GURGLE - GNU Report Generator Language

User Manual
Version 1.61 as at 21 January 2010.

Tim Colles (timc@inf.ed.ac.uk)

mailto:timc@inf.ed.ac.uk

This manual is for Gurgle (version 1.61, updated 21 January 2010), which is a utility to
produce formatted output from a variety of database inputs.

Copyright (©) University of Edinburgh, 1993-1997, 2001, 2003-4, 2008-10. All rights reserved.

The Author, Tim Edward Colles, has exercised his right to be identified as such under the
Copyright, Designs and Patents Act 1988.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

Table of Contents

0.1 Introductionoi e 1
0.2 Running GURGLE. o 1
0.3 GURGLE File Format.............. 3
0.3.1 SErUCLUTe.o 3
0.3.2 Processing Sequence.ot 3
0.3.3 Environment Variablesooiiii... 4
0.3.3.1 NPAGE ... e 5
0.3.3.2 FESCSUB. ... e 5
0.3.3.3 TEXEXT ... 5
0.3.3.4 DELIM ... 5
0.3.3.5 DFAMODE 5
0.3.3.6 CONCAT ... e 5
0.3.3.7 MEKDIR e 6
0.3.3.8- PHYSDB. ... 6
0.3.3.9 DBHOSTNM. e 6
0.3.3.10 DBUSERNM. 6
0.3.3.11 DBPASSWD ... 6
0.3.3.12 EXPAND ... 6
0.3.3.13 NAMCOL 7
0.3.3.14 DEFCOL ... e 7
0.3.3.15 NULLt e 7
0.3.3.16 PAGEl and PAGEN, 8
0.3.4 Predefined Macros.o.vvuiiieiiii i, 8
0.3.4.1 INCLUDE. 9
0.3.4.2 DEFINE i 9
0.3.4.3 DATABASE. ... i 10
0.3.4.4 MASTERDB.........co i, 11
0.3.4.5 SORTON ... e 11
0.3.4.6 REVSORT 11
0.3.4.7 FILTER.o 11
0.3.4.8 EQUATE 12
0.3.4.9 EQGUILE ... 13
0.3.4.10 HEADER i 14
0.3.4.11 FOOTERco 14
0.3.4.12 BANNER ... 14
0.3.4.13 PAGEOL 15
0.3.4.14 PAGENN 15
0.3.4.15 RECORD..... ... i 15
0.3.4.16 BLOCKt 16
0.3.4.17 PATTERN e 16
0.3.4.18 END ... 16
0.4 Equate EXPressionsoouuiiiiiiiiiiiiaa 16
0.4.1 Predefined Equates.............co i 17
0.4.2 Predefined System Variables................. 18

0.4.3 Keywordsuuiii 19

0.4.4 Definingouuiiiii e 19

0.4.5 Data Types 20
0.4.6 Variables....... ..o 20
0.4.6.1 Local Variables..........o i, 20
0.4.6.2 Global Variables............. ... oo 21
0.4.7 Variable Assignment i 21
0.4.8 Field Reference......... .o, 21
0.4.9 COonStIUCES . .« ot 22
0.4.10 Flow Control........ ... 24
0.4.11 Calling Other Equateso, 24
0.4.12 Numeric Operators.ouuuteeme i 25
0.4.13 Comparison Operatorscoeviriieenineennnn... 25
0.4.14 Boolean Operatorsvuuiteeiiieennieaann. 25
0.4.15 String Operatorscoouuuiiiiiiiiiiii e 26
0.4.16 I/O Operatorscouiuiniiiiiiiinanan... 26
0.4.17 Miscellaneous Operators.oouveiiiiieennnnn .. 26
0.4.18 Operator Precedence, 27
0.4.19 Commentsounutt et 28
0.4.20 Debuggingouuuiiii i 28
0.5 Reversed Equate Expressions..............coiiiiiiiii.. .. 28
0.5.1 Defining Reversed Equates 29
0.5.2 The Stack........o i 29
0.5.3 Reversed Equate Data Types............coooooiiiii... 30
0.5.4 Reversed Equate Variables 30
0.5.4.1 Reversed Equate Local Variables 30
0.5.4.2 Reversed Equate Global Variables 30
0.5.5 Reversed Equate Operators................coiiiiia... 31
0.5.5.1 Reversed Equate Variable Operators................. 31
0.5.5.2 Reversed Equate Numeric Operators................. 31
0.5.5.3 Reversed Equate Comparison Operators............. 32
0.5.5.4 Reversed Equate Boolean Operators................. 32
0.5.5.5 Reversed Equate String Operators................... 32
0.5.5.6 Reversed Equate Stack Operators.................... 32
0.5.5.7 Reversed Equate Field Operators.................... 33
0.5.5.8 Reversed Equate Calling Mechanism................. 33
0.5.5.9 Reversed Equate I/O Operators 34
0.5.5.10 Reversed Equate Miscellaneous Operators 34
0.5.5.11 Reversed Equate Constructs........................ 35
0.5.5.12 Reversed Equate Flow Control...................... 35
0.5.5.13 Reversed Equate Comments........................ 36
0.5.5.14 Reversed Equate Debugging 36
0.6 Hard Limits. ... e 36
0.7 Text Processing..........ccooouiimiiiiiiiiiiiiiiii.. 37
0.7.1 Declaring Text Input Files......... 37
0.7.2 Changing the Delimiter iii.n. 37
0.7.3 Referencing Fields......... ... i i 37
0.7.4 Redefining Patternso i 38

0.7.4.1 Tokens and Syntaxccovviiiiiiiiieennn.. 39

0.7.4.2 Mode ..o 39
0.74.3 Input Pattern........... i 39
0.7.4.4 EqUuatesuuetiii i 41
0.7.4.5 New Modeooiiii e 41
0.7.4.6 ToOKeN ... oot 41
0.7.4.7 AWK Patterns 42
0.7.4.8 Pattern Debugging il 42
0.7.4.9 Limits.o 43

0.8 RDBMS QUETIES . ..ttt 43
0.8.1 Declaring SQL Input Files........ ... oot 43
0.8.2 Physical Database......... ... oo i i 44
0.8.3 Referencing Columns...............coooiiiiiiiii .. 44
0.8.4 NULL Value Handling.............. ... i, 45
0.8.5 Miscellaneousooiuiiiii i 45
0.9 Using GUILE ... 45
0.9.1 GURGLE Proceduresccooviiiiiiiiiiinnn... 45
0.10 BIrors . oottt 46
0.11 Examples. 53

Appendix A GNU Free Documentation License

.. 57
Command Index............ 64
Variable Index........ 66

iii

0.1 Introduction

The gurgle program reads record and field information from a dBase3+ file, delimited ascii
text file or from an SQL query to a RDBMS and produces a report listing. Although the
program was originally designed to produce TeX/LaTeX formatted output, plain ascii text,
troff, PostScript, HI'ML, XML, shell scripts or any other kind of ascii based output format
can be produced just as easily.

The program is ideal for generating large bodies of text where small parts of that text
are substituted with information from a database. So its great for generating static web
pages which have some dynamic content.

The formatting process of is controlled by a definition file which holds the report, page,
and record layouts, what fields to display, and where. Other useful functions supported
in the definition file include sorting, filtering, and data manipulation of records in the
databases.

Below is a summary of the main features of gurgle.
e Support ASCII delimited text and dBase3+ databases
e Supports GNUSQL, PostgreSQL, MySQL and CA-Ingres databases
e Multiple input databases or queries
e Sorting of database records
e Automatic banner placement at the start of each sorted group
e Filters using regular expressions or user defined functions
e Five main text bodies - header, footer, record, 1st page, and Nth page
e User defined macros and text bodies
e User defined functions on field contents, including conditionals
e General purpose processing language
e User configurable input parsing patterns (default is like awk).
e Include files
e Environment variables
e System variables
e Multiple file output
e Optional GUILE support

0.2 Running GURGLE

The gurgle program takes one argument, the name of the definition file to use. This can
be given with or without a .grg extension. If the .grg extension is not given with the
filename and a filename without the extension is found then this will be used, else the .grg
extension will be automatically appended and a filename must exist with this extension.

The default output file name will be the basename of the GRG file with .tex as the
replacement extension. For example, if the GRG file to be used is test.grg then the program
would be called as gurgle test (or gurgle test.grg) and the output file produced by the
program, according to the directions given in the test.grg file would be test.tex.

The default output filename and extension can be easily changed from within the GRG
file. The output filename can also be changed at certain points during generation of the
output so that multiple files can be created from one input database file.

There is only one fixed option that can be given to the gurgle program, and this is
-d[1234]. All variants enable debug mode. When the -d option is used the program
will display the GRG file subsequent to preprocessing and will also dump the contents of
user defined macros, equates, environment variables, as well as the definitions assigned to
system variables, and the text bodies. The -d1 variant dumps DFA state tables (from
pattern matching definitions). The -d2 variant does the same as -d1 but also dumps the
actual processing of pattern definitions. The -d3 variant does the same as -d but also
dumps the memory allocations during pre-preocessing and output processing. The -d4
variant dumps details of the loading and field references of any .dbf file.

The GRG file is processed in two stages (see Section 0.3.1 [Structure|, page 3 and
Section 0.3.2 [Processing Sequence|, page 3 for more details). The first stage reads all
the predefined macro definitions and expands any user defined macros. The entire file is
broken down into its component parts and stored internally. The output file is then gener-
ated in the second stage by writing the stored text bodies at the appropriate places. The
record text body is written for each record in the master database file (subject to sort and
filter definitions), and the page text bodies are written at the start of each page. The header
text body is written at the start before anything else and the footer text body is written
at the end after everything else. References to database fields, interpolation of user text
bodies, and processing of equates are all done at this stage.

The GRG file can have as its first line a #! sequence followed by the path of the gurgle
program and can then be made self-executable exactly like a shell script. Note however
that only a line starting with # as the first line in the GRG file is interpreted this way and
that # does not start a comment line in any other place in the file (as it would in a shell
script). Command line options and arguments can be included after the path so a line like
#!/usr/local/bin/gurgle -d is acceptable. This is one situation where it is common to
not have the .grg extension as part of the filename.

The above allows the GRG file to act as a filter in a pipe by defining the database input
file to be standard input and redefining the output file to be standard output.

The gurgle program will accept any number of additional command line arguments
where each is a predefined macro and its arguments (these are discussed in more detail
in Section 0.3.4 [Predefined Macros|, page 8). These are processed after parsing the GRG
file. This is so that the command line arguments can overwrite any value in the GRG file.
The processing order is described in more detail in Section 0.3.2 [Processing Sequence],
page 3. A predefined macro argument can include quotes and escaped quotes. These
must be given differently in a command line argument to prevent shell escape. The format
for a nested quote is \" and for a nested escaped quote is \\\". For example, gurgle
fubar.grg "%%equate eq_init 1>>_eq_trace", is a command line which starts up tracing
while processing equates in fubar.grg. Note that it is safest when using command line
predefined macros to always include a terminating macro to avoid any possible continuation
errors (when the actual file is processed). So it is better to do:

gurgle fubar.grg "Y%kequate eq_init 1>>_eq_trace" "}Jend"

The gurgle program will also accept any number of additional command line arguments
in any format which custom processing can be added to either convert them into predefined
macros or to set internal values etc. See later section on this.

0.3 GURGLE File Format

The GRG file defines what the input database files are, what the formatted output is to
look like, and how to process the input to get to the output. It takes the form of a list of
predefined macros (one per line), most of which take arguments, and all of which are optional
(except DATABASE of which there must be at least one, see Section 0.3.4.3 [DATABASE],
page 10). These have three general forms. They can define an internal structure or process
(such as how to sort or filter the data). They can define user macros and equations that
are expanded within text bodies. They can define text bodies themselves. A text body is
a block of text associated with a particular page or output position.

0.3.1 Structure

A GRG file is processed in three modes. The default is STANDARD mode where only prede-
fined macro lines, comment lines or blank lines may be seen. Anything else will be treated
as an error. The ARGS mode is used to process each of the arguments following a prede-
fined macro name, until a newline where the mode reverts to STANDARD mode again. Some
predefined macros may switch processing to the TEXT BODY mode. Within this mode user
defined macros are expanded and equates are called. User defined macros are not expanded
anywhere else. From TEXT BODY mode STANDARD mode is returned to when a predefined
macro is encountered. The EQUATE mode is a special variant of TEXT BODY mode used
only for processing equate definitions (user defined macros are also expanded in this mode).

Comments can be included in a GRG file in the STANDARD mode and the TEXT BODY
mode. They are flagged by a %% sequence, followed by at least one whitespace character
(space, tab or newline). This sequence and anything else up to and including a newline will
be discarded. In TEXT BODY mode comments can only occur at the very start of a line (no
preceeding whitespace) whereas in STANDARD mode there can be any amount of preceeding
whitespace on the line. In the EQUATE mode C style comments are also supported and can
occur anywhere. They are started with a /* sequence and ended with a */ sequence. Unlike
C, nested comments are allowed.

0.3.2 Processing Sequence

This is the processing sequence including command line arguments, built in equates, text
bodies, and the actual database file. Some of the terms may not be familiar yet but are
explained further in later sections. Not all events are listed below, just the more important
ones.

1. Initialise built in equates to void
Initialise built in system variables
Parse command line arguments
Parse .grg file

Parse command line arguments (second time)

A AN R

Update environment variables and system variables

7. Execute eq_init equate
8. Load database files
9. Open output file
10. Set _eq_totrec to size of master database file
11. Sort records in master database file
12. Execute eq_pre_header
13. Process HEADER text body
14. Execute eq_post_header
15. For each record in sorted/filtered master database
1. Set _eq_currec
2. If this is page 1
1. Execute eq_pre_page01
2. Process PAGEO1 text body
3. Execute eq_post_page01
3. If this is page N
1. Execute eq_pre_pagenn
2. Process PAGENN text body
3. Execute eq_post_pagenn
4. If this is a valid banner point
1. Set _eq_banner_val
2. Set _eq_banner_nest
3. Execute eq_pre_banner
4. Process BANNER text body
5. Execute eq_post_banner
5. Execute eq_pre_record
6. Process RECORD text body
7. Execute eq_post_record
16. Execute eq_pre_footer
17. Process FOOTER text body
18. Execute eq_post_footer
19. Execute eq_exit equate
20. Close output file

0.3.3 Environment Variables

Environment variables are internal defaults which can be altered directly from within the
GRG file. Normally this is done with the DEFINE predefined macro to redefine their value,
although there are a few exceptions.

0.3.3.1 NPAGE

The NPAGE variable holds the value grg uses to start a new page. Its default value is
\newpage (for LaTeX), but it can be redefined to anything (a linefeed control character for
example). The example program fragment below resets the NPAGE variable to the null
string.

%%DEFINE NPAGE

0.3.3.2 FESCSUB

The FESCSUB variable controls whether the percent escaping is done for real. Normally a
\% sequence in a text body is left as it is (since LaTeX needs the percent character to be
escaped), however if this variable is set, then the \% sequence will be replaced by just a %.
The percent character has to be escaped because it conflicts with the field name identifier.
The example program fragment below sets the FESCSUB variable. There is no way to reset
it.

%/DEFINE FESCSUB

0.3.3.3 TEXEXT

The TEXEXT variable holds the file extension of the output filename (that which replaces
the .grg part). Normally a .tex extension is used (for LaTeX). The example program
fragment below sets the value to .html.

%/DEFINE TEXEXT .html

0.3.3.4 DELIM

The DELIM variable takes an argument each character of which is the value to use as a field
delimiter in a database file which is delimited ascii text. The default is space and tab for
awk style processing. Actually sets the contents of the token. The example program
fragment below sets the value to ~. the first character of the DELIM value is also used as
a field separator in the default header and record text bodies.

%/DEFINE DELIM ~

0.3.3.5 DFAMODE

The DFAMODE variable holds the initial mode of the DFA. Normally set to <awk><nul>
for processing delimited ascii text like input to awk (fields separated by space or tab, one
record per line). It would only be necessary to change this when a new pattern matching
style has been defined so that it can be used instead. The example program fragment below
sets the value to <usr><nul> where this would be a user defined pattern.

%%DEFINE DFAMODE <usr><nul>

0.3.3.6 CONCAT

The CONCAT variable when set means that generated output is appended to the defined
output file, rather than the output file being recreated on each run which is the default.
Has no affect on any files generated during processing other than the main output file. The
example program fragment below sets the variable, there is no way to reset it.

0.3.3.7 MKDIR

The MKDIR variable when set means that the directory path of the generated output file
will be created if it does not already exist. This allows the construction of trees of output
files. The example program fragment below sets the variable, there is no way to reset it.

%%DEFINE MKDIR

0.3.3.8 PHYSDB

The PHYSDB variable holds the name of the Ingres physical database to which an SQL
query is to be directed. This variable must be defined whenever an SQL database file is used
otherwise an error will be generated. Only one physical database can therefore be referred
to from one GRG file. The example program fragment below sets the physical database
name to mydb.
%/DEFINE PHYSDB mydb

This variable is not needed if the GNU SQL Server database is being used as this does

not support multiple physical databases.

0.3.3.9 DBHOSTNM

The DBHOSTNM variable holds the name of the database server to which an SQL query
is to be directed. Normally just localhost. The example program fragment below sets the
database server host to dbhost.dummy.uni.ac.uk.

%%DEFINE DBHOSTNM dbhost.dummy.uni.ac.uk

0.3.3.10 DBUSERNM

The DBUSERNM variable holds the name of the user to use when an SQL query is made.
Defaults to current user. The example program fragment below sets the user to jbloggs.

%%DEFINE DBUSERNM jbloggs

0.3.3.11 DBPASSWD

The DBPASSWD variable holds the password of the user to use when an SQL query is
made. Not required if the user can connect without giving a password. The example
program fragment below sets the password to Joe25.

%/DEFINE DBPASSWD Joe25

Including a plain text password within the definition file is insecure and the file should
generally be protected against anyone seeing it. The CA-Ingres database will automatically
prompt for a password if not given in the definition file. Alternatively custom user arguments
can be added to process a password given on the command line and to set this variable.

0.3.3.12 EXPAND

The EXPAND variable when set means that any SQL as a database is pre-processed and
any # or % reference substituted with the actual equate or field value exactly as in text
bodies. This allows the results of one SQL query to be fed into the construction of another
one. Normally only user defined macros (%%) are expanded in an SQL query but only
when the definition file is loaded. The default is not to expand # or % due to the possible
clashes with regular SQL. Note that when set the expansion applies to every defined query.

The example program fragment below sets expansion, there is no way to reset it.

%%DEFINE EXPAND

0.3.3.13 NAMCOL

The NAMCOL variable when set means that the field names given to columns from an
SQL query will take the name given in the SQL query itself. The default behaviour is to
generate numbered names for columns in the same way as for delimited ascii files. Note that
internally column names are held in uppercase and have a maximum of ten characters so
SQL column names from the query may be truncated and will be mapped to uppercase for
the purposes of field reference within the GRG file. The example program fragment below
sets NAMCOL so that columns are named, there is no way to reset it once the value has
been changed. Note also that it applies to all queries so either all database files defined as
SQL queries will have named columns or none of them will.

%/DEFINE NAMCOL

If the NAMCOL variable is set then the column names for any text delimited database
files will be taken from the field values of the first record in the file and that record will
then be discarded.

0.3.3.14 DEFCOL

The DEFCOL variable when set means that the field names given to columns from an
SQL query will take the name given in the SQL query itself. The default behaviour is to
generate numbered names for columns in the same way as for delimited ascii files. Note
that internally column names are held in uppercase and have a maximum of ten characters
so SQL column names from the query may be truncated and will be mapped to uppercase
for the purposes of field reference within the GRG file.

If the DEFCOL variable is set then the column types for any text delimited database
files will be taken from the field values of the first record in the file (or second if NAMCOL
is also used) and that record will then be discarded. The example program fragment below
sets DEFCOL so that columns are typed, there is no way to reset it once the value has been
changed. Note also that it applies to all databases so either all database files defined as
delimited text will have typed columns or none of them will.

%/DEFINE DEFCOL

An example input file with named and typed columns might look like the below. The
first two records are absorbed and discarded after setting the column names and types from
them.

FIRST LAST AGE
CCN
Joe Bloggs 55

The possible type codes are C for character data, N for numeric data, D for date data
and L for logical (boolean) data.

0.3.3.15 NULL

The NULL variable holds a value which defines what will be used for null values returned
from an SQL query. This is required because GURGLE does not have an explicit null value.
The default is to just leave null values as an empty string. The example program fragment
below defines NULL so that null values are replaced with the dash character.

%/DEFINE NULL -

0.3.3.16 PAGE1 and PAGEN

The PAGE1 and PAGEN variables set the number of records per page for the first page
and every other page respectively. They are normally both set to one. Unlike the other
environment variables these are set with two unique predefined macros. Each macro can
also be used to define the text body associated with the start of the first page or every other
page. In the example program fragment below the number of records is set to three on the
first page and four on every subsequent page.

%%HPAGEO1 3
%/,PAGENN 4

The PAGEO1 and PAGENN predefined macros can also take a second numeric argument.
This is the number of lines per page. If the number of lines per page is execeeded then
this will cause a page break irrespective of the number of records per page. The number of
records per page however is not reset, and so this also will cause a page break. By setting
one or other of these paramaters to 0 then the behaviour can be defined as n records per
page, or n lines per page. It is illegal to set both parameters to 0. The default with no
arguments specified is 0 for lines per page (not used) and infinite for records per page (there
will be no automatic page breaks). Note that lines per page includes lines from the header
and footer text bodies, but that records per page doesn’t. This mechanism can be used to
handle variable length records in plaintext based output, it is of less use for LaTeX output.
If there is no PAGEO1 definition then all pages will use the definition given for PAGENN. See
Section 0.3.4.13 [PAGEO1], page 15 and Section 0.3.4.14 [PAGENN], page 15 for further
details.

0.3.4 Predefined Macros

Predefined macros must start at the beginning of a line (or only be preceeded by whitespace
on the line). There must be nothing else on the line other than any arguments to the
predefined macro. Predefined macros are not case sensitive (all upper case or all lower case
or mixed case will be treated as the same macro name), for example %%Sorton is identical
to %%SORTON. Predefined macros cannot be used within a text body. They can occur in
any order (there are no dependencies during parsing) with the exception that user defined
macros must be defined before they are used (otherwise they will not be expanded).

All predefined macros start with a %% sequence, followed by the rest of the macro name.

Some predefined macros have arguments. These have the following forms. A numeric
argument is any decimal number. A string argument is enclosed in double quotes and can
include any character except a double quote. A string argument cannot extend over a
newline. A field argument is the name of a database field. As in text bodies the name must
be in capitals and should be preceeded by the % character. A macro argument is a macro
name followed by a space or a newline. If followed by a space then anything else up to a
newline is taken to be the macros definition. A macro name must start with an alphabetic or
underscore character, but can be followed by any upper or lower case alphabetic character,
numeric character, or underscore character. Note that unlike predefined macros the macro
name is case sensitive.

Other predefined macros start a text body on the following line. A text body can include
almost any characters whatsoever. A text body is terminated by any line starting with a

%% sequence and followed by a valid predefined macro. A line starting with %% followed by
whitespace will be treated as a comment and discarded from the text body. Apart from at
the start of a line a %% sequence is treated as the start of a user defined macro or equate
the name of which should immediately follow. In the former case the user defined macro
is expanded and the definition replaces the %% and user defined macro name sequence.
Similarly an equate is processed and the result expanded in place (an equate need not
return a result in which case the result will be blank and the %% plus equate name sequence
is removed). The # sequence can also be used to refer to an equate to process and expand
(but not a user defined macro). This could be used where an equate name and a user
defined macro name share the same name, since if a macro of the same name exists this
will always be favoured over the equate, but by using a hash character instead it makes it
explicit that an equate is being called and not a user defined macro.

The name of an equate can be immediately followed by (...) which contains a comma
separated list of arguments to the equate, each argument can be any expression (or expres-
sions) that results in a value. The equate name and the entire contents of the brackets is
replaced by the evaluation of the equate and argument expressions. Note that the argument
expressions should be given in unreversed order if the equate was defined unreversed and
reversed order otherwise.

If the result of an equate that is called from within a text body is a string which is itself
an equate (or includes an equate) then this will get reprocessed and so on. This is similar
to the way user defined macros will continually get expanded.

A \<newline> sequence at the end of a line in a text body will escape the newline. This
is useful if a text body is a one line equate call that may not print anything, without adding
this to the end you will always get at least one blank line.

A ¥ sequence followed by a field name in a text body will be expanded with the contents
of that field from the current record of the master database file.

0.3.4.1 INCLUDE

Use this macro to include another file (or multiple files) into the current file. This macro
should be followed by one or more string arguments. Each should be the full name of a
file to include at this point. The included file can also include other files. Each include file
cannot be bigger than the maximum text body size, and if multiple include files are given as
arguments to this macro then the summed size of all the include files given cannot be more
than the maximum text body size. The example below shows three files being included.

%%INCLUDE "header.grg" "footer.grg"
%%INCLUDE "record.typel"

0.3.4.2 DEFINE

Use this macro to define or redefine user macros. These can then be used in text bodies
where they will be fully expanded. A macro definition can itself include user macros in the
same way as text bodies (these will only be expanded from within the text body). However,
predefined macros cannot be used in user macro definitions, nor can they be defined or
redefined. This macro takes a macro argument which can either be just the name of the
user macro being defined, or can be the name followed by the replacement text for that
macro. To include a user macro in a text body or a macro definition it should be preceeded

10

by a double percent character sequence. The example program fragment below defines three
user macros, and also shows how they are used within a macro definition and a text body.

%%DEFINE TITLE This is the Title

%ADEFINE BOLD \bf

%%DEFINE BOLDTITLE {%%BOLD %%TITLE}

%%HEADER

\centerline{’%%BOLDTITLE as at {%%BOLD \today}}

Note that a user macro definition can also include field names and equate macros. How-
ever, if using equate macros the name of the equate macro must be preceeded by a hash
character rather than a double percent character sequence as done normally. The equate
macro name need not have been defined before it is used in a user macro definition (since
processing of equates occurs at a later stage.

There is no error when redefining a user macro. The new replacement text is just
substituted for the old.

0.3.4.3 DATABASE

Use this macro to specify the database files, the names of the dBase3+ files (or delimited
text files) from which the records and fields are being taken. There can be one or more
string arguments which are the full names (or pathnames) of the file to use (the .dbf file
extension is also required in the name). If the extension is not .dbf then the file will be
read in as a delimited ascii file using awk field /record style input by default, see Section 0.7
[Text Processing], page 37. The one exception to this is where the extension is .sql where
the database file name is then just a table to query in a RDBMS, see Section 0.8 [RDBMS
Queries], page 43. The example program fragment below shows all three file types in use.

%/%DATABASE "/usr/local/lib/dbase/example.dbf"
%%DATABASE "refl.txt" "ref2.txt"
%%DATABASE "people.sql"

The first database file has a path of /usr/local/lib/dbase/, a name of example and a
type of .dbf and will be opened as a dBase3+ file. The next two database files have no path
(so must be in the current directory), names of refl and ref2 respectively and are both
opened as delimited ascii files. The third database file has no path (does not need one) and
is treated as an SQL query selecting the entire contents of the people table (people will
also be the name of the database file) from a RDBMS.

The first database file defined is always taken as the master database file (that which text
body processing, sorting and filtering acts on and through which records are cycled). Other
database files can only be accessed indirectly through the pointer mechanism of equate
processing (see Section 0.4.8 [Field Reference], page 21).

The special case filename which is just "-" can be used to read a database file from
standard input (this would normally always be specified as the first database file so that it
is also the master). A database file specified as "-" will always be loaded as a delimited
ascii file.

Note that there must be at least one DATABASE command in every GRG file, in fact
the smallest GRG file would just consist of one of these lines to define the database file —
the default header and record text bodies would then define the format of the output file
automatically.

11

0.3.4.4 MASTERDB

Identical to the DATABASE macro except that it sets this database to be the master database.
The master database is the one through which record looping occurs and the default text
bodies are output. Without using this macro the master database is always the first database
loaded. This macro can be used repeatedly in place of the DATABASE macro, the master
database would then be the last database loaded.

0.3.4.5 SORTON

Use this macro to define how to sort the records in the master database file. If this is not
used the records will be written out from the database file in the order they are stored in
the file (or retrieved by the SQL query). This macro can be followed by up to four field
arguments (or the predefined macro can be used up to four times if only given one argument
each time). The records will be sorted alphabetically on the first field given, and each sorted
group (of the same value) will then be resorted on the second field given, etcetera. The
BANNER macro can be used to produce a header at the start of each sorted group. The
example below sorts first on the YEAR field, and then on the SURNAME field for each sorted
group within this.
%%SORTON %YEAR %SURNAME

Note that sorting on boolean type data fields works as follows. A boolean field with a
value of T or Y is treated as true and identical, anything else is treated as false and also
identical. This supports the dBase3+ syntax for logical fields.

0.3.4.6 REVSORT

Just like SORTON except that it sorts the given field arguments in descending order (SORTON
sorts in ascending order). The two sorts can be freely mixed. The example below sorts on
the YEAR field in descending order, and then for each sorted year group sorts on the SURNAME
field in ascending order.

%Y%REVSORT %YEAR
%%SORTON %SURNAME

0.3.4.7 FILTER

Use this macro to define how to filter the records (restrict the output) in the master database
file. By default no filtering is done. There is a maximum number of filter conditions, which
can either be given as multiple arguments to this macro or this macro can be used more
than once. Each filter condition given as a multiple argument to one predefined macro is
or’ed together. Each predefined macro call is and’ed with any others. Each filter condition
is given as a string argument. Only records matching the given conditions will be processed.
A record is written out if it matches at least one of the or’ed filter conditions from all of
the and’ed filter conditions.

The filter condition has the syntax field=re. The field is the name of a database field,
including the % character identifier. The re is a regular expression with the same syntax as
used in the UNIX ed (1) and sed(1) commands. There should be no spaces in the condition
unless they are required in the regular expression. There is an example program fragment
below with some filter conditions defined.

%AFILTER "%STATUS=ENDED" "¥STATUS=FAILED"

12

%AHFILTER "%YEAR=199[123]"

The above would write out all records that have a STATUS field of ENDED or FAILED
and have a YEAR field with the value 1991, 1992, or 1993.

You can define a filter condition that is an equate rather than a regular expression by
using the special field name %_EQ. The equate expression should return a boolean, numeric,
date, or string type. The filter condition matches if the number or boolean is not 0 or
the date or string is not empty. The two filters conditions given below are identical. See
Section 0.3.4.8 [EQUATE], page 12 for details of equate expression syntax. Note that the
equate must be a reversed equate expression, it will not currently be auto reversed if it is
not and keywords will not be recognised. Nested string quotes must be escaped within a
filter condition.

%4FILTER "%STATUS=ENDED"
%FILTER "%_EQ=%STATUS\"ENDED\"="

Beware of recursive definitions of a filter condition using a (...) looping construct —
since this in itself depends on the filter condition.

0.3.4.8 EQUATE

This macro works in a similar way to DEFINE except that it defines a user macro whose
ultimate value is dependent on the processing of the equate expression. It provides a level
of processing that occurs after preprocessing (unlike ordinary user macros). Although user
defined macros are not expanded within an equate definition, equates will be but they
should be prefixed by the # character (not %%).

Only simple conditional equate expressions are discussed here (that can be used to do
something like an ifdef pragma). In fact equate expressions can be much more complex
but the details of this are given in Section 0.4 [Equate Expressions|, page 16 on equate
expressions and Section 0.5 [Reversed Equate Expressions|, page 28 on reversed equate
expressions.

The argument given to this predefined macro is a macro argument as for defining user
macros. However the macro definition part is slightly more complex in that it supports the
7 operator. The syntax for this is ?7field["string"]: ["string"];. The square brackets
surround optional syntax.

The semantics of the ? operator are that if the value of the given field is null (or equals
0 or 0.0 in the case of numeric fields) then do not print the field at all. So in the program
fragment below

%%EQUATE EXAMPLE ?YEAR:;

the EXAMPLE equate macro has a definition saying if the value of the YEAR field is null
print nothing else print the value of the YEAR field. This is a shorthand notation for the
example below.

%LEQUATE EXAMPLE 7YEAR"),YEAR":;

The definition for this example says that if the value of the YEAR field is null print
nothing, else evaluate the following string. The example below shows the third possible
form of this operator.

%HEQUATE EXAMPLE 7YEAR"),YEAR":"Unknown";

13

The definition for this example says that if the value of the YEAR field is null evaluate the
string following the colon character, else evaluate the string preceeding the colon character.

Below is a more complex example program fragment which also shows how the equate
macro is used within a text body.

%%EQUATE NAME 7NAME1:"";?NAME2"; %NAME2":"";+
%#EQUATE SALARY \

?SALARY"Salary is %SALARY":"No Salary for #NAME";
%%RECORD
Details: %%NAME, %%SALARY

In the above example the NAME equate prints the contents of the NAME1 field only if
it isn’t null and follows this with nothing if the contents of the NAME2 is null else with a
semicolon followed by the contents of the NAME2 field. Note the + operator to concatenate
the results from each condition into one (an equate must return only one value) and as a
result of this each condition must always return a value so "" is used in the else clause to
return an empty string when the field is empty. The SALARY equate prints a different string
dependent on whether the contents of the SALARY field is null or not. Note that the last
string actually includes a nested call to the NAME equate macro. Note also the use of the
backslash character to carry the definition onto the next line (the backslash can be used to
escape newlines in an equate definition).

An equate macro is used in a text body in the same way as a user defined macro,
that is, by using the defined name preceeded by the %% or the # character sequence. The
preprocessing stage will replace a %% sequence with a # character sequence if the name
does not match a user defined macro. This triggers an evaluation of the equate definition
associated with the subsequent name at that point in the text body, the result replacing
the # and the equate macro name in the same way as user macros. Note that because a
hash is used to identify an equate macro any other hash in a text body should be escaped
(by using \# which will be substituted with #).

The equate definition macro can be used to redefine previous macros. This will not
produce any error messages. An equate macro definition can also have a null argument (as
in user macros) in which case it is given a null definition.

0.3.4.9 EQGUILE

Works identically to EQUATE except that it defines an equate that is written in scheme to
be run under the GUILE interpreter. The gurgle program must have been compiled with
support for GUILE otherwise this macro will be treated the same as EQUATE.

There should be one macro argument to be the name of the equate as seen from the
GURGLE side. This is so that the equate can be called from the GURGLE side as if it was any
other equate. Any number of optional whitespace separated arguments may also be given
to this macro (after the name). Any arguments passed to the equate from the GURGLE side
will be passed to the function on the GUILE side. No error checking is done. Argument types
are converted in a limited sense to the GUILE side equivalent. An equate defined in scheme
is only allowed to return one argument and the GURGLE side will pick this up, convert the
type and it can be used as normal. Only simple numbers and strings should be returned
from the GUILE side.

Here is the definition of factorial as an equate written in scheme.

14

%%EQGUILE fact n
(if (=n 1) 1 (*xn (fact (- n 1))))

This will be wrapped up on the GUILE side as shown below.
(define (fact n) (if (=n 1) 1 (*x n (fact (- n 1)))))

It can be called in exactly the same way as any other equate.
%HEQUATE FUBAR

OUTPUTS (fact(4))
%%RECORD
Direct call: ... #fact(2) ... and then via another equate: ... #FUBAR ..

There are some additional procedures made available under the GUILE side from the
GURGLE side, see Section 0.9 [Using GUILE], page 45 for more details.

0.3.4.10 HEADER

This macro defines a text body that is to be written at the very start of the output. The
text body starts on the line following the macro and continues up to a line starting with a
%% sequence (that is not a comment line) or the end of the file. A text body will have user
macros fully expanded and equate macros substituted for evaluation later on. Note that
user macros cannot be used at the start of a line within a text body as they will conflict
with the predefined macros. Note also that because % is used as a macro identifier flag in
a text body any other % should be escaped by using the \’% sequence. This is not normally
a problem since a % symbol has to be escaped for LaTeX anyway. The program fragment
below is an example of this macro. The # character should also be escaped in a text body
in the same way as this can flag the start of an equate.

% HEADER
\documentstyle[a4]{article}
\begin{document}

If no HEADER is defined a default header is generated which is the name of each field
in the master database file separated by the first character in the value of DELIM. This
behaviour can be stopped by creating an empty HEADER definition or by creating a RECORD
definition (empty or otherwise).

0.3.4.11 FOOTER

This macro works in an identical way to HEADER except that it defines the text body to be
written right at the very end of the output. The example program fragment belows shows
this macro being used.

%%FOOTER
\end{document}

0.3.4.12 BANNER

This macro defines a text body that is to be written at the top of each sorted group.
Any field references within the text body will be taken from the first record in the sorted
group. The macro can take one or more field arguments which defines the level at which
the banners occur (for which sorted group with reference to the sorton list defined by the
SORTON predefined macro). These field arguments must always correlate with the fields

15

used for sorting. In the example program fragment below a banner is defined on the YEAR
field and a header will be written out preceeding each sorted group of years.

%%SORTON %YEAR %SURNAME
%/4BANNER Y%YEAR
\flushleft{\underline{%YEAR}}

Fields given as multiple arguments to one BANNER, predefined macro will share the same
text body, special equates can be used to distinguish which banner it is (see Section 0.4.2
[Predefined System Variables|, page 18), however, fields given to separate predefined macros
will each have their own unique text body. The banners can be defined in any order as they
will be matched to the sorted groups according to their field arguments.

If an SQL query is being used that is ordered it it not neccessary to apply an order using
SORTON to use banners. Simply define the banners with field arguments that correlate with
those the SQL query is using as below.

%%DATABASE "people.sql"

select * from people order by year, surname
%%BANNER % YEAR
\flushleft{\underline{’,YEAR}}

0.3.4.13 PAGEO1

This macro defines a text body that is to be written at the start of the first page of the
output file. The macro optionally takes one or two numeric arguments which define the
number of records or number of lines to be placed on the first page. The default without
this argument is infinite (ie. there will be no page breaks). The program fragment below
gives an example.

%hAPAGEO1 3

\vspacex{lex}

\centerline{{\bf DEPARTMENT OF ARTIFICIAL INTELLIGENCE}}

\centerline{{\bf %%TITLE as at \today}}

Page breaks will only be generated if one or both of PAGEO1 and PAGENN are defined.

0.3.4.14 PAGENN

This macro is similar to PAGEO1 except that it defines the text body to be written at the
start of every page of the output except for the first page. It also optionally takes numeric
arguments defining the number of records or the number of lines to be put on each page
excepting the first page. The default without this argument is infinite (ie. there will be no
page breaks). The program fragment below is an example.

%hPAGENN 4

\vspacex{lex}

Page breaks will only be generated if one or both of PAGEO1 and PAGENN are defined.

0.3.4.15 RECORD

This macro defines the text body for each record. This is where references to fields will
normally be made. References made to fields in other text bodies will always use the first
or last records in the master database file. The record text body is written out for each
record in the master database file (after all the sorting and filtering has been done). Below

16

is an example program fragment which gives some idea of what a record text body field
might look like.

%/HRECORD

\begin{list}

\item[{\bf Name:}] %TITLE %SURNAME,’INITS
\item[{\bf Start Year:}] %YEAR

\item[{\bf A/C No:}] %ACCOUNT_NO
\item[{\bf Balance:}] \pounds’BALANCE
\end{list}

If no RECORD is defined a default record is generated which is the contents of each field
in the master database file separated by the first character in the value of DELIM. This
behaviour can be stopped by creating a RECORD definition (which could just be empty).

0.3.4.16 BLOCK

Defines a user placeable text body. This predefined macro should be followed by the name
of the block (on the same line) by which it can be referred to. A user placeable text body
can be included anywhere within another text body (including the text body of another
block) by using the standard equate or user defined macro start character sequence. The
example below shows a user text body block being defined and used.

%%BLOCK TITLE
This is the title
%%RECORD

#TITLE

Rest of record

0.3.4.17 PATTERN

Defines a pattern for parsing delimited text files and creating a database file from them.
For more details see Section 0.7.4 [Redefining Patterns|, page 38 on pattern definition.

0.3.4.18 END

The END predefined macro can be used to terminate text bodies and is particularly useful
at the end of these in include files, since when the include file is used it guarantees that the
processor is back in STANDARD mode rather than relying on their being a predefined macro
straight after the include file to do this. There is no requirement to explicitly terminate a
text body normally as it is always followed by another predefined macro or the end of the
file both of which terminate the text body.

0.4 Equate Expressions

The equate expression language is a reasonably powerful but simple language designed solely
for data manipulation within the GRG file. It has a very limited file i/o capability and no
system i/o. It has conditions and loops, local variables, system (global) variables, support
for record searching and matching in database files, basic maths, logical and relational
operators, function call support (with arguments), and five interchangeable data types.
The language is designed to supplement the text bodies, and equates can be called from
text bodies (like user defined macros) to insert text that requires more complex processing

17

to generate. They are often used to build things like summary tables from database files
which are not so easy to generate directly using predefined and user defined macros.

Equates are automatically converted to a reversed equate which is a lower level inter-
preted langauge which can also be used directly if preferred (see Section 0.5 [Reversed
Equate Expressions|, page 28).

0.4.1 Predefined Equates

There are some equates which are pre-defined as void but whose definition can be overwritten
by the user. These equates are called at specific points during generation of the output
(mostly before and after text bodies) and allow additional processing to be carried out at
these stages. For most of these predefined equates if a value is returned that value will
be written to the output stream with the text body. This allows the equates surrounding
text bodies to write values to the output without relying on a system variable and another
equate within the text body. These equates are always called (the text body equates are
only called if the text body itself is being written to the output stream) but have no affect
unless redefined to something other than void.

e eqg_init is called before any output is generated. Can be usefully used to enable
tracing, disable the banner message, or replace the banner message with something
else.

e eq_args is called to process each user defined command line argument.

e eg_pre_header is called before writing a header text body.

e eqg_pre_footer is called before writing a footer text body.

e eq_pre_page01 is called before writing a page 1 text body.

e eg_pre_pagenn is called before writing a page N text body.

e eqg_pre_banner is called before writing a banner text body.

e eqg_pre_record is called before writing a record text body.

e eqg_pre_block is called before writing a block text body.

e eq_pre_database is called before loading a database.

e eq_post_header is called after writing a header text body.

e eq_post_footer is called after writing a footer text body.

e eq_post_pageO1 is called after writing a page 1 text body.

e eq_post_pagenn is called after writing a page N text body.

e eq_post_banner is called after writing a banner text body.

e eqg_post_record is called after writing a record text body.

e eqg_post_block is called after writing a block text body.

e eqg_post_database is called after loading a database.

e eqg_exit is called at the very end of processing just before the output file is closed.

The exact call order of these is given in Section 0.3.2 [Processing Sequence], page 3 on

the processing sequence. These can be redefined just like any other equate. However eq_

texinit cannot use any database operations (since it is called before any databases have
been loaded) or write to the output file (since this won’t have been opened).

18

0.4.2 Predefined System Variables

There are some global variables predefined as a result of parsing the GRG file which can
be accessed from within equates. Writing new values to some of these predefined variables
may also change the processing behaviour.

e _eq_trace defines whether trace output of reversed equate expressions is produced.
Assign 1 to this variable to turn on the output. This is normally done from the eq_
init equate, although it can be toggled on and off at will for more selective control of
tracing.

e _eq_version defines whether the copyright banner message is displayed (it may be
useful to remove this when the program is being employed as a filter in a pipe for
example). The banner can be turned off by assigning 0 to this variable. This would
have to be done in the eq_init equate to be of any use.

e _eq_verbose defines whether the informative message about what file is being created
is displayed. The message can be turned off by assigning 0 to this variable. This would
have to be done in the eq_init equate to be of any use.

e _eq_clock contains the number of seconds since 1/1/1970 at the start of processing.

e _eq_datenow contains the current date at the start of processing as a date type (ie.
dBase3+ format, a string of CCYYMMDD).

e _eq_timenow contains the current time at the start of processing as a 24hr colon sep-
arated string type including seconds (ie. HH:MM:SS).

e _eq_banner_val contains the value of the banner sort field of the current banner (the
value that all the records for this banner group have in common).

e _eq_banner_nest contains the nesting level of the the current banner which goes from
1 to the number of defined banners and indicates which level of sort field the current
banner being processed is associated with.

e _eq_totrec contains the total number of records (pre filtering) in the master database
file.

e _eq_currec contains the index of the current record being processed. This value has
a range from 1 to _eq_totrec.

e _eq_file contains the full name of the GRG file being processed including the path and
the extension. The _eq_ptfile system variable which the above replaces is deprecated
and should not be used.

e _eq_base contains the full name of the output file excluding the extension. The _
eq_texbase system variable which the above replaces is deprecated and should not be
used.

e _eg_extn contains the extension of the output file. The _eq_texext system variable
which the above replaces is deprecated and should not be used.

e _eq_outfile contains the full name of the output file including the extension. If the
special case name of "-" is assigned to this the output file will be set to standard
output. The name of the output file is checked before the start of processing every text
body. If it has changed the existing file is closed and the new file is opened, output is
then written to the new file.

e _eq_dbfpath contains the path component of the master database file name. Can be
rewritten in eq_init to override the default.

19

_eq_dbfname contains the name component of the master database file name. Can be
rewritten in eq_init to override the default.

e _eq_dbftype contains the type component (extension) of the master database file
name. Can be rewritten in eq_init to override the default.

e _eq_block contains the name of the current user text body block being processed (this
is not set for built in text body blocks such as headers and footers).

e _eq_db_name contains the name of the database being loaded.
e _eq_db_name contains the size (number of records) of the database being loaded.

e _eq_clarg contains the current used defined command line argument. Would be used
in eq_args.

There are a few other more specialised system variables which are discussed in the
sections to which they are relevant.

0.4.3 Keywords

The following keywords are reserved in equate expressions and should not be used to name
equates or local or global variables. Keywords are only expanded in the special EQUATE
variant of TEXT BODY mode. Keywords are not case sensitive and can be used in lower,
upper or mixed case.

while, do, endwhile, roll, through, inputs,
outputs, not, and, or, xor, if, then,

else, endif, elseif, break, exit, read,
write, send, exec, expand, is, into

In addition wend and elif are also reserved keywords but have been deprecated and
should no longer be used.

0.4.4 Defining

Equate expressions are defined using the EQUATE predefined macro. This has one argument
which is the name of the equate which can be in upper or lower or mixed case and is
case sensitive. The first character of the equate name should be an underscore or an
alphabetic character (A-Z or a—z), the remaining characters can be these as well as the
numeric characters (0-9). There is a maximum name length (see Section 0.6 [Hard Limits],
page 36). The equate definition is given within a text body on the subsequent line and
continues until the text body terminates. Only one equate definition can be within the text
body so it can only include the definition of one function, named by the predefined macro.

An equate that takes arguments can be defined by immediately following the name with
an open bracket, comma separated list of variable names (none is allowed), and then a
close bracket. Alternatively the inputs keyword can be used as described in Section 0.4.11
[Calling Other Equates]|, page 24. Below are some examples of equate definitions (none of
them have a body so none of them would do anything). The body of an equate is defined
as a text body on the line immediately below the name/arguments definition.

%AEQUATE test
%HEQUATE substr(string,start_ndx,end_ndx)
WHEQUATE eval()

20

Note that the eval equate is commonly defined and left as void to provide a means to
process equate expressions within a text body (such as a header, footer or record) where
the desired equate expression is simply given as an argument in the text body and the
equate itself has no affect. Note however that keywords are not recognised in this situation
and therefore if operators are needed the raw reversed operator symbols must be used (see
Section 0.5.5 [Reversed Equate Operators]|, page 31).

0.4.5 Data Types

There are six data types — based on database field types. These are strings, integers,
decimals, dates, booleans, and fields. A string literal is a sequence of characters delimited
by double quotes. The double quote can be included in the string by using a \" sequence,
and the backslash can be included in a string by using a \\ sequence. An integer literal is a
sequence of digits optionally starting with the minus sign. A decimal literal is like an integer
literal but can include a decimal point. Note that negative number syntax is handled at
the parsing stage for literals and so there is no unary minus operator. Date and boolean
literals can only be created from a database field of that type. A field literal is the name
of a field rather than its contents. It is created using the %% field operator. The example
program fragment below shows the way to create each data type.

"Hello World"
12345

0.25
%START_DATE
%IS_TRUE
%%SURNAME

Note that START_DATE is a date field, getting its value with the % operator creates a data
type of date. Similarly the IS_TRUE field is a boolean field.

0.4.6 Variables

Variables can hold any data type. Variables can be local to the current equate or global to
all equates. Once defined a variable can never be undefined (unless local where it will be
undefined when the equate finishes), nor can the data type it was defined with be changed.
The data type of a variable (and the variable itself) is declared when a value is written
to the variable (the given name will be created as a new variable if it does not exist). A
variable cannot be used until an initialising value has first been written to it to declare the
variable and its type. Writing a different data type to a variable will coerce the value to
the data type of the variable.

0.4.6.1 Local Variables

These variables are local to each equate. Variable names are unique to each equate. Their
value can be passed to another equate only by giving them as arguments (this is call-by-
value, there is no call-by-reference facility). Their value (and declaration) is lost on exiting
from the equate.

The characters A-Z and a-z can be used to start the name of a local variable and the
rest of the variable name can include these same characters as well as the digits 0-9 and
the underscore _ character.

21

Care must be taken when using local variables within a text body (where they are part
of the arguments passed to an equate) as these are created as global variables (but not
neccessarily with the leading underscore character).

0.4.6.2 Global Variables

These are almost identical to local variables, except that the name of the variable must start
with the underscore character. This distinction in naming identifies the variable as global
to all equates (any equate can read or write the value at any time, although it must always
be ensured that the variable has been written to prior to any read from the variable takes
place). System variables are simply a special case of global variable where the variable has
already been declared with a value generated by parsing the GRG file.

System variables maintain their type and will complain if a different data type from that
which they were defined with is written into them (which is not the case for normal global
variables).

0.4.7 Variable Assignment

A value is assigned to a variable using the assignment (>>) operator. This operator requires
a left side which is an expression resulting in a value and a right side which is the name of
a variable. If the variable does not exist it will be created and its type will be the type of
the value resulting from the expression. If the variable already exists then its current value
will be overwritten with the new one. If the type of the value resulting from the expression
differs from the variable type the value will be coerced to the type of the variable. Some
examples are shown below.

"hello" >> si

"e>> g2

123 >> s2

sl + s2 >> s3

The first line creates a string variable s1 and assigns the string literal "hello" to it.
The second line creates a string variable s2 and assigns an empty string to it. The third
line assigns the numeric literal 123 to the string variable s2 thus converting it into a string.
The fourth line concatenates the two string variables contents and assigns the result to a
new string variable s3 which has the value "hello123".

0.4.8 Field Reference

The contents of fields from a database file are retrieved in the same way as from within a
text body using the % operator which must be immediately followed by the name of the
field (always in upper case). A field reference is by default made to the current database
and current record of that database. All the various modes of the % operator are described
below. Note that there is no way to change the contents of a field, database files cannot be
altered with the grg program.

The % operator gets the contents of the field from the current record of the current
database.

The %% operator gets the name of the field. This is similar to but not identical to just
quoting the field name.

The %# operator gets the length of the field. This is the defined maximum length in
characters.

22

The %$ operator gets the type of the field This is a one character string which will be C
(character/string), N (numeric), D (date), L (logical), or M (memo) although this last type
is not supported as a data type.

The given field name can be more complex than a simple name to support referencing
more that one database file and direct record indexing within that database file. The syntax
of this is given below using the get field operator % as an example although any of the field
operators above accept the same syntax variants.

The %field syntax just gets the value of the field from the current record and is the
default syntax given above.

The %field[index] syntax gets the value of the field from the record with the given
index (record indecies go from one to the number of records in the database).

The Ydatabase->field syntax gets the value of the field from the current record of
the given database (name should match that given when the database file was declared
using the DATABASE predefined macro without the pathname or extension).

The %database->field[index] syntax gets the value of the field from the record with
the given index of the given database.

The index can be a simple numeric literal or any normal expression that returns a
numeric value (which must be greater than or equal to 1 and less than or equal to the total
number of records in the database). There should be no whitespace in the above syntax
forms except where the index is a more complex expression which can include whitespace
if neccessary.

The above syntax forms all bypass any active filters. The current record forms when
referring to a database other than the master database will always refer to the first record
of that database.

Here are some examples of field referencing from an equate.

WNAME >> s1
HCATS->NAME + JCATS->TYPE >> s2
1> a
%#DOGS->NAME [2+a] >> s3
The first example gets the contents of the NAME field from the current record of the current
database (the current database is always the master database unless operating under a roll
. through loop through another database). The second example gets the contents of the
NAME and TYPE fields of the current record in the cats database, adds them together and
assigns the result to the s2 variable (the two fields must have the same data type). The
last example gets the contents of the NAME field of the 3rd record in the dogs database and
assigns the value to the s3 variable.

0.4.9 Constructs

There are two looping constructs and a conditional construct. The basic looping construct
has the form while ... do ... endwhile. While the expression to the left of the do keyword
is true do the expression to the right of the do keyword. The expression on the left must
produce a boolean value. The left and right expressions can include any complex expression,
such as nested looping and conditional constructs or function calls. An example of this
looping construct is given below with the definition of strlen (to return the length of a
string).

23

%HEQUATE strlen(s)
0> x
while s’x <> 0 do
X + 1> x
endwhile
outputs(x)

The other looping construct has the form roll ... through. The expression between
the keywords is executed once for every record in the master database (filter conditions still
apply). For example here is the definition of a function to return the number of records in
the database.

%%EQUATE nrecs
0> n
roll n + 1 >> n through
outputs(n)

The looping syntax can optionally include a colon suffix form. This allows looping
through a named database (no filter conditions apply when this is the master database).
This form is roll ... through:database where database is the name of a valid loaded
database (without the pathname or extension). Fields from other databases cannot be
accessed within the loop unless the -> syntax is used, so if looping through a database
other than the master database then this form must be used within the loop to access fields
of the master database. Note that this applies even to nested equate calls within the loop
body for example.

The conditional construct has one of the forms if ... then ... endif and if ... then
. else ... endif. If the boolean expression bewteen the if and then keywords is true
execute the expression between the then and else or endif keywords otherwise execute the
expression between the else and the endif keywords if it exists. Each expression can be
as complex as required (including nested conditional and looping constructs, and function
calls) but need not have any contents. Below are two examples of the conditional construct.

%4HEQUATE test
inputs(a,c)
if a > 0 and a < 12 then "hello" >> b endif
if not (¢ = 5) then

5> ¢
"no" >> b
else
if not (c = 3) then 3 >> ¢ "world" >> b
endif
endif

outputs(b,c)

Note that the endif keyword must always be present. The elseif keyword can be used
for multiple conditions grouped up under one endif keyword (this saves having to nest
conditions). The example above is shown below using the elseif keyword to simplify the
statements.

%HEQUATE test
inputs(a,c)

24

if a > 0 and a < 12 then "hello" >> b endif
if not (c = 5) then 5 >> ¢ "no" >> b

elseif not (¢ = 3) then 3 >> c "world" >> b
endif

outputs(b,c)

0.4.10 Flow Control

The following two keywords may occasionlly be needed. The break keyword can normally
be simulated in other ways but is useful in record loops. Its function is to break one level
back. Normally it is used within the body of a loop to break out of the loop on certain
conditions (as an addition to the standard loop condition in while ... do ... endwhile
loops). The exit keyword exits the entire equate expression all the way back to where it
was initially called from within a text body or in a filter condition. The example below
searches all the records in the names database for a matching value and returns the record
number of the first record the field matched.

%HEQUATE FIND

1> n

roll
if %NAME = "Smith" then break
else ++n >> n
endif

through:names

outputs(n)

0.4.11 Calling Other Equates

Any equate can be called from within an equate. It can be passed arguments and any value
returned can be assigned to a variable or used in an expression. An equate is called by
simply giving its name (with optional brackets). If the equate matches the name of a local
variable then the value of the variable will be returned else the equate will be called to
return a value. An equate need not take any arguments nor return any value although they
commonly do. Arguments are passed to an equate as a comma separated list of expressions
between brackets that immediately follow the equate name. If the equate returns one
argument this can be simply assigned to a variable, or used in an expression. If the equate
returns multiple arguments then the @(. . .) operator sequence should be used to assign the
results to multiple variables. Some examples of equate calls are shown below.

%HEQUATE test
"hello" >> s
"b" + substr(s,1,1+3) + "ws" >> s
Using the previously defined equate substr () the above would result in "bellows" being
assigned to s.

Arguments to an equate are defined using the inputs(...) keyword sequence. Between
the brackets there can be nothing or there should be a comma separated list of variable
names to which the arguments passed into the equate will be assigned (the variables will
be created with the data type of the argument passed in). Instead of using the inputs
keyword it is also possible to put the bracket sequence immediately following the defini-
tion of the equate name. The return values from an equate are similarly defined using the

25

outputs(...) keyword sequence. This takes a comma separated list of expressions (nor-
mally just one) the values of which are returned to the calling equate. Both the inputs
and outputs keyword sequences are optional but if they are used the inputs must be the
first line of the equate and the outputs must be the last line of the equate (or at least the
last executed expression) - the outputs keyword cannot be used as a return escape. The
example below shows the definition of an equate that takes two arguments and swaps the
values around while also adding 10 to each value returning the two swapped arguments and
then an example of that equate being called.

%HEQUATE swap
inputs(a,b)
outputs (b+10,a+10)

HHEQUATE test
5> x
7>y
swap(x,y)@(x,y)

The test equate will result in x equaling 17 and y equaling 15. Note the use of the @
operator to handle the passing back of multiple arguments. Note that swap(x,y) >> y >>
x would be equivalent to the above but the assignments must be put in reverse order to the
arguments sent back.

0.4.12 Numeric Operators

These operators are fairly self explanatory. The +, -, /, and * operators respectively add,
subtract, multiply, and divide two values. The ++ and -- unary operators respectively add
and subtract one to their operand (they don’t modify the operand in place like C, so ++a
is invalid, use ++a >> a instead). They can only be used with numeric operands, with the
exception of + which can also be used with string operands. The +, ++, =, and -- operators
can also be used with date operands, where they add or subtract days (or add or subtract
two dates).

0.4.13 Comparison Operators

These comprise the following: >, greater than; <, less than; >=, greater than or equals; <=,
less than or equals; =, equals; <> not equals. These perform the respective comparison and
produce a boolean data type of true or false. Can be used with numeric, string and date
operands. The boolean data type is interchangeable with the numeric data type, but in
general can only subsequently be used by the boolean operators or the conditional operator.

0.4.14 Boolean Operators

These perform logical operations on the boolean data type or bitwise operations on the
numeric data type, but are generally interchangeable. The operator keywords and, or,
and xor will logically AND, OR, and exclusive OR their arguments respectively. The not
keyword operator wll logically negate its argument.

The operators &, |, and ~ bitwise and, or, and exclusive or their arguments respectively.
The ~ operator performs a ones complement on its argument.

26

0.4.15 String Operators

The + operator and all the comparison operators also work on strings. The + operator
concatenates two string arguments together, whereas the comparison operators will compare
strings character by character. A string is less than another if it is earlier in ascii dictionary
order and is greater than another if it is later in ascii dictionary order.

The index operators ’> and ‘ are more complex. The ’ takes two arguments, a string
to index and a numeric index position. The result is the numeric value of the character in
the string at the index position. The index can not go beyond the end of the string. The
¢ operator is the reverse. It takes three arguments, the additonal one being the numeric
value to write into the string at the given index position. Below is the definition of substr
as an example of how these operators are used.

%4LEQUATE substr(sl,s,e)
mo>> g2
0> x
while s <= e do
s2,(s1’s) ‘x >> s2
s+ 1> s
x + 1> x
endwhile
outputs(s2,0¢x)

The function takes three arguments, the string to produce a substring of, the start index

and end index for the string. It pushes the resultant substring.

0.4.16 I/0O Operators

The write keyword writes its operand on the standard output. This can be useful for
debugging or displaying progress information. The write keyword acts as a expression
terminator (like the assignment operator) and so must always appear at the end of an
expression.

The read keyword reads from the standard input characters up to a newline, returning
the string entered (including the newline character). The maximum number of characters
that can be read is STRMAX. Since it returns a value it can be used anywhere in an
expression.

The send keyword will write its operand to the output file stream (as opposed to write
which sends its output to standard output). This is useful for writing larger blocks of text
generated from equates that cannot be written into the output file in the ordinary way (by
returning the value). Like the write keyword it acts as an expression terminator.

Here is an example of the read, write and send operators.

%HEQUATE feedback
read >> s
"Input: " + s write
s send

0.4.17 Miscellaneous Operators

The exec keyword or $ operator is very useful. It equates its operand. So, for example, a
string containing a valid equate expression could be given as an argument to this operator

27

which would then execute the string as an equate returning any value resulting. For example,
here is a definition of strlen (called gstrlen) for any database field.

H%EQUATE gstrlen
inputs(str)
outputs(strlen(exec(str)))

The function might be called with gstrlen(%%NAME). Note that the %% operator is used
to put the field name on the stack. Then within the function the $ operator is used to
evaluate the argument as an equate expression, thus getting the contents of the field.

There is no dynamic array support in equate expressions currently, but a simplified
mechanism can be written using the exec operator to create named variables with a numeric
index to simulate this. The size of an array would be limited to a few hundred elements (or
less, depending on how much local variable space is available on the stack). The example
below defines aget to get the contents of an array element and aput to assign a value to
an array element and example to show the equates being used. The definitions below use
global variables and work only with string values.

%HEQUATE aget(name, index)
""" >> index_str
index >> index_str
exec (" _"+name+index_str)
%%LEQUATE aset(name, index,value)
"' >> index_str
index >> index_str
exec(value+">>_"+name+index_str)
H%EQUATE example
/* create 5 element array, each element is set to "hello" x*/
0> i
while i < 5 do aset("ex",i,"hello") ++i >> i endwhile
/* read back contents of array, send to stdout */
0> i
while i < 5 do aget("ex",i) write ++i >> i endwhile

The expand keyword or $$ operator expands its operand as a text body. So, for ex-
ample, a string containing the contents of a text body (including embedded equate and
field references) can be given as an argument to this operator which will expand it (calling
any embedded equates and substituting their value as necessary) and return the result as a
string.

%ikequate doblock
"This string is #strlen(s) characters long" >> s
outputs (expand(s))

0.4.18 Operator Precedence

In most cases the default precedences of the operators will be correct, however in any case
where they are not (such as some mathematical and relational expressions) then bracket
pairs can be used to enforce a certain ordering. Pairs of brackets can be used in other
circumstances to increase legibility (such as surrounding the condition part of an if ..
then or while ... do statement). Some examples are shown below

28

H%EQUATE example

/* default precedence below would

be a + (b *x c) + d */

(a+b) *x (c +d) > x

/* brackets add clarity below and also
affect the conditon which would be
(not a) and b by default */

if (not (a and b)) then 1 >> c endif

/* brackets just add clarity below */

while (a > 5) do --a >> a endwhile

The full operator precedence table from lowest to highest is included below.

<>
< <= > >=
+ -
* /

++ —-

not

+ - (unary) > ! \$ \$\$
0.4.19 Comments

You can include comments anywhere in an equate expression by enclosing them in /* and
*/ brackets. Nested comments are allowed. A comment may extend over a line without the
newline being escaped.

0.4.20 Debugging

The best thing to do is to start up the tracer. This will dump to standard output precisely
what is happening. This is however done at the level of reversed equate expressions (see
Section 0.5 [Reversed Equate Expressions], page 28) as there is no symbolic debugger. You
can also use the write keyword to print information onto standard output. You can turn on
the tracer by assigning 1 to the _eq_trace system variable, ie. 1 >> _eq_trace. The tracer
can be turned off by assigning 0 in the same way. Control of this variable allows tracing
to be turned on and off at selected points during equate processing so that the particular
problem area can be focused on.

0.5 Reversed Equate Expressions

The reversed equate expression language is a postfix (reverse polish) notation (read cryptic
but efficient in terms of space and speed) language. It is rather FORTH like in its appearance.
The normal equate expressions are tokenised and converted into this language for processing.
However an equate can be defined directly in this langauge if preferred (it is retained for
compatibility since it used to be all there was). An understanding of this language can be

29

useful for debugging purposes as this is what any trace output will currently show. However
for most users there should be no need to know anything about this (except perhaps if
defining equate based filter expressions or patterns which currently require reversed equates)
so you can skip to the next part (Section 0.6 [Hard Limits|, page 36).

All operators are single or double character combinations. Five interchangeable data
types are supported. The language is stack based but in addition global variables, local
variables, and system variables are available. Most operators accept an immediately follow-
ing variable operand instead of one stack operand. Looping and conditional structures can
also be used - as well as a function call mechanism. All in all there are a total of about 34
unique operators, some of which have multiple functions dependent on the data types of
their operands.

Due to the large number of operators some have become ambiguous and it is reccom-
mended that separators are used almost exclusively between them, the most obvious sepa-
rator being whitespace. Note that some combinations need special attention, for example

~= which has a different meaning from =~".

0.5.1 Defining Reversed Equates

Reversed equate expressions are defined using the EQUATE predefined macro. This takes
two arguments separated by whitespace. The first is the name of the equate which can be
in upper or lower or mixed case and is case sensitive. The first character of the equate name
should be an underscore or an alphabetic character (A-Z or a—z), the remaining characters
can be these as well as the numeric characters (0-9). There is a maximum name length (see
Section 0.6 [Hard Limits], page 36 on hard limits). The second argument is the definition of
the equate which must be on one line only. The backslash character can be used to escape
the newline and allow the equate definition to be formatted over multiple lines.

0.5.2 The Stack

The stack is where everything happens. Arguments to operators are pushed onto the stack,
the operator takes these values off the stack, produces the result and pushes it back on the
stack. Most operators will optionally take a operand immediately following as a variable
name, and use this for one of their arguments instead of the stack. Most operators are
binary, although a few are unary, and there is one tertiary operator. As an example of the
stack the fragment below shows four different ways to add 1 to a number (using the binary
plus operator and the unary increment operator).

1 <X + >>X
1 +X >>X
<X ++ >>X
++X >>X

The first example pushes the numeric literal 1 on the stack, followed by the value of the X
variable. Then the + operator takes both of these values off the stack, adds them and pushes
the result back on the stack. Then the value is taken off the stack and written back into X.
The second example behaves identically except that the form of the operator +X means that
the left argument to add is read from the variable X and not from the stack. Note that the
result is still put on the stack though. The last two examples use the increment operator
instead.

30

0.5.3 Reversed Equate Data Types

There are five data types - based on database field types. These are strings, numbers, dates,
booleans, and fields. A string literal is a sequence of characters delimited by double quotes.
The double quote can be included in the string by using a \" sequence, and the backslash
can be included in a string by using a \\ sequence. A numeric literal is a sequence of digits
optionally starting with the unary minus operator. Decimal numbers are also supported
(ie. include a decimal point) and will be stored as the EQ_DEC type. Note that negative
number syntax is handled at the parsing stage for literals and so there is no unary minus
operator. Date and boolean literals can only be created if there is a database field of that
type to use. A field literal is the name of a field rather than its contents. It is created using
the %% operator. The example fragment below shows the way to create each data type (as
an argument that gets pushed onto the stack).

"Hello World"
12345

0.25
%START_DATE
%IS_TRUE
%%SURNAME

0.5.4 Reversed Equate Variables

Variables can be used to permanently store information that would otherwise be lost on
the stack. They can hold any data type. Variables can be local to the current equate or
global to all equates. Once defined a variable can never be undefined (unless local where
it will be undefined when the equate finishes), nor can the data type it was defined with
be changed. The data type of a variable (and the variable itself) is declared when a value
is written to the variable (the given name will be created as a new variable if it does not
exist). A variable cannot be used until an initialising value has first been written to it to
declare the variable and its type. Writing a different data type to a variable will coerce the
value to the data type of the variable.

0.5.4.1 Reversed Equate Local Variables

These variables are local to the each equate. Variable names are unique to each equate.
Their value can be passed to another equate only by giving them as arguments (this is call-
by-value, there is no call-by-reference facility). Their value is lost on the equate returning.
Local variables are held on the equate stack but build in the opposite direction to that used
for general equate processing.

The characters A—7Z and a—z can be used to start the name of a local variable and the
rest of the variable name can include these same characters as well as the digits 0-9 and
the underscore _.

Care must be taken when using local variables within a text body (where they are part
of the arguments passed to an equate) as these are created as global variables (but without
the underscore character).

0.5.4.2 Reversed Equate Global Variables

These are almost identical to local variables, except that the name of the variable must start
with the underscore character. This distinction in naming identifies the variable as global

31

to all equates (any equate can read or write the value at any time, although it must always
be ensured that the variable is written to before any read takes place). System variables
are simply a special case of global variable where the variable has already been declared
with a value generated by parsing the GRG file.

System variables maintain their type and will complain if a different data type from that
which they were defined with is written into them.

The system variable whose name is the underscore character alone represents the system
stack pointer. So doing 0>>_ for example would clear the stack.

0.5.5 Reversed Equate Operators

This section gives a brief description, usage, and example of each operator.

0.5.5.1 Reversed Equate Variable Operators

The >> and << operators are used to write a value to a variable and read a value from a
variable respectively. Both operators must be followed by a variable name, although it can
be of any type. The >> operator pops a value off the stack and assigns it to the designated
variable - the variable will be created if neccessary. If so, then it will be created with the
type of the value popped off the stack. If the variable already exists then its current value
will be overwritten with the new one. However, if the type of the value popped off the
stack differs from the variable type it will be cast to the same type as the variable. The <<
operator takes the value of the designated variable and pushes it on the stack. The type of
the stack argument will be the type of the variable. There is an error if the variable has
not been defined. There are some examples below.

"hello" >>8
<<S 123 >>S <<S + .

The first example creates a string variable S and assigns the string literal "hello" to it.
The second pushes the contents of S back on the stack and then assigns the numeric literal
123 to the string variable S thus converting it into a string. This is then pushed onto the
stack and the two strings are concatenated and the result printed, which will be the string
literal "hello123".

It is not actually necessary to use the << operator as any variable name will be looked
up first as an equate call and if it is not an equate call then as a variable reference. The <<
operator can be used where there is a name clash for example.

0.5.5.2 Reversed Equate Numeric Operators

These operators are fairly self explanatory. The +, =, /, and * operators respectively add,
subtract, multiply, and divide two stack values and push the result on the stack. The ++
and -- operators respectively add and subtract one to their operand. All these operators
can take a variable designator to replace one of their stack operands. They can only be
used with numeric operands, with the exception of + which can be used with any operand
(see Section 0.5.5.5 [Reversed Equate String Operators], page 32). The +, ++, -, and --
operators can also be applied to dates, where they add or subtract days appropriately (or
add or subtract two dates).

32

0.5.5.3 Reversed Equate Comparison Operators

These comprise the following: >, greater than; <, less than; >=, greater than or equals;
<=, less than or equals; =, equals; <> not equals. These take two stack operands (or one
stack operand and a variable designator) perform the respective comparison and push a
boolean data type of true or false on the stack dependent on the result. They can be used
with numeric or string operands (see Section 0.5.5.5 [Reversed Equate String Operators],
page 32). The boolean data type is interchangeable with the numeric data type, but in
general can only subsequently be used by the boolean operators or the conditional operator.
All these operands can also be used to compare date types, taking account of the format of
a date.

0.5.5.4 Reversed Equate Boolean Operators

These perform logical operations on the boolean data type or bitwise operations on the
numeric data type, but are generally interchangeable. The operators &&, ||, and ~~ will
logically and, or, and exclusive or their arguments respectively. The ~~ operator logically
negates its argument. All these operators take two boolean stack arguments (or one and a
variable designator) and push a boolean result, except the negation operator which is unary.
The operators &, |, and ~ bitwise and, or, and exclusive or their arguments respectively.
The ~ operator performs a ones complement on its argument. All these operators take two
numeric stack arguments (except the ones complement operator) or one stack argument
and a variable designator and push a numeric result.

0.5.5.5 Reversed Equate String Operators

The + operator and all the comparison operators also work on strings. The + operator con-
catenates two string argumennts together, whereas the comparison operators will compare
strings character by character. A string is less than another if it is earlier in ascii dictionary
order and is greater than another if it is later in ascii dictionary order. The index operators
> and ¢ are more complex. The ’ takes two arguments, a string to index (which can be
on the stack or taken from a variable) and a numeric index position. The result pushed is
the numeric value of the character in the string at the index position. The index cannot go
beyond the end of the string. The ¢ operator is the reverse. It takes three arguments, the
additonal one being the numeric value to write into the string at the given index position.
Below is the definition of substr as an example of how these operators are used.

%%EQUATE SUBSTR >>E>>S>>S1"">>S2\0>>X\
[<<S<<E<=;<<8’81\<<X ‘8S2>>32++3>>S++X>>X]\
0<<X ‘82

The function takes three arguments, the string to produce a substring of, the start index
and end index for the string. It pushes the resultant substring.

0.5.5.6 Reversed Equate Stack Operators

The @ operator duplicates the value at the top of the stack. The ! operator removes the
value at the top of the stack. Both operators don’t care what data type they are using. The
@ operator can take a variable designator instead - in which case it pushes the variables
value twice.

33

0.5.5.7 Reversed Equate Field Operators

All field operators must be immediately followed by the name of the field to which they are
referring (always in upper case).

The % operator pushes the contents of the designated field name from the current record
onto the stack.

The %% operator pushes the name of the given field on the stack. This is similar to but
not identical to quoting the field name.

The %# operator pushes the length of the given field name on the stack. This is the
defined maximum length in characters of the given field.

The %$ operator pushes the type of the given field name on the stack. This is a one
character string which is the type of the given field, this will be C (character/string), N
(numeric), D (date), L (logical), or M (memo) although this last type is not supported.

The given field name can be more complex than a simple name to support referencing
more that one database file and direct record indexing within that database file. The syntax
of this is given below using the get field operator % as an example although any of the field
operators above accept the same syntax variants.

The %field syntax just gets the value of the field from the current record and is the
default syntax given above.

The %field[index] syntax gets the value of the field from the record with the given
index (record indecies go from one to the number of records in the database).

The %database->field syntax gets the value of the field from the current record of
the given database (name should match that given when the database file was declared
using the DATABASE predefined macro without the pathname or extension).

The %database->field[index] syntax gets the value of the field from the record with
the given index of the given database.

The index can be a simple numeric literal or any normal equate processing that returns
a numeric value. There should be no whitespace in the above syntax forms except where
the index value is a more complex equate which can include whitespace if neccessary.

The above syntax forms all bypass any active filters. The current record variants, when
referring to a database other than the master database, will always refer to the first record
of that database.

0.5.5.8 Reversed Equate Calling Mechanism

The # operator is immediately followed by the name of an equate. It results in a call to that
equate. Arguments can be passed by pushing values on the stack before calling the function,
and any results can be left on the stack before returning where they can subsequently be
popped off. The equate need not be defined before it is called.

It is not actually necessary to use the # operator as any variable name will be looked
up first as an equate call and if it is not an equate call then as a variable reference. The #
operator is still required to flag an equate call from within a text body so it is retained for
compatibility.

Equate calls can be given arguments as comma separated items between brackets. Each
item must leave a value on the stack. This is identical to just pushing arguments on the stack

34

before calling the function, but is clearer, and makes the separation of each argument more
obvious. It also has the advantage that the brackets surround effectively any equate and the
same syntax can be used in text bodies (to pass field arguments for example). This can be
a useful way of doing some equate processing within the text body itself before calling the
function. Note that user defined macros will be expanded within a text body even if within
the equate function call. A function can be called with no arguments like £ () if preferred.
The comma separator is not neccessary, any separator can be used (or even none). For
example, the call substr(1,3,"hello") is functionally identical to 1 3 "hello" substr,
or substr(1 3 "hello"), or even 1/3"hello"#substr() but is much nicer and will work
identically in a text body. Also %%substr(1,3,%%str) will have the user defined macro
str expanded before the equate is called.

Since %% will be treated as a user defined macro or equate within a text body the
field name operand cannot be used within an equate function call argument, for example,
%hsubstr (1,1,%%field_name) will not work, the processor will interpret %%field_name as
a user defined macro or equate. Since this can be a useful way to make general functions
the trick is to quote the field name instead, ie. %%substr(1,1,"%field_name") will work.
This is slightly different because the data type will end up as EQ_STR rather than EQ_FLD
as in the previous equate, but this is usually not a problem.

0.5.5.9 Reversed Equate I/O Operators

The . (or .<) operator writes on the standard output the operand from the stack or variable
designator as a string. This can be useful for debugging or displaying progress information.

The .> operator reads from the standard input characters up to a newline, returning
the string entered (including the newline character). The maximum number of characters
that can be read is STRMAX.

The . . operator will send output to the output file stream (as opposed to . which sends
its output to standard output). This is useful for writing larger blocks of text generated
from equates that cannot be written into the output file in the ordinary way (by returning
the value on the stack).

All of these operators can take a local or system variable argument.

0.5.5.10 Reversed Equate Miscellaneous Operators

The $ operator is very useful. It equates the contents of the top of the stack (or variable
designator). So, for example, a string could be pushed as an argument to a function, and
within that function this operator could be used to equate the argument. For example, here
is a definition of strlen for any database field.

%HEQUATE STRLEN $>>Y 0>>X [<<Y<<X’0="";++X>>X]<<X

The function might be called with %%NAME#STRLEN. Note that the %% operator is used to
put the field name on the stack. Then within the function the $ operator is used to evaluate
the stack argument as an equate expression, thus getting the contents of the field.

The $$ operator expands its argument as a text body.

The \ is the null operator. It does nothing, but is useful for separating operands or for
escaping a newline character.

35

0.5.5.11 Reversed Equate Constructs

There are two looping constructs and a conditional construct. The basic looping construct
has the form [...;...], either side of the semicolon may be null. While the equate ex-
pression to the left of the semicolon is true do the equate expression to the right of the
semicolon. The expression on the left must leave a boolean value on the stack. An exam-
ple of this looping construct was given earlier for the definition of strlen. The left and
right expressions can include anything, such as nested looping and conditional constructs
or function calls.

The other looping construct has the form (...). The expression between the brackets
is executed once for every record in the database. For example here is the definition of a
function to return the number of records in the master database.

%4HEQUATE NRECS 0>>NRECS (++NRECS>>NRECS) <<NRECS

The looping syntax can optionally include a colon suffix form. This allows looping
through a named database (if this is the master database then any filtering conditions will
be ignored). This form is ():database where database is the name of a valid loaded
database (without the pathname or extension). Fields from other databases cannot be
accessed within the loop unless the -> syntax is used, so if looping through a database
other than the master database then this form must be used within the loop to access fields
of the master database. Note that this applies even to nested equate calls within the loop
body for example.

The conditional construct has the form 7...:...;. This can take a field name desig-
nator, in which case the behaviour is slightly different. The action is to pop a boolean off
the stack and if it is true to execute the equate expression up to the colon, and if not to
execute the equate expression from the colon up to the semicolon. Each expression can be
as complex as required (including nested conditional and looping constructs, and function
calls) but need not have any contents. If the ? is immediately followed by a field name and
the colon and semicolon fields are null, then if the contents of the field are empty the result
is null, else the result is the contents of the field. Below are two examples of the conditional
construct.

%»HEQUATE SUBDATE1 ?SUB_DATE:"In preparation";
%HEQUATE SUBDATE2 %SUB_DATE""=7"In preparation":%SUB_DATE;

Both the above conditions have the same action. If the %SUBDATE field has a value push
the value on the stack, else push the default string on the stack.

0.5.5.12 Reversed Equate Flow Control

The following two operators may occasionlly be needed. The \b operator can be simulated
in other ways but is useful to have. Its function is to break one level back. Normally it
is used within the body of a loop to break out of the loop on certain conditions (as an
addition to the standard loop condition in while loops). The \e operator exits the entire
equate expression all the way back to where it was initially called from within a text body
or in a filter evaluation. Neither of these operators will alter the stack. For example, the
fragment below searches all the records for a matching field and returns the record number
of the record the field matched.

%%EQUATE FIND 1>>N(%NAME"Smith"=7\Db:++N>>N;)<<N

36

0.5.5.13 Reversed Equate Comments

You can include comments anywhere in an equate expression by enclosing them in { and }
brackets. Nested comments are allowed. A comment may extend over a line without the
newline being escaped.

This comment style is deprecated and no comments should be used within a reversed
equate expression definition (comments can be placed before the definition if required using
the %% sequence).

0.5.5.14 Reversed Equate Debugging

The best thing to do is to start up the stack and operator tracer. This will dump to standard
output precisely what is happening. You can also use the . operator to print information
onto standard output. You can turn on the tracer by writing 1 to the _eq_trace system
variable, ie. 1>>_eq_trace. The tracer can be turned off by writing 0 in the same way.
Control of this variable allows tracing to be turned on and off at selected points during
processing.

0.6 Hard Limits

The gurgle program internally limits the size of some data structures. These are listed here
with their default maximum sizes. Exceeding the given sizes will produce a fatal error. In
some cases writing the GRG file in a slightly different way will solve the problem, in others
it will not. In the latter case the relevant values must be increased in the source code and
the gurgle program recompiled. The following limits are all maximums and size is size in
characters unless specified otherwise.

A number of the static buffers in GURGLE have been rewritten to scale dynamically and
hence have no fixed limit anymore. These are indicated by the asterix against an entry
below. You can get more information by looking at the debug output under the operating
limits section.

Name Size Description (Dynamic?)

TEXMAXTEX 4096 text body (*)

TEXPBMAX 16384 pushback buffer ()

MAXMACRONAME 32 1length of a macro/equate/variable name
MAXMACRODEF 256 1length of a macro definition (%)

MAXEQUATEDEF 1024 1length of a reversed equate definition (%)
MAXMACROS 64 number of user macros (%)

MAXEQUATES 128 number of equates (*)

TEXSORTONMAX 4 sort depth

TEXBANNERMAX 4 banner sort groups (*)

TEXDBFFILEMAX 8 number of DBF files (*)

TEXFILTERMAX 8 number of filters

DBFFIELDMAX 16 length of a DBF field name (actually 10 stucturally)f]
STRMAX 256 length of a string argument and data type (*)
TEXBLOCKMAX 8 number of user text bodies (*)

REGEXPMAX 256 1length of a regular expression

37

0.7 Text Processing

The gurgle program can parse an input file in delimited ascii format and load it internally
as an ordinary database file. All the normal gurgle operations such as sorting, filtering,
field evaluating, and equates can be used. This section gives an overview of how to use this
feature.

The simplest way is to use the built in patterns. These make gurgle process input text
in the same way as awk, so that each line of input is treated as a record and each whitespace
separated group on a line is treated as a field of the record. Like awk the field delimiter
can be changed by using an environment variable.

0.7.1 Declaring Text Input Files

You declare a file as text input using the predefined macro DATABASE. The name of the file
must not have a .dbf extension. The special case filename which is just - can be used to
indicate that the input file is to come from standard input (piped into grg). Note that file
types can be mixed and matched as in the example below.

%%DATABASE "database.dbf"
%%DATABASE "mode.txt" "-"

In the above the database.dbf file is opened as normal, but the mode.txt file and
stdin are read in and parsed as awk structured files and converted into database files. The
names of the database files for reference in equates would be database, mode, and -. Since
- could clash in an equate the - should ideally be put first in the list of databases (making
it master).

0.7.2 Changing the Delimiter

You can redefine the delimiter used to separate fields in the input by using the DEFINE
predefined macro and setting the environment variable DELIM, as in the example below.

%%DEFINE DELIM :

The above sets the delimiter to the colon character, equivalent to doing -F: with awk.
You can give more than one character to DELIM in which case any of the given characters
would count as a delimiter.

0.7.3 Referencing Fields

Once loaded, the text input file can be treated identically to a normal database file. Each
field in the input record is given a numeric name so as they can be distinguished. These
names have the form Unnn where nnn is a three digit number. For example, to reference
the first three fields in the input you would do as in the example below.

%%EQUATE test "ABC"%U001=7%U002:%U003;
%%RECORD
%U001 %U002 %U003

The example shows fields being referenced in an equate and a text body in the same
way as fields are normally referenced. Records can also be sorted on the fields or filtered as
normal. The system variables _eq_totrec and _eq_currec also get set for a text input file
as normal. Also direct field indexing works as normal so that the contents of any partiulcar
record (input line) can be accessed.

38

Real column names can be setup by using the NAMCOL environment variable by simply
defining it. Then instead of the form Unnn the values of the fields in the first record in the
input file will be taken as the column names and that record will be ignored. These will
always be used in uppercase and truncated to ten characters. Do not use non-supported
field characters. The example below sets NAMCOL and prints fields from dogs.txt also
shown below.

Contents of dogs.txt:

Name Type Id
Bounce Scottie 119
Jack Terrier 102

%/,DATABASE "dogs.txt"
%/DEFINE NAMCOL
J%/RECORD
%NAME %TYPE %ID
Note that the NAMCOL directive is globally applied to all databases in the GRG file and
cannot be set individually for each input file.
To establish which field is which when not using NAMCOL and what the column names
are a simple GRG file can be created that uses the default header and record text bodies.
By default all fields loaded from a delimited text file default to character strings. The
type of each column can be explicitly setup using the DEFCOL environment variable by
simply defining it. The field values in the first record of the input file (or second record
if NAMCOL is also used) will be taken as the field types and that record will be ignored.
Field types are single upper case characters. They can be C for character data, N for
numeric/decimal data, D for date data, and L for boolean data (1 or 0). The example
below extends the input file above to include a record with the field types.

Contents of dogs.txt:

Name Type Id
C C N

Bounce Scottie 119
Jack Terrier 102

Note that the DEFCOL directive is globally applied to all databases in the GRG file and
cannot be set individually for each input file.

0.7.4 Redefining Patterns

This is not for the faint hearted. You can skip to the next part (see Section 0.8 [RDBMS
Queries], page 43).

Sometimes the input text does not match an awk like structure. In this case the patterns
defining how to process the input can be changed. This is done using the PATTERN prede-
fined macro. This takes five arguments. The example below shows the pattern definitions
to process awk like input (these are built in to gurgle).

%APATTERN "<awk><nul>" "<nul>" "" "<awk><sor>" "<sor>"
%APATTERN "<awk><sor>" "<wht>" "" "<awk><sor>" "<nul>"
%ALPATTERN "<awk><sor>" "<nul>" "" "<awk><sof>" "<sof>"
HHPATTERN "<awk><sof>" '"" "" "<awk><sor>" "<eof>"

%LPATTERN "<awk><sof>" "<any>" "" "<awk><sof>" "<f1ld>"

39

%APATTERN "<awk><sof>" "<nul>" "" "<awk><sor>" "<eof>"
%%PATTERN "<awk><sor>" "<new>" "" "<awk><nul>" "<eor>"

The arguments are as follows. The first argument is the mode contert. Each pattern
can only apply if the current mode is the same as its mode context. The default mode
is <awk><nul>, and therefore in the above only the first pattern will match. The second
argument is the tokens in the text that must be present for the pattern to match, this is
discussed in more detail later. The third argument is an equate expression that will be
run if the pattern matched, this can then also have a say in whether the pattern matches
or not. The fourth argument is the new mode to enter if the pattern matches. The fifth
argument is the token to return to the parser if the pattern matches. These arguments are
now discussed in more detail. Note that the first three arguments essentially define what
the pattern to match is and the last two define what steps to take if the pattern does match.

0.7.4.1 Tokens and Syntax

A token is a three character sequence enclosed in angle brackets. Any characters can be
used and tokens are case sensitive. With the exception of the input text pattern and the
equate expressions the other fields can consist only of tokens.

The mode context argument can consist of tokens, the bar character | or the brackets (
and). The new mode argument can consist of tokens only. The token argument can consist
of one token only. The input argument can consist of tokens, characters, and some special
characters.

0.7.4.2 Mode

Only those patterns which match the current mode can match, the others are ignored. A
mode is a sequence of one or more tokens, the names of the tokens or sequences can be user
defined. The initial mode is <awk><nul> but this can be changed using the environment
variable DFAMODE. If you are defining additional patterns it is advisable to set this to exclude
the awk inbuilt patterns from matching as in the example below.

%%DEFINE DFAMODE <usr><nul>
YY%PATTERN "<usr><nul>"
%APATTERN "<usr><u00>|<usr><u0i>"

Note that in the above the bar operator separates options, so the second pattern is
actually applicable in two modes. Since the bar operator has a lower precedence than the
concatenation operator then the two modes are <usr><u00> or <usr><u01>. Brackets can
be used if neccessary to avoid ambiguities in the input. Note that instead of the bar two
patterns could have been defined which were identical in the other fields but one was defined
for each mode it was to match under. The final result of using a bar or multiple patterns
is identical.

0.7.4.3 Input Pattern

For each pattern that matches the current mode the input pattern must match the input
stream of characters for the whole pattern to match. The input pattern can consist of
tokens or characters, however certain characters must be escaped and the tokens cannot
be user defined. Each token generally represents a set of characters and is for convenience
sake. The characters that must be escaped using a \c¢ mechanism (or the special tokens)
are left and right brackets, the bar character, and the star character. The first two are used

40

to resolved ambiguities in priorities of operators, the bar is used to separate options, and
the star is used to indicate zero or more occurences of a sequence. Note that the bar and
star operators are not supported, although the bar operator can be simulated by defining
multiple patterns, one for each option, like the modes. Some example input patterns are
shown below.

""<dec><dec>"
"fil<new>"
The first pattern matches a sequence of characters that are two decimal digits, the second

a sequence which is £1 followed by a newline. The complete set of predefined tokens is given
below:

Token Character Set

<nul> NUL Special Character

<sot> Start of Text (before first input character), not implemented

<eot> End of Text (after last input character), not implemented

<sol> Start of Line (before first input character of line), not implemented

<eol> End of Line (after last input character of line), not implemented

<spc> e

<tab> "\t"

<wht> "\t"

<new> "\n"

<car> "\r"

 "\t

<abc> "abcdefghijklmnopqrstuvwxyz"

<ABC> "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

<dec> "0123456789"

<hex> "0123456789%abcdef"

<HEX> "0123456789ABCDEF™"

<sym> CIN#SY& O *+, -/ ;<=>70 \]"_{|}"

<any> "abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789 !\ "#$%&° O *+, -]
<=>7@ [\ AT A\t

<all> "abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789 !\ "#$%&’ () *+, -1l
/y<=>7@ [\ {137 \t\n\r"

<bar> e

<not> e

<mul> Mt

<lbr> n (n

41

<rbr> ll) n

The <nul> token is special because it effectively matches any character, but when it does
the matching character is left on the input stream. So for example the patterns <nul>A
and A both match A on the input stream. The <nul> pattern has a lower matching priority
though as a more specific match is preferred over a more general one. If more than one
input pattern matches the input stream, the longer match is preferred. For example if the
input stream had ABC then the patterns A, AB, and ABC could all match, but the last would
be chosen. If two patterns match and are the same length then the earlier one (in the order
the patterns were defined) is chosen.

0.7.4.4 Equates

For each pattern that matched the given reversed equate expression is executed. If there is
none then the pattern matches by default. If the equate expression leaves no value on the
stack then it is assumed to be true, however if it does leave a value on the stack then the
value is interpreted as a boolean type, only if it is true does the pattern match. This facility
allows more complex work to be done to further control the patterns that match. Some
additional system variables can be used within the equate. These are _eq_pat, which has
the sequence of characters the pattern matched. The following variables, _eq_pfn, _eq_pf1,
and _eq_pft can be used to set the name, length, and type of the field respectively. By
default each field is named numerically, with a length equal to the length of the longest
value of the field in the input and with a string type. However, for a pattern that matches a
field (ie. returns the <sof>) token then these can be used to set these attributes explicitly,
as in the example below.

"\"field1\">>_eq_pfn 32>>_eq_pfl 78>>_eq_pft"

"<<_eq_pat\"abc\"="

Note that for the type the ascii character value of C, N, D, or B must be used to indicate
the string, numeric, date, or logical types for a field. The field will be created with the
values given, so that for example if an input sequence exceeds the field length then it will
be truncated. The second equate shows a boolean value being returned so that the pattern
will only match if it matches the sequence abc.

0.7.4.5 New Mode

Two things happen on a matching pattern, the first of these is that a new mode is set. This
field must always have a value but it could set the mode to be the same as the current mode
if no change is neccessary.

0.7.4.6 Token

Any set of patterns defining an input stream must eventually result in the correct sequence
of parse tokens. These represent when a field starts and ends, when a record starts and
ends, and the contents of fields. This allows the parse engine to build the database file
correctly. The sequence of these tokens must be returned as zero or more start of record
followed by zero or more start of field, field contents, end of field tokens, followed by end of
record tokens. The only valid parse tokens that can be used are given in the table below.

Token Description

<nul> Do nothing with the input

42

<sor> Flag start of a record

<sof> Flag start of a field

<fld> Contents of a field (can be returned multiple times)
<eof> Flag end of a field

<eor> Flag end of a record

<err> Generate an error

0.7.4.7 AWK Patterns

In this section the built in awk patterns are dissected one by one so as how they work can
be shown.

%APATTERN "<awk><nul>" "<nul>" "" "<awk><sor>" "<sor>"
%%HPATTERN "<awk><sor>" "<wht>" "" "<awk><sor>" "<nul>"
%LPATTERN "<awk><sor>" "<nul>" "" '"<awk><sof>" "<sof>"
%HPATTERN "<awk><sof>" "" "" "<awk><sor>" "<eof>"
%4LPATTERN "<awk><sof>" "<any>" "" "<awk><sof>" "<fld>"
%HPATTERN "<awk><sof>" "<nul>" "" "<awk><sor>" "<eof>"
%%HPATTERN "<awk><sor>" "<new>" "" "<awk><nul>" "<eor>"

The first which matches on the default initial mode matches any character on the input
stream (but leaves the input stream as it is) jumps to the start of record mode, returning
the start of record token in the process. In the start of record mode there are three possi-
ble matching patterns. They match on whitespace, the nul character and on the newline
character. Whitespace is ignored (so that multiple spaces and tabs in the input are not
interpreted as multiple fields), whereas the <nul> flags the start of a field and sets the
mode to start of field mode. Since the <nul> is defined after the pattern for whitespace it
will only match when the input is not whitespace. The newline character (which should
actually also be defined above the <nul> pattern) sets the mode back to the initial mode
and flags the end of the record. The remaining patterns only match in start of field mode.
The three possible matching characters are the delimiter (normally whitespace), any other
character except newline, and the nul character again. The order these are declared in is
important. A character which is a delimiter character will always match first and sets the
mode back to start of record mode (in prepartion for another field or end of record) and flags
the end of field). Otherwise the character will match the next pattern (except if newline)
and this leaves the mode the same but flags that the character is to be appended to the field
definition. Finally on a newline the <nul> character matches and flags the end of the field
and puts the mode back to start of record mode. Note that just matching a newline here
(rather than null) wouldn’t work as the newline signals the end of the record but would be
taken off to flag the end of the field and end of record would not then be flagged. So using
the <nul> matches the newline to return end of field but leaves the newline on the input
stream so that in the start of record mode it can be matched by the last pattern definition
to indicate the end of the record. This is neccessary since usually the last field does not
have a delimiter after it.

0.7.4.8 Pattern Debugging

When a set of patterns is not working the parser will either produce the wrong output, loop
indefinitely, or crash. You can turn on debugging with the -d1 and -d2 flags to see what the

43

DFA (Determinate Finite Automata, which isn’t quite true) representation of your input
patterns is. The -d1 option shows the various arrays defining the DFA, and the -d2 options
shows a trace of the build of the main state arrays. It is beyond the scope of this document
to describe the contents and structure of these arrays.

0.7.4.9 Limits

There are no limits on the dynamic database that aren’t part of the limits of an ordinary
database file. The DFA constructor and pattern parser although essentially dynamic do
have a number of internal limits. Some of these are displayed in debug output but not all
of them. Generally if they are exceeded an error will be produced.

Name Size Description

TEXPATTERNMAX 64 maximum number of pattern defintions
DYNRECINI 16 dynamic record initialiser/step
DYNFLDINI 16 dynamic field initialiser/step

TEXMAXUNQCHARS 32 number of unique characters/position
TEXMAXUNQMODES 32 number of unique modes

TEXMAXUNQPOSTS 16 number of unique positions

TEXTEXTPATMAX 64 input pattern maximum length (characters)
TEXMODEPATMAX 64 mode pattern maximum length (characters)
TEXMAXCHARSET 128 input pattern character set size
TEXDFAMAXSTATES 16 maximum number of unique states/postition

0.8 RDBMS Queries

The gurgle program can make an SQL query to GNU SQL, PostgreSQL, MySQL or an
CA-Ingres RDBMS and load the results internally as a database file. Subsequent to this it
can be treated exactly as if it was a database file initially, all the normal operations such
as sorting, filtering, field evaluatiing, and equate processing may be used. The section gives
an overview of how to use this feature. This feature will only work if support was added
for it when the program was compiled.

You must generally run gurgle on the database server for the query to work unless you
have some form of networked service in operation.

0.8.1 Declaring SQL Input Files

You declare a file as an SQL query using the predefined macro DATABASE. The name of the
file must have a .sql extension. This is shown in the example below which loads two files
as SQL queries.

%%DATABASE "cat.sql" "dog.sql"

In the above the cat.sql file and dog.sql files are treated as SQL queries (they do not
need to exist as files). In the former this would be select * from cat and in the latter
this would be select * from dog. The names of the database files for reference in equates
would be cat and dog. In this example cat would be the master database file since it was
loaded first.

It is possible to use any SQL select statement if the default is not suitable since
the DATABASE predefined macro allows a text body extension to define the SQL select
statement for this type only. The example below shows how this would be done.

44

%%DATABASE '"cat.sql"
%/DATABASE "dog.sql"
select name, type from dog order by name

In the above the cat.sql file is interpreted as in the previous example but the dog.sql
file has a customised SQL select statement defining what that database file should contain.
The SQL select statement can be of any complexity up to the ordinary size limits of a text
body, but there can be only one (unless formed from a union) and no other SQL statement
can be used.

0.8.2 Physical Database

For any RDBMS SQL Query to work a physical database must be defined to which the
SQL query is directed. Only one physical database can be defined for all the queries in the
GRG file. The physical database is defined as shown in the example below.

%%DEFINE PHYSDB animals

Remember that there is no default physical database. Without defining this the loading
of SQL Query database files will fail.

A physical database is only required for the Ingres RDBMS since this has multiple ones.
If you are using the GNU SQL Server you do not need to use this option.

0.8.3 Referencing Columns

Once loaded, the SQL Query input file can be treated identically to a normal database file.
Fach field in the input record is given a numeric name so as they can be distinguished. These
names have the form Unnn where nnn is a three digit number. For example, to reference
the first three columns in the SQL Query you would do as in the example below.

%%RECORD
%U001 %U002 %U003

The real column names from the SQL query can be used instead by setting the NAMCOL
environment variable by simply defining it. Then instead of the form Unnn the real column
names will be used, converted to uppercase and truncated to 10 characters. Any non-
supported field character may cause problems. Any columns that do not cleanly map can
be renamed using the SQL select x as y syntax if neccessary (this can be often since the
column naming conventions for Ingres are quite flexible). The example below sets NAMCOL
and prints fields from dog.sql as used in an earlier example.

%DEFINE PHYSDB animals

%%DEFINE NAMCOL

%%DATABASE "dog.sql"

select name, type, id# as id from dog order by name
%%RECORD

ANAME Y TYPE %ID

Note that like PHYSDB the NAMCOL directive is globally applied to all queries in the
GRG file and cannot be set on a per-query basis. Note that setting NAMCOL will also affect
the behaviour of any delimited text file databases in the same GRG file.

To establish which field is which when not using NAMCOL and what the column names
have been mapped to a simple GRG file can be created that uses the default header and
record text bodies.

45

0.8.4 NULL Value Handling

By default any column value in the query that is null will just be created in the database
file as an empty string value. For some applications it may be neccessary to distinguish the
null value from empty strings. You can redefine the value used for a null by using the
DEFINE predefined macro and setting the environment variable NULL, as in the example
below.

%ADEFINE NULL -
The above sets the value to use for a null to the dash character.

Note that like NAMCOL the NULL directive is globally applied to all queries in the
GRG file and cannot be set on a per-query basis.

0.8.5 Miscellaneous

For the most part when you load a database from an SQL Query the maximum field width of
256 characters is relaxed and any length fields are supported. There may be some problems
using equate processing with large text fields however.

0.9 Using GUILE

If your version of GURGLE has been compiled with support for GUILE (you will get a banner
saying so when you start it up) then you can define equates in the scheme language rather
than the GURGLE language. The resulting equates can be used in exactly the same way
as those defined in the native language - they can be called from native language equates
and from text bodies. They cannot be used where a reversed equate is required. A native
language equate can pass any number of arguments to the GUILE equate (the types of which
will be silently mapped) and the GUILE equate can return a numeric or string argument
to the native language equate. From the GUILE side any native language equate can be
directly called if it takes no arguments or only one argument and if it returns one argument
this will be returned as the result. There are also some additional functions that can be
called from the GUILE side defined below. This support is relatively untested.

A scheme equate is defined with the EQGUILE predefined macro. Arguments must cur-
rently be given as a white space separated list following the name of the equate (as seen from
the native language side and the GUILE side). You should not include the define construct
as this will be wrapped around automatically (to include the specified arguments). Any
define commands used within the body of the scheme equate will only be visible from the
GUILE side.

0.9.1 GURGLE Procedures

These are functions that can be called from the GUILE side code. They allow the GUILE side
to read and manipulate GURGLE system variables and read database fields.

The grg_getstrsysvar (s) procedure takes a string which is the name of a string valued
system variable and returns its current value, eg. (display grg_getstrsysvar("_eq_
extn")) to display the value of the _eq_extn variable.

The grg_getnumsysvar(s) procedure takes a string which is the name of a numeric
valued system variable and returns its current value, eg. (display grg_getstrsysvar("_
eq_verbose")) to display the value of the _eq_verbose variable.

46

The grg_putstrsysvar(s,v) procedure takes a string which is the name of a string
valued system variable and a string which is the value to assign to that variable. It returns
the assigned value, eg. (display grg_putstrsysvar("_eq_extn",".html")) to change
the value of the file extension and to display the change to the user.

The grg_putnumsysvar (s,v) procedure takes a string which is the name of a numeric
valued system variable and a number which is the value to assign to that variable. It
returns the assigned value, eg. (display grg_putnumsysvar ("_eq_verbose",0)) to reset
the value of the verbose state.

The grg_getfield(f,r,d) procedure takes three arguments: the name of a
field (string), a record (number) from 1 to the number of records, and the name
of a database (string) to which the field is defined in. It returns the value of
the given field of the given record in the given database. For example, (display
grg_getfield ("NAME",2,"people")) would display the value of the "Name" field of the
2nd record of the "people" database. This is the equivalent of the fully dereferenced field
mechanism in the native language, ie. the above would be %people->NAME[2].

0.10 Errors

Any error is considered fatal by the preprocessor program. This means it will abort immedi-
ately. The debug mode (see Section 0.2 [Running GURGLE], page 1) can be used to provide
a lot of additional information to track down the error, if it is not immediately obvious.
The following is a list of all the errors with pointers to any relevant help in alphabetical
order.

grg: bad equate name (probably unescaped equate esc)
Either an undefined equate name, or the equate escape character has been used inadvertently
without escaping in a text body (the \# character sequence should be used in this case).

grg: couldn’t fill dynamic dbf file, *filename’
Covers a number of possible errors that stem from not being able to transfer a delimited
text input file into a growing dBase3+ file structure (used internally to hold databases).

grg: couldn’t open dbf file, *filename’
The named file declared via a GRGDBFFILE predefined macro could not be opened as a
dBase3+ file (either doesn’t exist or incorrect permissions).

grg: couldn’t open dynamic SQL dbf file, ’filename’
Always generated when a SQL Query declared via a DATABASE predefined macro failed for
some reason (check the SQL statement is correct via another means, ensure the physical
database PHYSDB is defined).

grg: couldn’t open dynamic dbf file, ’filename’
The named file declared via a DATABASE predefined macro could not be opened as a delim-
ited text file (either doesn’t exist or incorrect permissions).

grg: couldn’t open file, ’filename’
The given filename could not be opened for some reason. Is the path correct, filename
correct, and filename readable?

grg: couldn’t open include file, *filename’
The specified include file couldn’t be opened for some reason. Is the path correct, filename
correct, and filename readable?

47

grg: couldn’t stop dynamic dbf file, ’filename’
Covers a number of possible errors that stem from not being able to restructure a delimited
text input file that has been loaded into a growing dBase3+ file structure (used internally
to hold databases). Check pattern definitions.

grg: dfa.beg alloc failed
Low level out of memory error during DFA construction from pattern definitions.

grg: dfa.chr alloc failed
Low level out of memory error during DFA construction from pattern definitions.

grg: dfa.end alloc failed
Low level out of memory error during DFA construction from pattern definitions.

grg: dfa.end realloc failed
Low level out of memory error during DFA construction from pattern definitions.

grg: dfa.mid alloc failed
Low level out of memory error during DFA construction from pattern definitions.

grg: division by zero
An attempt was made to divide a number by zero in an equate expression.

grg: equate argument expected, 'string’
An invalid argument was given to an equate macro definition. See Section 0.3.4 [Predefined
Macros|, page 8 on predefined macros in general and Section 0.3.4.8 [EQUATE], page 12
on equate macros in particular.

grg: equate definition too long, ’string’
The equate definition after reversing (or if entered as reversed) is too long and must be
shortened. Splitting up into more than one equate is usually the best way to do this.

grg: equate right operand expected, ’'string’
Any situation during equate processing where the operator expected a right operand (gen-
erally a variable name) immediately following the operator.

grg: equate stack overflow
When returning from evaluation of an equate back to the text body, filter definition or
pattern definition from which it was called has more than one value left on the stack.

grg: equate stack underflow
When returning from evaluation of an equate back to the text body, filter definition or
pattern definition from which it was called has less than zero values left on the stack. Or
when an operator requires an operand from the stack but the stack is empty.

grg: equate var defined differently, *string’
Occurs when assigning a value to a system variable that does not match the data type the
system variable was declared with. Does not occur for local variables since they just coerce
the value to match their type (if possible).

grg: field argument expected, ’string’
A field argument was expected for either the SORTON or BANNER predefined macros. See
Section 0.3.4 [Predefined Macros|, page 8 on field arguments and Section 0.3.4.5 [SORTON],
page 11 and Section 0.3.4.12 [BANNER], page 14 on these macros in particular.

grg: field length overflow
A field value exceeded the defined length for a field. Only occurs from PostgreSQL driver

48

and indicates that the determined length of a field has probably not been properly derived
and indicates a bug for handling the particular column type in a query result.

grg: field name too long
A field name is limited to ten characters (dBase3+ compatible).

grg: field right operand expected
A field operator has been used but the field name does not immediately follow the operator
(or has not been given).

grg: filter equate - number/string/date expected
The data type returned by a filter definition based on an equate expression is not one of
these.

grg: group text body too big
The definition of the text body of a group exceeded the maximum text body size.

grg: illegal ARG character
A character not allowed during the processing of the ARGS mode was seen.

grg: illegal TXT character
A character not allowed during the processing of the STANDARD mode was seen.

grg: illegal character, 'char’

The preprocessor is very strict about characters that are not where they should be. Check
that all predefined macros start at the beginning of a line and that they start with the
double percent sequence. Check that comment starts at the beginning of a line with a
double percent space sequence. Check that the arguments given to the predefined macros
are correct (make sure that user macro definitions and equate definitions have been given
a name and that string arguments start with a double character). Also check that there
are not any spurious control characters in the file. See Section 0.3 [GURGLE File Format],
page 3 for an overview of the structure, syntax, and semantics of GRG files.

grg: illegal character or operator in equate, ’string’
A character that is not valid in its current position in an equate definition has been identified.

grg: index overflow
Occurs when using the stroke operator and the index given to access a character of a string
was greater than the length of the string.

grg: index underflow
Occurs when using the stroke operator and the index given to access a character of a string
was less than zero.

grg: inputs left bracket expected
The inputs keyword requires brackets to immediately follow it (although they can have no
content).

grg: inputs right bracket expected
The inputs keyword requires brackets to immediately follow it (although they can have no
content).

grg: invalid operand type
The data type of the operand did not meet the requirements of the operation being applied
at the time.

49

grg: left token without right in pattern
An error in a pattern definition, the token is enclosed within <. . .> bracket pairs, the closing
one is missing.

grg: local variable stack overflow
The number of local variables on the stack (those of the current equate all equates back up
the call chain to the first one) have overrun the general equate processing stack.

grg: macro argument expected, ’'string’
Something other than a macro argument was used with either the DEFINE or the EQUATE
predefined macros. See section Section 0.3.4 [Predefined Macros], page 8 on macro argu-
ments and Section 0.3.4.2 [DEFINE], page 9 and Section 0.3.4.8 [EQUATE], page 12 on
these particular macros.

grg: maximum TeX block exceeded
A text body definition has exceeded the maximum size given in Section 0.6 [Hard Limits],
page 36 on the hard limits of the preprocessor. There is no way to work around this, other
than to reduce the size of the text body. This can be done by converting parts of the text
body into user defined macros, user text bodies and equates.

grg: mismatch in comment brackets
One comment bracket (either { } or /* */ pairs) opening or closing is missing.

grg: mismatch in index brackets
One indexing bracket ([| pairs) opening or closing is missing.
grg: mismatch in loop brackets
One looping bracket ([| pairs) opening or closing is missing.
grg: mismatch in loop/call brackets
One looping/call bracket (() pairs) opening or closing is missing.
grg: missing loop separator
The loop separator ";" or "do" is missing.
grg: no database defined
Any GRG must declare at least one database file using the % %DATABASE predefined macro.

grg: no such database
Occurs when accessing a database with the -> mechanism or the : mechanism on a
roll/through loop and the named database has not been declared via the DATABASE
predefined macro.

grg: numeric argument expected, ’string’
One of the PAGEOL or PAGENN predefined macros expected a numeric argument. See
Section 0.3.4 [Predefined Macros|, page 8 on numeric arguments and sections Section 0.3.4.13
[PAGEO1], page 15 and Section 0.3.4.14 [PAGENN], page 15 on these two macros.

grg: numeric operand expected
An operation required a numeric data type.
grg: numeric operands expected
An operation required two numeric data types.
grg: numeric or string operand expected
An operation required a numeric or string data type.

grg: operands types differ
An operation requires two operands of any type but they must be of the same type.

50

grg: out of place argument, ’string’
This should never happen. If it does don’t panic, just call for help.

grg: pattern parse error
There was a syntax error in the pattern definitions.

grg: premature end of pattern after escape sequence
There was a syntax error in the pattern definitions.

grg: pushback buffer exceeded
The internal pushback buffer has overflowed. This is used to pushback and cause this
resource to break. See section Section 0.6 [Hard Limits|, page 36 on the hard limits of the
preprocessor. Break down include files into separate files and reduce the size of user macros
to work around this problem.

grg: query statement buffer overflow
The size of the query block in each SQL Section 0.3.4.3 [DATABASE], page 10 directive is
statically set at a maximum of 16384 bytes. If exceeded this error will occur.

grg: record index out of range
The given index in the x[n] or x->y[n] syntax was less than 1 or greater than the total
number of records in the associated database.

grg: record loop right operand expected
The record loop has been given a ":" syntax to identify a loop through a named database
but the database name has not been given or is not immediately adjacent to the colon
character.

grg: reg. exp. syntax error "%<FLD>=<RE>", ’string’
The syntax of a filter condition used with the FILTER predefined macro is wrong. The error
message shows the correct syntax. See section Section 0.3.4.7 [FILTER], page 11 on the
construction of filter conditions.

grg: stack overflow
The stack overflowed during equate processing as there were too many items on it (note that
the stack size is reduced both by operations pushing values onto it and by local variables).

grg: stack underflow
A value was required from the stack by an operation during equate processing but the stack
was empty.

grg: stack value out of range
Similar to a stack overflow except that the overflow occured during the creation of a local
variable rather than an operation pusing a value onto the stack.

grg: string argument expected, 'string’
One of the INCLUDE, DATABASE, or FILTER predefined macros expected a string argument.
See Section 0.3.4 [Predefined Macros|, page 8 on string arguments and Section 0.3.4.1 [IN-
CLUDE], page 9, Section 0.3.4.3 [DATABASE], page 10, and Section 0.3.4.7 [FILTER],
page 11 on these three macros.

grg: text body too big
The text body maximum size has been exceeded by the definition given for one of the
predefined macros (such as a header, footer, record, equate etc).

grg: too many arguments for texpage0l, ’string’
This has a maximum of two numeric arguments.

o1

grg: too many arguments for texpagenn, ’string’
This has a maximum of two numeric arguments.

)

grg: too many arguments for texpattern, ’string
This has a maximum of 5 string arguments.

grg: too many banner args, ’string’
The maximum number of field arguments to the BANNER predefined macro has been ex-
ceeded. See Section 0.6 [Hard Limits], page 36 on the hard limits of the preprocessor and
Section 0.3.4.12 [BANNER], page 14 on this particular macro.

grg: too many blocks, ’string’
The maximum number of user defined text blocks has been exceeded. See Section 0.6 [Hard
Limits], page 36 on the hard limits of the preprocessor and Section 0.3.4.16 [BLOCK],
page 16 on this particular macro.

grg: too many equate defs, ’string’
The maximum number of equate definitions given by using the EQUATE predefined macro has
been exceeded. See Section 0.6 [Hard Limits], page 36 on the hard limits of the preprocessor
and Section 0.3.4.8 [EQUATE], page 12 on this particular macro.

grg: too many equate vars
The maximum number of local variables for an equate expression has been exceeded.

grg: too many file args, ’string’
The maximum number of file arguments given with the DATABASE predefined macro has
been exceeded. See Section 0.6 [Hard Limits], page 36 on the hard limits of the preprocessor
and Section 0.3.4.3 [DATABASE], page 10 on this particular macro.

grg: too many filter args, 'string’
The maximum number of filters specified by using the FILTER predefined macro has been
exceeded. See Section 0.6 [Hard Limits|, page 36 on the hard limits of the preprocessor and
Section 0.3.4.7 [FILTER], page 11 on this particular macro.

grg: too many group args, 'string’
Not implemented.

grg: too many local vars
The maximum number of equate local variables has been exceeded. The maximum size is
determined by the local variable table not the equate stack size.

grg: too many macro defs, ’string’
The maximum number of user macro definitions given by using the DEFINE predefined
macro has been exceeded. See Section 0.6 [Hard Limits], page 36 on the hard limits of the
preprocessor and Section 0.3.4.2 [DEFINE], page 9 on this particular macro.

grg: too many sort args, 'string’
The maximum sort depth specified by using the SORTON predefined macro has been ex-
ceeded. See sections Section 0.6 [Hard Limits|, page 36 on the hard limits of the preprocessor
and Section 0.3.4.5 [SORTON], page 11 on this particular macro.

grg: too many unique pattern characters
The DFA limits a number of internal resources, this is one. Simplify the pattern definitions
where possible.

grg: too many unique pattern modes
The DFA limits a number of internal resources, this is one. Simplify the pattern definitions
where possible.

52

grg: undefined equate variable, ’string’
A system variable is being used before it has been declared (by writing a value to it).

grg: undefined local variable, ’string’
A local variable is being used before it has been declared (by writing a value to it).

grg: undefined macro or equate, ’string’
An undefined user macro or equate definition has been used in a text body or in an equate
(not user macros). See Section 0.3.4 [Predefined Macros], page 8 on macro definitions and
Section 0.3.4.2 [DEFINE], page 9 and Section 0.3.4.8 [EQUATE], page 12 on user macros
and equate definitions respectively.

grg: unknown banner field, ’string’
An unknown database field name argument has been given to the BANNER predefined macro.
See Section 0.3.4 [Predefined Macros|, page 8 on field arguments and Section 0.3.4.12 [BAN-
NER], page 14 on this particular macro.

grg: unknown character token, 'token’
A pattern definition has been given a character set token which is not one of the predefined
ones and has not been defined by the user.

grg: unknown dfa mode
A jump has been made to a DFA mode which has not been defined (this may be a result
of not correctly setting the initial value with DFAMODE).

grg: unknown equate, ’string’
An undefined equate definition has been used in a text body or in an equate. See
Section 0.3.4 [Predefined Macros], page 8 on macro definitions and Section 0.3.4.8
[EQUATE], page 12 on equate definitions.

grg: unknown field name, ’string’
An unknown database field name has been used in a text body or in an equate. See
Section 0.3.4 [Predefined Macros|, page 8 on text bodies and Section 0.3.4.8 [EQUATE],
page 12 on equate definitions.

grg: unknown field type, ’string’
A field type defined in a dBase3+ database file has not been recognised as The valid recog-
nised types are C, N, D and L.

grg: unknown mode
This should never happen. If it does don’t panic, just call for help.

grg: unknown predefined GURGLE macro, ’string’
A predefined macro name has not been recognised. All predefined macros start with the
GRG or TEX sequence, followed by the rest of the name which must match one of the valid
names. Same error as below.

grg: unknown predefined tex macro, ’string’
An invalid predefined macro has been used. Check for spelling mistakes. See Section 0.3.4
[Predefined Macros], page 8 for a list of predefined macros. Note that predefined macros
are not case sensitive.

grg: unknown sort field, ’string’
An unknown database field name argument has been given to the SORTON predefined macro.
See Section 0.3.4 [Predefined Macros|, page 8 on field arguments and Section 0.3.4.5 [SOR-
TON], page 11 on this particular macro.

593

grg: unknown token
An error in a pattern definition, the resulting token should be one of the valid start of
record, end of record, start of field, end of field, error or discard token values.

grg: unseparated condition
A condition construct has been used in an equate expression which is missing the "else"
clause (or the "endif" clause if no "else" clause is given). Note that reversed expressions
always require an "else" clause (the colon character) whereas unreversed expressions do not.

grg: unterminated condition
A condition construct has been used in an equate expression which is missing the "endif"
or ";" terminator. All conditions require this terminator.

grg: unterminated string, ’string’
A string has been given with a missing end quote.

0.11 Examples

Included below is a complete example GRG file of a reasonable complexity. This demon-
strates how moderately complex output can be generated without doing any very complex
equate work (ie. just by using basic conditions on fields).

%% DAI Grants Awarded Report Form Template
%/DEFINE TITLE Grants Awarded
%%DATABASE "../research.dbf"
%LFILTER "%GRANT_STAT=ACTIVE" "J,GRANT_STAT=AWARDED"
%%SORTON ~ %AI_AREA %PI_SNAME
%LEQUATE GRANT_HOLDER 7?CO_INVEST"; %CO_INVEST"
%HEQUATE DURATION ?START_DATE"Y%START_DATE--"%END_DATE
%%EQUATE ACCOUNT_NO 7ACCOUNT_NO"RR%ACCOUNT_NO"
%%EQUATE RAS_PER_YR 7RAS_PER_YR
% LEQUATE STAFF_AD 7STAFF_AD"YSTAFF_AD "7AD_PERCENT"JAD_PERCENT\%; "
%LEQUATE STAFF_TG 7STAFF_TG"%STAFF_TG "7?TG_PERCENT"J,TG_PERCENT\%; "
%HEQUATE STAFF_CN ?STAFF_CN"%STAFF_CN "7?CN_PERCENT"J,CN_PERCENT\’%"
%HEQUATE STAFF_AR 7STAFF_AR"YSTAFF_AR "7AR_PERCENT"J,AR_PERCENT\’"
%%EQUATE STAFF1 ?STAFF_NM1
%LEQUATE STAFF2 ?STAFF_NM2"; Y%STAFF_NM2"
%HEQUATE STAFF3 ?STAFF_NM3"; YSTAFF_NM3"
%HEQUATE STAFF4 7STAFF_NM4"; YSTAFF_NM4"
% HEQUATE STAFF5 ?7STAFF_NM5"; %STAFF_NM5"
% #HEADER
\documentstyle[grants]{article}
\pagestyle{headings}
\markright{\noindent Department of Artificial Intelligence
\hfill %%TITLE as at \today{} \hfill}
\sloppy
\begin{document}
\begin{titlepage}
\mbox{}
\end{titlepage}

54

%%PAGEO1 3
\vspace*{lex}
\centerline{{\bf DEPARTMENT OF ARTIFICIAL INTELLIGENCE}}
\centerline{{\bf %%TITLE as at \today}}
\vspace*{lex}
/hPAGENN 4
\vspacex*{lex}
%%BANNER JAI_AREA
\vspace*{lex}
\flushleft{\underline{\bf %AI_AREA}}
%/%RECORD
\begin{list}{}{\leftmargin 2.15in
\renewcommand{\makelabel}[1]{\hfil \#1}\labelwidth 2.1in
\itemsep Oex \parsep Oex}

\item[{\bf
\item [{\bf
\item[{\bf
\item[{\bf
\item[{\bf
\item[{\bf
{\bf Trave
\\{\bf Equ
\item[{\bf
\item [{\bf
\item [{\bf
\item [{\bf
\item[{\bf

Title:}] %GRANT_TITL

Grantholder:}] %PI_SNAME, %PI_INITS’%%GRANT_HOLDER
Grant No:}] %GRANT_NO

A/C No:}] %%ACCOUNT_NO

Duration:}] %%DURATION

Value:}] \pounds%TOTAL\\{\bf Staff} \pounds’%STAFF_COST;
1} \pounds%TRAVEL; {\bf Consumables} \pounds’CONSUMABLE;
ipment} \pounds’EQUIPMENT; {\bf Indirect} \pounds%INDIRECT
RA Man Yrs/Ac Yr:}] %%RAS_PER_YR

Research Posts:}] %%STAFF_AR

Other Posts:}] %%STAFF_ADY%YSTAFF_TG%%STAFF_CN

Staff:}] %ASTAFF1%)STAFF2%,STAFF3%/,STAFF4Y/,STAFF5
Source 0f Funding:}] %FUNDING

\end{list}
%%FOOTER
\end{document}

The example below is one of the simplest files that could be created. This makes an SQL
query to a RDBMS and just dumps the output in delimited form using the default header
and record text bodies.

%%DATABASE "cat.sql"
%%DEFINE PHYSDB animals
%%DEFINE NAMCOL

%/ DEFINE DELIM |

The example below shows a more complex SQL query which is then used to construct
HTML for a web page in a fairly simple way. The file includes some other files for default
setup which are not shown below.

#!/usr/bin/gurgle

%#%INCLUDE "../PTC/html.pt"

%%INCLUDE "../PTC/basic.grg"

%%INCLUDE "banner .html"

%HEQUATE eq_init "../testing/absences.html" >>_eq_outfile

%/DEFINE PHYSDB daidb

%DEFINE NAMCOL

%%DATABASE "absence.sql"
select

lastname, firstname, reason, reason_oth, start_date as sdate,

return_date as rdate,
date_part(’year’,start_date) as year,
date_trunc(’month’,start_date) as month,
return_date - start_date as days
from
absence, person
where
person.person# = absence.person# and
((start_date >= date(’today’) and
start_date < date(’today’) + ’28 days’) or
(start_date < date(’today’) and
return_date >= date(’today’)))
order by
lastname

%LHEADER
#BEGIN_INSERT
<TABLE BORDER=0>
<TR ALIGN=LEFT>
<TH COLSPAN=2>Name
<TH COLSPAN=2>Date(s)
<TH COLSPAN=2>Reason

%/HRECORD
<TR>
<TD>%FIRSTNAME %LASTNAME<TD>

<TD>%SDATE #EVAL(%RDATE<>""?" to "+)RDATE:;) (%DAYS)<TD>

<TD>#EVAL (%REASON="0ther"?%REASON_OTH: %REASON;)
%%FOOTER
</TABLE>
#END_INSERT

%%HEND

The example below just contains some useful equate definitions for commonly required

functions (particularly string handling).

%%EQUATE traceon
/* turn on equate tracing */
1 >> _eq_trace

H%EQUATE traceoff
/* turn off equate tracing */

0 >> _eq_trace
%HEQUATE datey
/* returns string with century and year part of date */
inputs(s)
outputs(substr(s,0,3))
%%EQUATE datem
/* returns string with month part of date */
inputs(s)
outputs (substr(s,4,5))
%H%EQUATE dated
/* returns string with day part of date */
inputs(s)
outputs (substr(s,6,7))
%%EQUATE bdate
/* returns string with date formatted to "dd/mm/ccyy" */
inputs(s)
outputs(dated(s)+"/"+datem(s)+"/"+datey(s))
HHEQUATE 1tou
/* converts lower case string s to upper case */
inputs(s)
if not (s = "") then
0> i
while s’i <> 0 do
if s’i >= 97 and s’i <= 122 then
s,(s’i - 32)‘1 >> s
endif
++i >> i
endwhile
endif
outputs(s)
H%EQUATE substr
/* returns substring of sl starting at s and ending at e */
inputs(sl,s,e)
nn >> S2
0> x
while (s <= e) do
s2,(s1’s) ‘x >> s2
++s >> s
++x >> X
endwhile
outputs(s2,0x)
%%EQUATE strlen
/* returns length of string s */
inputs(s)
0 > x while s’x <> 0 do ++x >> x endwhile
outputs (x)
%%EQUATE nrecs

56

Appendix A: GNU Free Documentation License 57

/* returns size (n records) of given database db */
/* note that for a quoted string keywords are not expanded within so
the raw reversed operators must be used instead */

inputs(db)

0>>n

if db = "" then "" >> s else ":" + db >> s endif
"(n+ 1> n)" + s > s

exec(s)

outputs(n)

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

http://fsf.org/

Appendix A: GNU Free Documentation License 58

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such

Appendix A: GNU Free Documentation License 59

as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

Appendix A: GNU Free Documentation License 60

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Appendix A: GNU Free Documentation License 61

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

Appendix A: GNU Free Documentation License 62

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Command Index 63

10.

11.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Command Index

Command Index

B 24
%

/AT 21
G 21
U 21
A/ 21

& (bitwise and)oiiiiiiiiiniaann... 25
9

> (string index get) 26
*

* (MULLiply) .ooviniti 25
+

+ (add numeric) ...l 25
+ (string concatenate) 26
++ (increment), 25
- (subtract) 25
—— (decrement) 25
/(@ivide) ... 25
/% .. %/ (comments) 28
<

< (lessthan)coooiiiiiiiiiiiann... 25
<= (less than or equals) 25
<> (not equals) ..ooviiiiiii i 25
= (equals) ..ot 25
>

> (greater than) 25
>= (greater than or equals).................. 25
> 21

64
T (DItWISEe XOT) ottt 25
[4
¢ (string index put) 26
| (bitwise or)oiiiiiiiiiienn. 25
~ (bitwise ones complement) 25
ANA. e 25
BANNER . ..o 14
BLOCK .ot 16
break ...t 24
DATABASE . ..ottt 10
DEFINE ...t e e 9
o Lo JPS PP 22
€1Se L 22
elsedif ... 22
END . . 16
endif ... 22
endwhile........ ...t 22
€0 _ATES o oot 17
eg_exXit 17
eq_init ... 17
eg_post_banner....................iiiiiaa 17
eq_post_block.........ooiiiiiiiiiiiiii 17
eg_post_database............ ool 17
eqg_post_footer...................l 17
eq_post_header............... i, 17
eq_post_pageOl.............. 17
eq_post_pagenn.....................ia.. 17
eg_post_record........... ...t 17
eg_pre_banmer ... 17
€q_pre_bloCKttt 17
eq_pre_database....................o oL 17
eqg_pre_footer......... il 17

eq_pre_headerl 17

Command Index

eq_pre_pageOl........... ...l 17
€Q_Pre_PaAGENIl. ..o tttteeeiiee e 17
€Q_Pre_recCordcuuiiiiiiii i 17
EQGUILE..... .0 13
EQUATE . .. 12
EXEC ittt 26
XAt ... 24
expand ... 26
F

FILTER ... e 11
FOOTER . ..o 14
grg_getfield......... o oL 45
grg_getnumsysvar................ ..., 45
grg_getstrsysvar.................. ... 45
grg_putnumsysvar....................oiuui.... 45
grg_putstrsysvar................ ... 45
H

HEADER 14
I

T 22
INCLUDE e 9
INputs ... 24
MASTERDBot i 11

65
[P 25
OUEPULS .. 24
P
PAGEOL ..o 15
PAGENN . ..o 15
PATTERN . ..o e e 16
TeAA ..ttt 26
RECORD ..\ttt e e e 15
REVSORT ..ottt e e e 11
Ol o e 22
SENA . it e 26
SORTON . .t 11
T
then .o 22
through......... ... i 22
While ... 22
WEABE ot 26
X

Concept Index

Variable Index

_eq_banner _mest................l 18
_eq_banner_val............ciiiiiiiiiiiiiia 18
eq base............ 18
€q_bloCK. ... 18
€Q_Clarg. ..\ttt 18
€Q_ClOoCK. ...t 18
=T T b o= o 18
_€q_datenow ... 18
_eq_db_limit o il 18
_eq_db_name ... 18
_eq_dbfname il 18
_eq_dbfpath 18
_eq_dbftype ...l 18
eQ XM . 18
eq_file........ ... il 18
_eq_outfile 18
_€q_timenow ...t 18
_eq_totrec. 18
€Q_BTaACE. ..\ttt 18
_€Q_VerbOSe 18
C
CONCAT .. 5
D
DBHOSTNMt 6
DBPASSWD . ..ottt 6
DBUSERNM.......oiiiiii i 6

Concept Index

A

Appending to output 5
ATTAYS « et 26
Ascending Sort ... 11
Assignment operator., 21
AWK patterns. ... 42
B

Banner Text............co i 14
Bitwise operators............... o oo 25
Boolean operators............ ... i 25
Brackets.........ooo i 27
Break operator........... oL 24
Builtin, equates................ it 17

66
DEFCOL . .ottt e e e e 7
DELIM ..ttt e e 5
DFAMODE . . .ot 5
EXPAND ..o 6
FESCSUB .. .ot e 5
MKDIR . .ot 6
NAMCOL . ottt e e e e e e 7
NPAGE . .o 5
NULL . oot e e e 7
PAGEL .. 8
PAGEN . .. 8
PHYSDB . .ot 6
T
TEXEXT 5
Call mechanism, 24
Calling other equates............... 24
Changing pattern mode........................ 41
Column naming L. 7
Column typing ..o 7
Command line options.......................... 1
Comments, equates...........coeviiieeeenann.. 28
Comparison operatorsoooveevnnn... 25
Concatenationo, 5
Conditional Equate Expressions................ 12
Conditionals. ... 22
Constructsoei i 22

Data types ... 20

Concept Index

Database passwordc i 6
Database server............ ..o 6
Database user i 6
Databases, DATABASE for text databases..... 37
Databases, defining 10, 11
Databases, defining text databases............. 37
Databases, delimited text files 37
Databases, master..............coiiiiiaa.. 11
Debug options ... 1
Debugging equates............... L 28
Debugging patterns................ ... 42
Decrement. ... 25
Defining a report ool 3
Defining equates...........o 19
Defining GUILE Equate Expressions........... 13
Defining Macros ..., 9
Defining, banner text................ 14
Defining, first page text.............. 15
Defining, footer text........... 14
Defining, header text 14
Defining, page text oL 15
Defining, patterns 38
Defining, record text................., 15
Defining, text databases 37
Defining, user patterns......................... 16
Defining, user text blocks...................... 16
Definition file format........... 3
Definition file structure 3
Delimited text files..........t 37
Descending Sorto il 11
Directory path construction..................... 6

E

Ending Text Blocks..................... 16
Environment Variables.................. 4
Equate call operator........................... 24
Equate Expressions............. 16
Equate, global variables 21
Equate, local variables......................... 20
Equates, bitwise operators..................... 25
Equates, boolean operators 25
Equates, calling other equates 24
Equates, comments....................o 28
Equates, comparison operators................. 25
Equates, conditionals.......................... 22
Equates, constructs.......... oL 22
Equates, data types ... 20
Equates, debugging...........l 28
Equates, defining 19
Equates, examples............................. 53
Equates, expansion in SQL 6
Equates, field reference 21
Equates, flow control 24
Equates, guile support............. 45
Equates, i/0 operators..............c.ooooui... 26
Equates, inputs. ... 24

Equates, 1oopS. ... 22

67
Equates, miscellaneous operators............... 26
Equates, numeric operators.................... 25
Equates, operator precedence 27
Equates, outputs 24
Equates, predefined............................ 17
Equates, string operators............. 26
Equates, text body surround................... 17
Equates, tracing 28
Equates, used in patterns...................... 41
Equates, variable assignment................... 21
Equates, variables oo 20
Error messages il 46
Escaping, percent character..................... 5
Examples. ... 53
Executing equate strings....................... 26
Exit operator......... ... L 24
Expanding block strings 26
Expansion...........ooooiiiiiiiiiiiiiiiiiii 6
F
Features....... ..o 1
Field length oo 45
Field length operator 21
Field name operator................ 21
Field naming oo o i 7
Field reference................ il 21
Field type operator..................iian 21
Field typingcoouiiiiiii i 7
Field value operator 21
Fields, expansion in SQL 6
Fields, names.............. i 7
Fields, types.o 7
File Extensioncooiiiiiiiiiiii i, 5
File format i 3
Files, include files..............c i, 9
Filtering. ... 11
First Page Text............ ..ot 15
Flow control.............co i 24
Footer Text ... 14
G
Generating a report....... ... 1
Global variables oo i 21
GNU SQL Server..........coooiiiiiiiiann... 43
GUILE equates.c.ovveiiieiiiieannn 45
GUILE, database access 45
GUILE, GURGLE procedures 45
GUILE, system variable access................. 45
GURGLE ... 1
GURGLE definition files........................ 1
GURGLE file format 3
GURGLE procedures...............cooiina... 45
GURGLE, file structure......................... 3
GURGLE, processing sequence. 3

Concept Index

H

Hard limits........... 36
Header Files........ ... i, 9
Header Text........... .. 14

I

I/O operators ..., 26
if ... then construct 22
Including Files......... .o i i 9
Increment 25
Ingres.... ..o i 43
Input file structure 3
Input files, demilited text...................... 37
Input Mode ... i 5
Input Operators............ccooiiiiiiiiin... 26
Input Pattern o . 39
Inputs, delimiter............ 5

Limits. .o 36
Limits for patterns 43
Line breaking...........ot 8
Local variables il 20
Logical operators.............. ... L. 25
LOODS « v 22

M

Macros, banner text 14
Macros, conditional equate expressions......... 12
Macros, defining conditional equates........... 12
Macros, defining databases................. 10, 11
Macros, ending text blocks..................... 16
Macros, filtering ool 11
Macros, first page text..........c.ooiiiiiiia.. 15
Macros, footer text 14
Macros, GUILE equate expressions 13
Macros, header textcoiiiiii.. 14
Macros, including files L 9
Macros, input files 10, 11
Macros, input patterns 16
Macros, page text ... 15
Macros, Predefined 8
Macros, record text...........coiiiiiiiiiii 15
Macros, reverse sorting 11
Macros, sorted group banners.................. 14
Macros, SOrtingovvviiieiiiiiaan 11
Macros, user defined 9
Macros, user text blocks....................... 16
Making directory paths.............. 6
Matching input patterns....................... 39
Mathematical operators........................ 25
Miscallaneous operators 26

MySQL Server.........cooiiiiiiiiiiiii .. 43

68
N
Native Language, 16
NULL Handling oo, 7
NULL, in SQL databases 45
Numeric operators............................. 25
O
Operator Precedence 27
Output File, appending......................... 5
Output File, directory path..................... 6
Output Operatorscoouviieinea.... 26
P
Page breaking oL 8
Page Breaks......... L 5
Page Texto 15
Paging, first page........ it 15
Paging, page breaksl 5
Paging, page text........ ... i 15
Paging, setting up pages............... 8
Patterns, changing modes...................... 41
Patterns, debugging oL 42
Patterns, defining........... oL 16
Patterns, delimiter...................., 5
Patterns, field/record structure 41
Patterns, for awk-style processing.............. 42
Patterns, input pattern................ 39
Patterns, limits................ .. oo 43
Patterns, modeol 5, 39
Patterns, result token................... 41
Patterns, tokens and syntax 39
Patterns, using equates.................... ... 41
Physical database............o L 6
PostgreSQL Server oL 43
Predefined equates.............. 17
Predefined Macros................oooiiiiiii.. 8
Predefined System Variables................... 18
Processing sequenceol 3
Q
Querying SQL databases....................... 43
R
RDBMS supportoooviiiiiiiiii... 43
Record Text......ooeiiiiiiii i 15
Referencing fields in SQL databases............ 44
Referencing fields, text databases.............. 37
Report generation oo 1
roll ... through construct....................... 22
Running GURGLE 1

Concept Index

S

Size Hmits. ... 36
Sorting 11
Sorting, ascending ...t 11
Sorting, banner text........... L 14
Sorting, descending............ oL 11
SQL database files, database password 6
SQL database files, database server 6
SQL database files, database user............... 6
SQL database files, expansion................... 6
SQL database files, NULL handling............. 7
SQL database files, physical..................... 6
SQL databases ... 43
SQL databases, defining 43
SQL databases, NULL handling................ 45
SQL databases, physical database.............. 44
SQL databases, referencing fields............... 44
SQL databases, selecting....................... 44
SQL databases, using DATABASE............. 43
SQL databases, using NAMCOL............... 44
SQL input files ... 43
Starting ... 1
String operators........ ... i, 26
Structure. 3
Syntax, of patterns 39
System Variables 18

T

Text Database Files, delimiter 5
Text databases, column names................. 37

69
Text databases, delimiter setting............... 37
Text databases, fields and records.............. 41
Text databases, redefining patterns 38
Text databases, referencing fields 37
Text databases, using DELIM 37
Text databases, using NAMCOL............... 37
Text processing. ... 37
Tokenso 39
Tokens, in patterns................ 39
Tracing. ... 28
U
User Defined Macros.ocovveiiinennn... 9
User defined text databases.................... 38
User Text Blocks ..., 16
Using GUILE. ... i 45
\Va
Variable Assignment..................... ... 21
Variables, Environment 4
Variables, equate 20
Variables, global L 21
Variables, localo il 20
Variables, system oL 18
while ... do ... endwhile construct 22

	Introduction
	Running GURGLE
	GURGLE File Format
	Structure
	Processing Sequence
	Environment Variables
	NPAGE
	FESCSUB
	TEXEXT
	DELIM
	DFAMODE
	CONCAT
	MKDIR
	PHYSDB
	DBHOSTNM
	DBUSERNM
	DBPASSWD
	EXPAND
	NAMCOL
	DEFCOL
	NULL
	PAGE1 and PAGEN

	Predefined Macros
	INCLUDE
	DEFINE
	DATABASE
	MASTERDB
	SORTON
	REVSORT
	FILTER
	EQUATE
	EQGUILE
	HEADER
	FOOTER
	BANNER
	PAGE01
	PAGENN
	RECORD
	BLOCK
	PATTERN
	END

	Equate Expressions
	Predefined Equates
	Predefined System Variables
	Keywords
	Defining
	Data Types
	Variables
	Local Variables
	Global Variables

	Variable Assignment
	Field Reference
	Constructs
	Flow Control
	Calling Other Equates
	Numeric Operators
	Comparison Operators
	Boolean Operators
	String Operators
	I/O Operators
	Miscellaneous Operators
	Operator Precedence
	Comments
	Debugging

	Reversed Equate Expressions
	Defining Reversed Equates
	The Stack
	Reversed Equate Data Types
	Reversed Equate Variables
	Reversed Equate Local Variables
	Reversed Equate Global Variables

	Reversed Equate Operators
	Reversed Equate Variable Operators
	Reversed Equate Numeric Operators
	Reversed Equate Comparison Operators
	Reversed Equate Boolean Operators
	Reversed Equate String Operators
	Reversed Equate Stack Operators
	Reversed Equate Field Operators
	Reversed Equate Calling Mechanism
	Reversed Equate I/O Operators
	Reversed Equate Miscellaneous Operators
	Reversed Equate Constructs
	Reversed Equate Flow Control
	Reversed Equate Comments
	Reversed Equate Debugging

	Hard Limits
	Text Processing
	Declaring Text Input Files
	Changing the Delimiter
	Referencing Fields
	Redefining Patterns
	Tokens and Syntax
	Mode
	Input Pattern
	Equates
	New Mode
	Token
	AWK Patterns
	Pattern Debugging
	Limits

	RDBMS Queries
	Declaring SQL Input Files
	Physical Database
	Referencing Columns
	NULL Value Handling
	Miscellaneous

	Using GUILE
	GURGLE Procedures

	Errors
	Examples
	GNU Free Documentation License
	Command Index
	Variable Index
	Concept Index

