

Q. Ethan McCallum

Bad Data Handbook

ISBN: 978-1-449-32188-8

[LSI]

Bad Data Handbook

by Q. Ethan McCallum

Copyright © 2013 Q. McCallum. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette

Production Editor: Melanie Yarbrough

Copyeditor: Gillian McGarvey

Proofreader: Melanie Yarbrough

Indexer: Angela Howard

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

November 2012: First Edition

Revision History for the First Edition:

2012-11-05 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449321888 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Bad Data Handbook, the cover image of a short-legged goose, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449321888

Table of Contents

About the Authors. ix
Preface. xiii

1. Setting the Pace: What Is Bad Data?. 1

2. Is It Just Me, or Does This Data Smell Funny?. 5
Understand the Data Structure 6
Field Validation 9
Value Validation 10
Physical Interpretation of Simple Statistics 11
Visualization 12
Keyword PPC Example 14
Search Referral Example 19
Recommendation Analysis 21
Time Series Data 24
Conclusion 29

3. Data Intended for Human Consumption, Not Machine Consumption. 31
The Data 31
The Problem: Data Formatted for Human Consumption 32

The Arrangement of Data 32
Data Spread Across Multiple Files 37

The Solution: Writing Code 38
Reading Data from an Awkward Format 39
Reading Data Spread Across Several Files 40

Postscript 48
Other Formats 48
Summary 51

4. Bad Data Lurking in Plain Text. 53

iii

Which Plain Text Encoding? 54
Guessing Text Encoding 58
Normalizing Text 61
Problem: Application-Specific Characters Leaking into Plain Text 63
Text Processing with Python 67
Exercises 68

5. (Re)Organizing the Web’s Data. 69
Can You Get That? 70
General Workflow Example 71

robots.txt 72
Identifying the Data Organization Pattern 73
Store Offline Version for Parsing 75
Scrape the Information Off the Page 76

The Real Difficulties 79
Download the Raw Content If Possible 80
Forms, Dialog Boxes, and New Windows 80
Flash 81

The Dark Side 82
Conclusion 82

6. Detecting Liars and the Confused in Contradictory Online Reviews. 83
Weotta 83
Getting Reviews 84
Sentiment Classification 85
Polarized Language 85
Corpus Creation 87
Training a Classifier 88
Validating the Classifier 90
Designing with Data 91
Lessons Learned 92
Summary 92
Resources 93

7. Will the Bad Data Please Stand Up?. 95
Example 1: Defect Reduction in Manufacturing 95
Example 2: Who’s Calling? 98
Example 3: When “Typical” Does Not Mean “Average” 101
Lessons Learned 104
Will This Be on the Test? 105

8. Blood, Sweat, and Urine. 107

iv | Table of Contents

A Very Nerdy Body Swap Comedy 107
How Chemists Make Up Numbers 108
All Your Database Are Belong to Us 110
Check, Please 113
Live Fast, Die Young, and Leave a Good-Looking Corpse Code Repository 114
Rehab for Chemists (and Other Spreadsheet Abusers) 115
tl;dr 117

9. When Data and Reality Don’t Match. 119
Whose Ticker Is It Anyway? 120
Splits, Dividends, and Rescaling 122
Bad Reality 125
Conclusion 127

10. Subtle Sources of Bias and Error. 129
Imputation Bias: General Issues 131
Reporting Errors: General Issues 133
Other Sources of Bias 135

Topcoding/Bottomcoding 136
Seam Bias 137
Proxy Reporting 138
Sample Selection 139

Conclusions 139
References 140

11. Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad?. 143
But First, Let’s Reflect on Graduate School … 143
Moving On to the Professional World 144
Moving into Government Work 146
Government Data Is Very Real 146
Service Call Data as an Applied Example 147
Moving Forward 148
Lessons Learned and Looking Ahead 149

12. When Databases Attack: A Guide for When to Stick to Files. 151
History 151

Building My Toolset 152
The Roadblock: My Datastore 152

Consider Files as Your Datastore 154
Files Are Simple! 154
Files Work with Everything 154
Files Can Contain Any Data Type 154

Table of Contents | v

Data Corruption Is Local 155
They Have Great Tooling 155
There’s No Install Tax 155

File Concepts 156
Encoding 156
Text Files 156
Binary Data 156
Memory-Mapped Files 156
File Formats 156
Delimiters 158

A Web Framework Backed by Files 159
Motivation 160
Implementation 161

Reflections 161

13. Crouching Table, Hidden Network. 163
A Relational Cost Allocations Model 164
The Delicate Sound of a Combinatorial Explosion… 167
The Hidden Network Emerges 168
Storing the Graph 169
Navigating the Graph with Gremlin 170
Finding Value in Network Properties 171
Think in Terms of Multiple Data Models and Use the Right Tool for the Job 173
Acknowledgments 173

14. Myths of Cloud Computing. 175
Introduction to the Cloud 175
What Is “The Cloud”? 175
The Cloud and Big Data 176
Introducing Fred 176
At First Everything Is Great 177
They Put 100% of Their Infrastructure in the Cloud 177
As Things Grow, They Scale Easily at First 177
Then Things Start Having Trouble 177
They Need to Improve Performance 178
Higher IO Becomes Critical 178
A Major Regional Outage Causes Massive Downtime 178
Higher IO Comes with a Cost 179
Data Sizes Increase 179
Geo Redundancy Becomes a Priority 179
Horizontal Scale Isn’t as Easy as They Hoped 180
Costs Increase Dramatically 180

vi | Table of Contents

Fred’s Follies 181
Myth 1: Cloud Is a Great Solution for All Infrastructure Components 181

How This Myth Relates to Fred’s Story 181
Myth 2: Cloud Will Save Us Money 181

How This Myth Relates to Fred’s Story 183
Myth 3: Cloud IO Performance Can Be Improved to Acceptable Levels

Through Software RAID 183
How This Myth Relates to Fred’s Story 183

Myth 4: Cloud Computing Makes Horizontal Scaling Easy 184
How This Myth Relates to Fred’s Story 184

Conclusion and Recommendations 184

15. The Dark Side of Data Science. 187
Avoid These Pitfalls 187
Know Nothing About Thy Data 188

Be Inconsistent in Cleaning and Organizing the Data 188
Assume Data Is Correct and Complete 188
Spillover of Time-Bound Data 189

Thou Shalt Provide Your Data Scientists with a Single Tool for All Tasks 189
Using a Production Environment for Ad-Hoc Analysis 189
The Ideal Data Science Environment 190

Thou Shalt Analyze for Analysis’ Sake Only 191
Thou Shalt Compartmentalize Learnings 192
Thou Shalt Expect Omnipotence from Data Scientists 192

Where Do Data Scientists Live Within the Organization? 193
Final Thoughts 193

16. How to Feed and Care for Your Machine-Learning Experts. 195
Define the Problem 195
Fake It Before You Make It 196
Create a Training Set 197
Pick the Features 198
Encode the Data 199
Split Into Training, Test, and Solution Sets 200
Describe the Problem 201
Respond to Questions 201
Integrate the Solutions 202
Conclusion 203

17. Data Traceability. 205
Why? 205
Personal Experience 206

Table of Contents | vii

Snapshotting 206
Saving the Source 206
Weighting Sources 207
Backing Out Data 207
Separating Phases (and Keeping them Pure) 207
Identifying the Root Cause 208
Finding Areas for Improvement 208

Immutability: Borrowing an Idea from Functional Programming 208
An Example 209

Crawlers 210
Change 210
Clustering 210
Popularity 210

Conclusion 211

18. Social Media: Erasable Ink?. 213
Social Media: Whose Data Is This Anyway? 214
Control 215
Commercial Resyndication 216
Expectations Around Communication and Expression 217
Technical Implications of New End User Expectations 219
What Does the Industry Do? 221

Validation API 222
Update Notification API 222

What Should End Users Do? 222
How Do We Work Together? 223

19. Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough. 225
Framework Introduction: The Four Cs of Data Quality Analysis 226
Complete 227
Coherent 229
Correct 232
aCcountable 233
Conclusion 237

Index. 239

viii | Table of Contents

About the Authors

(Guilty parties are listed in order of appearance.)

Kevin Fink is an experienced biztech executive with a passion for turning data into
business value. He has helped take two companies public (as CTO of N2H2 in 1999 and
SVP Engineering at Demand Media in 2011), in addition to helping grow others (in‐
cluding as CTO of WhitePages.com for four years). On the side, he and his wife run
Traumhof, a dressage training and boarding stable on their property east of Seattle. In
his copious free time, he enjoys hiking, riding his tandem bicycle with his son, and
geocaching.

Paul Murrell is a senior lecturer in the Department of Statistics at the University of
Auckland, New Zealand. His research area is Statistical Computing and Graphics and
he is a member of the core development team for the R project. He is the author of two
books, R Graphics and Introduction to Data Technologies, and is a Fellow of the American
Statistical Association.

Josh Levy is a data scientist in Austin, Texas. He works on content recommendation and
text mining systems. He earned his doctorate at the University of North Carolina where
he researched statistical shape models for medical image segmentation. His favorite
foosball shot is banked from the backfield.

Adam Laiacano has a BS in Electrical Engineering from Northeastern University and
spent several years designing signal detection systems for atomic clocks before joining
a prominent NYC-based startup.

Jacob Perkins is the CTO of Weotta, a NLTK contributer, and the author of Python Text
Processing with NLTK Cookbook. He also created the NLTK demo and API site text-
processing.com, and periodically blogs at streamhacker.com. In a previous life, he in‐
vented the refrigerator.

ix

http://text-processing.com
http://text-processing.com
http://streamhacker.com

Spencer Burns is a data scientist/engineer living in San Francisco. He has spent the past
15 years extracting information from messy data in fields ranging from intelligence to
quantitative finance to social media.

Richard Cotton is a data scientist with a background in chemical health and safety, and
has worked extensively on tools to give non-technical users access to statistical models.
He is the author of the R packages “assertive” for checking the state of your variables
and “sig” to make sure your functions have a sensible API. He runs The Damned Liars
statistics consultancy.

Philipp K. Janert was born and raised in Germany. He obtained a Ph.D. in Theoretical
Physics from the University of Washington in 1997 and has been working in the tech
industry since, including four years at Amazon.com, where he initiated and led several
projects to improve Amazon’s order fulfillment process. He is the author of two books
on data analysis, including the best-selling Data Analysis with Open Source Tools
(O’Reilly, 2010), and his writings have appeared on Perl.com, IBM developerWorks,
IEEE Software, and in the Linux Magazine. He also has contributed to CPAN and other
open-source projects. He lives in the Pacific Northwest.

Jonathan Schwabish is an economist at the Congressional Budget Office. He has con‐
ducted research on inequality, immigration, retirement security, data measurement,
food stamps, and other aspects of public policy in the United States. His work has been
published in the Journal of Human Resources, the National Tax Journal, and elsewhere.
He is also a data visualization creator and has made designs on a variety of topics that
range from food stamps to health care to education. His visualization work has been
featured on the visualizaing.org and visual.ly websites. He has also spoken at numerous
government agencies and policy institutions about data visualization strategies and best
practices. He earned his Ph.D. in economics from Syracuse University and his under‐
graduate degree in economics from the University of Wisconsin at Madison.

Brett Goldstein is the Commissioner of the Department of Innovation and Technology
for the City of Chicago. He has been in that role since June of 2012. Brett was previously
the city’s Chief Data Officer. In this role, he lead the city’s approach to using data to help
improve the way the government works for its residents. Before coming to City Hall as
Chief Data Officer, he founded and commanded the Chicago Police Department’s Pre‐
dictive Analytics Group, which aims to predict when and where crime will happen. Prior
to entering the public sector, he was an early employee with OpenTable and helped build
the company for seven years. He earned his BA from Connecticut College, his MS in
criminal justice at Suffolk University, and his MS in computer science at University of
Chicago. Brett is pursuing his PhD in Criminology, Law, and Justice at the University
of Illinois-Chicago. He resides in Chicago with his wife and three children.

x | About the Authors

http://visualizaing.org/
http://visual.ly/

Bobby Norton is the co-founder of Tested Minds, a startup focused on products for
social learning and rapid feedback. He has built software for over 10 years at firms such
as Lockheed Martin, NASA, GE Global Research, ThoughtWorks, DRW Trading Group,
and Aurelius. His data science tools of choice include Java, Clojure, Ruby, Bash, and R.
Bobby holds a MS in Computer Science from FSU.

Steve Francia is the Chief Evangelist at 10gen where he is responsible for the MongoDB
user experience. Prior to 10gen he held executive engineering roles at OpenSky, Portero,
Takkle and Supernerd. He is a popular speaker on a broad set of topics including cloud
computing, big data, e-commerce, development and databases. He is a published author,
syndicated blogger (spf13.com) and frequently contributes to industry publications.
Steve’s work has been featured by the New York Times, Guardian UK, Mashable, Read‐
WriteWeb, and more. Steve is a long time contributor to open source. He enjoys coding
in Vim and maintains a popular Vim distribution. Steve lives with his wife and four
children in Connecticut.

Tim McNamara is a New Zealander with a laptop and a desire to do good. He is an
active participant in both local and global open data communities, jumping between
organising local meetups to assisting with the global CrisisCommons movement. His
skills as a programmer began while assisting with the development Sahana Disaster
Management System, were refined helping Sugar Labs, the software which runs the One
Laptop Per Child XO. Tim has recently moved into the escience field, where he works
to support the research community’s uptake of technology.

Marck Vaisman is a data scientist and claims he’s been one before the term was en vogue.
He is also a consultant, entrepreneur, master munger, and hacker. Marck is the principal
data scientist at DataXtract, LLC where he helps clients ranging from startups to Fortune
500 firms with all kinds of data science projects. His professional experience spans the
management consulting, telecommunications, Internet, and technology industries. He
is the co-founder of Data Community DC, an organization focused on building the
Washington DC area data community and promoting data and statistical sciences by
running Meetup events (including Data Science DC and R Users DC) and other initia‐
tives. He has an MBA from Vanderbilt University and a BS in Mechanical Engineering
from Boston University. When he’s not doing something data related, you can find him
geeking out with his family and friends, swimming laps, scouting new and interesting
restaurants, or enjoying good beer.

Pete Warden is an ex-Apple software engineer, wrote the Big Data Glossary and the Data
Source Handbook for O’Reilly, created the open-source projects Data Science Toolkit
and OpenHeatMap, and broke the story about Apple’s iPhone location tracking file. He’s
the CTO and founder of Jetpac, a data-driven social photo iPad app, with over a billion
pictures analyzed from 3 million people so far.

Jud Valeski is co-founder and CEO of Gnip, the leading provider of social media data
for enterprise applications. From client-side consumer facing products to large scale

About the Authors | xi

backend infrastructure projects, he has enjoyed working with technology for over twenty
years. He’s been a part of engineering, product, and M&A teams at IBM, Netscape,
onebox.com, AOL, and me.dium. He has played a central role in the release of a wide
range of products used by tens of millions of people worldwide.

Reid Draper is a functional programmer interested in distributed systems, program‐
ming languages, and coffee. He’s currently working for Basho on their distributed da‐
tabase: Riak.

Ken Gleason’s technology career experience spans more than twenty years, including
real-time trading system software architecture and development and retail financial
services application design. He has spent the last ten years in the data-driven field of
electronic trading, where he has managed product development and high-frequency
trading strategies. Ken holds an MBA from the University of Chicago Booth School of
Business and a BS from Northwestern University.

Q. Ethan McCallum works as a professional-services consultant. His technical interests
range from data analysis, to software, to infrastructure. His professional focus is helping
businesses improve their standing—in terms of reduced risk, increased profit, and
smarter decisions—through practical applications of technology. His written work has
appeared online and in print, including Parallel R: Data Analysis in the Distributed
World (O’Reilly, 2011).

xii | About the Authors

http://onebox.com
http://shop.oreilly.com/product/0636920021421.do
http://shop.oreilly.com/product/0636920021421.do

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xiii

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis‐
sion unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Bad Data Handbook by Q. Ethan McCallum
(O’Reilly). Copyright 2013 Q. McCallum, 978-1-449-32188-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/bad_data_handbook.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
It’s odd, really. Publishers usually stash a book’s acknowledgements into a small corner,
outside the periphery of the “real” text. That makes it easy for readers to trivialize all
that it took to bring the book into being. Unless you’ve written a book yourself, or have
had a hand in publishing one, it may surprise you to know just what is involved in turning
an idea into a neat package of pages (or screens of text).

To be blunt, a book is a Big Deal. To publish one means to assemble and coordinate a
number of people and actions over a stretch of time measured in months or even years.
My hope here is to shed some light on, and express my gratitude to, the people who
made this book possible.

Mike Loukides: This all started as a casual conversation with Mike. Our meandering
chat developed into a brainstorming session, which led to an idea, which eventually
turned into this book. (Let’s also give a nod to serendipity. Had I spoken with Mike on
a different day, at a different time, I wonder whether we would have decided on a com‐
pletely different book?)

Meghan Blanchette: As the book’s editor, Meghan kept everything organized and on
track. She was a tireless source of ideas and feedback. That’s doubly impressive when
you consider that Bad Data Handbook was just one of several titles under her watch. I
look forward to working with her on the next project, whatever that may be and when‐
ever that may happen.

Contributors, and those who helped me find them: I shared writing duties with 18
other people, which accounts for the rich variety of topics and stories here. I thank all

Preface | xv

http://oreil.ly/bad_data_handbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

of the contributors for their time, effort, flexibility, and especially their grace in handling
my feedback. I also thank everyone who helped put me in contact with prospective
contributors, without whom this book would have been quite a bit shorter, and more
limited in coverage.

The entire O’Reilly team: It’s a pleasure to write with the O’Reilly team behind me. The
whole experience is seamless: things just work, and that means I get to focus on the
writing. Thank you all!

xvi | Preface

CHAPTER 1

Setting the Pace: What Is Bad Data?

We all say we like data, but we don’t.

We like getting insight out of data. That’s not quite the same as liking the data itself.

In fact, I dare say that I don’t quite care for data. It sounds like I’m not alone.

It’s tough to nail down a precise definition of “Bad Data.” Some people consider it a
purely hands-on, technical phenomenon: missing values, malformed records, and cran‐
ky file formats. Sure, that’s part of the picture, but Bad Data is so much more. It includes
data that eats up your time, causes you to stay late at the office, drives you to tear out
your hair in frustration. It’s data that you can’t access, data that you had and then lost,
data that’s not the same today as it was yesterday…

In short, Bad Data is data that gets in the way. There are so many ways to get there, from
cranky storage, to poor representation, to misguided policy. If you stick with this data
science bit long enough, you’ll certainly encounter your fair share.

To that end, we decided to compile Bad Data Handbook, a rogues gallery of data trou‐
blemakers. We found 19 people from all reaches of the data arena to talk about how data
issues have bitten them, and how they’ve healed.

In particular:

Guidance for Grubby, Hands-on Work

You can’t assume that a new dataset is clean and ready for analysis. Kevin Fink’s Is
It Just Me, or Does This Data Smell Funny? (Chapter 2) offers several techniques to
take the data for a test drive.

There’s plenty of data trapped in spreadsheets, a format as prolific as it is incon‐
venient for analysis efforts. In Data Intended for Human Consumption, Not Machine
Consumption (Chapter 3), Paul Murrell shows off moves to help you extract that
data into something more usable.

1

If you’re working with text data, sooner or later a character encoding bug will bite
you. Bad Data Lurking in Plain Text (Chapter 4), by Josh Levy, explains what sort
of problems await and how to handle them.

To wrap up, Adam Laiacano’s (Re)Organizing the Web’s Data (Chapter 5) walks you
through everything that can go wrong in a web-scraping effort.

Data That Does the Unexpected

Sure, people lie in online reviews. Jacob Perkins found out that people lie in some
very strange ways. Take a look at Detecting Liars and the Confused in Contradictory
Online Reviews (Chapter 6) to learn how Jacob’s natural-language programming
(NLP) work uncovered this new breed of lie.

Of all the things that can go wrong with data, we can at least rely on unique iden‐
tifiers, right? In When Data and Reality Don’t Match (Chapter 9), Spencer Burns
turns to his experience in financial markets to explain why that’s not always the
case.

Approach

The industry is still trying to assign a precise meaning to the term “data scientist,”
but we all agree that writing software is part of the package. Richard Cotton’s Blood,
Sweat, and Urine (Chapter 8) offers sage advice from a software developer’s per‐
spective.

Philipp K. Janert questions whether there is such a thing as truly bad data, in Will
the Bad Data Please Stand Up? (Chapter 7).

Your data may have problems, and you wouldn’t even know it. As Jonathan A.
Schwabish explains in Subtle Sources of Bias and Error (Chapter 10), how you collect
that data determines what will hurt you.

In Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad? (Chap‐
ter 11), Brett J. Goldstein’s career retrospective explains how dirty data will give your
classical statistics training a harsh reality check.

Data Storage and Infrastructure

How you store your data weighs heavily in how you can analyze it. Bobby Norton
explains how to spot a graph data structure that’s trapped in a relational database
in Crouching Table, Hidden Network (Chapter 13).

Cloud computing’s scalability and flexibility make it an attractive choice for the
demands of large-scale data analysis, but it’s not without its faults. In Myths of Cloud
Computing (Chapter 14), Steve Francia dissects some of those assumptions so you
don’t have to find out the hard way.

2 | Chapter 1: Setting the Pace: What Is Bad Data?

We debate using relational databases over NoSQL products, Mongo over Couch, or
one Hadoop-based storage over another. Tim McNamara’s When Databases Attack:
A Guide for When to Stick to Files (Chapter 12) offers another, simpler option for
storage.

The Business Side of Data

Sometimes you don’t have enough work to hire a full-time data scientist, or maybe
you need a particular skill you don’t have in-house. In How to Feed and Care for
Your Machine-Learning Experts (Chapter 16), Pete Warden explains how to out‐
source a machine-learning effort.

Corporate bureaucracy policy can build roadblocks that inhibit you from even an‐
alyzing the data at all. Marck Vaisman uses The Dark Side of Data Science (Chap‐
ter 15) to document several worst practices that you should avoid.

Data Policy

Sure, you know the methods you used, but do you truly understand how those final
figures came to be? Reid Draper’s Data Traceability (Chapter 17) is food for thought
for your data processing pipelines.

Data is particularly bad when it’s in the wrong place: it’s supposed to be inside but
it’s gotten outside, or it still exists when it’s supposed to have been removed. In Social
Media: Erasable Ink? (Chapter 18), Jud Valeski looks to the future of social media,
and thinks through a much-needed recall feature.

To close out the book, I pair up with longtime cohort Ken Gleason on Data Quality
Analysis Demystified: Knowing When Your Data Is Good Enough (Chapter 19). In
this complement to Kevin Fink’s article, we explain how to assess your data’s quality,
and how to build a structure around a data quality effort.

Setting the Pace: What Is Bad Data? | 3

CHAPTER 2

Is It Just Me, or Does This Data
Smell Funny?

Kevin Fink

You are given a dataset of unknown provenance. How do you know if the data is any
good?

It is not uncommon to be handed a dataset without a lot of information as to where it
came from, how it was collected, what the fields mean, and so on. In fact, it’s probably
more common to receive data in this way than not. In many cases, the data has gone
through many hands and multiple transformations since it was gathered, and nobody
really knows what it all means anymore. In this chapter, I’ll walk you through a step-by-
step approach to understanding, validating, and ultimately turning a dataset into usable
information. In particular, I’ll talk about specific ways to look at the data, and show
some examples of what I learned from doing so.

As a bit of background, I have been dealing with quite a variety of data for the past 25
years or so. I’ve written code to process accelerometer and hydrophone signals for anal‐
ysis of dams and other large structures (as an undergraduate student in Engineering at
Harvey Mudd College), analyzed recordings of calls from various species of bats (as a
graduate student in Electrical Engineering at the University of Washington), built sys‐
tems to visualize imaging sonar data (as a Graduate Research Assistant at the Applied
Physics Lab), used large amounts of crawled web content to build content filtering sys‐
tems (as the co-founder and CTO of N2H2, Inc.), designed intranet search systems for
portal software (at DataChannel), and combined multiple sets of directory assistance
data into a searchable website (as CTO at WhitePages.com). For the past five years or
so, I’ve spent most of my time at Demand Media using a wide variety of data sources to
build optimization systems for advertising and content recommendation systems, with
various side excursions into large-scale data-driven search engine optimization (SEO)
and search engine marketing (SEM).

5

Most of my examples will be related to work I’ve done in Ad Optimization, Content
Recommendation, SEO, and SEM. These areas, as with most, have their own terminol‐
ogy, so a few term definitions may be helpful.

Table 2-1. Term Definitions

Term Definition

PPC Pay Per Click—Internet advertising model used to drive traffic to websites with a payment model based on clicks on
advertisements. In the data world, it is used more specifically as Price Per Click, which is the amount paid per click.

RPM Revenue Per 1,000 Impressions (usually ad impressions).

CTR Click Through Rate—Ratio of Clicks to Impressions. Used as a measure of the success of an advertising campaign or content
recommendation.

XML Extensible Markup Language—Text-based markup language designed to be both human and machine-readable.

JSON JavaScript Object Notation—Lightweight text-based open standard designed for human-readable data interchange.
Natively supported by JavaScript, so often used by JavaScript widgets on websites to communicate with back-end servers.

CSV Comma Separated Value—Text file containing one record per row, with fields separated by commas.

Understand the Data Structure
When receiving a dataset, the first hurdle is often basic accessibility. However, I’m going
to skip over most of these issues and assume that you can read the physical medium,
uncompress or otherwise extract the files, and get it into a readable format of some sort.
Once that is done, the next important task is to understand the structure of the data.
There are many different data structures commonly used to transfer data, and many
more that are (thankfully) used less frequently. I’m going to focus on the most common
(and easiest to handle) formats: columnar, XML, JSON, and Excel.

The single most common format that I see is some version of columnar (i.e., the data is
arranged in rows and columns). The columns may be separated by tabs, commas, or
other characters, and/or they may be of a fixed length. The rows are almost always
separated by newline and/or carriage return characters. Or for smaller datasets the data
may be in a proprietary format, such as those that various versions of Excel have used,
but are easily converted to a simpler textual format using the appropriate software. I
often receive Excel spreadsheets, and almost always promptly export them to a tab-
delimited text file.

Comma-separated value (CSV) files are the most common. In these files, each record
has its own line, and each field is separated by a comma. Some or all of the values
(particularly commas within a field) may also be surrounded by quotes or other char‐
acters to protect them. Most commonly, double quotes are put around strings containing
commas when the comma is used as the delimiter. Sometimes all strings are protected;
other times only those that include the delimiter are protected. Excel can automatically
load CSV files, and most languages have libraries for handling them as well.

6 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

In the example code below, I will be making occasional use of some
basic UNIX commands: particularly echo and cat. This is simply to
provide clarity around sample data. Lines that are meant to be typed or
at least understood in the context of a UNIX shell start with the dollar-
sign ($) character. For example, because tabs and spaces look a lot alike
on the page, I will sometimes write something along the lines of

$ echo -e 'Field 1\tField 2\nRow 2\n'

to create sample data containing two rows, the first of which has two
fields separated by a tab character. I also illustrate most pipelines ver‐
bosely, by starting them with

$ cat filename |

even though in actual practice, you may very well just specify the file‐
name as a parameter to the first command. That is,

$ cat filename | sed -e 's/cat/dog/'

is functionally identical to the shorter (and slightly more efficient)

$ sed -e 's/cat/dog/' filename

Here is a Perl one-liner that extracts the third and first columns from a CSV file:

$ echo -e 'Column 1,"Column 2, protected","Column 3"'
Column 1,"Column 2, protected","Column 3"

$ echo -e 'Column 1,"Column 2, protected","Column 3"' | \
 perl -MText::CSV -ne '
 $csv = Text::CSV->new();
 $csv->parse($_); print join("\t",($csv->fields())[2,0]);'
Column 3 Column 1

Here is a more readable version of the Perl script:

use Text::CSV;

while(<>) {
 my $csv = Text::CSV->new();
 $csv->parse($_);
 my @fields = $csv->fields();
 print join("\t",@fields[2,0]),"\n";
}

Most data does not include tab characters, so it is a fairly safe and therefore popular,
delimiter. Tab-delimited files typically completely disallow tab characters in the data
itself, so don’t use quotes or escape sequences, making them easier to work with than
CSV files. They can be easily handled by typical UNIX command line utilities such as
perl, awk, cut, join, comm, and the like, and many simple visualization tools such as
Excel can semi-automatically import tab-separated-value files, putting each field into a
separate column for easy manual fiddling.

Understand the Data Structure | 7

Here are some simple examples of printing out the first and third columns of a tab-
delimited string. The cut command will only print out data in the order it appears, but
other tools can rearrange it. Here are examples of cut printing the first and third columns,
and awk and perl printing the third and first columns, in that order:

$ echo -e 'Column 1\tColumn 2\tColumn 3\n'
Column 1 Column 2 Column 3

cut:

$ echo -e 'Column 1\tColumn 2\tColumn 3\n' | \
 cut -f1,3
Column 1 Column 3

awk:

$ echo -e 'Column 1\tColumn 2\tColumn 3\n' | \
 awk -F"\t" -v OFS="\t" '{ print $3,$1 }'
Column 3 Column 1

perl:

$ echo -e 'Column 1\tColumn 2\tColumn 3\n' | \
 perl -a -F"\t" -n -e '$OFS="\t"; print @F[2,0],"\n"'
Column 3 Column 1

In some arenas, XML is a common data format. Although they haven’t really caught on
widely, some databases (e.g., BaseX) store XML internally, and many can export data in
XML. As with CSV, most languages have libraries that will parse it into native data
structures for analysis and transformation.

Here is a Perl one-liner that extracts fields from an XML string:

$ echo -e '<config>\n\t<key name="key1" value="value 1">
\n\t<description>Description 1</description>
\n\t</key>\n</config>'
<config>
 <key name="key1" value="value 1">
 <description>Description 1</description>
 </key>
</config>

$ echo '<config><key name="key1" value="value 1">
 <description>Description 1</description>
 </key></config>' | \
 perl -MXML::Simple -e 'my $ref = XMLin(<>);
 print $ref->{"key"}->{"description"}'
Description 1

Here is a more readable version of the Perl script:

8 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

use XML::Simple;

my $ref = XMLin(join('',<>));
print $ref->{"key"}->{"description"}';

Although primarily used in web APIs to transfer information between servers and Java‐
Script clients, JSON is also sometimes used to transfer bulk data. There are a number
of databases that either use JSON internally (e.g., CouchDB) or use a serialized form of
it (e.g., MongoDB), and thus a data dump from these systems is often in JSON.

Here is a Perl one-liner that extracts a node from a JSON document:

$ echo '{"config": {"key1":"value 1","description":"Description 1"}}'
{"config": {"key1":"value 1","description":"Description 1"}}

$ echo '{"config": {"key1":"value 1","description":"Description 1"}}' | \
 perl -MJSON::XS -e 'my $json = decode_json(<>);
 print $json->{"config"}->{"description"}'
Description 1

Here is a more readable version of the Perl script:

use JSON::XS;

my $json = decode_json(join('',<>));
print $json->{"config"}->{"description"}';

Field Validation
Once you have the data in a format where you can view and manipulate it, the next step
is to figure out what the data means. In some (regrettably rare) cases, all of the infor‐
mation about the data is provided. Usually, though, it takes some sleuthing. Depending
on the format of the data, there may be a header row that can provide some clues, or
each data element may have a key. If you’re lucky, they will be reasonably verbose and
in a language you understand, or at least that someone you know can read. I’ve asked
my Russian QA guy for help more than once. This is yet another advantage of diversity
in the workplace!

One common error is misinterpreting the units or meaning of a field. Currency fields
may be expressed in dollars, cents, or even micros (e.g., Google’s AdSense API). Revenue
fields may be gross or net. Distances may be in miles, kilometers, feet, and so on. Looking
at both the definitions and actual values in the fields will help avoid misinterpretations
that can lead to incorrect conclusions.

You should also look at some of the values to make sure they make sense in the context
of the fields. For example, a PageView field should probably contain integers, not deci‐
mals or strings. Currency fields (prices, costs, PPC, RPM) should probably be decimals
with two to four digits after the decimal. A User Agent field should contain strings that
look like common user agents. IP addresses should be integers or dotted quads.

Field Validation | 9

A common issue in datasets is missing or empty values. Sometimes these are fine, while
other times they invalidate the record. These values can be expressed in many ways. I’ve
seen them show up as nothing at all (e.g., consecutive tab characters in a tab-delimited
file), an empty string (contained either with single or double quotes), the explicit string
NULL or undefined or N/A or NaN, and the number 0, among others. No matter how
they appear in your dataset, knowing what to expect and checking to make sure the data
matches that expectation will reduce problems as you start to use the data.

Value Validation
I often extend these anecdotal checks to true validation of the fields. Most of these types
of validations are best done with regular expressions. For historical reasons (i.e., I’ve
been using it for 20-some years), I usually write my validation scripts in Perl, but there
are many good choices available. Virtually every language has a regular expression
implementation.

For enumerable fields, do all of the values fall into the proper set? For example, a “month”
field should only contain months (integers between 0 and 12, string values of Jan, Feb,
… or January, February, …).

my $valid_month = map { $_ => 1 } (0..12,
qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
January February March April May June July August
September October November December));
print "Invalid!" unless($valid_month{$month_to_check});

For numeric fields, are all of the values numbers? Here is a check to see if the third
column consists entirely of digits.

$ cat sample.txt
one two 3
one two three
1 2 3
1 2 three

$ cat sample.txt | \
 perl -ape 'warn if $F[2] !~ /^\d+$/'
one two 3
Warning: something's wrong at -e line 1, <> line 2.
one two three
1 2 3
Warning: something's wrong at -e line 1, <> line 4.
1 2 three

For fixed-format fields, do all of the values match a regular expression? For example, IP
addresses are often shown as dotted quads (e.g., 127.0.0.1), which can be matched with
something like ^\d+\.\d+\.\d+\.\d+$ (or more rigorous variants).

10 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

$ cat sample.txt
fink.com 127.0.0.1
bogus.com 1.2.3

$ cat sample.txt | \
 perl -ape 'warn "Invalid IP!" if $F[1] !~ /^\d+\.\d+\.\d+\.\d+$/'
fink.com 127.0.0.1
Invalid IP! at -e line 1, <> line 2.
bogus.com 1.2.3

Physical Interpretation of Simple Statistics
For numeric fields, I like to do some simple statistical checks. Does the minimum value
make sense in the context of the field? The minimum value of a counter (number of
clicks, number of pageviews, and so on) should be 0 or greater, as should many other
types of fields (e.g., PPC, CTR, CPM). Similarly, does the maximum value make sense?
Very few fields can logically accommodate values in the billions, and in many cases
much smaller numbers than that don’t make sense.

Depending on the exact definition, a ratio like CTR should not exceed 1. Of course, no
matter the definition, it often will (this book is about bad data, after all…), but it generally
shouldn’t be much greater than 1. Certainly if you see values in the hundreds or thou‐
sands, there is likely a problem.

Financial values should also have a reasonable upper bound. At least for the types of
data I’ve dealt with, PPC or CPC values in the hundreds of dollars might make sense,
but certainly not values in the thousands or more. Your acceptable ranges will probably
be different, but whatever they are, check the data to make sure it looks plausible.

You can also look at the average value of a field (or similar statistic like the mode or
median) to see if it makes sense. For example, if the sale price of a widget is somewhere
around $10, but the average in your “Widget Price” field is $999, then something is not
right. This can also help in checking units. Perhaps 999 is a reasonable value if that field
is expressed in cents instead of dollars.

The nice thing about these checks is that they can be easily automated, which is very
handy for datasets that are periodically updated. Spending a couple of hours checking
a new dataset is not too onerous, and can be very valuable for gaining an intuitive feel
for the data, but doing it again isn’t nearly as much fun. And if you have an hourly feed,
you might as well work as a Jungle Cruise tour guide at Disneyland (“I had so much fun,
I’m going to go again! And again! And again…”).

Physical Interpretation of Simple Statistics | 11

Visualization
Another technique that I find very helpful is to create a histogram of the values in a data
field. This is especially helpful for extremely large datasets, where the simple statistics
discussed above barely touch the surface of the data. A histogram is a count of the
number of times each unique value appears in a dataset, so it can be generated on
nonnumeric values where the statistical approach isn’t applicable.

For example, consider a dataset containing referral keywords, which are phrases
searched for using Google, Bing, or some other search engine that led to pageviews on
a site. A large website can receive millions of referrals from searches for hundreds of
thousands of unique keywords per day, and over a reasonable span of time can see
billions of unique keywords. We can’t use statistical concepts like minimum, maximum,
or average to summarize the data because the key field is nonnumeric: keywords are
arbitrary strings of characters.

We can use a histogram to summarize this very large nonnumeric dataset. A first order
histogram counts the number of referrals per keyword. However, if we have billions of
keywords in our dataset, our histogram will be enormous and not terribly useful. We
can perform another level of aggregation, using the number of referrals per keyword as
the value, resulting in a much smaller and more useful summary. This histogram will
show the number of keywords having each number of referrals. Because small differ‐
ences in the number of referrals isn’t very meaningful, we can further summarize by
placing the values into bins (e.g., 1-10 referrals, 11-20 referrals, 21-29 referrals, and so
on). The specific bins will depend on the data, of course.

For many simple datasets, a quick pipeline of commands can give you a useful histogram.
For example, let’s say you have a simple text file (sample.txt) containing some enumer‐
ated field (e.g., URLs, keywords, names, months). To create a quick histogram of the
data, simply run:

$ cat sample.txt | sort | uniq -c

So, what’s going on here? The cat command reads a file and sends the contents of it to
STDOUT. The pipe symbol (|) catches this data and sends it on to the next command
in the pipeline (making the pipe character an excellent choice!), in this case the sort
command, which does exactly what you’d expect: it sorts the data. For our purposes we
actually don’t care whether or not the data is sorted, but we do need identical rows to
be adjacent to each other, as the next command, uniq, relies on that. This (aptly named,
although what happened to the “ue” at the end I don’t know) command will output each
unique row only once, and when given the -c option, will prepend it with the number
of rows it saw. So overall, this pipeline will give us the number of times each row appears
in the file: that is, a histogram!

Here is an example.

12 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Example 2-1. Generating a Sample Histogram of Months

$ cat sample.txt
January
January
February
October
January
March
September
September
February

$ cat sample.txt | sort
February
February
January
January
January
March
October
September
September

$ cat sample.txt | sort | uniq -c
 2 February
 3 January
 1 March
 1 October
 2 September

For slightly more complicated datasets, such as a tab-delimited file, simply add a filter
to extract the desired column. There are several (okay, many) options for extracting a
column, and the “best” choice depends on the specifics of the data and the filter criteria.
The simplest is probably the cut command, especially for tab-delimited data. You simply
specify which column (or columns) you want as a command line parameter. For exam‐
ple, if we are given a file containing names in the first column and ages in the second
column and asked how many people are of each age, we can use the following code:

$ cat sample2.txt
Joe 14
Marci 17
Jim 16
Bob 17
Liz 15
Sam 14

$ cat sample2.txt | cut -f2 | sort | uniq -c

Visualization | 13

 2 14
 1 15
 1 16
 2 17

The first column contains the counts, the second the ages. So two kids are 14-year-olds,
one is 15-year-old, one is 16-year-old, and two are 17-year-olds.

The awk language is another popular choice for selecting columns (and can do much,
much more), albeit with a slightly more complicated syntax:

$ cat sample2.txt | \
 awk '{print $2}' | sort | uniq -c
 2 14
 1 15
 1 16
 2 17

As with virtually all text-handling tasks, Perl can also be used (and as with anything in
Perl, there are many ways to do it). Here are a few examples:

$ cat sample2.txt | \
 perl -ane 'print $F[1],"\n"' | sort | uniq -c
 2 14
 1 15
 1 16
 2 17

$ cat sample2.txt | \
 perl -ne 'chomp; @F = split(/\t/,$_); print $F[1],"\n"' | sort | uniq -c
 2 14
 1 15
 1 16
 2 17

For real datasets (i.e., ones consisting of lots of data points), a histogram provides a
reasonable approximation of the distribution function and can be assessed as such. For
example, you typically expect a fairly smooth function. It may be flat, or Gaussian (looks
like a bell curve), or even decay exponentially (long-tail), but a discontinuity in the graph
should be viewed with suspicion: it may indicate some kind of problem with the data.

Keyword PPC Example
One example of a histogram study that I found useful was for a dataset consisting of
estimated PPC values for two sets of about 7.5 million keywords. The data had been
collected by third parties and I was given very little information about the methodology
they used to collect it. The data files were comma-delimited text files of keywords and
corresponding PPC values.

14 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Example 2-2. PPC Data File

waco tourism, $0.99
calibre cpa, $1.99,,,,,
c# courses,$2.99 ,,,,,
cad computer aided dispatch, $1.49 ,,,,,
cadre et album photo, $1.39 ,,,,,
cabana beach apartments san marcos, $1.09,,,
"chemistry books, a level", $0.99
cake decorating classes in san antonio, $1.59 ,,,,,
k & company, $0.50
p&o mini cruises, $0.99
c# data grid,$1.79 ,,,,,
advanced medical imaging denver, $9.99 ,,,,,
canadian commercial lending, $4.99 ,,,,,
cabin vacation packages, $1.89 ,,,,,
c5 envelope printing, $1.69 ,,,,,
mesothelioma applied research, $32.79 ,,,,,
ca antivirus support, $1.29 ,,,,,
"trap, toilet", $0.99
c fold towels, $1.19 ,,,,,
cabin rentals wa, $0.99

Because this dataset was in CSV (including some embedded commas in quoted fields),
the quick tricks described above don’t work perfectly. A quick first approximation can
be done by removing those entries with embedded commas, then using a pipeline similar
to the above. We’ll do that by skipping the rows that contain the double-quote character.
First, though, let’s check to see how many records we’ll skip.

$ cat data*.txt | grep -c '"'
5505
$ cat data*.txt | wc -l
7533789

We only discarded 0.07% of the records, which isn’t going to affect anything, so our
pipeline is:

$ cat ppc_data_sample.txt | grep -v '"' | cut -d, -f2 | sort | uniq -c | sort -k2
 1 $0.50
 3 $0.99
 1 $1.09
 1 $1.19
 1 $1.29
 1 $1.39
 1 $1.49
 1 $1.59
 1 $1.69
 1 $1.79
 1 $1.89
 1 $1.99

Keyword PPC Example | 15

 1 $2.99
 1 $32.79
 1 $4.99
 1 $9.99

This may look a little complicated, so let’s walk through it step-by-step. First, we create
a data stream by using the cat command and a shell glob that matches all of the data
files. Next, we use the grep command with the -v option to remove those rows that
contain the double-quote character, which the CSV format uses to encapsulate the de‐
limiter character (the comma, in our case) when it appears in a field. Then we use the
cut command to extract the second field (where fields are defined by the comma char‐
acter). We then sort the resulting rows so that duplicates will be in adjacent rows. Next
we use the uniq command with the -c option to count the number of occurrences of
each row. Finally, we sort the resulting output by the second column (the PPC value).

In reality, this results in a pretty messy outcome, because the format of the PPC values
varies (some have white space between the comma and dollar sign, some don’t, among
other variations). If we want cleaner output, as well as a generally more flexible solution,
we can write a quick Perl script to clean and aggregate the data:

use strict;
use warnings;

use Text::CSV_XS;

my $csv = Text::CSV_XS->new({binary=>1});
my %count;

while(<>) {
 chomp;
 s/\cM//;
 $csv->parse($_) || next;
 my $ppc = ($csv->fields())[1];
 $ppc =~ s/^[\$]+//;
 $count{$ppc}++;
}

foreach my $ppc (sort {$a <=> $b} keys %count) {
 print "$ppc\t$count{$ppc}\n";
}

For our sample dataset shown above, this results in a similar output, but with the two
discarded $0.99 records included and the values as actual values rather than strings of
varying format:

0.50 1
0.99 5
1.09 1
1.19 1
1.29 1
1.39 1

16 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

1.49 1
1.59 1
1.69 1
1.79 1
1.89 1
1.99 1
2.99 1
4.99 1
9.99 1
32.79 1

For the real dataset, the output looks like:

0.05 1071347
0.06 2993
0.07 3359
0.08 3876
0.09 4803
0.10 443838
0.11 28565
0.12 32335
0.13 36113
0.14 42957
0.15 50026
...
23.97 1
24.64 1
24.82 1
25.11 1
25.93 1
26.07 1
26.51 1
27.52 1
32.79 1

As an aside, if your data is already in a SQL database, generating a histogram is very
easy. For example, assume we have a table called MyTable containing the data described
above, with two columns: Term and PPC. We simply aggregate by PPC:

SELECT PPC, COUNT(1) AS Terms
FROM MyTable
GROUP BY PPC
ORDER BY PPC ASC

No matter how we generate this data, the interesting features can most easily be visual‐
ized by graphing it, as shown in Figure 2-1.

There are a lot of keywords with relatively small PPC values, and then an exponential
decay (note that the vertical axis is on a logarithmic scale) as PPC values increase. How‐
ever, there is a big gap in the middle of the graph! There are almost no PPC values
between $15.00 and $15.88, and then more than expected (based on the shape of the
curve) from $15.89 to about $18.00, leading me to hypothesize that the methodology

Keyword PPC Example | 17

used to generate this data shifted everything between $15.00 and $15.88 up by $0.89 or
so. After talking to the data source, we found out two things. First, this was indeed due
to the algorithm they used to test PPC values. Second, they had no idea that their algo‐
rithm had this unfortunate characteristic! By doing this analysis we knew to avoid as‐
cribing relative values to any keywords with PPC values between $15.89 and $18.00, and
they knew to fix their algorithm.

Figure 2-1. PPC Histogram Overview

Another interesting feature of this dataset is that the minimum value is $0.05. This could
be caused by the marketplace being measured as having a minimum bid, or the algorithm
estimating the bids starting at $0.05, or the data being post-filtered to remove bids below
$0.05, or perhaps other explanations. In this case, it turned out to be the first option:
the marketplace where the data was collected had a minimum bid of five cents. In fact,
if we zoom in on the low-PPC end of the histogram (Figure 2-2), we can see another
interesting feature. Although there are over a million keywords with a PPC value of
$0.05, there are virtually none (less than 3,000 to be precise) with a PPC value of $0.06,
and similarly up to $0.09. Then there are quite a few (almost 500,000) at $0.10, and again
fewer (less than 30,000) at $0.11 and up. So apparently the marketplace has two different
minimum bids, depending on some unknown factor.

18 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Figure 2-2. PPC Histogram Low Values

Search Referral Example
Another example of the usefulness of a histogram came from looking at search referral
data. When users click on links to a website on a Google search results page, Google
(sometimes) passes along the “rank” of the listing (1 for the first result on the page, 2
for the second, and so on) along with the query keyword. This information is very
valuable to websites because it tells them how their content ranks in the Google results
for various keywords. However, it can be pretty noisy data. Google is constantly testing
their algorithms and user behavior by changing the order of results on a page. The order
of results is also affected by characteristics of the specific user, such as their country,
past search and click behavior, or even their friends’ recommendations. As a result, this
rank data will typically show many different ranks for a single keyword/URL combina‐
tion, making interpretation difficult. Some people also contend that Google purpose‐
fully obfuscates this data, calling into question any usefulness.

In order to see if this rank data had value, I looked at the referral data from a large
website with a significant amount of referral traffic (millions of referrals per day) from
Google. Rather than the usual raw source of standard web server log files, I had the

Search Referral Example | 19

Figure 2-3. Search Referral Views by Rank

luxury of data already stored in a data warehouse, with the relevant fields already ex‐
tracted out of the URL of the referring page. This gave me fields of date, URL, referring
keyword, and rank for each pageview. I created a histogram showing the number of
pageviews for each Rank (Figure 2-3):

Looking at the histogram, we can clearly see this data isn’t random or severely obfus‐
cated; there is a very clear pattern that corresponds to expected user behavior. For ex‐
ample, there is a big discontinuity between the number of views from Rank 10 vs the
views from Rank 11, between 20 and 21, and so on. This corresponds to the Google’s
default of 10 results per page.

Within a page (other than the first—more on that later), we can also see that more users
click on the first position on the page than the second, more on the second than the
third, and so forth. Interestingly, more people click on the last couple of results than
those “lost” in the middle of the page. This behavior has been well-documented by
various other mechanisms, so seeing this fine-grained detail in the histogram lends a
lot of credence to the validity of this dataset.

So why is this latter pattern different for the first page than the others? Remember that
this data isn’t showing CTR (click-through rate), it’s showing total pageviews. This par‐
ticular site doesn’t have all that many pages that rank on the top of the first page for

20 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

high-volume terms, but it does have a fair number that rank second and third, so even
though the CTR on the first position is the highest (as shown on the other pages), that
doesn’t show up for the first page. As the rank increases across the third, fourth, and
subsequent pages, the amount of traffic flattens out, so the pageview numbers start to
look more like the CTR.

Recommendation Analysis
Up to now, I’ve talked about histograms based on counts of rows sharing a common
value in a column. As we’ve seen, this is useful in a variety of contexts, but for some use
cases this method provides too much detail, making it difficult to see useful patterns.
For example, let’s look at the problem of analyzing recommendation patterns. This could
be movie recommendations for a user, product recommendations for another product,
or many other possibilities, but for this example I’ll use article recommendations. Imag‐
ine a content-rich website containing millions of articles on a wide variety of topics. In
order to help a reader navigate from the current article to another that they might find
interesting or useful, the site provides a short list of recommendations based on manual
curation by an editor, semantic similarity, and/or past traffic patterns.

We’ll start with a dataset consisting of recommendation pairs: one recommendation per
row, with the first column containing the URL of the source article and the second the
URL of the destination article.

Example 2-3. Sample Recommendation File

http://example.com/fry_an_egg.html http://example.com/boil_an_egg.html
http://example.com/fry_an_egg.html http://example.com/fry_bacon.html
http://example.com/boil_an_egg.html http://example.com/fry_an_egg.html
http://example.com/boil_an_egg.html http://example.com/make_devilled_eggs.html
http://example.com/boil_an_egg.html http://example.com/color_easter_eggs.html
http://example.com/color_easter_eggs.html http://example.com/boil_an_egg.html
...

So readers learning how to fry an egg would be shown articles on boiling eggs and frying
bacon, and readers learning how to boil an egg would be shown articles on frying eggs,
making devilled eggs, and coloring Easter eggs.

For a large site, this could be a large-ish file. One site I work with has about 3.3 million
articles, with up to 30 recommendations per article, resulting in close to 100 million
recommendations. Because these are automatically regenerated nightly, it is important
yet challenging to ensure that the system is producing reasonable recommendations.
Manually checking a statistically significant sample would take too long, so we rely on
statistical checks. For example, how are the recommendations distributed? Are there
some articles that are recommended thousands of times, while others are never recom‐
mended at all?

Recommendation Analysis | 21

We can generate a histogram showing how many times each article is recommended as
described above:

Example 2-4. Generate a Recommendation Destination Histogram

$ cat recommendation_file.txt | cut -f2 | sort | uniq -c

2 http://example.com/boil_an_egg.html
1 http://example.com/fry_bacon.html
1 http://example.com/fry_an_egg.html
1 http://example.com/make_devilled_eggs.html
1 http://example.com/color_easter_eggs.html

“How to Boil an Egg” was recommended twice, while the other four articles were rec‐
ommended once each. That’s fine and dandy, but with 3.3M articles, we’re going to have
3.3M rows in our histogram, which isn’t very useful. Even worse, the keys are URLs, so
there really isn’t any way to combine them into bins like we would normally do with
numeric keys. To provide a more useful view of the data, we can aggregate once more,
creating a histogram of our histogram:

Example 2-5. Generate a Recommendation Destination Count Histogram

$ cat recommendation_file.txt \
| cut -f2 \
| sort \
| uniq -c \
| sort -n \
| awk '{print $1}' \
| uniq -c

4 1
1 2

Four articles were recommended once, and one article was recommended twice.

Using this same technique on a 33 million recommendation dataset (top 10 recom‐
mendations for each of 3.3 million articles), we get a graph like that in Figure 2-4, or if
we convert it to a cumulative distribution, we get Figure 2-5.

22 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Figure 2-4. Recommendation Distribution

Note that the distribution graph uses a log-log scale while the cumulative distribution
graph has a linear vertical scale. Overall, the dataset looks reasonable; we have a nice
smooth curve with no big discontinuities. Most articles receive only a few recommen‐
dations, with about 300,000 receiving a single recommendation. The number of articles
falls rapidly as the number of recommendations increases, with about half of the articles
having seven or fewer recommendations. The most popular article receives about 1,800
recommendations.

We can run this analysis on recommendation sets generated by different algorithms in
order to help us understand the behavior of the algorithms. For example, if a new al‐
gorithm produces a wider distribution, we know that more articles are receiving a dis‐
proportionate share of recommendations. Or if the distribution is completely different
—say a bell curve around the average number of recommendations (10, in our example)
—then the recommendations are being distributed very evenly.

Recommendation Analysis | 23

Figure 2-5. Recommendation Cumulative Distribution

Time Series Data
Although a histogram generally doesn’t make sense for time-series data, similar visu‐
alization techniques can be helpful, particularly when the data can be aggregated across
other dimensions. For example, web server logs can be aggregated up to pageviews per
minute, hour, or day, then viewed as a time series. This is particularly useful for finding
missing data, which can badly skew the conclusions of certain analyses if not handled
properly.

Most website owners like to carefully watch their traffic volumes in order to detect
problems on their site, with their marketing campaigns, with their search engine opti‐
mization, and so on. For many sites, this is greatly complicated by changes in traffic
caused by factors completely independent of the site itself. Some of these, like seasonality,
are somewhat predictable, which can reduce the number of panic drills over a traffic
drop that turns out to have nothing to do with the site. Seasonality can be tricky, as it is
in part a function of the type of site: a tax advice site will see very different seasonal
traffic patterns than one on gardening, for example. In addition, common sense doesn’t
always provide a good guide and almost never provides a quantitative guide. Does a 30%

24 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Figure 2-6. Wikipedia Daily Chart

drop in traffic on Superbowl Sunday make sense? When schools start to let out in the
spring, how much will traffic drop? Sites with large amounts of historical traffic data
can build models (explicitly or implicitly via “tribal knowledge”), but what about a new
site or a translation of an existing site?

In order to address this, I tried using the publicly available Wikipedia logs to build a
long-term, large-scale seasonality model for traffic in various languages. Wikipedia
serves close to 500M pages per day, a bit more than half of them in English. An automated
process provides aggregations of these by language (site), hour, and page. As with any
automated process, it fails sometimes, which results in lower counts for a specific hour
or day. This can cause havoc in a seasonality model, implying a drop in traffic that isn’t
real.

My first pass through the Wikipedia data yielded some nonsensical values. 1.06E69
pageviews on June 7th of 2011?!? That was easy to discard. After trimming out a few
more large outliers, I had the time-series graph shown in Figure 2-6.

You can see that there are still some outliers, both low and high. In addition, the overall
shape is very fuzzy. Zooming in (Figure 2-7), we can see that some of this fuzziness is
due to variation by day of week. As with most informational sites, weekdays see a lot
more traffic than weekends.

Time Series Data | 25

Figure 2-7. Wikipedia Daily Chart Zoom

Because we’re looking for longer-term trends, I chose to look at the median of each week
in order to both remove some of the outliers and get rid of the day-of-week variation
(Figure 2-8).

Now we start to see a clearer picture. Overall traffic has been trending up over the past
several years, as expected. There are still some pretty big dips and spikes, as well as a lot
of variation over the course of each year. Because the data came in hourly files, one way
we can detect bad data is by counting how many hours of data we have for each day.
Obviously, there should be 24 hours per day (with some potential shifting around of
Daylight Savings Time boundaries, depending on how Wikipedia logs).

Adding the number of hours to the graph results in Figure 2-9, which shows quite a few
days with less than 24 hours, and a couple with more (up to 30!). May 11th, 2009, had
30 hours, and May 12th had 27. Closer inspection shows likely data duplication. For
example, there are two files for hour 01 of 2009-05-11, each of which contains about the
same number of pageviews as hour 00 and hour 02. It is likely that something in the
system that generated these files from the raw web server logs duplicated some of the
data.

26 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Figure 2-8. Wikipedia Seven Day Median

Example 2-6. Wikipedia EN Page Counts for May 11th, 2009

$ grep -P '^en\t' pagecounts-20090511-*.gz.summary
pagecounts-20090511-000000.gz.summary:en 20090511 9419692
pagecounts-20090511-010000.gz.summary:en 20090511 9454193
pagecounts-20090511-010001.gz.summary:en 20090511 8297669 <== duplicate
pagecounts-20090511-020000.gz.summary:en 20090511 9915606
pagecounts-20090511-030000.gz.summary:en 20090511 9855711
pagecounts-20090511-040000.gz.summary:en 20090511 9038523
pagecounts-20090511-050000.gz.summary:en 20090511 8200638
pagecounts-20090511-060000.gz.summary:en 20090511 7270928
pagecounts-20090511-060001.gz.summary:en 20090511 7271485 <== duplicate
pagecounts-20090511-070000.gz.summary:en 20090511 6750575
pagecounts-20090511-070001.gz.summary:en 20090511 6752474 <== duplicate
pagecounts-20090511-080000.gz.summary:en 20090511 6392987
pagecounts-20090511-090000.gz.summary:en 20090511 6581155
pagecounts-20090511-100000.gz.summary:en 20090511 6641253
pagecounts-20090511-110000.gz.summary:en 20090511 6826325
pagecounts-20090511-120000.gz.summary:en 20090511 7433542
pagecounts-20090511-130000.gz.summary:en 20090511 8560776
pagecounts-20090511-130001.gz.summary:en 20090511 8548498 <== duplicate
pagecounts-20090511-140000.gz.summary:en 20090511 9911342
pagecounts-20090511-150000.gz.summary:en 20090511 9708457
pagecounts-20090511-150001.gz.summary:en 20090511 10696488 <== duplicate
pagecounts-20090511-160000.gz.summary:en 20090511 11218779

Time Series Data | 27

pagecounts-20090511-170000.gz.summary:en 20090511 11241469
pagecounts-20090511-180000.gz.summary:en 20090511 11743829
pagecounts-20090511-190000.gz.summary:en 20090511 11988334
pagecounts-20090511-190001.gz.summary:en 20090511 10823951 <== duplicate
pagecounts-20090511-200000.gz.summary:en 20090511 12107136
pagecounts-20090511-210000.gz.summary:en 20090511 12145627
pagecounts-20090511-220000.gz.summary:en 20090511 11178888
pagecounts-20090511-230000.gz.summary:en 20090511 10131273

Figure 2-9. Wikipedia Seven Day Median with Hours

Removing these duplicate entries rationalizes the chart a bit more, but doesn’t really
address the largest variations in traffic volume, nor does estimating the data volumes
for the missing files. In particular, there were 24 hourly files each day from June 12th
through June 15th, 2010, yet that time period shows the largest drop in the graph. Sim‐
ilarly, the biggest positive outlier is the first three weeks of October, 2010, where the
traffic surged from roughly 240M to 375M pageviews/day, yet there are no extra files
during that period. So this points us to a need for deeper analysis of those time periods,
and cautions us to be careful about drawing conclusions from this dataset.

28 | Chapter 2: Is It Just Me, or Does This Data Smell Funny?

Conclusion
Data seldom arrives neatly packaged with a quality guarantee. In fact, it often arrives
with little or no documentation of where it came from, how it was gathered, or what to
watch out for when using it. However, some relatively simple analysis techniques can
provide a lot of insight into a dataset. This analysis will often provide interesting insights
into an area of interest. At the minimum, these “sniff tests” provide areas to explore or
watch out for.

Conclusion | 29

CHAPTER 3

Data Intended for Human Consumption,
Not Machine Consumption

Paul Murrell

This chapter describes issues that can arise when a dataset has been provided in a format
that is designed mainly for consumption by human eyeballs.

Data is typically provided this way in order to allow a human to extract a particular
message from the data.

The problem is that we inevitably end up wanting to do more with the data, which means
working with the data using software, which means explaining the format of the data
to the software, which in turn means that we end up wishing that the data were formatted
for consumption by a computer, not human eyeballs.

The Data
The main high school qualification in New Zealand is called NCEA (National Certificate
of Educational Achievement). A typical student will attempt to gain NCEA Level 1 in
Year 11 (their eleventh year of formal education), NCEA Level 2 in Year 12, and Level
3 in Year 13. However, it is also possible for students to attempt NCEA levels in earlier
years or to gain an NCEA level in a later year if they fail at the first attempt.

This leads to statistics on the number (or percentage) of students who have attained
each level of NCEA by the end of each year of formal education (see Example 3-1).

Example 3-1. Number of students gaining NCEA in 2010 by level and year

 Year 11 Year 12 Year 13
NCEA (Level 1) 41072 46629 40088
NCEA (Level 2) 1050 37513 38209
NCEA (Level 3) 91 451 24688

31

1. The New Zealand Qualifications Authority http://www.nzqa.govt.nz/qualifications/ssq/statistics/provider-
selected-report.do?reportID=1161649

The Problem: Data Formatted for Human Consumption
Tables of NCEA results can be obtained in the form of Excel spreadsheets, with a variety
of filters and breakdowns available.1 Figure 3-1 shows an example. In this case, the data
is for boys-only schools and, for each combination of year and NCEA level, there are
separate counts for male and female students.

Figure 3-1. The number of students achieving NCEA at boys-only schools in 2010

This data is in a Microsoft Office Excel 97-2003 Worksheet format, which is unfortunate
because that requires special software to open the file, ideally Microsoft Excel software.
However, due to the prevalence of Microsoft Excel and Excel spreadsheets, many other
software tools have been developed to work with this sort of file, so we will not focus
on that particular problem here.

The issue that we wish to highlight instead is the layout of the data within the spread‐
sheet.

The Arrangement of Data
A human observer can interpret this table of information with relative ease. It is a simple
matter to read off the number of male students who have attained NCEA Level 1 by Year

32 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

http://www.nzqa.govt.nz/qualifications/ssq/statistics/provider-selected-report.do?reportID=1161649
http://www.nzqa.govt.nz/qualifications/ssq/statistics/provider-selected-report.do?reportID=1161649

11 (5,929). If that is all that we want to extract from these data—if all we want to do is
to read a few numbers from the table—then there is no problem. In other words, if this
table of data is a useful end result, if all we want is a textual presentation of the data, then
we can be satisfied with this spreadsheet.

However, data is much more useful to us if it can be used in other ways. This particular
presentation of the data will only serve some people well for some purposes.

For example, some people would prefer to view these data as a plot or graph rather than
as a table of text (see Figure 3-2). Different arrangements of the data also make it easier
to make different sorts of comparisons. For example, it would be easier to focus on just
the male students if the table was arranged as shown in Example 3-2.

Figure 3-2. A plot of the data from Figure 3-1

The Problem: Data Formatted for Human Consumption | 33

Example 3-2. The data from Figure 3-1 rearranged so that all values for the same gender
are next to each other

 Gender Level Year 11 Year 12 Year 13
 Female NCEA Level 1 0 60 38
 Female NCEA Level 2 0 58 38
 Female NCEA Level 3 0 0 36
 Male NCEA Level 1 5929 6427 5170
 Male NCEA Level 2 194 5395 5027
 Male NCEA Level 3 2 128 3276

Unfortunately, this sort of reuse of the data is severely hampered by the layout of the
data within the spreadsheet. The layout of the data is an obstacle because we need to be
able to work with the data in software in order to do things like draw plots or rearrange
the data and in order to do what we need to explain the arrangement of the data to the
software. Explaining the arrangement of the data within this spreadsheet is not easy
because it is not easy to specify where the data values are within the spreadsheet and
what the different values represent.

To demonstrate this idea, Figure 3-3 highlights the location of the data values within
the spreadsheet that correspond to the number of students who have attained NCEA
Level 1. The association between the label “NCEA (Level 1)” and the corresponding
data is not obvious because the label is neither on the same row nor in the same column
as any of the data to which it refers.

It also does not help that the data values are not in a contiguous block. There are empty
columns that do not represent missing data; the empty columns are just for visual ap‐
pearance.

Given a label within the spreadsheet, it is difficult to describe to software the location
of the data that are associated with that label.

Figure 3-3. The data that corresponds to NCEA Level 1 in Figure 3-1

34 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

Another demonstration is shown in Figure 3-4. In this case, all of the data that relates
to the top-left count in the spreadsheet, 5,929, have been highlighted. Some of the labels
that correspond to this number, “Male” and “Year 11”, are on the same row and column
as the number, but even those are neither immediately adjacent to the number nor at
some obvious limit location as the first row or first column in the spreadsheet.

Figure 3-4. The data that corresponds to the top-left count in Figure 3-1

Given a data value, it is difficult to describe to software the location of the labels that
are associated with that data value.

To drive the point home, Example 3-3 shows how the data could be arranged so that the
association between labels and data values is very straightforward. In this arrangment,
every label that corresponds to a data value lies on the same row as that data value.

The Problem: Data Formatted for Human Consumption | 35

Example 3-3. The data in a nicer format

 Gender Qualification Year Value
 Male NCEA (Level 1) Year 11 5929
 Female NCEA (Level 1) Year 11 0
 Male NCEA (Level 2) Year 11 194
 Female NCEA (Level 2) Year 11 0
 Male NCEA (Level 3) Year 11 2
 Female NCEA (Level 3) Year 11 0
 Male NCEA (Level 1) Year 12 6427
 Female NCEA (Level 1) Year 12 60
 Male NCEA (Level 2) Year 12 5395
 Female NCEA (Level 2) Year 12 58
 Male NCEA (Level 3) Year 12 128
 Female NCEA (Level 3) Year 12 0
 Male NCEA (Level 1) Year 13 5170
 Female NCEA (Level 1) Year 13 38
 Male NCEA (Level 2) Year 13 5027
 Female NCEA (Level 2) Year 13 38
 Male NCEA (Level 3) Year 13 3276
 Female NCEA (Level 3) Year 13 36

One problem that still remains with the format in Example 3-3 is that we would still
need to tell software how to separate labels and data values from each other on each
row. An even better format is shown in Example 3-4. In this case, every single data value
is not only clearly grouped with its corresponding labels, but the location of every label
and data value is clearly delineated within the file. This sort of “self-describing” format
can be read by software without any human assistance whatsoever.

Example 3-4. The data in an XML format

<NCEA>
 <gender="Male" level="1" year="11" count="5929"/>
 <gender="Female" level="1" year="11" count="0"/>
 <gender="Male" level="2" year="11" count="194"/>
 <gender="Female" level="2" year="11" count="0"/>
 <gender="Male" level="3" year="11" count="2"/>
 <gender="Female" level="3" year="11" count="0"/>
 <gender="Male" level="1" year="12" count="6427"/>
 <gender="Female" level="1" year="12" count="60"/>
 <gender="Male" level="2" year="12" count="5395"/>
 <gender="Female" level="2" year="12" count="58"/>
 <gender="Male" level="3" year="12" count="128"/>
 <gender="Female" level="3" year="12" count="0"/>
 <gender="Male" level="1" year="13" count="5170"/>
 <gender="Female" level="1" year="13" count="38"/>
 <gender="Male" level="2" year="13" count="5027"/>
 <gender="Female" level="2" year="13" count="38"/>
 <gender="Male" level="3" year="13" count="3276"/>
 <gender="Female" level="3" year="13" count="36"/>
</NCEA>

36 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

2. The real names of the New Zealand schools have been altered to avoid any privacy concerns.

Data Spread Across Multiple Files
In the previous section, we argued that one reason for wanting data in a reusable format
is so that we can rearrange the data or display the data in a different way.

Another reason for wanting to have data in a reusable format is that data is very rarely
an end point. What usually happens when we see a presentation of data like this is that
it makes us think of other questions.

For example, in Figure 3-1 we have a table of the number of male and female students
who have attained different levels of NCEA in different years for boys-only schools. Why
are there female students attaining NCEA qualifications at boys-only schools?

It turns out that that result does have a sensible interpretation because there are schools
in New Zealand that allow female students to enroll in Year 12 and Year 13 in boys-only
schools. Kappa College is one example (see Figure 3-5).2

Figure 3-5. The number of students achieving NCEA at Kappa College in 2010. Female
students are allowed to attend this school, but only at Year 12 and Year 13.

However, another question immediately springs to mind. What about male students at
girls-only schools? Figure 3-6 shows a spreadsheet answering that question.

The Problem: Data Formatted for Human Consumption | 37

Figure 3-6. The number of students achieving NCEA at girls-only schools in 2010

These data suggest that there were two male students who attained NCEA at girls-only
schools—a result that has no simple explanation. And this result naturally leads to fur‐
ther questions, such as which girls-only schools are these male students attending?

The good news is that we can investigate this question because it is also possible to obtain
a spreadsheet of results for each school in New Zealand, as was shown in Figure 3-5 for
Kappa College. This means that we could answer our follow-up question by looking at
the spreadsheet for each individual school in New Zealand and check for any schools
that have only one or two male students at Year 13.

The bad news is that there are over 490 schools in New Zealand and the spreadsheet for
each school does not tell us whether the school is coeducational or boys-only or girls-
only. In order to find out which of these schools are contributing to the strange result,
we would have to visually inspect over 490 separate spreadsheets!

One problem that we face now is that the dataset with which we want to work is spread
across a large number of separate files. Plus we still have the problem that, within each
file, the layout of the data is not very helpful.

Enough problems already! Time to look at some solutions.

The Solution: Writing Code
The short version of the solution is simply this: write code.

38 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

We want to check the spreadsheet for each New Zealand school to see if we can find
these very few male students who are attending schools with lots of female students.
Visually inspecting over 490 individual spreadsheets is not an option. Besides the fact
that it would be very tedious, it is too error-prone, especially compared to the accuracy
of a computer.

So we will write code to answer our question because that will be more efficient—the
computer will complete the task much faster than we could if we had to inspect each
spreadsheet by eye. And because writing code will also be more accurate, the computer
will not make silly mistakes that we might make like accidentally confusing counts for
male and female students.

Writing code also means we have a record of what we have done so that we can remember
what we did and we can show others how we did the task. Furthermore, we can repeat
the task very easily, including correcting our answer if we need to adjust the code because
we find that it does not perform the task correctly.

In the following sections, we will write code in the R language, but many other computer
languages could be used to carry out this task.

Reading Data from an Awkward Format
The first problem we want to solve is how to load data that is in an awkward format into
software. Reading an entire spreadsheet into software is not difficult. The problem lies
in how we identify the data values of interest within the spreadsheet. To keep things
simple, we will start with just the spreadsheet for Kappa College.

The following code shows how to read an Excel spreadsheet into R using the XLCon‐

nect package:

> library(XLConnect)

> wb <- loadWorkbook("kappa.xls")
> kappa <- readWorksheet(wb, sheet=1, header=FALSE)
> kappa

The Solution: Writing Code | 39

The result is the NCEA data for Kappa College as an R “data frame,” which is a set of
columns of data:

 Col0 Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8
1 Qualificat ...
2 Kappa College
3 Year 11 Year 12 Year 13
4 Qualification Gender
5
6 National C ...
7 NCEA (Level 1)
8 Male 30.0 42.0 34.0
9 Female 0.0 29.0 26.0
10 NCEA (Level 2)
11 Male 0.0 42.0 37.0
12 Female 0.0 14.0 21.0
13 NCEA (Level 3)
14 Male 0.0 0.0 33.0
15 Female 0.0 0.0 20.0

What we want to do with these data is look at the data values associated with male
students in Year 13. One way to identify these values is just to visually inspect the print
out above to see that the numbers that we want reside in rows 8, 11, and 14 of column
Col8. Using that knowledge, we can extract just those values from the data frame.

> maleRows <- c(8, 11, 14)
> year13boys <- kappa[maleRows, "Col8"]
> year13boys
[1] "34.0" "37.0" "33.0"

Having extracted the values of interest, we can check whether they are all less than 3. In
order to do the comparison, we have to convert the character (text) values into numbers.
The result of the comparison is FALSE, which indicates that at least one of the counts for
male students in Year 13 is greater than (or equal to) 3.

> as.numeric(year13boys)
[1] 34 37 33
> as.numeric(year13boys) < 3
[1] FALSE FALSE FALSE
> all(as.numeric(year13boys) < 3)
[1] FALSE

The code above instructs the computer to carry out the task that we would otherwise
have done by eye.

Reading Data Spread Across Several Files
The second problem that we have to solve is that there are more than 490 spreadsheets
to check.

40 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

If all of the spreadsheets for individual schools had exactly the same format, this process
could simply be repeated for all schools in New Zealand. Unfortunately, things are not
that simple because some schools have different spreadsheet formats. For example, Al‐
pha School only has results for male students (there are no rows of counts for female
students) so the counts that we are interested in are in rows 8, 10, and 12 in that spread‐
sheet (see Figure 3-7).

Figure 3-7. The number of students achieving NCEA at Alpha School in 2010

Another example is the Delta Education Centre, which only has one row of data for male
students and that row has no values in it (see Figure 3-8).

Figure 3-8. The number of students achieving NCEA at Delta Education Centre in 2010

Finally, Bravo College contains no results at all, so that spreadsheet has zero rows of
interest (see Figure 3-9).

The Solution: Writing Code | 41

Figure 3-9. The number of students achieving NCEA at Bravo College in 2010

Fortunately, we can still write code to cope with this task because another benefit of
writing code is that it is expressive. We can express complex instructions to the computer
through code. In this case, we need a smarter way to identify the rows that contain the
data on male students.

One way to identify the rows with male student data is to search column Col1 of the
spreadsheet for the word “Male”. The code below shows that this works for our original
school, Kappa College, and also for Alpha School, Delta Education Centre, and Bravo
College.

> grep("Male", kappa[, "Col1"])
[1] 8 11 14

> alpha <- readWorksheet(loadWorkbook("alpha.xls"), sheet=1, header=FALSE)
> delta <- readWorksheet(loadWorkbook("delta.xls"), sheet=1, header=FALSE)
> bravo <- readWorksheet(loadWorkbook("bravo.xls"), sheet=1, header=FALSE)

> grep("Male", alpha[, "Col1"])
[1] 8 10 12

> grep("Male", delta[, "Col1"])
[1] 8

> grep("Male", bravo[, "Col1"])
integer(0)

This code can be used to detect the location of the data values for male students across
a variety of spreadsheet formats. Rather than using the fixed rows 8, 11, and 14, the code
will calculate the rows we need in each case. The following code shows this working
across two spreadsheets with different formats: the Kappa College data is being extracted
from rows 8, 11, and 14, while the Alpha School data is extracted from rows 8, 10, and
12.

42 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

> kappaRows <- grep("Male", kappa[, "Col1"])
> kappa[kappaRows, "Col8"]
[1] "34.0" "37.0" "33.0"

> alphaRows <- grep("Male", alpha[, "Col1"])
> alpha[alphaRows, "Col8"]
[1] "138.0" "136.0" "99.0"

When there are no rows to extract, as is the case for Bravo College, we get no data.

> bravoRows <- grep("Male", bravo[, "Col1"])
> bravo[bravoRows, "Col8"]
character(0)

A better way to write this code is as a function. This will save on the amount of code
that we have to write and will make it easier to update our code because there will only
be one place to make changes. The following function is designed to extract whatever
data exists for male students in Year 13 from a spreadsheet. The counts that we get from
the spreadsheet are character values (text) so this function also converts the values to
numbers.

> extractData <- function(ws) {
+ maleRows <- grep("Male", ws[, "Col1"])
+ as.numeric(ws[maleRows, "Col8"])
+ }

The code below shows this working for two spreadsheets with three counts, but in dif‐
ferent locations (Kappa College and Alpha School) and a spreadsheet with no counts
(Bravo College).

> extractData(kappa)
[1] 34 37 33

> extractData(alpha)
[1] 138 136 99

> extractData(bravo)
numeric(0)

The Delta Education Centre presents a different problem. In this case, although there
is a row for males, the row is empty. When we try to extract the values from that row,
we get a “missing value.”

> extractData(delta)
[1] NA

We can write code to check for any missing values and remove them, as shown below.

> deltaCounts <- extractData(delta)
> is.na(deltaCounts)
[1] TRUE

> deltaCounts[!is.na(deltaCounts)]
numeric(0)

The Solution: Writing Code | 43

The following function is an extension of extractData(), which also removes any
missing values.

> extractMale <- function(ws) {
+ maleRows <- grep("Male", ws[, "Col1"])
+ counts <- as.numeric(ws[maleRows, "Col8"])
+ counts[!is.na(counts)]
+ }

The following code shows the extractMale() function in action for all four schools that
we have seen to this point.

> extractMale(kappa)
[1] 34 37 33

> extractMale(alpha)
[1] 138 136 99

> extractMale(bravo)
numeric(0)

> extractMale(delta)
numeric(0)

Once we have found some counts of male students in Year 13, we need to check whether
the values are all less than three. The following function does this by using extrac
tMale() to get the counts from the spreadsheet and then, if there are any counts, com‐
paring the counts to three.

> allSmall <- function(ws) {
+ counts <- extractMale(ws)
+ if (length(counts)) {
+ all(counts < 3)
+ } else {
+ FALSE
+ }
+ }

This function works for all four of the schools that we have looked at so far. Unfortu‐
nately, the result in each case is FALSE, which indicates that none of these schools are
the ones for which we are looking.

> allSmall(kappa)
[1] FALSE

> allSmall(alpha)
[1] FALSE

> allSmall(bravo)
[1] FALSE

> allSmall(delta)
[1] FALSE

44 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

The function above emphasizes the point that code allows us to convey complex decision
processes to the computer, but we still need to take this a bit further.

So far, we have checked for schools with a small number of male students attaining
NCEA in Year 13. This is probably not sufficiently strict because it will match any school
that has only a small number of students attempting NCEA overall (if a school only has
very few students overall, then it can only have at most very few male students who have
attained NCEA by Year 13).

We can refine the search by also insisting that the school has zero male students attaining
NCEA in Year 11 or Year 12 and insisting that the school must have more than zero
female students attaining NCEA in Year 13.

To help us do this, the following code generalizes the extractMale() function so that
we can get data values for either male or female students and so that we can get data
values for any year.

> extractCounts <- function(ws, gender, year) {
+ col <- switch(year, "11"="Col4", "12"="Col6", "13"="Col8")
+ countRows <- grep(gender, ws[, "Col1"])
+ if (length(countRows) > 0) {
+ counts <- ws[countRows, col]
+ as.numeric(counts[!is.na(counts)])
+ } else {
+ numeric(0)
+ }
+ }

The following code demonstrates this function being used to get different sets of values
from the Kappa College spreadsheet.

> extractCounts(kappa, "Male", "11")
[1] 30 0 0
> extractCounts(kappa, "Male", "12")
[1] 42 42 0
> extractCounts(kappa, "Male", "13")
[1] 34 37 33
> extractCounts(kappa, "Female", "13")
[1] 26 21 20

Now we can make our overall check more complex by extracting counts for male stu‐
dents from Year 11, 12, and 13 and counts for female students from Year 13. We will
only be interested in the school if there are zero male students in Year 11 and Year 12
and there are fewer than three male students who have attained each NCEA level by
Year 13 and there are some female students in Year 13.

The Solution: Writing Code | 45

> schoolWeWant <- function(ws) {
+ result <- FALSE
+ male11Counts <- extractCounts(ws, "Male", "11")
+ male12Counts <- extractCounts(ws, "Male", "12")
+ male13Counts <- extractCounts(ws, "Male", "13")
+ if (length(male13Counts)) {
+ female13Counts <- extractCounts(ws, "Female", "13")
+ if (length(female13Counts)) {
+ result <- all(male11Counts == 0) &&
+ all(male12Counts == 0) &&
+ all(male13Counts < 3) &&
+ any(female13Counts > 0)
+ }
+ }
+ result
+ }

This function can now be used to check all school spreadsheets. The following code
does this and prints out the names of any schools in which we are interested.

> for (i in list.files(pattern="[.]xls$")) {
+ wb <- loadWorkbook(i)
+ ws <- readWorksheet(wb, sheet=1, header=FALSE)
+ if (schoolWeWant(ws))
+ cat(i, "\n")
+ }

Golf Girls' High School.xls
Romeo Girls' High School.xls
Tango College.xls

The above code performs the tedious task of inspecting over 490 individual spreadsheets,
seeking out the data within each spreadsheet and testing it to see whether it matches a
set of criteria. The result is a small set of three spreadsheets that we can inspect visually
to check whether we have got an answer to our question.

The first two results, Golf Girls’ High School and Romeo Girls’ High School, are the
schools that we are looking for (see Figure 3-10 and Figure 3-11). Each school has one
male student who had attained NCEA Level 1 and NCEA Level 2 by Year 13.

46 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

Figure 3-10. The number of students achieving NCEA at Golf Girl’s High School in 2010

Figure 3-11. The number of students achieving NCEA at Romeo Girl’s High School in
2010

Tango College also matches our search (see Figure 3-12), but that is just because it is a
very small school overall (it is not a girls-only school).

The Solution: Writing Code | 47

Figure 3-12. The number of students achieving NCEA at Tango College in 2010

Postscript
The code that we have written embodies a set of assumptions about the format of the
data in the spreadsheets. We assume that the word “Male” always appears in column
Col1 (if it appears at all). We assume that the Year 11 data values (if there are any) always
appear in column Col4, Year 12 data is always in Col6, and Year 13 is always in Col8.
More importantly, we assume that a school that has few male students who had attained
NCEA by Year 13 and some female students who had attained NCEA by Year 13 is a
girls-only school.

We have written code based on these assumptions and that code has produced a list of
schools, but we still had to check that these are in fact the schools that explain the original
result (male students attaining NCEA at girls-only schools). What the code did for us
was to reduce the workload by performing the routine checks that would take us too
long to do by eye and we would be too likely to get wrong. However, there is still a need
for a human brain to inspect the three schools to make sure that the answer is correct.

Other Formats
This chapter has focused on a particular example of data that are formatted for human
consumption, which has demonstrated that the arrangement of data within a spread‐
sheet and the breaking up of a dataset across multiple spreadsheets can present signif‐
icant obstacles to reusing the data.

There are, of course, many other ways that this general issue can arise. The spreadsheet
examples used in this chapter do at least have the redeeming feature that it is still possible
to access the individual data values unambiguously because each cell of the spreadsheet
contains only one data value or data label. The situation is much worse if the data are
stored in a format that does not allow data values to be clearly identified.

48 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

This problem arises if the data is presented as tables within a PDF document. For ex‐
ample, Figure 3-13 shows a table of mortality data from a PDF report published by the
New Zealand Ministry of Health. Data in this format is purely for human consumption.

There are software tools for extracting textual content from PDF documents, but the
result is unlikely to reflect the structure of the original table. For example, Example 3-5
shows the result from using pdftotext to extract the text from the table of data in
Figure 3-13. The data values are intact, but it would be impossible to reliably recover
the correspondence between data values and data labels from this result.

Figure 3-13. A table of mortality data from a PDF report published by the New Zealand
Ministry of Health.

Example 3-5. The text content extracted from the PDF report using pdftotext.

Mortality 2009 -- numbers and rates
Raw numbers
2009 deaths
Total
Maori deaths
Male
Female
3029
1649
1380
Non-Maori deaths
26,175
12,966
13,209
Total deaths
29,204
14,615
14,589

Other Formats | 49

3. © Crown 2003

Another common situation arises when data is presented in a table within a web page.
For example, Figure 3-14 shows a table of rates of imprisonment from the New Zealand
Department of Corrections.3

Figure 3-14. A table of international rates of imprisonment presented as a table on a web
page

This sort of presentation of data lies somewhere between PDF documents and spread‐
sheets; there is some hope of reliably extracting the data from a web page table (because
the underlying description of the table has a clear structure; see Example 3-6), though
the extraction, known as “screen-scraping,” is more work and less reliable than extracting
cells from a spreadsheet.

50 | Chapter 3: Data Intended for Human Consumption, Not Machine Consumption

Example 3-6. A portion of the HTML code underlying the web page table of rates of im‐
prisonment.

<h3>International rates of imprisonment</h3>

<table>
 <tbody>
 <tr>
 <td colspan="2">
 <p>Number of prisoners per 100,000 population</p>
 </td>
 </tr>
 <tr>
 <td>United States</td>
 <td>748</td>
 </tr>
 <tr>
 <td>South Africa</td>
 <td>324</td>
 </tr>
 <tr>
 <td>New Zealand</td>
 <td>199</td>
 </tr>

As with the spreadsheets discussed in this chapter, further reuse of the data is also
dependent on whether the layout of the table makes it easy or hard to associate data
values with data labels such as column and row headers.

Summary
Data that is provided in a format designed for human consumption is awkward because
it is harder to reuse. More effort is required to describe the data format to software so
that software can be used to present the data in other formats or to explore the data
further. On the positive side, computer code can be used to navigate around the obstacles
that are created by an awkward data format.

One lesson to take away from this chapter is that it is worthwhile learning about data
formats so that we can provide data to others in a way that encourages and enables better
reuse of the data.

Another lesson to take away is that it is worthwhile learning about computer code so
that we can work with data that is provided by others, regardless of the format that they
use to store or present the data.

Summary | 51

This is the Unix philosophy: Write programs that
do one thing and do it well. Write programs to work

together. Write programs to handle text streams,
because that is a universal interface.

—Doug McIlroy

CHAPTER 4

Bad Data Lurking in Plain Text

Josh Levy, PhD

Bad data is often delivered with a warning or an apology such as, “This dump is a real
mess, but maybe you’ll find something there.” Some bad data comes with a more vacuous
label: “This is plain text, tab-delimited. It won’t give you any trouble.”

In this article, I’ll present data problems I’ve encountered while performing seemingly
simple analysis of data stored in plain text files and the strategies I’ve used to get past
the problems and back to work. The problems I’ll discuss are:

1. Unknown character encoding

2. Misrepresented character encoding

3. Application-specific characters leaking into plain text

I’ll use snippets of Python code to illustrate these problems and their solutions. My demo
programs will run against a stock install of Python 2.7.2 without any additional re‐
quirements. There are, however, many excellent Open Source libraries for text process‐
ing in Python. Towards the end of the article, I’ll survey a few of my favorites. I’ll conclude
with a set of exercises that the reader can perform on publicly available data.

53

Which Plain Text Encoding?
McIlroy’s advice above is incredibly powerful, but it must be taken with a word of caution:
some text streams are more universal than others. A text encoding is the mapping between
the characters that can occur in a plain text file and the numbers computers use to
represent them. A program that joins data from multiple sources may misbehave if its
inputs were written using different text encodings.

This is a problem I encountered while matching names listed in plain text files. My client
had several lists of names that I received in plain text files. Some lists contained names
of people with whom the client conducted business; others contained the names of
known bad actors with whom businesses are forbidden from transacting. The lists were
provided as-is, with little or no accompanying documentation. The project was part of
an audit to determine which, if any, of the client’s partners were on the bad actors lists.
The matching software that I wrote was only a part of the solution. The suspected
matches it identified were then sent to a team of human reviewers for further investi‐
gation.

In this setting, there were asymmetric costs for errors in the matching software. The
cost of a false positive—a case where the investigative team rejects a suspected match—
is the cost of the human effort to refute the match. The cost of a false negative is the risk
to which the client is exposed when the investigative team is not alerted to a match. The
client wanted the ability to tune the matching software’s error profile, that is, to be able
to choose between being exposed to fewer false positives at the expense of potentially
more false negatives, or vice-versa. Had I not recognized and worked around the text
encoding issues described below, the client would have underestimated its risk of false
negative errors.

Let’s discuss the basics of text encoding to understand why multiple text encodings are
in use today. Then let’s discuss how we can detect and normalize the encoding used on
any given plain text file. I became computer literate in a time and place when plain text
meant ASCII. ASCII is 7-bit encoding with codes for 95 printable characters shown in
Table 4-1. ASCII encodes the letters of the English alphabet in upper- and lowercase,
the Arabic numerals, and several punctuation and mathematical symbols.

When I write a number without a prefix, such as 65, it can be assumed
to be in decimal notation. I will use the prefix 0x to indicate numbers
in hexadecimal format, for example 0x41.

54 | Chapter 4: Bad Data Lurking in Plain Text

Table 4-1. Printable ASCII characters

(32) ! (33) " (34) # (35) $ (36) % (37) & (38) ' (39)

((40)) (41) * (42) + (43) , (44) - (45) . (46) / (47)

0 (48) 1 (49) 2 (50) 3 (51) 4 (52) 5 (53) 6 (54) 7 (55)

8 (56) 9 (57) : (58) ; (59) < (60) = (61) > (62) ? (63)

@ (64) A (65) B (66) C (67) D (68) E (69) F (70) G (71)

H (72) I (73) J (74) K (75) L (76) M (77) N (78) O (79)

P (80) Q (81) R (82) S (83) T (84) U (85) V (86) W (87)

X (88) Y (89) Z (90) [(91) \ (92)] (93) ^ (94) _ (95)

` (96) a (97) b (98) c (99) d (100) e (101) f (102) g (103)

h (104) i (105) j (106) k (107) l (108) m (109) n (110) o (111)

p (112) q (113) r (114) s (115) t (116) u (117) v (118) w (119)

x (120) y (121) z (122) { (123) | (124) } (125) ~ (126) (127)

ASCII omits letters and symbols such as ñ, ß, £, and ¡ that are used in Western European,
or Western Latin, languages. Several 8-bit encoding schemes with support for Western
European character sets were developed in the 1980s. These schemes were incompatible
with each other. The incompatibilities between these competing standards were con‐
founded by the historical coincidence that the Euro symbol € was invented after the 8-
bit encodings had gained traction. Microsoft was able to inject € into a blank space in
encoding known as Code Page 1252; IBM modified its encoding known as Code Page
850, creating Code Page 858 to add €; and the ISO-8859-15 standard was created from
ISO-8859-1 to support €. Table 4-2 lists six of the most common 8-bit encodings of
Western Latin character sets. Table 4-3 shows examples of the incompatibilities between
these encodings, by showing how they represent some uppercase, non-English letters.
For example, the character Ÿ is missing from IBM Code Page 858 and ISO-8859-1 and
is represented by 159 in Windows Code Page 1252, by 190 in ISO-8859-15, and by 217
in MacRoman.

Table 4-2. 8-Bit Western Latin encoding schemes

Encoding Operating System Region Has €

Code Page 437 DOS USA N

Code Page 850 DOS Europe N

Code Page 858 DOS Europe Y

Code Page 1252 Windows Y

ISO‑8859‑1 ISO Standard N

ISO‑8859‑15 ISO Standard Y

MacRoman Macintosh Y

Which Plain Text Encoding? | 55

Table 4-3. Encodings of some non-ASCII Western Latin letters

Code Page ISO-8859-x Mac Roman Unicode

437 858 1252 -1 -15

À 183 192 192 192 203 192

Æ 146 146 198 198 198 174 198

Ç 128 128 199 199 199 130 199

È 212 200 200 200 233 200

Ì 222 204 204 204 237 204

Ð 209 208 208 208 208

Ñ 165 165 209 209 209 132 209

Ö 153 153 214 214 214 133 214

Ù 235 217 217 217 244 217

Þ 232 222 222 222 222

ß 225 225 223 223 223 167 223

Œ 140 188 206 338

Š 138 166 352

Ÿ 159 190 217 376

In the late 1980s, as the problems caused by these incompatible encodings were recog‐
nized, work began on Unicode, a universal character encoding. Unicode is now well
supported on all major computing platforms in use today. The original version of Uni‐
code used a 16-bit encoding for each character. That was initially believed to provide
enough code points (numeric encodings of symbols) to represent all characters in all
languages that had been printed in the previous year. Unicode has since been expanded
to support more than one million code points, more than one hundred thousand of
which have been assigned. There are Unicode code pages (groups of code points) that
represent both living and historic languages from around the globe. I can keep a list of
my favorite drinks: קולה-קוקה , weißbier, 清酒, piña colada, and so on in a single Unicode
plain text file.

Strictly speaking, a Unicode string is a sequence of code points. Unicode code points
are often written with the prefix U+ in front of a hexadecimal number. For example, U
+41 specifies code point 0x41 and corresponds to the letter A. A serialization scheme is
needed to map between sequences of code points and sequences of bytes. The two most
popular Unicode serialization schemes are UTF-16 and UTF-8. Unicode code points U
+D800 - U+DFFF have been permanently reserved for the UTF-16 encoding scheme.
In UTF-16, code points U+0000 - U+D7FF and U+E000 - U+FFFF are written as they
are (i.e., by the same 16-bit value). The remaining assigned code points fall in the range
U+010000 - U+10FFFF, and are serialized to a pair of 16-bit values: the first from the
range 0xD800 - 0xDBFF and the second from the range 0xDC00 - 0xDCFF. In UTF-8,

56 | Chapter 4: Bad Data Lurking in Plain Text

code points are serialized to between one and four 8-bit values. The number of bytes
needed increases with the code point and was designed so that the ASCII characters can
be written in a single byte (the same value as in ASCII), the Western European characters
can be written in two or fewer bytes, and the most commonly used characters can be
written in three or fewer bytes.

The widespread adoption of Unicode, UTF-8, and UTF-16 has greatly simplified text
processing. Unfortunately, some legacy programs still generate output in other formats,
and that can be a source of bad data. One of the trickiest cases has to do with confusion
between Windows Code Page 1252 and ISO-8859-1. As seen in Table 4-3, many char‐
acters have the same representation in Code Page 1252, ISO-8859-1, and ISO-8859-15.
The differences we’ve seen so far are in the letters added to ISO-8859-15 that were not
present in ISO-8859-1. Punctuation is a different story. Code Page 1252 specifies 18
non-alphanumeric symbols that are not found in ISO-8859-1. These symbols are listed
in Table 4-4. € is found in ISO-8859-15, but at a different code point (164). The other
17 are not found in ISO-8859-15 either. Some of the symbols that are representable by
Code Page 1252 but not by ISO-8859-1 are the Smart Quotes—quote marks that slant
towards the quoted text. Some Windows applications replace straight quotes with Smart
Quotes as the user types. Certain versions of those Windows applications had export to
XML or HTML functionality that incorrectly reported the ISO-8859-1 encoding used,
when Code Page 1252 was the actual encoding used.

Table 4-4. Code Page 1252 symbols (conflicts with ISO-8859-1 & ISO-8859-15)

€ (128) ‚ (130) „ (132) … (133) † (134) ‡ (135)

‰ (137) ‹ (139) ‘ (145) ’ (146) “ (147) ” (148)

• (149) – (150) — (151) ˜ (152) ™ (153) › (155)

Consider the example in Example 4-1. In this Python code, s is a byte string that contains
the Code Page 1252 encodings of the smart quotes (code points 147 and 148) and the
Euro symbol (code point 128). When we erroneously treat s as if it had been encoded
with ISO-8859-1, something unexpected happens. Code points (128, 147, and 148) are
control characters (not printable characters) in ISO-8859-1. Python prints them invis‐
ibly. The printed string appears to have only 11 characters, but the Python len function
returns 14. Code Page 1252 encoding masquerading as ISO-8859-1 is bad data.

Example 4-1. Smart quotes and ISO-8859-1

>>> bytes = [45,147, 128, 53, 44, 32, 112, 108, 101,
... 97, 115, 101, 148,45]
>>> s = ''.join(map(chr, bytes))
>>> print s
-??5, please?-
>>> print(s.decode('cp1252'))
-“€5, please”-
>>> print(s.decode('iso-8859-1'))

Which Plain Text Encoding? | 57

-5, please-
>>> print(len(s.decode('cp1252')))
14
>>> print(len(s.decode('iso-8859-1')))
14

We’ve now seen that text with an unknown encoding can be bad data. What’s more, text
with a misrepresented encoding, as can happen with the Code Page 1252 / ISO-8859-1
mix-up, can also be bad data.

Guessing Text Encoding
The Unix file tool determines what type of data is in a file. It understands a wide variety
of file types, including some plain text character encodings. The Python script in
Example 4-2 generates some text data in different encodings. The function make_al‐
num_sample iterates through the first n Unicode code points looking for alpha-numeric
characters. The parameter codec specifies an encoding scheme that is used to write out
the alpha-numeric characters.

Example 4-2. Generating test data

>>> def make_alnum_sample(out, codec, n):
 """
 Look at the first n unicode code points
 if that unicode character is alphanumeric
 and can be encoded by codec write the encoded
 character to out
 """
 for x in xrange(n):
 try:
 u = unichr(x)
 if u.isalnum():
 bytes = u.encode(codec)
 out.write(bytes)
 except:
 # skip u if codec cannot represent it
 pass
 out.write('\n')

>>> codecs = ['ascii', 'cp437', 'cp858', 'cp1252',
... 'iso-8859-1', 'macroman', 'utf-8', 'utf-16']
>>> for codec in codecs:
 with open('../%s_alnum.txt' % codec, 'w') as out:
 make_alnum_sample(out, codec, 512)

The results of running the files generated in Example 4-2 through file are shown in
Example 4-3. On my system, file correctly identified the ASCII, ISO-8859, UTF-8, and

58 | Chapter 4: Bad Data Lurking in Plain Text

UTF-16 files. file was not able to infer the type of the files containing bytes that map to
alphanumeric characters in Code Page 1252, Code Page 437, Code Page 858, or Mac‐
Roman. From the output of file, we know that those files contain some 8-bit text en‐
coding, but we do not yet know which one.

Example 4-3. Output from file command

$ file *alnum.txt
ascii_alnum.txt: ASCII text
cp1252_alnum.txt: Non-ISO extended-ASCII text
cp437_alnum.txt: Non-ISO extended-ASCII text,
↪ with LF, NEL line terminators
cp858_alnum.txt: Non-ISO extended-ASCII text,
↪ with LF, NEL line terminators
iso-8859-1_alnum.txt: ISO-8859 text
macroman_alnum.txt: Non-ISO extended-ASCII text,
↪ with LF, NEL line terminators
utf-16_alnum.txt: Little-endian UTF-16 Unicode
↪ text, with very long lines, with no line
↪ terminators
utf-8_alnum.txt: UTF-8 Unicode text,
↪ with very long lines

One way to resolve this problem is to inspect snippets of text containing non-ASCII
characters, manually evaluating how they would be generated by different encoding
schemes. Python code that does this is shown in Example 4-4. Let’s revisit the byte string
from Example 4-1. Pretend for a moment that we don’t know the contents of that string.
Running it through test_codecs and stream_non_ascii_snippets, we see that sequence of
bytes is valid in Code Page 858, Code Page 1252, and MacRoman. A human looking at
the results of test_codecs can make a judgment as to which encoding makes sense. In
this case, smart quotes and € contextually make more sense than the other options, and
we can infer that the text is encoded by Code Page 1252.

Example 4-4. Snippets of non-ASCII text

>>> def stream_non_ascii_snippets(s, n_before=15,
... n_after=15):
 """
 s is a byte string possibly containing non-ascii
 characters
 n_before and n_after specify a window size

 this function is a generator for snippets
 containing the n_before bytes before a non-ascii
 character, the non-ascii byte itself, and the
 n_after bytes that follow it.
 """
 for idx, c in enumerate(s):
 if ord(c) > 127:
 start = max(idx - n_before, 0)

Guessing Text Encoding | 59

 end = idx + n_after + 1
 yield(s[start:end])
>>> CODECS = ['cp858', 'cp1252', 'macroman']
>>> def test_codecs(s, codecs=CODECS):
 """
 prints the codecs that can decode s to a Unicode
 string and those unicode strings
 """
 max_len = max(map(len, codecs))
 for codec in codecs:
 try:
 u = s.decode(codec)
 print(codec.rjust(max_len) + ': ' + u)
 except:
 pass
>>> bytes = [45,147, 128, 53, 44, 32, 112, 108, 101,
... 97, 115, 101, 148,45]
>>> s = ''.join(map(chr, bytes))
>>> test_codecs(next(stream_non_ascii_snippets(s)))
 cp858: -ôÇ5, pleaseö-
 cp1252: -“€5, please”-
macroman: -ìÄ5, pleaseî-

The stream_non_ascii_snippets function in Example 4-4 lets the user explore the non-
ASCII bytes sequentially, in the order in which they occur in the byte string. An alter‐
native, presented in Example 4-5, is to consider the frequency of occurrence of non-
ASCII bytes in the string. The set of unique non-ASCII bytes might be enough to elim‐
inate some encodings from consideration, and the user may benefit from inspecting
snippets containing specific characters. The test string with which we’ve been working
isn’t the most interesting, because it is short and no non-ASCII character repeats. How‐
ever, Example 4-5 shows how these ideas could be implemented.

Example 4-5. Frequency-count snippets of non-ASCII text

>>> from collections import defaultdict
>>> from operator import itemgetter
>>> def get_non_ascii_byte_counts(s):
 """
 returns {code point: count}
 for non-ASCII code points
 """
 counts = defaultdict(int)
 for c in s:
 if ord(c) > 127:
 counts[ord(c)] += 1
 return counts
>>> def stream_targeted_non_ascii_snippets(s,
... target_byte, n_before=15, n_after=15):
 """
 s is a byte string possibly containing non-ascii
 characters

60 | Chapter 4: Bad Data Lurking in Plain Text

 target_byte is code point
 n_before and n_after specify a window size

 this function is a generator for snippets
 containing the n_before bytes before
 target_byte, target_byte itself, and the n_after
 bytes that follow it.
 """
 for idx, c in enumerate(s):
 if ord(c) == target_byte:
 start = max(idx - n_before, 0)
 end = idx + n_after + 1
 yield(s[start:end])
>>> sorted(get_non_ascii_byte_counts(s).items(),
... key=itemgetter(1,0), reverse=True)
[(148, 1), (147, 1), (128, 1)]
>>> it = stream_targeted_non_ascii_snippets(s, 148,
... n_before=6)
>>> test_codecs(next(it))
 cp858: pleaseö-
 cp1252: please”-
macroman: pleaseî-

Normalizing Text
When mashing up data from multiple sources, it is useful to normalize them to either
UTF-8 or UTF-16 depending on which is better supported by the tools you use. I typi‐
cally normalize to UTF-8.

Let us revisit the file macroman_alnum.txt that was generated in Example 4-2. We know
from its construction that it contains 8-bit MacRoman encodings of various alpha-
numeric characters. Example 4-6 shows standard Unix tools operating on this file. The
first example, using cat, shows that the non-ASCII characters do not render correctly
on my system. iconv is a Unix tool that converts between character sets. It converts from
the encoding specified with the -f parameter to the encoding specified with -t. Output
from iconv gets written to STDOUT. In Example 4-6, we allow it to print, and we see
that the non-ASCII characters display correctly. In practice, we could redirect the output
from iconv to generate a new file with the desired encoding.

Example 4-6. Normalizing text with Unix tools

$ cat macroman_alnum.txt
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnop
↪ qrstuvwxyz????????????????????ͅ?????????????????
↪ ??????????????????
$ iconv -f macroman -t utf-8 macroman_alnum.txt
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnop
↪ qrstuvwxyzªµºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÑÒÓÔÕÖØÙÚÛÜßàáâãäåæçè
↪ éêëìíîïñòóôõöøùúûüÿıŒœŸƒ

Normalizing Text | 61

Using iconv to re-encode text can be consistent with McIlroy’s Unix philosophy. One
might write a tool to perform some specific text processing operation to transform one
UTF-8 document into another. We can design this tool to “do one thing and do it well.”
Its code can be simpler than a program that has to detect and normalize its input because
it can always assume it is working with UTF-8. If it needs to process an non-UTF-8
dataset, that input can be piped through iconv. Similarly, its output needs to be consumed
by a process with different encoding assumptions; it too can be piped through iconv.

Python has excellent support for decoding byte strings to Unicode. I often find it useful
to write functions that “do one thing and do it well” operating on Unicode input, and
then to wrap them with a bit of boilerplate to decode text from other formats. I tend to
use this technique when I’m developing systems that allow their user to reference input
that they do not control (for example, by passing in a URL). Two functions that decode
byte strings to Unicode are str.decode and codecs.open. Both are illustrated in
Example 4-7.

Example 4-7. Normalizing text from Python

>>> with open('macroman_alnum.txt') as f:
 print(f.readline())
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnop
↪ qrstuvwxyz??????̀?????????????ͅ?????????????????
↪ ??????????????????
>>> with open('macroman_alnum.txt') as f:
 print(f.readline().decode('macroman'))
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnop
↪ qrstuvwxyzªµºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÑÒÓÔÕÖØÙÚÛÜßàáâãäåæçè
↪ éêëìíîïñòóôõöøùúûüÿıŒœŸƒ
>>> import codecs
>>> with codecs.open('macroman_alnum.txt',
... encoding='macroman') as f:
 print(f.readline())
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnop
↪ qrstuvwxyzªµºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÑÒÓÔÕÖØÙÚÛÜßàáâãäåæçè
↪ éêëìíîïñòóôõöøùúûüÿıŒœŸƒ

The first example of Example 4-7 simply shows that the byte string for what we know
to be MacRoman-encoded text does not render correctly within Python. In the second
example, we use str.decode to produce the correct Unicode string, which in turn prints
correctly. The last example of Example 4-7 uses codecs.open when reading the file.
codecs.open is called in the same manner as the ordinary open function, and returns an
object that behaves like an ordinary file except that it automatically decodes byte strings
to Unicode when reading, and it automatically encodes Unicode to the specified en‐
coding when writing. In the last example of Example 4-7, the call to f.readline returns a
properly decoded Unicode string. The call to print handles the Unicode string correctly.

Thus far, we have discussed how text with an unknown or misrepresented character
encoding can be bad data for a text processing application. A join operation using text

62 | Chapter 4: Bad Data Lurking in Plain Text

keys may not behave as expected if different encodings are used on its inputs. We have
seen strategies for detecting character encoding using the Unix file command or cus‐
tom Python code. We have also seen how text with a known representation can be
normalized to a standard encoding such as UTF-8 or UTF-16 from Python code or by
using iconv on the command line. Next, we will discuss another bad data problem:
application-specific characters leaking into plain text.

Problem: Application-Specific Characters Leaking into
Plain Text
Some applications have characters or sequences of characters with application-specific
meanings. One source of bad text data I have encountered is when these sequences leak
into places where they don’t belong. This can arise anytime the data flows through a tool
with a restricted vocabulary.

One project where I had to clean up this type of bad data involved text mining on web
content. The users of one system would submit content through a web form to a server
where it was stored in a database and in a text index before being embedded in other
HTML files for display to additional users. The analysis I performed looked at dumps
from various tools that sat on top of the database and/or the final HTML files. That
analysis would have been corrupted had I not detected and normalized these
application-specific encodings:

• URL encoding

• HTML encoding

• Database escaping

In most cases, the user’s browser will URL encode the content before submitting it. In
general, any byte can be URL encoded by % followed by its hex code. For example, ȳ is
Unicode code point U+233. Its UTF-8 representation is two bytes: 0xC3A9, and the
URL encoding of its UTF-8 representation is %C3%A9. URL encoding typically gets
applied to non-ASCII characters if present, as well as to the following ASCII symbols,
each of which has a special meaning when it appears in a URL: ;/?:@&=+$,. Because %
is used in the encoded string, raw % characters in the input need to be encoded. The
ASCII code for % is 0x25, so the encoding %25 is used. The blank space is ASCII code
0x20, but it is typically encoded as + rather than %20. The server application must
decode the URL encoding to recover exactly what the user has entered.

In general, URL encoding artifacts leaking into plain text is not a serious problem. URL
encoding and decoding of form submissions happens behind the scenes in most web
application frameworks. Even if URL encoded text did leak into other parts of an ap‐
plication, it would be easily detectable by the lack of spaces and abundance of + and

Problem: Application-Specific Characters Leaking into Plain Text | 63

1. To “Rickroll” someone is to trick them into clicking a link that plays the music video for Rick Astley’s song
“Never Gonna Give You Up”

%XX codes. One notable exception is when analyzing a list of URLs or URL fragments.
In that case, it may be worthwhile to ensure that all of the URLs have been decoded
consistently. Example 4-8 uses Python’s urllib.urlencode function to URL encode text,
and then urllib.unquote functions to decode the URL encoded text.

Example 4-8. Decoding URL encoded text

>>> import urllib
urlencode generates a query string from a dict
>>> urllib.urlencode({'eqn': '1+2==3'})
'eqn=1%2B2%3D%3D3'
unquote decodes a URL encoded string
>>> s = 'www.example.com/test?eqn=1%2B2%3D%3D3'
>>> urllib.unquote(s)
'www.example.com/test?eqn=1+2==3'

Let’s return to our application collecting user-generated content for inclusion on other
web pages. Our users enter their content into a form, their browser URL encodes it at
submission time, our application decodes it, and we have their content ready to display
on one of our pages. If we write the submitted text as-is on our web pages, evil-doers
will submit content containing their own HTML markup for things like link spamming,
Rickrolling1, or executing arbitrary JavaScript. Best practice for this type of application
is to HTML encode user submissions so they get rendered as they were typed. HTML
encoding a string replaces some characters with an entity reference: a sequence begin‐
ning with & followed by the name or code point of a character, followed by ;. Example 4-9
gives an example of HTML encoding text.

Example 4-9. Decoding HTML encoded text

>>> import cgi
>>> import HTMLParser
>>> s = u'<script>//Do Some Évîl</script>'
>>> encoded = cgi.escape(s).encode('ascii',
... 'xmlcharrefreplace')
>>> print(encoded)
<script>//Do Some Évîl</script
↪ >
>>> print(HTMLParser.HTMLParser().unescape(encoded))
<script>//Do Some Évîl</script>

The call to cgi.escape in Example 4-9 replaces the angle brackets < and > with the
named entities < and > respectively. unicode.encode(…, xmlcharrefre

64 | Chapter 4: Bad Data Lurking in Plain Text

place) replaces the non-ASCII characters É (U+C9) and î (U+EE) with their numeric
entities: &201; and &238; (0xC9 = 201, 0xEE=238). When a browser encounters the
encoded string <script>//Do Some Évîl</script> it will
display <script>//Do Some Évîl</script>, but it will not actually execute the evil script.

It is a reasonable decision to have a web application store HTML encoded strings in its
database. That decision ensures that raw text submitted by the users won’t appear in our
other pages, and it may speed up the server-side rendering time for those pages. How‐
ever, if we decide to text mine the user-submitted content, we’ll need to understand how
the content is formatted in database dumps, and we’ll want to decode the HTML entity
references before processing it.

I’ve actually seen redundantly HTML-encoded strings such as &amp;lt; in what
was supposed to be a plain text dump. That data presumably passed through multiple
web applications and databases before I got my hands on it. Example 4-10 expands on
code from Example 4-9 to decode repeatedly HTML-encoded strings inside a while
loop.

Example 4-10. Decoding redundantly HTML encoded text

>>> # add a few more layers of encoding
>>> ss = cgi.escape(encoded).encode('ascii',
... 'xmlcharrefreplace')
>>> ss = cgi.escape(ss).encode('ascii',
... 'xmlcharrefreplace')
>>> print(ss)
&amp;lt;script&amp;gt;//Do Some &amp;
↪ #201;v&amp;#238;l&amp;lt;/script
↪ &amp;gt;
>>> # now decode until length becomes constant
>>> while len(ss) != len(parser.unescape(ss)):
 ss = parser.unescape(ss)
 print(ss)
&lt;script&gt;//Do Some &#201;v&
↪ #238;l&lt;/script&gt;
<script>//Do Some Évîl</script
↪ >
<script>//Do Some Évîl</script>

HTML encoding all user-submitted text is a step towards preventing malicious users
from launching attacks when our pages are rendered. A well-engineered web application
will also take precautions to protect itself from attacks that exploit its form submission
handlers. A common example of such an attack is the SQL injection attack, where the
attacker tries to trick a form handler into running user-supplied SQL statements. There
is a brilliant example of a SQL injection attack in the famous XKCD comic about “Little
Bobby Tables” (http://xkcd.com/327/).

The characters ', ;, --, and /* are often exploited in SQL injection attacks. They are used
to terminate strings (') and statements (;), and to begin comments that span single (--)

Problem: Application-Specific Characters Leaking into Plain Text | 65

http://xkcd.com/327/

or multiple lines (/*). There are two main strategies for defending against SQL injection
attacks. The first uses a database feature called “prepared statements” that separates a
SQL statement from its parameters, eliminating the possibility that a maliciously crafted
parameter could terminate the original statement and launch an attack. When prepared
statements are used, the special characters listed above can occur as-is in the database
and dump files exported from the database. The second strategy is to detect and escape
those special strings. When this technique is used, a text processing application oper‐
ating on a dump from the database will need to decode the escaped strings back to their
normal forms.

As we’ve seen, URL encoding, HTML encoding, and SQL escaping can all leak into text
generated by a web application. Another case where encoding/decoding rules need to
be implemented in text processing applications comes up when data is exported from
a spreadsheet or database to a flat file such as CSV. Many tools will let the user specify
which characters are used for field delimiters and which are used for quoting. Quoting
is necessary if the export field delimiter happens to appear in the original data. In
Example 4-11, we see a simple example simulating a dump of Name and Job Description
from a database into a .CSV file

Example 4-11. Quoted CSV

>>> import StringIO
>>> import csv
>>> # s behaves like a file opened for reading
>>> s = StringIO.StringIO('''Name,Job Description
"Bolton, Michael ""Mike""","Programmer"
Bolton,Michael "Mike",Programmer''')
>>> # When we count the fields per line,
>>> # str.split is confused by Name
>>> map(len, [line.split(',') for line in s])
[2, 3, 3]
>>> # csv.reader understands quoted name
>>> s.seek(0)
>>> map(len, csv.reader(s))
[2, 2, 3
>>> s.seek(0)
>>> data = [row for row in csv.reader(s)]
>>> # with quotes the comma in the name
>>> # is not a delimiter
>>> data[1][0]
'Bolton, Michael "Mike"'
>>> # without quotes all commas are delimiters
>>> data[2][0]
'Bolton'

The difference between the data rows of s in Example 4-11 is that values are quoted in
the first, similar to what MySQL’s mysqldump --fields-enclosed-by=” would produce.
Values in the second data row are not quoted. The Python functions str.split and

66 | Chapter 4: Bad Data Lurking in Plain Text

unicode.split are simple ways to extract fields from a line of comma-delimited text.
They treat all commas as delimiters, a behavior that is incorrect for this data, where the
name field contains a non-delimiting comma. Python’s csv.reader allows the non-
delimiting commas to occur within quoted strings, so it correctly parses the data line
where the values are quoted. Mismatched columns when parsing delimited text is a bad
data problem. I recommend quoting when exporting text from a database or spread‐
sheet, and using csv.reader rather than str.split as a parser.

If we don’t understand the processes that create plain text files, application-specific
characters may inadvertently leak in and affect text analysis. By understanding these
processes and normalizing text before working with it, we can avoid this type of bad
data.

Text Processing with Python
We’ve discussed bad data problems caused by unknown or misrepresented text encod‐
ings. We’ve also discussed bad data problems caused by application-specific encodings
or escape characters leaking into plain text dumps. We’ve used small examples written
in Python to expose these problems and their solutions. Table 4-5 summarizes the
Python functions we’ve used in these demonstrations.

Table 4-5. Python reference

Function Notes Listings

str.decode Converts byte string to Unicode string Example 4-1

Example 4-4

Example 4-7

unicode.encode Converts Unicode string to byte string Example 4-2

unichr Maps number (Unicode code point) to character Example 4-2

ord Gets number (code point) from byte string or Unicode strings Example 4-5

codecs.open Reads and decodes Unicode strings from a file of byte strings Example 4-7

urllib.urlencode URL encodes a dictionary Example 4-8

urllib.unquote Decodes URL-encoded string Example 4-8

cgi.escape HTML encodes characters. Used with unicode.encode('ascii', ‘xmlcharrefreplace') Example 4-9

Example 4-10

HTMLParser.unescape Decodes HTML-encoded string Example 4-9

Example 4-10

csv.reader Parses delimited text Example 4-11

Text Processing with Python | 67

The functions listed in Table 4-5 are good low-level building blocks for creating text
processing and text mining applications. There are a lot of excellent Open Source Python
libraries for higher level text analysis. A few of my favorites are listed in Table 4-6.

Table 4-6. Third-party Python reference

Library Notes

NLTK Parsers, tokenizers, stemmers, classifiers

BeautifulSoup HTML & XML parsers, tolerant of bad inputs

gensim Topic modeling

jellyfish Approximate and phoenetic string matching

These tools provide a great starting point for many text processing, text mining, and
text analysis applications.

Exercises

1. The results shown in Example 4-3 were generated when the n parameter to
make_alnum_sample was set to 512. Do the results change for other values of n?
Try with n=128, n=256, and n=1024.

2. Example 4-4 shows possible interpretations of the string s for three character en‐
codings: Code Page 858, Code Page 1252, and MacRoman. Is every byte string valid
for all three of those encodings? What happens if you run test_co‐
decs(''.join(map(chr, range(256)))).

3. Example 4-6 shows iconv converting text from MacRoman to UTF-8. What happens
if you try to convert the same text from MacRoman to ASCII? What if you try to
convert the same text from ISO-8859-1 to UTF-8?

The Office of the Superintendent of Financial Institutions, Canada publishes a list of
individuals connected to terrorism financing. As of July 9, 2012, the list can be down‐
loaded from http://bit.ly/S1l9WK. The following exercises refer to that list as “the OSFI
list.”

4. How is the OSFI list encoded?

5. What are the most popular non-ASCII symbols (not necessarily letters) in the OSFI
list?

6. What are the most popular non-ASCII letters in the OSFI list?

7. Is there any evidence of URL encoding in the OSFI list?

8. Is there any evidence of HTML encoding in the OSFI list?

68 | Chapter 4: Bad Data Lurking in Plain Text

http://bit.ly/S1l9WK

CHAPTER 5

(Re)Organizing the Web’s Data

Adam Laiacano

The first, and sometimes hardest part of doing any data analysis is acquiring the data
from which you hope to extract information. Whether you want to look at your personal
spending habits, calculate your next trade in fantasy baseball, or compare a politician’s
investment returns to your own, the data you need is usually there on the web with some
sense of order to it, but it’s probably not in a form that’s very useful for analysis. If this
is the case, you’ll need to either manually gather the data or write a script to collect the
data for you.

The granddaddy of all data formats is the data table, with a column for each attribute
and a row for each observation. You’ve seen this if you’ve ever used Microsoft Excel,
relational databases, or R’s data.frame object.

Table 5-1. An example data table

Date Blog Posts

2012-01-01 adamlaiacano 2

2012-01-01 david 4

2012-01-01 dallas 6

2012-01-02 adamlaiacano 0

2012-01-02 david 4

2012-01-02 dallas 6

Most websites store their data behind the scenes in tables within relational databases,
and if those tables were accessible to the computing public, this chapter of Bad Data
Handbook wouldn’t need to exist. However, it’s a web designer’s job to make this infor‐
mation visually appealing and interpretable, which usually means they’ll only present
the reader with a relevant subset of the dataset, such as a single company’s stock price
over a specific date range, or recent status updates from a single user’s social connections.

69

Even online “database” websites are vastly different from a programmer’s version of a
database. On web database websites such as LexisNexis or Yahoo! Finance, there are
page dividers, text formatting, and other pieces of code to make the page look prettier
and easier to interpret. To a programmer, a database is a complete collection of clean,
organized data that is easily extracted and transformed into the form you see on the
web. So now it’s your job to reverse-engineer the many different pages and put the data
back to a form that resembles the original database form.

The process of gathering the data you want consists of two main steps. First is a web
crawler that can find the page with the appropriate data, which sometimes requires
submitting form information and following specific links on the web page. The second
part is to “scrape” the data off of the page and onto your hard drive. Sometimes these
steps are both straightforward, often one is much trickier than the other, and then there
is the all too common case where both steps are tricky.

In this chapter, I’ll cover how and when you can gather data from the web, give an
example of a simple scraper script, and provide some pitfalls to watch out for.

Can You Get That?
Writing the code to crawl a website and gather data should be your last resort. It’s a very
expensive undertaking, both in terms of developer salary and the opportunity cost of
what you could be doing with the data once it’s acquired. Before writing any web scraping
code, I would consider some of the following actions.

First off, see if somebody else already did this work and made the data available.
There are websites such as the Infochimps Data Marketplace and ScraperWiki that con‐
tain many useful datasets either for free or for a fee. There are also several government
websites that put their data in common, easy to use formats with a searchable interface.
Some good examples are www.data.gov.uk and nycopendata.socrata.com.

Also see if the data you want is available through an API (Application Programming
Interface). You’ll still have to extract the data programmatically, but you can request
specific pieces of information, such as all of a certain user’s Twitter followers or all of
the posts on a certain Tumblr blog. Most major social networks offer an API and deliver
the information in a standard format (JSON or XML) so there’s no need to try to scrape
data off of the rendered web pages.

In some cases, you can try contacting the website and tell them what you want. Maybe
they’ll sell you the data, or just send you a database dump if they’re really nice. My
colleagues and I were once able to acquire several months worth of Taxi and Limousine
Commission (TLC) data for New York City via the Freedom of Information Law (FOIL).
The folks at the TLC were very nice and mailed us a DVD with three months of pick
up, drop off, fare, and other information about every taxi ride in the five boroughs.

70 | Chapter 5: (Re)Organizing the Web’s Data

1. http://en.wikipedia.org/wiki/No_Child_Left_Behind_Act

General Workflow Example
Database architects spend a lot of time optimizing the ETL (Extract, Transform, Load)
flow to take data out of a database and put it on a webpage as efficiently as possible. This
involves making sure that you index the right columns, keep relevant data in the same
table so that you don’t have to do expensive JOIN operations, and many other factors.

To scrape the data off a webpage, there is a similar workflow. I’ll work through an ex‐
ample of scraping No Child Left Behind teacher quality data from the Idaho state web‐
site. No Child Left Behind1 requires an annual assessment of all schools that receive
federal funding, and also requires the results to be made available to the public. You can
easily find these results on each state’s website. The URL for Idaho is http://
www.sde.idaho.gov/ReportCard. The site is very useful if you want to see how your spe‐
cific school district is performing, but as data scientists, we need to see how all of the
schools are performing so that we can search for trends and outliers.

In this chapter, we’ll be gathering the Teacher Quality for each of the school districts in
Idaho for the year 2009. An example page that we’ll be scraping is http://bit.ly/XdPE
Na, pictured below. This example is written entirely in Python, though there are tools
in pretty much all major scripting languages for screen scraping such as this. Just because
we are used to viewing this information in a web browser doesn’t mean that’s the only
way to access it. The further you can stay from an actual web browser when writing a
web scraper, the better. You’ll have more tools available to you, and you can likely per‐
form the whole process of finding, gathering, and cleaning data in fewer steps.

Extracting the data on all of these schools is a multistep process.

• Find a pattern in the URLs for the different school districts

• Store a copy of the web page’s HTML source code locally whenever possible

• Parse web pages into clean datasets

• Append new data to an existing dataset

The entire data extraction and cleaning process should be as close to fully automated
as possible. This way you can re-acquire the entire dataset should it become lost or
corrupted, and you can re-run the script again with minimal changes if more data be‐
comes available.

I also can’t stress enough that you should separate these steps as much as possible within
your code, especially if you’re executing your script daily/weekly/monthly to append
new data. I once had a web scraping script running for several days when it suddenly
started throwing errors. The problem was that the website had been completely
redesigned. Fortunately, I only had to rewrite the one function that parses the HTML

General Workflow Example | 71

http://en.wikipedia.org/wiki/No_Child_Left_Behind_Act
http://www.sde.idaho.gov/ReportCard
http://www.sde.idaho.gov/ReportCard
http://bit.ly/XdPENa
http://bit.ly/XdPENa

Figure 5-1. Example table to be gathered. There is an identical table for each school dis‐
trict in Idaho.

tables. As we make our way through the No Child Left Behind example, keep in mind
that we’re only gathering data for 2009, and what would be required to modify the
program to collect data on a different year. Ideally, it would only be a line or two of code
to make this change.

robots.txt
Nearly every website has a robots.txt file that tells web crawlers (that’s you) which di‐
rectories it can crawl, how often it can visit them, and so on. The rules outlined in
robots.txt are not legally binding, but have been respected since the mid-1990s. You
should also check the website’s terms of service, which are certainly legally binding.

Here is an example robots.txt file from App Annie, which is a website that gathers and
reports the reviews for your apps in the iOS App Store.

User-agent: *
Crawl-delay: 5
Sitemap: http://www.appannie.com/media/sitemaps/sitemapindex.xml
Disallow: /top/*date=

72 | Chapter 5: (Re)Organizing the Web’s Data

Disallow: /matrix/*date=
Disallow: /search/*
Disallow: /search_ac/
Disallow: */ranking_table/
Disallow: /top-table/*
Disallow: /matrix-table/*
Disallow: */ranking/history/
Disallow: */ranking/history/chart_data/

Let’s break these down one section at a time.

User-agent: *

The following rules apply to everybody. Sometimes a site will allow or block specific
web crawlers such as Google’s indexer.

Crawl-delay: 5

Crawlers need to wait five seconds between each page load.

Sitemap: http://www.appannie.com/media/sitemaps/sitemapindex.xml

Defines which pages a web crawler should visit and how often they should be in‐
dexed. It’s a good way to help search engines index your site.

Disallow:

Specifies which pages the bots are not allowed to visit. The * acts as the familiar
wildcard character.

Robots.txt should be respected even for public data, such as in our example. Even though
the data is public, the servers hosting and serving the traffic may be privately owned.
Fortunately, there isn’t actually a file at http://www.sde.idaho.gov/robots.txt, so we’re all
set to go.

For more specifics on how to interpret the rules of a robots.txt file, check
out its Wikipedia page.

Identifying the Data Organization Pattern
We first need to figure out how to navigate to the page that contains the data. In our
example, we want to loop over school districts. If we visit http://www.sde.idaho.gov/
reportcard, we’ll see a select object with each of the school districts.

Clicking on each of these options will bring us to a page with the pattern http://
www.sde.idaho.gov/ReportCard/Index/2009/<id number>. So all we have to do is obtain
the list of districts and their ID numbers and we can begin looping through the pages
to extract their source HTML code. If we view the HTML for http://www.sde.idaho.gov/
reportcard and find the select element with the school districts listed, we’ll see that it
will provide us with all of the information we need:

General Workflow Example | 73

http://www.sde.idaho.gov/robots.txt
http://en.wikipedia.org/wiki/Robots.txt
http://www.sde.idaho.gov/reportcard
http://www.sde.idaho.gov/reportcard
http://www.sde.idaho.gov/reportcard
http://www.sde.idaho.gov/reportcard

2. http://www.crummy.com/software/BeautifulSoup/

Figure 5-2. All of the school districts appear in one form element.

<select id="LEA" name="LEA">
 <option value="058">ABERDEEN DISTRICT</option>
 <option value="381">AMERICAN FALLS JOINT DISTRICT</option>
 <option value="476">Another Choice Virtual Charter School</option>
 <option value="492">ANSER CHARTER SCHOOL</option>
 <option value="383">ARBON ELEMENTARY DISTRICT</option>
 <option value="796">Artec Charter School</option>
 <option value="394">AVERY SCHOOL DISTRICT</option>
 ...more districts...
</select>

We’ll be interested in the value attribute, which will appear in the URL pattern for the
individual district pages, and of course we’ll need the district name itself. We can extract
a list of these values with the following function. We use the BeautifulSoup package2

for Python, which makes it simple to parse and navigate HTML files.

def get_district_pages(index_url):
 """
 Takes a URL string and returns a list of tuples with page IDs and district

74 | Chapter 5: (Re)Organizing the Web’s Data

http://www.crummy.com/software/BeautifulSoup/

 names from the 'LEA' drop-down menu.
 """
 index_page = urllib2.urlopen(index_url).read()
 soup = BeautifulSoup(index_page)

 drop_down = soup.find(attrs={'id':'LEA'}) #

 school_districts = []
 for district in drop_down.findAll('option'): #
 if district.text.strip() != "" and district['value'].strip() != "":
 school_districts.append(
 (str((district['value'])), str(district.text.lower()))
)

 return school_districts

districts = get_district_pages('http://www.sde.idaho.gov/reportcard')

This finds HTML elements of any type that have the id="LEA" attribute. In this
case, it is the <select> object containing our list.

Once we have extracted the LEA object, we loop through all <option> sub-
elements and extract their values.

The result will be a list of tuples, with the district ID and name. The first few elements
will look like this:

[('381', 'american falls joint district'),
 ('476', 'another choice virtual charter school'),
 ('492', 'anser charter school'),
 ('383', 'arbon elementary district'),
 ('796', 'artec charter school'),
 ...
]

Now we can create a function to convert this (id, name) tuple to a URL. This is a simple
one-line function, but it’s important to use a function here in case the URL pattern
changes when the site is updated.

def build_url(district_tuple):
 return 'http://www.sde.idaho.gov/ReportCard/Index/2009/%s' % district_tuple[0]

Store Offline Version for Parsing
Now that we have the URLs generated, we can loop through and save an offline version
of each. I highly recommend doing this because most websites don’t like having their
data scraped (whether it’s public information or not) and some detect bots like this. As
you debug the function to parse the actual page, you will probably have to run the script
several times, and it’s much faster and easier to load a local version of the file than to

General Workflow Example | 75

download it from the Web again. Additionally, if you’re gathering data from a page that
changes daily (such as the front page of a media website), you will probably want to keep
a history of the pages you’ve scraped in case you find a bug or decide you want more
information at a later date.

Here’s a function to load a web page and save the source in flat files with a simple
id_name.html naming convention.

def cache_page(district, cache_dir):
 """
 Takes the given district tuple and saves a copy of the source code locally.

 This way we don't have to wait for pages to load and don't bother the website
 with requests.
 """
 url = build_url(district)

 # Create the cache directory if it doesn't already exist
 if not cache_dir in os.listdir('.'):
 os.mkdir(cache_dir)

 source = urllib2.urlopen(url).read()

 dest_file = os.path.join(cache_dir, "%s_%s.html" % district)
 open(dest_file, 'wb').write(source)

Scrape the Information Off the Page
The last step is of course to parse the page contents and get the information we want. It
turns out that the Teacher Quality table that we’ll scrape in is contained in a div tag with
three total tables. The structure looks like this:

<div id="TeacherQuality">
 <p>Data is current as of 2008-2009</p>
 <table>
 <thead>
 <tr>
 <th colspan="8">
 Professional Qualifications of Public Elementary and Secondary
 School Teachers
 </th>
 </tr>
 <tr>
 <th>BA degree</th>
 <th>BA +12 credits</th>
 ...
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>58.45</td>

76 | Chapter 5: (Re)Organizing the Web’s Data

 <td>30.94</td>
 ...
 </tr>
 </tbody>
 </table>
 <table>
 ...
 </table>
 <table>
 ...
 </table>
</div>

Fortunately, BeautifulSoup will let us jump right to that div tag and then iterate through
the table elements within it. I’m also taking a couple of other precautions here: first,
I’m checking the local cache directory for a local copy of the source code before loading
the page from the web. Second, I’m logging any errors to a log file. If any connection is
lost or there is an anomaly on a specific web page that causes an error in the script, I
can easily revisit those pages in a second pass.

def scrape_teacher_quality(district, cache_dir=None):
 """
 Takes a district id and name as a tuple and scrapes the relevant page.
 """
 from BeautifulSoup import BeautifulSoup
 # load data, either from web or cached directory
 if cache_dir is None:
 url = build_url(district)
 try:
 soup = BeautifulSoup(urllib2.urlopen(url).read())
 except:
 print "error loading url:", url
 return
 else:
 try:
 file_in = os.path.join(cache_dir, '%s_%s.html' % district)
 soup = BeautifulSoup(open(file_in, 'r').read())
 except:
 print "file not found:", file_in
 return

 quality_div = soup.find('div', attrs={'id':'TeacherQuality'}) #

 header = ['district_id', 'district_name']
 data = list(district)

 for i, table in enumerate(quality_div.findAll('table')):
 header_prefix = 'table%s ' % i #

 header_cells = table.findAll('th')
 data_cells = table.findAll('td')

General Workflow Example | 77

 # some rows have an extra 'th' cell. If so, we need to skip it.
 if len(header_cells) == len(data_cells) + 1:
 header_cells = header_cells[1:]

 header.extend([header_prefix + th.text.strip() for th in header_cells])
 data.extend([td.text.strip() for td in data_cells])

 return {
 'header' : header,
 'data' : data
 }

On this page, all of the different tabs are in div tags with appropriate IDs, and all
but the active div are commented out.

Since there are three tables and some have the same title, I’ll give the headers a
prefix. In fact, headers here aren’t necessary if the data within the tables are always
the same. I included them here as an example.

This code will often be very specific to the way that a web page has been coded. If a
website gets redesigned, this function will probably have to be amended, so it should
rely on the other functions as little as possible. You can also write functions to scrape
the other tables pertaining to this school district such as NCLB Status and Adequate
Yearly Progress (AYP) and execute them at the same time as this one.

Now that we have all of the pieces, we can put them all together in the main() function.
I will write the results to a comma-delimited flat file, but you could just as easily store
them in a relational or NoSQL database, or any other kind of datastore.

from BeautifulSoup import BeautifulSoup
import urllib2, os, csv
def main():
 """
 Main funtion for crawling the data.
 """
 district_pages = get_district_pages('http://www.sde.idaho.gov/reportcard')

 errorlog = open('errors.log', 'wb')
 for district in district_pages:
 print district
 try:
 cache_page(district, 'data')
 except:
 url = build_url(district)
 errorlog.write('Error loading page %s\n' % url)
 continue

 fout = csv.writer(open('parsed_data.csv', 'wb')) #

 # write the header

78 | Chapter 5: (Re)Organizing the Web’s Data

 header = [
 'district_id',
 'district_name',
 'ba_degree',
 'ba_plus_12',
 'ba_plus_24',
 'ma_degree',
 'ma_plus_12',
 'ma_plus_24',
 'phd_degree',
 'degree_total',
 'emergency_cert',
 'poverty_high',
 'poverty_low',
 'poverty_total',
]
 fout.writerow(header)

 for district in district_pages:
 parsed_dict = scrape_teacher_quality(district, cache_dir='data')
 #
 if parsed_dict is not None:
 fout.writerow(parsed_dict['data'])
 else:
 errorlog.write('Error parsing district %s (%s)' % district)

 del(fout)
 del(errorlog)

Python’s csv package is excellent at handling escaped characters and any other
annoyances that may creep up when working with flat files and is a much better
option than writing strings directly.

If you wanted to scrape other tables from the page, just drop the function call to
the table’s parser function here.

This makes the strong assumption that the tables are identical on every
page. This may not always be the case, so you should store the values as
key/value in a dict or something similar.

The Real Difficulties
I spent a few years as a full-time research assistant at a prominent business school. Part
of my duties included gathering and cleaning datasets for research projects. I crawled
many websites to reproduce the clean dataset that I knew sat behind the web pages. Here
are a few of the more creative projects I came up against.

The Real Difficulties | 79

3. https://github.com/bolinfest/chickenfoot/

Download the Raw Content If Possible
In my first web scraping application, I had to go through about 20GB of raw text files
stored on an external website and do some simple text extraction that relied mostly on
matching some regular expressions. I knew it would take a while to download all of the
data, so I figured I would just process the files line-by-line as I download them.

The script I wrote was pretty simple. I used Python’s urllib2 library to open a remote
file and scan through it line-by-line, the same way you would for a local file. I let it run
overnight and came in the next morning to find that I couldn’t access the Internet at all.
It turns out that requesting 20GB of data a few hundred bytes at a time looks an awful
lot like a college student downloading movies through a torrent service. It was my third
day of a new job and I had already blacklisted myself. And that’s why you always down‐
load a batch of data and parse it locally.

Forms, Dialog Boxes, and New Windows
The structure of most of the websites that I encountered had a similar data retrieval
pattern: fill out a form, reverse-engineer the results page to extract the meaningful data,
repeat. One online database, however, had a more complex pattern:

1. Log in to the website.

2. Fill out a form with a company name and date range.

3. Dismiss a dialog box (“Do you really want to submit this query?”).

4. Switch to the new tab that the results open in; extract the data.

5. Close the new tab, returning to the original form.

6. Repeat.

For this, I used my favorite last-resort tool: Chickenfoot3, which is a Firefox plug-in that
allows you to programmatically interact with a web page through the browser. From the
web server’s perspective, all of the requests are as if a real person was submitting these
queries through their browser. Here is a simple example that will load the Idaho NCLB
page that we crawled and go to the first school’s “Teacher Quality” page.

go('http://www.sde.idaho.gov/ReportCard');
select('Report Card for 2009-2010');
click('submit');
click('Teacher Quality');

80 | Chapter 5: (Re)Organizing the Web’s Data

https://github.com/bolinfest/chickenfoot/

Chickenfoot provides a few simple commands like click, select, and find, but also
gives you full access to the Javascript DOM for extracting data and fully controlling the
webpage. It is easy to make AJAX requests, modify and submit forms, and pretty much
anything else. The disadvantage is that it is slow since it runs in the browser and has to
render each page, and doesn’t always fail gracefully if a page doesn’t load properly.

Figure 5-3. Screenshot of Chickenfoot in action.

Flash
We went through an example of scraping data from the Idaho No Child Left Behind
report card website, but not all states are as easy to scrape as that one. Some states actually
provide the raw data in .csv format, which is great, but others are trickier to get data
out of.

One particular state (I forget which one, unfortunately) decided that Adobe Flash would
be the best way to display this data. Each school has its own web page with a Flash applet
showing a green (excellent), yellow (proficient), or red (failing) light for each of the
subjects on which it is evaluated. Adobe Flash is an incredibly powerful platform, and
for better or worse, it is a brick wall when it comes to accessing the underlying source
code. That means that we had to get creative when gathering this data.

My colleagues and I put this state aside while we gathered the NCLB data for the others.
We had already built the list of URLs that we would have to navigate to for each shool,
but had to figure out how to get the data out of Flash. Eventually, it came to us: Apple‐
Script. AppleScript can be a helpful tool for automating high-level tasks in OSX such as
opening and closing programs, accessing calendar information in iCal, and visiting web

The Real Difficulties | 81

pages in the Safari web browser. We wrote an AppleScript to tell Safari to navigate to
the correct URL, then tell OSX to take a screen shot of the page, saving it with an ID
number in the file name. Then we could analyze the images afterwards and look at the
color of specific pixels to determine the school’s performance.

It would have to run at night, because we needed the green/yellow/red circles to be
equally aligned on every page. That meant the browser window had to be active and in
the same place for each screen shot. Each morning, for about a week, we came into the
office to find about 2GB of screenshot images.

We used a MATLAB script to loop through all of these results and get the color of the
pixels of interest. When MATLAB loads a .jpg image file that is N pixels tall and M pixels
wide, it stores it as a three-dimensional array with dimensions NxMx3. Each of the lay‐
ers holds the red, green, and blue color intensity for the relevant pixel with a number
between 0 and 255. Red pixels would have the value [255, 0, 0], green pixels were
[0, 255, 0], and yellow pixels were [255, 255, 0].

The Dark Side
Sometimes you’re trying to get data from a site that doesn’t want to be crawled (even
though you’ve confirmed that you’re allowed to crawl the pages, right?). If your crawler
is detected, your IP address or API key will likely be blacklisted and you won’t be able
to access the site. This once happened to a coworker of mine and the entire office was
blocked from accessing an important website. If you’re writing a web crawler similar to
the example in this chapter on a page that you suspect will block you, it’s best to insert
pauses in the crawler so that your script is less likely to be detected. This way your page
requests will look less programmatic and the frequency of the requests might be low
enough that they don’t annoy the website’s administrators.

Conclusion
Any “screen scraping” program is subject to many factors that are beyond your control
and which can make the program less reliable. Data changes as websites are updated,
so saving an offline version of those pages is a priority over actually parsing and ex‐
tracting the live data. Slow connections cause timeouts when loading pages, so your
program has to fail gracefully and move on, keeping a history of what you were and were
not able to save so that you can make a second (or third or fourth) pass to get more data.
However, it is sometimes a fun challenge to reverse-engineer a website and figure out
how they do things under the hood, notice common design approaches, and end up
with some interesting data to work with in the end.

82 | Chapter 5: (Re)Organizing the Web’s Data

1. http://www.weotta.com

CHAPTER 6

Detecting Liars and the Confused in
Contradictory Online Reviews

Jacob Perkins

Did you know that people lie for their own selfish reasons? Even if this is totally obvious
to you, you may be surprised at how blatant this practice has become online, to the point
where some people will explain their reasons for lying immediately after doing so.

I knew unethical people would lie in online reviews in order to inflate ratings or attack
competitors, but what I didn’t know, and only learned by accident, is that individuals
will sometimes write reviews that completely contradict their associated rating, without
any regard to how it affects a business’s online reputation. And often this is for businesses
that an individual likes.

How did I learn this? By using ratings and reviews to create a sentiment corpus, I trained
a sentiment analysis classifier that could reliably determine the sentiment of a review.
While evaluating this classifier, I discovered that it could also detect discrepancies be‐
tween the review sentiment and the corresponding rating, thereby finding liars and
confused reviewers. Here’s the whole story of how I used text classification to identify
an unexpected source of bad data...

Weotta
At my company, Weotta,1 we produce applications and APIs for navigating local data
in ways that people actually care about, so we can answer questions like: Is there a kid-
friendly restaurant nearby? What’s the nearest hip yoga studio? What concerts are hap‐
pening this weekend?

83

http://www.weotta.com

2. http://en.wikipedia.org/wiki/Natural_language_processing

3. http://citygrid.com/

4. http://bit.ly/X9sqWR

To do this, we analyze, aggregate, and organize local data in order to classify it along
dimensions that we can use to answer these questions. This classification process enables
us to know which restaurants are classy, which bars are divey, and where you should go
on a first date. Online business reviews are one of the major input signals we use to
determine these classifications. Reviews can tell us the positive or negative sentiment
of the reviewer, as well as what they specifically care about, such as quality of service,
ambience, and value. When we aggregate reviews, we can learn what’s popular about
the place and why people like or dislike it. We use many other signals besides reviews,
but with the proper application of natural language processing,2 reviews are a rich source
of significant information.

Getting Reviews
To get reviews, we use APIs where possible, but most reviews are found using good old-
fashioned web scraping. If you can use an API like CityGrid3 to get the data you need,
it will make your life much easier, because while scraping isn’t necessarily difficult, it
can be very frustrating. Website HTML can change without notice, and only the simplest
or most advanced scraping logic will remain unaffected. But the majority of web scrapers
will break on even the smallest of HTML changes, forcing you to continually monitor
and maintain your scrapers. This is the dirty secret of web mining: the end result might
be nice and polished data, but the process is more akin to janitorial work where every
mess is unique and it never stays clean for long.

Once you’ve got reviews, you can aggregate ratings to calculate an average rating for a
business. One problem is that many sources don’t include ratings with their reviews. So
how can you accurately calculate an average rating? We wanted to do this for our data,
as well as aggregate the overall positive sentiment from all the reviews for a business,
independent of any average rating. With that in mind, I figured I could create a sentiment
classifier,4 using rated reviews as a training corpus. A classifier works by taking a feature
set and determining a label. For sentiment analysis, a feature set is a piece of text, like a
review, and the possible labels can be pos for positive text, and neg for negative text.
Such a sentiment classifier could be run over a business’s reviews in order to calculate
an overall sentiment, and to make up for any missing rating information.

84 | Chapter 6: Detecting Liars and the Confused in Contradictory Online Reviews

http://en.wikipedia.org/wiki/Natural_language_processing
http://citygrid.com/
http://bit.ly/X9sqWR

5. http://nltk.org

6. http://en.wikipedia.org/wiki/Text_classification

7. http://www.cs.cornell.edu/people/pabo/movie-review-data/

8. http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf

Sentiment Classification
NLTK,5 Python’s Natural Language ToolKit, is a very useful programming library for
doing natural language processing and text classification.6 It also comes with many cor‐
pora that you can use for training and testing. One of these is the movie_reviews corpus,
7 and if you’re just learning how to do sentiment classification, this is a good corpus to
start with. It is organized into two directories, pos and neg. In each directory is a set of
files containing movie reviews, with every review separated by a blank line. This corpus
was created by Pang and Lee,8 and they used ratings that came with each review to decide
whether that review belonged in pos or neg. So in a 5-star rating system, 3.5 stars and
higher reviews went into the pos directory, while 2.5 stars and lower reviews went into
the neg directory. The assumption behind this is that high rated reviews will have pos‐
itive language, and low rated reviews will have more negative language. Polarized lan‐
guage is ideal for text classification, because the classifier can learn much more precisely
those words that indicate pos and those words that indicate neg.

Because I needed sentiment analysis for local businesses, not movies, I used a similar
method to create my own sentiment training corpus for local business reviews. From a
selection of businesses, I produced a corpus where the pos text came from 5 star reviews,
and the neg text came from 1 star reviews. I actually started by using both 4 and 5 star
reviews for pos, and 1 and 2 star reviews for neg, but after a number of training experi‐
ments, it was clear that the 2 and 4 star reviews had less polarizing language, and there‐
fore introduced too much noise, decreasing the accuracy of the classifier. So my initial
assumption was correct, though the implementation of it was not ideal. But because I
created the training data, I had the power to change it in order to yield a more effective
classifier. All training-based machine learning methods work on the general principle
of “garbage in, garbage out,” so if your training data is no good, do whatever you can to
make it better before you start trying to get fancy with algorithms.

Polarized Language
To illustrate the power of polarized language, what follows is a table showing some of
the most polarized words used in the movie_reviews corpus, along with the occurrence
count in each category, and the Chi-Squared information gain, calculated using NLTK’s
BigramAssocMeasures.chi_sq() function in the nltk.metrics.association module.

Sentiment Classification | 85

http://nltk.org
http://en.wikipedia.org/wiki/Text_classification
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf

9. http://bit.ly/QibGfE

9 This Chi-Square metric is a modification of the Phi-Square measure of the association
between two variables, in this case a word and a category. Given the number of times a
word appears in the pos category, the total number of times it occurs in all categories,
the number of words in the pos category, and the total number of words in all categories,
we get an association score between a word and the pos category. Because we only have
two categories, the pos and neg scores for a given word will be the same because the
word is equally significant either way, but the interpretation of that significance depends
on the word’s relative frequency in each category.

Word Pos Neg Chi-Sq

bad 361 1034 399

worst 49 259 166

stupid 45 208 123

life 1057 529 126

boring 52 218 120

truman 152 11 108

why 317 567 99

great 751 397 76

war 275 94 71

awful 21 111 71

Some of the above words and numbers should be mostly obvious, but others not so
much. For example, many people might think “war” is bad, but clearly that doesn’t apply
to movies. And people tend to ask “why” more often in negative reviews compared to
positive reviews. Negative adjectives are also more common, or at least provide more
information for classification than the positive adjectives. But there can still be category
overlap with these adjectives, such as “not bad” in a positive review, or “not great” in a
negative review. Let’s compare this to some of the more common and less polarizing
words:

Word Pos Neg Chi-Sq

good 1248 1163 0.6361

crime 115 93 0.6180

romantic 137 117 0.1913

movies 635 571 0.0036

hair 57 52 0.0033

produced 67 61 0.0026

bob 96 86 0.0024

86 | Chapter 6: Detecting Liars and the Confused in Contradictory Online Reviews

http://bit.ly/QibGfE

10. http://en.wikipedia.org/wiki/Naive_Bayes_classifier

11. http://en.wikipedia.org/wiki/Maximum_entropy_classifier

Word Pos Neg Chi-Sq

where 785 707 0.0013

face 188 169 0.0013

take 476 429 0.0003

You can see from this that “good” is one of the most overused adjectives and confers
very little information. And you shouldn’t name a movie character “Bob” if you want a
clear and strong audience reaction. When training a text classifier, these low-
information words are harmful noise, and as such should either be discarded or weighted
down, depending on the classification algorithm you use. Naive Bayes10 in particular
does not do well with noisy data, while a Logistic Regression classifier (also known as
Maximum Entropy)11 can weigh noisy features down to the point of insignificance.

Corpus Creation
Here’s a little more detail on the corpus creation: we counted each review as a single
instance. The simplest way to do this is to replace all newlines in a review with a single
space, thereby ensuring that each review looks like one paragraph. Then separate each
review/paragraph by a blank line, so that it is easy to identify when one review ends and
the next begins. Depending on the number of reviews per category, you may want to
have multiple files per category, each containing some reasonable number of reviews
separated by blank lines. With multiple files, you should either have separate directories
for pos and neg, like the movie_reviews corpus, or you could use easily identified file‐
name patterns. The simplest way to do it is to copy something that already exists, so you
can reuse any code that recognizes that organizational pattern. The number of reviews
per file is up to you; what really matters is the number of reviews per category. Ideally
you want at least 1000 reviews in each category; I try to aim for at least 10,000, if possible.
You want enough reviews to reduce the bias of any individual reviewer or item being
reviewed, and to ensure that you get a good number of significant words in each category,
so the classifier can learn effectively.

The other thing you need to be concerned about is category balance. After producing a
corpus of 1 and 5 star reviews, I had to limit the number of pos reviews significantly in
order to balance the pos and neg categories, because it turns out that there’s far more 5
star reviews than there are 1 star reviews. It seems that online, most businesses are above
average, as you can see in this chart showing the percentage of each rating.

Corpus Creation | 87

http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Maximum_entropy_classifier

12. https://github.com/japerk/nltk-trainer

Rating Percent

5 32%

4 35%

3 17%

2 9%

1 7%

People are clearly biased towards higher rated reviews; there are nearly five times as
many 5 star reviews as 1 star reviews. So it might make sense that a sentiment classifier
should be biased the same way, and all else being equal, favor pos classifications over
neg. But there’s a design problem here: if a sentiment classifier is more biased towards
the pos class, it will produce more false positives. And if you plan on surfacing these
positive reviews, showing them to normal people that have no insight into how a sen‐
timent classifier works, you really don’t want to show a false positive review. There’s a
lot of cognitive dissonance when you claim that a business is highly rated and most
people like it, while at the same time showing a negative review. One of the worst things
you can do when designing a user interface is to show conflicting messages at the same
time. So by balancing the pos and neg categories, I was able to reduce that bias and
decrease false positives. This was accomplished by simply pruning the number of pos
reviews until it was equal to the number of neg reviews.

Training a Classifier
Now that I had a polarized and balanced training corpus, it was trivial to train a classifier
using a classifier training script from nltk-trainer.12 nltk-trainer is an open source library
of scripts I created for training and analyzing NLTK models. For text classification, the
appropriate script is train_classifier.py. Just a few hours of experimentation lead
to a highly accurate classifier. Below is an example of how to use train_classifi
er.py, and the kind of stats I saw:

nltk-trainer$./train_classifier.py review_sentiment --no-pickle \
 --classifier MEGAM --ngrams 1 --ngrams 2 --instances paras \
 --fraction 0.75
loading review_sentiment
2 labels: ['neg', 'pos']
22500 training feats, 7500 testing feats
[Found megam: /usr/local/bin/megam]
training MEGAM classifier
accuracy: 0.913465

88 | Chapter 6: Detecting Liars and the Confused in Contradictory Online Reviews

https://github.com/japerk/nltk-trainer

13. http://en.wikipedia.org/wiki/Part-of-speech_tagging

14. http://en.wikipedia.org/wiki/Chunking_(computational_linguistics)

neg precision: 0.891415
neg recall: 0.931725
pos precision: 0.947058
pos recall: 0.910265

With these arguments, I’m using the MEGAM algorithm for training a MaxentClassifi
er using each review paragraph as a single instance, looking at both single words (un‐
igrams) and pairs of words (bigrams). The MaxentClassifier (or Logistic Regression),
uses an iterative algorithm to determine weights for every feature. These weights can be
positive or negative for a category, meaning that the presence of a word can imply that
a feature set belongs to a category and/or that a feature set does not belong to different
category. So referring to the previous word tables, we can expect that “worst” will have
a positive weight for the neg category, and a negative weight for the pos category. The
MEGAM algorithm is just one of many available training algorithms, and I prefer it for its
speed, memory efficiency, and slight accuracy advantage over the other available algo‐
rithms.

The other options used above are --no-pickle, which means to not save the trained
classifier to disk, and --fraction, which specifies how much of the corpus is used for
training, with the remaining fraction used for testing. train_classifier.py has many
other options, which you can see by using the --help option. These include various
algorithm-specific training options, what constitutes an instance, which ngrams to use,
and many more.

If you’re familiar with classification algorithms, you may be wondering why I didn’t use
Naive Bayes. This is because my tests showed that Naive Bayes was much less accurate
than Maxent, and that even combining the two algorithms did not beat Maxent by itself.
Naive Bayes does not weight its features, and therefore tends to be susceptible to noisy
data, which I believe is the reason it did not perform too well in this case. But your data
is probably different, and you may find opposite results when you conduct your ex‐
periments.

I actually wrote the original code behind train_classifier.py for this project so that
I could design and modify classifier training experiments very quickly. Instead of copy
and paste coding and endless script modifications, I was able to simply tweak command
line arguments to try out a different set of training parameters. I encourage you to do
the same, and to perform many training experiments in order to arrive at the best pos‐
sible set of options.

After I’d created this script for text classification, I added training scripts for part-of-
speech tagging13 and chunking,14 leading to the creation of the whole nltk-trainer project

Training a Classifier | 89

http://en.wikipedia.org/wiki/Part-of-speech_tagging
http://en.wikipedia.org/wiki/Chunking_(computational_linguistics)

and its suite of training and analysis scripts. I highly recommend trying these out before
attempting to create a custom NLTK based classifier, or any NLTK model, unless you
really want to know how the code works, and/or have custom feature extraction methods
you want to use.

Validating the Classifier
But back to the sentiment classifier: no matter what the statistics say, over the years I’ve
learned to not fully trust trained models and their input data. Unless every training
instance has been hand-verified by three professional reviewers, you can assume there’s
some noise and/or inaccuracy in your training data. So once I had trained what appeared
to be a highly accurate sentiment classifier, I ran it over my training corpus in order to
see if I could find reviews that were misclassified by the classifier. My goal was to figure
out where the classifier went wrong, and perhaps get some insight into how to tweak
the training parameters for better results. To my surpise, I found reviews like this in the
pos/5-star category, which the classifier was classifying as neg:

It was loud and the wine by the glass is soo expensive. Thats the only negative because it
was good.

And in the neg/1-star category, there were pos reviews like this:

One of the best places in New York for a romantic evening. Great food and service at fair
prices.

We loved it! The waiters were great and the food came quickly and it was delicious. 5 star
for us!

The classifier actually turned out to be more accurate at detecting sentiment than the
ratings used to create the training corpus! Apparently, one of the many bizarre things
people do online is write reviews that completely contradict their rating. While trying
to create a sentiment classifier, I had accidentally created a way to identify both liars and
the confused. Here’s some 1-star reviews by blatant liars:

This is the best BBQ ever! I’m not just saying that to keep you fools from congesting my
favorite places.

Quit coming to my favorite Karaoke spot. I found it first.

While these at least have some logic behind them, I completely disagree with the mo‐
tivation. By giving 1 star with their review, these reviewers are actively harming the
reputation of their favorite businesses for their own selfish short-term gain.

On the other side of the sentiment divide, here’s a mixed sentiment comment from a
negative 5-star review:

90 | Chapter 6: Detecting Liars and the Confused in Contradictory Online Reviews

This place sucks, do not come here, dirty, unfriendly staff and bad workout equipment.
MY club, do you hear me, MY, MY, MY club. STAY AWAY! One of the best clubs in the
bay area. All jokes aside, this place is da bomb.

This kind of negative 5-star review could also be harming the business’s reputation. The
first few sentences may be a joke, but those are also the sentences people are more likely
to read, and this review is saying some pretty negative things, albeit jokingly. And then
there’s people that really shouldn’t be writing reviews:

I like to give A’s. I dont want to hurt anyones feelings. A- is the lowest I like to give. A- is
the new F.

The whole point of reviews and ratings is to express your opinion, and yet this reviewer
seems afraid to do just that. And here’s an actual negative opinion from a 5-star review:

My steak was way over-cooked. The menu is very limited. Too few choices

If the above review came with a 1 or 2 star rating, that’d make sense. But a 5-star rating
for a limited menu and overcooked steak? I’m not the only one who’s confused.

Finally, just to show that my sentiment classifier isn’t perfect, here’s a 5-star review that’s
actually positive, but the reviewer uses a double negative, which causes the classifier to
give it a negative sentiment:

Never had a disappointing meal there.

Double negatives, negations such as “not good,” sarcasm, and other language idioms
can often confuse sentiment analysis systems and are an area of ongoing research. Be‐
cause of this, I believe that it’s best to exclude such reviews from any metrics about a
business. If you want a clear signal, you often have to ignore small bits of contradicto‐
ry information.

Designing with Data
We use the sentiment classifier in another way, too. As I mentioned earlier, we show
reviews of places to provide our users with additional context and confirmation. And
because we try to show only the best places, the reviews we show should reflect that.
This means that every review we show needs to have a strong positive signal. And if
there’s a rating included with the review, it needs to be high too, because we don’t want
to show any confused high-rated reviews or duplicitous low-rated reviews. Otherwise,
we’d just confuse our own users.

Before adding the sentiment classifier as a critical component of our review selection
method, we were simply choosing reviews based on rating. And when we didn’t have a
rating, we were choosing the most recent reviews. Neither of these methods was satis‐

Designing with Data | 91

15. http://www.slideshare.net/japerk/corpus-bootstrapping-with-nltk

factory. As I’ve shown above, you cannot always trust ratings to accurately reflect the
sentiment of a review. And for reviews without a rating, anyone could say anything and
we had no signal to use for filtering out the negative reviews. Now some might think we
should be showing negative reviews to provide a balanced view of a business. But our
goal in this case is not to create a research tool—there’s plenty of other sites and apps
that are already great for that. Our goal is to show you the best, most relevant places for
your occasion. If every other signal is mostly positive, then showing negative reviews is
a disservice to our users and results in a poor experience. By choosing to show only
positive reviews, the data, design, and user experience are all congruent, helping our
users choose from the best options available based on their own preferences, without
having to do any mental filtering of negative opinions.

Lessons Learned
One important lesson for machine learning and statistical natural language processing
enthusiasts: it’s very important to train your own models on your own data. If I had used
classifiers trained on the standard movie_reviews corpus, I would never have gotten
these results. Movie reviews are simply different than local business reviews. In fact, it
might be the case that you’d get even better results by segmenting businesses by type,
and creating classifiers for each type of business. I haven’t run this experiment yet, but
it might lead to interesting research. The point is, your models should be trained on the
same kind of data they need to analyze if you want high accuracy results. And when it
comes to text classification and sentiment analysis in particular, the domain really mat‐
ters. That requires creating a custom corpus 15 and spending at least a few hours on
experiments and research to really learn about your data in order to produce good
models.

You must then take a critical look at your training data, and validate your training models
against it. This is the only way to know what your model is actually learning, and if your
training data is any good. If I hadn’t done any model validation, I would never have
discovered these bad reviews, nor realized that my sentiment classifier could detect
inconsistent opinions and outright lying. In a sense, these bad reviews are a form of
noise that has been maliciously injected into the data. So ask yourself, what forms of
bad data might be lurking in your data stream?

Summary
The process I went through can be summarized as:

1. Get relevant data.

92 | Chapter 6: Detecting Liars and the Confused in Contradictory Online Reviews

http://www.slideshare.net/japerk/corpus-bootstrapping-with-nltk

2. Create a custom training corpus.

3. Train a model.

4. Validate that model against the training corpus.

5. Discover something interesting.

At steps 3-5, you may find that your training corpus is not good enough. It could mean
you need to get more relevant data. Or that the data you have is too noisy. In my case,
I found that 2 and 4 star reviews were not polarizing enough, and that there was an
imbalance between the number of 5-star reviews and the number of 1-star reviews.

It’s also possible that your expectations for machine learning are too high, and you need
to simplify the problem. Natural language processing and machine learning are imper‐
fect methods that rely on statistical pattern matching. You cannot expect 100% accuracy,
and the noisier the data is, the more likely you are to have lower accuracy. This is why
you should always aim for more distinct categories, polarizing language, and simple
classification decisions.

Resources
All of my examples have used NLTK, Python’s Natural Language ToolKit, which you
can find at http://nltk.org/. I also train all my models using the scripts I created in nltk-
trainer at https://github.com/japerk/nltk-trainer. To learn how to do text classification
and sentiment analysis with NLTK yourself, I wrote a series of posts on my blog, starting
with http://bit.ly/X9sqWR. And for those who want to go beyond basic text classification,
take a look at scikit-learn, which is implementing all the latest and greatest machine
learning algorithms in Python: http://scikit-learn.org/stable/. For Java people, there is
Apache’s OpenNLP project at http://opennlp.apache.org/, and a commercial library
called LingPipe, available at http://alias-i.com/lingpipe/.

Resources | 93

http://nltk.org/
https://github.com/japerk/nltk-trainer
http://bit.ly/X9sqWR
http://scikit-learn.org/stable/
http://opennlp.apache.org/
http://alias-i.com/lingpipe/

CHAPTER 7

Will the Bad Data Please Stand Up?

Philipp K. Janert

Among hikers and climbers, they say that “there is no such thing as bad weather—only
inappropriate clothing.” And as anybody who has spent some time outdoors can attest,
it is often precisely trips undertaken under more challenging circumstances that lead to
the most noteworthy memories. But one has to be willing to put oneself out there.

In a similar spirit, I don’t think there is really such a thing as “bad data”—only inap‐
propriate approaches. To be sure, there are datasets that require more work (because of
missing data, background noise, poor encoding, inconvenient file formats, and so on),
but they don’t pose fundamental challenges. Given sufficient effort, these problems can
be overcome, and there are useful techniques for handling such situations (like tricks
for staying warm during a late-November hike).

But basically, that’s remaining within familiar territory. To discover new vistas, one has
to be willing to follow an unmarked trail and see where it leads. Or equivalently, when
working with data, one has to dare to have an opinion about where the data is leading
and then check whether one was right about it. Note that this takes courage: it is far safer
to merely describe what one sees, but doing so is missing a whole lot of action.

Let’s evaluate some trail reports. Later, we’ll regroup and see what lessons we have
learned.

Example 1: Defect Reduction in Manufacturing
A manufacturing company had developed a rather clever scheme to reduce the number
of defective items shipped to their customers—at no additional cost. The basic idea was
to use a quantity that was already being measured for each newly manufactured item
(let’s call it the “size”—it wasn’t, but it won’t matter) as indicator of the item quality. If

95

the size was “off,” then the item probably was not going to work right. To the manufac‐
turer, the key benefit of this indirect approach was the low cost. The size was already
being measured as part of the manufacturing process, so it did not impose an additional
overhead. (The main problem with quality assurance always is that it has to be cheap.)

They put a system in place that flagged items that seemed “off ” as candidates for manual
inspection. The question was: how well was this system working? How good was it at
actually detecting defective items? This was not so easy to tell, because the overall defect
rate was quite low: about 1 item in 10,000 leaving the manufacturing line was later found
to be truly defective. What fraction of defects would this new tagging system be able to
detect, and how many functioning items would it incorrectly label as defective? (This
was a key question. Because all flagged items were sent to manual testing, a large number
of such false positives drove up the cost quickly—remember, the idea was for the overall
process to be cheap!)

There’s the assignment. What would you do?

Well, the central, but silent, assumption behind the entire scheme is that there is a “typ‐
ical” value for the size of each item, and that the observed (measured) values will scatter
in some region around it. Only if these assumptions are fulfilled does it even make sense
to say that one particular item is “off,” meaning outside the typical range. Moreover,
because we try to detect a 1 in 10,000 effect, we need to understand the distribution out
in the tails.

You can’t tell 0.01% tail probabilities from a histogram, so you need to employ a more
formal method to understand the shape of the point distribution, such as a probability
plot. Which probability plot? To prepare one, you have to select a specific distribution.
Which one? Is it obvious that the data will be Gaussian distributed?

No, it is not. But it is a reasonable choice: one of the assumptions is that the observed
deviations from the “typical” size are due to random effects. The Gaussian distribution,
which describes the sum of many random contributions, should provide a good de‐
scription for such a system.

A typical probability plot for data from the manufacturing plant is shown in
Figure 7-1. If the points fall onto a straight line in a probability plot, then this indicates
that the data is indeed distributed according to the theoretical distribution. Moreover,
the intercept of the line yields the empirical mean of the dataset and the slope of the line
the standard deviation. (The size of the data was only recorded to within two decimal
places, resulting in the step-like appearance of the plot.)

In light of this, Figure 7-1 may look like an excellent fit, but in fact it is catastrophic!
Remember that we are trying to detect a 1 in 10,000 effect — in other words, we expect
only about 1 in 10,000 items to be “off,” indicating a possibly defective item. Figure 7-1
shows data for 10,000 items, about 20 of which are rather obviously outliers. In other

96 | Chapter 7: Will the Bad Data Please Stand Up?

Figure 7-1. A normal probability plot. Note how the tails of the dataset do not agree with
the model.

words, the number of outliers is about 20 times larger than expected! Because the whole
scheme is based on the assumption that only defective items will lead to measurements
that are “off,” Figure 7-1 tells us that we are in trouble: the number of outliers is 20 times
larger than what we would expect.

Figure 7-1 poses a question, though: what causes these outliers? They are relatively few
in absolute terms, but much more frequent than would be allowed on purely statistical
grounds. But these data points are there. Something must cause them. What is it?

Before proceeding, I’d like to emphasize that with this last question, we have left the
realm of the data itself. The answer to this question cannot be found by examining the
dataset—we are now examining the environment that produced this data instead. In
other words, the skills required at this point are less those of the “data scientist,” but
more those one expects from a “gum shoe detective.” But sometimes that’s what it takes.

In the present case, the data collection process was fully automated, so we rule out
manual data entry errors. The measuring equipment itself was officially calibrated and
regularly checked and maintained, so we rule out any systematic malfunction there. We
audited the data processing steps after the data had been obtained, but found nothing:

Example 1: Defect Reduction in Manufacturing | 97

data was not dropped, munged, overwritten—the recording seemed faithful. Ultimately,
we insisted on visiting the manufacturing plant itself (hard hat, protective vest, the whole
nine yards). Eventually, we simply observed the measuring equipment for several hours,
from a distance. And then it became clear: every so often (a few times per hour) an
employee would accidentally bump against the apparatus. Or an item would land heavily
on a nearby conveyor. Or a fork lift would go by. All these events happened rarely—but
still more frequently than the defects we tried to detect!

Ultimately, the “cheap” defect reduction mechanism envisioned by the plant manage‐
ment was not so cheap at all: to make it work, it would be necessary to bring the data
collection step up to the same level of accuracy and repeatability as was the case for the
main manufacturing process. That would change the economics of the whole project,
making it practically infeasible from an economic perspective.

Is this a case of “bad data?” Certainly, if you simply want the system to work. But the
failure is hardly the data’s fault—the data itself never claimed that it would be suitable
for the intended purpose! But nobody had bothered to state the assumptions on which
the entire scheme rested clearly and in time and to validate that these assumptions were,
in fact, fulfilled.

It is not fair to blame the mountain for being covered with snow when one didn’t bother
to bring crampons.

Example 2: Who’s Calling?
Paradoxically, wrong turns can lead to the most desirable destinations. They can take
us to otherwise hidden places—as long as we don’t cling too strongly to the original plan
and instead pay attention to the actual scenery.

Figure 7-2 shows a histogram for the number of phone calls placed per business day to
a small business—let’s say, a building contractor. (The histogram informs us that there
were 17 days with no calls, 32 days with one call, 20 days with two calls, and so on.)
Knowing nothing else, what can we say about this system?

Well, we might expect the calls to be distributed according to a Poisson distribution:

The Poisson distribution is the natural choice to model the frequency of rare events. It
depends only on a single parameter, λ, the average number of calls per day. Given the
data in the histogram, it is easy to obtain a numerical estimate for the parameter:

98 | Chapter 7: Will the Bad Data Please Stand Up?

Figure 7-2. Histogram of calls received per business day by a small business, together
with the best fit Poisson distribution.

Once λ is fixed, the distribution p(k, λ) is completely determined. It should therefore fit
the data without further adjustments. But look what happens! The curve based on the
best estimate for λ fits the data very poorly (see Figure 7-2). Clearly, the Poisson distri‐
bution is not the right model for this data.

But how can that be? The Poisson model should work: it applies very generally as long
as the following three conditions are fulfilled:

• Events occur at a constant rate

• Events are independent of each other

• Events do not occur simultaneously

However, as Figure 7-2 tells us, at least one of those conditions must be violated. If it
weren’t, the model would fit. So, which one is it?

Example 2: Who’s Calling? | 99

It can’t be the third: by construction, phones do not allow for this possibility. It could be
the first, but a time series plot of the calls per day does not exhibit any obvious changes
in trend. (Remember that we are only considering business days, and have thereby al‐
ready excluded the influence of the weekend.) That leaves the second condition. Is it
possible that calls are not independent? How can we know—is there any information
that we have not used yet?

Figure 7-3. Same as Figure 7-2, but this time taking into account only the first call from
each caller (that is, ignoring follow-up calls).

Yes, there is. So far we have ignored the identity of the callers. If we take this information
into account, it turns out that about one third of all calls are follow-up calls from callers
that have called at least once before. Obviously, follow-up calls are not independent of
their preceding calls and we should not expect the Poisson model to represent them
well. The histogram in Figure 7-3 includes only the initial call for each caller, and it turns
out that the Poisson distribution now describes this dataset reasonably well.

The lesson here is that our innocuous dataset contains two different types of calls: initial
calls and follow-ups. Both follow different patterns and need to be treated separately if
we want to understand this system fully. In hindsight, this is obvious (almost all dis‐

100 | Chapter 7: Will the Bad Data Please Stand Up?

coveries are), but it wasn’t obvious when we started. What precipitated this “discovery”
was a failure: the failure of the data to fit the model we had proposed. But this failure
could only occur because we had stuck our neck out and actually made a concrete
proposition!

This is extremely important: to gain insight that goes beyond the merely descriptive, we
need to formulate a prescriptive statement. In other words, we need to make a statement
about what we expect the data to do (not merely what we already know it does—that
would be descriptive). To make such a statement, we typically have to combine specific
observations made about the data with other information or with abstract reasoning in
order to arrive at a hypothetical theory—which, in turn, we can put to the test. If the
theory makes predictions that turn out to be true, we have reason to believe that our
reasoning about the system was correct. And that means that we now know more about
the system than the data itself is telling us directly.

So, was this “bad data?” You betcha—and thankfully so. Only because it was “bad” did
it help us to learn something new.

Example 3: When “Typical” Does Not Mean “Average”
Although it has never happened to me, I have heard stories of people getting on the
highway in the wrong direction, and not noticing it until they ended up on the beach
instead of in the mountains. I can see how it could happen. The road is straight, there
are no intersections—what could possibly go wrong? One could infer from this that
even if there are no intersections to worry about, it is worth confirming the direction
one is going in.

There is a specific trap when working with data that can have an equally devastating
effect: producing results that are entirely off the mark—and you won’t even know it! I
am speaking of highly skewed (specifically: power-law) point distributions. Unless they
are diagnosed and treated properly, they will ruin all standard calculations. Deceivingly,
the results will look just fine but will be next to meaningless.

Such datasets occur all the time. A company may serve 2.6 million web pages per month
and count 100,000 unique visitors, thus concluding that the “typical visitor” consumes
about 26 page views per month. A retailer carries 1 million different types of items and
ships 50 million units and concludes that it ships “on average” 50 units of each item. A
service provider has 20,000 accounts, generating a total of $5 million in revenue, and
therefore figures that “each account” is worth $250.

In all these cases (and many, many more), the apparently obvious conclusions will turn
out to be very, very wrong. Figure 7-4 shows a histogram for the first example, which
exhibits the features typical of all such situations. The two most noteworthy features are
the very large number of visitors producing only very few (one or two) page views per
month, and the very small number of visitors generating an excessively large number

Example 3: When “Typical” Does Not Mean “Average” | 101

Figure 7-4. Histogram of the number of page views generated by each user in a month.
The inset shows the same data using double-logarithmic scales, revealing power-law be‐
havior.

of views. The “typical visitor” making 26 views is not typical for anything: not for the
large majority of visitors making few visits and not typical for the majority of page views
either, which stem from the handful of visitors generating thousands of hits each. In the
case of the retailer, a handful of items will make up a significant fraction of shipped
units, while the vast majority of the catalogue ships only one or two items. And so on.

It is easy to see how the wrong conclusions were reached: not only does the methodology
seem totally reasonable (what could possibly be wrong with “page views per user”?), but
it is also deceptively simple to calculate. All that is required are separate counts of page
views and users. To generate a graph like Figure 7-4 instead requires a separate counter
for each of the 100,000 users. Moreover, 26 hits per month and user sure sounds like a
reasonable number.

The underlying problem here is the mistaken assumption that there is such a thing as a
“typical visitor.” It’s an appealing assumption, and one that is very often correct: there
really is such a thing as the “typical temperature in New York in June” or the “average

102 | Chapter 7: Will the Bad Data Please Stand Up?

weight of a 30 year old male.” But in the three examples described above, and in many
other areas that are often (but not exclusively) related to human behavior, variations are
so dominant that it does not make sense to identify any particular value as “typical.”
Everything is possible.

How, then, can we identify cases where there is no typical value and standard summary
statistics break down? Although the ultimate diagnostic tool is a double-logarithmic
plot of the full histogram as shown in Figure 7-4, an early warning sign is excessively
large values for the calculated width of the distribution (for the visitor data, the standard
deviation comes out to roughly 437, which should be compared to the mean, of only
26). Once the full histogram information is available, we can plot the Lorenz curve and
even calculate a numerical measure for the skewness of the distribution (such as the
Gini coefficient) for further diagnosis and analysis.

Figure 7-5. Cumulative distribution function for the data from Figure 7-4. Notice the re‐
duced scale of the horizontal axis.

Figure 7-5 suggests a way to deal with such data. The graph shows a cumulative distri‐
bution plot, that is, the cumulative fraction of people and page views, attributable to
visitors having consumed fewer than x pages per month. As we can see, the bottom 90%
of visitors made fewer than 20 visits, and generated less than 15% of page views. On the
other hand, the top 1% of users made more than 250 visits each, and together accounted

Example 3: When “Typical” Does Not Mean “Average” | 103

for more than 60% of page views. The graph suggests therefore to partition the popu‐
lation into three groups, each of which is in itself either relatively homogeneous (the
bottom 90% and the middle 9%) or so small that it can almost be treated on an individual
basis (the top 1%, or an even smaller set of extremely high-frequency users).

Datasets exhibiting power-law distributions come close to being “bad data”: datasets
for which standard methods silently fail and that need to be treated carefully on a case-
by-case basis. On the other hand, once properly diagnosed, such datasets become man‐
ageable and even offer real opportunities. For instance, we can go tell the account man‐
ager that he or she doesn’t have to worry about all of the 20,000 accounts individually,
but instead can focus on the top 150 and still capture 85% of expected revenue!

Lessons Learned
What can we make of these disparate stories? Let’s recap: the manufacturer’s defect
reduction scheme ran into trouble because they had failed to verify that the quality of
the data lived up to their expectations. In the phone traffic study, the unexpected disa‐
greement between the data and a theoretical model led to the discovery of additional
structure and information in the data that would otherwise have gone unnoticed. And
the third (and more generic) example points to a common failure mode in real-world
situations where the most basic summary statistics (mean or median) fail to give a
realistic representation of the true behavior.

What’s common in all these scenarios is that it was not the data that was the problem.
The problem was the discrepancy between the data and our ideas about what the data
should be like. More clearly: it’s not so much the data that is “bad,” but our poor as‐
sumptions that make it so. However, as the second story shows, if we become aware of
the disagreement between the actual data and our expectations, this discrepancy can
lead to a form of “creative tension,” which brings with it the opportunity for additional
insights.

In my experience, failure to verify basic assumptions about the data (in regards to quality
and availability, point distribution, and fundamental properties) is the most common
mistake being made in data-oriented projects. I think three factors contribute to this
phenomenon. One is wishful thinking: “Oh, it’s all going to work just fine.” Another is
the absence of glory: verifying all assumptions requires solid, careful, often tedious work,
without much opportunity to use interesting tools or exciting technologies.

But most importantly, I think many people are unaware of the importance of assump‐
tions, in particular when it comes to the effect they have on subsequent calculations
being performed on a dataset. Every statistical or computational method makes certain
assumptions about its inputs—but I don’t think most users are sufficiently aware of this
fact (much less of the details regarding the applicable range of validity of each method).
Moreover, it takes experience in a wide variety of situations to understand the various

104 | Chapter 7: Will the Bad Data Please Stand Up?

ways in which datasets may be “bad”—“bad” in the sense of “failing to live up to ex‐
pectations.” A curious variant of this problem is the absence of formal education in
“empirical methods.” Nobody who has ever taken a hands-on, experimental “senior lab”
class (as is a standard requirement in basically all physics, chemistry, biology, or engi‐
neering departments) will have quite the same naive confidence in the absolute validity
of a dataset as someone whose only experience with data is “in a file” or “from the
database.” Statistical sampling and the various forms of bias that occur are another rich
source of confusion, and one that not only requires a sharp and open mind to detect,
but also lots of experience.

At the same time, making assumptions explicit can help to reduce basic mistakes and
lead to new ideas. We should always ask ourselves what the data should do, given our
knowledge about the underlying system, and then examine what the data actually does
do. Trying to formulate such hypotheses (which are necessarily hypotheses about the
system, not the data!) will lead to a deeper engagement and therefore to a better un‐
derstanding of the problem. Being able to come up with good, meaningful hypotheses
that lead to fruitful analyses takes a certain amount of inspiration and intellectual cour‐
age. One must be willing to stretch one’s mind in order to acquire sufficient familiarity
with background information about the specific business domain and about models and
theories that might apply (the Poisson distribution, and the conditions under which it
applies, was an example of such a “background” theory). If those hypotheses can be
verified against the data, they lend additional credibility not only to the theory, but also
to the data itself. (For instance, silly mistakes in data extraction routines often become
apparent because the data, once extracted, violates some invariant that we know it must
fulfill—provided we check.) More interestingly, if the data does not fit the hypothesis,
this provides a hint for additional, deeper analysis—possibly to the point that we extend
the range of our attention beyond the dataset itself to the entire system. (One might even
get an exciting trip to a manufacturing plant out of it, as we have seen.)

Will This Be on the Test?
One may ask whether such activities should be considered part of a data scientist’s job.
Paraphrasing Martin Fowler: Only if you want your work to be relevant!

A scientist who is worth his salt is not there to crunch data (that would be a lab tech‐
nician’s job). A scientist is there to increase understanding, and that always must mean:
understanding of the system that is the subject of the study, not just the data. Data and
data analysis are merely means to an end, not ends in themselves. Instead, one has to
think about the underlying system and how it works in order to come up with some
hypothesis that can be verified or falsified. Only in this way can we develop deeper
insights, beyond merely phenomenological descriptions.

Moreover, it is very much the scientist’s responsibility to question the validity of one’s
own work from end to end. (Who else would even be qualified to do this?) And doing

Will This Be on the Test? | 105

so includes evaluating the validity and suitability of the dataset itself: where it came from,
how it was gathered, whether it has possibly been contaminated. As the first and second
examples show, a scientist can spot faulty experimental setups, because of his or her
ability to test the data for internal consistency and for agreement with known theories,
and thereby prevent wrong conclusions and faulty analyses. What possibly could be
more important to a scientist? And if that means taking a trip to the factory, I’ll be glad
to go.

106 | Chapter 7: Will the Bad Data Please Stand Up?

1. http://www.hsl.gov.uk

2. Creatinine is a breakdown of creatine phosphate, which is produced in your muscles. Dark yellow wee from
dehydrated people will have higher concentrations of chemicals simply because it is less dilute, but it will also
contain higher concentrations of creatinine. Dividing the concentration of a chemical by the concentration
of creatinine adjusts for the state of your urine.

3. Translation of British idiom: I’d lost two packages of fig rolls on the wager before I realized I’d been had.

CHAPTER 8

Blood, Sweat, and Urine

Richard Cotton

A Very Nerdy Body Swap Comedy
I spent six years working in the statistical modeling team at the UK’s Health and Safety
Laboratory.1 A large part of my job was working with the laboratory’s chemists, looking
at occupational exposure to various nasty substances to see if an industry was adhering
to safe limits. The laboratory gets sent tens of thousands of blood and urine samples
each year (and sometimes more exotic fluids like sweat or saliva), and has its own team
of occupational hygienists who visit companies and collect yet more samples.

The sample collection process is known as “biological monitoring.” This is because when
the occupational hygienists get home and their partners ask “How was your day?,” “I’ve
been biological monitoring, darling” is more respectable to say than “I spent all day
getting welders to wee into a vial.”

In 2010, I was lucky enough to be given a job swap with James, one of the chemists.
James’s parlour trick is that, after running many thousands of samples, he can tell the
level of creatinine2 in someone’s urine with uncanny accuracy, just by looking at it. This
skill was only revealed to me after we’d spent an hour playing “guess the creatinine level”
and James had suggested that “we make it more interesting.” I’d lost two packets of fig
rolls before I twigged that I was onto a loser.3

107

http://www.hsl.gov.uk

4. For chemistry pedants, it’s an inductively coupled plasma mass spectrometer, or ICP MS for short.

5. I also learned that you must never call a mass spectrometer a machine. Chemists are sensitive and become
offended unless you call them instruments. I suspect it has something to do with wanting to be cool enough
to be in a band.

The principle of the job swap was that I would spend a week in the lab assisting with
the experiments, and then James would come to my office to help out generating the
statistics. In the process, we’d both learn about each other’s working practices and find
ways to make future projects more efficient.

In the laboratory, I learned how to pipette (harder than it looks), and about the methods
used to ensure that the numbers spat out of the mass spectrometer4 were correct. So as
well as testing urine samples, within each experiment you need to test blanks (distilled
water, used to clean out the pipes, and also to check that you are correctly measuring
zero), calibrators (samples of a known concentration for calibrating the instrument5),
and quality controllers (samples with a concentration in a known range, to make sure
the calibration hasn’t drifted). On top of this, each instrument needs regular maintaining
and recalibrating to ensure its accuracy.

Just knowing that these things have to be done to get sensible answers out of the ma‐
chinery was a small revelation. Before I’d gone into the job swap, I didn’t really think
about where my data came from; that was someone else’s problem. From my point of
view, if the numbers looked wrong (extreme outliers, or otherwise dubious values) they
were a mistake; otherwise they were simply “right.” Afterwards, my view is more
nuanced. Now all the numbers look like, maybe not quite a guess, but certainly only an
approximation of the truth. This measurement error is important to remember, though
for health and safety purposes, there’s a nice feature. Values can be out by an order of
magnitude at the extreme low end for some tests, but we don’t need to worry so much
about that. It’s the high exposures that cause health problems, and measurement error
is much smaller at the top end.

How Chemists Make Up Numbers
Beyond the knowledge of how the experiments are set up, my biggest takeaway from
the experience was learning about laboratory culture. Chemists (at least at the Health
and Safety Laboratory) are huge on process. They have an endless list of documents and
rules on good laboratory practice, how to conduct experiments, how to maintain the
instruments, and how to choose your eleven o’clock snack. (Okay, the last one is made
up, but there really are a lot of rules.) The formal adherence to all these rules was a huge
culture shock to me. All the chemists are required to carry a lab book around, in which
they have to record the details of how they conducted each experiment. And if they
forget to write it down? Oops, the experiment is invalid. Run it again. I sometimes

108 | Chapter 8: Blood, Sweat, and Urine

6. i says to π “Be rational.” π replies “Get real!”

wonder what would happen if the same principles were applied to data scientists. You
didn’t document this function. Delete. I can’t determine the origin of this dataset. Delete.
There’s no reference for this algorithm. Delete, delete, delete. The outcry would be enor‐
mous, but I’m sure standards would improve.

On top of carrying around a lab book, numbers are peer-reviewed at each stage. Every
number that comes out of an instrument is looked at by at least two people. Every
number that goes into a database is also looked at by at least two people. This is a really
good bad idea. It’s really good because it exemplifies the chemists’ commitment to gen‐
erating accurate numbers, and peer-review is a great quality control technique. It’s a bad
idea for two reasons, which you may have spotted already.

“Every number gets looked at by two people?,” you may be saying. “Does that really
scale?” To which the short answer would be, “No, it doesn’t.” Peer-reviewing each num‐
ber is hugely resource intensive, and a big expense. Because it’s so time-consuming, one
wonders how thoroughly it gets done when people are busy.

Secondly, “Every number gets looked at by people?” My background is in mathematics,
so I love numbers more than most people. I even own a t-shirt with a maths joke on it.
6 Staring at thousands of numbers to look for mistakes, though, is not my idea of fun.
For a start, I’m just not good at it. With five numbers, maybe even ten, I can quickly spot
an outlier. Give me a thousand numbers, on the other hand, and I’m lost. I can probably
spot a number that’s one thousand times too big, just because the number is longer when
printed (unless we use scientific formatting, of course). Beyond that, I’m wasting my
time.

Here’s a free business idea for you, based on a project idea that I’ve never gotten around
to doing. Create software that accepts data generated by a mass spectrometer, and check
that blank samples have a zero value, quality controllers are within range, and real sam‐
ples have a sensible value. You can even throw in a few plots to visually display outliers
and check for calibration drift. Once you’ve figured out how to connect to the mass
spectrometer, the rest is easy, and laboratories around the world will sing your praises.

Human-based peer-reviewing wasn’t the only problem I encountered. Once the data
had been generated by the machines, although the formal adherence to process re‐
mained, the processes themselves were a little muddled. In a way, this is to be expected:
chemists are naturally better at devising chemistry workflows than data handling work‐
flows.

How Chemists Make Up Numbers | 109

7. My friend who has been on safari suggests that this is unfair to hippopotamuses. They are actually rather
agile, especially when running towards you.

First, the data from each experiment is stored in Excel spreadsheets for the aforemen‐
tioned peer-review process. I’ll come back to the problems of spreadsheets later on, but
as a storage medium for rectangular data (as produced by a mass spectrometer experi‐
ment), spreadsheets aren’t too bad. The immediate problem is that to store the results
of lots of experiments, spreadsheets won’t cut it; they need to be stored in a database.

All Your Database Are Belong to Us
As a teaching tool for “how not to store data,” the chemists’ database was the gift that
kept on giving. The database was created sometime in the pre-Cambrian period and
had, over time, evolved into a hippopotamus: big, lumbering, and oddly prehistoric.7

The phrase “the chemists’ database” betrays the first problem. The database was de‐
signed by chemists, maintained by chemists, and is “owned” by chemists. This “owner‐
ship” of data is a perennial problem, and one that I don’t quite understand. On a cor‐
porate level, if a dataset has commercial value, then owning it makes sense. This is fine,
but in my experience the sense of ownership goes way beyond corporate practicalities.
It is really common for experimentalists to become personally attached to data that they
create. To a lesser extent, this is true for data analysts as well. Flick back to the first
page — even I subconsciously used the phrase “my data.” While it’s wonderful that peo‐
ple get passionate about data, too often it can lead to awkward office politics regarding
who gets access to which dataset.

Furthermore, allowing individuals to control datasets creates data silos and incompat‐
ibility across your organization. Different teams will store data in different ways, and
probably aren’t aware of what data is available. This is a recipe for, at best, inefficiency,
and at worst, lost datasets.

Though I’ve not experienced it in practice, I’m reasonably sure that a better system is
for an organization to have a central data management team who controls access to the
various datasets. The centralization encourages consistency of data structures (or at least
storage technologies), and guarantees that your data is looked after by someone who
knows about databases. A good analogy is with hard drive backups. If you let individual
teams organize their own backups, then some teams will do it well, but others won’t,
and eventually you will lose data. On the other hand, if you outsource responsibility for
the task to your IT support team, then failure will become rarer and you free up the rest
of your staff to concentrate on their real job.

Returning to the chemists, their first problem with the database was how to get their
data into it. Importing data from a spreadsheet into a database is automatable with a
little effort, but this hadn’t been done for all the types of datasets that they created. So

110 | Chapter 8: Blood, Sweat, and Urine

for some experiments, the results had to be manually typed into the database. This
should immediately set off warning bells in your mind. I can just about type my name
correctly, most of the time. Give me a thousand numbers to type, and I’m going to make
mistakes. Let me rephrase that. I’m going to make a lot of mistakes.

I think a good rule of thumb is that if you’re having to type data, and you haven’t been
transported back in time, then you’re doing it wrong. Again, this is the sort of problem
that can easily be solved with a little thought about data management and workflow.
Getting the data from the mass spectrometer, or whatever instrument you are using,
into a database should be as near to automatic as possible.

In fact, automation should be a key goal of any workflow. Uwe’s Maxim (named for
statistician and R-core member Uwe Ligges) states

Computers are cheap, and thinking hurts.

The more technology advances, and the older I get, the more I believe the maxim. When
I think about the kind of science that I’d really like to be doing, the image consists of me
lying on a beach, saying to my phone “Computer, tell me how many workers are at risk
from occupational exposure to chromium VI.” Then I sip a cocktail while the data is
analyzed. I realize that this kind of Star Trek computing is a ways off, but I think that
it’s important to remember that messing about with data is not the end goal; what you
really want to do is answer questions, and the more you can automate, the less burden
there is on you to do that.

The structure of the chemists’ database also created problems. As I previously men‐
tioned, the database had evolved over time, in response to changing demands upon its
use. This led to some quirks and inconsistencies in how things were stored.

Storing a number ought to be easy. You simply label the field as numeric, import the
data, and ta-da! Everything should be fine. But what about special numbers? How do
you store infinity, or ensure numbers are greater than zero? Can you distinguish not-a-
numbers (NaNs) from missing values? With urine samples, there is an additional con‐
sideration. If the mass spectrometer records a zero result, you can’t be sure that there
really is none of the chemical that you were looking for in the sample. All you know is
that the concentration is below some limit of detection (LOD). If the limit of detection
is 5nmol/l, then the most natural way to write the value of a nondetect is <5nmol/l.
Unfortunately, you can’t store that value in a numeric field in a database. You need to
split it into the numeric value of the LOD and a logical value denoting that the value
wasn’t detected. This sort of technical challenge is easy enough to overcome, provided
that you think of it when you are designing the database. Leave it too late, and your
users (that is, the chemists entering data) will have to hack a way of storing the nonde‐
tection information, and it won’t be pretty. If you force concentrations to be stored as a
plain number, with nowhere to store an optional “less than,” the users have several
choices. Naive users who aren’t familiar with limits of detection will likely enter a zero

All Your Database Are Belong to Us | 111

concentration. More educated users may enter the limit of detection itself. A third,
smart-arse subset of users will try to be clever and enter half the limit of detection. In
the worst case, the database will contain a mixture of the three types of value without
any indication of which was which. At that point, you’ll start wondering if your local
exorcist can do databases. Unpicking such a mess can easily take longer than analyzing
the dataset.

The solution to this needs to happen on three levels. The back-end data storage, as
previously mentioned, needs to store a numeric concentration and a logical detection
status. The user interface needs to check that the concentrations being entered are pos‐
itive, finite numbers. In particular, disallowing zero values removes one potential user
error, but this check also need to be made at the design stage. If you make the change
later on, what do you do with all the zeroes that unwitting users already included? By
that time, the LOD may be long forgotten, or never calculated, and removing rows of
data will bias your statistics. (Measures of location, like the mean, will increase if you
simply remove the low-end nondetects.)

User education is also important. It isn’t intuitively obvious that when an instrument
returns a zero value, you shouldn’t enter a zero into the database. Making sure that
chemists know some appropriate chemistry may sound obvious, but the point gener‐
alizes. If people entering data into a database don’t understand that data, they will make
mistakes. More importantly, technical fixes like checking user input can only take you
so far—you shouldn’t assume that technology will solve all your problems.

Deciding which pieces of information to store can also be problematic if you store the
results of different experiments together. From a database designer’s point of view, the
simplest solution to storing experiment-specific results is to include a free-text field for
miscellaneous information. When looking at occupational exposure to chemicals, a
reasonably common experiment is to take a urine sample before people start work, and
another one at the end of the day, then compare the two values to see if there is an
increase throughout the work shift. The best solution to storing this information is to
have a field in the database with the choices “pre-shift,” “post-shift,” or “not applicable.”
Maybe “unknown” as well for good measure.

By contrast, the free-text field solution will lead to a mess. Even if you are really strict
with the people who enter the data and have idiot-proof guidelines, you will still end up
with some records containing “pre” and “post,” and some records containing “before”
and “after,” and some records containing the time of day of sample (in a variety of time
formats). With a black belt in regular expressions, you may be able to unpick the mess,
but it’s far less neat than a dedicated field.

Using a dedicated field rather than free text does two things. It creates extra structure,
and restricts the possibilities for input. Both these things allow you create additional

112 | Chapter 8: Blood, Sweat, and Urine

8. The origin of the phrase is unclear, but it was famously the mantra of the engineering department in the
Franklin Institute’s Science Leadership academy.

9. R users can try my assertive package, which contains over one hundred (and counting) of the most common
checks that you might want.

checks that your data is correct, which I’d argue are good things to strive for with data
storage in general. (Of course, restricting possibilities for input can only be taken so far.
If you don’t allow users to store valid data, then you are creating problems for yourself
rather than solving them.)

I realize that I’ve sounded harsh on the Health and Safety Laboratory and their data
storage practices, but the truth is this sort of problem is so widespread that it is the norm
rather than the exception. Data management is a genuinely hard problem because it
mixes technical challenges with user education challenges, and throws in office politics
for good measure.

Check, Please
The idea of checking input has been enshrined in good programming practise for as
long as programming has been around, most notably in the maxim.8

Fail early, fail often.

While this concept has its roots in software development, it is also applicable to data
science. The “fail early” part means that checking the integrity of your data should be
more or less the first thing you do. There is no point in waiting until you’ve written your
conclusions to see if the dataset was nonsense. In fact, these checks should happen
throughout the lifetime of the data, from the moment that they are generated. Bad data
points should be identified, if possible, when they are generated by an instrument (or
recorded in a survey, or otherwise created). They should be checked as they are stored
in a database, and they should be checked again before they are analyzed.

The “fail often” part means that you need lots of checks. This is especially true if you are
analyzing the data using a scripting language. The extreme flexibility of modern script‐
ing languages is a wonderful thing, but it also provides you with more rope to hang
yourself with in terms of allowing dubious data to run amok.

Features like dynamic typing mean that unless you explicitly check the type of your
variable, the values that you thought were numbers might actually be strings, leading
to bugs and confusion. On top of this, most scripting languages are permissive with
variable sizes, so you need to watch out for vectors or arrays where you meant to have
a scalar value. In fact, the number of possible checks can be fairly extensive.9I’ve taken
to keeping a list of basic checks handy, in order to remember them all. Here’s a shortened
list.

Check, Please | 113

10. See also “brogramming,” which involves you looking good while writing code.

• Is your variable the correct type? (Integer, floating point, character, etc.)

• Does your variable have the correct dimensions?

• Is your number (in)finite/not a not-a-number/real/imaginary/positive/negative/in
range?

• Is your string null or empty?

• Is your phone number, postal code, credit card number, or other special data type
in the correct format?

• Does your file exist, and can you access it?

• Have you passed the right number of arguments to your function?

• What (version of the) software are you running?

• What units do your variables have?

The last check prevents a problem that is serious, but very hard to detect. In my younger
and stupider days I fell victim to this when comparing variations between people in
concentrations of a range of chemicals. When I collected the data together, I completely
missed the fact that some concentrations were given in μmol/mol, and others were given
nmol/mol. Several of the results that I excitedly reported to people were out by a factor
of one thousand. Though it was very embarrassing at the time, I was lucky that a chemist
spotted my mistake. Their experience correctly picked up that my numbers were non‐
sensical. The fix I’ve used to prevent this problem from happening again is to include
units into variable names. Writing concentration_nmol_per_mol requires a little more
typing than simply concentration, but it’s infinitely preferable to producing incorrect
results.

Live Fast, Die Young, and Leave a Good-Looking Corpse
Code Repository
Including units in variable names is part of a more general idea that has helped me
transform from a mathematician-who-writes-code to a “proper” programmer. That
general idea is to use a style guide. Code that looks pretty is code you can read again
more easily when you come back to it in six months time, and is code that you can give
to others without a sense of shame. Sure, the substance is important too, but don’t un‐
derestimate the importance of good-looking code.10 In the same way that increased
structure and restrictions on input are good ideas for data storage, they are also good
ideas for the code you write.

Most style guides will specify how you should name your variables and functions (usu‐
ally either camelCase or lower_under_case, with nouns for variables and verbs for

114 | Chapter 8: Blood, Sweat, and Urine

11. If you do want to pick one, I provide style guides for R and MATLAB code on my blog, at http://4dpie
charts.com.

12. R users can do this with my sig package.

functions), how spacing should be used (do you want x + y or x+y, and should the
opening parenthesis be on the same line as the function declaration or the next?), and
the order of contents in your code files. The specific rules will vary from style guide to
style guide, and you may wonder which one you should pick. Don’t worry. In the same
way that it doesn’t really matter how wide apart the rails are on train tracks—only that
there is a standard to which all tracks conform—the fact that your code conforms to a
style guide is more important than which one it conforms to.11 (The same is true of
version control software. Picking anything is a vast improvement over using nothing.)

Having said that, an important element of style is what you call your functions and their
arguments. There’s a fun game I learned called “Black Box” for testing code maintain‐
ability. It’s really simple and very informative. Take a copy of your code and strip out
everything except the function names and signatures.12 (If you are working in an object-
oriented language, you can keep the class names and signatures, too.) Pass your code to
another programmer and have them guess the contents of the function. They don’t need
to give too much detail, just the general idea. As an example, if you give them a function
called mean, which takes an argument x, they might say, “This takes a numeric input and
calculates the arithmetic mean.” Easy, right? The real beauty of this game is when you
come across badly named functions. Will your friend know what foo does? How about
the function you called analyze? What about the sensibly named function that grew
and now takes 37 arguments? Or the one that you generalized, and now does six different
things, depending upon the context?

Even if you code in a cabin in the woods with no connection to the outside world, Black
Box is still a good game to play on your own. Pretend that you didn’t write the contents
of the functions, and look against at what you named them. Does anything make sense,
six months down the line? If you gave your code to someone else, would they understand
it or just snigger?

Rehab for Chemists (and Other Spreadsheet Abusers)
Returning to my job swap with James, after he’d shown me how strict the chemists are
with their experimental processes, I was keen to demonstrate the data analyst’s equiv‐
alent. The one point that I wanted to get across to James was that we need to be able to
show where any statistics come from, providing a trail from raw data to results.

Rehab for Chemists (and Other Spreadsheet Abusers) | 115

http://4dpiecharts.com
http://4dpiecharts.com

13. See Almiron et al, 2010. http://www.jstatsoft.org/v34/i04/paper.

14. As coined by Pat Burns. http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html.

15. Technically, you can program things in spreadsheets, but that usually involves writing VBA code, and nobody
wants that.

As I mentioned earlier, the chemists are big fans (or at least routine users) of Excel
spreadsheets. Most of them have taken an introductory course or two in statistics at
some point. This means that, without intervention from a statistician, they’ll have a go
at their own data analysis, which consists of pointing and clicking and calculating a few
means, then running T-tests on everything that they can think of.

There are three big problems with using spreadsheets for data analysis. Firstly, the nu‐
merical routines in all the major spreadsheets are currently surprisingly poor.13 Secondly,
they contain some semantics design flaws that make it easy to get muddled. For example,
they don’t properly distinguish data from analysis. Whereas more or less every pro‐
gramming language will contain variables for data and functions for analysis, in a
spreadsheet, a cell can contain either a formula or data. In fact, it is worse than this,
because you only get a representation on data. So a cell containing 1.23 could contain
a number or some text, and you have to look closely to see the difference. The other
semantic flaw is that spreadsheets don’t easily deal with data that aren’t rectangular, or
don’t have a location.

Unfortunately, experience tells me that neither of these arguments works very well at
dissuading chemists from using spreadsheets. For most chemical health and safety pur‐
poses, the answer only needs to be right to the nearest order of magnitude, so poor
numerical routines tend to be disregarded as the least of their worries. Depending upon
your field of expertise, this argument may have more importance. Arguing about se‐
mantic flaws mostly just induces a glazed expression.

So in order to wean James off his spreadsheet addiction,14 I chose to use the third ar‐
gument: datasets always change halfway through your analysis, and your analysis will
likely change several times as well, and editing code is quicker than having to point and
click at the same thing over and over again.15

Having talked James through importing our urine sample dataset, calculating some
statistics, and drawing some plots, I miraculously produced some extra samples that
we’d “forgotten about.” His initial disappointment changed to surprise at the fact that
we could re-run the analysis with a simple key-press. Sometimes, technology just works.

All in all, trading places with the person creating my data was a useful experience. If
you work in a multidisciplinary environment, then this sort of activity is something I’d

116 | Chapter 8: Blood, Sweat, and Urine

http://www.jstatsoft.org/v34/i04/paper
http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html

heartily recommend. Keep leaving copies of body-swap comedies on your boss’s desk
until she agrees to let you take part. (No one can cope with all of Trading Places, Freaky
Friday, and 17 Again!) If I get the chance again, I’d love to try and teach the person about
reproducible research, but that’s another story.

tl;dr
For those of you in a hurry, here’s the distilled version.

• Working with the people who create or collect your data can be really informative.
Try and organize a job swap or work shadowing.

• Laziness is a virtue. Try to automate as much of your job as possible.

• Having a central data management team can avoid data getting lost in the fringes
of your organization, and help standardize formats across your organization.

• Write code that fails (early and often). The more checks you include in your code,
the merrier.

• Stylish code is easier to maintain. Don’t underestimate the importance of writing
code thats looks good.

• Spreadsheets are easily abused. Use them sparingly.

tl;dr | 117

CHAPTER 9

When Data and Reality Don’t Match

Spencer Burns

It is common knowledge that beating the stock market is hard. But on the face of things,
it seems like purely an analysis problem, not a data problem. Modeling is difficult;
building a timeseries should be simple. For every day (or minute, or millisecond), for
each unique stock symbol, there is a listed price at which you can buy shares, and you
can sell those same shares later, comparing the two prices to calculate your profit.

Every assumption in the preceding statement is usually true, yet each of them fail often
enough to ruin a model. A series of stock data may look structured and clean, but that
neatness hides the idiosyncratic path of how a given stock got to where it is today. It is
“good” data covering up for messy reality.

Stock data does not come out of independent observations of markets; the data is an
integral part of the market. There is a tight feedback loop where data about the state of
the market affects the market (e.g., rising prices may cause people to push prices up
further). Furthermore, what happens in the market can change the nature of the market.
Some examples of this are when companies with falling prices leave the market, or ones
with rising prices buy other companies, or when market crashes trigger changes in
trading rules.

What this means in practice is that the stock market of today is not exactly the same as
the market of yesterday; every day is a new experiment. Data needs to be constantly
adjusted in small ways to make yesterday comparable to today.

Magnifying this problem, most trading strategies are only just barely profitable (or un‐
profitable) on average, adding up a large number of small transactions to get significant
results. Even tiny systematic errors can compound into grossly misleading results in
analysis. The available data might represent reality closely, but the small mismatches
matter.

119

1. This does not address how to create a timeseries for an acquired company. The correct answer of having it
become partially shares of the acquirer and partially cash is difficult to implement and requires that you know
the terms of the acquisition. The lazy answer, which will give mostly correct results, is to simulate that you
sold the stock for the market price on the end of the last trading day.

Below are three examples of how the picture painted by the stock prices does not match
the historical reality. These are not obscure domain-specific details, but would affect
anyone looking at prices on common data sources like Yahoo! or Google Finance.

Whose Ticker Is It Anyway?
Imagine that at some point in the past, you wanted to know what the identifying ticker
symbols were for Kmart, Sears, and Sprint.

Table 9-1. Stock symbols for Kmart, Sears, and Sprint over time

Start End Kmart Sears Sprint

20th Centu

ry

2002-12-18 KM S FON

2002-12-19 2003-06-09 S FON

2003-06-10 2005-03-27 KMRT S FON

2005-03-28 2005-08-14 SHLD FON

2005-08-15 Present SHLD S

For a long time, they were dependably KM, S, and FON, all listed on the New York Stock
Exchange (NYSE).

Then in 2002, a bankrupt Kmart was delisted from the NYSE leaving just S and FON.

Kmart, having survived bankruptcy, was relisted in 2003 with the symbol of KMRT on
NASDAQ. Technically, this was not the same stock that KM had been. It was the same
company in any logical sense, with the same stores and branding. But it was an entirely
new legal entity with fresh shares of stock.

In March 2005, Sears (S) and Kmart (KMRT) disappeared and “Sears Holdings” with a
new NASDAQ listing of SHLD started trading. Sears and Kmart had merged. Without
further information, the obvious conclusion would be that Sears had changed their
symbol and company name at the time of a merger, which is not uncommon (e.g., when
Hewlet Packard bought Compaq, it changed from HWP to HPQ).

Actually, the merger ran the other way, and Kmart bought Sears. This seems a trivial
distinction, but a share of KMRT became a share of SHLD with no changes except the
name. All shares of S were delisted, and the owners of those shares were given both cash
and newly issued shares of SHLD.1

120 | Chapter 9: When Data and Reality Don’t Match

With Sears delisted, one of the great “blue chip” stocks listed on the markets since 1906
was gone. This meant that the coveted single-letter symbol of “S” was up for grabs. Sprint
called dibs, and five months later they changed their ticker from FON to S when they
completed a merger with Nextel (NXTL).

Figure 9-1. Total market value (billions of dollars) of stock for Sears and Kmart,
2000-2010

Figure 9-2. Total market value (billions of dollars) of stock for Sprint and Nextel,
2000-2010

Whose Ticker Is It Anyway? | 121

In short, if you are looking at Sears Holdings today and ask what its symbol was in 2004,
the answer is KMRT, not S. And if you ask what its ticker was in 2001, the answer is that
it didn’t exist yet. But if you want to look up the price for S at some point in the past,
then you had better make sure you know whether you are looking at Sears or Sprint.

Most people working with equity data, even within the financial industry, want to use
the ticker symbol as a unique identifier. They were originally created for that purpose,
and at any given point in time they are unique. But once you start building timeseries
to look at data from the past, they will trip you up.

The way that most data sources, such as Google or Yahoo! Finance, deal with this is to
just provide the most recent symbol as the unique key. This means that whenever you
reload fresh data, some of your identifiers will have changed.

More importantly, any company that is no longer traded does not have a current symbol.
In most current datasets, if you look up “S” you get Sprint; if you look up “Sears” you
get SHLD; and if you look up Kmart, you get nothing. This causes a major “survivorship
bias” in data: the stock market looks much more profitable if you never look at companies
that have gone bankrupt or been bought out.

There are universal unique identifiers with acronyms such as CUSIP, ISIN, and SEDOL.
But these are proprietary and often not available. They also only solve half the problem:
they do not get recycled the way ticker symbols do, but they will change over time as
minor changes happen to a stock (e.g., the CUSIP changed when KMRT became SHLD).

The standard solution is to purchase data from a vendor that tracks all of these changes
and provides unique identifiers. While convenient, it can be expensive and sticks you
with vendor lock-in. It is also often the case that the vendor data has a high error rate
in tracking these changes.

A more robust solution is to maintain your own mapping of symbols and unique iden‐
tifiers. This involves a fair amount of hard work to build and maintain the dataset, and
still requires getting mapping information from a vendor.

There is a limitless supply of other kinds of symbol and metadata chaos as one gets
deeper into multiclass stocks, other asset classes, “over the counter” trading, stock reis‐
sues, foreign exchanges, and so on. Ticker changes are just the biggest and most com‐
mon headache.

Splits, Dividends, and Rescaling
The prices of a stock between one day and the next are not always directly comparable.
Prices can get rescaled or cash may get returned to stockholders when certain kinds of
“corporate actions” occur.

122 | Chapter 9: When Data and Reality Don’t Match

The simplest kind of price level adjustment is a stock split. If a successful company’s
shares become expensive, they might declare a two-for-one (2:1) stock split and give out
two new shares for every old one. Each such new share is half the price of the old share.
A stock split can be for any ratio—3:2 or 3:1 are also common. A failing company might
have a “reverse” split to push up its nominal price, sometimes 1:100.

Stock splits provide a valuable service with this sort of price renormalization. One com‐
pany that has steadfastly refused to split is Berkshire Hathaway. At the time of this
writing, the price of a share “Class A” stock (BRK.A) is $120,000. Not only does this
make the stock difficult to purchase, but having to represent eight digits (including cents)
wreaks havoc with display fields in visualizations and applications.

Many sources of stock data, such as Google or Yahoo! Finance, provide prices that have
already been split-adjusted so that users can compare current to historic prices without
making their own calculations. A problem with such adjusted data is that the entire price
history of a company needs to be readjusted when a new split occurs; this makes main‐
taining and comparing datasets tricky. It also is often important to know what the actual
price was in the past to understand how it would have been traded.

In general, splits are easy to deal with. The data is commonly available along with stock
prices, and they will usually occur only once every few years. In all cases, the adjustment
is a simple multiplication or division (technically, one gets cash for any fractional shares,
but that can be ignored). But if you need to be able to have both corrected data for
comparisons and uncorrected data for simulations, then multiple timeseries must be
maintained. Often, the best solution is to use the original, uncorrected data as the main
series, and also keep a series of adjustment factors around to adjust prices on the fly, as
needed.

Dividends, the other common type of corporate action, are trickier to adjust for. When
a company “declares a dividend,” they are stating that anybody who holds a share of
stock on a given date (the “ex-date”) will be given a cash payment on another date a
week or so later. In the meantime, the price of the stock will drop by approximately the
amount of the dividend on the ex-date: it is worth that much less because any new owner
of the stock would not receive that dividend.

Table 9-2. Microsoft splits, dividends, and adjustments

Ex-Date Split Ratio Dividend Value Market Price Split Adjustment Dividend Adjustment Adjusted Price

1996-01-02 89.75 1 1.0000 89.75

1996-12-09 2:1 81.75 2 1.0000 163.50

1998-02-23 2:1 81.63 4 1.0000 326.50

1999-03-29 2:1 92.38 8 1.0000 739.00

2003-02-18 2:1 24.96 16 1.0000 399.36

2003-02-19 0.08 24.53 16 1.0033 393.76

Splits, Dividends, and Rescaling | 123

Ex-Date Split Ratio Dividend Value Market Price Split Adjustment Dividend Adjustment Adjusted Price

2003-10-15 0.16 29.07 16 1.0088 469.21

2004-08-23 0.08 27.24 16 1.0117 440.96

2004-11-15 3.08 27.39 16 1.1255 493.25

2005-02-15 0.08 25.93 16 1.1290 468.39

2005-05-16 0.08 25.49 16 1.1325 461.89

. .

2012-02-14 0.20 30.25 16 1.2877 623.24

2012-05-15 0.20 30.21 16 1.2962 626.54

In 2004, Microsoft (MSFT) relented to shareholder demands and declared a one-time
dividend of $3.00 per share on top of their regular dividend of $0.08 per share. This
$3.08 was 11% of the value of each share. On the ex-date, MSFT stock opened trading
in the morning at a price that was $2.61 (8.7%) less per share than it had the day before.
Anyone who ignored the dividend would think the stock was significantly down for the
day. Correctly accounting for the dividend, it is clear that Microsoft had gone up in
value.

Figure 9-3. Microsoft (MSFT) stock price and dividend-adjusted stock price, November
2004

You cannot adjust for dividends by simply subtracting their value from historic prices
—if the company had, in the past, been worth less than the current dividend, there would
be negative prices. The “correct” way is to carefully account for the cash returned every
time a dividend occurs; however, this kind of accounting makes it impossible to do
timeseries analysis.

124 | Chapter 9: When Data and Reality Don’t Match

The best way to adjust the data is to pick the multiplicative factor that gives the same
daily return as the correct accounting: (dividend) / (new price) - 1. This is the equivalent
of taking the money from the dividend and immediately reinvesting it in the stock.

Unfortunately, even more so than for splits, there are many situations when you need
to adjust for dividends and many where it is important not to do so. So it is important
to track multiple timeseries, sometimes three of them: price, split adjustment, and div‐
idend adjustment.

Bad Reality
Sometimes, “obviously” bad data is correct. Odd-looking data might be representing
bad reality, whether from technical failure or irrational humans.

A great example of “accurately” bad data is a crash in United Airlines’ stock (symbol at
the time: UAUA, current symbol: UAL) that was triggered by Google News crawling
and republishing a six-year-old story about United filing for bankruptcy.

On September 6th, 2008, Google News’ spider came across an archived story in the
South Florida Sun Sentinel about United’s 2002 bankruptcy. The story had no date at‐
tached to it, so Google News tagged it with the current date by default. On September
8, an independent investment advisor saw the story, assumed it was current, and posted
it to a subscription financial news feed. Traders saw the headline on the news feed and
rushed to sell UAUA as fast as possible, not stopping to read the story. UAUA plunged
from $12 a share to $3 in less than five minutes. A few minutes later, trading in UAUA
was suspended for an hour to let everybody breathe and figure out what had happened.
After that, trading resumed as if nothing had ever happened.

Many data-cleaning algorithms would throw out these few minutes of obviously wrong
prices. Yet, these prices did happen; real money was exchanged. Within ten minutes,
15% of UAUA’s shares and $156 million had changed hands. This is correct data that
should be kept for any honest analysis.

Other times, the answer is not so clear cut. In the May 6th, 2010, “flash crash,” many
stocks suddenly dropped in price by more than half for no readily apparent reason before
going back again when sanity prevailed. There is still no consensus on exactly what
happened. After the crash had been resolved, the various stock exchanges retroactively
canceled all trades that were more than 60% different from the pre-crash price. This
caused an odd situation where people who got a really good bargain buying shares for
half the correct price got to keep their gains, while those who had an even better deal at
60% off had to give the profits back.

So, what is the “reality” of the price data after the trades were canceled? Those trades
officially never happened, and in the end no money changed hands. Most stock data
sources have already had the canceled trades removed, so it is difficult to even see the

Bad Reality | 125

Figure 9-4. United Airlines (UAUA) Stock Price on 2008-09-08, Volume-Weighted Aver‐
age over One-Minute Intervals

evidence of the flash crash in the historic record. In that sense, the flash crash contained
bad data, not bad reality. Yet, the only difference between the flash crash and the United
Airlines example is that human intervention undid the flash crash after it happened; it
was “too big to fail.”

To further cloud the issue, people believed that those trades were real when they hap‐
pened. Stock trading is state-dependent; how you behave depends on the previous trades
that happened.

To properly model trading during the flash crash, you would have to simulate making
trades, updating your portfolio, and then having them canceled afterwards. In reality,
you would just shrug your shoulders and hope that it is okay to ignore this sort of crash.
This is fundamentally a human event, not a mathematically modelable one.

So, what can be done to deal with bad reality? Situations like the United Airlines example
are more or less just outlier detection; a bad price that persists for one second should
probably be thrown out while one that keeps going for a few minutes probably should
not. It is a matter of judgment to decide what kind of thresholds to set and what error
rates are acceptable, but that is a tractable data problem.

But there is little that can be done to deal with situations like the flash crash, except to
know that they happened and work around them. There is no systematic way to model
extraordinary events which have been shaped by human judgment and politics.

126 | Chapter 9: When Data and Reality Don’t Match

Conclusion
The theme of these examples is that clean-looking data often has additional complexity
lurking under the surface. If you do not understand the data, where it comes from, and
what it represents, then your conclusions may carry a bias. Financial data is especially
sensitive to this problem, but similar problems can occur in any type of data source.

This is not to say that you need to be a domain expert to tackle a given data problem,
but you do need to spend time understanding the inputs. Often, data scientists devote
most of their effort towards building models and looking at results. Cleaning data and
making sure it is well-formed often delivers better results for the effort spent than doing
more analysis. There is no use in providing more accurate answers until you have made
sure you know exactly the question you are asking.

Conclusion | 127

CHAPTER 10

Subtle Sources of Bias and Error

Jonathan A. Schwabish

Please note: The views expressed in this chapter are those of the author and should not
be interpreted as those of the Congressional Budget Office.

Before we get started, let me be clear: I get to work with some of the best socioeconomic
data in the world. I have access to data provided by the U.S. Social Security Adminis‐
tration (SSA), which provides information on earnings, government benefits (specifi‐
cally, Social Security benefits), and earnings for a huge number of people over a large
number of years. The data is provided to the government through workers’ W-2 tax
forms or other government records. By comparison, survey data is often collected from
interviews between an interviewer and respondent, but may also be collected online or
through computer interfaces in which there is no interaction between the interviewer
and interviewee. Administrative data is becoming more widely available in many social
science fields, and while that availability is enabling researchers to ask new and inter‐
esting questions, that data has also led to new questions about various sources of bias
and error in survey data.

Administrative data has both advantages and disadvantages over publicly available sur‐
vey data. The major advantage is that the administrative data tends to be more accurate
than survey data because it is not subject to the typical errors found in survey data. Such
errors include:

• Nonresponse (the respondent fails to answer a question)

• Recall error (the respondent incorrectly answers a question or cannot recall infor‐
mation and fails to answer)

• Proxy reporting (one person responds to the survey for another)

• Sample selection (the survey sample does not represent the population)

129

1. See, for example, Lubotsky (2007) and Schwabish (2011).

2. Perhaps the most technical presentation of our work was published in Dahl, DeLeire, and Schwabish (2011).
Interested readers should also see Congressional Budget Office (2007a, 2007b).

3. I would be remiss if I didn’t add citations to at least a few seminal works in this area: Gottschalk and Moffitt
(1994), Moffitt and Gottschalk (1995), Haider (2001), and Shin and Solon (2009).

Furthermore, administrative data is typically not imputed (that is, the firm or institution
conducting the survey has not inserted values for missing observations) or top- or bot‐
tomcoded (that is, variables at the tails of the distribution are not changed to protect
the identity of respondents). Finally, administrative data may include a larger number
of observations for longer time periods than may be available in survey data.

Administrative data also have several disadvantages, however. First, information is typ‐
ically available on only a limited set of demographic variables. For example, educational
attainment, marital status, and number of children are almost always useful in economic
analysis, but are not available in the SSA files I use. In addition, this data does not include
earnings that are not reported to SSA (for example, earnings from cash-based employ‐
ment or acquired “under the table”) or earnings from workers who do not have, or do
not report, a valid Social Security number. Unreported earnings may be particularly
important for research on, say, immigration policy because many immigrants, especially
illegal immigrants, do not have — or have invalid — Social Security numbers.1

Let’s put these differences in datasets in some context. A few years ago, two co-authors
and I were interested in examining year-to-year changes in individual earnings and
changes in household incomes—so-called earnings and income “volatility.”2 The ques‐
tion of whether people’s (or households’) earnings (or incomes) had grown more or less
volatile between the 1980s and 2000s was a hot topic at the time (and, to some degree,
still is) and with administrative data at our disposal, we were uniquely suited to weigh
in on the issue.3 To track patterns in earnings and income volatility over time, we cal‐
culated the percentage change in earnings/income using three variables:

1. Earnings/income from the survey data.

2. Earnings/income from the survey data, excluding observations for which the in‐
stitution conducting the survey replaced the earnings or income variable with values
from a similar person (so-called imputation).

3. Earnings/income from administrative data matched to survey data (using respond‐
ent’s Social Security numbers).

On the basis of previous research, we suspected that the results from the three variables
would be roughly the same and that we would find an increase in volatility over time.
When we used the raw survey data, we found an increase in volatility roughly between
the mid-1990s and the mid-2000s. However, when we dropped observations with im‐

130 | Chapter 10: Subtle Sources of Bias and Error

4. Bureau of the Census (2001).

5. Dahl, DeLeire, and Schwabish (2011). In that study, we found that 21% of households had imputed earnings
in 1985, 28% in 1991, 31% in 1992, 33% in 1993, 35% in 1994, 54% in 1998, 60% in 2002, and 46% in 2005.

puted earnings or income, we found a slightly slower rate of growth. Then, when we
matched the survey data to the administrative records and recalculated the percentage
change using the administrative earnings, we found almost no change in volatility over
that roughly 20-year period.

This apparently contradictory result made us keenly aware of two shortcomings in the
survey data we were using, specifically imputation bias and reporting bias. The strategies
you can use to overcome data shortcomings are somewhat limited, but being aware of
their existence and taking as many precautionary steps as possible will make your re‐
search better and your results more reliable.

The rest of this chapter describes these two issues—imputations and reporting error—
which you might encounter in working with your data. I also discuss four other potential
sources of bias—topcoding, seam bias, proxy reporting, and sample selection. The over‐
all message here is to be careful with your data, and to understand how it is collected
and how the construction of the survey (or the firm or institution who conducted it)
might introduce bias to your data. To address those sources of bias may require time
and energy, but the payoff is certainly worth the effort.

Imputation Bias: General Issues
High rates of data imputation complicate the use of survey data. Imputation occurs
when a survey respondent fails to answer a particular question and the firm or institution
conducting the survey may replace values for that record. For example, while a re‐
spondent may be perfectly happy to give her name, age, sex, educational attainment,
and race, she may be less willing to share how much she earned last year or how many
hours she worked last year. There are a number of ways in which the firm or institution
can impute missing data; the Census Bureau, for example, uses a variety of methods,
the most common being a hot-deck imputation method. (Hot-deck imputation replaces
missing values with the value for that same variable taken from a complete record for a
similar person in the same dataset.4) Imputation rates in the Survey of Income and
Program Participation (SIPP; a panel dataset conducted by the Census Bureau) have
grown over time, which could further bias research that tracks patterns over multiple
years. For example, in work with co-authors, we found that in an early panel of the SIPP,
roughly 20% of households had imputed earnings data over a two-year period; in a
separate panel about twenty years later, that percentage had risen to roughly 60%.5

Although imputing missing data can often result in improved statistics such as means
and variances, the use of imputed data can be problematic when looking at changes in

Imputation Bias: General Issues | 131

6. See, for example, Bound and Krueger (1991); Bollinger (1998); and Ziliak, Hardy, and Bollinger (2011); Lillard,
Smith, and Welch (1986); Hirsch and Schumacher (2004); and the discussion in Dahl, DeLeire, and Schwabish
(2011).

certain variables. For example, in our volatility project, we were interested in seeing how
people’s earnings and incomes changed over time. Using observations that have been
imputed in such an analysis is problematic because observed changes in earnings are
not “real” in the sense that they are not calculated from differences in an individual’s
reported values between one year and another. (Datasets that follow the same person
— or family or household — over time are called longitudinal or panel datasets.) Instead,
the calculated change is the difference between actual reported earnings in one period
and the imputed earnings in the other. Thus, under a scheme in which earnings are
imputed on the basis of some sample average, what you are actually measuring is the
deviation from that average, not the change in that individual’s earnings from one period
to the next. Alternatively, one could impute the change in the variable of interest, a
strategy that might work well for data that has a small variance with few outliers. The
exact method by which imputed values are constructed might result in estimates that
more strongly reflect the mean or that otherwise introduce bias.

When first exploring a dataset, you should become familiar not only with the data
structure and variables available but also with how the survey was conducted, who the
respondents were, and the technical approaches that were used to construct the final
data file. For example, what happens when people fail to answer a question? Do the
interviewers try to ask follow-up questions or do they move quickly to the next question?
Was the survey conducted using one-on-one interviews where the interviewer recorded
responses, or were respondents asked to fill out a form on their own?

You can deal with imputed data in a number of ways. One can:

• Use the imputed data as it is (which is problematic for longitudinal analysis, as
previously explained);

• Replace the potentially imputed data with administrative earnings records (which,
for most researchers, is not a viable option);

• Reweight the data to better reflect the population using the sample of survey re‐
spondents for whom the variable(s) of interest were not imputed;

• Drop the imputed observations (which may bias the results because the resulting
sample may no longer be representative).

Economists have approached imputed data in a number of ways. Most studies use im‐
puted data when it is available because it requires less work sifting through the data and
maintains the existing sample size. Others, however, drop observations with imputed
data, especially those who use longitudinal data.6

132 | Chapter 10: Subtle Sources of Bias and Error

7. McGovern and Bushery (1999).

8. Feng (2004).

For longitudinal analysis, the best course of action is probably to drop imputed obser‐
vations unless an administrative data substitute is available. For cross-sectional analysis,
you should tread carefully and test whether the inclusion of imputed observations affects
your results. In all cases, you should at least be aware of any imputations used in the
survey and how the imputation procedure may have introduced bias to those variables.

Reporting Errors: General Issues
Reporting errors occur when the person taking the survey reports incorrect information
to the interviewer. Such responses are considered “mistakes” and could be accidental or
intentional, but it is impossible to know. Because reporting errors are more difficult to
identify, the strategies you can use to address the problem are more limited. In one study,
for example, researchers re-interviewed a sample of people and showed that only about
66% of people classified as unemployed in the original interview were similarly classified
in the re-interview.7 Another study compared reports of educational attainment for
people over an eight-month period and found that those respondents were most likely
to make mistakes in reporting their educational attainment the first time they were
surveyed, which suggests that people may become better at taking surveys over time.8

Of course, in cases in which the survey is conducted only once, there is no chance for
the survey respondent to become better at taking the survey and little chance for the
researcher to assess the accuracy of responses.

When it comes to measuring earnings, there are two ways in which earnings might differ
between survey and administrative data. In the first case, a person works a part-time
job for two months, say, at a hardware store early in the year and earns $1,500. When
interviewed in December of that year, she tells the interviewer that she had no earnings
in the past year; in the administrative data, however, her record shows earnings of $1,500
because that amount was recorded on her W-2. In the second case, a person works full-
time shoveling driveways for cash early in the year and earns $500. When interviewed
in March, she tells the interviewer that she earned $1,000 shoveling driveways; in the
administrative data, however, her record shows no earnings in that year because the
shoveling job was paid in cash and no W-2 was filed. In this second case, both datasets
are incorrect—earnings were misreported in the survey data and earnings were not
reported to the government in the administrative data. These two cases illustrate how
errors can occur in either (or both) types of data, and which dataset is better (that is,
provides more accurate answers) depends on the question you’re asking. If you’re wor‐

Reporting Errors: General Issues | 133

9. They are also problematic at the top of the distribution, but the percentage differences are most likely smaller.

10. That finding is supported in, for example, Cristia and Schwabish (2007).

11. See Roemer (2000), Schwabish (2007), and Cristia and Schwabish (2007).

12. Schwabish (2011).

ried about capturing earnings in the underground economy, an administrative dataset
is probably not the best source of information; however, if you’re interested in calculating
the Social Security benefits for a group of workers, errors in survey data might cause
problems.

These problems are most likely to occur among people at the bottom of the earnings
distribution.9 Figure 10-1 shows the cumulative distribution of earnings in 2009 at $25
increments in the SSA administrative earnings data and the March Current Population
Survey (CPS; a monthly survey of over 50,000 households conducted by the U.S. Census
Bureau) for people earning less than $5,000 a year. Two observations are immediately
evident: First, the cumulative shares of people in the administrative data in each $25
range are about 8 to 15 percentage points above the same point in the CPS, suggesting
that the first case described above is probably more prevalent than the second (that is,
people underreport their earnings in a survey).10 The second observation is that re‐
spondents in the survey data tend to round reports of their earnings (see the circled
spikes in the CPS at thousand-dollar increments), which, depending on the research
question may not be a terribly large problem, though in some cases rounding can lead
to different estimates.11

The challenge a researcher faces with reporting error is that, generally, it is not obvious
that it exists. Without comparing one dataset directly with another (for example, merg‐
ing administrative and survey data together), how can one know whether someone
misreported his or her earnings or educational attainment or how many weeks he or
she worked last year? Part of dealing with reporting error is digging deep into your data;
for example, do you really think a person earned exactly $5,000 last month or worked
exactly 2,000 hours last year (50 weeks times 40 hours)? Another part of dealing with
reporting error is realizing the strengths and weaknesses of your research question. In
some previous work, for example, I was interested in predicting rates of emigration
among foreign-born workers (that is, the rate at which people leave the United States).
In that case, I inferred emigration rates by following longitudinal earnings patterns over
time using administrative data; although that was the strength of the analysis (and, to
my knowledge, was the first attempt to use administrative data in that way), the weakness
of such an approach is that I clearly missed foreign-born workers who were living and
working in the country without authorization (that is, illegal immigrants) and thus may
not have filed a W-2.12

134 | Chapter 10: Subtle Sources of Bias and Error

Although determining whether the dataset you are using is riddled with reporting errors
(and whether those errors actually matter) is difficult, being aware of such data short‐
comings will take your research further and, importantly, make the validity of your
conclusions stronger. Thus, the basic strategy is to be aware and ask key questions:

1. Is reporting error in your data likely to not be random? If so, your results will be
biased.

2. Do you think reporting error is more likely in some variables than in others?

3. Can you use other variables to inform sources of potential bias? For example, does
everyone with 2,000 hours of annual work also have round earnings amounts?
(Perhaps the survey only allows people to check a box of round values instead of
asking for exact amounts.)

4. Does the structure of the survey itself change the probability of reporting error? For
example, does the order in which the survey asks questions suggest that people are
less likely to answer certain questions because of that order, or might people have
some reason for giving less reliable answers at one point in the survey than at some
other point?

In sum, reporting errors are difficult to detect, but it’s important to be aware of both the
strengths and weaknesses of your data and to try to adjust your model or research
questions accordingly.

Other Sources of Bias
While imputation bias and reporting error may be two of the largest sources of bias in
survey data, there are a number of other issues that can affect the validity and reliability
of your data. In this section, I briefly discuss four other sources of bias:

Topcoding/bottomcoding
To protect respondents’ identities, some surveys will replace extremely high or ex‐
tremely low values with a single value.

Seam bias
Longitudinal (or panel) surveys in which changes in survey respondents’ behavior
across the “seam” between two interviews are different than the changes within a
single interview.

Proxy reporting
Surveys in which a single member of the interview unit (for example, a family)
provides information for all other members.

Sample selection
Cases in which the very structure or sample of the survey is biased.

Other Sources of Bias | 135

Figure 10-1. Cumulative distribution of earnings for people with positive earnings below
$5,000 in the SSA administrative data and CPS, 2009

There are certain strategies you can use to address or even overcome some of these
biases, but in cases in which fixing the source of bias is not possible, once again, it is
important to be aware of how the issue might affect your results.

Topcoding/Bottomcoding
Tails exist in any distribution, and in the case of earnings or income, for example, those
tails can be quite long. To protect the identity of its respondents, the firm or institution
conducting a survey might replace extremely high values (topcoding) or extremely low
values (bottomcoding) of a variable with a single value. Take, as an example, the Current
Population Survey (CPS), a monthly survey of over 50,000 households conducted by
the U.S. Census Bureau. In past years, the Census Bureau replaced earnings that excee‐
ded the topcode amount with the topcode amount. For example, prior to 1996, the
topcode on earnings was set to $99,999 and so anyone who reported earnings above
that cutoff was assigned earnings equal to that value. The effect of that procedure is to
create a spike in the distribution of earnings at that level. In more recent years, the Census
Bureau has replaced earnings that exceeded some (higher) threshold with average earn‐
ings calculated across people with a similar set of characteristics (specifically, gender,

136 | Chapter 10: Subtle Sources of Bias and Error

13. See, for example, Jenkins et al. (2011) and Burkhauser et al. (2012).

14. Feng, Burkhauser, and Butler (2006) and Jenkins (2009).

15. Bureau of the Census (1998).

16. See, for example, Pischke (1995) and Ham, Li, and Shore-Sheppard (2009).

race, and work status). This approach has two advantages: one, it does not create a single
spike of earnings at the topcode (although it does create several smaller spikes above
the topcode); and two, the sum of all earnings is the same with or without the topcode.
In the most recent CPS, earnings above the topcode were swapped between survey
respondents; this preserves the tail of the distribution, but it distorts relationships be‐
tween earnings and other characteristics of the earner.

Without access to alternative data sources (either administrative or the raw survey before
it is top- or bottomcoded), it is impossible to ascertain the true value of topcoded or
bottomcoded earnings. In the case of the CPS, one group of researchers has used ad‐
ministrative data to make a consistent set of topcoded values over time.13 Other re‐
searchers have used administrative data to construct parameters that can be used to
assign new values that better reflect the tail of the distribution.14 If your data has topcodes
or bottomcodes and you can infer the expected distribution of the variable, imputing
values in this way is a viable approach.

Seam Bias
The Survey of Income and Program Participation (SIPP) is a panel dataset (that is, one
in which the same people are followed over time) and contains information on approx‐
imately 30,000 people for about three to four years. In each panel, respondents are in‐
terviewed at four-month intervals about their experiences during the prior four months.
One effect of this interviewing scheme is something known as “seam bias,” in which
changes measured across the “seam” (that is, from one interview to the next) are much
larger than changes measured within a single interview. This can lead variables to jump
to a different value every four months (when a new interview occurs) rather than tran‐
sitioning smoothly as might actually occur. So you might have something closer to
Figure 10-2 (a), when instead the pattern should look like Figure 10-2 (b).

To address seam bias, some researchers have suggested making changes to the actual
survey, such as encouraging the interviewer to ask respondents to think more carefully
about their behavior during the interview interval.15 Other researchers have suggested
strategies that you can use with your data and include choosing specific observations
(i.e., specific months), aggregating several observations, or using other more sophisti‐
cated statistical techniques.16

Other Sources of Bias | 137

Figure 10-2. With seam bias, variables can jump to different values (a) instead of chang‐
ing smoothly between surveys (b)

Proxy Reporting
The SIPP and the CPS both allow proxy reporting; that is, interviews in which a single
member of the household (or family) provides information for all other members of the
household (or family). For example, the husband of a family of four might provide
information on his own earnings and labor force status as well as that of his wife, and
the educational attainment of his children. Because the proxy may not know the exact

138 | Chapter 10: Subtle Sources of Bias and Error

17. Pew Research Center (2012). Sample selection might also occur in the form of different technologies used to
ask questions of survey respondents. For example, surveys that ask respondents to use a computer to respond
might result in less-reliable responses from elderly respondents, or surveys that only ask questions in a single
language might not be representative of certain communities.

details for everyone in the household, the responses may be incorrect or missing (and
thus lead to imputations). If your data includes a variable noting whether proxy report‐
ing exists and who the proxy is, then you can compare nonproxy responses to proxy
responses to test whether such reporting biases your estimates.

Sample Selection
Another source of bias that can occur is the very type of people surveyed. Some re‐
searchers have questioned whether traditional surveys conducted today provide reliable
information for a population that is more technologically engaged than in the past. A
recent report by the Pew Research Center suggests that in traditional phone-based sur‐
veys, contacting potential survey respondents and persuading them to participate has
become more difficult. According to Pew, the contact rate (the percentage of households
in which an adult was reached to participate in a survey) fell from 90% in 1997 to 62%
2012, and the response rate (the percentage of households sampled that resulted in an
interview) fell from 36% to 9% over that same period. Importantly, Pew concludes that
telephone surveys (which include landlines and cell phones) that are weighted to match
the demographic makeup of the population “continue to provide accurate data on po‐
litical, social, and economic issues.” However, they also note that “survey participants
tend to be significantly more engaged in civic activity than those who do not partici‐
pate… This has serious implications for a survey’s ability to accurately gauge behaviors
related to volunteerism and civic activity.”17 Again, it is important to ask detailed ques‐
tions about your data, including how it was constructed and in some cases, and whether
the firm or institution conducting the survey has an agenda, in order to increase the
validity and reliability of your results.

Conclusions
As mentioned, I get to work with some of the best data you can get your hands on. The
comparisons researchers can make between survey and administrative data, which are
becoming more widely available (at least in the field of economics), allow researchers
to look at people’s behavior in ways that were not available in the past. But those advances
have also led to new questions about the accuracy of survey data and the results re‐
searchers can reach from models based on that data.

I’ve tried to show you a number of things to be aware of in your data. I typically work
with economic data, which contains information on earnings, labor force participation,
and other similar behaviors, but the strategies extend to any survey. Methods that firms

Conclusions | 139

or institutions use to produce data from surveys—such as imputations, topcoding, and
proxy reporting—should always be documented, and as the researcher, you should al‐
ways be aware of those methods and then decide how they might affect your results.
Similarly, respondents may simply make an error in answering the survey, but it is your
job to try to determine—or at least to understand—whether those errors impart bias to
your results or are simply a hazard of using the best information you have at your
disposal.

References
Bollinger, Christopher R. 1998. “Measurement error in the CPS: A nonparametric look.”
Journal of Labor Economics 16, no. 3:576-594.

Bound, John, and Alan B. Krueger. 1991. “The extent of measurement error in longi‐
tudinal earnings data: Do two wrongs make a right?” Journal of Labor Economics 9, no.
1:1-24.

Bureau of the Census. 1998. Survey of Income and Program Participation Quality Profile
1998. SIPP Working Paper, Number 230 (3rd edition).

Bureau of the Census. 2001. Survey of Income and Program Participation Users’ Guide
(Supplement to the Technical Documentation), 3rd ed. Washington, D.C.

Burkhauser, Richard V., Shuaizhang Feng, Stephen Jenkins and Jeff Larrimore. 2012.
“Recent Trends in Top Income Shares in the United States: Reconciling Estimates from
March CPS and IRS Tax Return Data.” Review of Economics and Statistics 94, no. 2 (May):
371-388.

Congressional Budget Office. 2007a. “Economic Volatility.” CBO Testimony Before the
Joint Economic Committee (February 28).

Congressional Budget Office. 2007b. “Trends in Earnings Variability Over the Past 20
Years.” CBO Letter to the Honorable Charles E. Schumer and the Honorable Jim Webb
(April 17).

Cristia, Julian and Jonathan A. Schwabish. 2007. “Measurement Error in the SIPP: Evi‐
dence from Administrative Matched Records.” Journal of Economic and Social Meas‐
urement 34, no. 1: 1-17.

Dahl, Molly, Thomas DeLeire, and Jonathan A. Schwabish. 2011. “Year-to-Year Varia‐
bility in Workers Earnings and in Household Incomes: Estimates from Administrative
Data.” Journal of Human Resources 46, no. 1 (Winter): 750-774.

Feng, Shuaizhang. 2004. “Detecting errors in the CPS: A matching approach.” Economics
Letters 82: 189-194.

140 | Chapter 10: Subtle Sources of Bias and Error

Feng, Shuaizhang, Burkhauser, Richard, & Butler, J.S. 2006. “Levels and long-term trends
in earnings inequality: Overcoming Current Population Survey Censoring Problems
Using the GB2 Distribution.” Journal of Business & Economic Statistics 24, no. 1: 57 - 62.

Gottschalk, Peter, and Robert Moffitt. 1994. “The growth of earnings instability in the
U.S. labor market.” Brookings Papers on Economic Activity 2: 217-254.

Haider, Steven J. 2001. “Earnings instability and earnings inequality in the United States,
1967-1991.” Journal of Labor Economics 19, no. 4: 799-836.

Ham, John C., Xianghong Li, and Lara Shore-Sheppard. 2009. “Correcting for Seam
Bias when Estimating Discrete Variable Models, with an Application to Analyzing the
Employment Dynamics of Disadvantaged Women in the SIPP,” http://web.williams.edu/
Economics/seminars/seam_bias_04_06_lara_williams.pdf (April).

Hirsch, Barry T., and Edward J. Schumacher. 2004. “Matched bias in wage gap estimates
due to earnings imputation.” Journal of Labor Economics 22, no. 3: 689-772.

Jenkins, Stephen P. 2009. “Distributionally-Sensitive Inequality Indices and the GB2
Income Distribution.” Review of Income and Wealth 55, no. 2: 392-398.

Jenkins, Stephen P., Richard V. Burkhauser, Shuaizhang Feng, and Jeff Larrimore. 2011.
“Measuring inequality using censored data: A multiple imputation approach.” Journal
of the Royal Statistical Society (A), 174, Part 1: 63-81.

Lillard, Lee, James P. Smith, and Finis Welch. 1986. “What do we really know about
wages? The importance of nonreporting and Census imputation.” Journal of Political
Economy 94, no. 3: 489-506.

Lubotsky, Darren. 2007. “Chutes or ladders? A Longitudinal analysis of immigrant
earnings.” Journal of Political Economy 115, no. 5 (October): 820-867.

McGovern, Pamela D. and John M. Bushery. 1999. “Data Mining the CPS Reinterview:
Digging into Response Error.” 1999 Federal Committee on Statistical Methodology
(FCSM) Research Conference. http://www.fcsm.gov/99papers/mcgovern.pdf.

Moffitt, Robert A., and Peter Gottschalk. 1995. “Trends in the Covariance Structure of
Earnings in the U.S.: 1969-1987.” Johns Hopkins University. Unpublished.

Pew Research Center. 2012. “Assessing the Representativeness of Public Opinion Sur‐
veys.” http://bit.ly/SIhhKP (May).

Pischke, Jorn-Steffan. 1995. “Individual Income, Incomplete Information, and Aggre‐
gate Consumption.” Econometrica, 63: 805-840.

Roemer, Marc I. 2000. Assessing the Quality of the March Current Population Survey and
the Survey of Income and Program Participation Income Estimates, 1990-1996. Income
Surveys Branch, Housing and Household Economic Statistics Division, U.S. Census
Bureau (June 16).

References | 141

http://web.williams.edu/Economics/seminars/seam_bias_04_06_lara_williams.pdf
http://web.williams.edu/Economics/seminars/seam_bias_04_06_lara_williams.pdf
http://www.fcsm.gov/99papers/mcgovern.pdf
http://bit.ly/SIhhKP

Schwabish, Jonathan A. 2007. “Take a penny, leave a penny: The propensity to round
earnings in survey data.” Journal of Economic and Social Measurement 32, no. 2-3:
93-111.

Schwabish, Jonathan A. 2011. “Identifying rates of emigration in the U.S. using admin‐
istrative earnings records.” International Journal of Population Research vol. 2011, Article
ID 546201, 17 pages.

Shin, Donggyun, and Gary Solon. 2009. “Trends in Men’s Earnings Volatility: What
Does the Panel Study of Income Dynamics Show?” Michigan State University. Unpub‐
lished.

Ziliak, James P; Hardy, Bradley; Bollinger, Christopher. 2011. “Earnings Volatility in
America: Evidence from Matched CPS,” University of Kentucky Center for Poverty Re‐
search Discussion Paper Series, DP2011-03 http://www.ukcpr.org/Publications/
DP2011-03.pdf (September).

142 | Chapter 10: Subtle Sources of Bias and Error

http://www.ukcpr.org/Publications/DP2011-03.pdf
http://www.ukcpr.org/Publications/DP2011-03.pdf

1. This phrase, I later learned, is an adaptation of a Voltaire quote: Le mieux est l’ennemi du bien.

CHAPTER 11

Don’t Let the Perfect Be the Enemy of the
Good: Is Bad Data Really Bad?

Brett Goldstein

As a data scientist, your gut and your training tell you to use perfect data for an analysis.
This is often a function of classical statistics education, with an intent to submit research
and analysis for publication. This is fine and noble, but upon encountering real-world
data, the cold reality of dirty data becomes prominent and one must learn to abandon
hope of perfection or face an endless loop of frustration.

My wife Sarah, who did her graduate work in public health, has often used the phrase:
“Don’t let the perfect be the enemy of the good.”1 When confronted with imperfect data,
my classical training would say that this data is beyond hope, that it is could never be
cleaned sufficiently, and that we would be unable to obtain anything that was truly
meaningful. However, this is where we get to the key principle that this should not have
to be a zero-sum decision. It is not good, nor is it bad, but it certainly is viable. How can
we improve our policies and strategies in absence of perfect data? If it doesn’t meet the
pristine standards of the classical approach, we must find ways to make the data work
so that it can inform the critical decisions that are necessary to move ahead.

But First, Let’s Reflect on Graduate School …
To explain, I need to step back in time.

In graduate school, I had the same professor for all of my statistics classes. She was
thorough, excellent, and meticulous. While it may be easier to have such kind memories
long after the courses ended, she taught me a great deal about classical statistics.

143

The professor taught each of the techniques in a very specific way. The majority of the
time would be spent on preparing and cleaning the data. There was a remarkably rig‐
orous procedure and series of steps depending on the application of the test. In order
to maximize the power of the given technique, each of the tests had a required set of
assumptions. As we worked through each and every one of these methods, she had us
meticulously document each step of our work (which, in this case, was in SPSS syntax).
We would submit a huge amount of work, which she would tirelessly critique. Each time
we took a path or made a decision that was incorrect, she would return our pile of syntax
to us with the instructions to do it over with the modifications she recommended.

This was a remarkably tedious process because you ended up with 100-plus pages for a
single technique. There was little point in arguing about whether there was in fact a
meaningful difference between minute changes in skewness. So, through many itera‐
tions, I would make it as perfect as I could. The obscure and creative transformation
function became my new friend and I took copious notes. They remain in stacks on the
back porch in my house, awaiting filing. I am scared to let this work go.

While this classical training remains invaluable, the cold reality of the real world was
waiting.

Moving On to the Professional World
My history with data has been varied throughout my career. Early on at OpenTable, we
lacked holistic insight into the value of our data; we were completely focused on creating
a new company. During those early years, it seemed as if decisions and strategies changed
daily. Software development was in high gear and the competition was always nipping
at our heels. There was little thought as to what we should collect, the form it should
come in, and certainly not how we should extract it. However, as OpenTable matured
and repeatedly worked through our mistakes, we started to smarten up. A few years in,
we hired an experienced engineering vice president who started to add rigor and a plan
to the chaotic system. Concepts such as schema and metadata joined the vernacular, and
with this came the ability to actually extract information from the data. Data analytics
came of age as we began to mature as a company.

As OpenTable developed as a company, we had the nimbleness, vision, and motivation
to ensure that we were collecting the right data in the correct form, so we had the
flexibility to build smart analytic outputs. Certainly, there were mistakes made along
the way, but the data was input and output in a usable and strategic way. Still, it is
important to note that our data goals were very modest. The types of data problems
were typically based on traditional business questions, such as, “what type of support
calls would you get for a certain classification of hardware?” This would produce a very
standard set of descriptive statistics. We also evaluated our web conversions, but as we
used third-party tools for this, there was little need to directly collect and evaluate the
data.

144 | Chapter 11: Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad?

2. Consider the Google MapReduce paper, “MapReduce: Simplified Data Processing on Large Clusters,” by
Jeffrey Dean and Sanjay Ghemawat.

Looking back, two aspects of my OpenTable period stand out. First, as was previously
noted, we asked only limited questions of our data. We also conducted very little of the
inductive research that we now know to be the heart of data mining. Second, which
seems so silly now, was that we had an enormous concern about storage. The cost of
disk space weighed heavily in our hardware purchase desicions. Furthermore, it was not
atypical to have discussions about what data we should keep and for how long as a
function of disk cost.

There was also the concern about the underlying data structure and how it would per‐
form as it grew. Single machine instances would rapidly become growing clusters. The
cost of keeping data—good or bad—was high. As a function of having to make these
choices, often we would only keep what was good and known, rather than keeping more
data with the hope of mining other useful information.

From this comes a critical point about bad data and why a text of this nature has become
necessary. While bad data has always existed, for a significant amount of time, classical
techniques could easily manage it and meet the needs of those standard techniques.
Furthermore, as there were limits to what one could retain, these choices often framed
and limited the type of quality leading to easier datasets.

As my career at OpenTable was ending, many critical points in the world of data came
together. First, we started to see a steep decline in the price of hardware and the notion
of white-box computing starting to emerge. Additionally, cloud computing became an
immediate game-changer in the realm of provisioning. Lastly, a few years later, we
started to see some of the brilliance that would lead to the possibility of truly big data.
2 When you mix these concepts with architectures like Hadoop and the NoSQL database
family, you realize that you have the ability to capture enormous amounts of data, much
of which may be “bad.”

It is certainly speculative—and, as always, hindsight is 20/20—but I can think of many
things that we might have done differently at OpenTable if the tools of today were a
reality when we started to build the company. However, in as much as OpenTable proved
to be a successful venture of which we are all very proud, I will refrain from speculating
about this alternative reality.

Moving On to the Professional World | 145

Moving into Government Work
Making the transition into the public sector offered an entirely different perspective on
data. OpenTable was a small and nimble company, in which we could easily change
course. As I entered the enormous bureaucracy of one of the biggest cities in the United
States, which had decades of information legacy systems, I was confronted with an
entirely different platform and a nontrivial amount of dirty data.

What is dirty data? It has several definitions. First, it is data that is simply incorrect.
Value X should equal 1, but in in your structure it is equal to 2. That is bad. This can be
a function of any number of broken pieces in the business or technology process feeding
the data pipeline, from the input sensor to the ETL job that feeds from the transactional
system. Second, we see data in which the actual entry is correct, but its associated met‐
adata is either incorrect, or in many cases, nonexistent. This means that you have the
value, but you do not accurately know what it means. Third, there may be problems with
data as part of the broader set or system. This occurs when you are trying to use the
tools of data science to extract information from the data, but it is not adhering to the
rules or assumptions of the procedure or algorithm.

From this, we see that “dirty data” is in fact an ambiguous term. It has meanings that
can impact the entire enterprise or the individual data scientist trying to run a regression
in R. However, the importance of cleaning and fixing data must be understood by all
involved, and the principles that apply throughout the organization can mitigate the
potential damage it can cause.

Government Data Is Very Real
Given the notion of the “correct” way to manage and prepare data, it is simply not realistic
to always apply those techniques to government administrative data. Many datasets that
we have in government—such as 911 or 311 calls, crimes, or permits—are inherently
not clean because they represent the data of day-to-day life in the urban ecosystem.

When I entered into government service, I had very noble ideas about how data could
be used. As a computer scientist, I felt that we could take any problem, break it down
into a set of variables, apply a method or code block to the problem, and there would
be a solution. However, I had also made assumptions as to how the data would look. For
the naive outsider, one would expect that government data would be rock-solid. It would
all be contained within a single system, bound by a strict schema and overlaid with
comprehensive governance. I thought I would be able to tap into this source of wealth,
apply a little computer science magic, and produce remarkable results.

The technical reality of what I found was quite different than my expectations. The
systems had been built over time and incrementally. The end product was a system that
lacked early functional vision for the design. (When you are building a scalable system,

146 | Chapter 11: Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad?

3. Editor’s note: for readers who don’t live in the USA, we call 911 to reach emergency services, such as police
or firefighters. It is the equivalent of 999 in the United Kingdom, 15/17/18 in France, or the Europe-wide 112.
(Many European countries continue to maintain their old emergency numbers in addition to 112, but that’s
another story.)

you need to have that architectural vision or you will continue to build layers upon
layers.) From a strictly data-centric perspective, this often leads to an overly complicated
schema. You end up with 500 tables instead of 50. Rather than having a good plan from
the beginning, you start adding fields over time. These were the types of systems that I
encountered as I started on my path to develop models for predicting homicides and
shootings.

Should I have been surprised by this? Absolutely not. What the government had done
was something I had seen during the early days at OpenTable. We emphasized creating
systems and focusing on the market rather than the technology; we raced ahead without
giving the underlying architecture enough attention. In addition, business intelligence
was still in its infancy. A good report would often just consist of output in a spreadsheet.
At that point, data mining and predictive modeling were completely absent from the
strategy.

Then there was the perception component. Data that was of slightly questionable quality,
or data that could possibly have contained any errors, could not be used. It was assumed
if a small piece of data lacked veracity, all of the data needed to be disqualified.

Service Call Data as an Applied Example
Consider 911 service call data.3 Historically, the core of public safety data was driven by
reported crime information, as derived from the official police reports that are filed by
residents. (Many issues warrant discussion from the idea of reported crime, but would
be out of scope for this chapter.) That said, it is important to discuss whether there is a
more robust set of data that could be used or at the very least complement the crime
data. And that is 911 data.

911 data is a fascinating set. The volume of calls that are recorded within that set far
exceed the number of entries in the crimes set. When I first started working on this set,
I realized that we had a robust amount of data. As a result, we could provide more insight
into the ecosystem of a neighborhood. A very interesting and specific case came from
my time working as a sworn officer with the Chicago Police Department.

The 11th District, where I worked, received a substantial number of calls reporting the
sale of narcotics. People would note that narcotics were being sold at specific locations.
Of course, we would respond to these calls. As an officer responding in a marked vehicle,
more often than not, the individual selling the narcotics would see us or be notified by
one of his counterparts. By the time we arrived at the site, the perpetrators had dispersed,

Service Call Data as an Applied Example | 147

so we could take no action. When classified, the service essentially received a code that
is similar to an unfounded disposition. This leaves one with the quandary: what does
this point of data mean? Does it mean that no incident took place? That’s an incorrect
assumption. Does the converse apply? That’s debatable. The reality is that neither of
those options worked. Nevertheless, we do not need to ignore this example as data that
is not usable.

In order to make informed strategic and tactical decisions in an environment with im‐
perfect data, one must make compromises. From an academic perspective, these com‐
promises make little sense. We are dropping the quality of the analytic and adhering to
the gold standard of research. Still, I have repeatedly noted that it is better to have an
informed decision built on imperfect data than to have a decision built on no data at
all. When one accepts that imperfection, it opens up the ability to integrate data into all
supports of projects and policies. The ability to even have incremental gain in their
decisions may lead to substantial improvements in policy.

I believe that there is a dichotomy between standard research and operational reality.
Classical research requires everything from very tight and structured statistical tests to
randomized sampling. Reality doesn’t always allow for random sampling, and often the
data from the ecosystem won’t permit the meeting of all the requisite assumptions. That
said, this is not just a choice between absolute accuracy and complete inaccuracy. This
instead is an opportunity to extend our toolkit to use tools that are beyond your typical
“gold standard.”

Moving Forward
Going forward, government needs to tread carefully as we define how we should be
using data. We need to be mindful of the lessons from the past. In particular, there are
two areas that have frequently created problems:

Fear of academia. Traditionally, academia is the home of some of the top research of
data and assorted problems in the sciences. While this may produce gold standard re‐
search, it often come with two associated concerns. Such detailed and controlled re‐
search tends to move slowly. Receiving data and analyzing it for multiple years is not
helpful in the terms of a nimble government that is looking to make smart tactical and
strategic moves.

Fear of a surprise outcome. In this scenario, the evaluators review an initiative and return
at a later date announcing to the world that it was a failure and all for naught. This is a
very legitimate concern. Long timelines do not help government do business better in
the near term. Furthermore, the surprise outcome both causes awkwardness and pre‐
vents future collaborations.

148 | Chapter 11: Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad?

To avoid these problems, I have developed close relationships with academia and opened
clear channels of communication. More recently, I have been working with Carnegie
Mellon University and the University of Chicago. Our relationship is founded on a
couple of key principles.

The first is open communication. With that involvement comes a lack of surprises. Both
sides are aware of concerns and are focused on making the relationship work over the
long term.

Second, and one of critical importance, is our determination to make small and incre‐
mental gains. In the world of big city issues, making small changes has huge value. Single-
digit percent changes in a given problem can have huge returns. Imagine if you reduce
robberies by two percent or cut unemployment by a single percentage point. As my
academic partners have realized the enormous values of these returns, it has led to more
active involvement. We may in fact be working toward a very high goal, but we also
understand the value of more immediate results. Allowing better access to data leads to
better near term answers and leverages some of the deep talent that is available in our
communities.

The third principle is is the marriage of social scientists and computer scientists. Classic
social scientists are often hesitant to work with dirty data, which can complicate our
collaborations. That changes if we, as computer scientists, introduce a new set of tools.
This is a kit—a machine learning arsenal, really—that is better equipped to handle the
nuances of dirty data. Historically, these have been two very different worlds. In Chicago,
we are actively working to merge these groups. That will enable us to solve problems in
very different ways.

In general, it is often believed that government information technology is ten years
behind the private sector. However, this lag is not acceptable. In order to serve our
residents who depend on the government for critical services, our technology must be
nimble and innovative.

Lessons Learned and Looking Ahead
Dirty data is there for a reason. Sometimes there is nothing you can do about it, while
other times, it is absolutely your fault. Whatever the case, we have to resist the temptation
to simply throw away imperfect data.

Just as the reality of daily life and complex ecosystems have high levels of entropy and
thus “dirtyness,” so does the data that surrounds it. We cannot use this as an excuse to
avoid solving problems, but instead it should motivate us as data scientists to continue
to explore the power of these new techniques and apply them to the problems that are
critical to how we live.

Lessons Learned and Looking Ahead | 149

As our world becomes more data-driven, it is critical that we understand what we can
and cannot do. On a closing note, I offer some ideas that can help us move forward.

Bring data into the enterprise spotlight. From the enterprise and business perspective,
data planning and data science must be planned at an enterprise scale. Similar to how
we brought information technology security to the executive staff over the past decade,
we need to make similar moves for data.

This is about planning one’s data strategy across the entire enterprise rather than solely
within the business unit. As new projects emerge, we must determine how they relate
to the other pieces of data being collected. Whether it is within a broad schema or
creating a comprehensive lexicon for keying attributes, creating the framework for con‐
sistency and broader planning provides huge returns.

Improve the inputs. Beyond the storage and tagging of data, we must improve the in‐
tegrity to the inputs and sensors. We should make efforts to validate and ensure the
understanding of data as it enters the enterprise. This ranges from interaction with the
subject-matter expert to allow for smart metadata, to ensuring the validity and reliability
of the inputs. Though these are common-sense components of statistics and methods,
it may not be obvious within the business. This early investment may yield huge returns.

Determine which data is truly unusable (but save it for later). There are times when we
simply cannot fix bad data. It is critical that we truly exhaust our options before we
finally give up. That said, I am rarely in favor of discarding data (does that make me a
data hoarder?). Our methods and tools will only improve over time, so we may as well
hold on to our dirty data, and save it for a time when we can make use of it.

150 | Chapter 11: Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad?

CHAPTER 12

When Databases Attack: A Guide for When
to Stick to Files

Tim McNamara

My Masters dissertation still feels likes a personal defeat. At least four months of the
nine-month project were sabotaged because I didn’t understand the implications of the
technology choices that I was making. This chapter will be a bit of a postmortem of the
project and a walk-through of a strategy I should have used: storing plain-text data on-
disk, instead of in a database.

History
But first, a little more about my story. In 2010, I was undertaking a Masters in Public
Policy at Victoria University of Wellington. I was focusing my efforts on the arguments
surrounding open data within the science sector. Specifically, I wanted to know: do the
arguments that academics, officials, politicians, and the public align? I had the sense
that open data and open government meant quite different things to different people,
and I wanted to quantify that.

Getting access to information about what officials thought about open data was fairly
easy. There was a major review of New Zealand’s publicly funded research bodies being
undertaken at the time. Policy advice between departments is available under the Of‐
ficial Information 1982, which is New Zealand’s freedom of information statute. Infor‐
mation from politicians are even easier to find, as they talk all the time. All press releases
are syndicated via scoop.co.nz. But what about the views of the public at large?

The political blogosphere is very active. While blogs have diminished in quality and
depth with the maturity of social media, passionate people seem to draw themselves
willingly into the flame of political debate.

151

Building My Toolset
I needed to learn text analysis and natural language processing (NLP) techniques, but
my supervisor and I were confident that it would be possible to draw some inferences
from this large corpus of material. The general approach was to crawl the New Zealand
political blogosphere, identify discussion threads about open data, identify people who
comment on this topic, then pull out the themes of these comments. I was also intending
on spending some time classifying commenters. Perhaps we could see if there were
things special about commenters interested in open data.

The dissertation itself was a success, but none of my work from the blogosphere could
be included. Partway through the project, I believed the web crawling would be my
greatest challenge. It looked easy at first. Blogs have articles. I wanted those articles.
Sadly, they also have more than articles. They have comments, dates, locations, tags,
and links. Commenters often have counts associated with them. Comments themselves
have ratings.

This complexity in the data extraction process really slowed the development of the
crawlers. I had several problems with missing data and exceptions. A breakage in the
extraction process would break the crawl. A broken crawl that was not cached requires
restarting the crawl from the beginning. I was able to clean up and streamline my ex‐
traction processes, though, so the crawling became less off a problem over time.

As it turned out, the real problem was storage, because I needed more ad-hoc query
support than the tool could handle.

The Roadblock: My Datastore
The database that I chose to use was CouchDB. There were several reasons why I made
this decision:

• I do not have a computer science background, and I liked the idea of sending JSON
strings to the database and for it to figure out how to store things appropriately.

• It used an HTTP API, which I felt like I could understand.

• The MapReduce paradigm promised high performance.

• Documents are versioned.

• CouchDB’s schemaless nature was a good fit, as I was consistently adding new fields
to the JSON I generated from sucking it out of web pages.

• I was quite interested in getting a deep understanding for the database that looked
likely to be rather influential, if not preeminent within the web world.

CouchDB was approachable, friendly, and fast to get data into the system. The wider
community seemed to be doing some very impressive things with it. While I am sure

152 | Chapter 12: When Databases Attack: A Guide for When to Stick to Files

that fashion had a part of it, there were genuinely good reasons from a newcomer’s point
of view that CouchDB was the right system. MapReduce is purportedly very scalable,
and as CouchDB supports MapReduce queries, I had assumed that this would be the
perfect fit. That said, there were two hurdles that I wasn’t able to surmont.

CouchDB provided a poor debugging experience for developing mappers and reducers.
I had no idea how to interpret the Erlang/OTP stacktraces. Errors tended to pop up after
some number of problems had occurred. I found little guidance about what was wrong
with my JavaScript. The error messages were, effectively, “something broke.” So I would
try again. And again. Finally, something would work. That said, the only reduce func‐
tions I ever implemented were sums. I could not do anything more complex. Because
errors in reduce functions would only appear once all of the maps had been undertaken,
the develop/run/break/debug/develop cycle would take (at least) several minutes per
iteration. In the end, I decided to just create mapping fuctions and would write reducers
manually with the resulting views.

The debugging story can be improved by slicing a small portion of the database out and
developing new queries there. That way, with orders of magnitude fewer documents,
problems arise much more quickly.

The real problem for me came for when I wanted to run a new query on the dataset I
had created. There ended up being about 70GB work of blog posts, comments, and
metadata within the database. (You may recall, I’d already stripped out the HTML for‐
matting during the crawl stage. This was 70GB of actual text.) I learned that, to conduct
NLP work within CouchDB’s mapping functions, building an index took days on my
inadequate hardware. Worse still, things could still fail right near the end. That’s what
happened to me. At that point, I decided to cut my losses. The data still sits on an old
hard drive somewhere, silently taunting me.

This is not a chapter about the failings of CouchDB. It’s a chapter about how not un‐
derstanding the tools that you’re running on can have very negative consequences.
CouchDB is designed for a read-heavy workload, such as a high volume website. It
processes new data for a view once that view has been requested by a client. In a high-
volume website, new hits will appear all the time. It only needs to process a few docu‐
ments at the most in order to serve the request. Under a web crawling scenario, this is
not the case.

In case you were wondering, my dissertation passed well using the material from tra‐
ditional sources.

In the sections that follow, I’ll explain how to use files and the filesystem as your database.
Surprising though it may be, the filesystem can make for a very useful datastore.

History | 153

Consider Files as Your Datastore
Sometimes, you’re better off skipping the database and using the filesystem as your
datastore. Consider the following:

Files Are Simple!
Simplicity and ubiquity are virtues that are very hard to find in technology products.
There is simply less bureaucracy to deal with when you use files.

Files Work with Everything
Just about everything will (sort of) know how to process your data. Utilities will need
coaching to understand how to extract structure from your files. This is generally not a
significant barrier to entry, though. If you stick with a few conventions, such as using
common and consistent delimiters, then you will be fine.

Compare this to a traditional database system, for which you will often need a specific
adapter, which may in turn have its own API. If you’re using an abstraction layer, such
as an object-relational mapper (ORM), then you need to understand its unique syntax.
Recent databases often provide an HTTP API, but this is still more of a burden than
opening and reading a file.

Being able to have everything read your data makes life as a data wrangler easier. It’s
quite easy to swap between programming languages and tools. (Perhaps you want to
use R’s ggplot2 for plotting, Python’s NLTK for natural language processing, Octave for
familiar matrix processing, and Fortran for numerical efficiency.) Hadoop and other
implementations of MapReduce will typically work with files. It is easy to serve the data
in ad-hoc fashion. A single line of Python can create a (temporary) web server: python
-m SimpleHTTPServer 8080 will make the current directory contents available, via web
browser, on your machine’s port 8080.

Also, OS tools can replicate functionality you may miss when you forego a traditional
database. For example, the inotifywait tool can watch for changes and run a command
when a given file is modified.

Files Can Contain Any Data Type
Traditional database engines do not handle large, unstructured file data (often referred
to as binary blobs) well. Databases would prefer to work with fairly regularly sized
records in order to efficently store tables and documents on disk. If records vary greatly
in size, it is far more difficult to optimize how things are stored. Binary blobs get in the
way.

By comparison, a file can contain any type of data, structured or unstructured.

154 | Chapter 12: When Databases Attack: A Guide for When to Stick to Files

This flexibility does, however, incur a cost when storing or retrieving typed data. For
example, while a person will see that 3.14159 is a number, in a file this data is just a
series of characters. Something has to tell your program that this is a number, and that
may involve some translation overhead. Similarly, you can store objects in a file by
defining a serialization process, but you then need to write a routine to _de_serialize
that data in your application. That can be a burden, both in terms of developer time and
processing time. Despite this, files can be surprisingly useful for getting off the ground.

Data Corruption Is Local
In case of a hard shutdown, any corruption to a database’s files can create a deep mess.
Damage to files is generally localized to those files. Furthermore, file systems work hard
to prevent damage in the case of power failure. (The disk contollers will sometimes lie
to the file system and tell it that they’ve already written to disk when they haven’t. This
can cause problems but they’re reasonably rare.)

File systems are really smart. They take care of many things for you. File systems are
able to handle data which varies in size much better than databases. Databases don’t
really like binary blobs that vary considerably in size. In general, database relations (aka
tables) are optimized for rows of roughly consistent size. This enables them to optimize
search strategies and so forth.

For example, journaling is a really useful feature for being able to ensure the stability of
what’s happening. They just don’t care too much about data types. Everything is just
bytes.

They Have Great Tooling
When you use a database system, you miss out on the powerful, built-in OS utilities to
cut and slice the contents. Many such tools are heavily tested (having been run billions
of times over the years), reliable, and are generally implemented in C for performance.
grep is one of the fastest ways to hunt for things. Remote replication is only an rsync
away. A word count for a file takes two characters: wc. A version control system such as
Subversion or Git will help you maintain a history of your changes over time.

There’s No Install Tax
Working with files has a very low barrier to entry. You can eliminate a lot of friction by
not needing to install client libraries, compile drivers, or worry about a schema.

Files certainly aren’t ideal for every situation. They’re best suited for cases that are read-
heavy, require few modifications, and incur minimal cost to translate the data into a
typed representation. That means storing logs (such as webserver logs), recorded events,
web crawlings, large binary data, and sensor readings, which are all suitable use cases.

Consider Files as Your Datastore | 155

Sensor readings do not change over time. History is fixed. Therefore, there is often little
need to require features such as multiwrite concurrency. A similar case involves serving
static web pages. Dynamic websites, which have been converted to files by a static site
generator, are much more scalable than serving dynamically generated content.

File Concepts
Working with file datastores isn’t all roses. You’d do well to consider different file types,
formats, and possible issues before you move to an all-file setup.

Encoding
An encoding is a standard for converting zeros and ones to characters. Traditional en‐
codings, such as ASCII, have a translation table that converts a bit sequence such as
111100 (60 in decimal) to the capital letter A. Unfortunately, there are only 256 bit se‐
quences within a byte. Unicode adds some complexity, but offers a lot more flexibility.
One Unicode encoding, UTF-8, is variable length and can support annotating base
characters with accents with information from supplementary bytes.

Text Files
Text files are, simply, files that adhere to an encoding. They are typically printable, in
that the human eye can read their contents.

Binary Data
Think of this as files that do not conform to a well known-encoding for representing
text. Therefore, while bytes from binary files may contain printable characters, the text
printed will be gibberish. Some binary formats require special tools to translate the raw
bytes into meaningful representations.

Memory-Mapped Files
Memory-mapped files mirror the in-memory representation of data, to improve per‐
formance. While CPU does not distinguish between data that comes from memory and
data that comes from the disk, your users will, because the former can be tens of thou‐
sands of times faster than the latter.

File Formats
Formats set standards for how data is represented within a stream of consecutive bytes.
Table 12-1 includes a few different representations of some public data about me:

156 | Chapter 12: When Databases Attack: A Guide for When to Stick to Files

1. http://en.wikipedia.org/wiki/Parkinson%27s_Law_of_Triviality

2. http://code.google.com/p/protobuf/

3. http://thrift.apache.org/

Table 12-1. Format overview

Python literal syntax {'country': 'New Zealand', 'name': 'Tim McNamara'}

JSON {"country": "New Zealand", "name": "Tim McNamara"}

YAML {country: New Zealand, name: Tim McNamara}

CSV name,country

Tim McNamara,New Zealand

Python pickle format (dp0

S'country'

p1

S'New Zealand'

p2

sS'name'

p3

S'Tim McNamara'

p4

s.

S expressions ((country, "New Zealand"), (name, "Tim McNamara"))

Each of these representations performs roughly the same function, with many details
at the edges. There are several choices for what might be optimal. This lends itself to
trivial debate, sometimes known as bikeshedding.1

One way to decide about which format should be used is to consider the needs of its
audience. If people are expected to read and potentially even edit the files, then one
should optimize for human readability and editability. Syntax errors are fustrating to
experienced programmers and intimidating to novices. If your audience for your data
are computer parsers, then you should use something like Google Protocol Buffers,2

Apache Thrift,3 or JSON. If your audience is your future self or someone looking at the
data in ten years’ time, you should use an open format that has existed for decades.
When you use open formats, you increase the chances that you’ll actually be able to read
the files in the future.

A file format is a method for translating files into information. There is no “best” file
format. None of the representations above are very useful for storing image data, for
example.

Lastly, it is often useful to wrap one format into another. When interacting with a web
API, the JSON objects you receive are likely to be sent in a compressed state, such as
gzip. (Please review the following sidebar for things to consider before you adopt JSON.)

File Concepts | 157

http://en.wikipedia.org/wiki/Parkinson%27s_Law_of_Triviality
http://code.google.com/p/protobuf/
http://thrift.apache.org/

JSON Is Not the World’s Best File Format

It is very likely that you will be using JSON all over the place. It is not necessary. Feel free
to invent your own file format for particular jobs. If you really think that JSON is best,
you should probably use YAML. YAML is a format that is designed primarily for human
readability.

JSON should not be used in configuration files. Its syntax is far too strict to be helpful.
JSON looks too similiar to other languages’ serialization formats, which leads to little bugs
when you are actually writing things by hand.

Spot the bug here:

{
 "id": 10020,
}

JSON does not allow a comma within the last element. This is an unnecessary hurdle.
Coming from Python, you may be even tempted to use single quotes. Or even worse,
comments.

There are several advantages of YAML over JSON:

Readability
YAML omits most double quote characters. Fewer symbols make other little data
things easier to read.

A defined comment syntax
JavaScript comments are illegal in JSON.

Named entities
This allows a great deal of compression because rather than including “University of
Washington” everywhere, you can use the much shorter @wc or some other conve‐
nient variable name.

Decent streaming capabilities
YAML documents can be processed without reading everything into memory. This
capability does not exist within JSON. If you are reading data in from a stream, then
your parser needs to slurp everything into memory before it can deserialize it.

JSON is a very common format, but it is not well-suited for many of the tasks for which
it has been allocated.

Delimiters
Delimiters separate fields and records within a file. For example, in a comma-separated
file, the newline character separates records, and commas separate fields.

158 | Chapter 12: When Databases Attack: A Guide for When to Stick to Files

Picking a delimiter lives in a class of problems that sucks more energy than is possible
to imagine. I know of a production system that uses four bars (||||) to delimit strings,
to work around not being able to modify the database schema and a fear of modifying
the underlying data to escape text.

Paying homage to http://xkcd.com/927/, the ASCII standard includes delimiter charac‐
ters that are almost never used. ASCII 30 is the record separator and ASCII 31 is des‐
ignated for delimiting fields. In principle, user-facing systems reading in this data could
neatly align things together in a tabular form. In practice, there are no user-facing sys‐
tems that I’m aware of that even support these delimiters, let alone do something nice
for the user.

Probably the biggest reason for the lack of adoption is that it’s impossible to type the
delimiters on a keyboard. CSV files look ugly and are misaligned, but we can all find
the comma key.

You are best to split records on new lines and either use tabs or commas. Escaping with
double quotes and back slashes is very common and likely to be easy enough to imple‐
ment in bespoke systems. Whatever you do, try to avoid delimiter creep. If someone
recommends |||| because it is “unlikely to cause problems,” then please steer them
towards the light of common standards.

Finally though, whitespace delimiters are fairly prone to error and are generally clunky.
In an increasingly international world, whitespace itself won’t work at all. Many Asian
languages do not use whitespace to delimit characters. Perhaps it could be time to start
thinking about actually implementing an old standard.

A Web Framework Backed by Files
As an example, consider a hypothetical content management system that uses files for
its underlying datastore. While seemingly ludicrious, the concept may be quite suitable
for small teams of technically able people. While we lose out on an attractive admin
interface, we gain speed, security, and scalibility in exchange.

The concept is quite simple. We create plain text documents like this:

Title: Music to my ears

Was excited to read that people didn't simply move to the next greatest
database and build web framework to create a new website that no one will
read.

The computer then turns those documents into something that looks like this:

<!DOCTYPE html>
<html>
 <head>
 <title>Music to my ears</title>

A Web Framework Backed by Files | 159

http://xkcd.com/927/

 </head>
 <body>
 <p>Was excited to read that people didn't simply move to the next
 greatest database and build web framework to create a new website
 that no one will read.</p>
 </body>
</html>

Let’s discuss why this might be a useful thing to do, and then talk a little bit about how
to actually implement it.

Motivation
Why would we want to do this? Here are a few answers:

Speed

Flat files imply that we will be serving static content. Static content is very easy and
fast for web servers to serve to a client, in part because there’s no need to call a
separate library, program, or remote system to generate content on-the-fly.

Static content is also very easy to cache. The file system provides a lot of metadata
for its files, such as the time they were last modified. This can be provided to web
clients, who will only ask for the page again if it has not been modified. The same
rules apply for scaling out. If you are having difficulty handling requests, a content
delivery network (CDN) will be very happy serve your static files for you. Dynamic
content is much more difficult to hand off to an external, third-party service.

Many web developers will mention that the database is the bottleneck. Let’s take the
bottleneck away: we’ll do the processing up front, rather than hitting the database
with reads every time the website has a new request.

Security

Because there is no way to touch the database from the web content, our website
will be resistant to intrusion, defacement, or worse.

Many security vulnerabilities occur because the outside world can manipulate
services that are running on the server. For example, SQL injection is a means to
run arbitrary commands on the database via things like web forms. The static file
architecture prevents this. (Granted, someone could hack into the server itself—
either through another, unrelated service running on the machine, or by infiltrating
the data center—but this is a vulnerability of any computer system.)

Familiar tools

People are accustomed to using text editors. They know how to save files to disk.
This process enables users to retain the tools with which they are familiar, rather
than having to fiddle with clunky WYSIWIG editors built in JavaScript.

160 | Chapter 12: When Databases Attack: A Guide for When to Stick to Files

Remote users may have a few difficulties at first. They will need to use a tool like
FTP, scp, or rsync to push their local content to the server. That might be over‐
whelming for some. However, these commands are fairly trivial for anyone who is
comfortable working on a command line. You could provide these people with any
cloud-based service for syncing files between computers.

Easy backup

Backups and restores are now easy, because the backup system only needs to talk
to the standard filesystem. Every backup tool can handle plain text files.

By comparison, backing up and restoring databases can be a pain. It typically re‐
quires that you use special, database-specific tools, and some of those create special
formats.

Implementation
Given what we’ve outlined above, the implementation is fairly straightforward. We have
a directory of plain text documents that store our raw data. That directory is monitored
by inotifywait or an equivalent tool. When the contents of that directory are modified,
inotifywait calls a processing script with the file that has changed as an argument.
That script needs to be able to create a new HTML document from the file’s contents
when created or modified, and remove the HTML document upon deletion.

A working implementation of this system is available at http://
github.com/timClicks/baddata/.

Reflections
In many regards, this chapter has been about conservatism. I encountered a negative
experience with new and unfamiliar tools. That sent me back to rely on what I know.
Files are approachable and everywhere.

It is very difficult to know if a particular technology will be suited for your use case. If
you discover that it’s not, you can be too far down a particular track to escape and move
to something else. The project can feel futile. You will develop workarounds for problems
with the original stack, which may themselves need to be worked around at some later
date. And so on.

Files are not a perfect solution, but they can be a good enough solution. Hopefully, if
you start your data analysis project using files, you’ll buy yourself some time to evaluate
several other tools. Sometimes waiting until you have collected the data you are inter‐
ested in analyzing can be the best way to discover how to store it. Until then, you may
be able to make do with files.

Reflections | 161

http://github.com/timClicks/baddata/
http://github.com/timClicks/baddata/

I hope that you have been able to extract lessons from my experience. My aim with this
chapter has been to provide a different view on how to structure a data mining project.
You have not found the universal truth here. Hopefully, what you have found is a series
of useful tools that you can apply bits of in future projects. Thank you for reading. Kia
kaha.

162 | Chapter 12: When Databases Attack: A Guide for When to Stick to Files

“You were enlightened?”

“No. I didn’t feel the bliss of enlightenment.
Instead… I was surrounded by an endless sorrow.”

—Yu Shu Lien describing the effects of bad data

(…or something similar…) to Li Mu Bai in

Crouching Tiger, Hidden Dragon

CHAPTER 13

Crouching Table, Hidden Network

Bobby Norton

Data is good to the extent that it can be quickly analyzed to reveal valuable information.
With good data, we’re able to learn something about the world, to increase revenue, to
reduce cost, or to reduce risk. When data is locked up in the wrong representation,
however, the value it holds can be hidden away by accidental complexity.

Let’s start our journey in the context of a seemingly simple problem faced by many IT-
intensive enterprises: keeping track of who is paying for costs incurred by the business.
To name but a few types of costs, consider servers, software licenses, support contracts,
rent in the data center, Amazon EC2 costs, the cost of teams building software and
providing support; the list goes on. As a business grows and the costs associated to run
the business increase, sooner or later, someone will ask, “What are we paying for?”

From a business owner or executive perspective, not every department within a business
uses shared assets to the same degree. As such, it doesn’t make sense to evenly split costs
across the entire business. Doing so may hide the fact that a particular line of business
isn’t profitable and should be shut down. For large enterprises, this could be a multi‐
million dollar problem.

163

A Relational Cost Allocations Model
An accountant would likely think of cost allocation in terms of accounts called cost
centers. Cost centers have both revenue and costs, and subtracting cost from revenue
yields either profit or loss. We need a way to track the incoming costs from cost drivers
(the expenses we incur to run the business) to all cost centers. Let’s euphemistically call
our cost drivers assets, in the hope that they’ll contribute to our business being profitable.
To start modeling the cost allocation domain, we can use a technique from the relational
database world called Entity-Relationship (ER) modeling. Entities correspond to the
concepts in our domain that will be uniquely identified. Relationships capture attributes
describing connections among entities. Please see Figure 13-1 for an ER diagram of this
scenario. The cost allocation relationships we’ll consider are:

• One Asset can be allocated to many Cost Centers; one Cost Center can have many
Assets.

• One Department can have many Cost Centers; one Cost Center can belong to many
Departments.

• One Asset can be allocated to many Departments; one Department can have many
Assets.

• One Asset can be allocated to many Services; one Service can have many Assets.

• One Service can be allocated to many Products; one Product uses many Services.

• One Product can be allocated to many Departments; one Department can have
many Products.

• One Product can be allocated to many Cost Centers; one Cost Center can have
many Products.

We’ve identified five entities and seven associative entities that capture our many-to-
many relationships. Our entities need a name and description, and our allocation rela‐
tionships need an effective date and percentage to capture the allocation ratio. This gives
us the basis of a conceptual schema that we can use to attack the problem.

The longest path that an asset a1 could take through the entities in this schema would
involve the asset being allocated to a number of services (sn), products (pn), departments

(dn), and cost centers (cn). The resulting number of rows for a1 is r1 and is given by:

If sn = 5, pn = 2, dn = 2, and cn = 3, we have 60 rows for a1. If this represents an average

number of allocation rows per asset, then we would have 600,000 rows in a final report
covering 10,000 assets.

164 | Chapter 13: Crouching Table, Hidden Network

Figure 13-1. Entity-relationship diagram

Assume we’ve inserted some sample representative data into the above schema. What
data would the allocation report rows contain? Let’s take a simple case, an asset allocated
to two cost centers. An SQL query to retrieve our allocations is:

select * from assets
inner join assets_cost_centers on assets.asset_id =
assets_cost_centers.asset_id
inner join cost_centers on assets_cost_centers.cost_center_id =
cost_centers.cost_center_id;

Two sample rows might look like the following:

as-
set_id

name descrip-
tion

as-
set_id

cost_cen-
ter_id

effective_date percent-
age

cost_cen-
ter_id

name descrip-
tion

1 web
server

the
box…

1 1 2012-01-01… 0.20000 1 IT 101 web serv-
ices

1 web
server

the
box…

1 2 2012-01-01… 0.80000 2 SAAS
202

software
services

A Relational Cost Allocations Model | 165

The percentage attribute in each row gives us the ratio of the asset’s cost that the cost
center will be charged. In general, the total asset allocation to the cost center in each row
is the product of the allocation percentages on the relationships in between the asset
and the cost center. For an asset with n such relationships, the total allocation percentage,
atotal, is given by:

If the server costs us $1,000/month, the IT 101 cost center will pay $200 and the IS 202
cost center will pay $800.

This is fairly trivial for a direct allocation, but let’s look at the query for asset to service,
service to product, product to department, and department to cost center:

select * from assets
inner join assets_services on assets.asset_id = assets_services.asset_id
inner join services on assets_services.service_id = services.service_id
inner join services_products on services.service_id =
 services_products.service_id
inner join products on services_products.product_id = products.product_id
inner join products_departments on products.product_id =
 products_departments.product_id
inner join departments on products_departments.department_id =
 departments.department_id
inner join departments_cost_centers on departments.department_id =
 departments_cost_centers.department_id
inner join cost_centers on departments_cost_centers.cost_center_id =
 cost_centers.cost_center_id

One of the resulting rows would look like:

asset percentage service percentage product percentage department percentage cost_center

file
server

0.10000 Data
Science
S…

0.40000 Search
Engine

0.7000 R&D 0.25000 SAAS 201

Our allocation percentage here is now the product of the allocation percentages in be‐
tween the asset and the cost center. For this row, we have

A server with a $3,000 monthly charge would, therefore, cost the SAAS 202 cost center
$21 per month.

These are only the two corner cases, representing the shortest and the longest queries.
We’ll also need queries for all the cases in between if we continue with this design to
cover assets allocated to departments and products allocated to cost centers. Each new
level of the query adds to a combinatorial explosion and begs many questions about the

166 | Chapter 13: Crouching Table, Hidden Network

1. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 1996. The Algorithmic Beauty of Plants. Springer-Verlag
New York, Inc., New York, NY, USA.

2. http://en.wikipedia.org/wiki/File:KochFlake.svg

design. What happens if we change the allocation rules? What if a product can be
allocated directly to a cost center instead of passing through a department? Are the
queries efficient as the amount of data in the system increases? Is the system testable?
To make matters worse, a real-world allocation model would also contain many more
entities and associative entities.

The Delicate Sound of a Combinatorial Explosion…
We’ve introduced the problem and sketched out a rudimentary solution in just a few
pages, but imagine how a real system like this might evolve over an extended period of
months or even years with a team of people involved. It’s easy to see how the complexity
could be overlooked or taken for granted as the nature of the problem we set out to solve.

A system can start out simple, but very quickly become complex. This fact has been
deeply explored in the study of complex systems and cellular automata. To see this idea
in action, consider a classic technique for defining a complex graphical object by starting
with two simple objects:

“One begins with two shapes, an initiator and a generator…each stage of the construction
begins with a broken line and consists in replacing each straight interval with a copy of the
generator, reduced and displaced so as to have the same end points as those of the interval
being replaced.”

Benoît Mandelbrot1

In just three iterations of this algorithm, we can create a famous shape known as the
Koch snowflake.2

The Delicate Sound of a Combinatorial Explosion… | 167

http://en.wikipedia.org/wiki/File:KochFlake.svg

Not so different than what just happened with our relational schema, is it? Our entities
play the role of the “straight interval,” and the associative many-to-many entities act as
the complexity generators.

The Hidden Network Emerges
Let’s step back. If we were to just step up to a whiteboard and draw out what we were
trying to accomplish with the asset allocations for our servers, our sketch might look
something like Figure 13-2.

Figure 13-2. Visual model of what’s being accomplished

The visual model makes it easier to see that, for purposes of calculating allocated cost,
there really isn’t a great deal of difference among these “types.” At the most fundamental
level, there are dots, lines, and text describing both. We can read the first dot and line
in this drawing as, “The File Server asset is allocated 10% to the Data Science service.”

We can simplify our ER data model dramatically if we take a cue from this visual model
and define our domain in terms of these dots, lines, and text descriptions. Because our
lines are directed, and we don’t have any cycles, our allocation model is actually a directed
acyclic graph. The dots are vertices, the lines are edges, and the properties are key-value
pairs that optionally add additional information to each vertex and edge.

168 | Chapter 13: Crouching Table, Hidden Network

We don’t need typed entities to represent our vertices and edges. We can simply include
a type property on our vertices to capture whether the vertex represents, for example,
an asset or a service. We can use labels on the edges to represent that each edge represents
an allocation. We can capture the percentage and effective date of the allocation as a
property on the edge, along with any other properties we might need.

Given that we now have only vertices that can be allocated to one another, our schema
reduces from the model in the ER diagram to Figure 13-3.

Figure 13-3. Reduced from the model in the ER diagram

Storing the Graph
Once we have decided on a graph data structure to model our domain, we have a choice
to make about how we will persist the data. We could continue to use a relational data‐
base to represent our graph, perhaps storing the list of allocations as an adjacency list
of edges. SQL is a set-oriented language, however, and expressing graph concepts is not
its strength. Whatever our schema, using SQL and RDBMS technology to solve graph
problems courts an impedance mismatch often seen in object-oriented systems backed
by relational databases.

Impedance matching originates in the field of electrical engineering and is the process
of matching source and load impedance to maximize power transfer and minimize
signal reflection in the transmission line. The object-relational impedance mismatch is
a metaphor applying when a relational database schema (source) is at odds with the
target object model in object-oriented languages such as Java or Ruby (load), necessi‐
tating a mapping between the two (signal reflection/power loss). Object-relational
mapping (ORM) frameworks such as Hibernate, MyBatis, and ActiveRecord attempt to
abstract away this complexity. The downside is that each tool introduces a potentially
long learning curve, possible performance concerns, and of course, bugs.

Ideally, we want to minimize the complexity and distraction that these extra layers can
introduce and keep our solution close to our data model. This expressivity is a key driver
behind a host of persistence solutions that operate outside of the relational model. The
term NoSQL (Not Only SQL) has arisen over the last few years to cover systems oriented
around alternative data models such as documents, key-value pairs, and graphs. Rather
than discarding relational models, NoSQL solutions espouse polyglot persistence: Using
multiple data models and persistence engines within an application in order to use the
right tool at the right time.

Storing the Graph | 169

3. http://blueprints.tinkerpop.com

4. http://gremlin.tinkerpop.com

Graph databases allow us to natively reason about our data in terms of vertices, edges,
properties, and traversals across a network. Several popular graph databases on the
market today include Titan, Neo4j, and OrientDB. Each of these solutions implements
a Java interface known as Blueprints,3 an Application Programming Interface (API) that
provides a common abstraction layer on top of many popular graph databases and allows
graph frameworks to interoperate across vendor implementations. Like most offerings
in the NoSQL space, graph databases don’t require a fixed schema, thus accommodating
rapid prototyping and iterative development. Many graph database solutions are also
open source, with commercial licensing and support available from the vendors.

Because graph databases don’t support SQL, querying must be done through client
frameworks and vendor-specific API’s. Blueprints-compliant graph databases can use
Gremlin,4 a graph traversal framework built on the JVM that includes implementations
in Groovy, Java, Scala, and Clojure. Let’s use Gremlin to create our allocations graph
and compare it to our relational solution.

Navigating the Graph with Gremlin
Using Gremlin, we can define the allocations for the three asset allocations we’ve ex‐
plored. We can start exploring the graph using the Gremlin Groovy console and a Tin‐
kerGraph, an in-memory graph useful for experimental sessions:

g = new TinkerGraph()

==>tinkergraph[vertices:0 edges:0]

We then add vertices to the graph, passing in a Map of properties:

fs = g.addVertex([name:'File Server', type:'Asset'])
s = g.addVertex([name:'Data Science', type:'Service'])

We then create a relationship between our file server and data science service:

allocation = g.addEdge(fs, s, 'allocated_to',
[percentage:0.1, effective_date:'2012-01-01'])

After adding our allocations, we can query the graph for paths. The equivalent of the
first inner join from our relation schema from assets to services becomes a path to the
head vertices (inV) of the outgoing edges (outE) from an asset vertex (g.v(0)):

gremlin> g.v(0).outE.inV.path

==>[v[1], e[6][1-allocated_to->3], v[3]]

Inspecting the properties on this path gives us:

170 | Chapter 13: Crouching Table, Hidden Network

http://blueprints.tinkerpop.com
http://gremlin.tinkerpop.com

5. http://gremlin.tinkerpop.com/Path-Pattern

6. Ted G. Lewis. 2009. Network Science: Theory and Applications. Wiley Publishing.

==>{name=File Server, type=Asset}
==>{percentage=0.10, effective_date=2012-01-01}
==>{name=Data Science, type=Service}

To find all paths to cost centers, we can start the traversal with the collection of asset
nodes and loop until we encounter vertices of type cost center:

g.V('type', 'Asset').as('allocated').outE.inV.loop('allocated')
 {it.loops < 6}{it.object.type == 'Cost Center'}.path

==>[v[0], e[2][0-allocated_to->1], v[1], e[6][1-allocated_to->3],
 v[3], e[7][3-allocated_to->4], v[4], e[8][4-allocated_to->5], v[5]]

This concise expression has the benefit of returning all allocation paths shorter than six
edges away from the start of the traversal. If we follow the pattern above and add all of
the allocation edges from our relational design, the query will return our three paths:

==>[v[0], e[2][0-allocated_to->1], v[1], e[6][1-allocated_to->3],
 v[3], e[7][3-allocated_to->4], v[4], e[8][4-allocated_to->5], v[5]]
==>[v[9], e[11][9-allocated_to->10], v[10]]
==>[v[9], e[12][9-allocated_to->5], v[5]]

Given these paths, it would be a simple matter to extract the allocation percentage
property from each edge to obtain the final allocation from asset to cost center by ap‐
plying a post-processing closure:5

g.V('type', 'Asset').as('allocated').outE.inV.loop('allocated'){it.loops < 6}
 {it.object.type == 'Cost Center'}.path{it.name}{it.percentage}

==>[File Server, 0.10, Data Science, 0.40, Search Engine, 0.70, R&D, 0.25,
 SAAS 202]
==>[Web Server, 0.20, IT 101]
==>[Web Server, 0.80, SAAS 202]

Finding Value in Network Properties
The graph-based solution exploits the ease of finding paths through a directed graph.
In addition to the reporting concern we explored in which we sought out all paths
between two points, pathfinding has useful applications in risk management, impact
analysis, and optimization. But paths are really just the beginning of what networks can
do. Graph databases and query languages like Gremlin allow for networks, “graphs that
represent something real,”6 to be included in modern application architectures.

Finding Value in Network Properties | 171

http://gremlin.tinkerpop.com/Path-Pattern

7. http://developers.facebook.com/docs/opengraph

8. “eBay Acquires Recommendation Engine Hunch.com,” http://www.businesswire.com/news/home/
20111121005831/en

9. Brin, S.; Page, L. 1998. “The anatomy of a large-scale hypertextual Web search engine.” Computer Networks
and ISDN Systems 30: 107–117

The field of network science is devoted to exploring more advanced structural properties
and dynamics of networks. Applications in sociology include measuring authority and
influence and predicting diffusion of information and ideas through crowds. In eco‐
nomics, network properties can be used to model systemic risk and predict how well
the network can survive disruptions.

Going back to our allocations example, we might be interested in evaluating the relative
importance of a service based on the profitability of the cost centers to which it eventually
allocates out. Put another way, services that allocate out to the most profitable cost
centers could be considered the most important in the business from a risk management
perspective, since interruptions in one of these services could lead to disruption of the
firm’s most profitable lines of business. This perspective allows the allocation model to
become data useful for operations, resource planning, and budgeting.

There are also many examples of businesses capitalizing on network properties. Face‐
book is powered by its Open Graph, the “people and the connections they have to ev‐
erything they care about.”7 Facebook provides an API to access this social network and
make it available for integration into other networked datasets.

On Twitter, the network structure resulting from friends and followers leads to recom‐
mendations of “Who to follow.” On LinkedIn, network-based recommendations include
“Jobs you may be interested in” and “Groups you may like.” The recommendation engine
hunch.com is built on a “Taste Graph” that “uses signals from around the Web to map
members with their predicted affinity for products, services, other people, websites, or
just about anything, and customizes recommended topics for them.”8

A search on Google can be considered a type of recommendation about which of pos‐
sibly millions of search hits are most relevant for a particular query. Google is a $100B
company primarily because it was able to substantially improve the relevance of hits in
a web search through the PageRank algorithm.9 PageRank views the Web as a graph in
which the vertices are web pages and the edges are the hyperlinks among them. A link
implicitly conveys relevance. A linked document therefore has a higher chance of being
relevant in a search if the incoming links are themselves highly linked and very relevant.

It’s interesting to consider that PageRank is based on topological network properties.
That is, the structure of the Web alone provides a predictive metric for how relevant a

172 | Chapter 13: Crouching Table, Hidden Network

http://developers.facebook.com/docs/opengraph
http://www.businesswire.com/news/home/20111121005831/en
http://www.businesswire.com/news/home/20111121005831/en

given page will be, even before considering a web page’s content. This is a perfect example
of network structure providing value above and beyond the data in the source of the
vertices. If you have related data that you don’t explore as a network, you may be missing
opportunities to learn something valuable.

Think in Terms of Multiple Data Models and Use the Right
Tool for the Job
We’ve seen two models of how to solve a cost allocation problem. The relational model
closely matched the domain, but added accidental complexity to an already inherently
complicated problem. An alternative graphical model allowed us to dramatically sim‐
plify the representation of the data and easily extract the allocation paths we needed
using open-source tools.

A big part of our jobs as data scientists and engineers is to manage complexity. Having
multiple data models to work with will allow you to use the right tool for the job at hand.
Graphs are a surprisingly useful abstraction for managing the inherent complexity in
networks while introducing minimal accidental complexity.

Hopefully, the next time you encounter highly connected data, you’ll recognize it as a
network and you’ll be better equipped to wring out all the valuable information it’s
hiding. Good luck in finding the value in your data…may your models serve you well
and bring you more enlightenment than sorrow!

Acknowledgments
Thanks to my colleagues at Aurelius for critical feedback: Dr. Marko Rodriguez, Dr.
Matthias Bröcheler, and Stephen Mallette. Thanks also to the entire TinkerPop com‐
munity for supporting the graph database landscape with Blueprints, Gremlin, and the
rest of the TinkerPop software stack. Thanks to my wife Sarah Aslanifar for early reviews
and for AsciiDoc translation of the original manuscript. Last, but certainly not least,
thanks to Q and the O’Reilly team for making Bad Data Handbook happen!

Think in Terms of Multiple Data Models and Use the Right Tool for the Job | 173

CHAPTER 14

Myths of Cloud Computing

Steve Francia

Myths are an important and natural part of the emergence of any new technology,
product, or idea as identified by the hype cycle. Like any myth, technology myths orig‐
inate in a variety of ways, each revealing intriguing aspects of the human psyche. Some
myths come from early adopters, whose naive excitement and need to defend their
higher risk decision introduce hopeful, yet mistaken myths. Others come from vendors
who, with eagerness, over-promise to their customers. By picking apart some of the
more prominent myths surrounding the cloud, we gain better understanding of not only
this technology, but hopefully the broader ability to discern truth from hype.

Introduction to the Cloud
In some ways, cloud computing myths are easily among the most pervasive of all tech‐
nology myths. Myths about the cloud are quickly perpetuated through a blend of am‐
biguity of what “the cloud” actually means and the excitement surrounding the hype of
a new technology promising to be the solution to all our problems. As the hype around
“the cloud” grows, each new vendor adopts that term while simultaneously redefining
it to fit their product offerings.

What Is “The Cloud”?
For the purposes of this text, we will be using the term “the cloud” to refer to virtualized
nodes on elastic demand as provided by vendors like Amazon’s EC2, Rackspace, Mi‐
crosoft Azurel, Joyent, and more. Even with this somewhat restricting definition, there
are significant differences between the different vendors.

175

The Cloud and Big Data
You may be wondering what cloud computing has to do with big data. A significant
percentage of companies today are using cloud computing and that number is increasing
daily. While some positions exist where a data scientist can leave things completely to
an infrastructure team, in many jobs they may be responsible for the infrastructure. In
a startup, it’s quite likely, at least to some degree. In all jobs, some knowledge and aware‐
ness of infrastructure strengths and best practices would benefit the diligent data sci‐
entist. It’s natural for someone to think that the infrastructure isn’t her problem; but in
a smaller firm, a data scientist may have to make decisions about storage and when the
data disappears, it’s everyone’s problem. The hope is that through understanding these
myths and through them the strength of cloud computing, the astute data practitioner
will be able to leverage the cloud to be more productive while avoiding disasters along
the way.

I’m going to take a slightly different approach from the sections you have already read.
Rather than sharing a single experience, I’ll be sharing with you many experiences to
which I’ve been privy courtesy of working for 10gen. 10gen develops and supports
MongoDB and as a result, we benefit from sharing experiences with our customers,
many of whom are on the cloud. In order to protect their privacy, I have taken some
isolated experiences and woven them into a cohesive story about a fictional startup. To
quote Dragnet, “The story you are about to read is true; only the names have been
changed to protect the innocent….” I’ve also done my best to abstract the specific tech‐
nologies and vendors used to their root principles, as the experiences included could
have easily been had across any of the cloud vendors.

Introducing Fred
The central character in our story is Fred. Fred is the CTO of a six-month old data driven
fictitious social startup called ProdigiousData. He and his team have finished their initial
prototype and are about to launch the product. They recognize that while their imme‐
diate needs are small, with a small degree of success they will have big data needs very
soon. Fred decides that they will launch their product on the cloud due to its easy ability
to scale to handle their big data needs. Fred, and more importantly his CFO, are excited
about the low cost that the cloud provides, especially without needing to purchase any‐
thing up front.

176 | Chapter 14: Myths of Cloud Computing

At First Everything Is Great
After months of preparation, sweat, and lots of coffee, the launch happens and it’s an
immediate success. All the important things are happening just right. User growth is
steadily increasing and more importantly people seem to really like the product. The
system they have designed is quite capable of handling the load. Fred and his team
couldn’t be happier.

They Put 100% of Their Infrastructure in the Cloud
Under the time and pressure constraints surrounding a startup that hadn’t yet launched,
they decided to go with a fairly simple and straightforward infrastructure. They are
using all cloud-based machines and services, from the load balancer and firewall to the
database and data processing nodes. The current makeup is two smaller machines run‐
ning software load balancers in an active-passive configuration. The load balancers
distribute requests to three application nodes. At the back, they have a pair of database
nodes configured in a master-slave setup. They feel they have eliminated any single
points of failure and their virtual cluster is optimally utilized.

As Things Grow, They Scale Easily at First
As the load increases, they are able to stand up another app node with ease. They simply
clone an existing node that is running and within minutes they have additional capacity.
This is the horizontal scalability that they were expecting.

Then Things Start Having Trouble
A couple of weeks go by before they have their first blip. It’s manifesting in some users
getting timeouts. It’s pretty irregular, but it definitely has Fred worried. The fact that
they haven’t yet set up a sophisticated monitoring system keeps him up at night, but
with only a handful of machines, it never seemed like much of a priority. Upon inspecting
the application logs, they discover the problem is the application is hanging on database
operations. The CPU on the database machine is working around the clock. Load is in
the double digits. They reboot the database and boost the specs on the virtual node on
which it’s running. They jump up to the largest size available, increasing the number of
cores and RAM on the virtual machine. While the team thinks the problem is solved,
Fred knows better. He knows that they haven’t solved anything, but simply delayed the
inevitable. At some point, that larger database node will also reach a point of saturation
and at the rate their load is increasing, it’s going to happen soon.

At First Everything Is Great | 177

They Need to Improve Performance
In an effort to delay this even further, they begin to optimize their database. While their
dataset is growing in size, it’s growing in use far more. They are doing much more read
and writes than they expected at this stage. They need to find some way to increase the
database performance. Running iostat on the database nodes is very telling. Their IO
performance is poor and seek times are worse. They’ve gone with a popular cloud pro‐
vider that has ephemeral local storage. Data persistence is achieved via networked stor‐
age. As a result, durable block stores in the cloud will have slower performance and less
predictable throughput when compared to a local disk.

Higher IO Becomes Critical
Fred’s no rookie. He knows that to increase IO performance you either need faster drives
or more of them. Since his provider only has one tier of drives, they go with attaching
4 volumes configured in RAID 10. RAID 10 gives them the best of both worlds, providing
double read and write performance and full redundancy. After the change is made to
both database nodes things stabilize for the most part. Now that the fire is out they set
up a more sophisticated monitoring system, one that not only provides better diagnostics
into what is happening by tracking stats and graphing them over time, but also alerts
when certain conditions and thresholds are met. It’s a lot of work, but they’ve gotten a
wake up call from this initial scare that they have been flying blind and and they won’t
likely be this lucky next time.

A Major Regional Outage Causes Massive Downtime
Seemingly out of nowhere, disaster strikes. A regional outage occurs with their cloud
provider. They are completely offline and it provides them little comfort to know that
it’s not just them, but also some other fairly notable websites. Hours go by without any
information other than the occasional status update from their vendor. Ten hours later
the provider is back online. This is a very short-lived victory, for it is only when they try
to bring their machines back online do they realize their disaster has just begun. They
haven’t yet automated the build of each machine and now isn’t the time to do it. Because
each machine was ephemeral, with this full power outage they lost all setups and are
more or less starting from scratch. They manually configure each machine. First the app
servers and then the database. Luckily the data is there, but the database won’t start. It’s
complaining that it shut down uncleanly (duh) and the data files need to be repaired.
After a lengthy repair, it looks like all their data is there, and 21 coffee-filled hours later
they are back online. They have learned that managing nodes in the cloud requires a lot
of work and that automation is essential. While an outage could have just as easily
happened at a data center, there is no question that if they had an account at a data center

178 | Chapter 14: Myths of Cloud Computing

1. www.opscode.com/chef

they would have had more feedback from their account manager. A dedicated data
center would be working with them to bring their machines back online and of course
every host provides persistent storage, so the restoration of their infrastructure would
be trivial. They certainly wouldn’t have needed to rebuild all their nodes.

Higher IO Comes with a Cost
In the weeks that follow, no real issues occur. With all that has happened, they aren’t
taking chances. They are keeping a close watch on their infrastructure, especially the
database. With RAID 10 and monitoring in place, they know that for the most part they
are in good shape. Over time they begin to notice some strange behaviors and they
struggle to explain it. It seems that overall performance has increased dramatically but
one particular operation has actually degraded. The nightly bulk import is actually tak‐
ing longer than it did before, even though the data imported is relatively the same. After
crunching a bunch of data in an external system, they load the data in a large batch.
This behavior is contradictory to all their expectations and they struggle to make sense
of what’s happening. Google searches produce some forum answers, but no clear ex‐
planation emerges. They logically think that due to the somewhat random high latency
present on these multitenancy network drives that by doubling the output and band‐
width they would be hedging against these issues. After spending a lot of time trying to
diagnose, including trying to launch their cluster on a different region, they eventually
abandon their pursuit, assuming it’s either an issue with their monitoring or a problem
without a solution. They accept this degradation of performance because overall per‐
formance has increased. Most operations have improved in measurable and expected
ways.

Data Sizes Increase
As user growth increases, the data increases even faster. They proactively realize that
they will need to partition their data across multiple machines as they can not sustain
growth on one pair of servers. They knew this all along, in fact they planned on it, but
with the recent outage they have adjusted their approach.

Geo Redundancy Becomes a Priority
One of the nice features of the cloud is that cloud providers seamlessly provide hardware/
services in many regions or availability zones. ProdigiousData realizes that to achieve
their desired uptime, they need to be in at least two zones. They now have leveraged
chef to be able to quickly create nodes.1 They can easily create load balancers and app

Higher IO Comes with a Cost | 179

servers in the new region as they are predominantly stateless, but what about the data‐
base servers? How do they replicate or partition the data effectively? They do a quick
test and realize that there is about a 0.250 ms latency between the two different regions
and at times it’s considerably higher.

Horizontal Scale Isn’t as Easy as They Hoped
They come to the realization that this is going to be a lot of work. While the stateless
application nodes scale effortlessly, the stateful database nodes are far less portable. Even
though their underlying database technology makes it quite easy to add more nodes to
the database cluster, each new node begins empty. Data needs to be migrated from
existing nodes to the new one. Beyond that, they need to worry about where to place
the nodes for maximum performance and minimum downtime. Fred concedes that for
their business needs, they can survive with slightly stale data as caused from replicating
over the wan from nodes in one region to nodes in another. They place some app nodes
into each of the two locations and database nodes in each, but in a creative way. The
data is partitioned into geographical regions and then evenly distributed across the
different nodes in each region. Each primary node (the one accepting writes) then rep‐
licates to two different nodes, one local to that region and one in the other region. The
application writes and reads to the locally writing database and reads from the stale local
data that was replicated from the other region. Setting all of this up in a automated
fashion was a big task that took weeks. Unfortunately, software doesn’t currently exist
to both set up and coordinate efforts across many different nodes playing different roles
in a cluster.

Costs Increase Dramatically
It wasn’t easy, but they got there. They now have a pretty scalable application running
in the cloud. It has multiple location redundancy and is even optimized to route users
to two different availability zones depending on their location. Everything is going
well…well, until Fred gets the bill for the month. Something must be wrong. He never
paid this much in a month with his dedicated colocation hosting company. Fred began
to think of all the things they had added. Multiple locations, three copies of each node,
six copies of all pieces of data (2 per RAID 10 configuration x 3 replicated database
nodes). They also maxed out the configuration on each of those nodes. He began to do
a cost analysis against an old statement. He discovered that when running on the cloud,
it often required more nodes and resources to achieve similar performance. While the
cost per node was often cheaper, cloud nodes and a server running on hardware cus‐
tomized for a task were not the same.

180 | Chapter 14: Myths of Cloud Computing

2. http://www.informationweek.com/news/galleries/cloud-computing/infrastructure/232901167

Fred’s Follies
Does Fred’s story sound familiar? Perhaps it reminds you of your own. What myths did
Fred fall prey to and how can you best learn from Fred’s follies to avoid these pitfalls
yourself?

Myth 1: Cloud Is a Great Solution for All Infrastructure
Components
For a few years now, the cloud has been billed as the future of infrastructure. Marketers
use such language as “Enterprise data centers will be largely replaced by cloud computing
within 20 years” and “Public cloud computing offers many incredible possibilities, like
the prospect of doing supercomputer-level processing on demand and at an incredibly
low cost.”2 Consumers have largely been taken in. They view the cloud as an easy solution
for all their infrastructure needs. In a world where software is able to emulate nearly any
hardware, people often are using the cloud for everything because they can, often with
blissful ignorance. The lure of being able to stand up a load balancer, firewall, or RAID
controller without any expensive hardware entices many.

How This Myth Relates to Fred’s Story
Another place where virtualized nodes can’t come close to the performance and func‐
tionality of dedicated hardware are load balancers. While expensive up front, an F5 or
Stingray will produce amazing results and are much easier to configure than any purely
software tool. Both have fully redundant options and work well when distributing load
across multiple locations. It is true that some vendors provide some load balancing
offerings, but none offer the flexibility or performance that one can obtain through
hardware. Additionally, they are all designed to load balance between the Internet and
your cluster, but not for uses within the cluster.

Myth 2: Cloud Will Save Us Money
Let me begin this section by stating clearly that using the cloud effectively can result in
cost savings. Additionally, from a purely financial perspective, when using the cloud
instead of your own equipment, the expense switches from a capital expenditure
(CapEx) into a more flexible operational expenditure (OpEx). This appeals to many
CFOs, which makes the CTO/CIO look like a financial genius. While this doesn’t make
sense in every situation as there are still some times when years of CapEx tax depreci‐
ation are preferred, for a majority of companies OpEx is preferred over CapEx.

Fred’s Follies | 181

http://www.informationweek.com/news/galleries/cloud-computing/infrastructure/232901167

To better illustrate this point I’d like to use a simple analogy. There are three common
ways to obtain a car. You can rent, lease, or buy. Each has its own place and to many
people, it’s pretty straightforward which one makes the most sense for their situation.
If you are in a place for a few days, renting a car makes the most sense. If you want to
reduce your upfront cost and intend to use a car longer term, then leasing makes a lot
of sense. If you are using a car longer term and want to completely customize it for your
situation, purchasing makes the most sense. The world of computing presents these
same three options. You can rent (cloud computing), lease (managed hosting), or pur‐
chase (colocation/data center). Similar logic applies here. If you intend a node for long-
term use, purchasing will save you significantly over renting.

One place where this analogy fails is that in cloud computing, you aren’t given a lot of
choices. You can increase the number of CPUs and amount of RAM independently of
one another. While in time, it’s quite possible that more levers will be made available by
vendors, historically, options have been quite limited. Choices have been boiled down
to the most simple terms such as small, medium, and large. In our analogy, it’s more like
you can rent any car as long as it’s a sedan. If you need to carry more than five people,
you can rent two. You can rent a fast sedan or an economic one, but they are all sedans.

Often, running application servers that can easily adjust to needs by scaling up or down
the number of nodes can produce real savings. But savings require you to manage and
adjust the number of nodes appropriately.

For many uses, you could drastically reduce the cost by optimizing the hardware for
your needs. One such case is with databases. On the cloud, the value (and performance)
is often just not there. Databases benefit heavily from high IO with low random seek
times. SSDs in a RAID 10 configuration powered by a reliable high performance hard‐
ware RAID controller will produce amazing results untouchable with any cloud con‐
figuration. What’s worse here is that to achieve acceptable performance on the cloud,
you’ll end up spending a lot more on faster drives and more nodes, and consequently
more replicated nodes for high availability.

This principle applies to all databases, relational and nonrelational alike. Some of the
newer databases like MongoDB have been designed with the cloud in mind. In the case
of MongoDB, the database utilizes memory mapped files as a cache to alleviate many
read and write operations from the slower IO present on cloud. This is an extremely
beneficial improvement, but eventually all data needs to be read from and written to
disk. As a consequence of this memory management style, money spent for the purchase
of hardware to be used with MongoDB is better spent on additional memory than on
more powerful CPUs. Unfortunately, with the cloud you can’t adjust RAM independ‐
ently from CPU, and most software and services don’t have a linear relationship between
their processing and memory needs.

182 | Chapter 14: Myths of Cloud Computing

How This Myth Relates to Fred’s Story
While the cost savings up front were significant, over time they found themselves
spending more and more. When you factor in the overhead of managing more nodes
than needed it’s impossible to make the claim that they saved money by running on the
cloud. Fred, like many CTOs, flew under the radar on this one. The reality is that very
few people are watching this closely enough and doing a cost comparison. Like boiling
a frog, the temperature slowly rises and before you know it, you’re cooked. Sometimes
the switch from a CapEx to an OpEx itself is enough of a selling point to justify the cost.

Myth 3: Cloud IO Performance Can Be Improved to
Acceptable Levels Through Software RAID
Perhaps this isn’t a myth as much as a misunderstood behavior. As mentioned in the
previous myths, people put a lot of trust in software being capable of replacing hardware.
And to some degree it can, from the perspective of meeting the minimum feature re‐
quirements. In some areas of computing, we have gone over completely to software-
based solutions. It used to be that sound processing was done completely by add-in
sound cards. I remember bragging about my SoundBlaster AWE64, which meant I could
play 64 simultaneous MIDI instruments, but more importantly to me, any game on the
market. While a few sound cards are still on the market, they have nearly all been re‐
placed by software-based solutions with negligible impact on performance. It would
seem like RAID would be in the same boat. It’s a fairly low-level, but simple function.
Linux’s md feature provides virtually all the RAID functionality present from the various
hardware vendors.

How This Myth Relates to Fred’s Story
In our story, Fred and the ProdigiousData team fell prey to this myth. They put all of
their infrastructure on virtualized nodes, using software-based solutions for many
things that would have previously been done using hardware.

Unfortunately in many circumstances, hardware simply trumps software. Recall in the
story that odd decrease in behavior when they increased their IO by switching from one
drive to four in a RAID 10 configuration. They simply gave up trying to solve it, assuming
it was just a fluke. It wasn’t a fluke; it’s easily isolatable and repeatable. It occurs as a
result of Linux md (multi disk) functionality falling far short of the performance ach‐
ievable by a good RAID controller. One area where this is quite noticeable is in random-
write performance, which is quite poor. Similar things happen throughout computing.
Whether discussing hardware or software, we often make the trade-off between the

Myth 3: Cloud IO Performance Can Be Improved to Acceptable Levels Through Software RAID | 183

convenience of virtualized or interpreted over the performance of native. For example,
compare dynamic languages to complied languages, or iPhone apps (native code) to
Android apps (virtual machine). In cases where performance matters, it’s often an ex‐
pensive mistake to make this compromise.

See http://engineering.foursquare.com/2012/06/20/stability-in-the-midst-of-chaos/

Myth 4: Cloud Computing Makes Horizontal Scaling Easy
Dr. Werner Vogel, Amazon’s CTO, explained that building horizontally scaling, reliable
geo-redundant systems on cloud platforms “becomes relatively easy.” Of all the myths
presented here, this is the most pervasive one about the cloud.

It is a common misconception that you can simply deploy your application to the cloud
and it “just works.” It is commonly believed that the cloud eliminates the need for (care‐
ful) planning on how to scale an application. Geographic redundancy and 24/7 global
access is easy because they are able to fire up nodes in multiple data centers. This may
be the vision of the future, but it’s certainly not the present. Without careful planning
and the appropriate infrastructure, there are common factors among cloud providers
that make horizontal scaling even more difficult.

How This Myth Relates to Fred’s Story
The ProdigiousData group learned this through many hard experiences. When all was
said and done, they had a pretty robust (and complicated) infrastructure, and they
earned it. They invested heavily into each solution and experienced their share of down‐
times and sleepless nights getting there. After all their experiences, they didn’t regret
what they had done, but wondered if there was a better way.

The fact that there is a cottage industry around making the cloud manageable should
itself dispel this very persistent myth, and yet to no avail. Perhaps the reason this myth
is so prevalent is that some myths drive us. Great accomplishments are often driven by
great visions. These optimistic goals define the future. Perhaps this myth isn’t a false tale
as much as a vision we are all hoping comes to pass. It’s conceivable that in the near
future, advancements in virtualization, operating systems, data storage, data processing,
and the glue tying it all together will make this myth true. Of all of the above myths, this
one may be a vision that may actually come to fruition.

Conclusion and Recommendations
The idea to treat computing as a utility, commodified and available at the turn of a
switch, has revolutionized the industry. The gamble Amazon made years ago has been
the most significant advancement to computer infrastructure in the last decade. As
wonderful as this advancement is, it’s not the end of all computing. While cloud com‐

184 | Chapter 14: Myths of Cloud Computing

http://engineering.foursquare.com/2012/06/20/stability-in-the-midst-of-chaos/

puting has its obvious benefits, it’s still relatively early in its development, with rapid
advancements from various vendors all trying to one-up each other complicating the
market. Not only is it a rapidly emerging technology, but every technology has its sweet
spot. There is great power that comes from using the right tool for the job. Cloud com‐
puting is fantastic for stateless, process heavy jobs, such as most application servers. The
cloud has historically been weaker at jobs where state matters. Data processing typically
falls in the middle of these two. For me, the ideal infrastructure would include the best
of both worlds: easy management of stateful machines running on optimized hardware
connected via LAN to commoditized cloud nodes for application processing. It’s im‐
portant to recognize that these cloud offerings are still infants in their life cycles. In time,
as offerings develop and improve, it’s likely that the cloud’s current weaknesses will be
erased and it will become an increasingly viable solution.

Conclusion and Recommendations | 185

CHAPTER 15

The Dark Side of Data Science

Marck Vaisman

More often than not, data scientists hit roadblocks that do not necessarily arise from
problems with data itself, but from organizational and technical issues. This chapter
focuses on some of these issues and provides practical advice on dealing with them, both
from human and technical perspectives. The anecdotes and examples in this chapter
are drawn from real-world experiences working with many clients over the last five years
and helping them overcome many of these challenges.

Although the ideas that are presented in this chapter are not new, the main purpose is
to highlight common pitfalls that can derail analytical efforts. When put into context,
these guidelines will help both data scientists and organizations be successful.

Avoid These Pitfalls
The subject of running a successful analytics organization has been explored in the past.
There are many books, articles, and opinions written about it and this will not be ad‐
dressed here. However, if you would like to be successful in executing and/or managing
analytical efforts within your organization, you should not heed the “commandments”
listed below.

I. Know nothing about thy data

II. Thou shalt provide your data scientists with a single tool for all tasks

III. Thou shalt analyze for analysis’ sake only

IV. Thou shalt compartmentalize learnings

V. Thou shalt expect omnipotence from data scientists

187

These commandments attempt to cluster-related ideas, which I will explore in the fol‐
lowing sections. If you do choose to obey one or more of these commandments—which
we’ve explicitly warned you not to—you will most likely head down the path of not
achieving your goals.

Know Nothing About Thy Data
You have to know your data, period. This cannot be stressed enough. Real world data
is messy and dirty; that is a fact. Regardless of how messy or dirty your data is, you need
to understand all of its nuances. You need to understand the metadata about the data.
If your data is dirty, know that. If there are missing values, know that, and know why
they are missing. If you have multiple sources with different formatting, know that.

Knowing thy data is a crucial step in a successful analysis effort. Time spent up-front
understanding all of the nuances and intricacies of the data is time well spent. The rule
of thumb says that 80% of time spent in analytics projects is cleaning, munging, trans‐
forming, and so on; so the more you know about the data, the less time you’ll spend in
these tasks.

In the following sections, we’ll highlight some examples of times when organizations
knew about their data, but did not now enough. (In our experience, knowing nothing
about the data is the exception. Usually people do have some level of knowledge.)

Be Inconsistent in Cleaning and Organizing the Data
The first step in an analysis effort is to establish consistent processes to clean the data.
This way, other people know what to expect when they work with it.

Case study: A client had defined several processes to move, clean, and archive the data
into tab-delimited flat files, which in turn served as the source data for many other
analytics efforts. Most analyses of this data seemed to work well, but one particular case
yielded unexpected results. A visual inspection didn’t reveal any obvious flaws in the
data, but a closer investigation revealed that the troublesome files used a mix of spaces
and tabs as delimiters. The culprit? The process that had generated these files had in‐
serted some unexpected spaces instead of tabs.

Assume Data Is Correct and Complete
A common pitfall is to assume that you’re working with correct and complete data.
Usually, a round of simple checks—counting records, aggregating totals, plotting, and
comparing to known quantities—will reveal any problems. If your data is incorrect or
incomplete, you need to know that, so your decisions can take that fact into account.

Case study: A client had created a data product that calculated certain metrics on a daily
basis, over a period of time. All production processes were running without issue and

188 | Chapter 15: The Dark Side of Data Science

the consumers of the data were using the data provided without question. The size of
the processed daily datasets was in the order of hundreds of millions of data points.
Certain decisions of large economic impact were made based on the results of these data
products.

The client later launched a separate research investigation, using the same datasets, to
try to understand if and how the daily distributions changed over time. This project
yielded some unexpected results, raising the question of whether the data was correct
and complete during certain time periods. Further analysis revealed that, during those
time periods, about twenty percent of the data was missing. This means that the client
had made (wrong) decisions, simply because no one knew that data was incomplete!
Simple summaries, made early on, would have indicated missing data.

Spillover of Time-Bound Data
It’s common that organizations partition their data by some time interval—such as day,
hour, or minute—and then organize the files in directories named accordingly. For ex‐
ample, given a directory called data_20120706, one could reasonably expect that every
file therein would hold data somehow related to July 6, 2012.

In my experience, though, this doesn’t always hold true. Instead, many projects exhibit
“spillover,” which is a nice way of saying that a path for one time interval contains data
from other intervals. In this example it would mean that the directory data_20120706
would also contain data from July 5, 2012, or July 7, 2012.

Spillover can happen for any number of reasons, including inadequate accuracy in the
partitioning scheme. While you may not be able to completely eliminate spillover, you
can at least be aware of it. Don’t expect that the data is partitioned perfectly.

Thou Shalt Provide Your Data Scientists with a Single Tool
for All Tasks
There is no single tool that allows you to perform all of your data science tasks. Many
different tools exist, and each tool has a specific purpose. In order to be successful, data
scientists should have access to the tools they need and also the ability to configure these
tools as needed—at least in a research and development (R&D) environment—without
having to jump through hoops to do their work. Providing one fixed tool (or set of tools)
to perform all tasks is unrealistic and unreasonable.

Using a Production Environment for Ad-Hoc Analysis
The use cases of performing exploratory analysis or any other data R&D effort are very
different than the use cases for running production analytics processes. Generally, the
design of production systems specify that they have to meet certain service level agree‐

Thou Shalt Provide Your Data Scientists with a Single Tool for All Tasks | 189

ments (SLAs), such as for uptime (availability) and speed. These systems are maintained
by an operations or devops teams, and are usually locked down, have very tight user
space quotas, and may be located in self-contained environments for protection. The
production processes that run on these systems are clearly defined, consistent, repeat‐
able, and reliable.

In contrast, the process of performing ad-hoc analytical tasks is nonlinear, error-prone,
and usually requires tools that are in varying states of development, especially when
using open source software. Using a production environment for ad-hoc and explora‐
tory data science work is inefficient because of the limitations described above.

Case study: A client had two Hadoop clusters, one for R&D and the other for production.
All R&D work was performed on the R&D cluster, which included an ample set of tools
(R, Python, Pig, and Hive, among others). However, the R&D cluster was managed as
a production system: R&D users did not have administrative privileges. This meant that
even though users could run jobs, the R or Python streaming scripts were limited to
only using the core libraries. Therefore, it took more time to develop analysis jobs be‐
cause users had to implement “creative” solutions to work around these limitations.

One such workaround, to use special R or Python libraries, involved moving data out
of the Hadoop cluster to a separate machine where analysts had administrative access.
The entire process was cumbersome and added unnecessary time and headaches to a
project.

You need to carefully plan out the architecture, configuration, and administration of
your tools and environments. The use cases are different, and therefore the management
and operation of the system should be different as well.

I certainly don’t advocate that all users or data scientists have administrative privileges
and do as they please; but they should have enough privileges to set up the environment
to suit their analytics needs. If this is not possible, it would make sense to have the
operations teams and the analytics users work in partnership and devise workable sol‐
utions.

The Ideal Data Science Environment
At the time of this writing, it is relatively easy and inexpensive to set up an ideal data
science environment. With low hardware costs (processors, storage, and memory) and
the ease of access to cloud computing resources (Amazon EC2, Rackspace, or other
cloud services), organizations should get the tools their data scientists need and let them
manage the tools as they need to as mentioned before.

At a minimum, I recommend you set up one or more multi-core analytics machines
running Linux, with lots of RAM and ample storage space. I recommend Linux as an
operating system because most analytics tools and programming languages are designed
with Linux in mind (e.g., Hadoop), and many external libraries run on Linux only.

190 | Chapter 15: The Dark Side of Data Science

If you have a cluster, you should try to have your analytics machine within the same
environment as your cluster, especially if you store data in a distributed file system such
as Hadoop’s HDFS. Data scientists should have some level of administrative rights so
they can compile and install libraries as needed.

Setting up the right environment is not only a matter of using the right tools, but also
of having the right organizational mindset. Ideally, a data science environment is not
used for other development purposes so data scientists can take advantage of all available
resources for their needs, especially when running large scale analysis in a parallel
fashion.

Thou Shalt Analyze for Analysis’ Sake Only
There are many kind of analytical exercises you can do. Some begin as an exploration
without a specific question in mind; but it could be argued that even when exploring,
there are some questions in mind that are not formulated. Other exercises begin with a
specific question in mind, and end up answering another question. Regardless, before
you embark on a research investigation, you should have some idea of where you are
going. You need to be practical and know when to stop and move onto something else.
But again, start with some end in mind. Just because you have a lot of data does not
mean you have to do analysis just for analysis’ sake. Very often, this kind of approach
ends with wasted time and no results.

Additionally, before you embark on an data science project, you should assess your
analytics readiness level. This assessment will help set an end goal and avoid digging
into a rabbit hole. Understanding where you fall in this readiness spectrum will help set
priorities and define an end goal. Some of the possible readiness levels are:

• We don’t even know where to begin.

• We don’t know what we have, and we’ve never done any analysis before.

• We have an idea of what we have, but we’ve never done any analysis before.

• We know what we have, and we’ve tried answering specific questions, but we’re
stuck.

Case study: A Fortune 500 technology company had a process that generated data based
on day-to-day operations. Historically, their data warehousing team performed most
analytics tasks, such as traditional Business Intelligence (BI). This team’s primary re‐
sponsibility was to develop relational database-driven tools, though they had also been
dabbling in less-conventional analytics projects.

They decided to bring in a data scientist to help with the latter endeavor. The belief was
that the data scientist would magically find a golden nugget hidden in their data, which

Thou Shalt Analyze for Analysis’ Sake Only | 191

they could easily translate into some results. Management’s directive was, quite simply:
“Go and find me the value in the data!” They did not follow up with any context or
direction; they simply set an unrealistic expectation that a wizard was off to do some
magic and return with all the answers.

The proper response in this case—and the one the data scientist provided, mind you—
was to object to this directive and ask for direction, get context, and set the parameters
for engaging in an analytics exercise. Part of a data scientist’s role and value is to help
the organization ask the right questions, and steer clear of unnecessary work.

Thou Shalt Compartmentalize Learnings
This commandment is pretty straightforward. The idea here is that, as an organization,
you should share your knowledge. This is especially important when analytical efforts
are performed by different areas throughout the company.

Share your findings. If you are doing analysis and you find something related to any of
the pitfalls mentioned previously—whether you find missing data, formatting errors,
shortcuts to get things done—share them. If you’ve already processed data into aggre‐
gates for some reason and you think that could be useful for other analyses, share it.
When you finish a body of work, share the findings (code, results, charts, or other
documentation). Document your assumptions. Document your code. Have informal
gatherings to share and discuss.

It is amazing, especially in large organizations, when you spend time working on some‐
thing and you consult with colleagues in other areas, how often you hear: “oh, yes, we
looked at that a while ago and we have some results in a file somewhere.” The amount
of time (which usually translates into economic value) saved by sharing can be quite
large. By sharing your knowledge, you are also contributing to the learning across the
organization.

Thou Shalt Expect Omnipotence from Data Scientists
Data scientists come in all shapes, sizes, and colors, and hail from traditional and unusual
career paths. They blend skills in programming, mathematics, statistics, computer sci‐
ence, business, and machine learning, among others. Above all, great data scientists are
very curious about everything and have broad knowledge across many different do‐
mains.

The current availability of computing power, analytically focused programming lan‐
guages (such as R and Python), and parallel computing frameworks (such as Hadoop)

192 | Chapter 15: The Dark Side of Data Science

allows data scientists to be very effective. Data scientists are able to perform many tasks
across the analytics spectrum, from spinning up a cluster in the cloud, to understanding
the subtleties and trade-offs of different technologies and system quirks, to running a
clustering algorithm and building predictive models.

Omnipotence is defined as having unlimited powers and there seems to be an expect‐
ation that data scientists can and should do it all. While they are willing and able to work
on many tasks across the data science process, from munging and modeling to visual‐
izing and presenting, it’s quite rare to find talent with extensive experience in all aspects
of data science.

Organizations and managers would do well to adjust their expectations accordingly. A
successful data science function is made up not by one person, but at a minimum two
or three individuals whose broad skills have much overlap while their unique expertise
does not.

Where Do Data Scientists Live Within the Organization?
Finding a place for data scientists can be a bit tricky. Sometimes you’ll find them living
within an engineering organization, sometimes within a product organization, some‐
times within a research organization, and other times they live under some other um‐
brella or on their own. However, wherever data scientists live in your organization, make
sure there is unified guidance and management that understands using data science as
an asset.

Final Thoughts
I hope that this chapter’s case studies helped you think about the higher-level organi‐
zational issues that may arise in an analytics effort. If you want success in your data
science endeavors, please heed my advice and do not follow the commandments I’ve
outlined here.

It is hard to quantify the impact of the pitfalls outlined in this chapter. Suffice it to say
that the impact is usually economic, and in some cases can be quite large.

Final Thoughts | 193

1. “Kaggle: making data science a sport.” (http://www.kaggle.com/)

CHAPTER 16

How to Feed and Care for Your
Machine-Learning Experts

Pete Warden

Machine learning is a craft as well as a science, and for the best results you’ll often need
to turn to experienced specialists. Not every team has enough interesting problems to
justify a full-time machine-learning position, though. As the value of the approach be‐
comes better-known, the demand for part-time or project-based machine-learning
work has grown, but it’s often hard for a traditional engineering team to effectively work
with outside experts in the field. I’m going to talk about some of the things I learned
while running an outsourced project through Kaggle,1 a community of thousands of
researchers who participate in data competitions modeled on the Netflix Prize. This was
an extreme example of outsourcing: we literally handed over a dataset, a short descrip‐
tion, and a success metric to a large group of strangers. It had almost none of the tra‐
ditional interactions you’d expect, but it did teach me valuable lessons that apply to any
interactions with machine-learning specialists.

Define the Problem
My company Jetpac creates a travel magazine written by your friends, using vacation
photos they’ve shared with you on Facebook and other social services. The average user
has had over two hundred thousand pictures shared with them, so we have a lot to choose
from. Unfortunately, many of them are not very good, at least for our purposes. When
we showed people our prototype, most would be turned off by the poor quality of the
images, so we knew we needed a solution that would help us pick out the most beautiful
from the deep pool to which we had access.

195

http://www.kaggle.com/

This intention was too vague to build on, though. We had to decide exactly what we
wanted our process to produce, and hence what question we wanted to answer about
each photo. This is the crucial first step for any machine-learning application. Unless
you know what your goal is, you’ll never be able to build a successful solution. One of
the key qualities you need is some degree of objectivity and repeatability. If, like me,
you’re trying to predict a human’s reaction, it’s no good if it varies unpredictably from
person to person. Asking “Is this a good flavor of ice cream?” might be a good market
research question, but the result says more about an individual’s personal taste than an
objective “goodness” quality of the dessert.

That drove us to ask specifically, “Does this photo inspire you to travel to the place
shown?” We were able to confirm that the answers for individual photos were quite
consistent across the handful of people we ran initial tests on, so it appeared that there
was some rough agreement on criteria. That proved we could use one person’s opinion
as a good predictor of what other people would think. Therefore, if we could mimic a
person with machine learning, we should be able to pick photos that many people would
like.

As with most software engineering disciplines, the hardest part of a machine-learning
expert’s job is defining the requirements in enough detail to implement a successful
solution. You’re the domain expert, so in the end you’re the only one who can define
exactly what problem you want to solve. Spend a lot of time on this stage; everything
else depends on it.

Fake It Before You Make It
Because the problem definition is so crucial, you should prototype what would happen
if you could get good answers to the question you’re asking. Does it actually achieve the
goals you set when you try it within your application? In our case, we could determine
that by using a human to rate a handful of users’ photos, and then present the end result
within our interface to see how it changed the experience. The results were extremely
positive: users went from a lukewarm reaction to enthusiasm when the first photos they
saw were striking and inspiring. From a technical standpoint, it helped us, too, because
it ensured we had set up the right modular interface so that the quality algorithm could
be a true black box within our system, with completely-defined inputs and outputs.

For almost any machine-learning problem, you can build a similar human-powered
prototype at the cost of some sweat and time. It will teach you crucial lessons about what
you need from the eventual algorithm, and help you to be much smarter about steering
the rest of the process. A good analogy is the use of static “slideware” presentations of
an application to get initial feedback from users. It gives people a chance to experience
something close to the result for which you’re aiming, at a stage when it’s very easy to
change.

196 | Chapter 16: How to Feed and Care for Your Machine-Learning Experts

2. Amazon Mechanical Turk: “Artificial Artificial Intelligence.” (https://www.mturk.com/)

In practice, the system we set up worked very simply. We’d ask a user to sign up on the
site, and we’d send them an email telling them that their slideshow would be ready soon.
We loaded information about all the photos in their social circle into our database, and
then added them to a queue. We had a photo-rating page that team-members could
access that displayed a single photo from the person at the head of the queue, and had
two buttons for indicating that the photo was inspiring, or not so much. Choosing one
would refresh the page and show the next unrated photo, and if multiple people were
rating, the workload would be spread out among them. This allowed us to rapidly work
through the tens of thousands of photos that were shared with an average user, and we
often had their results back within an hour. It meant that when we sat down with advisors
or potential investors for a meeting, they could sign up at the start and we could show
them a complete experience by the end of the discussion. That helped convince people
that the final product would be fun and interesting if we could solve the quality issue,
and enabled them to give us meaningful advice about the rest of the application before
that was done.

Create a Training Set
Prototyping naturally led to this next stage. Before we could build any algorithm, we
needed a good sample of how people reacted to different photos, both to teach the
machine-learning system and to check its results. We also wanted to continue testing
other parts of our application while we worked on the machine-learning solution, so
we ended up building a human-powered module that both produced a training set, and
manually rated the photos for our early users. This might sound like a classic Mechanical
Turk2 problem, but we were unable to use Amazon’s service, or other similar offerings,
because the photos weren’t public. To protect people’s privacy, we needed to restrict
access to a small group of vetted people who had signed nondisclosure agreements and
would work as our employees. We did experiment with hiring a few people in the Phil‐
ippines, but discovered that the cultural gap between them and our user population was
too large. Situations like conferences and graduations were obviously inspiring to us and
our target users in the US, but weren’t recognizable as such by our overseas hires. We
could no doubt have fixed this with enough training and more detailed guidelines, but
it proved easier to tackle it internally instead.

We already had millions of photos available to analyze, and we wanted to build as big a
training set as possible, because we knew that would increase the accuracy of any sol‐
ution. To help us rate as many photos as possible, I built a web interface that displayed
a grid of nine photos from a single album, and let us mark the set as good or bad and
advance to the next group with one keystroke. Initially these were y and n, but we found
that switching to , and . helped improve our speed. The whole team joined in, and we

Create a Training Set | 197

https://www.mturk.com/

spent hours each day on the task. We had all rated tens of thousands of photos by the
time we stopped, but our community manager Cathrine Lindblom had a real gift for it,
notching up multiple days of more than fifteen thousand votes, which works out to a
sustained rate of one every two seconds!

One of the decisions that was implicit in our interface was that we’d be rating entire
albums, rather than individual photos. This was an optimization that seemed acceptable
because we’d noticed anecdotally that the quality of photos seemed pretty consistent
within a single album, and that a selection of nine pictures at once was enough to get a
good idea of that overall quality. It did constrain any algorithm that we produced to only
rating entire albums, though.

To ensure that we were being consistent, we kept an eye on the accepted percentage rate.
On average, about 30% of all photos were rated as good, so if anyone’s personal rating
average was more than a few percentage points above or below that, they knew they
were being too strict or lenient. I also considered collecting multiple ratings on some
photos, to make sure we were really being consistent, but when I did a manual inspection
of our results, it seemed like we were doing a good enough job without that check.

In the end, we had over two hundred and fifty thousand votes, while at the time we
started the competition we’d only accumulated about fifty thousand.

Pick the Features
We were starting to develop a good reference library of which photos were considered
good and bad, but we hadn’t decided which attributes we’d try to base the predictions
on. The pixel data seemed like the obvious choice, but because the pictures were exter‐
nally hosted on services like Facebook, that would potentially mean fetching the data
for hundreds of thousands of images for every user, and the processing and bandwidth
requirements would be far too much for our budget. We were already relying heavily on
the text captions for identifying which places and activities were in the photos, so I
decided to test a hunch that particular words might be good indicators of quality. I didn’t
know ahead of time which words might be important, so I set out to create a league table
of how highly the most common words correlated with our ratings.

I used some simple Pig scripts to join the votes we’d stored in one table in our Cassandra
database with the photos to which they were linked, held in a different table. I then
found all the words used in the album title, description, and individual captions, and
created overall frequency counts for each. I threw away any words that appeared less
than a thousand times, to exclude rare words that could skew the results. I then used
Pig to calculate the ratio of good to bad photos associated with each word, and output
a CSV file that listed them in order.

When I saw the results, I knew that my hunch was right. For certain words like Tombs
and Trails, over ninety percent of the pictures were rated highly, and at the other end of

198 | Chapter 16: How to Feed and Care for Your Machine-Learning Experts

the scale, less than three percent of photos with Mommy in the caption made people
want to travel there. These extremely high and low ranking words weren’t numerous
enough to offer a simple solution—they still only occurred in a few percent of the cap‐
tions—but they did give me confidence that the words would be important features for
any machine-learning process. One thing I didn’t expect was that words like beautiful
weren’t significant indicators of good pictures; it seems like bad photographers are as
likely to use that in their captions as good ones!

I also had a feeling that particular locations were going to be associated with clusters of
good or bad photos, so I split the world up into one-degree sized boxes, and used another
Pig script to place our rated photos into them based on their rounded latitude and
longitude coordinates, and ordered the results by the ratio of good to bad photos in each,
excluding buckets with less than a thousand photos. Again, there seemed to be some
strong correlations with which to work, where places like Peru had over ninety percent
of their pictures highly rated. That gave me a good enough reason to put the location
coordinates into the inputs we’d be feeding to the machine learning.

Along with word occurrences and position, I also added a few other simple metrics like
the number of photos in an album and the photo dimensions. I had no evidence that
they were correlated with quality, but they were at hand and seemed likely suspects. At
this point I had quite a rich set of features, and I was concerned that providing too many
might result in confusion or overfitting. The exact process of picking features and de‐
ciding when to stop definitely felt like a bit of an art, but doing some sanity testing to
uncover correlations is a good way to have some confidence that you’re making rea‐
sonable choices.

Encode the Data
Machine-learning algorithms expect to have inputs and outputs that are essentially
spreadsheets, tables of numbers with each row representing a single record, with the
columns containing particular attributes, and a special column containing the value
you’re trying to predict. Some of my values were words, so I needed to convert those
into numbers somehow. One of the other things I was concerned about was ensuring
that the albums had no identifiable information, since essentially anyone could down‐
load the datasets from the Kaggle website. To tackle both problems, I randomly sorted
the most common words and assigned to them numbers based on the order they ap‐
peared in the resulting list. The spreadsheet cells contained a space-separated list of the
numbers of the words that appeared in the captions, description, and title.

In a similar way, I rounded down the latitude and longitude coordinates to the nearest
degree, to prevent exact locations from being revealed. The other attributes were already
integral numbers, so I had everything converted into convenient numerical values. The
final step was converting the predicted good or bad values into numbers, in this case
just 1 for good and 0 for bad.

Encode the Data | 199

3. scikit-learn: machine learning in Python (http://scikit-learn.org/)

Split Into Training, Test, and Solution Sets
Now I had the fifty thousand albums we’d voted on so far described in a single spread‐
sheet, but for the machine-learning process, I needed to split them up into three different
files. The first was the training set, a list of albums’ attributes together with the human
rating of each one. As the name would suggest, this was used to build a predictive model,
fed into the learning algorithm so that correlations between particular attributes and
the results could be spotted and used. Next was the test set, which contained another
list of different albums’ attributes, but without including the results of a human’s rating
of its photos. This would be used to gauge how well the model that had been built using
the training set was working, by feeding in the attributes and outputting predictions for
each one.

These first two spreadsheets would be available to all competitors to download, but the
third solution set was kept privately on the Kaggle servers. It contained just a single
column with the actual human predictions for every album in the test set. To enter the
contest, the competitors would upload their own model’s predictions for the test set, and
behind the scenes Kaggle would automatically compare those against the true solution,
and assign each entry a score based on how close all the predicted values were to the
human ratings.

One wrinkle was that to assign a score, we had to decide how to measure the overall
error between the predictions and the true values. Initially I picked a measure I under‐
stood, root-mean square, but I was persuaded by Jeremy Howard to use capped binomial
deviance instead. I still don’t understand the metric, despite having stared at the code
implementing it, but it produced great results in the end, so he obviously knew what he
was talking about!

We had to pick how to split the albums we had between the training and the test sets,
and a rule of thumb seemed to be to divide them with roughly a three to one ratio. We
had just over fifty thousand albums rated at that point, so I put forty thousand in the
training, and twelve thousand in the test. I used standard Unix tools like tail to split up
the full CSV file, after doing a random sort to make sure that there weren’t any selection
biases caused by ordering creeping into the data. After that, I was able to upload the
three files to Kaggle’s servers, and the technical side of the competition was ready.

These same files were also perfect inputs to try with an off-the-shelf machine learning
framework. I spent a few hours building an example using the scikit-learn3 Python
package and its default support vector machine package, but it didn’t produce very

200 | Chapter 16: How to Feed and Care for Your Machine-Learning Experts

http://scikit-learn.org/

effective results. I obviously needed the expertise of a specialist, so for lack of an in-
house genius, I went ahead with the Kaggle competition. It’s a good idea to do something
similar before you call in outside expertise though, if only to sanity check the data you’ve
prepared and get an understanding of what results a naive approach will achieve.

Describe the Problem
Beyond just providing files, I needed to explain what the competition was for, and why
it was worth entering. As a starving startup, we could only afford five thousand dollars
for prize money, and we needed the results in just three weeks, so I wanted to motivate
contestants as much as I could with the description! As it turned out, people seemed to
enjoy the unusually short length of the contest. The description was also useful in ex‐
plaining what the data meant. In theory, machine learning doesn’t need to know any‐
thing about what the tables of numbers represent; but in practice, there’s an art to
choosing which techniques to apply and which patterns to focus on, and knowing what
the data is actually about can be helpful for that. In the end, I wrote a few paragraphs
discussing the problem we were encountering, and that seemed quite effective. The
inclusion of a small picture of a tropical beach didn’t seem to hurt, either!

In theory, a machine-learning expert can deal with your problem as a pure numerical
exercise. In practice, building good algorithms requires a lot of judgment and intuition,
so it’s well worth giving them a brief education on the domain in which you’re working.
Most datasets have a lot of different features, and it helps to know which attributes they
represent in the real world so you can tune your algorithms to focus on those with the
greatest predictive power.

Respond to Questions
Once we’d launched, I kept an eye on the Kaggle forums and tried to answer questions
as they came up. This was actually fairly tough, mostly because other community mem‐
bers or Kaggle staff would often get to them before me! It was very heartening to see
how enthused everybody was about the problem. In the end, the three-week contest
involved very little work for me, though I know the contestants were extremely busy.

This was one of the areas where our data contest approach led to quite a different ex‐
perience than you’d find with a more traditionally outsourced project. All of the previous
preparation steps had created an extremely well-defined problem for the contestants to
tackle, and on our end we couldn’t update any data or change the rules part-way through.
Working with a consultant or part-time employee is a much more iterative process,
because you can revise your requirements and inputs as you go. Because those changes
are often costly in terms of time and resources, up-front preparation is still extremely
effective.

Describe the Problem | 201

Several teams apparently tried to use external data sources to help improve their results,
without much success. Their hope was that by adding in extra information about things
like the geographic location where a photo was taken, they could produce better guesses
about its quality. In fact, it appeared that the signals in the training set were better than
any that could be gleaned from outside information. We would have been equally happy
to use a data source from elsewhere as part of our rating algorithm if it had proven useful,
but we were also a little relieved to confirm our own intuition that there weren’t preex‐
isting datasets holding this type of information!

Initially, we were quite concerned about the risk of leaking private information. Even
though our competition required entrants to agree not to redistribute or otherwise mis‐
use the dataset we were providing, other contests have been won by teams who managed
to de-anonymize the datasets. That is, those teams had used the attributes in the test set
to connect the entities with external information about them, and in turn to discover
the right answers directly rather than predict them. In our case, we had to make sure
that no contestant could find out which albums were being referred to in our test set,
lest they look at the photos they contained directly to make a direct human evaluation
of their quality. The one-way nature of our encoding process, Facebook’s privacy con‐
trols, and lack of search capabilities for photos on the site kept the original images safe
from the teams.

Integrate the Solutions
We had an amazing number of teams enter—over 400—and the top 10 entries were so
close as to be almost identical, but we’d promised to split the prize money among the
top 3. That also gave us a nonexclusive license to the code they’d used, and this was the
payoff of the whole process for us. My colleague Chris Raynor evaluated the entries, and
chose the code from the second place entrant, Jason Tigg. The top three entries were
very close, but Tigg’s Java code was the easiest to add to our pipeline. We were running
the evaluation as a batch process, so we ended up compiling the Java into a command-
line app that communicated with Ruby, via sockets. It wasn’t the most elegant solution,
but it proved robust and effective for our needs.

202 | Chapter 16: How to Feed and Care for Your Machine-Learning Experts

One unexpected benefit of the machine-learning algorithm was that it produced a real
number expressing the probability that an album was good or bad, rather than the
original binary up or down vote that the humans produced. That let us move high-
probability photos to the front of slideshows, rather than just having two categories.

Conclusion
We’re still using the results of the competition very successfully in our product today. I
hope this walk-through gave you an idea of how to work effectively with outside
machine-learning experts, whether through a contest like Kaggle or through a more
traditional arrangement.

Conclusion | 203

CHAPTER 17

Data Traceability

Reid Draper

Your software consistently provides impressive music recommendations by combining
cultural and audio data. Customers are happy. However, things aren’t always perfect.
Sometimes that Beyoncé track is attributed to Beyonce. The artist for the Béla Fleck solo
album shows up as Béla Fleck and the Flecktones. Worse, the ボリス biography has the
artist name listed as ???. Where did things go wrong? Did one of your customers provide
you with data in an incorrect character encoding? Did one of the web-crawlers have a
bug? Perhaps the name resolution code was incorrectly combining a solo artist with his
band?

How do we solve this problem? We’d like to be able to trace data back to its origin,
following each transformation. This is reified as data provenenace. In this chapter, we’ll
explore ways of keeping track of the source of our data, techniques for backing out bad
data, and the business value of adopting this ability.

Why?
The ability to trace a datum back to its origin is important for several reasons. It helps
us to back-out or reprocess bad data, and conversely, it allows us to reward and boost
good data sources and processing techniques. Furthermore, local privacy laws can
mandate things like auditability, data transfer restrictions, and more. For example, Cal‐
ifornia’s Shine the Light Law requires businesses disclose the personal information that
has been shared with third-parties, should a resident request. Europe’s Data Protection
Directive provides even more stringent regulation to businesses collecting data about
residents.

We’ll also later see how data traceability can provide further business value by allowing
us to provide stronger measurements on the worth of a particular source, realize where
to focus our development effort, and even manage blame.

205

Personal Experience
I previously worked in the data ingestion team at a music data company. We provided
artist and song recommendations, artist biographies, news, and detailed audio analysis
of digital music. We exposed those data feeds via web services and raw dumps. Behind
the scenes, these feeds were composed of many sources of data, which were in turn
cleaned, transformed, and put through machine-learning algorithms.

One of the first issues we ran into was learning how to trace a particular result back to
its constituent parts. If a given artist recommendation was poor, was it because of our
machine-learning algorithm? Did we simply not have enough data for that artist? Was
there some obviously wrong data from one of our sources? Being able to debug our
product became a business necessity.

We developed several mechanisms for being able to debug our data woes, some of which
I’ll explore here.

Snapshotting
Many of the data sources were updated frequently. At the same time, the web pages we
crawled for news, reviews, biography information, and similarity were updated incon‐
sistently. This meant that even if we were able to trace a particular datum back to its
source, that source may have been drastically different than at the time we had previously
crawled or processed the data. In turn, we needed to not only capture the source of our
data, but the time and an exact copy of the source. Our database columns or keys would
then have an extra field for a timestamp.

Keeping track of the time and the original data also allows you to track changes from
that source. You get closer to answering the question, “why were my recommendations
for The Sea and Cake great last week, but terrible today?”

This process of writing data once and never changing it is called immutability, and it
plays a key role in data traceability. I’ll return to it later, when I walk through an example.

Saving the Source
Our data was stored in several different types of databases, including relational and key-
value stores. However, nearly every schema had a source field. This field would contain
one or more values. For original sources, a single source was listed. As data was processed
and transformed into roll-ups or learned-data, we would preserve the list of sources that
went into creating that new piece of data. This allowed us to trace the final data product
back to its constituent parts.

206 | Chapter 17: Data Traceability

Weighting Sources
One of the most important reasons we collected data was to learn about new artists,
albums, and songs. That said, we didn’t always want to create a new entity that would
end up in our final data product. Certain data sources were more likely to have errors,
misspellings, and other inaccuracies, so we wanted them to be vetted before they would
progress through our system.

Furthermore, we wanted to be able to give priority processing to certain sources that
either had higher information value or were for a particular customer. For applications
like learning about new artists, we’d assign a trust-score to each source that would,
among other things, determine whether a new artist was created.

If the artist wasn’t created based solely on this source, it would add weight to that artist
being created if we ever heard of them again. In this way, the combined strength of
several lower-weighted sources could lead to the artist being created in our application.

Backing Out Data
Sometimes we identified data that was simply incorrect or otherwise bad. In such cases,
we had to remove the data from our production offering.

Recall that our data would pass through several stages of transformation on its way to
the production offering. A backout, then, required that we first identify potential sources
of the bad data, remove it, then reprocess the product without that source. (Sometimes
the data transformations were so complex that it was easier to generate all permutations
of source data, to spot the offender.) This is only possible because we had kept track of
the sources that went into the final product.

Because of this observation, we had to make it easy to redo any stage of the data trans‐
formation with an altered source list. We designed our data processing pipeline to use
parameterized source lists, so that it was easy to exclude a particular source, or explicitly
declare the sources that were allowed to affect this particular processing stage.

Separating Phases (and Keeping them Pure)
Often we would divide our data processing into several stages. It’s important to identify
the state barriers in your application, as doing this allowed us to both write better code,
and create more efficient infrastructure.

From a code perspective, keeping each of our stages separate allowed us to reduce side
effects (such as I/O). In turn, this made code easier to test, because we didn’t have to set
up mocks for half of our side-effecting infrastructure.

Personal Experience | 207

From an infrastructure perspective, keeping things separate allowed us to make isolated
decisions about each stage of the process, ranging from compute power, to parallelism,
to memory constraints.

Identifying the Root Cause
Identifying the root cause of data issues is important to being able to fix them and control
customer relationships. For instance, if a particular customer is having a data quality
issue, it is helpful to know whether the origin of the issue was from data they gave you,
or from your processing of the data they gave you. In the former case, there is real
business value in being able to show the customer the exact source of the issue, as well
as your solution.

Finding Areas for Improvement
Related to blame is the ability to find sources of improvement in your own processing
pipeline and infrastructure. This means that the steps in your processing pipeline be‐
come data sources in their own right.

It’s useful to know, for instance, when and how you derived a certain piece of data. Should
an issue arise, you can immediately focus on the place it was created. Conversely, if a
particular processing stage tends to produce excellent results, it is helpful to be able to
understand why that is so. Ideally, you can then replicate this into other parts of your
system.

Organizationally, this type of knowledge also allows you to determine where to focus
your teams’ effort, and even to reorganize your team structure. For example, you might
want to place a new member of the team on one of the infrastructure pieces that is doing
well, and should be a model for other pieces, as to give them a good starting place for
learning the system. A more senior team member may be more effective on pieces of
the infrastructure that are struggling.

Immutability: Borrowing an Idea from Functional
Programming
Considering the examples above, a core element of our strategy was immutability: even
though our processing pipeline transformed our data several times over, we never
changed (overwrote) the original data.

This is an idea we borrowed from functional programming. Consider imperative lan‐
guages like C, Java, and Python, in which data tends to be mutable. For example, if we
want to sort a list, we might call myList.sort(). This will sort the list in place. Conse‐
quently, all references to myList will be changed. If we now want review myList’s original
state, we’re out of luck: we should have made a copy before calling sort().

208 | Chapter 17: Data Traceability

By comparison, functional languages like Haskell, Clojure, and Erlang tend to treat data
as immutable. Our list sorting example becomes something closer to myNewSortedList
= sort(myList). This retains the unsorted list myList. One of the advantages of this
immutability is that many functions become simply the result of processing the values
passed in. Given a stack trace, we can often reproduce bugs immediately.

With mutable data, there is no guarantee that the value of a particular variable remains
the same throughout the execution of the function. Because of this, we can’t necessarily
rely on a stack trace to reproduce bugs.

Concerning our data processing pipeline, we could save each step of transformation and
debug it later. For example, consider this workflow:

rawData = downloadFrom(someSite)
cleanData = cleanup(rawData)
newArtistData = extractNewArtists(cleanData)

Let’s say we’ve uncovered a problem in the cleanup() function. We would only have to
correct the code and rerun that stage of the pipeline. We never replaced rawData and
hence it would be available for any such debugging later.

To take further advantage of immutability, we persisted our data under a compound key
of identifier and timestamp. This helped us find the exact inputs to any of our data
processing steps, which saved time when we had to debug an issue.

An Example
As an example, let me walk you through creating a news aggregation site. Along the way,
I’ll apply the lessons I describe above to demonstrate how data traceability affects the
various aspects of the application.

Let’s say that our plan is to display the top stories of the day, with the ability to drill down
by topic. Each story will also have a link to display coverage of the same event from other
sources.

We’ll need to be able to do several things:

1. Crawl the web for news stories.

2. Determine a story’s popularity and timeliness based on social media activity and
perhaps its source. (For example, we assume a story on the New York Times home
page is important and/or popular.)

3. Cluster stories about the same event together.

4. Determine event popularity. (Maybe this will be aggregate popularity of the indi‐
vidual stories?)

An Example | 209

Crawlers
We’ll seed our crawlers with a number of known news sites. Every so often, we’ll down‐
load the contents of the page and store it under a composite key with URL, source, and
timestamp, or a relational database row with these attributes. (Let’s say we crawl fre‐
quently updated pages several times a day, and just once a day for other pages.)

From each of these home pages we crawl, we’ll download the individual linked stories.
The stories will also be saved with URL, source, and timestamp attributes. Additionally,
we’ll store the composite ID of the home page where we were linked to this story. That
way if, for example, later we suspect we have a bug with the way we assign story popu‐
larity based on home page placement, we can review the home page as it was retrieved
at a particular point in time. Ideally, we should be able to trace data from our own home
page all the way back to the original HTML that our crawler downloaded.

In order to help determine popularity and to further feed our news crawlers, we’ll also
crawl social media sites. Just like with the news crawlers, we’ll want to keep a timestam‐
ped record of the HTML and other assets we crawl. Again, this will let us go back later
and debug our code. One example of why this would be useful is if we suspect we are
incorrectly counting links from shares of a particular article.

Change
Keeping previous versions of the sites we crawl allows for some interesting analytics.
Historically, how many articles does the Boston Globe usually link to on their home
page? Is there a larger variety of news articles in the summer? Another useful by-product
of this is that we can run new analytics on past data. Because immutability can give us
a basis from the past, we’re not confined only to the data we’ve collected since we turned
on our new analytics.

Clustering
Clustering data is a difficult problem. Outlying or mislabeled data can completely
change our clusters. For this reason, it is important to be able to cheaply (in human and
compute time) be able to experiment with rerunning our clustering with altered inputs.
The inputs we alter may remove data from a particular source, or add a new topic
modeling stage between crawling and clustering. In order to achieve this, our infra‐
structure must be loosely coupled such that we can just as easily provide inputs to our
clustering system for testing as we do in production.

Popularity
Calculating story popularity shares many of the same issues as clustering stories. As we
experiment, or debug an issue, we want to quickly test our changes and see the result.

210 | Chapter 17: Data Traceability

We also want to see the most popular story on our own page and trace all the way through
our own processing steps, back to the origin site we crawled. If we find out that we’ve
ranked a story as more popular that we would’ve liked, we can trace it back to our origin
crawl to see if, perhaps, we had put too much weight in its position on its source site.

Conclusion
You will need to debug data processing code and infrastructure just like normal code.
By taking advantage of techniques like immutability, you can dramatically improve your
ability to design and improve your system in a logical manner. Furthermore, we can
draw from decades of experience in software design to influence our data processing
and infrastructure decisions.

Conclusion | 211

CHAPTER 18

Social Media: Erasable Ink?

Jud Valeski

The commercial use of publicly broadcast social experiences is exploding as businesses
work to understand how to engage with our collectively digitized consciousness. This
process is forcing every actor in the ecosystem to make decisions around how to behave
when they engage with this data. From creation, to consumption, and all of the layers
in-between, everyone’s expectations are being challenged. This chapter explores these
expectations and how the various players are managing them.

The transition from commercially created content (such as news stories and product
pages) being the only kind of data available to work with on the network, to personal
end user generated content rapidly taking over, is adding completely new behavioral
characteristics to the software we’re all writing. Many of these characteristics impose
significant implementation challenges that “get in the way” of how we’re used to working
with data. Traditionally, business requirements could be adjusted with negotiation and
money, whereas with the common population so intimately involved in today’s data
production, negotiation and money don’t have the same leverage they once did.

What follows is an inspection of our end user expectations and the technical ramifica‐
tions around what happens to public content that is generated during those moments
when we want to “take it back” or “undo” it. What we expect to be happening in those
instances is often not. Our public content is resyndicated (propagated from its original
source to downstream systems, individuals, and commercial consumers) at phenomenal
rates, and it can often be lost or stolen, which breaks a chain of trust along the way. What
happens next is left in the balance between end user wants and needs, and technical and
policy implementation.

These content “recall” behaviors are inherently challenging to the broader public social
data ecosystem. Consider a traditional media outlet broadcasting our expressions on
television. What happens if a news outlet puts your social network post on screen for

213

60 seconds, yet you realize it’s being displayed 15 seconds in and delete it. What should
happen to the remaining 45 seconds of display? In this case, the data is bad because it
poses significant technical challenges when it’s leveraged at various points in the eco‐
system. From there, it can violate end user expectations.

Social Media: Whose Data Is This Anyway?
As the promise of everything having an IP address comes to fruition (we’ll need IPv6
proliferation of course), the amount of data we exhaust into the network has exploded.
Much of the information we “share” is implicit, but as social media has taken off, much
of that activity has become explicitly conveyed. Entire social media services with multi-
billion dollar valuations exist almost exclusively to broadcast end users’ public thoughts
online for the world to see. The question of ownership is inevitably raised. As an end
user who posts on a given service, do I own that content or does the service own it? In
attempting to answer that question, subsequent questions around control arise.

To better understand the framework for evaluating the answers to some of these chal‐
lenging questions, it’s useful to consider the two most crucial components in the system:
the creator of the content (the end user) and the platform used to make it available. The
evolution of these two components is important.

We, as end users, have been able to publicly broadcast our thoughts from an IP address
for nearly 17 years now (since the broader network widely came online). It has been
technically possible to set up an HTTP server, routable via public DNS, and publish
content to it for public consumption for a long time. Over the years, that process has
radically shifted, however, and barriers to entry have changed.

1995: Very hard and expensive. Purchase a server (several thousand dollars), an oper‐
ating system (hundreds of dollars), and connect it to the network via a hosting provider
(several thousands of dollars per month). Purchase an HTTP server (hundreds of dol‐
lars). Figure out how to write/publish HTML. Purchase a domain name and tie it to
DNS (hundreds of dollars). Publicize your “site” (thousands of dollars in marketing
campaigns).

2001: Still difficult, but more affordable. Web logging/journaling services started pop‐
ping up standalone and as an add-on functionality to existing services. For around
twenty bucks per month, you could get your thoughts out there for the world to see. You
explicitly paid for this “right,” however, with an exchange of money for the service.

2006: Private, easy, and free. Closed social networks started coming online (Facebook).

Today: Easy and free (in a monetary sense). On today’s network, all you have to do is
provide a service with an arbitrary name, an email address, and a password in order to

214 | Chapter 18: Social Media: Erasable Ink?

have the ability to digitally publish your thoughts (from textual expression/posts, to
more subtle expressions like re-tweeting or “liking”) for the world to see. Social media
service providers have absorbed all the infrastructure costs and barriers to entry in order
to solve this use case today.

Control
This evolution has resulted in tradeoffs around control and ownership. The burgeoning
use of public social media has also put the spotlight on our expectations around control
of the content that was created. In 1995, because creation and platforms were managed
by the same person, answers to many of the hard questions were easy. However, the
ubiquity of all of this public social interaction today raises challenging questions.

Whenever major capital outlays are made in underlying communication infrastructure,
control ultimately becomes highly contentious. In the early days, everyone is just having
fun using the new service. Railroads, telegraph wires, hardline telephone networks, cable
infrastructure, satellite systems, and fiber optic networks have all exhibited control
struggles between end users and the firms that spent the billions of dollars to build them.
As you would expect, terms of use surrounding these pieces of infrastructure often read
something like “you can use my infrastructure for free, or for a fee, but I get to own
whatever you do in/on it, and you have to play by my rules. If the government asks me
for information regarding your use, I’m going to give it to them.” As end users, we
generally agree to these terms because the benefits often outweigh the potential down‐
sides.

If the platform/infrastructure is ultimately widely adopted, then the questions around
its use get harder. If the entity that originally outlaid the capital starts to impose control,
and/or radically change the way the system works or is used, they’ll have an end user
uprising on their hands. This moment becomes very real, very fast; consider Net Neu‐
trality.

The Net Neutrality effort is a large-scale conflict between the end users (us) of billions
of dollars of capital outlay on the part of some pioneering businesses that want to cap‐
italize on their investment. While this is a seemingly reasonable thing to desire, a chal‐
lenge to the fairness of it arises when end user expectations are developed for years using
a set of rules that radically shift due to motivations exclusive to the platform owner.

I believe there’s a tipping point for most platforms that theoretically changes a private
service over to a public service. Note that I said “theoretically.” There’s a point wherein
we, as end users, certainly start thinking of the service as effectively “public” insofar as
we believe the service should be bowing to the broad general desires of a mass user base.
Whether or not a private sector entity/service could, or should, be technically moved
into the public domain is a can of worms I’m not going to touch on here.

Control | 215

I’ll never forget a Voice Over Internet Protocol (VOIP) conference I attended a the
Berkley Business School a decade or so ago. The room was filled with people building
products, technologies, and services on top of the backbone that a large northern Cal‐
ifornia telco had spent billions of dollars building over several decades. Presentation
after presentation of awesome stuff filled the day, and then the single representative
from the phone company had his turn on stage. The poor guy had to try and explain to
this room of innovative entrepreneurs how his company actually controlled whether or
not they could do what they wanted to do. He made no bones about the fact that he
believed his investment in this infrastructure gave him the right to control it however
he wanted. Regardless of who was right in this scenario, it personified this interesting
challenge around who controls what and when.

Back to the question of whose data is this anyway? For the time being, the answer lies
in the commercial agreement we as end users agree to when we sign up for, and engage
with, a given social media service. I encourage you to read the terms of service for
those services.

Commercial Resyndication
As you’d expect, online commerce moves to the interaction ball, wherever the greatest
amount of expression/interaction is occurring. Hundreds of millions of humans digitally
engaging with each other, and businesses, online, in real-time, is the most significant
shift in human behavior since the network widely came online nearly twenty years ago.
This has resulted in business and government services (e.g., disaster relief) desiring
commercial access to this conversation in order to help humanity and further business/
commerce in general. General “developer programs” and lightweight APIs that the pub‐
lishing services openly provide, due to relative ease of support, do not tackle the chal‐
lenges inherent in the system. In fact, they can often exacerbate them.

The technical response to this resyndication desire has varied. Some services disallow
any resyndication of any kind, while others have leveraged developer APIs and platforms
to disseminate the public activity of its end users. Further, some services enter into
proprietary resyndication agreements with third-parties in order to ensure resyndica‐
tion beyond what typical rate-limited, REST-ful, interfaces can provide.

From researchers wanting to understand the human condition, to commercial platforms
seeking more effective advertising models on behalf of the companies and brands they
represent, the commercial demand for this digitized public conversation is insatiable.
A post that an end user makes can be resyndicated thousands of times in the blink of
an eye to dozens of other platforms or services. Those platforms and services seek to
extract value, sometimes commercial value and sometimes not, from what was said.

216 | Chapter 18: Social Media: Erasable Ink?

Expectations Around Communication and Expression
Whenever new forms of communication arise, it’s important to consider previous
mechanisms and ways of doing. It gives us a sense of where we’ve been, and how we
should consider, use, and respond to, the new way of doing. Walking through a variety
of traditional forms of communication, our expectations around them, the “rights” we’ve
gained (and lost) as they’ve developed, should help form a basis around how the new
medium should behave. I inevitably see gross conflicts in how I want something new to
behave when compared to how similar communication means have behaved in the past.
Let’s consider a handful of ways we communicate.

Verbal Communication
If I vocalize a statement with others around, I can’t take back the fact that I said it.
I can adjust it and clarify what I meant (even go back on it), but I can’t take the
words back as if they were never spoken. Humans are accustomed to this dynamic.
Politicians understand it down to a scientific level.

Letter Writing
If I hand-write you a letter, I’m in complete control over what I’m communicating
all the way down to the moment you open the letter and read it. There are moments
when it is out of my control, of course (during postal service delivery), but I’m in
complete control while writing it and putting it in the mailbox. I can also be in
control on the other end if I want to be physically present when you receive the
letter mail. The government has even intervened in this communication stream to
impose felony penalties if you interfere with the delivery with letters being sent
through the Postal Service.

SMS/Texting
When I text someone, I’m in control of the message up until the point it is “sent”
from my phone. Thereafter, however, I have no means of engaging with it.

IM
Similar to SMS, I’m in control until I hit Send.

Email
While there are some features/systems/plugins/extensions in place that allow me to
“unsend” or “retract” an email after I’ve hit “send,” they’re generally infrequently
used, and rarely work in real-world use cases. Generally, email is considered a “fire
and forget” communication medium. Once it’s sent, that’s it!

There are various encryption and certification mechanisms that have also existed
for eons around email authenticity and robustness from a trust standpoint; however,
unfortunately, mainstream email clients and servers rarely effectively support them
in a manner that end users could easily take advantage of.

Expectations Around Communication and Expression | 217

Social Media Services
Enter social media services such as Facebook and Twitter. An amalgam of clearly
private and often not-so-clear public communication comprises many of today’s
social media services. End users want to express themselves to a variety of types of
people using these services; however, a key component to them is that their content
is often readily available to other computers and people they didn’t necessarily in‐
tend to share with at the onset. The underlying Internet framework is based on
URLs wherein the name itself implies availability. These services are generally built
on top of this model.

The broader URL/network framework has been in place for nearly twenty years,
and thousands of products and companies have built up around it. One of the In‐
ternet’s most successful firms, Google, has tied their existence to the notion of
identifying domains, crawling URLs (guessing at what URLs exist out there, as well
as walking from link-to-link), scraping the content on the other end of them, storing
that content, indexing it, and making it available to individuals and commercial
enterprises in a variety of ways.

When you consider how public social data is accessed and leveraged by commerce
today, it effectively mirrors how Google has been accessing and leveraging content
on the network for over a decade now. However, there is suddenly an intense focus
on end user expectations around data handling. What changed?

A new generation largely unaware of how the framework worked underneath start‐
ed using social media services heavily. MySpace, Facebook, and Twitter garnered
massive user bases with hundreds of millions of people using them to communicate.
With user bases that large you, by definition, include users that don’t fully under‐
stand how the system works. The majority of them are simply “users” of a system
that others created. They have little or no interest in understanding the underlying
framework and the associated benefits and limitations. All they care about is that
the higher-level behavioral characteristics they expect around communication on
the service are enforced. The social media service must bend to end user desires in
order to remain relevant and keep their user base.

The blend of blog-like functionality (specifically the ability to delete a post after you
had published it) and high-velocity/real-time hosted social media services like
Facebook and Twitter naturally led to end user demand for the ability to delete a
previous social network post. Unfortunately, delete functionality being exposed to
the end users came along well after these services began making the end user time‐
line data/posts available through the traditional web frameworks (crawling/scrap‐
ing), as well as more honed developer APIs. The end result was that there were
plenty of data resyndication mechanisms in play among the social media service
providers, yet none provided recall or delete capabilities.

218 | Chapter 18: Social Media: Erasable Ink?

The social media services adjusted their developer terms of service and end user
terms of service to try and build rules around when and where the underlying data
could be used, and how it should be handled should a modification event, such as
delete, occur. Some of them go so far as to provide an event notification that a
previously created item had been deleted.

From a data standpoint, the cart unfortunately wound up in front of the horse, and
this has led to some data handling scenarios that have tremendous infrastructure
impact on the overall system. From traditional media outlets to innovative startups,
leveraging all of this public social data in a “compliant” manner is a challenge.

Technical Implications of New End User Expectations
One of the services outlined above has the end user expectation of being able to retract
a statement that has previously been made. It is notably the most recent and prolific
platform of all the social media services. It is also the one that commerce is trying to
engage with the most directly.

We’re at a point in time where a widely used communication medium has been front-
ended by the general web infrastructure. We’ve always had user generated content
(email, paper letters, conversations, SMS), but what is relatively new is that all of this
content being created on web-based social media services.

The net result of combining these new communication behavioral expectations (the
desire to retract previously made public statements) with the commercial demands is a
new layer in the system that must constantly validate and control the dissemination of
the content. This is expensive, and can lead to “bad data” proliferating through the
network.

Consider the lifespan of a typical public social event (such as a tweet). First it is created
and posted using a Twitter client. It is then consumed by Twitter’s infrastructure and
disseminated to Twitter clients and other third-parties through resyndication means.

At this point, sometime after the message was originally posted, whether one second,
or a month afterward, the creator of the Tweet may decide to delete it. If that occurs,
the delete request is fielded by Twitter, and that event is disseminated throughout Twit‐
ter’s infrastructure, including its controlled clients, and through to its resyndication
partners (who then, in turn, resyndicate the notification out to their network of cus‐
tomers).

Twitter is often chastised for the control it wants to impose on its product suite. However,
if you consider the above flow, without the right levels of control over the user experience,

Technical Implications of New End User Expectations | 219

if for no other reason than to handle deleted Tweets, the end user experience can indeed
severely suffer. Twitter has set the expectation with me (the end user), that I can delete
my posts. If they can’t keep that promise, social contracts can break, and I become an
unhappy user and leave the service.

That covers the social media service’s expectations and experience, but what about the
third parties that consume public posts that the social media service has decided to
disseminate downstream?

Well, it’s complicated. Consider a general food-stuff product recall. At the point the recall
order gets issued, potentially tons of the food-stuff has been distributed, and potentially
tons of it has already been consumed. The systems in place to try and recall food-stuff
can only be so effective. In a sense, the cat is already out of the bag, and the potential
for damage being done prior to knowing whether or not it could have been prevented
will always exist.

Now, move this scenario down into the software stack. Just like a blog post going viral
on the network, digitized forms of communication are difficult to recall. Often within
seconds, a blog post can be crawled, indexed, and cached by search engines such as
Google. Social media services coalesce billions of social activities (e.g., posts) everyday,
and disseminate them through official and unofficial channels, and end users expect to
have control over their activity. It is also worth noting that other social media service
users (e.g., your “friends”) can share, quote, and resyndicate the content you create, just
as rapidly.

In a closed system, this is relatively straightforward to handle. On a simple level, a single
database that holds all of the activities and posts made by users using the application
on top of the database can be responsible for all the reads and writes for the underlying
data. That database is the source of record for everything. If a user deletes some content,
it’s gone (or suppressed) from the only place it existed to begin with. Nice and clean;
good data.

If you start to expand the edge of the system however, the technical challenges get more
interesting. Even in our single-db example, for services that gain popularity and need
to horizontally scale in order to handle overall access load, it is common to move reads
out to caches beyond the database in order to reduce contention. Memcached is a prolific
example of this style of scaling. The memcached pattern moves readable data outside
of the database and fans it out for more rapid access to the application layer. This means
the single source of record is now disconnected from data access requests, and the po‐
tential for a disconnect between a data read and a data write exists. In a closed system,
this disconnect is relatively understood and underlying database/source of record val‐
idation functionality is generally built-in and tunable by the developer.

220 | Chapter 18: Social Media: Erasable Ink?

However, in an open environment, such as the one we’re all living in from a network
perspective, these cache hit/miss/update policies aren’t as well understood or supported.
They’re certainly far from standardized. The distance between the source of record and
a third party consumer of the user-generated content can be vast, and the systems in
place to close that gap are new and immature.

If you think about the system as a single source of record database (the social media
service responsible for the original inbound content creation posts), with layers upon
layers of edge caches (often just other databases), you can see bad data emerge. The
update notifications (e.g., deletes) ultimately get in the way of downstream attempts to
leverage the data; they’re bad data. The orphaned posts and activities that never get
modified because the deletes never reach them become bad data as well.

Some systems know how to ingest update notices from the source of record social media
services, but many do not. If a system in the web does not know how to handle this
scenario, end user expectations can be violated, and the social media service itself can
suffer the consequences. Remember that the social media services are ultimately re‐
sponsible for how end users feel about their functionality.

What Does the Industry Do?
As someone spending their energy building software to support this notion of recall, it
sure would be nice if all of us end users simply changed our minds about wanting this
functionality. It would make developer’s jobs much easier. But, that’s not going to hap‐
pen. The genie is out of the bottle. Instead, we need to be building in the notion of
compliant data into our applications. In a sense, social media services acquire third party
applications built on top of their developer APIs for precisely this purpose. Doing so
allows them to control the complete experience and ensure that the terms of service
between themselves and the end user are upheld. Not only are they able to ensure that
the branding experience is consistent, but they are also able to ensure that the behavioral
expectations are consistent across the suite of products.

That said, there are thousands of third party applications out there that leverage public
social media service data constantly. While some social media services indeed require
that those third party applications handle the recall use case all the way downstream,
many do not, simply because it is not well understood from a policy standpoint, nor
from a technical one.

At a minimum, social media services need to make one of two facilities available to
ensure data is valid before it is consumed or used by a third party: a validation API or
an update notification API.

What Does the Industry Do? | 221

Validation API
A validation API allows a downstream application or service to validate data before it
is put to use. For example, before I display a public post from an end user, I can ask the
source of record social media service whether or not it is still there. If it is, I can leverage
the data within the confines of the terms of service I signed as a third party service or
developer. If it is not, I need to treat the updated data accordingly (either don’t display
it, or display it according to the update policies the social media service outlines).

Update Notification API
An update notification API disseminates notifications of updates to downstream con‐
suming third party services. This model indicates when an update to originally produced
content has occurred. This model has severe technical drawbacks unfortunately. The
amount of data resyndicated to third party applications downstream measures in the
tens of billions of activities per day. The resyndication service can either maintain a map
of who received which activities to ensure only updates to activities a further down‐
stream client received are conveyed, or they can produce a firehose of all update activities
for the clients to digest and filter down to what is relevant to them. Either scenario is a
large-scale data challenge with nontrivial, ever-growing costs. Keep in mind that end
user expectations are that they can delete content at any point after having created it.
That could be measured along the spectrum of a second, or year granularity. Maintaining
these long-term, growing, databases for potential activity updates is cumbersome, error
prone, and expensive.

What Should End Users Do?
End users need to understand the environment in which they’re playing. We need to
understand how simple it is for our generated content to proliferate across the network.
The web was designed for rapid dissemination of information, and today’s social media
services take complete advantage of that.

We need to ensure that the services we use are providing the support for the behavioral
characteristics we demand. Given the amount of resyndication that occurs everyday,
there is an overall need to ensure that those expectations and requirements are being
enforced. An often overlooked, or ignored, problem is how easily public content is scra‐
ped out of a public social media service. It is relatively easy to extract large amounts of
content out of a social media service, often without the service even being aware of it
occurring. Often when this happens the service’s terms of service are being ignored. As
end users, we should be demanding that our social media services are taking actions to
prevent this sort of behavior. It’s akin to your bank not having appropriate levels of
security in place to ensure that your money is safe.

222 | Chapter 18: Social Media: Erasable Ink?

Scrapers often go to great lengths to acquire social data. Bot-net-like servers are spun-
up in a dynamic manner across vast IP address blocks on the network, and the social
media services are often unable to differentiate web-browser requests for information
from these automated requests. If they can identify the often unwanted scraping activity,
they have to go to great lengths to mitigate it. By the time this is done, any logical link
between some content you may have publicly published, and your ongoing expected
ability to recall that content is broken.

An often leveraged model for minimizing this kind of scraping is to provide official
channels for the kind of data the scrapers are actually after. It’s easier for a social media
service to open up complete coverage access (such as firehoses) that third parties can
leverage officially, rather than for them to continue any cat-and-mouse activity they
may be playing with parties scraping data from them. It’s easier to provide voluminous
data access through non-multipurpose web interfaces. Bringing resyndication into the
light where everyone can see what’s happening provides transparency to the system.
Tolerance of this kind of resyndication on the part of end users is something we should
seriously consider.

Overall, we need to be privy to the underlying foundation of communicating on today’s
social media services. Unless you’re participating in a completely proprietary closed
network, your online activities can rapidly be distributed across many other services
(some good, some bad). We need to be fully aware of these dynamics, and only com‐
municate things online that we are comfortable proliferating. Until recall dynamics are
fully realized and implemented (from expectations to technical implementation),
awareness and caution are in order around what we’re sharing, and when.

How Do We Work Together?
Equal exchange of value is ultimately the answer. That exchange can be explicit in the
form of money for service, or it can take a more circuitous route. A friend of mine refused
to use the “express toll” lane on her commute for years because she didn’t want the service
to be tracking her whereabouts. Eventually, the value of a faster commute usurped her
desire for privacy in that scenario, and she signed up for the service to speed her com‐
mute. The exchange ultimately became worth it to her.

As end users, we’ve evolved to expect that the services we use be free. In light of that,
those services are generally compelled to derive financing through other means. We
need to ensure that our behavioral expectations are met, while accepting that it is a
system of give-and-take.

The public social data ecosystem will need to adapt to support the “recall” use case that
we, as end users, clearly demand. This “bad data” will ultimately become good, but it is
going to take some work to get it there. We’re at an amazing moment in time when public

How Do We Work Together? | 223

social data resyndication can lead to phenomenal new innovations as our digitized social
consciousness is engaged. However, if we don’t get the “recall” use case right, the data
will be forever confined to the source-of-record social media service wherein it was
originally posted.

224 | Chapter 18: Social Media: Erasable Ink?

1. Badwater is a 135-mile foot race that goes through California’s Death Valley. And before you ask: no, neither
of the authors has come remotely close to attempting it. We just think it’s cool.

CHAPTER 19

Data Quality Analysis Demystified:
Knowing When Your Data Is Good Enough

Ken Gleason and Q. Ethan McCallum

Most of the decisions we make in our personal and professional lives begin with a query.
That query might be for a presentation, a research project, a business forecast or simply
finding the optimal combination of shipping time and price on tube socks. There are
times when we are intuitively comfortable with our data source, and/or are not overly
concerned about the breadth or depth of the answers we get, for instance, when we are
looking at movie reviews. Other times, you might care a little more, for example, if you
are estimating your requirements for food and water for the Badwater Ultramarathon.
1 Or even for mundane things like figuring out how much of a product to make, or where
your production bottlenecks are on the assembly line.

But how do we know when to care and when not to care, and about what? Should you
throw away the survey data because a couple of people failed to answer certain ques‐
tions? Should you blindly accept that your daily sales of widgets in Des Moines seem to
quintuple on alternate Fridays? Maybe, maybe not. Much of what you (think you) know
about the quality of a given set of data relies on past experience that evolves to intuition.
But there are three problems with relying solely on intuition. First, intuition is good at
trapping obvious outliers (errors that stick out visibly) but likely won’t do much to track
more subtle issues. Second, intuition can be wrong. How do you validate what your gut
tells you looks funny (or doesn’t)? Third, as discussed above, intuition relies on evolved
experience. What happens when you lack direct domain experience? This is hardly an
academic question; in the data business, we are often thrown into situations with brand

225

2. One may argue that this is more like 3.5 Cs…. Fair enough.

new problems, new datasets, and new data sources. A systematic approach to data qual‐
ity analysis can guide you efficiently and consistently to a higher degree of awareness of
the characteristics and quality of your data before you spend excessive time making
personal or business decisions.

Operating from a data quality framework allows you to:

• Quit worrying about what you think you know or don’t know about the data.

• Step outside conventional wisdom about what you need and don’t need, and estab‐
lish fresh conceptions about your data and its issues.

• Develop and re-use tools for data quality management across a wider variety of
scenarios and applications.

This chapter outlines a conceptual framework and approach for data quality analysis
that will hopefully serve as a guide for how you think about your data, given the nature
of your objective. The ideas presented here are born from (often painful) experience
and are likely not new to anyone who has spent any extended time looking at data; but
we hope it will also be useful for those newer to the data analysis space, and anyone who
is looking to create or reinforce good data habits.

Framework Introduction: The Four Cs of Data Quality
Analysis
Just as there are many angles from which to view your data when searching for an answer,
there are many viewing angles for assessing quality. Below we outline a conceptual
framework that consists of four facets. We affectionately refer to them as The Four Cs
of Data Quality Analysis2:

1. Complete: Is everything here that’s supposed to be here?

2. Coherent: Does all of the data “add up?”

3. Correct: Are these, in fact, the right values?

4. aCcountable: Can we trace the data?

Granted, these categories are fairly broad and they overlap in places. Sometimes a C or
two won’t even apply to your situation, depending on your requirements and your place
in the data processing chain. Someone interested in gathering and storing the data may

226 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

have a different view of “complete” than someone who is trying to use the data to build
an analysis and drive a decision. That’s fine. We don’t intend the Four Cs to be a universal,
airtight methodology. Instead, consider them a starting point for discussion and a
structure around which to build your own data quality policies and procedures.

Complete
The notion of a complete dataset is paradoxically difficult to nail down. It’s too easy to
say, “it’s a dataset that has everything,” and then move on. But how would we define
“everything” here? Is it simply the number of records? Expected field count? Perhaps
we should include whether all fields have values—assuming that “lack of value” is not,
in and of itself, a value. (This doesn’t yet cover whether the values are all valid; that’s a
matter of Correctness, which we describe below.) This leads us down the path of learning
which fields are necessary, versus nice to have.

Most of these questions stem from the same root, and this is the very nature of com‐
pleteness in data:

Do I have all of the data required to answer my question(s)?

Even this can be tricky: you often first have to use the data to try to answer your question,
and then verify any results, before you know whether the data was sufficient. You may
very well perform several iterations of this ask-then-verify dance. The point is that you
should approach your initial rounds of analysis as checks for completeness, and treat
any findings as preliminary at best. This spares you the drama of actions taken on pre‐
mature conclusions, from what is later determined to be incomplete data.

Let’s start with the simplest, but frequently overlooked sort of completeness: do you
actually have all of the records for a given query? This is a basic yet essential question
to ask if you are running any kind of analysis on data that consists of a finite and well-
defined number of records, and it’s important that the totals (say, number of orders or
sum of commission dollars or total students registered) match some external system.
Imagine presenting a detailed performance analysis on the stock trading activity for
your biggest client, only to find that you’ve missed fully half their activity by forgetting
to load some data. Completeness can be that simple, and that important. Without getting
into aCcountability just yet, it’s simply not enough to assume that the data you received
is all you need.

Thinking more about stock trading and modern electronic trading (where computer
programs make the bulk of decisions about how orders get executed) offers a wealth of
examples to consider. Take a simple one: many modern methods of evaluating whether
a given trade was done “well” or not involve measuring the average price achieved versus
some “benchmark,” such as the price at which the stock was trading at the time the order
arrived (the idea being that a well traded “buy” (“sell”) order should not move the stock
up (down) excessively). While it’s not necessary to delve into the gory details, it is

Complete | 227

3. Dixit and Nalebuff ’s Thinking Strategically: The Competitive Edge in Business, Politics, and Everyday Life is a
text on game theory. It covers the “look ahead and reason back” concept in greater detail.

4. At least, it’s common to say that these days. We began our careers when disk (and CPU power, and memory)
was still relatively expensive.

sufficient for our purposes to observe that most modern benchmarks require one or
more inputs, including the time that an order started. If this sort of performance is a
requirement, the order data information would not be considered complete unless the
start time for each order was present.

Another example from the world of electronic trading: consider the relationships be‐
tween orders in a stock trading system. A trader may place an order to buy 100,000
shares of a given stock, but the underlying system may find it optimal to split that one
logical order into several smaller “child orders” (say, 100 child orders of 1000 shares
each). The trading firm’s data warehouse could collect the individual child order times
and amounts but omit other information, such as where the order actually traded or
identifiers that tie the child orders to the original order. Such a dataset could indeed be
considered complete if the question were, “what was our total child order volume (count)
last month?” On the other hand, it is woefully incomplete to answer the question, “what
is our breakdown of orders, based on where they were traded?” Unless the firm has
recorded this information elsewhere, this question simply cannot be answered. The
remedy would be to extend and amend the data warehouse to collect these additional
data points, in anticipation of future such queries. There is clear overlap here with the
process of initial database design, but it bears review at query analysis time, given how
expensive replaying / backfilling the data could be.

Evaluating your dataset for completeness is straightforward:

Understand the question you wish to answer. This will determine which fields are nec‐
essary, and what percentage of complete records you’ll need. Granted, this is not always
easy: one aspect of data analysis is asking questions that haven’t been asked before. Still,
you can borrow a page from game theory’s playbook: look ahead and reason back.3

Knowing your business, you can look ahead to the general range of questions you’d expect
to answer, and then reason back to figure out what sort of data you’d need to collect, and
start collecting it. It also helps to note what data you access or create but don’t currently
collect, and start collecting that as well. A common refrain in technology is that disk is
cheap4 and that data is the new gold. Passing up data collection to avoid buying storage,
then, is like passing up money to avoid finding a place to put it.

Confirm that you have all of the records needed to answer your question. The mechanics
here are straightforward, but sometimes onerous. Straightforward, in that you can check
for appropriate record count and presence of fields’ values. Onerous, in that you typically
have to write your own tools to scan the data, and often you’ll go through several

228 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

5. Keep in mind that any time you write your own tools, you have to confirm that any problems they detect are
in fact data problems and not code bugs. That is one advantage to working with the same dataset over a long
period of time: the effort you invest in creating these tools will have a greater payoff and a lot more testing
than their short-lived cousins.

iterations of developing those tools before they’re truly road-worthy.5 That we live in an
age of Big Data™ adds another dimension of hassle: checking a terabyte dataset for com‐
pleteness is our modern day needle-and-haystack problem. Sometimes, it is simply not
possible. In these cases, we have to settle for some statistical sampling. (A thorough
discussion of sampling methodology is well beyond the scope of this book.)

Take action. What we’ve talked about so far is almost entirely evaluation; what action(s)
should you take when you have assessed completeness? In the case of record-level com‐
pleteness, it’s easy; you either have all the records or you don’t, and you then find them
and backfill your dataset. But what should you do if you find 10% (or whatever your
meaningful threshold is) of your records having missing values that prevent some quer‐
ies from being answered? The choices generally fall into one of the following categories:

• Fix the missing data. Great, if you can, though it’s not always possible or practical.

• Delete the offending records. This is a good choice if your set of queries need to be
internally consistent with each other.

• Flag the offending records and note their incompleteness with query results.

• Do nothing. Depending on your queries, you may just be able to happily crack on
with your analysis, though, in our experience, this tends to be a bad idea more often
than not…

These are only four options. There are certainly more, but making (and documenting)
the evaluation and subsequent actions can save considerable pain later on.

Coherent
Assuming your data is now complete, or at least as complete as you need it to be, what’s
next? Are you ready to uncover the gold mine hidden in your data? Not so fast—we have
a couple of things left to think about. After completeness, the next dimension is Coher‐
ence. Simply put: does your data make sense relative to itself?

In greater detail, you want to determine whether records relate to each other in ways
that are consistent, and follow the internal logic of the dataset. This is a concept that
may, at first glance, feel more than a little redundant in the context of data analysis; after
all, relational databases are designed to enforce coherence through devices like refer‐
ential integrity, right? Well, yes, and no.

Coherent | 229

6. We plan to do this with our publication royalties from this chapter.

We can’t always trust (or even expect) referential integrity. Such checks can cause a
noticeable performance hit when bulk-loading data, so it’s common to disable them
during raw data loads. The tradeoff here is the risk of orphaned or even duplicate records,
which cause a particular brand of headache when referential integrity is reenabled. Also,
consider data that is too “dirty” for automatic integrity checks, yet is still valid for certain
applications. Last, but not least, your data may be stored in a document database or
other NoSQL-style form. In this case, referential integrity at the database level is quite
intentionally off the menu. (A discussion about whether or not the data is structured in
an appropriate fashion may certainly be warranted in this case, but is well beyond the
scope of this book.)

Referential integrity is only one sort of coherence. Another form is value integrity: are
the values themselves internally consistent where they need to be? Let’s revisit our stock
trading order and execution database for an example of value integrity. Consider a typ‐
ical structure, in which we have two tables:

Table 19-1. Columns in sample database table 1: orders

Value

order_id

side

size

price

original_quantity

quantity_filled

start_time

end_time

Table 19-2. Columns in sample database table 2: fills

Value

original_order_id

fill_quantity_shares

fill_price

fill_time

An order is an order to buy or sell a stock. A fill is a record of one particular execution
on that stock. For example, I may place an order to buy 1,000 shares of AAPL at a certain
limit price, say $350.6 In the simplest case, my order is completely executed (“filled”)
and thus I would expect to have a corresponding record in the fills table with

230 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

7. However, if you do happen to figure out a way to get your fills to actually happen before you send your order,
please tell us how you did it!

fill_quantity_shares = 1000. What if, however, I buy my 1,000 shares in more than
one piece, or fill? I could conceivably get one fill of 400 shares, and another of 600,
resulting in two records in the fills table instead of one. So the basic relationship is one
order to many fills. How, then, does value integrity fit here? In our model of order and
fill data, the sum of fill quantities should never be greater than the original quantity of
the order. Compare:

select sum(fill_quantity_shares) where fills.order_id = x

to:

select original_quantity from orders where orders.order_id = x

Again, it’s attractive to trust the data and assume that this sort of value level integrity is
maintained at record insert time, but in the real world of fragmented systems, multiple
data sources and (gasp!) buggy code, an ounce of value analysis is often worth a pound
(or ton!) of cure.

Another, more subtle example of value integrity concerns timestamps: Similar to the
sum of share quantities above, by definition, all fills on a given order should occur in
time no earlier than the order’s start time, and no later than the order’s end time. 7

In the case of our two-table dataset:

if fills.original_order_id = orders.order_id,

then it should be true that:

orders.start_time <= fills.fill_time <= orders.end_time

As with Completeness, evaluation of Coherence can take many forms.

Determine what level and form of coherence you really need. Is it validation on refer‐
ential integrity? Simple value integrity validation on one or more field values? Or does
it require a more complex integrity validation?

Determine how complete your validation needs to be, and what your performance and
time constraints are. Do you need to validate every single record or relationship? Or can
you apply statistical sampling to pick a meaningful but manageable subset of records to
evaluate?

As always, it’s critical that your evaluation fits your needs and properly balances the
time/quality tradeoff.

Coherent | 231

Once you have validated your data, you have to decide what to do with the problems
you’ve found. The decisions to fix, omit, or flag the offending records are similar to those
for Completeness and will depend as always on your requirements, though the balance
may be different. Fixing errors involving referential or value integrity tend to be a mix‐
ture of finding orphaned records, deleting duplicates, and so forth.

Correct
Having confirmed that your data is both complete and coherent, you’re still not quite
ready to crunch numbers. You now have to ask yourself whether your data is correct
enough for what you’re trying to do. It may seem strange to consider this a precursor to
analysis, as analysis often serves to somehow validate the dataset; but keep in mind,
there may also be “sub-dimensions” of correctness that bear validation before you move
on to the main event. Similar to testing for coherence, correctness requires some degree
of domain knowledge.

One thing to remember is that correctness itself can be relative. Imagine you’ve gathered
data from a distributed system, composed of hundreds of servers, and you wish to
measure latency between the component services as messages flow through the system.
Can you just assume that clocks on all the machines are synchronized, or that the time‐
stamps on your log records are in sync? Maybe. But even if you configure this system
yourself, things change (and break).

One simple check would be to confirm that the timestamps are moving in the proper
direction. Say that messages flow through systems s1, s2, and s3, in that order. You
could check that the timestamps are related as follows:

message_timestamp(s1) <= message_timestamp(s2) <= message_timestamp(s3)

You may determine that timestamps of messages passing through s2 are consistently
less than (newer than) the timestamps when those same messages passed through s1.
Once you rule out time travel, you reason that you have a systematic error in the data
(brought about by, say, a misconfigured clock on either s1 or s2). You can choose be‐
tween correcting the systems’ clocks and rebuilding the dataset, or adjusting the stored
timestamps, or some other corrective action. It may be tempting, then, to include such
logic inline in your queries, but that would add additional complexity and runtime
overhead. A more robust approach would be to uncover this problem ahead of time,
before making the data available for general analysis. This keeps the query code simple,
and also ensures that any corrections apply to all queries against the dataset.

As a second example, imagine you’re in charge of analytics for a system that tracks
statistics—times, routes, distances, and so on—for thousands of runners. Runners who
train or compete at different distances will typically run longer distances at a slower

232 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

pace. A person whose best one-mile time is six minutes will, more than likely, run a
marathon (26.2 miles) at a speed slower than six minutes per mile. Similarly, older age
groups of runners will tend to have slower times (except in some cases for longer dis‐
tances).

Simple, straightforward validation checks can uncover possible issues of internal cor‐
rectness (distinct from coherence). How you handle them depends, as always, on your
objective and domain knowledge. If you’re simply gathering site statistics, it might not
matter. On the other hand, it could also be interesting to learn that certain members or
groups consistently under-report race times. In this way, the border between correctness
and simply “interesting” data becomes a gray area, but useful to think about nevertheless.

The general process for evaluation of Correctness should start to look familiar by now:

Itemize the elements of your data that can be easily verified out of band. Given a data
dump from a point-of-sale system, are all transactions expected to have occurred in the
years 2010 and 2011? Perhaps they are all from your friend’s dollar store, where a single
line-item sale of $100 could reasonably be considered erroneous?

Determine which of these are important to validate, in the context of what you care
about. As data-minded people, it’s common to want to categorize every dataset and
grade it on every dimension. To do so would be highly inefficient, because we are limited
by time constraints, and requirements tend to change over time. We suggest you review
every dataset and attach a log of what was checked at the time.

Understand how much of your data must be correct. As with Coherence, can (must?)
you check every record, or is some sort of sampling sufficient?

Decide what you will do with incorrect data. Is it possible to “fix” the records somehow,
or must you work without them? Depending on the questions you’re trying to answer,
you may be able to weight known-incorrect records and reflect that in the analysis.
Another option would be to segregate these records and analyze them separately. It could
make for an interesting find if, say, your model were known to perform equally well on
correct and incorrect data. (That could indicate that the field in question has no pre‐
dictive power, and may be safely removed from your feature set.)

aCcountable
Who is responsible for your data? This may seem an odd question when discussing data
quality, but it does indeed matter. To explain, let’s first consider how data moves.

Data flow typically follows a pattern of: acquire, modify, use. Acquire means to get the
data from some source. To modify the data is to clean it up, enrich it, or otherwise tweak

aCcountable | 233

8. Inside a company, this can mean “someone we can fire.” For external data vendors, this is perhaps “someone
we can sue for having provided bad data.” Keep in mind, the party ultimately responsible could be you, if the
next person in the chain has managed to absolve themselves of all responsibility (such as by supplying an
appropriate disclaimer).

it for some particular purpose. You can use the data to guide internal decisions, and also
distribute it externally to clients or collaborators. The pattern is repeated as data passes
from source to recipient, who in turn becomes the source for the next recipient, and so
on.

This is quite similar to supply chain management for tangible goods: one can trace the
flow of raw material through perhaps several intermediate firms. Some goods, such as
food and drink, have a final destination in that they are consumed. Others, through
recycling and repurposing, may continue through the chain for perpetuity.

One critical element of the supply chain concept is accountability: one should be able to
trace a good’s origins and any intermediate states along the way. An outbreak of food‐
borne illness can be traced back to the source farm and even the particular group of
diseased livestock; an automobile malfunction can be traced back to the assembly line
of a particular component; and so on.

When assessing your data for quality, can you make similar claims of traceability? That
leads us to answer our original question, then. Who’s responsible for your data? You are
responsible, as are your sources, and their sources, and so on.

Data’s ultimate purpose is to drive decisions, hence its ultimate risk is being incorrect.
Wise leaders therefore confirm any numbers they see in their reports. (The more costly
the impact of the decision, the more thoroughly they check the supporting evidence.)
They check with their analysts, who check their work and then check with the data
warehouse team, who in turn check their work and their sources, and so on. This con‐
tinues until they either reach the ultimate source, or they at least reach the party ulti‐
mately responsible.8

Equally pressing are external audits, driven by potential suitors in search of a sale, or
even government bodies in the aftermath of a scandal. These have the unpleasant impact
of adding time pressure to confirm your sources, and they risk publicly exposing how
your firm or institution is (quite unintentionally, of course) headed in the wrong direc‐
tion because it has been misusing or acting on bad information.

Say, for example, that you’ve been caught red-handed: someone’s learned that your ap‐
plication has been surreptitiously grabbing end users’ personal data. You’re legally cov‐
ered due to a grey area in your privacy policy, but to quell the media scandal you declare
that you’ll immediately stop this practice and delete the data you’ve already collected.

That’s a good start, but does it go far enough? Chances are, the data will have moved
throughout your organization and made its way into reports, mixed with other data, or

234 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

9. So to all those who make their money swiping personal data, you may breathe a sigh of relief … for now.

10. California Civil Code section 1798.83: http://www.leginfo.ca.gov/cgi-bin/displaycode?
section=civ&group=01001-02000&file=1798.80-1798.84. The Electronic Privacy Information Center pro‐
vides a breakdown at http://epic.org/privacy/profiling/sb27.html

11. http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act

12. Think of all those times when you felt that someone’s incompetence was criminal…

13. …or even, to go home. Some audits have been known to occur at quitting time, and you don’t want to be part
of the crew stuck in the office till the wee hours of the morning hunting down and verifying data.

even left your shop as it’s sold off to someone else. Can you honestly tell your end users
that you’ve deleted all traces of their data? Here’s a tip: when the angry hordes appear
at your doorstep, pitchforks and torches in hand, that is not the time to say, “um, maybe?”
You need an unqualified “yes” and you want to back it with evidence of your data trace‐
ability processes.

It’s unlikely that a violent mob will visit your office in response to a data-privacy scandal.
9 But there are still real-world concerns of data traceability. Ask anyone who does busi‐
ness with California residents. Such firms are subject to the state’s “Shine the Light”
legislation, which requires firms to keep track of where customers’ personal data goes
when shared for marketing purposes.10 In other words, if a customer asks you, “with
whom have you shared my personal information?”, you have to provide an answer.

As a final example, consider the highly-regulated financial industry. While the rules
vary by industry and region, many firms are subject to record retention laws which
require them to maintain detailed audit trails of trading activity. In some cases, the firms
must keep records down to the detail of the individual electronic order messages that
pass between client and broker. The recording process is simple: capture and store the
data as it arrives. The storage, however, is the tough part: you have to make sure those
records reflect reality, and that they don’t disappear. When the financial authorities make
a surprise visit, you certainly don’t want to try to explain why the data wasn’t backed up,
and how a chance encounter between the disk array and a technician’s coffee destroyed
the original copy. Possibly the most iconic example of the requirement for traceability
and accountability is the Sarbanes-Oxley Act11 in the United States that requires certif‐
ication of various financial statements with criminal consequences.12

Humor aside, surprise audits do indeed occur in this industry and it is best to be pre‐
pared. To establish a documented chain of accountability should yield, as a side-effect,
a structure that makes it easy to locate and access the data as needed. (The people
responsible will, inevitably, create such a structure such that they do not become human
bottlenecks for any sort of data request.) In turn, this means being able to quickly provide
the auditors the information they need, so you can get back to work.13

aCcountable | 235

http://www.leginfo.ca.gov/cgi-bin/displaycode?section=civ&group=01001-02000&file=1798.80-1798.84
http://www.leginfo.ca.gov/cgi-bin/displaycode?section=civ&group=01001-02000&file=1798.80-1798.84
http://epic.org/privacy/profiling/sb27.html
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act

14. Whether it’s shady companies removing evidence of fraud, or a rogue sect hiding a planet where they’re
developing a clone army, people who remove archive data are typically up to no good.

15. https://wiki.duraspace.org/display/DURACLOUD/Bit+Integrity+Checker

Once again, the steps required to achieve proper data accountability depend on your
situation. Consider the following ideas to evaluate (or, if need be, define) your support‐
ing infrastructure and policies:

Keep records of your data sources. Note how you access the data: push or pull, web
service call or FTP drop, and so on. Determine which people (for small companies),
teams (larger companies), and companies (for external sources) own or manage each
dataset. Determine whom to contact when you have questions, and understand their
responsibilities or service-level agreements (SLAs) for the data: what are the guarantees
(or lack thereof) concerning the quality, accuracy, and format of the data, and the time‐
liness of its arrival?

Store everything. Hold on to the original source data in addition to any modifications
you make thereof. This lets you check your data conversion tools, to confirm they still
operate as expected. As an added bonus, it dovetails well with the next point.

Audit yourself. Occasionally spot-check your data, to confirm that your local copies
match the source’s version. Confirm that any modification or enrichment processes do
not introduce any new errors. When possible, check your records against themselves to
confirm the data has not been modified, either by subtle storage failure (bit rot), by
accident, or by conscious choice (tampering).14

As an example, consider the Duracloud Bit Integrity Checker. Duracloud is a cloud-
based storage service, and the Bit Integrity Checker lets admins upload MD5 checksums
along with the data. In turn, the service periodically confirms that the stored data
matches the supplied checksums.15

Most importantly, if local regulations subject you to audits, make sure you know the
format and content the auditors require. Provide sample records to the auditors, when
possible, to make sure you collect (and can access) all of the details they expect.

Watch the flow. Keep track of how the data flows through your organization, from source
to modification, from enrichment to report. Follow the supply-chain concept to track
any research results to their origin. If data is updated, any derivative data should follow
suit.

Track access. Understand who can access the data, and how. In an ideal world, any read-
write access to the data would occur through approved applications that could track
usage, perform record-level auditing, and employ an entitlements system to limit what
each end-user sees. (Such a scenario has the added benefit that the applications can, in
turn, themselves be audited.)

236 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

https://wiki.duraspace.org/display/DURACLOUD/Bit+Integrity+Checker

16. … and then, lobby to build some of the aforementioned applications. It’s quite rare that end users need that
kind of raw data access, and yet all too common that they have it.

17. Besides providing a witty quote with which to close the chapter, Witten, et. al.’s Data Mining: Practical Machine
Learning Tools and Techniques (third edition) includes some useful information on data cleaning and getting
to know your data.

If you have the unfortunate scenario that certain “power users” have direct read-write
access to the raw data (say, through desktop SQL tools), at least provide everyone their
own login credentials.16

At the end of the day, whether the audit is yours or the CEO’s, for informal or criminal
proceedings, for tube socks or Tube schedules, if you are unable to describe, audit, and
maintain the aCcountability chain of your data, the maintenance of proper Complete‐
ness, Coherence, and Correctness not only becomes that much more difficult, it becomes
largely irrelevant.

Conclusion
The Four Cs framework presented here is only one of many possible ways of looking at
data quality, and as we’ve said, your mileage may vary (as will the relevance of any given
C). That said, there are three principles inherent to this discussion that bear repeating
and that should be relevant to any data quality analysis framework:

Think about quality separately (and first, and iteratively) from the main task at
hand. Getting in the habit of thinking about data quality before the real work begins not
only saves time, but gives you a better understanding of your capabilities and limitations
with respect to analyzing that set.

Separate the actual execution of data quality checks from the main task at hand whenever
it is practical to do so. Validation logic tends to be separated from main flow in most
programming paradigms; why not in data handling?

Make conscious (and documented) decisions about the disposition of data that doesn’t
live up to your (also documented!) Four Cs checks. If you aren’t making and docu‐
menting clear decisions and actions that result from your determination of data quality,
you might as well skip the entire process.

We hope you found this chapter reasonably complete, coherent, and correct. If not, the
authors are the only ones accountable.

Data quality analysis, and any related data munging, is a necessary first step in getting
any meaningful insight out of our data. This is a dirty and thankless job, and is often
more time-consuming than the acutal analysis. You may at least take comfort in the
words of Witten, et. al.:

Time looking at your data is always well-spent.17

Conclusion | 237

Indeed.

238 | Chapter 19: Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$ (dollar sign), UNIX shell prompt, 7
| (vertical bar), pipe symbol, 12

A
administrative data, compared to survey data,

129–131
Adobe Flash data, scraping, 81
Apache Thrift, 157
API (Application Programming Interface)

for commercial resyndication, 216
data availability using, 70, 84
for Facebook, 172
for graph databases, 170
for social media data validation, 221

application-specific characters in text data, 63–
67

ASCII encoding, 54–55, 156
awk language, 8, 14

B
bad data

categories of, 1–3, 95–105
definition of, 1, 146
special cases appearing as, 125–126
usefulness of, evaluating, 147–149

BeautifulSoup package, Python, 68, 74, 77

binary files, 156
Blueprints API, 170
bottomcoding, 130, 135, 136–137
Burns, Spencer (author), 119–127

C
cat command, 7, 12
cgi.escape function, Python, 67
character encodings, 54–58, 156

ASCII, 54–55, 156
determining, 58–60
normalizing to, 61–63
Unicode, 56–57, 156
UTF-16, 56
UTF-8, 56, 61–63, 156
Western Latin, 55

Chi-Square metric, 86
Chickenfoot plug-in, 80
CityGrid API, 84
classifier, 84

(see also sentiment classification)
Click Through Rate (see CTR)
cloud computing, 175–176

costs of, 179, 180, 181–183
downtimes of, 178
horizontal scalability of, 177–178, 179–180,

184–184
infrastructure components in, 177, 181

239

IO performance of, 178–178, 179, 183–184
vendors of, 175

code examples, permission to use, xiv
codecs.open function, Python, 67
coherence of data, 229–232
columnar data, 6–8
Comma Separated Value (see CSV)
commercial resyndication, 216
communication, expectations regarding, 217–

219
completeness of data, 227–229
contact information for this book, xiv
conventions used in this book, xiii
corpus, for classification, 85, 87–88
correctness of data, 232–233
cost allocations data example, 164–173
Cost Per Click (CPC), 11
Cotton, Richard (author), 107–117
CouchDB database, 152–153
CPC (Cost Per Click), 11
CPS (Current Population Survey) data example,

136, 138
CSV (Comma Separated Value), 6, 6–7, 15–16,

66–67, 157
csv package, Python, 79
csv.reader function, Python, 67
CTR (Click Through Rate), 6, 11
cumulative distribution plot, 103
Current Population Survey (CPS) data example,

136, 138

D
data

assumptions about, problems with, 104–105
cleaning, 71, 144–144, 146–147, 188
empty values in, 10
field values not comparable over time, 122–

125
immutability of, 206, 208–209
ownership of, 214–216
removal of, 207, 218–222
traceability of, 205–211, 234–237
unique identifiers in, changing over time,

120–122
data analysis

cumulative distribution plot, 103
goal for, importance of, 191–192, 195–196,

227–228
human-readable formats limiting, 33–36

multiple files limiting, 37
natural language programming for, 85–85,

92, 93
environment for, appropriateness of, 189–

191
prototyping results of, 196–197
readiness for, 191
results of, sharing, 192
summary statistics for, problems with, 101–

104
tools for, 189–191
training set for, 197

data collection
acquiring from other sources, 70
administrative data, compared to survey da‐

ta, 129–131
bottomcoding in, 130, 135, 136–137
CityGrid API for, 84
flaws in, 97–98
imputation bias in, 130, 131–133
proxy reporting in, 135, 138
reporting errors in, 133–135
sample selection bias in, 135, 139
seam bias in, 135, 137
topcoding in, 130, 135, 136–137
understanding, importance of, 107–108
web-scraping, 50–51, 69–70

Adobe Flash data, 81
alternatives to, 70
disadvantages of, 84
downloading data before parsing, 80
parsing web pages, 76–79
preventing blocks from websites, 82
programmatically interacting with

browser, 80
storing web pages offline, 75
traceability with, 210–210
URL patterns, identifying, 73–75
workflow for, 71–79

data model
changing, problems with, 119–125
graphical, 168–170
multiple, 173
relational, 164–167

data quality
analyzing, 95–101, 226–237
coherence of data, 229–232
completeness of data, 227–229
correctness of data, 232–233

240 | Index

improving, 150–150
peer-review for, 108–110
responsibility for, 233–237
special cases, problems with, 125–126
with changing data model, 119–125

data scientist
organizational department for, 193
outsourcing, 195–203
responsibilities of, 105, 127, 193
skills and experience of, 192

data storage
cloud storage, 175–176

costs of, 179, 180, 181–183
downtimes of, 178
horizontal scalability of, 177–178, 179–

180, 184–184
infrastructure components in, 177, 181
IO performance of, 178–178, 179, 183–

184
vendors of, 175

cost of, 145, 145
files

advantages of, 154–156, 160
character encodings for, 156
data types in, 154
delimiters in, 158–159
multiple, limitations of, 37–38
multiple, reading with software, 40–47
spillover of time-bound data, 189
tools for, 154, 155, 160
types of, 156
web framework used with, 159–161

PDF files, reading with software, 49–50
relational databases

complexities of, importance of under‐
standing, 152–153

ER model for, 164–167
getting data into, 110–113
graph model for, 168–173
histograms, generating from, 17
referential integrity in, 230

spreadsheets
disadvantages of, 115–117
importing tab-delimited data, 7
NCEA data using, 31–38
reading with software, 39–47
transferring data into databases, 110–113

data structure, 6–9
Apache Thrift, 157

columnar, 6–8
complexity of, increasing, 167–168
CSV, 6, 6–7, 15–16, 66–67, 157
ER model, 164–167
Google Protocol Buffers, 157
graph model, 168–173
human-readable format, 31–38

limiting analysis, 33–36
reading with software, 39–47

JSON, 6, 9–9, 157, 157, 158
Python literal syntax, 157
Python pickle format, 157
S expressions, 157
scalability of, 145, 146, 150
tab-delimited, 7–8
text data

application-specific characters in, 63–67
character encodings for, 54–60
corpus for classification of, 85, 87–88
normalizing, 61–63
polarized language in, 85–87
sentiment classification of, 84–85, 88–92

types of, 156–157
XML, 6, 8
YAML, 157, 158

data validation, 9–14, 188–189
empty values, 10
examples of

Health and Safety Laboratory data, 111–
114

keyword PPC data, 14–18
recommendation data, 21–23
search referral data, 19–21
time series data, 24–28

histograms for, 12–21
median values, 26
regular expressions for, 10
for social media services, 221
special cases, problems with, 125–126
statistics for, 11, 21–23
units of measurement, 9
with changing data model, 119–125

database escaping, 65
databases (see relational databases)
delimiters, 158–159
dollar sign ($), UNIX shell prompt, 7
Draper, Reid (author), 205–211

Index | 241

E
echo command, 7
emergency services data example, 146–148
empty values, 10
encodings (see character encodings)
ER (Entity-Relationship) model, 164–167
Excel spreadsheets (see spreadsheets)
Extensible Markup Language (see XML)

F
file storage

advantages of, 154–156, 160
character encodings for, 156
data types in, 154
delimiters in, 158–159
spillover of time-bound data, 189
tools for, 154, 155, 160
types of, 156
web framework used with, 159–161

file tool, 58
financial markets data example, 119–127
Fink, Kevin (author), 5–29
fonts used in this book, xiii
format of data (see data structure)
Francia, Steve (author), 175–185

G
Gaussian distribution, 96
gensim library, Python, 68
Gleason, Ken (author), 225–237
Goldstein, Brett (author), 143–150
Google Protocol Buffers, 157
government websites, 70
graph databases, 170
graph model, 168–173
Gremlin framework, 170–171

H
Health and Safety Laboratory data example,

107–117
histograms, 12–14

examples using
keyword PPC data, 14–18
recommendation data, 22
search referral data, 19–21

for power-law distributions, 101–103
generating from database, 17

histogram of a histogram, 22
hot-deck imputation, 131
HTML encoding, 64–65
HTMLParser.unescape function, Python, 67
human-readable format, 31–38

(see also NLP; text data)
limiting analysis, 33–36
reading with software, 39–47

I
iconv tool, 61
immutability, 206, 208–209
imputation bias, 130, 131–133
Infochimps Data Marketplace, 70
inotifywait tool, 154, 161

J
Janert, Philipp K. (author), 95–106
JavaScript Object Notation (see JSON)
jellyfish library, Python, 68
JSON (JavaScript Object Notation), 6, 9–9, 157,

157, 158

K
Koch snowflake, 167

L
Laiacano, Adam (author), 69–82
Levy, Josh (author), 53–68
Logistic Regression classifier, 87
longitudinal datasets, 132, 135

M
machine-learning experts, outsourcing, 195–203

(see also data scientist)
manufacturing data example, 95–98
Maximum Entropy classifier, 87
McCallum, Q. Ethan (author), 225–237
McIlroy, Doug (quote regarding Unix philoso‐

phy), 53
McNamara, Tim (author), 151–162
memory-mapped files, 156
missing values (see empty values)
Murrell, Paul (author), 31–51

242 | Index

N
Naive Bayes classifier, 87
National Certificate of Educational Achieve‐

ment data (see NCEA data example)
natural language programming (see NLP)
Natural Language Toolkit (see NLTK, Python)
NCEA (National Certificate of Educational

Achievement) data example, 31–38
Net Neutrality, 215
networks, graph databases representing, 171–

173
NLP (natural language programming), 85–85,

92, 93
(see also human-readable format; text data)

NLTK (Natural Language Toolkit), Python, 68,
85–85, 93

No Child Left Behind data example, 71–79
normalizing text, 61–63
Norton, Bobby (author), 163–173

O
ord function, Python, 67
outsourcing machine-learning experts, 195–203

P
Pay Per Click (see PPC)
PDF files, reading with software, 49–50
pdftotext tool, 49
Perkins, Jacob (author), 83–93
Perl language, 7, 8, 8, 9, 10, 14, 16
phone call data example, 98–101
pipe symbol (), 12
Poisson distribution, 98–100
polarized language, in text data, 85–87
power-law distributions, 101–104
PPC (Pay Per Click), 6, 11, 14–18
ProdigiousData example, 176–184
programming

API (Application Programming Interface)
(see API)

awk language, 8, 14
NLP (natural language programming), 85–

85, 92, 93
Perl language, 7, 8, 8, 9, 10, 14, 16
Python language, 53

BeautifulSoup package, 68, 74, 77
csv package, 79

NLTK (Natural Language Toolkit), 68,
85–85, 93

text processing, 67–68
urllib2 library, 80
web-scraping, 71

R language, 39
reading data across multiple files, 40–47
reading PDF files, 49–50
reading spreadsheet data, 39–47
style guide for, importance of, 114–115
web-scraping, 50–51

proxy reporting, 135, 138
Python language, 53

BeautifulSoup package, 68, 74, 77
csv package, 79
NLTK (Natural Language Toolkit), 68, 85–

85, 93
text processing, 67–68
urllib2 library, 80
web-scraping, 71

Python literal syntax, 157
Python pickle format, 157

R
R language, 39
ratings data (see reviews and ratings data)
recommendation data example, 21–23
referential integrity, 230
regular expressions, for data validation, 10
relational databases

complexities of, importance of understand‐
ing, 152–153

ER model for, 164–167
getting data into, 110–113
graph model for, 168–173
histograms, generating from, 17
referential integrity in, 230

reporting errors, 133–135
Revenue Per 1,000 Impressions (see RPM)
reviews and ratings data

collecting, 84
corpus for classification of, 85, 87–88
polarized language in, 85–87
sentiment classification of, 84–85, 88–92

robots.txt file, 72–73
RPM (Revenue Per 1,000 Impressions), 6

Index | 243

S
S expressions, 157
sample selection, bias in, 135, 139
Schwabish, Jonathan A. (author), 129–140
ScraperWiki, 70
screen-scraping (see web-scraping)
seam bias, 135, 137
search referral data example, 19–21
sentiment classification, 84–85

training classifier for, 88–90, 92
using results of, 83, 91
validating classifier for, 90–91

SIPP (Survey of Income and Program Participa‐
tion) data example, 131, 138

social media
commercial resyndication of data, 216
data validation for, 221
datasets from, 70
ownership of data, 214–216
user expectations for, 218–221, 222

Social Security Administration (SSA) data ex‐
ample, 129–139

software, writing (see programming)
spreadsheets

disadvantages of, 115–117
importing tab-delimited data, 7
NCEA data using, 32–38
reading with software, 39–47
transferring data into databases, 110–113

SQL injection attacks, 65
SSA (Social Security Administration) data ex‐

ample, 129–139
statistics

classical training in, 143–144, 148
for data validation, 11, 21–23
histograms (see histograms)
of pattern matching (see NLP (natural lan‐

guage programming))
summary statistics, problems with, 101–104

stock market data example, 119–127
str.decode function, Python, 67
structure of data (see data structure)
survey data, compared to administrative data,

129–131
Survey of Income and Program Participation

(SIPP) data example, 131, 138

T
tab-delimited data, 7–8
text data, 53

(see also human-readable format; NLP)
application-specific characters in, 63–67
character encodings for, 54–58

determining, 58–60
normalizing to, 61–63

corpus for classification of, 85, 87–88
normalizing, 61–63
polarized language in, 85–87
sentiment classification of, 84–85, 88–92

text files, 156
textual presentation of data (see human-

readable format)
time series data example, 24–28
topcoding, 130, 135, 136–137
traceability of data, 205–211, 234–237
training set for machine-learning, 197

U
U.S. Social Security Administration (SSA) data

example, 129–139
unichr function, Python, 67
Unicode encoding, 56–57, 156
unicode.encode function, Python, 67
unique identifiers, changing over time, 120–122
units of measurement, 9
Unix philosophy, 53
URL encoding, 63
URL patterns for web-scraping, 73–75
urllib.unquote function, Python, 67
urllib.urlencode function, Python, 67
urllib2 library, Python, 80
UTF-16 encoding, 56
UTF-8 encoding, 56, 61–63, 156
Uwe’s Maxim, 111

V
Vaisman, Marck (author), 187–193
Valeski, Jud (author), 213–224
validation of data (see data validation)
value integrity, 230–232
vertical bar (|), pipe symbol, 12

W
Warden, Pete (author), 195–203

244 | Index

web pages
data stored as flat files behind, 159–161
datasets available from, 70
reading with software (see web-scraping)
robots.txt file for, 72–73

web-scraping (screen-scraping), 50–51, 69–70
Adobe Flash data, 81
alternatives to, 70
disadvantages of, 84
downloading data before parsing, 80
parsing web pages, 76–79
preventing blocks from websites, 82
programmatically interacting with browser,

80
storing web pages offline, 75

traceability with, 210–210
URL patterns, identifying, 73–75
workflow for, 71–79

Weotta, 83–84
Western Latin encoding, 55

X
XLConnect package, R, 39
XML (Extensible Markup Language), 6, 8

Y
YAML, 157, 158

Index | 245

About the Author
Q. Ethan McCallum is a consultant, writer, and technology enthusiast, though perhaps
not in that order. His work has appeared online on The O’Reilly Network and Java.net,
and also in print publications such as C/C++ Users Journal, Doctor Dobb’s Journal, and
Linux Magazine. In his professional roles, he helps companies to make smart decisions
about data and technology.

Colophon
The animal on the cover of Bad Data Handbook is Ross’s goose (Chen rossii or Anser
rossii), a North American species that gets its name from Bernard R. Ross, a Hudson’s
Bay Company factor at Fort Resolution in Canada’s Northwest Territories. Other names
coined for this species are “galoot” and “scabby-nosed wavey,” by Northmen. There is
debate about whether these geese belong in the “white” geese genus of Chen or the
traditional “gray” goose genus of Anser. Their plumage is primarily white with black
wing tips, reminiscent of the white-phase Snow Goose, but about 40% smaller in size.

No matter their technical genus, these birds breed in northern Canada and the central
Arctic (primarily in the Queen Maud Gulf Migratory Bird Sanctuary), wintering far
south in the southern United States, central California, and sometimes northern Mexico.
In Western Europe, these birds are kept mostly in wildfowl collections, but escaped or
feral birds are often encountered with other feral geese (Cananda Goose, Greylag Goose,
Barnacle Goose).

The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCon‐
densed.

	Copyright
	Table of Contents
	About the Authors
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Setting the Pace: What Is Bad Data?
	Chapter 2. Is It Just Me, or Does This Data Smell Funny?
	Understand the Data Structure
	Field Validation
	Value Validation
	Physical Interpretation of Simple Statistics
	Visualization
	Keyword PPC Example
	Search Referral Example
	Recommendation Analysis
	Time Series Data
	Conclusion

	Chapter 3. Data Intended for Human Consumption, Not Machine Consumption
	The Data
	The Problem: Data Formatted for Human Consumption
	The Arrangement of Data
	Data Spread Across Multiple Files

	The Solution: Writing Code
	Reading Data from an Awkward Format
	Reading Data Spread Across Several Files

	Postscript
	Other Formats
	Summary

	Chapter 4. Bad Data Lurking in Plain Text
	Which Plain Text Encoding?
	Guessing Text Encoding
	Normalizing Text
	Problem: Application-Specific Characters Leaking into Plain
 Text
	Text Processing with Python
	Exercises

	Chapter 5. (Re)Organizing the Web’s Data
	Can You Get That?
	General Workflow Example
	robots.txt
	Identifying the Data Organization Pattern
	Store Offline Version for Parsing
	Scrape the Information Off the Page

	The Real Difficulties
	Download the Raw Content If Possible
	Forms, Dialog Boxes, and New Windows
	Flash

	The Dark Side
	Conclusion

	Chapter 6. Detecting Liars and the Confused in Contradictory Online Reviews
	Weotta
	Getting Reviews
	Sentiment Classification
	Polarized Language
	Corpus Creation
	Training a Classifier
	Validating the Classifier
	Designing with Data
	Lessons Learned
	Summary
	Resources

	Chapter 7. Will the Bad Data Please Stand Up?
	Example 1: Defect Reduction in Manufacturing
	Example 2: Who’s Calling?
	Example 3: When “Typical” Does Not Mean “Average”
	Lessons Learned
	Will This Be on the Test?

	Chapter 8. Blood, Sweat, and Urine
	A Very Nerdy Body Swap Comedy
	How Chemists Make Up
 Numbers
	All Your Database Are Belong to Us
	Check, Please
	Live Fast, Die Young, and Leave a Good-Looking Corpse Code Repository
	Rehab for Chemists (and Other Spreadsheet Abusers)
	tl;dr

	Chapter 9. When Data and Reality Don’t Match
	Whose Ticker Is It Anyway?
	Splits, Dividends, and Rescaling
	Bad Reality
	Conclusion

	Chapter 10. Subtle Sources of Bias and Error
	Imputation Bias: General Issues
	Reporting Errors: General Issues
	Other Sources of Bias
	Topcoding/Bottomcoding
	Seam Bias
	Proxy Reporting
	Sample Selection

	Conclusions
	References

	Chapter 11. Don’t Let the Perfect Be the Enemy of the Good: Is Bad Data Really Bad?
	But First, Let’s Reflect on Graduate School …
	Moving On to the Professional World
	Moving into Government Work
	Government Data Is Very Real
	Service Call Data as an Applied Example
	Moving Forward
	Lessons Learned and Looking Ahead

	Chapter 12. When Databases Attack: A Guide for When to Stick to Files
	History
	Building My Toolset
	The Roadblock: My Datastore

	Consider Files as Your Datastore
	Files Are Simple!
	Files Work with Everything
	Files Can Contain Any Data Type
	Data Corruption Is Local
	They Have Great Tooling
	There’s No Install Tax

	File Concepts
	Encoding
	Text Files
	Binary Data
	Memory-Mapped Files
	File Formats
	Delimiters

	A Web Framework Backed by Files
	Motivation
	Implementation

	Reflections

	Chapter 13. Crouching Table, Hidden Network
	A Relational Cost Allocations Model
	The Delicate Sound of a Combinatorial Explosion…
	The Hidden Network Emerges
	Storing the Graph
	Navigating the Graph with Gremlin
	Finding Value in Network Properties
	Think in Terms of Multiple Data Models and Use the Right Tool for
 the Job
	Acknowledgments

	Chapter 14. Myths of Cloud Computing
	Introduction to the Cloud
	What Is “The Cloud”?
	The Cloud and Big Data
	Introducing Fred
	At First Everything Is Great
	They Put 100% of Their Infrastructure in the Cloud
	As Things Grow, They Scale Easily at First
	Then Things Start Having Trouble
	They Need to Improve Performance
	Higher IO Becomes Critical
	A Major Regional Outage Causes Massive Downtime
	Higher IO Comes with a Cost
	Data Sizes Increase
	Geo Redundancy Becomes a Priority
	Horizontal Scale Isn’t as Easy as They Hoped
	Costs Increase Dramatically
	Fred’s Follies
	Myth 1: Cloud Is a Great Solution for All Infrastructure
 Components
	How This Myth Relates to Fred’s Story

	Myth 2: Cloud Will Save Us Money
	How This Myth Relates to Fred’s Story

	Myth 3: Cloud IO Performance Can Be Improved to Acceptable Levels
 Through Software RAID
	How This Myth Relates to Fred’s Story

	Myth 4: Cloud Computing Makes Horizontal Scaling Easy
	How This Myth Relates to Fred’s Story

	Conclusion and Recommendations

	Chapter 15. The Dark Side of Data Science
	Avoid These Pitfalls
	Know Nothing About Thy Data
	Be Inconsistent in Cleaning and Organizing the Data
	Assume Data Is Correct and Complete
	Spillover of Time-Bound Data

	Thou Shalt Provide Your Data Scientists with a Single Tool for All
 Tasks
	Using a Production Environment for Ad-Hoc Analysis
	The Ideal Data Science Environment

	Thou Shalt Analyze for Analysis’ Sake Only
	Thou Shalt Compartmentalize Learnings
	Thou Shalt Expect Omnipotence from Data Scientists
	Where Do Data Scientists Live Within the Organization?

	Final Thoughts

	Chapter 16. How to Feed and Care for Your Machine-Learning Experts
	Define the Problem
	Fake It Before You Make It
	Create a Training Set
	Pick the Features
	Encode the Data
	Split Into Training, Test, and Solution Sets
	Describe the Problem
	Respond to Questions
	Integrate the Solutions
	Conclusion

	Chapter 17. Data Traceability
	Why?
	Personal Experience
	Snapshotting
	Saving the Source
	Weighting Sources
	Backing Out Data
	Separating Phases (and Keeping them Pure)
	Identifying the Root Cause
	Finding Areas for Improvement

	Immutability: Borrowing an Idea from Functional Programming
	An Example
	Crawlers
	Change
	Clustering
	Popularity

	Conclusion

	Chapter 18. Social Media: Erasable Ink?
	Social Media: Whose Data Is This Anyway?
	Control
	Commercial Resyndication
	Expectations Around Communication and Expression
	Technical Implications of New End User Expectations
	What Does the Industry Do?
	Validation API
	Update Notification API

	What Should End Users Do?
	How Do We Work Together?

	Chapter 19. Data Quality Analysis Demystified: Knowing When Your Data Is Good Enough
	Framework Introduction: The Four Cs of Data Quality
 Analysis
	Complete
	Coherent
	Correct
	aCcountable
	Conclusion

	Index
	About the Author

