HackSys Extreme
Vulnerable Driver

= FE OREEREREER FF FE OFEEEEEET
= 2 OFF 22 FFOEF 22
£ L 2 £# L 2 £#
FEEREEEEE REEEEE EFF L 2 22
wr L2 2 L2 I 2 wr
wr FF oFF FF oFF FF wr
i OFEEEEEES FHE FEERREEE

Hack3ys Extreme Vulnerable Driver

Ashfaq Ansari

ashfag@payatu.com
PAYATU TECHNOLOGIES PVT. LTD.

Table of Content

Introduction

Previous Work

Why HackSys Extreme Vulnerable Driver?
Vulnerabilities Implemented
To Do

Pool Overflow

Use After Free

Type Confusion

Stack Overflow

Integer Overflow

Null Pointer Dereference
Arbitrary Memory Overwrite
Test Bed

Exploits

Source Code

Building Driver

Installing Driver

Sessions Conducted
Workshops Conducted

References

O 00 O A W N N N NN

e S T e e T
A M D P W W N O

Introduction
HackSys Extreme Vulnerable Driver is intentionally vulnerable Windows Kernel driver developed for
security enthusiasts to learn and polish their exploitation skills at Kernel level.

HackSys Extreme Vulnerable Driver caters wide range of vulnerabilities ranging from simple Buffer
Overflow to complex Use After Free and Pool Overflow. This allows the researchers to explore the
different exploitation techniques for every implemented vulnerabilities.

Previous Work
Damn Vulnerable Windows Driver

KdExploitMe (https://github.com/clymb3r/KdExploitMe/)

Why HackSys Extreme Vulnerable Driver?

| was giving a series of talks on Windows Kernel Exploitation at null Pune Chapter. So, | thought, it's
better to write a driver which has all the major vulnerabilities implemented in it. The idea to write
the driver was to provide the attendees a better view of what's happening behind the vulnerable
code and also this will be of great help during my workshops and trainings.

This driver also implements the mitigations for the each implemented vulnerabilities if compiled
with SECURE flag. This allows the developers to understand how these vulnerabilities can be
mitigated easily.

Vulnerabilities Implemented
= Pool Overflow
= Use After Free
= Type Confusion
= Stack Overflow
= Integer Overflow
= Stack Overflow GS
= Null Pointer Dereference
= Arbitrary Memory Overwrite

To Do
= Memory Disclosure
= Use of Uninitialized Variable
= Time Of Check To Time Of Use (Race Condition)

https://github.com/clymb3r/KdExploitMe/

Pool Overflow

PoolOverflow.c

[+]1 Starting Pool Overflow Exploitation
[+] Creating The Exploit Thread

[+] Setting Thread Priority

[+] Getting Device Driver Handle

[+] Setting Up Uulnerability Stage

[+] Triggering Fool Overf low

[+]1 Completed Pool Overflow Exploitation
[+]1 Checking Current Process Privileges
[+] Trying To Get Process ID Of: csprss.exe

[+]1 Trying To Open csrss.exe With PROCESS_ALL_ACCESS

[+]1 Successfully Elevated Current Process Privileges
[+]1 Enjoy As SYSTEM [0.080008 1s

Use After Free

// Code snipped for brevity

VOID UaFObjectCallback() {
PAGED CODE () ;
DbgPrint (" [+] UseAfter Free Callback called\n");

NTSTATUS CreateUaFObject () {
NTSTATUS status = STATUS SUCCESS;
PUSE AFTER FREE pUseAfterFree = NULL;
PAGED CODE () ;

_try {
DbgPrint (" [+] Creating UaF Object\n");
pUseAfterFree = (PUSE AFTER FREE)ExAllocatePoolWithTag (NonPagedPool,

sizeof (USE AFTER FREE),
(ULONG) POOL_TAG) ;
if (!pUseAfterFree) {
status = STATUS NO MEMORY;
return status;

}
RtlFillMemory ((PVOID) pUseAfterFree->buffer,
sizeof (pUseAfterFree->buffer),
0x41) ;
pUseAfterFree->buffer[sizeof (pUseAfterFree->buffer) - 1] = '\0';
pUseAfterFree->pCallback = &UaFObjectCallback;

g UseAfterFreeObject = pUseAfterFree;

ProbeForRead ((PVOID) pFakeObject,
Sizeof(FAKE_OBJECT),
(ULONG) _alignof (FAKE OBJECT)) ;

RtlCopyMemory ((PVOID) pKernelFakeObject,
(PVOID) pFakeObject,
sizeof (FAKE OBJECT)) ;

pKernelFakeObject->buffer[sizeof (pKernelFakeObject->buffer) - 1]
}
___except (EXCEPTIONiEXECUTEiHANDLER) {

status = GetExceptionCode () ;
}

return status;

'\O';

UseAfterFree.c

[+] Starting Use After Free Exploitation
[+]1 Creating The Exploit Thread

[+]1 Setting Thread Priority

[+]1 Getting Device Driver Handle

[+]1 Setting Up Uulnerability Stage

[+] Triggering Kernel Usze After Free
[+]1 Completed Use After Free Exploitation
[+]1 Checking Current Process Privileges
[+]1 Trying To Get Process ID Of: csrss.exe

[+]1 Trying To Open csrss._exe With PROCESS_ALL_ACCESS

[+]1 Successfully Elevated Current Processz Privileges
[+]1 Enjoy As SYSTEM [A.08000A 1=

Type Confusion

// Code snipped for brevity

VOID TypeConfusionObjectCallback() {
PAGED CODE () ;

DbgPrint (" [+] Type Confusion Object Callback called\n");

TypeConfusion.c

// Code snipped for brevity

typedef struct TYPE CONFUSION USER OBJECT ({
ULONG objectID;
ULONG objectType;
} TYPE CONFUSION USER OBJECT, *PTYPE CONFUSION USER OBJECT;

typedef struct TYPE CONFUSION KERNEL OBJECT ({
ULONG objectID;
union {
ULONG objectType;
FunctionPointer pCallback;
}i
} TYPE CONFUSION KERNEL OBJECT, *PTYPE CONFUSION KERNEL OBJECT;

TypeConfusion.h

[+]1 Starting Type Confusion Exploitation
[+] Creating The Exploit Thread

[+]1 Setting Thread Priority

[+]1 Getting Device Driver Handle

[+]1 Setting Up Uunlnerahility Stage

[+]1 Triggering Kernel Type Confusion
[+]1 Completed Type Confusion Exploitation
[+] Checking Current Process Privileges
[+]1 Trying To Get Process ID Of: csrss.exe

[+] Trying To Open csrss.exe With PROCESS _ALL_ACCESS

[+]1 Successfully Elevated Current Process Privileges
[+]1 Enjoy As SYSTEM [B.08000861s

Stack Overflow

// Code snipped for brevity

NTSTATUS TriggerStackOverflow (IN PVOID pUserModeBuffer, IN SIZE T
userModeBufferSize) ({

NTSTATUS status = STATUS SUCCESS;

ULONG kernelBuffer [BUFFER SIZE] = {0};

PAGED CODE () ;
_ try |
ProbeForRead (pUserModeBuffer, sizeof (kernelBuffer),
(ULONG) alignof (kernelBuffer)) ;
#ifdef SECURE

RtlCopyMemory ((PVOID) kernelBuffer, pUserModeBuffer,
sizeof (kernelBuffer)) ;

#else

RtlCopyMemory ((PVOID) kernelBuffer, pUserModeBuffer,
userModeBufferSize) ;

#endif

}

___except (EXCEPTIONiEXECUTEiHANDLER) {
status = GetExceptionCode () ;

}

return status;

StackOverflow.c

[+]1 Starting Stack Overflow Exploitation
[+]1 Creating The Exploit Thread

[+]1 Setting Thread Priority

[+]1 Getting Device Driver Handle

[+]1 Setting Up Uulnerabhility Stage

[+]1 Triggering Kernel Stack Overflow
[+] Completed Stack Owverflow Exploitation
[+]1 Checking Current Process Privileges
[+]1 Trying To Get Process ID Of: csrss.exe

[+] Trying To Open csrss.exe With PROCESS_ALL_ACCESS

[+]1 Successfully Elevated Current Proceszs Privileges
[+]1 Enjoy A=s SYSTEM [B.0000601s

Integer Overflow

// Code snipped for brevity

NTSTATUS TriggerIntegerOverflow (IN PVOID pUserModeBuffer, IN SIZE T
userModeBufferSize) {

ULONG arrayCount = 0;

NTSTATUS status = STATUS SUCCESS;

ULONG bufferTerminator = O0xBADOBOBO;

ULONG kernelBuffer [BUFFER SIZE] = {0};

SIZE T bufferTerminatorSize = sizeof (bufferTerminator);

PAGED CODE () ;

_ try {
ProbeForRead (pUserModeBuffer, sizeof (kernelBuffer),
(ULONG) alignof (kernelBuffer)) :;

#ifdef SECURE
if (userModeBufferSize > (sizeof (kernelBuffer) - bufferTerminatorSize))

{
status = STATUS INVALID BUFFER SIZE;

return status;
}
#else
DbgPrint (" [+] Triggering Integer Overflow\n") ;

if ((userModeBufferSize + bufferTerminatorSize) > sizeof (kernelBuffer))

{
status = STATUS INVALID BUFFER SIZE;
return status;

}
#endif

while (arrayCount < (userModeBufferSize / sizeof (ULONG))) {

if (* (PULONG)pUserModeBuffer != bufferTerminator) {
kernelBuffer[arrayCount] = * (PULONG)pUserModeBuffer;
pUserModeBuffer = (PULONG)pUserModeBuffer + 1;

arrayCount++;

}
else {
break;

}

}

__except (EXCEPTION_EXECUTE_HANDLER) {
status = GetExceptionCode () ;

}

return status;

IntegerOverflow.c

[+] Starting Integer Ouerflow Exploitation
[+]1 Creating The Exploit Thread

[+] Setting Thread Priority

[+]1 Getting Device Driver Handle

[+]1 Setting Up Uulnerahility Stage

[+]1 Triggering Integer Ouverflow
[+] Completed Integer Overflow Exploitation
[+]1 Checking Current Process Privileges
[+]1 Trying To Get Process ID Of: csrss.exe

[+] Trying To Open csrss.exe With PROCESS_ALL_ACCESS

[+]1 Successfully Elevated Current Process Privileges
[+]1 Enjoy A=z SYSTEM [B.060060601s

Null Pointer Dereference

// Code snipped for brevity

VOID NullPointerDereferenceObjectCallback ()

NullPointerDereference.c

[+]1 Starting Null Pointer Dereference Exploitation
[+] Creating The Exploit Thread

[+] Setting Thread Priority

[+]1 Getting Device Driver Handle

[+]1 Setting Up Uulnerahbhility Stage

[+]1 Triggering MNull Pointer Dereference
[+] Completed Mull Pointer Dereference Exploitation
[+]1 Checking Current Process Privileges

[+]1 Trying To Get Process ID Of: csrss.exe

[+]1 Trying To Open csrss.exe With PROCESS_ALL_ACCESS

[+]1 Successfully Elevated Current Process Privileges
[+]1 Enjoy As SYSTEM [0.088000 1s

Arbitrary Memory Overwrite

// Code snipped for brevity

NTSTATUS TriggerArbitraryOverwrite (IN PWRITE WHAT WHERE pUserModeWriteWhatWhere) {
NTSTATUS status = STATUS SUCCESS;

PAGED CODE () ;

__try {
ProbeForRead ((PVOID) pUserModeWriteWhatWhere,
sizeof(WRITE_WHAT_WHERE),
(ULONG) alignof (WRITE WHAT WHERE)) ;

#ifdef SECURE
ProbeForRead ((PVOID) pUserModeWriteWhatWhere->Where,
sizeof (PULONG) ,
(ULONG) alignof (PULONG)) ;

ProbeForRead ((PVOID) pUserModeWriteWhatWhere->What,
sizeof (PULONG) ,
(ULONG) alignof (PULONG)) ;

* (pUserModeWriteWhatWhere->Where) = * (pUserModeWriteWhatWhere->What) ;

#else
DbgPrint (" [+] Triggering Arbitrary Overwrite\n");

* (pUserModeWriteWhatWhere->Where) = * (pUserModeWriteWhatWhere->What) ;
#endif

}
__except (EXCEPTION EXECUTE HANDLER) {
status = GetExceptionCode () ;

return status;

ArbitraryOverwrite.c

// Code snipped for brevity

typedef struct WRITE WHAT WHERE {
PULONG What;
PULONG Where;

} WRI TE WHAT WHERE, *PWRI TE WHAT WHERE;

ArbitraryOverwrite.h

[+]1 Starting Arbitrary Memory Ouverwrite Exploitation
[+]1 Creating The Exploit Thread

[+] Setting Thread Priority

[+]1 Getting Device Driver Handle

[+]1 Setting Up Uulnerahbhility Stage

[+]1 Triggering Arbhitrary Memory OQuerwrite

[+]1 Completed Arhitrary Memory Ouerwrite Exploitation
[+]1 Checking Current Process Privileges
[+] Trying To Get Process ID Of: csrss.exe

[+]1 Trying To Open csrss.exe With PROCESS _ALL_ACCESS

[+] Successfully Elevated Current Process Privileges
[+]1 Enjoy As SYSTEM [0.0808008]1s

Test Bed

This driver has been successfully tested on Windows XP SP3 (x86), Windows 2003 SP3 (x86) and
Windows 7 SP1 (x86), but it can support Windows 8/8.1 (x86) too. Windows 8/8.1 support has not
been tested now.

Exploits
Yes, exploits have been provided with this project. The exploit has been tested on Windows 7 SP1
(x86) and will need tweaking to support other versions of Windows OS.

Source Code
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver

Building Driver
1. Install Windows Driver Kit
https://www.microsoft.com/en-in/download/details.aspx?id=11800
2. Change %localSymbolServerPath% in Build_HEVD_Secure.bat and
Build_HEVD_Vulnerable.bat driver builder
3. Run the appropriate driver builder Build_HEVD_Secure.bat or Build_HEVD_Vulnerable.bat

Installing Driver

Use OSR Driver Loader (https://www.osronline.com/article.cfm?article=157) to install HackSys
Extreme Vulnerable Driver

Sessions Conducted

= Windows Kernel Exploitation 1

http://null.co.in/event sessions/156-windows-kernel-exploitation
= Windows Kernel Exploitation 2

http://null.co.in/event sessions/186-windows-kernel-exploitation-2
= Windows Kernel Exploitation 3

http://null.co.in/event sessions/226-windows-kernel-exploitation-3
= Windows Kernel Exploitation 4

http://null.co.in/event sessions/234-windows-kernel-exploitation-4
= Windows Kernel Exploitation 5

http://null.co.in/event sessions/309-windows-kernel-exploitation-5

Workshops Conducted

= Windows Kernel Exploitation Humla Pune
http://null.co.in/event sessions/280-windows-kernel-exploitation
= Windows Kernel Exploitation Humla Mumbai
http://null.co.in/event sessions/327-windows-kernel-exploitation

References

= https://www.blackhat.com/docs/us-14/materials/us-14-Tarakanov-Data-Only-Pwning-
Microsoft-Windows-Kernel-Exploitation-Of-Kernel-Pool-Overflows-On-Microsoft-Windows-
8.1.pdf

= http://www.attackingthecore.com/

= http://poppopret.blogspot.com/

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://www.microsoft.com/en-in/download/details.aspx?id=11800
https://www.osronline.com/article.cfm?article=157
http://null.co.in/event_sessions/156-windows-kernel-exploitation
http://null.co.in/event_sessions/186-windows-kernel-exploitation-2
http://null.co.in/event_sessions/226-windows-kernel-exploitation-3
http://null.co.in/event_sessions/234-windows-kernel-exploitation-4
http://null.co.in/event_sessions/309-windows-kernel-exploitation-5
http://null.co.in/event_sessions/280-windows-kernel-exploitation
http://null.co.in/event_sessions/327-windows-kernel-exploitation
https://www.blackhat.com/docs/us-14/materials/us-14-Tarakanov-Data-Only-Pwning-Microsoft-Windows-Kernel-Exploitation-Of-Kernel-Pool-Overflows-On-Microsoft-Windows-8.1.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Tarakanov-Data-Only-Pwning-Microsoft-Windows-Kernel-Exploitation-Of-Kernel-Pool-Overflows-On-Microsoft-Windows-8.1.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Tarakanov-Data-Only-Pwning-Microsoft-Windows-Kernel-Exploitation-Of-Kernel-Pool-Overflows-On-Microsoft-Windows-8.1.pdf
http://www.attackingthecore.com/
http://poppopret.blogspot.com/

= https://cwe.mitre.org/data/definitions/843.html

https://cwe.mitre.org/data/definitions/843.html

