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CHAPTER 1

fio - Flexible I/O tester rev. 3.12

1.1 Overview and history

Fio was originally written to save me the hassle of writing special test case programs when I wanted to test a specific
workload, either for performance reasons or to find/reproduce a bug. The process of writing such a test app can be
tiresome, especially if you have to do it often. Hence I needed a tool that would be able to simulate a given I/O
workload without resorting to writing a tailored test case again and again.

A test work load is difficult to define, though. There can be any number of processes or threads involved, and they
can each be using their own way of generating I/O. You could have someone dirtying large amounts of memory in an
memory mapped file, or maybe several threads issuing reads using asynchronous I/O. fio needed to be flexible enough
to simulate both of these cases, and many more.

Fio spawns a number of threads or processes doing a particular type of I/O action as specified by the user. fio takes a
number of global parameters, each inherited by the thread unless otherwise parameters given to them overriding that
setting is given. The typical use of fio is to write a job file matching the I/O load one wants to simulate.

1.2 Source

Fio resides in a git repo, the canonical place is:

git://git.kernel.dk/fio.git

When inside a corporate firewall, git:// URL sometimes does not work. If git:// does not work, use the http protocol
instead:

http://git.kernel.dk/fio.git

Snapshots are frequently generated and fio-git-*.tar.gz include the git meta data as well. Other tarballs are
archives of official fio releases. Snapshots can download from:

http://brick.kernel.dk/snaps/

There are also two official mirrors. Both of these are automatically synced with the main repository, when changes are
pushed. If the main repo is down for some reason, either one of these is safe to use as a backup:
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git://git.kernel.org/pub/scm/linux/kernel/git/axboe/fio.git

https://git.kernel.org/pub/scm/linux/kernel/git/axboe/fio.git

or

git://github.com/axboe/fio.git

https://github.com/axboe/fio.git

1.3 Mailing list

The fio project mailing list is meant for anything related to fio including general discussion, bug reporting, questions,
and development. For bug reporting, see REPORTING-BUGS.

An automated mail detailing recent commits is automatically sent to the list at most daily. The list address is
fio@vger.kernel.org, subscribe by sending an email to majordomo@vger.kernel.org with

subscribe fio

in the body of the email. Archives can be found here:

http://www.spinics.net/lists/fio/

and archives for the old list can be found here:

http://maillist.kernel.dk/fio-devel/

1.4 Author

Fio was written by Jens Axboe <axboe@kernel.dk> to enable flexible testing of the Linux I/O subsystem and sched-
ulers. He got tired of writing specific test applications to simulate a given workload, and found that the existing I/O
benchmark/test tools out there weren’t flexible enough to do what he wanted.

Jens Axboe <axboe@kernel.dk> 20060905

1.5 Binary packages

Debian: Starting with Debian “Squeeze”, fio packages are part of the official Debian repository. http://packages.
debian.org/search?keywords=fio .

Ubuntu: Starting with Ubuntu 10.04 LTS (aka “Lucid Lynx”), fio packages are part of the Ubuntu “universe” reposi-
tory. http://packages.ubuntu.com/search?keywords=fio .

Red Hat, Fedora, CentOS & Co: Starting with Fedora 9/Extra Packages for Enterprise Linux 4, fio packages are
part of the Fedora/EPEL repositories. https://apps.fedoraproject.org/packages/fio .

Mandriva: Mandriva has integrated fio into their package repository, so installing on that distro should be as easy as
typing urpmi fio.

Arch Linux: An Arch Linux package is provided under the Community sub-repository: https://www.archlinux.org/
packages/?sort=&q=fio

Solaris: Packages for Solaris are available from OpenCSW. Install their pkgutil tool (http://www.opencsw.org/get-it/
pkgutil/) and then install fio via pkgutil -i fio.
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Windows: Rebecca Cran <rebecca+fio@bluestop.org> has fio packages for Windows at https://www.bluestop.org/fio/
. The latest builds for Windows can also be grabbed from https://ci.appveyor.com/project/axboe/fio by clicking
the latest x86 or x64 build, then selecting the ARTIFACTS tab.

BSDs: Packages for BSDs may be available from their binary package repositories. Look for a package “fio” using
their binary package managers.

1.6 Building

Just type:

$ ./configure
$ make
$ make install

Note that GNU make is required. On BSDs it’s available from devel/gmake within ports directory; on Solaris it’s in
the SUNWgmake package. On platforms where GNU make isn’t the default, type gmake instead of make.

Configure will print the enabled options. Note that on Linux based platforms, the libaio development packages must
be installed to use the libaio engine. Depending on distro, it is usually called libaio-devel or libaio-dev.

For gfio, gtk 2.18 (or newer), associated glib threads, and cairo are required to be installed. gfio isn’t built automatically
and can be enabled with a --enable-gfio option to configure.

To build fio with a cross-compiler:

$ make clean
$ make CROSS_COMPILE=/path/to/toolchain/prefix

Configure will attempt to determine the target platform automatically.

It’s possible to build fio for ESX as well, use the --esx switch to configure.

1.6.1 Windows

On Windows, Cygwin (http://www.cygwin.com/) is required in order to build fio. To create an MSI installer package
install WiX 3.8 from http://wixtoolset.org and run dobuild.cmd from the os/windows directory.

How to compile fio on 64-bit Windows:

1. Install Cygwin (http://www.cygwin.com/). Install make and all packages starting with mingw64-x86_64. En-
sure mingw64-x86_64-zlib are installed if you wish to enable fio’s log compression functionality.

2. Open the Cygwin Terminal.

3. Go to the fio directory (source files).

4. Run make clean && make -j.

To build fio for 32-bit Windows, ensure the -i686 versions of the previously mentioned -x86_64 packages are installed
and run ./configure --build-32bit-win before make. To build an fio that supports versions of Windows
below Windows 7/Windows Server 2008 R2 also add --target-win-ver=xp to the end of the configure line that
you run before doing make.

It’s recommended that once built or installed, fio be run in a Command Prompt or other ‘native’ con-
sole such as console2, since there are known to be display and signal issues when running it under
a Cygwin shell (see https://github.com/mintty/mintty/issues/56 and https://github.com/mintty/mintty/wiki/Tips#
inputoutput-interaction-with-alien-programs for details).
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1.6.2 Documentation

Fio uses Sphinx to generate documentation from the reStructuredText files. To build HTML formatted documentation
run make -C doc html and direct your browser to ./doc/output/html/index.html. To build manual
page run make -C doc man and then man doc/output/man/fio.1. To see what other output formats are
supported run make -C doc help.

1.7 Platforms

Fio works on (at least) Linux, Solaris, AIX, HP-UX, OSX, NetBSD, OpenBSD, Windows, FreeBSD, and DragonFly.
Some features and/or options may only be available on some of the platforms, typically because those features only
apply to that platform (like the solarisaio engine, or the splice engine on Linux).

Some features are not available on FreeBSD/Solaris even if they could be implemented, I’d be happy to take patches
for that. An example of that is disk utility statistics and (I think) huge page support, support for that does exist in
FreeBSD/Solaris.

Fio uses pthread mutexes for signalling and locking and some platforms do not support process shared pthread mutexes.
As a result, on such platforms only threads are supported. This could be fixed with sysv ipc locking or other locking
alternatives.

Other *BSD platforms are untested, but fio should work there almost out of the box. Since I don’t do test runs or even
compiles on those platforms, your mileage may vary. Sending me patches for other platforms is greatly appreciated.
There’s a lot of value in having the same test/benchmark tool available on all platforms.

Note that POSIX aio is not enabled by default on AIX. Messages like these:

Symbol resolution failed for /usr/lib/libc.a(posix_aio.o) because:
Symbol _posix_kaio_rdwr (number 2) is not exported from dependent module /unix.

indicate one needs to enable POSIX aio. Run the following commands as root:

# lsdev -C -l posix_aio0
posix_aio0 Defined Posix Asynchronous I/O

# cfgmgr -l posix_aio0
# lsdev -C -l posix_aio0

posix_aio0 Available Posix Asynchronous I/O

POSIX aio should work now. To make the change permanent:

# chdev -l posix_aio0 -P -a autoconfig='available'
posix_aio0 changed

1.8 Running fio

Running fio is normally the easiest part - you just give it the job file (or job files) as parameters:

$ fio [options] [jobfile] ...

and it will start doing what the jobfile tells it to do. You can give more than one job file on the command line, fio will
serialize the running of those files. Internally that is the same as using the stonewall parameter described in the
parameter section.

6 Chapter 1. fio - Flexible I/O tester rev. 3.12
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If the job file contains only one job, you may as well just give the parameters on the command line. The command
line parameters are identical to the job parameters, with a few extra that control global parameters. For example, for
the job file parameter iodepth=2, the mirror command line option would be --iodepth 2 or --iodepth=2.
You can also use the command line for giving more than one job entry. For each --name option that fio sees, it will
start a new job with that name. Command line entries following a --name entry will apply to that job, until there are
no more entries or a new --name entry is seen. This is similar to the job file options, where each option applies to
the current job until a new [] job entry is seen.

fio does not need to run as root, except if the files or devices specified in the job section requires that. Some other
options may also be restricted, such as memory locking, I/O scheduler switching, and decreasing the nice value.

If jobfile is specified as -, the job file will be read from standard input.

1.9 How fio works

The first step in getting fio to simulate a desired I/O workload, is writing a job file describing that specific setup. A
job file may contain any number of threads and/or files – the typical contents of the job file is a global section defining
shared parameters, and one or more job sections describing the jobs involved. When run, fio parses this file and sets
everything up as described. If we break down a job from top to bottom, it contains the following basic parameters:

I/O type

Defines the I/O pattern issued to the file(s). We may only be reading sequentially from this file(s), or
we may be writing randomly. Or even mixing reads and writes, sequentially or randomly. Should we be
doing buffered I/O, or direct/raw I/O?

Block size

In how large chunks are we issuing I/O? This may be a single value, or it may describe a range of block
sizes.

I/O size

How much data are we going to be reading/writing.

I/O engine

How do we issue I/O? We could be memory mapping the file, we could be using regular read/write, we
could be using splice, async I/O, or even SG (SCSI generic sg).

I/O depth

If the I/O engine is async, how large a queuing depth do we want to maintain?

Target file/device

How many files are we spreading the workload over.

Threads, processes and job synchronization

How many threads or processes should we spread this workload over.

The above are the basic parameters defined for a workload, in addition there’s a multitude of parameters that modify
other aspects of how this job behaves.

1.10 Command line options

--debug=type
Enable verbose tracing type of various fio actions. May be all for all types or individual types separated by a

1.9. How fio works 7
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comma (e.g. --debug=file,mem will enable file and memory debugging). Currently, additional logging is
available for:

process Dump info related to processes.

file Dump info related to file actions.

io Dump info related to I/O queuing.

mem Dump info related to memory allocations.

blktrace Dump info related to blktrace setup.

verify Dump info related to I/O verification.

all Enable all debug options.

random Dump info related to random offset generation.

parse Dump info related to option matching and parsing.

diskutil Dump info related to disk utilization updates.

job:x Dump info only related to job number x.

mutex Dump info only related to mutex up/down ops.

profile Dump info related to profile extensions.

time Dump info related to internal time keeping.

net Dump info related to networking connections.

rate Dump info related to I/O rate switching.

compress Dump info related to log compress/decompress.

? or help Show available debug options.

--parse-only
Parse options only, don’t start any I/O.

--merge-blktrace-only
Merge blktraces only, don’t start any I/O.

--output=filename
Write output to file filename.

--output-format=format
Set the reporting format to normal, terse, json, or json+. Multiple formats can be selected, separated by a
comma. terse is a CSV based format. json+ is like json, except it adds a full dump of the latency buckets.

--bandwidth-log
Generate aggregate bandwidth logs.

--minimal
Print statistics in a terse, semicolon-delimited format.

--append-terse
Print statistics in selected mode AND terse, semicolon-delimited format. Deprecated, use
--output-format instead to select multiple formats.

--terse-version=version
Set terse version output format (default 3, or 2 or 4 or 5).

--version
Print version information and exit.

8 Chapter 1. fio - Flexible I/O tester rev. 3.12
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--help
Print a summary of the command line options and exit.

--cpuclock-test
Perform test and validation of internal CPU clock.

--crctest=[test]
Test the speed of the built-in checksumming functions. If no argument is given, all of them are tested. Alterna-
tively, a comma separated list can be passed, in which case the given ones are tested.

--cmdhelp=command
Print help information for command. May be all for all commands.

--enghelp=[ioengine[,command]]
List all commands defined by ioengine, or print help for command defined by ioengine. If no ioengine is given,
list all available ioengines.

--showcmd=jobfile
Convert jobfile to a set of command-line options.

--readonly
Turn on safety read-only checks, preventing writes and trims. The --readonly option is an extra safety
guard to prevent users from accidentally starting a write or trim workload when that is not desired. Fio will only
modify the device under test if rw=write/randwrite/rw/randrw/trim/randtrim/trimwrite is given. This safety net
can be used as an extra precaution.

--eta=when
Specifies when real-time ETA estimate should be printed. when may be always, never or auto. auto is the
default, it prints ETA when requested if the output is a TTY. always disregards the output type, and prints ETA
when requested. never never prints ETA.

--eta-interval=time
By default, fio requests client ETA status roughly every second. With this option, the interval is configurable.
Fio imposes a minimum allowed time to avoid flooding the console, less than 250 msec is not supported.

--eta-newline=time
Force a new line for every time period passed. When the unit is omitted, the value is interpreted in seconds.

--status-interval=time
Force a full status dump of cumulative (from job start) values at time intervals. This option does not provide
per-period measurements. So values such as bandwidth are running averages. When the time unit is omitted,
time is interpreted in seconds. Note that using this option with --output-format=json will yield output
that technically isn’t valid json, since the output will be collated sets of valid json. It will need to be split into
valid sets of json after the run.

--section=name
Only run specified section name in job file. Multiple sections can be specified. The --section option allows
one to combine related jobs into one file. E.g. one job file could define light, moderate, and heavy sections. Tell
fio to run only the “heavy” section by giving --section=heavy command line option. One can also specify
the “write” operations in one section and “verify” operation in another section. The --section option only
applies to job sections. The reserved global section is always parsed and used.

--alloc-size=kb
Set the internal smalloc pool size to kb in KiB. The --alloc-size switch allows one to use a larger pool size
for smalloc. If running large jobs with randommap enabled, fio can run out of memory. Smalloc is an internal
allocator for shared structures from a fixed size memory pool and can grow to 16 pools. The pool size defaults
to 16MiB.

NOTE: While running .fio_smalloc.* backing store files are visible in /tmp.
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--warnings-fatal
All fio parser warnings are fatal, causing fio to exit with an error.

--max-jobs=nr
Set the maximum number of threads/processes to support to nr. NOTE: On Linux, it may be necessary to
increase the shared-memory limit (/proc/sys/kernel/shmmax) if fio runs into errors while creating jobs.

--server=args
Start a backend server, with args specifying what to listen to. See Client/Server section.

--daemonize=pidfile
Background a fio server, writing the pid to the given pidfile file.

--client=hostname
Instead of running the jobs locally, send and run them on the given hostname or set of hostnames. See
Client/Server section.

--remote-config=file
Tell fio server to load this local file.

--idle-prof=option
Report CPU idleness. option is one of the following:

calibrate Run unit work calibration only and exit.

system Show aggregate system idleness and unit work.

percpu As system but also show per CPU idleness.

--inflate-log=log
Inflate and output compressed log.

--trigger-file=file
Execute trigger command when file exists.

--trigger-timeout=time
Execute trigger at this time.

--trigger=command
Set this command as local trigger.

--trigger-remote=command
Set this command as remote trigger.

--aux-path=path
Use the directory specified by path for generated state files instead of the current working directory.

Any parameters following the options will be assumed to be job files, unless they match a job file parameter. Multiple
job files can be listed and each job file will be regarded as a separate group. Fio will stonewall execution between
each group.

1.11 Job file format

As previously described, fio accepts one or more job files describing what it is supposed to do. The job file format is
the classic ini file, where the names enclosed in [] brackets define the job name. You are free to use any ASCII name
you want, except global which has special meaning. Following the job name is a sequence of zero or more parameters,
one per line, that define the behavior of the job. If the first character in a line is a ‘;’ or a ‘#’, the entire line is discarded
as a comment.
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A global section sets defaults for the jobs described in that file. A job may override a global section parameter, and a
job file may even have several global sections if so desired. A job is only affected by a global section residing above
it.

The --cmdhelp option also lists all options. If used with a command argument, --cmdhelp will detail the given
command.

See the examples/ directory for inspiration on how to write job files. Note the copyright and license requirements
currently apply to examples/ files.

So let’s look at a really simple job file that defines two processes, each randomly reading from a 128MiB file:

; -- start job file --
[global]
rw=randread
size=128m

[job1]

[job2]

; -- end job file --

As you can see, the job file sections themselves are empty as all the described parameters are shared. As no filename
option is given, fio makes up a filename for each of the jobs as it sees fit. On the command line, this job would look as
follows:

$ fio --name=global --rw=randread --size=128m --name=job1 --name=job2

Let’s look at an example that has a number of processes writing randomly to files:

; -- start job file --
[random-writers]
ioengine=libaio
iodepth=4
rw=randwrite
bs=32k
direct=0
size=64m
numjobs=4
; -- end job file --

Here we have no global section, as we only have one job defined anyway. We want to use async I/O here, with a depth
of 4 for each file. We also increased the buffer size used to 32KiB and define numjobs to 4 to fork 4 identical jobs.
The result is 4 processes each randomly writing to their own 64MiB file. Instead of using the above job file, you could
have given the parameters on the command line. For this case, you would specify:

$ fio --name=random-writers --ioengine=libaio --iodepth=4 --rw=randwrite --bs=32k --
→˓direct=0 --size=64m --numjobs=4

When fio is utilized as a basis of any reasonably large test suite, it might be desirable to share a set of standard-
ized settings across multiple job files. Instead of copy/pasting such settings, any section may pull in an external
filename.fio file with include filename directive, as in the following example:

; -- start job file including.fio --
[global]
filename=/tmp/test
filesize=1m

(continues on next page)
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(continued from previous page)

include glob-include.fio

[test]
rw=randread
bs=4k
time_based=1
runtime=10
include test-include.fio
; -- end job file including.fio --

; -- start job file glob-include.fio --
thread=1
group_reporting=1
; -- end job file glob-include.fio --

; -- start job file test-include.fio --
ioengine=libaio
iodepth=4
; -- end job file test-include.fio --

Settings pulled into a section apply to that section only (except global section). Include directives may be nested in
that any included file may contain further include directive(s). Include files may not contain [] sections.

1.11.1 Environment variables

Fio also supports environment variable expansion in job files. Any sub-string of the form ${VARNAME} as part of an
option value (in other words, on the right of the ‘=’), will be expanded to the value of the environment variable called
VARNAME. If no such environment variable is defined, or VARNAME is the empty string, the empty string will be
substituted.

As an example, let’s look at a sample fio invocation and job file:

$ SIZE=64m NUMJOBS=4 fio jobfile.fio

; -- start job file --
[random-writers]
rw=randwrite
size=${SIZE}
numjobs=${NUMJOBS}
; -- end job file --

This will expand to the following equivalent job file at runtime:

; -- start job file --
[random-writers]
rw=randwrite
size=64m
numjobs=4
; -- end job file --

Fio ships with a few example job files, you can also look there for inspiration.
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1.11.2 Reserved keywords

Additionally, fio has a set of reserved keywords that will be replaced internally with the appropriate value. Those
keywords are:

$pagesize

The architecture page size of the running system.

$mb_memory

Megabytes of total memory in the system.

$ncpus

Number of online available CPUs.

These can be used on the command line or in the job file, and will be automatically substituted with the current system
values when the job is run. Simple math is also supported on these keywords, so you can perform actions like:

size=8*$mb_memory

and get that properly expanded to 8 times the size of memory in the machine.

1.12 Job file parameters

This section describes in details each parameter associated with a job. Some parameters take an option of a given type,
such as an integer or a string. Anywhere a numeric value is required, an arithmetic expression may be used, provided
it is surrounded by parentheses. Supported operators are:

• addition (+)

• subtraction (-)

• multiplication (*)

• division (/)

• modulus (%)

• exponentiation (^)

For time values in expressions, units are microseconds by default. This is different than for time values not in expres-
sions (not enclosed in parentheses). The following types are used:

1.12.1 Parameter types

str String: A sequence of alphanumeric characters.

time Integer with possible time suffix. Without a unit value is interpreted as seconds unless otherwise specified.
Accepts a suffix of ‘d’ for days, ‘h’ for hours, ‘m’ for minutes, ‘s’ for seconds, ‘ms’ (or ‘msec’) for milliseconds
and ‘us’ (or ‘usec’) for microseconds. For example, use 10m for 10 minutes.

int Integer. A whole number value, which may contain an integer prefix and an integer suffix:

[integer prefix] number [integer suffix]

The optional integer prefix specifies the number’s base. The default is decimal. 0x specifies hexadecimal.

1.12. Job file parameters 13



fio Documentation, Release 3.12-dirty

The optional integer suffix specifies the number’s units, and includes an optional unit prefix and an optional
unit. For quantities of data, the default unit is bytes. For quantities of time, the default unit is seconds unless
otherwise specified.

With kb_base=1000, fio follows international standards for unit prefixes. To specify power-of-10 decimal
values defined in the International System of Units (SI):

• K – means kilo (K) or 1000

• M – means mega (M) or 1000**2

• G – means giga (G) or 1000**3

• T – means tera (T) or 1000**4

• P – means peta (P) or 1000**5

To specify power-of-2 binary values defined in IEC 80000-13:

• Ki – means kibi (Ki) or 1024

• Mi – means mebi (Mi) or 1024**2

• Gi – means gibi (Gi) or 1024**3

• Ti – means tebi (Ti) or 1024**4

• Pi – means pebi (Pi) or 1024**5

With kb_base=1024 (the default), the unit prefixes are opposite from those specified in the SI and IEC 80000-
13 standards to provide compatibility with old scripts. For example, 4k means 4096.

For quantities of data, an optional unit of ‘B’ may be included (e.g., ‘kB’ is the same as ‘k’).

The integer suffix is not case sensitive (e.g., m/mi mean mebi/mega, not milli). ‘b’ and ‘B’ both mean byte, not
bit.

Examples with kb_base=1000:

• 4 KiB: 4096, 4096b, 4096B, 4ki, 4kib, 4kiB, 4Ki, 4KiB

• 1 MiB: 1048576, 1mi, 1024ki

• 1 MB: 1000000, 1m, 1000k

• 1 TiB: 1099511627776, 1ti, 1024gi, 1048576mi

• 1 TB: 1000000000, 1t, 1000m, 1000000k

Examples with kb_base=1024 (default):

• 4 KiB: 4096, 4096b, 4096B, 4k, 4kb, 4kB, 4K, 4KB

• 1 MiB: 1048576, 1m, 1024k

• 1 MB: 1000000, 1mi, 1000ki

• 1 TiB: 1099511627776, 1t, 1024g, 1048576m

• 1 TB: 1000000000, 1ti, 1000mi, 1000000ki

To specify times (units are not case sensitive):

• D – means days

• H – means hours

• M – means minutes

• s – or sec means seconds (default)
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• ms – or msec means milliseconds

• us – or usec means microseconds

If the option accepts an upper and lower range, use a colon ‘:’ or minus ‘-‘ to separate such values. See irange.
If the lower value specified happens to be larger than the upper value the two values are swapped.

bool Boolean. Usually parsed as an integer, however only defined for true and false (1 and 0).

irange Integer range with suffix. Allows value range to be given, such as 1024-4096. A colon may also be used as
the separator, e.g. 1k:4k. If the option allows two sets of ranges, they can be specified with a ‘,’ or ‘/’ delimiter:
1k-4k/8k-32k. Also see int.

float_list A list of floating point numbers, separated by a ‘:’ character.

With the above in mind, here follows the complete list of fio job parameters.

1.12.2 Units

kb_base=int
Select the interpretation of unit prefixes in input parameters.

1000 Inputs comply with IEC 80000-13 and the International System of Units (SI). Use:

• power-of-2 values with IEC prefixes (e.g., KiB)

• power-of-10 values with SI prefixes (e.g., kB)

1024 Compatibility mode (default). To avoid breaking old scripts:

• power-of-2 values with SI prefixes

• power-of-10 values with IEC prefixes

See bs for more details on input parameters.

Outputs always use correct prefixes. Most outputs include both side-by-side, like:

bw=2383.3kB/s (2327.4KiB/s)

If only one value is reported, then kb_base selects the one to use:

1000 – SI prefixes

1024 – IEC prefixes

unit_base=int
Base unit for reporting. Allowed values are:

0 Use auto-detection (default).

8 Byte based.

1 Bit based.

1.12.3 Job description

name=str
ASCII name of the job. This may be used to override the name printed by fio for this job. Otherwise the job
name is used. On the command line this parameter has the special purpose of also signaling the start of a new
job.
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description=str
Text description of the job. Doesn’t do anything except dump this text description when this job is run. It’s not
parsed.

loops=int
Run the specified number of iterations of this job. Used to repeat the same workload a given number of times.
Defaults to 1.

numjobs=int
Create the specified number of clones of this job. Each clone of job is spawned as an independent thread or
process. May be used to setup a larger number of threads/processes doing the same thing. Each thread is
reported separately; to see statistics for all clones as a whole, use group_reporting in conjunction with
new_group. See --max-jobs. Default: 1.

1.12.4 Time related parameters

runtime=time
Tell fio to terminate processing after the specified period of time. It can be quite hard to determine for how long
a specified job will run, so this parameter is handy to cap the total runtime to a given time. When the unit is
omitted, the value is interpreted in seconds.

time_based
If set, fio will run for the duration of the runtime specified even if the file(s) are completely read or written. It
will simply loop over the same workload as many times as the runtime allows.

startdelay=irange(time)
Delay the start of job for the specified amount of time. Can be a single value or a range. When given as a range,
each thread will choose a value randomly from within the range. Value is in seconds if a unit is omitted.

ramp_time=time
If set, fio will run the specified workload for this amount of time before logging any performance numbers.
Useful for letting performance settle before logging results, thus minimizing the runtime required for stable
results. Note that the ramp_time is considered lead in time for a job, thus it will increase the total runtime if
a special timeout or runtime is specified. When the unit is omitted, the value is given in seconds.

clocksource=str
Use the given clocksource as the base of timing. The supported options are:

gettimeofday gettimeofday(2)

clock_gettime clock_gettime(2)

cpu Internal CPU clock source

cpu is the preferred clocksource if it is reliable, as it is very fast (and fio is heavy on time calls). Fio will
automatically use this clocksource if it’s supported and considered reliable on the system it is running on, unless
another clocksource is specifically set. For x86/x86-64 CPUs, this means supporting TSC Invariant.

gtod_reduce=bool
Enable all of the gettimeofday(2) reducing options (disable_clat, disable_slat,
disable_bw_measurement) plus reduce precision of the timeout somewhat to really shrink the
gettimeofday(2) call count. With this option enabled, we only do about 0.4% of the gettimeofday(2)
calls we would have done if all time keeping was enabled.

gtod_cpu=int
Sometimes it’s cheaper to dedicate a single thread of execution to just getting the current time. Fio (and
databases, for instance) are very intensive on gettimeofday(2) calls. With this option, you can set one CPU
aside for doing nothing but logging current time to a shared memory location. Then the other threads/processes
that run I/O workloads need only copy that segment, instead of entering the kernel with a gettimeofday(2)
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call. The CPU set aside for doing these time calls will be excluded from other uses. Fio will manually clear it
from the CPU mask of other jobs.

1.12.5 Target file/device

directory=str
Prefix filenames with this directory. Used to place files in a different location than ./. You can specify a number
of directories by separating the names with a ‘:’ character. These directories will be assigned equally distributed
to job clones created by numjobs as long as they are using generated filenames. If specific filename(s) are set
fio will use the first listed directory, and thereby matching the filename semantic (which generates a file for each
clone if not specified, but lets all clones use the same file if set).

See the filename option for information on how to escape “:” and “\” characters within the directory path
itself.

Note: To control the directory fio will use for internal state files use --aux-path.

filename=str
Fio normally makes up a filename based on the job name, thread number, and file number (see
filename_format). If you want to share files between threads in a job or several jobs with fixed file paths,
specify a filename for each of them to override the default. If the ioengine is file based, you can specify a number
of files by separating the names with a ‘:’ colon. So if you wanted a job to open /dev/sda and /dev/sdb
as the two working files, you would use filename=/dev/sda:/dev/sdb. This also means that whenever
this option is specified, nrfiles is ignored. The size of regular files specified by this option will be size
divided by number of files unless an explicit size is specified by filesize.

Each colon and backslash in the wanted path must be escaped with a \ character. For instance, if the path
is /dev/dsk/foo@3,0:c then you would use filename=/dev/dsk/foo@3,0\:c and if the path is
F:\filename then you would use filename=F\:\\filename.

On Windows, disk devices are accessed as \\.\PhysicalDrive0 for the first device, \\.
\PhysicalDrive1 for the second etc. Note: Windows and FreeBSD prevent write access to areas of the
disk containing in-use data (e.g. filesystems).

The filename “-” is a reserved name, meaning stdin or stdout. Which of the two depends on the read/write
direction set.

filename_format=str
If sharing multiple files between jobs, it is usually necessary to have fio generate the exact names that you
want. By default, fio will name a file based on the default file format specification of jobname.jobnumber.
filenumber. With this option, that can be customized. Fio will recognize and replace the following keywords
in this string:

$jobname The name of the worker thread or process.

$jobnum The incremental number of the worker thread or process.

$filenum The incremental number of the file for that worker thread or process.

To have dependent jobs share a set of files, this option can be set to have fio generate filenames that are shared
between the two. For instance, if testfiles.$filenum is specified, file number 4 for any job will be
named testfiles.4. The default of $jobname.$jobnum.$filenum will be used if no other format
specifier is given.

If you specify a path then the directories will be created up to the main directory for the file. So for example if
you specify filename_format=a/b/c/$jobnum then the directories a/b/c will be created before the file
setup part of the job. If you specify directory then the path will be relative that directory, otherwise it is
treated as the absolute path.
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unique_filename=bool
To avoid collisions between networked clients, fio defaults to prefixing any generated filenames (with a directory
specified) with the source of the client connecting. To disable this behavior, set this option to 0.

opendir=str
Recursively open any files below directory str.

lockfile=str
Fio defaults to not locking any files before it does I/O to them. If a file or file descriptor is shared, fio can
serialize I/O to that file to make the end result consistent. This is usual for emulating real workloads that share
files. The lock modes are:

none No locking. The default.

exclusive Only one thread or process may do I/O at a time, excluding all others.

readwrite Read-write locking on the file. Many readers may access the file at the same time, but
writes get exclusive access.

nrfiles=int
Number of files to use for this job. Defaults to 1. The size of files will be size divided by this unless explicit
size is specified by filesize. Files are created for each thread separately, and each file will have a file number
within its name by default, as explained in filename section.

openfiles=int
Number of files to keep open at the same time. Defaults to the same as nrfiles, can be set smaller to limit
the number simultaneous opens.

file_service_type=str
Defines how fio decides which file from a job to service next. The following types are defined:

random Choose a file at random.

roundrobin Round robin over opened files. This is the default.

sequential Finish one file before moving on to the next. Multiple files can still be open depending
on openfiles.

zipf Use a Zipf distribution to decide what file to access.

pareto Use a Pareto distribution to decide what file to access.

normal Use a Gaussian (normal) distribution to decide what file to access.

gauss Alias for normal.

For random, roundrobin, and sequential, a postfix can be appended to tell fio how many I/Os to issue before
switching to a new file. For example, specifying file_service_type=random:8 would cause fio to issue
8 I/Os before selecting a new file at random. For the non-uniform distributions, a floating point postfix can be
given to influence how the distribution is skewed. See random_distribution for a description of how that
would work.

ioscheduler=str
Attempt to switch the device hosting the file to the specified I/O scheduler before running.

create_serialize=bool
If true, serialize the file creation for the jobs. This may be handy to avoid interleaving of data files, which may
greatly depend on the filesystem used and even the number of processors in the system. Default: true.

create_fsync=bool
fsync(2) the data file after creation. This is the default.
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create_on_open=bool
If true, don’t pre-create files but allow the job’s open() to create a file when it’s time to do I/O. Default: false –
pre-create all necessary files when the job starts.

create_only=bool
If true, fio will only run the setup phase of the job. If files need to be laid out or updated on disk, only that will
be done – the actual job contents are not executed. Default: false.

allow_file_create=bool
If true, fio is permitted to create files as part of its workload. If this option is false, then fio will error out if the
files it needs to use don’t already exist. Default: true.

allow_mounted_write=bool
If this isn’t set, fio will abort jobs that are destructive (e.g. that write) to what appears to be a mounted device
or partition. This should help catch creating inadvertently destructive tests, not realizing that the test will de-
stroy data on the mounted file system. Note that some platforms don’t allow writing against a mounted device
regardless of this option. Default: false.

pre_read=bool
If this is given, files will be pre-read into memory before starting the given I/O operation. This will also clear
the invalidate flag, since it is pointless to pre-read and then drop the cache. This will only work for I/O
engines that are seek-able, since they allow you to read the same data multiple times. Thus it will not work on
non-seekable I/O engines (e.g. network, splice). Default: false.

unlink=bool
Unlink the job files when done. Not the default, as repeated runs of that job would then waste time recreating
the file set again and again. Default: false.

unlink_each_loop=bool
Unlink job files after each iteration or loop. Default: false.

zonemode=str
Accepted values are:

none The zonerange, zonesize and zoneskip parameters are ignored.

strided I/O happens in a single zone until zonesize bytes have been transferred. After that num-
ber of bytes has been transferred processing of the next zone starts.

zbd Zoned block device mode. I/O happens sequentially in each zone, even if random I/O has been
selected. Random I/O happens across all zones instead of being restricted to a single zone. The
zoneskip parameter is ignored. zonerange and zonesize must be identical.

zonerange=int
Size of a single zone. See also zonesize and zoneskip.

zonesize=int
For zonemode =strided, this is the number of bytes to transfer before skipping zoneskip bytes. If this
parameter is smaller than zonerange then only a fraction of each zone with zonerange bytes will be
accessed. If this parameter is larger than zonerange then each zone will be accessed multiple times before
skipping to the next zone.

For zonemode =zbd, this is the size of a single zone. The zonerange parameter is ignored in this mode.

zoneskip=int
For zonemode =strided, the number of bytes to skip after zonesize bytes of data have been transferred. This
parameter must be zero for zonemode =zbd.

read_beyond_wp=bool
This parameter applies to zonemode =zbd only.
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Zoned block devices are block devices that consist of multiple zones. Each zone has a type, e.g. conventional
or sequential. A conventional zone can be written at any offset that is a multiple of the block size. Sequential
zones must be written sequentially. The position at which a write must occur is called the write pointer. A zoned
block device can be either drive managed, host managed or host aware. For host managed devices the host must
ensure that writes happen sequentially. Fio recognizes host managed devices and serializes writes to sequential
zones for these devices.

If a read occurs in a sequential zone beyond the write pointer then the zoned block device will complete the read
without reading any data from the storage medium. Since such reads lead to unrealistically high bandwidth and
IOPS numbers fio only reads beyond the write pointer if explicitly told to do so. Default: false.

max_open_zones=int
When running a random write test across an entire drive many more zones will be open than in a typical appli-
cation workload. Hence this command line option that allows to limit the number of open zones. The number
of open zones is defined as the number of zones to which write commands are issued.

zone_reset_threshold=float
A number between zero and one that indicates the ratio of logical blocks with data to the total number of logical
blocks in the test above which zones should be reset periodically.

zone_reset_frequency=float
A number between zero and one that indicates how often a zone reset should be issued if the zone reset threshold
has been exceeded. A zone reset is submitted after each (1 / zone_reset_frequency) write requests. This and the
previous parameter can be used to simulate garbage collection activity.

1.12.6 I/O type

direct=bool
If value is true, use non-buffered I/O. This is usually O_DIRECT. Note that OpenBSD and ZFS on Solaris don’t
support direct I/O. On Windows the synchronous ioengines don’t support direct I/O. Default: false.

atomic=bool
If value is true, attempt to use atomic direct I/O. Atomic writes are guaranteed to be stable once acknowledged
by the operating system. Only Linux supports O_ATOMIC right now.

buffered=bool
If value is true, use buffered I/O. This is the opposite of the direct option. Defaults to true.

readwrite=str, rw=str
Type of I/O pattern. Accepted values are:

read Sequential reads.

write Sequential writes.

trim Sequential trims (Linux block devices and SCSI character devices only).

randread Random reads.

randwrite Random writes.

randtrim Random trims (Linux block devices and SCSI character devices only).

rw,readwrite Sequential mixed reads and writes.

randrw Random mixed reads and writes.

trimwrite Sequential trim+write sequences. Blocks will be trimmed first, then the same blocks will
be written to.
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Fio defaults to read if the option is not specified. For the mixed I/O types, the default is to split them 50/50. For
certain types of I/O the result may still be skewed a bit, since the speed may be different.

It is possible to specify the number of I/Os to do before getting a new offset by appending :<nr> to the end
of the string given. For a random read, it would look like rw=randread:8 for passing in an offset modifier
with a value of 8. If the suffix is used with a sequential I/O pattern, then the <nr> value specified will be added
to the generated offset for each I/O turning sequential I/O into sequential I/O with holes. For instance, using
rw=write:4k will skip 4k for every write. Also see the rw_sequencer option.

rw_sequencer=str
If an offset modifier is given by appending a number to the rw=<str> line, then this option controls how that
number modifies the I/O offset being generated. Accepted values are:

sequential Generate sequential offset.

identical Generate the same offset.

sequential is only useful for random I/O, where fio would normally generate a new random offset for every
I/O. If you append e.g. 8 to randread, you would get a new random offset for every 8 I/Os. The result would be
a seek for only every 8 I/Os, instead of for every I/O. Use rw=randread:8 to specify that. As sequential I/O
is already sequential, setting sequential for that would not result in any differences. identical behaves
in a similar fashion, except it sends the same offset 8 number of times before generating a new offset.

unified_rw_reporting=bool
Fio normally reports statistics on a per data direction basis, meaning that reads, writes, and trims are accounted
and reported separately. If this option is set fio sums the results and report them as “mixed” instead.

randrepeat=bool
Seed the random number generator used for random I/O patterns in a predictable way so the pattern is repeatable
across runs. Default: true.

allrandrepeat=bool
Seed all random number generators in a predictable way so results are repeatable across runs. Default: false.

randseed=int
Seed the random number generators based on this seed value, to be able to control what sequence of output is
being generated. If not set, the random sequence depends on the randrepeat setting.

fallocate=str
Whether pre-allocation is performed when laying down files. Accepted values are:

none Do not pre-allocate space.

native Use a platform’s native pre-allocation call but fall back to none behavior if it fails/is not
implemented.

posix Pre-allocate via posix_fallocate(3).

keep Pre-allocate via fallocate(2) with FALLOC_FL_KEEP_SIZE set.

0 Backward-compatible alias for none.

1 Backward-compatible alias for posix.

May not be available on all supported platforms. keep is only available on Linux. If using ZFS on Solaris this
cannot be set to posix because ZFS doesn’t support pre-allocation. Default: native if any pre-allocation methods
are available, none if not.

fadvise_hint=str
Use posix_fadvise(2) or posix_fadvise(2) to advise the kernel on what I/O patterns are likely to
be issued. Accepted values are:

0 Backwards-compatible hint for “no hint”.
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1 Backwards compatible hint for “advise with fio workload type”. This uses FADV_RANDOM for
a random workload, and FADV_SEQUENTIAL for a sequential workload.

sequential Advise using FADV_SEQUENTIAL.

random Advise using FADV_RANDOM.

write_hint=str
Use fcntl(2) to advise the kernel what life time to expect from a write. Only supported on Linux, as of
version 4.13. Accepted values are:

none No particular life time associated with this file.

short Data written to this file has a short life time.

medium Data written to this file has a medium life time.

long Data written to this file has a long life time.

extreme Data written to this file has a very long life time.

The values are all relative to each other, and no absolute meaning should be associated with them.

offset=int
Start I/O at the provided offset in the file, given as either a fixed size in bytes or a percentage. If a percentage
is given, the generated offset will be aligned to the minimum blocksize or to the value of offset_align
if provided. Data before the given offset will not be touched. This effectively caps the file size at real_size -
offset. Can be combined with size to constrain the start and end range of the I/O workload. A percentage can
be specified by a number between 1 and 100 followed by ‘%’, for example, offset=20% to specify 20%.

offset_align=int
If set to non-zero value, the byte offset generated by a percentage offset is aligned upwards to this value.
Defaults to 0 meaning that a percentage offset is aligned to the minimum block size.

offset_increment=int
If this is provided, then the real offset becomes offset + offset_increment * thread_number, where the thread
number is a counter that starts at 0 and is incremented for each sub-job (i.e. when numjobs option is specified).
This option is useful if there are several jobs which are intended to operate on a file in parallel disjoint segments,
with even spacing between the starting points.

number_ios=int
Fio will normally perform I/Os until it has exhausted the size of the region set by size, or if it exhaust the
allocated time (or hits an error condition). With this setting, the range/size can be set independently of the
number of I/Os to perform. When fio reaches this number, it will exit normally and report status. Note that this
does not extend the amount of I/O that will be done, it will only stop fio if this condition is met before other
end-of-job criteria.

fsync=int
If writing to a file, issue an fsync(2) (or its equivalent) of the dirty data for every number of blocks given.
For example, if you give 32 as a parameter, fio will sync the file after every 32 writes issued. If fio is using
non-buffered I/O, we may not sync the file. The exception is the sg I/O engine, which synchronizes the disk
cache anyway. Defaults to 0, which means fio does not periodically issue and wait for a sync to complete. Also
see end_fsync and fsync_on_close.

fdatasync=int
Like fsync but uses fdatasync(2) to only sync data and not metadata blocks. In Windows, FreeBSD, and
DragonFlyBSD there is no fdatasync(2) so this falls back to using fsync(2). Defaults to 0, which means
fio does not periodically issue and wait for a data-only sync to complete.

write_barrier=int
Make every N-th write a barrier write.
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sync_file_range=str:int
Use sync_file_range(2) for every int number of write operations. Fio will track range of writes that have
happened since the last sync_file_range(2) call. str can currently be one or more of:

wait_before SYNC_FILE_RANGE_WAIT_BEFORE

write SYNC_FILE_RANGE_WRITE

wait_after SYNC_FILE_RANGE_WAIT_AFTER

So if you do sync_file_range=wait_before,write:8, fio would use
SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE for every 8 writes. Also see
the sync_file_range(2) man page. This option is Linux specific.

overwrite=bool
If true, writes to a file will always overwrite existing data. If the file doesn’t already exist, it will be created
before the write phase begins. If the file exists and is large enough for the specified write phase, nothing will be
done. Default: false.

end_fsync=bool
If true, fsync(2) file contents when a write stage has completed. Default: false.

fsync_on_close=bool
If true, fio will fsync(2) a dirty file on close. This differs from end_fsync in that it will happen on every
file close, not just at the end of the job. Default: false.

rwmixread=int
Percentage of a mixed workload that should be reads. Default: 50.

rwmixwrite=int
Percentage of a mixed workload that should be writes. If both rwmixread and rwmixwrite is given and the
values do not add up to 100%, the latter of the two will be used to override the first. This may interfere with a
given rate setting, if fio is asked to limit reads or writes to a certain rate. If that is the case, then the distribution
may be skewed. Default: 50.

random_distribution=str:float[,str:float][,str:float]
By default, fio will use a completely uniform random distribution when asked to perform random I/O. Sometimes
it is useful to skew the distribution in specific ways, ensuring that some parts of the data is more hot than others.
fio includes the following distribution models:

random Uniform random distribution

zipf Zipf distribution

pareto Pareto distribution

normal Normal (Gaussian) distribution

zoned Zoned random distribution

zoned_abs Zone absolute random distribution

When using a zipf or pareto distribution, an input value is also needed to define the access pattern. For zipf, this
is the Zipf theta. For pareto, it’s the Pareto power. Fio includes a test program, fio-genzipf, that can be
used visualize what the given input values will yield in terms of hit rates. If you wanted to use zipf with a theta
of 1.2, you would use random_distribution=zipf:1.2 as the option. If a non-uniform model is used,
fio will disable use of the random map. For the normal distribution, a normal (Gaussian) deviation is supplied
as a value between 0 and 100.

For a zoned distribution, fio supports specifying percentages of I/O access that should fall within what range of
the file or device. For example, given a criteria of:

• 60% of accesses should be to the first 10%
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• 30% of accesses should be to the next 20%

• 8% of accesses should be to the next 30%

• 2% of accesses should be to the next 40%

we can define that through zoning of the random accesses. For the above example, the user would do:

random_distribution=zoned:60/10:30/20:8/30:2/40

A zoned_abs distribution works exactly like the zoned, except that it takes absolute sizes. For example, let’s
say you wanted to define access according to the following criteria:

• 60% of accesses should be to the first 20G

• 30% of accesses should be to the next 100G

• 10% of accesses should be to the next 500G

we can define an absolute zoning distribution with:

random_distribution=zoned_abs=60/20G:30/100G:10/500g

For both zoned and zoned_abs, fio supports defining up to 256 separate zones.

Similarly to how bssplit works for setting ranges and percentages of block sizes. Like bssplit, it’s
possible to specify separate zones for reads, writes, and trims. If just one set is given, it’ll apply to all of them.
This goes for both zoned zoned_abs distributions.

percentage_random=int[,int][,int]
For a random workload, set how big a percentage should be random. This defaults to 100%, in which case
the workload is fully random. It can be set from anywhere from 0 to 100. Setting it to 0 would make the
workload fully sequential. Any setting in between will result in a random mix of sequential and random I/O,
at the given percentages. Comma-separated values may be specified for reads, writes, and trims as described in
blocksize.

norandommap
Normally fio will cover every block of the file when doing random I/O. If this option is given, fio will just get a
new random offset without looking at past I/O history. This means that some blocks may not be read or written,
and that some blocks may be read/written more than once. If this option is used with verify and multiple
blocksizes (via bsrange), only intact blocks are verified, i.e., partially-overwritten blocks are ignored. With
an async I/O engine and an I/O depth > 1, it is possible for the same block to be overwritten, which can cause
verification errors. Either do not use norandommap in this case, or also use the lfsr random generator.

softrandommap=bool
See norandommap. If fio runs with the random block map enabled and it fails to allocate the map, if this
option is set it will continue without a random block map. As coverage will not be as complete as with random
maps, this option is disabled by default.

random_generator=str
Fio supports the following engines for generating I/O offsets for random I/O:

tausworthe Strong 2^88 cycle random number generator.

lfsr Linear feedback shift register generator.

tausworthe64 Strong 64-bit 2^258 cycle random number generator.

tausworthe is a strong random number generator, but it requires tracking on the side if we want to ensure that
blocks are only read or written once. lfsr guarantees that we never generate the same offset twice, and it’s also
less computationally expensive. It’s not a true random generator, however, though for I/O purposes it’s typically
good enough. lfsr only works with single block sizes, not with workloads that use multiple block sizes. If used
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with such a workload, fio may read or write some blocks multiple times. The default value is tausworthe, unless
the required space exceeds 2^32 blocks. If it does, then tausworthe64 is selected automatically.

1.12.7 Block size

blocksize=int[,int][,int], bs=int[,int][,int]
The block size in bytes used for I/O units. Default: 4096. A single value applies to reads, writes, and trims.
Comma-separated values may be specified for reads, writes, and trims. A value not terminated in a comma
applies to subsequent types.

Examples:

bs=256k means 256k for reads, writes and trims.

bs=8k,32k means 8k for reads, 32k for writes and trims.

bs=8k,32k, means 8k for reads, 32k for writes, and default for trims.

bs=,8k means default for reads, 8k for writes and trims.

bs=,8k, means default for reads, 8k for writes, and default for trims.

blocksize_range=irange[,irange][,irange], bsrange=irange[,irange][,irange]
A range of block sizes in bytes for I/O units. The issued I/O unit will always be a multiple of the minimum size,
unless blocksize_unaligned is set.

Comma-separated ranges may be specified for reads, writes, and trims as described in blocksize.

Example: bsrange=1k-4k,2k-8k.

bssplit=str[,str][,str]
Sometimes you want even finer grained control of the block sizes issued, not just an even split between them.
This option allows you to weight various block sizes, so that you are able to define a specific amount of block
sizes issued. The format for this option is:

bssplit=blocksize/percentage:blocksize/percentage

for as many block sizes as needed. So if you want to define a workload that has 50% 64k blocks, 10% 4k blocks,
and 40% 32k blocks, you would write:

bssplit=4k/10:64k/50:32k/40

Ordering does not matter. If the percentage is left blank, fio will fill in the remaining values evenly. So a bssplit
option like this one:

bssplit=4k/50:1k/:32k/

would have 50% 4k ios, and 25% 1k and 32k ios. The percentages always add up to 100, if bssplit is given a
range that adds up to more, it will error out.

Comma-separated values may be specified for reads, writes, and trims as described in blocksize.

If you want a workload that has 50% 2k reads and 50% 4k reads, while having 90% 4k writes and 10% 8k
writes, you would specify:

bssplit=2k/50:4k/50,4k/90:8k/10

Fio supports defining up to 64 different weights for each data direction.
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blocksize_unaligned, bs_unaligned
If set, fio will issue I/O units with any size within blocksize_range, not just multiples of the minimum
size. This typically won’t work with direct I/O, as that normally requires sector alignment.

bs_is_seq_rand=bool
If this option is set, fio will use the normal read,write blocksize settings as sequential,random blocksize settings
instead. Any random read or write will use the WRITE blocksize settings, and any sequential read or write will
use the READ blocksize settings.

blockalign=int[,int][,int], ba=int[,int][,int]
Boundary to which fio will align random I/O units. Default: blocksize. Minimum alignment is typically
512b for using direct I/O, though it usually depends on the hardware block size. This option is mutually exclusive
with using a random map for files, so it will turn off that option. Comma-separated values may be specified for
reads, writes, and trims as described in blocksize.

1.12.8 Buffers and memory

zero_buffers
Initialize buffers with all zeros. Default: fill buffers with random data.

refill_buffers
If this option is given, fio will refill the I/O buffers on every submit. Only makes sense if zero_buffers isn’t
specified, naturally. Defaults to being unset i.e., the buffer is only filled at init time and the data in it is reused
when possible but if any of verify, buffer_compress_percentage or dedupe_percentage are
enabled then refill_buffers is also automatically enabled.

scramble_buffers=bool
If refill_buffers is too costly and the target is using data deduplication, then setting this option will
slightly modify the I/O buffer contents to defeat normal de-dupe attempts. This is not enough to defeat more
clever block compression attempts, but it will stop naive dedupe of blocks. Default: true.

buffer_compress_percentage=int
If this is set, then fio will attempt to provide I/O buffer content (on WRITEs) that compresses to the specified
level. Fio does this by providing a mix of random data followed by fixed pattern data. The fixed pattern is
either zeros, or the pattern specified by buffer_pattern. If the buffer_pattern option is used, it might
skew the compression ratio slightly. Setting buffer_compress_percentage to a value other than 100 will also
enable refill_buffers in order to reduce the likelihood that adjacent blocks are so similar that they over
compress when seen together. See buffer_compress_chunk for how to set a finer or coarser granularity
for the random/fixed data region. Defaults to unset i.e., buffer data will not adhere to any compression level.

buffer_compress_chunk=int
This setting allows fio to manage how big the random/fixed data region is when using
buffer_compress_percentage. When buffer_compress_chunk is set to some non-zero value
smaller than the block size, fio can repeat the random/fixed region throughout the I/O buffer at the specified
interval (which particularly useful when bigger block sizes are used for a job). When set to 0, fio will use a
chunk size that matches the block size resulting in a single random/fixed region within the I/O buffer. Defaults
to 512. When the unit is omitted, the value is interpreted in bytes.

buffer_pattern=str
If set, fio will fill the I/O buffers with this pattern or with the contents of a file. If not set, the contents of I/O
buffers are defined by the other options related to buffer contents. The setting can be any pattern of bytes, and
can be prefixed with 0x for hex values. It may also be a string, where the string must then be wrapped with "".
Or it may also be a filename, where the filename must be wrapped with '' in which case the file is opened and
read. Note that not all the file contents will be read if that would cause the buffers to overflow. So, for example:

buffer_pattern='filename'
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or:

buffer_pattern="abcd"

or:

buffer_pattern=-12

or:

buffer_pattern=0xdeadface

Also you can combine everything together in any order:

buffer_pattern=0xdeadface"abcd"-12'filename'

dedupe_percentage=int
If set, fio will generate this percentage of identical buffers when writing. These buffers will be naturally dedu-
pable. The contents of the buffers depend on what other buffer compression settings have been set. It’s possible
to have the individual buffers either fully compressible, or not at all – this option only controls the distribution of
unique buffers. Setting this option will also enable refill_buffers to prevent every buffer being identical.

invalidate=bool
Invalidate the buffer/page cache parts of the files to be used prior to starting I/O if the platform and file type
support it. Defaults to true. This will be ignored if pre_read is also specified for the same job.

sync=bool
Use synchronous I/O for buffered writes. For the majority of I/O engines, this means using O_SYNC. Default:
false.

iomem=str, mem=str
Fio can use various types of memory as the I/O unit buffer. The allowed values are:

malloc Use memory from malloc(3) as the buffers. Default memory type.

shm Use shared memory as the buffers. Allocated through shmget(2).

shmhuge Same as shm, but use huge pages as backing.

mmap Use mmap(2) to allocate buffers. May either be anonymous memory, or can be file backed
if a filename is given after the option. The format is mem=mmap:/path/to/file.

mmaphuge Use a memory mapped huge file as the buffer backing. Append filename after mma-
phuge, ala mem=mmaphuge:/hugetlbfs/file.

mmapshared Same as mmap, but use a MMAP_SHARED mapping.

cudamalloc Use GPU memory as the buffers for GPUDirect RDMA benchmark. The ioengine
must be rdma.

The area allocated is a function of the maximum allowed bs size for the job, multiplied by the I/O depth given.
Note that for shmhuge and mmaphuge to work, the system must have free huge pages allocated. This can
normally be checked and set by reading/writing /proc/sys/vm/nr_hugepages on a Linux system. Fio
assumes a huge page is 4MiB in size. So to calculate the number of huge pages you need for a given job file,
add up the I/O depth of all jobs (normally one unless iodepth is used) and multiply by the maximum bs set.
Then divide that number by the huge page size. You can see the size of the huge pages in /proc/meminfo.
If no huge pages are allocated by having a non-zero number in nr_hugepages, using mmaphuge or shmhuge
will fail. Also see hugepage-size.

mmaphuge also needs to have hugetlbfs mounted and the file location should point there. So if it’s mounted in
/huge, you would use mem=mmaphuge:/huge/somefile.
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iomem_align=int, mem_align=int
This indicates the memory alignment of the I/O memory buffers. Note that the given alignment is applied to
the first I/O unit buffer, if using iodepth the alignment of the following buffers are given by the bs used. In
other words, if using a bs that is a multiple of the page sized in the system, all buffers will be aligned to this
value. If using a bs that is not page aligned, the alignment of subsequent I/O memory buffers is the sum of the
iomem_align and bs used.

hugepage-size=int
Defines the size of a huge page. Must at least be equal to the system setting, see /proc/meminfo. Defaults
to 4MiB. Should probably always be a multiple of megabytes, so using hugepage-size=Xm is the preferred
way to set this to avoid setting a non-pow-2 bad value.

lockmem=int
Pin the specified amount of memory with mlock(2). Can be used to simulate a smaller amount of memory.
The amount specified is per worker.

1.12.9 I/O size

size=int
The total size of file I/O for each thread of this job. Fio will run until this many bytes has been transferred, unless
runtime is limited by other options (such as runtime, for instance, or increased/decreased by io_size). Fio
will divide this size between the available files determined by options such as nrfiles, filename, unless
filesize is specified by the job. If the result of division happens to be 0, the size is set to the physical size of
the given files or devices if they exist. If this option is not specified, fio will use the full size of the given files
or devices. If the files do not exist, size must be given. It is also possible to give size as a percentage between 1
and 100. If size=20% is given, fio will use 20% of the full size of the given files or devices. Can be combined
with offset to constrain the start and end range that I/O will be done within.

io_size=int, io_limit=int
Normally fio operates within the region set by size, which means that the size option sets both the region
and size of I/O to be performed. Sometimes that is not what you want. With this option, it is possible to define
just the amount of I/O that fio should do. For instance, if size is set to 20GiB and io_size is set to 5GiB, fio
will perform I/O within the first 20GiB but exit when 5GiB have been done. The opposite is also possible – if
size is set to 20GiB, and io_size is set to 40GiB, then fio will do 40GiB of I/O within the 0..20GiB region.

filesize=irange(int)
Individual file sizes. May be a range, in which case fio will select sizes for files at random within the given
range and limited to size in total (if that is given). If not given, each created file is the same size. This option
overrides size in terms of file size, which means this value is used as a fixed size or possible range of each file.

file_append=bool
Perform I/O after the end of the file. Normally fio will operate within the size of a file. If this option is set, then
fio will append to the file instead. This has identical behavior to setting offset to the size of a file. This option
is ignored on non-regular files.

fill_device=bool, fill_fs=bool
Sets size to something really large and waits for ENOSPC (no space left on device) as the terminating condition.
Only makes sense with sequential write. For a read workload, the mount point will be filled first then I/O started
on the result. This option doesn’t make sense if operating on a raw device node, since the size of that is already
known by the file system. Additionally, writing beyond end-of-device will not return ENOSPC there.

1.12.10 I/O engine

ioengine=str
Defines how the job issues I/O to the file. The following types are defined:
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sync Basic read(2) or write(2) I/O. lseek(2) is used to position the I/O location. See
fsync and fdatasync for syncing write I/Os.

psync Basic pread(2) or pwrite(2) I/O. Default on all supported operating systems except for
Windows.

vsync Basic readv(2) or writev(2) I/O. Will emulate queuing by coalescing adjacent I/Os
into a single submission.

pvsync Basic preadv(2) or pwritev(2) I/O.

pvsync2 Basic preadv2(2) or pwritev2(2) I/O.

libaio Linux native asynchronous I/O. Note that Linux may only support queued behavior with non-
buffered I/O (set direct=1 or buffered=0). This engine defines engine specific options.

posixaio POSIX asynchronous I/O using aio_read(3) and aio_write(3).

solarisaio Solaris native asynchronous I/O.

windowsaio Windows native asynchronous I/O. Default on Windows.

mmap File is memory mapped with mmap(2) and data copied to/from using memcpy(3).

splice splice(2) is used to transfer the data and vmsplice(2) to transfer data from user space
to the kernel.

sg SCSI generic sg v3 I/O. May either be synchronous using the SG_IO ioctl, or if the target is an sg
character device we use read(2) and write(2) for asynchronous I/O. Requires filename
option to specify either block or character devices. This engine supports trim operations. The sg
engine includes engine specific options.

null Doesn’t transfer any data, just pretends to. This is mainly used to exercise fio itself and for
debugging/testing purposes.

net Transfer over the network to given host:port. Depending on the protocol used, the
hostname, port, listen and filename options are used to specify what sort of con-
nection to make, while the protocol option determines which protocol will be used. This
engine defines engine specific options.

netsplice Like net, but uses splice(2) and vmsplice(2) to map data and send/receive. This
engine defines engine specific options.

cpuio Doesn’t transfer any data, but burns CPU cycles according to the cpuload and cpuchunks
options. Setting cpuload=85 will cause that job to do nothing but burn 85% of the CPU. In
case of SMP machines, use numjobs=<nr_of_cpu> to get desired CPU usage, as the cpuload
only loads a single CPU at the desired rate. A job never finishes unless there is at least one
non-cpuio job.

guasi The GUASI I/O engine is the Generic Userspace Asynchronous Syscall Interface approach to
async I/O. See

http://www.xmailserver.org/guasi-lib.html

for more info on GUASI.

rdma The RDMA I/O engine supports both RDMA memory semantics
(RDMA_WRITE/RDMA_READ) and channel semantics (Send/Recv) for the InfiniBand,
RoCE and iWARP protocols. This engine defines engine specific options.

falloc I/O engine that does regular fallocate to simulate data transfer as fio ioengine.

DDIR_READ does fallocate(,mode = FALLOC_FL_KEEP_SIZE,).

DDIR_WRITE does fallocate(,mode = 0).
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DDIR_TRIM does fallocate(,mode = FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE).

ftruncate I/O engine that sends ftruncate(2) operations in response to write (DDIR_WRITE)
events. Each ftruncate issued sets the file’s size to the current block offset. blocksize is
ignored.

e4defrag I/O engine that does regular EXT4_IOC_MOVE_EXT ioctls to simulate defragment ac-
tivity in request to DDIR_WRITE event.

rados I/O engine supporting direct access to Ceph Reliable Autonomic Distributed Object Store
(RADOS) via librados. This ioengine defines engine specific options.

rbd I/O engine supporting direct access to Ceph Rados Block Devices (RBD) via librbd without the
need to use the kernel rbd driver. This ioengine defines engine specific options.

http I/O engine supporting GET/PUT requests over HTTP(S) with libcurl to a WebDAV or S3 end-
point. This ioengine defines engine specific options.

This engine only supports direct IO of iodepth=1; you need to scale this via numjobs. blocksize
defines the size of the objects to be created.

TRIM is translated to object deletion.

gfapi Using GlusterFS libgfapi sync interface to direct access to GlusterFS volumes without having
to go through FUSE. This ioengine defines engine specific options.

gfapi_async Using GlusterFS libgfapi async interface to direct access to GlusterFS volumes without
having to go through FUSE. This ioengine defines engine specific options.

libhdfs Read and write through Hadoop (HDFS). The filename option is used to specify host,port
of the hdfs name-node to connect. This engine interprets offsets a little differently. In HDFS,
files once created cannot be modified so random writes are not possible. To imitate this the
libhdfs engine expects a bunch of small files to be created over HDFS and will randomly pick a
file from them based on the offset generated by fio backend (see the example job file to create
such files, use rw=write option). Please note, it may be necessary to set environment variables
to work with HDFS/libhdfs properly. Each job uses its own connection to HDFS.

mtd Read, write and erase an MTD character device (e.g., /dev/mtd0). Discards are treated as
erases. Depending on the underlying device type, the I/O may have to go in a certain pattern,
e.g., on NAND, writing sequentially to erase blocks and discarding before overwriting. The
trimwrite mode works well for this constraint.

pmemblk Read and write using filesystem DAX to a file on a filesystem mounted with DAX on a
persistent memory device through the PMDK libpmemblk library.

dev-dax Read and write using device DAX to a persistent memory device (e.g., /dev/dax0.0) through
the PMDK libpmem library.

external Prefix to specify loading an external I/O engine object file. Append the engine filename,
e.g. ioengine=external:/tmp/foo.o to load ioengine foo.o in /tmp. The path can
be either absolute or relative. See engines/skeleton_external.c for details of writing
an external I/O engine.

filecreate Simply create the files and do no I/O to them. You still need to set filesize so that all the
accounting still occurs, but no actual I/O will be done other than creating the file.

libpmem Read and write using mmap I/O to a file on a filesystem mounted with DAX on a persistent
memory device through the PMDK libpmem library.

ime_psync Synchronous read and write using DDN’s Infinite Memory Engine (IME). This engine
is very basic and issues calls to IME whenever an IO is queued.
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ime_psyncv Synchronous read and write using DDN’s Infinite Memory Engine (IME). This engine
uses iovecs and will try to stack as much IOs as possible (if the IOs are “contiguous” and the IO
depth is not exceeded) before issuing a call to IME.

ime_aio Asynchronous read and write using DDN’s Infinite Memory Engine (IME). This engine
will try to stack as much IOs as possible by creating requests for IME. FIO will then decide
when to commit these requests.

1.12.11 I/O engine specific parameters

In addition, there are some parameters which are only valid when a specific ioengine is in use. These are used
identically to normal parameters, with the caveat that when used on the command line, they must come after the
ioengine that defines them is selected.

userspace_reap : [libaio]
Normally, with the libaio engine in use, fio will use the io_getevents(2) system call to reap newly returned
events. With this flag turned on, the AIO ring will be read directly from user-space to reap events. The reaping
mode is only enabled when polling for a minimum of 0 events (e.g. when iodepth_batch_complete =0).

hipri : [pvsync2]
Set RWF_HIPRI on I/O, indicating to the kernel that it’s of higher priority than normal.

hipri_percentage : [pvsync2]
When hipri is set this determines the probability of a pvsync2 I/O being high priority. The default is 100%.

cpuload=int : [cpuio]
Attempt to use the specified percentage of CPU cycles. This is a mandatory option when using cpuio I/O engine.

cpuchunks=int : [cpuio]
Split the load into cycles of the given time. In microseconds.

exit_on_io_done=bool : [cpuio]
Detect when I/O threads are done, then exit.

namenode=str : [libhdfs]
The hostname or IP address of a HDFS cluster namenode to contact.

port=int
[libhdfs]

The listening port of the HFDS cluster namenode.

[netsplice], [net]

The TCP or UDP port to bind to or connect to. If this is used with numjobs to spawn multiple
instances of the same job type, then this will be the starting port number since fio will use a range of
ports.

[rdma]

The port to use for RDMA-CM communication. This should be the same value on the client and the
server side.

hostname=str : [netsplice] [net] [rdma]
The hostname or IP address to use for TCP, UDP or RDMA-CM based I/O. If the job is a TCP listener or UDP
reader, the hostname is not used and must be omitted unless it is a valid UDP multicast address.

interface=str : [netsplice] [net]
The IP address of the network interface used to send or receive UDP multicast.

ttl=int : [netsplice] [net]
Time-to-live value for outgoing UDP multicast packets. Default: 1.
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nodelay=bool : [netsplice] [net]
Set TCP_NODELAY on TCP connections.

protocol=str, proto=str : [netsplice] [net]
The network protocol to use. Accepted values are:

tcp Transmission control protocol.

tcpv6 Transmission control protocol V6.

udp User datagram protocol.

udpv6 User datagram protocol V6.

unix UNIX domain socket.

When the protocol is TCP or UDP, the port must also be given, as well as the hostname if the job is a TCP
listener or UDP reader. For unix sockets, the normal filename option should be used and the port is invalid.

listen : [netsplice] [net]
For TCP network connections, tell fio to listen for incoming connections rather than initiating an outgoing
connection. The hostname must be omitted if this option is used.

pingpong : [netsplice] [net]
Normally a network writer will just continue writing data, and a network reader will just consume packages. If
pingpong=1 is set, a writer will send its normal payload to the reader, then wait for the reader to send the
same payload back. This allows fio to measure network latencies. The submission and completion latencies
then measure local time spent sending or receiving, and the completion latency measures how long it took for
the other end to receive and send back. For UDP multicast traffic pingpong=1 should only be set for a single
reader when multiple readers are listening to the same address.

window_size : [netsplice] [net]
Set the desired socket buffer size for the connection.

mss : [netsplice] [net]
Set the TCP maximum segment size (TCP_MAXSEG).

donorname=str : [e4defrag]
File will be used as a block donor (swap extents between files).

inplace=int : [e4defrag]
Configure donor file blocks allocation strategy:

0 Default. Preallocate donor’s file on init.

1 Allocate space immediately inside defragment event, and free right after event.

clustername=str : [rbd,rados]
Specifies the name of the Ceph cluster.

rbdname=str : [rbd]
Specifies the name of the RBD.

pool=str : [rbd,rados]
Specifies the name of the Ceph pool containing RBD or RADOS data.

clientname=str : [rbd,rados]
Specifies the username (without the ‘client.’ prefix) used to access the Ceph cluster. If the clustername is
specified, the clientname shall be the full type.id string. If no type. prefix is given, fio will add ‘client.’ by
default.

busy_poll=bool : [rbd,rados]
Poll store instead of waiting for completion. Usually this provides better throughput at cost of higher(up to
100%) CPU utilization.
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skip_bad=bool : [mtd]
Skip operations against known bad blocks.

hdfsdirectory : [libhdfs]
libhdfs will create chunk in this HDFS directory.

chunk_size : [libhdfs]
The size of the chunk to use for each file.

verb=str : [rdma]
The RDMA verb to use on this side of the RDMA ioengine connection. Valid values are write, read, send and
recv. These correspond to the equivalent RDMA verbs (e.g. write = rdma_write etc.). Note that this only needs
to be specified on the client side of the connection. See the examples folder.

bindname=str : [rdma]
The name to use to bind the local RDMA-CM connection to a local RDMA device. This could be a hostname
or an IPv4 or IPv6 address. On the server side this will be passed into the rdma_bind_addr() function and on
the client site it will be used in the rdma_resolve_add() function. This can be useful when multiple paths exist
between the client and the server or in certain loopback configurations.

readfua=bool : [sg]
With readfua option set to 1, read operations include the force unit access (fua) flag. Default is 0.

writefua=bool : [sg]
With writefua option set to 1, write operations include the force unit access (fua) flag. Default is 0.

sg_write_mode=str : [sg]
Specify the type of write commands to issue. This option can take three values:

write This is the default where write opcodes are issued as usual.

verify Issue WRITE AND VERIFY commands. The BYTCHK bit is set to 0. This directs the device to carry
out a medium verification with no data comparison. The writefua option is ignored with this selection.

same Issue WRITE SAME commands. This transfers a single block to the device and writes this same block
of data to a contiguous sequence of LBAs beginning at the specified offset. fio’s block size parameter
specifies the amount of data written with each command. However, the amount of data actually transferred
to the device is equal to the device’s block (sector) size. For a device with 512 byte sectors, blocksize=8k
will write 16 sectors with each command. fio will still generate 8k of data for each command but only the
first 512 bytes will be used and transferred to the device. The writefua option is ignored with this selection.

http_host=str : [http]
Hostname to connect to. For S3, this could be the bucket hostname. Default is localhost

http_user=str : [http]
Username for HTTP authentication.

http_pass=str : [http]
Password for HTTP authentication.

https=str : [http]
Enable HTTPS instead of http. on enables HTTPS; insecure will enable HTTPS, but disable SSL peer verifica-
tion (use with caution!). Default is off

http_mode=str : [http]
Which HTTP access mode to use: webdav, swift, or s3. Default is webdav

http_s3_region=str : [http]
The S3 region/zone string. Default is us-east-1

http_s3_key=str : [http]
The S3 secret key.
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http_s3_keyid=str : [http]
The S3 key/access id.

http_swift_auth_token=str : [http]
The Swift auth token. See the example configuration file on how to retrieve this.

http_verbose=int : [http]
Enable verbose requests from libcurl. Useful for debugging. 1 turns on verbose logging from libcurl, 2 addi-
tionally enables HTTP IO tracing. Default is 0

1.12.12 I/O depth

iodepth=int
Number of I/O units to keep in flight against the file. Note that increasing iodepth beyond 1 will not affect
synchronous ioengines (except for small degrees when verify_async is in use). Even async engines may
impose OS restrictions causing the desired depth not to be achieved. This may happen on Linux when using
libaio and not setting direct=1, since buffered I/O is not async on that OS. Keep an eye on the I/O depth
distribution in the fio output to verify that the achieved depth is as expected. Default: 1.

iodepth_batch_submit=int, iodepth_batch=int
This defines how many pieces of I/O to submit at once. It defaults to 1 which means that we submit each I/O as
soon as it is available, but can be raised to submit bigger batches of I/O at the time. If it is set to 0 the iodepth
value will be used.

iodepth_batch_complete_min=int, iodepth_batch_complete=int
This defines how many pieces of I/O to retrieve at once. It defaults to 1 which means that we’ll ask for a
minimum of 1 I/O in the retrieval process from the kernel. The I/O retrieval will go on until we hit the limit set
by iodepth_low. If this variable is set to 0, then fio will always check for completed events before queuing
more I/O. This helps reduce I/O latency, at the cost of more retrieval system calls.

iodepth_batch_complete_max=int
This defines maximum pieces of I/O to retrieve at once. This variable should be used along with
iodepth_batch_complete_min=int variable, specifying the range of min and max amount of I/O which
should be retrieved. By default it is equal to the iodepth_batch_complete_min value.

Example #1:

iodepth_batch_complete_min=1
iodepth_batch_complete_max=<iodepth>

which means that we will retrieve at least 1 I/O and up to the whole submitted queue depth. If none of I/O has
been completed yet, we will wait.

Example #2:

iodepth_batch_complete_min=0
iodepth_batch_complete_max=<iodepth>

which means that we can retrieve up to the whole submitted queue depth, but if none of I/O has been completed
yet, we will NOT wait and immediately exit the system call. In this example we simply do polling.

iodepth_low=int
The low water mark indicating when to start filling the queue again. Defaults to the same as iodepth, meaning
that fio will attempt to keep the queue full at all times. If iodepth is set to e.g. 16 and iodepth_low is set to
4, then after fio has filled the queue of 16 requests, it will let the depth drain down to 4 before starting to fill it
again.
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serialize_overlap=bool
Serialize in-flight I/Os that might otherwise cause or suffer from data races. When two or more I/Os are sub-
mitted simultaneously, there is no guarantee that the I/Os will be processed or completed in the submitted order.
Further, if two or more of those I/Os are writes, any overlapping region between them can become indetermi-
nate/undefined on certain storage. These issues can cause verification to fail erratically when at least one of the
racing I/Os is changing data and the overlapping region has a non-zero size. Setting serialize_overlap
tells fio to avoid provoking this behavior by explicitly serializing in-flight I/Os that have a non-zero overlap.
Note that setting this option can reduce both performance and the iodepth achieved.

This option only applies to I/Os issued for a single job except when it is enabled along with
io_submit_mode`=offload. In offload mode, fio will check for overlap among
all I/Os submitted by offload jobs with :option:`serialize_overlap enabled.

Default: false.

io_submit_mode=str
This option controls how fio submits the I/O to the I/O engine. The default is inline, which means that the
fio job threads submit and reap I/O directly. If set to offload, the job threads will offload I/O submission to a
dedicated pool of I/O threads. This requires some coordination and thus has a bit of extra overhead, especially
for lower queue depth I/O where it can increase latencies. The benefit is that fio can manage submission rates
independently of the device completion rates. This avoids skewed latency reporting if I/O gets backed up on the
device side (the coordinated omission problem).

1.12.13 I/O rate

thinktime=time
Stall the job for the specified period of time after an I/O has completed before issuing the next. May be used
to simulate processing being done by an application. When the unit is omitted, the value is interpreted in
microseconds. See thinktime_blocks and thinktime_spin.

thinktime_spin=time
Only valid if thinktime is set - pretend to spend CPU time doing something with the data received, before
falling back to sleeping for the rest of the period specified by thinktime. When the unit is omitted, the value
is interpreted in microseconds.

thinktime_blocks=int
Only valid if thinktime is set - control how many blocks to issue, before waiting thinktime usecs. If not
set, defaults to 1 which will make fio wait thinktime usecs after every block. This effectively makes any
queue depth setting redundant, since no more than 1 I/O will be queued before we have to complete it and do
our thinktime. In other words, this setting effectively caps the queue depth if the latter is larger.

rate=int[,int][,int]
Cap the bandwidth used by this job. The number is in bytes/sec, the normal suffix rules apply. Comma-separated
values may be specified for reads, writes, and trims as described in blocksize.

For example, using rate=1m,500k would limit reads to 1MiB/sec and writes to 500KiB/sec. Capping only reads
or writes can be done with rate=,500k or rate=500k, where the former will only limit writes (to 500KiB/sec)
and the latter will only limit reads.

rate_min=int[,int][,int]
Tell fio to do whatever it can to maintain at least this bandwidth. Failing to meet this requirement will cause the
job to exit. Comma-separated values may be specified for reads, writes, and trims as described in blocksize.

rate_iops=int[,int][,int]
Cap the bandwidth to this number of IOPS. Basically the same as rate, just specified independently of band-
width. If the job is given a block size range instead of a fixed value, the smallest block size is used as the metric.
Comma-separated values may be specified for reads, writes, and trims as described in blocksize.
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rate_iops_min=int[,int][,int]
If fio doesn’t meet this rate of I/O, it will cause the job to exit. Comma-separated values may be specified for
reads, writes, and trims as described in blocksize.

rate_process=str
This option controls how fio manages rated I/O submissions. The default is linear, which submits I/O in a
linear fashion with fixed delays between I/Os that gets adjusted based on I/O completion rates. If this is set
to poisson, fio will submit I/O based on a more real world random request flow, known as the Poisson process
(https://en.wikipedia.org/wiki/Poisson_point_process). The lambda will be 10^6 / IOPS for the given workload.

rate_ignore_thinktime=bool
By default, fio will attempt to catch up to the specified rate setting, if any kind of thinktime setting was used.
If this option is set, then fio will ignore the thinktime and continue doing IO at the specified rate, instead of
entering a catch-up mode after thinktime is done.

1.12.14 I/O latency

latency_target=time
If set, fio will attempt to find the max performance point that the given workload will run at while main-
taining a latency below this target. When the unit is omitted, the value is interpreted in microseconds. See
latency_window and latency_percentile.

latency_window=time
Used with latency_target to specify the sample window that the job is run at varying queue depths to test
the performance. When the unit is omitted, the value is interpreted in microseconds.

latency_percentile=float
The percentage of I/Os that must fall within the criteria specified by latency_target and
latency_window. If not set, this defaults to 100.0, meaning that all I/Os must be equal or below to the
value set by latency_target.

max_latency=time
If set, fio will exit the job with an ETIMEDOUT error if it exceeds this maximum latency. When the unit is
omitted, the value is interpreted in microseconds.

rate_cycle=int
Average bandwidth for rate and rate_min over this number of milliseconds. Defaults to 1000.

1.12.15 I/O replay

write_iolog=str
Write the issued I/O patterns to the specified file. See read_iolog. Specify a separate file for each job,
otherwise the iologs will be interspersed and the file may be corrupt.

read_iolog=str
Open an iolog with the specified filename and replay the I/O patterns it contains. This can be used to store a
workload and replay it sometime later. The iolog given may also be a blktrace binary file, which allows fio to
replay a workload captured by blktrace. See blktrace(8) for how to capture such logging data. For
blktrace replay, the file needs to be turned into a blkparse binary data file first (blkparse <device> -o
/dev/null -d file_for_fio.bin). You can specify a number of files by separating the names with a
‘:’ character. See the filename option for information on how to escape ‘:’ and ‘’ characters within the file
names. These files will be sequentially assigned to job clones created by numjobs.

read_iolog_chunked=bool
Determines how iolog is read. If false(default) entire read_iolog will be read at once. If selected true, input
from iolog will be read gradually. Useful when iolog is very large, or it is generated.
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merge_blktrace_file=str
When specified, rather than replaying the logs passed to read_iolog, the logs go through a merge phase
which aggregates them into a single blktrace. The resulting file is then passed on as the read_iolog param-
eter. The intention here is to make the order of events consistent. This limits the influence of the scheduler
compared to replaying multiple blktraces via concurrent jobs.

merge_blktrace_scalars=float_list
This is a percentage based option that is index paired with the list of files passed to read_iolog.
When merging is performed, scale the time of each event by the corresponding amount. For example,
--merge_blktrace_scalars="50:100" runs the first trace in halftime and the second trace in real-
time. This knob is separately tunable from replay_time_scale which scales the trace during runtime and
does not change the output of the merge unlike this option.

merge_blktrace_iters=float_list
This is a whole number option that is index paired with the list of files passed to read_iolog.
When merging is performed, run each trace for the specified number of iterations. For example,
--merge_blktrace_iters="2:1" runs the first trace for two iterations and the second trace for one
iteration.

replay_no_stall=bool
When replaying I/O with read_iolog the default behavior is to attempt to respect the timestamps within the
log and replay them with the appropriate delay between IOPS. By setting this variable fio will not respect the
timestamps and attempt to replay them as fast as possible while still respecting ordering. The result is the same
I/O pattern to a given device, but different timings.

replay_time_scale=int
When replaying I/O with read_iolog, fio will honor the original timing in the trace. With this option, it’s
possible to scale the time. It’s a percentage option, if set to 50 it means run at 50% the original IO rate in the
trace. If set to 200, run at twice the original IO rate. Defaults to 100.

replay_redirect=str
While replaying I/O patterns using read_iolog the default behavior is to replay the IOPS onto the ma-
jor/minor device that each IOP was recorded from. This is sometimes undesirable because on a different ma-
chine those major/minor numbers can map to a different device. Changing hardware on the same system can
also result in a different major/minor mapping. replay_redirect causes all I/Os to be replayed onto the
single specified device regardless of the device it was recorded from. i.e. replay_redirect= /dev/sdc
would cause all I/O in the blktrace or iolog to be replayed onto /dev/sdc. This means multiple devices will be
replayed onto a single device, if the trace contains multiple devices. If you want multiple devices to be replayed
concurrently to multiple redirected devices you must blkparse your trace into separate traces and replay them
with independent fio invocations. Unfortunately this also breaks the strict time ordering between multiple device
accesses.

replay_align=int
Force alignment of the byte offsets in a trace to this value. The value must be a power of 2.

replay_scale=int
Scale byte offsets down by this factor when replaying traces. Should most likely use replay_align as well.

replay_skip=str
Sometimes it’s useful to skip certain IO types in a replay trace. This could be, for instance, eliminating the
writes in the trace. Or not replaying the trims/discards, if you are redirecting to a device that doesn’t support
them. This option takes a comma separated list of read, write, trim, sync.

1.12.16 Threads, processes and job synchronization

thread
Fio defaults to creating jobs by using fork, however if this option is given, fio will create jobs by using POSIX
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Threads’ function pthread_create(3) to create threads instead.

wait_for=str
If set, the current job won’t be started until all workers of the specified waitee job are done.

wait_for operates on the job name basis, so there are a few limitations. First, the waitee must be defined
prior to the waiter job (meaning no forward references). Second, if a job is being referenced as a waitee, it must
have a unique name (no duplicate waitees).

nice=int
Run the job with the given nice value. See man nice(2).

On Windows, values less than -15 set the process class to “High”; -1 through -15 set “Above Normal”; 1 through
15 “Below Normal”; and above 15 “Idle” priority class.

prio=int
Set the I/O priority value of this job. Linux limits us to a positive value between 0 and 7, with 0 being the
highest. See man ionice(1). Refer to an appropriate manpage for other operating systems since meaning of
priority may differ.

prioclass=int
Set the I/O priority class. See man ionice(1).

cpus_allowed=str
Controls the same options as cpumask, but accepts a textual specification of the permitted CPUs instead and
CPUs are indexed from 0. So to use CPUs 0 and 5 you would specify cpus_allowed=0,5. This option also
allows a range of CPUs to be specified – say you wanted a binding to CPUs 0, 5, and 8 to 15, you would set
cpus_allowed=0,5,8-15.

On Windows, when cpus_allowed is unset only CPUs from fio’s current processor group will be used and
affinity settings are inherited from the system. An fio build configured to target Windows 7 makes options
that set CPUs processor group aware and values will set both the processor group and a CPU from within that
group. For example, on a system where processor group 0 has 40 CPUs and processor group 1 has 32 CPUs,
cpus_allowed values between 0 and 39 will bind CPUs from processor group 0 and cpus_allowed values
between 40 and 71 will bind CPUs from processor group 1. When using cpus_allowed_policy=shared
all CPUs specified by a single cpus_allowed option must be from the same processor group. For Windows
fio builds not built for Windows 7, CPUs will only be selected from (and be relative to) whatever processor
group fio happens to be running in and CPUs from other processor groups cannot be used.

cpus_allowed_policy=str
Set the policy of how fio distributes the CPUs specified by cpus_allowed or cpumask. Two policies are
supported:

shared All jobs will share the CPU set specified.

split Each job will get a unique CPU from the CPU set.

shared is the default behavior, if the option isn’t specified. If split is specified, then fio will will assign one cpu
per job. If not enough CPUs are given for the jobs listed, then fio will roundrobin the CPUs in the set.

cpumask=int
Set the CPU affinity of this job. The parameter given is a bit mask of allowed CPUs the job may run on. So if
you want the allowed CPUs to be 1 and 5, you would pass the decimal value of (1 << 1 | 1 << 5), or 34. See
man sched_setaffinity(2). This may not work on all supported operating systems or kernel versions.
This option doesn’t work well for a higher CPU count than what you can store in an integer mask, so it can only
control cpus 1-32. For boxes with larger CPU counts, use cpus_allowed.

numa_cpu_nodes=str
Set this job running on specified NUMA nodes’ CPUs. The arguments allow comma delimited list of cpu
numbers, A-B ranges, or all. Note, to enable NUMA options support, fio must be built on a system with
libnuma-dev(el) installed.
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numa_mem_policy=str
Set this job’s memory policy and corresponding NUMA nodes. Format of the arguments:

<mode>[:<nodelist>]

mode is one of the following memory policies: default, prefer, bind, interleave or local. For
default and local memory policies, no node needs to be specified. For prefer, only one node is allowed.
For bind and interleave the nodelist may be as follows: a comma delimited list of numbers, A-B
ranges, or all.

cgroup=str
Add job to this control group. If it doesn’t exist, it will be created. The system must have a mounted cgroup
blkio mount point for this to work. If your system doesn’t have it mounted, you can do so with:

# mount -t cgroup -o blkio none /cgroup

cgroup_weight=int
Set the weight of the cgroup to this value. See the documentation that comes with the kernel, allowed values are
in the range of 100..1000.

cgroup_nodelete=bool
Normally fio will delete the cgroups it has created after the job completion. To override this behavior and to
leave cgroups around after the job completion, set cgroup_nodelete=1. This can be useful if one wants to
inspect various cgroup files after job completion. Default: false.

flow_id=int
The ID of the flow. If not specified, it defaults to being a global flow. See flow.

flow=int
Weight in token-based flow control. If this value is used, then there is a ‘flow counter’ which is used to regulate
the proportion of activity between two or more jobs. Fio attempts to keep this flow counter near zero. The flow
parameter stands for how much should be added or subtracted to the flow counter on each iteration of the main
I/O loop. That is, if one job has flow=8 and another job has flow=-1, then there will be a roughly 1:8 ratio
in how much one runs vs the other.

flow_watermark=int
The maximum value that the absolute value of the flow counter is allowed to reach before the job must wait for
a lower value of the counter.

flow_sleep=int
The period of time, in microseconds, to wait after the flow watermark has been exceeded before retrying opera-
tions.

stonewall, wait_for_previous
Wait for preceding jobs in the job file to exit, before starting this one. Can be used to insert serialization points
in the job file. A stone wall also implies starting a new reporting group, see group_reporting.

exitall
By default, fio will continue running all other jobs when one job finishes but sometimes this is not the desired
action. Setting exitall will instead make fio terminate all other jobs when one job finishes.

exec_prerun=str
Before running this job, issue the command specified through system(3). Output is redirected in a file called
jobname.prerun.txt.

exec_postrun=str
After the job completes, issue the command specified though system(3). Output is redirected in a file called
jobname.postrun.txt.
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uid=int
Instead of running as the invoking user, set the user ID to this value before the thread/process does any work.

gid=int
Set group ID, see uid.

1.12.17 Verification

verify_only
Do not perform specified workload, only verify data still matches previous invocation of this workload. This
option allows one to check data multiple times at a later date without overwriting it. This option makes sense
only for workloads that write data, and does not support workloads with the time_based option set.

do_verify=bool
Run the verify phase after a write phase. Only valid if verify is set. Default: true.

verify=str
If writing to a file, fio can verify the file contents after each iteration of the job. Each verification method also
implies verification of special header, which is written to the beginning of each block. This header also includes
meta information, like offset of the block, block number, timestamp when block was written, etc. verify can
be combined with verify_pattern option. The allowed values are:

md5 Use an md5 sum of the data area and store it in the header of each block.

crc64 Use an experimental crc64 sum of the data area and store it in the header of each block.

crc32c Use a crc32c sum of the data area and store it in the header of each block. This will automat-
ically use hardware acceleration (e.g. SSE4.2 on an x86 or CRC crypto extensions on ARM64)
but will fall back to software crc32c if none is found. Generally the fastest checksum fio supports
when hardware accelerated.

crc32c-intel Synonym for crc32c.

crc32 Use a crc32 sum of the data area and store it in the header of each block.

crc16 Use a crc16 sum of the data area and store it in the header of each block.

crc7 Use a crc7 sum of the data area and store it in the header of each block.

xxhash Use xxhash as the checksum function. Generally the fastest software checksum that fio
supports.

sha512 Use sha512 as the checksum function.

sha256 Use sha256 as the checksum function.

sha1 Use optimized sha1 as the checksum function.

sha3-224 Use optimized sha3-224 as the checksum function.

sha3-256 Use optimized sha3-256 as the checksum function.

sha3-384 Use optimized sha3-384 as the checksum function.

sha3-512 Use optimized sha3-512 as the checksum function.

meta This option is deprecated, since now meta information is included in generic verification
header and meta verification happens by default. For detailed information see the description
of the verify setting. This option is kept because of compatibility’s sake with old configura-
tions. Do not use it.
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pattern Verify a strict pattern. Normally fio includes a header with some basic information and
checksumming, but if this option is set, only the specific pattern set with verify_pattern
is verified.

null Only pretend to verify. Useful for testing internals with ioengine=null, not for much else.

This option can be used for repeated burn-in tests of a system to make sure that the written data is also correctly
read back. If the data direction given is a read or random read, fio will assume that it should verify a previously
written file. If the data direction includes any form of write, the verify will be of the newly written data.

To avoid false verification errors, do not use the norandommap option when verifying data with async I/O
engines and I/O depths > 1. Or use the norandommap and the lfsr random generator together to avoid writing to
the same offset with muliple outstanding I/Os.

verify_offset=int
Swap the verification header with data somewhere else in the block before writing. It is swapped back before
verifying.

verify_interval=int
Write the verification header at a finer granularity than the blocksize. It will be written for chunks the size
of verify_interval. blocksize should divide this evenly.

verify_pattern=str
If set, fio will fill the I/O buffers with this pattern. Fio defaults to filling with totally random bytes, but some-
times it’s interesting to fill with a known pattern for I/O verification purposes. Depending on the width of the
pattern, fio will fill 1/2/3/4 bytes of the buffer at the time (it can be either a decimal or a hex number). The
verify_pattern if larger than a 32-bit quantity has to be a hex number that starts with either “0x” or “0X”.
Use with verify. Also, verify_pattern supports %o format, which means that for each block offset will
be written and then verified back, e.g.:

verify_pattern=%o

Or use combination of everything:

verify_pattern=0xff%o"abcd"-12

verify_fatal=bool
Normally fio will keep checking the entire contents before quitting on a block verification failure. If this option
is set, fio will exit the job on the first observed failure. Default: false.

verify_dump=bool
If set, dump the contents of both the original data block and the data block we read off disk to files. This allows
later analysis to inspect just what kind of data corruption occurred. Off by default.

verify_async=int
Fio will normally verify I/O inline from the submitting thread. This option takes an integer describing how
many async offload threads to create for I/O verification instead, causing fio to offload the duty of verifying
I/O contents to one or more separate threads. If using this offload option, even sync I/O engines can benefit
from using an iodepth setting higher than 1, as it allows them to have I/O in flight while verifies are running.
Defaults to 0 async threads, i.e. verification is not asynchronous.

verify_async_cpus=str
Tell fio to set the given CPU affinity on the async I/O verification threads. See cpus_allowed for the format
used.

verify_backlog=int
Fio will normally verify the written contents of a job that utilizes verify once that job has completed. In other
words, everything is written then everything is read back and verified. You may want to verify continually
instead for a variety of reasons. Fio stores the meta data associated with an I/O block in memory, so for large
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verify workloads, quite a bit of memory would be used up holding this meta data. If this option is enabled, fio
will write only N blocks before verifying these blocks.

verify_backlog_batch=int
Control how many blocks fio will verify if verify_backlog is set. If not set, will default to the value of
verify_backlog (meaning the entire queue is read back and verified). If verify_backlog_batch is
less than verify_backlog then not all blocks will be verified, if verify_backlog_batch is larger than
verify_backlog, some blocks will be verified more than once.

verify_state_save=bool
When a job exits during the write phase of a verify workload, save its current state. This allows fio to replay up
until that point, if the verify state is loaded for the verify read phase. The format of the filename is, roughly:

<type>-<jobname>-<jobindex>-verify.state.

<type> is “local” for a local run, “sock” for a client/server socket connection, and “ip” (192.168.0.1, for instance)
for a networked client/server connection. Defaults to true.

verify_state_load=bool
If a verify termination trigger was used, fio stores the current write state of each thread. This can be used
at verification time so that fio knows how far it should verify. Without this information, fio will run a full
verification pass, according to the settings in the job file used. Default false.

trim_percentage=int
Number of verify blocks to discard/trim.

trim_verify_zero=bool
Verify that trim/discarded blocks are returned as zeros.

trim_backlog=int
Trim after this number of blocks are written.

trim_backlog_batch=int
Trim this number of I/O blocks.

experimental_verify=bool
Enable experimental verification.

1.12.18 Steady state

steadystate=str:float, ss=str:float
Define the criterion and limit for assessing steady state performance. The first parameter designates the criterion
whereas the second parameter sets the threshold. When the criterion falls below the threshold for the specified
duration, the job will stop. For example, iops_slope:0.1% will direct fio to terminate the job when the least
squares regression slope falls below 0.1% of the mean IOPS. If group_reporting is enabled this will apply
to all jobs in the group. Below is the list of available steady state assessment criteria. All assessments are carried
out using only data from the rolling collection window. Threshold limits can be expressed as a fixed value or as
a percentage of the mean in the collection window.

When using this feature, most jobs should include the time_based and runtime options or the loops
option so that fio does not stop running after it has covered the full size of the specified file(s) or device(s).

iops Collect IOPS data. Stop the job if all individual IOPS measurements are within the specified
limit of the mean IOPS (e.g., iops:2 means that all individual IOPS values must be within 2
of the mean, whereas iops:0.2% means that all individual IOPS values must be within 0.2%
of the mean IOPS to terminate the job).

iops_slope Collect IOPS data and calculate the least squares regression slope. Stop the job if the
slope falls below the specified limit.
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bw Collect bandwidth data. Stop the job if all individual bandwidth measurements are within the
specified limit of the mean bandwidth.

bw_slope Collect bandwidth data and calculate the least squares regression slope. Stop the job if the
slope falls below the specified limit.

steadystate_duration=time, ss_dur=time
A rolling window of this duration will be used to judge whether steady state has been reached. Data will be
collected once per second. The default is 0 which disables steady state detection. When the unit is omitted, the
value is interpreted in seconds.

steadystate_ramp_time=time, ss_ramp=time
Allow the job to run for the specified duration before beginning data collection for checking the steady state job
termination criterion. The default is 0. When the unit is omitted, the value is interpreted in seconds.

1.12.19 Measurements and reporting

per_job_logs=bool
If set, this generates bw/clat/iops log with per file private filenames. If not set, jobs with identical names will
share the log filename. Default: true.

group_reporting
It may sometimes be interesting to display statistics for groups of jobs as a whole instead of for each individual
job. This is especially true if numjobs is used; looking at individual thread/process output quickly becomes
unwieldy. To see the final report per-group instead of per-job, use group_reporting. Jobs in a file will be
part of the same reporting group, unless if separated by a stonewall, or by using new_group.

new_group
Start a new reporting group. See: group_reporting. If not given, all jobs in a file will be part of the same
reporting group, unless separated by a stonewall.

stats=bool
By default, fio collects and shows final output results for all jobs that run. If this option is set to 0, then fio will
ignore it in the final stat output.

write_bw_log=str
If given, write a bandwidth log for this job. Can be used to store data of the bandwidth of the jobs in their
lifetime.

If no str argument is given, the default filename of jobname_type.x.log is used. Even when the argument
is given, fio will still append the type of log. So if one specifies:

write_bw_log=foo

The actual log name will be foo_bw.x.log where x is the index of the job (1..N, where N is the number of
jobs). If per_job_logs is false, then the filename will not include the .x job index.

The included fio_generate_plots script uses gnuplot to turn these text files into nice graphs. See Log
File Formats for how data is structured within the file.

write_lat_log=str
Same as write_bw_log, except this option creates I/O submission (e.g., name_slat.x.log), completion
(e.g., name_clat.x.log), and total (e.g., name_lat.x.log) latency files instead. See write_bw_log
for details about the filename format and Log File Formats for how data is structured within the files.

write_hist_log=str
Same as write_bw_log but writes an I/O completion latency histogram file (e.g., name_hist.x.log)
instead. Note that this file will be empty unless log_hist_msec has also been set. See write_bw_log for
details about the filename format and Log File Formats for how data is structured within the file.
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write_iops_log=str
Same as write_bw_log, but writes an IOPS file (e.g. name_iops.x.log) instead. Because fio de-
faults to individual I/O logging, the value entry in the IOPS log will be 1 unless windowed logging (see
log_avg_msec) has been enabled. See write_bw_log for details about the filename format and Log
File Formats for how data is structured within the file.

log_avg_msec=int
By default, fio will log an entry in the iops, latency, or bw log for every I/O that completes. When writing to the
disk log, that can quickly grow to a very large size. Setting this option makes fio average the each log entry over
the specified period of time, reducing the resolution of the log. See log_max_value as well. Defaults to 0,
logging all entries. Also see Log File Formats.

log_hist_msec=int
Same as log_avg_msec, but logs entries for completion latency histograms. Computing latency percentiles
from averages of intervals using log_avg_msec is inaccurate. Setting this option makes fio log histogram
entries over the specified period of time, reducing log sizes for high IOPS devices while retaining percentile
accuracy. See log_hist_coarseness and write_hist_log as well. Defaults to 0, meaning histogram
logging is disabled.

log_hist_coarseness=int
Integer ranging from 0 to 6, defining the coarseness of the resolution of the histogram logs enabled with
log_hist_msec. For each increment in coarseness, fio outputs half as many bins. Defaults to 0, for which
histogram logs contain 1216 latency bins. See write_hist_log and Log File Formats.

log_max_value=bool
If log_avg_msec is set, fio logs the average over that window. If you instead want to log the maximum value,
set this option to 1. Defaults to 0, meaning that averaged values are logged.

log_offset=bool
If this is set, the iolog options will include the byte offset for the I/O entry as well as the other data values.
Defaults to 0 meaning that offsets are not present in logs. Also see Log File Formats.

log_compression=int
If this is set, fio will compress the I/O logs as it goes, to keep the memory footprint lower. When a log reaches
the specified size, that chunk is removed and compressed in the background. Given that I/O logs are fairly
highly compressible, this yields a nice memory savings for longer runs. The downside is that the compression
will consume some background CPU cycles, so it may impact the run. This, however, is also true if the logging
ends up consuming most of the system memory. So pick your poison. The I/O logs are saved normally at the
end of a run, by decompressing the chunks and storing them in the specified log file. This feature depends on
the availability of zlib.

log_compression_cpus=str
Define the set of CPUs that are allowed to handle online log compression for the I/O jobs. This can provide
better isolation between performance sensitive jobs, and background compression work. See cpus_allowed
for the format used.

log_store_compressed=bool
If set, fio will store the log files in a compressed format. They can be decompressed with fio, using the
--inflate-log command line parameter. The files will be stored with a .fz suffix.

log_unix_epoch=bool
If set, fio will log Unix timestamps to the log files produced by enabling write_type_log for each log type,
instead of the default zero-based timestamps.

block_error_percentiles=bool
If set, record errors in trim block-sized units from writes and trims and output a histogram of how many trims it
took to get to errors, and what kind of error was encountered.

bwavgtime=int
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Average the calculated bandwidth over the given time. Value is specified in milliseconds. If the job also does
bandwidth logging through write_bw_log, then the minimum of this option and log_avg_msec will be
used. Default: 500ms.

iopsavgtime=int
Average the calculated IOPS over the given time. Value is specified in milliseconds. If the job also does IOPS
logging through write_iops_log, then the minimum of this option and log_avg_msec will be used.
Default: 500ms.

disk_util=bool
Generate disk utilization statistics, if the platform supports it. Default: true.

disable_lat=bool
Disable measurements of total latency numbers. Useful only for cutting back the number of calls to
gettimeofday(2), as that does impact performance at really high IOPS rates. Note that to re-
ally get rid of a large amount of these calls, this option must be used with disable_slat and
disable_bw_measurement as well.

disable_clat=bool
Disable measurements of completion latency numbers. See disable_lat.

disable_slat=bool
Disable measurements of submission latency numbers. See disable_lat.

disable_bw_measurement=bool, disable_bw=bool
Disable measurements of throughput/bandwidth numbers. See disable_lat.

clat_percentiles=bool
Enable the reporting of percentiles of completion latencies. This option is mutually exclusive with
lat_percentiles.

lat_percentiles=bool
Enable the reporting of percentiles of I/O latencies. This is similar to clat_percentiles, except that this
includes the submission latency. This option is mutually exclusive with clat_percentiles.

percentile_list=float_list
Overwrite the default list of percentiles for completion latencies and the block error histogram. Each number
is a floating number in the range (0,100], and the maximum length of the list is 20. Use : to separate the
numbers, and list the numbers in ascending order. For example, --percentile_list=99.5:99.9 will
cause fio to report the values of completion latency below which 99.5% and 99.9% of the observed latencies
fell, respectively.

significant_figures=int
If using --output-format of normal, set the significant figures to this value. Higher values will yield
more precise IOPS and throughput units, while lower values will round. Requires a minimum value of 1 and a
maximum value of 10. Defaults to 4.

1.12.20 Error handling

exitall_on_error
When one job finishes in error, terminate the rest. The default is to wait for each job to finish.

continue_on_error=str
Normally fio will exit the job on the first observed failure. If this option is set, fio will continue the job when
there is a ‘non-fatal error’ (EIO or EILSEQ) until the runtime is exceeded or the I/O size specified is completed.
If this option is used, there are two more stats that are appended, the total error count and the first error. The
error field given in the stats is the first error that was hit during the run.

The allowed values are:
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none Exit on any I/O or verify errors.

read Continue on read errors, exit on all others.

write Continue on write errors, exit on all others.

io Continue on any I/O error, exit on all others.

verify Continue on verify errors, exit on all others.

all Continue on all errors.

0 Backward-compatible alias for ‘none’.

1 Backward-compatible alias for ‘all’.

ignore_error=str
Sometimes you want to ignore some errors during test in that case you can specify error list for each er-
ror type, instead of only being able to ignore the default ‘non-fatal error’ using continue_on_error.
ignore_error=READ_ERR_LIST,WRITE_ERR_LIST,VERIFY_ERR_LIST errors for given error
type is separated with ‘:’. Error may be symbol (‘ENOSPC’, ‘ENOMEM’) or integer. Example:

ignore_error=EAGAIN,ENOSPC:122

This option will ignore EAGAIN from READ, and ENOSPC and 122(EDQUOT) from WRITE. This option
works by overriding continue_on_error with the list of errors for each error type if any.

error_dump=bool
If set dump every error even if it is non fatal, true by default. If disabled only fatal error will be dumped.

1.13 Running predefined workloads

Fio includes predefined profiles that mimic the I/O workloads generated by other tools.

profile=str
The predefined workload to run. Current profiles are:

tiobench Threaded I/O bench (tiotest/tiobench) like workload.

act Aerospike Certification Tool (ACT) like workload.

To view a profile’s additional options use --cmdhelp after specifying the profile. For example:

$ fio --profile=act --cmdhelp

1.13.1 Act profile options

device-names=str
Devices to use.

load=int
ACT load multiplier. Default: 1.

test-duration=time
How long the entire test takes to run. When the unit is omitted, the value is given in seconds. Default: 24h.

threads-per-queue=int
Number of read I/O threads per device. Default: 8.
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read-req-num-512-blocks=int
Number of 512B blocks to read at the time. Default: 3.

large-block-op-kbytes=int
Size of large block ops in KiB (writes). Default: 131072.

prep
Set to run ACT prep phase.

1.13.2 Tiobench profile options

size=str
Size in MiB.

block=int
Block size in bytes. Default: 4096.

numruns=int
Number of runs.

dir=str
Test directory.

threads=int
Number of threads.

1.14 Interpreting the output

Fio spits out a lot of output. While running, fio will display the status of the jobs created. An example of that would
be:

Jobs: 1 (f=1): [_(1),M(1)][24.8%][r=20.5MiB/s,w=23.5MiB/s][r=82,w=94 IOPS][eta
→˓01m:31s]

The characters inside the first set of square brackets denote the current status of each thread. The first character is the
first job defined in the job file, and so forth. The possible values (in typical life cycle order) are:
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Idle Run
P Thread setup, but not started.
C Thread created.
I Thread initialized, waiting or generating necessary data.

p Thread running pre-reading file(s).
/ Thread is in ramp period.
R Running, doing sequential reads.
r Running, doing random reads.
W Running, doing sequential writes.
w Running, doing random writes.
M Running, doing mixed sequential reads/writes.
m Running, doing mixed random reads/writes.
D Running, doing sequential trims.
d Running, doing random trims.
F Running, currently waiting for fsync(2).
V Running, doing verification of written data.

f Thread finishing.
E Thread exited, not reaped by main thread yet.
_ Thread reaped.
X Thread reaped, exited with an error.
K Thread reaped, exited due to signal.

Fio will condense the thread string as not to take up more space on the command line than needed. For instance, if
you have 10 readers and 10 writers running, the output would look like this:

Jobs: 20 (f=20): [R(10),W(10)][4.0%][r=20.5MiB/s,w=23.5MiB/s][r=82,w=94 IOPS][eta
→˓57m:36s]

Note that the status string is displayed in order, so it’s possible to tell which of the jobs are currently doing what. In
the example above this means that jobs 1–10 are readers and 11–20 are writers.

The other values are fairly self explanatory – number of threads currently running and doing I/O, the number of
currently open files (f=), the estimated completion percentage, the rate of I/O since last check (read speed listed first,
then write speed and optionally trim speed) in terms of bandwidth and IOPS, and time to completion for the current
running group. It’s impossible to estimate runtime of the following groups (if any).

When fio is done (or interrupted by Ctrl-C), it will show the data for each thread, group of threads, and disks in that
order. For each overall thread (or group) the output looks like:

Client1: (groupid=0, jobs=1): err= 0: pid=16109: Sat Jun 24 12:07:54 2017
write: IOPS=88, BW=623KiB/s (638kB/s)(30.4MiB/50032msec)
slat (nsec): min=500, max=145500, avg=8318.00, stdev=4781.50
clat (usec): min=170, max=78367, avg=4019.02, stdev=8293.31
lat (usec): min=174, max=78375, avg=4027.34, stdev=8291.79

clat percentiles (usec):
| 1.00th=[ 302], 5.00th=[ 326], 10.00th=[ 343], 20.00th=[ 363],
| 30.00th=[ 392], 40.00th=[ 404], 50.00th=[ 416], 60.00th=[ 445],
| 70.00th=[ 816], 80.00th=[ 6718], 90.00th=[12911], 95.00th=[21627],
| 99.00th=[43779], 99.50th=[51643], 99.90th=[68682], 99.95th=[72877],
| 99.99th=[78119]

bw ( KiB/s): min= 532, max= 686, per=0.10%, avg=622.87, stdev=24.82, samples=
→˓100

iops : min= 76, max= 98, avg=88.98, stdev= 3.54, samples= 100
lat (usec) : 250=0.04%, 500=64.11%, 750=4.81%, 1000=2.79%

(continues on next page)
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(continued from previous page)

lat (msec) : 2=4.16%, 4=1.84%, 10=4.90%, 20=11.33%, 50=5.37%
lat (msec) : 100=0.65%
cpu : usr=0.27%, sys=0.18%, ctx=12072, majf=0, minf=21
IO depths : 1=85.0%, 2=13.1%, 4=1.8%, 8=0.1%, 16=0.0%, 32=0.0%, >=64=0.0%

submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
issued rwt: total=0,4450,0, short=0,0,0, dropped=0,0,0
latency : target=0, window=0, percentile=100.00%, depth=8

The job name (or first job’s name when using group_reporting) is printed, along with the group id, count of
jobs being aggregated, last error id seen (which is 0 when there are no errors), pid/tid of that thread and the time the
job/group completed. Below are the I/O statistics for each data direction performed (showing writes in the example
above). In the order listed, they denote:

read/write/trim The string before the colon shows the I/O direction the statistics are for. IOPS is the average I/Os
performed per second. BW is the average bandwidth rate shown as: value in power of 2 format (value in power
of 10 format). The last two values show: (total I/O performed in power of 2 format / runtime of that thread).

slat Submission latency (min being the minimum, max being the maximum, avg being the average, stdev being the
standard deviation). This is the time it took to submit the I/O. For sync I/O this row is not displayed as the slat is
really the completion latency (since queue/complete is one operation there). This value can be in nanoseconds,
microseconds or milliseconds — fio will choose the most appropriate base and print that (in the example above
nanoseconds was the best scale). Note: in --minimal mode latencies are always expressed in microseconds.

clat Completion latency. Same names as slat, this denotes the time from submission to completion of the I/O pieces.
For sync I/O, clat will usually be equal (or very close) to 0, as the time from submit to complete is basically just
CPU time (I/O has already been done, see slat explanation).

lat Total latency. Same names as slat and clat, this denotes the time from when fio created the I/O unit to completion
of the I/O operation.

bw Bandwidth statistics based on samples. Same names as the xlat stats, but also includes the number of samples
taken (samples) and an approximate percentage of total aggregate bandwidth this thread received in its group
(per). This last value is only really useful if the threads in this group are on the same disk, since they are then
competing for disk access.

iops IOPS statistics based on samples. Same names as bw.

lat (nsec/usec/msec) The distribution of I/O completion latencies. This is the time from when I/O leaves fio and when
it gets completed. Unlike the separate read/write/trim sections above, the data here and in the remaining sections
apply to all I/Os for the reporting group. 250=0.04% means that 0.04% of the I/Os completed in under 250us.
500=64.11% means that 64.11% of the I/Os required 250 to 499us for completion.

cpu CPU usage. User and system time, along with the number of context switches this thread went through, usage of
system and user time, and finally the number of major and minor page faults. The CPU utilization numbers are
averages for the jobs in that reporting group, while the context and fault counters are summed.

IO depths The distribution of I/O depths over the job lifetime. The numbers are divided into powers of 2 and each
entry covers depths from that value up to those that are lower than the next entry – e.g., 16= covers depths from
16 to 31. Note that the range covered by a depth distribution entry can be different to the range covered by the
equivalent submit/complete distribution entry.

IO submit How many pieces of I/O were submitting in a single submit call. Each entry denotes that amount and
below, until the previous entry – e.g., 16=100% means that we submitted anywhere between 9 to 16 I/Os per
submit call. Note that the range covered by a submit distribution entry can be different to the range covered by
the equivalent depth distribution entry.

IO complete Like the above submit number, but for completions instead.
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IO issued rwt The number of read/write/trim requests issued, and how many of them were short or dropped.

IO latency These values are for latency_target and related options. When these options are engaged, this
section describes the I/O depth required to meet the specified latency target.

After each client has been listed, the group statistics are printed. They will look like this:

Run status group 0 (all jobs):
READ: bw=20.9MiB/s (21.9MB/s), 10.4MiB/s-10.8MiB/s (10.9MB/s-11.3MB/s), io=64.0MiB

→˓(67.1MB), run=2973-3069msec
WRITE: bw=1231KiB/s (1261kB/s), 616KiB/s-621KiB/s (630kB/s-636kB/s), io=64.0MiB (67.

→˓1MB), run=52747-53223msec

For each data direction it prints:

bw Aggregate bandwidth of threads in this group followed by the minimum and maximum bandwidth of all the
threads in this group. Values outside of brackets are power-of-2 format and those within are the equivalent value
in a power-of-10 format.

io Aggregate I/O performed of all threads in this group. The format is the same as bw.

run The smallest and longest runtimes of the threads in this group.

And finally, the disk statistics are printed. This is Linux specific. They will look like this:

Disk stats (read/write):
sda: ios=16398/16511, merge=30/162, ticks=6853/819634, in_queue=826487, util=100.00%

Each value is printed for both reads and writes, with reads first. The numbers denote:

ios Number of I/Os performed by all groups.

merge Number of merges performed by the I/O scheduler.

ticks Number of ticks we kept the disk busy.

in_queue Total time spent in the disk queue.

util The disk utilization. A value of 100% means we kept the disk busy constantly, 50% would be a disk idling half
of the time.

It is also possible to get fio to dump the current output while it is running, without terminating the job. To do that, send
fio the USR1 signal. You can also get regularly timed dumps by using the --status-interval parameter, or by
creating a file in /tmp named fio-dump-status. If fio sees this file, it will unlink it and dump the current output
status.

1.15 Terse output

For scripted usage where you typically want to generate tables or graphs of the results, fio can output the results in a
semicolon separated format. The format is one long line of values, such as:

2;card0;0;0;7139336;121836;60004;1;10109;27.932460;116.933948;220;126861;3495.446807;
→˓1085.368601;226;126864;3523.635629;1089.012448;24063;99944;50.275485%;59818.274627;
→˓5540.657370;7155060;122104;60004;1;8338;29.086342;117.839068;388;128077;5032.488518;
→˓1234.785715;391;128085;5061.839412;1236.909129;23436;100928;50.287926%;59964.832030;
→˓5644.844189;14.595833%;19.394167%;123706;0;7313;0.1%;0.1%;0.1%;0.1%;0.1%;0.1%;100.0
→˓%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.01%;0.02%;0.05%;0.16%;6.04%;40.40%;52.68%;0.
→˓64%;0.01%;0.00%;0.01%;0.00%;0.00%;0.00%;0.00%;0.00%
A description of this job goes here.
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The job description (if provided) follows on a second line.

To enable terse output, use the --minimal or --output-format=terse command line options. The first value is
the version of the terse output format. If the output has to be changed for some reason, this number will be incremented
by 1 to signify that change.

Split up, the format is as follows (comments in brackets denote when a field was introduced or whether it’s specific to
some terse version):

terse version, fio version [v3], jobname, groupid, error

READ status:

Total IO (KiB), bandwidth (KiB/sec), IOPS, runtime (msec)
Submission latency: min, max, mean, stdev (usec)
Completion latency: min, max, mean, stdev (usec)
Completion latency percentiles: 20 fields (see below)
Total latency: min, max, mean, stdev (usec)
Bw (KiB/s): min, max, aggregate percentage of total, mean, stdev, number of
→˓samples [v5]
IOPS [v5]: min, max, mean, stdev, number of samples

WRITE status:

Total IO (KiB), bandwidth (KiB/sec), IOPS, runtime (msec)
Submission latency: min, max, mean, stdev (usec)
Completion latency: min, max, mean, stdev (usec)
Completion latency percentiles: 20 fields (see below)
Total latency: min, max, mean, stdev (usec)
Bw (KiB/s): min, max, aggregate percentage of total, mean, stdev, number of
→˓samples [v5]
IOPS [v5]: min, max, mean, stdev, number of samples

TRIM status [all but version 3]:

Fields are similar to READ/WRITE status.

CPU usage:

user, system, context switches, major faults, minor faults

I/O depths:

<=1, 2, 4, 8, 16, 32, >=64

I/O latencies microseconds:

<=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000

I/O latencies milliseconds:

<=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, 2000, >=2000

Disk utilization [v3]:

disk name, read ios, write ios, read merges, write merges, read ticks, write
→˓ticks,
time spent in queue, disk utilization percentage

Additional Info (dependent on continue_on_error, default off):
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total # errors, first error code

Additional Info (dependent on description being set):

Text description

Completion latency percentiles can be a grouping of up to 20 sets, so for the terse output fio writes all of them. Each
field will look like this:

1.00%=6112

which is the Xth percentile, and the usec latency associated with it.

For Disk utilization, all disks used by fio are shown. So for each disk there will be a disk utilization section.

Below is a single line containing short names for each of the fields in the minimal output v3, separated by semicolons:

terse_version_3;fio_version;jobname;groupid;error;read_kb;read_bandwidth;read_iops;
→˓read_runtime_ms;read_slat_min;read_slat_max;read_slat_mean;read_slat_dev;read_clat_
→˓min;read_clat_max;read_clat_mean;read_clat_dev;read_clat_pct01;read_clat_pct02;read_
→˓clat_pct03;read_clat_pct04;read_clat_pct05;read_clat_pct06;read_clat_pct07;read_
→˓clat_pct08;read_clat_pct09;read_clat_pct10;read_clat_pct11;read_clat_pct12;read_
→˓clat_pct13;read_clat_pct14;read_clat_pct15;read_clat_pct16;read_clat_pct17;read_
→˓clat_pct18;read_clat_pct19;read_clat_pct20;read_tlat_min;read_lat_max;read_lat_mean;
→˓read_lat_dev;read_bw_min;read_bw_max;read_bw_agg_pct;read_bw_mean;read_bw_dev;write_
→˓kb;write_bandwidth;write_iops;write_runtime_ms;write_slat_min;write_slat_max;write_
→˓slat_mean;write_slat_dev;write_clat_min;write_clat_max;write_clat_mean;write_clat_
→˓dev;write_clat_pct01;write_clat_pct02;write_clat_pct03;write_clat_pct04;write_clat_
→˓pct05;write_clat_pct06;write_clat_pct07;write_clat_pct08;write_clat_pct09;write_
→˓clat_pct10;write_clat_pct11;write_clat_pct12;write_clat_pct13;write_clat_pct14;
→˓write_clat_pct15;write_clat_pct16;write_clat_pct17;write_clat_pct18;write_clat_
→˓pct19;write_clat_pct20;write_tlat_min;write_lat_max;write_lat_mean;write_lat_dev;
→˓write_bw_min;write_bw_max;write_bw_agg_pct;write_bw_mean;write_bw_dev;cpu_user;cpu_
→˓sys;cpu_csw;cpu_mjf;cpu_minf;iodepth_1;iodepth_2;iodepth_4;iodepth_8;iodepth_16;
→˓iodepth_32;iodepth_64;lat_2us;lat_4us;lat_10us;lat_20us;lat_50us;lat_100us;lat_
→˓250us;lat_500us;lat_750us;lat_1000us;lat_2ms;lat_4ms;lat_10ms;lat_20ms;lat_50ms;lat_
→˓100ms;lat_250ms;lat_500ms;lat_750ms;lat_1000ms;lat_2000ms;lat_over_2000ms;disk_name;
→˓disk_read_iops;disk_write_iops;disk_read_merges;disk_write_merges;disk_read_ticks;
→˓write_ticks;disk_queue_time;disk_util

1.16 JSON output

The json output format is intended to be both human readable and convenient for automated parsing. For the most part
its sections mirror those of the normal output. The runtime value is reported in msec and the bw value is reported in
1024 bytes per second units.

1.17 JSON+ output

The json+ output format is identical to the json output format except that it adds a full dump of the completion latency
bins. Each bins object contains a set of (key, value) pairs where keys are latency durations and values count how many
I/Os had completion latencies of the corresponding duration. For example, consider:

“bins” : { “87552” : 1, “89600” : 1, “94720” : 1, “96768” : 1, “97792” : 1, “99840” : 1, “100864” : 2,
“103936” : 6, “104960” : 534, “105984” : 5995, “107008” : 7529, . . . }
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This data indicates that one I/O required 87,552ns to complete, two I/Os required 100,864ns to complete, and 7529
I/Os required 107,008ns to complete.

Also included with fio is a Python script fio_jsonplus_clat2csv that takes json+ output and generates CSV-formatted
latency data suitable for plotting.

The latency durations actually represent the midpoints of latency intervals. For details refer to stat.h.

1.18 Trace file format

There are two trace file format that you can encounter. The older (v1) format is unsupported since version 1.20-rc3
(March 2008). It will still be described below in case that you get an old trace and want to understand it.

In any case the trace is a simple text file with a single action per line.

1.18.1 Trace file format v1

Each line represents a single I/O action in the following format:

rw, offset, length

where rw=0/1 for read/write, and the offset and length entries being in bytes.

This format is not supported in fio versions >= 1.20-rc3.

1.18.2 Trace file format v2

The second version of the trace file format was added in fio version 1.17. It allows to access more then one file per
trace and has a bigger set of possible file actions.

The first line of the trace file has to be:

fio version 2 iolog

Following this can be lines in two different formats, which are described below.

The file management format:

filename action

The filename is given as an absolute path. The action can be one of these:

add Add the given filename to the trace.

open Open the file with the given filename. The filename has to have been added with the add action before.

close Close the file with the given filename. The file has to have been opened before.

The file I/O action format:

filename action offset length

The filename is given as an absolute path, and has to have been added and opened before it can be used with this
format. The offset and length are given in bytes. The action can be one of these:

wait Wait for offset microseconds. Everything below 100 is discarded. The time is relative to the previous wait
statement.
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read Read length bytes beginning from offset.

write Write length bytes beginning from offset.

sync fsync(2) the file.

datasync fdatasync(2) the file.

trim Trim the given file from the given offset for length bytes.

1.19 I/O Replay - Merging Traces

Colocation is a common practice used to get the most out of a machine. Knowing which workloads play nicely with
each other and which ones don’t is a much harder task. While fio can replay workloads concurrently via multiple jobs,
it leaves some variability up to the scheduler making results harder to reproduce. Merging is a way to make the order
of events consistent.

Merging is integrated into I/O replay and done when a merge_blktrace_file is specified. The list of files passed
to read_iolog go through the merge process and output a single file stored to the specified file. The output file is
passed on as if it were the only file passed to read_iolog. An example would look like:

$ fio --read_iolog="<file1>:<file2>" --merge_blktrace_file="<output_file>"

Creating only the merged file can be done by passing the command line argument merge-blktrace-only.

Scaling traces can be done to see the relative impact of any particular trace being slowed down or sped up.
merge_blktrace_scalars takes in a colon separated list of percentage scalars. It is index paired with the
files passed to read_iolog.

With scaling, it may be desirable to match the running time of all traces. This can be done with
merge_blktrace_iters. It is index paired with read_iolog just like merge_blktrace_scalars.

In an example, given two traces, A and B, each 60s long. If we want to see the impact of trace A issuing IOs twice as
fast and repeat trace A over the runtime of trace B, the following can be done:

$ fio --read_iolog="<trace_a>:"<trace_b>" --merge_blktrace_file"<output_file>" --
→˓merge_blktrace_scalars="50:100" --merge_blktrace_iters="2:1"

This runs trace A at 2x the speed twice for approximately the same runtime as a single run of trace B.

1.20 CPU idleness profiling

In some cases, we want to understand CPU overhead in a test. For example, we test patches for the specific goodness
of whether they reduce CPU usage. Fio implements a balloon approach to create a thread per CPU that runs at idle
priority, meaning that it only runs when nobody else needs the cpu. By measuring the amount of work completed by
the thread, idleness of each CPU can be derived accordingly.

An unit work is defined as touching a full page of unsigned characters. Mean and standard deviation of time to
complete an unit work is reported in “unit work” section. Options can be chosen to report detailed percpu idleness or
overall system idleness by aggregating percpu stats.
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1.21 Verification and triggers

Fio is usually run in one of two ways, when data verification is done. The first is a normal write job of some sort with
verify enabled. When the write phase has completed, fio switches to reads and verifies everything it wrote. The second
model is running just the write phase, and then later on running the same job (but with reads instead of writes) to repeat
the same I/O patterns and verify the contents. Both of these methods depend on the write phase being completed, as
fio otherwise has no idea how much data was written.

With verification triggers, fio supports dumping the current write state to local files. Then a subsequent read verify
workload can load this state and know exactly where to stop. This is useful for testing cases where power is cut to a
server in a managed fashion, for instance.

A verification trigger consists of two things:

1) Storing the write state of each job.

2) Executing a trigger command.

The write state is relatively small, on the order of hundreds of bytes to single kilobytes. It contains information on the
number of completions done, the last X completions, etc.

A trigger is invoked either through creation (‘touch’) of a specified file in the system, or through a timeout setting.
If fio is run with --trigger-file= /tmp/trigger-file, then it will continually check for the existence of
/tmp/trigger-file. When it sees this file, it will fire off the trigger (thus saving state, and executing the trigger
command).

For client/server runs, there’s both a local and remote trigger. If fio is running as a server backend, it will send the job
states back to the client for safe storage, then execute the remote trigger, if specified. If a local trigger is specified, the
server will still send back the write state, but the client will then execute the trigger.

1.21.1 Verification trigger example

Let’s say we want to run a powercut test on the remote Linux machine ‘server’. Our write workload is in
write-test.fio. We want to cut power to ‘server’ at some point during the run, and we’ll run this test from
the safety or our local machine, ‘localbox’. On the server, we’ll start the fio backend normally:

server# fio --server

and on the client, we’ll fire off the workload:

localbox$ fio --client=server --trigger-file=/tmp/my-trigger --trigger-remote="bash -
→˓c \"echo b > /proc/sysrq-triger\""

We set /tmp/my-trigger as the trigger file, and we tell fio to execute:

echo b > /proc/sysrq-trigger

on the server once it has received the trigger and sent us the write state. This will work, but it’s not really cutting
power to the server, it’s merely abruptly rebooting it. If we have a remote way of cutting power to the server through
IPMI or similar, we could do that through a local trigger command instead. Let’s assume we have a script that does
IPMI reboot of a given hostname, ipmi-reboot. On localbox, we could then have run fio with a local trigger instead:

localbox$ fio --client=server --trigger-file=/tmp/my-trigger --trigger="ipmi-reboot
→˓server"

For this case, fio would wait for the server to send us the write state, then execute ipmi-reboot server when
that happened.
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1.21.2 Loading verify state

To load stored write state, a read verification job file must contain the verify_state_load option. If that is set, fio
will load the previously stored state. For a local fio run this is done by loading the files directly, and on a client/server
run, the server backend will ask the client to send the files over and load them from there.

1.22 Log File Formats

Fio supports a variety of log file formats, for logging latencies, bandwidth, and IOPS. The logs share a common format,
which looks like this:

time (msec), value, data direction, block size (bytes), offset (bytes)

Time for the log entry is always in milliseconds. The value logged depends on the type of log, it will be one of the
following:

Latency log Value is latency in nsecs

Bandwidth log Value is in KiB/sec

IOPS log Value is IOPS

Data direction is one of the following:

0 I/O is a READ

1 I/O is a WRITE

2 I/O is a TRIM

The entry’s block size is always in bytes. The offset is the position in bytes from the start of the file for that particular
I/O. The logging of the offset can be toggled with log_offset.

Fio defaults to logging every individual I/O but when windowed logging is set through log_avg_msec, either
the average (by default) or the maximum (log_max_value is set) value seen over the specified period of time is
recorded. Each data direction seen within the window period will aggregate its values in a separate row. Further, when
using windowed logging the block size and offset entries will always contain 0.

1.23 Client/Server

Normally fio is invoked as a stand-alone application on the machine where the I/O workload should be generated.
However, the backend and frontend of fio can be run separately i.e., the fio server can generate an I/O workload on the
“Device Under Test” while being controlled by a client on another machine.

Start the server on the machine which has access to the storage DUT:

$ fio --server=args

where args defines what fio listens to. The arguments are of the form type,hostname or IP,port. type is either
ip (or ip4) for TCP/IP v4, ip6 for TCP/IP v6, or sock for a local unix domain socket. hostname is either a hostname
or IP address, and port is the port to listen to (only valid for TCP/IP, not a local socket). Some examples:

1) fio --server

Start a fio server, listening on all interfaces on the default port (8765).

2) fio --server=ip:hostname,4444

Start a fio server, listening on IP belonging to hostname and on port 4444.
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3) fio --server=ip6:::1,4444

Start a fio server, listening on IPv6 localhost ::1 and on port 4444.

4) fio --server=,4444

Start a fio server, listening on all interfaces on port 4444.

5) fio --server=1.2.3.4

Start a fio server, listening on IP 1.2.3.4 on the default port.

6) fio --server=sock:/tmp/fio.sock

Start a fio server, listening on the local socket /tmp/fio.sock.

Once a server is running, a “client” can connect to the fio server with:

fio <local-args> --client=<server> <remote-args> <job file(s)>

where local-args are arguments for the client where it is running, server is the connect string, and remote-args and
job file(s) are sent to the server. The server string follows the same format as it does on the server side, to allow
IP/hostname/socket and port strings.

Fio can connect to multiple servers this way:

fio --client=<server1> <job file(s)> --client=<server2> <job file(s)>

If the job file is located on the fio server, then you can tell the server to load a local file as well. This is done by using
--remote-config

fio --client=server --remote-config /path/to/file.fio

Then fio will open this local (to the server) job file instead of being passed one from the client.

If you have many servers (example: 100 VMs/containers), you can input a pathname of a file containing host IPs/names
as the parameter value for the --client option. For example, here is an example host.list file containing 2
hostnames:

host1.your.dns.domain
host2.your.dns.domain

The fio command would then be:

fio --client=host.list <job file(s)>

In this mode, you cannot input server-specific parameters or job files – all servers receive the same job file.

In order to let fio --client runs use a shared filesystem from multiple hosts, fio --client now prepends
the IP address of the server to the filename. For example, if fio is using the directory /mnt/nfs/fio and is writ-
ing filename fileio.tmp, with a --client hostfile containing two hostnames h1 and h2 with IP addresses
192.168.10.120 and 192.168.10.121, then fio will create two files:

/mnt/nfs/fio/192.168.10.120.fileio.tmp
/mnt/nfs/fio/192.168.10.121.fileio.tmp
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Examples

Some job file examples.

2.1 Poisson request flow

Download poisson-rate-submission.fio

[poisson-rate-submit]
size=128m
rw=randread
ioengine=libaio
iodepth=32
direct=1
# by setting the submit mode to offload, we can guarantee a fixed rate of
# submission regardless of what the device completion rate is.
io_submit_mode=offload
rate_iops=50
# Real world random request flow follows Poisson process. To give better
# insight on latency distribution, we simulate request flow under Poisson
# process.
rate_process=poisson

2.2 Latency profile

Download latency-profile.fio

# Test job that demonstrates how to use the latency target
# profiling. Fio will find the queue depth between 1..128
# that fits within the latency constraints of this 4k random
# read workload.

(continues on next page)
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(continued from previous page)

[global]
bs=4k
rw=randread
random_generator=lfsr
direct=1
ioengine=libaio
iodepth=128
# Set max acceptable latency to 500msec
latency_target=500000
# profile over a 5s window
latency_window=5000000
# 99.9% of IOs must be below the target
latency_percentile=99.9

[device]
filename=/dev/sda

2.3 Read 4 files with aio at different depths

Download aio-read.fio

; Read 4 files with aio at different depths
[global]
ioengine=libaio
buffered=0
rw=randread
bs=128k
size=512m
directory=/data1

[file1]
iodepth=4

[file2]
iodepth=32

[file3]
iodepth=8

[file4]
iodepth=16

2.4 Read backwards in a file

Download backwards-read.fio

# Demonstrates how to read backwards in a file.

[backwards-read]
bs=4k
# seek -8k back for every IO
rw=read:-8k

(continues on next page)
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(continued from previous page)

filename=128m
size=128m

2.5 Basic verification

Download basic-verify.fio

# The most basic form of data verification. Write the device randomly
# in 4K chunks, then read it back and verify the contents.
[write-and-verify]
rw=randwrite
bs=4k
direct=1
ioengine=libaio
iodepth=16
verify=crc32c
# Use /dev/XXX. For running this on a file instead, remove the filename
# option and add a size=32G (or whatever file size you want) instead.
filename=/dev/XXX

2.6 Fixed rate submission

Download fixed-rate-submission.fio

[fixed-rate-submit]
size=128m
rw=read
ioengine=libaio
iodepth=32
direct=1
# by setting the submit mode to offload, we can guarantee a fixed rate of
# submission regardless of what the device completion rate is.
io_submit_mode=offload
rate_iops=1000

2.7 Butterfly seek pattern

Download butterfly.fio

# Perform a butterfly/funnel seek pattern. This won't always alternate ends on
# every I/O but it will get close.

[global]
filename=/tmp/testfile
bs=4k
direct=1

[forward]
rw=read

(continues on next page)
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flow=2
# Uncomment the size= and offset= lines to prevent each direction going past
# the middle of the file
#size=50%

[backward]
rw=read:-8k
flow=-2
#offset=50%
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CHAPTER 3

TODO

3.1 GFIO TODO

In no particular order:

• Ability to save job files. Probably in an extended gfio format, so we can include options/settings outside of a fio
job file.

• End view improvements:

– Cleanup the layout

– Add ability to save the results

– Add ability to load end-results as well

– Add ability to request graphs of whatever graphing options the fio job included.

– Add ability to graph completion latencies, percentiles, etc.

• Add ability to edit job options:

– We need an options view after sending a job, that allows us to visually see what was parsed, make changes,
resubmit.

– Job options are already converted across the network and are available in gfio_client->o for view/edit.
We’ll need a FIO_NET_CMD_UPDATE_OPTIONS command to send them back, and backend support
for updating an existing set of options.

• Add support for printing end results, graphs, etc.

• Improve the auto-start backend functionality, it’s quite buggy.

• Ensure that it works on OSX and Windows. We’ll need a bit of porting work there.

• Persistent store of prefences set. This will need a per-OS bit as well, using gfonf on Linux, registry on Windows,
?? on OSX.

• Ensure that local errors go to our log, instead of being displayed on the console.
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• Ensure that the whole connect/send/start button logic is sane. Right now it works when you perform the right
sequence, but if you connect and disconnect, things can get confused. We’ll need to improve how we store and
send job files. Right now they are in ge->job_files[] and are always emptied on send. Keep them around?

• Commit rate display is not enabled.

• Group status reporting is not enabled.

• Split gfio.c a bit. Add gfio/ sub directory, and split it into files based on functionality. It’s already ~3000 lines
long.

• Attempt to ensure that we work with gtk 2.10 and newer. Right now the required version is ~2.18 (not quite
known).

3.2 Server TODO

• Collate ETA output from multiple connections into 1

• If group_reporting is set, collate final output from multiple connections

3.3 Steady State TODO

Known issues/TODO (for steady-state)

• Allow user to specify the frequency of measurements

• Better documentation for output

• Report read, write, trim IOPS/BW separately

• Semantics for the ring buffer ss->head are confusing. ss->head points to the beginning of the buffer up through
the point where the buffer is filled for the first time. afterwards, when a new element is added, ss->head is
advanced to point to the second element in the buffer. if steady state is attained upon adding a new element,
ss->head is not advanced so it actually does point to the head of the buffer.
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Moral License

As specified by the COPYING file, fio is free software published under version 2 of the GPL license. That covers the
copying part of the license. When using fio, you are encouraged to uphold the following moral obligations:

• If you publish results that are done using fio, it should be clearly stated that fio was used. The specific version
should also be listed.

• If you develop features or bug fixes for fio, they should be sent upstream for inclusion into the main repository.
This isn’t specific to fio, that is a general rule for any open source project. It’s just the Right Thing to do. Plus it
means that you don’t have to maintain the feature or change internally. In the long run, this is saving you a lot
of time.

I would consider the above to fall under “common courtesy”, but since people tend to have differing opinions of that,
it doesn’t hurt to spell out my expectations clearly.
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CHAPTER 5

License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that

(continues on next page)
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you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and

(continues on next page)
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distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(continues on next page)
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c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by

(continues on next page)
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all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

(continues on next page)
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PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

(continues on next page)
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The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.
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Indices and tables

• genindex

• search
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cpuload=int : [cpuio], 31
cpumask=int, 38
cpus_allowed=str, 38
cpus_allowed_policy=str, 38
create_fsync=bool, 18
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latency_percentile=float, 36
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lockfile=str, 18
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log_compression=int, 44
log_compression_cpus=str, 44
log_hist_coarseness=int, 44
log_hist_msec=int, 44
log_max_value=bool, 44
log_offset=bool, 44
log_store_compressed=bool, 44
log_unix_epoch=bool, 44
loops=int, 16
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max_latency=time, 36
max_open_zones=int, 20
merge_blktrace_file=str, 36
merge_blktrace_iters=float_list, 37
merge_blktrace_scalars=float_list, 37
mss : [netsplice] [net], 32
name=str, 15
namenode=str : [libhdfs], 31
new_group, 43
nice=int, 38
nodelay=bool : [netsplice] [net], 32
norandommap, 24
nrfiles=int, 18
numa_cpu_nodes=str, 38
numa_mem_policy=str, 38
number_ios=int, 22
numjobs=int, 16
offset=int, 22
offset_align=int, 22
offset_increment=int, 22
opendir=str, 18
openfiles=int, 18
overwrite=bool, 23
per_job_logs=bool, 43
percentage_random=int[,int][,int], 24
percentile_list=float_list, 45
pingpong : [netsplice] [net], 32
pool=str : [rbd,rados], 32
port=int, 31
pre_read=bool, 19
prio=int, 38
prioclass=int, 38
profile=str, 46
protocol=str, proto=str : [netsplice] [net], 32
ramp_time=time, 16
random_distribution=str:float[,str:float][,str:float],

23
random_generator=str, 24
randrepeat=bool, 21
randseed=int, 21
rate=int[,int][,int], 35
rate_cycle=int, 36
rate_ignore_thinktime=bool, 36
rate_iops=int[,int][,int], 35
rate_iops_min=int[,int][,int], 35
rate_min=int[,int][,int], 35
rate_process=str, 36
rbdname=str : [rbd], 32
read_beyond_wp=bool, 19
read_iolog=str, 36
read_iolog_chunked=bool, 36
readfua=bool : [sg], 33
readwrite=str, rw=str, 20
refill_buffers, 26

replay_align=int, 37
replay_no_stall=bool, 37
replay_redirect=str, 37
replay_scale=int, 37
replay_skip=str, 37
replay_time_scale=int, 37
runtime=time, 16
rw_sequencer=str, 21
rwmixread=int, 23
rwmixwrite=int, 23
scramble_buffers=bool, 26
serialize_overlap=bool, 34
sg_write_mode=str : [sg], 33
significant_figures=int, 45
size=int, 28
skip_bad=bool : [mtd], 32
softrandommap=bool, 24
startdelay=irange(time), 16
stats=bool, 43
steadystate=str:float, ss=str:float, 42
steadystate_duration=time, ss_dur=time, 43
steadystate_ramp_time=time, ss_ramp=time, 43
stonewall, wait_for_previous, 39
sync=bool, 27
sync_file_range=str:int, 22
thinktime=time, 35
thinktime_blocks=int, 35
thinktime_spin=time, 35
thread, 37
time_based, 16
trim_backlog=int, 42
trim_backlog_batch=int, 42
trim_percentage=int, 42
trim_verify_zero=bool, 42
ttl=int : [netsplice] [net], 31
uid=int, 39
unified_rw_reporting=bool, 21
unique_filename=bool, 17
unit_base=int, 15
unlink=bool, 19
unlink_each_loop=bool, 19
userspace_reap : [libaio], 31
verb=str : [rdma], 33
verify=str, 40
verify_async=int, 41
verify_async_cpus=str, 41
verify_backlog=int, 41
verify_backlog_batch=int, 42
verify_dump=bool, 41
verify_fatal=bool, 41
verify_interval=int, 41
verify_offset=int, 41
verify_only, 40
verify_pattern=str, 41
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verify_state_load=bool, 42
verify_state_save=bool, 42
wait_for=str, 38
window_size : [netsplice] [net], 32
write_barrier=int, 22
write_bw_log=str, 43
write_hint=str, 22
write_hist_log=str, 43
write_iolog=str, 36
write_iops_log=str, 43
write_lat_log=str, 43
writefua=bool : [sg], 33
zero_buffers, 26
zone_reset_frequency=float, 20
zone_reset_threshold=float, 20
zonemode=str, 19
zonerange=int, 19
zonesize=int, 19
zoneskip=int, 19

continue_on_error=str
command line option, 45

cpuchunks=int : [cpuio]
command line option, 31

cpuload=int : [cpuio]
command line option, 31

cpumask=int
command line option, 38

cpus_allowed=str
command line option, 38

cpus_allowed_policy=str
command line option, 38

create_fsync=bool
command line option, 18

create_on_open=bool
command line option, 18

create_only=bool
command line option, 19

create_serialize=bool
command line option, 18

D
dedupe_percentage=int

command line option, 27
description=str

command line option, 15
direct=bool

command line option, 20
directory=str

command line option, 17
disable_bw_measurement=bool, disable_bw=bool

command line option, 45
disable_clat=bool

command line option, 45
disable_lat=bool

command line option, 45
disable_slat=bool

command line option, 45
disk_util=bool

command line option, 45
do_verify=bool

command line option, 40
donorname=str : [e4defrag]

command line option, 32

E
end_fsync=bool

command line option, 23
error_dump=bool

command line option, 46
exec_postrun=str

command line option, 39
exec_prerun=str

command line option, 39
exit_on_io_done=bool : [cpuio]

command line option, 31
exitall

command line option, 39
exitall_on_error

command line option, 45
experimental_verify=bool

command line option, 42

F
fadvise_hint=str

command line option, 21
fallocate=str

command line option, 21
fdatasync=int

command line option, 22
file_append=bool

command line option, 28
file_service_type=str

command line option, 18
filename=str

command line option, 17
filename_format=str

command line option, 17
filesize=irange(int)

command line option, 28
fill_device=bool, fill_fs=bool

command line option, 28
flow=int

command line option, 39
flow_id=int

command line option, 39
flow_sleep=int

command line option, 39
flow_watermark=int
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command line option, 39
fsync=int

command line option, 22
fsync_on_close=bool

command line option, 23

G
gid=int

command line option, 40
group_reporting

command line option, 43
gtod_cpu=int

command line option, 16
gtod_reduce=bool

command line option, 16

H
hdfsdirectory : [libhdfs]

command line option, 33
hipri : [pvsync2]

command line option, 31
hipri_percentage : [pvsync2]

command line option, 31
hostname=str : [netsplice] [net] [rdma]

command line option, 31
http_host=str : [http]

command line option, 33
http_mode=str : [http]

command line option, 33
http_pass=str : [http]

command line option, 33
http_s3_key=str : [http]

command line option, 33
http_s3_keyid=str : [http]

command line option, 33
http_s3_region=str : [http]

command line option, 33
http_swift_auth_token=str : [http]

command line option, 34
http_user=str : [http]

command line option, 33
http_verbose=int : [http]

command line option, 34
https=str : [http]

command line option, 33
hugepage-size=int

command line option, 28

I
ignore_error=str

command line option, 46
inplace=int : [e4defrag]

command line option, 32
interface=str : [netsplice] [net]

command line option, 31
invalidate=bool

command line option, 27
io_size=int, io_limit=int

command line option, 28
io_submit_mode=str

command line option, 35
iodepth=int

command line option, 34
iodepth_batch_complete_max=int

command line option, 34
iodepth_batch_complete_min=int,

iodepth_batch_complete=int
command line option, 34

iodepth_batch_submit=int, iodepth_batch=int
command line option, 34

iodepth_low=int
command line option, 34

ioengine=str
command line option, 28

iomem=str, mem=str
command line option, 27

iomem_align=int, mem_align=int
command line option, 27

iopsavgtime=int
command line option, 45

ioscheduler=str
command line option, 18

K
kb_base=int

command line option, 15

L
lat_percentiles=bool

command line option, 45
latency_percentile=float

command line option, 36
latency_target=time

command line option, 36
latency_window=time

command line option, 36
listen : [netsplice] [net]

command line option, 32
lockfile=str

command line option, 18
lockmem=int

command line option, 28
log_avg_msec=int

command line option, 44
log_compression=int

command line option, 44
log_compression_cpus=str

command line option, 44
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log_hist_coarseness=int
command line option, 44

log_hist_msec=int
command line option, 44

log_max_value=bool
command line option, 44

log_offset=bool
command line option, 44

log_store_compressed=bool
command line option, 44

log_unix_epoch=bool
command line option, 44

loops=int
command line option, 16

M
max_latency=time

command line option, 36
max_open_zones=int

command line option, 20
merge_blktrace_file=str

command line option, 36
merge_blktrace_iters=float_list

command line option, 37
merge_blktrace_scalars=float_list

command line option, 37
mss : [netsplice] [net]

command line option, 32

N
name=str

command line option, 15
namenode=str : [libhdfs]

command line option, 31
new_group

command line option, 43
nice=int

command line option, 38
nodelay=bool : [netsplice] [net]

command line option, 32
norandommap

command line option, 24
nrfiles=int

command line option, 18
numa_cpu_nodes=str

command line option, 38
numa_mem_policy=str

command line option, 38
number_ios=int

command line option, 22
numjobs=int

command line option, 16

O
offset=int

command line option, 22
offset_align=int

command line option, 22
offset_increment=int

command line option, 22
opendir=str

command line option, 18
openfiles=int

command line option, 18
overwrite=bool

command line option, 23

P
per_job_logs=bool

command line option, 43
percentage_random=int[,int][,int]

command line option, 24
percentile_list=float_list

command line option, 45
pingpong : [netsplice] [net]

command line option, 32
pool=str : [rbd,rados]

command line option, 32
port=int

command line option, 31
pre_read=bool

command line option, 19
prio=int

command line option, 38
prioclass=int

command line option, 38
profile=str

command line option, 46
protocol=str, proto=str : [netsplice] [net]

command line option, 32

R
ramp_time=time

command line option, 16
random_distribution=str:float[,str:float][,str:float]

command line option, 23
random_generator=str

command line option, 24
randrepeat=bool

command line option, 21
randseed=int

command line option, 21
rate=int[,int][,int]

command line option, 35
rate_cycle=int

command line option, 36
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rate_ignore_thinktime=bool
command line option, 36

rate_iops=int[,int][,int]
command line option, 35

rate_iops_min=int[,int][,int]
command line option, 35

rate_min=int[,int][,int]
command line option, 35

rate_process=str
command line option, 36

rbdname=str : [rbd]
command line option, 32

read_beyond_wp=bool
command line option, 19

read_iolog=str
command line option, 36

read_iolog_chunked=bool
command line option, 36

readfua=bool : [sg]
command line option, 33

readwrite=str, rw=str
command line option, 20

refill_buffers
command line option, 26

replay_align=int
command line option, 37

replay_no_stall=bool
command line option, 37

replay_redirect=str
command line option, 37

replay_scale=int
command line option, 37

replay_skip=str
command line option, 37

replay_time_scale=int
command line option, 37

runtime=time
command line option, 16

rw_sequencer=str
command line option, 21

rwmixread=int
command line option, 23

rwmixwrite=int
command line option, 23

S
scramble_buffers=bool

command line option, 26
serialize_overlap=bool

command line option, 34
sg_write_mode=str : [sg]

command line option, 33
significant_figures=int

command line option, 45

size=int
command line option, 28

skip_bad=bool : [mtd]
command line option, 32

softrandommap=bool
command line option, 24

startdelay=irange(time)
command line option, 16

stats=bool
command line option, 43

steadystate=str:float, ss=str:float
command line option, 42

steadystate_duration=time, ss_dur=time
command line option, 43

steadystate_ramp_time=time, ss_ramp=time
command line option, 43

stonewall, wait_for_previous
command line option, 39

sync=bool
command line option, 27

sync_file_range=str:int
command line option, 22

T
thinktime=time

command line option, 35
thinktime_blocks=int

command line option, 35
thinktime_spin=time

command line option, 35
thread

command line option, 37
time_based

command line option, 16
trim_backlog=int

command line option, 42
trim_backlog_batch=int

command line option, 42
trim_percentage=int

command line option, 42
trim_verify_zero=bool

command line option, 42
ttl=int : [netsplice] [net]

command line option, 31

U
uid=int

command line option, 39
unified_rw_reporting=bool

command line option, 21
unique_filename=bool

command line option, 17
unit_base=int

command line option, 15
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unlink=bool
command line option, 19

unlink_each_loop=bool
command line option, 19

userspace_reap : [libaio]
command line option, 31

V
verb=str : [rdma]

command line option, 33
verify=str

command line option, 40
verify_async=int

command line option, 41
verify_async_cpus=str

command line option, 41
verify_backlog=int

command line option, 41
verify_backlog_batch=int

command line option, 42
verify_dump=bool

command line option, 41
verify_fatal=bool

command line option, 41
verify_interval=int

command line option, 41
verify_offset=int

command line option, 41
verify_only

command line option, 40
verify_pattern=str

command line option, 41
verify_state_load=bool

command line option, 42
verify_state_save=bool

command line option, 42

W
wait_for=str

command line option, 38
window_size : [netsplice] [net]

command line option, 32
write_barrier=int

command line option, 22
write_bw_log=str

command line option, 43
write_hint=str

command line option, 22
write_hist_log=str

command line option, 43
write_iolog=str

command line option, 36
write_iops_log=str

command line option, 43

write_lat_log=str
command line option, 43

writefua=bool : [sg]
command line option, 33

Z
zero_buffers

command line option, 26
zone_reset_frequency=float

command line option, 20
zone_reset_threshold=float

command line option, 20
zonemode=str

command line option, 19
zonerange=int

command line option, 19
zonesize=int

command line option, 19
zoneskip=int

command line option, 19
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