Introduction

1.4 Selecting a Programming Environment

One of the first decisions to be made at the beginning of an object-oriented
project is which programming language to use. Many programming
languages have been used for software development since SIMULA, the
first object-oriented programming language. Among the most popular are
the following:

� Delphi: This language is actually an object-oriented extension of Pascal
[JeWi74], a language particularly popular both in universities and in
practice. Delphi is well structured and, at least in my view, easy for
former COBOL programmers to learn. It is conceived mainly for
commercial applications.

� C++: This language is an object-oriented extension of the C program-
ming language, conceived mainly for system programming. It is not one
of the easiest to learn and leads to a somewhat unstructured program-
ming style. Despite this drawback, it is currently the most popular OOP
language.

� Java: This OOP language is similar to C+ + and is used mainly to write
Internet pages. The recent Internet boom is responsible for Java having
the highest growth rate. One problem with this OOP language is that
programs written in it tend to be slow, particularly for number-
crunching tasks, because Java code is compiled into byte code, which
must be interpreted. Although speed may not be critical on the Internet,
the real bottleneck being line capacities and other network-related
factors (most readers will surely have experienced the “World Wide
Wait”), slow program speeds are tolerated less in business environments.

Now, while selecting a language appears to be hard enough, object-
oriented programming does not let us settle for just a language. We must
also select a suitable programming environment. In addition to a compiler,
such a programming environment contains other tools, such as a debug-
ger or a project management tool and a class library. As mentioned previ-
ously and discussed extensively in Section 5.4, such a library can often be
more important than the programming language.

Because there are so many different programming environments with
different advantages and different disadvantages, it is an important and

Languages:
Delphi, C++,

Java—which one
is the best?

Selection criteria

1.5 Object-Oriented COBOL 9

complex matter to select the right one. As mentioned, a larger project nor-
mally begins with choosing the development environment. It would appear
meaningful to start by defining a list of requirements and then evaluate all
potential candidates. Criteria established in such a requirement catalog
could mean complete support of the object-oriented technology, Internet
functionality, integration of database systems, previous experience and
successful projects, service and support, or costs.

The COBOL programmer who is about to jump into an object-oriented
project will normally have to live with a decision made by the project’s
management. This book is therefore designed to be independent of any
specific programming environment. A side benefit of this approach is that
readers who intend to merely get an idea of what object-oriented pro-
gramming is all about can skim the book without nailing themselves down
to a specific programming language or development environment in
advance.

Of course, this approach presents difficulties, particularly when it
comes to the programming examples, because examples are normally
written in a specific programming language. For examples that required a
specific language be used, that language is indicated in the marginal note.
We thought it preferable to present all examples in Delphi and Java, leaving
out C++ altogether, because this language is similar to and gradually being
replaced by Java.

1.5 Object-Oriented COBOL

One object-oriented programming language is missing in the preceding
list: object-oriented COBOL (for example, [ArCo96]). OO-COBOL is
“normal” COBOL with additional object-oriented functions, just as C++ is
an object-oriented extension of C. Naturally, considering this book’s main
subject, you may wonder why it does not cover this language in detail or
use it as a basis to teach object-oriented programming. There are several
reasons:

� Current COBOL programmers normally join new project teams once
they complete their professional switch to object-oriented program-
ming. The problem is that most new projects do not use OO-COBOL.

� Learning object-oriented programming involves not only the study of
new concepts but also, and most important, the application of these

Project managers
usually decide

Evaluating
OO-COBOL

10 Chapter 1 Introduction

concepts. A programmer who works with OO-COBOL may tend to
continue using his or her familiar style and concentrate mainly on
well-known parts. For this reason, it seems advisable to learn these
techniques on the basis of a new language and use that language from
the beginning.

� Even when existing COBOL packages written in conventional program-
ming code are converted to object-oriented programming, I consider
it preferable to use another object-oriented programming language
instead of OO-COBOL. If we use only OO-COBOL instead of COBOL,
we run the risk that nothing might change for the better, especially
in view of the fact that most programmers are urged to use these new
concepts.

On the other hand, many COBOL programmers might hope they can
become OO-COBOL programmers with no more effort than adding a
few characters to their job titles [Bud02, p. 2]. They should consider the
following sentences about object-oriented programming in Timothy
Budd’s excellent book: “Unfortunately, this hope is a long way from being
realized. Object-oriented programming is a new way of thinking about
what it means to compute, about how we can structure information and
communicate our intentions both to each other and to the machine. To
become proficient in object-oriented techniques requires a complete
reevaluation of traditional software development.”

1.6 Notation and Conventions

To avoid lengthy explanations of frequently occurring technical terms in
each context throughout the book, Appendix C contains a detailed glossary
of terms.

All program examples are highlighted with marginal notes that indicate
the language (normally Delphi or Java) used in the example. Programming
fragments, such as keywords, that occur in the text are highlighted by a
different formatting style—for example, program.

Source code

1.8 A Real-World Example 11

1.7 The Book CD

This book includes a CD with all tutorial sections, in the form of Power-
Point presentations, and sample solutions to all exercises, ready to be com-
piled. For readers who do not have a programming environment yet, the
CD contains test versions of Borland Delphi and Borland JBuilder.

The main directory of the CD includes three folders:

� PowerPoint, which includes tutorial sections

� Delphi, which includes sample solutions to the exercises in the Delphi
programming language

� Java, which includes sample solutions to the exercises in the Java pro-
gramming language

The structure underneath this folder follows the same order; that is, each
chapter is in a separate folder, and each tutorial is in a subfolder.

If you want to install one of the two demo versions, open the file
borland.html in the main directory, which explains how to proceed.

As a special feature, you will also find the OOPSLA tutorial “How to
Manage the Change from COBOL to OOP” [Kna01] in the PowerPoint
folder.

1.8 A Real-World Example

If you think you still need more motivation, despite the benefits of object-
oriented programming outlined earlier, this section briefly introduces
a practical example to encourage you to get going with this OOP course.
The Austrian company BMD Systemhaus GmbH has successfully applied
the approach to teaching and learning object-oriented programming intro-
duced in this course. This company is one of the largest Austrian
producers of business software, with an installed base of more than 12,000
customer sites. The course trained more than 40 of the company’s COBOL
programmers (some with close to 30 years of COBOL experience) in object-
oriented programming. I have managed BMD’s software development
department since 1997.

CD contents

BMD

12 Chapter 1 Introduction

Within the scope of this project [Kna99], the entire software develop-
ment, including all existing software, has been converted from COBOL to
object-oriented programming, where we are talking of more than 10
million lines of code. The practical tips for object-oriented projects given
in Chapter 9 include a discussion of experiences gained from this BMD
project. As another motivating argument, we note that the new object-
oriented techniques helped us develop several new packages, including a
document archive, a Web shop, and an organizer (Figure 1.2), within a rela-
tively short time (each took only a few months).

Figure 1.2 The new BMD organizer (core development time: 2 months).

Real-world
experience: OOP

pays off

2
Programming as an Engineering
Discipline

As mentioned in Chapter 1, COBOL programmers normally have extensive
experience. Nevertheless, many of them were not lucky enough to spend
years studying at a university. In fact, many often received only a brief intro-
duction and had to start on a job and become productive immediately. This
is basically nothing bad—to the contrary! Productive work is a good thing
and cannot be replaced by years of studying at universities. But still, it is
about time to catch up on a few things and improve systematic work.

This chapter deals with the process of learning these things systemati-
cally. It is aimed at improving general programming knowledge. Program-
ming is a highly creative activity, and a complex one. In fact, it is probably
more complex than many other engineering sciences. In addition, pro-
gramming should not be seen as a coding task, because it involves much
more, including analysis, design, development, testing, and often, com-
missioning (verifying whether the software solves the problem) at the cus-
tomer’s site.

All this is important and is discussed in this chapter without depending
on any single language. Therefore, this chapter does not require knowledge
of a specific programming language. We will come to this point in the next
chapter, which briefly discusses some of the concepts explained here and
then deals with language differences. Notice that we should not be talking
about programming in this chapter; software engineering is the better and
more comprehensive term.

Programming is
more than

coding!

Extensive
experience

Software
engineering

14 Chapter 2 Programming as an Engineering Discipline

2.1 Software Engineering Basics

As mentioned, the most important thing to understand is that software
engineering is a holistic approach, which means that it includes much
more than the actual programming. It is a matter of professionally devel-
oping large software systems. This involves several important facts:

� Large software: We are talking of large software and not of small pro-
grams. This translates into high complexity, which means that many
components normally have to be linked to solve the problem on hand.
This complexity has to be reduced to ensure that the problem remains
manageable, despite its complexity. Section 2.4 discusses a method for
reducing complexity.

� Long lifetime: Software has a long lifetime. This is clear, because the sig-
nificant effort would otherwise not pay off. Long lifetime means that
versions will be built and many changes will be involved. Section 9.4.3
introduces useful versioning tools.

� Teamwork: Software can no longer be developed by one person. It
requires developer teams, which use methods and tools to solve a
problem and create software. This is possible mainly when a highly
complex problem can be divided into smaller ones. Individuals can
solve the smaller sets of problems, which facilitates teamwork. However,
even when problems can be solved individually, frequent cooperation,
including exchange of information and mutual source code revisions, is
both meaningful and necessary.

� User involvement: Involve your (future) users in all development phases.
Users look at things differently and may even have different goals,
interests, experiences, and knowledge than the development team.

The following subsection begins with a reflection on software quality and
then deals with the concepts involved in programming and specification.

2.1.1 Software Quality

One major problem in software development is that software cannot be
perceived or understood through the senses. All we can actually perceive

Holistic approach

Adaptability is
important

2.1 Software Engineering Basics 15

are defined pieces of text in the form of reading problem descriptions or
trying an existing product. Nevertheless, it is important that your software
have high quality, where quality means all the properties needed to meet
the specified requirements. Three critical factors are correctness, reliabil-
ity, and adaptability. Unfortunately, the last point is often overlooked in
many software development projects.

Essentially, software quality is seen on two different levels:

� Product quality: This view looks at how the software product was built.
It mainly concerns the internal quality characteristics, such as easy
readability of the program (see Section 2.2) or observing design criteria.
These criteria should ensure that a piece of software is understandable,
changeable, and reusable. For example, one of these design criteria is
the secrecy principle (see Section 4.1), in which the components of a
software system together are called black box. Only information
required by the components to interact (= interface) is presented to the
outside. Everything else is kept secret, in the sense of not needing to
know. This approach reduces likelihood of errors and keeps changes to
the implementation within local borders.

� Usage quality: This view is of primary importance for the use of your
software. It can be determined mainly by external quality characteris-
tics, such as appropriateness to the given tasks, transparency, control-
lability, and fault tolerance. Of course, a major factor is the user
interface, which is discussed in Chapter 8.

2.1.2 Programming and Specification Concepts

The most important prerequisite for high-quality programs is good model-
ing. In addition, software systems should be modifiable, and their compo-
nents should be reusable in other contexts.

These prerequisites are ensured by language-independent program-
ming methodology of structured programming. The fundamental idea is
abstraction: an approach that emphasizes the most important common
features of things, events, or processes and omits unimportant differences.

Structured programming consists of three components: (1) abstract
instructions that let you easily adapt the execution sequence of a program
to the textual sequence, (2) data types that define the set of values an object
or expression can take, and (3) process abstraction that lets you name and

Software
development is

modeling

Abstraction

Structured
programming

16 Chapter 2 Programming as an Engineering Discipline

parameterize algorithms. Section 2.4 discusses process abstraction in
connection with stepwise refinement.

Especially in object-oriented programming, data structures are often
complex and dynamic, which makes it meaningful to hide the concrete
representation, because this can help reduce complexity. Of particular
interest are abstract data types (see details in Section 4.1), which describe
sets of values exclusively by their valid operations.

2.2 Readability of a Program

We mentioned in the previous section that product quality is closely related
to internal quality characteristics, of which the most important is probably
easy readability of the source.

This section doesn’t deal with anything new: COBOL also uses listings,
comments, or names. The important thing to remember is that a program
should be easily readable. Probably the easiest way to test this is to have a
quick look at the listing after about a year from program writing and see if
you still understand it. Try it, and you will find that after not seeing the code
for a long time, this is often not as easy as you thought.

A good exercise is to have a colleague read your source code. Simply
knowing that somebody else will see the program often increases your
motivation. Naturally, this method also discloses errors that might never
have been discovered in a simple program test. This is an easy way to
discover inefficiencies.

Returning to program readability, comments, naming conventions, and
the general look of your source code have a major impact.

2.2.1 Comments

Comments are pieces of text a programmer can add to explain instructions.
Such text can be laid out in arbitrary form and can extend over more than
one line (or even fill several pages in extreme cases). Many modern pro-
gramming environments even allow pictures and tables to be inserted in
these comments, according to the maxim that a picture is worth a
thousand words.

Comments can significantly improve the readability of your source
code, but they should be used sparingly. Unfortunately, the number of lines
in your code is often still a measure of productivity. It may be easy to

The more
complex your

data structures
are, the more

important data
abstraction

becomes

Old source code?

Source code
should also be

read by others!

COBOL programs
can be read like

newspapers?

2.2 Readability of a Program 17

measure, but it doesn’t necessarily have anything to do with productivity.
On the contrary, a short program may be much better than a long and com-
plicated one that includes some dead code (that is, instructions that can
never be jumped at and therefore might just as well not be there at all; for
example, in the statement if 1 = 1 then print (A) else print (B), the
print (B) statement is dead code because 1 = 1 will never be false).

Nevertheless, comments may even be a trifle more important in object-
oriented programming than in COBOL. Because of some of their detailed
commands, COBOL programs can be read like newspapers. Therefore, we
can often leave out a comment that would be necessary in OOP.

From the preceding, we can deduce the following important rules for
writing comments:

� They should be short but expressive (say as much as possible in as few
words as possible).

� They should be written for the maintenance programmer, not the
author.

� They should be kept to a minimum. Try to write your code clearly so
that comments are superfluous.

� Where they are unavoidable, lengthy comments should be written at the
head and not between instructions.

2.2.2 Naming Conventions

Variables, types, programs, procedures, and many other objects in the
source code are given unique names; each name should be carefully
selected. All of us have seen programs that include a comment right next
to a variable name. This is perfectly all right, but perhaps a more descrip-
tive name for this variable would make that comment superfluous.

These names should be short and meaningful. For example, the best
name for a temporary integer counting variable has always been i.
Especially in COBOL, many variable names are long, because words are
separated with dashes. These dashes are not allowed in OOP. Instead, we
can mix uppercase and lowercase (for example, DialogElement instead of
Dialogelement) to improve readability. Many programming languages are
case-sensitive, which means that two variable names are different if they
differ in uppercase and lowercase letters (for example, Max and max). Still,

Rules for writing
comments

Names

Short and to the
point!

18 Chapter 2 Programming as an Engineering Discipline

this functionality should not be used, because it makes programs harder to
read.

Table 2.1 shows several naming conventions.

2.2.3 Source Code

A lot can also be done for the source code if we structure it properly, which
means that we should use indents. In contrast to COBOL, object-oriented
programming languages are not column-oriented, so it doesn’t matter
whether an instruction is in column 7, column 10, or perhaps column 1.

However, considering that columns have no semantic significance, we
should indent lines—for example, to distinguish the beginning and end of
a loop in a loop body, as in the following example:

if a < b then

while a <= b do

Print('a was increased');

Inc(a);

end

else

while b <= a do

Print('b was increased');

Inc(b);

end

end;

Structuring

Table 2.1 Naming conventions

Names for Begin with Examples

Constants, variables Noun, lowercase letter version, wordSize

Adjective, lowercase letter full, ready

Types Noun, uppercase letter File, TextFrame

Procedures Verb, uppercase letter WriteString

Functions Noun, uppercase letter Position

Adjective, uppercase letter Empty, Equal

Modules Noun (pl.), uppercase letter Files, TextFrames

2.3 Program Structure 19

2.3 Program Structure

In addition to a program’s readability, its structure is also important. In
COBOL, you often find program parts stored in separate files, using the
concept of copies. These copies can then be arbitrarily inserted into a new
program. Although this is similar to the procedures used in OOP, it has
several drawbacks. Procedures are nothing new for COBOL programmers,
where this construct has increasingly been replacing “copies.”

In contrast, a new feature is the ability to define separate types, because
object-oriented programming lets you rebuild any arbitrary type and name
it. The benefit is that you can then declare an arbitrary number of variables
from that type.

This section deals with these points and the possibilities deduced from
them.

2.3.1 Procedures

As mentioned earlier, the concept that extracts code parts from a program
and reuses them, if applicable, is known from COBOL as copies. Procedures
are similar to this concept, although they differ fundamentally in one point.
Rather than copying and reusing the source text in another program, the
procedure is only invoked and then either does that job itself or returns a
result. Returning a result does not mean that a global variable is set and
then read; it means that a parameter is set.

The reason is that procedures have a defined interface, called parame-
ters. Values can be passed to the procedure (input parameters), but the pro-
cedure can also return parameters as a result (output parameters). In some
cases, parameters also serve as input and output parameters and are then
called transition parameters. For example, a procedure that determines
whether a number is a prime has an input parameter (the number itself)
and an output parameter, which takes a value of true or false, depending
on whether the number is a prime.

Apart from this interface, there is no other communication between the
calling program and the procedure. Global variables, which are commonly
used in COBOL, are possible in object-oriented programming but should
be avoided. They make a program harder to read and often introduce
errors, because they can be modified in many different places.

Separate types

Copies

Procedures and
parameters

Local variables

20 Chapter 2 Programming as an Engineering Discipline

In contrast, object-oriented programming prefers local variables, which
means that a variable is defined within a procedure and is visible only there.
It also means that using the same name for several variables in different
procedures will not cause problems. The fact that they are visible only in
their own procedures allows us to uniquely identify them. Indeed, identi-
cal names for different variables in different procedures can be useful.
Remember that temporary integer counting variables occur almost every-
where and that they should definitely have names such as i or j, regardless
of the procedure in which they occur.

Such local variables are created when the procedure is invoked, which
means that their lives begin at that point. The lifetime of such a local
variable ends as soon as the procedure has been completed.

2.3.2 Types

Each variable is of a specific type, and the same rule applies to COBOL.
Many variables are of a standard type (for example, NUMERIC), but many are
of a composite type (for example, for group fields). This sort of composite
type occurs frequently, such as in the form of records (group fields) or
arrays (OCCURS). This is why you can define your own types in object-
oriented programming. Before you declare a variable, you declare a type,
where a composite type can be named. The benefit is twofold: First, you do
not have to restate the entire structure when you need the same type; all
you have to state is the type name. Second, you can be sure that your types
are compatible.

For example, two variables of the same type can be mutually assigned
or tested for equality. In addition, to test for equality, you can use the default
assignment operator or the default comparison operator, which means that
you do not have to implement separate procedures.

This type compatibility is less important in COBOL, because COBOL lets
you assign variables to other variables, regardless of their types. This is not
so in the world of object-oriented programming, where assignments are
permitted only if the types are compatible: Otherwise, you must do a con-
version. For example, if you assign a floating-point number to an integer
variable, you first have to convert the floating-point number by truncating
its decimal places.

We should mention at this point that OOP does not fully implement all
COBOL concepts. For example, the REDEFINES keyword has no real equiva-

Define your own
types

Not everything
goes in OOP

2.3 Program Structure 21

lent. In theory, we could simulate it with a pointer (more about pointers in
Section 3.7), but this construct doesn’t really help make our programs easy
to read.

Another difference is the way OOP defines floating-point numbers.
COBOL has types that specify exactly how many decimal places before and
after the point should be used in computation. In contrast, OOP uses types
(REAL) that compute only with a certain accuracy (to approximately 4 bytes).
Consequently, inaccuracies can occur.

2.3.3 Class Libraries versus Keywords

COBOL uses a large number of keywords—perhaps several hundred. They
allow you to run many functions, but they make the language unclear and
hard to manage. In contrast, object-oriented languages are characterized
by a small, clear instruction set—often fewer than 50 keywords. The
grammar of some object-oriented languages is even defined on a single
page.

Of course, this does not mean that these languages are less powerful; in
fact, the required functionalities are implemented in class libraries. A class
library is a collection of functions added to a program dynamically—at
runtime. This makes the components flexible and even interchangeable.
For example, in a simple program you save overhead, and in a larger
program, you can decide precisely which collection you need. Developers
can also add optional collections of functions.

Clearly, a smaller instruction set means that the programming
language is easier to learn. However, you also have to learn how to use class
libraries.

2.3.4 Detailed Comparison of COBOL and OOP

To tune ourselves in to the subjects of later chapters, it is certainly
meaningful to give some foretaste at this point. Table 2.2 shows the most
important programming differences between COBOL and object-oriented
programming, which are discussed in the following sections.

Listings 2.1, 2.2, and 2.3 show how these languages compare, based on
the same simple Hello World program written in three languages: COBOL,
Delphi, and Java.

Floating-point
numbers

Smaller, clearer
instruction set

Class library

22 Chapter 2 Programming as an Engineering Discipline

identification division.

program-id. hello.

environment division.

working-storage section.

Listing 2.1. Hello
World in COBOL

Table 2.2 Comparing COBOL, Delphi, and Java

COBOL Delphi Java

Column-oriented Not column-oriented Not column-oriented

EQUAL TO = ==

Arbitrary type Major emphasis on type Major emphasis on type
assignments compatibility compatibility

AND and &&

- Xor ^

COMPUTE, MOVE, SET := =

EVALUATE Case Switch

PERFORM while while

PERFORM WITH TEST AFTER repeat do while

PERFORM VARYING For for

Many instructions in the Powerful class libraries Powerful class libraries
language

CALL BY CONTENT VAL parameter Depends on parameter
type

CALL BY REFERENCE VAR parameter Depends on parameter
type

Global names Local names Local names

OCCURS Arrays Arrays

Group fields Records Classes

Copies Modules Modules

2.4 Stepwise Refinement 23

procedure division.

display "———–"

display "Hello World"

display "———–"

stop run.

program HelloWorld;

var

dummy: Char;

begin

WriteLn('———–');

WriteLn('Hello World');

WriteLn('———–');

Read(dummy); // required to keep the result

end.

class HelloWorld {

public static void main (String args[]) {

System.out.println("———–");

System.out.println("Hello World");

System.out.println("———–");

}

}

2.4 Stepwise Refinement

Now that we have introduced the most important ideas about software
engineering, we will move on and describe a more algorithmic basis in this
section: How can a program be structured?

To answer this question, we will introduce stepwise refinement [Wir71].
This is not a special technique from the object-oriented programming
world but rather a general technique that could also be used in COBOL, for
example. On the other hand, most COBOL programs do not have this struc-
turization.

The frequently used COBOL keyword contributes to a lack of structure,
as does the typically long lifetime of COBOL programs. During this long

Listing 2.2. Hello
World in Delphi

Listing 2.3. Hello
World in Java

How can a
problem best be

structured?

24 Chapter 2 Programming as an Engineering Discipline

lifetime, different programmers with their different styles and qualities may
implement modifications and/or expansions. Naturally, the structure of a
program deteriorates from all kinds of different styles.

Code written by programmers who have studied COBOL in crash
courses especially tends to lack structure, because fast results have been
more important than quality. This was the case in recent years mainly as a
result of the Y2K and Euro problems (see Chapter 1). All these reasons
motivate us to dedicate a separate section to stepwise refinement.

2.4.1 General Approach

Stepwise refinement is a general design method for algorithms. It concen-
trates mainly on the following questions, which are normally of interest
when we start writing a program:

� Where should I start?

� Which steps should I follow, and in what sequence?

� How can the problem be split into procedures?

The intuitive way is generally to think carefully about the tasks at the
beginning, before writing any code. As trivial as this may sound, designers
often forget to work out a sound definition at the beginning. Normally,
there is always one major problem of one sort or another, which consists
of a single main task to be solved. In general, this task is complex and hard
to keep in sight in its entirety, so it can usually be presented as a black box
(Figure 2.1).

This complex task, this black box, should be split into smaller tasks in a
process consisting of three steps that fulfill the following functions:

Step 1. Split a complex task, A, into subtasks. Figure 2.2 shows a graphical
representation.

Step 2. This step begins from the (admittedly simplified) assumption that
subtasks (B1, . . . , Bn), have already been solved and are available as proce-

Process consisting
of three steps

A

Figure 2.1 Black box.

What questions
come at the
beginning in

programming?

2.4 Stepwise Refinement 25

dures. Proceeding from this basis, task A should now be implemented by
calling the procedures B1, . . . , Bn.

Step 3. Study each subtask Bi in detail. More specifically, determine whether
these subtasks are simple problems. If so, each one can be implemented
right away. Otherwise, we have to deal with yet another problem that should
be meaningfully and stepwise refined. This statement tells us how to
proceed: Start from step 1 and replace task A by Bi, but only in the text.

Benefits

This method offers the following benefits:

� The problem becomes simpler, because the subtasks are easier to solve
than the single big task.

� It makes working in groups easier, because different people can solve
the subtasks.

2.4.2 Example

We will use a practical example in algorithm notation to better understand
this technique. The task is to write a program that can be used to evaluate
lottery slips (6 out of 49 possible numbers, without considering the com-
plementary number). We will first input the six winning numbers and then

Assumption:
subtask already

solved

Evaluation of
lottery slips

A

B1 B2 B3

Figure 2.2 Splitting task A into subtasks.

26 Chapter 2 Programming as an Engineering Discipline

the bets (that is, rows with six numbers each). Next, the number of hits
(winning numbers) from each column should be output. This could look
as follows:

3 5 7 12 17 23

3 7 12 17 26 35 => 4 hits

9 12 19 23 25 31 => 2 hits

To simplify this task, we assume that each group of six numbers is
entered in ascending order and that all inputs are correct, which is in fact
true when dealing with a lottery slip. The program is terminated by
inputting the number 0.

Step 1

Determine the subtasks needed to solve the problem. A simple question we
need to answer here is what commands we want to be already given to be
able to implement a rough draft design. In this respect, it is important to
look at the rough blocks and not the details.

When carefully studying the task, we can identify two subtasks: First, we
always have to read in six numbers. Second, we have to control how many
hits each of the six-number rows contains.

Accordingly, we require the following procedures:

� Read the six-tuple and specify in the variable whether the input was
successful (that is, result and done are output parameters).

� Compare the two six-tuples result and tup and return the number of
hits in hits (that is, result and tup are input parameters, whereas hits
is an output parameter).

Building on this basis, we can elaborate the following solution, where the
type Tuple could stand for an array [1..6] of Integer.

var result, tup: Tuple; done: Boolean; hits: Integer;

. . .

ReadTuple(result, done);

ReadTuple(tup, done);

while done do begin

CheckTuple(result, tup, hits);

WriteLn('=>', hits, ' hits');

ReadTuple(tup, done);

end;

Which subtasks
have been solved?

2.4 Stepwise Refinement 27

This program looks simple and, in fact, we aren’t done yet. We still have
to implement the two procedures, ReadTuple and CheckTuple.

Step 2

When implementing these subtasks, we have to decide whether they can
be solved the easy way or whether they have to be split further into sub-
procedures. Considering that neither reading six numbers nor comparing
two arrays should be too difficult to solve, we could start with our imple-
mentation immediately. However, this is not always the case; in fact, sub-
tasks can be rather complicated as well, and therefore it can be necessary
to use stepwise refinement to implement them as well.

Listing 2.4 shows the procedure ReadTuple, which reads six numbers
repeatedly into an array and sets the variable to TRUE if the input is correct
and FALSE if it is incorrect (a number outside of 1 and 49). Listing 2.5 shows
the procedure CheckTuple, which compares the two tuples a and b for a
match. This procedure is relatively easy under the assumption that both
tuples have already been sorted.

procedure ReadTuple (var tup: Tuple; var done: Boolean);

var i: Integer;

begin

WriteLn('Please enter six numbers:');

done := true; i := 1;

while done and (i <= 6) do begin

ReadLn(tup[i]);

done := (tup[i] > 0) and (tup[i] < 50);

Inc(i);

end;

end;

procedure CheckTuple (a, b: Tuple; var hits: Integer);

var i, j: Integer;

begin

i := 1; j := 1; hits := 0;

while (i < = 6) and (j <= 6) do begin

if a[i] = b[j] then begin

Inc(hits); Inc(i); Inc(j);

end

Implementation
of subtasks:

trivial or not?

Listing 2.4.
ReadTuple

Listing 2.5.
CheckTuple

28 Chapter 2 Programming as an Engineering Discipline

else begin

if a[i] < b[j] then Inc(i) else Inc(j);

end;

end;

end;

2.4.3 Summary

Stepwise refinement allows hierarchical factoring of a complex problem
into gradually simpler subproblems. This systematic approach eventually
takes us to the desired program to solve the task at hand. In fact, this
approach enables us to implement a set of optimizations. However, do not
be tempted to optimize things at any cost. Optimization is not always
meaningful; it often offers little benefit and, instead, renders programs
harder to understand. In these cases, it is often more useful to use appro-
priate tools (such as profilers) to identify areas that provide a potential for
optimization and then optimize them in a targeted way.

2.4.4 Exercises

Task 1 (180 minutes): Four Wins

Implement the popular game “Four wins” on a game board seven fields
wide and six fields high; use the stepwise refinement approach. The user
should have the following options. For those not familiar with this game,
following is a short explanation: There are two players, and each has dif-
ferent stones (for example, white and black ones). One stone is set after the
other, where the players can just determine the column of the stone. The
first stone in this column is set in row one, the second in row two, and so
one. The player who is the first to get four stones set side by side wins. If
none of the players can do this, the game ends in a tie.

� Display the current scores.

� Set the next stone.

� Test whether a player has won.

� Restart the game.

Practice makes
perfect!

3
Basics

This part of our OOP course deals with general basics and the language dif-
ferences as a good starting point for our study of object orientation. We
provide this explanation before describing the actual object-oriented
concept to ensure that we can later concentrate on this core area without
dealing with less important stuff, such as loops or variable declarations.
Therefore, not everything shown in this chapter is really object-oriented,
but all are necessary to work with our chosen languages, Delphi and Java.

Programming means that we have to describe a problem exactly so that
a computer can understand it. This holds true in the world of COBOL
programming just as in the world of object-oriented programming. In
this context, a program consists of data (or Data Division in COBOL lingo)
and commands (Procedure Division). It is important to note that data are
maintained in a memory and that this memory can be represented as a
set of addressable cells. In other words, these cells can be symbolically
represented by little boxes (Figure 3.1). We will frequently refer to this
representation in this book.

However, as we will see in the following sections, some data and com-
mands are unified in object-oriented programming. Initially, a program is
only a gradual sequence of processes, where each step has to be precise and
unambiguous (for example, “wait a little” would not meet these criteria).

Accordingly, no breaking news is introduced at the beginning of this
chapter. The concepts of COBOL are basically known, so this chapter

No breaking
news yet

Core problem:
looking for exact

description

30 Chapter 3 Basics

focuses mainly on the differences between COBOL and the other lan-
guages. First, the symbols and data types of the Data Division are discussed
and then the instructions and procedures of the Procedure Division. In par-
ticular, this chapter concentrates on procedures as well as module and
pointer management. Experience has shown that pointer management is
one of the most problematic areas in COBOL programming.

It is worth noting at this point that object-oriented programming has
no counterpart to the Environment Division of COBOL, which means that
it is not necessary to describe the machine.

3.1 Replacement for the Data Division: Symbols and
Data Types

In our first tutorial section, we discuss symbols, standard types, declara-
tions, and expressions. Various exercises will help us obtain an initial entry
into the programming environment used to apply the newly acquired
knowledge.

3.1.1 Symbols

Symbols in a program can be names, keywords, numbers, characters and
strings, special characters, and comments. Names that name the things of
a program have a few fundamental differences from those in COBOL, which
are independent of the language.

In Delphi, a name has to begin with a letter, which can be followed by
an arbitrary number of letters, numbers, or underscores (_____). The widely
used dash in COBOL is not allowed. Also, uppercase and lowercase, as
in COBOL, do not play any role; that is, Delphi is a “case-insensitive”
environment.

Environment
Division

Delphi
particularity

15 27 6 ...

0 4 8 12

Figure 3.1 Representation of the memory as a set of cells.

3.1 Replacement for the Data Division: Symbols and Data Types 31

In Java, a name can be composed of Unicode characters, which means
that (in contrast to COBOL), a name can contain, for example, German
umlauts. A name must begin with a letter, dollar sign ($), or underscore
(_____). In contrast to COBOL, names are “case sensitive”—for example the
name Account is not identical to the name account. The widely used dash in
COBOL is not allowed, because a dash always represents the minus
operation.

Table 3.1 shows a few names and indicates the programming languages
in which they are valid.

Keywords have the same meaning as in COBOL. They emphasize
program parts (that is, they limit or introduce them), and they are reserved,
which means they must not be otherwise used as names. Other languages
have far fewer keywords than COBOL. For example, Java has only about 48,
whereas COBOL has more than 600. This does not mean that these lan-
guages are less powerful; on the contrary. Performance is generally based
on the size and quality of the class library.

Also, there are no differences worth mentioning with regard to the use
of numbers, characters, strings, and special characters (for example, “+” or
“-”).

When looking at comments—text pieces the compiler will ignore that
explain the program to human readers—we notice an important difference
between COBOL and object-oriented programming. COBOL uses an aster-
isk at the seventh position of the command line to identify a comment,
which means that COBOL is a column-oriented programming language.
This is something the object-oriented world has never heard of. In the
object-oriented world, it does not matter at all where the symbols occur

Java particularity:
Unicode

Few keywords

Column
orientation

Table 3.1 Examples of valid and invalid names

COBOL Delphi Java

MR27XY Yes Yes Yes

4X Yes No No

aVeryLongName Yes Yes Yes

a-Long-Name Yes No No

10%OfSum No No No

TenPercentOfSum Yes Yes Yes

_MHK No No Yes

32 Chapter 3 Basics

within the command line. Of course, this should not prevent you from using
indents to make sure your program source text maintains a neat structure.

Comments can extend over several lines and are enclosed within special
symbols, or they begin at any position and occupy the remainder of
the line.

The Delphi symbols are (* and *) or //, as we can see in the following
source code examples:

(* This text is a

COMMENT

and the compiler will ignore it. *)

a := 25; // The comment extends to the end of the line.

In Java, the symbols are /* and */ or //, as shown in the following source
code examples:

/* This text is a

COMMENT

and the compiler will ignore it. */

a = 25; // The comment extends to the end of the line.

Java features another particularity: the documentation comment. This
differs from a normal comment only because it begins with the symbol /**
(that is, two asterisks). A special tool called javadoc can extract documen-
tation comments from the source text, allowing automatic creation of
programming documentation. In a way, this is similar to literate program-
ming—the representation of a program in book form [Knu84].

3.1.2 Standard Types

Before you can use data items, they must be declared. The same rule applies
to variables, which is the object-oriented term for data items. This means
that a name and a data type are assigned to each variable. This data type
defines the values the variable may contain and specifies the operators you
can operate on them.

We distinguish between predefined standard types and user-defined
types. Although user-defined types are also possible in COBOL, you will see
during the course of this book that they are a much more robust construct

Comments

Delphi

Java

Documentation
comment: javadoc

Value range for
variables

3.1 Replacement for the Data Division: Symbols and Data Types 33

in object-oriented programming. The most important standard (atomic)
types are numbers (integers and floating-point numbers), characters, and
Boolean variables.

Numerical type definitions have important differences from COBOL. In
COBOL, it is customary to use the PIC format to define how many places
before and after the decimal point are essential and which other particu-
larities apply (for example, only positive numbers, storing as dual number,
and so forth). Object-oriented programming uses standard types, selected
according to the value range and accuracy. Delphi and Java use similar
types in similar ways, as Table 3.2 shows.

One way to influence internal storage—the DISPLAY, COMP, or BINARY
formats in COBOL—is not available in object-oriented programming.
Furthermore, neither Delphi nor Java has any equivalent to COBOL’s
fixed-point decimals. Using floating-point types instead of them is
suggested—but be careful, because, unlike in COBOL, decimals cannot be
represented exactly.

The character type (Char) is a single character, so it would correspond
to a PIC X(1) in COBOL; examples are '7' and 'x'.

In Delphi, a variable of the type Char can be any ASCII character. Con-
sequently, this type of variable is 1 byte long. The function ORD(ch) supplies
the numerical value of a character from the ASCII character set.

Numeric types:
replacement for

DISPLAY, COMP, or
BINARY

Delphi
particularity

Table 3.2 Standard types

Delphi Java Size Value range

Shortint byte 1 byte -128 . . . 127

Smallint short 2 bytes -32768 . . . 32767

Integer int 4 bytes -2147483647 . . . 2147483647

Int64 long 8 bytes -9223372036854775808 . . .
9223372036854775807

Real float 4 bytes Up to 1038, floating-point number

Double double 8 bytes Up to 10324, floating-point number

Char char 1 byte (Delphi) Any ASCII character; Java: Unicode!
2 bytes (Java)

Boolean boolean 1 byte TRUE or FALSE

34 Chapter 3 Basics

Java was designed to be independent of any character set, so a variable
of the type char can be an arbitrary Unicode character (German, Japanese,
and so forth). Therefore, this type of variable is 2 bytes long.

The Boolean type concerns truth values—something like the result of a
comparative expression x < y. Boolean values can only be either TRUE or
FALSE. There are no variables directly available in COBOL, but they can be
simulated by the supplementary addition WHEN FALSE or by using condition
names.

3.1.3 Declarations

Declarations introduce a name and link it with a type. Just as in the WORKING-
STORAGE-SECTION in COBOL, which includes all variables present in the main
memory, a name in object-oriented programming must also be declared
before it can be used, and each name must be unique. This uniqueness
must be valid only for the range of validity. Validity ranges for variables are
discussed in detail in Section 3.3.

The level numbers known in COBOL are not used in object-oriented
programming; in fact, the term is not known at all (although there are
similar structures).

Some of the most important declarations are those for constants and
variables. Constants keep their values (which cannot be changed) across
the entire program, which means each is a name for a certain value (for
example, PI instead of 3.1415926). However, constant names are easier to
read and often shorter to write. Most important, programs can be changed
more easily with constant names than with the values themselves.

By convention, constants are written entirely in uppercase letters.
Whereas COBOL uses level number 78 to declare constants, the declaration
of constants in object-oriented programming is introduced by a keyword
(const in Delphi, final in Java). Consequently, the name follows the constant
and the value, and in Java also the type.

const PI = 3.1415926; // Here, the type is not implicitly determined.

final float PI = 3.1415926; // In Java, the type must also be stated.

In contrast to constants, variables can be changed anytime. For example,
it is possible to store inputs or results within variables. When a variable is
declared, the variable name and the (explicit) type must always be stated.

Java particularity:
support for

arbitrary
character sets

Boolean type

Unique names
must be defined

Keywords are
used instead of

level numbers to
define constants

Example for
Delphi

Example for Java

Variables

3.1 Replacement for the Data Division: Symbols and Data Types 35

In Delphi, the variable declaration begins with the keyword var, fol-
lowed by the variable name, a colon, and the type, for example, var x:
INTEGER; y, z: REAL; ch: CHAR;.

In Java, a variable declaration is not introduced by its own keyword.
Instead, it begins with the type name and ends immediately after it with
the variable name, for example, int x; float y, z; char ch;.

Variables must always be initialized. Otherwise, their value (with a
large number of exceptions) is undefined, which means that they can
be arbitrary. For this purpose, COBOL offers the VALUE entry in a declara-
tion. This option is also available in other programming languages, such
as Java.

In Java, the initialization of variables can be executed directly during the
declaration—for example, int count = 0;. Whether the initialization at this
point contributes to easy readability is another question.

By convention, variable names always begin with a lowercase letter. If a
variable name consists of more than one word (for example, listSize), all
the words are run together as one, and each word begins with an upper-
case letter. Similarly, variables begin with a substantive or an adjective (if
it is a Boolean variable).

3.1.4 Expressions

Similar to COBOL, object-oriented programming uses arithmetic expres-
sions, comparative expressions, and Boolean expressions. Each expression
consists of operands (for example, variables, constants, and methods) and
operators (for example, +, -, and). The operators are evaluated from left to
right, and multiplication and division operations have priority over addi-
tion and subtraction operations. In doubtful cases, parentheses are used,
because bracketed expressions are always evaluated first.

We assume that the arithmetic expressions +, -, and * are generally
known. Similarly, division (/) and even the remainder operation of COBOL
are widely known (where MOD supplies the integer remainder). However,
there are minor language differences.

In Delphi, a division that uses the operator / always supplies a
floating-point result. For an integer division, the keywords div and mod
have to be used, which will also always supply integers (remainders are
ignored).

In Java, division (/) and a division remainder (%) are defined both for
floating-point numbers and for integers. The result always depends on the

Delphi

Java

Initializing
variables

Java particularity

Style guidelines

Operands and
operators

Delphi
particularity

Java particularity

36 Chapter 3 Basics

type of operand. Accordingly, a division of i / j by i = 3 and j = 2 yields
the result 1 in the case of integer operands or 1.5 in the case of floating-
point numbers. Section 3.2.1 discusses these issues in detail.

As the name implies, comparative operators compare two values and
determine the relationship between them. They always yield a Boolean
result (TRUE or FALSE). The following comparative operators are available:
equal to, not equal to, greater than (>), greater than or equal to (>=), less
than (<), and less than or equal to (<=).

In Delphi, equality is tested by =, and inequality is tested by <>.

In Java, equality is tested by ==, and inequality is tested by !=.

Table 3.3 shows a summary of these operators.

Another important expression is the Boolean expression, because
conditions (for example, if queries and loops) always depend on them.
Both for operands and results are always a matter of a Boolean data
type. Basically, the conjunction (and), disjunction (or), and negation (not)
are well known from COBOL. In general, the negation has the highest
priority, followed by the conjunction.

The exclusive OR—that is, either ... or ... , which actually corresponds to
the human-language “or,” can be expressed directly. This means, for

Comparisons

Delphi
particularity

Java particularity

Boolean
expressions

Table 3.3 Arithmetic and comparative operators

COBOL Delphi Java

Addition + + +

Subtraction - - -

Multiplication * * *

Division / / or div /

Remainder MOD function mod %

Equality EQUAL TO = ==

Inequality NOT EQUAL TO <> !=

Greater than GREATER THAN > >

Greater than or equal to GREATER THAN OR EQUAL TO >= >=

Less than LESS THAN < <

Less than or equal to LESS THAN OR EQUAL TO <= <=

3.1 Replacement for the Data Division: Symbols and Data Types 37

example, that a xor b has the same meaning as (a and not b) or (not a
and b) (although much easier to understand).

Table 3.4 shows how Boolean operators are syntactically expressed in
the various languages of interest.

As a Java particularity, instead of using the operators && and ||, it is also
possible to use & and |. In this case, the shortcut evaluation (see Section
3.4.3) is not used, so this notation is not recommended.

Java particularity

Boolean algebra
laws: often useful
for optimization

Boolean Algebra Laws

Boolean algebra may not be on the list of the most important topics,
but a programmer should have a good command of it. Nevertheless,
experiences have shown that this is not always the case. The use of a
few Boolean rules could help simplify expressions, making programs
shorter and easier to understand. For those who think they need some
brushup on this issue, the most important rules follow:

A and B ¤ B and A, and A or B ¤ B or A
A and (B and C) ¤ (A and B) and C
A or (B or C) ¤ (A or B) or C
A and (B or C) ¤ (A and B) or (A and C)
A or (B and C) ¤ (A or B) and (A or C)
not not A ¤ A
not (A and B) ¤ _____ not A or not B
not (A or B) ¤ not A and not B
A and not A ¤ false
A or not A ¤ true

Building on these rules, the following example can be reshaped (or
simplified):

(A > 5) and not ((A <= 0) or (A >= 10)) ¤
(A > 5) and (not (A <= 0) and not (A >= 10)) ¤
(A > 5) and (A > 0) and (A < 10) ¤
(A > 5) and (A < 10)

38 Chapter 3 Basics

3.1.5 Exercises

Task 1 (20 Minutes): Declarations

Give Delphi or Java definitions for the following COBOL definitions:

1. 05 ACCOUNT-NUMBER PIC 9(5)

2. 05 ACCOUNT-BALANCE PIC S9(5)V99

3. 05 CH PIC (X)

4. 05 SHORT PIC 9(2)

5. 05 EXACT-VALUE PIC S9(9)V9999

Task 2 (30 Minutes): Boolean Expressions

1. Assuming the Boolean expression (x < z) and (y < z) and (x < y)
or (x >= z) and (x < y), which of the following value groups yield TRUE
and which yield FALSE?
x = 3, y = 5, z = 7
x = 5, y = 3, z = 7
x = 5, y = 7, z = 3

2. Write expressions that yield TRUE if
a. ch is letter or number type.
b. x, y, z all contain various values.

3. Simplify the expression (x <> y) or not ((y = z) and (y = x)).

Table 3.4 Boolean operators

COBOL Delphi Java

AND AND and &&

OR OR or ||

NOT NOT not !

Exclusive OR – xor ^

3.2 Replacement for the Procedure Division: Instructions 39

Task 3 (130 Minutes): First Approach to the Programming Environment

As a first approach to the programming environment, you should walk
through the material contained in Appendix A.

3.2 Replacement for the Procedure Division: Instructions

As mentioned, there is no counterpart of the COBOL’s “division” in object-
oriented programming. On the other hand, object-oriented programming
divides programs into several parts (although the division is less strict). The
instruction part discussed in this section corresponds roughly to the Pro-
cedure Division. In particular, this section introduces the most important
instructions: value assignment, branch instructions, and loops.

3.2.1 Assigning Values

Although COBOL uses three different types to assign one value to another—
MOVE, COMPUTE, and SET—object-oriented programming has only one assign-
ment operator. It does not matter whether the new value is a constant or
an expression yet to be computed.

In Delphi, the assignment operator is :=.
In Java, the assignment operator is =.

Basically, a value assignment of the type x := y means that the left side is
evaluated first (naturally in this case, but it could well be a value that would
have to be determined first, for example, the xth element of an array). The
right side is evaluated next, and finally, the value of the left side is replaced
by the value of the right side. A (composite) variable must be on the left,
and both sides must be compatible in terms of assignment.

Compatibility in terms of assignment or type does not necessarily mean
that both variables have to be of the same type. We also speak of type
compatibility when the type of the left variable is a supertype of the type
of the right expression. For example, an integer can easily be assigned to a
floating-point number, but the opposite can be achieved only by a type
conversion (where the decimal point places are lost). The following listings
show a few examples:

There are no
divisions in OOP

Delphi

Java

40 Chapter 3 Basics

var i, j: Integer; ch: Char; r: Real;

. . .

i := 2 * j; // Works: integer on the left, integer on the right

i := 0; // Works: integer on the left, integer on the right

r := i; // Works: real is a supertype of integer

i := r; // Doesn’t work: the decimal point places would be lost

i := ch; // Doesn’t work

int i, j; char ch; float r;

. . .

i = 2 * j; // Works: integer left, integer right

i = 0; // Works: integer left, integer right

r = i; // Works: float is a supertype of integer

i = r; // Doesn’t work: the decimal point places would be lost

i = ch; // Works: see explanation

We see from the last assignment that the type char of Java is assignment-
compatible with short, int, and long, without the need for an explicit
conversion.

Even when two expressions are not assignment-compatible, we can still
achieve the desired assignment. In this case, all we have to do is a type con-
version. For example, by truncating the decimal point places of a floating-
point number, we can convert it into an integer. Of course, we lose some
information by this kind of conversion. Similarly, we have to compromise
with regard to limiting the value range. Following are a few options for these
type conversions.

Floating-point numbers can be converted into integers by using the
function Trunc (truncates the decimal-point places): i := Trunc (r);.

In general, a type conversion can be achieved by adding the desired type
to the front, followed by the expression within parentheses—for example,
i = Integer(myChar);.

When an expression is to be converted into another type, we simply pre-
cede it with the desired type within parentheses—for example, i = (int) r;.

This type conversion is important when working with intermediate
results, such as when assigning r = 1.5 + i1 / i2. If i1 and i2 are inte-
gers with the values 3 and 2 (that is, r = 1.5 + 3 / 2), we would intuitively
assume that the result is 3. This is not the case. In fact, it would be only 2.5,
because the intermediate result i1 / i2 is of type integer (as both operands
are of type integer), so a result of r = 1.5 + 1 is computed.

Delphi

Java

Conversion:
decimal point

places are
truncated

Delphi

Java

3.2 Replacement for the Procedure Division: Instructions 41

To avoid this, we also have to convert the intermediate result into a
floating-point number—for example, r = 1.5 + (double) i1 / i2. Now
we will obtain a result of 3. This maintaining the accuracy of intermediate
results is naturally not known in the COBOL world.

In addition to the elementary assignment operator, Java offers several
shortcut assignment operators that allow execution of an operation and an
assignment operation in a single operator. For example, the instruction
i = i + 2 can be abbreviated and expressed by i += 2. More examples
are shown in Table 3.5 (from [CaWa01, page 51]).
We leave it to you to judge the readability of this type of expression.

Incremental operators are another way to abbreviate the value assign-
ment. Instead of i = i + 1, we could write i++, or instead of i = i – 1,
we could write i–.

Delphi also offers such abbreviations—for example, instead of i := i +
1, we could use Inc(i), or instead of i := i – 1, we could use Dec(i).

3.2.2 Instruction Sequence

Instructions separated by semicolons are processed in sequence. Instruc-
tions are grouped into an instruction block, which can be compared with
a paragraph in COBOL.

In Delphi, an instruction block begins with the keyword begin and ends
with the keyword end. Declarations are always before such instruction
blocks and never between a begin and an end. Instructions are separated by
semicolons (“separators”). A semicolon can be used after the last instruc-
tion, but this is not mandatory.

In Java, an instruction block is enclosed by braces {}, and declarations
may be between instructions within a block. Each instruction is terminated
with a semicolon (that is, the semicolon serves as a “terminator”), which

Java particularity

Delphi

Table 3.5 Java: shortcut assignment operators

Operator Use Corresponds to

+= op1 += op2 Op1 = op1 + op2

-= op1 -= op2 Op1 = op1 op2

*= op1 *= op2 Op1 = op1 * op2

Delphi: semicolon
as separator

Java: semicolon as
terminator

42 Chapter 3 Basics

means there must be a semicolon before the closing brace. No semicolon
is required after the closing brace, even if more instructions follow.

3.2.3 The if Instruction

The if instruction selects one out of two possible branches based on a
condition. This instruction is well known from COBOL and is also used in
object-oriented programming.

In Delphi, the if instruction has the following structure:

if condition then instruction block1 else instruction block2

Delphi introduces the keyword then for better readability. The section
else instruction block2 can be omitted:

if n <> 0 then begin x := y div n; i := i + 1; end;

if x > y then max := x else max := y;

If a branch contains only one instruction it does not have to be between
begin and end; otherwise, it does. The keyword else must not be preceded
by a semicolon.

In Java, the if instruction has the following structure:

if (condition) instruction block1 else instruction block2

Here, instruction block2 may also be omitted:

if (n != 0) {x = y / n; i++;}

if (x > y) max = x; else max = y;

These if instructions are often nested.

3.2.4 The switch or case Instruction

These instruction types offer the possibility of executing one out of various
instruction blocks, depending on the value of a variable. They correspond
to the EVALUATE instruction of COBOL.

This multiple branching would also be possible by using the if instruc-
tion, but normally only with deep nesting so that the switch instruction is

The if

instruction

Delphi

Java

Evaluate

3.2 Replacement for the Procedure Division: Instructions 43

easier to read. In each branch of the instruction, admissible values (called
labels or marks) are offered for the selected variable. If the label is equal to
the variable, the instructions of this branch are executed. If none of the
labels is valid, another branch will be executed. This kind of instruction can
be used only if the variable is ordinal—that is, an integer and compatible
(for example, character type).

In Delphi, multiple branching is introduced by the keyword case and
has the following structure:

case variable of label list1: instruction block1;

label list2: instruction block2;

label list3: instruction block3;

. . .

else instruction blockN;

end;

In an example, this could look as follows:

case ch of

'a'..'z', 'A'..'Z': letter := letter + 1;

'0'..'9': digit := digit + 1;

' ;': semicolon := semicolon + 1;

else other := other + 1;

end;

The preceding source code fragment could be used to determine how
many characters, numbers, semicolons, and other characters are contained
in a given text. Label lists can be used instead of a single label, such as the
set of all lowercase letters (‘a’ . . . ‘z’). Similarly, various labels can be sep-
arated by commas to form a single branch. If one of these labels is valid,
the branch will be executed. However, the labels must be constants. After
the end of this instruction block, branching continues to the end of the case
instruction.

In Java, multiple branching is introduced by the keyword switch. The
keyword case introduces individual labels, and the keyword default intro-
duces the branch that is executed if none of the other labels is valid. The
instruction has the following structure:

Delphi
particularity

label lists

Java particularity

44 Chapter 3 Basics

switch (variable) {

case label1: instruction block1;

case label2: instruction block2;

case label3: instruction block3;

. . .;

default: instruction blockN

}

In an example, this would look as follows:

switch (month) {

case 1: System.out.println ("January"); break;

case 2: System.out.println ("February"); break;

case 3: System.out.println ("March"); break;

default: System.out.println ("other month");

}

This example outputs the names of months based on an integer. The
break instruction, which causes a jump to the end of the switch instruction,
is of particular importance in Java. If the break instruction were not present,
all instructions following a valid label would be executed. The preceding
switch instruction would look as follows with no break instructions:

switch (month) {

case 1: System.out.println ("January");

case 2: System.out.println ("February");

case 3: System.out.println ("March");

default: System.out.println ("other month");

}

For example, if the variable month had a value of 2, then the output would
include not only February but also March and other month, because Java’s
switch always jumps to the corresponding mark. All remaining instructions
are executed through the end of the switch instruction, regardless of any
labels that may follow. If we want only one branch to be executed, as with
EVALUATE in COBOL, we have to use break.

3.2.5 Loops

Loops can be used to execute specific program parts several times. This
corresponds to the Inline-PERFORM of COBOL. Basically, we distinguish

The break

instruction

Loop types

3.2 Replacement for the Procedure Division: Instructions 45

between three different loop types: the prechecked loop (corresponds to
PERFORM), the postchecked loop (corresponds to PERFORM WITH TEST AFTER),
and the for loop (corresponds to PERFORM VARYING).

It is characteristic of the while loop that it may not be executed at all.
This loop is executed 0 times, 1 time, or N times. A simple example shows
how this loop works in Delphi:

i := 1; sum := 0; // calculates the sum of 1.. n

while i <= n do begin

sum := sum + i;

i := i + 1;

end;

This example shows the structure of the while loop in Delphi:

while condition do begin instruction block end;

The same example in Java could look like this:

i = 1; sum = 0; // calculates the sum of 1.. n

while (i <= n) {

sum = sum + i;

i++;

}

This example shows the structure of the while loop in Java:

while (condition) instruction block

The semantics of this while loop can be represented as follows:

L: if not cond go to end;

instruction sequence;

goto L;

end;

In contrast to the while loop, the postchecked loop iterates at least once.
The reason is that the condition is tested only at the end of the loop itera-
tion and not at the beginning. Accordingly, the loop iterates at least once
or N times. However, there can be additional differences, depending on the
programming language.

Delphi

Java

do-while loop

46 Chapter 3 Basics

In Delphi, the keyword repeat introduces this loop type. The loop iter-
ates repeatedly until a certain condition is met. Accordingly, this loop type
is also called a repeat-until loop.

// shuffle the digits in the number n: 123 => 321

repeat

write (n mod 10);

n := n div 10;

until n = 0;

We can see from the preceding example that the following syntax applies:

repeat instruction block until condition;

The semantics of this repeat-until loop can be represented as follows:

L: instruction sequence

if not cond then goto L;

In Java, the major differences from normal while loops are that the loop
begins with the keyword do, and the keyword while appears only at the end.
The loop iterates repeatedly until the condition is no longer true, but it
always iterates at least once.

do {

c = in.read();

. . .

} while (c != -1); // reads c repeatedly until it is not equal 1

Accordingly, the following syntax applies:

do instruction block while (condition);

The semantics of this do-while loop can be represented as follows:

L: instruction sequence

if cond then go to L;

With the for loop, we know in advance how many times it will iterate.
Also, it is similar to the PERFORM VARYING instruction of COBOL. A variable

Delphi

Java

for loop replaces
PERFORM VARYING

3.2 Replacement for the Procedure Division: Instructions 47

(the iteration variable) is initialized at the beginning of the loop and incre-
mented in each loop iteration. The loop is terminated if the variable reaches
or exceeds a certain value, that is, when the termination condition is met.
This test is done before the loop iteration.

In Delphi, the for loop looks like this:

for i := 0 to 10 do begin

. . .

end

If the iteration variable is to be decremented by a value of 1 in each loop
iteration, this is written using the downto instruction; for example, 10 downto
0. The iteration can be incremented or decremented only by a value of 1.

In Java, the for loop is composed of three instruction parts, each sepa-
rated by a semicolon. First, the initial value is stated, then the end condi-
tion is defined, and the third part specifies how the counter variable should
be incremented or decremented in each loop iteration:

for (i = 0; i < 10; i++) {

. . .

}

Because increments or decrements are allowed from any arbitrary
instruction, it is possible to increment or decrement by an arbitrary
value.

The iteration variable within the for loop should not be changed
and should not be used after finishing the loop; when used, it must be
reinitialized.

3.2.6 Summary

Table 3.6 shows a comparative summary of the instructions presented in
the previous sections.

The GOTO instruction, frequently used by older, traditional COBOL pro-
grammers, is normally not used in object-oriented programming (although
Delphi and Java offer it for special cases), because it impairs the program
structure and makes the code harder to read. However, we think this is intu-
itive for the experienced COBOL programmer, who will most likely have
had to modify such types of programs.

Delphi

Java

Iteration variable

GOTO is not
supported

48 Chapter 3 Basics

In contrast to COBOL, all instruction blocks terminate immediately—
that is, with end—and not between END-IF, END-COMPUTE, although no dis-
tinction is made between them. However, if you want to maintain this
differentiation, you can write an optional comment—something like end;
// while. This can be particularly useful for long instruction blocks.

3.2.7 Exercises

Task 1 (60 minutes): Fibonacci Numbers

Fibonacci numbers are defined by the following recursion relationship:

F(0) = 1, F(1) = 1, F(n) = F(n - 1) + F(n - 2) for n > 1

Write a Delphi or Java program that reads a number n and outputs the
Fibonacci number F(n). Your program should not call any procedures,
which means that we are looking for an iterative solution (with loops).

Task 2 (60 minutes): Book Price

Let’s assume that a bookstore named Numbawan wants to purchase books
from Morgan Kaufmann Publishing. The store can opt for a paperback
version (at a basic price of $300.00) or a hardcover version ($400.00).
Depending on the purchase quantity, Numbawan will enjoy a price dis-
count from Morgan Kaufmann Publishing. The corresponding percentage
rate follows:

END-IF

The term
will be

explained later
recursion

Table 3.6 Summary of the discussed instructions

Command COBOL Delphi Java

Value assignment COMPUTE, MOVE, SET := =

if instruction IF if if

case instruction EVALUATE case switch

while loop PERFORM while while
(prechecked loops)

do-while loop PERFORM WITH TEST repeat do while
(postchecked loops) AFTER

for loop PERFORM VARYING for for

3.3 Procedures 49

However, Numbawan is a fierce negotiation partner, trying to achieve
the best possible deal, so they negotiate a further reduction. Provided that
the store pays the invoice amount within a specific number of days, they
will obtain a further discount.

>100 >200 >300
copies copies copies

Paperback 0 5% 10%

Hardcover 5% 10% 15%

<5 days <10 days ≥10 days

Paperback 3% 1% 0

Hardcover 5% 3% 0

Write a Delphi or Java program that reads the number of books, the book
quantity ordered, and the number of days from the invoice date to the
payment date and then outputs the suggested price.

3.3 Procedures

To ensure a better program structure, you could group several instruction
blocks to form a single procedure. For this purpose, we write a procedure
that includes all instructions. When the functionality of the instruction
block is required later on, it will be sufficient to just call this procedure. This
is particularly useful when the instruction block is used more than once.
Instead of permanent duplicate code, all that needs to be done is call the
same procedure repeatedly.

Such procedures are also useful to ensure a good structure of your
program, and they offer you an option to implement user-defined opera-
tions. Procedures are basically nothing new, because COBOL also offers the
option to call “internal subprograms” by using the PERFORM function.

These procedures form the basis for the methods we will introduce later,
which play a major role in object-oriented programming.

Java has no “real” procedures—only methods. Because this may be con-
fusing in the beginning, we do not discuss this issue here in detail. The

Procedures avoid
duplicate code

Java particularity

50 Chapter 3 Basics

somehow complicated definition of a procedure as a method of a class will
become clear at the latest in Section 5.1.

This subsection provides an initial overview of procedures. First, we
introduce parameterless procedures, which serve to avoid duplicates. Then
we discuss parameters and local names of procedures. Finally, we discuss
functional procedures, which are procedures that return a result, and
recursion. Subsequent sections provide additional information about
procedures.

3.3.1 Parameterless Procedures

Parameterless procedures represent the simplest form of procedures. They
are used mainly to avoid code duplications, as shown by the following
Delphi code fragment:

x := 3 * y; Write(x); sum := sum + x; Write(sum);

x := 2 * x + 1; Write(x); sum := sum + x; Write(sum);

x := 3 * y + 27; Write(x); sum := sum + x; Write(sum);

In this example, the code Write(x); sum := sum + x; Write(sum); is used
over and over (therefore, we speak of code duplication). One drawback is
that the program becomes longer (which almost always means that it is
more difficult to understand), and another drawback is that it is more dif-
ficult to maintain. For example, if we wanted to output a formatted x
instead of just using a simple Write, we would have to implement that
change for every occurrence.

A simple improvement would be the use of a parameterless procedure,
This procedure consists of the code that is to be used over and over. Instead
of writing the full code, we just call the procedure. The concept is the same
in both languages, but the procedure is implemented differently.

Parameterless Procedures in Delphi

In Delphi, procedures begin with the keyword procedure, followed by the
procedure name and a semicolon. The instruction block after that, which
must always be included between begin and end (even if it is only a single
instruction), includes the instructions to be executed multiple times during
the call of the procedure. The procedure has to come after the variable end

First overview

Code savings but
no runtime

savings

Delphi: procedure

3.3 Procedures 51

definitions but before the begin of the program. The following is a simple
example:

procedure PrintX;

begin

Write(x); sum := sum + x; Write(sum);

end;

The naming convention says that procedure names should begin with
an uppercase letter and a verb (for example, Read, SearchName).

Instead of the piece of code that has been duplicated, we can use the
procedure call. When calling this procedure, it is sufficient to simply write
the procedure name. The procedure call has no separate keyword (such as
CALL or PERFORM in COBOL).

x := 3 * y; PrintX;

x := 2 * x + 1; PrintX;

x := 3 * y + 27; PrintX;

. . .; PrintX;

The calling program remains in memory. A variant of a procedure call
similar to COBOL’s CHAIN command, which overlays the calling program at
the cost of losing its data, is not possible here.

Parameterless Procedures in Java

First and foremost, Java’s parameterless procedures begin with the key-
words static void. Later in this chapter, we present additional options that
can be used to introduce parameterless procedures. Next follows the name
of the procedure, a pair of parentheses, and the instruction block, which
must always be included between an opening and closing parenthesis
(even if only a single instruction). The following is a simple example:

static void PrintX () {

System.out.print(x); sum = sum + x; System.out.print(sum);

}

The naming convention says that procedure names should begin with
a lowercase letter, followed by a verb (for example, read, searchName).

Style guidelines

Style guidelines

52 Chapter 3 Basics

As mentioned, Java has no classical procedures. Instead, procedures are
always embedded as methods in classes. A detailed description of Java
methods and classes would go beyond the scope and purpose of this book.
We refer the readers to specialized textbooks and limit ourselves to describ-
ing here just the syntactic notation:

class example {

static void printX () {

System.out.print(x); sum = sum + x; System.out.print(sum);

}

}

We can see that the procedure is actually included within an additional
construct, the class, introduced by the keyword class. The name example
stands for an arbitrary (class) name.

In Java, we have to add a pair of parentheses after the procedure name;
we discuss this issue in detail in Section 3.3.2.

Summary

To better understand how procedures are defined and called, we use List-
ings 3.1 and 3.2 for the preceding example to show the entire program. The
points shown in these examples but not covered so far in the text will be
explained later.

program ExPrintX;

var

x, y, sum: Integer;

ch: Char; // dummy

procedure PrintX;

begin

WriteLn(x); sum := sum + x; WriteLn(sum);

end; // PrintX

begin

sum := 0;

y := 2;

x := 3 * y; PrintX;

x := 2 * x + 1; PrintX;

x := 3 * y + 27; PrintX;

Read(ch);

end.

Java uses
methods

Listing 3.1.
PrintX

Implementation
in Delphi

3.3 Procedures 53

import java.io.*;

class PrintX {

static int sum = 0;

static int x;

static void printX () {

System.out.println(x); sum = sum + x; System.out.println(sum);

}

public static void main (String args[]) {

int y = 2;

x = 3 * y; printX();

x = 2 * x + 1; printX();

x = 3 * y + 27; printX();

}

}

3.3.2 Parameters

Naturally, in most cases a call involves not only a procedure but a data
exchange between the procedure and the caller. For example, in the previ-
ous example, it would surely have been useful to give the procedure a value
of x and then communicate the new value of sum to the caller. Alone, this
explanation shows that parameters are of two types: an input parameter
and an output parameter, where, in Delphi, the output parameter is actu-
ally an input and output parameter.

In Java, there is no such thing as an output parameter. Only composite
types allow a modification of the attributes in a procedure (see also
Section 3.4). Simple type variables (such as int, long) have only an input
parameter. This problem can be solved by using a function (see Section
3.3.4).

Whether a parameter is an input or output parameter is defined in the
procedure declaration. Similarly, a parameter’s type is defined in the pro-
cedure declaration, which is shown in the following examples.

In Delphi, parameters are declared in the procedure head after the
name of the procedure and between parentheses. This declaration is imple-
mented as in normal variables (that is, by using parameterName: typeName),
and several parameters are separated by a semicolon. If a parameter is
to be an output parameter, you simply append the keyword var in front
of it.

Listing 3.2.
PrintX

Implementation
in Java

Data exchange:
parameters

Java particularity

Delphi

54 Chapter 3 Basics

procedure Add (x, y: Integer; var z: Integer);

begin

z := x + y;

end; // add

The input parameters in this example are the variables x and y; z is an
output parameter.

In Java, too, parameters are declared in the procedure head after the
name of the procedure, like normal variables (separated by commas).
Parentheses are used for this purpose.

The parameters, enclosed between parentheses and separated by
commas, are passed on during a procedure call—for example, Add(2, a *
b, result). In this respect, they can be compared with the LINKAGE SECTION
of COBOL.

Table 3.7 summarizes the differences between input and output param-
eters. The term formal parameter (fp) means that parameters are declared
in the procedure head. The term actual parameter (ap) identifies parame-
ters stated during the call.

The following (admittedly very dirty) example (in Delphi code) high-
lights the difference between input and output parameters:

Java

Table 3.7 Differences between input and output parameters: fp = formal parameter;
ap = actual parameter

Input parameters Output parameters

COBOL: CALL BY CONTENT. COBOL: CALL BY REFERENCE.

VAL PARAMETER. Value parameter. VAL PARAMETER. TRANSITION PARAMETER.

The caller copies the value fp is just another name for ap (both have
(fp := ap). the same address). Referring back to our

small box used as a symbol that maps a
variable, both can be represented by the
same box (Figure 3.1).

The procedure works with copies; The procedure works with the
changes to the formal parameter original; any change to a formal
have no impact on the actual parameter will also reflect in the
parameter. actual parameter.

ap may be an expression (it is ap has to be a variable of the same type.
sufficient that it be assignment-
compatible).

3.3 Procedures 55

procedure Dirty (var x, y: integer)

begin

x := 3 * x;

y := 3 * y;

end; // Dirty

The following code calls the procedure:

a := 5; Dirty(a, a); write(a);

This example shows that variable a is used twice, as input and output
parameter. This parameter type requires that the name of the formal
parameter be different from the name of the actual parameter (see Table
3.7). For this reason, x is merely a different name for a, but similarly, y is just
another name for a. This means that when x is modified, a and y will be
modified. Consequently, the result is 45. The easiest way to explain this is
by using a figure, representing each variable as a small box (see Figure 3.2).

Never use parameters as shown in Figure 3.2, because such programs
are difficult to understand. In this teaching example, however, they show
the difference between input and output parameters.

It should be mentioned that the names of formal and actual parameters
are completely independent—that is, they may also be identical.

3.3.3 Local Names (Visibility, Validity)

Variable declarations can also come within procedures. In this case, we
speak of local names (as opposed to the otherwise global names that apply
to the entire program). This is an important difference from Procedural
COBOL, where definitions of the Data Division are valid within the entire
program. In COBOL, only wise use of subprograms can help reduce the
number of global identifiers in a system.

Local vs. global
names

5

a :� 5 Dirty (a, a) x :� 3*x;
(� x :� 3*5;)

y :� 3*y;
(� y :� 3*15;)

Write (a)

5 15 45 45

aa, x, ya, x, ya, x, ya

Figure 3.2 The “dirty” procedure example in graphical form.

56 Chapter 3 Basics

procedure PrintX (x: Integer);

var sum: Integer;

begin

sum := 3; Write(x); sum := sum + x; Write(sum);

end; // PrintX

static void printX (int x) {

int sum = 3;

System.out.print(x); sum = sum + x; System.out.print(sum);

}

The terms visibility and lifetime are important. By their nature, local
variables are visible only locally, and their lifetimes differ from those of
global variables.

Visibility

Local names are invisible (that is, they cannot be accessed) outside the pro-
cedure in which they are declared, whereas global names are also visible in
the procedure. In theory, it is conceivable that a local variable and a global
variable could have the same name. In this case, the local variable has pri-
ority over the global. This means that within the procedure, only the local
variable can be addressed. This situation is explained with the following
Delphi example.

program M;

var a, b: . . .

procedure P;

var b, c: . . .

begin

// marked position 1

end; // P

begin

// marked position 2

end.

At marked position 1, the local variables b and c as well as the global
variable a are visible—they can be accessed. The global variable b is not
visible here, because it is hidden by the local b (but this does not mean that

Delphi

Java

Visability of
local names

Hiding

3.3 Procedures 57

this variable no longer exists; it is a question of lifetime, which is discussed
in the next section). This example also shows that a program’s readability
deteriorates when local and global variables have identical names. At the
marked position 2, only the global variables a and b are visible.

Java offers an additional option to declare local variables within a block
(that is, at any position between two braces). These are then valid from the
position where they are declared through the end of the block in which they
are declared—for example, only within one loop.

Lifetime

Local and global variables also differ with regard to their lifetimes. Global
variables maintain their values (that is, they “live”) over the entire program,
whereas local variables live only for as long as their procedure is active. The
end of the procedures causes all local variables to lose their values. If the
procedure is executed a second time, the local variables are created again,
and they now have nothing to do with those from the first run. In the pre-
ceding example, all local and global variables are active at the marked
position 1 (including the global b, although it is not visible at that
point). In contrast, only the two global variables a and b live at the marked
position 2.

The benefits of locality can be summarized as follows:

� Clear layout: What belongs together appears together.

� Secure layout: Local variables cannot be destroyed from the outside.

� Efficient layout: Local variables can normally be accessed quickly.

For these reasons, declarations should ideally be made local. Global decla-
rations should be used only for things really needed across and beyond pro-
cedure borders.

3.3.4 Functions

Functions are used whenever expressions include computations that occur
repeatedly. COBOL, too, uses such a construct, which is even invoked with
the keyword FUNCTION, the so-called intrinsic functions (embedded func-
tions), such as MIN, MAX, or MEAN. This kind of function can be implemented
and can afterward be used as an operand in expressions. For example, you

Java particularity

Benefits of
locality

Functions return
results

58 Chapter 3 Basics

can encode a value assignment of the type c := 2 * Max(a, b), where Max
is a function, which returns the bigger of the two values, a and b. The dif-
ferences in procedures are

� The call of a function is not an instruction but an operand of an expres-
sion.

� Functions compute a value and, consequently, also have the type of this
value.

Implementation of a function is characterized by the fact that the result
type has to be defined in the declaration. Moreover, the function terminates
by returning the result value to the caller. The following source code exam-
ples help to better illustrate this.

In Delphi, a function is introduced by the keyword function. The param-
eters are followed by a colon and the type of return value. Within the func-
tion itself is an implicitly declared variable result, and the result of the
function has to be assigned to it. Similarly, it is also possible to assign the
name of the function to the result of an implicitly declared variable. Implic-
itly declared means that the variable does not have to be explicitly declared,
because it is available in general.

function Max (a, b: Integer): Integer;

begin

if a > b then max := a else max := b;

// if a > b then result := a else result := b;

// either of the two solutions would work

end; // Max

In Java, in contrast to a procedure, a function is not introduced by void
but instead by the returnTypename—that is, by int. The keyword void merely
tells us that there is no result value. If the procedure name is preceded by
a type name, the function will return a result with exactly this type. The
result value itself has to be returned to the caller with the keyword return.
The function terminates when program execution reaches this keyword.

static int max (int a, int b) {

if (a > b) return a else return b

}

Delphi

Java

3.3 Procedures 59

The following summary shows when to use functions and when to use
procedures.

Functions

� Exactly one return value

� When used in expressions

Procedures

� Several return values or none

� Additional actions are executed

3.3.5 Terminating a Procedure

It is possible to terminate a procedure immediately by using a certain
keyword. Any instructions that follow after it will be ignored, and the
program will immediately jump back to the calling instruction. This
instruction reminds us a little of the GOTO instruction of COBOL: it can make
a program hard to read. For this reason, it should be used carefully.

In Delphi, a procedure can be terminated immediately with the
keyword exit.

In Java, a procedure can be terminated immediately with the keyword
return.

3.3.6 Recursion

A procedure is recursive when it calls itself. We distinguish between direct
recursion (a procedure P calls itself, that is, it calls P), and indirect recursion
(a procedure P calls a procedure Q, which in turn calls P). In contrast to
object-oriented programming, a procedure called recursively in COBOL
has to be specially prepared with a LINKAGE SECTION. This preparation is not
required in object-oriented programming.

Recursion is also known in mathematics; for example, the factorial cal-
culation is defined recursively. As we know, the factorial of a number n is
the product of all numbers from 1 to n: n! = 1 * 2 * 3 * . . . * (n –
1) * n. However, this can also be defined recursively so that the factorial
of 1 corresponds to the value 1: 1! = 1. Then the factorial of n can also be

Functions vs.
procedures

Delphi

Java

A procedure
calls itself

The Fibonacci
numbers from

the last exercise
are also a good

recursion
example

60 Chapter 3 Basics

defined as follows: n! = (n – 1)! * n. The implementation of this func-
tion can, recursively, look as follows:

function Fact (n: Integer): Integer;

begin

if n = 1

then result := 1 // special case 1! = 1

else result := Fact(n – 1) * n; // n! = (n - 1)! * n

end; // Fact

The easiest way to explain the functionality of this procedure is a desk
test. For example, if Fact is called with a value of 4, then a value of Fact(3)
* 4 is returned. Similarly, if Fact(3) is called, then Fact(2) * 3 is returned.
On the other hand, a call of Fact(2) means again that Fact(1) * 2 is
returned. When Fact(1) is being processed, the value 1 will finally be
returned. This also specifies the result of Fact(2), namely 1 * 2 = 2.

Building on this ground, we can determine Fact(3) from 2 * 3,—that
is, we obtain a value of 6. The starting point Fact(4) returns the value
6 * 4, or 24. This process can be represented in graphical form, as we
see in Figure 3.3.

The following source code fragment provides an additional recursion
example. Try on your own to find the output generated from the call B(3):

procedure B (x: Integer);

begin

if x > 0 then B(x – 1);

WriteLn(x);

end; // B

Simple recursion
example

Fact (4) *4 *4 *4 *4 24*4

Fact (3)

Fact (2)

Fact (1)

*3

2

*3

*2

*3 6

Figure 3.3 Graphical representation of the recursive call Fact(4).

3.3 Procedures 61

The result of the call B(3) is

0

1

2

3

Why? The first call is to B(3), which will in turn call B(2). This calls B(1),
which in turn calls B(0). Eventually, the if query is processed, and we
obtain an output of 0. At this point, the other procedures are still active,
and the outputs are executed one after the other.

Recursions always follow a pattern. Each recursion has several
branches, and one of these branches is not recursive (otherwise, we would
get an endless loop). Consequently, the pattern looks as follows:

if problem is small enough then

non-recursive branch

else

recursive branch

end;

The following comments should complete our recursion issue:

� Every recursive problem can also be solved iteratively.

� The iterative solution is normally more efficient but more complex and
harder to understand.

� Recursions are particularly important for recursive data structures (see
also Section 4.2).

3.3.7 Exercises

Task 1 (15 minutes): Simplifications

Correct the following three Delphi code fragments, which are independent
of one another and were programmed in a complicated way. These frag-
ments are not arbitrarily constructed but were observed by the author in
various programs (most of them in examination papers).

Recursion pattern

62 Chapter 3 Basics

i := 0; (* where j >= 0 is true at this position *) // task part A

while i <> j do begin

i := i + 1;

end;

if a = 0 then begin // task part B

a := 2 * c;

end

else begin

if c <> 0 then begin

a := a * b + 2 * c;

end

else begin

a := a * b;

end;

end;

while a < b do begin // task part C

c := a; a := b; b := c;

end;

Task 2 (5 minutes): Desk Test

Which values will the following procedure return, if the procedure is called
with x := 5; P(x, x); ?

procedure P (var x, y: Integer);

begin

y := 2 * x;

if x > 7 then y := y * x;

WriteLn(x); WriteLn(y);

end;

Task 3 (40 minutes): Largest Common Divisor

Write a function LCD (x, y: Integer): Integer or int LCD (int x, int y)
that computes the largest common divisor of the numbers x and y. As a
basis, you can use the following Euclidean algorithm. Based on the two
input values, x and y, and assuming that x is bigger than y, this algorithm
determines the largest common divisor, lcd.

3.4 Arrays, Strings, Records 63

i := i of x / y;

while i <> 0 do begin

x := y; y := i;

i:= i of x / y;

end;

lcd := y;

Task 4 (90 minutes): Integer Fractions

Write a program that reads two integer fractions (four numbers, a, b, c, and
d), and then outputs their sum and product, also as integer fractions.
Simplify the result by truncation (use the LCD function from task 3 for this
task). Structure your program by its subtasks into procedures.

Example:

Input:

1.numerator: 2

1.denominator: 3

2.numerator: 4

2.denominator: 6

Output:

sum = 4 / 3, product = 4 / 9

3.4 Arrays, Strings, Records

So far, we have introduced simple data types that can be used, for example,
to manage individual characters or numbers. These data types are impor-
tant, but they are not sufficient. Think only of the simplest applications, for
example from the accounting discipline—an account has not only a
balance (which could easily be mapped with a floating-point number) but
also a name, a unique number, and so on; and it also requires a list (table)
of postings.

We can see that the simple data types are not sufficient, which means
we need composite types. Simple forms of these composite types are
arrays, strings, or records. These forms are also known in COBOL: Arrays
correspond to the OCCURS entries of COBOL, strings are character strings,
and records are used like COBOL group fields.

Simple data types
are not sufficient

64 Chapter 3 Basics

3.4.1 Arrays

An array is a table of elements (variable cells). All elements are of the same
type, so we also speak of a homogeneous data structure. The variable,
which was declared as an array, always identifies the entire array. When
accessing this variable, we always access the array. If we want to access a
single element of that array, access is possible by using the index. Arrays
are known from COBOL; for example, an array with 100 integer elements
could be defined as follows in COBOL: A OCCURS 100 TIMES PIC X(4).

Array Definition

In Delphi, such an array could be defined as follows: var a: array[1..100]
of integer. This array declaration begins with the keyword array. It is fol-
lowed by the index limits within square brackets. Delphi supports arbitrary
index limits. After that, the keyword of and the element type (which can be
any arbitrary type) are stated.

Delphi allows not only limits such as lower limit = 1, upper limit =
number of array elements, but also any arbitrary integer number. An array
in the form of array[-3..+6] is possible. Other examples for valid array
declarations are array[1..20] of real or array[0..10*3] of integer.

These are static declarations: The number of array elements is known at
the moment of compiling, so the index limits are constants. In connection
with Delphi particularities (see Section 3.6.1), we will discuss dynamic
arrays, for which the number of elements is known only at runtime (for
example, from an input). This construct is similar to, but mightier than,
COBOL’s OCCURS DEPENDING ON instruction.

In Java, composite data types, such as arrays or records, are always
dynamic. To avoid confusing you with too many details at this point, we
describe this issue later. For now, it is important to understand that the dec-
laration of an array in Java is actually a creation. For that reason, we have
to use the keyword new, which is discussed in Section 3.7.2.

The array from our previous example could be created in Java as follows:
int a[] = new int[100]. We can see that this creation of the array begins
with the element type, followed by the variable name, a pair of square
brackets, the assignment operator, and the keyword new. Next is, once more,
the element type and the number of elements within square brackets.

In Java, the array limits always reach from 0 to the number of elements
-1—in this case from 0 to 99. Consequently, in contrast to COBOL, the first

Homogeneous
data structure:

all elements have
the same type

Delphi: array of

3.4 Arrays, Strings, Records 65

element does not have index 1 but index 0. In Java, it would also be feasi-
ble to state the elements during declaration of the array—for example, int
a[] = {1, 17, 25, 6} would create an array with four elements, where the
first element would have value 1, the second value 17, and so on.

The type declaration is of primary importance at this point. In object-
oriented programming, all types not already included in the language can be
built and an arbitrary number of variables of these types can be created. This
improves the readability of the program, because we can assign proper type
names and do not have to repeat the same structure. Another advantage is
that two variables of the same type are always assignment-compatible.

In Delphi, the type declaration is always at the beginning of the decla-
ration part, even before the variable declaration. It begins with the keyword
type, followed by the type name, an equal sign, and finally, the type (for
example, array). In the variable declaration, we can then create a variable
of that type. For example:

type

IntArr = array[1..100] of Integer;

var

a: IntArr;

In Java, a type declaration is possible by a class declaration, which is
described in Section 5.1.

Accessing Array Elements

As in COBOL, object-oriented programming lets you access individual
array elements from their index. For example, while you can use A(3) in
COBOL to access the element from index Three, you can do this both in
Java and Delphi with a[3]. The main difference is in the use of square brack-
ets instead of parentheses. Of course, access is permitted only within the
index limits; otherwise, a runtime error will be thrown. A special data type
for index access, such as the INDEX format in COBOL, is not available in
object-oriented programming. Also, there is no special command to search
the array similar to the SEARCH instruction in COBOL.

We will use two examples to better explain how to work with arrays. The
first example is SearchElement (Listings 3.3 and 3.4), and the second is
DaysOfMonth (Listings 3.5 and 3.6). In SearchElement, we use an array, a, to

Type declaration:
own types will be

built

Delphi

Java

Access as in
COBOL: through

index

Examples simplify
everything

66 Chapter 3 Basics

search for an element, x, by starting at the first position of the array and
comparing this array element with x repeatedly until we find a match. If a
match is found, the index of the element found is stored in the variable pos;
otherwise, the variable pos will have the value -1.

The example DaysOfMonth computes the number of days in the month
specified by month, where we ignore leap years for the sake of simplicity and
easier understanding.

var

a: array[1..100] of Integer;

x: Integer; // element to be searched for

pos: Integer;

i: Integer;

begin

. . . // –- read the array

// –- find

pos := -1; i := 1;

while (i <= 100) and (pos < 0) do begin

if a[i] = x then begin pos := i; end;

Inc(i);

end;

end;

var

days: array[1..12] of Integer;

d, month: Integer;

begin

days[1] := 31; days[2] := 28;... days[12] := 31;

. . .

d := days[month];

end;

int a[] = new int[100];

int x, pos, i;

. . . // –- read the array

// –- find

pos = -1; i = 0;

Listing 3.3.
Search for

Element in Delphi

Listing 3.4. Days
of Month in

Delphi

Listing 3.5.
Search for

Element in Java

3.4 Arrays, Strings, Records 67

while ((i < 100) && (pos < 0)) {

if (a[i] == x) pos = i;

i ++;

}

int days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

int d, month;

// . . .

d = days[month-1]; // Important note: –1, because array’s lower limit is 0!

3.4.2 Strings

Strings are those character strings that occur frequently in programs. We
could also use an array of characters instead, but strings have the advan-
tage that many predefined functions can be operated on them.

String Definition

Strings are declared just like usual variables. Once they have been declared,
we can assign arbitrary string constants or other string variables to a vari-
able. In addition, strings can be processed with many of the functions
described in the next subsection.

Accordingly, a string declaration could look like var str: String; or
String str;. However, there is a large number of special cases, where the
string definition (and string initialization) depends on the language.

In Delphi, we basically distinguish between long strings and short
strings. The essential difference between the two is that long strings can
have any given length (which means that they are dynamic), whereas short
strings must have a specific length. These short strings are declared by
appending the length—for example, var str: String [200]. Short strings
are more efficient than long strings, and data processing is easier because
of their constant lengths.

Once strings have been defined, you can assign constants to any of
them. In Delphi, string constants are always written between apostrophes:
str := 'MorganKaufmann'. Strings in Delphi can be used like arrays—you
can access individual characters with str[i].

In Java, in addition to the type String, there is a type called StringBuffer.
This latter type is used when the character string is to be modified later. For

Listing 3.6. Days
of Month in June

String is an
independent type

Delphi: long
strings and short

strings

Java: String and
StringBuffer

68 Chapter 3 Basics

example, you cannot simply extract a character from a variable of the type
String. For this purpose, a variable of the type StringBuffer is required.
Although variables of this type require more storage space, they are more
similar to alphanumeric fields in COBOL.

You can assign an arbitrary character string to a variable of the type
string immediately after the declaration—for example, String str =
"MorganKaufmann";. However, this is only an abbreviation for String str =
new String("MorganKaufmann");. We can see that, in Java, string constants
are written between double quotation marks.

Note a special particularity at this point: the method valueOf can be
used to convert an elementary type (char, int, long, and so forth) into a
string—for example, String str = String.valueOf(17);. The index and the
method charAt can access the individual elements of a string, that is,
the individual characters of a string. Variables of the type StringBuffer
have to be created by the operator new, such as StringBuffer str = new
StringBuffer("Markus");. You cannot use the index to access individual
characters of this type of variable.

The Java types String and StringBuffer are dynamic data types (see
more about this in Section 3.7). For this reason, a direct comparison of two
strings, s1, s2, with s1 == s2 wouldn’t make sense, because it would just
mean an identity comparison, not a string comparison. Instead, the fol-
lowing function has to be used: s1.equals(s2).

Special Functions

That character strings are important elements of a program is known from
the COBOL world. In fact, COBOL offers a wide range of functions for effi-
cient processing of character strings, such as UNSTRING or INSPECT, to name
just two. In Delphi and Java, the STRING instruction can be simulated with
the operator +, which is defined for strings, grouping several character
strings. Other special functions for string processing are listed in Table 3.8.

� Delete (var dest: String; index, count: Integer) deletes a number
consisting of count characters within the string dest, starting from posi-
tion index.

� Insert (s1: String; var dest: String; index: Integer) inserts the
string s1 into the string dest at the position index.

� IntToStr (i: Longint): String converts the integer value i into a string.

Direct
comparison
s1 == s2 is
not allowed

Delphi string
functions

3.4 Arrays, Strings, Records 69

� Length (s: String): Integer returns the length of the string s. This func-
tion determines not only the length selected during the variable decla-
ration but also the actual length—the number of characters the string
contains.

� Pos (substr: String; s: String): Integer searches the string s to deter-
mine whether the string substr can be found. If so, the index where it
occurs (for the first time) is returned; otherwise, the value -1 is returned.

� StrToInt (s: String): Longint returns a string as a number if this type
of conversion is permitted—for example, if s has a value of '4711'.

As mentioned, Java distinguishes between the classes String and
StringBuffer. If we want to modify a character string, we would have to use
a StringBuffer. Functions such as insert or delete are supported only by
this type.

Moreover, functions are actually methods, which are always called with
VariableName.MethodName. For example, if there is a StringBuffer by the
name of s, the delete method is called with s.delete.

The important things to remember here are that the delete operation
refers to the character string s and that this string does not have to
be passed on separately as a parameter. This is discussed further in
Section 5.1.

� dest.delete(start, end) deletes all characters in the character string
dest starting from position start to position end. dest has to be of type
StringBuffer.

Java string
functions

Table 3.8 Special functions for string processing

Function Delphi Java

Delete substring Delete Delete

Insert substring Insert Insert

Convert number to string IntToStr ValueOf

Define length Length Length

Define position of a substring Pos IndexOf

Convert string to number StrToInt Wrapper classes:
see Section 5.4.3

70 Chapter 3 Basics

� dest.insert(index, s1) inserts the character string s1 into the charac-
ter string dest at the position index. dest and has to be of type String-
Buffer.

� s.valueOf(d) converts the integer value d into a character string.

� s.length() returns the length of the character string s. This operation
determines not only the length selected during the variable declaration
but also the actual length—the number of characters in the string.

� s.indexOf(substr) searches the character string s to see whether the
character string substr can be found. If so, the index where this occurs
(for the first time) is returned; otherwise, the value -1 is returned. This
function works only with the type String.

Example

This example (Listings 3.7 and 3.8) searches for a pattern pat in a charac-
ter string s. If the pattern is found, the index where the first occurrence of
pat was found is stored in the parameter pos. Essentially, this corresponds
to the Delphi function pos or to the Java method indexOf.

var

pat, s: String;

i, j, pos: Integer;

. . .

i := 1; pos := -1;

while (i <= Length(s)) and (pos < 0) do begin

if pat[1] = s[i] then begin

j := 2;

while (j <= Length(pat)) and (pat[j] = s[i + j - 1]) do begin

Inc (j);

end;

if j > Length (pat) then begin pos := i; end;

end;

Inc(i);

end;

String pat, s;

int i, j, pos;

. . .

Listing 3.7.
Search String in

Delphi

Listing 3.8.
Search String in

Java

3.4 Arrays, Strings, Records 71

i = 0; pos = -1;

while ((i < s.length()) && (pos < 0)) {

if (pat.charAt(0) == s.charAt(i)) {

j = 1;

while ((j < pat.length()) &&

(pat.charAt(j) == s.charAt(i + j))) {

j++;

}

if (j >= pat.length()) {pos = i;}

}

i++;

}

3.4.3 Records

Records group various data structures under a single name. Think only of
the data types discussed so far, which can represent arbitrary numbers,
character strings, letters, or tables. However, if we want to map a date in
the form day month year, such as 6 December 2003 to a variable, we will
not be able to if we use only one variable. We would have to use three vari-
ables: two integers for day and year and a string for the month.

Accessing an element through three different variables is not particu-
larly elegant. This is where records come in. We can use a record to group
different element types into one heterogeneous data structure. This is also
the fundamental difference between a record and an array. The latter con-
sists of equal element types, which means it has a homogeneous data struc-
ture. We are familiar with this kind of data structure from COBOL, so the
group fields discussed here are actually attributes of a record.

Record Definitions

The following section describes briefly how a record can define the date of
our previous example.

In Delphi, records begin with the keyword record, followed by the indi-
vidual attributes, which are declared as variables in the usual way and
which should appear in a separate line to ensure good readability. The
keyword end terminates a record, as we can see from the following short
source code fragment:

Heterogeneous
data structures:

various elements

Delphi

72 Chapter 3 Basics

type

Date = record

day: Integer;

month: String[10];

year: Integer;

end;

Java has no record type. To use a record, we have to use classes. We
already know a similar phenomenon from Section 3.3, where we saw that
Java does not offer procedures but instead methods of a class. However,
classes are a good replacement for records. We will see later that they are
even more powerful. Attributes can be embedded in classes just like normal
variable declarations:

class Date {

int day;

String month;

int year;

}

Record Access

Naturally, an important issue is how to access a record’s attributes.
Although we could work with the record itself, we are interested only in how
to pass the parameters of a procedure or the value assignment (for example,
can a variable of type Date be assigned to another one of the same type?).
A record’s attributes can be used like any normal variables, where access is
over one point, that is, over VariableName.AttributName. For example, we
could access the attribute day of the record d over d.day.

In contrast to COBOL, the field name alone is not a valid value, because
the attributes (fields) outside the record are visible only in connection with
the record name. However, the record itself can be used like any normal
variable, too—the aforementioned assignment is possible.

var d: Date;

d.day := 6;

d.month := 'December';

d.year := 2003

In Java, we first have to create an instance of the class, as in Section 3.4.1,
so that the class can be processed.

Java: classes
instead of

records

Access through
dot notation

Delphi

Java

3.4 Arrays, Strings, Records 73

Date d = new Date();

d.day = 6;

d.month = "December";

d.year = 2003

To further explain how the declaration of records works, we give addi-
tional examples in Listings 3.9 and 3.10, which describe how to map an
account or a person.

Account = record

name: String[64];

number: Integer;

balance: Real;

end;

Person = record

name: String[32];

birth: Date;

adr: record // An own type address would even be better here.

street, city: String[32];

nr: Integer;

end;

end;

class Account {

String name;

int number;

double balance;

}

class Address {

String street, city;

int nr;

}

class Person {

String name;

Date birth;

Address adr;

}

Listing 3.9.
Examples for

Record
Declarations

in Delphi

Listing 3.10.
Examples for

Class Declarations
in Java

74 Chapter 3 Basics

Of course, records and arrays can be mixed—an array can be used as an
attribute of a record. Similarly, we could use an array of records. To better
understand this, we will use an array of persons in the following example.

var

p: Person;

i: Integer;

list: array[1..100] of Person;

. . .

p.name := . . . // Access the name of person p

p.name[i] := . . . // Access the ith character of the name of p

list[i].name := . . . // Access the ith person in the list

p.adr.street := . . . // Access the street name in the address of p

Person p = new Person();

int i;

Person list[] = new Person[100];

// Create the individual persons – necessary because of the class notation

for (int i = 0; i < 100; i ++) list[i] = new Person();

p.name = . . . // Access the name of person p

p.name[i] = . . . // Access the ith character of the name of p

list[i].name = . . . // Access the ith person in the list

p.adr.street = . . . // Access the street name in the address of p

Examples

To deepen our understanding of records, we present a final example (List-
ings 3.11 and 3.12), which searches a telephone directory for a person. The
array book (100 persons) is searched until the name we are looking for is
found. If the name is found, the person’s phone number is stored in the
variable phone; otherwise, the variable is assigned a value of 0.

type

Person = record

name: String;

phone: Integer;

end;

Delphi

Java

Listing 3.11.
Phone Directory

Example in
Delphi

3.4 Arrays, Strings, Records 75

PhoneBook = array[0..99] of Person;

var

name: String;

phone, i: Integer;

book: PhoneBook;

. . .

i := 0;

while ((i < 100) and (book[i].name <> name)) do Inc(i);

if (i < 100) then phone := book[i].phone else phone := 0;

class Person {

String name;

int phone;

}

. . .

String name;

int phone, i;

Person book[] = new Person[100];

for (i = 0; i < 100; i ++) book[i] = new Person();

. . .

i = 0;

while ((i < 100) && !(book[i].name.equals(name))) i++;

if (i < 100) phone = book[i].phone; else phone = 0;

In this example, the conditional evaluation of the while condition,
which is often called shortcut evaluation, is important. First, the program
tests within the condition of the while loop to see whether i is smaller than
100. Only then does it test the book entry at position i. If the first condi-
tion is not met, it is not necessary to test for the second, because the entire
expression must be correct. The situation is similar with an or condition: If
the first condition is met, the second does not have to be tested, because
the entire expression must be correct.

This statement is important and raises the question, What could happen
in this example if the entry did not exist? With the opposite sequence of the
while condition, or if both expressions were evaluated, we would also have
to test book[100]. However, given the fact that the upper index limit is 99,
we would get a runtime error.

In Delphi, the conditional evaluation is always applied, while Java
applies it only when the dual operator (that is, && for and or || for or) is used.

Listing 3.12.
Phone Directory
Example in Java

Conditional
evaluation should

always be used

76 Chapter 3 Basics

If the usual operator (that is, & or |) is used, both expressions are tested,
regardless of whether this is necessary. We recommend generally using the
conditional evaluation, because the other approach would not be useful,
especially with regard to runtime behavior.

3.4.4 Summary

An example in COBOL, Delphi, and Java will summarize what we have
learned. The following simple program computes a car’s average gasoline
consumption. We enter the mileage, gallons consumed, and price per
gallon in cents. Next, one computation part computes and outputs the
average consumption per 100 miles, the total cost, and the average cost per
100 miles in dollars. Listing 3.13 shows the COBOL program (with all lines
numbered for reference in the following discussion).

00010 identification division.

00020*************************************

00030* program calculating the average *

00040* gasoline consumption of a car *

00050*************************************

00060 environment division.

00070 configuration section.

00080 special-names.

00090 decimal-point is comma.

00100*************************************

00110 data division.

00120 working-storage section

00130

00140 01 input.

00150 05 i-miles pic 9(4).

00160 05 i-gallons pic 9(3).

00170 05 i-price pic 9(3).

00180

00190 01 calculation-fields.

00200 05 c-average pic 9999v99 binary.

00210 05 c-costs pic 99999v99 binary.

00220 05 c-average-costs pic 99v99 ` binary.

00230

Listing 3.13.
Computing

Average Gasoline
Consumption in

COBOL

3.4 Arrays, Strings, Records 77

00240 01 output.

00250 05 o-average pic z9,99.

00260 05 o-costs pic zz9,99.

00270 05 o-average-costs pic z9,99.

00280*************************************

00290 procedure division.

00300 main.

00310 display "Welcome"

00320 display "miles: "

00330 accept i-miles

00340 display "gallons: "

00350 accept i-gallons

00360 display "price"

00370 accept i-price

00380******calculations*******************

00390 compute c-average = 100 * i-gallons / i-miles

00400 compute c-costs = i-gallons * i-price / 100

00410 compute c-average-costs = c-average * i-price / 100

00420******move calc-fields to output******

00430 move c-average to o-average

00440 move c-costs to o-costs

00450 move c-average-costs to o-average-costs

00460******output*************************

00470 display "average consumption for 100 miles: "

00480 display o-average

00490 display "total costs: "

00500 display o-costs

00510 display "average costs for 100 miles: "

00520 display o-average-costs

00530*************************************

00540 stop run.

This program is actually easy to understand, and we will gradually port
it to Delphi and Java in the next two sections.

Computing Average Gasoline Consumption in Delphi

Delphi doesn’t need the first two sections—the Identification Division and
Environment Division—because showing the decimal point as a comma
can be achieved only by special output functions.

Delphi

78 Chapter 3 Basics

The Data Division (lines 110–270) essentially includes three records.
Although not mandatory, it is useful to agree on types here, especially
because the record used for computation and the output are identical. With
regard to the record fields, in contrast to COBOL, Delphi doesn’t let you
specify how many decimal places before and after the comma should
be used in the computation. This is why we have to use a default type, such
as integer or real. Consequently, the type definitions in Delphi look like
this:

type

Input = record

miles: Integer;

gallons: Integer;

price: Integer;

end;

Calculation = record

average: Real;

costs: Real;

averageCosts: Real;

end;

However, unlike in COBOL, the field names are not linked by dashes.
Then the variables i, c, and o have to be declared of these types.

This takes us to the core of the program: the Program Division. Initially,
lines 310–370 handle the inputs. This is similar to Delphi, but the variable
name and a dot have to be added to the beginning of the field name:
i.miles. However, the input should always be easy to understand:

// input

WriteLn('Welcome');

Write('miles: '); ReadLn(i.miles);

Write('gallons: '); ReadLn(i.gallons);

Write('price: '); ReadLn(i.price);

The next step involves the computations, which are similar to the
COBOL example, although they use the := assignment instead of the
COMPUTE command. Because we use types, we can easily assign c to o:

Data Division

Program Division

3.4 Arrays, Strings, Records 79

// calculation

c.average := 100 * i.gallons / i.miles;

c.costs := i.gallons * i.price / 100;

c.averageCosts := c.average * i.price / 100;

o := c;

Finally, we get to the output. This is easy in COBOL, because the Data
Division already specified the output format. Unfortunately, this is not pos-
sible in Delphi, where we would have to do a special preparation, such as
splitting into parts before and after the comma. For the sake of simplicity,
we do without formatted output in this example, so assignment to the
output variable is not really necessary. In fact, we could output c right away.
Listing 3.14 shows the complete example in Delphi.

// Sample for a Program in the first unit

// Name, date, and short description

program Gasoline;

type // types

Input = record

miles: Integer;

gallons: Integer;

price: Integer;

end;

Calculation = record

average: Real;

costs: Real;

averageCosts: Real;

end;

var // variables

i: Input; c, o: Calculation;

dummy: Char;

begin

// input

WriteLn('Welcome');

Write('miles: '); ReadLn(i.miles);

Write('gallons: '); ReadLn(i.gallons);

Write('price: '); ReadLn(i.price);

// calculation

Output

Listing 3.14.
Computing

Average Gasoline
Consumption in

Delphi

80 Chapter 3 Basics

c.average := 100 * i.gallons / i.miles;

c.costs := i.gallons * i.price / 100;

c.averageCosts := c.average * i.price / 100;

o := c;

// output

Write('average consumption for 100 miles: ');

WriteLn(o.average);

Write('display total costs: ');

WriteLn(o.costs);

Write('average costs for 100 miles: ');

WriteLn(o.averageCosts);

Read(dummy);

end.

Computing Average Gasoline Consumption in Java

The first two sections—Identification Division and Environment Divi-
sion—are not really needed in Java. We could show the decimal point as a
comma by special output functions. However, it is important to state the
auxiliary procedure readInt, because Java does not offer predefined func-
tions for input.

The Data Division (lines 110–270) essentially include three records.
Although they are not mandatory, it is useful here to agree on types, espe-
cially because the record for computation and the output are identical.
With regard to the record fields, unlike COBOL, Java does not let you specify
how many decimal places before and after the comma should be used in
the computation. This is why we can use only a default type, such as int or
float. Consequently, the type definitions in Java look like this:

class Input {

int miles;

int gallons;

int price;

}

class Calculation {

float average;

float costs;

float averageCosts;

}

Java

Data Division

3.4 Arrays, Strings, Records 81

In contrast to COBOL, the field names are not linked by dashes. Then
we have to declare the variables i, c, and o of these types and create records
or classes in Java. Accordingly, a new also has to follow—unless the variables
have already been created, similarly to the o case, and are merely assigned
now.

This takes us to the core of the program—the Program Division.
Initially, lines 310–370 handle the inputs. This is similar to Java, but the
variable name and a dot have to be added to the beginning of the
field name: i.miles. However, the input should always be easy to
understand:

// input

System.out.print("Welcome");

System.out.print("miles: "); i.miles = readInt();

System.out.print("gallons: "); i.gallons = readInt();

System.out.print("price: "); i.price = readInt();

The next step involves the computations, which are similar to the
COBOL example, although they use the = assignment instead of the COMPUTE
command. Because we use types, we can easily assign c to o:

c.average = 100 * i.gallons / i.miles;

c.costs = i.gallons * i.price / 100;

c.averageCosts = c.average * i.price / 100;

o = c;

Finally, we get to the output. This is easy in COBOL, because the Data
Division already specified the output format. Unfortunately, this is not pos-
sible in Java, where we would have to do a special preparation, such as split-
ting into parts before and after the comma. For the sake of simplicity, we
do without formatted output in this example, so assignment to the output
variable is not really necessary. In fact, we could output c right away. Listing
3.15 shows the complete example in Java.

// Sample for a Program in the first unit

// Name, date, and short description

class Gasoline {

public static int readInt () { // auxiliary procedure

String s = "";

Program Division

Output

Listing 3.15.
Computing the

Average Gasoline
Consumption

in Java

82 Chapter 3 Basics

try {

s = new java.io.DataInputStream(System.in).readLine();

}

catch (java.io.IOException e) {}

return java.lang.Integer.parseInt(s);

}

public static void main (String args[]) {

class Input {

int miles;

int gallons;

int price;

}

class Calculation {

float average;

float costs;

float averageCosts;

}

Calculation o;

Input i = new Input();

Calculation c = new Calculation();

// input

System.out.println("Welcome");

System.out.print("miles: "); i.miles = readInt();

System.out.print("gallons: "); i.gallons = readInt();

System.out.print("price: "); i.price = readInt();

// calculation

c.average = 100 * i.gallons / i.miles;

c.costs = i.gallons * i.price / 100;

c.averageCosts = c.average * i.price / 100;

o = c;

// output

System.out.print("average consumption for 100 miles: ");

System.out.println(o.average);

System.out.print("display total costs: ");

System.out.println(o.costs);

System.out.print("average costs for 100 miles: ");

System.out.println(o.averageCosts);

}

}

3.4 Arrays, Strings, Records 83

3.4.5 Exercises

Task 1 (40 minutes): Sorting

Assume we want to input a list of n numbers (n £ 1000). Write a program
that reads these numbers into an array a and outputs them in sorted form.
Use iterated execution of the following process for all i = 1, 2, ... , n - 1 for
your sorting operation:

1. Find the smallest value in a[i + 1]..a[n].

2. Replace this entry by a[i] if necessary.

Your program should also read the sort order (ascending or descending,
that is, “up” or “down”). Example for an input: up 3 5 17 2 27 16 9 -1 (each
separated by a return, where the negative value -1 terminates the input).

Task 2 (40 minutes): Formatting

Write a program that takes a name, consisting of first name, middle name,
and last name (each separated by a blank), and then converts the input into
another format and outputs the result.
Examples:

Markus Hermann Knasmüller Æ Knasmüller, Markus H.

John Fitzgerald Kennedy Æ Kennedy, John F.

Task 3 (100 minutes): Calculating a Date

Assume that a date is defined by the following type:

type

Date = record

day, mon, year: Integer;

end;

First, represent this type as a Java class. Next, write a program that reads
two date inputs and outputs their difference in days. Take leap years into
account (leap years can be divided by 4. A year that can be divided by 100
but not by 400 is not a leap year.) You can assume that the date inputs are
correct. Try to split your program into several procedures (and functions).

84 Chapter 3 Basics

3.5 Language Particularities

This section focuses on the programming languages of interest in our study.
In particular, it describes special functionalities, such as procedure vari-
ables, overloaded methods, or nontypified parameters. All these function-
alities are normally specific to a language: each language has its own
particularities. Accordingly, we have divided this tutorial into two parts. The
first discusses the particularities of Delphi, and the second those of Java.
Readers who are interested only in one of these languages can skip the
other.

3.5.1 Delphi Particularities

Open-Array Parameter

In Delphi, fixed sizes are assigned to arrays during the declaration. This is
not necessarily an advantage, as we can easily see in the following example.
For instance, if we have a given array[1..30] of Integer, a procedure for the
output of this array would look as follows:

procedure Print (a: array[1..30] of Integer);

var i: Integer;

begin

for i := 1 to 30 do WriteLn(a[i]);

end;

This procedure has a fixed parameter list. For example, if a second
array[1..32] of Integer were given and also had to be output, the proce-
dures would have to be written a second time—certainly a useless addi-
tional cost. The solution is an open-array parameter, which means that the
array is declared without limits. When limits of the array are required within
the procedure, they will always reach from 0 to High. Accordingly, the pro-
cedure could look as follows:

procedure Print (a: array of Integer);

var i: Integer;

begin

for i := 0 to High(a) do WriteLn(a[i]);

end;

Focus on the
programming

language of your
choice

Array without
limits

3.5 Language Particularities 85

This procedure can now be called by an arbitrary array of Integer—for
example, even by Print([3, 5, 7]). However, open arrays may be used as
parameters only.

Another important issue in Delphi and arrays used as parameters is
memory consumption. As explained in Section 3.3.2, the procedure creates
copies of the parameters with normal input parameters, and the program
actually works with these copies. Of course, this leads to a problem when
passing on an array, as in our previous example. If this array is large, the
local copy would occupy an unnecessarily large amount of memory unless
it is modified. An array[1..1000] of String[255] may well mean a storage
space of 250*T*KB wasted.

If the array is not to be modified within the procedure, which is nor-
mally the case, it would be useful to save storage space by declaring this
input parameter as an output parameter, using var. An alternative is a dec-
laration with const, which means that it concerns an input parameter that
does not require a local copy, because no change will be made to the array
within the procedure.

Dynamic Arrays

Dynamic arrays have no fixed size. A decision as to how many elements the
array should accommodate is made only at runtime. Such arrays are
defined without index borders.

Before we can use the array, we have to specify the number of elements,
which we achieve by calling SetLength(a, n). This means that array a is
created with n elements. The index of this array will then reach from 0 to n
- 1, because it always begins with 0 for dynamic arrays. The following
source code fragment shows an example for a dynamic array:

var myArr: array of Integer; n: Integer;

. . .

// read n

SetLength(myArr, n);

// work with myArr

Nontypified Parameters

Nontypified parameters offer an option to write an open procedure in
Delphi. When declaring the parameter, we just do not specify any type;
the parameter can then also be of an arbitrary type. To be able to access

Memory
consumption: be
careful about it!

Dynamic arrays:
size is determined

only at runtime

86 Chapter 3 Basics

the parameter within the procedure, we first have to convert between
types.

This kind of procedure is inefficient and should, therefore, be used spar-
ingly. A known example is the procedure WriteLn (. . .), although this
was specially optimized by the compiler vendor.

Forward Declaration

The basic rule says that a procedure can be used only if it has been previ-
ously defined. This causes problems, for example with an indirect recur-
sion, that is, if a procedure P calls a procedure Q and Q calls P in turn. In
this case, P would have to be defined before Q, but Q would also have to be
defined before P, which is not possible. To solve this problem, we can use a
forward declaration, which requires only the procedure head followed by
the keyword forward. The implementation follows later; of course, the pro-
cedure heads have to match. Listing 3.16 shows an example.

program ExampleForward;

procedure Q (x: Integer); forward;

procedure P (x: Integer);

begin

if x <> 0 then begin

WriteLn(x);

Q(x - 1);

end;

end;

procedure Q (x: Integer);

begin

if x <> 0 then begin

WriteLn(x);

P(x - 1);

end;

end;

. . .

end.

Procedure Variables

Delphi lets us store procedures in variables. A program could look as
follows:

Procedure
variables: a

mighty construct

Listing 3.16.
Forward

Declaration in
Delphi

3.5 Language Particularities 87

procedure P

. . .

end; // P

. . .

var v: procedure;

. . .

v := p;

Procedure variables are used mainly when we parameterize algorithms.
For example, we could use procedure variables to write a general
procedure (see Listing 3.17) and draw arbitrary functions. The desired func-
tion is then passed on when the call is made (see Listing 3.18).

type Func = function (x: Integer): Integer;

procedure Plot (f: Func);

var x: Integer;

begin

for x := 0 to 100 do DrawDot(x, f(x));

end; // Plot

function F1 (x: Integer): Integer;

begin result := 2 *x;

end; // F1

function F2 (x: Integer): Integer;

begin result := x * x – 9 * x;

end; // F2

To be able to draw the function y = 2 * x, all we need to do is call
Plot(F1). To draw the function y = x2 - 9 * x, we call Plot(F2).

As we already showed at the beginning of this section, it is also possible
to define procedure types of the kind type BinaryOperation = function (x,
y: Integer): Integer;. Just as with any type declaration, this declaration
specifies the “form” of the container. It is important that no procedure
name be specified. After such a type declaration, we can also declare vari-
ables of this type, and because these variables contain procedures, we
could also call these procedure variables. Listing 3.19 summarizes these
points.

Listing 3.17.
General

Procedure to
Draw Arbitrary

Functions

Listing 3.18.
Examples for the
Use of the Plot

Procedure

Procedures can
also be defined

as types

88 Chapter 3 Basics

type

BinaryOperation = function (x, y: Integer): Integer;

var

v: BinaryOperation; a: Integer;

. . .

function Sum (x, y: Integer): Integer;

. . .

end;

. . .

v := sum;

a := v(7, 12);

In this example, the assignment v := sum is without parameter specifi-
cation and v contains the procedure constant sum. Such an assignment is
allowed when both procedures have the same number of parameters and
the parameters are of the same type and the same kind (input or output).
Whether the parameter names are identical is irrelevant.

3.5.2 Java Particularities

Java Virtual Machine (VM)

Java programs are platform-independent. For example, a program written
for a CISC machine (that is, Intel Pentium), can also be used on a RISC
machine. This platform independence is provided by the Java Virtual
Machine (VM), which introduces a platform-independent layer, represent-
ing an interface between the hardware and the Java program. This VM has
to be installed on each computer that runs Java programs. The programs
are then compiled into a kind of interpretable code, the Java bytecode. The
VM can interpret this code, regardless of and independently of the under-
lying processor.

Constant Parameters

As mentioned in Section 3.3.2, Java does not distinguish between input
parameters and output parameters on the basis of a keyword but on the
basis of the parameter type. In addition, it has an option to declare a param-
eter with the keyword final, which specifies that we are dealing with a “call
by value.” This prevents the parameter from ending up on the left side of

Listing 3.19.
Summary of

Procedure
Variables

The Java Virtual
Machine ensures

that programs
are platform-
independent

final

3.5 Language Particularities 89

an assignment. More specifically, instead of creating a security copy, unde-
sired changes to a parameter are prevented solely by the compiler.

Conditional Expression

A conditional expression can formulate compact value assignments that
depend on a logical condition, such as condition ? then-branch : else-
branch. The following if instruction could then be represented by means of
a conditional expression.

if (x > y) {return x;} else {return y;}

The corresponding conditional expression is simply:

return (x > y) ? x : y;

3.5.3 Exercises

Task 1 (180 minutes): Marriage Brokerage

A marriage brokerage agency’s core business is marrying its customers off.
For this business, the agency uses a program to enter all customer infor-
mation and output the three best pair matches. The customer information
is structured as follows:

const

BLACK = 0; BROWN = 1; RED = 2; GREEN = 3; BLOND = 4; WHITE = 5;

BLUE = 6; GRAY = 7; OTHER = 8;

type

Candidate = record

firstname, secondname: String[32];

male: Boolean;

income: Integer;

hair: Integer;

eyes: Integer;

prefIncome: Integer;

prefHair: array[1..2] of Integer;

prefEyes: array[1..2] of Integer;

end;

We use constants here for simplicity, but in a real application, an enumer-
ation type would be preferable.

Compact notation

Who seeks
shall find!

Delphi

90 Chapter 3 Basics

class Candidate {

static final int BLACK = 0;

static final int BROWN = 1;

static final int RED = 2;

static final int GREEN = 3;

static final int BLOND = 4,

static final int WHITE = 5;

static final int BLUE = 6;

static final int GRAY = 7;

static final int OTHER = 8;

String firstName, secondName;

boolean male;

int income;

int hair, eyes;

int prefIncome;

int[] prefHair;

int[] prefEyes;

}

The number of candidates to be checked by the program is always less than
50. The following information is read in for each candidate: first name, last
name, sex, salary, hair color, color of eyes, preferred salary, two “preferred
hair styles” (which may be identical), and two “preferred eyes” (which may
also be identical).

A match is admissible only provided that the candidates are of different
sex and that at least one “preferred” value is met for each candidate. Each
candidate may appear in more than one dream match. The sequence of
matches results from the sum of correspondences.

Try to split the program into procedures by applying the stepwise refine-
ment technique.

3.6 Modules

This tutorial discusses modules. Modules are similar to external subpro-
grams of COBOL, and even copies in COBOL are not unlike the modules
discussed here. In COBOL, you can use the command COPY to embed
program parts so that subprograms, particularly data definitions, can be

Java

Modules are
similar to

external
subprograms

3.6 Modules 91

managed in separate text files. However, when a copy changes, all programs
that import this copy have to be recompiled. This is not the case with
modules.

This section discusses the motivation for modules. Subsequently, it
explains in detail what such modules look like and how they can be used.
Finally, it describes rules to implement modularization.

3.6.1 Motivation

Modules split a program into manageable parts. This is a familiar tech-
nique: Section 2.4 presented the stepwise refinement technique, which is
aimed at splitting complex things into smaller, more manageable parts.
Another benefit of modules is their abstraction capabilities. Details can be
hidden. Such an abstraction forms the basis for dynamic data structures,
which are described in Section 3.7.

Modules consist of a collection of declarations. This means that con-
stants, types, variables, and procedures are defined within modules. Each
module can be compiled by itself, thereby serving as a building block others
can use.

The essential features of a module are its interfaces, which define what
is defined in the module and what will be made available for others. The
declarations contained in these interfaces are called public, because this is
a keyword used in most languages to identify interfaces. All clients can then
import and use these declarations. For example, a constant PI can be
defined in a module, and programs can then import and use it.

One of the numerous benefits modules offer is obvious: Any change to
the constant (for example, taking the more detailed value 3.141592 instead
of 3.14) must be effected in one place only, and not in several places.
Whoever imports these declarations does not have to know or even be
aware of the implementation. For example, all the listings given so far use
an imported procedure for output, without knowing the respective imple-
mentation. A module could be thought of as a fence that can be sur-
mounted only by an import or export.

3.6.2 Export

To ensure that others can use the declarations of a module, we have
to make them “public,” which means that we have to provide them for

Splitting things
into manageable

parts

Collecting
declarations

Making things
“public”

92 Chapter 3 Basics

general use. This specification is independent of the programming
language.

In Delphi, a module is called a unit. With a unit, we first define the inter-
face and then proceed to the implementation. A module begins with an
introduction, which is opened by the keyword interface. All declarations
that follow are “public.”

The implementation, introduced by the keyword implementation,
follows those public declarations. This part contains the implementation
of the public procedures and additional private declarations. Private dec-
larations are those that will not be exported. Listing 3.20 shows an example
of such a module, with the exported names in bold.

unit ExampleUnit;

interface

type

R = record

f: Integer;

end;

var

y: R;

procedure P (a: Integer);

implementation

procedure Q (b: Char);

begin

// . . .

end; // end – Q

procedure P (a: Integer);

var x: Integer;

begin

// . . .

end; // end - P

initialization

y.f := 3;

end.

The code after the keyword initialization initializes global variables.
This code piece is executed when the module is accessed for the first time.

In Java, exported declarations are specified by the modifier public. This
keyword is simply written before the declaration. Java offers other modi-

Delphi

Listing 3.20.
Delphi Example

for the
Implementation

of an Export
Interface

Initialization

Java: package

3.6 Modules 93

fiers, which is described later in the relevant sections. Basically, we should
note here that Java does not know the term module. Instead, it introduces
the term package, which has a similar meaning. Each file begins with the
keyword package, followed by the name of the package. It is possible and
customary to group several files into one package. All you have to do in this
case is use the same name after the keyword package. Listing 3.21 shows an
example for a package in Java, with the exported names in bold.

package ExampleUnit;

public class R {

public int f;

public static R y;

static void q (char b) {

//. . .

}

public static void p (int a) {

int x;

// . . .

}

static {

y = new R();

y.f = 3;

}

}

The code in the last block after the keyword static (that is, y = new R();
y.f = 3;) initializes the global variable y. This piece of code will be exe-
cuted during the first access to the module. Such an initialization may be
implemented only for variables declared with static.

The two listings export different names. In general, we can say that con-
stants, types, variables, and procedures can be exported, but they all have
to be global. Our examples export the type R, the record component R.f,
the global variable y, and the procedure p. Things like the local variable x
or the procedure q are not visible and are therefore not exported.

A highly recommended approach for creating modules is to first define
the interfaces, then compile these modules. This means that clients can
import the declarations before their implementations have been com-
pleted. The module can then be completed stepwise. Therefore, this
approach is particularly useful and encouraging for programming teams.

Listing 3.21. Java
Example for the
Implementation

of an Export
Interface

Initialization

Only global
names can be

exported

Modules
encourage
teamwork

94 Chapter 3 Basics

3.6.3 Import

All exported names can be imported by programs or other modules. For
this purpose, they must have their own import instruction to define the
modules to be imported.

In Delphi, a unit has to be imported by the instruction uses Unitname.
If more than one unit is to be imported, the names of these units must be
separated by commas. The individual names can then be used as if they
were defined in that program. Similarly, we could use the notation Unit-
Name.VariableName, which would be mandatory in case of conflicting
names. An import in Delphi could look like this:

program Client;

uses ExampleUnit;

var x: R; // var x : ExampleUnit.x;

// . . .

x := y; // x := ExampleUnit.y;

P(3); // ExampleUnit.P(3);

In Java, we could do an import with import PackageName.ClassName. If
all classes of a package are to be imported, this could also be done by
using import Package.Name.*. The individual names could then be used
as if they were defined in that program. Similarly, we could use the
notation PackageName.ClassName instead of the name. This is mandatory
in the event of conflicting names. An import in Java could look like
this:

import ExampleUnit.R;

class Client {

public static void main (String args[]) {

R x;

x = ExampleUnit.y;

ExampleUnit.p(3);

}

}

An important question with regard to an import is the sequence,
because circular imports are forbidden. For example, if module A imports
module B and module B imports module C, module C is forbidden to

Delphi

Java

Sequence: beware
of circular

imports!

3.6 Modules 95

import module A. The same applies to direct circular references; if module
A imports module B, module B must not import module A.

3.6.4 Modularization

Modules are used mainly for data abstraction (see also Section 4.1) and
procedure collection (for example, grouping all procedures for input and
output). A module must meet the following guidelines:

� Completeness: All data and procedures belonging to a specific task
should always be contained in one module.

� Streamlined interfaces: The interface of a module should be clear (rule
of thumb: less than one page). It should contain few and simple proce-
dures, which should have a limited number of parameters (rule of
thumb: maximum of four).

� Manageability: The module should not be too big (rule of thumb: 1000
lines maximum—approximately 15 printed pages). However, also avoid
producing too many small modules.

We will often have to make compromises between these rules. Neverthe-
less, they help derive various features that characterize good interfaces:

� Simplicity

� Consistency

� No redundancy (the same operations are not provided in two ways)

� Elementariness (operations required individually should not be
grouped)

� Generality (do not tailor operations for specific cases)

� Robustness

3.6.5 Exercises

Task 1 (180 minutes): Priority Queue

Assume that several people are waiting in line in front of a teller. Each
person should get his or her turn, depending on how long she or he has

Modules serve for
data abstraction

or procedure
collection

Rules for
modularization

Queues:
important

example to be
continued

96 Chapter 3 Basics

been waiting. Unfortunately, the teller does not treat everybody waiting in
line equally. He distinguishes the waiting customers as unpleasant, normal,
or pleasant. Normal customers get priority over unpleasant ones. Pleasant
customers get priority over normal and unpleasant ones. But among
several persons of the same type, the one who has been waiting longest gets
priority. There are never more than 100 people in the queue.

Write a module that simulates this situation. It should have the follow-
ing interface:

interface

const UNPLEASANT = 1; NORMAL = 2; PLEASANT = 3;

procedure Add (name: String; k: Integer);

(* adds a new person – type k – to the queue *)

procedure GetNext (var name: String);

(* supplies the name of the next person and removes that person *)

function Count (): Integer;

(* supplies the number of persons *)

class PriorityQueue {

public final int UNPLEASANT = 1;

public final int NORMAL = 2;

public final int PLEASANT = 3;

public static void add (String name, int k) {

// adds a new person – type k – to the queue

}

public static String getNext () {

// supplies the name of the next person and removes that person

}

public static int count () {

// supplies the number of persons

}

}

Write an additional test program that calls these operations.

Delphi

Java

3.7 Pointers: Introduction 97

3.7 Pointers: Introduction

To conclude our first major part of this OOP course, we provide a short
overview about pointers. Pointers form a core feature in object-oriented
programming, because objects are always realized by use of pointers.
COBOL offers a few similar approaches, in particular the extension USING
BY REFERENCE in OO-COBOL. However, traditional COBOL programmers
typically do not know this issue well, although the concept is powerful. For
this reason, this topic is introduced here and deepens our discussion in the
second part of our OOP course.

3.7.1 Explanation of Terms

In general, a pointer is a dynamic data structure. Dynamic means that the
storage space is not available in advance; instead, it is created upon
demand. Moreover, a pointer has an unlimited size and shape—for
example, in contrast to an array, which is always limited.

In general, the simplest use of pointers are lists. For example, a list of
names can be represented in an array but also in the form of a linked list.
One name always points to the next. The last name points to an end iden-
tifier—a NIL pointer. Figure 3.4 shows these two options. The line originat-
ing from D, limited by a vertical line, is the graphical representation of a NIL
pointer.

The difference between an array and such a linked list is mainly that the
list can de facto have an arbitrary length. In contrast, all arrays have an
upper limit, where the number of elements is fixed. A linked list can begin
with few elements, and more elements can be added at any time. Another

Pointers

Lists

This tutorial is
just an

introduction;
Chapter 4

discusses the
issue in more

detail

A dynamic list
can have any

length

Array

Pointer

A

A

B

B

C

C

D

D

Figure 3.4 Possible representation form for a list.

98 Chapter 3 Basics

advantage of the list form is that insert and delete operations are relatively
easy and quick (also depending on runtime behavior). We can see in Figure
3.5 that pointers help build arbitrary data structures.

As mentioned, insert and delete operations on a linked list are relatively
easy. To get a first intuitive feeling of how to work with pointers, we discuss
these algorithms before concentrating on the data types. Figure 3.6

Inserting in and
deleting from a

linked list: easier
than expected

�1 17

16 14

�15 �37

13 �11

Figure 3.5 Example for complex pointer data structures.

A B C

Predecessor Deleted
element

Predecessor

B

Predecessor Successor

New element

A C

Insert

Delete

Figure 3.6 Inserting in and deleting from a linked list.

3.7 Pointers: Introduction 99

helps explain this issue. When a new element (labeled B in the figure) is
inserted into a list, it simply has to point to its successor (element C). The
predecessor (element A) has to point to the new element B instead of point-
ing to C. Deleting is just as easy: To delete element B from the list, we ensure
that element A no longer points to B but instead to the new successor, C.

Insert and delete operations on an array are much more complex.
Although not more than three elements are involved in a list linked by
pointers, all elements may be involved in an array—for example, when
deleting the first element of the array. Then the index for all array elements
reduces by a value of 1.

3.7.2 Pointers

Pointers can be thought of as data types. Accordingly, variables of this type
also have to be declared. Normally, we define a type that is a pointer to a
record. Variables of this type can then be interpreted as pointer variables,
which point to a memory block in the heap (Figure 3.7). This memory block
is the object referred to by the pointer (variable).

Naturally, the actual declaration depends a lot on the language you use.
The following example shows a declaration for a linked linear list, com-
posed of character strings.

In Delphi, the record is declared as a usual type, preceded by a special
type to serve as pointer. The syntax is as follows:

type

Node = ^NodeDesc;

NodeDesc = record

data: String[16];

next: Node;

end;

Java does not know a pointer data type; that is, we cannot explicitly use
a pointer type. However, the rule is simple: All arrays and records (classes)

Delphi

Java

Pointers are
independent data

types

Memory
block in
the heap

Pointer variable

Figure 3.7 Graphical representation of a pointer variable.

100 Chapter 3 Basics

are pointers, and the type is always implicit. Consequently, a linked list can
be represented as a “normal” class:

class Node {

String data;

Node next;

}

We can see from the two preceding examples that these definitions are
recursive. This is absolutely logical, because each node in the list points to
another node. Considering that we are dealing with a special case in a
special way, the respective compiler will not have any problem and no
syntax error will be thrown. A variable p of the type node is represented in
the memory exactly as shown in Figure 3.8.

A variable of the type pointer (whether declared implicitly or explicitly)
must be created before it can be used. It is created with the New function,
which creates a memory block (heap block) of the required size. The dec-
laration of a pointer variable alone does not yet claim the object’s storage
space. This storage space will be used only when the object is created by
new. Another special case here is the uncreated pointer that points to no
object—the NIL pointer.

We can then access the variable or the components of the record that
the pointer refers to by using a normal record; that is, we access the com-
ponent data in the previous example by using p.data. We could also work
with the pointer variable itself. We could use a variable q of the type node
and simply assign the variable p to it.

The value assignment does not create new storage requirements, and
no new node is created: After the assignment, both p and q point to the
same node (Figure 3.9). Any change to the component p.data will also
cause a change to the component q.data. We saw this effect before, in con-
nection with the var parameters (see example “Dirty” in Section 3.3.2),
which is intuitive, because a var parameter is basically a pointer (albeit one
that is implicitly declared).

Recursive
definition

New creates a
block in memory

p

Data Data

Next Next

Figure 3.8 Graphical representation of the node data type.

3.7 Pointers: Introduction 101

This behavior is known as reference semantics and is a difference
between C++ or similar languages and Delphi or Java. C++ uses copy seman-
tics—that is, q := p would create a new object, a copy of p. The reference
semantics used in Delphi and Java leads to the fact that p and q reference
the same object after a q := p. As already mentioned, a change of p.data
would lead to a change of q.data.

3.7.3 Standard Algorithms

This section uses a few short operations to show how a simple list works.
The given case has two important pointers: head and tail. Head is the
pointer to the head of the list (the first list element), and tail is the pointer
to the tail of the list (the last list element). At the beginning, when the list
is empty, both pointers refer to NIL. This could look as follows:

var head, tail: Node;

. . .

initialization head := nil; tail := nil;

static Node head, tail;

. . .

static {

head = null; tail = null;

}

A list has heads
and tails

Delphi

p

Data

Next

q

Figure 3.9 Pointer assignment: both pointers refer to the same object.

Java

102 Chapter 3 Basics

For the sake of simplicity, all nodes in this example are always added to
this list. Adding nodes to a list is easy. First, the node has to be (dynami-
cally!) created, then the new value is written to this node, and the pointer
tail has to point to this new object (which is now the new last element in
the list).

Well, this was pretty easy, but we still have to consider two points. First,
we have to test for the special case when the list is empty, because then the
head pointer will have to refer to this new element. If an element is added
to an empty list, this new element is not only the first element in the list
but also the last.

Second, we naturally have to test for the case when the list is not empty.
The predecessor of the new element—the current last element—has to
point to it. This is also easy to implement, because all we have to do is set
tail.next to the new element, as follows:

procedure AddNode (data: String);

var p: Node;

begin

New(p); p.data := data; p.next := nil;

if head = nil then head := p else tail.next := p;

tail := p;

end; // AddNode

public static void addNode (String data) {

Node p = new Node();

p.data = data; p.next = null;

if (head == null) head = p; else tail.next = p;

tail = p;

} // addNode

The memory block created for p survives the end of the procedure,
although the procedure limits the lifetime of the variable itself.

When working with lists, stepwise execution—beginning with the first
element—is important. For example, we output the first element, then con-
tinue with the second element, and so on, until the last element in the list
has been processed. We can achieve this easily with a variable, p, that points
to the first element, calls a procedure with p.data (for example, the output

Nodes have to be
entered first

Delphi

Java

The memory
block survives
the procedure

Walking through
a list

3.7 Pointers: Introduction 103

procedure), and finally uses the assignment p := p.next to point to the next
element.

procedure PrintList;

var p: Node;

begin

p := head;

while p <> nil do begin

WriteLn(p.data);

p := p.next;

end;

end; // PrintList

public void printList () {

Node p;

p = head;

while (p != null) {

System.out.println(p.data);

p = p.next;

}

} // printList

These are the most important functions when working with pointers. Once
we have understood these principles, we can work with the examples in the
next chapters, which provide deeper insight. However, we will first study
how to delete previously created dynamic data structures.

3.7.4 Delete

Dynamic data structures must be explicitly created, which makes us
wonder whether they also have to be explicitly released. The general answer
is yes, but there are language-specific differences.

In Delphi, New (p) can be used to create a new memory block. This block
will then be used until it is released by the instruction Dispose (p). If we
forget to release a block, that storage space will be used until the program
ends, which can indeed lead to memory space problems. These delete

Delphi

Java

Delphi

104 Chapter 3 Basics

operations can be difficult, which is often overlooked. Of course, they can
be executed only provided that the objects are all still accessible.

For example, if we run a Dispose(head), the list head is deleted, but the
other list elements remain intact. Unfortunately, although they are still
there, they can no longer be accessed, because it is no longer possible to
access head.next and no additional pointers are available to refer to these
list elements. This situation means that the memory space required by the
list is still occupied and cannot be released. The following code fragment
shows how to properly delete a list:

procedure DeleteList;

var p, q: Node;

begin

p := head;

while p <> nil do begin

q := p.next;

Dispose(p);

p := q;

end;

end;

Another problem that can arise is a dangling pointer. This is a pointer
that points to an unspecified target. For example, if variables p and q are
two pointers referring to the same object (for example, after a p := q assign-
ment) and if a Dispose(p) is executed, p automatically takes the value NIL.
However, because q pointed to the same object, this object was also deleted.
Consequently, the value of q is now undefined, and an attempt to access
q.data would lead to an error.

Java uses a Garbage Collector, which automatically removes memory
blocks that are no longer used. If a block can no longer be reached by a
pointer, it is automatically released. In the case of our list, the head and tail
have to be set to null to ensure that the Garbage Collector will release all
list elements that can no longer be reached.

3.7.5 Other Examples for Dynamic Lists

There are other forms of dynamic lists. Depending on the specific applica-
tion, it could be useful to use one or the other. This section briefly intro-

Java: Garbage
Collector

Dangling pointer

3.7 Pointers: Introduction 105

duces various forms of lists. Section 4.2 describes these forms in more
detail.

Doubly Linked List

With this list form, the list element points not only to its successor but also
to its predecessor. Although this makes the list somewhat more compli-
cated, it allows easier execution in descending sort order (from the last
element to the first).

Stack

A stack is a pushdown automaton that uses two operations: push and pop.
Push puts an element on top of the stack, whereas pop takes the top
element from the stack and returns it. Such a stack works by the LIFO (last
in, first out) principle, because pop always returns the object that has been
inserted last.

Sorted List

With a sorted list, elements are not simply added to the beginning or the
end but rather in the correct position. For example, the value 5 would be
added after the value 3 but before the value 7. Consequently, it is easy to
create a sorted printout of a list. If the list happens to be a doubly linked
list, it could also be printed easily in ascending or descending order.

Let’s draw some conclusions: The advantages of lists and similar linked
structures with respect to arrays have been mentioned in several instances.
So let’s not forget to mention their drawbacks for the sake of completeness:
In addition to the space taken by the pointers, accessing the nth element
is slow, and the creation and deletion of many small dynamic objects may
be costly.

3.7.6 Exercises

Task 1 (170 minutes): Priority Queue

Assume that several people are waiting in a line in front of a teller. Each
person should get his or her turn, depending on how long she or he has
been waiting. Unfortunately, the teller does not treat everybody waiting in
line equally. He distinguishes the waiting customers as unpleasant, normal,

An element has
a successor and

a predecessor

Stack: push and
pop

Sorted list:
elements are

sorted in
ascending order

Priority queue—
now with
pointers

106 Chapter 3 Basics

or pleasant. Normal customers get priority over unpleasant ones. Pleasant
customers get priority over normal and unpleasant ones. But among
several persons of the same type, the one who has been waiting longest gets
priority.

This problem is analogous to the last exercise, but this time the number
of persons is not limited. For this reason, we have to use pointers. To com-
plete this exercise, use an interface from task 1 in Section 3.6.5 and write
an appropriate module.

Write an additional test program that calls these operations. You can use
the test program you created in the last exercise. It requires only minimal
modifications, because we are using a different module here.

Task 2 (10 minutes): Troubleshooting

Find the error in the following source code fragment:

New(p); p := nil;

4
Data Structures and Algorithms

Now that we have introduced static data structures as well as dynamic data
structures (also called pointers; see Section 3.7), this chapter deals more
intensively with that subject. Dynamic data structures are important,
because the only way to create objects in object-oriented programming is
to create them dynamically.

This chapter begins with a discussion of data abstraction, which will
help you understand the concept of an object-oriented class easily, then
discusses algorithms that use dynamic data structures. Although such algo-
rithms can also be used in COBOL, experience has shown that they rarely
are, especially by programmers who made their way into the COBOL world
through a crash course from a different discipline, where they did not get
a chance to work with any programming language intensively. This chapter
is particularly important for those who feel addressed by this statement.

4.1 Abstract Data Types

The tutorial shows a few preparatory steps for how programmers can create
their own data types. Our discussion concentrates less on syntactic details
(which have been dealt with in Section 3.4.1) than on how this operation
works efficiently from the contents point of view. We know that data types
are normally made available to various other programs. Therefore, the

Intensive dealing
with pointers

108 Chapter 4 Data Structures and Algorithms

client needs to know only the essential things about the data type. In most
cases, no detailed knowledge is required. Behind this concept is the term
abstraction. The abstract data structure and abstract data type build on this
abstraction.

4.1.1 Term: Abstraction

The term abstraction is interpreted as a generalization that allows us to
better handle the complexity of a program. We can neglect unnecessary
details and concentrate more on the essentials. The following two exam-
ples explain this concept.

Our first example uses a CD player, which all of us are familiar with. A
CD player could well be thought of as a data type, offering operations such
as power on, play, fast forward, and so on. The most important things
behind the CD player remain hidden from the user (the client). Details such
as printed circuits, sensor systems, and power supply do not directly
concern the user. This is what makes the use of a CD player so simple: Users
can concentrate on what is relevant to them.

Another example is the data type string, which is normally predefined
in many languages, offering operations such as join, substring, and search.
Again, details such as memory representation or number of bits are hidden
from the user. This facilitates the use of data types.

The aim is here to hide the implementation of data from the client,
which is exactly what a data type should achieve. Data are accessed over a
clearly defined interface. However, the important point is not that the
clients of a module should not see those data but rather that it is not nec-
essary that they see them. Returning to our example with the CD player,
users indeed have the possibility (albeit not the most intuitive) to gain
detailed knowledge of this CD player, but they don’t need to know these
details to be able to use the device!

This concept of abstraction is often called information hiding [Par72].
The abstract data structures (ADS) and abstract data type (ADT) discussed
in the next two sections are based on this concept.

4.1.2 Abstract Data Structures

A data structure that any client can use by accessing clearly defined proce-
dures, but with an open implementation, is called an abstract data structure
(ADS). One good example is the Priority Queue, from the tasks in

CD player: power
on, play, fast

forward

String: join,
substring,

search

Information
hiding

ADS: abstract
data structure,

an item

4.1 Abstract Data Types 109

Sections 3.6.5 and 3.7.6. Another example is a telephone directory (PhoneBook)
with two procedures: Enter (to enter a data record) and Lookup (to search for
a data record), as shown in Listings 4.1 and 4.2. For better readability, the
exported names in the listings are printed in bold, as in the previous listings.

unit PhoneBook;

interface

procedure Enter (name: String; phone: Integer);

procedure Lookup (name: String; var phone: Integer);

implementation

type

Person = record

name: String;

phone: Integer;

end;

var

book: array[1..1000] of Person;

n: Integer;

procedure Enter (name: String; phone: Integer);

begin

if n <= 1000 then begin

book[n].name := name;

book[n].phone := phone;

Inc(n);

end;

end;

procedure Lookup (name: String; var phone: Integer);

var i: Integer;

begin

i := 1; phone := -1;

while (i < n) and (phone = -1) do begin

if book[i].name = name then begin phone := book[i].phone end;

Inc(i);

end;

end;

initialization

n := 1;

end.

Listing 4.1. Delphi
Implementation

of PhoneBook

110 Chapter 4 Data Structures and Algorithms

class Person {

String name;

int phone;

};

public class Phonebook {

static Person [] book;

static int n;

public static void enter (String name, int phone) {

if (n <= 1000) {

book[n].name = name;

book[n].phone = phone;

n++;

}

}

public static int lookup (String name) {

int i = 0;

int phone = -1;

while ((i < n) && (phone == -1)) {

if (book[i].name.equals(name)) {phone = book[i].phone;};

i++;

}

return phone;

}

static {

book = new Person[1000];

for (int i = 0; i < 1000; i++) {

book[i] = new Person();

}

n = 0;

}

}

These examples show that the implementation is open due to the interface.
These examples were implemented by using an array, but we could just as
well implement them with pointers. The telephone book could easily be
used through the two procedures Enter and Lookup. In addition, the imple-
mentation of the abstract data structure can be modified any time, without
having to change the programs that use it.

Listing 4.2. Java
Implementation

of PhoneBook

4.1 Abstract Data Types 111

4.1.3 Abstract Data Types

The preceding abstract data structure has a major drawback: It works only
for one telephone directory. If several are required, such as one for each
state or one for private (home) and another one for work (office) purposes,
we cannot use this structure.

The abstract data type (ADT) offers a solution for cases in which we need
several structures of the same kind. This solution not only exports access
procedures for a structure but also exports a type. Clients can create an
arbitrary number of variables with this type. The difference between an ADS
and an ADT is simple: The abstract data type packs the global variables that
would be used in an ADS into one type and exports this type. Listings 4.3
and 4.4 show how such an abstract data type can be implemented.

unit PhoneBooks;

interface

type

Person = record

name: String;

phone: Integer;

end;

PhoneBook = record

book: array[1..1000] of Person;

n: Integer;

end;

procedure Enter (var pb: PhoneBook; name: String; phone: Integer);

procedure Lookup (var pb: PhoneBook; n: String; var p: Integer);

procedure Init (var pb: PhoneBook);

implementation

procedure Enter (var pb: PhoneBook; name: String; phone: Integer);

begin

pb.book[pb.n].name := name;

pb.book[pb.n].phone := phone;

Inc(pb.n);

end;

procedure Lookup (var pb: PhoneBook; n: String; var p: Integer);

var i: Integer;

begin

ADT: abstract
data type,

arbitrary number
of copies

Listing 4.3. Delphi
Implementation
of the Abstract

Data Type
PhoneBook

112 Chapter 4 Data Structures and Algorithms

i := 1; p := -1;

while (i < pb.n) and (p = -1) do begin

if pb.book[i].name = n then begin p := pb.book[i].phone end;

Inc(i);

end;

end;

procedure Init (var pb: PhoneBook);

begin

pb.n := 1;

end;

end.

This solution is not really an abstract data type in the true sense of the word,
because the individual components of the record are exported. Although
the clients do not need it, they could access it. The possibility with Delphi
to implement complete abstract data types is provided by the language
construct class (see also Section 5.1).

The parameter pb in the procedure Lookup is actually only an input
parameter. For storage savings, the parameter is nevertheless defined by
var (see also Section 3.5.1), but a declaration with const would also be
appropriate.

package PhoneBooks;

class Person {

String name;

int phone;

};

public class PhoneBook {

Person [] book;

int n;

public static void init (PhoneBook pb) {

pb.book = new Person[1000];

for (int i = 0; i < 1000; i++) {

pb.book[i] = new Person();

}

pb.n = 0;

}

public static void enter (PhoneBook pb, String name, int phone) {

pb.book[pb.n].name = name;

Listing 4.4. Java
Implementation
of the Abstract

Data Type
PhoneBook

4.1 Abstract Data Types 113

pb.book[pb.n].phone = phone;

pb.n++;

}

public static int lookup (PhoneBook pb, String name) {

int i = 0;

int phone = -1;

while ((i < n) && (phone == -1)) {

if (pb.book[i].name.equals(name))

{phone = pb.book[i].phone;};

i++;

}

return phone;

}

}

We should mention, for the sake of completeness, that the declaration of
such procedures with static in Java is not customary. The methods
(declared without static) described in Section 5.1 are much more common.

We can see clearly from the previous listings that each operation has a
parameter of the type PhoneBook, which is then addressed in the procedure.
Moreover, a procedure Init substitutes the initialization part of the abstract
data structure. When using this ADS, we have to declare one (or several)
variables of the type PhoneBook and subsequently initialize it with Init. The
respective calls will then pass these variables as parameters. The following
two short code fragments demonstrate a possible use.

var home: PhoneBooks.PhoneBook;

...

PhoneBooks.Init(home);

PhoneBooks.Enter(home, 'Markus', 437242);

PhoneBook home = new PhoneBook();

PhoneBook.init(home);

PhoneBook.enter(home, "Markus", 437242);

The major advantage of abstract data types emerges from the fact that
the Y2K problem (see Chapter 1) could have been solved easily if the date
had been made available as an abstract data type. Considering that the

Additional
parameter

required

Delphi

Abstract data
types would have

prevented the
Y2K problem

Java

114 Chapter 4 Data Structures and Algorithms

components of clients remain hidden, it doesn’t matter whether the
number representing the year is composed of two or four digits. Conse-
quently, the year could change without the other programs taking notice
and without the need to change any of these programs.

An abstract data type Date could have attributes day and mon. Func-
tions could compute the difference between two dates, to check the day of
a Date, and so on. When the Y2K problem became obvious, an attribute year
had to be added and all the functions had to be changed. However, appli-
cation programs would not have needed to be changed.

4.1.4 Exercises

Task 1 (170 minutes): Relations

This task is based on a concrete example. When implementing object-
oriented databases, it is necessary to store each data structure (object) in
the main memory and a second time on the disk. For this reason, each
object has two addresses. One is an OID (Object Identifier)—the address of
the copy on the disk—and the second is the usual (transient) storage
address.

Naturally, a pointer that refers to an object can include only one address.
To obtain the second address, we have to maintain allocation tables (the
transient address adr corresponds to the disk address oid). B-trees or hash
lists (see also Sections 4.3 and 4.4) normally implement such lists.

Implement a module PersRel that implements an allocation (OID tran-
sient address). To keep things simple, you could use a sorted linear list. As
a unique OID—that is, for the disk address—use a character list (32 char-
acters maximum) to allow for simpler test cases. If an attempt is made to
insert an OID a second time, it should not be executed and, instead, the
global error variable err should be set to TRUE.

In addition to the transient memory address, a property (quality) is
stated during the insert operation, which can also be queried. The creation
and initialization of a relation should be done by calling the procedure Init.

The interface of the module should look as follows:

type

Relation = ^RelationDesc;

RelationDesc = record

Delphi

4.1 Abstract Data Types 115

...

end;

function Adr (r: Relation; oid: String): Integer;

procedure Delete (r: Relation; oid: String);

function Entries (r: Relation): Integer;

procedure Insert (r: Relation; oid: String; adr: Integer; q: Boolean);

function Quality (r: Relation; oid: String): Boolean;

procedure Init (var r: Relation);

var err: Boolean;

package Relations;

public class Relation {

...

public static boolean err;

public static int adr (String oid) {...}

public static void delete (String oid) {...}

public static int entries () {...}

public static void insert (String oid, int adr, boolean q) {...}

public static boolean quality (String oid) {...}

public static void init() {...}

}

Test your solution for PersRel carefully in a separate test program.

Task 2 (10 minutes): Abstract Data Type

Assume the following abstract data structure List:

unit List;

interface

type

ListItem = record

x: Integer;

end;

procedure Enter (item: ListItem);

procedure Print;

implementation

var

Java

Converting from
ADS to ADT

116 Chapter 4 Data Structures and Algorithms

l: array [0..30] of ListItem;

n: Integer;

procedure Enter (item: ListItem);

begin

l[n].x := item;

Inc(n);

end;

procedure Print;

var i: Integer;

begin

for i := 0 to n - 1 do begin

WriteLn(l[i].x);

end;

end;

initialization

n := 0;

end.

Building on this basis, implement an abstract data type Lists.List. This
exercise is identical for Java users, because it is not concerned with lan-
guage details but the basic concept of abstract data types.

4.2 Dynamic Data Structures in Detail

Dynamic data structures and the data type list, as well as stacks and sorted
lists, were briefly introduced in Chapter 3. The following section discusses
these structures in detail.

4.2.1 Linear Lists

A linear list is the dynamic data structure most frequently used. In contrast
to an array, it offers the advantage that it can grow or shrink so that it always
occupies only the storage space required. Another advantage is that it
greatly facilitates insert and delete operations.

We have described unsorted linear lists in Section 3.7. This section dis-
cusses sorted lists in detail. With these lists, insert operations are always

Sorted list!

4.2 Dynamic Data Structures in Detail 117

effected in the correct position, according to the sort order. This is similar
to insertion sort, which is introduced in Section 4.4.4. Figure 4.1 shows an
example for a sorted list of character strings.

The implementation of insert operations for a sorted list is a little more
complex, whereas search and delete operations do not differ much from
unsorted lists. This is an advantage, but only in the special case when the
element we search for (or the element to be deleted) does not exist in the
list. If this occurs, we can abort the search process when an element bigger
than the one we are looking for is found in the list. For example, if we were
to look for the value “Gertraud” in Figure 4.1, we would not have to search
the entire list to find out that the element does not exist; instead, we could
stop searching at the element “Hermann.”

The following source code examples for sorted lists introduce another
novelty, the so-called dummy element at the beginning of a list. This means
that an “empty” list—a list without any elements—has a head node (such
an empty list is shown in Figure 4.2). The next pointer of the last list element
points to the head node, resulting in a ring list. In an empty list, the head
node points to itself.

Although this trick will always cost us at least minor additional storage
space, the special case of inserting things into an empty list, which we know
from Section 3.7.3, does not have to be fully tested in all cases. The inser-
tion concentrates now only on finding the correct position in the list—the

Figure 4.1 Example for a sorted list of character strings.

Inserting in
a sorted list is

a little more
complex

head

“Doris” “Hermann” “Markus” “Ulrike”

Head

Figure 4.2 Empty list with dummy element.

“Dummy”
element

118 Chapter 4 Data Structures and Algorithms

predecessor node of the new element. In the case of an empty list, this is
always the dummy element, and the new element is inserted after it. This
situation is shown in the following source code fragments:

procedure Insert (val: Integer);

var cur, prev, x: Node;

begin

cur := head.next; prev := head; // head is dummy element

while (cur <> head) and (cur.val < val) do begin // find element

prev := cur; cur := cur.next;

end;

if (cur <> head) and (cur.val = val) then exit; // not new

New(x); x.val := val; x.next := cur; // create as new

prev.next := x;

end;

public static void insert (int val) {

SortedList cur, prev, x;

cur = head.next; prev = head; // head is dummy element

while ((cur != head) && (cur.val < val)) { // find element

prev = cur; cur = cur.next;

}

if ((cur != head) && (cur.val == val))

{return;} // already included

x = new SortedList(); x.val = val; x.next = cur; // create as new

prev.next = x;

}

Another special case of a list is a doubly linked list. In such a list, each
list element points not only to its successor but also to its predecessor.
Figure 4.3 shows an example of a doubly linked list.

This approach has the advantage that we do not always have to main-
tain the predecessor of an element (for example, when deleting), because
the predecessor can always be determined by a single pointer access.
Moreover, when working with a sorted doubly linked list, we can execute
the list easily in reverse order.

Finally, we need to ask whether sorted lists are more efficient than
unsorted lists. Intuitively, we would answer this question with a clear yes,

Delphi

Java

Special case:
doubly linked list

Which is more
efficient?

4.2 Dynamic Data Structures in Detail 119

because we do not have to execute the entire list if the respective element
is not present during a search or delete operation. The truth is that this does
not justify the increased cost of insert operations. For such cases, the trees
described in Section 4.3 would be much better.

4.2.2 Stacks

A stack is a special data structure that manages elements in a pushdown
memory, which is based on the “last in, first out” (LIFO) principle, similar
to a stack of books. The book placed on top of the stack is the first one
removed. Figure 4.4 shows a stack with elements of the integer type, where
the following actions are taken consecutively: Insert value 1, remove a
value, insert value 5, insert value 9, remove a value, insert value 3.

A stack like this has two main operations: Push and Pop. Push is applied
to put a new element onto the stack. Pop supplies the element last placed
on the stack and removes it from the stack. Listing 4.5 shows a possible
Delphi implementation of this data structure. For space-saving reasons, the
Java implementation is available on the book CD.

Stack: LIFO

Head

Next

Prev

Figure 4.3 A doubly linked list.

1 5 555

9 3

Insert 1 Remove Insert 5 Insert 9 Insert 3Remove

Figure 4.4 Example for a stack.

Java
implementation
on the book CD

120 Chapter 4 Data Structures and Algorithms

unit Stack;

interface

procedure Push (val: Integer);

procedure Pop (var val: Integer);

implementation

type

Node = ^NodeDesc;

NodeDesc = record

val: Integer;

next: Node;

end;

var

top: Node; // pointer refers to top (first) element

procedure Push (val: Integer);

var x: Node;

begin

New(x);

x.val := val;

x.next := top; // points to formerly first element

top := x; // new first element

end;

procedure Pop (var val: Integer);

var h: Node;

begin

if top = nil then begin val := -1; exit; end;

h := top; // formerly first element for memory release

val := top.val;

top := top.next; // second element becomes first

Dispose(h);

end;

initialization

top := nil;

end.

4.2.3 Queues

In contrast to a stack, a queue works by the (fairer) “first in, first out” (FIFO)
principle and can therefore be compared with a regular queue. Whoever

Listing 4.5. Delphi
Implementation

of a Stack

Queue: FIFO

4.2 Dynamic Data Structures in Detail 121

comes first will be served first (for example, a checkout line in a super-
market). Figure 4.5 shows a queue with elements of the integer type,
running the following actions consecutively: Insert value 1, remove a value,
insert value 5, insert value 9, remove a value, insert value 3.

Such a data structure has two main operations: Enqueue and Dequeue.
Enqueue is used to add a new element to the queue. Dequeue supplies
the element that has been sitting in the queue longest and removes it.
Listing 4.6 shows a possible Java implementation of this data structure.
For space saving reasons, the Delphi implementation is available on the
book CD.

public class Queue {

Queue next;

int val;

static Queue top;

public static void enqueue (int val) {

Queue x, cur;

x = new Queue(); x.val = val; x.next = null; // create element

if (top == null) {top = x;}

else {

cur = top;

while (cur.next != null) {cur = cur.next;}

cur.next = x;

}

}

public static int dequeue () {

int val;

if (top == null) {return -1;}

val = top.val;

top = top.next; // second element becomes first

Delphi
implementation

on book CD

Listing 4.6. Java
Implementation

of a Queue

1 5 399

5 9

Insert 1 Remove Insert 5 Insert 9 Insert 3Remove

Figure 4.5 Example for a queue (see also Figure 3.4).

122 Chapter 4 Data Structures and Algorithms

return val;

}

public static int elements () {

Queue x;

int result = 0;

x = top;

while (x != null) {

result ++;

x = x.next;

}

return result;

}

static {

top = null;

}

}

4.2.4 Exercises

Task 1 (200 minutes): Queue

Implement a dynamic data structure Queue. The module should be based
on a definition that looks as follows:

type

Queue = ...; // should be found by itself

Proc = procedure (x: Integer);

procedure EnQueue (var q: Queue; elem: Integer);

(* appends the element elem to the queue q *)

procedure DeQueue (var q: Queue; var elem: Integer);

(* returns the first element (elem) of the queue q and deletes this element

from the queue. If the queue is empty, then the value of elem is undefined *)

procedure NewQueue (var q: Queue);

(* creates a new (empty) queue *)

function NrOfElems (q: Queue): Integer;

(* returns the number of elements in the queue *)

function Full (q: Queue): Boolean;

(* returns TRUE if the queue is full; otherwise FALSE *)

Delphi

4.2 Dynamic Data Structures in Detail 123

function Empty (q: Queue): Boolean;

(* returns TRUE if the queue is empty; otherwise FALSE *)

procedure Iterate (q: Queue; p: Proc);

(* iterates over all elements of q *)

public class Queue {

// ...

public static void enQueue (int elem) {

// appends the element elem to the queue

}

public static void deQueue (int elem) {

// returns the first element (elem) from the queue and deletes

// this element from the queue. If the queue is empty, then

// the value of elem is undefined

}

public static in nrOfElems () {

// returns the number of elements in the queue

}

public static bool full () {

// returns TRUE if the queue is full; otherwise FALSE

}

public static bool empty () {

// returns TRUE if the queue is empty; otherwise FALSE

}

public static void print () {

// prints all elements of q

}

}

Test your module carefully in an independent test program.

Task 2 (20 minutes): Discussion

Compare dynamic and static data structures and list the respective bene-
fits and drawbacks. Take into consideration how you would have solved
task 1 with a static data structure.

Java

Comparing
dynamic and

static data
structures

124 Chapter 4 Data Structures and Algorithms

4.3 Trees

As mentioned in Section 4.2.1, sorted lists are not really the best data struc-
tures to implement fast search and insert operations. Trees are a better
option. A tree is a data structure that allows you to insert various elements,
just as you would insert elements in a list. However, the structure of such
a tree is not linear (that is, one element after the other), but treelike (with
several branches).

Although both trees and lists are normally available in class libraries,
the tutorial in this section presents the underlying concept of trees. It will
be helpful to get a rough idea of the concept, and it is a good example for
the use of pointers.

The following sections first explain the term tree and then describe the
special data structure of a binary tree. Finally, a balanced tree is briefly
described as a special case.

4.3.1 Definition of Terms

A tree is (by a somewhat scientific formulation) a finite set of nodes and
edges, where each node has exactly one father node. The only exception to
this rule is the root of the tree—the node from which everything originates.
Figure 4.6 shows an example of a tree.

The following terms, based on Figure 4.6, are important in connection
with trees:

� Root: This is the head node, comparable to the head of a list. The root
is labeled R in the figure.

� Father node: Each node under which there is at least one other node is
a father node. The father node can also be thought of as the root of a
subtree. All nodes labeled I or R in the figure are father nodes.

� Son: A node underneath the father node.

� Leaf: Each node that is not a father node. These nodes are labeled L in
the figure.

� Inner node: Each node that is neither a root nor a leaf. These nodes are
labeled I in the figure.

Trees: particularly
efficient data

structures

A tree is a finite
set of nodes

and edges

4.3 Trees 125

� Degree of a node: Number of sons.

� Height of a tree: The maximum levels of all nodes. The tree of our
example in Figure 4.6 has a height of 4.

� Path: The sequence of edges between two nodes.

� Ordered tree: A tree in which the sequence of sons is fixed for each
node. One example for such a tree is the binary lookup tree discussed
in the next section.

4.3.2 Binary Trees

A binary tree is an ordered tree, where each node has a maximum of two
sons (= maximum degree two). Such a tree can be defined by the following
type (if the element is of type integer):

R

I I I

I LL L L

L L

Root

Path

Level

1

2

3

4

Inner
nodes

Leaves

Figure 4.6 Example of a tree.

Binary tree: each
node has at most

two sons

126 Chapter 4 Data Structures and Algorithms

Tree = ^TreeDesc;

TreeDesc = record

val: Integer;

left, right: Tree;

end;

class Tree {

int val;

Tree left, right;

}

The declaration of this type becomes clear when taking another close look
at the definition of the term father node: each node under which there is at
least one other node. A father node can also be thought of as the root of a
subtree. Both the left and right sons are then father nodes and, in turn, the
roots of the trees (or subtrees) underneath them. In the case of a leaf, the
left and the right pointers have a value of NIL.

The most important case of a binary tree is the binary search tree. This
tree is always based on the rule that each right son includes a value greater
than or equal to the value of the father node and each left son includes
a value smaller than the value of the father node. Figure 4.7 shows an
example. The binary search tree is extremely popular, so when speaking of
a binary tree, most actually mean this special case.

The special arrangement of the nodes in a binary search tree allows
simple searches. Initially, the value we look for is compared with the root.

Delphi

Binary search
tree

Java

15

7 21

2 10 18 27

1 4 9 12 16 19 24 30

Figure 4.7 Example for a binary search tree.

Binary search: an
efficient method

4.3 Trees 127

If the value is not equal (which means that it was found), a decision has to
be made as to whether the lookup value is greater or smaller than the value
of the root. Accordingly, we have to continue our search in the right or left
subtree in the same way. This search is continued until either the value is
found or a leaf has been reached. In the latter case, the value is not included
in the binary tree. The following source code fragments show a way to
implement such a binary search.

function Search (val: Integer): Boolean;

var p: Tree;

begin

p := root;

while (p <> nil) and (p.val <> val) do begin

if val < p.val then p := p.left else p := p.right;

end;

result := p <> nil

end;

public static boolean search (int val) {

BinTree p;

p = root;

while ((p != null) && (p.val != val))

if (val < p.val) p = p.left; else p = p.right;

return (p != null);

}

To better understand these algorithms, we recommend running a desk
test—for example, to search for the values 9, 21, and 13, in this order, in
Figure 4.7.

As opposed to a sorted list, a binary search tree is characterized by this
efficient search method. Although a list will always be walked through con-
secutively so that no element can be skipped, this approach always skips
one of the two trees, making the search operation (and consequently the
insert operation and so forth) much more efficient. This becomes clear
when we investigate the number of search steps required, depending on
the number of nodes. For example, if we need five search steps with 63
nodes, we require six steps for 127 nodes and seven steps for 255 nodes.
Therefore, the search time is proportional to the logarithm of the tree size.

Delphi

Java

Desk test: hands-
on experiment

128 Chapter 4 Data Structures and Algorithms

Inserting

The central problem of an insert operation is that each value has to be
inserted in the correct position. A simple binary search tree is based on the
rule that the new value is always inserted as a leaf. This reduces the big
problem to the smaller one of finding the corresponding father node. This
node must be either a leaf itself or have not more than one son. Once the
corresponding position is found, a new node has to be created to store the
value to be inserted, and this node must become a son of the father node
found. This approach becomes clearer in the following source code
examples:

procedure Insert (val: Integer);

var p, f, n: Tree;

begin

p := root;

while p <> nil do begin

f := p;

if val < p.val then p := p.left else p := p.right;

end;

New(n); n.val := val; n.left := nil; n.right := nil;

if root = nil then begin

root := n

end

else begin

if val < f.val then f.left := n else f.right := n;

end;

end;

public static void insert (int val) {

BinTree p, father, n;

p = root; father = p;

while (p != null) {

father = p;

if (val < p.val) {p = p.left;} else {p = p.right;}

}

n = new BinTree();

n.val = val; n.left = null; n.right = null;

Inserting into a
binary tree

Delphi

Java

4.3 Trees 129

if (root == null) {root = n;}

else {

if (val < father.val) {father.left = n;}

else {father.right = n;}

}

}

We said in Section 3.3.6 that recursive procedures are particularly useful
for recursive data structures. Considering that each tree consists of two
(sub)trees, a binary tree is an excellent example for such a recursive
data structure. In other words, we could also solve the insert problem
recursively:

procedure InsertRec (var t: Tree; val: Integer);

begin

if t = nil then begin

New(t); t.val := val; t.left := nil; t.right := nil;

end

else begin

if val < t.val then begin

InsertRec(t.left, val);

end

else begin

InsertRec(t.right, val);

end;

end;

end;

In this connection, the var parameter is of particular importance.
For example, with a recursive call such as InsertRec(t.left, val), we could
create a new node and return it as t.left.

public static BinTree insertRec (BinTree t, int val) {

if (t == null) {

t = new BinTree();

t.val = val; t.left = null; t.right = null;

return t;

}

else {

Why not solve
the insert

problem
recursively?

Delphi

Java

130 Chapter 4 Data Structures and Algorithms

if (val < t.val) {

t.left = insertRec(t.left, val); return t;

}

else {

t.right = insertRec(t.right, val); return t;

}

}

}

To better understand these algorithms, Figure 4.8 shows a tree built grad-
ually as the values 7, 2, 10, 1, 4, 9, and 12 are inserted.

Deleting

Deleting an element from a tree is relatively complicated and represents
the only drawback of trees versus linked lists, apart from a slightly larger
storage consumption. It is easy to understand where this complexity comes
from if we consider what happens when an inner node is deleted. When a
node is deleted, another node has to move up, so, for example, a leaf could
become an inner node. Figure 4.9 shows this situation. In this example, the
value 2 was deleted from the tree of Figure 4.8.

Deleting a node
from the tree

is relatively
complicated

7

2 10

1 4 9 12

Figure 4.8 Example of the creation of a tree.

7

4 10

1 9 12

Figure 4.9 The binary tree of Figure 4.8 after deletion of the value 2.

4.3 Trees 131

One easy way to implement a delete operation for a tree is to delete
the element only logically. This is not really a memory-saving approach,
because it merely marks the node to be deleted as deleted but leaves the
node in the tree. Each node requires an attribute deleted, which is set to
TRUE if the element is to be deleted. All algorithms, such as search, insert,
and so on, must ignore a node marked as deleted. This is similar to delet-
ing data records from index-sequential files in COBOL, because it also
merely does a logical deletion.

The book CD contains an algorithm you can use to delete an element
from a binary tree.

Traversing

An important operation that can be executed on trees is the traversing
(= stepping through the elements) of a tree. The tree is traversed in a certain
sequence, and a certain operation (such as print) is executed on each
element. For example, this would be a way to print all elements of a tree.
Due to the traversing sequence, we distinguish between pre-order, post-
order, and in-order traversing.

� Pre-order: First, the operation is executed on the root; then the left and
right subtrees are traversed in pre-order sequence.

� Post-order: First the left and then the right subtrees are traversed in
post-order; then the operation is applied to the root.

� In-order: First, the left subtree is traversed in in-order sequence; then
the operation is applied to the root, and finally the right subtree is tra-
versed in-order. This sequence means that the tree is traversed in
ascending sort order.

Figure 4.10 shows all these traversing types.
Recursive procedures can be used to traverse a tree easily. This could

look as follows in algorithm notation:

procedure Preorder (t: Tree);

begin

if t <> NIL then begin

... process t.val ...

Preorder(t.left);

Traversing a tree:
pre-order, post-

order and
in-order

Logical delete:
known from

COBOL

Pre-order

132 Chapter 4 Data Structures and Algorithms

Preorder(t.right);

end;

end;

procedure Postorder (t: Tree);

begin

if t <> NIL then begin

Postorder(t.left);

Postorder(t.right);

... process t.val ...

end;

end;

procedure Inorder (t: Tree);

begin

if t <> NIL then begin

Inorder(t.left);

... process t.val ...

Inorder(t.right);

end;

end;

4.3.3 Balanced Trees

A binary search tree carries the risk of degenerating, because each new
value is inserted merely as a leaf. This risk can be better explained by an

Post-order

7

2 10

1 4 9 12

Preorder: 7, 2, 1, 4, 10, 9, 12

Postorder: 1, 4, 2, 9, 12, 10, 7

Inorder: 1, 2, 4, 7, 9, 10, 12

Figure 4.10 Pre-order, post-order, and in-order.

In-order

4.3 Trees 133

example. If the values 3, 4, 5, and 6 are consecutively inserted in a tree, we
obtain the tree shown in Figure 4.11.

The tree shown in Figure 4.11 is not different from a normal sorted list.
Therefore, in the worst case (and only then), algorithms, such as search or
insert, are not more efficient than with a list. This also means that a tree
would no longer offer any advantage when inserting elements in sorted
sequence. For this reason, elements should be inserted in a randomly
mixed way, although this is not always easy.

To neutralize this drawback, special types of trees allow us to rearrange
the nodes such that all leaves are (ideally) on the same level. Examples of
such balanced trees are Red-Black trees or B-trees [Sed88]. These trees are
based on a similar principle, but they are much more efficient and should
preferably be used if available in a class library. B-trees are particularly
important in this respect and are often used for sorted file management.
Such trees support several keys for each node to reduce the number of
time-consuming disk access processes. For example, the index-sequential
files of COBOL are based on this tree type.

We do not discuss this type of tree here, because its implementation is
rather complicated.

4.3.4 Exercises

Task 1 (180 minutes): BinTree Queue

Implement the following dynamic data structure Queue by means of a
binary search tree. The module should be based on a definition that looks
as follows:

const

PRE = 0; INO = 1; POST = 2;

A tree can
degenerate to

a list

B-tree: basis for
IS files in COBOL

3

4

5

6

Figure 4.11 Example of a degenerated tree.

Delphi

134 Chapter 4 Data Structures and Algorithms

type

Queue = ...;

Proc = procedure (x: Integer);

procedure EnQueue (var q: Queue; elem: Integer);

(* appends the element elem to the queue q *)

procedure NewQueue (var q: Queue);

(* creates a new (empty) queue *)

function NrOfElems (q: Queue): Integer;

(* returns the number of elements in the queue *)

function Full (q: Queue): Boolean;

(* returns TRUE if the queue is full; otherwise FALSE *)

function Empty (q: Queue): Boolean;

(* returns TRUE if the queue is empty; otherwise FALSE *)

procedure Iterate (q: Queue; p: Proc; s: Integer);

(* iterates over all elements of q in sequence s *)

public class Queue {

public final static int PRE = 0;

public final static int IN = 1;

public final static int POST = 2;

// ...

public static void enQueue (int elem) {

// appends the element elem to the queue

}

public static int nrOfElems () {

// returns the number of elements in the queue

}

public static bool full () {

// returns TRUE if the queue is full; otherwise FALSE

}

public static bool empty () {

// returns TRUE if the queue is empty; otherwise FALSE

}

Java

4.4 Algorithms 135

public static void print (int s) {

// prints all elements in sequence s

}

}

For the sake of simplicity, the preceding examples ignore delete opera-
tions. You should test your module in your own test program. Of course,
this test program could be a slightly adapted version of the one you used
for task 1 in Section 4.2.4.

Furthermore, a queue is normally not implemented with the help of a
binary tree. We just used this element to save you the time needed to imple-
ment a test driver.

4.4 Algorithms

This section provides a brief introduction to various standard algorithms.
Normally, these algorithms are provided by class libraries or procedure
collections, so all we have to do is to call the respective procedure. For this
reason, it is not absolutely necessary to know all the details of the imple-
mentation. However, a rough insight into some important basics, as
described in this section, is useful. The following books are recommended
for those interested in learning more about standard algorithms:

� Sedgewick, Algorithms [Sed88]. This is one of the best textbooks on the
subject. It is considered the standard reference, recommended for all
interested readers. It introduces all algorithms in the Pascal program-
ming language.

� Wirth, Algorithms + Data Structures = Programs [Wir85]. This concise
book discusses the B-tree in detail. The author uses the Modula-2 pro-
gramming language, which is similar to Pascal or Delphi.

� Cormen, Leiserson, and Rivest, Introduction to Algorithms [CLR01].
Throughout this book, the authors anchor their discussion of
algorithms with current examples drawn from molecular biology, busi-
ness, and engineering. Each section ends with short discussions of
related historical material, often discussing original research in each
area of algorithms. Regardless of the chosen language, this text deserves
a close look for extending the range and performance of real-world
software.

Deletion is
omitted

136 Chapter 4 Data Structures and Algorithms

4.4.1 Heaps

The previous sections presented several data structures, where elements
are inserted by using an insert operation and removed by using a delete
operation. During such operations—for example, a sort operation—the
following special case occurs relatively often:

� Insert (x) should insert x into the data structure.

� Remove (x) should remove the largest element from the data structure
and return it in x.

For example, this data structure could be solved with an unsorted or
even a sorted list. Unfortunately, neither solution is satisfactory, because
the former allows fast insertion but removing is slow, whereas the latter
allows fast removal but insertion is slow. A data structure called heap could
be used for such a special case, because it allows both fast insertion and
fast removal.

A heap is implemented as a binary tree (not as a binary search tree!),
where the tree is stored in an array. This array maintains a special heap
order, by which the father must always be greater than both his sons (nat-
urally, this applies to each subtree in turn) and the father and son of an
element a[i] can both be determined by one array access. The father
of a[i] is defined by a[i div 2], and the sons are defined by a[2 * i] and
a[2 * i + 1].

Figure 4.12 shows this data structure as a heap in the well-known binary
tree representation with pointers (left) and in array form (right). Contrary
to binary search trees, there is no ordering between the two children of a
node. The value of the left child could be smaller than, equal to, or greater
than the value of the right child. However, the value of the parent is always
less than or equal to the value of the children, which means that the root
has the smallest value of the entire structure.

We now introduce the insert and delete operations. Both operations are
based on the rule that first, an element is either inserted or deleted, and
next, the heap order is restored by a suitable procedure:

� Insert: The new element is added as a leaf to the back of the heap; sub-
sequently, the heap order is restored, and this will always require only
a few swaps.

Heap: a data
structure for sort

operations

Inserting and
removing is fast

Binary tree as an
array: a heap is
implemented as

a binary tree
and stored as

an array

4.4 Algorithms 137

� Remove the largest element: The first element of the array is removed,
because it is always the biggest element by the heap order. Subse-
quently, the last element is moved to the first position, and the heap
order is restored.

Listings 4.7 and 4.8 show these algorithms in pseudocode.

procedure Insert (x: Integer);

n := n + 1; a[n] := x;

UpHeap(n);

end Insert;

procedure UpHeap (pos: Integer);

x := a[pos];

while (pos > 1) & (x > a[pos DIV 2]) do

a[pos] := a[pos DIV 2]; pos := pos DIV 2

end;

(* (pos = 1) or (x <= a[pos DIV 2]) *)

a[pos] := x ;

end UpHeap;

procedure Delete (var x: Integer);

x := a[1];

a[1] := a[n]; n := n – 1;

Listing 4.7.
Inserting an
Element in a

Heap

16

14 12

10 8 6 4

16 14 12 10 8 6 4

Figure 4.12 Comparing the binary tree and the array representations of a heap.

Listing 4.8.
Deleting an

Element from a
Heap

138 Chapter 4 Data Structures and Algorithms

DownHeap(1);

end Insert;

procedure DownHeap (pos: Integer);

x := a[pos];

loop

if pos > n div 2 then exit end; (* no more sons *)

i := 2 * pos;

if (i < n) and (a[i] < a[i + 1]) then i := i + 1 end;

if x > a[i] then exit end; (* both sons smaller than x *)

a[pos] := a[i]; pos := i;

end;

(* (pos > n DIV 2) or (x > a[i]) *)

a[pos] := x ;

end DownHeap;

A heap is used in situations that require elements to be removed from
a set in ascending order of value, beginning with the smallest. A typical
example is a set of processes to be ordered according to time or priority.

4.4.2 Graphs

Graphs are a generalization of trees used to represent different situations,
such as a road network between two locations or a network plan, by means
of a data structure. Various standard algorithms from graph theory can be
used to produce important results, such as the shortest path between two
points or the critical path in a network plan. Figure 4.13 shows an example
for a graph, where the nodes could represent railroad stations.

A graph could be declared as follows:

Node = ^NodeDesc;

NodeDesc = record

marked: BOOLEAN; // serves as an identifier for various algorithms

data: ...; // values to be stored

sons: array[1..MAX_SONS] of Node;

end;

class Node {

bool marked; // serves as an identifier for various algorithms

Example for
graphs: a road

network

Delphi

Java

4.4 Algorithms 139

... data; // values to be stored

Node sons[];

}

The attribute marked used here serves as an identifier to tell us whether
the node has already been visited during an iteration, because there is no
predefined sequence, as opposed to a list or tree. Building on this data type,
we could implement various algorithms, which are mentioned here only
briefly, because they are normally supplied by procedure collections:

� Iterating all nodes: Depth-First-Search (DFS: visits faraway nodes first)
and Breadth-First-Search (BFS: visits the neighborhood first).

� Smallest spanning tree: The graph is transformed into a tree by
deleting individual edges (so that each node, except the root, will have
only one predecessor). The edges are deleted in such a way that the
sum of the weights of all remaining edges is a minimum. Application:
Road network between two given locations so that each location can
be reached but where the road mileage to be constructed is a
minimum.

� Shortest path: Calculates the path with the lowest weight between two
nodes—for example, to calculate the least cost for a trip between two
locations.

� Graph input and output: These algorithms serve to save graphs to a
file.

Standard
algorithms for

graphs

Figure 4.13 Example for a graph.

DFS and BFS

140 Chapter 4 Data Structures and Algorithms

4.4.3 Hashing

Hashing is a fast search method of order O(1); it is much faster than the
linear search (in a list) with an order of only O(n). Moreover, hashing is also
faster than a binary search in a binary search tree (see Section 4.3.2) with
order O(log n).

A hash algorithm
has order O(1)

O-notation

Orders can be assigned to algorithms based on the algorithms’ speed.
We first find out how an algorithm’s speed changes in relation to the
number of elements to be processed. The simplest case is order O(n)
(read “O of n”), which means that duration depends linearly on the
number of elements. For example, if an algorithm takes 1 second for
three elements, then it needs 10 seconds for thirty elements (that is,
exactly the tenfold duration). A good example for such behavior is
searching a linear list. Because the entire list has to be processed, the
duration of the search process depends linearly on the number of
elements.

However, an algorithm’s duration does not always depend linearly
on the number of elements. An extreme example for this situation is
the bubble sort algorithm, where each element is compared with each
other element and where any two elements may be swapped. We
actually have a situation with two nested loops, where almost all ele-
ments are normally visited, so the order is O(n2).

For example, if it takes 1 second for one element, then 100 seconds
(102) are required for ten elements. Another extreme example for this
situation is O(1), which means that the duration of the algorithm is
constant and does not depend on the number of elements. If it takes
1 second for one element, it will also take only 1 second for a hundred
elements. A good example is the hash algorithm discussed in this
section.

The idea behind the hash algorithm is taken from real life. Assume,
for example, that we want to store a listing of all employees of a
country (admittedly an ambitious goal). How could we achieve this
goal? An unsorted list or a binary tree (sorted by names) is unsuitable,

How could a
listing of all

employees of a
country be

stored?

4.4 Algorithms 141

for logical reasons. Instead, we will use the social security number as
our key.

For example, if we stored all employee listings in an array—although hard
to imagine—we could determine the index by which an employee is stored
directly from the social security number. This task, here assumed by the social
security number, also offers a hash function. Our goal is to use a key (which
does not even have to be unique) to find an address at which the element we
are looking for is stored. Figure 4.14 shows how a hash function works.

A hash function also allows mapping of large value ranges (for example, all
employees of a location) onto small ones. If we use the huge array mentioned
earlier, we would obtain a result with many large gaps. Therefore, a smaller
array is sufficient, where the index can be determined by a hash function.

A detailed description of all kinds of hash functions would go beyond
the scope and purpose of this book, and it is also not necessary to under-
stand and apply these principles. Rather, it is important to understand that
these functions should be simple and fast, and they should also avoid col-
lisions. However, such collisions—such as when a hash function calculates
the same result for two different values—are not forbidden. Various tech-
niques (including overflow lists) are available to solve these problems.

4.4.4 Sort Algorithms

Almost every program needs to sort a wide range of values, for example,
to sort customers by sales volume or just to print an alphabetical list of

Large value
ranges can be
mapped onto
smaller ones

e.g., “Markus”

Hash function
Address
(e.g., 14)

14

Key

.

.

.

.

.

.

Adr�f(key)

Figure 4.14 Functionality of a hash function.

Sort algorithms:
bubble sort,

insertion sort,
quick sort, heap
sort, merge sort

142 Chapter 4 Data Structures and Algorithms

all service buyers. For this reason, sorting is a common programming
task. The best-known, but also—unfortunately—the most overused sort
algorithm (at least in smaller programs) is the bubble sort, where each
element is compared with each other one. Naturally, this is a very ineffi-
cient method and should be avoided. For this reason, this section shows
alternative methods, which are normally implemented in various class
libraries.

� Insertion sort: This is a fairly efficient method, provided, however, that
the data are rebuilt. The individual records are inserted directly in the
correct places. This corresponds roughly to the SORT instruction of
COBOL, which can be used to create a sorted SORT file from an existing
unsorted file, as we know.

� Quick sort: This algorithm is based on the “divide and conquer” princi-
ple. The file is divided into two parts, and each part is subsequently
sorted independently from one another. Listing 4.9 shows the basic
principle of this algorithm in algorithmic notation, where the parame-
ters used—d and u—specify the partial file within the original file to be
sorted. The call Quicksort(1, n) sorts the entire file if n is the index of
the last element. Proper reordering of the elements is then done in the
procedure Partition.

� Heap sort: This algorithm is based on the operations introduced in
Section 4.4.1. The idea is simple: building a heap that contains the ele-
ments to be sorted. Subsequently, all these elements are removed in the
correct sequence.

� Merge sort: This algorithm corresponds to a sort algorithm defined by
standard in COBOL. MERGE can merge previously sorted files to an output
file. Merge sort works such that a given (unsorted) file is divided into
two halves, and the two halves are then sorted (recursively) and finally
joined (merged) again. Merge sort is the preferred method to sort a
linked list.

procedure Quicksort (d, u: Integer);

var i: Integer;

begin

if u > d then begin

i := Partition(u, d);

The SORT

instruction

Listing 4.9. Basic
Structure of
Quick Sort

4.4 Algorithms 143

Quicksort(d, i – 1);

Quicksort(i + 1, u);

end;

end;

We can see from the preceding discussion that there are also two dif-
ferent types of sorting: file sorting and memory sorting. Merge sort is
appropriate for the previous task and most others for the latter.

4.4.5 Exercises

Task 1 (10 minutes): Heap

Consider the array in Figure 4.15. Determine whether this array represents
a heap, as discussed in Section 4.4.1. If so, draw the heap in graph form.
If not, explain your answer.

Task 2 (170 minutes): Hash Table

Write a program that checks the spelling of words by searching a dic-
tionary for each word and reporting an error if it is not found in that
dictionary.

Instead of storing all correct words in a dictionary (which would take
huge storage space), use the following approach, based on a hash table. The
dictionary is stored as a bit list with length n, where n should be selected to
be very large in this case (say, 100,000). Each correct word is mapped onto
a range of 0..n–1 by means of a hash function, and the corresponding bit
is set in the dictionary.

To check a word from the text for correctness, that word is also mapped
onto this range. If this bit is set in the dictionary, it is assumed that the word
is spelled correctly; otherwise, an error is reported. Of course, faulty diag-
nostics could occur as a result of collisions, but the probability that they
occur should be small when n is big enough.

Heap: yes or no?

8546710917 15 13 14 11

Figure 4.15 Heap in array representation.

144 Chapter 4 Data Structures and Algorithms

For simplicity, you can select an array with Boolean values to serve as a
bit list. A meaningful hash function would, for example, be the sum of ASCII
values of all letters, multiplied by their position within the character string.
The result must then be n calculated. We use this hash function because of
simplicity; there are, of course, much better methods. So be careful when
using the hash function; only a negative result is certain.

The function ORD(ch) can be used to calculate the ASCII value of the
character ch.

In Java, you can also use the predefined method hashCode instead of the
ASCII value. The following program code lines calculate the value of the
character ch:

Character ch1 = new Character(ch);

int h = ch1.hashCode();

Delphi

Java

5
True Object-Oriented
Programming

We have learned important basics and fundamental differences between
object-oriented programming languages and COBOL in the previous
chapters. This chapter discusses the nuts and bolts of object-oriented
programming.

The first sections explain important terms, including classes and inher-
itance, then discuss possible applications of object-oriented programming
in detail. Class libraries, basic to object-oriented programming, are also
described.

Although the examples are shown in Java and Delphi, it would also be
possible to implement them in OO-COBOL. However, OO-COBOL was
explained in Section 1.5; therefore, this chapter includes only the short
Section 5.2.4, which covers the new COBOL variant.

5.1 Classes

This first tutorial section presents the fundamental concept of object-
oriented programming: the class, with its attributes and methods. It also
discusses the main ideas and characteristics behind object-oriented
programming.

Classes: the
fundamental

concept of OOP

146 Chapter 5 True Object-Oriented Programming

5.1.1 Class Definition

A class is similar to the record we know from a previous chapter. For
example, in connection with the Java definition, we said Java has no real
records, but instead classes. A better comparison is to compare a class with
an abstract data type (see Section 4.1). Like an abstract data type, a class
offers attributes and operations (procedures). In object-oriented program-
ming, these operations are also called methods. The short source code
fragments we use in this chapter show how the abstract data type previ-
ously discussed can be represented as a class.

In contrast to a record, a class definition in Delphi begins with the
keyword class (TObject). The term between parentheses is explained in
connection with inheritance in Section 5.2. All we need to know at this
point is that it is part of a class definition. As in a record, the keyword is
followed by the attributes and (before the keyword end, which terminates
the class definition) the methods.

A method definition is similar to a procedure definition, except that the
addressed abstract data type—PhoneBook in the following example—does
not have to be passed as a parameter. The latter is already implicitly
included. Moreover, we have to define whether our attributes and methods
will be exported, because a class enables us, for example, to export certain
attributes but not others. This is defined by preceding the attribute or
method to be exported with the keyword public or private, respectively.
Accordingly, a class definition could look as follows:

PhoneBook = class (TObject)

private

book: array[1..1000] of Person;

n: Integer;

public

procedure Enter (name: String; phone: Integer);

procedure Lookup (name: String; var phone: Integer);

procedure Init;

end;

As mentioned in Section 3.4.3, the record type of Java is mapped by the
type class, so it changes only slightly. The major difference is that the
methods are not declared with static, as we briefly mentioned in Section
4.1.3:

Classes are
similar to

records

Delphi

Java

5.1 Classes 147

public class PhoneBook {

Person [] book;

int n;

public void init () {...}

public void enter (String name, int phone) {...}

public int lookup (String name) {...}

}

Before discussing the implementation of these methods, it is useful to make
a clear distinction between classes and objects. An object is an item in our
world—for example, a chair or a table is an object. In relation to object-
oriented programming, an object can be defined as data (attributes) and a
set of behaviors (methods). A class is then a group of objects that share
common attributes and common methods.

For example, a set of chairs can be seen as a class of chairs. They can
have different sizes, colors, and so on (attributes), but they all belong to the
same class. The class can therefore be seen as the type of an object, and
the object can be seen as a single instance of a class.

Another interesting point is the similarities between an object and a
record. The record, which is well known in the COBOL world, could be seen
as an item in our world, too. It can be defined as data (attributes). There
are two differences between a record and an object:

� An object has a set of methods, in addition to its attributes.

� An object is a dynamic data structure and has to be allocated at runtime,
whereas a record (at least in Delphi and COBOL) is a static data
structure.

Other than these differences, we can work with an object as with a record.
Next is the implementation of methods. As mentioned, the telephone

directory in the example—the element of the class itself—exists in the
procedures only as an implicitly declared parameter. Before discussing
the details of such an implementation, we briefly discuss how methods are
invoked.

As with an abstract data type, a class lets you declare an arbitrary
number of variables, which are also called objects. Classes are always
dynamic data structures, which means that such objects have to be created
first (see Section 3.7).

Difference
between an

object and a
class

Difference
between an

object and a
record

Method
implementations

use the implicitly
declared

parameter

148 Chapter 5 True Object-Oriented Programming

For example, we could declare and create a variable home of the type
PhoneBook. This object will then have the attributes and also the methods
listed in the class declaration. This means that all methods can operate
on this object. The call itself could be realized with home.Init—the name,
separated by a dot, is simply appended to both methods and attributes.
The object home is then passed implicitly as a parameter.

var home: PhoneBook;

...

home := PhoneBook.Create; // corresponds to New (home)

home.Init;

home.Enter('Knasmueller', 664);

Phonebook home = new PhoneBook();

...

home.init();

home.enter("Knasmueller", 664);

Naturally, we can also access this implicitly passed parameter in the
method implementation. Considering that the object itself is the elemen-
tary center of each method, all we need to do is access the attribute n, and
it will always be clear that we mean the attribute n of the implicitly passed
telephone directory. The two following source code fragments show how
the method Enter could be implemented.

procedure PhoneBook.Enter (name: String; phone: Integer);

begin

Inc(n);

book[n].name := name;

book[n].phone := phone;

end;

The notation PhoneBook.Enter results from ClassName.MethodName and is
required for uniqueness in Delphi, because it allows several classes within
one unit.

public void enter (String name, int phone) {

book[n].name = name;

Delphi

Java

Delphi

Java

5.1 Classes 149

book[n].phone = phone;

n++;

}

In many cases, however, it is not that simple to access an attribute (say,
n)—for example, because of a naming conflict with another parameter.
To solve this problem, most programming languages support the implicit
declaration of variables—the implicitly passed receiver parameter.

In Delphi, this implicitly declared variable is called self. Consequently,
the preceding source code fragment could also look as follows:

procedure PhoneBook.Enter (name: String; phone: Integer);

begin

Inc(self.n);

self.book[self.n].name := name;

self.book[self.n].phone := phone;

end;

In Java, this implicitly declared variable is this, so the preceding source
code fragment could look as follows:

public void enter (String name, int phone) {

this.book[this.n].name = name;

this.book[this.n].phone = phone;

this.n++;

}

This class notation and the way methods are implemented form the
basis of object-oriented programming, but there are more advantages,
which the following sections describe. For now, it is sufficient to under-
stand that class notation offers one great advantage: We can see immedi-
ately what belongs together.

5.1.2 Creating and Releasing Objects

Considering that objects are dynamic data types, it is easy to understand
that they have to be created before they can be used, just like pointer vari-
ables. Such a created object is also referred to as the instance of a class.

Delphi: self

Java: this

Instance

150 Chapter 5 True Object-Oriented Programming

A Delphi object is created by calling the implicitly existing method
Create, for example, home := PhoneBook.Create. This corresponds roughly
to creating something by use of New.

A Java object can be created like a pointer variable—with new—for
example, PhoneBook home = new PhoneBook().

However, objects are complex things, so simply creating them won’t do
the trick. We also have to initialize them. Such an Init method was intro-
duced in connection with abstract data types in Section 4.1.3, where it was
called immediately after the data type was created or declared.

Object-oriented programming offers a way to unify creation and ini-
tialization by implementing a constructor. A constructor is a special method
to be implemented; it contains all instructions required for initialization
and is invoked automatically while it is created.

Programmers who use such objects do not have to deal with initializa-
tion any more. Our PhoneBook example simply writes a construction instead
of using the procedure Init, which initializes the component n. The syntax
used to implement such a constructor differs slightly in each of the pro-
gramming languages of interest here.

In Delphi, a constructor is a special method that begins with the
keyword constructor instead of the keyword procedure.

PhoneBook = class (TObject)

private

book: array[1..1000] of Person;

n: Integer;

public

procedure Enter (name: String; phone: Integer);

procedure Lookup (name: String; var phone: Integer);

constructor Create;

end;

constructor PhoneBook.Create;

begin

n := 0;

end;

The method is normally called Create, but it could also have a different
name. The selected name has to be taken into account when creating the
object.

Java

Delphi

Constructors

Java

Delphi

5.1 Classes 151

In Java, a constructor is implemented like a normal method named after
the class. This method must not have any return types:

public Phonebook () {

book = new Person[1000];

n = 0;

}

Because constructors are basically normal methods, it is also possible
to use additional parameters for the initialization. For example, to imple-
ment a class, Person, that provides the attributes name and phone, our code
could look like this:

Person = class (TObject)

private

name: String;

phone: Integer;

public

constructor Create (n: String; p: Integer);

end;

constructor Person.Create (n: String; p: Integer);

begin

name := n; phone := p;

end;

The creation could then be realized by p := Person.Create('Knasmueller',
664).

public class Person {

String name;

int phone;

public Person (String n, int p) {

name = n;

phone = p;

}

}

The creation could then be realized by Person p = new Person
("Knasmueller", 664).

Delphi

Java

152 Chapter 5 True Object-Oriented Programming

Just like pointer variables, once they are no longer required, objects
have to be released (see Section 3.7.4). Also, just as creation can be sup-
ported by a constructor, it is possible to free an object by using a destruc-
tor. In many situations, although an object is no longer required, there may
still be certain instructions to be executed. Considering the differences in
the way the languages discussed in this book release dynamic data struc-
tures, it may not come as a surprise that they also differ significantly when
it comes to releasing objects.

In Delphi, objects are released by calling the method Destroy. This can
be implemented in its own right, initiated with the keyword destructor
instead of the keyword procedure. Particularly when an object points to
other dynamic objects that are no longer required, these objects have to be
released in a destructor implemented especially for this purpose. Other-
wise, a standard destructor will do the job.

The method Free is often called instead of the method Destroy. This
method is provided implicitly (by inheritance), and it then calls Destroy,
unless the object was already released, so it actually prevents an error.

Thanks to the Garbage Collector of Java, it is not necessary to release
objects by a specific instruction. This is taken care of automatically as soon
as the object can no longer be reached. If some jobs remain before an object
is released, it is possible to write a finalize method that the Garbage Col-
lector calls automatically.

5.1.3 Frequent Errors

Given the fact that objects are dynamic, our knowledge about pointers also
applies to them. For this reason, great emphasis is placed on a thorough
understanding of this issue. Nevertheless, there are errors that are typically
made. The most important ones are discussed in this section; they should
absolutely be avoided.

� Equality of objects: To check two objects for equality, we cannot simply
use the simple comparative operator, because it will detect only
whether two objects are the same (identity comparison). Note the subtle
difference between the same two objects (that is, two pointers or refer-
ences point to the same object) and two identical objects (that is, two
pointers or references point to different objects that have the same
attribute values)! To test for equality, we have to compare all individual

Destructors

Java

Delphi: Free and
Destroy

OOP beginners
often make

these errors

5.1 Classes 153

attributes, which usually works fine with an Equal method: if
o1.Equal(o2) then . . .

� Copying of objects: Accordingly, the mere copying of an object cannot
work with a simple instruction. In this case, all that is produced is a
shallow copy, which means that only the pointer is copied. If a new
object were to be created and all attribute values were to be copied, we
would have to do a deep copy. For this purpose, the classes should
provide their own copy methods.

� Creation of objects: Another problematic issue is the method call of
an object. Before we can call a method, we have to create that object;
otherwise, the program will exit due to an illegal memory access.

� Modification of the calling object: An absolutely fatal effect would
result if we were to modify or—worse—release the current object (self
or this) within the method. This implicitly passed parameter itself (the
pointer) must not be modified. Of course, attributes of objects can be
modified.

5.1.4 The Main Ideas of Object-Oriented Programming

Object-oriented programming allows us to represent a system as a set of
independent objects with private data (not in the sense of private to an
object but to a whole class) and operations. Private data serves to map
the state of an object, and operations can be used to work with objects.
The object-oriented idea reflects in the actual environment: Each object
manages its own range of tasks, like the departments of a corporate
organization. Data can be implemented in the sense of abstracting
details—that is, hiding those details—like the sales department of a
company that does not necessarily need to know all the details of produc-
tion or engineering.

We can identify three important characteristics of object-oriented
programming:

� Data abstraction

� Inheritance (type extension)

� Dynamic binding

A system is a set
of independent

data and
operations

Important
characteristics of

object-oriented
programming

154 Chapter 5 True Object-Oriented Programming

The term data abstraction was discussed extensively in Section 4.1, and
the two other terms are explained in Section 5.2. An important advantage
of object-oriented programming is reusability, which the following tutorial
sections discuss in detail.

5.1.5 Terminology

� Class: A class corresponds roughly to an abstract data type—one for
which variables can be declared that will then dispose of attributes and
operations.

� Object: An object is an instance of a class. Considering that this always
concerns dynamic data structures, an object not only has to be declared
but also created.

� Attribute: This is a data component of an object and is often called an
instance variable or member.

� Method: A method is an operation (procedure) provided by a class.

� Message: A message is a dynamically bound procedure call.

� Inheritance: This type of extension can be used to specialize a class (see
Section 5.2).

5.1.6 Exercises

Task 1 (180 minutes): Queue

Use the information from task 1 in Section 4.2.4. Then modify this task so
that a class Queue is defined instead of a simple dynamic data structure
Queue.

5.2 Inheritance and Dynamic Binding

Inheritance is one of the major advantages of object-oriented program-
ming. Inheritance uses the fact that we often have to code similar but not

Terms used in
object-oriented

programming

5.2 Inheritance and Dynamic Binding 155

entirely identical classes. When starting to work on the solution of a new
task, we often find that a similar task has already been solved.

For example, we may find a class that can process the name, address,
employee number, and salary of an employee of a company. It may well be
that another class was implemented that merely manages a normal person,
without employee number or salary. In this case, we could apply inheri-
tance to yield the new class from the existing one. Such an inheritance and
the closely related issues—type compatibility, dynamic binding, and
abstract classes—are the main focus of this section.

5.2.1 Introduction

The previous example can be specified in more detail. Assume that a class,
Person, with the attributes name and address and the methods Init to ini-
tialize and Print to output all attributes, already exists. Listings 5.1 and 5.2
show possible implementations of this class.

interface

type

Person = class (TObject)

private

name: String;

address: String;

public

procedure Init (name, address: String); virtual;

procedure Print; virtual;

end;

implementation

procedure Person.Init (name, address: String);

begin

self.name := name; self.address := address;

end;

procedure Person.Print;

begin

WriteLn(self.name);

WriteLn(self.address);

end;

Listing 5.1. Delphi
Implementation

of Person

156 Chapter 5 True Object-Oriented Programming

The keyword virtual used in Listing 5.1 is explained further later.

public class Person {

private String name;

private String address;

public void init (String name, String address) {

this.name = name;

this.address = address;

}

public void print () {

System.out.println(name);

System.out.println(address);

}

}

Now we require a component, Employee, that should offer exactly these
functionalities and also new attributes and a function, Salary. This func-
tion returns the salary of the employee based on his or her salary category
(for the sake of simplicity, we multiply the salary category by 1500 to cal-
culate the salary). To achieve this goal, we could write the class Employee
from scratch or copy the existing source code and modify it. Neither of the
two solutions is particularly useful; it would be preferable to use inheri-
tance in this case.

Inheritance means that the class Employee inherits everything from
Person: the attributes name and address as well as the methods Init and
Print. We can add more attributes and methods, in this case the attributes
number and salaryCat, and a method, Salary.

Of course, for the class definition, we have to state that the class
Employee inherits the attributes and methods of Person, which means that
Employee is derived from Person. Person is then called a superclass, or base
class, of Employee. Similarly, we could speak of an extension of the class
Person by Employee, because more attributes and methods are added.
Accordingly, the class Employee is then called a subclass or derived class.

In Delphi, the keyword class is followed by the superclass within paren-
theses—the class from which we derived this class.

Employee = class (Person)

public

salaryCat: Integer;

Listing 5.2. Java
Implementation

of Person

Similar
component

wanted? Consider
inheritance

Employee inherits
everything from

Person

Delphi

5.2 Inheritance and Dynamic Binding 157

procedure Init (name, address: String); override;

procedure Print; override;

function Salary: Real;

end;

This also helps us better understand the preceding notation, class
(TObject), because it means that the defined class is derived from the base
class TObject. In Delphi, this class is the base class of all objects.

In Java, the class name is followed by the keyword extends and the name
of the superclass——the class being extended.

public class Employee extends Person {

public int salaryCat;

. . .

public float salary () {

return salaryCat * 1500;

}

}

Just as a child inherits its properties from his or her parents, our
Employee inherits the properties from Person. This human analogy is appro-
priate, because inherited properties may change often. Taking a closer look,
we can see that our Employee must modify the properties to some extent,
because we are currently not doing anything with the new attributes. Also,
the method Print should output these attributes, and the method Init
should initialize them.

This is possible by properly implementing the methods within the class
Employee and then extending it by this functionality. Programming experts
use the term override to describe this case. The method interface has to be
maintained, which means that no further parameters can be added. Over-
ride does not mean that the method has to be a totally new implementa-
tion; it could also be used to call the inherited method.

The overwritten method can be reached by calling it with the preceding
keyword inherited. To be able to override a method, it has to be declared
by the keyword virtual in the base class. This ensures that nothing stands
in the way of future extensions, so it is surely useful to declare all methods
in this way. Also, the overwritten method has to be declared by the keyword
override. Listing 5.3 shows a complete implementation of the class
Employee.

Java

A child of its
parents . . .

Delphi

158 Chapter 5 True Object-Oriented Programming

interface

type

Employee = class (Person)

public

salaryCat: Integer;

procedure Init (name, address: String); override;

procedure Print; override;

function Salary (): Real;

end;

implementation

function Employee.Salary (): Real;

begin

result := salaryCat * 1500;

end;

procedure Employee.Init (name, address: String);

begin

inherited Init(name, address);

salaryCat := 0;

end;

procedure Employee.Print;

begin

inherited Print;

WriteLn(Salary());

end;

In Java, the overwritten method can be reached by calling the method
with the preceding keyword super. Listing 5.4 shows the complete imple-
mentation of the class Employee.

public class Employee extends Person {

public int salaryCat;

public void init (String name, String address) {

super.init(name, address);

salaryCat = 0;

}

public float salary () {

return salaryCat * 1500;

}

Listing 5.3. Delphi
Implementation

of Employee

Java

Listing 5.4. Java
Implementation

of Employee

5.2 Inheritance and Dynamic Binding 159

public void print () {

super.print();

System.out.println(salary());

}

}

A few pieces of additional information about inheritance seem to be mean-
ingful at this point:

� Inheritance can be optionally continued as needed. We could derive
further classes from Employee, which would then also inherit the attrib-
utes and methods. Moreover, other classes can be derived from a class;
for example, we could derive another class, Workers, from Person, where
this additional class may provide other methods. Figure 5.1 shows such
an inheritance hierarchy.

� Inheritance means is-a relationship. In the context of inheritance, we
often speak of an is-a relationship: Each Employee is also a Person.

� Inheritance means specialization. An Employee is also a special Person.

5.2.2 Type Compatibility

Some of the benefits of inheritance versus copying and modifying source
code have become obvious from the preceding example. A lot of imple-
mentation cost can be saved, especially with long method implementa-

Inheritance also
means type

compatibility

Employee

Person

Workers

Figure 5.1 Inheritance hierarchy.

160 Chapter 5 True Object-Oriented Programming

tions, because many do not have to be modified at all or only slightly.
Another benefit of inheritance is type compatibility. Each subclass is com-
patible with its superclass. If we apply this statement to our previous
example, each program that can work with a variable of the type Person will
accept a variable of the type Employee. However, this compatibility does not
work in the opposite direction.

Building on type compatibility, we should attempt to understand the
difference between static and dynamic types. Each variable has a static and
a dynamic type. These two types can be equal but do not have to be. The
static type is always defined by the declaration. The dynamic type is defined
at runtime and must be type-compatible with the static type. The follow-
ing short source code pieces help explain this concept.

var p: Person // the static type of p is Person

. . .

p := Employee.Create; // Case 1: the dynamic type of p is Employee

p := Person.Create; // Case 2: the dynamic type of p is Person

Person p // the static type of p is Person

. . .

p = new Employee(); // Case 1: the dynamic type of p is Employee

p = new Person(); // Case 2: the dynamic type of p is Person

The dynamic type of a variable cannot simply be specified by creating
an object. For example, with a variable p of the type Person, and another
variable q of the type Employee, we could easily use a p := q kind of assign-
ment so that the dynamic type of p would then be Employee. The opposite
assignment, q := p, is not allowed, which is fairly logical: The allowed
assignment (p := q) may have attributes and methods that cannot be
addressed (directly). The forbidden case (q := p) carries the risk of access-
ing nonexistent features.

Because the static and dynamic types may differ, it is useful to test for
the dynamic type at runtime. The programming languages of interest here
offer different options:

In Delphi, the query is-a can be used to determine whether a variable
has a certain dynamic type. If so, its static type can be converted to this type
by use of the operator as:

Delphi

Java

Dynamic and
static types of

a variable

Delphi

5.2 Inheritance and Dynamic Binding 161

if p is Employee then begin

with p as Employee do begin s := Salary() end;

end;

In Java, the query instanceof can be used to determine whether a vari-
able has a certain dynamic type. If so, its static type can be converted to
this type by preceding the type name within parentheses:

if (p instanceof Employee)

{

Employee e;

Float s;

e = (Employee) p;

s = e.salary();

}

Note that both queries concern a control to see whether the dynamic
type of the variable, or a subtype of the stated type, is equal. Neither query
checks whether we are dealing with exactly that specific type. For this
reason, queries such as p is Person or p instanceof Person would result in a
value of TRUE.

If we want a type conversion to take place that is not possible due to
the dynamic type, we would get a runtime error. For this reason, we
should always do a type check before such a conversion, as shown in
our example.

5.2.3 Dynamic Binding

We mentioned in the previous section that a variable can accept different
dynamic types. For example, a variable p with static type Person can have
the dynamic type Person or the dynamic type Employee. When the method
Print is called, it is important to distinguish which one is to be called—the
one of Person or Employee. Fortunately, the runtime system relieves the pro-
grammer from having to make this decision, because it always calls the
correct method. So, if p is of the dynamic type Employee, the method of
Employee is called. The message—the method call—is bound dynamically
to a specific method at runtime.

Java

Runtime error

Always calling the
“right” method

162 Chapter 5 True Object-Oriented Programming

5.2.4 Object-Oriented COBOL

Section 1.5 described some important aspects of object-oriented COBOL.
The basic structure of classes in OO-COBOL is similar to the approaches
shown here, but there are big differences in the syntax. A class is preceded
by the keyword CLASS-ID. All classes are derived from the base class BASE,
and they dispose of their own Factory Data Division, which serves as a con-
structor. We discuss the term factory more thoroughly in Section 6.2.1 in
connection with a design pattern by the same name.

These explanations should suffice to be able to read the definition of the
class COUNTER in Listing 5.5, a simple class that manages a pointer.

CLASS-ID. COUNTER

DATA IS PRIVATE

INHERITS FROM BASE.

CLASS-CONTROL.

BASE IS CLASS "BASE"

COUNTER IS CLASS "COUNTER".

FACTORY.

WORKING-STORAGE SECTION.

METHODE-ID. "NEW".

WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 IS-COUNTERHANDLEOBJECT REFERENCE.

PROCEDURE DIVISION RETURNING IS-COUNTERHANDLE.

INVOKE SUPER "NEW" RETURNING IS-COUNTERHANDLE.

INVOKE IS-COUNTERHANDLE "INITIALIZE".

END METHOD "NEW".

END FACTORY.

OBJECT.

WORKING-STORAGE SECTION.

01 COUNTER-INFORMATION.

05 COUNTER-N PIC 9(3).

METHOD-ID. "INITIALIZE".

PROCEDURE DIVISION.

MOVE 0 TO COUNTER-N.

END METHOD "INITIALIZE".

METHOD-ID. "ADD".

LINKAGE SECTION.

Class definition in
OO-COBOL

Listing 5.5. OO-
COBOL

Implementation
of COUNTER

5.2 Inheritance and Dynamic Binding 163

01 X PIC 9(3).

PROCEDURE DIVISION USING X.

COMPUTE COUNTER-N = COUNTER-N + X.

END METHOD "ADD".

END OBJECT.

END CLASS COUNTER.

5.2.5 Abstract Classes

In practice, situations often arise where two classes are very much alike.
Examples include an account from financial accounting and an account
from payroll accounting. The behavior of the two accounts is similar: Both
manage postings, both should be printed and summed, and so on.
Depending on the application, it would be useful to apply the benefits
offered by inheritance to this example. However, a quick look at the
previous definitions is sufficient to understand that neither account is a
superclass of the other. An abstract class could provide a solution in such
a case.

Such an abstract class merely serves as an artificial superclass and is
itself not normally used as an object type. This example introduces an
abstract class, Account, from which two concrete classes, SalaryAccount and
FinancialAccount, are derived. In the abstract class, the methods imple-
mented in the two derived classes are defined only abstractly, without
implementation. Implementation will occur later in the concrete classes.
Because this implementation is not there, we cannot create any instances
for the abstract class.

The syntax of the definition of an abstract class depends on the pro-
gramming language we select.

In Delphi, the methods defined to be abstract have to be identified by
the directive abstract in the interface part but do not exist in the imple-
mentation part:

Account = class (TObject)

private

balance: Integer;

public

name: String;

procedure Print; virtual; abstract;

Abstract classes
serve as artificial

superclasses

Delphi

164 Chapter 5 True Object-Oriented Programming

function GetBalance (): Integer; virtual;

. . .

end;

In Java, both the class in its entirety and the abstract methods are iden-
tified by the keyword abstract. The methods consist merely of the method
head followed by a semicolon:

public abstract class Account {

int balance;

public String name;

public abstract void print ();

public int getBalance () {

return balance;

}

. . .

}

It is necessary to implement or override the abstract procedure Print in
the concrete classes, SalaryAccount and FinancialAccount. In contrast, the
method GetBalance can be overwritten but does not have to be.

5.2.6 Options to Access Attributes and Methods

In addition to public access (an option to make an attribute or a method
publicly available), there are more access types. The best known are private
and protected. The underlying concept is the same in the programming
languages of interest here, but a few differences are worth noting.

In Delphi, the access type private is almost exactly the opposite of
public. All fields declared in this way are visible only in that module and
cannot be accessed from any other module. In contrast, all methods of a
class derived from the class with the element declaration can access an
element declared with protected, regardless of the module in which they
exist.

In Java, too, the access type private is more or less the exact opposite of
public. All fields declared in this way are available only in the class where
they are defined. Such components are not inherited, so they are not
defined in the subclasses. If a method is defined in a subclass that was

Java

The most
important access
types are public,

private, and
protected

Delphi

Java

5.2 Inheritance and Dynamic Binding 165

already defined in a superclass by use of private, it will be considered a new
definition and will not be overwritten.

All methods of a class derived from the class with the element declara-
tion can access an element declared with protected. It can even be accessed
if access is made from within the package in which the class is defined. In
this case, whether it is a subclass is irrelevant.

A further access method in Java is package. No explicit specifier is used,
and by using this method, classes can access the attributes of the other
classes in a package.

5.2.7 Overloading Methods

Under certain circumstances, it is useful to overload existing methods.
Overloading differs slightly from overriding. When a method is overwritten,
the parameters of the method remain unchanged. Overloading gives the
methods other parameters, which means that a new variant can be created.
Furthermore, overloading is always resolved at compilation time and never
by dynamic binding, in contrast to overriding.

Method overloading is not supported by all object-oriented program-
ming languages, and there are big differences between Java and Delphi.

In Delphi, it is possible to redeclare a method by using the instruction
overload. When the parameter information differs from that of its prede-
cessor, the inherited method is overloaded, but without hiding it. For
example, if a write method in a class, MyFile2, is declared with parameters
that differ from those in the base class, MyFile, this method is overloaded.
In this case, reintroduce has to be used to identify a second method.

MyFile = class (TObject)

. . .

procedure Write (s: String); overload; virtual;

end;

MyFile2 = class (MyFile)

. . .

procedure Write (i: Integer); reintroduce; overload;

end;

Furthermore, an object o of the type MyFile2 could call the method
Write by using o.Write('string') or o.Write(123). The first case calls

Method
overloading and

overriding are
not quite
the same

Delphi

166 Chapter 5 True Object-Oriented Programming

MyFile.Write (s: String), and the second calls MyFile2.Write (i: Integer).
The important point is that, within one class, you cannot declare more than
one overloaded method by the same name.

In Java, we can have several variants of a method within one class that
differ only in their parameters. We can be sure the correct variant will be
used, because it depends on the parameters used during the method call.
For example, one class, MyFile, could have two different write operations—
one for strings and the other for integers.

public class MyFile {

. . .

public void write (String s) {

. . .

}

public void write (int i) {

. . .

}

}

An object o of the type MyFile could call the method write by using
o.write("string") or o.write(123). The first case calls MyFile.write (String
s), and the second calls MyFile.write (int i). However, if write is called by
a parameter of another type, the compiler will report an error.

5.2.8 Exercises

Task 1 (210 minutes): Inheritance

The last three exercises dealt with queues. In one task, you were asked to
implement a queue as a list, then as a binary tree, and finally as a class. In
this exercise, implement an abstract class, Queue. From that class, you then
derive ListQueue, to be implemented as a list, and BinTreeQueue, which is a
binary tree.

In principle, the interfaces should be similar to those of the last exer-
cise. With regard to the definition of the abstract class, think about the
methods the two queues should have. Use an appropriate test program to
thoroughly test your new classes.

Java

5.3 Typical Applications of Object-Oriented Programming 167

Task 2 (30 minutes): Inheritance: Application

Find a few examples for application cases where inheritance could be used.

5.3 Typical Applications of Object-Oriented Programming

Now that we have learned the basics and advantages of object-oriented
programming, this section introduces several typical applications. In addi-
tion to the known data abstraction, these examples include heterogeneous
data structures or extensible components [Mös99, p. 89 ff.].

5.3.1 Data Abstraction

Using classes as an abstraction tool to structure programs provides a way to
also use them without inheritance or dynamic binding. The benefit for those
who use classes, that is, for clients, is that the classes can easily be used and
reused as often as needed. This behavior is also useful for the implementer
of these classes: First, the implementation can always be replaced; for
example, a binary search tree could be used instead of a less efficient array.
All clients could continue working as usual, only much more efficiently, as
long as the interface of the class does not change. On the other hand, data
abstraction also offers protection against inadvertent destruction.

5.3.2 Generic Components

Generic components are a useful extension of the abstract data structures
with which we are already familiar. With these data structures (list, tree, and
so forth), we can insert, search, or delete elements, but these elements must
be of the same type. Therefore, it is not possible to store strings and
numbers in a single list.

This problem can be solved by using generic components, which can
accept arbitrary objects. This is possible by using inheritance, because
generic components are implemented in such a way that they can accept
objects from a base class. In addition, the type compatibility between a
base class and its derived classes ensures that derived objects can be
accepted.

Section 4.1
discussed

abstract data
types in detail

List with optional
elements

168 Chapter 5 True Object-Oriented Programming

Generic components can be implemented elegantly in Delphi, where all
objects are derived from the abstract base class TObject. When you are
implementing a list that can handle elements of the type TObject, this
actually includes all objects. The Delphi class library, which Section 5.4.2
describes in detail, includes several generic components of this type.

Java also supports generic components, which can accept elements
compatible with the type Object. This class is an implicit superclass of all
Java classes, so it allows you to use objects from all classes in these com-
ponents. Moreover, standard types such as int or float can be converted
into objects of the type Object.

5.3.3 Replaceable Behavior

Replaceable behavior is one of the features most frequently used in object-
oriented programming. The following example shows what this means.

Payroll accounting is normally based on the same general principles:
The main task is to acquire master data, such as employees, contracts, or
salary types. Salaries are calculated based on work hours and can be used
for different kinds of statistical reports (such as cost accounting or salary
summary reports). Depending on the organization, additional information,
such as sick leave lists, may be required.

For example, many divisions of a global corporation may be identical in
different countries, whereas salaries and wages may be calculated on a
country-specific basis. If the corporation were to adapt its payroll account-
ing system designed for the United States to, say, Canada, it could reuse a
large part of the system.

However, the behavior of the payroll accounting system is to be replaced
by overwriting the methods involved. If extensions in the original payroll
accounting system are made available, such as for salary increases, they will
naturally also be available in the Canadian version. Only a specific behav-
ior was replaced while all other functions of both payroll accounting
systems remained the same. This example is greatly simplified, but it is suf-
ficient to explain the approach and its benefits.

In general, when a replaceable behavior is required, we first have to
investigate which behavior or methods are to be replaced. Subsequently,
an abstract class that includes the relevant method interfaces should be
designed. At the same time, additional methods could be implemented.
The methods to be replaced will be implemented later in the derived

Delphi

Java

What methods
are to be
replaced?

5.3 Typical Applications of Object-Oriented Programming 169

specific classes. The application to be developed will then work with the
variables of the abstract class.

This process makes sense only if, in our example, a version for the
United States already exists and should now be extended for Canada. Start-
ing from scratch, we should have abstract, country-independent classes
and then different subclasses for the United States and Canada.

5.3.4 Extensible Components

Object-oriented programming creates a way to make extensible compo-
nents available. An example would be to implement a simple account,
which has posting and output functions, and offer it to potential clients. If
it then appears that this simple account is not sufficient for the intended
application, a new account type could be derived from it, offering addi-
tional functions, such as for bonus analysis.

The current clients of the simple account could be maintained, without
new compilation, and could also work with the specialized account type,
thanks to the type compatibility. However, to use a new function—bonus
analysis in this example—the application would have to be adapted
accordingly.

When designing simple classes, it is advisable to take future extensions
into consideration.

5.3.5 Heterogeneous Data Structures

Heterogeneous data structures are characterized by the fact that an object
can exist in different variants, and the same operations can be executed on
all variants. New variants can be added as needed. A typical example for
such a heterogeneous data structure is the OLE elements of Microsoft
Windows. They support the integration of text with objects. In Microsoft
Word, for example, variants of objects, such as equations, images, or even
audio clips, can be integrated. All objects support certain operations, such
as insert and save, draw, or respond, by simply clicking them.

The same is possible in object-oriented programming by deriving indi-
vidual elements from an abstract class and inheriting their methods. Some
of these methods have to be overwritten, whereas others may have to be
added. Figure 5.2 shows the object-oriented implementation of hetero-
geneous data structures (the UML representation used in this figure is
discussed in Section 6.1.4).

The OLE elements
of Windows are a
good example of

heterogeneous
data structures

170 Chapter 5 True Object-Oriented Programming

Building on this basis, we can add more elements as needed. Other pro-
grammers can write new variants by deriving them from this abstract base
class. For example, new elements could be integrated in Microsoft Word
and viewed, loaded, or saved, without the need for Word to know these ele-
ments.

The design of heterogeneous data structures requires a targeted
approach. First, we have to think about the data and operations that should
be common to all variants. Based on these common features, we can design
an abstract class. The application (for example, Word) is then implemented
by means of the interface of this abstract class. Each single element (such
as images or equation elements) can then be derived from the abstract class
and implemented in an independent class.

5.3.6 Example

Let’s look at a larger example for object-oriented programming. Object-
oriented programming is indeed complex!

This example deals with writing code for a simple payroll accounting
program that should handle a maximum of 100 employees. It should dis-
tinguish between workers and clerks, where the pay for the two groups
should be calculated differently. Workers are paid an hourly wage, so the
system should multiply the number of hours worked by an hourly rate.
Clerks are paid a fixed salary and an additional overtime amount if they
work more than 160 hours in a month. For each overtime hour, 1/160 of the
salary plus 50% is added.

Abstract
Width
Height

(Display)
(HandleMouse)
(Copy), ...

(Element)

Rows
Columns

Display
HandleMouse
Copy, ...

TableElement

Figures

Display
HandleMouse
Copy, ...

GraphicElement

Concrete

Figure 5.2 UML representation of heterogeneous data structures.

Object-oriented
programming is

complex!

5.3 Typical Applications of Object-Oriented Programming 171

Following are two solutions written in Delphi and Java. A class, Employ-
eesList, is implemented, which has an array of employees. From the
abstract class Employee, two specific classes, Worker and Clerk, are derived;
both implement the function Salary. Besides the methods used to insert
workers and clerks, the class EmployeesList includes the method
PrintSalary, which outputs the name and Salary of each employee stored
in the system.

In Delphi, an additional destructor has to be implemented for Employ-
eesList to free all employees later on. Listing 5.6 shows the calling program,
and Listing 5.7 shows the classes EmployeesList, Workers, and Clerks.

program ExampleSalary;

uses

payroll accounting in 'PayrollAccounting.pas';

var

x: Integer;

el: EmployeesList;

ch: Char;

begin

el := EmployeesList.Create;

ReadLn(x); // 1: worker, 2: clerk, 3: end

while x <> 3 do begin

if x = 1 then el.InsertWorker

else el.InsertClerk;

ReadLn(x);

end;

el.PrintSalary;

el.Free; // required in Delphi

ReadLn(ch); // in order not to delete the screen

end.

unit PayrollAccounting;

interface

type

Employee = class (TObject)

public

name: String;

hours: Integer;

Delphi

Listing 5.6. Calling
Program of

PayrollAccounting

in Delphi

Listing 5.7. The
Classes

EmployeesList,
Worker, and

Clerk in Delphi

172 Chapter 5 True Object-Oriented Programming

rate: Integer;

procedure Read; virtual;

function Salary (): Real; virtual; abstract;

end;

Clerk = class (Employee)

public

function Salary (): Real; override;

end;

Worker = class (Employee)

public

function Salary (): Real; override;

end;

EmployeesList = class (TObject)

public

procedure PrintSalary; virtual;

procedure InsertWorker; virtual;

procedure InsertClerk; virtual;

constructor Create; virtual;

destructor Destroy; override;

private

list: array[1..100] of Employees;

n: Integer;

end;

implementation

procedure Employee.Read;

// gets the employees, regardless of whether worker

// or clerk

// worker: enter number of hours + hourly rate

// clerk: number of hours + fixed salary

begin

ReadLn(name);

ReadLn(hours);

ReadLn(rate);

end;

function Clerk.Salary (): Real;

begin

result := rate + (rate/160) * 1.5 * (hours - 160);

5.3 Typical Applications of Object-Oriented Programming 173

end;

function Worker.Salary (): Real;

begin

result := rate * hours;

end;

constructor EmployeesList.Create;

begin

n := 1;

end;

destructor EmployeesList.Destroy;

// free all employees

var i: Integer;

begin

for i := 1 to n - 1 do begin

list[i].Free;

end;

end;

procedure EmployeesList.InsertClerk;

var e: Employee;

begin

e := Employee.Create;

e.Read;

list[n] := e;

Inc(n);

end;

procedure EmployeesList.InsertWorker;

var w: worker;

begin

w := Worker.Create;

w.Read;

list[n] := w;

Inc(n);

end;

procedure EmployeesList.PrintSalary;

// iterate over all employees

// output name and salary

var i: Integer;

174 Chapter 5 True Object-Oriented Programming

begin

for i := 1 to n - 1 do begin

Write(list[i].name);

WriteLn(list[i].Salary());

end;

end;

end.

Java implements a separate class, IO, to supply methods used to read a
string and a number. We do not describe this part here, because it is covered
in Appendix A. Otherwise, the required classes are embedded in the
package PayrollAccounting. It is not necessary to release objects no longer
needed, because this job is done automatically by Java’s Garbage Collector.
Listing 5.8 shows the main program, and Listings 5.9 through 5.12 show the
package.

import PayrollAccounting.*;

class ExampleSalary {

public static void main (String args[]) {

int x;

EmployeesList el = new EmployeesList ();

x = IO.readInt(); // 1: worker, 2: clerk, 3: end

while (x != 3) {

if (x == 1) {el.insertWorker();}

else {el.insertClerk();}

x = IO.readInt();

}

el.printSalary();

}

}

package PayrollAccounting;

public abstract class Employee {

public String name;

public int hours;

public int rate;

public abstract float salary ();

public void read () {

// gets the employee, regardless of whether worker

Java

Listing 5.8. Calling
Program of

PayrollAccounting

in Java

Listing 5.9. The
Class Employee in

Java

5.3 Typical Applications of Object-Oriented Programming 175

// or clerk

// worker: enter number of hours + hourly rate

// clerk: hourly rate + fixed salary

name = IO.readName();

hours = IO.readInt();

rate = IO.readInt();

}

}

package Payroll Accounting;

public class Worker extends Employee {

public float salary () {

return rate * hours;

}

}

package Payroll Accounting;

public class Clerk extends Employee {

public float salary () {

float x, x1, dif;

x = (float) rate; // Attention: type of intermediate results!

dif = hours - 160;

x1 = (float) x/160;

x1 = x1 * (float) 1.5;

return (x + x1 * dif);

}

}

package PayrollAccounting;

public class EmployeesList {

employees list[];

int n;

public EmployeesList () {

list = new Employees[100];

n = 0;

}

Listing 5.10. The
Class Worker in

Java

Listing 5.11. The
Class Clerk in

Java

Listing 5.12. The
Class

EmployeesList in
Java

176 Chapter 5 True Object-Oriented Programming

public void insertClerk () {

clerk c = new Clerk ();

c.read();

list[n] = c;

n ++;

}

public void insertWorker () {

worker w = new Worker ();

w.read();

list[n] = w;

n ++;

}

public void printSalary () {

// iterate over all employees

// output name and salary

int i;

for (i = 0; i < n; i ++) {

System.out.print(list[i].name);

System.out.println(list[i].salary());

}

}

}

With regard to the array list, in Java the array begins with index 0.

5.3.7 Drawbacks of Object-Oriented Programming

So far in this chapter, we have discussed the applications and advantages
of object-oriented programming (see also Section 1.2). Like most things,
object-oriented programming has not only benefits but a few drawbacks:

� Designers must familiarize themselves with object-oriented program-
ming and get used to an object-oriented programming language, which
can be a rather time-consuming process, particularly for those with
extensive experience in procedural programming—probably the major-
ity of the readers of this book.

Nothing has only
advantages

5.4 Class Libraries 177

� Although this familiarization with the programming language is time-
consuming in itself, just as important is acquiring knowledge of the
class library. Only those who know what classes exist and what inter-
faces they provide will be able to use them.

� Care must be taken when changing a class, because reusability can
mean that the change affects a number of programs. Often, these are
programs the developer of a class is not even aware of.

� Under certain circumstances, it is also important to note the drawbacks
of dynamic data structures. They normally use more storage space than
necessary (for pointers) and could (although minimally) extend the
program runtime due to dynamic binding. In addition, objects have to
be released when they are no longer needed.

5.3.8 Exercises

Task 1 (180 minutes): Implementing the Account Class

Basically, we distinguish between two types of accounts: personnel and
inventory. Personnel accounts are characterized by being OI-leading (a
leading account for open items) and subject to turnover.

Both account types have a unique number, a name, and several post-
ings. A posting consists of a posting date, an offset account, debit and credit
identifiers, and a posting amount. The sum of these postings results in the
account balance. It should be possible to add a posting entry to the account
and to print a list of all postings of an account. Implement this class in
Delphi and Java; assume that each account has to handle at most 100
postings.

5.4 Class Libraries

Class libraries are a typical feature of object-oriented programming. Con-
sidering that we repeatedly use base classes on many occasions, it appears
obvious to collect as many classes as possible and make them available in
a sort of library. Many programming languages or development environ-
ments come with such a class library, and large programming projects often

A class library is
a collection of

classes intended
for reuse

178 Chapter 5 True Object-Oriented Programming

begin with development of their own libraries. This section gives a general
introduction to class libraries and then discusses the class libraries of
Delphi and Java, including real-world examples.

5.4.1 Introduction

A class library lets you use ready-made components, thus increasing pro-
ductivity. In fact, many class libraries can be used to write smaller programs
that create only few objects and call a limited number of methods. Another
advantage is that class libraries ensure a uniform look.

For example, if a class library offers a file search dialog, it would be effi-
cient not only to avoid having to code it all over again for each program but
also to ensure that the programs have a uniform look and feel. This means
both a useful effect and increased productivity, particularly for large
projects. Popular Windows programs have a highly uniform look and feel,
thanks to the similarity of all class libraries as far as user interface classes
are concerned.

However, class libraries also have some problems—for example, a high
learning curve—because the designer has to learn a “virtual” language. The
main difference is that this language does not consist of keywords and syn-
tactic rules but of class names, method names, and parameter names. This
can often mean that the designer must handle hundreds of classes with
thousands of method calls. This situation is often complicated by poor
documentation, meaning that designers frequently must look at the source
code to decide what exactly a method does.

A class library consists of many different class categories, and some
classes may fall into more than one category. Table 5.1 shows a few class
categories, including examples.

Class libraries
improve

productivity and
ensure a uniform

look

Table 5.1 Categories of classes

Category Examples

Data structures List, Array, Stack, Queue, . . .

Graphical classes Point, Rectangle, Circle, . . .

User interface classes Dialog, RadioButton, CheckBox, . . .

Application-specific classes Postings, Account, . . .

Operating system classes Process, Stream, File, Server, . . .

Frameworks See following text

5.4 Class Libraries 179

Let’s briefly describe the differences between component classes
and frameworks. Component classes, such as a list or hash table, can
be used independently. Such classes support reusability to a small extent.
By contrast, frameworks are true bodies for a program. A framework
consists of a set of classes that can be used jointly, such as dialog screen
management or file system classes. Frameworks allow reusability to a larger
extent.

In general, we can see that individual classes depend largely on each
other, as Figure 5.3 shows (taken from [PoBl96, p. 260]). Therefore, in many
cases, it is possible to just use a specific part. For this reason, it is difficult
to produce an application that is a combination of different class libraries.
The only way is often to extend an existing library.

Class libraries are an important decision criterion when selecting
a development environment. It is almost more important to ask what
a class library can do than which programming language could be used.
In fact, the major strengths in object-oriented programming are not
found in the language, unlike in COBOL (600 keywords), but in class
libraries.

The following section provides an introduction to the class libraries of
Delphi and Java. Moreover, it describes how developers can design their
own class libraries (for example, for a large project).

Component
classes and
frameworks

Data structures

User-interface
classes

Graphical
classes

User-interface classes

Application-specific classes

Figure 5.3 The layout of a class library.

180 Chapter 5 True Object-Oriented Programming

5.4.2 Delphi

Delphi offers an extensive class library, with several hundred classes. For
this reason, this section cannot provide more than a rough overview (Figure
5.4) of the mighty options this library offers. Interested readers will find all
details in the Delphi documentation.

TObject

TObject is the starting point of the Delphi class hierarchy. This abstract class
is the superclass of all classes. It encapsulates the fundamental behavior is
common to all Delphi objects. With the methods introduced by TObject,
we can create, manage, and dissolve object instances, and we can access
object-specific information, such as class type, at runtime. TObject sup-
plies a number of methods, such as ClassName, DefaultHandler, Free, or
InheritsFrom, which means that all objects can use them. A number of
classes, such as exceptions (see also Section 5.5.1), Internet objects, table
objects, lists, or XML objects, can be directly derived from TObject.

TPersistent

TPersistent forms the superclass for all persistent classes. These are all
classes with objects that should not only be available at runtime but that
also need to be stored. Of special importance is the method DefineProper-
ties, which defines the attributes of the class with regard to the storage
medium (for example, a file). If a class derived from TPersistent introduces

Starting point of
the Delphi class

hierarchy:
TObject

TPersistent

TObject

TComponent TControl

TGraphicControl

Exception

TWinControl

Figure 5.4 Structure of the Delphi class library.

Persistent classes
can be stored

5.4 Class Libraries 181

additional attributes that should also be stored, this method has to be over-
written accordingly. Important classes derived from this superclass are, for
example, string objects (string lists), collections (generic components),
graphical objects, or HTML objects.

TComponent

The TComponent class is a predecessor common to all component objects
in Delphi. These are objects that are part of the user interface of a
Windows application, such as menus, database components, Web com-
ponents, or the application itself. These components are covered in
Chapter 8.

TControl

TControl is used as an abstract base class for all visual components. This
includes, for instance, the position of a control element, the cursor linked
to this control element, or methods to draw or move control elements, and
events that can respond to mouse actions. We can distinguish between two
kinds of controls:

� TGraphicControl: This type includes all user-defined control elements
that are not window-oriented. The important point to remember is
that control elements derived from TGraphicControl cannot be
focused, nor can they include other control elements, which is why
they require only few system resources. Examples are labels or the
speed button.

� TwinControl: This type of control element concerns window-oriented
control classes that can be focused. Examples include buttons, check-
boxes, groupboxes, or editors, which are all known from popular
Windows programs.

Chapter 8 describes all these controls in detail.

Exceptions

An exception in object-oriented programming is a special construct to
handle exceptional events, such as division by zero. Exceptions are dis-
cussed in detail in Section 5.5.1.

Abstract base
class for visual

components

182 Chapter 5 True Object-Oriented Programming

5.4.3 Java

Java is another language that offers an extensive class library. For
this reason, we limit ourselves to a brief introduction of the most
important classes. Interested readers will find all details in JDK 1.2
(http://java.sun.com/products/jdk), which defines the Java class library. It is
customary in Java for classes to be grouped into packages. Table 5.2 lists
the most important packages.

The following sections describe the language package, the utilities,
and the AWT package to some extent. The SQL package is covered in
Section 7.4.

Language Package

Java’s language package (java.lang) contains the most important support
classes and is de facto required in each Java program. Among other classes,
it includes Object, which serves as base class for all classes, even if none of
those classes is listed in the class definition. This class offers various
methods, such as for copy or convert operations.

The method equals can be used to compare two objects for equality. If
the values of all attributes of the two objects are the same, the value TRUE is
returned. Other important classes are Math (offers various mathematical
functions, such as sin, cos, or random—counterparts to the intrinsic
COBOL functions), the previously discussed class String (see Section 3.4.2),
or the class System, which allows you to access platform-independent

java.lang

Table 5.2 Introduction of important Java packages

Package Description

Language package Main component of the Java language

Utilities Various useful data structures

IO Input/output support

Network support TCP/IP support

AWT User interface programming

Text Support for globalization

Security Support for security (encoding)

RMI Support for distributed programming

Reflexion Runtime class information

SQL Support for database query language

5.4 Class Libraries 183

resources. This package also defines most exceptions (see Section 5.5.1)
and errors.

Utilities

java.util offers various data structures, including Stack (see Section 4.2.2),
HashTable (see Section 4.4.3), or the class Vector (dynamic object array). In
addition, it includes classes for calendar functions (Calendar and Date) and
time management (SimpleTimeZone).

AWT

java.awt (abstract Windows toolkit) offers platform-independent compo-
nents for graphical user interfaces, including the classes Button, CheckBox,
Scrollbar, and TextField. In addition to constructors and event processing
(method processEvent), this package includes many other methods (such
as setLabel and setActionCommand) for these classes. The package also
includes the events themselves (class Event), Cursor, and ready-to-use
dialogs, such as FileDialog (to select a file). Chapter 8 covers graphical user
interfaces.

A special subpackage of java.awt is java.awt.datatransfer, which
implements the Clipboard, enabling users to copy and paste data between
applications.

IO Package

java.io defines input and output streams for various purposes. For
example, it can implement the sequential files well known from COBOL.

Wrapper Classes

Wrapper classes included in the class library convert variables from simple
data types into objects. These classes, available for every simple data type,
have names similar to the relevant types but beginning with an uppercase
letter: Integer for the type int, Character for char, or Float for float.

Converting simple data types into objects is important because, for
example, generic data structures can accept arbitrary objects (but objects
only). A good example is the class java.util.Vector, which can store a list
of objects.

The following source code fragment shows how an integer value can be
inserted into this list:

java.util

java.awt

java.io

Wrapper classes
convert simple

data types into
objects

184 Chapter 5 True Object-Oriented Programming

int i = 4711;

Integer j = new Integer(i);

myVector.addElement(j);

Wrapper classes also offer a few important methods, including toString
(), to convert something into a character string, or valueOf (), to convert
something into a floating-point number.

5.4.4 Creating Your Own Class Library

Developing a class library is a highly complex task. Normally, it is not suf-
ficient to simply collect classes over the course of time and let others use
them, although this may surely be a first step. It is more useful to plan and
develop a class library tuned to specific requirements—and, naturally, not
to forget to eventually use it.

Many large corporations have several programmers who work exclu-
sively for the class library and ensure that it is actually used. This group of
programmers normally serves as central point of coordination, ensuring
that other programmers work with current material as far as the class
library is concerned. As mentioned in an early section of this chapter, it is
necessary to learn this class library to be able to use it.

Some effort may be required at the psychological or motivating level to
ensure that the classes offered in a tailored class library are used. This
improves teamwork, because each programmer can work better within the
team and see other programmers’ work. This issue may require some orga-
nizational policies, such as bonuses for writing and/or applying reusable
classes.

As far as the structure of a class library is concerned, all classes written
by programmers (that is, not included in standard packages) should be spe-
cially marked, and this marking should be started in an early phase, when
selecting a name for your class. Class names such as TBMDObject or TBMD-
Button are undoubtedly useful.

It may also be helpful to group all your classes in a separate class library.
For example, although Delphi provides a TButton, a TBMDButton could indeed
be useful, because it should be able to do more later (or right away), or
because a future change to the Delphi class library would then have no
impact on the entire program package. The Delphi type TButton would then
be embedded in TBMDButton. If a change really occurs, it merely has to be
updated in TBMDButton to reflect that change.

How can I create
my own class

library?

5.5 Particularities of the Selected Programming Languages 185

5.4.5 Exercises

Task 1 (30 minutes): Online Help

Take a look at the online help of your development environment and try to
gain an overview of the class library underlying that online help system.

Task 2 (100 minutes): Using Ready-Made Class Libraries

Modify task 1 from Section 5.1.6 so that it builds on existing classes from
the respective class library. This should make the solution considerably
shorter and simpler. You should not change the test program, but take the
definition of the interface into account.

5.5 Particularities of the Selected Programming Languages

In closing our discussion of object-oriented programming, we will cover a
few language particularities, such as exceptions and interfaces. Although
these terms are known both in Delphi and Java, they do not exist in many
other object-oriented programming languages. Subsequently, we will
describe language-specific constructs, such as properties or compiler
directives of Delphi, and final classes or methods of Java.

5.5.1 Exceptions and Error Handling

In COBOL, the Declaratives Section of a COBOL program also traps runtime
errors, especially runtime IO errors. In object-oriented programming, the
counterpart is exceptions, which offer a way to handle errors. Until recently,
an error in object-oriented programming, such as division by zero, caused
a program to abort. Of course, this is not what we want to happen.

Exceptions provide a solution to the problem, because when an error
occurs, they can make sure the program will not exit. Instead, it merely exits
the current code piece and jumps to an exception-handling routine. Sub-
sequently, the program recovers and continues as usual. Such exceptions
are objects derived from the base class Exception of the class library.

An exception basically is implemented such that the program code,
which could potentially throw an exception, is placed into a try block,

Whoever seeks
shall find!

Exceptions
facilitate

troubleshooting

186 Chapter 5 True Object-Oriented Programming

which is initiated by the keyword try. This block is followed by another
independent block, stating all kinds of exceptions and offering appropriate
instructions, which are executed sequentially for the relevant case. The
most important—mostly self-explanatory—exceptions are as follows:

EAbstractError
EDatabaseError
EHeapException
EInOutError
EoutOfMemory

java.lang.ClassNotFoundException
java.lang.CloneNotSupportedException
java.lang.IllegalAccessException
java.lang.InstantiationException
java.lang.InterruptedException
java.lang.NoSuchMethodException
java.sql.SQLException

A large number of other exceptions are available in the respective class
libraries, and some can be derived from them. Although they are by far
mightier, exceptions can be compared to some extent with the COMPUTE
addition ON SIZE ERROR instruction in COBOL.

Let’s use a simple example to better understand exceptions. A functional
procedure to calculate a mean value must always test for the special case
of division by zero. This can be done by throwing an exception when this
error occurs and setting the result accordingly.

try

result := sum div number;

except

on EDivByZero do result := 0;

end;

try {

result = sum / number;

}

catch (ArithmeticException e) {

result = 0;

}

Delphi

Java

Delphi

Java

5.5 Particularities of the Selected Programming Languages 187

Another alternative is to initiate the exception block with the keyword
finally. Both in Delphi and Java, this has the advantage that the finally part
will be executed in any event. For instance, the finally block can release
objects, and it is always executed, even when no exception was thrown and
even when the block was terminated by exit, break, continue, or a similar
way.

The program itself can also initiate an exception—for example, by using
individual exception definitions. Such exceptions are derived from the
basic type Exception.

In Delphi, an exception can be thrown by the keyword raise—for
example, raise EInvalidOp.Create(s). The parameter s can pass an arbi-
trary string.

In Java, an exception can be thrown by the keyword throw—for example,
throw new MyException(). For this purpose, the method that triggers this
exception has to be specially identified by executing throws MyException
after the parameter list. A method identified in such a way can be called
only within a try block, which means that the exception must be caught in
any event.

To further explain this issue, we inserted our own exception, ETooManyEn-
tries, in the example of Section 5.3.6, to provide for an attempt to add
another employee when the array is full. For this purpose, we define this
exception (Listings 5.13 and 5.15), then raise it (Listings 5.13 and 5.16), and
finally catch it in the calling program (Listings 5.14 and 5.17).

unit PayrollAccounting;

interface

uses SysUtils;

const EMC = 100;

type

ETooManyEntries = class (Exception)

end;

. . .

EmployeesList = class (TObject)

public

procedure InsertWorker; virtual;

procedure InsertClerk; virtual;

. . .

private

The finally part
will be executed

in any event

Delphi

Java

Listing 5.13.
ETooManyEntries

in Delphi: define
and raise

188 Chapter 5 True Object-Oriented Programming

list: array[1..EMC] of Employees;

n: Integer;

end;

implementation

procedure EmployeesList.InsertClerk;

var c: Clerk;

begin

if n > EMC then begin

raise ETooManyEntries.Create('too many entries');

exit;

end;

c := Clerk.Create;

c.Read;

list[n] := c;

Inc(n);

end;

procedure EmployeesList.InsertWorker;

var w: Worker;

begin

if n > EMC then begin

raise ETooManyEntries.Create('too many entries');

exit;

end;

w := Worker.Create;

w.Read;

list[n] := w;

Inc(n);

end;

. . .

end.

program ExampleSalary;

uses

PayrollAccounting in 'PayrollAccounting.pas';

var

Listing 5.14.
ETooManyEntries

in Delphi: try
Block

5.5 Particularities of the Selected Programming Languages 189

x: Integer;

el: EmployeesList;

ch: Char;

begin

el := EmployeesList.Create;

ReadLn(x); // 1: worker, 2: clerk, 3: end

while x <> 3 do begin

try

if x = 1 then el.InsertWorker

else el.InsertClerk;

except

on ETooManyEntries do WriteLn(Too many entries!');

end;

ReadLn(x);

end;

el.PrintSalary;

el.Free;

ReadLn(ch); // in order not to delete the screen

end.

package PayrollAccounting;

public class ETooManyEntries extends Exception {

}

package Payroll Accounting;

public class EmployeesList {

Employees list[];

int n;

final static int EMC = 100;

public EmployeesList () {

list = new employee[EMC];

n = 0;

}

public void insertClerk () throws ETooManyEntries {

if (n >= EMC) {

throw new ETooManyEntries();

Listing 5.15.
ETooManyEntries

in Java: define

Listing 5.16.
ETooManyEntries

in Java: throw

190 Chapter 5 True Object-Oriented Programming

}

else {

Clerk c = new clerk();

c.read();

list[n] = c;

n ++;

}

}

public void insertWorker () throws ETooManyEntries {

if (n >= EMC) {

throw new ETooManyEntries();

}

else {

Worker w = new worker();

w.read();

list[n] = w;

n ++;

}

}

. . .

}

import PayrollAccounting.*;

import java.io.*;

class ExampleSalary {

public static void main (String args[]) {

int x;

EmployeesList el = new EmployeesList();

x = IO.readInt(); // 1: worker, 2: clerk, 3: end

while (x != 3) {

try {

if (x == 1) {el.insertWorker();}

else {el.insertClerk();}

}

catch (ETooManyEntries e) {

System.out.println("Too many entries!");

}

x = IO.readInt();

Listing 5.17.
ETooManyEntries

in Java: try Block

5.5 Particularities of the Selected Programming Languages 191

}

el.printSalary();

}

}

5.5.2 Interfaces

Interfaces offer a way to implement multiple inheritance. With this type of
inheritance, a class can have several superclasses rather than one (as in
Delphi or Java). A simple example can be an analogy from the real world:
A houseboat could inherit the properties of a superclass—house (walls and
windows)—and of a second superclass—boat (anchor and mooring). In
some programming languages, such as C++, this is possible, but not in all
programming languages. Multiple inheritance is normally inefficient, and
only few good application examples can be found for it. Delphi and Java
support multiple inheritance by means of interfaces.

Interfaces differ from classes in that they contain no implementations
at all—they can include only abstract methods and constant data elements.
These methods themselves have to be implemented in a class. One single
class can implement several interfaces, so multiple inheritance can be
simulated.

Similarly, various classes can implement the same interface, so they
respond to the same method calls, but the things they execute during each
call can be different.

Interface Definition

Like classes, interfaces have to be defined before they can be used. This
interface definition is similar to a class definition, but it begins with the
keyword interface and not with the keyword class. Just like classes, inter-
faces can be derived (in this case from base interfaces).

In Delphi, all interfaces are derived from the base interface IUnknown.
Accordingly, an interface definition could look as follows:

type

MyInterface = interface (IUnknown)

public

procedure P1;

procedure P2;

end;

Multiple
inheritance

Delphi

192 Chapter 5 True Object-Oriented Programming

In Java, interfaces can be defined as public, which means that the inter-
face will also be available outside the package in which it is defined. In con-
trast to the class definition, public applies then automatically to all methods.

public interface MyInterface {

void p1 ();

void p2 ();

}

Implementing an Interface

As mentioned before, interfaces themselves contain only the method defi-
nitions. The implementation is then realized directly in classes.

When an interface is implemented in Delphi, the interface name has to
be stated next to the name of the base class (separated by a comma).

type

MyClass = class (TObject, MyInterface)

public

procedure P1;

procedure P2;

end;

procedure MyClass.P1;

begin

WriteLn('method P1');

end;

procedure MyClass.P2;

begin

WriteLn('method P2');

end;

If a class implements several interfaces, these interfaces are separated
by commas: MyClass = class (TObject, MyInterface, MyInterface2).

In Java, the keyword implements is used to implement an interface.

public class MyClass implements MyInterface {

public void p1 () {

System.out.println("method P1");

}

Java

Delphi

Java

5.5 Particularities of the Selected Programming Languages 193

public void p2 () {

System.out.println("method P2");

}

}

A class can also implement several interfaces. In this case, the interfaces
have to be written after the keyword implements, separated by commas:
public class MyClass implements MyInterface, MyInterface2 {. . .}.

If other classes are derived from the class MyClass, these classes also
implement the interface MyInterface, regardless of whether an implement
clause is present.

Using Interfaces

Classes that define interfaces can normally be used like any other class.
We can also create objects of that type. The situation becomes more
complicated if objects are to be created that should have the type of the
interface. The problem is that this cannot be done directly. Instead, a ref-
erence to an object of the class that defines the interface has to be assigned
to the variable. If a class defines several interfaces, an object of this class
can be assigned to references pointing to all interfaces implemented by this
class.

var

c1: MyClass;

i1: MyInterface;

begin

c1 := MyClass.Create;

i1 := c2;

i1.P;

end;

MyInterface i1 = new MyClass();

i1.P;

Inheritance and Interfaces

Similarly, interfaces can be inherited and extended like classes. This
inheritance is done by syntax, as with classes; the main difference is that

Delphi

Java

194 Chapter 5 True Object-Oriented Programming

interfaces can have several “superinterfaces,” which means they are not
necessarily derived from one class.

5.5.3 Delphi Particularities

Properties

A property is a special sort of an attribute. In addition to the value of an
attribute, we can also define how the attribute should be read or written.
The following source code fragment shows a property, name, of a class,
Person.

Person = class (TObject)

public

property name: String read GetName write SetName;

procedure GetName (): String;

procedure SetName (s: String);

. . .

end;

Properties initiated by the keyword property can improve a program’s
readability. Using our preceding example, the attribute name would be set
and read by the methods GetName and SetName. The source code piece

var p: Person; s: String;

. . .

p := Person.Create();

p.name := s;

WriteLn(p.name);

is converted as follows, based on properties and using the methods GetName
and SetName:

var p: Person; s: String;

. . .

p := Person.Create();

p.SetName(s);

WriteLn(p.GetName());

Properties are
special attributes

Property

5.5 Particularities of the Selected Programming Languages 195

However, better readability (an instruction is simply easier to under-
stand than a method call) is not the only advantage of properties. A simple
assignment is often not enough, such as when controls and similar things
have to be executed. A corresponding method would have to be called in
any event. The problem is that the user would have to be aware of this, so
it would be necessary to study the class library. This can be avoided by using
the property, and the user can do the assignment in the normal way.

In addition, properties can also be used so that read does not access a
method but another attribute of the class.

Compiler Directives

As in COBOL, the Delphi compiler offers a large number of options we can
use to influence the compiler’s behavior, such as switching the control of
array limits on and off. In Delphi, these options are available within the
project. As an alternative, you could also control them in the source code
and, for example, set other compiler options just for the translation of a few
lines. These compiler directives are written in parentheses and always
begin with a dollar sign—for example, {$B-}—to disable the shortcut eval-
uation (see Section 3.4.1).

Operator @

The special operator @ can be used in Delphi to convert a normal variable
into a pointer variable. The short source code fragment that follows
explains this point:

var i: Integer; p: pointer to Integer;

. . .

p := @i;

Forward Declaration

Forward declaration was described in Section 3.5.1. Interdependent classes
must be declared in advance, just like procedures. Such a declaration is
achieved by the type definition ClassName = class;. The following source
code fragment shows an example:

type

Postings = class; // forward declaration

Account = class

Converting into a
pointer variable

Forward
declaration is

needed for
interdependent

classes

196 Chapter 5 True Object-Oriented Programming

first: postings;

. . .

end;

Postings = class // defining declaration

k: Account;

. . .

end;

5.5.4 Java Particularities

Final Classes and Methods

Java also offers a way to mark classes and methods as final. No other classes
can be derived from such classes. Similarly, final methods cannot be over-
written. This is actually a contradiction to the basic rules of object-oriented
programming, because it limits reusability. However, in certain situations,
it may be meaningful for security reasons. A “final” class Class1 could be
declared as follows:

final public class Class1 {

int field1;

public void show () {

. . .

}

}

Nested Classes

Nested classes are a way to improve the support of the information hiding
principle (see Section 4.1). This means that we could define additional
(quasi-inner) classes within the implementation of a class. Depending on
whether this class was defined as public, these “inner” classes can be used
generally or only locally. The following short source code fragment shows
a local class that can be used only within the method proc.

public void proc () {

class Local {

int sum

...

Final classes and
methods cannot
be overwritten

5.5 Particularities of the Selected Programming Languages 197

}

...

}

A special form of nested classes are the anonymous classes. These
classes have no names and are defined directly within the new instruction.
This instruction can be extended so that a class body can be written after
the class identifier and the argument list. Anonymous classes are useful
when we have to deal with small, one-time objects for simple tasks.

Static Data Elements and Static Methods

As described in Chapter 3, in addition to data elements, methods can be
declared with the keyword static. These methods will then be assigned to
the entire class and not to a single object.

public class StaticDemo {

public static int x;

public static void p () {

. . .

}

}

Assuming that we want to create different objects of this class, such as
o1 and o2, the two fields o1.x and o2.x would be the same field, because
they were assigned to the class and not to the single object. Any change to
o1.x would automatically also change o2.x. This is why we cannot map
global module variables, like those introduced in Section 3.6, with such
static data elements.

The situation is similar with static methods, which are always assigned
to the entire class; this is why they are called class methods. Such a method
can be called even if no object was previously created. Class methods can
be used in Java to simulate normal procedures, like those introduced in
Section 3.3, but the call is written in method notation.

Garbage Collector

Naturally, one of the most important Java features is the Garbage Collector,
which was briefly introduced in Section 3.7.4. We will have a closer look at
it here.

Static elements
are not assigned

to one object but
to an entire class

198 Chapter 5 True Object-Oriented Programming

Dynamic objects are created with new and then basically remain in
memory, in contrast to normal variables, whose memory space is released
automatically when the block is exited. For dynamic structures, the
memory space does not have to be released until some event happens, such
as when a delete operation like Delphi’s dispose is invoked. This deletion is
often not easy to implement and carries a risk of memory leaks.

Let’s use an example to better explain this situation. Assume we have
a head node to a linear list, and this head node is deleted, while the list
elements themselves remain. The problem is that these elements can no
longer be reached, because the reference to them was deleted. Unfortu-
nately, it also means that we cannot delete them, and the memory space
occupied cannot be reclaimed. If such a situation happens often with large
lists, our memory may be exhausted sooner or later.

“Dangling pointers,” which can occur when two pointers point to the
same object, can pose a similar problem when dispose is invoked for one
of them. The second pointer will still point to the deleted object that no
longer exists. An attempt to access this object can lead to unexpected
results.

Of course, these two risks are due to programming errors, but these
errors can happen easily. To prevent them, Java does not offer an explicit
delete function but instead the powerful concept of a Garbage Collector.
The Garbage Collector builds on “memory leaks,” because objects that can
no longer be reached are useless and should be released. This is exactly
what the Garbage Collector does.

To delete a list, all that needs to be done is to set the head pointer to
null so that none of the single elements of this list is reachable any more.
The Garbage Collector detects this and automatically frees the memory
space taken by these elements. It relieves the programmer of this work and
reduces a large error potential.

Of particular interest at this point is the method finalize inherited from
the Object class in Java. In fact, other actions often have to be taken when
deleting objects. These functions can be embedded in the method, because
the Garbage Collector invokes the Finalizer automatically when it frees
objects. For example, if a file must be closed before an object is removed,
the finalize method could look like this:

protected void finalize () throws IO Exception {

super.finalize();

if (fd != null) {

5.5 Particularities of the Selected Programming Languages 199

if (fd != fd.in) {

close();

}

}

}

Reference Classes

Reference classes can be used in Java to simulate weak references. To better
understand this point, we first need to recall the Garbage Collector defini-
tion from earlier. The Garbage Collector removes all objects from memory
as soon as no more references point to them. Considering that we distin-
guish here between “strong” and “weak” references, the definition would
have to read as follows: All objects that have no more “strong” references
will be removed from memory. The Garbage Collector ignores the “weak”
references introduced here.

Such reference classes are derived from the base class
java.lang.ref.Reference. If we want to create a weak reference to an object,
we have to pass the object to the constructor of the reference class:

Object o1 = new Object();

WeakReference ref = new WeakReference(o1);

5.5.5 Exercises

Task 1 (90 minutes): Exceptions

Consider the exercise in Section 5.4.5; adapt it to use meaningful excep-
tions. Your exceptions should be defined as types in the module and then
be caught in the calling test program.

Task 2 (45 minutes): Interfaces

Find a way to best represent a class, HouseBoat, from House and Boat. The
new class should inherit three meaningful methods each from House and
Boat, where the definition is sufficient—that is, no implementation is
necessary.

Weak references
are ignored by

the Garbage
Collector

This Page Intentionally Left Blank

6
Object-Oriented Design

A big problem when working with object-oriented programming is to find
the correct kind and number of classes. This chapter presents techniques
to support this task.

6.1 Object-Oriented Design and UML

This section deals with how to best divide a system into classes. The object-
oriented design differs from the procedural design—the stepwise refine-
ment discussed in Section 2.4. In this case, we will first work out the
particularities of the design and then discuss the Abbot method. Moreover,
this section introduces tools, such as the Unified Modeling Language
(UML) and CRC cards. These issues will be completed with a few useful tips
and warnings about frequent design errors.

6.1.1 Comparison with the Procedural Design

Stepwise refinement can be applied to work out clean program logic that
is easy to use but also sensitive to changes and not very friendly toward
reusability. In an object-oriented design, what the system uses to do

Abbot method,
UML, CRC cards

The question of
what the system

uses to do
something is in
the foreground

202 Chapter 6 Object-Oriented Design

something is the focal point. The results are classes, forming core compo-
nents, and several procedures (or classes) building on the former.

The general approach is to first work out the things central to the task—
for example, in an accounting software, accounts, postings, or persons.
Next, we consider what operations could be executed with these central
things such as, creating an account, printing an account, or adding a
posting entry. Also, we would have to think what information should be
stored about an object—attributes such as account name, opening balance,
current balance, and so on.

We have to think about more things, for example, whether there will be
system-dependent details, such as disk controllers or input/output opera-
tions, because it would be useful to encapsulate them. Moreover, we should
absolutely check for a potential risk of parts being modified. Finally, when
you are designing a system, care should be taken that the impact of changes
is kept to a minimum.

One of the important differences versus procedural designs is the
reusability of existing classes. If we are faced with a problem that has been
solved similarly in the past, a procedural design allows us to duplicate exist-
ing code and modify it to match the new task. In object-oriented design, it
is possible to derive a new class from an existing one and then effect only
those changes that are absolutely necessary for the new task. Of course, this
facilitates maintainability, because errors do not have to be corrected more
than once (both in the original code and in the duplicated code).

Building on these design principles, we can apply the Abbot method.

6.1.2 The Abbot Method

The method invented by Abbot [Abb83] serves to design an object-oriented
system. It is easy to use. In a first step, we work out a textual specifica-
tion; then we can read all nouns, verbs, and adjectives directly from this
specification:

� Nouns are candidates for classes or attributes.

� Verbs are candidates for methods.

� Adjectives are candidates for attributes.

The preceding description is overly simplified to better illustrate the
concepts. The words found are always just candidates and thus a starting

Central things
first

Consider
reusability!

The Abbot
method permits

designing an
object-oriented

system

6.1 Object-Oriented Design and UML 203

point for decomposition that must not be realized blindly. It takes a lot of
experience to achieve a good decomposition. Another major drawback of
the method is that it always goes back to restart from zero—it does not con-
sider existing classes that could be used as a basis. Again, considering such
base classes is a matter of experience.

A short example shows how the Abbot method is applied. An account
includes several postings. The sum of these postings produces the account
balance. There should be a way to add a posting to the account. There
should also be a way to print the account. Accounts can be divided into two
groups, depending on whether they are OI-leading or not (that is, whether
or not it is a leading account for open items).

Table 6.1 lists the most important nouns, verbs, and adjectives that
occur in this example.

This list in Table 6.1 shows potential candidates for classes, methods,
and attributes. The noun Account is easy. It is most likely a class. The verbs
add and print are also straightforward, because two useful methods can be
designed from them.

The nouns AccountBalance and Postings are a little more complicated.
Postings will probably become an attribute of the new class to be con-
structed. To make a final decision on this issue, we will need more infor-
mation, such as how these postings are to be structured. AccountBalance
could be both an attribute of the class Account and a functional procedure.
For efficiency, an attribute is probably the preferred use, while a method
would be the preferred option for abstractions. Similarly, the adjective OI-
leading will probably become an attribute of the class Account.

The important point is that everything a software object knows (state)
or does (behavior) is expressed by attributes and methods within this
object. Finally, everything an object should not know or do will not be
included.

We need to determine the attributes and methods that should or should
not be generally accessible. This will normally require a tradeoff between
maximum security(export as little as possible) and maximum reusability
(export as much as possible).

Which attributes
and methods

should be
generally

accessible?

Table 6.1 Nouns, verbs, and adjectives of the account specification

Nouns Verbs Adjectives

Account Add OI-leading
Account balance (sum) Postings Print

204 Chapter 6 Object-Oriented Design

6.1.3 CRC Cards

CRC offers a simple method to represent classes as a kind of blueprint for
designs. CRC stands for Class—Responsibilities—Collaborators. It uses
small cards that can be created easily to note a class’s most important prop-
erties. Figure 6.1 shows an example of a CRC card.

Such a card is created for each class and labeled with the class name.
First, we define responsibilities and collaborators (that is, classes that have
to cooperate). The responsibilities can initially be written in informal
language and then refined to eventually develop them into methods with
names. Often, only attributes emerge from such responsibilities.

One major advantage of CRC cards is that they can be produced easily
in a large number of arrangements, making it possible to view many classes
together. This makes them the ideal vehicle for brainstorming meetings.
They also support the validation of object candidates. If no responsibilities
and no attributes are found in a brainstorming meeting, they can generally
be left out.

Another advantage of CRC cards is their limited size, which forces the
developer to keep classes small.

6.1.4 Unified Modeling Language

UML is an alternative form to represent a design with classes and their rela-
tionships. These classes, together with their attributes and methods, are
mapped onto an object model. The word model indicates that we do not
necessarily have to provide all details, at least not at this stage. In fact, the
level of detail should be just sufficient to understand the representation.

Easy
representation

methods for
designed classes

UML offers a
model to

represent classes
and their

relationships

DialogElement

∑ Can present itself

∑ Can react on mouse clicks

∑ Knows its position

Dialog frame

CollaboratorsResponsibilities

...

Figure 6.1 Example of a CRC card.

6.1 Object-Oriented Design and UML 205

For example, attribute types, method interfaces, and—most important—
method implementations are optional.

UML is an international standard of OMG for representing class
libraries and frameworks (more about these issues in Section 6.4). This
section introduces UML; extensive information is available in [RBJ98].

The most important elements UML can represent are classes and their
specific objects. Both are drawn as rectangles or diamonds. Rectangles rep-
resenting specific objects have round edges. Within a class, the rectangle is
divided into three parts, for names, attributes, and methods. The latter may
have a small box attached to it to denote the implementation. For objects,
the values of the individual attributes are represented. Figure 6.2 shows a
class and an object side by side in UML representation.

We can see from Figure 6.2 that the class name for a specific object is
given in parentheses. If UML representation shows an abstract class, it is
also useful to write the class name and abstract methods in parentheses for
easier understanding [Mös99].

In representing relationships between objects or between classes, three
important relationships are worth mentioning:

� Association: This is a simple uses relationship—a class is used in the
implementation of another class. This relationship is identified by a
plain line.

� Aggregation: This is a has-a relationship, which occurs when a class has
an attribute with a type of another class. Such a relationship is denoted
by a diamond at the beginning of the line.

relationshipUses

(File)
sales
1720
97/10/01

File Name

Object

Attributes

Open
Close
Read
Write

Name
Length
Date

Methods

Class

Figure 6.2 Class and specific object in UML representation.

relationshipHas-a

206 Chapter 6 Object-Oriented Design

� Generalization: This derivation from one class to another is an is-a rela-
tionship. For graphical representation, the classes are drawn one on top
of the other with a triangle on the line.

Figure 6.3 compares the three most important relationships. We return
to these terms in connection with our description of databases in Section
7.2. There could also be cardinalities—how many objects relate to how
many others. For example, an account may relate to an arbitrary number
of postings. For this purpose, digits are written next to the objects; an aster-
isk denotes an arbitrary number.

6.1.5 Tips

As mentioned, object-oriented design is not trivial and requires extensive
experience. This section provides a few tips [Mös99, p. 159 ff.]. The most
important thing is to be aware of common errors to avoid them.

Is-a relationship

Object-oriented
design requires

extensive
experience

Association

Uses

Has-a

Is-a

Aggregation

Generalization

Figure 6.3 Association, aggregation, and generalization in UML representation.

6.1 Object-Oriented Design and UML 207

Too Many Trivial Classes

One of the most frequent errors beginners make is to create too many
classes. This makes an object-oriented system difficult to understand. For
this reason, consider carefully whether a class is necessary, whether it may
just be an attribute of a class, or whether a standard type (for example,
integer) might be sufficient. A simple example is the balance of an account,
which would hardly make a meaningful class; the standard type floating-
point number is normally sufficient.

Variants with Identical Structure and Identical Behavior

Another risk, in addition to creating too many classes, is designing dif-
ferent classes only to satisfy a specific attribute, although both variants
have basically the same structure and behavior. For example, the two
classes RedRectangle and BlueRectangle could be derived from a base class
Rectangle. If the red and the blue rectangles differ only in their colors and
not in their behavior, or by different attributes, it would be better to add a
new attribute, color, to the base class Rectangle; this attribute could then
be set to the appropriate color.

Confusing Is-a and Has-a Relationships

A new class should ideally be derived from an existing base class whenever
it appears possible and meaningful. “Possible and meaningful” means that
nothing should be derived at any cost. Often, this is meaningful only for an
is-a relationship. For example, many tend to derive a class—say, Line—from
a base class—say, Point. Deriving the former from the latter does not make
sense because, although a line has two points, it is not a point. In the case
of a has-a relationship, it is normally better to create a new class and use
the existing class as an attribute.

Wrong Receiver Object

Another area to watch for common errors is when designing methods. A
method should always be defined in the correct class. A simple example is
the design of a method to remove an element from a list. For this purpose,
we could imagine implementing a method, List.Remove (element), but
Element.RemoveFrom (list) would also be feasible. Naturally, we have to ask
ourselves which would be the correct one. We can normally answer this
question by considering the following principle: the receiver should be the

Is this class really
necessary? Would
a standard type

do the job?

Inheritance
means is-a

relationship

List.Remove

(element) or
Element.RemoveFrom

(list)

208 Chapter 6 Object-Oriented Design

object with data that will most likely change. In the previous example, we
would certainly prefer the variant List.Remove (element).

Class Hierarchies Are Too Deep or Too Flat

A class hierarchy should be well balanced. For this purpose, we can use the
following rule of thumb: Derive many specific classes from one abstract
class, but only few new abstract classes. In contrast, derive as few additional
specific classes as possible from a specific class.

More Tips

� Although super calls—calls to methods of the base class—help avoid
redundancies, they normally make the program more complex.

� A has-a relationship (the use of a class as an attribute) is often more flex-
ible than an is-a relationship (the derivation from this class).

� Methods with many parameters should be decomposed into smaller
methods.

� Ensure that others can use your classes as a basis in their development
projects.

6.1.6 Exercises

Task 1 (180 minutes): Designing the Account Class

Apply the Abbot method to the following text. Basically, we distin-
guish between two types of accounts: personnel and inventory.
Personnel accounts are characterized by being OI-leading and subject to
turnover.

Both account types have a unique number, a name, and several post-
ings. A posting consists of a posting date, an offset account, debit and credit
identifiers, and a posting amount. The sum of these postings results in the
account balance. It should be possible to add a posting entry to the account
and to print a list of all postings of an account.

Apply the Abbot method to design the required classes. You should rep-
resent these classes both in UML and in an object-oriented programming
language (Delphi or Java).

The Abbot
method

6.2 Design Patterns and Components 209

6.2 Design Patterns and Components

The following sections introduce design patterns and components,
modern methods used in software development. We first describe design
patterns, which can be thought of as descriptions, or blueprints, of proven
solutions for recurring problems. Subsequently, we will introduce compo-
nents: small, manageable, largely independent software pieces that can be
easily developed and joined to form a larger application.

6.2.1 Design Patterns

Design patterns can be thought of as a continuation of the concept of class
libraries. Classes and methods form a specific solution to a specific
problem and can be extended but not changed. Design patterns provide
solutions for frequent problems and can be adapted to specific problems.
Such patterns identify and specify abstractions on a level above the level of
classes and objects and above the level of entire components [GHJV94].
Accordingly, a pattern does not describe just a single class or method but
several components, classes, or objects.

This section gives an overview of what such design patterns look like
and provides a few examples. We recommend the following textbooks to
readers interested in learning more about design patterns:

� Gamma, Helm, et al., Design Patterns [GHJV94]: The seminal work on
design patterns and object-oriented software development, this book
presents a catalog of simple and precise solutions for recurring design
problems. The four authors are often called the “gang of four” because
of their international acceptance as experts in the field of object-
oriented software development.

� Pree, Design Patterns for Object-Oriented Software Development [Pre95]:
In addition to the aforementioned seminal work of the “gang of four,”
this book is one of the most frequently quoted concerning design pat-
terns. It contains many examples and real-world case studies that show
how to achieve specific goals with design patterns.

� Buschmann, Meunier, et al., Pattern-oriented Software Architecture
[BMRS96]: This book contains a collection of patterns extending over
several abstraction levels in the field of software design, ranging from

Design patterns
take the idea of
class libraries a

step further

210 Chapter 6 Object-Oriented Design

basic architectural patterns to patterns for detailed system design to
programming language–specific idioms. The authors also show how the
patterns can be combined.

� Mössenböck, Object-Oriented Programming in Oberon-2 [Mös99]: This
book is an excellent introduction to object-oriented programming,
based on Oberon-2, a programming language similar to Pascal. A full
chapter is dedicated to patterns, including many not found in [GHJV94].

A design pattern is always subject to a scheme, consisting of three parts
[BMRS96, p. 8 ff.]: context, problem, and solution. The relationship
between these parts can be represented as follows. Context is a situation in
which the problem occurs for which a solution should be found. Therefore,
a design pattern should include an exact description of the problem to be
solved. For example, it should consider requirements, side conditions, and
desirable properties. The relevant solution is often knowingly described in
an abstract way, without dealing with implementation details. This allows
us to use a pattern independently of a specific programming language.

Based on their use, design patterns can be distinguished as belonging
to one of three categories [BMRS 96, p. 11 ff.]:

� Architectural patterns: These patterns reflect fundamental structural
principles of software systems. Such a pattern describes a set of prede-
fined subsystems and specifies their respective areas of competency.
It also contains rules to organize the relationships between these
subsystems.

� Design patterns: These patterns enable us to describe structures of
communicating components that solve a general design problem in a
special context.

� Idioms: In contrast to the other two pattern types, idioms are more
specific to a programming language. As in a specific programming
language, they can show special aspects of components or how to
implement the relationships between them.

Regardless of the category to which a design pattern belongs, it must
be represented in an appropriate form. Accordingly, it should have an
intuitive name. Moreover, a significant example should be added to
the problem description. The solution should be further illustrated by

Design pattern:
context, problem,

and solution

6.2 Design Patterns and Components 211

diagrams (for example, UML) and scenarios. A few design patterns are
described in the following sections.

Constructor

A constructor [Mös99, p. 111] is an object-based construction pattern that
encourages initialization of an object. This is a particular benefit in pro-
gramming languages that do not have their own constructors, such as
Delphi or Java, where they are part of the language.

The pattern will be explained by a simple example: a class T with an
attribute a and a method InitT, which initializes the value of a. Figure 6.4
shows this structure.

Building on this basis, we can easily implement a procedure, NewT, which
creates an object of class T and initializes it right away. Whenever such a T
object is required, it can be created and initialized by calling the construc-
tor NewT. This pattern can be easily transported to any class by using the
respective class name (for example, NewAccount, NewBill) for T.

Factory

A factory [GHJV94, p. 107] offers an interface to create families of related
objects, or objects that depend on each other.

A simple example will explain this pattern. We derive various kinds of
accounts from an abstract class, Account. On one hand, a simple account,
BasicAccount, provides the posting and output functions. On the other
hand, a class, MightyAccount, offers additional functions, such as for bonus
analysis. A financial accounting program could optionally work with these
accounts by providing an attribute k of the abstract class Account. When cre-
ating such an accounting system, we have to decide whether the attribute
k should store a BasicAccount or a MightyAccount. Exactly this problem can
be solved with a factory pattern.

A factory object creates the account. For each account type, there is an
independent factory class—BasicAccountFactory, MightyAccountFactory,

Object-based
creation pattern:

constructor

A

InitT(x) a : � X

T

Figure 6.4 Structure of a constructor pattern.

212 Chapter 6 Object-Oriented Design

and so on. All these classes are derived from an abstract class, resulting in
the pattern shown in Figure 6.5.

During initialization of the accounting program, the desired factory
class is assigned to the attribute factory, depending on whether the
accounting system is to work with a BasicAccount or a MightyAccount object.
The call k := factory.New() will supply the desired account type.

In summary, factory classes can be used to dynamically specify the
component to be used at runtime.

Iterator

An iterator [GHJV94, p. 335] serves to enable sequential access to the ele-
ments of a dynamic data structure, such as a list or stack (see Section 4.2.2),
without the need to disclose the underlying representation.

We briefly described methods such as PrintAll in the introduction of
these data types. In many cases, clients of these data structures want not

Factory: AccountFactory
k: Account

...
Open

Application

k : � factory.New()(AccountFactory)

MightyAccountFactory

MightyAccountBasicAccount

BasicAccountFactory

(Account)

(New(): Konto)

New(): Account

RETURN
NewMightyAccount()

... ...

New(): Account

RETURN
NewBasicAccount()

(Posting)
(Output)
...

Figure 6.5 Factory pattern.

6.2 Design Patterns and Components 213

only to print the individual elements but perhaps to do totally different
operations on them. These could be operations not yet known when a data
structure is implemented. Therefore, a solution of the kind PrintAll is not
really satisfactory. Iterator classes would be more meaningful; Figure 6.6
shows their pattern. The important thing is that an iterator reduces the
amount of information a client must know to be able to access the elements
in the collection.

Such iterator classes are implemented in the same module as the data
structure. These objects can be moved beyond the data structure. A simple
interface is then available, offering the possibility of creating a loop that will
iterate over the elements in the collection, regardless of whether the col-
lection is a vector or a binary tree. It could work like this:

iterator := list.CreateIterator();

iterator.Start;

while not iterator.IsReady() do begin

elem := iterator.CurrentElement();

// work with elem

iterator.Continue;

end;

In Delphi, the procedure variables frequently used in the examples of
Chapter 4 could be used instead of the iterator pattern.

6.2.2 Components

The underlying principle of components is similar to that of a class library.
It is based on the assumption of an existing solution to be embedded
into a new application. However, components are always small and easily
manageable software pieces that are largely independent of one another.
Despite their small size, they can be joined to form extensive applications

Delphi
particularity

Aggregator Iterator

CreateIterator() Start()
Continue()
IsReady()
CurrentElement()

Figure 6.6 Iterator pattern.

Components are
small, easily
manageable,
and largely

independent of
one another

214 Chapter 6 Object-Oriented Design

so that, in a certain way, they can be thought of as a kind of Lego system
for software engineers.

This section provides a rough overview of what such components look
like. We recommend the following books for readers interested in learning
more:

� Szyperski, Component Software: Beyond Object-Oriented Programming
[Szy99]: This seminal work on components shows the way from object-
oriented programming to component-oriented programming. It also
discusses both Java beans and Active-X, the component model of
Microsoft.

� Piemont, Components in Java [Pie99]: This book discusses mainly Java
beans, the component model of Java. It presents many advanced issues,
such as customizing, design patterns for beans, seralization, and the
interplay between Java and Active-X. It also contains an overview of
development tools and beans libraries and an introduction to compo-
nent-oriented software development.

What Is a Component?

A component has no unique definition in software engineering, but most
agree that it is an executable piece of software representing a self-sufficient
construct with its own describable functionality and semantics at the appli-
cation level. Components have a state, reflecting their property values, and
this state is often stored beyond application borders (persistent compo-
nents). Components are always accessed over a defined interface. In general,
the access can be manipulated by events or directly by method calls.

An important requirement of components is that they should be inde-
pendent of any programming language or operating system. Typical exam-
ples for components are user interface elements—more specifically, Web
browser components or model constructs of facts from corporate business
processes. As usual in object-oriented programming, reusability is one of
the main aspects of components. Unless they can be reused, components
are too complex to be useful.

It seems intuitive to ask what the real differences are between a com-
ponent and a class, because a class also meets many of the previous crite-
ria. Both a component and a class follow the same goals and will coexist in
the future. In general, however, a component has a larger functional extent
than an object and can even be considered independent.

Java beans

Components are
independent of

both the
programming

language and the
operating system

6.2 Design Patterns and Components 215

It is also important to note that the information-hiding concept is much
stronger for components than for classes. In relation to components,
information hiding is strict and could even go as far as not making the
source code public, which is not the case with classes. Only a binary format
is supplied, instead of disclosing the source code.

The following sections discuss component-based software develop-
ment, where we basically have to distinguish between development of a
single component and composition of a component-based application.

Development of a Single Component

Development of a single component is similar to object-oriented design.
The most important point is that the interface should be clearly identified
and cleanly specified (for properties, methods, and events). This interface
will later serve as a contract, so to speak, which other objects will enter into
with this component as soon as they want to use it. Also, components
should be designed with utmost flexibility—ideally supplied within the
environment situation at runtime and not before, to prevent strong
interdependencies.

A component should offer a solution for general-purpose problems and
not for a specific problem. This should be taken into account when devel-
oping components.

Composition of a Component-Based Application

Building an application from many components is not a trivial activity. It
can be considered a piece of art, so many like to use the expression “com-
position.” Essentially, creating an application from many components
involves several steps, repeated over and over:

1. Define the requirements of the application.

2. Select suitable components.

3. Adapt and configure the selected components.

4. Develop additional components, if required.

5. Create a framework and integrate the components into a complete soft-
ware system.

6. Test the component-based application.

Components are
“composed”

216 Chapter 6 Object-Oriented Design

6.2.3 Exercises

This tutorial section was definitely not easy. Readers who still have prob-
lems with the two new terms, design patterns and components, will find this
exercise helpful in deepening their knowledge of the subject. As a motiva-
tion, we should mention that few programmers really master these issues.

Task 1 (180 minutes): Literature Study

Study the online help of Delphi or Java and try to find terms such as Active-
X (Delphi) or Beans (Java). Try to get an overview of the options behind
these terms.

7
Databases

Whereas we have concentrated more on algorithms, methods, and activi-
ties in the previous parts of our OOP course, this chapter discusses data-
bases. In most applications, such as billing software, working with data is
at the center of activities. These data not only are input but also have to be
stored and retrieved again and again (even many months later). Think only
of the postings entered in a financial accounting program.

Similarly, almost every COBOL program in the traditional form requires
data to be saved to files. Because this saving to files has a few drawbacks,
which is discussed later, it is customary in object-oriented programming to
use databases. This chapter deals with databases, although they are not
really an object-oriented feature but rather state-of-the art, describing
many issues, including SQL as the most important query language for
databases.

7.1 Introduction and Differences from COBOL IS Files

COBOL, or at least traditional COBOL (more about this later), uses indi-
vidual files to store data. A program works mainly with several files open at
the same time. In contrast, a database can be thought of as a huge data
repository that stores all data. This section describes the basic idea behind

All data have to
be stored

somewhere

A database is a
huge data
repository

218 Chapter 7 Databases

a database and then highlights the differences from COBOL. It also explains
special database functions, such as recovery or concurrency, and intro-
duces a new generation of object-oriented databases. Finally, this chapter
describes the change from ISAM COBOL systems to an RDBMS (relational
database management system) architecture.

7.1.1 The Basic Concept of a Database

The basic concept of a relational database, currently the most popular form
of database, which is discussed in the following sections, is that data are
stored in the form of usual tables. Table 7.1 shows an example.

Tables such as Table 7.1 always have a fixed structure, composed of rows
and columns, which are defined once only. This definition is elaborated on
the basis of a normalization (see also Section 7.2.2). The rows of such a table
accommodate records, and the columns define various attributes. Such a
record compares well with a conventional record or object.

In general, each row is identified by a key, for example, a unique
number, such as an account number. This key can be used to access a
record directly, as in an index-sequential file, without the need to walk
through the entire table. Similarly to COBOL, it is also possible to generate
additional indexes to optimize access speed (see also Section 7.2.5).

Despite significant similarities, we can already identify a fundamental
difference versus the file-based systems known from COBOL. The defini-
tion of tables is centralized, as opposed to the record structure of files in
individual programs. In addition, databases assume other activities, offer-
ing various benefits versus file-based systems.

A database system offers more than fundamental tools for the following
tasks:

Table rows are
defined by a key

Table 7.1 Example for a database table

Account number Account name Balance

2700 Cash 12,000

2800 Bank 40,000

4000 Earnings 12,999

. . .

7.1 Introduction and Differences from COBOL IS Files 219

� Define a new table.

� Insert and remove records from these tables.

� Find data in these tables.

� Change individual data fields in these tables.

In fact, a database system supports additional activities, such as moni-
toring for unauthorized access, data security, or control of concurrent
access attempts by several programs. In addition, database functions such
as recovery or concurrency offer important benefits versus file-based
systems.

Normally, instead of a user communicating directly with the database,
designers write a program, which serves in a way as an interface between
the user and the database. These programs can be kept much shorter, com-
pared with similar programs that work with file-based systems, because
they can assume the activities mentioned previously from the database.
The way these programs can look like will be described in Section 7.4.

However, although index-sequential files are mostly used in traditional
COBOL programs to store data, newer COBOL versions are able to access
relational databases by using embedded SQL statements and ODBC
protocols, too.

7.1.2 SELECT: One Word—Two Meanings

Our previous brief introduction already revealed fundamental differ-
ences from COBOL and its index-sequential files. Another important dif-
ference is the keyword SELECT. Whereas COBOL uses it to describe each file
to be processed in a program, databases use this keyword to select specific
columns from the entire data repository.

So, whereas a SELECT in COBOL could look like this:

SELECT POSTING FILE

ASSIGN TO "D:POST.DAT"

LOCK MODE EXCLUSIVE

FILE STATUS IS POST-STAT

ACCESS SEQUENTIAL

ORGANIZATIONAL SEQUENTIAL.

A program is
an interface

between user
and database

Database SELECT
and COBOL
SELECT have

different
meanings

220 Chapter 7 Databases

a SELECT operated on a database could have the following form:
SELECT *

FROM POSTING

WHERE ACCOUNT = 4400

This database SELECT would select all postings made to account 4400
from the data repository. The instruction SELECT is the most important
command of SQL (Structured Query Language; see also Section 7.3). This
database query language can be used to do the following:

� Write data to and delete it from a data repository.

� Define the structure of a database.

� Define queries to select data from the data repository.

SQL is similar to English and a uniform language. Despite the large
number of programming languages, the database discipline reached a
certain degree of standardization [DaDa97]. On the other hand, the data-
bases available in the market have introduced different dialects of SQL.
A special dialect, namely, OQL (Object Query Language) [CBB97], is used
for object-oriented databases. Although object-oriented databases have
not become really popular yet, we will describe them briefly in Section
7.1.8.

Sections 7.3 and 7.4 concentrate on SQL, but we should mention here
that SQL is strongly oriented to sets. This means that most of the single
operations refer to data sets, as opposed to single records, as in COBOL.
However, this also means that scrolling through records—something we are
used to from COBOL (particularly scrolling up from an arbitrary record to
the first record)—is not that easy in the object-oriented world.

7.1.3 Data Security, Data Protection, and Recovery

An important benefit of databases versus individual files is data security.
This benefit is twofold. First, a database can be protected easily, because
everything is centralized, so to speak, and one command is enough to
protect things. Second, a database offers many options to protect data
against unauthorized access. We can specify exactly which database and

SQL is a strongly
set-oriented

language

7.1 Introduction and Differences from COBOL IS Files 221

records users are allowed to access. Moreover, this function is permanently
integrated into the database, so no special code has to be written.

For this purpose, a database normally offers a user management func-
tion, based on user names and passwords. Each user has to log on to the
database, just like logging on to an operating system to obtain the right
to access certain records and he or she cannot access any records not
included in this access right. Although this sort of access protection is costly
in file-based systems, requiring a high programming effort to solve it, it is
virtually an automatic and integral feature of database systems.

Consider payroll accounting as a simple and typical application
example. For this program, it is important to ensure that only selective users
can see the salary information of all employees. For example, a department
manager should see only the salary information of his or her employees but
not those of other departments. Potential solutions to such problems are
often one of the most important criteria when selecting software.

Another important advantage of databases is a mechanism called recov-
ery. When an error occurs, such as a program crash, this mechanism
ensures that the database maintains a consistent state. Let’s look at this sit-
uation by using a short example. Think of a simple account to which post-
ings can be added. The new balance of each account should be calculated
automatically every time a transaction is posted.

If the program crashes between the time when we add a posting trans-
action and the time it takes to calculate the new account balance, the data
status would be inconsistent, because the account balance stored in the
database does not correspond with the actual account balance. Every
COBOL programmer is aware of such situations, as many correction or
reorganization programs have to be created exactly for this purpose.

A database solves this problem by the recovery mechanism. Required
database changes of a program are grouped to form a transaction. In our
example, this could be three actions together—insert a posting, calculate
the account balance, and write this amount. Such a transaction is called
“atomic,” which means that this transaction is executed completely or not
at all.

For example, if a program crashed in the middle of such a transaction,
the database would restore the status it had before the transaction was
initiated. In our example, this would mean undoing the insertion of a
new transaction. Based on this capability, the programmer could use
commit instructions to define the instructions belonging to one specific
transaction.

Recovery: no
need to correct

or reorganize
programs

222 Chapter 7 Databases

7.1.4 Parallel Processing

The transactions introduced in the previous section can be executed not
only consecutively but also concurrently. However, it is important to pay
careful attention to the order in either case. For instance, if two transactions
access the same field (that is, one to duplicate it and the other to add a value
of three), the sequence in which the two actions are executed plays an
important role.

Also, in some situations, fields have to be locked. In the previous
example, during the time when the account balance is read, the posting is
entered, and the posting value is added to the account balance, the account
balance must not change. This rule is known from file-based systems,
where we normally also work with locking mechanisms, except that data-
bases use an improved form.

We will explain this with a simple example. Table 7.2 shows two trans-
actions, T1 and T2, which both access objects A, B, and C. The initial value of
each object is 60.

We can see in Table 7.2 that the result from a quasi-concurrent (that is,
parallel) execution is as follows: A = 55, B = 70, C = 80. The result would be
different if the two transactions were executed consecutively. Table 7.3
shows this situation.

We can see that the result in Table 7.3 from the serial execution would
be A = 55, B = 50, C = 80. Considering that these results differ, it is obvious

Transactions can
be executed

either
consecutively or

concurrently

Table 7.2 Example for transactions: parallel execution

Transaction T1 AT1 BT1 CT1 Transaction T2 AT2 BT2 CT2 Afile Bfile Cfile

Read A 60 60 60 60

A := A 5 55
Read B 60

Write A 55 55
B := B 20 40

Read B 60
Write B 40 40

B := B + 10 70
Read C 60

Write B 70 70
C := C + 20 80
Write C 80 80

7.1 Introduction and Differences from COBOL IS Files 223

that these processes cannot be serialized. For this reason, we have to insert
LOCK and UNLOCK operations in the appropriate places. Table 7.4 shows this
approach, based on our previous example.

When using such LOCK and UNLOCK operations, it is important to ensure
that no deadlock situation can occur. This situation, which can also occur
in COBOL, would in most cases be a programming error that occurs when
two transactions lock each other forever. For example, if transaction T1
locks object A and then tries to access object B while T2 locks object B and
tries to access A, T1 would wait for T2 to free object B. Naturally, this will
never happen, because this transaction is waiting in turn for T1 to free
object A.

It is possible that a deadlock cannot be prevented. Therefore, the data-
base management system may abort a transaction if it detects a deadlock
cycle.

7.1.5 Possibility for End Users

Another advantage of databases is that, in addition to the program itself,
the database query language can be used to access the data stock. Because
the data definition is integrated in the database rather than distributed over

Beware of
deadlocks!

Databases allow
end users to

evaluate data
themselves

Table 7.3 Example for transactions: serial execution

Transaction T1 AT1 BT1 CT1

Read A 60

A := A 5 55

Write A 55

Read B 60

B := B + 10 70

Write B 70

Transaction T2 AT2 BT2 CT2

Read B 70

B := B 20 50

Write B 50

Read C 60

C := C + 20 80

Write C 80

224 Chapter 7 Databases

several programs or copies, any person other than the programmer can
access the database. The simplicity of some databases, such as Microsoft
Access, allows end users to evaluate the information stored in the database.
Therefore, special database queries specified and developed by the cus-
tomer make a program package much more attractive. This factor has
become one of the major purchase decision criteria, so using databases can
also mean a significant competitive edge.

However, as attractive as it may be for customers to be able to specify
data queries themselves, it may be problematic, especially when a change
to the records is effected in this way. For this reason, appropriate security
mechanisms are recommended, such as granting only read access to spe-
cific data.

Table 7.4 Example for transactions: LOCK and UNLOCK
operations inserted

Transaction T1 Transaction T2

LOCK A

Read A

A := A 5
LOCK B
Read B

Write A

UNLOCK A
B := B 20
Write B
UNLOCK B

LOCK B

Read B

B := B + 10
LOCK C
Read C

Write B

UNLOCK B
C := C + 20
Write C
UNLOCK C

7.1 Introduction and Differences from COBOL IS Files 225

7.1.6 Requirements to a Relational Database

We can identify the following requirements to, or properties of, a relational
database [Dat90]. Databases should do the following:

� Provide a way to manipulate data.

� Avoid redundancy—each piece of information should be stored only
once. However, we will see later that controlled redundancies may
indeed be useful in some cases, for efficiency. Consequently, this
requirement refers to uncontrolled and unnecessary redundancies.

� Offer universal usability—that is, in various fields of application.

� Be independent of the accessing program. A piece of information
created by one program should be able to be read and modified by other
programs. This holds true even for programs not known to the creating
program.

� Be independent of any specific hardware and software environment.

� Provide functional integration, representing semantic data relation-
ships so that they are transparent and usable.

� Have a flexible, modifiable data structure, for example, allowing a six-
digit account number to be converted to a nine-digit number.

� Allow concurrent access by several users.

� Support access protection and data protection tasks.

� Guarantee data integrity. The information held in the database should
be complete and semantically correct.

� Provide data security. The database should support backup and recon-
struction processes.

7.1.7 Client/Server Solution

The term client/server is closely related to databases. It means that the
application does not run on a single computer, as in conventional pro-
gramming, but that tasks are shared between the front end and back end.
Front end means the application program, running on the client’s PC; back

Properties of a
relational
database

226 Chapter 7 Databases

end means the database management system, running on the server. The
client sends tasks and requests in the form of SQL instructions to the server,
and the server serves these requests. In contrast to conventional program-
ming, the client does not have direct access to the data. This offers two
important advantages:

� The client has fewer tasks than the server, so the server must be a pow-
erful engine, but a less powerful computer is sufficient for the client.
This reduces the total hardware investment cost.

� In contrast to conventional file systems, the client and server exchange
only requests and result sets, which means that the data volume trans-
mitted is limited. This reduces the network load.

Figure 7.1 shows such a client/server system, often called two-tier
model. Particularly for large applications, it may be useful to use a three-
tier model, which results in the following distribution of tasks:

� Tier 1 forms the graphical interface—the application program.

� Tier 2 implements the program logistics.

� Tier 3 consists of the database system.

Two-tier and
three-tier models

Figure 7.1 Fundamental structure of client/server solution.

7.1 Introduction and Differences from COBOL IS Files 227

7.1.8 Object-Oriented Databases

Object-oriented databases are a new form of database currently in the
research phase (see, for example, [Kna97]). Although some commercial
products have been available since 1988, they have not yet gained a large
market share. This is contrary to the situation in software engineering,
where the advantages of object-oriented programming have led to con-
ventional languages being gradually replaced. In the world of databases,
this step has not been reached, which may be partly for psychological
reasons (for example, tradition, not enough time for testing, not enough
behavior). Nevertheless, it is useful to briefly discuss object-oriented
databases.

In an object-oriented database, persistent objects are placed perma-
nently onto a persistent heap while transient objects are located in a
transient storage medium. Transient and persistent objects can have
mutual access. Access to a persistent object causes this object to be
loaded into transient storage. As soon as transient objects no longer
reference it, this persistent object is written back to the persistent heap.
A transient object becomes persistent as soon as it can be reached by a
persistent root object, and any arbitrary object can become such a root
object by using a special operation, such as Persistent.SetRoot(obj, key),
to register it.

The Object Database Management Group, a workgroup of OMG,
defined an object-oriented standard to access database systems. This stan-
dard includes the following parts:

� The object model

� The Object Definition Language (ODL)

� The OQL query language, which is similar to the SQL query language
introduced in Section 7.3

� Language integrating features for C++, Smalltalk, and Java

More information about object-oriented databases is available in
[CBB97]. Although pure object-oriented databases have not yet reached a
mature state, they will definitely be around in the near future, but in the
form of object-relational databases, such as Oracle, DB2, and Sybase.

OMG

Object-oriented
databases have

not really
become popular

yet

228 Chapter 7 Databases

7.1.9 Changing from ISAM to RDBMS

Many large organizations individually store gigabytes of mission-
critical data in index-sequential files. Often, these environments have a
variety of software applications (mostly built in-house or custom-made
applications) that access and manipulate data in these files through the
ISAM standard. As explained earlier, database systems have many advan-
tages, so it appears useful to migrate to them. However, high barriers must
be overcome. This section explains these barriers, because they clearly
show the differences between data files and databases [Bor02].

The technical issues relevant to retargeting ISAM COBOL applications
to RDBMS architecture can be categorized into two main groups: incom-
patibility arising from a shift of the programming model (cursor-based
versus index-based) and a shift of the way you think about data (incom-
patible record structures and data types).

One main difference between the two systems is COBOL’s ability to
define variables and the structure of data files. In COBOL, this action can
be done in a single operation. You can also define multiple sets of a field
within a single record (using the OCCURS clause), and a single record can be
structured according to different rules (using the REDEFINE clause). RDBMS
architecture does not support these “shortcuts.”.

For example, we can have the following COBOL data structure:

01 customer-record.

03 telephone-number.

05 country-code pic 999.

05 area-code pic 999.

05 local-number.

08 prefix pic 999.

08 subscriber-number pic 9999.

Such a data structure can be easily stored in a COBOL data file.
A programmer could also write an instruction that accepts screen input and
writes the telephone number directly to a variable. When using a relational
database, we first have to flatten this data structure, because relational
databases can use only a flat record buffer.

In the RDBMS philosophy, each field is an element in its own right, and
fields cannot be split or grouped into a level that gives the data an aggre-
gate meaning. Furthermore, an OCCURS is not directly supported. Extending

ISAM vs. RDBMS

Structure of
data files

OCCURS,

REDEFINE

7.1 Introduction and Differences from COBOL IS Files 229

the previous example to have telephone-number occurs 3 would be simple
when using data files. If we used a relational database, we would have to
define a separate table for the type TelephoneNumber.

Another problem is redefinitions, which are impossible in an RDBMS
architecture. They can be solved such that only one of the concurrently
incompatible definitions is used as the master reference to construct a
table.

The other important difference between ISAM and RDBMS is the
index-based versus cursor-based program flow. In COBOL, the developer
has a high degree of control and transparency over the physical location in
data files from which data is read from or to which it is written. In con-
trast, with most RDBMS systems, developers are unable to find out
where or how, physically, a record or any piece of information is stored on
a disk.

Furthermore, in a database, queries are the only way to retrieve
data. The concepts of recordsets, fetching, and queries are foreign to the
ISAM mindset, and COBOL applications that are retargeted from ISAM to
RDMBS have to introduce all of them somehow. Although technically
this may be easy to achieve, it remains a challenge to ensure that these
concepts can be implemented consistently and that the solution at
all times assures acceptable levels of performance of the programs, once
retargeted.

These issues can get tricky—two of them come to mind. The first regards
hopping of indexes (caused by two consecutive READs on different keys) or
the reversal of their direction (caused by using consecutive READ PREVIOUS
and READ NEXT operations). Although hopping or changing indexes in ISAM
is easy, within the RDBMS mindset we are generally confronted with
another cursor that must be active in another recordset each time a hop
takes place. Any retargeting solution will have to provide a standardized
answer to this so that performance is not too heavily affected or that the
resulting code is not too cumbersome to maintain.

In addition, when COBOL programs reverse the direction of their
queries, for instance, by scrolling upward in the data file after having
browsed downward, the choice of the target RDBMS system may influence
how easily the cursor’s ability to invert can be retargeted. Some modern
RDBMS products implement “scrolling cursors” that can change direction
within the recordset, but not all do. If the target RDBMS does not provide
support for scrolling cursors, the solution may, in the worst case, have
to rely on the definition of double recordsets in the database each time

Index-based vs.
cursor-based
program flow

Hopping of
indexes

“Scrolling
cursors”

230 Chapter 7 Databases

a query is made. The cursors in these double recordsets will always
scroll forward, but the order of the records in the recordset will have to be
opposite.

The second issue, of course, regards the ability of the retargeting solu-
tion to reliably produce recordsets that are minimal in size. For instance,
if a particular area of an application requires retrieving only one or two
records from a large table, creating queries that include the full table of
information in the recordset will cripple application performance. The
solution will have to find some way to generate the appropriate “where”
clauses in the resulting code that serve as the vertical qualification of the
query. Where this is impossible (as it most often is), it will be necessary to
devise a mechanism that allows full tables to be scanned without creating
whopping recordsets.

When applications are reengineered, this change from ISAM to RDBMS
can be automated with tools such as Anubex (www.anubex.com).

7.1.10 Exercises

Task 1 (30 minutes): Simple Relation

Consider a part of your environment (perhaps your own video collection)
and create a simple relational model with at least five tables.

Task 2 (10 minutes): Relations: A Matter of Understanding

By which points of view will the individual rows of a relation be arranged?

Task 3 (40 minutes): Transactions

To understand the problem of executing transactions in parallel, determine
the result from the transactions listed in Table 7.5 from both parallel and
serial executions. The initial value of each, A and B, is 40.

7.2 Data Modeling

Data modeling means working out the design of a database. In particular,
data modeling defines the tables a database should have and the fields

Designing a
database

7.2 Data Modeling 231

needed in these tables. It should also identify a key for each table. Consid-
ering that a database table can be compared with a single file in COBOL, it
may seem intuitive to expect that data modeling is an important issue in
COBOL too. The truth is that data modeling is more important in relational
databases, because they are expected to offer a large number of functions
that would have to be created individually when using independent files.
These functions are normally usable only provided that relationality is
maintained.

The following sections discuss data modeling. The first of these sections
introduces a data modeling example. The next section discusses potential
errors and a method to avoid these errors, based on this example. Finally,
we present the ER model, a representation form for data models.

7.2.1 Introduction

To model a database, we first have to look at the objects. The word model
in itself indicates that we are dealing with a way to map such objects. In
simple examples, it is easy to represent such objects and derive the appro-
priate tables from them. Normally, however, we have to deal with more
complex cases, so a disciplined approach is recommended to avoid errors.

Table 7.5 Example for transactions

Transaction T1 Transaction T2

Read A
Read A
A := 10
Write A

A := A + 10

Read B

B := A * 2
Read B
B := 10
Write B

Write A

Write B

232 Chapter 7 Databases

We begin with a simple example and derive a model from it. It is impor-
tant in the field of financial accounting to save an account together with its
postings. This Account has a unique Number and a Name. This account has a
set of postings, identified by a unique LedgerNumber. A ledger is a set of all
postings.

The principle of double bookkeeping says that a transaction must
always consist of two postings (one of the type Account and a second one
on a mirror account, the offset account). Consequently, a Posting has
an Amount and a short PostingText as well as the properties Account and
OffsetAccount. Postings have another relationship: They also contain
invoices and payments, and at least one Invoice belongs to each Payment.
Of course, this also holds true in the opposite sense. Figure 7.2 shows tables
modeling this situation.

At first glance, this model seems to have a perfect structure. However,
more careful study is necessary to determine whether it contains errors. We
distinguish three types of errors (anomalies):

� The Insert anomaly means that a record is inserted into the table more
than once—for example, if account 4711 in Table 7.6 existed several
times.

� The Delete anomaly occurs when data are not managed in neatly
divided tables. In our example, a delete anomaly would occur if an
account were deleted without deleting all the postings of this account.

� Before describing the Update anomaly, we have to mention another
problem of poor database modeling: redundancy. This means that the
same information exists several times, for example when an account
name exists both in the account table and in the postings table. Such a
redundancy is a drawback with regard to storage requirements. It can

Redundancy

There are three
types of

anomalies

Account Posting Ledger

Number
Name
Postings

LedgerNumberAmount
PostingText
OffsetAccount
Payment
Invoice

Figure 7.2 Modeling accounts.

7.2 Data Modeling 233

also cause update anomalies when a change to a record is not effected
in all occurrences, such as if a name is changed in the account table but
not in the posting table.

None of these anomalies should arise when inserting, changing, and
deleting records. To ensure that this will not happen, it is necessary to con-
sider a special approach to the design of a data model: normalization.

7.2.2 Normalization

A data model is subject to several steps during its development: the nor-
malization steps. Although the literature describes various approaches, the
most popular are the normalized forms. These normalized forms are all
required, because they build on each other.

The First Normalized Form

This first step lists all data elements to be included in the model. When the
first normalized form is reached, all obvious redundancies should have
been removed. Each data element should occur once and only once. More-
over, this first step identifies the keys for the respective data fields. These
are the data elements that provide unique identification of an object, that
is, an account number. Each table has a unique key, and it is common
to compose keys from several fields. This unique key is also called the
primary key.

To reach this state, we can use a simple table as our auxiliary tool. This
table lists all data elements and dependencies between them. This will be
an easy basis to determine the keys.

Table 7.6 Example for an Insert anomaly

Account Description

4000 Revenues

4711 First occurrence

4711 Second occurrence

.

234 Chapter 7 Databases

Table 7.7 shows how such a tool could look in our example. Both the
rows and the columns of this table list data elements.

Each X in this table denotes a dependence between data elements. For
example, the X in column 2 on the account number line means that the
account name (2) depends on the account number (1).

When allocating invoices and payments, it is more complicated to find
dependencies than when allocating fields of an account or posting. The
reason is that there is no direct dependence, because we cannot find a
unique invoice number from the payment number. Also, one payment
may cover several invoices. On the other hand, we cannot find a unique
payment number from an invoice number, because one invoice could be
settled by more than one payment. Both fields depend on one another in
a certain way.

This table meets the goals of the first normalized form. We found the
data elements. Each data element occurs only once, and each one has a key.

The Second Normalized Form

This step creates unique dependencies within one table. In general, the
data elements are divided into tables identified by dependencies. The rule
of thumb is that all data elements that are not keys have to fully depend on
a key, where emphasis is placed on “fully.” No attribute can depend on a
part of the key in terms of function.

The preceding steps produced the following tables:

Looking for
dependencies

within one table

Mutual
dependence

Table 7.7 Example for the first normalization

1 2 3 4 5 6 7 8 9

1 Account number X

2 Account name

3 Ledger number X X X X

4 Posting text

5 Posting amount

6 Posting account

7 Offset account

8 Invoice number X X

9 Payment number X X

7.2 Data Modeling 235

� The table Account with the key field AccountNumber and the data field
AccountName

� The table Postings with the key field LedgerNumber and the data fields
PostingText, PostingAmount, PostingAccount, and OffsetAccount

� The table Invoice/Payment with the two key fields InvoiceNumber and
PaymentNumber

If data fields occur more than once at this point, then this may not
necessarily be due to redundancy. The second occurrence could be a
foreign key to fields by the same name in other tables. The term foreign key
denotes attributes of a table that are defined as primary keys in another
table.

The Third Normalized Form

The third normalized form is aimed at dissolving any remaining (hidden)
redundancies. This step checks whether a field depends on more than one
key in a table. If so, the key and the field are moved to a separate table.

For example, if we want to save the persons working in a company
in a table with the structure StaffNumber, Name, DepartmentNumber, and
DepartmentName, this would not be the third normalized form, because
DepartmentName depends not only on the key StaffNumber but also on
DepartmentNumber. It would be necessary to remove this field from the table
and create a separate table with the key DepartmentNumber and the field
DepartmentName.

Our example with the accounts has no such dependencies, so it meets
the criteria for the third normalized form.

There are more normalized forms, but the third is normally sufficient.
Additional normalized forms are found in theory rather than in practice.
It may also be a good idea not to exaggerate the normalization process.
In fact, it can often be useful to leave redundant data to ensure that
processing speed is not unnecessarily slowed due to additional table
accesses.

A simple example is the Balance of an account. If we inserted such a data
field, it would be in conflict with the first normalized form. It would be
redundant, because the balance can be determined from the sum of all
posting amounts. Of course, it would also be inefficient, because all post-
ings would have to be visited in this frequently occurring calculation.

Primary and
foreign keys

Redundancy is
often accepted

for efficiency
reasons

236 Chapter 7 Databases

The Benefits of Normalization

We summarize the benefits of normalization as follows:

� It reduces redundancy by swapping redundant information to separate
tables.

� It reduces anomalies.

� It increases consistency.

� It saves storage space.

7.2.3 The Entity-Relationship Model

During the modeling process, a graphical representation of the model is
important. One possibility, UML, was presented in Section 6.1. This section
presents another possibility often shown in the literature: the entity-
relationship model, or ER model for short. This represents the model
built during the normalization steps. Basically, the ER model maps objects
(entities) to relationships (relations), or vice versa.

Objects and Relationships

The starting point is an object—in our example, Account or Posting. These
objects can be represented by rectangles (Figure 7.3).

In general, these objects have relationships—for example, postings
relate to an account, as Figure 7.4 shows.

Such a relationship could also be inverted: an account relates to post-
ings. The solution is a matter of taste rather than of correctness.

With regard to relationships, we also have to determine their degree. We
normally distinguish among three degrees of entity-relationships:

ER model
represents the

built model

1 : 1, 1 : N, N :M

Account Posting

Figure 7.3 The Account and Posting objects.

7.2 Data Modeling 237

� 1 : 1 (one-to-one): This relationship denotes a unique allocation. In our
case, this would mean that an account relates to exactly one posting,
and one posting relates to exactly one account. Of course, this is not the
case in the real world. A simple example would be where the relation
“manages” two objects, say, an employee and a project: Exactly one
employee manages exactly one project. It is important that zero rela-
tionships—employees who do not manage any project—not violate this
rule.

� 1 : N (one-to-many): This allocation is present in our example, because
one posting always relates exactly to one account (the posting account),
while on the other hand, several postings relate to one account.

� N : M (many-to-many): This relationship can best be explained by an
example based on the relationship “processes” between the objects
“employee” and “project.” An employee can work on several projects,
and a project can be handled by several employees.

The degree of a relationship is registered in the ER model. The relationship
that an account can consist of N postings and a posting can be allocated to
exactly one account (based on the posting account) can be represented as
shown in Figure 7.5.

In addition to these fundamental relationships, we can identify two
special relationships: the is-a relationship and the has-a relationship. Also
called generalization and aggregation, respectively, these were introduced
in Section 6.1 in connection with object-oriented design. They play an
important role in the design of databases.

Generalization

Generalization is synonymous for an is-a relationship, which means that
one object is a specialization of another. In object-oriented design, this

Account belongs to Posting

Figure 7.4 Relationship between Account and Posting.

238 Chapter 7 Databases

means that one class is derived from another. Figure 7.6 shows how gener-
alization can be represented in the ER model.

Aggregation

Aggregation is synonymous for a has-a relationship; it occurs when an
object is virtually a property of another. In object-oriented design, this is
an attribute. Figure 7.7 shows how aggregation can be represented in the
ER model.

Account belongs to Posting

1 N

Figure 7.5 Representation of a 1 : N relationship.

Contributor

Is-a

Worker FreelancerEmployee

Figure 7.6 Representation of a generalization in the ER model.

7.2 Data Modeling 239

It is worth mentioning that UML (see Section 6.1.4) has been more
popular recently than the ER model to represent a database model.

7.2.4 Views

Views are a concept used to see specific parts of a relationship instead of
the entire relationship. Views are a virtual dynamic table, containing a
choice of records from other tables. This selection is done when a relevant
view is accessed, so the user always works with the current values of rela-
tionships stored in the database. The major benefits of views are as follows:

� They simplify complex data structures and the database programming
job itself, because they allow division into simpler parts.

� They represent data under different points of view; for example,
columns of basic tables can be renamed without the need to change the
definition of that basic table.

Views allow us to
focus on specific

parts of a
relationship

Posting

Has-a Has-a

DateAmount

Figure 7.7 Representation of an aggregation in the ER model.

240 Chapter 7 Databases

� They protect data within tables, because they limit the access to spe-
cific rows and columns of a table. This can be configured so that a user
is authorized to access a specific view but not the basic table.

7.2.5 Other Particularities

NULL Values

A NULL value is a special value, or a sort of empty attribute, that can be per-
mitted for a column. This could be useful, for example, for a record that
lacks information about an attribute, such as when a person is added to
a table and the phone number is unknown. In this case, the column can
be filled with a NULL value. However, this is possible only if the column
is configured during database design to accept NULL values (see also
Section 7.3.1).

In the database query language we introduce in Section 7.3, the keyword
NULL can be used to test for a value.

Index

How fast a data value (that is, a single row in a table) can be accessed
depends largely on whether access is by a key. Using a key to access a data
value, such as an account number, is generally fast. The same access using
a nonkey attribute, such as by account name, can take much longer,
because all records have to be read before the result is output, similar to
unsorted lists.

This problem can be avoided by creating an index to this attribute (or
to the attribute combination). Such indexes are created similarly to index-
sequential files in COBOL (*.idx). This affects only the efficiency, not the
query structure. In contrast to COBOL, additional indexes can be created
as needed, even after the fact.

Surrogate

A surrogate is the solution for searching by an appropriate key. As we know,
each table should have a key, and this key should be short and easy to
understand. Unfortunately, this is not always the case. In fact, we often have
to build keys from a combination of several attributes to ensure unique
access.

NULL stands for
an undefined

value

An index
increases

execution speed

Examples for
surrogates: ISBN,

EAN

7.3 Introudction to SOL 241

In this case, it an artificial key, or surrogate, is useful. Such a surrogate
can be something as simple as the sequential numbering of objects. An
international standard book number (ISBN) or European article number
(EAN) are examples of such surrogates.

7.2.6 Exercises

Task 1 (100 minutes): Normalization

Create an ER model for the following task. Assume a payroll accounting
system calculates salaries for the staff of a company. Each employee has a
unique number, a name, and various other general information, including
date of birth and so on. Moreover, the employees are divided into five cat-
egories, determined by their salaries. For example, the employees of cate-
gory 1 are paid $2000 and those of category 2 are paid $2500. In addition,
each employee is assigned to exactly one department, identified by a
unique number.

Solve this task based on the normalization steps introduced earlier in
this chapter and define the attributes for which an index should be created.

7.3 Introduction to SQL

Structured Query Language, or SQL, is a set-oriented language used to work
with databases. This language is divided into three parts, according to
various tasks:

� Data definition (DDL = Data Definition Language)

� Data manipulation and queries (DML = Data Manipulation Language)

� Data control and data security (DCL = Data Control Language)

This section describes the most important commands of the language,
based on the data model created in the previous sections. First, we discuss
how tables are created and how values are inserted. Then we describe
instructions, such as SELECT, to evaluate such tables. Finally, we see how
this job can be optimized by creating an index or a view.

SQL: Structured
Query Language

242 Chapter 7 Databases

7.3.1 Creating Tables

To create a table, we use the CREATE TABLE instruction. Subsequently, we
state a name for the table and then the data elements within parentheses.
For each data element, we also state the type (as in a normal record defi-
nition). Table 7.8 lists the available data types, but they depend on the
selected database. Special data types, such as image or sound, are impor-
tant for Internet applications.

We also specify keys and add them to our table definition. The keyword
PRIMARY KEY (list of attributes) is used to define the attributes that will
serve as primary keys. Furthermore, we can specify that an attribute should
serve as a foreign key. This is useful because it allows the database to check
whether the value actually occurs as a key in the foreign table.

In this case, we have to use the definition FOREIGN KEY (list of attrib-
utes) REFERENCES TableName. TableName stands for the name of that table,
where the foreign key is used as a primary key. In our example, the table
Posting contains PostingAccount and OffsetAccount as foreign keys, which
are used as primary keys in the table Account. To ensure that an attribute is
not allowed to take a value of NULL, we have to use the keyword NOT NULL
and add it to the end of the attribute definition.

Accordingly, the tables designed in Section 7.2.2 could be defined as
follows:

CREATE TABLE

Keys must be
defined

Table 7.8 The most important data types (using Oracle as an example)

Data type Description

VARCHAR2 (size) String with variable length and a maximum length specified
by size (size <2000)

CHAR (size) String with maximum length of 255 but a fixed length
specified by size

LONG String with variable length of 231 - 1 characters (for text)

CHAR One character

NUMBER (p, s) Number with maximum p digits, including s places before the
decimal point

NUMBER (p) Integer with p places

DATE Date

RAW (size) Binary data with a byte length specified by size (size <256)

7.3 Introudction to SOL 243

CREATE TABLE Account (

AccountNumber NUMBER (9) NOT NULL,

AccountName CHAR (30),

PRIMARY KEY (AccountNumber)

);

CREATE TABLE Postings (

LedgerNnumber NUMBER (9) NOT NULL,

PostingText CHAR (30),

PostingAmount NUMBER (18, 2),

PostingAccount NUMBER (9),

OffsetAccount NUMBER (9),

PRIMARY KEY (Number),

FOREIGN KEY (PostingAccount) REFERENCES Account,

FOREIGN KEY (OffsetAccount) REFERENCES Account,

);

CREATE TABLE NoOfInv (

InvoiceNumber NUMBER (9) NOT NULL,

PaymentNumber NUMBER (9) NOT NULL,

PRIMARY KEY (InvoiceNumber, PaymentNumber),

FOREIGN KEY (InvoiceNumber) REFERENCES Postings,

FOREIGN KEY (PaymentNumber) REFERENCES Postings

);

It is also possible to modify tables or delete them later. More specifically,
we can use ALTER TABLE TableName ADD (ColumnName Type) to add a new
column or ALTER TABLE TableName MODIFY (ColumnName Type) to add a new
column or modify an existing column. Adding columns is normally easy,
but we have to pay attention to the existing values when modifying the type
of a column. We can delete an entire table by using DROP TABLE TableName.

7.3.2 Inserting and Deleting Records

The instructions INSERT and DELETE can be used to insert or delete values,
respectively. The use of these commands is easy:

INSERT INTO Account VALUES (2700, "CASH")

INSERT INTO Account VALUES (2800, "BANK")

INSERT INTO Account VALUES (4000, "REVENUES")

Tables can be
modified after

the fact

244 Chapter 7 Databases

INSERT INTO Account VALUES (2500, "TAX")

INSERT INTO Posting VALUES (1, "test posting", 1000, 4000, 2700)

INSERT INTO Posting VALUES (2, "tax", 5030, 2500, 2700)

INSERT INTO Posting VALUES (3, "revenues", 27000, 4000, 2700)

INSERT INTO Posting VALUES (4, "tax", 5030, 2500, 2700)

DELETE FROM Account WHERE number = 2800

We can also use SELECT instructions to insert several objects, such as a
part from another table. As mentioned earlier, SELECT generally selects a set
of records from the data repository. This issue is discussed in the following
sections.

7.3.3 Functions

SQL allows you to use various predefined functions, such as to calculate the
sum of a column or an average value. Table 7.9 shows these functions.

The average value of the sum of all postings could be calculated by
using AVG (amount). These expressions could also be used within other
SQL instructions; for example, SELECT * FROM Posting WHERE Amount > AVG
(amount) determines all postings with a posting amount larger than the
average.

In addition to these operations that can be applied to table columns,
numerous other functions are available. Table 7.10 explains the most
important ones.

Also, all expressions known from Delphi or Java can be created. Besides
the arithmetic operations mentioned earlier, Boolean expressions, such as

Table 7.9 Predefined SQL functions

Function Meaning

COUNT Number of values

SUM Sum of values

AVG Average value

MAX Largest value

MIN Smallest value

VARIANCE Variance

STDDEV Standard deviation

7.3 Introudction to SOL 245

the comparative operations (=, <>, <, >, <=, >=) or logical operators (NOT, AND,
OR), can also be used.

The operators IN and BETWEEN are designed to work with sets. IN (list
of values) can be used to check whether a value is present in a certain set:
AccountNumber IN (4000, 4020, 4060). BETWEEN ComparativeValue1 AND Com-
parativeValue2 can be used to check whether a value is within a certain
range: AccountNumber BETWEEN 4000 AND 4050.

A comparative operator, LIKE, compares against patterns; it is particu-
larly useful for strings. A pattern is a character string, where the characters
“%” and “_” have a special meaning. “%” stands for a string composed of
an arbitrary number of characters that may include an empty sequence of
any characters, whereas “_” stands for a single character. This allows us to
formulate comparisons such as "MARKUS" LIKE "M%" or "MARKUS" LIKE
"MAR_U%". Both comparisons would return a true result.

7.3.4 SELECT Instruction

As mentioned earlier, this instruction serves to read data from the database.
The result is a set of data structured like a table. We will explain this step
by step in the following section.

A Simple SELECT Instruction

The simplest form of a SELECT instruction could look like this:

SELECT * FROM Account

IN and BETWEEN

LIKE

Table 7.10 More useful functions

Function Meaning

+ - * / Basic arithmetic operations

POWER (M, N) Calculating powers

ABS (N) Absolute value

SQRT (N) Square root

LOWER (S) Convert to lowercase letters

UPPER (S) Convert to uppercase letters

SUBSTR (S1, S, N) Substring function

SYSDATE Current date and time

USER User name

246 Chapter 7 Databases

The result will return the table of all accounts, which means that all records
and all fields will be selected. This result can be limited both in terms of
records and in terms of fields. If we list one or several attributes instead of
an asterisk, a table containing only those columns would be created. The
code line

SELECT postingText, postingAmount FROM posting

would return the result shown in Table 7.11.
To avoid having lines with the same contents occur more than once,

such as "Tax", 5030 in this example, we can use the keyword DISTINCT:

SELECT DISTINCT PostingText, PostingAmount FROM Posting

However, the SELECT instruction can be used to select not only attrib-
utes of a table but also other values, for example, calculations such as the
double of an amount (PostingAmount * 2). Such “virtual” columns can also
be output by a replacement or alias name, using the keyword AS. This name
can then be addressed in subsequent clauses. Such a definition could look
as follows:

SELECT DISTINCT PostingText, PostingAmount * 2 AS DAmount FROM Posting

The WHERE Clause

Continuing on this basis, we can show more possibilities for selecting spe-
cific records. For example, WHERE can be used to select rows—records that
meet a certain criterion, such as

DISTINCT

Table 7.11 Result from a SELECT instruction with a column
limitation

PostingText PostingAmount

Test posting 1000

Tax 5030

Revenues 27000

Tax 5030

7.3 Introudction to SOL 247

SELECT DISTINCT PostingText, PostingAmount FROM Posting

WHERE PostingAmount > 5000

would supply the result shown in Table 7.12.
Only the attributes Text and Amount would be displayed for postings with

a PostingAmount larger than 5000.
All functions and operators discussed in Section 7.3.3 could be used in

this WHERE clause.

The ORDER BY Clause

Another advantage of databases is that the selected data can be easily
sorted by appending the ORDER BY clause. In this case, the resulting set is
determined by the given criteria in sorted order. The syntax is ORDER BY
AttributeName. If the values of the attribute should not be unique, several
attributes, separated by commas, can be specified. The sort order can be
by the first attribute in case of equality. To sort in descending order, we can
write the keyword DESC at the end. Sorting accounts by AccountName could
look like this:

SELECT * FROM Account ORDER BY AccountName

The GROUP BY Clause

The GROUP BY clause can be used to group the result by attributes. As a
simple example, the postings could be grouped by PostingAccount:

SELECT PostingAccount, MAX (PostingAmount), COUNT (*)

FROM Posting

GROUP BY PostingAccount

The result is grouped by the criterion PostingAccount. The output also
includes the maximum posting amount per group and the number of
postings per group. Table 7.13 shows the result.

Sorting records

Grouping with
GROUP BY

Table 7.12 Result from a SELECT instruction with WHERE
clause

PostingText PostingAmount

Tax 5030

Revenues 27000

248 Chapter 7 Databases

The HAVING Clause

Similar to the WHERE clause, which can be used to limit the query result to
lines that meet a certain condition, we can limit a selection of groups by
using the HAVING clause. This ensures that only groups meeting this condi-
tion are included in the resulting set. For our example, the group with a
maximum amount of 27000 will be excluded if we use the following SELECT
instruction:

SELECT PostingAccount, MAX (PostingAmount), COUNT (*)

FROM Posting

GROUP BY PostingAccount

HAVING MAX (PostingAmount) < 27000

We could also arbitrarily combine the clauses; the following instruction
would be feasible:

SELECT PostingAccount, MAX (PostingAmount), COUNT (*)

FROM Posting

WHERE PostingAmount < 20000

GROUP BY PostingAccount

ORDER BY MAX (PostingAmount)

7.3.5 Set Operations

As mentioned in the introduction, SQL is a set-oriented query language, so
set operations obviously play a major role. The most important operation
is a join, which joins various tables (or one table to itself). Essentially, this
operation maps the Cartesian product of these tables: all combinations
possible according to the query will form the resulting set. A join operation
can be formulated by means of a SELECT instruction, but the FROM clause will
list several tables, separated by commas. For instance, the tables Posting
and Account could be joined as follows:

HAVING

Joining tables

Table 7.13 Result from the GROUP BY clause

PostingText MAX (PostingAmount) COUNT (*)

Tax 5030 2

Revenues 27000 2

7.3 Introudction to SOL 249

SELECT Account.AccountNumber, AccountName, PostingAmount, OffsetAccount

FROM Account, Posting

In the preceding example, with equally named attributes from different
relationships, we can apply the dot notation—TableName.AttributeName—
to create uniqueness, just as in a conventional programming language.
Table 7.14 shows the result.

Such a join operation is useful particularly when only table rows
that somehow relate to each other are joined, as in the following SELECT
instruction:

SELECT Account.AccountNumber, AccountName, PostingAmount, OffsetAccount

FROM Account, Posting

WHERE Account.AccountNumber = PostingAccount

This example joins only accounts with postings that have an
Account.AccountNumber equal to PostingAccount. PostingAccount from the
table Posting is the foreign key. Table 7.15 shows the result.

A special type of join is the outer join. To implement an outer join,
we select not only all records of both tables that meet the WHERE clause but
additional records, depending on the outer join used:

Outer join

Table 7.14 Result from a simple join

Account.AccountNumber AccountName PostingAmount OffsetAccount

2700 CASH 1000 2700

2700 CASH 5030 2700

2700 CASH 27000 2700

2700 CASH 5030 2700

4000 REVENUES 1000 2700

4000 REVENUES 5030 2700

4000 REVENUES 27000 2700

4000 REVENUES 5030 2700

2500 TAX 1000 2700

2500 TAX 5030 2700

2500 TAX 27000 2700

2500 TAX 5030 2700

250 Chapter 7 Databases

� LEFT OUTER JOIN: All records of the left table are evaluated, even if this
means that some records may not be linked with the right table.

� RIGHT OUTER JOIN: Same as LEFT OUTER JOIN, except that all records of
the right table are evaluated.

� FULL OUTER JOIN: All records of both tables are evaluated, regardless of
whether the links between the tables can be resolved.

Unfortunately, various database systems use different notations for
outer joins, so we will not describe this approach in detail.

Finally, we should note that all usual set operations are available:

� Unifying sets: UNION

� Calculating the intersection of sets: INTERSECT

� Calculating the difference of sets: MINUS

7.3.6 The UPDATE Instruction

This section begins a new issue within our brief SQL introduction, describ-
ing how single lines in a table can be modified. More specifically, the
column values of the entire table or selected lines can be set to a new value
if they meet a specific criterion. For this purpose, we use the UPDATE instruc-
tion. This instruction has the following basic structure: UPDATE TableName
SET ColumnName = Value. If only selected lines are to be modified, this
can be specified by using a WHERE clause. For example, we could set the
PostingAccount of all postings that include the text "Tax" to a value of 5040
with the following UPDATE instruction:

UPDATE can be
used to modify

specific lines of a
table

Set operations

Table 7.15 Result from a join using PostingAccount as the secondary key

Account.AccountNumber AccountName PostingAmount OffsetAccount

4000 REVENUES 1000 2700

4000 REVENUES 27000 2700

2500 TAX 5030 2700

2500 TAX 5030 2700

7.3 Introudction to SOL 251

UPDATE Posting

SET PostingAccount = 5040

WHERE TEXT = "Tax"

7.3.7 Other Instructions

Views

We introduced views in Section 7.2.4; such views can be defined by using
access operations. For example, the following instruction implements a
view:

CREATE VIEW ViewName AS SELECT instruction

This means that all the options of the SELECT instruction are available. For
example, to create a view, SelectPosting, that displays only the fields Post-
ingText and PostingAmount of all postings with a PostingAmount larger than
5000, we can write the following instruction:

CREATE VIEW SelectPosting AS

SELECT DISTINCT PostingText, PostingAmount FROM Posting

WHERE PostingAmount > 5000

This view can then be used to continue working as if we were using a
normal table, except for data manipulation operations. Operations that
manipulate data would be possible only if the records of the view to be
modified (insert or delete records) can be mapped onto a basic table. In
this case, the view is not allowed to contain any constructs such as joins,
set operators, GROUP BY clauses, aggregation functions, or the DISTINCT
operator.

Index

The meaning of an index in a database was explained in Section 7.2.5. This
section introduces the CREATE INDEX instruction, which is used to create
such an index. Although this instruction is not included in the SQL stan-
dard, most databases use it more or less the same way. An index, name, is
defined in a table, tab, with columns, listOfColumns, by the following
instruction: CREATE INDEX name ON tab (listOfColumns). For example,
creating an index name to the account name could look like this:

Views focus on a
selected part

CREATE INDEX

252 Chapter 7 Databases

CREATE INDEX name ON Account (AccountName)

If the attribute is a unique key, instead of using CREATE INDEX, we can
use the keyword CREATE UNIQUE INDEX to achieve additional optimization.
We can append the keywords ASC or DESC to sort the index in ascending or
descending order. This is important for sorted data output where the sort
criterion begins with the index column. Such an index can be removed later
by specifying DROP INDEX name.

Granting Privileges

As mentioned in the introduction of this chapter, a major advantage of
databases is that they facilitate configuration of privileges for users to
access tables. This ensures that unauthorized users cannot access data.
Such privileges can be configured exactly so that a certain user can evalu-
ate certain data, for example, but cannot create new records (has only read
access).

The user who creates a table has full access capabilities to that table. If
other users are authorized to access that table, then we have to specifically
grant appropriate privileges. Such privileges are granted by the GRANT
instruction. More specifically, these privileges can be granted both on
tables and on views. The instruction can be written in the form GRANT priv-
ilege ON tab TO user. Table 7.16 shows the capabilities a user will obtain
from the privilege option.

For example, the following GRANT instruction grants a user identified by
the user name MHK001 read privileges for the table Account:

GRANT SELECT ON Account TO MHK001

Unique key is
identified by

UNIQUE

GRANT instruction

Table 7.16 Common privileges

Privileges Grants the right to

SELECT Select records

INSERT Insert new records

UPDATE Modify columns in a table

DELETE Delete records

ALTER Change the structure of a table

INDEX Create an index

ALL Global access (sum of all privileges)

7.3 Introudction to SOL 253

By appending the keywords WITH GRANT OPTION, we authorize this user
to grant his or her privileges to other users. Of course, previously granted
privileges can be revoked: REVOKE privilege ON tab TO user.

7.3.8 Exercises

Task 1 (20 minutes): Creating Tables

Use the solution from task 1 in Section 7.2.6 to formulate SQL instructions
that define the required tables.

Task 2 (100 minutes): Creating Queries

Using the tables you created in task 1, formulate SQL instructions to supply
the following results:

1. A list of all employees

2. All employees, including number, name, and date of birth, sorted by
name

3. All employees of department number 10

4. All employees of department number 10, sorted by date of birth

5. All employees, including number, name, and salary

6. The highest, lowest, and average salaries of all employees

7. The highest salary of department number 10

8. All employees of department number 10, sorted by salary in descend-
ing order

9. A list of all employees whose names begin with "Kn"

10. All employees whose date of birth is not known

11. The highest salary category for each department

12. All departments where the pay is at least salary category 3

13. An index to the name of an employee

Privileges can be
passed on to

other users

254 Chapter 7 Databases

7.4 SQL: Program Access

This section shows how we can access a database from within a program.
As already mentioned, many organizations use relational databases rather
than index-sequential files to store data. Following this trend, new versions
of COBOL also offer SQL program access, where SQL is “embedded” in
traditional COBOL code using syntax-specific database operations. We
present a simple COBOL SQL example, followed by sections showing how
Delphi and Java manage the SQL program access.

. . .

DETAIL-LINE

05 DL-NAME PIC X(20).

05 DL-NUMBER PIC 9(9).

* defining variables from the table

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-NAME PIC X(20).

01 HV-NUMBER PIC 9(9).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISON.

MAIN CONTROL.

* declaring cursor for holding a set of data from the table

EXEC SQL DECLARE C CURSOR FOR

SELECT NAME, NUMBER FROM ACCOUNT

END EXEC.

* open the cursor

EXEC SQL OPEN C END-EXEC.

* read the data

PERFORM UNTIL SQLCODE NOT = 0

EXEC SQL FETCH C

INTO :HV-NAME, :HV-NUMBER

END EXEC

MOVE HV-NAME TO DL-NAME

MOVE HV-NUMBER TO DL-NUMBER

DISPLAY DETAIL-LINE

END-PERFORM.

Embedded SQL

7.4 SOL: Program Access 255

EXEC SQL CLOSE C END-EXEC.

STOP RUN.

Because database access is an important issue, class libraries normally
provide appropriate functions for this purpose. Using these functions, it is
relatively easy to embed the SQL instructions presented in the previous sec-
tions in a program. Because they are embedded, we often speak of “embed-
ded SQL.”

In Delphi, to be able to use SQL functions, we have to use the unit
DBTables.

In Java, to be able to use SQL functions, we have to import the package
java.sql.

Access to a database from within a program is based on the following
scheme:

1. Set up a connection to the database.

2. Send an SQL instruction to the database.

3. Allocate the returned result to local variables, which can then be
evaluated.

The next three sections are built on this general scheme, describing each
in more detail.

7.4.1 Setting Up a Connection

In the first step, a database driver is used to establish a connection to an
existing database. The result is a pointer to this database, which can be
accessed from within the program at any time. The structure of this con-
nection is simple but depends largely on the class library used. We briefly
describe our two Delphi and Java examples.

In Delphi, an object of the class TDatabase must be used to connect to a
database. This object must be created by using Create, where the global
variable session, supplied by the unit DBTables, can be passed as a param-
eter. Otherwise, we would have to set up a separate database session (object
of the class TSession).

Subsequently, a few attributes of this object have to be initialized. The
most important attributes are databaseName and driverName, where data-
baseName defines the name of the database. This is necessary because

Delphi: DBTables

Java: java.sql

Database drivers

Delphi

The Intrabase
database is

available on the
book CD

256 Chapter 7 Databases

names are needed for later queries on this database. driverName defines the
type of database (Oracle, Intrabase, Sybase, and so on) In the case of Intra-
base, we have to use a driver called INTRBASE.

To prevent the program execution from being interrupted by a database
login, we have to set the attribute loginPrompt to FALSE. But first, we have
to specify the user and password information that should be supplied to
access the database.

For this purpose, we can use Params.Add(s) to set the required parame-
ters, where s means that a character string has to be passed, as we can see
in the following source code fragment. Similarly, we have to set a parame-
ter, SERVER NAME, to specify where the database is located—in our example,
in the file FinAcct. Finally, we need to set the attribute connected to TRUE to
ensure that the database connection is active. These steps can be seen in
the following source code fragment:

var db: TDatabase;

. . .

db := TDatabase.Create(session);

db.driverName := 'INTRBASE';

db.name := 'FinAcct';

db.databaseName := 'FinAcct';

db.Params.Add('USER NAME=SYSDBA'); // Attention: no blanks!!

db.Params.Add('PASSWORD=masterkey');

db.Params.Add('SERVER NAME=FinAcct');

db.loginPrompt := false;

db.connected := true;

In Java, a connection of the type Connection can be created simply by
calling the method DriverManager.GetConnection (name, user, pwd), where
name is the name of the database. This should have a structure similar
to jdbc:borland:local:DatabaseName. The first part, jdbc:borland:local,
denotes the protocol and subprotocol used to establish the connection.
Naturally, we first have to install the desired driver, so we use a call of
the type Class.forName "com.borland.datastore.jdbc.DataStoreDriver") up
front.

This example uses a database driver for DataStore. If the database is
not present locally in the client but is on a database server, as is normally
the case, then instead of jdbc:borland:dslocal, we would use the start

Java

7.4 SOL: Program Access 257

URL jdbc:borland:dsremote, followed by the file name and the computer
name. We could also use other database drivers, for example,
oracle.jdbc.driver.OracleDriver for Oracle.

Because databases support an extensive system for granting and revok-
ing user privileges, the user name user, to obtain access to the database,
and the password pwd should also be specified. The following example
shows how this could look:

Class.forName("com.borland.datastore.jdbc.DataStoreDriver");

String file = "FINACCT.jds";

String url = "jdbc:borland:dslocal:" + file;

Connection db;

db = DriverManager.getConnection(url, "SYSDBA", "masterkey");

When the user finishes the session, the database connection could then
be closed as follows:

To indicate in Delphi that the connection to the database is no longer
used, the attribute connected is set to FALSE. Subsequently, the database
object can be released by calling the destructor Free.

In Java, the connection to the database can be closed by calling the
method close: dbConn.close().

7.4.2 Sending SQL Instructions to the Database

When executing an SQL instruction, it is necessary to call a method
in which a character string that includes the SQL instruction is passed
as a parameter. In general, class libraries offer various options for this
purpose, and we introduce the most important ones in this section.
First, it is important to distinguish whether an SQL instruction returns
a result. If it does, this result has to be loaded in separate result variables
and evaluated.

If the SQL instruction to be executed does not return a result, such as
an INSERT instruction, this can be implemented by calling the method
Execute (statement, nil, false, nil), where statement passes the desired
SQL instruction as a character string. The other parameters specified in this
statement to accept nil or false can be used to create a cache or to pass
other properties. This is normally not necessary; see your Delphi docu-
mentation for further details.

Delphi

Java

SQL instruction
is a parameter

of a method

Delphi: Execute

258 Chapter 7 Databases

As an alternative, we can use an object of the class TQuery. These objects
are able to encapsulate a query and are created by Create(nil). For a
Windows application (see Chapter 8), we can pass the relevant component
instead of nil. To specify the database used, the attribute databaseName has
to be set accordingly, where the name is the one given when the connec-
tion to an object of the class TDatabase was established.

In this respect, it is important to ensure that the attribute sql contains
the query itself. First, this attribute has to be initialized by using the method
Clear; subsequently, we can use the method Add(s) to pass a character
string, s, which contains the query.

When we are done with this preparation, we can run the SQL query.
Depending on whether (for example, a SELECT instruction) or not (for
example, an INSERT instruction) a result set is calculated during that query,
either the method Open or ExecSQL has to be called for that purpose. We can
see an example for the former case in the following source code fragment:

var s: String; q: TQuery;

. . .

s := 'SELECT * FROM ACCOUNT';

q := TQuery.Create(nil);

q.databaseName := 'FINACCT';

q.sql.Clear; // initialize

q.sql.Add(s);

q.Open; // execute, if Select; otherwise ExecSQL

To run an SQL query in Java, we have to create an object of the
class Statement. We can do this by calling the functional method db.
createStatement(), where db identifies the database to be queried. To run
the query, we call the method executeQuery(s) or executeUpdate(s), where
s is a character string containing the SQL query. Which method we use
depends on whether the query will produce a result, that is, whether a
SELECT instruction is executed or not, such as with an INSERT or DELETE
instruction.

The former case runs executeQuery and returns an object of the type
ResultSet. This type is discussed in the next section. If no result is expected,
executeUpdate is executed, which returns an integer value for the number
of lines in the result. The following source code fragment shows an example
for the former case:

Java: Statement

7.4 SOL: Program Access 259

String s = "SELECT * FROM ACCOUNT";

Statement q = db.createStatement();

ResultSet res = q.executeQuery(s);

7.4.3 Evaluating the Result

For queries that produce a result set—an SQL statement—it is intuitively
understood that one will want to process and use this result. Normally, this
requires reading the result set from beginning to end. The most difficult
part of this is how to access one element in this result set, because we nor-
mally deal with a wide range of data types (account, posting, and so forth)
A simple variant reads column by column, where each column value is
loaded into a special type-independent object, which is then converted
into the required type for further processing.

The query object q we created in the previous section can now be eval-
uated. The entire resulting data set is iterated by setting a virtual pointer to
the first object. This virtual pointer is set by calling the method First. As
long as the end of the data set is not reached (in this case, this would
happen when the attribute eof is TRUE), the record can always be evaluated,
and the method Next can set the virtual pointer to the next object.

At this point, the problem mentioned earlier regarding evaluation of the
record arises, because it could be an arbitrary object with any data struc-
ture. One solution is to do a conversion, and an even simpler solution is to
read the individual attributes. The method FieldByName ('AttributeName')
can be used to maintain the column value in an object of the class TField.
This is a special class that can accept an arbitrary column value and convert
it to a standard type by calling methods such as AsInteger() or AsString().
The following source code fragment shows how the result set can be output
line by line:

q.First;

while not q.eof do begin

Write(q.FieldByName('Number').AsInteger());

Write(' ');

WriteLn(q.FieldByName('Name').AsString());

q.Next; // eof is true, if Next fails

end;

The result set
has to be read
from beginning

to end

Delphi

260 Chapter 7 Databases

If the names of the attributes—of the columns—are not known during
development, because they will be finalized at runtime, a list of attributes
can be created by calling the method GetFieldNames(list). list has the type
TStrings, which is a list of character strings offered by the Delphi class
library. Subsequently, the individual character strings can be accessed by
accessing the attribute strings, a simple array (starting with index 0). The
attribute count denotes the number of strings.

In Java, the result set yielded in the previous section, res, can easily be
evaluated by iterating line by line. At the beginning, a virtual pointer is
placed immediately before the first line. The method next() will then jump
to the next line (which is the first in the first call). This method returns the
value FALSE as soon as no more iteration is possible.

As mentioned earlier, another problem can arise when evaluating a
record, because the record could be any object with an arbitrary data struc-
ture. One solution would be a conversion, and an even simpler solution
would be to read the attributes one by one. By calling methods such
as getInt(s) or getString(s), we can obtain a column value, where the
column name has to be passed in s. However, instead of the column name,
we could also pass the column index (Attention! It begins with 1).

This is possible because these methods were overwritten, and they can
process integer values as parameters. Depending on the expected data
type, we have to call the desired get method. For example, the following
source code fragment shows how the result set can be output line by line:

while (res.next()) {

System.out.print(res.getInt("NUMBER"));

System.out.print(" ");

System.out.println(res.getString("NAME"));

}

If column names are not known at development time, then a Result-
SetMetaData object with the number of columns, data types, and other
properties can be created by calling the method getMetaData(). Detailed
information about the structure of this data type is included in the Java
class library documentation.

Java

ResultSetMetaData

7.4 SOL: Program Access 261

7.4.4 Summarizing Example

Listings 7.1 and 7.2 show the full Delphi and the Java examples.
Both the database object and the query object have to be released to

complete the example.

program ExampleAccount;

uses

Forms, DBTables, SysUtils;

var

ch: Char;

s: String;

db: TDatabase;

q: TQuery;

begin

// ——— connect to database

db := TDatabase.Create(session);

db.driverName := 'INTRBASE';

db.databasename := 'FINACCT';

db.Params.Add('USER NAME=SYSDBA'); // Attention: no blanks!!

db.Params.Add('PASSWORD=masterkey');

db.Params.Add('SERVER NAME=finacct');

db.loginPrompt := false;

db.connected := true;

// ——— execute SELECT instruction

s := 'SELECT * FROM ACCOUNT';

q := TQuery.Create(nil);

q.databaseName := 'FINACCT';

q.Sql.Clear; // initialize

q.Sql.Add(s);

q.Open; // execute, if Select; otherwise ExecSQL

// ——— evaluate result set

q.First;

while not q.eof do begin

Write(q.FieldByName('Number').AsInteger);

Write(' ');

WriteLn(q.FieldByName('Name').AsString);

q.Next; // eof is true, if Next fails

end;

Listing 7.1.
Example for

the Delphi
Implementation

of a Database
Access

262 Chapter 7 Databases

// ——— finalizing actions

q.Close;

q.Free;

db.connected := FALSE;

db.Free;

ReadLn(ch); // to ensure that the result screen is not deleted

end.

Potential Java exceptions must be caught, as explained in Section 5.5.1.

import java.io.*;

import java.sql.*;

class ExampleAccount {

public static void main (String args[]) {

try {

// ——— connect to database

Class.forName("com.borland.datastore.jdbc.DataStoreDriver");

String file = "FINACCT.jds";

String url = "jdbc:borland:dslocal:" + file;

Connection db

db = DriverManager.getConnection(url, "SYSDBA", "masterkey");

// ——— execute SELECT instruction

String s = "SELECT * FROM ACCOUNT";

Statement q = db.createStatement();

ResultSet res = q.executeQuery(s);

// ——— evaluate result set

while (res.next()) {

System.out.print(res.getInt("NUMBER"));

System.out.print(" ");

System.out.println(res.getString("NAME"));

}

q.close();

db.close();

}

catch (SQLException e) {

System.out.println("Exception: " + e.getMessage());

e.printStackTrace(); // outputs detailed information

}

catch (ClassNotFoundException e) {

Listing 7.2.
Example for the

Java
Implementation

of a Database
Access

7.4 SOL: Program Access 263

e.printStackTrace();

}

}

}

7.4.5 Exercises

Task 1 (90 minutes): Creating a Database

Read the corresponding instruction part of your database system docu-
mentation and create a database, including the tables designed for task 1
in Section 7.2.6.

Task 2 (90 minutes): Accessing the Database

Write a program that accesses the database designed in task 1. Your
program should read a SELECT instruction and output the results.

The Intrabase
database system

is available on
the book CD

This Page Intentionally Left Blank

8
Graphical User Interfaces

The previous chapters introduced the world of object-oriented program-
ming and databases. In closing this part, we will briefly discuss graphical
user interfaces, because they are an absolute must for new programs today.
In contrast, older COBOL programs have mostly the conventional textual
interface, because they have a terminal origin.

This chapter shows that the difference between the two types of user
interfaces is that event-oriented programming requires not only more
complex programming and the use of some classes but a totally differ-
ent approach. Newer COBOL programs have such Windows and HTML
interfaces too. However, for the large number of programmers engaged in
maintaining processes for the past years, it would be useful to cover this
topic too.

8.1 Structure of a Graphical User Interface

A graphical user interface (GUI) differs from a textual interface not only in
looking “friendlier” but that the user has many different input options and
is not limited to a menu displayed on the screen. These options include the
following:

Textual vs.
graphical user

interfaces

266 Chapter 8 Graphical User Interfaces

� Selecting a menu option

� Clicking the mouse on an object

� Entering text

� Copying and pasting an object through the clipboard

� Changing the window size

Each action offers inputs for a program; even more options are avail-
able, depending on the structure of the graphical user interface. Figure 8.1
shows an example of such a mighty graphical user interface.

Such a graphical user interface must first be designed. Depending on
the programming environment, the details of this design can differ a lot.
Normally, we use a so-called empty form—an empty program window. To
start, we insert control elements into this window form. The size and posi-
tion of these elements can be defined by using the mouse. Table 8.1 shows
a selection of the most common control elements. The object-oriented
structure allows us to program and add new control elements without
having to change anything in the existing system.

Figure 8.1 Example of a graphical user interface.

8.1 Structure of a Graphical User Interface 267

Once created, such a form, is the core of the application. This means
that it is no longer necessary to program individual control elements,
because their functions are part of the class library. In other words, we do
not have to write any code stating how a button should change its visual
appearance when the user clicks it. The program has only to respond to the
event when the button is clicked. This is discussed further in Section 8.2.

Similarly, a text input is just as simple, because the selected control
element will do the work, such as positioning the cursor correctly or
running a certain error check. These are exactly the points that are difficult
to program for a textual user interface. For example, with inputs of the type
ReadLn, we cannot do much to influence things like the length of the text

Text input is easy
to implement

Core of an
application

Table 8.1 Popular control elements

Element Mapping Description

Button T1 A small clickable square or rectangle linked
with a certain action, activated by clicking
the mouse on the button

Checkbox A selectable field that can take one of two
states: checked (selected) or not checked
(deselected)

Label A static piece of text that appears in the
screen window but cannot be edited by the
user

Text Defines an input field, so the user can enter
a single line of text or several text lines

Radio button Similar to a checkbox, except that it is
normally round, serving to select one option
out of several, where normally no
multichoice is possible

Listbox Displays a list of elements, from which the
user can select

Combobox Similar to a listbox, except that it has an
additional editing field, which can be used
to search the list or enter an additional value

Bitmap Represents various images on the graphical
user interface

268 Chapter 8 Graphical User Interfaces

read or whether certain characters are not permitted. Using ReadLn, an error
message can be output only after an error is made, but the faulty input itself
cannot be prevented.

The control elements introduced previously are objects that can be
accessed by a program in the usual way. This means that existing control
elements can be removed, new ones can be inserted, or their properties can
be changed. This can be done by setting attributes, but these attributes
differ a great deal, depending on the control element. Essentially, the most
common attributes are as follows:

� caption: text displayed on the control element

� font: the font in which this text is displayed

� height: the height of the control element

� width: the width of the control element

� name: a name used within the application to access the control element

By setting the caption property of a button, we can modify the text that
appears on the button at runtime. However, initial values for these attrib-
utes can be selected when we create the form.

We could create several forms. At runtime, an input or another action
could display another form, which then serves as the new core of the appli-
cation. The focus determines the control element currently active, because
only one control element can be active at a time. Whether a control element
is active is normally denoted by highlighting it, as by a darker font or dashed
line. This control element receives the keystrokes typed by the user. The
focus must be unique to a single control element in the form, and only one
form can be active at a time.

8.2 Event-Oriented Programming

In contrast to a traditional command-line–oriented text interface, a GUI
is based on a different programming flow. This kind of interface is event-
controlled—special program parts are executed for different user actions,
such as pressing a key, selecting a menu item, or clicking the mouse on a
control element. Figure 8.2 shows this event-controlled process.

Only one form
can be active at
a time, and only

one control
element can be

in focus

The basic
programming

flow is different

Control elements
are objects with

attributes

8.2 Event-Oriented Programming 269

The fundamental concept is that each event must have an appropriate
response: For example, if the user presses a button, execute Method1, or
types some text, execute Method2, or if the user selects a checkbox, execute
Method3, and so on. The following short code fragment in algorithmic nota-
tion shows this principle more formally:

Start

Next event Fetch event

Quit?

Stop

First
input

Second
input

Third
input

Figure 8.2 Example of an event-controlled processing sequence.

270 Chapter 8 Graphical User Interfaces

HandleEvent (ev: Event)

begin

case ev.kind of

keyDown: HandleKey(ev)

mouseDown: HandleClick(ev)

. . .

end;

end;

The procedure HandleEvent is the main program. The application uses it
to catch each event and process all of them by calling methods. HandleEvent
is not exited before the program terminates. This could look as follows:

GetEvent(ev)

while ev.kind <> endEvent do

HandleEvent(ev);

GetEvent(ev);

end;

8.3 Short Overview of Class Libraries

Creating a user interface and working with such an interface depends
largely on the class library. The development environment also plays an
important role. We already mentioned in Chapter 1 that it is possible in
Delphi, for instance, to create a simple application with a few mouse clicks.
This textbook is aimed at providing a general introduction to object-
oriented programming, so a detailed presentation of these functions would
definitely go beyond its scope. We limit ourselves to the most important
issues in the following sections.

Probably the best example is a simple Windows application, HelloWorld,
which has some static text, s1, and a button, but. When the button is
clicked, the text “button clicked” appears on the button. This screen is
shown in Figure 8.3, before the button was clicked.

In Delphi, for the form itself, we have to define an independent class
derived from TForm, an empty window, and a container for dialog elements.
The two control elements, s1 and but, are attributes embedded in this

Delphi

8.3 Short Overview of Class Libraries 271

class. The standard properties of these control elements are not set in the
program itself but in a special tool by the name of Object Inspector (Figure
8.4). Using this tool, we can define many different things—for example, the
attribute caption for the button but: the text displayed inside the button
should be set to the value button.

The Object Inspector is the connection between your application’s
visual appearance and the code that makes your application run. The
Object Inspector enables you to do the following:

� Set design-time properties for components you have placed on a form
(or for the form itself).

� Create and help you navigate through event handlers.

� Filter visible properties and events.

To support you, the Object Inspector has two pages: the Properties page
and the Events page. The Properties page enables you to set design-time

Figure 8.3 The “Hello World” screen.

272 Chapter 8 Graphical User Interfaces

properties for components on your form and for the form itself. By setting
properties at design time, you are defining the initial state of a component.
You can set runtime properties by writing source code within event
handlers.

The Events page enables you to connect forms and components to
program events. To generate a default event handler for an event, double-
click the right column. The product creates the event handler and switches
focus to the Code editor. In the Code editor, you write the event handlers
that specify how a component or form responds to a particular event. The
majority of new development environments offer tools like the Object
Inspector.

Let us go back to our example. The type required for the screen shown
in Figure 8.3, TMyForm, could look like this:

Figure 8.4 Object Inspector: setting properties.

8.3 Short Overview of Class Libraries 273

type

TMyForm = class(TForm)

s1: TLabel;

but: TButton;

end;

var

myForm: TMyForm;

The rest is easy—we just have to declare a variable of that type. However,
we don’t have to write the entire source code given in this example. Instead,
it is generated automatically by the Delphi development environment.
Also, it is fairly easy to respond to each event. When the user clicks the
button, the text of s1 should change to read “button clicked.” For this
purpose, we can write a method, such as ChangeText, of the class TMyForm,
which will set the attribute caption of s1 accordingly.

procedure TMyForm.ChangeText (sender: TObject);

begin

s1.caption := 'button clicked';

end;

The parameter sender identifies the control element that triggered this
event. The button is passed to the method as a parameter and can then be
accessed by this method. However, to ensure that the method ChangeText
is executed when the button is clicked, we have to specify in the Object
Inspector that this method is called when a mouse click (OnClick) occurs.
Figure 8.5 shows this scenario.

We can see in this figure that methods can also be set for other events,
such as when the mouse is dragged over the button. In this case, the Object
Inspector generates the event handler automatically, not even visible to the
programmer.

Listing 8.1 contains the entire source code for this program. Standard
behavior, such as closing the application by clicking the cross in the top
right corner, is naturally inherited from the base class TForm, and does not
have to be specifically implemented.

274 Chapter 8 Graphical User Interfaces

unit HelloWorld;

interface

uses Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls;

type

TMyForm = class(TForm)

s1: TLabel;

but: TButton;

procedure ChangeText (sender: TObject);

end;

var

myForm: TMyForm;

Listing 8.1. Delphi
Solution for
HelloWorld

Figure 8.5 Object Inspector: setting events.

8.3 Short Overview of Class Libraries 275

implementation

procedure TMyForm.ChangeText (sender: TObject);

begin

s1.caption := 'button clicked';

end;

end.

The previous example program is surprisingly short, because the Object
Inspector defines both the standard settings of the control elements and
the definition of methods to be called upon specific events. As comfortable
as this may sound, it is not necessarily beneficial in all cases. When prob-
lems occur, we have to check not only the source code but also various
entries in the Object Inspector, which could indeed be cumbersome and
hard to reproduce.

In Java, for the form itself, we have to implement a separate class,
derived from JFrame. In this class, we have to embed a panel (class: JPanel),
a special container that can accommodate the control elements. We also
have to define how these control elements are arranged in this panel. The
most common and normally suitable arrangement is XYLayout—defining
the coordinates of a corner point. Moreover, the two control elements, s1
and but, have to be embedded in this type. The basic structure of this type,
at least as far as the attributes are concerned, looks like this:

public class Frame1 extends JFrame {

JPanel contentPane;

XYLayout xYLayout1 = new XYLayout();

JLabel s1 = new JLabel();

JButton but = new JButton();

. . .

}

Subsequently, we have to write a constructor, defining the choice of
standard settings: the text to appear on the button or the position of the
control elements. This constructor also controls how to respond to various
events that may arise. Generally in Java, we have to define events that could
actually arise. For this purpose, we call the method enableEvents(ev), where
ev carries those kinds of events that should be activated. The events that
can actually be activated are specified in the class AWTEvent.

Standard settings
for control

elements are
defined in the

Object Inspector

Java

276 Chapter 8 Graphical User Interfaces

Next, to be able to properly respond to each of these events, we have to
register listener classes. There is a separate listener class for each event (for
example, mouse event, key event, or window event). More specifically, a
mouse listener has to be registered by means of the function addMouseLis-
tener. This goal is achieved by deriving the class java.awt.event.Mouse-
Adapter. As a response to the mouse click, the appropriate method has to
be called.

The entire construction is implemented in a try block to catch excep-
tions. The following source code fragment shows the constructor:

// build the frame

public Frame1 () {

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

// initialize the components

private void jbInit () throws Exception {

contentPane = (JPanel) this.getContentPane();

contentPane.setLayout(xYLayout1);

// . . . set properties

but.addMouseListener(new java.awt.event.MouseAdapter() {

public void mouseClicked (MouseEvent e) {

but_mouseClicked(e);

}

});

contentPane.add(s1, new XYConstraints(21, 50, 138, 36));

contentPane.add(but, new XYConstraints(246, 48, 81, 31));

}

Listing 8.2 includes the entire program. This code also shows how the
window event WINDOW_CLOSING is properly processed to ensure that the
application terminates.

8.3 Short Overview of Class Libraries 277

package helloworld;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.borland.jbcl.layout.*;

public class Frame1 extends JFrame {

JPanel contentPane;

XYLayout xYLayout1 = new XYLayout();

JLabel s1 = new JLabel();

JButton but = new JButton();

// build the frame

public Frame1 () {

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

// initialize the components

private void jbInit () throws Exception {

s1.setText("Hello World");

contentPane = (JPanel) this.getContentPane();

contentPane.setLayout(xYLayout1);

this.setSize(new Dimension(400, 300));

this.setTitle("frame title");

but.setText("button");

but.addMouseListener(new java.awt.event.MouseAdapter() {

public void mouseClicked (MouseEvent e) {

but_mouseClicked(e);

}

});

contentPane.add(s1, new XYConstraints(21, 50, 138, 36));

contentPane.add(but, new XYConstraints(246, 48, 81, 31));

}

// Overwritten, so we can terminate

// when the window is closed.

Listing 8.2. Java
Solution for
HelloWorld

278 Chapter 8 Graphical User Interfaces

protected void processWindowEvent (WindowEvent e) {

super.processWindowEvent(e);

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

System.exit(0);

}

}

void but_mouseClicked (MouseEvent e) {

s1.setText("button clicked");

}

}

8.4 Tips for Designing a User Interface

We could continue writing a lot more about these things. However, con-
sidering that creating a user interface depends largely on the programming
environment we select, as mentioned earlier, and because most of this
material is extensively covered in the relevant documentation, we limit this
description to what we have explained so far. In closing this chapter, we
provide tips for designing GUIs:

� User-oriented: Always design your program for easiest use.

� Look and feel: Control objects should not be presented randomly on the
screen but in a clear arrangement—neatly aligned buttons are easier to
use and understand.

� Consistency: Represent similar things in a similar way and different
things in a different way.

� Fault tolerance: A good program should be tolerant of user errors,
behave nicely, and output an error message users can understand. User
errors should never cause the program to crash.

� Feedback: Results from operations should be displayed immediately.

� Keyboard users: As comfortable as computer input devices, such as a
mouse, may be, many users prefer the keyboard. A user interface should
be built so that users can use either one.

� Function keys: Assign function keys with care, because each operating
system makes different use of these keys by standard (for example, all

Programs are
written for the

user, not for the
programmer!

8.5 Online Applications 279

Windows applications use F1 to activate the online help system). Use
function keys consistently in new applications.

� Simplicity: Observe the slogan “As simple as possible” in all your pro-
gramming work.

8.5 Online Applications

Especially during the past years, online applications (applications executed
over the Internet) have become increasingly important. They reached a
new dimension under the name application service provider (ASP). The
motivation behind this technology is that people no longer buy software
but instead rent it. In this constellation, the software is installed on a server
on the Internet while the user sits at an Internet terminal (usually a PC and
modem) and runs this software on an Internet browser. The main benefit
is doubtless a distribution of cost, based on the rental variant, particularly
when usage is brief (for example, using a piece of software for only a few
months), but it has additional benefits:

� Each software product requires a certain input and cost for mainte-
nance, such as for updates. This input is done centrally and does not
have to be provided by the user.

� One of the most important points when working on the PC is to save
your work regularly. Unfortunately, many forget to save their work. In
ASP operation, the software operator saves your work for you.

� ASP operation enables much better helpdesk services, because the
helpdesk staff can connect to the ASP server and look at the problem in
detail.

� A user can log in to the server and run the software from any Internet
terminal anywhere in the world, for example, while on vacation.

Software operated over the Internet does not necessarily have to be dif-
ferent from conventional software. In fact, ASP operation is generally based
on the guidelines outlined previously. In addition, the control elements
available are the same, such as a Java program that generally runs in a
browser—on the Internet.

280 Chapter 8 Graphical User Interfaces

On the other hand, consider execution speed, because each data trans-
mission requires a certain amount of time. Things like filling in a form on
the Internet should be planned. Say you first fill out the entire form, wait
for a Save click, and finally transfer the entire work to the server. Input
errors will be transferred together with the entire job in the form of a pro-
tocol. A “traditional” program would check field after field and output an
error message if you made a wrong entry.

9
COBOL to OOP in Practice

Congratulations to all of you who made it to this point! You have acquired
a solid knowledge of object-oriented programming and learned more
about new techniques, such as databases and writing user interfaces.

9.1 Summary

This chapter provides a summary of the major issues covered in the
previous chapters. This summary is in the form of catchwords, and we
recommend that you think about each catchword. If you are not sure you
understood an issue denoted by one of these catchwords, it would be
helpful to repeat the relevant section and, have another look or two at
the relevant exercises. The previous chapters of this book dealt with the
following issues:

� Basics: symbols, standard types, declarations, value assignment, if
instruction, multiple branching, loops, procedures, parameters, local
names, functions, recursion, arrays, strings, records, stepwise refine-
ment, open-array parameter, procedure variables, Java Virtual Machine,
modules, export, import, modularization, pointers, creating and delet-
ing objects

OOP course in
catchwords

282 Chapter 9 COBOL to OOP in Practice

� Dynamic data structures: abstraction, ADS, ADT, linear lists, stacks,
queues, trees, binary trees, logical delete, traversing, balanced trees,
algorithms, heaps, graphs, hashing, sort algorithms

� True OOP: class definition, creating and releasing objects, instances,
methods, constructors, destructors, inheritance, dynamic binding,
abstract classes, access classes, overloading, generic components,
replaceable behavior, extensible components, heterogeneous data
structures, class libraries, TObject, exceptions, interfaces, properties

� Object-oriented design: The Abbot method, CRC cards, UML, design
pattern, factory, iterator, components

� Databases: fundamental concept, data security, data protection, recov-
ery, transactions, commit, deadlock, client/server solution, object-
oriented databases, data modeling, normalization, ER model,
generalization, aggregation, views, index, surrogates, SQL, creating
tables, inserting and deleting records, functions, SELECT instruction, set
operations, UPDATE instruction, privileges, embedded SQL, database
drivers, sending an SQL instruction to the database, evaluating the
results

� Graphical user interfaces (GUIs): building a GUI, control elements,
event-oriented programming, HandleEvent, the Object Inspector, forms,
tips for the design of user interfaces

One of the major topics has been in the foreground: mastering the com-
plexity! Object-oriented programming is complex. Therefore, the following
order should be maintained in each software development project:

� Build the model: Programming means understanding!

� Implement the program by using a class library.

� Design the user interface.

The OOP course in this book was structured to ensure that these steps
can be performed successfully. Exactly this stepwise structure, based on the
order described earlier, distinguishes this OOP course from most other
courses, many of which begin with the design of a user interface and deal
with programming of methods as a secondary matter. This book places
programming at the center!

Mastering the
complexity

9.2 Changing to OOP in Practice 283

You should take home two important principles from this course: “As
simple as possible” and “Programming means understanding!” Remember
them when working in object-oriented programming or design. To find
understandable solutions, it is important to understand even complex
situations and be able to represent them in an easily understandable way.
This art can be understood and learned from [BGP00], to mention one
good source.

9.2 Changing to OOP in Practice

As mentioned in Chapter 1, this OOP course was applied at BMD Sys-
temhaus GmbH, Austria’s leading producer of business software [Kna99].
BMD has a software development department with more than 50 employ-
ees; I have been managing this department since 1997. Forty of these devel-
opers were—and some still are—busy maintaining and improving a COBOL
product. This internal development effort at BMD—an integrated software
package for all business areas—is installed at more than 12,000 customer
sites, including Austria’s leading tax advisors and some of the largest
Austrian companies. More recently, BMD has expanded to the international
market and now has customers in Germany, Hungary, Switzerland, and
Czechia.

This COBOL product has been used for more than 30 years. It has been
reimplemented using two major object-oriented programming languages,
Delphi and Java, to form a new type of accounting software called BMD
NTCS (New Technology Commercial Software). This combines the benefits
of the BMD software and the Windows operating system. This section out-
lines the project’s progress and some experiences as a result of it, which will
be particularly helpful for programmers who plan to implement COBOL
projects in OOP.

9.2.1 Main Tasks

The first project phase entailed two major tasks. First, we had to implement
the required tools—the class library. Second, COBOL programmers had to
be “converted” into object-oriented programmers. Building on these
important preparatory steps, we were able to reimplement the individual
program packages by use of the object-oriented class library.

As simple as
possible

BMD

Thirty years’
experience: NTCS

284 Chapter 9 COBOL to OOP in Practice

9.2.2 Implementing the Required Windows Tools

Implementing the required Windows tools essential, because it forms the
basis for the entire project. One of the first steps involved the selection of
a suitable development environment. Although it would have been feasi-
ble to use a newer version of our COBOL compiler, this was not desirable,
as mentioned in Section 1.5. Various tools based on different programming
languages (for example, Java, C++, Visual Basic, Object-Pascal) had been
studied, but the bigger the choice, the more difficult such a selection is.

Eventually, we selected Delphi, for two reasons. First, the Delphi class
library is mighty and supports database accesses that occur frequently in
accounting software. Second, Delphi is based on Pascal, which is an easily
readable language making it easy for COBOL programmers to learn.

Using this new development environment, we designed a class library,
focusing on efficient input possibilities and integration of all packages.
Moreover, we tried to implement as many things as we possibly could into
the class library, because this normally helps significantly reduce develop-
ment time. This approach has not only the advantage that the product will
be ready for market earlier but also reduces the period for double mainte-
nance. This was required because the existing product still had to be main-
tained while we were working on the new object-oriented implementation.

Other parts of the class library are special input forms, report genera-
tors, Internet components, formula generators, capabilities management
(user privileges), and SQL assistants, among others.

9.2.3 Retraining COBOL Programmers

To develop the class library, we hired several new programmers with
academic backgrounds who were optimally trained for object-oriented
programming. This team was completed by several other developers who
had several years of experience with the COBOL product and mastered
object-oriented programming at the same time.

The remaining programmers had excellent COBOL knowledge but little
or no experience in object-oriented programming. However, we found their
strengths in their experience with the existing software—they knew exactly
what functionality the new product would have to offer and how this could
look. I am convinced that this combined knowledge is imperative and
harder to learn than OOP. For this reason, we decided to retrain these pro-
grammers for object-oriented programming.

Selecting a
suitable

development
environment

A class library
for efficient

input options

Experience in
OOP retraining

9.3 Career Switch to OOP in Practice 285

This retraining effort took place on the basis of the OOP course pre-
sented in this book. Each of the tutorial sections was held weekly, and the
exercises were all practiced and corrected. However, these exercises were
not corrected to give scores but to learn about the progress of each partic-
ipant and avoid misunderstandings.

9.2.4 Experiences

BMD NTCS is a large project, at least for Austrian dimensions, with a dura-
tion of more than 5 years and a budget of approximately 10 million Euros.
With such projects, it is important for everyone to support the project.
Therefore, it was necessary to “sell” the project to every single member of
the development team, which was not easy, because some feared losing
their jobs. These worries were not substantiated, because the retraining
effort was conducted by the company, and everybody who attended this
course successfully was assured of being taken on for the new project. This
activity helped convince the team of the NTCS project.

Another important aspect of such a project—when an old product is
replaced by a new one—is the period when the team has to work on both
products at the same time. Two strategies are feasible: Have two separate
development teams work on one project—one for the old product and one
for the new—or have a team work on both at the same time.

The first solution would mean doubling the number of developers. In addi-
tion, it would be difficult to find programmers for the “old” project, because
they would fear falling behind in their careers or similar drawbacks. The second
solution could mean that both projects would get less than their fair share.

These reasons encouraged BMD to opt for the “golden” middle course.
We hired a new crew to develop the basis for the new project—the class
library. The existing programmers were entrusted with the tasks of main-
taining the existing program and developing the specific parts (but only
parts) of the new project. This approach is possible only because of the
major advantage of object-oriented programming: modularization.

9.3 Career Switch to OOP in Practice

Having presented managements view of this change, this section
concentrates on the people behind this project. It is important to see

Exercises were
walked through

and corrected

Strategies for
double

maintenance

All have to pull
in the same

direction!

View of the
people behind

the object

286 Chapter 9 COBOL to OOP in Practice

their knowledge, their human backgrounds and, of course, their problems
[Kna02].

9.3.1 Knowledge

Programmers at BMD Steyr have sufficient COBOL knowledge, which is
probably one of the most important contributions to our current product’s
success. Another important factor, essential for the production of account-
ing software, is an above-average knowledge of and experience with
domains. I believe that this domain knowledge and experience in imple-
menting such a software product are far more important than the pro-
gramming knowledge itself. Who, other than these programmers, could
extend the strengths hidden in the intensive contents and parameters of
our program? It was precisely these strengths that made this software so
successful.

Before the object-oriented programming course at BMD Steyr began,
programmers were familiar with COBOL and its concepts, such as records,
arrays, and procedures. They were competent in structured programming
and, clearly enough, avoided GOTO statements. However, their COBOL com-
piler did not support a variety of essential programming features, such as
call by reference parameters, local variables, and pointers. Because of this,
most were unfamiliar with or rarely used algorithms for binary trees, hash
tables, and/or heaps.

9.3.2 Human Background

Most of these programmers have been working at BMD for more than 10
years, some for more than 25 years. Many were shocked to hear that they
would have to learn object-oriented programming. Employees may have
doubts about whether they can become skilled at new techniques and may
also fear that fewer programmers will be needed as a result of increased
productivity.

This is a false conclusion. Demand is proportional to productivity and
grows with an increase in output. Yet older COBOL programmers are still
afraid of losing their jobs. It is not easy for older employees to find an
adequate position in this business.

Domain
knowledge is

necessary

Older COBOL
programmers are

still afraid of
losing their jobs

9.3 Career Switch to OOP in Practice 287

It is up to the project manager to provide his or her staff with the nec-
essary motivation and sense of security. Security is important—insecure
employees are not only less productive but are easy prey for headhunters.
Rumors spread; gossip, such as that every other employee will be made
redundant, is not uncommon when working on projects of this kind. This
must be dealt with immediately.

Most of our programmers were aware that NTCS was not only an oppor-
tunity for the company to grow but for them too. Their interest in pro-
gramming and ambition to learn inspired them to gain knowledge of the
new technology. Profit-sharing as the company prospered was another
motivation.

9.3.3 Problems

While learning object-oriented programming, the programmers naturally
had some problems—not just technical but psychological.

Technical Problems

Following the concepts presented previously, most members of the staff
were able to learn object-oriented programming within a reasonable time.
However, they were sometimes faced with difficulty in understanding
object-oriented concepts predominantly relating to dynamic objects. This
is absolutely new terrain for traditional COBOL programmers, because
COBOL does not use pointers. The most relevant example was the one
about the difference between two different objects and pointers. We often
had to refer to this example, with the objective of making participants
aware and helping them understand the principal difference.

Because there are no counterparts in the COBOL language, after having
overcome this problem, the next step was to introduce inheritance and
dynamic binding. Inheritance was basically explained as being a type
extension. A subclass is an extension of a base type: It inherits the fields and
methods of the base type and may declare additional fields and methods
of its own.

The explanation of dynamic binding was trickier, but based on the clar-
ification of inheritance, we were able to make apparent that the compati-
bility between a subclass and its base class enables a variable at runtime to
contain objects of diverse types that react differently to a message.

Learning leads to
progress

Pointers

Inheritance and
dynamic binding

288 Chapter 9 COBOL to OOP in Practice

COBOL programmers found it hard to identify with certain other points,
such as runtime errors when using a wrong type or a wrong array index,
which do not exist in COBOL (the return value is just zero). An appealing
feature is that the COBOL environment we use (MICROFOCUS COBOL) is
powerful and prevails over the Delphi debugger, especially the COBOL ani-
mator. We therefore had to elucidate additional static test methods to
support the programmers when searching for bugs.

We conclude with a few recommendations to successfully coach object-
oriented programming:

� Begin with programming, then train object-oriented programming.
Data abstraction and writing well-structured programs should be the
first lessons, mainly because it is easier to explicate object-oriented pro-
gramming based on knowledge of data abstraction.

� Try to avoid academic terms (such as ontology) that might be
misinterpreted.

� Use as many examples as possible. A simple example can say more than
a hundred words.

� When introducing object-oriented programming in a company, use the
initial products of inexperienced programmers with caution, because
they are likely to contain errors.

Psychological Problems

One psychological problem, as already mentioned, is the feeling of uncer-
tainty apparent in new component programmers and users. If components
can easily be replaced, why not software engineers? [Chr02]

Most programmers handled the change with ease—they mastered
the art of learning. Many spent their free time reading and studying
books; others have written short projects. They preferred working on the
new projects to programming in COBOL for maintenance or customer
requests.

However, some programmers had difficulty adapting to OOP. They were
not able to increase productivity because they did not make appropriate
use of the new possibilities put at their disposal. This is relevant: for many
years, programmers have written their own code, with negligible inspec-
tion or supervision. They are now expected to use components structured
by other programmers.

Using the new
possibilities?

9.3 Career Switch to OOP in Practice 289

And why not? After all, it saves time and increases productivity. It is now
no longer necessary to write tedious programs—it is enough for them to
produce components that make sense to themselves and others. It is
important to keep documentation of the components, a task often ignored
in most COBOL programs. A possible motivation could be a further bonus
for documented components usable by other programmers rather than for
the quantity of code delivered.

Objective thinking was another point our programmers seemed to have
difficulty with. Object-oriented programming is not just a new kind of pro-
gramming, it is a method of design, programming, and also testing—all
requiring objective judgment. The ability to assess objectively is an instinc-
tive talent and advantage for those who enter the world of object-oriented
programming over other, more experienced programmers who were always
expected to think sequentially when working with COBOL. The latter were
expected to abruptly alter their manner of thinking, and sometimes, they
understandably slipped back to their old patterns.

Slips of this kind can be minimized by applying object-oriented design
methods, starting with the first step of each project, for example, by means
of the Abbott method [Abb83] or CRC cards, which can also be used for
each class to present names, responsibilities, and partners. They are easy
to produce, understand, and discard. Multiple cards can be laid out on a
large table to spawn effective discussions [Mös99]. The results should be
consolidated using UML and not by means of relational techniques such
as ER diagrams.

Components also enhance teamwork. A certain level of teamwork existed
in COBOL programming—for example, teams for bookkeeping, salary
administration, and CRM software. Yet each team worked independently of
the other, and work within each team was not always a group product.

OOP teams use components written by other teams, and the social
value increases, because the members of different teams get together.
Formal and informal discussions—coffee-break chats—present new com-
ponents, and productivity increases. The better team players mix and trade
information; the less effective ones are generally unwilling to communicate
and inadvertently conceal new and helpful components. After all, it
goes against the principle of most COBOL programmers to use information
generated by others. Back in their schooling days, “copycat” versions were
considered a fraudulent way to attain results [Chr02]. Although compo-
nent-oriented programming need not increase individual productivity, it
unquestionably improves the collective output.

Objective
thinking

290 Chapter 9 COBOL to OOP in Practice

Programmers who performed poorly with COBOL usually also ended up
struggling to achieve the desired expectations in the new language. It is
often the case that some programmers would solve a problem in a matter
of hours, whereas others would need weeks or more.

A third group of programmers is normally also evident: programmers
who are unable to learn anything new, not because they are not prepared
to but because of other valid reasons. It is usually wiser to place this work-
force in positions that most suit their capabilities rather than force them to
do something they do not want. This is especially important for companies
dealing with projects on the market that must react promptly to errors or
individual requests.

9.3.4 Results

Freshly trained OOP programmers performed surprisingly well after having
completed their course and a few practical projects. Needless to say, their
performance could not match that of programmers who already had a few
years of OOP experience. Practice makes perfect, which is why we sincerely
believe that new programmers should be entrusted more frequently with
larger projects.

9.4 Accompanying Activities

An entry into the world of object-oriented programming is often a good
chance to realize other novelties in the field of software development. This
could be seen as an accompanying activity—for example, ISO 9001 certifi-
cation, automatic tests, or version management.

9.4.1 ISO 9001

A switch from COBOL to object-oriented programming requires changing
the entire development process. This switch could be usefully accompa-
nied by an introduction of the ISO 9001 standard. This is a quality assur-
ance model used mainly in disciplines such as design, development,
production, assembly, and maintenance. The core consists of about 20 ele-
ments whose substance must be met:

More novelties
can be realized

ISO certification
improves

quality and
competitiveness

9.4 Accompanying Activities 291

� Commitment and responsibility of the corporate management

� Quality assurance system

� Internal audits

� Correction of errors and faults

� Contract verification

� Definition of the principals’ requirements

� Development planning

� Quality assurance planning

� Design and implementation

� Test and validation

� Acceptance test

� Reproduction, commissioning, and installation

� Configuration management

� Documentation control

� Quality reporting

� Measurements

� Rules, practices, agreements

� Tools and techniques

� Purchasing and procurement

� Third-party software

� Training

Documentation, the so-called quality manual, is created and used to
define exactly who is in charge for these elements, and in what way. Such
a model is likely to be present in every company, although it is often not
fully documented or observed. The meaning of ISO certification is to doc-
ument everything, gradually creating a complete manual to improve the
quality of everyday company processes. The certification also foresees that
a third party, called a certification commission, checks for observance of

Quality manual

292 Chapter 9 COBOL to OOP in Practice

the quality standards. Details about ISO standard 9001 are found in
[Hoy01], to mention one good source. (Information can also be found on
their website: www.iso.ch.)

In addition to improving quality, this kind of certification offers a com-
petitive edge, because many customers prefer to do business with certified
vendors. Some (especially governmental organizations) even require their
suppliers to have this certification.

9.4.2 Automatic Tests

The automatic test method, which is also used at BMD, enables efficient
implementation of all required tests. Test tools (for example, QACenter of
Compuware [Com98]) record test cases and run them anytime they are
needed. Test cases created internally—test scripts—can be implemented by
using a macro language. QACenter can also be used to maintain test scripts,
manipulate test data, and run load tests.

This sort of test tool can be introduced by a three-step principle:

1. Install the tools and train the testing department staff. This step is rel-
atively easy and can be completed in a few days. The most difficult task
is to convince the staff of the project’s importance, which requires some
psychological work, because words such as “automation” have a nega-
tive effect on many employees.

2. Build a test series. At BMD, for example, the basic strategy was to create
an accounting system, run a few special posting cases, close the
accounts, and print a balance sheet. This test series is done after each
change—daily—at the development location. The next task of this step
is then to check—automatically—that the printouts are identical.

The most important aspect of this task is to find test cases that should
be integrated into the test series. Such a test series ensures that the
program will work even after several changes so that even major
changes produce only minor problems.

3. See if these automatic tests can be “optimized.” We could embed special
controls—for example, to test for the following cases. In the BMD soft-
ware, the user sees the current result of a company after each posting.
A simple control that monitors the display of such results could be
added to the test series. The use of such controls could help improve the
quality of automatic tests significantly.

Test cases are
recorded and

repeated as often
as needed

9.5 Stick to COBOL All the Same? 293

Although such a control script can be implemented relatively easily,
those who test the software are normally end users rather than program-
mers. For this reason, it appears useful to assign the implementation of
such controls to a programmer.

9.4.3 Version Management

The ideal time to think about introducing source management or version
management is when programs—source code—are written from scratch.

This sort of software tool documents every detail of the creation process
and can reconstruct all activities back to version 1.0. Also, an arbitrary
number of programmers can work on the sources, because the tool pre-
vents inadvertent overwriting of code.

All source code files have to be stored in a central location and are write-
protected. If a change has to be made to a file, the developer has to obtain
a request for change, including a description of the desired change. This
request, which may indeed be issued by the same developer, entitles him
or her to edit the relevant source code. For this purpose, the version man-
agement tool is used to “check out” the source code; subsequently, the
source code can be edited locally.

From this point, all other developers have only read access to this source
code. As soon as the change is readily implemented, this source code file
can be “checked in” again so that it is available to all developers. The version
management tool registers all changes, including the relevant requests, so
that it is possible to return to an older source version or view changes
between two versions in detail at any time.

Another developer could now effect changes to this file, but only after making
an appropriate request to do so and checking the file out and back in again.

Implementing such a version management system requires great disci-
pline, but it significantly improves quality (see also Section 9.3.1) and facil-
itates troubleshooting. Version management tools are effective support
tools in a parallel development project.

9.5 Stick to COBOL All the Same?

Although we made a huge step toward object-oriented programming in
working our way through this book, some readers may feel they want to

Creation process
is meticulously

documented

Sources have to
be checked

before being used

Want to try your
luck as a

crossopterygian?

294 Chapter 9 COBOL to OOP in Practice

stick to COBOL. As mentioned in our crossopterygian example in Chapter
1, they may even be successful. Working our way through this book, with
particular focus on Chapters 2, 3, and 4, has certainly helped improve
general programming capabilities so that neither those interested in a
career switch nor crossopterygian-minded readers wasted any of their
time.

Furthermore, object-oriented COBOL might be worth a closer look. In
fact, this book provides an excellent framework for a course on modern
COBOL: (1) COBOL with Windows and/or HTML user interfaces incorpo-
rating JAVA script and JAVA beans; (2) with object application layers that
make use of Object COBOL’s class library, especially the Collection Classes;
and (3) with embedded SQL to access relational databases via ODBC pro-
tocols. Most of our examples in Delphi and C++ could be rewritten in
object-oriented COBOL.

9.6 One Last Word

We close this book with a statement attributed to Professor Zemanek, an
Austrian computer pioneer: “The devil must have invented software,
because hardware is almost perfect!” We use his words as a good reason to
emphasize our principle one last time: Object-oriented programming is
complex and can be mastered only by applying a gradual approach and
orderly modularization.

The devil must
have invented

software, because
hardware is

almost perfect!

Appendix A

Using the Development
Environments

This appendix gives a short introduction to the development environments
included on the book CD, explaining a few important basics so that you can
use them to work on the exercises. Each of the two development environ-
ments is illustrated by a simple example, dealing mainly with input and
output operations. All programs should be designed on the basis of the fol-
lowing sample.

A.1 Delphi

Start the Delphi system. From the File menu, select Open. In the dialog box
that appears next, select the path Delphi\SampleProject on your CD and
select the file Sample.

A new input window appears, showing an empty Pascal program frame.
The first step is to save the project under a new name. To do this, select
Save As . . . from the File menu. Select a meaningful name, such as Exer-
cise0, and save the file to a directory of your choice.

Now you are ready for programming. A short demo program could look
like this:

Sample project

Delphi and
Jbuilder

296 Appendix A Using the Development Environments

// Markus Knasmüller, 8.1.2003

// This program reads two numbers and outputs the sum;

// it serves as a demo program (Exercise0)

program Exercise0;

var

a, b, sum: Integer;

dummy: Char;

begin

Write('Please enter the first value:'); ReadLn(a);

Write('Please enter the second value:'); ReadLn(b);

sum := a + b;

Write('The result is:');

WriteLn(sum); // an alternative would be WriteLn(a + b);

Read(dummy); // required to keep the result

end.

Fill the sample frame according to this source code. The next step is to
compile and start this program. To start the program in Delphi, select Run
from the Run menu (or press function key F9). This function compiles the
program and runs it if no errors are found during compilation.

Errors found during translation will be displayed on the screen in the
form of an error message. Delphi displays the input window in two panes.
The top pane shows the source code you entered, and the bottom pane dis-
plays error messages. The line where an error was found is highlighted in
red in the upper pane. (Careful: The compiler may find an error on one line
but display red highlighting on the line below—for example, if you forgot a
semicolon.)

Correct the error and proceed with your code. If several errors occurred,
you can use the mouse in the lower pane to move the cursor to each error
and correct it. When done with your corrections, select the Run again to
continue. Warning messages output by the compiler can be ignored.

While the program is executing, an additional text window shows the
message Please enter the first value:. Enter a value (say, 5) and press
Enter. A second message, Please enter the second value: appears. Enter
a value (say, 3) and press Enter. The program outputs the result: The result
is: 8. Press any key to exit the program.

As you can see in the program code, Read and ReadLn allow you to read
arbitrary values, which are output by Write or WriteLn, respectively. The
appended Ln causes a line feed.

Compiling and
starting the

program

Compiler error
messages and

warnings

A.2 Java 297

To print the source code, select Print from the File menu.
If you want to use modules (see Section 3.6) in addition to your

program, use New from the File menu to add them. In the dialog box that
appears next, select the Unit icon.

A.2 Java

Start the JBuilder system. Select New Project . . . from the File menu. In the
dialog box that appears, select the desired directory path—for example,
d:\ExerciseProject—and enter a different project name, such as Exercise0.

Select Add Files/Package from the Project menu. Enter the file name
Exercise0.java and type “Yes” when asked whether you want to create this
file. The name of the new file is displayed in the left frame. Double-click the
file name to open the file.

You are now ready for programming. A short demo program could look
like this:

// Markus Knasmüller, 8.1.2003

// This program reads two numbers and outputs the sum;

// it serves as a demo program (Exercise0)

class Exercise0 {

public static String readName () { // auxiliary procedure

String s = "";

try {

s = new java.io.DataInputStream(System.in).readLine();

}

catch(java.io.IOException e) {}

return s.trim();

}

public static int readInt () { // auxiliary procedure

String s = "";

try {

s = new java.io.DataInputStream(System.in).readLine();

}

catch (java.io.IOException e) {}

return java.lang.Integer.parseInt(s);

}

Units

New project

298 Appendix A Using the Development Environments

public static void main (String args[]) {

int a, b, sum;

System.out.print("Please enter the first value:");

a = readInt();

System.out.print("Please enter the second value:");

b = readInt();

sum = a + b;

System.out.print("The result is:");

System.out.println(sum);

// an alternative would be System.out.println(a + b);

}

}

Type this source code. The next step is to compile and start the program.
In Java, select Run Project from the Run menu (or press function key F9) to
compile and start a program. This menu item compiles your program and
runs it if no error occurred during compilation process. Before the program
can be executed, you have to set the main class. In this dialog box type
Exercise0.

Errors found during compilation will be displayed in the form of an
error message. Java splits the input window into two panes. The upper pane
displays the source code you typed, and the lower pane shows error mes-
sages. A faulty line is highlighted in red in the upper pane. Correct the error.
If several errors were found, you can use the mouse to move the cursor to
each error and correct it. When you are done with your corrections, select
Run again to proceed. Warning messages output by the compiler can be
ignored.

While the program is executing, the message Please enter the first
value: is displayed on the screen. Enter a value (say, 5) and press Enter.
Then the second message, Please enter the second value:, appears. Enter
a value (say, 3) and press Enter. The result is displayed: The result is: 8.

As you can see in the program code, readInt allows you to read any
numbers, and readName allows you to read any character string. You could
copy the source code fragment for readInt and readName to each of your pro-
grams that requires inputs. Use System.out.print or System.out.println to
output arbitrary values. The appended ln causes a line feed.

To print the source code, select Print from the File menu.
If you want to use modules (see Section 3.6) in addition to your

program, select Add Files/Packages from the Project menu.

Compiling and
starting the

program

Compiler error
messages and

warnings

Modules

Appendix B

Sample Solutions

This appendix contains sample solutions for the tasks from the tutorial sec-
tions. To stay within the limits of this book, this chapter contains only
selected solutions, mostly in one programming language. The CD to this
book includes all solutions, both in Delphi and Java code.

All sample solutions in this chapter are intended to serve as examples,
showing how a problem could be solved. There may be other—more effi-
cient—solutions. The following sample solutions are intended to provide
basic concepts, to serve as a reference, and to encourage you to work out
different solutions to similar problems.

B.1 Solutions to Chapter 3

B.1.1 Exercises in Section 3.1.5

Task 1 (20 minutes): Declarations

1. accountNumber: Integer;

2. accountBalance: Real;

3. ch: Char;

4. short: Shortint;

5. exactValue: Double;

All solutions are
on the book CD

Delphi

300 Appendix B Sample Solutions

1. int accountNumber;

2. float accountBalance;

3. char ch;

4. byte short;

5. double exactValue;

Task 2 (30 minutes): Boolean Expressions

1. (x < z) and (y < z) and (x < y) or (x >= z) and (x < y) ¤
((x < z) and (y < z) and (x < y)) or ((x >= z) and (x < y)) ¤
((y < z) and (x < y)) or ((x >= z) and (x < y)) ¤
(x < y) and ((y < z) or (x >= z))
x = 3, y = 5, z = 7 fi TRUE
x = 5, y = 3, z = 7 fi FALSE
x = 5, y = 7, z = 3 fi TRUE

2. Formulate expressions that give a TRUE result if
a. ch is a letter or a digit:

(ch >= 'a') and (ch <= 'z') or (ch >= 'A') and (ch <= 'Z') or
(ch >= '0') and (ch <= '9')

b. x, y, z all contain different values:
(x <> y) and (y <> z) and (x <> z)

3. Simplify the following expression:
(x <> y) or not ((y = z) and (y = x)) ¤
(x <> y) or (not(y = z) or not(y = x)) ¤
(x <> y) or (y <> z) or (y <> x) ¤ (x <> y) or (y <> z)

B.1.2 Exercises in Section 3.2.7

Task 1 (60 minutes): Fibonacci Numbers

program PgmFibonacci;

var

n, i: Integer;

fib1, fib2, res: Integer; // Fib(n - 1), Fib(n - 2), Fib(n)

Java

Delphi

B.1 Solutions to Chapter 3 301

begin

ReadLn(n);

while (n >= 0) do begin

res := 1;

fib1 := 1; // initialize Fib(n-1)

fib2 := 1; // initialize Fib(n-2)

for i := 2 to n do begin

res := fib1 + fib2; // Fib(n) = Fib(n-1) + Fib(n-2)

fib2 := fib1; // new Fib(n-2)

fib1 := res; // new Fib(n-1)

end;

WriteLn('The ', n, '. number is:', res);

ReadLn(n);

end;

end.

Task 2 (60 minutes): Book Price

import java.io.*;

class PgmBookPrice {

static int readInt () {

String s = "";

try {

s = new java.io.DataInputStream(System.in).readLine();

}

catch (java.io.IOException e) {}

return java.lang.Integer.parseInt(s);

}

public static void main (String args[]) {

int number, days, quality;

final int PAPERBACK = 300;

final int HARDCOVER = 400;

double price = 0;

double factor;

quality = readInt();

while (quality > 0) {

number = readInt();

days = readInt();

factor = 1;

Java

302 Appendix B Sample Solutions

switch (quality) {

case 1:

if (number > 300) {factor = 0.9;}

else {

if (number > 200) {factor = 0.95;}

}

price = PAPERBACK * number * factor;

break;

case 2:

if (number > 200) {

if (number > 300) {factor = 0.85;}

else {factor = 0.9;}

}

else {

if (number > 100) {factor = 0.95;}

}

price = HARDCOVER * number * factor;

}

if (days < 10){

switch (quality) {

case 1:

if (days < 5) {factor = 0.97;} else {factor = 0.99;}

break;

case 2:

if (days < 5) {factor = 0.95;} else {factor = 0.97;}

}

price = price * factor;

}

System.out.print("The price is: ");

System.out.println(price);

quality = readInt();

}

}

}

B.1 Solutions to Chapter 3 303

B.1.3 Exercises in Section 3.3.7

Task 1 (15 minutes): Simplifications

These source code fragments can be simplified as follows:

i := j; // Subtask A

a := a * b + 2 * c; // Subtask B

if a < b then begin // Subtask C

c := a; a := b; b := c;

end;

Task 2 (5 minutes): Desk Test

Table B.1 shows how the variables change as they are processed. The
parameters x and y occupy the same storage space, because x is used twice.

B.1.4 Exercises in Section 3.6.5

Task 1 (180 minutes): Priority Queue

Because the task says that the line will never have more than 100 people,
you can use a regular array to implement this queue. It would be useful to
distinguish among three arrays, depending on the category kind, which
means that three queues—one for each category of people waiting—would
be managed internally. Such a solution could look like this:

unit PriorityQueue;

interface

const UNPLEASANT = 1; NORMAL = 2; PLEASANT = 3;

procedure Add (name: String; k: Integer);

(* adds a new person – type k – to the queue *)

procedure GetNext (var name: String);

Delphi

Array

Table B.1 Desk test

Program line x y

P(x, x); 5 5

y:= 2 * x; 10 10

y:= y * x; 100 100

304 Appendix B Sample Solutions

(* supplies the name of the next person and removes it *)

function Count (): Integer;

(* supplies the number of persons *)

implementation

type

PersonArr = array[0..99] of String;

var

queues: array[UNPLEASANT..PLEASANT] of PersonArr;

index: array[UNPLEASANT..PLEASANT] of Integer;

procedure Add (name: String; k: Integer);

begin

queues[k, index[k]] := name;

Inc(index[k]);

end;

procedure GetNext (var name: String);

var i, j: Integer;

begin

if index[PLEASANT] > 0 then i := PLEASANT

else begin

if index[NORMAL] > 0 then i := NORMAL

else i := UNPLEASANT;

end;

if index[i] = 0 then name := ""

else begin

Dec(index[i]);

name := queues[i, 0];

for j := 0 to index[i] do begin

queues[i, j] := queues[i, j + 1];

end;

end;

end;

function Count (): Integer;

begin

result := index[UNPLEASANT] + index[NORMAL]

+ index[PLEASANT];

end;

initialization

index[UNPLEASANT] := 0; index[NORMAL] := 0;

B.1 Solutions to Chapter 3 305

index[PLEASANT] := 0;

end.

B.1.5 Exercises in Section 3.7.6

Task 1 (170 minutes): Priority Queue

In contrast to the previous task, this task does not limit the number of
persons, so you cannot use an array. Instead, this solution implements a
dynamic list. Insertion and deletion operations are simple, so it is unnec-
essary to split the list into three category-specific lists. This kind of solution
could look as follows:

package Priority;

class Person {

String name;

int kind;

Person next;

}

public class PriorityQueue {

public final int UNPLEASANT = 1;

public final int NORMAL = 2;

public final int PLEASANT = 3;

static int nrOfElems;

static Person head;

public static void add (String name, int k) {

Person p1, p2;

nrOfElems++;

if ((head == null) || (head.kind < k)) {

// new element becomes new head

p1 = head;

head = new Person();

head.name = name; head.kind = k; head.next = p1;

}

else {

p1 = head; p2 = head;

while ((p1 != null) && (p1.kind >= k)) {

p2 = p1; p1 = p1.next;

}

Pointers have to
be used here

Java

306 Appendix B Sample Solutions

p1 = new Person();

p1.name = name; p1.kind = k; p1.next = p2.next;

p2.next = p1;

}

}

public static String getNext () {

String n;

if (head != null) {

n = head.name;

head = head.next;

nrOfElems–;

return n;

}

else {

return "";

}

}

public static int count () {

return nrOfElems;

}

static {

nrOfElems = 0;

head = null;

}

}

Task 2 (10 minutes): Troubleshooting

The problem is that new(p) creates an object, but this object is never
accessed, so the instruction is meaningless. Because of the next instruction,
p := nil, the allocated storage block can no longer be reached. Delphi does
not have a Garbage Collector, so such blocks have to be released explicitly.
In this situation, we cannot free the block, because it cannot be reached.
The result is that this storage space is unused and wasted.

A created object
is never accessed

B.2 Solutions to Chapter 4 307

B.2 Solutions to Chapter 4

B.2.1 Exercises in Section 4.1.4

Task 1 (170 minutes): Relations

unit Relations;

interface

type

Item = ^ItemDesc;

ItemDesc = record

oid: String;

adr: Integer;

q: Boolean;

next: Item;

end;

Relation = ^RelationDesc;

RelationDesc = record

head: Item;

n: Integer;

end;

function Adr (r: Relation; oid: String): Integer;

procedure Delete (r: Relation; oid: String);

function Entries (r: Relation): Integer;

procedure Insert (r: Relation; oid: String; adr: Integer; q: Boolean);

function Quality (r: Relation; oid: String): Boolean;

procedure Init (var r: Relation);

var err: Boolean;

implementation

procedure Search (r: Relation; oid: String; var prev, elem: Item);

begin

prev := nil; elem := r.head;

while (elem <> nil) and (elem.oid <> oid) do begin

prev := elem; elem := elem.next;

end;

end;

function Adr (r: Relation; oid: String): Integer;

var prev, elem: Item;

Delphi

308 Appendix B Sample Solutions

begin

err := false;

Search(r, oid, prev, elem);

if elem <> nil then result := elem.adr

else begin

err := true;

result := 0;

end;

end;

procedure Delete (r: Relation; oid: String);

var prev, elem: Item;

begin

err := false;

Search(r, oid, prev, elem);

if elem <> nil then begin

Dec(r.n);

if prev = nil then begin

r.head := elem.next;

end

else begin

prev.next := elem.next;

end;

end

else begin

err := true;

end;

end;

procedure Insert (r: Relation; oid: String; adr: Integer; q: Boolean);

var elem: Item;

begin

err := false;

New(elem); elem.adr := adr; elem.oid := oid; elem.q := q;

elem.next := r.head;

r.head := elem;

Inc(r.n);

end;

function Quality (r: Relation; oid: String): Boolean;

var prev, elem: Item;

begin

B.2 Solutions to Chapter 4 309

err := false;

Search(r, oid, prev, elem);

if elem <> nil then result := elem.q

else begin

err := true;

result := false;

end;

end;

function Entries (r: Relation): Integer;

begin

err := false; result := r.n;

end;

procedure Init (var r: Relation);

begin

New(r);

r.n := 0; r.head := nil;

err := false;

end;

end.

Task 2 (10 minutes): Abstract Data Type

Converting an abstract data structure to an abstract data type always
requires the following changes:

� Embedding the global variables within an exported type

� Adding a parameter of this type to all procedures

� Adding an init procedure, which assumes the functions of the module
body

Accordingly, the result looks like this:

unit Lists;

interface

type

ListItem = record

x: Integer;

end;

List = record

Converting from
ADS to ADT

310 Appendix B Sample Solutions

l: array [0..30] of ListItem;

n: Integer;

end;

procedure Enter (var l: List; item: ListItem);

procedure Print (l: List);

procedure Init (var l: List);

implementation

procedure Enter (var l: List; item: ListItem);

begin

l.l[l.n].x := item;

Inc(l.n);

end;

procedure Print (l: List);

var i: Integer;

begin

for i := 0 to l.n - 1 do begin

WriteLn(l.l[i].x);

end;

end;

procedure Init (var l: List);

begin

l.n := 0;

end;

end.

B.2.2 Exercises in Section 4.2.4

Task 1 (200 minutes): Queue

unit Queues;

interface

type

Proc = Procedure (x: Integer);

Node = ^NodeDesc;

NodeDesc = record

val: Integer;

next: Node;

end;

Delphi

B.2 Solutions to Chapter 4 311

Queue = record

n: Integer; // number of elements

top: Node;

end;

procedure EnQueue (var q: Queue; val: Integer);

procedure DeQueue (var q: Queue; var val: Integer);

procedure NewQueue (var q: Queue);

function NrOfElems (q: Queue): Integer;

function Full (q: Queue): Boolean;

function Empty (q: Queue): Boolean;

procedure Iterate (q: Queue; p: Proc);

implementation

procedure EnQueue (var q: Queue; val: Integer);

var x, cur: Node;

begin

New(x); x.val := val; x.next := nil; // create element

Inc(q.n);

if q.top = nil then begin

q.top := x;

end

else begin

cur := q.top;

while cur.next <> nil do cur := cur.next;

cur.next := x;

end;

end;

procedure DeQueue (var q: Queue; var val: Integer);

var h: Node;

begin

if q.top = nil then begin val := -1; exit; end;

h := q.top; // to free the storage space

val := q.top.val;

q.top := q.top.next; // second element becomes first

Dispose(h);

Dec(q.n);

end;

procedure NewQueue (var q: Queue);

begin

312 Appendix B Sample Solutions

q.top := nil; q.n := 0;

end;

function NrOfElems (q: Queue): Integer;

begin

result := q.n;

end;

function Full (q: Queue): Boolean;

begin

result := false; // never full, because data type is dynamic

end;

function Empty (q: Queue): Boolean;

begin

result := q.n = 0;

end;

procedure Iterate (q: Queue; p: Proc);

var h: Node;

begin

h := q.top;

while h <> nil do begin

p(h.val);

h := h.next;

end;

end;

end.

Task 2 (20 minutes): Discussion

When comparing dynamic and static data types, we can identify the fol-
lowing differences (from the dynamic type’s view):

� The exact storage space required for the inserted number of elements
is reserved.

� The queue can grow to an arbitrary size—that is, the function Full never
returns TRUE. The case where the main memory would be insufficient is
unlikely, so this case can be neglected.

� For the insert and delete operations, only single pointers have to be
moved, without affecting the rest of the list. However, these operations
are not always transparent.

� An element requires only slightly more storage space for the pointer.

B.3 Solutions to Chapter 5 313

B.2.3 Exercises in Section 4.4.5

Task 1 (10 minutes): Heap

This task concerns a heap, because the heap order applies. This means that
the father of a[i] should be determined by a[i div 2], and the sons should
be determined by a[2 * i] and a[2 * i + 1]. The father must always be
larger than both sons, as Figure B.1 shows.

Heap order

Delphi

17

15 13

14 11 9

7 6 4 5 8

10

Figure B.1 A heap in tree representation.

B.3 Solutions to Chapter 5

B.3.1 Exercises in Section 5.1.6

Task 1 (180 minutes): Queue

unit Queues;

interface

type

Proc = Procedure (x: Integer);

Node = ^NodeDesc;

NodeDesc = record

val: Integer;

next: Node;

end;

Queue = class (TObject)

private

n: Integer; // number of elements

top: Node;

public

314 Appendix B Sample Solutions

constructor Create;

procedure EnQueue (val: Integer);

procedure DeQueue (var val: Integer);

function NrOfElems (): Integer;

function Full (): Boolean;

function Empty (): Boolean;

procedure Iterate (p: Proc);

end;

implementation

constructor Queue.Create;

begin

top := nil; n := 0;

end;

procedure Queue.EnQueue (val: Integer);

var x, cur: Node;

begin

New(x); x.val := val; x.next := nil; // create element

Inc(n);

if top = nil then begin

top := x;

end

else begin

cur := top;

while cur.next <> nil do cur := cur.next;

cur.next := x;

end;

end;

procedure Queue.DeQueue (var val: Integer);

var h: Node;

begin

if top = nil then begin val := -1; Exit; end;
h := top; // to free storage space

val := top.val;

top := top.next; // second element becomes first

Dispose(h);

Dec(n);

end;

B.3 Solutions to Chapter 5 315

function Queue.NrOfElems (): Integer;

begin

result := n;

end;

function Queue.Full (): Boolean;

begin

result := false;

end;

function Queue.Empty (): Boolean;

begin

result := n = 0;

end;

procedure Queue.Iterate (p: Proc);

var h: Node;

begin

h := top;

while h <> nil do begin

p(h.val);

h := h.next;

end;

end;

end.

package Q;

class Node {

int val;

Node next;

}

public class Queue {

Node top;

int n; // number of elements

public Queue () {

top = null;

n = 0;

}

Java

316 Appendix B Sample Solutions

public void enqueue (int val) {

Node x, cur;

x = new Node(); x.val = val; x.next = null; // create element

n++;

if (top == null) {top = x;}

else {

cur = top;

while (cur.next != null) {cur = cur.next;}

cur.next = x;

}

}

public int dequeue () {

int val;

if (top == null) {return -1;}

val = top.val;

top = top.next; // second element becomes first

n–;

return val;

}

public int nrOfElems () {

return n;

}

public boolean full () {

return false;

}

public boolean empty () {

return n == 0;

}

public void print () {

Node h;

h = top;

while (h != null) {

System.out.println(h.val);

h = h.next;

}

}

}

B.4 Solutions to Chapter 6 317

B.4 Solutions to Chapter 6

B.4.1 Exercises in Section 6.1.6

Task 1 (180 minutes): Designing the Account Class

Table B.2 shows the important nouns, verbs, and adjectives occurring in
this short example.

The list in Table B.2 shows potential candidates for classes, methods,
and attributes. As a first step, we can form a class, Account, with the attrib-
utes Number, Name, and AccountBalance. This class also has two methods,
PrintPostings and AddPosting. From this class, we can derive two other
classes, PersonnelAccount and InventoryAccount, and the class PersonnelAc-
count has an additional attribute, Turnover. The adjective “OI-leading” rep-
resents only additional information and does not produce an attribute.

In addition, there is the class Posting, with the properties PostingDate,
OffsetAccount, debitCreditId, and PostingAmount. Moreover, each account
has a list of postings.

Figure B.2 shows the relevant UML representation.

Table B.2 Nouns, verbs, and adjectives of the Account
specification

Nouns Verbs Adjectives

Account Print postings OI-leading

Personnel account Add posting

Inventory account

Turnover

Name

Posting

Posting date

Offset account

Debit/credit identifier

Posting amount

Account balance

318 Appendix B Sample Solutions

B.5 Solutions to Chapter 7

B.5.1 Exercises in Section 7.1.10

Task 2 (10 minutes): Relations

Admittedly, this is a sneaky question, but the answer is relatively easy: rela-
tions are not sorted.

Task 3 (40 minutes): Transactions

Table B.3 shows the result from parallel execution, and Table B.4 shows the
result from serial execution.

Consequently, parallel execution produces the result A = 50, B = 100.
The serial execution produces a result of 10 each. It is easy to see that

the two transactions cannot be serialized.

B.5.2 Exercises in Section 7.2.6

Task 1 (100 minutes): Normalization

The first step lists the data elements occurring in the model. Table B.5
shows this list.

Account

PersonalAccount

Turnover

Posting

PostingDate
OffsetAccount
DebitCreditld
PostingAmountPrintPostings

AddPostings

MaterialAccount

Number
Name
AccountBalance

*

Figure B.2 UML representation of the Account model.

B.5 Solutions to Chapter 7 319

Table B.3 Result from parallel execution

Transactions T1 AT1 BT1 Transactions T2 AT2 BT2 Afile Bfile

Read A 40 40 40
Read A 40
A := 10 10
Write A 10 10

A := A + 10 50

Read B 40

B := A * 2 100
Read B 40
B := 10 10
Write B 10 10

Write A 50 50

Write B 100 100

Table B.4 Result from serial execution

Transaction T1 AT1 BT1

Read A 40

A := A + 10 50

Read B 40

B := A * 2 100

Write A 50

Write B 100

Transaction T2 AT2 BT2

Read A 50

A := 10 10

Write A 10

Read B 100

B := 10 10

Write B 10

320 Appendix B Sample Solutions

The result from this first normalized form is only one table. This divi-
sion can be maintained even when considering the rules for the second
normalized form, because so far, no attribute depends functionally on a
part of the key.

In the next step, you have to determine whether data elements that are
not keys depend on the key. You also have to ensure that they will not
depend on any other data element.

At this point, you are confronted with a few problems, because
DepartmentName depends on DepartmentNumber, and Salary depends on
SalaryCategory. For this reason, you should swap these values to separate
tables.

The result is the following tables in the third normalized form:

� The table Employees with the key field EmployeeNumber and the data fields
Name, DateOfBirth, SalaryCategory, and DepartmentNumber

� The table Salary with the key field SalaryCategory and the data field
Amount

� The table Department with the key field DepartmentNumber and the data
field DepartmentName

It also appears useful to create an index pointing to the data field Name
in the table Employees, because frequent evaluations in alphabetical order
have to be expected. Additional index objects could be taken into consid-
eration and would depend on the desired applications. Figure B.3 shows
the ER representation of this model.

Table B.5 First normalized form

1 2 3 4 5 6 7

1 Number X X X X X X

2 Name

3 Date of birth

4 Salary

5 Salary category of employee

6 Department name

7 Department number

Tables in third
normalized form

B.5 Solutions to Chapter 7 321

This task may also produce other intermediate results. However, the
final result should be similar to the sample solution.

B.5.3 Exercises in Section 7.3.8

Task 1 (20 minutes): Creating Tables

CREATE TABLE Employees (

Number NUMBER (6) NOT NULL,

Name CHAR (30),

DateOfBirth DATE,

SalaryCategory NUMBER (4) NOT NULL,

DepartmentNumber NUMBER (4) NOT NULL,

PRIMARY KEY (Number),

FOREIGN KEY (SalaryCategory) REFERENCES salary,

FOREIGN KEY (DepartmentNumber) REFERENCES department

);

Figure B.3 ER model for payroll accounting.

322 Appendix B Sample Solutions

CREATE TABLE Salary (

Category NUMBER (4) NOT NULL,

Amount NUMBER (18, 2),

PRIMARY KEY (Category)

);

CREATE TABLE Department (

Number NUMBER (4) NOT NULL,

Name CHAR (30),

PRIMARY KEY (Number)

);

Task 2 (100 minutes): Creating Queries

1. SELECT * FROM Employees

2. SELECT Number, Name, DateOfBirth FROM Employees ORDER BY Name

3. SELECT * FROM Employees WHERE DepartmentNumber = 10

4. SELECT * FROM Employees WHERE DepartmentNumber = 10 ORDER BY DateOfBirth

5. SELECT Number, Name, Amount FROM Employees, Salary WHERE SalaryCategory

= Category

6. SELECT MIN(Amount), MAX(Amount), AVG(Amount) FROM Employees, Salary WHERE

SalaryCategory = Category

7. SELECT MAX(Amount) FROM Employees, Salary WHERE DepartmentNumber = 10 AND

SalaryCategory = Category

8. SELECT Number, Name, Amount FROM Employees EM, Salary SA WHERE

EM.SalaryCategory = SA.Category AND DepartmentNumber = 10 ORDER BY Amount

DESC

9. SELECT * FROM Employees WHERE Name LIKE "Kn%"

10. SELECT * FROM Employees WHERE DateOfBirth = NULL

11. SELECT DepartmentNumber, MAX(SalaryCategory) FROM Employees GROUP BY

DepartmentNumber

12. SELECT DepartmentNumber, MIN(SalaryCategory) FROM Employees GROUP BY

DepartmentNumber HAVING MIN (SalaryCategory) > 2

13. CREATE INDEX MyInd ON Employees(Name)

Appendix C

Glossary

abstract class This type of class typically consists of nothing but method

headers, without implementation. Such a class is never used in an applica-

tion but serves merely as an artificial superclass.

Abstract Data Structure (ADS) A data structure that can be used by an arbitrary

client by accessing well-defined procedures but that has an open imple-

mentation.

Abstract Data Type (ADT) A data structure that presents itself like a data type to

the outside.

aggregation Composition of several objects as parts of a new object.

anomalies Unexpected results incurred during an insert, delete, or modify oper-

ation, caused by an error in the database design.

assignment compatibility The right expression of an assignment can be assigned

to the left part without the need to convert between types.

association A relationship between two objects.

attribute The describing properties of an entity type, such as a customer

number, a name, or a phone number.

balanced tree This is a special type of tree that cannot degenerate into a linear

list. The height of the tree increases only if it is absolutely necessary.

base class A class serving as a superclass for other classes; the base class itself

is not derived from any other class—for example, TObject in Delphi.

324 Appendix C Glossary

binary tree A special type of tree with each node having a maximum of two sons

(one on the left and one on the right).

class A class can be thought of as an abstract data type—one for which vari-

ables can be declared, which then dispose of attributes and operations

(methods).

class library A collection of classes that can be reused.

client/server The client/server paradigm, or processing, divides an application

into two parts. The front end represents and processes data on a worksta-

tion; the back end stores, retrieves, and protects data.

commit A commit operation terminates a transaction irrevocably.

compiler A compiler translates program code into executable code. An inter-

preter translates code during each runtime, but a compiler translates the

code in advance, and only once.

concurrency A special database property in which several programs can access

the same data at the same time.

constructor A special method used to create and initialize an object.

data abstraction A data abstraction hides data from the user behind an inter-

face; the data can be accessed only from this interface.

database driver Independent software that establishes a connection between a

program and a database.

deadlock Mutual blocking by two transactions that block the same objects while

waiting for each other to release the blocked objects.

debugger A special tool used to run a program step by step while displaying the

current values of the local variables in each step. Another term used in

COBOL is animator.

destructor Destructors release objects and allow completion of actions cur-

rently running, such as the zeroing of a counter.

dynamic data structure A data structure that is normally created dynamically—

only during runtime—so that it can have an arbitrary size.

entity An identifiable object from the real world. Each entity has specific prop-

erties, called attributes.

Glossary 325

event In this context, an event is an action that can occur in connection with a

graphical user interface. Examples are mouse movements or keyboard

inputs.

exception Exceptions are objects signaling an exceptional or fault condition.

They can be triggered by a raise or throw statement and caught by try
blocks.

focus This term is important in connection with graphical user interfaces. Only

one component can possess the focus, or be active, so keyboard inputs are

forwarded to it.

Garbage Collection An automatic mechanism to remove objects that are no

longer required from the storage location. Java offers this functionality, but

not Delphi.

generalization A larger, comprehensive structure, as in the case of a superclass

representing a generalized form of the derived class.

HTML (hypertext markup language) A language in which to code World Wide Web

pages.

index An index in a database allows quick access to a desired row. Specific

columns can be defined as index columns, and an index can be defined for

each of them.

information hiding A technique that causes data to be hidden from the outside;

closely related to data abstraction.

inheritance A type extension applied to achieve specialization of a class.

instance Alternative term for an object, in the sense that an object is instanti-

ated by its class.

interpreter A tool used to translate program code into executable code at

runtime. A compiler translates the code in advance, and only once, but an

interpreter translates code every time at runtime.

ISO (International Organization for Standardization) The standards organization

best known for having proposed the seven-layer reference model early in

the history of data networking.

Java An object-oriented programming language, similar to C++, originally

developed by Sun Microsystems. Now used mainly to create active World

326 Appendix C Glossary

Wide Web documents. This language has had the highest growth rate, driven

by the explosive growth of the Internet.

javadoc A documentation generator that generates HTML pages based on Java

source text. These pages contain the respective classes, interfaces, methods,

constructors, and variables.

join A join operation connects two relations, similar to the Cartesian product.

key An attribute combination for unique identification of all instances of a

class (relation).

leaf A node within a tree that no longer has any sons.

LOCK An instruction allowing a data object to be modified to lock to protect it

from modification by other database operations.

message A means used to request an object to execute a specific method.

method An operation offered by a class.

multiple inheritance Given when a class is derived from several base classes.

normalization Dividing data into relations that are free from redundancies and

that avoid anomalies.

NULL value A special value in a database indicating that the value is unknown

or cannot be determined.

Oberon-2 An efficient and elegantly structured object-oriented programming

language, considered the successor of Pascal.

object An item of a class.

object-oriented database A special form of database that uses and stores objects

instead of tables.

OQL (Object Query Language) A query language for object-oriented databases

defined by ODMG (Object Database Management Group).

package A grouping for classes in Java.

primary key A data element used for unique identification of an object, such as

an account number.

profiler A special tool used to measure how long it takes to execute a program.

It allows the user to determine how often each code line was iterated and

how much time it took.

Glossary 327

QACenter A tool developed by Compuware, used for automatic tests.

recovery In this context, to restore a consistent database state, even in case of

total system failure.

recursion Occurs when a procedure calls itself again, directly or indirectly.

relationship Defines how individual objects relate to each other. In a database,

this can be done by referencing to a key.

request A request for an object—a dynamically bound procedure call.

runtime error A critical program error that emerges only at runtime (that is, not

during compilation)—for example, division by zero or an attempt to access

a nonexistent dynamic data structure. Unless this type of error is caught by

an exception, it will cause the program to exit.

secondary key A data element referring to a primary key. The value applies to

the entire record in the table to which it refers. In contrast to the primary

key, the values in a secondary key can occur more than once.

shortcut evaluation Given when, in Boolean queries of type A or B, A is evalu-

ated first, and B is evaluated only if this is not already true. Similarly, for A
and B, A is evaluated first, and B is evaluated only if this is true; otherwise,

the result is already given. This is important to know, because if, for

example, B is a functional procedure, it might not be called.

specialization A smaller, more particular structure, as in a subclass representing

a special form of its superclass. For example, “clerk” is a specialized form of

“employees.”

SQL (Structured Query Language) A structured query language for relational

databases.

static data structure A data structure the size of which is already known prior

to executing the program. It is also independent of data input. The data

structure is created based on the declaration and can neither grow nor

shrink at runtime.

surrogate An artificial key, such as an ISBN.

transaction A set of instructions, where either all or none are executed.

tree A special data structure with a root at the top and a specific number of

nodes—sons—underneath. Each son, in turn, is a root of a subtree. A node

that no longer has sons is called a leaf.

328 Appendix C Glossary

UML (Unified Modeling Language) A notation used to represent object-oriented

models.

Unicode A standardized, 16-bit character set used, for example, by Java. It

supports a huge space of character sets, including Japanese and other

non-Latin special characters.

URL (Uniform Resource Locator) A standardized method to represent Internet

addresses.

view A logical view or perspective of one or several relations.

Y2K problem A problem incurred during the millennium change from 1999 to

2000. Many programs store only the last two digits of the year, so when the

year 99 changed to 00, among other things, this made temporal sorting

impossible.

Appendix D

References

[Abb83] Abbott. Program Design by Informal English Descriptions. Com-
munications of the ACM 26 (11), 1983.

[ArCo96] Arranga and Coyle. Object-Oriented COBOL. SIGS Publications,
1996.

[BGP00] Böszörményi, Gutknecht, and Pomberger. The School of Niklaus
Wirth. dpunkt, 2000.

[BMRS96] Buschmann, Meunier, Rohnert, Sommerlad, and Stal. Pattern-
Oriented Software Architecture. Wiley, 1996.

[Bor02] Borstlap. “Understanding the Technical Barriers of Retargeting
ISAM to RDBMS.” www.anubex.com/anugenio!technicalbarriers1.asp,
Anubex, 2002.

[Bud02] Budd. Object-Oriented Programming, 3rd ed. Addison-Wesley,
2002.

[CaWa01] Campione and Walrath. The Java Tutorial, 3rd ed. Addison-
Wesley, 2001.

[CBB97] Cattell, Barry, and Bartels. The Object Database Standard. Morgan
Kaufmann, 1997.

[Chr02] Chroust. “Motivational Issues in Component-Based Software
Development,” Proceedings of the Sixteenth European Meeting on Cyber-
netics and System Research (EMCSR 2002), 2002.

330 Appendix D References

[CLR01] Cormen, Leiserson, and Rivest. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.

[Com98] Compuware Corporation. Compuware: QARun—Language Refer-
ence Manual. Compuware Corporation, 1998.

[DaDa97] Date and Darwen. A Guide to SQL Standard, 4th ed. Addison-
Wesley, 1997.

[Dat90] Date. An Introduction to Database Systems, Vol. 1, 5th ed. Addison-
Wesley, 1990.

[GHJV94] Gamma, Helm, Johnson, and Vlissides. Design Patterns. Addison-
Wesley, 1994.

[Hoy01] Hoyle. ISO 9000 Quality Systems Handbook. 4th ed. Butterworth-
Heinemann, 2001.

[JeWi74] Jensen and Wirth. Pascal User Manual and Report. Springer, 1974.

[Kna97] Knasmüller. Oberon-D: On Adding Database Functionality to an
Object-Oriented Development Environment. Trauner, 1997.

[Kna99] Knasmüller: “Quo Vadis, BMD? Research Projects at BMD Steyr—
An Experience Report.” Proceedings of European Software Day, Milan. Aus-
trian Computer Society, 1999, 145–152.

[Kna01] Knasmüller: “How to Manage the Change from COBOL to OOP.”
ACM OOPSLA Tutorial Notes. ACM, 2001

[Kna02] Knasmüller. “Human Problems When Changing from COBOL to
OOP,” Proceedings of the Sixteenth European Meeting on Cybernetics and
System Research (EMCSR 2002), 2002, 171–176.

[Knu84] Knuth. “Literate Programming.” Computer Journal, 27 (2), 1984.

[Mös99] Mössenböck. Object-Oriented Programming in Oberon-2.
Springer, 1999.

[Par72] Parnas. “On the Criteria to be Used in Decomposing Systems into
Modules.” Communications of the ACM, 15 (12), 1972.

[Pie99] Piemont. Components in Java. dpunkt, 1999.

[PoBl97] Pomberger and Blaschek. Software Engineering. Hanser, 1997.

References 331

[Pre95] Pree. Design Patterns for Object-Oriented Software Development.
ACM Press, Addison-Wesley, 1995.

[RBJ98] Rumbaugh, Booch, and Jacobson: Unified Modeling Language Ref-
erence Manual. Addison-Wesley, 1998.

[Sed88] Sedgewick. Algorithms. Addison-Wesley, 1988.

[Szy99] Szyperski. Component Software: Beyond Object-Oriented Program-
ming. ACM Press, Addison-Wesley, 1999.

[Wir71] Wirth. “Program Development by Stepwise Refinement.” Commu-
nications of the ACM, 14 (4), 1971.

[Wir85] Wirth: Algorithms + Data Structures = Programs. Prentice Hall, 1985.

This Page Intentionally Left Blank

arrays, 64–67
ASP, 279
assigning values, 39–41
assignment operator, 39
association, 205, 206
atomic, 221
attribute, 154
automatic tests, 292–293
AVG, 244
AWT, 183

B-trees, 133
back end, 225–226
balanced trees, 132–133
BASE, 162
base class, 156
BETWEEN, 245
BFS, 139
binary search, 127
binary search tree, 126–127
binary tree, 125–132
BMD Systemhaus GmbH, 11, 283
book CD, 11
Boolean algebra, 37
Boolean expression, 36–38
Boolean operators, 38
Boolean type, 34
branching instructions, 42–44
Breadth-First-Search (BFS), 139

Index

Abbot method, 202–203
ABS, 108–110
ABS, 245
abstract class, 163–164
abstract data structure (ABS), 108–110
abstract data type (ADT), 111–114
abstraction, 15, 108
access protection, 221
accessing attributes/methods, 164–165
actual parameter (ap), 54
ADT, 111–114
aggregation, 205, 206, 238–239
algorithms, 135

graphs, 138–139
hashing, 140–141
heaps, 136–138
pointers, 101–103
reference books, 135
sort, 141–143

Algorithms (Sedgewick), 135
Algorithms + Data Structures = Programs (Wirth), 135
ALTER TABLE, 243
anonymous classes, 197
answers to exercises, 299–322
Anubex, 230
application service provider (ASP), 279
architectural patterns, 210
arithmetic expressions, 35–36
arithmetic operators, 36
array definition, 64

A

B

334 Index

break instruction, 44
bubble sort, 142
bubble sort algorithm, 140

C++, 8, 101
case instruction, 42–44
case-sensitivity/insensitivity, 17, 30
categories of classes, 178
CD contents, 11
certification commission, 291
child, 157
class, 52, 145–154

abstract, 163–164
anonymous, 197
base, 156
defined, 154
definition, 146–149
derived, 156
final, 196
listener, 276
nested, 196–197
object, contrasted, 147
reference, 199
subclass, 156
superclass, 156
trivial, 207
wrapper, 183–184

class categories, 178
class definition, 146–149
class hierarchies, 208
CLASS-ID, 162
class libraries, 4, 21, 177–185

categories of classes, 178
component classes, 179
creating your own, 184
Delphi, 180–181
framework, 179
Java, 182–184

class methods, 197
client/server system, 225–227
Clipboard, 183
close:dbConn.close, 257
COBOL

arithmetic operators, 36
Boolean operators, 38
column orientation, 31
functions, 57
index-sequential files, 228–230
keywords, 21, 31
names, 31

OOP, compared, 7, 22
SELECT, 219

COBOL to OOP in practice, 281–294
BMD NTCS, 283–285
implementing required Windows tools, 284
programmers, 285–290, 293–294
psychological problems, 288–290
retraining COBOL programmers, 284–285
technical problems, 287–288

Code editor, 272
column orientation, 31
comments, 16–17, 32
commit instructions, 221
comparative operators, 36
compiler directives, 195
component classes, 179
Component Software: Beyond Object-Oriented

Programming (Szyperski), 214
components, 213–215, 289
Components in Java (Piemont), 214
composite type, 20
composition of component-based application,

215
conditional evaluation, 75–76
conditional expression, 89
consistency, 278
constant parameters, 88–89
constants, 34
constructor, 150–151, 211
context, 210
conventions and notation, 10–11
conversion, 40
copies, 19
copy semantics, 101
COUNT, 244
CRC cards, 204
CREATE INDEX, 251–252
CREATE TABLE, 242
CREATE VIEW, 251
crossopterygian, 3

dangling pointer, 104
dangling pointers, 198
data abstraction, 107–116, 167
Data Division, 30–39
data modeling, 230–241
data security, 220–221
data type, 32–34
database, 5

access protection, 221

C

D

Index 335

basic concept, 218
data files, contrasted, 228–230
data modeling, 230–241
data security, 220–221
deadlock, 223
end user queries, 223–224
ER model, 236–239
index, 240, 251–252
ISAM vs. RDBMS, 228–230
locking mechanisms, 222, 223
normalization, 233–236
NULL value, 240
object-oriented, 227
parallel processing, 222–223
recovery, 221
surrogate, 240–241
views, 239–240, 251

database driver, 255
database table, 218
DBTABLES, 255
deadlock, 223
declarations, 34–35
deep copy, 153
degenerated tree, 133
degree of a node, 125
delete

binary tree, 130–131
heap, 137
pointers, 103–104

Delete, 68
Delete anomaly, 232
Delphi, 8, 295–297

abstract class, 163–164
accessing attributes/methods, 164
arithmetic operators, 36
arrays, 64–65
assignment, 41
Boolean operators, 38
case-insensitive, 30
class definition, 146
class libraries, 180–181
COBOL, compared, 22
comments, 32
compiler directives, 195
conditional evaluation, 75
constant, 34
construction, 150
conversion, 40
Destroy, 152
Dispose, 103–104
division, 35
dynamic arrays, 85
exceptions, 187
export, 92

for loop, 47
forward declaration, 86, 195–196
Free, 152
function, 58
generic components, 168
“Hello World” example, 270–275
if instruction, 42
import, 94
instruction block, 41
interfaces, 191
local variables, 56
memory consumption, 85
multiple branching, 43
names, 30, 31
nontypified parameters, 85–86
object creation, 150
open-array parameter, 84–85
overload, 165–166
override, 157–158
parameterless procedures, 50–51
parameters, 53
pointers, 99
procedure variables, 86–88
properties, 194–195
records, 71–72
repeat-until loop, 46
result set (SQL), 259–260
self, 149
sending SQL instructions to database, 257–258
setting up connection to database, 255–256, 257
SQL functions, 255
standard types, 33
string functions, 68–69
strings, 67
terminating a procedure, 59
unit, 92
variable declaration, 35
while loop, 45

Depth-First-Search (DFS), 139
Dequeue, 121
derived class, 156
design. See object-oriented design
design patterns, 210
Design Patterns (Gamma et al.), 209
Design Patterns for Object-Oriented Software

Development (Pree), 209
dest.delete, 69
dest.insert, 70
Destroy, 152
destructor, 152
development environments. See Delphi; Java
DFS, 139
direct recursion, 59
Dispose, 103, 104

336 Index

DISTINCT, 246
do-while loop, 45–46
documentation comment, 32
double recordsets, 230
doubly linked list, 118–119
DriverManager.GetConnection, 256
DROP INDEX, 252
dummy element, 117
dynamic arrays, 85
dynamic binding, 161
Dynamic data structures, 105, 116–123
dynamic type, 160

embedded functions, 57
embedded SQL, 254
empty list, 117
END-IF, 48
end user queries, 223–224
Enqueue, 121
entity-relationship model (ER model), 236–239
Environment Division, 30
Equality of objects, 152
ER model, 236–239
error handling, 185–191
Events page (Object Inspector), 272
exception, 181, 185–191
Execute, 257
exercises

BinTree queue, 133
Boolean expressions, 38
calculating a date, 83
exceptions, 199
Fibonacci numbers, 48, 300-301
formatting, 83
Four Wins, 28
hash table, 143
heap, 143, 313
inheritance, 166
integer fractions, 63
interfaces, 199
largest common divisor, 62
normalization, 241, 319-320
priority queue, 95, 105, 303-306
queue, 122, 154, 310-312, 313-316
sample solutions, 299–322
sorting, 83

export, 91–93
expressions, 35–38
extensibility, 4
extensible components, 169
external subprograms, 90

factorial, 59
factory, 211–212
father node, 124, 126
fault tolerance, 278
final classes, 196
final methods, 196
finalize, 198
finally, 187
first normalized form, 233–234
floating-point numbers, 21
for loop, 46–47
foreign key, 235
FOREIGN KEY, 242
formal parameter (fp), 54
forward declaration, 86, 195–196
framework, 179
Free, 152
front end, 225
FULL OUTER JOIN, 250
function keys, 278
functions, 57–59
further reading. See reference books

Garbage Collector, 104, 152, 197–199
generalization, 206, 237–238
generic components, 167–168
global variables, 19, 55
GOTO, 47
GRANT, 252
graph, 138–139
graphical user interface (GUI), 265–280

control elements, 267–268
event-oriented programming, 268–270
example (Delphi), 270–275
example (Java), 275–278
Object Inspector, 271–275
online applications, 279–280
tips, 278–279

GROUP BY, 247–248
GUI. See graphical user interface (GUI)

has-a relationship, 205, 207, 208, 238–239
hashing, 140–141
HAVING, 248

E

F

G

H

Index 337

heap, 136–138
heap sort, 142
height of a tree, 125
“Hello World” example, 270–275
heterogeneous data structure, 169–170
hiding, 56
hopping of indexes, 229

idioms, 210
if instruction, 42
implicitly declared, 58
import, 94–95
IN, 245
in-order traversing, 131
incremental operators, 41
index, 240, 251–252
index-based vs. cursor-based program flow,

229
index-sequential files, 228–230
indirect recursion, 59
information hiding, 108
inheritance, 154–161
inheritance hierarchy, 159
initialization of variables, 35
inner node, 124
input parameters, 19, 54
insert

binary tree, 128–130
heap, 136

Insert, 68
Insert anomaly, 232
insertion sort, 142
instance, 149
instance variable, 154
instruction block, 41–42
instruction sequence, 41–42
instructions, 39
interface, 191–194
internal subprograms, 49
INTERSECT, 250
INTRBASE, 256
intrinsic functions, 57
Introduction to Algorithms (Cormen et al.), 135
IntToStr, 68
IO package, 183
is-a relationship, 206, 237–238
ISAM vs. RDBMS, 228–230
ISO 9001 standard, 290–292
iteration variable, 47
iterator, 212–213
IUnknown, 191

Java, 8, 297–298
abstract class, 164
accessing attributes/methods, 164–165
arbitrary character sets, 34
arithmetic operators, 36
array, 65
Boolean operators, 38
class definition, 146–147
class libraries, 180–181
COBOL compared, 22
comments, 32
conditional evaluation, 75
conditional expression, 89
constant, 34
constant parameters, 88–89
conversion, 40
division, 35–36
do-while loop, 46
documentation comment, 32
exceptions, 187
export, 92–93
final classes/methods, 196
for loop, 47
function, 58
Garbage Collector, 104, 152, 197–199
generic components, 168
“Hello World” example, 275–278
if instruction, 42
import, 94
instruction block, 41–42
interfaces, 192
keywords, 31
local variables, 56
multiple branching, 43
names, 31
nested classes, 196–197
object creation, 150
operators, 35–38
overload, 166
override, 158–159
package, 93
parameterless procedures, 51–52
parameters, 53–55
pointers, 99
records, 72
result set (SQL), 260
sending SQL instructions to database, 257–

258
setting up connection to database, 256–257
shortcut assignment operators, 41
SQL functions, 255
standard types, 33

I

J

338 Index

Java (Continued)
static data elements/methods, 197
string functions, 69–70
strings, 67–68
terminating a procedure, 59
this, 149
variable declaration, 35
VM, 88
while loop, 45

Java bytecode, 88
Java packages, 182
Java Virtual Machine (VM), 88
java.awt, 183
java.awt.datatransfer, 183
javadoc, 32
java.io, 183
java.lang, 182
java.lang.ref.Reference, 199
java.sql, 255
java.util, 183
JFrame, 275
join, 248–249

keywords, 21, 31

label lists, 43
labels, 43
language package, 182
leaf, 124
LEFT OUTER JOIN, 250
Length, 69
lifetime, 57
LIKE, 245
linear lists, 116–119
linked list, 97–98
list, 97, 102–103. See also pointers

doubling linked, 118–119
empty, 117
linear, 116–119
linked, 97–98
ring, 117
sorted, 105, 117

listener class, 276
local variables, 20, 55–57
LOCK, 223, 224
locking mechanisms, 222, 223
logical delete, 131

loops, 44–47
LOWER, 245

many-to-many (N:M) relationship, 237
marks, 43
MAX, 244
member, 154
memory consumption, 85
memory leaks, 198
merge sort, 142
message, 154, 161
method, 52, 146, 154
method call, 161
method definition, 146
method overloading, 165–166
MIN, 244
MINUS, 250
modeling a database, 230–241
modularization, 95
modules, 90–96

export, 91–93
import, 94–95
modularization, 95
motivation, 91

multiple branching, 42–43
multiple inheritance, 191

names, 30–31
naming conventions, 17–18
nested classes, 196–197
New, 100, 103
NIL pointer, 97
N:M relationship, 237
node data type, 100
nontypified parameters, 85–86
normalization, 233–236
normalized forms, 233–235
notation and conventions, 10–11
NULL value, 240
numeric types, 33

O-notation, 140
object

class, contrasted, 147

K

L

M

N

O

Index 339

common errors, 152–153
copying of, 153
create/release, 149–152, 153
defined, 147, 154
equality of, 152
record, contrasted, 147

Object Database Management Group, 227
Object Inspector, 271–275
object-oriented COBOL (OO-COBOL), 9, 161–163
object-oriented database, 227
object-oriented design, 201–216

Abbot method, 202–203
common errors, 207
components, 213–215
constructor, 211
CRC cards, 204
design patterns, 209–213
factory, 211–212
iterator, 212–213
procedural design, compared, 201–202
tips, 206–208
UML, 204–206

object-oriented modeling, 5
object-oriented programming. See OOP
Object-Oriented Programming in Oberon-2

(Mössenböck), 210
object-oriented thinking, 4–5
Object Query Language (OQL), 220
objective thinking, 289
OCCURS, 229
one-to-many (1:N) relationship, 237
one-to-one (1:1) relationship, 237
online applications, 279–280
OO-COBOL, 9, 161–163
OO techniques, 5
OOP

abstract classes, 163–164
accessing attributes/methods, 164–165
advantages, 4–5
characteristics, 153
class, 145–154. See also class
class libraries, 177–185
COBOL, compared, 7
complexity, 282, 294
constructors, 150–151
data abstraction, 167
definitions, 154
Delphi. See Delphi
destructors, 152
disadvantages, 176–177
dynamic binding, 161
example, 170–176
exceptions, 185–191
extensible components, 169
generic components, 167–168

heterogeneous data structures, 169–170
inheritance, 154–161
interfaces, 191–194
Java. See Java
object. See object
OO-COBOL, 162–163
overloading methods, 165–166
practical considerations, 281–294. See also COBOL

to OOP in practice
replaceable behavior, 168–169

OOPSLA tutorial, 11
open-array parameter, 84–85
operands, 35
operators, 35–38
OQL, 220
ORDER BY, 247
ordered tree, 125
outer join, 249–250
output parameters, 19, 54
overload, 165
overloading methods, 165–166
override, 157–159
overview of this book, 5–7

package, 93
package, 165
parallel processing, 222–223
parameterless procedures, 50–53
parameters, 19, 53–55
path, 125
Pattern-oriented Software Architecture (Buschmann et

al.), 209
persistent heap, 227
Pointers, 97–106

dangling, 104
delete, 103–104
explanation of terms, 97–99
NIL, 97
reference semantics, 101
standard algorithms, 101–103

Pop, 119
Pos, 69
post-order traversing, 131
postchecked loop, 45–46
POWER, 245
pre-order traversing, 131
prechecked loop, 45
predefined SQL functions, 244
primary key, 233
PRIMARY KEY, 242
private, 164–165

P

340 Index

private declarations, 92
privileges, 252–253
problems. See exercises
procedural design, 201
procedure, 19, 49–93

functions, 57–59
local names, 55–57
parameterless, 50–53
parameters, 53–55
recursion, 59–61
termination, 59

Procedure Division, 39–49
procedure variables, 86–88
product quality, 15
program, 219
program readability, 16–18
program structure, 19–23
programming, 13–28. See also software engineering
programming languages, 8–9
properties, 194–195
Properties page (Object Inspector), 271–272
property, 194
protected, 165
public, 91
Push, 119

QACenter, 292
quality manual, 291
queue, 120–123
quick sort, 142

RDBMS, 228–230
read access, 224
readability of program, 16–18
real-world example (BMD), 11
record access, 72–74
record definitions, 71–72
records, 71–76
recovery, 221
recursion, 59–61
Red-Black trees, 133
redefinitions, 229
reference books

algorithms, 135
components, 214
design patterns, 209–210

reference classes, 199
reference semantics, 101
relational database, 225
repeat-until loop, 46
replaceable behavior, 168–169
ResultSetMetaData, 260
reusability, 4, 202
RIGHT OUTER JOIN, 250
ring list, 117
root, 124

scrolling cursors, 230
second normalized form, 234–235
SELECT, 219–220
self, 149
serial execution, 223
set operations (SQL), 248–250
shallow copy, 153
shortcut assignment operators, 41
shortcut evaluation, 75
s.index0f, 70
s.length, 70
software engineering, 13–28

abstraction, 15
comments, 16–17
holistic approach, as, 14
naming conventions, 17–18
program structure, 19–23
readability of program, 16–18
software quality, 14–15
source code, 18
stepwise refinement, 23–28
structured programming, 15–16

software quality, 14–15
solutions to exercises, 299–322
son, 124
sort algorithms, 141–143
sorted list, 105, 117
SQL, 241–263

creating tables, 242–243
embedded, 254
functions, 244–245
index, 251–252
inserting/deleting records, 243–244
join, 248–249
outer join, 249–250
privileges, 252–253
program access, 254–263
result set, 259–260
SELECT instruction, 245–248

Q

R

S

Index 341

sending instructions to database, 257–259
set operations, 248–250
setting up a connection, 255–257
UPDATE, 250–251
views, 251

SQL functions, 244–245
SQRT, 245
stack, 119–120
standard types, 32–34
Statement, 258
static, 197
static data elements, 197
static declarations, 64
static methods, 197
static type, 160
STDDEV, 244
stepwise refinement, 23–28, 201
streamlined interfaces, 95
STRING, 68
String, 67–68
string definition, 67
StringBuffer, 67–68
strings, 67–71
StrToInt, 69
structured programming, 15–16
Structured Query Language. See SQL
student exercises. See exercises
subclass, 156
SUBSTR, 245
SUM, 244
super calls, 208
superclass, 156
surrogate, 240–241
s.value0f, 70
switch instruction, 44
symbols, 30–32
SYSDATE, 245

table, 218
TComponent, 181
TControl, 181
test scripts, 292
textbooks. See reference books
TgraphicControl, 181
third normalized form, 235
this, 149
three-tier model, 226–227
TObject, 179
toString, 184
TPersistent, 180–181

transition parameters, 19
traversing, 131
tree, 124–135

balanced, 132–133
binary, 125–132
defined, 124
definition of terms, 124–125
degenerated, 133
ordered, 125

trivial classes, 207
Trunc, 40
try block, 185
TwinControl, 181
two-tier model, 226
type, 20–21
type compatibility, 20, 159–161
type conversion, 40, 161
type declaration, 66

UML, 204–206
Unicode, 31
Unified Modeling Language (UML), 204–206
UNION, 250
UNIQUE, 252
unit, 92
UNLOCK, 223, 224
UPDATE, 250–251
Update anomaly, 232–233
UPPER, 245
usage quality, 15
USER, 245
user-defined types, 32
user interface. See graphical user interface (GUI)
uses relationship, 205
utilities, 183

value assignment, 39–41
value0f, 184
variable declaration, 35
variable names, 35
variables, 34–35
VARIANCE, 244
version management, 293
views, 239–240, 251
visibility, 56
VM, 88

T

U

V

342 Index

WHERE, 246–247
while loop, 45
wrapper classes, 183–184

XYLayout, 275

Y2K problem, 1–2

Zemanek, Heinz, 294
zero relationships, 237

W Y

X

Z

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

Limited Warranty

The Publisher warrants the media on which the software is furnished to be
free from defects in materials and workmanship under normal use for 30
days from the date that you obtain the Product. The warranty set forth
above is the exclusive warranty pertaining to the Product, and the Publisher
disclaims all other warranties, express or implied, including, but not
limited to, implied warranties of merchantability and fitness for a particu-
lar purpose, even if the Publisher has been advised of the possibility of such
purpose. Some jurisdictions do not allow limitations on an implied war-
ranty’s duration; therefore the above limitations may not apply to you.

Limitation of Liability

Your exclusive remedy for breach of this warranty will be the repair or
replacement of the Product at no charge to you or the refund of the appli-
cable purchase price paid upon the return of the Product, as determined
by the Publisher in its discretion. In no event will the Publisher, and its
directors, officers, employees, and agents, or anyone else who has been
involved in the creation, production, or delivery of this software be liable
for indirect, special, consequential, or exemplary damages, including,
without limitation, for lost profits, business interruption, lost or damaged
data, or loss of goodwill, even if the Publisher or an authorized dealer or
distributor or supplier has been advised of the possibility of such damages.
Some jurisdictions do not allow the exclusion or limitation of indirect,
special, consequential, or exemplary damages or the limitation of liability
to specified amounts; therefore the above limitations or exclusions may not
apply to you.

	From COBOL to OOP
	Copyright Page
	Contents
	Chapter 1. Introduction
	1.1 Motivation
	1.2 Advantages of the New Technologies
	1.3 Organization of This Book
	1.4 Selecting a Programming Environment
	1.5 Object-Oriented COBOL
	1.6 Notation and Conventions
	1.7 The Book CD
	1.8 A Real-World Example

	Chapter 2. Programming as an Engineering Discipline
	2.1 Software Engineering Basics
	2.2 Readability of a Program
	2.3 Program Structure
	2.4 Stepwise Refinement

	Chapter 3. Basics
	3.1 Replacement for the Data Division: Symbols and Data Types
	3.2 Replacement for the Procedure Division: Instructions
	3.3 Procedures
	3.4 Arrays, Strings, Records
	3.5 Language Particularities
	3.6 Modules
	3.7 Pointers: Introduction

	Chapter 4. Data Structures and Algorithms
	4.1 Abstract Data Types
	4.2 Dynamic Data Structures in Detail
	4.3 Trees
	4.4 Algorithms

	Chapter 5. True Object-Oriented Programming
	5.1 Classes
	5.2 Inheritance and Dynamic Binding
	5.3 Typical Applications of Object-Oriented Programming
	5.4 Class Libraries
	5.5 Particularities of the Selected Programming Languages

	Chapter 6. Object-Oriented Design
	6.1 Object-Oriented Design and UML
	6.2 Design Patterns and Components

	Chapter 7. Databases
	7.1 Introduction and Differences from COBOL IS Files
	7.2 Data Modeling
	7.3 Introduction to SQL
	7.4 SQL: Program Access

	Chapter 8. Graphical User Interfaces
	8.1 Structure of a Graphical User Interface
	8.2 Event-Oriented Programming
	8.3 Short Overview of Class Libraries
	8.4 Tips for Designing a User Interface
	8.5 Online Applications

	Chapter 9. COBOL to OOP in Practice
	9.1 Summary
	9.2 Changing to OOP in Practice
	9.3 Career Switch to OOP in Practice
	9.4 Accompanying Activities
	9.5 Stick to COBOL All the Same?
	9.6 One Last Word

	Appendix A. Using the Development Environments
	A.1 Delphi
	A.2 Java

	Appendix B. Sample Solutions
	B.1 Solutions to Chapter 3
	B.2 Solutions to Chapter 4
	B.3 Solutions to Chapter 5
	B.4 Solutions to Chapter 6
	B.5 Solutions to Chapter 7

	Appendix C. Glossary
	Appendix D. References
	Index
	Limited Warranty

